oEPA
         United States
         Environmental Protection
         Agency
            Office of Air Quality
            Planning and Standards
            Research Triangle Park, NC 27711
EMB Report No. 88 - MIN - 06A
April 1988
         Air
Municipal Waste Combustion
HCI Continuous Monitoring  Study
          Emission Test Report

          Maine Energy Recovery Company
          Solid Waste-to-Energy Facility
          Refuse-Derived Fuel Process
          Biddeford, Maine

-------
            EMISSION TEST REPORT

       HC1  CONTINUOUS  MONITORING  FOR
      MUNICIPAL  WASTE  COMBUSTION  STUDY
       MAINE ENERGY RECOVERY  COMPANY
       SOLID WASTE-TO-ENERGY  FACILITY
        REFUSE-DERIVED FUEL PROCESS
              BIDDEFORD,  MAINE
          ESED Project No.  86/19a
        EPA Contract No.  68-02-4336
           Work Assignment  No.  16
               Prepared for:

        Clyde E.  Riley, Task  Manager
        Emission Measurement  Branch
Emission Standards and Engineering Division
   U. S. Environmental Protection Agency
Research Triangle Park, North Carolina 277H
                Prepared by:

               Scott Shanklin
           J. Ron Jernigan, P.E.
      Entropy Environmentalists, Inc.
           Post Office Box 12291
Research Triangle Park, North Carolina 27711
               April 8, 1988

-------
                               TABLE OF CONTENTS


1.0  Introduction	  1
     1.1  Background	  1
     1.2  Purpose and Objectives	  1
     1.3  Brief Process Description	  2
     1.4  Sampling Matrix	  2
     1.5  Quality Assurance/Quality Control	  5
     1.6  Schedule	  5
     1.7  Organization	  5

2.0  Summary and Discussion of Results	  7
     2.1  Test Run 1	  7
     2.2  Test Run 2	 15
     2.3  Test Run 3	 15

3.0  Process Description and Operation	 25
     3.1  Facility Description	 25
     3.2  Summary of Operations by Test Run	 30
     3-3  Summary of Operating Parameters During the Test Program	 31

4.0  HC1 Continuous Emission Monitoring System Descriptions	 43
     4.1  Thermo Electron Model 15 HC1 Analyzer/Model 200 Dilution System... 43
     4.2  Compur Model 4150 ZGSM HC1 Analyzer/Model 4330 Dilution System	44
     4.3  Bodenseewerk Spectran Model 677 IR HC1 Monitoring System	 45

5.0  Description of the HC1 CEM Sampling Program	 4?
     5.1  Spray Dryer Inlet - Thermo Electron HC1 Monitoring System	 47
     5-2  Spray Dryer Outlet - Compur HC1 Monitoring System	 54
     5-3  Baghouse Outlet - Bodenseewerk HC1 Monitoring System	 54
     5.4  Data Acquisition System	 54

6.0  Quality Assurance/Quality Control	 57
     6.1  HC1 Sampling System Inspection	 57
     6.2  Linearity Checks and Midrange QC Checks	 57
     6.3  Calibrations and Drift Calculations	 57
     6.4  Wet Chemical Sampling for Performance Evalution Audits	 59
     Appendix A.  Test Program One-Minute Data Printouts
     Appendix B.  Sample Calculations
     Appendix C.  Daily Calibration Sheets
     Appendix D.  Daily System Check Lists
     Appendix E.  Quality Assurance Data
     Appendix F.  HC1 Calibration Cylinder Gases
     Appendix 0.  Bodenseewerk Operation Procedures
     Appendix H.  Thermo Electron Operation Procedures
     Appendix I.  Compur Operation Procedures
     Appendix J.  Wet Chemical Sampling/Analytical Procedures
     Appendix K.  Spray Dryer Operating Data

-------
                               LIST OF TABLES

Table                                                                  Page
Number                                                                Number

  1.1   Test Matrix for MERC Test Program                               3

  2.1   Summary of HC1 Monitoring Data,  Refuse-Derived Fuel,
         Municipal Waste Combustor Test  Program,  MERC, December 198?    8

  2.2   Sampling Log Summary, MERC - Biddeford                          9

  2.3   MRI Volumetric Flow Rate and Moisture Data Used in HC1
         Monitoring Calculations - MERC  Test Program                   10

  2.4   HC1 Monitoring Results - Run 1                                 11

  2,5   HC1 Monitoring Results - Run 2                                 16

  2.6   HC1 Monitoring Results - Run 3                                 20

  3.1   Summary of Key Operating Parameters During the MERC
         Test Program                                                  33

  6.1   HC1 CEM Linearity Check (3-Point)                               57

  6.2   Calibration Drift Results for Each Test Run                    57

-------
                                LIST OF FIGURES

Figure                                                                /af
Number                                                                Number

1-1     Process schematic for MERC in Biddeford, Maine; sampling         4
          and monitoring locations are keyed to Table 1.1

1-2     Organizational scheme for MERC testing program                   6

2-1     HC1 Monitoring Data  - Run #1                                    12

2-2     HC1 Monitoring Data  - Run #1                                    13

2-3     HC1 Removal  Efficiency  - Run #1                                 !**

2-4     HC1 Monitoring Data  - Run #2                                    17

2-5     HC1 Monitoring Data  - Run #2                                    !8

2-6     HC1 Removal  Efficiency  - Run #2                                 19

2-7     HC1 Monitoring Data  - Run #3                                    21

2-8     HC1  Monitoring Data  - Run #3                                    22

 2-9      HC1  Removal Efficiency  - Run #3                                 23

 3-1      The Process Line for Unit A of the York County  Waste-to-Energy  26
          Facility, Biddeford,  Maine

 3-2     Preparation of Refuse-Derived  Fuel at  MERC in Biddeford,  Maine  2?

 3-3     Combustion Air Scheme at the  MERC Facility in Biddeford,  Maine  29

 3-4     Location of Temperature,  Pressure, and Flow Sensors at the
          MERC Facility                                                  32

 3-5     RDF Heat Release and Steam Flow, Pressure, and Temperature
          as a Function of Time During the MERC Test Program             33

 3-6     Combustion Air Parameters as a Function of Time During the
          MERC Test Program                                              36

 3-7     Overfire Air Flow Pressures Measured During the MERC Test
          Program                                                        37

 3-8     Flue Gas Temperature as a Function of Time During the MERC
          Test Program                                                   39

 3-9     Spray Dryer Operating  Parameters  as a Function of Time During
          the MERC Test Program                                         ^0

 3-10    Differential Pressures Across the Control Devices During  the
          MERC Test Program                                              4l

 (continued)

-------
List of Figures (continued)






5-1     Location of Testing Trailer and Sample Lines                    48




5-2     Field Evaluation Set-up                                         49




5~3     Top View of Spray Dryer Inlet and Outlet Sampling Locations     50




5-4     Spray Dryer Outlet Sampling System:  Passive Nozzle              52




5~5     Barrel Nozzle                                                   53




5-6     Location of Sampling Probe at the Baghouse  Outlet               55

-------
                              1.0  INTRODUCTION

1.1  BACKGROUND

    The U. S. Environmental Protection Agency (EPA) published an advance
notice of proposed rulemaking in the Federal Register  (July 7, 198?) which
describes upcoming emission standards development for new and modified
municipal waste combustors (MWC) under Section 111 of the Clean Air Act and
for existing MWC under Section lll(d) of the Act.  The Federal Register
notice culminates more than a year of work on the development of the
technical and health related documents which comprise EPA's Report to
Congress on MWC.  The Report to Congress was a joint effort involving the
Offices of Air Quality Planning and Standards (OAQPS), Solid Waste (OSW), and
Research and Development  (ORD).

    The OAQPS, through the Industrial Studies Branch (ISB in the Emission
Standards Division) and the Emission Measurement Branch  (EMB in the Technical
Support Division), is responsible for reviewing the existing air emission
data base and gathering additional data where necessary.  As a result of this
review, several MWC emission tests have been performed and several more are
in  the planning stages to support the current standards development work.  Of
particular importance is  a more complete data base on emerging air pollution
control technologies for  MWC.

    The emissions being studied in this assessment are the criteria
pollutants — particulate matter  (PM), sulfur dioxide  (S0?), nitrogen oxides
 (NO ), carbon monoxide  (CO), and  total hydrocarbons (THC); other acid gases,
sucn as hydrochloric acid (HC1);  chlorinated organics, including chlorinated
dibenzo-p-dioxins  (CDD),  chlorinated dibenzofurans (CDF), and dioxin
precursors;  and specific  metals,  including arsenic (As), cadmium (Cd), total
chromium  (Cr), mercury  (Hg), nickel  (Ni), and lead (Pb).


1.2 PURPOSE AND OBJECTIVES

    A number of MWC's have undergone emissions testing programs sponsored by
the EPA and  others to supplement  the data base on MWC.  However, no data are
currently available from  a state-of-the-art refuse-derived fuel (RDF) MWC
facility in  terms of uncontrolled and controlled emission levels under normal
operating conditions or under normal variations in facility operation.  The
control technologies as well as the regulatory data requirements for RDF
facilities are the same as those  for mass-burn facilities.

    Combustion Engineering (CE) and Babcock and Wilcox (B&W) are the two
principal suppliers of RDF combustor technology in the United States.  The EPA
is  currently involved with Environment Canada in the planning of an extensive
test program at a CE-designed RDF facility with a spray dryer/fabric filter
(SD/FF) emission control  system located in Hartford, Connecticut.  The test
program will involve both characterization and performance testing of the
facility during the summer and fall of 1988.  However, the data from this test
will not become available until late in EPA's regulatory development schedule.
Therefore, the test program at the Maine Energy Recovery Company (MERC) in
Biddeford, Maine, a B&W unit with an SD/FF emission control system, will
provide ESED with the opportunity to move ahead with regulatory development for
RDF MWC facilities with a limited amount of data, while awaiting the data from

-------
the CE-designed facility in Connecticut.   The MERC test program was conducted
in conjunction with the compliance tests  for CDD/CDF conducted by Entropy for
MERC's holding company, KTI Holdings,  Inc.   Data from the compliance test win
also be available to EPA.

    Specific objectives of the Biddeford  test program were:

    1.  To determine the level of uncontrolled MWC emissions,  including
        criteria pollutants, metals,  acid gases, and dioxin/furans, from a
        state-of-the-art refuse-derived fuel facility.

    2.  To determine the control efficiency on RDF MWC emissions, including
        criteria pollutants, metals,  acid gases, and dioxin/furans, of a
        spray dryer/fabric filter control system.

    Entropy conducted  continuous emission monitoring for HC1 at the inlet to
the spray dryer, at the outlet of the spray dryer, and at the outlet of the
fabric filter.  Midwest Research Institute (MRI) performed manual sampling
for CDD/CDF, particulate matter, metals,  0_, and CO-, and conducted
continuous emission monitoring of CO, CO-, SO-, 0-, N0x, and THC (see Table
1.1).  Sampling of the fly ash, lime slurry, and refuse-derived fuel was also
conducted and coordinated by MRI.  The HC1 monitoring data collected by
Entropy is presented to  compliment the other emission test data gathered by
MRI.

    Process and control  system operating data were collected over the course
of the test program by Radian Corporation  (Radian).  This included all
computer-logged process data from the plant instrumentation and all available
emission control system parameters.  Collection of these data is described
and the data are summarized in Section 3-0 (prepared by Radian).


1.3   BRIEF PROCESS DESCRIPTION

    Figure 1.1 is a process schematic showing the  sampling and monitoring
locations for Unit A,  one of the  two identical  combustor systems at the Maine
Energy Recovery Company, which was tested  during this program.  The facility
processes municipal waste through extensive sorting and shredding  into
refuse-derived fuel.   The RDF plus supplemental fuel  is used  to  fire two
150 x 10  Btu/hour boilers  that can provide steam  for up to 22 MW  of power
generation, which is sold to Central Maine Power.  The combustion  gases  from
each  boiler pass through a  spray  dryer followed by a  fabric filter and exit
through a common stack.  100% RDF was fired in  both boilers during this  test
program.

1.4   SAMPLING MATRIX

    Table 1.1 presents the  overall test program matrix  including sampling and
analytical procedures  employed by Entropy  and MRI.   Sampling  at  all three
locations occurred simultaneously, and process  samples  (fly ash,  lime  slurry,
and RDF) were taken at regular intervals during the  test periods.

-------
                                        TABLE 1.1.   TEST MATRIX FOR MERC TEST PROGRAM
 Location
    Sample
     Type
Sampling
 Method
Sampling
Duration
Analysis
Parameter
                                                                                                Analysis
                                                                                                 Method
1-Spray dryer inlet
Combustion
 gas
2-Spray dryer outlet
Combustion
 gas
                                            MM 5

                                            M3

                                            CEMS





                                           CEMS
               4 hours      Particulate
                            Metals (Cd, Cr,  As,
                             Pb,  Hg)

               4 hours      CDD/CDF
                                  4 hours      0_, C02

                                               CO, CO
                                               THC
                                               HC1

                                  4 hours      CO
                                 Gravimetric
                                 AAS/ICAP
                                 HRGC/HRMS

                                 Orsat

                                 NDIR
                                 Pulsed fluorescence
                                 Heated FID
                                 Infrared absorption

                                 NDIR
                                 Polarographic
                                 Specific ion electrode
3-Fabric filter outlet Combustion
gas









A-Cyclone ash Fly ash
discharge

B-Fabric filter Fly ash
(Baghouse )



C-Bottom ash discharge Bottom ash


D-Spray dryer holding Lime slurry
tank

E-Boiler inlet RDF

MM 5

M5


M3
CEMS




Integrated
grab

In t egra t ed
grab



Integrated
grab

Integrated
grab

Integrated
grab
4 hours CDD/CDF

4 hours Particulate
Metals (Cd, Cr, As,
Pb. Hg)
4 hours O , CO
4 hours CO , O
S°o
2
NO
HC?
4 hours Metals
Percent Carbon
Percent combustibles
4 hours Percent carbon
Metals
Percent combustibles
Resistivity
K factor
4 hours Percent combustibles
, Percent carbon
Metals
4 hours Metals 
-------
''RDF
/
Bottom /
Ash ,£
f
4-_/ 	

Boiler
/
Economizer] *| Pre heater | 	 *\ \ 	 (T)"*

1
l
Gruic
Ash
> J
ICyclonesl
1
kVAl
•* ^
k
Spray
Dryer
Absorber
(Scrub-
y
i
l

^ * l-abric
CD Filter
Baghouse
YVY
i •
'**
\ B ,
N. f
t
1
If X »
Ash
Discharge
    » Combustion Gas


 — > Ash Discharge


  (j Sample Locations


  {  \ Ash Sample Locations


  /\ Plant Cems


    •  Off  Line During Test
                                                                                                CO. CO2
                                                                                                Opacity
                                                                                         Identical
                                                                                         Boiler Unit B
Figure  1-1.   Process schematic for MERC in Biddeford,  Maine; sampling and monitoring locations  are
              keyed to Table 1.1.

-------
1.5  QUALITY ASSURANCE/QUALITY CONTROL

    Prior to performing this test, Entropy prepared both a Quality Assurance/
Quality Control  (QA/QC) Project Plan and a Site-Specific Test Plan.  The QA/QC
Project Plan details all QA/QC activities undertaken for the test program; the
Site-Specific Test Plan describes the particulars of the sampling and
analytical procedures and the test locations.  Section 6.0 of this report
summarizes the results of the QA/QC activities performed by Entropy.  A
separate report  by Research Triangle Institute (RTI) summarizes the results of
an external technical systems (checklist) audit on the HC1 monitoring performed
during the test  program by RTI staff.

1.6  SCHEDULE

    The test program began with the on-site arrival of the Entropy test crew on
December 1, 198?.  The first seven days on-site were used to set up the three
HC1 monitoring systems and perform preliminary checks to ensure that all of the
monitoring equipment was functioning properly prior to the anticipated December
8 initiation of  the testing.  The emissions testing was scheduled to be
conducted during a three day period.  However, the plant experienced numerous
process operating problems which caused delays and disruptions in the testing.
The three test runs were performed between December 9 and December 13, 198?•
The Entropy test crew departed the test site on December 16. 198? after
disassembling and packing the test equipment.


1.7  ORGANIZATION

    Mr. Mike Johnston of the Office of Air Quality Planning and Standards
 (OAQPS) and Dr.  Ted Brna of the Air & Energy Engineering Research Laboratory
 (AEERL) participated as program coordinators.  Mr. Winton Kelly of Radian
assisted the program coordinators in monitoring the process operations.  The
test program coordinators were responsible for coordinating the overall test
program with the plant officials and assuring that the process and control
equipment operating conditions were suitable for testing.  Mr. Gene Riley of
OAQPS was the EPA Task Manager, and was responsible for coordinating the
efforts of  the Entropy and MRI test crews.

    Mr. J. Ron Jernigan was the Project Coordinator for the HC1 monitoring
conducted by Entropy.  Mr. Scott Shanklin served as the HC1 Test Team Leader
and was responsible for field testing and on-site QA/QC activities.  The
organizational scheme showing Entropy in relationship to all parties involved
in the test program is shown in Figure 1.2.

-------
Contractor

MRI

Radian

Entropy (Source Test Div.)

Entropy (CEM/Eng. Div.)

RTI
                                 CONTRACTOR  EFFORT

                                      Scope of Work

                                  Conduct field test program

                                  Perform process monitoring

                                  Compliance field testing

                                  Conduct HCI monitoring

                                  Test program QA
                                            Funding Source

                                            AEERL

                                            OAQPS

                                            KTI Energy, Inc.

                                            OAQPS/AEERL

                                            AEERL
                           GOVERNMENT  PERSONNEL  ON  TEST SITE
                                EPA, AEERL


                               EPA, OAQPS


                                    MDEP
                       James Kilgroe
                       Ted Brna

                       Mike Johnston
                       Gene Riley

                       Scott Mason
                 MAINE ENERGY RECOVERY  COMPANY  TEST  PROGRAM
                   MANAGEMENT PROTOCOL  FOR DECISION  MAKING
         I
AEERL  Coordinator
    James Kilgroe
        QA
   Judith Ford (EPA)
   Shri Kulkarni (RTI)
   MRI Test Crew
(Emission  Testing)
    George Schiel
                                        EPA  Project
                                        Coordinators
                                        James Kilgroe
                                          Ted Brna
                                        Mike Johnston
            OAQPS  Coordinator
                Mike Johnston
     OAQPS
  Task  Manager
     Gene Riley
Entropy Test Crew
   (HCI  Testing)
    Ron Jernigan
    Scott Shanklin
     Keith Hazel
                                             KTI  Coordinators
                                                Lynn Johnston
                                                 Frank Ferraro
                                                          KTI Program Coordinator
                                                                 Frank Ferraro
                                                             MERC  Coordinator
                                                                 Gary Bates
                                              Radian
                                        Process  Monitoring
                                            Winton Kelly
              Figure 1.2.  Organizational scheme for MERC testing program.
                                                                                    3516B 1/88

-------
                     2.0  SUMMARY AND DISCUSSION OF RESULTS
    The mean HC1 monitoring results and process HC1 scrubber removal
efficiencies are presented in Table 2.1.  The HC1 concentrations at the spray
dryer inlet (inlet) and spray dryer outlet  (midpoint) sampling locations  (TECO
and Compur GEMS's, respectively) were measured on a wet basis and converted  to
dry basis values using EPA Method 4 data supplied by MRI.  The HC1 measurement
data for each test run were corrected for calibration drift using the pre- and
post-test calibration results according to  the procedures in EPA Method 6C.

    HC1 removal efficiencies were calculated from the inlet to the midpoint
location, and from the inlet to the outlet  location.  The removal efficiencies
were computed on a mass emission rate basis  (Ib HCl/hr) using the Entropy HC1
continuous monitoring data collected at the three test locations and volumetric
flow rate data provided by MRI.

    The moisture and volumetric flow rate results as well as the test run times
utilized by Entropy in calculating the monitoring results and HC1 removal
efficiencies were obtained from MRI  (see Tables 2.2 and 2.3t respectively).
The moisture values used  to correct the inlet HC1 monitoring results were
averages of the results from the two trains  (particulate/metals and CDD/CDF)
operated at the inlet location  (see Table 2.3).  The outlet moisture values
were used to correct the  midpoint HC1 monitoring results since no manual
testing was conducted at  the midpoint location.  The increase in the moisture
observed from the inlet to the outlet is the result of the spray dryer lime
slurry injection.  The volumetric flow rate values used to calculate the
percent removal efficiencies were also averages of the results from the two
trains operated at both the inlet and outlet (see Table 2.3).  The average of
the values from the two trains was used with inlet and outlet HC1 values; the
average of these averages (inlet averaged with outlet) was used with the
midpoint HC1 data.

    The HC1 monitoring data that were printed by the data acquisition system
during the testing program are presented in Appendix A.  The daily calibration
results manually recorded on calibration drift summary sheets are contained  in
Appendix B.


2.1  TEST RUN 1

    The HC1 monitoring results for Test Run 1 are summarized in Table 2.4 and
are presented graphically in Figures 2-1 and 2-2.  The two trend graphs present
one-minute averages recorded throughout the test run, excluding any periods  of
"process upsets".  Figure 2-2 presents the  monitoring data corresponding  to  the
MRI metals train sampling times, and excludes the data collected during the  MRI
sampling port changes.

    The mean HC1 concentration results were 560 ppm, 75 Ppm* and 9 ppm HC1 at
the inlet, midpoint, and  outlet locations,  respectively.  The mean HC1 removal
efficiencies from the inlet to the midpoint and from the inlet to the outlet
locations were Bj% and 98%, respectively.   The removal efficiencies were
calculated from the one-minute averaged emission rate values  (Ib HCl/hr)  and
are shown in Figure 2-3.

-------
                                   TABLE 2.1.

                         SUMMARY OF HC1 MONITORING DATA
                              REFUSE-DERIVED FUEL
                     MUNICIPAL WASTE COMBUSTOR TEST PROGRAM
                         MAINE ENERGY RECOVERY COMPANY
Test
Run
1
2
3
Spray Dryer Inlet
HC1 cone.
(ppmv, dry)
560
564
537
Spray Dryer Outlet
HC1 Cone. HC1 Removal
. (ppmv> dry) (%)
75 86.7
8 98.6
1* 99-8*
Baghouse Outlet
HC1 Cone. HC1 Removal
(PPmv, dry) (%)
9 98.4
4 99-3
3 99-^
*The midpoint measurements may be questionable  for  Run  3  because the Compur CEMS
 accuracy is unknown at this low concentration  range.   The  Compur had not been
 operated and tested at the outlet of HC1  control during  previous EPA studies.
                                       8

-------
                       TABLE'2.2.   SAMPLING  LOG SUMMARY, MERC -  BIDDEFORD

Sampling
Sample Times
Date Run Type Location (24 hr clock)
12/9



12/9


12/9


12/9


12/10




12/10



12/10



12/10




12/12






12/12





12/12





12/12




1 Metals Inlet 1530-1650
1718-1838


1 MM5 Inlet 1535-1&55
1723-1843

1 Metals Outlet 1532-1652
1719-1839

1 MM5 Outlet 1535-1655
1720-1840

2 Metals Inlet 1250-1410
1435-1555
1640-1800


2 MM5 Inlet 1245-1405
1431-1551
1636-1756

2 Metals Outlet 1246-1406
1433-1553
1636-1756

2 MM5 Outlet 1247-1302
1305-1410
1500-1620
1637-1757

3 Metals Inlet 1124-1139
1204-1309
1329-1449
1514-1524
1819-1834


3 MM5 Inlet 1120-1140
1200-1300
1325-1445
1510-1525
1815-1835

3 Metals Outlet 1117-1142
1200-1255
1325-1445
1510-1525
1815-1835

3 MM5 Outlet 1116-1141
1201-1256
1326-1446
1511-1531

Elapsed Averaging Times for HC1
Time Monitoring at All Locations4
Comments (mln) (24 hr clock)
Stopped for port change;
run discontinued because
process down

Stopped for port change;
run discontinued because
process down
Stopped for port change;
run discontinued because
process down
Stopped for port change;
run discontinued because
process down
Stopped for port changes




Stopped for port changes



Stopped for port changes

^

Stopped to change XAD
and twice to change
ports


Process down 1139-1204
and 1524-1819; other
stops for port changes




Process down during
first and last stops;
other two stops for
for port changes


Process down during
first and last stops;
other two stops for
for port changes


Process down during
first stop; other two
stops for port changes


80
80
l6"o~ total

80
80
l6~0~ total
80
80
l6~0~ total
80
80
16~0" total
80
80
80
240 total

80
80
80
2^0" total
80
80
80
2'4~0 total
15
65
80
80
2"So total
15
65
80
10
15
185 total

20
60
80
15
20
195 total
25
55
80
15
20
195 total
25
55
80
20
l5o" total
1530-1630
1630-1730
1730-1830
1830-1842









1300-1400
1400-1500
1500-1600
1600-1700
1700-1800













1115-1139
1204-1215
1215-1315
1315-1415
1415-1515
1515-1524
1819-1834

















•Periods when process was down were not included in HC1 monitoring data  averaging ti
 changes were included.
mes;  periods during  port

-------
               TABLE 2.3.  MRI VOLUMETRIC FLOW RATE AND MOISTURE DATA USED
                    IN HC1 MONITORING CALCULATIONS - MERC TEST PROGRAM
Run
No.
Inlet
Flow Rate Moisture
(dscfm) (%)
Outlet
Flow Rate Moisture
(dscfm) (%)
Midpoint**
Flow Rate Moisture
(dscfm) (%)
                                 Particulate/Metals  Train
1
2
3
41,500
42,100
42.500
15-1
15-2
16.8
39.800
41,900
44,400
16.8
16.3
14.6*



CDD CDF Train
1
2
3
38,300
40,500
41.000
14.3
14.4
16.0
39,200
41,100
42,500
15-3
13-5*
17.0



                   Average of Particulate/Metals and CDD/CDF Trains***
1
2
3
39,900
41,300
41,800
14.7
14.8
16.4
39,500
41,500
43,500
16.1
16.3
17.0
39.700
41, 400
42,600
16.1
16.3
17.0
  *Did not pass final leak check; moisture values not used in averages.

 **No manual testing was conducted at the midpoint.   Flow rate values are average of
   inlet and outlet values; moisture values are outlet values (since increase from
   inlet to outlet moisture values is result of spray dryer).

***Calculated for use in determining (1)  moisture corrections and (2) percent removal
   efficiency of HC1 for midpoint and outlet locations.
                                        10

-------
                        HC1 MONITORING RESULTS - RUN 1
                    MAINE ENERGY RECOVERY COMPANY - UNIT A
                               DECEMBER 9,  198?
lour Time
1 15:30-16:30
2 16:30-17:30
3 17:30-18:30
4 18:30-18:42*
Test Average
(Time Weighted)
Highest 1-min.
average :
Lowest 1-min.
average :
Inlet HC1
(ppmv, dry)
533
643
528
453
560
1040
443
Removal
Midpoint HC1 Efficiency
(ppmv, dry) (%)
66 87-7
134 79-3
38 92.8
21 95-4
75 86.7
321
13
Removal
Outlet HC1 Efficiency
(ppmv, dry) (%)
10 98.1
11 98.3
7 98.7
6 98.7
9 98.4
82
5
Note:  Inlet and midpoint concentration measurements were made on a wet
       basis and corrected to a dry basis using the Method 4 moisture data
       provided by MRI.

          Inlet Moisture = 14.72 ^2°
       Midpoint Moisture = 16.1% H_0 (as measured at the baghouse
                                         outlet sample location)

* The test run was terminated at 18:42 because of process operating problems.
                                     11

-------
        Figure 2-1.  HC1 MONITORING DATA - RUN #1    12/9/87
                        MAINE ENERGY RECOVERY COMPANY - UNIT A
o.
o.
        15:30
16:30
17:30
18:30
                                    CLOCK TIME
               NOTE: Test run was ended at 18:38 due to Unit A process problems.

-------
           Figure 2-2.   HC1 MONITORING DATA -  RUN #1     12/9/87
          320
                              MAINE ENERGY RECOVERY COMPANY - UNIT A
     Q.
     Q.

-------
           Figure 2-3.  HC1 REMOVAL EFFICIENCY - RUN #1


                        MAINE ENERGY RECOVERY COMPANY - UNIT A
o


fl>
a:
a)
4)
a.
                                              ! Inlet to Midpoint
     60  -
     55
       15:30
16:30
17:30
18:30
                                     CLOCK TIME


              NOTE: Test run was ended at 18:38 due to Unft A process problems.

-------
    Babcock & Wilcox personnel on-site during the test program stated  that  the
fluctuations observed in the midpoint HC1 measurements during Run 1 were
evidence of unsteady scrubber operation.  The Unit A forced draft fan  motor
malfunctioned at 18:38 and the run was terminated.

2.2  TEST RUN 2

    The HC1 monitoring results for Test Run 2 are summarized in Table  2.5 and
are presented graphically in Figures 2-4 and 2-5.  The two trend graphs present
the one-minute averages recorded throughout the test run, excluding any periods
of "process upsets."  Figure 2-5 presents the monitoring data corresponding to
the MRI metals train sampling times, and excludes the data collected during the
MRI sampling port  changes.

    The mean HC1 concentration results were 564 ppm, 8 ppm, and 4 ppm  HC1 at
the inlet, midpoint, and outlet locations, respectively.  The mean HC1 removal
efficiencies from  the inlet to the midpoint and from the inlet to the  outlet
locations were 98.6% and 99-3%i respectively.  The removal efficiencies were
calculated from  the one-minute averaged emission rate values (Ib HCl/hr) and
are shown in Figure 2-6.

    At approximately 13:45, the lime slurry flow rate into the spray dryer
system was increased by 100% due to higher than expected S0_ emissions measured
by MRI.  This process change resulted in a reduction in the HC1 emissions
measured at  the  midpoint and improved the HC1 removal efficiency across the
spray dryer.

    The  test run was begun at 12:45; however, the HC1 monitoring data
collection did not begin until 13:00 in order to allow sufficient time for  the
HC1 CEMS's to collect representative effluent samples after returning  from
their calibration  modes.

2.3   TEST RUN 3

    The HC1 monitoring results for Test Run 3 are summarized in Table  2.6 are
are presented graphically in Figures 2-7 and 2-8.  The two trend graphs present
the one-minute averages recorded throughout the test run, excluding any periods
of "process upsets."  Figure 2-8 presents the monitoring data corresponding to
the MRI metals train sampling times, and excludes the data collected during the
MRI sampling port  changes.

    The mean HC1 concentration results were 537 ppm, 1 ppm, and 3 ppm  HC1 at
the inlet, midpoint, and outlet locations, respectively.  The mean HC1-removal
efficiency from  the inlet to the outlet locations was 99-4%.  The removal
efficiency was calculated from the one-minute averaged emission rate values
(Ib HCl/hr) and  shown in Figure 2-9.

    The midpoint data relative to the baghouse outlet data during Run  3 were
low,  with many of  the midpoint values recorded as zeros.  The scrubber
operating conditions were the same as during Run 2, but lower than expected
midpoint concentration measurements were recorded.  Visual inspection  of the
Compur probe filters and the barrel nozzle did not indicate a problem  which
would cause a low  bias in the measurements.  The low measurements are  most
likely due to questionable Compur monitor and/or dilution probe performance
during this test run at these extremely low HC1 emissions.

    The test run was interrupted on two occasions and was terminated at 18:34
because of process operating problems.
                                       15

-------
                                TABLE 2.5.

                      HC1 MONITORING RESULTS -  RUN 2
                  MAINE ENERGY RECOVERY COMPANY -  UNIT A
                            DECEMBER 10,  198?
Hour Time
1 13:00-14:00*
2 14:00-15:00
3 15:00-16:00
4 16:00-17:00
5 17:00-18:00
Test
Average
Highest 1-min.
average :
Lowest 1-min.
average :
Inlet HC1
(ppmv, dry)
520
- 566
581
578
576
564

675

400
Removal
Midpoint HC1 Efficiency
(ppmv, dry) (%)
15 97-1
7 98.8
7 98.8
6 99-0
6 99-0
8 98.6

37

2
Removal
Outlet HC1 Efficiency
(ppmv, dry) (%}
6 98.8
4 99-3
4 99-3
4 99-3
3 99-5
4 99-3

9

2
Note:  Inlet and midpoint concentration measurements were made on a wet basis
       and corrected to a dry basis using the Method 4 moisture data provided by
       MRI.

          Inlet Moisture = l4.8# HO
       Midpoint Moisture = 16.3% H_0 (as measured at the baghouse
                                         outlet sample location)


* Manual testing began at 12:45; HC1 monitoring data collection did not begin
  until 13:00 in order to allow sufficient time for the HC1 GEMS's to collect
  representative effluent samples after returning from their calibration modes.
                                     16

-------
  Figure 2-4.  HC1 MONITORING DATA - RUN #2    12/10/87


                  MAINE ENERGY RECOVERY COMPANY - UNIT A
o.
Q.
z
o
o
z
o
o

o
                            CLOCK TIME

-------
•o
 *


OL
O.
LJ
O

O
O

O
I
    Figure 2-5.  HC1 MONITORING  DATA - RUN #2   12/10/87

                      MAINE ENERGY RECOVERY COMPANY - UNIT A
     70
     60 -
     50 -
     40 -
     30 -
20 -
     10 -
       13:00
                                            Inlet -^ 10
                             Midpoint
                           Outlet
               14:00
15:00        16:00

    CLOCK TIME
17:00
                                                                   18:00
               NOTE: HCI data deleted during MRI sampling port changes from
                     14:1O to 14:35 and 15:55 to 16:40.

-------
Figure 2-6.  HC1 REMOVAL EFFICIENCY - RUN #2
           MAINE ENERGY RECOVERY COMPANY - UNIT A





o
o
E
4)
a:
c
a>
o
<5
Q.









IUU —

99 -
98 -
97 -


96 -



95 -



94 -
93 -




92 -
91 H
i
Inlet to 0utletAAA~v/v/vv fvJl*v*vA/W"v^^
£juA~^^ v/ 	 " \r\\ v









A
j
j











i
•
• V« ' \f » till
Inlet to Midpoint \' ;•
/ •
* i
1 1 1
{/'
1









i
i
n
n
H
H
i

1 1 1 1
13:00 14:00 15:00 16:00 17:00 18:
                     CLOCK TIME

-------
                                 TABLE 2.6.

                        HC1  MONITORING RESULTS - RUN 3
                    MAINE ENERGY  RECOVERY COMPANY - UNIT A
                              DECEMBER 12, 198?
Hour
Time
	Removal"          Removal
 Inlet HC1    Midpoint HC1*  Efficiency  Outlet HC1  Efficiency
 (ppmv, dry)  (ppmv, dry)      (%)       (ppmv, dry)     (%)
1 11:15-11:39**
12:04-12:15
2 12:15-13:15
3 13:15-14:15
4 14:15-15:15
5 15:15-15=24**
18:19-18:34**
459
498
513
545
598
544
504
6
1
0
0
0
1
1
98.7
99-8
100
100
100
99.8
99-8
5
4
3
3
3
2
5
98.9
99-2
99-4
99-4
99-5
99.6
99-0
  Test Average
  (Time Weighted)

  Highest 1-min.
              537
                                99-8
99-4
average :
Lowest 1-min.
average :
872

388
25

0
8

2
  Note:  Inlet and midpoint concentration measurements were  made  on a wet
         basis and corrected to a dry  basis using  the Method 4  moisture data
         provided by MRI.

            Inlet Moisture = 16.4# H20
         Midpoint Moisture = 1~J.0% H_0 (as measured  at the baghouse
                                          outlet  sample  location)

  * The midpoint results are questionable.  The  scrubber  operating conditions
    are the same as during Run  2,  and  lower than expected midpoint values
    were recorded.   The Compur  CEMS accuracy  is  unknown at this low range
    because the Compur had not  been operated  and tested at the  outlet of HC1
    control equipment during previous  EPA studies.

 ** The test run was interrupted during 11:39-12:04  and 15:24-18:19 time
    periods,  and terminated at  18:34 because  of  process operating problems.
                                       20

-------
-o

E
Q.
a.
O
i
LJ
O
Z
O
o

a
x
   Figure  2-7.   HC1 MONITORING  DATA - RUN  #3    12/12/87

                       MAINE ENERGY RECOVERY COMPANY - UNIT A
     45
      0
40  -



35  -



30  -



25  -



20  -



15  -



10  -



 5  -
           i
             \  ,„ Midpoint
   11:15     12:15
                         13:15    14:15     15:15

                                     CLOCK TIME
16:15
17:15
18:15
             NOTE: Unit A process operating problems caused test run interruptions
                  from 11:39 to 12:04 and 15:24 to 18:19, and ended the test run
                  at 18:34.  Midpoint measurements are questionable for this run
                  because the Compur analyzer accuracy is unknown at this low range.

-------
Figure 2-8,

  45
         Q.
         Q.
to
        S
        O
        z
        O
        O

        O
        X
                                HC1  MONITORING  DATA  -  RUN  #3
                                  MAINE ENERGY RECOVERY COMPANY - UNIT A
                         12/12/87
              40  -
               10 -
                                    Inlet  -r- 20
Ul
                                                        •V
                                          ,.  .
                                                      1
                                                    16:15
                    r—
                  17:15
                 11:15     12:15     13:15     14:15     15:15
                                                 CLOCK TIME
18:15
                       NOTE: HCI data deleted during MRI sampling port changes from 13:09 to 13:29
                            and 14:49 to 15:14.  Unit A process operating problems caused test run
                            interruptions from 11:39 to 12:04 and 15:24 to 18:19. and ended the test run
                            at 18:34.  Midpoint measurements are questionable for this run because the
                            Compur analyzer accuracy Is unknown at this low range.

-------
              100
                     Figure  2-9.   HC1  REMOVAL EFFICIENCY - RUN  #3
                                     MAINE ENERGY RECOVERY COMPANY - UNIT A
               99
                                  .
                    ,-,,/-— -v^ — -v-'*-
               i*   v   Inlet to Midpoint
                                                 V
                                               Inlet to Outlet
N)
00
o
o

0)
o:
•*•>
c
0)
o
0)
a.
               98  -
               97  -
               96  -
               95
                  11:15
                   —I	
                    12:15
—I—
 13:15
—I—
 14:15
15:15
—I	
 16:15
—I	
 17:15
18:15
                                                    CLOCK TIME
                         NOTE:  Unit A process operating problems caused test run interruptions from
                               11:39 to 12:04 and 15:24 to 18:19, and ended the test run at 18:34.
                               Midpoint measurements are questionable for this run because the Compur
                               analyzer accuracy is unknown at this low concentration range.

