EPA-460/3-77-012a
July 1977
            CHARACTERIZATION OF
    METHANOL/GASOLINE BLENDS
            AS AUTOMOTIVE FUEL -
    PERFORMANCE AND EMISSIONS
                 CHARACTERISTICS
     U.S. ENVIRONMENTAL PROTECTION AGENCY
         Office of Air and Waste Management
      Office of Mobile Source Air Pollution Control
        Emission Control Technology Division
           Ann Arbor, Michigan 48105

-------
h!
   EPA-460/3-77-012a
   July 1977
S-;-
!l-H
t
 :i
              CHARACTERIZATION OF
       METHANOL/GASOLINE BLENDS
              AS AUTOMOTIVE FUEL -
       PERFORMANCE AND EMISSIONS
                    CHARACTERISTICS
        U.S. ENVIRONMENTAL PROTECTION AGENCY
            Office of Air and Waste Management
         Office of Mobile Source Air Pollution Control
           Emission Control Technology Division
              Ann Arbor, Michigan 48105

-------
                       TABLE OF CONTENTS

                                                           Page No,

I.      INTRODUCTION 	     1

II.     PRESENT INVESTIGATION  	     2

       A.   OBJECTIVES	     2
       B.   FUELS	     3
       C.   ENGINE	     4
       D.   MEASUREMENTS 	     4

           D-l  Measuring Methods 	     4
           D-2  Experimental Uncertainty  	     4

       E.   TEST PROCEDURES	     5

           E-l  Calibration Check at "Standard"
                Conditions  	     5
           E-2  Type  0 Tests	     6
           E-3  Type  I Tests	     6
           E-4  Type  II Tests	     6

       F.   METHODS  EMPLOYED FOR  TYPE 0  TEST
           DATA ANALYSIS	     7

           F-l  Objective	     7
           F-2  Data  Presentation Format  	     8
           F-3  Statistical Analysis -  Description
                of  Methods Used	     8
           F-4  Statistical Analysis -  Presentation
                and Interpretation of Results  	   12
           F-5  Discussion	   14

-------
                   TABLE OF CONTENTS (cont.)








                                                           Page No.




III.    EXPERIMENTAL RESULTS	      16





       A.   TYPE 0 TESTS	      16





           A-l  Fuel-Air Equivalence Ratio  	      16



           A-2  MET Spark Advance	      19




           A-3  Torque	      20




           A-4  Brake Thermal Efficiency  	      21




           A-5  Volumetric Efficiency 	      22




           A-6  Carbon Monoxide Mass Emissions  	      23




           A-7  Nitric Oxide Mass Emissions 	      23




           A-8  FID Total Hydrocarbon Mass Emissions   .  .      24




           A-9  Carbon Dioxide Mass Emissions  	      25




           A-10 Oxygen Mass Emissions	      25




           A-ll Geometric Distribution  	      25





       B.   TYPE I TESTS	      27





           B-l  Fuel-Air Equivalence Ratio  	      27



           B-2  Torque, Engine Speed  	      27




           B-3  Brake Thermal Efficiency  	      27




           B-4  Carbon Monoxide Emissions  	      28




           B-5  Nitric Oxide Emissions   	      28




           B-6  FID Total Hydrocarbon Mass Emissions   .  .      28
                             11

-------
                   TABLE OF CONTENTS  (cont.)


                                                            Page No,

       C.  TYPE II TESTS	     28

           C-l  Manifold Vacuum	     29
           C-2  Blend Leaning  Effect  	     29
           C-3  Brake Thermal  Efficiency  	     29
           C-4  Oxygen Emissions  	     30
           C-5  Carbon Monoxide Emissions   	     30
           C-6  Nitric Oxide Emissions  .  .  i  i	     32
           C-7  FID Total HC Emissions	     32

