oEPA
United States
Environmental Protection
Agency
Office of Air Quality
Planning and Standards
Research Triangle Park, NC 27711
EMB Report No. 88 - MIN - 06A
April 1988
Air
Municipal Waste Combustion
HCI Continuous Monitoring Study
Emission Test Report
Maine Energy Recovery Company
Solid Waste-to-Energy Facility
Refuse-Derived Fuel Process
Biddeford, Maine
-------
EMISSION TEST REPORT
HC1 CONTINUOUS MONITORING FOR
MUNICIPAL WASTE COMBUSTION STUDY
MAINE ENERGY RECOVERY COMPANY
SOLID WASTE-TO-ENERGY FACILITY
REFUSE-DERIVED FUEL PROCESS
BIDDEFORD, MAINE
ESED Project No. 86/19a
EPA Contract No. 68-02-4336
Work Assignment No. 16
Prepared for:
Clyde E. Riley, Task Manager
Emission Measurement Branch
Emission Standards and Engineering Division
U. S. Environmental Protection Agency
Research Triangle Park, North Carolina 277H
Prepared by:
Scott Shanklin
J. Ron Jernigan, P.E.
Entropy Environmentalists, Inc.
Post Office Box 12291
Research Triangle Park, North Carolina 27711
April 8, 1988
-------
TABLE OF CONTENTS
1.0 Introduction 1
1.1 Background 1
1.2 Purpose and Objectives 1
1.3 Brief Process Description 2
1.4 Sampling Matrix 2
1.5 Quality Assurance/Quality Control 5
1.6 Schedule 5
1.7 Organization 5
2.0 Summary and Discussion of Results 7
2.1 Test Run 1 7
2.2 Test Run 2 15
2.3 Test Run 3 15
3.0 Process Description and Operation 25
3.1 Facility Description 25
3.2 Summary of Operations by Test Run 30
3-3 Summary of Operating Parameters During the Test Program 31
4.0 HC1 Continuous Emission Monitoring System Descriptions 43
4.1 Thermo Electron Model 15 HC1 Analyzer/Model 200 Dilution System... 43
4.2 Compur Model 4150 ZGSM HC1 Analyzer/Model 4330 Dilution System 44
4.3 Bodenseewerk Spectran Model 677 IR HC1 Monitoring System 45
5.0 Description of the HC1 CEM Sampling Program 4?
5.1 Spray Dryer Inlet - Thermo Electron HC1 Monitoring System 47
5-2 Spray Dryer Outlet - Compur HC1 Monitoring System 54
5-3 Baghouse Outlet - Bodenseewerk HC1 Monitoring System 54
5.4 Data Acquisition System 54
6.0 Quality Assurance/Quality Control 57
6.1 HC1 Sampling System Inspection 57
6.2 Linearity Checks and Midrange QC Checks 57
6.3 Calibrations and Drift Calculations 57
6.4 Wet Chemical Sampling for Performance Evalution Audits 59
Appendix A. Test Program One-Minute Data Printouts
Appendix B. Sample Calculations
Appendix C. Daily Calibration Sheets
Appendix D. Daily System Check Lists
Appendix E. Quality Assurance Data
Appendix F. HC1 Calibration Cylinder Gases
Appendix 0. Bodenseewerk Operation Procedures
Appendix H. Thermo Electron Operation Procedures
Appendix I. Compur Operation Procedures
Appendix J. Wet Chemical Sampling/Analytical Procedures
Appendix K. Spray Dryer Operating Data
-------
LIST OF TABLES
Table Page
Number Number
1.1 Test Matrix for MERC Test Program 3
2.1 Summary of HC1 Monitoring Data, Refuse-Derived Fuel,
Municipal Waste Combustor Test Program, MERC, December 198? 8
2.2 Sampling Log Summary, MERC - Biddeford 9
2.3 MRI Volumetric Flow Rate and Moisture Data Used in HC1
Monitoring Calculations - MERC Test Program 10
2.4 HC1 Monitoring Results - Run 1 11
2,5 HC1 Monitoring Results - Run 2 16
2.6 HC1 Monitoring Results - Run 3 20
3.1 Summary of Key Operating Parameters During the MERC
Test Program 33
6.1 HC1 CEM Linearity Check (3-Point) 57
6.2 Calibration Drift Results for Each Test Run 57
-------
LIST OF FIGURES
Figure /af
Number Number
1-1 Process schematic for MERC in Biddeford, Maine; sampling 4
and monitoring locations are keyed to Table 1.1
1-2 Organizational scheme for MERC testing program 6
2-1 HC1 Monitoring Data - Run #1 12
2-2 HC1 Monitoring Data - Run #1 13
2-3 HC1 Removal Efficiency - Run #1 !**
2-4 HC1 Monitoring Data - Run #2 17
2-5 HC1 Monitoring Data - Run #2 !8
2-6 HC1 Removal Efficiency - Run #2 19
2-7 HC1 Monitoring Data - Run #3 21
2-8 HC1 Monitoring Data - Run #3 22
2-9 HC1 Removal Efficiency - Run #3 23
3-1 The Process Line for Unit A of the York County Waste-to-Energy 26
Facility, Biddeford, Maine
3-2 Preparation of Refuse-Derived Fuel at MERC in Biddeford, Maine 2?
3-3 Combustion Air Scheme at the MERC Facility in Biddeford, Maine 29
3-4 Location of Temperature, Pressure, and Flow Sensors at the
MERC Facility 32
3-5 RDF Heat Release and Steam Flow, Pressure, and Temperature
as a Function of Time During the MERC Test Program 33
3-6 Combustion Air Parameters as a Function of Time During the
MERC Test Program 36
3-7 Overfire Air Flow Pressures Measured During the MERC Test
Program 37
3-8 Flue Gas Temperature as a Function of Time During the MERC
Test Program 39
3-9 Spray Dryer Operating Parameters as a Function of Time During
the MERC Test Program ^0
3-10 Differential Pressures Across the Control Devices During the
MERC Test Program 4l
(continued)
-------
List of Figures (continued)
5-1 Location of Testing Trailer and Sample Lines 48
5-2 Field Evaluation Set-up 49
5~3 Top View of Spray Dryer Inlet and Outlet Sampling Locations 50
5-4 Spray Dryer Outlet Sampling System: Passive Nozzle 52
5~5 Barrel Nozzle 53
5-6 Location of Sampling Probe at the Baghouse Outlet 55
-------
1.0 INTRODUCTION
1.1 BACKGROUND
The U. S. Environmental Protection Agency (EPA) published an advance
notice of proposed rulemaking in the Federal Register (July 7, 198?) which
describes upcoming emission standards development for new and modified
municipal waste combustors (MWC) under Section 111 of the Clean Air Act and
for existing MWC under Section lll(d) of the Act. The Federal Register
notice culminates more than a year of work on the development of the
technical and health related documents which comprise EPA's Report to
Congress on MWC. The Report to Congress was a joint effort involving the
Offices of Air Quality Planning and Standards (OAQPS), Solid Waste (OSW), and
Research and Development (ORD).
The OAQPS, through the Industrial Studies Branch (ISB in the Emission
Standards Division) and the Emission Measurement Branch (EMB in the Technical
Support Division), is responsible for reviewing the existing air emission
data base and gathering additional data where necessary. As a result of this
review, several MWC emission tests have been performed and several more are
in the planning stages to support the current standards development work. Of
particular importance is a more complete data base on emerging air pollution
control technologies for MWC.
The emissions being studied in this assessment are the criteria
pollutants — particulate matter (PM), sulfur dioxide (S0?), nitrogen oxides
(NO ), carbon monoxide (CO), and total hydrocarbons (THC); other acid gases,
sucn as hydrochloric acid (HC1); chlorinated organics, including chlorinated
dibenzo-p-dioxins (CDD), chlorinated dibenzofurans (CDF), and dioxin
precursors; and specific metals, including arsenic (As), cadmium (Cd), total
chromium (Cr), mercury (Hg), nickel (Ni), and lead (Pb).
1.2 PURPOSE AND OBJECTIVES
A number of MWC's have undergone emissions testing programs sponsored by
the EPA and others to supplement the data base on MWC. However, no data are
currently available from a state-of-the-art refuse-derived fuel (RDF) MWC
facility in terms of uncontrolled and controlled emission levels under normal
operating conditions or under normal variations in facility operation. The
control technologies as well as the regulatory data requirements for RDF
facilities are the same as those for mass-burn facilities.
Combustion Engineering (CE) and Babcock and Wilcox (B&W) are the two
principal suppliers of RDF combustor technology in the United States. The EPA
is currently involved with Environment Canada in the planning of an extensive
test program at a CE-designed RDF facility with a spray dryer/fabric filter
(SD/FF) emission control system located in Hartford, Connecticut. The test
program will involve both characterization and performance testing of the
facility during the summer and fall of 1988. However, the data from this test
will not become available until late in EPA's regulatory development schedule.
Therefore, the test program at the Maine Energy Recovery Company (MERC) in
Biddeford, Maine, a B&W unit with an SD/FF emission control system, will
provide ESED with the opportunity to move ahead with regulatory development for
RDF MWC facilities with a limited amount of data, while awaiting the data from
-------
the CE-designed facility in Connecticut. The MERC test program was conducted
in conjunction with the compliance tests for CDD/CDF conducted by Entropy for
MERC's holding company, KTI Holdings, Inc. Data from the compliance test win
also be available to EPA.
Specific objectives of the Biddeford test program were:
1. To determine the level of uncontrolled MWC emissions, including
criteria pollutants, metals, acid gases, and dioxin/furans, from a
state-of-the-art refuse-derived fuel facility.
2. To determine the control efficiency on RDF MWC emissions, including
criteria pollutants, metals, acid gases, and dioxin/furans, of a
spray dryer/fabric filter control system.
Entropy conducted continuous emission monitoring for HC1 at the inlet to
the spray dryer, at the outlet of the spray dryer, and at the outlet of the
fabric filter. Midwest Research Institute (MRI) performed manual sampling
for CDD/CDF, particulate matter, metals, 0_, and CO-, and conducted
continuous emission monitoring of CO, CO-, SO-, 0-, N0x, and THC (see Table
1.1). Sampling of the fly ash, lime slurry, and refuse-derived fuel was also
conducted and coordinated by MRI. The HC1 monitoring data collected by
Entropy is presented to compliment the other emission test data gathered by
MRI.
Process and control system operating data were collected over the course
of the test program by Radian Corporation (Radian). This included all
computer-logged process data from the plant instrumentation and all available
emission control system parameters. Collection of these data is described
and the data are summarized in Section 3-0 (prepared by Radian).
1.3 BRIEF PROCESS DESCRIPTION
Figure 1.1 is a process schematic showing the sampling and monitoring
locations for Unit A, one of the two identical combustor systems at the Maine
Energy Recovery Company, which was tested during this program. The facility
processes municipal waste through extensive sorting and shredding into
refuse-derived fuel. The RDF plus supplemental fuel is used to fire two
150 x 10 Btu/hour boilers that can provide steam for up to 22 MW of power
generation, which is sold to Central Maine Power. The combustion gases from
each boiler pass through a spray dryer followed by a fabric filter and exit
through a common stack. 100% RDF was fired in both boilers during this test
program.
1.4 SAMPLING MATRIX
Table 1.1 presents the overall test program matrix including sampling and
analytical procedures employed by Entropy and MRI. Sampling at all three
locations occurred simultaneously, and process samples (fly ash, lime slurry,
and RDF) were taken at regular intervals during the test periods.
-------
TABLE 1.1. TEST MATRIX FOR MERC TEST PROGRAM
Location
Sample
Type
Sampling
Method
Sampling
Duration
Analysis
Parameter
Analysis
Method
1-Spray dryer inlet
Combustion
gas
2-Spray dryer outlet
Combustion
gas
MM 5
M3
CEMS
CEMS
4 hours Particulate
Metals (Cd, Cr, As,
Pb, Hg)
4 hours CDD/CDF
4 hours 0_, C02
CO, CO
THC
HC1
4 hours CO
Gravimetric
AAS/ICAP
HRGC/HRMS
Orsat
NDIR
Pulsed fluorescence
Heated FID
Infrared absorption
NDIR
Polarographic
Specific ion electrode
3-Fabric filter outlet Combustion
gas
A-Cyclone ash Fly ash
discharge
B-Fabric filter Fly ash
(Baghouse )
C-Bottom ash discharge Bottom ash
D-Spray dryer holding Lime slurry
tank
E-Boiler inlet RDF
MM 5
M5
M3
CEMS
Integrated
grab
In t egra t ed
grab
Integrated
grab
Integrated
grab
Integrated
grab
4 hours CDD/CDF
4 hours Particulate
Metals (Cd, Cr, As,
Pb. Hg)
4 hours O , CO
4 hours CO , O
S°o
2
NO
HC?
4 hours Metals
Percent Carbon
Percent combustibles
4 hours Percent carbon
Metals
Percent combustibles
Resistivity
K factor
4 hours Percent combustibles
, Percent carbon
Metals
4 hours Metals
-------
''RDF
/
Bottom /
Ash ,£
f
4-_/
Boiler
/
Economizer] *| Pre heater | *\ \ (T)"*
1
l
Gruic
Ash
> J
ICyclonesl
1
kVAl
•* ^
k
Spray
Dryer
Absorber
(Scrub-
y
i
l
^ * l-abric
CD Filter
Baghouse
YVY
i •
'**
\ B ,
N. f
t
1
If X »
Ash
Discharge
» Combustion Gas
— > Ash Discharge
(j Sample Locations
{ \ Ash Sample Locations
/\ Plant Cems
• Off Line During Test
CO. CO2
Opacity
Identical
Boiler Unit B
Figure 1-1. Process schematic for MERC in Biddeford, Maine; sampling and monitoring locations are
keyed to Table 1.1.
-------
1.5 QUALITY ASSURANCE/QUALITY CONTROL
Prior to performing this test, Entropy prepared both a Quality Assurance/
Quality Control (QA/QC) Project Plan and a Site-Specific Test Plan. The QA/QC
Project Plan details all QA/QC activities undertaken for the test program; the
Site-Specific Test Plan describes the particulars of the sampling and
analytical procedures and the test locations. Section 6.0 of this report
summarizes the results of the QA/QC activities performed by Entropy. A
separate report by Research Triangle Institute (RTI) summarizes the results of
an external technical systems (checklist) audit on the HC1 monitoring performed
during the test program by RTI staff.
1.6 SCHEDULE
The test program began with the on-site arrival of the Entropy test crew on
December 1, 198?. The first seven days on-site were used to set up the three
HC1 monitoring systems and perform preliminary checks to ensure that all of the
monitoring equipment was functioning properly prior to the anticipated December
8 initiation of the testing. The emissions testing was scheduled to be
conducted during a three day period. However, the plant experienced numerous
process operating problems which caused delays and disruptions in the testing.
The three test runs were performed between December 9 and December 13, 198?•
The Entropy test crew departed the test site on December 16. 198? after
disassembling and packing the test equipment.
1.7 ORGANIZATION
Mr. Mike Johnston of the Office of Air Quality Planning and Standards
(OAQPS) and Dr. Ted Brna of the Air & Energy Engineering Research Laboratory
(AEERL) participated as program coordinators. Mr. Winton Kelly of Radian
assisted the program coordinators in monitoring the process operations. The
test program coordinators were responsible for coordinating the overall test
program with the plant officials and assuring that the process and control
equipment operating conditions were suitable for testing. Mr. Gene Riley of
OAQPS was the EPA Task Manager, and was responsible for coordinating the
efforts of the Entropy and MRI test crews.
Mr. J. Ron Jernigan was the Project Coordinator for the HC1 monitoring
conducted by Entropy. Mr. Scott Shanklin served as the HC1 Test Team Leader
and was responsible for field testing and on-site QA/QC activities. The
organizational scheme showing Entropy in relationship to all parties involved
in the test program is shown in Figure 1.2.
-------
Contractor
MRI
Radian
Entropy (Source Test Div.)
Entropy (CEM/Eng. Div.)
RTI
CONTRACTOR EFFORT
Scope of Work
Conduct field test program
Perform process monitoring
Compliance field testing
Conduct HCI monitoring
Test program QA
Funding Source
AEERL
OAQPS
KTI Energy, Inc.
OAQPS/AEERL
AEERL
GOVERNMENT PERSONNEL ON TEST SITE
EPA, AEERL
EPA, OAQPS
MDEP
James Kilgroe
Ted Brna
Mike Johnston
Gene Riley
Scott Mason
MAINE ENERGY RECOVERY COMPANY TEST PROGRAM
MANAGEMENT PROTOCOL FOR DECISION MAKING
I
AEERL Coordinator
James Kilgroe
QA
Judith Ford (EPA)
Shri Kulkarni (RTI)
MRI Test Crew
(Emission Testing)
George Schiel
EPA Project
Coordinators
James Kilgroe
Ted Brna
Mike Johnston
OAQPS Coordinator
Mike Johnston
OAQPS
Task Manager
Gene Riley
Entropy Test Crew
(HCI Testing)
Ron Jernigan
Scott Shanklin
Keith Hazel
KTI Coordinators
Lynn Johnston
Frank Ferraro
KTI Program Coordinator
Frank Ferraro
MERC Coordinator
Gary Bates
Radian
Process Monitoring
Winton Kelly
Figure 1.2. Organizational scheme for MERC testing program.
3516B 1/88
-------
2.0 SUMMARY AND DISCUSSION OF RESULTS
The mean HC1 monitoring results and process HC1 scrubber removal
efficiencies are presented in Table 2.1. The HC1 concentrations at the spray
dryer inlet (inlet) and spray dryer outlet (midpoint) sampling locations (TECO
and Compur GEMS's, respectively) were measured on a wet basis and converted to
dry basis values using EPA Method 4 data supplied by MRI. The HC1 measurement
data for each test run were corrected for calibration drift using the pre- and
post-test calibration results according to the procedures in EPA Method 6C.
HC1 removal efficiencies were calculated from the inlet to the midpoint
location, and from the inlet to the outlet location. The removal efficiencies
were computed on a mass emission rate basis (Ib HCl/hr) using the Entropy HC1
continuous monitoring data collected at the three test locations and volumetric
flow rate data provided by MRI.
The moisture and volumetric flow rate results as well as the test run times
utilized by Entropy in calculating the monitoring results and HC1 removal
efficiencies were obtained from MRI (see Tables 2.2 and 2.3t respectively).
The moisture values used to correct the inlet HC1 monitoring results were
averages of the results from the two trains (particulate/metals and CDD/CDF)
operated at the inlet location (see Table 2.3). The outlet moisture values
were used to correct the midpoint HC1 monitoring results since no manual
testing was conducted at the midpoint location. The increase in the moisture
observed from the inlet to the outlet is the result of the spray dryer lime
slurry injection. The volumetric flow rate values used to calculate the
percent removal efficiencies were also averages of the results from the two
trains operated at both the inlet and outlet (see Table 2.3). The average of
the values from the two trains was used with inlet and outlet HC1 values; the
average of these averages (inlet averaged with outlet) was used with the
midpoint HC1 data.
The HC1 monitoring data that were printed by the data acquisition system
during the testing program are presented in Appendix A. The daily calibration
results manually recorded on calibration drift summary sheets are contained in
Appendix B.
2.1 TEST RUN 1
The HC1 monitoring results for Test Run 1 are summarized in Table 2.4 and
are presented graphically in Figures 2-1 and 2-2. The two trend graphs present
one-minute averages recorded throughout the test run, excluding any periods of
"process upsets". Figure 2-2 presents the monitoring data corresponding to the
MRI metals train sampling times, and excludes the data collected during the MRI
sampling port changes.
The mean HC1 concentration results were 560 ppm, 75 Ppm* and 9 ppm HC1 at
the inlet, midpoint, and outlet locations, respectively. The mean HC1 removal
efficiencies from the inlet to the midpoint and from the inlet to the outlet
locations were Bj% and 98%, respectively. The removal efficiencies were
calculated from the one-minute averaged emission rate values (Ib HCl/hr) and
are shown in Figure 2-3.
-------
TABLE 2.1.
SUMMARY OF HC1 MONITORING DATA
REFUSE-DERIVED FUEL
MUNICIPAL WASTE COMBUSTOR TEST PROGRAM
MAINE ENERGY RECOVERY COMPANY
Test
Run
1
2
3
Spray Dryer Inlet
HC1 cone.
(ppmv, dry)
560
564
537
Spray Dryer Outlet
HC1 Cone. HC1 Removal
. (ppmv> dry) (%)
75 86.7
8 98.6
1* 99-8*
Baghouse Outlet
HC1 Cone. HC1 Removal
(PPmv, dry) (%)
9 98.4
4 99-3
3 99-^
*The midpoint measurements may be questionable for Run 3 because the Compur CEMS
accuracy is unknown at this low concentration range. The Compur had not been
operated and tested at the outlet of HC1 control during previous EPA studies.
8
-------
TABLE'2.2. SAMPLING LOG SUMMARY, MERC - BIDDEFORD
Sampling
Sample Times
Date Run Type Location (24 hr clock)
12/9
12/9
12/9
12/9
12/10
12/10
12/10
12/10
12/12
12/12
12/12
12/12
1 Metals Inlet 1530-1650
1718-1838
1 MM5 Inlet 1535-1&55
1723-1843
1 Metals Outlet 1532-1652
1719-1839
1 MM5 Outlet 1535-1655
1720-1840
2 Metals Inlet 1250-1410
1435-1555
1640-1800
2 MM5 Inlet 1245-1405
1431-1551
1636-1756
2 Metals Outlet 1246-1406
1433-1553
1636-1756
2 MM5 Outlet 1247-1302
1305-1410
1500-1620
1637-1757
3 Metals Inlet 1124-1139
1204-1309
1329-1449
1514-1524
1819-1834
3 MM5 Inlet 1120-1140
1200-1300
1325-1445
1510-1525
1815-1835
3 Metals Outlet 1117-1142
1200-1255
1325-1445
1510-1525
1815-1835
3 MM5 Outlet 1116-1141
1201-1256
1326-1446
1511-1531
Elapsed Averaging Times for HC1
Time Monitoring at All Locations4
Comments (mln) (24 hr clock)
Stopped for port change;
run discontinued because
process down
Stopped for port change;
run discontinued because
process down
Stopped for port change;
run discontinued because
process down
Stopped for port change;
run discontinued because
process down
Stopped for port changes
Stopped for port changes
Stopped for port changes
^
Stopped to change XAD
and twice to change
ports
Process down 1139-1204
and 1524-1819; other
stops for port changes
Process down during
first and last stops;
other two stops for
for port changes
Process down during
first and last stops;
other two stops for
for port changes
Process down during
first stop; other two
stops for port changes
80
80
l6"o~ total
80
80
l6~0~ total
80
80
l6~0~ total
80
80
16~0" total
80
80
80
240 total
80
80
80
2^0" total
80
80
80
2'4~0 total
15
65
80
80
2"So total
15
65
80
10
15
185 total
20
60
80
15
20
195 total
25
55
80
15
20
195 total
25
55
80
20
l5o" total
1530-1630
1630-1730
1730-1830
1830-1842
1300-1400
1400-1500
1500-1600
1600-1700
1700-1800
1115-1139
1204-1215
1215-1315
1315-1415
1415-1515
1515-1524
1819-1834
•Periods when process was down were not included in HC1 monitoring data averaging ti
changes were included.
mes; periods during port
-------
TABLE 2.3. MRI VOLUMETRIC FLOW RATE AND MOISTURE DATA USED
IN HC1 MONITORING CALCULATIONS - MERC TEST PROGRAM
Run
No.
Inlet
Flow Rate Moisture
(dscfm) (%)
Outlet
Flow Rate Moisture
(dscfm) (%)
Midpoint**
Flow Rate Moisture
(dscfm) (%)
Particulate/Metals Train
1
2
3
41,500
42,100
42.500
15-1
15-2
16.8
39.800
41,900
44,400
16.8
16.3
14.6*
CDD CDF Train
1
2
3
38,300
40,500
41.000
14.3
14.4
16.0
39,200
41,100
42,500
15-3
13-5*
17.0
Average of Particulate/Metals and CDD/CDF Trains***
1
2
3
39,900
41,300
41,800
14.7
14.8
16.4
39,500
41,500
43,500
16.1
16.3
17.0
39.700
41, 400
42,600
16.1
16.3
17.0
*Did not pass final leak check; moisture values not used in averages.
**No manual testing was conducted at the midpoint. Flow rate values are average of
inlet and outlet values; moisture values are outlet values (since increase from
inlet to outlet moisture values is result of spray dryer).
***Calculated for use in determining (1) moisture corrections and (2) percent removal
efficiency of HC1 for midpoint and outlet locations.
10
-------
HC1 MONITORING RESULTS - RUN 1
MAINE ENERGY RECOVERY COMPANY - UNIT A
DECEMBER 9, 198?
lour Time
1 15:30-16:30
2 16:30-17:30
3 17:30-18:30
4 18:30-18:42*
Test Average
(Time Weighted)
Highest 1-min.
average :
Lowest 1-min.
average :
Inlet HC1
(ppmv, dry)
533
643
528
453
560
1040
443
Removal
Midpoint HC1 Efficiency
(ppmv, dry) (%)
66 87-7
134 79-3
38 92.8
21 95-4
75 86.7
321
13
Removal
Outlet HC1 Efficiency
(ppmv, dry) (%)
10 98.1
11 98.3
7 98.7
6 98.7
9 98.4
82
5
Note: Inlet and midpoint concentration measurements were made on a wet
basis and corrected to a dry basis using the Method 4 moisture data
provided by MRI.
Inlet Moisture = 14.72 ^2°
Midpoint Moisture = 16.1% H_0 (as measured at the baghouse
outlet sample location)
* The test run was terminated at 18:42 because of process operating problems.
11
-------
Figure 2-1. HC1 MONITORING DATA - RUN #1 12/9/87
MAINE ENERGY RECOVERY COMPANY - UNIT A
o.
o.
15:30
16:30
17:30
18:30
CLOCK TIME
NOTE: Test run was ended at 18:38 due to Unit A process problems.
-------
Figure 2-2. HC1 MONITORING DATA - RUN #1 12/9/87
320
MAINE ENERGY RECOVERY COMPANY - UNIT A
Q.
Q.
-------
Figure 2-3. HC1 REMOVAL EFFICIENCY - RUN #1
MAINE ENERGY RECOVERY COMPANY - UNIT A
o
fl>
a:
a)
4)
a.
! Inlet to Midpoint
60 -
55
15:30
16:30
17:30
18:30
CLOCK TIME
NOTE: Test run was ended at 18:38 due to Unft A process problems.
-------
Babcock & Wilcox personnel on-site during the test program stated that the
fluctuations observed in the midpoint HC1 measurements during Run 1 were
evidence of unsteady scrubber operation. The Unit A forced draft fan motor
malfunctioned at 18:38 and the run was terminated.
2.2 TEST RUN 2
The HC1 monitoring results for Test Run 2 are summarized in Table 2.5 and
are presented graphically in Figures 2-4 and 2-5. The two trend graphs present
the one-minute averages recorded throughout the test run, excluding any periods
of "process upsets." Figure 2-5 presents the monitoring data corresponding to
the MRI metals train sampling times, and excludes the data collected during the
MRI sampling port changes.
The mean HC1 concentration results were 564 ppm, 8 ppm, and 4 ppm HC1 at
the inlet, midpoint, and outlet locations, respectively. The mean HC1 removal
efficiencies from the inlet to the midpoint and from the inlet to the outlet
locations were 98.6% and 99-3%i respectively. The removal efficiencies were
calculated from the one-minute averaged emission rate values (Ib HCl/hr) and
are shown in Figure 2-6.
At approximately 13:45, the lime slurry flow rate into the spray dryer
system was increased by 100% due to higher than expected S0_ emissions measured
by MRI. This process change resulted in a reduction in the HC1 emissions
measured at the midpoint and improved the HC1 removal efficiency across the
spray dryer.
The test run was begun at 12:45; however, the HC1 monitoring data
collection did not begin until 13:00 in order to allow sufficient time for the
HC1 CEMS's to collect representative effluent samples after returning from
their calibration modes.
2.3 TEST RUN 3
The HC1 monitoring results for Test Run 3 are summarized in Table 2.6 are
are presented graphically in Figures 2-7 and 2-8. The two trend graphs present
the one-minute averages recorded throughout the test run, excluding any periods
of "process upsets." Figure 2-8 presents the monitoring data corresponding to
the MRI metals train sampling times, and excludes the data collected during the
MRI sampling port changes.
The mean HC1 concentration results were 537 ppm, 1 ppm, and 3 ppm HC1 at
the inlet, midpoint, and outlet locations, respectively. The mean HC1-removal
efficiency from the inlet to the outlet locations was 99-4%. The removal
efficiency was calculated from the one-minute averaged emission rate values
(Ib HCl/hr) and shown in Figure 2-9.
The midpoint data relative to the baghouse outlet data during Run 3 were
low, with many of the midpoint values recorded as zeros. The scrubber
operating conditions were the same as during Run 2, but lower than expected
midpoint concentration measurements were recorded. Visual inspection of the
Compur probe filters and the barrel nozzle did not indicate a problem which
would cause a low bias in the measurements. The low measurements are most
likely due to questionable Compur monitor and/or dilution probe performance
during this test run at these extremely low HC1 emissions.
The test run was interrupted on two occasions and was terminated at 18:34
because of process operating problems.
15
-------
TABLE 2.5.
HC1 MONITORING RESULTS - RUN 2
MAINE ENERGY RECOVERY COMPANY - UNIT A
DECEMBER 10, 198?
Hour Time
1 13:00-14:00*
2 14:00-15:00
3 15:00-16:00
4 16:00-17:00
5 17:00-18:00
Test
Average
Highest 1-min.
average :
Lowest 1-min.
average :
Inlet HC1
(ppmv, dry)
520
- 566
581
578
576
564
675
400
Removal
Midpoint HC1 Efficiency
(ppmv, dry) (%)
15 97-1
7 98.8
7 98.8
6 99-0
6 99-0
8 98.6
37
2
Removal
Outlet HC1 Efficiency
(ppmv, dry) (%}
6 98.8
4 99-3
4 99-3
4 99-3
3 99-5
4 99-3
9
2
Note: Inlet and midpoint concentration measurements were made on a wet basis
and corrected to a dry basis using the Method 4 moisture data provided by
MRI.
Inlet Moisture = l4.8# HO
Midpoint Moisture = 16.3% H_0 (as measured at the baghouse
outlet sample location)
* Manual testing began at 12:45; HC1 monitoring data collection did not begin
until 13:00 in order to allow sufficient time for the HC1 GEMS's to collect
representative effluent samples after returning from their calibration modes.
16
-------
Figure 2-4. HC1 MONITORING DATA - RUN #2 12/10/87
MAINE ENERGY RECOVERY COMPANY - UNIT A
o.
Q.
z
o
o
z
o
o
o
CLOCK TIME
-------
•o
*
OL
O.
LJ
O
O
O
O
I
Figure 2-5. HC1 MONITORING DATA - RUN #2 12/10/87
MAINE ENERGY RECOVERY COMPANY - UNIT A
70
60 -
50 -
40 -
30 -
20 -
10 -
13:00
Inlet -^ 10
Midpoint
Outlet
14:00
15:00 16:00
CLOCK TIME
17:00
18:00
NOTE: HCI data deleted during MRI sampling port changes from
14:1O to 14:35 and 15:55 to 16:40.
-------
Figure 2-6. HC1 REMOVAL EFFICIENCY - RUN #2
MAINE ENERGY RECOVERY COMPANY - UNIT A
o
o
E
4)
a:
c
a>
o
<5
Q.
IUU —
99 -
98 -
97 -
96 -
95 -
94 -
93 -
92 -
91 H
i
Inlet to 0utletAAA~v/v/vv fvJl*v*vA/W"v^^
£juA~^^ v/ " \r\\ v
A
j
j
i
•
• V« ' \f » till
Inlet to Midpoint \' ;•
/ •
* i
1 1 1
{/'
1
i
i
n
n
H
H
i
1 1 1 1
13:00 14:00 15:00 16:00 17:00 18:
CLOCK TIME
-------
TABLE 2.6.
HC1 MONITORING RESULTS - RUN 3
MAINE ENERGY RECOVERY COMPANY - UNIT A
DECEMBER 12, 198?
Hour
Time
Removal" Removal
Inlet HC1 Midpoint HC1* Efficiency Outlet HC1 Efficiency
(ppmv, dry) (ppmv, dry) (%) (ppmv, dry) (%)
1 11:15-11:39**
12:04-12:15
2 12:15-13:15
3 13:15-14:15
4 14:15-15:15
5 15:15-15=24**
18:19-18:34**
459
498
513
545
598
544
504
6
1
0
0
0
1
1
98.7
99-8
100
100
100
99.8
99-8
5
4
3
3
3
2
5
98.9
99-2
99-4
99-4
99-5
99.6
99-0
Test Average
(Time Weighted)
Highest 1-min.
537
99-8
99-4
average :
Lowest 1-min.
average :
872
388
25
0
8
2
Note: Inlet and midpoint concentration measurements were made on a wet
basis and corrected to a dry basis using the Method 4 moisture data
provided by MRI.
Inlet Moisture = 16.4# H20
Midpoint Moisture = 1~J.0% H_0 (as measured at the baghouse
outlet sample location)
* The midpoint results are questionable. The scrubber operating conditions
are the same as during Run 2, and lower than expected midpoint values
were recorded. The Compur CEMS accuracy is unknown at this low range
because the Compur had not been operated and tested at the outlet of HC1
control equipment during previous EPA studies.
** The test run was interrupted during 11:39-12:04 and 15:24-18:19 time
periods, and terminated at 18:34 because of process operating problems.
20
-------
-o
E
Q.
a.
O
i
LJ
O
Z
O
o
a
x
Figure 2-7. HC1 MONITORING DATA - RUN #3 12/12/87
MAINE ENERGY RECOVERY COMPANY - UNIT A
45
0
40 -
35 -
30 -
25 -
20 -
15 -
10 -
5 -
i
\ ,„ Midpoint
11:15 12:15
13:15 14:15 15:15
CLOCK TIME
16:15
17:15
18:15
NOTE: Unit A process operating problems caused test run interruptions
from 11:39 to 12:04 and 15:24 to 18:19, and ended the test run
at 18:34. Midpoint measurements are questionable for this run
because the Compur analyzer accuracy is unknown at this low range.
-------
Figure 2-8,
45
Q.
Q.
to
S
O
z
O
O
O
X
HC1 MONITORING DATA - RUN #3
MAINE ENERGY RECOVERY COMPANY - UNIT A
12/12/87
40 -
10 -
Inlet -r- 20
Ul
•V
,. .
1
16:15
r—
17:15
11:15 12:15 13:15 14:15 15:15
CLOCK TIME
18:15
NOTE: HCI data deleted during MRI sampling port changes from 13:09 to 13:29
and 14:49 to 15:14. Unit A process operating problems caused test run
interruptions from 11:39 to 12:04 and 15:24 to 18:19. and ended the test run
at 18:34. Midpoint measurements are questionable for this run because the
Compur analyzer accuracy Is unknown at this low range.
-------
100
Figure 2-9. HC1 REMOVAL EFFICIENCY - RUN #3
MAINE ENERGY RECOVERY COMPANY - UNIT A
99
.
,-,,/-— -v^ — -v-'*-
i* v Inlet to Midpoint
V
Inlet to Outlet
N)
00
o
o
0)
o:
•*•>
c
0)
o
0)
a.
98 -
97 -
96 -
95
11:15
—I
12:15
—I—
13:15
—I—
14:15
15:15
—I
16:15
—I
17:15
18:15
CLOCK TIME
NOTE: Unit A process operating problems caused test run interruptions from
11:39 to 12:04 and 15:24 to 18:19, and ended the test run at 18:34.
Midpoint measurements are questionable for this run because the Compur
analyzer accuracy is unknown at this low concentration range.
-------
-------
3-0 PROCESS DESCRIPTION AND OPERATION DURING TEST PROGRAM
This section contains a description of the Maine Energy Recovery
Company's (MERC) York County Waste-to-Energy facility located in Biddeford,
Maine. This section also summarizes the operation of the facility and the
key operating parameters that were measured during the test program.