-------

-------
          3-0  PROCESS DESCRIPTION AND OPERATION DURING TEST PROGRAM


    This section contains a description of the Maine Energy Recovery
Company's (MERC) York County Waste-to-Energy facility located in Biddeford,
Maine.  This section also summarizes the operation of the facility and the
key operating parameters that were measured during the test program.


3-1  FACILITY DESCRIPTION

    The MERC facility consists of two identical process lines with separate
emission control systems that exhaust to a common stack.  The process line is
illustrated in Figure 3-1.  Refuse-derived fuel (RDF) enters the combustor
and is fired with preheated combustion air.  Auxiliary fuel (natural gas or
fuel oil) is sometimes used.  The combustion gases pass through superheater,
economizer, and combustion air preheater heat recovery stations.  The
combustion gases then pass through a cyclone to remove large particulate, an
alkaline spray dryer to control  acid gas emissions and lower the flue gas
temperature, and a  fabric filter to reduce particulate emissions.  The flue
gas finally exhausts to the atmosphere through a 244-foot stack which is
common to both units.
    The MERC facility is rated at 500 tons/day of RDF.  The facility was
developed by KTI Holdings. Inc., and was designed and built by General
Electric Company.   Approximately 105,000 Ib/hr of steam at a temperature of
760 F and pressure  of 675 psig  (superheated) is generated by each unit.  The
steam from the boilers is supplied to a stem turbine which generates up to 22
MW of electricity.  The electricity is sold to Central Maine Power.

3.1.1  Preparation  of Refuse-Derived Fuel

    At the MERC facility, preparation of RDF follows the scheme shown in
Figure 3~2.  Solid  waste from local municipalities is received in packer
trucks and transfer trailers and is unloaded on the tipping floor which is
enclosed.  The waste is visually inspected and potentially explosive or
hazardous items are removed.  Over-sized waste is removed and sent to a shear
shredder.  The sorted waste is  reduced in size by a flail mill and combined
with  the end product from the shear shredder.  Then, a magnetic separator
removes ferrous metal, which is  reclaimed.  A trommel screen separates non-
processible wastes  and the remaining refuse is shredded to a nominal top size
of 4  inches by the  secondary shredder.  At this point, the waste has become
RDF.  MERC estimates that 607 tons/day of solid waste is processed to produce
500 tons/day RDF.
    If desired, as  the RDF enters the combustor feed hopper, wood chips or
sewage sludge may be added.  To  date, only wood chips have been used.  Sewage
sludge can be received into a separate hopper which is enclosed by a
hydraulically operated steel cover.  The sewage sludge has a design,moisture
content between 12  and 21 percent and a design feedrate of 0.833 yd-'/hr.
This amount of sludge, as a percentage of the total fuel volume,"has an
insignificant effect on the boiler's firing rate.  The fuel, whether RDF or
RDF mixed with wood chips and/or sewage sludge, is metered from the hopper by
dual feeders to the stoker.
                                       25

-------
                                                                           Dilution
                                                                            Water
                                                                   Lime
                                                                   Slurry
           RDF-

       Auxiliary
         Fuel
Combustor/
   Boiler
                 Grate
                Sittings
r\j
cr>
    Bottom
      Ash
                                Economizer
                            Combustion Air
                               Preheater
Cyclones
Spray
Dryer
Fabric
 Filter
                          VW
                                   ID Fan
                                                                                                                  Stack
            Ash
            Discharge
                        Figure  3-1.
                   The  process  line For Unit A of the  York County Waste-to-Energy
                    Facility, Biddeford, Maine.

-------
N)
Municipal
Refuse — ».
(MSW)

Tipping
Floor

MSW
	 ^


Flail
Mill



Wood Chips — 1
^^ Magnetic ^ Trommel Secondary RC
Separator Screen * Shredder
r ,i
>F Feec
* forC<
Sludge
Hopper
i

Sewage
Sludge
Hopper
smbustor
1

                    Waste
 Ferrous Metal
(to be reclaimed)
Non-Processibles
   to Landfill
 To Feed
Conveyor
                     Figure  3-2.  Preparation of Refuse-Derived Fuel at  MERC in Biddeford, Maine.

-------
3.1.2  Combustion Air

    Air from the tipping floow area and the boiler penthouse is withdrawn by
a forced-draft fan to supply the air heater section of the  heat recovery
system.  The preheated combustion air is split to supply the natural gas
burners, overfire air ports, and undergrate air.   The  combustion air scheme
is shown in Figure 3-3.  The slightly negative pressure in  the tipping lloor
area prevents the release of odors created by the solid waste.

3.1.3  Combustor and Boiler

    The combustor and boiler are combined into one unit called a controlled
combustion zone boiler by. Babcock and Wilcox.  The combustion zone boiler is
rated at 150 x 10  Btu/hr of steam.

    The stoker is a traveling grate located at the bottom of the boiler.  The
fuel from the feeders.enters the front of the boiler.   If required to
maintain steam load, natural gas and #2 fuel oil burners located above the
feeders may be used.  The sulfur content of the natural gas and fuel oil are
limited by the air permit to a maximum of 0.7 percent.

    The boiler is balanced draft.  One fan (forced-draft) is used to feed
combustion air and the second fan (induced-draft) located just prior to the
stack is used to draw out the combustion gases.  A control  system based on
oxygen and carbon monoxide concentrations is used to optimize combustion
efficiency.  The target excess air level is in the range of five to ten
percent.

    In addition to the waterwalls in the combustion zone, the heat recovery
system includes superheater, economizer, and combustion air heater sections.
At the exit to the air heater, the flue gas temperature is  approximately
400°F.

3.1.4  Cyclone, Spray Dryer, and Fabric Filter

    The combustion gases from the air heater enter a cylone-type mechanical
dust collector which removes large particulate.  Next, an alkaline spray
dryer is used to control acid gas emissions.  The spray dryer is a reaction
vessel where lime slurry is sprayed into the flue gas that  contains
particulate, S0_, acid gases, and other pollutants in gaseous and aerosol
form.  The slurry water is evaporated by the flue gas heat  and the acid gases
react with the lime.  Particulate and excess lime serve as  nucleation for
volatile organic compounds  (VOC) and metal adsorption and agglomeration.

    The lime-to-S02 reactant ratio and the flue gas temperature at the  exit
to the spray dryer can be controlled separately.  The lime that is introduced
as a slurry is diluted with water before entering the reaction vessel at
rates appropriate to achieve the desired SO- removal and temperature
reduction.  The rate of slurry addition is varied based on the continuously
monitored S0_ concentration at the outlet of the fabric filter.  The  facility
is required By its operating permit to maintain an outlet S0_ concentration
of 30 ppm.  However, at no time during the test program were  the facility's
S0_ monitors providing accurate readings.  The spray dryer outlet temperature
is directly controlled by the amount of dilution water added  and is typically
280°-300°F.

                                       28

-------
  Tipping
   Floor
  Boiler
Penthouse
Combustion
    Air
                 F.D. Fan
                                          Air
                                        Heater
 Total Air
Flow Meter
                                                 Secondary Air
                                                  Flow Meter
            Overtired Air
             Flow Meter
                                                    Natural
                                                  Gas Burner
                                                                                               Undergrate
                                                                                                   Air
                                                                                    Overfire Air
                                                                                                           DC

                                                                                                           8
          Figure 3-3.  Combustion air  scheme at  the  MERC Facility in Biddeford,  Maine.

-------
    The  fabric  filter then collects the participate from the gas stream.  The
 excess lime in  the bag filter cake provides a second-stage reaction site
 further  acid gas removal.  The fabric filter unit has six modules.  Five
 modules  filter  flue gas while one module is being cleaned in a continuous
 cycle.   The total time needed to complete a fabric filter cleaning cycle is
 about 18 minutes.

 3.1.5  Ash Handling

    An ash system removes ash from the stoker discharge, generating bank
 hopper,  air heater hopper, mechanical dust collector hopper, spray dryer, and
 fabric filter modules.  All of the hopper discharges are through rotary seal
 valves.  This ensures a positive seal to prevent boiler gases from entering
 the ash  conveyors and air from entering the hoppers and boilers.

    The  ash from the fabric filter modules discharges into 6 identical drag/
 screw conveyors.  Each set of these drag/screw conveyors discharges into one
 of two identical drag chain collecting conveyors.  The spray dryer and
 mechanical dust collector discharge directly onto these collecting drag chain
 conveyors.  The generating hopper and air heater hopper discharge ash onto a
 transverse drag conveyor which feeds to the collecting drag conveyors.  The
 combined fly ash from each collecting conveyor is fed to one of two identical
 ash conditioning screw conveyors.  The ash is conditioned by the addition of
 water at a controlled rate.

    The  bottom  ash from each stoker discharges into one of the two submerged
 drag chain ash  conveyors.  The discharge of the ash conditioners deposits
 into the dewatering section of the bottom ash drag conveyor.  It is at this
 point that the  fly and bottom ash streams combine.  The combined ash streams
 are then dumped into a specially designed trailer for removal from the site.

    Dust control within the processing building is achieved through two
 separate control systems.  One system serves the tipping/processing area,
 while the other serves the conveyors in the boiler building and RDF reclaim
 area.  Each system contains a baghouse, fan duct hoods, and dust collection
 ducts at key conveyor and transfer processing points.  Dust laden air is
 drawn through one of two pulsed jet baghouses which exhaust in the vicinity
 of the boiler forced-draft fan intake.  The baghouse air exhaust thus becomes
 incorporated into the combustion air for the boilers.  Dust captured by the
 baghouses is returned to and becomes a part of the RDF fuel.


 3.2  SUMMARY OF OPERATIONS BY TEST RUN

    Three test  runs were conducted on Unit A between December 8 and December
 12, 1987.  During each test run only RDF was fired.

 3.2.1  Operation During Run 1

    Run 1 was originally scheduled for December 8, but power problems in  the
afternoon delayed Run 1 until December 9.  Both units were down overnight.

    The facility was still experiencing operational problems on the morning
of December 9-   The units were started up in the morning and were preheated
on natural gas.   However, problems with the feeder conveyors delayed bringing

                                       30

-------
the boilers up to  full  load until  1400.  At 1500, CEM data indicated  that  the
boilers were stabilized.

    Run 1 began  at 1530 hours  and  continued until approximately 1840  hours,
when the Unit A  forced-draft fan failed.  Two of three traverses had  been
completed at the time of  the shutdown.  Since replacement of the fan  motor
required overnight work,  Run 1 was considered to be complete.

3-2.2  Operations  During  Run 2

    Run 2 was conducted on December 10. 198?.  The fan was repaired at
approximately 0100 that morning, and both units were back on-line.  However,
at 1030, there was a feeder conveyor failure and a unit shutdown occurred.
The units were brought  back on-line at  1200 hours, and Test 2 began at 12*15.
Facility personnel decided to  increase  the lime slurry feed rate at 1330.
Minor  excursions of SO- were being experienced and the facility did not want
to exceed their  permit  range.   Therefore, the lime slurry feed rate was
increased from approximately 3.0 gpm to approximately g.O gpm.  This  increase
reduced the HC1  concentrations at  the midpoint and the outlet location to
almost 0.  Testing continued and was completed at 1800 hours.  All three
traverse points  were sampled for a complete run.

3.2.3  Operations  During  Run 3

    Run 3 was conducted on December 12, 198?.  Originally scheduled for
December 11, problems  continued throughout the day with feeder conveyors and
testing was postponed  until the next day.  Test 3 began at 1115 hours.  A
brief  test interruption occurred during 1138-1200 due to a feeder
malfunction.  Testing  continued until 1525, restarted at 1815, but was
stopped at 1830  due to recurring feeder problems.  Throughout Run 3.  the lime
slurry feed rate was maintained between 7 and 8 gpm.  Due to the late hour
and the fact  that  the  facility estimated that the.delay time would be four to
eight  hours.  The  test was considered complete at the end of two complete
port  traverses  and part of  the third.

3.3   SUMMARY  OF OPERATING PARAMETERS DURING THE TEST PROGRAM

    This section summarizes  the values  of key operating parameters during  the
test  program.   The purpose of  evaluating these operating parameters was to
determine: 1)  if the system was operating at normal conditions, and 2) if  the
system was operating at similar conditions during each of the three test
runs.  Only selected parameters are discussed in this section.

    The operating  data were  recorded once every four minutes by computer.
The spray dryer  related operating  data  showing each four-minute value is
included in Appendix K.  The locations  of temperature, pressure, and  flow
sensors are indicated  in  Figure 3"^- Also, plots of the four-minute  data
versus time are  presented in this  section.  The plots have been reduced in
size  in order  to present  all three runs on one page.  Full-sized plots of
spray  dryer related data  for each  run are included in Appendix K if more
detail is required by  the reader.

    Average values for selected operating parameters over the actual  testing
intervals are summarized  in Table  3.1-  On an average basis, the combustor
operating conditions appear to be  about the same for all three runs.  The
only variation of  consequence  is the higher air flow and economizer inlet

                                        31

-------
          RDF-

     Auxiliary
       Fuel

                                                                                   Dilution      Lime
                                                                                    Water      Slurry
                                                                                r-\           L_.
        Combustor/
           Boiler
                 Grate
                Sittings
                       Bottom
                         Ash
UJ
fu
Ash
Discharge
                                 Economizer
                                        Combustion Air
                                           Preheater
                                                                                                                               Stack
                                    1 -  Superheater steam llowrate, pressure, temperature and economizer inlet flue gas temperature
                                    2 •  Economizer outlet flue gas temperature and excess oxygen
                                    3 •  Air heater outlet flue gas temperature and pressure
                                    4 •  Spray dryer Inlet flue gas temperature and pressure
                                    5 -  Spray dryer outlet flue gas temperature and pressure
                                    6 •  Fabric filter outlet temperature
                                    7 •  Dilution water feedrate
                                    8 -  Lime slurry feedrate
                            Figure 3~'*-   Location  of  temperature,  pressure, and flow sensors  at the
                                               the MERC Facility.

-------
  TABLE 3.1.   SUMMARY OF KEY  OPERATING PARAMETERS DURING THE
               MERC TEST PROGRAM IN BIDDEFORD, MAINE

Parameter
Superheater steam
Flowrate (1,000 Lb/hr)
Pressure (psig)
Outlet temperature (°F)
Combustion Air
Total air flowrate (1,000 Ib/hr)
Undergrate air flowrate (1,000 lb/hr)a
Overfire air flowrate (l,000,lb/hr)
Overfire air distribution (%)
Undergrate air pressure (in H-0)
Overfire air fan pressure (in H-0)
Air heater inlet air temperature ( F)
Air heater outlet air temperature (°F)
Excess Oxygen (% by volume, wet)
left side
right side
Heat Release (106 Btu/hr)
Total (RDF + auxiliary fuel)
RDF only
Flue gas temperatures ( F)
Economizer inlet
Economizer outlet/air heater inlet
Air heater outlet
Spray dryer inlet
Spray dryer outlet/fabric filter inlet
Fabric filter outlet
Gas Differential Pressures (in H-0)
Undergrate to furnace
Dust collector (cyclone)
Spray dryer
Fabric filter
Flue gas pressures (in H_0)
Spray dryer inlet
Spray dryer outlet
I.D. fan suction
Lime Slurry Feedrate (GPM)
Dilution Water Feedrate (GPM)
Total Lime Slurry & Water Feedrate (GPM)

Run 1
12/9/87

106
663
746

124
50.0
71.2
60
-0.23
25.3
127
381

5.59
7.91

150
150

779
515
374
374
277
268

0.46
3.02
4.24
7.16

-7.20
-11.5
-18.7
2.91
6.95
9.86
Run 2
12/10/87

109
676
751

123
64.1
73.2
60
-0.86
25.6
66
368

5.77
8.13

153
153

788
523
363
364
278
268

0.34
3.07
4.84
7.89

-7.25
-13.1
-21.0
6.70
3.39
10.1
Run 3
12/12/87

108
671
748

134
52.4
70.1
50
-0.26
25.0
118
385

5.78
8,02

151
150

801
532
383
384
279
268

0.44
3.37
5.17
8.22

-7.39
-13.4
-21.7
7.80
4.89
12.7
Average

108
670
748

127
55.5
71.5
57
-0.45
25.3
104
378

5.71
8.02

151
151

789
523
373
374
278
268

0.41
3.15
4.75
7.75

-7.28
-12.7
-20.5
5.80
5.07
10.9
Undergrate air flowrate was calculated as the difference between the total air
 flowrate and overfire air flowrate.
 Overfire air distribution was calculated as the overfire air flowrate divided by
 the total air flowrate.
lmo/005
                                          33

-------
flue gas temperature during Run 3.  Although the operating conditions appear
similar, there is no way to judge if the entire combustor system reached tne
same degree of thermal equilibrium for each run.

    The emission control system was operated differently during each run.
First, the average lime slurry feed rate increased during each test, with Run
2 being higher than Run 1, and Run 3 being higher than Run 2.   This increase
in slurry flow, combined with the higher spray dryer inlet temperature and
air flow during Run 3, is consistent with the increase in pressure drop
across the spray dryer and fabric filter during each test.

3.3-1  Steam Load and Heat Release

    In Figure 3-5, RDF heat release, superheater steam flow, superheater
steam pressure, and steam temperature at the superheater outlet are plotted
against time.  The RDF heat release is calculated from the steam flow minus
the heat content supplied by any auxiliary fuel (natural gas or fuel oil).
During this test program, only RDF was fired, and sampling was discontinued
during periods when auxiliary natural gas firing was necessary.  Thus, for
this test program, the RDF heat release is equivalent to the total heat
release.

    These combustion parameters were operating in a similar and normal manner
for all three runs in which the manual sampling trains were operating.  The
relative standard deviation of the steam load was an average of four percent
during the sampling periods.

3-3-2  Combustion Air

    Overfire air distribution, undergrate-to-furnace differential pressure,
and excess oxygen are plotted against time in Figure 3~6.  The overfire air
distribution was calculated by dividing the overfire air mass flowrate by the
total air mass flowrate.

    The variation in excess oxygen was greater during Run 3 than in Runs 1
and 2.  During Run 3. the relative standard deviation was twenty two percent,
as compared to sixteen and twelve percent for Runs 1 and 2.  However, the
average concentrations were not significantly different.

    The overfire air (OF) distribution was lower and undergrate-furnace
differential pressure was higher during Run 3-  The average OF air
distribution was sixty percent during Runs 1 and 2, but decreased to fifty
perent during Run 3-   The undergrate-furnace differential pressure increased
to 0.4 in. H20 during Run 3 from 0.3 in. H_0 during Run 2.

    The overfire air flow pressures were measured in the combustor.  The
pressures measured during the MERC test program are presented in Figure 3-7.
Once the combustor is optimized, the pressures do not vary.  Pressurized air
from two air swept spouts is also used to spray the RDF across the grate as
it enters the combustor.  The air swept pressure is varied in a set range  in
order to spray the RDF evenly across the grate.

-------
CO
VJ1
15:25 16:00
                          Run 1
                                                 Run 2
                                                         Run 3
                           17:00
                         Time
18:00
                                  12:45
                 14:00   15:00  16:00   17:00
                       Time
                                                                     11:15   13:00 14:00 15:0016:0017:00 18:00 19:00
                                                                                   Time
            h~H   Indicate periods in which manual sampling
                  trains were not operating
                                                                 KEY
                                                      D RDF heat release (10* Btu/hr)
                                                      + Superheater steam flow (1000 Ib/hr)
                                                      0 Superheater steam pressure (psig)
                                                      A Steam temperature at the superheater outlet (*F)
               Figure  3-5.  RDF heat release and steam flow,  pressure,  and temperature
                             as  a function of time during the  MERC Test  Program.

-------
U)
                20
                 15-
                10
                 5-
                    Start
                    Test
                                 Run 1
  Port
Change
                                 Run 2
                                              Run 3
                                              Stop
                                              Test
                   15:25 16:00
 17:00
Time
                                           18:00
                    	1—
   ?2J Stop/Start     Port    Stop   S(ar|
  X        U       Change   Test
12:45    14:00  15:6b  16:6o   17:66    Iltl5   13 oo"1" 1500  ' ...... 17766 ""  19:00
              Time                            Time
                                                                   D Excess Oxygen (left side, % by volume, wet)
                                                                   + Excess Oxygen (right side, % by volume, wet)
                                                       Slaft Stop/Start     Port    Stop  Start Stop/St
                                 15:00  16:00  17:00
                                 Time
                                                                                           13:00
                                               15:00 '  17:66     19:00
                                               Time
                     Indicate periods in which manual sampling
                     trains were not operating
                                             KEY
                                 D Overfire air distribution (fraction)
                                 + Undergrate-furnace differential pressure (in H,O) period
                        Figure  3-6.   Combustion  air parameters as  a function of time during  the
                                        MERC  Test Program.

-------
Front
                                                    Rear
f L
Combustion
Zone Boiler
<
-------
3-3-3  Temperature Profile

    The inlet and outlet flue gas temperatures of the economizer, air heater,
spray dryer, and fabric filter are plotted against time in Figure 3~8-  The
economizer inlet, economizer outlet,  and air heater outlet temperatures were
ten to twenty degrees (°F) hotter during Run 3-  However,  after the spray
dryer, the flue gas temperature during Run 3 was the same  as during Runs 1
and 2.  The spray dryer outlet temperature was very consistent during all
three runs.

3.3.4  Spray Dryer and Fabric Filter

    The operation of the spray dryer and fabric filter was evaluated using
two plots.  The first plot (Figure 3-9) included the spray dryer inlet and
outlet temperatures, the lime slurry and dilution water feed rates, and the
fabric filter differential pressure.   The second plot (Figure 3~10) includes
the flue gas differential pressures across the cyclone,  spray dryer, and
fabric filter.

    The difference in spray dryer operation during the runs is shown clearly
in Figure 3-9-  During Run 2, the lime slurry feed rate was increased
significantly.  This increase was due to the high S02 concentration being
monitored at the fabric filter outlet by the test contractor, which was more
than -*MB£> the permit level of 30 ppm.  Subsequently, the lime slurry feed
rate was increased from 3 gpm to over 7 gpm, and remained  at this level
through Run 3 •  A corresponding decrease in the dilution water feed rate was
observed at this time such that the total lime slurry and  dilution water feed
rate increased only slightly.  The spray dryer outlet temperature remained
constant throughout all three test runs.  During Run 3.  both the dilution
water and the lime slurry feed rates increased from Run 2.  This may have
been partially due to the higher spray dryer inlet temperature during Run 3-
However, the spray dryer outlet temperature remained consistent during all
three runs.

    The differential pressures across all three control devices  (cyclone,
spray dryer, and fabric filter) increased during Runs 2 and 3, with Run 3
having the greatest increase.  For Run 2, the increase in  the lime slurry
feed rate may have caused the pressure drop increase, since the pressure drop
across the cyclone did not change significantly.  However, for Run 3, a
combination of air flow rate and lime slurry feed rate may have caused the
increased pressure drop.
                                       38

-------
                  Run  1
Run 2
                                                                                       Run 3
Start
Test
800-
600-
400-
200
                    Port
                   Change
Stop  Start                  Port     Slop Start st°P
Test  Test    Stop/Start     Change    Test Test I Start
                                                    End
                                                    TeS|





'* H




•"..,,




"t»«i" j,*< flmi"ri** Y*





\
V
t *«

V




J — 	




^




.>.../V!




V
p





*J



s




[J
10
li




ufiiK"**'
p/ St
rl 
-------
o
           400
               Start
               Test
           300-
           200-
                             Run  1
                   Port
                  Change
                                                   Run 2
                              Slop Start
                              Test Test
                                            "'^l
                                              " K
                                                       Stop/Start
                A/\'V\/v*
1M"M/vWV
 Port
Change
^H.,,.H.,rt...!
•/VvV****^'

"V"
,^-^~~.-^,-
                 Run 3

        Stop/Start
         Stop/Start
Slop Start/ /  Slop/                  End
Test Test/ /  Start Stop/Start Stop/Start   Tes,
15:25  16:00       17:00

             Time
                                                     w^
                                      18:00     12:45     14:00   15:00   16:00   17:00

                                                              Time
                                                                      11:15   13:00 14:00 15:0016:00 17:00 18:00 19:00

                                                                                    Time
                                                                         KEY
                  Indicate periods in which manual sampling
                  trains were not operating
                                                 D Spray dryer inlet gas temperature (°F)
                                                 + Spray dryer outlet/fabric filter Inlet gas temperature (°F)
                                                 0 Lime slurry feedrate (gpm x 10)
                                                 A Dilution water feedrate (gpm x 10)
                                                                                                                   oc
                                                                                                                   CM
                Figure 3~9«  Spray dryer operating parameters as a function of time  during
                              the MERC Test  Program.

-------
Start
Test
               Run 1
 Port
Change
                                    Run 2
                                                               Run 3
                                                     Stop/Start
                                                      Stop/Start
                                           Slop Start// Stop/  s.OD/s,arl           End
                                           Test TestyY Start  StoP«J«t Slop/siarl   Te9,
              P°ft
Stop/Start    Change
   .
   • lflIl|t*>*TTII11

15:25  16:00       17:00
18:00      12:45
               Time
                             14:00   15:00   16:00   17:00

                                    Time
                              11:15 13:00 14:00 15:00'16:00' 17:00 18:00 19:00

                                             Time
      Indicate periods in which manual sampling
      trains were not operating
                                                            KEY
                                             D Dust collector differential pressure (in H,O)
                                             -I- Spray dryer differential pressure (in H,O)
                                             0 Fabric filter differential pressure (in H,O)
   Figure  3-10.   Differential pressures across  the control devices  during the
                    MERC Test Program.
                                                                                                               cc
                                                                                                               §

-------

-------
          4.0  HC1 CONTINUOUS EMISSION MONITORING SYSTEM DESCRIPTIONS

    The following discusions briefly outline the operational principles of  the
monitoring equipment employed to quantify the HC1 concentrations at three
locations within the Unit A flue gas handing system.

    Entropy is currently evaluating these instruments in another study for  the
EPA and has compiled information on their operational parameters and princi-
ples.  This information is presented in the descriptions that follow.  It
should be noted that operational characteristics of these instruments are not
yet fully established as they have been for S0_ and NO  CEM systems.
                                              £.       X


4.1  THERMO ELECTRON MODEL 15 HC1 ANALYZER/MODEL 200 DILUTION SYSTEM

    The Thermo Electron system was used at the spray dryer inlet monitoring
location  (see Section 5)•

    The Thermo Electron  (TECO) Model 15 Gas Filter Correlation  (GFC) HC1
analyzer  is an analytical instrument for continuous, real time  measurement  of
HC1 on a  wet basis.

    GFC spectroscopy is based upon comparison of the absorption of a selected
wavelength within  the infrared  (IR) absorption spectrum by the  measured gas to
that of other gases also present in the sample being analyzed.  The technique
is implemented by  using  a high concentration sample of the measured gas (i.e.,
HC1) as a filter for the IR radiation  transmitted through the analyzer.  The
analyzer  contains  a correlation wheel  that consists of two hemispherical cells,
one filled with HC1 and  the other with N_.  Integral with the correlation wheel
is the chopper pattern necessary to produce the high frequency  chop required by
the IR detector.

    Radiation  from an IR source is chopped and then passed through the gas
filter, alternating between HC1 and N_ as the filter wheel rotates.  The
radiation then passes through a narrow bandpass interference filter and enters
a multiple optical pass  cell where it  is absorbed by the sample gas.  The IR
radiation that is  not absorbed then exits the sample cell and is measured by
the IR detector.

    The HC1 gas filter produces a reference beam that cannot be further
attenuated by HC1  in the sample cell.  The N_ side of the filter wheel is
transparent to the IR radiation and therefore produces a measure beam that  can
be absorbed by HC1 in the cell.  The chopped detector signal is modulated by
the alteration between the two gas filters with an amplitude related to the
concentration of HC1 in  the sample cell.  Other gases do not cause modulation
of the detector signal, because they absorb the reference and measure beams
equally.  Thus, the GFC system responds specifically to HC1.

    With  the improved rejection of interference afforded by the GFC technique,
the sensitivity of the analyzer is increased by using multiple  pass optics  in
the sample cell, which leads to a large path length, and thus an improved
sensivity, in a small physical space.  This allows full scale sensitivity down
to 1 ppm.
                                       43

-------
    Because IR absorption is a nonlinear measurement technique,  the
instrument electronics transform the basic analyzer Signal into  a l^ar
output   The exact calibration curve is stored in the computer's memory ana





or pressure of the sample gas.
        .
 he test program.  The vendor claims that the detection limit for this
instrument is 0.1 ppm.

    The Model 200 dilution system comprises the following components:

         •    In-situ dilution probe with sample orifice,

         •    Transport  tubing, and

         •    M200  stack probe control unit.

     The dilution probe  is designed  to extract a small  amount  of  sample
 continuously through a  fine  filter.  The sample flow rate is  PJJ«sely
 controlled  to within 2% by a glass  critical orifice of low  coefficient  of
 expansion.   By  reducing the  pressure after the fine filter  with  a precision
 aspirator  to create a vacuum of  0.46 bar in the volume downstream of the
 critical orifice, a constant flow of flue gas sample is drawn through the
 orifice,  thoroughly mixed with the aspirator  air,  and  then  transported  through
 the sample  line to the  appropriate analyzer.

     The sampling system is designed to  permit stepwise dilution ratios of 12:1
 to 350:1 within the probe by a single  selected  orifice.

     Calibrations are performed by introducing calibration gas through the
 calibration line to a point within the probe upstream of the first fine filter
 in the probe dilution orifice.  In this way,  the calibration gas follows all of
 the sample conditioning steps taken by the flue gas sample.

     The lines transporting flue gas sample and calibration gas  are Teflon,  and
 the dilution air and vacuum lines are polyethylene.  The flue gas sample line
 is heated to approximately 300 F.

     The dilution air and calibration gas flow controls  are contained within the
 M200 control unit.


 4.2  COMPUR MODEL  4 150  ZGSM HC1 ANALYZER/MODEL 4330 DILUTION SYSTEM

     The Compur  system was used at  the spray dryer outlet monitoring location
  (see Section 5) •

     The Compur  4150 HC1 analyzer uses an ion selective electrode (Cl ) to
 measure (after  dilution) HC1  concentrations  in a  range of  0-150 ppm on a wet
 basis. Detection  limits for  this  instrument are  unknown.

                                         44

-------
    The sample gas is drawn into the analyzer by means of an air  aspirator.
The sample passes through an atomizer,  the measuring cell,  and  then  to  the
waste reservoir, where  the gas is exhausted  from the analyzer.  A peristaltic
pump delivers absorption solution from  the storage  reservoir to the  atomizer,
where it is atomized to an aerosol.  The HC1 in the gas sample  passing
through the atomizer is scrubbed from the gas by the atomized absorbing
solution.  A highly enriched solution is produced and passed between two
electrodes, a reference and a chloride  ion electrode.  The  concentration
related potential of the electrodes is  fed to the microprocessor.  The
corresponding HC1 concentration in units of  grams per cubic meter is
displayed on a front panel digital display.  A 0 -  1 volt output  is  provided
for a data recorder.

    The analyzer performs its own internal calibration automatically at
selected time intervals by using a liquid standard.  Continuous
self-diagnostic routines verify proper  operation of the analyzer.  The
alphanumeric display .and built-in printer provide status conditions  of  the
analyzer, alarm functions, and identification of the cause  of any
malfunctions, as well  as continuous updates  on the  concentration
measurements.

    Compur developed a dilution probe to be  used in conjunction with the
Model 4150 analyzer to sample stack emissions.  The dilution probe is an
extractive sampling device that produces constant sample gas dilutions  at
selected ratios varying from  10:1 to 100:1.   (The operating range of the
Compur monitoring  system is decided upon in  the field after the optimum
dilution ratio  is  chosen,  and then verified  using an independent  analyzer and
calibration gases.)  The dilution probe is electrically heated  to 200 C
 (392 F) and is  constructed of corrosion resistant materials.  The flue  gas
sample line is  also electrically heated (approximately 300  F).

    An air  jet  pump within the probe acts as an in-stack dilution device by
aspirating  the  flue gas sample through  an orifice and diluting  the gas  sample
with dry regulating air.   By  reducing the pressure  downstream of  the orifice
with the aspirator air, a  constant  flow of  flue gas sample  is drawn  through
the orifice and mixed  with  the aspirator air.  The  orifice  operates  within
the critical  region, greatly  reducing the influence of pressure fluctuations
at the sampling point  which  tend  to  affect  the flow of sample gas and thereby
to change  the dilution rate.

    Calibration of the system is performed by injecting calibration  gas
through a  transport  tube to  the probe,  at a  point upstream  of the critical
orifice.  Thus,  the calibration gas  is  conditioned  in the same  manner as the
flue gas sample (i.e., filtered, diluted, and transported).

    The Model 4150 analyzer  continuously monitors all Model 4330  dilution
system parameters,  such as probe  temperature, pressures,  and flow rates.  The
analyzer's microprocessor  calculates  the  actual HC1 concentrations present  in
the effluent  by correcting the analyzer measurements  for  the dilution ratio
selected by the operator.


4.3 BODENSEEWERK  SPECTRAN MODEL 6?7 IR HC1  MONITORING SYSTEM

    The Bodenseewerk system was used at the  baghouse outlet monitoring
location (see Section  5).
                                        45

-------
    The Bodenseewerk 677 HC1 analyzer employs the gas filter correlation
(GFC) technique with the multiple optical pass cell and sampling system
maintained at an elevated temperature of 180 C (356 F).  HC1 concentrations
are recorded on a dry basis within a system range of 0-250 ppm.   The analyzer
measurement is made on a wet basis.  Molecular interaction between HC1 and
water vapor in the sample gas increases the absorption of IR as water vapor
content increases.  This phenomenon is used to compensate for the dilution
effect of water vapor in the sample gas.  The Bodenseewerk 677 analyzer was
configured at the factory for applications with approximately 15 percent
moisture content in the effluent.  Accordingly, the analyzer concentration
readings correspond to a dry measurement.  The vendor claims the detection
limit of this instrument is 2 ppm.

    GFC spectroscopy is based upon comparison of the absorption of a selected
wavelength within the infrared (IR) absorption spectrum by the measured gas
to that of other gases also present in the sample being analyzed.  The
technique is implemented by using a high concentration sample of the measured
gas  (i.e., HC1) as a filter for the IR radiation transmitted through the
analyzer.  The analyzer contains a correlation wheel that consists of two
hemispherical cells, one filled with HC1 and the other with N2-   Integral
with the correlation wheel is the chopper pattern necessary to produce the
high frequency chop required by the IR detector.

    Radiation from an IR source is chopped and then passed through the gas
filter, alternating between HC1 and N  as the filter wheel rotates.  The
radiation then passes through a narrow bandpass interference filter and
enters a multiple optical pass cell where it is absorbed by the sample gas.
The  IR radiation  that is not absorbed then exits the sample cell and is
measured by the IR detector.

    The HC1 gas filter produces a reference beam that cannot be further
attenuated by HC1 in the sample cell.  The N_ side of the filter wheel is
transparent to the IR radiation and therefore produces a measure beam that
can be absorbed by HC1 in the cell.  The chopped detector signal is modulated
by the alteration between the two gas filters with an amplitude related to
the concentration of HC1 in the sample cell.  Other gases do not cause
modulation of the detector signal, because they absorb the reference and
measure beams equally.  Thus, the GFC system responds specifically to HC1.

    The sample gas is drawn from  the effluent via a heated sample pump at a
rate of approximately 13 liters/minute.  A coarse, fritted filter is located
at the probe tip  for filtering particulate matter.  The sample gas is heated
to approximately  180 C  (356 F), and it maintains this  temperature throughout
the transport system and the sample cell until it is  exhausted from  the
analyzer.

    The Model 677 analyzer employs zero  air and an internal sealed gas  cell
for zero and upscale calibration  checks.  The monitoring  system  can   accept
calibration gases; the gas injection point is located at  the probe.

    The concentration measurements in units of ppm  (dry)  are displayed  on  a
front panel meter and are also recorded  by a built-in strip chart recorder.
A 0-1 volt output is provided for an external data-recording device.

-------
               5.0  DESCRIPTION OF THE HC1 CEM SAMPLING PROGRAM

    Three independent HC1 continuous emission monitoring systems were
employed by Entropy to measure HC1 emissions continuously at  (1) the spray
dryer inlet,  (2) the spray dryer outlet, and (3) the baghouse outlet.  All
three CEM systems used in the test program are complete in themselves; no
time-sharing  was done. (See Figures 5.1 and 5.2.)  Both the spray dryer
outlet and the baghouse outlet monitoring systems were measuring low
concentrations of HC1  (i.e., generally < 100 ppm).  There are no data
available on  the performance of the Compur HC1 CEMS for monitoring low HC1
emissions to  support the accuracy of the Compur in this concentration range.
The Compur has not yet been operated and tested in the EPA's HC1 CEM
evaluation program at  a source of controlled HC1 emissions.  The Bodenseewerk
HC1 CEMS has  been operated at the outlet of HC1 control equipment during
previous studies.  Independent accuracy audits have provided verification of
the Bodenseewerk measurement data in terms of accuracy at the low
concentration levels.

    A brief description of each HC1 CEM system by sampling location is
outlined in the sections that follow.
 5.1   SPRAY DRYER INLET -  THERMO  ELECTRON HC1 MONITORING SYSTEM

     The Thermo Electron (TECO) monitoring  system was comprised of a Model 15
 analyzer (operated on the 0-20 ppm  analyzer range), a Model 200 probe control
 unit,  and a dilution probe (45:1 dilution  ratio).  This system was employed
 to measure HC1 emissions  at the  spray  dryer inlet location  (see Figures 5-2
 and  5-3).  The operating  range of the  measurement system was 0-900 ppm HC1.
 A three point linearity check was performed at  the beginning of the test
 program using the following gases:  0 ppm,  428 ppm, and 881 ppm HC1.  Prior to
 each test run, a two-point calibration was performed utilizing a zero gas and
 one  upscale HC1 gas concentration (428 ppm).  The gases were injected through
 the  entire sample handling system,  which includes the dilution probe.  At the
 conclusion of the test run, the  same two gases  were again injected through
 the  measurement system to check  for drift; no adjustments to the system were
 made.   The calibration drift corrections to the HC1 measurement data were
 made according to the procedures in Method 6C.

     The analyzer output signal was  recorded by  a computerized data
 acquisition system.

     The TECO probe dilution ratio was  verified  at the beginning of the test
 program by flowing a CO calibration gas (Protocol No. 1 certification)
 through the dilution system and  recording  the response displayed by a
 calibrated CO analyzer.