IV.    SUMMARY AND CONCLUSIONS	     33

V.     ACKNOWLEDGMENTS	     37

VI.    REFERENCES	     38

LIST OF TABLES	     39

TEXT OF TABLES	     40

LIST OF FIGURES	     86

TEXT OF FIGURES	     92

APPENDIX A - ANALYSIS OF EXHAUST GAS	    166

APPENDIX B - PERFORMANCE AND EMISSIONS
             CHARACTERISTICS PROGRAM  	    171

APPENDIX C - LIST OF STANDARD CONDITIONS
             TEST RESULTS FIGURES	    184
                              ill

-------
                     I.  INTRODUCTION

     Alcohol has been promoted as a motor fuel for almost 70
years.  Most of the early work was concerned with the use of
ethyl alcohol  (ethanol), which could be produced by fermen-
tation of grain and other farm products as well as synthe-
tically.  The impetus behind these studies was the desire to
develop new outlets for farm produce and to develop energy
sources other than those based on petroleum.  Excess cost and
the absence of technical advantages to justify a higher cost
prevented the general use of ethanol as a motor fuel (1)*.
     Recent concern about environmental problems and the
eventual shortage of conventional petroleum-based fuels coupled
with the potential of obtaining methyl alcohol (methanol) as
a product of coal gasification (2) has bOUght about a recent
interest in the use of methanol as a fuel.
     In order to assess the feasibility of using methanol as
a motor vehicle fuel, either alone (neat)  or as a blend in
gasoline-type base stocks, its performance, emissions and
practical use characteristics must be ascertained.  To this
end the authors and their colleagues are conducting a series
of experiments which will determine methanol blend-fueled
engine characteristics information found to be lacking during
their preparation of Reference 3.  This report contains some
of the results obtained to date.   Other results have been
presented in Reference 4.
* Numbers in parentheses designate References in Section VI,

-------
               II.  PRESENT INVESTIGATION

II.  A  OBJECTIVES

     The present study was concerned with two basic areas of
investigation.  The first was the determination of the effects
on the performance and emissions characteristics of a multi-
cylinder, carbureted engine operating at MET spark advance,
resulting solely from a change in fuel from a base stock
representative of unleaded gasoline to blends of the base
stock and methanol.  To achieve this first objective the
engine was operated at constant speed and manifold vacuum over
a range of fuel-air equivalence ratios.  The fuel's effects on
performance and emissions characteristics were then ascertained
by comparing the various performance and emissions charac-
teristics determined while using methanol blends as a fuel
with those characteristics determined at the same fuel-air
equivalence ratio while using the base stock as a fuel. The
first area of study is felt to be of fundamental importance
and  an  aid to understanding the results obtained during the
second area of study.
     The main purpose of the second area of study was to
estimate what would happen to its performance and emissions
characteristics if the above-described engine were to power an
automobile traveling at constant speed while being fueled by
various blends of methanol and gasoline.  To achieve the goals
in the second area of the study the engine was fitted with a
carburetor whose fuel metering characteristics approximated
those of a stock 1974 carburetor.  In addition the spark
advance was adjusted to the best as could be determined, stock
spark advance corresponding to the engine speed and manifold
vacuum. The speed of the vehicle being simulated during the
tests determined the engine speed and torque requirement.
     A third area was investigated during the study which
involved determining the changes in performance and emissions
characteristics when methanol blends were substituted for gas-
oline while making no change to any of the controllable engine

-------
variables.  This third area does not comprise a basic objective*
but since the information was readily obtained during testing
it is included for completeness.
     In summary, the basic objectives of the present investi-
gation were:
     1.   Determination of the effect of methanol addition to
          gasoline per se on the various performance and
          emissions characteristics of a carbureted engine
          when it is operated at the same as gasoline-fueled
          operation engine speed, manifold vacuum (unequal
          torque as the data showed) and equivalence ratio
          with MET spark advance.
     2.   Determination of the effect of methanol addition to
          gasoline on the various performance and emissions
          characteristics of a carbureted engine when it is
          operated at the same as gasoline-fueled operation
          engine speed and torque (unequal manifold vacuum)
          with no alteration to the controllable engine para-
          meters other than the throttle setting and with the
          fuel-air equivalence ratio being determined by a
          stock carburetor and the spark advance adjusted to
          the stock value corresponding to the engine speed
          and manifold vacuum.
     In the following sections the fuels,  engine,  measuring
techniques,  test procedures,  and statistical methods of data
analysis employed to attain the objectives are described.