3-1 FACILITY DESCRIPTION
The MERC facility consists of two identical process lines with separate
emission control systems that exhaust to a common stack. The process line is
illustrated in Figure 3-1. Refuse-derived fuel (RDF) enters the combustor
and is fired with preheated combustion air. Auxiliary fuel (natural gas or
fuel oil) is sometimes used. The combustion gases pass through superheater,
economizer, and combustion air preheater heat recovery stations. The
combustion gases then pass through a cyclone to remove large particulate, an
alkaline spray dryer to control acid gas emissions and lower the flue gas
temperature, and a fabric filter to reduce particulate emissions. The flue
gas finally exhausts to the atmosphere through a 244-foot stack which is
common to both units.
The MERC facility is rated at 500 tons/day of RDF. The facility was
developed by KTI Holdings. Inc., and was designed and built by General
Electric Company. Approximately 105,000 Ib/hr of steam at a temperature of
760 F and pressure of 675 psig (superheated) is generated by each unit. The
steam from the boilers is supplied to a stem turbine which generates up to 22
MW of electricity. The electricity is sold to Central Maine Power.
3.1.1 Preparation of Refuse-Derived Fuel
At the MERC facility, preparation of RDF follows the scheme shown in
Figure 3~2. Solid waste from local municipalities is received in packer
trucks and transfer trailers and is unloaded on the tipping floor which is
enclosed. The waste is visually inspected and potentially explosive or
hazardous items are removed. Over-sized waste is removed and sent to a shear
shredder. The sorted waste is reduced in size by a flail mill and combined
with the end product from the shear shredder. Then, a magnetic separator
removes ferrous metal, which is reclaimed. A trommel screen separates non-
processible wastes and the remaining refuse is shredded to a nominal top size
of 4 inches by the secondary shredder. At this point, the waste has become
RDF. MERC estimates that 607 tons/day of solid waste is processed to produce
500 tons/day RDF.
If desired, as the RDF enters the combustor feed hopper, wood chips or
sewage sludge may be added. To date, only wood chips have been used. Sewage
sludge can be received into a separate hopper which is enclosed by a
hydraulically operated steel cover. The sewage sludge has a design,moisture
content between 12 and 21 percent and a design feedrate of 0.833 yd-'/hr.
This amount of sludge, as a percentage of the total fuel volume,"has an
insignificant effect on the boiler's firing rate. The fuel, whether RDF or
RDF mixed with wood chips and/or sewage sludge, is metered from the hopper by
dual feeders to the stoker.
25
-------
Dilution
Water
Lime
Slurry
RDF-
Auxiliary
Fuel
Combustor/
Boiler
Grate
Sittings
r\j
cr>
Bottom
Ash
Economizer
Combustion Air
Preheater
Cyclones
Spray
Dryer
Fabric
Filter
VW
ID Fan
Stack
Ash
Discharge
Figure 3-1.
The process line For Unit A of the York County Waste-to-Energy
Facility, Biddeford, Maine.
-------
N)
Municipal
Refuse — ».
(MSW)
Tipping
Floor
MSW
^
Flail
Mill
Wood Chips — 1
^^ Magnetic ^ Trommel Secondary RC
Separator Screen * Shredder
r ,i
>F Feec
* forC<
Sludge
Hopper
i
Sewage
Sludge
Hopper
smbustor
1
Waste
Ferrous Metal
(to be reclaimed)
Non-Processibles
to Landfill
To Feed
Conveyor
Figure 3-2. Preparation of Refuse-Derived Fuel at MERC in Biddeford, Maine.
-------
3.1.2 Combustion Air
Air from the tipping floow area and the boiler penthouse is withdrawn by
a forced-draft fan to supply the air heater section of the heat recovery
system. The preheated combustion air is split to supply the natural gas
burners, overfire air ports, and undergrate air. The combustion air scheme
is shown in Figure 3-3. The slightly negative pressure in the tipping lloor
area prevents the release of odors created by the solid waste.
3.1.3 Combustor and Boiler
The combustor and boiler are combined into one unit called a controlled
combustion zone boiler by. Babcock and Wilcox. The combustion zone boiler is
rated at 150 x 10 Btu/hr of steam.
The stoker is a traveling grate located at the bottom of the boiler. The
fuel from the feeders.enters the front of the boiler. If required to
maintain steam load, natural gas and #2 fuel oil burners located above the
feeders may be used. The sulfur content of the natural gas and fuel oil are
limited by the air permit to a maximum of 0.7 percent.
The boiler is balanced draft. One fan (forced-draft) is used to feed
combustion air and the second fan (induced-draft) located just prior to the
stack is used to draw out the combustion gases. A control system based on
oxygen and carbon monoxide concentrations is used to optimize combustion
efficiency. The target excess air level is in the range of five to ten
percent.
In addition to the waterwalls in the combustion zone, the heat recovery
system includes superheater, economizer, and combustion air heater sections.
At the exit to the air heater, the flue gas temperature is approximately
400°F.
3.1.4 Cyclone, Spray Dryer, and Fabric Filter
The combustion gases from the air heater enter a cylone-type mechanical
dust collector which removes large particulate. Next, an alkaline spray
dryer is used to control acid gas emissions. The spray dryer is a reaction
vessel where lime slurry is sprayed into the flue gas that contains
particulate, S0_, acid gases, and other pollutants in gaseous and aerosol
form. The slurry water is evaporated by the flue gas heat and the acid gases
react with the lime. Particulate and excess lime serve as nucleation for
volatile organic compounds (VOC) and metal adsorption and agglomeration.
The lime-to-S02 reactant ratio and the flue gas temperature at the exit
to the spray dryer can be controlled separately. The lime that is introduced
as a slurry is diluted with water before entering the reaction vessel at
rates appropriate to achieve the desired SO- removal and temperature
reduction. The rate of slurry addition is varied based on the continuously
monitored S0_ concentration at the outlet of the fabric filter. The facility
is required By its operating permit to maintain an outlet S0_ concentration
of 30 ppm. However, at no time during the test program were the facility's
S0_ monitors providing accurate readings. The spray dryer outlet temperature
is directly controlled by the amount of dilution water added and is typically
280°-300°F.
28
-------
Tipping
Floor
Boiler
Penthouse
Combustion
Air
F.D. Fan
Air
Heater
Total Air
Flow Meter
Secondary Air
Flow Meter
Overtired Air
Flow Meter
Natural
Gas Burner
Undergrate
Air
Overfire Air
DC
8
Figure 3-3. Combustion air scheme at the MERC Facility in Biddeford, Maine.
-------
The fabric filter then collects the participate from the gas stream. The
excess lime in the bag filter cake provides a second-stage reaction site
further acid gas removal. The fabric filter unit has six modules. Five
modules filter flue gas while one module is being cleaned in a continuous
cycle. The total time needed to complete a fabric filter cleaning cycle is
about 18 minutes.
3.1.5 Ash Handling
An ash system removes ash from the stoker discharge, generating bank
hopper, air heater hopper, mechanical dust collector hopper, spray dryer, and
fabric filter modules. All of the hopper discharges are through rotary seal
valves. This ensures a positive seal to prevent boiler gases from entering
the ash conveyors and air from entering the hoppers and boilers.
The ash from the fabric filter modules discharges into 6 identical drag/
screw conveyors. Each set of these drag/screw conveyors discharges into one
of two identical drag chain collecting conveyors. The spray dryer and
mechanical dust collector discharge directly onto these collecting drag chain
conveyors. The generating hopper and air heater hopper discharge ash onto a
transverse drag conveyor which feeds to the collecting drag conveyors. The
combined fly ash from each collecting conveyor is fed to one of two identical
ash conditioning screw conveyors. The ash is conditioned by the addition of
water at a controlled rate.
The bottom ash from each stoker discharges into one of the two submerged
drag chain ash conveyors. The discharge of the ash conditioners deposits
into the dewatering section of the bottom ash drag conveyor. It is at this
point that the fly and bottom ash streams combine. The combined ash streams
are then dumped into a specially designed trailer for removal from the site.
Dust control within the processing building is achieved through two
separate control systems. One system serves the tipping/processing area,
while the other serves the conveyors in the boiler building and RDF reclaim
area. Each system contains a baghouse, fan duct hoods, and dust collection
ducts at key conveyor and transfer processing points. Dust laden air is
drawn through one of two pulsed jet baghouses which exhaust in the vicinity
of the boiler forced-draft fan intake. The baghouse air exhaust thus becomes
incorporated into the combustion air for the boilers. Dust captured by the
baghouses is returned to and becomes a part of the RDF fuel.
3.2 SUMMARY OF OPERATIONS BY TEST RUN
Three test runs were conducted on Unit A between December 8 and December
12, 1987. During each test run only RDF was fired.
3.2.1 Operation During Run 1
Run 1 was originally scheduled for December 8, but power problems in the
afternoon delayed Run 1 until December 9. Both units were down overnight.
The facility was still experiencing operational problems on the morning
of December 9- The units were started up in the morning and were preheated
on natural gas. However, problems with the feeder conveyors delayed bringing
30
-------
the boilers up to full load until 1400. At 1500, CEM data indicated that the
boilers were stabilized.
Run 1 began at 1530 hours and continued until approximately 1840 hours,
when the Unit A forced-draft fan failed. Two of three traverses had been
completed at the time of the shutdown. Since replacement of the fan motor
required overnight work, Run 1 was considered to be complete.
3-2.2 Operations During Run 2
Run 2 was conducted on December 10. 198?. The fan was repaired at
approximately 0100 that morning, and both units were back on-line. However,
at 1030, there was a feeder conveyor failure and a unit shutdown occurred.
The units were brought back on-line at 1200 hours, and Test 2 began at 12*15.
Facility personnel decided to increase the lime slurry feed rate at 1330.
Minor excursions of SO- were being experienced and the facility did not want
to exceed their permit range. Therefore, the lime slurry feed rate was
increased from approximately 3.0 gpm to approximately g.O gpm. This increase
reduced the HC1 concentrations at the midpoint and the outlet location to
almost 0. Testing continued and was completed at 1800 hours. All three
traverse points were sampled for a complete run.
3.2.3 Operations During Run 3
Run 3 was conducted on December 12, 198?. Originally scheduled for
December 11, problems continued throughout the day with feeder conveyors and
testing was postponed until the next day. Test 3 began at 1115 hours. A
brief test interruption occurred during 1138-1200 due to a feeder
malfunction. Testing continued until 1525, restarted at 1815, but was
stopped at 1830 due to recurring feeder problems. Throughout Run 3. the lime
slurry feed rate was maintained between 7 and 8 gpm. Due to the late hour
and the fact that the facility estimated that the.delay time would be four to
eight hours. The test was considered complete at the end of two complete
port traverses and part of the third.
3.3 SUMMARY OF OPERATING PARAMETERS DURING THE TEST PROGRAM
This section summarizes the values of key operating parameters during the
test program. The purpose of evaluating these operating parameters was to
determine: 1) if the system was operating at normal conditions, and 2) if the
system was operating at similar conditions during each of the three test
runs. Only selected parameters are discussed in this section.
The operating data were recorded once every four minutes by computer.
The spray dryer related operating data showing each four-minute value is
included in Appendix K. The locations of temperature, pressure, and flow
sensors are indicated in Figure 3"^- Also, plots of the four-minute data
versus time are presented in this section. The plots have been reduced in
size in order to present all three runs on one page. Full-sized plots of
spray dryer related data for each run are included in Appendix K if more
detail is required by the reader.
Average values for selected operating parameters over the actual testing
intervals are summarized in Table 3.1- On an average basis, the combustor
operating conditions appear to be about the same for all three runs. The
only variation of consequence is the higher air flow and economizer inlet
31
-------
RDF-
Auxiliary
Fuel
Dilution Lime
Water Slurry
r-\ L_.
Combustor/
Boiler
Grate
Sittings
Bottom
Ash
UJ
fu
Ash
Discharge
Economizer
Combustion Air
Preheater
Stack
1 - Superheater steam llowrate, pressure, temperature and economizer inlet flue gas temperature
2 • Economizer outlet flue gas temperature and excess oxygen
3 • Air heater outlet flue gas temperature and pressure
4 • Spray dryer Inlet flue gas temperature and pressure
5 - Spray dryer outlet flue gas temperature and pressure
6 • Fabric filter outlet temperature
7 • Dilution water feedrate
8 - Lime slurry feedrate
Figure 3~'*- Location of temperature, pressure, and flow sensors at the
the MERC Facility.
-------
TABLE 3.1. SUMMARY OF KEY OPERATING PARAMETERS DURING THE
MERC TEST PROGRAM IN BIDDEFORD, MAINE
Parameter
Superheater steam
Flowrate (1,000 Lb/hr)
Pressure (psig)
Outlet temperature (°F)
Combustion Air
Total air flowrate (1,000 Ib/hr)
Undergrate air flowrate (1,000 lb/hr)a
Overfire air flowrate (l,000,lb/hr)
Overfire air distribution (%)
Undergrate air pressure (in H-0)
Overfire air fan pressure (in H-0)
Air heater inlet air temperature ( F)
Air heater outlet air temperature (°F)
Excess Oxygen (% by volume, wet)
left side
right side
Heat Release (106 Btu/hr)
Total (RDF + auxiliary fuel)
RDF only
Flue gas temperatures ( F)
Economizer inlet
Economizer outlet/air heater inlet
Air heater outlet
Spray dryer inlet
Spray dryer outlet/fabric filter inlet
Fabric filter outlet
Gas Differential Pressures (in H-0)
Undergrate to furnace
Dust collector (cyclone)
Spray dryer
Fabric filter
Flue gas pressures (in H_0)
Spray dryer inlet
Spray dryer outlet
I.D. fan suction
Lime Slurry Feedrate (GPM)
Dilution Water Feedrate (GPM)
Total Lime Slurry & Water Feedrate (GPM)
Run 1
12/9/87
106
663
746
124
50.0
71.2
60
-0.23
25.3
127
381
5.59
7.91
150
150
779
515
374
374
277
268
0.46
3.02
4.24
7.16
-7.20
-11.5
-18.7
2.91
6.95
9.86
Run 2
12/10/87
109
676
751
123
64.1
73.2
60
-0.86
25.6
66
368
5.77
8.13
153
153
788
523
363
364
278
268
0.34
3.07
4.84
7.89
-7.25
-13.1
-21.0
6.70
3.39
10.1
Run 3
12/12/87
108
671
748
134
52.4
70.1
50
-0.26
25.0
118
385
5.78
8,02
151
150
801
532
383
384
279
268
0.44
3.37
5.17
8.22
-7.39
-13.4
-21.7
7.80
4.89
12.7
Average
108
670
748
127
55.5
71.5
57
-0.45
25.3
104
378
5.71
8.02
151
151
789
523
373
374
278
268
0.41
3.15
4.75
7.75
-7.28
-12.7
-20.5
5.80
5.07
10.9
Undergrate air flowrate was calculated as the difference between the total air
flowrate and overfire air flowrate.
Overfire air distribution was calculated as the overfire air flowrate divided by
the total air flowrate.
lmo/005
33
-------
flue gas temperature during Run 3. Although the operating conditions appear
similar, there is no way to judge if the entire combustor system reached tne
same degree of thermal equilibrium for each run.
The emission control system was operated differently during each run.
First, the average lime slurry feed rate increased during each test, with Run
2 being higher than Run 1, and Run 3 being higher than Run 2. This increase
in slurry flow, combined with the higher spray dryer inlet temperature and
air flow during Run 3, is consistent with the increase in pressure drop
across the spray dryer and fabric filter during each test.
3.3-1 Steam Load and Heat Release
In Figure 3-5, RDF heat release, superheater steam flow, superheater
steam pressure, and steam temperature at the superheater outlet are plotted
against time. The RDF heat release is calculated from the steam flow minus
the heat content supplied by any auxiliary fuel (natural gas or fuel oil).
During this test program, only RDF was fired, and sampling was discontinued
during periods when auxiliary natural gas firing was necessary. Thus, for
this test program, the RDF heat release is equivalent to the total heat
release.
These combustion parameters were operating in a similar and normal manner
for all three runs in which the manual sampling trains were operating. The
relative standard deviation of the steam load was an average of four percent
during the sampling periods.
3-3-2 Combustion Air
Overfire air distribution, undergrate-to-furnace differential pressure,
and excess oxygen are plotted against time in Figure 3~6. The overfire air
distribution was calculated by dividing the overfire air mass flowrate by the
total air mass flowrate.
The variation in excess oxygen was greater during Run 3 than in Runs 1
and 2. During Run 3. the relative standard deviation was twenty two percent,
as compared to sixteen and twelve percent for Runs 1 and 2. However, the
average concentrations were not significantly different.
The overfire air (OF) distribution was lower and undergrate-furnace
differential pressure was higher during Run 3- The average OF air
distribution was sixty percent during Runs 1 and 2, but decreased to fifty
perent during Run 3- The undergrate-furnace differential pressure increased
to 0.4 in. H20 during Run 3 from 0.3 in. H_0 during Run 2.
The overfire air flow pressures were measured in the combustor. The
pressures measured during the MERC test program are presented in Figure 3-7.
Once the combustor is optimized, the pressures do not vary. Pressurized air
from two air swept spouts is also used to spray the RDF across the grate as
it enters the combustor. The air swept pressure is varied in a set range in
order to spray the RDF evenly across the grate.
-------
CO
VJ1
15:25 16:00
Run 1
Run 2
Run 3
17:00
Time
18:00
12:45
14:00 15:00 16:00 17:00
Time
11:15 13:00 14:00 15:0016:0017:00 18:00 19:00
Time
h~H Indicate periods in which manual sampling
trains were not operating
KEY
D RDF heat release (10* Btu/hr)
+ Superheater steam flow (1000 Ib/hr)
0 Superheater steam pressure (psig)
A Steam temperature at the superheater outlet (*F)
Figure 3-5. RDF heat release and steam flow, pressure, and temperature
as a function of time during the MERC Test Program.
-------
U)
20
15-
10
5-
Start
Test
Run 1
Port
Change
Run 2
Run 3
Stop
Test
15:25 16:00
17:00
Time
18:00
1—
?2J Stop/Start Port Stop S(ar|
X U Change Test
12:45 14:00 15:6b 16:6o 17:66 Iltl5 13 oo"1" 1500 ' ...... 17766 "" 19:00
Time Time
D Excess Oxygen (left side, % by volume, wet)
+ Excess Oxygen (right side, % by volume, wet)
Slaft Stop/Start Port Stop Start Stop/St
15:00 16:00 17:00
Time
13:00
15:00 ' 17:66 19:00
Time
Indicate periods in which manual sampling
trains were not operating
KEY
D Overfire air distribution (fraction)
+ Undergrate-furnace differential pressure (in H,O) period
Figure 3-6. Combustion air parameters as a function of time during the
MERC Test Program.
-------
Front
Rear
f L
Combustion
Zone Boiler
<
-------
3-3-3 Temperature Profile
The inlet and outlet flue gas temperatures of the economizer, air heater,
spray dryer, and fabric filter are plotted against time in Figure 3~8- The
economizer inlet, economizer outlet, and air heater outlet temperatures were
ten to twenty degrees (°F) hotter during Run 3- However, after the spray
dryer, the flue gas temperature during Run 3 was the same as during Runs 1
and 2. The spray dryer outlet temperature was very consistent during all
three runs.
3.3.4 Spray Dryer and Fabric Filter
The operation of the spray dryer and fabric filter was evaluated using
two plots. The first plot (Figure 3-9) included the spray dryer inlet and
outlet temperatures, the lime slurry and dilution water feed rates, and the
fabric filter differential pressure. The second plot (Figure 3~10) includes
the flue gas differential pressures across the cyclone, spray dryer, and
fabric filter.
The difference in spray dryer operation during the runs is shown clearly
in Figure 3-9- During Run 2, the lime slurry feed rate was increased
significantly. This increase was due to the high S02 concentration being
monitored at the fabric filter outlet by the test contractor, which was more
than -*MB£> the permit level of 30 ppm. Subsequently, the lime slurry feed
rate was increased from 3 gpm to over 7 gpm, and remained at this level
through Run 3 • A corresponding decrease in the dilution water feed rate was
observed at this time such that the total lime slurry and dilution water feed
rate increased only slightly. The spray dryer outlet temperature remained
constant throughout all three test runs. During Run 3. both the dilution
water and the lime slurry feed rates increased from Run 2. This may have
been partially due to the higher spray dryer inlet temperature during Run 3-
However, the spray dryer outlet temperature remained consistent during all
three runs.
The differential pressures across all three control devices (cyclone,
spray dryer, and fabric filter) increased during Runs 2 and 3, with Run 3
having the greatest increase. For Run 2, the increase in the lime slurry
feed rate may have caused the pressure drop increase, since the pressure drop
across the cyclone did not change significantly. However, for Run 3, a
combination of air flow rate and lime slurry feed rate may have caused the
increased pressure drop.
38
-------
Run 1
Run 2
Run 3
Start
Test
800-
600-
400-
200
Port
Change
Stop Start Port Slop Start st°P
Test Test Stop/Start Change Test Test I Start
End
TeS|
'* H
•"..,,
"t»«i" j,*< flmi"ri** Y*
\
V
t *«
V
J —
^
.>.../V!
V
p
*J
s
[J
10
li
ufiiK"**'
p/ St
rl
-------
o
400
Start
Test
300-
200-
Run 1
Port
Change
Run 2
Slop Start
Test Test
"'^l
" K
Stop/Start
A/\'V\/v*
1M"M/vWV
Port
Change
^H.,,.H.,rt...!
•/VvV****^'
"V"
,^-^~~.-^,-
Run 3
Stop/Start
Stop/Start
Slop Start/ / Slop/ End
Test Test/ / Start Stop/Start Stop/Start Tes,
15:25 16:00 17:00
Time
w^
18:00 12:45 14:00 15:00 16:00 17:00
Time
11:15 13:00 14:00 15:0016:00 17:00 18:00 19:00
Time
KEY
Indicate periods in which manual sampling
trains were not operating
D Spray dryer inlet gas temperature (°F)
+ Spray dryer outlet/fabric filter Inlet gas temperature (°F)
0 Lime slurry feedrate (gpm x 10)
A Dilution water feedrate (gpm x 10)
oc
CM
Figure 3~9« Spray dryer operating parameters as a function of time during
the MERC Test Program.
-------
Start
Test
Run 1
Port
Change
Run 2
Run 3
Stop/Start
Stop/Start
Slop Start// Stop/ s.OD/s,arl End
Test TestyY Start StoP«J«t Slop/siarl Te9,
P°ft
Stop/Start Change
.
• lflIl|t*>*TTII11
15:25 16:00 17:00
18:00 12:45
Time
14:00 15:00 16:00 17:00
Time
11:15 13:00 14:00 15:00'16:00' 17:00 18:00 19:00
Time
Indicate periods in which manual sampling
trains were not operating
KEY
D Dust collector differential pressure (in H,O)
-I- Spray dryer differential pressure (in H,O)
0 Fabric filter differential pressure (in H,O)
Figure 3-10. Differential pressures across the control devices during the
MERC Test Program.
cc
§
-------
-------
4.0 HC1 CONTINUOUS EMISSION MONITORING SYSTEM DESCRIPTIONS
The following discusions briefly outline the operational principles of the
monitoring equipment employed to quantify the HC1 concentrations at three
locations within the Unit A flue gas handing system.
Entropy is currently evaluating these instruments in another study for the
EPA and has compiled information on their operational parameters and princi-
ples. This information is presented in the descriptions that follow. It
should be noted that operational characteristics of these instruments are not
yet fully established as they have been for S0_ and NO CEM systems.
£. X
4.1 THERMO ELECTRON MODEL 15 HC1 ANALYZER/MODEL 200 DILUTION SYSTEM
The Thermo Electron system was used at the spray dryer inlet monitoring
location (see Section 5)•
The Thermo Electron (TECO) Model 15 Gas Filter Correlation (GFC) HC1
analyzer is an analytical instrument for continuous, real time measurement of
HC1 on a wet basis.
GFC spectroscopy is based upon comparison of the absorption of a selected
wavelength within the infrared (IR) absorption spectrum by the measured gas to
that of other gases also present in the sample being analyzed. The technique
is implemented by using a high concentration sample of the measured gas (i.e.,
HC1) as a filter for the IR radiation transmitted through the analyzer. The
analyzer contains a correlation wheel that consists of two hemispherical cells,
one filled with HC1 and the other with N_. Integral with the correlation wheel
is the chopper pattern necessary to produce the high frequency chop required by
the IR detector.
Radiation from an IR source is chopped and then passed through the gas
filter, alternating between HC1 and N_ as the filter wheel rotates. The
radiation then passes through a narrow bandpass interference filter and enters
a multiple optical pass cell where it is absorbed by the sample gas. The IR
radiation that is not absorbed then exits the sample cell and is measured by
the IR detector.
The HC1 gas filter produces a reference beam that cannot be further
attenuated by HC1 in the sample cell. The N_ side of the filter wheel is
transparent to the IR radiation and therefore produces a measure beam that can
be absorbed by HC1 in the cell. The chopped detector signal is modulated by
the alteration between the two gas filters with an amplitude related to the
concentration of HC1 in the sample cell. Other gases do not cause modulation
of the detector signal, because they absorb the reference and measure beams
equally. Thus, the GFC system responds specifically to HC1.
With the improved rejection of interference afforded by the GFC technique,
the sensitivity of the analyzer is increased by using multiple pass optics in
the sample cell, which leads to a large path length, and thus an improved
sensivity, in a small physical space. This allows full scale sensitivity down
to 1 ppm.
43
-------
Because IR absorption is a nonlinear measurement technique, the
instrument electronics transform the basic analyzer Signal into a l^ar
output The exact calibration curve is stored in the computer's memory ana
or pressure of the sample gas.
.
he test program. The vendor claims that the detection limit for this
instrument is 0.1 ppm.
The Model 200 dilution system comprises the following components:
• In-situ dilution probe with sample orifice,
• Transport tubing, and
• M200 stack probe control unit.
The dilution probe is designed to extract a small amount of sample
continuously through a fine filter. The sample flow rate is PJJ«sely
controlled to within 2% by a glass critical orifice of low coefficient of
expansion. By reducing the pressure after the fine filter with a precision
aspirator to create a vacuum of 0.46 bar in the volume downstream of the
critical orifice, a constant flow of flue gas sample is drawn through the
orifice, thoroughly mixed with the aspirator air, and then transported through
the sample line to the appropriate analyzer.
The sampling system is designed to permit stepwise dilution ratios of 12:1
to 350:1 within the probe by a single selected orifice.
Calibrations are performed by introducing calibration gas through the
calibration line to a point within the probe upstream of the first fine filter
in the probe dilution orifice. In this way, the calibration gas follows all of
the sample conditioning steps taken by the flue gas sample.
The lines transporting flue gas sample and calibration gas are Teflon, and
the dilution air and vacuum lines are polyethylene. The flue gas sample line
is heated to approximately 300 F.
The dilution air and calibration gas flow controls are contained within the
M200 control unit.
4.2 COMPUR MODEL 4 150 ZGSM HC1 ANALYZER/MODEL 4330 DILUTION SYSTEM
The Compur system was used at the spray dryer outlet monitoring location
(see Section 5) •
The Compur 4150 HC1 analyzer uses an ion selective electrode (Cl ) to
measure (after dilution) HC1 concentrations in a range of 0-150 ppm on a wet
basis. Detection limits for this instrument are unknown.
44
-------
The sample gas is drawn into the analyzer by means of an air aspirator.
The sample passes through an atomizer, the measuring cell, and then to the
waste reservoir, where the gas is exhausted from the analyzer. A peristaltic
pump delivers absorption solution from the storage reservoir to the atomizer,
where it is atomized to an aerosol. The HC1 in the gas sample passing
through the atomizer is scrubbed from the gas by the atomized absorbing
solution. A highly enriched solution is produced and passed between two
electrodes, a reference and a chloride ion electrode. The concentration
related potential of the electrodes is fed to the microprocessor. The
corresponding HC1 concentration in units of grams per cubic meter is
displayed on a front panel digital display. A 0 - 1 volt output is provided
for a data recorder.
The analyzer performs its own internal calibration automatically at
selected time intervals by using a liquid standard. Continuous
self-diagnostic routines verify proper operation of the analyzer. The
alphanumeric display .and built-in printer provide status conditions of the
analyzer, alarm functions, and identification of the cause of any
malfunctions, as well as continuous updates on the concentration
measurements.
Compur developed a dilution probe to be used in conjunction with the
Model 4150 analyzer to sample stack emissions. The dilution probe is an
extractive sampling device that produces constant sample gas dilutions at
selected ratios varying from 10:1 to 100:1. (The operating range of the
Compur monitoring system is decided upon in the field after the optimum
dilution ratio is chosen, and then verified using an independent analyzer and
calibration gases.) The dilution probe is electrically heated to 200 C
(392 F) and is constructed of corrosion resistant materials. The flue gas
sample line is also electrically heated (approximately 300 F).
An air jet pump within the probe acts as an in-stack dilution device by
aspirating the flue gas sample through an orifice and diluting the gas sample
with dry regulating air. By reducing the pressure downstream of the orifice
with the aspirator air, a constant flow of flue gas sample is drawn through
the orifice and mixed with the aspirator air. The orifice operates within
the critical region, greatly reducing the influence of pressure fluctuations
at the sampling point which tend to affect the flow of sample gas and thereby
to change the dilution rate.
Calibration of the system is performed by injecting calibration gas
through a transport tube to the probe, at a point upstream of the critical
orifice. Thus, the calibration gas is conditioned in the same manner as the
flue gas sample (i.e., filtered, diluted, and transported).
The Model 4150 analyzer continuously monitors all Model 4330 dilution
system parameters, such as probe temperature, pressures, and flow rates. The
analyzer's microprocessor calculates the actual HC1 concentrations present in
the effluent by correcting the analyzer measurements for the dilution ratio
selected by the operator.
4.3 BODENSEEWERK SPECTRAN MODEL 6?7 IR HC1 MONITORING SYSTEM
The Bodenseewerk system was used at the baghouse outlet monitoring
location (see Section 5).
45
-------
The Bodenseewerk 677 HC1 analyzer employs the gas filter correlation
(GFC) technique with the multiple optical pass cell and sampling system
maintained at an elevated temperature of 180 C (356 F). HC1 concentrations
are recorded on a dry basis within a system range of 0-250 ppm. The analyzer
measurement is made on a wet basis. Molecular interaction between HC1 and
water vapor in the sample gas increases the absorption of IR as water vapor
content increases. This phenomenon is used to compensate for the dilution
effect of water vapor in the sample gas. The Bodenseewerk 677 analyzer was
configured at the factory for applications with approximately 15 percent
moisture content in the effluent. Accordingly, the analyzer concentration
readings correspond to a dry measurement. The vendor claims the detection
limit of this instrument is 2 ppm.
GFC spectroscopy is based upon comparison of the absorption of a selected
wavelength within the infrared (IR) absorption spectrum by the measured gas
to that of other gases also present in the sample being analyzed. The
technique is implemented by using a high concentration sample of the measured
gas (i.e., HC1) as a filter for the IR radiation transmitted through the
analyzer. The analyzer contains a correlation wheel that consists of two
hemispherical cells, one filled with HC1 and the other with N2- Integral
with the correlation wheel is the chopper pattern necessary to produce the
high frequency chop required by the IR detector.
Radiation from an IR source is chopped and then passed through the gas
filter, alternating between HC1 and N as the filter wheel rotates. The
radiation then passes through a narrow bandpass interference filter and
enters a multiple optical pass cell where it is absorbed by the sample gas.
The IR radiation that is not absorbed then exits the sample cell and is
measured by the IR detector.
The HC1 gas filter produces a reference beam that cannot be further
attenuated by HC1 in the sample cell. The N_ side of the filter wheel is
transparent to the IR radiation and therefore produces a measure beam that
can be absorbed by HC1 in the cell. The chopped detector signal is modulated
by the alteration between the two gas filters with an amplitude related to
the concentration of HC1 in the sample cell. Other gases do not cause
modulation of the detector signal, because they absorb the reference and
measure beams equally. Thus, the GFC system responds specifically to HC1.
The sample gas is drawn from the effluent via a heated sample pump at a
rate of approximately 13 liters/minute. A coarse, fritted filter is located
at the probe tip for filtering particulate matter. The sample gas is heated
to approximately 180 C (356 F), and it maintains this temperature throughout
the transport system and the sample cell until it is exhausted from the
analyzer.
The Model 677 analyzer employs zero air and an internal sealed gas cell
for zero and upscale calibration checks. The monitoring system can accept
calibration gases; the gas injection point is located at the probe.
The concentration measurements in units of ppm (dry) are displayed on a
front panel meter and are also recorded by a built-in strip chart recorder.
A 0-1 volt output is provided for an external data-recording device.
-------
5.0 DESCRIPTION OF THE HC1 CEM SAMPLING PROGRAM
Three independent HC1 continuous emission monitoring systems were
employed by Entropy to measure HC1 emissions continuously at (1) the spray
dryer inlet, (2) the spray dryer outlet, and (3) the baghouse outlet. All
three CEM systems used in the test program are complete in themselves; no
time-sharing was done. (See Figures 5.1 and 5.2.) Both the spray dryer
outlet and the baghouse outlet monitoring systems were measuring low
concentrations of HC1 (i.e., generally < 100 ppm). There are no data
available on the performance of the Compur HC1 CEMS for monitoring low HC1
emissions to support the accuracy of the Compur in this concentration range.
The Compur has not yet been operated and tested in the EPA's HC1 CEM
evaluation program at a source of controlled HC1 emissions. The Bodenseewerk
HC1 CEMS has been operated at the outlet of HC1 control equipment during
previous studies. Independent accuracy audits have provided verification of
the Bodenseewerk measurement data in terms of accuracy at the low
concentration levels.
A brief description of each HC1 CEM system by sampling location is
outlined in the sections that follow.
5.1 SPRAY DRYER INLET - THERMO ELECTRON HC1 MONITORING SYSTEM
The Thermo Electron (TECO) monitoring system was comprised of a Model 15
analyzer (operated on the 0-20 ppm analyzer range), a Model 200 probe control
unit, and a dilution probe (45:1 dilution ratio). This system was employed
to measure HC1 emissions at the spray dryer inlet location (see Figures 5-2
and 5-3). The operating range of the measurement system was 0-900 ppm HC1.
A three point linearity check was performed at the beginning of the test
program using the following gases: 0 ppm, 428 ppm, and 881 ppm HC1. Prior to
each test run, a two-point calibration was performed utilizing a zero gas and
one upscale HC1 gas concentration (428 ppm). The gases were injected through
the entire sample handling system, which includes the dilution probe. At the
conclusion of the test run, the same two gases were again injected through
the measurement system to check for drift; no adjustments to the system were
made. The calibration drift corrections to the HC1 measurement data were
made according to the procedures in Method 6C.
The analyzer output signal was recorded by a computerized data
acquisition system.
The TECO probe dilution ratio was verified at the beginning of the test
program by flowing a CO calibration gas (Protocol No. 1 certification)
through the dilution system and recording the response displayed by a
calibrated CO analyzer.
Since the TECO system measures HC1 on a wet basis, the results were
corrected to a dry basis using Method 4 results provided by MRI.
5.2 SPRAY DRYER OUTLET (MIDPOINT) - COMPUR HC1 MONITORING SYSTEM
The Compur Model 4150 HC1 analyzer with heated dilution probe (dilution
ratio 40 to 1) was used to measure the HC1 concentrations at the spray dryer
47
-------
BODENSEEWERK
SAMPLING PROBE.
PIPE
FROM LIME
STORAGE
SILO
I.D.
FAN
I.D.
FAN
SE
BAG
COMPUR DILUTION
SAMPLING PROBE
TECO HO DILUTION
SAMPLING PROBE
DUST
COLLECTOR
DUST
COLLECTOR
UNFT A
UNO" B
FIGURE 5.1. LOCATION OF TESTING TRAILER AND SAMPLE LINES
3516 B 11/87
-------
r
TRAILER
BAGHOUSE
OUTLET
100' HEATED
TEFLON TUBING
L
BODENSEEWERK
PROBE
SINTERED FILTER
CAL GAS INLET
BODENSEEWERK
ANALYZER
SPRAY DRYER
OUTLET
80' HEATED
TEFLON TUBING
-tr
V£>
COMPUR DILUTION
PROBE
BARREL NOZZLE FOR
PARTICULATE REMOVAL
CAL GAS INLET
COMPUR
ANALYZER
DAS (COMPAQ PC)
DRYER
INLET
120 'HEATED
TEFLON TUBING
L
TECO DILUTION
PROBE
SINTERED FILTER
CAL GAS INLET
M200
PROBE
CONTROL
UNfT
TECO
ANALYZER
TRAILER
FIGURE 5.2. FIELD EVALUATION SET- UP.
