United States Industrial Environmental Research EPA-600/7-79-107
Environmental Protection Laboratory April 1979
Agency Research Triangle Park NC 27711
Pilot Demonstration
of Sodium Carbonate
Conditioning
Interagency
Energy/Environment
R&D Program Report
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH AND DEVELOPMENT series. Reports in this series result from the
effort funded under the 17-agency Federal Energy/Environment Research and
Development Program. These studies relate to EPA's mission to protect the public
health and welfare from adverse effects of pollutants associated with energy sys-
tems. The goal of the Program is to assure the rapid development of domestic
energy supplies in an environmentally-compatible manner by providing the nec-
essary environmental data and control technology. Investigations include analy-
ses of the transport of energy-related pollutants and their health and ecological
effects; assessments of, and development of, control technologies for energy
systems; and integrated assessments of a wide'range of energy-related environ-
mental issues.
EPA REVIEW NOTICE
This report has been reviewed by the participating Federal Agencies, and approved
for publication. Approval does not signify that the contents necessarily reflect
the views and policies of the Government, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/7-79-107
April 1979
Pilot Demonstration
of Sodium Carbonate Conditioning
by
Steven Schliesser
Acurex Corporation
P.O. Box 12796
Research Triangle Park, North Carolina 27709
Contract No. 68-02-2646
Program Element No. EHE624A
EPA Project Officer: Leslie E. Sparks
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
Research Triangle Park, NC 27711
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
-------
ABSTRACT
This report describes a performance evaluation, conducted with a pilot
precipitator, studying the effects of injecting anhydrous sodium carbonate to
the exhaust of a utility boiler burning Western coal.
J.n situ resistivity measurements, precipitator operating conditions, par-
ticulate concentration and size distribution measurements, and analyses of
flyash composition constitute the data assembled from this demonstration. The
following results reflect the effects of conditioning the base flyash with a
1-2% concentration as sodium oxide:
1. a sixfold reduction in resistivity (i.e., from 2.1 x 1012 to
3.7 x 1011 OHM-CM);
2. a threefold improvement in average current density, (i.e.,
from 6 to 18 nA/cm2);
3. a threefold reduction in emission rate, significant enough
to move performance from non-compliance (52.4 nanograms/joule) to
compliance (15.5 nanograms/joule); and
4. an enhancement in the fractional efficiency characteristics,
particularly in the fine particle range.
The characteristics of sodium carbonate conditioning are discussed, in-
cluding the injection considerations, material specifications, and the distinc-
tive rationale for resistivity reduction.
This report was submitted in partial fulfillment of Contract No. 68-02-2646
by Acurex Corporation under the sponsorship of the U.S. Environmental Protection
Agency.
ii
-------
CONTENTS
Page
Abstract it
List of Figures iv
List of Tables v
Acknowledgements vi
1. Introduction 1
2. Summary and Conclusions 3
3. Description of Facilities and Installation 6
4. Program Methodology 15
5. Discussion of Performance Results i . 20
References 41
Appendices
A. Corona discharge curves A-l
B. Impactor data and results B-l
C. Fractional efficiency plots : . . . . C-l
ill
-------
FIGURES
Number Page
1 Plan view of mobile ESP facility 9
2 Removable high voltage field 11
3 Pilot ESP site installation 14
4 Sample train schematic 17
5 Depiction of sodium injection equipment 22
6 Current density vs. on-line time 30
7 Operating voltage vs. on-line time 32
8 Corona discharge curves 33
9 Precipitator collection performance 36
10 Comparison of mean fractional efficiency results 40
Appendices
Corona discharge curves A-l
Impactor data and results B-l
Fractional efficiency plots C-l
iv
-------
TABLES
Number Page
1 Colstrip Power Plant Design and Operating Data 7
2 Coal, Flyash and Flue Gas Characteristics 8
3 Full Scale and Pilot ESP Design Specifications 12
4 Flyash Constituency Data 23
5 Resistivity Data 26
6 , recipitator Electrical Operating Data 29
7 Average of Particul ate Data 35
8 Particulate Size Data and Fraction Efficiency Results 37
9 Summary of Particulate Data and Efficiency Results 39
V
-------
ACKNOWLEDGEMENTS
This program was sponsored by the U.S. Environmental Protection Agency
with participation by Montana Power Company, Southern Research Institute,
Monsanto Research Corporation, and Acurex/Aerotheno, The program was initiated
under EPA contract 66-02-1816 with Monsanto Research Corporation, and completed
under contract 68-02-2646 with Aerotherm.
The author expresses sincere appreciation to the following individuals
for their involvement with and contribution toward this program:
Ivan Bonnette, Ray Hoffman, and Bruce Knusten of Montana Power
Company, Colstrip, Montana;
Dale Harmon and Les Sparks of EPA, Research Triangle Park, NC;
Grady Nichols and Jerry Sutton of Southern Research Institute,
Birmingham, Alabama;
Don Zanders, Billy Bowles, Tony Wojtowicz, and Mark Wherry of Monsanto
Research Corporation, Dayton, Ohio;
Hal Buck, Mike Griffin, Randy Page, and Clyde Stanley of Acurex/Aero-
therm, based at Research Triangle Park, NC.
vi
-------
SECTION 1
INTRODUCTION
The program objective was to determine the effects on precipitator oper-
ation and collection performance of adding sodium carbonate into the exhaust
of a boiler burning low sulfur, low sodium Western coal. The specific effects
of interest were:
1. particulate resistivity level
2. precipitator operating conditions
3. particulate removal characteristics
The feasibility of utilizing conditioning agents at the test site (Mon-
tana Power Station, Colstrip, Mont.) is documented by another power facility
(Montana Power/Corrette Station, Billings, Mont.) using coal from the same
strip mine. Injection of proprietary conditioning material into the flue gas
before it entered the precipitator dramatically affected operating corona
points and improved particulate collection performance so that compliance
limits were met. In situ resistivity measurements at 135°C at the test site
determined the flyash resistivity to be in the lower 1012 OHM-CM range, out-
side the preferred range of 108 to 1010 OHM-CM. Compositional analyses of the
coal and flyash provide the basis of this excessive resistivity, i.e., low
sulfur (1.01 percent) and low sodium (0.31 percent) coitent.
-------
The experimental conditioning agent was anhydrous sodium carbonate (Na2
C03), a dry, powdery material with size distribution comparable to flyash
(mean size * 15u). Charging was achieved by metering the material with a
calibrated screwfeeder and entraining it with a compressed air supply through
an injector. Identical test methodology employing a pilot-scale preclpitator
was implemented for a two phase program:
?. Operation with sodium carbonate addition at a 4 - 5
percent rate relative to flyash concentration.
2. Operation without conditioning additives.
The pilot scale electrostatic precipitator (ESP) is one of three mobile
field units owned by the Particulate Technology Branch, Utilities and Indus-
trial Power Division, Industrial Environmental Research Laboratory, U. S.
Environmental Protection Agency (UIPD/IERL/EPA), Research Triangle Park, North
Carolina. A pilot scale scrubber and baghouse complement a fleet of conven-
tional collection systems designed to offer:
e Comparative evaluation of removal and
economic performance factors among the
three conventional control systems on
either traditional sources or process
streams, or inadequately documented
particulate-laden process streams.
e A parametric evaluation characterizing
a given control device/emissions source
in search of optimum design criteria.
• Feasibility/demonstration programs on
novel or Modified processes.
• Specific problem-solving programs in
control technology.
-------
SECTION 2
SUMMARY aND CONCLUSIONS
The objective of this pilot program was to determine the conditioning
effects of adding anhydrous sodium carbonate into a "cold-side" slipstream
with respect to the collection performance of an ESP. A power plant combus-
ting low sulfur, low sodium Western coal generated the high resistivity ash
(2.5 x 1012 OHM-CM 132°C) for conditioning evaluation.
A performance evaluation was conducted on a pilot scale precipitator
which treated the base and sodium-conditioned flyash. The program, conducted
over several weeks, consisted of twenty days of operating and testing. For
each ash species, the pilot precipitator treated 28.3 mVmin (1,000 acfm) of
flue gas at an average of 110°C, maintaining a specific collection area equal
to 57 mVmVsec. (290 ftVKcfm).
ID situ resistivity measurements, precipitator operating conditions, and
particulate concentration and particle size distribution measurements consti-
tute the data assembled for the comparative demonstration.
The following results reflect the effects of conditioning the base ash
with a 1.0-1.5% concentration of sodium carbonate as sodium oxide (Na20):
1. A sixfold reduction in specific resistivity,
suppressing the base ash from 2.1 x 1012 OHM-CM to
3.7 x 1011 OHM-CM.
2. Relative improvements in achievable current densi-
ties ranging from a factor of two to six. Under
-------
0.3 um
69.4
91.8
0.5 pin
81.2
93.7
1.0 um
93.9
97.4
3.0 um
98.9
99.7
steady state conditions, maximum current densities
were 1-8 nA/cm2 for the base ash, and 10-24 nA/cm2
for the conditioned ash.
3. Enhancement of participate collection levels, resulting
in an improvement in collection efficiency from 98.19
to 99.46 percent, associated with a reduction in outlet
loading from 140 to 40 mg/DSm3.
4. Improvement in fractional efficiency characteristics,
particularly in the fine particle range, as demon-
strated by the following results:
FRACTIONAL EFFICIENCY @
Base Ash
Conditioned Ash
5. On this pilot scale basis the difference in collec-
tion efficiency between the base ash and the sodium-
conditioned ash was significant enough to move
performance from noncompliance (52.4 nanograms/joule
£ng/J]) to compliance (15.5 ng/J).
Assimilation of the test results prompts the following conclusions:
1. Conditioning by the admixture of conductive material
to reduce specific resistivity of the process efflu-
ent, in quantities small enough to be potentially
economical, has been demonstrated.
2. A material for such conditioning, which has the
potential to be economical, commercially available,
and environmentally acceptable, has been identified.
3. This material can be utilized for flyash treatment
without special equipment or extensive maintenance
requirements by simply injecting it into a process
stream. That is, the material handling equipment is
the same as used at other points in a power plant.
4. The effects of using sodium carbonate as a condi-
tioning agent coincide with alternative methods:
a. An increase in the operating
corona points for each precipi-
tator field.
-------
b. An increase in collection perfor-
mance, primarily in the fine
particle size range.
Note:
Federal new source performance standards (NSPS) for coal-fired steam
electric plants of 73 MW (250 million Btu/hr) or greater heat input for particu-
late matter = 43 ng/J, 2-hour average.
-------
SECTION 3
DESCRIPTION OF FACILITIES AND INSTALLATION
POWER PLANT
The test program was conducted at the Montana Power Company Station at
Col strip, Montana. The recently constructed facility represents current
design and operating Methodology for coal-fired electric-power-generating
stations. Modular venturl scrubbers provide enlsslon control for two 350
megawatt (MW) boilers. More pertinent Information Is available via a perfor-
mance evaluation program conducted by Southern Research Institute.
Design operating data from the test facility are listed In Table 1, along
with power production data for several days during the test program. Table 2
presents coal and flyash analyses, as well as gas composition data.
PILOT ESP FACILITY
General Description
The mobile ESP facility consists of two separate units mounted on freight
trailers 12.2 meters in length. Figure 1 1s a floor plan of the two units.
The first unit is the process trailer which houses a five-section ESP and all
auxiliary equipment. This equipment consists of:
Heat-traced, insulated 25.4 cm duct.
Flow rectification equipment containing vaned
turning elbows and diffuser sections.
-------
Table 1. COLSTRIP POWER PLANT DESIGN AND OPERATING DATA
Unit 11 Operating Data as Designed
1)
2)
3)
4)
5)
Coal Feed Rate, metric tons/hr (appr.)
Steam Production, kg/hr (design)
Output Steam Pressure, kg/cm2 (design)
Output Steam Temperature, °C (design)
Generation Rate, MW
358
200
1,117,579
177
540
358
330
170
1,010,561
169
540
330
282
150
848,871
169
540
282
212
110
636,654
169
540
212
6) Gas Volume, Kcm(min) 34.2 31.5 27.0 20.3
7) Temperature at CoId-side
Air Preheater, °C 120 to 150°C (145°C Normal)
-------
Table 2. COAL, FLYASH AND FLUE GAS CHARACTERISTICS
00
25.5%H20
27,7 Volatile Matter
38.3 Fixed Carbon
8.45 Ash
8750 Btu/lb.
Coal Analyses
37.2% Moisture-Free Volatile Matter
51.46 Fixed Carbon
11.3 Ash
11,745 Btu/lb.
Na20
0.31
C02
02
0
Flyash Coupes1t1on
K20
0.13
MgO
4.95
CaO
21.9
Fe20a
5.44
A1203
22.4
Si02
41.6
0.97
Gas Composition
13.2-13.5%
5.5- 5.6
8.0- 8.4
350 - 450 ppm (Controlled Condensation Method)*
0 (Controlled Condensation Method)*
68.13% Carbon
4.51 H2
14.0 02
1.0 N2
1.01 S
11.34 Ash
0.41
S03
0
L.O.I.
2.05
"Improved Chenlcal Methods for SanpUng and Analyses of Gaseous Pollutants from the Combustion
of Fossil Fuels. Volume I, Sulfur Dioxide Measurements, June, 1971 (APTD-1106, PB-209 267).
-------
STORAG^
yMORK TOP
, CONTROL PANEL
lei
>
WORK TOP
LABORATORY
AREA
TRANSFORMER
\
MOTOR CONTROL
CENTER
UMBILICAL __
CONNECTIONS
VE
A
(
v_
A
RTICAL SUPPORT
ND CHOCKS (6)
N
/ I
/ 1
WIDE INLE
MAI P SAMPI 1
S HIGH VOLTAGE
TRANSFORMERS (5)
X \
— "I ^ 1 1 "I 1
Tin
L \ \
(
1 ^
|
I
.••—
J
/
I.D. ft
\
III" «_
/ fcp
' / /
/ OUTLET
' SAMPLING
N
V ^
B9 1 Q
1
_Q
^^IMHM«
VANED SECTION
DIFFUSER
HI6H VOLTAGE FIELDS (5)
SECTION
Figure 1. Plan view of mobile ESP facility.
-------
A screw conveyor and gate valve for the removal
of the collected Material.
Electromagnetic vibrators for rapping the collection
plates.
Five transformer-rectifiers, with rated capacity of 50
KV and 10 MA*. DC.
The system Is designed to operate up to 540°C over a flow range of 28-35
mVmln (1,000-3,000 acfm). Figure 2 shows an Isometric of the high voltage
field design.
The second unit 1s a control/laboratory trailer containing all process
controls, monitors and recorders plus provisions for an analytical laboratory
and spare equipment storage.
Pilot ESP design specifications are compared with the specifications
typical of full scale precipitators in Table 3. Comparison of each design
parameter between the pilot and full scale units shows that:
a. Fixed design parameters on the pilot unit lie
midway In the normal range for full scale Installa-
tions.
b. Operational parameters contain the flexibility to
cover the spectrum typical of commercial units.
c. The single exception to conformity with commercial
Installations Is the plate area, the Inherent
concession of pilot-scale methodology.
SITE INSTALLATION
A slipstream was withdrawn at a location downstream from the combustion-
air preheater and upstream from the pollution control equipment. A 25.4 cm
pipe located across the midpoint of the process stream served as the means of
sample extraction. Eighteen meters of heat-traced, Insulated 25.4 cm pipe
transported the slipstream to the pilot preclpltator. Ambient air quality
10
-------
TROLLEY
VIBRATOR
THERMAL
INSULATION
BAFFLE
SUPPORT
IACKET AND
INSULATORS
PLATE
COLLECTION
ELECTRODE
HIGH
VOLTAGE
CORONA
FRAME
WIRE
DISCHARGE
ELECTRODE
SPACER
RODS
*
Figure 2. Removable high voltage field.
11
-------
Table 3. FULL SCALE AND PILOT ESP DESIGN SPECIFICATIONS
Discharge Wire Diameter, cm
Wire- Wire Spacing, cm
Wire- PI ate Spacing, cm
Specific Collection Area,
(mVmVsec)
Collection Area/T-R Set, m2
Aspect Ratio
Specific Corona Power
(watts/mVsec)
Current Density, nA/cra2
Gas Velocity, m/sec
No. of Fields in Series
Full Scale3
0.25
10-30
10-15
20-150
50-750
0.5-1.5
100-1,000
5-70
1-5
2-8
Pilot ESP
0.25
18
13
20-100
9
0.67
100-1,000
5-100
0.5-2
2-5
12
-------
standards dictated the need for returning the particulate-abated stream to the
access locations for subsequent sulfur dioxide (S02) removal. An access door
was fitted to the stack to accommodate the extraction and return connections,
along with a 10.2 cm coupling for jjn situ resistivity measurements. Figure 3
illustrates the positioning of the access, ducting, process unit, and sampling
and injection locations.
13
-------
LOCATION LEGEND
(1) RESISTIVITY MEASUREMENT, PRIMARY STREAM
(2) SODIUM INJECTION
(3) INLET PARTICULATE SAMPLING
(4) RESISTIVITY MEASUREMENT, PILOT STREAM
(5) OUTLET PARTICULATE SAMPLING
T
PILOT ESP
PRIMARY
STREAM
Figure 3. Pilot ESP site Installation.
-------
SECTION 4
PROGR .M METHODOLOGY
PILOT PRECIPITATOR OPERATION
To ensure that the test program was conducted on a sound basis with
specific guidelines, a protocol for installation, preparation, operation and
data acquisition was established and is discussed below.
Installation
Considerations for locating the slipstream access point required that:
1. The conditions of the process stream be typical
for those of full-scale control unit installation.
2. A representative stream could be withdrawn from
the process effluent, i.e., flow disturbances are
relatively absent.
3. The location and routing be appropriate for the
transport and maintenance of a representative
stream.
Operation
The normal operating schedule allowed for one-week test increments,
starting at noon Monday and continuing until Friday evening. Operating on a
continuous rather than daily start-up/shutdown basis enhanced data credibility
and reliability for the following reasons:
1. Steady state conditions would be maintained rather
than approached.
2. Extended operating time would permit clearer illus-
tration of time-related characteristics, e.g., flyash
accumulation on corona wires and collection plates.
15
-------
3. Corrosive conditions due to condensation accompanying
start-up and shutdown periods would be minimized.
4. A uniform daily testing program could be more reliably
established and maintained.
Because the reliability of the high voltage cables was limited, approxi-
mately half of the test was conducted on an interrupted rather than continuous
schedule. Prior to weekly start-up, the precipitator's internal parts were
cleaned in order to restore initial conditions. This process consisted of
removing flyash from discharge wires and collection plates. Removal of the
precipitated flyash between the base ash and sodium test increments was neces-
sary to isolate the casual relationships of the flyash species. Since it has
been shown that, due to reentrainrnent, rapping factors such as frequency and
intensity have significant effects on effluent loading, the rapping cycles
were terminated during the particulate measurement periods.
Data Acquisition
The following operating data were recorded on a semi-hourly basis:
• inlet gas temperature
• outlet gas temperature
• individual voltage levels
• individual current levels
Additionally, "V-I" data (corona discharge curves) were generated before
and after the daily sampling periods, and following the weekly internal clean-
ing. Sampling activities were conducted during normal working hours, with
operating data acquisition and analytical activities being performed during
the remainder of the day.
PARTICULATE MEASUREMENTS
Particulate measurements were taken using a sample train, as depicted
schematically In Figure 4. Stainless steel filter holders were used with
16
-------
DRYING
COLUMN
SAMPLE
GAS
METERING ORIFICE
CONDENSER
HEAT
EXCHANGER
COIL
DRY
GAS
METERy THERMO-
COUPLE
BY-PASS
VALVE
MAGNEHELIC
GAUGE
Figure 4. Sample train schematic.
-------
47 •§ glass fiber filters to provide mass concentration data. Seven stage
Brinks'* and University of Washington (U of W) Mark IIIR Impactors containing
greased substrates were employed to oeasure the Inlet and outlet size distri-
butions, respectively. A common grease Mixture (20 percent Apiezon "H" with
benzene) was applied to the Metallic substrates used with each i«pactor.
Quality assurance Measures and procedures for conditioning, greasing, and
weighing substrates were conducted in accordance with Reference 6. Sample
ports, available at virtual plug-flow locations, consisted of 2.54 cm stain-
less steel couplings welded to the duct, 27.3 en I. 0.
Extractive probes (6 MM stainless tubing, 30 en long) were mounted in the
ports and fitted with interchangeable nozzles to allow isokinetic sample
removal. The probes were positioned at average velocity locations. Particu-
late concentrations and size distribution deterninations were conducted at
Inlet and outlet locations. Two determinations of each type at both locations
constituted a test unit consisting of eight individual Measurements. Substrate
and filter weight gains were processed nightly, providing qualitative feedback
on preclpltator performance and data quality.
RESISTIVITY MEASUREMENTS
A point-to-plan* probe was used to measure ±n situ resistivity. Mainte-
nance and procedural operations were conducted <-> accordance with the recom-
mended practice for resistivity measurements. The primary location for these
determinations was a reduced velocity area (3-5 m/sec.) immediately upstream
from the first high voltage field. Longer sampling periods (1-2 hours) were
required for the relaxed flow region (1-2 hours) than for the primary process
(%-l hour). Quality assurance tests were conducted HI situ at the slipstream
access, yielding consistently comparable resistivity levels.
18
-------
Three values of resistivity are reported for each test unit, and are
labeled:
• PA (Spark Method at Breakdown Strength)
• PB (Spark Method at Electric Field)
Strength = 10 kv/cm
• Pc (Re: V-I Method).
Each resistivity value is calculated as the ratio of the electric field to
current density. A complete discussion of the equipment, procedure, and
significance of resistivity measurement is contained in Reference 7.
19
-------
SECTION 5
DISCUSSION OF PERFORMANCE RESULTS
The data base presented in the following sections consists of five measure-
ment categories:
• mass balance of sodium material
• specific resistivity
• operating measurements
• particulate mass measurements
• particulate size distribution measurements
Unavoidable fluctuations in boiler load, gas temperature, and precipita-
tor operation occurred throughout the test program, but these fluctuations did
not, in the final analysis, obscure the results of the demonstration test
program. The data clearly support the general conclusions that, for sodium
carbonate addition:
• specific resistivity of the particulate was reduced,
• precipitator operating levels were improved, and
• particulate collection efficiency (total and fractional)
was enhanced.
CONDITIONING BY SODIUM CARBONATE ADDITION
Resistivity conditioning was achieved by metering and pneumatically
injecting anhydrous sodiua carbonate into the slipstream immediately adjacent
to the primary stream (Figure 3). Mixing was achieved by injecting the material
20
-------
into the center of the slipstream, and transporting the mixture through 18.3 m
of duct, four 90° elbows, and the flow rectification sections at the trailer
entrance. A previous in-house program, in which sodium carbonate was injected
10.67 m upstream from the flow rectification section, demonstrated, by analyses
of samples taken from each field, that equal and consistent distribution could
be achieved. Injection was accomplished through use of a screwfeeder, an air
injector, and an air compressor. Figure 5 illustrates the configuration of
the injection assembly. The material was metered through the calibrated
screwfeeder into the injector, where compressed and induced air entrained and
delivered it through a gently bending probe into the slipstream.
The amount of sodium carbonate to be injected was calculated as sodium
oxide, with conversion being made on the basis of molecular weight ratio:
Hole. Wgt, Na20 = 62
Mole. Wgt, Na20 CO = 106 = °*585
Thus, under most conditions, 11.5 gm/min of sodium carbonate was added to
represent 6.7 gm/min as sodium oxide, reflecting a 5.0 percent injection rate
relative to a mean flyash rate of 135 gm/min. Analysis of the collected ash
from the high voltage fields (Table 4) shows an average 1.2 percent differen-
tial collection rate in sodium oxide content between the base and conditional
ash. These independent determinations therefore reveal an unaccountable
portion for a mass balance of sodium material (5% injection rate but 1.2%
finally measured). The discrepancy between the injection and collection rates
suggests two possible occurrences: (a) deposition of the sodium material
between injection and electrostatic collection, and (b) penetration of the
sodium through the ESP. The latter contingency cannot be well supported,
since the unaccountable portion of sodium carbonate is ten times the concentra-
21
-------
INDUCED AIR
X
1. VIBRASCREW FEEDER SCR-20. 3/8 SCREW. 0-0.1 CFH
Z FABRICATED CONNECTION BETWEEN FEEDER AND INJECTOR
3. JET INJECTOR. McMASTER-CARR P.O. BOX 43S5. CHICAGO 90680. CAT 4877K-11
4. FABRICATED PIPE
5. COVER PmTE APPflOX 8" DIAMETER. WEUOED TO BENT PIPE
8. COMPRESSED AIR SUPPtY LINE APPflOX. 70 PSIG
Figure 5. Depiction of sodium Injection equipment*
22
-------
Table 4 FLYASH CONSTITUENCY DATA
NO Sodium Injection
L120
Na,0
K20
MgO
CaO
Fe2°3
A1203
S102
T102
P2°5
so3
LOI
6/24
Cell
1
0.04
0.60
0.8
7.2
18.5
4.0
23.8
41.5
1.0
0.4
1.1
0.5
6/24
Cell
2
0.05
0.58
0.7
7.5
18.3
3.5
23.8
41.1
1.0
0.4
-
0.5
6/24
Cell
0.05
0.56
1.0
7.7
19.5
3.8
-
-
0.9
0.3
-
0.7
6/30
Cell
1
0.04
0.56
0.7
5.8
17.0
3.7
21.4
44.5
0.9
0.3
1.3
0.5
6/30
Cell
2
0.04
0.74
0.7
6.4
17.7
3.5
23.3
43.2
1.0
0.3
-
0.6
6/30
Cell
5
0.04
0.75
0.9
6.7
17.8
3.2
24.2
41.9
0.9
0.4
-
0.6
8/23
Cell
3
0.04
0.61
0.8
6.5
19.6
3.9
23.7
41.8
0.7
D.5
1.2
0.3
8/23
Cell
4
0.04
0.61
0.8
6.8
19.3
3.2
24.4
40.7
0.7
0.9
1.4
0.2
8/23
Cell
5
0.04
0.71
0.8
6.5
18.6
3.4
25.0
40.2
0.6
0.6
1.7
0.6
8/24
Cell
1
0.04
0.59
0.7
6.4
19.3
3.3
23.3
42.1
0.6
0.5
1.2
0.5
8/24
Cell
4
0.04
0.59
0.7
6.8
20.5
3.8
23.6
39.3
0.7
0.6
1.5
0.4
8/24
Cell
5 _
0.04
0.61
0.8
6.8
19.7
3.3
-
-
-
0.6
-
-
7/14
Cell
1
0.04
1.6
0.8
7.0
18.1
3.2
24.0
41.4
0.8
0.4
1.5
1.3
7/14
Cell
2
0.04
2.1
0.8
6.7
17.8
3.3
23.7
41.9
0.9
0.4
1.8
1.6
7/14
Cell
0.04
1.0
0.8
5.7
18.7
5.3
22.6
43.0
0.8
0.3
-
1.4
7/19
Cell
0.04
2.2
0.7
6.2
18.0
4.1
23.0
42.7
0.9
0.3
1.9
1.6
7/19
Cell
2
0.05
1.9
0.6
6.4
18.2
3.2
24.3
41.3
0.8
0.4
1.6
1.3
7/19
Cell
0.05
1.6
0.6
S.8
19.0
3.0
23.2
39.2
0.8
0.5
1.7
0.9
7/19
Cell
4
0.05
1.4
0.5
6.8
18.3
2.9
24.6
39.7
1.1
0.4
-
1.2
8/17
Cell
3
0.04
2.4
0.4
6.8
20.3
3.3
22.5
37.8
1.1
0.6
1.8
2.0
8/17
Cell
4
0.05
1.9
0.5
6.4
20.2
3.3
23.4
38.1
1.1
0.6
2.2
1.3
Remarks: 1} All analyses done on Ignited samples. On some samples, there are Insufficient amounts to run a complete analysis.
2} Analyses performed by Southern Research Institute.
-------
tlon of penetrating ash. The author suggests that the unaccountable sodium
material was deposited during transport to the ESP through a non-optimum
injection system.
The term "conditioning" in the context of controlling particle resistivi-
ty usually implies the addition of moisture or chemicals to the carrier gas.
In a broader sense, conditioning includes effectively controlling particle
resistivity by any appropriate means, such as temperature or composition
control.
Conditioning by sodium carbonate injection, unlike moisture and chemical
conditioning, does not change the conductivity of the original flyash particles.
The conditioning effect is achieved by simply injecting a conductive material
into the stream, which, when collected on the plates with the original high
resistivity material, provides ionic carriers or additional electrical paths
for the corona current. The insulating effect of the high resistivity flyash
is reduced, allowing the precipitator to treat the stream at a lower resisti-
vity level. The benefit derived from sodium conditioning is that one gram of
sodium oxide caused two grams of flyash to be collected. Numerical analysis
correlating the precipitated amounts of sodium and the casual increase in
flyash shows a 1.16/1.0 relationship.