II.  B  FUELS
     Indolene H.O. Clear Motor Fuel III was used as the base
stock representative of unleaded gasoline.  Mixtures of
Indolene and commercial grade methanol were used to repre-
sent methanol-gasoline blends.  Blend levels of up to 30
volume percent of methanol in Indolene were tested.  An X
volume percent blend was formed by taking X volume units of
methanol and combining them with (100-X)  volume units of
Indolene.  in this report Indolene is also referred to as

-------
0%M and X volume percent blend as X%M.
II.  C  ENGINE
     The four cylinder engine used in this study was manufac-
tured by the Pontiac Motor Division of General Motors Corpor-
ation and is described in Reference 5.  In order to simulate
a modern engine, it was fitted with a 1974 400 cu. in. Pontiac
engine cylinder head and cam.  The compression ratio was
8.1 to 1.
     A modified intake manifold which accommodates a four-
barrel Rochester Quadrajet carburetor was used.  The car-
buretor, in turn, was modified to operate on only one of
the two primary and secondary circuits.  For some of the
tests it was necessary to manually control the fuel-air
ratio.  For thse tests an adjustable mlin metering jet was
installed.
     The spark advance was manually adjustable with the cen-
trifugal and vacuum advance mechanisms inoperable.
     Coolant water inlet and exit temperatures were thermo-
statically controlled.  The radiator and fan were replaced
by a cooling tower using fresh city water to maintain the
coolant inlet temperature.
II.  D  MEASUREMENTS
II.  D-l  MEASURING METHODS
     Table 1 summarizes the various measurements that were
made during testing.  Included are the methods used to make
the measurements along with an estimate of the precision  (6)
of the instruments.  These estimates were determined either
from manufacturers' specifications and/or calibrations per-
formed during the investigation.  In the next section the
methods used to estimate the experimental uncertainty of
the various measurements are given.
II.  D-2  EXPERIMENTAL UNCERTAINTY
     In order to determine the experimental uncertainty of
                           4

-------
 the various  measurements  and the reproducibility of the data,
 the engine was  operated prior to and periodically during the
 course  of each  day's  testing at a set of "standard" conditions
 specified in Table  2.
     Figures  c 1 through C 11,  Appendix C,  illustrate the values
 of  the  measured parameters measured during the  "standard"  con-
 ditions tests.   The horizontal axis test numbers refer to the
 Test Number  Values  assigned to test points as given in
 Table 3* which  also contains the values of the  various measur-
 ed  and  derived  parameters for all test points.   Included in
 the Appendix figures  is the mean value (arithmetic  average)
 and the "standard"  deviation of the various measurements at
 the "standard"  condition  operating point.
     In a similar   way, Figures C 12 through C  19 illustrate
 the values of the derived parameters for the "standard"  con-
 ditions tests.   The mean  and the "standard"  deviation at the
 "standard" conditions  for the  derived parameters are also
 shown in each figure.
 II.  E   TEST PROCEDURES
     All testing was carried out under steady state conditions
with the engine  connected to a water brake  dynamometer.  Three
 types of tests were carried out:   Type 0,  Type  I and Type  II.
 The three types  are described  below along with  the  "standard"
 conditions check point  mode of operation which was  used  for
 calibration  purposes.
 II.  E-l CALIBRATION CHECK AT  "STANDARD" CONDITIONS
     After performing necessary daily instrument calibrations
 the  engine was adjusted to  the  "standard" conditions  described
 in  Table  2.    This was done  to  detect  engine  and  instrumenta-
tion malfunction.   The  engine was  also operated  this way
periodically  during a day's  testing.  For comparison purposes
the measured horse power,  and brake mean effective pressure were
corrected to standard conditions  (12).
*  Table 3 is the computer output which contains the test
   results used  in this report.

