PA-650/4-74-012
March 1974
Environmental Monitoring Series
Iv.v.vX'X'Xv'-X'XvX"
-------
EPA-650/4-74-012
COMPARABILITY
OF NINE METHODS
FOR MONITORING N02
IN AMBIENT AIR
by
T.D. Hartwell, C.A. Clayton, C.E. Decker, and P.M. Hunt
Research Triangle Institute
P.O. Box 12194
Research Triangle Park, N.C. 27709
Contract No. 68-02-0335
Program Element No. 1AA005
EPA Project Officer: Wilson B. Riggan
Human Studies Laboratory
National Environmental Research Center
Research Triangle Park, North Carolina 27711
Prepared for
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
WASHINGTON, D.C. 20460
March 1974
-------
This report has been reviewed by the Environmental Protection Agency
and approved for publication. Approval does not signify that the
contents necessarily reflect the views and policies of the Agency,
nor does mention of trade names or commercial products constitute
endorsement or recommendation for use.
11
-------
FOREWORD
This report presents RTI's analysis of NO data from nine monitoring
methods collected by EPA from July 1, 1972 through April 30, 1973. Appendix
H gives a listing of the daily data given to RTI by EPA by site, day and
monitoring method. The reader who is only interested in a brief summary of
RTI's analysis is referred to Section 5.
ill
-------
TABLE OF CONTENTS
Page
List of Tables VI
List of Appendix Tables • vill
Lis t of Figures 1X
1. INTRODUCTION AND OBJECTIVES 1
2. LITERATURE REVIEW 6
3. DESCRIPTION OF METHODS 11
3.1 Introduction 11
3.2 Federal Reference Method, FRMF (NASN Modification
of Jacobs-Hochheise'r Procedure) 12
3.3 Chattanooga Health Effects Study Method, CHESSO 13
3.4 Arsenite Method (Orifice), CHRO 14
3.5 Arsenite Method (Frit), CHRF 15
, 3.6 Triethanolamine Method (Frit), TEAF 16
3.7 Triethanolamine-Guaiacol-Sulfite Method, (Orifice)
TGSO 17
3.8 Continuous Saltzman (Chattanooga), TECH 17
3.9 Continuous Saltzman (Technicon Mark IV), TEC4 18
3.10 Chemiluminescent Method, CHEM 19
4. ANALYSIS OF SAMPLING DATA 22
4.1 Introduction 22
4.2 Data Description 22
4.3 Data Screening for the Daily Data 29
4.4 Analysis of Daily Data 38
4.5 Analysis of Hourly Sampling Data 81
5. SUMMARY 86
5.1 Introduction 86
5.2 Daily Data Analysis 88
5.3 Hourly Data Analysis 99
5.4 Recommendations 100
BIBLIOGRAPHY 105
-------
TABLE OF CONTENTS (Continued)
APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:
APPENDIX F:
APPENDIX G:
APPENDIX H:
Summary Statistics By Site
Summary Statistics for Daily Data Before
Removing Outliers
Estimated Relationships Between Methods
By Site Using Orthogonal Regression
Alternative Procedures for Determining
Relationships Between Monitoring. Methods
Sample Means and Correlations for Two
Time Periods for. the Daily Data
Summary Statistics for the Hourly Data
References to the Validation and Calibration
Procedures Used By EPA
Daily Data Listing By Site
-------
List of Tables
Pace
3.1 NO Monitoring Methods ; 21
A.I City and Site Codes 24
A.2 Number of Daily Measurements by Method and Site
Before Removing Outliers—Sampling Period July 1,
1972 - April 30, 1973, Unpaired Data 26
A.3 Percent Downtime for the Daily Data by Method,
Over Sites—Sampling Period July 1, 1972 -
April 30, 1973 28
A.4 Procedure Used by EPA for Constructing Daily
Values for Continuous Monitors 30
A. 5 Number of Outliers, By Site , 31
A.6 Listing of Outliers—Daily Data 33
A.7 Number of Daily Measurements by Method and Site
After Removing Outliers—Sampling Period July 1,
1972 - April 30, 1973, Unpaired Data 37
A.8 Summary Statistics for Paired Observations—For
Data Combined Over Sites 39
4.9 Ratios of Arithmetic Means and Correlations
Between Methods Over the Seven Primary Sites A3
4.10 Ratios of Arithmetic Means for Selected Pairs
of Methods, By Site A5
4.11 Correlations Between Methods - By Site A6
4.12 Summary Statistics for Ratios of Daily Readings,
By Pair of Methods, Interval and Site 51
4.13 Estimated Relationships Between Methods Based
on the Combined Data Over Sites 66
4.1A Means of Daily Measurements by Method and Site,
Unpaired Data 72
4.15 Summary Statistics N02 Monitoring Methods
Comparison—Seven Sites Combined, Unpaired
Data 74
4.16 Summary Statistics and Estimates of Precision
for Paired Duplicate Data at Site 832 79
VI
-------
List of Tables (Continued)
Page
4.17 Summary Statistics Based on Paired Hourly
Averages By S i te 82
4.18 Summary of Hourly Results for the TEC4 and CHEM 84
5.1 NO Monitoring Methods 87
5.2 Summary Statistics: Daily Data.Combined Over Sites...... 91
5.3 Estimated Relationships Between Methods Based on
the Combined Data Over Sites 93
5.4 Summary Statistics Based on Paired Hourly Averages—
By Site 99
VII
-------
List of Appendix Tables
APPENDIX A .
A-l Summary Statistics By Site
APPENDIX B
B-l Means of Daily Measurements by Method and Site Before Removing Outliers-
Sampling Period July 1, 1972 - April 30, 1973, Unpaired Data
B-2 Correlations Between Methods - Over Sites, Before and After Removing
Outliers
B-3 Summary Statistics for Paired Observations—for Data Combined Over
Sites, Before Removing Outliers
B-4 Correlations Between Methods - By Site, Before Removing Outliers
APPENDIX C
C-l Orthogonal Regression Summary of NO Monitoring Methods
APPENDIX D
D-l Orthogonal Regression Summary of NO Monitoring Methods, Log Scale
D-2 Ordinary Regression Results Over Sites Using the Model Y = A + BX
APPENDIX E
E-l Correlations Between Methods—Over Sites, After Removing Outliers for
Two Time Periods
E-2 Means of Daily Measurements (Unpaired) by Method and Site for Two Time
Periods—After Removing Outliers
APPENDIX F
F-l N02 Hourly Data Summary, Paired Data
APPENDIX H
H-l Daily Data Listing By Site
-------
List of Figures
Page
4. 1 Orthogonal Regression 59
4.2 Scatter Plot of GIRO vs. CHEM—Over Sites 63
4.3 Scatter Plot of TEC4 vs. CHEM—Over Sites 64
4.4 Estimated Relationships Between the CHEM and Seven
Other Monitoring Methods 69
4.5 Estimated Relationships Between the CHRO and Seven
Other Monitoring Methods 70
4.6 Histograms By Method—Seven Sites Combined, Unpaired
Data 75
5.1 Estimated Relationships Between the CHEM and Seven
Other Monitoring Methods 97
5.2 Estimated Relationships Between the CHRO and Seven
Other Monitoring Me thods 98
APPENDIX C
C-l through C-36 Regressions by Site and Pair of Methods
APPENDIX D
D-l Regression Relationships Between CHEM
and CHRO, Over Sites
APPENDIX F
F-l through F-ll Diurnal Averages By Site
IX
-------
1. INTRODUCTION AND OBJECTIVES
The 1967 Amendments to the Clean Air Act required the Secretary
of the Department of Health, Education,and Welfare (HEW) to develop
and publish air quality criteria which, in his opinion, were necessary
to protect the public health and welfare. The 1970 Amendments to the
Clean Air Act required the Administrator of the Environmental Protection
Agency (EPA) to promulgate National Ambient Air Quality Standards for
those pollutants for which air quality criteria documents had been or
would be published. The "Air Quality Criteria for Nitrogen Oxides" was
published in January, 1971. On April 30, 1971, William D. Ruckelshaus,
Administrator of EPA, promulgated in the Federal Register the "National
Ambient Air Quality Standards" for six pollutants, including N0?, as
well as the reference measurement method (herein called the Federal
Reference Method) to be used to measure these pollutants. The Reference
Method published for the measurement of N0» in ambient air to determine
compliance with national air quality standards was the National Air
Surveillance Network's modification of the Jacobs-Hochheiser method [6].
During the period April 1971 to July 1972 several studies were
conducted which indicated that the Reference Method for measuring NO
in ambient air possessed deficiencies. These reports, published by
EPA and other independent groups, raised questions as to the accuracy
and validity of N02 data collected over the past decade. In particular,
-------
the validity of data collected during the Chattanooga Health Effects
4
Study [23], on which the National Air Quality Standard for N0» is based,
was questioned [12]. The main objections to the Federal Reference
Method were its low and variable collection efficiency and the inter-
ference of nitric oxide on the measurement. As a result of these
studies, the Administrator of EPA deferred implementation of regula-
tions regarding control of NO from certain stationary sources from
July 31, 1972 to July 1, 1973. During this period of time, studies
were to be undertaken by EPA to reevaluate the analytical procedures
of the Reference Method and to develop acceptable modifications to the
Reference Method (i.e., improved collection efficiency and precision,
and elimination of interference of nitric oxid^} or a substitute reference
method to be used for compliance monitoring.- Th^se studies include a
methods comparability program conducted by EPA ir.v Chattanooga, St. Louis,
and Los Angeles which is the subject of this report-. The data for the
comparability study were collected by EPA and the analysis of the data
was carried out by the Research Triangle Institute (RTI).
In particular, the objectives of this study were: (a) to determine
the comparability of nine'methods for monitoring N0? in ambient air,
using field measurements obtained during the period July 1972 through
April 1973 in Chattanooga, Los Angeles, and St. Louis; (b) to determine,
if possible, conversion factors for converting readings from one method
to another. The criteria used in attempting to satisfy these objectives
-------
involved examining sample statistics such as correlations between methods,
ratios of method means, frequency distributions of methods, regression
relationships between pairs of methods, standard deviations of methods
and comparison of duplicate readings by each method. The nine monitoring
methods were as follows:
(1) Chattanooga Health Effects Study Method,
(2) Federal Reference Method,
(3) Arsenite (straight tube impinger),
(4) Arsenite (fritted bubbler),
(5) Triethanolamine (TEA) (fritted bubbler),
(6) Triethanolamine-Guaiacol-Sulfite (TGS) (straight tube impinger),
(7) Continuous Saltzman (Technicon-Chattanooga study),
(8) Continuous Saltzman (Technicon Mark IV), and
(9) Cherailuminescent.
Detailed descriptions of these methods are given in Section 3.
It should be emphasized that this study dealt only with the analysis
of field data, which generally imposes several limitations on the types of
analyses that can be performed. One major limitation, for instance, was
that the bias of the various methods was indeterminable. That is, since
the true concentration of NO in the air was unknown, it was impossible to
determine which method provided values closest to the true level. Another
limitation of the current study was that data on (potential) N02 measurement
interferences, such as NO and ozone, were not available to RTI. Hence, no
-------
evaluation of, or adjustment for, these Interferences could be made in the
analysis and comparison of NO monitoring methods. Sections 4.2 and 5.4
indicate some other limitations that should be considered when examining the
results of this study. In fact, because of the many limitations of the field
data analyzed in this report, RTI does not recommend that the functional
relationships between monitoring methods developed in this report be used
in general for describing the relationship between pairs of methods. The re-
lationships given here do give an indication of how the various methods re-
late to one another; but indiscriminate use of these relationships (e.g.,
converting NO- measurements from one method to another at any site in the
United States) is not recommended.
In this report, Section 2 presents a literature review, Section 3 gives
brief descriptions of the nine monitoring methods under study, Section 4
describes RTI's analysis of the monitoring data, and Section 5 presents a
summary of the results.
It should be mentioned here that besides the study described in this
report, EPA has many other ongoing programs having to do with the methods
used in ambient NC»2 measurements. For example, the Methods Standardization
Branch (MSB) of the Quality Assurance and Environmental Monitoring Laboratory
is attempting to standardize a number of NO- methods. This standardization
process starts with an in-depth examination of a candidate method in a single
laboratory to try to detect obvious weakness or pitfalls that should be dealt
with. In carrying out this examination the "Ruggedness Testing" type of
experimental design as proposed by Youden [26] is used. Once it is decided
that the method is viable, it is then submitted to interlaboratory collaborative
-------
testing in which several laboratories use the same method on the same
material so that it can be determined how the method can be expected to
perform in the hands of typical users. The collaborative testing is designed
to allow EPA to develop important statistics such as repeatability, repro-
ducibility and method bias. At the present time MSB is applying the
standardization process to four N0? methods: the Arsenite, TGS, continuous
Saltzman and Chemiluminescent.
Another important program in N0» measurement investigation is being
carried out in the Field Monitoring and Instrument Evaluation Branch (FMIEB)
of the Quality Assurance and Environmental Monitoring Laboratory. (The
field work for this study has been completed, but the data analysis and
report have not yet been done.) In brief, FMIEB set up facilities in the
CAMIO Station in Durham to make simultaneous HO- measurements, in duplicate,
from ambient air and from ambient air with added NO . Four different pro-
cedures were used: the Arsenite and TGS procedures resulting from the MSB
single laboratory evaluation, and the continuous Saltzman and Chemiluminescent
procedures, which were carefully set up by internal EPA experts in close
coordination with the manufacturers' representatives. Measurements were
made in 24-hour increments so that all four methods could be intercompared.
There were three phases to this program. The first phase consisted of
taking NCL measurements of ambient air as it was delivered by the atmosphere
as well as measurements taken on ambient air to which NO- was added at a
constant rate over the 24-hour sampling period. The second phase involved
measurements of higher levels of NO added to N0?-free air in one to four
hour increments during the 24-hour sampling period. The third phase was
designed to study the effect of ozone as an interferent.
-------
2. LITERATURE REVIEW
Until recently, the only methods available for monitoring nitrogen
dioxide (NO,,) in ambient air were based on classic colorimetric pro-
cedures (i.e. Jacobs-IIochheiser and Saltzman methods). The National
Air Surveillance Network's (NASN) modification of the Jacobs-Hochheiser
method [6] was published as the Reference Method for monitoring NO
in ambient air in the Federal Register. April 30, 1971, edition "National
Primary and Secondary Ambient Air Quality Standards." Nitrogen dioxide
data used to set national primary and secondary ambient air quality
standards for N02 (100 yg/m — annual arithmetic mean)'were obtained
during the Chattanooga Health Effects Study [23 ] using a variation of
the Jacobs-Hochheiser procedure not consistent with the method published
in the Federal Register. Here, two straight tube impingers were used in -
series instead of a fritted bubbler as the collection device for the 24-
hour integrated samples. In order to avoid confusion, the following
terminology will be used for identification of variations of the Jacobs-
Hochheiser procedure: (1) Federal Reference Method (NASN modification)
and (2) Chattanooga Health Effects Study Method (CHESS modification).
The main objection to the methods based on the Jacobs-Hochheiser
procedure is the low and variable collection efficiency which directly
affects the accuracy of the measurement. The N02 collection efficiency
has been studied by several investigators and appears to be dependent
upon the conditions of the experiment.
-------
Jacobs and Hochheiser [1AJ reported N0? recoveries of approximately
90 percent using their original procedure. Morgan, Golden, and Tabor [19]
found the collection efficiency of the Reference Method to vary from 42 to
65 percent with an overall average of 53 percent at their recommended conditions.
The collection efficiency determinations in these studies ([14] and [19]) did
not use permeation tubes to generate N0? concentrations. Shy, j?t al^ [23]
determined an "empirical sampling factor" of 0.695 for the Chattanooga Health
Effects Study Method, using a HO- permeation tube calibration system and two
straight- tube impingers in series as the sampling apparatus. "Corrected" NO
values were then calculated by, dividing observed NCL concentrations by the
empirical sampling factor (0.695) obtained with NO- concentrations approximat-
ing ambient levels [23]. Purdue, Dudley, Clements, and Thompson [20] in a
recent reinvestigation of the Federal Reference Method reported an average
overall collection efficiency of 35 percent with a standard deviation of about
15 percent. The DHER— "empirical sampling factor" of 0.695 agrees quite
well with the NASN correction factor for collection efficiency of 0.35 when
the 2 of the numerator of the equation used to relate N0? gas concentration
to nitrite ion formation is taken into account:
2N02 + 2NaOH f NaN02
ug N0~
Blacker and Brief [3] reported collection efficiencies ranging from 35 percent
at 0.215 ppm N02 to 65 percent at 0.05 ppm NO using a fritted bubbler collection
— Division of Health Effects Research
-------
device and permeation tubes to generate NCL concentrations. An average
collection efficiency of 73.7 percent was determined in their study using
two collection devices in series. In a recent article by Hauser and Shy
[11], data were presented showing that the collection efficiency of the
Federal reference method varies nonlinearly with NCL concentration from 15
3 ' ' 1
percent at 740 pg NO./m to 50-70 percent at 20-50 Mg NCL/m .
The Federal Reference Method calculation for NO concentration, as
published [6], includes an overall efficiency correction of 35 percent. The
studies cited above indicate that at concentrations of NCL in ambient air
(30 to 60 Mg/m ), where collection efficiencies are much higher than 35 per-
cent, the reported concentration will be much higher than the actual ambient
3
levels. At ambient NO. levels on the order of 120 yg/m , a 35 percent
correction factor will be valid. At levels above 130 pg/m , the use of a
35 percent correction factor will underestimate the actual NCL concentration.
Another objection to the Federal Reference Method is that nitric oxide
(NO) is an interferent with the measurement of NO . Heuss, Nebel, and Colucci
[12] reported a relative response to NO of approximately 25 percent. Hauser
and Shy [11] reported that at a NO/HO ratio of 1.0 or less there is little
effect of NO on the overall efficiency of the method; however, at higher
N0/N02 ratios the overall efficiency is considerably higher.due to NO inter-
ference.
The validity of data collected in previous years, especially for low
ambient air NO concentrations (i.e., < 0.05 ppm), and the data used to set
-------
the NCL standard are questionable. One approach for adjustment of past
data would be to apply a correction factor to these data. To do this, it
would be necessary to demonstrate a consistent relationship between the
current Reference Method and other analytical techniques. One objective of
the present study is to determine the interrelationship between the nine
methods currently being evaluated.
Several modifications to the Reference Method have been made to improve
the collection efficiency and to eliminate the interference of NO. A recent
study by Christie, Lidzey, and Radford [4] has shown that the NO- collection
efficiency can be raised from 35 to 95 percent by the addition of sodium
arsenite to the absorbing reagent. Two of the six 24-hour methods incor-
porated into the present methods comparability study are based on the arsenite
method (i.e., arsenite-orifice and arsenite-frit). Levaggi, Siu, and
Feldstein [17] report that N02 absorption efficiencies of over 95 percent
are attained using a solution of triethanolamine as the absorbing reagent
with no interference from NO up to 0.6 ppm. A variation of this method
which is included in the present study is the TEA-frit. Sawicki, et al.
[22] have incorporated in their method a combination of triethanolamine,
guaiacol, and sodium metabisulfite as the absorbing reagent. Collection
efficiencies greater than 92 percent were attainable with no interference
from the following species: NO, SO., C02> etc. This method was incorporated
into the present methods comparability study on September 21, 1972 as the TGS-
orifice method.
The Saltzman method [5] for monitoring N0_ in ambient air is also
-------
10
a coloriraetrie procedure employing a slightly different reagent system.
Continuous recording of N0? concentration is possible; however, main-
tenance requirements and reagent costs are excessive, and instrument zero
and span stability are less than desirable.
During the past two years, instrumentation based on the chemilumi-
nescent principle has become available for monitoring NO and NCL. Two
techniques based on the specific chemiluminescent reaction between NO
and ozone at low pressure and at atmospheric pressure have been developed.
Recently, atmospheric pressure chemiluminescent NO-NO -N0_ analyzers have
Jv £,
been installed in Chattanooga, Los Angeles, and St. Louis. Results from
an instrument evaluation program conducted in St. Louis [5], where measure-
ments from a modified low pressure chemiluminescent NO-NO analyzer were
X
compared to measurements obtained using the Federal Reference Method in-
dicated better than 92 percent absolute agreement between the two methods
(i.e. , the Federal Reference Method was within 92 percent of the chemi-
luminescent analyzer) for concentrations of NO. less than 0.10 ppm.
-------
11
3, DESCRIPTION OF METHODS
3.1 Introduction
Brief descriptions of the measurement methods employed in the
comparability study conducted in Los Angeles, St. Louis, and- Chattanooga
are presented in this section. Since the analytical procedure for six
\
of the manual measurement methods (i.e., Federal Reference Method,
Chattanooga Health Effects Study Method, Arsenite Method (Orifice1^,
Arsenite Method (Frit), TEA Method (Frit), and TGS Method (Orifice)^
compared in this study are similar, complete descriptions of the ana-
lytical or sampling section will not be included for each method. Unless
so indicated, the procedures described for the Federal Reference Method
will suffice for each method.
In the remainder of this report the following abbreviations will be
used to denote the various methods:
(1) Federal Reference Method =
(2) Chattanooga Health Effects Study Method =
(3) Arsenite Method (straight tube impinger)=
(A) Arsenite Method (fritted bubbler)
(5) Triethanolamine (fritted bubbler)
I/
(6) Triethanolamine-Guaiacol-Sulfite—'
(straight tube impinger)
(7) Continuous Saltzman (Chattanooga)
FRMF
CHESSO
CHRO
CHRF
TEAF
TGSO
TECH
(8) Continuous Saltzman (Technicon Mark IV) = TECA
(9) Chemiluminescent
CHEM
— Sampling on the TGSO method did not begin until September 21, 1972.
-------
12
3.2 Federal Reference Method. FRMF (NASH! Modification of
Jacobs-Hochheiser Procedure) [6]
a. General Description
Nitrogen dioxide is collected by bubbling air through a 0.1N solution
of sodium hydroxide to form a stable solution of sodium nitrite. The
nitrite ion produced during sampling is then determined colorimetrically
by reacting the exposed absorbing'reagent with phosphoric acid, sulfa-
nilamide,and N-1-naphthylethylenediamine dihydrochloride. This method
is applicable to collection of 24-hour samples In the field with
subsequent analysis in the laboratory. The range of the method is claimed to be
3
20-740 yg/m (0.01-0.4 ppm) nitrogen dioxide for a 24-hour sampling
interval at a sample flow rate of 200 cc/minute. An overall collection
efficiency of 35 percent was obtained from test atmosphere having nitrogen
3 3
dioxide concentrations of 140 ug/m and 200 vg/m by automated analysis [20].
For the present study a collection efficiency of 35% was assumed for the
FRMF.
b. S ampling Procedur e
The samples for N0» (one for each 24-hour interval) are collected in
an absorber consisting of a polypropylene centrifuge tube, a two-hole poly-
propylene stopper, and a bubbling apparatus (frit with porosity in the range
of 70-100 y). These collection devices containing 50 mil of absorbing
reagent are sent to the field along with calibrated limiting orifices
(27 guage 3/8" hypodermic needle) which produce a flow rate of
-------
13
175-230 cc/min. A membrane filter and trap containing glass wool are
connected between the bubbler and orifice to prevent or reduce plugging
of the orifice by entrained absorbing reagent. Collected samples are
returned to the laboratory for subsequent analysis.
c. Analytical Procedure
An automated system (Technicon Autoanalyzer)is used for analysis
of NO- samples received from the field. Samples are placed on a
sample turntable and automatically picked up at a rate of 40 samples
per hour. Appropriate reagents are mixed with the samples, which
then flow through time delay coils to the colorimeter, where the absorb-
ance of the azo dye produced in the reaction is read at 558 nm and
displayed on a stripchart recorder. Approximately 8 minutes elapse
between sample pickup and appearance of the corresponding peak on the
recorder chart. Standardization of the autoanalyzer is accomplished
with liquid nitrite standard solutions.
3.3 Chattanooga Health Effects Study Method, CHESSO [23]
a. General Description
Nitrogen dioxide is collected by bubbling air through a
0.1N solution of sodium hydroxide forming a stable solution of sodium
nitrite, which, when reacted with phosphoric acid, sulfanilamide, and
N-1-naphthylethylenediamine dihydrochloride, forms an azo dye. The
absorption of the azo dye is then determined colorimetrically at 558
nm. An "empirical sampling factor" of 0.695 was determined
-------
14
experimentally for this method and used to calculate corrected NO
2
values [23].
b. Sampling Procedure
Integrated samples (one each 24-hour period) are collected in two
absorbers connected in series, each containing an orifice tube (1 mm diam-
eter) instead of a frit and 35 mi of absorbing reagent. A sample flowrate
of approximately 500 cc/min is maintained using hypodermic needles as
critical orifices. A membrane filter and trap containing glass wool
are connected between the bubbler and orifice to prevent or reduce
plugging of the orifice by entrained absorbing reagent. Collected
samples are returned to the laboratory for analysis.
c. Analytical Procedure
An automated system (Technicon Autoanalyzer) is used for analysis
of all field samples. The analysis procedure is essentially the same
as that described for the Federal Reference Method.
3.4 Arsenite Method (Orifice). CHRP [15]
.a. General Description
Nitrogen dioxide is collected by bubbling ambient air through a
0.1N sodium hydroxide solution Containing 0.1 percent sodium arsenite
to form a stable solution of sodium nitrite. The nitrite ion produced
-------
15
during sampling is then determined colorimetrically at 558 nm by reacting
the exposed absorbing reagent with phosphoric acid, sulfanilamide, and
N-1-naphthylethylenediamine dihydrochloride to form an azo dye. An
overall collection efficiency of 85 to 95 percent has been reported
for this method with a slight interference by nitric oxide at high
concentrations. In the present study a collection efficiency of 85
percent was used.
b. Sampling Procedure
Integrated samples (one each 24-hour period) are collected in a
collection unit, a polypropylene tube fitted with a two-hole polypropylene
stopper and containing a bubbling apparatus which consists of an orifice
(1 mm diameter) tube at a flow rate of 175-230 cc/min. Appropriate
filters and traps are included to prevent plugging of the hypodermic
needle critical orifice by entrained absorbing reagent.
c. Analytical Procedure
Analyses of field samples are accomplished on a Technicon Autoanalyzer
modified for continuous, automated analysis of NO- samples.
3.5 Arsenite Method (Frit), CHRP [15]
a. General Description
See Section 3.4.a.(CHRO) for a general description.
-------
16
b. Sampling Procedure
Integrated samples (one each 24-hour period) are collected in a
collection unit, a polypropylene tube fitted with a two hole polypropylene
stopper and containing a bubbling apparatus which consists of an upturned
frit with porosity range of 70-100 u at a flowrate of 175-230 cc/min.
Appropriate filters and traps are included to prevent plugging of the
hypodermic needle critical orifice by entrained absorbing reagent.
c. Analytical Procedure
The procedure is the same as for CHRO, Section 3.4.c.
3.6 Triethanolamine Method (Frit), TEAF [15]
a. General Description
The method is the same as for CHRP, Section 3.4.a., except that
nitrogen dioxide is collected by bubbling air through 0.1 M triethanola-
mine solution to form a dilute solution of sodium nitrite.
b. Sampling Procedure
Integrated samples (one each 24-hour period) are collected in a
collection unit, a polypropylene tube fitted with a two-hole polypropylene
stopper and containing a bubbling apparatus which consists of an upturned
frit with porosity range of 70-100 y at a flow rate of 175-230 cc/min.'
Fifty ml of 0.1 M triethanolamine are used as the absorbing reagent.
Appropriate filters and traps are included to prevent plugging of the
critical orifice by entrained absorbing reagent.
c. Analytical Procedure
The procedure is the same as for CHRO, Section 3.4 c.
-------
17
3.7 Triethanolamine-Guaiacol-Sulfite Method, (Orifice) TGSO [15]
a. General Description
The method is the same as for CHRO, Section 3.4.a., except that nitrogen
dioxide is collected by bubbling ambient air through an absorbing reagent
containing triethanolamine, guaiacol (o-methoxy-phenol), and sodium
metabisulfite. A collection efficiency of over 92 percent NCL has been
3
reported in the form of nitrite ion in the range 20 yg NO /m to 740 ug
3
NO /m . No interference has been found from NO, S0», 0 , CO, CO , HCOH,
NH , and phenol. In the present study the collection efficiency used was
100% for the TGSO.
b. Sampling Procedure
The procedure is the same as for CHRO, Section 3.4.b.
c. Analytical Procedure
See Section 3.4.C.—
3.8 Continuous Saltzman (Chattanooga), TECH [13]
a. General Description
Measurement of the concentration of nitrogen dioxide in ambient
air via a Technicon II Air Monitor is based on the absorption of NO
in a Greiss-Saltzman reagent [2llthat produces a red dye whose absorbance
can be determined by a recording colorimeter at 560 nm. This involves
diazotization of sulfanilic acid by nitrous acid derived from NO followed
— Note that the TGSO method used in the present study has been
subsequently modified.
-------
18
by a coupling reaction with N-1-naphyhylethylenediamine dihydrochloride
to form the dye. Negligible interferences are reported for this method.
A logarithmic output is obtained from the colorimeter.
b. Sampling Procedure
Ambient air is pulled through an absorption column at approximately
780 cc/min and contacted with Saltzman reagent to form nitrous acid by
reaction of nitrogen dioxide with absorbing reagent. The diazotiza-
tion and coupling reactions are then completed in approximately 25
minutes. Response time to 95 percent for the Autoanalyzer is approxi-
mately 25 minutes.
c, Analytical Procedure
Continuous recording of the N02 concentration in the atmosphere
requires only reduction of data from strip-chart recorder and periodic
calibration of the Technicon Autoanalyzer using static or dynamic
methods. Dynamic calibration procedures are preferred, since this
method of calibration evaluates the entire system (i.e., collection
efficiency of absorber and the colorimeter) rather than just the
calibration of the colorimeter.
3.9 Continuous Saltzman (Technicon Mark IV), TEC4 [13]
a . General Description
Measurement of the concentration of nitrogen dioxide in ambient
air via a Technicon Mark IV Air Monitor is based on the absorption of
N02 in a Greiss-Saltzman reagent [2l] that produces a red dye whose
absorbance can be determined by a recording colorimeter at 560 nra.
-------
19
This involves diazotization of sulfanilic acid by nitrous acid derived
from N0_ followed by a coupling reaction with N-1-naphyhylethylenedia-
mine dihydrochloride to form the dye. Negligible interferences are
reported for this method. A linear output is obtained from the colorimeter.
b. Sampling Procedure
Ambient air is pulled through an absorption column at approximately
420 cc/min and contacted with Sal^zman reagent to form nitrous acid by
reaction of nitrogen dioxide with absorbing reagent. The diazotization
and coupling reactions are then completed in approximately 15 minutes.
Response time to 95 percent for the autoanalyzer is approximately 15
minutes.
c. Analytical Procedure
Continuous recording of the N02 concentration in the atmosphere
requires only reduction of data from a strip-chart recorder and periodic
calibration of the Technicon Autoanalyzer using static or dynamic methods.
Dynamic calibration procedures are preferred.
3.10 Chemiluminescent Method. CHEM
a, General Description
The principle of operation of the Bendix NO-NO -NO analyzer is
X £
based on the specific, cherailuminescent gas phase reaction of NO and
ozone occurring at atmospheric pressure. Light emission from the
reaction
NO -f 03 -»• N02 + 02 -*• NO + hv
-------
20
is proportional to the concentration of NO in the sample stream.
Nitrogen dioxide in the sample stream is catalytically converted to
NO via a heated gold wool filter maintained at 220°C. Nitric oxide
passes unchanged through the catalytic converter and an NO measurement
J\
(i.e., NO + N02 reduced to NO) is made. The NO concentration is
obtained by substracting the NO output from the NO output. The
A
effective range of the analyzer is from 0.005 to 5 ppm with a minimum
detectable concentration of approximately 0.005 ppm. Lag time, response
time, and total time for response to 95 percent are reported to be 5,
20, and 25 seconds, respectively. No compounds normally encountered
in ambient'air have been reported to interfere with this measurement
method.
b. Sampling Procedure
Ambient air is pulled through a teflon filter into the analyzer
at 200 cc/min and mixed with ozone, producing a chemiluminescent
reaction. The light emission is detected via a photomultiplier tube
and the HO, NO , and NO concentrations are displayed on strip-chart
X £
recorders.
c. Analytical Procedure
No specific analytical procedures other than periodic, dynamic
calibration of the analyzer are required.
Table 3.1 provides a brief summary of the methods described above.
-------
Table 3.1
N02 Monitoring Methods
Method Name Notation
1. Federal Reference Method FRMF
2. Triethanolamine Method TEAF
(Fritted Bubbler)
3. Arsenite Method CHRF
(Fritted Bubbler)
A. Arsenite Method CHRO
(Straight Tube Impinger)
5. Chattanooga Health Effects CHESSO
Study Method
6. Triethanolamine-Guaiacol-Sulfite TGSO
Method (Straight Tube Impinger)
7. Continuous Saltzman (II) TECH
(Chattanooga)
8. Continuous Saltzman TEC4
(Technicon Mark IV)
9. Chemiluminescent CHEM
Assumed
Collection
Efficiency
35%
100%
85%
85%
35%
100%
Cpmmen ts
Bubbler, daily readings
Bubbler, daily readings
Bubbler, daily readings
Bubbler, daily readings
Bubbler, daily readings
Bubbler, daily readings, sampling
began in September, 1972
Used in Chattanooga only; hourly strip
chart readings are averaged over time
period corresponding to bubbler operation
to obtain "daily" values
5-minute readouts or hourly strip charts
are averaged over time period correspond-
ing to bubbler operation to obtain "daily"
values
Same as TEC4 comment
-------
22
4. ANALYSIS OF SAMPLING DATA
4. 1 Introduction
Two sets of data were available to RTI: one containing information
on a daily basis for nine monitoring methods and the other, information
on an hourly basis for the three continuous monitors (TECH, TEC4 and
f
CHEM). The contents, scope, and method of construction of the daily and
hourly data are described in Section 4.2. Data listings of the daily
data are given in Appendix H of this report.
Due to the fact that hourly data were available only for the three
continuous monitoring methods, the analysis of the sampling data is mainly
concerned with the daily data. Statistical editing procedures for the
daily data are described in Section 4.3. The analytical criteria and
methods for analyzing the N00 data were developed in earlier phases of
A.
the project. Section 4.4 presents the results of the analyses of the
daily data. KTI's analysis of the hourly data is given in Section
4.5.
4.2 Data Description
The N02 sampling data gathered by EPA for the purpose
of method comparison consists of measurements by several N09 monitoring
methods (see Section 3 for a description of these methods) at sixteen
-------
23
stations in three cities (Chattanooga, St. 'Louis, and Los Angeles vicinity).
However, of these 16 stations only seven contain more than two monitoring
methods. Accordingly, for the present report RTI examined data only from these
seven stations. The locations of these stations are given in Table 4.1.
The data as collected by EPA are in three different forms:
(a) 24-hour integrated readings— (for the bubbler methods,
i.e., FRMF, CI1ESSO, CHRO, C1IRF, TEAF, and TGSO) ,
(b) 5 minute readings (for methods TEC4 and CHEM), and
(c) 1 hour strip chart readings (for all the continuous
methods, i.e., TECH, TEC4, and CHEM).
These data are edited by EPA and then sent to RTI on computer tape in the
following forms:
2/
(a) 24-hour readings for all 9 comparison methods— ,
(b) 1 hour averages derived from the 5 minute readings
(for TEC4 and CHEM), and
(c) 1 hour strip chart readings (for TECH, TEC4, and
CHEM).
Type (c) is used to supplement the data from the automated data acquisition
system (Type (b)). These latter data are referred to as "data set" values.
— These readings, referred to as "daily" or "24-hour" readings, actually
are only approximately of 24-hour duration.
2 /
— For the continuous methods, the "daily" readings are obtained by
averaging over a time period compatible with that of the bubblers.
-------
Table 4.1
City and Site Codes
Code Location
Chattanooga (6)
632 Briarwood Drive (Hamilton County)
633 Hickory Valley Road (Hamilton County)
St. Louis (9)
9°1 South 12th Street (St. Louis County)
902 South Hampton Street (St. Louis County)
California (8) (Los Angeles vicinity)
831 Anaheim
832 Garden Grove
841 Glendora
-------
25
In summary, the following table indicates the types of data that
RTI receives from EPA for each monitoring method:
Reading
Daily
I/
Method^'
FRMF TEAF CHRP TGSO CHRO CHESSO TECH TEC4 CHEM
I I I I I I S.C. D.S. D.S.
Hourly
S.C. D.S. D.S.
!/
I = 24-hour integrated reading
S.C. = strip chart (average)
D.S. = data set (average), supplemented with strip chart data.
Table 4.2 gives the number of daily readings (unpaired) by station
(site) and method that RTI has received from EPA for the seven stations
where more than two monitoring methods were present. In particular,
the table shows that there are nine methods at the two Chattanooga stations
and eight methods at the two St. Louis stations and the three California
stations (Los Angeles vicinity). (Note that the TECH is only used in
Chattanooga.) In addition, in site 832 there are duplicate measurements
(denoted by 832D) for the eight methods present in California. The
-------
26
Table 4.2
Number of Daily Measurements by Method and
Site Before Removing Outliers — Sa.mplinp. Period July 1, 1<*72,
- April 30, 1973, Unpaired
CHATT.
632
633
St. Louis
901
902
Calif.
831^
832
841
832D^/
TOTAL
FRMF
223
234
245
244
56
203
210
143
1558
TEAF
228
230
246
242
54
186
191
140
1517
CHRF
225
231
245
244
57
219
210
158
1589
CHRO
231
232
*
242
243
55
195
203
145
1546
CHESSO
251
246
208
204
143
234
204
153
1643
TGSO
114
112
123
118
11
105
103
84
770
TECH .
164
164
*
*
*
*
*
*
328
TEC4
183
180
28
85
26
143
107
69
821
CHEM
190
196
46
102
45
135 !
121
66.
901;
* = method not present.
— Total number of sampling days varies for each method (see Table 4.3)
21
—On October 6, 1972, all methods except CHESSO and CHEM were moved
from site 831 to site 832 to provide duplicate readings in site 832.
These are denoted by 832D.
-------
27
duplicate measurements were obtained by moving several methods from site
831 to site 832 during October, 1972. (Thus, after October, 1972, site
4
831 only has measurements by the CHESSO and CHEM methods.) Table 4.3
presents the number of days for which daily readings were obtained for
each sampling method over the seven sites. The potential number of sampling
days in the table varies for each method since each of the nine monitor-
ing methods did not begin or end sampling on the same day. In examining
Table A.3 the reader should take particular note of footnote 3.
Before RII received the daily HO monitoring data, EPA validated
this data. Appendix G gives EPA references which describe how this vali-
dation procedure was carried out. Appendix G also gives references to
the calibration procedures used by EPA for the various N0_ monitoring
methods. In addition to validating the data, EPA also used the following
rule in averaging the N0? data from the continuous monitors (i.e. , CHEM,
TECH and TEC4):
In passing from one averaging time to a longer
averaging time, 75 percent of the data were required.
For example, if an "hourly" average was to be com-
puted from five-minute readings, then at least 9 of
the 12 readings were to be available. Similarly, 18
of 24 hourly averages were required to obtain a
"24-hour" average.
-------
28
Table 4.3
Number of Days for which Daily Readings were Obtained by Method,
Over Sites—Sampling Period July 1, 1972
- April 30, 1973
21
FRMF TEAF CHRP CHRO CHESSO TGSO TECH- TEC4 CHEM
Potential-
Sampling
Days
3/
Days Where-
Data Present
1797 1797 1797 1797 2079 931 417 1400 1612
1558 1517 1589 1546 1643 770 328 821 901
— Potential sampling days = last day data given to RTI - first day
data given to RTI -f 1
21
— TECH only used in Chattanooga
3/
— The time limitations on the study gave little opportunity to become
familiar with the continuous monitoring equipment and the data
acquisition system; hence what is seen here may not represent an
accurate picture of what night be expected in general or in the future.
-------
29
The procedure used by EPA to obtain the daily and hourly data set
and strip chart readings for the TECH, TEC4, and CHEM methods is summarized
in Table 4.4.
Because EPA personnel have indicated that they would like to see
some summary statistics before RTI removed outliers from the daily data,
Appendix B (Tables B-l through B-4) gives means, correlations and ratios
+
by site and over sites for the daily data as received by RTI. The re-
mainder of this report then deals with the daily data after RTI removed
outliers. Section 4.3 describes how these outliers were removed.
4.3 Data Screening for the Daily Data—
For the daily data, RTI employed a three-stage screening procedure
to deal with outlying NO readings. First, a listing of daily data which
failed to satisfy a simple mean criterion (see below) was obtained. Those
readings in violation of the mean criterion were visually screened and
about half of the indicated readings were removed. Finally, a visual screen-
ing of the entire daily data base was made to ascertain if any additional
readings should be removed. This three-step procedure resulted in the
removal of 60 outliers out of a total of 10,673 daily NO readings (about
0.6%). The number of outliers is summarized by site in Table 4.5.
The mean criterion used for the data screening (i.e., STEP 1) was as
follows:
— Procedures for the hourly data are given in Section 4.5.
-------
Table 4.4
Procedure Used by EPA for Constructing Daily Values for Continuous Monitors^'
I/
1. TECH 1 Hr. ..Lag by .
(Strip Chart) Readings ^20 min '
2. TEC4 1 Hr. .Lag by v
(Strip Chart) Readings '10 min '
3. TEC4 5 rain ^Compute N
(Data Set) Readings Average '
of 5 min
Readings
4. CHEM 1 Hr
(Strip Chart) Read:
CHEM _, Compute v
ings Average
of 1 Hr
Readings
5. CHEM 5 min v Compute .
(Data Set) Readings 'Average ^
of 5 min
Readings
Hourly TECH
Values
Hourly TEC4
Values
Hourly
'Values
Daily CHEM
Values
Hourly CHEM
Values
21
\ Compute— x
Average of
Hourly- Values
\Compute \
Average of
Hourly Values
vLap, by v
'10 min '
v Compute v
Average of '
Hourly Values
Daily TECH -
Values
Daily TEC 41
Values
Hourly v
TEC4 '
Values
Daily CHEM
Values
./
Compute v Daily
Average of ^ TEC 4
Hourly Values [ Values
— All averages computed require that at least 75% of the terms be available. Two point moving averages
are used to lag data. All averages are arithmetic averages. All readings are in vg/m3.
21
— In computing daily averages, total time averaged is matched to the time period during which bubblers
are operational.
LJ
o
A
indicates that this reading is given by EPA to RTI.
-------
31
Table 4.5
Number of Outliers, By Site
Site
632
633
901
902
831
832
841
832D
No. Daily
Readings
1809
1825
1383
1482
447
1420
958
1349
STEP
1_
16
10
:.i
6
6
15
35
11
STEP
2_
6
4
1
1
1
7
20
6
STEP
3_
2
0
2
0
0
1
8
1
No. Outliers
= STEP 2 +
8
4
3
1
1
8
28
7
Removed
STEP 3
Total 10,673 100 46* 14 60
STEP 1: Listing of readings in violation of mean criterion.
STEP 2: Outliers from visual screening of listing in STEP 1.
STEP 3: Additional outliers from visual screening of entire daily
data base.
* Includes 8 zero or negative readings.
-------
32
Suppose k different methods provided N0? readings at a particular
site on the j day. Then the i method would not be detected as a
potential outlier if
il<" < Xy < 4X«"
where
Xii = N°2 readinS b? method i for the j day
and
X L = mean of NO- readings by the other (k-1)
j
methods for the j day.
Table 4.6 presents a listing of the 60 daily NO outliers by site.
For each site, the listing gives the sampling day, the NO readings for
all methods present on that day and the name of the method (or methods)
whose value is an outlier (listed under Ml, etc.).
Table 4.7 presents the number of daily readings (unpaired) after
removing the 60 outliers by site and method. The remainder of the daily
data analysis (Section 4.4) is based on these screened data.
-------
Table 4.6
LISTING OF CUTLIERS •- DAILY
DAY
100
152
156
163
194
208
228
247
FRMF
35.5
22,7
60,6
307.2
39.4
6.5
47.0
30.9
TEAF
*
4S.O
33.7
23.9
29.2 ""
6.3
CHRF
r.22»v
58.1
30.4
22.0
23,2
110. 0
37,3
CHRO CHES30
lo!'0
54.8
38.5
26.8
45.8
51.4
~~5'f.S
97.9
61.6
37.3
23.8
27.4
29.2
18.7
TGSC
~.".32.<
45.6
18. '4
!6.9
16.6
SITE=632
TECH TEC4 CH£K
16.
49.
49.
29.
56.
?
2
0
<5
4
1 .60'. 2
521.1
29.7
32.4
44 !
13.0
29.0
149.3
24.9
25.9
34. F
45.0
38.7
Method(s) which is outlier
Ml H2 M3
"CHESSC
TEC4
Ch'OQ
FRMF
CHRF
«e
DAY
99
100
153
276
FRMF
108,3
66,4
6373
25,8
"TEAF"""
62,1
30.4
28.5
9.2 ~~
CHRF
80.1
36.5
32.7
*
CHRO
76.9
36.7
28.4
11.8
CHE5SO
11.9
11.4
38.7
25.6
TGSC
97.3
60.7
26.1
"••
TECH
155.
69.
iee.
3
6
0
!IT£=63:
TFCil
113. £
49.5
" 1 6 ! 6
3
CHEK
69.5
54.6
•41,5
19.9
- -- *" - * *
Ml M2 M3
CHESSC
CHESSC
TECH
CHRF
N~<4
DAY
166
201
239
FRMF"
53.0
132.2
310,9
TEAF
28.4
53.7
CHRF
32,5
74.5
CHRO
. 43.9
80.8
86.9
CHESSO
6.6
315.8
105.9
TGSC
27.'3
56. '4
TFCH
TEC4
"L.S
CH.EK
1C5.7
Ml MS M.3
CHES3C
C-HESSC
FRMF
N=3
-------
Table 4.6 (Continued)
LISTING OF OUTLIERS — DAILY DATA
DM
191
N-l
DAY
89
DAY
79
60
69
90
116
12J
176
FRMF
60,5
FRMF
FRMF
6.9
69.0
93.9
-ill, b
16.1
TEAF
30.9
TEAF "
as. 3
TEAF
8.2
36. a
3.3
1.3
71.2
1.9
2.4
CHPF
35,9
CHRF
70.7
CKRF
56.2
26.1
47.6
55.5
50. 1
4*2
CHRO
US. 9
"CHRQ '
CHRD
49,8
46. 8
U7. 1
87.5
49.2
1.3
CHESSP TGoC
* 25.9
CHESSO TGSP
13.3 16.
-------
Table 4.6 (Continued)
LISTING OF OUTLIERS—DAILY DATA
DAY
37
38
43
47
49
5«
79
114
119
126
J3S
136
142
145
1U9
155
160
165
166
171
275
N»22
FRMF
96.8
90.1
52.6
70.5
39.1
ifceii
7.1
33.4
39. «
29.9
308.9
. 56.9
13,6
107.0
58.6
15.0
94,0
TEAF.
3.5
55.8
48.8
70.8
58.8
67.5
5.8
122.4
76.3
101.0
20.2
57.0
.... 6.0
57,3
1.3
17.0
32.7
." CHRF
67.9
61.1
62.0
50.1
83.8
69.8
129.8
2.7
33.4
2.5
63.5
42.8
62.5
8.6
9.3
11.1
5.8
4.1
. CHRO.
90.5
68,0
55.8
47. a
89. a
80.7
156^7
87.9
2.5
5,8
28.0
2.5
40.8
. 2,6
5.1
26.2
31.1
17.1
6U.7
CHESSC
19.7
16.4
15.3
45.5
71.9
62.3
93.9
59. «
101.1
47.2
56.6
38.5
72.4
62.0
60.4
53.3
" TGSC TE(
••-- - •-• -
33.5
157.9
4.4
20.0
56.1
34.2
49.6
1.2
*
1.2
5IT.c=S«.l
;H TEC4
152.2
47.4
255.9
30B.9
2?3.3
40.6
56.0
67.9
56.1
10U.2
67.9
SITE=832
Method (s) which is outlier
CH£M ' .Ml ... M? K3 ... ^4
83.4 TEAF
60.2 CHESSC
CHESSC
52.5 TEC4
F-RKF
95.5 TEC4
216.2 PRMF
TEAP
0.4 C^EM
F RMP
TEAF . CHESSO
CHRC
CHRC
TEAF CHRC „. .
FRMF CHRC
101.4 CHEM
FRMF
TGSC
FRMF CHRF CHRC TGSC
CHRF
DIP
u>
-------
Table 4.6 (Continued)
LISTING OF OUTLIERS—DAILY DATA
Method(s) which is outlier
DAY..
143
144
145
164
166
178
198
N=7
_. . fBHF.
122J
126.6
154.8
135.6
147.4
20.3
: TEAF .CHRP
2.5~ 66.4
101.1
102,4 398.8
37.9
78.2
3.6 5.9
196.1 230.7
_._ CHRC CHESSC. .TGSC..TECH TE
73/4 75.8 64.3
96.1 * 71.9
* 37.1
80.4 76.5 10.0 108
'"328.3 " "" "~ "
228.0 * 193.4
C4 CHEV .._M1 M2 f3 ^ '•
" "'"~ TEA*
CHESSC
CHR?
CHESSC
.9 117. P 1GSC
CHESSC
CHESSC
u>
value not shown because It was below Instrument detection limits (there are eight of these cases).
-------
37
Table 4.7
Number of Daily Measurements by Method and Site After
Removing Outliers—Sampling Period July 1, 1972,
- April 30,
Chatt.