The purpose of these tests was to determine the improvement in precipita-
tor performance associated with sodium carbonate addition. To date, this
approach to conditioning has several limitations:
• Some applications require large quantities of conductive
material.
• Some economically viable conductive materials are un-
available.
24
-------
• The material is difficult to adequately distribute into
the process stream.
• Uncertainties result from selective precipitation of the
conductive material.
RESISTIVITY DATA AND RESULTS
In order to quantify the resistivity suppression of sodium conditioning,
resistivity measurements were taken on (1) the primary stream near the pilot
stream access location, (2) the slipstream containing the base flyash, and (3)
the slipstream containing the base ash plus sodium carbonate.
All determinations were made with an j[n situ probe designed by Southern
Research Institute. The design of the probe and the procedure provide the
following data as presented in Table 5:
1. P. - Resistivity value taken at the breakdown
strength of the sample.
2. Pp - Resistivity value for electric field
D strength = 10 KV/CM.
3. PC - Resistivity value determined by the com-
parison of volt-amp relationships before
and after precipitation of the sample.
4. E. - Electric field strength at breakdown.
PA is the preferred resistivity value, because voltage is applied directly
to the electrostatically-precipitated sample, and determination is made at the
breakdown strength of the sampled ash layer.
The other two resistivity values, Pp and P~, are less significant to
precipitator applications, but are offered to support the comparison between
the two ash species. The last column in Table 5, E., represents the breakdown
strengths of the individual samples. Compilation of over 35 tests resulted in
the following log-averaged resistivity values:
25
-------
Table 5. RESISTIVITY DATA*
Run No. PA Pg PC E.
6/12/77**
6/23/77**
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2.
2.
-
5.
1.
1.
4.
5.
3.
1.
6.
2.
-
-
2.
-
8.
4.
2.
„!! '"
9
1
-
9
1
6
1
0
2
0
0
1
•—
-
0
-
0
1
5
1C
£12
£12
- -
EU
£12
Ell
EU
Ell
Ell
£12
£12
£12
— —
- -
EU
- •
EU
£12
£12
2.1
2.7
. - -
5.2
2.2
- -
6.8
1.0
5.6
1.7
1.0
5.0
- -
- -
3.6
- -
1.3
E12
£12
- -
£11
£12
- -
£11
EU
£U
£12
£12
£12
— -
- -
£11
- -
£12
6.05 £12
6.0
£12
4.
3.
3.
2.
2.
4.
7.
7.
7.
2.
2.
2.
1.
6.
1.
2.
2.
2.
2.
5
8
6
7
1
0
3
6
3
2
5
2
5
2
5
2
5
6
8
Ell
Ell
EU
Ell
£12
EU
EU
EU
EU
£12
£12
£12
£12
£11
£12
£12
£12
£12
E12
41,
10,
_ _
19
35
4
32,
26,
10,
20
25
8,
. -
55,
29,
39,
32,
22,
17,
_ _
27
26,
25,
50
- -
- -
33,
50,
26
37
24
12, 17
26
27
73
40
ra = ftesistiviiy ueicrainea oy sparse neinoa v tiectnc Field
B Strength = 10 KV/CM (OHM-CM)
Pr = Resistivity Determined by V-I Method (OHN-CM)
EJ = Electric Field Strength 9 Breakdown (KV/CM)
M7 EU OHH-CH « Log Mean ResistMiy for Conditioned Ash 3 167-115°C
3.70 £12 OHM-CM = Log Mean Resistivity for Base Ash * 107-115°C
* Data Obtained at Pilot ESP Inlet
**Data Obtained on Primary Stream at the Pilot Stream Access Location
MOTE: All resistivity values are expressed In units of OHM-CM.
26
-------
a. 2.5 x 1012 OHM-CM (on the primary stream at
130-135°C).
b. 2.1 x 1012 OHM-CM (on the slipstream at 107-
115°C with the base ash).
c. 3.7 x 10" OHM-CM (on the slipstream at 107-
115° with the base ash and 1.2 percent sodium
oxide/base ash addition).
Comparison of these values indicate; that:
• The characteristic resistivity of the gas and
particulate stream was preserved during trans-
port to the pilot unit.
• A sixfold reduction in specific resistivity is
attributable to sodium injection.
Research by Bickelhaupt has shown that, for surface resistivity of flyash,
the alkali metal constituents, particularly sodium, serve as the principal
g
chargt carriers in the conduction process. This observation led to two
previous field tests demonstrating that sodium conditioning did reduce speci-
fic resistivity, and that the reduction was predictable by the relationship
of:
Pi/P2 = (WsWCWi)8
P! = measured resistivity in OHM-CM for W2
P2 = predicted resistivity in OHM-CM for W2
W1 = measured weight percent Na20 in ash
W2 = added weight percent Na20 in ash.
Demonstration of the sensitive and predictable relationship between
sodium content and resistivity is shown from the test data:
For Wt = 0.63, W2 = 1.79, P = 2.1 x 1012:
P2 = 2.6 x 1011 OHM-CM
The predicted value correlates with the measured resistivity value of 3.7 x
1011 OHM-D .
27
-------
OPERATIONAL DATA
Operating corona points and the associated V-I data over the allowable
range were taken regularly during the program. The operating corona data
reflect the electrical conditions during the sampling period for a given test.
It should be noted that the control of the transformer-rectifier sets was
accomplished manually, as the pilot facility was not equipped with automatic
controllers customarily included in full-sized precipitators. It should also
be pointed out that the operating corona points were set 4 KV lower than the
maximum allowed. This was done to prevent frequent high voltage cable break-
downs responsible for delays incurred during the initial testing phase.
Table 6 and Figure 6 depict actual and comparative current densities for
the base ash and ash-with-sodium conditioning tests. The Table and Figure
provide a histogram of the current densities related to on-line time following
internal purging. The degradation rates are comparable for each species, but
-"&*•
the base ash curves show more severe current reductions as they approach
steady state conditions. The inlet field histograms reflect a 2-3 factor
improvement in achievable current densities for the sodium conditioning test
series, having achieved a 10 nA/cm2 level compared to a 4 nA/cm2 level for the
base ash series. A consistently comparable relationship exists for the outlet
fields, with the sodium series achieving 20 nA/cm2, relative to 7 nA/cm2. The
second or middle field histogram indicates improvement for the sodium series,
achieving 20 nA/cm2 compared to 4 nA/cm2 for the base ash.
Reasonable correlation exists between the independent resistivity measure-
ments and the achievable precipitator current densities approaching steady
state conditions. The relationship between resistivity (P) and current den-
sity (C. D.) is defined by P=E/C. D., where E is the dielectric (breakdown)
28
-------
Table 6 PRECIPITATOR ELECTRICAL OPERATING DATA
SECONDARY VOLTAGE (KV), CURRENT DENSITY
CO
Cell
1 39,11 40,4.2
2 39,21 40,3.1
3
4
5 * 41,28 39,9.0
Time
(days) 1 11/2
Test
No. 1 2
Cell
1 46,36 46,13
2 39,27 42,16
3
4
5 38,31 38,30
Time 1/2 1
Test
No. 4 5
40,2.3
40,1,1
38,6.3
2
3
39,8.0
36,9.0
35,14
39,28
35,41
1 1/2
6
38,18
39,24
39,22
1/4
11
Base
42,7.
41,19
37,26
37,26
37,23
2
7
Base Flyash
39,10 40,10
37,16 40,21
36,12 40,25
1/2 1
12 13
Flyash + Sodium
8
44,9.5
40,18 42,10
40,20 41,13
39,24 40,21
2 1/2 3
8 9
40,27
38,21
38,35
1/4
17
42,9.0
41,10
36,5.0
3 1/2
10
38,10
38,11
36,26
1
18
38,23
40,34
38,38
1/4
14
36,6.0
40,7.0
32,13
2
19
40,14
40,23
40,50
1
15
36,4.0
38,3.0
32,8.0
3
20
41-19
39-20
2
16
Elapsed time operating since internal purge.
-------
50
40
30
20
10
0
O: BASE FLYASH
El* FLYASH & SODIUM
INLET
FIELD
c|50
I 40
£30
CO
§20
£10
50
40
30
20
10
0
OUTLET
FIELD
1 2
ON-LINE TIME (DAYS)
Figure 6. Current density vs. on-Hne time.
30
-------
strength of the collected dust layer. Assigning the limiting breakdown strength
of 10 KV/cm for each ash species, one can calculate the achievable current
density from the log-averaged resistivity values. For the base ash (P = 2.1 x
1012 OHM-CM), the calculated current density is 4.8 nA/cm2. For sodium-condi-
tioned ash (3.7 x 1011 OHM-CM) the calculated value is 27 nA/cm2. These
theoretically calculated values correspond with the empirical values averaged
from the operational data (5.0 and 15 nA/cra2 respectively).
Comparison of the achievable voltage levels shown in Figure 7 for the two
ashes is not as dramatic as the current density comparison but higher voltages
were consistently obtained for the sodium treated ash.
The relationship of the voltage applied to each precipitation field and
the resisting current (corona discharge curves) may be analyzed to gain insight
into precipitator operation and performance. Figure 8 portrays the corona
discharge curves for the base and conditioned ashes in graphic form. These
curves show the characteristic profile of the volt-amp relationships from each
field for steady state conditions. Knowledge of the meaning of the V-I curves
is a fundamental tool necessary for proper operation of a precipitator. These
data can characterize the following parameters/conditions:
• corona current leakage
• corona initiation voltage
• effective corona wire size
• effective wire-to-plate spacing
• alignment effects
• specific resistivity level
• specific collection area
31
-------
50
30
.__.Q. BASE FLYASH
Gfc FLYASH & SODIUM
INLET
FIELD
~ 50
5
£ 30
50
30
OUTLET
FIELD
2 3
ON-LINE TIflE (DAYS)
Figure 7. Operating voltage vs. on-Hne time.
32
-------
CN
30
25
_ t CURVE WITH BASE ASH
«. : CURVE WITH SODIUM
JSPARKOVER LIMIT
co
§20
I
C/5
OUTLET
FIELD
FIELD
10
20 30 40
APPLIED VOLTAGE (KV)
Figure 8. Corona discharge curves.
33
-------
• breakdown voltage
. t achievable current density
• concentration of fine participate
t relative position of each precipitation field (Inlet, second
..., outlet)
• variations in emission source process
Analysis and interpretation of these curves provide the basis for the
following generalities referenced in other sections of this report:
1. A reduction in specific resistivity between the base
ash and sodium-plus-ash test series.
2. An improvement in achievable corona point for the
sodium series.
3. An improvement in expected collection performance
for the sodium series.
4. The degradation in performance related to elapsed
time from internal clean-up.
5. A small increase in effective wire size due to ash
build-up.11
PARTICULATE COLLECTION RESULTS
Particulate Concentration Results
Table 7 shows the averages of the inlet and outlet concentrations per
test used to calculate the average collection efficiency values in Figure 9
and Table 8. The inlet data exhibit considerable scatter resulting froa the
inconsistent probe catches apparent in the raw data. Due to the reduced
flyash concentration and probe catch material, the outlet data offer reason-
able agreement and consistency.
The apparent scatter in the participate data depicts an ordered trend
when the elapsed operating time from the precipitator "cleaning" 1s taken Into
34
-------
account. As previously noted, the corona wires and collection plates were
restored to a clean state between conditioning and nonconditioning test series.
The degradation in performance evident particularly for the base ash was
caused by the accumulation of high resistivity ash on the collection plate and
discharge electrodes. The marginal differences in performance for the tests
after recent cleaning do not reflect the performance levels achievable for
steady state operation. According to a best fit approach, sodium conditioning
was responsible for reducing outlet loadings from 140 to 40 mg/Ds m3 (52.4 ng
to 15.5 ng/J), resulting in an improvement in collection efficiency from 98.19
to 99.46 percent.
Table 7. AVERAGE OF PARTICULATE DATA
(mg/SDm3)
Test
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Inlet
8,657
11,630
14,310
5,198
7,076
19,950
4,259
8,290
3,824
5,977
4,642
4,630
4,649
8,061
8,633
7,282
5,587
3,847
5,908
8,610
Mean: 7,557
Standard Deviation: 1,960
Outlet
182
133
394
29.1
45.6
40.1
46.3
47.6
38.2
36.2
33.2
30.5
35.3
17.3
22.9
34.1
50.4
44.6
117
137
Base Flyash Mean: 115.7
Sodium and Flyash Mean: 35.7
35
-------
-'IX10
CQ
CT>
i-1
\
rr,
2x10
-2
n
•v.
ID
10-
8
6
r
2X1U
o
o
- 8
El
1 2
ON-LINE TIl'iF-; (DAYS)
3
Figure 9. Precipitator collection performance.
36
-------
Table 8 PARTICLE SIZE DATA AND
FRACTION EFFICIENCY RESULTS1
Test
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Base
Sodi
No. Mass Mean Diameter
Inlet
8.6
9.7
26.0
13.5
13.0
8.8
7.4
7.8
7.4
9.9
11.5
21.0
8.0
23.3
17.0
16.0
12.0
22.5
27.0
29.0
ash mean:
urn mean:
Outlet
1.6
1.7
3.5
1.6
1.6
1.2
1.4
1.7
3.0
2.1
1.9
1.2
1.4
2.3
4.8
2.1
1.4
5.5
4.7
2.6
2.1
Fractional Efficiency @ (pm)
0.3
29.3
89.7
87.9
85.7
93.3
93.2
94.9
79.6
93.3
37.1
61.1
92.5
96.7
91.5
98.3
37.5
85.0
90.7
83.2
69.4
91.8
0.5
42.3
90.9
90.5
88.3
94.0
94.6
96.4
83.7
95.6
71.2
72.0
95.9
98.5
93.4
98.4
78.7
88.6
93.5
88.0
81.2
93.7
1.0
90.7
94.9
87.2
93.5
97.4
97.7
98.7
94.9
97.8
97.7
97.0
98.7
99.1
98.1
99.1
93.2
97.0
93.1
90.0
93.9
97.4
3.0
89.7
99.2
96.0
99.7
99.5
99.5
99.8
99.8
99.6
99.6
99.4
99.9
99.9
99.9
99.9
99.7
99.7
99.5
96.0
98.8
99.7
10ata obtained from dally averages.
PARTICLE SIZE AND FRACTIONAL EFFICIENCY RESULTS
Brinks and the U of W impactors were employed for obtaining size measure-
ments on the inlet and outlet streams, respectively. Quality assurance mea-
sures and procedures for conditioning and weighing substrates were performed
in consistence with EPA/IERL specifications. Due to small weight losses on
the greased substrates for the U of W, trial impactor flowrate was reduced for
37
-------
all subsequent tests fron 189cc/S to 142cc/S. Evidence of substrate scouring
was consequently eliminated with flowrate reduction.
Table 9 presents the particle size data and fractional efficiency results
for all test runs. All particle diameters are stated in aerodynamic terms UM.
Mass Man diameter on the inlet ranged fro* 8-29 u, with an average M.M.O. of
15 u. The outlet strew contained M.M.O's from 1.2—5.5 u, with 2.1 u and 2.6
u being the average mean dianeter for the sodium conditioning and base ash
effluents, respectively. Figure 10 demonstrates the improved fractional
collection performance associated with sodiun conditioning, particularly in
the sub»1cron range.
-------
Table 9 SUMMARY OF PARTICULATE DATA AND EFFICIENCY RESULTS
Data
Inlet concentration
(Mg/DNM3)
Outlet concentration
(Mg/DNM3)
Inlet mean particle
size (H)
Outlet mean particle
size (u)
Efficiency
Total mass (% wt. )
Fractional @:
3.0 urn
1.0 urn
0.5 pin
0.3 urn
Base Flyash
7,550
140
15
2.6
98.2
98.8
94
81
70
Base Ash with Sodium
7,550
40
15
2.1
99.5
99.7
98
94
92
39
-------
4*
O
E
3.
ce:
UJ
LLJ
5
4
3
2
| 1.0
X 0.3
0.6
o
tlj
-------
REFERENCES
1. Private Communication with Bob Olmstead, Plant Superintendent, Montana
Power/Corrette Station, Billings, Montana.
2. McCain, J.D., CEA Variable Throat Venturi Scrubber Evaluation. EPA-600/
7-78-094, U.S. Environmental Protection Agency, Research Triangle Park,
N.C., June, 1978.
3. White, H.J., INDUSTRIAL ELECTROSTATIC PRECIPITATION. Reading, Mass.,
Addison-Wesley, 1963, p. 359.
4. "MOBILE ESP OPERATING MANUAL," Environmental Sciences Group, Naval Sur-
face Weapons Center, Dahlgren, VA., October, 1976.
5. Spencer, H.W., A Study of Rapping Reentrainment in a Nearly Full-Scale
Pilot Electrostatic Precipitator. EPA-600/2-76-140, U.S. Environmental
Protection Agency, Research Triangle Park, NC, 1976.
6. Harris, D.B., Procedures for Cascade Impactor Calibration & Operation in
Process Streams, EPA-600/2-76-144, U.S. Environmental Protection Agency,
Research Triangle Park, NC.
7. Nichols, G.N., Test Methods & Apparatus For Conducting Resistivity Measure-
ments, U.S. Environmental Protection Agency, Contract No. 68-02-1083,
Final Report No. 3121-III., Sept. 1977.
8. White, H.J., op. cit., p. 312.
9. Bickelhaupt. R.E., Surface Resistivity & The Chemical Composition of
Flyash, Proceedings From Symposium On Electrostatic Precipitators For The
Control of Fine Particles, For National Environmental Research Center, PB
240 440, Jan. 1975, p. 246.
10. Bickelhaupt, R.E., SODIUM CONDITIONING TO REDUCE FLY ASH RESISTIVITY,
EPA-650/2-74-092, U.S. Environmental Protection Agency, Research Triangle
Park, NC.
11 Banks, S.M., McDonald, J.R., Sparks, L.E., VOLTAGE CURRENT DATA FROM
ELECTROSTATIC PRECIPITATORS UNDER NORMAL AND ABNORMAL CONDITIONS,
Proceedings: PARTICULATE COLLECTION PROBLEMS USING EPA'S IN THE ME-
TALLURGICAC INDUSTRY, EPA-600/2-77-208, U.S. Environmental Protection
Agency, Research Triangle Park, NC, October, 1977.
41
-------
APPENDIX A
Corona Discharge Curves
A-l
-------
50
40
30
Current Density,
10~9 A/cm2
20
10
0
" Test No. 1
Temperature 245" F
Cell #
1 o ^
••u *
3 A
4 d
c »••
•
•
-
V
o
V
*
V
•
V^ ^V
11 f
10 20 30
Voltage, kV
A-2
40
SO
-------
50
40
Test No. 2
Temperature 234 F
Cell #
1 o
2 •
3 A
4 n
5 v
30
Current Density,
q o
10~y A/cm
20
10
o
o
10 20 30 40
Voltage, kV
50
A-3
-------
50
40
Test No. 3
Temperature 221° F
Cell f
1 o
2 •
3 a
4 o
5 v
30
Current Density,
10"9 A/cm2
20
10
7
10 20 30
Voltage. kV
A-4
40
50
-------
Current Density,
.0 2
10 * A/cm*
50
r
40
Test No. 4
Temperature 220 F
Cell *
1 o
2 •
3 A
4 Q
5 *
30
20
.
10
m O
H) 20 30
Voltage, kV
40
50
A-5
-------
Current Density,
1
-------
50
40
30
Current Density,
10*9 A/cm2
20
10
Test No. 6
Temperature 271° F
Cell I
1 o
2 •
3 A
4 D
a
A
2
e
v
o
10 20 30
Voltage, kV
40
50
A-7
-------
OU
40
30
Current density,
10"9 A/cm2
20
10
n
Test No. 7
Temperature 267 F
Cell #
1 o
2 •
3 A
4 a
5 7
•
13
•
A
a
DV •
•
V
• 0
a
A 0
• o
V
o
o
a •
0 0
. o
So
__ — i j
10 20 30
Voltage, kV
40
50
A-8
-------
50
40
30
Current Density,
_o 2
10 * A/cnT
ZO
Test No. 8
Temperature 268° F
Cell #
1 o
2 •
3 a
4 a
V
a
a
&
10
a
A
0
10
•
20
0
o
30
0
CO
1
40
f
50
Voltage, kV
A-9
-------
50
40
30
Current Density,
10~9 A/cm2
20
10
Test No. 9
Temperature 248 F
Cell #
1 o
2 •
3 A
4 O
v O
a
o
a
V
o
A
10 20 30
Voltage, kV
40
50
A-10
-------
50
40
30
Current Density,
-Q 2
10 y A/cnf
20
10
0
Test No. 10
Temperature 250 F
Cell #
1 o
2 •
3 A
4 D
5 *
B
_L
10 20 30
Voltage, kV
40
50
A-ll
-------
50
40
30
Current Density,
10~9 A/cm2
20
10
Test No. 11.
Temperature 243° F
Cell *
1 o
2 •
3 A
4 a
5 v
a
X
1
10 20 30
Voltage, kV
40
50
A-12
-------
50
40
30
Current Density,
10~9 A/cm2
20
10
0
0
Test No. 12
Temperature 240° F
Cell #
1 o
2 •
3 A
4 D
5 *
a
?
v
4.
10 20 30
Voltage, kV
40
50
A-13
-------
50
r
40
Test No. 13
Temperature 239 F
Cell #
1 o
2 •
3 a
4 a
5 ?
-
30
Current Density,
10~9 A/cm2
20
10
0
8
10 20 30
Voltage, kV
40 50
A-14
-------
40
Test No. 14
Temperature 233° F
Cell I
1 o
2 •
3 A
4 D
5 v
30
Current Density,
10"9 A/cm2
20
10
D
A
0
10 20 30
Voltage, kV
40
50
A-15
-------
50
40
30
Current Density,
10'9 A/cm2
20
10
Test No. 15
Temperature 231 F
Cell f
1 o
2 •
3 A
4 D
5 v
10 20 30
Voltage, kV
40
50
A-16
-------
50
40
30
Current Density,
TO"9 A/cm2
20
10
Test No. 16
Temperature 225 F
Cell #
1 o
2 •
3 A
4 D
5 v
a
10 20 30
Voltage, kV
40
50
A-17
-------
50
40
30
Current Density,
TO"9 A/cm2
20
10
Test No. 17
Temperature 216 F
Cell #
1 o
2 •
3 A
4 a
5 v
A
V
a
i
10 20 30
Voltage, kV
40
50
A-18
-------
bU
40
30
Current Density,
10"9 A/cm2
20
10
0
H
Test No. 18
Temperature 233 F
Cell #
• 1 0
2 •
3 *
4 D
. 5 v
•
•
a
-
6
v A
a
* a
' — • — ft- 1 1 i
10 20 30
Voltage, kV
40
50
A-19
-------
Current Density,
10~9 A/cm2
50
40
30
20
10
Test No.. 19
Temperature 230 F
Cell #
1 o
2 •
3 A
4 O
5 v
6
10 20 30
Voltage, IV
40
50
A-20
-------
50
40
30
Current Density,
10"9 A/cm2
20
10
0
Test No. 20
Temperature 225° F
Cell #
1 o
2 •
3 *
4 D
5 v
10 20 30
Voltage, kV
40
50
A-21
-------
DU
40
30
Current Density,
10"9 A/ cm2
20
10
0
Test No. 21
Temperature 230 F
Cell #
- 1 o
2 •
3 A
4 D
. 5 ?
-
-
-
V
V
A"
V
a
A a
A a
i i i i i
10 20 30
Voltage, kV
40
50
A-22
-------
APPENDIX B
Impactor Data and Results
B-l
-------
ro
IM'ATTflR FLOtfRATE . .050 ACFf
IMPACT9R PRESSU«F 3ROP • 4.5 IN.
ASSUMED PARTICLE OCNSITT . 7.4<)
GAS COMPOSITION IPERCENTI
TALC. MASS LOADING • 3.4*15*00
IMPACTS STAGE
STAr.E INDEX NUMBER
010 |M|rpoHETCR5l
MASS MILLISRAM5I
MG/OSCM/STAGE
CUM. I OF MASS LESS THAN 05D
CUH. «MG/ACM) SMALLTR THAN 050
CUM. IHG/ONfMI SMALLC* THAN 053
CUM. IGR/ACF) SMALLER THAN 050
CIIM. IGR/DNCF) SMALLER THAN 050
r.Fo. MEAN oi«. I»ICROMETERSI
r,M/->LOr,n .MG/ONCM,
OM/CLOSO (NO. r.RTicLES/nNcwi
N09«'AL lENRlNFERIM1; STANOA'OI COtl
MPACTo1* TE«PE»*TOWE • 750.0 r • :
, OF MR ST»C"f TEMfCHATURE • 750. 0 T i
»5M/cu.fM. STACK MESSURE • 27.00 IN* o
C07 . l.4» CO . .*0 N2 •
•5R/ACF 5.772S«DO GR/ONCF
CTC SO SI 57
f234
«.?6 5.3S 2.50 1.5*
44.43 ,.85 4.0* 2.47
V. 45*03 4.01*07 ». 40*07 4.08*1?
?0.»3 15.07 «.4« 3.5»
1.47*03 ,.J*»OS *.fl*07 2.«»*0»
2.50*03 |.»O.OJ 1.01*03 1.7»«07
7.79-01 5.53.01 3.02-01 l.7*-d
1.0"*'0 «.7*-OI 4.53-01 1.87-01
\ *01* **
1. 70*04 3;?4*03 ». 04*0.3 ',34*03
l.0f*0* 4.72*0* 3.47*10 I.»Z»II
'UIOHS ,,F 7J ^C AN,, 74.1.MN HGS
171. 1 C SAMPLING DOHA!
• 121. 1 C
r MS HA». PARTICLE 01AHFTEI
Tft.lO 07 • 17.30
7.*47o*03 MG/ACM
S3 54 55
5 » 7
1.28 ' .75 .55
I.Of •**> >24
2*31*07 1.17*07 5«0»*fl|
I.6S •»* .75
.1.32*02 4.11*01 7.07*01
l.fM*02 8.11*01 3.03*01
5.74-07 2.3A-07 «.*7-O3
8.44-07 3.54-07 1.32-0?
1.11*00 T.7V-OI *.42-f)l
<.7.*03 r.,»*0? n«5.07
'ION • 5.00 M|N
( • 50.0 MirRo"FTCR5
M70 • 7.30
i.i»5i*04 «^/ni*CM
S* FILTER
* . *
.37
.14 .no
7.*7»OI O.oO
.01
3.*H-OI
5.fR-DI
1.74-01
7.41-04
1.l*-01 7.^5-01
1.71*07 0.00
-------
1 HI»N l« «RIH« «, IMLTT nr rtjpf «,/77/77
iMPACTn1? FLOWRATT • .0^0 ACFM IMPACTO" Tr«PFRATupE » 750.0 r • izi.i c
SAMPLING OIlOATtnn . 5.00 «IX
MPATTnR "prssuRr OPOP^ i.s IM. nr MR STAC* TFMPERATURF • 75o«0 r • 121.1 r
A«;sii'iEn PAPTICLE OE'ISFTY . ?.4r, f!M,r".c«. ST«CIC PRESSURE • 77.90 IN. nr us HA
r,»5 COMPOSITION fPrPCENTI CO? « 1.19 CO • .89 NZ • 78.10
». PARTICLE OIAHFTFR • 50.0 M|CRo"FTC»S
07 • 17.30 H20 • 7.30
r«Lr. IASS LOADING • i.fti«7«Bn RR/ACF ?.i7ji«oo GR/ONCF 3.7714*03 MS/ACM 5.«57A*o) «C/ONC«
I-P.CTOR STASC CYC 50 SI . SZ 13
OO START 1NOFX NU*BFR | .2 3 1 5
I
^^^ n*iO ( M | C^DMF f t R<5 ) 8.7Q S.35 7.80 1.55 1.28
•lASI 1 MlLLI'?R*l'5l I1.7Q 7.70 S.|1 2.19 I.O5
ir,/n»ICM/ST»i5E 3,l|»n^ 5.77*O7 I.09«n3 5.78*07 2.27*07
CUM. * OF MASS LrSS THAN 950 11. fc, 34.81 15.59 6.26 2.93
CHI. (M(i/AC*50 1.7^*03 1.31*03 5.88*07 2.36*07 • 8*78*01
till. IM5/ONC1I 5HALLEP THAN f)5n Z.5<|*03 | .97*01 8.87*07 1.51*07 1. 37*0?
ri>H. (GR/ACF) SHALLT9 THAN 050 T.lf-nl s. 71-01 2.57-01 1.03-01 3.81-07
rill. (GR/D1CFI SIAtLER THAN |>5o l.lf»00 8.AI-OI 3.85-01 1. 55-01 5.75-0?
ftFO. 1TAM DIA. I H | C^OHFTFRS I 2.01*01 6.63*00 3.87*00 2.08*00 1.11*00
^/OtftG') IN't/ONCH) 4.97*03 9.08*03 9*118*03 Z^il5*03 ^.68*03 3
1M/n[.OGO (HO. PARTICtES/ONf H | 3.5|~*OB 7i79*09 1.90*10 1.66*11 7.05*11
51 55 5* FILTC*
* 7 8 »
.75 .55 .37
.11 .10 »O7 .ri6
9.37*01 2.12*01 1.21*nO 1.77*01
•68 .30 .23
2*56*01 1.15*01 8(66*00
3.81*01 1.77*01 1.10*01
1.17-07 S. 02-03 3.79-Q3
1. 68-07 7.53-03 5.68-03
9.79-01 6.17-01 1.19-01 7.75-01
^99*07 1X60*07 l-77»0| «. 77*01
3.11*1) 1.15*11 1.77*11 7.73*12
NHPMAL 1 fGINEtRl US 5TAN0AP1I CnVn I H.O"S A'C 7J WG C •''0 740"" HS.
