vvEPA
United States
Environmental Protection
Agency
EPA-600'7-84-073b
July 1984
Research and
Development
ENVIRONMENTAL ASSESSMENT OF
A RECIPROCATING ENGINE
RETROFITTED WITH NONSELECTIVE
CATALYTIC REDUCTION
Volume II. Data Supplement
Prepared for
Office of Air Quality Planning and Standards
Prepared by
Industrial Environmental Research
Laboratory
Research Triangle Park NC 27711
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interlace in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH AND DEVELOPMENT series. Reports in this series result from the
effort funded under the 17-agency Federal Energy/Environment Research and
Development Program. These studies relate to EPA's mission to protect the public
health and welfare from adverse effects of pollutants associated with energy sys-
tems. The goal of the Program is to assure the rapid development of domestic
energy supplies in an environmentally-compatible manner by providing the nec-
essary environmental data and control technology. Investigations include analy-
ses of the transport of energy-related pollutants and their health and ecological
effects; assessments of, and development of, control technologies for energy
systems; and integrated assessments of a wide range of energy-related environ-
mental issues.
EPA REVIEW NOTICE
This report has been reviewed by the participating Federal Agencies, and approved
for publication. Approval does not signify that the contents necessarily reflect
the views and poiicies of the Government, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/7-84-073b
July 1984
ENVIRONMENTAL ASSESSMENT OF A
RECIPROCATING ENGINE RETROFITTED
WITH NONSELECTIVE CATALYTIC
REDUCTION
VOLUME II -
DATA SUPPLEMENT
by
C. Castaldini and L R. Waterland
Acurex Corporation
Energy & Environmental Division
555 Clyde Avenue
P.O. Box 7555
Mountain View, California 94039
Contract No. 68-02-3188
EPA Project Officer:
RE. Hall
Combustion Research Branch
Energy Assessment and Control Division
Industrial Environmental Research Laboratory
Research Triangle Park, North Carolina 27711
Prepared for:
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, DC 20460
-------
ABSTRACT
The two-volume report describes results obtained from testing a rich-
burn reciprocating internal combustion engine retrofitted with a nonselective
catalytic reduction system (NSCR) for NOX reduction. A comprehensive test
program was performed to characterize catalyst inlet and outlet organic and
inorganic emissions at optimum catalyst NOX reduction performance, follow-
ed by a 15-day exhaust emission monitoring program to measure the catalyst
performance under typical engine operating conditions. Over the 1-day com-
prehensive test period, the NOX reduction performance of the catalyst ranged
between 54 and 81 percent, with an average of 70 percent. NOX emissions
averaged 1700 ppm at the catalyst inlet and 550 at the catalyst outlet. Catalyst
inlet CO and TUHC concentrations averaged 14, 600 ppm and 115 ppm, respec-
tively. These inlet combustible concentrations were the result of engine oper-
ation at an air/fuel ratio near or slightly below the stoichiometry required for
efficient NOX reduction. Catalyst outlet CO and TUHC levels were reduced to
13,200 ppm and 125 ppm, respectively. Total organic emissions were also re-
duced by the catalyst from 15. 5 to 2.1 mg/dscm. Ammonia and cyanide levels
increased by factors of 15 and 450, respectively, across the catalyst. Over
the 15-day monitoring period, NOX reduction performance was mostly in the
0 to 40 percent range. Only occasionally did NOX reduction exceed 90 percent.
During these periods of better performance, CO and TUHC emissions at the
inlet were as high as 1 percent and 0.1 percent, respectively.
11
-------
CONTENTS
1. INTRODUCTION 1-1
2. ENGINE OPERATING DATA 2-1
3. SAMPLING DATA SHEETS 3-1
3.1 SUMMARY TABLES FOR SASS, NH3, AND HCN
SAMPLING SYSTEMS 3-2
3.2 OPERATING DATA TABLES FOR SASS 3-5
3.3 OPERATING DATA TABLES FOR NH3 SAMPLING TRAIN . . 3-24
3.4 OPERATING DATA TABLES FOR HCN SAMPLING TRAIN . . 3-37
4. ANALYTICAL RESULTS 4-1
4.1 AMMONIA, CYANIDE, AND N20 ANALYSES
AND PARTICULATE WEIGHTS 4-2
4.2 TRACE ELEMENT ANALYSIS RESULTS 4-6
4.3 TOTAL CHROMATOGRAPHABLE ORGANICS (TCO),
GRAVIMETRIC ORGANICS (GRAY), INFRARED (IR)
SPECTRA, AND GAS CHROMATOGRAPHY/MASS
SPECTROMETRY (GC/MS) OF TOTAL SAMPLE
EXTRACTS ..... 4-23
4.4 LIQUID CHROMATOGRAPHY (LC) SEPARATION OF THE
INLET XAD-2 EXTRACT, WITH TCO, GRAY, AND IR
ANALYSES OF LC FRACTIONS 4-31
4.5 BIOASSAY RESULTS 4-48
4.6 NATURAL GAS FUEL ANALYSIS 4-53
iii
-------
SECTION 1
INTRODUCTION
The purpose of this data supplement is to document data in greater
detail than was possible in Volume I (Technical Results) of this report. It
is intended to provide sufficient detail for researchers to perform their own
analysis of the data obtained. Readers are referred to the technical volume
for objectives, description of source emission results, interpretations, and
conclusions.
The remaining sections of this data supplement contain the following
information:
• Section 2, Engine Operating Data
-- Engine load, generator output, fuel flow, pressures, and
temperatures
• Section 3, Sampling Data Sheets
— Complete listing of continuous monitor data for entire 15-day
test period (computer listing from field data sheets); operating
data tables for SASS (for solid particulate, trace elements and
organics sampling), and impinger sampling systems for NH3 and
HCN sampling
• Section 4, Analytical Laboratory Results
— Ammonia, cyanide, and N20 analysis results, SASS particulate
weights, trace element emissions by spark mass spectrometry
1-1
-------
(SSMS) analysis and atomic absorption spectroscopy (AAS)
analysis; total chromatographable organic (TCO) and gravimetric
(GRAY) results and infrared (IR) spectra of total sample
extracts; determination of organic compounds by gas
chromatography/mass spectrometry (GC/MS); liquid chromatography
(LC) fractionation of inlet organic extract with TCO, GRAY, and
IR analysis of LC fractions; natural gas fuel analysis.
1-2
-------
SECTION 2
ENGINE OPERATING DATA
2-1
-------
ENGINE/GENERATOR OPERATING PARAMETERS
Plant
SCG Honor Rancho
Date June 7 — Comprehensive Tests
Location Valencia
Source
Time
(24-hr!
Haukesha 1C Engine
Air
Intake
manifold
vacuum
Gener- (In. Hg)
ator Engine Engine
output output speed
) (kW) (hp)a (rpm) Left Right
Fuel
regul ator
pressure
(In. H20)
Left Right
Gas Fuel
meter gas
I103 temp
ft3) CF)
Stack
temp
CF)
Fuel Water
press temp
(psl) CF)
Operator
Oil Vacuum
temp (In.
CF) Hg)
Stack
press
(In. H20)
Catalyst
temp
CF)
In Out
Ambient
temp
CF)
Dry Met
Bulb Bulb
0845
0925
1045
1130
1210
1340
1435
1512
1S52
1627
1655
1732
1602
1830b
398
410
400
400
412
415
455
420
430
425
427
430
425
415
597
615
600
600
618
623
683
630
645
638
640
645
638
623
905
905
905
905
,900
905
905
910
905
905
905
902
905
— C
4.8
5.1
4.8
4.4
4.6
4.8
4.3
4.3
4.3
4.4
4.1
4.5
4.5
—
5.2
5.1
4.7
4.5
4.8
4.2
4.5
4.7
4.3
4.1
4.3
4..6
4.6
-
3.7
3.6
3.7
3.8
3.8
3.7
3.8
3.6
3.7
3.6
3.6
3.8
3.8
-
3.6
3.5
3.S
3.5
3.5
3.7
3.5
3.7
3.5
3.8
3.8
3.7
3.7
-
107.6
129.2
170.3
195.9
215.3
264.8
299.8
315.2
335.4
335.9
372.2
393.2
409.0
421.2
69
70
77
79
82
86
86
86
84
84
84
82
80
80
1,069
1,069
1.074
1.068
1,076
1,071
1.070
1.071
1.060
1,070
1.073
1.070
1.074
1.075
11
11
11
11
11
11
11
11
11
11
11
11
11
11
169
171
171
171
172
173
174
172
172
172
172
172
172
—
152
156
'163
166
166
170
171
170
169
171
171
170
168
—
9.2
9.8
7.8
8.2
8.2
7.2
8.0
6.2
7.5
6.9
7.5
7.5
8.0
—
4.3
6.1
6.4
6.3
--
6.8
6.8
6.7
6.3
7.0
7.2
6.8
6.2
—
1.051
1.056
1.017
954
1.013
--
997
997
991
993
1,002
992
-
—
997
1,008
1.005
1.002
--
--
994
1,006
1.022
1.039
1.042
1.042
1.032
—
-
~
—
82
--
—
84
84
85
85
86
83
79
— •
--
~
--
-
--
—
71
71
71
71
71
70
68
—
ro
ro
•Horsepower was not measured. Estimated to be about 1.5 times the electrical generator output.
bEnglne operating hours » 5343.7.
cHot measured.
-------
ADDITIONAL ENGINE OPERATING DATA — 15-DAY CONTINUOUS MONITORING PERIOD
Day
(June Operating
1983) hours
6 5359.8
5365.3
9 5381.9
5386.4
13 5479.9
5484.0
14 5554.9
5510.9
15 5528.7
5534.2
16 5552.4
Generator
output
Time (kW)
1030
1200
1600
0824
0900
0942
1102
1143
1259
0957
1034
1241
1400
1047
1136
1317
1404
1511
1553
1643
1022
1104
1152
1217
1253
1420
1454
1552
0959
1022
1101
1124
1152
1233
1241
1347
1441
225
200
260
160
160
190
215
200
210
225
190
220
240
275
320
435
450
320
330
350
415
250
210
500
• 210
250
250
230
340
380
290 '
300
310
325
320
290
220
Engine
output
(hp)a
383
300
390
240
240
285
320
300
31 5r
338
285
330
360
413
480
650
680
480
495
575
623
375
315
750
315
375
375
345
510
495
435
450
465
490
480
435
330
Engine
speed
(rpm)
905
910
910
910
910
910
910
910
900
900
905
910
910
910
905
900
905
910
910
905
900
900
910
905
900
905
905
905
905
910
910
910
905
910
905
905
Stack
temp
900
880
900
926
905
893
905
892
890
883
1,008
1,045
1,082
1,081
1,078
1,082
1,085
1,091
1,022
937
1,031
1,024
989
960
966
1,077
1,040
1,041
1,042
1,066
1,060
1,013
1,041
974
Fuel
meter
(103 ft3)
8773.5
8802.7
8881.5
9213.5
9223.2
9236.5
9262.0
9275.0
9299.2
11282.3
11294.4
11333.2
11359.0
11752.5
11773.5
11823.0
11849.2
11884.3
11903.5
11928.5
12408.0
12430.0
12456.5
12465.2
12472.2
12504.0
12525.1
12535.7
12993.5
13004.0
13021.0
13031.0
13043.3
13062.7
13067.0
13091.5
13112.5
2-3
-------
ADDITIONAL ENGINE OPERATING DATA ~ 15-DAY CONTINUOUS MONITOR
(continued)
Day Generator Engine
(June Operating output output
1983) hours Time (kW) (hp)a
1505
5558.5 1600
17 5576.3 0940
1026
1048
1127
1203
1242
1300
1316
1329
1430
1531
5582.5 1552
20 5649.6 1041
1306
1352
1524
5655.5 1635
260
220
140
225
240
315
300
330
350
230
350
320
330
325
250
280
260
270
270
390
330
210
338
360
470
450
495
525
345
525
480
495
490
375
420
390
405
407
Engine
speed
(rpm)
905
910
910
905
905
905
905
905
905
905
905
905
905
905
900
905
905
910
905
Stack
temp
(°F)
976
975
867
977
952
1,013
1,065
1,075
1,070
1,001
1,061
1,066
1,065
1,082
934
955
964
958
955
Fuel
meter
(103 ft3)
13121.9
13142.0
13511.8
13526.6
13534.1
13549.0
13564.0
13581.0
13599.0
13656.0
13601.0
13628.5
13655.8
13666.1
15164.5
15211.7
15229.0
15264.3
15290.0
aHorsepower not a measured value.
1.5 times the generator output.
Assumed to correspond to about
2-4
-------
SECTION 3
SAMPLING DATA SHEETS
3.1 SUMMARY TABLES FOR SASS, NH3, AND HCN SAMPLING SYSTEMS
3.2 OPERATING DATA TABLES FOR SASS
3.3 OPERATING DATA TABLES FOR NH3 SAMPLING TRAIN
3.4 OPERATING DATA TABLES FOR HCN SAMPLING'TRAIN
3-1
-------
3.1 SUMMARY TABLES FOR SASS, NH3, AND HCN SAMPLING SYSTEMS
3-2
-------
I SDKINET1C CALCULATIONS - USEPA: M/5 BASIS
SOUTHERN CAL GAS - NO. 2
RUN NUMBER
DATE OF TEST
OPERATOR
METER VOLUME, CF
METER COEF
BAROMETRIC PRES, HQ
DELTA H, IN H20
METER TEMP, DEQ F
STACK TEMP, DEG F
CONDENSATE, ML
PERCENT C02
PERCENT 02
PERCENT CO
PERCENT N2
STATIC PRES, IN H20
PITOT COEF
SORT DELTA P, IN H20
STACK AREA, SQ FT
NOZZLE DIAM, IN
TEST TIME, MIN
MASS PARTICULATE, G
F-FACTOR, DSCF/MBTU
VOLUME, DSCF
WATER VAPOR, SCF
PERCENT MOISTURE
MOLECULAR WT DRY, LB/LB
MOLECULAR WT WET, LB/LB
STACK PRES, IN HG
STACK VELOCITY, FT/SEC
MASS FLOW, DSCFM
MASS FLOW, ACFM
PERCENT EXCESS AIR
PERCENT ISOKINETIC
GRAIN LOADING, GR/DSCF
GRAIN LOADING, GR/ACF
EMISSION RATE, LB/HR-STD
EMISSION RATE, LB/MBTU
2-NH3-0
6-7-83
RCB
18.27
0.9908
28.62
1.1
86.6
1026
91.2
10.2
0.1
0
89.7
0.15
0
0
0
0
30
0
17.089
4.293
0.201
29.636
27.30
28.63
0.00
0
0
*DIV/0!
0.00000
0.00000
0.00000
1-HCN-I
6-7-83
BCD
17.316
0.9995
28.62
1
70.5
996
82.4
10.2
0.1
0
89.7
0.15
0
0
0
0
30
0
16.539
3.879
0.190
29.636
27.43
28.63
0.00
0
0
#DIV/0!
0.00000
0.00000
0.00000
1-HCN-O
6-7-83
BCD
18.269
0.9908
28.62
1.1
87.4
1032
90.2
10.2
0.1
0
89.7
0.15
0
0
0
0
0
0
17.063
4.246
0.199
29.636
27.32
28.63
0.00
0
0
*DIV/0!
