PA-650/4-74-012



March  1974
Environmental  Monitoring Series

                                            Iv.v.vX'X'Xv'-X'XvX"


-------
                               EPA-650/4-74-012
          COMPARABILITY
        OF  NINE  METHODS
     FOR MONITORING  N02
         IN AMBIENT AIR
                   by

T.D. Hartwell, C.A. Clayton, C.E. Decker, and P.M. Hunt

           Research Triangle Institute
               P.O. Box 12194
        Research Triangle Park, N.C. 27709
            Contract No. 68-02-0335
          Program Element No. 1AA005
       EPA Project Officer: Wilson B. Riggan

           Human Studies Laboratory
      National Environmental Research Center
    Research Triangle Park, North Carolina 27711
                Prepared for

      OFFICE OF RESEARCH AND DEVELOPMENT
     U.S. ENVIRONMENTAL PROTECTION AGENCY
           WASHINGTON, D.C.  20460

                March 1974

-------
This report has been reviewed by the Environmental Protection Agency
and approved for publication.  Approval does not signify that the
contents necessarily reflect the views and policies of the Agency,
nor does mention of trade names or commercial products constitute
endorsement or recommendation for use.
                                 11

-------
                               FOREWORD







     This report presents RTI's analysis of NO  data from nine monitoring




methods collected by EPA from July 1, 1972 through April 30, 1973.  Appendix




H gives a listing of the daily data given to RTI by EPA by site, day and




monitoring method.   The reader who is only interested in a brief summary of




RTI's analysis is referred to Section 5.
                                 ill

-------
                            TABLE OF CONTENTS


                                                                 Page

     List of Tables	  VI

     List of Appendix Tables	•	vill

     Lis t of Figures	  1X

1.   INTRODUCTION AND OBJECTIVES	   1

2.   LITERATURE REVIEW	   6

3.   DESCRIPTION OF METHODS	  11

     3.1  Introduction	  11
     3.2  Federal Reference Method, FRMF (NASN Modification
            of Jacobs-Hochheise'r Procedure)	  12
     3.3  Chattanooga Health Effects Study Method, CHESSO	  13
     3.4  Arsenite Method (Orifice), CHRO	  14
     3.5  Arsenite Method (Frit), CHRF	  15
   ,  3.6  Triethanolamine Method (Frit), TEAF	  16
     3.7  Triethanolamine-Guaiacol-Sulfite Method, (Orifice)
            TGSO	  17
     3.8  Continuous Saltzman (Chattanooga), TECH	  17
     3.9  Continuous Saltzman (Technicon Mark IV), TEC4	  18
     3.10 Chemiluminescent Method, CHEM	  19

4.   ANALYSIS OF SAMPLING DATA	  22

     4.1  Introduction	  22
     4.2  Data Description	  22
     4.3  Data Screening for the Daily Data	  29
     4.4  Analysis of Daily Data	  38
     4.5  Analysis of Hourly Sampling Data	  81

5.   SUMMARY	  86

     5.1  Introduction	  86
     5.2  Daily Data Analysis	  88
     5.3  Hourly Data Analysis	  99
     5.4  Recommendations	 100

     BIBLIOGRAPHY	 105

-------
                TABLE OF CONTENTS (Continued)
APPENDIX A:
APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

APPENDIX F:
APPENDIX G:

APPENDIX H:
Summary Statistics By Site
Summary Statistics for Daily Data Before
  Removing Outliers
Estimated Relationships Between Methods
  By Site Using Orthogonal Regression
Alternative Procedures for Determining
  Relationships Between Monitoring. Methods
Sample Means and Correlations for Two
  Time Periods for. the Daily Data
Summary Statistics for the Hourly Data
References to the Validation and Calibration
  Procedures Used By EPA
Daily Data Listing By Site

-------
                             List  of  Tables

                                                                Pace
 3.1   NO Monitoring Methods	;	  21

 A.I   City  and  Site Codes	  24

 A.2   Number  of Daily Measurements by Method and Site
       Before Removing Outliers—Sampling Period July 1,
       1972 - April 30,  1973, Unpaired Data	  26

 A.3   Percent Downtime for  the Daily Data by Method,
       Over Sites—Sampling Period July 1,  1972 -
       April  30, 1973	  28

 A.4   Procedure Used by  EPA for Constructing Daily
       Values for Continuous Monitors	  30

 A. 5   Number  of Outliers, By Site	,	  31

 A.6   Listing of Outliers—Daily Data	  33

 A.7   Number  of Daily Measurements by Method and Site
       After  Removing Outliers—Sampling Period July 1,
       1972 - April 30,  1973, Unpaired Data	  37

 A.8   Summary Statistics for Paired Observations—For
       Data Combined Over Sites	  39

 4.9    Ratios  of Arithmetic Means and Correlations
       Between Methods Over the Seven Primary Sites	  A3

 4.10   Ratios  of Arithmetic Means for Selected Pairs
       of Methods, By Site	  A5

 4.11   Correlations Between Methods - By Site	  A6

 4.12   Summary Statistics for Ratios of Daily Readings,
       By Pair  of Methods, Interval and Site	  51

 4.13   Estimated Relationships Between Methods Based
       on the Combined Data Over Sites	  66

 4.1A  Means of Daily Measurements by Method and Site,
       Unpaired Data	  72

 4.15   Summary Statistics N02 Monitoring Methods
       Comparison—Seven Sites Combined, Unpaired
       Data	  74

4.16   Summary Statistics and Estimates of Precision
       for Paired Duplicate Data at Site 832	  79
                                VI

-------
                      List of Tables (Continued)

                                                                Page

4.17  Summary Statistics Based on Paired Hourly
       Averages By S i te	  82

4.18  Summary of Hourly Results for the TEC4 and CHEM	  84

5.1   NO  Monitoring Methods	  87

5.2   Summary Statistics:  Daily Data.Combined Over Sites......  91

5.3   Estimated Relationships Between Methods Based on
       the Combined Data Over Sites	  93

5.4   Summary Statistics Based on Paired Hourly Averages—
       By Site	  99
                                VII

-------
                         List of Appendix Tables
                               APPENDIX A  .
A-l  Summary Statistics By Site
                               APPENDIX B
B-l  Means of Daily Measurements by Method and Site Before Removing Outliers-
       Sampling Period July 1, 1972 - April 30, 1973,  Unpaired Data
B-2  Correlations Between Methods - Over Sites, Before and After Removing
       Outliers
B-3  Summary Statistics for Paired Observations—for Data Combined Over
       Sites, Before Removing Outliers
B-4  Correlations Between Methods - By Site,  Before Removing Outliers
                               APPENDIX C
C-l  Orthogonal Regression Summary of NO  Monitoring Methods
                               APPENDIX D
D-l  Orthogonal Regression Summary of NO  Monitoring Methods, Log Scale
D-2  Ordinary Regression Results Over Sites Using the Model Y = A + BX
                               APPENDIX E
E-l  Correlations Between Methods—Over Sites, After Removing Outliers for
       Two Time Periods
E-2  Means of Daily Measurements (Unpaired) by Method and Site for Two Time
       Periods—After Removing Outliers
                               APPENDIX F
F-l  N02 Hourly Data Summary, Paired Data
                               APPENDIX H
H-l  Daily Data Listing By Site

-------
                             List of Figures


                                                                 Page

4. 1  Orthogonal Regression	 59

4.2  Scatter Plot of GIRO vs. CHEM—Over Sites	 63

4.3  Scatter Plot of TEC4 vs. CHEM—Over Sites	 64

4.4  Estimated Relationships Between the CHEM and Seven
       Other Monitoring Methods	 69

4.5  Estimated Relationships Between the CHRO and Seven
       Other Monitoring Methods	 70

4.6  Histograms By Method—Seven Sites Combined, Unpaired
       Data	 75

5.1  Estimated Relationships Between the CHEM and Seven
       Other Monitoring Methods	 97

5.2  Estimated Relationships Between the CHRO and Seven
       Other Monitoring Me thods	 98

                               APPENDIX C

C-l through C-36  Regressions by Site and Pair of Methods

                               APPENDIX D

D-l               Regression Relationships Between CHEM
                    and CHRO, Over Sites

                               APPENDIX F

F-l through F-ll  Diurnal Averages By Site
                                   IX

-------
                     1.   INTRODUCTION AND OBJECTIVES









      The 1967 Amendments to the Clean Air Act required the Secretary




 of the Department of Health, Education,and Welfare (HEW)  to develop




 and publish air quality criteria which, in his opinion,  were necessary




 to protect the public health and welfare.  The 1970 Amendments to the




 Clean Air Act required the Administrator of the Environmental Protection




 Agency (EPA) to promulgate National Ambient Air Quality  Standards for




 those pollutants for which air quality criteria documents had been or




 would be published.   The "Air Quality Criteria for Nitrogen Oxides" was




 published in January,  1971.   On April 30, 1971,  William D.  Ruckelshaus,




 Administrator of EPA,  promulgated in the Federal Register the "National




 Ambient Air Quality  Standards" for six pollutants,  including  N0?,  as




 well as the reference measurement method (herein called  the Federal




 Reference Method)  to be used to measure these pollutants.  The Reference




 Method published for the measurement of N0» in ambient air  to determine




 compliance with national air quality standards was the National Air




 Surveillance Network's modification of the Jacobs-Hochheiser  method [6].




     During the period April 1971 to July 1972 several studies were




conducted which indicated that the Reference Method for measuring NO




in ambient air possessed deficiencies.  These reports, published by




EPA and other independent groups, raised questions as to  the accuracy




and validity of N02 data collected over the past decade.   In particular,

-------
 the  validity  of  data  collected  during  the  Chattanooga Health Effects
                                           4


 Study  [23], on which  the National Air  Quality Standard  for N0»  is based,



 was  questioned  [12].   The main  objections  to the Federal Reference



 Method were its  low and variable collection efficiency  and the  inter-



 ference of nitric oxide on the  measurement.  As a result of these



 studies,  the  Administrator of EPA deferred implementation of regula-



 tions regarding  control of NO   from certain stationary  sources  from



 July 31,  1972 to July  1, 1973.  During this period of time, studies



 were to be undertaken  by EPA to reevaluate the analytical procedures



 of the Reference Method and to  develop acceptable modifications to the



 Reference Method (i.e., improved collection efficiency  and precision,



 and elimination of interference of nitric oxid^} or a substitute reference



 method to be  used for  compliance monitoring.- Th^se studies include a



 methods comparability  program conducted by EPA ir.v Chattanooga, St. Louis,



 and Los Angeles which  is the subject of this report-.   The data for the



 comparability study were collected by EPA and the analysis of the data



was carried out by the Research Triangle Institute (RTI).



     In particular, the objectives of  this study were:  (a) to determine



 the comparability of nine'methods for monitoring N0? in ambient air,



 using field measurements obtained during the period July 1972 through



 April 1973 in Chattanooga,  Los Angeles, and St. Louis;  (b) to determine,



 if possible,  conversion factors for converting readings from one method



 to another.  The criteria used  in attempting to satisfy these objectives

-------
 involved examining sample statistics such as correlations between methods,




 ratios of method means, frequency distributions of methods, regression




 relationships between pairs of methods, standard deviations of methods




 and comparison of duplicate readings by each method.  The nine monitoring




 methods were as follows:




      (1)  Chattanooga Health Effects Study Method,




      (2)  Federal Reference Method,




      (3)  Arsenite (straight tube impinger),




      (4)  Arsenite (fritted bubbler),




      (5)  Triethanolamine (TEA) (fritted bubbler),




      (6)  Triethanolamine-Guaiacol-Sulfite (TGS) (straight tube impinger),




      (7)  Continuous Saltzman (Technicon-Chattanooga study),




      (8)  Continuous Saltzman (Technicon Mark IV), and




      (9)  Cherailuminescent.




Detailed descriptions of these methods are given in Section 3.




     It should be emphasized that this study dealt only with the analysis




of field data, which generally imposes several limitations on the types of




analyses that can be performed.   One major limitation, for instance, was




that the bias of the various methods was indeterminable.  That is, since




the true concentration of NO  in the air was unknown, it was impossible to




determine which method provided values closest to the true level.  Another




limitation of the current study was that data on (potential) N02 measurement




interferences, such as NO and ozone, were not available to RTI.   Hence, no

-------
 evaluation of, or adjustment for, these Interferences could be made in the




 analysis and comparison of NO  monitoring methods.   Sections 4.2 and 5.4




 indicate some other limitations that should be considered when examining the




 results of this study.   In fact,  because of the many limitations of the field




 data analyzed in this report, RTI does not recommend that the functional




 relationships between monitoring  methods developed  in this report be used




 in general for describing the relationship between  pairs  of methods.  The re-




 lationships given here  do give an indication of how the various methods re-




 late to one another;  but  indiscriminate use of these relationships (e.g.,




 converting NO-  measurements  from  one method to another at any site in  the




 United  States)  is not recommended.




      In this  report,  Section 2  presents a  literature review,  Section 3  gives




 brief descriptions of the  nine  monitoring  methods under study,  Section  4




 describes  RTI's  analysis  of  the monitoring data, and Section  5  presents a




 summary  of the  results.




      It  should be mentioned  here  that besides  the study described  in this




 report,  EPA has many  other ongoing programs having  to do with the methods




 used  in  ambient NC»2 measurements.  For  example, the Methods Standardization




 Branch  (MSB)  of  the Quality  Assurance and  Environmental Monitoring Laboratory




 is attempting to  standardize a number of NO- methods.  This standardization




 process  starts with an in-depth examination of a candidate method in a single




 laboratory  to try  to detect  obvious weakness or pitfalls that should be dealt




with.  In  carrying out this examination the "Ruggedness Testing" type of




experimental design as proposed by Youden  [26] is used.   Once it is decided




 that the method is viable, it is then submitted to interlaboratory collaborative

-------
 testing in  which several  laboratories use  the same method on  the same




 material so that it  can be  determined how  the method  can be expected to




 perform in  the  hands of typical users.  The collaborative testing is designed




 to allow EPA to develop important statistics such as  repeatability, repro-




 ducibility  and  method bias.  At the present time MSB  is applying the




 standardization process to  four N0? methods:  the Arsenite, TGS, continuous




 Saltzman and Chemiluminescent.




      Another important program in N0» measurement investigation is being




 carried out in  the Field Monitoring and Instrument Evaluation Branch (FMIEB)




 of the  Quality  Assurance and Environmental Monitoring Laboratory.  (The




 field work  for  this  study has been completed, but the data analysis and




 report  have  not yet  been done.)  In brief, FMIEB set up facilities in the




 CAMIO Station in  Durham to make simultaneous HO- measurements, in duplicate,




 from  ambient air  and  from ambient air with added NO .  Four different pro-




 cedures were used:   the Arsenite and TGS procedures resulting from the MSB




 single  laboratory evaluation, and the continuous Saltzman and Chemiluminescent




 procedures,  which were carefully set up by internal EPA experts in close




 coordination with the manufacturers' representatives.  Measurements were




 made  in 24-hour increments so that all four methods could be intercompared.




 There were  three phases to this program.  The first phase consisted of




 taking NCL measurements of ambient air as it was delivered by the atmosphere




 as well as measurements taken on ambient air to which NO- was added at a




 constant rate over the 24-hour sampling period.   The second phase involved




measurements of higher levels of NO  added to N0?-free air in one to four




hour increments during the 24-hour sampling period.   The third phase was




designed to study the effect of ozone as an interferent.

-------
                          2.    LITERATURE REVIEW









      Until recently,  the only methods available for monitoring nitrogen




 dioxide (NO,,)  in ambient air were based on classic colorimetric pro-




 cedures (i.e.  Jacobs-IIochheiser and Saltzman methods).   The National




 Air Surveillance Network's  (NASN)  modification of  the Jacobs-Hochheiser




 method  [6]  was published as  the Reference Method for monitoring NO




 in  ambient  air in the  Federal Register.  April 30,  1971,  edition "National




 Primary and Secondary  Ambient Air  Quality Standards."  Nitrogen dioxide




 data  used  to set national primary  and secondary ambient  air quality




 standards for  N02 (100 yg/m   — annual  arithmetic  mean)'were obtained




 during  the  Chattanooga  Health Effects Study [23 ] using a  variation of




 the Jacobs-Hochheiser  procedure not  consistent  with  the  method  published




 in  the  Federal Register.  Here,  two  straight  tube  impingers were used  in -




 series  instead of a fritted  bubbler  as  the collection device for the 24-




 hour  integrated  samples.  In  order  to avoid confusion, the  following




 terminology will  be used  for  identification of variations of the Jacobs-




 Hochheiser  procedure:   (1) Federal Reference Method  (NASN modification)




 and (2) Chattanooga Health Effects Study Method  (CHESS modification).




     The main objection  to the methods based on  the Jacobs-Hochheiser




 procedure is the  low and variable collection efficiency which directly




affects the  accuracy  of  the measurement.  The N02 collection efficiency




has been studied by several investigators and appears to be  dependent




upon the conditions of the experiment.

-------
      Jacobs  and Hochheiser  [1AJ  reported N0?  recoveries  of  approximately




 90 percent using their  original  procedure.  Morgan, Golden,  and  Tabor  [19]




 found the collection  efficiency  of  the  Reference Method  to  vary  from 42 to




 65 percent with an  overall  average  of 53 percent at their recommended  conditions.




 The collection  efficiency determinations in these studies ([14]  and  [19]) did




 not use  permeation  tubes to generate N0? concentrations.  Shy, j?t  al^  [23]




 determined an "empirical sampling factor" of  0.695 for the  Chattanooga Health




 Effects  Study Method, using a HO- permeation  tube calibration system and  two




 straight- tube impingers in  series as the sampling apparatus.  "Corrected" NO




 values were  then calculated by, dividing observed NCL  concentrations by the




 empirical sampling  factor (0.695) obtained with NO- concentrations approximat-




 ing ambient  levels  [23].  Purdue, Dudley, Clements, and  Thompson [20]  in  a




 recent reinvestigation  of the Federal Reference Method reported  an average




 overall  collection  efficiency of 35 percent with a standard  deviation  of  about




 15  percent.  The DHER—   "empirical sampling  factor"  of  0.695 agrees quite




 well with the NASN  correction factor for collection efficiency of  0.35 when




 the 2 of  the numerator  of the equation used to relate N0? gas concentration




 to  nitrite ion  formation is  taken into account:




                2N02 + 2NaOH  f NaN02





                              ug N0~
Blacker and Brief  [3] reported collection efficiencies ranging from 35 percent




at 0.215 ppm N02 to 65 percent at 0.05 ppm NO  using a fritted bubbler collection
—   Division of Health Effects Research

-------
 device  and  permeation  tubes  to generate NCL  concentrations.  An average



 collection  efficiency  of  73.7 percent was determined in their study using



 two  collection devices in series.  In a recent article by Hauser and Shy



 [11], data  were presented showing  that the collection efficiency of the



 Federal  reference method varies nonlinearly with NCL concentration from 15


                       3                 '  '                1
 percent  at  740 pg NO./m   to  50-70  percent at 20-50 Mg NCL/m .



     The Federal Reference Method  calculation for NO  concentration, as



 published [6], includes an overall efficiency correction of 35 percent.  The



 studies  cited above indicate that  at concentrations of NCL in ambient air



 (30  to 60 Mg/m ), where collection efficiencies are much higher than 35 per-



 cent, the reported concentration will be much higher than the actual ambient


                                                       3
 levels.  At ambient NO. levels on  the order of 120 yg/m , a 35 percent



 correction  factor will be valid.    At levels above 130 pg/m , the use of a



 35 percent  correction factor will  underestimate the actual NCL concentration.



     Another objection to the Federal Reference Method is that nitric oxide



 (NO) is an  interferent with  the measurement of NO .  Heuss, Nebel, and Colucci



 [12] reported a relative response  to NO of approximately 25 percent.  Hauser



and Shy  [11] reported that at a NO/HO  ratio of 1.0 or less there is little



effect of NO on the overall efficiency of the method; however, at higher



N0/N02 ratios the overall efficiency is considerably higher.due to NO inter-



ference.



     The validity of data collected in previous years,  especially for low



ambient air NO  concentrations (i.e., < 0.05 ppm),  and the data used to set

-------
 the NCL  standard are questionable.   One  approach  for  adjustment  of  past




 data would be to apply  a correction  factor  to  these data.   To  do this, it




 would be necessary  to demonstrate a  consistent  relationship between  the




 current  Reference Method and  other analytical  techniques.   One objective of




 the present study is  to determine the interrelationship between  the  nine




 methods  currently being evaluated.




      Several  modifications  to the Reference Method have been made to improve




 the collection efficiency and to eliminate  the  interference of NO.   A recent




 study by  Christie,  Lidzey,  and Radford [4] has  shown  that the NO- collection




 efficiency  can be raised from 35 to 95 percent by the addition of sodium




 arsenite  to the  absorbing reagent.  Two of the six 24-hour  methods incor-




 porated  into  the present methods comparability study are based on the arsenite




 method (i.e., arsenite-orifice and arsenite-frit).  Levaggi, Siu, and




 Feldstein  [17] report that N02 absorption efficiencies of over 95 percent




 are attained using a solution of triethanolamine as the  absorbing reagent




with no interference from NO  up to 0.6 ppm.   A variation of this method




which is included in the present study is the TEA-frit.   Sawicki, et al.




 [22] have incorporated in their method a combination of triethanolamine,




guaiacol, and sodium metabisulfite as the absorbing reagent.  Collection




efficiencies greater than 92 percent  were attainable with no interference




from the following species:   NO,  SO.,  C02> etc.   This method was incorporated




into the present methods comparability study on September 21,  1972 as the TGS-




orifice method.




     The Saltzman method [5] for  monitoring  N0_ in ambient air is also

-------
                                  10
a coloriraetrie procedure employing a slightly different reagent system.



Continuous recording of N0? concentration is possible; however, main-



tenance requirements and reagent costs are excessive, and instrument zero



and span stability are less than desirable.



     During the past two years, instrumentation based on the chemilumi-



nescent principle has become available for monitoring NO and NCL.  Two



techniques based on the specific chemiluminescent reaction between NO



and ozone at low pressure and at atmospheric pressure have been developed.



Recently, atmospheric pressure chemiluminescent NO-NO -N0_ analyzers have
                                                     Jv   £,


been installed in Chattanooga, Los Angeles, and St. Louis.  Results from



an instrument evaluation program conducted in St. Louis [5], where measure-



ments from a modified low pressure chemiluminescent NO-NO  analyzer were
                                                         X


compared to measurements obtained using the Federal Reference Method in-



dicated better than 92 percent absolute agreement between the two methods



(i.e. ,  the Federal Reference Method was within 92 percent of the chemi-



luminescent analyzer)  for concentrations of NO. less than 0.10 ppm.

-------
                                   11
                     3,  DESCRIPTION OF METHODS
 3.1  Introduction
      Brief descriptions of the measurement methods employed in the

 comparability study conducted in Los Angeles,  St.  Louis,  and- Chattanooga

 are presented in this section.   Since the analytical procedure for six
                                                                \
 of the manual measurement methods (i.e.,  Federal Reference Method,

 Chattanooga Health Effects Study Method,  Arsenite Method  (Orifice1^,

 Arsenite Method  (Frit),  TEA Method  (Frit), and TGS Method (Orifice)^

 compared in this study are similar,  complete descriptions of the ana-

 lytical or sampling section will not be  included for each method.   Unless

 so indicated,  the procedures described for the Federal Reference Method

 will suffice for each method.

      In the remainder of this report the  following abbreviations will be

 used to denote the various methods:

      (1)   Federal Reference Method                 =

      (2)   Chattanooga Health Effects Study Method  =

      (3)   Arsenite Method  (straight  tube  impinger)=

      (A)   Arsenite Method  (fritted bubbler)
      (5)  Triethanolamine  (fritted bubbler)
                                           I/
      (6)  Triethanolamine-Guaiacol-Sulfite—'
          (straight tube impinger)

      (7)  Continuous Saltzman  (Chattanooga)
FRMF


CHESSO


CHRO


CHRF


TEAF


TGSO



TECH
      (8)  Continuous Saltzman  (Technicon Mark IV) =    TECA
      (9)  Chemiluminescent
CHEM
— Sampling on the TGSO method did not begin until  September  21,  1972.

-------
                                  12
3.2   Federal Reference Method. FRMF  (NASH! Modification of



      Jacobs-Hochheiser Procedure)  [6]



      a.  General Description



      Nitrogen dioxide is collected by bubbling air through a 0.1N solution



 of  sodium hydroxide  to form a stable solution of sodium nitrite.  The



 nitrite  ion produced during sampling is  then determined colorimetrically



 by  reacting the exposed absorbing'reagent with phosphoric acid,  sulfa-



 nilamide,and N-1-naphthylethylenediamine dihydrochloride.  This method



 is  applicable to collection of 24-hour samples In the field with



 subsequent analysis  in the laboratory.  The range of the method is claimed to be


           3
 20-740 yg/m  (0.01-0.4 ppm) nitrogen dioxide for a 24-hour sampling



 interval at a sample flow rate of 200 cc/minute.  An overall collection



 efficiency of 35 percent was obtained from test atmosphere having nitrogen


                                  3             3
 dioxide concentrations of 140 ug/m  and  200 vg/m  by automated analysis [20].



 For the present study a collection efficiency of 35% was assumed for the



 FRMF.



      b.  S ampling Procedur e



     The samples for N0» (one for each 24-hour interval) are collected in



 an  absorber consisting of a polypropylene centrifuge tube,  a two-hole poly-



 propylene stopper, and a bubbling apparatus (frit with porosity in the range



 of  70-100 y).   These collection devices containing 50 mil of absorbing



 reagent are sent to  the field along with calibrated limiting orifices



 (27 guage 3/8" hypodermic needle) which produce a flow rate of

-------
                                  13
175-230 cc/min.  A membrane filter and trap containing glass wool are




connected between the bubbler and orifice to prevent or reduce plugging




of the orifice by entrained absorbing reagent.  Collected samples are




returned to the laboratory for subsequent analysis.




      c.  Analytical Procedure




     An automated system (Technicon Autoanalyzer)is used for analysis




of NO- samples received from the field.  Samples are placed on a




sample turntable and automatically picked up at a rate of 40 samples




per hour.  Appropriate reagents are mixed with the samples, which




then flow through time delay coils to the colorimeter, where the absorb-




ance of the azo dye produced in the reaction is read at 558 nm and




displayed on a stripchart recorder.  Approximately 8 minutes elapse




between sample pickup and appearance of the corresponding peak on the




recorder chart.  Standardization of the autoanalyzer is accomplished




with liquid nitrite standard solutions.









3.3  Chattanooga Health Effects Study Method,  CHESSO [23]




      a.  General Description




          Nitrogen dioxide is collected by bubbling air through a




0.1N solution of sodium hydroxide forming a stable solution of sodium




nitrite, which, when reacted with phosphoric acid,  sulfanilamide,  and




N-1-naphthylethylenediamine dihydrochloride,  forms an azo dye.  The



absorption of the azo dye is then determined colorimetrically at  558




nm.   An "empirical sampling factor" of 0.695 was determined

-------
                                   14
 experimentally  for  this  method  and used  to  calculate corrected NO
                                                                 2

 values  [23].
      b.   Sampling Procedure


      Integrated  samples  (one each 24-hour period) are collected in two


 absorbers  connected in series, each containing an orifice tube  (1 mm diam-


 eter) instead of a frit  and 35 mi of absorbing reagent.  A sample flowrate


 of  approximately 500 cc/min is maintained using hypodermic needles as


 critical orifices.  A membrane filter and trap containing glass wool


 are connected between the bubbler and orifice to prevent or reduce


 plugging of the  orifice  by entrained absorbing reagent.  Collected


 samples are returned to  the laboratory for analysis.


      c.  Analytical Procedure


     An automated system (Technicon Autoanalyzer) is used for analysis


 of  all field samples.   The analysis procedure is essentially the same


as  that described for the Federal Reference Method.






3.4  Arsenite Method (Orifice). CHRP [15]


      .a.  General Description


     Nitrogen dioxide is collected by bubbling ambient air through a


0.1N sodium hydroxide  solution Containing 0.1 percent sodium arsenite


to form a  stable solution of  sodium nitrite.   The  nitrite ion produced

-------
                                  15
during sampling is then determined colorimetrically at 558 nm by reacting




the exposed absorbing reagent with phosphoric acid, sulfanilamide,  and





N-1-naphthylethylenediamine dihydrochloride to form an azo dye.  An



overall collection efficiency of 85 to 95 percent has been reported




for this method with a slight interference by nitric oxide at high




concentrations.  In the present study a collection efficiency of 85




percent was used.



      b.   Sampling Procedure




     Integrated samples (one each 24-hour period)  are collected in  a




collection unit,  a polypropylene tube fitted with  a two-hole polypropylene




stopper and containing a bubbling apparatus which  consists of an orifice




(1 mm diameter) tube at a flow rate of 175-230 cc/min. Appropriate




filters and traps are included to prevent plugging of the hypodermic




needle critical orifice by entrained absorbing reagent.




      c.   Analytical Procedure




     Analyses of field samples are accomplished on a Technicon Autoanalyzer




modified for continuous, automated analysis of NO- samples.









3.5  Arsenite Method (Frit), CHRP [15]




      a.   General Description




    See Section  3.4.a.(CHRO)  for  a general description.

-------
                                   16
       b.   Sampling  Procedure





      Integrated samples  (one  each  24-hour  period) are  collected  in a




 collection unit,  a  polypropylene tube  fitted with a  two hole polypropylene




 stopper and containing a  bubbling  apparatus which consists of an upturned




 frit with  porosity  range  of 70-100 u at a  flowrate of  175-230 cc/min.




 Appropriate  filters and traps are  included to prevent  plugging of the




 hypodermic  needle critical orifice by  entrained absorbing reagent.





     c.   Analytical Procedure




     The procedure  is the same as for  CHRO, Section 3.4.c.






 3.6  Triethanolamine Method (Frit), TEAF [15]




     a.   General Description




     The method is the same as for CHRP, Section 3.4.a.,  except that




nitrogen dioxide is collected by bubbling air through 0.1 M triethanola-




mine solution to form a dilute solution of sodium nitrite.





       b.   Sampling  Procedure




     Integrated samples (one each 24-hour period)  are collected in a




collection unit, a polypropylene tube fitted with a  two-hole polypropylene




stopper and containing a bubbling apparatus which consists of an upturned



 frit with porosity range of 70-100 y at a  flow rate of 175-230 cc/min.'




 Fifty  ml of  0.1 M triethanolamine are  used as the absorbing reagent.




Appropriate  filters and traps are included to prevent  plugging of the




 critical orifice by entrained absorbing reagent.



       c.  Analytical Procedure




     The procedure is the same as for CHRO, Section 3.4 c.

-------
                                   17
3.7  Triethanolamine-Guaiacol-Sulfite Method, (Orifice) TGSO [15]


     a.   General Description


     The method is the same as for CHRO,  Section 3.4.a., except that nitrogen


dioxide is collected by bubbling ambient  air through an absorbing reagent


containing triethanolamine, guaiacol (o-methoxy-phenol),  and sodium


metabisulfite.  A collection efficiency of over 92 percent NCL has been

                                                            3
reported in the form of nitrite ion in the range 20 yg NO /m  to 740 ug

     3
NO /m .  No interference has been found from NO, S0»,  0 ,  CO, CO , HCOH,


NH , and phenol.  In the present study the collection efficiency used was


100% for the TGSO.


     b.   Sampling Procedure


     The procedure is the same as for CHRO,  Section 3.4.b.


     c.   Analytical Procedure


     See Section 3.4.C.—




3.8  Continuous Saltzman (Chattanooga), TECH [13]


     a.   General Description


     Measurement  of  the  concentration of  nitrogen dioxide in ambient


air via a Technicon  II Air Monitor  is based  on  the absorption of  NO


in a Greiss-Saltzman reagent [2llthat produces  a red dye  whose absorbance


can be determined by a recording colorimeter at 560 nm.   This involves


diazotization of  sulfanilic acid by nitrous acid derived from NO   followed
—   Note that the TGSO  method  used  in  the present study  has been
     subsequently  modified.

-------
                                   18
 by a coupling reaction with N-1-naphyhylethylenediamine dihydrochloride




 to form the dye.  Negligible interferences are reported for this method.




 A logarithmic output is obtained from the colorimeter.




       b.  Sampling Procedure




      Ambient air is pulled through an absorption column at approximately




 780 cc/min and contacted with Saltzman reagent to form nitrous acid by




 reaction of nitrogen dioxide with absorbing reagent.   The  diazotiza-




 tion and coupling reactions are then completed in approximately 25




 minutes.  Response time to 95 percent for  the  Autoanalyzer is  approxi-




 mately  25  minutes.




      c,  Analytical Procedure




      Continuous  recording  of  the  N02 concentration in  the  atmosphere




 requires only  reduction of data from strip-chart  recorder  and  periodic




 calibration of the Technicon Autoanalyzer using static or  dynamic




 methods.   Dynamic calibration  procedures are preferred, since  this




 method of  calibration evaluates the  entire  system  (i.e., collection




 efficiency of  absorber  and the colorimeter) rather than just the




 calibration of the colorimeter.









 3.9  Continuous Saltzman (Technicon Mark IV), TEC4 [13]




      a .  General Description




     Measurement of the concentration of nitrogen dioxide in ambient




air via  a Technicon Mark IV Air Monitor is based on the absorption of




N02 in a Greiss-Saltzman reagent [2l] that produces a  red dye whose




absorbance can be determined by a recording colorimeter at  560  nra.

-------
                                   19
 This involves  diazotization  of  sulfanilic  acid  by  nitrous acid derived


 from N0_ followed  by  a  coupling reaction with N-1-naphyhylethylenedia-


 mine dihydrochloride  to form the dye.   Negligible  interferences  are


 reported for this  method.  A linear  output is obtained  from  the  colorimeter.


       b.   Sampling Procedure


      Ambient air is pulled through an absorption column at approximately


 420  cc/min and contacted with Sal^zman  reagent  to  form nitrous acid by


 reaction of  nitrogen  dioxide with absorbing reagent.  The diazotization


 and  coupling reactions  are then  completed  in approximately 15 minutes.


 Response time to 95 percent  for  the autoanalyzer is approximately 15


 minutes.


      c.   Analytical  Procedure


      Continuous recording of the N02 concentration in the atmosphere


 requires only reduction of data from a strip-chart recorder and periodic


 calibration of the Technicon Autoanalyzer using static or dynamic methods.


 Dynamic calibration procedures are preferred.






 3.10  Chemiluminescent Method. CHEM


      a,   General Description
     The principle of operation of the Bendix NO-NO -NO  analyzer is
                                                   X   £

based on the specific,  cherailuminescent gas phase reaction of NO and


ozone occurring at atmospheric pressure.  Light emission from the


reaction


               NO -f 03  -»• N02  + 02 -*• NO  + hv

-------
                                  20
is proportional to the concentration of NO in the sample stream.



Nitrogen dioxide in the sample stream is catalytically converted to



NO via a heated gold wool filter maintained at 220°C.  Nitric oxide



passes unchanged through the catalytic converter and an NO  measurement
                                                          J\


(i.e., NO + N02 reduced to NO) is made.  The NO  concentration is



obtained by substracting the NO output from the NO  output.  The
                                                  A


effective range of the analyzer is from 0.005 to 5 ppm with a minimum



detectable concentration of approximately 0.005 ppm.  Lag time, response



time, and total time for response to 95 percent are reported to be 5,



20, and 25 seconds, respectively.  No compounds normally encountered



in ambient'air have been reported to interfere with this measurement



method.



      b.   Sampling Procedure



     Ambient air is pulled through a teflon filter into the analyzer



at 200 cc/min and mixed with ozone,  producing a chemiluminescent



reaction.   The light emission is detected via a photomultiplier tube



and the HO,  NO , and NO  concentrations are displayed on strip-chart
              X        £


recorders.



      c.   Analytical Procedure



     No specific analytical procedures other than periodic, dynamic



calibration of the analyzer are required.



     Table 3.1 provides a brief summary of the methods described above.

-------
                                               Table  3.1
                                       N02 Monitoring Methods
       Method Name                      Notation
1.  Federal Reference Method             FRMF
2.  Triethanolamine Method               TEAF
    (Fritted Bubbler)
3.  Arsenite Method                      CHRF
    (Fritted Bubbler)
A.  Arsenite Method                      CHRO
    (Straight Tube Impinger)
5.  Chattanooga Health Effects           CHESSO
    Study Method
6.  Triethanolamine-Guaiacol-Sulfite     TGSO
    Method (Straight Tube Impinger)
7.  Continuous Saltzman (II)             TECH
    (Chattanooga)
8.  Continuous Saltzman                  TEC4
    (Technicon Mark IV)
9.   Chemiluminescent                     CHEM
 Assumed
Collection
Efficiency
   35%
  100%

   85%

   85%

   35%

  100%
                  Cpmmen ts
 Bubbler,  daily  readings
 Bubbler,  daily  readings

 Bubbler,  daily  readings

 Bubbler,  daily  readings

 Bubbler,  daily  readings

 Bubbler,  daily  readings,  sampling
 began in  September, 1972
 Used in Chattanooga only; hourly strip
 chart readings  are averaged over time
 period corresponding to bubbler operation
 to obtain "daily" values
 5-minute readouts or hourly strip charts
 are averaged over time period correspond-
 ing to bubbler  operation  to obtain "daily"
values
 Same as TEC4 comment

-------
                                   22
                     4.  ANALYSIS OF SAMPLING DATA








4. 1  Introduction



     Two sets of data were available to RTI:  one containing information



on a daily basis for nine monitoring methods and the other, information



on an hourly basis for the three continuous monitors (TECH, TEC4 and


                                  f

CHEM).  The contents, scope, and method of construction of the daily and



hourly data are described in Section 4.2.  Data listings of the daily




data are given in Appendix H of this report.




     Due to the fact that hourly data were available only for the three



continuous monitoring methods, the analysis of the sampling data is mainly




concerned with the daily data.  Statistical editing procedures for the



daily data are described in Section 4.3.  The analytical criteria and



methods for analyzing the N00 data were developed in earlier phases of
                            A.


the project.  Section 4.4 presents the results of the analyses of the



daily data.  KTI's analysis of the hourly data is given in Section



4.5.
4.2  Data Description



     The N02 sampling data gathered by EPA  for  the purpose



of method comparison consists of measurements by several N09 monitoring



methods (see Section 3 for a description of these methods) at sixteen

-------
                                  23
stations in three cities (Chattanooga, St. 'Louis, and Los Angeles vicinity).

However, of these 16 stations only seven contain more than two monitoring

methods.  Accordingly, for the present report RTI examined data only from  these

seven stations.  The locations of these stations are given in Table 4.1.

     The data as collected by EPA are in three different forms:

     (a)  24-hour integrated readings—  (for the bubbler methods,

          i.e., FRMF, CI1ESSO, CHRO, C1IRF, TEAF, and TGSO) ,

     (b)  5 minute readings (for methods TEC4 and CHEM), and

     (c)  1 hour strip chart readings (for all the continuous

          methods, i.e., TECH, TEC4, and CHEM).

These data are edited by EPA and then sent to RTI on computer tape in  the

following forms:
                                                       2/
     (a)  24-hour readings for all 9 comparison methods— ,

     (b)  1 hour averages derived from the 5 minute readings

          (for TEC4 and CHEM), and

     (c)  1 hour strip chart readings (for TECH, TEC4, and

          CHEM).

Type (c) is used to supplement the data from the automated data acquisition

system  (Type (b)).  These latter data are referred to as "data set" values.
—   These readings, referred to as "daily" or "24-hour"  readings,  actually
    are only approximately of 24-hour duration.
2 /
—   For the continuous methods, the "daily" readings  are obtained  by
    averaging over a time period compatible with  that of the bubblers.

-------
                           Table 4.1




                      City  and  Site  Codes









    Code                     Location
Chattanooga  (6)




    632                      Briarwood  Drive  (Hamilton  County)




    633                      Hickory Valley Road  (Hamilton  County)









St. Louis (9)




    9°1                      South 12th Street  (St. Louis County)




    902                      South Hampton Street  (St.  Louis County)








California (8) (Los Angeles vicinity)




    831                      Anaheim




    832                      Garden Grove




    841                      Glendora

-------
                                  25
     In summary, the following table indicates the types of data that

RTI receives from EPA for each monitoring method:


Reading
Daily
I/
Method^'
FRMF TEAF CHRP TGSO CHRO CHESSO TECH TEC4 CHEM
I I I I I I S.C. D.S. D.S.
Hourly
S.C.   D.S.   D.S.
!/
    I    = 24-hour integrated reading
    S.C. = strip chart (average)
    D.S. = data set (average), supplemented with strip chart data.
     Table 4.2 gives the number of daily readings (unpaired) by station

(site) and method that RTI has received from EPA for the seven stations

where more than two monitoring methods were present.  In particular,

the table shows that there are nine methods at the two Chattanooga stations

and eight methods at the two St. Louis stations and the three California

stations (Los Angeles vicinity).  (Note that the TECH is only used in

Chattanooga.)  In addition, in site 832 there are duplicate measurements

(denoted by 832D) for the eight methods present in California.  The

-------
                                 26



                              Table  4.2
              Number  of  Daily Measurements  by Method and




    Site Before Removing Outliers — Sa.mplinp. Period July 1, 1<*72,


                   -  April  30,  1973,  Unpaired

CHATT.
632
633
St. Louis
901
902
Calif.
831^
832
841
832D^/
TOTAL
FRMF
223
234
245
244
56
203
210
143
1558
TEAF
228
230
246
242
54
186
191
140
1517
CHRF
225
231
245
244
57
219
210
158
1589
CHRO
231
232
*
242
243
55
195
203
145
1546
CHESSO
251
246
208
204
143
234
204
153
1643
TGSO
114
112
123
118
11
105
103
84
770
TECH .
164
164
*
*
*
*
*
*
328
TEC4
183
180
28
85
26
143
107
69
821
CHEM
190
196
46
102
45
135 !
121
66.
901;
* = method not present.



— Total number of sampling days  varies  for  each method  (see  Table 4.3)


21
—On October 6, 1972, all methods except CHESSO and CHEM were moved


  from site 831 to site 832  to provide  duplicate readings in site 832.

  These are denoted by 832D.

-------
                                  27
duplicate measurements were obtained by moving several methods  from site



831 to site 832 during October,  1972.  (Thus,  after October,  1972,  site
                                           4


831 only has measurements by the CHESSO and CHEM methods.)   Table 4.3



presents the number of days for which daily readings were obtained  for



each sampling method over the seven sites.   The potential number of sampling



days in the table varies for each method since each of the nine monitor-



ing methods did not begin or end sampling on the same day.   In examining



Table A.3 the reader should take particular note of footnote 3.



     Before RII received the daily HO  monitoring data, EPA validated



this data.  Appendix G gives EPA references which describe how this vali-



dation procedure was carried out.  Appendix G also gives references to



the calibration procedures used by EPA for the various N0_ monitoring



methods.  In addition to validating  the data, EPA also used the following



rule in averaging the N0? data from  the continuous monitors (i.e. , CHEM,




TECH and TEC4):








          In passing from one averaging time to a longer



     averaging time, 75 percent of  the data were required.



     For example, if an "hourly" average was to be com-



     puted  from five-minute readings,  then at least 9 of



     the 12 readings were  to be available.  Similarly, 18



     of 24  hourly averages were required to obtain  a



     "24-hour" average.

-------
                                  28
                               Table 4.3

   Number of Days for which Daily Readings were Obtained by Method,

               Over Sites—Sampling Period July 1, 1972

                           - April 30, 1973
                                                         21
               FRMF  TEAF  CHRP  CHRO  CHESSO  TGSO  TECH-   TEC4  CHEM
Potential-
Sampling
Days
          3/
Days Where-
Data Present
1797  1797  1797  1797   2079    931   417    1400  1612
1558  1517  1589  1546  1643     770   328     821   901
—   Potential sampling days = last day data given to RTI - first day
                              data given to RTI -f 1

21
—   TECH only used in Chattanooga

3/
—   The time limitations on the study gave little opportunity to become
    familiar with the continuous monitoring equipment and the data
    acquisition system; hence what is seen here may not represent an
    accurate picture of what night be expected in general or in the future.

-------
                                   29
     The procedure used by EPA to obtain the daily and hourly data set


and strip chart readings for the TECH, TEC4, and CHEM methods is summarized


in Table 4.4.


     Because EPA personnel have indicated that they would like to see


some summary statistics before RTI removed outliers from the daily data,


Appendix B (Tables B-l through B-4) gives means, correlations and ratios
                                  +

by site and over sites for the daily data as received by RTI.  The re-


mainder of this report then deals with the daily data after RTI removed


outliers.  Section 4.3 describes how these outliers were removed.





4.3  Data Screening for the Daily Data—


     For the daily data, RTI employed a three-stage screening procedure


to deal with outlying NO  readings.  First, a listing of daily data which


failed to satisfy a simple mean criterion (see below) was obtained.  Those


readings in violation of the mean criterion were visually screened and


about half of the indicated readings were removed.  Finally, a visual screen-


ing of the entire daily data base was made to ascertain if any additional


readings should be removed.  This three-step procedure resulted in the


removal of 60 outliers out of a total of 10,673 daily NO  readings (about


0.6%).  The number of outliers is  summarized by site in Table 4.5.


     The mean criterion used for the data screening (i.e., STEP 1) was as


follows:
—   Procedures for the hourly data are given in Section 4.5.

-------
                                                    Table 4.4
             Procedure Used by EPA for Constructing Daily Values for Continuous Monitors^'
                                                                                         I/
1. TECH 1 Hr. 	 ..Lag by 	 .
(Strip Chart) Readings ^20 min '
2. TEC4 1 Hr. 	 .Lag by 	 v
(Strip Chart) Readings '10 min '
3. TEC4 5 rain 	 ^Compute N
(Data Set) Readings Average '
of 5 min
Readings
4. CHEM 1 Hr
(Strip Chart) Read:
CHEM _, Compute 	 v
ings Average
of 1 Hr
Readings
5. CHEM 5 min 	 v Compute 	 .
(Data Set) Readings 'Average ^
of 5 min
Readings
Hourly TECH
Values

Hourly TEC4
Values
Hourly
'Values
Daily CHEM
Values

Hourly CHEM
Values

21
	 \ Compute— 	 x
Average of
Hourly- Values
	 \Compute 	 \
Average of
Hourly Values
vLap, by v
'10 min '
v Compute v
Average of '
Hourly Values
Daily TECH -
Values

Daily TEC 41
Values
Hourly 	 v
TEC4 '
Values
Daily CHEM
Values

./
Compute 	 v Daily
Average of ^ TEC 4
Hourly Values [ Values

—   All averages computed require that at least 75% of the terms be available.  Two point moving  averages

    are used to lag data.  All averages are arithmetic averages.  All readings are in  vg/m3.


21
—   In computing daily averages, total time averaged is matched to the time period during which bubblers

    are operational.
                                                                                                                        LJ
                                                                                                                        o
    A
indicates that this reading is given by EPA to RTI.

-------
                                  31
                                Table 4.5

                       Number of Outliers,  By Site
Site
632
633
901
902
831
832
841
832D
No. Daily
Readings
1809
1825
1383
1482
447
1420
958
1349
STEP
	 1_
16
10
:.i
6
6
15
35
11
STEP
	 2_
6
4
1
1
1
7
20
6
STEP
	 3_
2
0
2
0
0
1
8
1
No. Outliers
= STEP 2 +
8
4
3
1
1
8
28
7
Removed
STEP 3








     Total     10,673       100       46*      14               60


STEP 1:  Listing of readings in violation of mean criterion.

STEP 2:  Outliers from visual screening of listing in STEP 1.

STEP 3:  Additional outliers from visual screening of entire  daily
         data base.

*        Includes 8 zero or negative readings.

-------
                                    32
      Suppose k different methods provided N0? readings at a particular
 site on the j   day.  Then the i   method would not be detected as a
 potential outlier if
                      il<"   <   Xy   <    4X«"

where
               Xii = N°2  readinS b? method i  for the j    day
and
               X L  = mean of NO- readings by the other (k-1)
                j
                      methods for  the j   day.
     Table 4.6 presents a listing of the 60 daily NO  outliers by site.
For each site, the listing gives the sampling day, the NO  readings for
all methods present on that day and the name of the method (or methods)
whose value is an outlier (listed under Ml, etc.).
     Table 4.7 presents the number of daily readings (unpaired) after
removing the 60 outliers by site and method.  The remainder of the daily
data analysis (Section 4.4)  is based on these screened data.

-------
                                                Table 4.6




                                           LISTING  OF  CUTLIERS •- DAILY
DAY
100
152
156
163
194
208
228
247
FRMF
35.5
22,7
60,6
307.2
39.4
6.5
47.0
30.9
TEAF
* 	
4S.O
33.7
23.9
29.2 ""
6.3
CHRF
r.22»v
58.1
30.4
22.0
23,2
110. 0
37,3
CHRO CHES30
lo!'0
54.8
38.5
26.8
45.8
51.4
	 ~~5'f.S
97.9
61.6
37.3
23.8
27.4
29.2
18.7
TGSC
~.".32.<
45.6
18. '4
!6.9
16.6


	 SITE=632
TECH TEC4 CH£K
	 16.
49.
49.
29.
56.


?
2
0
<5
4


1 .60'. 2
521.1
29.7
32.4

44 !
13.0
29.0
149.3
24.9
25.9
34. F
45.0
38.7
Method(s) which is outlier
Ml H2 M3
"CHESSC
TEC4
Ch'OQ
FRMF
CHRF
«e
DAY
99
100
153
276
FRMF
108,3
66,4
6373
25,8
"TEAF"""
62,1
30.4
28.5
9.2 	 ~~

CHRF 	
80.1
36.5
32.7
*

CHRO
76.9
36.7
28.4
11.8

CHE5SO
11.9
11.4
38.7
25.6


TGSC
97.3
60.7
26.1


"••

TECH
155.
69.
iee.


3
6
0

!IT£=63:
TFCil
113. £
49.5
" 1 6 ! 6

3 	
CHEK
69.5
54.6
•41,5
19.9

	 - 	 -- *" - * *
Ml M2 M3
CHESSC
CHESSC
TECH
CHRF

N~<4
DAY
166
201
239
	 FRMF"

53.0
132.2
310,9

TEAF

28.4
53.7

CHRF

32,5
74.5

CHRO

. 43.9
80.8
86.9

CHESSO

6.6
315.8
105.9

TGSC

27.'3
56. '4


TFCH





TEC4

"L.S

CH.EK

1C5.7

Ml MS M.3

CHES3C
C-HESSC
FRMF
N=3

-------
      Table 4.6 (Continued)




LISTING OF OUTLIERS  — DAILY DATA

DM

191

N-l
DAY

89


DAY

79
60
69
90
116
12J
176

FRMF

60,5


FRMF




FRMF


6.9
69.0
93.9
-ill, b

16.1

TEAF

30.9


TEAF "

as. 3


TEAF

8.2
36. a
3.3
1.3
71.2
1.9
2.4

CHPF

35,9


CHRF

70.7


CKRF

56.2
26.1
47.6
55.5
50. 1
4*2

CHRO

US. 9


"CHRQ '




CHRD

49,8

46. 8
U7. 1
87.5
49.2
1.3

CHESSP TGoC

* 25.9


CHESSO TGSP

13.3 16. 
-------
     Table 4.6 (Continued)




LISTING OF OUTLIERS—DAILY DATA
DAY
37
38
43
47
49
5«
79
114
119
126
J3S
136
142
145
1U9
155
160
165
166
171
275

N»22

FRMF
96.8
90.1
52.6
70.5

39.1
ifceii
7.1

33.4
39. «
29.9
308.9
. 56.9
13,6

107.0
58.6
15.0
94,0



TEAF.
3.5
55.8
48.8
70.8
58.8

67.5
5.8
122.4
76.3
101.0

20.2
57.0
.... 6.0
57,3
1.3
17.0
32.7




." CHRF
67.9
61.1
62.0
50.1

83.8
69.8
129.8

2.7
33.4
2.5
63.5
42.8
62.5
8.6
9.3
11.1
5.8
4.1



. CHRO.
90.5
68,0
55.8
47. a

89. a
80.7
156^7
87.9
2.5
5,8
28.0
2.5
40.8
. 2,6
5.1

26.2
31.1
17.1
6U.7



CHESSC
19.7
16.4
15.3
45.5
71.9
62.3
93.9
59. «
101.1
47.2
56.6
38.5
72.4
62.0
60.4

53.3




" TGSC TE(

••-- - •-• - 	

33.5
157.9

4.4

20.0
56.1
34.2
49.6
1.2
*
1.2




5IT.c=S«.l
;H TEC4
152.2
47.4
	 255.9
30B.9
2?3.3


40.6
56.0
67.9
	 56.1

10U.2
67.9



SITE=832
Method (s) which is outlier
CH£M ' .Ml ... M? K3 ... ^4
83.4 TEAF
60.2 CHESSC
CHESSC
52.5 TEC4
F-RKF
95.5 TEC4
216.2 PRMF
TEAP
0.4 C^EM
F RMP
TEAF . CHESSO
CHRC
CHRC
TEAF CHRC 	 	 	 „. .
FRMF CHRC
101.4 CHEM
FRMF
TGSC
FRMF CHRF CHRC TGSC
CHRF


DIP 	 	 	 	
                                                                               u>

-------
                                    Table 4.6 (Continued)




                               LISTING OF OUTLIERS—DAILY  DATA
                                                                         Method(s)  which is outlier
DAY..
143
144
145
164
166
178
198
N=7
_. . fBHF.
122J
126.6
154.8
135.6
147.4
20.3


: TEAF 	 .CHRP
2.5~ 	 66.4
101.1
102,4 398.8
37.9
78.2
3.6 5.9
196.1 230.7

_._ CHRC 	 CHESSC. .TGSC..TECH TE
73/4 75.8 	 64.3 	 	
96.1 * 71.9
* 37.1
80.4 76.5 10.0 108
'"328.3 " 	 "" 	 "~ 	 "
228.0 * 193.4

C4 CHEV .._M1 	 M2 f3 ^ '•
" "'"~ 	 TEA*
CHESSC
CHR?
CHESSC
.9 117. P 1GSC
CHESSC
CHESSC

                                                                                                             u>
value not shown because It was below Instrument detection limits (there are eight of these cases).