3516B 11/87
-------
BAGHOUSE
HQ
CEM
SAMPLE
PORT
SPRAY DRYER
OUTLET
SAMPLING
PORTS
SPRAY
DRYER
OTHER
SAMPLING
PORTS (3)
FIGURE 5.3. TOP VIEW OF SPRAY DRYER INLET AND OUTLET SAMPLING LOCATIONS.
3516 11/87
-------
outlet (midpoint) location (see Figures 5.2 and 5.3). The operating range of
the Compur monitoring system was 0 - 268 ppm. Collection of representative
samples at the spray dryer outlet location was particularly difficult because
of the high particulate matter concentration in the effluent stream upstream
of the baghouse. The particulate matter consisted of both fly ash and
evaporated lime slurry, which reacts with the sample gas stream to remove
HC1, thereby resulting in lower than actual HC1 gas concentration
measurements. To minimize these effects, specialized sampling approaches
were developed to separate the reactive particulate from the sample gas
stream.
Unexpected delays encountered during the equipment set-up and plant
process operating problems reduced the available time to investigate each of
the four specialized sampling approaches proposed in the work plan. The only
approach investigated (due to these time constraints) relied on a barrel
nozzle attached to the end of the Compur dilution probe (see Figures 5-2,
5.4, and 5-5) • The barrel nozzle is a totally passive device that minimizes
the amount of particulate that accumulates on the filters within the Compur
probe. The barrel nozzel attached to the Compur probe was used during the
set-up of the spray dryer outlet HC1 monitoring system and for acquiring
preliminary measurements. This system was operated over a four hour sampling
period and was found to be reliable and able to provide particulate
separation which resulted in the accumulation of only a minimum amount of
particulate. The orientation of the holes in the barrel was 90 to the angle
of effluent flow. HC1 calibration gas was then introduced into the sampling
system immediately upstream of the glass wool in the probe tip to determine
if the collected particulate would react with the HC1 calibration gas and
create a low bias in the measurement. A typical response to the calibration
gas injection was observed with no apparent increase in the response time of
the measurement system to reach the expected value, thus indicating that the
particulate may be unreactive by the time it reaches the glass wool.
At the conclusion of each test day, the probe was removed from the duct
and disassembled for inspection and cleaning.
A three-point linearity check was performed at the beginning of the test
program using the following gases: 0 ppm, 9^ Ppm, and 221 ppm HC1. Prior to
each test run, a two-point calibration was performed utilizing a zero gas and
one upscale HC1 gas concentration (9^ ppm). The gases were injected through
the entire sample handling system, which includes the dilution probe. At the
conclusion of the test run, the same two gases were again injected through
the measurement system to check for drift; no adjustments to the system were
made. The calibration drift corrections to the HC1 measurement data were
made according to the procedures in Method 6C.
The Compur probe dilution ratio was verified at the beginning of the test
program by flowing a CO calibration gas (Protocol No. 1 certification)
through the dilution system and recording the response displayed by a
calibrated CO analyzer.
The analyzer output signal was recorded by a computerized data
acquisition system. Since the Compur system measures HC1 on a wet basis, the
results were corrected to a dry basis using Method 4 results provided by MRI.
51
-------
TO
HCI ANALYZER
f
COMPUR
DILUTION
PROBE
BARREL
NOZZLE
EFFLUENT FLOW
IN HORIZONTAL DUCT
FIGURE 5.4 SPRAY DRYER OUTLET SAMPLING SYSTEM; PASSIVE NOZZLE
52
3516 12/87
-------
TOP VIEW
FRONT VIEW
SAMPLE
FLOW
t
k
6"
r
O
0
0
o
°x
0^
o
o
0
o
o
0
o
o
0
o
o
o
o
o
0
o
o
r
^
1/16' HOLES AT 1/4' INTERVALS
EFFLUENT
FLOW
FIGURE 5.5 BARREL NOZZLE
3516 12/87
53
-------
5.3 BAGHOUSE OUTLET - BODENSEEWERK HC1 MONITORING SYSTEM
The Bodenseewerk Model 6?7 IR HC1 analyzer was employed to meaure HC1
concentrations within a range of 0-250 ppm HC1 at the baghouse outlet loca-
tion (see Figures 5.2 and 5.6) A three point linearity check was performed
at the beginning of the test program using the following gases: 0 ppm,
47 ppm, and 94 ppm HC1. Prior to each test run, a two point calibration was
performed utilizing a zero gas and one upscale HC1 gas concentration (4? ppm).
The gases were injected through the entire sample handling system. At the
conclusion of the test run, the same two gases were again injected through the
measurement system to check for drift; no adjustments to the system were made.
The calibration drift corrections to the HC1 measurement data were made
according to the procedures in Method 6C.
The analyzer output signal was recorded by a computerized data acquisition
system.
5.4 DATA ACQUISITION SYSTEM
The data acquisition system (DAS) developed by Entropy uses a Compaq
Portable Personal Computer with a 10 MB hard disk and an internal 12-bit
analog-to-digital converter with a 16 channel multiplexer. Surge supressors
are provided to minimize data loss in the event of electrical disturbances. In
addition to providing an instantaneous display of analyzer responses, the DAS
averaged the measurement data and documented analyzer calibrations. The test
results and calibrations were stored on the hard disk and printed on an Epson
dot matrix printer. Strip chart recorders were employed as a backup system.
The HC1 emissions from the three HC1 analyzer measurement locations were
recorded as 1-minute, 30-minute, and hourly averages.
Each day, the stored measurement data generated by Entropy's testing were
provided to MRI on a floppy disk.
-------
PLATFORM
331 FROM
GROUND
LEVEL
LADDER
4' DIA.
TEST PORTS •
UNIT A
BAGHOUSE
BODENSEEWERK
PROBE
FROM
SPRAY
DRYER
FIGURE 5.6. LOCATION OF SAMPLING PROBE AT THE BAGHOUSE OUTLET
3516 B 11/87
-------
-------
6.0 QUALITY ASSURANCE/QUALITY CONTROL
The quality assurance/quality control (QA/QC) activities for this test
program were previously described in detail in the "QA/QC Project Plan." The
goals of the quality assurance activities were to quantify data accuracy and
precision and to maximize data capture. Presently, there are no EPA test
methods or performance specifications for operating HC1 monitoring systems or
for conducting wet-chemical sampling for HC1. Only recently have relatively
stable HC1 calibration gases become available. The results of the QA/QC
activities performed are described below.
6.1 HC1 SAMPLING SYSTEM INSPECTION
At the start' of each test day, an inspection of each component of the HC1
sampling systems was conducted. The daily check lists that were filled out
are contained in Appendix C. Due to a build-up of particulate matter in the
midpoint sampling system, the barrel nozzle device on the Compur dilution
probe was cleaned daily and the glass wool was replaced. The TECO dilution
probe glass critical orifice was also inspected and the glass wool in the
probe tip replaced daily.
6.2 LINEARITY CHECKS AND MIDRANGE QC CHECKS
A three-point linearity check was performed on each of the three
monitoring systems at the beginning of the test program. These linearity
checks produced results that were all within the X).995 correlation
coefficient (r) acceptance criterion. The calibration gas concentrations and
the monitor responses are presented in Table 6.1.
The midrange QC checks proposed in the QA/QC Project Plan to be performed
at various times during the test program were not conducted because there
were no independent HC1 audit calibration gases provided.
6.3 CALIBRATIONS AND DRIFT CALCULATIONS
The zero and span calibration drift was calculated for each HC1
monitoring system for each test run. The results of the calibration drift
checks are presented in Table 6.2. All of the results were less than the 20%
of span drift limit specified in the Quality Assurance Project Plan. Prior
to each test run, a two-point calibration was performed utilizing a zero gas
and one upscale HC1 calibration gas. The gases were injected through the
entire sample handling system which includes the probe. At the conclusion of
the test run, the same two gases were injected through the measurement system
to check for drift; no adjustments to the system were made. The calibration
drift corrections to the HC1 measurement data were made according to the
procedures in Method 6C.
The calibration summary sheets for each test run are contained in
Appendix B.
57
-------
TABLE 6.1.
HC1 CEM LINEARITY CHECK (3-Point)
TECO (12/9/8?)
Gas CEM
Cone . Response
(ppm HC1) (ppm HC1)
0 4
428 438
881 890
Correlation*
Coefficient
r = 0.999
Compur
Gas
Cone.
(ppm HC1)
0
94
221
CEM
Response
(ppm HC1)
1
93
248
(12/8/8?)
Correlation*
Coefficient
r = 0.998
Bodenseewerk
Gas
Cone.
(ppm HC1)
0
47
94
CEM
Response
(ppm HC1)
0
42
95
(12/6/87)
Correlation*
Coefficient
r = 0.998
"Acceptance criteria is r > 0.9950
ui
oo
TABLE 6.2.
CALIBRATION DRIFT RESULTS FOR EACH TEST RUN
Run
No.
1
2
3
TECO
Spray Dryer Inlet
Zero Span
(% span) (% span)
6.0 8.9
1.1 2.1
0.8 2.7
Compur
Spray Dryer Outlet
Zero Span
(% span) (% span)
0.7 1.9
0.4 -7.1
0.7 6.3
Bodenseewerk
Baghouse Outlet
Zero Span
(% span) (% span)
0 1.6
-0.2 1.2
-0.4 0.8
Note: Measurement data were adjusted assuming linear drift, as long as drift was less than 20% of span. If drift
exceeded 20% of span, the measurement data were rejected.
-------
6.4 WET CHEMICAL SAMPLING FOR PERFORMANCE EVALUATION AUDITS
Entropy plannned to conduct performance evaluation audits to determine the
accuracy of each measurement system prior to the test program. These relative
accuracy audits were to be performed on each of the three HC1 monitoring
systems by conducting three runs of wet chemical impinger sampling for HC1
simultaneously with HC1 monitoring during preliminary testing. However,
several problems reduced the available time to perform all of the proposed
pre-test checks/audits prior to the start of the test program. Unexpected
delays were encountered during the equipment set-up/start-up period (the
electrical contractor was slow to connect electrical power to the Entropy
equipment), the plant was not operating for 1-1/2 days during the scheduled
three-day preliminary testing period, and numerous process difficulties caused
delays throughout the test program. These problems were discussed with the EPA
Task Manager, and he in turn informed Entropy that it would be acceptable to
perform the relative accuracy audits during the testing program when time
permitted.
The relative accuracy audits on the HC1 CEMSs at the spray dryer inlet and
outlet locations could only be performed after each test program run because
all the available sample ports were being used during these test runs. Also,
the areas around the sample locations were too small to accomodate testing
personnel and equipment while both MRI and Entropy were working simultaneously.
The process operating problems that delayed and disrupted the test program
sampling runs also prohibited the performance of the performance audits at the
spray dryer inlet and outlet locations.
The relative accuracy audit was performed at the baghouse outlet location.
The wet chemical impinger sampling was performed exactly as specified in the
work plan (see Appendix I for the sampling/analytical procedures), with a
sampling period of 20 minutes. The impinger results, however, are
questionable. The impinger sample results for each run were 1 ppm HC1, while
the averaged Bodenseewerk measurements over the same three sampling periods
were 6 ppm, 11 ppm, and 43 ppm.
On-site titration analyses were not performed on these outlet samples
because the HC1 effluent concentrations at this location were expected to be
below the quantifiable detection limit of 20 ppm HC1 for the mercuric nitrate
titration. Therefore, the low results were not discovered until the 1C
analysis of the split samples was performed at the Entropy laboratory after the
test program was completed. The reason for the low impinger measurements is
not known.
Previous testing conducted at similar municipal waste incinerators has
revealed excellent agreement between the impinger sample results and
Bodenseewerk measurements, even at the low effluent concentrations (<10 ppm
HC1). Since the impinger results are questionable, they cannot be used to
validate the Bodenseewerk measurement data. The previous comparative
measurements indicate there should be no reason to suspect the validity or
accuracy of the Bodenseewerk measurements.
59
-------
APPENDIX A.
Test Program One-Minute Data Printouts
• Run 1
• Run 2
• Run 3
A-l
-------
A-2
-------
C O M "T I 1x8 LJ O LJ S El M I S S II O |s| S M O M I T O FC I IM «3 S E£ ~T — LJ I™"
SOURCE: HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
DATE: 12-09-1987 TIME: 09:44
A/D CHAN DESCRIP
1 INLET
2 MID
3 OUTLET
i (hi T "TC
Wi H J. I w/
wetHCl
wetHCl
dryHCl
SPAN
900
268
250
INPUT
VOLTAGE
10.
0.
O
00
95
21
i J"
V
V
V
ZERO
OFFSET
07.
07.
;--,"/
AVERAGING PERIODS; 30 MINUTES,
NO EMISSION RATE CALCULATIONS
A-3
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
TIME
10:32
10:33
10:34
10s35
10:36
lOi 37
10:38
10s39
10540
10:41
10:42
10:43
10 1 44
10:45
10:46
10:47
1 0 : 48
1 0 : 49
10:50
10:51
10:52
10:53
10:54
10:55
10:56
10:57
1 0 : 58
10:59
1 1 : 00
AVERAGE
1 1 : 00
11:01
11:02
1 1 : 03
1 1 : 04
1 1 5 05
11506
1 1 5 07
1 1 s 08
1 1 : 09
Hi 10
Us 11
11: 12
111 13
111 14
11: 15
11: 16
111 17
11: 18
Hi 19
1 1 : 20
11:21
r^«^«^
CHAN 1
INLET
wetHCl
5.7
2. 1
4-6
1.8
3.9
3. 3
3.5
7.5
10.9
14-9
14.9
9.7
11. 1
-1.8
2.4
-3. 6
-1.7
-0.5
4.3
1.8
5.6
3. 1
7TZF
6. 3
22. tf
1 ji-i . 7
225.3
275.3
317.4
VALUES
_,„>?<
335.2
358.0
372.4
383. 1
388.6
401.2
404.5
407. 1
412.3
422.6
415.7
426.4
424.2
426.7
429.4
434.7
438.4
431.9
438.7
•• "j.n33 . 4
CHAW 2
MID
wetHCl
2.5
2. 1
2. 1
1.9
1.8
1.7
1.6
1.6
1.6
1.7
1.7
1.7
1.8
1.8
1.8
1.8
2.0
•Qf.'fl 2 . 2
(^ 2.2
2. 1
2. 1
2.0
" 1.9
^^1 J* '"•' (")
*l* o /•)
"jflfttff^1-9
4^fr 1.9
| |*A 1.9
\
^FOR THE LAST
1.9
1.9
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
-"•• 2.0
2.0
CHAN 3
OUTLET
dryHCl...
0.3
-0. 1
0. 1
0 . 4
0.5
0.2
0.6
0. 1
0. 1
-0. 3
-0.5
0. 2
-0.4
-0.4
0.7
0 . 7
0.8
72.2
1 2 . 0
0 . 6
-0.0
0.3
1. 1
1 . 0
O-Jx*
^^^s^ E="
1.2
1. 1
0.8
HOUR:2!:
^*
0.6
-0. 1
-0.4
0.6
0.7
0.9
0.9
1. 1
0.4 '
0.5
98.0
101.3
-0.4
0.2 •
3.5
44.3
48. sT
49.2 I
48. 3J
48. 4J
16.4
9 MINUTES OF VALID DATA
A-4
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
TIME
11:22
11:23
11:24
11:25
11:26
11:27
11:28
1 1 : 29
1 1 : 30
AVERAGE
11:30
11:31
11:32
1 1 : 33
11:34
11:35
11:36
1 1 : 37
1 1 : 38
11:39
1 1 : 40
11:41
11:42
11:43
11:44
11:45
11:46
11:47
11:48
11:49
1 1 : 50
11:51
11:52
1 1 : 53
11:54
11:55
11:56
11:57
11:58
11:59
12:00
CHAN 1
INLET
wetHCl
213.2
159.6
457.3
466.4
570.0
689.8
763. 1
795.9
VALUES
428.0
811.6
826.8
833 . 9
840.3
848.3
856.2
863.6
861.5
868.5
870.6
872.0
875.3
878.7
879.4
879.3
880.4
886.9
884.9
890.2
886. 1
894 . 0
811.6
518. 1
185.9
115.4
73.9
57.0
47.9
46.7
39.2
CHAN 2
MID
wetHCl
d4JfD 2 • ° ./«
#\H"2.0&
\W* 2\Q\
1 2. I1
• 2.0
2. 1
2. 1
CHAN 3
OUTLET
, -6.7
0.2
-0.2
0.2
^^.("i. ?
1.4
4.2
5.0
5.6
FOR THE PREVIOUS 30
2. 0
2. 1
2. 1
2. 1
2.2
2.2
2.2
2.2
2.2
2. 1
2. 1
2. 2
2. i
2. 1
2.2
2.2
2. 2
2. 1
2.0
2.0
2.0
2.0
1.9
1.7
1.6
1.6
1.7
1.8
1.8
1.8
1.9
15.7
5. 1
5. 1
5.2
5T
• •— '
4.8
5.3
5.0
5.2
5. 1
4.4
4-3
4.2
4.9
5. 1
5. 1
5.0
4.3
4.6
4.8
4.9
5.2
5. 1
5.6
5.8
3.9
0.5
1.0
0. 1
-0.2
3.9
jo* i*<«^ **
MINUTES
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
12:00 669.5 2.0 4.3
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
12:00 548.7 2.0 10-0
A-5
12:01
12:02
12:03
12:04
33.0
38.6
28.9
32. 1
1.8
1.9
1.9
1.8
19.3
32.5
40.9
44.6
47
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
TIME
12:0'5
12:06
12:07
12:08
12:09
12: 10
12: 11
12: 12
12s 13
12:14
12: 15
12: 16
12: 17
12: 18
12:19
1 2 s 20
12:21
12: 22
12:23
12s 24
12:25
12:26
12s27
12: 28
12:29
12s30
CHAM 1 CHAN 2
INLET MID
wetHCl westHCl
33. 4
^S I*"
27.81
27.6'
25.5
27.0
24 . 4
20.9
20. 1
25. 1
1 9'. 6
20.8 -
21.8
26 . 0
20 . 6
20.8
22. 6
18. 1
18. 4
IB. 3
22.9
25.6
21.7
15.4
13.5
1 . 8
iiyi
1.5T
1.4
1 . 2
1. 1
1. 1
1. 1
1. 1
1. 1
1. 1
1. 1
1. 1
1 . 1
1. 1
1 . 0
1.0
1 . 0
tT9~
1.0
1. 1
1.4
1.6
1.9
CHAN 3
OUTLET
clryHCl..
47.9
, 49.2
50.5
50.7
51.3
•50 . 6
50 . 8
50.8
^*%!!*y H O
21.0
9.8
6.9
5.0
4.4
T O
•_' * JU-
3. 1
2.6
1. 1
t™, f—t
j;^ • ^1,
1.5
1.5
1 . 3
1.3
1.2
1 . 3
1. 1
&*' U£
"ff-
^~*r
JJ&V
I
1
AVERABE VALUES FOR THE PREVIOUS 30 MINUTES
1 2 s 30
27^. 9
1.
1.6
12:
12!:
12:
12:
12s
12:
12s
12:
12:
12:
12:
12:
12:
12s
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
12
15
18
10
19
17
10
16
15
12
17
12
12
16
20
17
20
16
10
17
13
12
IB
16
10
„
.
B
0
•
.
m
„
„
„
»
•
M
•
„
B
•
M
*
m
m
m
m
•
2
8
4
6
1
"'I
2
-r
•— '
4
5
3
7
7
2
2
1
1
3
5
7
8
9
9
0
3
2.
201.
225.
200-
194.
190.
187.
184.
184.
209.
217.
r~lf~\r~i
^.^.oi .
226.
228.
229.
188.
183.
181.
179.
178.
177.
206.
221.
227.
230.
2 .j
7 jf«
4 ft*
°
51
3
9
2
8
6
4
0
9
1
6
4
1
7
6
9
0
7
3
5
fil* 0
0
0
o
0
1
1
1
0
o
0
-0
0
1
0
0
0
0
0
0
-0
-0
0
0
0
a
H
•
•
B
H
B
•
m
m
u
m
m
m
m
m
m
„
m
m
m
m
7
9
6
8
7
0
4
0
9
9
2
0
2
1
7
4
7
7
3
6
7
6
6
3
7
A-6
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
TIME .
12 -.56
12:57
12:58
12:59
13:00
CHAN 1
INLET
wetHCl
1 3 . 2 -*
16.0^
18.0 I*
12.31
12.0*
CHAN 2
MID
wetHCl
> 232.3
( 233.6
193.4
181.6
179.3
f
CHAN 3
OUTLET
0.5,
0.5 1
0. 1 T
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
13:00 15.1 196.7 0.6
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
13:00 19.5 99.0 11.1
13:01
13:02
13:03
13:04
13:05
13:06
13:07
13:08
13:09
13: 10
13: 11
13: 12
13: 13
13: 14
13: 15
13: 16
13: 17
13: 18
13: 19
13:20
13:21
13:22
13:23
13:24
13:25
13:26
13:27
13:28
13:29
13s 30
17. 1
18.2
18.2
16.2
12. 1
14.2
16.3
19. 1
16. 1
15. 1
22 . 2
20.8
9.2
16.0
16.4
15.7
11.5
12.5
18.3
18.9
11.2
14. 1
12.8
20 . 1
14.6
12.6
21.0
11.4
15.4
12. 1
177.9
177.2
181. 1
213. 1
221.4
226.6
53.4
51.7
80.9
95.3
107.3
93.7
204.5
226.0
230 . 9
233.2
234.4
235. 2
186.3
176. 1
208.5
80. 1
85.2
100.0
103.3
152.4
233.8
236. 1
187.9
176.5
-0 . 3
-0.4
0.7
0.5
0.5
1.2
0. 2
0 . 3
0,2
0.2
0. 1
0.3
0.2
0.3
--0.6
0.5
0.7
0.3
0 . 0
O.Ji,
^^mftj
***^ 4- 7
5. 6
5.9
5.9
5.8
6. 1
6.6
6.4
6.3
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
13:30 15.6 165.7 2.0
13:31
13:32
13:33
13:34
.13:35
13:36
13:37
13:38
18.7
13.9
13.5
18.9
18.3
13. 1
14.0
21.2
175.8
216.3
112.3
66.8
96.3
108.2
107. 1
108. 1
10.7
8.7
8.5
8.4
8.0
8.2
8.7
10.8
A-7
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
TIME..
13539
13: 40
13! 41
13s42
13s43
13s 44
13n 45
13:46
13: 47
13 j 48
13s 49
13s 50
13:51
13552
13s 53
13t 54
13s55
13s 56
13:57
13s 58
13s 59
14s 00
CHAM 1
INLET
wetHCl
16.2
14.9
17. 1
21.4
IB. 8
15.2
17.3
12.5
17.5
IB. 9
17.3
24.6
2 1 . 0
21.2
15.8
19.5
18.2
20.3
19.3
20.9
19.5
18.0
CHAM 2
MID
wetHCl
43.6
9.7
63.7
234 . 2
224- 4
178.7
176.8
176.0
216.4
107.4
1.8
0-8
0. 1
0.2
0. 1
0. 1
0. 2
0. 2
96.0
235.8
175.7
173. 1
CHAN 3
OUTLET
djiyHCl
12.3
14.6
16.2
17.6
19.7
23.4
23. 4
13.7
13.9
12.4
11.2
14.3
19.3
16.6
17. 1
18.3
17. 1
14.6
13.8
13.0
12.2
11.7
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
14s 00
17.9
103
14.0
AVERAGE VALUES FOR THE LAST HOURi 60 MINUTES OF VALID DATA
14s00 16.8 134.6 B.O
14s01
14i 02
14s 03
14s 04
14s05
14s06
14; 07
14:08
14:09
14: 10
14: 11
14: 12
14: 13
14s 14
14s 15
14: 16
14: 17
14: 18
14: 19
14:20
14:21
14:22
14:23
14:24
14:25
13. B
20.2
18.3
16.2
19.4
23.7
22.2
IB. 8
20. B
20 . 3
17. 1
11.2
IB. 5
20.6
12.3
12.5
13.2
10.9
15.8
15.6
15.4
12.4
19.7
13. 1
16.5
44.2
94.5
104.2
112.9
111.7
115. 1
141.7
118.4
90.4
0- 1
0.2
0.2
0. 1
0. 1
70.3
237.3
180-9
173.6
26. 1
B7. 1
94.9
100. 1
99.7
99.4
110.9
12. 1
11.4
10.4
10. 1
9.4
9.0
9. 1
9.5
11.7
15.6
14.6
13.9
14.2
13.7
12.6
11.6
10. B
10.9
9.2
B. 1
7.8
7.8
9.3
12.6
11.7
A-8
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
TIME
14:26
14:27
14:23
14:29
14:30
AVERAGE
14:30
14:31
14:32
14:33
14:34
14:35
14:36
14:37
14:33
14:39
14:40
14:41
14:42
14:43
14:44
14:45
14:46
14:47
14:48
14:49
14:50
14:51
•14:52
14:53
14:54
1 4 : 55
14:56
14:57
14:53
14:59
15:00
CHAN 1
INLET
watHCl
20.7 /^
16.4 AJI
20 . 0 |
20-9 L
CHAN 2
MID
wetHCl
105.4
^ 89.9
1 87.9
86.0
86.2
CHAN 3
OUTLET
dryHCl
[Jt* 12.9
^4-^ 14. 1
•^•1 14.1
^ * 14'°
^U**13.6
VALUES FOR THE PREVfOUS 30
16.9
15.2
21.4
20. 1
18.3
16.5
OT *>
.&. '— ' • Jtt.
19. 1
23.2
25.5
17. 1
18.0
24. 1
26.8
28. 2
23.5
25.2
20. 21
35.2
122.8 rf.
297.41
313.91
316.8 T
301. 1
323.2
350.6
395.4
428. 1
446. 1
89.0
87.2
87.4
87. 1
87.0
88. 1
88.6
89.7
89. 1
8 8 -3.
*^69*T3
26.0
12. 1
7.2
5.2
4.2
3.6
~f, r?
14.0
41.3
60 . 9
72.9
72.7
76.8
80.7
99.3
109.6
102.5
11.5
13.0
10-8
10.2
44ff»io.i
M^ I'.B
8.7
9. 1
***** 9.2
9.6
10.9
11.5
11.9
12.6
12.5
11. 1
9.7
Jf 8"3
,t£U|l* 8-0
Ml1 9.0
18.2
7.6
8.7
9. 1
9.2
10.9
4.8
10.3
12.7
I**"*"}*
r%i«"*
t
MINUTES
AVERAGE VALUES FDR THE PREVIOUS 30 MINUTES
15:00 131.7 56.7 9.8
AVERAGE VALUES FOR THE LAST HOUR". 60 MINUTES OF VALID DATA
15:00 74.3 72.9 10.7
15:01
15:02
15:03
15:04
15:05
15:06
15:07
15:03
458.9
466.4
453.2
463.6
447.4
402. 1
389. 1
367.0
84.8
61. 1
42.0
34. 1
27.3
24. 1
20.2
17.6
11.8
11.0
9.7
11.2
15.9
11.8
10. 1
10.7
A-9
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
TTME
15:09
15: 10
15: 11
15: 12
15: 13
15: 14
15: 15
15: 16
15: 17
15: 19
15: 19
15:20
15:21
15:22
15s 23
15s24
15:25
15:26
15:27
15s 28
15;29
15s 30
AVERAGE
15 n 30
15:31
15:32
15:33
15:34
15s 35
15:36
15:37
15s 38
15:39
15:40
15:41
15:42
15:43
15:44
15:45
15:46
15:47
15:48
15:49
15:50
15:51
15:52
15:53
15:54
15:55
15:56
15:57
15:58
15:59
CHAN 1
INLET
wetHCl
356.6
357.6
411.2
431.0
444.7
451. 1
483.0
480.2
505.2
502.2
476.6
447.6
451.8
447.9
425. 1
436.0
445.7
468.3
478.2
461.4
436. 4
438.7
VALUES
442.8
458.8
457.0
468.7
510. 1
529. 1
533.4
501.4
493. 1
471.2
458.3
468. 1
466.2
458.6
443.0
425.5
431.2
444.2
458.2
433.3
444. 1
457.2
453.6
432.0
448. 1
456.5
463.4
471.2
470.9
475.5
CHAN 2
MID
wetHCl
20. 5
33.9
57.6
64.4
54 . 0
34.9
22.0
15.9
• 12.7
10.8
9.7
9.4
1 0 . 4
15.4
26.0
41.7
63.7
78.4
81.6
67. 1
43.9
26.7
CHAM 3
OUTLET
dryHCl
8.5
7.7
7.5
7.9
8.5
7.9
7. 3
7. 2
7.4
6.9
6.6
6.4
7. 1
7. 1
7.8
8.8
8.5
B. 1
8.2
8. 1
7.9
7. 1
FOR THE PREVIOUS 30 MINUTES
37. 1
18.9
14.4
11.6
10.7
11.6
17.7
32 . 0
54-6
76.4
80-2
78.3
61.6
42.7
30.2
23.4
20.6
17.2
16.0
17.4
21.4
29.7
44.9
62.4
82.0
91.9
85.9
68.8
47.7
36.7
8.7
6.6
7.0
6.6
6.4
82 . 0
18.4
8.3
7.6
B.O
9.3
10.6
9.5
8. 1
7.8
7.5
7.0
7.2
8.5
8.2
7.9
9.5
10-9
12.3
11.0
11.1
10.9
11.3
10.1 ^~10
9.2
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
CHAN 1
INLET
TIME wetHCl
16:00 500.9
AVERAGE VALUES
16:00 466.1
AVERAGE VALUES
16:00 454.4
16:01 490.0
16:02 513.8
16:03 544.7
16:04 589.1
16:05 583.5
16:06 549.8
16:07 550.6
16:08 537.4
16:09 503.2
16:10 474.4
16:11 455.8
16:12 454.7
16:13 505.2
16:14 552.9
16:15 561.4
16:16 589.3
16:17 592.6
16:18 573.4
16:19 574. B
16:20 563.0
16:21 548.5
16:22 547.1
16:23 540.7
16:24 552.3
16:25 548.9
16:26 531.1
16:27 504.7
16:28 523.3
16:29 516.3
16:30 519.9
AVERAGE VALUES
16:30 536.4
16:31 545.2
16:32 534.5
16:33 514.4
16:34 488.1
16:35 469.1
16:36 479.5
16:37 480.4
16:33 478.4
16:39 488.2
16:40 494.3
16:41 496.6
16:42 505.2
CHAN 2
MID
wetHCl
31.5
CHAN 3
OUTLET
clryHCl
7.8
FOR THE PREVIOUS 30 MINUTES
41.3
FOR THE LAST
39.2
26.3
26.9
28.5
35.5
56. 1
79. 1
120.3
121.2
103.8
81.0
ere: T
38.8
32.6
33.9
35. 2
42. 2
53.5
60. 1
78.8
109.6
128.5
148.4
146. 1
127. 1
101.4
69.2
47.7
40.5
35.6
31.5
11.6
HOUR: 60 MINUTES OF VALID DATA
10. 1
8.3
7.9
8.2
7.8
8.6
9. 1
10.6
12.6
12.8
13.7
11.5
10.2
8.5
7.5
7.7
7.4
7.8
8.7
10-0
1 2 . 0
13.6
1 3 . 0
12.8
12.4
12.2
10.7
8.8
8.7
8.6
7.9
FOR THE PREVIOUS 30 MINUTES
69.8
31.8
37.2
43.2
51. 1
60.5
75.4
90.9
92.5
90. 1
80.6
68.5
. 51.5
10.0
8.2
8.6
9.7
9.8
11. 1
10.7
10.0
9.6
10.0
10.2 a , ,
9.8
9.2
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
TIME
16:43
16:44
16:45
16:46
16:47
16:48
16:49
16:50
16:31
16s 52
16:53
16:54
16:55
16:56
16:57
16:58
16:59
17:00
AVERAGE;
17:00
AVERAGE
17s 00
17:01
17:02
17:03
17:04
1 7 : 05
1 7 : 06
17: 07
17:08
17:09
17: 10
17s 11
17: 12
17: 13
17: 14
17s 15
17s 16
17: 17
17s 18
17s 19
17s20
17i21
17s22
17:23
17s24
17:25
17:26
17s27
17:28
17s29
CHAN 1
INLET
..w.l.tHC.L
501.9
499.3
518.4
513.9
485. 1
471.6
463.0
463 . 7
479.8
498. 1
490. 1
512.3
552.5
587.6
621.7
680 . 4
775.4
887 . 2
VALUES
cr -y r> cr.
xJw'ai. • *J
VALUES
534.5
791.6
669.2
631.3
692.3
753.7
790.2
751.6
687.6
622. B
602.2
598.4
584.0
603.3
621.6
652.3
724.5
735.9
744.7
690.9
633.0
687.3
750.6
736. 5
679.2
626.5
595.5
563. 1
567.4
570.6
CHAN 2
MID
wetHCl
42.5
39 . 0
36.3
37. 4
40.5
46.0
53.9
67.9
91.5
1 07 . 7
114.9
136.5
108.4
99.5
91.5
105. 0
134.3
183.3
CHAN 3
OUTLET
.....dryMQI.
8.6
8.3
7.4
7.6
B. 1
8.7
9.3
11.2
11.2
10.6
11.1
11.2
10.5
10.3
9.6
8.4
8.6
8.4
FOR THE PREVIOUS 30 MINUTES
77 . 0
FOR THE LAST
73.4
192.2
145.2
124-3
174.9
264.7
268.7
268.7
260.5
176.5
119.4
98.9
77.5
77.5
87.4
106.6
161. 1
204 . 1
255.7
262. 1
226.4
224. B
159.8
122.4
86.6
62.2
50.9
40.4
37.2
38.6
9.5
HOUR: 60 MINUTES OF VALID DATA
9.8
9.3
9.3
9.2
10. 1
12.6
17.2
22.9
23.3
21.0
16.7
13.3
11.2
10. 1
1O.3
10.2
11.0
13.5
16.8
19.7
21.7
20.6
18.4
15.0
13.8
12.8
32.6
14.2
11.8 A-12
12.8
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
TIME
17s30
CHAN 1
INLET
wetHCl
561.9
CHAN 2
MID
wetHCl
40.4
CHAN 3
OUTLET
dryHCl
11.5
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
17:30 664.0 147.2 15.1
17s31
17:32
17:33
17:34
17:35
17:36
17:37
17:38
17:39
17:40
17:41
17:42
17:43
17:44
17:45
17:46
17:47
17:48
17:49
17:50
17:51
17:52
17:53
17:54
17:55
17:56
17:57
17:58
17:59
18:00
535.9
508.9
484.4
496.8
511.9
520.2
525.2
503.2
480.6
490.7
524 - 3
595.8
642.3
643 . 0
557.0
460.7
432.2
428.9
414.6
440-2
471.5
499.3
552. 1
615.9
639.0
647.8
646.8
Q *_>•»> * O
644.7
632.0
43.9
47.4
48.7
52.3
57 . 0
56.8
53.7
47.9
38. 6
32.8
31.6
35. 1
42.0
52.0
52. 1
43.2
39. 4
38.4
37. 1
37.8
38.8
33.6
31.5
30.0
26 . 6
27.0
28.3
31.8
37.5
41.9
10.6
10.4
10.7
9.7
8.9
9.4
9. 1
B.5
8.3
B.3
7.8
7.9
8.6
9. 1
9.0
8.8
9.5
10.6
9.5
7.6
7.8
8.2
8.4
9.5
8.9
O * O
7.7
7.4
7.3
7.4
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
18:00 540.0 40.5 8.8
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
18:00
602.0
93.8
11.9
18:01
18:02
18:03
18:04
18:05
18:06
18s 07
18:08
18:09
18: 10
10s 11
18:12
607.8
565.2
535. 1
503.8
458.3
480.3
483.7
469.5
456.5
445.7
438.8
449.0
42.9
41.7
37.6
31.6
25.3
21.8
20.2
18.3
17.6
18.0
19.4
21. 1
8.2
9.6
9.8
8.8
7.6
6.9
6.5
6.4
6.2
6.2
6.3
6.8
A-13
-------
HC1 CHARACTERIZATION TEST PR00RAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
TIME
IBs 13
18s 14
18s 15
18s 16
18: 17
IBs 18
18n 19
18:20
18521
18s22
18:23
IBs 24
18: 2 5
18s 26
ISi 27
18:29
18s 29
18: 30
AVERAGE
IBs 30
18:31
18:32
18:33
18:34
18:35
18:36
18:37
18s 38
18:39
18:40
18:41
18;42
18s 43
18:44
18:45
18:46
18:47
18:48
18:49
18:50
18(51
18s52
18:53
18s54
18:55
18:56
18:57
18:58
18:59
19:00
CHAN 1
INLET
wetHCl
442. 1
434.2
412.8
407 . 8
417.0
420.5
413.0
378.4
404. 0
427.8
432.0
427.0
425.6
409.5
446.9
457.2
449.6
431.5
VALUES
451.0
401.9
384.6
388. 1
390.5
403.6
415.7
441.7
463.3
465.2
454.8
470.5
475.4
304 . 2
191. 1
165. 1
141.8
127.8
116.0
110.5
1 06 . 8
97.9
95.7
96. 1
88. 0
82.9
80.2
82.8
77.8
76.8
71.2
CHAN 2
MID
wetHCl
23.6
26. 4
27. B
28. 2
28. 1
26.3
23.4
19.6
17.7
17.7
18.8
20 . 6
21.0
21. 1
r~)-v r-^
j£. •_*' * J-C
25. 2
25.7
24.6
CHAN 3
OUTLET
dryHCl
7.4
6.9
6.5
6.4
6.2
5.7
5.6
5.4
4.5
5. 1
5.7
5.8
6. 1
6.0
10. 1
7.0
6.0
6.5
FOR THE PREVIOUS 30 MINUTES
24-5
21.9
19.3
18. 1
17. 1
17.2
16.8
15.5
16.7
18.4
20.6
24.2
25.9
17.6
11.9
9.5
8.7
8.8
B.7
10.9
13.4
15.0
16.0
16.4
16.4
16.2
16.0
15.5
14.9
14.5
14. 1
6.7
6.8
6. 3
6.2
6.3
6.8
7.6
7. 1
6.7
5.9
6. 1
6.6
7.0
6.7
6.5
7.6
7. 1
5.9
4.3
3. 7
3.4
3.4
T Z.