-------
I RUN 7A
•mint A, INLET or r«?p, •011 ACE*
121.I C
11PPLIN6 DURATION • 5.00 M|N
IMPAfTOP PHESSURF OPOP • 1.S IN. or HG
ASSUMED PARTICLE DENSITY « 7.40 ^M/TU.CH
G*5 COMPOSITION IPEWCENTI CO?V
C»LC. MASS LOADING • l7lS53*00 GR/ACr
if"pACTo* sTA'srT CTC"
sTAse INDEX MUMnm j"
^k f>10 |M|CRONETtl»SI -S.^
MASS (MILLIGRAMS) M»Tv»
Mr./ONCM/STASr
fllN. I or HAS5 LESS THAN DSO
CUM. (H6/ACMI SMALLER THAN DSO
CUM. IMQ/DNCNI SMALLER THAtToSO
~C1«M. IGR/ICn SNALLFt THAN DSD
CUM. (GR/BNCF) SMALLER THAN DSf)
GrnT
• 2SO.O r • 121.I C
-------
CO
I
in
I ItlN ?« BRIM* *, INLF.T f>F r«?»,
FLO*R«TF . ,o"in »CF*
IHPACTOR TEMPERATURE • 75o.o r • 121.1 c
DURATION
S.OO « I »
IHPACTOR PRESSURE DROP • 4.5 IN. OF HG STAC* TEHPERATURE • 230*0 f • 121.1 C
ASSUMED PARTICLF. DENSITY « 7.*f» GM/rU.Cx. STACK PRESSURE • 27.00 IN. OF H6 *A»
.fi«S COMPOSITION IPEtCENT» Co? « 1.19 • PO • .80 N2 • 78.10 OJ • 17.30
C'LT. MASS LOADING » 1.»7|l»0fi GR/ACF- 4i55«8*00 6R/ONCf 1.0001*01 "6/AC*
IiPACTOR STAGE "~ ~~~ f1( SO II S2 S3 SI 55 S*
STAG? INDEX NUMBER f 21 4 ' * » _' "
150 IMICROHETERSI 8.20 5.15 7.80 l.5» !•*• .'5 •** «J7
HASS IIILLTGRAMSl 50.01 6.40 4.11 3.5* 2.23 .*» .40 1.01
HG/DNCH/sTASC~~ ~~ ~F7oT»011.40*0)-1.29*037.52*074.73*021.40*07I.77«n2*.IR*07
. JO
.00
O.nO
CU1. ( OF NASS
THAN 010
20.0.1
11.40
*.39
3.24
2.31
1.1*
.01
CUM. tMS/ACit SHALLFR THAI 050
2.94*01 7.00*03 1.14*03 4.19*07 3.24*07 7.11*02
5.00-OI
C'IM. (NG/DNCHI SMALLER THAN
1.01*03 1.71*01 4.59*07
1.4«*02
7.14*07
7.SO-OI
C'IM. IGR/ACFI SMALLER THAN DSO
CUM. TRR/OMCF! SMALLEU THAN OBO
"GrTr^EVN "61 A.
l.2«*00 8.74-01
1.98-01
2.79-01
1.42-01
1. 01-01
4.38-02 2.I9-O1
1.99*00 |.ll*00 7.18-01 4.14-01 2.17-01 I.51-01 4.57-02 3.78-01
7.1>l»6l 4.43*00 3.87*00 ~2.0**03 I.4I»OO 4.71-01 4.42-01 4.14-ni f.ft-Vl
-------
I •««( ]* a*!** A, l*Lr.T i»r r?i», A/ia/T7
.090 ACrn llPACTfjH TCH»C»«TUI»r • 790.0 r • III.I C 9Artl>L|MC DURATION • 9.00 «|N
or HG STAC' Tr**ea»Tunr • Z9o«o r • I7i.t c
A-ssimro PARTICLE otn9ifv m j.»o stvru.ci. 9TA« p»r.99tme • tr.oo m. or MS n«x. MMTKLE otanrTM • 90.n Mic»n"rTe»s
C07 • l-1» CO • .80 N> • 78*10 07 • 17.10 H70 . 7.30
C>Lt. NAS9 LOAOfMA • fl.)l*1»0r) G»/«CF |.?9o8«OI 8*/l>NCr l.fOB|*0
-------
oo
I
JB USTHlr H, r"ILrT (IF
M0»CTO" FL"K"*TF • .050 ACFH I^PACTOP TAMPERATUBE • 730.0 F • iio.O c 5A«PLI*i6 O*OP • 1.5 IN. "F MR 5T*C" TE1PERATUHE " 230.0 F • IIO.O C
PARTICLF r»Fw7 « |.1» CO • .HD H2 • 7B.IO 07 • 17.30 «?O • 7.1O
7.1513*00 C"?/«CF 3.57j1»OQ S"/DHCF 5«*0»1*03 "S/ACH S.|77I»O3 «fi
IHPACT09 STAGE
STA«C ,^OfX MU1F.F*
050 (IICROMtTEnsi
H.« .M.LL.r,4»MS. .
•«r./p«ici'/'STo
r;FO. Hrd«i OIA. | M jfJOHf TERS 1
TYr 5^ SI 52 S3
i •> 3 1 5
H.17 t;.lP 7.7T 1.53 1.27
73.5^ S.30 3. VI 5.11 I.It
1.1,*01 |.0»*0-1 •«. 05*07 1.05*03 ?.«*0?
10. HI ?7. If 17. A3 1.7* 1.77
7.70.01 1.54*03 ».8»*0? 2.»7*0? t.»?»OI
3.34.03 7.25*03 1.11*03 3.90*07 1.45*07
1.00*00 A. 74.01 I.SJ-Ot 1. 17-01 4.33-0?
t.4A«90 *. 87-01 6.30-01 1.70-01 *.S7-O7
7. of. oi A.5**oo 3.*j*oo 2.n**on i.3»«oo
S« 55 S* ritTE»
* 7 * »
.74 .55 .31
.00 .70 >00 .00
O.on t. 11*07 o.oo o.no
1.77 .01 .01
*.»7«OI ».80-r.| 7.M-OI
1.15*0? i.ot-ni i.ov-ot
1.33-0? 1.21-04 l.?3-m
i. 37-02 l./1'-04 I.71-0*
».*»-«! ».3*-OI 1.15-01 7.77-01
3.12+1 I 8*01*11 0.00 3*12*12 n.Ofl
lENQINtE1*'^^ _ST* MDUff P ._!„ C ^*jt>j_T IQN5-. 4?E.JZJ DEG..C_*MD_?jlfl!l?*__Hfi* ,
-------
i DUN «A 8i»ri«r B. INLET or ESP, 7/11/72
I-PACTOR rL««RATE . .«o 4cr« IIPACT,,* TFHPE*ATU*E .
MPACTOS PRESSURE OH3P • 1.S IN. Or MS STAC* TENPERATURr •
ASSUMED PARTICLE OENSITY • 2,40
-------
1 BUN 1* »R!«|IC », IMLET OF r«:r», 7/IM/T7
*CFM MPACTflR TEMPERATURE " 7*0.0 F . 171.I C • SAMPLING DURATION « 4.QO «|N~
tipACTriR PHrssuRE OROP • i.s m. nr HS ST»C" TEIPERATURF • z«o«o F « 121.1 r
PARTICLE DENSITY . 7.*n GN/CU.CM. STACK PRESSURE - ?7.on i«« OF MS n«». PARTICLE MAHFTFR • io.n"«"ic«n«rTE«s *
COMPOSITION (PERCENT! C07 « t.1» CO . .«0 N2 • 78.10 07 • 17.30 H7P . 7.10
r«Lf. 1»SS LOAO|NS • 7.77l*»oo RH/HCF 3.4076*00 6R/ONCF
TMPACT01 STAGE frC SO SI 5? S3 S* SS S* FILTER
.... ....... i | 2 3 1 5 A 7 g
I
tO 1*0 (««rCRO«FTEffs1 8.70 S.35 2.HO I.^S 1.28 .7* .55 .32
3.30 I.A4 .88 .00 .00 1.11 .77
5.7*«03 4.83*02 &.***D2 1.92*07 l.8fc*07 O.OH 0.00 2.47*07
ri|M. « nF HASS LF5S THAN 050 75.77 l».57 10.AO *.0» 3.70 3.70 3.70
THAN P50 l.)1*01 1.17*01 •).51*07 3.17*07 1*92*07 1.97*02 t.*7*Q7 3.13*01
ClS/BNCMI SH«LLC* THAN 0<>o 2.i)|*03 | .S1»01 8.77*0? 4.7S*07 2.89*07 2.8**07 7.89*07 4.70*ni
'^0 S.RS-OI4.4S-OI7.11-01I.38-018.41-078.41-028.4|-n71.37-07
C'lH. (fiR/f)NfF» SMALLER THAU t»*T ».7«-OI &.&7-OI 1.41-PI 2.08-01 I.J4-OI 1.24-01
r,tO. MEAN 01 A. |H|CROHETER$I 2.01*01 A'.Al«On 3.87*00 2.08*00 1.41*00 *.7*>0f
7.17.03 7.40*01 2.49*03 1.37*03 7.25*03 0.00 0,00 1.01*03 l.4**0?
(NO. PART1CLES/ONC") &.S7*0" *.5«»09 3.15*10 I.H*H S.9I*I I oTon '. o.OO "|.^T«I3~ T.J»0*I3
S.TANI>/kR»_| CnNf>HJ?)NS »RE. ?_l.J>.Ffi_C_*.N_n_.Z*OJ*?_t!
-------
i *u« M MINK A, INLFT or
IMPACTO* riOIMUTr • .040 ACT*
T/IS/77
III.I C
9AMI
S3
S«
ss
s»
i
1**0
.SS
4.H4
l.tl
.SO
,tt
. J7
>3O
l.0»»07
CUN. I or M»SS LM< TNAN 040
CIIN. (M(/»c«r SNALLF* TNAN~D»O~
ft. 00
i.ji
LSI .
.77
• IS
I.3|**03 |.7l*OS 7,»3»07
7.1f«OI 1.7t»OI
.01
~*7lT
-01
CUM. IM4/DNCMI S»lllC* THAN OS«
~(\i^,
7.14-01
SNALirn THAN 0*6i.ei»ooy.tt-oi
s.n.of
t.oH-n
-------
| RUN 5fl BRINK q. INLET Or F*"", T/15/77
|MP»CTOR FL^rfRATF » .350 ACFM |MPACTn» TpHPFRATURE • 750.0 F • 121.1 C
IMP4CTOR PRESSURE DROP • 1 . 5 IN. 9F HG STAC* TEMPERATURE • 250*0 F • I2I.I f
ASSUMED PARTICLE DENSITY • ?.*n r.«/"J.CM. STACK PRESSURE • 27.00 I*, or Mr,
r;AS COMPOSITION CP^RCENTI ro7 • 1.19 CO • .so N2 • 71.10
TALC. MASS LOADING • 2. ID'S* OH GR/HCF 3.l5j7»00 SR/DNCF l.il
1-IMCT9R STAGE CYf SO SI 52 53
START pjnFX MUMflFP 17315
CO
1— i r><;!) t "MCHMETERs' *.2t) S.35 2.10 1.55 1.2*
i_*
MASS tHlLLIS»»"5> 21.11 l.dT 3.»» 2.l» l.0»
MG/1NCH/STAr,F 5.17.03 l.»*»07 8.15*02 1.*0.07 2.31*07
CUM. * OF MAS5 LrSS THAN 050 78. .!« 7?.»5 11.13 1.7 A I.S*
run. MS/AC"! SHALLER THAN 050 i.3n«o3 i.io*o3 5.34*02 2.?»*07 7.51*01
C'lH. (M5/ONCH1 SMALLER THAN 05Q 2.05*03 |. 45*03 8.03*02 3.11*07 1.13*0?
CUM. (G»/«fr> SMALLER THAN n<>o 5.«t-9i ^.»o-ni 7.11-01 i.no-oi 3.?R»n?
CUM. IG'J/ONfri SMALLER THAN 050 ».7«-01 7.21-01 3. 51-01 1,50-01 1.»7-02
r.FO. MfAN r>tA. (MICROMETERS) 2.O1.0I 4.43*00 3.17*00 2.a*»OO 1.11*00
DM/1L"G" |Mr,/ONCH| H.57«03 ?, 11*03 3.01*01 l.7»»03 2»7»»03
o"/r>L^fit> ("o, PART ICLES/OIC" i 5.nj»o' 5.10*0* T.II*IO i.is*ii 7.31*11
SAMPLING OIIRAT1ON . 5.00 Ml«
M»X. P»RTKLC OlA»«ETER • 51.0 MICRnHFTER-i
07 • 17.30 H70 • 7.30
11*03 "fi/ACN 7.7171*03 Mr^ONCM
S» S5 S* FILTER
* 7 1 »
.75 .55 .3?
' .31 .0* .04 .00
a. OK*OI !.*i*ot 1.77*01 o.oo
.15 .18 .01
?.H»OI 8.77»nO 2.11-01
3,21*01 1.31*01 3.41-01
V.3A»03 1.8I-O3 1,05-01
1.10-0? 5.71-03 l,5»-01
*,7*-OI 4,12-nl 1.17-01 2.75-01
3.15*02 1.11*02 5.31*01 0.00
2.70*11 1,00*11 5,31*11 O.OO
(ENGINEERING SUNDARO) CONOI T I9NS A.R.E_ II _ OFG .C AID. 7tflHH
-------
t RUN *A BRINK At INIET OF ESP, 7/JH/7J _ ._-
IHPACTO" F^OWRATE * iDSO ACFM INPACToM TCHPEnATdwE • 290.0 F " |13*' C SAMPLIx6 nURATfON
IMPACTOH PRESSURE OROP • 1.5 IN. OF H« STAC* TEMPERATURE • HO. n f • |13.3 C
ASSUMED PART1CUE DENSITY • 7.*O 6M/CU.C". . '^C* /»ESSU»e • 27.00 IN. OF MS *»*, P»«T|CLC o'*MCTCM • 50. n M
S«S COMPOSITION (PtHCtMTI _ £^?_?_JLl?^ _ CO • .80 ___ Mg . TB.IO _ Of • |y«»q __ H70 • J.
C»LC« H«SS LOAOIN6 • S.S]«1*00 6«/«cf _ _ •^T7(,J»»lri 6M/pNCF I •?*Tl»*0* »6/jC»
I«P»CTOH ST*SC CT{ So _ II _ 1* 5J »»_ _ ..*5._ **
050 <«|CftOHETENS» 0>J7 S.t* • Z.RA I .«• I..1I >T« .** •*'
" " " ' " ---- ..„._ .. , ^ ...... _ .. ...«.-....._ ...... „_ -
___ 10. »J ___ H^*03 }.*4*OJ l«lt»03
P50 t«|?»D3 1.H»03 l»»|»01 T.|1«Q? ?«*2»Q> »«M*OI
CUM. |Gft/tCF| SM*LLCR THAN 0»0 | .A9*00 l«l**00 4.00-01 I .tT.ol «.OS-0>
CUH. IS»/ONCFI SH»lLE» TM»H 080 7*««*00 |.«3*00 T.»J-01 _ J.IZ-Ot _I.««-OI_
«EO« «f»»»J>tl. tHle«pMETtl»St __ __ ?"OS*OI *»^**00 ).»5*QQ »»I3«QO |«11*QO
1.01*01 •«i7*s I«»B»»IJ
DN/OL060 (NO. P*«T (CLES/OMCH I |.^»0» 2«*»*IO 1.01*11 3.1*»|l |*>**|2 ft .11* | | I ,3T«| 2 t>«00 3.»1»IJ
NO»H»L IfMSlNCfRIWC STANDARD) CONDITION? «»E 21 ft£S C AN6 T*6HH MS.
-------
I R'JN »B BRINK Bi INLET OF ESP, 7/IA/77
IMPACTOR FLOWRATE • .050 ACFH IHPAC.TOR TEMPERATURE • 290.0 r • ii3*3 c SAMPLII^G ROTATION • ^.on
IHPACTOR PRESSURE DROP « 1.5 IN. or HG STACK TEHpERATURF • 290.0 F . |13.3 C
ASSUMED PARTICLE DENSITY • 7.*o GM/CU.CH. STACK PRESSURE • 27.00 IN. or HG "»x. P.RTJCLE I>I»METIR . sn.n
GAS COMPOSITION (PERCENT) C02 • I »1* CO • .90 N2 • 7g.lQ ' Qy • |7.3(> H20 • 1
CALC. MASS LOADING « 5.0353*00 GR/Acf _ Z.*.T.TT.ITP.O..S* 7 « »
CO 050 (MICROMETERS) 8«37_ S'*1* ..?•**..'....... I •*• l»fl. •** .«b* ._ . .*«
CO MASS (MILLIGRAMS! *2'.3n ..?•.*•... ?.'•• _.-3.'8? ,'.t.?^ -!9-5 «PJ? t0rl t|02 fl>4f-01 *,C*-03 g.»»-03
CUM. IGR/ONCri SMALLER THAN OSO _ |.An»00 |.3»»00 *.70-01 2.14-fll |.07-ol 1«*!'°7_ l'^l_^3 l'H-07
GEO> MEAN DtA. (MICROMETERS! 2'"«i»OI *.7**QO 3«4S*00 2.13*00 |.11«oO ».*R-Q| t.SS.QI 1*27.Ol ?.»»-n|
DM/OLOGO (MG/ONCM) l.«0*9l 6.01*03 **2B*03 3>32*n3 3.83»OJ *.|I*O2 O*n° n.OO I.a«*n7
ON/DLOGO INO. PARTICLES/DNC"! I«5l*0» I.13*10 7.4H*|p 2.51»|l V.1**ll *.77«ll O.OO 0*00 A.JS»|»
NORMAL (ENGINEERING STANO»"OI CONDITIONS »"E 2t bEG C ANn 7«6HM HG>
-------
I NUN 7A BRINK At IM4.CT OF ES»( »/]»/»». __ .
1 [FACTOR FLOXHATC; • «Q50 ACFM IMPACTBR TEMPERATURE • »7o.o r . |3>»» _c s»M*itNa MIRATION
PRESSURE OKOf "I.*, IN. OF H< St'ACK TEHpCRATUHF • 270.0 F • |32.2 C
ASSUMED PARTICLE OENSITT . 2.»0. OM/CU.C". STACK ^»E«SUHE • *7,00 IN. OF MS *»*,• P(*T|CLE j)lAMETER . s".n " IC»""ETr"«(
6 AS COMPOSITION (PERCENT I C»» - I.M CO • ,»0 N2 • 7g.lO 0? • IT.3n H2O • 7. SO
CYC ..»o .11... V *>..._.... ?» '.*.. '»
*T'.s.!L.i!LPe.«_?Vl!II? l > 3 i » » 7 e j>
050 1? •_?*__ *'9 • »5
4,,g$»0> | •yo*Qg I .07 *0y . <*»7f*OI 6*51+01 7.A3«Q|
CU«. I OF MASS LESS THAN 010 .*_»_•_*0 _?0'»0 . !W .'•fk«L_ __*•**.__ 'iL*. _L_*»L'__ _ ' T.3*
COM. (HC/ACMI SMALLER THAN 050 |.»|<03 |.1T»03 T.f|«0> }.l%*0l |.*1*Q>
CUM. (Mt/OMCMI SMALLER THAN DSO 2>««*03 1.27*03 1.11*03 •.«»«02 ;.fT*of
COM. («R/ACFI SMAtLE" THAN 050 g.3l«OI »»'»I-0| 3.15-01 |.3«-OI
CUM. (SR/ONCF) SMALLER THAN O50_ |.29*00 t»*Q-OI 1.86-01 J.»JL?-OL_ ?'J9"?L ?'JST0? ^'J!0'?.*—. 3«31-O7
SCO. MEAN OIA. (MICROMETERS! 2*01*01 »«»»»00 3.»|»00 2.11.00 | .12*00 4.R9-OI ».1»-OI L73-OI
OH/DLOSO IMC/ONCMI _ 3.1*«03 3«»»«03 1>l|*03 7>13«03 2.2»»03 1.57»O7 3«43«02 7.73«n2 7.53*02
ON/OLOCO (NO. PARTJCLES/OMCMI )>oi*o§ *.o
-------
I RUN 78 BRINK ft, INLET Or ESP, T/l«/77
IMPACTOR FLOWRATE • .050 ACFM JMp^5Jj]|Jl_TI'ipE«*TijR| » 77?'J'LU|G_ nimTiow • «;.on
IMP*CTOR PRESSURE DROP « t«5 lN« flf HG ST»CK TEMpERA-fURE . Z7O.rj F . |32.2 C
ASSUMED PARTICLE DENSITY « Z.60 GM/CU'CM' STACK PRfSSllot « 27.00 In. OF HG H»x. p,RT |CLE r>l Ant TIR « Sn.n M
S»S COMPOSITION (PERCENT! ?_"?_" _.' 'l! C-?_ *_ _!*9_ "2 . 7B.in __ 0? « I 7 » in "*?_"__ * ' 3.?
CALC. MASS LOADING • |.5087*00 SR/«C^ Z«3Z6»*00 GR/OMCF 3.tS?««01 «*./»5H_... S.37i7»nJ
IMPACTOR STAGE CYC so si .. 52 S3 s« . .55 s* FILTER
STAGE INDEX NUMBER |_ Z _?__ J! .5 * L .— 8 . --
DO " '' - -- -
I 050 (MICROMETERS* B-79 S.1*! 2.R3 1.57 |.Z9 .7* .56 .J2
01 MASS (MILLIGRAMS! I I • "0 3<21L 5*«* _ 2'*'0 *** •<>*__ „ .! °°. •°° 5I!*9.? * •_? * 1? 2 _ _?.*-? ** *-9J Ltl5±?J _Ji?J*01 I'13*0.1
CUM. IGR/ACFI SMALLER THAN 050 ' 7.«?-OI 5.7i-OI 2.|S-Ot 4.47-OZ T.1B-OJ S.TR-03 3.78.03 1.7R-03
CUM. (GR/ONCFI SMALLER THAN 050 |«2o*00 «.'2-0| 3.31-01 l«O3-Ol |«IS-oZ_ 5.»3-OS 5,«3-Oi ^.113.03
SEO. MEAN ol». (MICROMETERS i_ 2«'?<«*oj _ *'***^9. J.l"±°0 2'J'*9P i»i2*oo *;*9"0| *.i9.oi I'?1"0.1 7'f7r°.t
OM/DLOGD IMG/DNCMI 3.29*03 3.*i*o3 1.57*03 7.03*03 7.sz*03 <;.60»oi 9«nNCM| ?.S7»08 9.1|*09 S.*|»lo |.*0»|l *.13»M «.2**JO 0.00 O'On 2.73*17
NORMAL (F.NGIHEFR1NG STANDARD! CONDITIONS ARE Zl REG C ANn 7AQMM H£.
-------
I RUN 8A BRINK A, INLET OF tSP, 1/19/11 '_____
1 >74.Q r • |S5.4 C SAMPLING nURATION • «i.OO »l*
INPACTOR PRESSURE DROP • 4.5 IN. OF HG _ STACK TENpERATURC • 174.0 F • |JS.4 C
AJSONEO PAflTICLE DENSITY . 2.40 GN/eU.CM. STACK PReSSUlir • 27.00 IN. or »G HAX. PA»TjeLC plAHETt« . «n.<1 -ic-nHfTrw?
. CALC. MASS LOADING • 3.1211*00 GR/Acr <
INPACTOR STAGE CvC *0 Sl_ « SJI S* 55 S» MLTC*
-ST*?.e. |N-?Cl(.fOHeJ?5- |__ 2__ 3 * S A 7 g ,
I 0*0 (MICROMETERS I ._••>! _ S'"1* 2.M | .57 (.30 .74 .54 .12
°* . ."AJS (MILLIGRAMS! __._1aV» 3.01 S.42 _3.7« j_.7_i , .? J_ ,2f .^0 .«IO
COH. • or MASS LeSS THAN OSO _JQ'PT ._ .Z5«*l l».|3 JO.01 ».'» ?»V Z'M_ **.*
COM. IMG/ACM) SNALLCR. THAN 050 l.*J»03 2.>0»01 |.1|«03 •.7«*0> .. «»*<*0> .. f.2«l«0Z I. "1*02 5.4».OI
1'ft*?3 3«*U*03 f.|f»Q3 1.34«gl 7«*2*Q2 3.8Q«0? ?.•» » 0 7 H.NS.OI
CUM. IGR/Acri SNALLER TNAH 080 |.11*00 f.43-0| 4.14-0) 3.»3-Ol 2«I I-01 ».«S-0? «.01.02 2«1»-0?
CUM. ICR/ONCF1 SMALLER THAN 080 | .7?«00 | .Sp*00 ^.5S-OI *_«»5-OI S'""OI I 'SS-OI 1.25,01 3.87.O7
6gO» NCAN DIA. (MICROMETCtSJ L'^'Ji **^1??? 1»«2«OQ 2. I I »QO | »13»QO f.«|-OI ».S|.OI I.Jt-OI
ON/OLOGO IHG/ONCNI i.22*01 3.54*03 -».io*os 3.23*33 7.34*03 1.72*03 i.»2*n2 -.25*02
DN/OLOGO
-------
00
t
I RUN SB BRINK BI INLET OF ESP. 7/20/77
|MP*CTOR PRESSURE DROP • 1.5 IN. Of H& STACK TEMPER*TURF » 270.0 f • (SZ.Z^C
ASSUMED PARTICLE DENSITY • 2.tO 6M/CU.CM. STACK PRESSURE > 77.00 IV. OF HG M4X. p«»TfCLE Ol*J-rT£R . Sn.n
_6AS_C£MPOSI_T10N_IJ^EHCEJ*TJ CO? • I .49 CO • .HO N2 « 7>.IO 0? • |7.3p H20 . 7.3n
CALC. MASS LOADING « 3.9|55*00 GR/*CF 4.0390*00 6R/ONCF 8.?*0o*03 MG/»CN l«3«t'
1HPACTOR STAGE CYC SO SI _ 52 S3 J4 55 S* MLTt»
STAGED INDEX NUMBER _j 2_ _ 3 1 5 A 7 _ 8 »
060 (HICROMETEBSI n.2« S-tl *•«'... 1.57 |.2» .74 .54 .}Z
MASS (MILLIGRAMS) 14'Hq 4.20 _ i»25 1?*? _l!*5? _!«10 •!• 'H «l?2
5/_M*03 9.15*07 L*-?P*.?L? 7»»4«o2 3«27*Q2 7«4Q*o; 3,9Z»Q| 1*05*01 ».34»|
29.94 23.32 10.32 _'•••'' 2»a« __ __?A! •?*_ _ <0O1*Q2 1.8^*0| 2.30*01 J/.Otl
4.|97»p2
1.23-01
. 24*17
NORHAL
«RF 21 *»t« C
-------
I RWW »• BRINK t""CTOR *, INLET of fifi T<»l'7*. ._ ....._ _-.
>crn IW»CTQR ttiwEHMum • t»o.o r > (»>•* t
|HP«CTO* PRESSURE DROP • <•» IN. or Mt STiC«_ TEHfERlTWRE • ttO.g F • |*».» C
ASSUHCO PMTICLE DENSITY • I.»0 6M/CU*CM* St*CK PRESSURE • ITtOO iNtJIP H« _ J*«J^ M" l£>C ?.'*?r!5" " 5P"C
CAS CON^OSITION IPCRCCttTt COI • |.*» CO * •«<) Nt • TfttlO 0} • l'«>0 M»0 • I«3O
C«tC. H«5S LOAOINC • l,«|g»«00 _•»/»«' __ ____ •*»I|**JL**P _.__ - ..
IH^*CTOR ST*«C CTC. •• '....»! ___________ «* - ..... .-. *s _____ 51
STA6C |NOCl MUHte« _ _ , _ f __ 3 1 i . t
........ ----- •" ------ ..... ------ ----------- ' '
CD
tLi 0»0 (MlCnOMtTERSI «•»«« »«J» *«•»_ 1 «S* _ (•**. _ _ •** _ ___ •**_ **Z
oo ..... ."''"." '". ........