632
633
St. Louis
901
902
Calif.
831
832
841
832D
Total
Number of
Outliers
Removed
FRMF
221
234.
244
244
56
202
203
143
1547
11
TEAF
226
230
246
242
54
182
187
139
1506
11
CHRP
224
230
245'
244
57
219
207
157
1583
6
1973,
CHRO
230
232
242
243
55
195
198
145
1540
6
Unpaired Data
CHESSO
250
244
206
203
143
232
201
149
1628
15
TGSO
114
112
123
118
11
105
101
83
767
3
TECH TEC4
164 182
163 180
* 28
* 85
* 25
* 143
* 105
* 69
327 817
1 4
CHEM
190
196
46
102
45
134
119
66
898
3
* = method not present
-------
38
4.4 Analysis of Daily Data
a. Introduction
In this section the daily screened NO data described in Section
4.2 and 4.3 is analyzed. This analysis includes (i) paired comparisons
of methods (Section 4.4.b);. e.g., paired means, correlations and ratio
of means, (ii) estimated relationships between pairs of methods (Section
4.4.c) by using regression techniques, (iii) unpaired summary statistics
by method (Section 4.4.d); e.g., means, standard deviations and frequency
distributions, and (iv) analysis of duplicate data (Section 4.4.e).
b. Paired^ Comparisons of Methods
Data for two particular monitoring methods may not occur at the same
site at the same time. Accordingly, since there is a large amount of miss-
ing daily NO data, a simple comparison of means for two methods (as in
Section 4.4.d) may lead to incorrect conclusions. Hence, in this sub-
section two methods are compared only for those days for which observations
are available for both methods. Table 4.8 presents a summary of the paired
data. Data from the seven primary sites (excluding site 832D), when both
methods of a pair occur at a site, have been pooled together. In parti-
cular, Table 4.8 presents the number of observations N (i.e., the number
of paired site-days) for each pair of methods. Note that on the diagonal
of the table (i.e., where the same method is in the column and row heading)
N is the total number of observations for a particular method. The off-
diagonal entries of the table give the arithmetic means, the ratio of the
-------
Table 4.8
4/
Summary Statistics—, for Paired Observations—
for Data Combined Over Sites—
N
FRMF MEAN
FRMF Col. MEAN
Raticr^
Corr.
N
TEAF MEAN
TEAF Col. MEAN
Ratio
Corr.
N
CHRF MEAN
CHRF Col. MEAN
Ratio
Corr.
N
CHRO MEAN
CHRO Col. MEAN
Ratio
Corr.
FRMF
1404
76.7
1290
38.1
75.3
.51
.81
1337
49.0
76.6
.64
.77
1313
46.9
75.9
.63
.79
TEAF
1290
75.3
38.1
1.98
. .81
1367
38.2
1310
48.5
38.1
1.27
.85
1285
46.4
37.9
1.22
.86
CHRF
1337
76.6
49.0
1.56
.77
1310
38.1
48.5
.79
.85
1426
49.3
1326
47.0
49.0
.96
.93
CHRO
1313
75.9
46.9
1.6
.79
1285
37.9
46.4
.82
.86
1326
49.0
47.0
1.04
.93
1395
47.2
CHESSO
1166
75.6
54.9
1.38
.59
1141
37.4
53.8
.70
.61
1184
48.4
55.1
.88
.62
1169
46.3
54.6
.85
.59
TGSO
648
80.7
39.0
2.07
.69
625
38.4
37.8
1.01
.76
650
47.4
38.9
1.22
.81
633
46.6
38.7
1.20
.79
TECH^-'
265
56.0
56.3
.99
.55
266
28.1
56.8
.49
.73
268
32.0
56.9
.56
.71
270
32.4
56.7
.57
.68
TEC4
637
72.6
61.9
1.17
.71
619
35.6
58.8
.61
.76
655
46.4
62.2
.75
.72
643
43.9
61.7
.71
.75
CHEM
648
72.1
56.6
1.27
.69
635
35.9
55.0
.65
.76
663
47.2
56.9
.83
.73
650
44.5
56.4
.79
.74
-------
Table 4.8 (Continued)
N
CHESSO MEAN
CHESSO Col, MEAN
Ratio
Corr.
N
TGSO MEAN
TGSO Col. MEAN
Ratio
Corr.
N
TECH MEAN
TECH Col. MEAN
Ratio
Corr.
N
TEC4 MEAN .
TEC4 Col. MEAN
Ratio
Corr.
FRMF
1166
54.9
75.6
.72
.59
648
39.0
80.7
.48
.69
265
56.3
56.0
1.01
.55
637
61.9
72.6
.85
.71
TEAF
1141
53.8
37.4
1.43
.61
625
37.8
38.4
.99
.76
266
56.8
28.1
2.04
.73
619
58.8
35.6
1.64
.76
CHRF
1184
55.1
48.4
1.14
.62
650
38.9
47.4
.82
.81
268
56.9
32.0
1.79
.71
655
62.2
46.4
1.33
.72
CHRO
1169
54.6
46.3
1.18
.59
633
38.7
46.6
.83
.79
270
56.7
32.4
1.75
.68
643
61.7
43.9
1.41
.75
CHESSO
1479
55.0
556
38.6
60.1
.64
.50
261
55.1
35.0
1.56
.29
635
62.3
51.1
1.22
.65
TGSO
556
60.1
38.6
1,56
.50
684
39.1
191
56.1
28.8
1.96
.54
302
65.9
39.5(
1.67
.72
21
TECH-'
261
35.0
55.1
.64
.29
191
28.8
56.1
.51
.54
327
57.1
227
44.6
59.2
.75
.56
TEC4
635
51.1
62.3
.82
.65
302
39.5
65.9
.60
.72
227
59.2
44.6
1.33
.56
"748
62.9
CHEM
645
52.3
57.7
.91
.60
351
35.7
56.8
.6:
.73
222
56.0
44.3
1.27
.64
545
63.5
59.9
1.06
.83
-------
Table 4.8 (Continued
N
CHEM MEAN
CHEM Col. MEAN
Ratio
Corr.
FRMF
648
56.6
72.1
.79
.69
TEAF
635
55.0
35.9
1.54
.76
CHRF
663
56.9
47.2
1.20
.73
CHRO
650
56.4
44.5
1.27
.74
CHESSO
645
57.7
52.3
1.10
.60
TGSO
351
56.8
35.7
1.59
.73
- TECH^
222
44.3
56.0
.79
.64
TEC4
545
59.9
63.5
.94
.83
CHEM
832
58.3
— Unless otherwise indicated, data is from sites = 632, 633, 901, 902, 831, 832, 841,
(832D eliminated).
II
— Data for TECH from sites 632 and 633 only.
3/
— Ratio of arithmetic means (row method in numerator).
4/
— The statistics in this table are shown for descriptive purposes only. Their general
use is not recommended (see Section 5.4).
-------
42
means and the correlations for each pair of.methods. The ratios are taken
such that the row mean is always in the numerator— .
Table 4.9 reformats some of the same information contained in Table
4.8. The methods have been ordered (approximately) by the magnitudes of
their means—from largest to smallest. The first portion of Table 4.9
again shows the ratios of the arithmetic means. In terms of the magnitude.
»
of these ratios, this table indicates that the methods fall basically into
five groups indicated by the dashed lines in the table:
(1) TECH and FRMF the largest,
(2) TEC4 and CHEM next,
(3) CHESSO,
(4) CHRP and CHRO, and
(5) TGSO and TEAF, the smallest.
These groupings may indicate that the collection efficiencies used for
the 24-hour integrated sampling methods are inappropriate. Recall that
these collection efficiencies are 35% for the FRMF and CHESSO, 85% for the
CHRP and CHRO, and 100% for the TGSO and TEAF.
— RTI has also examined the ratios of geometric means and the correla-
tions between methods on a logarithmic scale (see Appendix Table D-l).
However, these quantities were usually quite similar to the ratios
and correlations given in Table 4.8.
-------
Table 4.9
Ratios of Arithmetic Means and Correlations— Between
Methods Over the Seven— Primary Sites
Ratios of Arithmetic Means (Row method in numerator)
TECH FRMF TEC4 CHEM CHESSO CHRP CHRO TGSO
TEAF
TECH
FRMF
TEC4
CHEM
CHESSO
CHRP
CHRO
TGSO
TEAF
1.00
.99
.75
.79
.64
.56
.57
.51
.49
1.01
1.00
.85
.79
.72
.64
.63
.48
.51
1.33
1.17
1.00
.94
.82
.75
.71
.60.
.61
1.27
1.27
1.06
1.00
.91
.83
.79
.63
.65
1.56
1.38
1.22
1.10
1.00
.88
.85
.64
.70
1.79
1.56
1.33
1.20
1.14
1.00
.96
.82
.79
1.75
1.60
1.41
1.27
1.18
1.04
1.00
.83
.82
1.96
2.07
1.67
1.59
1.56
1.22
1.20
1.00
1.01
2.04
1.98
1.64
1.54
1.43
1.27
1.22
.99
1.00
Correlations
TECH FRMF TEC4 CHEM CHESSO CHRF CHRO TGSO TEAF
TECH 1.00 .55
FRMF 1.00
TEC4
CHEM
CHESSO
CHRF
CHRO
TGSO
TEAF
.56 .64
.71 .69
1.00 .83
1.00
.29
.59
.65
«
.60
1.00
.71
.77
.72
.73
.62
1.00
.68
.79
.75
.74
.59
.93
1.00
.54
.69
.72
.73
.50
.81
.79
1.00
.73
.81
.76
.76
.61
.85
.86
.76
1.00
TECH in 632, 633 only, other methods in 632, 633, 901, 902, 831, 832,
21
The statistics in this table are shown for descriptive purposes only.
Their general use is not recommended (see Section 5.4).
-------
The correlations between methods— given in the second portion of
Table 4.9 show that (a) the highest correlation is between CHRP and CHRO
(= .93), (b) the highest correlations are generally between four of the
five bubbler methods: CHRP, CHRO, FRMF, and TEAF (range = .77 - .93),
(c) the TEC4 and CHEM correlate fairly well with each other (= .83) but
have somewhat poorer correlations with the CHRP, CHRO, FRMF, TGSO, and
TEAF (range = .69 - .76), (d) the CHESSO does not correlate very well
with any other method (range = .29 - .65), (e) the TECH and TEC4 do not
correlate well (= .56). Tables 4.10 and 4.11 are presented to illustrate
how the ratios and correlations shown in Table 4.9 (over sites) vary from
site to site. Table 4.10 gives the ratios of the arithmetic means by site
for selected pairs of methods (Appendix Table C-l gives these ratios by
site for all pairs of methods). These ratios are based only on those N
days for which both methods furnished readings. Table 4.10 shows relatively
consistent ratios from site to site for the CHRF/CHRO pair (range over
— This terminology has been and will continue to be used. However, it
should be noted that "correlations between methods" or "correlation
of method X with method Y" might more accurately be phrased as
"correlations between readings of methods." Hence, a high "correla-
tion between two methods" indicates that they respond to changes
(presumably, in levels of N02 concentrations) in similar, linear
fashions, although perhaps on independent scales. Thus, if day-to-
day variations in N02 were absent, the correlations between all
methods should be zero; for a site which exhibits stable day-to-day
N02 concentrations, one would thus expect to observe smaller "corre-
lations between methods" than for a site with a large variability
in (true) N02 levels.
-------
45
CHRF/CHRO
No. Obs.
Ratio
Table 4.10
Ratios of Arithmetic Means— for Selected Pairs
of Methods, by Site
Sites
632 633 901 902 831 832 841
219 225 236 237 49 185 175
1.01 1.04 1.07 1.05 1.02 1.06 1.02
Total
1326
1.04
CHESSO/CHRO
No. Obs.
Ratio
216 206 193 185 51 166 152
1.00 1.07 1.28 1.32 1.05 1,23 1.15
1169
1.18
CHEM/CHRO
No. Obs.
Ratio
164 171 43 82 12 102 76
1.15 1.08 1.24 1.35 1.11 1.33 1.56
650
1.27
FRMF/CHRO
No. Obs.
Ratio
CHEM/TEC4
No. Obs.
Ratio
218 228 235 238 47 171 176
1.64 1.66 1.65 1.69 1.40 1.73 1.39
126 132 28 60 12 107 80
.87 1.03 1.32 .96 .73 .83 1.03
1313
1.60
545
.94
— The statistics in this table are shown for descriptive purposes only.
Their general use is not recommended (see Section 5.4).
-------
46
Table 4.11
Correlations Between Methods - By Site
Method Site FRMF TEAF CHRP CHRO CHESSO TGSO TECH TEC4 CHEM
FRMF
TEAF
CHRF
CHRO
632 1.0
633 /K
901
902
831
832
841 v
832D1' 1<0
632 .79 1
633 .72
>
901 .72
902 .74
831 .74
832 .80
841 .79 >
832D .72 1
632 .62
633 .58
901 .72
902 .66
831 .78
832 .77
841 .75
832D .64
632 .64
633 .67
901 .72
902 .74
.79 .62 .64
.72 .58 .67
.72 .72 .72
.74 .66 .74
.74 .78 .33
.80 .77 .76
.79 .75 .79
.72 .64 .67
.0 .71 .73
.73 .77
*»
.79 .77
.83 .84
.85 .81
.88 .89
' .74 .78
.0 .91 .90
.71 1.0 .86
.73 ^ .86
.79 .91
.83 .93
.85 .95
.88 .94
.41 .41
.45 .29
.31 .57
.37 .25
,65 .87*
.55 .82
.57 .76
.43 .66
.48 • .56
.49 .63
.39 .62
.49 .52
.71 .80*
.57 .85
.51 .82
.62 .90
.31 .63
.42 .66
.39 .68
.42 .62
.68 .54
.59 .89
.42
.63
—
—
—
—
__
—
—
—
-
-
_
-
.59
.87
—
—
—
—
—
—
-
-
-
-
-
—
.57
.80
—
—
—
—
-
-
-
.74 ^ .85 .59 .84
.91 1.0 .88
.73 .86 1.0
.77 .86 *
.77 .91
.84 .93
831 .73 .81 .95
CHESSO
832 .76
841 .79
832D .67
632 .41
633 .45
901 .31
.89 .94
• 7o • o 5
.90 .88 1.0
.48 .31 .31 1
.49 .42 .43
.39 .39 .35
902 .37 .49 .42 .42
831 .65 .71 .68 .73
832 .55
841 .57
832D .43
.57 .59 .54
.51 .59 .52 \
.62 .60 .60 1
.60 .87
.31 .61
.43 .60
.35 .67
.42 .57
.73 .90*
.54 .89
.52 .77
.60 .84
.0 .18
K -25
.24
.09
.80*
.52
.50
0 .59
—
—
.52
.81
—
—
—
—
—
—
-
-
-
—
-
-
.15
.40
' —
—
—
—
—
—
-
-
-
-
-
-
.47
.43
.83
.61
.33*
.66
.65
.67
.59
.60
.72
.77
.88*
.72
.66
.92
.49
.53
.65
.78
.75*
.61
.72
.83
.52
.52
.73
.75
.75*
.69 -
.74
.78
.26
.21
.48
.35
.71
.65
.36
.74
.51
.43
.73
.50
.09*
.70
.61
.62
.64
.71
.82
.73
.46*
.74
.57
.83
.57
.51
.73
.66
.79*
.66
.64
.77
.50
.53
.73
.60
.81*
.70
.65
.74
.34
.40
.43
.45
.40
.48
.49
.70
-------
Method Site
47
Table 4.11(Continued)
FRMF TEAF CHRP CHRO CIIESSO TGSO TECH TEC4 CHEM
TGSO
TECH
TEC4
CHEM
632
633
901
902
831
832
841
832D
632
633
632
633
901
902
831
832
841
832D
632
633
901
902
831
832
841
832D
.41
.29
.57
.25
.87*
.82
.76
.66
.42
.63
.47
.43
.83
.61
.33*
.66
.65
.67
.51
.43
.73
.50
.09*
.70
.61
.62
.56
.63
.62
.52
.80*
.85
.82
.90
.59
.87
.59
.60
.72
.77
.88*
.72
.66
.92
.64
.71
.82
.73
.46*
.74
.57
.83
.63
.66
.68
.62
.54
.89
.84
.87
.57
.80
.49
.53
.65
.78
.75*
.61
.72
.83
.57
.51
.73
.66
.79*
.66
.64
.77
.61
.60
.67
.57
.90*
.89
.77
.84
.52
".81
.52
.52
.73
.75
.75*
.69
.74
.78
.50
.53
.73
.60
.81*
.70
.65
.74
.18 1
.25 ,
.24
.09
.80*
.52
.50
.59 1
.15
.40
.26
.21
.48 '
.0 .42
63
K .59 .39
_••
• _m
""*""
80
76
72
.41
.55
.95
.39
—
— ..79 .88
/
.0
.42 1.0
.59 1.0
.63 .55 1
.39 .67
. 80 '
.35 .76
.71
.65
. 72
. 79
.36 .90 \l
.74
.34
.40
.43
. 89 1
.41 .48
.55 .75
.95
90
89
55
67
0
\
/
0
64 1
50 1
79
.45 .39 .58
.40
.48
.49
.70
___ _^«> ^
.88
.75
. 89
89*
88
74 >
96 1
.75
.89
.48
.75
.64
.50
.79
.58
.89*
.88
.74
.96
.0
\
/
.0
— Duplicate readings were obtained in site 832.
* Based on fewer than 20 paired observations (recall that at site 831
all methods were moved to site 832 in October, 1972 except for
CHESSO and CHEM).
-------
48
seven sites from 1.01 to 1.07). This reflects the high correlation (.93)
between these two methods. On the other hand, the ratios for the other
pairs of methods shown in the table demonstrate less consistency from site
to site; e.g., the CHESSO/CHRO ratios range from 1.00 to 1.32, the CHEM/
CHRO ratios, from 1.08 to 1.56.
The correlations between the methods given in Table 4.11 vary a great
deal over the various sites. The variation of these correlations
could be due to a great many factors. These factors in-
clude the following: (i) the true NO variability from day to day may be
characteristically different for different sites, (ii) the sample sizes
vary a great deal over sites, (iii) the effect of interferences (e.g.,
NO and ozone) may differ for the various sites (hopefully, the effect of
these interferences may be examined in a later report), (iv) a particular
method may have malfunctioned at only one site. The table does indicate
that the CHESSO method generally has the lowest correlations over sites.
It is also interesting to note that the TECH always has higher correlations
in site 633 than in site 632.
In the early months of the present study (i.e. , July through October,
1972) EPA had many problems in collecting the NO- data. For examp.le,
many difficulties were encountered in calibrating the continuous monitor-
ing methods. In fact, at one time EPA had considered discarding much of
the continuous NO data collected before November, 1972. Accord-
ingly, RTI also computed means and correlations between monitoring methods
-------
for the two time periods (i) July 1, 1972 through October 31, 1972 and
(ii) November 1, 1972 through April 30, 1973. The purpose of these calcu-
lations was to study if these means and correlations were different for
the two time periods. In addition, the two time periods could also provide an
indication of seasonal effects on NO levels. The results of these mean and
correlation calculations are given in Appendix Tables E-l and E-2. Table
E-l presents the correlations between methods over sites for the two time
periods. The table shows that the correlations for the TGSO are definitely
higher for the November - April time period and that the CHESSO correlations
are also usually higher for this same time period. The other methods show
no consistent pattern for the two time periods. A comparison of the
November - April correlations with the corresponding correlations for the
entire sampling period, (July, 1972 - April, 1973) indicates that only the
TGSO correlations were noticeably increased for the November - April period.
Table E-2 shows the unpaired sample means by site and method for the
two time periods. This table indicates the following: (i) the TGSO is
higher for the July - October time period, (ii) the CHESSO is usually higher
for the November - April time period, (iii) the continuous methods are
usually higher for the July - October period, (iv) in the Chattanooga sites
(632 and 633) the non-continuous methods (except TGSO) are higher for the
November - April period while the continuous methods are lower for this
time period, (v) in St. Louis site 901 the non-continuous methods show
higher readings for the July - October period while in site 902 these same
-------
50
methods are usually higher for the November - April period, (vi) in
California site 832 the November - April period has higher readings for
nost methods while in site 841 the opposite is true. Thus, in general, it
is impossible to say from the current data which time period gives the
higher readings over all sites. Instead,.there is obviously a large site
effect (due perhaps to interferences such as NO and ozone); therefore,
conclusions about seasonal levels of NO must be made by site rather than
over all sites. One can say however that the analysis over sites of the
two time periods does indicate that the data for the TGSO method for the
July through October period has relatively low correlations and high means.
Although RTI did not discard this early TGSO data from its analysis, the
data certainly is questionable in view of the results shown in Tables E-l
and E-2.
At the request of EPA, RTI also computed the means of ratios by site
and N02 concentration interval for four pairs of monitoring methods^.
In particular, the intervals were 0-60, 60-90, 90-120, 120-150 and >150 jjg/m3
and the pairs of methods were CHEM/CHRO, FRMF/CHRO, CHEM/TEC4 and FRMF/TEC4.
The results of these computations are given in Table 4.12. In the table,
the N02 intervals are based upon the monitoring method in the denominator
of the ratio (e.g., CHEM/CHRO implies that the intervals are based upon the
— The means of ratios discussed here should not be confused with the
ratios of means given earlier in Tables 4.8, 4.9 and 4.10.
-------
51
Table 4.12
Summary Statistics— for Ratios of Daily Readings,
By Pair of Methods, Interval and Site
CHEM/CHRO
FRMF/CHRO
Site CHRO
Interval
pg/ra3
632 0- 60
60- 90
90-120
120-150
> 150
633 0- 60
60- 90
90-120
120-150
> 150
901 0- 60
60- 90
90-120
120-150
> 150
902 0- 60
60- 90
90-120
120-150
> 150
832 0- 60
60- 90
90-120
120-150
> 150
841 0- 60
60- 90
90-120
120-150
> 150
Sample
Size
65
98
1
0
0
78
93
0
0
0
0
37
5
1
0
28
54
0
0
0
11
75
10
4
2
6
62
8
0
0
Mean Std. Low High Sample Mean Std. Low High
Dev. . Size Dev.
1.51 1.00 .21 6.03 103 1.92 1.03 .64 9.53
1.08 .40 .31 2.72 114 1.61 .57 .52 4.26
1.36 0 1.36 1.36 1 1.45 0 1.45 1.45
0
0
1.31 .73 .29 4.17 117 1.94 1.09. .71 10.23
1.00 .44 .21 2.51 111 1.56 .56 .39 4.03
0
0
0
11 2.13 .54 1.51 3.52
1.33 .25 .71 1.77 211 1.71 .37 .94 3.30
1.10 .26 .68 1.32 12 1.36 .31 .65 1.70
.85 0 .85 .85 1 .99 0 .99 .99
0
1.43 .36 .40 2.07 .57 2.05 .70 .97 5.58
1.36 .38 .27 2.24 177 1.70 .43 .85 3.00
2 1.36 .23 1.20 1.52
2 1.27 .23 1.11 1.44
0
2.02 .79 1.19 3.36 12 3.32 3.44 1.49 13.99
1.41 .58 .41 3.03 126 1.89 .70 .25 3.89
1.07 .38 .75 1.84 21 1.57 .43 1.02 2.84
1.37 .31 1.09 1.81 9 1.42 .35 1.02 1.92
1.12 .21 .97 1.26 3 1.55 .20 1.33. 1.71
3.05 2.77 1.15 8.57 22 2.14 1.13 .86 5.35
1.60 .44 .75 3.02 136 1.43 .38 .53 2.58
1.30 .37 .79 1.73 17 1.24 .24 .88 1.63
0
1 1.07 0 1.07 1.07
-------
52
Table 4.12 (Continued)
FRMF/CHRO
Site CHRO
Interval
lig/m3
832D 0- 60
60- 90
90-120
120-150
> 150
S.
S'
0
43
10
2
2
Mean Stu. Low High Sample Mean Std. Low High
Dev. Size Dev.
1 1.61 0 1.61 1.61
1.31 .64 .52 4.29 98 . 1.66 .56 .74 3.74
1.23 .62 .46 2.25 17 1.41 .39 .54 2.03
1.66 .22 1.51 1.81 2 1.22 .47 .89 1.55
1.29 .47 .96 1.62 4 1.09 ..19 .92 1.26
CHEM/TEC4
FRMF/TEC4
Site TEC4
Interval
632 0- 60
60- 90
90-120
120-150
> 150
633 0- 60
60- 90
90-120
120-150
> 150
901 0- 60
60- 90
90-120
120-150
> 150
902 0- 60
60- 90
90-120
120-150
> 150
832 0- 60
60- 90
90-120
120-150
> 150
Sample
Size
28
92
4
2
0
46
84
2
0
0
2
23
2
0
1
4
55
1
0
0
1
47
32
16
11
Mean Std. Low High Sample Mean Std. Low High
Dev. ' Size Dev.
1.46 1.00 .84 5.98 35 1.95 .93 .82 5.42
.88 .26 .07 1.41 119 1.27 .58 .42 4.25
.62 .17 .50 .88 6 .91 .42 .53 1.70
.57 .01 .56 .58 1 .81 0 .81 .81
0
1.23 .81 .41 3.74 54 1.95 1.10 .56 6.00
1.02 .51 .33 2.95 104 1.30 .62 .19 3.27
.49 .17 .37 .61 • 3 .92 .11 .80 I.QO
1 .97 0 .97 '.97
0
2.00 .44 1.68 2.30 2 2.30 .32 2.08 2.53
1.43 .22 1.12 1.95 21 1.73 .38 1.04 2.57
1.15 .09 1.08 1.21 1 1.36 0 1.36 1.36
0
.66 0 .66 .66 1 .97 0 .97 .97
1.13 .15 .96 1.30 9 1.80 .28 1.27 2.12
.99 .30 .29 1.72 68 1.32 .37 .71 2.87
.90 0 .90 .90 1 .96 0 .96 .96
0
0
.60 0 .60 .60 1 2.40 0 2.40 2.40
.84 .20 .43 1.25 51 1.54 .64 .64 3.58
.87 .21 .55 1.40 33 1.09 .26 .67 1.71
.76 .10 .63 .96 16 .93 .25 .39 1.41
.86 .20 .68 1.39 13 .91 .26 .51 1.31
-------
53
Table A.12 (Continued)
CHEM/TEC4
FRMF/TEC4
Site
841
832D
TEC4
Interval
Hg/m3
0- 60
60- 90
90-120
120-150
> 150
0- 60
60- 90
90-120 •
120-150
> 150
Sample
Size
1
40
24
8
7
0
29
11
7
7
Mean
1.48
1.21
.97
.96
.91
1.14
1.03
1.09
1.19
Std.
Dev.
0
.38
.24
.18
.23
.33
.17
.08
.14
Low
1.48
.61
.60
.61
.55
.59
.77
1.00
1.06
High
1.48
2.04
1.54
1.14
1.13
1.68
1.43
1.24
1.48
Sample
Size
2
44
20
6
8
0
33
10
6
7
Mean
1.39
1.12
.88
.74
.79
1.58
1.30
,83
.92
Std.
Dev.
.23
.43
.17
.19
.18
.72
.40
.24
.25
Low
1.23
.37
.56
.44
.44
.65
.84
.52
.57
High
1.55
2.33
1.28
1.04
1.00
4.43
2.08
1.23
1.22
— The statistics in this table are shown for descriptive purposes only.
Their general use is not recommended (see Section 5.4).
-------
54
CHRO reading). The table gives (by site and interval) the sample size,
mean of the ratios, standard deviation of the ratios and the low and high
value of the ratio. The table shows, for all four pairs of methods, that
there were only a small number of observations in the two intervals 120-150
and >150. Thus, for these two intervals no conclusions about the ratios
could be made. For the other three intervals (0-60, 60-90 and 90-120), it
is clear that in most cases the mean of the ratios and the standard deviation
of the ratios decreases for the higher concentration intervals. EPA has
indicated that the decrease in the mean of the ratios may be caused by a
variable collection efficiency for some of the bubbler methods (FRMF,
CHESSO). However, another (or an additional) explanation of why these
ratios decrease with increasing levels is plausible. Suppose a high
correlation exists for two methods (say, method X and method Y). This
indicates that a linear relationship (Y = A 4- BX) between the methods
is appropriate. Hence, the ratio Y/X would be related to X by
I _ A
X ~ X
Thus, if A > 0, the ratio Y/X will decrease with increasing X (or X inter-
vals).— An indication that this explanation of the decreasing ratio
pattern is reasonable is the fact that similar decreasing patterns are some-
— If the relationship is of an alternative form, Y = CXD (i.e., linear
on a log scale), then the ratio will be constant for different levels
of X only if D = 1.
-------
55
times evidenced for the continuous methods (for which the question of a
variable collection efficiency is apparently not relevant). It is interest-
ing to note from Table 4.12, for example, that (except for site 832) the
CHEM/TEC4 ratios also exhibit this decreasing pattern. In any event, the
table clearly indicates that the mean o.f the ratios cannot be assumed con-
stant over the intervals.
c. Estimated Relationships Between Pairs of Methods (Daily Data)
As previously mentioned, a high correlation between a pair of methods
means that it is sufficient to characterize such a pair with a linear
relationship. In this subsection it is assumed that, for each site,
the functional relationship between two methods (method X and method Y)
for the i sampling period, is linear, i.e.,
(A.I) Yj_ = a + 0 X± + ei (i = 1,2 N).
In this model, a. and 3 represent parameters to be estimated and
O f.1.
Y = NO reading in ug/m by method Y for the i day (or
24-hour sampling period),
X = NO reading in yg/m by method X for the correspond-
ing period, and
e. = (random) deviation for the i day.
To estimate the parameters a and B by a conventional least squares tech-
N
nique (i.e., minimize £ (Y - a - BX ) ) would typically require the
i=l 1 1
following assumptions:
-------
56
2
(a) the e's have mean 0 and the same variance a for all
1, i.e., E(ei2) = a2 for all i,
(b) the e's are uncorrelated, i.e., Cov (e., e ) = 0 for
i'y j, and
(c) the independent variable X is measured without error.
For the current N0_ daily data, assumption (a) does not appear to pose a
serious problem, although for some methods (e.g., FRMF, CHESSO) the vari-
ation does tend to be somewhat larger for higher NO concentration levels.
To investigate the failure of assumption (a) RTI has used a logarithmic
(log) transformation to stabilize the variance of the concentrations and
then determined linear relationships between the log concentrations of
pairs of methods. These relationships are given in Appendix Table D-l.
However, investigation of the two types of estimated linear relationships
(i.e., with and without taking logarithms) showed that, over the range of
the current data, the two types of relationships were quite similar, indi-
cating that the departure from assumption (a) was not of practical signifi-
cance for the current NCL data. Assumption (b) can be satisfied if the 24-
hour averaging period is a sufficiently long period of time to negate short-
term meteorological, industrial, and traffic fluctuations. Assumption
(c), however, cannot be satisfied.
In the presence of error in the independent variable X of equation
(4.1), the ordinary least squares approach yields biased estimates for the
parameters a and g. The estimates a and 3 tend to over- and under-
-------
57
estimate the parameters a and 3, respectively, when X and Y are positively
correlated. That is, the line fitted by the least squares procedure tends
to be too flat. In addition, if one regards the X as the independent
variable (as in equation (4.1)) and solves this equation for X, one will ob-
tain an equation which is inconsistent .with that obtained by regarding the
X as the dependent, and the Y as the independent, variate.
Hence, when both variables are subject to error, an alternative to the
ordinary regression technique is desirable for estimating the parameters of
model (4.1). Such a procedure for determining a relationship between the
methods is that of "orthogonal regression," also known as principal component
analysis. This procedure deals with the pair (X,Y) where neither X nor Y
is fixed. The technique involves the determination of that linear combination
of X and Y, after translation of the origin to the mean (X,Y), which has
maximum variability. This first principal component is given by
(4.2) 21(XfY) = m^X-X) + m2(Y-Y)
where
Orthogonal to Z is the "residual" component
(A. 3) 22(X,Y) = -m2(X-X) + m^Y-Y).
The axis of the first principal component (i.e., Z_ = 0) expressed in terms
of X and Y provides the best linear characterization of the bivariate data
in the sense that the sum of squares of the orthogonal residual components,
-------
58
N
L2
Z is minimized (See Figure 4.1). Setting Z = 0 in equation (4.3) thus
i=l • z
provides an estimated relationship between the methods of the form
(4.4) Y = A + BX
where
N
(x.-x) (Y.-Y)
m. N
N _ ,1 2 T N I
- E (VY) +4 E (X--X) (Y.-7)
i=l J [i=l 1 J
A = Y - BX.
Of course, an estimated relationship of the form (4.4) should be used
only in the X- and Y- ranges where data is available. If X and Y have a
bivariate normal distribution, then an ellipse (centered at (X,Y~)) given by
the equation
Z2 Z2
- - ^ 2 -
1 •• fn \ ™" T
^"" Var(Z1) T Var(Z2)
will contain roughly 95% of the bivariate sample points. Recommended ranges
for which (4.4) holds can therefore be obtained by substituting Z = 0 into
equation (4.5) to give
-------
59
Figure 4.1 Orthogonal Regression
_ •_I'\*/T"' *.
—••• — -P-* __ \ • t
• • • • •>';r-«? • • •
• ••X.tX*
• -yT.' .\'* ' *
Squared
Distances
22i are
' Minimized
• •
-------
60
(A.6) Z, = ± 2
It should be pointed out here that if the correlation between X and Y
is high, then Var^) will be much larger than Var(Z2), i.e., the ellipse
will be quite elongated. This degree of elongation (or of adequacy of the
fitted linear relationship) can also be expressed in terms of the percentage
of the variability accounted for by the first principal component (2^ :
Var(Z.)
«'7> PCV1 ' var(gl) + Var(32) * 10°%'
The orthogonal regression approach has the appeal that a single, consistent
linear relationship between X and Y is determined—and without making the
unrealistic assumption that one of the variables is measured without error.
The problems involved with the standard regression approach when both variates
involve error is discussed, for example, by Berkson [2]. A graphic descrip-
tion of the "orthogonal regression" technique is given by Hald [9]. Further
discussion of procedures for determining relationships between the methods
is given in Appendix D.
Because of the discussion given above, RTI felt that the relationships
between pairs of methods as given in (4.1) should be obtained by orthogonal
regression; accordingly, the results of using orthogonal regression are given
in the present section. Results of using alternative models to (A.I) (i.e.,
linear in the logarithms of X and Y) and using conventional (ordinary)
regression are given in Appendix D. In addition Appendix D gives the
statistics necessary to compute confidence limits on the conventional re-
-------
61
gression lines.
The parameter estimates A and B of equation (4.4), in conjunction with
the recommended ranges over which the linear relationships are applicable
are given in Appendix Table C-l for each site and each-pair of methods. The
following remarks and notation are needed to use this table:
(1) • The first line of each set represents the overall
results obtained by combining the data from the
seven sites (Site 832D excluded).
(2) X corresponds to method 1 and Y to method 2; hence,
N = number of (paired) observations
Ml = X = mean for first method
M2 = Y = mean for second method
SD1 = standard deviation for first method
SD2 = standard deviation for second method
COR = correlation between X and Y
Y = A + BX is the form of the estimated relationship
obtained by orthogonal regression
PCV1 = the percentage of variability accounted for by
the first principal component (see equation (A.7))
RATIO = M2/M1 = Y/X = ratio of means
CM1LOW, M1HIGH) = recommended range for method 1 over which the
estimated relationship Is applicable (see equation (4.6))
(M2LOW, M2HIGH) = same for method 2
-------
62
Examination of Appendix Table C-l leads to the following question: For
a particular pair of methods, is a separate linear relationship needed for
every site? If ordinary regression is used and statistical tests of
significance are performed to determine if these regressions differ from
site-to-site, one concludes that they do in fact differ in almost all
cases. However, if one ignores sites (i.e., as in the overall regression),
a strong linear trend is still evident. This is indicated by the
correlations between X and Y for the combined data. In many cases, these
correlations are higher than the corresponding correlations for the
individual sites. Scatter diagram plots such as those shown in Figures
4.2 and 4.3 also indicate that, from a practical point of view, the com-
bining of data over sites is justified.— The regressions indicated in
Appendix Table C-l are presented graphically in Appendix Figures C-l
through C-36. The figures only plot regressions based on more than 30
observations and exclude .site 832D (recall that the data from site 832D
was not included in the overall regressions).
The 36 graphs shown in Appendix C indicate that a single overall
linear regression is usually satisfactory for characterizing the rela-
tionship between a particular pair of methods, i.e., separate relation-
— Figures 4.2 and 4.3 also indicate that the same linear equation will
describe the data over its range as well as (or better than) break-
ing the data into intervals and fitting separate linear equations
within intervals.
-------
150.000
Y o CHRC
Figure 4.2
Scatter Plot of CHRP vs. CHEM—Over Sites
izo.ooo
. *
i . •
i
; •
•
, .
•
•
•
•
«
•
4
.
•
*
•
0
*
• 0 ** 0
* •*
* «» * «»
* * 0
* *»o •
* * ** 0*00
•
«*
* * • *
* » • * *
• •* •«
» » * *
* * * *
* • *
*•••»•* * . cjx
* * * * « OJ
******
0 «* ** 0
»* * * '
* * » *0 «» 0 00 *
* »0* **0* -*
-------
-o
300. COO
V « TECfl
Figure 4.3
Scatter Plot of TEC4 vs. CHEM— Over Sites
240,000
'160. COt
V:
* *
* * 0* *
*« « * * *
* ._.« _•
* ** ni) 5_
0 * *** **;•
• * *««*.o * ** *
* ** 0 00 » » 0
* *«• o* * *0 • 0**
« 00 *0**
*«0 0* 0*000*
**'*.* * * *
* •*..__<
* ••
60.0000
• * 0 «0 0 3« » •«* 0 *
. * *• » 000****0 0 • *»* *
. * * Op**0*0000 0 QQ«* «Q •
. _*» •• *"6oo*roooooo'«c * ;
•* 0000000*00*0*»* «•"*"""
_*_ 0*0000J0*^fl»0 0** * **
_
single data point
fl = mill fi pip Haf-a pMnf
o-.o
. *00**000«0« 0*
. «000 «0 jf[*_*_«0^ * _•'
, ••000*0 *~~
.,._oc*_*.... "^~_~.~_
0.0
60'0000
JO.OOOO
9
J50.COO
210.000
270.000
-------
65
ships are not needed for every site. Accordingly, Table 4.13 gives, for
each pair of methods, the parameter estimates A and B for the estimated
relation (4.4). These estimates were determined by using the orthogonal
regression approach on the pooled data from the seven sites (excluding
832D). The table also gives other pertinent summary statistics and
recommended ranges of applicability for the regressions. The notation
used is the same as that previously described for Appendix Table C-l.
Some of the relationships indicated by Table 4.13 are portrayed graphically
in Figures 4.4 and 4.5. The first figure shows the estimated relation-
ships between the CHEM and seven other methods.— Figure 4.5 shows
similar plots for the CHRO. Based on these two figures and the results
shown in Table 4.13, one can draw the following general conclusions:
1. The two continuous monitors, CHEM and TEC4, are well
correlated (0.827) and agree in magnitude reasonably
well, although the TEC4 may run slightly higher.
2. The CHESSO method correlates poorly (0.596) with the
CHEM; in general it gives readings somewhat smaller
than the CHEM.
3. Five of the bubblers (i.e., FRMF, TEAF, CHRF, CHRO,
TGSO) have correlations of about 0.7 to 0.8 with the
— The TECH is excluded since it is present at only two stations.
-------
Table 4.13 Estimated Relationships Between Methods^'
I/
2/
PETH1
METH2
N
Based on the Combined Data Over Sites—
COR 4 B PCV1
~ .P1HTGH
FRMF
FRKF
FRMF
FRMF
FRKF
FpKF
FRMF
FRMF
TEAF
TEAF
TEAF
TEAF
.TEAF
TEAF
TEAF
TEAF
CHPF
ChFC
CKESSO.
TGSO
..... TECH
TEC 4 7 1'.
ChEM
CHFF
CHRO
CHtSSO
TGSO
TECH 7
TEC4
Ct-EM
1290
1337
...1313
1166 7
648
....265.. ...
...637.7
648
15 10
1285
1141
625
2667
635
7. 809
.773
..7..67_. .
.689
7". T 13.77"
.687
.846
.858
.613
.762
-..72977"
,757
.757
2.0038
4.5189
4.. 79 61
-2.4402
•1.1686
M Q Q fl fl St
* A f 1 V v
-14; 13 19
- ! ; . 4 o o o
0.5442
~ 2.4597
•22.4750
•5.5566
•17.2975
-19.2612
."-1.8..1«22
0.47865
0.58082
. 0.55405
0.75657
0.49813
1.16309
1.0«755
OJ93014
1.2567J
1.15771
2.04057
2.63888 ".
2.19319
-2,03941
93.5
90.7
91.7
80.4
88.3
77;?
85.7
84.4
92.6
93.0
85.0
88.2
92.4 .7
91.9
91.3
0.0
0.0
n.n
1.6
0.0
12.0
1.4
3.8
0.0
0,0
6.3
o.n
... '.6.4 '
3.4
3,4
J51.2
153.8
149.6
161.8
1 CO . 0
143.7
140.3
7f .9
77.0
68.4
7R.J
67.8
68.4
1.:
4 7
0.0
0.0
4 2
0.0 . .
0.0
0 o
1.2
0.0
n n
- 0.0. -
0.0
0.0
74.1
93. <
. . 1 1 1 . C
79.4
136.4
120. 1
c ' tr
7 /. • C
Q 1 . fe
117.2
62.8
~.K.tV
114.0
1P9.4
-------
Table 4.13 (Continued)
CHRP
CHRP
CHRP
CHRP
CHRP
CHRP
CHRO
CHRO
CHRO
CHRG
CHSC
HESSO
HESSG
CHESSO
CHESSO
CHRO
CHESSO
TGSO
TECH ;
TEC4
CHEM
CHESSO
TGSC
TECH
TECU
CHEM
TGSO
TECH
TEC4
CHEM
1326
1184
650
IT" ."26 8 1
655
663
1169
633
270
6ii3
650
556
261
635
645
.927
.620
.805
IT. 7 09
.715
,729
.590
.790
.67P
.75?
.737
.496
.29?
.646
.596
U2385
•20.366Z
-7.6510
= .>5.e«00
-24.7t39
•19.0056
; 2 3. 7 6 as
-9:7597
-29.7785
•26.6239
•21.0308
10.6553
•53.7663
•0.7229
•U.7070
0,
1,
0,
TI2,
i,
i.
u
2,
2.
1.
0.
3.
1.
1.
,93297
,56150
,96116
,5662711
,60937
69291
04031
66998
0104U
73632
46070
1C822
23363
19481
96.4
82.8
:«i.»:."
88,6
88.2
82.0
8<5.5
9Q.7
91.0
69.2
79.9
73.2
82,7
BO.i
0.0
0.0
II 9. 9
4 6
9.2
11.0
5.3
5.6
0.0
16.6
0.0
0.0
9p .a
89.3
:::•.-•»..!-
.87.9
69.8
65.3
91.7
53.7
e?. 6
63.5
131.1
53.4
111.5
109.6
OlO"
0.0
0.0
. ..._ ... 0.0 ...
0.0
0.0
0.0
0.0
0.0
0.0
0.0
5:6
0.0
0.0
0.0
94.0
11 9 - <
fcS.7
125.5
117.3
85.6
113.7
139. a
124.1
71.6
112.2
136.8
126.5
-------
Table 4.13 (Continued)
TGSO
TGSO
TGSC
TECH
TECH
TEC
-------
69
Vig/m
Figure 4.4
Estimated Relationships Between the CHEM and
Seven Other Monitoring Methods
160
140
120
100
80
60 "1
This graph is for descriptive purposes
only. General use of the estimated
relationships is not recommended (see
Section 5.4).
FRMF
TEC4
120
-------
70
Ug/m"
Figure 4.5
''iraated Relationships Between the CHRO and
Seven Other Monitoring Methods
FRMF
This graph is for descriptive purposes
only. General use of the estimated. /TEC4
relationships is not recommended
(see Section 5.4).
20
40
60
80
120
CHRO —
-------
71
CHEM and the TEC4. The FRMF gives larger readings
than the TEC4 and CHEM methods whereas these other
four NASN bubblers tend to produce lower readings
than the continuous monitors.
4. The CHRO has high correlations with the other NASN
bubblers (especially with the CHRP). In the range
of practical interest, the FRMF produces readings much
higher than the CHRO; the CHRP and TGSO tend to agree
with the CHRO, whereas the TEAF tends to be lower,
(recall a 100% collection efficiency was assumed
for the TEAF in this report).
5. The TEC4, CHEM, and CHESSO run higher than the CHRO
method; the CHESSO correlation w-ith the CHRO is only
0.59.
d. Summary Statistics for Unpaired Data
As mentioned previously, comparisons between unpaired data for the
various monitoring methods can be misleading because of the large amount
of missing N0» daily data. Thus, the purpose of the present subsection
is only to give a rough indication of the relative magnitudes of summary
statistics for the various methods. Table 4.14 presents arithmetic means
by site and method for the unpaired data. The table shows the approximate
ranking (over sites, from largest to smallest) of the means to be TECH,
FRMF, TECA, CHEM, CHESSO, CHRF, CHRO, TGSO and TEAF. Of course, the
-------
72
Table 4.14
Means of Daily Measurements by Method
and Site, Unpaired Data
FRMF
TEAF
CHRF CHRO
CHESSO
TGSO
TECH TEC4
CHEM
Chattanooga
632
633
St. Louis
901
902
California
83li'
832
841
832D
55.
53.
89.
73.
73.
113.
78.
111.
9
4
9
5
0
9
5
7
28.2
25.3
43.2
35.6
44.5
54.0
45.7
64.5
34.5 34.
33.6 32.
58.5 54.
44.1 42.
56.2 51.
67.6 64.
57.0 57.
80.1 73.
4
3
9
4
9
6
7
2
33.3
33.5
71.4
56.7
-
55.4
76.4
64.7
85.5
27.2
29.4
41.5
31.6
68.6
57.5
46.9
64.4
52.5 45.7
61.7 40.6
* 63.4
* 47.5
* 79.9
* 99.3
* 90.1
* 90.0
41.
37.
78.
45.
69.
84.
87.
100.
8
9
1
9
4
4
4
9
* = No data present
— On October 6, 1972, all methods except CHESSO and CHEM moved
from site 831 to site 832.
-------
73
assumed collection efficiencies for the various bubblers undoubtedly affect
this ranking a great deal. The relative magnitudes of the means given in
Table A.14 are approximately the same as shown earlier for the paired data
(Sections 4.4.b and 4.4.c). Table 4.14 also shows that, in general, the
sites in Chattanooga have the lowest NC>2 readings and the sites in California
have the highest NC>2 readings. Site 832 (or 832D) generally has the highest
readings of the sites sampled.
Table 4.15 presents frequency distributions and summary statistics for
the various methods over the seven sites. (The TECH method is not given in
the table since it only occurs in sites 632 and 633). For each method the
table gives sample sizes, arithmetic means, standard deviations, geometric
means, standard deviations of logarithms, as well as the minimum, median
and maximum values. The statistics given in Table 4.15 are shown chiefly
to provide one with an idea of the location, scale and skewness of the
distributions for the individual methods (for data combined over sites).
The table shows the arithmetic mean of each method is greater than its
median whiuh indicates that the distribution of each method is skewed.
This skewness can also be seen in Figure 4.6 which gives histograms (correspond-
ing to the frequency distributions) for each method. The forms of these dis-
tributions are dependent, of course, on the particular sites involved (i.e.,
one would not necessarily expect any one site or any other collection of
sites to give the same distributions). Tables showing the frequency distri-
butions and (unpaired) summary statistics for the individual sites are given
-------
Table 4.15
SUMMARY STATISTICS KC2 MPMTORlNG KtTHCOS CC»-PAPISCS — !tV£N SITE! CCfBINED- . Unpaired Data
VARIABLE KO.
CE3.
FRECUENCY DISTPIBLTirK
<• 15. . 15.- 30. 30.- (IS.' (IS.- tO. 60.- 75;._15..- '?.91.. _90m.-JOS, 105. -120.' 120.-135T .135.-150. ISO,.
FRMF
TEAF
CHRF
CMRC
ChESJl
TCSC
TECO
CMEH
VARIAblL
FBMF
TEA*
CHRF
CHRf
CMESSt
TCSC
TEC«
CHtK
l«0«i 0.65
0.65
1367 7.68
1«26 3.«2
3,02
1395 3.30
3.30
Ia79 a. 67
68(1 6.1(1
7«6 2.1-
2. Id
632 " 4.U5
*-C. MN.
CBS. VALLE
140*1 7.3000
1367 1.'3000
1026 2.7059
1395 1.29U1
14/9 J.5000
68(1 1.2000
7ue a. tooo
832 3.9000
7!26 19
32.92 30
(10.60 70
20.13 27
23, 1<* 50
21.66 29
2S.16 SU
20. 3« .. a7
38. (IS 28
14.04 22
16,18 38
16.95 22
21.39 «3
MEDIAN
VALUE
69.7000
3a.bOon
44.0706
(13.0568
«6.7noo
32.5000
52.8000
09.7000
.CO 3t!5«
.It It. 75
.96 87.71
.21 22.51
.35 72.66
.10 22.51
.27 7t.77
.7S 17. =e
.13 6U.71
.22 13.01
.M 85.62
.73 20.99
.90 59.69
.2(1 18.39
.63 62. P2
MAX.
VALUE
36S.-8999
200,'SOOC
237.1765
2«0.'3529
303.59
-------
75
Hist grains by Method—Seven Sites Combined— , Unpaired Data
HISU <*AM FOR FRMF N » 1«0 IbC , ***** ___ .