-------
                               37
                           Table 4.7




     Number of Daily Measurements by Method and Site After




        Removing Outliers—Sampling Period July 1, 1972,
- April 30,
Chatt.
632
633
St. Louis
901
902
Calif.
831
832
841
832D
Total
Number of
Outliers
Removed
FRMF
221
234.
244
244
56
202
203
143
1547
11
TEAF
226
230
246
242
54
182
187
139
1506
11
CHRP
224
230
245'
244
57
219
207
157
1583
6
1973,
CHRO
230
232
242
243
55
195
198
145
1540
6
Unpaired Data

CHESSO
250
244
206
203
143
232
201
149
1628
15

TGSO
114
112
123
118
11
105
101
83
767
3

TECH TEC4
164 182
163 180
* 28
* 85
* 25
* 143
* 105
* 69
327 817
1 4

CHEM
190
196
46
102
45
134
119
66
898
3
*  = method not present

-------
                                   38
 4.4  Analysis of Daily Data




       a.   Introduction




      In this section the daily screened  NO  data described in Section




 4.2 and 4.3 is  analyzed.   This analysis  includes (i)  paired comparisons




 of  methods  (Section 4.4.b);. e.g.,  paired means,  correlations and  ratio




 of  means,  (ii)  estimated relationships between pairs  of  methods  (Section




 4.4.c)  by using regression  techniques,  (iii)  unpaired summary statistics




 by  method  (Section  4.4.d);  e.g., means,  standard deviations and frequency




 distributions,  and  (iv)  analysis of duplicate data  (Section 4.4.e).




      b.  Paired^ Comparisons  of Methods




     Data for two particular  monitoring  methods  may not  occur at  the  same




 site at the  same  time.   Accordingly, since  there is a large amount  of miss-




 ing daily NO data,  a  simple  comparison  of  means for  two methods  (as  in




 Section 4.4.d) may  lead  to  incorrect conclusions.  Hence,  in this sub-




 section two  methods  are  compared only for  those  days  for which observations




 are available for both methods.  Table 4.8  presents a summary of  the  paired




 data.   Data  from  the seven  primary sites  (excluding site 832D), when  both




methods of a pair occur  at  a  site, have  been  pooled together.  In parti-




 cular,  Table 4.8 presents the number of  observations  N (i.e.,  the number




 of paired site-days) for each pair of methods.   Note  that  on  the diagonal




 of the  table (i.e., where the same method is  in  the column  and row heading)




N is the total number of observations for a particular method.  The off-




diagonal entries of the  table give the arithmetic means, the  ratio of  the

-------
                  Table  4.8
                  4/
Summary Statistics—, for Paired Observations—



        for Data Combined Over Sites—

N
FRMF MEAN
FRMF Col. MEAN
Raticr^
Corr.
N
TEAF MEAN
TEAF Col. MEAN
Ratio
Corr.
N
CHRF MEAN
CHRF Col. MEAN
Ratio
Corr.
N
CHRO MEAN
CHRO Col. MEAN
Ratio
Corr.
FRMF
1404
76.7


1290
38.1
75.3
.51
.81
1337
49.0
76.6
.64
.77
1313
46.9
75.9
.63
.79
TEAF
1290
75.3
38.1
1.98
. .81
1367
38.2



1310
48.5
38.1
1.27
.85
1285
46.4
37.9
1.22
.86
CHRF
1337
76.6
49.0
1.56
.77
1310
38.1
48.5
.79
.85
1426
49.3



1326
47.0
49.0
.96
.93
CHRO
1313
75.9
46.9
1.6
.79
1285
37.9
46.4
.82
.86
1326
49.0
47.0
1.04
.93
1395
47.2



CHESSO
1166
75.6
54.9
1.38
.59
1141
37.4
53.8
.70
.61
1184
48.4
55.1
.88
.62
1169
46.3
54.6
.85
.59
TGSO
648
80.7
39.0
2.07
.69
625
38.4
37.8
1.01
.76
650
47.4
38.9
1.22
.81
633
46.6
38.7
1.20
.79
TECH^-'
265
56.0
56.3
.99
.55
266
28.1
56.8
.49
.73
268
32.0
56.9
.56
.71
270
32.4
56.7
.57
.68
TEC4
637
72.6
61.9
1.17
.71
619
35.6
58.8
.61
.76
655
46.4
62.2
.75
.72
643
43.9
61.7
.71
.75
CHEM
648
72.1
56.6
1.27
.69
635
35.9
55.0
.65
.76
663
47.2
56.9
.83
.73
650
44.5
56.4
.79
.74

-------
Table 4.8  (Continued)

N
CHESSO MEAN
CHESSO Col, MEAN
Ratio
Corr.
N
TGSO MEAN
TGSO Col. MEAN
Ratio
Corr.
N
TECH MEAN
TECH Col. MEAN
Ratio
Corr.
N
TEC4 MEAN .
TEC4 Col. MEAN
Ratio
Corr.
FRMF
1166
54.9
75.6
.72
.59
648
39.0
80.7
.48
.69
265
56.3
56.0
1.01
.55
637
61.9
72.6
.85
.71
TEAF
1141
53.8
37.4
1.43
.61
625
37.8
38.4
.99
.76
266
56.8
28.1
2.04
.73
619
58.8
35.6
1.64
.76
CHRF
1184
55.1
48.4
1.14
.62
650
38.9
47.4
.82
.81
268
56.9
32.0
1.79
.71
655
62.2
46.4
1.33
.72
CHRO
1169
54.6
46.3
1.18
.59
633
38.7
46.6
.83
.79
270
56.7
32.4
1.75
.68
643
61.7
43.9
1.41
.75
CHESSO
1479
55.0



556
38.6
60.1
.64
.50
261
55.1
35.0
1.56
.29
635
62.3
51.1
1.22
.65
TGSO
556
60.1
38.6
1,56
.50
684
39.1



191
56.1
28.8
1.96
.54
302
65.9
39.5(
1.67
.72
21
TECH-'
261
35.0
55.1
.64
.29
191
28.8
56.1
.51
.54
327
57.1



227
44.6
59.2
.75
.56
TEC4
635
51.1
62.3
.82
.65
302
39.5
65.9
.60
.72
227
59.2
44.6
1.33
.56
"748
62.9



CHEM
645
52.3
57.7
.91
.60
351
35.7
56.8
.6:
.73
222
56.0
44.3
1.27
.64
545
63.5
59.9
1.06
.83

-------
                             Table 4.8 (Continued

N
CHEM MEAN
CHEM Col. MEAN
Ratio
Corr.
FRMF
648
56.6
72.1
.79
.69
TEAF
635
55.0
35.9
1.54
.76
CHRF
663
56.9
47.2
1.20
.73
CHRO
650
56.4
44.5
1.27
.74
CHESSO
645
57.7
52.3
1.10
.60
TGSO
351
56.8
35.7
1.59
.73
- TECH^
222
44.3
56.0
.79
.64
TEC4
545
59.9
63.5
.94
.83
CHEM
832
58.3



—   Unless otherwise indicated, data is from sites = 632, 633, 901, 902, 831, 832, 841,

    (832D eliminated).


II
—   Data for TECH from sites 632 and 633 only.


3/

—   Ratio of arithmetic means  (row method in numerator).


4/
—   The statistics in this table are shown for descriptive purposes only.  Their general

    use is not recommended (see Section 5.4).

-------
                                   42
 means and  the correlations for each pair of.methods.   The ratios are taken

 such  that  the row mean is  always in the numerator— .

      Table 4.9 reformats  some  of the same information contained in Table

 4.8.   The  methods have been ordered (approximately)  by the magnitudes of

 their means—from largest  to smallest.   The first portion of Table 4.9

 again shows the ratios of  the  arithmetic means.   In  terms of the magnitude.
                                  »
 of  these ratios,  this  table indicates that the methods fall basically into

 five  groups indicated  by  the dashed lines in  the table:

      (1)   TECH and FRMF the largest,

      (2)   TEC4 and CHEM next,

      (3)   CHESSO,

      (4)   CHRP and CHRO, and

      (5)   TGSO and  TEAF,  the smallest.

 These groupings may indicate that  the collection efficiencies used for

 the 24-hour  integrated  sampling  methods are inappropriate.   Recall that

 these collection  efficiencies  are  35% for the  FRMF and CHESSO,  85% for the

 CHRP  and CHRO,  and  100% for the  TGSO  and  TEAF.
—   RTI has also examined the ratios of geometric means  and  the  correla-
    tions between methods on a logarithmic scale  (see Appendix Table  D-l).
    However, these quantities were usually quite similar to  the  ratios
    and correlations given in Table 4.8.

-------
                                Table 4.9
         Ratios of Arithmetic Means and Correlations—  Between

                 Methods Over the Seven—  Primary Sites
         Ratios of Arithmetic Means (Row method in numerator)

         TECH   FRMF   TEC4   CHEM   CHESSO   CHRP   CHRO   TGSO
TEAF

TECH
FRMF
TEC4
CHEM
CHESSO
CHRP
CHRO
TGSO
TEAF

1.00
.99
.75
.79
.64
.56
.57
.51
.49

1.01
1.00
.85
.79
.72
.64
.63
.48
.51

1.33
1.17
1.00
.94
.82
.75
.71
.60.
.61

1.27
1.27
1.06
1.00
.91
.83
.79
.63
.65

1.56
1.38
1.22
1.10
1.00
.88
.85
.64
.70

1.79
1.56
1.33
1.20
1.14
1.00
.96
.82
.79

1.75
1.60
1.41
1.27
1.18
1.04
1.00
.83
.82

1.96
2.07
1.67
1.59
1.56
1.22
1.20
1.00
1.01

2.04
1.98
1.64
1.54
1.43
1.27
1.22
.99
1.00
                              Correlations

         TECH   FRMF   TEC4   CHEM   CHESSO   CHRF   CHRO   TGSO   TEAF
TECH 1.00 .55
FRMF 1.00
TEC4
CHEM
CHESSO
CHRF
CHRO
TGSO
TEAF
.56 .64
.71 .69
1.00 .83
1.00





.29
.59
.65
«
.60
1.00




.71
.77
.72
.73
.62
1.00



.68
.79
.75
.74
.59
.93
1.00


.54
.69
.72
.73
.50
.81
.79
1.00

.73
.81
.76
.76
.61
.85
.86
.76
1.00
    TECH in 632, 633 only, other methods in 632, 633,  901,  902,  831,  832,
21
    The statistics in this table are shown for descriptive purposes  only.
    Their general use is not recommended (see Section 5.4).

-------
      The  correlations between methods—  given  in  the second portion of

 Table 4.9 show  that  (a)  the highest  correlation is between CHRP and CHRO

 (=  .93),  (b)  the highest  correlations are generally between four of the

 five  bubbler  methods:   CHRP, CHRO, FRMF,  and TEAF (range =  .77 -  .93),

 (c)  the TEC4  and CHEM correlate  fairly well with  each other (= .83) but

 have  somewhat poorer correlations with the CHRP,  CHRO, FRMF, TGSO, and

 TEAF  (range = .69 -  .76),  (d) the CHESSO does  not correlate very well

 with  any  other method (range = .29 - .65), (e) the TECH and TEC4 do not

 correlate well  (= .56).   Tables  4.10 and 4.11  are presented to illustrate

 how  the ratios and correlations  shown in Table 4.9 (over sites) vary from

 site  to site.  Table 4.10  gives  the ratios of  the arithmetic means by site

 for selected  pairs of methods (Appendix Table  C-l gives these ratios by

 site  for  all  pairs of methods).  These ratios  are based only on those N

 days  for which both methods furnished readings.  Table 4.10 shows relatively

 consistent ratios from site to site for the CHRF/CHRO pair (range over
—   This terminology has been and will continue to be used.  However, it
    should be noted that "correlations between methods" or "correlation
    of method X with method Y" might more accurately be phrased as
    "correlations between readings of methods."  Hence, a high "correla-
    tion between two methods" indicates that they respond to changes
    (presumably, in levels of N02 concentrations) in similar, linear
    fashions, although perhaps on independent scales.  Thus, if day-to-
    day variations in N02 were absent, the correlations between all
    methods should be zero; for a site which exhibits stable day-to-day
    N02 concentrations, one would thus expect to observe smaller "corre-
    lations between methods" than for a site with a large variability
    in (true) N02 levels.

-------
                                   45
CHRF/CHRO
No. Obs.
Ratio
Table 4.10
Ratios of Arithmetic Means— for Selected Pairs
of Methods, by Site
Sites
632 633 901 902 831 832 841
219 225 236 237 49 185 175
1.01 1.04 1.07 1.05 1.02 1.06 1.02
Total
1326
1.04
CHESSO/CHRO
No. Obs.
Ratio
216 206 193 185 51 166 152
1.00 1.07 1.28 1.32 1.05 1,23 1.15
1169
1.18
CHEM/CHRO
No. Obs.
Ratio
164 171 43 82 12 102 76
1.15 1.08 1.24 1.35 1.11 1.33 1.56
650
1.27
FRMF/CHRO
No. Obs.
Ratio
CHEM/TEC4
No. Obs.
Ratio
218 228 235 238 47 171 176
1.64 1.66 1.65 1.69 1.40 1.73 1.39
126 132 28 60 12 107 80
.87 1.03 1.32 .96 .73 .83 1.03
1313
1.60
545
.94
—   The statistics in this table are shown for descriptive purposes  only.
    Their general use is not recommended  (see Section 5.4).

-------
                                   46
                               Table 4.11




                 Correlations Between Methods - By Site
Method  Site    FRMF  TEAF  CHRP  CHRO  CHESSO  TGSO  TECH  TEC4  CHEM
FRMF







TEAF







CHRF







CHRO



632 1.0
633 /K
901
902
831
832
841 v
832D1' 1<0
632 .79 1
633 .72
>
901 .72
902 .74
831 .74
832 .80
841 .79 >
832D .72 1
632 .62
633 .58
901 .72
902 .66
831 .78
832 .77
841 .75
832D .64
632 .64
633 .67
901 .72
902 .74
.79 .62 .64
.72 .58 .67
.72 .72 .72
.74 .66 .74
.74 .78 .33
.80 .77 .76
.79 .75 .79
.72 .64 .67
.0 .71 .73
.73 .77
*»
.79 .77
.83 .84
.85 .81
.88 .89
' .74 .78
.0 .91 .90
.71 1.0 .86
.73 ^ .86
.79 .91
.83 .93
.85 .95
.88 .94
.41 .41
.45 .29
.31 .57
.37 .25
,65 .87*
.55 .82
.57 .76
.43 .66
.48 • .56
.49 .63
.39 .62
.49 .52
.71 .80*
.57 .85
.51 .82
.62 .90
.31 .63
.42 .66
.39 .68
.42 .62
.68 .54
.59 .89
.42
.63
—
—
—
—
__
—
—
—
-
-
_
-
.59
.87
—
—
—
—
—
—
-
-
-
-
-
—
.57
.80
—
—
—
—
-
-
-

.74 ^ .85 .59 .84
.91 1.0 .88
.73 .86 1.0
.77 .86 *
.77 .91
.84 .93
831 .73 .81 .95



CHESSO







832 .76
841 .79
832D .67
632 .41
633 .45
901 .31
.89 .94
• 7o • o 5
.90 .88 1.0
.48 .31 .31 1
.49 .42 .43
.39 .39 .35
902 .37 .49 .42 .42
831 .65 .71 .68 .73
832 .55
841 .57
832D .43
.57 .59 .54
.51 .59 .52 \
.62 .60 .60 1
.60 .87
.31 .61
.43 .60
.35 .67
.42 .57
.73 .90*
.54 .89
.52 .77
.60 .84
.0 .18
K -25
.24
.09
.80*
.52
.50
0 .59
—
—
.52
.81
—
—
—
—
—
—
-
-
-
—
-
-
.15
.40
' —
—
—
—
—
—
-
-
-
-
-
-
.47
.43
.83
.61
.33*
.66
.65
.67
.59
.60
.72
.77
.88*
.72
.66
.92
.49
.53
.65
.78
.75*
.61
.72
.83
.52
.52
.73
.75
.75*
.69 -
.74
.78
.26
.21
.48
.35
.71
.65
.36
.74
.51
.43
.73
.50
.09*
.70
.61
.62
.64
.71
.82
.73
.46*
.74
.57
.83
.57
.51
.73
.66
.79*
.66
.64
.77
.50
.53
.73
.60
.81*
.70
.65
.74
.34
.40
.43
.45
.40
.48
.49
.70

-------
Method   Site
                                   47
                         Table 4.11(Continued)
FRMF  TEAF  CHRP  CHRO  CIIESSO  TGSO  TECH  TEC4  CHEM
TGSO







TECH

TEC4







CHEM







632
633
901
902
831
832
841
832D
632
633
632
633
901
902
831
832
841
832D
632
633
901
902
831
832
841
832D
.41
.29
.57
.25
.87*
.82
.76
.66
.42
.63
.47
.43
.83
.61
.33*
.66
.65
.67
.51
.43
.73
.50
.09*
.70
.61
.62
.56
.63
.62
.52
.80*
.85
.82
.90
.59
.87
.59
.60
.72
.77
.88*
.72
.66
.92
.64
.71
.82
.73
.46*
.74
.57
.83
.63
.66
.68
.62
.54
.89
.84
.87
.57
.80
.49
.53
.65
.78
.75*
.61
.72
.83
.57
.51
.73
.66
.79*
.66
.64
.77
.61
.60
.67
.57
.90*
.89
.77
.84
.52
".81
.52
.52
.73
.75
.75*
.69
.74
.78
.50
.53
.73
.60
.81*
.70
.65
.74
.18 1
.25 ,
.24
.09
.80*
.52
.50
.59 1
.15
.40
.26
.21
.48 '
.0 .42
63
K .59 .39
_••
• _m
""*""
80
76
72
.41
.55
.95
.39
—
— ..79 .88
/ 	
.0
.42 1.0
.59 1.0
.63 .55 1
.39 .67
. 80 	 '
.35 .76 	
.71
.65
. 72 	
. 79
.36 .90 	 \l
.74
.34
.40
.43
. 89 	 1
.41 .48
.55 .75
.95 	
90
89
55
67
0

\



/
0
64 1
50 1
79
.45 .39 	 .58
.40
.48
.49
.70
___ _^«> ^
.88 	
.75 	
. 89 	
89*
88
74 >
96 1
.75
.89
.48
.75
.64
.50
.79
.58
.89*
.88
.74
.96
.0
\




/
.0
—   Duplicate readings were  obtained  in  site  832.

*   Based on fewer  than 20 paired  observations  (recall that at site 831
    all methods were moved to  site 832 in  October,  1972 except for
    CHESSO and CHEM).

-------
                                   48
 seven sites  from 1.01 to 1.07).   This  reflects  the high correlation (.93)




 between  these  two methods.   On  the  other hand,  the ratios  for the  other




 pairs of methods  shown in the  table demonstrate  less  consistency from site




 to  site; e.g.,  the CHESSO/CHRO  ratios  range  from 1.00 to 1.32,  the CHEM/




 CHRO  ratios, from 1.08 to 1.56.




      The correlations between  the methods given  in Table 4.11 vary a great




 deal  over  the various sites.   The variation  of  these  correlations




 could be due to a great many factors.   These factors  in-




 clude the  following:   (i)  the true  NO   variability from day  to  day may be




 characteristically  different for  different sites,  (ii)  the sample  sizes




 vary  a great deal over  sites,  (iii)  the effect of  interferences (e.g.,




 NO  and ozone) may differ  for the  various  sites  (hopefully, the  effect of




 these interferences may be examined  in  a  later report),  (iv)  a  particular




method may have malfunctioned at  only one site.  The  table does indicate




 that  the CHESSO method generally  has the  lowest  correlations  over  sites.




It  is also interesting  to note  that  the TECH  always has  higher  correlations




in  site 633 than in site 632.




      In the early months of the present study (i.e. ,  July  through  October,




1972) EPA had many problems in collecting the NO-  data.  For  examp.le,




many difficulties were encountered  in calibrating  the continuous monitor-




ing methods.   In fact, at one time EPA  had considered discarding much of




the continuous NO  data collected before November,  1972.  Accord-




ingly, RTI  also computed means and correlations between  monitoring  methods

-------
 for  the  two  time  periods  (i)  July  1,  1972  through  October  31,  1972  and




 (ii)  November  1,  1972  through April  30,  1973.   The purpose of  these calcu-




 lations  was  to study if  these means  and  correlations were  different for




 the  two  time periods.  In  addition,  the  two  time periods could  also provide  an




 indication of  seasonal effects on NO  levels.   The results  of these  mean and




 correlation  calculations are  given in Appendix  Tables E-l  and E-2.   Table




 E-l presents the  correlations  between methods over sites for the  two time




 periods.  The  table shows  that the correlations for the TGSO are  definitely




 higher for the November -  April  time period  and that the CHESSO correlations




 are also usually  higher for this same time period.  The other methods show




 no consistent  pattern  for  the  two time periods.  A comparison of  the




 November - April  correlations with the corresponding correlations for the




 entire sampling period, (July, 1972 - April, 1973) indicates that only the




 TGSO  correlations were noticeably increased  for the November - April period.




     Table E-2 shows the unpaired sample means  by site and  method for the




 two time periods.   This table indicates  the  following:  (i) the TGSO is




 higher for the July - October time period, (ii) the CHESSO  is usually higher




 for the November - April time period, (iii)  the continuous  methods  are




usually higher for the July - October period, (iv) in the  Chattanooga sites




 (632 and 633)  the non-continuous methods (except TGSO) are  higher for the




November - April period while the continuous methods are lower for  this




 time period,  (v) in St. Louis site 901 the non-continuous methods show




higher readings for the July - October period while in site 902 these same

-------
                                    50
 methods are usually higher for the November - April period, (vi) in

 California site 832 the November - April period has higher readings for

 nost methods while in site 841 the opposite is true.  Thus, in general, it

 is impossible to say from the current data which time period gives the

 higher readings over all sites.   Instead,.there is obviously a large site

 effect (due perhaps to interferences such as NO and ozone); therefore,

 conclusions about seasonal levels of NO  must be made by site rather than

 over all sites.   One can say however that the analysis over sites of the

 two time periods does  indicate that the data for the TGSO method for the

 July through October period has  relatively  low correlations and high means.

 Although RTI  did not discard  this early TGSO data from its analysis,  the

 data certainly  is  questionable in view of the results  shown in Tables  E-l

 and E-2.

      At  the  request  of EPA, RTI also  computed  the means  of ratios by  site

 and N02  concentration interval for  four pairs  of  monitoring methods^.

 In  particular,  the intervals were 0-60,  60-90,  90-120,  120-150 and  >150 jjg/m3

 and the pairs of methods were  CHEM/CHRO,  FRMF/CHRO,  CHEM/TEC4  and FRMF/TEC4.

 The results of these computations are  given  in  Table 4.12.  In the  table,

 the N02 intervals are based upon  the monitoring method in  the  denominator

 of  the ratio  (e.g., CHEM/CHRO  implies  that the  intervals are based  upon the
—   The means of ratios discussed here should not be confused with the
    ratios of means given earlier in Tables 4.8, 4.9 and 4.10.

-------
                       51
                    Table 4.12
Summary Statistics—  for Ratios of Daily Readings,
      By Pair of Methods, Interval and Site
          CHEM/CHRO
FRMF/CHRO
Site CHRO
Interval
pg/ra3
632 0- 60
60- 90
90-120
120-150
> 150
633 0- 60
60- 90
90-120
120-150
> 150
901 0- 60
60- 90
90-120
120-150
> 150
902 0- 60
60- 90
90-120
120-150
> 150
832 0- 60
60- 90
90-120
120-150
> 150
841 0- 60
60- 90
90-120
120-150
> 150
Sample
Size

65
98
1
0
0
78
93
0
0
0
0
37
5
1
0
28
54
0
0
0
11
75
10
4
2
6
62
8
0
0
Mean Std. Low High Sample Mean Std. Low High
Dev. . Size Dev.

1.51 1.00 .21 6.03 103 1.92 1.03 .64 9.53
1.08 .40 .31 2.72 114 1.61 .57 .52 4.26
1.36 0 1.36 1.36 1 1.45 0 1.45 1.45
0
0
1.31 .73 .29 4.17 117 1.94 1.09. .71 10.23
1.00 .44 .21 2.51 111 1.56 .56 .39 4.03
0
0
0
11 2.13 .54 1.51 3.52
1.33 .25 .71 1.77 211 1.71 .37 .94 3.30
1.10 .26 .68 1.32 12 1.36 .31 .65 1.70
.85 0 .85 .85 1 .99 0 .99 .99
0
1.43 .36 .40 2.07 .57 2.05 .70 .97 5.58
1.36 .38 .27 2.24 177 1.70 .43 .85 3.00
2 1.36 .23 1.20 1.52
2 1.27 .23 1.11 1.44
0
2.02 .79 1.19 3.36 12 3.32 3.44 1.49 13.99
1.41 .58 .41 3.03 126 1.89 .70 .25 3.89
1.07 .38 .75 1.84 21 1.57 .43 1.02 2.84
1.37 .31 1.09 1.81 9 1.42 .35 1.02 1.92
1.12 .21 .97 1.26 3 1.55 .20 1.33. 1.71
3.05 2.77 1.15 8.57 22 2.14 1.13 .86 5.35
1.60 .44 .75 3.02 136 1.43 .38 .53 2.58
1.30 .37 .79 1.73 17 1.24 .24 .88 1.63
0
1 1.07 0 1.07 1.07

-------
            52
   Table 4.12 (Continued)
                                 FRMF/CHRO
Site CHRO
Interval
lig/m3
832D 0- 60
60- 90
90-120
120-150
> 150
S.
S'

0
43
10
2
2
Mean Stu. Low High Sample Mean Std. Low High
Dev. Size Dev.

1 1.61 0 1.61 1.61
1.31 .64 .52 4.29 98 . 1.66 .56 .74 3.74
1.23 .62 .46 2.25 17 1.41 .39 .54 2.03
1.66 .22 1.51 1.81 2 1.22 .47 .89 1.55
1.29 .47 .96 1.62 4 1.09 ..19 .92 1.26
CHEM/TEC4
FRMF/TEC4
Site TEC4
Interval
632 0- 60
60- 90
90-120
120-150
> 150
633 0- 60
60- 90
90-120
120-150
> 150
901 0- 60
60- 90
90-120
120-150
> 150
902 0- 60
60- 90
90-120
120-150
> 150
832 0- 60
60- 90
90-120
120-150
> 150
Sample
Size
28
92
4
2
0
46
84
2
0
0
2
23
2
0
1
4
55
1
0
0
1
47
32
16
11
Mean Std. Low High Sample Mean Std. Low High
Dev. ' Size Dev.
1.46 1.00 .84 5.98 35 1.95 .93 .82 5.42
.88 .26 .07 1.41 119 1.27 .58 .42 4.25
.62 .17 .50 .88 6 .91 .42 .53 1.70
.57 .01 .56 .58 1 .81 0 .81 .81
0
1.23 .81 .41 3.74 54 1.95 1.10 .56 6.00
1.02 .51 .33 2.95 104 1.30 .62 .19 3.27
.49 .17 .37 .61 • 3 .92 .11 .80 I.QO
1 .97 0 .97 '.97
0
2.00 .44 1.68 2.30 2 2.30 .32 2.08 2.53
1.43 .22 1.12 1.95 21 1.73 .38 1.04 2.57
1.15 .09 1.08 1.21 1 1.36 0 1.36 1.36
0
.66 0 .66 .66 1 .97 0 .97 .97
1.13 .15 .96 1.30 9 1.80 .28 1.27 2.12
.99 .30 .29 1.72 68 1.32 .37 .71 2.87
.90 0 .90 .90 1 .96 0 .96 .96
0
0
.60 0 .60 .60 1 2.40 0 2.40 2.40
.84 .20 .43 1.25 51 1.54 .64 .64 3.58
.87 .21 .55 1.40 33 1.09 .26 .67 1.71
.76 .10 .63 .96 16 .93 .25 .39 1.41
.86 .20 .68 1.39 13 .91 .26 .51 1.31

-------
                                   53
                         Table A.12  (Continued)
                      CHEM/TEC4
FRMF/TEC4
Site


841




832D




TEC4
Interval
Hg/m3
0- 60
60- 90
90-120
120-150
> 150
0- 60
60- 90
90-120 •
120-150
> 150
Sample
Size

1
40
24
8
7
0
29
11
7
7
Mean


1.48
1.21
.97
.96
.91

1.14
1.03
1.09
1.19
Std.
Dev.

0
.38
.24
.18
.23

.33
.17
.08
.14
Low


1.48
.61
.60
.61
.55

.59
.77
1.00
1.06
High


1.48
2.04
1.54
1.14
1.13

1.68
1.43
1.24
1.48
Sample
Size

2
44
20
6
8
0
33
10
6
7
Mean


1.39
1.12
.88
.74
.79

1.58
1.30
,83
.92
Std.
Dev.

.23
.43
.17
.19
.18

.72
.40
.24
.25
Low


1.23
.37
.56
.44
.44

.65
.84
.52
.57
High


1.55
2.33
1.28
1.04
1.00

4.43
2.08
1.23
1.22
—   The statistics in this table are shown  for descriptive purposes  only.
    Their general use is not recommended  (see Section 5.4).

-------
                                    54
 CHRO reading).  The table gives (by site and interval) the sample size,

 mean of the ratios, standard deviation of the ratios and the low and high

 value of the ratio.  The table shows, for all four pairs of methods, that

 there were only a small number of observations in the two intervals 120-150

 and >150.   Thus, for these two intervals no conclusions about the ratios

 could be made.  For the other three intervals (0-60, 60-90 and 90-120), it

 is clear that in most cases the mean of the ratios and the standard deviation

 of the ratios decreases for the higher concentration intervals.   EPA has

 indicated  that the decrease in the mean of  the ratios may be caused by a

 variable collection efficiency for some of  the bubbler methods (FRMF,

 CHESSO).  However,  another  (or an  additional)  explanation of why these

 ratios  decrease  with increasing levels  is plausible.   Suppose a  high

 correlation  exists  for  two  methods  (say, method X  and method Y).   This

 indicates that a linear  relationship  (Y  = A 4-  BX)  between the methods

 is appropriate.  Hence,  the ratio Y/X would be related  to X  by


               I _  A
               X ~  X


 Thus, if A >  0,  the ratio Y/X  will  decrease with increasing  X (or X inter-

 vals).—  An  indication  that this explanation  of the  decreasing  ratio

 pattern  is reasonable is the fact  that  similar decreasing patterns  are  some-
—   If the relationship is of an alternative form, Y = CXD  (i.e., linear
    on a log scale), then the ratio will be constant for different levels
    of X only if D = 1.

-------
                                   55
 times  evidenced  for the  continuous methods  (for which  the question  of  a

 variable  collection efficiency  is apparently not  relevant).   It  is  interest-

 ing  to note  from  Table 4.12,  for example,  that  (except  for site  832)  the

 CHEM/TEC4  ratios  also exhibit this decreasing pattern.  In any event,  the

 table  clearly  indicates  that  the mean o.f the ratios  cannot be assumed  con-

 stant  over the intervals.

       c.   Estimated Relationships Between  Pairs of Methods  (Daily Data)


     As previously mentioned, a high correlation between a pair  of methods

means  that it  is sufficient to characterize such a pair with a linear

 relationship.  In this subsection it is assumed that, for each site,

 the functional relationship between two methods (method X and method Y)

 for the i   sampling period, is linear, i.e.,

      (A.I)     Yj_ = a +  0 X±  +  ei   (i =  1,2	N).


 In this model, a.  and 3 represent parameters to  be estimated  and
                              O                       f.1.
     Y =  NO   reading in ug/m   by method Y for  the i   day  (or


           24-hour sampling  period),

     X = NO   reading in yg/m  by method X for  the correspond-


           ing  period, and

     e. =  (random)  deviation  for the i   day.


 To estimate  the parameters  a  and B by a conventional least squares  tech-
                       N
 nique  (i.e., minimize £ (Y -  a - BX  )  )   would typically  require the
                      i=l   1          1
 following  assumptions:

-------
                                   56
                                                      2
      (a)  the e's have mean 0 and the same variance a  for all


           1, i.e., E(ei2) = a2 for all i,


      (b)  the e's are uncorrelated, i.e., Cov (e.,  e ) = 0 for


           i'y j, and


      (c)  the independent variable X is measured without error.


 For the current N0_ daily data, assumption (a)  does not appear to pose a


 serious problem, although for some methods (e.g.,  FRMF, CHESSO)   the vari-


 ation does tend to be somewhat larger for higher NO  concentration levels.


 To  investigate  the failure  of  assumption  (a)  RTI has used  a  logarithmic


 (log)  transformation  to  stabilize  the variance of the  concentrations  and


 then determined  linear relationships between  the log concentrations  of


 pairs of methods.   These  relationships  are given in Appendix Table D-l.


 However, investigation of the  two  types of estimated linear  relationships


 (i.e., with  and without  taking logarithms) showed that, over the  range of


 the current  data,  the two types of relationships were  quite  similar,  indi-


 cating  that  the departure from assumption  (a) was not  of practical signifi-


 cance for the current NCL data.  Assumption  (b) can be  satisfied  if  the 24-


 hour averaging period is  a sufficiently long period of  time  to negate short-


 term meteorological, industrial, and traffic fluctuations.  Assumption


 (c), however, cannot be satisfied.


     In the presence of error  in the independent variable X of equation


 (4.1), the ordinary least squares approach yields biased estimates for the


parameters a and g.  The  estimates a and 3 tend to over- and under-

-------
                                  57
estimate the parameters a and 3, respectively, when X and Y are positively




correlated.  That is, the line fitted by the least squares procedure tends




to be too flat.  In addition, if one regards the X as the independent




variable (as in equation (4.1)) and solves this equation for X, one will ob-




tain an equation which is inconsistent .with that obtained by regarding the




X as the dependent, and the Y as the independent, variate.




     Hence, when both variables are subject to error, an alternative to the




ordinary regression technique is desirable for estimating the parameters of




model (4.1).  Such a procedure for determining a relationship between the




methods is that of "orthogonal regression," also known as principal component




analysis.  This procedure deals with the pair (X,Y) where neither X nor Y




is fixed.  The technique involves the determination of that linear combination




of X and Y, after translation of the origin to the mean (X,Y), which has




maximum variability.  This first principal component is given by
     (4.2)     21(XfY) = m^X-X) + m2(Y-Y)
where
Orthogonal to Z  is the "residual" component





     (A. 3)     22(X,Y) = -m2(X-X) + m^Y-Y).





The axis of the first principal component (i.e., Z_ = 0) expressed in terms




of X and Y provides the best linear characterization of the bivariate data




in the sense that the sum of squares of the orthogonal residual components,

-------
                                    58
  N
       L2
      Z    is minimized  (See Figure  4.1).   Setting  Z   =  0  in  equation  (4.3)  thus
 i=l   •                                             z

 provides an estimated relationship between the methods  of  the  form

      (4.4)     Y = A +  BX

 where
                             N
                                 (x.-x)  (Y.-Y)
                    m.       N
                                        N      _ ,1  2    T N               I

                                     - E  (VY)     +4   E  (X--X) (Y.-7)
                                       i=l        J       [i=l          1   J
               A = Y  -  BX.
     Of course, an estimated  relationship  of  the form (4.4)  should be used


only in the X- and Y- ranges  where data  is available.   If  X  and  Y have a


bivariate normal distribution,  then  an ellipse  (centered at  (X,Y~)) given by

the equation


                 Z2        Z2
      -   -         ^         2    -
                        1 ••  fn  \ ™" T
     ^""     Var(Z1) T Var(Z2)



will contain roughly 95% of the bivariate sample points.  Recommended  ranges

for which (4.4) holds can therefore be obtained by substituting Z  = 0 into

equation (4.5) to give

-------
           59
Figure 4.1 Orthogonal Regression
  _    •_I'\*/T"'   *.
  —••• — -P-* __ \ •  t
   •   • • • •>';r-«? •  •   •
    •   ••X.tX*
    •   -yT.'  .\'* '  *
                                   Squared



                                   Distances




                                   22i are

                                  ' Minimized
      •  •

-------
                                  60
     (A.6)     Z, = ± 2

     It should be pointed out here that if the correlation between X and Y
is high, then Var^) will be much larger than Var(Z2), i.e., the ellipse
will be quite elongated.  This degree of elongation (or of adequacy of the
fitted linear relationship) can also be expressed in terms of the percentage
of the variability accounted for by the first principal component (2^ :
                          Var(Z.)
     «'7>     PCV1 ' var(gl) + Var(32) * 10°%'

The orthogonal regression approach has the appeal that a single, consistent

linear relationship between X and Y is determined—and without making  the
unrealistic assumption  that one of the variables is measured without error.
The problems  involved with the standard regression approach when both  variates
involve error is discussed, for example, by Berkson [2].  A graphic descrip-
tion of the "orthogonal regression" technique  is given by Hald  [9].  Further
discussion of procedures  for determining relationships between  the methods
is given  in Appendix  D.
     Because  of  the  discussion given above, RTI  felt  that the relationships
between pairs of methods  as  given  in  (4.1) should be  obtained by  orthogonal
regression;  accordingly,  the  results of  using  orthogonal regression  are  given
in  the  present section.   Results  of using  alternative models  to (A.I)  (i.e.,
linear  in the logarithms  of  X and Y) and using conventional (ordinary)
regression are given in Appendix D.   In  addition Appendix D gives the
statistics necessary to compute  confidence limits  on  the  conventional re-

-------
                                  61
gression lines.




     The parameter estimates A and B of equation (4.4), in conjunction with




the recommended ranges over which the linear relationships are applicable




are given in Appendix Table C-l for each site and each-pair of methods.  The




following remarks and notation are needed to use this table:




     (1) • The first line of each set represents the overall




          results obtained by combining the data from the




          seven sites (Site 832D excluded).




     (2)  X corresponds to method 1 and Y to method 2; hence,








           N   = number of (paired)  observations




           Ml  = X = mean for first  method




           M2  = Y = mean for second method




           SD1 = standard deviation  for first method




           SD2 = standard deviation  for second method




           COR = correlation between X and Y




             Y = A + BX is the form  of the estimated relationship




                 obtained by orthogonal regression




         PCV1 = the percentage of variability accounted for by




                 the first principal component (see equation (A.7))




         RATIO = M2/M1 =  Y/X = ratio of  means




CM1LOW,  M1HIGH)  = recommended range  for method 1 over which the




                  estimated relationship Is  applicable (see equation (4.6))



(M2LOW,  M2HIGH)  = same for method 2

-------
                                   62
 Examination  of  Appendix  Table  C-l leads  to  the  following  question:   For

 a particular pair  of  methods, is  a separate  linear  relationship  needed  for

 every  site?   If ordinary regression  is used and  statistical  tests  of

 significance are performed  to  determine  if  these regressions  differ  from

 site-to-site, one  concludes  that they do in fact differ in almost  all

 cases.   However, if one  ignores  sites (i.e.,  as  in the overall  regression),

 a strong linear trend is still evident.   This is indicated by the

 correlations between  X and Y for the combined data.   In many  cases,  these

 correlations are higher  than the corresponding  correlations  for the

 individual sites.  Scatter diagram plots  such as those shown  in Figures

 4.2 and  4.3  also indicate that,  from a practical point of view,  the  com-

 bining of data  over sites is justified.—   The  regressions indicated in

 Appendix Table  C-l are presented graphically  in  Appendix  Figures C-l

 through  C-36.   The figures only  plot regressions based on more  than  30

 observations  and exclude .site  832D (recall  that  the data  from site 832D

 was not  included in the  overall  regressions).

     The 36  graphs shown in Appendix C indicate  that  a single overall

 linear regression is  usually satisfactory for characterizing  the rela-

 tionship between a particular  pair of methods, i.e.,  separate relation-
—   Figures 4.2 and 4.3 also indicate that the same linear equation will
    describe the data over its range as well as  (or better than) break-
    ing the data into intervals and fitting separate linear equations
    within intervals.

-------
  150.000
            Y  o   CHRC
                                         Figure  4.2


                        Scatter Plot  of  CHRP vs.  CHEM—Over Sites
  izo.ooo
. *
i . •

i
; •
•
	 	 , .
•
•
•
•

«
•
4
.
•


*
•
0
*
• 0 ** 0
* •*
* «» * «»
* * 0
* *»o •
* * ** 0*00
•

«*
* * • *
* » • * *
• •* •«
» » * *
* * * *
* • *
*•••»•* * . cjx
* * * * « OJ
******
0 «* ** 0
»* * * '
* * » *0 «» 0 00 *
* »0* **0* -*
-------
-o
        300. COO
                  V «  TECfl
                 Figure 4.3


Scatter  Plot of  TEC4 vs. CHEM— Over Sites
        240,000
       '160. COt
  V:
                                                 *  *

                                              *  *   0*    *
                                            *«     «  *   * *
                                          	*  ._.«	_•	
                                              *  **    ni)  5_ 	
                                          0	*  ***   **;•
                                •   *   *««*.o  *    **        *
                                   *  **  0     00  »   »  0
                                      * *«• o*  *  *0    •     0**
                        	«	   00  *0**

                                 *«0 0* 0*000*
 **'*.*  *  *  *
	*	•*..__<
   *     ••
       60.0000
•      *   0    «0 0 3« »     •«* 0 *
.     * *•   »  000****0 0  • *»* *
.  * *	Op**0*0000 0 QQ«* «Q	•
.	_*» •• *"6oo*roooooo'«c *      ;
                         •* 0000000*00*0*»* «•"*"""
                      _*_ 0*0000J0*^fl»0 0**  * **
                                                                          _
                                                      single  data point

                                                  fl = mill fi pip Haf-a  pMnf
      o-.o
                  .    *00**000«0«    0*
                  .    «000 «0 jf[*_*_«0^ * _•'
                  ,	 ••000*0       *~~
                 .,._oc*_*.... "^~_~.~_
               0.0
                                    60'0000
                           JO.OOOO


                            9
                                                                  J50.COO
                                       210.000
                                                                                                           270.000

-------
                                   65
 ships are not needed for every  site.   Accordingly,  Table 4.13 gives,  for




 each pair of methods,  the parameter estimates  A and B for the estimated




 relation (4.4).   These  estimates  were  determined by using the orthogonal




 regression approach on  the pooled data from the seven sites  (excluding




 832D).   The table also  gives  other pertinent summary statistics and




 recommended ranges of applicability for the regressions.   The notation




 used is  the same  as that previously described  for Appendix Table C-l.




 Some of  the relationships indicated by Table 4.13 are portrayed graphically




 in  Figures  4.4 and 4.5.   The  first figure  shows the estimated relation-




 ships between the CHEM  and seven  other methods.—   Figure 4.5 shows




 similar  plots for the CHRO.   Based on  these two figures  and  the results




 shown in Table 4.13, one can  draw the  following general  conclusions:




      1.   The two  continuous monitors,  CHEM and TEC4,  are well




          correlated (0.827) and agree  in magnitude  reasonably




          well, although  the TEC4  may run slightly higher.




      2.   The CHESSO method correlates  poorly (0.596)  with the




          CHEM; in general it  gives readings  somewhat  smaller




          than the CHEM.




      3.   Five  of  the bubblers (i.e., FRMF,  TEAF,  CHRF, CHRO,




          TGSO) have correlations  of about  0.7  to 0.8  with the
—   The TECH is excluded since it is present at  only  two  stations.

-------
                           Table 4.13  Estimated Relationships Between Methods^'
                                                              I/
                                                                            2/
PETH1
METH2
N
  Based on the Combined Data Over Sites—
COR             4            B     PCV1
                                                                                       ~  .P1HTGH
FRMF
FRKF
FRMF
FRMF
FRKF
FpKF
FRMF
FRMF
TEAF
TEAF

TEAF
TEAF
.TEAF
TEAF
TEAF
TEAF
CHPF
ChFC
CKESSO.
TGSO
..... TECH
TEC 4 7 1'.
ChEM
CHFF
CHRO

CHtSSO
TGSO
TECH 7
TEC4
Ct-EM
1290
1337
...1313
1166 7
648
....265.. ...
...637.7
648
15 10
1285

1141
625
2667
635
7. 809
.773
..7..67_. .

.689
7". T 13.77"
.687
.846
	 .858 	

.613
.762
-..72977"
,757
.757
2.0038
4.5189
4.. 79 61
-2.4402
•1.1686
M Q Q fl fl St
* A f 1 V v
-14; 13 19
- ! ; . 4 o o o
0.5442
~ 2.4597

•22.4750
•5.5566
•17.2975
-19.2612
."-1.8..1«22
0.47865
0.58082
. 0.55405
0.75657
0.49813
1.16309
1.0«755
OJ93014
	 1.2567J
1.15771

2.04057
2.63888 ".
2.19319
-2,03941
93.5
90.7
91.7
80.4
88.3
77;?
85.7
84.4
92.6
93.0

85.0
88.2
92.4 .7
91.9
91.3
0.0
0.0
n.n
1.6
0.0
12.0
1.4
3.8
0.0
0,0

6.3
o.n
... '.6.4 '
3.4
3,4
J51.2
153.8
149.6
161.8
1 CO . 0
143.7
140.3
7f .9
77.0

68.4
7R.J

67.8
68.4
1.:
4 7
0.0
0.0
4 2
0.0 . .
0.0
0 o
1.2

0.0
n n
- 0.0. -
0.0
0.0
74.1
93. <
. . 1 1 1 . C
79.4
136.4
120. 1
c ' tr
	 7 /. • C
Q 1 . fe

117.2
62.8
	 ~.K.tV
114.0
1P9.4

-------
Table 4.13 (Continued)
CHRP

CHRP
CHRP
CHRP 	
CHRP
CHRP

CHRO

CHRO
CHRO

CHRG

CHSC
HESSO
HESSG
CHESSO

CHESSO
CHRO

CHESSO
TGSO
TECH ;
TEC4
CHEM

CHESSO

TGSC
TECH

TECU

CHEM
TGSO
TECH
TEC4

CHEM
1326

1184
650
IT" ."26 8 1
655
663

1169

633
270

6ii3

650
556
261
635

645
.927

.620
.805
IT. 7 09
.715
,729

.590

.790
.67P

.75?

.737
.496
.29?
.646

.596
U2385

•20.366Z
-7.6510
= .>5.e«00
-24.7t39
•19.0056

; 2 3. 7 6 as

-9:7597
-29.7785

•26.6239

•21.0308
10.6553
•53.7663
•0.7229

•U.7070
0,

1,
0,
TI2,
i,

	 i.

u
2,

2.

1.
0.
3.
1.

1.
,93297

,56150
,96116
,5662711
,60937

69291

04031
66998

0104U

73632
46070
1C822
23363

19481
96.4

82.8
:«i.»:."
88,6
88.2

82.0

8<5.5
9Q.7

91.0

69.2
79.9
73.2
82,7

BO.i
0.0

0.0
II 9. 9
4 6

9.2

11.0

5.3

5.6
0.0
16.6
0.0

0.0
9p .a

89.3
:::•.-•»..!-
.87.9
69.8

65.3

91.7
53.7

e?. 6

63.5
131.1
53.4
111.5

109.6
OlO"

0.0
0.0
. ..._ ... 0.0 ...
0.0
0.0

0.0

0.0
0.0

0.0

0.0
5:6
0.0
0.0

0.0
94.0

11 9 - <
fcS.7

125.5

117.3

85.6
113.7

139. a

124.1
71.6
112.2
136.8

126.5

-------
                                       Table 4.13 (Continued)
TGSO
TGSO
TGSC
TECH
TECH
TEC
-------
                                            69
  Vig/m
                                        Figure 4.4

                       Estimated Relationships Between the CHEM and

                              Seven Other Monitoring Methods
160
140
120
100
 80
 60  "1
This graph is for descriptive purposes
only.  General use of the estimated
relationships is not recommended (see
Section 5.4).
FRMF
                                                                                   TEC4
                                                                          120

-------
                                         70
Ug/m"
                                     Figure 4.5

                      ''iraated Relationships Between the CHRO and

                           Seven Other Monitoring Methods
                                                       FRMF
            This  graph  is  for descriptive  purposes
            only.   General use of  the  estimated.   /TEC4
            relationships  is  not recommended
            (see  Section 5.4).
           20
40
60
80
                                                                      120
                                  CHRO —

-------
                                   71
         CHEM and the TEC4.  The FRMF gives larger readings




         than the TEC4 and CHEM methods whereas these other




         four NASN bubblers tend to produce lower readings




         than the continuous monitors.




     4.  The CHRO has high correlations with the other NASN




         bubblers (especially with the CHRP).  In the range




         of practical interest, the FRMF produces readings much




         higher than the CHRO; the CHRP and TGSO tend to agree




         with the CHRO, whereas the TEAF tends to be lower,




         (recall a 100% collection efficiency was assumed




         for the TEAF in this report).




     5.  The TEC4, CHEM, and CHESSO run higher than the CHRO




         method; the CHESSO correlation w-ith the CHRO is only




         0.59.




      d.  Summary Statistics for Unpaired Data




     As mentioned previously, comparisons between unpaired data for the




various monitoring methods can be misleading because of the large amount




of missing N0» daily data.  Thus, the purpose of the present subsection




is only to give a rough indication of the relative magnitudes of summary




statistics for the various methods.  Table 4.14 presents arithmetic means




by site and method for the unpaired data.  The table shows the approximate




ranking (over sites, from largest to smallest) of the means to be TECH,




FRMF, TECA, CHEM, CHESSO, CHRF, CHRO, TGSO and TEAF.  Of course, the

-------
                                    72
                                Table 4.14

                   Means of Daily Measurements by Method

                          and Site, Unpaired Data
FRMF
TEAF
CHRF CHRO
CHESSO
TGSO
TECH TEC4
CHEM
Chattanooga
632
633
St. Louis
901
902
California
83li'
832
841
832D
55.
53.

89.
73.

73.
113.
78.
111.
9
4

9
5

0
9
5
7
28.2
25.3

43.2
35.6

44.5
54.0
45.7
64.5
34.5 34.
33.6 32.

58.5 54.
44.1 42.

56.2 51.
67.6 64.
57.0 57.
80.1 73.
4
3

9
4

9
6
7
2
33.3
33.5

71.4
56.7
-
55.4
76.4
64.7
85.5
27.2
29.4

41.5
31.6

68.6
57.5
46.9
64.4
52.5 45.7
61.7 40.6

* 63.4
* 47.5

* 79.9
* 99.3
* 90.1
* 90.0
41.
37.

78.
45.

69.
84.
87.
100.
8
9

1
9

4
4
4
9
*  = No data present


—    On October 6, 1972, all methods except CHESSO and CHEM moved
     from site 831 to site 832.

-------
                                   73
 assumed  collection  efficiencies  for  the various bubblers  undoubtedly  affect




 this  ranking  a  great  deal.   The  relative magnitudes  of  the means  given  in




 Table  A.14  are  approximately the same  as shown earlier  for the  paired data




 (Sections 4.4.b and 4.4.c).   Table 4.14 also shows that,  in  general,  the




 sites  in Chattanooga  have  the lowest NC>2 readings and the sites in  California




 have  the highest NC>2  readings.   Site 832 (or 832D) generally has  the highest




 readings of the sites sampled.




     Table  4.15 presents frequency distributions and summary statistics for




 the various methods over the seven sites.   (The TECH method  is not  given in




 the table since it only occurs in sites 632 and 633).   For each method  the




 table  gives sample sizes, arithmetic means, standard deviations,  geometric




means, standard deviations of  logarithms, as well as the  minimum, median




and maximum values.  The statistics given in Table 4.15 are  shown chiefly




to provide one with an idea  of the location, scale and  skewness of  the




distributions for the individual methods (for data combined  over  sites).