•-' m O
4. 1
5.0
4-4
4.7
5.3
5.3
5.6
5. 1
A-14
-------
HC1 CHARACTERIZATION TEST PROGRAM
12-09-1987
/ MAINE ENERGY RECOVERY COMPANY
TIME
AVERAGE
1 9 : 00
AVERAGE
19:00
19:01
19:02
19:03
19:04
19:05
19:06
19:07
19:08
19:09
19: 10
19: 11
19: 12
19: 13
19: 14
19: 15
19: 16
19: 17
19: 18
19: 19
19:20
19:21
19:22
19:23
19:24
19:25
19:26
19:27
19:28
19s29
19:30
AVERAGE
19:30
19:31
19:32
19:33
19:34
19:35
19:36
19:37
19:38
19:39
19:40
19:41
19:42
19:43
CHAN 1
INLET
wetHCl
VALUES
242.3
VALUES
346.6
75.4
74. 5
71. 1
68.7
65.2
65.2
65.2
62.7
61.5
60 . 0
59.9
57.5
60.0
56.2
56.7
52.5
53. B
59. 1
52.7
56.8
54-8
50.0
54. B
53. 5
50.0
59.4
52.7
54.6
58. 1
54.9
VALUES
59.3
53.3
58.4
56. 1
54.7
52.5
54. 1
51.0
56.0
55.6
57.4
52.5
54.4
53.6
CHAN 2
MID
wetHCl
CHAN 3
OUTLET
drvHCl
FOR THE PREVIOUS 30 MINUTES
15.9
FOR THE LAST
20.2
13.6
- _ 12.9 *0
* j 9.0 >*•
>V* 5.614*
1 4.5l
\ 3.9}
* 3.61
3. 4
3.2
3. 1
3.0
3.5
4.2
4.0
3. 3
3 . 0
2.9
2.9
2.9
2.9
2.9
2.8
2.8
2.8
2. 8
2.8
2.7
2.7
2.5
2.2
5.7
HOUR: 60 MINUTES OF VALID DATA
6.2
5. 1
fl% 7.0
rP 6.0
^ 5.9
5.4
2.3
0.3 2g/6 Alt
0 . 3 ^*
0.5
0.2 I
"0.3 1
-0.2 '
-0.3
-it*****" . .1
0 . 2 (jltl V&WC ^^
s^jtf? a
43. 7 (1 t )[,''
46.5 ^*
48. 1
48 . 7
50. 1
50.7
50 . 9
50.7
50.4|I--*-'^
_»i — T***'\
11.5
4.5
FOR THE PREVIOUS 30 MINUTES
4. 1
2. 1
2.0
1.9
1.9
1.8
1.8
1.^*^
^x^Ts
2. 8
34.0 04 1
75.2 V»
90.5 I*1
93.8 1
19.6
O * C'
28.2
13i->^p-*
^""374
1.6
°'9 ^rJiW*"**
0.3 flj&* ' T\' '&£&*
0. 0 A*kM^*1
0.2 r* 1
ff*^ 0.7
w °-5
^ 0.6 A'15
0.6
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-09-1987
TIME
19:44
19:45
19:46
19:47
19:48
19:49
19:50
19:51
19:52
19:53
19:54
19s 55
19 s 56
19:57
19: '3 8
19:59
20:00
CHAN 1
INLET
wetHCl
57.7
55.8
59.5
56.3
52.0
55.2
58.2
54.7
53.4
54.0
54.8
57.7
58.7
47.0
57.0
51 . 5^-
^^JefffTj^
CHAN 2 CHAN 3
MID OUTLET
wetHCl dryHCL
93.7/lrtJfc. 0.3
94 -7 ill.* °-3
95. 9 ^4 Ip 38.8
97.4 iltAj62"6
97-5| dfl0-°-2
9B.7L/F 0.7
97.7 « 2.6
98.8 54.4
99.6 49.1
99.4 48.8
54.0 48.9
16.3 48.8
8.5 45.9
6.0 5.6
4.7 0.3
3.7 0.5
3 . 0 0 . 6
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
20s00 55.1 46.0 18.7
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF
20500 57.2 25.1 19.1
VALID DATA
20s 01
20 s 02
20 : 03
20s 04
20:05
20:06
20:07
20:08
20s 09
20: 10
20s 11
20: 12
20: 13
20: 14
20: 15
205 16
20:17
20: 18
20: 19
20:20
20:21
20:22
20:23
20:24
20:25
COMMENTS:
60. 3 .*<
74.34^,
217.5 V
330.2,^
380. 8 [j
414. 1
440.2
456.7
464.3
479.4
485.7
487.0
493.2
499.7
499. 1
498.2
505.4
507.0
507.2
504.8
510.8
509.4
329.8
133.8
1 04 . B
End of
2. O0*p'2- 8
Lfl 2'8
2.6
2.7
2.7
2.6
2.5
2.5
112.7
237.8
236.7
IBB. 1
174.7
204.8
206.3
2. 1
2. 1
2. 1
2.0
2.3
2.5
2.4
2.2
Test No.
-O. 1
-O-J^-*-*"
^•^sTs
57.6
55.0
49.7
45.5
41. 1
38.2
36.2
34 . 0
29. 4
9.7
2.4
1.2
0.9
0.8
0.5
0.6
0.3
-0.0
0.5
-0.6
0.3
0.5
1 and post-test calibration check
(CONTINUED ON THE NEXT PABE)
A-16
-------
3ONTINUOLJS EMISSIONS MOIM X TOR X IMfB SET—UR
SOURCE! HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERQY RECOVERY COMPANY
)ATE: 12-10-1987 TIME: 09s 02
i/P_CHAN DESCRIP
1 INLET
2 MID
3 OUTLET
UN I TS
wetHCl
wetHCl
dryHCl
SPAN
900
268
250
INPUT
VOLTAGE
10.00 V
0,95 V
9.21 V
ZERO
OFFSET
07.
07.
07.
WERAQINQ PERIODS! 30 MINUTES,
40 EMISSION RATE CALCULATIONS
A-17
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-10-19B7
CHAN 1
INLET
TIME wet MCI
09 l 09 79.7
09s 10 83.3 „
09: 11 89.3 1
09:12 87.9
09:13 86. 8|
09:14 82.71
09:15 87. 0'
09 : 1 6 83.5
09:17 82.5
09s 18 41. 1 i
09: 19 8.4
09s 20 4.4
09 s 2 1 4'. 7
09:22 4.3
09:23 4.9
09s 24 -0.7
09:25 6.9
09:26 3.2
09:27 4.2
09 s 28 3 . 4
09:29 5.9
09 s 30 4 - 5
09:31 6.0
09:32 4.6
09:33 2.6
09:34 1.7
09:35 -20.0
09s 36 -20.7
09:37 -20.7
09: 38 -20.6
09:39 -20.6
09:40 -20.6
09:41 -13.0
09:42 -10.4
09:43 -3.0
09s 44 5.1
09:45 8.4
09:46 1.6
09:47 -2.9
09s 48 4^5-
09:49 .^--"30.9
09:50 177.8
09:51 274.1
09:52 316.2
09:53 346.5
09:54 359. 9 '
09:55 378.1
09:56 385.4
09:57 395.4
09:58 414.6
09:59 416.4
10s 00 419.0
CHAN 2 CHAN 3
MID OUTLET
wetHCl dryHCl.
O.B 0.2
•fjl °-B« °'4
P 0.8.*i^ 23.6
O.Bl 14.5
0.7l 7.4
0.7' 4.3
0.7 2.5
.-. -r 11
j^U.**0.7 0.5
fl 0.7 0.7
0.7 0.7
0 .8 0 . 6
0.8 -0.0
0.8 -0.0
0.9 0.5
1 . 0 0 . 6
1 . 0 32 . 8
1.0 169.8
1 . 0 0 . 3
1.0 0.1
1.1 0.4
1.1 52.1
~ 1. 1 49.2
Ltto>°ft i-1 48-8
fit, 3' ' 1 49 " 2
&TVA 1.1 49. 1
03**^ 1. 1 45.6
1.1 -18.3
1.2 -0.4
1.2 0.0
1.2 -0.4
1.3 -1.1
1.3 -0.0
1.4 38.7
1.4 57.5
1.5 58 . 7
•3tY* -| A 57 ->
^* J. • *T vJ / • .&.
1.5 50.8
— ' 1.5 44.3
1.4 37.8
1.4 18.0
* n A A
, 0
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENER8Y RECOVERY COMPANY
12-10-1987
CHAN 1 CHAN 2
INLET MID
TIME wetHCl wetHCl
AVERAGE VALUES FOR
10:00 89.5
10:01
10:02
10:03
10:04
10:05
10:06
10:07
10:08
10:09
10: 10 „
10: 11
10: 12
10: 13
10: 14
10: 15
10: 16
10: 17
10: 18
10: 19
10:20
10:21
10:22
10:23
10:24
10:25
10:26
10:27
10:28
10:29
10:30
AVERAGE
10:30
10:31
10:32
10:33
10:34
10:35
10:36
10:37
10:38
10:39
10:40
10:41
10:42
10:43
10:44
10:45
10:46
10:47
423.1 C;£-,
426.4 4-2^*
426.3
435.7
438.3
442.4
446.4
435.8
438.^-—
.-sssTi
248.2
27.3
-2.0
-14.7
-10.3
-8. 1
* -Jtf^^&
*Jt •
-2.3 ^
-5.6 i
-i.el
-1.6f
0. 1
-2.0
0.7
1.6
-0.9
3. 1
6.5
4.6
VALUES FOR
150.5
1.8
-1.2
3.9
-1.4
-0.4
-0.2
3.4
3.6
1.4
-1.6
3.9
1.9
-0.6
-0.3
1.0
2.4
6.6
THE LAST
1. 1
«fT-1.6
» 1.6
1.7
1.7
1.7
1.8
1.8
1.8
1.8
1.8
1.8
1.7
1.7
1.7
1.7
1.7
1.7
146.3 . ^
227.7 |l£
173.6 &
174.7
224.0
159.5
1.8
1.8
1.7
1.7
1.6
1.7
1.7
THE PREV
38.3
1.6
1.6
1.6
1.7
1.7
l-J^—
54. 3
77.6
84.4
86. 7 /JA,
oO * y 1
86.9 H(
88.0
88.8
88.3
* A— 1
CHAN 3
OUTLET
dryHCl
HOUR: 52 MINUTES OF VALID DATA
17.7
0.3
0.6
0.6
0.2
0.4
0.3
0.3
0. 1
0.0
-0. 1
-0. 1 ^o
0.6^^^
JjjA
"tJ.6
3.9
15. 1
25.8
J ^4 ^
1 39.9 1 /K*6
4"^ 1 "/ Cfl^
45.3 y^ ^ c^<0*
48.9 A*l ¥f
49.4 ^ I1
50 . 0
50.4
50.7
51.3
50.6
SO-T,^.
IOUS 30 MINUTES
22.0
45.0
31.2
18.4
10.5
8.5 ^
6 . 9 ?*«
S 7 I &"
'\
4 . 7 If
4.2
3.4
n0» 2.9
Uft 2-6
i-A 1.9
2.2
1.9
1.8
,9 I'8
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-10-1987
TIME
10:48
10:49
10:50
10:5.1
10:52
10:53
10554
1 0 : 55
1 0 ! 56
10:57
10s 58
10: 5 9
1 1 : 00
CHAN 1
INLET
wetHCl
1.6
.«£. • oX,
0.5
3. 5
1.6
3.8
1.8
2. 9
6.5
7. 1
6.7
8. 1
-6.5
CHAW 2
MID
wetHCl_
87. B
8JU-9--
^"^3 4 . 6
12.0 '
•y nr <
5.5
4.4
3.7
3. 3
3 . 0
2.7
2.5
2. 4
CHAM 3
OUTLET
cLo/HCl.
1 .3
0.8
•4pSh 1.1
•/ 12
^ 1.4
1. 1
0.8
1. 1
0.7
0.7
0.4
0. 8
1.0
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
11 s 00
2. 1
36.7
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
Us 00 76.3 37.5 13.8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
H
II
II
H
n
H
M
M
H
$
'
'
3
H
II
II
M
B
II
:
M
;
:
H
H
01
02.
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
-20.
-13.
0.
"~ 1 o
0.
7",.
8.
14.
9.
14.
8.
14-
20.
17.
12.
22.
19.
23.
24.
18.
12.
12.
7
1
3
3
5
0
2
6
0
8
9
1
0
6
0
3
2
0
1
7
4
6
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
. 2
.0
.9
.8
.8
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
0.
0.
0.
0.
1.
O.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
B
6
B
9
1
3
4
5
1
5
6
0
5
9
0
5
5
7
7
6
1
1
COMMENTS:
Waiting for
for Test #2.
proper process operating conditions
A-20
-------
HC1 CHARACTERIZATION TEST PROGRAM
12-10-1987
-rec*
/ MAINE ENERGY RECOVERY COMPANY
TIME
12:31
12:32
12:33
12:34
12:35
12:36
12:37
12:33
12:39
12:40
12:41
12:42
12:43
12:44
12:45
12:46
12:47
12:48
12:49
12:50
12:51
12:52
12:53
12:54
12:55
12:56
12:57
12:58
12:59
13:00
CHAN 1
INLET
wetHCl
— .T /_
•Jt m O
-3.7
-2.9
-3.7
-3.7
-5.4
~~ 1 • /
0.2
1 . 0 _
"2". 6 ^
23. 1
123.9
226.2
279.6
3O9 . 4
341.4
357.3
356.5
358. 1
33 1 . 9
320.6
316.2
334 . 8
350.7
384. 1
392. 1
420.9
425.5
409.5
411.2
CHAN 2
MID
wetHCl
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.6
1.6 *
1.6
1.6
1.7
1.7
1.7
1.7
1.7
1.7
2.2
3.6
4.2
4.4
4.4
4.6
4.8
4.9
5.5
6.4
7.2
7.3
6.8
CHAN 3
OUTLET
dryHCl
16.7
14.6
13.3
12.9
i2Xf
Jrt.7
Jf 11.0
r 10.4
9.7
9.5
9.2
9.3
8.8
9.2
8.9
8.7
8.9
7.6
8. 3
7.4
6.7
7. 1
7.6
7.4
7.7
7.4
7.4
7.8
7.8
AVERAGE VALUES FOR THE LAST HOUR: 30 MINUTES OF VALID DATA
13sOO 215.1 3.1 9.5
13:01
13:02
13:03
13:04
13:05
13:06
13:07
13:08
13:09
13: 10
13: 11
13: 12
13: 13
13: 14
13: 15
13: 16
13: 17
13: 18
13: 19
13s 20
396.7
380.7
402.7
429.6
413.4
421.8
432.9
449.4
433 . 5
427.3
437.8
450.9
459.9
456.3
444.8
411. 1
410.7
414.9
414-7
424.7
5.8
5.2
4.9
4.7
4.5
4.8
5.8
8. 1
11.4
15.4
18.7
21.6
20.4
17. 1
13.8
11.2
9.7
8.5
7.8
7.6
7.7
8.0
7.7
7.6
7.2
7.2
6.9
6.9
7. 1
7. 1
6.8
7.2
7.0
7.5
7.6
7. 1
6.3
6.2
6.5
5.8
A-21
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-10-1987
T I ME
13s
13:
13:
13:
13:
13:
13:
13!
1 3 :
13:
21
22
23
24
25
26
27
28
29
30
CHAM 1
INLET
wetHCl
439.
424.
429.
454 -
453.
463.
457.
464.
466.
461.
0
6
2
'n
.&.
1
7
9
6
0
T,
CHflN 2 CHAN 3
MID OUTLET
wetHCl .._.d..ryH.C.l.
8.
9.
13.
18.
24.
30 .
31.
29.
25.
'20-
2
9
6
6
8
6
2
2
4
B
5.
5.
6.
5.
6.
6.
6.
6.
6.
6.
2
2
0
8
0
2
4
4
4
1
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
13:30 434.3 14.0 6.7
13:31
13:32
13:33
13:34
13:35
1 3 s 36
13:37
1 3 : 38
1 3 : 39
13: 40
13s 41
13:42
13:43
13: 44
13:45
13:46
13:47
1 3 : 48
13:49
13s 50
13:51
13:52
13:53
13:54
13:55
13s 56
13:57
13:58
13:59
14:00
462.0
463- 8
455.6
450.7
474.4
482.5
481.2
477.3
487 . 3
509.6
485.4
468.4
465.6
482.7
485 . 3
479 . 3
493.5
516.9
506.4
485.7
478.0
469.6
453. 1
449.7
477 . 9
470.7
496.3
509.6
530.6
536.7
17.7
15.2
1 3 . 3
11.7
1 0 - 4
10.5
11. B
13.9
16.2
15.9
14.7
12.7
10.9
9.8
8. 8
8. 0
7.3
6.8
6.4
6. 1
6.0
6 . 0
6.2
6.4
6.6
6.8
7. 1
7.4
7.8
8.0
6.5
6.4
6.2
6.2
6.0
5.7
5.2
6. 0
5.3
5. 3
5.5
5.9
5.2
5.3
SjjL
\S!%Q. 9i
/ / _*L-J*"""
5.3
5. 1
4.9
5.2
5.0
4.9
4.7
5. 1
4.8
5. 1
5. 0
cr T
W B •-'
5.3
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
14:00 482.9 9.9
AVERAGE VALUES FOR THE LAST HOUR:
14:00 458.6 11.9 6,
14:01
14:02
14:03
0 MINUTES OF VALID DATA
530.6
505.5
475. 1
7.8 4.6
7.6 4.5
7.5 A-22 4.9
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-10-1987
TIME
14:04
14:05
14:06
14:07
14:08
14:09
14: 10
14: 11
14: 12
14: 13
14: 14
14: 15
14: 16
14: 17
14: 18
14: 19
14:20
14:21
14:22
14:23
14:24
14:25
14:26
14:27
14:28
14:29
14:30
CHAN 1
INLET
wetHCl
476.0
463.8
489.0
499.6
515.0
541.3
541.2
543.5
536.5
519.7
494.3
480.6
502.3
492.8
415.2
358.9
37 1 . 8
473.7
558.0
562.3
542.5
533 . 6
541.8
542.4
533.7
534.2
508.2
CHAM 2
MID
_ wetHCl
7.2
6.8
6.6
5.8
5.4
5.2
5.2
5. 3
5.5
5.8
6. 1
O • •-'
6.6
6.6
6. 1
5.7
6. 1
7.6
8. 1
8.3
8.7
8.6
8.4
7.9
7.8
8.0
7.2
CHAN 3
OUTLET
5.2
5.2
4.8
5.6
4.9
4.5
4.3
4.2
4.8
4.5
4.5
4.6
4.5
4.9
4.9
4.6
3.5
3.7
4.3
4.5
4.9
5.0
5.8
<~J . •-'
4.9
5.0
4.8
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
14:30 502.8 6.9 4.7
14:31
14:32
14:33
14:34
14:35
1 4 : 36
14:37
14:38
14:39
14:40
14:41
14:42
14:43
14:44
14:45
14:46
14:47
14:48
14:49
14:50
14:51
14:52
14:53
14:54
519.8
528.0
532 . 6
538. 1
545.5
535 . 5
526.8
498.2
475.9
484.4
510.3
507.7
499.7
499.9
513.9
506. 1
500.0
470.4
468.9
478.9
451.6
463.3
473. 1
467.6
6.B
6.7
6.7
6.B
6.9
7. 1
7.3
7.5
7.6
7.7
7.7
7.8
7.5
7.5
7. 1
6.4
6.0
5.6
5.4
5.3
5.0
5.0
5.0
5.0
4.5
4.5
4.5
4-4
4.5
4.9
4.0
4.9
4.9
4-4
4.2
4.0
4.2
4.3
4.8
5. 3
5. 1
4.9
4.3
4.4
4.0
3.6
3.9
4.0
A-23
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-10-1982-
TIME.
14:55
14:56
14:57
14:58
14:59
15:00
r&tov
CHAN 1
INLET
wetHCl.
461.8
462.9
465.7
484.4
481.6
497.2
w«*»»y*»r
CHAW 2
MID
watHCJL-
5.2
5.5
6.0
6.5
6.9
7.2
PII In* mmv*
CHAN 3
OUTLET
dryHCl
4.2
4.3
3.8
3.7
4.5
4.6
AVERAGE VALUES FOR THE. PREVIOUS 30 MINUTES
15s00 495.0 6.5 4.4
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
15". 00 498.9 6.7 4.6
ISsOl
15;02
15:03
15:04
15:05
15:06
15:07
15:08
15:09
15: 10
15s 11
15s 12
15; 13
15s 14
15s 15
15: 16
15: 17
15s 18
15s 19
15:20
15s21
15:22
15:23
15:24
15s25
15:26
15:27
15:28
15:29
15:30
520.5
538. 3
552.3
548.7
555 . 5
521.6
495.2
505.2
507 . 8
488.4
477.8
490.4
496.0
489.2
512. 1
524.8
512.5
516.4
543.2
524.2
529.4
553.0
526.2
520. 1
521. 1
515.0
515.5
524-0
523.2
520.0
7.2
7.2
7.0
6.8
6.6
6.3
5.9
5.6
5.4
5.3
5.3
5.4
5.5
5.8
6.0
6.4
6.9
6.9
7.0
7. 1
7. 1
7. 1
6.9
6.5
6.3
6.2
6. 1
6. 1
6. 1
6.3
4.0
4.3
4.9
4.5
4.3
4.2
4. 1
3. 7
4-3
3.9
4. 1
3. 8
4.2
4.0
4.5
4. 1
4 . 0
T T
%..' H '— '
3.2
3.9
3.9
4. 1
4.2
4. 2
3.9
3.9
4.4
3. 8
3.4
3.7
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
15:30 518.9 6.3 4-0
15:31
15:32
15:33
15:34
15:35
15:36
15:37
534.5
524.2
515. 1
5O5.B
493.2
494.2
475.0
6.6
6.8
7.0
7.0
7.0
6.8
6.4 A_94
3.6
3.7
4. 1
3.8
3.9
4-2
4.0
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-10-1987
TIME
15:38
15s 39
15540
15:41
15:42
15:43
15:44
15:45
15:46
15:47
15:48
15:49
15:50
15:51
15:52
15:53
15:54
15:55
15:56
15:57
15:58
15:59
16:00
CHAN 1
INLET
wetHCl
465.6
457.0
465.6
470.2
457.5
472.8
504.2
559.4
575.0
552.6
533.8
525.0
539.9
555.6
544.3
533.4
510.9
510.0
502.3
489.6
474.7
452.5
448.4
CHAN 2
MID
wetHCl
6. 1
5.7
5.5
5.4
5.2
5.3
5.5
5.9
6.2
6.3
6.5
6.6
6.9
7.2
7.3
7.4
7.7
7.9
7. 1
6.8
6.4
5.8
5.4
CHAN 3
OUTLET
dryHCl
3.5
3.2
3.2
3. 1
3. 5
3. 1
3.3
3.3
3.4
3.8
3.8
4.0
4. 1
4.0
4.0
4.4
4.5
4.2
4.2
4. 1
3.9
3.9
4. 1
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
16:00 504.7 6.5 3.8
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
16:00 511.8 6.4 3.9
16:01
16:02
16:03
16:04
16:05
16:06
16:07
16:08
16:09
16: 10
16: 11
16: 12
16: 13
16: 14
16: 15
16: 16
16: 17
16: 18
16: 19
16:20
16:21
16:22
16:23
16:24
456.9
469.3
496. 1
502 . 8
502.7
493.7
511.5
524.9
517.3
513.9
521.6
529.0
520.8
517.5
494.4
472.8
463.3
475.5
488.9
503.5
498.0
494-2
510.4
538.5
5.2
5.0
5.0
5.0
5.2
5.3
5.4
5.5
5.5
5.8
6.2
6.5
6.7
6.5
6.2
6.0
5.9
6.0
5.9
5.8
5.7
5.5
5.6
6. 1
4.5
4.2
4.3
3. 3
3.4
3. 1
3.8
3.7
3.9
4.3
4.3
4.5
4-3
4. 1
•2' . 3
3.8
3.3
3.4
3.8
3.5
X-3--2-,
(26.1)
4. U
3.3 A-25
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERSY RECOVERY COMPANY
12-10-1987
TIME
16s 25
16:26
16:27
16:28
16:29
16: 30
AVERAGE
16s 30
16:31
16:32
16:33
16:34
16:35
16:36
16:37
16:38
16:39
16:40
16:41
16:42
16:43
16:44
"TST45
16:46
16:47
16:48
16:49
16:50
16:51
16:52
16:53
16:54
16:55
16:56
16:57
16:58
16:59
17:00
CHAN 1
INLET
wet HO .
537 . 4
533.2
517.0
503.3
486. 0
478.9
VALUES
502.4
475. 1
486.4
493.7
510.8
500.9
505 . 9
480.4
472.5
502.5
521.9
539. 2
538.9
543.2
rr-rcr *->
wJ •-.' *J • *~
527. 1
531.2
530.8
508. 6
458.9
463.3
500.8
512.4
523.4
538.0
532. 0
531 . 8
549.6
555.6
544.2
539.5
CHAN 2
MID
wetHCI
5.8
5.6
5.5
5.4
5.3
5.3
CHAN 3
OUTLET
dryHCJL
3.6
3.2
3.1
3.2
3.6
3.9
FOR THE PREVIOUS 30 MINUTES
5.7
5. 2
5.3
5.4
5.5
5.5
5.6
5.5
5.5
5.6
5.7
6.0
6. 1
6.3
6.0
5.9
5.9
5.9
5.6
5. 1
4.9
4.8
4.6
4.5
4.6
4.5
4.6
4.7
4.9
5. 1
5. 3
4.5
3.4
3.6
3.9
3.7
3.5
/v . 7".
3 . 6
3 . 0
3. 3
3. 7
3.6
4. 1
3.8
3.6
4. 1
3.4
3.0
3.6
3.3
4.0
4. 1
3.6
3.5
3.0
3. 5
~7 i..
•—' . O
4 . 0
3.5
3.7
3.8
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
17sOO 515.1 5.3 3.6
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
17s00 508.8 5.5 4-0
17:01
17:02
17:03
17s 04
17:05
17:06
17s 07
535.3
544.7
529.0
519. 1
514. 1
532.3
560.0
5.6
5.B
6.0
6.2
6.0
6.4
5.9
3.5
3.7
4.4
3.8
4.2
3.8
3.2
A-26
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-10-1987
TIME
17:08
17:09
17: 10
17: 11
17: 12
17: 13
17: 14
17: 15
17: 16
17: 17
17: 18
17: 19
17:20
17:21
17:22
17:23
17:24
17:25
17:26
17:27
17:28
17:29
17:30
CHAN 1
INLET
wetHCl
570.3
545.8
553.6
554.0
535.6
534.0
538.4
537 . 1
538.8
514.2
461.4
461.3
473.7
452.3
438.6
434.3
412.9
403 . 7
490.3
562.7
570.7
52O.3
471.0
CHAN 2
MID
wotHCl
5.7
5.5
5.2
5.0
4.9
4.9
4.9
4.8
4.7
4.5
4.5
5.2
5.7
6.4
7. 1
7.4
7.4
7.5
7.6
7.3
6.8
6.2
5.9
CHAN 3
OUTLET
dryHCl
3.2
3.2
3.2
3. 3
3.5
3.6
3.3
3.8
3.3
3. 1
3. 1
2.5
3. 1
2.8
2.8
3. 1
3.4
3.0
2.9
2.3
3.0
3.9
4. 4
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
17:30 510.3 5.9 3.3
17:31
17:32
17:33
17:34
17:35
17:36
17:37
17:38
17:39
17:40
17:41
17:42
17:43
17:44
17:45
17:46
17:47
17:48
17:49
17:50
17:51
17:52
17:53
17:54
17:55
17:56
17:57
17:58
471.5
466.3
467.4
501.9
511.9
541.0
566.2
557.5
562.5
55O.6
508.7
494.8
505.6
483.6
467.0
454. 1
472.2
492. 1
486.2
506.0
540.0
552.4
551.0
550.7
542. 1
521. 1
491.5
457.4
5.7
6.4
9.6
9.6
7 . 0
5. 1
4 . 0
3.4
3.2
3.2
3.3
3.6
4-0
4.4
4.7
5.0
5.4
5.8
6.0
6.2
6.6
6.8
6.9
7.8
7.0
6.4
6.0
5.4
3.5
3 . 6
3. 1
4.3
4.3
4. 1
3.9
3.4
3.5
3. 4
3.9
4. 1
3. 4
2. 9
3. 2
3.8
3.6
3.0
3. 2
3.2
3.7
4.0
4.2
3.8
4.0
4.2
3.8
3.6
A-27
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-10-1987
11 MIL-
17:59
18:00
CHAN 1
INLET
_wet.HC.l...
433.6
422.6
CHAM 2
MID
CHAN 3
OUTLET
4.9
4.7
3.4
3. O
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
18:00 504.3 5.6 3.6
AVERAGE VALUES FDR THE LAST HOUR: 60 MINUTES OF VALID DATA
18:00 507.3 5.7 3.5
IBs 01
18:02
18; 03
18:04
18:05
18s 06
18:07
18x08
18s 09
18: 10
18s 11
18: 12
18:1 3
18: 14
18: 15
18:16
18: 17
18: 18
18; 19
18s 20
18:21
18:22
18:23
18:24
18:25
1 8 : 26
18:27
18:28
18:29
18:30
432.2
427.9
423. 5
425. 3
4 1 JD . B
352 . 5 3fcVD
146.2 . Q\1
99 . 0 1
81.2
73.4
69 . 9
63.8
58.6
62.6
64.8
57.6
42.7
39.4
31.4
30 . 3
30. 1
28.9
31.0
29.0
33. 1
25.5
20.0
17.5
15.8
19.4
4.4
4. 3
4- 3
4 . 4 ^
• ~~l:$l*v
2.e{ 0>*
2.3*
2. 1
1.9
1.8
1.8
1.7
1.6
1.6
1.5
1.5
1.4
1.4
1 . 3
1 .3
Iftff^
16.3
47.5 AA00*"
£?1$
65. 7|
67.4
69.5
70.8
2.6
2. 9
3 . 0
j£. • •_!'
!2 . *?
2. 9
!»? . 6't ^^. *i -*f ^
rr ni^"^
III
3!ST
3. 1
3. 1
2.7
2. 7
2.4
2. 1
1.6
1.5
1.7
1.6
' 2. 1
1.9
2.3
2.6
3.0
2.9
3. 1
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
18:30 ^fel.B ^ •"
18:
18:
18:
18:
18:
18:
18:
18:
18:
18i
31
32
33
34
35
36
37
38
39
40
18:41
24. 7
19.5
23.2
17.9
14-5
14.0
13.4
13.0
18.5
13.7
12.6
A-2R
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-10-1987
TIME
13:42
18:43
18:44
18:45
18:46
18:47
18:43
18:49
18:50
18:51
18:52
18:53
13:54
18:55
18:56
18:57
18:58
13:59
19:00
CHAN 1
INLET
wetHCl
13.3 A
17. oC^
13.5 4jW
11.2 \(p
10-5 1
10. i T
14.7
14.7
9.4
11.5
13.8
10.8
8. 1
6.9
8.7
7.0
15.3
13.3
8.8
CHAN 2
MID
wetHCl
68.4
' 35. 2 #1
>, 20.8| 0J
< 15.71
11.9*
9.5
8.0
6.5
1.6
5.5
3.9
2. 8
2.4
2.2
2.0
2.0
1.9
1.8
1.8
CHAN 3
OUTLET
/K 6.0
V 5.6
L» -5.5
0. B
"~'W H •-'
-0. 1
i"\ KT
W • *J
-Q.&
**\Tb
18.9
35. 1
42. 8
45. 7
47.7
49.3
50. 1
50.0
50.0
\
AVERAQE VALUES FOR THE PREVIOUS 30 MINUTES
19:00
AVERAGE VALUES FOR THE LAST HOUR:
19:00 fc^fs" 25»* Jf_,
60 MINUTES OF VALID DATA
19:01
19:02
19:03
19:04
19:05
19s 06
19s 07
19:03
19:09
19: 10
19: 11
19: 12
19: 13
19: 14
19: 15
19: 16
19: 17
19: 18
19: 19
19:20
19:21
19:22
19:23
19:24
19:25
19:26
19:27
19s 2S
9.4
11.8
*^"*
11.6 t*&
78. 6 * i/
220.9 1 *
316.21
364.9 *
389.0
405.0
412. 1
421.8
430.5
436. 1
437.5
440.4
441.9
446.8
446. 6-
~***FZ& . 2 *,**
438.0 £ ^
107.9 1
61. 71
48.2
41.9
31.9
1.7
1.8
-g*. 1 . 3
Jt (")- -1
^37.0 jl^1
191.01 C<
176.2ft1
175.2
144.6^
^**z^
^0- 2
0.2
0.2
0.2
0.2
0.2
0.2
k 0.2
/ 0.2
' 0.2
0. 1
0. 1
0. 1
0. 1
0.2
28.6
8.5
4.6
3.0
1.8
1.5
» '-^•f
J^ _ " "
' 3.5
1.9
^ 1 • •-•
0.7
0.8
0.6
0.5
0 . 0
-0.4
0. 1
-0.4
0- 1
193.7
11.5
-0.5
-1.9
18.2
47.2
48.0
A-29
-------
HCl CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-10-1987
CHAM 1 CHAN 2 CHAN 3
INLET MID OUTLET
TIME wetHCl wigtHCl clry.HQ.1.
19s29 34.8 0.1 48.3
19:30 30.2 0.1 48.4
AVERAGE VALUES FDR THE PREVIOUS 30 MINUTES
19i30 243.3 31.1 16.6
19s31 30.5 0.2 48.0
19s32 23.7 0.2 25.3
.1.9s 33 17.0 0.1 0.1
19s34 21.5 0.1 -1.5
19:35 15.7 0.1 -1.4
19t36 17.1 0.1 -2.0
19837 14'. 5 0.1 ~1.5
19;38 14.1 • 0.1 4.9
19:39 13.7 0.1 3.7
19;40 12.9 0.1 0.9
COMMENTS! End Ttast #2 and calibration checks.