HI3TCCPAM FOR TEAF N «= 136?
150 . *
HISTOGRAM FOP CHRC ( N B 1395
**********************
60 i A***************'.******
75 , ************ _ ^ _
"< s" 9"b **** * *
150 . *
-------
76
HISTCGRA1 "OR CHESSO
N • 1479
Figure A.6 (Continued)
J50_.
HISTCGPAM
<= . IS ,
<= 30_,
Co 45 .
150 ,
HISTCGPAM
£3 15 ,
150 .
HISTOGRAM
£• 15 ,
£= 30 (
CB 45 •
CB 60 •
150 .
V ***
********************
***********************
******************
************* •
*********
******
***
**
*
**
FOR TGSC K' B 664
******
**************************************
****************************
*************
******
**
** ' " ' ' "
**
*
*
FOR TEC4 N o 748
** - - ...
**************
***********************
*********************
************
*********
******
***** :
***
**
****
FOR CHEM N • 83J2 " " """
****
*****************
**********************
******************
**************
********
******
***
**
* •
***
- Combined over sites 632, 633, 901, 902, 831, 832 and 841 .(832D omitted),
-------
77
in Appendix A.
e. Analysis of Duplicate Data for Site 832
Duplicate measurements were made in Site 832 for each of the NO
monitoring methods (except TECH). The primary reason for obtaining these
measurements was to provide a means for estimating and comparing the pre-
cision of the various methods. To estimate the precision of a particular
method, the following model is assumed:
(4.8) Ytj = (y + m) + 6± + Yj + e^ (i = 1,2 ..... N; j = 1,2).
In (4.8),
Y = the observed NO reading on the iC day
by the j instrument (or bubbler)— of
that type,
y = true mean N0_,
m = deviation in reading from the true mean
due to the particular method (i.e., bias),
6 = deviation in reading due to the effect of
the i day,
Y. = deviation in reading due to the effect of
the j instrument of the given type, and
e. . = deviation in reading due to measurement
error for the j instrument on the i day.
— The term "instrument" in this section will be used in a general sense
referring to any means of measuring N0_.
-------
78
The three sources of variation (day, instrument, measurement) are all assumed
to be random effects (i.e. , representative of a much larger population of
days, instruments, or measurement deviations) with zero means and with vari-
22 2
ances QD, o,, and 'o . With (4.8) as the underlying model, one prefers a moni-
toring method which has the following characteristics:
(1) small bias (i.e., m « 0) ,
2
(2) small instrument variation (i.e., small a ) ,
2
(3) small measurement error (i.e., small a ).
With the type of data available for this report, one cannot estimate m, the
bias of a method. However, one can remove this bias, as well as the daily
NO,, fluctuations so as to obtain estimates of method precision (defined as
222 2
a = a + a ) and of the measuring error of an instrument (o" ). Letting
m I e e
di ' Yil ' Yi2 and
N
d
we can estimate the parameters a and o , using (respectively)
(4.9) S =1
and
(4.10) a
e
Table 4.16 shows the estimates a and o for each of the eight methods
me
Other pertinent summary statistics (paired) are also given. The last
-------
Summary Statistics and
79
Table 4
Estimates of
.16
Precision for Paired Duplicate
Data at Site 832-/
Method
(and No. Paired
Instrument) Observations
FRMF.j^ 127
FRMF2
TEAF-j^ 111
TEAF2
CHRF 149
CHRF2
CHR01 121
CHR02
CHESSO 134
CHESS 02
T/** c r\ ^ *y
lOoU- / £
TGSO
MEAN
(ug/m )
123.3
113.0
59.0
63.9
73.1
79.4
69.8
73.2
84.9
85.6
60.0
66.5
A I/ A
Dev. Corr. a — a
e m
3 3 3
(ug/m ) (yg/m ) (ug/m )
.49.7 0.74 24.6 32.3
45.4
29.4 0.89 11.4 11.9
34.8
32.2 0.87 12.8 13.6
37.4
31.2 0.84 12.7 12.9
31.5
43.4 0.66 26.2 26.2
46.4
31.5 0.85 12.8 13.5
34.0
P
27.3%
19.4
17.8
18.0
30.7
21.3
63 93.2 48.9 0.98 7.5 9.2 10.3
TEC42 85.4 43.4
50 85.1- 48.3 0.95 15.9 22.3 23.2
CHEM2 107.5 62.0
1/A2A2A2AA
— a = a + a ; a , a and P are defined in the text.
m e I e I
21
— The statistics in this table are shown for descriptive ]
Their general use is not recommended (see Section 5.4).
— Forty-four of the fifty paired readings for the CHEM showed lower readings
for the first instrument (CHEl^). This probably reflects calibration
problems since the high correlation between CHEM^ and CHEM2 indicates that
equipment malfunctions are not prevalent.
-------
80
column provides a measure of relative precision for the methods given by
P = 3- x 100%,
Y + Y
Xl *2
where Y = mean for instrument j over days. Table 4.16 indicates that the
2
measurement error (a ) makes up the larger component of the precision for
all of the methods. The FRMF, TEC4, and especially the CHEM methods have
more instrument variation than the other methods, as shown in the mean
column. The last two columns indicate that, among the bubblers, the
CHRP, CHRO, and TEAF have better precision. The TEC4 shows the best pre-
cision for all methods and the FRMF and CHESSO, the worst. It should be
cautioned that these data (and consequently, any conclusions) represent
only the single site (832). For example, Appendix Table C-l shows that
standard deviations for the CHEM are quite often lower than those of the TEC4
in other sampling sites.—
— RTI also investigated a procedure due to Grubbs for obtaining
precision. The Grubbs procedure does not require duplicate
measurements on the same method. However, the Grubbs procedure
appears to be inappropriate for the current sampling data.
-------
81
4.5 Analysis of Hourly Sampling Data
As described in Section 4.2, appropriately lagged hourly data for the
continuously-monitoring instruments were made available to RTI. These data
were based on strip chart readings and/or averages of 5-minute readouts from
the automated data collection system. Only strip chart readings were avail-
able for the TECH (Chattanooga only). Only a rough univariate screening pro-
cedure was applied to the hourly data by RTI. In particular, any value
3 3
(hourly) exceeding 999 yg/m was dropped. All hourly values below 9 yg/m ,
including negative and zero values, were converted to 4.7 yg/m . This value
represents about 1/2 of what is generally regarded as a minimum detectable
concentration— . The analysis of these hourly data consisted of two basic types:
an analysis by site, and an analysis by site and hour (i.e., 0000-0100,
0100-0200, etc.). Site 831 has been excluded because of its limited amount of
data.
The results of the first analysis are presented in Table 4.17. These
results consist of the means, standard deviations, and sample sizes for each
method (paired) as well as the correlations between the methods and the
ratios of means. The means and ratios compare favorably with the correspond-
ing statistics based on the daily data (see Table C-l ). As was the case
for the daily data, considerable variation in the correlations occurs for the
different sites; this variation in the hourly-based correlations appears to
be effected for two reasons:
— The minimum detectable level of 9 yg/m has been determined under laboratory
conditions, i.e., it assumes the instrument is performing at peak efficiency.
-------
82
Table 4.17
Summary Statistics Based on
Paired Hourly Averages by Site—
II
SITE
632
633
901
902
832
832D
841
Total*
No.
Obs.
2844
' 3125
783
1572
2910
1589
2181
13415
Means
CHEM TEC 4
40.1 48.2
39.2 37.7
82.5 62.5
47.1 48.0
86.0 104.7
104.3 95.3
95.7 101.2
62.2 67.4
Std. Deviations
CHEM TEC4
33.7 61.4
44.8 32.9
30.4 37.8
- 30.0 23.9
60.4 81.1
81.7 71.9
56.7 87.0
52.4 68.3
Corr.
.462
.586
.605
.735
.744
.946
.551
.666
Ratio of
Means
1.20
0.96
0.76
1.02
1.22
0.91
1.06
1.08
* Excludes 832D.
SITE
632
633
Total
No.
Obs.
2012
2242
4254
Means
CHEM TECH
44.0 50.5
45.7 65.6
44.9 58.4
Std. Deviations
CHEM TECH
34.6 41.6
52.9 69.3
45.1 58.4
Corr.
.588
.835
.765
Ratio of
Means
1.15
1.43
1.30
SITE
632
633
Total
No.
Obs.
2705
2700
5405
Means
TEC 4 TECH
49.1 55.1
41.6 64.9
45.4 60.0
Std. Deviations
TEC4 TECH
43.0 46.3
38.4 67.8
40.9 58.2
Corr.
.698
.687
.658
Ratio of
Means
1.12
1.56
1.32
— The statistics in this table are shown for descriptive purposes only.
Their general use is not recommended (see Section 5.4).
-------
83
1) considerable variation in the actual degree of N0_
fluctuations for the various sites, and
2) the presence of outliers.
Low correlations between methods are to be expected if the true NO remains
stable within a day and from day-to-day. Higher correlations would tend to
result for those sites where large NO fluctuations are experienced. Previous
•
results for the daily data indicate that larger NO. daily fluctuations occur
in the California sites. Hence, it is reasonable that the highest correla-
tions occur for these sites. The second analysis indicates that larger
within-day fluctuations also occur for these sites; it also indicates the
presence of outliers.
This second analysis is summarized in detail in Appendix Table F-l.
Outliers are indicated for those hours which exhibit correlations which are
small, and standard deviations which are large, relative to the other hours.
For example, in site 901, hours 6 and 16 show correlations of .216 and -.006,
respectively, between the TEC4 and CHEM, whereas for the other hours, the
correlations are about 0.7 or 0.8. The TEC4 standard deviations for these
two hours are more than two times larger than those for the other hours.
The information shown in Table 4.18, which was extracted from Table
F-l, demonstrates clearly the inconsistencies that occur for the various
•sites - with respect to both correlations and magnitudes of the paired (TEC4
and CHEM) means. As shown, in Table F-l, twenty-four means, correlations,
etc. were computed for each site. The largest and smallest sample sizes,
-------
Table 4.18 .
Summary of Hourly Results
For the TEC4 and ™'™1/
Sample Size
Correlations
Ratios of TEC4-
MEAN to CHEM MEAN
Site
632
633
901
902
832
841
832D
Low!/
127
131
10
31
75
66
40
High
141
144
48
76
133
105
77
Low
.184
.159
-.006
.466
.391
.341
.833
Median
'.481
.531
.761
.709
.768
.563
.939
High
.941
.855
.878
.912
.902
.880
.986
Low
0.879
0.843
0.622
0.918
1.022
0.733
0.834
Median
1.235
.978
.780
1.026
1.219
1.114
.923
High
1.373
1.093
0.937
1.110
1.375
1.208
0.966
— See Appendix F for more detailed information on these two methods
as well as o.i the TECH method.
2/
— This value is the number of observations for that hour of the day which
had the fewest paired CHEM and TEC4 readings.
— The statistics in this table are shown for descriptive purposes only.
Their general use is not recommended (see Section 5.4).
-------
85
correlations, and ratios of means (out of th.e twenty-four) are shown in
Table 4.18. Also given are the median correlations and the median of the
mean ratios. For example, in site 632, the sample sizes ranged from 127 to
141, the correlations, from .184 to .941, and the ratios of means, from
0.879 to 1.373; one-half (i.e., 12) of the correlations were less than
0.481 and one-half of the ratios exceeded 1.235. Table 4.18 shows that the
TEC4-CHEM correlations vary considerably from site-to-site and, except for
site 832D, within sites. The median ratios indicate that the CHEM and TEC4
compare favorably (i.e., are of same magnitude) only in sites 633 and 902.
It is interesting to note that in site 832 the TEC4 means are larger than
the CHEM means for all twenty-four hours whereas for the duplicate measure-
ments, site 832D, the reverse is true.
Appendix F contains plots of the paired means for the TECH, TEC4, and
CHEM over hours of the day (diurnal averages).
-------
86
5. SUMMARY
*
5.1 Introduction
The purpose of this report was, on the basis of ambient air sampling
data from seven stations (sites), to compare nine different methods for
monitoring nitrogen dioxide. The locations of the seven stations are given
in fable 4.1. Two stations in Chattanooga (Sites 632 and 633) contained
all nine N0« monitoring methods; the other five stations (Sites 901 and
902 in St. Louis, and Sites 831, 832, and 841 in the Los Angeles vicinity)
contained eight methods. The methods are described in Section 3, and the
notation used for them is given in Table 5.1.
Sampling data during the period July, 1972 through April, 1973 were
gathered, processed, and validated by EPA. After making the necessary calibration
and collec.ion efficiency corrections, EPA sent two data sets to RTI: one
containing data on an hourly basis (for the continuous monitors), and one
based on (approximately) 24-hour sampling periods— . As described in
Section 4.3, . r. screened the daily data for outlying observations. This
resulted in the removal of 60 (out of about 10,000) of the daily readings.
All daily results shown in this section are based on these screened data
and the assumption that the collection efficiencies given in Table 5.1 are
— Daily averages for the continuously-monitoring methods required that
75% of the hourly data be available. The averages were taken over the
time period during which the bubblers were operating.
-------
Table 5.1
N0_ Monitoring Methods
Method Name
1. Federal Reference Method
2. Triethanolamine Method
(Fritted. Bubbler)
3. Arsenite Method
(Fritted Bubbler)
4. Arsenite Method
(Straight Tube Impinger)
5. Chattanooga Health Effects
Study Method
6. Triethanolamine-Guaiacol-Sulfite
Method (Straight Tube Impinger)
7. Continuous Saltzman (II)
(Chattanooga)
8. Continuous Saltzman
(Technicon Mark IV)
Notation
FRMF
TEAF
CHRP
CHRO
CHESSO
TGSO
TECH
Assumed
Collection
Efficiency
35%
100%
85%
85%
35%
. 100%
TEC4
Commen ts
Bubbler, daily readings
Bubbler, daily readings
Bubbler, daily readings
Bubbler, daily readings
Bubbler, daily readings
Bubbler, daily readings, sampling
began in September, 1972
Used in Chattanooga only; hourly strip
chart readings are averaged over time
period corresponding to bubbler operation
to obtain "daily" values
5-minute readouts or hourly strip char-ts
are averaged over time period correspond-
ing to bubbler operation to obtain "daily1
values
00
•sj
9. Chemiluminescent
CHEM
Same as TEC4 comment
-------
88
appropriate.
The following subsection provides a br^ef discussion of the procedures
and results of the daily data analysis. Section 5.3 summarizes the hourly
data analysis. Section 5.4 suggests some areas of future research regard-
ing the comparison of NO,, monitoring methods that should be explored.
5.2 Daily Data Analysis
* -
The objectives of this analysis were
a) to determine the relative operating performance of the various
methods (e.g., by comparing precision of methods),
and
b) to determine the comparability of (daily) NO readings as given
by the various methods (e.g., by comparing magnitudes of means,
and correlations and regression relationships between the
methods).
Duplicate data were available in Site 832. These data were primarily
obtained in order to estimate method precision. The results, which are
applicable oni/ for this site, are given in Section 4.4.e. The TEC4
appeared to have the best precision and the CHESSO, the worst. The dupli-
cate data also served to point out that method bias may be a serious
problem (see Section 4.4.e). For example, based on 50 days of data, two
.CHEM instruments at this site had means of 85.1 and 107.5 ug/m3. One of
these instruments gave readings higher than the other on 44 of the 50
days.
-------
89
To satisfy objective (b), three basic questions had to be considered
in the analysis of the daily data:
i) What form of relationship will provide adequate fits
to the data?
11) Are separate analyses required for each site or for
different ranges of NCL concentrations?
iii) How should the relationships be estimated?
The correlations between most of the methods were above 0.7; these
correlations, in conjunction witii scatter plots of the data, indicated
that linear relationships over the entire ranges of the data would
probably characterize pairs of methods satisfactorily.— Large varia-
tion rather than lack of linearity appeared to be responsible for those
correlations which were low. Hence, the form of the estimated relation-
ship between a pair of methods (method X and method Y) was taken to
be
Y - A + BX.
— Data were not made available to RTI on (possible) interferences;
hence the relationships given in this report could not include
such effects.
-------
90
Since both variables X and Y are subject to measurement errors, and since
it was desirable to have a single, consistent relationship between pairs
of methods, the estimates A and B were obtained using orthogonal regression
rather than ordinary regression. Initially, separate relationships (between
a given pair of methods) were estimated for each site. Based solely on
statistical criteria, different relationships quite frequently would be
indicated for the seven different sites. However, from a practical point
of view, estimated relationships between the methods should be based on the
combined data, since the seven sites are hopefully representative of a
larger population of sites. Hence, it is appropriate that site vari-
ability be included as a component of error variation, i.e., separate
relationships should be avoided, if possible, except as they may be used
to provide checks on how these particular seven sites compare.
Table 5.2 shows the overall (i.e., data-from seven sites is pooled)
I
paired summary statistics for the 28 method pairs. (The TECH is excluded
since it was present in only two stations.) The pairs are ordered accord-
Ing to their correlations—from those pairs having the highest correlations
to those with he lowest. From this ordering, it is clear that the best
correlations occur between five of the six bubblers (excluding the CHESSO)-/;
- Of these five bubblers, the TGSO generally has the poorest correla-
tions. This appears to be the result of problems encountered during
the early phases of data .collection activity (see Section 4.4.b).
In addition, it is important to note that the TGSO method used in the
present study has been subsequently modified.
-------
TABLE 5.2. SUGARY STATISTICS^/:CAILY HA'TA COMBUEC CvER
METhCD.l
METHOD-2
STD_1
STD.2
CCRK
-' Over Sites—632, 633, 901, 902, 831, 832 and 841.
—' Ratio = Mean 2/Mean 1.
- CV-1 = STD I/Mean 1 x 100%; similarly for CV-2.
CV.2
CHHF
TEAF
TEAF
TEC4
CHPF
CHHC
FRMF
FPMF
TEAF
TF.AF
CHHC
ChRC
TGSC
CHkF
TGSC
CHRF
FPMF
FRMF
FPMF
C^ESSC
CHRF
TEAF
CHESSC
FRMF
CHKC
CHESSC
CHRO
CHRQ
CHRF
CHEM
TFAF
TPSO
Tcsn
CHRO
CHRF
TGSO
TEC4
TEC4
CHEM
CHEM
CHEM
TFC4
TEC4
TEC4
TGSO
CHEM
TFC4
CHESSU
CHESSO
CHEM
CHFSSO
CHESSO
TGSC
1326
12P5
1310
545
1290
650
633
1313
1337
625
619
635
643
650
351
663
302
655
637
648
648
635
118/1
1141
645
1166
1169
556
49.0
..37.9
38.1
63.5
75.3
47.4
46.6
76.0
76.6
38.4
35.6
35.9
43.9
44.5
35.7
47.2
39.5
46. U
72.6
80,7
72.1
51.1
48.4
37.4
52.3
75.6
46.3
60.1
47.0
46 ,fl
48_*5_
59.9
38.1
16. 9.
38.7
46.9
49.0
37.8
56.8
55..Q
61 .7
56,4
56.8
56.9
65.9
61.9
39,0
56.6
62.3
55.1
_53.e
57.7
54.9
54,6
38.6
25.6
20.5 ....
39.3
38.2
25.0
. 24.0
38.6
39.3
21.5
19.2
22.P
22.8
22.5
24.7
25.2
24.0
38.7
41.2
36. P
34.7
25.1
20.4
33.5
39.5.
23.6
36.4
24.0
23.2
25.0
36.7
20.7
?4.7
24.7
24.0
25,6
23.6
35.6
-33,5
39.3
?4.5
35.0
35.2
U6.1
39.6
40.0
25.0
35.0
39.7
33.3
32.4
37.3
33,5
32.5
24.2
.927'
,856
.646
,827
,809
.805
,790
,767
,773
.762
.757
,752
.... ,737
.730.
.729
,723
.715
,713
.689
.687
.646
,620
.613
.596
,594
.590
.496
. 1^223
0.°43
0.505
O.P31
0.617
0.640
0.987
1 .652
1 .405
1 .266
1 .590
1.206
1.668
1.341
0 .P53
0.464
0.786
1 .219
1 ..140
1.105
0.726
1.179
0.642
52.?
54. c
54.0
61 .8
50, e
52. P
50. P
51.2
56,1
53.9
.53,5.
52, C
51,1 ..
63,1
52.4
63,9
53,7
53,3
51,1
51 .C
67.9
52. C
54,7
64,1
52,3
51.1
60.6
51.-
50.1
51,5
61.2
54.5
63.9
51.2
52.2
62.5
6u.5
60.9
63.7
61 .2
61 .6
61 .8
70.0
63,6
64.7
64.1
61.7
63.fi
60.4
60.1
64.6
61 .0
59.6
62,8
v£>
—' The statistics in this table are shown for descripti\
recommended (see Section 5.4).
purposes only. Their
is not
-------
92
the two continuous methods (TEC4, CHEM) also correlate well. Somewhat lower
correlations occur between the five bubblers (excluding the CHESSO) and the
continuous methods. The CIIESSO correlated poorly with all other methods.
Table 5.2 also presents the means, standard deviations, ratios of
means, and coefficients of variation for the twenty-eight pairs of methods.
Higher coefficients of variation are indicated for the CHEM, TEC4, CHESSO,
and TGSO than for the other methods. The ratios of means may indicate
that the assumed collection efficiencies for the bubbler methods are
inappropriate since the rank order of method means is inversely related to
these assumed efficiencies. This ordering is illustrated below (the
ratios are extracted from Table 5.2):
Method
FRMF
TEC4
CHEM
CHESSO
CHRF
CHRO
TEAF
TGSO
Ratio of Mean
to FRMF Mean
L.OOO
.853
.786
.726
.640
.617
.505
.484
Assumed
Collection
Efficiency
35%
35%
85%
85%
100Z
100%
Type of
Method
Bubbler
Continuous Monitor
Continuous Monitor
Bubbler
Bubbler
Bubbler
Bubbler
Bubbler
The orthogonal regression results are summarized in Table 5.3; in
-------
Table 5.3. Estimated Relationships Between Methods^'
METK2
TEAF
CHPF
ChFO
CHESSO
TGSO
TECH
TEC«
CKEM"
ChPF
CHPO
CHES50
TGSO
TECH
TEC4
CHEM
Based on the Combined Data Over Sites—'
2/
N
1290
1337
1313
1166
648
265
637
648
1310
1285
"1141
.625
266
619
635
COR
e
PCVI
MILQI»-/ 'HUGH
o
7
3
6
8
5
7 . .
8
0 ......
5
1
5 ,,
6
9
5 ...._ ,
809
773
787
594
689
549
713
687
846
858
613
762.
729
757
757
2.003d
4.5189
4.7961
•2.4402
•1.1686
-9.9188
- 1 « .' 1 3 1 9
•10.4000
. --- 0.5442
2.4597
•22.4750
-5.5566._
•17.2975
•19.2612
- 18.1422
C. 47865
0.5S082
0.55405
0.75857
0.49813
1.18309
1.04755
0.*93014
1.25673
1.15771
2.04057
1.13143
2.63888
2.19319
2.03941
93.5
90.7
91.7
80.4
88.3
77.'7
85.7
84.4
'92,6 . .
93.0
85.0
88.2
92.4
91.9
91.3
0.0
0.0
0.0
1.6
0.0
12.0 .. .
»•«.
3.8
0.0
0.0
6.3
0.0
6.4
3.4
3.4
!51.2
153.8
152.1
1«P.6
161.8
100.0
143.7
140.3
..76.9
77.0
68,4
7fl.l
4P.P
67.8
66.4
1.7
4;2
4.7
0.0
0.0
4.2
0.0
0.0
'_ 0.0
1.2
0.0
0.0
0.0
0.0
o.n
74, u
93.9
RC5 1
... _ V. • • *
,'1,0
79.4
106.4
136.4
12C.1
_ 97.2
91.6
117.2
B2.8
114.0
1P9.4
121.3
U)
-------
Table 5.3 (Continued)
CHRP
CHRP
CHRP
ChPP
CHRP
CHPP
CHRO
CHRC
CHRO
CHRO
CHRO
CHESSO
CHES5G
Ch.ESSQ
CHESSO
CHRO
CHESSO
TGSO
TECH
TfcC«
ChfM
CHtSSO
TGSC
TECH
TEC4
CJ-EM
TGSC
TECH
TEC4
CHEM
1326
1184
650
268
655
663
1169
633
270
643
650'
556
261
635
fc/]C~
.927
.620
_ . .605
.709
" .715
. »729_
.590
.790
.67*
.75?
".737""'
.496
,?9?
,646
C Q i. ~
• 37C
1.2385
-20.3683
-7.651C
-•25.8400
~~-24.763
-------
Table 5.3 (Continued)
TGSC
TGSO
TGSG
TECH
TECH
TEC4
1ECH
TEC«
CHEM
TEC4
CHEK
CHEM
191
302
351
227
222
' 545
.._.._. 53P.
.723
.730
,560
.643
.827
-22.6^63
-21.8427
-7.52*0
12.73 I
9;5fo«
1.4367
2.73142
2.22101
i.ecoei
J, 53795
0.61950
0^92066
- 85.1
90.7
89.1
81.5
8U.2
91.4 " "
7.3
0.0
0.0
0.0
0.0
0.0
50."
eo.6
73. 9
j IP. «
t 1U.7
"" i3o;i"
0.
0.
0.
12.
e.
0.
0
0
0
7
0
0
1 14 .9
157.2
12-
76.5
eo.6
129V j"
—' The estimated relationship is of the form Meth 2 = A + B (Heth 1). The statistics in this table
are shown for descriptive purposes only. Their general use is not recommended (see Section 5.4).
-1 Over sites 632, 633, 901, 902, 831, 832 and-841.
3/
— M1LOW, M1HIGH = recommended range for method 1 over which the estimated relationship is applicable;
M2LOW, M2HIGH = same for method 2.
3
NOTE: If M1LOW or M2LOW was negative it was set at 0
-------
this table, X c. rresponds to method itl and Y to method //2 and the form of
the estimated relationship is Y = A + BX, The remaining notation used in
this table is defined below:
N = number of (paired) observations
COR = correlation between X and Y
PCV1 = the percentage ol variability accounted for by
the first principal component (see equation 4.7)
(MfLOW, M1HIGH) = recommended ranf.e for method 1 over which the
estimated relationship is applicable
(M2LOW, M2HIGH) = same for method .'.
The correlation and the variable PC"! provide an indication of the precision
of the estimated relationships between the pairs of methods. Some of the
estimated relationships indicated by Tab'.e 5.3 are portrayed graphically
in Figures 5.1 and 5.2. Figure 5.1 provides plots of the estimated
relationships between the CHEM and the otljr seven methods. Figure 5.2
gives analogous plots for the CHRO.
Because one does not know the true cor centration of N0« in ambient
air, it is impossible to say which method gives the most accurate daily
readings. Problems in calibration and/or inaccuracy of collection
efficiency determinations (for use in field applications) are evident
because of the failure of the various metho.is to give consistent readings.
In particular, the daily data analysis demotstrated these problems in
several ways:
a) systematic variation for the duplicate readings at Site 832
-------
ug/m~
n
160 "
140
120
100
97
Figure 5.1
Estimated Relrtt'^nships Between the CHEM and
Seven Other Monitoring Methods
This graph is for descriptive
purposes only. General use
of the estimated relationships
is not recommended (see
Section 5.4).
FRMF
20
40
60
80
100
120
CHEM — vip/ra
-------
Ug/m"
160 -
140 -
120 -
100 -
80 -
60 -
40-
20-
98
Figure 5.2
t :Imated Relation; ips Between the CHRO and
Seven Other Monitoring Methods
This graph is for descriptive
purposes only. General use
of the estimated relationships
is not recommended (see
Section 5.4).
FRMF
20
CHRO — ug/m
-------
99
(indicating biases in one or both sets of readings),
b) the ordering of method readings (or means)—an order
which was, in general, inversely related to the assumed
collection efficiencies,
c) the variation in method relationships from site-to-site,
and
d) the failure of the estimated relationships (of the form
Y = A 4- BX) to reduce, approximately, to the form Y = X
(i.e., A = 0, B = 1) in the majority of cases.
5.3 Hourly Data Analysis
The emphasis of this report was placed on daily, rather than hourly,
analyses, since most of the methods provide only the 24-hour integrated
samples. Table 5.4 below provides a brief summary of the (paired) hourly
data for the TEC4 and CHEM methods. In this table, Site 832D refers to
the measurements made by the duplicate instruments in Site 832.
Table 5.4
Summary Statistics Based on
Paired Hourly Averages-by Site^-
I/
SITE
632
633
901
902
832
832D
841
Total*
No.
OBS.
2844
3125
783
1572
2910
1589
2181
13415
Means
CHEM TEC4
40.1 48.2
39.2 37.7
82.5 62.5
47.1 48.0
86.0 104.7
104.3 95.3
95.7 101.2
62.2 67.4
Std, Deviations
CHEM TEC4
33.7 61.4
44.8 32.9
30.4 37.8
30.0 23.9
60.4 81.1
81.7 71.9
56.7 87.0
52.4 68.3
Corr.
.462
.586
.605
.735
.744
.946
.551
.666
Ratio of
Means
1.20
0.96
0.76
1.02
1.22
0.91
1.06
1.08
* Excludes 832D.
— The statistics in this table are shown for descriptive purposes only.
Their general use is not recommended (see Section 5.4).
-------
100
This table Indicates
a) extensive variation in the correlations from site-to-site.
« »
b) the problem of instrument bias (Site 832 versus Site 832D),
c) ratios of means which are comparable to the ratios based
on the daily data, and
d) an over-site hourly correlation (.66) which is noticeably
lower than the corresponding daily correlation (.83).
The variation in the correlations appears to be brought about by
1) considerable variation in the actual NO fluctuations for
the various sites, and
2) the presence of outliers in the hourly data.—
The TEC4 and CHEM means compare most favorably in Sites 632 and 902
(ratios equal .96 and 1.02, respectively). More detailed results and
discussion are given in Section 4.5 and Appendix F.
5.4 Recommendations
The results presented in this report do not indicate that a particular
one of the ni, monitoring methods studied is the "best" method for moni-
toring N02. Additional sampling in both the laboratory and field will
be required before such a'recommendation can be made. The main problem
encountered with field data, such as that analyzed in this report, is that
- The hourly data were validated by EPA. However, RTI did not extensively
screen these hourly data for outliers (see Section 4.5).
-------
101
the true amount of NO- in the air is not known. Hence, it is impossible
to say which method is closest to the true value, i.e., the bias of each
method cannot be determined. Only in the laboratory where the level of
NO^ can be controlled can this question of bias be answered. Thus, the
present study was mainly limited to studying the relationships between
the nine monitoring methods (e.g., ratios of means, correlations, and
regression relationships between methods) over varying conditions such as
'location (i.e., sites). These relationships indicate the interrelatability
of the methods but do not estimate the bias of each method. In addition
to the problem of estimation of bias, other problems with the current data
that make additional sampling necessary are: lack of data on interferences,
variation in sample statistics from site to site (e.g., the correlation
coefficients between some methods vary a great deal over sites), calibra-
tion problems with the continuous monitors and lack of data on method
precision. In fact, because of the many limitations of the field data
analyzed in this report, RTI does not recommend that the functional relation-
ships between monitoring methods given here (e.g., Table 5.3) be used in
general for describing the relationship between the pairs of methods. In-
stead, additional field testing at other sites (e.g., where the ranges of
NO™ and the interferences in the air are different than the sites studied
in this report) and laboratory testing should be carried out to further in-
vestigate these functional relationships. Of course, the relationships given
here do give an indication of how the various methods relate to one another;
but indiscriminate use of these relationships (e.g., converting N0_ measure-
-------
102
ments from one method to another at any site in the United States) is not
recommended.
Based on the results given in this report RTI would recommend that
additional work on determining an N0? monitoring method be limited to a
subset of the nine methods studied here. In particular, RTI would suggest
the following strategy:
A. The CHESSO and FRMF methods should be dropped from consideration
because of their variable collection efficiency and relatively
low precision.
B. Since the other four bubblers (CHRO, CHRP, TEAF and TGSO)
appear to be fairly closely related, only one or two of them
need be considered in future work. One possibility would be
one arsenite and one triethanolamine method; for example, the
CHRO and TEAF. Additional work on the effect of interferences-
may suggest which of these four bubblers should be considered
in future work.
C. Both the TEC4 and CHEM methods should be studied further.
Using this subset of four of the original nine methods, RTI would suggest
that the following laboratory and field work be carried out:
(1) An extensive laboratory analysis of the various N02 monitor-
— As mentioned previously the effects of interferences (e.g., ozone and NO)
were not studied in this report. However, data on WO and ozone is now
available for the July 1, 1972 through April 30, 1973 time period which
can be used along with the N02 data examined in this report to determine
interference effects on the various NO- monitoring methods.
-------
103
ing methods should be undertaken. This study could in-
vestigate the bias of each method over a wide range of known
NCL levels. This type of study would hopefully answer the
collection efficiency question that affects all of the bubbler
methods. In addition, if it is feasible to control not only
N0_ levels but also interference levels (e.g., of NO and
ozone) in the laboratory, then at least a preliminary evalu-
ation of the effect of interferences could be made. Of
course, in any laboratory analysis of this kind it would be
essential that an experimental design be developed before
sampling begins to ensure that all of the information required
could be obtained in the most efficient manner.
(2) Sampling in the field with the continuous monitors should be
continued. As described in the present report, EPA
had a great many problems in obtaining valid data from the TEC4
and CHEM instruments (e.g., calibration problems). Thus, it
would seem appropriate to obtain more experience in the field
with these methods.
(3) In the current study only one site (832) had more than one method
of the same type (e.g., two CHEM instruments). Accordingly, RTI
could only estimate the precision of each of the monitoring
methods at this site. Thus, in the future additional sampling
should be carried out at other sites with duplicate methods.
This would allow factors such as N0? levels, operator effects,
-------
104
etc. to be considered in determining method precision. As
mentioned previously one of the CHEM instruments in site 832 in
the present study had readings which were consistently lower than
the other CHEM instrument. This could indicate a large bias in
one or both of these instruments. Thus, additional duplicate
sampling is required for the CHEM instruments since a monitoring
method is not of much value if, in the same site, two instruments
of the same kind do not give consistent results. The laboratory
analysis mentioned in (1) above could also be used to estimate
method precision.
-------
105
BIBLIOGRAPHY
1. Aitchison, J., and J. A. C. Brown, The Lognormal Distribution. Cambridge
University Press, 1957.
2. Berkson, J. , "Are These Two Regressions?," Journal of the American
Statistical Association, Vol. 45, (1950), pp. 164-180. '
3. Blacker, J. H. and Brief, R. S., "Evaluation of Jacobs Hochheiser Method
for Determining Ambient NCL Concentrations," Chemosphere, No. 1, pp. 43-
46, 1972.
4. Christie, A. A., R. G. Lidzey, and D. W. F. Radford, "Field Method for
the Determination of Nitrogen Dioxide in Air," Analyst, Vol. 95, (1970),
p. 519.
5. Decker, C. E., T. M. Royal, and J. B. Tommerdal, Field Evaluation of
New Air Pollution Monitoring Systems: Final Report, Research Triangle
Institute, Contract CPA-70-101, Environmental Protection Agency, 1972.
6. Environmental Protection Agency, "National Primary and Secondary Ambient
Air Quality Standards," Federal Register. Vol. 36, No. 84, (April 30,
1971).
7. Graybill, F. A., An Introduction to Linear Statistical Models, McGraw
Hill, New York, 1961.
8. Grubbs, F. E., "On Estimating Precision of Measuring Instruments and
Product Variability," Journal of the American Statistical Association.
Vol. 43, (1948), pp. 243-264.
9. Hald, A., Statistical Theory with Engineering Applications. John Wiley
& Sons, New York, 1952.
10. Hartwell, T. D., C. A. Clayton, C. E. Decker, and P. N. Hunt, Progress
Briefing on Comparing Methods to Monitor NO. in Ambient Air, Research
Triangle Institute, Contract No. 68-02-0335, Environmental Protection
Agency, December, 1972.
11. Hauser, T. R. and C. M. Shy, "Position Paper: NO Measurement," Environ-
X ~
mental Science and Technology, Vol. 6, (1972), p. 890.
12. Heuss, J. M., G. T. Nebel, and J. M. Colucci, "National Air Quality
Standards for Automotive Pollutants - A Critical REview," Journal of
the Air Pollution Control Association. Vol. 21, (1971), p. 535.
-------
106
13. Hinton, D. 0., Chess-Champ Operation and Calibration Procedures (BEBM
Standard) for Technicon. Autoanalyzer: Nitrogen Dioxide. Environmental
Protection Agency, 1972.
14. Jacobs, K. B. and S. Hochheiser, "Continuous Sampling and Ultramicro
Determination of Nitrogen Dioxide in Air," Analytical Chemistry. Vol. 30,
(1958), p. 426.
15. Knapp, K. , Determination of Nitrogen Dioxide; Methods as Used by Air
Quality Analytical Laboratory Branch, Environmental Protection Agency,
Division of Atmospheric Surveillance, 1972.
16.' Larsen, R. I., "A New Mathematical Model of Air Pollutant Concentration
Averaging Time and Frequency," Journal of the Air Pollution Control
Association. Vol. 19, No. 1, (January, 1969).
17. Levoggi, D. A., W. Sin, E. Kothny, and M. Feldstein, "The Quantitative
Separation of Nitric Oxides from Ni-rogen Dioxide at Atmospheric
Concentration Ranges," Environmental Science and Technology, Vol. 6,
(1972), p. 250.
18. Mitchell, R. L., "Permanence of the Log-Normal Distribution," Journal
of the Optical Society of America, Vol. 58, No. 9, (September, 1968),
pp. 1267-1272.
19. Morgan, G. B., C. Golden, and E. C." Tabor, "New and Improved Procedures
for Cas Sampling and Analysis in the National Air Sampling Network,"
Journal of th- Air Pollution Control Association, Vol. 17, (1967),
p. 300.
20. Purdue, L. J., J. E. Dudley, J. B. Clements, and R. J. Thompson,
"Reinvesr.igation of the Jacobs-Hochheiser Procedures for Determining
Nitrogen Jioxide in Ambient Air," Environmental Science and Technology.
Vol. 6, (1972), p. 152.
21. Saltzman, B. E., "Coloriraetric Microdetermination of Nitrogen Dioxide
in the Atmosphere," Analytical Chemistry. Vol. 26, (1954), p. 1949.
22. Sawicki, E., J. Mulik, R. Fuerst, M. Guyer, and J. Meeker, "New Methods
for the Collection and Analysis of Atmospheric N09." To be presented
at the Air Pollution Symposium, Dallas, Texas.
23. Shy, C. M., J. P. Creason, K. E. McClain, F. B. Benson, and M. M. Young,
"The Chattanooga School Children Study: Effects of Community Exposure
to Nitrogen Dioxide," Journal, of the Air Pollution Control Association.
Vol. 20, (1970), p. 53?i:
-------
107
24. Singpurwalla, N. D., "Extreme Values from a Lognorraal Law with Appli-
cations to Air Pollution Problems," Technometrics, Vol. 13, No. 3,
(August, 1972).
25. Smith, H. F., "Estimating Precision of Measuring Instruments," Journal
of the American Statistical Association, Vol. 45, (1950), pp. 447-451.
26. Youden, W. J., "The Collaborative Test," Journal of the 'Association of
Official Agricultural Chemists, Vol. 46, February, 1963.
-------
A-l
APPENDIX A. SUMMARY STATISTICS BY SITE
On the following pages is a listing of summary statistics (in
yg/m ) for the daily data. The listing is by method and site. The
site codes have been given in Section 4.2. All statistics are based on
unpaired data after removing outliers. Two tables are given for each
site. The first gives the percentage (frequency) distribution and
the corresponding cumulative distribution. The second table gives,
for each method
1) NO. OBS. = number of daily readings
2) MIN. VALUE
3) MEDIAN VALUE = sample median
4) MAX. VALUE
5) ARITH. MEAN = arithmetic mean of the readings
6) GE0M. MEAN = geometric mean of the readings
7) STD. DEV. = standard deviation of the readings
8) STD.D OF LNS = standard deviation of the natural logarithm
of the readings.
-------
SUMMARY STATISTICS ChATT*NOCS*-31TE 632
>! VARliKU KO.
:'•' FBHh 32;
'i
TEAF 226
to;
i
.* CHRF 22o
.,'
't
1
1 CHRC_... . 230
11
.i CHEBSC__ _. 250
••.- _TC8g H*
-v TECh 160
TEC
0.0000
7.o«71
fl.701'0
4.0000
9.000C
8 . 1 fl 0 1
3.90Cf
13.12
09, 12
65.00
00,63
06.03
itO.OO
06.96
00.80
52.00
55.26
71 ,93
10. OC
16.06
18. 66
it. 53
23.1*
29.07
KFDIAN
VAL^E
13.600)
25,6500
30.7059
31.7059
.21,9500
20.0500
«.56o»
jil .ssflfi
38.8000
9CPEENFC NC2 DATA
ENCY DISTRIBLTITN
39.37
26 1 1
91 .15
J?, 59
79.02
33,91
60. P7
26.0Q
80.00
»7,SO .
8«.C7
2?.H
o?.07
3S, 16
S'.t9
3*,6fc
63. 16
153
._._«?
107
92
_..J*3
'-3
177
132
109
2JJ.J 1
60.18
5.75
96.90
111.29
93.70
_ 12.61
93. «»
' 92^do
7.02
96.0V
26.05
70.12
19 ?3
TC.92
e:.i^
86.32
MX.
VAt UF
.1000
•.6000.. .
.2901
.6235
. 0 000.
.5000
,T3000
,onofl
'
.3000
2 i 27
81 .05
j 33
98.23
3.57
9t.87
T-.ll
97.39
96JOO
1.75
15. ?o
85.37
1" i ^
91. f I
6.<:
95.26
ABJT^ ,
KF A h
S5.6«53
?B.l*oc
30.0(|l!
30.350"
.33.2707
27.1771
52.0702
'<5.t>fo|
M.776t
U. •> i
92.76
i 1 3
99,56
2.«3
99,1 t
?.17
99.57
j.eo
98. 60
o.eti
99, li
7.32
9?.fc6
II .iC
?ptj
97. *»
G6C*.
KE AN
50.0715
P5.3161
31.1C01
31.063*
28.6^6
23.9161
06.2562
00.0097
37.0t«8
27 i
95. iP
O.oo
100. OP
O.OS
99,55
0,113
100.00
C.Cfl
99,?n
tl.PS
100.00
3.66
St. 30
T t&
96.90
1,05
98.95
SID.
Otv.
25.5033
13.6395
15.9006
15.0723
I9.ie5i-
1K.7066
27.0007
22.2fr39
20.2596
97. ?9 97
loo. ce ion
0 Oc 0
100,00 !00
0. fl 0
100.00 ICfl
0.0 0
99.^0 '99
o.r o
ioo.no ico
C.n i
91.31. 97
0 C 1
98.90 100
0,0 • 0
96.95 99
£TO,0.
CF I N<
C.0639"
C.060J
0.0607
e.osa?
o; 5« 22..
0.5103
P. 5192
e . s i o t
0.519?
.70 99. ;s" " looYeo"
.. y , P _. _ . . 0 i v
.00 10fl.CC 100,00
r fl ft ft fl
,co 100. no 100,00
,r o.n p,c
,r.o ieo,?r loe.oo
,tc o,ac 0,0
.to loo. oe too. eo
, c 0,0 o ue
,cc Joo.ce 100,00
.£f Uf3 e.ti
,5t 99.39 IOC. 00
,CC 100, CO """lOC.OO
,=3 0,53 O.C
.07 ICO.OC ICO. 00
.
-
.
- - _.
• -
-------
•o
SUHHAfrY STATISTICS
l 083,
>| ' f
1
' 1
'• 1EIF 210
L-i
, CMRF 230
t!
1 •!
!..' CHESfC £4u
*•
-j
!.| TC3C .1.12
' i
••'•
•'• TECS ISO
3
U ChEc i9b
i.,
CHATTlNCCGA.SITE 633 SC«EI
<• 15,
1.26
1.26
2U30
8.70
8.70
9,05
10,71
10,71
I.P4
u.u*
4.U»
11.22
11.22
JNfO NC2 DATA
FdECUEMCY OISTSmTICN
15.- 30. 30.- 43. 45.- 60. 60.. 75,
•• 2*
17. 5J
73)46
410,87
89.57
112,24
40, U
55.36
66.07
12.48 .
30.00
43J37
21,93
' 9o!e7
28,26
77.83
29,74
61.03
79^2
18.75
J&T20
31 ,J 1
65. = 6
26.02
69.39
26,92
68.36
97! 63
. 16.52
15.. '5
93ioi
.. «.'!
55"! 93
21.11
8».ik7
86.22
15 JJ_
2.1?
100.00
. ".35
96.70
1.72
9"), 71
96, "4 7
1.05, -i?o;
.... 4,70
97. ft
P.O
100. CO
0.0
100.00
o.o
100.00
o_.o...
o.e
uo.oc
2.U5
92.02
1.11
91.U4I
120 -13'"
o.es
9*. 72
o.e
lOft.OO
o.e
ioo.no
t.e
"loo.oc"'
" "99) = S"
P.C
loc.oc
3,07
S5.05
0,56
100, CC
10C.CC
135. -150.
ft.SS
99.57
P.O
100.00
0.0
loo. oo
o.e
icb.no
~" 5 9" ,"59
P.O
100, 00
3.6k
se.77
0.0
100.00
0.0
loo.oc
>150
0.03
100.90
0.0
ICO. 00
0,0
100.00
0.0
ICO. 00
P. 41
ICC. 00
o.e
100,00
1.23
100.00
fl.fl
"100,00
0.0
ICO. 00
u>
•
i—
J
I
iJ
p
16P
-------
i
I:
< j
;
ii
1 E
r
i?.i
P"
i *•
H
V
s-
.1
:
j
•
rl
ul
J
i
"i
u
1]
II
"
3UMMAK> STATISTICS
VARUfiLt NO.
ces.
FRMF
TEAF
C^RF
CHRC
CHESSC
TB8JL
TECtt
CHEr
VARIABLE
FRNF"
TEAF
CHRF
CHRC
CHESSC
TG8C
TECu
CHEh
2JU
202
206
..123
28
06
NC.
CBi.
2Mb
121
"28" "
«6
ST.
<•
0.
0.
.c.
0.
o,
0.
0.
0.
. o,
0.
0,
0.
0.
0,
0.
0.
01
IT
27
12
17
2~7
ICUS
•SITE 9C1
SCREENED NC2 DAT*
FREQUENCY CISTRIBLTIC
15, J5,- 3.0, . 30.- a;t. MSj-. 60.
P_ . ..0,5
0 0.0
C 21,95
0
0
0
0
0
U9
at
0
0
0
0
0
0
VALUE
.0000
,fOOO
,7«a7
,«otc
,3000
.2000
21.95
3,67 ...
1.67
a, 96
fl,96
2,9]
3.10
33,31
33.33
7,1«
7.1«
0.0
0.0
MEDIAN
VA.LtE
ez.psoo
41.1000
50.9(112
52.29U1
67.2500
35.0000
"58.6500
71,6000
J.23
1.23
>*,59
58.56
20.06
27. 7t
2B.93
33.ee
15.05
If."!
03,09
76. U2
28.57
2.17
2.17
TeT
133
129
2.5«
UO
1 7~0
130
150
12.50 5.33 2.fl7 fl,5l
87.30 92.62 95.09 ICO. CO
?.e o.e o.o 0,0
100.00 100. CC IC^.OC 100.00
2.«5 Ot«l 0,0 r,0
S°.59 100.00 100. fl"e " 100.00
O.PJ 0.4) 0,0 o.r
99. 55 100, CC iofl.ft'c lOC.nO
J.PS 3,86 n.a<; | , in,
9«. JT S8.06 98. S<* U'0.00
2.00 c,M o,n o,*i
96.37 " ~99.19" <»9.\S ICt.OO
3,57 fl.t o.n 3.57
96.J13 9fr.«3 9h.fl3 100.00 >
15.22 «.!5 o.n e.O **
95.65 1CO.CC InP.OC "lOO.OO"
STtJ.D.
CF LNS
0.2901
C.Sfll* _ _
0.301!
0
-------
) SUMMARY ST*TI4TIC3
i Yif»i*8li KO.
" CE9..
r>
.|
•i TEAP 202
J
}i_ CHRF 2L
JENC" BI?lP:HLTir.K
l-M'fS.,.. "5..- tO.,..._l-0.. 75. 7?.. 90. 90t-105, 1 05,- jaO^. 1 2C_,^J3?J_135^- 15C . >150
.T.J* . 23.26 25. £i 1T.H H.^fl " 9j 3 48 _Lt?l 2 OS
10. *e JB.O* 59.ftl TT.C5 6P.52 93. *t* fl.!0 P. 87 B /i />/! »A- n K
61.07 65. *6 9?.n 96,31 90.16 99. |6 ' 99. ie' '" Tob.OC " 1 CO , 00
38. *8 l!.t-3 7 P? l.TO (it? An * PJ n A « «
6J.20 8t.H 911.^5 9S.Jb 9E.I8 99.ifc 100. CO " 1 0 0 . Ve" ""lOO.O,J
25 U 2C *9 't P f7 9
42.36 63. f5 79. JJ 68. IB 9?. 12 .9sl'j7 9i',03 9«|o3~ ItnloO
29.46 Ifl.J? ? C4 O.C b.f A im (IP ft ft * n
86.. us ««_.(.> irr..^: loo.co ico.oo ioo.ic " lo'e.ct "'"to.oo
MX. 4BJTH GtCN. iTf «TO J
V*LUF Mf»K K.FiN DEV. CF iHS
226.5000 7J.«972 te.1356 29.6031 0.3775 "" —
!.I8.«000... 35.Srif. 32.9469 H.8225 0,390(!