14*04 __ I .»O __ J«|f _____ *J_'1 ________ l«_l» ________ .J* _________ ».?*.___ ...*M.
cui»« » or ,M«SS Less TM»»« 0*0 • _ _ j»«sj __ .»•*> . _*?•*.* ."»VL _ At*? _____ »_At*5 _____ ?..».1A _________ **°
CU«« |NC/*CNI 1M»LLCR TM»H 050 |. J.A?0*0*.-.. I •**•
CUM. (MC/DNCm SH*LLCR TH*X c&O f.|»»0i |it1*03 li|*»03 S»TQ»0»
0*0 6'i*-ot 5*3<*"°.l_ *«>J-oi _ i«»'»-oi
>O t'St-oi g«Q*»ot S/OA-OI ___*«.1»-?!
6EO. HE«M 01*. OUCRQHETCRSt t«0j*0l ». 44*00 J.d9*QQ »«IQ*QO I . 12*00
DN/DLD6D IMS/OHCM' 4.*V_H _*_' "* '-' -.:*' ' 2* '
NORMAL irfCINEERIKC SrtNDAKOI fONbrtrOSS »RC ZT I)E5 C *«& T*6rt* M«.
-------
I RUM 9R BRINK IMPACTOR fl, INLET oF ^SP, 7'?I'7T
IMPACTOR FLOWBATE » .050 ACrM IMPACTOR TEMPERATURE • 270.0 r • |3Z.Z C SAMPLING DURATION • I.On MlN
IMPACTOR PRESSURE DROP • ».9 IN. Of H<> STACK TEMPERATURE • 270.0 T m |32.2 C
ASSUMED PARTICLE OENSITT . 2.60 GN/CU'Cx* SMC* PRESSURE « 27.OO Iti. or M6 N»x. P,RT,CLE oUMETER . *n.n n|C'
5A^S_ COMPOSITION (J^ER^ENT_[ CO? • |.1* CO • _.ao HI • Tg.lO 0? • |7.3q M*0_ « 7.3n
C»LC. MASS LOADING • (.0772*00 GR/*(F l«*4|*l»ljn QR/ONCf 7«i««o3 i.57»ijj ?.i**03 5.4o»02 o«oo o.oo
t.»
-------
RUN |O« BRINK |«P»CTOR A, IHLFT Or_t?f •
,MPACTO« FL0«RATE . .850 ACFM
1MPACTO* PRESSURE-DROP " I
or H6
SM/CU.CM.
eoj • i.it
.Sl"*cr
.. - CTC
I
§**0
I6-8J
i»'H
|.3s*03
j.3«aj
_,.»irO«.
••*7-Ot
7.9J*Ol
STACK TEMPERATURE • 210.0 F . 121.1 c
STACK PR
CO
z.it
SO
2
5.35
!•**
3.71*02
2».*S
|.li*03
|.«*«OJ
4«>J»0|
7.25-01
t.«)*00
ESSuRE • 27.00 IN. OF MG M»*. PARTICLE nlAxtlER • 5O.H " 1 f RfMFTE"*
• .BO H9 • 70. IQ Of • 17*30 H2Q • 2*3n
55*00 SR/0NCF 3«730i»nj M«!/»CM 5.5o»|»n3 Mfi/nNfH
SI S2 S3 SH S5 S6 »IVTt»
3 t ' S 6 1 » t
2. MO 1.55 t-2* .75 .SS .32
-
2*51 1*70 |>33 .37 .35 |.O3 .51
S«38*0t 3«*0»0l J«'2*oi 7.*1*0| ^.''ZtOI 2*H*0» 1 «n*»n»
JO. 01 13.40 »•** 7« If *,• «.0|«07 3.27*0? I >0«*07
3*17.01 2.22>0l I.ID-OI I.IT-O! t.SI.O? 3-16-07
1.tO-OI 3.33-01 J.Ot-Ol 1.75-01 1,13.01 1. 13-07
3*17*00 2.01*00 l.1|»00 t.7t-0| 4.12.01 I.T'.OI 7.7S.PI
OM/DL060 iMC/DNCMl ^.Sl.oJ 2*00*01 1**1*03 I^O+OJ 3.10*03 3.J*»OZ
DN/OL06D (NO. PARTICLES/DNCMI *j.o,»o§ 5.05*0* J.17*10 i«H*n ».»J*il ?.»3«ii
fONOlfK)w5 4»E 71
-------
CD
ro
I RUN |OB BRINK IMPACTOR B, INLET'flF fSPi 7/22/77
IMPACTOR FUOWRATE » .050 ACFM IMPACTOR TEMPERATURE • 2*0.0 F • 121 »i c SAMPLING PURATION . s.oo
IMPACTOR PRESSURE DROP • i.s IN. or Ht STACK TEHPCRATURF • 2*0.0 f • iii.i c
ASSUMED PARTICLE DENSITY • 2.60 GM/CU«Cl« STACK PRESSURE • 27.00 lN«jBr_Hfi_ "A^. PA&T|CLE nlA»r.TCR • 5n.n "
_GA£ COMPOSITION (PERCENT! • C02 • I«1T CO • .80 N2 • 7a.lQ iLLJLj 7 *_?? _".*? * 7*3°
CALC. MASS LOADING • 2.ISSUOO 6R/Acf_ _ _ ?'?1T?*PP SR/ONCF *,93B«*pj M6^»CM_ 7,7t-OI |.*1.0' l»ll"OI S.50-0?7.AO.O' 7.40.O2
CUM. (GR/ONCri SMALLER THAN 050 _.. _ 8«7(J-OI *.»3-Or_ *.07-OI >*VjL°^ I**V01 !•?*?.?».„.:?•? l.-°?... J<9|-°?
GEO« MEAN OIA. IMICRQMETERS> , ?»I?1*OI t»*3*00 3.A7*OQ 2.08*00 |.1|»QO 9.79-Qt »."2.0I 4»|9-Q| >.75-01
OM/OLOGO IMG/ONCMI *.*o»o3 2>i**o3 2*33*03 |.12*01 2.22*03 •*i?*O2 7.51*02 o.oo ?.***n2
DN/OLOGO INO. PARTICLES/ONCMI A. 19*0* «;.*i*09 2.95*10 i.i»«ii 5*8i*H *.IO*M '.09.12 TOO i.»i»n
NORMAL (ENGINEERING STANDARD) CONDITIONS »RE 21 bl« C AND UlJMM H«.
-------
I RON HA BRINK IHPACTOR A INLCT or FS't "rt'77
_IMPA_«OR rtoMRATC . .0*0 ACFM IHPACTOR TEHPCRATU«E • Jip.o
IHPACTOR PRCSSURC DROP • 1.5 IN* or H«
AStUHCO PAHTICtC OCNSlTT •' 2.60 CH/ClMC**
JBAS COMPOSITION IPCRCCMTl C02 • |.
CALC.
I
nU*»Tll)N •
M|H
STACK TCNpCKkTUKC • HO.O r • | l».4 C
.......... - - ....... .......... .......
ST*CK PRCSSURC • IT.OO IN. or •«» _ L_f!**i.
CO • ««d' _ Ml . Tg.lO _ ot m |7.I0
• «n«n
N2O « >.JO
IHPACTOR STACC
STACC INDCX NUNBCR
050 IHICRONCTCRSI ..
MASS IMlLLIBRAMSI
HG/Ol
CUM*
CUN»
CUHt
CUH.
CUM*
6EO.
«CH/STA«C
« Or HASS LCSS THAN 050
INC/ACM I SNAILCR THAN D«p
IN«/ONCH| SNALLCR THAN DSO
(CR/ACFt SNALLCR THAN DSO
IttR/ONCr) SNAULCR THAN 0*0
HCAN OIA. IHICRONCTCRSI
CTt »0 SI 82
1 2 t • 1
j.|» ___»»_3» ?•?*.:..... t«V'_
2<«7j |.«2 1.4« t<)>
*.|7»OJ J.«0»PI ».4»«02 *.«U02
1|<»« 2*.M |». i|| «.*|
.-I«*I*P3_ .I«J***3 ••3*»l'»_ »«0»*0«
2O»»OJ 1.00*01 l»21*01 7.18*0*
T.pl-OI *.»2-Ol 3>iA-0| J. 21-01
,.e,*00 I.T4-OI ».«-OI J. 27-01
2.^*01 «.M*00 >.H««00 *.07*00
9 t
|.87 .7*
!«*> .77
J«07»g2 |.4|*0f
5.«1 S.7|
2tt(*o2 1 tfq*Q7
1.*|*(j2 2i80*02
I .10-01 D.2A-0?
|.»J-OI 1.22-01
| .10*00 *. 71-01
ss
... ..*»
.»•
l.*»*02
1.5*
7.»«UOJ
1.17*02
3.17.02
> S. 13.02
4.3-.0,
Si
»
• 0»
(•25*01
!•>»
7.0t»0l
1*05*02
3>ID*02
1.58.02
1.17.01
>SO
ON/OLOAO INC.
2.0*»OJ
».2»»of s.so*io i.s7*|i
NORHIL lt»S!Neri»IHS
21 6ES C IMS T*6HM ««.
-------
I Pt'H 118 RRINK IMPACTO* R INLfT Or pSP, 7/?5/7T
IMPACTOR rtOWRATE • .050 ACm __ tHPACJTpll TEMPER AlUftt • _ *^0 -0 r » l|*.» C_ ____ SAMPLING flUSATtO*) « *.0n « I ti
IMPACToR PRESSURE D"OP • "»tb IN. or H& ST»CK TEMPER ATUur • 210. f| r • 115.6 c
ASSUMED PARTICLE OENSITT • 2.40 SM/cuTi- STACK PRESSimr . 27.00 Is. pr M6 i»K, P»BT|CLe oU«CtER . Sn.n »|CnnnrTri>s
c«^ COMPOSITION IPEHCEJMTI __ co? • J •^l_l__ _ Co • ___ .»p _____ ^2 . 7i(.io o? • l'«lo H'O • ?-3o
r*LC. n*5
IHPACTOR ST»6E Crc 50 si 52 53 5« 55 S* MLTER
STAGE INOE» NUMBER |234S«7R9
O3 050 IHICROMETERSI R . I » «; . 3 2 2.7* t«51 . l«« .'1 ,55 .J2
ro
CO «* ... V1. '<''
?.• il?.oL_? .•.*?±S ) ____ (L«Ji?*oi_ (?*80 |.u.o
CUM. » or MASS LESS THAN 050 3Q'*5 21.51 I3.-J* 4.23 2.7* 7.37 _'.*' 1*51
CUM. IMG/ACMI SMALLER THAN 050 1*54*03 |.25*03 6.43*0? 3*l7«o2 1*10*02 1.20*07 7.45*01 T.A^»OI
CUM. (MC/ONCMI SMALLER T;KAN 050 2'ic*0* L'*^*°2 *•'"?*?.* i«*«*o* 7.07*02 I.7**1?? i.)3«o? |.T3»o?
CUM. (GR/ACFI SMALLER THAN 050 4«»|-01 5.15-01 2.90-OI 1.38-01 fc.12-02 5.7*-fl» 3.31.02 3O1-07
CUM. IGR/ONCFI SMALLFR THAN oso IOH*03 |.»»»r»3 3.(5*OJ (.25*02 1««O*nZ f).0n^ J.7«i*n2
DN/OLOGO 'NO. PART JCLES/ONCMI «.9n*08 (,.34*0* 3.9S*|Q |.«1*|l 8.1Q*|I 9.»7»lo 1.3««|2 O'OO 7.1*»|1
NORMAL (FNClNtERIMG ST^NoARot CONdtTIOn5 *«C 71 OE6 C AMn 7AIJMM HG.
-------
INFACTO* FLOHHATE . .oso »CFM IHFACTQ* TtMFE»uu*t » tso.o r • »ti»i e
INMCTo* PRESSURE 0*OP • *•» .IH. 0' H« „„•*?•€« TCNPCRiTUNE • ._t8°»P_r * !"•• *
ASSUMED PARTICLE pcMirr • z.to GN/CU!*11_r*I*M*? • *!i?° !"i_."f M8_ "*!L* p*tT'c>? ?J*?eTH • 5n*°
««s cQHfOS|T|ON iPe«ct*Ti cot • i«<* c9 * *•" "» • ><**'o o? * '7>>o _H*O •
C»LC. H«SS LOAOIM
INMCTOR ST»« Crc —??._.. .SI S8 S3 $« SS 5* FILTER
7 STASE INDEX NVNeCR _j I 2 3 * i » 1 • »
OSO A'^» ____ *••*? ______ ,-i.lr.fl .- ... . '.?-'.* ___ ^ ..**J?J. _ I __ j*»*! _______ L«?t _______ **OJ
CUM. tHi/ACNI SNALLEH TMAM 0*0 _ | « Jj*OJ I .t 11*01 L. i«10»pt ______ ).II»qI ... . I »P**0» . _ V.8»»0» ... I .•**0t._ . T.5I «OI
SHALLEU TH«N Dtp | «*f *03 I «*0*O» • .10*01 «.*» »Q» t»ys*Qt ?.T»»Ot ?.T«»0» __ I ._ IJ_*O 7
CUM* ICH/ACFI SMALLER THAN oso g.ng-oi , t«»i-oi i*)»-oi I.JT-OI i«o»-oi «.o»*o? •.ov.oz s«7«.o?
CUH» t«M/DNCFl SM»LLtH _TM*M O50_ i»Tj_*PI __ 'Li'LT0! _ l'*^0! *.*?**PJ _' ** !"°'_ —llflJ!.0-! 1.71.01 1«»I.O»
tEQ. MtAM QIA. IM1CRQMCTCRSI __ t»01*01 4.*»*00 3.gT*QQ ltOB»QO _ |»o<> A.*o»n2
ON/OLOCD (MO. PAMTlCLES/ONCMl ^.(Jg*OB 0p °.0.0. «>*0»|7
»T«MDt«6) CONDITIONS «*E *l 6H f «6 >»6MH "HOi
-------
00
I
ro
en
I RUN 120 BHJNK INPACTOR B, INLET 0F ESP, 7/74/77
IMPACTO* FLOWRATE * .050 tern IHPACTOR TEMPERATURE • 2*0.0 r * izi.i c
ftllRATION «
IMPACTOR PRESSURE DROP • 1.5 IN. OF HG
ASSUMED PARTICLE DENSITY . 2.40 GM/CU*CH>
_GAS COMPOSITION (PERCENT! C02 • I
CALC. MASS LOADINC • 2.»l?2»00
1HPACTOR STAGE
STAGE INDEK NUMBER
050 IMICROMETERSI
MASS (MILLIGRAMS)
MG/DNCM/STAGE _ _j
CUM. « OF MASS LESS THAN O50
CUM. IMG/ACMi SMALLER THAN oso
CUM. (MG/PNCMI SMALLER THANnso
CUM. CGR/ACFI SMALLER THAN 050
CUM. IGR/ONCFt SMALLER THAN 050
r>M/DLOGO (MG/ONCMI
DN/OLOGO (NO. PARTICLES^ONCMI
STACK TEMPERATURE • 7.50,0 F . |2I.I C
STACK PRESSURE • 77. oo IN. OF MS «tx. P(RTICLE DIAMETER • %n.o
CO • .80 _ N2 « Tg.lQ 0? « l?«3n "ZO • ?
^ I
______ SJ ______ SI « S*
2 1 4 _ T ___ __ •
.12
3(j
(.32*03 f.S|»02
l»»8*03 I.«t3*03
2. 53*07
l-Ol-OI
l.rs»00 S.44-01 *.7J-Ot 4.03.01 7'§J-9.'
?'?J«OI 4**1«00 3.87*00 7.O8.00 |.'T*00
7.36.02
1. 10.01
». 12. 01
. 74.07
>«*. 07
1>I*-OI
».75.ni
V.7|*03 2.23*03
|.»8«D3 l«»*»
7*50*10 |.5»
3.32*03
. 01*17
NORMAL (tNGIMCFRlNG 5T1NO*«01 CONt) IT10NS «RE 21 ftES C AND U0»"
-------
1 RUN 1JA BRINK IBP ACTOR, INLET Of i!P
IHPAC10R UWRAIE * .''SQ RCr* I HP AC 10*. lEHPERATUK ' JSO.C t • 1Z1.1 C SAMFLU6 OUDATlCk « S.
FACTOR PRfittfHE Rflgf • 4.5 |g, _<> M mC« Ti*»i«ATUI>t • ?5t*E > • 121.1 C
ASSURER PARTICLC RENI1TT » 2.6r. GNICU.CH. STACK PRESSURE » (7..0(i IN. Of MS Ml. PARTICLE BIAPETEH ' }'.t
tAS COWOtlTION IPfWEWTI tt>2 • .7.3*.... ._ Cfl_». ... ,5C .. M. " 72««a Oi » 4.«i H20 « B
c«tc. MSS toAtm_• L«.**?*-*t:I..5!!/*t? a.co»ncc tB/ncf 4,32i$4ij
l^PAfTOR STACE _CU . ..._ If J|J.._ _.»». S3 S«i ?S S6
IIA6I INtCI NUffBEt 1 I 3 4 5 t 7 t
_Lt!i LiU 1*5J 1.2J ,?JS *i4 .31
_1.CC 1.16 .91 .36 .4'-
1.614CZ
'.w Mfc
MASi
20.J1
C«»t«. I «f MASS Lill T_H*N_»5'J IA_.*J_
CUM. (M«/«CNI SMALLiR TMAh »*'
CUT. (nfc/»NCN) SHALLIR THAN DSf
CUM. <6R/ACfl JUAlttR THAI. »5L
CJM. (GR/IKCri SRALUR IN AN »Sr
CEO. KfAN »|A. IHICROHEfCRS)
H/OL08R (NCSRNCN) _
H/DL06R (NO. PARTICLES/RNCR) 3.2(4(8
£7.2*
13.17
.i..r_4_
1.454C3
2.324C3 1.8(403
6.35-fcl 5.16-C1
2.rL4C1 6.4««CP
7.644C2
4.824Q2 4.214C2
2.49-C1 1.87-bl 1.16-C1
3.C6-C1 2.96-01 1.84-C1
3.'84i.P I.n34Cr 1.?74CC
J.4f4f3 8.744CJ 3.15413
B.93411
1.334CZ 7.93*v1 2.2H~TF?MH~M6.
-------
DO
I
t\>
1 PUN 13P BKI«K IM>AC10K, INLET OF tff
l.-tPACTOR FLGHRATE » .CiC ACFM 1!" FACTOR
I^PACTOR PRESSURE DROP r_?-s I!.__GF.H.G sJt.45A_TfJ!?JJ»A2yRj
ASSU1EP PARTICLi 0 E SS 1T» * 2.Lr GK/CU.CK. STACK PRESSURE «
!,A< CO.-POSIT10K (PEfiCtNT) CC2 « 7.36 CO = ..ft
CALC. "ASS LOADING * 1. 4 4« till .;: 6H_/*C..F 5 f 3.?C £ .« 1« : S 1.1<«1C
SAMfLIkS DURATION s 5.;C MK
' 5r. r rKRCHETERS
_13..68_...
g.*3«i?
7.23*0?
3.16-U1
3.315
S3
5
_ ...1..25
1.C8
2.43* C2
_ 9.C8 ..
3 • f* 1 * 0 c
4 • A G * C t
1.32-C1
2.10-C1
1.37UC
2.93«PI
3.TK11
J.tVI hfi/«cn 5.2r1?«
S* S5 56
t 7 fc
.73 ...... _.?.4_ .31
1.2* .37 .3*
2.7V«C2 ?.33
-------
00
1 RUN 14A BRINK I M- ACTOR, 1NLI
UPACTOR M.OVRATE * ,'5J ACM
IfPACTOR PRESSURE DWOP « 4.5 IN
ASSUMES PARTICLE BEMSITt ' 2.6'
bAS COMPOSITION iPCRCENTl
CALC. MASS LOADIN6 * 2tP-19b*c*"
InPACTPR STA6E
STAbf INDEX NUMBER
•>P (MICROMETERS)
«A«S I«ILLIGRAMSI
nt/ONCP/STASE
CUR. X OF MASS LESS THAM B50
tUM. <»e/AClO SMALLIR THAU »?i,
CUP. (Hb/DNCH) SMALLER THAN Bit
CUP. «6I|/ACM SHALLtR THAN 05'.
CUP. £/.*€*.. ..1.C«7«*r4 H6/DNCI
tft SI 51 S2 S3 J4 55 S« FILTER
1 . ... 2 . . 3 « 5 e 7 8 »
7 99 ^j^ j. -.3 LSI i.js .7j ji4_ .31
34,»7 2.C1. ...._.. 4..C6 ..... .2.53 1.14 .OL .40 .29 . 2t
7.87*C3 . *.J2*C2 9.14*12 3.74*U2 2.S7*C2 0.-?i 9.CC*01 4.53«t1 5.«5*C1
j^3t4^ .19. TS 1n«16 *-?* 2.f8 i..t 1*21 ...57
1,51«CJ 1.234(3. «. '6«».2 2.96*02 1.35*02 1.3S*C2 7.PC*t1 3.7':«G1
2.41*C3 1."6*C3 1.^44 C3 4.71*02 2.14*C2 2.1i*C2 1.24«C2 5.9t»t1
6.61-C1 5.37-01 ^5^-7-Ct. 1_.29-U1__ 5.«8-C2 . . 5.P*-C2. . 3..«Jrii_ 1.62-i.Z
1.n5«rp ».$e-C1 4.«6-C1 2. 06-01 9.36-02 9.3i,-r2 ^.O-Ct 2.58-02
2.?t«f.1 6.444CP 3.'84^ 2.r3*(K 1.37*CC 9.54-C1 8.26-C1 t."S-ri 2.19-C1
J.oS*"1! 2.44*03 3.25*03 2.23*f3 3.09*C3 t.Or 6.12*C2 ... 2..l2*r2 1.V*«ci
9.PE*Cf t.65*C9 4.44*1f 1.95*11 8.78*11 C.rk ?."4«12 2.94*1? 1.!6«13
MORNAL
-------
CO
I
ro
1 PUN UB EK1.4K !f.PAC70«, INLtT 01 ESP
I*PAC10fi FLOWRATE - .fi(j ACFM 1NPACTGR TEHPERATU&E « 2SC.T F = 121.1 C
J.'!P*CTOR PRESSURE DROP _;__<•.5 I*. OF Hfe STACK TEKPERATURC ' 2S'.1' F » 121.1 C
DURATION =
ASSUMED PARTICLE DEfiSITt = i.t. Gh/CU.CM.
dMS COBPOS1T10M (PfRCfl) C02 = 7.J6
CALC. 1ASS LOADINb *__*.'_QV95« Ot. GB/ACf
INPACIOS STA6E CTC
SM6? INOE> NUflBER 1
05" (KICROnETERSI 7.9V
MASS
*v.2t. i.19
1.1HC,* 7.16
CJM. X OF BASS LESS T«AJ» B'_t 25 ,9j: 21.12
CU». ("6/ACMl SMALLER THAN 05u
COf. (fC/0NC)«l SKALLER THAN OSC
CUP. (GR/ACFI SMALLER THAN 05>
CUr. I6R/DNCF) SflALLEK THAN >5t
GEO. KEAN OIA. (NIC ROf.ETE US 1 .
Off/PL 060 (Mt/D*CI«I
Oh/pLOGD (MO. PARTICLES/DfiCN)
STACK PRESSURE ' 27.1C Ifi. Of H6
to - .Ct r;i < 72.-G2_. i
o.5*-t1
. .2C
. 00401
1.31-02
...7..671E.2 . 3 ,.IH r2
T.25<12
.11
NUKML .N H6.
-------
1 RUN 15A CRIttC IHPAC1OH, IMIET Ct tSP
I 4P AC TOR riOHRATf » .'5fc ACM. I FACTOR TEflTEfATUPl _» . ?5C .0 I » 121.1 t SAAPL1M6 DURATION « 5.CU rm
MFACTOfl PRESSURE »*0?_.1_«.S If. Of Hfc STACK TfHPERATURE - ISI.C t ' 111.1 C
AfSIWED PARTICLE MhSJTT « 2.6' Gh/tU.Cfl. STACK PR«JO»I .• 27.FL IK Of H6 Ml. PA«1ICLf DIAflETER * 5C.C
CALC. P.ASS
1KPAC10D ITASE CTC 1... ri_ _ S2 S3 $<. 5S $4
SIAfcE INDEX NUMBER 1 2 .... .._3._ 4 5 t _7 8
• jf (HICRbrtTf RS I _ 7.99 J..28 z.7j 1*3J 1.2J _.Ti .;» _.3J_
*«ASS » "1 i~. " "" "
-------
00
I
CO
SAMF-LING DURATION =
«.«L
H20 = £.Cc
S.tH?«rI Kt/OKCn
SlAGt INOtl NUf«BEK
1 RUN 150 nRI:jK MPAC10R, 1MET OF t'P
I 1PACTOR FLOWHAfF * . >J ACFC, IKPACTCR TE KFE°ATb*E * 250.0 F = 121.1 C
1-.PACTCR PRESSURE DROP = 4.5 I',. OF Hb S1ACK Tt SPiRATuR E = 25'.' F * 1..1.1 C
ASSUMED PARTICLE OENSiT» = i.f 5f,/CU.CH. STACK PRFSSUFL « 27.OL ifc. or Hb M*. PAPTIClf DIAHE1ER * 5r.C -HROHttfRi
0Ar COMPOSITION (PEkCbNT) CO* * 7.36 10 = .CC Ki « 72.68 0«
CALC. f'ASS LOADING »_2.271t«-." M>/ACF 3 ,M*7«;.r 6R/DNCF
MPACTOR STAGf CTt Sf ?1 $2
1 23 «
7.0» 5.2J 2 .^l 1.51..
MA5S ("ILLISRAWS) IV.?t 2.76 5.T7 ?.63
flt/KNC^/STAGE
CU*. X Of KAJS LESS THAN 650 _.._ _ *
cu». (KB/ACM) SHALLtR THAN t>5t.
CUf. Cb/DWCn) SMALLER THAN DS'
CU". (CR/ACF) SMALLER THAN.BSv
CUM. (GR/DNCF) SfALLFk THAN 05'
dtO. REAN DIA. IriCHOnETE f>S I ,
U»,/DIOCD 5
Ol./DlfcPt) ,•! H6.
-------
1 RUN 16A BRINK I HP ACTOR, INLET OF fcSP
I4FACTOI FLGURATE - ,"jC ACfF. IKPACIQft Tt IV ERATURl « 25D.C F « 121.1 € SAMPLING DURATION * S.Ct,
L..4_.JLJ.i.,_pj_HA STACK TEHPtRATURE » gST.r t . liit.t t
PARTICLE DENS1TV « 8.6. GN/CU.CN. . STACK PRf&SUFE '.27.Pi! IK'. OF H6 r»». PARTICLE DIMMER = 5".C FICROKETERS
ri« COMPOSITION IPFKCENII C02 « 7.36 tO - .lu N2 * 72.68 0« « *.*V H20 * 8.CU
CAtC. PASS LOADING » 3.6359* f*" 6H/HCF 5 .791;«(,C 6R/DMCF
14PACTOR STAGE
STAGE INDEX NUMBER
CTC
1
'.99
5.22
_ 11
3
_2j.Z2_
S2
K«SS (NILIICRANSI
46.46
*.3S
S3 S* !5 S6
« 5 t 7 3
_}..?J 1.25 ,7.5 .5,4. ,11-
2.65 1.?2 .ti. .?c. .?!
FILTER
CUf. » OF HASi LESS JA*N_ Blfi
tUR. (»lG/ACtlI SMALLER THAN D5t
CUM. (H6/DNCPII SMALLEH THAN 05"
Cl*. (OR/ACF) *«ALLER_THAN_»5j.
CUP. (GRSCNCFl SMALLER THAN DSC
»tr. MEAN CIA. IHKROMETERSl
» :/0LOGD IHG/DHCH)
Dkl/»LVGD INO. PARTI CLtS/DNCH)
21.13
l.fiC
1.76413 1*«S«C3. _».75
-------
1 "UN 16S BkllK IKPACTOh, INLtT OF fSP
11PACTOR FLOKRm * .:'57 ACFK IHPACIOR TEKPEHATUTt = 250.C F « 121.1 C
1-.PAC TOR PHESSURI .DROP. =..*..5...1.f;.._OJ..M6 STACK TtHPHATURE
DURATlCh
ASSUMED PARTICLE OENSJTf * 2.6.
6A5 COrpo&I TIUHI (PERCENT)
CALC. RASS LOADING « 2.«Sftn. '
1NPACTOH STAGE
STAGE INDEX KunaER
O3
<*» «»SS (MILLIGRAMS)
M&/OVC-/STA6E
CUK. X OF MASS LESS THAH J)5 0
CUH. iriG/oNcn) S^ALLEH THAN osr
CUM. (f,R/ACF) SMALLER ThAS 05 C
tU". ((.H/CNCF) SRALLER THAN »5'
>>bC. N^AN DIA. . PARTICLE BIAKETEK
(it = 4.ei,
3s 76>(«HG.