A-30
-------
HC1 CHARACTERIZATION TEST PR00RAM
12-12-1987
MAINI ENERSY RECOVERY COMPANY
TIME
08:22
08 : 23
08:24
08:25
08:26
08:27
08:28
08 : 29
08:30
08:31
08:32
08 : 33
08:34
08 : 35
08:36
08 : 37
08:38
08 : 39
08 : 40
08:41
08:42
08 : 43
08:44
08:45
08:46
08:47
08:48
08 : 49
08:50
08:51
08:52
08:53
08:54
08:55
08 : 56
08 : 57
08 : 58
08 : 59
09 : 00
AVERABE
09:00
09:01
09 : 02
09 : 03
09:04
09:05
09:06
09:07
09:08
09:09
09: 10
flQ , ( ^
CHAN 1
INLET
wetHCl
1.9
-5.3
5.7
0.8
-0-8
74.6
206. 1
265.2
308 . 9
328. 1
348.4
363.5
37 1 . 1
383 . 0
393. 5
393.4
395.2
404.6
4O5 . 3
410.2
411.9
410.2
416. 1
416.3
423.5
423.5
420.7
430.3
430.0
431.9
431. 1
432.4
265. 1
81. 1
52.7
42.6
36.8
26.9
24.0
VALUES
273.4
21.3
24.4
19.9
19.9
10.5
15.0
15.6
15.7
12.0
15.4
L. 1
CHAN 2
MID
wetHCl
136.6
210.4
214.0
218.4
223.2
226.4
I 201.0
1 -^-3
4*1(074.7
*r.,l 173.9
(^ 192.0
1 217.0
f 222.7
226. 1
229 . 0
230.6
203.7
175.6
174. 1
180.4
219. 1
89.0
0.2
0 . 2
0.2
84. 1
217.4
173.9
179.9
226.8
207.8
1.4
2.0
1.9
1.7
1.6
1.5
1.5
1.5
FOR THE LAST
138.9
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
* i=:
CHAN 3
OUTLET
drvHCl i „ f sa/uJtt*&
«- — •"-*•• 1 />A! ^mJV^
48.7 j iO* ^ 1
48.7 T * .1
48 7 ^fe. £&A
' ^ • «i m fL^g AD^^^ •
45.0 V——- T* fl '
1.9
-0.3
-0.3
-0.7
-0.2
4.3
14.2
15.5
14.9
15.0
15.0
14.5
12.2
10.4
8.7
8.0
7.7
7.2
7. 1
7. 1
6.5
6.2
5. 2
4.9
4.9
5. 1
5.5
2.4
0-5
0.5
0.5
-0. 1^^*"^*'
-^^mr
6.2
HOUR: 39 MINUTES OF VALID DATA
11.5
15.3
2 1 . 0
24.3
28.5
32.7
34.9
37.6
38.6 A-31
37.9
36.5
TT
-------
HC1 CHARACTERIZATION TEST PROBRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987
II ME _
09 5 1 2
09 s 1 3
09s 14
09: 15
09s 16
09: 17
09s 18
09: 19
09 : 20
09 s 2 1
09: 22
09s 23
09: 24
09n 25
09:26
09s 27
09:28 \
09:29
09: 30
AVERAGE
09:30
09 : 3 1
09s 32
09 : 33
09; 34
09:35
09s 36
09 ! 37
09! 38
09 : 39
09r, 40
09 s 4 1
09:42
09:43
09:44
09:45
09s 46
09:47
09:48
09:49
09:50
09:51
09:52
09:53
09:54
09:55
09:56
09:57
09:58
09:59
10s 00
CHAN 1 CHAN 2 CHAN 3
INLET MID OUTLET
watHCl ^ wetHCl ....dryHCl
8. 5 a**' 1.5C*** 26.1
9.246*® 1 . 5 *£& 31.8
3.7 .0X 1.5 . 0i/ 37.7
6.81 1.51 40.6
8.7* 1.61 42.8
5.9 * 1.6 44.4
4.5 1.6 45.2 ^ui^**
4-1 1.6 46.1 I.. -
6.5 1.6 47.0 1 T' ff
6.3 1.5 47.1 ' •„
12. 1 1.4 47.9 **
5.5 1.4 42.6
4.0 1.3 23.0
2.4 1.3 9.8
5. 1 1.3 & - (-•
1 62.3 ijflU**^ 1.1 ¥8.3 MV*
115.5*|1 ^If^S*****^ 10-0 'jl
170.9 •"ToTs 10.4
VALUES FOR THE PREVIOUS 30 MINUTES
2*f%. 1 . 8 3px^*
196.5 35. 9 7* (It 12.2
226. 1 52.2 1 r* 9.6
285.0 57.9] 7.7
343.4 61.3* 7.4
417.8 65.3 10.9
452.7 66.5 10.0
475.5 68., 7 8.4
516.5 69.8 7.7
479.5 70.7 -36.5
451.0 76.2 -1.4
427.1 81.8 6.1
368.8 85.8 6.4
322.6 87.7 6.3
284.3 87.7 5.3
230.7 88.3 5.O
164.1 44.8 5.2
135.2 8. 8 4.2
127.0 "* 'jL 1 1 " 3-8
125.0 f* 2.6 ^3.1 A
111.5 1 8. 1 |lflu***>2.B f
110.5 1 9.9T1 2.9 '
104.7 7.5 2.0 *
101.0 6.2 2.2
96.4 5.6 2.5
90.5 5.4 1.9
101.1 4.9 2.0
106.1 4.6 1.7
101.7 4.5 1.1
a— ^9
98.6 4-3 1.4 A **
103.1 4.2 1.9
,. «***&e*
r*^,TwrfC **]
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12™1987
I.IMIL
CHAN 1
INLET
wetHCl
CHAN 2
MID
JSfilHEl.
3
OUTLET
clryHCl
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
10:00 238.5 39.4 3.5
AVERAGE VALUES FOR THE LAST HOURi 60 MINUTES OF VALID DATA
10s00 129.8 20.6 17.0
10:01
10:02
10:03
10:04
10:05
10:06
10:07
10:08
10:09
10: 10
10: 11
10: 12
10: 13
10: 14
10: 15
10: 16
10: 17
10: 18
10: 19
10:20
.10:21
10:22
10:23
10:24
10:25
10:26
10:27
10:28
10:29
115.4
148.4,
1 63 . 3
147.4
132.8 |
110. 1
101.5
81.9
87.2
79. 1
78 . 0
73.6
79.6
78.8
76.6
76.2
44.4
25. 5
23.8
15. 2'
24.3
10.7
10. 1
14.3
13.3
6.0
10. 1
14.2
10:30
I
7.9
4.4
4.4
4.2'
4-0
3.8
3. 5
3.4
3.4
3.4
3.3
•-<, ±-
3. 1
3. 1
~~2. v
2. 1
2. 1
2.0
2.0
1.9
1.8
1.8
1.7
1.9
2.4
2. 1
1.8
2. 1
1.8
2.5
2.7
2.4
2.9
5.8
7.4
7. 1
6.5
5.5
5.3
5.8
5.6
4.5
3.5
AVERAGE VALUES FDR THE PREVIOUS 30 MINUTES
10:30 63.7 2.9 3.^
10:31
10:32
10:33
10:34
10:35
12.9
7.5
4.6
1.6
1.7
1.5
1.3
1.3
3. 3
3.5
3.3
3.6
3.6
2.6
1.7
1.5
2.5
2.6
4. 1
A «=:
A-33
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987
LIME
101 4$
10:48
10: 49
10:50
10:51
10:52
10:53
10:54
10:55
10:56
10:57
10:58
10:59
1 1 : 00
CHAN 1 C
INLET r
wetHCl t>
309 1 3
324 , 9 ffiyg
342. iJPff'
337.5 i
332. 9 i
319.4*
322 . 6
313.3
324 . 2
309 . 6
314. 0
309.6
321.7
338 . 3
334.9
:HAN 2
11 D
siotHCl
ii6 />w
J[ $.6 *\e\
•M •"•••«• ac«
-op
1.9V
1.8
- 1.8
1.9
2 . 2
2. 5
2 . 5
2 . 6
2. 6
2.7
2.6
CHAN 3
OUTLET
clryHCl..
t* 35
f» 3 , $ „ f/Ji
y 4.i*ir
5.6 I
10.2 I
8.8 T
9.7
12.6
10. B
9.2
8.9
B.7
7.4
7. 1
6.4
,_
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
11:00 224.7 1.8 5.5
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
11500 144.2 2.4 4-4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
B
•
I
It
:
•
•
i
M
•
II
•
•
V
•
01
02
03
04
05
06
07
08
09
10
11
12
331 .
318.
320 .
342.
374.
376.
382.
380.
380.
377.
329.
359.
9
5
0
B
7
9
9
4
1
O
.&.
7
9
2.
2.
*-k
*L. •
11.
34-
53.
66.
77.
83.
88.
91.
68.
5
4
3
2
9
"T, 1
6>
8
8
7*
^
C
4*V
i /4A
'?
6.
6.
5.
' 5.
» 5.
9.
12.
11.
10.
10.
10.
9.
7
4
7
6
5
5
9
5
4
0
9
2
COMMENTS! Ready to start Run #3 at 11:15.
A-34
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987
TIME..
11: 16
111 17
11: 18
11: 19
1 1 : 20
11:21
1 1 : 22
1 1 : 23
11:24
1 1 : 25
1 1 : 26
11:27
11:28
1 1 : 29
1 1 : 30
11:31
1 1 : 32
1 1 : 33
1 1 : 34
11:35
11:36
11:37
11:38
1 1 : 39
1 1 : 40
11:41
11:42
11:43
11:44
11:45
11:46
11:47
11:48
1 1 : 49
1 1 : 50
11:51
11:52
1 1 : 53
11:54
11:55
11:56
11:57
11:58
11:59
12:00
12:01
12:02
12:03
12:04
12:05
12:06
12:07
12:08
12:09
12: 10
CHAN 1
INLET
wetHCl
441.4
435.0
399. 1
382.5
40O.O
418. 1
405. 1
412.6
434.7
465. 1
502.3
467.7
432.2
414.8
424.4
374-5
345.8
323.8
332. 7
324. 1
335 . 8
353.6
350.7
340.6
344.4
415.5
422.2
415.9
349. 1
262.7
239.0
292.7
347.6
359.0
365.6
332. 3
309.3
304. 1
337.6
379. 1
372.4
354.2
359. 9
378. 6
374.9
401.7
434.8
429.2
420.4
420.0
430.3
420.6 r
423.4
401.8
412.2
CHAN 2
MID
wetHCl
20.6
16.2
13.2
11.0
9.6
8.4
7.4
6.3
5.6
5.2
4.9
7 4.6
4.6
4.6
4.4
4.3
4.0
3.8
3.6
3. 3
3 . 0
2.8
2.7
2.5
2.4
2.3
2. 3
2.3
2.2
2. 1
2. 1
2.3
2.4
2.4
2.2
2. 1
2.0
1.9
1.9
1.8
1.9
1.9
2. 1
2.2
2.3
2.5
2.5
2.4
2.4
A/3 2.3
P 2.2
2. 1
2.0
2.0
CHAN 3
OUTLET ^
dryHCl -^— J*
7.5
6.6
6.8
6.0
6. 1
5.7
6.2
5.6
5.7
5.6
5. 3
fr> 5.0 0
4.8 v
4.9
4.8
4.6
4.2
5.0 ..^
4.8 U
4.5
4.6
4.7
4.7
4 . 0
3.7
3.5
3.2
3 . 7
4.0
3. 8
3.4
3. 1
4.3
4. 1
3.8
3.4
3.8 r
3.9
3.7
3. 8
3.3
3.4
3.4
2.9
2. 2
2.7
2.6
3.3
3.2
3.7
3.2
a 4.2 flr
3.5
3"8 A-3E
3 . •_•
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987
CHAM 1 CHAN 2 CHAN 3
INLET MID OUTLET
TIME . _ wetHC] wet.HC.1 dryHCl...
12s 11
12: 12
12: 13
12: 14
12: 15
AVERAGE
12: IS
1 2 s 1 6
12: 17
12 1 18
12: 19
12:20
12:21
12:22
12:23
12:24
12:25
12:26
12:27
12:28
12:29
12:30
12:31
12:32
12: 33
12s 34
12:35
12:36
12:37
1 2 : 38
1 2 : 39
1 2 : 40
12:41
12:42
12:43
12:44
12:45
AVERAGE
12s45
12s46
12:47
12:48
12:49
12:50
12:51
12:52
12:53
12:54
12:55
12:56
419.0
456.8
455. 1
449. 1
453.7
VALUES N=dR
387.7
468.7
482.2
479.6
442.8
429.7
433. 7
420-5
424.2
430.4
438.9
460. 1
460.7
450.0
442.6
457.3
448.6
445.7
433. 8
445. 1
461.6
453.6
472.5
454. 1
430.9
427.4
438.7
449.0
457.0
437.3
407. B
VALUES FOR
446. 1
389.6
36 1 . 1
393.7
419.7
444.6
422.5
420. 1
446.0
465.9
473.4
477.7
2.0
2.0
2. 1
2. 1
2.2
THE: LAST
3.9
2.2
2.2
2. 3
2 . 2
2. 1
2. 1
2. 0
1.9
1.8
l.B
1.8
1.9
1.9
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2 . 0
2.0
1.9
1.8
l.B
1.9
1.9 .
2.0
2.0
3. 8
5.0
5. 1
4.3
4.2
HQURr^O MINUTES OF VALID DATA
4 . 3
4.3
4.4
4. 1
4.0
3.5
3.8
3.8
3.5
3.6
3.6
3. 7
3.5
3.5
3.3
2.8
2.6
2.5
3.3
3.4
3.0
3. 1
3.7
3.6
3. 5
3.2
2.9
3. 1
3.5
3.8
3.9
THE PREVIOUS 30 MINUTES
2.0
1.9
l.B
1.8
l.B
l.B
l.B
1.8
l.B
l.B
l.B
1.9
3.5
2.B
2.5
2.4
2.5
2.6
2.4
2.5
2.7
2.B A-36
2.7
2.7
-------
HC1 CHARACTERIZATION TEST PROGRAM
12™12-1987
/ MAINE ENERGY RECOVERY COMPANY
TIME
12s57
12-. 58
12:59
13:00
13:01
13:02
13:03
13:04
13:05
13:06
13:07
13:08
13:09
13: 10
13: 11
13: 12
13: 13
13: 14
13: 15
CHAN 1
INLET
wetHCl
491.0
464.0
450.3
434.8
434.8
431.2
433.0
443.6
425.2
447.3
462.7
464.7
455.4
434.8
458.6
457.2
458.4
434.3
418. 1
CHAN 2
MID
_ wetHCl
1.9
1.9
1.9
1.9
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
1.9
2.0
2.0
2.0
2.0
1.9
CHAN 3
OUTLET
dryHCl
2.9
3.0
3. 1
2.7
2.0
2.6
2.4
2.7
2.6
2.7
3. 1
T T
'..' * V.'
3.2
3.0
2.8
2.8
3.0
2.7
2.9
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
13:15 440.5 1.9 2.7
AVERAGE VALUES FDR THE LAST HOUR: 60 MINUTES OF VALID DATA
13:15 443.3 1.9 3.1
13:16
13: 17
13: 18
13s 19
13:20
13:21
13:22
13:23
13:24
13:25
13:26
13:27
13:28
13:29
13:30
13:31
13:32
13:33
13:34
13:35
13s 36
13:37
13:38
13:39
13:40
13:41
13:42
13:43
419.8
436.6
42O. 1
412.9
420.4
423.6
454.0
468.0
485.2
495.0
483.7
477.2
449.7
437.8
430. 0
424.8
406.6
390.3
403.3
412.5
426.5
431.4
467.2
481.6
506.3
517.9
528.0
531.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.9
2. 1
2. 1
2.2
2. 1
2.0
2.0
1.9
1.9
1.8
1.8
1.8
1.7
1.8
1.8
1.9
2.0
2.0
2.0
2.0
2.0
3 . 0
3.0
2.8
2.8
2.8
2.4
2.3
2.9
3.4
3.6
3.8
3.2
3.5
3.7
. 3.6
3.2
3.2
3.0
3.0
3. 1
2.9
2.8
2.8
2.6
2.7
2.3
2.3
2.6
A-37
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987
TIME—
13s 44
13:45
CHAN 1
INLET
wetHCl
537. 1
54 1 . 7
CHAN 2
MID
......wetHCl
2.0
2.0
CHAN 3
OUTLET
_dnyHGi.
2.4
3.0
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
13s45
457.4
1.9
3.0
13546
13:47
13s 48
13s 49
13550
13s51
13s 52
1 T. « tf."if,
il s»' u \.J -™1
1 '"!' » Ki/J
J. '..,< w W *T
13s 55
1 3 1 56
13:57
13s 58
13:59
1 4 : 00
14! 01
14s 02
14:03
14s 04
1 4 s 05
14n06
14s 07
1 4 8 08
14 s 09
14s 10
145 11
14s 12
14s 13
14s 14
520.8
509. 1
484.7
482. 1
458.6
446. 6
454.7
464.3
463.8
493.3
495. 1
512.8
532 . 6
524 - 2
512. 1
488.3
448.4
439.5
455.8
476.0
410.0
426.9
442.4
518.4
566.3
550. 1
503. 1
458.6
464.4
1.9
1.9
1.8
1.7
1.7
1.6
1.6
1.6
1.6
1.7
1.8
1.8
1.8
1.8
1.8
1.7
1.6
1.5
1. 4
1.4
1.4
1.4
1.4
1.6
1.9
2. 1
3. 0
2.7
3. 1
3. 1
2.6
2. 1
2.2
2. 1
2. 6
3. 0
2.5
2.9
2.9
2.9
2.8
2.6
2.7
2.4
k:..3
14s 15
478.6
2. 6
3. 4
2.8
2. 3
2.3
2.6
2.7
2.8
2.3
2.4
2.7
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
14:15 482.8 1.7 2.6
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
14s15 470.1 1.8 2.8
14s 16
14s 17
14: 18
14s 19
14s 20
14i21
14:22
14:23
14s24
14s 25
14:26
510.9
546.6
569.8
578.9
593.8
668.9
696.7
714.0
729. 1
727.3
658. B
2.2
2. 1
2.0
1.9
1.8
1.7
1.7
1.7
1.8
1.8
3.0
2.7
2.9
2.8
3.0
2.8
1.9
2.0
2.3
3. 1
3.7
A-38
-------
HC1 CHARACTERIZATION TEST PROGRAM
12-12-1987
/ MAINE ENERGY RECOVERY COMPANY
TIME
14s 27
14:23
14:29
14:30
14:31
14:32
14:33
14:34
14:35
14:36
14:37
14:38
14:39
14:40
14:41
14:42
14:43
14:44
14:45
AVERAGE
14:45
14:46
14:47
14:43
14:49
14:50
14:51
14:52
.14:53
14:54
14:55
14s 56
14:57
14:58
14:59
15:00
ISsOl
15:02
15:03
15:04
15:05
15:06
15:07
15:09
15:09
15: 10
15: 11
15: 12
IS: 13
15: 14
15: 15
CHAN 1 CHAN 2 CHAN 3
INLET MID OUTLET
wetHCl watHCl drvHCl
689.8
714.9
680.4
606.3
548.7
523.3
490.2
492.9
471.4
482.5
495.9
486.3
440.9
448.7
479.8
47O.6
472.7
433.2
416.8
VALUES FOR
561.3
416.7
426.0
440.2
459.0
460.5
455.2
461.5
471.9
505.2
509.4
507 . 0
513.8
502 . 4
49O.4
472.5
443.9
439. 1
430 . 6
431.6
444.8
481.3
512. 1
506.3
501. 1
493.2
464.9
462.8
457.5
455.5
462.4
1.8
1.8
1.9
1.8
1.7
1.6
1.6
1.5
1.5
1.6
1.7
1.9
2.0
2.0
2. 1
2.2
2.3
2.3
r~\ i~\
A. m JU.
3.2
3.2
3.5
3.5
3 . 3
3.0
3.7
3.6
3.7
3.3
3.5
3.5
3.2
3. 1
3.4
3.9
3. 1
2.8
2.6
THE PREVIOUS 30 MINUTES
1.9
2.0
2.0
1.9
1.9
1.9
2.0
2.0
2.0
2. 1
2. 1
2. 1
*"? 1
.*£. • 4.
2.0
2.0
1.9
1.8
1.7
1.6
1.6
1.7
1.7
1.8
1.9
2.0
2.0
2.0
2.0
1.9
1.8
1.8
3. 1
2.5
3. 1
3.0
2.8
3.4
3.8
3. 1
3. 1
3.2
3.0
2.9
2.9
•2> m jL
3.2
3. 1
2.5
2.7
3. 1
2.9
3.3
2.3
2. 1
2.5
2.5
2.5
2.9
2.4
2.6
2.9
3. 1
A-39
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987
CHAN 1
INLET
w.iLtHC.1
CHAM 2
MID
CHAN 3
OUTLET
clry.HCl..
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
15:15 469.3 1.9 2.9
AVERAGE: VALUES FOR THE LAST HOURS 60 MINUTES OF VALID DATA
15n 15
1.9
3. U
15: 16
15: 17
15: 18
15: 19
15:20
15:21
15s 22
15:23
15:24
15:25
15:26
15:27
15:28
15:29
1 5 : 30
1 5 : 3 1
15:32
15:33
15:34
15:35
15s 36
15:37
15:38
15:39
15s 40
15:41
15:42
15s 43
15:44
15:45
AVERAGE
15:45
15:46
15:47
15:48
15:49
15:50
15:51
15:52
15:53
15:54
15:55
15:56
15:57
15:58
453.7
453.3
452.2 „
472. 8 /Jjj»
466.7^
490-5
497.9
476.7
460. 6
3 1 3 . 5
178.5
117.0
96.3
69.5
68.5
60.2
50.8
46.6
42.4
50 . 0
47.2
44.8
36 . 0
37 . 8
34.6
38.0
31.4
36 . 7
33. 5
27.7
VALUES FOR
189.5
32.3
21.7
29.7
17.0
24.5
23.3
26.8
21.7
22. 7
28.9
21.0
23.0
23. 1
1.7
1.6
1.6
1.6 .
1 . 6 f
1.7
1.8
1.9
1.9
1.8
1.6
1.5
1.5
1.4
1.4
1.3
1 . 3
1 . 3
1.2
1.2
1.2
1.2
1. 1
1. 1
1. 1
1. 1
1. 1
1. 1
1. 1
1. 1
THE PREV
1.4
1. 1
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
2.7
2.2
1.9
2.3 /.
2.6 '
2.6
2. 2
2.7
2. 4
3.2
3.7
1.5 /
-0.0 P^
-0.5 j^
0.4 \JF
1.0 V»
0 . B Jjs*
1.2 0»
0.3 \
1.2
1.5
1.3
0.6
1. 1
0.4
0.2
0.3
0.8
0. 1
-0. 0
IOUS 30 MINUTES
1.4
0.5
0. 1
0.4
0.7
0.4
1.3
1.8
1.5
1.6
0.5
-40.6
""*"* A-40
0.6
-------
HC1 CHARACTERIZATION TEST PROGRAM
12-12-1987
/ MAINE ENERGY RECOVERY COMPANY
TIME
15:59
16:00
16:01
16:02
16:03
16:04
16:05
16:06
16:07
16:09
16:09
16: 10
16: 11
16: 12
16: 13
16: 14
16: 15
CHAN 1
INLET
wetHCl
22. 1
29. 1
21.5
28.4
18.4
30 . 0
18.9
28. 1
26.0
24-8
26.0
17. 1
25.3
14.7
32.2
24-0
28.4
CHAN 2
MID
wetHCl
1.3
1.3
1.2
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
CHAN 3
OUTLET
dryHCl
0.3
0.0
0. 1
0.4
0.4
0.7
0.5
0.7
1.0
1.4
0.6
O.B
0.9
1. 1
1.5
1.0
1. 1
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
16:15 24.4 1.3 -0.7
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
16:15 106.9 1.3 0.4
16: 16
16: 17
16: 13
16: 19
16:20
16s21
16:22
16:23
16:24
16:25
16:26
16:27
16:28
16:29
16:30
16:31
16:32
16:33
16:34
16:35
16:36
16:37
16:38
16:39
16:40
16:41
16:42
16:43
16:44
16:45
29.2
21.6
29.7
23 . 3
29.8
33. 5
58.9
66.4
93. 5
89.8
109.3
124.9
112.7
117.2
113.9
117.3
119.3
118.6
134.6
123.7
121.3
113.9
120.7
103.9
102.9
90.7
68. 1
53.3
57.5
63.2
1.3
1.3
1.4
1.5
1.7
1.9
2. 2
2.7
3. 2
3.2
3.2
3.0
3. 1
3.3
3.2
3.3
3.8
6.2
12.0
19.5
25.9
31.8
33.2
29. 1
22.6
16.2
11.5
8.4
7.0
6.3
0.9
0 . 6
0-7
0.8
0.3
0.8
1.0
1.0
1.4
1.3
1.7
2.2
3.7
6.8
8.2
9.6
9.8
9.8
10.5
12.7
15.2
17. 1
18.3
18.0
15.7
14. 1
10. 1
5.9
6.0
7.8
\
A-41
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987
CHAN 1 CHAM 2 CHAN 3
INLET MID OUTLET
LIME juttHCi witHCl dr.yHC.L
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
16s45 85.4 9.1 7.1
16: 46
16s 47
16s 48
16:49
16: 50
16:51
16; 52
16: 53
16:54
16:55
16n56
16:57
16:58
16:59
17: 00
1 7 : 0 1
17s 02
17:03
17:04
17:05
17:06
17 1 07
1 7 : 08
1 7 : 09
17:10
17: 11
17: 12
17s 13
17: 14
17: 15
67.8
1 04 . 7
109. 4
120. 1
135. 1
146.3
150,. 3
155.9
190.0 "
f^,, o -;• "j
310.6
320 . 4
309.2
331.0
365. 4
382.7
394.6
385.3
369.3
369.2
352.0
339. 0
335 . 9
34 1 . 2
348. 0
371,3
423. 0
449.8
492.4
499.6
6.5
11.9
26. 1
40.9
5 1 . 0
-.»•*•-, ,-,.
16.8
12.5
11.3
10.9
9.4
7.9
6.9
6.2
5.5
5.2
4 . 6
4. 1
3.6
•—' m .lU.
3' H 1
3 . 0
3.0
3 . 0
3. 1
3.2
3.4
3.7
3. 9
3.7
11.7
20.8
22.7
T~i /~i
j£,*L. » ^
26.5
20 - 0
16.6
17.0
13. 1
8.4
5.8
4.8
5.2
5.4
5.6
5.2
5.2
4.6
6.8
6.7
5.6
4.9
4.2
4.7
4.8
4. 1
4. 1
4.4
8.9
8.8
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
17s15 296.4 10.3 9.6
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
178 15 190.9 9.7 8.3
17: 16
17: 17
17: 18
17: 19
17:20
17:21
17:22
17:23
17:24
17:25
17:26
17:27
17:28
532.2
536 , 3
490.7
460.2
420.4
411.9
410.8
419.5
398.8
392.7
379.5
365.4
398. 4
3.4
3.0
3.4
3.7
2.8
2.3
2. 1
2. 1
2.0
2. 1
2.2
2.2
2.3
7.8
6.9
6.2
6. 1
5.8
5.4
5.2
6.8
7.5
6. 1
5.4
4.4
4.5 A~42
-------
HC1 CHARACTERIZATION TEST PROGRAM
12-12™1987
/ MAINE ENERGY RECOVERY COMPANY
CHAN 1 CHAN 2 CHAN 3
INLET MID OUTLET
TIME wetHCl wetHCl drvHCl.
17:29
17s 30
17:31
17s32
17:33
17s34
17:35
17:36
17:37
17:38
17:39
17:40
17:41
17:42
17:43
17:44
17:45
AVERAGE
17:45
17:46
17:47
17:48
17:49
17:50
17:51
17:52
17:53
17:54
17:55
17:56
17:57
17:58
17:59
18:00
18:01
18:02
18:03
18:04
18:05
18:06
18:07
18:08
18:09
18: 10
18: 11
18: 12
18: 13
18: 14
18: 15
424.9
452.7
434.7
444-0
443.8
436.9
424.6
398.7
407 . 8
39 1 . 9
436 . 5
473.4
482.5
492.6
492.0
486.7
451.0
VALUES FOR
439.7
434.3
394.8
376.6
343 . 9
~1"~>Q 1
•_>.lL.Cj . J.
325.7
329.0
334.0
373.0
399.9
364.8
337.7
309.0
295.7
234.8
267.9
388.8
403.2
398.8
396.9
390.7
404.2
395.6
378.0
370.4
388 . 7
384.7
438.5
456.5
464.0
2.3
2.4
2.5
2.5
2.4
2.2
r> o
ji~ • jl.
2.2
2. 1
2.0
2. 2
2.6
2.8
2.9
2.8
2.7
2.5
THE PREV
2.5
2.3
2.4
2. 3
2.2
2.2
2. 1
2.0
2.0
O 1
ji . I
,-j 2
2. 2
2.2
2. 1
2.0
1.8
1.9
2. 1
2.4
2.9
3.5
3.6
3.2
3.0
2.8
2.8
2.6
2.5
2.6
2.6
2.5
4.0
4.0
4.6
4. 1
4.2
4.7
4.0
4.2
4. 1
3.7 ,
3.2 ,/
3.5 tff
'"a
3.7 f
T A
•_' • O
3.8
3.5
3.6
IOUS 30 MINUTES
4-8
2.9
1. 1
3. 3
3. 1
2.9
2.7
3.0
3.2
3.2
2.8
3.5
3.6
3 . 0
3. 3
2.9
2. 1
1.9
3. 1
3.4
3.5
3.6
3.4
• 3. 1
3. 1
3.3
2.6
3 . 0
2.9
3.0
2.7
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
18s15 370.3 2.4 3.0
A-43
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987
11MJL
AVERAGE
18s 15
IBs 16
18s 17
18: 18
18: 19
18s 20
18:21
18:22
18:23
18:24
18:25
18:26
18:27
18:28
18:29
1 8 : 30
18:31
18:32
18:33
18i34
18s 35
18:36
18:37
18:38
1 8 s 39
18:40
18:41
18:42
1 8 : 43
18:44
18:45
AVERAGE
IBs 45
18s 46
18:47
18) 48
18:49
18! 50
18:51
18:52
18s53
18s54
18:55
18:56
18:57
18:58
18:59
19:00
19:01
19:02
CHAN 1
INLET
__wetHCL
VALUES
405.0
455. 1
456.5
457.4
452.6
428.9
406.7
356 . 0
379.6
434. 3
472.0
488.9
468.6
460.8
455.4
398.2
414.9
446.8
453. S
439.6
38 1 . 1
322 . 3
222. 2
175.5
175.2
199.8
202. B
195. 0
160.5
126. B
117.7
VALUES
353.5
101.9
96.5
81.9
79.2
72.5
63. 1
69.2
59.7
66.0
52.3
58.4
49.5
45.3
49.8
43.3
43.7
37.7
CHAN 2
MID
w^ a/1^
2. 5 1 (r)\
2.3 ^o
2.5
2.5
3.5
FOR THE PREVIOUS 30 MINUTES
2.5
2.7
2.8
2.9
3. 1
3.4
3. 6
3.6
3.7
4.3
4.9
5.3
5.2
4.5
4.0
3.5
3. 1
2.8
4. 1
4.7
5.0
4-9
4.7
3.8
3.8
4.4
4-9
6.3
5.7
3.8
2.7
1.8
1.7
1.6
1 . 3 A-44
1.2
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12-1987
CHAN 3
OUTLET
ddCJL
1.0
0.8
-0.0
-0.0
0.4
0.6
1.0
0.8
0.8
0.8
1.2
1.0
1.4
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
19:15 51.0 3.2 2.4
AVERAGE VALUES FOR THE LAST HDURi 60 MINUTES OF VALID DATA
19:15 202.3 2.8 3.3
TIME
19:03
19:04
19:05
19:06
19:07
19:08
19:09
19: 10
19: 11
19: 12
19: 13
19: 14
19: 15
CHAN 1
INLET
wetHCl
41.8
33.9
37.7
37.9
31.9
34.8
34.5
38.3
28.0
39.3
37.4
32 . 0
31.5
CHAN 2
' MID
_ _wetHCl
2.7
2.6
2.5
2.4
2.4
2.5
2.6
2.7
2.7
2.7
2.7
2.6
2.5
19: 16
19: 17
19: 18
19: 19
19:20
19:21
19:22
19:23
19s24
19:25
19:26
19:27
19:28
19:29
19:30
19:31
19:32
19:33
19:34
19:35
19:36
19:37
19:38
19:39
19:40
19:41
19:42
19:43
19:44
19:45
38. O
44. 1
36.6
41.0
36.5
34.3
34. 2
36 . 3
43. 6
TO "=;
•«>*.. *->
35.3
27.9
36.7
30 . 3
37. 1
30 . 4
30.9
34.0
31.0
25.3
25.2
32.4
23. 1
30-7
28.9
30 . 0
26.9
15.8
23.2
22.5
2.4
2.4
2.6
f ~*,
jl~ m •_'
2.2
2. 1
2. 1
2. 1
2. 1
2.2
2.3
2.2
2. 2
2.2
2.3
2. 1
2.0
2.0
2.0
2.0
2.0
2. 1
2.0
2.0
2.0
2.0
1.9
1.9
1.9
1.8
1 . 0
1.0
0.8
0.6
0.2
0 - 3
0.4
0.9
0.9
1.4
1 . 3
0. 3
x*5o.7,
iTi
0. 6
0.9
0.7
0.5
0.6
0.6
-0.0
-0. 1
-0. 1
0. 1
-0.0
0.4
0.4
0.4
0 . 3
0.5
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
19:45 31.8 2.1 1.2
-------
HC1 CHARACTERIZAT ION
12-12-1987
TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
T I ME
19:46
19:47
19:48
19:49
19:50
19:51
19:52
19:53
19:54
19:55
1 9 s 56
1 9 s 57
1 9 : SB
19: 59
20:00
20 : 0 1
20: 02
20:03
20:04
20:05
20:06
20:07
20 : OS
2.0 s 09
"20s 10
20: 11
20: 12
20: 13
20; 14
20: 15
CHAN 1 CHAN 2 CHAN 3
INLET MID OUTLET
wetHCl wetHCl . .jdryHC]...
25.6
18.9
22. 3
29.7
19.3
24.9
18.6
22.5
28.5
32.0
21. 1
23.3
22 . 6
21.5
28 . 4
24. 1
24.3
20 . 2
21.6
19. 1
21.0
24.6
20. 0
19.7
18.7
20. 1 2£Y»
lf.7.fiS
11.5
12.4*
1.7
1.7
1.7
1.7
1.7
1.7
1.6
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.6
1.6
1 .6
1.6
1.6
1.6
1.6
1.7
1 -A
1.7
1.7 Jtf*
1 . 8 rj/
1.91^
1.9 1
1.9 Y
0.8
1.2
0.4
-0.2
-0. 1
-0. 0
-0.2
0.2
0-2
0. 5
0.3
0.7
0. 7
0. 8
-0.3
-0. 2
0.2
1.0
0 . 6
0.8
0.9
0 - 8
0. 5
• f t-
-0.2
0 . 3
0.7
0.4
0.4
0. 8
r
AVERAGE VALUES FOR THE PREVIOUS 30 MINUTES
20515 21.6 1.7 0.4
AVERAGE VALUES FOR THE LAST HOUR: 60 MINUTES OF VALID DATA
20:15 26.7 1.9 0.8
20s 16
20: 17
20: 10
20: 19
20520
20:21
20:22
20:23
20:24
20:25
20:26
20:27
20:28
20:29
20:30
20:31
20:32
14.8
8.7
6.7
14-8
5.3
11.7
6.7
11.9
7.9
12.9
12.5
17.9
13.7
3. 5
B.5
B.6
13. B
1.9
ly9
1.9
,1.8
"^TT^™"™
8.0
5.6
5.7 .