185.2941 u«.1?et (,O.S«e» l«-.5t69 o.'«0»3
121.'76^7 " 02.385E 39.2827 ]7.i4362 0.3891 ~~ ~ -
195,2000 56.663t fl9.0*'4« ?1.300« 0.557J
1?6.7000 jl.6309 29.1736 11.032'' 0.3823
:oo.^oon ^7.a9
-------
SUMMARY STATISTICS CALIFORNIA. 31TE £31 8CRE.EKCC SC2 0»T»
i
)
:
;i
•!
1 1
. 'i
e
tj
:.J
i
I1:
J
I '.
!>
J
f.
u
Cr
j
VARIABLE NO.
-
PRHF 56
TEiF 50
__,CHRF S7
CHMC 55
CHE SSL _ l_03
TGSC tl
TEU 25
CHEN Oi
VARIABLE NC.
CBS.
TBIIC Kk '
TEA/ 54
CMRF b7
CHRC 55
CMES9C. 143
7C3C U
J TECo "" 25
H
.1
CHEf< uS
<•
>!
i.
o,
0.
1.
1.
.«,
"•
0.
0,
0.
0.
0,
0.
11
11
19
T
3
16
27
23
15.
79
85
0
0
82
82
">0
90
0
0
0
0
0
0
Ml*.
VALi,E
.1000
.5000
.5290
.6071
.5000
.4000
.1000
.0000
FRE QUEfc.
15.- 30, JO,-
12,50 If
1E
70, 1000
41.1000
53.6070
50,«7fl6
08.3000
66.UPOO
' 79.7000 •"
62.9000
C V D
«..
!oo~
.07
.81
.8J
.35
.15 .
.78
.06
.09
.00
.or
.00
.33
f TPIBL'IICK
. «'.-. *0i._*0j.- 75,
i?,»o i?_tto
37. «C 57.14
25 93 |4 f)
77.7* 92. *.<>
17. *« 2?.tl
57.89 tP.70
21,82 10. f 5
»7. il 61. e<
10, *v i*.ee
6f.7t 77. kZ
27.27 ».C9
,2o,ro «.ro
36 .00 00.00
13.33 2000
06.67 66. *7
75.-
69
t
96
,r
91
1?
9
86
18
7?
20
60
1 1
80
«0.
!ta
70-
i ' * .
.;o
.53
.c3
:»
.CO
.71
.18
.73
.CO
.CO
.31
.CO
90, -1
10.
80.
' 100.
i m
94.
0,
9(1.
7.
<>(!.
ei!
e.
72,
£
86.
PS. 1£
71
36
CO
51
C
55
(9
01
11
CO
00 "
67
67
b A v ARTTh r F"' r M 4Tn
165
4J
1«S
13«
196
112
1S6
230
VALUE f'CAK
.ICOO f2.9«€1
.2COC 1«.525£
.Oil! 56.2187
.4706 51.91BA
.3000 55.4333
.60PC 66. &<)*<;
roOOO" T9.fi7l9
.0000 69.3666
62.-
39,
«9.
05.
07.
MEAN
n7 SS
45 b 6
Jft 0 1
JtOO
OU2
"57
20
n
26
SU
Otv.
.3fc52
.8791
.0730
.7115
.un6«
5»*1^0t 12P.-V1S. US.*l?o. >150
. e-?J .... _..5.?t 0.0 5.36
89.J9 Sd,6
1.UU Z.ic 0.0 6,67 '
9i.il 93.33 " 93.V3~ "ioo.no
JTD.i).
CF LNS
0 . 6159*5
O."bl90
0.-99*
•" o.-sso? ' -
0.616Z
59.81i6 ;i.7ilf C."599tl
73.2^52-
60.2*19
" 31
00
.7"77
.7011
•'O.-aoo, r — - •
C 'S291
-------
IUMMAKY STATISTICS
VARIABLE KG.
fRMF 202
TEAF 1«2
ir~c'~ ~" '
•!( CHH.C. ..1*5
1
r CH|3JC_. _2_3?
TC3C 105
77
TECll 113
:'- CHEM 13d
3
'j ViRUELt NC.
.-; FRHF 262
J TEAF 162
" CMRF 219
1
CHRC 195
CMESSC 232
Tcac . los
ri
n| TECH US
J
J CHbH 13U
u
',t
CALlFCSNIA-SITt 832 8C«EEN
CO NC2 DATA
FREQUENCY CUTRXBITICM
<» 15, 15.- 30. 30.- «5. «5.- 60, nOj- 75, 75.- «0.
o!99
3.30
0.91
0.91
1.61
1.03
1.29
1.29
0.95
0.95
0.0
0.0
0.0
0.0
KIN,
9.0000
2. "000
0.2353
1.29(11
7.2000
11.6000
" 27.icne
. 16.3000
•!;•«!••
13.19
1 6 . Jl6
6.39
7.31
6.15 .
7,18
6.90
6.19
6,67
7,62"
0.70
0.70
7,«6
V|LI,E
~* JOTilooO
C6.10CO
61.76(17
57.29.U7 73. c8
.11 IS. 3d 2.86
.67 61.90 8(1.1*
,H6 11.19 13,99
. 1* 3S.t6 ' (19. tS
.9*1 21 ,41 9.70
.fit 52. 2« 61.91
I'-'--. r.SCM.
113.9052 101.2953
50,0091 a*.«*l&
*7,557^ 60. «10''
"64.S871 57.1163
16.39US 65.3967
57.5307 50.6611
99.3199 83.3018
•JO.-lOb. 105. -120. 120. -135. 135, -150. >150
15.64
5. al
6.39
67.21
7.69
89.7(1
9.9J
63. !9
3.61
68,57
13.29
62. t'n"
12.64
7a.63""
src.
~ 53.6198-
20.9251
32.2ML
" Ji.0920
(15. 12(46
30.6851
13, J7 8,32 5,^(1 il,?9
6«.3e 7?. 77 78.71 100,00
1_,65 3.65 O.C 0,?5
95. 6C 0
CF LNS_ _
0 56 «J 3
0 ' Q 9 o i
0 S ^ o I
0.5706
o.'sao?
-------
SUMMARY STATISTICS CALIFOPMA-MT£ 832C SCFfENEC NC2 DATA
, VAfllASLE hO. FKFCL'CKC
cea. <• is. is., u. 30.-
\ • PHMF 1«3 0.0 0,70 2.
, 0.0 0,70 3,
! TE*F 139 0.72 6, (17 20t
C.72 7.19 26.
•3 CHHK 157 0.6" 0.6ft T,
0.6" 1.27 6.
»„ CHRP 1«5 O.C C,S>9 8,
!'<) 0.0 0.69 8.
CMESSl 1*9 0,6» «.03 9.
;. 0.*T 4.70 1«.
'.'-• TG8C 83 0.8 7.23 2?.
1* " ' " 0.0 7.23 "32".
u
.' TEtt 6 ViRlAfett f'C. f IK. H*CI*N
B •
1^ FRMF uJ 20.3ooe 102.2000
C TE*F 1}9 J.600P 5« 12.12
47" 2«,79
VALUE
* 250.8999
197,0000
263.4586
cfe.CbOC
300.3999
193.UOOC
0e
305.3999
k
60,- 75. 75,- 50. SO.-ir'S. 10S
V05 13.59 J6.6S
20. 28 3". r? 55. lb
20. !6 t.17 u.32
77.70 Z" , 1 7 BP , f9
<2»!2 71.01
10.61 13. i« 13, t«
39.35 53. C3 66.67
AMin. Gfct^. 310.
KEA* fEAN Of-V.
Ill .675! i'" "lOZi««79 .39 fc.05
63. 6" 7J.03 7«. Id
?.»e 3. to ?. 16
51.37 9 u . 9 1 97.12
•J.T3 J.ie J.53
89.17 9?, Jt 5a,9C
>.«-5 P.C IP?.?...
9M.iit 9a,ie "" 96,55
5.37 3. It 2.HI
ff 3 H 9 C 7 £ • C ^ ? t
3.61 1.80 I.-JO
«3.98 " 95. IS " 96.39
8.70 T.25 ?.°n
79. Tl Bh.St 69. «t
6.0* 7.58 J.55
72.73 *C.30 ea.^5
STO.O.
CF LN?_
0 .'5 0 2 9
O.S502 '_
O.«72fl
OJSBin
>150
i0.9o
100.00
j.ea
1UO.CO
5.10
10?. 00
"" iiio.oo
i a . T it
100,00
3.61
"" i t ft . n o
i o . t a
UO.tio
15.15
1 ii n . o a
_ .
,1
o>
-------
SUMMARY STATISTICS CALXPOKMA-JIU 8O| 3CREENKD nr.c OMA
tl
<•"
.!
i.
.
'
•
'l
!*•,
'J
•'i
k—
u
!"
f-,
'„
k
>.'
H.;
3
4_
.
ji
-__
ti.
1='
41
"i
i
"i
j
J
U
b
ij
.j
VARIABLE KO. FREUUENCY tl
068. <• 15. 15.- SO. 3J.. US.
FBMF 203
TEAF 107
CH«F £07
ChftC 198
CHE3SC 20]
TCSC 101
TEC« 105
CHE* 114
. _ . . . -
VARIABLE NC.
. ces.
_JEAF_. 187
CMRF 207
CHRC 198
_CKE1« 201 ._._..
TCSC 101
TECH 105
CHE* in
1.97 3.94 12.32
l.'T
a. 26 .
3.36
3.58
2,f2
2.02
l.oo ...
l.OC
C Q At
5 »94
Q 0 5
0.95
0.811
o.eu
H1K.
VALI.E
7.3000
1.30CO
2.7059
2.-7C*
5.7000
1.2000
8,30(0
5.000C
5.91 Ifl.
28,32 3U
SI
15
1«
150
16. 4t 15. 1o 12.32 6.37 6.«C 1.97 (i , fl J
50. 7fl 6A.'=t 78. Pi £7.l« ^3,fcO 9«.57 ICP.flO
H.7c fe.ui 2.1^ fl.-iS 1,M P.* 0,P
89. 8« 9t^l 2^.92E1 0.7793
90,"0762 Bl.iibe 36,BKf« G .'<<£•<«
e7.«rt7t Ta.nes7 se.sftsu t;sc7?
-------
APPENDIX B. SUMMARY STATISTICS FOR DAILY DATA BEFORE
REMOVING OUTLIERS
Tables B-l through B-4 give summary statistics for the nine monitor-
ing methods by site and over sites before RTI removed any outliers. The
corresponding tables in the text after removing outliers are Tables 4.14
(B-l), 4.9 (B-2), 4.8 (B-3) and 4.11 (B-4). RTI's procedure for removing
outliers is given in Section 4.3.
-------
B-2
Table B-l
of Daily Measurements by Method and
Site Before Removing Outliers—Sampling Period July 1, 1972,
- April 30, 1973, Unpaired Data
FRMF
CHATT.
632
633
St. Louis
901
902
Calif.
831^
832
841
832D
56.
53.
90.
73.
73.
113.
78.
111.
8
4
8
5
0
4
3
7
TEAF
27.9
25.3
43.2
35.6
44.5
52.9
45.3
64.1
CHRF
34.8
33.5
58.5
44.1
56.2
67.5
56.2
82.1
CHRO
34.6
32.2
53.8
42.4
51.9
64.6
56.4
73.2
CHESSO
33
33
72
56
55
78
64
85
.5
.3
.3
.4
.4
.2
.4
.4
TGSO
27.2
29.4
41.5
31.6
68.6
57.5
46.0
63.7
TECH TEC4
52.5 48.
62.4 40.
.
* 63.
* 47.
* 86.
* 99.
* 93.
* 90.
3
6
4
5
9
3
7
0
CHEM
41.8
37.9
78.1
45.9
69.4
83.8
-86.8 .
100.9
* = no data present.
- On October 6, 1972, all methods except CHESSO and CHEM moved from site 831
to site 832.
-------
B-3
Table B-2
Correlations Between Methods - Over Sites— ,
Before and After Removing Outliers
CHRO CHESSO TGSO TECH-
- TEC4
.71
.76
.72
.75
.65
.72.
.56
^^
\.
.75
OUTLIERS
CHEM
.69
.76
.73
.74
.60
.73
.64
.83
\
IN
0
u
T
L
I
E
R
S
0
U
T
1
y
- Sites = 632, 633, 901, 902, 831, 832, 841
21
— Data for TECH from sites 632 and 633 only
-------
Table B-3
Summary Statistics for Paired Observations—
I/ ? /
for Data Combined over Sites— , before Removing Outliers^-
N
FRMF MEAN
FRMF Col. MEAN
Ratio
Corr.
N
TEAF MEAN
TEAF Col. MEAN
Ratio
Corr.
N
CHRF MEAN
CHRP Col. MEAN
Ratio
Corr.
N
CHRO MEAN •
CHRO Col. MEAN
Ratio
Corr.
FRMF
1415
76.9
•1306
38.0
75.2
.51
.77
1350
48.9
76.7
.64
.75
1327
46.8
76.1
.61
.75
TEAF
j.306
75.2
38.0
1.98
.77
1377
38.0
1322
48.5
37.9
1.28
.83
1298
46.4
37.8
1.23
.83
CI:RF
1350
76.7
48.9
1.56
.75
1322
. 37.9
48.5
.78
.83
1431
49.3
1336
46.8
48.9
.96
.91
CHRO -
1327
76.1
- 46.8
1.63
.75
1298
37.8
46.4
.81
.83
1336
48.9
46.8
1,04
.91
1401
47.1
CHESSO
1187
75.8
55.4
1.37
.55
1161
37.2
54.3
.69
.56
1199
48.2
55.5
.87
.57
1186
46.1
55.0
.84
.54
TGSO
653
80.7
38.8
2.08
.67
633
38.1
37.7
1.01
.74
653
47.3
38.7
1.22
.81
639
46.4
38.6
1.20
.78
TECH-^'
268
56.8
56.8
1.00
.45
268
28.0
57.1
.49
.71
269
32.0
57.3
.56
.68
272
32.6
57.0
.57
.61
TEC 4
646
73.3
63.1
1.16
.58
628
35.4
60.5
.59
.65
661
46.4
63.5
.73
.65
648
43.8
62.7
.70
.68
CHEM
585
75.1
59.3
1.27
.61
572
37.0
57.2
.65
.71
598
48.4
59.2
.82
.71
581
46.2
58.6
.79
.71
w
-------
Table B-3 (Continued)
N
CHESSO MEAN
CHESSO Col. MEAN
Ratio
Corr.
N
TGSO MEAN
TGSO Col. MEAN
Ratio
Corr.
N
TECH MEAN
TECH Col. MEAN
Ratio
Corr.
N
TEC 4 MEAN
TEC4 Col. MEAN
Ratio
Corr.
FRMF
1187
55.4
75.8
.73
.55
653
38.8
80.7
.48
.67
268
56.8
56.8
l.OC
.45
646
63.1
73.3
.86
.5J
TEAF
1161
54.3
37.2
1.45
.56
633
37.7
38.1
.99
.74
268
57.1
28.0
2.0'
.7:
628
60.5
35.4
1.69
.6!
CHRP
1199
55.5
48.2
1.1:
•
.51
653
38.7
47.3
.8:
.8:
269
57.3
32.0
1.7<
.6t
661
63.5
46.4
1.3^
.6!
CHRO
1186
55.0
46.1
1.1<
.5^
639
38.6
46.4
.s:
.7«
272
57.0
32.6
1.7f
.6:
648
62.7
43.8
1.4:
.61
CHESSO
1490
55.4
565
38.6
60.7
.64
.46
265
56.0
35.1
1.59
.25
642
63.6
50.9
1.25
.5*
TGSO
565
60.7
38.6
1.57
.46
686
39.0
192
56.8
28.8
1.96
.51
306
68.2
39.3
1.72
.62
TECH-
265
35.1
56.0
.63
.25
192
28.8
56.8
.51
' .51
328
57.5
228
44.6
59.7
.75
.55
TEC4
642
50.9
63.6
.80
.56
306
39.3
68.2
.58
.62
228
59.7
44.6
1.34
.55
753
64.3
CHEM
581
54.0
60.0
.90
.59
315
37.3
58.3
.64
.68
181
58.7
45.1
1.30
.70
524
65.9
61.0
1.08
.75
w
Ul
-------
Table B-3 (Continued)
N
CHEM MEAN
CHEM col. MEAN
Ratio
Corr.
FRMF
585
59.3
75.1
.79
.61
TEAF
572
57.2
37.0
1.54
•7.1
CHRF
598
59.2
48.4
1.22
.71
CHRO
581
58.6
46.2
1.27
.71
CHESSO
581
60.0
54.0
1.11
.5P
TGSO
315
58.3
37.3
1.56
.68
TECH^
181
45.1
58.7
.77
.70
TEC4
524
61.0
65.9
.93
.75
CHEM
754
60.6
-Unless otherwise indicated, data is from sites = 632, 633, 901, 902, 831, 832, and 841.
2/
— The statistics in this table are shown for descriptive purposes only. Their general
use is not recommended (see Section 5.4).
3/
—Data for TECH from sites 632 and 633 only.
w
i
-------
B-7
Table B-4
Correlations Between Methods - By Site, Before Removing Outliers
Method Site FRMF TEAF CHRP CHRO CHESSO TGSO TECH TEC4 CHEM
FRMF
.
TEAF
CHRP
CHRO
CHESSO
632
633
901
902
831
832
832D
841
632
633
901
902
831
832
.8320
841
632
633
901
902
831
832
832D
841
632
633
901
902
831
832
832D
841
632
633
901
902
831
832
832D
841
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.67
.72
.72
.74
.74
.79
.71
.62
.47
.58
.71
.66
.78
.78
.56
.71
.52
.67
.69
.74
.73
.75
.67
.65
.31
.43
.32
.37
.65
.48
.27
.47
.67
.72
.72
.74
.74
.79
.71
.62
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.67
.73
.79
.83
,85
.87
.77
.68
.68
.77
.77
.84
.81
.88
.89
.66
.44
.46
.35
.49
.71
.46
.38
.49
.47
.58
.71
.66
.78
.78
.56
.71
.67
.73
.79
.83
.85
.87
.77
.68
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.79
.86
.91
.93
.95
.94
.88
.81
.26
.39
.36
.42
.68
.49
.37
.54
.52
.67
.69
.74
.73
.75
.67
.65
.68
.77
.77
.84
.81
.88
.89
.66
.79
.86
.91
.93
.95
.94
.88
.81
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.25
.39
.35
.41
.73
.44
.42
.48
.31
.43
.32
.37
.65
.48
.27
.47
.44
.46
.35
.49
.71
.46
.38
.49
.26
.39
.36
.42
.68
.49
.37
.54
.25
.39
.35
.41
.73
.44
.42
.48
1.0
1.0
1.0
1.0
i:0
1.0
1.0
1.0
.26
.29
.57
.25
.87*
.82
.63
.75
.54
.63
.62
.52
.80*
.85
.88
.68
.63
.66
.68
.62
.54*
.89
.86
.84
.55
.60
.67
.57
.90*
.89
.83
.73
.14
.13
.23
.10
.80
.49
.39
.46
.27
.60
.60
.82
.57
.76
.46
.76
_ —
.14
.34
.22
.43
.63
.61
.33*
.65
.67
.34
.39
.60
.72
.77
.43*
.68
.92
.57
.35
.54
.65
.78
.62*
.61
.83
.64
.36
.52
.73
.75
.75*
.69
.78 '
.64
.20
.17
.48
.35
-.02*
.65
.74
.32
.37
.43
.59
.50
.09*
.69
.62
.34
.64
.71
.82
.73
.46*
.72
.84
.38
.54
.51
.73
.66
.79*
.65
.77
.49
.46
.53
.73
.60
.81*
.70
.74
.44
.32
.32
.43
.45
.40*
.48
.70
.50
-------
B-8
B-4 (Continued)
Method Site FRMF TEAF CHRP CHRO CHESSO TGSO TECH TEC4 CHEM
TGSO 632
633
901
902
831
832
832D
841
TECH 632
633
TEC4 632
633
901
902
831
832
832D
841
CHEM 632
633
901
902
8?l
832
832D
841
.26
.29
.57
.25
.87*
.82
.63
.75
.29
.60
.22
.43
.63
.61
.33*
.65
.67
.34
.37
.43
.59
.50
.09*
.69
.62
.34
.54
.63
.62
.52
.80*
.85
.88
.68
.60
.82
.39
.60
.72
.77
.43*
.68
.92
.57
.64
.71
.82
.73
.46*
.72
.84
.38
.63
.66
.68
.62
.54*
.89
.86
.84
.57
.76
.35
.54
.65
.78
.62*
.61
.83
.64
.54
.51
.73
.66
.79*
.65
.77
.49
.55
.60
.67
.57
.90*
.89
.83
.73
.46
.76
.36
.52
.73
.5
.75*
.69
.78
.64
.46
.53
.73
.60
.81*
.70
.74
.44
.14
.13
.23
.10
.80
.49
.39
.46
.14
.34
.20
.17
.48
.35
-.02*
.65
.744
.32
.32
.38
.43
.45
.40*
.48
.70
.50
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.42
.54
.37
.39
.80*
.76
-.36*
.79
.85
.84
.41
.55
.95*
.39
.88
.85
.28
.42
.54
— i
1.0
1.0
.55
.66
.48
.70
.37
.39
.80*
.76
-.36*
.79
.85
.84
.55
.66
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.70
.50
.79
.58
.89*
.86
.96
.52
.41
.55
.95*
.39
.88
.85
.28
.48
.70
.70
.50
.79
.58
.89*
.86
.96
.52
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
* Fewer than 20 readings
-------
C-l
APPENDIX C. ESTIMATED RELATIONSHIPS BETWEEN METHODS
BY SITE USING ORTHOGONAL REGRESSION
Appendix Table C-l presents the results of using orthogonal regression
to estimate the linear relationships between NO monitoring methods. In
the table are given the parameter estimates A and B of equation (4.4), in
conjunction with recommended ranges over which the linear relationships are
applicable. These estimates are shown for each site and each pair of methods
'(there are 36 pairs of methods in all). The estimates obtained by combining
the data from the seven sites (Site 832D excluded) are also presented. In
Table C-l, X corresponds to method 1 and Y to method 2 in equation (4.4);
hence,
N = number of (paired) observations
Ml = X = mean for first method
M2 = Y = mean for second method
SD1 = standard deviation for first method
SD2 = standard deviation for second method
COR = correlation between X and Y
Y = A + BX is the form of the estimated relationship obtained by
orthogonal regression
PCV1 = the percentage of variability accounted for by the first principal
component (see equation 4.7)
RATIO = M2/M1 = Y/X = ratio of means
(M1LOW,
M1HIGH) = recommended range for method 1 over which the estimated relation-
ship is applicable
(M2LOW,
M2HIGH) = same for method 2.
Section 4.4.c discusses the results given in Table C-l.
-------
C-2
Following Table C-l, Figures C-l through C-36 present graphically the
site regressions shown in Table C-l. The figures only plot regressions
based on more than 30 observations and exclude site 832D. The following
legend applies to each figure:
Site Symbol
632 1
633 2
901 3
902 4
831 5
832 6
841 7
In each figure Meth 1 (also denoted by Yl) is plotted on the horizontal
axis and Meth 2 (also denoted by Y2) is plotted on the vertical axis.
I
Thus in Figure C-l, the CHRP method is on tihe horizontal axis and the CHEM
is on the vertical axis. The units for Yl and Y2 are yg/m . In addition,
I
the regression lines drawn in each figure are only over their recommended
ranges which are given in Table C-l for eac.i method and site (i.e., M1LOW,
M1HIGH and M2LOW, M2HIGH).
All the results given in this appendix were obtained from the daily
data after removing outliers. The results shown in this appendix are for
descriptive purposes only. Their general use is not reconmended (see
— — — —^ ,---• — , _...
Section 5.4).
-------
ORTHOGONAL REGRESSION
Table C-l
fF NC2 PCMTCRIKG
SITE
Overall
t32
t33
631
632
638 0
t)01
901 " ~
902
•
SITE
Oyprall
633 ._;___,
632
632 0
sri
. SITE /"
Overall
632
63)
SITE
Overall
632
633
£31
632
632 0
601
901
90£
N
663
Ibl
170
12
ll«
"~ 61
uu
81
-
""
N
1326
219
225
19
185
131
175
226
237
.11. N
£66
132
136
- -
N
6S5
160
158
17
63
60
27
60
Ml
17.2
36.9"
35,7
56.6
" 59^6
-.7.3,5
Jb.3
M
19.0
30.7
33.6
53.0
66.6
76.6
57.9
00, *2
.:.::>»
32. C
31.0
32.9
hi
46.4
30.0
33,7
53. S
66.7
63.3
61. 0
76,9
37,2
H2
""."56.*"
36.6
59,6
62,1
103,0
90,3
77,6
"8,2
07.0
30.5
32. 'd
51.8 "
6S.1
73.0
57.0
55.0
. .".12,2 '.
:.:" ^ -;
Sb.e
52. a
60. e
-
M2
US. *9
01 .0
fll.7
96.0
91.6
69.9
62.9
07,9
SOI
20,7
.JA..2
H.9
21.9
3P.9
3^,5
23,1
..20,1
ir,9
SOI
...25..6_
16.?
15.7
33.0
35.5
25.9
20.9
19,6
;;-Dt:i
I3.'l
._ . - _
3D1
2«,9
15.2
16.0
15.3
26.1
30.3
22.6
13.7
S02
35.2
"2.0.5
20.9
^ 5
63. •;
36.1
.23.1.
17,1
SPZ
15.5
32.*
32.1
. IS. 3
:-•»*:
28.8
20.0
- - — --
SD2
^39.6
22.2
20.2
26.6
Si. 3
52. i
39.6
30.1
15.2
COR
.7??
.572
.507
'.65*
.665
.
CCS
,C27
._. «e56
l!"
.. .915
— cbC
!s6fi
.603
,_,
CCF
"".715
".087
!?5C
.60S
- '717
.779 '
A
•19.0056
-13.1300
•3P.i*30
•10.7206
•2P.7750
"35!cc75
P. 3 196
•2?. 0271
METKlsChRF
A
1.23652
1 .0£3(i2
I. '15*91
t. 61315
-2.99626
2 ! 3 3 i1 1' 6
."" '3!5J67U
A"
-2l'*696
• - ••
A
- ^0.7639.
-10.4177
-05.6*19
•39. JUS
5.1690
B
U6C937"
'1.19653
1.86706
1.26610
1.6> 65i
2!lCi!26
0. 9020Q
1.93c2l
METHcsChPC
e
.931-970 •
_ .96<,-be<5
;?""!
* ]f 7139£ _
-:-:;::_ Br
2.5E627
2.6S399
2.50701
- - - -
B
" 2!07173 "
1.52270
2.2.'06fc
2JH/56
1.1-1968
PCVl
"fij.2
60,1
79,0
fe9.7
65.1
92.0
66,6
66.0
66,6
t-CVl
92, P
96.9
92^7
ll:l.-
.Kvr.
91,6
P6.3
90,5
FCV1
ee.B
79.0
7r. 2
67^1
93,1
90'.0
63.0
61.1
.£06
.10]
.020
.017
l!509
1 .056
\.Zit
f-ATJC
.99U
fQ77
:
-------
—
SITE
, 633
b3i
632
632 "D
.: 6«1
,! 901
,j 902
'f - - --"
t:
SUE
>i Overall
,r ~ 632 •• ~ — •
631
632
- b32 D
nj" " 601 •" • —
,1 """ 901
:i! 9 0 i
J - ' "
.•I SITE
" Oyprall
B632
633 ' " ~ ~~~
831
,J 832
632 D
j 841
901
902 ___~___~
"
n
;1 111*
N hi
650 07.0
108 33.6
109 30, fi
11 eO ,u
98 70.2
75 86,0
88 i>?,0
122 51.1
:i« 00.3
. . —
N M
210 30)3
203 33.1
53 56.0
186 65.2
Ul bl.O
ISO 56.5
191 i8.9
187 oo.u
'
_- . .
N M
650 00,5
164 36.8
17J 30,1
12 50.3
102 61.1
57 75,3
76 59.4
01 63.7
82 36.0
N "" Pi
270 32.0
130 32.2
136 32.6
M2
38.9
27.9
29.6
66. t.
" 57.6
60 . e
3U2
K2
55,1.
30.2
3«,2
54.3
77.2
87,1
65,8
70.3
*
50.0
36J9
60.1
81. 1
92!7
79.6
48.5
:: «~
56.7
52.6
60.6
SOI
25.0
13 '.9
18. /I
' 38.0
to. 3
20.9
15.9
12.1
SD1
25. t
15.0
15,3
28.1
31.1
36.3
20,3
20.8
20.7
SU1
2?. 8
15,3
10.0
20.2
30,6
22J7
22.4
.11.0
301
10,0
13.9
10.2
SEJfc
20.7
10.7
tT.S
32.7
" 30.6 '
31.3
29.6
_. . -.
SD2
_ 33.* 3
19.0
17.6
28.9
"3.1
32.*2
.25,8
30. *
"
508
30.5
20.2
20.9
26.8
6o!2
36.0
23. i
17.0 _
•I'.."-..
28.7
20. 1
32.2
CCF
.805
.631
~f?3~r~
.PB9
,F71
„*•&!
.615
TCB
;"?"
.010
'.-•at-
.597
.see
.ujii
- --
COR
..737
.705
.748
;?96
COP "
.676
.520
.606
Table C-l (C<
HETWleCHBF
A
•7.6510
-6.1591
•JO. 5003
-9I.C179
•0.5336
*•,!)<; 26
'.H',1111
-
Pfc'TM tCt-RF
A
-3o!i;572
•J2.5019
-3.9755
•37.S050
. -20.4197
•29, sfci l
•US. 7000
HET'-lsChRC
A
•21,0306
• i!0.9b06
•15.5*67
-67.3659
-35.7700
12, = *ll On
5.4
10. a
n!?
" "9.0
2!.0
je!?
11. C
13.9
e.;
M.H1GV
95.1
to.}
1 7 2 '. e
77i5
t 1.2
69,2
53. t
56.1
107.3
113.6
119.5
95.0
67.3
70. i
KlUGf
5 3, *9
91 .0
113. J
1J9.7
94.3
ic5,e
? 3 . o
,1,ZG,
53.7
50.4
57.0
fe'.C*
0.0
1.0
0.0
0,0
0.0
0.0
0.0
5 .8
H. 2 \_ C V<
0.0
0.0
1.7
0.8
0.0
0.0
0. 1
21 .9
0.0
0.0
3.8
0.0
7,7
0.0
0.0
17.2
3^.7
15.5
M2LC*
0.0
5.1
0 0
rtHlGK
63.0
133.2
116.2
let .a
1&3-'
119.1
70, C
JO?' '
leo *
177.5
U7.fc
116,*
110.1 n
.......
120.1
fcO.9
77. 5
112,6
163.6
16* 3
U2.2
61,6 '_
K2h!0
113.7
1G0.2
1 £0.6
-------
Table C-l (Continued)
SITE N
Overall
632
fc33
631
632
652 0
841
901
902
SITE
Overall
632
631
632
632 0
641
901
SITE"
Overall
632
633
631
632
632 D "
641
901
902
..
170
160
10
lie
60
75
26
76
N
633
111
"109
a
91
69
61
120
:-•: "
1169
216
206
51
166
113
152
193
185
- • -
n
"43.9
34.3
32. e
75.1
60.3
65,9
36.0
46.6
35.0
35.4
54. (J
71.4
60.7
53.7
49.5
J9.0
: - >i -
"6.3
34.5
32.0
51.5
62.1
71.1
56.6
55.1
42.6
-
— -
61.7
46.2
40.9
81.1
97, e
67,4
93.9
64,2
46.2
M2
36.7
27.2
29,5
69.2
56,0
64. <4
«7.2
41.7
J1.8
M2
54. fc
34)2
54.4'
76.1
65.5
65.3
70.4
56. «
SD1
."1.22.8
1«.7
13.6
.26.0
32.2
21.7
22.0
12.5
SD1
24,0
13J6
"22.1
37.2
41.2
25, 4.6
17.5
34 ;o
30. fc
33.2
30,6
22.6
~"~ 802
32.5
16.8
17.6
29.0
40.3
"7.3
32.0
26.0
31.6
- -
CCP
V.~.7S2~
.52?
.686
.7V/
.74?
.72:
.74
-------
Table C-l (Continued)
SlTt
Overall
632
£33
€31
6J2
£32 0
841
901
902
SITE
Overall
632
633 _____
632
632 0
601
SCI
902
N
155
174
10
102
~ 79 "
Bl
N
1337
211
227
50
191
131
23T
_"7
H
72.1
60.0
56,1
70,8
111.2
110.7
79.1
92,1
6?. 3
Mi
76.6
'$6.5
53. e
73,0
113.8
77,' 6
9C'.0
73,3
H2
5b.t
42.1 ~
36.5
60,2
66. C
104.4
• ee.2
77.0
46.5
.
M2
49.0
3U.5
33.6
56,9
68.9
78.5
56.4
57,9
U4,5
301
36, e"
26.4
25.7
31.6
51. «
05. C
?9.2
2fc,3
16.1
SOI
39.3
25. 6
27.0
39.4
50.2
B4. 6
27.9
29.6
9C2
35.0 "
2C.6
20,0
25.2
34 !l
ib.9
_
-
25.6
IS. 8
26.6
33.0
2s!e
20.0
ecu
.687
.512
.028
!705
.623
i7»2
CCfi
.773
.620
.577
.776
.775
.723
.656
KtTMjrFBMF ME
4
-10,400
3,110
04.192
-9.561
-103.371
-11.903
-'..701
-b.775
HETHl=FHMF ^E
t
4.5189
7.5774
M.SP &«."__
2.'S216
u!ei7«
B
O'.ViOu
oje59is
1 . 6 1 1 1 U
1 .'? V06H
0.67155
TH;=CH«F
B
,560819
.477152
.UC8652
,6646b6
1710723
!sii272
FCV1
77J7
73.7
42,0
fi« .2
60.9
66.8
75.0
FCVt
90.7
6S.7
9o!o
91.4
63.2
66. a
67.7
86 ,0
RATtC
O.VB6
C.t97
0.651
0.651
0.773
1 .' 1 1 5
0.636
0.775
FU1IC
.600
.611
,62U
.779
.605
.715
.727
,644
.606
MILCH
10J3
7.7
£.2
14.3
02J2
30.0
0.0
6.2
O.E
0.0
6.e
?o.e
11.4
35.7
15.1
MUCH
IOC, 3
11C. 4
100.U
131,2
' let.' 6
142,0
9f.6
151,6
!0t .6
107.0
109.9
2eC,6
|94.fc
M3.7
1*0,2
131.0
H2LOK
0.0
7.7
U7.8
2.7
0.0
2o.o
34.3
2C.U
M2LCW
10.5
11.6
5.7
11.6
16.1
1C. 5
islo
f2M!RH
73!3
65.4
72.'o
232,?
152.1
7 ,
93.9
56.5
ice!
I3e!9
lfte.3 o
93.3 ~^
76.1
j
•"c
r
*
3
14.
i;
•9
.31
— I
T4
•rr
FP,P HETH-CHRO- '
SITE .;
Overall
632
633
631
632
fc3
-------
Table C-l (Continued)
SITE
ar»
633
632
-•i 632 0
J 6(11
J 901
- 902
.
I
»•
| SHE
i
OveralJ
632
633
1
1
1 " "SITE ""
Overall
t32
633
631
632
632 D
641
902
_. ..
sm
Overall
632
632
£32 D
901
SOe
N
1290
214
227
46
115
166
239
235
N
265
128
_ 137
N
637
161
162
. 17 _
114
56
«b
itS
78
•" ~~
N
648
105
110
9
94
72
121
117
HI
56*. 5
53.2
70.7
112.5
109,5
76.7
69.5
73.0
56,0
55,2
56.7
-7_--r;
72.6
56.6
53.9
_ T5.3
114.2
111.3
63.3
98.5
62.9
HI
60.7
61.1
62|5
131.1
122,5
76,0
66.0
71,2
M2
36.1
26,1
25.2
55.6
M.I
U5.5
43,0
35.9
M2
56,3
52.1
60.2
7- H27
61.9
05.6
40.6
62.2
101.8
93.9
69.4
62.2
46.0
-_
MS
39.0
27.
2",
66, >
64.
45,7
41,4
31.7
SD1
38,2
25.6
26.6
37.5
55. J
42.5
33.8
29.7
501
?*•!
23,1
,28. fa
. SPl.
36,7
25,6
J.7,5
4e!i
46.0
32,4
27.4
- -
SD1
41.2
25,6
32^0
59, fl
3e!«
£5,0
23, fl
3C2
. 20,7
12.7
21.0
-.0.5
14.6
14,9
£02
26.6
24.5
. 31.5
~". SD2
40.0
21.5
20.2
26.6
54.7
54.6
37.3
30.6
15.2
SOS
25.0'
15.1
17.4
32.6
31,5
26.9
29,9
.22,7
14.0
CCR
,609
.716
.745
.80!
.722
,766
725
.7. :
COR
.549
."It
.(•30
.T7ccR
.713
|431
.331
..661
.674
,6U7
|611
CO"
7.»*8'
!fi67
.661
,759
,574
,251
A
2.0036
2.1980
5.1737
M.69U
-11 .9754
5.6062
«,M.FRNP
4
-9.9158
•11.5001
-5.6535
KETHJ jfPMF
-14.1319
6.0366
" -36 .'609 7
-50.025C
•5o!l2l2
4,6611
-
MET*! ePpMF
A
•1.1 686
7.7065
12.9J87
•lfl.0506
•2.2613
6.6262
-10.7443
-31.4123
16.5456
B PCV1
,476652 93.5
.456735 93,0
.376536 92,1
.072047 91.1
.077192 03.2
.695212 67,2
.6C2916 51,1
,40l9b6 90.9
.014720 92.2
B PCV1
V. 16309 77.7
1.15204 . 71,0
1.16576 . 61,7 .
- ."".-"._" B .."_ PC VI
1.C4755 6i,7
0.69283 70.8
0.50789 75.5
,P398* 49.3
,21172 6J.4
,29338 60.3
,20276 . 62.8
.14052 91.7
0.66584 61,9
8 PCVt
0.49813 66.3
0,32920 60,1"
0.26273 7ft. 2
1.0cb3(| 93,4
a.u57t4 ee.o
0.71976 66,8
O.e«956 79.0
O.SlelO 76.6
RATIC
.505
.496
!fc^c
. 094
.see
.578
,461
.092
RATiC
1 ,006
0,900
1.062
RATIC
0,653
o.eot
0,753
1.092
0,391
0.040
I.C73
O.t32
0.763
P«T
.464
.456
.471
.306
.455
|S63
,462
,006
0.0
5.6
0.0
0.0
3.?
34*6
14.0
H1LUK
18.3
6.6
1.4
K2
46.0
c9.5
31.0
27.0
46.7
26.3
. 0.0
10.*.
5.6
20. 7
13.1
£4.1
4.0
(J 0 • £
2J.9
f ! HlGJ-
lbl.2
107,3
106.5
221.7
191. t
145.2
144.1
131.9
" IHiGh
100. 0
icfc.e
,,«GH
! 43.7
100.3
lOt ,7
lOe.3
19B.9
191.6
139,6
15C.3
• 99.4
U1.6
n 1.6
£21. C
152.9
131.6
1 (6.6
1.7
4 6
5.2
K.2
11 o
7.0
5.4
16.9
11.4
h2uc*
9.2
1.8
•ILC*
0.0
It. 9
13.6
32.1
0.0
On
IS. 5
3.1
22. ">
M2LCh 1
0.0
11.2
14, b
3.2
19.6
0.0
f ,6
M.5
^;u rr y
Tu.u
6 1 4
- I . •
'45.3
60,3
1 C 7
1 * '
.*o
* 7 2
60.3
.
ioe .
ne!o
I
M2HIP.M " ._"!_
136.4
76.7
67.4
132.3
£04.4 j
197.8 " " !
159.4 ;
121.3
73.1
•
79.0
44,5 '
40.0 L
13«,1 L
115.3 !•
109.7 t
99.3 |.
fc C . 3 '
02.0
-------
Table C-l (Continued)
SITE
Overall
6 $2
t33
' 631
632
£32 D
841
901
902
SITE
Overall
632
631
63c
632 0
901
902 "
SITE ~
Overall
632
633
631
632 ~D~~
841
901
902
N
£08
207
52
171
111
" 152
" 190
166
-
N
635
162
170
14
vo
. 48
76
142
81
- ' "-•
75.6
55.7
52.7
1 le\8
1 le.3
78.3
90.1
73.6
35,9
29,8
26,0
OU ,f
bl'.t
lib. 9
32!?
" H
1310 36.1
217 28.4
523 25.5
50
" 123
171
236
45,9
54.2
64.1
45.4
*3.l
35.4
M2
54.9"
34.2
33.9
56.7
76. f.
66. 3
fct.O
69.5
56.6
55.0
36i&
60.2
77.4
101. b
90.9
~7s;e —
U8.7
H2::
34J7
33.7
53.2
67.2 '
78.8
57.7
57.9
44.1
5D1 ?D2 CCR
39.5 33.
25^4 18,
27.0 17.
3B.4 27.
S3.B 4ii.
43.5 47.
33.7 35.
28.4 3.
30.5 31,
SOI 3C2
14.1 20.3
12.3 20. 6
2C.7 25.2
?5.5 42.5
3<-,2 t5,7
CO. 4 36.9
14.3 21.6
9.7 16 .'9
..SD1~ SD2
20.6 25.0
13.8 15.7
12.9 15.6
20.8 25.0
29.2 32.9
33.7 " 37.5
22.4 25.9
14,9 19,7
14,6 19.6
5 .594 "
6 .406
4 ,5.7
182.!)
148.6
US. 9
122."
1C »
i
^ e H I C K
121.3
81.8
77. e
1 07.
lol.i
?32.2
Ie7.9
i ie.3
62.1
,2HICH
"7.2
64.5
63.6
102.0
131,6
152.5
107.2
96,4
62.9
-. v. ;'
;•
_ !"
*
V
i.
1^
a:
*
1
bi
•-- - -i;
i
I44
45
h
-------
Table C-l (Continued)
SITE
Overall
632
631
til
fc 3 2 D
g y i
901
902
SHE
Overall
632
633
:. : >m /: ;
Overall
632
633
631
832
832 D
901
902
BITE
Overall
"" " 632
633
631
832
832 0
901
902
M
224.
155
12M
163
£37
236
H
266
._ l"
• ~. r
619
164
161
17
102
49
71
25
79
K
"623
"UO
• no
9
80
72
80
120
112
H
37.9
28,4
25.4
"2.8
54.6
64.2
"6.3
43,4
35.5
"
2«,7"~
27.5
:::«:
35.6
28.7
26.1
47,1
50,6
M.3
47.9
51,5
31.5
M
3o!a
««.T
*t.S
61.3
72.6"
«3,3
38.5'
34.0
M2
46,4
34.3
32.4
46,0
64.9
73.4
58.1
54,3
42,3
H2
56.8
52.7
60.9
58.fi
46, 1
40,6
79,3
91.7
91.7
86,6
61.2
47,9
H2
37.8
27.3
29.3
60.3
57.5
64.3
44,1
41.4
"31,7
3Di
20.5
13.7
12.9
20.0
2*. 5
33.6
22.7
14,9
14.8
SOI
13.6
.. I3'a
_I SD1
13*. 7
13.3
15. f
32!&
ia.i
15.4
11.2
-
SD1
_ 21.5
1"!6
39.3
" £3.2
12.7
11.7
SD2
23.2 ..
15.5
14.6
21.7
3? '.
2«!fc
17.3
17.5
S02
2B.B
2U.1
32 .'3
.302
3S.*
22.4
20.2
26,8
46,0
57.1
36.3
26.8
15.3
—
SD2
!!:!•-
17.5
30.2
10.2
12.8
22!7
(4,4
COR
.ese
.729
,773
J690
,900
,64a
,729
.586
.665
1 COP
.757
.589
.59?
,£84
.716
\iza
.772
CC9
.762
.557
.633
.802
.852
.897
.eie
.621
.5£2
KETMisTEAF
A
_ o!_5903
2.6763
0.5638
ft!?176
• .5-.09
HETKlrTEAF
A
•17.2975
•19.63*7
^EThlsTEAF
•19.S612
•17.2175
-1 0.6562
•S.eiJe
0^6545
A
1 . -5.5566
•13.5163
•51.3196
•7]9250
-50.4095
•16.5136
&
1.15771
1.16843
l!l064b
1.1C«38
l!lC95o
1.21207
1.21501
Mt-TH2 = T£C,
i
2.61863
2 5 ^ ^ 1 7
u c T H 2*4 TFP^^
'.'. 9
U94771
j!3C8t)0 .
2!276I5
M E T H e. ="T C 13 0
B
- uJliJJ "
2i3986o
0.64600
l|2tl64
1.4T7S?
PCV1
93.0
86,7
66, 8
90,5
91.6
S5.0
ee!9
9£,U
PC'. 1
92.4
86.3
96, *»
PCVI-
91.9
ej!s
90 .e
S7.2
90. '
90.1
£•5.8
an. 2
77. <»
er;i"
94.2
92.8
95. S
91.1
67.2
7 7. '5
B4T1C
.221
.209
.277
.132
,iee
1.U3
1.255
1.251
1.191
BATIC
2,023
1,837
J.213
RATIC
1.652
I.ft08
1,550
U812
l.PSl
i.iee
1.521
RATIC
0,«>87
0,899
1,017
1.296
0.938
0,81:5
1,018
1,077
0,931
MlLCJk Y
0.0
3.6
1.5
5.2
0.0
0.0
3.9
H.O
7.5
f UO1*
9.8
HILO.
fc.e
17.7
11.1
1.7
ll'.5
-
0.0
0,5
6.1
21.5
0.0
0.0
0.0
19.7
i*.e
MUCH
77.0
53.2
n o 3
eo.4
111.7
IJ9.B
68.7
70. 6
(3,5
49.8
47.5
52.3
,1,IG,
t7.e
76. ti
90.2
Ict.E
74.7
76. t
78.1
56.2
5i ,3
71.6
it',7
57.2
••2. 3
•"2LC* f
1.2
4.8
4,5
c'.Z
11. t
11.0
21.1
e.i
0.0
£.0
0.0
HB.C,
0.0
2.0
1.2.
1.5
0.0
\c ,6
1.1
16.0
0.0
0.9
0.0
C.?.
0.1
1 .1
0.0
0.0
1 ,1
.^ ;;
91.6
6J.8
60.0
6«.7
liT 1
nc ;•>
le,;i --^
76,4 .>
"1
" ;,.
- ? h I G ^ '*'
n
lid i?r
100,: bj
125.5 . ..^j
129.0 J
90.3 ':r
6 C . 1 .1.
I32«'- . , M
2Ci5'.3 S3
i e a . 7 :;I|
lie. 2 j*
77.6 I
•- 1
K2H1GH C
'«
62.6 L,
55.7 •' jl
6 2 . fi U
12C.5 L
1 1 S . 0 !»
127,6 L:
96.2 L
86.3 I
S3, 7 <,
-------
Table C-l (Continued)
SITE
Overall
632
633
£31
632
(32 D
" 641
901
902
SHE
Overall
632
~ 633 ~1'_
SITE" ..7
Overall
632
633
SITE
Overall
632 "" ~"
633
631
632
£32 0
*!01
10€
N
212
205
50
154
110
" 1U2
192
166
K
222
__ 108
7 N
227
113
N
545 '
126 ~
1-32
107
54
60
* 28
60
37,4
27.9
24,6
44,4
52.7
64,1
••5,5
43.2
35.3
fl
56.0
49.3
62.4
sale
63.6
- -
Ml
\63.5
— 36 !r
6t.r
100.7
96. S'
92.5
63. a
<"9.5
H2
53.8
34.5
33.6
50.2
73.9
86.7
. 65.7
69.8
56.6
44.3
43,7
44.8
M2 "_'
44.6
48.2
40.9
-
H2
59.9-
" 4 0 . 2
39.5
46.4
63.6
" 109.6 .
95.3
83.7
SOI
20.4
13.0
12.5
21.4
28,2
32,3
isio
15.5
SCJ
30.4
24.2
SOI
30,6
26,4
73,8
- *
SD1
39.3
23. u
17.7
33.0
4t>,a
36'.4
29,6
~i4",r
802
ia!e '.
17.3
26.4
3?'? '.
e. 7
31.6
8D2
22,2
19.0
2«.<» 7_.
: -2;.; ;
21.3
22,7
19. i
-_
3C2
"3ft, 7"-"
"17.1
23.6
23.6
41.9
65,3
36. S
25.3
16.7
COR
613
u, 8
10, =
14.0
14. I
27.5
16.9
MLCH
0.0
3.6
0.0
MLCW
0.0
5.7
0.0
M1LO
0.0
1.0
12. S
1.0
10.1
0.0
. 24.6
5.9
24.9
66. (I
45.7
uc.7
S2.0
114.1
7fc,9
••a.
-------
Table C-l (Continued)
SITE
Overall -
633
832
632 D
s°l
sue
Overall
o32
_ *33 _
SITE
Overall
t32
633
£31
632 D ".
901
902
. , . . . — -_ ., -
SITE
Overall
e32
633
611
632 D
901
902
N
351
112
106
53
£2
27
44
191
95
96
"302 ""
79
SI
6
59
19
32
8
37
N
645
16
lib
52
75
30
60
PI
35.7
27.2
30.0
53.6
5?,C
43.)
37.7
M
i8.fr
27,0
JO. 7
HI
39.5
3U5
C5.2
66^5
55.2
ti it ?