The table shows the arithmetic mean of each method is greater than  its




median whiuh indicates that  the distribution of each method  is skewed.




This skewness can also be seen in Figure 4.6 which gives  histograms (correspond-




ing to the frequency distributions) for each method.   The forms of  these dis-




tributions are dependent, of  course,  on the particular  sites involved (i.e.,




one would not necessarily expect any one site or any other collection of




sites to give the same distributions).   Tables showing  the frequency distri-




butions and (unpaired) summary statistics for the individual sites  are given

-------
                                                             Table 4.15
SUMMARY  STATISTICS   KC2  MPMTORlNG KtTHCOS CC»-PAPISCS  —  !tV£N SITE!  CCfBINED- .  Unpaired Data
VARIABLE      KO.
             CE3.
                FRECUENCY  DISTPIBLTirK
<• 15. .  15.- 30.  30.-  (IS.'   (IS.- tO.   60.- 75;._15..- '?.91.. _90m.-JOS,  105. -120.'  120.-135T .135.-150.  ISO,.
FRMF
TEAF
CHRF
CMRC
ChESJl
TCSC
TECO
CMEH
VARIAblL
FBMF
TEA*
CHRF
CHRf
CMESSt
TCSC
TEC«
CHtK
l«0«i 0.65
0.65
1367 7.68
1«26 3.«2
3,02
1395 3.30
3.30
Ia79 a. 67
68(1 6.1(1
7«6 2.1-
2. Id
632 " 4.U5
*-C. MN.
CBS. VALLE
140*1 7.3000
1367 1.'3000
1026 2.7059
1395 1.29U1
14/9 J.5000
68(1 1.2000
7ue a. tooo
832 3.9000
7!26 19
32.92 30
(10.60 70
20.13 27
23, 1<* 50
21.66 29
2S.16 SU
20. 3« .. a7
38. (IS 28
14.04 22
16,18 38
16.95 22
21.39 «3
MEDIAN
VALUE
69.7000
3a.bOon
44.0706
(13.0568
«6.7noo
32.5000
52.8000
09.7000
.CO 3t!5«
.It It. 75
.96 87.71
.21 22.51
.35 72.66
.10 22.51
.27 7t.77
.7S 17. =e
.13 6U.71
.22 13.01
.M 85.62
.73 20.99
.90 59.69
.2(1 18.39
.63 62. P2
MAX.
VALUE
36S.-8999
200,'SOOC
237.1765
2«0.'3529
303.59
-------
                         75
 Hist grains by Method—Seven  Sites Combined— , Unpaired Data

HISU <*AM FOR   FRMF          N  »   1«0 IbC  ,  *****  ___ .
HI3TCCPAM  FOR  TEAF          N  «=   136?
   150 .  *
 HISTOGRAM FOP  CHRC        (  N B  1395
           **********************
      60 i A***************'.******
      75 , ************ _ ^ _
 "< s"  9"b   **** * *
   150 . *

-------
                               76
HISTCGRA1   "OR CHESSO
N •   1479
                                                           Figure A.6 (Continued)
 J50_.
HISTCGPAM

<= . IS ,
<= 30_,
Co 45 .
 150 ,
HISTCGPAM

£3 15 ,

-------
                                    77
 in Appendix A.

       e.   Analysis of Duplicate Data for Site 832

      Duplicate  measurements  were made in Site 832  for  each of  the NO

 monitoring methods (except TECH).   The primary reason  for  obtaining these

 measurements was  to provide  a means for estimating and comparing the pre-

 cision of the various methods.   To  estimate  the precision  of a particular

 method,  the following model  is  assumed:

      (4.8)      Ytj = (y  +  m)  +  6± + Yj  + e^     (i = 1,2 ..... N;  j  = 1,2).
 In  (4.8),
               Y    =  the  observed NO   reading  on  the  iC   day

                      by  the  j    instrument  (or bubbler)—  of

                      that  type,

                 y  =  true  mean N0_,

                 m  =  deviation in reading from the  true  mean

                      due  to  the  particular method (i.e.,  bias),

                6   =  deviation in reading due  to  the  effect of

                      the i   day,

                Y.  =  deviation in reading due  to  the  effect of

                      the j   instrument of the given  type, and

               e. .  =  deviation in reading due  to measurement

                      error for the j   instrument on  the  i   day.
—   The term "instrument" in this section will be used in a general sense
    referring to any means of measuring N0_.

-------
                                   78
The three sources of variation  (day, instrument, measurement)  are  all  assumed



to be random effects (i.e. , representative of a much larger population of



days, instruments, or measurement deviations) with zero means  and  with vari-


       22       2
ances QD, o,, and 'o .  With (4.8) as the underlying model, one prefers a moni-



toring method which has the following characteristics:



     (1)  small bias (i.e., m « 0) ,


                                                   2
     (2)  small instrument variation (i.e., small a ) ,


                                                2
     (3)  small measurement error (i.e., small a ).



With the type of data available for this report, one cannot estimate m, the



bias of a method.  However, one can remove this bias, as well as the daily



NO,, fluctuations so as to obtain estimates of method precision (defined as


 222                                                2
a  = a  + a ) and of the measuring error of an instrument (o" ).  Letting
 m    I    e                                                e



di ' Yil ' Yi2 and



                      N

                         d
we can estimate the parameters a  and o , using (respectively)
     (4.9)     S  =1
and




     (4.10)    a
                e




     Table 4.16 shows the estimates a  and o  for each of the eight methods
                                     me


Other pertinent summary statistics (paired) are also given.   The last

-------


Summary Statistics and
79
Table 4
Estimates of

.16
Precision for Paired Duplicate



Data at Site 832-/
Method
(and No. Paired
Instrument) Observations

FRMF.j^ 127
FRMF2
TEAF-j^ 111
TEAF2
CHRF 149
CHRF2
CHR01 121
CHR02
CHESSO 134
CHESS 02
T/** c r\ ^ *y
lOoU- / £
TGSO

MEAN
(ug/m )
123.3
113.0
59.0
63.9
73.1
79.4
69.8
73.2
84.9
85.6
60.0
66.5

A I/ A
Dev. Corr. a — a
e m
3 3 3
(ug/m ) (yg/m ) (ug/m )
.49.7 0.74 24.6 32.3
45.4
29.4 0.89 11.4 11.9
34.8
32.2 0.87 12.8 13.6
37.4
31.2 0.84 12.7 12.9
31.5
43.4 0.66 26.2 26.2
46.4
31.5 0.85 12.8 13.5
34.0

P

27.3%

19.4

17.8

18.0

30.7

21.3

                 63           93.2     48.9    0.98     7.5      9.2     10.3
 TEC42                         85.4     43.4
                 50           85.1-    48.3    0.95    15.9     22.3    23.2
CHEM2                        107.5     62.0
 1/A2A2A2AA
—   a   = a   + a  ;  a ,  a  and P are defined in the text.
     m     e     I    e   I

21
—   The statistics in  this table are shown for descriptive ]

    Their general use  is not recommended (see Section 5.4).
 —   Forty-four of the fifty paired readings for the CHEM showed lower readings

     for the first instrument (CHEl^).   This probably reflects calibration

     problems since the high correlation between CHEM^ and CHEM2 indicates that
     equipment malfunctions are not prevalent.

-------
                                    80
 column provides a measure of relative precision for the methods given by
                P =	3- x 100%,
                    Y  + Y
                    Xl   *2

 where Y   = mean for instrument  j  over days.   Table  4.16  indicates that the
                     2
 measurement error (a )  makes up  the  larger  component of the  precision for

 all of the methods.   The FRMF, TEC4,  and  especially  the CHEM methods  have

 more instrument  variation than the other  methods,  as shown in the  mean

 column.     The  last two columns  indicate  that,  among the  bubblers, the

 CHRP,  CHRO,  and  TEAF have better precision.   The TEC4 shows  the  best  pre-

 cision for all methods  and the FRMF and CHESSO, the  worst.   It should be

 cautioned  that  these data (and consequently,  any conclusions) represent

 only the single  site (832).   For example, Appendix Table  C-l shows that

 standard deviations  for the  CHEM are  quite often lower than  those  of  the  TEC4

 in  other sampling  sites.—
—   RTI also investigated a procedure due to Grubbs for obtaining
    precision.  The Grubbs procedure does not require duplicate
    measurements on the same method.  However, the Grubbs procedure
    appears to be inappropriate for the current sampling data.

-------
                                   81
 4.5  Analysis  of Hourly Sampling Data



     As  described  in Section  4.2, appropriately  lagged hourly data  for  the



 continuously-monitoring instruments were made available to RTI.  These  data



 were based  on  strip chart  readings and/or averages of 5-minute readouts  from



 the automated  data collection system.  Only strip chart readings were avail-



 able for the TECH  (Chattanooga only).  Only a rough univariate screening pro-



 cedure was  applied to  the  hourly data by RTI.  In particular, any value


                            3                                             3
 (hourly)  exceeding 999 yg/m was dropped.  All hourly values below  9 yg/m  ,



 including negative and zero values, were converted to 4.7 yg/m .  This value



 represents  about 1/2 of what  is generally regarded as a minimum detectable



 concentration— .   The  analysis of these hourly data consisted of two basic types:



 an analysis by site, and an analysis by site and hour (i.e., 0000-0100,



 0100-0200,  etc.).  Site 831 has been excluded because of its limited amount of




 data.



     The  results of the first analysis are presented in Table 4.17.  These



 results  consist of the means, standard deviations, and sample sizes for each



 method (paired) as well as  the correlations between the methods and the



 ratios of means.   The means and ratios compare favorably with the correspond-



 ing statistics based on the daily data (see Table C-l ).  As was the case



 for the  daily  data, considerable variation in the correlations occurs for the



 different sites; this variation in the hourly-based correlations appears to



 be effected for two reasons:
—   The minimum detectable level of 9 yg/m  has been determined under laboratory

    conditions, i.e., it assumes the instrument is performing at peak efficiency.

-------
                                    82
                                 Table 4.17

                        Summary Statistics Based on
                       Paired Hourly Averages by Site—
                                                     II
SITE
632
633
901
902
832
832D
841
Total*
No.
Obs.
2844
' 3125
783
1572
2910
1589
2181
13415
Means
CHEM TEC 4
40.1 48.2
39.2 37.7
82.5 62.5
47.1 48.0
86.0 104.7
104.3 95.3
95.7 101.2
62.2 67.4
Std. Deviations
CHEM TEC4
33.7 61.4
44.8 32.9
30.4 37.8
- 30.0 23.9
60.4 81.1
81.7 71.9
56.7 87.0
52.4 68.3
Corr.
.462
.586
.605
.735
.744
.946
.551
.666
Ratio of
Means
1.20
0.96
0.76
1.02
1.22
0.91
1.06
1.08
 *  Excludes  832D.
SITE
632
633
Total
No.
Obs.
2012
2242
4254
Means
CHEM TECH
44.0 50.5
45.7 65.6
44.9 58.4
Std. Deviations
CHEM TECH
34.6 41.6
52.9 69.3
45.1 58.4
Corr.
.588
.835
.765
Ratio of
Means
1.15
1.43
1.30
SITE
632
633
Total
No.
Obs.
2705
2700
5405
Means
TEC 4 TECH
49.1 55.1
41.6 64.9
45.4 60.0
Std. Deviations
TEC4 TECH
43.0 46.3
38.4 67.8
40.9 58.2
Corr.
.698
.687
.658
Ratio of
Means
1.12
1.56
1.32
—   The statistics in  this table are shown  for descriptive  purposes  only.
    Their general use  is not recommended  (see Section 5.4).

-------
                                    83
      1)  considerable variation in the actual degree of N0_


          fluctuations for the various sites, and


      2)  the presence of outliers.


 Low correlations between methods are to be expected if the true NO  remains


 stable within a day and from day-to-day.   Higher correlations would tend to


 result for those sites where large NO  fluctuations are experienced.  Previous
                                   •

 results for the daily data indicate that larger NO. daily fluctuations occur


 in the California sites.  Hence, it is reasonable that the highest correla-


 tions occur for these sites.  The second  analysis indicates that larger


 within-day fluctuations also occur for these sites; it also indicates the


 presence of outliers.


      This second analysis is summarized in detail in Appendix Table F-l.


 Outliers are  indicated for those hours which exhibit correlations which are


 small,  and standard deviations which are  large,  relative to the other hours.


 For example,  in site 901, hours 6 and 16  show correlations of .216 and -.006,


 respectively,  between the TEC4 and CHEM,  whereas for the other hours, the


 correlations  are about 0.7 or 0.8.   The TEC4 standard deviations for these


 two hours are  more than two times larger  than those for the other hours.


      The information shown in Table  4.18,  which  was extracted from Table


 F-l,  demonstrates  clearly the inconsistencies that  occur for the various


•sites - with  respect to both correlations  and magnitudes of the paired (TEC4


 and CHEM)  means.   As shown, in Table  F-l,  twenty-four means, correlations,


 etc.  were computed for each site.  The largest and  smallest sample sizes,

-------
                                Table 4.18   .

                         Summary of Hourly Results

                          For the TEC4 and ™'™1/
          Sample Size
Correlations
 Ratios of TEC4-
MEAN to CHEM MEAN
Site
632
633
901
902
832
841
832D
Low!/
127
131
10
31
75
66
40
High
141
144
48
76
133
105
77
Low
.184
.159
-.006
.466
.391
.341
.833
Median
'.481
.531
.761
.709
.768
.563
.939
High
.941
.855
.878
.912
.902
.880
.986
Low
0.879
0.843
0.622
0.918
1.022
0.733
0.834
Median
1.235
.978
.780
1.026
1.219
1.114
.923
High
1.373
1.093
0.937
1.110
1.375
1.208
0.966
—   See Appendix  F  for  more  detailed  information on these two methods
    as well  as  o.i the TECH method.

2/
—   This value  is the number of observations  for that  hour  of the  day which
    had the  fewest  paired CHEM and TEC4  readings.


—   The statistics  in this table  are  shown  for  descriptive  purposes only.
    Their general use is not recommended (see Section  5.4).

-------
                                   85
correlations, and ratios of means  (out of  th.e  twenty-four)  are  shown  in




Table 4.18.  Also given are the median correlations  and  the median  of the




mean ratios.  For example, in site 632,  the sample sizes  ranged  from  127  to




141, the correlations, from .184 to  .941,  and  the ratios  of means,  from




0.879 to 1.373; one-half (i.e., 12)  of the correlations were  less  than




0.481 and one-half of the ratios exceeded  1.235.  Table 4.18  shows  that  the




TEC4-CHEM correlations vary considerably from  site-to-site  and,  except for




site 832D, within sites.  The median ratios indicate that the CHEM  and TEC4




compare favorably (i.e., are of same magnitude) only in sites 633 and 902.




It is interesting to note that in site 832 the TEC4  means are larger  than




the CHEM means for all twenty-four hours whereas for the  duplicate  measure-




ments, site 832D, the reverse is true.




     Appendix F contains plots of the paired means for the  TECH, TEC4, and




CHEM over hours of the day (diurnal  averages).

-------
                                   86
                               5.  SUMMARY
                                            *



5.1  Introduction

     The purpose of this report was, on  the basis of ambient air sampling

data from seven stations (sites), to compare nine different methods for

monitoring nitrogen dioxide.  The locations of the seven stations are given

in fable 4.1.  Two stations in Chattanooga (Sites 632 and 633) contained

all nine N0« monitoring methods; the other five stations (Sites 901 and

902 in St. Louis, and Sites 831, 832, and 841 in the Los Angeles vicinity)

contained eight methods.  The methods are described in Section 3, and the

notation used for them is given in Table 5.1.

     Sampling data during the period July, 1972 through April, 1973 were

gathered, processed, and validated by EPA.  After making the necessary calibration

and collec.ion efficiency corrections, EPA sent two data sets to RTI:  one

containing data on an hourly basis (for  the continuous monitors), and one

based on (approximately) 24-hour sampling periods— .  As described in

Section 4.3, .  r. screened the daily data for outlying observations.  This

resulted in the removal of 60 (out of about 10,000) of the daily readings.

All daily results shown in this section are based on these screened data

and the assumption that the collection efficiencies given in Table 5.1 are
—   Daily averages for the continuously-monitoring methods required  that
    75% of the hourly data be available.  The averages were taken over  the
    time period during which the bubblers were operating.

-------
                                              Table 5.1

                                       N0_ Monitoring Methods
       Method Name
1.  Federal Reference Method
2.  Triethanolamine Method
    (Fritted. Bubbler)
3.  Arsenite Method
    (Fritted Bubbler)
4.  Arsenite Method
    (Straight Tube Impinger)
5.  Chattanooga Health Effects
    Study Method

6.  Triethanolamine-Guaiacol-Sulfite
    Method (Straight Tube Impinger)
7.  Continuous Saltzman (II)
    (Chattanooga)
8.  Continuous Saltzman
    (Technicon Mark IV)
Notation
FRMF
TEAF
CHRP
CHRO
CHESSO
TGSO
TECH
Assumed
Collection
Efficiency
35%
100%
85%
85%
35%
. 100%

TEC4
                   Commen ts

Bubbler, daily readings
Bubbler, daily readings

Bubbler, daily readings

Bubbler, daily readings

Bubbler, daily readings


Bubbler, daily readings, sampling
began  in September,  1972
Used in Chattanooga  only; hourly strip
chart  readings  are averaged  over time
period  corresponding to bubbler  operation
to obtain  "daily"  values

5-minute readouts  or hourly  strip char-ts
are averaged  over  time  period  correspond-
ing to  bubbler  operation  to  obtain "daily1
values
                                                                           00
                                                                           •sj
9.  Chemiluminescent
CHEM
Same as TEC4 comment

-------
                                    88
  appropriate.


       The  following  subsection provides a br^ef discussion of  the procedures


  and results of  the  daily data analysis.  Section 5.3 summarizes the hourly


  data  analysis.  Section 5.4 suggests some areas of future research regard-


  ing the comparison  of NO,, monitoring methods that should be explored.





  5.2   Daily Data Analysis

    *                              -
       The objectives of this analysis were


       a)   to determine the relative operating performance of the various


           methods (e.g., by comparing precision of methods),


           and


      b)   to determine the comparability of (daily)  NO  readings as given


           by the various methods (e.g., by comparing magnitudes of means,


           and correlations and regression relationships between the


           methods).


      Duplicate data were available in Site 832.   These data were primarily


 obtained in  order to estimate  method precision.   The results,  which are


 applicable oni/ for  this site,  are given in Section  4.4.e.   The TEC4


 appeared to  have the best  precision  and the CHESSO,  the worst.   The dupli-


 cate data also served to point  out that method  bias  may be  a serious


 problem (see Section 4.4.e).   For example,  based  on  50  days  of data,  two


.CHEM instruments at  this site had means of  85.1 and  107.5 ug/m3.   One  of


 these  instruments  gave readings  higher  than the other  on 44  of the  50


 days.

-------
                                   89
      To satisfy objective (b),  three basic questions had to be considered

 in the analysis of the daily data:

        i)   What form of relationship will provide adequate fits

            to the data?

       11)   Are separate analyses  required for each site  or for

            different ranges  of  NCL  concentrations?

      iii)   How should the relationships  be estimated?

      The  correlations between most  of the methods were above 0.7;  these

 correlations,  in  conjunction witii scatter plots  of the data, indicated

 that  linear relationships over  the  entire ranges  of the  data would

 probably characterize pairs  of  methods satisfactorily.—    Large varia-

 tion  rather than  lack of  linearity  appeared to be responsible for  those

 correlations which were  low.  Hence,  the form of  the estimated relation-

 ship  between a pair  of  methods  (method X and  method Y) was  taken to

 be

               Y  - A + BX.
—   Data were not made  available  to RTI  on  (possible)  interferences;
    hence  the relationships  given in  this report  could not  include
    such effects.

-------
                                    90
 Since both variables X and Y are subject to measurement errors, and since

 it was desirable to have a single, consistent relationship between pairs

 of methods, the estimates A and B were obtained using orthogonal regression

 rather than ordinary regression.  Initially, separate relationships (between

 a given pair of methods) were estimated for each site.  Based solely on

 statistical criteria, different relationships quite frequently would be

 indicated for the seven different sites.   However, from a practical point

 of view,  estimated relationships between the methods should be based on the

 combined  data, since the seven sites are hopefully representative of a

 larger population of sites.   Hence,  it is appropriate that site vari-

 ability be included as a component of error variation, i.e.,  separate

 relationships  should be avoided, if  possible,  except as  they  may be used

 to provide checks on how these particular seven  sites compare.

      Table 5.2 shows the overall (i.e.,  data-from seven  sites is pooled)
                                                       I
 paired  summary statistics  for the  28 method pairs.   (The TECH is excluded

 since it was present in only  two stations.)  The pairs are ordered  accord-

 Ing  to  their correlations—from those pairs having  the highest  correlations

 to those with   he  lowest.  From this  ordering, it  is  clear that the best


 correlations occur  between five of the six  bubblers  (excluding  the  CHESSO)-/;
-   Of these five bubblers, the TGSO generally has the poorest correla-
    tions.  This appears to be the result of problems encountered during
    the early phases of data .collection activity (see Section 4.4.b).
    In addition, it is important to note  that the TGSO method used in  the
    present study has been subsequently modified.

-------
            TABLE 5.2.  SUGARY  STATISTICS^/:CAILY  HA'TA COMBUEC  CvER
METhCD.l
    METHOD-2
STD_1
    STD.2
CCRK
-'  Over Sites—632, 633, 901, 902,  831, 832 and 841.

—'  Ratio = Mean 2/Mean 1.

-   CV-1 = STD  I/Mean 1 x 100%; similarly for CV-2.
CV.2
CHHF
TEAF
TEAF
TEC4
CHPF
CHHC
FRMF
FPMF
TEAF
TF.AF
CHHC
ChRC
TGSC
CHkF
TGSC
CHRF
FPMF
FRMF
FPMF
C^ESSC
CHRF
TEAF
CHESSC
FRMF
CHKC
CHESSC
CHRO
CHRQ
CHRF
CHEM
TFAF
TPSO
Tcsn
CHRO
CHRF
TGSO
TEC4
TEC4
CHEM
CHEM
CHEM
TFC4
TEC4
TEC4
TGSO
CHEM
TFC4
CHESSU
CHESSO
CHEM
CHFSSO
CHESSO
TGSC
1326
12P5
1310
545
1290
650
633
1313
1337
625
619
635
643
650
351
663
302
655
637
648
648
635
118/1
1141
645
1166
1169
556
49.0
..37.9 	
38.1
63.5
75.3
47.4
46.6
76.0
76.6
38.4
35.6
35.9
43.9
44.5
35.7
47.2
39.5
46. U
72.6
80,7
72.1
51.1
48.4
37.4
52.3
75.6
46.3
60.1
47.0
46 ,fl
48_*5_
59.9
38.1
16. 9.
38.7
46.9
49.0
37.8
56.8
55..Q
61 .7
56,4
56.8
56.9
65.9
61.9
39,0
56.6
62.3
55.1
_53.e
57.7
54.9
54,6
38.6
25.6
	 20.5 ....
39.3
38.2
25.0
. 24.0
38.6
39.3
21.5
19.2
	 22.P
22.8
22.5
24.7
25.2
24.0
38.7
41.2
36. P
34.7
25.1
20.4
33.5
	 39.5.
23.6
36.4
24.0
23.2
25.0
36.7
20.7
?4.7
24.7
24.0
25,6
23.6
35.6
-33,5
39.3
?4.5
35.0
35.2
U6.1
39.6
40.0
25.0
35.0
39.7
33.3
32.4
37.3
33,5
32.5
24.2
.927'
,856
.646
,827
,809
.805
,790
,767
,773
.762
.757
,752
.... ,737
.730.
.729
,723
.715
,713
.689
.687
.646
,620
.613
.596
,594
.590
.496
. 1^223
0.°43
0.505
O.P31
0.617
0.640
0.987
1 .652
1 .405
1 .266
1 .590
1.206
1.668
1.341
0 .P53
0.464
0.786
1 .219
1 ..140
1.105
0.726
1.179
0.642
52.?
54. c
54.0
61 .8
50, e
52. P

50. P
51.2
56,1
53.9
.53,5.
52, C
	 51,1 ..
63,1
52.4
63,9
53,7
53,3
51,1
51 .C
67.9
52. C
54,7
64,1
52,3
51.1
60.6
51.-
50.1
51,5
61.2
54.5
63.9
51.2
52.2
62.5
6u.5
60.9
63.7
61 .2
61 .6
61 .8
70.0
63,6
64.7
64.1
61.7
63.fi
60.4
60.1
64.6
61 .0
59.6
62,8
                                                                                                            v£>
—'  The statistics in this table are  shown for descripti\
    recommended  (see Section 5.4).
purposes  only.  Their
                  is not

-------
                                   92
 the  two  continuous methods  (TEC4,  CHEM)  also  correlate  well.   Somewhat lower




 correlations occur between  the  five bubblers  (excluding the CHESSO)  and the




 continuous methods.   The  CIIESSO correlated  poorly with  all other methods.




     Table 5.2 also presents  the means,  standard deviations, ratios  of




means, and coefficients of variation for the  twenty-eight pairs of methods.




Higher coefficients of variation are indicated for the  CHEM, TEC4, CHESSO,




and TGSO than for the other methods.  The ratios of means may indicate




that the assumed collection efficiencies for  the bubbler methods are




inappropriate since the rank order of method means is inversely related to




these assumed efficiencies.  This ordering is illustrated below (the




ratios are extracted from Table 5.2):

Method
FRMF
TEC4
CHEM
CHESSO
CHRF
CHRO
TEAF
TGSO

Ratio of Mean
to FRMF Mean
L.OOO
.853
.786
.726
.640
.617
.505
.484
Assumed
Collection
Efficiency
35%


35%
85%
85%
100Z
100%

Type of
Method
Bubbler
Continuous Monitor
Continuous Monitor
Bubbler
Bubbler
Bubbler
Bubbler
Bubbler
     The  orthogonal  regression  results  are  summarized in Table 5.3;  in

-------
Table 5.3.   Estimated Relationships  Between Methods^'
METK2





 TEAF



 CHPF



 ChFO



CHESSO



 TGSO



 TECH



 TEC«



 CKEM"



 ChPF



 CHPO



CHES50



 TGSO



 TECH



 TEC4



 CHEM
            Based on the Combined Data Over Sites—'
                                             2/
    N






 1290



 1337




 1313



 1166



  648




  265



  637



  648




 1310



 1285




"1141



 .625




  266



  619




  635
COR
                                    e
PCVI
MILQI»-/  'HUGH
o
7
3 	 	

6
8
5 	 	
7 . .
8
0 ......
5
1
5 	 ,,
6
9
5 ...._ ,
809
773
787

594
689
549
713
687
846
858
613
762.
729
757
757
2.003d
4.5189
	 4.7961 	 	

•2.4402
•1.1686
	 -9.9188
- 1 « .' 1 3 1 9
•10.4000
. --- 0.5442 	
2.4597
•22.4750
	 -5.5566._
•17.2975
•19.2612
	 	 - 18.1422
C. 47865
0.5S082
0.55405

0.75857
0.49813
1.18309 	
1.04755
0.*93014
1.25673 	 	
1.15771
2.04057
1.13143
2.63888
2.19319
2.03941
93.5
90.7
91.7

80.4
88.3
77.'7 	
85.7
84.4
'92,6 . .
93.0
85.0
88.2
92.4
91.9
91.3
0.0
0.0
0.0

1.6
0.0
12.0 .. .
»•«.
3.8
0.0 	
0.0
6.3
0.0
6.4
3.4
3.4
!51.2
153.8
152.1

1«P.6
161.8
100.0
143.7
140.3
..76.9
77.0
68,4
7fl.l
4P.P
67.8
66.4
1.7
4;2
4.7

0.0
0.0
	 4.2
0.0
0.0
	 '_ 0.0
1.2
0.0
0.0
0.0
0.0
o.n
74, u
93.9
RC5 1
	 ... _ V. • • *
,'1,0
79.4
	 106.4
136.4
12C.1
_ 	 97.2
91.6
117.2
B2.8
114.0
1P9.4
121.3
                                                                                    U)

-------
Table 5.3  (Continued)
CHRP
CHRP
CHRP
ChPP
CHRP
CHPP

CHRO
CHRC
CHRO
CHRO
CHRO
CHESSO
CHES5G
Ch.ESSQ
CHESSO

CHRO
CHESSO
TGSO
TECH
TfcC«
ChfM

CHtSSO
TGSC
TECH
TEC4
CJ-EM
TGSC
TECH
TEC4
CHEM

1326
1184
650
268
655
663

1169
633
270
643
	 650'
556
261
635
fc/]C~

.927
.620
_ . .605
.709
" .715
. »729_

.590
.790
.67*
.75?
".737""'
	 .496
,?9?
,646
C Q i. ~
• 37C
1.2385
-20.3683
-7.651C
-•25.8400
~~-24.763
-------
                                       Table 5.3  (Continued)
TGSC
TGSO
TGSG
TECH
TECH
TEC4
1ECH
TEC«
CHEM
TEC4
CHEK
CHEM
191
302
351
227
222
' 545
.._.._. 53P.
.723
.730
,560
.643
.827
-22.6^63
-21.8427
-7.52*0
12.73 I
9;5fo«
1.4367
2.73142
2.22101
i.ecoei
J, 53795
0.61950
0^92066
- 85.1
90.7
89.1
81.5
8U.2
91.4 " "
7.3
0.0
0.0
0.0
0.0
0.0
50."
eo.6
73. 9
j IP. «
t 1U.7
"" i3o;i"
0.
0.
0.
12.
e.
0.
0
0
0
7
0
0
1 14 .9
157.2
12-
76.5
eo.6
129V j"
—'  The estimated relationship is of the form Meth 2 = A + B (Heth 1).  The statistics in this table
    are shown for descriptive purposes only.  Their general use is not recommended (see Section 5.4).

-1  Over sites 632, 633, 901, 902, 831, 832 and-841.

3/
—   M1LOW, M1HIGH = recommended range for method 1 over which the estimated relationship is applicable;
    M2LOW, M2HIGH = same for method 2.

                                                          3
NOTE:  If M1LOW or M2LOW was negative it was set at 0

-------
this table, X c. rresponds to method itl and Y to method //2 and the form of




the estimated relationship is Y = A + BX,  The remaining notation used in




this table is defined below:




               N = number of (paired) observations




             COR = correlation between X and Y




            PCV1 = the percentage ol variability accounted for by




                   the first principal component (see equation 4.7)




 (MfLOW, M1HIGH) = recommended ranf.e for method 1 over which the




                   estimated relationship is applicable




 (M2LOW, M2HIGH) = same for method .'.




The correlation and the variable PC"! provide an indication of the precision




of the estimated relationships between the pairs of methods.  Some of the




estimated relationships indicated by Tab'.e 5.3 are portrayed graphically




in Figures 5.1 and 5.2.  Figure 5.1 provides plots of the estimated




relationships between the CHEM and the otljr seven methods. Figure 5.2




gives analogous plots for the CHRO.




     Because one does not know the true cor centration of N0« in ambient




air, it is impossible to say which method gives the most accurate daily




readings.  Problems in calibration and/or inaccuracy of collection




efficiency determinations (for use in field applications) are evident




because of the failure of the various metho.is to give consistent readings.




In particular, the daily data analysis demotstrated these problems in




several ways:




     a)   systematic variation for the duplicate readings at Site 832

-------
  ug/m~
    n
160 "
140
120
100
                                     97

                                 Figure 5.1
                Estimated Relrtt'^nships Between the CHEM and
                       Seven Other Monitoring Methods
This graph is for descriptive
purposes only.  General use
of the estimated relationships
is not recommended (see
Section 5.4).
                                                                              FRMF
               20
         40
60
80
100
120
                                      CHEM  —  vip/ra

-------
   Ug/m"
160 -
140 -
120 -
100 -
 80 -
 60 -
 40-
20-
                                      98

                                 Figure 5.2

                t :Imated Relation;  ips Between the CHRO and
                       Seven Other Monitoring Methods
                   This  graph is  for descriptive
                   purposes  only.   General  use
                   of  the  estimated relationships
                   is  not  recommended (see
                   Section 5.4).
FRMF
              20
                                     CHRO — ug/m

-------
                                   99
           (indicating biases  in  one or both sets of readings),

      b)    the  ordering  of method readings  (or means)—an  order

           which was, in general, inversely related to the assumed

           collection efficiencies,

      c)    the  variation in method relationships from site-to-site,

           and

      d)    the  failure of the  estimated relationships (of  the  form

           Y =  A 4- BX) to reduce, approximately, to the form Y = X

           (i.e., A = 0,  B = 1) in the majority of cases.
5.3  Hourly Data Analysis

     The emphasis of this report was placed on daily, rather than hourly,

analyses, since most of  the methods provide only the 24-hour integrated

samples.  Table 5.4 below provides a brief summary of the  (paired) hourly

data for the TEC4 and CHEM methods.  In this  table, Site 832D refers  to

the measurements made by the duplicate instruments in Site  832.
                                Table 5.4

                       Summary Statistics Based on
                      Paired Hourly Averages-by Site^-
                                                    I/
SITE
632
633
901
902
832
832D
841
Total*
No.
OBS.
2844
3125
783
1572
2910
1589
2181
13415
Means
CHEM TEC4
40.1 48.2
39.2 37.7
82.5 62.5
47.1 48.0
86.0 104.7
104.3 95.3
95.7 101.2
62.2 67.4
Std, Deviations
CHEM TEC4
33.7 61.4
44.8 32.9
30.4 37.8
30.0 23.9
60.4 81.1
81.7 71.9
56.7 87.0
52.4 68.3
Corr.
.462
.586
.605
.735
.744
.946
.551
.666
Ratio of
Means
1.20
0.96
0.76
1.02
1.22
0.91
1.06
1.08
*  Excludes 832D.

—   The statistics in this table are shown for descriptive purposes only.
    Their general use is not recommended  (see Section 5.4).

-------
                                    100
 This table Indicates




      a)   extensive variation in the correlations from site-to-site.
                                             «                        »



      b)   the problem of instrument bias (Site 832 versus Site 832D),




      c)   ratios of means which are comparable to the ratios based




           on the daily data, and




      d)   an over-site hourly correlation (.66) which is noticeably




           lower than the corresponding daily correlation (.83).




 The variation in the correlations appears to be brought about by




      1)   considerable variation in the actual NO  fluctuations for




           the various sites, and




      2)   the presence of outliers  in  the hourly data.—




 The TEC4 and CHEM means  compare  most favorably in Sites 632  and 902




 (ratios equal .96 and 1.02,  respectively).   More detailed results and




 discussion are given in  Section  4.5 and Appendix F.









 5.4  Recommendations




      The results presented  in this  report do not indicate that a particular




 one of  the ni,   monitoring methods  studied  is the "best"  method for moni-




 toring  N02.   Additional  sampling in both the laboratory and  field will




 be  required  before  such  a'recommendation can be made.   The main problem




 encountered  with field data,  such as that analyzed  in  this report,  is that
-   The hourly data were validated by EPA.  However, RTI did not extensively

    screen these hourly data for outliers  (see Section 4.5).

-------
                                  101
 the  true  amount  of NO-  in  the air is not known.  Hence, it is impossible




 to say which method is  closest to the  true value, i.e., the bias of each




 method cannot be determined.  Only in  the laboratory where the level of




 NO^  can be  controlled can  this question of bias be answered.  Thus, the




 present study was mainly limited to studying the relationships between




 the  nine  monitoring methods (e.g., ratios of means, correlations, and




 regression  relationships between methods) over varying conditions such as




'location  (i.e.,  sites).  These relationships indicate  the interrelatability




 of the methods but do not  estimate the bias of each method.  In addition




 to the problem of estimation of bias,  other problems with the current data




 that make additional sampling necessary are:  lack of data on interferences,




variation in sample statistics from site to site (e.g., the correlation




 coefficients between some methods vary a great deal over sites), calibra-




 tion problems with the continuous monitors and lack of data on method




 precision.  In fact, because of the many limitations of the field data




 analyzed  in this report, RTI does not recommend that the functional relation-




ships between monitoring methods given here (e.g., Table 5.3) be used in




general for describing the relationship between the pairs of methods.   In-




stead, additional field testing at other sites (e.g., where the ranges of




NO™ and the interferences in the air are different than the sites studied




in this report) and laboratory testing should be carried out to further in-




vestigate these functional relationships.   Of course, the relationships given




here do give an indication of how the various methods relate to one another;




but indiscriminate use of these relationships (e.g., converting N0_ measure-

-------
                                   102
ments  from one method  to another at any site in  the United States) is not

recommended.

     Based on the  results given in this report RTI would recommend that

additional work on determining an N0? monitoring method be limited to a

subset of the nine methods studied here.  In particular, RTI would suggest

the following strategy:

     A.   The CHESSO and FRMF methods should be dropped from consideration

          because  of their variable collection efficiency and relatively

          low precision.

     B.   Since the other four bubblers (CHRO, CHRP, TEAF and TGSO)

          appear to be  fairly closely related, only one or two of them

          need be  considered in future work.  One possibility would be

          one arsenite  and one triethanolamine method; for example, the

          CHRO and TEAF.  Additional work on the effect of interferences-

          may suggest which of these four bubblers should be considered

          in future work.

     C.   Both the TEC4 and CHEM methods should be studied further.

Using  this subset  of four of the original nine methods, RTI would suggest

that the following laboratory and field work be carried out:

     (1)  An extensive  laboratory analysis of the various N02 monitor-
—   As mentioned previously the effects of interferences (e.g., ozone and NO)
    were not studied in this report.  However, data on WO and ozone is now
    available for the July 1, 1972 through April 30, 1973 time period which
    can be used along with the N02 data examined in this report to determine
    interference effects on the various NO- monitoring methods.

-------
                             103
     ing methods should be undertaken.   This study could in-




     vestigate the bias of each method  over a wide range of known




     NCL levels.  This type of study would hopefully answer the




     collection efficiency question that affects  all of  the bubbler




     methods.   In addition, if it is feasible to  control not only




     N0_ levels but also interference levels (e.g.,  of NO and




     ozone)  in the laboratory, then at  least a preliminary evalu-




     ation of  the effect of interferences could be made.   Of




     course, in any laboratory analysis of this kind it  would be




     essential that an experimental design be developed  before




     sampling  begins to ensure that all of the information required




     could be  obtained in the most efficient manner.




(2)   Sampling  in the field with the continuous monitors  should be




     continued.   As described in the present report, EPA




     had a great many problems in obtaining valid data from the TEC4




     and CHEM  instruments (e.g., calibration problems).   Thus, it




     would seem appropriate to obtain more experience in the field




     with these methods.




(3)   In the current study only one site (832) had more than one method




     of the  same type (e.g.,  two CHEM instruments).   Accordingly, RTI




     could only estimate the   precision of each of the monitoring




     methods at this site.   Thus, in the future additional sampling




     should be carried out at other sites with duplicate methods.




     This would allow factors such as N0? levels, operator effects,

-------
                         104
etc.  to be  considered  in determining method precision.  As




mentioned previously one of  the  CHEM instruments in site 832 in




the present study had  readings which were consistently lower than




the other CHEM instrument.   This could indicate a large bias in




one or both of these instruments.  Thus, additional duplicate




sampling is required for the CHEM instruments since a monitoring




method is not of much value  if, in the same site, two instruments




of the same kind do not give consistent results.  The laboratory




analysis mentioned in  (1) above could also be used to estimate




method precision.

-------
                                  105
                             BIBLIOGRAPHY
 1.   Aitchison, J., and J. A. C. Brown, The Lognormal Distribution. Cambridge
     University Press, 1957.

 2.   Berkson, J. ,  "Are These Two Regressions?," Journal of the American
     Statistical Association, Vol. 45, (1950), pp. 164-180.  '

 3.   Blacker, J. H. and Brief, R. S., "Evaluation of Jacobs Hochheiser Method
     for Determining Ambient NCL Concentrations," Chemosphere, No. 1, pp. 43-
     46, 1972.

 4.   Christie, A.   A., R. G. Lidzey, and D. W. F. Radford, "Field Method for
     the Determination of Nitrogen Dioxide in Air," Analyst, Vol. 95, (1970),
     p. 519.

 5.   Decker, C. E., T. M.  Royal, and J. B. Tommerdal, Field Evaluation of
     New Air Pollution Monitoring Systems:  Final Report, Research Triangle
     Institute, Contract CPA-70-101, Environmental Protection Agency, 1972.

 6.   Environmental Protection Agency, "National Primary and Secondary Ambient
     Air Quality Standards," Federal Register. Vol. 36, No. 84, (April 30,
     1971).

 7.   Graybill, F.  A., An Introduction to Linear Statistical Models, McGraw
     Hill, New York,  1961.

 8.   Grubbs, F. E., "On Estimating Precision of Measuring Instruments and
     Product Variability," Journal of the American Statistical Association.
     Vol.  43, (1948), pp.  243-264.

9.   Hald, A., Statistical Theory with Engineering Applications. John Wiley
     & Sons, New York, 1952.

10.   Hartwell, T.  D., C. A. Clayton, C.  E. Decker, and P.  N.  Hunt, Progress
     Briefing on Comparing Methods to Monitor NO. in Ambient Air, Research
     Triangle Institute, Contract No. 68-02-0335, Environmental Protection
     Agency, December, 1972.

11.   Hauser, T.  R.  and C.  M.  Shy, "Position Paper:  NO  Measurement," Environ-
                                                      X                    ~
     mental Science and Technology,  Vol.  6, (1972), p.  890.

12.   Heuss, J.  M.,  G.  T. Nebel,  and J.  M.  Colucci, "National Air Quality
     Standards for Automotive Pollutants  - A Critical REview," Journal of
     the Air Pollution Control Association. Vol.  21,  (1971),  p. 535.

-------
                                  106
 13.   Hinton,  D.  0.,  Chess-Champ  Operation  and  Calibration  Procedures  (BEBM
      Standard)  for  Technicon.  Autoanalyzer:   Nitrogen  Dioxide.  Environmental
      Protection  Agency,  1972.

 14.   Jacobs,  K.  B.  and S. Hochheiser,  "Continuous  Sampling and Ultramicro
      Determination  of Nitrogen Dioxide  in  Air," Analytical Chemistry. Vol. 30,
      (1958),  p.  426.

 15.   Knapp, K. ,  Determination of Nitrogen  Dioxide;  Methods  as Used by Air
      Quality  Analytical  Laboratory Branch, Environmental Protection Agency,
      Division of Atmospheric  Surveillance, 1972.

 16.'   Larsen,  R.  I.,  "A New Mathematical Model  of Air  Pollutant Concentration
      Averaging Time  and  Frequency," Journal  of the Air Pollution Control
      Association. Vol. 19, No. 1, (January,  1969).

 17.   Levoggi, D. A., W.  Sin,  E.  Kothny, and M. Feldstein,  "The Quantitative
      Separation  of Nitric Oxides from Ni-rogen Dioxide at  Atmospheric
      Concentration  Ranges," Environmental  Science and Technology, Vol. 6,
      (1972),  p. 250.

 18.  Mitchell, R. L., "Permanence of the Log-Normal Distribution," Journal
      of the Optical Society of America, Vol. 58, No.  9, (September, 1968),
      pp. 1267-1272.

 19.  Morgan,  G. B., C. Golden, and E.  C." Tabor, "New  and Improved Procedures
      for Cas  Sampling and Analysis in the National Air Sampling Network,"
      Journal  of th-  Air Pollution Control Association, Vol.  17, (1967),
      p. 300.

 20.  Purdue,  L. J., J. E. Dudley, J.  B. Clements, and R. J.  Thompson,
     "Reinvesr.igation of the Jacobs-Hochheiser Procedures  for Determining
     Nitrogen  Jioxide in Ambient Air," Environmental  Science and Technology.
     Vol.  6,  (1972), p.  152.

21.  Saltzman, B. E., "Coloriraetric Microdetermination of Nitrogen Dioxide
     in the Atmosphere," Analytical Chemistry. Vol. 26, (1954), p.  1949.

22.  Sawicki,  E., J. Mulik,  R. Fuerst, M.  Guyer,  and J. Meeker, "New Methods
     for the Collection and  Analysis  of Atmospheric N09."  To be presented
     at the Air Pollution Symposium,  Dallas, Texas.

23.  Shy,  C. M.,  J.  P. Creason,  K.  E.  McClain, F.  B.  Benson, and M.  M. Young,
     "The  Chattanooga School Children  Study:   Effects of Community Exposure
     to Nitrogen Dioxide," Journal, of  the  Air Pollution Control Association.
     Vol.  20,  (1970), p.  53?i:

-------
                                 107
24.  Singpurwalla, N.  D.,  "Extreme Values from a Lognorraal Law with Appli-
     cations to Air Pollution Problems," Technometrics,  Vol.  13, No. 3,
     (August, 1972).

25.  Smith, H.  F., "Estimating Precision of Measuring Instruments," Journal
     of the American Statistical Association, Vol.  45, (1950), pp.  447-451.

26.  Youden, W. J., "The Collaborative Test," Journal of the  'Association of
     Official Agricultural Chemists,  Vol. 46, February,  1963.

-------
                                   A-l
                APPENDIX A. SUMMARY STATISTICS BY SITE







     On the following pages is a listing of summary statistics (in




yg/m ) for the daily data.  The listing is by method and site.  The




site codes have been given in Section 4.2.  All statistics are based on




unpaired data after removing outliers.  Two tables are given for each




site.  The first gives the percentage (frequency) distribution and




the corresponding cumulative distribution.  The second table gives,




for each method




     1)  NO.  OBS.     = number of daily readings




     2)  MIN.  VALUE




     3)  MEDIAN VALUE = sample median




     4)  MAX.  VALUE




     5)  ARITH. MEAN  = arithmetic mean of the readings




     6)  GE0M. MEAN   = geometric mean of the readings




     7)  STD.  DEV.     = standard deviation of the readings




     8)  STD.D OF LNS = standard deviation of the natural logarithm




                        of the readings.

-------
SUMMARY STATISTICS ChATT*NOCS*-31TE 632
>! VARliKU KO.
:'•' FBHh 32;
'i
TEAF 226
to;
i
.* CHRF 22o
.,'
't
1
1 	 CHRC_... . 230
11
.i 	 CHEBSC__ _. 250
••.- _TC8g H*

-v 	 TECh 160

TEC
0.0000
7.o«71
fl.701'0
4.0000

9.000C
8 . 1 fl 0 1

3.90Cf


13.12
09, 12
65.00
00,63
06.03
itO.OO
06.96
00.80
52.00
55.26
71 ,93
10. OC
16.06
18. 66
it. 53
23.1*
29.07

KFDIAN
VAL^E
13.600)
25,6500
30.7059
31.7059
.21,9500
20.0500

«.56o»
jil .ssflfi

38.8000
9CPEENFC NC2 DATA
ENCY DISTRIBLTITN

39.37
26 1 1
91 .15
J?, 59
79.02
33,91
60. P7
26.0Q
80.00
»7,SO .
8«.C7
2?.H
o?.07
3S, 16
S'.t9
3*,6fc
63. 16



153
._._«?
107
92
_..J*3
'-3

177
132

109
2JJ.J 1
60.18
5.75
96.90
111.29
93.70
_ 12.61
93. «»
' 92^do
7.02
96.0V
26.05
70.12
19 ?3
TC.92
e:.i^
86.32

MX.
VAt UF
.1000
•.6000.. .
.2901
.6235
. 0 000.
.5000

,T3000
,onofl
'
.3000
2 i 27
81 .05
j 33
98.23
3.57
9t.87
T-.ll
97.39
96JOO
1.75

15. ?o
85.37
1" i ^
91. f I
6.<:
95.26

ABJT^ ,
KF A h
S5.6«53
?B.l*oc
30.0(|l!
30.350"
.33.2707
27.1771

52.0702
'<5.t>fo|

M.776t

U. •> i
92.76
i 1 3
99,56
2.«3
99,1 t
?.17
99.57
j.eo
98. 60
o.eti
99, li
7.32
9?.fc6
II .iC

?ptj
97. *»

G6C*.
KE AN
50.0715
P5.3161
31.1C01
31.063*
28.6^6
23.9161

06.2562
00.0097

37.0t«8

27 i
95. iP
O.oo
100. OP
O.OS
99,55
0,113
100.00
C.Cfl
99,?n
tl.PS
100.00
3.66
St. 30
T t&
96.90
1,05
98.95

SID.
Otv.
25.5033
13.6395
15.9006
15.0723
I9.ie5i-
1K.7066

27.0007
22.2fr39

20.2596


97. ?9 97

loo. ce ion
0 Oc 0
100,00 !00
0. fl 0
100.00 ICfl
0.0 0
99.^0 '99
o.r o
ioo.no ico
C.n i
91.31. 97
0 C 1
98.90 100
0,0 • 0
96.95 99
	
£TO,0.
CF I N<
C.0639"
C.060J
0.0607
e.osa?
o; 5« 22..
0.5103

P. 5192
e . s i o t

0.519?


.70 99. ;s" " looYeo"

	 .. y , P _. _ . . 0 i v
.00 10fl.CC 100,00
r fl ft ft fl
,co 100. no 100,00
,r o.n p,c
,r.o ieo,?r loe.oo
,tc o,ac 0,0
.to loo. oe too. eo
, c 0,0 o ue
,cc Joo.ce 100,00
.£f Uf3 e.ti
,5t 99.39 IOC. 00

,CC 100, CO """lOC.OO
,=3 0,53 O.C
.07 ICO.OC ICO. 00
.


-

.
- - _.