22.8 ^A1
43.4 j U
57.8 A
72.3 '
98.4
105.0
108.9
110.8
110.8
0. 9
-0.7
-2.0
-1.4
-0.8
-1.4
-1.7
mJflr ™" 1 • 1
\\ -2.0
>CA -i.B
-1.4
-0.8
-0.4
-0.5
-1.2
M.O f"\
ji * v«'
-2 . 0
A-46
-------
HC1 CHARACTERIZATION TEST PROGRAM / MAINE ENERGY RECOVERY COMPANY
12-12~1987
CHAN 1 CHAN 2 CHAN 3
INLET MID OUTLET
TIME wetHCl wetHCl drwHP.i
20:33
20:34
20:35
20:36
20:37
20:38
20 : 39
20:40
20:41
20:42
20:43
20s 44
20:45
8.0
8.0
9.9
14.8
3. 1
9.7
5.0
7.7
9. 1
12.6
14.4
10.4
5.2
AVERAGE VALUES FOR
12.2
20:49
20:50
20:51
20:52
20:53
20:54
20:35
20:56
20:57
20:58
20:39
21:00
21:01
21:02
21:03
21:04
21:05
21:06
21:07
21:03
21:09
21:10
21:11
21:12
21:13
21:14
21:15
AVERAGE
21:15
AVERAGE
21:15
20:45
20:46
20:47
175.6
5.6
12.8
9.6
1 0 . 7
0. 6
9.O
7.5
L~ a. >[f
2.4 43.46 l
25.5 46.3
233.7 47.1
THE PREVIOUS 30 MINUTES
49.9 5.8
209.8 48.2 1
177. 1 48.81
^tt^*m
49.8 f^
49.7 I
49.3 Jf
49 . 0
32. 9
9.8
5.4
3 „ 2 & ...JI.J1) K<
2 . 5 $lA"f° £^> rWI
3.8 JHJ'tl^**
3. 5
1. 9
0 . 3
-0. 0
-0. 0
-0. 1
-O. 1
-0. 2
--0. 1
-0. 0
-0. 3
™— ^ u ,_jt
-0.6
60-9
137.4
0 . 3
O .. 3
THE PREVIOUS 30 MINUTES
53 . 5
THE LAST
51.7
20. 1
HOUR: 60 MINUTES OF VALID DAT,
12.9
A-47
-------
T T •:
21;
•'T' •' t-
21:
"7» 1 n
'"7 1 "
21 s
'"'I -7 -
ol. .i. u
ji. 0. u
21:
21;
21s
2 1 :
rid. 1 n
E
16
.L •'
IS
19
.1.- ' j
ji'_ .i.
Ji!.i:i
xl! -3
24
,u!.' •!".'
.t:^ &
•"7, — ;•
2B
,",,.--7- '..!.-••'
4-i5. 5
402,. 9
215,8
91 ., 2
•"/ -7 tr;
_... ...... .,.,
.-' CD B "T
/ j. i- ,•'
/_ «=: -t
LJ^J » J.
6C"' '~^
•...-• n j::.
53, 5
5S.O
61 .5
59.0
K'l T v"'.
t t .1. •..,••
0 " 2
0 - 2
'•..-' •• .i:i!
0. 2
0 ., 2
O ii j.-
'-. •' .•- 1,'
f**'j r.*-5
O •• j;;l
*..' n *:'!.
0. 2
0- 1
0. 1
•:..'= L..' • L...
dry!-!
J. O
.•;» j^'"
49
4E
49
~T ~f
46
— y
/
0
0
_ A
o
o
:::T
,— . -f
'__• .L
/i.
.6
. 0
. B
. 4
. 4
0 ""/'
. 5
. 4
„ ^'j
. 1
B -til!
_.,.
COMMENTS; End Run 1*3 and calibration checks,.
A-48
-------
APPENDIX B.
Sample Calculations
B-l
-------
B-2
-------
SAMPLE CALCULATIONS
I. Calibration Corrections
From EPA Method 6C:
C
C = (C - C )
gas o'
C - C
m o
where:
C = Effluent gas concentration (corrected)
C = Average gas concentration indicated by gas analyzer
C = Average of initial and final calibration resonses for zero gas
C = Average of initial and final calibration responses for upscale
calibration gas
C = Actual concentration of upscale calibration gas
iu&L
For Run 1 (Inlet Location) from 15:30 to 16:30:
C = (501 - 29)(428)/(473 - 29)
Scls> = 455 ppm HC1 (wet basis)
II. Moisture Corrections
For Run 1 (Inlet Location) from 15:30-16:30:
moisture content = l4.7# H_0
HC1 concentration = 501 ppm (wet basis)
Proportion of water vapor, by volume (B ):
B = % H_0/100
ws 2
Dry basis HC1 concentration (C ) from wet basis concentration (C )
O W
C = C /(l-B )
o w ws
From Test Condition 1 (Inlet) from 15:30-16:30:
B = 14-7/100
WS = 0.147
C = 501/U - 0.147)
° = 533 PPm HC1 (dry basis)
B-3
-------
III. Percent Reduction
P V
PR . 1 - OUT OUT x 100
CIN VIN
where:
PR = percent reduction of HC1
C = concentration of HC1 at the inlet (dry basis)
IN
V , = volumetric flow rate at the inlet (DSCFM)
IN
CnTJT = concentration of HC1 at the outlet (dry basis)
V = volumetric flow rate at the outlet (DSCFM)
For Test Condition 1 from 15:30 to 16:30
PR , ! _ 66(39,700) x 100
533(39,900)
= 87.7# (see Table 2.4)
-------
APPENDIX C.
Daily Calibration Sheets
C-l
-------
C-2
-------
SOURCE AND LOCATION
HATF /Y?/*?
TIME
HCL CALIBRATION DRIFT
DAILY WORKSHEET
~ 1443*
PERSON CONDUCTING TEST.
BODENSEEWERK
COMPUR
TECO
OPERATING
RANGE
CALIBRATION
GAS VALUE
n
MONITOR
RESPONSE
TO CAL GAS
•rrysL
/ fftpp
'rry
'
4 ft
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
PERCENT SPAN
(PASS/FAIL)
0%
/,.,-!.
MONITOR
RESPONSE
TO INTERNAL
STANDARD
GAS CELL VALUE
LIQUID STANDARD
(Values In rr,V)
NA
NA
Ul- /53./
COMMENTS
Pre and Post Test Calibration Check Worksheet
4112DR15
-------
HCL CALIBRATION DRIFT
DAILY WORKSHEET
SOURCE AND LOCATION Sfa***
DATE /2/9/g7 TIME
<-*M SUKOVtru LOtwanu - &*$£*
PERSON CONDUCTING TEST.
BODENSEEWERK
COMPUR
bCAR OHiOL'ER
TECO
OPERATING
RANGE
CALIBRATION
GAS VALUE
'
o
MONITOR
RESPONSE
TO CAL GAS
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
'
%t) 00^
PERCENT SPAN
(PASS/FAIL)
MONITOR
RESPONSE
TO INTERNAL
STANDARD
GAS CELL VALUE
( -47 ppm)
LIQUID STANDARD
(Values in mV)
NA
NA
U0<
U1 -
U2<
x
COMMENTS
Pre and Post Test Calibration Check Worksheet
4112DR15
-------
SOURCE AND LOCATION
DATF
TIME
HCL CALIBRATION DRIFT
DAILY WORKSHEET
PERSON CONDUCTING
BODENSEEWERK
COMPUR
TECO
OPERATING
RANGE
CALIBRATION
GAS VALUE
O po
n
MONITOR
RESPONSE
TO CAL GAS
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
4 ff
PERCENT SPAN
(PASS/FAIL)
0.7%
J.I 7*
MONITOR
RESPONSE
TO INTERNAL
STANDARD
GAS CELL VALUE
Ppm)
4*) Wm
LIQUID STANDARD
(Values In mV)
SLOPE - -&'<*
UO- _ -41.7
Ul - _
U2- _
NA
NA
COMMENTS
Pre and Post Test Calibration Check Worksheet
4112DR15
-------
HCL CALIBRATION DRIFT
DAILY WORKSHEET
?&>•!
SOURCE AND LOCATION /*7^,»ifantt - £u 'jtOje-favf /4^/if ^>/£(s X\
HATF /£//&/ i
?7 TIMF /O^^? —
OPERATING
RANGE
CALIBRATION
GAS VALUE
MONITOR
RESPONSE
TO CAL GAS
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
PERCENT SPAN
(PASS/FAIL)
MONITOR
RESPONSE
TO INTERNAL
STANDARD
COMMENTS
BODENSEEWERK
O-MOfT
' if l?pyr\
I i
/ $0 ppr*
(A fe^JlvMij-
'^/W
GAS CELL VALUE
( 47 ppm)
COMPUR
//^
D j?Pt*\ /
^4 ppm
1 f^/
'74 ft*
'""/-fifr
/-7.I7*
LIQUID STANDARD
(Values In mV)
i^n- -4^.<5
in - /&?-?
PERSON CONDUCTING 1
LE^s^Em
NA
rpqf >3/1m /
•^ **r(2o f?i?*r\
10 j>pm /
//447pp^
^//^
/.!%/
NA
JSS^
Pre and Post Test Calibration Check Worksheet
4112DR15
-------
HCL CALIBRATION DRIFT
o
DAILY WORKSHEET
SOURCE AND LOCATION /^W £/tfmt/ tf&Wnf &>toM*u - £>idde-fevt . Mat'** Sid* A
DATF &//J/*-)
0 1 i
TIMF V&1<0- d^jb
1 ' '
OPERATING
RANGE
CALIBRATION
GAS VALUE
MONITOR
RESPONSE
TOCAL6AS
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
PERCENT SPAN
(PASS/FAIL)
MONITOR
RESPONSE
TO INTERNAL
STANDARD
COMMENTS
BODENSEEWERK
0" a^^^ ppt*\
0 Ppr* /
'47ppm
ii
& PPW /
* / D4%
/ 4 ^ j(fQ>
GAS CELL VALUE
( 41 ppm)
•4" ppw\
^ £0ndjufcZid 0r>
-------
SOURCE AND LOCATION
DATE
TIMF
HCL CALIBRATION DRIFT
DAILY WORKSHEET
A
T
PERSON CONDUCTING TEST
BODENSEEWERK
COMPUR
TECO
OPERATING
RANGE
0 '
0 -
CALIBRATION
GAS VALUE
o
I
c»
MONITOR
RESPONSE
TO CAL GAS
fr
7
Ill ppt
w
DIFFERENCE
(RESPONSE-
CAL GAS VALUE)
PERCENT SPAN
(PASS/FAIL)
MONITOR
RESPONSE
TO INTERNAL
STANDARD
GAS CELL VALUE
ppm)
ptfi\
LIQUID STANDARD
(Values In mV)
-41.4
NA
NA
U1
.U2
160. \
,
COMMENTS
Pre and Post Test Calibration Check Worksheet
4112DR15
-------
APPENDIX D.
Daily System Checklists
D-l
-------
D-2
-------
HC1 GEMS DAILY INSPECTION CHECK LIST
Characterization Test • Marion County Facility
Date
Initials
TECO Model 15 Analyzer/Model 200 Dilution System
M200 Control Unit
Aspirator Air Pressure £fa psi
Orifice Vacuum «
Zero Air Flow Rate 4 * scfh
Calibration Gas Flow Rate £ scfh
TECO 15
Sample Flow Rate /. 0 1pm
Zero Pot Setting
Span Pot Setting ~~~~~
4150 ZGSM/4330 Dilution System
4330 Dilution Control Unit
Aspirator Air Delivery Pressure &>& psi
Orifice Vacuum - g.£- gsi
Probe Temperature /%7 C
4150 ZGSM
Analyzer Sample Flow Rate
Analyzer Inlet Pressure
System Vacuum
Printer Paper Supply Adequate Yes y^No
Absorbing Solution Tank Level
(Capacity, 20 1) 7 1
Waste Tank Level (Capacity, 20 1) lj» 1
Calibration Solution Tank Level
(Capacity, 2 1) <
Sampling System Flow Rate
System Blow Back Air Pressure <2.5
Strip Chart Recorder Paper Supply OK Yes |X No
Strip Chart Recorder Pens Inking Yes \/ No
Heater Temperatures Within Limits Yes_j/_ No
Clneclcs
Compressor Delivery Air Pressure lOQ ^ Psi
Compressor Air Line Leaks Detected Yes No_
Electrical Power Supply Adequate Yes p/ No_
D-3
-------
HC1 GEMS DAILY INSPECTION CHECK LIST
Characterization Test • Marion County Facility
Date
Initials
TECO Model 15 Analyzer/Model 200 Dilution System
M200 Control Unit
Aspirator Air Pressure
Orifice Vacuum . — <££> />?.
Zero Air Flow Rate 4- 0 scfh
Calibration Gas Flow Rate 4_ scfh
TECO 15
Sample Flow Rate /.b 1pm
Zero Pot Setting
Span Pot Setting
4150 ZGSM/4330 Dilution System
4330 Dilution Control Unit
Aspirator Air Delivery Pressure faQ psi
Orifice Vacuum — %. / psi
Probe Temperature /%% C
4150 ZGSM
Analyzer Sample Flow Rate 44^
Analyzer Inlet Pressure 47
System Vacuum
Printer Paper Supply Adequate Yes y No
Absorbing Solution Tank Level
(Capacity, 20 1) £ 1
Waste Tank Level (Capacity, 20 1) ^ 1
Calibration Solution Tank Level
(Capacity, 2 1) &•(? 1
B o C> psi
Compressor Air Line Leaks Detected Yes
Electrical Power Supply Adequate
n-4
-------
HC1 CEMS DAILY INSPECTION CHECK LIST
Characterization Test - Marion County Facility
Date
Initials
TECO Model 15 Analyzer/Model 200 Dilution System
M200 Control Unit
Aspirator Air Pressure
Orifice Vacuum
Zero Air Flow Rate
Calibration Gas Flow Rate
psi
TECO 15
Sample Flow Rate
Zero Pot Setting
Span Pot Setting
/.*
scfh
scfh
1pm
4150 ZGSM/4330 Dilution System
4330 Dilution Control Unit
Aspirator Air Delivery Pressure
Orifice Vacuum
Probe Temperature
4150 ZGSM
Analyzer Sample Flow Rate
Analyzer Inlet Pressure
System Vacuum
Printer Paper Supply Adequate
Absorbing Solution Tank Level
{Capacity, 20 1)
Waste Tank Level (Capacity, 20 1)
Calibration Solution Tank Level
(Capacity, 2 1)
Yes
No
psi
Iph
psi
i
i
Sampling System Flow Rate
System Blow Back Air Pressure
Strip Chart Recorder Paper Supply OK
Strip Chart Recorder Pens Inking
Heater Temperatures Within Limits
Yes y/ No
Yes \/ No"
Yes v/ No~
Compressor Delivery Air Pressure
Compressor Air Line Leaks Detected
Electrical Power Supply Adequate
Yes
No /
No
psi
D-5
-------
APPENDIX E.
Quality Assurance Data
E-l
-------
E-2
-------
EPA REFERENCE METHOD 6 C90
SAMPLING DATA
PLANT /LOG AT ION /I ;1 A
RUN*
>LI
(1
-Jf
ME
1
i
£
Nrur»r.ATinw /2/t^^c^ 6^r[cT
/ ANA! YRT /£- /^M HATr /^/V^ 7^
rFMPFRATIIPF OF MfTrP Rflv « £~><;fr /3
r TEMPER ATI IPF *r wrrro onv r APTHD « O.^ 7<^O
TRIC PRESSURE, P
CLOCK TIME
/£.•*>
^:l^
/6. Jo
/6. j^
// •' 'f 6>
"OTAL VOLUME =
Vm
AVERAGE METER TE!
;TD GAS METER VOL
.?o. 2 ,. ^
DRY GAS METER
READING (JX?^
A
J/5?. ?33
2/Sf,^^
1/t < c^
3/
AVG.TEMP. =
DRY GAS METER
TEMPERATURE (*F)
it>
t^>
5&
^"o
ir°
& m
f \ *t — °D
. 73 1 rfwf
in. Hg)
m
COMMENTS:
E-3
EKTROPY
-------
EPA REFERENCE METHOD 6 CSO
SAMPLING DATA
RUN
1 /
>L
C
:w
ME
1
i
S
fdft | (If ATI/IN /xAf l^-'CJ'—e— C-S-} 1 fa—~l
2- ANAIVQT /^' £ °f f)ATr /2-/'/^~7
^ x- /?
rfMPFC-AT|IPp °P MTTFP PnX * ,V s-'f/ /--)
X'J *9 ")/" JL. 1
f TEMPERATURE OF" MrTFP Rnv r^rTnp v ^^ / '<^~>
TRIC PRESSURE, P
CLOCK TIME
/6>'^
17- ^
i 7 - os ^
n' 10
n /$-
•OTAL VOLUME =
AVERAGE METER TE
>TD GAS METER VOL
-^T' J _. in Wg
DRY GAS METER
READING (ft3 )
J/7V. ^7
2,y7^ ^-7^0
J^2. (^cxj
Jm.
-n.
6"i
5-L.
$-2.
57 C^F)
>^P T = f 4^n + t „. rnvo") ) = , "^
UME , V_. ,,_,,. , /.£?..,.!' ^^ rtwf
.S4 °R/in.Hg)
m
COMMENTS:
E-4
ENTROPY
-------
EPA REFERENCE METHOD 6 CSO
SAMPLING DATA
PLANT/LOCATION /*? /
ANALYST
STACK TEMPERATURE
AMBIENT TEMPERATURE,
,P
_°F
:°F
METER BOX *
BOX
JOB*
7 '::xj
CLOCK TIME
DRY GAS METER
READING
ROTAMETER
SETTING Jfcffi5
DRY GAS METER
TEMPERATURE C°F)
/?.'
TOTAL VOLUME =
AVG. TEMP.
* m (avg)
C°F)
AVERAGE METER TEMP., Tm = (460 + *m(avg) ) =
STD GAS METER VOLUME,
Vm(std) %
-------
E-6
-------
CUSTODY SHEET FOR REAGENT BOX #
Date of Makeup
Individual Tare of Reagent:
Individual Tare of Reagent:
Initials
Locked?
mis. of
mis. of
PLANT NAME
SAMPLING LOCATION 5/WP A
/
Run
Number
Date
Used
Initials
Locked?
Date
Cleanup
Initials
Locked?
Date Initials Locked?
Received in Lab
Sampling Method: jpy\
Remarks:
E-7
-------
APPENDIX F.
HC1 Calibration Cylinder Gases
F-l
-------
F-2
-------
The following calibration gases were used during this test program.
HC1 Calibration Gas Cylinders
Cylinder No. Tag Value Balance Gas
K-9933
K-9308
K-9841
K-9983
K-9860
47 ppm
94 ppm
221 ppm
428 ppm
881 ppm
Nitrogen
Nitrogen
Nitrogen
Nitrogen
Nitrogen
CO Calibration Gas Cylinders
Cylinder No. Tag Value Balance Gas
(EPA Protocol 1)
AAL-1517 50.8 ppm Nitrogen
ML-5330 438.8 ppm Nitrogen
F-3
-------
APPENDIX G.
Bodenseewerk Operation Procedures
G-l
-------
G-2
-------
BODENSEEWERK OPERATIONAL PROCEDURES
The entire Bodenseewerk sampling and analytical system is heated to
maintain a sample gas temperature of 180°C (356°F). When the analyzer is
turned on, a warm-up period of 1 hour is necessary for all the temperatures
(probe, sample transport line, pump, and sample cell) to reach their set points
and stabilize. A microprocessor monitors the system's parameters; at the
conclusion of the warm-up period, the system is ready for calibration.
The Model 677 employs zero air and an internal sealed gas cell for zero and
upscale calibration checks. The monitoring system is also capable of accepting
calibration gas; the gas injection point is located at the probe.
The probe also is backflushed with compressed air during the calibration
sequence.
The operator can program the time intervals desired for the automatic
calibrations performed using zero air and the internal calibration cell. The
duration of the calibration cycle is also selected by the operator. First, the
entire sampling system is flushed with zero air to achieve a zero condition.
Any drift that may be detected then is corrected by the zero compensation
circuit. Then, while the zero air is still flowing through the system, a gas
cell filled with a known quantity of HC1 gas is positioned so that the infrared
light passes through the gas cell. After the response to the gas cell is
recorded, the analyzer returns to the flue gas sampling mode.
A dynamic calibration of the system is possible by putting the analyzer in
the "standby" mode and replacing the zero air delivery line connected to the
probe with a calibration gas transport line. A flowmeter within the analyzer
cabinet indicates the rate of sample flow exiting the optical cell. The flow
rate of the calibration gas through the system can be observed using that flow
meter, and should be identical to the flow rate when sampling flue gas. The
cylinder regulator should be adjusted to deliver the proper flow.
G-3
-------
APPENDIX H.
Thermo Electron Operational Procedures
H-l
-------
H-2
-------
THERMO ELECTRON OPERATIONAL PROCEDURES
Prior to calibration of the system, it should be ascertained that the
analyzer is operating properly. A check of the internal diagnostics will
indicate if the condition of any component requires corrective action, i.e., an
element needs to be checked, cleaned, or replaced if found to be defective.
When the power is turned on, the analyzer automatically enters the start-up
mode; the source turns on, all electronics are turned on, the chopper motor and
sample pump turn on, the heater in the pressure transducer turns on, and the
program initializes itself. After the source stabilizes, the instrument
automatically goes into the "Run - Sample" mode. The analyzer should be
allowed to warm-up for one hour, then the instrument service checks should be
performed.
When calibrating the instrument, three thumbwheel switches are used to set
the zero reading of the instrument. There are also three thumbwheel switches
available to set the instrument to the concentration of an upscale calibration
gas. If the instrument is zeroed first, use of the span switches will not
affect the zero setting.
A three-position switch located on the front panel of the M200 probe
control unit is used to manually select flue gas sample, zero air, or
calibration gas flow through the sampling system. The two flow meters visible
through the front panel indicate zero air or span gas flow when in the
calibration mode. A vacuum gauge indicates the vacuum at the probe downstream
of the orifice. The dilution air and zero air gauges and regulators are
located behind the front panel.
The calibration checks can be performed both on the analyzer and the entire
monitoring system. The zero and upscale calibration gases can be injected
directly into the analyzer, and the zero and span controls can be adjusted to
establish the instrument's calibration. Calibration of the total monitoring
system is performed by the injection of zero and calibration gas through a
transport line to a point within the probe, upstream of the critical orifice.
In this way, the calibration gas follows the same path through all the
conditioning steps (i.e., filtering and dilution) taken by the flue gas sample.
H-3
-------
APPENDIX I.
Compur Operation Procedures
1-1
-------
1-2
-------
COMPUR OPERATIONAL PROCEDURES
The instrument requires a short period of time for start-up after the
system is turned on. The warm-up serves to heat the probe and internal lines
through which the gas sample passes. After temperatures reach set points,
time is taken for vacuum to build up in the system, since the 20 liter air
volume of the empty discharge tank must also be evacuated. After
stabilization of the vacuum, the sample flow rate into the analyzer is
adjusted to 400 1/hr by needle valve adjustment.
The flow rate of the absorbing solution should be checked so that the
targeted enrichment can be maintained throughout the operational period.
Accurate adjustment of the absorbing solution feed rate and the gas sample
flow rate is important for the accuracy of the measurement.
The calibration program is then initiated. The transport line for the
gas sample is flushed with compressed air and the electrodes are rinsed with
absorption solution. After the zero value is recorded, the calibration
solution (typically J0% of the measuring range) passes between the two
electrodes and the upper calibration point is determined. If either of the
calibration limits are exceeded, the computer attempts the calibration a
second time. If a desired result is not obtained after a third attempt, the
instrument goes into a "standby" mode and the problem needs to be
investigated. The entire program can be restarted by pressing INIT. After
completing a successful calibration, the analyzer goes into the flue gas
measuring mode, if the dilution system is ready.
The probe may be installed up to a distance of 65 feet from the control
unit. (At distances greater than 65 feet, the dilution ratios provided by
Compur at the various aspirator air pressures measured at the control unit
cannot be used, due to the probable pressure drop through the longer length
of transport tubing. The dilution ratio should be checked using non-reactive
calibration gases and an appropriate, independent analyzer.) Dry controlled
air at a pressure greater than 90 psi is necessary for aspirator air and zero
air. The aspirator air pressure is adjusted between 40 and 80 psi with the
aid of a pressure regulator and gauge located on the front panel of the probe
control unit. The pressure is chosen depending on the desired dilution
ratio. The vacuum gauge must indicate a pressure between -7 and -9-5 psi in
order for the orifice to operate within the critical region.
The entire measurement system, including both the sampling and analytical
equipment, can be calibrated by injecting calibration gas into the chamber
within the dilution probe between the inlet filter and the orifice.
Compressed air injected in the same manner serves not only to produce a zero
condition, but also to back flush the probe tip filter.
A three-way valve serves to select zero gas or calibration gas. The
delivery pressure at the regulator connected to the calibration gas cylinder
should be adjusted to 15 psi in order to provide sufficient flow to the
probe.
Since the dilution probe supplies approximately 33 liters/min diluted
sample and the analyzer uses only 7 liter/min, a "tee" must be mounted on the
sample line to exhaust the excess sample flow.
1-3
-------
APPENDIX J.
Wet Chemical Sampling/Analytical Procedures
J-l
-------
J-2
-------
The wet chemical procedure used for sampling hydrogen chloride (HC1) in
the MWC emissions involved absorbing the HC1 into a 0.1N sodium hydroxide
(NaOH) solution. The stack samples collected at MERC were transported to
Entropy's laboratory for ion chromatographic (1C) analysis.
The HC1 samples were collected with a sampling train similar to a Method
6 train. The first three impingers contained 15 ml each of 0.1N NaOH. The
fourth impinger (a Mae West design) was filled with calcium sulfate
(Drierite) to protect the meter box from moisture. The sampling rate was
2 liters per minute with a sampling time of 20 minutes. Sample recovery
involved quantitatively combining the contents of all three impingers.
Deionized (DI) water was used to rinse the sampling train components. The
total volume for each sample and rinse was kept below 100 ml.
For analysis, the samples were quantitively transferred to 100 ml
volumetric flasks and volumed to 100 ml with D.I. H_0. The samples were
split and then transported to the Entropy laboratory.
The ion chromatographic (1C) analysis was performed in Entropy's
laboratory using a Perkin-Elmer high-performance liquid chromatograph
(HPLC). The analysis was performed by non-suppressed ion chromatography on a
low-capacity resin-based ion exchange column (Hamilton PRP-X100) using a 1.0
mM phathlate mobile phase with the pH adjusted to 4.5 with a saturated sodium
borate solution. Forty (40)-ml aliquots of each sample were used for the 1C
analysis and did not require any pretreatment. The quantifiable detection
limit for the 1C analysis is 4 ppm HC1.
All the sampling components contacting the stack gases were constructed
of glass. A glass-lined probe and glass components were used to convey the
stack gas to the first impinger. A three-way glass valve was mounted in-line
directly upstream of the first impinger.
It was important to maintain the gas sample temperature above the water
dew point until the sample reached the first impinger. This was accomplished
by wrapping a heating element around the glass components of the train
between the heated probe and the first impinger.
J-3
-------
APPENDIX K.
Spray Dryer Operating Data
- Full size plots of operating data
- Printouts of four-minute readings
K-l
-------
K-2
-------
i
to
0)
TJ
UJ
_J
u.
O
or
£L
LJ
a:
u
a.
5
u
i-
900
800 -
700 -
600 -
500 -
400 -
300 -
200
RUN 1
For Figure 3-7.
KEY
D Economizer inlet gas temperature (°F)
Economizer outlet/air heater inlrt gas temperature
Air heater outlet gas temperature (°F)
A Spray dryer inlet gas temperature (°F)
x Spray dryer outlet/fabric filter inlet temperature (°F)
Fabric filter outlet gas temperature (°F)
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I M I l I I I I I
15:33 15:53 16:13 16:33 16:53 17:13 17:33 17:53 18:13 18:33
ECI
+
ECO
TIME
ARM
ABI
X
ABO
FFO
-------
RUN 2
Q)
T)
(/I
LJ
_J
c
o
a:
Q.
LJ
rr
D
y
a.
2
LU
H
900
800
700 -
600 -
500 -
400 -
300 -
200
For Figure 3-7.
KEY
D Economizer inlet gas temperature (°F)
+ Economizer outlet/air heater inlrt gas temperature (°F)
0 Air heater outlet gas temperature (°F)
A Spray dryer inlet gas temperature (°F)
x Spray dryer outlet/fabric filter inlet temperature (°F)
V Fabric filter outlet gas temperature (°F)
11n1111111111111111111111111111111111111111111111111111111111111111 r TTTTTTTTT
13:05 13:37 14:09 14:41 15:13 15:53 16:25 16:57 17:29 18:01
TIME
ECI
ECO
AHO
ABI
X
ABO
FFO
-------
D>
0)
LJ
E
O
tt
0_
U
a
D
<
a:
ui
Q.
5
u
h-
900
800
700 -
600 -
500 -
400 -
300 -
200
RUN 3
For Figure 3-7.
KEY
D Economizer inlet gas temperature (°F)
+ Economizer outlet/air heater inlrt gas temperature (°F)
0 Air heater outlet gas temperature (°F)
A Spray dryer inlet gas temperature (°F)
x Spray dryer outlet/fabric filter inlet temperature (°F)
Fabric filter outlet gas temperature (°F>
11 in i n in i mi i n ii ii mi in mi HI in
11:43 12:43 13:43
TIME
ECI
ECO
AHO
ABI
X
17:43
ABO
imimiiiiimiiii
18:43
FFO
-------
400
350 -
RUN 1
en
a.
u
y
or
m
JJ
ft:
bJ
>-
a:
o
a.
300 -
250 -
200 -
150 -
100
50 -
0
For Figure 3-8.
KEY
D Spray dryer inlet gas temperature (°F)
+ Spray dryer outlet/fabric filter inlet gas temperature (°F)
0 Lime slurry feedrate (gpm x 10)
A Dilution water feedrate (gpm x 10)
I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I || I I I I | | | |
15:33 15:53 16:13 16:33 16:53 17:13 17:33 17:53 18:13 18:33
ABI
ABO
TIME
O
LIME
DIL.
-------
RUN 2
L_
y
a:
m
Ot
U)
>
QL
0
Q.
if]
400
350 -
300 -
-^yAK/^^/y^^^
250 -
200 -
150 -
100 -
50 -
For Figure 3-8.
KEY
D Spray dryer inlet gas temperature (°F)
+ Spray dryer outlet/fabric filter inlet gas temperature (°F)
0 Lime slurry feedrate (gpm x 10)
A Dilution water feedrate (gpm x 10)
0 | | | || | | | | | ||||||||I I I I II I I I I I I I I I I I I I I I I I I II I I I I I III I I I I I I I II IITII 11 I I I It I I I I I
13:05 13:37 14:09 14:41 15:13 15:53 16:25 16:57 17:29 18:01
D ABI
ABO
TIME
LIME
OIL.
X FFP
-------
RUN 3
00
UJ
o
a:
m
i.
a
z
a:
UJ
>-
a:
Q
o:
Q.
400
350 -
300 -
250 ^
200 -
150 -
100 -
50
0
For Figure 3-8.
KEY
D Spray dryer inlet gas temperature (°F)
+ Spray dryer outlet/fabric filter inlet gas temperature (°F)
0 Lime slurry feedrate (gpm x 10)
A Dilution water feedrate (gpm x 10)
KXXXXMOOOOOCOOOOOOO^
MIIII mi 1111 ill ii ii mi in mi m nun mi mi nil m
11:43
12:43
13:43
14:43
TIME
D
ABI
ABO
mi mi ii ii m mIITT
15:43 16:43 17:43 18:43
LIME A OIL
-------
in
3
tn
(/)
u
a
n
H
Z
UJ
on
Id
10
9 -
8 -
7 -
6 -
5 -~
4 -
3 -
2 -
1 -
RUN 1
0
For Figure 3-9.
KEY
D Dust collector differential pressure (in H2O)
+ Spray dryer differential pressure (in H2O)
0 Fabric filter differential pressure (in H2O)
I I I I I I I I II
15:33 15:53
D DUST
I I I I I I I I
16:13 16:33
I I I I I II I I I I I I I I I I I I | | | || |
16:53 17:13 17:33 17:53 18:13
I I I IT
18:33
TIME
ABSORBER
BAGHOUSE
-------
RUN 2
t/1
U
n:
D
m
u
a:
n
h-
z
UJ
tt;
LJ
u.
a
4 -
3 A
1 -
0
For Figure 3-9.
KEY
D Dust collector differential pressure (in H2O)
+ Spray dryer differential pressure (in H2O)
0 Fabric filter differential pressure (in H2O)
I I II I I I I II I I I I I I I I
13:05 13:37
I I II II IH I II I II I I I I I I I II I II I I I I I I I I I I I I II I I I I I I I I I I I | | | | | | |
14:09 14:41 15:13 15:53 16:25 16:57 17:29 18:01
D
DUST
TIME
+ ABSORBER
BAGHOUSE
-------
RUN 3
LJ
tn
LJ
Q:
n
H
Z
ut
a:
LJ
u.
u.
Q
For Figure 3-9.
KEY
D Dust collector differential pressure (in H,O)
+ Spray dryer differential pressure (in H2O)
0 Fabric filter differential pressure (in H,O)
0
Illllllllll
11:43 12:43
D DUST
TIME
ABSORBER
iimiimiiiiiiiul
16:43 17:43 18:43
O BAGHOUSE
-------
K-12
-------
DATA CHANNEL DEFINITIONS
TREND LOG PARAMETER IDENTIFICATION
UNIT A TREND LOG 37
MAINE ENEREY RECOVERY COMPANY
YORK COUNTY MASTE-TO-ENER6Y FACILITY
BIDDEFORD,MAINE
CHANNEL NUMBER HEADING DESCRIPTION
PARAMETER
UNITS
DPI371
PI371
PI372
DP1372
DPI373
PI373
TI3206
TI3228
AI3B04
AI3804B
AI3804A
FI3202
DST CLTR
GAS DF P
ABSR IN
6AS P
ABSR OUT
DIFF P
ABSR GAS
DIFF P
B6HSE
DIFF P
ID FAN
SUCT P
ABSR IN
GAS T
ABSR OUT
6AS T
OUTLET
GAS S02
COfiRTD
GAS S02
OUTLET
GAS NOK
LI HE SLRY
FEED
DUST COLLECTOR GAS DIFFERENTIAL PRESSURE
ABSORBER INLET GAS PRESSURE
ABSORBER OUTLET GAS PRESSURE
ABSORBER GAS DIFFERENTIAL PRESSURE
BA6HOUSE DIFFERENTIAL PRESSURE
ID FAN SUCTION PRESSURE
ABSORBER INLET GAS TEMPERATURE
ABSORBER OUTLET GAS TEMPERATURE
OUTLET GAS S02
CORRECTED S02
OUTLET GAS NOK
LIME SLURRY FEED
in. H20
in. H20
in. H20
in. H20
in. H20
in. H20
deg F
deq F
PPHV
I
PPNV
6PH
K-13
-------
TREND L06 PARAMETER IDENTIFICATION
UNIT A TREND LQ6 38
MINE ENERBY RECOVERY FACILITY
YORK COUNTY NASTE-TO-ENER6Y FACILITY
B1DDEFORD, MAINE
CHANNEL NUMBER
HEADING DESCRIPTION
PARAMETER
FI3200
PI200A
FI3200
TI3800
DPI3809
AI370A
AI370B
AI370C
IIL320
I1H320
! 11320
111320
DILUTION
HATER
ST IN STH
PRESS
DILUTION
HATER
BHSE OUT
6AS T
B6HSE
DIFF P
STACK
CO
STACK
OPACITY
STACK
C02
IN FAN
CURRENT
ID FAN
CURRENT
ID FAN
CURRENT
ID FAN
CURRENT
DILUTION HATER
STEAM TURBINE INLET STEAM PRESSURE
DILUTION HATER
BA6HOUSE OUTLET 6AS TEMPERATURE
BA6HOUSE DIFFERENTIAL PRESSURE
STACK CO
STACK OPACITY
STACK C02
ID FAN CURRENT
ID FAN CURRENT
ID FAN CURRENT
ID FAN CURRENT
UNITS
6PM
PSIG
6PH
deq F
in. H20
PPHV
1 voluie
AMPS
AMPS
AHPS
AMPS
K-14
-------
RADIAN CORPORATION
02-Jan-S
PROCESS DATA SUMMARY
MINE ENERGY RECOVERY COMPANY
YORK COUNTY HASTE-TQ-ENER6Y FACILITY
BIDBEFORD MAINE
UNIT A
DATE
I09DEC37
109DEC87
09DEC37
09DEC37
09DEC87
09DECS7
G9DEC87
C9DEC87
09DEC87
Q9DEC87
09DEC87
09DEC37
09DEC37
09DECB7
09DEC37
09DEC37
09DECS7
090EC37
09DEC87
09DEC37
C9DECS7
09DECS7
09DEC37
S092ECS7
I09DEC87
SC9DEC37
«09DEC87
W9DECS7
I09DECB7
J09DEC87
09DEC87
G9DEC37
09DEC87
09DEC37
09DEC87
09DEC87
09DECS7
09DEC37
09DEC37
09DEC87
Sflwra?