     Since the TECO system measures  HC1 on  a wet basis, the  results were
 corrected to a dry basis  using Method  4 results provided by MRI.


 5.2  SPRAY DRYER OUTLET (MIDPOINT)  - COMPUR HC1 MONITORING  SYSTEM

     The Compur Model 4150 HC1 analyzer with heated dilution probe  (dilution
 ratio  40 to 1) was used to measure  the HC1 concentrations at the spray dryer

                                        47

-------
     BODENSEEWERK
     SAMPLING PROBE.
  PIPE
FROM LIME
STORAGE
  SILO
                                     I.D.
                                     FAN
          I.D.
          FAN
SE
BAG
                                     COMPUR DILUTION
                                     SAMPLING PROBE
   TECO HO DILUTION
   SAMPLING PROBE
         DUST
       COLLECTOR
  DUST
COLLECTOR
                         UNFT A
                  UNO" B
             FIGURE 5.1. LOCATION OF TESTING TRAILER AND SAMPLE LINES
                                                                                      3516 B 11/87

-------
                                                       r
                                                                                            TRAILER
              BAGHOUSE
                OUTLET
                             100' HEATED
                           TEFLON TUBING
        L
     BODENSEEWERK
        PROBE

     SINTERED FILTER
                             CAL GAS INLET
                                                           BODENSEEWERK
                                                              ANALYZER
              SPRAY DRYER
                 OUTLET
                              80' HEATED
                            TEFLON TUBING
-tr
V£>
             COMPUR DILUTION
                  PROBE
            BARREL NOZZLE FOR
           PARTICULATE REMOVAL
                                     CAL GAS INLET
                                                               COMPUR
                                                              ANALYZER
DAS (COMPAQ PC)
       DRYER
    INLET
                                      120 'HEATED
                                    TEFLON TUBING
L
TECO DILUTION
    PROBE

SINTERED FILTER
                                      CAL GAS INLET
                                                        M200
                                                       PROBE
                                                      CONTROL
                                                        UNfT
                                                                             TECO
                                                                           ANALYZER
                                                                                                      TRAILER
                                              FIGURE 5.2. FIELD EVALUATION SET- UP.
                                                                                                                3516B 11/87

-------
                              BAGHOUSE
                 HQ
                 CEM
                 SAMPLE
                 PORT
                                                    SPRAY DRYER
                                                    OUTLET
                                                    SAMPLING
                                                    PORTS
                                                       SPRAY
                                                       DRYER
                                  OTHER
                                  SAMPLING
                                  PORTS (3)
FIGURE 5.3.  TOP VIEW OF SPRAY DRYER INLET AND OUTLET SAMPLING LOCATIONS.
                                                                        3516 11/87

-------
outlet (midpoint) location  (see Figures 5.2 and 5.3).  The operating  range  of
the Compur monitoring system was 0  - 268 ppm.  Collection of representative
samples at the spray dryer  outlet location was particularly difficult because
of the high particulate matter concentration in the effluent stream upstream
of the baghouse.  The particulate matter consisted of both fly ash and
evaporated lime slurry, which reacts with the sample gas stream  to remove
HC1, thereby resulting in lower than actual HC1 gas concentration
measurements.  To minimize  these effects, specialized sampling approaches
were developed to separate  the reactive particulate from the sample gas
stream.

    Unexpected delays encountered during the equipment set-up and plant
process operating problems  reduced  the available  time to investigate  each of
the four  specialized sampling approaches proposed in the work plan.   The only
approach  investigated  (due  to these time constraints) relied on  a barrel
nozzle attached  to  the end  of the Compur dilution probe  (see Figures  5-2,
5.4, and  5-5) •   The barrel  nozzle is a totally passive device that minimizes
the amount of particulate  that accumulates on the filters within the  Compur
probe.  The  barrel  nozzel  attached  to the Compur  probe was used  during the
set-up of the spray dryer  outlet HC1 monitoring system and for acquiring
preliminary  measurements.   This system was operated over a four  hour  sampling
period and was  found  to be  reliable and able to provide particulate
separation which resulted  in the accumulation of  only a minimum  amount of
particulate.  The orientation of the holes in the barrel was 90  to the angle
of effluent  flow.   HC1 calibration  gas was then introduced into  the sampling
system immediately  upstream of the  glass wool in  the probe tip to determine
if the collected particulate would  react with the HC1 calibration gas and
create a  low bias in  the measurement.  A typical  response to the calibration
gas injection was observed  with no  apparent increase in  the response  time of
the measurement  system to  reach  the expected value, thus indicating that the
particulate  may  be  unreactive by the time it reaches the glass wool.

    At the conclusion of each test  day, the probe was removed from the duct
and disassembled for  inspection  and cleaning.

    A  three-point linearity check was performed at  the beginning of the test
program using  the following gases:  0 ppm, 9^ Ppm, and 221 ppm HC1.  Prior to
each test run,  a two-point calibration was performed utilizing a zero gas and
one upscale  HC1  gas concentration  (9^ ppm).  The  gases were injected  through
the entire sample handling system,  which includes the dilution probe.  At the
conclusion of  the test run, the  same two gases were again injected through
the measurement  system  to  check  for drift; no adjustments to the system were
made.  The calibration drift corrections to  the HC1 measurement  data  were
made according  to the procedures in Method 6C.

    The Compur  probe  dilution ratio was verified  at the  beginning of  the test
program by flowing  a  CO  calibration gas  (Protocol No.  1  certification)
through the  dilution  system and  recording  the response displayed by a
calibrated CO analyzer.

    The analyzer output  signal was  recorded  by a  computerized data
acquisition  system. Since the Compur system measures HC1 on a wet basis,  the
results were corrected to  a dry  basis using  Method  4  results provided by MRI.
                                        51

-------
                         TO
                     HCI ANALYZER
                          f
                                        COMPUR
                                        DILUTION
                                        PROBE
                                        BARREL
                                        NOZZLE
EFFLUENT FLOW
                                                           IN HORIZONTAL DUCT
FIGURE 5.4  SPRAY  DRYER  OUTLET  SAMPLING  SYSTEM; PASSIVE NOZZLE
                        52
                                                                   3516 12/87

-------
 TOP VIEW
FRONT VIEW
  SAMPLE
   FLOW
     t
k









6"










r

O
0
0
o
°x
0^
o
o
0
o
o
0
o
o
0
o
o
o
o
o
0
o
o
r
^
                     1/16' HOLES AT 1/4' INTERVALS
                                          EFFLUENT
                                            FLOW
            FIGURE 5.5  BARREL NOZZLE
                                                                 3516 12/87
                     53

-------
5.3  BAGHOUSE OUTLET - BODENSEEWERK HC1 MONITORING SYSTEM

    The Bodenseewerk Model 6?7 IR HC1 analyzer was employed to meaure HC1
concentrations within a range of 0-250 ppm HC1 at the baghouse outlet loca-
tion (see Figures 5.2 and 5.6)  A three point linearity check was performed
at the beginning of the test program using the following gases: 0 ppm,
47 ppm, and 94 ppm HC1.  Prior to each test run,  a two point calibration was
performed utilizing a zero gas and one upscale HC1 gas concentration (4? ppm).
The gases were injected through the entire sample handling system.  At the
conclusion of the test run, the same two gases were again injected through the
measurement system to check for drift; no adjustments to the system were made.
The calibration drift corrections to the HC1 measurement data were made
according to the procedures in Method 6C.

    The analyzer output signal was recorded by a computerized data acquisition
system.


5.4  DATA ACQUISITION SYSTEM

    The data acquisition system (DAS) developed by Entropy uses a Compaq
Portable Personal Computer with a 10 MB hard disk and an internal 12-bit
analog-to-digital converter with a 16 channel multiplexer.  Surge supressors
are provided to minimize data loss in the event of electrical disturbances.  In
addition to providing an instantaneous display of analyzer responses, the DAS
averaged the measurement data and documented analyzer calibrations.  The test
results and calibrations were stored on the hard disk and printed on an Epson
dot matrix printer.  Strip chart recorders were employed as a backup system.
The HC1 emissions from the three HC1 analyzer measurement locations were
recorded as 1-minute, 30-minute, and hourly averages.

    Each day, the stored measurement data generated by Entropy's testing were
provided to MRI on a floppy disk.

-------
                        PLATFORM
                        331 FROM
                        GROUND
                         LEVEL
       LADDER
  4' DIA.
TEST PORTS •
                       UNIT A
                     BAGHOUSE
                                                              BODENSEEWERK
                                                                  PROBE
                                    FROM
                                   SPRAY
                                   DRYER
      FIGURE 5.6. LOCATION OF SAMPLING PROBE AT THE BAGHOUSE OUTLET
                                                                        3516 B 11/87

-------

-------
                    6.0  QUALITY ASSURANCE/QUALITY CONTROL


    The quality assurance/quality control  (QA/QC) activities for this  test
program were previously described in detail in the "QA/QC Project Plan."  The
goals of the quality assurance activities  were to quantify data accuracy and
precision and to maximize data capture.  Presently, there are no EPA test
methods or performance specifications  for  operating HC1 monitoring systems or
for conducting wet-chemical sampling for HC1.  Only recently have relatively
stable HC1 calibration gases become available.  The results of the QA/QC
activities performed are described below.


6.1  HC1 SAMPLING SYSTEM INSPECTION

    At the start' of each test day, an  inspection of each component of  the HC1
sampling systems was conducted.  The daily check lists that were filled out
are contained in Appendix C.  Due to a build-up of particulate matter  in the
midpoint sampling system, the barrel nozzle device on the Compur dilution
probe was cleaned daily and the glass  wool was replaced.  The TECO dilution
probe glass critical orifice was also  inspected and the glass wool in  the
probe tip replaced daily.


6.2  LINEARITY CHECKS AND MIDRANGE QC  CHECKS

    A three-point linearity check was  performed on each of the three
monitoring systems at the beginning of the test program.  These linearity
checks produced  results that were all  within  the X).995 correlation
coefficient  (r)  acceptance criterion.  The calibration gas concentrations and
the monitor responses are presented in Table  6.1.

    The midrange QC  checks proposed in the QA/QC Project Plan to be performed
at various times during the test program were not conducted because there
were no independent  HC1 audit calibration  gases provided.


6.3  CALIBRATIONS AND DRIFT CALCULATIONS

    The zero  and span calibration drift was calculated for each HC1
monitoring system for each test run.   The  results of the calibration drift
checks are presented in Table 6.2.  All of the results were less than  the 20%
of span drift limit  specified in the Quality  Assurance Project Plan.   Prior
to each test  run, a  two-point calibration  was performed utilizing a zero gas
and one upscale  HC1  calibration gas.   The gases were injected through the
entire sample handling system which includes  the probe.  At the conclusion of
the test run, the same two gases were  injected through the measurement system
to check for  drift;  no adjustments to  the  system were made.  The calibration
drift corrections to the HC1 measurement data were made according to the
procedures in Method 6C.

    The calibration  summary sheets for each test run are contained in
Appendix B.
                                        57

-------
                                                              TABLE 6.1.




                                                  HC1 CEM LINEARITY CHECK  (3-Point)
TECO (12/9/8?)
Gas CEM
Cone . Response
(ppm HC1) (ppm HC1)
0 4
428 438
881 890
Correlation*
Coefficient


r = 0.999

Compur
Gas
Cone.
(ppm HC1)
0
94
221
CEM
Response
(ppm HC1)
1
93
248
(12/8/8?)
Correlation*
Coefficient


r = 0.998

Bodenseewerk
Gas
Cone.
(ppm HC1)
0
47
94
CEM
Response
(ppm HC1)
0
42
95
(12/6/87)
Correlation*
Coefficient


r = 0.998

      "Acceptance criteria is r > 0.9950
ui
oo
                                                           TABLE 6.2.

                                          CALIBRATION DRIFT RESULTS FOR EACH TEST RUN
Run
No.
1
2
3
TECO
Spray Dryer Inlet
Zero Span
(% span) (% span)
6.0 8.9
1.1 2.1
0.8 2.7
Compur
Spray Dryer Outlet
Zero Span
(% span) (% span)
0.7 1.9
0.4 -7.1
0.7 6.3
Bodenseewerk
Baghouse Outlet
Zero Span
(% span) (% span)
0 1.6
-0.2 1.2
-0.4 0.8
   Note:  Measurement data were  adjusted  assuming linear drift,  as  long as drift was  less  than 20% of  span.   If  drift

          exceeded 20% of span,  the measurement  data were rejected.

-------
6.4  WET CHEMICAL SAMPLING FOR PERFORMANCE EVALUATION AUDITS

    Entropy plannned to conduct performance evaluation  audits  to  determine  the
accuracy of each measurement system prior to  the  test program.  These  relative
accuracy audits were to be performed on each  of the  three HC1  monitoring
systems by conducting  three runs of wet chemical  impinger sampling for HC1
simultaneously with HC1 monitoring during preliminary testing.  However,
several problems reduced  the available time to perform  all of  the proposed
pre-test checks/audits prior to the start of  the  test program.  Unexpected
delays were encountered during the equipment  set-up/start-up period (the
electrical contractor  was slow to connect electrical power to  the Entropy
equipment), the plant  was not operating for 1-1/2 days  during  the scheduled
three-day preliminary  testing period, and numerous process difficulties  caused
delays throughout  the  test program.  These problems  were discussed with  the EPA
Task Manager, and  he in turn informed Entropy that it would be acceptable to
perform the relative accuracy audits during the testing program when time
permitted.

    The relative accuracy audits on  the HC1 CEMSs at the spray dryer inlet  and
outlet locations could only be performed after each  test program  run because
all the available  sample  ports were being used during these test  runs.   Also,
the areas  around the sample locations were too small to accomodate testing
personnel  and equipment while both MRI and Entropy were working simultaneously.

    The process operating problems that delayed and  disrupted  the test program
sampling runs also prohibited the performance of  the performance  audits  at  the
spray dryer inlet  and  outlet locations.

    The relative accuracy audit was performed at  the baghouse  outlet location.
The wet chemical impinger sampling was performed  exactly as specified  in the
work plan  (see  Appendix I for the sampling/analytical procedures),  with  a
sampling period of 20  minutes. The impinger results, however,  are
questionable.  The impinger sample results for each  run were 1  ppm HC1,  while
the averaged  Bodenseewerk measurements over the same three sampling periods
were 6 ppm, 11  ppm,  and 43 ppm.

    On-site titration  analyses were not performed on these outlet samples
because the HC1 effluent  concentrations at this location were  expected to be
below the  quantifiable detection limit of 20  ppm  HC1 for the mercuric  nitrate
titration.  Therefore, the  low results were not discovered until  the 1C
analysis of the split  samples was performed at the Entropy laboratory  after the
test program  was completed.  The reason for the low  impinger measurements is
not known.

    Previous  testing conducted at similar municipal  waste incinerators has
revealed excellent agreement between the impinger sample results  and
Bodenseewerk  measurements,  even at  the low effluent  concentrations (<10  ppm
HC1).  Since  the impinger results are questionable,  they cannot be used  to
validate the  Bodenseewerk measurement data.   The  previous comparative
measurements  indicate  there should be no reason to suspect  the validity  or
accuracy of the Bodenseewerk measurements.
                                        59

-------
             APPENDIX A.

Test Program One-Minute Data Printouts

•  Run 1
•  Run 2
•  Run 3
                  A-l

-------
A-2

-------
C O M "T I 1x8 LJ O LJ S   El M I S S II O |s| S  M O M I T O FC I IM «3  S E£ ~T — LJ I™"

SOURCE:   HC1 CHARACTERIZATION TEST PROGRAM  /  MAINE ENERGY RECOVERY COMPANY

DATE:   12-09-1987     TIME:   09:44
A/D CHAN DESCRIP
1 INLET
2 MID
3 OUTLET
i (hi T "TC
Wi H J. I w/
wetHCl
wetHCl
dryHCl
SPAN
900
268
250
INPUT
VOLTAGE
10.
0.
O
00
95
21
i J"
V
V
V
ZERO
OFFSET
07.
07.
;--,"/
 AVERAGING PERIODS;   30 MINUTES,
 NO  EMISSION RATE CALCULATIONS
                                      A-3

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987


TIME
10:32
10:33
10:34
10s35
10:36
lOi 37
10:38
10s39
10540
10:41
10:42
10:43
10 1 44
10:45
10:46
10:47
1 0 : 48
1 0 : 49
10:50
10:51
10:52
10:53
10:54
10:55
10:56
10:57
1 0 : 58
10:59
1 1 : 00
AVERAGE
1 1 : 00
11:01
11:02
1 1 : 03
1 1 : 04
1 1 5 05
11506
1 1 5 07
1 1 s 08
1 1 : 09
Hi 10
Us 11
11: 12
111 13
111 14
11: 15
11: 16
111 17
11: 18
Hi 19
1 1 : 20
11:21
r^«^«^
CHAN 1
INLET
wetHCl
5.7
2. 1
4-6
1.8
3.9
3. 3
3.5
7.5
10.9
14-9
14.9
9.7
11. 1
-1.8
2.4
-3. 6
-1.7
-0.5
4.3
1.8
5.6
3. 1
7TZF
6. 3
22. tf
1 ji-i . 7
225.3
275.3
317.4
VALUES
_,„>?<
335.2
358.0
372.4
383. 1
388.6
401.2
404.5
407. 1
412.3
422.6
415.7
426.4
424.2
426.7
429.4
434.7
438.4
431.9
438.7
•• "j.n33 . 4
CHAW 2
MID
wetHCl
2.5
2. 1
2. 1
1.9
1.8
1.7
1.6
1.6
1.6
1.7
1.7
1.7
1.8
1.8
1.8
1.8
2.0
•Qf.'fl 2 . 2
(^ 2.2
2. 1
2. 1
2.0
" 1.9
^^1 J* '"•' (")
*l* o /•)
"jflfttff^1-9
4^fr 1.9
| |*A 1.9
\
^FOR THE LAST
1.9
1.9
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
-"•• 2.0
2.0
CHAN 3
OUTLET
dryHCl...
0.3
-0. 1
0. 1
0 . 4
0.5
0.2
0.6
0. 1
0. 1
-0. 3
-0.5
0. 2
-0.4
-0.4
0.7
0 . 7
0.8
72.2
1 2 . 0
0 . 6
-0.0
0.3
1. 1
1 . 0
O-Jx*
^^^s^ E="
1.2
1. 1
0.8
HOUR:2!:
^*
0.6
-0. 1
-0.4
0.6
0.7
0.9
0.9
1. 1
0.4 '
0.5
98.0
101.3
-0.4
0.2 •
3.5
44.3
48. sT
49.2 I
48. 3J
48. 4J
16.4
                                   9 MINUTES OF VALID DATA
                                       A-4

-------
HC1 CHARACTERIZATION TEST PROGRAM  / MAINE ENERGY RECOVERY COMPANY
12-09-1987


TIME
11:22
11:23
11:24
11:25
11:26
11:27
11:28
1 1 : 29
1 1 : 30
AVERAGE
11:30
11:31
11:32
1 1 : 33
11:34
11:35
11:36
1 1 : 37
1 1 : 38
11:39
1 1 : 40
11:41
11:42
11:43
11:44
11:45
11:46
11:47
11:48
11:49
1 1 : 50
11:51
11:52
1 1 : 53
11:54
11:55
11:56
11:57
11:58
11:59
12:00
CHAN 1
INLET
wetHCl
213.2
159.6
457.3
466.4
570.0
689.8
763. 1
795.9
VALUES
428.0
811.6
826.8
833 . 9
840.3
848.3
856.2
863.6
861.5
868.5
870.6
872.0
875.3
878.7
879.4
879.3
880.4
886.9
884.9
890.2
886. 1
894 . 0
811.6
518. 1
185.9
115.4
73.9
57.0
47.9
46.7
39.2
CHAN 2
MID
wetHCl
d4JfD 2 • ° ./«
#\H"2.0&
\W* 2\Q\
1 2. I1
• 2.0
2. 1
2. 1
CHAN 3
OUTLET
, -6.7
0.2
-0.2
0.2
^^.("i. ?
1.4
4.2
5.0
5.6
FOR THE PREVIOUS 30
2. 0
2. 1
2. 1
2. 1
2.2
2.2
2.2
2.2
2.2
2. 1
2. 1
2. 2
2. i
2. 1
2.2
2.2
2. 2
2. 1
2.0
2.0
2.0
2.0
1.9
1.7
1.6
1.6
1.7
1.8
1.8
1.8
1.9
15.7
5. 1
5. 1
5.2
5T
• •— '
4.8
5.3
5.0
5.2
5. 1
4.4
4-3
4.2
4.9
5. 1
5. 1
5.0
4.3
4.6
4.8
4.9
5.2
5. 1
5.6
5.8
3.9
0.5
1.0
0. 1
-0.2
3.9
                                      jo* i*<«^ **
                                  MINUTES
AVERAGE VALUES FOR THE PREVIOUS  30 MINUTES
12:00    669.5       2.0      4.3
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
12:00    548.7       2.0      10-0
                                                    A-5
12:01
12:02
12:03
12:04
33.0
38.6
28.9
32. 1
1.8
1.9
1.9
1.8
19.3
32.5
40.9
44.6
                                     47

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY  RECOVERY COMPANY
12-09-1987
TIME
12:0'5
12:06
12:07
12:08
12:09
12: 10
12: 11
12: 12
12s 13
12:14
12: 15
12: 16
12: 17
12: 18
12:19
1 2 s 20
12:21
12: 22
12:23
12s 24
12:25
12:26
12s27
12: 28
12:29
12s30
CHAM 1 CHAN 2
INLET MID
wetHCl westHCl
33. 4
^S I*"
27.81
27.6'
25.5
27.0
24 . 4
20.9
20. 1
25. 1
1 9'. 6
20.8 -
21.8
26 . 0
20 . 6
20.8
22. 6
18. 1
18. 4
IB. 3
22.9
25.6
21.7
15.4
13.5
1 . 8
iiyi
1.5T
1.4
1 . 2
1. 1
1. 1
1. 1
1. 1
1. 1
1. 1
1. 1
1. 1
1 . 1
1. 1
1 . 0
1.0
1 . 0
tT9~
1.0
1. 1
1.4
1.6
1.9
CHAN 3
OUTLET
clryHCl..
47.9
, 49.2
50.5
50.7
51.3
•50 . 6
50 . 8
50.8
^*%!!*y H O
21.0
9.8
6.9
5.0
4.4
T O
•_' * JU-
3. 1
2.6
1. 1
t™, f—t
j;^ • ^1,
1.5
1.5
1 . 3
1.3
1.2
1 . 3
1. 1
&*' U£
"ff-


^~*r

JJ&V
I
1














AVERABE VALUES FOR THE PREVIOUS 30 MINUTES
1 2 s 30
27^. 9
1.
1.6
12:
12!:
12:
12:
12s
12:
12s
12:
12:
12:
12:
12:
12:
12s
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
12
15
18
10
19
17
10
16
15
12
17
12
12
16
20
17
20
16
10
17
13
12
IB
16
10
„
.
B
0
•
.
m
„
„
„
»
•
M
•
„
B
•
M
*
m
m
m
m
•
2
8
4
6
1
"'I
2
-r
•— '
4
5
3
7
7
2
2
1
1
3
5
7
8
9
9
0
3
2.
201.
225.
200-
194.
190.
187.
184.
184.
209.
217.
r~lf~\r~i
^.^.oi .
226.
228.
229.
188.
183.
181.
179.
178.
177.
206.
221.
227.
230.
2 .j
7 jf«
4 ft*
°
51
3
9
2
8
6
4
0
9
1
6
4
1
7
6
9
0
7
3
5
fil* 0
0
0
o
0
1
1
1
0
o
0
-0
0
1
0
0
0
0
0
0
-0
-0
0
0
0
a
H

•
•
B
H
B
•
m
m
u
m
m
m
m
m
m
„
m
m
m
m
7
9
6
8
7
0
4
0
9
9
2
0
2
1
7
4
7
7
3
6
7
6
6
3
7
                                          A-6

-------
HC1 CHARACTERIZATION TEST PROGRAM  /  MAINE  ENERGY  RECOVERY  COMPANY
12-09-1987


TIME .
12 -.56
12:57
12:58
12:59
13:00
CHAN 1
INLET
wetHCl
1 3 . 2 -*
16.0^
18.0 I*
12.31
12.0*
 CHAN  2
 MID
 wetHCl
> 232.3
( 233.6
  193.4
  181.6
  179.3
f
                             CHAN  3
                             OUTLET
                                0.5,
                                0.5 1
                                0. 1 T
AVERAGE VALUES  FOR  THE  PREVIOUS 30 MINUTES
13:00      15.1      196.7        0.6
AVERAGE  VALUES  FOR  THE  LAST  HOUR:  60  MINUTES  OF  VALID  DATA
13:00      19.5       99.0      11.1
13:01
13:02
13:03
13:04
13:05
13:06
13:07
13:08
13:09
13: 10
13: 11
13: 12
13: 13
13: 14
13: 15
13: 16
13: 17
13: 18
13: 19
13:20
13:21
13:22
13:23
13:24
13:25
13:26
13:27
13:28
13:29
13s 30
17. 1
18.2
18.2
16.2
12. 1
14.2
16.3
19. 1
16. 1
15. 1
22 . 2
20.8
9.2
16.0
16.4
15.7
11.5
12.5
18.3
18.9
11.2
14. 1
12.8
20 . 1
14.6
12.6
21.0
11.4
15.4
12. 1
177.9
177.2
181. 1
213. 1
221.4
226.6
53.4
51.7
80.9
95.3
107.3
93.7
204.5
226.0
230 . 9
233.2
234.4
235. 2
186.3
176. 1
208.5
80. 1
85.2
100.0
103.3
152.4
233.8
236. 1
187.9
176.5
-0 . 3
-0.4
0.7
0.5
0.5
1.2
0. 2
0 . 3
0,2
0.2
0. 1
0.3
0.2
0.3
--0.6
0.5
0.7
0.3
0 . 0
O.Ji,
^^mftj
***^ 4- 7
5. 6
5.9
5.9
5.8
6. 1
6.6
6.4
6.3
 AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
 13:30     15.6     165.7       2.0
13:31
13:32
13:33
13:34
.13:35
13:36
13:37
13:38
18.7
13.9
13.5
18.9
18.3
13. 1
14.0
21.2
175.8
216.3
112.3
66.8
96.3
108.2
107. 1
108. 1
10.7
8.7
8.5
8.4
8.0
8.2
8.7
10.8
                                         A-7

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987


TIME..
13539
13: 40
13! 41
13s42
13s43
13s 44
13n 45
13:46
13: 47
13 j 48
13s 49
13s 50
13:51
13552
13s 53
13t 54
13s55
13s 56
13:57
13s 58
13s 59
14s 00
CHAM 1
INLET
wetHCl
16.2
14.9
17. 1
21.4
IB. 8
15.2
17.3
12.5
17.5
IB. 9
17.3
24.6
2 1 . 0
21.2
15.8
19.5
18.2
20.3
19.3
20.9
19.5
18.0
CHAM 2
MID
wetHCl 	
43.6
9.7
63.7
234 . 2
224- 4
178.7
176.8
176.0
216.4
107.4
1.8
0-8
0. 1
0.2
0. 1
0. 1
0. 2
0. 2
96.0
235.8
175.7
173. 1
CHAN 3
OUTLET
	 djiyHCl
12.3
14.6
16.2
17.6
19.7
23.4
23. 4
13.7
13.9
12.4
11.2
14.3
19.3
16.6
17. 1
18.3
17. 1
14.6
13.8
13.0
12.2
11.7
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
14s 00
17.9
103
14.0
AVERAGE VALUES FOR THE LAST HOURi 60 MINUTES OF VALID DATA
14s00     16.8     134.6       B.O
14s01
14i 02
14s 03
14s 04
14s05
14s06
14; 07
14:08
14:09
14: 10
14: 11
14: 12
14: 13
14s 14
14s 15
14: 16
14: 17
14: 18
14: 19
14:20
14:21
14:22
14:23
14:24
14:25
13. B
20.2
18.3
16.2
19.4
23.7
22.2
IB. 8
20. B
20 . 3
17. 1
11.2
IB. 5
20.6
12.3
12.5
13.2
10.9
15.8
15.6
15.4
12.4
19.7
13. 1
16.5
44.2
94.5
104.2
112.9
111.7
115. 1
141.7
118.4
90.4
0- 1
0.2
0.2
0. 1
0. 1
70.3
237.3
180-9
173.6
26. 1
B7. 1
94.9
100. 1
99.7
99.4
110.9
12. 1
11.4
10.4
10. 1
9.4
9.0
9. 1
9.5
11.7
15.6
14.6
13.9
14.2
13.7
12.6
11.6
10. B
10.9
9.2
B. 1
7.8
7.8
9.3
12.6
11.7
                                        A-8

-------
HC1 CHARACTERIZATION TEST PROGRAM  / MAINE  ENERGY  RECOVERY  COMPANY
12-09-1987
TIME
14:26
14:27
14:23
14:29
14:30
AVERAGE
14:30
14:31
14:32
14:33
14:34
14:35
14:36
14:37
14:33
14:39
14:40
14:41
14:42
14:43
14:44
14:45
14:46
14:47
14:48
14:49
14:50
14:51
•14:52
14:53
14:54
1 4 : 55
14:56
14:57
14:53
14:59
15:00
CHAN 1
INLET
watHCl
20.7 /^
16.4 AJI
20 . 0 |
20-9 L
CHAN 2
MID
wetHCl
105.4
^ 89.9
1 87.9
86.0
86.2
CHAN 3
OUTLET
dryHCl
[Jt* 12.9
^4-^ 14. 1
•^•1 14.1
^ * 14'°
^U**13.6
VALUES FOR THE PREVfOUS 30
16.9
15.2
21.4
20. 1
18.3
16.5
OT *>
.&. '— ' • Jtt.
19. 1
23.2
25.5
17. 1
18.0
24. 1
26.8
28. 2
23.5
25.2
20. 21
35.2
122.8 rf.
297.41
313.91
316.8 T
301. 1
323.2
350.6
395.4
428. 1
446. 1
89.0
87.2
87.4
87. 1
87.0
88. 1
88.6
89.7
89. 1
8 8 -3.
*^69*T3
26.0
12. 1
7.2
5.2
4.2
3.6
~f, r?
14.0

41.3
60 . 9
72.9
72.7
76.8
80.7
99.3
109.6
102.5
11.5
13.0
10-8
10.2
44ff»io.i
M^ I'.B
8.7
9. 1
***** 9.2
9.6
10.9
11.5
11.9
12.6
12.5
11. 1
9.7
Jf 8"3
,t£U|l* 8-0
Ml1 9.0
18.2
7.6
8.7
9. 1
9.2
10.9
4.8
10.3
12.7
I**"*"}*
r%i«"*
t
MINUTES

























 AVERAGE VALUES FDR THE PREVIOUS 30 MINUTES
 15:00    131.7      56.7       9.8
 AVERAGE VALUES FOR THE LAST HOUR".  60 MINUTES OF VALID  DATA
 15:00     74.3      72.9      10.7
15:01
15:02
15:03
15:04
15:05
15:06
15:07
15:03
458.9
466.4
453.2
463.6
447.4
402. 1
389. 1
367.0
84.8
61. 1
42.0
34. 1
27.3
24. 1
20.2
17.6
11.8
11.0
9.7
11.2
15.9
11.8
10. 1
10.7
                                      A-9

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987


TTME
15:09
15: 10
15: 11
15: 12
15: 13
15: 14
15: 15
15: 16
15: 17
15: 19
15: 19
15:20
15:21
15:22
15s 23
15s24
15:25
15:26
15:27
15s 28
15;29
15s 30
AVERAGE
15 n 30
15:31
15:32
15:33
15:34
15s 35
15:36
15:37
15s 38
15:39
15:40
15:41
15:42
15:43
15:44
15:45
15:46
15:47
15:48
15:49
15:50
15:51
15:52
15:53
15:54
15:55
15:56
15:57
15:58
15:59
CHAN 1
INLET
wetHCl
356.6
357.6
411.2
431.0
444.7
451. 1
483.0
480.2
505.2
502.2
476.6
447.6
451.8
447.9
425. 1
436.0
445.7
468.3
478.2
461.4
436. 4
438.7
VALUES
442.8
458.8
457.0
468.7
510. 1
529. 1
533.4
501.4
493. 1
471.2
458.3
468. 1
466.2
458.6
443.0
425.5
431.2
444.2
458.2
433.3
444. 1
457.2
453.6
432.0
448. 1
456.5
463.4
471.2
470.9
475.5
CHAN 2
MID
wetHCl
20. 5
33.9
57.6
64.4
54 . 0
34.9
22.0
15.9
• 12.7
10.8
9.7
9.4
1 0 . 4
15.4
26.0
41.7
63.7
78.4
81.6
67. 1
43.9
26.7
CHAM 3
OUTLET
dryHCl
8.5
7.7
7.5
7.9
8.5
7.9
7. 3
7. 2
7.4
6.9
6.6
6.4
7. 1
7. 1
7.8
8.8
8.5
B. 1
8.2
8. 1
7.9
7. 1
FOR THE PREVIOUS 30 MINUTES
37. 1
18.9
14.4
11.6
10.7
11.6
17.7
32 . 0
54-6
76.4
80-2
78.3
61.6
42.7
30.2
23.4
20.6
17.2
16.0
17.4
21.4
29.7
44.9
62.4
82.0
91.9
85.9
68.8
47.7
36.7
8.7
6.6
7.0
6.6
6.4
82 . 0
18.4
8.3
7.6
B.O
9.3
10.6
9.5
8. 1
7.8
7.5
7.0
7.2
8.5
8.2
7.9
9.5
10-9
12.3
11.0
11.1
10.9
11.3
10.1 ^~10
9.2

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
CHAN 1
INLET
TIME wetHCl
16:00 500.9
AVERAGE VALUES
16:00 466.1
AVERAGE VALUES
16:00 454.4
16:01 490.0
16:02 513.8
16:03 544.7
16:04 589.1
16:05 583.5
16:06 549.8
16:07 550.6
16:08 537.4
16:09 503.2
16:10 474.4
16:11 455.8
16:12 454.7
16:13 505.2
16:14 552.9
16:15 561.4
16:16 589.3
16:17 592.6
16:18 573.4
16:19 574. B
16:20 563.0
16:21 548.5
16:22 547.1
16:23 540.7
16:24 552.3
16:25 548.9
16:26 531.1
16:27 504.7
16:28 523.3
16:29 516.3
16:30 519.9
AVERAGE VALUES
16:30 536.4
16:31 545.2
16:32 534.5
16:33 514.4
16:34 488.1
16:35 469.1
16:36 479.5
16:37 480.4
16:33 478.4
16:39 488.2
16:40 494.3
16:41 496.6
16:42 505.2
CHAN 2
MID
wetHCl
31.5
CHAN 3
OUTLET
clryHCl
7.8
FOR THE PREVIOUS 30 MINUTES
41.3
FOR THE LAST
39.2
26.3
26.9
28.5
35.5
56. 1
79. 1
120.3
121.2
103.8
81.0
ere: T
38.8
32.6
33.9
35. 2
42. 2
53.5
60. 1
78.8
109.6
128.5
148.4
146. 1
127. 1
101.4
69.2
47.7
40.5
35.6
31.5
11.6
HOUR: 60 MINUTES OF VALID DATA
10. 1
8.3
7.9
8.2
7.8
8.6
9. 1
10.6
12.6
12.8
13.7
11.5
10.2
8.5
7.5
7.7
7.4
7.8
8.7
10-0
1 2 . 0
13.6
1 3 . 0
12.8
12.4
12.2
10.7
8.8
8.7
8.6
7.9
FOR THE PREVIOUS 30 MINUTES
69.8
31.8
37.2
43.2
51. 1
60.5
75.4
90.9
92.5
90. 1
80.6
68.5
. 51.5
10.0
8.2
8.6
9.7
9.8
11. 1
10.7
10.0
9.6
10.0
10.2 a , ,
9.8
9.2

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987


TIME
16:43
16:44
16:45
16:46
16:47
16:48
16:49
16:50
16:31
16s 52
16:53
16:54
16:55
16:56
16:57
16:58
16:59
17:00
AVERAGE;
17:00
AVERAGE
17s 00
17:01
17:02
17:03
17:04
1 7 : 05
1 7 : 06
17: 07
17:08
17:09
17: 10
17s 11
17: 12
17: 13
17: 14
17s 15
17s 16
17: 17
17s 18
17s 19
17s20
17i21
17s22
17:23
17s24
17:25
17:26
17s27
17:28
17s29
CHAN 1
INLET
..w.l.tHC.L
501.9
499.3
518.4
513.9
485. 1
471.6
463.0
463 . 7
479.8
498. 1
490. 1
512.3
552.5
587.6
621.7
680 . 4
775.4
887 . 2
VALUES
cr -y r> cr.
xJw'ai. • *J
VALUES
534.5
791.6
669.2
631.3
692.3
753.7
790.2
751.6
687.6
622. B
602.2
598.4
584.0
603.3
621.6
652.3
724.5
735.9
744.7
690.9
633.0
687.3
750.6
736. 5
679.2
626.5
595.5
563. 1
567.4
570.6
CHAN 2
MID
wetHCl
42.5
39 . 0
36.3
37. 4
40.5
46.0
53.9
67.9
91.5
1 07 . 7
114.9
136.5
108.4
99.5
91.5
105. 0
134.3
183.3
CHAN 3
OUTLET
.....dryMQI.
8.6
8.3
7.4
7.6
B. 1
8.7
9.3
11.2
11.2
10.6
11.1
11.2
10.5
10.3
9.6
8.4
8.6
8.4
FOR THE PREVIOUS 30 MINUTES
77 . 0
FOR THE LAST
73.4
192.2
145.2
124-3
174.9
264.7
268.7
268.7
260.5
176.5
119.4
98.9
77.5
77.5
87.4
106.6
161. 1
204 . 1
255.7
262. 1
226.4
224. B
159.8
122.4
86.6
62.2
50.9
40.4
37.2
38.6
9.5
HOUR: 60 MINUTES OF VALID DATA
9.8
9.3
9.3
9.2
10. 1
12.6
17.2
22.9
23.3
21.0
16.7
13.3
11.2
10. 1
1O.3
10.2
11.0
13.5
16.8
19.7
21.7
20.6
18.4
15.0
13.8
12.8
32.6
14.2
11.8 A-12
12.8