0.00000
0.00000
0.00000
3-3
-------
ISOKINETIC CALCULATIONS - USEPA: M/5 BASIS
SOUTHERN CAL GAS - NO. 1
RUN NUMBER
DATE OF TEST
OPERATOR
METER VOLUME, CF
METER COEF
BAROMETRIC PRES, HG
DELTA H, IN H20
METER TEMP, DEG F
STACK TEMP, DEG F
CONDENSATE, ML
PERCENT C02
PERCENT 02
PERCENT CO
PERCENT N2
STATIC PRES, IN H20
PITOT COEF
SORT DELTA P, IN H20
STACK AREA, SQ FT
NOZZLE DIAM, IN
TEST TIME, MIN
MASS PARTICULATE, G
F-FACTOR, DSCF/MBTU
VOLUME, DSCF
NATER VAPOR, SCF
PERCENT MOISTURE
MOLECULAR WT DRY, LB/LB
MOLECULAR NT WET, LB/LB
STACK PRES, IN HG
STACK VELOCITY, FT/SEC
MASS FLOW, DSCFM
MASS FLOW, ACFM
PERCENT EXCESS AIR
PERCENT ISOKINETIC
GRAIN LOADING, GR/DSCF
GRAIN LOADING, GR/ACF
EMISSION RATE, LB/HR-STD
EMISSION RATE, LB/MBTU
1-SASS-I
6/7/83
PWK
1026.375
0.974
28.55
1.08
92.2
997
3952
10.2
0.1
0
89.7
0.15
0.79
0.664
0.785
0.612
360
0.0367
0
964.290
186.021
0.162
29.636
27.75
28.56
60.80
• 830
2,864
124.053
0.00059
0.00564
0.00418
1-SASS-O
6/7/83
PWK
1039.64
1.016
28.55
1.41
93.2
1029
4586
10.2
0.1
0
89.7
0.15
0.79
0.644
0.785
0.612
320
0.0376
935.475
215.863
0.187
29.636
27.45
28.56
59.94
776
2,823
144.806
0.00062
0.00577
0.00413
1-NH3-I
6/7/83
BCD
16.828
0.9995
28.62
1
64.7
997.3
78.6
10.2
0.1
0
89.7
0.15
0
0
0
0
30
0
16.251
3.700
0.185
29.636
27.48
28.63
0.00
0
0
*DIV/0!
0.00000
0.00000
0.00000
I -NH3-0
6/7/83
BCD
18.03
0.9908
28.62
1.1
79.6
1025.5
66.9
10.2
0.1
0
89.7
0.15
0
0
0
0
30
0
17.084
3.149
0.156
29.636
27.82
23.63
0.00
0
0
*DIV/0!
0.00000
0.00000
0.00000
3-4
-------
3.2 OPERATING DATA TABLES FOR SASS
3-5
-------
ACUREX CORPORATION
Run /-s
Acurex Project No. Soil
Field Dates £-&/»-s"?
Sampling Location
Sampling Date 4,-T-
Crew Chief:
Testing Engineer: J_
2
C . l*<\ ' —
Technician: 1
Lab Technician:
Process Engineer: 1
FIELD CREW
uJ .
A/VI iT
819363
819366
819381
819380
819362
819383
819369
FIELD SAMPLE REFERENCE NUMBERS:
819372
819377
819375
819378
819393
3-6
7602/5/81/Rev 1
-------
PI ant
Date
ISOKINECTIC SAMPLING WORKSHEET
STM-. Reformed by Vtxu >w^'-f'J
Sample Location
Test No./Type
K = 782.687 (Cp)2 (1-BWO)2 Ps Md
Ms Pm
where: K = Contant of fixed and assumed parameters (dimensionless)
Pitot coefficient (dimensionless)
Water vapor in the gas stream
(proportion by volume)
Absolute stack gas pressure (in. Hg)
Molecular weight, stack gas dry
(Ib/lb-mole)
Orifice coefficient (dimensionless)
Molecular weight, stack gas wet
(Ib/lb-mole) Md(l-Bwo) + 18(8^)
Abolute meter pressure (in. Hg) .
782.687 ( )2 (1- )2 ( ) ( )
( )2 ( ) ( )
CP
Bwo
PS
"d
KO
MS
Pm
K
oS&vt^. e.
-*5-
(U.££v^
AJ3L- fiR^
X -tv-P5^
3 -5V
^-55'
3^,«W
3-7
-------
Plant
Date
ISOKINECTIC NOZZLE CALCULATION
AND
SAMPLING RATE CALCULATION
Performed by
Sample
Test No./Type,
where: Nd = Nozzel diameter (inches)
Average pressure differential across the
orifice meter (in. ^0)
Temperature stack gas, average (°F)
Temperature of gas meter, average (°F)
Stack gas velocity pressure (in h^O)
/ ( ) ( + 460) V25
\( ) ( * 460) ( )/
AH
TS
Tm
AP
Nd
o 1
0^ ' 1
|O^O
100
1^
AH = K (Nd)4 ^ (AP)
where: AH = Pressure Differential across the orifice meter (in H20)
Nozzel diameter, actual
Temperature of gas meter
" Temperature of stack gas
(inches)
(°F)
(°F)
Stack gas velocity pressure (in H20)
( ( ) ( )4 !
v — "^
Maqic number (
* 46°! ( )\
_+ 460) l ' ]
)4
Nd
Tm
TS
AP
AH
K(Nd)4
3-8
-------
FIELD DATA
Page / of 3>
Plant
Date
Sample Location T/ocfi
Sample Type_^
Run Number
Operator A j
Impinger Volumes
Initial Final Nel Gain
roo
Probe Length and Type
No/zel Size & 1.0.
Pilot Coefficient & 1.0.
Assumed Moisture /D
.VL
Ambient Temperature
Barometric Pressure
Static Pressure, (H20)
Filter Number(s)
Silica Gel
Leak Check: Initial at _
Final at r>
Pilot Leak Check:
" Hg, CFM
I" Hq..CygT CFM
SASS Condensate
Total Volume
Molecular Height, Dry, (M.)
/Co
Meter Box Number
Meier Coefflclenl S_. 5fe(
a Factor
K « ?'i
MN
( )
( P)
CO
I
Traverse
Point
Number
Clock Time
(24-hr)
Clock
Sampling
Time, mln
Gas Meter
Reading
-------
Page j^ of
Traverse
Point
Number
Clotk Time
(24-hr)
Clock
Sampling
Time, min
Gas Meter
Reading
(vj, ft 3
Init.
Velocity
Head
(fiPs).
in. H20
Orifice Pressure
Differential
(AH). In. H^
Des i red
Actual
Temperature °F
Stack
Probe
Implnger
Organic
Module
Oven
Gas Meter
In
Out
Pump
Vacuum
tn. Hg
Avg.
6$
no
1 76
A"?
130
CO
I—"
C3
14
7to
30
•^A.^ O •
HO.
371
1,4-
H5"
0
)\O loCO X
Run No. /-
Date __40-i_1.
Sampling Location
Comnents:
-------
Page 2 of 3
Traverse
Point
Number
Clock Time
(24-hr)
Clock
Sampling
Time, m\n
Gas Meter
Reading
Inlt.
Velocity
Head
in.
Orifice Pressure
Differential
(AH), In. H20
Desired
Actual
Temperature °F
Stack
Probe
Impl tiger
Organic
Module
Oven
Gas Meter
In
Out
Pump
Vacuin
In. Hg
Avg.
I "V^U.
10
[oOV
f.O
Pi
300
qn
IC
TT^.b
.O
Run Ho. /-
Date
Conmonts:
Location
JofaT
3*301 _***£;-
3V~ TV
-------
SASS ANALYTICAL DATA
Plant J>0 taJ* / /^c^^, jl<
Sampling Location l//}/-e/^^c ,
Recovered By 6 -/Y-"<°^/
C cements
a^c^u Sample No. J- A^X^T
Ctf Run Mo. /
Recovery Date <-,-7-6J Run Date _6- 7-_#J
Analyst Responsible
Calculations and Report Reviewed By Report Date
FILTERS USED CYCLONES
Ho. M\ \j~IHl -3?0 ?*>•< - Off<7>'iiL used Pretared Container
-(yet/no) (Wo.)
10n A/41
3^ fa/*
lu fa
IKPIUCER. VOLUMES
Initial Final -t-y&Vje fo
First (H202) ___VOO___ai ^Qg^> a/
Second (APS + AgN03)
Third (APS •»• AgH03) ^PO m£ J \ m£
"V.
J -
TOTALS ):> up n/ ^ jq^ ^^ cain
SILICA GEL WEIGHTS
Initial Final
-7SO g gfeJ g
_8
K
TOTALS 22.^0 g Zi> 72. g Gain
CONDENSATE
TOTAL VOLUME COLLECTED
Volune Keat
Voluae Extracted
Volume CH2C/2 Extract (3 x
Extracted Condenaxte: pK Neat
Amount 96Z HMO^ added
pH Final
TOTAL GAIN
3-12
-------
ISOKINETIC PERFORMANCE WORKSHEET & PARTICIPATE CALCULATIONS
Plant
Performed by
Date 4/7/£3
Sample Location
Test No./Type /
Barometric Pressure (in. Hg)
Meter volume (std),
/rt/^~ t*>7
17 64 ( if ^'^ I
\ («T?M-) l\(el2.'L) + 460 /
Volume of liquid collected (grams)
Volume of liquid at standard condition (scf)
Vlc x 0.04707
Stack gas proportion of water vapor
Vw std + Vm std ,<.— / + (—>^
Molecular weight, stack gas dry MP»e
(Ib/lb-mole) ?
(X C02x 0.44) + (X 02x 0.32) + (-X Uf % CO x 0.28)
(16.2. x 0.44) + (e,\ x 0.32) + (£?.?+ x 0.28)
Molecular weight, stack gas wet
(Ib/lb-mole)
Md^"Bwo^ + 18^Bwo^' fefl-fc^d- .\<*L) + 18(.ifa2.)
Absolute stack pressure (in. Hg) ^,15- (oM^.-A
P.*,.t. (in. H00) ( )
Pi 5 L Q L. N k /o / .«.^^*_i_
b 13.6 » v/iikS3 13.6
pb
u
m std
Vie
vw std
Ulrt
Md
Ms
•X
K§
«.?r-
HV^
5W2
,»,.!,
•1.2.
-
.,.
"•"
3-13
7602/5/81/Rev 1
-------
Temperature stack gas, average (°F)
Stack velocity (fps)
85.49 (Cp) (^Ps ayg)
avg + 460
85.49 (.
Total sample time (minutes)
Nozzle diameter, actual (inches)
Percent isokinetic (%)
17.33 (T_ + 460)(V std + Vm std)
d w m
0
Nd
17.33 ( _ + 460) (( _ ) + ( _ ))
Area of stack (ft2) *= 3.1416
Trr 2 -•- 1 44 , IT ( V')2-i-1 44
l2
Stack gas volume at standard conditions (dscfm)
60 H -Bwo>VsavgAs I- 528 \ f ^\
60
528
+ 460 / y29.92)y
Particulate matter concentration, dry (gr/dscf)
15.432 Mp(9ran)S), 15.432
Vm
std
Emission rate of participate matter (Ib/hr)
0.00857 (Qs) Cs
, 0.00857 (
)(
s(avg)
0
XI
'(std)
tvv
f I
^nft.
0.66^2 e
7602/5/81/Rev 1
3-14
-------
ACUREX CORPORATION
Acurex Project No.
Field Dates ^-
Sampling Location
Sampling Date
Crew Chief:
Testing Engineer: J_
-Engr. Technician: _]_
Lab Technician: 1
Process Engineer: 1_
Run
FIELD CREW
r fi
-5ASS
A.
R.
819368
819365
819361
819367
819382
819370
819373
FIELD SAMPLE REFERENCE NUMBERS:
819371
819376
8.^9379
819385
819394
819360
3-15
7602/5/81/Rev 1
-------
Pi ant
Date
ISOKINECTIC SAMPLING WORKSHEET
PAM*-^ ZmtA^r £r* Reformed by_
Sample Location_
Test No./Type
K - 782.687 (Cp)2 (1-BWO)2 Ps Md
Ms Pm
where: K = Contant of fixed and assumed parameters (dimensionless)
Pitot coefficient (dimensionless)
Water vapor in the gas stream
(proportion by volume)
Absolute stack gas pressure (in. Hg)
Molecular weight, stack gas dry
(Ib/lb-mole)
Orifice coefficient (dimensionless)
Molecular weight, stack gas wet
(Ib/lb-mole) Md(l-Bwo) + 18(Bw())
Abolute meter pressure (in. Hg)
782.687 ( )2 (1- )2 ( ) ( )
( )2 ( ) ( )
CP
BWO
PS
Md
KO
Ws
Pm
K
CY-^L: -*.-£•.
.?£"
Oi-$-v.^-x^
a^v.v.
•er
' N_(
C^^ ^
o>: cy>
'•ii. ^' '£
2 £57?-?
c^- !.C>\'o
^~\ 'S^'
3t,V?
3-16
-------
Plant
Date
ISOKINECTIC NOZZLE CALCULATION
AND
SAMPLING RATE CALCULATION
Performed by
Sample Location
Test No. /Type
AH
25
where: N •
! . '
• O' r^
AH - K (Nd)4 -p (AP)
where: AH = Pressure differential across the orifice meter (in
Nozzel diameter, actual
Temperature of gas meter
Temperature of stack gas
(inches) '
(°F)
(°F)
Stack gas velocity pressure (in HgO)
l( ) ( )4-!-
\( — ) ( — ] t
Maqic number (
+ 460) , A
_+ 460) ( >)
)4
Nd
Tm
TS
AP
AH
K(N )4
3-17
-------
Plant
Date
Implnger Volumes
Initial Final
Net Gain
Sample Location
Sample Type ^
Run Number
Operator p.
Nozzel Size & 1.0.
Pilot Coefficient & 1.0.
Assumed Moisture
Ambient Temperature
Barometric Pressure ;
Static Pressure, (H20)_
Filter Number(s)
Silica Gel
Leak Check: Initial at
Final at
Pitot Leak Check:
Hg.
Hq.G.II
CFN
CFM
SASS Comiensate
Total Volume
Molecular Weiqht, Dry, (Md)
Meter Box Number
Meter Coefficient
a Factor I.O'.
K =
)4 (TI) ( p)
00
Clock Time
(24-hr)
clock
Traverse
Point
Number
Gas Meter
Reading
Velocity
Head
MPS),
1n. fl20
Orifice Pressure
Differential
UH), in. H?0
Desired
Actual
Temperature °F
Stack
Probe
Impinqer
Organic
Module
Oven
Gas Meter
In
Out
Pump
Vacuum
in. Hq
Avg.
30
Of
73
91.
7602/5/.81/Rew
-------
Page JL of JL
Traverse
Point
Number
Cldck Time
(24-hr)
Clock
Sampling
Time, min
Gas Meter
Reading
(VJ. ft 3
Inlt.
Velocity
Head
(APS).
In. H20
Orifice Pressure
Differential
(AH), In. UjQ
Desired
Actual
Temperature °F
Stack
Probe
Impinger
Organic
Module
Oven
Gas Meter
In
Out
Pump
Vacuum
in. Hg
Avg.
c;O
4-H-
iMS]
,5
-II
CO
I
mo
122.
i.'V
45
17
Q£
IA
|OC>
ZI
/oO
Run
Comnunts:
0<>te -"~
Sampling Location
*• i )-.
-------
Page 1 of 3_
Traverse
Point
Number
Clock Time
(24-hr)
Clock
Sampling
Time, min
Gas Neter.
Reading
(Vm), ft 3
Velocity
Head
(APS),
in. H20
Orifice Pressure
Differential
(AH), in. H?0
Desired
Actual
Temperature °F
Stack
Probe
Implnger
Organic
Module
Oven
Gas Meter
In
Out
Pump
Vacuin
In. Hg
Avg.
163
35-
12-7 O
/-M
ro
o
300
i-H
ao
20
J 0 2 *? . (*** 0
Run No. I —
)
Date
71
Sampling Location )4frt^nf?
Coninents:
-------
SASS ANALYTICAL DATA
Plant -'O <• A ( / /*rrs~or £a*s<.£.ti
Sampling Location « •<» '-^/^c. , u , L /f
Recovered By 6-- /l/«"«c// Recovery Date 6"7-^J,
Cocnents
Sample No. U^Jf'l^r
Run No. /
j> Run Date 6 * 7- #_J
Analyst Responsible
Calculations and Report Reviewed By
Report Date
FILTERS USED
CYCLONES
Ho.