-------
II.  E-2  TYPE 0 TESTS

     In order to determine the effect resulting solely from the
addition of methanol to gasoline, that is, objective 1  of
Section II. A, the Type 0 Tests were conducted.  During these
tests the throttle position, and dynamometer load control were
adjusted to maintain a constant engine speed (2000 RPM) and
manifold vacuum [16 in. Hg (54 kPa)] while the equivalence ratio
was varied over similar ranges for the various methanol blends
by changing the setting of the carburetor's adjustable main
metering jet.  In addition,  the spark advance was adjusted to
the predetermined MET spark advance value corresponding to the
equivalence ratio.  Such tests were conducted for 0, 20 and 30%
blend levels.
II   E-3 TYPE 1 "TESTS
     During the Type I tests, the engine was adjusted to a
predetermined engine speed and manifold vacuum while using
Indolene fuel with the stock main metering jet in the car-
buretor and the ignition timing adjusted to manufacturers'
specifications.  Subsequently, methanol blends (10, 20 and
30%) were substituted for the Indolene while making no change
in the engine adjustments.  The throttle setting and the spark
advance were not changed; neither was the dynamometer load
control valve.
     Since the Type I tests were carried out for only a limited
set of operating conditions, namely 2000 RPM engine speed and
16 in. Hg (54 kPa) or 10 in. Hg (34 kPa) manifold vacuum, and
since the engine adjustments and corresponding vehicle speed
are the same as those in some of the more extensive Type
II test series, the details of how the Type I tests operating
conditions were selected are described in the next Section.
II.  E-4  TYPE II TESTS
     The Type II tests were carried out to achieve the second
objective given in Section II. A.  As in the Type I tests,
the engine was adjusted to a predetermined engine speed and
torque using Indolene fuel.  Subsequently methanol blends

-------
 (10,  20  and 30%)  were  substituted.   This  substitution resulted
 in  a  decrease  in  engine  speed and torque.   The procedure was
 to  lower the manifold  vacuum by opening the throttle until the
 Indolene-fueled-operation engine speed and torque  were regained.
 In  addition, if necessary,  the spark was  retarded  to correspond
 to  the spark advance that would have been present  had the
 vacuum advance .mechanism been operable.
      The engine speeds selected were 1150,  1500 and  2000 RPM
 and corresponded  to vehicle speeds  of approximately  30,  40
 and 52 mph  (48, 64 and 84 km/hr).
      The torque values selected approximated one-half the
 torque  (same mean effective pressure)  requirement  of a
 full-sized  American car,  cruising at 30,  40 and 52 mph.   In
 addition, at 2000 RPM  engine speed  (52 raph),  tests were
 carried  out at a  torque  value  higher than  the  52 mph cruise
 torque value.   The engine speed,  torque,  and corresponding
 vehicle  speed  and Indolene-fueled-operation manifold vacuum
 values are  presented in  Section III.  B.  Also  presented  are
 the values  of  Indolene-fueled-operation spark  advance.   These
 values were the best estimates  that  could be made  from avail-
 able  information  of spark advance versus engine speed and
 manifold vacuum for a  1974,  400 cu.  in.,  non California
 vehicle, Pontiac  engine.
      The values of spark  advance used during the methanol
 blend-fueled operation Type  II  tests  are given  in  Table  3.
 II.   F   METHODS EMPLOYED  FOR TYPE 0  TEST DATA ANALYSIS
 II.   F-l  OBJECTIVE
      The objective of  the Type  O tests was  to answer  the
 question:  What effect does  methanol addition have on  the
 various performance and emissions characteristics when the
 engine is operated at the same  as gasoline-fueled  operation
 engine speed, manifold vacuum,  equivalence  ratio,  and MET
 spark advance?
     As will be seen in Section III the changes in perfor-
mance and emissions characteristics determined during the