-------
HC1 CHARACTERIZATION TEST PROGRAM  / MAINE ENERGY  RECOVERY  COMPANY
12-09-1987
TIME
17s30
CHAN 1
INLET
wetHCl
561.9
CHAN 2
MID
wetHCl
40.4
CHAN 3
OUTLET
dryHCl
11.5
AVERAGE VALUES FOR  THE  PREVIOUS  30  MINUTES
17:30    664.0      147.2       15.1
17s31
17:32
17:33
17:34
17:35
17:36
17:37
17:38
17:39
17:40
17:41
17:42
17:43
17:44
17:45
17:46
17:47
17:48
17:49
17:50
17:51
17:52
17:53
17:54
17:55
17:56
17:57
17:58
17:59
18:00
535.9
508.9
484.4
496.8
511.9
520.2
525.2
503.2
480.6
490.7
524 - 3
595.8
642.3
643 . 0
557.0
460.7
432.2
428.9
414.6
440-2
471.5
499.3
552. 1
615.9
639.0
647.8
646.8
Q *_>•»> * O
644.7
632.0
43.9
47.4
48.7
52.3
57 . 0
56.8
53.7
47.9
38. 6
32.8
31.6
35. 1
42.0
52.0
52. 1
43.2
39. 4
38.4
37. 1
37.8
38.8
33.6
31.5
30.0
26 . 6
27.0
28.3
31.8
37.5
41.9
10.6
10.4
10.7
9.7
8.9
9.4
9. 1
B.5
8.3
B.3
7.8
7.9
8.6
9. 1
9.0
8.8
9.5
10.6
9.5
7.6
7.8
8.2
8.4
9.5
8.9
O * O
7.7
7.4
7.3
7.4
 AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
 18:00    540.0      40.5       8.8
 AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
18:00
          602.0
93.8
                               11.9
18:01
18:02
18:03
18:04
18:05
18:06
18s 07
18:08
18:09
18: 10
10s 11
18:12
607.8
565.2
535. 1
503.8
458.3
480.3
483.7
469.5
456.5
445.7
438.8
449.0
42.9
41.7
37.6
31.6
25.3
21.8
20.2
18.3
17.6
18.0
19.4
21. 1
8.2
9.6
9.8
8.8
7.6
6.9
6.5
6.4
6.2
6.2
6.3
6.8
                                        A-13

-------
HC1 CHARACTERIZATION TEST PR00RAM / MAINE ENERGY RECOVERY  COMPANY
12-09-1987


TIME 	
IBs 13
18s 14
18s 15
18s 16
18: 17
IBs 18
18n 19
18:20
18521
18s22
18:23
IBs 24
18: 2 5
18s 26
ISi 27
18:29
18s 29
18: 30
AVERAGE
IBs 30
18:31
18:32
18:33
18:34
18:35
18:36
18:37
18s 38
18:39
18:40
18:41
18;42
18s 43
18:44
18:45
18:46
18:47
18:48
18:49
18:50
18(51
18s52
18:53
18s54
18:55
18:56
18:57
18:58
18:59
19:00
CHAN 1
INLET
wetHCl
442. 1
434.2
412.8
407 . 8
417.0
420.5
413.0
378.4
404. 0
427.8
432.0
427.0
425.6
409.5
446.9
457.2
449.6
431.5
VALUES
451.0
401.9
384.6
388. 1
390.5
403.6
415.7
441.7
463.3
465.2
454.8
470.5
475.4
304 . 2
191. 1
165. 1
141.8
127.8
116.0
110.5
1 06 . 8
97.9
95.7
96. 1
88. 0
82.9
80.2
82.8
77.8
76.8
71.2
CHAN 2
MID
wetHCl
23.6
26. 4
27. B
28. 2
28. 1
26.3
23.4
19.6
17.7
17.7
18.8
20 . 6
21.0
21. 1
r~)-v r-^
j£. •_*' * J-C
25. 2
25.7
24.6
CHAN 3
OUTLET
dryHCl
7.4
6.9
6.5
6.4
6.2
5.7
5.6
5.4
4.5
5. 1
5.7
5.8
6. 1
6.0
10. 1
7.0
6.0
6.5
FOR THE PREVIOUS 30 MINUTES
24-5
21.9
19.3
18. 1
17. 1
17.2
16.8
15.5
16.7
18.4
20.6
24.2
25.9
17.6
11.9
9.5
8.7
8.8
B.7
10.9
13.4
15.0
16.0
16.4
16.4
16.2
16.0
15.5
14.9
14.5
14. 1
6.7
6.8
6. 3
6.2
6.3
6.8
7.6
7. 1
6.7
5.9
6. 1
6.6
7.0
6.7
6.5
7.6
7. 1
5.9
4.3
3. 7
3.4
3.4
T Z.
•-' m O
4. 1
5.0
4-4
4.7
5.3
5.3
5.6
5. 1
                          A-14

-------
HC1 CHARACTERIZATION TEST PROGRAM
12-09-1987
/ MAINE ENERGY RECOVERY COMPANY


TIME
AVERAGE
1 9 : 00
AVERAGE
19:00
19:01
19:02
19:03
19:04
19:05
19:06
19:07
19:08
19:09
19: 10
19: 11
19: 12
19: 13
19: 14
19: 15
19: 16
19: 17
19: 18
19: 19
19:20
19:21
19:22
19:23
19:24
19:25
19:26
19:27
19:28
19s29
19:30
AVERAGE
19:30
19:31
19:32
19:33
19:34
19:35
19:36
19:37
19:38
19:39
19:40
19:41
19:42
19:43
CHAN 1
INLET
wetHCl
VALUES
242.3
VALUES
346.6
75.4
74. 5
71. 1
68.7
65.2
65.2
65.2
62.7
61.5
60 . 0
59.9
57.5
60.0
56.2
56.7
52.5
53. B
59. 1
52.7
56.8
54-8
50.0
54. B
53. 5
50.0
59.4
52.7
54.6
58. 1
54.9
VALUES
59.3
53.3
58.4
56. 1
54.7
52.5
54. 1
51.0
56.0
55.6
57.4
52.5
54.4
53.6
CHAN 2
MID
wetHCl
CHAN 3
OUTLET
drvHCl
FOR THE PREVIOUS 30 MINUTES
15.9
FOR THE LAST
20.2
13.6
- _ 12.9 *0
* j 9.0 >*•
>V* 5.614*
1 4.5l
\ 3.9}
* 3.61
3. 4
3.2
3. 1
3.0
3.5
4.2
4.0
3. 3
3 . 0
2.9
2.9
2.9
2.9
2.9
2.8
2.8
2.8
2. 8
2.8
2.7
2.7
2.5
2.2
5.7
HOUR: 60 MINUTES OF VALID DATA
6.2
5. 1
fl% 7.0
rP 6.0
^ 5.9
5.4
2.3
0.3 2g/6 Alt
0 . 3 ^*
0.5
0.2 I
"0.3 1
-0.2 '
-0.3
-it*****" . .1
0 . 2 (jltl V&WC ^^
s^jtf? a
43. 7 (1 t )[,''
46.5 ^*
48. 1
48 . 7
50. 1
50.7
50 . 9
50.7
50.4|I--*-'^
_»i — T***'\
11.5
4.5
FOR THE PREVIOUS 30 MINUTES
4. 1
2. 1
2.0
1.9
1.9
1.8
1.8
1.^*^
^x^Ts
2. 8
34.0 04 1
75.2 V»
90.5 I*1
93.8 1
19.6
O * C'
28.2
13i->^p-*
^""374
1.6
°'9 ^rJiW*"**
0.3 flj&* ' T\' '&£&*
0. 0 A*kM^*1
0.2 r* 1
ff*^ 0.7
w °-5
^ 0.6 A'15
0.6

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY  COMPANY
12-09-1987


TIME
19:44
19:45
19:46
19:47
19:48
19:49
19:50
19:51
19:52
19:53
19:54
19s 55
19 s 56
19:57
19: '3 8
19:59
20:00
CHAN 1
INLET
wetHCl
57.7
55.8
59.5
56.3
52.0
55.2
58.2
54.7
53.4
54.0
54.8
57.7
58.7
47.0
57.0
51 . 5^-
^^JefffTj^
CHAN 2 CHAN 3
MID OUTLET
wetHCl dryHCL
93.7/lrtJfc. 0.3
94 -7 ill.* °-3
95. 9 ^4 Ip 38.8
97.4 iltAj62"6
97-5| dfl0-°-2
9B.7L/F 0.7
97.7 « 2.6
98.8 54.4
99.6 49.1
99.4 48.8
54.0 48.9
16.3 48.8
8.5 45.9
6.0 5.6
4.7 0.3
3.7 0.5
3 . 0 0 . 6
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
20s00     55.1      46.0      18.7
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF
20500     57.2      25.1      19.1
VALID DATA
20s 01
20 s 02
20 : 03
20s 04
20:05
20:06
20:07
20:08
20s 09
20: 10
20s 11
20: 12
20: 13
20: 14
20: 15
205 16
20:17
20: 18
20: 19
20:20
20:21
20:22
20:23
20:24
20:25
COMMENTS:
60. 3 .*<
74.34^,
217.5 V
330.2,^
380. 8 [j
414. 1
440.2
456.7
464.3
479.4
485.7
487.0
493.2
499.7
499. 1
498.2
505.4
507.0
507.2
504.8
510.8
509.4
329.8
133.8
1 04 . B
End of
2. O0*p'2- 8
Lfl 2'8

2.6
2.7
2.7
2.6
2.5
2.5
112.7
237.8
236.7
IBB. 1
174.7
204.8
206.3
2. 1
2. 1
2. 1
2.0
2.3
2.5
2.4
2.2
Test No.
-O. 1
-O-J^-*-*"
^•^sTs
57.6
55.0
49.7
45.5
41. 1
38.2
36.2
34 . 0
29. 4
9.7
2.4
1.2
0.9
0.8
0.5
0.6
0.3
-0.0
0.5
-0.6
0.3
0.5
1 and post-test calibration check
          (CONTINUED ON THE NEXT PABE)
                        A-16

-------
3ONTINUOLJS  EMISSIONS  MOIM X TOR X IMfB   SET—UR

SOURCE!   HC1  CHARACTERIZATION  TEST PROGRAM / MAINE ENERQY RECOVERY  COMPANY

)ATE:   12-10-1987     TIME:  09s 02
i/P_CHAN DESCRIP
1 INLET
2 MID
3 OUTLET
UN I TS
wetHCl
wetHCl
dryHCl
SPAN
900
268
250
INPUT
VOLTAGE
10.00 V
0,95 V
9.21 V
ZERO
OFFSET
07.
07.
07.
WERAQINQ PERIODS!  30  MINUTES,
40 EMISSION RATE CALCULATIONS
                                   A-17

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY  COMPANY
12-10-19B7
CHAN 1
INLET
TIME wet MCI
09 l 09 79.7
09s 10 83.3 „
09: 11 89.3 1
09:12 87.9
09:13 86. 8|
09:14 82.71
09:15 87. 0'
09 : 1 6 83.5
09:17 82.5
09s 18 41. 1 i
09: 19 8.4
09s 20 4.4
09 s 2 1 4'. 7
09:22 4.3
09:23 4.9
09s 24 -0.7
09:25 6.9
09:26 3.2
09:27 4.2
09 s 28 3 . 4
09:29 5.9
09 s 30 4 - 5
09:31 6.0
09:32 4.6
09:33 2.6
09:34 1.7
09:35 -20.0
09s 36 -20.7
09:37 -20.7
09: 38 -20.6
09:39 -20.6
09:40 -20.6
09:41 -13.0
09:42 -10.4
09:43 -3.0
09s 44 5.1
09:45 8.4
09:46 1.6
09:47 -2.9
09s 48 4^5-
09:49 .^--"30.9
09:50 177.8
09:51 274.1
09:52 316.2
09:53 346.5
09:54 359. 9 '
09:55 378.1
09:56 385.4
09:57 395.4
09:58 414.6
09:59 416.4
10s 00 419.0
CHAN 2 CHAN 3
MID OUTLET
wetHCl dryHCl.
O.B 0.2
•fjl °-B« °'4
P 0.8.*i^ 23.6
O.Bl 14.5
0.7l 7.4
0.7' 4.3
0.7 2.5
.-. -r 11
j^U.**0.7 0.5
fl 0.7 0.7
0.7 0.7
0 .8 0 . 6
0.8 -0.0
0.8 -0.0
0.9 0.5
1 . 0 0 . 6
1 . 0 32 . 8
1.0 169.8
1 . 0 0 . 3
1.0 0.1
1.1 0.4
1.1 52.1
~ 1. 1 49.2
Ltto>°ft i-1 48-8
fit, 3' ' 1 49 " 2
&TVA 1.1 49. 1
03**^ 1. 1 45.6
1.1 -18.3
1.2 -0.4
1.2 0.0
1.2 -0.4
1.3 -1.1
1.3 -0.0
1.4 38.7
1.4 57.5
1.5 58 . 7
•3tY* -| A 57 ->
^* J. • *T vJ / • .&.
1.5 50.8
— ' 1.5 44.3
1.4 37.8
1.4 18.0
* n A A
, 0
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENER8Y RECOVERY COMPANY
12-10-1987
CHAN 1 CHAN 2
INLET MID
TIME wetHCl wetHCl


AVERAGE VALUES FOR
10:00 89.5
10:01
10:02
10:03
10:04
10:05
10:06
10:07
10:08
10:09
10: 10 „
10: 11
10: 12
10: 13
10: 14
10: 15
10: 16
10: 17
10: 18
10: 19
10:20
10:21
10:22
10:23
10:24
10:25
10:26
10:27
10:28
10:29
10:30
AVERAGE
10:30
10:31
10:32
10:33
10:34
10:35
10:36
10:37
10:38
10:39
10:40
10:41
10:42
10:43
10:44
10:45
10:46
10:47
423.1 C;£-,
426.4 4-2^*
426.3
435.7
438.3
442.4
446.4
435.8
438.^-—
.-sssTi
248.2
27.3
-2.0
-14.7
-10.3
-8. 1
* -Jtf^^&
*Jt •
-2.3 ^
-5.6 i
-i.el
-1.6f
0. 1
-2.0
0.7
1.6
-0.9
3. 1
6.5
4.6
VALUES FOR
150.5
1.8
-1.2
3.9
-1.4
-0.4
-0.2
3.4
3.6
1.4
-1.6
3.9
1.9
-0.6
-0.3
1.0
2.4
6.6

THE LAST
1. 1
«fT-1.6
» 1.6
1.7
1.7
1.7
1.8
1.8
1.8
1.8
1.8
1.8
1.7
1.7
1.7
1.7
1.7
1.7
146.3 . ^
227.7 |l£
173.6 &
174.7
224.0
159.5
1.8
1.8
1.7
1.7
1.6
1.7
1.7
THE PREV
38.3
1.6
1.6
1.6
1.7
1.7
l-J^—
54. 3
77.6
84.4
86. 7 /JA,
oO * y 1
86.9 H(
88.0
88.8
88.3
* A— 1
CHAN 3
OUTLET
dryHCl

HOUR: 52 MINUTES OF VALID DATA
17.7
0.3
0.6
0.6
0.2
0.4
0.3
0.3
0. 1
0.0
-0. 1
-0. 1 ^o
0.6^^^
JjjA
"tJ.6
3.9
15. 1
25.8
J ^4 ^
1 39.9 1 /K*6
4"^ 1 "/ Cfl^
45.3 y^ ^ c^<0*
48.9 A*l ¥f
49.4 ^ I1
50 . 0
50.4
50.7
51.3
50.6
SO-T,^.
IOUS 30 MINUTES
22.0
45.0
31.2
18.4
10.5
8.5 ^
6 . 9 ?*«
S 7 I &"
'\
4 . 7 If
4.2
3.4
n0» 2.9
Uft 2-6
i-A 1.9
2.2
1.9
1.8
,9 I'8

-------
HC1 CHARACTERIZATION TEST PROGRAM  / MAINE  ENERGY RECOVERY COMPANY
12-10-1987


TIME 	
10:48
10:49
10:50
10:5.1
10:52
10:53
10554
1 0 : 55
1 0 ! 56
10:57
10s 58
10: 5 9
1 1 : 00
CHAN 1
INLET
wetHCl
1.6
.«£. • oX,
0.5
3. 5
1.6
3.8
1.8
2. 9
6.5
7. 1
6.7
8. 1
-6.5
CHAW 2
MID
wetHCl_
87. B
8JU-9--
^"^3 4 . 6
12.0 '
•y nr <
5.5
4.4
3.7
3. 3
3 . 0
2.7
2.5
2. 4
CHAM 3
OUTLET
	 cLo/HCl.
1 .3
0.8
•4pSh 1.1
•/ 12
^ 1.4
1. 1
0.8
1. 1
0.7
0.7
0.4
0. 8
1.0
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
 11 s 00
 2. 1
36.7
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID  DATA
Us 00     76.3      37.5      13.8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
H
II
II
H
n
H
M
M
H
$
'
'
3
H
II
II
M
B
II
:
M
;
:
H
H
01
02.
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
-20.
-13.
0.
"~ 1 o
0.
7",.
8.
14.
9.
14.
8.
14-
20.
17.
12.
22.
19.
23.
24.
18.
12.
12.
7
1
3
3
5
0
2
6
0
8
9
1
0
6
0
3
2
0
1
7
4
6
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
. 2
.0
.9
.8
.8
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
0.
0.
0.
0.
1.
O.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
B
6
B
9
1
3
4
5
1
5
6
0
5
9
0
5
5
7
7
6
1
1
COMMENTS:
Waiting for
for Test #2.
  proper process operating conditions
                        A-20

-------
HC1 CHARACTERIZATION TEST PROGRAM
12-10-1987
        -rec*
                                  / MAINE ENERGY RECOVERY COMPANY
TIME
12:31
12:32
12:33
12:34
12:35
12:36
12:37
12:33
12:39
12:40
12:41
12:42
12:43
12:44
12:45
12:46
12:47
12:48
12:49
12:50
12:51
12:52
12:53
12:54
12:55
12:56
12:57
12:58
12:59
13:00
CHAN 1
INLET
wetHCl
— .T /_
•Jt m O
-3.7
-2.9
-3.7
-3.7
-5.4
~~ 1 • /
0.2
1 . 0 _
"2". 6 ^
23. 1
123.9
226.2
279.6
3O9 . 4
341.4
357.3
356.5
358. 1
33 1 . 9
320.6
316.2
334 . 8
350.7
384. 1
392. 1
420.9
425.5
409.5
411.2
CHAN 2
MID
wetHCl
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.6
1.6 *
1.6
1.6
1.7
1.7
1.7
1.7
1.7
1.7
2.2
3.6
4.2
4.4
4.4
4.6
4.8
4.9
5.5
6.4
7.2
7.3
6.8
CHAN 3
OUTLET
dryHCl
16.7
14.6
13.3
12.9
i2Xf
Jrt.7

Jf 11.0
r 10.4
9.7
9.5
9.2
9.3
8.8
9.2
8.9
8.7
8.9
7.6
8. 3
7.4
6.7
7. 1
7.6
7.4
7.7
7.4
7.4
7.8
7.8
AVERAGE VALUES FOR THE LAST HOUR:  30 MINUTES OF VALID DATA

13sOO    215.1       3.1       9.5
13:01
13:02
13:03
13:04
13:05
13:06
13:07
13:08
13:09
13: 10
13: 11
13: 12
13: 13
13: 14
13: 15
13: 16
13: 17
13: 18
13: 19
13s 20
396.7
380.7
402.7
429.6
413.4
421.8
432.9
449.4
433 . 5
427.3
437.8
450.9
459.9
456.3
444.8
411. 1
410.7
414.9
414-7
424.7
5.8
5.2
4.9
4.7
4.5
4.8
5.8
8. 1
11.4
15.4
18.7
21.6
20.4
17. 1
13.8
11.2
9.7
8.5
7.8
7.6
7.7
8.0
7.7
7.6
7.2
7.2
6.9
6.9
7. 1
7. 1
6.8
7.2
7.0
7.5
7.6
7. 1
6.3
6.2
6.5
5.8
                                    A-21

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY  COMPANY
12-10-1987
T I ME
13s
13:
13:
13:
13:
13:
13:
13!
1 3 :
13:
21
22
23
24
25
26
27
28
29
30
CHAM 1
INLET
wetHCl
439.
424.
429.
454 -
453.
463.
457.
464.
466.
461.
0
6
2
'n
.&.
1
7
9
6
0
T,
CHflN 2 CHAN 3
MID OUTLET
wetHCl .._.d..ryH.C.l.
8.
9.
13.
18.
24.
30 .
31.
29.
25.
'20-
2
9
6
6
8
6
2
2
4
B
5.
5.
6.
5.
6.
6.
6.
6.
6.
6.
2
2
0
8
0
2
4
4
4
1
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
13:30    434.3      14.0       6.7
13:31
13:32
13:33
13:34
13:35
1 3 s 36
13:37
1 3 : 38
1 3 : 39
13: 40
13s 41
13:42
13:43
13: 44
13:45
13:46
13:47
1 3 : 48
13:49
13s 50
13:51
13:52
13:53
13:54
13:55
13s 56
13:57
13:58
13:59
14:00
462.0
463- 8
455.6
450.7
474.4
482.5
481.2
477.3
487 . 3
509.6
485.4
468.4
465.6
482.7
485 . 3
479 . 3
493.5
516.9
506.4
485.7
478.0
469.6
453. 1
449.7
477 . 9
470.7
496.3
509.6
530.6
536.7
17.7
15.2
1 3 . 3
11.7
1 0 - 4
10.5
11. B
13.9
16.2
15.9
14.7
12.7
10.9
9.8
8. 8
8. 0
7.3
6.8
6.4
6. 1
6.0
6 . 0
6.2
6.4
6.6
6.8
7. 1
7.4
7.8
8.0
6.5
6.4
6.2
6.2
6.0
5.7
5.2
6. 0
5.3
5. 3
5.5
5.9
5.2
5.3
SjjL
\S!%Q. 9i
/ / _*L-J*"""
5.3
5. 1
4.9
5.2
5.0
4.9
4.7
5. 1
4.8
5. 1
5. 0
cr T
W B •-'
5.3
AVERAGE VALUES FOR  THE  PREVIOUS  30  MINUTES
14:00    482.9        9.9
AVERAGE VALUES FOR  THE  LAST  HOUR:
14:00    458.6       11.9        6,
 14:01
 14:02
 14:03
                          0 MINUTES OF VALID  DATA
530.6
505.5
475. 1
7.8       4.6
7.6       4.5
7.5  A-22  4.9

-------
HC1 CHARACTERIZATION TEST PROGRAM  /  MAINE  ENERGY  RECOVERY  COMPANY
12-10-1987
TIME
14:04
14:05
14:06
14:07
14:08
14:09
14: 10
14: 11
14: 12
14: 13
14: 14
14: 15
14: 16
14: 17
14: 18
14: 19
14:20
14:21
14:22
14:23
14:24
14:25
14:26
14:27
14:28
14:29
14:30
CHAN 1
INLET
wetHCl
476.0
463.8
489.0
499.6
515.0
541.3
541.2
543.5
536.5
519.7
494.3
480.6
502.3
492.8
415.2
358.9
37 1 . 8
473.7
558.0
562.3
542.5
533 . 6
541.8
542.4
533.7
534.2
508.2
CHAM 2
MID
_ wetHCl
7.2
6.8
6.6
5.8
5.4
5.2
5.2
5. 3
5.5
5.8
6. 1
O • •-'
6.6
6.6
6. 1
5.7
6. 1
7.6
8. 1
8.3
8.7
8.6
8.4
7.9
7.8
8.0
7.2
CHAN 3
OUTLET
5.2
5.2
4.8
5.6
4.9
4.5
4.3
4.2
4.8
4.5
4.5
4.6
4.5
4.9
4.9
4.6
3.5
3.7
4.3
4.5
4.9
5.0
5.8
<~J . •-'
4.9
5.0
4.8
 AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
 14:30    502.8       6.9       4.7
14:31
14:32
14:33
14:34
14:35
1 4 : 36
14:37
14:38
14:39
14:40
14:41
14:42
14:43
14:44
14:45
14:46
14:47
14:48
14:49
14:50
14:51
14:52
14:53
14:54
519.8
528.0
532 . 6
538. 1
545.5
535 . 5
526.8
498.2
475.9
484.4
510.3
507.7
499.7
499.9
513.9
506. 1
500.0
470.4
468.9
478.9
451.6
463.3
473. 1
467.6
6.B
6.7
6.7
6.B
6.9
7. 1
7.3
7.5
7.6
7.7
7.7
7.8
7.5
7.5
7. 1
6.4
6.0
5.6
5.4
5.3
5.0
5.0
5.0
5.0
4.5
4.5
4.5
4-4
4.5
4.9
4.0
4.9
4.9
4-4
4.2
4.0
4.2
4.3
4.8
5. 3
5. 1
4.9
4.3
4.4
4.0
3.6
3.9
4.0
                                       A-23

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-10-1982-


TIME. 	
14:55
14:56
14:57
14:58
14:59
15:00
r&tov
CHAN 1
INLET
wetHCl.
461.8
462.9
465.7
484.4
481.6
497.2
w«*»»y*»r
CHAW 2
MID
watHCJL-
5.2
5.5
6.0
6.5
6.9
7.2
PII In* mmv*
CHAN 3
OUTLET
	 dryHCl
4.2
4.3
3.8
3.7
4.5
4.6
AVERAGE VALUES FOR THE. PREVIOUS 30 MINUTES
15s00    495.0       6.5       4.4
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
15". 00    498.9       6.7       4.6
ISsOl
15;02
15:03
15:04
15:05
15:06
15:07
15:08
15:09
15: 10
15s 11
15s 12
15; 13
15s 14
15s 15
15: 16
15: 17
15s 18
15s 19
15:20
15s21
15:22
15:23
15:24
15s25
15:26
15:27
15:28
15:29
15:30
520.5
538. 3
552.3
548.7
555 . 5
521.6
495.2
505.2
507 . 8
488.4
477.8
490.4
496.0
489.2
512. 1
524.8
512.5
516.4
543.2
524.2
529.4
553.0
526.2
520. 1
521. 1
515.0
515.5
524-0
523.2
520.0
7.2
7.2
7.0
6.8
6.6
6.3
5.9
5.6
5.4
5.3
5.3
5.4
5.5
5.8
6.0
6.4
6.9
6.9
7.0
7. 1
7. 1
7. 1
6.9
6.5
6.3
6.2
6. 1
6. 1
6. 1
6.3
4.0
4.3
4.9
4.5
4.3
4.2
4. 1
3. 7
4-3
3.9
4. 1
3. 8
4.2
4.0
4.5
4. 1
4 . 0
T T
%..' H '— '
3.2
3.9
3.9
4. 1
4.2
4. 2
3.9
3.9
4.4
3. 8
3.4
3.7
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
15:30    518.9       6.3       4-0
15:31
15:32
15:33
15:34
15:35
15:36
15:37
534.5
524.2
515. 1
5O5.B
493.2
494.2
475.0
6.6
6.8
7.0
7.0
7.0
6.8
6.4 A_94
3.6
3.7
4. 1
3.8
3.9
4-2
4.0

-------
HC1 CHARACTERIZATION TEST PROGRAM  / MAINE ENERGY  RECOVERY  COMPANY
12-10-1987
TIME
15:38
15s 39
15540
15:41
15:42
15:43
15:44
15:45
15:46
15:47
15:48
15:49
15:50
15:51
15:52
15:53
15:54
15:55
15:56
15:57
15:58
15:59
16:00
CHAN 1
INLET
wetHCl
465.6
457.0
465.6
470.2
457.5
472.8
504.2
559.4
575.0
552.6
533.8
525.0
539.9
555.6
544.3
533.4
510.9
510.0
502.3
489.6
474.7
452.5
448.4
CHAN 2
MID
wetHCl
6. 1
5.7
5.5
5.4
5.2
5.3
5.5
5.9
6.2
6.3
6.5
6.6
6.9
7.2
7.3
7.4
7.7
7.9
7. 1
6.8
6.4
5.8
5.4
CHAN 3
OUTLET
dryHCl
3.5
3.2
3.2
3. 1
3. 5
3. 1
3.3
3.3
3.4
3.8
3.8
4.0
4. 1
4.0
4.0
4.4
4.5
4.2
4.2
4. 1
3.9
3.9
4. 1
 AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
 16:00    504.7       6.5       3.8
 AVERAGE VALUES FOR THE LAST HOUR:  60 MINUTES  OF  VALID  DATA
 16:00    511.8       6.4       3.9
16:01
16:02
16:03
16:04
16:05
16:06
16:07
16:08
16:09
16: 10
16: 11
16: 12
16: 13
16: 14
16: 15
16: 16
16: 17
16: 18
16: 19
16:20
16:21
16:22
16:23
16:24
456.9
469.3
496. 1
502 . 8
502.7
493.7
511.5
524.9
517.3
513.9
521.6
529.0
520.8
517.5
494.4
472.8
463.3
475.5
488.9
503.5
498.0
494-2
510.4
538.5
5.2
5.0
5.0
5.0
5.2
5.3
5.4
5.5
5.5
5.8
6.2
6.5
6.7
6.5
6.2
6.0
5.9
6.0
5.9
5.8
5.7
5.5
5.6
6. 1
4.5
4.2
4.3
3. 3
3.4
3. 1
3.8
3.7
3.9
4.3
4.3
4.5
4-3
4. 1
•2' . 3
3.8
3.3
3.4
3.8
3.5
X-3--2-,
(26.1)
4. U
3.3 A-25

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERSY RECOVERY COMPANY
12-10-1987


TIME
16s 25
16:26
16:27
16:28
16:29
16: 30
AVERAGE
16s 30
16:31
16:32
16:33
16:34
16:35
16:36
16:37
16:38
16:39
16:40
16:41
16:42
16:43
16:44
"TST45
16:46
16:47
16:48
16:49
16:50
16:51
16:52
16:53
16:54
16:55
16:56
16:57
16:58
16:59
17:00
CHAN 1
INLET
wet HO .
537 . 4
533.2
517.0
503.3
486. 0
478.9
VALUES
502.4
475. 1
486.4
493.7
510.8
500.9
505 . 9
480.4
472.5
502.5
521.9
539. 2
538.9
543.2
rr-rcr *->
wJ •-.' *J • *~
527. 1
531.2
530.8
508. 6
458.9
463.3
500.8
512.4
523.4
538.0
532. 0
531 . 8
549.6
555.6
544.2
539.5
CHAN 2
MID
	 wetHCI 	
5.8
5.6
5.5
5.4
5.3
5.3
CHAN 3
OUTLET
	 dryHCJL
3.6
3.2
3.1
3.2
3.6
3.9
FOR THE PREVIOUS 30 MINUTES
5.7
5. 2
5.3
5.4
5.5
5.5
5.6
5.5
5.5
5.6
5.7
6.0
6. 1
6.3
6.0
5.9
5.9
5.9
5.6
5. 1
4.9
4.8
4.6
4.5
4.6
4.5
4.6
4.7
4.9
5. 1
5. 3
4.5
3.4
3.6
3.9
3.7
3.5
/v . 7".
3 . 6
3 . 0
3. 3
3. 7
3.6
4. 1
3.8
3.6
4. 1
3.4
3.0
3.6
3.3
4.0
4. 1
3.6
3.5
3.0
3. 5
~7 i..
•—' . O
4 . 0
3.5
3.7
3.8
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
17sOO    515.1       5.3       3.6
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID  DATA
17s00    508.8       5.5       4-0
17:01
17:02
17:03
17s 04
17:05
17:06
17s 07
535.3
544.7
529.0
519. 1
514. 1
532.3
560.0
5.6
5.B
6.0
6.2
6.0
6.4
5.9
3.5
3.7
4.4
3.8
4.2
3.8
3.2
                                     A-26

-------
HC1 CHARACTERIZATION TEST PROGRAM  /  MAINE  ENERGY  RECOVERY COMPANY
12-10-1987
TIME
17:08
17:09
17: 10
17: 11
17: 12
17: 13
17: 14
17: 15
17: 16
17: 17
17: 18
17: 19
17:20
17:21
17:22
17:23
17:24
17:25
17:26
17:27
17:28
17:29
17:30
CHAN 1
INLET
wetHCl
570.3
545.8
553.6
554.0
535.6
534.0
538.4
537 . 1
538.8
514.2
461.4
461.3
473.7
452.3
438.6
434.3
412.9
403 . 7
490.3
562.7
570.7
52O.3
471.0
CHAN 2
MID
wotHCl
5.7
5.5
5.2
5.0
4.9
4.9
4.9
4.8
4.7
4.5
4.5
5.2
5.7
6.4
7. 1
7.4
7.4
7.5
7.6
7.3
6.8
6.2
5.9
CHAN 3
OUTLET
dryHCl
3.2
3.2
3.2
3. 3
3.5
3.6
3.3
3.8
3.3
3. 1
3. 1
2.5
3. 1
2.8
2.8
3. 1
3.4
3.0
2.9
2.3
3.0
3.9
4. 4
 AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
 17:30    510.3       5.9       3.3
17:31
17:32
17:33
17:34
17:35
17:36
17:37
17:38
17:39
17:40
17:41
17:42
17:43
17:44
17:45
17:46
17:47
17:48
17:49
17:50
17:51
17:52
17:53
17:54
17:55
17:56
17:57
17:58
471.5
466.3
467.4
501.9
511.9
541.0
566.2
557.5
562.5
55O.6
508.7
494.8
505.6
483.6
467.0
454. 1
472.2
492. 1
486.2
506.0
540.0
552.4
551.0
550.7
542. 1
521. 1
491.5
457.4
5.7
6.4
9.6
9.6
7 . 0
5. 1
4 . 0
3.4
3.2
3.2
3.3
3.6
4-0
4.4
4.7
5.0
5.4
5.8
6.0
6.2
6.6
6.8
6.9
7.8
7.0
6.4
6.0
5.4
3.5
3 . 6
3. 1
4.3
4.3
4. 1
3.9
3.4
3.5
3. 4
3.9
4. 1
3. 4
2. 9
3. 2
3.8
3.6
3.0
3. 2
3.2
3.7
4.0
4.2
3.8
4.0
4.2
3.8
3.6
                                       A-27

-------
HC1 CHARACTERIZATION TEST PROGRAM  /  MAINE ENERGY RECOVERY COMPANY
12-10-1987
11 MIL-
17:59
18:00
     CHAN 1
     INLET
    _wet.HC.l...
      433.6
      422.6
                  CHAM 2
                  MID
                  CHAN 3
                  OUTLET
           4.9
           4.7
3.4
3. O
AVERAGE VALUES FOR THE PREVIOUS  30  MINUTES
18:00    504.3       5.6       3.6


AVERAGE VALUES FDR THE LAST HOUR: 60 MINUTES OF VALID DATA
18:00    507.3       5.7       3.5
IBs 01
18:02
18; 03
18:04
18:05
18s 06
18:07
18x08
18s 09
18: 10
18s 11
18: 12
18:1 3
18: 14
18: 15
18:16
18: 17
18: 18
18; 19
18s 20
18:21
18:22
18:23
18:24
18:25
1 8 : 26
18:27
18:28
18:29
18:30
432.2
427.9
423. 5
425. 3
4 1 JD . B
352 . 5 3fcVD
146.2 . Q\1
99 . 0 1
81.2
73.4
69 . 9
63.8
58.6
62.6
64.8
57.6
42.7
39.4
31.4
30 . 3
30. 1
28.9
31.0
29.0
33. 1
25.5
20.0
17.5
15.8
19.4
4.4
4. 3
4- 3
4 . 4 ^
• ~~l:$l*v
2.e{ 0>*
2.3*
2. 1
1.9
1.8
1.8
1.7
1.6
1.6
1.5
1.5
1.4
1.4
1 . 3
1 .3
Iftff^
16.3
47.5 AA00*"
£?1$
65. 7|
67.4
69.5
70.8
2.6
2. 9
3 . 0
j£. • •_!'
!2 . *?
2. 9
!»? . 6't ^^. *i -*f ^
rr ni^"^

III
3!ST
3. 1
3. 1
2.7
2. 7
2.4
2. 1
1.6
1.5
1.7
1.6
' 2. 1
1.9
2.3
2.6
3.0
2.9
3. 1
AVERAGE VALUES  FOR  THE  PREVIOUS 30 MINUTES
18:30    ^fel.B      ^  •"
18:
18:
18:
18:
18:
18:
18:
18:
18:
18i
31
32
33
34
35
36
37
38
39
40
18:41
24. 7
19.5
23.2
17.9
14-5
14.0
13.4
13.0
18.5
13.7
12.6
                                   A-2R

-------
HC1 CHARACTERIZATION  TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-10-1987
TIME
13:42
18:43
18:44
18:45
18:46
18:47
18:43
18:49
18:50
18:51
18:52
18:53
13:54
18:55
18:56
18:57
18:58
13:59
19:00
CHAN 1
INLET
wetHCl
13.3 A
17. oC^
13.5 4jW
11.2 \(p
10-5 1
10. i T
14.7
14.7
9.4
11.5
13.8
10.8
8. 1
6.9
8.7
7.0
15.3
13.3
8.8
CHAN 2
MID
wetHCl
68.4
' 35. 2 #1
>, 20.8| 0J
< 15.71
11.9*
9.5
8.0
6.5
1.6
5.5
3.9
2. 8
2.4
2.2
2.0
2.0
1.9
1.8
1.8
CHAN 3
OUTLET
/K 6.0
V 5.6
L» -5.5

0. B
"~'W H •-'
-0. 1
i"\ KT
W • *J
-Q.&
**\Tb
18.9
35. 1
42. 8
45. 7
47.7
49.3
50. 1
50.0
50.0
                                    \
 AVERAQE VALUES FOR THE PREVIOUS 30 MINUTES
 19:00
 AVERAGE VALUES FOR THE LAST HOUR:
 19:00     fc^fs"      25»*      Jf_,
60 MINUTES OF VALID DATA
19:01
19:02
19:03
19:04
19:05
19s 06
19s 07
19:03
19:09
19: 10
19: 11
19: 12
19: 13
19: 14
19: 15
19: 16
19: 17
19: 18
19: 19
19:20
19:21
19:22
19:23
19:24
19:25
19:26
19:27
19s 2S
9.4
11.8
*^"*
11.6 t*&
78. 6 * i/
220.9 1 *
316.21
364.9 *
389.0
405.0
412. 1
421.8
430.5
436. 1
437.5
440.4
441.9
446.8
446. 6-
~***FZ& . 2 *,**
438.0 £ ^
107.9 1
61. 71
48.2
41.9
31.9
1.7
1.8
-g*. 1 . 3