	 	 	 • -


-------
•o
SUHHAfrY STATISTICS
l 083,
>| ' f
1
' 1
'• 1EIF 210
L-i
, CMRF 230
t!
1 •!
!..' CHESfC 	 £4u
*•
-j
!.| 	 TC3C 	 .1.12
' i
••'•
•'• TECS ISO
3
U ChEc i9b
i.,
CHATTlNCCGA.SITE 633 SC«EI
<• 15,
1.26
1.26
2U30
8.70
8.70
9,05
10,71
10,71
I.P4
u.u*
4.U»
11.22
11.22
JNfO NC2 DATA
FdECUEMCY OISTSmTICN
15.- 30. 30.- 43. 45.- 60. 60.. 75,
•• 2*
17. 5J
73)46
410,87
89.57
112,24
40, U
55.36
66.07
12.48 .
30.00
43J37
21,93
' 9o!e7
28,26
77.83
29,74
61.03
79^2
18.75
J&T20
31 ,J 1
65. = 6
26.02
69.39
26,92
68.36
97! 63
. 16.52
15.. '5
93ioi
.. «.'!
55"! 93
21.11
8».ik7
86.22
15 JJ_
2.1?
100.00
. ".35
96.70
1.72
9"), 71

96, "4 7
1.05, -i?o;
.... 4,70
97. ft
P.O
100. CO
0.0
100.00
o.o
100.00
o_.o...
o.e
uo.oc
2.U5
92.02
1.11
91.U4I
120 -13'"
o.es
9*. 72
o.e
lOft.OO
o.e
ioo.no
t.e
"loo.oc"'
" "99) = S"
P.C
loc.oc
3,07
S5.05
0,56
100, CC
10C.CC
135. -150.
ft.SS
99.57
P.O
100.00
0.0
loo. oo
o.e
icb.no
~" 5 9" ,"59
P.O
100, 00
3.6k
se.77
0.0
100.00
0.0
loo.oc
>150
0.03
100.90
0.0
ICO. 00
0,0
100.00
0.0
ICO. 00
P. 41
ICC. 00
o.e
100,00
1.23
100.00
fl.fl
"100,00
0.0
ICO. 00
                                                                                              u>
•
i—
J
I
iJ
p
16P

-------
i
I:
< j
;
ii

1 E
r
i?.i
P"
i *•
H
V
s-
.1
:
j
•
rl
ul
J
i
"i
u
1]
II
"
3UMMAK> STATISTICS
VARUfiLt NO.
ces.
FRMF
TEAF
	 C^RF 	
CHRC
CHESSC
	 TB8JL 	
TECtt
CHEr

VARIABLE
FRNF"
TEAF
CHRF
CHRC
CHESSC
TG8C
TECu
CHEh


2JU 	
202
206
..123
28
06
NC.
CBi.
2Mb
121
"28" "
«6


ST.
<•
0.
0.
.c.
0.
o,
0.
0.
0.
. o,
0.
0,
0.
0.
0,
0.
0.
01
IT
27
12
17
2~7

ICUS
•SITE 9C1
SCREENED NC2 DAT*
FREQUENCY CISTRIBLTIC
15, J5,- 3.0, . 30.- a;t. MSj-. 60.
P_ . ..0,5
0 0.0
C 21,95
0
0
0
0
0
U9
at
0
0
0
0
0
0
VALUE
.0000
,fOOO
,7«a7
,«otc
,3000
.2000

21.95
3,67 ...
1.67
a, 96
fl,96
2,9]
3.10
33,31
33.33
7,1«
7.1«
0.0
0.0
MEDIAN
VA.LtE
ez.psoo
41.1000
50.9(112
52.29U1
67.2500
35.0000
"58.6500
71,6000


J.23
1.23
>*,59
58.56
20.06
27. 7t
2B.93
33.ee
15.05
If."!
03,09
76. U2
28.57
2.17
2.17

TeT
133
129
2.5«
UO
1 7~0
130


150
12.50 5.33 2.fl7 fl,5l
87.30 92.62 95.09 ICO. CO
?.e o.e o.o 0,0
100.00 100. CC IC^.OC 100.00
2.«5 Ot«l 0,0 r,0
S°.59 100.00 100. fl"e " 100.00
O.PJ 0.4) 0,0 o.r
99. 55 100, CC iofl.ft'c lOC.nO
J.PS 3,86 n.a<; | , in,
9«. JT S8.06 98. S<* U'0.00
2.00 c,M o,n o,*i
96.37 " ~99.19" <»9.\S ICt.OO
3,57 fl.t o.n 3.57
96.J13 9fr.«3 9h.fl3 100.00 >
15.22 «.!5 o.n e.O **
95.65 1CO.CC InP.OC "lOO.OO"
STtJ.D.
CF LNS

0.2901
C.Sfll* _ 	 _
0.301!
0 
-------
) SUMMARY ST*TI4TIC3
i Yif»i*8li KO.
" CE9..

r>
.|
•i TEAP 202
J
}i_ CHRF 2L
JENC" BI?lP:HLTir.K
l-M'fS.,.. "5..- tO.,..._l-0.. 75. 7?.. 90. 90t-105, 1 05,- jaO^. 1 2C_,^J3?J_135^- 15C . >150
.T.J* . 23.26 25. £i 1T.H H.^fl " 9j 3 48 _Lt?l 2 OS
10. *e JB.O* 59.ftl TT.C5 6P.52 93. *t* fl.!0 P. 87 B /i />/! »A- n K
61.07 65. *6 9?.n 96,31 90.16 99. |6 ' 99. ie' '" Tob.OC " 1 CO , 00
38. *8 l!.t-3 7 P? l.TO (it? An * PJ n A « «
6J.20 8t.H 911.^5 9S.Jb 9E.I8 99.ifc 100. CO " 1 0 0 . Ve" ""lOO.O,J
25 U 2C *9 't P f7 9
42.36 63. f5 79. JJ 68. IB 9?. 12 .9sl'j7 9i',03 9«|o3~ ItnloO
29.46 Ifl.J? ? C4 O.C b.f A im (IP ft ft * n
86.. us ««_.(.> irr..^: loo.co ico.oo ioo.ic " lo'e.ct "'"to.oo

MX. 4BJTH GtCN. iTf «TO J
V*LUF Mf»K K.FiN DEV. CF iHS



226.5000 7J.«972 te.1356 29.6031 0.3775 	 "" — 	 	
!.I8.«000... 35.Srif. 32.9469 H.8225 0,390(!
185.2941 u«.1?et (,O.S«e» l«-.5t69 o.'«0»3
121.'76^7 " 02.385E 39.2827 ]7.i4362 0.3891 	 ~~ ~ - 	
195,2000 56.663t fl9.0*'4« ?1.300« 0.557J
1?6.7000 jl.6309 29.1736 11.032'' 0.3823
:oo.^oon ^7.a9
-------
SUMMARY STATISTICS CALIFORNIA. 31TE £31 8CRE.EKCC SC2 0»T»
i


)
:

;i
•!
1 1
. 'i
e
tj
:.J
i
I1:
J
I '.
!>
J
f.
u


Cr
j
VARIABLE NO.
-
PRHF 56

TEiF 50

__,CHRF 	 	 S7

CHMC 55

	 CHE SSL _ 	 l_03

	 TGSC 	 tl
TEU 25

CHEN Oi

VARIABLE NC.
CBS.

	 TBIIC 	 Kk '

	 TEA/ 54
CMRF b7
CHRC 55
	 CMES9C. 143
7C3C U
J TECo "" 25
H
.1
CHEf< uS


<•
>!
i.

o,
0.
1.
1.
.«,
"•
0.
0,
0.
0.
0,
0.



11
11
19
T
3
16
27
23

15.
79
85

0
0
82
82
">0
90
0
0
0
0
0
0
Ml*.
VALi,E

.1000
.5000
.5290
.6071
.5000
.4000
.1000
.0000

FRE QUEfc.
15.- 30, JO,-
12,50 If
1E


70, 1000
41.1000
53.6070
50,«7fl6
08.3000
66.UPOO
' 79.7000 •"
62.9000


C V D
«..
!oo~
.07
.81
.8J
.35
.15 .
.78
.06
.09
.00
.or
.00
.33
f TPIBL'IICK
. «'.-. *0i._*0j.- 75,
i?,»o i?_tto
37. «C 57.14
25 93 |4 f)
77.7* 92. *.<>
17. *« 2?.tl
57.89 tP.70
21,82 10. f 5
»7. il 61. e<
10, *v i*.ee
6f.7t 77. kZ
27.27 ».C9
,2o,ro «.ro
36 .00 00.00
13.33 2000
06.67 66. *7
75.-
69
t
96
,r
91
1?
9
86
18
7?
20
60
1 1
80
«0.
!ta
70-
i ' * .
.;o
.53
.c3
:»
.CO
.71
.18
.73
.CO
.CO
.31
.CO
90, -1
10.
80.

' 100.
i m
94.
0,
9(1.
7.
<>(!.
ei!
e.
72,
£
86.
PS. 1£
71
36

CO
51

C
55
(9
01
11
CO
00 "
67
67
b A v ARTTh r F"' r M 4Tn



165
4J
1«S
13«
196
112
1S6
230


VALUE f'CAK


.ICOO f2.9«€1
.2COC 1«.525£
.Oil! 56.2187
.4706 51.91BA
.3000 55.4333
.60PC 66. &<)*<;
roOOO" T9.fi7l9
.0000 69.3666




62.-
39,
«9.
05.
07.
MEAN

n7 SS
45 b 6
Jft 0 1
JtOO
OU2


"57
20
n
26
SU
Otv.

.3fc52
.8791
.0730
.7115
.un6«
5»*1^0t 12P.-V1S. US.*l?o. >150
. e-?J .... _..5.?t 0.0 5.36
89.J9 Sd,6
1.UU Z.ic 0.0 6,67 '
9i.il 93.33 " 93.V3~ "ioo.no
JTD.i).
CF LNS


0 . 6159*5
O."bl90
0.-99*
•" o.-sso? 	 ' 	 -
0.616Z
59.81i6 ;i.7ilf C."599tl
73.2^52-
60.2*19



" 31
00

.7"77
.7011

•'O.-aoo, r 	 — - •
C 'S291



-------
IUMMAKY STATISTICS
VARIABLE KG.
fRMF 202
TEAF 1«2
ir~c'~ ~" '
•!( 	 CHH.C. 	 ..1*5
1
r 	 CH|3JC_. 	 _2_3?
TC3C 105
77
TECll 113
:'- CHEM 13d
3
'j ViRUELt NC.
.-; FRHF 262
J TEAF 162
" CMRF 219
1
CHRC 195
CMESSC 232
Tcac . los
ri
n| TECH US
J
J CHbH 13U
u
',t
CALlFCSNIA-SITt 832 8C«EEN
CO NC2 DATA
FREQUENCY CUTRXBITICM
<» 15, 15.- 30. 30.- «5. «5.- 60, nOj- 75, 75.- «0.
o!99
3.30
0.91
0.91
1.61
1.03
1.29
1.29
0.95
0.95
0.0
0.0
0.0
0.0
KIN,
9.0000
2. "000
0.2353
1.29(11
7.2000
11.6000
" 27.icne
. 16.3000

•!;•«!••
13.19
1 6 . Jl6
6.39
7.31
6.15 .
7,18
6.90
6.19
6,67
7,62"
0.70
0.70
7,«6
V|LI,E
~* JOTilooO
C6.10CO
61.76(17
57.29.U7 73. c8
.11 IS. 3d 2.86
.67 61.90 8(1.1*
,H6 11.19 13,99
. 1* 3S.t6 ' (19. tS
.9*1 21 ,41 9.70
.fit 52. 2« 61.91
I'-'--. r.SCM.
113.9052 101.2953
50,0091 a*.«*l&
*7,557^ 60. «10''
"64.S871 57.1163
16.39US 65.3967
57.5307 50.6611
99.3199 83.3018


•JO.-lOb. 105. -120. 120. -135. 135, -150. >150
15.64
5. al
6.39
67.21
7.69
89.7(1
9.9J
63. !9
3.61
68,57
13.29
62. t'n"
12.64
7a.63""
src.
~ 53.6198-
20.9251
32.2ML
" Ji.0920
(15. 12(46
30.6851
13, J7 8,32 5,^(1 il,?9
6«.3e 7?. 77 78.71 100,00
1_,65 3.65 O.C 0,?5
95. 6C 0
CF LNS_ _ 	 	
0 56 «J 3
0 ' Q 9 o i
0 S ^ o I
0.5706
o.'sao?



-------
SUMMARY STATISTICS CALIFOPMA-MT£ 832C SCFfENEC NC2 DATA
, VAfllASLE hO. FKFCL'CKC
cea. <• is. is., u. 30.-
\ • PHMF 1«3 0.0 0,70 2.
, 0.0 0,70 3,
! TE*F 139 0.72 6, (17 20t
C.72 7.19 26.
•3 CHHK 157 0.6" 0.6ft T,
0.6" 1.27 6.
»„ CHRP 1«5 O.C C,S>9 8,
!'<) 0.0 0.69 8.
CMESSl 1*9 0,6» «.03 9.
;. 0.*T 4.70 1«.
'.'-• TG8C 83 0.8 7.23 2?.
1* " 	 ' " 0.0 7.23 "32".
u
.' TEtt 6 ViRlAfett f'C. f IK. H*CI*N
B •
1^ FRMF uJ 20.3ooe 102.2000
C TE*F 1}9 J.600P 5« 12.12
47" 2«,79
VALUE

* 250.8999
197,0000
263.4586
cfe.CbOC
300.3999
193.UOOC
0e
305.3999

k
60,- 75. 75,- 50. SO.-ir'S. 10S
V05 13.59 J6.6S
20. 28 3". r? 55. lb
20. !6 t.17 u.32
77.70 Z" , 1 7 BP , f9
<2»!2 71.01
10.61 13. i« 13, t«
39.35 53. C3 66.67
AMin. Gfct^. 310.
KEA* fEAN Of-V.
Ill .675! i'" "lOZi««79 .39 fc.05
63. 6" 7J.03 7«. Id
?.»e 3. to ?. 16
51.37 9 u . 9 1 97.12
•J.T3 J.ie J.53
89.17 9?, Jt 5a,9C
>.«-5 P.C 	 IP?.?...
9M.iit 9a,ie "" 96,55
5.37 3. It 2.HI
ff 3 H 9 C 7 £ • C ^ ? t
3.61 1.80 I.-JO
«3.98 " 95. IS " 96.39
8.70 T.25 ?.°n
79. Tl Bh.St 69. «t
6.0* 7.58 J.55
72.73 *C.30 ea.^5
STO.O.
CF LN?_ 	 	
0 .'5 0 2 9
O.S502 	 '_ 	
O.«72fl
OJSBin

>150
i0.9o
100.00
j.ea
1UO.CO
5.10
10?. 00
"" iiio.oo
i a . T it
100,00
3.61
"" i t ft . n o
i o . t a
UO.tio
15.15
1 ii n . o a

_ .


,1
o>

-------
SUMMARY STATISTICS CALXPOKMA-JIU 8O| 3CREENKD nr.c OMA
tl
<•"
.!
i.
.
'
•
'l
!*•,
'J
•'i
k—
u
!"
f-,

'„
k
>.'

H.;
3
4_

.
ji
-__
ti.
1='
41
"i
i
"i 	
j
J
U
b
ij
.j
VARIABLE KO. FREUUENCY tl
068. <• 15. 15.- SO. 3J.. US.

FBMF 203


TEAF 107

CH«F £07

ChftC 198

CHE3SC 20]

TCSC 101


TEC« 105

CHE* 114

	 . _ . . . -
VARIABLE NC.
. ces.


_JEAF_. 187
CMRF 207

CHRC 198
_CKE1« 	 201 ._._..
TCSC 101

TECH 105
CHE* in





1.97 3.94 12.32
l.'T

a. 26 .

3.36
3.58
2,f2
2.02
l.oo ...
l.OC
C Q At
5 »94

Q 0 5
0.95
0.811
o.eu

H1K.
VALI.E
7.3000

1.30CO
2.7059
2.-7C*
5.7000
1.2000

8,30(0
5.000C


5.91 Ifl.

28,32 3U



SI
15


1«
150

16. 4t 15. 1o 12.32 6.37 6.«C 1.97 (i , fl J
50. 7fl 6A.'=t 78. Pi £7.l« ^3,fcO 9«.57 ICP.flO

H.7c fe.ui 2.1^ fl.-iS 1,M P.* 0,P
89. 8« 9t^l 2^.92E1 0.7793

90,"0762 Bl.iibe 36,BKf« G .'<<£•<«
e7.«rt7t Ta.nes7 se.sftsu t;sc7?



-------
         APPENDIX B.  SUMMARY STATISTICS FOR DAILY DATA BEFORE
                           REMOVING OUTLIERS


     Tables B-l through B-4 give summary statistics for the nine monitor-

ing methods by site and over sites before RTI removed any outliers.  The

corresponding tables in the text after removing outliers are Tables 4.14

(B-l),  4.9 (B-2),  4.8 (B-3) and 4.11 (B-4).   RTI's procedure for removing

outliers is given  in Section 4.3.

-------
                                     B-2
                                  Table B-l

                        of Daily Measurements by Method and

         Site Before  Removing  Outliers—Sampling  Period  July  1,  1972,

                       - April 30, 1973,  Unpaired Data
FRMF
CHATT.
632
633
St. Louis
901
902
Calif.
831^
832
841
832D

56.
53.

90.
73.

73.
113.
78.
111.

8
4

8
5

0
4
3
7
TEAF

27.9
25.3

43.2
35.6

44.5
52.9
45.3
64.1
CHRF

34.8
33.5

58.5
44.1

56.2
67.5
56.2
82.1
CHRO

34.6
32.2

53.8
42.4

51.9
64.6
56.4
73.2
CHESSO

33
33

72
56

55
78
64
85

.5
.3

.3
.4

.4
.2
.4
.4
TGSO

27.2
29.4

41.5
31.6

68.6
57.5
46.0
63.7
TECH TEC4

52.5 48.
62.4 40.
.
* 63.
* 47.

* 86.
* 99.
* 93.
* 90.

3
6

4
5

9
3
7
0
CHEM

41.8
37.9

78.1
45.9

69.4
83.8
-86.8 .
100.9
     * = no data present.

     - On October 6,  1972,  all methods except CHESSO and CHEM moved from site 831
to site 832.

-------
                                 B-3
                              Table B-2
             Correlations  Between Methods - Over Sites— ,



                  Before and After  Removing Outliers
                              CHRO  CHESSO  TGSO  TECH-
- TEC4
.71

.76
.72

.75
.65

.72.
.56
^^
\.
.75
OUTLIERS
CHEM
.69

.76
.73

.74
.60

.73
.64

.83
\
IN


0
u
T
L
I
E
R
S

0
U
T
1
y
-   Sites = 632, 633, 901, 902, 831, 832, 841
21
—   Data for TECH from sites 632 and 633 only

-------
                           Table B-3
           Summary Statistics for Paired Observations—


                            I/                          ? /
for Data Combined over Sites— ,  before Removing Outliers^-

N
FRMF MEAN
FRMF Col. MEAN
Ratio
Corr.
N
TEAF MEAN
TEAF Col. MEAN
Ratio
Corr.
N
CHRF MEAN
CHRP Col. MEAN
Ratio
Corr.
N
CHRO MEAN •
CHRO Col. MEAN
Ratio
Corr.
FRMF
1415
76.9



•1306
38.0
75.2
.51
.77
1350
48.9
76.7
.64
.75
1327
46.8
76.1
.61
.75
TEAF
j.306
75.2
38.0
1.98
.77
1377
38.0



1322
48.5
37.9
1.28
.83
1298
46.4
37.8
1.23
.83
CI:RF
1350
76.7
48.9
1.56
.75
1322
. 37.9
48.5
.78
.83
1431
49.3



1336
46.8
48.9
.96
.91
CHRO -
1327
76.1
- 46.8
1.63
.75
1298
37.8
46.4
.81
.83
1336
48.9
46.8
1,04
.91
1401
47.1



CHESSO
1187
75.8
55.4
1.37
.55
1161
37.2
54.3
.69
.56
1199
48.2
55.5
.87
.57
1186
46.1
55.0
.84
.54
TGSO
653
80.7
38.8
2.08
.67
633
38.1
37.7
1.01
.74
653
47.3
38.7
1.22
.81
639
46.4
38.6
1.20
.78
TECH-^'
268
56.8
56.8
1.00
.45
268
28.0
57.1
.49
.71
269
32.0
57.3
.56
.68
272
32.6
57.0
.57
.61
TEC 4
646
73.3
63.1
1.16
.58
628
35.4
60.5
.59
.65
661
46.4
63.5
.73
.65
648
43.8
62.7
.70
.68
CHEM
585
75.1
59.3
1.27
.61
572
37.0
57.2
.65
.71
598
48.4
59.2
.82
.71
581
46.2
58.6
.79
.71
                                                                                           w

-------
Table B-3  (Continued)

N
CHESSO MEAN
CHESSO Col. MEAN
Ratio
Corr.
N
TGSO MEAN
TGSO Col. MEAN
Ratio
Corr.
N
TECH MEAN
TECH Col. MEAN
Ratio
Corr.
N
TEC 4 MEAN
TEC4 Col. MEAN
Ratio
Corr.
FRMF
1187
55.4
75.8
.73
.55
653
38.8
80.7
.48
.67
268
56.8
56.8
l.OC
.45
646
63.1
73.3
.86
.5J
TEAF
1161
54.3
37.2
1.45
.56
633
37.7
38.1
.99
.74
268
57.1
28.0
2.0'
.7:
628
60.5
35.4
1.69
.6!
CHRP
1199
55.5
48.2
1.1:
•
.51
653
38.7
47.3
.8:
.8:
269
57.3
32.0
1.7<
.6t
661
63.5
46.4
1.3^
.6!
CHRO
1186
55.0
46.1
1.1<
.5^
639
38.6
46.4
.s:
.7«
272
57.0
32.6
1.7f
.6:
648
62.7
43.8
1.4:
.61
CHESSO
1490
55.4



565
38.6
60.7
.64
.46
265
56.0
35.1
1.59
.25
642
63.6
50.9
1.25
.5*
TGSO
565
60.7
38.6
1.57
.46
686
39.0



192
56.8
28.8
1.96
.51
306
68.2
39.3
1.72
.62
TECH-
265
35.1
56.0
.63
.25
192
28.8
56.8
.51
' .51
328
57.5



228
44.6
59.7
.75
.55
TEC4
642
50.9
63.6
.80
.56
306
39.3
68.2
.58
.62
228
59.7
44.6
1.34
.55
753
64.3



CHEM
581
54.0
60.0
.90
.59
315
37.3
58.3
.64
.68
181
58.7
45.1
1.30
.70
524
65.9
61.0
1.08
.75
                                                                             w
                                                                             Ul

-------
                            Table B-3  (Continued)

N
CHEM MEAN
CHEM col. MEAN
Ratio
Corr.
FRMF
585
59.3
75.1
.79
.61
TEAF
572
57.2
37.0
1.54
•7.1
CHRF
598
59.2
48.4
1.22
.71
CHRO
581
58.6
46.2
1.27
.71
CHESSO
581
60.0
54.0
1.11
.5P
TGSO
315
58.3
37.3
1.56
.68
TECH^
181
45.1
58.7
.77
.70
TEC4
524
61.0
65.9
.93
.75
CHEM
754
60.6



-Unless otherwise indicated, data is from sites = 632, 633,  901,  902,  831,  832,  and  841.

2/
— The statistics in  this  table are shown for descriptive purposes  only.   Their general

  use is not recommended  (see Section 5.4).


3/
—Data for TECH from sites 632 and 633 only.
w
i

-------
                                   B-7







                               Table B-4




  Correlations Between Methods - By Site,  Before  Removing  Outliers






Method  Site    FRMF  TEAF  CHRP  CHRO  CHESSO TGSO   TECH  TEC4  CHEM
FRMF






.
TEAF







CHRP







CHRO







CHESSO







632
633
901
902
831
832
832D
841
632
633
901
902
831
832
.8320
841
632
633
901
902
831
832
832D
841
632
633
901
902
831
832
832D
841
632
633
901
902
831
832
832D
841
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.67
.72
.72
.74
.74
.79
.71
.62
.47
.58
.71
.66
.78
.78
.56
.71
.52
.67
.69
.74
.73
.75
.67
.65
.31
.43
.32
.37
.65
.48
.27
.47
.67
.72
.72
.74
.74
.79
.71
.62
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.67
.73
.79
.83
,85
.87
.77
.68
.68
.77
.77
.84
.81
.88
.89
.66
.44
.46
.35
.49
.71
.46
.38
.49
.47
.58
.71
.66
.78
.78
.56
.71
.67
.73
.79
.83
.85
.87
.77
.68
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.79
.86
.91
.93
.95
.94
.88
.81
.26
.39
.36
.42
.68
.49
.37
.54
.52
.67
.69
.74
.73
.75
.67
.65
.68
.77
.77
.84
.81
.88
.89
.66
.79
.86
.91
.93
.95
.94
.88
.81
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.25
.39
.35
.41
.73
.44
.42
.48
.31
.43
.32
.37
.65
.48
.27
.47
.44
.46
.35
.49
.71
.46
.38
.49
.26
.39
.36
.42
.68
.49
.37
.54
.25
.39
.35
.41
.73
.44
.42
.48
1.0
1.0
1.0
1.0
i:0
1.0
1.0
1.0
.26
.29
.57
.25
.87*
.82
.63
.75
.54
.63
.62
.52
.80*
.85
.88
.68
.63
.66
.68
.62
.54*
.89
.86
.84
.55
.60
.67
.57
.90*
.89
.83
.73
.14
.13
.23
.10
.80
.49
.39
.46
.27
.60
	
	
	
	
	
	
.60
.82
	
	
	
	
	
	
.57
.76
	
	
	
	
	
	
.46
.76
	
	
_ —
	
	
	
.14
.34
	
	
	
	
	
	
.22
.43
.63
.61
.33*
.65
.67
.34
.39
.60
.72
.77
.43*
.68
.92
.57
.35
.54
.65
.78
.62*
.61
.83
.64
.36
.52
.73
.75
.75*
.69
.78 '
.64
.20
.17
.48
.35
-.02*
.65
.74
.32
.37
.43
.59
.50
.09*
.69
.62
.34
.64
.71
.82
.73
.46*
.72
.84
.38
.54
.51
.73
.66
.79*
.65
.77
.49
.46
.53
.73
.60
.81*
.70
.74
.44
.32
.32
.43
.45
.40*
.48
.70
.50

-------
                                  B-8
                               B-4 (Continued)
Method  Site    FRMF  TEAF  CHRP  CHRO   CHESSO TGSO  TECH  TEC4  CHEM
TGSO 632
633
901
902
831
832
832D
841
TECH 632
633
TEC4 632
633
901
902
831
832
832D
841
CHEM 632
633
901
902
8?l
832
832D
841
.26
.29
.57
.25
.87*
.82
.63
.75
.29
.60
.22
.43
.63
.61
.33*
.65
.67
.34
.37
.43
.59
.50
.09*
.69
.62
.34
.54
.63
.62
.52
.80*
.85
.88
.68
.60
.82
.39
.60
.72
.77
.43*
.68
.92
.57
.64
.71
.82
.73
.46*
.72
.84
.38
.63
.66
.68
.62
.54*
.89
.86
.84
.57
.76
.35
.54
.65
.78
.62*
.61
.83
.64
.54
.51
.73
.66
.79*
.65
.77
.49
.55
.60
.67
.57
.90*
.89
.83
.73
.46
.76
.36
.52
.73
.5
.75*
.69
.78
.64
.46
.53
.73
.60
.81*
.70
.74
.44
.14
.13
.23
.10
.80
.49
.39
.46
.14
.34
.20
.17
.48
.35
-.02*
.65
.744
.32
.32
.38
.43
.45
.40*
.48
.70
.50
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.42
.54
.37
.39
.80*
.76
-.36*
.79
.85
.84
.41
.55
.95*
.39
	
.88
.85
.28
.42
.54
	
	
	
— i
	
	
1.0
1.0
.55
.66
	
	
	
	
	
	
.48
.70
	
	
	
	
	
	
.37
.39
.80*
.76
-.36*
.79
.85
.84
.55
.66
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
.70
.50
.79
.58
.89*
.86
.96
.52
.41
.55
.95*
.39
	
.88
.85
.28
.48
.70
.70
.50
.79
.58
.89*
.86
.96
.52
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
  *   Fewer  than  20  readings

-------
                                    C-l
          APPENDIX C.   ESTIMATED RELATIONSHIPS  BETWEEN METHODS
                       BY SITE USING ORTHOGONAL REGRESSION


      Appendix Table C-l presents the results of using orthogonal regression

 to estimate the linear relationships between NO monitoring methods.   In

 the table are given the parameter  estimates A  and  B  of equation  (4.4),  in

 conjunction with recommended  ranges over which the linear relationships are

 applicable.   These  estimates  are shown  for each site and  each  pair  of  methods

'(there  are  36 pairs of methods  in  all).  The estimates obtained  by  combining

 the data  from the seven sites  (Site 832D excluded) are also presented.   In

 Table C-l,  X corresponds to method  1 and Y to  method 2 in equation  (4.4);

 hence,

          N  =  number of  (paired)  observations

        Ml  =  X  =  mean  for first method

        M2  =  Y  =  mean  for second method

        SD1  =  standard deviation  for first method

        SD2  =  standard deviation  for  second method

        COR =  correlation between X  and Y

         Y =  A + BX is  the form of  the estimated relationship  obtained by

              orthogonal  regression

      PCV1 =  the percentage of variability accounted for by the  first principal

              component  (see equation 4.7)

     RATIO = M2/M1 = Y/X = ratio of means

    (M1LOW,
   M1HIGH) = recommended range for method 1 over which the estimated relation-

             ship is applicable

    (M2LOW,
   M2HIGH) = same for  method 2.

Section 4.4.c discusses the results given in Table C-l.

-------
                                   C-2
      Following  Table  C-l,  Figures  C-l  through  C-36  present graphically the




 site  regressions  shown  in  Table  C-l.   The  figures only plot regressions




 based on more than  30 observations and exclude site 832D.   The following




 legend  applies  to each  figure:




                              Site      Symbol




                              632          1




                              633          2




                              901          3




                              902          4




                              831          5




                              832          6




                              841          7




 In each figure Meth 1 (also denoted by Yl) is  plotted  on  the horizontal




 axis  and Meth 2 (also denoted by Y2) is plotted on  the  vertical axis.
                                           I



 Thus  in Figure  C-l, the CHRP method is on  tihe  horizontal  axis  and  the  CHEM




 is on the vertical  axis.   The units for Yl and Y2 are  yg/m .   In addition,
                                           I


 the regression  lines  drawn in each figure  are  only  over their  recommended




 ranges which are  given in  Table C-l for eac.i method and site (i.e., M1LOW,




M1HIGH and M2LOW, M2HIGH).




     All the results  given in this appendix were obtained  from the daily




 data after removing outliers.  The results shown in this  appendix  are  for




 descriptive purposes  only.  Their  general  use  is not reconmended (see
—   —    —                      —^        ,---• —           , _...



 Section 5.4).

-------
ORTHOGONAL  REGRESSION
                              Table C-l
                                fF NC2  PCMTCRIKG
SITE

Overall
t32
t33
631
632
638 0
t)01
901 " ~
902
•

SITE
Oyprall
633 ._;___,
632
632 0
sri 	

. SITE /"
Overall
632
63)
	
SITE
Overall
632
633
£31
632
632 0
601
901
90£
N

663
Ibl
170
12
ll«
"~ 61
uu
81
-
""
N
1326
219
225
19
185
131
175
226
	 237

.11. N
£66
132
136
- 	 -

N
6S5
160
158
17
63
60
27
60
Ml

17.2
36.9"
35,7
56.6
" 59^6
-.7.3,5
Jb.3


M
19.0
30.7
33.6
53.0
66.6
76.6
57.9
	 00, *2

.:.::>»
32. C
31.0
32.9
	

hi
46.4
30.0
33,7
53. S
66.7
63.3
61. 0
76,9
37,2
H2
""."56.*"
36.6
59,6
62,1
103,0
90,3
77,6
"8,2


07.0
30.5
32. 'd
51.8 "
6S.1
73.0
57.0
55.0
. .".12,2 '.

:.:" ^ -;
Sb.e
52. a
60. e
-

M2
US. *9
01 .0
fll.7
96.0
91.6
69.9
62.9
07,9
SOI
20,7
.JA..2
H.9
21.9
3P.9
3^,5
23,1
..20,1
ir,9


SOI
...25..6_
16.?
15.7
33.0
35.5
25.9
20.9
19,6

;;-Dt:i
I3.'l
._ . - _
3D1
2«,9
15.2
16.0
15.3
26.1
30.3
22.6
13.7
S02
35.2
"2.0.5
20.9
^ 5
63. •;
36.1
.23.1.
17,1


SPZ
15.5
32.*
32.1
. IS. 3

:-•»*:
28.8
20.0
- - — --

SD2
^39.6
22.2
20.2
26.6
Si. 3
52. i
39.6
30.1
15.2
COR
.7??
.572
.507
'.65*

.665
.

CCS
,C27
._. «e56
l!"
.. .915

— cbC
!s6fi
.603
,_,

CCF
"".715
".087
!?5C
.60S
- '717
.779 '
A
•19.0056
-13.1300
•3P.i*30
•10.7206
•2P.7750
"35!cc75
P. 3 196
•2?. 0271
METKlsChRF
A
1.23652
1 .0£3(i2
I. '15*91
t. 61315
-2.99626
2 ! 3 3 i1 1' 6
."" '3!5J67U

A"
-2l'*696
• - ••

A
- ^0.7639.
-10.4177
-05.6*19
•39. JUS
5.1690
B
U6C937"
'1.19653
1.86706
1.26610
1.6> 65i
2!lCi!26
0. 9020Q
1.93c2l
METHcsChPC
e
.931-970 •
_ .96<,-be<5
;?""!
* ]f 7139£ _

-:-:;::_ Br
2.5E627
2.6S399
2.50701
- - - -

B
" 2!07173 "
1.52270
2.2.'06fc
2JH/56
1.1-1968
PCVl
"fij.2
60,1
79,0
fe9.7
65.1
92.0
66,6
66.0
66,6


t-CVl
92, P
96.9
92^7
ll:l.-

.Kvr.
91,6
P6.3
90,5


FCV1
ee.B
79.0
7r. 2
67^1
93,1
90'.0
63.0
61.1

.£06
.10]
.020
.017
l!509
1 .056
\.Zit


f-ATJC
.99U
fQ77

:
-------
—

SITE
, 633
b3i
632
632 "D
.: 6«1
,! 901
,j 902
'f - - --"
t: 	
SUE
>i Overall
,r ~ 632 •• ~ — •
631
632
- b32 D
nj" " 601 •" • —
,1 """ 901
:i! 9 0 i

J 	 - ' "
.•I SITE
" Oyprall
B632
633 ' " ~ ~~~
831
,J 832
632 D
j 841
901
902 ___~___~
"
n
;1 111*



N hi
650 07.0
108 33.6
109 30, fi
11 eO ,u
98 70.2
75 86,0
88 i>?,0
122 51.1
:i« 00.3
. . —
N M
210 30)3
203 33.1
53 56.0
186 65.2
Ul bl.O
ISO 56.5
191 i8.9
187 oo.u
'
_- . .
N M
650 00,5
164 36.8
17J 30,1
12 50.3
102 61.1
57 75,3
76 59.4
01 63.7
82 36.0

N "" Pi
270 32.0
130 32.2
136 32.6



M2
38.9
27.9
29.6
66. t.
" 57.6
60 . e
3U2
	
K2
55,1.
30.2
3«,2
54.3
77.2
87,1
65,8
70.3
*


50.0
36J9
60.1
81. 1
92!7
79.6
48.5

:: «~
56.7
52.6
60.6



SOI
25.0
13 '.9
18. /I
' 38.0
to. 3
20.9
15.9
12.1

SD1
25. t
15.0
15,3
28.1
31.1
36.3
20,3
20.8
20.7


SU1
2?. 8
15,3
10.0
20.2
30,6
22J7
22.4
.11.0

301
10,0
13.9
10.2



SEJfc
20.7
10.7
tT.S
32.7
" 30.6 '
31.3
29.6
_. . -.
SD2
_ 33.* 3
19.0
17.6
28.9
"3.1
32.*2
.25,8
30. *

"
508
30.5
20.2
20.9
26.8
6o!2
36.0
23. i
17.0 _

•I'.."-..
28.7
20. 1
32.2


CCF
.805
.631
~f?3~r~
.PB9
,F71
„*•&!
.615

TCB
;"?"
.010
'.-•at-
.597
.see
.ujii
- --
COR
..737

.705
.748
;?96

COP "
.676
.520
.606

Table C-l (C<
HETWleCHBF
A
•7.6510
-6.1591
•JO. 5003
-9I.C179
•0.5336
*•,!)<; 26
'.H',1111
-
Pfc'TM tCt-RF
A
-3o!i;572
•J2.5019
-3.9755
•37.S050
. -20.4197
•29, sfci l
•US. 7000
HET'-lsChRC
A
•21,0306
• i!0.9b06
•15.5*67
-67.3659
-35.7700
12, = *ll On
5.4
10. a
n!?
" "9.0
2!.0
je!?


11. C
13.9
e.;



M.H1GV
95.1
to.}
1 7 2 '. e
77i5
t 1.2


69,2
53. t
56.1
107.3
113.6
119.5
95.0
67.3
70. i


KlUGf
5 3, *9
91 .0
113. J
1J9.7
94.3
ic5,e
? 3 . o

,1,ZG,
53.7
50.4
57.0



fe'.C*
0.0
1.0
0.0
0,0
0.0
0.0
0.0
5 .8

H. 2 \_ C V<
0.0
0.0
1.7
0.8
0.0
0.0
0. 1
21 .9
0.0


0.0
3.8
0.0
7,7
0.0
0.0
17.2
3^.7
15.5

M2LC*
0.0
5.1
0 0



rtHlGK
63.0
133.2
116.2
let .a
1&3-'


119.1
70, C
JO?' '
leo *
177.5
U7.fc
116,*
110.1 n

.......
120.1
fcO.9
77. 5
112,6
163.6
16* 3
U2.2
61,6 '_

K2h!0 	

113.7
1G0.2
1 £0.6


-------
Table C-l (Continued)
SITE N
Overall
632
fc33
631
632
652 0
841
901
902


SITE
Overall
632
631
632
632 0
641
901 	

SITE"
Overall
632
633
631
632
632 D "
641
901
902
	


..

170
160
10
lie
60
75
26
76


N
633
111
"109
a
91
69
61
	 120

:-•: "
1169
216
206
51
166
113
152
193
185
- • -


	 	

n
"43.9
34.3
32. e
75.1
60.3
65,9
36.0


46.6
35.0
35.4
54. (J
71.4
60.7
53.7
49.5
J9.0

: - >i -
"6.3
34.5
32.0
51.5
62.1
71.1
56.6
55.1
42.6
	 -


	 — -



61.7
46.2
40.9
81.1
97, e
67,4
93.9
64,2
46.2


M2
36.7
27.2
29,5
69.2
56,0
64. <4
«7.2
41.7
J1.8

M2
54. fc
34)2
54.4'
76.1
65.5
65.3
70.4
56. «





SD1
."1.22.8
1«.7
13.6
.26.0
32.2
21.7
22.0
12.5


SD1
24,0
13J6
"22.1
37.2
41.2
25, 4.6
17.5
34 ;o
30. fc
33.2
30,6
22.6

~"~ 802
32.5
16.8
17.6
29.0
40.3
"7.3
32.0
26.0
31.6
	


- 	 -


CCP
V.~.7S2~
.52?
.686
.7V/
.74?
.72:
.74
-------
Table C-l (Continued)
SlTt
Overall
632
£33
€31
6J2
£32 0
841
901
902


SITE
Overall
632
633 _____
632
632 0
601
SCI
902
N
155
174
10
102
~ 79 "
Bl


N
1337
211
227
50
191
131
23T
_"7
H
72.1
60.0
56,1
70,8
111.2
110.7
79.1
92,1
6?. 3


Mi
76.6
'$6.5
53. e
73,0
113.8
77,' 6
9C'.0
73,3
H2
5b.t
42.1 ~
36.5
60,2
66. C
104.4
• ee.2
77.0
46.5
.

M2
49.0
3U.5
33.6
56,9
68.9
78.5
56.4
57,9
U4,5
301
36, e"
26.4
25.7
31.6
51. «
05. C
?9.2
2fc,3
16.1


SOI
39.3
25. 6
27.0
39.4
50.2
B4. 6
27.9
29.6
9C2
35.0 "
2C.6
20,0
25.2
34 !l
ib.9
_
-
25.6
IS. 8
26.6
33.0
2s!e
20.0
ecu
.687
.512
.028
!705
.623
i7»2

CCfi
.773
.620
.577
.776
.775
.723
.656
KtTMjrFBMF ME
4
-10,400
3,110
04.192
-9.561
-103.371
-11.903
-'..701
-b.775
HETHl=FHMF ^E
t
4.5189
7.5774
M.SP &«."__
2.'S216
u!ei7«
B
O'.ViOu
oje59is
1 . 6 1 1 1 U
1 .'? V06H
0.67155
TH;=CH«F
B
,560819
.477152
.UC8652
,6646b6
1710723
!sii272
FCV1
77J7
73.7
42,0
fi« .2
60.9
66.8
75.0


FCVt
90.7
6S.7
9o!o
91.4
63.2
66. a
67.7
86 ,0
RATtC
O.VB6
C.t97
0.651
0.651
0.773
1 .' 1 1 5
0.636
0.775


FU1IC
.600
.611
,62U
.779
.605
.715
.727
,644
.606
MILCH
10J3
7.7
£.2
14.3
02J2
30.0


0.0
6.2
O.E
0.0
6.e
?o.e
11.4
35.7
15.1
MUCH
IOC, 3
11C. 4
100.U
131,2
' let.' 6
142,0
9f.6


151,6
!0t .6
107.0
109.9
2eC,6
|94.fc
M3.7
1*0,2
131.0
H2LOK
0.0
7.7
U7.8
2.7
0.0
2o.o
34.3
2C.U


M2LCW
10.5
11.6
5.7
11.6
16.1
1C. 5
islo
f2M!RH
73!3
65.4
72.'o
232,?
152.1
7 ,


93.9
56.5
ice!
I3e!9
lfte.3 o
93.3 ~^
76.1
j
•"c
r
*
3
14.
i;
•9
.31
— I
T4
•rr

FP,P HETH-CHRO- '
SITE .;
Overall
632
633
631
632
fc3
-------
Table C-l (Continued)
SITE
ar»
633
	 632
-•i 632 0
J 6(11
J 901
- 902
.
I 	 	
»•
| SHE
i
OveralJ 	
632
633
1
1
1 " "SITE ""
Overall
t32
633
631
632
632 D
641
902
_. ..
sm
Overall
632
632
£32 D
901
SOe
N
1290
214
227
46
115
166
239
235


N
265
128
_ 137

N
637
161
162
. 17 _
114
56
«b
itS
78
•" ~~
N
648
105
110
9
94
72
121
117
HI
56*. 5
53.2
70.7
112.5
109,5
76.7
69.5
73.0


56,0
55,2
56.7

-7_--r;
72.6
56.6
53.9
_ T5.3
114.2
111.3
63.3
98.5
62.9

HI
60.7
61.1
62|5
131.1
122,5
76,0
66.0
71,2
M2
36.1
26,1
25.2
55.6
M.I
U5.5
43,0
35.9


M2
56,3
52.1
60.2

7- H27
61.9
05.6
40.6
62.2
101.8
93.9
69.4
62.2
46.0
-_
MS
39.0
27.
2",
66, >
64.
45,7
41,4
31.7
SD1
38,2
25.6
26.6
37.5
55. J
42.5
33.8
29.7


501
?*•!
23,1
,28. fa

. SPl.
36,7
25,6
J.7,5
4e!i
46.0
32,4
27.4
- -
SD1
41.2
25,6
32^0
59, fl
3e!«
£5,0
23, fl
3C2
. 20,7
12.7
21.0
-.0.5
14.6
14,9


£02
26.6
24.5
. 31.5

~". SD2
40.0
21.5
20.2
26.6
54.7
54.6
37.3
30.6
15.2

SOS
25.0'
15.1
17.4
32.6
31,5
26.9
29,9
.22,7
14.0
CCR
,609
.716
.745
.80!
.722
,766
725
.7. :

COR
.549
."It
.(•30

.T7ccR
.713
|431
.331
..661
.674
,6U7
|611

CO"
7.»*8'
!fi67
.661
,759
,574
,251
A
2.0036
2.1980
5.1737
M.69U
-11 .9754
5.6062
«,M.FRNP
4
-9.9158
•11.5001
-5.6535
KETHJ jfPMF

-14.1319
6.0366
" -36 .'609 7
-50.025C
•5o!l2l2
4,6611
-
MET*! ePpMF
A
•1.1 686
7.7065
12.9J87
•lfl.0506
•2.2613
6.6262
-10.7443
-31.4123
16.5456
B PCV1
,476652 93.5
.456735 93,0
.376536 92,1
.072047 91.1
	 .077192 03.2
.695212 67,2
.6C2916 51,1
,40l9b6 90.9
.014720 92.2


B PCV1
V. 16309 77.7
1.15204 . 71,0
1.16576 . 61,7 .

- ."".-"._" B .."_ PC VI
1.C4755 6i,7
0.69283 70.8
0.50789 75.5
,P398* 49.3
,21172 6J.4
,29338 60.3
,20276 . 62.8
.14052 91.7
0.66584 61,9
	
8 PCVt
0.49813 66.3
0,32920 60,1"
0.26273 7ft. 2
1.0cb3(| 93,4
a.u57t4 ee.o
0.71976 66,8
O.e«956 79.0
O.SlelO 76.6
RATIC
.505
.496
!fc^c
. 094
.see
.578
,461
.092


RATiC
1 ,006
0,900
1.062

RATIC
0,653
o.eot
0,753
1.092
0,391
0.040
I.C73
O.t32
0.763

P«T
.464
.456
.471
.306
.455
|S63
,462
,006

0.0
5.6
0.0
0.0
3.?
34*6
14.0


H1LUK
18.3
6.6


1.4
K2
46.0
c9.5
31.0
27.0
46.7
26.3


. 0.0
10.*.
5.6
20. 7
13.1
£4.1
4.0
(J 0 • £
2J.9
f ! HlGJ-
lbl.2
107,3
106.5
221.7
191. t
145.2
144.1
131.9


" IHiGh
100. 0
icfc.e

,,«GH
! 43.7
100.3
lOt ,7
lOe.3
19B.9
191.6
139,6
15C.3
• 99.4


U1.6
n 1.6

£21. C
152.9
131.6
1 (6.6

1.7
4 6
5.2
K.2
11 o
7.0
5.4
16.9
11.4


h2uc*
9.2
1.8

•ILC*
0.0
It. 9
13.6
32.1
0.0
On
IS. 5
3.1
22. ">

M2LCh 1
0.0
11.2
14, b
3.2
19.6
0.0
f ,6
M.5
^;u rr y
Tu.u
6 1 4
- I . •
'45.3
60,3
1 C 7
1 * '
.*o
* 7 2
60.3
.

ioe .
ne!o
I

M2HIP.M " ._"!_
136.4
76.7
67.4
132.3
£04.4 j
197.8 " " !
159.4 ;
121.3
73.1

•
79.0
44,5 '
40.0 L
13«,1 L
115.3 !•
109.7 t
99.3 |.
fc C . 3 '
02.0

-------
Table C-l (Continued)
SITE
Overall
6 $2
t33
' 631
632
£32 D
841
901
902


SITE
Overall
632
631
63c
632 0
901
902 "


SITE ~

Overall
632
633
631
632 ~D~~
841
901
902
N
£08
207
52
171
111
" 152
" 190
166
-

N
635
162
170
14
vo
. 48
76
142
81

- ' "-•

75.6
55.7
52.7
1 le\8
1 le.3
78.3
90.1
73.6


35,9
29,8
26,0
OU ,f
bl'.t
lib. 9
32!?

" H
1310 36.1
217 28.4
523 25.5
50
" 123
171
236
45,9
54.2
64.1
45.4
*3.l
35.4
M2
54.9"
34.2
33.9
56.7
76. f.
66. 3
fct.O
69.5
56.6


55.0
36i&
60.2
77.4
101. b
90.9
~7s;e —
U8.7


H2::
34J7
33.7
53.2
67.2 '
78.8
57.7
57.9
44.1
5D1 ?D2 CCR
39.5 33.
25^4 18,
27.0 17.
3B.4 27.
S3.B 4ii.
43.5 47.
33.7 35.
28.4 3.
30.5 31,


SOI 3C2
14.1 20.3
12.3 20. 6
2C.7 25.2
?5.5 42.5
3<-,2 t5,7
CO. 4 36.9
14.3 21.6
9.7 16 .'9


..SD1~ SD2
20.6 25.0
13.8 15.7
12.9 15.6
20.8 25.0
29.2 32.9
33.7 " 37.5
22.4 25.9
14,9 19,7
14,6 19.6
5 .594 "
6 .406
4 ,5.7
182.!)
148.6
US. 9
122."
1C »
i


^ e H I C K
121.3
81.8
77. e
1 07.
lol.i
?32.2
Ie7.9
i ie.3
62.1

,2HICH
"7.2
64.5
63.6
102.0
131,6
152.5
107.2
96,4
62.9

-. v. ;'


;•
_ !"
*
V
i.


1^
a:
*
1
bi
•-- - -i;
i
I44
45
                                                                                              h

-------
Table C-l (Continued)
SITE
Overall
632
631
til
fc 3 2 D
g y i
901
902


SHE
Overall
632
633

:. : >m /: ;
Overall
632
633
631
832
832 D
901
902


BITE
Overall
"" " 632
633
631
832
832 0
901
902
M

224.
155
12M
163
£37
236


H
266
._ l"

• ~. r
619
164
161
17
102
49
71
25
79


K
"623
"UO
• no
9
80
72
80
120
112
H
37.9
28,4
25.4
"2.8
54.6
64.2
"6.3
43,4
35.5


"
2«,7"~
27.5

:::«:
35.6
28.7
26.1
47,1
50,6
M.3
47.9
51,5
31.5

M
3o!a
««.T
*t.S
61.3
72.6"
«3,3
38.5'
34.0
M2
46,4
34.3
32.4
46,0
64.9
73.4
58.1
54,3
42,3


H2
56.8
52.7
60.9


58.fi
46, 1
40,6
79,3
91.7
91.7
86,6
61.2
47,9


H2
37.8
27.3
29.3
60.3
57.5
64.3
44,1
41.4
"31,7
3Di
20.5
13.7
12.9
20.0
2*. 5
33.6
22.7
14,9
14.8


SOI
13.6
.. I3'a

_I SD1
13*. 7
13.3
15. f
32!&
ia.i
15.4
11.2
-
SD1
_ 21.5
1"!6
39.3
" £3.2
12.7
11.7
SD2
23.2 ..
15.5
14.6
21.7
3? '.
2«!fc
17.3
17.5


S02
2B.B
2U.1
32 .'3

.302
3S.*
22.4
20.2
26,8
46,0
57.1
36.3
26.8
15.3
—
SD2
!!:!•-
17.5
30.2
10.2
12.8
22!7
(4,4
COR
.ese
.729
,773
J690
,900
,64a

,729
.586
.665
1 COP
.757
.589
.59?
,£84
.716
\iza
.772

CC9
.762
.557
.633
.802
.852
.897
.eie
.621
.5£2
KETMisTEAF
A
_ o!_5903
2.6763
0.5638
ft!?176
• .5-.09
HETKlrTEAF
A
•17.2975
•19.63*7
^EThlsTEAF

•19.S612
•17.2175
-1 0.6562
•S.eiJe
0^6545

A
1 . -5.5566
•13.5163
•51.3196
•7]9250
-50.4095
•16.5136
&
1.15771
1.16843
l!l064b
1.1C«38
l!lC95o
1.21207
1.21501
Mt-TH2 = T£C,
i
2.61863
2 5 ^ ^ 1 7
u c T H 2*4 TFP^^
'.'. 9
U94771
j!3C8t)0 .
2!276I5
	
M E T H e. ="T C 13 0
B
- uJliJJ "
2i3986o
0.64600
l|2tl64
1.4T7S?
PCV1
93.0
86,7
66, 8
90,5
91.6
S5.0
ee!9
9£,U


PC'. 1
92.4
86.3
96, *»

PCVI-
91.9
ej!s
90 .e
S7.2
90. '
90.1
£•5.8


an. 2
77. <»
er;i"
94.2
92.8
95. S
91.1
67.2
7 7. '5
B4T1C
.221
.209
.277
.132
,iee
1.U3
1.255
1.251
1.191


BATIC
2,023
1,837
J.213

RATIC
1.652
I.ft08
1,550
U812
l.PSl
i.iee
1.521

RATIC
0,«>87
0,899
1,017
1.296
0.938
0,81:5
1,018
1,077
0,931
MlLCJk Y
0.0
3.6
1.5
5.2
0.0
0.0
3.9
H.O
7.5


f UO1*
9.8

HILO.
fc.e
17.7
11.1
1.7
ll'.5
-

0.0
0,5
6.1
21.5
0.0
0.0
0.0
19.7
i*.e
MUCH
77.0
53.2
n o 3
eo.4
111.7
IJ9.B
68.7
70. 6
(3,5


49.8
47.5
52.3

,1,IG,
t7.e
76. ti
90.2
Ict.E
74.7
76. t


78.1
56.2
5i ,3
71.6
it',7
57.2
••2. 3
•"2LC* f
1.2
4.8
4,5
c'.Z
11. t
11.0
21.1
e.i


0.0
£.0
0.0

HB.C,
0.0
2.0
1.2.
1.5
0.0
\c ,6
1.1
16.0


0.0
0.9
0.0
C.?.
0.1
1 .1
0.0
0.0
1 ,1
.^ ;;
91.6
6J.8
60.0
6«.7
liT 1
nc ;•>
le,;i --^
76,4 .>
"1
" ;,.
- ? h I G ^ '*'
n
lid i?r
100,: bj
125.5 . ..^j


129.0 J
90.3 ':r
6 C . 1 .1.
I32«'- . , M
2Ci5'.3 S3
i e a . 7 :;I|
lie. 2 j*
77.6 I
•- 1
K2H1GH C
'«
62.6 L,
55.7 •' jl
6 2 . fi U
12C.5 L
1 1 S . 0 !»
127,6 L:
96.2 L
86.3 I
S3, 7 <,

-------
Table C-l (Continued)
SITE
Overall
632
633
£31
632
(32 D
" 641
901
902



SHE
Overall
632
~ 633 ~1'_

SITE" ..7
Overall
632
633
	
SITE
Overall
632 "" ~"
633
631
632
£32 0
*!01
10€
N
212
205
50
154
110
" 1U2
192
166


K
222
__ 108

7 N
227
113

N
545 '
126 ~
1-32
107
54
60
* 28
60

37,4
27.9
24,6
44,4
52.7
64,1
••5,5
43.2
35.3


fl
56.0
49.3
62.4


sale
63.6
- -
Ml
\63.5
— 36 !r
6t.r
100.7
96. S'
92.5
63. a
<"9.5
H2
53.8
34.5
33.6
50.2
73.9
86.7
. 65.7
69.8
56.6


44.3
43,7
44.8

M2 "_'
44.6
48.2
40.9
-
H2
59.9-
" 4 0 . 2
39.5
46.4
63.6
" 109.6 .
95.3
83.7
SOI
20.4
13.0
12.5
21.4
28,2
32,3
isio
15.5


SCJ
30.4
24.2

SOI
30,6
26,4
73,8
- *
SD1
39.3
23. u
17.7
33.0
4t>,a
36'.4
29,6
~i4",r
802
ia!e '.
17.3
26.4
3?'? '.
e. 7
31.6


8D2
22,2
19.0
2«.<» 7_.