-------
Type 0 tests attributed to the methanol addition are small
being close in magnitude to the experimental uncertainty.
The objective of the data analysis presented in this Section
was to assess the statistical significance of the observed
changes.  The format used for data presentation and the
methods of statistical analysis employed are described in
this Section.
II.  F-2  DATA PRESENTATION FORMAT
     For each of the blend levels tested the experimentally
determined characteristic of interest was plotted as a
function of the fuel-air equivalence ratio * .  See for
example Figure 7 where the performance characteristic torque
is plotted versus equivalence ratio for Indolene.  Also see
Figures 8 and 9 which illustrate similar information for the
the 20 and 30%M blends respectively.  All such Figures are
for 2000 RPM, 16 in. Hg manifold vacuum and MET SA.
II.  F-3  STATISTICAL ANALYSIS - DESCRIPTION OF METHODS USED
     To estimate the degree of association or co-variation
of the various performance and emissions characteristics
with methanol blend level,statistical methods of regression
analysis and hypothesis testing were employed.  The object-
ive of the regression analysis should not be misconstrued.
It was not to determine the best functional relationship
among the variables.  Rather, the objective of the regress-
ion analysis as combined with the hypothesis testing was to
estimate the degree to which the different Variables are
associated (7).
     The statistical analysis for each performance and
emission characteristic was comprised of three parts:
[1]  The first part consisted of selecting a regression model
     or function which correlated the measured characteristic
     of interest with equivalence ratio for each of the blend
     levels at constant engine speed, manifold vacuum and MET
     SA.  No single function was found which would satisfact-
     orily correlate each of the characteristics with
                            8

-------
equivalence  ratio  over  the  entire  range  of equivalence  ratios
tested.   For the purpose  of the  present  st^udy it was  not
necessary to find  such  a  function  and  over the range  of
equivalence  ratios of practical  interest (viz.  0.88 <:
*c  s  1.22) it was  found that for each  blend level  a poly-
nomial  function of the  form

      C  =  aO  + Vc + Vc + Vc                         
-------
teristics resulting from methanol addition.

[2]  The second part of the analysis consisted of performing
     a regression analysis of the pooled 0, 20 and 30%M data
     using the regression models

         C = b0 + b1$c -Hb22 + ^3 f ^
     and


     The parameters of the regression models b. and c. were
     determined by the method of least squares using the
     computer program BMD 03 R described in Reference (9).
     The reason for selecting two regression models
     [Equations (2)  and (3)] was that the methanol addition
     appeared to influence some characteristics by the same
     degree for all equivalence ratios; for other charac-
     teristics the degree of methanol's influence appeared
     to be a function of equivalence ratio.  Equation (2)
     would apply to the former and Equation (3) to the latter
     situation.
          As in part [1] of the analysis the objective here
     was not to find the regression model which best fitted
     the data.  Rather the objective was to use a model which
     correlated the data sufficiently well so that statis-
     tical inferences could be made regarding the effect of
     methanol addition on performance or emissions charac-
     teristics.  The Equations (2)  and (3)  regression models
     served the purpose.
[3]  The final step in the statistical analysis was to infer
     whether the inclusion of the M term in Equation (2)  or
     the term MS  in Equation (3)  was statistically signifi-
     cant.  If significance was found then methanol was  said
     to have an effect on the performance or emission charac-
     teristic of interest.
          Two tests  were performed to infer statistical
                          10

-------
significance  of  the M or M   term.   The  first involved
                           c
a hypothesis  test with the null hypothesis;   b.  =  0
 (or c4 = 0) .  The alternate hypothesis was b4 /  0
    C4 7* )   The pertinent test  statistic was
                        b4  ^  (Or c ) is  the value of the
parameter determined by the BMD 03 R  computer program
(9); S  (or  S   ) is  the standard deviation  or standard
      b4     C4
error of the regression coefficient b.  [or  c.) and   is
the significance level of the test.   The second test for
significance of the  M or MS  term was a test for lack of
                           c
fit  (10) .  For this  test the experimental error sum of
squares was  estimated from both "standard"  conditions
check point  data (Section II,, D-2) and data taken at
essentially  identical values of the independent variables.
The pertinent test statistic for the  null hypothesis
that there is no lack of fit was
                      LOF SS /  v,
      F ,             = _   Vl                (5)
       a ' vl' V2     EESS / v2

which is F-distributed with v,  and v~ degrees of freedom.
In Equation  (5) :  v1 is the degrees of freedom of the
deviation about regression sum  of squares minus the de-
grees of freedom of  the experimental  error  sum of squares >
EESS? v2 is  the degrees of freedom of EESS; LOF SS  is
the lack of  fit sum  of squares which  is equal to the
deviation about regression sum  of squares minus the ex-
perimental error sum of squares.  a'  is the significance
level of the test.
                      11