Jt (")- -1
^37.0 jl^1
191.01 C<
176.2ft1
175.2
144.6^
^**z^
^0- 2
0.2
0.2
0.2
0.2
0.2
0.2
k 0.2
/ 0.2
' 0.2
0. 1
0. 1
0. 1
0. 1
0.2
28.6
8.5
4.6
3.0
1.8
1.5
» '-^•f
J^ _ " "

' 3.5
1.9
^ 1 • •-•
0.7
0.8
0.6
0.5
0 . 0
-0.4
0. 1
-0.4
0- 1
193.7
11.5
-0.5
-1.9
18.2
47.2
48.0
                                     A-29

-------
HCl CHARACTERIZATION  TEST  PROGRAM / MAINE ENERGY  RECOVERY COMPANY
12-10-1987

        CHAM 1    CHAN  2     CHAN 3
        INLET     MID       OUTLET
TIME	wetHCl    wigtHCl		clry.HQ.1.
19s29     34.8        0.1       48.3
19:30     30.2        0.1       48.4

AVERAGE VALUES FDR  THE  PREVIOUS 30 MINUTES
19i30    243.3      31.1       16.6

19s31     30.5        0.2       48.0
19s32     23.7        0.2       25.3
.1.9s 33     17.0        0.1        0.1
19s34     21.5        0.1       -1.5
19:35     15.7        0.1       -1.4
19t36     17.1        0.1       -2.0
19837     14'. 5        0.1       ~1.5
19;38     14.1  •      0.1        4.9
19:39     13.7        0.1        3.7
19;40     12.9        0.1        0.9

COMMENTS! End Ttast  #2 and  calibration checks.
                               A-30

-------
HC1 CHARACTERIZATION TEST PR00RAM
12-12-1987
MAINI ENERSY RECOVERY COMPANY


TIME
08:22
08 : 23
08:24
08:25
08:26
08:27
08:28
08 : 29
08:30
08:31
08:32
08 : 33
08:34
08 : 35
08:36
08 : 37
08:38
08 : 39
08 : 40
08:41
08:42
08 : 43
08:44
08:45
08:46
08:47
08:48
08 : 49
08:50
08:51
08:52
08:53
08:54
08:55
08 : 56
08 : 57
08 : 58
08 : 59
09 : 00
AVERABE
09:00
09:01
09 : 02
09 : 03
09:04
09:05
09:06
09:07
09:08
09:09
09: 10
flQ , ( ^
CHAN 1
INLET
wetHCl
1.9
-5.3
5.7
0.8
-0-8
74.6
206. 1
265.2
308 . 9
328. 1
348.4
363.5
37 1 . 1
383 . 0
393. 5
393.4
395.2
404.6
4O5 . 3
410.2
411.9
410.2
416. 1
416.3
423.5
423.5
420.7
430.3
430.0
431.9
431. 1
432.4
265. 1
81. 1
52.7
42.6
36.8
26.9
24.0
VALUES
273.4
21.3
24.4
19.9
19.9
10.5
15.0
15.6
15.7
12.0
15.4
L. 1
CHAN 2
MID
wetHCl
136.6
210.4
214.0
218.4
223.2
226.4
I 201.0
1 -^-3
4*1(074.7
*r.,l 173.9
(^ 192.0
1 217.0
f 222.7
226. 1
229 . 0
230.6
203.7
175.6
174. 1
180.4
219. 1
89.0
0.2
0 . 2
0.2
84. 1
217.4
173.9
179.9
226.8
207.8
1.4
2.0
1.9
1.7
1.6
1.5
1.5
1.5
FOR THE LAST
138.9
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
* i=:
CHAN 3
OUTLET
drvHCl i „ f sa/uJtt*&
	 «- — •"-*•• 1 />A! ^mJV^
48.7 j iO* ^ 1
48.7 T * .1
48 7 ^fe. £&A
' ^ • «i m fL^g AD^^^ •
45.0 V——- T* fl '
1.9
-0.3
-0.3
-0.7
-0.2
4.3
14.2
15.5
14.9
15.0
15.0
14.5
12.2
10.4
8.7
8.0
7.7
7.2
7. 1
7. 1
6.5
6.2
5. 2
4.9
4.9
5. 1
5.5
2.4
0-5
0.5
0.5
-0. 1^^*"^*'
-^^mr
6.2
HOUR: 39 MINUTES OF VALID DATA
11.5
15.3
2 1 . 0
24.3
28.5
32.7
34.9
37.6
38.6 A-31
37.9
36.5
TT

-------
HC1 CHARACTERIZATION TEST PROBRAM / MAINE ENERGY RECOVERY COMPANY


12-12-1987


II ME _
09 5 1 2
09 s 1 3
09s 14
09: 15
09s 16
09: 17
09s 18
09: 19
09 : 20
09 s 2 1
09: 22
09s 23
09: 24
09n 25
09:26
09s 27
09:28 \
09:29
09: 30
AVERAGE
09:30
09 : 3 1
09s 32
09 : 33
09; 34
09:35
09s 36
09 ! 37
09! 38
09 : 39
09r, 40
09 s 4 1
09:42
09:43
09:44
09:45
09s 46
09:47
09:48
09:49
09:50
09:51
09:52
09:53
09:54
09:55
09:56
09:57
09:58
09:59
10s 00
CHAN 1 CHAN 2 CHAN 3
INLET MID OUTLET
watHCl ^ wetHCl ....dryHCl
8. 5 a**' 1.5C*** 26.1
9.246*® 1 . 5 *£& 31.8
3.7 .0X 1.5 . 0i/ 37.7
6.81 1.51 40.6
8.7* 1.61 42.8
5.9 * 1.6 44.4
4.5 1.6 45.2 ^ui^**
4-1 1.6 46.1 I.. -
6.5 1.6 47.0 1 T' ff
6.3 1.5 47.1 ' •„
12. 1 1.4 47.9 **
5.5 1.4 42.6
4.0 1.3 23.0
2.4 1.3 9.8
5. 1 1.3 & - (-•
1 62.3 ijflU**^ 1.1 ¥8.3 MV*
115.5*|1 ^If^S*****^ 10-0 'jl
170.9 •"ToTs 10.4
VALUES FOR THE PREVIOUS 30 MINUTES
2*f%. 1 . 8 3px^*
196.5 35. 9 7* (It 12.2
226. 1 52.2 1 r* 9.6
285.0 57.9] 7.7
343.4 61.3* 7.4
417.8 65.3 10.9
452.7 66.5 10.0
475.5 68., 7 8.4
516.5 69.8 7.7
479.5 70.7 -36.5
451.0 76.2 -1.4
427.1 81.8 6.1
368.8 85.8 6.4
322.6 87.7 6.3
284.3 87.7 5.3
230.7 88.3 5.O
164.1 44.8 5.2
135.2 8. 8 4.2
127.0 "* 'jL 1 1 " 3-8
125.0 f* 2.6 ^3.1 A
111.5 1 8. 1 |lflu***>2.B f
110.5 1 9.9T1 2.9 '
104.7 7.5 2.0 *
101.0 6.2 2.2
96.4 5.6 2.5
90.5 5.4 1.9
101.1 4.9 2.0
106.1 4.6 1.7
101.7 4.5 1.1
a— ^9
98.6 4-3 1.4 A **
103.1 4.2 1.9
                                      ,.  «***&e*
                                   r*^,TwrfC **]

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE  ENERGY RECOVERY COMPANY
12-12™1987
I.IMIL
CHAN 1
INLET
wetHCl
 CHAN 2
 MID
JSfilHEl.
     3
OUTLET
clryHCl
AVERAGE  VALUES FOR THE PREVIOUS 30  MINUTES
10:00     238.5      39.4       3.5
 AVERAGE VALUES FOR THE LAST HOURi  60  MINUTES OF VALID DATA
 10s00    129.8      20.6       17.0
10:01
10:02
10:03
10:04
10:05
10:06
10:07
10:08
10:09
10: 10
10: 11
10: 12
10: 13
10: 14
10: 15
10: 16
10: 17
10: 18
10: 19
10:20
.10:21
10:22
10:23
10:24
10:25
10:26
10:27
10:28
10:29
115.4
148.4,
1 63 . 3
147.4
132.8 |
110. 1
101.5
81.9
87.2
79. 1
78 . 0
73.6
79.6
78.8
76.6
76.2

44.4
25. 5
23.8
15. 2'
24.3
10.7
10. 1
14.3
13.3
6.0
10. 1
14.2
  10:30
                I
    7.9
    4.4
    4.4
    4.2'
    4-0
    3.8
    3. 5
    3.4
    3.4
    3.4
    3.3
                       •-<, ±-
                       3. 1
                       3. 1
                      ~~2. v
                       2. 1
                       2. 1
                       2.0
                       2.0
                       1.9
                       1.8
                       1.8
                       1.7
                         1.9
                         2.4
                         2. 1
                         1.8
                         2. 1
                         1.8
                         2.5
                         2.7
                         2.4
                         2.9
                         5.8
                         7.4
                         7. 1
                         6.5
                         5.5
                         5.3
                         5.8
                         5.6
                         4.5
                         3.5
 AVERAGE VALUES FDR THE PREVIOUS 30 MINUTES
 10:30      63.7       2.9       3.^
  10:31
  10:32
  10:33
  10:34
  10:35
   12.9
    7.5
    4.6
     1.6
     1.7
     1.5
     1.3
     1.3
    3. 3
    3.5
    3.3
    3.6
    3.6
    2.6
    1.7
    1.5
    2.5
    2.6
    4. 1
    A «=:
                                              A-33

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY  RECOVERY COMPANY
12-12-1987
LIME 	

101 4$

10:48
10: 49
10:50
10:51
10:52
10:53
10:54
10:55
10:56
10:57
10:58
10:59
1 1 : 00
CHAN 1 C
INLET r
wetHCl t>
309 1 3
324 , 9 ffiyg

342. iJPff'
337.5 i
332. 9 i
319.4*
322 . 6
313.3
324 . 2
309 . 6
314. 0
309.6
321.7
338 . 3
334.9
:HAN 2
11 D
siotHCl
ii6 />w
J[ $.6 *\e\
•M •"•••«• ac«
-op
1.9V
1.8
- 1.8
1.9
2 . 2
2. 5
2 . 5
2 . 6
2. 6
2.7
2.6
CHAN 3
OUTLET
clryHCl..
t* 35
f» 3 , $ „ f/Ji

y 4.i*ir
5.6 I
10.2 I
8.8 T
9.7
12.6
10. B
9.2
8.9
B.7
7.4
7. 1
6.4




,_









AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
11:00    224.7       1.8       5.5
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
11500    144.2       2.4       4-4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
B
•
I
It
:
•
•
i
M
•
II
•
•
V
•
01
02
03
04
05
06
07
08
09
10
11
12
331 .
318.
320 .
342.
374.
376.
382.
380.
380.
377.
329.
359.
9
5
0
B
7
9
9
4
1
O
.&.
7
9
2.
2.
*-k
*L. •
11.
34-
53.
66.
77.
83.
88.
91.
68.
5
4
3
2
9

"T, 1
6>
8
8
7*


^

C
4*V
i /4A
'?


6.
6.
5.
' 5.
» 5.
9.
12.
11.
10.
10.
10.
9.
7
4
7
6
5
5
9
5
4
0
9
2
COMMENTS! Ready to start Run #3 at 11:15.
                          A-34

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987


TIME..
11: 16
111 17
11: 18
11: 19
1 1 : 20
11:21
1 1 : 22
1 1 : 23
11:24
1 1 : 25
1 1 : 26
11:27
11:28
1 1 : 29
1 1 : 30
11:31
1 1 : 32
1 1 : 33
1 1 : 34
11:35
11:36
11:37
11:38
1 1 : 39
1 1 : 40
11:41
11:42
11:43
11:44
11:45
11:46
11:47
11:48
1 1 : 49
1 1 : 50
11:51
11:52
1 1 : 53
11:54
11:55
11:56
11:57
11:58
11:59
12:00
12:01
12:02
12:03
12:04
12:05
12:06
12:07
12:08
12:09
12: 10
CHAN 1
INLET
wetHCl
441.4
435.0
399. 1
382.5
40O.O
418. 1
405. 1
412.6
434.7
465. 1
502.3
467.7
432.2
414.8
424.4
374-5
345.8
323.8
332. 7
324. 1
335 . 8
353.6
350.7
340.6
344.4
415.5
422.2
415.9
349. 1
262.7
239.0
292.7
347.6
359.0
365.6
332. 3
309.3
304. 1
337.6
379. 1
372.4
354.2
359. 9
378. 6
374.9
401.7
434.8
429.2
420.4
420.0
430.3
420.6 r
423.4
401.8
412.2
CHAN 2
MID
	 wetHCl
20.6
16.2
13.2
11.0
9.6
8.4
7.4
6.3
5.6
5.2
4.9
7 4.6
4.6
4.6
4.4
4.3
4.0
3.8
3.6
3. 3
3 . 0
2.8
2.7
2.5
2.4
2.3
2. 3
2.3
2.2
2. 1
2. 1
2.3
2.4
2.4
2.2
2. 1
2.0
1.9
1.9
1.8
1.9
1.9
2. 1
2.2
2.3
2.5
2.5
2.4
2.4
A/3 2.3
P 2.2
2. 1
2.0
2.0
CHAN 3
OUTLET ^
dryHCl -^— J*
7.5
6.6
6.8
6.0
6. 1
5.7
6.2
5.6
5.7
5.6
5. 3
fr> 5.0 0
4.8 v
4.9
4.8
4.6
4.2
5.0 ..^
4.8 U
4.5
4.6
4.7
4.7
4 . 0
3.7
3.5
3.2
3 . 7
4.0
3. 8
3.4
3. 1
4.3
4. 1
3.8
3.4
3.8 r
3.9
3.7
3. 8
3.3
3.4
3.4
2.9
2. 2
2.7
2.6
3.3
3.2
3.7
3.2
a 4.2 flr
3.5
3"8 A-3E
3 . •_•

-------
HC1 CHARACTERIZATION TEST PROGRAM  /  MAINE ENERGY RECOVERY COMPANY
12-12-1987

        CHAM 1    CHAN 2    CHAN 3
        INLET     MID       OUTLET
TIME . _ wetHC] 	wet.HC.1		dryHCl...
12s 11
12: 12
12: 13
12: 14
12: 15
AVERAGE
12: IS
1 2 s 1 6
12: 17
12 1 18
12: 19
12:20
12:21
12:22
12:23
12:24
12:25
12:26
12:27
12:28
12:29
12:30
12:31
12:32
12: 33
12s 34
12:35
12:36
12:37
1 2 : 38
1 2 : 39
1 2 : 40
12:41
12:42
12:43
12:44
12:45
AVERAGE
12s45
12s46
12:47
12:48
12:49
12:50
12:51
12:52
12:53
12:54
12:55
12:56
419.0
456.8
455. 1
449. 1
453.7
VALUES N=dR
387.7
468.7
482.2
479.6
442.8
429.7
433. 7
420-5
424.2
430.4
438.9
460. 1
460.7
450.0
442.6
457.3
448.6
445.7
433. 8
445. 1
461.6
453.6
472.5
454. 1
430.9
427.4
438.7
449.0
457.0
437.3
407. B
VALUES FOR
446. 1
389.6
36 1 . 1
393.7
419.7
444.6
422.5
420. 1
446.0
465.9
473.4
477.7
2.0
2.0
2. 1
2. 1
2.2
THE: LAST
3.9
2.2
2.2
2. 3
2 . 2
2. 1
2. 1
2. 0
1.9
1.8
l.B
1.8
1.9
1.9
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2 . 0
2.0
1.9
1.8
l.B
1.9
1.9 .
2.0
2.0
3. 8
5.0
5. 1
4.3
4.2
HQURr^O MINUTES OF VALID DATA
4 . 3
4.3
4.4
4. 1
4.0
3.5
3.8
3.8
3.5
3.6
3.6
3. 7
3.5
3.5
3.3
2.8
2.6
2.5
3.3
3.4
3.0
3. 1
3.7
3.6
3. 5
3.2
2.9
3. 1
3.5
3.8
3.9
THE PREVIOUS 30 MINUTES
2.0
1.9
l.B
1.8
l.B
l.B
l.B
1.8
l.B
l.B
l.B
1.9
3.5
2.B
2.5
2.4
2.5
2.6
2.4
2.5
2.7
2.B A-36
2.7
2.7

-------
HC1 CHARACTERIZATION TEST PROGRAM
12™12-1987
/ MAINE ENERGY RECOVERY COMPANY
TIME
12s57
12-. 58
12:59
13:00
13:01
13:02
13:03
13:04
13:05
13:06
13:07
13:08
13:09
13: 10
13: 11
13: 12
13: 13
13: 14
13: 15
CHAN 1
INLET
wetHCl
491.0
464.0
450.3
434.8
434.8
431.2
433.0
443.6
425.2
447.3
462.7
464.7
455.4
434.8
458.6
457.2
458.4
434.3
418. 1
CHAN 2
MID
_ 	 wetHCl
1.9
1.9
1.9
1.9
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
1.9
2.0
2.0
2.0
2.0
1.9
CHAN 3
OUTLET
dryHCl
2.9
3.0
3. 1
2.7
2.0
2.6
2.4
2.7
2.6
2.7
3. 1
T T
'..' * V.'
3.2
3.0
2.8
2.8
3.0
2.7
2.9
AVERAGE VALUES  FOR  THE  PREVIOUS  30  MINUTES
13:15    440.5        1.9       2.7
AVERAGE VALUES FDR  THE  LAST HOUR:  60 MINUTES OF VALID DATA
13:15    443.3        1.9        3.1
13:16
13: 17
13: 18
13s 19
13:20
13:21
13:22
13:23
13:24
13:25
13:26
13:27
13:28
13:29
13:30
13:31
13:32
13:33
13:34
13:35
13s 36
13:37
13:38
13:39
13:40
13:41
13:42
13:43
419.8
436.6
42O. 1
412.9
420.4
423.6
454.0
468.0
485.2
495.0
483.7
477.2
449.7
437.8
430. 0
424.8
406.6
390.3
403.3
412.5
426.5
431.4
467.2
481.6
506.3
517.9
528.0
531.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.9
2. 1
2. 1
2.2
2. 1
2.0
2.0
1.9
1.9
1.8
1.8
1.8
1.7
1.8
1.8
1.9
2.0
2.0
2.0
2.0
2.0
3 . 0
3.0
2.8
2.8
2.8
2.4
2.3
2.9
3.4
3.6
3.8
3.2
3.5
3.7
. 3.6
3.2
3.2
3.0
3.0
3. 1
2.9
2.8
2.8
2.6
2.7
2.3
2.3
2.6
                                        A-37

-------
HC1 CHARACTERIZATION  TEST PROGRAM / MAINE ENERGY  RECOVERY COMPANY
12-12-1987


TIME—
13s 44
13:45
CHAN 1
INLET
	 wetHCl 	
537. 1
54 1 . 7
CHAN 2
MID
......wetHCl 	
2.0
2.0
CHAN 3
OUTLET
_dnyHGi.
2.4
3.0
AVERAGE VALUES  FOR  THE PREVIOUS 30 MINUTES
13s45
457.4
1.9
3.0
13546
13:47
13s 48
13s 49
13550
13s51
13s 52
1 T. « tf."if,
il s»' u \.J -™1
1 '"!' » Ki/J
J. '..,< w W *T
13s 55
1 3 1 56
13:57
13s 58
13:59
1 4 : 00
14! 01
14s 02
14:03
14s 04
1 4 s 05
14n06
14s 07
1 4 8 08
14 s 09
14s 10
145 11
14s 12
14s 13
14s 14
520.8
509. 1
484.7
482. 1
458.6
446. 6
454.7
464.3
463.8
493.3
495. 1
512.8
532 . 6
524 - 2
512. 1
488.3
448.4
439.5
455.8
476.0
410.0
426.9
442.4
518.4
566.3
550. 1
503. 1
458.6
464.4
                      1.9
                      1.9
                      1.8
                      1.7
                      1.7
                      1.6
                      1.6
                      1.6
                      1.6
                      1.7
                      1.8
                      1.8
                      1.8
                      1.8
                      1.8
                      1.7
                      1.6
                      1.5
                      1. 4
                      1.4
                      1.4
                      1.4
                      1.4
                      1.6
                      1.9
                      2. 1
                       3. 0
                       2.7
                       3. 1
                       3. 1
                       2.6
                       2. 1
                       2.2
                       2. 1
                       2. 6
                       3. 0
                       2.5
                       2.9
                       2.9
                       2.9
                       2.8
                       2.6
                       2.7
                       2.4
                      k:..3
14s 15
478.6
          2. 6
          3. 4
          2.8
          2. 3
          2.3
          2.6
          2.7
          2.8
          2.3
          2.4
          2.7
AVERAGE VALUES  FOR THE PREVIOUS 30 MINUTES
14:15    482.8        1.7       2.6
AVERAGE VALUES  FOR THE LAST HOUR: 60 MINUTES  OF VALID DATA
14s15    470.1        1.8       2.8
14s 16
14s 17
14: 18
14s 19
14s 20
14i21
14:22
14:23
14s24
14s 25
14:26
510.9
546.6
569.8
578.9
593.8
668.9
696.7
714.0
729. 1
727.3
658. B
                      2.2
                      2. 1
                      2.0
                      1.9
                      1.8
                      1.7
                      1.7
                      1.7
                      1.8
                      1.8
          3.0
          2.7
          2.9
          2.8
          3.0
          2.8
          1.9
          2.0
          2.3
          3. 1
          3.7
                              A-38

-------
HC1 CHARACTERIZATION TEST PROGRAM
12-12-1987
/ MAINE ENERGY RECOVERY COMPANY
TIME
14s 27
14:23
14:29
14:30
14:31
14:32
14:33
14:34
14:35
14:36
14:37
14:38
14:39
14:40
14:41
14:42
14:43
14:44
14:45
AVERAGE
14:45
14:46
14:47
14:43
14:49
14:50
14:51
14:52
.14:53
14:54
14:55
14s 56
14:57
14:58
14:59
15:00
ISsOl
15:02
15:03
15:04
15:05
15:06
15:07
15:09
15:09
15: 10
15: 11
15: 12
IS: 13
15: 14
15: 15
CHAN 1 CHAN 2 CHAN 3
INLET MID OUTLET
wetHCl watHCl drvHCl
689.8
714.9
680.4
606.3
548.7
523.3
490.2
492.9
471.4
482.5
495.9
486.3
440.9
448.7
479.8
47O.6
472.7
433.2
416.8
VALUES FOR
561.3
416.7
426.0
440.2
459.0
460.5
455.2
461.5
471.9
505.2
509.4
507 . 0
513.8
502 . 4
49O.4
472.5
443.9
439. 1
430 . 6
431.6
444.8
481.3
512. 1
506.3
501. 1
493.2
464.9
462.8
457.5
455.5
462.4
1.8
1.8
1.9
1.8
1.7
1.6
1.6
1.5
1.5
1.6
1.7
1.9
2.0
2.0
2. 1
2.2
2.3
2.3
r~\ i~\
A. m JU.
3.2
3.2
3.5
3.5
3 . 3
3.0
3.7
3.6
3.7
3.3
3.5
3.5
3.2
3. 1
3.4
3.9
3. 1
2.8
2.6
THE PREVIOUS 30 MINUTES
1.9
2.0
2.0
1.9
1.9
1.9
2.0
2.0
2.0
2. 1
2. 1
2. 1
*"? 1
.*£. • 4.
2.0
2.0
1.9
1.8
1.7
1.6
1.6
1.7
1.7
1.8
1.9
2.0
2.0
2.0
2.0
1.9
1.8
1.8
3. 1
2.5
3. 1
3.0
2.8
3.4
3.8
3. 1
3. 1
3.2
3.0
2.9
2.9
•2> m jL
3.2
3. 1
2.5
2.7
3. 1
2.9
3.3
2.3
2. 1
2.5
2.5
2.5
2.9
2.4
2.6
2.9
3. 1
                          A-39

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY  COMPANY
12-12-1987
CHAN 1
INLET
	 w.iLtHC.1 	
CHAM 2
MID
CHAN 3
OUTLET
clry.HCl..
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
15:15    469.3       1.9       2.9
AVERAGE: VALUES FOR THE LAST HOURS 60 MINUTES OF VALID DATA
15n 15
1.9
3. U
15: 16
15: 17
15: 18
15: 19
15:20
15:21
15s 22
15:23
15:24
15:25
15:26
15:27
15:28
15:29
1 5 : 30
1 5 : 3 1
15:32
15:33
15:34
15:35
15s 36
15:37
15:38
15:39
15s 40
15:41
15:42
15s 43
15:44
15:45
AVERAGE
15:45
15:46
15:47
15:48
15:49
15:50
15:51
15:52
15:53
15:54
15:55
15:56
15:57
15:58
453.7
453.3
452.2 „
472. 8 /Jjj»
466.7^
490-5
497.9
476.7
460. 6
3 1 3 . 5
178.5
117.0
96.3
69.5
68.5
60.2
50.8
46.6
42.4
50 . 0
47.2
44.8
36 . 0
37 . 8
34.6
38.0
31.4
36 . 7
33. 5
27.7
VALUES FOR
189.5
32.3
21.7
29.7
17.0
24.5
23.3
26.8
21.7
22. 7
28.9
21.0
23.0
23. 1
1.7
1.6
1.6
1.6 .
1 . 6 f
1.7
1.8
1.9
1.9
1.8
1.6
1.5
1.5
1.4
1.4
1.3
1 . 3
1 . 3
1.2
1.2
1.2
1.2
1. 1
1. 1
1. 1
1. 1
1. 1
1. 1
1. 1
1. 1
THE PREV
1.4
1. 1
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
2.7
2.2
1.9
2.3 /.
2.6 '
2.6
2. 2
2.7
2. 4
3.2
3.7
1.5 /
-0.0 P^
-0.5 j^
0.4 \JF
1.0 V»
0 . B Jjs*
1.2 0»
0.3 \
1.2
1.5
1.3
0.6
1. 1
0.4
0.2
0.3
0.8
0. 1
-0. 0
IOUS 30 MINUTES
1.4
0.5
0. 1
0.4
0.7
0.4
1.3
1.8
1.5
1.6
0.5
-40.6
""*"* A-40
0.6

-------
HC1 CHARACTERIZATION TEST  PROGRAM
12-12-1987
/ MAINE ENERGY RECOVERY COMPANY
TIME
15:59
16:00
16:01
16:02
16:03
16:04
16:05
16:06
16:07
16:09
16:09
16: 10
16: 11
16: 12
16: 13
16: 14
16: 15
CHAN 1
INLET
wetHCl
22. 1
29. 1
21.5
28.4
18.4
30 . 0
18.9
28. 1
26.0
24-8
26.0
17. 1
25.3
14.7
32.2
24-0
28.4
CHAN 2
MID
wetHCl
1.3
1.3
1.2
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
CHAN 3
OUTLET
dryHCl
0.3
0.0
0. 1
0.4
0.4
0.7
0.5
0.7
1.0
1.4
0.6
O.B
0.9
1. 1
1.5
1.0
1. 1
 AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
 16:15     24.4       1.3      -0.7
 AVERAGE VALUES FOR THE LAST HOUR:  60 MINUTES OF VALID DATA
 16:15    106.9       1.3       0.4
16: 16
16: 17
16: 13
16: 19
16:20
16s21
16:22
16:23
16:24
16:25
16:26
16:27
16:28
16:29
16:30
16:31
16:32
16:33
16:34
16:35
16:36
16:37
16:38
16:39
16:40
16:41
16:42
16:43
16:44
16:45
29.2
21.6
29.7
23 . 3
29.8
33. 5
58.9
66.4
93. 5
89.8
109.3
124.9
112.7
117.2
113.9
117.3
119.3
118.6
134.6
123.7
121.3
113.9
120.7
103.9
102.9
90.7
68. 1
53.3
57.5
63.2
1.3
1.3
1.4
1.5
1.7
1.9
2. 2
2.7
3. 2
3.2
3.2
3.0
3. 1
3.3
3.2
3.3
3.8
6.2
12.0
19.5
25.9
31.8
33.2
29. 1
22.6
16.2
11.5
8.4
7.0
6.3
0.9
0 . 6
0-7
0.8
0.3
0.8
1.0
1.0
1.4
1.3
1.7
2.2
3.7
6.8
8.2
9.6
9.8
9.8
10.5
12.7
15.2
17. 1
18.3
18.0
15.7
14. 1
10. 1
5.9
6.0
7.8
                                          \
                                       A-41

-------
HC1 CHARACTERIZATION TEST PROGRAM  /  MAINE  ENERGY RECOVERY COMPANY
12-12-1987

        CHAN 1    CHAM 2    CHAN 3
        INLET     MID       OUTLET
LIME	juttHCi	witHCl	dr.yHC.L

AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
16s45     85.4       9.1       7.1
16: 46
16s 47
16s 48
16:49
16: 50
16:51
16; 52
16: 53
16:54
16:55
16n56
16:57
16:58
16:59
17: 00
1 7 : 0 1
17s 02
17:03
17:04
17:05
17:06
17 1 07
1 7 : 08
1 7 : 09
17:10
17: 11
17: 12
17s 13
17: 14
17: 15
67.8
1 04 . 7
109. 4
120. 1
135. 1
146.3
150,. 3
155.9
190.0 "
f^,, o -;• "j
310.6
320 . 4
309.2
331.0
365. 4
382.7
394.6
385.3
369.3
369.2
352.0
339. 0
335 . 9
34 1 . 2
348. 0
371,3
423. 0
449.8
492.4
499.6
6.5
11.9
26. 1
40.9
5 1 . 0
-.»•*•-, ,-,.
16.8
12.5
11.3
10.9
9.4
7.9
6.9
6.2
5.5
5.2
4 . 6
4. 1
3.6
•—' m .lU.
3' H 1
3 . 0
3.0
3 . 0
3. 1
3.2
3.4
3.7
3. 9
3.7
11.7
20.8
22.7
T~i /~i
j£,*L. » ^
26.5
20 - 0
16.6
17.0
13. 1
8.4
5.8
4.8
5.2
5.4
5.6
5.2
5.2
4.6
6.8
6.7
5.6
4.9
4.2
4.7
4.8
4. 1
4. 1
4.4
8.9
8.8
AVERAGE VALUES FOR  THE  PREVIOUS  30  MINUTES
17s15    296.4       10.3       9.6
AVERAGE VALUES FOR  THE  LAST  HOUR:  60 MINUTES OF VALID DATA
178 15     190.9        9.7        8.3
17: 16
17: 17
17: 18
17: 19
17:20
17:21
17:22
17:23
17:24
17:25
17:26
17:27
17:28
532.2
536 , 3
490.7
460.2
420.4
411.9
410.8
419.5
398.8
392.7
379.5
365.4
398. 4
3.4
3.0
3.4
3.7
2.8
2.3
2. 1
2. 1
2.0
2. 1
2.2
2.2
2.3
7.8
6.9
6.2
6. 1
5.8
5.4
5.2
6.8
7.5
6. 1
5.4
4.4
4.5 A~42

-------
HC1 CHARACTERIZATION TEST PROGRAM
12-12™1987
/ MAINE ENERGY RECOVERY COMPANY
CHAN 1 CHAN 2 CHAN 3
INLET MID OUTLET
TIME wetHCl wetHCl 	 drvHCl.
17:29
17s 30
17:31
17s32
17:33
17s34
17:35
17:36
17:37
17:38
17:39
17:40
17:41
17:42
17:43
17:44
17:45
AVERAGE
17:45
17:46
17:47
17:48
17:49
17:50
17:51
17:52
17:53
17:54
17:55
17:56
17:57
17:58
17:59
18:00
18:01
18:02
18:03
18:04
18:05
18:06
18:07
18:08
18:09
18: 10
18: 11
18: 12
18: 13
18: 14
18: 15
424.9
452.7
434.7
444-0
443.8
436.9
424.6
398.7
407 . 8
39 1 . 9
436 . 5
473.4
482.5
492.6
492.0
486.7
451.0
VALUES FOR
439.7
434.3
394.8
376.6
343 . 9
~1"~>Q 1
•_>.lL.Cj . J.
325.7
329.0
334.0
373.0
399.9
364.8
337.7
309.0
295.7
234.8
267.9
388.8
403.2
398.8
396.9
390.7
404.2
395.6
378.0
370.4
388 . 7
384.7
438.5
456.5
464.0
2.3
2.4
2.5
2.5
2.4
2.2
r> o
ji~ • jl.
2.2
2. 1
2.0
2. 2
2.6
2.8
2.9
2.8
2.7
2.5
THE PREV
2.5
2.3
2.4
2. 3
2.2
2.2
2. 1
2.0
2.0
O 1
ji . I
,-j 2
2. 2
2.2
2. 1
2.0
1.8
1.9
2. 1
2.4
2.9
3.5
3.6
3.2
3.0
2.8
2.8
2.6
2.5
2.6
2.6
2.5
4.0
4.0
4.6
4. 1
4.2
4.7
4.0
4.2
4. 1
3.7 ,
3.2 ,/
3.5 tff
'"a
3.7 f
T A
•_' • O
3.8
3.5
3.6
IOUS 30 MINUTES
4-8
2.9
1. 1
3. 3
3. 1
2.9
2.7
3.0
3.2
3.2
2.8
3.5
3.6
3 . 0
3. 3
2.9
2. 1
1.9
3. 1
3.4
3.5
3.6
3.4
• 3. 1
3. 1
3.3
2.6
3 . 0
2.9
3.0
2.7
  AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
  18s15    370.3       2.4       3.0
                                     A-43

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987


11MJL 	
AVERAGE
18s 15
IBs 16
18s 17
18: 18
18: 19
18s 20
18:21
18:22
18:23
18:24
18:25
18:26
18:27
18:28
18:29
1 8 : 30
18:31
18:32
18:33
18i34
18s 35
18:36
18:37
18:38
1 8 s 39
18:40
18:41
18:42
1 8 : 43
18:44
18:45
AVERAGE
IBs 45
18s 46
18:47
18) 48
18:49
18! 50
18:51
18:52
18s53
18s54
18:55
18:56
18:57
18:58
18:59
19:00
19:01
19:02
CHAN 1
INLET
__wetHCL
VALUES
405.0
455. 1
456.5
457.4
452.6
428.9
406.7
356 . 0
379.6
434. 3
472.0
488.9
468.6
460.8
455.4
398.2
414.9
446.8
453. S
439.6
38 1 . 1
322 . 3
222. 2
175.5
175.2
199.8
202. B
195. 0
160.5
126. B
117.7
VALUES
353.5
101.9
96.5
81.9
79.2
72.5
63. 1
69.2
59.7
66.0
52.3
58.4
49.5
45.3
49.8
43.3
43.7
37.7
CHAN 2
MID
	 w^ a/1^
2. 5 1 (r)\
2.3 ^o
2.5
2.5
3.5
FOR THE PREVIOUS 30 MINUTES
2.5
2.7
2.8
2.9
3. 1
3.4
3. 6
3.6
3.7
4.3
4.9
5.3
5.2
4.5
4.0
3.5
3. 1
2.8
4. 1
4.7
5.0
4-9
4.7
3.8
3.8
4.4
4-9
6.3
5.7
3.8
2.7
1.8
1.7
1.6
1 . 3 A-44
1.2

-------
HC1 CHARACTERIZATION  TEST  PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987

                             CHAN 3
                             OUTLET
                               ddCJL
                                1.0
                                0.8
                               -0.0
                               -0.0
                                0.4
                                0.6
                                1.0
                                0.8
                                0.8
                                0.8
                                1.2
                                1.0
                                1.4

AVERAGE  VALUES FOR THE PREVIOUS 30 MINUTES
19:15      51.0       3.2       2.4
 AVERAGE  VALUES FOR THE LAST HDURi  60 MINUTES OF VALID DATA
 19:15    202.3       2.8       3.3
TIME
19:03
19:04
19:05
19:06
19:07
19:08
19:09
19: 10
19: 11
19: 12
19: 13
19: 14
19: 15
CHAN 1
INLET
wetHCl
41.8
33.9
37.7
37.9
31.9
34.8
34.5
38.3
28.0
39.3
37.4
32 . 0
31.5
CHAN 2
' MID
_ _wetHCl
2.7
2.6
2.5
2.4
2.4
2.5
2.6
2.7
2.7
2.7
2.7
2.6
2.5
19: 16
19: 17
19: 18
19: 19
19:20
19:21
19:22
19:23
19s24
19:25
19:26
19:27
19:28
19:29
19:30
19:31
19:32
19:33
19:34
19:35
19:36
19:37
19:38
19:39
19:40
19:41
19:42
19:43
19:44
19:45
38. O
44. 1
36.6
41.0
36.5
34.3
34. 2
36 . 3
43. 6
TO "=;
•«>*.. *->
35.3
27.9
36.7
30 . 3
37. 1
30 . 4
30.9
34.0
31.0
25.3
25.2
32.4
23. 1
30-7
28.9
30 . 0
26.9
15.8
23.2
22.5
2.4
2.4
2.6
f ~*,
jl~ m •_'
2.2
2. 1
2. 1
2. 1
2. 1
2.2
2.3
2.2
2. 2
2.2
2.3
2. 1
2.0
2.0
2.0
2.0
2.0
2. 1
2.0
2.0
2.0
2.0
1.9
1.9
1.9
1.8
1 . 0
1.0
0.8
0.6
0.2
0 - 3
0.4
0.9
0.9
1.4
1 . 3
0. 3
x*5o.7,
iTi
0. 6
0.9
0.7
0.5
0.6
0.6
-0.0
-0. 1
-0. 1
0. 1
-0.0
0.4
0.4
0.4
0 . 3
0.5
 AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
 19:45     31.8       2.1       1.2

-------
HC1 CHARACTERIZAT ION
12-12-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
T I ME
19:46
19:47
19:48
19:49
19:50
19:51
19:52
19:53
19:54
19:55
1 9 s 56
1 9 s 57
1 9 : SB
19: 59
20:00
20 : 0 1
20: 02
20:03
20:04
20:05
20:06
20:07
20 : OS
2.0 s 09
"20s 10
20: 11
20: 12
20: 13
20; 14
20: 15
CHAN 1 CHAN 2 CHAN 3
INLET MID OUTLET
wetHCl wetHCl . .jdryHC]...
25.6
18.9
22. 3
29.7
19.3
24.9
18.6
22.5
28.5
32.0
21. 1
23.3
22 . 6
21.5
28 . 4
24. 1
24.3
20 . 2
21.6
19. 1
21.0
24.6
20. 0
19.7
18.7
20. 1 2£Y»
lf.7.fiS
11.5
12.4*
1.7
1.7
1.7
1.7
1.7
1.7
1.6
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.6
1.6
1 .6
1.6
1.6
1.6
1.6
1.7
1 -A
1.7
1.7 Jtf*
1 . 8 rj/
1.91^
1.9 1
1.9 Y
0.8
1.2
0.4
-0.2
-0. 1
-0. 0
-0.2
0.2
0-2
0. 5
0.3
0.7
0. 7
0. 8
-0.3
-0. 2
0.2
1.0
0 . 6
0.8
0.9
0 - 8
0. 5
• f t-
-0.2
0 . 3
0.7
0.4
0.4
0. 8
                                   r
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
20515     21.6        1.7       0.4
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES  OF  VALID  DATA
20:15     26.7        1.9       0.8
20s 16
20: 17
20: 10
20: 19
20520
20:21
20:22
20:23
20:24
20:25
20:26
20:27
20:28
20:29
20:30
20:31
20:32
14.8
8.7
6.7
14-8
5.3
11.7
6.7
11.9
7.9
12.9
12.5
17.9
13.7
3. 5
B.5
B.6
13. B
1.9
ly9
1.9
,1.8
"^TT^™"™
8.0
5.6
5.7 .
22.8 ^A1
43.4 j U
57.8 A
72.3 '
98.4
105.0
108.9
110.8
110.8
0. 9
-0.7
-2.0
-1.4
-0.8
-1.4
-1.7
mJflr ™" 1 • 1
\\ -2.0
>CA -i.B
-1.4
-0.8
-0.4
-0.5
-1.2
M.O f"\
ji * v«'
-2 . 0
                                      A-46

-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12~1987
CHAN 1 CHAN 2 CHAN 3
INLET MID OUTLET
TIME wetHCl wetHCl drwHP.i












20:33
20:34
20:35
20:36
20:37
20:38
20 : 39
20:40
20:41
20:42
20:43
20s 44
20:45
8.0
8.0
9.9
14.8
3. 1
9.7
5.0
7.7
9. 1
12.6
14.4
10.4
5.2
AVERAGE VALUES FOR



12.2
20:49
20:50
20:51
20:52
20:53
20:54
20:35
20:56
20:57
20:58
20:39
21:00
21:01
21:02
21:03
21:04
21:05
21:06
21:07
21:03
21:09
21:10
21:11
21:12
21:13
21:14
21:15
AVERAGE
21:15
AVERAGE
21:15
20:45
20:46
20:47
175.6
5.6
12.8
9.6
1 0 . 7
0. 6
9.O
7.5
L~ a. >[f
2.4 43.46 l
25.5 46.3
233.7 47.1
THE PREVIOUS 30 MINUTES
49.9 5.8
209.8 48.2 1
177. 1 48.81
^tt^*m
49.8 f^
49.7 I
49.3 Jf
49 . 0
32. 9
9.8
5.4
3 „ 2 & ...JI.J1) K<
2 . 5 $lA"f° £^> rWI
3.8 JHJ'tl^**
3. 5
1. 9
0 . 3
-0. 0
-0. 0
-0. 1
-O. 1
-0. 2
--0. 1
-0. 0
-0. 3
™— ^ u ,_jt
-0.6
60-9
137.4
0 . 3
O .. 3
THE PREVIOUS 30 MINUTES
53 . 5
THE LAST
51.7
20. 1
HOUR: 60 MINUTES OF VALID DAT,
12.9
                                                    A-47

-------
T T •:
21;
•'T' •' t-
21:
"7» 1 n
'"7 1 "
21 s
'"'I -7 -
ol. .i. u
ji. 0. u
21:
21;
21s
2 1 :
rid. 1 n
E
16
.L •'
IS
19
.1.- ' j
ji'_ .i.
Ji!.i:i
xl! -3
24
,u!.' •!".'
.t:^ &
•"7, — ;•
2B
,",,.--7- '..!.-••'
4-i5. 5
402,. 9
215,8
91 ., 2
•"/ -7 tr;
_... ...... .,.,
.-' CD B "T
/ j. i- ,•'
/_ «=: -t
LJ^J » J.
6C"' '~^
•...-• n j::.
53, 5
5S.O
61 .5
59.0
K'l T v"'.
t t .1. •..,••
0 " 2
0 - 2
'•..-' •• .i:i!
0. 2
0 ., 2
O ii j.-
'-. •' .•- 1,'
f**'j r.*-5
O •• j;;l
*..' n *:'!.
0. 2
0- 1
0. 1
•:..'= L..' • L...
dry!-!
J. O
.•;» j^'"
49
4E
49
~T ~f
46
— y
/
0
0
_ A
o
o
:::T
,— . -f
'__• .L
/i.
.6
. 0
. B
. 4
. 4
0 ""/'
. 5
. 4
„ ^'j
. 1
B -til!
_.,.
COMMENTS; End  Run 1*3 and calibration  checks,.
                                      A-48

-------
    APPENDIX B.