: -2;.; ;
21.3
22,7
19. i
-_ 	 	
3C2
"3ft, 7"-"
"17.1
23.6
23.6
41.9
65,3
36. S
25.3
16.7
COR
613
u, 8
10, =
14.0
14. I
27.5
16.9


MLCH
0.0
3.6
0.0

MLCW
0.0
5.7
0.0

M1LO
0.0
1.0
12. S
1.0
10.1
0.0
. 24.6
5.9
24.9
66. (I
45.7
uc.7
S2.0
114.1
7fc,9
••a.
-------
Table C-l (Continued)
SITE
Overall -
633
832
632 D
s°l

sue
Overall
o32
_ *33 _


SITE
Overall
t32
633
£31
632 D ".
901
902
. , . . . — -_ ., -
SITE
Overall
e32
633
611
632 D
901
902

N
351
112
106
53
£2
27
44


191
95
	 96


"302 ""
79
SI
6
59
19
32
8
37

N
645
16
lib
52
75
30
60

PI
35.7
27.2
30.0
53.6
5?,C
43.)
37.7

M
i8.fr
27,0
JO. 7


	 HI
39.5
3U5
C5.2
66^5
55.2
ti it ?
37>

n
52,3
37.2
36.6
5". 3
76.0
63.0
69.2
61,7
*I9.J '

M2
56,8
95 |l
95.2
62. b

K2
56, t
62,2


M2
65.9
U8.8
39.1
66.0
122, V
137.9
87.2
Ul'.lt

H2
57,7
37!7
65.1
ioo!o
92.5
79,9

SOI
2u'5 '
17.6
29,6
29,6
12^3
16,7

sot
16.3
14.1
16.2 _


-- 5D1 -
15.1
16.9
23.4
27.9
29.3
35.2
12.6
17,7

SOI
33,5
21.2
19.1
19,7
46.2
U7.0
31.6
c3.7
23,9

S02
35.6"..
7«J9
-,.'7
17^0

$21'
29,6
23.0
3a,2


; SD2_--
23.4
17.3
6l!l
4!. 3
23.6
13.5
-
802
J7.3
19,1
22_.6
56,0
4«.6
65.5
36.9 _
.»T!S

COP
. .730
.551
,P78
.755
J3vo'

CO"
,538
i«25
,5415


.723
.631
.369
,721

|757
H
CCO-
..596
" !ao2
!(J76
.69*
.491
,033

HETHlsTCSC
A
-7.S2UO
•7.1733
.2.C785
• 31 .•• JUS
22.1720
•10.7615
I9.o«ai

A
•22.6463
•24,6462
-20.0020


	 A
-21, €027
I«!fl231
2.317*1
•10.0C91
•11.6070
20.0615
•32.9606
22.8418
•
A
•4.707
13,740
•17.653
ii!m
•10.620
-6.9*ib
21 .522

B
l.ecoei
2.36U2J
1.6?22l
1.54083
1.1C511

HETHcoTECH
B
2.73112
2.76JU
2.6E206 _.


_ .._ 9 .
"2,2210!
1.95987
C. 79629
0.98161
U26107
2.16b06
0.7C069
,--
9 ..
1.1948!
0.73925
1.5C422
6.41345
U55673
i!oe«09
0.51«57

PCV1
69.1
76.3
79.7
94.6
97.5
ee.6
98.6
7C.2

FCV1
79.6
67,0


FCV1.
90.7
65,0
69,9
et.J
90.1
96.6
95.1
93,3
86.8
-
FCV1
eo.i
67.6
71.5
90.9
73.8
86.7
76,0
71.7
76,2

"4TIC
1.590
1,651
1.363
1,765
1.S32
1.915
1,293

S4TK
l',650
2.030


RATIO
1.666
1,732
1.202
l.no"?
2.273
2.070
I.h38
1.123
1,304

RATIC
,105
.109
.024
.434
J205
.337
0,979
0,952


0.0
9.3
2.T
0.0
7.7
0.1
19.1
a. a

MUOU N
7.3
10. fc
5. a


0.0
0.0
12)3
0.0
22."
3.6

«llOh ' "
0.0
0.0
9.0
o.'o
3.3
"20. «
42.6
i.Z

I«-I:K
73. e
45.1
57.2
1C9.5
If 1.0
7l!fl

h
50. U
03, U
55,9


fO.6
51.6
<-5 .0
126.8
1C1 ,6
120.7
120.8
66.0 '
72,2


109.6
74,9
64.5
76.8
It2.6
117.9
120.7

M2UC*
0.0
2,5
0.0
9. a
0 0
3UO
22.5

I-2UCH
0.0
0.0


0.0
3,0
le.M
43.3
5.4
16.1
1.9
15.7
25.3

,2LCK
0.0
13.4
0.0
0.0
10.0
0.0
19.7
37.4
23.2


t£5.o
67,3
65.6
U0.7
268.7
1*8. "
! 3'
*• -.0

K2hl
1 1 t . 9
95,2
liO.I


157.2
9U.7
2"C.4
259.7
1 7J.U
110.2
71.5

V2,IGH
126.5
60.1
79.4
197.0
150.9
227,?
165.3
122.0
70.5

I '
J
•1



11
"l*
' 6
i"
1
7?
- -E
^
i '?*
^ C7f
rt
-- -S
Q
A
L
j
,44
«s
----- e
fi
- - p
d


-------
                                                    Table C-l (Continued)
. SITE
Overall
" "" I1 3 2
633
. -- - -

SITE
Overall
632
633
" 631
£32
«32 D
901
""_ 902 	 '_ 	 ~_

: "."SIT E.I 	 :;:~
Overall
632
t33
631 	
*32 D
tU
901
902

"261
""136
I'd

•--
N
635
170
"160
19
53
72
20
71

--•>
SSb
101
11
66
66
96
66
M
"~35.0
"- 33.9
36.?


hi
51.1
3«.5
SB.*
•bu.e
76.7
S2.6
7C.O
69.7

M

60.1
37.5
J9.il
54.fi
" 9 2 ,3
as, 7
67l9
99,2
91.3
93.0
67.T
as.u

M2
	 J"57T
26,6
27. b
66Y6"
Sb.fl
61.9
«5.2
U2.«
32.7
SD1
" " 1 9". 6
I9.it
19.8
-

SD1
3«.7
20,0
16.7
2S.1
«5*, U
31.2
23.1
.; 2*-. 2

"""SCI

20)2
20.2
— Z67«
51.3
52.1
30.-5
ZS.l
31.6
SC2
?9. i"~ ;
2«. e "".
32.7 ,
. . -.. ..
- • -
SD2
39.7
21. e
19,5
27.7
TB'I '
.. is> . ;

SC2"

1«!2 !
" 3o!« !
~ 2B.9 " ,
25.6
23,3
15.2 ,
CCfl
152
aoc
--
6U4
264
208"
709
655
739
356
?sl

CCR

096
US
79!
52C
212
^EThl»C^ESJC
A
'-"i"""'2J5J--
-«7.l«51
HETHltChESJO
A
-0.723
2.138
U.30b
7.628
«13,386
•116. i99
•
-~ - 4 —

10.6553
17.7C11
•2.9675
\; 18.5637 _
•1.7S3U
HET»-2»TECK
e
nsssi"
2.5^57
^ETh2aTEC4
S
J..23?.63
I22617";"
.1*107
.2te5o
1.71055
2.04635
f2 = TG80
3

o!2£oe
»..-, n ^
— — • F|
71.6
36. U :„
«2.9 y
132.1 J
96,8 " "U
102.7 " L
*5.3 U
7fl.7 Q
36.3 b.
-   Mote if M1LOH or 112LOW was negative It was set at 0
                                                            n	

-------
?oo.
           yg/m"
                    Figure C-l



              METMl»CHRr



                 PLOT CF Y2  VS  Yl
160,
120.
    V2
 80.
 40.
  0.0
                  •6.00000000
18.00COOOOO
                                                          02.00000COO
66.00000000
40.00000COO
                                                                                                                     li«.00000000

-------
ISO.
105,
 60.
S5,
30.
 5.
                                                           Figure C-2
                                                     H E T HI • e h R> Te T K'Z • c H RC"
                                                        PICT Cf V2 VS Yl
                  8. 00000000
32.0000COOO
                                                          96.00000000
                                         80.00000000
                                                                                                  lou.oooeoooe
                                                                                 ije.onooocoe

-------
125.
100,
 75.
    V2
 50.
 25.
  0.0
                                                             Figure C-3
                                                            Pr PEU2«
                                                       PLOT Cf Y2  V9 Vt
                 •3.00000000
9.00000000
21.00000COO  '       33.00000000
                                                                                                  05.00000COO
                                                                                57.00000000

-------
200.
160,
120.
    V2
 • 0.
                                                               Figure C-4
                                                                >"E TH 2* TEC'
                                                        PLCT. CF YZ  y.3 YJ._ _	
  0.0
                   5.QOOPOOOO
25.00000100         OS.OflOOOCOO          65.00000000          «5.00000000        105.00000600

-------
                                                          Figure C-5
                                                        PLOT -CF  Y2 V3 YJ
117.
 67,
 17.
-e.
3.00000000         31.00000(100          59.00000000
                                                                               67.00000000        115.00000000         103.00000000

-------
zoo.
                                                            Figure C-6
                                                   PPTH1«CNRF CETH2»
                                                       PLOT Cr Y2 VS  VI
160.
120.
    V2
 60.
  0.0
                   9.00000000
39.00000000
89.00000COO
69.00000000
                                                                                                   89.00000000
                                                                                109.00000006

-------
zoo,
1*0,
1ZD.
    vz
 80,
                                                          Figure C-7
                                                          CHRO >efH
                                                      .PLOT CF Ya.V3.Yl
  0,0
                                                                                                                                   VO
9.00000000         29.00000000
                                                          09.00000COO
69.00000000         09.00000000        109.00000000

-------
                                                     _    _ Figure C-8
                                                     ' N~ETNl»eHRC >
»ZS.
                                                            -Cf JUL.V.8._U	
100.
 ts.
so.
 0.0
                  7,50000000
                                      17.50000000
                                                          27.50000000
37.50000000
                                                                                                   07.50000000
                                                                                                                        57.50000000

-------
                                                             Figure C-9

                                                      MET hT» c M»O P ri>iirr>c«
                                                         ..P.LOT. CF..VZ VS..Y.I	
202.   .      *
122.
    V2
 82.
 2.
                                                                                                                                        ?
                                                                                                                                        NJ
                   5.00000000
2S.OOOOOPOO
                                                            os.oooooeoo
                                          65.00000000
                                                                                                      es.oooooeoo
                                                                                   105.00000000

-------
                                                             Figure C-10

                                                     "NETH i ie'iiiic
                                                        PLOT  cr  vz va YI
11'.
 IT,
 •6.
                                                                                                                                       to
                                                                                                                                       ro
                   3.00000000          31.00000000          59.00000000         87,00000000         115.00000000         143.00000000

-------
                                                          Figure C-ll
200.
120.
    V2
 ao.
40,
 0.0
                                                        PLOT.CF va va
                                                                                                                                    M
                                                                                                                                    co
                  6.00000000
26.00000000
                                                          46.00000COO  •
                                         66.00000000
                                                                                                  B6.000000CC
                                                                                                                      lofe.onoooooo

-------
                                                           Figure C-12
200.
                                                        PLCT..CF Y2 VS .Yl
1*0,
1ZO.
    Y2
 80,
 40.
 0.0
                   0.0
                                      ao.ooonnooo
                                                           io.oooooeoo
120.00000000
                                                                                                   ito.ooooocco
                                         200.00000000

-------
                                                             Figure C-13
130.
tos.
 eo,
 55.
 30.
  5.
                                                       PLCT CF VZ V3.Y1
                                                                                                                                    Ul
                  11.00000000
St.00000000
91.00000000
131.00000000
                                                                                                  m.oocooooo
                                                                                211.00000000

-------
                                                          Figure C-14
                                                      PLCT cr tz
no.
10%.
 BO.
 55,
                                                                                                                                  o
                                                                                                                                  ro
  5.
                  U.ooonoooo
52.00000000
42.00000COO
132.00000000
                                                                                                 172.00000COO
                                                                               212.00000000

-------
no.   .      *
 60.
    Y2
 35.
                                                           Figure C-15
                                                                p~ET>2«TE AF
                                                        PlOt  CF YZ. \9..1l  .
 10.
                                                                                                                                    to
•IS.
                  U.00000000
52.00000600
                                                          92.00000000
132.00000000
                                                            172.00000000
                                                                                                                      212.00000000

-------
                                                           Figure C-16
                                                       _ PJ.CT cp. V2 va  vi. 	
120.
 70,
    V2
 20.
                                                                                                                                     to
                                                                                                                                     oo
                   5.00000000
25.00000000
as.ooooocoo
65.00000000
es.oooooooo
                                                                                                                        105.00000000

-------
                                                           Figure C-17
                                                        PLOT Cf  YZ VS Yl.
205.
165.
125.
    Yi
                                                                                                                                    10
                                                                                                                                    \o
                  11.00000000
07.00000000
                                                          83.00000000
                                        119.00000000
                                                                                                  155.000COOOO
                                                                                 191.00000000

-------
                                                           Figure C-18
                                                           rSHT'KE T>
                                                        PLOT..CF V2 VS._Y1
120.
 95,
 70.
 as,
 20.
 •5.
                 -J2.56000000
37.50000000
07.50000COO
137.50090000
187.SOOOOCOC
237.50000000

-------
ISO.
120.
 bO.
 30.
                                                                C-19
                                                   HE H t • F PM.   ETH 2 • CH p s so"

                                                   ... . P.LQT CF. vz.va.Yi	
  o.o
                  10.00000000
50.00000000
40.00000COO .
130.00000000
170.00000000
                                                                                                                      210.00000000

-------
                                                          Flgure C-20
ZOO.
1*0.
120.
    Y2
 eo.
 o.o
                  -5.07000000.         is.oooooooe         35.00000000
55.00000000
75.00,000000 .
                                                                                                                        45.00000000

-------
                                                 	PLOT. CF V2 VS.. Yl	
MO,
 80.
    vz
 50.
 20,
•10.
                  6.00000000
26.00000000
                                                          06.00000000
                                        66.00000000
                                                                                                  86.00000000
                                                                                                                     106.00000000

-------
                                                         Figure C-22
                                                        PLOT cr Y2 V9._.Y1_ ______
130.
105.
 55.
 30.
  5.
                   7.00000000
27.00000000
«7.'ooQooeoo
67.00000000
17.00000000
107.00000000

-------
126.
101.
 76.
    Y2
 51.
 26.
  1.
                                                           Figure C-23
                                                     ~KE THI •TE *F"~
                                                         P.LO.T CF  Y2..V.S Ifl
                   0.50000000
10.50000000
20.50000COO
30.50000000
                                                                                                      U0.5000CCOC

-------
                                                            Figure C-24
200.
                                                        .PlO.T.CF..y2_.Vl.Yl		  _..
.160,
120.
    V2
 80.
  0.0
                                                                                                                                       u>
                   7.30000000
23.00000000
34.00000000
SS.OOOOQOOO
                                                                                                     71.0000000C
                                                                                     .oooooooo

-------
uo.
 TO.
    Y2
20,
•5.
                                                         Figure C-25
                                                         ~«TE*F PETK
                                                       PLOT CF Y^ V3 Yl
                  4.00000000
26.00000000
                                                         53.00000000
                                        76.00000000
                                                                                                 100.COOOOCOO
                                                                                12«.00000000

-------
200,
                                                            Figure C-26
                                                         PLOT  CF  V2.. VS..VI
1*0.
120.
    V2
 0.0
                                                                                                                                      o



                                                                                                                                      00
                 -5.00000000
                                      15.00000000
55.00000000
                                                                               55.00000000
                                         75.000000CO
                                                                                                                         95,'oooooooe

-------
 '0.    .      *
72.,
le.
                                                     _    Figure C-27
                                                     METM« TEC M ~H E tTt" CHE f"
                                                     .... PLOT  cr  vz va .tt. _
 0.0
                                                                                                                                       o
                                                                                                                                       VO
                  4.00000000
28.00000000
                                                          52.00000COO  '       76.0000QOOO
                                                              100.00000000

-------
                                                        Figure C-28
                                                      TiTi"«fEeH~Pl

                                                      .PLOT CF Y2 V9
90.
72.
3*.
 0.0
                  5,00000000
29.00000000
53.COOOOOOO
77.00000000
loi.oooeooeo
{25.00000000

-------
                                                           Figure C-29
200.
                                                      .. PLOT. OF..YZ  VS.Y1.
160.
120.
    V2
 ao.
00.
 0.0
                 11.0000000ft
07.00000000
                                                          83.00000000
                                        119.00000000
                                                                                                  155.00000000
                                                                                                                       141.00000000

-------
 200.
                                                          Figure C-30
                                                     MCTHlsTGSC
                                                        PLOT CF Y2 VS VI
 160,
120.
    V2
 BO.
  0.0
                  5.00300000
                                      2S.OOOAOOOO
                                                          05.00000000
65.00000000
                                                                                                  65.00000COC
                                                                                                                      105.00000000

-------
130.
100,
 70.
    V2
 10.
                                                     	 Flgure_O-31  _
                                                      HETHlVfcSO feTK2«TfCh
                                                      .._..PLOT..CF Y.Z V3 Yl
•20.
                   3.50000000
13.50000000
23.SOOOOCOO
33.50000000
                                                                                                    03.50000000
                                                                                   53.50000000

-------
                                                          Figure C-32
250.
                                                        PLCT rp Y2.. V9  V!
zoo.
ISO.
100.
 SO.
  o.c
                  •5.00000000
19.00.000000
                                                           43.00000COO
                                         67.00000000
                                                                                                    91.00000000        IIS.'OOQOOOOO

-------
200.
                                                         Figure C-33
                                                             *    METMZ»CMEM
                                                        PLCT.CF. Y2 VS..YI
1*0.
120.
    V2
 80.
 00.
  0.0
                  •6.CPOOOOOO
24.00000000
56.00000COO
66.00000000
                                                                                                  120.00000COO
                                                                                 152.00000000

-------
                                                        Figure C-34
                                                       PLOT CF Y2 V3 Yl
120.
 '9,
 •1,
                  je.oooooooo
26.00000000
Stt.OOOOOCOO
42.00000000
;o.oooooooo
56. OOOOOOOO

-------
                                      Figure C-35
                                              HETH2*TCC(I
                                     PLOT ft va s,«  vt
Z,00000000
30.000000QO
66.'00000000

-------
                                                         Figure C-36
100.
 60V
 10,
                                                                                                                                     OO
  0.0
                  11.00000000
07.00000000
83.00000000
114.00000000
155.00000000
1^1.00000000

-------
    APPENDIX  "•.   ALTERNATIVE  PROCEDURES  FOR DETERMINING RELATIONSHIPS
                 BETWEEN  MONITORING METHODS


      Section 4.4.c  presents  the  results of determining relationships

 between  pairs, of N02  monitoring  methods as given in  model  (4.1)  by using

 orthogonal regression.   In this  Appendix the  results of using two alter-

 native procedures to  obtain  these  relationships  are  given;  namely,

 (1)  orthogonal regression using  a  model which is linear in  the logarithms

 of  the two methods, i.e.,

      (D.1)     log  Y  = A + B log X

 and  (2)  ordinary regression assuming model (4.1)  (i.e.,  linear on the

 untransformed data).  In addition,  this  appendix also presents the procedure

 and  statistics necessary to compute confidence limits  on the  ordinary

 regression lines.

     The problems (i.e., failure of the  underlying assumptions to hold)

 encountered when applying ordinary  (least  squares) regression  analysis  to

 determine functional  relationships between  two monitoring methods  assuming

model (4.1)  have been discussed in Section 4.4.c.  In  essence  the main

problems are:

     D-l.  The monitoring data are such  that  the variance of NO   observa-

           tions increases as the mean increases.  (In ordinary regression

           it is assumed that the mean and variance of observations are

           Independent.)

     D-2. All the monitoring data are subject to error; therefore,

          when fitting  regression relationships both variables are

          subject  to error.   (In ordinary regression  the independent

-------
                                    D-2
            variable  is  assumed  to  be measured without error.)




     D-3.   In  ordinary  regression  if monitoring method Y is used as  the




            dependent variable and  monitoring method X as the independent




            variable  then  the resulting estimated regression relationship




            between X and  Y will be different than the estimated relation-




            ship obtained  when X is treated as the dependent variable and



            Y as the  independent variable.




     To overcome the above problems RTI first transformed the original NO.




data by taking logorithms of the data (to alleviate problem D-l) and then




applied the orthogonal regression procedure (to alleviate problems D-2 and




D-3) to model (D.I).  This approach led to the estimated functional relation-




ships between methods given in Table D-l.  The notation used in the table is



as follows:




     (1)  The first  line of each set (pair of methods)  represents the overall




          results  obtained by combining the data from the seven sites (site



          832D excluded).




     (2)  X corresponds to method 1 and Y to method 2 in model (D.I); hence,




               N -  number  of paired observations




              Ml =  geometric mean for first method




              M2 =  geometric mean for second method




             SD1 =  standard deviation of logarithms  for  first  method




             SD2 =  standard deviation of logarithms  for  second method




             COR •  correlation between X and Y  on  log scale




       A and B are  estimated from model  (D.I) by using orthogonal  regression;




                   this  model can also be  expressed  in yg/ra  as  Y  =  e it .

-------
                                   D-3
            PCV1 =  che percentage of variability accounted for by the




                    first principal component  (see equation 4.7)




           RATIO =  ratio of geometric means




  (M1LOW, M1HIGH) =  recommended range for method 1 over which the estimated




                    relationship is applicable in yg/m  ,  i.e.,  the recommended
                   range using  the model Y = e



  (M2LOW, M2HIGH) = same for method 2.




As mentioned in Section 4.4.c,  RTI compared the orthogonal regression




results in Table D-l with those obtained in Appendix Table C-l  (orthogonal




regression using the untransfomed data).  The comparisons were made by




comparing corresponding plots of the estimated regression lines.  These




comparisons indicated that, over the range of the current N0_ data, the




two estimated relationships appeared to be quite similar; therefore, the




untransformed results were used to describe the relationships between




methods in Section 4.4.c. (see Table 4.13 or 5.3).




     In addition to the two types of orthogonal regression, ETI also




estimated the relationships between all pairs of monitoring methods X and



Y by




     (a)  Using ordinary regression on untransformed data with Y as




          the dependent variable and X as the independent variable, and




     (b)  Using ordinary regression on untransformed data with X as the




          dependent variable and Y as the independent variable.




Table D-2 presents the results of using procedures (a) and (b) over sites.




The table gives the following for a particular method as the dependent




(Y) variable and another method as the independent (X) variable:

-------
                N  =  number  of  paired  sample  points,




             CORR  =  correlation  coefficient,




           MEANX  .=  the mean for method X,




             STDX  =  the standard deviation for method X,




          STDY-X  =  residual standard error  from regression of. Y on X,




                A  -  estimated  intercept for  the model Y = A + BX (ordinary




                    regression),




                B  =  estimated  slope for the model Y = A + BX (ordinary




                    regression).




The table also  gives the corresponding estimates of A and B using orthogonal




regression (on  the  untransformed data) so that they can be compared with the




ordinary regression estimates.  To further illustrate the relationship




between orthogonal  and ordinary regression, Figure D-l presents plots  of




three  regressions (Y on X, X  on Y and orthogonal) for one pair of methods




(X = CHEM, Y =  CHRO).  The figure which  also shows a scatter plot of the




data used to fit  the regressions, shows  that the three regression procedures




give noticeably different  relationships  between the CHEM and CHRO.  The




correlation  coefficient between the two  methods was .74.  Of course, for




two methods with  a  higher  correlation coefficient, the three regression




relationships would be closer together.  For example, Figure D-2 of [10] shows




that the corresponding three regressions for the CHRO and CHRP methods are




very close to one another (the  correlation between these two methods is




.93).




     If one uses estimated relationships obtained  by ordinary regression

-------
                                   D-5
 (as In Table D-2) it must be kept in mind that these relationships are
 estimated when one or more of the underlying assumptions of regression are
 violated.  The relationships do have intuitive appeal, if one wants to
 predict method Y from method X, since they involve a least squares fit to
 data.  However, because of problems D-2 and D-3, RTI feels that the
                                                             •
 relationships given in Section 4.A.C are preferable to those given in Table
 D-2.
     Because of the fact that EPA personnel expressed an interest in con-
 fidence limits on predicted NO. values the following paragraphs describe
 the procedures which can be used to compute confidence interval or- prediction
 interval estimates.  These procedures are based on the ordinary regression
 approach rather than the orthogonal regression.  The failure of the in-
dependent variable X to be measured without error leads to a residual vari-
 ance which overestimates the error variance.  Hence the confidence (and
prediction) interval estimates should tend to be conservative,  i.e., a
stated 95% interval estimate should actually have a higher confidence level.
In other words, the interval estimates obtained will tend to be too wide.
     Let XQ be a particular fixed value for method X for which one
desires a confidence interval (or a prediction interval) on method Y.  A
95% confidence interval, for example, is an interval which has probability
 .95 of covering the true mean of method Y when method X = X .  A 95%
                                                           o
prediction interval is an interval which has probability .95 of covering
a method Y reading when method X = X .  A (l-o) 100% confidence interval is
                                    o
obtained using (D.2):

-------
                                    D-6
                                             I     (X -3C)^

      (D.2)      A + BX  ± s   t,    a      \ | + —	r  .
                      o    Y-X (1 --j), N-2J N   ,N_n 2
(N-l)sx
 A (1-a)  100% prediction interval is obtained via (D.3):
                                            I             — 2
                                            I         f Y  V ^
                                            I     i    \^* ^"* /

      (D.3)      A + BX  ±  s    t.     ci.     ,\ 1 + =• + —	r-
                      o    Y  A U -  2;,  N-/ 1      w    (N-l)sJ






The statistics  used in  (D.2)  and (D.3)  are all given in Table D-2.   In



particular, A and B are the  estimated intercept and slope for the .model



Y = A + BX, XQ  is the fixed  value for method  X in ug/m ,  X is MEANX,



sx is STDX and  SY
-------
                                   D-7
The tabulated t value at .95 =  (1 - -r) and W-2 = 648 degrees  of  freedom is




1.65.  Hence, the 90% prediction limits are computed from  (D.3)  as  follows:
       17.1376 + 48.5917 ±  (15.41) (1.65)    l +-
                                                      (649)(34.54)'






                    65.7293+  (15.41)(1.65)(1.002)




                    65.73 ± 25.48




Thus 40.3 and 91.2 represent the 90%  prediction limits  for  the CHRO when




the CHEM has a value of 100.  The confidence interval is much  narrower,, of




course..




     All the results given in  this appendix were  obtained  from the daily




data after removing outliers.  The results shown  in  this appendix are for




descriptive purposes only.  Their general use is  not recommended  (see



Section 5.4).

-------
                           Table D-l


ORTHOGONAL  REGRESSION  SlPMfY  CF NC2  "CM1CKING KEThCCSp  LOG SCALE
3111
Overall
632
633
831
632
632 C
fc 1 1
«C2
SITE
Overall
632
633
SITE
Overall
632
633
631
632 0
£41
SOI
902
SITE
Overall
632
633
631
E32
632 0
.SCI
«0e
fc
1326
219
225
il9
185
131
175
236
237
N
268
132
136
\
655
leu
156
17
U9
63
00
27
HO
S
650
108
109
11
75
66
122
114
HI
3lis
30.2
«7.2
M.t
5o!«.
40. V
2e!«.
29.6
40. i;
31. r
30.0
51.3
61. C
77.2
55.7
72.7
3«. e
HI
4e.l
3 1.0
32.2
56.9
b'i.9
78.1.
4b.C
ue.6
36. C
M2
41.4
31.2
24.1
45.6
57,2
67.6
50.7
39!l
M2
50.1
47.4
5?.B
Me
4o!e
36.6
77.2
67.2
60. (1
81.2
57.4
45.4

33.0
24.9
25.6
59.8
50.9
58.6
36.1
37.5
28.9
SD!
.5363
.4676
.4784
.4952
.504?
.3772
.4104
SUI
.4585
.4395
.4765
.5510
.4*22
.4949
.2996
13530
.3734
SOI
.4930
.439H
.4001
.4076
!u345
!e°ec
.<;7se
SC2
.5252
.4567
.5562
.3?u7
.3695
SC?
.5206
.4661
.5876
.5P59
.4799
.3(196
.4(32
.5012
SC2
.S6C«>
15296
.5990
• 6 P £ 5
U 2 U f
.3776
LCH
!eos
.647
^22
.•»•?
CCP
.fr.31
!7CHRF
A
!f7£93!
•!«5e33t
-.531266
.!67tee
A
-.tnio?
-.'121116
p!aP29t
• j"'/!Ul7
-i!si t ^^^
15.1
12. C
li.O
16.0
?2.9
J5.2
Jfc.5
2e.3
13.1
13.6
14. G
1^6
3b!6
22.6
Sb.e
17.0
M1LCU
\n'.u
If. 5
2".!
34i;
1.2
16.6
eO.O
e5.4
7.C
16.3
13. S
C2HIGW
115.1
74.. 4
70.9
133.3
171.1
136.0
Kill. 3
9e.l
62.0
132.3
i5o.':
156.9
IOC. «
83.0
151.7
c!2.3
201.9
66 '.3
H2HIGH
101.4
60.9
70.9
142.3
130.1
Its t i
175.3
£6 1
60. 2
                                                                                                               V
                                                                                                               00

-------
                   Table D-l Continued


REGRESSION  SLMhihV C*  NC2 KCMTCHING fETHDCS, LOG SCALE
SITE
Overall
632
633
631
632
832 0
641
901
902
SITE
Overall
632
633
631
832
632 0
6" 1
SOI
902
SITE
Overall
632
633
SITE •
' Overall
*32
633
631
632
632 0
C41
9P1
902
K
1164
210
203
53
166
1«3
154
1*1
187
K
650
164
171
12
102
57
76
«3
82
K.
270
134
136
K
643
170
160
16
116
60
75
26
78
42.5
31. r
29.7
49. U
56.8
74.9
50.9
55.5
40.5
H!
39.5
33.9
31.3
51.0
7o!o
54.0
60.1
3<*.3
Ml
29J3
29.4
M
36. t
31.4
29.6
09.6
%e.2
69.9 .
-6 . 1
kc.i
33.6
M2
46.3
30.0
30.5
45.5
67.1
76.3
58.7
65.4
48.0
Me
46. 9
37.5
31.2
54.2
71.1
62.6
84.3
75.8
45.2
N2
49.9
47.4
52.6
N2
52.0
41.1
36.5
77.0
66.6
77.1
65.4
58. 5
«5.7
SD1
.5242
.4640
.4765
.511!
.4615
.3837
.4986
.3390
.4261
SOI
.4945
.4151
.425?
.3701
.5017
.3700
.5034
• 3U"8
.3178
SCI
.4540
.4462
.4705
SOI
.5169
,43bO
.4676
.2686
.45BC
.367P
. 4 1 0 H
.3536
.3630
SD2
.6092
. 4 f '. 4
.. .'9
.3*13 1
.5?79
.4649
. ? ' e '
.5553
SC2
.6372
• 5?5?
.605*
.4021
.5285
.5830
.4964
.2695
.4010
SC2
.5187
.4774
.5531
SC2
.5986
.5037
.4853
.3337
.490"
.4892
,ur59
.4310
.3426
CCH * B FCVI
,64fc ".PS001 I.S0072 Ee.b
.477 -1. 01902 1.20721 74. y
.u?2
.665
.eC3
.507
,58fc
.Ml
.464
LCD
.681
.466
.505
.616
.646
.646
.745
.761
.579
CCB
|457
.736
CCR
.722
.5S1
.545
.809
.602
.725
.686
.765
.801
•O.CV647
-1.7SP15
-1.11978
•3.55572
fi ,S')P93
-l.740ot

-1.44211
-2.1200C
•3.2 3905
-lil-7136
-A. 06263
-3.93732
0.5 1987
1 . i.i 121
-1.43003
IN F t U t m f l* &f
™C I >^ 1 • t F^ " L
t
-!ol7207
MP i u i - r ui*r i
PCI^l»L~^U •
-0.42033
-0.7526C
-O.CePSt
-fl.7552S
-0.15198
• 1 . -) \So£
•o|5367S
-1.27506
ft.=«30C
1.C3684
1.43953
1.30720
1.82630
C.96PU2
1.47393
1.73195
e
itiiia
.9u051
.41496
!9b636
0.98135
Ci? 6Uo2
1.46357
B
l!l4765
1.24U51
^tT«1iC» « C C M'
B
.19639
.'29708
.C7043
.3Ub25
.12036
.1 75i H
.2378C
.2*370
C. 43099
72.6
85.4
8C.8
7J-.6
7«.,3
71.0
75. ?
FCVi
.65.2
7=1.3
79. e!9

134J4
67.1
                                                                                                   V
                                                                                                   VO

-------
                   Table D-l Continued
REGRESSION  SLHP4HY CF HC2  *CMTGHlNG *tTN033, LOG SCALE
SITE
Overall
«32
fe33
632
632 0
9C1
SITE
Overall
632
633
631
632
632 0
9C1
90c
SIH
Overall
632
633
631
632
632 0
6
-------
                   Table D-l Continued
REGRESSION  SL»Mt
-------
                       Table D-l Continued

REGRESSION  SlMMJPY C?  MC2 HCMICHISG «tTHCC3. LOG SCALE
SITE •
Overall
632
633
631
032
632 D
64|
902
Silt
Overall
632
633
E31
£32
632 D
901
9C2
SIU
Overall
632
633
631
632
63c C
641
901
N
637
161
162
17
114
56
BO
2b
76
N
646
105
110
9
94
72
92
121
117
K
1166
206
207
52
171
111
1S2
190
186

63.5
51.5
47.7
72.5
104,6
101. S
76. S
94.9
Ml
71.9
56.3
7«.'3
iia.9
113.0
68.0
«2.7
67.7
ft
66.3
50.2
4ft. t
61.0
100.2
104.3
71.0
66.2
47.9
H2
51.9
40.6
36.3
78.2
69.9
fll.6
ai.2
56.6
45.5
M2
32.9
2". 4
25. t
57.6
52. e
59.4
36.1
37.4
29.4
M2
46.1
30.1
30.3
46.3
66.0
7&.S
56.6
64.5
4V.1 •
301
.5266
.4494
.5046
.2663
.4302
.4339
!3177
301
.4635
.4071
.4379
,b572
.4504
.4124
.5887
.276fl
.3196
SCI
.5264
.4661
.5041
.6272
.5205
.3925
.4593
.2961
.3791
SC2
.5939
.5056
.4631
.3290
.4«73
.5: it
.4784
.4326
.3411
SC2
.5914
.5?67
.5246
Uo07
.4076
.7964
!3P20
£02
.fcoet
.5170
.4779
.6361
.5624
.3350
.5051
.4005
CCS 4 B
.691 -0.96807 1.16V73
.559 -1.15427 1.23342
.424 0.10561 0.901(,i|
.345 -l.7463t !.42.5aa
.6=3 -1.30131 i.cb'ia
.636 -I.6C505 1.342o7
.705 -C. 43511 1.11416
.627 -o!76654 1J11995
CCR 4 B
.691 -2. £1773 1.33577
.511 -3.1639C 1.63222
.373 -3. 22691 1.60U7
.699 -C.6e66i 1.14212
.760 -1.52785 1.149Q7
.679 -0.36267 0.96316
.8te -2.52MC 1.44656
.636 -fl.S4«i(i 1.91722
.405 -3.C9925 1.53700
CCfi A u
.629 -1.41697 1.25109
. .471 -1 .46934 1.24403
.512 -0.04966 0.901m
.676 -0.35048 1.02573
.584 -1. .07020 1.14151
.375 -S. 64785 i.l4s«s6
.552 .-0.99009 1.13720
.319 -6.30415 2.34970
.'•U7 -6.04992 2.35770
PCVI
64.8
76.4
71.3
70.3
83.1
8!>!3
93.4
fll.5
PCVJ
65.3
77.7
70.4
95.0
68.2
64.0
91.7
85.5
71.6
PCVI
74JO
75.7
83.9
79.3
73.3
77.9
71.1
76.9
«»HC
0.616
0.791
0.760
1.C79
0.65S
0.600
u!s9t
0.759
RATIC
.457
.434
.449
.775
.442
.526
.531
.452
.434
RATIC
.695
.596
.651
.76!
.65P
.724
.825
.7(19
.721
MILCH
24.fi
24.2
19.9
47.6
49.4
5?!3
34.2
UlLCh
20.9
30. S
30. 6
51.*9
52.9
23.1
53.6
42.7
MIC.1-
26.7
23.7
19.0
19.6
4C.P
63.5
32.7
62.0
42.7

16e.6
109.fr
114.6
11C. 3
221.5
212.4
171.1
157.3
104.9
MhlGI-
167.5
(04.0
102.7
216.3
272.9
241.0
20C.1
127.7
107.3
I'll- 161-
164.9
106. 4
.114.1
2«t.'b
it*. i
154.3
IC?!?

17.0
16.)
16.5
3S|3
3C.3
22.1
f.u'.i
MeLLh
10.6
•«!6
ifc.e
20.3
26.2
'.ft
It. 3
14.5
H2LCi.
U. 7
11. 6
13.5
14.9
23.6
27. u
23.3
29. fe
16.4

159.0
1CJ.4
\ut'.e
229.0
el's. a
199.2
m.o
8b.2
"2MI5«
101.6
66.5
67.1
136J6
125.1
172.3
Pe.O
5-J.o
N2hI'K
144.1
76,5
66.1
lEt.l
164,3.
211.5
M7.2
131.S
1x6.6
                                                                                                  V
                                                                                                  fc

-------
                     Table D-l Continued
REGRESSION  SfMFV CP  NC2 MCMJOSINC PtTHCDS, LOG SCALE
sm
633
£31
632
63e 0
6'41
902
8ME
Derail
633
632
632 0
9C2
SIH
633
631
bJi
632 U
841
901
902
SHE,
1 Overall
632
633
K
635
162
170
14
90
76
. 81
N
1310
217
50
174
123
171
239
236
K
1265
221
224
09
155
124
163
237
K
2e6
134
Ml
2?!o
23.3
39.7
U6.6
60.0
41.V
46.5
30.7
HI
33. £
25.5
22.4
41, G
07.0
b7.0
39.1
40.7
3e.b
n
33.0
25.5
«!2.3
36.0
"7.3
40.0
an. 9
32.9
Ml
2«!3
M2
05.9
37.5
31.2
54.9
66.9
85.3
61.9
72.9
45. u
H2
42.6
31.5
31.2
47.6
59.6
71.8
50.9
54.6
40.5
M2
ai.o
3l.O
29. £
42.7
57.1
68. 2
b2.2
51.7
39.2
M2
sa.o
07.4
52.8
SOI
.5310
.4065
.4919
.496?
.4995
,467ft
.5560
.2994
.3C91
SOI
.5480
.1641
.5273
.49911
.5641
.5041
.6250
.3440
.3097
SO I
.5027
.4641
.5313
.5176
.5761
.4351
.5702
.3003
' .3901
SOI
.4873
.0551
.5162
!C2
.6305
.5261
.6C53
.4621
.5558
iS675
.5156
.2612
.3976
SC2
.5247
.4435
.4759
.4866
.5159
.4054
.5679
.3334
.4100
SD2
.5158
.0605
.0669
.5251
.500-7
.3736
.5026
.3147
.3696
S02
.5166
.0760
.5536
METHlatEAF
CCR 1
.793 -0.50639
.686 -0.55560
.616 -0.95207
.401 0.8726C
.68u -O.J6618
.776 -1.R3639
.700 l.0614e
.812 0.72609
.005 -1.21765
CCR A
.639 .42*243
.701 ,l.01»3l
.746 .695997
.823 .241361
.870 .610096
.662 .700089
.764 .1)65647
.607 .041781
.637 -.OOoSSC
Mr TWi~tPAP

.784 1736'Jl?
.722 .0-tJ6ii
,«!77 .2/6,19*
.635 .e?
«0.7
ie!s
M2LCW
19.1
20.2
"2NIGM
15J.7
101. ci
9d.l
t ! 4 . 9
26o!l
269.4
1?4,5
97.3
M2HIGH
116. 1
'i.6
72.4
120.6
160.6
\t1.e.
146.5
103.0
69.3
-«MI<;H
109.8
73.4
69. a
113.4
170.4
137.8
131.6
92.9
r 2 M 1 G ^
131.1
111.4
151.7

-------
                 Table D-l Continued
REGRESSION SLHCifiV CF  » a
161
luc
aq
71
25
79
K
625
110
no
4
84
72
BO
120
112
212
205
50
154
(1C
142
192
166
K
222
ice
n
30. •»
25.6
24.0
44.4
57.9
aa.o
29 '.it
. ««
33.7
27. A
43. *6
52.3
64.6
36.0
3o.6
32.2
Ml
32. V
57!?
39.7
uo.7
32.5
HI
88.5
43. t
53.5
H2
50.1
40. a
36.2
75.3
7e!a
6o.i
56,2
45.3
"2
32.2
24.0
25,4
52.7
51.1
57.7
37iu
2".2
M2
' 45.4
30.3
30.2
42.5
64.1
74.7
51.4
65.0
»2
38.11
37!«»
SOI
.5443
15112
.'aU66
.3666
'•Dl
.5118
.4503
*U27i
.5059
.4720
13137
S31
.S4 4.9
,4600
I5319
.5239
.43/3
!ai)37
SOI
.5570
.5112
.5022
3C2
.5730
.5137
*330B
15323
.*3444
SC2
.5773
.5160
.52'*
.4ele
.7767
.4234
.3405
SC2
.50«il
.51 "6
.4760
.6351
.5963
,5654
'.3975
SC2
,5752
.5320
CCK
!643
.621
]9f)5
.7»2
.'ens
CCR
.751
,b06
1852
.730
.6
-------
                  Table D-l Continued

REGRESSION  SLMhARY i;F  NC2 PCM TORINO  PKTNODS, LOG SCALE
SITE
Overall

633
SITE
Overall
632
633
631
632
E3£ 0
641
901
902
SITE
Overall
632
633
632
832 D
841
9C1
9C2
SITE
Overall
e32
e33
K.
227
110
113
545
126
132
12
107
50
80
28
bO
• N
351
112
106
53
22
27
9
00
.N
I'M
95
96
'wi
51.5
Ofl.6
54.7
S3. t
00.5
3M,f
*9 .5
91,1
65.9
65.?
58.0
a7.3
HI
30.2
23.9
26,0
47.7
56 . "
43.6
01.5
34.0
25.2
2" .0
26.5
HZ
39.8
02.9
36.9
M2
49, a
36.0
33.2
44.0
74.2
93.2
• flfl.9
80. 5
44, fl
M2
47.1
39.6
30.8
t)6.b
122.2
67.5
78.9
05,3
H2
48.9
04.9
53.3
SD1
.5501
.51(11
.5801
SOI
.5933
.5376
.4565
.4797
.0559
.5316
.4092
.4215
.3094
SOI
.5763
.5189
.5290
.0775
,<4631
.6010
.2953
.4516
5D1
!fl9J8
.5317
6C2
.4665
.5'1 15
,-eOl
3C2
.6145
.5172
.6055
.4451
.5108
.5*59
.3770
.2*65

SD2
.6026
.5501
.6322
.4339
.5235
.4363
.315(1
.4204
SC2
.5390
.077*
.5*38
ecu
.565
.5 "'3
.726
CCP
.773
.531
.592
.863
.903
.906
.766
.856
.516
CCP
.619
.327
.548
.864
.336
.see
.940
.370
CCfi
.«83
.3*4
.506
PET* 1 •TCCh
A
.063371
.OOOU1
Mr Tb i s TC r/i
n ^ I n l * l c '. •*
-0.38396
0.10272
•2.1*578
0.0c933
-0.3U7C
-0 .52336
0.52M7
(- 75116

«
•0.20835
• 0.112M
-0.94251
' .0 385C
.T t i >i 395
2.M291
0.37014
0.62605
HP T N 1 a T " QT
n c i ~ ' B i j c ^
A
.331328
.86 f6 17
.Oc8c72
B
.817037
.907039
.728551
HffTu9sfuF^
~t i ™t"uncn
B
1.C7696
Oi9i>4^7
1.593U6
0.4 18Q2
1.13435
1.13b96
O.S9047
O.i3950
1,39737
B
l!l94UB
1.37885
0. 69530
1.15780
O.fci"?!
1.C7229
0.64636
a
1.K223
0.91817
l.lfisll
PCvl
79.6
.75.2
67.1
PCV1
88.7
76.6
61.6
94.2
95.2
95.5

93il3
77. y
FCV1
40. e
76. 4
93.3
92. 3
91.8
97.0
60.7
PC VI
74.2
69,3
77.6
«ATIC
.772
.8e3
.675
0,932
o.eee
0.952
0.739
o.eu
l.OSfc
1 . 0 'I C
1.387

KAMC
.561
.656
.339
,eio
.180

.903
.333
RATIC
1.941
1.870
2.010
HILOU
IP.*
19.*'
17.9
17.5
IS. e
16. B
23.3
37.7
31. e
3«.7
25.3
29.0
MlLf*
11.1
10.8
11.0
IS. 9

12. -4
23.2
15.5
10.4
10.3
10.6

lUe.'J
119.3
U7.1
163.1
10^.4
72.1
151.6

236ifc

133J3
77.0
r 1 H X G >
52!«
61.2
uc.e
13". t
153. e
•74.1

59. e
55.6
64.9

17.3
16,0
16.3
t U o
1 ti fl
io!«
16. b
f.Z

44. Q
47.3
£2.5
M2Ll>
15'a
IP. 7

tfi'.l
39.8
42,0
£3.3
16.9
20.7
16.4
HShIGH
91.3
1C2.3

"eHir.H
166.1
87. -a
115.9
103.9

i9a \1
17b!2
1S7.0
P9.1
155.J

llj!«
i°e,9
337.0
19Z.3

fl7!9
left, 7
97.1
lii.3
                                                                                                    a


                                                                                                    M
                                                                                                    in

-------
                                       Table D-l  Continued
                       REGRESSION  91.MM4FV CF NCZ ^CMTORING K£TriQo9, LOG SCALE
                                               HETH2"TEC4
SITE
Ml
                               K2
                apt
8D2
Overall
632
633
831
632
6.12 0
901
902
SITE
Overall
b32
e33
t31
632
632 0
en
••01
902
6ITt
Overall
632
*J3
SITE
Overall
632
633
631
632
t3i 0
6(.l
901
902
302
79
Bl
6
59
19
376
.6920
,3048 .
.4367
SD1
.6077
,53tlOt
0.50522
1.BS146
0.1775(1
2.13137
\ e£hE3SC
"*
f- . S^0a^
2.*-b73
4 . •! b 5 V 3
0.66167
0.3S646
P. 1*101
". t Ct92
• * ^j 3 p fi
BP ?• F S Si^
_ b r t v v w
.104766
.8341 07

.*..
1 .ftb900
0.946bj
1.21331
ft.°S724
n.ft333
0.9baB026
0.77049
0.78J27
0.82824
I.C0619
0.64368
2.16415
"O.fl70i6""
85, 1
62.!
7T.9
61.4
87.4
9«i, 4
9t .0
66.2
91. a
PCV|
81.4
7«.5
72, S
! 7 , 7
74.6
70.2
60.1
66.-)
75, -s
....
67.1
63,3
71.1
PCVl
eo.3
66.3
64.6
87.0
81.5
84,4
6«.5
77.7
77. S
1.651

U322
i.Oll
2.337
2.062
1.855
1.396
1.387
RATtC
1.08?
1 . l"e
0.96J
1.259
i.iis
1.186
1 .3
-------
                                                Table D-l Continued
                              REGRESSION SIVM4RY CF HC2 PCMTCHXNG f-tThOoS, LOG SCALE
SITE
Derail
633
£31
632
632 0
901
902
SHE
Overall
t32
633
631
632
632 0
641
901
902

N
556
101
96
11
66
66
78
98
66
K
663
161
12
114
61
bl
fit

HI
50.7
3*ij
47.0
fle.O
86.0
59.1
60.2
52.4
r-i
41. U
IS ».
JC.D
St. 7
5e.<
7V. 5
5«.2
69, b
Ju.7

H2
32.9
23.7
24.3
59. (t
50.0
55.9
38.7
38,1
30.1
Me
47.2
37.2
• I
53.8
71.6
87.3
81.7
74.4
011.8

SIM
.6019
.5353
.4708
!561C
.5219
.5366
is20
,i:F7P
I5164
.3296
.3139

502
Isr>65
.' 17
iuEfcS
.4593
.5698
13957
SC2
.6413
.5336
.6054
,«P68
I57b3
.5026
.2941
. 57723
.6
-------
Table D-2
Ordinary Regression Results Over Sites-
Using the Model Y = A + BX

X
	 CHRP 	 ~
CHRC
FflMF
TEAF
TECH
TEC4
TGSC 	
CHESSC



X
CHEM
CHRO
FRMP
TEAF
TECH
TEC4
TGSC
CHESSD

'• 	 - - 	 	 — ••
X

CHEM
CHRP
FR.MF
TEAF
TECH
TEC 4
TGSC
CHESSC

N
663
650
648
635
222
545
351
645



N
663
1326
1337
1310
268
655
650
1184

— • 	 	
N

650
1326
1313
1265
270
643
633
1169

CORR
	 ".73 	
.'74
.69
.76
.'64
. -83
	 .73
.60



CGRR
.73
.93
.77
	 ....,85
.71
.72
.80
.62



CORR

. 74
.93
.79
.86
.66
.75
.79
'.59

MPANX
	 B7.2 	
44.5
72.1
35.9
56.0
63.5
35.7.
52.3



PEANX
56.9
47.0
76.6
	 38,1
56.8
62.2
38.9
55.1



MEANX

56.4
49.0
76.0
37.9
56.7
	 61.7 	
38.7
54.6

_ STD*
24 171
.22.7*.
36.75
19.20
39.26
?2.52
33151



8TCX
3*. 16
24.02
39.25
20.58
28.78
39.57
24.67
.3.3,3.2


STBX

34.54
25.61
26.61
20.46
28.72
39.29
24.71


S.T.D.Y-JL.
24,10
..23.37
25.45
21.92
17.00
20.61
	 23.94
29.95



STCY-X
16.94
9.62
	 	 16.24
13.32
9.92
17.41
14.88
19.74



STCY-X

15.41
9.02
14.82
11.95
1C. 34
15.06
14.70
19.11
ui.UJ-i.icit jr ".eg
A

8.0210
6.6253
9.5627
7.6649
17.9763
10.6366
16.2892
23.0797



A.
18.0293
2:5957
10.4103
9.3109
12.2862
18.3877
15.'6494
22.'5706



A
	 r7Tfjtr-
4.3720
9.6672
9.4848
13.5905
16.9421
	 16.9420 	
22:9069
T*r »a run 	
B

1.03642
1.11743
0.65320
1.32020
0.46970
0.77270
1.13363
0,66307

*

e
0.51207
0.98836
0.50395
1.02690
0.34628
0.45031
0,81727
0.46764



8
~ .485917
.869073
!972503
.331521
!76seoe
.428368
Orthogonal—'
	 Regress ion 	
A
•1910
•21 TO
-10.4
"!9!'6
114
.. .-7.5 _

e
1.609
1.73P
C.930
2.039 :
0.620
0.^21
l.*195


... —
A
11.8
•1.3
4.5
	 0.5
10.0
13.2
7.8
11.0

B
0.621
1,075
0.581
1.257
0.387 "
0.533
1.019
0.64Q

•. 	 - 	 -•
A
B
	 12;i 	 0.575 	
1.2
4.8
2.5
11. c
.. 13.2 	
9.4 	
0.933
C.554
i.isa
0.375
0.497
0.9fcl
fl,591
V
oo

-------
Table D-2 (Continued)
Orthogonal
Or-Hinarv Repression Reoresslnn


" 	 "" 	
X
CHEM
CHRP
CHRC
TEAF
TECH
TEC4
TGSC
CHESSC

X

f LJ-tf U
w ff C "
CHRP "'" 	
CHRG
FRMF
TECH
""TSSC
CHESSC


~ 	 " 	 ~ 	 ' " ""
X
CHEM
CHRP
CHRC
FRMF
TEAF
TEC4
TGSC
CHESSO
N
648
1337
1313
1290
265 	
637
648
1166

N

	 635 	 _
1265
1290
266
619
625 .
1141



N
222
268
270
265 	
266
227
191
261
CORR
.69
.77
.79
.61 	
".55 	
.71
.69
.59

CORR
" 	 !85 	 ~
.66
.61
.73
	 .76. 	 _
	 .76 	 _..
.61



COHR
171
.66
".'55
.73
.56
.54
.'29
KEANX
56.6
4« 0
46.9
36.1
56.3
61.9
39.0
54.9

MEAfeX
Zssib'Z
46.4
75.3
St. 8
56.6
_ 37.6
S3. 8



MFANX
44.3
32.0
32.4
56.0
28,1 _
44.6
28.8
35.0
STBX
34.97
25.59
24.02
20.73
26.59
40.00
25.02
33.46

STOX
33.50
24.96
23.22
36.24
28.76
35.61
_...23.64
32.36



STDX
22,15
14:05
14.04
26106
13.56
21.31
16.34
19.56
3TCY.X
26.74
24.91
23.81
22.49 "
21.82
27.17
29.89
31.79

STCY-X
ic '93 	
1C. 54
12.19
9.33
12.55
	 	 _13.9
-------
Table D-2 (Continued)






" . --•
_..._._.._ 	 	 — -.
	 1 	 . — . 	 — 	 . 	 Or-d-inaFV— R^erp.oa-l-nn 	 ~
X

CHEM
CHRP
CHRC
FRMF
TEAF
TECH
T6SP
CHESSC


X
CHEM
CHRF
CHRC
FRMF
TEAF 	
TECH
TEC4
CHESSC
N

545
655
643
637
619
227
302 	
635


N
351
650
633
648
625
302
556


.83
.72
.75
.71
,76
1*6
.72
.65

CORR
.'73
.80
.79
.69
.76
.54
.72
.50
MF.AMX

59.9
46.4
43.9
72.6
35.6
	 _. 59,2
39.5
51.1


MEAK'X
56.8
47.4
46.6
SO. 7
36.4
56.1
65.'9
60.1
STDX

36.66
24.9ft
22184
38.70
19l2fl
30.59
25T24
34166


STDX
34196
25.05
23 ".9<5
4U21
2ll51
29176
46113
36142
YsTEC4 — -
STDY-X

22.07
27.66
25.90
28.08
23.28
17.69
31,9?
30.35


STDY.X
15.41
14.65
	 15.16
16,15
15.32
13.61
17.47
21.07
A
	 "10.4302
9.4760
4.8620
8.4260
8.8325
21.4998
13.7136
24.4531


A
9.0190
1.2905
0.7246
5.2663
5.7307
12.2607-
13.4353
18.7496

0.86602
1.13676
1.29350
0.73662
1.40417
0.38969
1.32119
0.74053


B
.470008
.792634
.B15U5
.418348
.837159
.295344
.395623
.330046

- 	 Orthog
— i 	 Regres
;onal 	 -
a i on
A e
-i.fc
-24.8
-?6.6
- 1 4 ; i
-19.3
12.7
-?i.e
-0.7

i
A
412
! -7.7
' -9. '8
-1.2
	 -5 16 •
813
9.6
10.7
1.066
1,671
2.010
UC46
2,193
0.536
2,221
1.234

~- "" E 	 "
0.555
0.961
1.040 	
l!l31
0.266
0.450
0.465

X

CHEM
CHRF
CHRO
FRMF
TEAF
TECH
TEC4
	 ""TGSC
N

645
1164
1169
1166
1141
261
635
556
COPR
.
.60
.62
.59
.39
.61.
...29
.65
.50
VEANX

57.7
48.4
46.3
75.6
37.4
. .. 55.1
62.3
36.6
STCX STDY.X

37.27
25.14
23.64
. 39.50
20.45
29.11
39. 7U
24.25

26.92
26.16
26.30
26.94
25.56
18.77
26.49
31.66
A

21.3187
15.4157
17.0055
16.8442
17.5435
24.2012
15.9U79
31.3715 	
B

.535909
_, 821^54
.811535
.503461
.970117
"istsesa
A
	 ""3.9"
-20.4
-23.8
-2.4
-22.5
. 17.3
0.6
•22.9
B

0,637
1.561
1.693
0.759
0.322
0,811
2.152
                                                                         N>
                                                                         O

-------
                                         Table D-2 (Continued)
-'  Over sites 632, 633,  901,  902,  831,  832 and 841.