-------
          In addition to inferring the significance of the
     M or M$  terms in Equations  (2) and  (3) the above de-
     scribed hypothesis and lack of fit tests were used to
                                                   2   3
     infer the significance of the parameters ? , $ ,  *  in
     Equations (2) and  (3).
II.  F-4  STATISTICAL ANALYSIS - PRESENTATION
          AND INTERPRETATION OF RESULTS.
     Pertinent results -of the statistical analysis described
earlier are presented in tabular form, an example of which is
given in Table 4.  The interpretation of the Table is given
below.
     The first entry in the Table is an estimate of the ex-
perimental error sum of squares, EESS, of the characteristic.
The EESS was found by pooling the sums of squares of the de-
viation about the mean for subsamples of values of the charac-
teristic.  The test points comprising a subaample were for
a fixed blend level and the values of the independent variable
4  differed from each other by less than one percent.  Mathe-
matically the experimental error sum of squares was calculated
using Equation (6).
            7k          2
     EESS =  [  (C. - C)    ]                             (6)
           j=l i=l  X
In Equation (6)  C. is the measured value of the characteristic
C for test point number i.   The summation over i is over the k
test points of a given blend level making up a subsample, each
point within the subsample having values of $  differing from
each other by less than 1 percent.  C is the average value of the
C.'s for the k test points.  There were seven subsamples, that
is seven distinct values of $  ( < 1%), as is denoted by the
summation over j.  There were:  three subsamples with 0%M and
$  = 0.876, 0.967 and 1.167; three subsamples with 20%M and
$  = 0.874, 0.968 and 1.111; one subsample with 30%M and $c =
1.086.
     The next entry in Table 4 is the number of test points
or observations for all of the blends.  In other words n is
the number of observations for the pooled 0, 20 and 30% blend
data.
                         12

-------
     For each characteristic  up  to  six  functional  forms  of
Equations  (2) and  (3) were used.  The six  are  listed below:

FUNCTIONAL
   FORM                        FUNCTION

1 ci = ao,i H
2 C2 = aO,2 H
3 C3 = aO,3 H

4 C. = an A H

h al,l*c H
h al,2*c H
h a, -$ H
1,3 c

h a, . $ H
2

h a2,2$c + a3,2$c
h 92,3$c + a4,3M

^ a^ A $2 + a, A $3 + a, ,M




(7)

    5        C,- = a    + a    $  + a.   $2                   +  ac  _M
              5    0,5    l,5c    2,5 c                      5,5c

    6        Cf. = a_ , + a, ,$  + a_ , $2 + a    $3          +  ac  ,M$
              6    0,6    1,6 c    2,6 c    3,6 c             5,6   c

     For each of these functional forms the computer program BMD
03 R  (9)  was used to determine the values of the coefficients
a. ..  In addition the corresponding values of the test  statistics
 i J

     fc    =    i>J                                           (8)
were determined.  Note that the subscripts in Equation  (8) do
not represent the same things as the subscripts in Equation  (4).
In Equation  (8) S.  .is the standard deviation of the regression
                 1 1 J
coefficient a.  ..  The t.  . values are presented in the  Statis-
             ! D        i3
tical Significance of Test Results Tables 5-9.
     If for a given functional form of Equation (7) the  value
of t. .is large then the corresponding coefficient a    is
     ' J                                              i, j
statistically non-zero and thus the corresponding independent
               2   3
variable  ($ , $      M or M$ )  is significant with regard to
           t   {**   \         C
correlating the characteristic C with that functional form.  If,
on the other hand, the t.  . value is small then the corresponding
                       1 D
independent variable is not significant and can be deleted from
the function.  The previous two sentences are quantified by