Sample Calculations
        B-l

-------
B-2

-------
                             SAMPLE CALCULATIONS
 I.   Calibration Corrections



     From EPA Method 6C:



                             C
           C    = (C - C )
            gas         o'
                           C  - C
                            m    o
   where:

           C    = Effluent gas concentration (corrected)


           C    = Average gas concentration indicated by gas analyzer


           C    = Average of initial and final calibration resonses for zero gas


           C    = Average of initial and final calibration responses for upscale


                    calibration gas


           C    = Actual concentration of upscale calibration gas
            iu&L



      For Run 1 (Inlet Location) from 15:30 to 16:30:



           C    = (501 - 29)(428)/(473 - 29)

            Scls> = 455 ppm HC1 (wet basis)
II.   Moisture Corrections



     For Run 1 (Inlet Location) from 15:30-16:30:



           moisture content = l4.7# H_0

          HC1 concentration = 501 ppm (wet basis)
     Proportion of water vapor, by volume (B  ):



           B   = % H_0/100
            ws      2


     Dry basis HC1 concentration (C ) from wet basis concentration (C )
                                   O                                 W


           C  = C /(l-B  )
            o    w     ws


     From Test Condition 1 (Inlet) from 15:30-16:30:



           B   = 14-7/100

            WS = 0.147



           C  = 501/U - 0.147)

            ° = 533 PPm HC1 (dry basis)
                                      B-3

-------
III.  Percent Reduction

                       P    V
            PR .  1 -   OUT  OUT    x 100

                       CIN VIN

    where:
            PR = percent reduction of HC1

           C   = concentration of HC1 at the inlet  (dry basis)
            IN
           V  , = volumetric flow rate at the inlet  (DSCFM)
            IN
          CnTJT = concentration of HC1 at the outlet  (dry basis)

          V    = volumetric flow rate at the outlet  (DSCFM)


      For Test Condition 1 from 15:30 to 16:30

            PR ,   !  _  66(39,700)   x 100
                       533(39,900)

               = 87.7# (see Table 2.4)

-------
      APPENDIX C.




Daily Calibration Sheets
         C-l

-------
C-2

-------
SOURCE AND LOCATION

HATF /Y?/*?
       TIME
                                   HCL CALIBRATION DRIFT
                                        DAILY WORKSHEET
                                   ~ 1443*
                                                     PERSON CONDUCTING TEST.
                 BODENSEEWERK
                    COMPUR
                                                                      TECO
OPERATING
RANGE
CALIBRATION
GAS VALUE
n
MONITOR
RESPONSE
TO CAL GAS
•rrysL
    / fftpp
                                  'rry
                                      '
                                                                      4 ft
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
PERCENT SPAN
(PASS/FAIL)
 0%
                                                                       /,.,-!.
MONITOR
RESPONSE
TO INTERNAL
STANDARD
 GAS CELL VALUE
                                 LIQUID STANDARD
                                  (Values In rr,V)
                                      NA
                                                                        NA
                                Ul-   /53./
COMMENTS
                             Pre and Post Test  Calibration Check Worksheet
                                                                                    4112DR15

-------
                                      HCL  CALIBRATION  DRIFT
                                           DAILY WORKSHEET
     SOURCE AND LOCATION  Sfa***

     DATE  /2/9/g7	  TIME
                              <-*M SUKOVtru LOtwanu - &*$£*
                                                  PERSON CONDUCTING TEST.
                  BODENSEEWERK
                                            COMPUR
bCAR OHiOL'ER
                                       TECO
OPERATING
RANGE
CALIBRATION
GAS VALUE
                            '
o
MONITOR
RESPONSE
TO CAL GAS
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
                                              '
                                           %t) 00^
PERCENT SPAN
(PASS/FAIL)
MONITOR
RESPONSE
TO INTERNAL
STANDARD
                        GAS CELL VALUE
                          ( -47 ppm)
LIQUID STANDARD
 (Values in mV)
                                                               NA
                                         NA
                                  U0<
                                  U1 -
                                  U2<
                                 x	
COMMENTS

                              Pre and Post Test  Calibration  Check Worksheet
                                                                                          4112DR15

-------
SOURCE AND LOCATION

DATF
                          TIME
                                       HCL CALIBRATION  DRIFT
                                            DAILY WORKSHEET
                                                          PERSON CONDUCTING
                    BODENSEEWERK
                                             COMPUR
TECO
 OPERATING
 RANGE
  CALIBRATION
  GAS VALUE
                                                                            O po
n
  MONITOR
  RESPONSE
  TO CAL GAS

  DIFFERENCE
  (RESPONSE-
  CAL GAS VALUE)
                               4 ff
  PERCENT SPAN
  (PASS/FAIL)
                                          0.7%
                                                 J.I 7*
  MONITOR
  RESPONSE
  TO INTERNAL
  STANDARD
                         GAS CELL VALUE
                                Ppm)
                       4*) Wm
LIQUID STANDARD
(Values In mV)
SLOPE - -&'<*
UO-  _ -41.7
Ul -  _
U2-  _
                                                                NA
  NA
  COMMENTS
                                Pre and Post Test Calibration Check Worksheet
                                                                                            4112DR15

-------
       HCL  CALIBRATION DRIFT
            DAILY WORKSHEET
?&>•!
SOURCE AND LOCATION /*7^,»ifantt - £u 'jtOje-favf /4^/if ^>/£(s X\
HATF /£//&/ i
?7 TIMF /O^^? —


OPERATING
RANGE
CALIBRATION
GAS VALUE
MONITOR
RESPONSE
TO CAL GAS
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
PERCENT SPAN
(PASS/FAIL)
MONITOR
RESPONSE
TO INTERNAL
STANDARD
COMMENTS
BODENSEEWERK
O-MOfT
' if l?pyr\
I i
/ $0 ppr*
(A fe^JlvMij-

'^/W
GAS CELL VALUE
( 47 ppm)


COMPUR
//^
D j?Pt*\ /
^4 ppm
1 f^/
'74 ft*
'""/-fifr
/-7.I7*
LIQUID STANDARD
(Values In mV)
i^n- -4^.<5
in - /&?-?



PERSON CONDUCTING 1
LE^s^Em





NA

rpqf >3/1m /
•^ **r(2o f?i?*r\
10 j>pm /
//447pp^
^//^
/.!%/
NA

JSS^







Pre and Post  Test Calibration Check Worksheet
                                                         4112DR15

-------
                                             HCL  CALIBRATION DRIFT
o
DAILY WORKSHEET
SOURCE AND LOCATION /^W £/tfmt/ tf&Wnf &>toM*u - £>idde-fevt . Mat'** Sid* A
DATF &//J/*-)
0 1 i
TIMF V&1<0- d^jb
1 ' '

OPERATING
RANGE
CALIBRATION
GAS VALUE
MONITOR
RESPONSE
TOCAL6AS
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
PERCENT SPAN
(PASS/FAIL)
MONITOR
RESPONSE
TO INTERNAL
STANDARD
COMMENTS
BODENSEEWERK
0" a^^^ ppt*\
0 Ppr* /
'47ppm
ii
& PPW /

* / D4%
/ 
GAS CELL VALUE
( 41 ppm)
•4" ppw\
^ £0ndjufcZid 0r>.^
in. /^2-S
119- £77

£/£««••'•< ^
PERSON CONDUCTING '
^TSESS-





NA

("P'JT -S/1^^4^^

TECO
0-*}*>,r
0?r/4M^
3 /9**1 /
T^./V/>\
/A
' ^T PPP~~
y$4 f,
NA

^£55







                                     Pre and Post Test Calibration Check Worksheet
                                                                                               4112DR15

-------
SOURCE AND LOCATION

DATE
        TIMF
                                       HCL CALIBRATION DRIFT
                                            DAILY  WORKSHEET
                                                                   A
                                                                  T
                                                          PERSON CONDUCTING TEST
                   BODENSEEWERK
                      COMPUR
                                                                                 TECO
 OPERATING
 RANGE
0 '
                                           0 -
 CALIBRATION
 GAS VALUE
o
I
c»
 MONITOR
 RESPONSE
 TO CAL GAS
   fr

                                                     7
Ill ppt
                                                                 w
 DIFFERENCE
 (RESPONSE-
 CAL GAS VALUE)
 PERCENT SPAN
 (PASS/FAIL)
 MONITOR
 RESPONSE
 TO INTERNAL
 STANDARD
 GAS CELL VALUE
        ppm)
                         ptfi\
                                          LIQUID STANDARD
                                          (Values In mV)
                                                 -41.4
                                         NA
                                 NA

                                   U1
                                  .U2
                         160. \
                    ,
 COMMENTS
                                Pre  and Post  Test  Calibration Check Worksheet
                                                                                           4112DR15

-------
      APPENDIX D.




Daily System Checklists
           D-l

-------
D-2

-------
   HC1  GEMS   DAILY  INSPECTION  CHECK  LIST
                Characterization Test • Marion County Facility
Date
Initials
TECO Model 15 Analyzer/Model 200 Dilution System

    M200 Control Unit
       Aspirator Air Pressure                 	£fa	 psi
       Orifice Vacuum                            «
        Zero Air Flow Rate                           4    *  scfh
        Calibration Gas  Flow Rate              	£	 scfh

    TECO 15
        Sample Flow Rate                      	/. 0	 1pm
        Zero Pot Setting                      	
        Span Pot Setting                      ~~~~~
            4150 ZGSM/4330 Dilution System

    4330 Dilution Control Unit
        Aspirator Air Delivery Pressure        	&>&	 psi
        Orifice Vacuum                        	- g.£-     gsi
        Probe Temperature                     	/%7      C

    4150 ZGSM
        Analyzer Sample Flow  Rate
        Analyzer Inlet Pressure
        System Vacuum
        Printer Paper Supply Adequate          Yes y^No
        Absorbing Solution Tank Level
          (Capacity, 20 1)                    	7      1
        Waste Tank Level (Capacity, 20 1)       	lj»      1
        Calibration Solution Tank Level
          (Capacity, 2 1)                     	<
    Sampling System Flow Rate                 	
    System Blow Back Air Pressure              	<2.5
    Strip Chart Recorder Paper Supply OK       Yes |X   No
    Strip Chart Recorder Pens Inking           Yes \/   No
    Heater Temperatures Within Limits          Yes_j/_  No
                   Clneclcs

    Compressor Delivery Air Pressure           	lOQ ^ Psi
    Compressor Air Line Leaks  Detected         Yes	    No_
    Electrical Power Supply Adequate           Yes p/   No_
                                 D-3

-------
    HC1  GEMS   DAILY  INSPECTION  CHECK  LIST
                Characterization Test  • Marion County Facility
Date
Initials
TECO Model 15 Analyzer/Model 200 Dilution System

    M200 Control Unit
       Aspirator Air Pressure                 	
        Orifice Vacuum    .                    	— <££> />?.
        Zero Air Flow Rate                            4-     0  scfh
        Calibration Gas  Flow Rate              	4_	 scfh

    TECO 15
        Sample Flow Rate                      	/.b     1pm
        Zero Pot Setting                      	
        Span Pot Setting                      	
            4150 ZGSM/4330 Dilution System

    4330 Dilution Control Unit
        Aspirator Air Delivery Pressure        	faQ	 psi
        Orifice Vacuum                        	— %. /	 psi
        Probe Temperature                     	/%%	  C

    4150 ZGSM
        Analyzer Sample Flow Rate                44^
        Analyzer Inlet Pressure                	47
        System Vacuum                         	
        Printer Paper Supply Adequate          Yes y   No	
        Absorbing Solution Tank Level
          (Capacity, 20 1)                    	£	 1
        Waste Tank Level (Capacity, 20 1)       	^	 1
        Calibration Solution Tank Level
          (Capacity, 2 1)                     	&•(?     1
B o C>     psi
    Compressor Air Line Leaks  Detected         Yes
    Electrical Power Supply Adequate
                                   n-4

-------
   HC1  CEMS  DAILY  INSPECTION  CHECK  LIST
                Characterization Test - Marion County Facility
Date
Initials
TECO Model 15 Analyzer/Model 200 Dilution System
    M200 Control Unit
       Aspirator Air Pressure
       Orifice Vacuum
       Zero Air Flow Rate
       Calibration Gas Flow Rate
              psi
    TECO  15
       Sample Flow Rate
       Zero Pot Setting
       Span Pot Setting
       /.*
              scfh
              scfh
               1pm
            4150 ZGSM/4330 Dilution System
    4330 Dilution Control Unit
        Aspirator Air Delivery Pressure
        Orifice Vacuum
        Probe Temperature

    4150 ZGSM
        Analyzer Sample Flow Rate
        Analyzer Inlet Pressure
        System Vacuum
        Printer Paper Supply Adequate
        Absorbing Solution  Tank Level
          {Capacity, 20 1)
        Waste Tank Level (Capacity, 20 1)
        Calibration Solution Tank Level
          (Capacity, 2 1)
Yes
        No
              psi
               Iph
               psi
               i
               i
    Sampling System Flow Rate
    System Blow Back Air Pressure
    Strip Chart Recorder Paper Supply OK
    Strip Chart Recorder Pens Inking
    Heater Temperatures Within Limits
Yes y/  No
Yes \/  No"
Yes v/  No~
    Compressor Delivery Air Pressure
    Compressor Air Line Leaks Detected
    Electrical Power Supply Adequate
Yes
         No  /
         No
               psi
                                  D-5

-------
     APPENDIX E.




Quality Assurance Data
           E-l

-------
E-2

-------
              EPA REFERENCE METHOD 6 C90
                   SAMPLING DATA
PLANT /LOG AT ION  /I ;1 A
RUN*
>LI
(1
-Jf
ME
1
i
£
Nrur»r.ATinw /2/t^^c^ 6^r[cT
/ ANA! YRT /£- /^M HATr /^/V^ 7^
rFMPFRATIIPF OF MfTrP Rflv « £~><;fr /3
r TEMPER ATI IPF *r wrrro onv r APTHD « O.^ 7<^O
TRIC PRESSURE, P
CLOCK TIME
/£.•*>
^:l^
/6. Jo
/6. j^
// •' 'f 6>


"OTAL VOLUME =
Vm
AVERAGE METER TE!
;TD GAS METER VOL
.?o. 2 ,. ^

DRY GAS METER
READING (JX?^
A
J/5?. ?33
2/Sf,^^
1/t < c^
3/






AVG.TEMP. =

DRY GAS METER
TEMPERATURE (*F)
it>
t^>
5&
^"o
ir°


& m
f \ *t — °D
. 73 1 rfwf

                           in. Hg)
                                    m
   COMMENTS:
                         E-3
                       EKTROPY

-------
              EPA REFERENCE METHOD 6 CSO
                  SAMPLING  DATA
RUN
1 /
>L
C
:w
ME
1
i
S
fdft | (If ATI/IN /xAf l^-'CJ'—e— C-S-} 1 fa—~l
2- ANAIVQT /^' £ °f f)ATr /2-/'/^~7
^ x- /?
rfMPFC-AT|IPp °P MTTFP PnX * ,V s-'f/ /--)
X'J *9 ")/" JL. 1
f TEMPERATURE OF" MrTFP Rnv r^rTnp v ^^ / '<^~>
TRIC PRESSURE, P
CLOCK TIME
/6>'^
17- ^
i 7 - os ^
n' 10
n /$-


•OTAL VOLUME =
AVERAGE METER TE
>TD GAS METER VOL
-^T' J 	 _. in Wg

DRY GAS METER
READING (ft3 )
J/7V. ^7
2,y7^ ^-7^0
J^2. (^cxj
Jm.
-n.
6"i
5-L.
$-2.


57 C^F)
>^P T = f 4^n + t „. rnvo") ) = , "^
UME , V_. ,,_,,. , 	 /.£?..,.!' ^^ rtwf

                       .S4 °R/in.Hg)
                                   m
    COMMENTS:
                         E-4
                       ENTROPY

-------
                  EPA REFERENCE METHOD 6 CSO
                         SAMPLING DATA
PLANT/LOCATION   /*? /
                  ANALYST
STACK TEMPERATURE
AMBIENT TEMPERATURE,
                ,P
_°F

:°F
METER BOX *

    BOX
                                                           JOB*
                                                                 7 '::xj
       CLOCK TIME
                     DRY GAS METER
                     READING
 ROTAMETER
SETTING Jfcffi5
            DRY GAS METER
           TEMPERATURE C°F)
       /?.'
    TOTAL VOLUME =
  AVG. TEMP.
   * m (avg)
                                                                  C°F)
     AVERAGE METER TEMP., Tm  = (460 + *m(avg) ) =
    STD GAS METER VOLUME,

         Vm(std)  % 
-------
E-6

-------
                     CUSTODY  SHEET FOR REAGENT BOX #
Date of Makeup
Individual Tare of Reagent:

Individual Tare of Reagent:
                          Initials
                                        Locked?
                                      mis.  of

                                      mis.  of
PLANT NAME
SAMPLING LOCATION    5/WP A
                                          /
Run
Number
Date
Used
Initials
Locked?
Date
Cleanup
Initials
Locked?
                  Date      Initials  Locked?
Received in Lab
Sampling Method:    jpy\
Remarks:
                          E-7

-------
         APPENDIX F.




HC1 Calibration Cylinder Gases
             F-l

-------
F-2

-------
The following calibration gases were used during this test program.


                         HC1 Calibration Gas Cylinders



     Cylinder No.                  Tag Value             Balance Gas
K-9933
K-9308
K-9841
K-9983
K-9860
47 ppm
94 ppm
221 ppm
428 ppm
881 ppm
Nitrogen
Nitrogen
Nitrogen
Nitrogen
Nitrogen
                          CO Calibration Gas Cylinders
     Cylinder No.                  Tag Value             Balance Gas
                                 (EPA Protocol 1)
        AAL-1517                    50.8 ppm               Nitrogen
        ML-5330                    438.8 ppm              Nitrogen
                                     F-3

-------
           APPENDIX G.




Bodenseewerk Operation Procedures
                G-l

-------
G-2

-------
                      BODENSEEWERK OPERATIONAL PROCEDURES


    The entire Bodenseewerk sampling and analytical system is heated to
maintain a sample gas temperature of 180°C  (356°F).  When the analyzer is
turned on, a warm-up period of 1 hour is necessary for all the temperatures
(probe, sample transport line, pump, and sample cell) to reach their set points
and stabilize.  A microprocessor monitors the system's parameters; at the
conclusion of the warm-up period, the system is ready for calibration.

    The Model 677 employs zero air and an internal sealed gas cell for zero and
upscale calibration checks.  The monitoring system is also capable of accepting
calibration gas; the gas injection point is located at the probe.
The probe also is backflushed with compressed air during the calibration
sequence.

    The operator can program the time intervals desired for the automatic
calibrations performed using zero air and the internal calibration cell.  The
duration of the calibration cycle is also selected by the operator.  First, the
entire sampling system is flushed with zero air to achieve a zero condition.
Any drift that may be detected then is corrected by the zero compensation
circuit.  Then, while the zero air is still flowing through the system, a gas
cell filled with a known quantity of HC1 gas is positioned so that the infrared
light passes through the gas cell.  After the response to the gas cell is
recorded, the analyzer returns to the flue  gas sampling mode.

    A dynamic calibration of the system is  possible by putting the analyzer in
the "standby" mode and replacing the zero air delivery line connected to the
probe with a calibration gas transport line.  A flowmeter within the analyzer
cabinet indicates the rate of sample flow exiting the optical cell.  The flow
rate of the calibration gas through the system can be observed using that flow
meter, and should be identical to the flow  rate when sampling flue gas.  The
cylinder regulator should be adjusted to deliver the proper flow.
                                G-3

-------
             APPENDIX H.




Thermo Electron Operational Procedures
                H-l

-------
H-2

-------
                     THERMO ELECTRON OPERATIONAL PROCEDURES
    Prior to calibration of the system,  it should be  ascertained  that  the
analyzer is operating properly.  A check of  the  internal  diagnostics will
indicate if the condition of any component requires corrective  action,  i.e., an
element needs to be checked, cleaned, or replaced if  found  to be  defective.

    When the power is turned on, the analyzer  automatically enters  the  start-up
mode; the source turns on, all electronics are turned on, the chopper motor and
sample pump turn on, the heater in the pressure  transducer  turns  on, and the
program initializes itself.   After the  source stabilizes,  the  instrument
automatically goes into the "Run - Sample" mode.  The analyzer  should be
allowed to warm-up for one hour, then the instrument  service checks should be
performed.

    When calibrating the instrument, three thumbwheel switches  are  used to set
the zero reading of the instrument.  There are also three thumbwheel switches
available to set the instrument to the concentration  of an  upscale  calibration
gas.  If the instrument is zeroed first, use of  the span  switches will  not
affect the zero setting.

    A three-position switch  located on the front panel of the M200  probe
control unit is used to manually select  flue gas sample,  zero air,  or
calibration gas flow through the sampling system.  The two  flow meters  visible
through the front  panel indicate zero air or span gas flow  when in  the
calibration mode.  A vacuum  gauge indicates  the  vacuum at the probe downstream
of the orifice.  The dilution air and zero air gauges and regulators are
located behind the front panel.

    The calibration  checks  can be performed  both on the analyzer  and the entire
monitoring system.  The  zero and upscale calibration  gases  can  be injected
directly  into  the  analyzer,  and the  zero and span controls  can  be adjusted to
establish the  instrument's  calibration.  Calibration  of the total monitoring
system is performed by the  injection of  zero and calibration gas  through a
transport line to  a point  within  the probe,  upstream  of the critical orifice.
In this way,  the  calibration gas  follows the same path  through  all  the
conditioning  steps (i.e.,  filtering and  dilution)  taken by  the  flue gas sample.
                                   H-3

-------
        APPENDIX I.




Compur Operation Procedures
           1-1

-------
1-2

-------
                        COMPUR OPERATIONAL PROCEDURES

    The instrument requires a short period of  time for start-up after  the
system is turned on.  The warm-up  serves  to heat  the probe and internal lines
through which the gas sample passes.  After temperatures reach set points,
time is taken for vacuum to build  up  in the system, since the 20 liter air
volume of the empty discharge tank must also be evacuated.  After
stabilization of the vacuum, the sample flow rate into the analyzer is
adjusted to 400 1/hr by needle valve  adjustment.

    The flow rate of the absorbing solution should be checked so that  the
targeted enrichment can be maintained throughout  the operational period.
Accurate adjustment of the absorbing  solution  feed rate and the gas sample
flow rate is important for the accuracy of the measurement.

    The calibration program is then initiated.  The transport line for the
gas sample is flushed with compressed air and  the electrodes are rinsed with
absorption solution.  After the zero  value is  recorded, the calibration
solution (typically J0% of the measuring  range) passes between the two
electrodes and the upper calibration  point is  determined.  If either of the
calibration limits are exceeded, the  computer  attempts the calibration a
second time.  If a desired result  is  not  obtained after a third attempt, the
instrument goes into a "standby" mode and the  problem needs to be
investigated.  The entire program  can be  restarted by pressing INIT.   After
completing a successful calibration,  the  analyzer goes into the flue gas
measuring mode, if the dilution system is ready.

    The probe may be installed up  to  a distance of 65 feet from the control
unit.  (At distances greater than  65  feet, the dilution ratios provided by
Compur at the various aspirator air pressures  measured at the control  unit
cannot be used, due  to the probable pressure drop through the longer length
of  transport tubing.  The dilution ratio  should be checked using non-reactive
calibration gases and an appropriate, independent analyzer.)  Dry controlled
air at a pressure greater  than 90  psi is  necessary for aspirator air and zero
air.  The aspirator  air pressure is adjusted between 40 and 80 psi with the
aid of a pressure regulator and gauge located  on  the front panel of the probe
control unit.  The pressure is chosen depending on the desired dilution
ratio.  The vacuum gauge must indicate a  pressure between -7 and -9-5  psi in
order for the orifice  to operate within the critical region.

    The entire measurement system, including both the sampling and analytical
equipment, can be calibrated by injecting calibration gas into the chamber
within the dilution  probe between  the inlet filter and the orifice.
Compressed air injected  in  the same manner serves not only to produce  a zero
condition, but also  to back flush  the probe tip  filter.

    A three-way valve  serves  to select  zero gas or calibration gas.  The
delivery pressure at the regulator connected  to  the calibration gas cylinder
should be adjusted  to  15 psi  in order to  provide  sufficient  flow to the
probe.

    Since the dilution probe  supplies approximately 33 liters/min diluted
sample and the analyzer uses only  7 liter/min, a  "tee" must  be mounted on the
sample line to exhaust the excess  sample  flow.
                                 1-3

-------
                APPENDIX J.




Wet Chemical Sampling/Analytical Procedures
                       J-l

-------
J-2

-------
    The wet chemical procedure used  for sampling hydrogen chloride  (HC1) in
the MWC emissions involved absorbing the HC1 into a 0.1N sodium hydroxide
(NaOH) solution.  The stack samples  collected at MERC were transported  to
Entropy's laboratory for  ion  chromatographic (1C) analysis.

    The HC1 samples were  collected with a  sampling train similar  to a Method
6 train.  The first three impingers  contained 15 ml each of 0.1N  NaOH.  The
fourth impinger  (a Mae West design)  was filled with calcium sulfate
(Drierite) to protect the meter  box  from moisture.  The sampling  rate was
2 liters per minute with  a sampling  time of 20 minutes.  Sample recovery
involved quantitatively combining the contents of all three impingers.
Deionized  (DI) water was  used to rinse the sampling train components.   The
total volume for each sample  and rinse was kept below 100 ml.

    For analysis, the samples were quantitively transferred to 100 ml
volumetric flasks and volumed to 100 ml with D.I. H_0.  The samples were
split and  then transported to the Entropy  laboratory.

    The ion chromatographic  (1C) analysis  was performed in Entropy's
laboratory using a Perkin-Elmer  high-performance liquid chromatograph
 (HPLC).  The analysis was performed  by non-suppressed ion chromatography on a
low-capacity resin-based  ion  exchange column  (Hamilton PRP-X100)  using  a 1.0
mM  phathlate mobile phase with the pH adjusted to 4.5 with a saturated  sodium
borate solution. Forty  (40)-ml  aliquots of each sample were used for the 1C
analysis and did not  require  any pretreatment.  The quantifiable  detection
limit for  the 1C analysis is  4 ppm HC1.

    All the sampling  components  contacting the stack gases were constructed
of  glass.  A glass-lined  probe and glass components were used to  convey the
stack gas  to the first impinger. A  three-way glass valve was mounted in-line
directly upstream of  the  first impinger.

    It was important  to maintain the gas sample temperature above the water
dew point  until  the sample reached the first impinger.  This was  accomplished
by  wrapping a heating element around the glass components of the  train
between the heated probe  and  the first impinger.
                                  J-3

-------
       APPENDIX K.

Spray Dryer Operating Data
- Full size plots of operating data
- Printouts of four-minute readings
           K-l

-------
K-2

-------
 i
to
      0)
      TJ
      UJ
      _J

      u.
      O
      or
      £L

      LJ
      a:
      u
      a.
      5
      u
      i-
              900
              800  -
              700  -
600 -
500 -
400 -
              300  -
              200
                                                            RUN 1
                For Figure 3-7.


                         KEY

               D  Economizer inlet gas temperature (°F)

                  Economizer outlet/air heater inlrt gas temperature

                  Air heater outlet gas temperature (°F)

               A  Spray dryer inlet gas temperature (°F)

               x  Spray dryer outlet/fabric filter inlet temperature (°F)

                  Fabric filter outlet gas temperature (°F)
                     I  I  I  I I  I  I  I I  I  I  I	I I  I  I I  I  I  I I  I  I  I I  I  I I  I  I  I I  I  I  I I  M  I l  I  I  I  I I

                        15:33    15:53    16:13   16:33   16:53    17:13   17:33   17:53    18:13    18:33
          ECI
+
                ECO
                                                            TIME
ARM
ABI
X
                                                                 ABO
                                                                                                              FFO

-------
                                                     RUN 2
Q)
T)


(/I
LJ
_J
c
o
a:
Q.

LJ
rr
D
y
a.
2
LU
H
        900
        800
        700  -
600 -
500 -
400 -
        300  -
        200
     For Figure 3-7.

               KEY

     D Economizer inlet gas temperature (°F)

     + Economizer outlet/air heater inlrt gas temperature (°F)

     0 Air heater outlet gas temperature (°F)

     A Spray dryer inlet gas temperature (°F)

     x Spray dryer outlet/fabric filter inlet temperature (°F)

     V Fabric filter outlet gas temperature (°F)
                11n1111111111111111111111111111111111111111111111111111111111111111 r TTTTTTTTT

                    13:05    13:37    14:09    14:41     15:13     15:53    16:25    16:57     17:29    18:01
                                                      TIME
    ECI
                ECO
AHO
ABI
X
ABO
FFO

-------
 D>
 0)
LJ
E
O
tt
0_
U
a
D
<
a:
ui
Q.
5
u
h-
        900
        800
700 -
600 -
500 -
400 -
        300  -
        200
                                                     RUN 3
                                                         For Figure 3-7.

                                                                   KEY
                                                        D Economizer inlet gas temperature (°F)
                                                        + Economizer outlet/air heater inlrt gas temperature (°F)
                                                        0 Air heater outlet gas temperature (°F)
                                                        A Spray dryer inlet gas temperature (°F)
                                                        x  Spray dryer outlet/fabric filter inlet temperature (°F)
                                                           Fabric filter outlet gas  temperature (°F>
               11 in i n in i mi i n ii ii mi in mi HI in
                  11:43      12:43      13:43
                                                      TIME
    ECI
                ECO
                                    AHO
ABI
                                                                      X
                                                                          17:43
ABO
                                                                                   imimiiiiimiiii
                                                                                     18:43
                                                                                                       FFO

-------
                400
                350 -
                                                             RUN  1
en
         a.
         u
         y
         or
         m
         JJ
ft:
bJ
>-
a:
o
         a.
        300  -
        250  -
                200 -
                 150 -
                 100
                 50 -
                   0
 For Figure 3-8.
          KEY
D  Spray dryer inlet gas temperature (°F)
+  Spray dryer outlet/fabric filter inlet gas temperature (°F)
0  Lime slurry feedrate (gpm x 10)
A  Dilution water feedrate (gpm x 10)
                        I  I I  I  II I  I  I I  I  I I  I  I  I I  I  I  I I  I  I I  I  I  I I  I  I  I I  I  I I I  I  I ||  I  I I  I  |  | |  |
                           15:33   15:53    16:13    16:33   16:53    17:13   17:33   17:53    18:13    18:33
                               ABI
                                          ABO
                   TIME
                     O
LIME
DIL.

-------
                                               RUN 2
L_
y
a:
m
Ot
U)
>
QL
0
Q.
if]
       400
       350 -
       300 -
            -^yAK/^^/y^^^
       250 -
       200 -
       150 -
       100  -
        50 -
 For Figure 3-8.

         KEY
D  Spray dryer inlet gas temperature (°F)
+  Spray dryer outlet/fabric filter inlet gas temperature (°F)
0  Lime slurry feedrate (gpm x 10)
A  Dilution water feedrate (gpm x 10)
         0    | | | || | | | | | ||||||||I I I I II I I I I I I I I I I I I  I I I I I I II I I I I I III I I I I I I I II IITII 11 I I I It I I I I I
                  13:05    13:37    14:09    14:41     15:13    15:53    16:25     16:57    17:29    18:01
       D    ABI
                             ABO
              TIME
            LIME
OIL.
X    FFP

-------
                                                             RUN  3
00
       UJ
       o
       a:
       m

       i.

       a
       z
a:
UJ
>-
a:
Q
       o:
       Q.
               400
               350 -
               300 -
        250  ^
        200 -
               150 -
        100  -
                50
                 0
 For Figure 3-8.

          KEY

D  Spray dryer inlet gas temperature (°F)

+  Spray dryer outlet/fabric filter inlet gas temperature (°F)

0  Lime slurry feedrate (gpm x 10)

A  Dilution water feedrate (gpm x 10)
                                   KXXXXMOOOOOCOOOOOOO^
                        MIIII mi 1111 ill ii ii mi in mi m nun mi mi nil m
                         11:43
                             12:43
       13:43
14:43
                                                              TIME
                          D
                        ABI
           ABO
                mi mi ii ii m mIITT

15:43      16:43      17:43      18:43




   LIME            A    OIL

-------
in
3
tn
(/)
u
a
n
H
Z
UJ
on
Id
10




 9 -




 8 -




 7 -




 6 -




 5 -~




 4 -




 3 -




 2 -




 1 -
                                                      RUN  1
          0
                                       For Figure 3-9.


                                                KEY

                                      D  Dust collector differential pressure (in H2O)

                                      +  Spray dryer differential pressure (in H2O)

                                      0  Fabric filter differential pressure (in H2O)
                I I  I  I  I I  I  I II

                   15:33   15:53




                   D    DUST
                           I  I  I I  I  I I  I

                          16:13   16:33
I  I I  I  I  II I  I  I I  I  I I  I  I  I I  I  |  | |  ||  |

 16:53    17:13   17:33   17:53    18:13
 I I  I  IT

18:33
                                             TIME

                                     ABSORBER
                          BAGHOUSE

-------
                                                     RUN  2
t/1
U
n:
D

m
u
a:
n
h-
z
UJ
tt;
LJ

u.
a
          4 -
          3 A
          1 -
          0
                                       For Figure 3-9.


                                                KEY

                                      D Dust collector differential pressure (in H2O)

                                      + Spray dryer differential pressure (in H2O)

                                      0 Fabric filter differential pressure (in H2O)
               I I II I I  I I II I I I  I I I I I

                   13:05    13:37
I I II II IH I II I II I I I I  I I I II I II I I I I I I  I I I I I I II I I I I I I I I I I I |  | | | | | |

14:09    14:41    15:13    15:53    16:25     16:57     17:29    18:01
                  D
                        DUST
                TIME

   +    ABSORBER
BAGHOUSE

-------
                                                      RUN 3
LJ
tn
LJ
Q:
n
H
Z
ut
a:
LJ
u.
u.

Q
                   For Figure 3-9.