Used Pretared Container
(yes/no) (No.)
A/o
10u
3*
lu
A/J
A/o
IMPDiGER VOLUMES
Initial
Final
First )
S~OO ml
1360 ml
a- 4 6s" m/
\^ tn£
TOTALS 'IS^O mi 392iT m/
Gala
SILICA GEL WEIGHTS
Initial
Final
870
TOTALS
Gain
CONDEKSATE
TOTAL VOLUME COLLECTED
Volume Neat
Volune Extracted
Volume CH2C/2 Extract (3 x
I i ' ^
Extracted Condensate: pH Neat
Amount 96Z HNO3 added
pH Final
TOTAL GAIN V 5* g ^>
3-21
-------
ISOKINETIC PERFORMANCE WORKSHEET & PARTICULATE CALCULATIONS
Plant
D a te
Sample Location
Test No./Type /
Performed by ft CL .
Barometric Pressure (in. Hg)
Meter volume (std),
™P\f**&\
\a/\Tm + 460/
1 031'fc^o
/( A /bsrr/)\
/I ' \ / **.££> * \
r e/ I 13-6
''•BJ-yLfliJ/Y&£> + 46° /
Volume of liquid collected (grams)
Volume of liquid at standard condition (scf)
Vlc x 0.04707
Stack gas proportion of water vapor
Vw std t ^ ^
Vw -td + Vm -td ( J + ( }
Molecular weight, stack gas dry
(Ib/lb-mole)
(% C02x 0.44) + (X 02x 0.32) + (% NZ+ % CO x 0.28)
(10.2. x 0.44) + (o.| x 0.32) + (gl/}+ x 0.28)
Molecular weight, stack gas wet
(Ib/lb-mole)
" Md^1-Bwo) + ^^wo5' (?^*(l-j^l) + 18(^7.)
Absolute stack pressure (in. Hg)
f t %t«k '1"< H2°> p^,'^'
'b 13.6 » V*22> + 13.5
Pb
Vm std
vic
vw std
uin
Md
Ms
Ps
M'.S'S'
13r.mr
s-rs-to
Xir,5ff5
o,\*n
^i.«(^
2T.^r
2fr..Tk
7602/5/81/Rev 1
3-22
-------
Temperature stack gas, average (°F)
Stack velocity (fps)
85.49 (Cp)
85.49
.avg + 460
avg
460
Total sample time (minutes)
Nozzle diameter, actual (inches)
s(avg)
Percent isokinetic (%}
17.33 (Ts + 460)(Vw std
std)
e vs PS Nd*
17.33 ( + 460)(( ) + ( ))
)
Area of stack (ft2) *= 3.1416
rrr2-=-144, ff( C.' )2-r-144
Stack gas volume at standard conditions (dscfm)
60 " -"
60 (1 - )( )( )/
528
460 / U 29. 92)7
Particulate matter concentration, dry (gr/dscf)
- 15.432
15.432
Vm
std
'(std)
Emission rate of participate matter (Ib/hr)
0.00857 (QJ C. , 0.00857 ( )(_
5 S(std)
7602/5/81/Rev 1
3-23
-------
3.3 OPERATING DATA TABLES FOR NH3 SAMPLING TRAIN
3-24
-------
ACUREX CORPORATION
Run
Acurex Project No.
Field Dates L
Sampling Location
Sampling Date fr-*)-
Crew Chief:
Testing Engineer: 1
. Technician: 1
Lab Technician: 1
Process Engineer: 1
Q19386
819359
819387
FIELD CREU
CL .
A .
FIELD SAMPLE REFERENCE NUMBERS:
3-25
7602/5/81/Rev 1
-------
FIELD DATA
Paqe JL of J_
ro
en
Plant ^f/ASAQ &tnicl>ff>
Date £--)-fr3
Sample Location jr/\»cXT~
Impinger Volumes
Initial Final
/00
Probe Length and Type S 5
Net Gain
Sample Type UH-> tt>o JO 3 *> "?/D
Run Number
/ '
Operator /?.€,. /^-»-/srt
Ambient Temperature
Barometric
Pressure 3fr. U7 rp i ti^r*
-/HJL
Nozzel Size & 1
.0.
Pilot Coefficient & !
Assumed Moisture
fjfa
.0. /ay>\
Molecular Heiqht, Dry, (M.)
Meter Box Number ./X£5£
AJW/'/'
Meter Coefficient
Static Pressure, (H?0)
Silica Gel
Filter Number (s) A>M C^J.Y- C? ?,
Leak Check:
P1tot Leak
Traverse
Point
Number
'
Initial at/Z " Hg..O£^CFM
Final at _5" " Hg.,fftJi CFM
Check:
^X. Clock Time
\. (24-hr)
\Clock
Sampling ^v
Time, min >.
^~o^^-^S2^
^7^ — -^-^i£^
' •— \ "?io
2.O — ~^_^^
^^— — Hz£
^ ^
""•-— — ~^__
^~ — —-^__
— - — __
^^~~- — ^___
•"*— .•^
?o • - — __
Gas Meter
Reading
(VJ. ft 3
Inlt-^7g>,c/>a;
^*4-.42
fk'l.lZ.
tf £ , ^$0
I i ft rt ^/
•1 te t ^ /
Velocity
Head
In. S20
_y
SASS Condensate
Total Volume
Orifice Pressure
Differential
UH), in. H?0
Des < red
Actual
/,o
I.O
},0
"Factor •l^
'I?
K =
0 if:
ISM.
K(Nd)4 = x ( )4 «
£
H • K(Nd)4 {ll\ ( P)
Temperature °F
Stack
^SJ
^T
^1»
??7.j
Probe
•
Impinger
Organic
Module
Oven
Gas Meter
In
(&
L&
W.
Out
^
63
6Z
t
Pump
Vacuum
in. Hg
a,o
3,D
2.0
^.^
Avg.
7602/5/.81/Rev 1
Common K:
-------
Plant
Date
ISOKINETIC PERFORMANCE WORKSHEET & PARTICIPATE CALCULATIONS
Performed by
Sample Location_
Test No./Type
Barometric Pressure (in. Hg)
Meter volume (std),
(\ / ( \ \
(t ^ + ^-25D
w SIQ m stu _^ . i. . —
Molecular weight, stack gas dry
(Ib/lb-mole) '
(% C02x 0.44) + (% 02x 0.32) + (% N2+ % CO x 0.28)
(10.1 x 0.44) + ft/ x 0.32) + (St.") + x 0.28)
Molecular weight, stack gas wet
(Ib/lb-mole)
Absolute stack pressure (in. Hg)
P. . (in. H70) (>tS)
n + ,Sl»CK.. C ^°frb2) + • A i.-. •
b 13.D lo.o
>b
W
m std
»le
vw std
wo
Md
Ms
Ps
«>t
,««
^.u
^o
0./8&-
—
^v ^ • C/* ^j
^y^t f ^^.
3-27
7602/5/81/Rev 1
-------
Temperature stack gas, average (°F)
1T1.3
Stack velocity (fps)
85.49 (Cp) (V2PS avg)
.avg + 460
~P M
s(avg)
( ) + 460
Total sample time (minutes)
e
Zo
Nozzle diameter, actual (inches)
Percent isokinetic (3£)
17.33 (T + 460)(Vu, std + Vm std)
S w rn
0
Nd
XI
17.33 ( + 460) (( ) + ( ))
Area of stack (ft2) »= 3.1416
ffr2 H- 1 44 , «r (__ _ }2H-1 44
Stack gas volume at standard conditions (dscfm)
528 \ / Ps \
60 V -Bwo>Vsavg
60
528 ' \
_ + 460 / ^(29.92)/
Particulate matter concentration, dry (gr/dscf)
15. t
Vm
std
'(std)
Emission rate of particulate matter (Ib/hr)
0.00857 (QJ Cc , 0.00857 ( )( )
S S(std)
7602/5/81/Rev 1
3-28
-------
ACUREX CORPORATION
Run /-
Acurex Project No.
Field Dates L -u
XS',5'/.
'- St ~>
Sampling Location
Sampling Date £- "7-
FIELD CREW
Crew Chief:
C - I^/C
Testing Engineer: 1
C.
. Technician: 1
Lab Technician: 1
,t>t-
Process Engineer: 1
^. /YA ^ id
FIELD SAMPLE REFERENCE NUMBERS:
819388
3-29
7602/5/81/Rev 1
-------
FIELD DATA
Page / of
Plant Ifavt,* ft^^ttp
Date x- --?-£?
Sample Location /loTVfT"
Impinger Volumes
Initial Final
/DO
Net Gain
Sample Type A>H-» /o O 5u? 1*1
Run Number
/
Operator /f.C../w£»<
Ambient Temperature ^f9)^
Barometric
Pressure Jtfc.to'Z.
^r.
Probe Length and Type
Nozzel Size & I.D.
Pilot Coefficient & 1
Assumed Moisture
s*>
vl*
. D. fJ/ f\
1
Molecular Weight, Dry, (M )
Meter Box Number AStSt*
v* (fiflrr>f>\
Meter Coefficient
Static Pressure. (H^O)
Filter Number(s) V/ft
i
00
o
Leak Check:
Pltot Leak
Traverse
Point
Number
/
Initial at /"7" H?
Final at "V~" Hg
Check : X//M
' A
>^ Clock Time
X. (24-hr)
X. Clock
Sampling ^s.
Time, rain >s.
f^^-^5O_
?TB ^_
/?o^^~~^— -_
So^- — -—^
^rT — ^^-^_
ISS^^— - — ^^
To7T^t^_
^ — ___
^~~ — -—
~~2o~~~ ^CL_
. .Oi>^ CFM
, .3.00 CFM
Gas Meter
Reading
(vm), ft 3
»"»t^?/;^7
^7°i
%> $ 1
fW. ^
7*7*73,7
\*,oZ
Velocity
Head
in. fi20
Silica Gel
CfV. U C")*.*,
SASS Condensate
Total Volume
Orifice Pressure
Differential
(AH), in. H?0
Desired
Actual
/•/
/. 1 '
IL L_
/./
A/
/,/
« Factor .^3
o<^
K »
* 7 ^
a,.*)
K(«d)* • * ( )4 *
t
H.K(N/(^) ,p,
Temperature °F
Stack
^7
—
—
fOj£
tQjCs
ioKt
Probe
'
Imptnqer
Organic
Module
Oven
Gas Meter
In
7(f>
^
2(
^*3
$/
1%
Out
7 y
aD
83
/^"/
b
Pump
Vacuum
In. Hq
l/^
<-f
r
v-
r
y-
v^P
7602/5/.81/Rev 1
-------
Plant_
Date
ISOKINETIC PERFORMANCE WORKSHEET & PARTICULATE CALCULATIONS
Performed by
Sample Location_
Test No./Type
Barometric Pressure (in. Hg)
Meter volume (std),
"•«^/Vi&\
\UATm+460/
/'hfro'aX /(24 t.7} + ( '' ' \
(.' X-O-5) \ / lc<» • « ** T \
17641 If ^^
I/>M Y^SM)/ \hikJ + 460 /
Volume of liquid collected (grams)
Volume of liquid at standard condition (scf)
Vlc x 0.04707
Stack gas proportion of water vapor
Vwstd , - £#D
Vw std - Vm std gjjQJ 4 fc^
Molecular weight, stack gas dry
(Ib/lb-mole)
(% C02x 0.44) + (% 02x 0.32) + (X N2+ % CO x 0.28)
(/Z?.Z x 0.44) + (./ x 0.32) + (87 ."?+ x 0.28)
Molecular weight, stack gas wet
(Ib/lb-mole)
Md(l-BWQ) + 18(B ). (2l.«4(l-'5-fa) + !8(./A)
Absolute stack pressure (in. Hg)
Pct.rk (in. H20) (-'JT)
P + stack ^ o{r6>) t ~TT
'b 13. 6 » **-£±L> T i3.6
Pb
w
m std
Vlc
vw std
wn
Md
Ms
ps
^&.^^
n.osrs-
6fc.^
J-m
c.iS(»
f(.(*1(~
21.
-------
Temperature stack gas, average (°F)
Stark vplnrity (fp*)
/Lavg + 460
85 49 (C ) (-/4P ) /
*V ^ s avg; / P M
v s s
85 aq l )(J \ /..._.
J( )( )
Total sample time (minutes)
Nozzle diameter, actual (inches)
Percent isokinetic (%)
17.33 (Tc + 460)^ std + Vm std)
d w in
0 Vs Ps Nd2
17.33 ( + 460)((___) + ( ))
( )( )( )( 2 )
Area of stack (ft2) *= 3.1416
nr2 +- 1 44 , 9 (_ }2-=-l 44
Stack gas volume at standard conditions (dscfm)
60 (1 - B )Vs A, 7 528 \ / Ps \
wo avg , ^T^ avg + 4go i ( 29.92 )
60 (1 - )( )( )/ 528 ' \ /( )\
1 + 460 / \(29.92)/
\ ••• / \ /
Particulate matter concentration, dry (gr/dscf)
15 432 MD(9rams) ,g 432 ( )
Vm-td ( )
Emission rate of particulate matter (Ib/hr)
0.00857 (QJ C. , 0.00857 ( )( )
J J(std)
TS
Vs(avg)
9
Nd
XI
AS
QS
r
*-c
S(std)
ED
K
jo££^
5o
"/*
ss/k
7602/5/81/Rev 1
3-32
-------
ACUREX CORPORATION
Run
A3<-+, /oan.«LT\
-> >- JT
Acurex Project No.
Field Dates (.-tJ<*- c. •?
Plant
Sampling Location
Sampling Date /
FIELD CREW
Crew Chief:
Testing Engineer:
0-.
^
Technician: 1
Lab Technician: 1
Process Engineer: ]
&.M
AC.
FIELD SAMPLE REFERENCE NUMBERS:
819384
3-33
7602/5/81/Rev 1
-------
rinn
/ or /
•ate
•»!« location
tuiplngrr tolm»M
InllUI
Net Clln
Probe length and fyp<_
Nortel Sire 4 t.O.
ftwt
Operator
fltot Coefficient ft t.O.
A«su«e4 Moisture
fefclent Te*oerat«re
•aroBetrfc Preswro,
Static rmMr*, |HjO|
filter Hwber(t)
Silicate!
nolecMlar Nelqht, Dry.
Meter Boa Nw<4»er_
Meter Coefficient
• factor_
R .
Mwirr
• (
leak dieckt Initial at
Cncckt
Hi.
Co**ff>ntat«
Total Volww
I
OJ
-p.
Orifice
Olfferenll*!
UN}, In. H?0
Onlred
«CtMl
Sttcl
frobe
Oroanlc
HodMle
8n Meter
In
&S15
OMt
In.
s-
7602/5/fll/l»e» 1
-------
P ^ ant
Date
ISOKINETIC PERFORMANCE WORKSHEET & PARTICIPATE CALCULATIONS
Performed by
Sample Location
Test No./Type 2 ~/
Barometric Pressure (in. Hg)
Meter volume (std),
"•« (W'-*^
Vu/\Jn,+ 4«>/
((l£2"M\ /(26J.?\ + ( />f ) \
yiO''»fy\ / ^xir-fc, c_; •* — \
) nT7r
(•lM)/\(^-c-) + 4^ /
/ \ '
Volume of liquid collected (grams)
Volume of liquid at standard condition (scf)
Vlc x 0.04707
Stack gas proportion of water vapor
Vw -td (H'2e*3)
vw std + vm std MSI) + + x 0.28)
Molecular weight, stack gas wet
(Ib/lb-mole)
Md(l-B ) + 18(B ), fe%AJt)(K4o/ ) + 18(.«0f)
Absolute stack pressure (in. Hg)
Pstack (in' H20) , ( ''r)
p + stacK ^ w£r ,0 \ ,
Kb 13.6 » W±±:> + 13.6
pb
Vm std
Vlc
vw std
wo
Md
Ms
Ps
ay. t, 2.
n.o^i
-------
Temperature stack gas, average (°F)
Stack velocity (fps)
85.49 (C )
v p' s avg
85.49 ( )( )
.avg + 460
460
Total sample time (minutes)
Nozzle diameter, actual (inches)
s(avg)
6
3>o
Percent isokinetic (%)
17.33 (T + 460)(VW std + Vm std)
*> w m
0v^ ?l N?