37>
n
52,3
37.2
36.6
5". 3
76.0
63.0
69.2
61,7
*I9.J '
M2
56,8
95 |l
95.2
62. b
K2
56, t
62,2
M2
65.9
U8.8
39.1
66.0
122, V
137.9
87.2
Ul'.lt
H2
57,7
37!7
65.1
ioo!o
92.5
79,9
SOI
2u'5 '
17.6
29,6
29,6
12^3
16,7
sot
16.3
14.1
16.2 _
-- 5D1 -
15.1
16.9
23.4
27.9
29.3
35.2
12.6
17,7
SOI
33,5
21.2
19.1
19,7
46.2
U7.0
31.6
c3.7
23,9
S02
35.6"..
7«J9
-,.'7
17^0
$21'
29,6
23.0
3a,2
; SD2_--
23.4
17.3
6l!l
4!. 3
23.6
13.5
-
802
J7.3
19,1
22_.6
56,0
4«.6
65.5
36.9 _
.»T!S
COP
. .730
.551
,P78
.755
J3vo'
CO"
,538
i«25
,5415
.723
.631
.369
,721
|757
H
CCO-
..596
" !ao2
!(J76
.69*
.491
,033
HETHlsTCSC
A
-7.S2UO
•7.1733
.2.C785
• 31 .•• JUS
22.1720
•10.7615
I9.o«ai
A
•22.6463
•24,6462
-20.0020
A
-21, €027
I«!fl231
2.317*1
•10.0C91
•11.6070
20.0615
•32.9606
22.8418
•
A
•4.707
13,740
•17.653
ii!m
•10.620
-6.9*ib
21 .522
B
l.ecoei
2.36U2J
1.6?22l
1.54083
1.1C511
HETHcoTECH
B
2.73112
2.76JU
2.6E206 _.
_ .._ 9 .
"2,2210!
1.95987
C. 79629
0.98161
U26107
2.16b06
0.7C069
,--
9 ..
1.1948!
0.73925
1.5C422
6.41345
U55673
i!oe«09
0.51«57
PCV1
69.1
76.3
79.7
94.6
97.5
ee.6
98.6
7C.2
FCV1
79.6
67,0
FCV1.
90.7
65,0
69,9
et.J
90.1
96.6
95.1
93,3
86.8
-
FCV1
eo.i
67.6
71.5
90.9
73.8
86.7
76,0
71.7
76,2
"4TIC
1.590
1,651
1.363
1,765
1.S32
1.915
1,293
S4TK
l',650
2.030
RATIO
1.666
1,732
1.202
l.no"?
2.273
2.070
I.h38
1.123
1,304
RATIC
,105
.109
.024
.434
J205
.337
0,979
0,952
0.0
9.3
2.T
0.0
7.7
0.1
19.1
a. a
MUOU N
7.3
10. fc
5. a
0.0
0.0
12)3
0.0
22."
3.6
«llOh ' "
0.0
0.0
9.0
o.'o
3.3
"20. «
42.6
i.Z
I«-I:K
73. e
45.1
57.2
1C9.5
If 1.0
7l!fl
h
50. U
03, U
55,9
fO.6
51.6
<-5 .0
126.8
1C1 ,6
120.7
120.8
66.0 '
72,2
109.6
74,9
64.5
76.8
It2.6
117.9
120.7
M2UC*
0.0
2,5
0.0
9. a
0 0
3UO
22.5
I-2UCH
0.0
0.0
0.0
3,0
le.M
43.3
5.4
16.1
1.9
15.7
25.3
,2LCK
0.0
13.4
0.0
0.0
10.0
0.0
19.7
37.4
23.2
t£5.o
67,3
65.6
U0.7
268.7
1*8. "
! 3'
*• -.0
K2hl
1 1 t . 9
95,2
liO.I
157.2
9U.7
2"C.4
259.7
1 7J.U
110.2
71.5
V2,IGH
126.5
60.1
79.4
197.0
150.9
227,?
165.3
122.0
70.5
I '
J
•1
11
"l*
' 6
i"
1
7?
- -E
^
i '?*
^ C7f
rt
-- -S
Q
A
L
j
,44
«s
----- e
fi
- - p
d
-------
Table C-l (Continued)
. SITE
Overall
" "" I1 3 2
633
. -- - -
SITE
Overall
632
633
" 631
£32
«32 D
901
""_ 902 '_ ~_
: "."SIT E.I :;:~
Overall
632
t33
631
*32 D
tU
901
902
"261
""136
I'd
•--
N
635
170
"160
19
53
72
20
71
--•>
SSb
101
11
66
66
96
66
M
"~35.0
"- 33.9
36.?
hi
51.1
3«.5
SB.*
•bu.e
76.7
S2.6
7C.O
69.7
M
60.1
37.5
J9.il
54.fi
" 9 2 ,3
as, 7
67l9
99,2
91.3
93.0
67.T
as.u
M2
J"57T
26,6
27. b
66Y6"
Sb.fl
61.9
«5.2
U2.«
32.7
SD1
" " 1 9". 6
I9.it
19.8
-
SD1
3«.7
20,0
16.7
2S.1
«5*, U
31.2
23.1
.; 2*-. 2
"""SCI
20)2
20.2
— Z67«
51.3
52.1
30.-5
ZS.l
31.6
SC2
?9. i"~ ;
2«. e "".
32.7 ,
. . -.. ..
- • -
SD2
39.7
21. e
19,5
27.7
TB'I '
.. is> . ;
SC2"
1«!2 !
" 3o!« !
~ 2B.9 " ,
25.6
23,3
15.2 ,
CCfl
152
aoc
--
6U4
264
208"
709
655
739
356
?sl
CCR
096
US
79!
52C
212
^EThl»C^ESJC
A
'-"i"""'2J5J--
-«7.l«51
HETHltChESJO
A
-0.723
2.138
U.30b
7.628
«13,386
•116. i99
•
-~ - 4 —
10.6553
17.7C11
•2.9675
\; 18.5637 _
•1.7S3U
HET»-2»TECK
e
nsssi"
2.5^57
^ETh2aTEC4
S
J..23?.63
I22617";"
.1*107
.2te5o
1.71055
2.04635
f2 = TG80
3
o!2£oe
»..-, n ^
— — • F|
71.6
36. U :„
«2.9 y
132.1 J
96,8 " "U
102.7 " L
*5.3 U
7fl.7 Q
36.3 b.
- Mote if M1LOH or 112LOW was negative It was set at 0
n
-------
?oo.
yg/m"
Figure C-l
METMl»CHRr
PLOT CF Y2 VS Yl
160,
120.
V2
80.
40.
0.0
•6.00000000
18.00COOOOO
02.00000COO
66.00000000
40.00000COO
li«.00000000
-------
ISO.
105,
60.
S5,
30.
5.
Figure C-2
H E T HI • e h R> Te T K'Z • c H RC"
PICT Cf V2 VS Yl
8. 00000000
32.0000COOO
96.00000000
80.00000000
lou.oooeoooe
ije.onooocoe
-------
125.
100,
75.
V2
50.
25.
0.0
Figure C-3
Pr PEU2«
PLOT Cf Y2 V9 Vt
•3.00000000
9.00000000
21.00000COO ' 33.00000000
05.00000COO
57.00000000
-------
200.
160,
120.
V2
• 0.
Figure C-4
>"E TH 2* TEC'
PLCT. CF YZ y.3 YJ._ _
0.0
5.QOOPOOOO
25.00000100 OS.OflOOOCOO 65.00000000 «5.00000000 105.00000600
-------
Figure C-5
PLOT -CF Y2 V3 YJ
117.
67,
17.
-e.
3.00000000 31.00000(100 59.00000000
67.00000000 115.00000000 103.00000000
-------
zoo.
Figure C-6
PPTH1«CNRF CETH2»
PLOT Cr Y2 VS VI
160.
120.
V2
60.
0.0
9.00000000
39.00000000
89.00000COO
69.00000000
89.00000000
109.00000006
-------
zoo,
1*0,
1ZD.
vz
80,
Figure C-7
CHRO >efH
.PLOT CF Ya.V3.Yl
0,0
VO
9.00000000 29.00000000
09.00000COO
69.00000000 09.00000000 109.00000000
-------
_ _ Figure C-8
' N~ETNl»eHRC >
»ZS.
-Cf JUL.V.8._U
100.
ts.
so.
0.0
7,50000000
17.50000000
27.50000000
37.50000000
07.50000000
57.50000000
-------
Figure C-9
MET hT» c M»O P ri>iirr>c«
..P.LOT. CF..VZ VS..Y.I
202. . *
122.
V2
82.
2.
?
NJ
5.00000000
2S.OOOOOPOO
os.oooooeoo
65.00000000
es.oooooeoo
105.00000000
-------
Figure C-10
"NETH i ie'iiiic
PLOT cr vz va YI
11'.
IT,
•6.
to
ro
3.00000000 31.00000000 59.00000000 87,00000000 115.00000000 143.00000000
-------
Figure C-ll
200.
120.
V2
ao.
40,
0.0
PLOT.CF va va
M
co
6.00000000
26.00000000
46.00000COO •
66.00000000
B6.000000CC
lofe.onoooooo
-------
Figure C-12
200.
PLCT..CF Y2 VS .Yl
1*0,
1ZO.
Y2
80,
40.
0.0
0.0
ao.ooonnooo
io.oooooeoo
120.00000000
ito.ooooocco
200.00000000
-------
Figure C-13
130.
tos.
eo,
55.
30.
5.
PLCT CF VZ V3.Y1
Ul
11.00000000
St.00000000
91.00000000
131.00000000
m.oocooooo
211.00000000
-------
Figure C-14
PLCT cr tz
no.
10%.
BO.
55,
o
ro
5.
U.ooonoooo
52.00000000
42.00000COO
132.00000000
172.00000COO
212.00000000
-------
no. . *
60.
Y2
35.
Figure C-15
p~ET>2«TE AF
PlOt CF YZ. \9..1l .
10.
to
•IS.
U.00000000
52.00000600
92.00000000
132.00000000
172.00000000
212.00000000
-------
Figure C-16
_ PJ.CT cp. V2 va vi.
120.
70,
V2
20.
to
oo
5.00000000
25.00000000
as.ooooocoo
65.00000000
es.oooooooo
105.00000000
-------
Figure C-17
PLOT Cf YZ VS Yl.
205.
165.
125.
Yi
10
\o
11.00000000
07.00000000
83.00000000
119.00000000
155.000COOOO
191.00000000
-------
Figure C-18
rSHT'KE T>
PLOT..CF V2 VS._Y1
120.
95,
70.
as,
20.
•5.
-J2.56000000
37.50000000
07.50000COO
137.50090000
187.SOOOOCOC
237.50000000
-------
ISO.
120.
bO.
30.
C-19
HE H t • F PM. ETH 2 • CH p s so"
... . P.LQT CF. vz.va.Yi
o.o
10.00000000
50.00000000
40.00000COO .
130.00000000
170.00000000
210.00000000
-------
Flgure C-20
ZOO.
1*0.
120.
Y2
eo.
o.o
-5.07000000. is.oooooooe 35.00000000
55.00000000
75.00,000000 .
45.00000000
-------
PLOT. CF V2 VS.. Yl
MO,
80.
vz
50.
20,
•10.
6.00000000
26.00000000
06.00000000
66.00000000
86.00000000
106.00000000
-------
Figure C-22
PLOT cr Y2 V9._.Y1_ ______
130.
105.
55.
30.
5.
7.00000000
27.00000000
«7.'ooQooeoo
67.00000000
17.00000000
107.00000000
-------
126.
101.
76.
Y2
51.
26.
1.
Figure C-23
~KE THI •TE *F"~
P.LO.T CF Y2..V.S Ifl
0.50000000
10.50000000
20.50000COO
30.50000000
U0.5000CCOC
-------
Figure C-24
200.
.PlO.T.CF..y2_.Vl.Yl _..
.160,
120.
V2
80.
0.0
u>
7.30000000
23.00000000
34.00000000
SS.OOOOQOOO
71.0000000C
.oooooooo
-------
uo.
TO.
Y2
20,
•5.
Figure C-25
~«TE*F PETK
PLOT CF Y^ V3 Yl
4.00000000
26.00000000
53.00000000
76.00000000
100.COOOOCOO
12«.00000000
-------
200,
Figure C-26
PLOT CF V2.. VS..VI
1*0.
120.
V2
0.0
o
00
-5.00000000
15.00000000
55.00000000
55.00000000
75.000000CO
95,'oooooooe
-------
'0. . *
72.,
le.
_ Figure C-27
METM« TEC M ~H E tTt" CHE f"
.... PLOT cr vz va .tt. _
0.0
o
VO
4.00000000
28.00000000
52.00000COO ' 76.0000QOOO
100.00000000
-------
Figure C-28
TiTi"«fEeH~Pl
.PLOT CF Y2 V9
90.
72.
3*.
0.0
5,00000000
29.00000000
53.COOOOOOO
77.00000000
loi.oooeooeo
{25.00000000
-------
Figure C-29
200.
.. PLOT. OF..YZ VS.Y1.
160.
120.
V2
ao.
00.
0.0
11.0000000ft
07.00000000
83.00000000
119.00000000
155.00000000
141.00000000
-------
200.
Figure C-30
MCTHlsTGSC
PLOT CF Y2 VS VI
160,
120.
V2
BO.
0.0
5.00300000
2S.OOOAOOOO
05.00000000
65.00000000
65.00000COC
105.00000000
-------
130.
100,
70.
V2
10.
Flgure_O-31 _
HETHlVfcSO feTK2«TfCh
.._..PLOT..CF Y.Z V3 Yl
•20.
3.50000000
13.50000000
23.SOOOOCOO
33.50000000
03.50000000
53.50000000
-------
Figure C-32
250.
PLCT rp Y2.. V9 V!
zoo.
ISO.
100.
SO.
o.c
•5.00000000
19.00.000000
43.00000COO
67.00000000
91.00000000 IIS.'OOQOOOOO
-------
200.
Figure C-33
* METMZ»CMEM
PLCT.CF. Y2 VS..YI
1*0.
120.
V2
80.
00.
0.0
•6.CPOOOOOO
24.00000000
56.00000COO
66.00000000
120.00000COO
152.00000000
-------
Figure C-34
PLOT CF Y2 V3 Yl
120.
'9,
•1,
je.oooooooo
26.00000000
Stt.OOOOOCOO
42.00000000
;o.oooooooo
56. OOOOOOOO
-------
Figure C-35
HETH2*TCC(I
PLOT ft va s,« vt
Z,00000000
30.000000QO
66.'00000000
-------
Figure C-36
100.
60V
10,
OO
0.0
11.00000000
07.00000000
83.00000000
114.00000000
155.00000000
1^1.00000000
-------
APPENDIX "•. ALTERNATIVE PROCEDURES FOR DETERMINING RELATIONSHIPS
BETWEEN MONITORING METHODS
Section 4.4.c presents the results of determining relationships
between pairs, of N02 monitoring methods as given in model (4.1) by using
orthogonal regression. In this Appendix the results of using two alter-
native procedures to obtain these relationships are given; namely,
(1) orthogonal regression using a model which is linear in the logarithms
of the two methods, i.e.,
(D.1) log Y = A + B log X
and (2) ordinary regression assuming model (4.1) (i.e., linear on the
untransformed data). In addition, this appendix also presents the procedure
and statistics necessary to compute confidence limits on the ordinary
regression lines.
The problems (i.e., failure of the underlying assumptions to hold)
encountered when applying ordinary (least squares) regression analysis to
determine functional relationships between two monitoring methods assuming
model (4.1) have been discussed in Section 4.4.c. In essence the main
problems are:
D-l. The monitoring data are such that the variance of NO observa-
tions increases as the mean increases. (In ordinary regression
it is assumed that the mean and variance of observations are
Independent.)
D-2. All the monitoring data are subject to error; therefore,
when fitting regression relationships both variables are
subject to error. (In ordinary regression the independent
-------
D-2
variable is assumed to be measured without error.)
D-3. In ordinary regression if monitoring method Y is used as the
dependent variable and monitoring method X as the independent
variable then the resulting estimated regression relationship
between X and Y will be different than the estimated relation-
ship obtained when X is treated as the dependent variable and
Y as the independent variable.
To overcome the above problems RTI first transformed the original NO.
data by taking logorithms of the data (to alleviate problem D-l) and then
applied the orthogonal regression procedure (to alleviate problems D-2 and
D-3) to model (D.I). This approach led to the estimated functional relation-
ships between methods given in Table D-l. The notation used in the table is
as follows:
(1) The first line of each set (pair of methods) represents the overall
results obtained by combining the data from the seven sites (site
832D excluded).
(2) X corresponds to method 1 and Y to method 2 in model (D.I); hence,
N - number of paired observations
Ml = geometric mean for first method
M2 = geometric mean for second method
SD1 = standard deviation of logarithms for first method
SD2 = standard deviation of logarithms for second method
COR • correlation between X and Y on log scale
A and B are estimated from model (D.I) by using orthogonal regression;
this model can also be expressed in yg/ra as Y = e it .
-------
D-3
PCV1 = che percentage of variability accounted for by the
first principal component (see equation 4.7)
RATIO = ratio of geometric means
(M1LOW, M1HIGH) = recommended range for method 1 over which the estimated
relationship is applicable in yg/m , i.e., the recommended
range using the model Y = e
(M2LOW, M2HIGH) = same for method 2.
As mentioned in Section 4.4.c, RTI compared the orthogonal regression
results in Table D-l with those obtained in Appendix Table C-l (orthogonal
regression using the untransfomed data). The comparisons were made by
comparing corresponding plots of the estimated regression lines. These
comparisons indicated that, over the range of the current N0_ data, the
two estimated relationships appeared to be quite similar; therefore, the
untransformed results were used to describe the relationships between
methods in Section 4.4.c. (see Table 4.13 or 5.3).
In addition to the two types of orthogonal regression, ETI also
estimated the relationships between all pairs of monitoring methods X and
Y by
(a) Using ordinary regression on untransformed data with Y as
the dependent variable and X as the independent variable, and
(b) Using ordinary regression on untransformed data with X as the
dependent variable and Y as the independent variable.
Table D-2 presents the results of using procedures (a) and (b) over sites.
The table gives the following for a particular method as the dependent
(Y) variable and another method as the independent (X) variable:
-------
N = number of paired sample points,
CORR = correlation coefficient,
MEANX .= the mean for method X,
STDX = the standard deviation for method X,
STDY-X = residual standard error from regression of. Y on X,
A - estimated intercept for the model Y = A + BX (ordinary
regression),
B = estimated slope for the model Y = A + BX (ordinary
regression).
The table also gives the corresponding estimates of A and B using orthogonal
regression (on the untransformed data) so that they can be compared with the
ordinary regression estimates. To further illustrate the relationship
between orthogonal and ordinary regression, Figure D-l presents plots of
three regressions (Y on X, X on Y and orthogonal) for one pair of methods
(X = CHEM, Y = CHRO). The figure which also shows a scatter plot of the
data used to fit the regressions, shows that the three regression procedures
give noticeably different relationships between the CHEM and CHRO. The
correlation coefficient between the two methods was .74. Of course, for
two methods with a higher correlation coefficient, the three regression
relationships would be closer together. For example, Figure D-2 of [10] shows
that the corresponding three regressions for the CHRO and CHRP methods are
very close to one another (the correlation between these two methods is
.93).
If one uses estimated relationships obtained by ordinary regression
-------
D-5
(as In Table D-2) it must be kept in mind that these relationships are
estimated when one or more of the underlying assumptions of regression are
violated. The relationships do have intuitive appeal, if one wants to
predict method Y from method X, since they involve a least squares fit to
data. However, because of problems D-2 and D-3, RTI feels that the
•
relationships given in Section 4.A.C are preferable to those given in Table
D-2.
Because of the fact that EPA personnel expressed an interest in con-
fidence limits on predicted NO. values the following paragraphs describe
the procedures which can be used to compute confidence interval or- prediction
interval estimates. These procedures are based on the ordinary regression
approach rather than the orthogonal regression. The failure of the in-
dependent variable X to be measured without error leads to a residual vari-
ance which overestimates the error variance. Hence the confidence (and
prediction) interval estimates should tend to be conservative, i.e., a
stated 95% interval estimate should actually have a higher confidence level.
In other words, the interval estimates obtained will tend to be too wide.
Let XQ be a particular fixed value for method X for which one
desires a confidence interval (or a prediction interval) on method Y. A
95% confidence interval, for example, is an interval which has probability
.95 of covering the true mean of method Y when method X = X . A 95%
o
prediction interval is an interval which has probability .95 of covering
a method Y reading when method X = X . A (l-o) 100% confidence interval is
o
obtained using (D.2):
-------
D-6
I (X -3C)^
(D.2) A + BX ± s t, a \ | + — r .
o Y-X (1 --j), N-2J N ,N_n 2
(N-l)sx
A (1-a) 100% prediction interval is obtained via (D.3):
I — 2
I f Y V ^
I i \^* ^"* /
(D.3) A + BX ± s t. ci. ,\ 1 + =• + — r-
o Y A U - 2;, N-/ 1 w (N-l)sJ
The statistics used in (D.2) and (D.3) are all given in Table D-2. In
particular, A and B are the estimated intercept and slope for the .model
Y = A + BX, XQ is the fixed value for method X in ug/m , X is MEANX,
sx is STDX and SY
-------
D-7
The tabulated t value at .95 = (1 - -r) and W-2 = 648 degrees of freedom is
1.65. Hence, the 90% prediction limits are computed from (D.3) as follows:
17.1376 + 48.5917 ± (15.41) (1.65) l +-
(649)(34.54)'
65.7293+ (15.41)(1.65)(1.002)
65.73 ± 25.48
Thus 40.3 and 91.2 represent the 90% prediction limits for the CHRO when
the CHEM has a value of 100. The confidence interval is much narrower,, of
course..
All the results given in this appendix were obtained from the daily
data after removing outliers. The results shown in this appendix are for
descriptive purposes only. Their general use is not recommended (see
Section 5.4).
-------
Table D-l
ORTHOGONAL REGRESSION SlPMfY CF NC2 "CM1CKING KEThCCSp LOG SCALE
3111
Overall
632
633
831
632
632 C
fc 1 1
«C2
SITE
Overall
632
633
SITE
Overall
632
633
631
632 0
£41
SOI
902
SITE
Overall
632
633
631
E32
632 0
.SCI
«0e
fc
1326
219
225
il9
185
131
175
236
237
N
268
132
136
\
655
leu
156
17
U9
63
00
27
HO
S
650
108
109
11
75
66
122
114
HI
3lis
30.2
«7.2
M.t
5o!«.
40. V
2e!«.
29.6
40. i;
31. r
30.0
51.3
61. C
77.2
55.7
72.7
3«. e
HI
4e.l
3 1.0
32.2
56.9
b'i.9
78.1.
4b.C
ue.6
36. C
M2
41.4
31.2
24.1
45.6
57,2
67.6
50.7
39!l
M2
50.1
47.4
5?.B
Me
4o!e
36.6
77.2
67.2
60. (1
81.2
57.4
45.4
33.0
24.9
25.6
59.8
50.9
58.6
36.1
37.5
28.9
SD!
.5363
.4676
.4784
.4952
.504?
.3772
.4104
SUI
.4585
.4395
.4765
.5510
.4*22
.4949
.2996
13530
.3734
SOI
.4930
.439H
.4001
.4076
!u345
!e°ec
.<;7se
SC2
.5252
.4567
.5562
.3?u7
.3695
SC?
.5206
.4661
.5876
.5P59
.4799
.3(196
.4(32
.5012
SC2
.S6C«>
15296
.5990
• 6 P £ 5
U 2 U f
.3776
LCH
!eos
.647
^22
.•»•?
CCP
.fr.31
!7CHRF
A
!f7£93!
•!«5e33t
-.531266
.!67tee
A
-.tnio?
-.'121116
p!aP29t
• j"'/!Ul7
-i!si t ^^^
15.1
12. C
li.O
16.0
?2.9
J5.2
Jfc.5
2e.3
13.1
13.6
14. G
1^6
3b!6
22.6
Sb.e
17.0
M1LCU
\n'.u
If. 5
2".!
34i;
1.2
16.6
eO.O
e5.4
7.C
16.3
13. S
C2HIGW
115.1
74.. 4
70.9
133.3
171.1
136.0
Kill. 3
9e.l
62.0
132.3
i5o.':
156.9
IOC. «
83.0
151.7
c!2.3
201.9
66 '.3
H2HIGH
101.4
60.9
70.9
142.3
130.1
Its t i
175.3
£6 1
60. 2
V
00
-------
Table D-l Continued
REGRESSION SLMhihV C* NC2 KCMTCHING fETHDCS, LOG SCALE
SITE
Overall
632
633
631
632
832 0
641
901
902
SITE
Overall
632
633
631
832
632 0
6" 1
SOI
902
SITE
Overall
632
633
SITE •
' Overall
*32
633
631
632
632 0
C41
9P1
902
K
1164
210
203
53
166
1«3
154
1*1
187
K
650
164
171
12
102
57
76
«3
82
K.
270
134
136
K
643
170
160
16
116
60
75
26
78
42.5
31. r
29.7
49. U
56.8
74.9
50.9
55.5
40.5
H!
39.5
33.9
31.3
51.0
7o!o
54.0
60.1
3<*.3
Ml
29J3
29.4
M
36. t
31.4
29.6
09.6
%e.2
69.9 .
-6 . 1
kc.i
33.6
M2
46.3
30.0
30.5
45.5
67.1
76.3
58.7
65.4
48.0
Me
46. 9
37.5
31.2
54.2
71.1
62.6
84.3
75.8
45.2
N2
49.9
47.4
52.6
N2
52.0
41.1
36.5
77.0
66.6
77.1
65.4
58. 5
«5.7
SD1
.5242
.4640
.4765
.511!
.4615
.3837
.4986
.3390
.4261
SOI
.4945
.4151
.425?
.3701
.5017
.3700
.5034
• 3U"8
.3178
SCI
.4540
.4462
.4705
SOI
.5169
,43bO
.4676
.2686
.45BC
.367P
. 4 1 0 H
.3536
.3630
SD2
.6092
. 4 f '. 4
.. .'9
.3*13 1
.5?79
.4649
. ? ' e '
.5553
SC2
.6372
• 5?5?
.605*
.4021
.5285
.5830
.4964
.2695
.4010
SC2
.5187
.4774
.5531
SC2
.5986
.5037
.4853
.3337
.490"
.4892
,ur59
.4310
.3426
CCH * B FCVI
,64fc ".PS001 I.S0072 Ee.b
.477 -1. 01902 1.20721 74. y
.u?2
.665
.eC3
.507
,58fc
.Ml
.464
LCD
.681
.466
.505
.616
.646
.646
.745
.761
.579
CCB
|457
.736
CCR
.722
.5S1
.545
.809
.602
.725
.686
.765
.801
•O.CV647
-1.7SP15
-1.11978
•3.55572
fi ,S')P93
-l.740ot
-1.44211
-2.1200C
•3.2 3905
-lil-7136
-A. 06263
-3.93732
0.5 1987
1 . i.i 121
-1.43003
IN F t U t m f l* &f
™C I >^ 1 • t F^ " L
t
-!ol7207
MP i u i - r ui*r i
PCI^l»L~^U •
-0.42033
-0.7526C
-O.CePSt
-fl.7552S
-0.15198
• 1 . -) \So£
•o|5367S
-1.27506
ft.=«30C
1.C3684
1.43953
1.30720
1.82630
C.96PU2
1.47393
1.73195
e
itiiia
.9u051
.41496
!9b636
0.98135
Ci? 6Uo2
1.46357
B
l!l4765
1.24U51
^tT«1iC» « C C M'
B
.19639
.'29708
.C7043
.3Ub25
.12036
.1 75i H
.2378C
.2*370
C. 43099
72.6
85.4
8C.8
7J-.6
7«.,3
71.0
75. ?
FCVi
.65.2
7=1.3
79. e!9
134J4
67.1
V
VO
-------
Table D-l Continued
REGRESSION SLHP4HY CF HC2 *CMTGHlNG *tTN033, LOG SCALE
SITE
Overall
«32
fe33
632
632 0
9C1
SITE
Overall
632
633
631
632
632 0
9C1
90c
SIH
Overall
632
633
631
632
632 0
6
-------
Table D-l Continued
REGRESSION SL»Mt
-------
Table D-l Continued
REGRESSION SlMMJPY C? MC2 HCMICHISG «tTHCC3. LOG SCALE
SITE •
Overall
632
633
631
032
632 D
64|
902
Silt
Overall
632
633
E31
£32
632 D
901
9C2
SIU
Overall
632
633
631
632
63c C
641
901
N
637
161
162
17
114
56
BO
2b
76
N
646
105
110
9
94
72
92
121
117
K
1166
206
207
52
171
111
1S2
190
186
63.5
51.5
47.7
72.5
104,6
101. S
76. S
94.9
Ml
71.9
56.3
7«.'3
iia.9
113.0
68.0
«2.7
67.7
ft
66.3
50.2
4ft. t
61.0
100.2
104.3
71.0
66.2
47.9
H2
51.9
40.6
36.3
78.2
69.9
fll.6
ai.2
56.6
45.5
M2
32.9
2". 4
25. t
57.6
52. e
59.4
36.1
37.4
29.4
M2
46.1
30.1
30.3
46.3
66.0
7&.S
56.6
64.5
4V.1 •
301
.5266
.4494
.5046
.2663
.4302
.4339
!3177
301
.4635
.4071
.4379
,b572
.4504
.4124
.5887
.276fl
.3196
SCI
.5264
.4661
.5041
.6272
.5205
.3925
.4593
.2961
.3791
SC2
.5939
.5056
.4631
.3290
.4«73
.5: it
.4784
.4326
.3411
SC2
.5914
.5?67
.5246
Uo07
.4076
.7964
!3P20
£02
.fcoet
.5170
.4779
.6361
.5624
.3350
.5051
.4005
CCS 4 B
.691 -0.96807 1.16V73
.559 -1.15427 1.23342
.424 0.10561 0.901(,i|
.345 -l.7463t !.42.5aa
.6=3 -1.30131 i.cb'ia
.636 -I.6C505 1.342o7
.705 -C. 43511 1.11416
.627 -o!76654 1J11995
CCR 4 B
.691 -2. £1773 1.33577
.511 -3.1639C 1.63222
.373 -3. 22691 1.60U7
.699 -C.6e66i 1.14212
.760 -1.52785 1.149Q7
.679 -0.36267 0.96316
.8te -2.52MC 1.44656
.636 -fl.S4«i(i 1.91722
.405 -3.C9925 1.53700
CCfi A u
.629 -1.41697 1.25109
. .471 -1 .46934 1.24403
.512 -0.04966 0.901m
.676 -0.35048 1.02573
.584 -1. .07020 1.14151
.375 -S. 64785 i.l4s«s6
.552 .-0.99009 1.13720
.319 -6.30415 2.34970
.'•U7 -6.04992 2.35770
PCVI
64.8
76.4
71.3
70.3
83.1
8!>!3
93.4
fll.5
PCVJ
65.3
77.7
70.4
95.0
68.2
64.0
91.7
85.5
71.6
PCVI
74JO
75.7
83.9
79.3
73.3
77.9
71.1
76.9
«»HC
0.616
0.791
0.760
1.C79
0.65S
0.600
u!s9t
0.759
RATIC
.457
.434
.449
.775
.442
.526
.531
.452
.434
RATIC
.695
.596
.651
.76!
.65P
.724
.825
.7(19
.721
MILCH
24.fi
24.2
19.9
47.6
49.4
5?!3
34.2
UlLCh
20.9
30. S
30. 6
51.*9
52.9
23.1
53.6
42.7
MIC.1-
26.7
23.7
19.0
19.6
4C.P
63.5
32.7
62.0
42.7
16e.6
109.fr
114.6
11C. 3
221.5
212.4
171.1
157.3
104.9
MhlGI-
167.5
(04.0
102.7
216.3
272.9
241.0
20C.1
127.7
107.3
I'll- 161-
164.9
106. 4
.114.1
2«t.'b
it*. i
154.3
IC?!?
17.0
16.)
16.5
3S|3
3C.3
22.1
f.u'.i
MeLLh
10.6
•«!6
ifc.e
20.3
26.2
'.ft
It. 3
14.5
H2LCi.
U. 7
11. 6
13.5
14.9
23.6
27. u
23.3
29. fe
16.4
159.0
1CJ.4
\ut'.e
229.0
el's. a
199.2
m.o
8b.2
"2MI5«
101.6
66.5
67.1
136J6
125.1
172.3
Pe.O
5-J.o
N2hI'K
144.1
76,5
66.1
lEt.l
164,3.
211.5
M7.2
131.S
1x6.6
V
fc
-------
Table D-l Continued
REGRESSION SfMFV CP NC2 MCMJOSINC PtTHCDS, LOG SCALE
sm
633
£31
632
63e 0
6'41
902
8ME
Derail
633
632
632 0
9C2
SIH
633
631
bJi
632 U
841
901
902
SHE,
1 Overall
632
633
K
635
162
170
14
90
76
. 81
N
1310
217
50
174
123
171
239
236
K
1265
221
224
09
155
124
163
237
K
2e6
134
Ml
2?!o
23.3
39.7
U6.6
60.0
41.V
46.5
30.7
HI
33. £
25.5
22.4
41, G
07.0
b7.0
39.1
40.7
3e.b
n
33.0
25.5
«!2.3
36.0
"7.3
40.0
an. 9
32.9
Ml
2«!3
M2
05.9
37.5
31.2
54.9
66.9
85.3
61.9
72.9
45. u
H2
42.6
31.5
31.2
47.6
59.6
71.8
50.9
54.6
40.5
M2
ai.o
3l.O
29. £
42.7
57.1
68. 2
b2.2
51.7
39.2
M2
sa.o
07.4
52.8
SOI
.5310
.4065
.4919
.496?
.4995
,467ft
.5560
.2994
.3C91
SOI
.5480
.1641
.5273
.49911
.5641
.5041
.6250
.3440
.3097
SO I
.5027
.4641
.5313
.5176
.5761
.4351
.5702
.3003
' .3901
SOI
.4873
.0551
.5162
!C2
.6305
.5261
.6C53
.4621
.5558
iS675
.5156
.2612
.3976
SC2
.5247
.4435
.4759
.4866
.5159
.4054
.5679
.3334
.4100
SD2
.5158
.0605
.0669
.5251
.500-7
.3736
.5026
.3147
.3696
S02
.5166
.0760
.5536
METHlatEAF
CCR 1
.793 -0.50639
.686 -0.55560
.616 -0.95207
.401 0.8726C
.68u -O.J6618
.776 -1.R3639
.700 l.0614e
.812 0.72609
.005 -1.21765
CCR A
.639 .42*243
.701 ,l.01»3l
.746 .695997
.823 .241361
.870 .610096
.662 .700089
.764 .1)65647
.607 .041781
.637 -.OOoSSC
Mr TWi~tPAP
.784 1736'Jl?
.722 .0-tJ6ii
,«!77 .2/6,19*
.635 .e?
«0.7
ie!s
M2LCW
19.1
20.2
"2NIGM
15J.7
101. ci
9d.l
t ! 4 . 9
26o!l
269.4
1?4,5
97.3
M2HIGH
116. 1
'i.6
72.4
120.6
160.6
\t1.e.
146.5
103.0
69.3
-«MI<;H
109.8
73.4
69. a
113.4
170.4
137.8
131.6
92.9
r 2 M 1 G ^
131.1
111.4
151.7
-------
Table D-l Continued
REGRESSION SLHCifiV CF » a
161
luc
aq
71
25
79
K
625
110
no
4
84
72
BO
120
112
212
205
50
154
(1C
142
192
166
K
222
ice
n
30. •»
25.6
24.0
44.4
57.9
aa.o
29 '.it
. ««
33.7
27. A
43. *6
52.3
64.6
36.0
3o.6
32.2
Ml
32. V
57!?
39.7
uo.7
32.5
HI
88.5
43. t
53.5
H2
50.1
40. a
36.2
75.3
7e!a
6o.i
56,2
45.3
"2
32.2
24.0
25,4
52.7
51.1
57.7
37iu
2".2
M2
' 45.4
30.3
30.2
42.5
64.1
74.7
51.4
65.0
»2
38.11
37!«»
SOI
.5443
15112
.'aU66
.3666
'•Dl
.5118
.4503
*U27i
.5059
.4720
13137
S31
.S4 4.9
,4600
I5319
.5239
.43/3
!ai)37
SOI
.5570
.5112
.5022
3C2
.5730
.5137
*330B
15323
.*3444
SC2
.5773
.5160
.52'*
.4ele
.7767
.4234
.3405
SC2
.50«il
.51 "6
.4760
.6351
.5963
,5654
'.3975
SC2
,5752
.5320
CCK
!643
.621
]9f)5
.7»2
.'ens
CCR
.751
,b06
1852
.730
.6
-------
Table D-l Continued
REGRESSION SLMhARY i;F NC2 PCM TORINO PKTNODS, LOG SCALE
SITE
Overall
633
SITE
Overall
632
633
631
632
E3£ 0
641
901
902
SITE
Overall
632
633
632
832 D
841
9C1
9C2
SITE
Overall
e32
e33
K.
227
110
113
545
126
132
12
107
50
80
28
bO
• N
351
112
106
53
22
27
9
00
.N
I'M
95
96
'wi
51.5
Ofl.6
54.7
S3. t
00.5
3M,f
*9 .5
91,1
65.9
65.?
58.0
a7.3
HI
30.2
23.9
26,0
47.7
56 . "
43.6
01.5
34.0
25.2
2" .0
26.5
HZ
39.8
02.9
36.9
M2
49, a
36.0
33.2
44.0
74.2
93.2
• flfl.9
80. 5
44, fl
M2
47.1
39.6
30.8
t)6.b
122.2
67.5
78.9
05,3
H2
48.9
04.9
53.3
SD1
.5501
.51(11
.5801
SOI
.5933
.5376
.4565
.4797
.0559
.5316
.4092
.4215
.3094
SOI
.5763
.5189
.5290
.0775
,<4631
.6010
.2953
.4516
5D1
!fl9J8
.5317
6C2
.4665
.5'1 15
,-eOl
3C2
.6145
.5172
.6055
.4451
.5108
.5*59
.3770
.2*65
SD2
.6026
.5501
.6322
.4339
.5235
.4363
.315(1
.4204
SC2
.5390
.077*
.5*38
ecu
.565
.5 "'3
.726
CCP
.773
.531
.592
.863
.903
.906
.766
.856
.516
CCP
.619
.327
.548
.864
.336
.see
.940
.370
CCfi
.«83
.3*4
.506
PET* 1 •TCCh
A
.063371
.OOOU1
Mr Tb i s TC r/i
n ^ I n l * l c '. •*
-0.38396
0.10272
•2.1*578
0.0c933
-0.3U7C
-0 .52336
0.52M7
(- 75116
«
•0.20835
• 0.112M
-0.94251
' .0 385C
.T t i >i 395
2.M291
0.37014
0.62605
HP T N 1 a T " QT
n c i ~ ' B i j c ^
A
.331328
.86 f6 17
.Oc8c72
B
.817037
.907039
.728551
HffTu9sfuF^
~t i ™t"uncn
B
1.C7696
Oi9i>4^7
1.593U6
0.4 18Q2
1.13435
1.13b96
O.S9047
O.i3950
1,39737
B
l!l94UB
1.37885
0. 69530
1.15780
O.fci"?!
1.C7229
0.64636
a
1.K223
0.91817
l.lfisll
PCvl
79.6
.75.2
67.1
PCV1
88.7
76.6
61.6
94.2
95.2
95.5
93il3
77. y
FCV1
40. e
76. 4
93.3
92. 3
91.8
97.0
60.7
PC VI
74.2
69,3
77.6
«ATIC
.772
.8e3
.675
0,932
o.eee
0.952
0.739
o.eu
l.OSfc
1 . 0 'I C
1.387
KAMC
.561
.656
.339
,eio
.180
.903
.333
RATIC
1.941
1.870
2.010
HILOU
IP.*
19.*'
17.9
17.5
IS. e
16. B
23.3
37.7
31. e
3«.7
25.3
29.0
MlLf*
11.1
10.8
11.0
IS. 9
12. -4
23.2
15.5
10.4
10.3
10.6
lUe.'J
119.3
U7.1
163.1
10^.4
72.1
151.6
236ifc
133J3
77.0
r 1 H X G >
52!«
61.2
uc.e
13". t
153. e
•74.1
59. e
55.6
64.9
17.3
16,0
16.3
t U o
1 ti fl
io!«
16. b
f.Z
44. Q
47.3
£2.5
M2Ll>
15'a
IP. 7
tfi'.l
39.8
42,0
£3.3
16.9
20.7
16.4
HShIGH
91.3
1C2.3
"eHir.H
166.1
87. -a
115.9
103.9
i9a \1
17b!2
1S7.0
P9.1
155.J
llj!«
i°e,9
337.0
19Z.3
fl7!9
left, 7
97.1
lii.3
a
M
in
-------
Table D-l Continued
REGRESSION 91.MM4FV CF NCZ ^CMTORING K£TriQo9, LOG SCALE
HETH2"TEC4
SITE
Ml
K2
apt
8D2
Overall
632
633
831
632
6.12 0
901
902
SITE
Overall
b32
e33
t31
632
632 0
en
••01
902
6ITt
Overall
632
*J3
SITE
Overall
632
633
631
632
t3i 0
6(.l
901
902
302
79
Bl
6
59
19
3
e
37 :
h
645
164
1641
16
lib
52
75
. 30
60
N
261
136
US
fc
635
170
160
19
123
53
72
20
71
32,8
2a.7
26.9
62.4
61.3
hO.S
42.6
3U.5
•»"
32!s
3i. 6
56.0
66.4
70.3
62.4
76.2
30.7 "
29.6
31,9
HI
U2.C
29,9
30.5
60.6
60.0
7e,5
63.7
66.;
40.8
576
.6920
,3048 .
.4367
SD1
.6077
,53tlOt
0.50522
1.BS146
0.1775(1
2.13137
\ e£hE3SC
"*
f- . S^0a^
2.*-b73
4 . •! b 5 V 3
0.66167
0.3S646
P. 1*101
". t Ct92
• * ^j 3 p fi
BP ?• F S Si^
_ b r t v v w
.104766
.8341 07
.*..
1 .ftb900
0.946bj
1.21331
ft.°S724
n.ft333
0.9baB026
0.77049
0.78J27
0.82824
I.C0619
0.64368
2.16415
"O.fl70i6""
85, 1
62.!
7T.9
61.4
87.4
9«i, 4
9t .0
66.2
91. a
PCV|
81.4
7«.5
72, S
! 7 , 7
74.6
70.2
60.1
66.-)
75, -s
....
67.1
63,3
71.1
PCVl
eo.3
66.3
64.6
87.0
81.5
84,4
6«.5
77.7
77. S
1.651
U322
i.Oll
2.337
2.062
1.855
1.396
1.387
RATtC
1.08?
1 . l"e
0.96J
1.259
i.iis
1.186
1 .3
-------
Table D-l Continued
REGRESSION SIVM4RY CF HC2 PCMTCHXNG f-tThOoS, LOG SCALE
SITE
Derail
633
£31
632
632 0
901
902
SHE
Overall
t32
633
631
632
632 0
641
901
902
N
556
101
96
11
66
66
78
98
66
K
663
161
12
114
61
bl
fit
HI
50.7
3*ij
47.0
fle.O
86.0
59.1
60.2
52.4
r-i
41. U
IS ».
JC.D
St. 7
5e.<
7V. 5
5«.2
69, b
Ju.7
H2
32.9
23.7
24.3
59. (t
50.0
55.9
38.7
38,1
30.1
Me
47.2
37.2
• I
53.8
71.6
87.3
81.7
74.4
011.8
SIM
.6019
.5353
.4708
!561C
.5219
.5366
is20
,i:F7P
I5164
.3296
.3139
502
Isr>65
.' 17
iuEfcS
.4593
.5698
13957
SC2
.6413
.5336
.6054
,«P68
I57b3
.5026
.2941
. 57723
.6
-------
Table D-2
Ordinary Regression Results Over Sites-
Using the Model Y = A + BX
X
CHRP ~
CHRC
FflMF
TEAF
TECH
TEC4
TGSC
CHESSC
X
CHEM
CHRO
FRMP
TEAF
TECH
TEC4
TGSC
CHESSD
'• - - — ••
X
CHEM
CHRP
FR.MF
TEAF
TECH
TEC 4
TGSC
CHESSC
N
663
650
648
635
222
545
351
645
N
663
1326
1337
1310
268
655
650
1184
— •
N
650
1326
1313
1265
270
643
633
1169
CORR
".73
.'74
.69
.76
.'64
. -83
.73
.60
CGRR
.73
.93
.77
....,85
.71
.72
.80
.62
CORR
. 74
.93
.79
.86
.66
.75
.79
'.59
MPANX
B7.2
44.5
72.1
35.9
56.0
63.5
35.7.
52.3
PEANX
56.9
47.0
76.6
38,1
56.8
62.2
38.9
55.1
MEANX
56.4
49.0
76.0
37.9
56.7
61.7
38.7
54.6
_ STD*
24 171
.22.7*.
36.75
19.20
39.26
?2.52
33151
8TCX
3*. 16
24.02
39.25
20.58
28.78
39.57
24.67
.3.3,3.2
STBX
34.54
25.61
26.61
20.46
28.72
39.29
24.71
S.T.D.Y-JL.
24,10
..23.37
25.45
21.92
17.00
20.61
23.94
29.95
STCY-X
16.94
9.62
16.24
13.32
9.92
17.41
14.88
19.74
STCY-X
15.41
9.02
14.82
11.95
1C. 34
15.06
14.70
19.11
ui.UJ-i.icit jr ".eg
A
8.0210
6.6253
9.5627
7.6649
17.9763
10.6366
16.2892
23.0797
A.
18.0293
2:5957
10.4103
9.3109
12.2862
18.3877
15.'6494
22.'5706
A
r7Tfjtr-
4.3720
9.6672
9.4848
13.5905
16.9421
16.9420
22:9069
T*r »a run
B
1.03642
1.11743
0.65320
1.32020
0.46970
0.77270
1.13363
0,66307
*
e
0.51207
0.98836
0.50395
1.02690
0.34628
0.45031
0,81727
0.46764
8
~ .485917
.869073
!972503
.331521
!76seoe
.428368
Orthogonal—'
Regress ion
A
•1910
•21 TO
-10.4
"!9!'6
114
.. .-7.5 _
e
1.609
1.73P
C.930
2.039 :
0.620
0.^21
l.*195
... —
A
11.8
•1.3
4.5
0.5
10.0
13.2
7.8
11.0
B
0.621
1,075
0.581
1.257
0.387 "
0.533
1.019
0.64Q
•. - -•
A
B
12;i 0.575
1.2
4.8
2.5
11. c
.. 13.2
9.4
0.933
C.554
i.isa
0.375
0.497
0.9fcl
fl,591
V
oo
-------
Table D-2 (Continued)
Orthogonal
Or-Hinarv Repression Reoresslnn
" ""
X
CHEM
CHRP
CHRC
TEAF
TECH
TEC4
TGSC
CHESSC
X
f LJ-tf U
w ff C "
CHRP "'"
CHRG
FRMF
TECH
""TSSC
CHESSC
~ " ~ ' " ""
X
CHEM
CHRP
CHRC
FRMF
TEAF
TEC4
TGSC
CHESSO
N
648
1337
1313
1290
265
637
648
1166
N
635 _
1265
1290
266
619
625 .
1141
N
222
268
270
265
266
227
191
261
CORR
.69
.77
.79
.61
".55
.71
.69
.59
CORR
" !85 ~
.66
.61
.73
.76. _
.76 _..
.61
COHR
171
.66
".'55
.73
.56
.54
.'29
KEANX
56.6
4« 0
46.9
36.1
56.3
61.9
39.0
54.9
MEAfeX
Zssib'Z
46.4
75.3
St. 8
56.6
_ 37.6
S3. 8
MFANX
44.3
32.0
32.4
56.0
28,1 _
44.6
28.8
35.0
STBX
34.97
25.59
24.02
20.73
26.59
40.00
25.02
33.46
STOX
33.50
24.96
23.22
36.24
28.76
35.61
_...23.64
32.36
STDX
22,15
14:05
14.04
26106
13.56
21.31
16.34
19.56
3TCY.X
26.74
24.91
23.81
22.49 "
21.82
27.17
29.89
31.79
STCY-X
ic '93
1C. 54
12.19
9.33
12.55
_13.9
-------
Table D-2 (Continued)
" . --•
_..._._.._ — -.
1 . — . — . Or-d-inaFV— R^erp.oa-l-nn ~
X
CHEM
CHRP
CHRC
FRMF
TEAF
TECH
T6SP
CHESSC
X
CHEM
CHRF
CHRC
FRMF
TEAF
TECH
TEC4
CHESSC
N
545
655
643
637
619
227
302
635
N
351
650
633
648
625
302
556
.83
.72
.75
.71
,76
1*6
.72
.65
CORR
.'73
.80
.79
.69
.76
.54
.72
.50
MF.AMX
59.9
46.4
43.9
72.6
35.6
_. 59,2
39.5
51.1
MEAK'X
56.8
47.4
46.6
SO. 7
36.4
56.1
65.'9
60.1
STDX
36.66
24.9ft
22184
38.70
19l2fl
30.59
25T24
34166
STDX
34196
25.05
23 ".9<5
4U21
2ll51
29176
46113
36142
YsTEC4 — -
STDY-X
22.07
27.66
25.90
28.08
23.28
17.69
31,9?