-------
1 RUN 17A BHIM* IWACTOfl, INIET Of .£SP : , _ . -
IMPACIOt) FlOMRATf «• ."SO Atfrt IflPACTOB TEHPEftATU-FE • 25D.O I • 121.1 t S«nrLlh£ DURAIlOlka 5.:c iTlk
I/,PAC10e PBtSSUat OKOP" «.j IN. OT H6 SUCK TEP.PtPATUBt • »P»t_T " 1*1*1. t_ ... . ._.__ ' .. _
AiSU«EO PARTICLE PENS IT* * l.i' r,»./CU.CH. StAC* PRJSSUPE '.« .27.^1 JN. Of M6 »••». PARTICLE »IA*EUft ° 5r, C HICRCftET ER$
GAS COMPOSITION IPSUttNII lOi * 7.36 _ ... .."CD.A. .-.PC_ ' N2 » Tt.tb Oi. = *..4t «IO ' 8.CC
CALC. MAIS LOAPIH6 ° ?.1*Ofc«Ci SB/ACf. 3.«1"g«CC BB/DNCf ; *.B»t,6«C3 >iC/*CB JjiB.r38 .M_ '.' .S.* .31
MASS -.**« Ot ..' A..?6«_CZ._ 1.3«QZ 1.23 BfALUtt THAI* 05' . 7,S7-C1 j6..PS.r.51 ,...'.>'2-01 . .9.39-0?' 8,57-02 1i«9-C2 4.1C-C3 1.71-C*
GfcO. K£AN D1A. ll»l C RO«TI BS ) ; Z^^v« tl _.;_ t..*6«.t? :. :3.?6« iO _ _i »C3«00 1.37
-------
CO
1
CO
01
1 HUH 1711 BRINK ICIPACTOH, IwLET OF cSP
I 1PAC10H FLOLRATIE = ..*5'j ACF« IKPAC TOR TE».P£RMUHE = .250.C f » 121.1 C
StHPLIIlG DURA11CN =
C1N
C.H5 COMPOSITION IPEKCLUT)
CALL. MASS LOAOINb
1^,PACTOR STAGE
stAtc IIIIPE» MU^HER
B'jC (KTCROK.ETER5 J
C.AJS (MILLIGRAMS)
S 1TI = 2.4 ' G«/CU.CM.
:INT) ' coz = 7.36
?.7V8?«.r Ifi/ACI
CYC
1
7."9
27."1
STACK PRfSSU't =.27."c IfJ.
CO ' ,Ct, Ni
*.*5T5«tr GR/ONCF
St 51 ...... .52
2 J *
%?2 2. '3 1.51
1.91 . .3./V. 2. A«l
CF HG M».,_
1 72.68
6.«c:?4e3
S3
5
1.25
1.5* e.
PARTICLE
^ - .>.
KC/ACPI
Sfc
t>
7,
-------
CD
I -'
CO
1 RUN 18A BRINK I ",P ACTOR, INLET OF ESP
INPACTOR fLOWRATE * ."5f ACf» ItPACTOR TEMPERATURE * 25C.O F *.121.1 C
MPACTOR PRESSURE oaop•_*_ 4.5. i'. OF Hb STACK TEMPERATURE * 2j_c_.r_ r_» 1*1..? t.
SAW PL INS OURMICt.
AiSU-tC PARTICLE DEwSlTt = 2.6T GM/CU.CM. STACK PR5SSUPE..». 27.Ob II.. OF HG
6AS COMPOSITION (PEKCtNT) C02..«. 7.36.. .. C0..»_. ....>?r- '.'2 " 72.6b
C AL C . MASS LOAD I NG_f 1i.L?*JlLS:i_ JJU*CJ 2.5 1^4*1^ 6R/DNCI J ,
CTC._ ._ S^_ ft 12 SJ
1 . ...2 ...... 3.. . _...*.. 5
7.c> 5.22 2.73 U5J 1.25
23...«'7 _.._... _.ri L/C... . .CC .19
C«X. PARTICLE BTArETER = 5 r. C
Ot « 4.4w H20 - 6.3:
5.U
C f 1CRCKETERS
IHPACTOR STAGE
STAGE INDEX NU4UER
MASS (fTILLISRAMSI
•.b/DNCM/STAGE
Cu". * OF. MASS .L.ESS_THA»|__C50_
V.82
CLH. (M6/ACnl SMALLER THAU OSO
CUP. (nC/DNCR) SMALLER THAN 05'
COM. (6R/AC-FI SMALLER THAN 053
CUr*. (6R/6NCF) SMALLER THAN DSC
6tO. MEAN DIA. (HI CKONETE RS I
0../6L06D (Mt/DNCP")
DN/DLOGD CNO. PARTI CL ES/DNCM)
3.55*02 3.S5*C2 . 1.?9«0?
5.65*12 5.«5«C2 2.r5*U?
1.55-C 1_1.!5-C1
Z.47-11 __«._•» 7-01
6.
L-.03
5.«9«C8
1.75*1"
P.CD . '
_Jj5t.... 2.!2 ._
1.29402 1.02*C2
2.05*02 1.62*02
__L.4i ri- ? 4.45-0?
8.96-^2 7.P9-C2
. 2.0J400 1.37*CC
C.." 5.15*02
r.cc 1.46*11
•
•
2.
4.
1.
1.
9.
S<. 55
6 7
73 .14.
52 .Qt
7V .7*__
K.*01 ?."4*C1
3J*C1 4.33*C1
2 » - C ? 1 ..2J. - C i
«e-C2 1.°B-L2
54-:i «.26-C1
56 FILTER
8 V
.31 . ..
.CC . 2G
. .79
2.844(11
4.53401
A.24-L?
1.98-C2
i.03-01 2.19-
4.?**ii
r.oc
(EN6INEERIM6 S TA HOAS D) C 0 Kb IT ION S Alf E 21 DEC C AND 76 ""UN HG.
-------
CO
1 RUN 160 enrjn ifpAcroK, INLET OF ESP
I.'PACTOR FLOWRATE « ,?5u »CFh U; FACTOR TEMPE»ATl'FE * Z5S.C F « 121.1 C
IFPACTOR PRESSURE 0 M> P * _».. 5_I f.. JH|_H 6 SIAtr TEMPERATURE » 2>C.t.f « 1?1.1 C
ASSUMED PARTICLE DEhSITl =2.!
GAS COMPOSITION (PERCENT)
CALC. »ASS LOAD 11.6 =_ U6
I1PACTOR STA6E
STAfeE INDEX NU-BEIi
DJf> (KICROFETtRS)
XASS (MILLIGRAMS)
;ib/DNCf/STA6E
eg*, i or MASS LESS.THAN_p«o.
Cur. 1 4.5f. «.*C
i."34!3 ,1.01413 9.iff4t2
65.72 4t.6C 32.23
2.444r.3 1.SC4C3 1.2C4C3
3.894^3 i«*74C3 1».°1.*CV .
1.*74.',C 7.38-L1 5.73-tl
1.7.4iQ 1.244CC ?.*3-i1
2.ri,4T1 6.464JC ?.784iP
2.55453 5.46403 3.45403
i. 344 18 1.494 1C 4.7Hir
7.CO IK. (
N2 '
S2
4.
1.51
_*.S2
1.C84UJ
lit«i
$.19402
8.264(,2
?.?7-01
3.61-01
2.034Cf
4.iC4C3
3.68411
IF Ht
' 72.68
3.71
S3
5
1.25
1.04
2.34«;2
10.01
3.724C2
5.924C2
1.62-C1
2.59-01
1.3740C
2.024T3
8.P1411
H». PARTICLE MA*ETER = 5'.? "I CfcOME TCRS
Oi = 4.tC N20 = S.iL
*4 55 S6 FILTER
C 7 8 9
• 73 ,?* .31
«9o .9L .33 .42
i.21»C2 Z.rj4C2 7.434C1 y.«54C1
6.2o 2«i6 1.6C
2.33«C? 1.C64C2 ?.95«01
3.7..4C2 1.e»4C2 9.«84t1
1.9i-01 *.*4-ii 2.6"-C2
9.54-01 (.26-01 «.08-C1 t.W-CI
V.444C2 1.53«C3 3.1P«r2 3.144I.Z
7.9V«11 «.5»4li 7.3541? Z.1V41J
(.•Uft.-:AL (F.NG1NEERISG STAhOARO) CO ',011 IONS A»i ifl OEG'C
" 7t •'!"'" ~H6 .
-------
CD
t RUN 1VA BRINK IMPACTOfc, I till T OF UP
IftPACTOR FLOURATE - .?>C »CFH .1MPAC TOt IEKPEJ ATURE «...23C.O F « 121.1 C
1HPACTOR P«ESSORE_»«OP_?_>.J. lj..._£f JH* JT4CK TEMPERATURE ' fciC>A JF_.!..121 .1. t
ASSUMED PARTICLt DEMS1TI * Z.t, Gfc/CU.CH.
6AS COMPOSITION (PERCENTI
IALC. HASS LOADING _i 1_.5J6.
IftPACTOR STAGE
SIAGF INDEX NUMBER
SAKPLlhG DURATION *
(KILLIGRAKSt
CU*. » Of M.SS..LESS. TMAN_»5Q
CUR. IHC/ACR) SHALLEI THAN D5'
CUM. (16/DNCH) SMALLER THAN t
CUI«. <6R/ACfl SH»LtlE»._TH»li_05.j
CUI>. (GR/DNCF) SMALLER THAN OS
6tO. MEAN DIA. (HI C ROHETE ItS J
DM/OL060 (16/DNCMl _____
0 ./DIURD INO. PAPTICLcS/DMCHI
: 6>./CU.CR. STACK PKFiSURt - Z?
COZ * 7.36 _ ^.CO .-. ..^t
.l?L If. OF
. . Hi *
Hb r.AX
72.66
. PARTICLE
Oi « *.
BIAP ETEfc
4^
i- 6R/ACF 2.4*'i4f 6R/ONCF 3.1 15«.< C3L f^/'tf
CTt Si M
1. ....2 3
7.»9 5.22 2.71
15. 11 t.CZ. t.** .
. Z.95*C3. _4.S5«C? .._.!. ItieS
*7.«7 39. 2t 19. »1
1.674CJ ...... 1.3t«.l.3 _A.PE«C2
2.<3«C3 . Z.2C«CS_ _.1..r?«t?.
7.28-U 6.CJ-01 2.08-,;1
r i.i6«cc. __»..* ir.CI *.75-oi
2.Cw<01 6.46* CC 3 • 78-* •lr'
3.7'*j*C3 2.45^03 3.96<03
3.4u4C8 6.69«C9 S.«1«ir
_S2 .
4
LSI
. .cc
c.co
J9_.*i
6.^2,02
1.09*0?
2^98-0 1__
4.75-C1
2.03^0
.C.OO
S3
5
1,.25_.
3.37
7.58«C2
.3.87
2.06*02
3.29«C2
9.P2-02
1.44-01
.1.37«lt
9.14«A3 i
2.?9<12
$4
C
.7i_
.ti
1.87«C2
2.54
8.«<«01
1.424&2
3.9S.-C? .
4.21-C?
9. 5* -01
:.cr.«r2 «
6.77«11
s;
7
.54
.37
S.334C1
U£5
?.69B ittON'S ARE
DEC C AND 76 r** KG.
-------
oo
CO
vo
1 RUN 191) BRINK I,M>ACTOR, I NL E I OF tSP
J1PACTOR rLOWRATE = .SsO *Cfrt
1*P*C10R PRESSURE 0 HOH _= 4. 5 1 N . Of Jtja
SAfcPLING DURATION =
5.:-. CIN
TOR TEMPERATURE = 25C.C f * 121.1 C
STACK TE*PfcRATURt * ZSr.C f ; Jil.1 . t
:*X. PARTICLE DIAMETER
HiO - 6.11.
1.3*02404 MC/DNCK
FlLTEfc
9
ASSUMED PARTICLE DENSITY = Z.L'
GAf COMPOSITION (PEKCtNT)
CALC. MASS LOAD IMG = 3.C137 STALLED THAN o5u
CUM. (nfa/DNCMl SPALLEK THAN Oj'
CUM. (GH/ACF) S1ALLE" THA>, D5y
CUK. (GR/ONCF) SrALLEk THAN D5'
itO. MEAN DIA. (MCROhETE HS >
U'T/DLOGD (IG/DNCM)
D,./DLUGD (NO. PAPTICLfcS/Df.C«)
GK/CU.CM. STAC* PRESSbPE = 27.00 Ih.
COJ = 7.36 CO = .OS K2
GR /AC f
-------
00
s
1 RUN 30* BRINK INPACTOrt, INLET OF HP
1HPACTOR FLOWRATE » .'5C ACFN IttPAC TOR TEHP1RATURE =
l.WACTOR PRESSURE DM>P ' 4.5 l»i. Of Hb STACK Tf HPtRATQRj
ASSURED PARTICLE DENS ITT * 2.f G*/CU.CN.
to*$ COMPOSITION IPERCcNT) C02 «_ 7.76
CALC. HASi LOADING = .._.!•* 5??.« ..t
IMPAC TOR STAGE
STAGE INDEX NUH8ER
OiC (MICROMETERS) 7.°9
(PlLLIGRAflS)
19. J
CO*. * OF BASS LESS..J.M.AIS_ti50
CUB. (XG/ACM) SMALLER THAN 05L
CD*. (Rt/tNCM) SHALLER THAN 05
CUM. (GR/ACF) SMALLER THAK D5<<
25C>C F = 121.1 C SAMPLING DUBAT1CN = S.'.i. "I IN
25C.t. F ' 111.1 C
STACK. PR^SSUTE - 27. OC I?'. OF Hb f,»». PARTICLE CtArETtR = 5'. C flCROHETEBS
6H/DNCF 3.3*t,€<03..h«/*Cli 5.T^1f
-------
CD
1
1 SUN 20« BRINK Ir.PACIOR, INLtT Of ESP
I,',PAC10H fLOUHATt = .-5k »lff. IHPACTOR TEftPEPATUft = . 250. C f = 121.1 C SAMPLING 1IURATIO^
5.'.. "IN
I-«PAtTO« PRESSURE DhOP - i.5 It'
ASSUMED PARTICLE »£NS1T» = 2.6'.
&AS COfPOSJTIOH (PERCElfTI
CALC. MASS LOABINb = 5.8*52*1'''
I.'.PACTOR STAGE
SIAbE INDEI MUMdFR
05'. (HICROMETERa)
.1AS!> (MILLIGRAMS)
llj/DNCX/SIAGE
CUf. 1 OF (1ASS LESS THAN 053
CM. ("G/ACKI SflALLER THAU JV.
CUM. (KG/BNCH) STALLED THAN D$r
CO- (GA/ACFI SMALLER THAN 650
ClW. SMALLER THAN Hi"
GEO. MEAN BIA. (MICROMETERS)
UI/DLOtD (1C/ONCII)
P. .54
Z.91 .Jt
6.5SU7 ?.U«61
. .1.1.6. ..to.. .
l.5e«c? i."5«:z
?.4V^02 1.<6«r2
. _6.fi-£2. 4.6G-C2
1. "V-C1 ?.32-Ci
2.8P«C3 6.134T2 5
2.3H12 T.B«««
= 5 -. C
H20 = I
3.1«5C
S6
3
.31
.56
1.Z6.Q2
.19
«.U«61
1.14-&E
1.&2-G2
4 .06 -01
?rf8«12
"4 KG/thCtt
FILTER
9
.1o
(ENGINEERING ST*M)«Ri,) CONDITIONS ARE" 21 DE6 C AND 76
-------
I RUN |A U OF X -A- .OUTLfT OF ESPt 4/27/77 PROBE C«TCH IN
r«p*cTOR FLO«RATE . .300 ACFH
IMPACTOR PRESSURE DROP • i.z IN. o^ H<>
ASSUMED PARTICLE DENSITY « 2.40 GM/CU»CH>
(US COMPOSITION (PERCENT! Co* •
CAt.C. MASS LOADING . •( . 47*6. 02 6^/AcF
1MPACTOR ST«6E
STAGE INDEX NUMBER
OSO (MICROMETERS)
CO
^ MASS (MILLIGRAMS)
ro
CUM. PERCENT OF Miss SMALLER THAN o.II
1«§0 .JS ,•«
3*If*0| *«24*00 1 fS**OI
0><0 T4OS «4*S»
••Sft*0l ». 17*01 7.II*0|
|.If*OI 1.23*07 4t07*OZ
3.75-0* S.ST-oI J«tl-02
5.4j*OI S. 34-01 >. 47-01
2>I5*OI ».«»»00 4*50*00
1*1|*0| •J.JS»0? *.JS*OJ
r . i7i.i
r . iii.i
, OF NC
Nl •
„
,
1.11
.SO
i.»5*00
41. 0&
ft. 53*01
9.80*01
7.84-OZ
l.lt'Ol
2.i|*00
?.1S*.0«*OI I.M.OI
*.04»0| 2>83«OI
l.74-i)I 8.23.0J
2.6S-0? 1*23.02
t."4»oo r»»».oi
1.84*0? 1*03*02
Hr, DURATION • io, on IIN
lETCR • Sn.n MicROMfTFRS
(7*30 HJO . 7.3n
1.4PM .02 MG/HNCM
S' FILTER
7 *
• 27
(•OS .SS
i.s**ni »««**6o
4*04
*.1«*00
»«7J*00
2.BJ-03
1.2S-03
J.«7-ril |.»2-pl
».08*OI 3.27»nl
(NO. PARTtCLES/OMCMI
-------
i nun in u OF w -«- .OUTLFT r
IHP*CTO'» FLOWRATE . .100 ACFM
*/27'77 PROBE C»TCH IN
IMPACTOR TEMPERATURE
250«o r • 121.1 c
SAMPL|Nfi OURATInN • ID.2(1 M|N
IHPACTnR^Pj»ESSU»E BROP -_1 • 2 T IK Of^ H<5
ASSUMED PARTICLE OCNSITT « 2.60 GM/CU'CMJ
STACK TEMPERATURE • 2SO.O F • |Z1.I C
STACK PRESSURE » 27.00 IN. OF MS M,X. P«RT(CLC olAMETEH • So.n « [ f <»OMf Tf 05
Co
.80
N2
0?
17.30
H20
<"AL_C_« _M_**>5_l-0*J>l_^G__^ 5^7211-0^7 5?/*jEf
|M_H»CTtlR J5TAGE _^ _ S_I_
5T.;Lor,D (NO.
SMALLER
SMALLER
SM»LLER
SMALLER
(HICROM
tJCMI
THAN
THAN
THAN
THAN
050
0*0
D50
050
1
PA'T [CLES/r>NCM|
1
,
1
7*
•1 1*02
•67*02
•85-02
7.28-02
2
1
3
•15*01
•IS*0|
•OS«06
82.82
1.08»o2
1.63*02
1.71-02
7.II.Q2
9.58*00
,1.15*02
-|.2I»08
79.01
1*01*02
(•55*02
1.52-02
4.79-02
«. 50*00
f .08*01
5.54*07,
A».|7
9.04*01
1 .34*02
3.94-0?
5.»1-02
2.6|*00
«i. 37*01
,.7.*09
52.52 73>11
*.»8»OI 3.07*01
1.01*0? 1«4t»OJ
3.01-02 1.31.02
1.5|-0? J'OI.OZ
1.14*00 7.98-01
1 .42*0? 1 .82*02
3.84»in 2.43,||
|?.08
1 .5««OI
2
6
1
3
7
»
.37*01
.91-03
.01-02
.8T-OI 1.97-0,
.32*01 7.99*0t
.27*11 ">37*|2
-------
I R'JN 2A U OF W -A- .OUTLET OF ESP, 4/2S/7T PROBE CATCH IN
iriPACTORFLOWRATE • .101 ACFM |MfAcTOR TEMPERATURE " 252.n f • 122.2 C S«MPL(NS 0SCM/STASE
CUH. PERCENT OF MASS SMALLER THAN osq •' 7
CUM. (MG/ACMI SMALLER THAN 050
CUM. (1G/DNCMI SMALLER THAN oSD
CUM. IGR/AGFI SMALLER THAN O50 '
CUM. (GR/DNCF) SMALLER THAN 050
GEO. MEAN OIA. (MICROMETERS!
DH/OunGO (HS/DNCHI
B^/OLOGO INO. PARTICLES/OKCMI
STACK TEHpERATURE • 257. 0 F . |22.2 C
STACK PRESSURE
|.1» CO -
6.SOTI-02 <
SI 52
t 2
V«Z* ».8«
l«'1 .2S
3.2,»01 1.0S«00
«.<•» 79. 7»
7.77*0) 7«SO»OI
1.17*02 1.13*02
3.10*02 3.21-02
5*||»02 1.»3-o2
2>U*01 *. 58*00
1.11*01 •|.S1«02
3.2»*OA •1.28*08
• 27,00 IN. OF H6- M|X. p,RT|CLE otApETER • 5o.O n|cROMET FRS
.80 M2 • T*«IO
SR/OMCF *.*ffl8.D|
S3 S1 «
3 1 5
1.28 1.81 1.15
.10 .11 2« 19
4.51*00 7.18*00 3.57*01
7|.1* 4*. 71 13.03
7.07*01 *.*0«OI f. 24*01
1.04*02 9.^3*01 *.1|*OI
3. 09-02 ?.R»-02 1 .8*. 87
1. 65-02 1.31-02 2.8f|-n?
*«?0»00 2.«l*00 l.1**0n
l.8p*0| |.f*»OI 1.75*02
1.80*07 «. 50*08 1.15*10
02 • 17.30 H70 • ?.3n
MR*OI 1>45*n|
20'S5 in- »2
2.O3.0I 1.08*01
3.04*01 1*41*01
8.89,03 1.73-03
1*31-02 7.t|-03
7.98.01 3. 87-01 l.'7-ll
1.04*02 l.tV'Ot 5.17*01
|
-------
tn
u OF M -B- .OUTLET or ESP. A/2»/77 PROBE CATCH IN
CD
IHPACTIR FI.OWRATE » .300 ACFM
MPACTOR PRESSURE DROP • 1.2 IN.
ASSUMED PARTICLE DENSITY • 2.60
r.»s COMPOSITION «PE«CENTI
CALC. MASS LOADING « 5.5402-02
IMPACTOH STAGE
STtGE INDEX NUMBER
PS1 (HICROMETERSt
MASS (MILLIGRAMS I
MG/DSCH/STAGE
IMPACTOR TEMPERATURE • 250. n
OF Hs STACK TEMPERATURE * 250.0
GM/CU«C«» STACK PRESSURE
Cp2 . l*H7 CO «
GR/AcP 8.3104-02
S| $2
1 I
7.27 9.87
3*22 .48
S«7A*0| 8.59*00
CUM. PERCENT OF MASS SMALLER THAN 05>) 70*11 45.45
CUM. (MG/ACHI SMALLER THAN 050
CUM. (MG/ONCMI SMALLER THAN 050
CUM. (GR/ACFI SMALLER THAU 050
CUM. IGH/ONCFI SMALLER THAN 050
CEO* MEAN nlA. (MICROMETERS)
DM/OLOGD (MG/DNCNI
. DN/OLOGO (HO. PART1CLES/ONCM1
8.89*01 8.32*01
1*33*02 1.25*02
3.88-02 3.44-Q2
5.83-02 5.44-02
2.15*01 9.S8*00
7.88*01 -3.22*02
5.79*04 -2.49*08
• 27.00 tv.
.80
GR/DNCF '
S3
3
4.28
.40
1*07*01
F • |2I .
F . |7I .
OF NG
N2 P
54
4
1.84
.00
0.00
1 C
I C
SAMPL|N
-------
1 HUN 3A U OF W -A- , OUTLET OF ESP, 4/10/77 PROBE e«TCH IN
inpAcioR FLOWRATE • «300 ACFM
IMPACTOR PRESSURE OROP • 1.7 IN. OF HS
ASSUMED PARTICLE DENSITY • 2.60 GM/CU-f«.
r,AS COMPOSITION (PERCENT) C02 •
tNPAeTOM TEMPERATURE • 7SC.n F . |2I.| C SAHPL|N<; OURATInN • jo. On "Hi
STACK TEMPERATURE 4 250. o F . |2l.| C
STACK PRESSURE • 27.00 In. OF HS "»». PjRT^CLE |>|AHFTER « ^l.n M | cRnncTr"S
|.1» . CO • .SO HI * T*'|0 °2 * 1.7*30 "70 • 2. In
CALC« HASS LOADING • |. 3(^6-01 SR/A^F |.47f3-(kl M/ONCF 3«0|*^>« tMlCROMETERSI
MASS MILLIGRAMS! 1
nr,/DSCM/STAGE
COW. PERCENT OF «»sS SMAtLER THAN DSg <
CUM. (M«02 2.IJ*0, %. 31*01 4.»«.01 4.52«PI ••Ot.OI 2.0^*01 1.7»*OI
k4«t4 42*34 S0«*0 39.77 2I>S4 R*1S J.tO
2.02*02 1.88*02 |.SJ«0? 1 .0«*02 *.*1«OI 2.S**OI |.1«*OI
3.03*02 2>*Z*02 I«3Q*02 1.42*02 '.77*01 3.83*01 1.77*01
8.84-02 8.23-Q2 4.70-02 4.72-02 7..«%-0? 1.11.02 S. 15-03
1.33-01 1.23-Ot I'OI-OI 7.0g-02 '(27-0? 1.47.02 7.73-03
2«JS*OI t.98»oO 4.50*00 2.8|*00 1.14*00 7«*'-,OI S. 87-01 I«*?-OI
OH/DLOGO
-------
i PUN in u OF w -«- ,OUTLET OF FSP» */3o/77 PROBE C*TCH IN
IMPACTS FLOWRAIE « .300 ACFM I«PACTOR TEMPERATURE • 750.o r • 121.1 c
SiMpL|Hr, nupATlnN • 71.00 HIM
IMPACTOR PRESSURE O*OP » 1.2 IN. OF ,{Q STACK TEMPERATURE * 250.0 F • |2I.I
co
i.
ASSUMED PARTICLE DENSITY . 2.AO GM/CU. CM. STACK PRESSURE
GAS COMPOSITION (PERCENT! Cp2 . I .19 Co •
C-.LC. MASS LOAOING • |.7.3I
•"•,/OSCM/STAGE 1.77*02 1.17*01
• 27,00 IN, OF H6
.80 N2 •
iH/BNCF
S3 S1
3 1
1.21 1.81
1.14 1.73
3.99*01 1.23*01
1 C
".X. P.R
78. |0
2.»»»9*02 '
55
5
I. 15
4.51
5.^0,
T|CLE plAuETER . 5
07 • 17.30
IS/AC" 1
S4 S7
4 ;
.S5
5.6I 7*82
5.07*01 2.52*01
1.0 M|cROMETrRS
H20 • 2.30
,3050*07 MG'nNC"
F ILTER
8
3. SI
3.17*01
CUM. PERCENT OF MASS SMALLER THAN D5o
CUM. IHS/«CMI SMALLER THAN OSO '
CUM. (MG/DNCM) SMALLER THAN R50
C'IM. |riW/4CFI SMALLER THAN 050
CUM. K3H/DUCFI SMALLFR THAN D50
f,CP. 1FAN 01A. (MICROMFTERSI
riM/ULOsn (MG/OKCMi
nii/ntnan din. PART ICLES/ONCHI
5«>
1
2
7
t
?
2
1
so
.7 |*02
.56*02
.16-02
•12-01
,|5»0|
.12*02
•77*07
54.81
I.63«o2
2.18*02
7.13-02
1.07-nl
»«58«00
-1.39*02
-3.48*08
17.47
I .37*02
2.05*02
5.98-02
i. 97-02
(•50*00
I .10*02
2*91*08
1
1
1
7
2
1
3
97 , ;
.09*02
.43*02
.74-02
.11-02
.8 |«00
.14*02
,8H»09
11*55
7.05*01
1 .04*02
3.08-0?
1.42-07
i.iUoo
2.87*07
4.8|»|o
| J.OS
3.71*01
5.42*01
1 .41.02
2.1*-02
7.98.01
1.58*02
2.28.11
7«
27
2.08*01
3
9
1
3
8
1
.13*01
.11
.37
.87
.14
.03
-03
-02
-01 |.9>-ol
«OI |.05*n2
«|2 1 .10*13
21 hcs~
-------
| RUN 4A . .BRINK B, INLET OF ESP, 7/I1/7J
IHPACTOR FLOMRATE • • ,050 ACFM IMPACToR TEMPERATURE • 220.0 F • 1
IHPACTOR PRESSURE DROP • 1,5 IN, OF HG
ASSUMED PARTICLE DENSITY • 2,40 SN/CU.CN,,
GAS COMPOSITION I PERCENT I Co? • 1,1*
CALC. , MASS LOADING • 1 »73«l +00 GR/ACF
IMPACTOR STAGE " C»C
STAGE INDEX NUMBER . 1
f 050 (MICROMETERS) . B.OB
•P» • • . . •
MASS (MILL16RAMSI ' 21.57
HG/ONCM/STAGE > 1.16+03
CUM. « OF MASS LESS THAN DSO 27.1$
CUM, IH5/ACHI SMALLER THAN 050 1.08*03
CUH, (HG/DNCNI SMALLCN- THAN 050 1,55*09
CUN* IGR/ACri SMALLER THAN D60 1..7I-OI
1 ' f
CUrt. IGR/ONCFI SMALLER THAN 050 4.77-01
GEO. MEAN D1A, (MICROMETERS) ' 2,Q|*pt
DH/DLOG'D IHG/ONCH'I . 5,25*03 .