17.33 ( + 460)(( ) + ( ))
r
Area of stack (ft2) »= 3.1416
»()2-:-144
Stack gas volume at standard conditions (dscfm)
60 (1 - B..JVS.... A / 528 \ / Ps \
[ TS avg + 460 ) ( 29.92 1
60 (1 - )( )( )/ 528
+ 460 / \(29.92)y
Particulate matter concentration, dry (gr/dscf)
15.432 Vgratns)t 15.432 < - )
Vm
std
7
'(std)
Emission rate of particulate matter (Ib/hr)
0.00857 (Qc) Ce , 0.00857 ( )(
'(std)
3-36
7602/5/81/Rev 1
-------
3.4 OPERATING DATA TABLES FOR HCN SAMPLING TRAIN
3-37
-------
ACUREX CORPORATION
Run
Acurex Project No.
Field Dates ^.j. /y. 5-?
Cm.
Sampling
Sampling Date
Crew Chief:
FIELD CREW
Testing Engineer: 1
C.
Eng&. Technician: 1
Lab Technician:
\
AJ / CB ,
Process Engineer: 1
Hv>ujx»rfg*
FIELD SAMPLE REFERENCE NUMBERS:
819356
819390
3-38
7602/5/81/Rev 1
-------
F1ELO DATA
Page
of I
Plant Mnunf R+»XLHO
I
>
(
f
(
/
-^ J
late {.-~f-t-t
tample Location _Z~A>/ ample Type
HC/U
tun Number /
)perator y?. C_ . _JV^»S
Vmbient Temperature •v "7U"*F'
Impinger Volumes
Initial Final
)PQ
/ OO
Probe Length and Type £ ^
Net Gain
tu. _aj.-
Nozzel S1?e & 1.
0- /J/A
Pitot Coefficient & 1
Assumed Moisture
Molecular Weight
Meter Box Number
.0. fJ/ft-
f
, Dry, (Md)
Meter Coefficient
Barometric Pressure 2,o
f.
-------
ISOKINETIC PERFORMANCE WORKSHEET & PARTICULATE CALCULATIONS
Plant
<^OCH-O
Performed by_
Date (.--i-fr.1
Sample Location^
Test No./Type /~
Barometric Pressure (in. Hg)
Meter volume (std),
/(n.3»t)\ /(3&4,Z) + ^— — ' \
17 64 ( )( 13'6 )
\(aX&/\(3*£) + 4&0 /
Volume of liquid collected (grams)
Volume of liquid at standard condition (scf)
Vlc x 0.04707
Stack gas proportion of water vapor
vw -td (-1"10)
W 9 \f\J ill O ir (J
Molecular weight, stack gas dry
(Ib/lb-mole)
(% C02x 0.44) + (% 02x 0.32) + (% N2+ % CO x 0.28)
(/fl.2 x 0.44) + (a/ x 0.32) + (?1.~)+ x 0.28)
Molecular weight, stack gas wet
(Ib/lb-mole)
Md(l-B ) + 18(B ), (31^(1- .l^o) + 18(./1o)
n w WU
Absolute stack pressure (in. Hg)
Pstack (1n' H20) (^-]
D J. * LOUR C. 1 <-£. i -± j. ^^^^
b 13 6 » \+v<**
m std
V'c
vw std
D
u/n
Md
Ms
Ps
36.U7.
• un.
«.«f
3. sit
*
<,^
^
o C* / ^
A» p* ^,^>
3-40
7602/5/81/Rev 1
-------
Temperature stack gas, average (°F)
Stack velocity (fps)
85.49 (Cp) (V^PS avg)
w
/d
/T$avg + 460
' Ps Ms
_) + 460
V I 'I '
Total sample time (minutes)
Nozzle diameter, actual (inches
)
Percent isokinetic (%)
17.33 (T + 460)(Vui std + V_ std)
S w m
0 Vs Ps Nd2
17.33 ( + 460) (( ) + (_
_))
( )( )( )( 2 )
Area of stack (ft2) »« 3.1416
irr 2 -r- 1 44 , tr (_ }2-H 44
Stack gas volume at standard conditions (dscfm)
60 (I - Bun)Vs A. / 528 \ / Ps \
60 (I - )( )( )/ 528
I
\
46oy ^zg.szy
' M(-}
460 / y29.92)/
Particulate matter concentration, dry (gr/dscf)
15.43Z p f lo.njt — — ^-~
Vmstd
Emission rate of participate ma
0.00857 (Q_) C. , 0.00857 (
5 S(std)
( )
tter (Ib/hr)
)( )
Ts
Vs(avg)
0
»<
«
AS
«.
s(std)
<,
IK.
30
«/^
,/*
7602/5/81/Rev 1
3-41
-------
ACUREX CORPORATION
Run /-
Acurex Project No.
Field Dates £ - i /* -fr?
Plant
C. £
AFO&tir* 5-rog*<«.^
Sampling Location
Sampling Date
FIELD CREW
Crew Chief:
Testing Engineer: 1
. Technician:
Lab Technician:
Process Engineer:
2_
3
AJ/e-oc.i_
2_
1_
2
&.
FIELD SAMPLE REFERENCE NUMBERS:
819391
3-42
7602/5/81/Rev 1
-------
FIELD DATA
Page / of f
CO
I
CO
Mant ///7/v*PJl^ /yuyO2j:FM
Final al _£ " Hg, .OPS' CFM
[heck : */!*
r / /
Xw clock Time
X. (24-hr)
X. Clock
Sampling X^
Time, rain \.
D~~t5 — &5Q^
7^o^^-^^_
cB^^~^ ~_
mtr~ — — ~— _
/Sr~"^— - ~-^^
5^— ______
S?r^^~— -^^_
ir^rf-^ _
— — ~^____
T — - — -____—-
Gas Meier
Reading
(vm), « 3
Intt. f'/f./X,
r^.?^^
ft3.0r
f^^fo
•?5cr. /y
^Vf; /^
^Ci^/13
l^.ftfcl
Velocity
Head
in. fi26
Silica Gel
J^O c;^
SASS Condensate
Total Volume
Orifice Pressure
Differential
UH), in. H?0
Desired
Actual
(<(
/,/
/,/
/ /
M
/.r
a Faclor • "^O
K
%-
=,
2-,?_ K(Nd)4 « > ( )4 «
^}^) ^
t
""""""'"
Temperature °F
Stack
/CO/
(<&>-
Ml,
Probe
-^
'•
Impinqer
Organic
Module
Oven
Gas Meier
In
*y
%
&l
$8
^7
10
^
Oul
*ff
27
%(*
67
c?V
<">°i
o i
,V
Pump
Vacuum
in. Hq
J
3
"^
s
Avg.
760Z/5/.81/Rev 1
-------
ISOKINETIC PERFORMANCE WORKSHEET & PARTICIPATE CALCULATIONS
Plant
Date
Sample Location
Test No./Type / - H-C/0
Performed by
Barometric Pressure (in. Hg)
Meter volume (std),
"•"(^/v^)
Vu/\Tm + «oy
/ttB\ Aaa, * ^>\
U3l£2) /\rL±) + 460 1
Volume of liquid collected (grams)
Volume of liquid at standard condition (scf)
Vlc x 0.04707
Stack gas proportion of water vapor
vw std . . 052:)
Vw std + Vm std fc33J + (H^
Molecular weight, stack gas dry
(Ib/lb-mole)
(% C02x 0.44) + (% 02x 0.32) + (% NZ+ % CO x 0.28)
(/o.Z x 0.44) + (.1 x 0.32) + (tt.t + x 0.28)
Molecular weight, stack gas wet
(Ib/lb-mole)
" Md(1-Bwo) + ^^wo^ ftl^n-jm.) + mmj
Absolute stack pressure (in. Hg)
P-tarl( (in. H?0) (,t$ )
n , SI3CK t. ftfrL7i + TI~T
pb 13.6 » ^^ 13.6
Pb
w
vm std
vlc
vw std
Md
Ms
Ps
5SC.(o^
n.o
-------
Temperature stack gas, average (°F)
^tack velocity (fos) , . .
/T avg + 460
RE; nn (r \ (-J~AP \ / ,*
85.49 (C ) (V4Ps avg) / p M
»J 5 S
/( } + 460
OC /\n 1 \(f \ /
o3.«»y ( MV i . .. .
>J ( )( )
Total sample time (minutes)
Nozzle diameter, actual (inches)
Percent isokinetic (%)
17.33 (Ts -•- 460)(Vw std + Vm std)
6 Vs Ps Nd2
17.33 ( + 460)(( ) + ( ))
( )( )( )( l )
Area of stack (ft2) »= 3.1416
ffr2-r-144, n(_ !2-i-144
Stack gas volume at standard conditions (dscfm)
60 fl - B Ws A. / 528 \ / Ps ; \
wo avg ., /j avg + 460 J I29.92J
m r •< \ / \ / ^/ noo" \ / » ' i
6U (1 - )( )( Y J II
[ + 460 / \(2B.B2)/
\- - - / \
Particulate matter concentration, dry (gr/dscf)
15.432 V9--ams)? 15>432 ( )
Vm ( )
std
Emission rate of particulate matter (Ib/hr)
n,nnft57 (OJ Cc . 0.00857 ( )(
s s(std)
Ts
Vs(avg)
0
Nd
%I
AS
QS
c
S(std)
Ep
K
lose.
30
P/
-------
SECTION 4
ANALYTICAL RESULTS
4.1 AMMONIA, CYANIDE, AND N20 ANALYSES AND PARTICULATE WEIGHTS
4.2 TRACE ELEMENT ANALYSIS RESULTS
4.3 TOTAL CHROMATOGRAPHABLE ORGANICS (TCO), GRAVIMETRIC ORGANICS (GRAY),
INFRARED (IR) SPECTRA, AND GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)
OF TOTAL SAMPLE EXTRACTS
4.4 LIQUID CHROMATOGRAPHY (LC) SEPARATION OF THE INLET XAD-2 EXTRACT WITH
TCO, GRAY, AND IR ANALYSIS OF LC FRACTIONS
4.5 BIOASSAY RESULTS
4.6 NATURAL GAS FUEL ANALYSIS
4-1
-------
4.1 AMMONIA, CYANIDE, AND N20 ANALYSES AND PARTICULATE WEIGHTS
4-2
-------
ACUREX
Corporation
Energy & Environmental Division
Acurex
Attention:
Subject:
August 30, 1983
Acurex ID#: 8308-039
Client P0#: 307736.52
Larry Water!and
Honor Rancho Ammonia and Cyanide Determinations;
received 8/24/83.
The above samples were analyzed for ammonia by EPA Method 350.2 (colorimetric)
or for total cyanide by EPA Method 335.2 (spectrophotometric). Results are
presented below.
Sample #
819359
819387
81 9388
819384
819356
819390
819391
Description
NH3 Blank
NH3 Inlet
NH3 Outlet
NH3 Outlet, Run #2
HCN Blank
HCN Inlet
HCN Outlet
Volume,
ml ± 5 ml
305
340
300
310
380
340
360
Ammonia,
mg as NH-
0.02
10
150
180
--
--
— —
Total
Cyanide, mg
—
—
—
—
<0.002
0.006
2.8
Prepared by:
'Stephen Guinnane
Analyst
.i Q-Approved by:
Inorganic Chemistry
SG/GN/ats
4-3
555 Clyde Avenue, RO. Box 7555. Mountain View. CA 94039 (415) 964-3200 Telex: 34-6391 TWX: 910-7796593
-------
AACUREX
, Corporation
Energy & Environmental Division
Acurex/ES
Attention:
Subject:
July 26, 1983
Acurex ID#: 8306-068
Client P0#: 307736.52
Page 1 of 1
Larry Water!and
Analysis of Four Gas Bombs for N-0 by 6C/ECD.
The above referenced samples were analyzed by 6C/ECD using the CMEA procedure
in Section 9 except for the following: the column used was a 10' x 1/8"
stainless steel column packed with 80/100 mesh Chromosorb 101; the flow was
20 ml/min, and the temperature was 45°Cisothermal.
Results are listed in the table below.
Sample ID #
Test #
ppm
819350
819351
819352
819353
1
2
3
4
46
15
150
54
If you have any questions, please call.
Prepared by:
G-
William G. Hellier
Staff Chemist
Approved by:
Viorica Lopez-Avila, Ph.D.
Technical Director
WGH/VLA/ats
4-4
555 Clyde Avenue, P.O. Box 7555, Mountain View, CA 94039 (415)964-3200 Telex: 34-6391 TWX: 910-7796593
-------
ACUREX
Corporation
ANALYSIS LABORATORIES
DATA REPORTING FORM
CMEA
CUSTOMER
CUSTOMER CONTRACT NO. 3°7736'52
RESULTS REPORT TO L. Haterland
ADDRESS
November 14, 1983
DATE
ACUREX CONTRACT NO. 8306~050
TELEPHONE
Honor Rancho
SAMPLE ID (CUSTOMER)
SAMPLE ID (LAB)
DADAMPTFR
Filter and ash weight
Probe, Nozzle,
hose weight
Impinger and
Rinse Volume
N
3fiR
Filter
Blank
0.9970
.Ififi
Filter
Tn
1 0264
-
3fi7
Filter
nut
1 0326
3M
Probe
Tfl
-
0 0022
3fi4
Probe
n^t
-•
0.004R
37R
Imp 1 Jn
?77S
379
Im£ 1 Out
2QfiO
1R1
Imp 2 & 3
Tn
17RO
3ft?
Imp 2 & 3
nut
2R75
i
1 IKJITQ
aram
nram
m[
01
Form tED 05? 4/60
ANALYST
flEVIEWEH ._._:rr
S. Guinnane
-------
4.2 TRACE ELEMENT ANALYSIS RESULTS
4-6
-------
COMMERCIAL TESTING & ENGINEERING CO.
Reply to
Instrument Analysis Division
490 Orchard Street
Golden, CO 80401
Phone: 303-278-9521
September 30, 1983
Mr. Christopher Mann
Acurex Corporation
P.O. Box 7555
Mountian View, CA 94039
RE: IAD #97-M661-l16-14
Acurex Project 7601
Subcontract SW59159A
Release No. 9
Analytical Report
Fourteen samples were received for analysis on September 13, 1983.
samples were assigned our IAD identification =97-M661-116-14.
These
Trace element determinations using Spark Source Mass Spectrometry per EPA
level 1 protocol will be reported in separate reports upon completion of analysis,
Arsenic and Antimony were determined on three of the samples using hydride
generation atomic absorption spectrophotometry. Mercury was determined on all
fourteen samples using flameless cold vapor atomic absorption spectrophotometry.
The results of these determinations are presented in Table No. I and Mo. II
and are reported in parts per mi 11 von (ppm) by weight on an "as received" basis.
Sample ID
819381 HR Imp 2 & 3, Inlet
819382 HR Imp 2 & 3, Outlet
810380 HR Imp 2 & 3, Blank
Table No. I
(ppm by Weight)
Arsenic (As)
<0*.04
1.0.04
<0.04
Antimony (5b)
1.0.04
1.0.04
<0.04
4-7 %>^- -
GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE.. SUITE 210-B, LOMBARD. IL 60148 AREA CODE 312 953-5300 CXtnu ^vnOtt
OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS.
TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES
-------
Analytical Report
297-M661-116-14
Page 2
Sample ID
819366 HR Filter, Inlet
819367 HR Filter, Outlet
819365 HR Filter, Blank
819369 HR XAD-2, Inlet
819370 HR XAD-2, Outlet
819368 HR XAD-2, Blank
819378 HR Imp 1, Inlet
819379 HR Imp 1, Outlet
819394 DE Imp 1
819377 HR Imp 1 Blank
819360 HR Lube Oil
819381 HR Imp 2 & 3, Inlet
819382 HR Imp 2 & 3, Outlet
819380 HR Imp 2 & 3, Blank
Table No. II
(ppm by Weight)
Mercury (Hg)
0.125
0.140
0.028
0.042
0.040
0.024
<0.0002
0.0003
0.0004
<.0.0002
0.062
0.0016
<.0.0002
<0.0002
If you have any questions concerning these results, please call
Harold A. Connell
Assistant Laboratory Manager
Robert L. Taylor, Ph.D
Instrumental Analysis
gr.^
ision
4-8
COMMERCIAL TESTING & ENGINEERING CO.
Original Copy Watermarked
ror Your Protect.on
f 466
-------
Reply to
COMMERCIAL TESTING & ENGINEERING CO.
GENERAL OFFICES: 1919 SOUTH HIGHLAND AV£., SUITE 210-8, LOMBARD, ILLINOIS 60146 AREA CODE 312 953-9300
INSTRUMENTAL ANALYSIS DIVISION. 490 ORCHARD STREET, GOLDEN. COLORADO 80401. PHONE: 303 278-9521
To: Mr. Christopher Mann
Acurex Corporation
P.O. Box 7555
Mountain View, CA 94039
Subcontract SW59159A
p. O. No.:Release 9
Sample No.: 819360
Lube Oil
AMENDED ANALYTICAL
REPORT
Date: October 24, 1983
Analyst: J. Qldham
SPARK SOURCE AAASS SPECTROGRAPHIC ANALYSIS IAD No.: 97-M661-116-14
CONCENTRATION IN PPM WEIGHT
ELEMENT CONC.
Uranium
Thorium
Bismuth 0.2
Lead 2
Thallium
Mercury *0.062
Gold
Platinum **0.4
Iridium
Osmi urn
Rhenium
Tungsten
Tantalum
Hafnium
Lutetium
Yttertri urn
Thul i urn
Erbium
Hoi mi urn
Dysprosium
ELEMENT
Terbium
CONC. ELEMENT
Ruthenium
Gadolinium Molybdenum
Europium
Samarium
Neodymi urn
Praseodymi
Cerium
Lanthanum
Barium
Cesium
Iodine
Tellurium
Antimony
Tin
Indium
Cadmi urn
Silver
Palladium
Rhodium
*Flameless
**Possible
Ni obi urn
Zirconium
Yttrium
urn Strontium
Rubidium
Bromi ne
970 Selenium
Arsenic
0.2 Germanium
Gallium
Zinc
Copper
STD Nickel
Cobal t
Iron
Manganese
Chromium
Atomic Absorption
Contamination
CONC.
1
0.5
10
2
260
1
2
<0.2
5
1
<0.2
ELEMENT
Vanadium
Titanium
Scandium
Calcium
Potassium
Chlorine
Sulfur
-PhosptwtiS
Silicon
*
-Aluminum
Magnesium
Sodium
Fluorine
Oxygen
Ni trogen
Carbon
Boron
Beryllium
Lithium
Hydrogen
CONC.
0.2
<0.2
<0.1
MC
20
10
>560
620
30
5
4
30
=5
NR
NR
NR
0.1
0.3
NR
STD - Internal Standard
NR - Not Reported
All elements not detected< 0.1
MC - Major Component > 1000
INT — Interference
4-9
Approved:
-------
Reply to
COMMERCIAL TESTING & ENGINEERING CO.
GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD. ILLINOIS bOUS AREA CODE 312 953-9300
INSTRUMENTAL ANALYSIS DIVISION. 490 ORCHARD STREET, GOLDEN, COLORADO BCMO1, PHONE: 303 278-9521
To: Mr. Christopher Mann
Acurex Corporation
P.O. Sox 7555
Mountain View, CA 94039
Subcontract 0SW59159A
Release 9
AMENDED ANALYTICAL REPORT
Sample No.: 819369 SPARK SOURCE AAASS SPECTROGRAPHIC ANALYSIS
6 CONCENTRATION IN PPM WEIGHT
P. O. No.:
Date: Oct. 24, 1983
Analyst: Jim Oldham
IAD No.: 97-M661-116-14
ELEMENT
Uranium
Thorium
Bismuth
Lead
Thallium
Mercury
Gold
~~> Platinum
Iridium
Osmi urn
Rhenium
Tungsten
Tantalum
Hafnium
Lutetium
Ytterbium
Thulium
Erbium
Hoi mi urn
Dysprosium
CONC. ELEMENT
Terbium
Gadolinium
Europium
0.5 Samarium
Neodymi urn
*0.042 Praseodymi
Cerium
**4 Lanthanum
Barium
Cesium
Iodine
Tellurium
Antimony
Tin
Indium
Cadmi urn
Silver
Palladium
CONC. ELEMENT
Ruthenium
Molybdenum
Ni obi urn
Zirconium
Yttri urn
urn Strontium
» t
2 Rubidium
3 Bromine
5 Selenium
<0.1 Arsenic
0.5 Germanium
Gallium
Zinc
Copper
STD Nickel
Cobalt
Iron
Manganese
Rhodium Chromium
*Flame1ess Atomic Absorption
**Probable Contamination
CONC.
2
0.4
0.5
0.5
<0.1
-
0.4
1
4
Z
3
10
0.2
2
ELEMENT
Vanadium
Titanium
Scandium
Calcium
Potassium
Chlorine
Sulfur
Phosphorus
Silicon
Aluminum
Magnesium
Sodium
Fluorine
Oxygen
Ni trogen
Carbon
Boron
Beryllium
Lithium
Hydrogen
CONC.
0.2
0.2
160
35
5
20
5
20
5
5
15
= 5
NR
NR
NR
<0.1
0.2
NR
STD — Internal Standard
NR - Not Reported
All elements not detected< °-l PPm
MC - Major Component >1000 ppm
INT — Interference
4-10
Approved:
-------
Reply to
COMMERCIAL TESTING & ENGINEERING CO.
GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD. ILLINOIS 60148 AREA CODE 312 951-9300
INSTRUMENTAL ANALYSIS DIVISION. 490 ORCHARD STREET, GOLDEN, COLORADO 00401, PHONE: 303 278-9521
To: Mr. Christopher Mann
Acurex Corporation
P.O. Box 7555
Mountain View, CA 94039
Subcontract SW59159A
p. o. NO.: Release 9
AMENDED ANALYTICAL
REPORT
Sample No.: 819370 SPARK SOURCE AAASS SPECTROGRAPHIC ANALYSIS
XAD-2 Outlet CONCENTRATION IN PPM WEIGHT
Date: October 24, 1983
Analyst: J- Oldham
IAD No.:97-M661-116-14
ELEMENT CONC.
Uranium
Thorium
Bismuth
Lead 1
Thallium
Mercury *0.040
Gold
X Platinum **0.5
Iridium
Osmium
Rhenium
Tungsten
Tantalum
Hafnium
Lutetium
Ytterbium
Thulium
Erbium
Hoi mi urn
Dysprosium
ELEMENT
Terbium
Gadolinium
Europium
Samarium
Neodymi urn
Praseodymi
Cerium
Lanthanum
Barium
Cesium
Iodine
Tellurium
Antimony
Tin
Indium
Cadmium
Silver
Palladium
CONC. ELEMENT
Ruthertium
Molybdenum
Niobium
Zirconium
Yttri urn
urn Strontium
0.5 Rubidium
0.4 Bromine
4 Selenium
<0.1 Arsenic
0.5 Germanium-
Gallium
Zinc
Copper
STD Nickel
Cobalt
Iron
\
Manganese
Rhodium Chromium
*Flameless Atomic Absorption
**Probable Contamination
CONC.
1
1
0.5
0.5
0.5
<0.1
0.1
4
10
MC
1
85
c
160
ELEMENT
Vanadium
Titanium
Scandium
Calcium
Potassium
Chlorine
Sulfur
Phosphorus
Silicon
Aluminum
Magnesium
Sodium
Fluorine
Oxygen
Ni trogen
Carbon
Boron
Beryllium
Lithium
Hydrogen
CONC.
0.5
2
80
15
5
10
10
280
5
15
15
***20
NR
NR
NR
<0.1
0.2
NR
STD - Internal Standard ***HeterOgen60US
NR - Not Reported
All elements not detected< 0.1 ppm
MC — Major Component > 1000
INT — Interference
s\ /I j
/ IAA/> /,
t-^WLSLCts
-------
COMMERCIAL TESTING & ENGINEERING CO.
GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE.. SUITE 210-6. LOMBARD. ILLINOIS 60148 AREA CODE 312 953-9300
Reply to INSTRUMENTAL ANALYSIS DIVISION, 490 ORCHARD STREET. GOLDEN. COLORADO 80401. PHONE: 30J27»-9S21
To: Mr. Christopher Mann
Acurex Corporation
P.O. Box 7555
Mountain View, CA
Subcontract SW59159A
P.O. No.: Release 9 AMENDED ANALYTICAL REPORT
Sample No.: 819368 SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS
XAD-2 Blank CONCENTRATION IN PPM WEIGHT
Date:0ct. 24, 1983
Analyst: Jim Oldham
IAD No..- 97-M661-116-14
ELEMENT
Uranium
Thori urn
Bismuth
Lead
Thallium
Mercury
Gold
— ^> Platinum
Iridium
Osmi urn
Rhenium
Tungsten
Tantalum
Hafnium
Lutetium
Ytterbi urn
Thulium
Erbium
Holmium
Dysprosium
CONC. ELEMENT
Terbi urn
Gadolinium
Europium
1 Samarium
Neodymi urn
*0.024 Praseodymi
Cerium
**4 Lanthanum
Barium
Cesium
Iodine
Tellurium
Antimony
Tin
Indium
Cadmium
Silver
Palladium
CONC. ELEMENT
Ruthenium
Molybdenum
Niobium
Zirconium
Yttri urn
urn Strontium
0.4 Rubidium
0.5 Bromine
5 Selenium
<0.1 Arsenic
0.5 Germanium
Gallium
Zinc
Copper
STD Nickel
Cobalt
Iron
Manganese
Rhodium Chromium
* Flameless Atomic Absorption
** Probable Contamination
CONC.
0.5
0.4
0.4
1
<0.2
<0.1
0.3
1
2
5
<0.1
10
0.2
3
•
ELEMENT
Vanadium
Titanium
Scandi urn
Calcium
Potassium
Chlorine
Sulfur
Phosphorus
Silicon
Aluminum
Magnesium
Sodium
Fluorine
Oxygen
Ni trogen
Carbon
Boron
Beryllium
Lithium
Hydrogen
CONC.
0.3
5
80
4
10
10
5
10
5
5
5
= 5
NR
NR
NR
<0.1
0.1
NR
STD — Internal Standard
NR — Not Reported
All elements not detected< 0.1 ppm
MC - Major Component >1000 ppm 4-1
INT — Interference
-------
Reply to
COMMERCIAL TESTING & ENGINEERING CO.
GENERAL OFFCES: 1919 SOUTH HIGHLAND AVE.. SUITE 210-8. LOMBARD. ILLINOIS 601« AREA CODE 312 953-9300
INSTRUMENTAL ANALYSIS DIVISION, 490 ORCHARD STREET. GOLDEN. COLORADO 80401. PHONE: 303 278-9521
Date: October 18, 1983
To: Mr. Christopher Mann
Acurex Corporation
555 Clyde Avenue
P.O. Box 7555
Mountain View, CA 94039
Analyst: J. Qldham
P. O. No.: Subcontract SW59159A Project #7601
SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No-:97-M661-116-14
CONCENTRATION IN PPM WEIGHT of filter
Sun"Pie- ??" T
HK M i ter, in let
ELEMENT
Uranium
Thorium
Bismuth
Lead
Thallium
Mercury
Gold
Platinum
Iridium
Osmi urn
Rhenium
Tungsten
Tantalum
Hafnium
Lutetium
Ytterbium
Thulium
Erbium
Hoi mi urn
Dysprosium
CONC. ELEMENT
0.3 Terbium
0.4 Gadolinium
0.07 Europium
4 Samarium
Neodymi urn
*0.125 Praseodymi
INT Cerium
Lanthanum
Ban' urn
Cesium
Iodine
9 Tellurium
Antimony
0.2 Tin
Indium
Cadmi urn
Silver
Palladium
Rhodium
CONC.
0.1
urn 0.2
1
1
>100
0.01
0.4
0.03
0.2.
0.4
STD
0.07
4
0.07
**0.8
ELEMENT
Ruthenium
Molybdenum
Niobium
Zirconium
Yttri urn
Strontium
Rubidium
Bromine
Selenium
Arsenic
Germanium
Gallium
Zinc
Copper
Nickel
Cobalt
Iron
Manganese
Chromium
CONC.
<0.01
21
1
6
0.3
59
0.08
2
0.9
5
0.05
1
>100
6
21
>100
>100
3
>100
*Flameless Atomic Absorption
**Heterogeneous
ELEMENT
Vanadium
Titanium
Scandi urn
Calcium
Potassium
Chlorine
Sulfur
Phosphorus
Silicon
Aluminum
Magnesium
Sodi urn
Fluorine
Oxygen
Nitrogen
Carbon
Boron
Beryllium
Lithium
Hydrogen
CONC.
3
>100
0.2
>100
>100
>100
>57
>10Q
>100
>9
>100
>23
>100
NR
NR
NR
>100
<0.01
0.3
NR
STD — Internal Standard
NR -
All
MC — Major Component
INT — Interference
0.01 ug/9 Of filter Approved: /V, / /
> 100 H9/g Of filter, ,T LJWsUU* A.
4-13
-------
Reply to
COMMERCIAL TESTING &. ENGINEERING CO.
GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE.. SUITE 210-8. LOMBARD. H.LINOIS60I48AREACODE 312953-9300
INSTRUMENTAL ANALYSIS DIVISION, 49OORCHARD STREET. GOLDEN. COLORADO 80401. PHONE: 303 278-9521
October 18, 1983
To: Mr. Christopher Mann
Acurex Corporation
555 Clyde Avenue
P.O. Box 7555
Mountain View, CA 94039
Analyst: J. Oldham
P. O. No.: Subcontract SW59159A Project #7601
Sample No.: 819367 SPARK SOURCE AAASS SPECTROGRAPHIC ANALYSIS IAD No-: 97-M661-116-14
HR Filter, Outlet
CONCENTRATION IN PPM WEIGHT Of filter
ELEMENT
Uranium
Thori urn
Bismuth
Lead
Thallium
Mercury
Gold
Platinum
Iridium
Osmium
Rhenium
Tungsten
Tantalum
Hafnium
Lutetium
YtterbJum
Thulium
Erbium
Hoi mi urn
Dysprosium
CONC. ELEMENT
0.2 Terbium
0.6 Gadolinium
0.3 Europium
11 Samarium
Neodymi urn
*0.140 Praseodymi
INT Cerium
Lanthanum
Barium
Cesium
Iodine
7 Tellurium
0.1 Antimony
0.3 Tin
Indium
Cadmium
Silver
Palladium
Rhodium
*Flameless
CONC.
<0.07
0.4
urn 0.2
2
1
>100
-<0.01
2
0.02
0.4
1
STD
2
2
0.4
ELEMENT
Ruthenium
Molybdenum
Niobium
Zirconium
Yttrium
Strontium
Rubidium
Bromine
Selenium
Arsenic
Germanium
Gallium
Zinc
Copper
Nickel
Cobalt
Iron
Manganese
0.3 Chromium
Atomic Absorption
CONC.