30.35
STDY.X
15.41
14.65
15.16
16,15
15.32
13.61
17.47
21.07
A
"10.4302
9.4760
4.8620
8.4260
8.8325
21.4998
13.7136
24.4531
A
9.0190
1.2905
0.7246
5.2663
5.7307
12.2607-
13.4353
18.7496
0.86602
1.13676
1.29350
0.73662
1.40417
0.38969
1.32119
0.74053
B
.470008
.792634
.B15U5
.418348
.837159
.295344
.395623
.330046
- Orthog
— i Regres
;onal -
a i on
A e
-i.fc
-24.8
-?6.6
- 1 4 ; i
-19.3
12.7
-?i.e
-0.7
i
A
412
! -7.7
' -9. '8
-1.2
-5 16 •
813
9.6
10.7
1.066
1,671
2.010
UC46
2,193
0.536
2,221
1.234
~- "" E "
0.555
0.961
1.040
l!l31
0.266
0.450
0.465
X
CHEM
CHRF
CHRO
FRMF
TEAF
TECH
TEC4
""TGSC
N
645
1164
1169
1166
1141
261
635
556
COPR
.
.60
.62
.59
.39
.61.
...29
.65
.50
VEANX
57.7
48.4
46.3
75.6
37.4
. .. 55.1
62.3
36.6
STCX STDY.X
37.27
25.14
23.64
. 39.50
20.45
29.11
39. 7U
24.25
26.92
26.16
26.30
26.94
25.56
18.77
26.49
31.66
A
21.3187
15.4157
17.0055
16.8442
17.5435
24.2012
15.9U79
31.3715
B
.535909
_, 821^54
.811535
.503461
.970117
"istsesa
A
""3.9"
-20.4
-23.8
-2.4
-22.5
. 17.3
0.6
•22.9
B
0,637
1.561
1.693
0.759
0.322
0,811
2.152
N>
O
-------
Table D-2 (Continued)
-' Over sites 632, 633, 901, 902, 831, 832 and 841.
2/
— The statistics given in the table can be usrsd for confidence intervals on Y for a fixed X value.
— The orthogonal regression estimates «f A and B are given so that they may be compared with the
corresponding estimates from ordinary ?-egr?.ssion.
o
N)
-------
» CHHC
Figure D-l
I JU. V VU
•1
}
120,000
1
• . .
1
... 90.0000
»
>'
J R.OOftO '
3
11
^ 30.0000
M
"
J °'°
0.0
Regression Relationships Between CHEM and CHRO, Over Sites
•
/Regression X on Y
/
/ / ^Regression Y on X
/ / ^
— _^ — .• . / y
• •* / a>^ ^ ;• - - -
1 — : ^L. S * ~~ * * • * a
i * ** *_}• _f *JT * * • T
--• * /--^vxTTT ** • : • g —
* *«0 / S+Sf •* ** n ~~ " — ' : —
* * *• /jfyfo ** * * ~" "~ ' •--
* • » *0/>'i) o o * • ' ~
* *o oo *3*p^'u»o ****0» * 0 • * • * = single data point
• * •* • *00,fi^»0«0 0* * »* «0 * . ~ ' — •
* o o v^f ]/• * * * o** • •»• * — — ^ 0— • -flm-lfe-ifvle- data--p-oifi-t --
«')0j)-o'/yooo ooooa* •** ' ~ :
« ft* *op^ooyoo* 0*0** • * "' ~~ ; — — —
•0 J^J>flO flM)«090300**« *
*^*vtf?00/30 0000* 0 •* '
xi!05^ooo*/ro6ooooo*** * * "" — ' — • —
_/"• J^«0 1 0 O/f" 09*0** • « ** ~~
_loxfooooo/ioo 00*00
S*QQ* /fl**0 •" *. .«
* **/ • « . .* .
/ * * = • —
~" ~f """ • * ' * - - ' • • < 1 »-TT7— • H « • — - 1 11 — . • . , , | ,, , , m . ,..
•• ,„ :„.. < ,,.•„„„ • • . • • •
• 60.0000 . 120.000 . 1 ? 0 . 0 0 0 . 200000
.«.-"».«__ .. . . ..YO.pOOfl . ,!So;000 210.000 270'.oro
X 9 ChEM
-------
E-l
APPENDIX E. SAMPLE MEANS AND CORRELATIONS FOR TWO
TIME PERIODS FOR TIIE DAILY DATA
The following two tables (E-l and E-2), give the unpaired means and
the correlations for the daily data for two different time periods:
(i) July 1, 1972 through October 31, 1972 and (ii) November 1, 1972
through April 30, 1973: A detailed discussion of these two tables is
given in Section 4.4.b.
-------
E-2
Table E-l .
Correlations Between Methods—Over Sites-^1 ,
After Removing Outliers for Two Time Periods
FRMF TEAF CHRP CHRO CHESSO TGSO TECH TEC4
CHEM
FRMF
TEAF
CHRF
CHRO
CHESSO
TGSO
TECH
TEC 4
CHEM
\
.84
.75
.78
..58
.80
.55
.75
.72
.75
X.
\
.84
.85
.64
.90
.68
.82
.78
.81
.87
X.
\
^
.92
.62
.94
.66
.73
.75
.80
.87
.95
s.
\
x
.57
.90
.65
.78
.74
.60
.57
.60
.61
s^
\
^
.67
.30
.74
.66
.65
.69
.74
.77
.40
\
X,
.55
.87
.84
.60
.77
.75
.71
.30
.65
\
^N
.67
.65
.71
.71
.76
.77
.53
.59
.51
^S
.83
.68
.71
.76
.77
.52
.58
.66
.82
«M
CM
r-t
H
0)
•8
4J
u
o
CM
rH
A
H
3
t
November 1, 1972 - April 30, 1973
- TECH in 632 and 633 only, other methods from sites 632. 633 901
902, 831, 832 and 841. ' '
-------
E-3
Table E-2
Means of Daily Measurements (Unpaired) by Method and Site
for Two Time Periods—After Removing Outliers
FRMF
TEAF
CHRF
CHRO
CHESSO
TGSO
TECH
TEC4
CHEM
Period
I
II
I
II
I
II
I
II
I
II
I
II
I
II
I
II
I
II
Sitel/ .
632
50.2
59.9
26.7
29.2
29.6
37.8
30.1
37.3
31.4
34.4
34.0
23.6
52.9
51.9
53.1
40.0
44.1
41.0
633
49.0
56.2
27.-6
23.8
32.4
34.4
31.3
32.9
32.1
34.4
41.1
23.6
63.9
59.4
43.9
38.1
52.6
33.8
901
92.7
88.1
44.2
42.6
59.5
57.9
56.1
54.2
64.8
76.3
58.4
33.9
*
*
63.4
78.1
902
61.2
80.9
31.2
38.3
36.3
49.1
35.7
46.5
44.4
66.0
40.9
27.4
*
*
47.9
43.8
46.3
43.8
832
91.1
125.5
40.0
60.6
50.2
76.4
48.4
73.1
57.1
89.6
49.6
60.7
*
96.8
100.4
84.7
84.3
841
88.1
72.7
56.6
38.9
67.0
51.3
67.3
51.2
67.4
62.9
69.9
35.3
*
*
104.7
73.3
87.9
86.5
832D^
121.6
110.0
56.5
66.1
68.9
81.9
68.7
74.0
84.3
85.7
68.0
63.2
*
*
90.0
*
100.9
- Time Period I = 7/1/72 - 10/31/72, Time Period II = 11/1/72 - 4/30/73.
2/
— Site 831 is excluded since instruments at this station were moved
to Site 832 in October, 1972.
— The July-October period had approximately 20 observations per method
in Site 832D.
No data.
-------
F-l
APPENDIX F. SUMMARY STATISTICS FOR THE HOURLY DATA
This appendix contains de-tailed summary statistics and plots based
on the paired hourly data for the TECH, TEC4, and CHEM. Table F-l shows
the hourly sample sizes, the paired means and standard deviations, and
the correlations and ratios of means—for each pair of methods by site and
hour of the day. The means shown in this table are plotted over hour-
of-day in Figures F-l through F-ll. The pertinent discussion is given
in Section 4.5.
The results shown in this appendix are for descriptive purposes only.
Their general use is not recommended (see Section 5.4).
-------
F-2
Table F-l
N02 HOURLY DATA SUMMARY, PAIRED DATA
HOUR
- p
4
5
6
7
6
9
LO
11
12
13 ...
14
15
16
17
18
""" 19
20
21
22
23
24
HOUR
~ " 1"
2
3
4
5
. 6
7
8 ' "
9
10
11
12
13
" 14
15
16
17
18
' 19
20
21
22
23
~ 2
26.1
27.2
33.3
41.0
55, B
64.9
73.8
77.7
72.3
67.0
47.9.
45.?
30.9
37.1
35.1
3B.C
45.1_
49.2
56.3
afl.C
... 39.6...
36. fe
30.5
33.0
36.0
37_._4
47.5
54.4
56.9
55.0
52.2
48.8
47.7
HEAK.K2
56.8
51.*
50.3
45.7
ti'i.a
46.4
44,6
52.5
60.8
6ft. 4
53.2
50.6
32.9
27,6
25.1
3U3
39. fl
47,2
57.4
64.2
67.3
60.8
Sfl.O
36.2.
3«!s
30.8
27.3
43.5
49,9
71.8
52.4
35.8
27.5
22.7
26 '.5
30.8
36.4
34.2
38.8
36,3
33.6
32,7
33,3
37.5
29,4
29,4
26.6
2.4 , 7
3lU
41.0
73.1
53.0
36,7
25,5....
19.2
39.7
35.5
27.4
31.7
.31,5
26.9
26.3
24,8
26,5
27,7
CCR
,668
,547
.686
• .723
.621
.621
.462
.511
.775
.553
.429
.406
.593
.703
.265
.725
.633
!?40
^650
.7C8
.638
,616
PAT102/
" U1P2
1.172
lI'MO ".
1.1*0
1.078
1.0«6
1.057
1.0P3
1.131
1.252 . ...
1.230 .
1.135
d'fefiy
0^90
1.002
l.lfcb
1.214
l|'230
1.216
1..177 ...
...
SO^Ml 3D.P2
36.2
43.0
36.9
36.5
37.0
52.3
"..35.4
44.7
54.4
79.7
72.1
- 53.3
_.__.36,6
22.2
22.6
28.1
30.5
42.0
38.7
44.4
46.0
42.6
38.7
33,9
33.6
40,2
35,6
34.6
46. 7
36.4'"
54.5
60.3
60. R
101,3
24. C
~"2b.G
18,1
18,7
21.9
£8.2
37.6
43.1
43.3
35.2
33,4.
CCR
,655
jji66
.662
."763
.444
",7"o'0
.621
.P12
.878
.768
.395
.770
.346
ifc87
,679
.tbB
""".592
.655
.760
.766
.720
."56
RATIO
1.152
1.167
1.094
1.075
1.U91
i.'lft?
1.073
1.021
1.14B
l.OOP
1.260
1.2^2
1.041
U066
l.Obl
1.1P4
1:130
1.140
1.154
l.iev
1.156
-------
F-3
Table F-l (Continued)
HGUR
i
2
3
4
5
6
7
6
9
10
11
12
"'" 13
14
'!*
16
17
18
19
~ ""20
21
22
23
24
HOUR
N
136
136
136
134
131
131
133
135
131
128
129
134
135
132
135
132
131
131
127
136
141
139
138
N
56.2 __
53.3
51.4
47.2
45.5
49,6
46.6
53.3
56.9
48.5
40.0
41.9
35.?
27.7
27.5
32.6 .
37. fc
44.8
57. fc
71.8
67.2
66.3
59.3
59,3
PEAN..HI i
'E*M<2 I
46.1
42.5
39.5
36.5
34,5
36.2
36.3
43.4
44.5
47.1
39^5 .
33.8
31.6
31.5
27.6
31.0
31.1
4) .0
50.5
57. fl
55.2
bi.9
47.6
45,9
METHisTEO
METhc
>D.K1
66.6
67.6
70.8
68.1
.6.1...5
86.2
68.5
67.6
75.5
46.5
83.9
37.1
20.4
19.2
53.3
46.9
36.3
42.9
73.6
69.8
70.3
65J.
68.2
HETH2
5D_Ml
SD.K2
31,1
33.7
30.4
30,5
22.7
30.1
38.5
62.1
42.3
28.4
25,9
58.5
32,1
42.7
19,8
29.1
25.6
27,8
27.8
26,4
27.3
25.9
SU-N2
CCR
.15!
.441
.545
.464
.647
.385
."32
.603
.651
. 5 14
,39ft
,742
.184
•J!37
!?20
.606
.613
.462
' .547
.417
.464
,468
CCP
FATIO
. 1.220
1 .2*J4
]2PO
.302
. .373 ..
.2P1
.229
,«:70
.030
1 .£40
1.111
C.879
1 1 056
.206
.001
.140
,259
.219
.276
1.291
RATIO
.._ ..
2
3
4
5
6
r
e
9
10
11
12
13
" 14
15
. 16
17
18
19
20
21
22
23
24
117
117
118
119
119
116 ~
116
104
94
86
65
68
"95
106
10"
109
112
112
119
117
117
119
71.2
69.6
67.4
62.9
59.2
66.6
65.2
68.0
78.1
66.6
74.2
57.3
40.7
36.5
37.2
50.4
64.7
79.0 ''"'•""
78.6
79.1
81.4
•7U« '
4«>.8
49,3
46.1
43.7
42.4
48.7
46.0
46.8
4H.7
44.7
37,1
29.2...
29.0
31.6
3?. 5
42. k
53.4
57*7
53.4
53.2
50.7
40.2
70.2 _.
74.7
78.7
81.3
73.5
87.6
63.6
72.8
86.2
61.7
77.3
51.0 .
35.3
30.5
34.7
36.0
flO.5.
41. c
46.3
59.3
63.7
76.1
7ft. y
51,5
51.2
62.5
55,1
54.8
66,2
68.7
48.0
64,3
56,4
39.0
32.2
25,4
22.8
27.3
30.0
30,0
34.8
.41. 7
39,7
55,4
57,7
,816
.7*7
'.B34
.756
,853
.727
.841
.728
.695
.369
.671...........
.666
.770
..793
...*753
.640
.575
.833
.866
L'428
1.412
1.402
l!3cb
1.409
.357
.'453
.605
.493
faci
1 ,b4b
1.3*6 ....
1.178
1.240
1.207
1.1C3
1.212
1.477
l'.605
1 ,4?1
-------
t'-H
Table F-l (Continued)
HGUR
i
2
3
4
5
6
7
8
9
10
11
12
13
14.
IS
16
17
16
19
20
21
22
23
24
HOUR
1
"2
3
4
5
6
7"
6
9
10
11
12
" "13
.'"" 14
15
16
17
18
" 19'
20
21
22
23
24
N
126
121
122
121
123
122
122
121
106
90
69
83
90
94
103
102
114
117
119
120
125
124
121
125
N
144
139
140
143
141
140
141
133
131
133
136
139
136
135
132
134
135
141
135
1U2
143
137
76.6
72.3
65
63
64
69
69
66
71
75
61
59
43
35
35
38
39
46
56
72
61
90
66
72
02
40
39
37
33
37
36
39
42
39
35
29
27
27
.4
.4
.7
.7
Tl
.4
.9
.9
.9
. 7
t -*
£
!s
.5
.1
.6
.6
.9
.1
• c
• 6
TE=633
.6
.4
.2
.1
.8
,5
.7
.1
,5
.2
.6
.6
.1
.4
27.0
28.6
31.3
35.7
40.9
U6.C .
51. c
51.2
47.1
49.5
aa.fe
43.2
38*1
41. t
40.9
4ft. 7
48.0
46.4
49. C .
35.2
.. 29. C
£6.2
27]fl
27. ft
3?. <> .„_
3°, 9
46.0
56.0
59. *
50. 1
ME7H1=1EC«
J C A Ik. L) ^
C- *_p •» F* f-
43.9
41.2
39.5
37.4 .
30.3
41. 6
40.5
40.0
40.0
46.5
36.7
31.5
24. e
26.2
28.2
28.1
31. C
35.3
45.2
49/4
49.3
50.7
U2 42.6 4U.6
3D-M1 SC..K2
73.8
7u.e
69.9 .
78.9
64.8
68.6
65.9
72.7
59,2
69.5
86.2
54.3 ...._...
33.9
..31.2
30.9
38, fi
40.9
« i.e. _
39.9
57.6
61.3
79.2
79.6
7 0 . i
tttt.2
41,2
61,3
41.0
36,6
27i3
33,7
47,1
50.6
24,9
22,2 _
16. P
19,1
22,9
20,5
26.5
?.S, 0
41,4
61.9
36. 3o
...*20
.542
.600
.6.68...
...571.. ..
.761
.fi29
,*7fc8
.724
.706
.647
.576
t Id t»
!?12
kfj £
.537
,'SJfl
.435
L.fc&b
.696
.702
,675
]634
..67L _
.701
,bC6
.357
.431
.401 .
,466
.576 """"
l!si2
1.693
I,b79
CCR RATTG
,661 0.975
.747 0.980
.712 0.9C2
!726 o'.931
.7V3
.555
0,902
0.906
,fc33- 0.956
.510
.644
.'561
<440
.571
.367 '
.342
.351
^464
"".473
.301
.279
.536
CJ970
0,938
[\Hl |
0.^58
1.0r4
1.0C9
1.011
0,905
O.S33
1.036
T.OP7
C . 9 ? 6
-------
F-5
Table F-l (Continued)
HOUR
SlTEa832 METHle7FC4 ^ETH2sCHEM -•"
3D-Ml 3C-.M2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17
18
19
~" " 20 "
21
22
23
24
132
136
132
132
133
122
126
119
107
85
75
90
109
115
122
126
128
133
..„..,„ »133".
125
130
132
130
102.6
10a.ii
93.0
69. U
82.0
65.7
_ 87.9
91.6
106.7
125.2
.iio.fi.
107.9
106.3
88.5
60.3
63.8
102.5
118.1
126.5
132.7
131.6
122.5
123.6
.. .1.09.6,
81.9
?(• ,C
71.3
68.7
64.2
64.7
66.6
76t«
67. fl
97.1
68.0
93.3
fifr.t
74.6
76.2
66. P
102.7
106.0
113.3
106.1
101.3
St. 7
66.0
.54.5 .
8.6.. 5
52. C
.50.9
46.. 8
78.7.
...79.6
uo.e
57.6
102.9
.J.?.Q_.3
106, fi..
8.2_a_H
70.7
79.0
100.1
96.0
102.8
""75.2
77.5
66.1
67.7
.5.7.1
44.8
41.5
36.6
37.7
33.fi
.... 34.3
35,1
.37,4
.52,0
71,6
73.6
03,8
60,4
78.4
60,6
66.4
68,9
72,4
70.0
"67.7
71.1
62,5
57,5
... 53,3
.7fc9
.517
.769
.708
.759
.391
.418
.788
!?43
.767
.793
.640
.90?
.826
.775
.727
.72?
.7c7
"' .902
.676
.671
.669
.660
I.'i53
—J..375
1.3Pb
1**77
1 3?4
l.cfcU
1.19B
l!*P9
1 . 1P7
l.'UO
1.022
1.076
l.JCO
i.ieo
1.150
1.171
i . 1 7 1
U209
1.2PO '
1.245
HOUR
1
2
3
4
b
6
6
9
10
11
12
"13 "
14
15
16
17
16
"" 19
20
21
22
23
24
N
"""'73 ~
"""73 "
71
73
66
74
63 ~
65
66
69
52
40
46
'" 58 ~
66
64
77
72
77
71
69
69
66
69
PEAK-MI
96.9
66. 6
64.1
62.6
73.6
72.3
75,6
63.4
91.5
95.9
69.5
66.0
91,6
71.9
75.0
79.7
101.5
120.7
125.7
126.7
126, a
115.7
111.0
101.7
;*832D ^ETH
^ •" A Lt U ^
1 C /* *^'^M ^ C
103.0
93.8
66.6
65.6
77.6
79.5
65.7
87.8
97.8
103.5
104.1
100,7
105.9
66,1
65.8
93.0
117.6
132.7
136.3
139.5
137.0
122.3
Hfc.3
110.1
1*7EC4 KET>-
55.1 .
45.6
41.0
38.3
34.9
33.2
39,2
36. f.
40.1
64.2
80.3
9?. 9
96.9
70.4""
79.2
84.3
104.1
106.2
95.9
80.2
62.6
6B.8
66.9
63,7
K2
62,2
51.0
45.3
42.3
39.0
39.7
46,6
46.2
52.3
75.7
99.6
10b,6
109.1
6 1.0
84.3
96.1
113.2
106.5
94.7
96.6
79.3
79.2
74,3
CfR
f916
.684
,867
.833
.650
.862
.695
.E56
.886
,925
.960
,98e
,962
".960
.937
.969
.971
.961
.955"
,952
.9*4
.910
,941
,942
D A V T ^
^ ** * » w
.941
,«!47
.949
.066
.949
.910
"'".86?
.sbO
,9e6
.660
.P54
.667
.P34
!esa
.663
.910
.I.;;.92?..; ;..
.923
!939
.923
-------
F-6
Table F-l (Continued)
HOUR
1
2
3
U
5
6
7 '"
8
9
10
11
12
13'
14.
15
16
17
18
19
20
21
22
23
24
HOUR
~ J-
3
4
5
6
" " 7
8
9
10
11
12
13 '"•
14
15
16
17
18
19
20
: 21
22
23
24
N
103
98
103
98
99
90
76
63
70
66
70
77
63
60
89
92
92
99
98
ioo
103
101
105
.'7.
N
30
""30
31
31
30
31
"30
30
31
30
31
31
31
37
10
32
46
42
tiU
39
29
29
30
------ Sm = 64l
106.1
_ ...07..7
89.9
P8.J
77.7
76.0
72.3
76.6
99.3
116.6
105, A
84. £
76.6
75.2
73.3
66.1
102. 3
124.8
140.3
142. U
139.1
129.7
122.2
MEAN-MI PE
64.P
62.9
59.1
57,5
56j6
65.3
56.2
61.7
62.0
60.8
59,6
60.5
56.9
54.7
53.2
58.9
6C.5
70.1
70.1
67,2
65.6
66.6
68.1
66.0
METH1M
'E*N.f<2
... .95.3
86. J
78.3
76.9
..._ .6_9.. 2_
67.6
67.6
84.6
104.7
90.5
93.5.
. 90. 9
96.2
9P.c;
108, J
u?.<;
116. e
123.5
120. fl
115. c
109.0
101. <;..
METHisT
60.3
77.9
75.3
72.5
72..0. .
69.7
74.7
77^L
78.0
61.6
63.6
83.2
63.0
6?. 2
65.5
63.8
93.6
91.3
90.3
66.0
87.7
84.5
87.2
Pti»5....
IFCfi PETH2
SD^l
_....; 55.2.
_5Q.4
59.4
54.1
48.8
.48.2 .
50.7
97.*?
110.0
66.5
. 123.4
.... 106.6
101.7
90.1
74.1
75.9
78.7
99.3 "
97.9
lOc.e
106.6
98.4
SD_f2
49.0
«5.5
48,9
45.4
42.9
... 42.4
43.7
•42. .8
51.4
64, U
53.1
64,2
55,0
5?. 7
53,9
60.2
73,2
65,?
55.6
" "59.3
59,3
57,9
55.5
49, 6
.SD.JH SD-N2
35.2
35.0
36.1
36.2
33.7
63.2
. 30.2
31.2
31.1
29.0
_ 30.6
32.2
30.9
29.2
86|7
29.3
31.7
28.9
29. U
37.6
37.3
40.4
37.9
29B1
29. a
33,3
33.8
32.6
26. S
26.5
29.0
25.6
22.9 ,
27.3
26,6
26.4
24.6
26,0
41.1
41.1
29.7
27.2
25.9
33.7
30.2
30.7
28,9
CCR
.797
.761
. .795
.777
.790
.862
.660
.P'03
.384
.383
344
341
.554
."74
. .437
.506
.490
.467
.4C6
.522
.569
.591
.571
.59 a
CCR
.860
.672
.865
.833
.216
.750
.7(9
.706
.662
.678
.750
'".698
.454
.772
-.006
.583
.749
.659
.878
.867
.866
.874
.855
RATIO
1.114
1 ." 13 4
1.149
i;us
1.121
1.121
1.070
1.099
1.170
1.114
1 '060
1.059
0.907
0.762
0.733
0.615
C.906
1.066
1.137
1.1 B3 :
1.206 .
1 . 1 *» 0
.1.1*9.
.607
r 607
.785
,79a
.786
.937
.'780
.'SCO
.794
.743
.712
.727
.685
.665
.622
.704
,6fl7
.767
.776
.782
|789
.7P2
.781"
-------
F-7
Table F-l (Continued)
HOUR
\
2
3
u
S
6
7
6
9
10
n
12
13
14
15
16
17
16
19
20
21
22
23
24
N
66
66
frfc
66
64
63
62
6 4
60
31
50
67
66
66
62
66
66
73
75
76
74
73
72
72
MEAN.MI ^EAK.^ • SD.M so.M2
49.1
42.7
36.9
37.6
39,2
45.2
52.6
55.2
51.6
44.1
45.9
42.fc
39.4
42.4
42.0
43.8
uti.e
51.5
57.5
57.0
59.fe
58.5
54.4
49.4
45.4
40.9
35,0
35.7
36.8
. ... 40.7
46,4
52.2
52,0
47.0
492
.720
...... .6.13 _
R*TIC
I,ob2
i .ru4
l.OSfl
1.053
l,06fc
1.110
1.087
t .057
0.°9!
0.«39
! .032
fi.963
O.«f3fe
0.96?
P.9c3
0.91B
0.9bti
1.006
,r.3fl
.010 ""
.001
.0^2
,f)77
,..077
-' 1 - midnight till 1 A.M.,2=1 A.M. - 2 A.M., etc.
21 R . MEAN _ Ml _ Method 1 mean
at ° ~ MEAN _ M2 ~ Method 2 mean
-------
F-8
Figure F-l .
Diurnal Averages for CHEM and TEC4,
Site 632
150
125 J
100
75
50
25
00
-------
F-9
Figure F-2
Diurnal Averages for CHEM and TECH,
Site 632
150
125-
100.
75.
25"
X - CHEM
o - TECH
i • i i i 1 i
00 02 04 06 08 10 12 14
noon
TIME OF DAY
—i—
16
18
—r~
20
22
00
-------
F-10
Figure F-3
Diurnal Averages for TECA and TECH,
Site 632
TIME OF DAY
-------
F-ll
Figure F-4
Diurnal Averages for CHEM and TEC4,
Site 633
150'
125-
100
75
00
3.
0 .
T 1 T-1 1 1 , ,
00 02 04 06 08 10 12 14
noon
TIME OF DAY
16
-r—
18
20 22
00
-------
F-12
Figure F-5
Diurnal Averages for CHEM and TECH,
Site 633
150 '
125 '
100 '
75
M
3.
50 ~r
25 1
00
02
-------
150 '
125 J
100 -
75 -
06
3.
50 -
25
F-13
Figure F-6
Diurnal Averages for TEC4 and TECH,
Site 633
• = TEC4
o = TECH
00 02 04 06 08 10 12 14 16 18 20 22 00
TIME OF DAY
-------
F-14
Figure F-7
Diurnal Averages for CHEM and TEC4,
Site 901
150 -
125 -
00
TIME OF DAY
-------
F-15
Figure F-8
Diurnal Averages for CHEM and TEC4,
Site 902
150
125 -
100 '
75 •
M
a.
50
25 -
x = CHEM
• «= TEC4
00
02
04 06
08
10
12
noon
14
—r
16
—r
18
20
22 00
TIME OF DAY
-------
F-16
150 -
125 -,
100
75
oo
50
25
Figure F-9
Diurnal Averages for CHEM and TEC4,
Site 832
x = CHEM
• = TEC4
I 1 1 1 1 i 1
00 02 04 06 08 10 12 14
noon
TIME OF DAY
16
18
20
22
T—
00
-------
F-17
150
125 -
100
75 -
oo
3.
50 -
25 •
Figure F-10
Diurnal Averages for CHEM and TEC4,
Site 841
x = CHEM
• = TEC4
I 1
00 02 04 06 08 10 12 14 16 18 20 22
rioon
00
TIME OF DAY
-------
150 -
125 -
100 '
75
50 "
25 -
F-18
Figure F-ll
Diurnal Averages for CHEM and TEC4,
Site 832D
x = CHEM
• = TEC4
00 02 04 06 08
—i 1 r——
10 12 14
noon
TIME OF DAY
16
—i—
18
—i—
20
—r~
22
i
00
-------
G-l
APPENDIX G. REFERENCES TO THE VALIDATION AND CALIBRATION PROCEDURES
USED BY EPA
The following memorandum, provided by EPA, designates the EPA references
describing the N02 validation and calibration procedures.
-------
G-2
The general procedures to insure validity of Chess data are con-
tained in the following:
1. CHESS - CHAMP Concepts, Methods and Equipment, T. D. English
and F. B. Benson, 1/31/72.
2. Quality Control Systems for CHESS Program and CHESS - CHAMP
• •>
Program, T. D. English and F. B. Benson, 1/31/72.
3. Computerized Flagging of Unusual CHAMP Data, T. D. English,
9/1/72.
4. Modification to Computerized Flagging of Unusual CHAMP Data,
T. D. English, 9/6/72.
5. Constants for Flagging of Unusual CHAMP Data, T. D. English,
9/25/72.
6. Status of N02 Comparison Study, T. D. English, J. M. Sune
and D. 0. Hinton, 12/1/72.
7. Investigation of Bias in Garden Grove Duplicate NO- Measure-
ments, J. M. Sune, 1/26/73.
8. Problems in NO Measurements, T. D. English, 3/31/72.
9. Discontinuation of NO Sampling, W. B. Steen and T. D. English,
4/19/72.
10. Data Validation, T. D. English, 11/7/72.
The memos "Data Validation" and "Quality Control Systems for the
CHESS Program and the CHESS - CHAMP Program" contain the essence of
the validation procedures.
-------
H-l
APPENDIX H. DAILY DATA LISTING BY SITE
On the following pages is a listing of the daily data (in ug/m3)
that RTI received from EPA in July, 1973. The listing is by method,
site, and day and covers the time period July. 1, 1972 to April 30, 1973,
The site codes are the following:
City and Site Codes
Code Location '
Chattanooga (6)
32 Briarwood Drive ^Hamilton County)
33 Hickory Valley Road (Hamilton County)
St. Louis (9)
01 South 12th Street (St. Louis County)
°2 South Hampton Street (St. Louis County)
California (8)
(8) 31 Anaheim
•(8) 32 Garden Grove
(8) 41 Glendora
Day 1 is July 1, 1972 and Day 305 is April 30, 1973. The method codes
are given below:
-------
H-2
Assumed
Collection
Methods Efficiency
(1) Federal Reference Method = FRMF (35%)
(2) Chattanooga Health Effects Study = CHESSO (35%)
(3) Arsenite Method (straight tube impinger) = CHRO (85%)
(4) Arsenite Method (fritted bubbler) . = CHRP (85%)
(5) Triethanolamine (fritted bubbler) = TEAF (100%)
(6) Triethanolamine-Guaiacol-Sulfite^' = TGSO (100%)
(straight tube impinger)
(7) Continuous Saltzman (Chattanooga) = TECH
(8) Continuous Saltzman (Technicon Mark IV) = TEC4
(9) Chemiluminescent = CHEM
In site 832 (Garden Grove) there are duplicate measurements (denoted
by 832Dup) for the eight monitoring methods present in California start-
ing on Day 99 (October 7, 1972).
In the listing
(i) "Daily" averages for the continuous monitoring methods
are computed using a time period matching the times
during which the bubbler methods were in operation.
(ii) * = value not shown because it was below instrument
detection limits (there are eight of these cases).
(ill) At the present time no validated NO or ozone data has
been given to RTI by EPA; therefore, these readings
are not given here.
(iv) The data is listed to the nearest .1 of a ug/m . However,
EPA personnel feel that the data is only accurate to the
3
nearest ug/m . The reason that one decimal place was
reported was due to the conversion from ppm to
-------
Table H-l. 102 HC^ITORING PETHCOS CCMFAAICON »• OAILV C*T» LISTING
;! •
'j DAV fOff TEAF CHff Chfte
'!! ' ' 2
•i 3
'! *
•i 5
•'.. .. . »
•-i 10
11
f " 14 "" "~
H
CMESSC TPSO TECK TEp4 t*t*
50.3
37. '6.
30 !«
5U.3 ,.-.
38.9
Sfclii
139.0
!"
>'
•"
h
*'
i:
li;
i'
I • - - .- _
;•
,'u
«>
fi
!"[
H
H
l>.
11
i
«
14
15
17
18
14
27
28
29
30
31
32
33
34
35
36
37
39
40
40
as
U6
07
48
50
51
52
93
95
56
97
98
59
6*0 ~
6!
62
63
64
69
M
20.
27.
47,
55.
66.
38.'
«3.
36.
65.
6".
66.
23,
34.
21.
36.
_ «.
32.
33.
. 18.
24.
30.
_ ?«.
28.
50.
53.
«S.
51.
34.
35.1
29. J
77, <
86. (
58.;
> 13,5
4.4
9.6
21.3
18.4
15.0
22.0
J2.3.
19.9
25.0
35.2
25.7
14.4
22.9
11. G
14.8
25.7
16.7
22.0
16.6
15. »
14. S
24.4
" 20.0
38.8
60«4
23.4
25.0
13.4
12.4
14.2
40,9
St. 6
39.4
30,?
n.
11.
1?.
30.
24.
24.
23.
21.
25.
20.
2C.
35.
"1.
3*.
14.
13.
23.
13.
25.
»7.
20.
15.
21.
18.
57.
54.
27.
28.
1C.
IB.
16.
51, It
76. J
m.'<
to.
12.
11.
29.
23.
21.
24.
16.
25.
IP,
22.
34.
43.
35.
14.
9,
10.
14.
iT,
12.
28.
23.
24.
19.
28.
24.
42.
48.
2(.
27.
17.
16.
13.
St.
81. i
33. <
2*!l
20. 1
7. «
21.5
20.3
34. J
23.5
25.4
2fl.U
34.?
4.6
34.6
24.!
30.?
25.7
32.?
27.3
26.6
17.4
1".?
15.4
35.0
.J?,T .....
13.8
17.7
32.3
1*.!
18.5
1!.J
15.7
11. k
33.2
43.9
36.?
.. . 3(,9 .
56. a
139.0
70.9
"3.3
17T.3
5e>:a
45 .'6
3«.2
44.5
66J9
55.4
SB. 5
46. "0
50.3
76.S
Bl.>
«S.l
.... ..57..?
23. i
50.1
52. S
48"*4"-
70.0
135.7
si:i
31.5
34.5"
16.8
87. 9
96.9
99.8
96.8
17.8
11.0
42.4
30.7
40.2'
33.7
32.6
50.7
25.6
62.1
b5.3
54.4
28.2
45.0
24.1
46.5
81.2
54.2
.«0.2
34.3
4.1.4
41.0
71.6
100.4
35.6
43.4
24.4
14.8
16.2
..»«,7
44.1
71.5
71.3
ff
-----a
-------
NC2 HCMTCPIN'C- KCTHCC8
— DAILY C»T» LISTUB
III
j
1
'1
ll
•1
n
.1
P
h
b
t
E
b
!••'
•"
i"
H
u
J
V
"i
B
H
j
DAY
66
67
70
71
72
73
78
73
76
77
78
79
80
81
82
83
88
85
86
87
88
69
90
91
92
93
98
95
96
97
98
99
too
"for
102
103
104
105
106
107 J
108
109
110
111
112
111
114
115
116
117
118
rt»r TE*F cf.fi
55. 5 4B.3 36.'
22.0 13.2 r*,'
17.6 10.2 13.
27.9 21.2 92.
35,8 39,9 29.
31.8 25.0 25.
13.1 7.8 8.
ST. 3 25,1 r 23.
97.8 40.3 02.
56.9 28.7
S.0,.6 _ 39.3 . 39.
28.2 IB. 6
46.0 30.7 33.
107. « 68.3 75,
32.9 24.2 26.
59.5 36.7 Ed.
48.8 27.8 22.'
82.3 29.2 28.
67.1 35.0 39.'
69. (1 39.7 flBj
53. A 25.6 81.
63.2 45.5 87.
72.9 (18.9 52.'
04.0 15.3 28.
43.9 24.2 33.
55.0 27.1 (iz:
ai;r " I87a~ 23;
22.8 13.0 13.
52.9 31.7 30.
101.8 53.8 54.'
*3.2 38.2 (l|.
43.9 17.0 It.
46.1 26.6 27.
39.7 11.4 IS.
35.5 * 22.
57.7 33.0 ao.
SG.7 16.1 23.
75.8 29.3 40.
66.6 28. 37.
00. 48."
67.6 36. 32.
"*6".l 28. — ?9.
76.1 36. 33.
68.0 29. 30.
~6B.3"~"34. ~ 32."
57.6 42. 38.
20. 16.
84.0 42. 62.
72.5 a«. 55;
52.3 22. 24.
32.9 14. 15.
36,3 13. 12.
52.1 18. 28.
'._. .CKSC
S 36. i
r . i.t,'i
12)1
21 :•
33..
27.
8.
.. 24.
83.
M-
19.
3*'.
2s!
29 \
36
42,
32!
S3.
a6:
24,
25.
33.
21 :
3".
68,
52."
27.
34 :
18,
24:
82.
19
36 1
42.'
sa:
26:
34 :
. 3»'.
31.
29.
_ 16.
57
63.
33:
24;
25.
r 38.
1 ChESSO
! 40.8
!. _23.6
r 18.3
"6.7
26.1
1». ,2
U2:3
42.8
4*12
28.6
63^6
56.0
78.7
»v»
32.0
33 ;•
SB;?
43.0
82.8
39.9
35.3
25.2
10.3
SO.,5
39.8
ss.'s
D
S 4.7
B ?>..?. .
' 26,5
b 26J6
42.1
)
I T7.1,
D 4U6
a 51.3
! U6.T
J flO.S
S 30,8
B Ifc.'t
3 88:9
B 39JJ
5 61.6
I 60:9
S 16 .'6
U 31 J7
Tssr
3a'7
26. 'a
36.9
28. S
29.0
27.3
38.9
29,3
93.5
78.8
81.6
52.0
28.7
,.32:.a
ia.8
36.1
sa:b
is :l
28.3
28.8
26. '9
2S|7
15 .0.
85S
22 .'8
18.1
11.0
_1?.,5.
TECH
69.'9
30.7
20. «
47 .'4
26.0
""~§i^T~"
Bl.'S
39.8
55.2
53.7
67. B
20.9
12.8
26.2
55.7
6s!e
ib!o
35)7
68.' 3
6(1^3
60.1
36.0
SB. 6
35,9
3e. a
3(1.0
41.4
36.6
U. '5
69.7
18.6
36.7
6
60.4
37.1
.38.3
07.1
44.3
132.0
30.
..24.
35.
57.
. 55. . .
89.
73.
73.
36.
53.4
SO. 5
54.9
53.7
88.5
102.5
71.0
53.2
68.9
54.8
60.2
96.3
64.2 .
130.1
16.8
32.8
" S*.J "
15.1
S3. 7
™
76.9 ... .
22. (
3«.t
30.3
19.8
3J.O
*9. A
71^5
70.6
36.6
35.8
at.!
11. a
29.8
5(1.0
ae.7
*.a
17.6
3.9
13.0
88.2
20. ft
59. P
66. a
73.0
51.8
86.9
56.0
57. P
56.5
51.0
30.8
68. e
ei.2
38.8
J
1
•
1
•
Jl
-
r>
-,
i<
^
•
43
tt
a
*
j
11 i
:
-------
NC2 HCMTQPING KETHC08 CCHP*«I«aN —
i
i
i.|
'I -
»
Is
V
-11 •
I,
i;:
£•
IT?
LS
,?.
i
•>
h-
r
-
.»
i
r
P
1 i
c
Hi'
u
|i '
(•*
ir
11
M
LI
k.1
DAY
120
121
122
123
124
125
126
127
128
129
130
131
132
113
134
135
136
137
'138
139
140
142
143
\UH
' 145 -
148
149
150
" isi
152
153
154
155
156
157
158
160
161
162
163
164
165
166
167
168
169
170
171
63.0
88.3
62?2
70.5
40.4
39.6
67.7
56^9
55!l
67.1
60.4
67.8
T34.9
sell
35.5
22.7
40.3
76.6
59!l
26.6
93.4
307.2
101.6
_1«0.,2
144.8
119.1
36.6
21.3
28.2
24.1.
22.1
27 ,Y
26,9
52.2
20.' 4
17.7
27.6
40^3"
24.6
27.3
4b,6
22.1
24 !>'
10.4
31.4
22.4
42.6
49,0
44.2
26.6
18..?
10.6
34.0
33'.7~
40,6
41.5
67,8
51,6
12.4
12.3
76,9
CHRP.
20.5
22.4
3?!*
2 US
40.6
24.9
19.9
3?. 8
30.7
46.1
30.4
3?. 2
107.3
30.2
...27,3.
27.6
13.4
36.2
27.1
44.4'
53.2
36. t
16.5
36.6
"" 30*,4
24.6
36.6
28.7
(16.3
30.2
18.2
13.6
bC.i
tHfte^ cKEsar TGSG
36.
I?..
21.
30.'
27.
22 '
21.
.26.
4?.
22.
. 17,
20.
29.
.23.
42.
27.
29.
if'.
23.
23.
10.
3!.
22.
47.
54,
32!
21.
is.
33.
57.
39!
32,
38. e
73.1
45,1
22. 1
!«.'
52.?
. JO...?
21.8
23.4
22.5..
47.7
$26.5
> ... -I«S..
-------
V
i
4
\
\
•
I
7
i
f
1
i-'
••
.•j
i.'
V
••
p
fi
•1
N
P '
ti-
ll .
0»Y
172
173
175
176
177
178
179
IdO
181
162
103
185
186
187
iaa
190
142
193
I9tt
- ,,-j -
196
197
Iff
199
200
201
202
203
"" 2da
205
ao6
" 207
208
209
210
2i»
212
213
214
215
216
217
218
219
220
221
2S2
223
224
PBMF
tIJ.l
60,5
72!9
78.2
• 1.6
73.1
29.7
69 '. 1
58.8
50.4
31.9
59. tt
~61.4
43.1
55.6
T7.7
80.6
76.8
- 8671
92.6
51.7.._..
58.3
7(1.6
24.5
32.5
6.S
60,4
86.9
.....Ktl.. -
36.3
38.5
64.0
32.0
SB. 9
• 9.8
76.8
02.1
68. 6
30.2
*
TE»F
77.5
38 L4
25.7
25.2
17.1
36.4
20.0
25.8
27.6
29.0
13.6
16.1
32. a
iB.e
25.9
a7.6
20.3
26. a
42.6
as. 9
23.3
36.5
28.0
17.2
20.6
23.9
39,7
25.5
27.8
18.0
20.1
14 7
20.2
15.7
36.0
as. i
25.8
20.9
02 MCMTOR:
,e«,9
31.1
31. a
lu'.t
23. a
29|3
Zl'.t,
22,0
ai.s
17.6
J0.7
52.8
25.1
35,5
" 55,1"
56, fl
£9.8
" "37.8
33.1
21.5
23.2
a3,2
a«li
27.3
32,6
49,9 _
2B.a
..20.5
52J2
29. a
39.3
7C.?
38.*
33.5
7.6
38.6
26.2
23.1
otla
57.3
31.5
9! •
45.6
30. 1
35,9
56.5
29.?
54.9
63.3
37.6
39. a
ai.5
27,1
23.9
26. e
58.1
32. t
31.9
20.2
23.9
21.6
23.5
41.*
36 '.9
VCD3 CCKP4B
CHfcJSC
65.1
B".-*!
9.5
31.9
101.1
26.8
11.4
25.8
3*. 2 .
23.0
2*. 3
ZS.B
ft*. 3
13.6
30.1
eft. 6
33.1
33.7
50.9
05.6
.... 32.8
5!. 7
30.6
15.2
32.8
27.4
3.6.1
8.5
26.9
30..7
2?. 7
83.0
25.9
24.7
2^,6
17. a
3?. 9
33.1
37.5
11.0
._. .. .6.8..
ISCN *" P'
Teac
4fi.S .
29. P
18.6
16,2
15.9
12.6
33.2
17.3
22.7
12, a
25.8
_ 27..B
20.?
.!**«
25.3
15.5
24.2
33. B
23.2
38.5
36.4
22.2
22.6
... 12.5
15.9
26. a
26. ft
29,7
19.5
20.0
is. e .
21. e
1LY 0*T1
7ECt<
100,7
48.7
49.6
a9,6
52.7
a2.7
51^3.. ..
IS. 8
46.6
27.3
59,0
27.3
39. C
29.0
46.1
53.9
39.0
98.9
120.3
Kb .a"
62.9
.30.5 ..
ao.4
56.4
79^0
83.4
56. 1
66,0
LISTING
7ECO. ..
-6j!j ....
2i!o
26,9
24.8
51.4
36,5
11.2
38.5
60.7
35. 0
32.6
61.6
62.9
36.9
36.1
34.9
32.4
... "6,5. .
51.4
35.7
ao.l
25.0
24.
24.
34.
15.
33.
61.
55.3
117.8
i
_fcHeM ;
flT .9 _ ._ ... _ . 4
afi'O
05 2 *
44 0
K*i
Zl*
l?: -
21*7
36*1
JO \
2*;«
ao%6
aaja • •=
u\\l
71*1
I6t2 • ._
aO .3
a 1.8
z-^l
27^2
U$ 0 *
4 9 £ •
alj'6 . . . . .....--
2t,5
9 0 it 3 *
zjl;
31,3
63S ._ . ..-
3«.l
fl3.'9
13J7 .. . .._ ..
-------
ft
M "
"i
t
,
I \
: .... -.
, '•
• " "*"' ' ' ' "" " ~~~" " "~ " ~ " ""
.
— - __ —
!;-
i-,.
• — • • ' — . —
t.
i
r -
•..•
k
i
-• - —
a
/•
fi ' •'
tr — •
i
j -
i
L.1
-
225 30,8
227
« 4 71,0...
254 62.4
231 24.8
2J2_ I.5...S. ....
2J3 15.4
234 47,7
216
?J8 _A5.0
240 52.7
2«1 71,1 _
2il2 A3. 2
243 82. T
SHU 6C,U
2U5 55.0
2«6 88.0
247 10.4
"~2Ya S4.7
2(14 67.6
250 ._ 62. L-
251 53.4
252 62. «
. .._ 253 32.5 .
23« 11.7
255 «d. 6
15* _ 6J.1 ...
257 83.8
251 11. I
>GO Ofl fc
" 2bi 76. T
264 fl».l
269 42.2 .
26* "«,*
267 75. S
268 25.8 ...
264 53, a
270 71,3
271 54. S
272 21.6
273 7|. J
27! 6*. 4
276 31.2
27T 5«.0
274 16.1
280 81.fi _
,„
I£*JF _
M.I
13.5
10.2
24.2
ME
27.1
13.1
.14.1
3tl!s
23.5
26.4
ir,*.__.
92.1 ,
36.3
10,7 . .
21,3
17,5
33.1
26.4
33.5
31. b
_J",B
ZZ.l
27.9
7JB
2«.6
az,7
15.2
1*,C
15.7
tT.?.._
|4.4
24.1
13,3
23.7
13.*
22.8
..* »..*- _
20,0
32. i.
4T.3
18.6
»*•!.-..
KCMTO»1
35, «
21 .4
!7.1
li«.e
kfi t
««.?
28.5
•a !s
76. 7
35, e
33. *
..«0. 5.
56.4
66.5
53.2
34.3
45.it
tt.t
4U6
37.5 .
7*. 7
<|B .9
54.2
60.4
ib.7.
38,0
_a4,»
ta.t
18,8
14.6
ZU"
22.8
2T.4.
32.8
st.o
30.5
#4.3
50. b
24.5
27,1
17. B
45.1
ai.s"
2*.«
W6 fC7
. CVRC
31.5
55.3
U5.B
^s e
il Q '
25."
Z2.5
Jb".*
27.4
38.5
8'i.B
fciib
3^.4
3*, 7
5'.?
51. B
77.2
. .51. a
et.i
65.4
IT. 1
53.5
77. S
12>
28.7
•3.*
90.5
14.1
22.0
2«.2
SS, <
28.8
47.4
2S.3
32.4
MS. 8
#9,3
36.5
zs*
26.1
37, 1
. 19.4
25.3
^CPS ee^Pisiiou -• 0*1
14."
_. .. .13.4
37.3
24.2
28 4
38. 8
5P. 8
t
18.2
15. a
34.2
36.0
32.2
J4.4
^ .
*G
e«,
12. 8
.16.4
52.^
as. i»
a4.o
4IU.1
17.?
15. P .
11.2
;*.*•
51.4
£4.2
21.2
36.3
54.4
ai.7
ST.!
2* .0
2S .?
51.1
52.4
35.5
38.7
(16.?
31.Z
— • • •
- -
- - •
28.4
#e, a
4.2
18.* .
33.6
34.1 ,
16.7
36. S
!«.*>
?' •"
21.5
26.1
a (i.4
-------
N02 PCMT0»INC PETUCCS COMPARISON
DAILY DAT* LISTING
;j . -
•i
j!
.1
i'i
*
-
i.
i.
i
!
l'
k-
f-i
'( '
L.
r — — —
*•
i-/
(.
DAY PRMF TE«r CHRF CHOC
281 153.1 76.8 .79.6 t«.S
212 8!. 2 23.7 25.3 2«.0 ....
283
28«3
286 136.5 51.2 ft!," 30 e
287 63.1 33.9 ie.^ H. \
289
291
292 .