* i •
ON/OLOGO INO. PARTICLES/ONCNI 1,75*08
STACK TEMPERATURE' -
•220*0 F i
101.1 C
• 101.1 C
SAMPLING DURATION • 4*00 HlN
STACK PRESSURE f 27.00 IN, OF H6 MAX. PARTICLE DIAMETER • 50.0 MICRoHETERS
CO - .BO
-N2 .
2,1*27*00 6R/DNCF,
SO 51 •
2 3
5,2T 2,74
3,04 . 2,|2
5,I'*OI • 3,5**02
18. 0» 11.80
7,|B*02 ...1.4**02
|,03*03 . 4,73*02.
3;i1-OI 2,05*01
liSI-OI 2,»1-OI
4,52*00 3,81*00
2j7**03 1.28+0)
7,)8*0» 1.47*10
52
1
1,53:
2,71
1,43*02
J*4'
1,14*02
2,10*02
4,3»-02 ••:
*,|8-02
2*05*00
1.80*03
1.53*11
78.10
07 . 17
• 30
3.9705*03 HG/ACN
S3
. 5 .
t.24\
•»»
1,31+02
1.31
5,32*01
7.41*01
2*32-02
3.31-02
l,3**00
1,41*03
1.13*11
SI
4 t
•".
,10
4,74*01 .,
,15
4,OR«00
; 8.71*00
2.44-03
3.87-03
».4S-OI
2,*0*02
2,3B*II
S5
7
,51
,00
0,00
,16
4*08*00
B, 71*00
2.44-03
3.82-03
4,32-01
0.00
0,00
H20 • ' 2,30
5.7011*03 Mfi/OMCM
54 FILTER
B *
*S|
.00 .05
0.00 8,14*00
,15
4,08*00
8.71*00
2,44-03
3. 82-03
1,12-01 2, ?|-OI
0,00 2.61+01
0.00 I.*0*I2
_MM'!At IfNelNFlRING 5TANPAR01 CONDITIONS ARE 11
nee c' >np 7to"H HJ,
1
-------
| RUN IB BRINK A, INLET OF ESP, 7/14/77
IHPACTO* FLOHRATE • .050 ACFH IMPACTo* TEMPERATURE « 7SO.O. F • 121. 1 C • SAMPLING DURATION • 5.00 HlN
IMPACTOR PRESSURE DROP • 1.5 IN. Of HG
ASSUMED PARTICLE DENSITY • 2.40 GH/CU.Cfl.
GAS COMPOSITION (PERCENT) C07 • I ,44
CALC. MASS LOAD|N6 • 2,2714*00 SH/ACF
IHPACTOR STASE . • CYC
5TA6E INDEX NUHBER • , |*
OSO (MICROHETERSI . 0.2Q'
MASS IH1LL1SRAHS) ' ' ' . . 2*« 37
00 MG/QNCH/5TA6E. ' ' • ,S.7f*03
<0 CUH. I 'OF HASS LESS THAN DSO 25*77
CUH. ING/ACH) SMALLER THAN 050 • 1.34*0}
CUH. IH6/ONCHI SMALLER THAN OSQ J»0|*P3
CUH. IGR/ACP) SMALLER THAN '050 5,85-01
CUH* IQH'DNCFI SHALLtR THAN DSO «.7i-OI
SCO. HCAN 01 A. IHICROHETERS) 2.03*01
OH/OLO«D IHQ/ONCH) v. 7.37»p3
DH/OLDCD INO. PARTICLES/OHCHI 4,si*oa
STACK TEMPERATURE • rso«o r •
• -121.1 C .
STACK PRESSURE • 27.00 |H. OF H6 MA«. PARTICLE DIAMETER • 60.0 MICRoMETCRS
CO • .BO , N2 •
1 • • .
3.4074*00 6R/OMCF
so *' s2
2 3 4
5.35 2. BO 1.5*
•
2.2* * 3.30 1.44
4.43*02 *.»»+02. 3.52*02
If. 5' : • 10.40 4.0*
i;p2*03 . S. 51*02 3.17*02
i.SV,0> B, 27*02 t. 78*07
4.45-01 . 2,11-01 I.3«"OI
4.4T-OI . J.41-01 J.O»-OI
4', 4 3*00 '. 3,B7*00 2.0»*00
2,40*03 2,49*03 1,37*03
4,&0*0* 1 3,|i*|0 ,|.ll»ll
7i,IO 07 • 17*30
S. 1983*03 M6/ACN
S3 SI . ' SS *
g 4 7
1.28 .75 .55 .
,BB ,00 ,00
1,44*02 0,00 '0,00
3,70 3,70 3.70
1 t 92*02 , ' 1.92*02 • .1*92*02
2,B9*02 •2.»»#02 .7,89*02
•,4|-02 •*4|«02 ««1|-02
1,24-01 1.24-01 1.24-01
1,41*00 9,71-01 4,42-01
2,2S*D3 0,00 0,00
: ' 1 ' • •
5*11*11 0,OQ 0*00
H20 • 7,30
7.7977*03 MG/DHCM
54 FILTER
* * '
. »32
1.11 ,22
2,42*02 4,44*01
,40
3,11*01
. 4.70*01
1.37-02
2,05-02
4,19-01 2.1S-OI
1*01*03 |.
-------
i RUM •;» u OF w -A- .OUTLFT of ESPI 7/is'77 PROBE C»TCH IN
IHP»CTOP FLOWBATE . 000 »CFM |HP»cTOR TEMPERATURE « ?SO.Q F • 121.1 C S«MPLtNS DURATION • »I.OO
ii'p*CTr>R PRESSURE DROP' • i«z IN. OF H<> STACK TEHPERATURE • 25_Pj f • 121.1 c
4SS'I'1F.!> PARTICLE DEM5ITT . 2 .*0 SM/CU.r_H. ST»CK PRESSURE • IT.00 IN. OF H6 "*». P«>^lQ.E Q
CO? .M^» CO • .80 Ht • T»MO °7
MASS LOAOIH6 • l.2582-02_&R/AcF |.»87l»02 6R/QNCF _ 2'»79?«fl] MS/«C"
_|l1^»C_TpR_SJ^»SE_
_5_t_A?T
MA-!? IMlLLIGRAMSl I'2T l»l« l*\t I . 3» '«»» I'Jl LIZ 'JJL
SI
,
52
2
S3
3
«1 SS
9 ' 5
S6
*
17 FILTER
7 "
I«IO*01 1.05*01 2.ll*no
CUM. PERCENT OF MASS SMALLER THAN P5p *|«3* _ lj»^8 TS.tl t*.** S3»gl ?»«7t __ 5^«3
CUM. U»»0| |.*2*01 1.^6*01 »«2»»00 l.3<»00
Ci)M._IMr./H_NCM I SMALLER THAN 0 ____ 3_.f^^0| 3.*0»Q1 I.2»«01 2.»g*gt ».»I*0| I'Zt^OI 2.09*00
'*°S*l"f *•«*-"» «.3»-°3 ». 77-03 3.*2.03 *.OB-Qt
SMALLEH THAN DSD ___ 1.7?.Q2 I.Si-02 ___ Ll!!1!0.?— A'?*'0* 1.02-02 5.13.03
GLO. MEAN PIA. IMI C»OHETERS I 2.1S*0| 9.58*00 4.50*00 2.il*00 l.tt*00 7.9».OI 3.17-01 1.97-nl
_PM/OLn6D JJIS/^CM I . S . I 8*00 - !_. 3g»Qt ^^09 »00 I .J 1*01 ».7t*01 3.99»OI 3.39*01 7_1°_**J'0_
nh'>Loc,D (MO. P«C .:LES/ONCMI 3.»o*os -1.09*98 2*^2*07 3.*>*o» *^il?A^-'l'T**10 **•***" Zl£.!A'i.
21 ftEi C
-------
'I PUN SB ii OF w -B- .OUTLET OF ESP, 7/15/77 PROBE CATCH IN
IHPACTOR FLOWRATE > .300 ACFM IMPACTOR TEMPERATURE * zso.n F • jzi.i c SA^PL^N^ OUR AT IAN • A.O.UO IIN
inr-ACTon PRESSURE PROP • |.2 In. nF nS STACK TEMPERATURE • 250.0 f • 121.1 C
A.SSUHFn PARTICLE DENSITY • 2.AO SH/CU-CM- STACK PRESSURE • *7.00 tN. OT MS MAX.
jiAJi COMPOSITION (PERCENT! Cp2 . I'*1? CO » ._B0 m ' 7»'|0 °J * 1 7 » 30 H20 • >.3n
fftLC. MASS LOADING • I.BQ17-Q2 GR/»CF 2«7072«Ql CR/ONCF '
IMPACTOR STAGE si 52 53 si ss s» 57 FILTER
ST»GF INDEX NUMBER I 2 3 IS * 7
i J1Iin_i!iic?Jl.*!£If.l!sJ i _±iL* til? *i?? _ _ L'8? '*L5
01
MASS (MILLIGRAMS) H>71 3.11 (.61 1.41 2.71 j.O* J«Z7 .52
JL'-l l±?I ' •03*OI ? •_" »tOO. 1.8?»OQ 8.0n»Q'p y«22«.00 ». 75«QO >.55*00
CUM. PERCENT OF HASS SMALLC" THAN n?,; 77.i» *J_5i!_ __ ^3*35 _ i5j«j54 J.*J**. _ L*l°J 2*18
CU«. (Mr./*c''> SfiAHEH THAN PSO 3.2(3*01 2.53*01 2.20*01 |.8»«OI 1,35*01 7t11«00 1.02*00
CUM- (Mft/DMCMI SMALLFR THAN OSO
CUM. (r,R/ACFI SMALLER THAN 050
CUM. (fiR/ONCFI SMALLER THAN 050
GF;o. rir.AH olA. iMIcROMETFRS I
Ot1/DL06l> IMG/DNCM)
OII/DLOGO (HO. PAHTICLES/ONCMt
l«8o«01 3.7»»ol
1 .10-02 I.IO-Q2
2.10-02 1.44-02
2.15*01 ». 58*00
l«»3«01 -3.85*02
|.
-------
i HUH «A u or w -A- ,OUTLFT or ESB. j/is/77 PROBE C«TCH in
IMP*CTOR FLOWRATE « .300 «CFH IMPACIOR
1MPACTOR PRESSURE PROP • |.2 IN. (tF H6 STACK
ASSUMFO PARTICLE OEN5ITT • 2.40 r,M/ru • <•"• STACK
GAS COMPOSITION IPERCENTI Cp2 . l«19
CALC. MASS LOADING • 1.28*0-02 GR/AcF I
IMPACTOR STAGE S| •
STAGE INDEX NUMBER 1
nSQ IMICROnFTERSI 9*3|
(Vi ftA5S (MILLIGRAMS) ' 4.50
ro
CUM. PERCENT or MASS SMALLER THAN 05n 4o«oo
CUM* ( MR/ACM 1 SHALLCR THAN 050 l.77»0|
ctm. (MG/DNCMI SMALLER THAN oso i.*7»0|
COM. IGR/Acri SMALLER THAN DSD 7.72-03
CUM* (GR/DNCri SMALLER THAN DSO I-17-O2
GEn. MEAN OI.A. (MICROMETERS! 2>I4«0|
PM/OLOfiO 2.47*01
nn/PLOGD IHO. PART]CLES/I>NCH| l>8|*0*
TEMPERATURE
TEMPERATURE
PRESSURE .
CO «
•*<*7-02 G*
S2
2
9.90
.10
1,40*00
6*.H 5
1.4*. 01
1.51*01
7.24.Q3
1.10-02
9.40*00
-».OI*OI
-4.99*07
* 255. o r . 123.9 C
• 255. n F m |23.9 C
77.00 in, or MS "A*. PA
.ei ,,2 • 78.10
/tJHCr ' 2>*429*0|
S3 S4 SS
318
1.29 1.85 |.|5
.00 .33 I>51
0*00 1.32*00 4.|r*nn
*•** 5*.5Z 3»«83
1> 44*01 1.57*01 1.17*9)
?'5I*OI 7.3g»OI l.77»0|
7.24-03 t.««-03 5. 12-oj
1.10-02 1.04-02 7.74-03
4.51*00 7.8|*00 1.14*00
0*00 3.4|*00 3.02*O1
0"00 |«I9*0* 7.ti(*o»
SAMPt
«T,CL€ nIA
»2 •
MS/ACM
S4
6
.55
J,l\
»o*i.»
8.47*00
2.4O-03
3. "2.03
7.»9.0|
2.77*01
t.uo.to
(Mr, DMRATInN • 45.01 M(N
HtTER . 5n." HlcPflHrTr^
17.30 H2O • 7.3n
i.^5*«n| Mr,/^fM
57 FtLTFR
7 38 .S9
!>«53»f}0 3»5**00
7«*2
2.33*00
3.52*00
1 .02-03
I. Si-03
3.87-01 I«92-01
1.79*01 l«11*0l
2.24»| I |.23*|2
-------
LK"" *8 ___ iL?F !L.T?_' »°UTIET OF ESP. T/n/77 PHOBE CATCH IM^ _
IHPACTQR FUOXHATE . .300 ACFH IHP«CTOR TEMPE*»TURE » Z5J.n r • IZI.B c
SAMPLING DURATION • is. on
IHPACTQR PRESSURE PROP
i«» IN. or t)s
_ ST«CK TEHPERATURE « 253.0 r • |22«» c __ __ _
tSSUMEP PUffTICt-E DENSITY m 2.60 6H/Cll»CH« STACK PRESSURE • tf tOO lM«_Of "• _ _ «»X. PjRTtCLt |>I*HETEI) • So." H I C"nnf Tf*5
GAS COMPOSITION IPERCENTI Cn? • I-17
CO
^.80
Hi * it* |0
Oj • 1T«30
H?Q
7. Jn
CALC. MASS LOADING « 8.8Q22-03 GR/AcP («32»0-(IJ GR/ONCF 2*0|l2*0| MS'*C" 3.0317*01 Hc/nNfH
IHPACTOR STAGE
STAGE INDEX NUMBER
CD „„ *l .67 |«|7 l.TI
MG/OSCx/ST/ISE
0.00
0>00
».»3»00
_f.5!S5!LL Of «AS5 SMALLER THAN 05n
57.
ST.»J
•»*•!!
37.11
CUH. IM6/ACMI SMALLER THAN OSO
. 11*00
CUM. IMfi/OMCHI SMALLER THAN P50
I.l7*0| I.|7»Q| ___ 1.17*01 __ lt_lT*°J _ *t»**CQ 7.53«OQ
I»U»0| l.7t«OI l.7t»0| _ |.74*0t 1.^0*01 I«I1»OI t. 71*00
CI;N. IGR/ACFI SMALLER THAN 050
CUM- IGP/
GEO- nEAN
OM/OLOQO
t))J/DLOr,0
ONCFI SMALLER THAN OSO
OIA. (NICROHETCRSl
(MG/DNCHI
INO. PART.CLES/DNCH,
5*10-03
7.4N-03
2.|«»0|
1 .77*01
I '30*04
5.10-03
7.48*03
».S»*gp^
0.00
0.00
5.10-03
7.4B-03
4.51*00
0.00
0*00
5*10-03
7.48-03
2.»|»00
0*00
0*00
1.04-03 3'2V. 03 I .»«-p3
4.11-03 1.V4.03 2.»5-03
1.1»*00 7.»i.OI 3.«7-OI |.»7-0l
!.78»0| ••3V«00 I.5|*OI 2.27*n|
4.C?*OV l'2|«|0 l.»l*(l 2>Jft*|2
i\
-------
I RUN 7*
u or w -»- .OUTLET or tsp, 7/19/77 PROBE CATCH IN
cn
IMP.CTOR FLO*R»TE - .300 ACFM
1-PACTpR PRFSSURF DROP • 1.2 IN. Of MS
ASSUMED PARTICLE DENSITY • 2.60 GM/CU«C»«
GAS COMPOSITION (PERCENT! Co2 .
TALC. MASS LOADING > 7.9220-03 GR/AcF
IfPACTO" STAGE
S1A&E INOFx NUMBER
PSO (MICROMETERS 1
MASS (MILLIGRAMS)
MG/OSCM/STACE
CUM. PERCENT OF MASS SMALLER THAN osp
CUM. (M6/ACMI SMALLER THAN oso
CUM. IMG/DNCM) SMALLER THAN 050
CUM. IGP/ACFI SMALLER THAN 05(
CUM. IGR/DNCF) SMALLER THAN DSQ
GET* ME»N PIA. (MICROMETERS)
DM/OLOGO IMC/DNCM)
pri/OLOGO (NO. PAHTICLE5/DNCMI
|MP«CTOR
STACK
STACK
1.19
i
SI
i
9.37
2.17
7.58*00
73«27
1-33*01
2>0«*OI
S. 80-03,
8.95-03
2.U*0|
1 >0i*0l
7.SS«OS
TKHPERATU
Rr • 270. n r • 1)2.
TEMPERATURE • 270.0 f • |32.
PRESSURE
CO •
•22|R-02
52
2
».96
.93
J.i5*oo
43.21
1.15*01
1.77*01
S. 01-03
7.72-03
».6«*00
-1 .07*02
-8.7|*o7
• 27.oo IN. nr HC
.HO H2 «
6R/ONCF
S3 $1
3 1
1.3| |.R6
.00 .15
O'OQ 1.38*00
43.21 $8.31
1. 15*01 |.0t*0|
(.77*01 1.63*01
5. 01-03 1.62-03
7.72-03 .7.13*03
6.56*00 2.83*00
O.OO 3.77*00
0*00 |.22*O8
2 C S»MPL|NS
2 C
"A*. PA"T|CLE nlAHET
78.|0 02 * 17
|.»|2»,0| Mf,/«C«
S5 56
5 6
1. 16 .56
1*25 7*35 i
3.8]*oo 7.2|*OO
11. HI 19.38 j
1.17*00 1.51*00
l.2t«o| S. 12*00
3.SI.-0) 1*51.03
5.18-Qi 2.37.03
1.17*00 8. 02-01
1.87*01 2'2S*OI
*»3ft»09 3*21*10
fi>IR*TInN » 60. On H|N
CR • 50*^ MIcRHMfTfff;
.30 H7P • 2.3n
2.7960*01 HS/ONCM
S7 FILTER
7 8
.27
•14 .33
i*ji»*no i «oi *oo
.5*
6.H-OI
1.00*00
2.13-01
1.37-01
3.BH-OI 1 *97-nl
1.11*01 3«3*»OO
|.1|*ll 3.50*11
i
-------
i RUN 7ft u_or w -B-^ .OUTLET f rsr» 7/i»/77 PROBE CATCH IK
IHP»CTOP rtOKRATE • -300 ACEM IMPACTOR TEMPERATURE • 270.n F . 132.2 c
IMPACTOR PRESSURE PROP • i,2 IN. OF «r, . STACK TGHPERITURE • 270.(» F • 132.2 c
ASSUI'EO PARTICLE DENSITY • 2.40 G*/Cu.rM. STAC* PRESSURE « 27.00 IN, OF H6- M»». P(pT[CLE ntinETER » Sn.n "1CROHFTFPS
COMPOSITION IPERCENTJ Cp2 . I .19 CO • ,_SO Hi • 7»«|Q Oj • 17.30
CAJ.C_. _MAJ5S_LO»DING - Z_!.2*_L?Z?3 ^*^*CT_ ., I • (200-0? 6" UJ'CF ^_ t*4*l7*0t
STAGE _S^ S2 _*?...._ ?!" ___S^ S* ?* _ FILTER
^ STA6F l^OEx NUMRER I 2 _3 ^ ^ *__ 7 •
tn •
tn _ __P*p I_M_Ic.?£«ET£BSJ 9«37 9,^* .jj _ _ i,g» L'l*_ *!*. 'iZ _
PASS (MILLIGRAMS! «13 .1» .15 .«| |*9» i.9.IO»On S«95»00 '. .1*00
CUM.
CUM.
CUM.
CUM.
CUM.
Gt.O*
PE^crtiT of MASS SMALLER THAN Oso »i«
( MG/ACM)
( MG/OHCM)
(r,R/*CF 1
( GR/f>WCF 1
MEAN D|A.
SMALLER THAN
SMALLER T»*AN
SMALLER THAN
SMALLER THAN
OSO
050
050
DSO
IMIC^OHETERSI
fH/CLOnO (MS/DNCMI
OGO (M0>
PARTICLCS/ONCM)
1
2
4
1
2
1
1
93
.SMO,
•13*01
•B«-03
•04-02
•l**0l
•a i *og
•31*05
89.50- g
1 .19*01
2.29*01
4.50-03
1.00-02
9.44*00
-5.29*01
-1.31*07
,73 80.42
1.14*01
7*75*01
4.37-03
«. 13-03
4.56*00
1 .77*00
3.30*04
1,31*01
2*04*01
4.IS-03
9.0Z-OJ
2.83*00
5.1 1*00
l.4«*00
57.03
*.is*oo
1.1»*OI
1. l t3
S.47+CO
8.79*00
Z.H.03
3.82.03
a. 02. oi
|.«A»OI
2.4«*IO
M.X5
8.05-01
1.21*00
3.52-01
5. 13-fll
3.8H-01 1 «*7-OI
2.15*01 i.in*rio
3.07*11 1.35*11
NfH»UL-|EBf. I NfER I Nfi STinoIfBT cffWBmol^"Ti»E"ZT-TTE^'Tr~7rN6~ "T«o'fTJi "i 6'."
-------
IHPACTOR
u OF w -A- .OUTLET or ESP. 7/20^
.300 ACFM IMPACTOR
5*HPL|N(i PU9ATlf>N • 42.00
IMPACTOR PRESSURE DROP " 1.7 IN. OF H<> STACK TEMPERATURE * 260. o
00
in
CT»
ASSUMED PARTICLE OEN5ITT . 2.60 GM/CU«f*. STACK
GAS COMPOSITION (PERCENTI Ct»2 . 1*19 .'
CALC. 1ASS LOADING « 8.AS18-03 GR/AcF 1
IHPACTOR STAGE SI
STAGE INDEX NUMBER '
DOP (MICROMETERSI »<3J
MASS (MILLIGRAMS) I'15
HG/DSCM/STASE J«3T»00
CUM. PFRCfNT OF MASS SMALLER THAN Ogg 88«»8
CUH. IMG/ACM) SMALLER THAN 050 1.74*01
Clif. (MG/ONCMI SMALLER THAN 050 2.48*01
Cl'M. (SR/ACFI SMALLER THAN 050 7.7Q-03
CUf. (GR/DNCFI SMALLER THAN 050 I«I7-02
GEO. MEAN DIA. (MICROMETERS) ' 2.14*01
OK/DLOGD (MG/ONCM) l«6?*00
DH/DLOGD INO. PARTKLES/DNCMI 1.37*05
PRESSURE
CO •
• 27.QO l»«
.80
•3161-02 GR/ONCF
„
2
,.,,
.80
2.31*00
81.11
1.41*0,
2.15*01
7.01-01
1.07-02
9.42*90
-8.78*01
-7.25*07
S3
3
1.30
.66
|.»J«00
71. »8 .'(
1.18*01
2.76*01
6.19-03
9.87-03
6.53*00
5*32*00
1 .10*07
F . |76.7 C
Of HG M»X. P»RTtCLE nIAi.ETER . Sn.fl M I C"">MET«;»S
N2 • T8«|0
0; • |7*10 H20 * 2. In
|.9i03*i?i MS/ACM 1.0171*01 MS/HNCM
51 55
1 5
1.85 l'|6
.87 .2.08 i
2.56*00 6.0,»01
16.61 14.70 18
1.32*01 ».2*»riQ
7.01*01 1.11*01
5.77-01 1.01-01
8,77-01 6.IS-03
2.82*00 1.16*00
4.96*00 2.98*01
7.28*08 7.0n*09
56 57 FILTER
6 7 8
.55 .27
.98 t *8* .00
8«77»no 5.5i»pn o«on
.13 *OI
3.59*00 9.9Q-01
5.16*00 I.Sl-Ol
1.57.03 1.31-07
2*39.03 6.58-07
8*00.01 3.88-01 l«»2-1l
2.73.01 1.78*01 Ci-on
3.9»,IO- 2.2S*I» O.OP
.
-------
i RUN PR u OF w -B- .OUTLET OF ESP,
IMPACTOR FLOWRATE . .300 ACFM
IMPACTOR PRESSURE DROP . 1.7 IN. OF HG
7/20/77 PROBE CATCH
IN
IMPACTOR TEMPERATURE » 740.0 r • 12*. 7 c
SAMPLfNG DURATION • AO.OQ H|N
STACK TEMPCHITURE . 240.0 r , 124.7 c
ASSUMED PARTICLE DENSITY • 2.40 GM/Cu-CM* STACK PRESSURE
6*5 COMPOSITION (PERCENTI Co?
CALC. MASS LOADING • |. 1335-02 GR/AcF
IHPACTOR STAGE
STAGE INDEX NUMBER
£ 050 IMICROMETERSI
tn
"*•* MASS (MILLIGRAMS) '
I
MG/DSCM/STAGE
CUM. PERCENT OF MAJS SMALLER THAN DSfl
rtif. IMG/ACMI SMALLER THAN 050
CUM. IMG/PNCMI SMALLER THAN 050
CUM. (GR/ACF) SMALLER TH'N DSO
CUP. (GR/DNCFI SMALLER THAN DSO
GET.. MFAN 01*. (MICROMETERS!
OH/DLOGD (MG/ONCMI
ON/PLOGO (MO. PARTICLCS/ONCHI
• l-l» CO •
2.1804-02
SI , S2
1 2
».J3 ».«
3.52 .50
1*04*01 i.si*oe
78*»5 7«.*4
2.57*01 7.1«*OI
j.,,*0| j.7,.ol
1-13-02 I.Of-02
1-72-02 1.44-02
'•I4*0| ». 42*00
1-14*01 -8.47*01
1*07*04 -1. 41*07
• 77.00 IN. OP H«
.80
GR/ONCF
S3
3
«.30
.53
1 **0»00
2<3**OI
3.43*01
1.01-02
l.5«-02
4.53*00
1 • 1 1 »00
1*17*07
N2 •
"AX. PA»TJCLE DIAMETER . 5n. MICROMETTRS
78*10
0» • 17.30 H70 * 2.3n
)*2803*0| Mr,/ACM
S1
1
1.85
l.ll
3.34*00
4»* IS
7.17*01
3.30*01
f. 18-03
1.11-02
2.82*00
*. 18*00
3.0.1*08
S5
S
1-14
3.74
».»4*0n
1«*44 2
I.Sj.oi
2.33*01
4.4V.Q3
1.07-02
l.1**00
'.•3*«|
1.13*10
S4
4
.55
,.51
I.O4.0I
5.60
8.10.00
|. 28*01
3«47.03
5.58.03
8.OO.OI
3-31*01
1-78*10
i.»»oo*m MG/PNCH
87 FILTER
7 *
• 27
?.73 I.5S
8*26*00 1.6»»fiO
,.„
3.01*00
1.43*00
1.33-03
2.02-03
3.»8»OI |.»7-nl
2.44*01 1*54*01
3.94*11 |.*?*|2
RF 21 DEC C lib 740MM
H*.
-------
en
m
CD
1 RU" »A U OF M IMPACTOR A, OUTLET Or
IMPACTOR FLOWRATE . .300 ACFN
IMPAcTOR PRESSURE 0*1" • 1*2 IN, OF HG
fSSUMEO PARTICLE DENSITY • 2.40 GM/CU.r*
GAS COMPOSITION IPERCINTI co2 .
rALC. iASS LOADING • 1. 1SSB-02 6R/ACr
IMPACTOR STAGE
STlGF (NOFX NUMBER
050 IMICROHF.TERSI.
1»SS MILLIGRAMS)
HG/OSCM/STAGE
run. PERCENT OF MASS SMALLER THAN os0
CU"« «IO Oj • 17
3.13IJ. Of MG/ACN
,5 st
S »
l'|4 ,5»
2*10 )*2J t
'.24*00 »*"*00
OURATInN • 40.00 "TN
ER . tn.O H|CRnMCTCRS
•30 H7O • 7.3n
5.0474*01 H6/nNfH
S7 FILTER
7 H
• 7.7
•2* 1.13
*«*3*00 3.1;*00
Jf«|7 2Q*IS 4*44
1*10*01 4«7|»00
l.*8*01 1*02*01
S.^O-OJ 2*fl.03
•.4T-03 1.1*. 03
1.14*00 8«00»OI
S. 55*01 3.04*01
«.J«*09 IOf.10
2.22*00
3.37*00
t.7,,-01 v
1.17-03
3.8A-OI 1 **?-nl
2.23*01 1*11*01
2.8I*|I |.|H*|?
Tf 21 BEG C
-------
1 RUN
IMPA
IMPA
9n M OF U IMPACTOR B. OUTLET op ES«"t 7/21/77 ........