<0.03
7
1
9
0.4
53
0.1
5
1
18
0.07
1
>100
40
24
>100
>100
7
>100
ELEMENT
Vanadium
Titanium
Scandium
Calcium
Potassium
Chlorine
Sulfur
Phosphorus
Silicon
Aluminum
Magnesium
Sodium
Fluorine
Oxygen
Ni trogen
Carbon
Boron
Beryl 1 i urn
Lithium
Hydrogen
CONC.
4
>100
0.8
>100
>100
>100
>82
>100
>100
>13
>100
>34
>100
NR
NR
NR
>100
<0.01
0.8
NR
STD — Internal Standard
NR — Not Reported
All elements not detected <
MC — Major Component >
INT — Interference
0.01 yg/g of filter A d:
100 yg/g of filter 4_14HH
^
/<.
-------
Reply to
COMMERCIAL TESTING & ENGINEERING CO.
GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE.. SUITE 210-8, LOMBARD. ILLINOIS 60H8 AREA CODE 312 953-9300
INSTRUMENTAL ANALYSIS DIVISION. 490 ORCHARD STREET. GOLDEN. COLORADO 8O40I. PHONE; 303 278-9521
Date: October 18,1983
To: Mr. Christopher Mann
Acurex Corporation
555 Clyde Avenue
P.O. Box 7555
Mountain View, CA 94039
Analyst: J. Oldham
P. O. No.: Subcontract SW59159A Project #7601
SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS IAD No.:97-M661-116-14
Sample No.: 819365
HR Filter Blank
CONCENTRATION IN PPM WEIGHT of filter
ELEMENT CONC.
Uranium 0.09
Thorium 0.1
Bismuth
Lead 0.2
Thallium
Mercury *0.028
Gold
Platinum
Iridium
Osmi urn
Rhenium
Tungsten
Tantalum
Hafnium
Lutetium
Ytter bi urn
Thulium
Erbium
Hoi mi urn
Dysprosium
ELEMENT
Terbium
Gadolinium
Europium
Samarium
Neodymi urn
Praseodymium
Cerium
Lanthanum
Barium
Cesium
Iodine
Tellurium
Antimony
Tin
Indium
Cadmium
Silver
Palladium
Rhodi urn
CONC.
100
0.3
>100
81
>100
>82
23
>100
>13
>100
>34
=46
NR
NR
NR
>100
<0.01
0.4
NR
STD — Internal Standard
NR - Not Reported /,/»,
All elements not detected <0. SI
MC - Major Component >100
INT — Interference
jr r-i* /^ /) J Jl
Of filter Approved: ( J/Ui.,/./, r
Of filter^ ^*KX4i, A-
-------
Reply to
COMMERCIAL TESTING & ENGINEERING CO.
GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE.. SUITE 210-8. LOMBARD. ILLINOIS 60148 AREA CODE 312 953-9300
INSTRUMENTAL ANALYSIS DIVISION, 490ORCHARD STREET. GOLDEN, COLORADO 80401, PHONE: 303 278-9521
To: Mr. Christopher Mann
Acurex Corporation
555 Clyde Avenue
P.O. Box 7555
Mountain View, CA 94039
P. O. No.: Subcontract SW59159A Project #7601
Sample No.: 813378
HR Imp 1, Inlet
SPARK SOURCE AAASS SPECTROGRAPHIC ANALYSIS
CONCENTRATION IN
Date: October 18, 1983
Analyst: j. Old ham
IAD No.: 97-M661-116-14
ELEMENT
CONC.
ELEMENT
CONC.
ELEMENT
CONC. ELEMENT
CONC.
Uranium Terbium
Thorium Gadolinium
Bismuth Europium
Lead 0.01 Samarium
Thallium Neodymium
Mercury *<0.0002 Praseodymium
Gold Cerium
Platinum Lanthanum
Iridium Barium
Osmium Cesium
Rhenium Iodine
Tungsten 1 Tellurium
Tantalum Antimony
Hafnium Tin
Lutetium Indium
Ytterbium Cadmium
Thulium Silver
Erbium Palladium
Hoimiurn Rhodium
Dysprosium
Ruthenium
Molybdenum 0.04
Niobium 0.03
Zirconium 0.004
Yttri urn
Strontium 0.003
0.002 Rubidium
0.006 Bromine 0-005
0.03 Selenium 0.05
Arsenic <0.001
0.006 Germanium
Gallium 0.002
Zinc 0.2
<0.001 Copper °-06
Nickel 0.002
Cobalt <0-001
Iron 0.08
Manganese 0.01
Chromium °.02
Vanadium
Titanium
Scandium
Calcium
Potassium
Chlorine
Sulfur
Phosphorus
Silicon
Aluminum
Magnesium
0.01
Flame!ess Atomic Absorption
Fluorine
Oxygen
Ni trogen
Carbon
Boron
Beryllium
Lithium
Hydrogen
STD — Internal Standard
NR — Not Reported
All elements not detected< 0.001
MC — Major Component >10 pg/dl
INT — Interference
4-16
Approved:
~ /} .
/ % /. $ (l//L,n
(^^^U^ f^ . U/xCJ^rU
<0.001
0.07
0.8
0.9
0.03
>4
0.1
0-5
0.07
0.2
>1
=0.5
NR
NR
NR
°-0°l
0.004
NR
-------
Reply to
COMMERCIAL TESTING & ENGINEERING CO.
GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD. ILLINOIS 60148 AREA CODE 312953-9300
INSTRUMENTAL ANALYSIS DIVISION, 490ORCHARD STREET. GOLDEN, COLORADO 804OI, PHONE: 303279-9521
To: Mr. Christopher Mann
Acurex Corporation
555 Clyde Avenue
P.O. Box 7555
Mountain View, CA 94039
P. O. No.: Subcontract SW59159A Project #7601
Sample No.: 819379 SPARK SOURCE MASS SPECTROGRAPHIC ANALYSIS
m Imp 1, Outlet
CONCENTRATION IN
Date: October 18, 1983
Analyst.- J- Oldham
IAD No.:97-M661-116-14
ELEMENT CONC.
Uranium
Thorium
Bismuth
Lead 0.02
Thallium
Mercury *0.0003
Gold
Platinum
Iridium
Osmium
Rhenium
Tungsten o.Ol
Tantalum -**0.2
Hafnium
Lutetium
YtterM urn
Thulium
Erbium
ELEMENT
Terbium
Gadolinium
Europium
Samarium
Neodymi urn
Praseodymi
Cerium
Lanthanum
Barium
Cesium
Iodine
Tellurium
Antimony
Tin
Indium
Cadmium
Silver
Palladium
CONC. ELEMENT
Ruthenium
Molybdenum
Niobium
Zirconium-
Yttrium
urn Strontium r
Rubidium
<0.005 Bromine
0.09 Selenium •'"'
Arsenic :
Germanium
0.003 Gallium •'•
<0.0.05 Zinc /'"
Copper .,-
STD Nickel
Cobalt
• MC Iron
Manganese
Hoi mi urn Rhodium Chromium
*Flameless Atomic Absorption
Dysprosium **Heterogeneous
STD — Internal Standard
NR - Not Reported „ „ /m| /\ /)
All elements not detected 10 yg/mL 4-1 / \-S *
INT — Interference
CONC. ELEMENT
Vanadium
'* • /•
£0.02 Titanium
""0.002 Scandium
<0.003 Calcium
0.002 Potassium
': 0.009 Chlorine
**0.03 Sulfur
- 0.04 Phosphorus
INT Silicon
<0.001 Aluminum
Magnesium
0.08 Sodium
**MC Fluorine
MC Oxygen
0.3 Nitrogen
0.01 Carbon
0.5 Boron
0.1 Beryllium
0.2 Lithium
Hydrogen
CONC.
0.004
0.4
0.01
2
6
MC _
MC
0.3
1
0.2
2
>5
=3
NP.
NR
NR
0.002
0.007
NR
-------
Reply to
COMMERCIAL TESTING & ENGINEERING CO.
GENERAL OFFICES: 1919SOUTH HIGHLAND AVE.. SUITE 210-8. LOMBARD. ILLINOIS 601*8 AREACOOE 312953-9300
INSTRUMENT At ANALYSIS DIVISION. 490 ORCHARD STREET. GOLDEN. COLORADO 80401. PHONE: 303 278-9521
To: Mr. Christopher Mann
Acurex Corporation
555 Clyde Avenue
P.O. Box 7555
Mountain View, CA 94039
P. O. No.: Subcontract
Sample No.: 819377
HR Imp 1 Blank
SW59159A Project #7601
SPARK SOURCE MASS SPECTROGRAPHIC
CONCENTRATION IN
Dare: October 18,. 1983
, __ ..
Analyst: J. Oldham
ANALYSIS IAD No-: 97-M661-116-14
ELEMENT
Uranium
Thorium
Bismuth
Lead
Thallium
Mercury
Gold
Platinum
Iridium
Osmium
Rhenium
Tungsten
Tantalum
Hafnium
Lutetium
Ytterb-i urn
Thulium
Erbium
Hoi mi urn
Dysprosium
CONC. ELEMENT CONC.
Terbium
Gadolinium
Europium
0.02 Samarium
Neodymi urn
*<0.0002 Praseodymium
Cerium
Lanthanum
Barium 0.05
Cesium
Iodine
0.02 Tellurium
Antimony
Tin
Indium STD
Cadmium
Silver
Palladium
ELEMENT
Ruthenium
Molybdenum
Niobium
Zirconium
Yttrium
Strontium
Rubidium
Bromi ne
Selenium
Arsenic
Germanium
Gallium
Zinc
Copper
Nickel
Cobalt
Iron
Manganese
Rhodium Chromium
*Flameless Atomic Absorption
**Heterogeneous
CONC. ELEMENT
Vanadium
**0.2 Titanium
Scandium
0.007 Calcium
Potassium
0.002 Chlorine
Sulfur
0-02 Phosphorus
0.07 Silicon
0.002 Aluminum
Magnesium
0.004 Sodium
**0.1 Fluorine
**0.02 Oxygen
0.007 Nitrogen
<0.003 Carbon
0-1 Boron
0.003 Beryllium
0.03 Lithium
Hydrogen
CONC.
0.008
0.2
<0.005
1
0.7
0.3
MC ^/^o
0.8
**2
0.09
0.08
1
=2
NR
NR
NR
0.004
0.002
MR
STO — Internal Standard
NR — Not Reported
INT — Interference
-------
Reply to
COMMERCIAL TESTING &. ENGINEERING CO.
GENERAL OFFICES: 19I9SOUTH HIGHLAND AVE.. SUITE 210-B, LOMBARD. ILLINOIS 601« AREA COOE312 95 3-9300
INSTRUMENTAL ANALYSIS DIVISION. 490 ORCHARD STREET. GOLDEN. COLORADO 804O1. PHONE: 303278-9521
To: Mr. Christopher Mann
Acurex Corporation
555 Clyde Avenue
P.O. Box 7555
Mountain View, CA 94039
P. O. No.: Subcontract SW59159A Project #7601
SPARK SOURCE AAASS SPECTROGRAPHIC
, , CONCENTRATION IN
Sample No.: 819394
E ""3
Dare: October 18, 1983
Analyst: J- Oldham
ANALYSIS IA& No.:97-M661-116-14
ELEMENT
Uranium
Thorium
Bismuth
Lead
Thallium
Mercury
Gold
Platinum
Iridium
Osmium
Rhenium
Tungsten
Tantalum
Hafnium
Lutetium
Ytterbium
Thulium
Erbium
Holmium
Dysprosium
CONC. ELEMENT CONC.
Terbium
Gadolinium
Europium
0.02 Samarium
Neodymi um
*0.0004 Praseodymium
Cerium
Lanthanum <0.006
Barium °-06
Cesium **0.04
Iodine
<0.007 Tellurium
<0.005 Antimony
Tin
Indium STD
Cadmium
Silver MC
Palladium
ELEMENT
Ruthenium
Molybdenum
Niobium
Zirconium
Yttri um
Strontium
Rubidium
Bromine
Selenium
Arsenic .
Germanium
Gallium
Zinc
Copper
Nickel
Cobal t
Iron
Manganese
Rhodium Chromium
*Flameless Atomic Absorption
**Heterogeneous
CONC. ELEMENT
Vanadium
0-1 Titanium
0.007 Scandium
0.009 calcium
0.001 Potassium
0-05 Chlorine
0-001 Sulfur
0-05 Phosphorus
INT silicon
0.001 Aluminum
Magnesium
0-03 Sodium
4 Fluorine
MC Oxygen
O-2 Nitrogen
0-01 carbon
0-3 Boron
0.07 Beryllium
0-07 Lithium
Hydrogen
CONC.
0.005
0.2
<0.002
2
0.8
MC
>8
0.2
2
0.07
0.1
>3
**MC
NR
NR
NR
0.001
<0.001
0.002
NR
STD — Internal Standard
NR - Not Reported
All element! not detected <
MC — Major Component >
INT — Interference
\l
-------
COMMERCIAL TESTING & ENGINEERING CO.
Reply to
Instrumental Analysis Division December 19, 1983 Phone:303-278-9521
490 Orchard Street
Golden, CO 80401
Mr. Christopher Mann
Acurex Corporation
555 Clyde Avenue
Mountain View, CA 94039
Re: IAD #97-Nl37-116-09
Subcontract SSW59159A
Release 110
Analytical Report
Nine samples, previously analyzed for trace elements by spark source
mass spectrometry under our IAD identification #97-M661-116-14, were logged
under our IAD identification t97-N137-116-09 on November 18, 1983.
Samples #1, 2, and 3 were prepared in accordance with the procedure
of ASTM, Part 05.05, Method D3683. Aluminum, barium, calcium, cobalt,
chromium, iron, potassium, magnesium, sodium, silicon, titanium, and zinc
were determined using flame atomic absorption spectrophotometry. Phosphorus
was determined colorimetrically and sulfur was determined turbidiraetrically.
Boron, chlorine, and fluorine were not determined due to lack of enough
sample for analysis. The results of these determinations are presented
in Table No. I and are reported in total micrograms on the filter on an
"as received" basis.
Appropriate dilutions, using deionized water, were made on samples
#5, 6, 7, and 8. Chlorine and fluorine were determined using specific
ion electrode methodology. Silver and sodium were determined using flame
atomic absorption spectrophotometry. Sulfur was determined turbidimetrically.
Selenium was determined using hydride generation atomic absorption spectro-
photometry. The results of these determinations are presented in Table
No. II and are reported in milligrams per litre (mg/L) on an "as received"
basis.
Sample #4 was prepared in accordance with the procedure of the EPA SASS
Train Level I Protocol. Nickel was determined using flame atomic absorption
spectrophotometry. The result of this determination is presented in Table
No. Ill and is reported in micrograms per gram (yg/g) on an "as received"
basis.
4-20
GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8. LOMBARD. IL 60148 AREA CODE 312 953-9300
BALTIMORE MO . BILLINGS MT . BIRMINGHAM AL • BY6SVILLE. OH . CHARLESTON. WV . CLARKSBURG. WV . CLEVELAND. OH . CONNEAuT. OH
DENVER CO - GOLDEN CO • HELPER UT . HENDERSON. K Y . HOUSTON. TX . JASPER. AL • MIOOLESBORO. KY . MOBILE. AL • NEW BETHLEHEM. PA
Him ORLEANS LA . NORFOLK VA - PALISADE. CO • PIKEVILLE. KY . SALINA. UT . SO. HOLLAND. IL • TOLEDO. OH . NO. VANCOUVER. B C. CAN.
-------
A representative portion of sample 19 was diluted with MIBK. Calcium
was then determined using flame atomic absorption spectrophotometry versus
organometallic standards. Sulfur was determined using X-ray fluorescence
spectrometry. The results of these determinations are also presented
in Table No. Ill and are reported in micrograms per gram (ug/g) on an
"as received" basis.