"293
29M
295
296
297
298
299
300
301
302
103
.10U
305
106
JOT
SITE'*!
CHjLsai
38. <
. j22..J
5«.,
27l«
an..'
I7l«
7.
15.
it!
20|
12.
f.
9.
2?.
2U.
5?.
32.
_ 1-3 ,
TSSC 7ECH TEC8 C^£N
40.3 T«.?
26.7 26.2
38.1 37.9
10.8 12.5
12.4 35. u ..
41.2 JS.-J
t
1 _.
•
-"1
-------
>
fl •
J
].
'i
• l
!'1
•i
1
j-*
i-.
•i,
0
;'•
».'
v
\
i ...
K
w'
m
in
»
M
N02 HCMTCBIM6 KfTNCBS CCMPAPISOM — DAILY
DAT
10
II
12
... J 1
IS
16
J7
21
24
__26_.
28
29
30
31
3(1
35
36
37
38
39"
40
42
43
44
4S
47
48'
49
50
51
52
53
54
55
57
58
59
60
61
62
63
64
65
66
67
68
„„,
-33LO. CHP.C . ..CKRC
.. .
--
..CHE.8.81
-•
1 TCftP Trrn
«7.0
in 'o
52.7
58.6
- "a JL
108.3
154.0
a* A
— - -Ti«w.
— . .23.? . ._
28.3
17.1
21.3
2u! 7
47.5
24.4
77.9
35.5
_ 20.5
52.6
"7.3
46.4
liolj
_. 28.6
69.9
27.4
45t4
20.3
36.2
21,2
37JO
19.7
is. 4 "
16.5
15.8
48^7 "-
58.8
71.9
117.0
74.8
53,1
97.1
32,3
40.2
33.3
56.2
7.8
6.2
6.4
t\t
16.1
9.7
40.0
14.3
2U3
16.9
.17.8
41.9
12.8
22.1
52.2
11.8
io .'9
39.1
24.8
37.9
14.3
15.4
7.6-
27.5
I'.?
17.8
22.4
6 4 ' 3
zsiv
29J4
25.5
10.4
42.5
20.0
9.1
till
10.6
16.7
21.3
15.9
49.4
17.9
. 13.2
26.1
26.1
21.5
53.3
15.8
... 25.4 .
2«!o
"~ is.f« '"
25.1
20.0
53.6
17.9
Id. 8
io.2
26.9
19.3
20.9
2T.1
~ 'iS .'•""
50.2 /
69. e
£3.2
"1.5
16.4
43.9
9.8
16ls
19.5
14.7
48.9
16.2
. 16.7
32.6
2e.o
2».8 .
35.2
11.2
17.2
4«. e
7.V
26.9
25. t
45.9
20. C
nis
31.9
2l!i
29.2
50,7
87.3
41.1
26.6
55.8"
10.6
27,4
20.5
46.2
..24,0
22.1
6.1
" 17.^4
18.3
25.7
21.0
12.7
4l|9
_. ?4 |r
40.7
30.*
31.1
19.9
13.8
17.0
14,6
33.3
32.?
11.3
10.11
11. e
32.5
26. H
IB.*
27.5
46.7
34.7
26.0
3ft. P
30.8
23.8
43.5
27.7
55.4
13 A
- -. Je.».sL
19.7
33%6
52:6
Si *i
Ill.O
27.9.
125.8
6ai«»
116. 5
"26.4 "
" Bilo
S3. 6.
7l.*4
._ 69.0
72.7
59*0
88, '«
DATA LISTING
22.7
20.0
20.9
j.0 .
14.8 ' '
25.0
33.6
41.2
26.9
96.5 ....
23.3
. 61.3
87.6 .
45.2
46.7
38.3
27.6
51.4
46.2
37.7
24.1
44.8
69.3
'120.4
57. 9
41.8
71.0
48.4
46 1
66.6
. ..37,8
.vo
-------
1
f\ • ~"~~
1
J
1 .
* •
S
;l
I „._
F.
!>'
PI
L-
fL._ _.„
^
V.
i:;
Ef~ "
J"
. ...
r
Mi
i
•r
"i
ii
j-i
N02 WCM'
DAY
" ' 69
70
71
72
73
74
75
76
77
78
79
"BO"
81
82
83
84
as
86
87
88
89
90
91
92
93
9(1
95
96
97
98
. 99
100
101
102
103
104
105
106
107
•108
109
lib ™
in
112
113
114
115
116
117
118
119
120
121
FRMF
10.8
21,7
59|'6
26 t2 .
23.7
26.9
34.0
37.1
~3o!~3
46.7
28.5
31.0 "
36.2
70.5
SO -~
31. '7
- sirs -
41.6
43.0
--5572
si.'"
38.1
43.7
56.0
64.0
106,3
66,4
109.6
57.9
_ 36.9
45.4
53,1
. »O
75.5
64.5
64.7
"73.4
83,0
50,9
47.7
48.6
87. 7
98J3
81.3
70.4
34.7
12.8
27A6
33.0
30. S
12,3
12.7
11.7
14,4
19.9
.31,?
22.8
21.2 -
21.4
41.4
19.8
20.0
12.0
19.8
22.6
21.3
38.7
18. 3
23.2
25.5
32.4
40.8
62.1
30.4
73,9
39.3
18.7
17.6'
32.3
47,7
«l!6
47.0
60.5
47.9
25.?
24.3
16.3
ft- 9—
38.7
32.6
116.7
18.4
CHR£
14,7
2i.'8
33.1
34.2
14,9
17.5
15.4
19.8
30.6
22.6
26.4
14, 4
22.6" "
26.2
61,4
25.5""
22.6
20.9
28.2
22.6
42. '7
26.1
29.1
3614
40.6
80,1
.36.5
53!e
25. 2
28.7
40.0
50,7
60.7
45 *2
64 ;«
51.4
28.2
29.]
25.1
«5.5
68.6
42.8
46.9
39. A
54.1
23.2
fORlNO HCTWC9S CfHPiPISON •>• 0*ILV D»T* LISTING
_CJ!?.C ..
12.5
37.4
36.9
.|4,4 .
n'.i
.17.3
16.2
?3:5
17.9
27.1
16.4
22.5
12.8
. 48,9..
22.7
18.7
"14." 6
22.7
23.9
32.6
44.7
"iflS
35.1
46J6
76.9
.36.7
49. Ji
22!5
22.8
37.8
56.1
34.2
37. B
?7.9
44.9
19.8
42.7
36.1
27.6
65.9
53.5
«2.0
40.0
52.0
22.0
CJlffiS.0 TGsn
Z9.?
flljjl
83,3
"!»"
67,0
16 1
- 24 0-
31.8
31 .'3
22,0
"26.'6"
33,7
22*,C
?i!e
20.3
17.8
11,9
. 11.4...
36. C
IB. 3
44j2
167. E
73.7
50.5
.. 52,0
4 6. .9
43.1
33.6
29 ;2
17,9
13.0
76 ;5
7?:?
38^9
52 7
10.2
..
....„
15.7
10.0
It.
H! "~
< 38.
4!.
47.
. -63,
67.1
97.3
60.7
101.7
75.8
38.1
36.0
52.3
41.0
56.9
32.5
-3«..0_ ...
43!4
2«.l
22.0
22.1
13.0
46.9
33.1
3*. 7
25.5
37.8
TECM
23.1
4(1.9
79.0
46. J
28. 2
23.9
30.4
25.3 •
30.2
21.4
.__53_.S__
ails
20.8
62:8
-68*P_
78.2
155.3
_.69.8
96il
39.9
-flT.S""
78.1
53.3
7fll7
-85.5
148.6
99.6
38.1
17.5
69|a
79.6
99!s
22.1
. TCC4
19.2
23 S
6«.l
82.1
23 1
30.7
42.2
7fl';6"
39.2
..._67.4
23^0
21.2
«4.7
51.1
43.9
113.2
49. 5
39.7
36. 8
32.5
2o!3
26 6
67.9
48.4
25.9
37.0
40.8
34.5
U7.9
38.1
30.5
43.2
37.3
U5.5
T9.0
«7.2
34.9
17^3
UP
43,9
07*6
53^5
31*6
74*1
31,7
45*2 .
42*4
«4*8
103,0
50,6
35*9
63*7
«*3
51,4
61*5
84.4
67,8
32*2
84 Js
62?5
»c.;7
30.1
:1
M
O
-------
t • MC2 HOPC'ING PPYNCD8 CfMPARISCN -- DAILY DAT* LISTING
i
i
i
•
«i
i
f
'!
f:
b.:
:*-r.-s--cs::.-'-
1
i
!
i
3. '
1
1
]
••;
j :
>•:
«.
u
X
i
DAY
122
123
129
126
127
128
129
130
131
132
133
135
136
137
138
139
140
101
103
tog
107
108
109
150
151
152
153
154
15S
156
157
158
J59
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
PPKP
84.7
88.2
70.3
36l7
II*.'
35.6
-4«.a7_
18.0
23.2
.22. J..
53.8 28.6
48,9 22.8
96.3
32.5
84. «
23.7
45.1
88. fl
82.2
37.0
"47)0"""
112.6
66.6
28.4
44.7
15.3
11.9
106.9
SO. 2
54.9
42.7
37_,.7_.
59.7
54.0'
....1.16.8.. ,
92.0
114.1
121,3
115.9
179.5
141.0
37.6
29.0
69.7
61.3
47.2
32.7.
13.1
49,3
10.4
20.4
40,8
26.2
14.7
21,8
22.3
65.2
28.9
13.6
17.8
33.6
£8,5
18.2
22.0
27.3
24.4
16.7
.15.6....
26.8
20.9
49.0
29.0
38.5
42.9
41.1
45.9
54,6
1U3
16.3
39.8
42.7
19.5
54,3..
CM'
38.9
50.9
18.4
29.8
.. 2.1. A.
40.8
28...0L.
33.2
22.9
65.8
10.8
32.7
5J.9
2o!s
26,7.
30.9
70.9
„. 1.8.1 1..
21.9
47.2
J2..7
25.9
36.1
.. 30.6
32.5
32.0
...26.1 .
31.9
29.4
28.0
25.!
27.1
23.8
31.6
38.9
17.9
14.6
44.1
23.8
S6.2__
.... fast
38.2
51.«
19.2
24.6
2.3 »J
39.1
33.1
21.4
94.0
14.6
23.0
43.5
25.3
23.8
.. 23.2
28.0
66. A
36.0
... 25.2
20.4
39.)
28 .f
21.1
51.1
31.6
27.0
19.9
. 21.?.
27.3
23.3
60, e
36.2
45.2
.._?«, 8
40.3
03.5
99,0
23.2
16.6
46,9
.43.2
... .52,0..
C«ES8P re. IP TECH
01 r
. . 5.0... v ..
32.4
23.5
31 »4
47.2
7?!e
39.8
71 4
43.3
.. 39^5.. .
10.9
51.9
""" "so'p"
40.!
S« 7
20.9
30.6
16.3
43.1
.... OJ.9
59.8
43.1
53.9
29.0
58.2
42.7
42.1
SB. 7
60.7
20.3
49.7
60.8
29.9
31.7
44.3
14.4
17.9
73.7
109.6
13.1
40.9
39 U
60.0
127.'3
183 •*,
12.8
28. -6
ssls "~"
24.9 03.2
. LL.5 70.7
28.5
12.2
45.6
36.9
20.3
23.0
21.9
62.2
33 .'7
5a..6. ..
30.6
56.7
91 S
51.9
41.7
40.8
62.2
67- 1
se.o 107.9
28.1 70.3
..15.3 36..1
14.6 31.8
34.8
PA 1 1 8* 'h •
16.9
20.5
23.6
20.9
17.7
10.0
22.1
20.9
13.7
10.0
22.3
17.6
19.0
20.1
9.9
9.0
30.5
17.3
a «.o
26.2
61.5
6q,4
81. S
45.2
51.9
70.5
30.~S~
88.0
69.8
82. 6
9 u 'a
39.1
26.6
133.9
41.4
145.5
tECo
46.2
as. a
32.8
33.6
02,0
.6.1.5....
28.9
31.2
.03.7
34.0
62.6
48.2
28.0
46 ! 8
S9.8
23.6
79.7
.5 6 ,.6...
26.1
37.3
49^0
43.4
50. S
53.7
16,7 "
21.1
40.7
57.5
29.9
38.1
54.3
77 1
27. « •
32.»
70.2
123.7
.111.7
43.9
oa.6
106.0
OS. f
56.?
25.(i
59,0
60. »
51. S
. 66.2
66'.?
15. r
51.5
49. *
80.9
91.3
oa.;
32.3
47.7
98.1
. H 1 . 5 .. .
10.7
2*!o
19.0
6.3
53.5
32.7
Sli?
3!. 6
32.9
43.?
28.6
10.5
33.4
55.6
30.9
70.9
..." -n
-------
1
V
!
i
!
t
:
NflZ KOfclTCRING PI
t
~ '" 175
176
177
178
179
. 180
,1 181
,! 182
183
; 184
v 189
|86
* 187
v 186
189
190
192
J . 193
194
195
196
197
r' 199
200
,' 201
,: 202
» 203
ri . 205
206
207
•; 208
^ 209
210
.•; 211
J 212
., 213
•i • 21«
215
«i 216
«j 217
J 218
«! 219
» . 220
,1 221
».* 222
J 223
•J 224
>J 229
H 226
I1! 227
nvf TE»r
105.9 44.6
50.0 23.0
35.0 12.0
46.2 27.9
135.1 51. S
66.1
12«,*
16. e
30.4
22 !l
35.5
17.8
3oJ»ILY e*i
TPf* H
121.2
61.1
56 !(J
141.0 .
26.7
27.8
.7.1 ,.4......
42.3
87.1
52.2
68.0
82.9
77.9
31.9
55.3 '
57.9
35.6
53.6
30.3
au.6
47.0
65.6
25.5
55.1
B.7
20.5
33.2
47.0
55.7
18.8
46.3
ft LISTING
T.EC4.
62.9
34.1
20.6
23.5 .
Uli'.b
87.8
20.9
35.6
47.0 •
11.8
46.7
47.6
45.0
33.6
£4.8
_.?*.3
25.0
36.1
46.6
10.6
21.9
28.4
35.8
"38.5
10.1
_ 25.9
11.7
29.9
"20.7
27.2
"21.9
58.2
22.4
46.9
_.29,6.
21.4
CBEM .
7S.S
23.1
ifl.a
20.4
10.?
20.9
9*. 9 ...
«j.e . .
27. It
47.9
2T.O
50.7
40.7
17.2
41.2
40.6
26.8
24.7
30.0
34.7
17.0
16. ft
23.9
22.7
1(1.6
17. S
6.6
14.5
10.4
16.9
12.7
19.0
13.*
7.4
14.5
23.4
1J.O
11.1
1 0 ! 4 "
19.6
28.0
13.4
39.6
32.7
30.0
=
*" '
»
• — - •— -"
•t
n
"*
>.
•
u
•
'•l
'*.
.
-—-1
-------
NC? HCMTOBING KPTUCBS COMPARISON — 0»ILY CAT* LISTING
;i
'j
;!••
•i
i;i
t^.
\ t-
i
[•i
!":
?
/i
?'
';•
t»"
U
T
•ii'
!«•
1-
1-
w'
V
tu
;j
ir
L_
1
J
u
0»Y
226
229
230
231
234
215
216
217
.. _...218
219
240
241
242
24]
244
245
246
247
248
249
2SO__
251
232
254
255
. . ..256
257
258
259
260
261
262
261
264
265
266
267
-268
269
270
271
272
271
274
275
276
277
278
279
280
FDHF
55.2
39. B
60.0
28.7
37.9
51.9
50.3
55.9
64.3
32.4
. ...Z4tS
61.5
39.0
56.5
37.6
58.2
39.9
46.0
60.7
72.3
96.1
35,4
57.1
64.2
13^.7
14.9
30.0
_ 51.4
27.7
17.2
36,2
70.0
42.9
*2.7
31.2
43.9
34.8
31. J
64.7
34.5
22.0
45.3
57.1
32.2
25. '8
43.9
27.7
46.4
75.2
TIAF
33.7
26.0
26.3
14.1
23.9
30.9
21.4
26.6
20.3
. 36,8
20.2
24.6
24.5
15.3
27.1
24.6
19.9
20,0
23.3
23.5
_ 1*,*
17.2
23.8
11,2
1.3
... 22.3.
16,2
9.0
2
-------
N02 KCMTCP1NG ftffCDS CPWP4RI80M — DAILY CUT* LISTING
1
! 281 119.1 09.0 Sb.ft
282
283 8(1.1 28.2 01, |
284 88. T 2U.9 14. «
r289 71.2 3t;i 2(1.5
286 89.0 35. Z (ld.2
287
269
H • 29«
•i ">
J 292
.1 • 293
,,: 29«
1,: 295
<• 296
I;:- 297
;.: 298
:„ . 294
Vi 300'
J 302
,.: 303
,; 30(1 '
..•'• . 30J
p 304
•"! 307
CHRC CHESSB TGSC TECH TECd CW^)> "-
37^1 9(1.7 34. «
39.4 It i 109.2 39.?
11. a 39;.. ja.e ie.t
25.0 >l.e 21.?
16.5 56,3 22. a
68.2
l2;? -
17.1
16.0
14.)
22.4
16.9
29.1
11.9
!<)!<>
19.7
13.8
10.9 . .... . -
Sol? . ^
if
•
S
--"1
-------
NO 2 HCMTORIM6 HETHCC8 COMPARISON «« OAJLV DATA LUTING
,_
,1
!
)
L.
•n-
it:
I-
P
ti— ™
h
H
7*
I*
P' j
I**
h- •-
H
jj
"i
j
I/
v
K*
•'!
i;
"
' '
_!
u
u
?
DAY
27
IS
29
30
It
FBMF
90.2
«1.2
.114. 8
12 111.4
33 79.4
J« l?9,l
39
36
38
39
4Q
It
«2
43
44
4S
46
47
48
49
SO
51
8* ...
53
54
55
56
57
58
99
60
61
62
63
64
65
66
67
68
69
70
71
72
71
7«
75
7*
77
78
79
99.7
98.9
_.«.!..
52.1
:92.4
.69_.5_...
, J2S.4
150.8
.7««.o.
77.7
91.9
IOS.J
69.1
72.9
9.7 ..1 ..
64.9
95.7
• O.2....
98.7
..JO. 2 .
73.3
93.2
S1.5 ..
116.3
183.8
1.5!. «
168.7
16*. 0
..72...1
97.0
93.8
J 07,9
91.2
83.5
_.7B.4 .
55.3
45.0
86,5
74.9
76.4
72.9
57.4
96.7
• *•!_
- . J_EA£ _
37.0
12.4
. -IU.0
43.9
39.8
-_59.6_..
S9.4
43.6
._J4.6. ..
18.8
32.2
J9.i
40.1
41.6
?8.B_
43. 5
66.6
_.60,2.
37.7
59.2
...**•!.
57.3
72.1
6?a7.._
61.0
43.5
.48.7.
39.5
29.5
.. 2.6.2
42.3
71.8
62.3
66.7
76,5
. 4.4,9
23.2
28.1
. 78,6
67.7
57.5
*B,A
27,8
33,1
59,9
46.8
48,9
41.0
39.1
38.2
82...0
iHRF
60.0
54.9
. .102.6
86.6
61.8
... 66.|. _.
57.1
28.8
45.1
3«.6_.,
62.0
86.2
46.1
59. i
72.6
tf.,0
*6.7
62.9
.... 68.6.
83.6
58.8. .
64.7
52.1
45.4
S3. 4
««^L_ ...
68.1
117.2
9e, e
U1.5
117.1
5t.l
30.0
34.8
75,8
68,6
58.2
47, 8
40.1
42.4
.75,9
64.7
63,3
53.9
60.5
57.8
5 2. ..«.._
_ .CK»D
5J.7
4P.5
?':5
Jii!
52:2
.44.5
29,8
00.1
~58\4
74.1
4T,2
92.7
72.8
66, '1
59:5
96,8
64.2
58.2
63.6
65.6
63.6
46.6
53:5
54.5
52.4
-39 ;i.
59*8
ioe.4
*2j6
106.2
«9,4
J2.2
29.6
31.5
71.«.
62,2
sa'z
fltt.9
io'.'i
if 0.8
72.0
59.8
61.4
5i_.J__
5 1.2
51 .'9
... ..CheSSC IB9C TECh TfC4 £kEM '\
i9.j ;
-9-U
6i.'l
119.0
55.8
"-,3 :
>j.7
68. 5
. . se:6
12.4 ' -,
... . .37.3
70.9 ": - —
?2.t ;
24.8
48.5 ' " — '
«.9 -.;
.55.8. . . .
S2.2 .---..- _ _..
44. t
58.8
44.5 • ' ' •
73.9 C
. _. 93.7
73.8 -
82.6
89.5
59.7 . • ~ — ' ' --• ..;
59.7
78.1
59.4 - - - - -
102.9
37.6 „
100.5 .-.. „ .. . .
«7.l ..
67^ :•
46.2 • • - - -;;
37.6 . ;
3(1.4
45.1 • - -
6«.»
69.3 "
77.7 " - •' - .".
69.2
71.9
6o;e • ~ •
'"
M.3 •:;
66.7 . - - -;
59.1 :;
se
1
Ir*
V
s
-------
} HOi KCKI70BIN6 HPTHC03 CCHP4PI8QN — B*ILV OAT* LISTING
1
J
1
•1
i!
l
•
if
ft
h
P
I,
b
fc
H
h
B
,.
i
i
J
ii
u
si
DAV
80
81
82
63
84
as
87
ee
89
90
92
93
95
96_
98
99
m-
101
102
103
105
107
_»"...
110
111
ill
111
114
115
116
117
__.
6
119
120
" 121
122
121
124
125
126
127
128
129
110
113
134
PRMP
82.0
119.9
102.5
se. a
81.6
74.3
74.5
79.7
94.8
77.1
110,1.
71.0
41,0
66. S
119. tt
96.7
127il
86. S
110.0
96.9
141.3
115.3
109. 2
80.6
78.6
*«.,»
84.4
83. a
94.7
119.6
102.5
62.2
66.5
54.5
93.2
154.1
110.8
ai.a
89. a
100.7
68.6
78.4
89.1
65. U
MM.
47.1
52.6
29.6
_.«».L4
33.4
31.0
29,4
37,5
24.9
. .3.8,1
27.3
21.5
4B.7
64.1
. 48,3
BO. e
58.8
25,0
32ll
32.6
49.3
55.6
50,8
36.3
33. e
36.0
47.9
50.7
49.3
43.6
57.9
40.5
. 26.0
26.6
25.4
.35,8
50.0
61.0
35.5
45.8
43.4
...33.4
20.6 "
36.9
36.3
31.2
W
53.9
. ' I !.!._.
67.6
55.5
SflJ
53.1
51. "
«7,7
53.9
47. e
6«.4
Ht'.a
.. 56,6 ..
62.4
69.8
lOs!)
75.5
38.1
55. «
54.9
63.5
""" 78.7
65.6
43,5
«9.8 •"
6o!a
52.4 ••
53.2
66^
52.6
40.9
37.1
32.0
46,?
64.2
71.5
" 49.J
46.6
36.6
46.8
45.8
36.7
. CKRt.
53.9
62.8
51. a
" 48 ,' i
4? 3
4?. n
it •.
39.5
49.11
32.8
3«.5
.62,5
66.6
77.6
67.9
96.9
7t.9
31.6
4«.6
45.6
60.6
75.2
6C.6
42,2
44.8
35.5
4«,4
48.6
44.0
39.2
55.8
5*.?
53.1
42.2
34.0
60.5
73.8
75.1
42.2
46.8
40,0
37.8
44.6
45.9
35.4
--CHJES8C
68.5
.99. L
MO. 3
94.2
5P.1
51 *
60a9
S .6
30.7 ~
71.0
. 35. 6_
96.5
78. e
51.1
1C1.9
61.4
..•.*.».._
91.1
62.6
43.6
.. 56.1
56.5
77.8
*',.«__
66. a
47. S
57.!
51.0
41.3
80.3
98^8
96.6
100.9'
85.0
7J.3
77. d
67.1
79. J
40.7
25«!e
150.9
80. 5
67.3
TC8C TECH TPCU rhrM
t
•
-r
i
«3t7 ' . - - - _ ._
3&:6
Ji?7 - --,;
31,7 .......
5U4
91,5
_.J06.*9
160.5 "
120.'3
56.1
73^5 — - - -"
aeis
60.8
38% ' - -— ~ '
33.4
49.7
43.8 ' ' - '
40J8
" 4877 ' •' •-••-•- - - '
43 .'4
SB -j
28.3 - -
22,7
37.3
48. 8 - ' - ' ' -• ';
58.0
30. '9
33.9 ". - - " ' , • -- --
28,'6
34.9
29. S
EC
*->
f
-------
NG2 MCMTCPIMG PCTHCD3 CTuPAPISON — DAILY C»T< LISTING
1
t
1
I
j
\
r
rt —
F
£
i
3*.
•*!
h-
t.-
I
r;
i j
h
i
u
tJ
3 '
«E
u
11
J _
ll
\
DAY
135
136
137
136
139
140
141
142
143
144
145
146
140
ISO
151
152
153
154
155
156
157
158
159
160
161
162
" "~" 164"
1*5
1*6
1*7
168
IJO
171
172
173
• 174
175
17*
177
178
179
180
181
182
183
184
185
186
187
FRNP
68.4
_75J_
64.3
66.3
68.0
95.8
78.7
74.0
68.9
82.2
. .72.2..
78.9
106.3
77.3
50.1
87.6
67.4
92.8
117.9
82,2
11S.9
82,5
70.8
48.9
65,2
7t.7
110.6
.131.2
79.2
74.9
64.8
122.5
148.7
59.0
tO.9
77.7
112,6
166.9
73.2
61.7
58.1
68.6
59.1
54.0
63.4
87.6
07.1
eo.3
42.2
69. T
121.8
89.9
TEAF
53. »
38 t6
30,5
29.3
...27.4 _
4J.B
39,3
2B..9
26,6
«2.6
38.4..
34. J
46.5
29, i
22.9
32.5
33.4
41.3
28^8
'"50.?
28,7
34,1
33,1
17.8
31.1
32.2
31.3
56.2
25.4
. 21,0....
34.6
55.7
21. 0
25.5
40.4
•—«s!*~
37.7
3fl.9
26. fl
25.6
23.6
5«Io
58 ,0
25J4
"29.8
54.1
44.7
.4. 2 a.
36.0
39.3
30. e
5 42.2
32,?
29.7
1 20. ?
34.3
i
:i
42. 54.2 33.3
44. 415. fl 25.7
48.
45.4
36.2
27.7
'
M
18.6
21.4
22.1
19.2
43.1
42.7
41. (•
32.7
23.5
29.2
4*. 5
37.3
;"
.EC
-------
K02 NChlTOPIhQ ^CTHCOS CCMPIPZSCN r- 0*ILY DAT* LISTING
,
-j
i
!*
1
•
vr
i j
i..1
i
c
r-
'•I
i:
i'
D
£i
i?
i''
P:
P
[j
"!
j
:
DAY
188
12!!
140
142
143
141)
145
146
147
148
149
200
201
202
203
204
205
206
207
208
209
210
ill
212
213
214
219
216
217 "
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
200
FRMP
53.0
70.6
M.5
70.6
72.6
T4.5
62. t
97,5
118.4
. .7.6,2
56.5
104.6
132.2
•J2.4
63.2
81.0
70.6
70.0
. .»••«
73.6
146.1
134.6
75.1
62.0
83.1
103.6
100.3 •
68.5
56.2
108.2
112.1
*5.3
61.4
64 ;
-------
N02 MCMTOBIN6 HETHCDS CPMMiSXSON .- DAILY 0*1* LISTING
CKP.F.
CK8C
SITE-901
iMt8.SC
______ IEC4
'!
J
*'
i
„
t-
J
r":
& '
"
«
u
H
r'
1
LJ
i*
i/
j
•«.
j
!•
202
201
204
206"
207
208 .
209
250
251
252
253
254
25S
256
257
258
259
260
261
262
263
260
265
266
267
• 268
264
270
271
. . ..272
273
274
275
276
27T
278
279
200
201
202
203
280
2B5
266
207
288
209
72.0
60.7
no.«
110.0
.....165,8
120,8
104. 0
115,0
113.1
62.3
128,0
120,0
77.0
53.5
63.5
104.6
72.1
97. J
46.0
4S.3
64.2
116.2
47,3
117.4
141.2
„ 131.1
96.6
01.2
... 63,5
13S!3
101.6
85.6
83,1
65.5
66.1
64.2
114.5
86,4
139.0
103.0
164,4
17. j
34.4
72Jl
... 73..!
53. J
46.!
S3,<
64. <
«7.1
60.1
OS.
26.
37.
64.
53!
24.
14.
33.
54.
54.
64.'
08.
34.
.. ..JO,
64.
60.
. .37,
56.
36.
38.
57.
36,
34.
SO.
83,
S3.'
48.'
36'.'
66. t
50.
96.1
59.
62.
1 104.
101.
1 0.8 .
' 105'.
1 03.
: _..._! 02.
1 104.
f 79.
133.
44.
50.
03.
56.
.. 57*.
66.
39.
30.
48.
62 i'
59.
79.
62.
71.
71.
104.
43.
43,
83.
01.
03.
01 '.
03.
oo.
87.
1 84.
r 45.
! 05.
» 27,
i 67.
t 45. i
1 06.1
05.1
58 ..2
7S.
7?.
54t
74.
04.
104.
12l!
84.
34.
02.
78.
50.
61.
3D.
<*?.
54.
. 54.
62.
64.
.... -.61.
73.
67.
.. . . 6?.
- 44.
93.
85.
64.
36.
04.
«*.
3*!
38.
60.
74.
06.
01.
6J.
! OZ.
t 70.
6?, 4 33
104.1 St
66
124.1 . _ 170
104.2 56
70. C
103.6 ..... .«8
63
48. 3
02.6 ..... .
65.1
65. 1
54.2
126. 7 "
78.0
119. 4
63.2
47.0
64. t
67.0
65.1
37.7
39.1 . .
120.6
lin.s
49.0
72.4 .
71.8
40. (
43.5
71.0
43.5
43.5
11.5
12ft 1
111.1
06.5 . .
.1
.2
.4
.3
.9
.5
.0
.6
57. «
. t2.«
4(1.0
100.3
112,9
71.4
54,3
. 54,7
71.1
104,8
es.i
53,1
. 4f.2
6T.7
114.9
6P.2
f
M
VO
-•'•a
-------
N02 HCMTOBIKC HETfCDB COKP4RIBON — DAILY 0»T* LISTING
DAY fSMF TSAI
IS
16
17
IB
19
20
HJ 21
22
V" "" 2» "~
J 24
•J 25
.! ' 26
>i 27
26
| 29 63.2 39.
I- SO 93.1 3«.
f. . .. .._. -»! •!•• «,
M 32. B2.4 2S.
^ 53 t3.1 IS,
N . « «"•' »'•
IS as. 6
ri 1* 82.2 2«.
K . - — " «,i »••
.r IS .5.3 7.
L' 39 1)3.1 12.
I* «0 (15.8 12.
..:| 41 S3. a IB.
•\ 42 96.9 19.
41 44.6 1C,
* ~ " "' 44 ' 49.3 20.
« 45 32.1 1!.
..) 46 78.0 51.
,] 47 72.8 22,
J : 48 66.3 31.
a* 39.3 23.
,.. ' ""50 it*. 8 12.
..' 91 56.1 Utt,
• _..«__. . *«.» «S.
93 49.0 32,
W S« 39. S 29.
._ 99 48.2 20,
«i " "" "" " "96 J8.2 15,
-I . 97 50.0 27.
~_ 98 63.9 26,
I" ' 99 69.1 31.
60 93»7 99,
J 61 U7.9 92,
j- _ _ fi — itij - -
*I 69.9 36,
H . 64 78.2 46.
:.
! O-L381
30.
34.
41.
*».
59.
«2.
3«.
6.
22.
28.
46.
18.
34.
««.
8.
14.
31.
22.
41.
27.
64.
31.
54.
36.
34.
44,
21.
2U.
... 33.
27.
91.
36.
37.
28.
41.
5S.
4).
. 1»,
; TB§n TSCH TEC'
S7.«
27.
60. (
32.!
46. <
73. »
.. , 59.1
' 46.'
23. •
45."
1S.(
23. (
23.
30.
26.
z*.
24.
14.
45.
34.
44.
43.
38.
71.
49.
56.
36.
_ . 54.
. " "2.
39.
67.
.80.
50.1
46.1
t CHE*
24.0
I. 40.9
27. 5
) 61.1
I 36.1
28.9
31.1
31.1.
17.7
92.9
30. 7
36. «
i 37.4
1 59.8
61.1
> 54.3
43.6
! 30.4
> 2E.3
21.0
I
!
>
29.6
25.6
29.3
40.7
3S.7
43.9
39.4
46.6
69.4
61.3 .
61.4
45.4
30.9
1
i
82.2
29.7
98.1
34.6
ro
O
-------
No2 MCMTO»INC HCTHCOS CCMPABJSON •-
i
•| ' OAY FBfF 7EAF CHRF- CHRC CHE88r ...JfijIC
DAILY DAT! LISTING
TECM TEC4 ' CHf
•
i
!•
F
'•ie
'u:
!
i'.J
.",
'.*"'
>•
?i
7>'
ti '
c
j.,;
i"'
"_•'
»«
b
t
!••: _ . _
H . •
3
j
;j
u
,1
j
a
68
69
70
71
72
7J
7U
7S
76
77
78
79
60
ei
62
61
en
69
66
f
68
09
40
91
92
?J
94
95
96
97
96
49
100
101
102
103
104
IP.?
106
107
108
109
110
111
112
111
l.M
US
116
117
116
119
120
62.5
01.9
«6.3
56-. 1
27.4
51.0
37.7
32.1
27. 4
60.2
«>S.2
at, 6
S3. a
ae.2
62_,e
110.7
67.6
25.0
39.2
53. 8
64.2
39.8
52.5
M..S.
50.1
62.3
_ *«.2.i
96.5
96.0
76,5.
59.0
57.3
57.3
51.5
73.6
74.7
61.0
68.1
60.7
70. a
90.7
57._,7.
78. a
76.3
52.0
53.8
53.9
70.6
7S.8
65. S
80.0
37.8
...38.3
30.6
35.3
22,Z__
33.4
30.9
... 21. 9. _
22.1
02.6
36.1
25.3
17. a
35,7
28.0.
27.7
. 37.7
50.1
25.6
14,8
17. A
24.0
30.5
14.4
22.1
34.7
30.6
41.7
. 38.0. .
62.6
54.7
_.«P.« .
25.2
27.6
24.4
26.0
31.6
30.2
43.2
36.4
30.8
•~45.§ '
44.6
27.7
40.3
37.9
2?,S
22.9
22.5
3.7.6
34.4
46.2
41.1
4S.3
28,0
36.2
ita.a
24.4
37.1
33.8
_. 21..4
26.0
46.?
42.4
27.4
17.5
33.4
36.0
30.6
4*.!
61.2
36.6
27.2
23.1
37. S
4(1.7
35.5
30.0
_.O.J_.
3?.l
46.5
71.6
60.4
..5L..2 .
38.1
33.5
34.1
3P.4
40.5
.38.0
42.2
36.2
35.4
U0.5
58.6
26,4
3§.0
. 39.3
32,0
22.1
25.1
48.4
46.8
52.0
«»,a
16.0
12.7
10.0
«:. .«
27.1
38.0
35.2
...24.8 .
28.|
4J.P
40.2
24.2
39.6
34.7
28.0
34.2
50.4
18.?
22.4
28.7
35.4
21.8
3U.O
.. .43.4
40.?
49.9
48.0
70. A
63.3
.42. 4_
29.4
31.4
30.1
60.5
38.9
34,5
40.7
32.4
26.0
37.6
41.3
21. •
34.0
46.9
17.3
14. f
28.4
.5.8,1
53.6
34.5
«5,S
65.7
57.1
76.6
St. 5
1C6.S
31. J
27.3
37.2
46.6
18. ft
17.6
Zt.t
55.8
37.5
a«. 7
38.5
24.7
10.4
24.6
SB. 5
15.fl
31.9
24.5
27. U
41.0
4Z.4 . ;
79.7
68.2
5«.5
57.7
55.5
41.4
36.2
3«i7
42.4
78.0
!31.7
74.7
19.0
46.0
41.1
36.9
40.6
46.!
Sl.l
" 61. fl
86.2
127.8
45~-2~
25.0
14J.
17. 7
21.9
29^8
20.5
47.6
!6.4
63.5
72.4
_.J4..8__
106.7
!7^_
51.0
53.7
47.1
52.4
56.0
5a;«
34.J
27.5
33,9
41.5
20.4
39.0
33.7
23;«
21.0
21 .'4
33.0
36.4
44.5
..34 .2.
55.6
50.1
54.9
30.8
66.4
56 0
40.7
28.7
68.3
61.3
61.0
79.4
44.7
35.4
39.4
62.2
37.0
40.0
53.1
53.4
100.2
72.6
52.6
45.6
55.4
48.7
52.7
58.6
53.1
60.4
. 37.1
45.3
54.1
54.5
40.3
32.3
34.7
53.5
59.5
52.9
76.6
56. P
67.2
64. a
51.1
45.7
58. S
50.3
i* a
42.0
28.9
23. (>
65.1
31.8
30.5
24i.l
37.6
oa.3
27.1*
30.0
a?.*
44.3
53.2
52.0
64.8
67.?
51.0
36.3
46.4
39.0
30.3
60. «
52.7
56.4
60.2
55.7
ft.P
68.5
32.1
44.8
34.3
43.6
IS. 7
66.8
8?. a
7J.«
. ro
-------
NQ2 HCMTCRINO MPTHC08 CCMPARISON -• DAILY DAT* LISTING
i ' DAY
121
.! 122
121
124
125
1 126
„: 127
128
H • 129
|,.: 130
I. Ill
I.. 112
h I"
!•; ii4
•- 1 35
!,• 136
>.: 137
;,; 138
'.; . 139
P. 140
142
143
:, 148
145
;.• U6
147
148
149
150
151
152
153
154
155
-. 156
;.. 157
H . 15B
159
• 160
i-.1 161
K »«
k 163
U 164
K • 165
k- 166
i 23.3
I
)
i
)
!
.
24. P
25. «
16. 8
2.5^9
14.6
27.5 .
25.8
22*1
37.1
11.0
12. «
10.4
' 13.*
19. fl
28.7
23.6
TECH TEC4 ewEM
59.5
52.9
45
35
- -
96
SO
37
60
(It
28
40
.8
.2
.6
.5
.1
.4
.2
75. T
6a. a
64. ?
56.1
"6fl!o
11.7
Hl'.t, "
40.4
28,1
38.4
ST. 7
4T.5
40.7
6(1.0
51.7
40.4
51.7
•i
' *
4
1
It
7
-•
•t
!'•*
104.7 13.0 . . " ' .
46.3 26.6
10*. 8 58.4
66.1 32.6
23.3
5!. 4 27.4
58.4 22.4
46.4 31.4
58.8 22.8
73.! 26.5
22.1
3«.fl 23.5
65.2
' 53.1
15.1
27.0
20.0
20.1
-
'
24.5 23.0 '
41.5
25.5
N»
to
-------
r
i
i
•
•1
K
R
fc
f!
F*'
T.'
I""!
F
H
H
S
(•-;
E-
H
N
U
M
n
X
b>
t;
SB
DAY
179
17*
177
178
179
180
181
182
185
186
1B7_
168
189
1.90
191
192
193
194
195
197
198
199
200
201
202
203
204
205
20*
207
208
209
210
211
212
211
219
21*
217
218
219
220
221
222
223
224
225
22*
227
FMPP
53.1
45.5
61.7
51.8
12.1
46.2
73.9
95.9
65. tt
as!?
68.0
9a.7
92.3
61.1
65.2
60.5
61,7
76,2
63.0
85.2
80.3
106,6
84,4
58.2
92.0
95.3
66.8
.. 60.0
95.8
55.3
*7.7
46.0
57.2
as, 6
115.7
104.9
93.3
se.e
77.2
53l2
• 1*7
122.6
66,7
91.9
56.3
81.7
120.3
80.2
-
MChlTQRINfi HtTMCOB
1
i
CCH'ARIEON "- OtILV Cl«T4 LISTING ;
it.tr ct-ar cmo encase
23,8
23,3
27.8
24.1
__2^A__
I'.O
35.5
42.) _.
40.3
36.0
22.7
29.1
51.1
36.9
2«.7
23.9
?»."«
30.9
27.4
36.1
10.9
«K*
38,7
22..1
36.6
45.1
23.6
40.3
22.6
17.6
..3U6 .
62.5
66.7
_. 50.9
21.3
37.4
29.6
30. i
21.9
50.7
39.1
~~ii\'\
21.7 _
41.4
88.8
41.4
26.1 26.0
10.4 25.9
27.8 27,1
28.0 ?7°
.25.9.. ...m; ....
26,4 ?;>.
40.8 37.
63.5 52. .
46.5 (11.
48.5 91.
24.8 SO;
42.7 39.
.H.O 64.'
.46.6 51,
28.9 32.
33.1 57;
43,| 51.
IS. 9 ae.
35,2 Hi
. 4|,9 _M.
42.0 53.
90,7 56^
58.
52.5 51,2
SfliT J6.8
ae.o 49. '4
58.2 50.'2
.Ml. ...
29. 30.*i
49. (19.3
JB. ZB;9
2«. 28.8
22, 23.1
. 36, ... 3*;o ...
55. . 66,|
78. 75,1
.....80. . . *i..S.- _
39. 31.4
15. 26.'S
56. 47.2
44. It. 8
46. 00.5
28. 24,*4
»6| 55.S
S3. 46.1
48, 34.9
ttl.
33, . S0%9
as. 86)5
70.4 5i.!5
57.8 53:2
13.0
5S.'0
177.2.
74.1
.lull,.
"2719"
31.5
*
55.8
52.5
48.1
•*:••
..6l!s.
90.8
131.2
J.9JJ..
tl.O
>y!6
Tg.T.
38.7
81.9
78.8
63.1
1«5.1
reac tech rrea r+r*
15.1
19.7
20*.
Iff
• 14>!
28 .
42.1
30 J4
34JO
19,'S
22. 0
25. S
25,9
2718
".6
52 •!*
37*6
39 6
24 .7
SI, 7
34. '0
4i.;o
21,6
35?2
20,1
17 Jl
IM
35^2
2B?4
24. '4
33. B
2B.O
31.2
•--
\
.. _ •
. . ..«
.7*
'
'
A
-t
•
.1
.
•a
«a
-------
1
I
I
i
t
1
1
11 •
<-,
t-
Lr
i i
S-!
il
•Y
j
J
"i
ill
i
3
~t
ii
kg
11
til
u
-1
DAY
228
229
230
211
232
233
23M
235
236
237
238
239
240
241
242
243
244 .
247
248
249
250
251
252
251
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
".. .'_".' T ' 276 ;
278
279
280
FRPF
84.8
75.3
48.1
50.3
80.9
72 . 1
78. t
68.9
b9.6
74.3
86t4
135.3
80.2
47.0
78.4
84.8
98.6
94.2
121.9
107.1
107.6
226.5
75.1
174.8
96.8
151.5
25.0
73,4
' 56.0
si. e
41.9
55.5
66.8
98.1
ioe;2 -
113.2
128.3
67,9
99.3
80.8
122I9
67.9
6a'.9
65.1
" 40.0
62.6
64.1
49.9
110.4
N02
TEtF
15.9
30.6
22.2
22.1
49.41
32.2 "
50.7
40.7
50.3
45.8
47,3
118.4
52.1
26.8
27.4
60.6
41,2
"55.7
57.3
42.9
si.'s
30.9
101.4
38.4
8«.0
I*. 7
21.0
47.0
34.2
32.8
25. 4
21.9
27.0
39t6
41.4
03. 1
42.4
40.5
28.6
11.7
57.7
33.2
44.8
30|2
26.1
19.0
32.5
30.8
29.1
52.5
MONITORING KETHC03 CCMP*flIEON •• 0*ILV C«T* LI9TTK6
cmr
72. »
59,5
39.2
50.0
«.*.?.
58.0
«7il
57.8
63,8
.60.0 .
1(15.3
78.?
53 1*
90.6
81, i
9?, 7
100.4
76.4
99.3
60,0
140.9
68.1
10D,8
24.1
27.9
5*1,5
43.6
49.2
41,2
32.0
43,3
48,0
48,1
88.1
..68,6.
51.1
67.9
58,2
se|e
76.6
71.9
32.9
33. J
20.8
42.6
42|r
35.1
60.2
:
j
— . f\
ORO CHESSC TGSO TECH TEC4 CfeK
56.-0
52.8
42.8
lli?K
52 .'c
58^2
121.4
73,6
15.4
49. J
75T2
TO.l .
82.8
86J7
<>i!e
99.6
24.7
24. S
56.4
43.5
43,5
32.5
!7.3
"''
44)4 "
"'9
62^5
at. 7
102.5
49^8
- 67 8-
66.7
32.4
28.8
22,1
36.9
35,9
32:7
59.' 8
61.3 ..
74:?
93.7
51.9
zs'.c
98.3
76.3
54.4 .
79,2 .
87.2
72.9
UT'.O
152.1
I4J1
40.8
31.6
51.2
37.7
39.5
10.1
49.8
47.4 . . ..
33.5
44^6 " .. . .
4516
61.1
49.2
"i!
i)
;
«
"
\
;'
•j
:
-
;
.
-.1
i;
EC
Is)
<; «i
-------
J
J
t
,
1
i -
3
,.'
>,.•
DAY
28 J
282
283
2811
285
286
287
286
289
290
291
FRHf
136.5
111.2
«3.7
72.7
ee.o
BO. 9
122.0
NQ2
TEAF
7fl.»
37.2
31.7
50.0
78.0
MCM»O»ING HE7CCPS CCNPAPISON — DAILY Din LTSTTMS !
i
. j
ChPP CHPT CHESSC T09P TEC* TF(
-------
. N02 HOMTe»INO HFTNC08 CCPP4MI8DN -• D»ILV 0*T* LISTING I
fl =^^ — i
, • • —
•
3
•1
• 1
1
1
'i
JL
h
t*
t'.
*
?
I*
J —-
u
hi
3 "
i
i
u
J
71 - ....
t.
h
4
'
B*Y
1
a
9
6
n
11
14
15
16
17
18
19
20
21
23
24
25
26
27
28
29
30
31
32
33
« fi
34
39
36
37
38
39
41
42
"44
45
46
47
49
SO
SI
Kj
S3
54
ca —
53
56
57
59
60
mr
-- - -
. . ..
.. .
29.9
109.6
101.8
1*7.0
86.8
66.9
10 UL
165.1
71.5
!-S£r
60, 6
73.3
63.3
44.0
28.4
26.4
15.1
44.3
47.6
99.8
77.4
34.9
21.2
93.6
113.6
159.9
UAL
19.9
53.2
"38.7
73.5
37.5
11.5
19.8
53.0
70.8
36. a
30.4
26.2
20.3
17.2
37.2
28.1
33.3
2S.S
28.8
39,4
i~« —m —
84.7
69.0
18.0
17.3
52.9
56.2
CHPir
74.2
24.7
SB'S
39'S
30.6
37.4
36,1
21 !e ~
34,4
25. '6
32.6
58. '9
S9.S
32.4
«.«.«
•3.3
93.3
60.6
27,1
20.4
71.1
75.5
145.4
87.9
68.9
7.6
82.8
18.6 -
34.2
JL 1 •
. . °» .?
70.7
45.9
— W.i._.
31.1
32.4
38.9
17.1
34.7
~ ".8
29.1
55.3
25.1
38.8
53.2
77.1
29.3
23.4
5«.B
69.4
»?«,.?..
Otfi*r T6SC TECH Kci) chltl '
, i
74^7 ~ .
IS*! -1
.... 56 tO .....
40?8
_ _Z7. 1 25.4
17.1 26 ;»~~ " • - - - -,;
42^0 .'
;jt«
44^0
"••- . 62,9 ....
ll:l •!:*
2J-; 98^5 - - .
*8'' 100*9
' 27.6 ' . - ---- "'• • - -. "
• | • " \ • 29
39.9 - — "
67.1
- 52,fl_
7«.6 ~— -- - - "
59.2 51:0 ;;
- .. _ 50.0 t5*J '
?;•; si.i 32^7 — •-• •
10.9 „«., S1»6
H.i -
35.4 • -
27.3
«'«' 772B>8 JM ' :
26.6 . - '
4t!s z3'7
Z:l T3:' " — — • -
62.fi
17.3
39.9 »
3B.2 -
7 2. -2
96.7
to
-------
NOZ HCKZTQBXNG METHCDS CCMPAPXBQN •
7
3
4
s
4
T
t
•1
fl
1
\
I-
M
0
t?
3
h •
f!
P
3
:
r
h
il
M
H
n
U
la
u
D*v
61
62
63
64
69
66
67
M
69
70
71
72
73
74
75
76
78
79
80
81
82
83
84
85
86
87
88
84
90
91
92
9J
94
_95
96
97
98
102
103
104
105
106
168
176
174
180
181
183
184
185
186
187
FRHF
132.8
80.0
43.6
S7.6
115.4
fl9.8
ie.2
31.4
41.4
17.4
70.5
75.4
75.7
89. «
51.6
37.4
78.0
129.5
19. It
64.2
69.1
45.6"
112.4
64.7
79.3
125.7
106.6
TEA?