TIME
15:22
15:2i
15:30
15:34
15:38
15:42
15:46
15:5C
15:54
15:53
16:02
16:06
16:10
16:14
16:18
16:22
16:26
16:30
16:34
16:33
16:42
16:46
16:50
16:54
16:58
17:02
17:06
17:10
17:14
17:18
17:22
17:26
17:30
17:34
17:38
17:42
17:46
17:50
17:54
17:58
' Q . M
DST CLTR
GAS DF P
IN H20
2PI371
3.01
3.22
3.45
3.30
3.04
2.97
3.09
2.93
2.33
3.05
3.17
2.78
2.87
3.02
2.37
2.85
2.91
2.57
2.7?
3.11
3.05
2.96
3.19
3.30
3.23
3.11
2.97
3.11
2.94
2.94
2.88
2.95
2.33
2.94
3.05
2.33
2.88
3.09
3.01
2.91
7.95
ABSR IN i
GAS P
IN H20
PI371
-7.58
-7.38
-7.86
-8.41
-6.97
-7.00
-7.59
-6.97
-6.72
-7.20
-7.64
-6.34
-7.13
-7.17
-6.73
-6.89
-7.05
-5.97
-6.63
-7.30
-7.34
-7.03
-7.73
-8.13
-7.58
-7.59
-7.27
-7.53
-6.95
-7.08
-7.02
-7.28
-6.72
-7.33
-7.56
-6.66
-6.97
-7.91
-7.23
-6.31
-6.81
ABSR OUT
GAS P
IN H20
PI372
-11.31
.-11.72
-12.84
-12.91
-11.00
-11.28
-11.38
-11.00
-10.84
-11.63
-11.81
-10.81
-11.22
-11.41
-10.66
-10.83
-10.97
-9.66
-10.56
-11.53
-11.53
-11.03
-12.28
-12.72
-12.28
-11.38
-11.28
-11.34
-10.91
-11.34
-11.16
-11.53
-10.73
-11.41
-11.88
-10.66
-11.09
-12.31
-11.50
-10.81
-10.97
ABSR 8AS
DIFF P
IN H2C
DPI372
4.14
4.43
4.92
4.67
4.30
4.17
4.38
4.14
4.05
4.27
4.50
3.90
4.03
4.28
4.03
3.95
4.06
3.61
3.88
4.30
4.20
4.09
4.42
4.55
4.66
4.52
4.11
4.28
4.14
4.17
4.06
4.16
4.06
4.09
4.31
3.97
4.03
4.36
4.23
4.05
4.14
B8HSE
DIFF P
IN H20
DPI373
7.81
6.83
8.13
3.09
6.69
7.42
7.69
6.44
7.38
7.69
6.77
7.05
7.16
6.50
7.38
7.27
6.22
6.73
7.34
6.59
7.25
7.33
6.98
7.98
8.06
6.83
7.56
7.83
6.47
7.27
7.23
6.53
7.30
7.41
6.64
6.95
7.44
6.86
6.92
6.63
6. 50
ID FAN
SUCT P
IN H2Q
PI373
-19.19
-18.94
-20.94
-20.38
-18.56
-13.63
-19.63
-17.31
-18.25
-19.06
-19.25
-17.38
-18.13
-13.25
-18.38
-18.13
-17.50
-16.63
-17.88
-18.38
-13.81
-18.63
-19.00
-20.19
-20.38
-19.13
-18.81
-19.50
-17.94
-13.44
-18.31
-17.94
-18.25
-18.50
-18.56
-17.69
-13.38
-18.75
-18.50
-17.31
-17.83
ABSR IN
GAS T
DEB F
T 1 3206
377
375
375
331
331
376
374
374
374
373
375
375
373
372
373
374
374
374
372
371
373
374
373
373
375
377
376
374
373
373
374
373
372
372
374
374
372
373
376
376
373
ABSR OUT
GAS T
DEB F
TI3228
292
285
267
231
290
273
269
283
287
270
277
237
272
268
285
284
263
271
286
282
268
276
287
276
269
281
281
271
275
282
275
272
281
231
272
275
282
276
274
231
275
OUTLET
GAS. S02
PPMV
AI3304
-0.90
-0.90
-0.90
-0.90
-0.90
-0.90
-0.90
-0.02
3.58
-0.90
-0.90
-0.24
-0.53
-0.90
-0.90
-0.90
-0.90
-0.90
-0.51
-0.58
-0.90
0.51
-0.90
-0.90
-0.02
-0.15
-0.90
4.94
-0 . 90
-0.90
0.72
0.33
-0.90
-0.90
-0.90
-0.90
-0.10
-0.59
-0.90
-0.90
-fl Ofl
CQRRTD
GAS S02
I
AI3804B
-0.11
-0.11
-0.11
-O.ii
-0.11
-0.11
-0.11
-0.00
0.43
-0.11
-0.11
-0.03
-0.06
-0.11
-0.11
-0.11
-0.11
-0.11
-0.06
-0.07
-0.11
0.06
-0.11
-0.11
-0.00
-0.02
-0.11
0.60
-0.11
-0.11
0.08
0.04
-0.11
-0.11
-0.11
-0.11
-0.01
-0.07
-0.11
-0.11
-A ', 1
OUTLET i
GAS NOX
PPMV
AI3804A
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-ft fll
LIME SLRY
FEED
6PM
FI3202
2.67
2.62
2.63
2.60
2.53
2.52
2.48
2.44
2.42
2.42
2.38
2.34
2.36
2.31
2.32
2.34
2.30
2.27
2.25
2,27
2.24
2.23
2.24
2.19
2.16
2.19
2.16
2.17
2.13
3.12
3.09
3.05
3.06
3.02
3.05
2.93
4.13
4.00
3.92
3.34
7 7t
K-15
-------
RADIAN CORPORATION
02-Jsn-B3
PROCESS DATA SUMMARY
MAINE ENERBY RECDVERY COMPANY
YORK COUNTY KASTE-TC-ENERGY FACILITY
BIDDEFQRD MAINE
UNIT A
DATE
Q9DEC87
09DEC37
09DEC87
09DEC87
09DEC37
09DECS7
Q9DEC37
I09DEC87
I09DEC87
I09DEC87
t09DEC87
i
TIME DST CLTR ABSR IN ABSR OUT ABSR GAS
6AS DF P GAS P GAS P DIFF P
18:06
18:10
18:14
18:18
18:22
18:26
18:30
18:34
18:38
18:42
13:46
AVERAGE
IN H20 IN H20
2.87
3.14
3.34
3.47
3.49
3.27
3.09
3.06
0.29
0.11
0.10
3.02
-6.99
-7.98
-7.63
-8.16
-7.14
-7.30
-2.09
-1.26
-1.15
-7.20
IN H20
-11.06
-12.47
-12.22
-13.09
-13.47
-12.34
-11.59
-11.63
-2.77
-1.78
-1.65
-11.49
IN H20
3.99
4.34
4.63
4.81
4.83
4.80
4.25
4.22
0.78
0.53
0.50
4.24
BSHSE
DIFF P
IN H2Q
7.19
7.63
6.97
8,28
3.50
7.02
7.36
7.45
2.18
1.72
1.54
7.16
ID FAN ABSR IN ABSR OUT
SUCT P GAS T GAS T
IN H2Q
-18.13
-19.38
-19.44
-21.06
-21.56
-20.06
-19.00
-18.94
-5.53
-3.73
-3.43
-18.71
DES F DE6 F
371
371
370
370
374
378
378
376
372
363
355
374
274
281
280
272
280
282
271
273
279
264
273
277
OUTLET
GAS SQ2
PPMV
1.32
0.16
-0.90
-0.90
-0.90
0.69
0.22
-0.74
-0.90
-0.90
-0.90
-0.43
CORRTD OUTLET LI
GAS S02 SAS NOX
I
0.16
0.02
-0.11
-0.11
-0.11
0.08
0.03
-0.09
-0.11
-0.11
-0.il
-0.05
PPMV
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
ME SLRY
FEED
GPM
3.73
3.71
3.67
3.62"
3.60
3.59
3.62
3.56
0.00
0.00
0.00
2.91
t = NON-TEST PERIOD, NOT INCLUDED IN AVERAGE
K-16
2
-------
SAD!AN CORPORATION
02-Jan-SS
PROCESS DATA SUHHARY
NAINE ENERGY RECOVERY COHPANY
YORK COUNTY HASTE-TO-ENERGY FACILITY
BIDDEFQRD HA5NE
ONIT A
DATE
IQ9DEC37
I09DEC37
I09DEC87
090EC87
09DEC87
09DEC37
09DEC87
Q9DEC87
09DEC37
09DEC37
09DECS7
09DEC87
090ECS7
09DEC37
09DEC87
09DEC87
09DEC87
09DEC37
09DEC87
09DEC37
09DEC37
09DEC87
09DEC87
09DEC87
809DEC87
I09DEC37
I09&EC87
I09DEC87
109DEC87
ta?DEC37
I09DEC37
09DEC87
09DEC8?
09BEC37
09DEC87
S90EC87
09DEC87
09DEC87
093EC87
09DEC87
09DEC87
TIHE
15:18
15:22
15:26
15:30
15:34
15:38
15:42
15:46
15:50
15:54
15:58
16:02
16:06
16:10
16:14
16:18
16:22
16:26
16:30
16:34
16:38
16:42
16:46
16:50
16:54
16:58
17:02
17:06
17:10
17:14
17:13
17:22
17:26
17:30
17:34
17:38
17:42
17:46
17:50
17:54
17:58
DILUTION ST IN STH
MATER
SPH
F I 3200
4.30
5.22
10.84
3.34
5.00
8.63
9.69
5.08
4.34
9.34
8.28
4.95
8.06
9,34
5.41
5.20
9.47
8.50
4.63
5.52
5,72
8.22
4.70
7.67
10.13
7.20
5.81
3.94
8.28
5.61
7.03
8,19
5.69
5.27
7.98
7.58
5.33
6.33
7.52
5.70
6.52
PRESS
PSI6
PI200A
-2
-6
-5
-6
_7
-2
-7
-3
-3
-g
-3
-3
-7
-3
-8
-8
-8
-g
DILUTION
MATER
SPH
F 1 3200
4.30
5.22
10.84
8.34
5.00
8.63
9.69
5.08
4.84
9.34
3.28
4.95
8.06
9.34
5.41
5.20
9.47
3.50
4.63
5.52
9.72
8.22
4.70
7.67
10.13
7.20
5.81
8.94
8.28
5.61
7.03
3.19
5.69
5.27
7.98
7.53
5.33
6.33
7.52
5.70
6.52
BHSE OUT
SAS T
DE6 F
TI3800
268
275
277
269
269
274
271
266
270
274
268
267
271
268
264
268
271
266
263
263
270
265
265
270
269
265
267
270
267
265
267
267
265
266
268
266
265
267
267
265
267
BSHSE
DIFF P
IN H20
DP I 3309
7.81
7.33
6.83
3.16
3.13
6.67
7.44
7.70
6.41
7.41
7.72
6.75
7.05
7.14
6.47
7.38
7.27
6.19
6.73
7.34
6.59
7.27
7.34
6.92
8.00
8.09
6.78
7.56
7.84
6.42
7.27
7.22
ft. 45
7.30
7.41
6.58
6.97
7.44
6.78
6.97
6.55
STACK
CO
PPHV
AI370A
59.25
55.50
58.00
79.50
68.25
61.38
63.88
63.00
54.33
52.50
57.00
60.25
54,50
55.33
56.00
49.13
56.38
56.38
54.38
46.50
54.38
56.50
51.00
55.63
56.25
56.33
56.25
58.25
63.33
56.33
57.38
63,33
57.38
52.50
60.38
63.50
50.50
54.33
66.25
66.25
5i.25
STACK
OPACITY
I
AI370B
49.88
48.63
49.88
49.88
49.88
49.83
49.88
49.33
49.83
49.38
49.88
49.33
49.88
49.88
49.88
49.88
40.38
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
STACK
ID FAN
CQ2 CURRENT
I
AI370C
3.18
2.89
2.98
3.98
3.45
2.49
2.69
3.18
2.66
2.59
2.59
2.98
2.49
2.49
2.80
2.69
2.89
2.98
2.68
2.23
2.38
2.89
2.38
2.59
2.69
2.78
2.69
2.73
2.88
2.68
2.69
3.09
2.93
2.43
2.98
3.28
2.48
2.48
3.48
3.43
2.6?
AHPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AHPS
IIH.320
98.75
97.25
99.00
102.50
100.50
97.50
98.00
98.50
97.00
97.25
98.50
98.50
96.25
97.50
98.00
97.00
96.75
97.25
94.50
95.75
98.25
93.50
97.25
98.50
100.25
100.25
99.00
97.50
98.50
97.25
97.75
97.50
97.50
96.75
97.50
98.50
96.25
97.00
93.50
98.25
97.25
ID FAN
CURRENT
AHPS
IIL32Q
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
V.01
0.01
0.01
0.01
ID FAN
CURRENT
AHPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0. Ji
v.vi
v . 0 1
0.01
K-17
-------
RADIAN CORPORATION
02-Jan-gS
PROCESS DATA SUMHARY
HA1NE ENERGY RECOVERY COHPANY
YORK COUNTY HASTE-TO-ENERGY FACILITY
BIDDEFQRB »AINE
UNIT A
DATE
TIHE DILUTION ST IN ST« DILUTION BHSE OUT BBHSE
WATER PRESS HATER 8AS T DIFF P
GP« PSIS GP«
09DEC87
09DEC87
09DEC37
09DEC87
09DEC87
09DECS7
09DEC87
Q9DEC87
1Q9BEC87
109BEC87
IC9DEC37
I09BEC87
13:02
18:06
13:10
18:14
18:18
18:22
18:26
18:30
18:34
18:33
18:42
18:46
7.00
5.14
5.34
7.80
6.56
5.81
3.53
8.13
4.75
5.27
0.41
0.30
7.00
5.14
5.34
7.80
6.56
5.81
8.53
8.13
4.75
5.27
0.41
0.30
DEG F IN H20
266
265
267
268
265
267
269
266
264
267
264
260
6.47
7.1?
7.59
6.95
8.31
8.53
7.00
7.36
7.45
1.99
1.54
1.35
STACK STACK
CO OPACITY
PPHV
64.25
63.38
63.33
65.25
72.50
74.25
73.25
68.25
60.33
63.25
58.25
50.50
I
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
49.83
49.88
49.83
-0.04
1.40
48.13
STACK ID FAN
C02 CURRENT
X
2.88
2.59
2.48
2.38
2.68
3.28
3.48
2.98
2.79
2.68
1.98
1.59
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
Q.01
0.01
0.01
21.69
20.56
20.56
ID FAN ID FAN
CURRENT CURRENT
AHPS
97.50
97.00
98.75
100.25
102.75
102.75
100.25
98.75
93.00
0.09
0.08
0.08
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
21.69
20.56
20.56
ID FAN
CURRENT
AHPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
21.69
20.56
20.56
AVERAGE
6.95
-7
6.95
268
7.16 60.13 20.19
PERIOD, VALUE NOT INCLUDED IN AVERAGE
2.34
0.01 98.12
0.01
0.01
K-18
2
-------
RADIAN CORPORATION
02-Jan-8S
PROCESS DATA SUHHARY
HAINE ENERBV RECOVERY CGHPANY
YORK COUNTY HASTE-TO-ENERSY FACILITY
B1DDEFORD MINE
UNIT A
DATE
I10DECS7
I10DEC87
10DEC8?
10DEC87
10DEC87
10DECS7
10SECB7
10DEC37
10DEC87
10DEC97
1CDEC87
100ECS7
10DEC87
10DEC87
10DECB7
1QDEC87
10DEC87
10DEC87
10DEC87
1QDEC37
10DEC87
10DEC37
10DECS7
10DEC37
10DEC87
UODEC37
tlODECS?
I10DEC37
10DEC37
10DEC87
10DEC87
10DEC37
10DEC37
10DEC87
1QDEC87
10DEC37
10DEC37
10DEC37
10DECS7
10DEC87
1QDECS7
TIflE
12:38
12:42
12:46
12:50
12:54
12:53
13:02
13:06
13:10
13:14
13:18
13:22
13:26
13:30
13:34
13:38
13:42
13:46
13:50
13:54
13:58
14:02
14:06
14:10
14:14
14:13
14:22
14:26
14:30
14:34
14:33
14:42
14:46
14:50
14:54
14:58
15:02
15:06
15:10
15:14
15:18
DST CLTR
8AS DF P
IN H20
DPI371
3.18
3.07
3.23
3.09
3.15
3.24
3.12
3.05
3.21
3.09
3.08
3.06
3.22
2.97
3.23
3.11
3.15
3.22
3.30
3.03
3.27
3.03
2.88
3.19
3.16
3.16
3.24
2.86
3.18
3.15
3.23
2.99
2.94
3.19
3.27
2.32
2.66
3.04
3.10
3.09
3.16
ABSR IN ABSR OUT
GAS P
IN H20
PI371
-1.76
-5.92
-5.02
-6.36
-7.31
-2.29
-6.94
-7.84
-2.60
-7.61
-7.72
-7.48
-7.45
-7.70
-7.31
-8.19
-7.55
-7.67
-8.03
-8.13
-8.19
-8.16
-8.16
6AS P
IN K20
PI372
-13.94
-12.73
-13.00
-13.56
-12.19
-12.97
-13.88
-12.84
-12.83
-12.91
-11.88
-11.97
-13.41
-13.50
-12.72
-12.56
-12.34
-12.91
-12.72
-13.06
-13.56
-13.38
-12.66
-12.50
-12.41
-12.25
-13.59
-13.28
-12.66
-12.56
-12.75
-14.03
-13.81
-12.83
-14.31
-14.59
-14.03
-13.56
-12.38
-12.50
-13.19
ABSR GAS
DIFF P
IN H20
DP I 372
4.67
4.97
4.66
4.53
4.72
4.52
4.75
5.13
4.43
4.30
4.31
4.25
4.48
5.27
4.53
4.33
4.45
4.45
4.59
5.34
5.00
5.00
5.25
4.33
4.41
4.94
4.94
5.27
4.41
4.39
4.53
5.30
5.44
4.45
5.27
6.23
5.97
4.38
4.33
4.31
4.44
B6HSE
DIFF P
IN H20
DP 1 373
7.77
7.39
8.34
7.84
7.08
7.98
8.00
7.41
8.06
7.61
6.67
7.86
8.25
7.19
7.92
8.03
7.08
3.00
8.06
7.38
8.66
3.53
7.19
7.81
8.19
7.47
8.44
8.31
6.95
8.09
8.25
7,50
8.31
8.19
7.83
3.84
8.66
7.39
7.73
7.97
7.22
ID FAN
SUCT P
IN H20
PI373
-20.75
-20.69
-21.38
-20.56
-20.00
-20.69
-21.19
-21.00
-20.75
-20.00
-19.19
-19.75
-20.81
-20.88
-20.69
-20.38
-19.75
-20.50
-21.00
-21.19
-22.06
-21.94
-20.88
-20.31
-20.44
-20.75
-21.81
-21.94
-19.63
-20.44
-21.00
-21.19
-22.13
-20.88
-21.50
-23.44
-23.00
-20.69
-20.06
-20.19
-19.81
ABSR IN
GAS T
DES F
T I 3206
358
359
361
361
359
358
360
362
364
365
364
361
360
362
365
366
364
362
362
362
363
366
367
366
365
361
359
364
366
365
364
364
367
369
367
365
367
370
368
366
364
ABSR OUT
GAS T
DEG F
TI3228
278
287
277
268
280
287
273
271
286
283
267
274
290
281
266
279
283
275
272
Til
282
284
275
272
278
280
280
280
276
276
280
281
278
276
277
281
280
276
274
278
231
OUTLET
GAS S02
PPHV
A13804
0.41
0.13
-0.90
-0.59
-0.51
3.89
-0.90
4.86
-0.38
1.71
-0.90
1.33
-0.50
1.84
-0.87
2.66
-0.77
1.11
1.56
2.28
-0.75
2.53
-0.74
2.72
-0.43
1.81
0.48
0.00
-0.74
0.74
0.28
1.02
2.91
0.30
2.68
-0.82
4.67
1.09
1.19
0.62
-0.90
CORRTD
GAS S02
I
A 1 38048
0.05
0.02
-0.11
-0.07
-0.06
0.46
-0.11
0.59
-0.05
0.20
-0.11
0.17
-0.06
0.22
-0.10
0.32
-0.09
0.13
0.19
0.28
-0.09
0.30
-0.09
0.33
-0.05
0.21
0.06
0.00
-0.09
0.09
0.03
0.12
0.35
0.03
0.32
-0.10
0.57
0.13
0.14
0.07
-0.11
OUTLET LI HE SLRY
GAS NQK
PPHV
AI3804A
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
FEED
BPH
F I 3202
3.11
3.03
3.09
3.02
2.99
2.99
2.98
2.95
2.98
3.02
3.06
3.06
3.07
3.09
5.53
6.52
6.31
7.31
7.58
7.55
7.47
7.44
7.42
7.36
7.33
7.33
7.31
7.23
7.23
7.23
7.25
7.25
7.27
7.25
7.28
7.25
7.27
7.27
7.30
7.36
7.36
K-19
-------
RADIAN CORPORATION
02-Jin-8
PROCESS DATA SUMMARY
MAINE ENERGY RECOVERY COMPANY
YORK COUNTY NASTE-TO-ENERSY FACILITY
BIDDEFORD MAINE
UNIT A
DATE
10DEC87
10DECB7
10DEC37
10DECS7
10DEC87
10DEC87
1QDEC37
10DEC87
I10DEC87
I10DEC37
UODEC87
I1QDEC87
I10DEC87
»10DEC87
UODEC37
I10DEC87
I10DEC87
1QDEC87
10DEC87
10DEC87
10DEC37
10DEC87
10DEC87
10DEC87
10DEC37
10DEC87
10DEC87
1QDECS7
10DEC37
10DEC87
10DEC87
10DEC87
10DEC87
10DEC37
1QDEC87
10DEC87
10DECB7
10DEC87
IODEC87
10DEC37
TIME DST
GAS
IN
15:22
15:26
15:30
15:34
15:38
15:42
15:46
15:50
15:54
15:58
14:02
14:06
16:10
16:14
16:13
16:22
16:26
16:30
16:34
16:33
16:42
16:46
16:50
16:54
16:58
17:02
17:06
17:10
17:14
17:18
17:22
17:26
17:30
17:34
17:38
17:42
17:46
17:50
17:54
17:58
AVERAGE
« - NON-TEST
CLTR ABSR IN ABSR OUT ABSR 6AS
DF P GAS P GAS P
H20 IN
3.16
3.19
3.03
3.09
3.05
3.13
3.16
3.21
3.19
3.05
3.07
3.08
3.16
3.10
3.13
3.17
3.08
3.26
3.14
3.37
2.84
2.82
3.08
3.21
2.96
3,10
3.14
3.12
3.22
3.13
2.77
2.82
2.30
2.78
2.69
2.94
3.20
3.28
2.91
3.04
3.07
PERIOD,
H20 IN H20
-12.66
-8.19 -12.69
-13.75
-12.81
-8.0? -12.44
-12.97
-12.81
-13.09
-14.09
-12.16
-7.95 -12.25
-13.38
-12.56
-7.95 -12.25
-13.03
-12.47
-8.00 -12.28
-13.03
-12.72
-13.31
-14.69
-12.34
-7.94 -12.34
-13.50
-12.69
-7.84 -12.38
-13.06
-12.34
-8.31 -12.88
-14.56
-14.31
-14.78
-14.50
-14.47
-13.72
-12.31
-13.41
-13.66
-11.91
-7.25 -13.11
NOT INCLUDED IN
DIFF P
IN H20
4.44
4.48
5.05
4.59
4.23
4.53
4.81
4.84
4.84
4.28
4.23
4.80
4.45
4.27
4.45
4.53
4.23
4.53
4.75
4.77
5.55
4.78
4.31
4.72
4.88
4.33
4.53
4.39
4.55
5.33
6.48
6.36
6.77
6.14
5.94
4.83
4.55
4.70
4.94
4.44
4.84
AVERAGE
B6HSE
DIFF P
IN H20
7.59
8.19
7.84
7.67
7.69
7.48
7.83
8.50
7.97
7.13
7.89
7.42
7.83
7.77
7.17
7.86
7.91
7.41
7.75
8.59
8.13
7.56
7.69
7.64
7.61
8.00
7.44
7.44
8.28
8.19
8.59
9.06
8.63
8.31
8.69
7.83
7.30
8.47
8.22
7.05
7.39
ID FAN
SUCT P
IN H20
-20.19
-20.75
-21.31
-20.69
-19.69
-20.13
-20.94
-21.75
-21.13
-19.63
-19.88
-20.63
-20.44
-20,00
-19.81
-20.69
-20.13
-20.19
-20.75
-21.75
-22.13
-20.75
-19.88
-20.63
-20.75
-20.25
-20.19
-19.88
-21.00
-21.88
-23.50
-23.88
-23.81
-22.88
-23.06
-21.00
-19.94
-21.50
-21.56
-19.50
-20.93
K-20
ABSR IN
GAS T
DEG F
364
364
364
366
364
362
362
364
367
367
364
362
363
363
361
362
363
361
362
362
365
367
364
361
362
362
362
361
360
359
358
362
366
369
373
372
368
365
366
366
364
ABSR OUT
GAS T
DEG F
279
276
278
280
276
275
278
281
283
277
271
276
281
282
279
277
277
276
278
279
281
281
274
273
277
281
280
278
277
277
279
282
284
281
264
274
281
283
282
274
278
OUTLET
GAS S02
PPMV
1.39
-0.90
1,98
-0,90
-0.52
-0.80
0.84
-0.90
1.59
0.00
2.63
-0.30
-0.63
-0.01
2.22
-0.34
-0.65
1.57
3.97
-0.29
-0.90
0.65
3.52
0.98
-0.09
5.55
1.28
-0.26
1.81
7.00
1.34
-0.51
-0.18
7.97
-0.32
0.21
0.69
7.03
-0.82
-0.66
1.06
CORRTD
OUTLET LIME SLRY
GAS SQ2 GAS NOX
I
0.17
-0.11
0.24
-0.11
-0.06
-0.10
0.10
-0.11
0.19
-0.00
0.32
-0.04
-0.07
-0.00
0.27
-0.04
-0.08
0.19
0.48
-0.03
-0.11
0.08
0.43
0.12
-0.01
0.66
0.16
-0,03
0.22
0.84
0.17
-0.06
-0.02
0.96
-0.04
0.03
0.08
0.85
-0,10
-O.OS
0.13
PPMV
-0.01
-0.01
-0,01
-0,01
-0.01
-0.01
-0.01
-0.01
-0.01
-O.Oi
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
FEED
SPN
7.41
7.48
7.58
7.66
7.69
7.75
7,78
7.83
7.34
7.92
7.94
7.91
7.98
8.00
8.03
8.00
8.06
8.06
8.09
8.25
8.25
8.31
8.34
8.38
8.23
8.28
8.19
8.16
8.09
8.06
8.03
8.09
0.00
8.13
3.16
7.98
7.98
7.97
7.92
7.91
6.70
-------
RADIAN CORPORATION
02-Jan-B8
PROCESS DATA SUHHARY
NAINE ENERSV RECOVERY COHPANY
YORK COUNTY KASTE-TQ-ENER6Y FACILITY
BIDDEFORD MAINE
UNIT A
DATE
UODECB7
I10DEC87
10DECB7
10DEC87
10DEC87
10DEC87
10DEC87
10DEC37
10DEC87
10DEC87
10DEC87
10DECS7
10DEC87
10DEC87
10DECB7
10DEC87
10DEC87
10DEC87
10DEC87
10DEC87
10DEC8?
10DEC87
10DECS7
10DEC37
10DEC87
I10DEC3?
I10DEC87
I10DEC87
10DECS7
10DEC87
10DECB7
10DECS7
10DEC87
10DEC87
10DEC87
10DEC37
10DEC87
10DEC87
10DECB7
10DEC37
10DEC87
TIDE
12:38
12:42
12:46
12:50
12:54
12:58
13:02
13:06
13:10
13:14
13:18
13:22
13:26
13:30
13:34
13:38
13:42
13:46
13:50
13:54
13:58
14:02
14:06
14:10
14:14
14:18
14:22
14:26
14:30
14:34
14:38
14:42
14:46
14:50
14:54
14:58
15:02
15:06
15:10
15:14
15:18
DILUTION
MATER
6PH
FI3200
3.45
6.00
8.56
5.22
2.81
6.88
8.25
4.41
4.72
8.75
7.22
2.45
4.94
9.50
3.68
2.07
4.67
4.94
2.13
1.63
1.90
4.55
5.09
2.53
1.87
1.94
2.48
4.17
3.98
2.20
2.17
3.75
4.55
3.98
2.52
3.23
4.81
4.86
2.70
1.96
2.36
ST IN STH
PRESS
PSI6
PI200A
-2
-6
-5
-6
-7
-2
-7
-a
-3
-8
-8
-8
-7
-a
-8
-8
-8
-8
DILUTION
HATER
6PH
F I 3200
3.45
6.00
3.56
5.22
2.31
6.88
8.25
4.41
4.72
8.75
7.22
2.45
4.94
9.50
3.68
2.07
4.67
4.94
2.13
1.68
1.90
4.55
5.09
2.53
1.87
1.94
2.48
4.17
3.98
2.20
2.17
3.75
4.55
3.98
2.52
3.23
4.81
4.36
2.70
1.96
2.36
BHSE OUT
GAS T
DEB F
TI3800
267
271
270
264
266
271
268
264
269
271
265
264
270
271
264
266
269
263
265
266
269
271
269
266
267
269
269
270
268
267
268
269
269
268
267
269
270
269
267
267
269
BGHSE
DIFF P
IN H20
DPI3809
7.75
7.42
3.38
7.33
7.09
3.00
8.00
7.42
8.06
7.61
6.67
7.89
8.25
7.19
7.94
8.06
7.08
8.03
8.09
7.36
8.72
8.59
7.16
7.83
B.22
7.45
8.47
8.31
6.91
8.13
8.31
7.45
8.33
8.22
7.78
8.94
8.72
7.36
7.77
8.00
7.20
STACK
CO
PPHV
AI370A
40.50
42.50
44.38
54.38
48.25
65.50
49.25
42.50
42.38
43.38
39.50
35.50
35.33
47.25
49.25
44.38
39.50
42.50
43.38
46.50
46.38
42.50
46.33
46.50
39.50
64.25
56.25
50.50
48.25
44.38
46.25
40.50
47.25
48.25
63.33
45.38
49.63
43.13
46.00
42.38
38.33
STACK
OPACITY
I
AI370B
14.31
14.91
15.00
14.81
14.72
15.00
13.94
12.91
13.00
17.31
20.25
30.56
35.88
20.19
24.75
21.25
20.19
22.19
32.38
30.19
16.00
17.38
24.81
20.44
26.81
23.13
27.00
28.69
33.13
32.13
30.88
29.31
35.63
36.75
32.63
39.25
43.38
39.75
49.88
49.83
49.88
STACK
ID FAN
C02 CURRENT
I
AI370C
2.89
3.08
3.29
2.38
2.28
2.48
3.08
3.09
3.08
3.08
2.78
2.49
2.78
3.29
3.38
2.89
2.49
2.59
2.69
2.68
3.08
2.88
3.08
3.03
2.59
2.38
3.09
3.29
2.93
2.89
2.78
2.83
3.29
3.09
2.38
2.69
3.18
2.78
2.98
2.78
2.69
AHPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AHPS
IIH320
101.25
101.50
102.25
100.75
100.25
101.00
102.00
102.00
100.25
99.25
99.25
98.75
100.75
102.75
101.00
99.25
99.75
100.50
101.75
103.00
103.50
103.25
102.50
100.00
100.25
102.25
103.50
103.50
99.75
99.75
101.25
103.25
104.25
100.75
104.25
107.75
106.00
101.50
99.50
99.50
99.75
ID FAN
CURRENT
AHPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AHPS
! 11320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
O.C1
O.Qi
0.01
K-21
-------
RADIAN CORPORATION
02-Jan-88
PROCESS DATA SUMMARY
HA INS ENERSY RECOVERY COUPANY
YORK COUNTY KASTE-TO-ENERGY FACILITY
BIDDEFORD MAINE
DATE
TIME DILUTION ST IN STM DILUTION SHSE OUT ESHSE
HATER PRESS HATER 6AS T DIFF P
SP« PS16 6P«
10DEC87
10DECB7
iODECa?
1QDEC87
10DEC37
10DEC8?