Parameter
Aluminum (Al)
Barium (Ba)
Calcium (Ca)
Cobalt (Co)
Chromium (Cr)
Iron (Fe)
Potassium (K)
Magnesium (Mg)
Sodium (Na)
Phosphorus (P)
Sulfur (S)
Silicon (Si)
Titanium (Ti)
Zinc (Zn)
Table No. I
(Total micrograms on Filter)
#1-819366 #2-819367
HR Filter, Inlet HR Filter, Outlet
830
1,400
2,800
22
20
1,100
12
370
180
160
620
4,300
82
300
440
1,700
2,200
' 30
33
260
10
220
150
170
720
2,300
£60
340
#3-819365
HR Filter, Blank
£ 400
<1,000
£ 100
180
£ 500
£1,000
< 300
Table No. II
(mg/L - As Received)
Parameter
Silver (Ag)
Chlorine {CD
Fluorine (F)
Sodium (Na)
Sulfur (S)
Selenium (Se)
#5-819378
HR Imp 1, Inlet
1,130
1,800
#6-819379
HR Imp 1, Outlet
1.75
£ 3
4.18
1,440
' 9,000
< 0.002
#7-819394
DE imp 1
2.12
£3
4.44
1,480
4,800
0.003
#8-819377
HR imp 1, Blank
< 100
4-21
COMMERCIAL TESTING & ENGINEERING CO.
Original Copy Watermarked
For Your Protection
F-466
-------
Table No. Ill
~ As Received)
#4-819370 #9-819360
Parameter HR XAD-2 Outlet HR Lube Oil
Calcium (Ca) 334
Nickel (Ni) 140
Sulfur (S) 4,200
If you have any questions concerning these results, please call.
Harold A. Connell Robert L. Taylor, Ph.lJ/, Mngr.
Assistant Lab Manager Instrumental Analysis Division
4-22
COMMERCIAL TESTING & ENGINEERING CO.
l Copy Watermarked
For Your Protection
= •666
-------
4.3 TOTAL CHROMATOGRAPHABLE OR6ANICS (TCO), GRAVIMETRIC ORGANICS (GRAV),
INFRARED (IR) SPECTRA, AND GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)
OF TOTAL SAMPLE EXTRACTS
4-23
-------
ACUREX
Corporation
Energy & Environmental Division
Acurex/ES (CMEA) November 14, 1983
M/S 2-2260 Acurex ID*: 8306-050
Client P0#: 307736.62
Attention: Larry Waterland
Sample: Honor Rancho Trains; Received 6/21/83
The above-referenced samples were analyzed by Level 1 protocol. The XAD
and OMC extracts were combined per your instruction. Organic extracts
were also analyzed for the semi volatile priority pollutants by gas
chromatography/mass spectrometry employing a J&W SE-54 30 meter capillary
column. The column was held at 30°C for 2 minutes, then ramped at 10°C per
minute to 270°C. In addition to the priority pollutants, other organics
including benzo(c)phenanthrene, dibenzo(c,g)carbazole, 7,12-dimethylbenzo(a)
anthracene, 3-methylcholanthrene, and perylene were sought employing the
computerized library search and manual interpretation. The assignment and
quantisation of these organics is tentative since analytical standards of
these compounds were not available for analysis. Benzo(c)phenanthrene,
dibenzo(c,g)carbazole, 7,12-dimethylbenzo(a)anthracene, 3-methylcholanthrene
and perylene were not detected in any of the samples at levels above 400
ug/train.
Half of the XAD-2 resin extract for the Inlet test was taken to near dryness
during extraction of the resin. This may result in a lower TCO value.
Submitted by:
GN/VLA/ats
Enclosures
Greg Nixioll ' Viorica Lopez-Avila, Ph.D.
Operations Manager Technical Director
4-24
555 Clyde Avenue, P.O. Box 7555. Mountain View, CA 94039 (415) 964-3200 Telex: 34-6391 TWX: 910-7796593
-------
/> ACUREX
T"A Corporation
ANALYSIS LABORATORIES
CUSTOMER
DATA REPORTING FORM
CMEA
November 14. 1983
CUSfOMER CONTRACT NO. 307736.52
RESULTS REPORT TO L. Materland
ADDRESS
DATE _
ACUREX CONTRACT NO. 8306-050
TELEPHONE
Hnnnr Ranrhn
SAMPLE ID (CUSTOMER)
SAMPLE ID (LAB)
GRAV
TCO
Fluoranthene
Pyrene
Butyl benqyl phthalate
Benz(a)anthracene
Chrysente
Benzof 1 uoranthenes
Phenol
Naphthalene
Acenaphthylene
Phenanthrene
B1s(2-ethylhexyl)-
ph thai ate
Shake-out
Blank
<2
<0.2
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
368
XAD
Blank
<2
<0.2
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
369
XAD In*
203 '
270; 17(
15
60
19
140
. 53
52
<10
<10
1700
1100
1500
370
XAD Out"1"
7
3 49
<10
<10
<10
<10
<10
<10
42
710
31
31
26b
370
XAD outa+
--
<10
<10
<10
<10
<10
<10
55
800
32
41
35b
UNITS
ma/train
ma/train
un
V
/train
.£»
k
* Plus OMC
a - Duplicate Injection
b - Level normally found 1n laboratory blanks
twin EEO-OS7 4/80
ANALYST S.-_Kraska. S. Guimiane. C. Beeman
JL'/
REVIEWER -^->'u
-------
/N ACUREX
if ^ Corporation
ANALYSIS LABORATORIES
DATA REPORTING FORM
CMEA
CUSTOMER _
CUSTOMER CONTRACT NO. 307736.52
RESULTS REPORT TO L. Uaterland
DATE November 14, 1983
ACUREX CONTRACT NO.
TELEPHONE
8306-050
ADDRESS
Honor Rancho
SAMPLE ID (CUSTOMER)
SAMPLE ID (LAB)
PARAMETER
Bis(2-chloroethyl)-
pthpr
Acenaphthene
Fluorene
» »
Shake-out
Blank
<10
<10
<10
368
XAD
Blank
<10
<10
•
-------
Ift REPORT
SAMPLE:
XAD Inlet 819369
r^r
3571-2941
2907
1673
1538
1439
1266
-
Imanuty
m
s
S
m
m
m
Anipirrwnt Coremarm
OH Broad
CH Alkane
C = o
Unassigned
CH2 Methyl ene
C-0 Stretch
Ajiohatic hydrocarbon
Acid (-COOH)
•
4-27
-------
Ift REPORT
SAMPLE:
XAD Outlet 819370
Imtmity
Am'ytmcnt
Comm«iti
jia.
ppak«:
4-28
-------
IR REPORT
SAMPLE:
XAD Blank 819368
fa.'1)
tiRtmity
Cemmaro
No detectable peaks
4-29
-------
m
SAMPLE:
Shake out blank
to.'1)
Intimity
Coranwrm
No
neaks
4-30
-------
4.4 LIQUID CHROMATOGRAPHY (LC) SEPARATION OF THE INLET XAD-2 EXTRACT, WITH
TCO, GRAY, AND IR ANALYSES OF LC FRACTIONS
4-31
-------
AACUREX
- Corporation
Energy & Environmental Division
Acurex/ES (CMEA) March 13, 1984
MS 2-2260 Acurex ID#: 8401-029
Client P0#: 307736.62
Attention: Larry Water!and
Sample: Honor Rancho Inlet XAD, Rock of Ages XADs;
Received 1/20/84
The above samples were subjected to liquid chromatography followed by TCO,
gravimetric measurement, and infrared spectrophotometry according to Level 1
protocol.
Results are enclosed.
Prepared by:
(ALL
lohYi S. Labash
,hemist
Approved by:
Greg N1
Manaoer, Inorganic Chemistry
JSL/GN/ats
555 Clyde Avenue, P.O. Box 7555, Mountain View, CA 94039 (415) 964-3200 Telex: 34-6391 TWX: 910-7796593
4-32
-------
8401-029-1
SAMPLE:
819369 Honor Rancho XAD-2 Inlet
TCO
•MV
cng/dscm
220
203
420
48
45
93
3.7
37.6
41
.£»
I
CO
CO
flinHIt
1
I
>
«
I
t
>
fc~
Ttfthni
PMalb
*-- -*--
rnPCVI^I
<0.2
0.2
3.0*
0.7
<0.1
<0.1
<0.1
3.9
MM
<0.2
<0.1
<0.1
0.2
<0.1
<0.1
<0.1
<0.9
tor-
•M^J
ff^ViW
<0.2
0.2
3.0
0.5
<0.1
<0.5
<0.4
<0.4
<0.4
<0.4
<0.4
0.6
0.6
t^
iwttl
6.0
0.8
7.4
5.6
3.2
n,$
3.0
37.6
TM*
27
3.6
34
25
15
53
14
172
Tttf*
fiRAV
T»MlHI|
27
4.5
48
27
15
53
14
188
mg/dscm
!•
2.
ft.
4. Tvt*l Mf nw|HiH4 bwk tv Itttl Mmpw
rftafmlC
*Duplicate injection gave 2.8
-------
R REPORT
IAMPLE: 1-29-1 LCF 1
WVA VIvntMV
- C.-')
2945
"
.
-
tiramiry
S
•
Anignmwit Comnwnti
CH Alkane Weak Spectrum
•
*
•
4-34
-------
IR REPORT
SAMPLE:
W_M
•^
- fa.-1)
IntBimity
No Peaks
4-35
-------
R REPORT
RAMPL£: 1-29-1 LCF 3
IViHA K^Mft^MV
2940
1715
Intimity
S
S
Anignmwit Comnwnn
CH Alkane Weak
C=Q * Spectrum
* Tentative assignment
•
•
4-36
-------
P. P?BORT
SAMPLE: 1-29-1 LCF 4
W~*«*.
2930
1700
1555
•
1 irani ty
M
S
M
Aftt^inwnt Contmcnts
CH Alkane
C=0 * Broad
Not assigned
Weak Soectrum
^ TP n ^^ ^i\/p ac^T nnmp n T
•
•
•
4-37
-------
R REPORT
SAMPLE: 1-29-1 LCF 5
ffmRamtar
- (-•')
2930
1555
•
Intimity
S
S
Assignment Commmti
CH Alkane
Not Assigned
4-38
-------
IR REPORT
SAMPLE:
1-29-1 LCF 6
Ww*fhmh«
<••<)
3360
3065
2935
1710
1605
1555
1450
1380
1278
740
lm»n*ity
M
W
S
s
W
M
W
W
W
W
Anipinwnt Cootmwm
OH Broad
=C-H Alkene
CH Alkane
C=0 Stretch
C=C Alkene
Unassigned
CH2
CH?
C-0
=C-H Alkene
,
4-39
-------
IR REPORT
SAMPLE:
1-29-1 LCF 7
WIM NMfttar
f1)
3540
2940
1710
Intimity
S
W
w
Anignnwnt Comments
OH* Broad Peak
CH Alkane
C=0
* Tentative assignment
•
•
4-40
-------
IR REPORT
SAMPLE:
1-29-BLK LCF-1
*M Nwntar
to.'1)
Intimity
CemrrMnti
No Peaks
4-41
-------
IR REPORT
SAMPLE: 1-29-BLK LCF 2
Intimity
Anignmwit
Commwiti
No Peaks
4-42
-------
I* REPORT
SAMPLE: 1-29-BLK LCF 3
WIN
Inanity
Cammarti
No Peaks
4-43
-------
$AMI»LE:
1-29-BLK LCF 4
to.'1)
Inrttmity
AnignRMdt
No Peaks
4-44
-------
SAMPLE: 1-29-BLK LCF 5
*•••
Intimity
Anignmvnt
Comm«no
2935
CH Alkane
Weak spectrum
4-45
-------
IR REPORT
SAMPLE:
1-29-BLK LCF 6
Wo* Nwwtar
Intimity
Anignirwnt
Commcna
No Peaks
4-46
-------
Iff REPORT
SAMPLE:
1-29-BLK LCF 7
to.'1)
tiramity
AnignntMit
Cxnm«rtt
No Peaks
4-47
-------
4.5 BIOASSAY RESULTS
4-48
-------
GENETICS ASSAY NOS. 7330-7340
CYTOTOXIC EVALUATION OF
FIVE RESIN EXTRACT AND
SIX ASH SAMPJJES
IN THE
EPA LEVEL 1
RODENT CELL (CHO)
CLONAL TOXICITY ASSAY
FINAL REPORT
SUBMITTED TO:
ACUREX CORPORATION
485 CLYDE AVENUE
MOUNTAIN VIEW, CALIFORNIA 94042
SUBMITTED BY:
LITTON BIONETICS, INC.
5516 NICHOLSON LANE
KENSINGTON, MARYLAND 20895
LBI PROJECT NO. 20993-442
REPORT DATE: APRIL 1984
4-49
-------
PREFACE
These assays conform to the standard EPA Level 1 procedure for the
Chinese hamster ovary cell (CHO) clonal toxicity assay as described in
"IERL-RTP Procedures Manual: Level 1 Environmental Assessment Biological
Tests"1. The data were evaluated and formatted as recommended in "Level 1
Biological Testing Assessment and Data Formatting"2.
The CHO clonal toxicity assay has been shown to be a sensitive method
for detecting cytotoxic activity for a variety of chemicals representing
various chemical classes 3. This assay is one of several recommended by
EPA to identify, categorize and rank the pollutant potential of influent
and effluent streams from industrial and energy-producing processes.
This assay has been well validated with a wide range of positive and
negative control chemicals and complex environmental samples.
All procedures and documents pertaining to the receipt, storage,
preparation, testing and evaluation of the test material shall conform
to Litton Bionetics, Inc. standard operating procedures, the U.S.
Food and Drug Administration's Good Laboratory Practices Regulations of
19794 and the proposed U.S. Environmental Protection Agency's Good
Laboratory Practice Guidelines.5'6 Deviations from standard procedure
shall be fully documented and noted in the report.
All test and control results in this report are supported by fully
documented raw data which are permanently maintained in the files of the
Department of Molecular Toxicology or in the archives of Litton Bionetics,
Inc., 5516 Nicholson Lane, Kensington, Maryland 20895. Copies of raw
data will be supplied to the sponsor upon request.
4,50
-------
RESULTS
A. Interpretation
The results of the Chinese hamster ovary (CHO) clonal toxicity assays
are presented in Tables 2 ind & The calculated relative survival
values were obtained by comparing the average number of colonies per dish
for each of the assayed concentrations to the appropriate control value.
The relative survival values were then plotted as functions of the applied
concentration of test material per ml of culture medium in Figures 2
and 3. Curves were fitted to the data points in order to determine
the EC50 value for each sample. The EC50 determined for each sample was
used to rank the toxicity of each sample according to EPA Level 1 evalua-
tion criteria.
1. HR XAD-2 extract, inlet (819369)
The HR XAD-2 extract, inlet sample in dimethyl sulfoxide (DMSO) was
found to be toxic to Chinese hamster ovary (CHO) cells following 24 hours
exposure. As shown in Table 2 and Figure 2, the ability of Chinese hamster
ovary (CHO) cells to survive a 24-hour exposure to the test material rapidly
decreased with increasing concentrations of test material. The lowest
concentration tested, 0.1 Ml/ml, had nearly 100 percent survival relative
to the vehicle control, but survival dropped to about 31 percent at
0.3 ul/ml and to 0 percent survival at 0.6 ul/mT and higher concentrations.
/
The concentration of test material required to reduce the colony
forming ability of CHO cells to 50 percent of the vehicle control level
(EC50) was estimated to be 0.23 ul of test material per ml of culture medium.