86.4
50.6
50.2
_5S.fl
93.2
46.9
15.6
33.5
64.7
69.4
67.4
__«9^o
37.6
60. 1
91.0
"4272
48.0
~Sj'.7
54.1
38.4
. S7.0
S2.2
66.0
CKRf
. 119.5
64.7
50.4
41.9
. 83.1
49.2
21.4
21.3
5Z.2
34.8
76.8
60.7
73.4
37.4
50.8
124.1
6o!fl
7.0.7
71.6
57.3
71.5
32.6
40.7
53.6
67.2
89.9
ChRt CHfaan
lOSll
60.
..5fl!
84.
04.
.. 30.
18.
22;
. . 57."
36.
77.
so:
64.
63.
41.'
S3.'
. .133.
. J6.
48.
38. '
6U
75.
8V.^
b 58.?
..-..40^6
49.7
47;3
'4«";2
3 U P
3 B • 0
20;
..lie.* ....
65.
79;
7*:
44.
83.
47.
70.
64 !
134:
127.
61.
16. •
46.
43.'
13. ._
63.8
64.5
. 85 ifl.
*i.S
35.1
62.1 ._
35.5
47.2
18.
70;
42.
196.
118.
77.'
57:
48.
44.
7B.5
reap
-
16.1
31.4
45.9
.. «6.4
51.2
86.4
108.6
...68.4
84.1
112.6
103.1
• DAILY OAT* LISTING
TECH T.EC4 C«e*
.
116.7 91.0
111.7
110.9
103.3
' 1C7.3
79.9 80.?
63.6
136.4 85. 4
.'.....2*2.1
74.7
80.
134.
180.
55.
50.
85.
48.
54.li
Bi'.a
no. e
65.?
.
1
1
1
.•I1
'1
1
'
10
•1
.1
•1
1
/
:*
.«'
•n
"
_!
"I
H
."1
a
• i
a
•>
to
-------
1
I
4
I
•
;
i
l
i
1
1
1
P
E
|j
fe
I-'
J
"i
13 '
']
fl
S- •
! — • • -.•
DAY FRHF
188
189
190
191
192
19}
194
195 "
196
197
196
199
200
' " 203 '
204
205
206
207
208
209
210
211
212
21J
215
217
818
219
220
221
222
245
246
247
248
2«9
250
252
255
256
258
2*'
262
263
264
265
"" 272
273
276
277
NOZ HCMTCRING HETHCDB CCHFARICON — DAILY DATA LISTING !
i
.....TEAF f^BF CHRC. . CHB8SC TB9C TECH Tpr, f^fu \
Sli " •
___.. 66. '1 ,
62. J :
ItB.t i
83.-S
93.8 - - -
l^l
107.2 ' " .,
Z3J7
17. a
ll'l ' ' "'
88J3
".J ....
48.3
31.6 -- - ",'
Z5.8
se .'6
35,9 -'
«!z :
35.0 '
30.5
36.8
22.0 .-.-.._ _ _ ..
91 1* -,
27,'S
47.2 ~
29!9 '
. . . . 46.6 . ' ' -
* » • * «
•»•* . - -
..._ 35.8
60.4 . " - -
":o - •' - "
«'l ••
36.0 ' ~ — •
40.2 - -..
«;0 r
36 :«
45.6 ' ^ '
N)
00
->3L
-------
J
1
«
,
• •
I
1
•l ...
i -
i
B
iis —
In!
1
s-
!•'.
M!
r1'
3
..i
D«V
278
279
280
281
282
283
26U
283
286
288
289
290
241
-•
NO? HCMTGBINS METKCOS COMPARISON — DAILY 0*T* LISTING
FRHF TE4F C(iflF CHBC CHf^SB TSSf TECH TPCn ruFw
51 a
57.1 ' -
32.9
....__ A6.6. tVAi
'3.7 ISO. t
*!.' 23a.o
. 1 21 tfr
119.*
43.7
50,7
•
f
J
J
-------
N02 MCMTGPINS «TMCBS CflHMRISON •• DAILY DATA LISTIKB
DAY PRMF
*
'i
j
*
.1'
I—
b
*-
ti
K
I-1"
f".
fi
[j
rj
f
r
I*
M.
J
H
»
i
TEA?
CHur chBc
*
26" -.
27
28
29
30
31
32
33
ifl
35
36
17
38
39
40
41
02
03
00
45
06
07
48
09
50
51
52
53
54
55
56
57
SB
59
60
61
62
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
- ---
~ rSTJ- " '
67. '8
01.8
09,]
01.8
-51L0
38, t
zs.e
68.
70.
100.
51.
81.
88.
.. 103,
90;
80.
66.
9.
106.6
64.6
32,0
27.3
. 03.6
88. e
82.8
85.7
86,7
77.
19.
28.
40.
26,
21.2-
23.7
43.8
19,0
J3.1 .
40.0
47.5
51.0
65,0.
48. 2
86,
1*1
19.
S7.
31.8
69.4
57.1
10.
36.
39!
30.
27.
5P.
22i
se!
125.
117.
65.
67.
39i
IB'.
20.
20.
Ofl.
35.
39.
65.!
a
36 :«
3i. -a
32.8
3fl|o
52:9
JB!O
10 8
ss.'s
57. J
100.7
116,1
-..?8|7 .
01. J
36.2
IB. 5
19,4
"
30.7
42 .'O
1 62 S
55.5 57:5
68. ~d
60. a
-C.Hf.aaD TSJC TECH TECO tMEM
67.4
Z7.S
. .15 !e
08.4
76.*!
..3fi.5_
.1
85.3
66.)
15. U
18'T
28.3
01 :>
11.2
26.1
39 .'4
S7*2
66.6
«6,8
50.9
94,4 '
38.5
u.'s
01. '0
72.1
01.9
R5.7
74.1
04.5
57.1
•9. a
37. (
78.8
?*'.«
05.1
36.2.
33.5
97.5
43.0
C2.6
63.3
68.4
.52,8.
--
_..
148.3
79.7
30. B
37.6
42.2
B2.7
81.5
67.7
107.0
108.2
118.1
108.0
130.7
13^.8
JBO.O "
155.1
113.9
135.7
54, (i
36.7
37.6
iris
06.0
in. 8
55.7
130.5
135^6
35.!
.- . ... .
71.9
22.0
2ft. 8
71.1
64. a
56.0
9(1.2
100.7
11?. 6
- ..99,!
J
t*
'S
r
....... .
i
•
-*
•<
•i
.-
•
„
--
-------
N02 HCMTCBIN6 PBTMCBS COMPARISON — 0»IUV 0*T* Ll87t*G
s
J
J
4
1
*
I
t
:
w
i",
b"
,.
\a
P -
c •
V
!'•'
ir
i
H
1
"
j
3
h
DAY
79
80
81
82
83
84
es
66
87
86
89
40
91
42
43
95
47
48
44
too
_J01
102
103
100
10S
106
JO 7..
108
104
Jio
111
112
113
110
115
116
17
lie
J19
120
121
122
123
124
125
126
. 127
128
129
130
131
,«H,
6.4
62.7
57. S
I1Z.O
160.1
71,8
37.2
75,3
74.0
M...8 .
42.4
151.8
~ 45~.~Z~
58,4
8flj7
TE'AF
6.2
16.6
46.9
22.6
J2.3..
12.7
28.1
3.3
1.3
17.3
-.01.0
13.2
21.2
.. 26,0
30.6
177,8 52.9
_ 111., 5 06.7
95.1
75.7
..7.5 .,1.
40.2
116,3
104.0 .
110. 5
40.7
100.6
134.6
176,7
64.7
106.2
130,7
I7J.5
170.7
207.8
105.0
164,6
109^2
121.9
128.1
176.2
214.3
17.7
26.0
3.0.9
08.5
03.3
. -36.6......
31.0
58.8
37.6
37.9
38,6
99.7
104.3
65,3
1.9
68. C
93.5
-
CHBF
56.2
26.1
30.2
31.1
- - 7.4. J .
126.0
06.6
66.0
5S!«
66.0
.__6P.T. . ..
24J4
.... 30,0
24.8
06.0
.._™Q._...._
20.0
31, e
00.0
35.0
62.1
39.1
00.6
01.3
54.2
67. I.....
«2. e
«0.2
- . 35,8. .
. SJiB ...
iin.e
71.0
69,.* .
54.9
50.1
57.3
58.9
63.1
CMflC
09. e
32. i
19.-2
^i'S
oils
»,8
17.' 1
oi.S
52.' 2
36.0
35.2
39,9
05.6
28 ,9
30.5
32.0
31 .'9
.31..1
34.1
56.2
.. 59, fl.
36.0
27 .'2
52.0
116,8
13l!l
67.5
...,r.3,9
09.2
..>346.
55.8
58 .%0
_ 62.'6
CHfaBf! re*n
75-7
3.9. :
05.9
59.2
52.0
17.7
06. '7
"*9
06*9"
63.1
36 !fl
860
62.8
— . .61.2..
29.9
6?ie
06.1
115.0
06J4
jfc.e
55:0
86. 0
133.0
-. .-.60.9...
00.3
25.3
. . eo ;o
79.3
47.'3
300.7.
73.0
ei.'o
127*5
75.;6
00.2
98.3
87.3
I6o!o
146,6
165.2
303.6
60.'7
26.0
2J.A.
30.7
00. «
II A
32.2
93.0
69.5
50.3
51.3
61.0
06.2
32.4
55 J
55.0.
55 4
54.6
31.?
30.J
30.9
16.7
59.7
31.?
. 107.2
66.8
111.0
_ SJ..6
07.4
30.7
35.0
51.8
. eo.e ..
TPCM TfCO
115.6
An O
50.3
Pfto i
45 3
78.1
96.5
1 o 3 fc
IfcO.Q
40.6
54.0
6o.'0
84.1
103.4
93.0
99.5
62.5
102.0
120.0
77.6
116. 8
153.6
70.4
75.5
76.7
116.1
107.6
170.2
109.6
-•
208.1
40.6 ..
rHEM
165,0
00 .'3
- .-C 1 VmO ._ _
SM
.
- —
es.3
• P A
73,0 '
85.0
47'9
62.5
60 '6
I04?7
157.3
72,6
76.6
4o;a
i«3.6 " "
101.6
120. '9
48. '2
j
'i
19
1
-
J
•-
ir
i-
1 j
•i
?
-.SB
-------
1
a
i
i
•
•••:
H
f.
t
h
n:
i
h
U
;j
f*
;i
u
.j!
3
j
i-
c
a
u
H
N08 MCMYCPING KBTKCB8 COHPARISCK — DAILY DATA
DAY
~ 132
133
134
135
136
137
138
139
140
Ul
142
143
144
145
146
147
148
PRMP TRAP CHRP CHRC
..
42,9
42.6 M.I 45.2
66.9 SI. 8 51. 1 40. r
102.9
100.4
75.0 39.
87,4 28.
32.
J32^1 45.
112.6 46.
113.9
164.3
34.
110.0
_ 161.1 55.
149 216.2 101.
150 192.2 121.
151 235,3
152 126.8 76.
153 107.3 66.
1S4 165.7
155
156
157
158
159
160
161
162
163
164
165
166
Tbf-
168
170
171
172
173
174
175
176
177
176
179
160
181
183
184
185
2(15.6 133.
130.6 43.
89.1 U2.
113.2 30.
107.2 44.
06.
51. 48. (
"0." 47.
-------
N02 MCMTCPIN6 NfTHCOB CCMFAPIECN — DAILY D*T* LISTING
I
3
t
6
1
d
S;
P
6
*
F
^
9
1
r
H
j
H
U
II
19
U
j- -
I
DAY
186
1B7
IBB
164
190
191
192
193
194
195
196
197
198
199
200
ZOl
202
201
204
ZOS
206
207
208
209
210
211
212
213
215
216
217
218
219
._ 220
. 221
222
223
224
225
226
227
228
224
230
231
232
233
214
213
216
217
238
r**r
107. S
as. e
67. 2
10l!3
130.7
167, (l
162.0
2BB.S
315.9
12A.2
110.5
179.0
.. 55. J
7«.2
77.5
99. i
52.0
52.4
- .50,8.. . ...
2«9,0
84.4
130.1
102.7
135?9
103.9
158,5
113.8
119.8
lea's
97.4
65.0
89.8
66. G
110.5
104.1
ias!e
128,7
46,6
73.1
147. t
TEAP
as. 6
_5J.0
44.8
08.0
61.0
74.4
49.4
85.5
124. 3"
200.9
56,J. .
42.1
35.4
42.5
_.."t«
63.!
31.4
.77.7.
121.0
08.4
64, C
61.4
7oj2
46.9
54.4
45.1
'65)3
43.4
S3.0
57.7
5(1.7
25.5
38.1
38.6
«!.*
85.3
102.7
86.0
83.4
63,6
33.6
U7.1
iH"JL_
69.1
73,1
105. S
100,4
72.Z. .
69. S
110.9
237J2
._ 8 2.' Z.
67.6
59.2
"9,9
48, «
48.6
67. J
M.Z
36.4
. .93.4
127.1
06.0
100,4
111.3
" "mill"
P4.9
82, C
35.9
. To!'6
63.1
46.6
65.3
71.2
73.3
46.2
60.4
57.6
. . _B?.6._.
104^7
.127,6....
116.2
103.8
R8.U
52.6
65.5
58.0
CHpr e*E9se
...69";
72.
72.
104.1
100.'
101.1
104.'
168.1
240.
. 78.
66 !
52.
5J.
76.
.66^
130.
67.
78.
84.
6B.
62.
00.
69.
02!
56.
52.
81.
Sn.
57.
58.
121.
48,
! 8t..
SB. 4
5
1 ID. 4
:35.t
! . 99^3
ei.t
r 112.3
.172.7....
r 27*. t
65.7
67.8
93.6
3ft. 6
130.9
U7.2_
. 73. S .
90. a
20(5.6
90.1
146.6 ..
69.3
80.8
103.1
94.3
111.0
88.5
41.3
5S.8
49.6
34.5
.. _.*0.2
36.;
100. « 82.5
76.2 182.7
82.7 89.0
43.5 130.8
50.2 58.3
40.6 39. 7
TC8C TECH
31 ;B
lei;*
6S?6
42 'S
67 h
69, 'i
146,5
179J7
01 *l
57?4
3lj2
55}5
22.1
47. S
94,7
30. S . ..
59:6
.37^9
55.1
58 .'a
67,0
129.
92.
. 1-43. .
107.
U3.
. 266.2
. 131.5
110.4
62,6
190.0
70.0
106.9
74.3
48J4
SJ.L
66.7
62.2
27.1
47.0
34,5
47.8
132.4
112,6
113.3
90.9
03.8
34.8
£B8JB_
•< "
46,
*•!
182.
211.
106,'7_.-
A5.0
02. '9
41.7
167,8
29. a
80. >
55.9
02. 'a
55 !l
06,7
45.3
'6*J
29*0
30.5
94. ;s
81.0
80,5
?9j9
39j5
29,5 _
i
r
i
0
't
>
j
'i
r
|0'
t
11
• r
•.
J»
M
:•
,K
:.
u
u
1-
w
;H
«
}ff
.«!
ii
•/
4"
.•>!
••.j
.i
.'1
H
-:S
f
-------
3
J
4
3
•
•
II
T '•
i
j
-.;
j
II
r::
n
H
i
iP
li'
'l
k-
I/,
H
f
K
>'l
'i
i*
i
n1
r
r
ii
or
NOZ MCMfflRING MPTMC09 COMPARISON .. DAILY DATA LISTING
DAV
2JQ. ...
•'240"
241
242
243
2.
48.5
49.8
SO.!
»»..5_.
9«,«
72.7
' "66.0
• l.>
117,9
40.9
S3. A
77.*
51.3
57.6
59. e
103.2
66.1
«5. S
SJ,J_
S6.0
. 61..J _
68. *
119.1
69,3
61.6
8ITCM32
CUE sat
50.8
6«.9
«7.1
..__._S9_. i
73."
69.7
-_-*3J
7* -
4«.5
. 39.6
37.6
60.8
51.9
39.3
. ?«..«
9*.e
82.6
S7,«._
86.6
40.2
56.2
36.7
49.0
44,5
93.7
33.0
..5B..7.
28.1
82.9
42.9
... 42.8
63.1
55.9
41.1
84.3
29. «
59.7
76.1
116.9
66.9
60.0
35.5
SO. 3
25.5
sn.o
86.1
T6SC TECH TpCti
66.1
69.6
119.2
66.4
*f , 9
.. . 57.5
53.0
5U.S
49,8
.... 49.4
56.3
5Q.9
59.0
42.6
5a,9
60.2
..._ . ' 59.0
89.7
M4.4
62.0
96.5
. . 76.7
39.2
90.3
59.6
121,5
. . " ' ! 43.6
95.3
47.2
70.0
.... ..'/ . . *0.'6
. . . 38.9
99.9
119.6
197.6
92.6
CHEH
40.0
47. 1
69.1
tl.5
60.7
51 .2
to. 5
70.6
6(1.0
71.5
70.1
ev.i
105.3
-
• '
}26.1
-,67^6
219.6
125.8
^
J
!-j
i,
**
.•.
i'.
•i
7t
>»
J*
••
r
Is
V
«
*
'<•
*•
o
t*
*;
f
V;
'»
— a
-------
N02 MCMTOPINO METHCBS cn»p*Ri!ew •• DAILY
i
j
*
r
j
If ' "
i '
!••
t ' •
H
Jl
M
[
w
E
rt
5
i*
M'
J
J
0.
•i
•
i
K
ll
LI
DAY
"2
3
4
S
6
7
6
V
10
tl
1JL
10
15
It
17
IB
20
21
22
2>
24
28
26
27
28
30
3L
32
33
34
3*
3*
37
38
40
. 42
43
44
45
4»
47
06
49
SO
SI
52
S3
54
5S
FPhP TEAF CHRP CHPr
- •-
•
108.
107.
53*
78.
135.
90.
129.
103.
110,
133.
52.
78.
71.
52.'
-
31.1
49.5 74. 72.7
.35,7 50.' 51.6
42. . 80, 90^1
79.' 33.' 33*5
51. 72. 54.0
91. 115. 88,4
3. 90,5
55. ti7. 68.0
63. 6b.' 76. B
. 63. . 70. .. 70,2
S3. 2 "
40 ',2
52,6
.. 71, b
65 Jb
35,8
25^2
22,3
-.95^7 .....
122,0
122,9
114*4
111*0
18?3
.83,4
*1*0
63.4
.
«2'5
71.8
9s;s
S4;e
i
j
•.
*.
11
'i
-
"
^
-r
»j
•',
_«
.»
: i
•*•
'.-.
;-B
-------
NQ2 MOM TOM NO PCtHCBS CCHMHIJON — 0»ILt
- - -
ii
1 -
1
>1
a
r
J
B
n
^
vi
p.
>=!
J
I
]• '
'i
1
H
1'
U
U
>!
j
0*¥
57
56
59
60
61
62
63
64
6S
66
67
66
69
70
71
72
73
70
75
76
77
76
79
80
61
62
63
80
65
86
87
66
69
90
91
92
93
94
•95
96
97
98
99
100
101
102
103
104
105
106
107
IDS
FNHF
75.0
100.5
131,7
72.3
111.1
91.6
T4.0
82.9
09.7
63!5
96.2
81.0
50.7
07.3
87,0
9(1.9
130.2
98.8
39,1
78.9
55,0
8o!a
62 La
o!9
fo".b
112.4
ni. a
104.5
167.3
74.8
70.5
47.7
82.7
86.8
67.6
90|7
153.5
110.6
56.0
26. e
TCAF
53.5
50.1
62.1
60.6
35.6
68.6
58. a
70.7
59.1
25t5
39.9
01.0
57.1
60.0
38.5
61. «
116.3
76.0
67.5
67.0
64.6
63.9 ™
29.5
72*.3
. 74.3
76.6
36.5
50.9
26.4
44.2
36.3
47.5
71.9
63.5
39.4
«2.5
CHRP
ae.2
72/8
61.3
"6.6
69,3 .
71.1
fro.2
60 t4
02.6
«8,«l
58 19
03.3
""Joio
116.6
176.9
B3.B
77.2
54, 6 .
75.11
utllt
61.6
B4.2
66. '0
88.0
120:0
41.9
57 .'S
00. >
74.6
M.e
56?1
74;7
68:9
68.7
46*7
63.5
95.6
12. e
....75=*
77.1!
50.0
37.!
28.6
. 5fl,0._
65!«
...57.*. .
117J5
112.0
89.4
78. 0
... 59. « ..
74.1
97^8
34.6
01,4
61.9
77. e
61.5
lie, a
53!?
75,9
59. e
43, j
56.)
Sl.l
52,9
60. «
75. i
50.1
38. «
CNtsac
54.4
88.7
9A.O
43.4
58.6
S'.jfl
87. 4
"I
137J5
. 92.7.
5?. 6
os.o
87.7
124.9
181.7
6?.]
79.6
... 5.0. 0.-
It. 7
19.5
5P.Z
65.?
3?. 9
159.7
60,1 _
46.7
63! 7"
5.7
70.6
118.6
. 77.4
63.9
58.2
84.6
50.2
1)6*7
OtT* LI6T1KG
taac TECH TPCO rwFM
....
5lta
ssjo .
37^5
50,9
70.0
75,4
70.3
168.4 ... .
129,8
71.0
70.4
98.1
07^
59,4
83^5
90.5
70 "JO
69^3
76.0
99'2 "
57^3
36.2
aa.3
103.2
$4.0
65,5
95.1
- . 7*iB .
100. 6
96.6
93,2
66.5
56,1
«e.o
132.3
105.3
108.9
85.3
' 85.1
U0.6 .
223.3
179,6
125.3
137.9
205.0
157.6
60.7
93.4
109.5
us. a
68.6
106,6
82.5
50.'2
76. '9
61,4
. 75*7 . .
97S6
91.2
76^7 ........
65,9
U6.5
65,6
»0.5
77. '8
57*9 - -
71*0
I02.« . ....
170. '2
216^2
174:7
118.0
102'JS
179,0
- 7s*i --- -
76.9
iea!o
9U7
111.1
«,J
u>
-------
NO? HCMTCP1NB fETHCDS CCMP4RISCN — DAILY C»Ti LISTING
I
J
f
4 •
1
f
•i
B
: .
p
£
i
3*
i t
£
L_ .
3
]
ni
j
;i
•*!
j
i
D'
;
»
DAV
104
'no
in
112
113
114
115
117
118
114
120
121
122
123
124
US
126
127
130
132
133
134
135
136
137
138
J39
140
141
142
141
145
146
147
149
•ISO
151
152
153
154
155
156
157
158
159
160
161
162
163
FRNF
.: .132.7
117.1
60.7
117^9
1.68 M
164.1
112.6
I 01. '4
29, Q
42.3
153.5
9.7
6*. 4
33.4
39.4
64.0
76.0
— 37,2.._
36.9
38.7
29.9
65.5
306,9
65.4
68.6
56.9
124.4
151,4
109,8
48.5
57 .'6
13.6
56.4
40.8
._. 31.6
7.3
13.4 .
1 06. 5
TEAF
59.0
79.3
32.9
5.8
53.2
-.122,4.......
96.7
77.9
76.3
55.7
.18,0...
5.6
62.6
68.5
101.0
53.4
20,2
15. S
25. T
_..26.0
23.1
21.3
57.0
44.4
35.2
26.6
34 S0
6.0
56.4
54.4
25.5
30.6
57.3
36.4
42.5
9.3
54.7
43. I
60.1
116.4
44.2
69,8
2e;7
129.8
«5.'5
63.5
..15,6 .
26J9
65.*
JPO.S
2.7
38.4
33.4
...J.S .
40.6
36.1
21.5
29.4
23,1
53. J
40.0
46,9
« 7. ,9...
02 re
69.6
32.5
34,4
62.5
79.1
37.5
50,4
.8.6
36.*
32.7
.i.4.'8.
79.3
33.4
8U5
100.5
100.8
87.4
69.4
.. . 15. fl
26.2
72.8
97,9
2.5
41.5
5.8
.. J6.0
44.7
11.4
...26.4
9.5
2.5
50.4
36.0
40.8
27. e
44.6
... 35.4
2.6
67.3
. 58.6
66.8
23.3
26,5
5.1
50,4
31.8
12.7
39.1
CMEssr
109.0
26.2
31.2
9J.9
107."
T7.7
66.7
59.4
61.2
36. &
35.9
52.9
134.8
101.1
166.1
198.0
54.4
16.7
47.2
ifc.t
104.6
62.3.
47.2
41.5
38.5
45.4
6T.4
72 4
33.5
65.7
62.0
.. »2«.l
66.0
44.5
so. e
68.4
71.7
54.5
41.0
5.5.2
TB9C
" 71 .'4 ' .
30.4
63^5
72j8
157^9
103.5
S0.'7
;»;;
40.6
4.4
27.4 .
20.'0
25.1
23,6
--.22..S
14.'5 ..
16,8
--ifjs—
29 .'7
36.-1
34.2
60.7
'1^2
68.9
18, '5
31.1
04.6
67.'9
35.2
21.6
37,6
31. *6
16.6
19 .'9
TffH T'^4 fHFM
127.0 130^6
159 . 0 17516
33.1 56 ."9
is!y
15*, 7 144^6
St. 4
40,6
5*,0
62.2
*T 9
46.5 «2,8 •-••-••
64.0 11U.5
54.4
56.1
lOl.O
79.4 l»lt'3
46,1 !l*;5
64.7 inS, 9
181,4
4*. 5 31,'T
i
i
i
""•
"
••
.-.
.-.
.•:
n
•i
w
,.
'.'.
..
,•
„
:.
-------
>[
1
t
1
I
I
a
* ....
!"'
£
t!
h
t
h
M1
kj
P
f"
4
j
i
^
H
N02 HCMTQD1KG HFTMCPS CrMP»RI!GN —
0*V
166
167
168
169
170
171
172
___
173
174
175
176
177
178
180
181 .. .
182
1B3
185
186
187
188
189
190
in
192
196
197
198
199
200
201
202
203
204
20S
206
207
208
209 •
210
211
21 J
215
216
217
218
PBHF
107:6
58,6
13«,6
85.2
83.4
88.8
1S.O
153.5
12*.9
89,3
136.2
90.3
52.2
38.0
63.0
31.4
77.0
59.1
~S9 .-9
SO. 4
106.6
89.0
58. S
_.?>.•».
seis
54'. 3
126.8
74.6
115.1
4S.2
30.4
82.7
29.9
75.9
100. S
63.5
87.0
50.8
SKI
10S.9
63.1
73.1
64.0
64.3
TE1F
17.0
32.7
SI. 3
98,2
90.6
7.6
-.60,0...
27.6
36.6
18.6
25.8
' 26.1-
65.1
28.8
50.6
23.~7
45.9
34.9
24.6
56.3
16.3
56.7
22.?.
17.9
44.4
... 31.8
20.4
40.2
60.4
39.2
36.3
34.1
25.5
43.0
36.7
39.2
CMPF
9^3
46.6
34.8
58.9
62.0
.5. .8
93,9
S.I
. ..58.2
71.3
28,4
38 ;2
40.0
6fl!'7
29.9
27.5
65.9
43.8
36.9
36.7
48 ."t
66.8
26 li-
te. s
31.2
Sfllb
26.9
97,3
11.2
16.7
72.3
65.8
sole
CHBC
26.2
87. '9
Si .'6
S>..7 . .
51. t
17,.
15.1
56.5
68. '1
37!«
84. '6
59.6
69.9
55,9
77.6
40.0
5U.2
41,8
sjie
53.2
53.1
34T9
27,6
62.9
.. 34.9
Hi*
"\l
41^9
43.3
28."8
58.9
61.1
aiTE>841
CHE8SC
59 .-9
53.'3
..12.0.. 3
124. S
94.2
70.9
98.2
90.3
45.3
21.4
53,'B
18.1
69.8
. .189*5
»i«
*0,J
7o!o
70,6
91.4
113.6
57lo '
26,8
21.8
111.8
45 .'9
25.6
46.9
«tl
-jSjo' —
45.3
•816
-60.1- -
41. '8
TC8C
*
37.5
49.8
92^7
64 .'5
1.3
18.9
24.3
54.9
29.'8
18.4
40. '4
20.5
23.5
23.5
33.4
41.9
25,6__
41J7
41.6
24.6
18 ^6 ~
42,3
23.8
8.7
42.'3
36.5
!6?6
31^8
33tS
38.3
26,1
«*|«
36.0
C*XLY DM* LISTING
TECH Tpcu thrM i
1Q4 9 \
80.9 ;
68.3
71.8
67.1 — - —
67.9
166.9 J ' .,
8.3
115 3
89.7 •' -" ' — - - —
22JO
68.4 BS.'S
•
45^0
"*2
92*6
141.4 t52?4
1
24.8 36T6"- * - - •'.
S3. 3 94.3
. . :. 71.4
•
11
. TO;* ...
X
U)
-------
N02 MCMTQRING
— DMLV O*TA LISTING
n~—
i
i
*
i .
8
1
9
ii
•i:,
i
P
P
ii '
71
*••'
1
L.
5
D'
i
H
3
-
"j
t
ir>
.
u
i
i
• DAY
219
220
221
222
223
224
225
226
227
226
229
230
232
?33
234 .
235
236
237
236
239
240
241
242
put
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
26S
266
267
266
269
270
271
272
rupr
26. a
93.7
38.1
S6.0
95.3
36.0
36.7
44.1
.56.7
56.3
115.6
40.3
11 ,«
52.4
66.9
74.5
87.6
JS6.L
82.4
107.3
105.0
55.2
103.2
77.0
66.4
94.1
44,3
27.2
72.2
39.7
9«,3
101.6
82.3
56.4
66.3
59.0
74.8
101.9
69.9
69.6
TEAF
16.9
10.2
24.0
29^.0.
«3,7
17.7
24.0
16.9
44.3
43.0
32.2
48.0
29.8
30.7
38.7
56.0
69.4
67.9
41.4
62.4
44.4
52.6
... .33.4
29.1
30.7
39.1
65.4
19.4
41.2
I.«JL
28.2
33.2
43.4
32.0
32.9
34.8
51.4
43.3
38.6
01.3
20.4
CMPP
23.2
«0. 1
23.1
S3. 9. .
00,0
__..14|9 ..
01.2
36.0
55. '1
76.2
43.6
-_55..9. ....
67.2
«2.7
.. ....12.0
44.7
47.4
69.1
t«7.9
141.8
54.6
... 79. 9_ ..
102.1
94.9
69.1
80.6
...lll.l
42.9
36.9
25.3
57.1.
_ .J 5. «...._
41.6
61.2
.... 98.9
44.4
57.1
.._«». 7
44.9
46.6
83,4
80.0
72.7
70.5
.CNBC.
22.7
...26.8.
2*!fl
35. J .
65. t
7C.O
40.8
47.4
53.9
61.4
54.1
42.6
33.6
43.6
96.5
105.1
44.4
55.9
113.4
69.6
64.8
64.5
63.4
40.3
61.9
32.7
23.9
59.8
36.9
76.4
43.2
53.6
46.4
44.6
fl».4
. 39.1
77.3
72.5
66.7
61.2
44,0
8XTEM41 .....
CW-SSf TGSP T
28.4
47.,
58.6
58. fl
51. t
151 7
43.3
86.4
96.1
109.4
78. J
29. «...,.
3*. 5
48.7
21.6
61.0
41. «
22.6
30.4
39.7
105.4
«8.e
67.6
37.7
50.3
48.3
44.4
37.7
E£H TEC4 CfEM
76.1 .
43.3
97.1 113.8
79.9 64.2
37.9 61.6
6l.2 G& 6
«1.9 6J.9
51.5
•
....
89. S
69.4 10?. 4
ij
180. a
9T.1 '„
90.2 ' '
"6.6 46. 8 "•' *
63.0 C4.2
es.s
97,2 150.0
77.9 136.5
72.9 ill.? . v
56.9 8S.4 - '.,.
w
NO
-------
N02 HCMTCRINS PCTHC08 CPHPARXSQN — DAILY OAT* LI9TIKR
1
1
1
1
;
J
"1 .
1
j
*l
." ..
f':
B
!•-
Irt
d
;:
E< •
13*
l«
DAY
'"273
27(1
27V
276
277
278
279
280
281
282
283
28(1
285
286
287
288
289
290
291
FRHP TEAf
"80.5 (Id.S
122.2 62.9
9*1.0
32.0
33.7 Itt.S
23.3 2.7
27.8 17.0
89.7
117.6 71,1
127.8
09. a
151.9
100.5 129.7
CHRP
>.i . i
93.8
2o|«
18.6
3.!
85.9
52t2
78.0
72.0
.05.6
107.8
EURO
66 '.Z
6fl,7
16.1
1.6V-
2l!)
65.0
tflfl^O
105.8
y.i?.
. i
CHE89C TG9C TECh Tffn I"?" - '
'5.7 '."". 67.5 95.9 '
s"-s ??^5
'8.11 . . 5.0
03.0
ao.o
48.2 '.'
20. d
20.0 152,0 . - -
112.5 1UB.8
100.7
68.9 -•— - •-• - - .,
61.5
00.6
55.9 ... " " ' ' " ' ~ .
*
"
-
'4
II
iO
?
-------
N02 MCK1TQMIN6 HPT
1
*
6
/
1
•
11
."
t'
"l
J
;•/;
it
»•"
'*•'
6
P
17'
P
Li
!.l
,J
If
i
i
1'
j
ni
H
H
u
11
u
M
DAY
99 "~
100
101
102
103
104
105
106
107
108
109
110
111
112 .
113
114
its
116
117
116
119
120
»?.!
122
123
124
125
126
127
131
132
133
134
135
136
" 137
138
139
J40
141
142
143
144
145
146
147
146
149
ISO
151
153
154
155
FRMF
ei.fi
47.1
79.0
82.0
101 .'6
121.8
96.6
153.6
109.0
2SBI9
.157.7
163.6
130.9
_i.iiil
1231s
_JJ»6,6
TEAF CHUF
«4.2 SB. 6
35.0 lit. 0
39. 419.5
42. 46. '4
55_, fcfl. |
SI. S7.6
68. 80. 6
48. 61.9
""22. ~s"aJV"~
St. 56.5
83. 66.7
76. 97.4
55. 66,9
SO. 56.1
.60, 61.3
62. fcO.O
67. 98.6
63. 101.5
62. 90.2
68. 74.1
67, PO.O
105,1 (10.
SB.
. J24.7 70. 79.9
112.7
80*5
84.5
122.1
136,6
82.9
96. S
193,9
222,6
112.5
_L85«9
74.1 77.1
134.6 137.6
33.9
38.2
55.0 55,9
26.3
51.1 62.1
48.5 54.
69.5 72.
2.5 86. "•"•
101.
102.4 398.
45.6 42.
71.3 63;
79.3 92.
109.0 167.
163.9
3S.O 52.
197.0 263|
51.4
46.6
62.?
63.'
71.4
44.1
35.1
50.5
88.1
99.2
50.5
65.1
78.1
66.
102,
84.
10-5.
6R.
87.
51.
69.
72,
86.
136.
47.2
33.6
03.3
50.4
42.1
67.4
73.4"
96,1
69.1
176.2
46,4
197,6
i
WC08 CCMPA*XSON — DAILY CAT* LISTING j
_ _ j
cweasr rase TECH TECH C«P«
«' ' 78.0 " ,
6 3. '4 ' -.<
06.0
63.0 62.'4
71. 77.'9
61. 79 .'8
92. 96.4
Ufl. 87,7
58. 41.1 ~ "" •
72. 46.'l
95.*
129. 89.5 ' ,
52. SU2
,16.
179. 54'4
48. 64.6
9?. SSJS
75. 66.6 . „
59.
60. 81 '3
SO". 89.9 ~.
102. 59.4
82. 70. '2
66. ' .... ' :,
99. .
176.
93. 58JO
154.0 109.6
144.1
71.3 .
78.7
132.7
93.2 •:
67.7 2 3. '5 .,
86.6 32. J
75.2 27.4 .;
. 37.1 . .
55.2
67.5 36.2
109.3 53 »0 • •
US. 4 16,8
7S.8 64.3
• Tl.'9
'•£
153.4 69.'4 -
197.3
199.| 129.'9 '-i
1S3J7 y
88. t 38.6 - • J
171.6
. ...204.1_. _..i63.'S _. „ -.,«
-------
)
1
I
I
t
t •
J
;i
i:
'i
I'.
j".
[17
[))
K
5
;i
X
J.1
»j — - — . . .
'1
Jj
**
1
•1
'*
1-
3
i .••
i
NO* HCMTOPING HFTHcoa CCNMBISON — OAILV C»T* LISTISS
D*y
""156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
U3
164
16S .
166
IBB
189 ..
190
191
192
193
194
196
198
~I99
200
201
202
203
204
205
206
207
208-
209
210
PRMF
'.'. 75.'l
67. 19
86.6
56.7
108.8
13k. 6
192.0
200.6
i«.8
139.J
189.'6
228J3
213.1
20. J_
36.0
90.9
no!*.
61. 9
87.8
05.9
151.4
103.0
57.1
71.6
168.6
1.50,3
130.0
235.5
104.6
00.7
102.2
*1 .a
63.5
74.4
9f."0
102.9
90.2
120.5
189.4
76.7
60.6
53.2
A7.il
*«,7
45. a
65.7
77.8
98.4
107.2
136.6
107.6
132.2
126.8
128.6
111.!
116.5
' "ZV.7"
99.1
56. S
81.0
33.3
46.1
39.1
47.0
68.7
" "72.9
44.7
68.6
145.4
188.3
IV... L.
SO. 4
66.1
-«lj*
OS. 9
50.4
S5.e •
66.4
37.4
93.6
13.2
CHRP
66.9
66_,6
60.-B
81.9
50.7
05.5
37.9
54.Q
... 76.2
*B!«
69.8
136.0
104. T
149.1
171.)
114.4
....HI. 8. .
62.0
123.8
5.9
27.9
95i5
65.5
IIS. 6
37.5
*4.l
65.2
1.9.8
111.9
iei.8
sils
181.2
196.4 .
7l!s " "
*2.8
ST. 6
50,9
40.2
50. 'a
82i6
38.7
89.1
129.'3
53.6
C.MBC. CMS sac TOSC TECH Tfm
52. 6
67.6
48.4
55. J
61.1
80.4
72.7
103.4
117.3
100.9
112.4
137.4
22.6
92.4
74,1
66.8
83.9
57.6
57^8
75.1
ST. i
83.3
64,0
61. J
87.1
145.8
188.1
228.0
6tJ6
41.6 "
46.0
53.3
74.9
03.5
9?. 6
92.4
205.3
.55,,?
106.3
62. T
e.1.2.
6S.O
7ft ,Z
45.9
100.8
8?. 7
152. 5
114.3
136.8
131.3
19S.O
so.e
328.3
212!5
Ifcfl.'o
IB. 5
34il
43.9
123. t
28. e
85.3
71.5
158.2
237.4
95.7
132.7
10'. 1
30.3
42.5
104.5
'7.3
43^8
sa!'?
34 ;a
37.9
37.'!
lo.'o
64.2
82.6
94.9
98?6
89:7
113.7
B3.'S
108.0
2U4
54.9
43.6
60. '7
19 ,'4
58.7
49 :a
4). 7
41. '6
"63:8" ~
37,6
57,3
100.7
107.1
19].U
55 :!
43.3
- 3"e :i
4 3" .*!
54 :*
26. '5
65,0
80.8
36.3
.
77. a
ifl.fl
42.2
108,9
201*6
93.0
148.3
128.7
111.7
123.6
126.6
68.1
"138.3
99,0
122.2
227.3
268.7
128.0
101.6
.52.1
108.5
161.2
CHFH
83f3
96,7
H7.8 .
2«5,3
227.1
97 .>
207.1
133N
1!6.~4
1?9^1
137 .'6
95^5
138.9
96^9
103.1
264.3
385.4
198. '9
It 3 .'4
al.'o
197!*7
92.7
I
•
j
4
"1
t
4.
1
..
11
V
't
•1
/ 10
i
!
-------
DAY
• " " " :~ :: 2u .
212
213
• ' 214
*l'
;'J, . - 216
• " 217
'•J_. 218
i- 21Q
!••; 220
''•-. 22 1
li 222
•": 223
>:' .226
" 228
n I"
i: 231
h • "2
!:J__ 233
\> 234
"i 235
V - .-236
237
M 238
!-_. . 239
i", 2*<>
h • a"»
!u. 242
'?• '243
W 244
J 243
246
••: 247
4_- - - 24fl
•i 249
J 250
J 25 f
"! 252
253
« 2S4
255
» 236
. 2ST
°" . ' 258
' . . 259
" 260
» 261
J . 262
!1 263 •
NO? PCM TO
FRMf
97.7
153.8
64.1
34.9
169;7
95.2
80,6
114.1
96,4
90.1
103.3
46.1
138,1 ._
100.8
A3r2
158.2
53.1
.137,4
133.3
99.11
7fl.4
139.0
71. «
.6.3.7...
79.9
97.6
130. «
87.9
127.6
60.0
",l
61.3
36,6
37.9
38.4
74. T
lSl>
169.1
144.7
107.0
56.1
7EAF
'IHS PETHCD3 crHPARXSCN
—CHRF _CW»C_
64.!
73.3
92.4
~62tr~
so.e
54.5
29.2
47,1
26.1
J9>0. .
41.2
59.5
. 37,5.. .
91.3
122.3
_9.7.6 .
87.4
84.3
55.6
47.4
4.6.I..
65.1
50.2
67.3
30.0
-46.2. .
41.6
43.9
_42,6
47.4
43.6
43.0
36,3
611.3
71.8
47.1
94.7
86.4
82|t
64.8
57.4
57.3
70.8
51.3
. .74.0.
74.7
13.3
, .57.6
65.1
82.4
....51.9
125.2
119.6
_ 116.8.
109.2
99J2
...53.8 _ .
70^7
... 69.4.. .
86. '6
121.3
_J1«.2
32.5
79:3
106.7
107.5
104.7
.?.z. e .
66.7
63.2
87,2
60.4
59.3
.. 3.2 L0
54. «
56.6
51,2
95,2
101.5
'«,» ...
66.0
60.7
36.2
76.4
60.1
._ ee.o
72.6
63."
S6.8
62.1
.66.9
37.9
53.9
80.0
43.8
s«;|
-------
V
N02 MCM70PINC HFTMCDS CCM»*SISON — 0»IL¥ D*T* LISTING
J
,
•
3 '
•i
3
'.i.
L...
P
f
1J|
a
i ,
V
i..
is
D1
!.
P"
b
r1
i
ti
ti
3
1 •'
w
M
i]
M
L,
0*Y
264
265
26ft
267
268
264
270
271
272
213
274
275
276
277
273
279
280
" " 281 "
282
2B3
234
285
287
288
2B«
290
291
110.6
109.3
40. T
41. 4
64.1
121.2
60.8
53.3
74.2
95.9
146.0
118.4
183.4
107.3
1J4.3
33.0
6l!«
50.4
23.8
ttl.O
29.6
54.2
05.7
35.9
34.8
51.8
48.6
52.4
71.0
73. a
37.0
ztL*r
as. 2
39.8
59.4
71.2
56,9
62.5
64,4
82.6
64.5
U0.7
117.4
51.1
62.1
5B.«
. 73.3
68 .'0
97,2
123.2
71.4
76.2
10.2
Oi HC.
lilt.
50.1
73.5
. 72.6. .
at.
49i
64 '. •
38.1
49.0
61.3
55.0
60.6
71.9
106.2
70.7
L ,_. ,.,_ , -/
CMfssr tesc TECH 7EC4 CHEH
«5.4 47,9
27.3 >
80.0 56.0 88.1
63.5 106.fi '
30.o 60.7
57. S 39.1 57.0
9-J.3 49.0 7*. 7
33.2 40.9 41.0
70.!
61.3 86.6
64.3 50,4 If. a
62.4
59.1
99.6
78.J
34.4 36.0 55. a
52.4 84.1 |27.8
M.ll • 117.6 167.7
tl.t 8?!e I27J6
46.3
74. e
32.6
25.1
42J91
'*
*
4!
tl
•T
M
4J
H
V "
-.7
, SI
V
' fl
if
-------
H-45
TECHNICAL REPORT DATA
,'Plces<- read Instructions on the reverse before completing)
1. REPORT NO.
12
3. RECIPIENT'S ACCESSION>NO.
EPA-650/4-74-012
4. TITLE AND SUBTITLE
Comparability of Nine Methods for Monitoring N02
in Ambient Air
5. REPORT QAT£.
Marcn 19/4
6. PERFORMING ORGANIZATION CODE
7. AUTHORIS)
T. D. Hartwell, C. A. Clayton, C. E. Decker, P.N. Hunt
8. PERFORMING ORGANIZATION REPORT NO.
25U-711-3
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Research Triangle Institute
P. 0. Box 12194
Research Triangle Park, N, C. 27709
10. PRCiGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
Contract No. 68-02-0335
12. SPONSORING AGENCY NAME AND ADDRESS
Environmental Protection Agency
National Environmental Research Center
Human Studies Laboratory
Research Triangle Park, N.C. 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final Report
14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
s. ABSTRACT Tne p^sep^ study was undertaken to compare several NOo monitoring methods
based on field data collected by EPA. Three continuous monitors (Chemiluminescent
and two Saltzmans) and six bubblers (two Arsenite, two modifications of the Jacobs
Hochheiser, and two Triethanolamine methods were investigated.
In particular, objectives of the project were (a) to determine the comparability
of these nine methods using field measurements obtained in Chattanooga, Los Angeles,
and St. Louis and (b) to determine, if possible, conversion factors for converting
readings frc'i one method to another. The criteria used in attempting to satisfy these
objectives -Involved examining statistics such as correlations between methods, ratios
of method means, and regression relationships between pairs of methods. I
The present study dealt only with the analysis of field data, which imposed several]
limitations on tf.:j inferences that could be drawn from the analysis. For example,
the bias of the '.rious methods was indeterminable; also, no data on potential N02
measurement interferences was available.
The results of the study indicate that additional laboratory and field work is
necessary on a subset of the nine methods studied before a decision can be made as to
which NOo monitoring method should be used in the field. RTI would suggest that the
subset Include four methods: one Arsenite, one Triethanolamine, one Saltzman and the
Chemiluminescent. The two modifications of the Jacobs Hochheiser method should be
dropppd from rnnsi dp ration
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
c. COSATI Held/Group
18. DISTRIBUTION STATEMENT
Unlimited
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
273
20. SECURITY CLASS (Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
-------
H-46
INSTRUCTIONS
1. REPORT NUMBE
Insert the EPA repoi her as it appears on th>- .over of the publication.
2. LEAVE BLANK
3. RECIPIENTS ACCESSION NUMBER
Reserved for use by each report recipient.
4. TITLE AND SUBTITLE
Title should indicate clearly and briefly the subject coverage of the report, and be displayed prominently. Set subtitle, if used, in smaller
type or otherwise subordinate it to main title. When a report is prepared in more than one volume, repeat the primary title, add volume
number and include subtitle for the specific title.
5. REPORT DATE
Each report shall carry a date indicating at least month and year. Indicate the basis on which it was selected (e.g., date of issue, date of
approvcl, date of preparation, etc.).
6. PERFORMING ORGANIZATION CODE
Leave blank.
7. AUTHOR(S)
Give name(s) in conventional order (John R. Doe, J. Robert Doe, etc.). List author's affiliation if it differs from the performing organi-
zation.
8. PERFORMING ORGANIZATION REPORT NUMBER
Insert if performing organization wishes to assign this number.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Give name, street, city, state, and ZIP code. List no more than two levels of an organizational hirearchy.
10. PROGRAM ELEMENT NUMBER
Use the program element number under which the report was prepared. Subordinate numbers may be included in parentheses.
11. CONTRACT/G RANT NUMBE R
Insert contract or grant number under which report was prepared.
12. SPONSORING AGENCY NAME AND ADDRESS
Include ZIP code.
13. TYPE OF REPORT A'!D PERIOD COVERED
Indicate interim final, etc., and if applicable, dates covered.
14. SPONSORING AGENCY CODE
Leave blank.
15. SUPPLEMENT'^ /JY NOTF" . . .
Enter informa jn not indued clsewhere.but useful, such as: Prepared in cooperation with, Translation of, Presented at conference of,
To be publish.d in, Supersedes, Supplements, etc.
16. ABSTRACT . i.i
Include a brief (200 wore- ;,,* less) factual summary of the most significant information contained in the report. If the report contains a
significant biblioprap'w or literature survey, mention it here.
17. KEY WORDS AND DOCUMENT ANALYSIS
(a) DESCRIPTORS - Select from the Thesaurus of Engineering and Scientific Terms the proper authorized terms that identify the major
concept of the re?-." H and are sufficiently specific and precise to be used as index entries for cataloging.
(b) IDENTIFIERS AND OPEN-ENDED TERMS - Use identifiers for project names, code names, equipment designators, etc. Use open-
ended terms written in descriptor form for those subjects for which no descriptor exists.
. -. . |.-,
(c) COSATI FIELD GROUP - Field and group assignments are to be taken from the 1965 COSATI Subject Category List. Since the ma-
jority of documents are multidisciplinary in nature, the Primary Field/Group assignment(s) will be specific discipline, area of human
endeavor, or type of physical object. The application(s) will be cross-referenced with secondary Field/Group assignments that will follow
the primary posting(s).
18. DISTRIBUTION STATEMENT
Denote reusability to the public or limitation for reasons other than security for example "Release Unlimited." Cite any availability to
the public, with address and price.
19. & 20. SECURITY CLASSIFICATION
DO NOT submit classified reports to the National Technical Information service.
21. NUMBER OF PAGES
Insert the total number of pages, including this one and unnumbered pages, but exclude distribution list, if any.
22. PRICE
Insert the price set by the National Technical Information Service or the Government Printing Office, if known.
EPA Form i{220-1 (9-73) (Reverse)
------- |