10DEC87
UODEC37
110DEC87
UODEC87
110DEC37
UODEC87
HODEC37
I10DEC87
J10DEC37
I103EC37
10DECS7
10DECS7
10DEC37
1QDEC87
1QDEC37
10DEC87
1QDEC87
10DEC87
10DEC87
10DEC37
10DEC37
10DEC37
1QDEC37
1GDEC37
1QDECS7
1QDEC37
10DEC87
10DEC87
10DECS7
10DEC87
10DEC37
10DEC87
10DECS7
15:22
15:26
15:30
15:34
15:33
15:46
15:50
15:54
15:53
li:02
16:06
16:10
16:14
16:18
16:22
16:26
16:30
16:34
16:33
16:42
16:46
16:50
16:54
16:53
17:02
17:06
17:10
17:14
17:18
17:22
17:26
17:30
17:34
17:38
17:42
17:46
17:50
17:54
17:53
3.77
3.40
2.25
2.54
3.34
1.80
1.36
2.73
4.43
1.93
0.37
0.73
1.90
2.25
2.04
1.93
1.84
1.64
1.73
1.94
2.71
2.54
1.70
0.20
0.72
1.72
1.87
1.77
1.51
1.48
1.91
4.16
3.03
4.05
0.77
0.53
1.84
3.51
3.77
3.77
3.40
2.25
2.54
3.34
1.80
1.86
2.73
4.43
1.93
0.37
0.73
1.90
2.25
2.04
1.93
1.84
1.64
1.73
1.94
2.71
2.54
1.70
0.20
0.72
1.72
1.87
1.77
1.51
1.48
1.91
4.16
3.03
4.05
0.77
0.53
1.84
3.51
3.77
DEB F IN H20
269
268
263
269
268
267
269
270
269
265
266
268
270
269
268
268
267
267
268
269
270
263
266
267
268
269
268
268
267
268
270
272
272
264
264
268
270
271
268
7.63
8.25
7.31
7.70
7.67
7.86
3.53
7.89
7.14
7.91
7.34
7.84
7.77
7,13
7.89
7.92
7.34
7.78
3.63
8.06
7.58
7.69
7.58
7.66
8.03
7.39
7.44
8.28
3.16
8.66
9.13
8.56
8.38
8.72
7.77
7.31
3.47
8.19
7.06
STACK STACK
CO OPACITY
PP«V
46.38
50.25
46.38
48.63
47.13
54.25
53.50
52.50
51.50
52.38
47.25
47.33
46.25
46.25
49.25
47.25
44.63
54.25
47.33
47.63
46.25
53.63
62.50
54.38
49.25
44.63
50.13
54.13
43.25
47.88
68.00
95.00
66.25
51.88
47.63
43.88
54.63
51.25
53.38
I
49.83
49.88
49.88
49.38
49.88
49.88
49.88
49.88
49.88
49.38
49.88
49.88
49.88
49.88
49.88
49.88
49.88
-0.02
-0.04
-0.04
45.50
2.88
-0.02
46.25
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
10.97
49.88
37.38
49.88
-0.04
35.13
-0.04
-0.04
STACK ID FAN
C02 CURRENT
I
3.01
2.89
2.89
2.98
2.69
3.18
3.29
3.18
2.98
2.69
2.99
2.89
2.78
2.78
3.09
2.78
2.78
2.59
2.78
3.08
2.59
2.28
2.59
2.89
2.78
2.78
2.98
3.08
2.38
2.38
3.08
3.18
3.29
3.38
2.89
2.59
3.29
3.18
2.73
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
O.Oi
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN ID FAN ID FAN
CURRENT CURRENT CURRENT
AMPS
100.00
101.25
102.75
100.75
99.50
101.75
103.00
102.00
99.25
99.25
101.25
100.00
99.25
99.50
100.50
99.25
100.50
101.25
102.75
103.75
100.00
99.00
101.00
100.50
99.25
100.00
99.25
101.25
104.25
107.75
107.75
106.75
106.25
105.75
100.75
99.75
102.00
102.25
99.25
AMPS
0.01
0.01
O.Oi
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
O.Oi
0.01
O.Oi
O.Oi
0.01
0.01
0.01
0.01
0.01
O.Oi
0.01
0.01
0.01
0.01
O.Oi
0.01
O.Oi
0.01
0.01
O.Oi
0.01
O.Oi
0.01
0.01
O.Oi
O.Oi
0.01
AMPS
O.Oi
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
O.Oi
0.01
O.Oi
O.Oi
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
O.Oi
0.01
0.01
0.01
0.01
0.01
O.Oi
0.01
0.01
0.01
O.Oi
0.01
0.01
0.01
0.01
0.01
0.01
AVERAGE
3.39
-7
3.39
268
NON-TEST PERIOD, NOT INCLUDED IN AVERAGE
7.92 43.92 25.14
K-22
0.01 101.71
O.Oi
0.01
-------
RADIAN CORPORATION
02-Jan-SS
PROCESS DATA SUMMARY
MINE ENERGY RECOVERY COMPANY
YORK COUNTY HASTE-TQ-ENERSY FACILITY
BIDDEFORD MAINE
UNIT A
DATE
I12DECB7
U2SEC87
12DECS7
12BEC87
128EC37
12DEC87
12DECS7
12DECS7
U2DEC87
I12BEC87
I12DEC87
J12DECS7
12BEC37
12DEC87
12DEC87
12DEC87
12DEC87
12DECS7
12DEC87
12DECS7
12DEC87
12DEC37
12DEC37
12BEC87
12BEC87
12DECS7
12DEC87
12DEC37
J12DECS7
I12DEC37
I12BECS7
U2BEC87
I12BEC87
I12BEC37
12BEC87
12BEC87
12BEC87
12DEC37
12BEC37
12DEC37
12DEC87
TIME
11:12
11:16
11:20
11:24
11:23
11:32
11:36
11:40
11:44
11:48
11:52
11:56
12:00
12:04
12:08
12:12
12:16
12:20
12:24
12:23
12:32
12:36
12:40
12:44
12:48
12:52
12:56
13:00
13:04
13:08
13:12
13:16
13:20
13:24
13:28
13:32
13:36
13:40
13:44
13:43
13:52
DST CLTR
BAS DF P
IN H20
DPI371
3.46
3.51
3.23
3.43
3.41
3.27
3.61
3.61
2.96
3.34
3.57
3.01
3.38
3.52
2.93
3.51
3.41
3.20
3.45
3.45
3.24
3.40
3.34
3.39
3.36
3.33
3.43
3.36
3.33
3.45
3.33
3.32
3.39
3.42
3.33
3.30
3.34
3.39
3.38
3.45
3.38
ABSR IN ABSR OUT
SAS P
IN H20
PI371
-8.19
-5.92
-5.02
-6.36
-8.06
-2.29
-6.94
-7.84
-2.60
-7.61
-7.72
-7.67
-7.45
-7.70
-7.81
-7.61
-7.55
-7.67
-7.83
-8.22
-8.16
-8.22
-8.28
-7.94
-3.19
SAS P
IN H20 .
PI372
-12.91
-13.03
-13.84
-13.16
-13.16
-13.22
-13.53
-13.47
-14.78
-14.09
-14.31
-15.34
-13.75
-14.06
-14.75
-13.63
-13.66
-13.81
-13.16
-12.69
-14.16
-12,31
-12.84
-13.22
-13.03
-13.78
-12.66
-12.31
-13.88
-13.06
-12.78
-13.56
-12.59
-13.09
-13.84
-12.73
-12.69
-13.78
-13.41
-13.06
-13.44
ABSR 6AS
D1FF P
IN H20
DP 5 372
4.75
4.84
5.77
5.03
4.86
5.33
5.22
5.28
6.73
5.55
5.59
6.78
5,61
5.64
6.47
5.17
5.14
5.64
4.84
4.84
5,44
4.88
4.67
4.77
4.86
5.09
4.88
4.67
5.06
4.89
4.64
4.88
4.86
4.77
5.08
5.08
4.72
4.98
5.41
4.84
4.83
BSHSE
DIFF P
IN K20
DP 1 373
8.47
8.47
7.58
3.66
8.53
7.38
8.44
9.00
8.31
8.75
8.78
8.31
8.97
9.03
7.91
8.47
8.73
7.77
8.16
3.31
7.72
3.16
3.34
7.55
7.83
7.70
8.06
3.53
7,88
7.81
8.16
7.94
7.94
3.41
7.93
7.80
8.50
3.22
7.86
8.38
3.28
ID FAN
SUCT P
IN H20
PI373
-21.38
-21.50
-21.81
-22.00
-21.38
-21.06
-22.13
-22.75
-23.50
-22.75
-22.88
-23.63
-23.06
-23.13
-22.81
-22.06
-22.38
-21.75
-21.19
-21.13
-21.56
-21.25
-21.13
-20.44
-20.75
-21.19
-21.13
-21.13
-21.31
-21.00
-20.81
-20.63
-20.94
-21.25
-21.44
-21.13
-21.13
-21.44
-21.69
-21.33
-21.25
ABSR IN
SAS T
DEB F
T I 3206
383
383
382
333
383
382
382
333
383
383
382
380
383
385
387
388
387
385
385
383
383
385
386
382
380
381
381
381
382
383
384
333
381
382
335
385
382
331
333
334
332
ABSR OUT
SAS T
DES F
T 1 3223
289
289
268
273
288
284
269
279
289
278
269
283
289
273
272
284
283
272
277
285
281
274
279
281
281
279
273
230
280
279
273
279
278
281
281
276
275
281
283
277
274
OUTLET
GAS S02
PPMV
AI3804
3.05
3.81
10.53
8.94
10.81
11.78
9.59
4.09
9.09
7.78
8.22
9.06
12.72
6.61
7.06
4.20
5.42
3.58
7.34
7.92
7.59
2.48
3.08
7.61
2.48
2.13
13.38
-0.82
2.25
15.41
4.75
7.83
0.76
1.57
10.56
3.76
3.94
12.91
-0.08
-0.44
8.03
CORRT8
SAS SQ2
V
AI38048
0.37
1.05
1.27
1.07
1.30
1.42
1.11
0.47
1,05
0.90
0.98
1.08
1.50
0.79
0.84
0.50
0.66
0.42
0.38
0.96
0.91
0.29
0.37
0.91
0.30
0.25
1.60
-0.10
0.27
1.35
0.57
0.94
0.10
0.19
1.27
0.45
0.47
1.55
-0.01
-0.05
0.96
OUTLET LIME SLRY
SAS m
PPMV
AI3304A
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
FEED
SPM
FI3202
7.39
7.38
7.38
7.36
7.33
7.33
7.28
7.27
7.25
7.22
7.22
7.17
7.13
7.13
3.09
3.03
8.00
7.97
7.92
7.91
7.86
7.34
7.84
7.84
7.81
7.83
7.73
7.81
7.73
7.75
7.73
7.72
7.70
7.86
7.83
7.84
7.84
7.83
7.91
7.91
7.94
K-23
-------
RADIAN CORPORATION
02-Jan-8B
PROCESS DATA SUMMARY
MAINE ENERSV RECOVERY COMPANY
YORK COUNTY MASTE-TO-ENER6Y FACILITY
BIDDEFORD MAINE
UNIT A
DATE
12DEC87
12DEC87
12DEC37
12DEC87
12DEC87
12DEC87
12DEC37
12DEC87
12DEC37
12DECS7
12DEC37
12DEC8?
12DEC87
I12DEC87
112DEC87
I12DEC37
112DEC87
»12DEC87
112DEC37
12DECS7
12DEC37
12DEC87
12SEC87
I12DEC37
ti2DEC37
I12DEC87
I12DEC37
I12DEC37
I12DECS7
U2DEC37
ti2DEC87
I12DEC87
J12DEC87
I12DEC87
J12DEC87
I12DEC87
I12DEC87
I12DEC37
112DEC37
I12DEC87
N2DEC87
112DEC37
TIME
13:56
14:00
14:04
14:08
14:12
14:16
14:20
14:24
14:28
14:32
14:36
14:40
14:44
14:48
14:52
14:56
15:00
15:04
15:08
15:12
15:16
15:20
15:24
15:28
15:32
15:36
15:40
15:44
15:48
15:52
15:56
16:00
16:04
16:08
16:12
16:16
16:20
16:24
16:28
16:32
16:36
16:40
DST CLTR
8AS DF P
IN H20
3.41
3.37
3.36
3.4?
3.42
3.41
3.34
3.47
3.43
3.30
3.34
3.54
3.12
3.48
3.53
3.32
3.45
3.38
3.30
3.42
3.41
3.51
3. 60
3.36
3.02
2.30
1.77
2.09
2.25
2.05
1.84
1.93
2.30
2.19
2.20
2.58
2.68
2.77
2.35
2.11
2.27
2.01
ABSR IN ABSR GUT ABSR SAS
8AS P
IN H20
-1.09
-8.22
-7.84
-8.22
-8.03
-7.52
-6.73
-5.92
-4.84
-4.95
-5.05
-4.48
-4.93
-5.17
-5.69
-5.73
-5.70
-6.41
-7.42
-7.02
-6.16
-5.22
-6.03
-5.17
SAS P
IN H20
-13.00
-12.78
-13.88
"-12. 59
-13.06
-14.16
-12.75
-13.34
-14.44
-12.97
-13.66
-14.22
-12.81
-13.06
-13.50
-13.38
-13.16
-12.69
-13.00
-12.91
-12.94
-13.00
-13.28
-11.97
-10.59
-9.16
-7,44
-7.88
-7.97
-7.08
-7.70
-8.09
-3.83
-3.81
-3.63
-9.83
-11.16
-10.56
-9.44
-8.22
-9.25
-8.00
DIFF P
IN H20
5.05
4.77
4.95
4.92
4.77
5.00
5.00
4.91
5.03
5.45
5.36
5.06
5.63
4.80
4.98
5.41
4.75
4.66
5.25
4.77
4.77
5.22
5.17
4.64
4.14
3.23
2.55
2.94
3.10
2.82
2.59
2.75
3.17
2.99
3.02
3.52
3.66
3.77
3.23
2.93
3.16
2.77
B6HSE
DIFF P
IN H2Q
7.80
8.44
8.06
7.61
8.69
8.50
7.42
8.34
8.69
7.75
8.63
8.44
7.52
3.59
8.72
7.48
8.28
8.38
7.58
8.44
8.25
7.44
9.06
8.47
6.53
5.97
4.31
4.83
5.09
4.72
4.42
4.66
5.14
4.98
4.98
5.47
6.66
6.31
6.22
5.61
5.17
4.95
ID FAN
SUCT P
IN H2D
-21.13
-21.31
-21.25
-20.63
-21.56
-21.81
-20.75
-21.31
-22.06
-21.56
-22.38
-21.88
-21.50
-21.50
-22.13
-21.38
-21.25
-21.06
-21.19
-21.38
-21.06
-21.00
-22.63
-20.94
-18.06
-14.91
-11.38
-12.75
-13.78
-12.75
-11.69
-12.34
-13.97
-13.38
-13.56
-15.31
-16.88
-16.88
-15.56
-13.88
-14.06
-13.09
ABSR IN ABSR OUT
6AS T
DE6 F
381
382
382
381
332
383
333
383
385
387
389
389
383
386
386
388
338
385
383
383
382
382
384
371
346
331
324
319
311
306
305
304
305
310
317
325
334
345
355
359
360
358
SAS T
DEB F
280
284
277
274
282
284
275
276
285
282
273
278
283
277
276
282
281
274
277
285
280
273
281
290
276
258
275
290
289
270
267
279
28?
289
281
271
233
291
274
266
289
290
OUTLET
SAS 302
PPHV
5.72
1.50
10.72
1.04
2.95
8.75
1.91
13.44
11.78
3.01
3.84
0.22
-0.88
8.78
-0.82
-0.81
6.88
3.01
1.00
5.83
3.01
1.96
0.05
18.33
17.50
17.50
9.72
22.25
7.83
9.72
18.38
3.01
17.44
5.83
8.78
17.50
13.59
10.78
19.44
11.75
24.25
4.92
CORRTD
OUTLET LIME SLRY
SAS S02 SAS mi
I
0.69
0.18
1.29
0.13
0.35
1.05
0.23
1.61
1.41
0.36
1.06
0.03
-0.11
1.05
-0.10
-0.10
0.82
0.36
0.12
0.70
0.36
0.23
0.01
2.20
2.10
2.10
1.17
2.65
0.94
0.70
0.97
0.36
2.09
0.70
1.05
2.09
1.63
1.29
1.80
1.22
2.75
0.54
PPHV
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
FEED
6P«
7.92
7.91
7.88
7.88
7.84
7.84
7.81
7.81
7.78
7.73
7.72
7.73
7.70
7.73
7.75
7.70
7.66
7.66
7.70
7.64
7.61
7.59
7.58
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.07
0.08
0.09
0.25
0.21
0.21
0.21
0.19
0.1?
K-24
-------
RADIAN CORPORATION
02-Jan-a8
PROCESS DATA SUMMARY
MINE ENERBY RECOVERY COMPANY
YORK COUNTY MSTE-TO-ENERGY FACILITY
EIDDEFORD MAINE
UNIT A
DATE
I12DECB7
I12DEC37
J12DEC87
I12DECB7
I12DEC87
I12DEC87
U2DEC37
112DEC37
N2DEC87
U2DECS7
I12DEC87
112DEC87
I12DECB7
U2DEC37
U2DEC87
N2BEC87
U2DEC87
I12DEC87
U2DEC87
J12DECB7
I12DEC37
I12DECB7
I12DEC37
12DEC87
12DEC87
12DEC87
12DEC37
12DEC37
U2BEC87
I12DEC87
I12DEC87
I12DEC37
U2DEC37
U2DEC87
J12DEC87
I12DEC87
H2DEC87
I12DEC87
H2DEC87
I12DECB7
ti2DECS7
»!2DEC87
TIME
16:44
16:48
16:52
16:56
17:00
17:04
11 . AQ
.' • v d
17:12
17:16
17:20
17:24
17:28
17:32
17:36
17:40
17:44
17:48
17:52
17:56
18:00
18:04
18:08
18:12
18:16
13:20
18:24
18:23
18:32
18:36
18:40
18:44
18:43
13:52
18:56
19:00
19:04
19:08
19:12
19:16
19:20
19:24
19:28
DST CLTR
GAS DF P
IN H2C
1.39
2.22
2.39
2.59
2.93
3.05
3.26
3.45
3.25
3.42
3.26
3.46
.50
.38
.25
.51
,40
.31
.39
.53
.42
.54
3.45
3.32
3.35
3.48
3.21
2.91
2.18
2.41
2.56
2.91
3.01
3.09
T TQ
J.J7
3.33
3.29
3.38
3.38
3.35
3.00
2.50
AESR IN
GAS P
IN H20
-5.11
-5.84
-6.13
-6.31
-7.23
-7.05
-7.64
-8.25
-7.31
-8.09
-7.92
-7.20
-6.27
ABSR OUT
GAS P
IN H20
-7.31
-9.03
-10.13
-9.97
-11.33
-11.13
-il !A
-14.06
-13.66
-13.56
-14.53
-12.69
-13.06
-14.16
-13.69
-13.31
-14.44
-13.19
-13.88
-13.59
-13.38
-13.72
-13.91
-13.13
-13.09
-13.94
-14.81
-15.47
-14.69
-15.16
-14.13
-13.97
-14.44
-13.00
-12.41
-12.75
-12.69
-12.53
-11.09
-9.69
ABSR SAS
DIFF P
IN H20
2.65
3.05
3.91
3.55
3.98
4.16
4.44
5.13
5.53
5.22
5.33
4.92
4.81
5.27
5.86
5.08
5.14
5.56
5.25
4.38
5.28
5.02
5.00
5.34
4.94
4.98
6.53
6.88
7.38
7.23
6.66
6.06
6.48
5.89
5.19
5.19
4.56
4.61
5.11
4.63
4.16
3.43
BSHSE
DIFF P
IN H20
4.80
5.31
7.45
7.28
7.06
7.30
3.25
8.19
8.34
8.53
8.00
7.91
3.66
8.31
8.00
8.84
8.56
7.91
8.50
8.13
8.03
8.69
8.25
7.77
8.50
8.47
3.33
9.34
9.66
8.88
9.09
8.78
7.89
9.00
8.50
7.11
7.61
7.69
6.89
7.69
7.27
5.36
ID FAN
SUCT P
IN H20
-12.31
-13.69
-13.06
-17.19
-18.00
-18.69
-20.19
-21.50
-22.31
-22.19
-21.81
-21.06
-21.56
-22.06
-22.25
-22.38
-22.06
-21.94
-22.19
-21.19
-21.75
-22.19
-21.63
-21.44
-21.75
-21.56
-23.38
-24.69
-25.50
-24.56
-24.25
-23.31
-22.38
-23.38
-22.19
-20.69
-19.88
-20.25
-20.38
-20.19
-19.00
-15.06
ABSR IN
SAS T
DEB F
345
333
330
334
344
354
362
369
379
385
386
383
379
380
382
386
386
384
384
383
382
385
386
386
387
385
337
390
392
386
377
366
360
355
352
351
350
351
356
361
364
363
ABSR OUT
GAS T
DE6 F
256
264
275
275
279
281
283
287
291
276
263
280
287
280
273
282
284
274
276
283
280
276
279
281
279
274
281
286
280
288
277
264
279
293
273
264
289
292
267
273
296
276
OUTLET
GAS SQ2
PPHV
9.72
13.59
5.88
12.69
14.66
9.72
7.83
10.78
4.92
6.88
16.56
5.88
13.59
9.72
8.78
1.00
15.59
4.92
3.01
5.78
3.08
6.58
9.78
2.70
2.57
6.52
0.21
0.36
1.30
3.88
-0.90
0.26
12.09
5.48
2.58
13.03
12.66
11.22
16.25
5.27
6.69
11.03
CORRTD
GAS SQ2
I
1.09
1.59
0.69
1.52
1.76
1.17
0.94
1.29
0.59
0.82
1.99
0.70
1.63
1.17
1.05
0.12
1.87
0.59
0.36
0.69
0.37
0.78
1.18
0.33
0.31
0.79
0.02
0.03
0.14
0.86
-O.Q6
0.02
0.91
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.38
0.66
OUTLET L
SAS NO*
PPMV
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
-0.01
!«£ SLRY
FEED
SPM
0.17
0.18
6.22
6.05
8.47
8.59
3.44
8.34
8.28
8.19
3.13
8.09
3.06
8.00
7.97
7.94
7.91
7.91
7.91
7.86
7.95
7.92
7.91
7.91
8.47
3.53
8.56
8.63
0.10
0.12
0.11
0.14
0.14
0.15
0.16
0.19
0.17
0.18
0.19
0.19
'J.13
0.18
K-25
-------
RADIAN CORPORATION 02-Jan-fl
PROCESS DATA SUMMARY
MAINE ENERGY RECOVERY COMPANY
YORK COUNTY «AST£-TG-ENERGY FACILITY
BIDDEFORD MAINE
UNIT A
DATE TIME DST CLTR ABSR IN ABSR OUT ABSR GAS BSHSE ID FAN ABSR IN ABSR OUT OUTLET CORRTD OUTLET LIME SLRY
SAS DF P 5AS P SAS P DIFF P DIFF P SUCT P 6AS T 6AS T GAS S02 6AS S02 6AS NOK FEED
IN H20 IN H20 IN H20 IN H20 IN H20 IN H20 DEB F DE6 F PPMV I PPMV SPM
U2DEC37 19:32 2.50 -4.44 -10.03 3.52 5.08 -14.84 359 257 0.94 0.03 -0.01 0.20
I12DECB7 19:34 2.44 -6.08 -9.59 3.45 5.14 -14.66 353 284 0.65 0.02 -0.01 0.21
AVERAGE 3.37 -7.39 -13.42 5.17 8.22 -21.66 384 279 5.48 0.66 -0.01 7.80
t = NON-TEST PERIOD, VALUE NOT INCLUDED IN AVERAGE
K-26
-------
RADIAN CORPORATION
02-Jan-BB
PROCESS DATA SUMMARY
MAINE ENERGY RECOVERY COMPANY
YORK COUNTY WASTE-TQ-ENER6Y FACILITY
BIDDEFORD MAINE
UNIT A
DATE
I12DEC87
U2DEC87
I12DEC87
12DEC37
12DEC87
12DEC37
12DEC87
12DEC87
I12DEC87
U2DEC87
ti2DEC87
J12DECS7
$12BEC87
12DEC87
12DEC87
12DEC87
12DEC87
12DEC87
I2DECS7
12DEC37
12DEC87
12DEC87
12DECB7
12DEC87
12DEC87
12DEC87
12SEC87
12DEC37
I12DEC87
I12DEC37
I12DEC37
I12DEC37
i!2DECS7
I12DEC87
12DEC87
12DEC37
12DEC87
120ECB7
12DEC87
12DEC87
12SEC87
TIME
11:10
11:14
11:18
11:22
11:26
11:30
11:34
11:38
11:42
ll:4i
11:50
11:54
11:58
12:02
12:06
12:10
12:14
12:18
12:22
12:26
12:30
12:34
12:38
12:42
12:46
12:50
12:54
12:53
13:02
13:06
13:10
13:14
13:18
13:22
13:26
13:30
13:34
13:38
13:42
13:46
13:50
DILUTION
WATER
SPM
' f 13200
1.48
4. -64
8.38
4.33
1.93
5.55
7.64
3.66
2.80
7.67
6.86
2.67
4.52
8.5?
5.88
3.15
5.31
6.89
3.98
2.57
5.55
6.19
4.08
4.13
4.97
4.86
4.78
4.06
4.66
5.17
5.03
4.72
4.56
4.19
5.08
5.72
4.83
3.09
4.39
6.03
5.25
ST IN STM
PRESS
PSIB
PI 200 A
' -2
-6
-5
-6
-7
-2
-7
-8
-3
-8
-8
-8
-7
-8
-8
-8
-8
-3
DILUTION
WATER
SPM
FI3200
1.43
- 4.64
3.88
4.33
1.93
5.55
7.64
3.66
2.80
7.67
6.86
2,67
4.52
8.59
5.88
3.15
5.31
6.89
3.98
2.57
5.55
6.19
.08
.13
.97
.86
.78
4.06
4.66
5.17
5.03
4.72
4.56
4.19
5.08
5.72
4.83
3.09
4,39
6.03
5.25
BHSE OUT
SAS T
DES F
TI3800
266
272
271
264
266
272
269
264
269
273
267
265
271
272
265
266
270
269
265
267
270
263
266
268
268
268
268
263
269
269
268
268
263
268
269
269
26?
266
269
270
267
B8KSE
DIFF P
IN H2Q
DP I 3809
8.41
7.52
8.50
8.31
7.66
3.34
8.31
7.72
9.13
9.09
7.67
3.97
9.22
3.06
8.91
8.75
7.77
8.47
8.53
7.43
8.16
3.53
7.75
7.91
3.25
7.77
8.25
7.81
8.16
8.44
7.72
7.33
8.50
7.94
7.38
8.31
3.00
7.86
8.50
8.19
7.67
STACK
CO
PPMV
AI370A
91.25
74.00
81.75
83.25
81.25
71.25
70.50
66.25
98.50
75.50
63.50
67.25
62.75
66.75
72.25
67.75
62.38
66.25
59.00
53.38
65.00
61.25
65.25
57.88
56.63
57.25
56.75
57.50
66.50
64.25
57.38
52.50
57.38
59.25
61.13
61.50
62.50
59.00
57.25
54.33
57.25
STACK
OPACITY
I
AI3703
44.25
44.83
44.00
46.63
43.33
46.38
44.00
41.83
41.13
44.50
41.38
45.88
49.88
44.75
47.00
40.13
46.13
46.38
41.13
45.63
40.50
49.83
47.25
47.75
41.00
43.13
42.50
43.50
48.63
49.25
49.83
49.75
49.88
49.88
49.88
49.88
49.88
43.75
49.38
49.33
49.88
STACK
C02
Z
AI370C
3.69
2.99
2.98
3,29
3.09
2.93
2.98
3.09
1.98
2.69
2.78
2.73
2.98
3.39
3.48
3.09
2.99
3.18
3.18
2.78
3.48
3.43
3.29
2.59
2.89
2.87
2.89
3.09
3.29
3.29
3.09
2.93
2.98
3.13
3.53
3.39
2.99
2.98
3.18
3,18
2.39
ID FAN
CURRENT
AMPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AMPS
IIH320
100.25
102.50
103.00
104.00
102.75
101.00
103,75
106.25
105.75
106.00
105.75
106.75
105.25
106.00
106.00
105.25
104.00
102.50
102.75
101.25
102.00
102.75
103.00
100.00
102.00
100.75
101.75
102.25
101.50
102.00
102.25
101.00
101.00
101.75
102.75
101.50
101.00
101.00
101.75
103.50
102.25
ID FAN
CURRENT
AMPS
IIL320
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
CURRENT
AMPS
IIL320
0.01
0.01
0.01
0.01
4.0!
0.01
0.01
0.01
0.01
0.01
0.0!
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.0!
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.0!
0.01
0.01
0.01
0.01
0.01
0.01
0.0!
0.01
0.0!
0.01
0.01
K-27
-------
RADIAN CORPORATION
02-Jan-SS
PROCESS DATA SUMMARY
MAINE ENERGY RECOVERY COMPANY
YORK COUNTY KASTE-7G-ENERGY FACILITY
BIDDEFORD MAINE
DATE
TIME DILUTION ST IN STM DILUTION BHSE OUT B6HSE
HATER PRESS HATER GAS T 2 IFF P
SPH PSIB SPM .
12DEC87
12DECS7
12DECS7
12BEC87
12DEC37
12DECB7
12DEC87
12DECS7
12DEC37
12DECB7
12DEC87
12DECS7
12DEC37
U2DEC37
U2DEC87
112DEC87
I12DECS7
U2DEC37
U2DEC37
12DEC87
12DEC87
12DEC37
12DEC87
112DEC87
I12DEC37
ti2D£C37
I12DEC37
112DECS7
J12DEC37
I12DK87
H2DEC87
I12BEC87
112DEC37
U2DEC37
I12DEC87
J12DEC37
t!2DECS7
»12BEC87
112DEC37
I12DEC87
tl29EC87
I12DEC87
13:54
13:5S
14:02
14:0i
14:10
14:14
14:18
14:22
14:26
14:30
14:34
14:33
14:42
14:46
14:50
14:54
14:5*
15:02
15:0i
15:10
15:14
15:18
15:22
15:26
15:30
15:34
15:38
15:42
15:46
15:50
15:54
15:53
16:02
16:06
16:10
16:14
16:13
16:22
1 *< • «i
16:30
16:34
16:33
2.92
3.59
5.97
5.05
2.91
4.66
6.44
4.80
3.24
5.94
7.14
4.89
4.80
6.34
5.41
4.41
5.58
6.42
4.22
3.01
5.77
5.33
3.66
4.64
8.66
7.64
-0.47
-1.03
1.97
6.00
2.11
-1.02
-1.01
1.47
5.02
5.72
2.19
4.50
9.38
7.06
1.97
6.42
2.92
3.59
5.97
5.05
2.91
4.66
6.44
4.80
3.24
5.94
7.14
4.39
4.30
6.34
5.41
4.41
5.58
6.42
" 4.22
3.01
5.77
5.83
3.66
4.64
3.66
7.64
-0.47
-1.03
1.97
6.00
2.11
-1.02
-1.01
1.47
5.02
5.72
2.19
4.50
9.33
7.06
1.97
6.42
DE6 F
266
269
270
267
267
270
270
266
268
271
269
266
269
270
268
268
270
269
266
268
270
268
267
270
272
264
259
263
269
269
262
260
264
263
270
266
263
263
270
264
262
269
IN H20
3.56
3.31
7.61
8.22
8.44
7.83
3.47
8.09
7.64
8.75
8.63
7.53
8.41
3.66
7.61
8.56
3.47
7.36
3.50
3.56
7.39
3.22
3.33
7.92
3.00
6.34
4.61
4.22
4.95
4.70
4.30
4.39
4.72
4.36
4.92
4.83
6.03
6.34
6.59
5.03
5.91
5.09
STACK
CO
PPHV
55.38
56.38
51.50
59.38
64.25
64.25
57.75
59.25
76.25
69.25
78.25
77.25
72.50
65.25
69.25
71.50
64.25
63.38
60.50
54.38
57.25
62.50
63.33
100.00
42.50
20.56
11.59
7.72
1.62
2.55
0.69
3.56
3.56
4.58
6.53
12.53
27.44
58.38
59.25
192.00
159.00
147.00
STACK
OPACITY
I
49.88
49.88
49.88
49.83
49.83
49.38
49.88
49.88
49.88
49.88
49.83
49.88
49.88
49.83
49.88
49.88
49.88
49.88
49.83
49.88
49.38
49.83
49.88
49.38
49.88
49.88
49.83
49.88
49.83
49.88
49.88
49.38
49.38
49.88
49.88
49.38
49.33
49.88
-0.04
-0.04
-0.04
-0.04
STACK ID FAN
C02 CURRENT
I
2.73
3.39
2.39
2.98
3.18
3.29
3.09
2.78
3.38
3.79
4.08
3.98
3.69
2.98
3.48
3.69
3.48
2.89
2.89
3.18
2.89
3.09
3.29
1.98
0.20
0.10
0.10
0.10
0.10
0.00
0.10
0.10
0.20
0.40
0.59
0.69
0.69
0.99
1.39
0.39
0.59
0.49
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN ID FAN ID FAN
CURRENT CURRENT CURRENT
AMPS
101.00
102.00
102.25
101.50
102.25
101.75
102.00
101.50
102.75
102.75
103.50
104.25
102.50
102.50
103.25
102.50
103.00
102.50
102.00
101.75
102.50
101.50
103.75
105.25
101.25
95.50
90.25
88.50
92.25
91.25
39.50
89.50
90.75
91.00
91.25
91.25
94.75
94.50
95.50
90.50
90.50
90.00
AHPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
AMPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
K-28
-------
RADIAN CORPORATION 02-Jan-83
PROCESS DATA SUMMARY
HAINE ENERGY RECOVERY COHPANY
YORK COUNTY HASTE-TO-ENER6Y FACILITY
BISDEFGRD MAINE
UNIT A
DATE
I12DEC37
I12DEC87
I12DECB7
U2DECS7
U2DEC87
I12DEC87
112DECS7
H2DEC87
I12DEC37
112DECS7
I12DEC87
t!2DEC37
112DEC37
U2DEC87
J12DEC37
»!2DEC87
!12DEC37
ri2DEC87
I12DEC87
112DEC87
I12SEC87
I12DEC37
U2DEC37
U2DEC87
12DEC37
12DEC37
12DEC37
12DECS7
12DEC37
I12DEC87
I12DEC87
U2DEC87
I12DEC37
ti2DEC37
U2DEC37
I12DEC37
I12DEC87
I12DEC37
H2DEC87
I12DEC87
M2DE87
I12DECB7
TIME DILUTION ST IN STM
16:42
16:46
16:50
16:54
16:58
17:02
17:06
17:10
17:14
17:18
17:22
17:26
17:30
17:34
17:38
17:42
17:46
17:50
17:54
17:58
13:02
13:06
13:10
13:14
18:13
13:22
13:26
13:30
13:34
13:33
13:42
13:46
18:50
13:54
18:58
19:02
19:06
19:10
1?:14
19:18
19:22
19:26
HATER PRESS
6PM PSIG
10.53
1.53
-1.02
-L02
-1.02
-1.01
-1.01
-1.02
2.27
7.70
6.52
1.98
2.07
5.75
6.06
3.63
4.86
6.77
4.72
3.24
5.30
5.34
4.34
4.73
5.58
5.34
3.54
4.58
7.53
8.50
11.56
11.31
5.14
5.25
10.75
8.38
2.09
6.30
11.59
6.39
3.38
10.69
DILUTION
HATER
5P«
10.53
1.53
-1.02
-1.02
-1.02
-1.01
-1.01
-1.02
2.27
7.70
6.52
1.98
2.07
5.75
6.06
3.63
4.36
6.77
4.72
3.24
5.30
5.84
4.84
4.78
5.58
5.34
3.54
4.58
7.53
8.50
11.56
11.31
5.14
5.25
10.75
8.38
2.09
6.30
11.59
6.39
3.38
10.69
BHSE OUT
6AS T
DEB F
268
256
258
262
263
265
267
269
272
273
266
264
268
271
267
266
270
270
266
268
270
269
268
269
270
268
267
270
272
271
273
267
262
270
273
264
263
272
271
262
267
273
B6HSE
DIFF P
IN H.20
4.30
4.92
7.44
6.97
6.95
7.56
7.30
8.06
3.83
3.22
8.00
8.50
3.22
8.03
8.56
8.28
3.16
3.69
3.44
7.73
3.69
3.50
7.89
8.31
8.22
7.73
8.73
9.19
3.72
9.69
9.41
7.94
3.69
9.13
7.72
8.16
7.88
6.77
7.69
7.94
6.73
6.30
STACK
STACK
CO OPACITY
PPHV
222.00
136.50
139.00
224.00
129.00
68.25
53.33
57.38
79.25
76.25
71.50
62.38
54.50
61.38
61.38
60.38
58.25
59.38
61.38
57.25
81.25
60.88
59.00
60.38
67.75
75.50
64.75
72.00
61.33
84.25
93.50
137.00
89.25
57.00
27.00
13.63
12.53
9.66
11.69
8.91
11.34
12.38
I
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.05
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
STACK
1C FAN
C02 CURRENT
I
0.89
0.99
1.39
1.59
1.89
2.38
2.88
2.98
4.33
4.38
3.88
3.08
2.68
3.38
3.38
3.48
3.29
2.88
3.08
3.08
3.29
3.38
3.28
3.38
3.78
3.58
3.58
3.18
3.58
1.79
1.69
1.09
0.68
0.59
0.59
0.59
0.49
0.59
0.69
0.59
0.59
0.59
AHPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
ID FAN
ID FAN
ID FAN
CURRENT CURRENT CURRENT
AMPS
90.25
90.50
94.75
96.50
95.00
96.75
98.00
100.00
102.50
104.25
,104.25
101.50
102.25
102.50
104.25
103.75
104.00
103.25
104.25
103.00
102.75
104.25
102.75
101.75
102.75
101.75
103.75
107.50
110.25
108.75
108.75
108.50
107.25
108.25
107.25
105.00
101.50
100.50
101.50
102.75
100.50
94.75
AHPS
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
AHPS
0.01
0.01
0.01
o.or
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
K-29
-------
RADIAN CORPORATION 02-Jan-S8
PROCESS DATA SUMMARY
MAINE ENERGY RECOVERY COMPANY
YORK COUNTY WASTE-TO-ENERGY FACILITY
SIDDEFORD MAINE
UNIT A
DATE TIME DILUTION ST IN STM DILUTION BHSE OUT B6HSE STACK STACK STACK ID FAN ID FAN ID FAN ID FAN
WATER PRESS WATER GAS T DIFF P CO OPACITY C02 CURRENT CURRENT CURRENT CURRENT
BPM PSIB SPM DEBF IN H20 PPMV I I AMPS AMPS AHPS AMPS
U2DECB7 19:30 9.44 9.44 265 5.89 12.53 -0.04 0.60 0.01 94.00 0.01 0.01
I12DEC37 19:34 1.56 1.56 259 5.00 11.34 2.96 0.59 0.01 93.25 0.01 0.01
AVERAGE 4.99 -7 4.89 268 8.20 64.02 42.54 3.23 0.01 102.84 0.01 O.CT
» = NON-TEST PERIOD,VALUE NOT INCLUDED IN AVERAGE
K-30
------- |