Since the test material was prepared as a solution of organic material
in DMSO at a concentration of 50.0 ug organics per microliter, this EC50
value was equal to 11.5 ug organic material per ml. When evaluated using
the EPA Level 1 evaluation criteria1, this value placed the test material
in the moderate toxicity range, but at a position essentially on the
moderate/high boundary at 10 ul/ml. Because results could be expected
to fall on either side of the boundary in subsequent trials due to normal
4-51
-------
assay variation, the more conservative evaluation of moderate/high (M/H)
toxicity was applied.
2. HR XAD-2 extract, outlet (819370)
The HR XAD-2 extract, outlet sample, when tested as a solution of
organic material in DMSO (4.0 mg organics per ml), caused a rapid reduc-
tion in the ability of CHO cells to survive a 24-hour exposure period at
concentrations greater than 3.0 ul/ml. As shown in Table 3 and Figure 3,
survival relative to the vehicle control was above 95 percent over the
concentration range of 0.1 to 3.0 ul/ml. Cytotoxicity was evident at
6.0 ul/ml which gave 23.3 percent relative survival while 10.0 and
20.0 ul/ml were completely toxic.
The concentration of test material required to produce a 50 percent
reduction in cell survival following 24 hours of exposure was estimated
to be 4.6 pi of test material per ml of culture medium. This concentration
was equivalent to 18.4 ug of organic material per ml of culture medium.
The sample therefore was ranked as having moderate (M) toxicity based
upon the EPA Level 1 evaluation criteria for the CHO cytotoxicity assay.1
4-52
-------
TABLE 2
CLONAL CYTOTOXICITY ASSAY
SAMPLE IDENTITYl HR XAO-2 EXTRACT. INLET.
SAMPLE CODE 819369
DESCRIPTION OF SAMPLE: DARK AMBER LIQUID
LBI ASSAY NO. 7330
DATE RECEIVEDi JANUARY 16, 1984
TEST DATEj FEBRUARY 9, 1984
VEHICLEi DIMETHYL SULFOXIDE (DMSO)
CELL TYPEi CHO-K1-BH4
CELLS SEEDED PER DISHs 200
EC50 VALUEi 11.5 UG/ML (0.23 UL/ML)
TOXICITY
CLASSIFICATION: MODERATE/HIGH (M/H)
PH ALTERATIONS: NONE
COMMENTS ON TREATMENTi SAMPLE SOLVENT EXCHANGED INTO
DMSO. ORGANIC CONCENTRATION WAS 50.0 MG PER ML.
(100 MG ORGANICS IN 2.0 ML DMSO.) 24 HOUR EXPOSURE
PERIOD.
COLONY COUNTS
SAMPLE
f NC
01
°» VC, 1%
VC, 28
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
APPLIED
CONCENTRATION
UL/ML
10
20
0.1
0.3
0.6
1.0
3.0
6.0
10.0
20.0
DISH
tl
154
148
152
162
45b
0
0
0
0
0
0
DISH
12
163
165
150
157
58b
0
0
0
0
0
0
DISH
13
161
175
132
155
48b
0
0
0
0
0
s
AVERAGE
COUNT
159.3
162.7
144.7
158.0
50.3
0.0
0.0
0.0
0.0
0.0
0.0
RELATIVE-
SURVIVAL
(PERCENT)
100.0
100.0
100.0
97.1
30.9
0.0
0.0
0.0
0.0
0.0
0.0
CLONING
EFFICIENCY
(PERCENT)
79.7
81.4
72.4
NC = NEGATIVE CONTROL, F12 MEDIUM
VC = VEHICLE CONTROL, PERCENT GIVEN FOR DIMETHYL SULFOXIDE (DMSO)
S = PLATE NOT SET UP 10 CONSERVE LIMITED SAMPLE
RELATIVE TO 2S VC FOR 20 UL/ML
TREATMENT AND TO IS VC FOR OTHER
TREATMENTS
^REDUCED COLONY SIZE
-------
FIGURE 2
RODENT CELL (CHO) CLONAL TOXICITY ASSAY
EC50 DETERMINATION
HR XAD-2 EXTRACT, INLET
SAMPLE CODE 819369
130
120
110
100
(
an
»* QO
•t
_l
— 70
>• /0
£
=
uj AH
**
1=
3
m crt
g 50
An
7n
9n
in
IU
i
V
)
\
\
\
\
\
\
\
\
\
>
' i
1 .
•
• 1
i :
I
i
\
\
\
\
\
\
^
I
• i .
,
\
\
\
\
\
*
! •
\
\
\
>
J
|
V
K
f
\
'
\
^
\
tj
I
^
*y
i
i
, [
i i ,
i ,
i ' 1
i .
h
0.1
1 10
CONCENTRATION, micro! iters/ml
100
Organic content: 50 micrograms per microliter.
4-54
-------
TABLE 3
CLONAL CYTOTOXICITY ASSAY
SAMPLE IDENTITY: HR XAD-2 EXTRACT, OUTLET.
SAMPLE CODE 819370
DESCRIPTION OF SAMPLE: CLEAR, LIGHT YELLOW
LIQUID
LBI ASSAY NO. 7331
DATE RECEIVED! JANUARY 23, 1984
TEST DATEi FEBRUARY 9, 1964
VEHICLE: DIMETHYL SULFOXIDE (DMSO)
CELL TYPE: CHO-K1-BH4
CELLS SEEDED PER DISHi 200
FC50 VALUE: 18.4 UG/ML (4.6 UL/ML)
TOXICITY
CLASSIFICATION: MODERATE (M)
PH ALTERATIONS: NONE
COMMENTS ON TREATMENT: SAMPLE SOLVENT EXCHANGED INTO
DMSO. ORGANIC CONCENTRATION HAS 4.0 MG PER ML.
(8.0 MG ORGANICS IN 2.0 ML DMSO.) 24 HOUR EXPOSURE
PERIOD.
COLONY COUNTS
t* SAMPLE
(71
01
NC
vr IK
VL , !<•
VC, 2%
TEST
TEST
TEST
TEST
TEST
TEST
TEST
TEST
APPLIED .
CONCENTRATION
UL/ML
10
20
0.1
0.3
0.6
1.0
3.0
6.0
10.0
20.0
DISH
fl
180
161
173
180
166
158
155
154b
40b
0
0
DISH
12
193
152
160
171
161
168
174
164b
31b
0
0
DISH
13
173
176
169
189
147
150
161
156b
43b
0
S
AVERAGE
COUNT
182.0
163.0-
167.3
180.0
158.0
158.7
163.3
158.0
38.0
0.0
0.0
RELATIVE-
SURVIVAL
(PERCENT)
100.0
100.0
100.0
110.4
96.9
97.4
100.2
96.9
23.3
0.0
0.0
CLONING
EFFICIENCY
(PERCENT)
91.0
81.5
83.7
NC = NEGATIVE CONTROL, F12 MEDIUM
VC s VEHICLE CONTROL, PERCENT GIVEN FOR DIMETHYL SULFOXIDE (DMSO)
S = PLATE NOT SET UP TO CONSERVE LIMITED SAMPLE
RELATIVE TO 2S VC FOR 20 UL/ML
TREATMENT AND TO IS VC FOR OTHER
TREATMENTS
b
REDUCED COLONY SIZE
-------
FIGURE 3
RODENT CELL (CHO) CLONAL TOXICITY ASSAY
ECSO DETERMINATION
HR XAD-2 EXTRACT, OUTLET
SAMPLE CODE 819370
130
120
lirt
1 11^
IUU
on
an
Kft
en
An
in
tn
tU
in
0
*"}
A,
^^^
B •
1 i
.1
^
"V.
1
i
*». j
V
^
J
f
=y
^
? —
!
: '
1
«; .
1
i • •
i
j
1 !
i 1
' 1
Li
'
\
\
1
i
I
\
\
\
\
\
\
\
1
\
I
\
-
\
\
\
\
J
\
^
•^
\
i
\
\
,
\
k
V.
1
)
0
L
J
-
1
1
1
i
1(
CONCENTRATION, microliters/ml
Organic content: 4.0 micrograms per microliter.
4-56
-------
ASSAY ACCEPTANCE CRITERIA
An assay is considered acceptable for evaluation of the test results
if the following criteria are met:
The average cloning efficiency of the CHO-K1 cells in the
negative controls is 70 percent or greater, but not exceeding
115 percent.
The distribution of colonies in the treated cultures is
generally uniform over the surface of the culture dish.
The data points for each test concentration critical to
the location of the EC50 are the averages of at least two
treated cultures.
A sufficient number of test concentrations are available
to clearly locate the EC50 within a toxicity region as
defined under Assay Evaluation Criteria.
If the EC50 value is greater than 1000 pg/ml, 600 pliters
of aqueous sample/ml, or 20 uliters of nonaqueous sample/ml,
the plotted curve does not exceed 110 percent of the negative
control.
4-57
-------
ASSAY EVALUATION CRITERIA
The EC50 value represents the concentration of test material that
reduces the colony-forming ability of CHO cells to 50 percent of the
vehicle or negative control value. EC50 values are determined graphi-
cally by fitting a curve through relative survival data points plotted
as a function of the logarithm of the applied concentration. Each data
point normally represents the average of three culture dishes. In order
to indicate the variability of the data, the high and low colony counts
for each concentration are used to calculate relative survivals for those
values. The range is shown by a bar at the high and low relative survival
values above and below the position of the plotted average. If no bar
is shown, the variability was within the size of the symbol. Statistical
analysis is unnecessary in most cases for evaluation.
The toxicity of the test material is evaluated as high, moderate,
low, or nondetectable according to the range of EC50 values defined in
the following table:
TABLE 14. CHO ASSAY EVALUATION CRITERIA
Solids
Toxicity (EC50 in ug/ml)
High
Moderate
Low
Not Detectable
<10
10 to 100
100 to 1000
>1000
Aqueous Liquids Nonaqueous Liquids
(EC50 in ul/ml) (ECSO in ul/ml)
<6
6 to 60
60 to 600
>600
<0.2
0.2-2
2-20
>20
Evaluation criteria formulated by Litton Bionetics, Inc. for IERL-RTP
Procedures Manual: Level 1 Environmental Assessment Biological Tests1.
Criteria for nonaqueous liquids are tentative and under evaluation.
If the organic or solids content is known, the sample is evaluated under
the solids criteria.
4-58
-------
Another evaluation scheme is proposed for extracts obtained from
stack or exhaust gas streams such as those collected with SASS train
collection systems. The proportion of the total gas volume corresponding
to the volume of extract used in the bioassay is calculated and expressed
as liters of gas per milliliter of culture medium (L/ml) or as dry
standard cubic feet of gas per milliliter of culture medium (DSCF/ml).
A criterion of 1000 L/ml is set as the limit for nondetectable toxicity.
This gas volume corresponds to the average volume breathed by humans over
a 2-hour period. The subsequent toxicity ranges are defined by 10-fold
dilution steps to conform to standard procedure. The toxicity ranges
are defined in the following table for liter and dry standard cubic feet
units:
TABLE 15. CHO ASSAY EVALUATION CRITERIA
BASED UPON EQUIVALENT VOLUME OF EXHAUST GAS
Toxicity
High
Moderate
Low
Nondetectable
ECSO In
Liters/ml (L/ml)
<10
10-100
100-1000
>1000
EC50 In
Dry Standard Cubic Feet/ml
<0.35
0.35-3.5
3.5-35
>35
(DSCF/ml )
4-59
-------
REFERENCES
1. Brusick, D.J. and Young, R.R.: IERL-RTP Procedures Manual: Level I
Environmental Assessment Biological Tests. EPA-600/8-81-024,
NTIS PB 82-228966, Litton Bionetics, Inc., Kensington, MD, October
1981, 150 pp.
2. Brusick, D.J.: Level 1 Biological Testing Assessment and Data
Formatting. EPA-600/7-80-079, NTIS PB 80-184914, Litton Bionetics,
Inc., Kensington, MD, April 1980, 100 pp.
3. Brusick, D.J. and Young, R.R.: Level 1 Bioassay Sensitivity.
EPA-600/7-81-135, NTIS PB 82-221201, Litton Bionetics, Inc.,
Kensington, MD, August 1981, 52 pp.
4. DHEW Food and Drug Administration "Nonclinical Laboratory Studies;
Good Laboratory Practice Regulations" Federal Register, volume 43,
No. 247, pp. 59986-60020, Part II, December 22, 1978.
5. Proposed Health Effects Test Standard for Toxic Substances Control
Act Test Rules; Good Laboratory Practice Standards for Health Effects.
Federal Register, Part II, volume 44, No. 91, May 1979 and Part IV,
volume 44, No. 145, July, 1979.
6. Guidelines for Registering Pesticides in the United States: Proposed
Good Laboratory Practice Guidelines for Toxicology Testing. Federal
Register, volume 45, No. 77, April, 1980.
4-60
-------
4.6 NATURAL GAS FUEL ANALYSIS
4-61
-------
ACUREX
Corporation
COMMUNICATION MEMO
D TELEPHONE D CONFERENCE
DATE
TIME
SERIAL/FILE NO.
PAGE
WSON CONTACTED
TELEPHONE
PBEPAAEDtY
LOCATION
O INf O ONLY O ACTION REQUIRED
RESPONSIBLE PERSON
NOTES AND DISCUSSION
6.073
L/J9
9V.//9
h -Jjv
-019
0.003
JOO. 003 A
4-62
Q CONTINUED ON BACK
043
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing/
t. REPORT NO. ~
EPA-600/7-84-073a/b
2.
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
Environmental Assessment of a Reciprocating Engine
Retrofitted with Nonselective Catalytic Reduction;
Vol. I. Technical Results; Vol. II. Data Supplement
JtT^^LJS^ a t c> \ ' • • _ . ii . ii
5. REPORT DATE
July 1984
6. PERFORMING ORGANIZATION CODE
7733
7. AUTHOR(S)
C. Castaldini and L. R. Waterland
8. PERFORMING ORGANIZATION REPORT NO.
TR-84-153/EE
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Acurex Corporation
Environmental and Energy Division
P. O. Box 7555
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-02-3188
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final; 6/83 - 5/84
14. SPONSORING AGENCY CODE
EPA/600/13
,5. SUPPLEMENTARY NOTES IERL-RTP project officer is Robert E. Hall. Mail Drop 65: 9197
541-2477.
16. ABSTRACT)
The two-volume report describes results from testing a rich-burn recipro-
cating internal combustion engine retrofitted with a nonselective catalytic reduction
system for NOx reduction. A comprehensive test program was performed to charac-
terize catalyst inlet and outlet organic and inorganic emissions at optimum catalyst
NOx reduction performance, followed by a 15-day exhaust emission monitoring pro-
gram to measure the catalyst performance under typical engine operating conditions.
Over the 1-day comprehensive test period, the NOx reduction performance of the
catalyst ranged between 54 and 81%, averaging 70%. NOx emissions averaged 1700
ppm at the catalyst inlet and 550 ppm at the catalyst outlet. Catalyst inlet CO and
total unburned hydrocarbon (TUHC) concentrations averaged 14,600 and 115 ppm,
respectively. These inlet combustible concentrations were the result of engine oper-
ation at an air/fuel ratio near or-slightly below the stoichiometry required for effi-
cient NOx reduction. Catalyst outlet CO and TUHC levels were reduced to 13, 200 and
125 ppm, respectively. Total organic emissions were also reduced by the catalyst
from 15. 5 to 2.1 mg/dscm. Ammonia and cyanide levels increased by factors of 15 and
450, respectively, across the catalyst. Over the 15-day monitoring period, NOx re-
duction performance was mostly in the 0 to 40% range.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
c. COSATI Held/Group
Pollution
Internal Combustion Engines
Reciprocating Engines
Catalysis
Assessments
Pollution Control
Stationary Sources
Environmental Assess-
ment
Nonselective Catalytic
Reduction (NCR)
13B
21K
21G
07D
14B
13. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS I This Report)
Unclassified
21. NO. OF PAGES
117
20. SECURITY CLASS (nilpage)
Unclassified
22. PRICE
EPA Perm 2220-1 (9-73)
4-63
------- |