                            KEY

                  D Dust collector differential pressure (in H,O)

                  + Spray dryer differential pressure (in H2O)

                  0 Fabric filter differential pressure (in H,O)
           0
Illllllllll

  11:43     12:43




   D    DUST
                                                        TIME

                                                ABSORBER
                     iimiimiiiiiiiul

16:43      17:43      18:43



 O     BAGHOUSE

-------
K-12

-------
                                       DATA  CHANNEL DEFINITIONS
                                       TREND LOG PARAMETER IDENTIFICATION
   UNIT A TREND LOG 37
   MAINE ENEREY RECOVERY COMPANY
   YORK COUNTY MASTE-TO-ENER6Y FACILITY
   BIDDEFORD,MAINE

CHANNEL NUMBER         HEADING DESCRIPTION
PARAMETER
UNITS
DPI371

PI371

PI372

DP1372

DPI373

PI373

TI3206

TI3228

AI3B04

AI3804B

AI3804A

FI3202

DST CLTR
GAS DF P
ABSR IN
6AS P
ABSR OUT
DIFF P
ABSR GAS
DIFF P
B6HSE
DIFF P
ID FAN
SUCT P
ABSR IN
GAS T
ABSR OUT
6AS T
OUTLET
GAS S02
COfiRTD
GAS S02
OUTLET
GAS NOK
LI HE SLRY
FEED
DUST COLLECTOR GAS DIFFERENTIAL PRESSURE

ABSORBER INLET GAS PRESSURE

ABSORBER OUTLET GAS PRESSURE

ABSORBER GAS DIFFERENTIAL PRESSURE

BA6HOUSE DIFFERENTIAL PRESSURE

ID FAN SUCTION PRESSURE

ABSORBER INLET GAS TEMPERATURE

ABSORBER OUTLET GAS TEMPERATURE

OUTLET GAS S02

CORRECTED S02

OUTLET GAS NOK

LIME SLURRY FEED

in. H20

in. H20

in. H20

in. H20

in. H20

in. H20

deg F

deq F

PPHV

I

PPNV

6PH

                                                        K-13

-------
                                         TREND L06 PARAMETER IDENTIFICATION
    UNIT  A  TREND LQ6 38
    MINE ENERBY RECOVERY FACILITY
    YORK  COUNTY NASTE-TO-ENER6Y FACILITY
    B1DDEFORD, MAINE
CHANNEL NUMBER
HEADING DESCRIPTION
                                                               PARAMETER
FI3200

PI200A

FI3200

TI3800

DPI3809

AI370A

AI370B

AI370C

IIL320

I1H320

! 11320

111320

DILUTION
HATER
ST IN STH
PRESS
DILUTION
HATER
BHSE OUT
6AS T
B6HSE
DIFF P
STACK
CO
STACK
OPACITY
STACK
C02
IN FAN
CURRENT
ID FAN
CURRENT
ID FAN
CURRENT
ID FAN
CURRENT
DILUTION HATER

STEAM TURBINE INLET STEAM PRESSURE

DILUTION HATER

BA6HOUSE OUTLET 6AS TEMPERATURE

BA6HOUSE DIFFERENTIAL PRESSURE

STACK CO

STACK OPACITY

STACK C02

ID FAN CURRENT

ID FAN CURRENT

ID FAN CURRENT

ID FAN CURRENT

                                                                                                UNITS
                                                                                                 6PM
                                                                                                PSIG
                                                                                                 6PH
                                                                                                deq F
                                                                                                in. H20
                                                                                                 PPHV
                                                                                               1 voluie
                                                                                                 AMPS
                                                                                                 AMPS
                                                                                                  AHPS
                                                                                                  AMPS
                                                           K-14

-------
RADIAN  CORPORATION
02-Jan-S
PROCESS  DATA  SUMMARY
MINE ENERGY  RECOVERY COMPANY
YORK COUNTY HASTE-TQ-ENER6Y  FACILITY
BIDBEFORD  MAINE
UNIT A
DATE



I09DEC37
109DEC87
09DEC37
09DEC37
09DEC87
09DECS7
G9DEC87
C9DEC87
09DEC87
Q9DEC87
09DEC87
09DEC37
09DEC37
09DECB7
09DEC37
09DEC37
09DECS7
090EC37
09DEC87
09DEC37
C9DECS7
09DECS7
09DEC37
S092ECS7
I09DEC87
SC9DEC37
«09DEC87
W9DECS7
I09DECB7
J09DEC87
09DEC87
G9DEC37
09DEC87
09DEC37
09DEC87
09DEC87
09DECS7
09DEC37
09DEC37
09DEC87
Sflwra?
TIME



15:22
15:2i
15:30
15:34
15:38
15:42
15:46
15:5C
15:54
15:53
16:02
16:06
16:10
16:14
16:18
16:22
16:26
16:30
16:34
16:33
16:42
16:46
16:50
16:54
16:58
17:02
17:06
17:10
17:14
17:18
17:22
17:26
17:30
17:34
17:38
17:42
17:46
17:50
17:54
17:58
' Q . M
DST CLTR
GAS DF P
IN H20
2PI371
3.01
3.22
3.45
3.30
3.04
2.97
3.09
2.93
2.33
3.05
3.17
2.78
2.87
3.02
2.37
2.85
2.91
2.57
2.7?
3.11
3.05
2.96
3.19
3.30
3.23
3.11
2.97
3.11
2.94
2.94
2.88
2.95
2.33
2.94
3.05
2.33
2.88
3.09
3.01
2.91
7.95
ABSR IN i
GAS P
IN H20
PI371
-7.58
-7.38
-7.86
-8.41
-6.97
-7.00
-7.59
-6.97
-6.72
-7.20
-7.64
-6.34
-7.13
-7.17
-6.73
-6.89
-7.05
-5.97
-6.63
-7.30
-7.34
-7.03
-7.73
-8.13
-7.58
-7.59
-7.27
-7.53
-6.95
-7.08
-7.02
-7.28
-6.72
-7.33
-7.56
-6.66
-6.97
-7.91
-7.23
-6.31
-6.81
ABSR OUT
GAS P
IN H20
PI372
-11.31
.-11.72
-12.84
-12.91
-11.00
-11.28
-11.38
-11.00
-10.84
-11.63
-11.81
-10.81
-11.22
-11.41
-10.66
-10.83
-10.97
-9.66
-10.56
-11.53
-11.53
-11.03
-12.28
-12.72
-12.28
-11.38
-11.28
-11.34
-10.91
-11.34
-11.16
-11.53
-10.73
-11.41
-11.88
-10.66
-11.09
-12.31
-11.50
-10.81
-10.97
ABSR 8AS
DIFF P
IN H2C
DPI372
4.14
4.43
4.92
4.67
4.30
4.17
4.38
4.14
4.05
4.27
4.50
3.90
4.03
4.28
4.03
3.95
4.06
3.61
3.88
4.30
4.20
4.09
4.42
4.55
4.66
4.52
4.11
4.28
4.14
4.17
4.06
4.16
4.06
4.09
4.31
3.97
4.03
4.36
4.23
4.05
4.14
B8HSE
DIFF P
IN H20
DPI373
7.81
6.83
8.13
3.09
6.69
7.42
7.69
6.44
7.38
7.69
6.77
7.05
7.16
6.50
7.38
7.27
6.22
6.73
7.34
6.59
7.25
7.33
6.98
7.98
8.06
6.83
7.56
7.83
6.47
7.27
7.23
6.53
7.30
7.41
6.64
6.95
7.44
6.86
6.92
6.63
6. 50
ID FAN
SUCT P
IN H2Q
PI373
-19.19
-18.94
-20.94
-20.38
-18.56
-13.63
-19.63
-17.31
-18.25
-19.06
-19.25
-17.38
-18.13
-13.25
-18.38
-18.13
-17.50
-16.63
-17.88
-18.38
-13.81
-18.63
-19.00
-20.19
-20.38
-19.13
-18.81
-19.50
-17.94
-13.44
-18.31
-17.94
-18.25
-18.50
-18.56
-17.69
-13.38
-18.75
-18.50
-17.31
-17.83
ABSR IN
GAS T
DEB F
T 1 3206
377
375
375
331
331
376
374
374
374
373
375
375
373
372
373
374
374
374
372
371
373
374
373
373
375
377
376
374
373
373
374
373
372
372
374
374
372
373
376
376
373
ABSR OUT
GAS T
DEB F
TI3228
292
285
267
231
290
273
269
283
287
270
277
237
272
268
285
284
263
271
286
282
268
276
287
276
269
281
281
271
275
282
275
272
281
231
272
275
282
276
274
231
275
OUTLET
GAS. S02
PPMV
AI3304
-0.90
-0.90
-0.90
-0.90
-0.90
-0.90
-0.90
-0.02
3.58
-0.90
-0.90
-0.24
-0.53
-0.90
-0.90
-0.90
-0.90
-0.90
-0.51
-0.58
-0.90
0.51
-0.90
-0.90
-0.02
-0.15
-0.90
4.94
-0 . 90
-0.90
0.72
0.33
-0.90
-0.90
-0.90
-0.90
-0.10
-0.59
-0.90
-0.90
-fl Ofl
CQRRTD
GAS S02
I
AI3804B
-0.11
-0.11
-0.11
-O.ii
-0.11
-0.11
-0.11
-0.00
0.43
-0.11
-0.11
-0.03
-0.06
-0.11
-0.11
-0.11
-0.11
-0.11
-0.06
-0.07
-0.11
0.06
-0.11
-0.11
-0.00
-0.02
-0.11
0.60
-0.11
-0.11
0.08
0.04
-0.11
-0.11
-0.11
-0.11
-0.01
-0.07
-0.11
-0.11
-A ', 1
OUTLET i
GAS NOX
PPMV
AI3804A
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-ft fll
LIME SLRY
FEED
6PM
FI3202
2.67
2.62
2.63
2.60
2.53
2.52
2.48
2.44
2.42
2.42
2.38
2.34
2.36
2.31
2.32
2.34
2.30
2.27
2.25
2,27
2.24
2.23
2.24
2.19
2.16
2.19
2.16
2.17
2.13
3.12
3.09
3.05
3.06
3.02
3.05
2.93
4.13
4.00
3.92
3.34
7 7t
                                                        K-15

-------
RADIAN CORPORATION
                                                                                                                   02-Jsn-B3
PROCESS DATA SUMMARY
MAINE ENERBY RECDVERY COMPANY
YORK COUNTY KASTE-TC-ENERGY FACILITY
BIDDEFQRD MAINE

UNIT A
DATE

Q9DEC87
09DEC37
09DEC87
09DEC87
09DEC37
09DECS7
Q9DEC37
I09DEC87
I09DEC87
I09DEC87
t09DEC87
i
TIME DST CLTR ABSR IN ABSR OUT ABSR GAS
6AS DF P GAS P GAS P DIFF P

18:06
18:10
18:14
18:18
18:22
18:26
18:30
18:34
18:38
18:42
13:46
AVERAGE
IN H20 IN H20
2.87
3.14
3.34
3.47
3.49
3.27
3.09
3.06
0.29
0.11
0.10
3.02
-6.99
-7.98
-7.63
-8.16


-7.14
-7.30
-2.09
-1.26
-1.15
-7.20
IN H20
-11.06
-12.47
-12.22
-13.09
-13.47
-12.34
-11.59
-11.63
-2.77
-1.78
-1.65
-11.49
IN H20
3.99
4.34
4.63
4.81
4.83
4.80
4.25
4.22
0.78
0.53
0.50
4.24
BSHSE
DIFF P
IN H2Q
7.19
7.63
6.97
8,28
3.50
7.02
7.36
7.45
2.18
1.72
1.54
7.16
ID FAN ABSR IN ABSR OUT
SUCT P GAS T GAS T
IN H2Q
-18.13
-19.38
-19.44
-21.06
-21.56
-20.06
-19.00
-18.94
-5.53
-3.73
-3.43
-18.71
DES F DE6 F
371
371
370
370
374
378
378
376
372
363
355
374
274
281
280
272
280
282
271
273
279
264
273
277
OUTLET
GAS SQ2
PPMV
1.32
0.16
-0.90
-0.90
-0.90
0.69
0.22
-0.74
-0.90
-0.90
-0.90
-0.43
CORRTD OUTLET LI
GAS S02 SAS NOX
I
0.16
0.02
-0.11
-0.11
-0.11
0.08
0.03
-0.09
-0.11
-0.11
-0.il
-0.05
PPMV
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
ME SLRY
FEED
GPM
3.73
3.71
3.67
3.62"
3.60
3.59
3.62
3.56
0.00
0.00
0.00
2.91
          t = NON-TEST PERIOD, NOT INCLUDED IN AVERAGE
                                                            K-16

                                                                2

-------
SAD!AN CORPORATION
02-Jan-SS
PROCESS DATA SUHHARY
NAINE ENERGY RECOVERY COHPANY
YORK COUNTY HASTE-TO-ENERGY FACILITY
BIDDEFQRD HA5NE
ONIT A
DATE



IQ9DEC37
I09DEC37
I09DEC87
090EC87
09DEC87
09DEC37
09DEC87
Q9DEC87
09DEC37
09DEC37
09DECS7
09DEC87
090ECS7
09DEC37
09DEC87
09DEC87
09DEC87
09DEC37
09DEC87
09DEC37
09DEC37
09DEC87
09DEC87
09DEC87
809DEC87
I09DEC37
I09&EC87
I09DEC87
109DEC87
ta?DEC37
I09DEC37
09DEC87
09DEC8?
09BEC37
09DEC87
S90EC87
09DEC87
09DEC87
093EC87
09DEC87
09DEC87
TIHE



15:18
15:22
15:26
15:30
15:34
15:38
15:42
15:46
15:50
15:54
15:58
16:02
16:06
16:10
16:14
16:18
16:22
16:26
16:30
16:34
16:38
16:42
16:46
16:50
16:54
16:58
17:02
17:06
17:10
17:14
17:13
17:22
17:26
17:30
17:34
17:38
17:42
17:46
17:50
17:54
17:58
DILUTION ST IN STH
MATER
SPH
F I 3200
4.30
5.22
10.84
3.34
5.00
8.63
9.69
5.08
4.34
9.34
8.28
4.95
8.06
9,34
5.41
5.20
9.47
8.50
4.63
5.52
5,72
8.22
4.70
7.67
10.13
7.20
5.81
3.94
8.28
5.61
7.03
8,19
5.69
5.27
7.98
7.58
5.33
6.33
7.52
5.70
6.52
PRESS
PSI6
PI200A
-2
-6
-5
-6
_7
-2
-7
-3
-3
-g
-3
-3
-7
-3
-8
-8
-8
-g























DILUTION
MATER
SPH
F 1 3200
4.30
5.22
10.84
8.34
5.00
8.63
9.69
5.08
4.84
9.34
3.28
4.95
8.06
9.34
5.41
5.20
9.47
3.50
4.63
5.52
9.72
8.22
4.70
7.67
10.13
7.20
5.81
8.94
8.28
5.61
7.03
3.19
5.69
5.27
7.98
7.53
5.33
6.33
7.52
5.70
6.52
BHSE OUT
SAS T
DE6 F
TI3800
268
275
277
269
269
274
271
266
270
274
268
267
271
268
264
268
271
266
263
263
270
265
265
270
269
265
267
270
267
265
267
267
265
266
268
266
265
267
267
265
267
BSHSE
DIFF P
IN H20
DP I 3309
7.81
7.33
6.83
3.16
3.13
6.67
7.44
7.70
6.41
7.41
7.72
6.75
7.05
7.14
6.47
7.38
7.27
6.19
6.73
7.34
6.59
7.27
7.34
6.92
8.00
8.09
6.78
7.56
7.84
6.42
7.27
7.22
ft. 45
7.30
7.41
6.58
6.97
7.44
6.78
6.97
6.55
STACK
CO
PPHV
AI370A
59.25
55.50
58.00
79.50
68.25
61.38
63.88
63.00
54.33
52.50
57.00
60.25
54,50
55.33
56.00
49.13
56.38
56.38
54.38
46.50
54.38
56.50
51.00
55.63
56.25
56.33
56.25
58.25
63.33
56.33
57.38
63,33
57.38
52.50
60.38
63.50
50.50
54.33
66.25
66.25
5i.25
STACK
OPACITY
I
AI370B
49.88
48.63
49.88
49.88
49.88
49.83
49.88
49.33
49.83
49.38
49.88
49.33
49.88
49.88
49.88
49.88
40.38
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
STACK
ID FAN
CQ2 CURRENT
I
AI370C
3.18
2.89
2.98
3.98
3.45
2.49
2.69
3.18
2.66
2.59
2.59
2.98
2.49
2.49
2.80
2.69
2.89
2.98
2.68
2.23
2.38
2.89
2.38
2.59
2.69
2.78
2.69
2.73
2.88
2.68
2.69
3.09
2.93
2.43
2.98
3.28
2.48
2.48
3.48
3.43
2.6?
AHPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AHPS
IIH.320
98.75
97.25
99.00
102.50
100.50
97.50
98.00
98.50
97.00
97.25
98.50
98.50
96.25
97.50
98.00
97.00
96.75
97.25
94.50
95.75
98.25
93.50
97.25
98.50
100.25
100.25
99.00
97.50
98.50
97.25
97.75
97.50
97.50
96.75
97.50
98.50
96.25
97.00
93.50
98.25
97.25
ID FAN
CURRENT
AHPS
IIL32Q
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
V.01
0.01
0.01
0.01
ID FAN
CURRENT
AHPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0. Ji
v.vi
v . 0 1
0.01
                                                        K-17

-------
RADIAN CORPORATION
                                                                                                                    02-Jan-gS
PROCESS DATA SUMHARY
HA1NE ENERGY RECOVERY COHPANY
YORK COUNTY HASTE-TO-ENERGY FACILITY
BIDDEFQRB »AINE
UNIT A
DATE
TIHE DILUTION ST IN ST« DILUTION BHSE OUT BBHSE
WATER PRESS HATER 8AS T DIFF P
GP« PSIS GP«
09DEC87
09DEC87
09DEC37
09DEC87
09DEC87
09DECS7
09DEC87
Q9DEC87
1Q9BEC87
109BEC87
IC9DEC37
I09BEC87
13:02
18:06
13:10
18:14
18:18
18:22
18:26
18:30
18:34
18:33
18:42
18:46
7.00
5.14
5.34
7.80
6.56
5.81
3.53
8.13
4.75
5.27
0.41
0.30
7.00
5.14
5.34
7.80
6.56
5.81
8.53
8.13
4.75
5.27
0.41
0.30
DEG F IN H20
266
265
267
268
265
267
269
266
264
267
264
260
6.47
7.1?
7.59
6.95
8.31
8.53
7.00
7.36
7.45
1.99
1.54
1.35
STACK STACK
CO OPACITY
PPHV
64.25
63.38
63.33
65.25
72.50
74.25
73.25
68.25
60.33
63.25
58.25
50.50
I
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
49.83
49.88
49.83
-0.04
1.40
48.13
STACK ID FAN
C02 CURRENT
X
2.88
2.59
2.48
2.38
2.68
3.28
3.48
2.98
2.79
2.68
1.98
1.59
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
Q.01
0.01
0.01
21.69
20.56
20.56
ID FAN ID FAN
CURRENT CURRENT
AHPS
97.50
97.00
98.75
100.25
102.75
102.75
100.25
98.75
93.00
0.09
0.08
0.08
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
21.69
20.56
20.56
ID FAN
CURRENT
AHPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
21.69
20.56
20.56
          AVERAGE
6.95
-7
6.95
                                                  268
                                   7.16    60.13    20.19
                       PERIOD, VALUE NOT  INCLUDED  IN AVERAGE
                                                   2.34
                                                                                              0.01    98.12
                                                                                         0.01
                                                                                0.01
                                                            K-18

                                                               2

-------
RADIAN CORPORATION
                                                                                                                   02-Jan-8S
PROCESS DATA  SUHHARY
HAINE ENERBV  RECOVERY  CGHPANY
YORK COUNTY HASTE-TO-ENERSY  FACILITY
B1DDEFORD MINE
UNIT A
DATE



I10DECS7
I10DEC87
10DEC8?
10DEC87
10DEC87
10DECS7
10SECB7
10DEC37
10DEC87
10DEC97
1CDEC87
100ECS7
10DEC87
10DEC87
10DECB7
1QDEC87
10DEC87
10DEC87
10DEC87
1QDEC37
10DEC87
10DEC37
10DECS7
10DEC37
10DEC87
UODEC37
tlODECS?
I10DEC37
10DEC37
10DEC87
10DEC87
10DEC37
10DEC37
10DEC87
1QDEC87
10DEC37
10DEC37
10DEC37
10DECS7
10DEC87
1QDECS7
TIflE



12:38
12:42
12:46
12:50
12:54
12:53
13:02
13:06
13:10
13:14
13:18
13:22
13:26
13:30
13:34
13:38
13:42
13:46
13:50
13:54
13:58
14:02
14:06
14:10
14:14
14:13
14:22
14:26
14:30
14:34
14:33
14:42
14:46
14:50
14:54
14:58
15:02
15:06
15:10
15:14
15:18
DST CLTR
8AS DF P
IN H20
DPI371
3.18
3.07
3.23
3.09
3.15
3.24
3.12
3.05
3.21
3.09
3.08
3.06
3.22
2.97
3.23
3.11
3.15
3.22
3.30
3.03
3.27
3.03
2.88
3.19
3.16
3.16
3.24
2.86
3.18
3.15
3.23
2.99
2.94
3.19
3.27
2.32
2.66
3.04
3.10
3.09
3.16
ABSR IN ABSR OUT
GAS P
IN H20
PI371
-1.76
-5.92
-5.02
-6.36
-7.31
-2.29
-6.94
-7.84
-2.60
-7.61
-7.72
-7.48
-7.45
-7.70
-7.31
-8.19
-7.55
-7.67





-8.03
-8.13




-8.19








-8.16
-8.16

6AS P
IN K20
PI372
-13.94
-12.73
-13.00
-13.56
-12.19
-12.97
-13.88
-12.84
-12.83
-12.91
-11.88
-11.97
-13.41
-13.50
-12.72
-12.56
-12.34
-12.91
-12.72
-13.06
-13.56
-13.38
-12.66
-12.50
-12.41
-12.25
-13.59
-13.28
-12.66
-12.56
-12.75
-14.03
-13.81
-12.83
-14.31
-14.59
-14.03
-13.56
-12.38
-12.50
-13.19
ABSR GAS
DIFF P
IN H20
DP I 372
4.67
4.97
4.66
4.53
4.72
4.52
4.75
5.13
4.43
4.30
4.31
4.25
4.48
5.27
4.53
4.33
4.45
4.45
4.59
5.34
5.00
5.00
5.25
4.33
4.41
4.94
4.94
5.27
4.41
4.39
4.53
5.30
5.44
4.45
5.27
6.23
5.97
4.38
4.33
4.31
4.44
B6HSE
DIFF P
IN H20
DP 1 373
7.77
7.39
8.34
7.84
7.08
7.98
8.00
7.41
8.06
7.61
6.67
7.86
8.25
7.19
7.92
8.03
7.08
3.00
8.06
7.38
8.66
3.53
7.19
7.81
8.19
7.47
8.44
8.31
6.95
8.09
8.25
7,50
8.31
8.19
7.83
3.84
8.66
7.39
7.73
7.97
7.22
ID FAN
SUCT P
IN H20
PI373
-20.75
-20.69
-21.38
-20.56
-20.00
-20.69
-21.19
-21.00
-20.75
-20.00
-19.19
-19.75
-20.81
-20.88
-20.69
-20.38
-19.75
-20.50
-21.00
-21.19
-22.06
-21.94
-20.88
-20.31
-20.44
-20.75
-21.81
-21.94
-19.63
-20.44
-21.00
-21.19
-22.13
-20.88
-21.50
-23.44
-23.00
-20.69
-20.06
-20.19
-19.81
ABSR IN
GAS T
DES F
T I 3206
358
359
361
361
359
358
360
362
364
365
364
361
360
362
365
366
364
362
362
362
363
366
367
366
365
361
359
364
366
365
364
364
367
369
367
365
367
370
368
366
364
ABSR OUT
GAS T
DEG F
TI3228
278
287
277
268
280
287
273
271
286
283
267
274
290
281
266
279
283
275
272
Til
282
284
275
272
278
280
280
280
276
276
280
281
278
276
277
281
280
276
274
278
231
OUTLET
GAS S02
PPHV
A13804
0.41
0.13
-0.90
-0.59
-0.51
3.89
-0.90
4.86
-0.38
1.71
-0.90
1.33
-0.50
1.84
-0.87
2.66
-0.77
1.11
1.56
2.28
-0.75
2.53
-0.74
2.72
-0.43
1.81
0.48
0.00
-0.74
0.74
0.28
1.02
2.91
0.30
2.68
-0.82
4.67
1.09
1.19
0.62
-0.90
CORRTD
GAS S02
I
A 1 38048
0.05
0.02
-0.11
-0.07
-0.06
0.46
-0.11
0.59
-0.05
0.20
-0.11
0.17
-0.06
0.22
-0.10
0.32
-0.09
0.13
0.19
0.28
-0.09
0.30
-0.09
0.33
-0.05
0.21
0.06
0.00
-0.09
0.09
0.03
0.12
0.35
0.03
0.32
-0.10
0.57
0.13
0.14
0.07
-0.11
OUTLET LI HE SLRY
GAS NQK
PPHV
AI3804A
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
FEED
BPH
F I 3202
3.11
3.03
3.09
3.02
2.99
2.99
2.98
2.95
2.98
3.02
3.06
3.06
3.07
3.09
5.53
6.52
6.31
7.31
7.58
7.55
7.47
7.44
7.42
7.36
7.33
7.33
7.31
7.23
7.23
7.23
7.25
7.25
7.27
7.25
7.28
7.25
7.27
7.27
7.30
7.36
7.36
                                                            K-19

-------
RADIAN CORPORATION
                                                                                                                     02-Jin-8
PROCESS DATA SUMMARY
MAINE ENERGY RECOVERY COMPANY
YORK COUNTY NASTE-TO-ENERSY  FACILITY
BIDDEFORD MAINE
UNIT A
DATE


10DEC87
10DECB7
10DEC37
10DECS7
10DEC87
10DEC87
1QDEC37
10DEC87
I10DEC87
I10DEC37
UODEC87
I1QDEC87
I10DEC87
»10DEC87
UODEC37
I10DEC87
I10DEC87
1QDEC87
10DEC87
10DEC87
10DEC37
10DEC87
10DEC87
10DEC87
10DEC37
10DEC87
10DEC87
1QDECS7
10DEC37
10DEC87
10DEC87
10DEC87
10DEC87
10DEC37
1QDEC87
10DEC87
10DECB7
10DEC87
IODEC87
10DEC37


TIME DST
GAS
IN
15:22
15:26
15:30
15:34
15:38
15:42
15:46
15:50
15:54
15:58
14:02
14:06
16:10
16:14
16:13
16:22
16:26
16:30
16:34
16:33
16:42
16:46
16:50
16:54
16:58
17:02
17:06
17:10
17:14
17:18
17:22
17:26
17:30
17:34
17:38
17:42
17:46
17:50
17:54
17:58
AVERAGE
« - NON-TEST
CLTR ABSR IN ABSR OUT ABSR 6AS
DF P GAS P GAS P
H20 IN
3.16
3.19
3.03
3.09
3.05
3.13
3.16
3.21
3.19
3.05
3.07
3.08
3.16
3.10
3.13
3.17
3.08
3.26
3.14
3.37
2.84
2.82
3.08
3.21
2.96
3,10
3.14
3.12
3.22
3.13
2.77
2.82
2.30
2.78
2.69
2.94
3.20
3.28
2.91
3.04
3.07
PERIOD,
H20 IN H20
-12.66
-8.19 -12.69
-13.75
-12.81
-8.0? -12.44
-12.97
-12.81
-13.09
-14.09
-12.16
-7.95 -12.25
-13.38
-12.56
-7.95 -12.25
-13.03
-12.47
-8.00 -12.28
-13.03
-12.72
-13.31
-14.69
-12.34
-7.94 -12.34
-13.50
-12.69
-7.84 -12.38
-13.06
-12.34
-8.31 -12.88
-14.56
-14.31
-14.78

-14.50
-14.47
-13.72
-12.31
-13.41
-13.66
-11.91
-7.25 -13.11
NOT INCLUDED IN
DIFF P
IN H20
4.44
4.48
5.05
4.59
4.23
4.53
4.81
4.84
4.84
4.28
4.23
4.80
4.45
4.27
4.45
4.53
4.23
4.53
4.75
4.77
5.55
4.78
4.31
4.72
4.88
4.33
4.53
4.39
4.55
5.33
6.48
6.36
6.77
6.14
5.94
4.83
4.55
4.70
4.94
4.44
4.84
AVERAGE
B6HSE
DIFF P
IN H20
7.59
8.19
7.84
7.67
7.69
7.48
7.83
8.50
7.97
7.13
7.89
7.42
7.83
7.77
7.17
7.86
7.91
7.41
7.75
8.59
8.13
7.56
7.69
7.64
7.61
8.00
7.44
7.44
8.28
8.19
8.59
9.06
8.63
8.31
8.69
7.83
7.30
8.47
8.22
7.05
7.39

ID FAN
SUCT P
IN H20
-20.19
-20.75
-21.31
-20.69
-19.69
-20.13
-20.94
-21.75
-21.13
-19.63
-19.88
-20.63
-20.44
-20,00
-19.81
-20.69
-20.13
-20.19
-20.75
-21.75
-22.13
-20.75
-19.88
-20.63
-20.75
-20.25
-20.19
-19.88
-21.00
-21.88
-23.50
-23.88
-23.81
-22.88
-23.06
-21.00
-19.94
-21.50
-21.56
-19.50
-20.93
K-20
ABSR IN
GAS T
DEG F
364
364
364
366
364
362
362
364
367
367
364
362
363
363
361
362
363
361
362
362
365
367
364
361
362
362
362
361
360
359
358
362
366
369
373
372
368
365
366
366
364

ABSR OUT
GAS T
DEG F
279
276
278
280
276
275
278
281
283
277
271
276
281
282
279
277
277
276
278
279
281
281
274
273
277
281
280
278
277
277
279
282
284
281
264
274
281
283
282
274
278

OUTLET
GAS S02
PPMV
1.39
-0.90
1,98
-0,90
-0.52
-0.80
0.84
-0.90
1.59
0.00
2.63
-0.30
-0.63
-0.01
2.22
-0.34
-0.65
1.57
3.97
-0.29
-0.90
0.65
3.52
0.98
-0.09
5.55
1.28
-0.26
1.81
7.00
1.34
-0.51
-0.18
7.97
-0.32
0.21
0.69
7.03
-0.82
-0.66
1.06

CORRTD
OUTLET LIME SLRY
GAS SQ2 GAS NOX
I
0.17
-0.11
0.24
-0.11
-0.06
-0.10
0.10
-0.11
0.19
-0.00
0.32
-0.04
-0.07
-0.00
0.27
-0.04
-0.08
0.19
0.48
-0.03
-0.11
0.08
0.43
0.12
-0.01
0.66
0.16
-0,03
0.22
0.84
0.17
-0.06
-0.02
0.96
-0.04
0.03
0.08
0.85
-0,10
-O.OS
0.13

PPMV
-0.01
-0.01
-0,01
-0,01
-0.01
-0.01
-0.01
-0.01
-0.01
-O.Oi
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01

FEED
SPN
7.41
7.48
7.58
7.66
7.69
7.75
7,78
7.83
7.34
7.92
7.94
7.91
7.98
8.00
8.03
8.00
8.06
8.06
8.09
8.25
8.25
8.31
8.34
8.38
8.23
8.28
8.19
8.16
8.09
8.06
8.03
8.09
0.00
8.13
3.16
7.98
7.98
7.97
7.92
7.91
6.70


-------
RADIAN  CORPORATION
02-Jan-B8
PROCESS DATA SUHHARY
NAINE ENERSV RECOVERY COHPANY
YORK COUNTY KASTE-TQ-ENER6Y FACILITY
BIDDEFORD MAINE
UNIT A
DATE



UODECB7
I10DEC87
10DECB7
10DEC87
10DEC87
10DEC87
10DEC87
10DEC37
10DEC87
10DEC87
10DEC87
10DECS7
10DEC87
10DEC87
10DECB7
10DEC87
10DEC87
10DEC87
10DEC87
10DEC87
10DEC8?
10DEC87
10DECS7
10DEC37
10DEC87
I10DEC3?
I10DEC87
I10DEC87
10DECS7
10DEC87
10DECB7
10DECS7
10DEC87
10DEC87
10DEC87
10DEC37
10DEC87
10DEC87
10DECB7
10DEC37
10DEC87
TIDE



12:38
12:42
12:46
12:50
12:54
12:58
13:02
13:06
13:10
13:14
13:18
13:22
13:26
13:30
13:34
13:38
13:42
13:46
13:50
13:54
13:58
14:02
14:06
14:10
14:14
14:18
14:22
14:26
14:30
14:34
14:38
14:42
14:46
14:50
14:54
14:58
15:02
15:06
15:10
15:14
15:18
DILUTION
MATER
6PH
FI3200
3.45
6.00
8.56
5.22
2.81
6.88
8.25
4.41
4.72
8.75
7.22
2.45
4.94
9.50
3.68
2.07
4.67
4.94
2.13
1.63
1.90
4.55
5.09
2.53
1.87
1.94
2.48
4.17
3.98
2.20
2.17
3.75
4.55
3.98
2.52
3.23
4.81
4.86
2.70
1.96
2.36
ST IN STH
PRESS
PSI6
PI200A
-2
-6
-5
-6
-7
-2
-7
-a
-3
-8
-8
-8
-7
-a
-8
-8
-8
-8























DILUTION
HATER
6PH
F I 3200
3.45
6.00
3.56
5.22
2.31
6.88
8.25
4.41
4.72
8.75
7.22
2.45
4.94
9.50
3.68
2.07
4.67
4.94
2.13
1.68
1.90
4.55
5.09
2.53
1.87
1.94
2.48
4.17
3.98
2.20
2.17
3.75
4.55
3.98
2.52
3.23
4.81
4.36
2.70
1.96
2.36
BHSE OUT
GAS T
DEB F
TI3800
267
271
270
264
266
271
268
264
269
271
265
264
270
271
264
266
269
263
265
266
269
271
269
266
267
269
269
270
268
267
268
269
269
268
267
269
270
269
267
267
269
BGHSE
DIFF P
IN H20
DPI3809
7.75
7.42
3.38
7.33
7.09
3.00
8.00
7.42
8.06
7.61
6.67
7.89
8.25
7.19
7.94
8.06
7.08
8.03
8.09
7.36
8.72
8.59
7.16
7.83
B.22
7.45
8.47
8.31
6.91
8.13
8.31
7.45
8.33
8.22
7.78
8.94
8.72
7.36
7.77
8.00
7.20
STACK
CO
PPHV
AI370A
40.50
42.50
44.38
54.38
48.25
65.50
49.25
42.50
42.38
43.38
39.50
35.50
35.33
47.25
49.25
44.38
39.50
42.50
43.38
46.50
46.38
42.50
46.33
46.50
39.50
64.25
56.25
50.50
48.25
44.38
46.25
40.50
47.25
48.25
63.33
45.38
49.63
43.13
46.00
42.38
38.33
STACK
OPACITY
I
AI370B
14.31
14.91
15.00
14.81
14.72
15.00
13.94
12.91
13.00
17.31
20.25
30.56
35.88
20.19
24.75
21.25
20.19
22.19
32.38
30.19
16.00
17.38
24.81
20.44
26.81
23.13
27.00
28.69
33.13
32.13
30.88
29.31
35.63
36.75
32.63
39.25
43.38
39.75
49.88
49.83
49.88
STACK
ID FAN
C02 CURRENT
I
AI370C
2.89
3.08
3.29
2.38
2.28
2.48
3.08
3.09
3.08
3.08
2.78
2.49
2.78
3.29
3.38
2.89
2.49
2.59
2.69
2.68
3.08
2.88
3.08
3.03
2.59
2.38
3.09
3.29
2.93
2.89
2.78
2.83
3.29
3.09
2.38
2.69
3.18
2.78
2.98
2.78
2.69
AHPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AHPS
IIH320
101.25
101.50
102.25
100.75
100.25
101.00
102.00
102.00
100.25
99.25
99.25
98.75
100.75
102.75
101.00
99.25
99.75
100.50
101.75
103.00
103.50
103.25
102.50
100.00
100.25
102.25
103.50
103.50
99.75
99.75
101.25
103.25
104.25
100.75
104.25
107.75
106.00
101.50
99.50
99.50
99.75
ID FAN
CURRENT
AHPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AHPS
! 11320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
O.C1
O.Qi
0.01
                                                            K-21