2/
—   The statistics given  in  the  table can be usrsd for confidence intervals on Y for a fixed X value.



—   The orthogonal regression  estimates  «f A and B are given so that they may be compared with the
    corresponding estimates  from ordinary ?-egr?.ssion.
                                                                                                                 o

                                                                                                                 N)

-------
»  CHHC
                                          Figure D-l
I JU. V VU
•1
}
120,000
1
• . .
1
... 90.0000
»
>'
J R.OOftO 	 '
3
11
^ 30.0000
M
"
J °'°
0.0

Regression Relationships Between CHEM and CHRO, Over Sites
• 	
/Regression X on Y
/ 	 	 	
/ / ^Regression Y on X
/ / 	 ^ 	 	 	
	 — 	 _^ — .• . 	 / y
• •* / a>^ ^ ;• - - - 	 	 	
1 	 — 	 : 	 ^L. 	 S * ~~ * * • * a
i 	 * 	 ** 	 *_}• _f *JT * * • T
--• * /--^vxTTT ** • : 	 	 • 	 g —
* *«0 / S+Sf •* ** n 	 ~~ 	 " — ' 	 : 	 —
* * *• /jfyfo ** * * ~" "~ ' 	 •-- 	 	 	
* • » *0/>'i) o o * • 	 ' 	 ~ 	 	 	 	 	 	
* *o oo *3*p^'u»o ****0» * 0 • * • * = single data point
• * •* • *00,fi^»0«0 0* * »* «0 * . ~ 	 ' 	 — 	 • 	
* o o v^f ]/• * * * o** • •»• * — — ^ 	 0— • -flm-lfe-ifvle- data--p-oifi-t 	 	 	 --
«')0j)-o'/yooo ooooa* •** ' ~ 	 : 	 	
« ft* *op^ooyoo* 0*0** • * "' 	 ~~ 	 ; — 	 — 	 — 	
•0 J^J>flO flM)«090300**« *
*^*vtf?00/30 0000* 0 •* '
xi!05^ooo*/ro6ooooo*** * * "" — ' 	 	 — 	 	 • 	 	 	 — 	
_/"• J^«0 1 0 O/f" 09*0** • « ** ~~ 	
_loxfooooo/ioo 00*00
S*QQ* /fl**0 •" *. .«
* **/ • « . .* .
/ * * 	 	 = 	 • 	 	 —
~" ~f """ • * ' * 	 	 - - ' • • 	 < 	 1 	 »-TT7— • 	 H 	 « 	 • 	 — - 1 	 11 	 — . 	 • . , , | ,, 	 , 	 , 	 m 	 . 	 ,.. 	
•• ,„ :„.. < ,,.•„„„ • • . • • •
	 • 	 60.0000 	 . 120.000 . 1 ? 0 . 0 0 0 . 200000
.«.-"».«__ .. . . ..YO.pOOfl . ,!So;000 210.000 270'.oro 	 	 	

                       X 9  ChEM

-------
                                   E-l
          APPENDIX E.   SAMPLE MEANS AND CORRELATIONS FOR TWO
                       TIME PERIODS FOR TIIE DAILY DATA
     The following two tables (E-l and E-2), give the unpaired means  and

the correlations for the daily data for two different  time periods:

(i) July 1, 1972 through October 31, 1972 and  (ii) November  1,  1972

through April 30, 1973:  A detailed discussion of these two  tables is

given in Section 4.4.b.

-------
                                    E-2
                                  Table E-l  .

                Correlations Between Methods—Over Sites-^1 ,

                After Removing Outliers for Two Time Periods




            FRMF   TEAF    CHRP   CHRO    CHESSO   TGSO   TECH   TEC4
CHEM
FRMF

TEAF

CHRF

CHRO

CHESSO
TGSO
TECH
TEC 4
CHEM
\

.84

.75

.78

..58
.80
.55
.75
.72
.75
X.
\

.84

.85

.64
.90
.68
.82
.78
.81

.87
X.
\
^
.92

.62
.94
.66
.73
.75
.80

.87

.95
s.
\
x
.57
.90
.65
.78
.74
.60

.57

.60

.61
s^
\
^
.67
.30
.74
.66
.65

.69

.74

.77

.40
\
X,
.55
.87
.84
.60

.77

.75

.71

.30
.65
\
^N
.67
.65
.71

.71

.76

.77

.53
.59
.51

^S
.83
.68

.71

.76

.77

.52
.58
.66
.82

«M
CM
r-t
H

0)
•8
4J
u
o
CM
rH
A
H
3
t
                             November 1, 1972 - April 30, 1973
-   TECH in 632 and  633  only,  other  methods from sites 632. 633  901
    902, 831, 832 and  841.                                      '    '

-------
                                   E-3
                                 Table E-2

         Means of Daily Measurements (Unpaired)  by Method and Site

               for Two Time Periods—After Removing Outliers
 FRMF
 TEAF
 CHRF
 CHRO
 CHESSO
TGSO
TECH
TEC4
CHEM
Period

  I
  II

  I
  II

  I
  II

  I
  II

  I
  II

  I
  II

  I
  II

  I
  II

  I
  II
Sitel/ .
632
50.2
59.9
26.7
29.2
29.6
37.8
30.1
37.3
31.4
34.4
34.0
23.6
52.9
51.9
53.1
40.0
44.1
41.0
633
49.0
56.2
27.-6
23.8
32.4
34.4
31.3
32.9
32.1
34.4
41.1
23.6
63.9
59.4
43.9
38.1
52.6
33.8
901
92.7
88.1
44.2
42.6
59.5
57.9
56.1
54.2
64.8
76.3
58.4
33.9
*
*
63.4
78.1
902
61.2
80.9
31.2
38.3
36.3
49.1
35.7
46.5
44.4
66.0
40.9
27.4
*
*
47.9
43.8
46.3
43.8
832
91.1
125.5
40.0
60.6
50.2
76.4
48.4
73.1
57.1
89.6
49.6
60.7
*
96.8
100.4
84.7
84.3
841
88.1
72.7
56.6
38.9
67.0
51.3
67.3
51.2
67.4
62.9
69.9
35.3
*
*
104.7
73.3
87.9
86.5
832D^
121.6
110.0
56.5
66.1
68.9
81.9
68.7
74.0
84.3
85.7
68.0
63.2
*
*
90.0
*
100.9
-   Time Period I = 7/1/72 - 10/31/72, Time Period II = 11/1/72 - 4/30/73.

2/
—   Site 831 is excluded since instruments at this station were moved
    to Site 832 in October, 1972.


—   The July-October period had approximately 20 observations per method
    in Site 832D.
    No data.

-------
                                   F-l
          APPENDIX F.  SUMMARY STATISTICS FOR THE HOURLY DATA






     This appendix contains de-tailed summary statistics and plots based




on the paired hourly data for the TECH, TEC4, and CHEM.  Table F-l shows




the hourly sample sizes, the paired means and standard deviations, and




the correlations and ratios of means—for each pair of methods by site and




hour of the day.  The means shown in this table are plotted over hour-




of-day in Figures F-l through F-ll.  The pertinent discussion is given




in Section 4.5.




     The results shown in this appendix are for descriptive purposes only.




Their general use is not recommended (see Section 5.4).

-------
F-2
Table F-l
N02 HOURLY DATA SUMMARY, PAIRED DATA
HOUR

- 	 p 	
4
5
6
7
	 6
9
LO
11
12
	 13 ...
14
15
16
17
18
""" 	 19
20
21
22
23
24

HOUR

~ 	 " 	 1" 	
	 2 	
3
4
5
. 6
	 7
	 8 ' "
9
10
11
12
	 13 	
	 " 	 14 	
15
16
17
18
	 ' 19
20
21
22
23
	 ~ 2
26.1
27.2
33.3
41.0
55, B
64.9
73.8
77.7
72.3
67.0


47.9.
45.?
30.9
37.1
35.1
3B.C
45.1_
49.2
56.3
afl.C
... 39.6...
36. fe
30.5
33.0
36.0
37_._4
47.5
54.4
56.9
55.0
52.2
48.8
47.7

HEAK.K2

56.8
51.*
50.3
45.7
ti'i.a
46.4
44,6
52.5
60.8
6ft. 4
53.2
50.6
32.9
27,6
25.1
3U3
39. fl
47,2
57.4
64.2
67.3
60.8
Sfl.O

36.2.

3«!s
30.8
27.3
43.5
49,9
71.8
52.4
35.8
27.5
22.7
26 '.5
30.8
36.4
34.2
38.8
36,3
33.6
32,7

33,3 	
37.5
29,4
29,4
26.6
	 	 2.4 , 7 	 	
	 3lU 	
41.0
73.1
53.0
36,7
	 25,5....
19.2
39.7
35.5
27.4
	 31.7
	 .31,5 	
26.9
26.3
24,8
26,5
27,7
CCR
,668
,547
.686
• .723
.621
	 .621
.462
.511
.775
.553
.429
.406
.593
.703
.265
.725
.633
!?40
^650
.7C8
.638
,616
PAT102/
" U1P2
1.172
lI'MO ".
	 1.1*0 	
1.078
1.0«6
1.057
1.0P3
1.131
1.252 . ...
1.230 .
1.135
d'fefiy
0^90
1.002
l.lfcb
1.214
l|'230
1.216
1..177 ...
...
SO^Ml 3D.P2

36.2
43.0
36.9
36.5
37.0
52.3
"..35.4
44.7
54.4
79.7
72.1
- 	 53.3
	 _.__.36,6
22.2
22.6
28.1
30.5
42.0
38.7
44.4
46.0
42.6
38.7

33,9
33.6
40,2
35,6
34.6
	 	 46. 7
36.4'"
54.5
60.3
60. R
101,3
24. C
~"2b.G
18,1
18,7
21.9

£8.2
37.6
43.1
43.3
35.2
	 33,4.
CCR

,655
jji66
.662
."763
.444
	 ",7"o'0
.621
.P12
.878
.768
.395
.770
.346
ifc87
,679
.tbB
""".592
.655
.760
.766
.720
."56
RATIO

1.152 	
1.167
1.094
1.075
1.U91
i.'lft?
	 1.073
1.021
1.14B
l.OOP
1.260 	
1.2^2
1.041
U066
l.Obl
1.1P4
1:130
1.140
1.154
l.iev
1.156

-------
  F-3
Table F-l (Continued)
HGUR

i
2
3
4
5
6
7
6
9
10
11
12
"'" 	 13
14
'!*
16
17
18
	 19
~ 	 ""20
21
22
23
24

HOUR
N

136
136
136
134
131
131
133
135
131
128
129
134
135
132
135
132
131
131
127
136
141
139
138

N


56.2 	 __
53.3
51.4
47.2
45.5
49,6
46.6
53.3
56.9
48.5
40.0
41.9
35.?
27.7
27.5
32.6 .
37. fc
44.8
57. fc
71.8
67.2
66.3
59.3
59,3

PEAN..HI i
'E*M<2 I

46.1
42.5
39.5
36.5
34,5
36.2 	
36.3
43.4
44.5
47.1
39^5 .
33.8
31.6
31.5
27.6
31.0
31.1
4) .0
50.5
57. fl
55.2
bi.9
47.6
45,9

METHisTEO
METhc
>D.K1

66.6
67.6
70.8
68.1
.6.1...5
86.2
68.5 	
67.6
75.5
46.5
83.9
37.1
20.4
19.2
53.3
46.9
36.3
42.9
73.6
69.8
70.3
65J.
68.2

HETH2
5D_Ml
SD.K2

31,1
33.7
30.4
30,5
	 22.7 	
30.1
38.5
62.1
42.3
28.4
25,9
58.5
32,1
42.7
19,8
29.1
25.6
27,8
27.8
26,4
27.3
25.9

SU-N2
CCR

	 .15!
.441
.545
.464
.647
.385
."32
.603
.651
. 5 14
,39ft
,742
.184
•J!37
!?20
.606
.613
.462
' .547
.417
.464
,468

CCP
FATIO

. 1.220
1 .2*J4
]2PO
.302
. .373 ..
.2P1
.229
,«:70
.030
1 .£40
1.111
C.879
1 1 056
.206
.001
.140
,259
.219
.276
1.291

RATIO
.._ ..
2
3
4
5
6
	 r
e
9
10
11
12
13
" 	 14
15
. 16
17
18
19
20
21
22
23
24
117

117
118
119
119
116 	 ~
116
104
94
86
65
68
	 "95 	
106
10"
109
112
	 112
119
117
117
119
71.2
69.6
67.4
62.9
59.2
66.6
65.2
68.0
78.1
66.6
74.2
57.3
40.7
	 36.5 	
37.2
50.4
64.7
79.0 	 ''"'•""
78.6
79.1
81.4
•7U« '
4«>.8
49,3
46.1
43.7
42.4
48.7
46.0
46.8
4H.7
44.7
37,1
29.2...
29.0
31.6
3?. 5
42. k
53.4
57*7
53.4
53.2
50.7
40.2
70.2 	 _.
74.7
78.7
81.3
73.5
87.6
63.6
72.8
86.2
61.7
77.3
51.0 .
35.3
30.5 	
34.7
36.0
flO.5.
41. c
46.3
59.3
63.7
76.1
7ft. y
51,5
51.2
62.5
55,1
54.8
66,2
68.7
48.0
64,3
56,4
39.0
32.2
25,4
	 22.8
27.3
30.0
30,0
34.8
	 .41. 7
39,7
55,4
57,7

,816
.7*7
'.B34
.756
,853
.727
.841
.728
.695
.369
	 .671...........
.666
.770
..793
	 ...*753 	
.640
.575
.833
.866
L'428
1.412
1.402
l!3cb
1.409
.357 	
.'453
.605
.493
faci
1 ,b4b
	 1.3*6 ....
1.178
1.240
1.207
1.1C3
1.212
1.477
l'.605
1 ,4?1

-------
        t'-H
Table F-l  (Continued)
HGUR

i
2
3
4
5
6
	 7
8
9
10
11
12
13
14.
IS
16
17
16
19
20
21
22
23
24

HOUR

1
	 "2
3
4
5
6
7"
6
9
10
11
12
" "13
	 .'"" 14
15
16
17
18
	 " 	 19'
	 	 20
21
22
23
24
N

126
121
122
121
123
122
122
121
106
90
69
83
90
94
103
102
114
117
119
120
125
124
121
125

N

144
139
140
143
141
140
141
133
131
133
136
139
	 136
135
132
134
135
141
135
1U2
143
137

76.6
72.3
65
63
64
69
69
66
71
75
61
59
43
35
35
38
39
46
56
72
61
90
66
72



02
40
39
37
33
37
36
39
42
39
35
29
27
	 27
.4
.4
.7
.7
Tl
.4
.9
.9
.9
. 7 	
t -*
£
!s
.5
.1
.6
.6
.9
.1
• c
• 6

TE=633

.6
.4
.2
.1
.8
,5
.7
.1
,5
.2
.6
.6
.1
.4 	
27.0
28.6
31.3
35.7
40.9
U6.C .
51. c
51.2
47.1

49.5
aa.fe
43.2
38*1
41. t
40.9
4ft. 7
48.0
46.4
49. C .
35.2 	
.. 29. C 	
£6.2
27]fl
27. ft
3?. <> .„_
3°, 9
46.0
56.0
59. *
50. 1


ME7H1=1EC«
J C A Ik. L) ^
C- *_p •» F* f-

43.9 	 	
41.2
39.5
37.4 .
30.3
41. 6
40.5
40.0
40.0
46.5
36.7
31.5
24. e
26.2
28.2
28.1
31. C
35.3
45.2 	
49/4
49.3
50.7
U2 42.6 4U.6
3D-M1 SC..K2

73.8
7u.e
69.9 .
78.9
64.8
68.6
65.9 	 	
72.7
59,2
69.5
86.2
54.3 ...._...
33.9
..31.2
30.9
38, fi
40.9
« i.e. _ 	
39.9
57.6
61.3
79.2
79.6
7 0 . i


tttt.2
41,2
61,3
41.0
36,6 	
27i3
33,7
47,1
50.6
24,9
22,2 _
16. P
19,1
22,9
20,5
26.5
?.S, 0
41,4
61.9
36. 3o 	
...*20
.542
.600
.6.68...
...571.. ..
.761 	
.fi29
,*7fc8
.724
.706
.647
.576
t Id t»
!?12
kfj £

.537
,'SJfl
.435
L.fc&b
.696
.702
,675
]634
..67L _
.701 	
,bC6
.357
.431
.401 .
,466
.576 """"
l!si2
1.693
I,b79

CCR RATTG


,661 0.975
.747 0.980
.712 0.9C2
!726 o'.931
.7V3
.555
0,902
0.906
,fc33- 0.956
.510
.644
.'561
<440
.571
	 .367 	 '
.342
.351
^464 	
"".473
.301
.279
.536
CJ970
0,938
[\Hl 	 |
0.^58
1.0r4
1.0C9
1.011
0,905
O.S33
1.036
T.OP7
C . 9 ? 6

-------
                                F-5
                        Table F-l  (Continued)
HOUR
SlTEa832  METHle7FC4  ^ETH2sCHEM  -•"
                 	3D-Ml     3C-.M2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17
18
19
~" 	 " 	 20 "
21
22
23
24
132
136
132
132
133
122
126
119
107
85
75
90
109
115
122
126
128
133
..„..,„ »133".
125
130
132
130
102.6
10a.ii
93.0
69. U
82.0
65.7
_ 87.9
91.6
106.7
125.2
.iio.fi.
107.9
106.3
88.5
60.3
63.8
102.5
118.1
126.5
	 132.7
131.6
122.5
123.6
.. .1.09.6,
81.9
?(• ,C
71.3
68.7
64.2
64.7
	 66.6 	
76t«
67. fl
97.1
68.0

93.3 	
fifr.t
74.6
76.2
66. P
102.7
106.0
	 113.3
106.1
101.3
St. 7
66.0
.54.5 .
8.6.. 5
52. C
.50.9
46.. 8
78.7.
...79.6 	
uo.e
57.6
102.9
.J.?.Q_.3
106, fi..

8.2_a_H
70.7
79.0
100.1
96.0
102.8
""75.2 	
77.5
66.1
67.7
.5.7.1
44.8
41.5
36.6
37.7
33.fi
.... 34.3
35,1
.37,4
.52,0
71,6
73.6
03,8
60,4
78.4
60,6
66.4
68,9
72,4
70.0
"67.7
71.1
62,5
57,5
... 53,3
.7fc9
.517
.769
.708
.759
.391
	 .418
.788
!?43
.767
	 .793
.640
.90?
.826
.775
.727
.72?
.7c7
"' .902 	
.676
.671
.669
.660
I.'i53
—J..375
1.3Pb
1**77
1 3?4
l.cfcU
1.19B
l!*P9
1 . 1P7
l.'UO
1.022
1.076
l.JCO
i.ieo
1.150
1.171
i . 1 7 1
U209
1.2PO '
1.245

HOUR

1
2
3
4
b
	 6 	
6
9
10
11
12
"13 "
14
15
16
17
16
"" 	 	 19 	
20
21
22
23
24

N

"""'73 ~
"""73 	 " 	
71
73
66
74
	 63 	 ~
65
66
69
52
40
46
'" 58 	 ~
66
64
77
72
77
71
69
69
66
69

PEAK-MI

96.9
66. 6
64.1
62.6
73.6
72.3
75,6
63.4
91.5
95.9
69.5
66.0
91,6
71.9
75.0
79.7
101.5
120.7
125.7
126.7
126, a
115.7
111.0
101.7
;*832D ^ETH
^ •" A Lt U ^
1 C /* *^'^M ^ C

103.0
93.8
66.6
65.6
77.6
79.5
65.7
87.8
97.8
103.5
104.1
100,7
105.9
66,1
65.8
93.0
117.6
132.7
136.3
139.5
137.0
122.3
Hfc.3
110.1
1*7EC4 KET>-

	 	 55.1 .
45.6
41.0
38.3
34.9
33.2
39,2
36. f.
40.1
64.2
80.3
9?. 9
96.9
	 70.4""
79.2
84.3
104.1
106.2
95.9
80.2
62.6
6B.8
66.9
63,7
K2

62,2
51.0
45.3
42.3
39.0
39.7
46,6
46.2
52.3
75.7
99.6
10b,6
109.1
	 6 1.0 	
84.3
96.1
113.2
106.5
94.7
96.6
79.3
79.2
74,3

CfR

f916
.684
,867
.833
.650
.862
.695
.E56
.886
,925
.960
,98e
,962
	 ".960 	
.937
.969
.971
.961
	 .955" 	
,952
.9*4
.910
,941
,942

D A V T ^
^ ** * » w

.941
,«!47
.949
.066
.949
.910
"'".86?
.sbO
,9e6
.660
.P54
.667
	 .P34
!esa
.663
.910
.I.;;.92?..; 	 ;..
.923
!939
.923

-------
        F-6
Table F-l (Continued)
HOUR
1
2
3
U
5
6
7 '"
8
9
10
11
12
	 13'
14.
15
16
17
18
19
20
21
22
23
	 	 24 	
HOUR

~ 	 J- 	
3
4
5
6
" 	 " 	 7 	
8
9
10
11
12
	 13 '"•
14
15
16
17
18
19
20
: 21
22
23
	 24
N
103
98
103
98
99
90
76
63
70
66
70
77
63
60
89
92
92
99
98
ioo
103
101
105
.'7.
N

30
""30 	
31
31
30
31
"30 	
30
31
30
31
31
31
37
10
32
46
42
tiU
39
29
29
30
------ Sm = 64l
106.1
_ ...07..7 	
89.9
P8.J
77.7
76.0
72.3
76.6
99.3
116.6
105, A
84. £
76.6
75.2
73.3
66.1
102. 3
124.8
140.3
142. U
139.1
129.7
122.2 	
MEAN-MI PE

	 64.P 	
62.9
59.1
57,5
56j6
65.3
56.2
61.7
62.0
60.8
59,6
60.5
56.9
54.7
53.2
58.9
6C.5
70.1
70.1
67,2
65.6
66.6
68.1
66.0
METH1M
'E*N.f<2
... .95.3
86. J
78.3
76.9
..._ .6_9.. 2_
67.6
67.6
84.6
104.7
90.5
	 93.5.
. 90. 9
96.2
9P.c;
108, J
u?.<;
116. e
123.5
120. fl
115. c
109.0
101. <;..
METHisT

60.3
77.9
75.3
72.5
72..0. .
69.7
74.7
77^L
78.0
61.6
63.6
83.2
63.0
6?. 2
65.5
63.8
93.6
91.3
90.3
66.0
87.7
84.5
87.2
Pti»5....
IFCfi PETH2
SD^l
	 _....; 55.2.
_5Q.4
59.4
54.1
48.8
.48.2 .
50.7

97.*?
110.0
66.5
. 123.4
.... 106.6
101.7
90.1
74.1
75.9
78.7
99.3 "
97.9
lOc.e
106.6
98.4

SD_f2
	 49.0
«5.5
48,9
45.4
42.9
... 42.4
43.7
•42. .8
51.4
64, U
53.1
64,2
55,0
5?. 7
53,9
60.2
73,2
65,?
55.6
" "59.3
59,3
57,9
55.5
49, 6
.SD.JH SD-N2

	 35.2
35.0
36.1
36.2
33.7
63.2
. 30.2
31.2
31.1
29.0
_ 30.6
32.2
30.9 	
29.2
86|7
29.3
31.7
28.9
29. U
37.6
37.3
40.4
37.9

29B1
29. a
33,3
33.8
32.6
26. S
	 26.5 	
29.0
25.6
22.9 ,
27.3
26,6
	 26.4 	
24.6
26,0
41.1
41.1
29.7
27.2
25.9
33.7
30.2
30.7
28,9
CCR
.797
.761
. .795
.777
.790
.862
.660
.P'03
.384
.383
344
341
	 .554
."74
. .437
.506
.490
.467
.4C6
.522
.569
.591
.571
	 .59 a 	
CCR

.860 	
.672
.865
.833
.216
.750
.7(9
.706
.662
.678
.750
'".698 	
.454
.772
-.006
.583
.749
.659
.878
.867
.866
.874
.855
RATIO
1.114
1 ." 13 4
1.149
i;us
1.121
1.121
1.070
1.099
1.170
1.114
1 '060
1.059
0.907 	
0.762
0.733
0.615
C.906
1.066
1.137
1.1 B3 :
1.206 .
1 . 1 *» 0
.1.1*9.


	 .607
r 607
.785
,79a
.786
.937
.'780
.'SCO
.794
.743
.712
	 .727
.685
.665
.622
.704
,6fl7
.767
	 .776 	
.782
|789
.7P2
	 .781"

-------
                                  F-7


                          Table F-l (Continued)
HOUR
\
	 2
3
u
S
6
7
6
9
10
n
12
13
14
15
16
17
16
19
20
21
22
23
24
N
66
66
frfc
66
64
63
62
6 4
60
31
50
67
66
66
62
66
66
73
75
76
74
73
72
72
MEAN.MI ^EAK.^ • SD.M so.M2
	 49.1
42.7
36.9
37.6
39,2
45.2
52.6
55.2
51.6
44.1
45.9
42.fc
39.4
42.4
42.0
43.8
uti.e
51.5
57.5
57.0
59.fe
58.5
54.4
49.4
45.4
40.9
35,0
35.7
36.8
. ... 40.7
46,4
52.2
52,0
47.0
492
.720
...... .6.13 _
R*TIC
I,ob2
i .ru4
l.OSfl
1.053
	 l,06fc
	 1.110
1.087
t .057
0.°9!
0.«39
! .032
fi.963
O.«f3fe
0.96?
P.9c3
0.91B
0.9bti
1.006
,r.3fl
.010 ""
.001
.0^2
,f)77
	 	 ,..077 	 	
-'  1 - midnight till 1 A.M.,2=1 A.M. - 2 A.M., etc.

21  R   .    MEAN _ Ml _ Method 1 mean
     at ° ~ MEAN _ M2 ~ Method 2 mean

-------
                                F-8
                                          Figure  F-l   .




                             Diurnal Averages for CHEM and TEC4,




                                           Site 632
150
125  J
100
 75
 50
 25
                                                                              00

-------
                              F-9

                                        Figure  F-2
                           Diurnal Averages for CHEM and TECH,

                                         Site 632
150
125-
100.
 75.
 25"
                                                                   X - CHEM
                                                                   o - TECH
          i      •      i      i      i	1      i
   00    02    04    06    08    10    12    14
                                      noon

                                      TIME OF DAY
—i—
 16
18
—r~
 20
22
00

-------
  F-10




             Figure F-3




Diurnal Averages for TECA and TECH,




              Site 632
           TIME OF DAY

-------
                               F-ll


                                          Figure  F-4

                             Diurnal Averages for CHEM and TEC4,

                                           Site 633
  150'
  125-
  100
   75
00
3.
   0 .
         	T	1	T-1	1	1	,	,	

     00    02    04    06    08    10    12    14

                                        noon


                                        TIME OF DAY
16
-r—

 18
20    22
00

-------
                                F-12


                                           Figure F-5


                              Diurnal Averages for CHEM and TECH,


                                            Site 633
  150  '
  125  '
 100  '
  75
M
3.
  50 ~r
  25  1
      00
02

-------
 150  '
 125  J
 100  -
  75  -
06
3.
  50 -
  25
                                F-13


                                           Figure F-6


                              Diurnal Averages for TEC4 and TECH,


                                            Site 633
                                                                      • = TEC4

                                                                      o = TECH
      00    02    04    06    08    10    12    14    16     18     20     22     00
                                         TIME OF DAY

-------
                              F-14




                                         Figure F-7




                            Diurnal Averages for CHEM and TEC4,




                                          Site 901
150 -
125 -
                                                                           00
                                      TIME OF DAY

-------
                                 F-15
                                            Figure F-8
                               Diurnal Averages for CHEM and TEC4,
                                             Site 902
   150
   125  -
  100  '
   75  •
M
a.
   50
   25  -
                                                  x = CHEM
                                                  • «= TEC4
       00
02
04   06
08
10
 12
noon
                                                14
—r
 16
—r
 18
                                                     20
                                                      22     00
                                         TIME OF DAY

-------
                                 F-16
  150  -
  125  -,
  100
   75
oo
   50
   25
                                            Figure  F-9
                               Diurnal Averages  for CHEM and  TEC4,
                                             Site 832
                                                                 x = CHEM
                                                                 • = TEC4
              I	1	1	1	1	i	1	
       00    02    04    06     08     10     12     14
                                          noon
                                          TIME  OF DAY
16
18
20
22
T—
 00

-------
                                 F-17
   150
  125  -
  100
   75  -
oo
3.
   50  -
   25  •
                                            Figure  F-10


                               Diurnal Averages for CHEM and TEC4,


                                             Site 841
                                                              x =  CHEM


                                                              • =  TEC4
                                                              I      1
       00    02    04    06    08    10    12    14    16   18    20     22

                                          rioon
00
                                          TIME OF DAY

-------
150 -
125 -
100 '
 75
 50  "
 25  -
                              F-18
                                         Figure  F-ll
                            Diurnal Averages for CHEM and TEC4,
                                          Site 832D
                                                          x = CHEM
                                                          • = TEC4
   00    02    04    06    08
—i	1	r——
 10     12     14
     noon
     TIME OF DAY
16
—i—
 18
—i—
 20
—r~
 22
 i
00

-------
                                 G-l
 APPENDIX G.  REFERENCES TO THE VALIDATION AND CALIBRATION PROCEDURES
              USED BY EPA
     The following memorandum, provided by EPA, designates the EPA references

describing the N02 validation and calibration procedures.

-------
                                    G-2
      The general procedures to insure validity of Chess data are con-

 tained in the following:

      1.    CHESS - CHAMP Concepts,  Methods and Equipment, T.  D. English

           and F.  B.  Benson, 1/31/72.

      2.    Quality Control Systems  for CHESS Program and CHESS - CHAMP
   •                               •>
           Program, T.  D.  English and  F.  B.  Benson,  1/31/72.

      3.    Computerized Flagging of Unusual  CHAMP Data,  T.  D.  English,

           9/1/72.

      4.    Modification to Computerized Flagging of  Unusual CHAMP Data,

           T.  D.  English,  9/6/72.

      5.    Constants  for Flagging of Unusual CHAMP Data,  T. D.  English,

           9/25/72.

      6.    Status  of  N02 Comparison Study, T.  D.  English, J. M.  Sune

           and D.  0.  Hinton,  12/1/72.

      7.    Investigation of  Bias  in Garden Grove  Duplicate  NO- Measure-

          ments, J.  M.  Sune, 1/26/73.

      8.   Problems in NO Measurements, T. D.  English, 3/31/72.

     9.   Discontinuation of NO  Sampling, W.  B.  Steen and  T. D.  English,

          4/19/72.

    10.   Data Validation, T. D. English, 11/7/72.

     The memos "Data Validation" and "Quality Control Systems  for the

CHESS Program and the CHESS - CHAMP Program"  contain the essence of

the validation procedures.

-------
                                    H-l
                 APPENDIX H.  DAILY DATA LISTING BY SITE

      On the following pages is a listing of the daily data  (in ug/m3)
 that RTI received from EPA in July, 1973.  The listing is by method,
 site, and day and covers the time period July. 1, 1972 to April 30, 1973,
 The site codes are the following:

                           City and Site Codes
     Code                       Location   '
 Chattanooga (6)
         32                      Briarwood Drive ^Hamilton County)
         33                      Hickory Valley Road (Hamilton County)
St. Louis (9)
         01                      South  12th Street (St.  Louis County)
         °2                      South  Hampton Street (St.  Louis County)
California  (8)
    (8)  31                      Anaheim
    •(8)  32                      Garden Grove
    (8)  41                      Glendora

Day 1 is July 1, 1972 and Day 305 is  April 30,  1973.   The method codes
are given below:

-------
                                  H-2
                                                        Assumed
                                                        Collection
                                Methods                 Efficiency

(1)  Federal Reference Method                 = FRMF       (35%)

(2)  Chattanooga Health Effects Study         = CHESSO     (35%)

(3)  Arsenite Method (straight tube impinger)  = CHRO       (85%)

(4)  Arsenite Method (fritted bubbler)    .     = CHRP       (85%)

(5)  Triethanolamine (fritted bubbler)         = TEAF      (100%)

(6)  Triethanolamine-Guaiacol-Sulfite^'       = TGSO      (100%)
     (straight tube impinger)

(7)  Continuous Saltzman (Chattanooga)         = TECH

(8)  Continuous Saltzman (Technicon Mark IV)   = TEC4

(9)  Chemiluminescent                         = CHEM


     In site 832 (Garden Grove) there  are duplicate measurements  (denoted

by 832Dup) for the eight monitoring methods present in California start-

ing on Day 99  (October 7, 1972).

     In the listing

       (i)  "Daily" averages for the continuous monitoring methods

            are computed using a time period matching the times

            during which the bubbler methods were in operation.

      (ii)  * = value not shown because it was below instrument

            detection limits (there are eight of these cases).

     (ill)  At the present time no validated NO or ozone data has

            been given to RTI by EPA;  therefore, these readings

            are not given here.

      (iv)  The data is listed to the nearest .1 of a ug/m .  However,

            EPA personnel feel that the data is only accurate to the
                        3
            nearest ug/m .   The reason that one decimal place was

            reported was due to the conversion from ppm to

-------
Table H-l.  102 HC^ITORING  PETHCOS CCMFAAICON »• OAILV C*T» LISTING
;! 	 •
'j DAV fOff TEAF CHff Chfte
'!! ' ' 2
•i 3
'! *
•i 5
•'.. .. . »
•-i 10
11
f " 	 14 	 "" 	 "~
H
CMESSC TPSO TECK TEp4 t*t*
50.3
37. '6.
30 !«
5U.3 ,.-.
38.9
Sfclii 	
139.0
!"
>'
•"

h
*'
i:
li;
i'
I • - - .- 	 _
;•
,'u
«> 	
fi
!"[
H
H
l>.
11
i
«
14
15
17
18
14
27
28
29
30
31
32
33
34
35
36
37
39
40
40
as
U6
07
48
50
51
52
93
95
56
97
98
59
6*0 ~
6!
62
63
64
69


M
20.
27.
47,
55.
66.
38.'
«3.
36.
65.
6".
66.
23,
34.
21.
36.
_ «.
32.
33.
. 18.
24.
30.
_ ?«.
28.
50.
53.
«S.
51.
34.
35.1
29. J
77, <
86. (
58.;


> 13,5
4.4
9.6
21.3
18.4
15.0
22.0
	 J2.3.
19.9
25.0
35.2
25.7
14.4
22.9
11. G
14.8
25.7
16.7
22.0
16.6
15. »
14. S
24.4
" 20.0
38.8
60«4
23.4
25.0
13.4
12.4
14.2
40,9
St. 6
39.4
	 30,? 	


n.
11.
1?.
30.
24.
24.
23.
21.
25.
20.
2C.
35.
"1.
3*.
14.
13.
23.
13.
25.
»7.
20.
15.
21.
18.
57.
54.
27.
28.
1C.
IB.
16.
51, It
76. J
m.'<


to.
12.
11.
29.
23.
21.
24.
16.
25.
IP,
22.
34.
43.
35.
14.
9,
10.
14.
iT,
12.
28.
23.
24.
19.
28.
24.
42.
48.
2(.
27.
17.
16.
13.
St.
81. i
33. <


2*!l
20. 1
7. «
21.5
20.3
34. J
23.5
25.4
2fl.U
34.?
4.6
34.6
24.!
30.?
25.7
32.?
27.3
26.6
17.4
1".?
15.4
35.0
.J?,T .....
13.8
17.7
32.3
1*.!
18.5
1!.J
15.7
11. k
33.2
43.9
36.?
.. . 3(,9 .
56. a
139.0
70.9
"3.3
17T.3
5e>:a
45 .'6
3«.2
44.5
66J9
55.4
SB. 5
46. "0
50.3
76.S
Bl.>
«S.l
.... ..57..?
23. i
50.1
52. S
48"*4"-
70.0
135.7
si:i
31.5
	 34.5"
16.8
87. 9
96.9
99.8
96.8
                                                           17.8
                                                           11.0
                                                           42.4
                                                           30.7
                                                           40.2'
                                                           33.7
                                                           32.6
                                                           50.7
                                                           25.6

                                                           62.1
                                                           b5.3
                                                           54.4
                                                           28.2
                                                           45.0
                                                           24.1
                                                           46.5
                                                           81.2

                                                           54.2
                                                          .«0.2
                                                           34.3

                                                           4.1.4
                                                           41.0
                                                           71.6
                                                          100.4
                                                           35.6
                                                           43.4
                                                           24.4
                                                           14.8
                                                           16.2
                                                         ..»«,7
                                                           44.1
                                                           71.5
                                                           71.3
ff
                                                                                                         -----a

-------
NC2 HCMTCPIN'C- KCTHCC8
— DAILY C»T» LISTUB
III
j
1
'1
ll
•1
n
.1
P
h
b
t
E

b
!••'
•"
i"
H
u
J
V
"i
B
H
j
DAY
66
67
70
71
72
73
78
73
76
77
78
79
80
81
82
	 83
88
85
86
87
88
69
90
91
92
93
98
95
96
97
98
99
too
	 "for
102
103
104
105
106
107 J
108
109
110
111
112
111
114
115
116
117
118
rt»r TE*F cf.fi
55. 5 4B.3 36.'
22.0 13.2 r*,'
17.6 10.2 13.
27.9 21.2 92.
35,8 39,9 29.
31.8 25.0 25.
13.1 7.8 8.
ST. 3 25,1 r 23.
97.8 40.3 02.
56.9 28.7
S.0,.6 _ 39.3 . 39.
28.2 IB. 6
46.0 30.7 33.
107. « 68.3 75,
32.9 24.2 26.
59.5 36.7 Ed.
48.8 27.8 22.'
82.3 29.2 28.
67.1 35.0 39.'
69. (1 39.7 flBj
53. A 25.6 81.
63.2 45.5 87.
72.9 (18.9 52.'
04.0 15.3 28.
43.9 24.2 33.
55.0 27.1 (iz:
ai;r " I87a~ 23;
22.8 13.0 13.
52.9 31.7 30.
101.8 53.8 54.'
*3.2 38.2 (l|.
43.9 17.0 It.
46.1 26.6 27.
39.7 11.4 IS.
35.5 * 22.
57.7 33.0 ao.
SG.7 16.1 23.
75.8 29.3 40.
66.6 28. 37.
00. 48."
67.6 36. 32.
"*6".l 28. — ?9.
76.1 36. 33.
68.0 29. 30.
~6B.3"~"34. ~ 32."
57.6 42. 38.
20. 16.
84.0 42. 62.
72.5 a«. 55;
52.3 22. 24.
32.9 14. 15.
36,3 13. 12.
52.1 18. 28.
'._. .CKSC
S 36. i
r . i.t,'i
12)1
21 :•
33..
27.
8.
.. 24.
83.
M-
19.
3*'.
2s!
29 \
36
42,
32!
S3.
a6:
24,
25.
33.
21 :
3".
68,
52."
27.
34 :
18,
24:
82.
19
36 1
42.'
sa:
26:
34 :
. 3»'.
31.
29.
_ 16.
57
63.
33:
24;
25.
r 38.
1 ChESSO
! 40.8
!. _23.6 	
r 18.3
"6.7
26.1
1». ,2
U2:3
42.8
4*12
28.6
63^6
56.0
78.7
»v»
32.0
33 ;•
SB;?
43.0
82.8
39.9
35.3
25.2
10.3
SO.,5
39.8
ss.'s
D
S 4.7
B ?>..?. .
' 26,5
b 26J6
42.1
)
I T7.1,
D 4U6
a 51.3
! U6.T
J flO.S
S 30,8
B Ifc.'t
3 88:9
B 39JJ
5 61.6
I 60:9
S 16 .'6
U 31 J7
Tssr





3a'7
26. 'a
36.9
28. S
29.0
27.3
38.9
29,3
93.5
78.8
81.6
52.0
28.7
,.32:.a
ia.8
36.1
sa:b
is :l
28.3
28.8
26. '9
2S|7
15 .0.
85S
22 .'8
18.1
11.0
_1?.,5.
TECH
69.'9
30.7
20. «
47 .'4


26.0
""~§i^T~"
Bl.'S
39.8
55.2
53.7
67. B
20.9
12.8
26.2
55.7
6s!e
ib!o
35)7
68.' 3
6(1^3
60.1
36.0
SB. 6
35,9
3e. a
3(1.0
41.4
36.6
U. '5

69.7
18.6
36.7
6
60.4
37.1
.38.3
07.1
44.3
132.0
30.
..24.
35.
57.
. 55. . .
89.
73.
73.
36.
53.4
SO. 5
54.9
53.7
88.5
102.5
71.0
53.2
68.9
54.8
60.2
96.3
64.2 .
130.1

16.8
32.8

" S*.J "
15.1
S3. 7
™ 	




76.9 ... .
22. (
3«.t
30.3
19.8
3J.O
*9. A
71^5
70.6
36.6
35.8
at.!
11. a
29.8
5(1.0
ae.7
*.a
17.6
3.9
13.0
88.2
20. ft
59. P
66. a
73.0
51.8
86.9
56.0
57. P
56.5
51.0
30.8
68. e
ei.2
38.8

J
1
•
1
•
Jl
-
r>
-,
i<
^
•
43
tt
a

*
j
                                                                                                 11   i
                                                                                            	: 
-------
NC2 HCMTQPING KETHC08 CCHP*«I«aN —
i
i
i.|
'I -
»
Is
V
-11 •
I,
i;:
£•
IT?
LS
,?.
i 	
•>
h-
r
-
.»
i
r
P
1 i
c
Hi'
u
|i '
(•*
ir
11
M
LI
k.1
DAY
120
121
122
123
124
125
126
127
128
129
130
131
132
113
134
135
136
137
'138
139
140
142
143
\UH
' 145 -
148
149
150
" 	 isi
152
153
154
155
156
157
158
160
161
162
163
164
165
166
167
168
169
170
171

63.0
88.3
62?2
70.5


40.4
39.6
67.7
56^9
55!l
67.1
60.4
67.8
T34.9
sell
35.5
22.7
40.3
76.6
59!l
26.6
93.4
307.2
101.6
_1«0.,2 	
144.8
119.1
36.6
21.3

28.2
24.1.
22.1
27 ,Y
26,9
52.2
20.' 4
17.7
27.6
40^3"
24.6
27.3
4b,6
22.1
24 !>'
10.4
31.4
22.4
42.6
49,0
44.2
26.6
18..?
10.6
34.0
33'.7~
40,6
41.5
67,8
51,6
12.4
12.3
76,9
	 CHRP.
20.5
22.4
3?!*
2 US
40.6
24.9
19.9
3?. 8
	 30.7
46.1
30.4
3?. 2
107.3
30.2
...27,3.
27.6
13.4
36.2
27.1
44.4'
53.2
36. t
16.5
36.6
"" 30*,4
24.6
36.6
28.7
(16.3
30.2
18.2
13.6
bC.i
tHfte^ cKEsar TGSG
36.
	 I?..
21.
30.'
27.
22 '
21.
.26.
4?.
22.
. 17,
20.
29.
.23.
42.
27.
29.
if'.
23.
23.
10.
3!.
22.
47.
54,
32!
21.
is.
33.
57.
39!
32,
38. e
73.1
45,1
22. 1
!«.'
52.?
. JO...?
21.8
23.4
22.5..
47.7
$26.5
> ... -I«S..
-------
V

i
4
\
\




•











I

7
i
f
1

i-'

••
.•j

i.'
V
••
p
fi
•1
N
P '
ti-
ll .

0»Y
172
173
175
176
177
178
179
IdO
181
162
103
185
186
187
iaa
190
142
193
I9tt
- ,,-j -
196
197
Iff
199
200
201
202
203
"" 2da
205
ao6
" 207
208
209
210
2i»
212
213
214
215
216
217
218
219
220
221
2S2
223
224

PBMF
tIJ.l
60,5
72!9
78.2

• 1.6
73.1
29.7
69 '. 1
58.8
50.4
31.9
59. tt
~61.4
43.1
55.6
T7.7
80.6
76.8
- 8671
92.6
51.7.._..
58.3
7(1.6
24.5
32.5
6.S
60,4
86.9
.....Ktl.. -
36.3
38.5
64.0
32.0
SB. 9
• 9.8
76.8
02.1
68. 6
30.2
*
TE»F
77.5
38 L4
25.7
25.2

17.1
36.4
20.0
25.8
27.6
29.0
13.6
16.1
32. a
iB.e
25.9
a7.6
20.3
26. a
42.6
as. 9
23.3
36.5
28.0
17.2
20.6
23.9
39,7
25.5
27.8
18.0
20.1
14 7
20.2
15.7
36.0
as. i
25.8
20.9
02 MCMTOR:

,e«,9
31.1
31. a
lu'.t

23. a
29|3

Zl'.t,
22,0
ai.s
17.6
J0.7
52.8
25.1
35,5
" 	 55,1"
56, fl
£9.8
" "37.8
33.1
21.5
23.2
a3,2
a«li
27.3
32,6
49,9 _
2B.a
..20.5
52J2
29. a
39.3


7C.?
38.*
33.5
7.6

38.6
26.2
23.1
otla
57.3
31.5
9! •
45.6
30. 1
35,9
56.5
29.?
54.9
63.3
37.6
39. a
ai.5
27,1
23.9
26. e
58.1
32. t
31.9
20.2
23.9
21.6
23.5
41.*
36 '.9
VCD3 CCKP4B
CHfcJSC
65.1
B".-*!

9.5
31.9
101.1
26.8
11.4
25.8
3*. 2 .
23.0
2*. 3
ZS.B
ft*. 3
13.6
30.1
eft. 6
33.1
33.7
50.9
05.6
.... 32.8
5!. 7
30.6
15.2
32.8
27.4
3.6.1
8.5
26.9
30..7
2?. 7
83.0
25.9
24.7
2^,6
17. a
3?. 9
33.1
37.5
11.0
._. .. .6.8..
ISCN *" P'
Teac
4fi.S .
29. P
18.6
16,2
15.9

12.6
33.2
17.3
22.7
12, a
25.8
_ 27..B 	
20.?
.!**«
25.3
15.5
24.2
33. B
23.2
38.5
36.4
22.2
22.6
... 12.5
15.9
26. a
26. ft
	 29,7 	
19.5
20.0
is. e .
21. e


1LY 0*T1
7ECt<
100,7
48.7
49.6
a9,6
52.7
a2.7
51^3.. ..
IS. 8
46.6
27.3
59,0
27.3
39. C

29.0
46.1
53.9
39.0
98.9
120.3
Kb .a"
62.9
.30.5 ..
ao.4
56.4
79^0
83.4
56. 1
66,0




LISTING
7ECO. ..
-6j!j ....

2i!o
26,9
24.8
51.4
36,5
11.2
38.5



60.7
35. 0
32.6
61.6
62.9
36.9
36.1
34.9
32.4
... "6,5. .
51.4
35.7
ao.l
25.0
24.
24.
34.
15.
33.
61.
55.3
117.8
i
_fcHeM ;
flT .9 _ ._ 	 ... _ 	 . 4
afi'O
05 2 *
44 0
K*i
Zl*
l?: -
21*7
36*1
JO \
2*;«
ao%6
aaja • •=
u\\l
71*1
I6t2 • ._
aO .3
a 1.8
z-^l 	
27^2
U$ 0 *
4 9 £ •
alj'6 . . . . .....--
2t,5
9 0 it 3 *
zjl; 	 	
31,3
63S 	 	 	 	 ._ . ..-
3«.l
fl3.'9
13J7 .. . .._ ..

-------

ft
M "
"i
t 	
,
I \
: .... -. 	

, '• 	 	
• " "*"' ' ' ' "" " ~~~" " "~ " ~ " ""

	 . 	

— - __ —

!;-

i-,.
• — • • 	 ' — . —
t.


i
r 	 -
•..•

k
i

-• 	 - 	 —

a
/•

fi ' •'
tr — •
i

j -

i
L.1
-

225 30,8

227


	 « 4 	 71,0...
254 62.4
231 24.8
	 2J2_ 	 I.5...S. ....
2J3 15.4
234 47,7
216
?J8 _A5.0

240 52.7
2«1 71,1 _
2il2 A3. 2
243 82. T
SHU 6C,U
2U5 55.0
2«6 88.0
247 10.4
"~2Ya S4.7
2(14 67.6
250 ._ 62. L-
251 53.4
252 62. «
. .._ 253 	 32.5 .
23« 11.7
255 «d. 6
15* _ 6J.1 ...
257 83.8
251 11. I
>GO Ofl fc
" 2bi 76. T
264 fl».l
269 42.2 .
26* "«,*
267 75. S
268 25.8 ...
264 53, a
270 71,3
271 54. S
272 21.6
273 7|. J
27! 6*. 4
276 31.2
27T 5«.0

274 16.1
280 81.fi _
,„
I£*JF _
M.I
13.5
10.2
24.2
ME
27.1
13.1
.14.1 	
3tl!s
23.5
26.4
ir,*.__.
92.1 ,
36.3
10,7 . .
21,3
17,5

33.1
26.4

33.5
31. b
_J",B
ZZ.l
27.9
7JB
2«.6
az,7
15.2


1*,C
15.7
tT.?.._
|4.4
24.1

13,3
23.7
13.*
22.8
..* »..*- _
20,0
32. i.
4T.3
18.6
»*•!.-..
KCMTO»1

35, «
21 .4
!7.1
li«.e
kfi t
««.?
28.5
•a !s
76. 7
35, e
33. *
..«0. 5.
56.4
66.5
53.2
34.3
45.it
tt.t
4U6
37.5 .
7*. 7

<|B .9
54.2
60.4
ib.7.
38,0
_a4,»
ta.t
18,8
14.6
ZU"
22.8
2T.4.
32.8
st.o
30.5

#4.3
50. b
24.5
27,1
17. B
45.1
ai.s"
2*.«
W6 fC7
. CVRC
31.5

55.3
U5.B
^s e
il Q '
25."
Z2.5
Jb".*
27.4
38.5
8'i.B
fciib
3^.4
3*, 7
5'.?
51. B
77.2
. .51. a
et.i
65.4
IT. 1
53.5
77. S
12>
28.7
•3.*
90.5
14.1
22.0

2«.2
SS, <
28.8
47.4
2S.3
32.4
MS. 8
#9,3
36.5
zs*
26.1
37, 1
. 19.4
25.3
^CPS ee^Pisiiou -• 0*1

14."
_. .. .13.4 	
37.3
24.2
28 4
38. 8
5P. 8
t
18.2
15. a
34.2
36.0
32.2
J4.4
^ 	 .