CTOR FiOWRATE . .300 ACFM |HPACTOR TEMPER ATl/PE * 270.0 f ' U*'* « S»MPLtNS DURATION - tO.OO MlN
PRESSURE DROP - 1.2 IN. OF HG STACK TEHPtRATURE - 270.0 ' ' 132.2 C
.^UMFB PARTICLE DENSITY - 2.40 SH/CU-Cn. STACK PRESSURE ' & -W l»"^.M«. "•*• P»"TtCLe O^MCTER . 5n.P M|C«0«eTr«5
-
r«i f
COMPOSITION (PERCENT) Cp2. 1 . «H CO- .«0 N2-7i.|0 ... °2-|7O0 H20. ?.3n
. MA« LOADING • 1.05*7-02 GR/»Cf 1 '63l1»02 W/9|*er L .»*.'I*V*OI .H«/S* - -- "7 — - -
MASS
,M||||GRAMSI 3.18 .1* .. .17. .1* ... l'_«5 .«••» . 3» ••"..
M(r/n = r-/eT.r.r ».7S»00 -".'I-OI S-ll-OI 1.1|*00 7.5,*o0 ».72»OO 7.33*00 1. 17*00
CUM .
C It M t
r.r n •
prprFMT OF MACS SMALLER THAN OSo 7^.28 71. 9t 71.41 *».«» 1«'0» 30*'*1 M .01
(MG/ACMI SMALLER THAN oso i.80»oi 1.77*01 i'7t«oi i.*s»oi 1.17*01 7.3»,oo 2.67*00 _ .._
(MG/ONCMI SMALLER THAN 050 2.78*01 2.73*01 . 2.68«0| 2.5-r^M 1 .8p*0| "'3*°' ?• 12*00
IGR/ACFI SMALLER THAN 050 7.87-03 T.73-03 7-S»-03_ 7.lr°.l 8'°V-03-. 3*"-OJ LI7-03__
,r.B/BMrF, SMA.LER THAN 050 - L2I-02 1 .1»-02 _ 1 • 1 7-02 1 . 1 1 -02 7.84-03 "•'•-03 I ,80-03
Mr.M ni». IMIfROMFTERSI 2.16»0| f.*»«00 *«5_»*00 2.i3*?0 i;i7»00 ««02.0I_ 3.8B-OI _ |.«2-nl
OM/OLOGO IMG/DHCHI I'3,.OI -I.M*OI !?«.???_ »'8**?? '•*7*.«l. »"°*°» «.»**OI l«3»»0l
nl./OLDGD IMO. PARTtCLES/DNCNI »• 72*05 -1.50*07 3«r<(»0* »'«*°*...' 8'511*0? »«"*IO 2.»fc*ll I'*"1*'1
— ~
&iABU il"
— mnrTTJTPRJHf> StANDANBI CONDITfOuS «9E ZI OE6 C *"0 7*OMM M^.
FfOWJl
-------
I RUN in*
U Or H IHPACTOR •• OUTLET Of (*'• 7/21/77
00
1
1MPACTOR FtOURATE • .300 ACFN
TEMPERATURE • 250.n F • |2I.| C
IMPACTOR PRESSURE
• 1*2 IN. 0' M«
STACK TEMPERATURE • 250.0 F
ASSUMED PARTICLE OENSITT • 2.40 CM/CU*CM»
GAS COMPOSITION (PERCENT)
Co*
STACK PRESSURE • _7_7*0_°_'_N*_jnf H< . "«"'
' CO • .80 ' N2 fc 7l*lO
DIAMETER • Sn.O MlCRnHjTfRS
H?0 • ?.3fl
Oj • 17«30
CALC. MASS LOADING • |.8(8S-02 SR/AcF
M6/iCM
IMMCTORJ5TAGE
STAGE INDEX NUH9ER
SJ_
I
_S2
2
S3
51
1
85
S
SA_
4
_ST_
7
FtLTE*
8
_OSP. ±N LCJ10"IJK5-* ?
MASS IMlLLIGRAMSI
MG/DSCn/STAGE
t.2»
l.ii
1-15
.SS
10.82
.•3
2«|0
2.00*00 2«M*OQ
4.74»Qn 4«23«QQ B.Q«*OQ3.10*00
CUM. PERCENT OF MASS SMALLER THAN DSJJ <
CUM. IMG/ACMI SMALLER THAN DSO
cu*>* (MG/DNCMI SMALLER THAN DSO
CUM. (GR/ACFI SMALLER THAN oso
CUM. (GR/DNCFi SMALLER THAN DSO
GEO. MEAN OIA< INICKOMETCRSI .
OM/DLOCD (NG/ONCMI
ON/DLOGD (NO. PIRTICLES/ONCNI
If.Vt
2*08I*00
1.82*07
l».l* 2
2.33*01
4.7«-03
1.02-02
• 2. 8 |*OD
7.11*00
2.41*0«
7*41 IT'S*
1*11*01 7.32*00
I.7|«OI 1>IO*OI
1>f1-03 3*20.01
7.11-03 1.80.03
I.14*CIO 7.T8.0I
1*07*01 t*1t»0t
7.21*01 2.83*10
1*11
2.01*00
3.04*00
0.13-01
1.31-03
3.87-01 |**2-0l
2.40*01 l«03*nl
1.21*11 |*07*l2
s i NPER i Hg-$T*Myi*ff rTP
~MT.~
-------
J tMV. Of -HASH. 1-1J-AC.TOR «U" 1t,n -.-- - ........... -
...... '"FACTOR FLOWRATt-* .-UiO At** I«PACTO<1 TE«PfcPATU»E • 250.0 f • 121.1 C S AHPL ING -t>U»AT 10*
-ASSUMED PAJJTICLi-OENSl.Trs.J-.63 G«/CU.C«. STACK P»f S-Stf**- *- 27.00- I*. OF H6 PAR-. PAPTICIE D!Aff>T£R » ?n.n
-(.AS - COrPOWTIOW-CPHClNT.)-- COi » 1.47 <0« .»9 - N?« 76. TO ««2 - Vfr.Vfr M20
f £ I f ^
•*•-•-"- • •" »_*.U«M_H, E».*...-<: -, ,,„„.-. . 3-r*-1Bgi01 H6/»NCM-
-IMPACTCR S..T*6fc. .- S4-- %i SJ S4 - S5 56 - -S7
StitF IfCbtX KUKiJEK - - •-•• t J--X L t i. »
— , c f
CO 0&-~iKltfiJJjetUS-iJ «,3J 0.*7 t.?« 4,M 1-.15 ,55 -
CT>
.?* .6* .7* 2."6 ?.10 2.15- 1,58
7,*«-OV-- 1.71*00 1.98*00 5.56»"0 5.61*00 5»7««00 *.2J
_ CO*. -.f«c/AC*l S-HAULER -THAW OSO 1.«,a»C1 1.<,?*<11 1.52*01 1.39401 1.52*01 6.55*00 --i
tu^. IM&/O.-JCM) JKALLEH TMAK o5t» 2.52*01 2.k5*"?l 2.?*»01 2.08*01 1.5**B1 9.8S*"0 4.17*00
CUf. (GR/OUCF) SKALLER THA*. CSC- - t.1C-02 1.57-nj 9.96-O3 - 9.11-03 6.72-03 4.30-03 1.82-03
GtC. MCAK -CI*. CKICKOMftEBS) - ._ ... 1,J««(J1 9,57»no 6.50*00 2.81*00 1.46*00 7.96-01 3.8f-01 1.91-01
1/H/OLCGO (VO. PARTJCttS/O.'tCr.) 7.91*3ft -2.i5«^7 1.26*07 1.80+08 6.48*09 2.56 + 10 2.37*11 1.48*12
K.Jt«i«L (thGrUE«I*G STANDARD) CO'JDITIOSS APE 21 DEC C ASD ?6n^" HG.
-------
1 uiax» of «ASH_isi>AC.ioa CUM 11*
flOUMTt. 1. ..JJJ ACfM
AiJU^tD PASUCH »ENS|T»- « i.*C CM/CU.C*. 1T-A(K -PNc«SUftE * 2^.00 IN. Of MS MAX. PARTICLE
. SAS COfPOiJT|4N.i»EKtia1J- - - C02 * 1.47 ..-CO ».-• .79 Ml « 76.»0 • «»J • 16.
O3
tMPACTCfc STAGl- . -. . —«.«- - - -.. 4S 53 - - 54
iliCf INOii t|U*«lR . . .- . _ _ . -. . . _ 1 - * • •* *
_- - ,*S •!•*-- .28 .30 «*9 .66 •--• .37 ,4J
Cu**, fit PC fc S T Qf ffttt trfttLlft TttAH Pifl A4-«-}9 y^ i"FQ ^4 .16— — -$-*•* 0-J— — 4-$. 1 J— ~- 2~4*40 1-3 r-M • —~—
t»9J«ai 1.79*01 t.47*0t 1.16*01 6.2"»00 3.3^*00
CUM. ISi/O^C*) SKALLtR TWAH CSO -J.*i*01 — Z.97»C1 2.63*01 2.26*01 1.79*01 9.6'*PO S.21*00
r iin* . I f. c / J
I.f3«92 - »^J9««* 1.15-"}? 9.«9-OJ 7.83-OJ *.2*-?3 2.2S-03
. BfAM-aiA. ^KUK«>,Wt«S) -- - U37»fi»_- 9^6*».'»8 6.i»*00 2.§1*00 1.47*00 6.01-C1 - 3.87-01 1.91-01
9S/DLOGC (NO, J-AKTHLtS/DUCKl 4.»0»"6 -1.*?*^e ?.*74()7 3.26*9* S.*5»"9 3.7?»10 1.85*11 1.85*12
(ENGI»(Ef SIUG STANDARD) COKOITIONS A*£ 21 OIS C AN9
-------
Ok
CO
1 U.SJV. Of .ASH. I^f>ACTOR »UN 11a
jr.FACTOR FLOtaAIf = ,^JO ACf*
TE«OtBATUP£ « 550.0 F « 1J1.1 C
SAMPLING DURATION • 15. oO ftlh
&TACK
ASSU^t-C fiSTICLt DEMSIT* s-^..6S GM/CU.CW
COi
!•).. Of H6
:nr»cTOB iTaGt
tj INfrcX
.M»:S
CU". Crft/ACM) S».ALLfc« IMAM 050
cy.". (^u/ii^cw) S'-ALLEN IH.N eso
.-CU-V-. -<««/Atf ^_s*uiktti» . THAN—»S« -
CU^. (GN/DNCf) SfALLtW IH AX DiC
OED. nEAfj DIA. (CKViOMETC Kg)
- 1.47
CO
- Hi*. PARTICLE OIA«ETE» ' 2n.O "ICROHETERS
76.^0 nj .16.90 »20 • 2*3«
SI «Z
1 ?
0.2* o.»7
.57 .56
6.80*00 • 6.6^*^0
^S^-?7- -.- _M,4-£-
2.65*31 2.21*11
3.98*01 3.32*11
-*.»*-«*—•».*»-*•:
1.74-CZ 1.45-f.J
S3 54
? t
4?B 1 M. Pi .1
.45 .J8
5.S7»Ot) 4.53*00 5
— 4-°-»*V9 &-&«-39--- — 5-fl 1
1.36*31 1.56*01 1
2. 79*01 2.34*?1 1
—it 13-93 6 .61-03 *
1.?2-?2 1.02-02 7
i~Te-*"|--ntif ««r* — — —
55 S6
5 - 6 • -
45 *60
•37+00 7*1^+00
oo ax, »A
.21*01 7.3'*00
.61*n1 1.11*01
• 2S-«}- 3»«?-A3—
.92-03 4.64-PJ
»rfr**"«U1 M6/tNtM
S7 f ItTER - -
... ?. - . -
.55 .19
6.56*00 4.65*00
3.06*00
4.50*00
-+rt*-»-
2.01-OJ
2.81*00 1.46*00 7.96-01 3.86-01 1.91-01
--».4«*
Ut./OLOCO f:0.
M l.i
4.12*08
—Z.2**M-
fr. 26*09
2.71*11 1.63*12
CO».DITIONS
DEG C «NO
-------
. 1 . UMV. 01 fcAiH. IMKAtTOR RU*.
1.1PACTCB fLOUHAJE * .JJO
UIPJU.IO* r sesAiut- 6ao«—-«-
TUPAC TOB- TEMBfrtATUIIt = >5f.O f « 121.1 t
6U<>*TIOt. • iO.OC- HIM
00
A,
CAS
IP£4CiMT»
1KPACTOK STAGi
-STAG' INOE< NU«»ER
Gr/cu.cw. MACK
C02 • 1.47 -
SI
1
tO
27.00
.7?
Hfi - - «»K. «"»»TItLt DIAMETER •
• HZ • '76.*U 02 • 16.90 -
"ICDOHtT t»S
M20 • 2430
Si
S*
MASS
1.02
1.15*01
S5
1.15
.?1 .10 .18 .61
1.25*^0 5.07-C1 2.86+00 3.6*
6 »-.*»- 5«.C5 *8.*1
56
ft
57
— 7 -
1.42 1iC8 .««
"b B. 47*00 6.**»00 3.62*00
--26,65 ---- 9,»1
CUK.. C»6/ACK> SM»Utl* TH*M 05.0-
CUV. C-a/ONCI) &r*LLEN THAN DSC
Cu". tca/D'.Cf) S"»tlis THAN t>iD
i£C. MFAN D1A.
1.18*01 1.7C+11 1.66*01
J.67+01 2.55*r?1 2.49+C1
-*rM-1i-- -7.45-ft4— -7r2S-n3
1.17-02 1.11-02 1.09-02 9.65-03
1.36*01 9.57+00 6.50+00
1.47*01 1.23*01
2.21*01 1.85 + 01
6.75+00 2.31*00
1.01+01 J.7T400
6.43-03 - 5.3S-OJ 2.94-03-----*r10-03
8.08-03
4.42-03 1.65-03
2.81*00 1.46+P& 7.96-01 3.8fr-01 1.91-01
D4/IILU&0 (\0. PARTtClES/DNCh)
4.40*06
2.60*08
4.25*09 3.8*+10 2.66+11
1,27*01
1.3*+12
COKDITIONS »»£ 21 OEG C
-------
- 1 L'MV. OF U»SM.. JN*-»CT(j(} RU1.
— IMPACIOH
IHPACTOP Tf "PiRA Tt>B{ ,
SF-M6 ---- - -
F » 121,1 t
» « 1 Z 1 , 1- C
S«MPL1N6 CU«*TiOft - 30.00 t»IH
._ ASS.U*tO
IMPACICR STAGE
u£C.
K. - STAC* »RESSU»£ * £7.30 IN. Of H« DM. PA'TIdE 6l««frTfd--» 2n.O "•{{ROMETERS
C02 - 1.47 ----------- <0-« .7? hi « 76. »0 O2 » 16.9& - ------- »ZO-— -Z.i
»t4 -- 1 . t j < }-M_fri; /L»ot^ ------------ Z,1«9S*Ct «tC/»C" - 5ig*ttiQ1 fIC/OMCH
._.. -------- S1- ...... ---- « ------ $J- ----- S4 ....... - ?5 S* ---------- S7- HtTf« ______
-- ---------- *-- ----- ?- ---- • - J -------- * - - • S -•-• . • - 6 - ------ 7 _______ • ......
1.77 .It .?? .07 ,7« 1.J3 .«2 -• ,67
1.06*01 S.3f-91 1.91»10 4.18-01 *.5J»0(j 7.34*00 3.70*00 4»Co«00
"*•—— if .7* -- 45. « 7 --- ? Jrl? -- firfi-1 -
S\«t.l.£S
T«A«»--«W. .- .-- -
iNCM &KAILER THAN
OJA.
1.50*01 1.44»m. 1.31*01 1.29*01 9.89*0*, S.S»»OC -2.6>*00
1.97*91 1.93*01 1.48*01 7.59*00 3*95*00
-5,7*-«3 ---- S^.6?-O> --- 4.32-0) -- 2,21-03 -- l.lj-03
*.ge-OJ 9,**~nj g.42_p3 S. 44-03 6.48-OJ 3.3Z-«3 1»72-03
-1.3»»C1 9,S7*!>C 6.53*-10 2.81*00 1.46*00 7.96-01 - 3«6«-01 1.91-01
I.V7O-1 -- J, -«*-*% ---- W?^*fl9 ---- 1,1**0« ---- {.22*^1 ---- 2.39*9-1 ------ 1,18*01 -- 1^3**O1
». 20*36 -2.62*?>7 1.41*07 3.80*07 5.29*09 3.34*10 1.51*11 1.40*12
r«,?1AL
STANCAHO) CONDITIONS A»£ 21 DEG t «NF
KG.
-------
l nun HA UNIV. or WA^II. IVPACTCR. CUTLET or ESP
TRACTOR fLOURATr r ,J2r ACM ItfPACtor TEHrEHATURt = 2EC.C~T r ISlTi
SAMPLING DURATION = 30.CO WIN
JHPAfTOr? PRfSSURt 3ROP r 4.5 If!. OF HC
= 2.60 C1/CU.CH.
ST»r«
r 250.1 r = 121.1 c
Assuiro »«TTac
CHS CO«»OSITTON IPEBCEMTI
C»LC.
r 1.2PT7-C2
STACK PRESSURE : 27.00 II. OF HG HAX. PARTICLE OIAHETER z 2C.C HICROMETERS
= 7.K CO = .DC N2 = 72.68 01 = 4.6C H20 = 3.00
1.9175-C2 6R/DNCF Z.7S4S«01 KG/ACS 4.3879*01 HG/DNCN
IHPACTOR STAGE
050
r i«rrK w
E^SI
MASS IHTLLTORAHSI
iG/r:
CUM.
C01.
CUM.
ClfH.
CUN.
CFJ.
ON /PI
ow/ri.
;cM/ST«rc
PERCENT
INC/A:«»
OF KASS
SMALLER
SHALLER THAN 050
THAN etc
IMG/CNOfl SMALLER THAN DJO
tCR/ACFI
5NALLD*
TH«N DSC
(CR/DHCFI S1ALLER THAN 05D
SFA1 CTA
L0<50 «KP/
,OGp INC.
• f ^ TC^O1
ON CHI
P*'TiaES/CNMI
9.
1.
9
79.
2
SI
1
Cl
43
.oc*co
63
.19»C1
. 3.49*01
3
1
1
2
7
.69-03
.53-C2
.34*01
.82*01
.94*C6
SZ S3
2 3
9. El 4. IS
.13 .47
».24-ri 2.98+CC
77.78 71.09
2.14*01 1.96*01
3.41*01 3.12*01
9.3C-C3 8.5C-C3
1.49-02 1.36-C2
9.2-3»CP G.31*CC
-3.09*P1 3.19*00
-Z.83*P7 2.*C«D7
S4
4
1.T9
.52
3.=9»CO
63. 6»
1.75»C1
2.79*01
7.C7-03
1.22-32
2.72*cr
9.00*02
3.27+C8
tt
S
1.12
1.23
7.79*00
46.16
1.27*C1
2.03*01
5.56-C3
8.85-O3
1.41*OC
3.81*31
9.94«C9
•
1.
1
22.
E
9
2
4
7
3
5.
S6
6
54
65
.05*01
65
.24»HC
.94*00
.73-03
.34-03
.73-01
.28*01
.21*1C
^7 FILTER
7 8
.22
i.r,g .00
1.C1+C1 O.CC
.01
1.JB-C3
I.13-C3
6.C2-07
9.59-07
3.47-C1 1.59-C1
2.67*01 C.OO
4.70*11 O.OC
ctmstTinvs-Aur: a—OEC c UNO 760X1* 10.
-------
<^ATOr> rL!"H9»Tr r .31T ACT*! VTACTCr? Jr ;-iT C1 ATl.' e T - 27r.~ r r 112.C C
t^ACT';'1 rpr^cupr O^OP = n.: ~». cr wr JTKK Trtrr?AT'j-;c r nz.- r - 112.3 c
00
it
•jyr T Tj?rr "u'THr™
PET ».<i-C; 6.23-C3 7.79-C3 0.17-r: 2.DL-C3 1.31-C3
l.CI'C1! 1.C3*1C 1.3C«ir ?.19*11
-------
Ill U1IV. PT WK'I. ~'f lrTnPt lUTLTT T C'ir
: .7:t *C*~1 TT ACTOR TTHFJ''ATUPt r T^r.C r : 121.1 C SA'TLTHG OI'PATICN r 6P.CC ri>,
- M.t IV. OF HC STACK Tf'PC'MTU'TC - 25C." F r 121.1 C
Y r r.rr r"/cu.CK. GIATK rnrsrurr r 2?.cc IN. CF no rftx. TARTICLE PiAKcrcr; r 2c.c riCRoicirRS
JT> err ^ T.?r; CQ r .re NZ - 72.cs cz r ii.cr 1120 r 7.00
7.3<«73-c: rR/cr:r i.rrsr«ci HC/ACM
;z M r« :s C6
2 3 «i G •:
CO
"3C| nfl nro tt*^ *7Q 11"^
.^ -• ' '.LI ,..^3 t.^U A.I" 1.^^
u>
OO - . - . .
i.ic .ra .cr .no .5? 1.11 ..i» .57
r..n«cc z.::-n coc c.ct I.E:*T n.«i7*c;c 2.tc+ro I.BI«CC
rim, pT?cr«T or »<»j'; ^ALL'"'' T"V> err ST.C7 G7.r3 e;.c? ez.ce 52.M2 ic.:i ic.er
GUI. «rr/Arm rw»LLr'? THAN grc r.'itrr c.Dr-*rc c.5>;«cc ' c.rt«cr D.E3+cc c.77«cr i.i2«rr
3.31*00 «.<»1*CC 1.78*CC
fUH. (TP/-ACFI r'/lLLr1? THAN PIC ' ~.93-n ^.Br-rr 2.CE-C3 2.3E-?3 2.H2-C3 l.;i-C3
-------
ms uNiv. or VASH. T-rAnTip, PUTLTT or rsp
TtPACTOR FLCVRATt r .J3T AC PI TffftCTCR TtHPt^ATURl = 2'T.C F = 121.1 C SAMPLING DURATION = 60. DC PIN
pnrsswr r">op = «.s in. cr HO ST.»CK rr-iPETATg^r = 250.a F = 121.1 ~
Ass'j»rn pAiTTar PEVSITY = 2.EC ri/cu.c*. STACK rncs'tiRE r j7.cc IN. or HB HAX. PARTICLE DIAHETER r 20.c MICROMETERS
C*r COMPOSTTON fPERCEMTI CP2 r 7.35 CO = .OC N2 = 72.68 02 = < .CD H20 = 8.CO
CD
0>
iO
CALC. 1A3S LPAOllr r H.912C-CJ G1/ACF 7.0258-C3 (
WPArTO<« STA-E 51 S2
5TAPF THfJrX tiUMCFR 1 2
"Sr 'KlC^JfrTE^SI 5.C1 9.58
*A-:<: IMTLLTGRA-S. 1.17 .28
ic/Pic*/sT*rr :.7i*cc 8.87-ci
cut". PCPCECT OF PA-SJ jHALtri TM*I 053 73.53 7<«7C
CU<». («C/ArJtl C^ALLfR THAN DEC 8.<;S*CC 8.»T*CC
cur. inc/pMCfi SHALLTR THAN DSP i.»3*t:i i.3«»ci
C««. ICP/Arr» SMALLER THAH DSC ' 3.91-C3 3.67-r3
•R/OWCF 1.12«2+C1 HC/ACH
T3 SH C5 56
3 H 5 6
».15 1.73 1.12 -E«
.27 .21 1.10 1.12
8.55-C1 E.CE-01 3.*8*CC 3.E5+OC
69.39 CO. 32 47.13 27.58
T.87*CC 7.4C + OC S.3C*CO 3.1C*CC
1.2S»C1 1.19«tfl 3.«»»CO *.3»*nC
3.»%-03 3.2E-03 Z.32-C3 1 .SS -03
1.730e«Cl HG/DNCM
T7 FILTER
7 8
.22
.65 .93
2,CC«CE 2.95*CO
16. »
1.83«CO
2.9l»CO
7.98-C1
6.23-03 5.8E-C3 5.M-C3 S. 19-03 3.G9-C3 2.16-Cl 1.27-C3
3.%7-n 1.59-C1
5.46*00 9.79*00
9.62*10 1.80*12
fiF3. HCICt PTA.
-------
I RWN ISA U1IV. OF 1MSH.
TMOAfTOR FLOWSATt = .530 ACPI
OUTLET OF CSP
TMPACTOR Tf«Prt?ATURC r 25T.C F r 121.1 C
SAMPLING DURATION = 6C.OC HIM
I1PACTOR PPESStW 9<>P«> I 4.5 1*1. OT H6 ,'STACK T f-IP C?ATUrtC : Z30.3 r = 121.1 C
Assmrc »A»TTcir DENSITY = : .GO ri/eu.c*;. STACK pRFS'UPf = ZT.PC IN. or HO MAX. PARTICLC OIAHETLR r 20.c HICRONETERS
C»S COW05TTTOH IPFOCC1TI C02 = T.J6 CO = .OC N2 r T2.S8 02 r ».CC H20 = §.00
CALC. MASS IOAPTHC = i.eoor-oi CWACF
WPACTOf? STATE
STAKE INDEX HUHBER
W P5C tHTn34rTE*SI
1 .
O H»St IMTLl TC*A*SI
10/rsrt/STACF
CUM. PEHCEWT OF MASS SI ALL TR THAN 050
C01. «16/ACt» SMALLER TH*N DEC
CUM. IHC/D«C*M 5HALLTR THAU 050
rui. IPR/A:FI SMALLER THAN 3jc
CW. IOR/rt'Crl SHALLFR THAN 050
GFD. tlTA* DTA. tn TCReMFTERSI
2.881T-C3 CR/OMCr
;i sz cs r4
i
9.C1 9
.30
2.85*00
S7.3I 41
. ?.37*OP
3.7S»03
1.04-03
1.63-03
1.34*01
2
.58
.2C
6.34-01
'.•7 4
1.38*00
3.16*00
8.S6-C1
1.3VC3
9.2««CO
3
4. IS
.00
0.30
7.37
1.38«IC
3.16*00
8.5C-M
1.38-53
6.31»CC
»
1.7?
.CC
0.00
47.87
1.38*00
3.16*30
8.CG-04
1.38-03
2.72«CO
4.1I37«PO
rs
5
1.12
.00
o.co
47.87
1.9(*FO
J.IG*00
B.6E-C4
1.38-C3
i.4i«rc
SC
C
.54
.oc
o.cc
47.87
1.3B»CC
3.1G*OC
8.6E-04
1.38-03
7.73-C1
6.5944*00 N6/CNCN
S7 FILTER
7 8
.22
.75 .26
2.3B«rO 8. 24-01
12.33
5.1C-C1
8.13-C1
2.73-04
3.55-C4
3.47-01 1.59-01
IfP/DNCffl
-7. 37*01
.CO
PA*TTCLES/ONril
?.5C*P6 -2.17*07 C.30
0.00 3.00 O.OC G.30*CO 2.74*00
C.CC O.OC O.OC 1.11*11 5.02*11
TTIOKS- JWC 21.
-------
r;.c>',;R Mr - .*T Arr« T-r ACTPP Tr-irr-'ATupr - zr c .c r r 121.1 c SAMPLING rt'PAiioN - ct.rc MIN
THfA'TO" PPrs<:UPr P TP T 4 . <: I". nr lie ~>-Mr-K TriPE-UuT - 2<12.~. r - 121.1 C
,^rj»rt, p/uT-ar pp'^TTY - : .tr ri/ru.C". STAT* p-7r?runr = .?7.rc IN. cr nc MAX. PARTICLF DIAHETCT r rr.r I'ICRCIETERS
nn«- ro'-'^i^-TTOM tTrccr-iTi "n: r '.n rn = .m ti? r 72.03 02 - i.sc 1120 T 3.cc
oo
i
TTACTO? rT»T -•! -2 ?J TM 55 '£ f- 7
"jTA^r T-irry -lynrn i 2 3 n t; f- 7
r.S3 1.15 1.73 1.12 .f1 .22
.70 .1C .25 1.13 1.7F, l.'is .21
G.3'm cin/rfT") rMALLr^ THAM n~c i.7i*ci i.S5*n 1.55*21 1.57*01 i.ic»ci s.E3»cc
^^.ILLr1? TMAN ^CC 1.C'J-CT 1.5r-t 3 1.5?-C3 1.3C-C3 3.C3-C3 1.52-C3 2.lg-ri
THA»! r:^ t.i|7_r;'j 7.2r-T3 7.2r-C3 C.8C-03 1.32-C3 2.M2-C3 J.