-------
RADIAN CORPORATION
                                                                                                                   02-Jan-88
PROCESS DATA SUMMARY
HA INS ENERSY RECOVERY COUPANY
YORK COUNTY KASTE-TO-ENERGY FACILITY
BIDDEFORD MAINE
DATE
TIME DILUTION ST IN STM DILUTION SHSE OUT ESHSE
HATER PRESS HATER 6AS T DIFF P
SP« PS16 6P«
10DEC87
10DECB7
iODECa?
1QDEC87
10DEC37
10DEC8?
10DEC87
UODEC37
110DEC87
UODEC87
110DEC37
UODEC87
HODEC37
I10DEC87
J10DEC37
I103EC37
10DECS7
10DECS7
10DEC37
1QDEC87
1QDEC37
10DEC87
1QDEC87
10DEC87
10DEC87
10DEC37
10DEC37
10DEC37
1QDEC37
1GDEC37
1QDECS7
1QDEC37
10DEC87
10DEC87
10DECS7
10DEC87
10DEC37
10DEC87
10DECS7
15:22
15:26
15:30
15:34
15:33
15:46
15:50
15:54
15:53
li:02
16:06
16:10
16:14
16:18
16:22
16:26
16:30
16:34
16:33
16:42
16:46
16:50
16:54
16:53
17:02
17:06
17:10
17:14
17:18
17:22
17:26
17:30
17:34
17:38
17:42
17:46
17:50
17:54
17:53
3.77
3.40
2.25
2.54
3.34
1.80
1.36
2.73
4.43
1.93
0.37
0.73
1.90
2.25
2.04
1.93
1.84
1.64
1.73
1.94
2.71
2.54
1.70
0.20
0.72
1.72
1.87
1.77
1.51
1.48
1.91
4.16
3.03
4.05
0.77
0.53
1.84
3.51
3.77
3.77
3.40
2.25
2.54
3.34
1.80
1.86
2.73
4.43
1.93
0.37
0.73
1.90
2.25
2.04
1.93
1.84
1.64
1.73
1.94
2.71
2.54
1.70
0.20
0.72
1.72
1.87
1.77
1.51
1.48
1.91
4.16
3.03
4.05
0.77
0.53
1.84
3.51
3.77
DEB F IN H20
269
268
263
269
268
267
269
270
269
265
266
268
270
269
268
268
267
267
268
269
270
263
266
267
268
269
268
268
267
268
270
272
272
264
264
268
270
271
268
7.63
8.25
7.31
7.70
7.67
7.86
3.53
7.89
7.14
7.91
7.34
7.84
7.77
7,13
7.89
7.92
7.34
7.78
3.63
8.06
7.58
7.69
7.58
7.66
8.03
7.39
7.44
8.28
3.16
8.66
9.13
8.56
8.38
8.72
7.77
7.31
3.47
8.19
7.06
STACK STACK
CO OPACITY
PP«V
46.38
50.25
46.38
48.63
47.13
54.25
53.50
52.50
51.50
52.38
47.25
47.33
46.25
46.25
49.25
47.25
44.63
54.25
47.33
47.63
46.25
53.63
62.50
54.38
49.25
44.63
50.13
54.13
43.25
47.88
68.00
95.00
66.25
51.88
47.63
43.88
54.63
51.25
53.38
I
49.83
49.88
49.88
49.38
49.88
49.88
49.88
49.88
49.88
49.38
49.88
49.88
49.88
49.88
49.88
49.88
49.88
-0.02
-0.04
-0.04
45.50
2.88
-0.02
46.25
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
10.97
49.88
37.38
49.88
-0.04
35.13
-0.04
-0.04
STACK ID FAN
C02 CURRENT
I
3.01
2.89
2.89
2.98
2.69
3.18
3.29
3.18
2.98
2.69
2.99
2.89
2.78
2.78
3.09
2.78
2.78
2.59
2.78
3.08
2.59
2.28
2.59
2.89
2.78
2.78
2.98
3.08
2.38
2.38
3.08
3.18
3.29
3.38
2.89
2.59
3.29
3.18
2.73
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
O.Oi
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN ID FAN ID FAN
CURRENT CURRENT CURRENT
AMPS
100.00
101.25
102.75
100.75
99.50
101.75
103.00
102.00
99.25
99.25
101.25
100.00
99.25
99.50
100.50
99.25
100.50
101.25
102.75
103.75
100.00
99.00
101.00
100.50
99.25
100.00
99.25
101.25
104.25
107.75
107.75
106.75
106.25
105.75
100.75
99.75
102.00
102.25
99.25
AMPS
0.01
0.01
O.Oi
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
O.Oi
0.01
O.Oi
O.Oi
0.01
0.01
0.01
0.01
0.01
O.Oi
0.01
0.01
0.01
0.01
O.Oi
0.01
O.Oi
0.01
0.01
O.Oi
0.01
O.Oi
0.01
0.01
O.Oi
O.Oi
0.01
AMPS
O.Oi
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
O.Oi
0.01
O.Oi
O.Oi
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
O.Oi
0.01
0.01
0.01
0.01
0.01
O.Oi
0.01
0.01
0.01
O.Oi
0.01
0.01
0.01
0.01
0.01
0.01
         AVERAGE
3.39
-7
3.39
                                                  268
              NON-TEST PERIOD,  NOT INCLUDED  IN  AVERAGE
7.92    43.92    25.14
                                                            K-22
0.01   101.71
O.Oi
0.01

-------
RADIAN CORPORATION
02-Jan-SS
PROCESS DATA  SUMMARY
MINE ENERGY  RECOVERY  COMPANY
YORK COUNTY HASTE-TQ-ENERSY  FACILITY
BIDDEFORD MAINE
UNIT A
DATE



I12DECB7
U2SEC87
12DECS7
12BEC87
128EC37
12DEC87
12DECS7
12DECS7
U2DEC87
I12BEC87
I12DEC87
J12DECS7
12BEC37
12DEC87
12DEC87
12DEC87
12DEC87
12DECS7
12DEC87
12DECS7
12DEC87
12DEC37
12DEC37
12BEC87
12BEC87
12DECS7
12DEC87
12DEC37
J12DECS7
I12DEC37
I12BECS7
U2BEC87
I12BEC87
I12BEC37
12BEC87
12BEC87
12BEC87
12DEC37
12BEC37
12DEC37
12DEC87

TIME



11:12
11:16
11:20
11:24
11:23
11:32
11:36
11:40
11:44
11:48
11:52
11:56
12:00
12:04
12:08
12:12
12:16
12:20
12:24
12:23
12:32
12:36
12:40
12:44
12:48
12:52
12:56
13:00
13:04
13:08
13:12
13:16
13:20
13:24
13:28
13:32
13:36
13:40
13:44
13:43
13:52

DST CLTR
BAS DF P
IN H20
DPI371
3.46
3.51
3.23
3.43
3.41
3.27
3.61
3.61
2.96
3.34
3.57
3.01
3.38
3.52
2.93
3.51
3.41
3.20
3.45
3.45
3.24
3.40
3.34
3.39
3.36
3.33
3.43
3.36
3.33
3.45
3.33
3.32
3.39
3.42
3.33
3.30
3.34
3.39
3.38
3.45
3.38


ABSR IN ABSR OUT
SAS P
IN H20
PI371
-8.19
-5.92
-5.02
-6.36
-8.06
-2.29
-6.94
-7.84
-2.60
-7.61
-7.72
-7.67
-7.45
-7.70
-7.81
-7.61
-7.55
-7.67

-7.83


-8.22




-8.16


-8.22


-8.28


-7.94


-3.19

SAS P
IN H20 .
PI372
-12.91
-13.03
-13.84
-13.16
-13.16
-13.22
-13.53
-13.47
-14.78
-14.09
-14.31
-15.34
-13.75
-14.06
-14.75
-13.63
-13.66
-13.81
-13.16
-12.69
-14.16
-12,31
-12.84
-13.22
-13.03
-13.78
-12.66
-12.31
-13.88
-13.06
-12.78
-13.56
-12.59
-13.09
-13.84
-12.73
-12.69
-13.78
-13.41
-13.06
-13.44

ABSR 6AS
D1FF P
IN H20
DP 5 372
4.75
4.84
5.77
5.03
4.86
5.33
5.22
5.28
6.73
5.55
5.59
6.78
5,61
5.64
6.47
5.17
5.14
5.64
4.84
4.84
5,44
4.88
4.67
4.77
4.86
5.09
4.88
4.67
5.06
4.89
4.64
4.88
4.86
4.77
5.08
5.08
4.72
4.98
5.41
4.84
4.83

BSHSE
DIFF P
IN K20
DP 1 373
8.47
8.47
7.58
3.66
8.53
7.38
8.44
9.00
8.31
8.75
8.78
8.31
8.97
9.03
7.91
8.47
8.73
7.77
8.16
3.31
7.72
3.16
3.34
7.55
7.83
7.70
8.06
3.53
7,88
7.81
8.16
7.94
7.94
3.41
7.93
7.80
8.50
3.22
7.86
8.38
3.28

ID FAN
SUCT P
IN H20
PI373
-21.38
-21.50
-21.81
-22.00
-21.38
-21.06
-22.13
-22.75
-23.50
-22.75
-22.88
-23.63
-23.06
-23.13
-22.81
-22.06
-22.38
-21.75
-21.19
-21.13
-21.56
-21.25
-21.13
-20.44
-20.75
-21.19
-21.13
-21.13
-21.31
-21.00
-20.81
-20.63
-20.94
-21.25
-21.44
-21.13
-21.13
-21.44
-21.69
-21.33
-21.25

ABSR IN
SAS T
DEB F
T I 3206
383
383
382
333
383
382
382
333
383
383
382
380
383
385
387
388
387
385
385
383
383
385
386
382
380
381
381
381
382
383
384
333
381
382
335
385
382
331
333
334
332

ABSR OUT
SAS T
DES F
T 1 3223
289
289
268
273
288
284
269
279
289
278
269
283
289
273
272
284
283
272
277
285
281
274
279
281
281
279
273
230
280
279
273
279
278
281
281
276
275
281
283
277
274

OUTLET
GAS S02
PPMV
AI3804
3.05
3.81
10.53
8.94
10.81
11.78
9.59
4.09
9.09
7.78
8.22
9.06
12.72
6.61
7.06
4.20
5.42
3.58
7.34
7.92
7.59
2.48
3.08
7.61
2.48
2.13
13.38
-0.82
2.25
15.41
4.75
7.83
0.76
1.57
10.56
3.76
3.94
12.91
-0.08
-0.44
8.03

CORRT8
SAS SQ2
V
AI38048
0.37
1.05
1.27
1.07
1.30
1.42
1.11
0.47
1,05
0.90
0.98
1.08
1.50
0.79
0.84
0.50
0.66
0.42
0.38
0.96
0.91
0.29
0.37
0.91
0.30
0.25
1.60
-0.10
0.27
1.35
0.57
0.94
0.10
0.19
1.27
0.45
0.47
1.55
-0.01
-0.05
0.96


OUTLET LIME SLRY
SAS m
PPMV
AI3304A
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
FEED
SPM
FI3202
7.39
7.38
7.38
7.36
7.33
7.33
7.28
7.27
7.25
7.22
7.22
7.17
7.13
7.13
3.09
3.03
8.00
7.97
7.92
7.91
7.86
7.34
7.84
7.84
7.81
7.83
7.73
7.81
7.73
7.75
7.73
7.72
7.70
7.86
7.83
7.84
7.84
7.83
7.91
7.91
7.94
                                                                K-23

-------
RADIAN CORPORATION
                                                                                                                   02-Jan-8B
PROCESS DATA SUMMARY
MAINE ENERSV RECOVERY COMPANY
YORK COUNTY MASTE-TO-ENER6Y FACILITY
BIDDEFORD MAINE
UNIT A
DATE


12DEC87
12DEC87
12DEC37
12DEC87
12DEC87
12DEC87
12DEC37
12DEC87
12DEC37
12DECS7
12DEC37
12DEC8?
12DEC87
I12DEC87
112DEC87
I12DEC37
112DEC87
»12DEC87
112DEC37
12DECS7
12DEC37
12DEC87
12SEC87
I12DEC37
ti2DEC37
I12DEC87
I12DEC37
I12DEC37
I12DECS7
U2DEC37
ti2DEC87
I12DEC87
J12DEC87
I12DEC87
J12DEC87
I12DEC87
I12DEC87
I12DEC37
112DEC37
I12DEC87
N2DEC87
112DEC37
TIME


13:56
14:00
14:04
14:08
14:12
14:16
14:20
14:24
14:28
14:32
14:36
14:40
14:44
14:48
14:52
14:56
15:00
15:04
15:08
15:12
15:16
15:20
15:24
15:28
15:32
15:36
15:40
15:44
15:48
15:52
15:56
16:00
16:04
16:08
16:12
16:16
16:20
16:24
16:28
16:32
16:36
16:40
DST CLTR
8AS DF P
IN H20
3.41
3.37
3.36
3.4?
3.42
3.41
3.34
3.47
3.43
3.30
3.34
3.54
3.12
3.48
3.53
3.32
3.45
3.38
3.30
3.42
3.41
3.51
3. 60
3.36
3.02
2.30
1.77
2.09
2.25
2.05
1.84
1.93
2.30
2.19
2.20
2.58
2.68
2.77
2.35
2.11
2.27
2.01
ABSR IN ABSR GUT ABSR SAS
8AS P
IN H20

-1.09


-8.22












-7.84

-8.22
-8.03


-7.52
-6.73
-5.92
-4.84
-4.95
-5.05
-4.48
-4.93
-5.17
-5.69
-5.73
-5.70
-6.41
-7.42
-7.02
-6.16
-5.22
-6.03
-5.17
SAS P
IN H20
-13.00
-12.78
-13.88
"-12. 59
-13.06
-14.16
-12.75
-13.34
-14.44
-12.97
-13.66
-14.22
-12.81
-13.06
-13.50
-13.38
-13.16
-12.69
-13.00
-12.91
-12.94
-13.00
-13.28
-11.97
-10.59
-9.16
-7,44
-7.88
-7.97
-7.08
-7.70
-8.09
-3.83
-3.81
-3.63
-9.83
-11.16
-10.56
-9.44
-8.22
-9.25
-8.00
DIFF P
IN H20
5.05
4.77
4.95
4.92
4.77
5.00
5.00
4.91
5.03
5.45
5.36
5.06
5.63
4.80
4.98
5.41
4.75
4.66
5.25
4.77
4.77
5.22
5.17
4.64
4.14
3.23
2.55
2.94
3.10
2.82
2.59
2.75
3.17
2.99
3.02
3.52
3.66
3.77
3.23
2.93
3.16
2.77
B6HSE
DIFF P
IN H2Q
7.80
8.44
8.06
7.61
8.69
8.50
7.42
8.34
8.69
7.75
8.63
8.44
7.52
3.59
8.72
7.48
8.28
8.38
7.58
8.44
8.25
7.44
9.06
8.47
6.53
5.97
4.31
4.83
5.09
4.72
4.42
4.66
5.14
4.98
4.98
5.47
6.66
6.31
6.22
5.61
5.17
4.95
ID FAN
SUCT P
IN H2D
-21.13
-21.31
-21.25
-20.63
-21.56
-21.81
-20.75
-21.31
-22.06
-21.56
-22.38
-21.88
-21.50
-21.50
-22.13
-21.38
-21.25
-21.06
-21.19
-21.38
-21.06
-21.00
-22.63
-20.94
-18.06
-14.91
-11.38
-12.75
-13.78
-12.75
-11.69
-12.34
-13.97
-13.38
-13.56
-15.31
-16.88
-16.88
-15.56
-13.88
-14.06
-13.09
ABSR IN ABSR OUT
6AS T
DE6 F
381
382
382
381
332
383
333
383
385
387
389
389
383
386
386
388
338
385
383
383
382
382
384
371
346
331
324
319
311
306
305
304
305
310
317
325
334
345
355
359
360
358
SAS T
DEB F
280
284
277
274
282
284
275
276
285
282
273
278
283
277
276
282
281
274
277
285
280
273
281
290
276
258
275
290
289
270
267
279
28?
289
281
271
233
291
274
266
289
290
OUTLET
SAS 302
PPHV
5.72
1.50
10.72
1.04
2.95
8.75
1.91
13.44
11.78
3.01
3.84
0.22
-0.88
8.78
-0.82
-0.81
6.88
3.01
1.00
5.83
3.01
1.96
0.05
18.33
17.50
17.50
9.72
22.25
7.83
9.72
18.38
3.01
17.44
5.83
8.78
17.50
13.59
10.78
19.44
11.75
24.25
4.92
CORRTD
OUTLET LIME SLRY
SAS S02 SAS mi
I
0.69
0.18
1.29
0.13
0.35
1.05
0.23
1.61
1.41
0.36
1.06
0.03
-0.11
1.05
-0.10
-0.10
0.82
0.36
0.12
0.70
0.36
0.23
0.01
2.20
2.10
2.10
1.17
2.65
0.94
0.70
0.97
0.36
2.09
0.70
1.05
2.09
1.63
1.29
1.80
1.22
2.75
0.54
PPHV
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
FEED
6P«
7.92
7.91
7.88
7.88
7.84
7.84
7.81
7.81
7.78
7.73
7.72
7.73
7.70
7.73
7.75
7.70
7.66
7.66
7.70
7.64
7.61
7.59
7.58
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.07
0.08
0.09
0.25
0.21
0.21
0.21
0.19
0.1?
                                                               K-24

-------
RADIAN CORPORATION
02-Jan-a8
PROCESS DATA  SUMMARY
MINE ENERBY  RECOVERY COMPANY
YORK COUNTY MSTE-TO-ENERGY FACILITY
EIDDEFORD MAINE
UNIT A
DATE


I12DECB7
I12DEC37
J12DEC87
I12DECB7
I12DEC87
I12DEC87
U2DEC37
112DEC37
N2DEC87
U2DECS7
I12DEC87
112DEC87
I12DECB7
U2DEC37
U2DEC87
N2BEC87
U2DEC87
I12DEC87
U2DEC87
J12DECB7
I12DEC37
I12DECB7
I12DEC37
12DEC87
12DEC87
12DEC87
12DEC37
12DEC37
U2BEC87
I12DEC87
I12DEC87
I12DEC37
U2DEC37
U2DEC87
J12DEC87
I12DEC87
H2DEC87
I12DEC87
H2DEC87
I12DECB7
ti2DECS7
»!2DEC87
TIME


16:44
16:48
16:52
16:56
17:00
17:04
11 . AQ
.' • v d
17:12
17:16
17:20
17:24
17:28
17:32
17:36
17:40
17:44
17:48
17:52
17:56
18:00
18:04
18:08
18:12
18:16
13:20
18:24
18:23
18:32
18:36
18:40
18:44
18:43
13:52
18:56
19:00
19:04
19:08
19:12
19:16
19:20
19:24
19:28
DST CLTR
GAS DF P
IN H2C
1.39
2.22
2.39
2.59
2.93
3.05
3.26
3.45
3.25
3.42
3.26
3.46
.50
.38
.25
.51
,40
.31
.39
.53
.42
.54
3.45
3.32
3.35
3.48
3.21
2.91
2.18
2.41
2.56
2.91
3.01
3.09
T TQ
J.J7
3.33
3.29
3.38
3.38
3.35
3.00
2.50
AESR IN
GAS P
IN H20
-5.11
-5.84
-6.13
-6.31
-7.23
-7.05
-7.64





-8.25























-7.31
-8.09

-7.92
-7.20
-6.27
ABSR OUT
GAS P
IN H20
-7.31
-9.03
-10.13
-9.97
-11.33
-11.13
-il !A
-14.06
-13.66
-13.56
-14.53
-12.69
-13.06
-14.16
-13.69
-13.31
-14.44
-13.19
-13.88
-13.59
-13.38
-13.72
-13.91
-13.13
-13.09
-13.94
-14.81
-15.47


-14.69
-15.16
-14.13
-13.97
-14.44
-13.00
-12.41
-12.75
-12.69
-12.53
-11.09
-9.69
ABSR SAS
DIFF P
IN H20
2.65
3.05
3.91
3.55
3.98
4.16
4.44
5.13
5.53
5.22
5.33
4.92
4.81
5.27
5.86
5.08
5.14
5.56
5.25
4.38
5.28
5.02
5.00
5.34
4.94
4.98
6.53
6.88
7.38
7.23
6.66
6.06
6.48
5.89
5.19
5.19
4.56
4.61
5.11
4.63
4.16
3.43
BSHSE
DIFF P
IN H20
4.80
5.31
7.45
7.28
7.06
7.30
3.25
8.19
8.34
8.53
8.00
7.91
3.66
8.31
8.00
8.84
8.56
7.91
8.50
8.13
8.03
8.69
8.25
7.77
8.50
8.47
3.33
9.34
9.66
8.88
9.09
8.78
7.89
9.00
8.50
7.11
7.61
7.69
6.89
7.69
7.27
5.36
ID FAN
SUCT P
IN H20
-12.31
-13.69
-13.06
-17.19
-18.00
-18.69
-20.19
-21.50
-22.31
-22.19
-21.81
-21.06
-21.56
-22.06
-22.25
-22.38
-22.06
-21.94
-22.19
-21.19
-21.75
-22.19
-21.63
-21.44
-21.75
-21.56
-23.38
-24.69
-25.50
-24.56
-24.25
-23.31
-22.38
-23.38
-22.19
-20.69
-19.88
-20.25
-20.38
-20.19
-19.00
-15.06
ABSR IN
SAS T
DEB F
345
333
330
334
344
354
362
369
379
385
386
383
379
380
382
386
386
384
384
383
382
385
386
386
387
385
337
390
392
386
377
366
360
355
352
351
350
351
356
361
364
363
ABSR OUT
GAS T
DE6 F
256
264
275
275
279
281
283
287
291
276
263
280
287
280
273
282
284
274
276
283
280
276
279
281
279
274
281
286
280
288
277
264
279
293
273
264
289
292
267
273
296
276
OUTLET
GAS SQ2
PPHV
9.72
13.59
5.88
12.69
14.66
9.72
7.83
10.78
4.92
6.88
16.56
5.88
13.59
9.72
8.78
1.00
15.59
4.92
3.01
5.78
3.08
6.58
9.78
2.70
2.57
6.52
0.21
0.36
1.30
3.88
-0.90
0.26
12.09
5.48
2.58
13.03
12.66
11.22
16.25
5.27
6.69
11.03
CORRTD
GAS SQ2
I
1.09
1.59
0.69
1.52
1.76
1.17
0.94
1.29
0.59
0.82
1.99
0.70
1.63
1.17
1.05
0.12
1.87
0.59
0.36
0.69
0.37
0.78
1.18
0.33
0.31
0.79
0.02
0.03
0.14
0.86
-O.Q6
0.02
0.91
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.38
0.66
OUTLET L
SAS NO*
PPMV
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
!«£ SLRY
FEED
SPM
0.17
0.18
6.22
6.05
8.47
8.59
3.44
8.34
8.28
8.19
3.13
8.09
3.06
8.00
7.97
7.94
7.91
7.91
7.91
7.86
7.95
7.92
7.91
7.91
8.47
3.53
8.56
8.63
0.10
0.12
0.11
0.14
0.14
0.15
0.16
0.19
0.17
0.18
0.19
0.19
'J.13
0.18
                                                           K-25

-------
RADIAN CORPORATION                                                                                                  02-Jan-fl
PROCESS DATA SUMMARY
MAINE ENERGY RECOVERY COMPANY
YORK COUNTY «AST£-TG-ENERGY FACILITY
BIDDEFORD MAINE

UNIT A

   DATE     TIME    DST CLTR  ABSR  IN ABSR OUT  ABSR GAS  BSHSE    ID FAN  ABSR IN  ABSR OUT  OUTLET   CORRTD   OUTLET LIME SLRY
                   SAS DF  P   5AS  P   SAS P     DIFF P   DIFF P   SUCT P   6AS T    6AS T    GAS S02  6AS S02 6AS NOK   FEED
                    IN H20   IN  H20   IN H20    IN H20   IN H20   IN H20   DEB F    DE6 F     PPMV      I       PPMV     SPM

 U2DEC37    19:32     2.50    -4.44    -10.03     3.52     5.08   -14.84      359      257     0.94     0.03    -0.01     0.20
 I12DECB7    19:34     2.44    -6.08    -9.59     3.45     5.14   -14.66      353      284     0.65     0.02    -0.01     0.21

          AVERAGE     3.37    -7.39    -13.42     5.17     8.22   -21.66      384      279     5.48     0.66    -0.01     7.80

          t  =  NON-TEST PERIOD, VALUE NOT INCLUDED IN AVERAGE
                                                              K-26

-------
RADIAN CORPORATION
02-Jan-BB
PROCESS DATA SUMMARY
MAINE ENERGY RECOVERY COMPANY
YORK COUNTY WASTE-TQ-ENER6Y FACILITY
BIDDEFORD MAINE
UNIT A
DATE



I12DEC87
U2DEC87
I12DEC87
12DEC37
12DEC87
12DEC37
12DEC87
12DEC87
I12DEC87
U2DEC87
ti2DEC87
J12DECS7
$12BEC87
12DEC87
12DEC87
12DEC87
12DEC87
12DEC87
I2DECS7
12DEC37
12DEC87
12DEC87
12DECB7
12DEC87
12DEC87
12DEC87
12SEC87
12DEC37
I12DEC87
I12DEC37
I12DEC37
I12DEC37
i!2DECS7
I12DEC87
12DEC87
12DEC37
12DEC87
120ECB7
12DEC87
12DEC87
12SEC87
TIME



11:10
11:14
11:18
11:22
11:26
11:30
11:34
11:38
11:42
ll:4i
11:50
11:54
11:58
12:02
12:06
12:10
12:14
12:18
12:22
12:26
12:30
12:34
12:38
12:42
12:46
12:50
12:54
12:53
13:02
13:06
13:10
13:14
13:18
13:22
13:26
13:30
13:34
13:38
13:42
13:46
13:50
DILUTION
WATER
SPM
' f 13200
1.48
4. -64
8.38
4.33
1.93
5.55
7.64
3.66
2.80
7.67
6.86
2.67
4.52
8.5?
5.88
3.15
5.31
6.89
3.98
2.57
5.55
6.19
4.08
4.13
4.97
4.86
4.78
4.06
4.66
5.17
5.03
4.72
4.56
4.19
5.08
5.72
4.83
3.09
4.39
6.03
5.25
ST IN STM
PRESS
PSIB
PI 200 A
' -2
-6
-5
-6
-7
-2
-7
-8
-3
-8
-8
-8
-7
-8
-8
-8
-8
-3























DILUTION
WATER
SPM
FI3200
1.43
- 4.64
3.88
4.33
1.93
5.55
7.64
3.66
2.80
7.67
6.86
2,67
4.52
8.59
5.88
3.15
5.31
6.89
3.98
2.57
5.55
6.19
.08
.13
.97
.86
.78
4.06
4.66
5.17
5.03
4.72
4.56
4.19
5.08
5.72
4.83
3.09
4,39
6.03
5.25
BHSE OUT
SAS T
DES F
TI3800
266
272
271
264
266
272
269
264
269
273
267
265
271
272
265
266
270
269
265
267
270
263
266
268
268
268
268
263
269
269
268
268
263
268
269
269
26?
266
269
270
267
B8KSE
DIFF P
IN H2Q
DP I 3809
8.41
7.52
8.50
8.31
7.66
3.34
8.31
7.72
9.13
9.09
7.67
3.97
9.22
3.06
8.91
8.75
7.77
8.47
8.53
7.43
8.16
3.53
7.75
7.91
3.25
7.77
8.25
7.81
8.16
8.44
7.72
7.33
8.50
7.94
7.38
8.31
3.00
7.86
8.50
8.19
7.67
STACK
CO
PPMV
AI370A
91.25
74.00
81.75
83.25
81.25
71.25
70.50
66.25
98.50
75.50
63.50
67.25
62.75
66.75
72.25
67.75
62.38
66.25
59.00
53.38
65.00
61.25
65.25
57.88
56.63
57.25
56.75
57.50
66.50
64.25
57.38
52.50
57.38
59.25
61.13
61.50
62.50
59.00
57.25
54.33
57.25
STACK
OPACITY
I
AI3703
44.25
44.83
44.00
46.63
43.33
46.38
44.00
41.83
41.13
44.50
41.38
45.88
49.88
44.75
47.00
40.13
46.13
46.38
41.13
45.63
40.50
49.83
47.25
47.75
41.00
43.13
42.50
43.50
48.63
49.25
49.83
49.75
49.88
49.88
49.88
49.88
49.88
43.75
49.38
49.33
49.88
STACK
C02
Z
AI370C
3.69
2.99
2.98
3,29
3.09
2.93
2.98
3.09
1.98
2.69
2.78
2.73
2.98
3.39
3.48
3.09
2.99
3.18
3.18
2.78
3.48
3.43
3.29
2.59
2.89
2.87
2.89
3.09
3.29
3.29
3.09
2.93
2.98
3.13
3.53
3.39
2.99
2.98
3.18
3,18
2.39
ID FAN
CURRENT
AMPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AMPS
IIH320
100.25
102.50
103.00
104.00
102.75
101.00
103,75
106.25
105.75
106.00
105.75
106.75
105.25
106.00
106.00
105.25
104.00
102.50
102.75
101.25
102.00
102.75
103.00
100.00
102.00
100.75
101.75
102.25
101.50
102.00
102.25
101.00
101.00
101.75
102.75
101.50
101.00
101.00
101.75
103.50
102.25
ID FAN
CURRENT
AMPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AMPS
IIL320
0.01
0.01
0.01
0.01
4.0!
0.01
0.01
0.01
0.01
0.01
0.0!
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.0!
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.0!
0.01
0.01
0.01
0.01
0.01
0.01
0.0!
0.01
0.0!
0.01
0.01
                                                                K-27

-------
RADIAN CORPORATION
02-Jan-SS
PROCESS DATA SUMMARY
MAINE ENERGY RECOVERY COMPANY
YORK COUNTY KASTE-7G-ENERGY  FACILITY
BIDDEFORD MAINE
DATE
TIME DILUTION ST IN STM DILUTION BHSE OUT B6HSE
HATER PRESS HATER GAS T 2 IFF P
SPH PSIB SPM .
12DEC87
12DECS7
12DECS7
12BEC87
12DEC37
12DECB7
12DEC87
12DECS7
12DEC37
12DECB7
12DEC87
12DECS7
12DEC37
U2DEC37
U2DEC87
112DEC87
I12DECS7
U2DEC37
U2DEC37
12DEC87
12DEC87
12DEC37
12DEC87
112DEC87
I12DEC37
ti2D£C37
I12DEC37
112DECS7
J12DEC37
I12DK87
H2DEC87
I12BEC87
112DEC37
U2DEC37
I12DEC87
J12DEC37
t!2DECS7
»12BEC87
112DEC37
I12DEC87
tl29EC87
I12DEC87
13:54
13:5S
14:02
14:0i
14:10
14:14
14:18
14:22
14:26
14:30
14:34
14:33
14:42
14:46
14:50
14:54
14:5*
15:02
15:0i
15:10
15:14
15:18
15:22
15:26
15:30
15:34
15:38
15:42
15:46
15:50
15:54
15:53
16:02
16:06
16:10
16:14
16:13
16:22
1 *< • «i
16:30
16:34
16:33
2.92
3.59
5.97
5.05
2.91
4.66
6.44
4.80
3.24
5.94
7.14
4.89
4.80
6.34
5.41
4.41
5.58
6.42
4.22
3.01
5.77
5.33
3.66
4.64
8.66
7.64
-0.47
-1.03
1.97
6.00
2.11
-1.02
-1.01
1.47
5.02
5.72
2.19
4.50
9.38
7.06
1.97
6.42
2.92
3.59
5.97
5.05
2.91
4.66
6.44
4.80
3.24
5.94
7.14
4.39
4.30
6.34
5.41
4.41
5.58
6.42
" 4.22
3.01
5.77
5.83
3.66
4.64
3.66
7.64
-0.47
-1.03
1.97
6.00
2.11
-1.02
-1.01
1.47
5.02
5.72
2.19
4.50
9.33
7.06
1.97
6.42
DE6 F
266
269
270
267
267
270
270
266
268
271
269
266
269
270
268
268
270
269
266
268
270
268
267
270
272
264
259
263
269
269
262
260
264
263
270
266
263
263
270
264
262
269
IN H20
3.56
3.31
7.61
8.22
8.44
7.83
3.47
8.09
7.64
8.75
8.63
7.53
8.41
3.66
7.61
8.56
3.47
7.36
3.50
3.56
7.39
3.22
3.33
7.92
3.00
6.34
4.61
4.22
4.95
4.70
4.30
4.39
4.72
4.36
4.92
4.83
6.03
6.34
6.59
5.03
5.91
5.09
STACK
CO
PPHV
55.38
56.38
51.50
59.38
64.25
64.25
57.75
59.25
76.25
69.25
78.25
77.25
72.50
65.25
69.25
71.50
64.25
63.38
60.50
54.38
57.25
62.50
63.33
100.00
42.50
20.56
11.59
7.72
1.62
2.55
0.69
3.56
3.56
4.58
6.53
12.53
27.44
58.38
59.25
192.00
159.00
147.00
STACK
OPACITY
I
49.88
49.88
49.88
49.83
49.83
49.38
49.88
49.88
49.88
49.88
49.83
49.88
49.88
49.83
49.88
49.88
49.88
49.88
49.83
49.88
49.38
49.83
49.88
49.38
49.88
49.88
49.83
49.88
49.83
49.88
49.88
49.38
49.38
49.88
49.88
49.38
49.33
49.88
-0.04
-0.04
-0.04
-0.04
STACK ID FAN
C02 CURRENT
I
2.73
3.39
2.39
2.98
3.18
3.29
3.09
2.78
3.38
3.79
4.08
3.98
3.69
2.98
3.48
3.69
3.48
2.89
2.89
3.18
2.89
3.09
3.29
1.98
0.20
0.10
0.10
0.10
0.10
0.00
0.10
0.10
0.20
0.40
0.59
0.69
0.69
0.99
1.39
0.39
0.59
0.49
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN ID FAN ID FAN
CURRENT CURRENT CURRENT
AMPS
101.00
102.00
102.25
101.50
102.25
101.75
102.00
101.50
102.75
102.75
103.50
104.25
102.50
102.50
103.25
102.50
103.00
102.50
102.00
101.75
102.50
101.50
103.75
105.25
101.25
95.50
90.25
88.50
92.25
91.25
39.50
89.50
90.75
91.00
91.25
91.25
94.75
94.50
95.50
90.50
90.50
90.00
AHPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
                                                              K-28

-------
RADIAN CORPORATION                                                                                                  02-Jan-83
PROCESS DATA SUMMARY
HAINE ENERGY RECOVERY COHPANY
YORK COUNTY HASTE-TO-ENER6Y FACILITY
BISDEFGRD MAINE

UNIT A
DATE


I12DEC37
I12DEC87
I12DECB7
U2DECS7
U2DEC87
I12DEC87
112DECS7
H2DEC87
I12DEC37
112DECS7
I12DEC87
t!2DEC37
112DEC37
U2DEC87
J12DEC37
»!2DEC87
!12DEC37
ri2DEC87
I12DEC87
112DEC87
I12SEC87
I12DEC37
U2DEC37
U2DEC87
12DEC37
12DEC37
12DEC37
12DECS7
12DEC37
I12DEC87
I12DEC87
U2DEC87
I12DEC37
ti2DEC37
U2DEC37
I12DEC37
I12DEC87
I12DEC37
H2DEC87
I12DEC87
M2DE87
I12DECB7
TIME DILUTION ST IN STM


16:42
16:46
16:50
16:54
16:58
17:02
17:06
17:10
17:14
17:18
17:22
17:26
17:30
17:34
17:38
17:42
17:46
17:50
17:54
17:58
13:02
13:06
13:10
13:14
18:13
13:22
13:26
13:30
13:34
13:33
13:42
13:46
18:50
13:54
18:58
19:02
19:06
19:10
1?:14
19:18
19:22
19:26
HATER PRESS
6PM PSIG
10.53
1.53
-1.02
-L02
-1.02
-1.01
-1.01
-1.02
2.27
7.70
6.52
1.98
2.07
5.75
6.06
3.63
4.86
6.77
4.72
3.24
5.30
5.34
4.34
4.73
5.58
5.34
3.54
4.58
7.53
8.50
11.56
11.31
5.14
5.25
10.75
8.38
2.09
6.30
11.59
6.39
3.38
10.69
DILUTION
HATER
5P«
10.53
1.53
-1.02
-1.02
-1.02
-1.01
-1.01
-1.02
2.27
7.70
6.52
1.98
2.07
5.75
6.06
3.63
4.36
6.77
4.72
3.24
5.30
5.84
4.84
4.78
5.58
5.34
3.54
4.58
7.53
8.50
11.56
11.31
5.14
5.25
10.75
8.38
2.09
6.30
11.59
6.39
3.38
10.69
BHSE OUT
6AS T
DEB F
268
256
258
262
263
265
267
269
272
273
266
264
268
271
267
266
270
270
266
268
270
269
268
269
270
268
267
270
272
271
273
267
262
270
273
264
263
272
271
262
267
273
B6HSE
DIFF P
IN H.20
4.30
4.92
7.44
6.97
6.95
7.56
7.30
8.06
3.83
3.22
8.00
8.50
3.22
8.03
8.56
8.28
3.16
3.69
3.44
7.73
3.69
3.50
7.89
8.31
8.22
7.73
8.73
9.19
3.72
9.69
9.41
7.94
3.69
9.13
7.72
8.16
7.88
6.77
7.69
7.94
6.73
6.30
STACK
STACK
CO OPACITY
PPHV
222.00
136.50
139.00
224.00
129.00
68.25
53.33
57.38
79.25
76.25
71.50
62.38
54.50
61.38
61.38
60.38
58.25
59.38
61.38
57.25
81.25
60.88
59.00
60.38
67.75
75.50
64.75
72.00
61.33
84.25
93.50
137.00
89.25
57.00
27.00
13.63
12.53
9.66
11.69
8.91
11.34
12.38
I
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.05
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
STACK
1C FAN
C02 CURRENT
I
0.89
0.99
1.39
1.59
1.89
2.38
2.88
2.98
4.33
4.38
3.88
3.08
2.68
3.38
3.38
3.48
3.29
2.88
3.08
3.08
3.29
3.38
3.28
3.38
3.78
3.58
3.58
3.18
3.58
1.79
1.69
1.09
0.68
0.59
0.59
0.59
0.49
0.59
0.69
0.59
0.59
0.59
AHPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
ID FAN
ID FAN
CURRENT CURRENT CURRENT
AMPS
90.25
90.50
94.75
96.50
95.00
96.75
98.00
100.00
102.50
104.25
,104.25
101.50
102.25
102.50
104.25
103.75
104.00
103.25
104.25
103.00
102.75
104.25
102.75
101.75
102.75
101.75
103.75
107.50
110.25
108.75
108.75
108.50
107.25
108.25
107.25
105.00
101.50
100.50
101.50
102.75
100.50
94.75
AHPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
AHPS
0.01
0.01
0.01
o.or
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
                                                              K-29

-------
RADIAN CORPORATION                                                                                                  02-Jan-S8
PROCESS DATA SUMMARY
MAINE ENERGY RECOVERY COMPANY
YORK COUNTY WASTE-TO-ENERGY FACILITY
SIDDEFORD MAINE

UNIT A

   DATE     TIME   DILUTION ST  IN STM DILUTION BHSE OUT  B6HSE    STACK    STACK    STACK   ID FAN    ID FAN   ID FAN   ID FAN
                   WATER     PRESS    WATER    GAS T   DIFF P      CO    OPACITY    C02   CURRENT   CURRENT  CURRENT  CURRENT
                     BPM       PSIB     SPM     DEBF   IN H20     PPMV      I        I      AMPS      AMPS     AHPS     AMPS

 U2DECB7   19:30      9.44              9.44      265     5.89    12.53    -0.04     0.60     0.01    94.00     0.01     0.01
 I12DEC37   19:34      1.56              1.56      259     5.00    11.34     2.96     0.59     0.01    93.25     0.01     0.01

          AVERAGE      4.99        -7     4.89      268     8.20    64.02    42.54     3.23     0.01   102.84     0.01     O.CT

          » =  NON-TEST PERIOD,VALUE NOT  INCLUDED  IN AVERAGE
                                                                 K-30

-------