*G
e«, 	
12. 8
.16.4
52.^
as. i»
a4.o
4IU.1
17.?
15. P .
11.2
;*.*•
51.4
£4.2
21.2
36.3
54.4
ai.7
ST.!
2* .0
2S .?
51.1
52.4
35.5
38.7
(16.?
31.Z
— • • •




- -





- - •
28.4
#e, a
4.2
18.* .
33.6
34.1 	 ,
16.7
36. S
!«.*>
	 ?' •" 	 	
21.5
26.1
a (i.4

-------
N02 PCMT0»INC PETUCCS COMPARISON
DAILY  DAT* LISTING
;j . -
•i
j!
.1
i'i
*
-
i.
i.
i
!
l'
k-
f-i
'( '
L.
r — 	 — 	 —
*•
i-/
(.
DAY PRMF TE«r CHRF CHOC
281 153.1 76.8 .79.6 t«.S
212 8!. 2 23.7 25.3 2«.0 ....
283
28«3
286 136.5 51.2 ft!," 30 e
287 63.1 33.9 ie.^ H. \
289
291
292 .
"293
29M
295
296
297
298
299
300
301
302
103
.10U
305
106
JOT
SITE'*!
CHjLsai
38. <
. j22..J
5«.,
27l«
an..'
I7l«
7.
15.
it!
20|
12.
f.
9.
2?.
2U.
5?.
32.
_ 1-3 ,
TSSC 7ECH TEC8 C^£N
40.3 T«.?
26.7 26.2
38.1 37.9
10.8 12.5
12.4 35. u ..
41.2 JS.-J
t
1 	 	 	 	 _.

•
                                                        -"1

-------
>
fl 	 •
J
].

'i
• l
!'1
•i
1
j-*
i-.
•i,
0
;'•
».'
v
\
i ...
K
w'

m
in
»
M
N02 HCMTCBIM6 KfTNCBS CCMPAPISOM — DAILY
DAT
10
II
12
... J 1
IS
16
J7
21
24
__26_.
28
29
30
31
3(1
35
36
37
38
39"
40
42
43
44
4S
47
48'
49
50
51
52
53
54
55
57
58
59
60
61
62
63
64
65
66
67
68
„„,



-33LO. 	 CHP.C . ..CKRC


.. .
-- 	
..CHE.8.81
	 -•
1 TCftP Trrn
«7.0
in 'o
52.7
58.6
	 - "a JL
108.3
154.0
a* A
	 	 — 	 	 - -Ti«w.
	 	 — 	 	 	 . .23.? . ._
28.3
17.1
21.3
2u! 7
47.5
24.4
77.9
35.5
_ 20.5
52.6
"7.3
46.4
liolj
_. 28.6
69.9
27.4
45t4
20.3
36.2
21,2
37JO
19.7
is. 4 "
16.5
15.8
48^7 "-
58.8
71.9
117.0
74.8
53,1
97.1
32,3
40.2
33.3
56.2
7.8
6.2
6.4
t\t
16.1
9.7
40.0
14.3
2U3
16.9
.17.8
41.9
12.8
22.1
52.2
11.8
io .'9
39.1
24.8
37.9
14.3
15.4
7.6-
27.5
I'.?
17.8
22.4
6 4 ' 3
zsiv
29J4
25.5
10.4
42.5
20.0
9.1
till
	 10.6
16.7
21.3
15.9
49.4
17.9
. 13.2
26.1
26.1
21.5
53.3
15.8
... 25.4 .
2«!o
"~ is.f« '"
25.1
20.0
53.6
17.9
Id. 8
io.2
26.9
19.3
20.9
2T.1
~ 'iS .'•""
50.2 /
69. e
£3.2
	 "1.5 	
16.4
43.9

9.8
16ls
19.5
14.7
48.9
16.2
. 16.7
32.6
2e.o
2».8 .
35.2
11.2
17.2
4«. e
7.V
26.9
25. t
45.9
20. C
nis
31.9
2l!i
29.2
50,7
87.3
41.1
26.6
55.8"
10.6
27,4
20.5
46.2
..24,0
22.1
6.1
" 17.^4
18.3
25.7
21.0
12.7
4l|9
_. ?4 |r
40.7
30.*
31.1
19.9
13.8
17.0
14,6
33.3
32.?
11.3
10.11
11. e
32.5
26. H
IB.*
27.5
46.7
34.7
26.0
3ft. P
30.8
23.8
43.5
27.7
55.4
13 A
- -. 	 Je.».sL
19.7
33%6
52:6
Si *i
Ill.O
	 27.9.
125.8
	 	 6ai«»
116. 5
"26.4 "
" 	 Bilo
	 S3. 6.
7l.*4
._ 	 69.0
72.7
59*0
88, '«
DATA LISTING



22.7
20.0
20.9
j.0 	 .
14.8 ' '
25.0
33.6
41.2
26.9
96.5 ....
23.3
. 61.3
87.6 .
45.2
46.7
38.3
27.6
51.4
46.2
37.7
24.1
44.8
69.3
'120.4
57. 9
41.8
71.0
48.4
46 1
66.6
. ..37,8
.vo

-------
1
f\ • ~"~~
1
J
1 .
* •
S
;l
I 	 „._
F.
!>'
PI
L-
fL._ 	 _.„
^
V.
i:;
Ef~ 	 "
J"
. ...
r
Mi
i
•r

"i 	
ii
j-i
N02 WCM'
DAY
" ' 69
70
71
72
73
74
75
76
77
78
79
"BO"
81
82
83
84
as
86
87
88
89
90
91
92
93
9(1
95
96
97
98
. 99
100
101
102
103
	 104
105
106
107
•108
109
lib ™
in
112
113
114
115
116
117
118
119
120
121
FRMF
10.8
21,7
59|'6
26 t2 .
23.7
26.9
34.0
37.1
~3o!~3
46.7
28.5
31.0 "
36.2
70.5
SO -~
31. '7
- sirs -
41.6
43.0
--5572
si.'"
38.1
43.7
56.0
64.0
106,3
66,4
109.6
57.9
_ 36.9
45.4
53,1
. »O
75.5
64.5
64.7
"73.4
83,0
50,9
47.7
48.6
87. 7
98J3
81.3
70.4
34.7

12.8
27A6
33.0
30. S
12,3
12.7
11.7
14,4
19.9
.31,?
22.8
21.2 -
21.4
41.4
19.8
20.0
12.0
19.8
22.6
21.3
38.7
18. 3
23.2
25.5
32.4
40.8
62.1
30.4
73,9
39.3
18.7
17.6'
32.3
47,7
«l!6
47.0
60.5
47.9
25.?
24.3
16.3
ft- 9—
38.7
32.6
116.7
18.4
CHR£
14,7
2i.'8
33.1
34.2
14,9
17.5
15.4
19.8
30.6
22.6
26.4
14, 4
22.6" "
26.2
61,4
25.5""
22.6
20.9
28.2
22.6
42. '7
26.1
29.1
3614
40.6
80,1
.36.5
53!e
25. 2
28.7
40.0
50,7
60.7
45 *2
64 ;«
51.4
28.2
29.]
25.1
«5.5
68.6
42.8
46.9
39. A
54.1
23.2
fORlNO HCTWC9S CfHPiPISON •>• 0*ILV D»T* LISTING
_CJ!?.C ..
12.5
37.4
36.9
.|4,4 .
n'.i
.17.3
16.2
?3:5
17.9
27.1
16.4
22.5
12.8
. 48,9..
22.7
18.7
"14." 6
22.7
23.9
32.6
44.7
"iflS
35.1
46J6
76.9
.36.7
49. Ji
22!5
22.8
37.8
56.1
34.2
37. B
?7.9
44.9
19.8
42.7
36.1
27.6
65.9
53.5
«2.0
40.0
52.0
22.0
CJlffiS.0 TGsn
Z9.?
flljjl
83,3
"!»"
67,0
16 1
- 24 0-
31.8
31 .'3
22,0
"26.'6"
33,7
22*,C
?i!e
20.3
17.8
11,9
. 11.4...
36. C
IB. 3
44j2
167. E
73.7
50.5
.. 52,0
4 6. .9
43.1
33.6
29 ;2
17,9
13.0
76 ;5
7?:?
38^9
52 7
10.2



.. 	
....„
15.7
10.0
It.
H! "~
< 38.
4!.
47.
. -63,
67.1
97.3
60.7
101.7
75.8
38.1
36.0
52.3
41.0
56.9
32.5
-3«..0_ ...
43!4
2«.l
22.0
22.1
13.0
46.9
33.1
3*. 7
25.5
37.8
TECM
23.1
4(1.9
79.0

46. J
28. 2
23.9
30.4
25.3 •
30.2
21.4
.__53_.S__
ails
20.8
62:8
-68*P_
78.2
155.3
_.69.8 	
96il
39.9
-flT.S""
78.1
53.3
7fll7
-85.5
148.6
99.6
38.1
17.5
69|a
79.6
99!s
22.1
. TCC4
19.2
23 S
6«.l
82.1
23 1
30.7
42.2
7fl';6"
39.2
..._67.4
23^0
21.2
«4.7
51.1
43.9
113.2
49. 5
39.7
36. 8
32.5
2o!3
26 6
67.9
48.4
25.9
37.0
40.8
34.5
U7.9
38.1
30.5
43.2
37.3
U5.5
T9.0
«7.2
34.9

17^3
UP
43,9
07*6
53^5
31*6
74*1
31,7
45*2 .
42*4
«4*8
103,0
50,6
35*9
63*7
«*3 	
51,4
61*5
84.4
67,8
32*2
84 Js
62?5
»c.;7
30.1
 :1
M
O

-------
t • MC2 HOPC'ING PPYNCD8 CfMPARISCN -- DAILY DAT* LISTING
i
i
i
•
«i
i
f
'!
f: 	
b.:
:*-r.-s--cs::.-'-
1
i
!
i
3. '
1
1
]
••;
j :
>•:
«.
u
X
i
DAY
122
123
129
126
127
128
129
130
131
132
133
135
136
137
138
139
140
101
103
	 	 tog
107
108
109
150
151
152
153
154
15S
156
157
158
J59
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
PPKP
84.7
88.2
70.3
36l7


II*.'
35.6
-4«.a7_
18.0
23.2
.22. J..

53.8 28.6
48,9 22.8
96.3
32.5
84. «
23.7
45.1
88. fl
82.2
37.0
"47)0"""
112.6
66.6
28.4
44.7
15.3
11.9
106.9
SO. 2
54.9
42.7
37_,.7_.
59.7
54.0'
....1.16.8.. ,
92.0
114.1
121,3
115.9
179.5
141.0
37.6
29.0
69.7
61.3
47.2
32.7.
13.1
49,3
10.4
20.4
40,8
26.2
14.7
21,8
22.3
65.2
28.9
13.6
17.8
33.6
£8,5
18.2
22.0
27.3
24.4
16.7
.15.6....
26.8
20.9
49.0
29.0
38.5
42.9
41.1
45.9
54,6
1U3
16.3
39.8
42.7
19.5
54,3..
CM'
38.9
	 50.9
18.4
29.8
.. 2.1. A.
40.8
	 28...0L.
33.2
22.9
65.8
10.8
32.7
5J.9
2o!s
26,7.
30.9
70.9
„. 1.8.1 1..
21.9
47.2
J2..7
25.9
36.1
.. 30.6
32.5
32.0
...26.1 .
31.9
29.4
28.0
25.!
27.1
23.8
31.6
38.9
17.9
14.6
44.1
23.8
S6.2__
.... fast
38.2
51.«
19.2
24.6
2.3 »J

39.1
33.1
21.4
94.0
14.6
23.0
43.5
25.3
23.8
.. 23.2
28.0
66. A
36.0
... 25.2
20.4
39.)
28 .f
21.1
51.1
31.6
27.0
19.9
. 21.?.
27.3
23.3
60, e
36.2
45.2
.._?«, 8
40.3
03.5
99,0
23.2
16.6
46,9
.43.2
... .52,0..
C«ES8P re. IP TECH
01 r
. . 5.0... v ..
32.4
23.5
31 »4
47.2
7?!e
39.8
71 4
43.3
.. 39^5.. .
10.9
51.9


""" "so'p"
40.!
S« 7
20.9
30.6
16.3
43.1
.... OJ.9
59.8
43.1
53.9
29.0
58.2
42.7
42.1
SB. 7
60.7
20.3
49.7
60.8
29.9
31.7
44.3
14.4
17.9
73.7
109.6
13.1
40.9
39 U
60.0
127.'3
183 •*,
12.8
28. -6
ssls "~"
24.9 03.2
. LL.5 70.7
28.5
12.2
45.6
36.9
20.3
23.0
21.9

62.2
33 .'7
	 5a..6. ..
30.6
56.7
91 S
51.9
41.7
40.8
62.2
67- 1
se.o 107.9
28.1 70.3
..15.3 	 36..1 	
14.6 31.8
34.8
PA 1 1 8* 'h •
16.9
20.5
23.6
20.9
17.7
10.0
22.1
20.9
13.7
10.0
22.3
17.6
19.0
20.1
9.9
9.0
30.5
17.3
a «.o
26.2
61.5
	 6q,4 	
81. S
45.2
51.9
70.5
30.~S~
88.0
69.8
82. 6
9 u 'a
39.1
26.6
133.9
41.4
145.5
tECo
46.2
as. a
32.8
33.6
02,0
.6.1.5....
28.9
31.2
.03.7
34.0
62.6
48.2
28.0
46 ! 8
S9.8

23.6
79.7
.5 6 ,.6...
26.1
37.3
49^0
43.4
50. S
53.7
16,7 "
21.1
40.7
57.5
29.9
38.1

54.3
77 1
27. « •
32.»
70.2
123.7
.111.7
43.9
oa.6
106.0
OS. f
56.?
25.(i
59,0
60. »
51. S
. 66.2
66'.?
15. r
51.5
49. *
80.9
91.3
oa.;
32.3
47.7
98.1
. H 1 . 5 .. .
10.7
2*!o
19.0
6.3
53.5
32.7
Sli?
3!. 6
32.9
43.?
28.6
10.5
33.4
55.6
30.9
70.9
..." -n

-------
1
V
!
i
!
t
:
NflZ KOfclTCRING PI
t
~ '" 175
176
177
178
179
. 180
,1 181
,! 182
183
; 184
v 189
|86
* 187
v 186
189
190
192
J . 193
194
195
196
197
r' 199
200
,' 201
,: 202
» 203
ri . 205
206
207
•; 208
^ 209
210
.•; 211
J 212
., 213
•i • 21«
215
«i 216
«j 217
J 218
«! 219
» . 220
,1 221
».* 222
J 223
•J 224
>J 229
H 226
I1! 227
nvf TE»r
105.9 44.6
50.0 23.0

35.0 12.0
46.2 27.9
135.1 51. S
66.1
12«,*
16. e
30.4
22 !l
35.5
17.8
3oJ»ILY e*i
TPf* H
121.2
61.1
56 !(J
141.0 .
26.7
27.8
.7.1 ,.4......
42.3
87.1
52.2
68.0
82.9
77.9
31.9
55.3 '
57.9
35.6
53.6
30.3
au.6
47.0
65.6
25.5
55.1
B.7
20.5
33.2
47.0
55.7
18.8
46.3





ft LISTING
T.EC4.
62.9
34.1
20.6
23.5 .
Uli'.b
87.8
20.9
35.6
47.0 •
11.8
46.7
47.6
45.0
33.6
£4.8
_.?*.3
25.0
36.1
46.6
10.6
21.9
28.4
35.8
"38.5
10.1
_ 25.9 	
11.7
29.9
"20.7
27.2
"21.9
58.2
22.4
46.9
_.29,6. 	
21.4

CBEM .
7S.S
23.1
ifl.a
20.4
10.?
20.9
9*. 9 ... 	 	
«j.e . .
27. It
47.9
2T.O
50.7
40.7
17.2
41.2
40.6
26.8
24.7
30.0
34.7
17.0
16. ft
23.9
22.7
1(1.6
17. S
6.6
14.5
10.4
16.9
12.7
19.0
13.*
7.4
14.5
23.4
1J.O
11.1
1 0 ! 4 	 "
19.6
28.0
13.4
39.6
32.7
30.0

=
*" '
»


	 • — - •— 	 	 -"
•t
n
"*
>.
•
u
•
'•l
'*.

      .
-—-1

-------
NC? HCMTOBING KPTUCBS COMPARISON — 0»ILY CAT*  LISTING
;i
'j
;!••
•i
i;i
t^.
\ t-
i
[•i
!":
?
/i
?'
';•
t»"
U
T
•ii'
!«•
1-
1-
w'
V
tu
;j
ir
L_
1
J
u
0»Y
226
229
230
231
234
215
216
217
.. _...218
219
240
241
242
24]
244
245
246
247
248
249
	 2SO__
251
232
254
255
. . ..256
257
258
259
260
261
262
261
264
265
266
267
-268
269
270
271
272
271
274
275
276
277
278
279
280
FDHF
55.2
39. B
60.0
28.7
37.9
51.9
50.3
55.9
64.3
32.4
. ...Z4tS
61.5
39.0
56.5
37.6
58.2
39.9
46.0
60.7
72.3
96.1
	 35,4
57.1
64.2
13^.7
14.9
30.0
_ 51.4
27.7
17.2
36,2
70.0
42.9
*2.7
31.2
43.9
34.8
31. J
64.7
34.5
22.0
45.3
57.1
32.2
25. '8
43.9
27.7
46.4
75.2
TIAF
33.7
26.0
26.3
14.1
23.9
30.9
21.4
26.6
20.3
. 36,8
20.2
24.6
24.5
15.3
27.1
24.6
19.9
20,0
23.3
23.5
_ 	 1*,*
17.2
23.8
11,2
1.3
... 22.3.
16,2
9.0
2
-------
                                          N02 KCMTCP1NG ftffCDS CPWP4RI80M  —  DAILY  CUT*  LISTING
1
! 281 119.1 09.0 Sb.ft
282
283 8(1.1 28.2 01, |
284 88. T 2U.9 14. «
r289 71.2 3t;i 2(1.5
286 89.0 35. Z (ld.2
287
269
H • 29«
•i ">
J 292
.1 • 293
,,: 29«
1,: 295
<• 296
I;:- 297
;.: 298
:„ . 294
Vi 300'
J 302
,.: 303
,; 30(1 '
..•'• . 30J
p 304
•"! 307

CHRC CHESSB TGSC TECH TECd CW^)> "-
37^1 9(1.7 34. «
39.4 It i 109.2 39.?
11. a 39;.. ja.e ie.t
25.0 >l.e 21.?
16.5 56,3 22. a
68.2
l2;? -
17.1
16.0
14.)
22.4
16.9
29.1
11.9
!<)!<>
19.7
13.8
10.9 . .... . -
Sol? . ^

                                                                                                                                                 if
                                                                                                                                                 •
S
                                                                                                                                          --"1

-------
NO 2 HCMTORIM6 HETHCC8 COMPARISON «« OAJLV DATA LUTING
,_


,1
!
)
L.
•n-
it:
I-
P
ti— ™
h
H
7*
I*
P' j
I**
h- •-
H
jj
"i
j
I/
v
K*
•'!
i;
"
' '
_!
u
u
?
DAY
27
IS
29
30
It
FBMF

90.2
«1.2
.114. 8
12 111.4
33 79.4
J« l?9,l
39
36
38
39
4Q
It
«2
43
44
4S
46
47
48
49
SO
51
8* ...
53
54
55
56
57
58
99
60
61
62
63
64
65
66
67
68
69
70
71
72
71
7«
75
7*
77
78
79
99.7
98.9
_.«.!..
52.1
:92.4
.69_.5_...
, J2S.4
150.8
.7««.o.
77.7
91.9
IOS.J
69.1
72.9
9.7 ..1 ..
64.9
95.7
• O.2....
98.7
..JO. 2 .
73.3
93.2
S1.5 ..
116.3
183.8
1.5!. «
168.7
16*. 0
..72...1
97.0
93.8
J 07,9
91.2
83.5
_.7B.4 .
55.3
45.0
86,5
74.9
76.4
72.9
57.4
96.7
• *•!_
- . J_EA£ _
37.0
12.4
. -IU.0
43.9
39.8
-_59.6_..
S9.4
43.6
._J4.6. ..
18.8
32.2
J9.i
40.1
41.6
?8.B_
43. 5
66.6
_.60,2.
37.7
59.2
...**•!.
57.3
72.1
6?a7.._
61.0
43.5
.48.7.
39.5
29.5
.. 2.6.2
42.3
71.8
62.3
66.7
76,5
. 4.4,9
23.2
28.1
. 78,6
67.7
57.5
*B,A
27,8
33,1
59,9
46.8
48,9
41.0
39.1
38.2
82...0
	 iHRF 	
60.0
54.9
. .102.6
86.6
61.8
... 66.|. _.
57.1
28.8
45.1
	 3«.6_.,
62.0
86.2
46.1
59. i
72.6
tf.,0
*6.7
62.9
.... 68.6.
83.6
58.8. .
64.7
52.1
45.4
S3. 4
««^L_ ...
68.1
117.2
9e, e
U1.5
117.1
5t.l
30.0
34.8
75,8
68,6
58.2
47, 8
40.1
42.4
.75,9
64.7
63,3
53.9
60.5
57.8
5 2. ..«.._
_ .CK»D
5J.7
4P.5
?':5
Jii!
52:2
.44.5
29,8
00.1
~58\4
74.1
4T,2
92.7
72.8
66, '1
59:5
96,8
64.2
58.2
63.6
65.6
63.6
46.6
53:5
54.5
52.4
-39 ;i.
59*8
ioe.4
*2j6
106.2
«9,4
J2.2
29.6
31.5
71.«.
62,2
sa'z
fltt.9
io'.'i
if 0.8
72.0
59.8
61.4
5i_.J__
5 1.2
51 .'9
... ..CheSSC IB9C TECh TfC4 £kEM '\
i9.j ;
	 -9-U
6i.'l 	 	
119.0
55.8
"-,3 :
>j.7
68. 5
. . se:6
12.4 ' 	 -,
... . .37.3
70.9 ": 	 	 - —
?2.t ;
24.8
48.5 ' " 	 	 — '
«.9 -.;
.55.8. . . .
S2.2 .---..- 	 _ 	 _..
44. t
58.8
44.5 • 	 ' ' •
73.9 C
. _. 93.7
73.8 	 	 -
82.6
89.5
59.7 . • ~ 	 — ' ' 	 	 --• ..;
59.7
78.1
59.4 - 	 - 	 - 	 - -
102.9
37.6 	 „
100.5 .-.. 	 „ .. . . 	
«7.l ..
	 67^ :•
46.2 • • 	 - - -;;
37.6 . ;
3(1.4
45.1 • - - 	 	
6«.»
69.3 "
77.7 " 	 - •' - 	 .".
69.2
71.9
6o;e 	 • 	 ~ •
'"
M.3 •:;
66.7 . 	 	 	 - 	 - 	 	 -;
59.1 :;
se
1
Ir*

V

s

-------
} HOi KCKI70BIN6 HPTHC03 CCHP4PI8QN — B*ILV OAT* LISTING
1
J

1
•1
i!
l
•
if
ft
h 	
P

I, 	
b
fc
H
h
B 	
,. 	
i
i
J
ii
u
si

DAV
80
81
82
63
84
as
87
ee
89
90
92
93
95
	 96_
98
99
m-
101
102
103
105
107
_»"...
110
111
ill
111
114
115
116
117
	 __.
6
119
120
" 121
122
121
124
125
126
127
128
129
110
113
134

PRMP
82.0
119.9
102.5
se. a
81.6
74.3
74.5
79.7
94.8
77.1
	 110,1.
71.0
41,0
66. S
119. tt
	 96.7
127il
86. S
110.0
96.9
141.3
115.3
109. 2
80.6
78.6
	 *«.,»
84.4
83. a
94.7
119.6
102.5
62.2
66.5
54.5
93.2
154.1
110.8
ai.a
89. a
100.7
68.6
78.4
89.1

65. U

	 MM.
47.1
52.6
29.6
_.«».L4
33.4
31.0
29,4
37,5
24.9
. .3.8,1
27.3
21.5
4B.7
64.1
. 48,3
BO. e
58.8
25,0
32ll
32.6
49.3
55.6
50,8
36.3
33. e
36.0
47.9
50.7
49.3
43.6
	 57.9
40.5
. 26.0
26.6
25.4
.35,8
50.0
61.0
35.5
45.8
43.4
...33.4
20.6 "
36.9
36.3

31.2

W
53.9
. ' I !.!._.
67.6
55.5
SflJ
53.1
51. "
«7,7
53.9
47. e
6«.4
Ht'.a
.. 56,6 ..
62.4
69.8
lOs!)
75.5
38.1
55. «
54.9
63.5
""" 78.7
65.6
43,5
	 «9.8 •"
6o!a
52.4 ••
53.2
66^
52.6
40.9
37.1
32.0
	 46,?
64.2
71.5
" 49.J
46.6
36.6
46.8
45.8

36.7

. CKRt.
53.9
62.8
51. a
" 48 ,' i
4? 3
4?. n
it •.
39.5
49.11
32.8
3«.5
.62,5
66.6
77.6
67.9
96.9
7t.9
31.6
4«.6
45.6
60.6
75.2
6C.6
42,2
44.8
35.5
4«,4
48.6
44.0
39.2
55.8
5*.?
53.1
42.2
34.0
60.5
73.8
75.1
42.2
46.8
40,0
37.8
44.6
45.9
35.4

--CHJES8C
68.5
	 	 .99. L
MO. 3
94.2
5P.1
51 *
60a9
S .6
30.7 ~
71.0
. 35. 6_ 	
96.5
78. e
51.1
1C1.9
61.4
..•.*.».._
91.1
62.6
43.6
.. 56.1
56.5
77.8
*',.«__
66. a
47. S
57.!
51.0
41.3
80.3
98^8
96.6
100.9'
85.0
7J.3
77. d
67.1
79. J
40.7
25«!e
150.9
80. 5
67.3

TC8C TECH TPCU rhrM
t
•
-r
i
«3t7 ' . - - - 	 _ ._ 	
3&:6
Ji?7 	 - --,;
31,7 .......
5U4
91,5
_.J06.*9
160.5 " 	 	
120.'3
56.1
73^5 — - 	 	 - -"
aeis
60.8
38% ' - -— 	 ~ 	 	 '
33.4
49.7
43.8 ' ' - 	 	 	 '
40J8
" 4877 	 ' •' •-••-•- - 	 - 	 	 '
43 .'4
SB -j
28.3 	 - -
22,7
37.3
48. 8 	 - ' - 	 ' ' -• 	 ';
58.0
30. '9
33.9 ". 	 - - " ' , • -- --

28,'6
34.9

29. S

 EC
*->
f

-------
NG2 MCMTCPIMG PCTHCD3 CTuPAPISON — DAILY C»T< LISTING
1
t
1
I
j
\
r
rt —
F
£
i
3*.
•*!
h-
t.-
I
r;
i j
h
i
u
tJ
3 '
«E
u
11
J _
ll
\
DAY

135
136
137
136
139
140
141
142
143
144
145
146
140
ISO
151
152
153
154
155
156
157
158
159
160
161
162
" "~" 	 164"
1*5
1*6
1*7
168
IJO
171
172
173
• 174
175
17*
177
178
179
180
181
182
183
184
185
186
187
FRNP
68.4
	 _75J_
64.3
66.3
68.0
95.8
78.7
74.0
68.9
82.2
. .72.2..
78.9
106.3
77.3
50.1
87.6
67.4
92.8
117.9
82,2
11S.9
82,5
70.8
48.9
65,2
7t.7
110.6
.131.2
79.2
74.9
64.8
122.5
148.7
59.0
tO.9
77.7
112,6
166.9
73.2
61.7
58.1
68.6
59.1
54.0
63.4
87.6
07.1
eo.3
42.2
69. T
121.8
89.9
TEAF
53. »
	 38 t6 	
30,5
29.3
...27.4 _
4J.B
39,3
2B..9
26,6
«2.6
38.4..
34. J
46.5
29, i
22.9
32.5
33.4
41.3
28^8
'"50.?
28,7
34,1
33,1
17.8
31.1
32.2
31.3
56.2
25.4
. 21,0....
34.6
55.7
21. 0
25.5
40.4
•—«s!*~
37.7
3fl.9
26. fl
25.6
23.6
5«Io
58 ,0
25J4
"29.8
54.1
44.7

.4. 2 a.
36.0
39.3
30. e
5 42.2
32,?
29.7
1 20. ?
34.3
i

:i
42. 54.2 33.3
44. 415. fl 25.7
48. 
45.4
36.2
27.7
'
M
18.6
21.4
22.1
19.2
43.1
42.7
41. (•
32.7
23.5
29.2
4*. 5
37.3
;"

                                                                                                       .EC

-------
K02 NChlTOPIhQ ^CTHCOS CCMPIPZSCN r- 0*ILY DAT* LISTING
,
-j
i
!*
1
•
vr
i j
i..1
i
c
r-
'•I
i:
i'
D
£i
i?
i''
P:
P
[j

"!
j
:

DAY
188
12!!
140
142
143
141)
145
146
147
148
149
200
201
202
203
204
205
206
207
208
209
210
ill
212
213
214
219
216
217 "
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
200

FRMP
53.0
70.6
M.5
70.6
72.6
T4.5
62. t
97,5
118.4
. .7.6,2
56.5
104.6
132.2
•J2.4
63.2
81.0
70.6
70.0
. .»••«
73.6
146.1
134.6
75.1
62.0
83.1
103.6
100.3 •
68.5
56.2
108.2
112.1
*5.3
61.4
64 ;
-------
N02 MCMTOBIN6 HETHCDS CPMMiSXSON .- DAILY 0*1*  LISTING
	CKP.F.
CK8C
SITE-901

 iMt8.SC
______ IEC4
'!
J
*'
i
„
t-

J
r":
& '
"
«
u 	 	
H
r'
1
LJ
i*
i/
j
•«.
j
!•
202
201
204
	 206"
207
208 .
209
250
251
252
253
254
25S
256
257
258
259
260
261
262
263
260
265
266
267
• 268
264
270
271
. . ..272
273
274
275
276
27T
278
279
200
201
202
203
280
2B5
266
207
288
209

72.0
60.7
no.«
110.0
.....165,8
120,8
104. 0
115,0
113.1
62.3
128,0
120,0
77.0
53.5
63.5
104.6
72.1
97. J
46.0
4S.3
64.2
116.2
47,3
117.4
141.2
„ 131.1
96.6
01.2
... 63,5
13S!3
101.6
85.6
83,1
65.5
66.1
64.2
114.5
86,4
139.0
103.0
164,4


17. j
34.4
72Jl
... 73..!
53. J
46.!
S3,<
64. <
«7.1
60.1
OS.
26.
37.
64.
53!
24.
14.
33.
54.
54.
64.'
08.
34.
.. ..JO,
64.
60.
. .37,
56.
36.
38.
57.
36,
34.
SO.
83,
S3.'
48.'
36'.'
66. t
50.
96.1


59.
62.
1 104.
101.
	 1 0.8 .
' 105'.
1 03.
: _..._! 02.
1 104.
f 79.
133.
44.
50.
03.
56.
.. 57*.
66.
39.
30.
48.
62 i'
59.
79.
62.
71.
	 71.
104.
43.
43,
83.
01.
03.
01 '.
03.
oo.
87.
1 84.
r 45.
! 05.
» 27,
i 67.
t 45. i
1 06.1


05.1
58 ..2
7S.
7?.
54t
74.
04.
104.
12l!
84.
34.
02.
78.
50.
61.
3D.
<*?.
54.
. 54.
62.
64.
.... -.61.
73.
67.
.. . . 6?.
- 44.
93.
85.
64.
36.
04.
«*.
3*!
38.
60.
74.
06.
01.
6J.
! OZ.
t 70.


6?, 4 33
104.1 St
66
124.1 . _ 170
104.2 56
70. C
103.6 	 	 ..... 	 .«8
63
48. 3
02.6 ..... 	 	 .
65.1
65. 1
54.2
126. 7 "
78.0
119. 4
63.2
47.0
64. t
67.0
65.1
37.7
39.1 	 . .
120.6
lin.s
49.0
72.4 . 	
71.8
40. (
43.5
71.0
43.5
43.5
11.5
12ft 1
111.1
06.5 . .

.1
.2
.4
.3
.9
.5
.0
.6












                                                          57. «
                                                        . t2.«
                                                          4(1.0
                                                         100.3
                                                         112,9
                                                          71.4
                                                          54,3
                                                        .  54,7
                                                          71.1

                                                         104,8
                                                          es.i
                                                          53,1
                                                        .  4f.2
                                                          6T.7
                                                         114.9
                                                          6P.2
                                                                                                          f
                                                                                                          M
                                                                                                          VO
                                                                                                   -•'•a

-------
N02 HCMTOBIKC HETfCDB COKP4RIBON — DAILY 0»T* LISTING
DAY fSMF TSAI
IS
16
17
IB
19
20
HJ 21
22
V" 	 "" 2» 	 "~
J 24
•J 25
.! ' 26
>i 27
26
| 29 63.2 39.
I- SO 93.1 3«.
f. . .. .._. 	 	 	 -»! 	 •!•• «,
M 32. B2.4 2S.
^ 53 t3.1 IS,
N . « «"•' »'•
IS as. 6
ri 1* 82.2 2«.
K . - — " «,i »••
.r IS .5.3 7.
L' 39 1)3.1 12.
I* «0 (15.8 12.
..:| 41 S3. a IB.
•\ 42 96.9 19.
41 44.6 1C,
* ~ " "' 44 ' 49.3 20.
« 45 32.1 1!.
..) 46 78.0 51.
,] 47 72.8 22,
J : 48 66.3 31.
a* 39.3 23.
,.. ' ""50 it*. 8 12.
..' 91 56.1 Utt,
• 	 _..«__. . *«.» «S.
93 49.0 32,
W S« 39. S 29.
._ 99 48.2 20,
«i " "" "" 	 " "96 J8.2 15,
-I . 97 50.0 27.
~_ 98 63.9 26,
I" ' 99 69.1 31.
60 93»7 99,
J 	 61 U7.9 92,
j- _ _ fi — itij - -
*I 69.9 36,
H . 64 78.2 46.
:.
! O-L381
30.
34.
41.
*».
59.
«2.
3«.
6.
22.
28.
46.
18.
34.
««.
8.
14.
31.
22.
41.
27.
64.
31.
54.
36.
34.
44,
21.
2U.
... 33.
27.
91.
36.
37.
28.
41.
5S.
4).
. 1»,
; TB§n TSCH TEC'
S7.«
27.
	 60. (
32.!
46. <
73. »
.. 	 	 	 , 59.1
' 46.'
	 23. •
45."
1S.(
23. (
23.
30.
26.
z*.
24.
14.
45.
34.
44.
43.
38.
71.
49.
56.
36.
	 	 _ . 54.
. " "2.
39.
67.
.80.
50.1
46.1

t CHE*
24.0
I. 40.9
27. 5
) 61.1
I 36.1
28.9
31.1
31.1.
17.7
92.9
30. 7
36. «
i 37.4
1 59.8
61.1
> 54.3
43.6
! 30.4
> 2E.3
21.0
I
!
>
29.6
25.6
29.3
40.7
3S.7
43.9
39.4
46.6
69.4
61.3 .
61.4
45.4
30.9
1
i
82.2
29.7
98.1
34.6
ro
O

-------
No2 MCMTO»INC HCTHCOS CCMPABJSON •-
i
•| ' OAY FBfF 7EAF CHRF- CHRC CHE88r ...JfijIC 	
DAILY DAT! LISTING
TECM TEC4 ' CHf
•
i
!•
F
'•ie
'u:
!
i'.J
.",
'.*"'
>•
?i
7>'
ti '
c
j.,;
i"'
"_•'
»«
b
t
!••: _ . _
H . •
3
j
;j
u
,1
j
a
68
69
70
71
72
7J
7U
7S
76
77
78
79
60
ei
62
61
en
69
66
f
68
09
40
91
92
?J
94
95
96
97
96
49
100
101
102
103
104
IP.?
106
107
108
109
110
111
112
111
l.M
US
116
117
116
119
120
62.5
01.9
«6.3
56-. 1
27.4
51.0
37.7
32.1
27. 4
60.2
«>S.2
at, 6
S3. a
ae.2
62_,e
110.7
67.6
25.0
39.2
53. 8
64.2
39.8
52.5
M..S.
50.1
62.3
_ *«.2.i
96.5
96.0
76,5.
59.0
57.3
57.3
51.5
73.6
74.7
61.0
68.1
60.7
70. a
90.7
57._,7.
78. a
76.3
52.0
53.8
53.9
70.6
7S.8
65. S
80.0
37.8
...38.3
30.6
35.3
22,Z__
33.4
30.9
... 21. 9. _
22.1
02.6
36.1
25.3
17. a
35,7
28.0.
27.7
. 37.7
50.1
25.6
14,8
17. A
24.0
30.5
14.4
22.1
34.7
30.6
41.7
. 38.0. .
62.6
54.7
_.«P.« .
25.2
27.6
24.4
26.0
31.6
30.2
43.2
36.4
30.8
•~45.§ '
44.6
27.7
40.3
37.9
2?,S
22.9
22.5
3.7.6
34.4
46.2
41.1
4S.3
28,0
36.2
ita.a
24.4
37.1
33.8
_. 21..4
26.0
46.?
42.4
27.4
17.5
33.4
36.0
30.6
4*.!
61.2
36.6
27.2
23.1
37. S
4(1.7
35.5
30.0
_.O.J_.
3?.l
46.5
71.6
60.4
..5L..2 .
38.1
33.5
34.1
3P.4
40.5
.38.0
42.2
36.2
35.4
U0.5
58.6
26,4
3§.0
. 39.3
32,0
22.1
25.1
48.4
46.8
52.0
«»,a
16.0
12.7
10.0
«:. .«
27.1
38.0
35.2
...24.8 .
28.|
4J.P
40.2
24.2
39.6
34.7
28.0
34.2
50.4
18.?
22.4
28.7
35.4
21.8
3U.O
.. .43.4
40.?
49.9
48.0
70. A
63.3
.42. 4_
29.4
31.4
30.1
60.5
38.9
34,5
40.7
32.4
26.0
37.6
41.3
21. •
34.0
46.9
17.3
14. f
28.4
.5.8,1
53.6
34.5
«5,S
65.7
57.1
76.6
St. 5
1C6.S
31. J
27.3
37.2
46.6
18. ft
17.6
Zt.t
55.8
37.5
a«. 7
38.5
24.7
10.4
24.6
SB. 5
15.fl
31.9
24.5
27. U
41.0
4Z.4 . ;
79.7
68.2
5«.5
57.7
55.5
41.4
36.2
3«i7
42.4
78.0
!31.7
74.7
19.0
46.0
41.1
36.9
40.6
46.!
Sl.l
" 61. fl
86.2
127.8






45~-2~
25.0
14J.
17. 7
21.9
29^8
20.5
47.6
!6.4
63.5
72.4
_.J4..8__
106.7
!7^_
51.0
53.7
47.1
52.4
56.0
5a;«
34.J
27.5
33,9
41.5
20.4
39.0
33.7
23;«
21.0
21 .'4
33.0
36.4
44.5
..34 .2.
55.6
50.1
54.9
30.8
66.4
56 0
40.7
28.7
68.3
61.3
61.0
79.4
44.7
35.4
39.4
62.2
37.0
40.0
53.1
53.4
100.2
72.6
52.6
45.6
55.4
48.7
52.7
58.6
53.1
60.4
. 37.1
45.3
54.1
54.5
40.3
32.3
34.7
53.5
59.5
52.9
76.6
56. P
67.2
64. a
51.1
45.7
58. S
50.3
i* a
42.0
28.9
23. (>
65.1
31.8
30.5
24i.l
37.6
oa.3
27.1*
30.0
a?.*
44.3
53.2
52.0
64.8
67.?
51.0
36.3
46.4
39.0
30.3
60. «
52.7
56.4
60.2
55.7
ft.P
68.5
32.1
44.8
34.3
43.6
IS. 7
66.8
8?. a
7J.«
. ro

-------
NQ2 HCMTCRINO MPTHC08 CCMPARISON -• DAILY DAT* LISTING
i ' DAY
121
.! 122
121
124
125
1 126
„: 127
128
H • 129
|,.: 130
I. Ill
I.. 112
h I"
!•; ii4
•- 1 35
!,• 136
>.: 137
;,; 138
'.; . 139
P. 140
142
143
:, 148
145
;.• U6
147
148
149
150
151
152
153
154
155
-. 156
;.. 157
H . 15B
159
• 160
i-.1 161
K »«
k 163
U 164
K • 165
k- 166
i 23.3
I
)
i
)
!
.
24. P
25. «
16. 8
2.5^9
14.6
27.5 .
25.8
22*1
37.1
11.0
12. «
10.4
' 13.*
19. fl
28.7
23.6
TECH TEC4 ewEM
59.5
52.9
45
35

- 	 	 	 -


96
SO
37

60
(It
28
40
.8
.2



.6
.5
.1
.4
.2

75. T
6a. a
64. ?
56.1
"6fl!o
11.7
Hl'.t, 	 "
40.4
28,1
38.4
ST. 7
4T.5
40.7
6(1.0
51.7
40.4
51.7
•i
' *
4
1
It
7

-•
•t
!'•*

104.7 13.0 . . " 	 ' .
46.3 26.6
10*. 8 58.4
66.1 32.6
23.3
5!. 4 27.4
58.4 22.4
46.4 31.4
58.8 22.8
73.! 26.5
22.1
3«.fl 23.5
65.2
' 53.1
15.1
27.0
20.0
20.1


-
'





24.5 23.0 '
41.5
25.5
                                                                                                         N»
                                                                                                         to

-------

r
i
i
•
•1
K
R
fc
f!
F*'
T.'
I""!
F
H
H
S
(•-;
E-
H
N
U
M
n
X
b>
t;
SB

DAY
179
17*
177
178
179
180
181
182
185
186
	 1B7_
168
189
1.90
191
192
193
194
195
197
198
199
200
201
202
203
204
205
20*
207
208
209
210
211
212
211
219
21*
217
218
219
220
221
222
223
224
225
22*
227

FMPP
53.1
45.5
61.7
51.8
12.1
46.2
73.9
95.9
65. tt
as!?
68.0
9a.7
92.3
61.1
65.2
60.5
61,7
76,2
63.0
85.2
80.3
106,6
84,4
58.2
92.0
95.3
66.8
.. 60.0
95.8
55.3
*7.7
46.0
57.2
as, 6
115.7
104.9
93.3
se.e
77.2
53l2
• 1*7
122.6
66,7
91.9
56.3
81.7
120.3
80.2
-
MChlTQRINfi HtTMCOB
1
i
CCH'ARIEON "- OtILV Cl«T4 LISTING ;
it.tr ct-ar cmo encase
23,8
23,3
27.8
24.1
__2^A__
I'.O
35.5
42.) _.
40.3
36.0
22.7
29.1
51.1
36.9
2«.7
23.9
?»."«
30.9
27.4
36.1
10.9
	 «K* 	
38,7
22..1
36.6
45.1
23.6
40.3
22.6
17.6
..3U6 .
62.5
66.7
_. 50.9
21.3
37.4
29.6
30. i
21.9
50.7
39.1
~~ii\'\
21.7 _
41.4
88.8
41.4
26.1 26.0
10.4 25.9
27.8 27,1
28.0 ?7°
.25.9.. ...m; ....
26,4 ?;>.
40.8 37.
63.5 52. .
46.5 (11.
48.5 91.
24.8 SO;
42.7 39.
.H.O 64.'
.46.6 	 51, 	 	
28.9 32.
33.1 57;
43,| 51.
IS. 9 ae.
35,2 Hi
. 4|,9 _M. 	
42.0 53.
90,7 56^
58.
52.5 51,2
SfliT J6.8
ae.o 49. '4
58.2 50.'2
.Ml. ...
29. 30.*i
49. (19.3
JB. ZB;9
2«. 28.8
22, 23.1
. 36, ... 3*;o ...
55. . 66,|
78. 75,1
.....80. . . *i..S.- _
39. 31.4
15. 26.'S
56. 47.2
44. It. 8
46. 00.5
28. 24,*4
»6| 55.S
S3. 46.1
48, 34.9
ttl.
33, . S0%9
as. 86)5
70.4 5i.!5
57.8 53:2
13.0
5S.'0
177.2.
74.1
.lull,.
"2719"
31.5
*
55.8
52.5
48.1
•*:••
..6l!s.
90.8
131.2
J.9JJ..
tl.O
>y!6
Tg.T.
38.7
81.9
78.8
63.1
1«5.1
reac tech rrea r+r*
15.1
19.7
20*.
Iff
• 14>!
28 .
42.1
30 J4
34JO
19,'S
22. 0
25. S
25,9
2718
".6
52 •!*
37*6
39 6
24 .7 	
SI, 7
34. '0
4i.;o
21,6
35?2
20,1
17 Jl
IM
35^2
2B?4
24. '4
33. B
2B.O
31.2

•--

\

.. _ 	 •
. . ..«

.7*
'
'
A
-t
•

.1
.
•a
	«a

-------

1
I
I

i
t
1
1
11 •
<-,
t-
Lr
i i
S-!
il

•Y
j
J 	
"i
ill
i
3
~t
ii
kg
11
til
u
-1

DAY

228
	 229
230
211
232
233
23M
235
236
237
238
239
240
241
242
243
244 .
247
248
249
250
251
252
251
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
".. .'_".' T ' 276 ;
278
279
280

FRPF
84.8
75.3
48.1
50.3
80.9
72 . 1
78. t
68.9
b9.6
74.3
86t4
135.3
80.2
47.0
78.4
84.8
98.6
94.2
121.9
107.1
107.6
226.5
75.1
174.8
96.8
151.5
25.0
73,4
' 56.0
si. e
41.9
55.5
66.8
98.1
ioe;2 -
113.2
128.3
67,9
99.3
80.8
122I9
67.9
6a'.9
65.1
" 40.0
62.6
64.1
49.9
110.4
N02
TEtF
15.9
30.6
22.2
22.1
49.41
32.2 "
50.7
40.7
50.3
45.8
47,3 	
118.4
52.1
26.8
27.4
60.6
41,2
"55.7
57.3
42.9
si.'s
30.9
101.4
38.4
8«.0
I*. 7
21.0
47.0
34.2
32.8
25. 4
21.9
27.0
39t6
41.4
03. 1
42.4
40.5
28.6
11.7
57.7
33.2
44.8
30|2
26.1
19.0
32.5
30.8
29.1
52.5
MONITORING KETHC03 CCMP*flIEON •• 0*ILV C«T* LI9TTK6
cmr
72. »
59,5
39.2
50.0
«.*.?.
58.0
«7il
57.8
63,8
.60.0 .
1(15.3
78.?
53 1*
90.6
81, i
9?, 7
100.4
76.4
99.3
60,0
140.9
68.1
10D,8
24.1
27.9
5*1,5
43.6
49.2
41,2
32.0
43,3
48,0
48,1
88.1
..68,6.
51.1
67.9
58,2
se|e
76.6
71.9
32.9
33. J
20.8
42.6
42|r
35.1
60.2
:
j
— . 	 f\
ORO CHESSC TGSO TECH TEC4 CfeK
56.-0
	 52.8 	
42.8
lli?K
52 .'c
58^2
121.4
73,6
15.4
49. J
75T2
TO.l .
82.8
86J7
<>i!e
99.6
24.7
24. S
56.4
43.5
43,5
32.5
!7.3
"''
44)4 "
"'9
62^5
at. 7
102.5
49^8
- 67 8-
66.7
32.4
28.8
22,1
36.9
35,9
32:7
59.' 8
61.3 ..
74:?
93.7
51.9
zs'.c
98.3
76.3
54.4 	 .
79,2 	 	 .
87.2
72.9
UT'.O
152.1
I4J1
40.8
31.6
51.2

37.7
39.5
10.1
49.8
47.4 . . ..
33.5
44^6 	 " .. . .
4516
61.1
49.2 	 	
"i!


i)
;


«
"
\
;'
•j
:
-
;
.
-.1
i;
                      EC
                      Is)
	<; «i

-------

J
J
t
,
1 	
i -
3
,.'
>,.•

DAY
28 J
282
283
2811
285
286
287
286
289
290
291


FRHf
136.5
111.2
«3.7
72.7
ee.o
BO. 9
122.0


NQ2
TEAF
7fl.»
37.2
31.7
50.0
78.0


MCM»O»ING HE7CCPS CCNPAPISON — DAILY Din LTSTTMS !
i
	 	 . j
ChPP CHPT CHESSC T09P TEC* TF(
-------
. N02 HOMTe»INO HFTNC08 CCPP4MI8DN -• D»ILV 0*T* LISTING I
fl 	 	 	 =^^ 	 — 	 i

, • • —

•
3
•1
• 1
1
1
'i
JL
h
t*
t'.
*
? 	

I*
J 	 —-
u
hi
3 "
i
i
u
J
71 - ....
t.
h
4
'
B*Y
1
a
9
6
n
11
14
15
16
17
18
19
20
21
23
24
25
26
27
28
29
30
31
32
33
	 « fi
34
39
36
37
38
39
41
42
"44
45
46
47
49
SO
SI
Kj
S3
54
	 ca —
53
56
57
59
60
mr
-- - -

. . ..

.. .


29.9
109.6
101.8
1*7.0
86.8
66.9
	 10 UL
165.1
71.5
!-S£r
60, 6
73.3
63.3
44.0
28.4
26.4
15.1
44.3
47.6
99.8
77.4
34.9
21.2
93.6
113.6
159.9
	 UAL







19.9
53.2
"38.7
73.5
37.5
11.5
19.8
53.0
70.8
36. a
30.4
26.2
20.3
17.2
37.2
28.1
33.3
2S.S
28.8
39,4
	 i~« —m —
84.7
69.0
18.0
17.3
52.9
56.2
	 CHPir







74.2
24.7
SB'S
39'S
30.6
37.4
36,1
21 !e ~
34,4
25. '6
32.6
58. '9
S9.S
32.4
	 «.«.«
•3.3
93.3
60.6
27,1
20.4
71.1
75.5
145.4








87.9
68.9
7.6
82.8
18.6 -
34.2
JL 1 •
. . °» .?
70.7
45.9
— W.i._.
31.1
32.4
38.9
17.1
34.7
~ ".8
29.1
55.3
25.1
38.8
53.2
77.1
29.3
23.4
5«.B
69.4
»?«,.?..
Otfi*r T6SC TECH Kci) chltl '
, i
74^7 	 ~ .
IS*! -1
	 	 	 .... 56 tO .....
40?8
	 	 	 _ _Z7. 1 25.4
17.1 26 ;»~~ " 	 • - - 	 - -,;
42^0 	 .'
;jt«
44^0
"••- 	 	 	 . 62,9 .... 	 	
ll:l 	 •!:*
2J-; 98^5 - - 	 	 .
*8'' 100*9
' 27.6 	 ' . - ---- "'• 	 • - -. "
• | • " \ • 29
39.9 	 - — 	 "
67.1
- 52,fl_ 	
7«.6 	 ~— 	 -- - - 	 	 "
	 59.2 51:0 ;;
- .. _ 50.0 t5*J '
?;•; si.i 32^7 — •-• 	 	 •
10.9 „«., S1»6
H.i - 	
35.4 • -
27.3 	
«'«' 772B>8 JM ' :
26.6 . 	 - ' 	 	 	
4t!s z3'7
Z:l T3:' " 	 — — • -
62.fi
17.3
39.9 	 »
3B.2 - 	 	 	
7 2. -2
96.7
to

-------
NOZ HCKZTQBXNG METHCDS CCMPAPXBQN •
7
3
4
s
4
T
t
•1
fl
1
\
I-
M
0
t?
3
h •
f!
P
3
:
r
h
il
M
H
n
U
la
u
D*v

61
62
63
64
69
66
67
M
69
70
71
72
73
74
75
76
78
79
80
81
82
83
84
85
86
87
88
84
90
91
92
9J
94
_95
96
97
98
102
103
104
105
106
168
176
174
180
181
183
184
185
186
187
FRHF

132.8
80.0
43.6
S7.6
115.4
fl9.8
ie.2
31.4
41.4
17.4
70.5
75.4
75.7
89. «
51.6
37.4
78.0
129.5
19. It
64.2
69.1
45.6"
112.4
64.7
79.3
125.7
106.6





TEA?