-------
it; IG» UNIV. nr VHSH. IMPACT*)?! ?UTLCT or tzr
TIPAPTOR FLCWRATT r .300 ACF«I IIPACTOR Tmpc'ATURC = zsc.c F : 121.1 c
SAMPLING PUPATION r 6C.OO
THOACTOR FPrSSURf D70P = 1.* IN. OF HC
ASSUIFP »A*TTCLC CCMIITT = 2.CP ct/cu.c*. STACK PRESSUPC r 27.cc IN. or HC
STACK TE1PE^»TU!»£ r 25C.3 F r 121.1 C
MAX. PARTICLE DIANCTfP - 2C.C MICROMETERS
TAC CO^"OST1TON (PE7CCNTJ C02
PALP. MAST LOADTVP r G.osrs-cs CI/ACF
WPACTOR STARE
m
^, nsr «nic?3'!rTF?si
MASS C»1TLLICRAt
NO/PSCN/riACE
CUM. PTRCENT OF *ASZ SIALfR THAN 050
cui. mo/Acci SMALLER THAH oso
CUM. «M(3/rNCM| SKALLTR THAN 050
CU1. (CR/»:rl SNALLER THAN DSC
run. icR/rncrt SMALL™ THAN 030
era. HFA* DIA. fdirR3itTrPs»
nn/OLoeo «fc/DNC?(j
^N/rLom 'NO. PA^Tiars/rNcii
= 7.36 CO :
1.P312-C2 t
:i sz
1 2
?.C1 9. 59
5.17 .28
I.G1»C1 8.07-ri
35.30 31.73
S.53»OC 1.?F*CC
e.ei»no 7.91*^0
2.12-03 2.1E-P3
3.85-03 .3.17-03
1.31*C1 S.29TC
1.73*01 -J.3?»C11
1.11 + C7 -3.0'l*r7
.oc
T3
3
1.15
.nr
0.30
31.7"
1.9t*CC
7.91*03
2.18-C3
3.17-03
c.3i*:c
•l.OO
0.3C
N2 =
'" ,,
1
1.79
.Cl
3.17-02
31. E7
».D£»OP
7.31*03
2.17-03
3.16-03
:.7Z*OC
3.66-02
3.15+OE
72.63
55
S
1.12
.08
2.is*rc
23.16
3.63*CE
S. 78*00
1.59-C3
2.53-73
1.11*CO
1 .C5»01
02 r
MC/ACfl
sc
r
.ri
.36
18.65
2.92*Ct
1.6C»OC
1.28-C3
2.C1-C3
7.73-01
3.57*00
S .66*09
1.6C
H20 :
2.1971*01 Kt
T7 FILTER
7 8
.78
2.*7«ro
8.89
l.»3»CC
2.22»CC
6.C9-C1
9.70-^1
3.17-n
6.55»CO
1.15*11
.71
2.zr*cc
1.59-C1
7.17+00
1.37412
-------
IHIV. or MASH. TMOA»frift ru:'_rT nr r^r -.
FJ.OWRATF - .3rr ACFI T^FACTCR tr-ir £">'•? URL = 2rr.c r - 121.1 c SAMPLING ri"?ATio'i = GC.PC KIM
TIPICTOP r^F^stiP" ntnr - i.s jr. or HO ST»CK Tr-»Tinc = ?r,o.o r = 121.1 c
oni^iTY r -_ .er ^"/CU.CH. CTArK pncs^upr ; 77.cc IM. OF HG KAX. rArjictt DIAKCTCP T rc.c m
ITJ Ccr - r.IC CO = .CC NZ ; 72.63 OZ - *.Gr H20 ; 3.CL
IT r 3.rC71-C2 C5/SFF T.1C53-C7 CR/DrCF 7.330r»Cl HG/ACt 1.1&52 HALLF3 TMAM HfL' ?.r5»CC 8.C8*rC 7.23*10 E.91*Cr C.93*TC 3.tO«CC 1.9E«Cr
tw. IK^/rue**i r^KLi.rR THAN 05^ i.n»*3i i.3'*n i.is*n 1.10*31 3.i»*oo s.83*oc 3.io»ro
cut. crp/Arri ^fAttrp TMAH rrc 3.95-cj 3.7T-C3 3.15-rs 3.02-03 2.53-r? i.Bi-03 a.^c-o*
co«. i«5R/nnr-i ifALtr^ THAH co- <;.3o-c3 5.37-P3 s.ci-rs ».ai-o3 1.17-03 2.57-23 i.ss-ci
C!5 IMC/3HC"! 7.0C»r?2 -.?.3C*C1 6.13«CC 1.30*30 7.75»CO 1.13«ri 7.17*t:c 1.U1»U1
•p ««IO. PA'TTLi-r./rnf I •'.11+T7 -2.51*r7 1.73»C7 *.7r«C7 2.CZ»C9 1.8C«1C 1.37*11 1.91*17
OC5 C A'*"?
-------
1 RUK 17* UWIV. Or HAl'l. I'VAfTfRt PUTLCT Or ESP
Ite«rTOR FLOHRATf = .I?C »CPf TWACTOB TEMPERATURE r ISC.r r r 121.1 C
WACTOR WISURr DROP : «.5 IN. PF H6
Asciuro p«TTar PENSITY = 2.tc ri/cu.c*.
GAS COMPOSTTTON IPERCCITI C02 :
CALC. MAS- IPAcm : l.«95-C: C7/ACF
MPACTOP STATE
STApr TNOrX NUMRTR
nsc iMirn^rrtisi
MASS CMTLLTG9AMSI
i/crcM/sTACr
rUM. PF.RCENT OF MASS S-IALLTR TNW fSC
CTACH iripfATurc = :so.c r = 121.1 c
STACK PRESSURE i 27.CC M. OF HC MAX. PARTICLE DIAMETER r 2C
7.3B TO = .CO H2 = 72.68
2.3O9-TZ Cn/DKir 3.3E27«C1
51 SE S3 S«l 55
1 2 S * 5
9.C1 9, El 4. 15 1.79 1.12
2.C6 .CS .43 .50 1.1*
1.69«C1 *.ir»fC 2.72«OC 3.17*00 7.22*00
&«.97 C1.38 56. 3C SC.53 37.23
02 =
MC/ACH
56
e
.5»
2. CO
1.27*01
13.89
*.oc
5.
7
.22
.66
*.18*OC
S.19
SAMPLINt DURATION = 3C.CO KIN
r 2C.C MICRtmtTCRS
H20 = 3.00
5.3EC8*C1 MO/TNCH
FILTCR
B
.51
run.
TH*H prc
CUM. IHC/CNC*i| SMALLER THAN 050
rut. «CP/Acri SNALira THAM ore
CUM. ICSR/CMCFI SMALLE1 THAN I?5C
Cf5. -r.AI PTA. l^lC^D^rTIRSI
nn/fLOnO (MG/OMC.1I
TN/PLOCD INC. PA^TICLCS/CHCII
I.61*C1 3.23*01
1
1
1
*
1
.T1-P2 3.02-03
.51-02 1.M-C2
3
0
1
.C2+01
.28-C3
.12 -C2
.M*n 3.29«rc 6.3i«rc
.87»C1 -;.S*»«
.%8*OT -i.*i*ra
7
3
.50*00
.10*07
2.71*01
7
1
2
.«3-03
.18-02
.72*CC
3.GG*00
3
.15*08
1 . 93 »ri
5.*7-03
3.71-T3
l.««CC
3.53*01
9.ri»r9
7
2
3
.*H*OC
.m~C3
.25-03
7. 73 -01
3
6
.97*01
.31*1C
3
9
1
3
1
1
.32*00
.1C-C<
."I7-C1
.11*01
.95*11
1.59-C1
1.12*C1
2.05*12
HC.
-------
CTPR FLPVRATT - ,T:C ACT*
TM'ACTm FPESSUR^ n?OP = 1.3 IN. PF MC
AS SIT
TUP A
f P5P <
"1 MASS
1EC "AnTCLF PENSITY = 2 ,CT ri/Clt.
. MASS LPArllC = 1.3C32-C2 CR/ACF
CTO'» STATE
F INDEX »UM"*FR
IHTC?3«ETnSI
(I'LL -GRAMS.
T/PTCM/STArr
cun.
CU1.
CUM.
CU1.
CUM.
crs.
PEPCENT OF "US'; 31AI.LFR TMV| D53
IMP/AC* » SMALL CR THAN D5C
«MG/OWC«il SMALLER THAN r>30
«CP/Arr) S1ALLC" THAN ^5C
icp/rncri SMALLER THAN 95?
-1FA1 5T«. «1TrP31ETrR3l
.OTD IMG/ONCMI
DM/PLOGO rio. PA7TiaES/rNci)
:MF ACTOR
; STACK
Ct. STACK
: - ->.3C
2
11
\
9.C1
1.-1
7.PE«CC
33.69
2.00»C1
3.93*01
1.09-C2
1.71-02
1.31«n
3.27»P1
f.C9*P6
TEMPCTATURE = 2CC.C T
TE1PE-!AT'J?C = 250.
PRESSURr
CO :
.C760-C2
2
9.58
.13
2.7r*ro
73.03
2.33*01
3.71*ni
1.32-C2
1.G7-02
9.2?*-:
-l.S2«C2
-3.3E*CT
3 F
- 121.1 C
SAMPLING
DURATION = 30. OC MIN
= 121.1 C
= 27.CC IN. OF H6
.00
c n/ otic F
S3
3
1.15
.28
1.77«OC
71.35
2.22»C1
3.E3*n
0.59-03
1.51-C2
C.31*CC
1.3fl*03
1.13«C7
,
1.
.
M2 =
SI
1
79
33
2.17«CC
69.
A.
3
9
1
2'
S
2.
22
.CC*01
.29*01
.C2-C3
.11-02
.72«CC
.75*03
.1t*08
KAx. PARTICLE DIAMETER r ZC.C MICROMETERS
72. G3
2.9621«C1
S5
5
1.12
2.63
1.7C«C1
33.82
i.oi«ri
1.61*01
1.11-C3
7.C2-C3
1.11*CC
3.31*01
2.17*10
02 =
1.
NG/ACH
6
*
i.
7
17.
5
51
21
.67«CC
9C
.3i«or
8.50*00
2
3
7
2
3
.33-03
.72-03
.73-01
.1C+01
.62*10
*
•
1
8.
2
3
1
1
3
1
2,
>GC H20 = 8.00
1.7505*01 M6/DNCM
57 FILTER
7 8
22
73 .63
.E3*CO 3.99«CO
79
.17»CO
.91»C!0
.C8-03
.72-C-3
,17-ri 1.59-01
.23*01 1.33*01
.16*11 2.13*12
-------
1 RUN 13* UNIV. OF UASH. IMP ACTOR. OUTLET OF ESP
TNPACTOR FLOUR ATE = .300 ACFH
IMP ACTOR TEMPERATURE = 25G.O F = 121.1 C
SAMPLIN6 DURATION = 30.00 HIM
IHPACTOR PRESSURE DROP = 4.5 IN. OF HC
STACK TEMPERATURE - 250.0 F = 121.1 C
ASSUMED PA1TTCLE DENSITY = 2 .CO C1/CU.CH.
STACK PRESSURE = 27.00 IN. OF HG
HAX. PARTICLE DIAHETER = 2C.O MICROMETERS
GAS COMPOSITION IPERCENTI
CO 2 = 7.36
CO =
.00
N2 = 72.68
02 = 4.60
H20 = 8.00
CM.C. MASS LOAOTM6 = 1.2037-02 8*/ACF
1.9175-02 6R/ONCF
2.75*5*01 MS/ACM
4.3879*01 HG/DNCN
IHPACTOR STAGE
SI
S3
S4
S5
S£
S7
FILTER
STAGE INDEX NUMBER
DSO IHIOONCTERSI
9.01
9.58
4.15
1.79
1.12
.54
.22
MASS (MILLIGRAMS)
1.43
.13
.47
.62
1.23
1.65
1.59
.00
Me/r>SCH /STAGE
9.06*00 8.24-01 2.98*00 3.29*00 7.79*00 1.05*01 1.01*01
0.00
>' CUN. PERCENT OF MASS SMALLER THAN 050
••• ^
o-
79. 63
77.78
71.09
63.68
46.16
22.65
.01
CUM. IHO/ACHI CHALLER THAN DSD
2.19*01 2.14*01 1.90*01 1.75*01 1.27*01 E.24*0£ 1.38-03
CUN. IHO/ONCHI SMALLER THAN 050
3.49*01 3.41*01 3.12*01 2.79*01 2.03*01 9.94*00 2.19-03
CUM. IGR/ACFI SMALLER THAN 050
9.59-03 9.36-03 8.56-03 7.C7-03 5.56-03 2.73-03 6.02-07
CUN. IGR/DNCFI SMALLER THAN 050
1.53-02 1.49-02 1.36-02 1.22-02 8.85-03 4.34-03 9.59-07
era. MEAN OTA. IHICROHETERSI
1.34*01
9.29*00
6.31*00 2.72*OC 1.41*OC 7.73-01 3.47-01 1.59-01
DM/OLOOD IHO/ONCMI
2.62*01 -3.09*01 8.19*00 9.00*00 3.81*01 3.28*01 2.67*01
0.00
DM/PLOGD (HO. p ARTICLES/ON en
7.94*06 -r2.83*07 2.40*07 3.27*08 9.94*09 5.21*10 4.70*11 O.OC
HOftMAL—tfNCIHEEHlNC SMMPAftftt-COffOITIOMt AflC 21—DEC C AND 760MH-4iC^
-------
1 RON 181 U'lIV. Or HASH. IMPACTOPi OUTLET OF E3P
IXP ACTOR FLO«RATE r .jar ACF* TMFACTP TEMPERATURE = 25c.r F r 121.1 c SAMPLING BURATION r 30.00 PIN
TMPACTO!» PRFSSURF DROP - 4.5 I»l. OF HE STACK TEMPEPATU1E = 250.? r : 121.1 C
•SSU1FD PA^TIar PCNSITY = : .CP "l/Ct'.Cn. STACK PRESSURC = 27.00 II. OF HG «AX. PASTICLE DIAHETER - 2C.C fICROMCTCRS
00
GAS COMPor
CALC. MASS
IMPACTO? S
STArr INDE
f>5C (MTcn1
MASS IMTLL
te/PSCM/STl
CUM. pr^ccj
TTTON (PERCENT) CO 2
LCADT««r - 2.111Z-E2 07/ACF
TAHI
Y 1U««9F!»
-------
i RUN IT* urlv. or WASH. IWMCTOP. OUTLCT or r.zr
r ,?cr Acrt "MFACTPP irrrfATii:?: r 25C.R r : 121.1 c SAMPLING DURATION r 3c.cc «IN
' PRFSHIir 070" - *.5 I1'. PT MU ST»CX T CMP C7»TU''C = 250.': F r 121.1 C
r»MTar PCMTTV r z.f ri/rv.c-. STXCK pprstupc r n?.nc IM . cr HC M»X. TARTICLE CUMCTEP r zc.o PICROMCTCRS
r'o^fT-'ON fTRT'lTI Cr 2 - 7.3G ro : .:C H2 r 72.63 C2 = «l.r,C H20 = 8.CC
CM.C. » i\ss IPACTIC - s.rioi-cr r»/*cr r.rms-cr rr/n»:cr i.i552-»rr HC/ACK i.3«cz«cr MC/CNCM
TUnr si S2 -3 ;, rr '6 c? FIL1CR
°3 PST (MTc^3irTc?ri ?.ci O.IB 1.15 1.73 1.12 .rn .rr
CO PA^;^ IHTH^rwAMSI 19.«9 ."0 .j3 1.32 3.23 2.81 1 .r.1 .97
i.'Ttrr c.cr s.Jtnc c.3t«rc r.no«n i.78»Di c.ro»rc 6.is«rc
CUf. PPOCFMT Or »•••;•; C'lALLfr? T'UN 053 JJ.?1 33.0* J2.J"t 27.55 1C.38 6.33 3. T~.
Cl)1. IHC/ACHI SfALLT1? TM«K' TfC ~.31«C1 3.91«n 3.7P«ll 3.1B«C1 1.B54C1 7.B?«CO 3.8
CU". Cirs/OHC"! CI'ALLri Tl"'-! Pjr 0.23*^1 G.2'«ni 3.10«':i 5.07»31 3.31*-1! 1.2G»C1 e.C
CU». IGP/A:rl C^AILC1? THAN BEC 1.71-C2 1.71-C2 1.32-CZ 1.35-C2 C.27-03 3.M5-03 1.67-C3
CU»". IGP/Crcri ^fALLrR THA'I DO1: 2.72-02 2.72-T2 2.59-F2 2.22-02 1.32-^2 5.H3-C3 2.ES-r3
GFD. <(rA1 CT/l. (t"Tr-?ri<-TrR?l 1.3N+C1 9.2°«rr 6.31*rt 2.72«Cf 1.11«rc 7.73-CI 3.17-P1
PH/PLOTD Ifp/CMCWI 3.56*C2 3.C1; 1.21«ClrJ 2.23*01 l.C2»P2 5.58»01 1.7S«C1 2.C*»C1
PN/P'.orp »in. P A^TTCtrs/rNC4 > i ,rs»CB O.:T 2.7i»t7 e.3i
-------
1 rtlT! 193 UfllV. A*W,E r Z5C.-3 F r 121.1 C
STACK F-RC^URr = 27.CC M. OF HG HAX. PARTICLE DIAMETER r 2C.C
03
I
IO
F« ConPO = TT'0« .-mCMTI C02 r T.K "0 = .00 «2 =
CALC. MASS LPAriir r «.»9cc-o= c^/ACF 7.1623-C2 cn/crsr
WACTO" STArE Cl S2 T1 51
STAGT TMTX MUHBr" 1231
DID iPTci3*rTMri «.n s.J3 i.is 1.79
••AS1: (MTLLTCRAfSI 15.11 .DC .55 1.32
IB/^Pt/STACr 9.!7*ni D.DT 3.18*t-C C.36*CC
cur«. pr!»CENT or PA:S GI ALL r THVJ DEC 12. 3(> i.?.ra 10. 28 35.25
cu^. «K?VA:HI siALLtn THAN ore i.;c*ci i.3C*n i.n*ci s.t3*oi
cuw. IH'S/^^CMI SMALLCR HIAM PDT e.^s^ni e.3"*ci 6.Ec*ci 5.78«oi
rui.
-------
I RUM 20A uviv. rr WASH. nrArrc*i JUTLCT or
TWPACTOR FLOVRATF z .3rr ACE*
TT«pr:minr -
= 121.1 C
SJWLIMG DURATION = 30.00 WIN
B*E.SURE ncp - i.s n. or HC
AS-S'JHCO PARHCLF TNSITY = 2.313 Of/CU.C«.
PAS COHP3STTTOM tPr^CTNTI CCT -
C«LC. *ASS LOAOT»!6 = 5.5622-0? 3P/ACF
IMPACTOR STA^E
TNPEX
STACK TEHPEOATUPE r 25E.O F : 121.1 C
STACK PRfC'U^E = 27.OC IN. OF HG MAX. PA7TICLE OIANETE»> - 20.C MICROMETERS
rc • co r .rr HZ = 72.00 02 = I.GC H2o = e.oo
2.3921*02 MC/TJNCM
W FILTER
l.C»51-01 SR/DNCF
S2 S3
2
l.SC17«02 HG/ACt«
no
g
Cj
PSO IMTCROKETER-H
H»SS IMTLLTCPAMSI
5 MG/DSCfl/STACr
3.01 3.58
2P.C2 .37
1.31«C2 2.31*00
l.i:
1.84
1.17*11
1.73
2.51
1.59*01
1.12
E.C2
3.18»C1
.5*
1.15
2.63*0:
C 7 8
I .t*2
1.8C 1.90
1.13*C1 1.20*01
CUM. PERCFMT OF
am. «IP/AC»»I
CU".
re SUTLER THAN TEC
T'lAM 050
SMALLER THA<« DSC
IT-.12 15.16 1C. ZS 33.79 20.C7 9.63 1.?7
• 6.03*C1 S.78*"! 6.0G»C1 5.07*01 3.10*01 1.18*01 7.16*rO
1.10«C2 l.C"«C2 3.S5»C1 B.C3*C1 1.95«C1 2.35*01 1.19«C1
CUH. IBP/ACFI SMALLER THAN D50
CUM. IGR/OMCFl SMALLER TKAS TSP
ni/PLprp rir/DHCM»
rn/OLO'SP
-------
TMPA
CTOJ? FLOWRATC =
. ino ACFM
IMP ACTOR PPFSSUBE DROP r 4.5 IN. OF HC
ASSUfF.'' PAPTTCLC DFMSITY : 2.GC ?f!/CU.
CAS COirDSTTTOM IPERCENTI C02
CALC.
MASS LOAD71C =
5.2893-C? C^/ACF
TM.PACTOR STACE
STAFF
oo r5c '
00 MASS
l-» ...
CUM.
CUM..
CUM.
CUI".
CU1.
GF ..
OX/PLI
INPEX NU1BFR
NlnD-tETE^SI
IMTLLTGRA1SI
I CM/STAGE
PFRCF1T OF f ASS SMALLER THAN D5C
(M^/ACMI S1SLLER
IMC/r,»CHI SSAtLER
»
32
2
- 250 .0
= 25C.3
27. OC IN
.C3
'Cr:r
"
3
9.58 4.15
.46 1.53
2.71+03
5e.11 49
5.8T*C1
1.09+C2
2.3S-02
4.7?-C2
3.23*0-
-l.C3»C2
1.23*31
F r 121.
F = 121.
. OF HS
H2 -
S4
4
1.79
2.51
1.59*01
1.33 41.85
G.C5+01
9.54*01
2.64-T2
4.21-C2
S.31»C3
3.45»C1
5.07*01
B.C7*01
2.21-02
3. 53-02
2.72*01
4.35*01
1 C
1 C
SAMPLING DURATION - 30.00 MIN
*AX. PARTTCLE OTAMETEf : 2C.O MICROMETERS
12.
1.2
1.
£8
1CE+C2
55
5
12
5.00
1
25.
3
4
1
2
1
1
.i7*ni
65
.13*C1
.95*01
.36-T2
.lt-C2
.41*CtJ
.55»C2
02 =
MG/ACN
•
4.
2
12.
1
2
6
1
S6
E
54
15
.63*01
19
.48*01
.35*01
.45-03
.C3-C:
7.73-01
8
.24*01
4.6C H20 ~ 8.CC
l.C283«C2 MG/CNCtl
S7 FILTER
7 8
.22
1.36 1.90
I.l3*n 1. 20.01
6. 1C
7.46*CO
1.19*C1
3.25-03
5.19-03
3.47-C1 1.59-D1
3.12«C1 4.CD«C1
OM/DL050
PARTTCLES/OHCHt
7.22*27 -1.0C»Ce l.Cl»C8 1.58*09 4.04«1C 1.31*11 5.50*11 7.34*12
MC.
-------
APPENDIX C
Fractional Efficiency Plots
C-l
-------
10.0
5.0
3.0
Particle
0 Diameter, y m
i
ro
1.0
0.5
0.3
0.1
0.01 0.1
Run #1
i i
10 20 50 70 90
Percent Efficiency
99.0 99.99
-------
10.0
Particle
Diameter,
o
i
CO
5.0
3.0
1.0
0.5
0.3
0.01 0.1
Run #2
I I
10 20 50 70 90
Percent Efficiency
I
j
99.0 99.99
-------
10.0
5.0
3.0
Particle
Diameter, u m I.Q
0,5
0.3
0.1
\ i i i l i i
I I
0.01 0.1 1
Run #3
10 20 50 70 90
Percent Efficiency
i i
99.0 99.99
-------
o
01
Particle
Diameter, y m
10.0
5.0
3.0
1.0
0.5
0.°
0.1
J L-J I '
J L
0.01 0.1 1
Run #5
10 20 50 70 90
Percent Efficiency
J 1
99.0 99.99
-------
10.0
Particle
,0 Diameter, y m
cr>
5.0
3.0
1.0
0.5
0.3
0.1
I
0.01 0.1 1
Run #6
10 20 50 70 90
Percent Efficiency
99.0 99.99
-------
10.0
o
i
-sj
Particle
Diameter, y m
5.0
3.0
1.0
0.5
0.3
0.1
0.01 0.1 1
Run #7
10 20 50 70 90
Percent Efficiency
j
99.0 99.99
-------
10.0
5.0
3.0
Particle
0 Diameter, y m 1.0
0.5
0.3
0.1
i i i
0.01 0.1 1
Run #8
10 20 50 70 90
Percent Efficiency
j
99.0 99.99
-------
10.0
5.0
3.0
Particle
o Diameter, y m 1.0
IO
0.5
0..
0.1
J L
_L
_L
J_
J
0.01 0.1
Run #9
10 20 50 70
Percent Efficiency
90
99.0 99.99
-------
10.0 _
Particle
o Diameter, y m
5.0 .
3.0
1.0
0.5
0.3
0.1
0.01 0.1 1
Run #10
10 20 50 70 90
Percent Efficiency
_L
99.0 99.99
-------
10.0
5.0
3.0
Particle
c-> Diameter, p m 1.0
0.5
0.3
0.1
I
I
0.01 0.1 1
Run #11
10 20 50 70 90
Percent Efficiency
99.0 99.99
-------
o
10.0
5.0
3.0
Particle
Diameter, y m 1.0
0.5
0.3
0.1
0.01 0.1 1
Run
i i
10 20 50 70
Percent Efficiency
90
99.0 99.99
-------
10.0
5.0
3.0
Particle
i Diameter, y m 1.0
I—'
CO
0.5
0.3
0.1
i i i
it It
0.01 0.1 1
Run #13
10 20 50 70 90
Percent Efficiency
99.0
-------
10.0
r>
i
Particle
Diameter, y m
5.0
3.0
1.0
0.5
0.3
0.1
0.01 0.1 1
Run #14
10 20 50 70 90
Percent Efficiency
99.0 "•"
-------
Partial
Diamete
o
I
l-»
en
Xiameter, y m
10.0
5.0
3.0
1.0
0.5
0.3
0.1
0.01 0.1 1
Run #15
10 20 50 70 90
Percent Efficiency
j i
99.0 99.99
-------
o
I
10.0
5.0
3.0
Particle
Diameter, y m 1.0
0.5
0.3
0.1
_L
0.01 0.1
Run
« ' L
J L
10 20 50 70 90
Percent Efficiency
\
J
99.0 99.99
-------
o
I
Particle
Diameter, y m
10.0
5.0
3.0
1.0
0.5
0.3
0.1
0.01 0.1 1
Run #17
10 20 50 70 90
Percent Efficiency
99.0
99.99
-------
o
I
l-»
00
Particle
Diameter, y m
10.0
5.0
3.0
1.0
0.5
0.3
0.1
' ' ' 1 L
J L
_L
_L
0.01 0.1 1
Run #18
10 20 50 70 90
Percent Efficiency
J_
J
99.0 99.99
-------
10.0
5.0
3.0
Particle
<^> Diameter, y m 1-0
0.5
0.3
0.1
111 i
0.01 0.1 1
Run #19
10 20
50 70
90
99.0 99.99
-------
Particle
Diameter,
m
ro
o
lO.Or-
5.0
3.0
1.0
0.5
0.3
0.
I I I I
J 1 1 L
J L
_L
0.01 0.1
Run #20
10 20 50 70 90
Percent Efficiency
J
99.0 99.99
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-600/7-79-107
2.
3. RECIPIENT'S ACCESSION NO.
4. TITLE AND SUBTITLE
Pilot Demonstration of Sodium Carbonate
Conditioning
5. REPORT DATE
April 1979
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Steven Schliesser
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Acurex Corporation
P.O. Box 12796
Research Triangle Park, North Carolina 27709
10. PROGRAM ELEMENT NO.
EHE624A
11. CONTRACT/GRANT NO.
68-02-2646
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final; 6/77 - 12/77
14. SPONSORING AGENCY CODE
EPA/600/13
15 SUPPLEMENTARY NOTES J.ERL-RTP project officer is Leslie E. Sparks, MD-61, 919/541-
2851.
is. ABSTRACT The repOrt describes a performance evaluation, conducted with a pilot
electrostatic precipitator (ESP), studying the effects of injecting anhydrous sodium
carbonate into the exhaust of a utility boiler burning Western coal. In situ resis-
tivity measurements, ESP operating conditions , particulate concentration and size
distribution measurements , and analyses of fly ash composition constitute the data
assembled from this demonstration. The following results reflect the effects of con-
ditioning the base fly ash with a 1-2% concentration as sodium oxide: (1) a sixfold
reduction in resistivity; (2) a threefold improvement in average current density;
(3) a threefold reduction in emission rate, significant enough to move performance
from noncompliance to compliance; and (4) an enhancement in the fractional effi-
ciency characteristics, particularly in the fine particle range. The characteristics
of sodium carbonate conditioning are discussed, including the injection considera-
tions , material specifications, and the distinctive rationale for resistivity reduction.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COS AT I Field/Group
Pollution Sodium Oxides
Electrostatic Precipitators
Flue Gases Coal
Treatment Combustion
Fly Ash
Sodium Carbonates
Pollution Control
Stationary Sources
Conditioning Agents
13B
131
21B
14B
07B
21D
IS. DISTRIBUTION STATEMENT
Unlimited
19. SECURITY CLASS (This Report)
Unclassified
20. SECURITY CLASS (This page)
Unclassified
21. NO. OF PAGES
171
22. PRICE
EPA Form 2220-1 (»-73)
C-21
------- |