86.4
50.6
50.2
_5S.fl
93.2
46.9
15.6
33.5
64.7
69.4
67.4
__«9^o
37.6
60. 1
91.0
"4272
48.0
~Sj'.7
54.1
38.4
. S7.0
S2.2
66.0





CKRf

. 119.5
64.7
50.4
41.9
. 83.1
49.2
21.4
21.3
	 5Z.2
34.8
76.8
60.7
73.4
37.4
50.8
124.1
6o!fl
	 7.0.7
71.6
57.3
71.5
32.6
40.7
53.6
67.2
89.9





ChRt CHfaan
lOSll
60.
..5fl!
84.
04.
.. 30.
18.
22;
. . 57."
36.
77.
so:
64.
63.
41.'
S3.'
. .133.
. J6.
48.
38. '
6U
75.
8V.^
b 58.?
..-..40^6 	
49.7
47;3
'4«";2
3 U P
3 B • 0
20;
..lie.* ....
65.
79;
7*:
44.
83.
47.
70.
64 !
134:
127.
61.
16. •
46.
43.'
13. ._
63.8
64.5
. 	 	 85 ifl.
*i.S
35.1
62.1 ._
35.5
47.2

18.
70;
42.
196.
118.
77.'
57:
48.
44.
7B.5
reap
-







16.1
31.4
45.9
.. «6.4
51.2
86.4
108.6
...68.4
84.1
112.6
103.1





• DAILY OAT* LISTING
TECH T.EC4 C«e*




.
116.7 91.0
111.7
110.9
103.3
' 1C7.3
79.9 80.?
63.6
136.4 85. 4

	 	 .'.....2*2.1 	
74.7
80.
134.
180.
55.
50.
85.
48.
54.li
Bi'.a
no. e
65.?


.
1
1
1
.•I1
'1
1
'
10
•1
.1
•1
1

/
:*
.«'
•n
	 	 "
_!
"I
H
."1
a
• i
a
•>
to

-------
1
I
4
I
•
;
i
l
i
1
1
1
P
E
|j
fe
I-'
J
"i
13 '
'] 	
fl
S- •

! — • • -.•


DAY FRHF
188
189
190
191
192
19}
194
195 "
196
197
196
199
200
' " 203 '
204
205
206
207
208
209
210
211
212
21J
215
217
818
219
220
221
222
245
246
247
248
2«9
250
252
255
256
258
2*'
262
263
264
265
"" 	 272
273
276
277
NOZ HCMTCRING HETHCDB CCHFARICON — DAILY DATA LISTING !
i
.....TEAF f^BF CHRC. . CHB8SC TB9C TECH Tpr, f^fu \
Sli " •
	 ___.. 66. '1 ,
62. J :
ItB.t i
83.-S
93.8 	 - - - 	 	
l^l
107.2 ' " .,
Z3J7
17. a
ll'l ' ' "'
88J3
".J ....
48.3
31.6 	 -- - ",'
Z5.8
se .'6
35,9 	 	 	 	 -'
«!z :
35.0 '
30.5
36.8
22.0 .-.-.._ _ 	 	 _ 	 	 	 ..
91 1* -,
	 27,'S
47.2 	 ~ 	 	
29!9 '
. . . . 46.6 	 . ' ' 	 - 	
* » • * «
•»•* . - -
..._ 	 35.8
60.4 . 	 " - 	 - 	
	 ":o 	 - •' - "
«'l ••
36.0 ' ~ 	 — •
40.2 	 - -..
«;0 	 r
36 :«
45.6 ' ^ '
             N)
             00
	->3L

-------

J
1
«
,
• •
I
1
•l 	 ...
i -
i
B
iis —
In!
1
s-
!•'.
M!
r1'
3
..i

D«V

278
279
280
281
282
283
26U
283
286
288
289
290
241



-•
NO? HCMTGBINS METKCOS COMPARISON — DAILY 0*T* LISTING
FRHF TE4F C(iflF CHBC CHf^SB TSSf TECH TPCn ruFw

51 a

57.1 	 ' 	 - 	
32.9
....__ 	 A6.6. tVAi
'3.7 ISO. t
*!.' 23a.o
	 . 1 21 tfr
119.*
43.7
50,7

•


f
J
J


-------
N02 MCMTGPINS «TMCBS CflHMRISON •• DAILY DATA LISTIKB
DAY PRMF
*
'i
j
*
.1'
I—
b
*-
ti
K
I-1"
f".
fi
[j
rj
f
r 	
I*
M.
J
H
»
i
TEA?
CHur chBc
*
26" -.
27
28
29
30
31
32
33
ifl
35
36
17
38
39
40
41
02
03
00
45
06
07
48
09
50
51
52
53
54
55
56
57
SB
59
60
61
62
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
- ---


~ 	 rSTJ- " '
67. '8
01.8
09,]
01.8
-51L0
38, t
zs.e
68.
70.
100.
51.
81.
88.
.. 103, 	
90;
80.
66.
9.
106.6
64.6
32,0
27.3
. 03.6
88. e
82.8
85.7
86,7




77.
19.
28.
40.
26,
21.2-
23.7
43.8
19,0
J3.1 .
40.0
47.5
51.0
65,0.
48. 2
86,
1*1
19.
S7.

31.8
69.4
57.1





10.
36.
39!
30.
27.
5P.
22i
se!
125.
117.
65.
67.
39i
IB'.
20.
20.
Ofl.
35.
39.
65.!
a
36 :«
3i. -a
32.8
3fl|o
52:9
JB!O
10 8
ss.'s
57. J
100.7
116,1
-..?8|7 .
01. J
36.2
IB. 5
19,4
"
30.7
42 .'O
1 62 S
55.5 57:5
68. ~d
60. a
-C.Hf.aaD TSJC TECH TECO tMEM
67.4
Z7.S
. .15 !e
08.4
76.*!
..3fi.5_
.1
85.3
66.)
15. U
18'T
28.3
01 :>
11.2
26.1
39 .'4
S7*2
66.6
«6,8
50.9
94,4 '
38.5
u.'s
01. '0
72.1
01.9
R5.7
74.1
04.5
57.1
•9. a
37. (
78.8
?*'.«
05.1
36.2.
33.5
97.5
43.0
C2.6
63.3
68.4
.52,8.
--






	 	 _..
148.3
79.7



30. B
37.6
42.2
B2.7
81.5
	 67.7
107.0
108.2
118.1
108.0
130.7
13^.8
JBO.O "
155.1
113.9
135.7
54, (i
36.7
37.6
iris
06.0
in. 8
55.7
130.5
135^6
35.!
.- . ... .
71.9
22.0
2ft. 8
71.1
64. a
56.0
9(1.2
100.7
11?. 6
- ..99,!
J

t*
'S
r

....... . 	
i

•
-*

•<
•i
.-
•
„
--

-------
N02 HCMTCBIN6 PBTMCBS COMPARISON  —  0»IUV  0*T*  Ll87t*G
s 	
J
J
4
1
*
I
t
:
w
i",
b" 	
,.
\a
P -
c •
V
!'•'
ir
i
H
1
"
j 	
3
h 	


DAY
79
80
81
82
83
84
es
66
87
86
89
40
91
42
43
95
47
48
44
too
_J01
102
103
100
10S
106
	 JO 7..
108
104
Jio
111
112
113
110
115
116
17
lie
J19
120
121
122
123
124
125
126
. 127
128
129
130
131

,«H,
6.4
62.7
57. S
I1Z.O
160.1
71,8
37.2
75,3
74.0
M...8 .
42.4
151.8
~ 45~.~Z~
58,4
8flj7

TE'AF
6.2
16.6
46.9
22.6
J2.3..
12.7
28.1
3.3
1.3
17.3
-.01.0
13.2
21.2
.. 26,0
30.6
177,8 52.9
_ 111., 5 06.7
95.1
75.7
..7.5 .,1.
40.2
116,3
104.0 .
110. 5
40.7
100.6
134.6
176,7
64.7
106.2
130,7
I7J.5
170.7
207.8
105.0
164,6
	 109^2 	
121.9
128.1
176.2
214.3

17.7
26.0
3.0.9
08.5
03.3
. -36.6......
31.0
58.8
37.6
37.9
38,6
99.7
104.3
65,3
1.9
68. C
93.5

-
CHBF
56.2
26.1
30.2
31.1
- - 7.4. J .
126.0
06.6
66.0
5S!«
66.0
.__6P.T. . ..
24J4
.... 30,0
24.8
06.0
.._™Q._...._
20.0
31, e
00.0
35.0
62.1
39.1
00.6
01.3
54.2
	 67. I.....
«2. e
«0.2
- . 35,8. .
. SJiB ...
iin.e
71.0
69,.* .
54.9
50.1
57.3
58.9
63.1



CMflC
09. e
32. i
19.-2
^i'S
oils
»,8
17.' 1
oi.S
52.' 2
36.0
35.2
39,9
05.6
28 ,9
30.5
32.0
31 .'9
.31..1
34.1
56.2
.. 59, fl.
36.0
27 .'2
52.0
116,8
13l!l
67.5
...,r.3,9
09.2
..>346.
55.8
58 .%0
_ 62.'6




CHfaBf! re*n
75-7
3.9. :
05.9
59.2
52.0
	 17.7
06. '7
"*9
06*9"
63.1
36 !fl
860
62.8
— . .61.2..
29.9
6?ie
06.1
115.0
06J4
jfc.e
55:0
86. 0
133.0
-. .-.60.9...
00.3
25.3
. . eo ;o
79.3
47.'3
	 300.7.
73.0
ei.'o
127*5
75.;6
00.2
98.3
	 87.3
I6o!o
146,6
165.2
303.6
60.'7


26.0
2J.A.
30.7
00. «
II A
32.2
93.0
69.5
50.3
51.3
61.0
06.2
32.4
55 J
55.0.
55 4
54.6
31.?
30.J
30.9
16.7
59.7
31.?
. 107.2
66.8
111.0
_ SJ..6
07.4
30.7
35.0
51.8
. eo.e ..


TPCM TfCO
115.6
An O
50.3
Pfto i
45 3
78.1
96.5
1 o 3 fc
IfcO.Q
40.6
54.0
6o.'0
84.1
103.4
93.0
99.5
62.5
	 102.0
120.0
77.6
116. 8
153.6
70.4
75.5
76.7
116.1
107.6
170.2

109.6
	 -•
208.1
40.6 ..

rHEM
165,0
00 .'3
- .-C 1 VmO 	 ._ _
SM

.
- 	 —
es.3
• P A
73,0 '
85.0
47'9
62.5
60 '6
I04?7
157.3
72,6
76.6
4o;a
i«3.6 " "
101.6
120. '9

48. '2


j
'i


19
1
-
J

•-
ir


i-
1 j
•i

                                                                                                        ?




                                                                                                        -.SB

-------

1
a
i
i
•
•••:
H
f.
t
h
n:
i
h
U
;j
f*
;i
u
.j!
3
j
i-
c
a
u
H

N08 MCMYCPING KBTKCB8 COHPARISCK — DAILY DATA
DAY
~ 132
133
134
135
136
137
138
139
140
Ul
142
143
144
145
146
147
148
PRMP TRAP CHRP CHRC
..

42,9
42.6 M.I 45.2
66.9 SI. 8 51. 1 40. r
102.9
100.4
75.0 39.
87,4 28.
32.
J32^1 45.
112.6 46.
113.9
164.3
34.
110.0
_ 161.1 55.
149 216.2 101.
150 192.2 121.
151 235,3
152 126.8 76.
153 107.3 66.
1S4 165.7
155
156
157
158
159
160
161
162
163
164
165
166
	 Tbf-
168
170
171
172
173
174
175
176
177
176
179
160
181
183
184
185

2(15.6 133.
130.6 43.
89.1 U2.
113.2 30.
107.2 44.
06.
51. 48. (
"0." 47.

-------
N02 MCMTCPIN6 NfTHCOB CCMFAPIECN — DAILY D*T* LISTING
I
3
t
6
1
d
S;

P
6
*
F
^
9
1
r
H
j
H
U
II
19
U
j- -
I
DAY
186
1B7
IBB
164
190
191
192
193
194
195
196
197
198
199
200
ZOl
202
201
204
ZOS
206
207
208
209
210
211
212
213
215
216
217
218
219
._ 220
. 221
222
223
224
225
226
227
228
224
230
231
232
233
214
213
216
217
238
r**r
107. S
as. e
67. 2
10l!3
130.7
167, (l
162.0
2BB.S
315.9
	 12A.2 	
110.5
179.0
.. 55. J
7«.2
77.5
99. i
52.0
52.4
- .50,8.. . ...
2«9,0
84.4
130.1
102.7
135?9
103.9
158,5
113.8
119.8
lea's
97.4
65.0
89.8
66. G
110.5
104.1
ias!e
128,7
46,6
73.1
147. t
TEAP
as. 6
_5J.0
44.8
08.0
61.0
74.4
49.4
85.5
124. 3"
200.9
56,J. .
42.1
35.4
42.5
_.."t«
63.!
31.4
.77.7.
121.0
08.4
64, C
61.4
7oj2
46.9
54.4
45.1
'65)3
43.4
S3.0
57.7
5(1.7
25.5
38.1
38.6
«!.*
85.3
102.7
86.0
83.4
63,6
33.6
U7.1
iH"JL_

69.1
73,1
105. S
100,4
	 72.Z. .
69. S
110.9
237J2
._ 	 8 2.' Z.
67.6
59.2
"9,9
48, «
48.6
67. J
M.Z
36.4
. .93.4
127.1
06.0
100,4
111.3
" "mill"
P4.9
82, C
35.9
. To!'6
63.1
46.6
65.3
71.2
73.3
46.2
60.4
57.6
. . _B?.6._.
104^7
.127,6....
116.2
103.8
R8.U
52.6
65.5
58.0
CHpr e*E9se
...69";
72.
72.
104.1
100.'
101.1
104.'
168.1
240.
. 78.
66 !
52.
5J.
76.
.66^
130.
67.
78.
84.
6B.
62.
00.
69.
02!
56.
52.
81.
Sn.
57.
58.
121.
48,
! 8t..
SB. 4
5
1 ID. 4
:35.t
! . 99^3
ei.t
r 112.3
.172.7....
r 27*. t
65.7
67.8
93.6
3ft. 6
130.9
	 U7.2_
. 73. S .
90. a
20(5.6
90.1
146.6 ..
69.3
80.8
103.1
94.3
111.0
88.5
41.3
5S.8
49.6
34.5
.. _.*0.2
36.;
100. « 82.5
76.2 182.7
82.7 89.0
43.5 130.8
50.2 58.3
40.6 39. 7
TC8C TECH
31 ;B
lei;*
6S?6
42 'S
67 h
69, 'i
146,5
179J7
01 *l
57?4
3lj2
55}5
22.1
47. S
94,7
30. S . ..
59:6
.37^9
55.1
58 .'a
67,0










129.
92.
. 1-43. .
107.
U3.
. 266.2
. 131.5
110.4
62,6
190.0
70.0
106.9
74.3


48J4
SJ.L
66.7
62.2
27.1
47.0
34,5
47.8
132.4
112,6
113.3
90.9
03.8
34.8
£B8JB_


•< " 	
46,
*•!
182.
211.
106,'7_.- 	
A5.0
02. '9
41.7 	
167,8
29. a
80. >
55.9

02. 'a
55 !l
06,7
45.3
'6*J
29*0
30.5
94. ;s
81.0
80,5
?9j9
39j5
29,5 	 _
i
r
i
0
't
>
j
'i
r
|0'
t
11
• r
•.
J»
M
:•
,K
:.
u
u
1-
w
;H
«
}ff
.«!
ii
•/
4"
.•>!
••.j
.i
.'1
H
-:S
f

-------

3
J
4
3
•
•
II
T '• 	
i
j
-.;
j
II
r::
n
H
i
iP
li'
'l
k-
I/,
H
f
K
>'l
'i
i*
i
n1
r 	
r
ii
or

NOZ MCMfflRING MPTMC09 COMPARISON .. DAILY DATA LISTING
DAV
2JQ. ...
•'240"
241
242
243
2.
48.5
49.8
SO.!
»»..5_.
9«,«
72.7
' "66.0
• l.>
117,9
40.9
S3. A
77.*
51.3
57.6
59. e
103.2
66.1
«5. S
SJ,J_
S6.0
. 61..J _
68. *
119.1
69,3
61.6

8ITCM32
CUE sat
50.8
6«.9
«7.1
..__._S9_. i
73."
69.7
-_-*3J
7* -
4«.5
. 39.6
37.6
60.8
51.9
39.3
. ?«..«
9*.e
82.6
S7,«._
86.6
40.2
56.2
36.7
49.0
44,5
93.7
33.0
..5B..7.
28.1
82.9
42.9
... 42.8
63.1
55.9
41.1
84.3
29. «
59.7
76.1
116.9
66.9
60.0
35.5
SO. 3
25.5
sn.o
86.1
T6SC TECH TpCti

	 	 66.1
69.6
119.2
66.4
*f , 9
.. . 57.5
53.0
5U.S
49,8
.... 49.4
56.3
5Q.9
59.0
42.6
5a,9
60.2
..._ . ' 59.0
89.7
M4.4
62.0
96.5
. . 76.7
39.2
90.3
59.6
121,5
. . " ' ! 43.6
95.3
47.2
70.0
.... ..'/ . . *0.'6

. . . 38.9
99.9
119.6
197.6
92.6


CHEH
40.0
47. 1
69.1

tl.5
60.7
51 .2
to. 5
70.6
6(1.0
71.5
70.1
ev.i
105.3

-



• '
}26.1
-,67^6 	
219.6
125.8


^
J
!-j
i,
**
.•.
i'.

•i

7t
>»
J*
••
r
Is
V
«
*
'<•

*•
o
t*
*;
f
V;
'»
	—  a

-------
N02 MCMTOPINO METHCBS cn»p*Ri!ew •• DAILY
i
j
*
r
j
If ' "
i '
!••
t ' •
H
Jl
M
[
w
E
rt
5
i*
M'
J
J
0.

•i
•
i
K
ll
LI
DAY
"2
3
4
S
6
7
6
V
10
tl
	 1JL
10
15
It
17
IB
20
21
22
2>
24
28
26
27
28
30
3L
32
33
34
3*
3*
37
38
40
. 42
43
44
45
4»
47
06
49
SO
SI
52
S3
54
5S
FPhP TEAF CHRP CHPr
- •-



•




108.
107.
53*
78.
135.
90.
129.
103.
110,
133.
52.
78.
71.
52.'
-








31.1
49.5 74. 72.7
.35,7 50.' 51.6
42. . 80, 90^1
79.' 33.' 33*5
51. 72. 54.0
91. 115. 88,4
3. 90,5
55. ti7. 68.0
63. 6b.' 76. B
. 63. . 70. .. 70,2
S3. 2 	 	 "
40 ',2
52,6
.. 71, b
65 Jb
35,8
25^2
22,3
	 -.95^7 ..... 	
122,0
122,9
114*4
111*0
18?3
.83,4
*1*0
63.4
.

«2'5
71.8

9s;s
S4;e 	
i
j

•.
*.

11
'i
-
	 	 "
^
	 	 -r
»j
•',
	 _«
.»
: i
•*•
'.-.
;-B

-------
NQ2 MOM TOM NO PCtHCBS CCHMHIJON — 0»ILt

- 	 - -
ii
1 -
1
>1
a
r
J
B

n
^
vi
p.
>=!
J
I
]• '
'i
1
H
1'
U
U
>!
j
0*¥
57
56
59
60
61
62
63
64
6S
66
67
66
69
70
71
72
73
70
75
76
77
76
79
80
61
62
63
80
65
86
87
66
69
90
91
92
93
94
•95
96
97
98
99
100
101
102
103
104
105
106
107
IDS
FNHF
75.0
100.5
131,7
72.3
111.1
91.6
T4.0
82.9
09.7
63!5
96.2
81.0
50.7
07.3
87,0
9(1.9
130.2
98.8
39,1
78.9
55,0
8o!a
62 La
o!9
fo".b
112.4
ni. a
104.5
167.3
74.8
70.5
47.7
82.7
86.8
67.6
90|7
153.5
110.6
56.0
26. e
TCAF
53.5
50.1
62.1
60.6
35.6
68.6
58. a
70.7
59.1
25t5
39.9
01.0
57.1
60.0
38.5
61. «
116.3
76.0
67.5
67.0
64.6
63.9 ™
29.5
72*.3
. 74.3
76.6
36.5
50.9
26.4
44.2
36.3
47.5
71.9
63.5
39.4
«2.5
CHRP
ae.2
72/8

61.3
"6.6
69,3 .
71.1
fro.2
60 t4
02.6
«8,«l
58 19
03.3
""Joio
116.6
176.9
B3.B
77.2
54, 6 .
75.11
utllt
61.6
B4.2
66. '0
88.0
120:0
41.9
57 .'S
00. >
74.6
M.e
56?1
74;7
68:9
68.7
46*7


63.5
95.6
12. e
....75=*
77.1!
50.0
37.!
28.6
. 5fl,0._
65!«
...57.*. .
117J5
112.0
89.4
78. 0
... 59. « ..
74.1
97^8
34.6
01,4
61.9
77. e
61.5
lie, a
53!?
75,9
59. e
43, j
56.)
Sl.l
52,9
60. «
75. i
50.1
38. «
CNtsac
54.4
88.7
9A.O
43.4
58.6
S'.jfl
87. 4
"I

137J5
. 92.7.
5?. 6
os.o
87.7
124.9
181.7
6?.]
79.6
... 5.0. 0.-
It. 7
19.5
5P.Z
65.?
3?. 9
159.7
60,1 _
46.7
63! 7"
5.7
70.6
118.6
. 77.4
63.9
58.2
84.6
50.2
1)6*7
OtT* LI6T1KG

taac TECH TPCO rwFM








....
5lta
ssjo .
37^5
50,9
70.0
75,4
70.3
168.4 ... .
129,8
71.0
70.4
98.1
07^
59,4
83^5
90.5
70 "JO
69^3
76.0
99'2 "
57^3
36.2
aa.3
103.2
$4.0
65,5
95.1
- . 7*iB .
100. 6
96.6
93,2
66.5
56,1
«e.o
132.3
105.3
	 108.9
85.3
' 85.1
U0.6 .

223.3
179,6
125.3


137.9
205.0
157.6
60.7
93.4

109.5
us. a
68.6
106,6
82.5
50.'2
76. '9
61,4
. 75*7 . . 	
97S6
91.2
76^7 	 ........
65,9
U6.5
65,6
»0.5
77. '8
57*9 - -
71*0
I02.« . ....
170. '2
216^2
174:7
118.0



102'JS
179,0
- 7s*i --- - 	
76.9

iea!o
9U7
111.1
«,J
u>

-------
NO? HCMTCP1NB fETHCDS CCMP4RISCN — DAILY C»Ti LISTING
I
J
f
4 •
1
f
•i

B
: .
p
£
i
3*
i t
£
L_ .
3
]
ni
j
;i
•*!
j
i
D'

;
»
DAV
104
'no
in
112
113
114
115
117
118
114
120
121
122
123
124
US
126
127
130
132
133
134
135
136
137
138
	 J39
140
141
142
141
145
146
147
149
•ISO
151
152
153
154
155
156
157
158
159
160
161
162
163
FRNF
.: .132.7
117.1
60.7
117^9
	 1.68 M 	
164.1
112.6
I 01. '4
29, Q
42.3
153.5
9.7

6*. 4
33.4
39.4
64.0
76.0
— 37,2.._
36.9
38.7
29.9
65.5
306,9
65.4
68.6
56.9
124.4
151,4
109,8
48.5
57 .'6
13.6
56.4
40.8
._. 31.6
7.3
13.4 .
1 06. 5
TEAF
59.0
79.3
32.9
5.8
53.2
-.122,4.......
96.7
77.9
76.3
55.7
.18,0...
5.6
62.6
68.5
101.0

53.4
20,2
15. S
25. T
_..26.0
23.1
21.3
57.0
44.4
35.2
26.6
34 S0
6.0
56.4
54.4
25.5
30.6
57.3
36.4
42.5
9.3
54.7
43. I

60.1
116.4
44.2
69,8
2e;7
129.8
«5.'5
63.5
..15,6 .
26J9
65.*
JPO.S
2.7

38.4
33.4
...J.S .
40.6
36.1
21.5
29.4
23,1
53. J
40.0
46,9
« 7. ,9...
02 re
69.6
32.5
34,4
62.5
79.1
37.5
50,4
.8.6
36.*
32.7
.i.4.'8.

79.3
33.4
8U5
100.5
100.8
87.4
69.4
.. . 15. fl
26.2
72.8
97,9
2.5

41.5
5.8
.. J6.0
44.7
11.4
...26.4
9.5
2.5
50.4
36.0
40.8
27. e
44.6
... 35.4
2.6
67.3
. 58.6
66.8
23.3
26,5
5.1
50,4
31.8
12.7
39.1
CMEssr
109.0
26.2
31.2
9J.9
107."
T7.7
66.7
59.4
61.2
36. &
35.9
52.9
134.8
101.1
166.1
198.0
54.4
16.7
47.2
ifc.t
104.6
62.3.
47.2
41.5
38.5
45.4
6T.4
72 4
33.5
65.7
62.0
.. »2«.l
66.0
44.5
so. e
68.4
71.7
54.5
41.0
5.5.2
TB9C
" 71 .'4 ' .
30.4
63^5
72j8
157^9
103.5
S0.'7
;»;;
40.6
4.4

27.4 .
20.'0
25.1
23,6
--.22..S
14.'5 ..
16,8
--ifjs—
29 .'7
36.-1
34.2
60.7
'1^2
68.9
18, '5
31.1
04.6
67.'9
35.2
21.6
37,6
31. *6
16.6
19 .'9
TffH T'^4 fHFM
127.0 130^6
159 . 0 17516
33.1 56 ."9
is!y


15*, 7 144^6


St. 4
40,6
5*,0
62.2

*T 9
46.5 «2,8 •-••-••
64.0 11U.5
54.4
56.1
lOl.O
79.4 l»lt'3


46,1 !l*;5
64.7 inS, 9
181,4
4*. 5 31,'T
i
i
i

""•
"
••
.-.
.-.
.•:
n
•i
w
,.
'.'.
..
,•
„
:.


-------
>[
1
t
1
I
I
a
* ....
!"'
£
t!
h
t
h
M1
kj 	
P
f"
4
j 	
i

^
H
N02 HCMTQD1KG HFTMCPS CrMP»RI!GN —
0*V
166
167
168
169
170
171
172
	 ___ 	
173
174
175
176
177
178
180
181 .. .
182
1B3
185
186
187
188
189
190
in
192
196
197
198
199
200
201
202
203
204
20S
206
207
208
209 •
210
211
21 J
215
216
217
218
PBHF

107:6
58,6
13«,6
85.2
83.4
88.8
1S.O
153.5
12*.9
89,3
136.2
90.3
52.2
38.0
63.0
31.4
77.0
59.1
~S9 .-9
SO. 4
106.6
89.0
58. S
_.?>.•».
seis
54'. 3
126.8
74.6
115.1
4S.2
30.4
82.7
29.9
75.9
100. S
63.5
87.0
50.8
SKI
10S.9
63.1
73.1
64.0
64.3
TE1F

17.0
32.7
SI. 3
98,2
90.6
7.6
-.60,0...

27.6
36.6
18.6
25.8
' 	 26.1-
65.1
28.8
50.6
23.~7
45.9
34.9
24.6
56.3
16.3
56.7
22.?.
17.9
44.4
... 31.8
20.4
40.2
60.4
39.2
36.3
34.1
25.5
43.0
36.7
39.2
CMPF

9^3
46.6
34.8
58.9
62.0
.5. .8
93,9
S.I
. ..58.2
71.3
28,4
38 ;2
40.0
6fl!'7
29.9
27.5
65.9
43.8
36.9
36.7
48 ."t
66.8
26 li-
te. s
31.2
Sfllb
26.9
97,3
11.2
16.7
72.3
65.8
sole
CHBC
26.2
87. '9
Si .'6
S>..7 . .
51. t
17,.
15.1
56.5
68. '1
37!«
84. '6
59.6
69.9
55,9
77.6
40.0
5U.2
41,8
sjie
53.2
53.1
34T9
27,6
62.9
.. 34.9
Hi*
"\l
41^9
43.3
28."8
58.9
61.1
aiTE>841
CHE8SC

59 .-9
53.'3
..12.0.. 3 	
124. S
94.2
70.9
98.2
90.3
45.3
21.4
53,'B
18.1
69.8
. .189*5
»i«
*0,J
7o!o
70,6
91.4
113.6
57lo '
26,8
21.8
111.8
45 .'9
25.6
46.9
«tl
-jSjo' —
45.3
•816
-60.1- -
41. '8
TC8C
*
37.5
49.8
92^7
64 .'5
1.3

18.9
24.3
54.9
29.'8
18.4
40. '4
20.5
23.5
23.5
33.4
41.9
25,6__
41J7
41.6
24.6
18 ^6 ~
42,3
23.8
8.7
42.'3
36.5
!6?6
31^8
33tS
38.3
26,1
«*|«
36.0
C*XLY DM* LISTING
TECH Tpcu thrM i
1Q4 9 \
80.9 	 ;
68.3
71.8
67.1 — - —
67.9
166.9 	 J 	 ' 	 .,
8.3
115 3
89.7 •' 	 -" ' — - - —
22JO
68.4 BS.'S
•
45^0
"*2

92*6
141.4 t52?4
1
24.8 36T6"- * - 	 - 	 •'.
S3. 3 94.3
. . :. 71.4
•
11
. TO;* ...
X
U)

-------
N02  MCMTQRING
                              — DMLV O*TA LISTING
n~— 	
i
i
*
i .
8
1
9
ii
•i:,
i
P
P
ii '
71
*••'
1
L.
5
D' 	 	
i
H
3
-
"j
t
ir>
.
u
i
i

• DAY
219
220
221
222
223
224
225
226
227
226
229
230
232
?33
234 .
235
236
237
236
239
240
241
242
put
244
245
246
247
	 248 	
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
26S
266
267
266
269
270
271
272

rupr
26. a
93.7
38.1
S6.0
95.3
36.0
36.7
44.1
.56.7
56.3
115.6
40.3
11 ,«
52.4
66.9
74.5
87.6
JS6.L

82.4
107.3
105.0
55.2
103.2
77.0
66.4
94.1
44,3
27.2
72.2
39.7
9«,3
101.6
82.3
56.4
66.3
59.0
74.8
101.9
69.9
69.6

TEAF
16.9
10.2
24.0
29^.0.
«3,7
17.7
24.0
16.9
44.3
43.0
32.2
48.0
29.8
30.7
38.7
56.0
69.4
67.9

41.4
62.4
44.4
52.6
... .33.4
29.1
30.7
39.1
65.4
19.4
41.2
I.«JL
28.2
33.2
43.4
32.0
32.9
34.8
51.4
43.3
38.6
01.3
20.4

CMPP
23.2
«0. 1
23.1
	 S3. 9. .
00,0
__..14|9 ..
01.2
36.0
	 55. '1
76.2
43.6
-_55..9. ....
67.2
«2.7
.. ....12.0
44.7
47.4
69.1
t«7.9
141.8

54.6
... 79. 9_ ..
102.1
94.9
69.1
80.6
...lll.l
42.9
36.9
25.3
57.1.
_ .J 5. «...._
41.6
61.2
.... 98.9
44.4
57.1
.._«». 7
44.9
46.6
83,4
80.0
72.7
70.5

.CNBC.
22.7
...26.8. 	
2*!fl
35. J .
65. t
7C.O
40.8
47.4
53.9
61.4
54.1
42.6
33.6
43.6
96.5
105.1

44.4
55.9
113.4
69.6
64.8
64.5
63.4
40.3
61.9
32.7
23.9
59.8
36.9
76.4
43.2
53.6
46.4
44.6
fl».4
. 39.1
77.3
72.5
66.7
61.2
44,0

8XTEM41 .....
CW-SSf TGSP T
28.4
47.,
58.6

58. fl

51. t
151 7

43.3
86.4
96.1
109.4
78. J
29. «...,.
3*. 5
48.7
21.6
61.0
41. «
22.6
30.4
39.7
105.4
«8.e
67.6
37.7
50.3
48.3
44.4

37.7

E£H TEC4 CfEM

76.1 .
43.3
97.1 113.8
79.9 64.2
37.9 61.6
6l.2 G& 6
«1.9 6J.9

51.5
•
	 .... 	

89. S


69.4 10?. 4
ij
180. a
9T.1 '„
90.2 ' '
"6.6 46. 8 "•' 	 *
63.0 C4.2
es.s
97,2 150.0
77.9 136.5
72.9 ill.? . v
56.9 8S.4 	 - '.,.
                                                                                            w
                                                                                            NO

-------
N02 HCMTCRINS PCTHC08 CPHPARXSQN  — DAILY  OAT* LI9TIKR
1
1
1
1
;
J
"1 .
1
j
*l
." 	 ..
f':
B
!•-
Irt
d
;:
E< •
13*
l«
DAY
'"273
27(1
27V
276
277
278
279
280
281
282
283
28(1
285
286
287
288
289
290
291




FRHP TEAf
"80.5 (Id.S
122.2 62.9
9*1.0
32.0
33.7 Itt.S
23.3 2.7
27.8 17.0
89.7
117.6 71,1
127.8
09. a
151.9
100.5 129.7






CHRP
>.i . i
93.8
2o|«
18.6
3.!
85.9
52t2
78.0
72.0
.05.6
107.8






EURO
66 '.Z
6fl,7
16.1
	 1.6V-
2l!)
65.0
tflfl^O
105.8
y.i?.






. i
CHE89C TG9C TECh Tffn I"?" - '
'5.7 '."". 67.5 95.9 '
s"-s ??^5
'8.11 . . 5.0
03.0
ao.o
48.2 '.'
20. d
20.0 152,0 . - - 	
112.5 1UB.8
100.7
68.9 	 -•— 	 - •-• - - .,
61.5
00.6
55.9 ... " " ' ' " ' ~ 	 .
*
"
-
'4
                                                                                                      II
                                                                                                      iO

                                                                                                      ?

-------
N02 MCK1TQMIN6 HPT
1
*
6
/
1
•
11
."
t'
"l
J
;•/;
it
»•"
'*•'
6
P
17'
P
Li
!.l
,J
If
i
i
1'
j
ni
H
H
u
11
u
M
DAY
99 "~
100
101
102
103
104
105
106
107
108
109
110
111
112 .
113
114
its
116
117
116
119
120
	 »?.! 	
122
123
124
125
126
127
131
132
133
134
135
136
" 137
138
139
J40
141
142
143
144
145
146
147
146
149
ISO
151
153
154
155
FRMF
ei.fi
47.1
79.0
82.0
101 .'6
121.8
96.6
153.6
109.0
2SBI9
.157.7
163.6
130.9
_i.iiil
1231s
_JJ»6,6
TEAF CHUF
«4.2 SB. 6
35.0 lit. 0
39. 419.5
42. 46. '4
55_, fcfl. |
SI. S7.6
68. 80. 6
48. 61.9
""22. ~s"aJV"~
St. 56.5
83. 66.7
76. 97.4
55. 66,9
SO. 56.1
.60, 61.3
62. fcO.O
67. 98.6
63. 101.5
62. 90.2
68. 74.1
67, PO.O
105,1 (10.
SB.
. J24.7 70. 79.9
112.7

80*5

84.5
122.1
136,6
82.9
96. S
193,9
222,6
112.5
_L85«9
74.1 77.1
134.6 137.6

33.9
38.2
55.0 55,9
26.3
51.1 62.1
48.5 54.
69.5 72.
2.5 86. "•"•
101.
102.4 398.
45.6 42.
71.3 63;
79.3 92.
109.0 167.
163.9
3S.O 52.
197.0 263|
51.4
46.6
62.?
63.'
71.4
44.1
35.1
50.5
88.1
99.2
50.5
65.1
78.1
66.
102,
84.
10-5.
6R.
87.
51.
69.
72,
86.
136.
47.2
33.6
03.3
50.4
42.1
67.4
73.4"
96,1
69.1
176.2
46,4
197,6
i
WC08 CCMPA*XSON — DAILY CAT* LISTING j
_ _ j
cweasr rase TECH TECH C«P«
«' ' 78.0 " ,
6 3. '4 ' -.<
06.0
63.0 62.'4
71. 77.'9
61. 79 .'8
92. 96.4
Ufl. 87,7
58. 41.1 ~ "" •
72. 46.'l
95.*
129. 89.5 ' 	 ,
52. SU2
,16.
179. 54'4
48. 64.6
9?. SSJS
75. 66.6 . „
59.
60. 81 '3
SO". 89.9 	 ~.
102. 59.4
82. 70. '2
66. ' .... ' :,
99. .
176.
93. 58JO
154.0 109.6
144.1
71.3 .
78.7
132.7
93.2 •:
67.7 2 3. '5 .,
86.6 32. J
75.2 27.4 .;
. 37.1 . .
55.2
67.5 36.2
109.3 53 »0 • •
US. 4 16,8
7S.8 64.3
• Tl.'9
'•£
153.4 69.'4 -
197.3
199.| 129.'9 '-i
1S3J7 y
88. t 38.6 - • J
171.6
. ...204.1_. _..i63.'S _. „ -.,«

-------
)
1
I
I
t
t •
J
;i
i:
'i
I'.
j".
[17
[))
K
5
;i
X
J.1
»j — - — . . .
'1
Jj
**
1
•1
'*
1-
3
i .••

i
NO* HCMTOPING HFTHcoa CCNMBISON — OAILV C»T* LISTISS
D*y
""156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
U3
164
16S .
166
IBB
189 ..
190
191
192
193
194
196
198
~I99 	
200
201
202
203
204
205
206
207
208-
209
210
PRMF
'.'. 75.'l
67. 19
86.6
56.7
108.8
13k. 6
192.0
200.6
i«.8
139.J
189.'6
228J3
213.1
20. J_
36.0
90.9
no!*.
61. 9
87.8
05.9
151.4
103.0
57.1
71.6
168.6
1.50,3
130.0
235.5
104.6
00.7
102.2
*1 .a
63.5
74.4
9f."0
102.9
90.2
120.5
189.4
76.7

60.6
53.2
A7.il
*«,7
45. a
65.7
77.8
98.4
107.2
136.6
107.6
132.2
126.8
128.6
111.!
116.5
' "ZV.7"
99.1
56. S
81.0
33.3
46.1
39.1
47.0
68.7
" "72.9
44.7
68.6
145.4
188.3
	 IV... L.
SO. 4
66.1
-«lj*
OS. 9
50.4
S5.e •
66.4
37.4
93.6
13.2
CHRP
66.9
66_,6
60.-B
81.9
50.7
05.5
37.9
54.Q
... 76.2
*B!«
69.8
136.0
104. T
149.1
171.)
114.4
....HI. 8. .
62.0
123.8
5.9
27.9
95i5
65.5
IIS. 6
37.5
*4.l
65.2
1.9.8
111.9
iei.8
sils
181.2
196.4 .
7l!s " "
*2.8
ST. 6
50,9
40.2
50. 'a
82i6
38.7
89.1
129.'3
53.6
C.MBC. CMS sac TOSC TECH Tfm

52. 6
67.6
48.4
55. J
61.1
80.4
72.7
103.4
117.3
100.9
112.4
137.4
22.6
92.4
74,1
66.8
83.9
57.6
57^8
75.1
ST. i
83.3
64,0
61. J
87.1
145.8
188.1
228.0
6tJ6
41.6 "
46.0
53.3
74.9
03.5
9?. 6
92.4
205.3
.55,,?
106.3
62. T
e.1.2.
6S.O
7ft ,Z
45.9
100.8
8?. 7
152. 5
114.3
136.8
131.3
19S.O
so.e
328.3
212!5
Ifcfl.'o
IB. 5
34il
43.9
123. t
28. e
85.3
71.5
158.2
237.4

95.7
132.7
10'. 1
30.3
42.5
104.5
'7.3
43^8
sa!'?
34 ;a
37.9
37.'!
lo.'o
64.2
82.6
94.9
98?6
89:7
113.7
B3.'S
108.0

2U4
54.9
43.6
60. '7
19 ,'4
58.7
49 :a
4). 7
41. '6
	 "63:8" 	 ~
37,6
57,3
100.7
107.1
19].U
55 :!
43.3
- 3"e :i
4 3" .*!
54 :*
26. '5
65,0
80.8
36.3
.

77. a
ifl.fl
42.2
108,9

201*6
93.0
148.3
128.7
111.7
123.6

126.6
68.1
"138.3
99,0
122.2
227.3
268.7
128.0
101.6

.52.1
108.5
161.2
CHFH


83f3
96,7
H7.8 .
2«5,3
227.1
97 .>
207.1
133N
1!6.~4
1?9^1
137 .'6
95^5
138.9
96^9
103.1
264.3
385.4
198. '9
It 3 .'4
al.'o
197!*7
92.7
I
•
j

4
"1
t
4.
1

..
11
V
't


•1
/  10
i

!

-------

DAY
• " " " :~ :: 2u .
212
213
• ' 214
*l'
;'J, . - 216
• " 217
'•J_. 218
i- 21Q
!••; 220
''•-. 22 1
li 222
•": 223
>:' .226
" 228
n I"
i: 231
h • "2
!:J__ 	 233
\> 234
"i 235
V - .-236
237
M 238
!-_. . 239
i", 2*<>
h • a"»
!u. 242
'?• '243
W 244
J 243
246
••: 247
4_- - - 24fl
•i 249
J 250
J 25 f
"! 252
253
« 2S4
255
» 236
. 2ST
°" . ' 258
' . . 259
" 260
» 261
J . 262
!1 263 •
NO? PCM TO
FRMf
97.7
153.8
64.1
34.9
169;7
95.2
80,6
114.1
96,4
90.1
103.3
46.1
138,1 ._
100.8
A3r2
158.2
53.1
.137,4
133.3
99.11
7fl.4
139.0
71. «
.6.3.7...
79.9
97.6
130. «
87.9
127.6
60.0
",l
61.3
36,6
37.9
38.4
74. T
lSl>
169.1
144.7
107.0
56.1
7EAF
'IHS PETHCD3 crHPARXSCN
—CHRF _CW»C_
64.!
73.3
92.4
~62tr~
so.e
54.5
29.2
47,1
26.1
J9>0. .
41.2
59.5
. 37,5.. .
91.3
122.3
_9.7.6 .
87.4
84.3
55.6
47.4
4.6.I..
65.1
50.2
67.3
30.0
-46.2. .
41.6
43.9
_42,6
47.4
43.6
43.0
36,3
611.3
71.8
47.1
94.7
86.4
82|t
64.8
57.4
57.3
70.8
51.3
. .74.0.
74.7
13.3
, .57.6
65.1
82.4
....51.9
125.2
119.6
_ 116.8.
109.2
99J2
...53.8 _ .
70^7
... 69.4.. .
86. '6
121.3
_J1«.2
32.5
79:3
106.7
107.5
104.7
.?.z. e .
66.7
63.2
87,2
60.4
59.3
.. 3.2 L0
54. «
56.6
51,2
95,2
101.5
'«,» ...
66.0
60.7
36.2
76.4
60.1
._ ee.o
72.6
63."
S6.8
62.1
.66.9
37.9
53.9
80.0
43.8
s«;|
-------
V
                                          N02 MCM70PINC HFTMCDS CCM»*SISON — 0»IL¥  D*T*  LISTING

J
,
•
3 '
•i
3
'.i.
L... 	
P
f
1J|
a
i ,
V
i..
is
D1
!.
P"
b
r1
i
ti
ti
3
1 •'
w
M
i]
M
L,

0*Y
264
265
26ft
267
268
264
270
271
272
213
274
275
276
277
273
279
280
" " 281 "
282
2B3
234
285
287
288
2B«
290
291






	



110.6
109.3
40. T
41. 4
64.1
121.2
60.8
53.3
74.2
95.9
146.0
118.4
183.4
107.3
1J4.3












33.0
6l!«
50.4
23.8
ttl.O
29.6
54.2
05.7
35.9
34.8
51.8
48.6
52.4
71.0
73. a
37.0










ztL*r
as. 2
39.8
59.4
71.2
56,9
62.5
64,4
82.6
64.5
U0.7
117.4
51.1
62.1
5B.«
. 73.3
68 .'0
	 97,2
123.2
71.4
76.2
10.2










Oi HC.
lilt.
50.1
73.5
. 72.6. .
at.
49i
64 '. •
38.1
49.0
61.3
55.0
60.6
71.9
106.2
70.7










L 	 ,_. ,.,_ , -/
CMfssr tesc TECH 7EC4 CHEH
«5.4 47,9
27.3 >
80.0 56.0 88.1
63.5 106.fi '
30.o 60.7
57. S 39.1 57.0
9-J.3 49.0 7*. 7
33.2 40.9 41.0
70.!
61.3 86.6
64.3 50,4 If. a
62.4
59.1
99.6
78.J
34.4 36.0 55. a
52.4 84.1 |27.8
M.ll • 117.6 167.7
tl.t 8?!e I27J6
46.3
74. e
32.6
25.1
42J91
'*
*
4!
tl
•T
M
4J
H
V "
-.7
, SI
V
' fl
                                                                                                                                             if

-------
                                           H-45
                                  TECHNICAL REPORT DATA
                           ,'Plces<- read Instructions on the reverse before completing)
1. REPORT NO.
                            12
                                                          3. RECIPIENT'S ACCESSION>NO.
 EPA-650/4-74-012
4. TITLE AND SUBTITLE
 Comparability  of Nine Methods for Monitoring  N02
 in Ambient Air
             5. REPORT QAT£.
              Marcn 19/4
             6. PERFORMING ORGANIZATION CODE
7. AUTHORIS)
 T. D. Hartwell,  C.  A.  Clayton, C. E. Decker,  P.N.  Hunt
             8. PERFORMING ORGANIZATION REPORT NO.

              25U-711-3
9. PERFORMING ORGANIZATION NAME AND ADDRESS
 Research  Triangle Institute
 P. 0. Box 12194
 Research  Triangle Park, N,  C.   27709
                                                          10. PRCiGRAM ELEMENT NO.
             11. CONTRACT/GRANT NO.
              Contract  No.  68-02-0335
12. SPONSORING AGENCY NAME AND ADDRESS
 Environmental  Protection Agency
 National  Environmental  Research Center
 Human Studies  Laboratory
 Research  Triangle Park, N.C.  27711
             13. TYPE OF REPORT AND PERIOD COVERED
               Final  Report	
             14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES
 s. ABSTRACT Tne  p^sep^ study was undertaken  to compare several NOo monitoring methods
 based  on  field data collected by EPA.  Three continuous monitors (Chemiluminescent
 and two  Saltzmans) and six bubblers  (two Arsenite, two modifications of the Jacobs
 Hochheiser,  and two Triethanolamine  methods  were investigated.
    In  particular, objectives of the  project  were (a) to determine the  comparability
 of these  nine methods using field measurements  obtained in Chattanooga,  Los Angeles,
 and St.  Louis and (b) to determine,  if possible, conversion factors for converting
 readings  frc'i one method to another.  The  criteria used in attempting  to satisfy these
 objectives  -Involved examining statistics such as correlations between  methods, ratios
 of method means, and regression relationships between pairs of methods.                 I
    The present study dealt only with the analysis of field data, which  imposed several]
 limitations  on tf.:j inferences that could be  drawn from the analysis.   For example,
 the bias  of the  '.rious methods was  indeterminable; also, no data on potential N02
 measurement interferences was available.
    The results of the study indicate that  additional laboratory and field work is
 necessary on  a subset of the nine methods  studied before a decision can  be made as to
 which  NOo monitoring method should be used in the field.  RTI would suggest that the
 subset Include four methods: one Arsenite, one  Triethanolamine, one Saltzman and the
 Chemiluminescent.  The two modifications of  the Jacobs Hochheiser method should be
 dropppd  from rnnsi dp ration	
17.
                               KEY WORDS AND DOCUMENT ANALYSIS
                  DESCRIPTORS
                                             b.IDENTIFIERS/OPEN ENDED TERMS
                          c.  COSATI Held/Group
18. DISTRIBUTION STATEMENT


 Unlimited
19. SECURITY CLASS (This Report)
    Unclassified
21. NO. OF PAGES
       273
20. SECURITY CLASS (Thispage)
    Unclassified
                           22. PRICE
EPA Form 2220-1 (9-73)

-------
                                                                 H-46


                                                         INSTRUCTIONS

     1.   REPORT NUMBE
         Insert the EPA repoi      her as it appears on th>- .over of the publication.

     2.   LEAVE BLANK

     3.   RECIPIENTS ACCESSION NUMBER
         Reserved for use by each report recipient.

     4.   TITLE  AND SUBTITLE
         Title should indicate clearly and briefly the subject coverage of the report, and be displayed prominently. Set subtitle, if used, in smaller
         type or otherwise subordinate it to main title. When a report is prepared in more than one volume, repeat the primary title, add volume
         number and include subtitle for the specific title.

     5.   REPORT DATE
         Each report shall carry a date indicating at least month and year.  Indicate the basis on which it was selected (e.g., date of issue, date of
         approvcl, date of preparation, etc.).

     6.   PERFORMING ORGANIZATION CODE
         Leave blank.

     7.   AUTHOR(S)
         Give name(s) in conventional order (John R. Doe, J. Robert Doe, etc.).  List author's affiliation if it differs from the performing organi-
         zation.

     8.   PERFORMING ORGANIZATION REPORT NUMBER
         Insert if performing organization wishes to assign this number.

     9.   PERFORMING ORGANIZATION NAME AND ADDRESS
         Give name, street, city, state, and  ZIP code.  List no more than two levels of an organizational hirearchy.

     10.  PROGRAM ELEMENT NUMBER
         Use the  program element number  under which the report was prepared. Subordinate numbers may be included  in parentheses.

     11.  CONTRACT/G RANT NUMBE R
         Insert contract or grant number under which report was  prepared.

     12.  SPONSORING AGENCY NAME AND ADDRESS
         Include  ZIP code.

     13.  TYPE OF REPORT A'!D PERIOD COVERED
         Indicate interim final, etc., and if applicable, dates covered.

     14.  SPONSORING AGENCY CODE
         Leave blank.

     15.  SUPPLEMENT'^ /JY NOTF"       . .  .
         Enter informa  jn not indued clsewhere.but useful, such as:  Prepared in cooperation with, Translation of, Presented at conference of,
         To be publish.d in, Supersedes, Supplements, etc.

     16.  ABSTRACT                                                                        . i.i
         Include  a brief (200 wore-  ;,,* less) factual summary of the most significant information contained in the report. If the report contains a
         significant biblioprap'w or  literature survey, mention it here.

     17.   KEY WORDS AND DOCUMENT  ANALYSIS
         (a) DESCRIPTORS - Select from the Thesaurus of Engineering and Scientific Terms the proper  authorized terms that identify the major
         concept  of the re?-."   H and are sufficiently specific and precise to be used as index entries for cataloging.

         (b) IDENTIFIERS AND OPEN-ENDED TERMS - Use identifiers for project names, code names, equipment designators, etc.  Use open-
         ended terms written in descriptor form for those subjects for which no descriptor exists.
                                                                                                                       . -. . |.-,
         (c) COSATI FIELD GROUP - Field and group assignments are to be taken from the 1965 COSATI Subject Category List. Since the ma-
        jority of documents are multidisciplinary in nature, the Primary Field/Group assignment(s) will  be specific discipline, area of human
         endeavor, or type of physical object. The application(s)  will be cross-referenced with secondary Field/Group assignments that will follow
         the primary posting(s).

    18.   DISTRIBUTION STATEMENT
         Denote reusability to the  public or limitation for reasons other than security for example "Release Unlimited." Cite any availability to
         the public, with address and price.

    19. & 20. SECURITY CLASSIFICATION
         DO NOT submit classified reports  to the National Technical  Information service.

    21.   NUMBER OF PAGES
         Insert the total number of pages, including this one and unnumbered pages, but exclude distribution list, if any.

    22.  PRICE
         Insert the price set by the National Technical Information Service or the Government Printing Office, if known.
EPA Form i{220-1 (9-73) (Reverse)

-------