                           13

-------
 considering the significance levels a-    which are also pre-
                                      !D
 sented in  the  Tables,  a.  .  is the probability, assuming a. .
 .  ,                    ifj                                I'D
 to be  zero,  that a value  of t.  .  greater  than or equal to that
                               ' J
 given  in the Tables could have  been obtained by chance.
 II.   F-5   DISCUSSION
      Since the regression model Equations (1), (2) and (3)
 are  not the true relationships  between  the variables C, ft
                                                          
 and  M the  resulting regression  curve (C versus ft ) for a
 given blend level M as obtained from Equation (1)  was not
 the  same as the corresponding blend level curve obtained from
 either Equation (2)  or (3).  To obtain  identical curves the
 true functional relationships between C,  ft  and M would have
 to be  exactly  of the form given by Equations (1),  (2)  and
 (3).
     Limiting  the extent  of the data analysis to the use of
 these  functional form  regression  models led  to the require-
 ment of deciding which model [Equation  (1) or Equations (2),
 (3)] would be  used to  estimate  the change in a particular
 characteristic C resulting  from methanol  addition.   It was
 decided to use the regression curves obtained from Equation
 (1)  for this purpose.   The  reason for making this  selection
 was  that each  of the Equation (1)  curves  was generated us-
 ing  the data sample  for a single  blend level,  and  it was
 therefore  necessary  to estimate the  functional relationship
 between C  and  only c>  The regression curves  thus  obtained
 were found to  be good  estimates of C versus  $   for each
 blend  level.   The regression  curves  (2) and  (3), on  the other
 hand, were obtained  by pooling the data for  all of the  blend
 levels  and required  the additional estimation  of the function-
 al dependence  of C on  M.  The resulting regression curves  for
 the pooled data  showed the  functional dependence to be  not  as
 good an approximation  as  the  assumed functional form of C
 versus  $c  for  one blend level.
     While better  functional  forms of C versus M could  have
been found,  it was decided  that to do so was not necessary
because the  form chosen served its purpose which was to
 aid in deciding  the  statistical significance of methanol
                           14

-------
addition on the observed change in the characteristic C.
     In summary:  the shifts in the Equation  (1) regression
curves (For example Figure 10) were used as estimates of
the change in C resulting from methanol addition and the
Equations (2),  (3) regression analysis was used to determine
the statistical significance of the change.
                           15

-------
               III.   EXPERIMENTAL RESULTS

     The experimentally determined performance and emissions
characteristics corresponding to the test procedures de-
scribed in Section II.  E are described below.  Table 3 was
generated by the computer program described in Appendix B.
In the following Sections, the experimental results con-
tained in this Table are described in detail.
III.  A  TYPE 0 TESTS
     Sections labeled III.  A describe the performance and
emissions characteristics measured during steady state opera-
tion at 2000 RPM, 16 in. Hg (54 kPa) manifold vacuum and MET
spark advance for 0, 20 and 30%M blends.  During these tests
the fuel-air equivalence ratio was varied from approximately
20% lean ($ = 0.8) to around 30% rich ($  1.3).
III.  A-l  FUEL-AIR EQUIVALENCE RATIO
     Two values of fuel-air equivalence ratio are presented
in Table 3.  One of them, given in the seventh row of the
Table, is labeled EQ. RATIO FUEL/AIR and was determined by
dividing the measured fuel mass flow rate by the measured
air mass flow rate and dividing the result by the stoichio-
metric fuel-air ratio.  In the subsequent discussion EQ.
RATIO FUEL/AIR will be denoted by $ , where the subscript m
                                   m                   c
denotes that the value was determined from mass flow measure-
ments.  The second fuel-air equivalence ratio/  given  in
the twenty-eighth row of the Table, is labeled EQ. R.  CHM.
and was determined from the measured exhaust constituents
and the chemical analysis given in Appendix A.  in the sub-
sequent discussion EQ. R. CHM. will be denoted by $ ,  where
the subscript c denotes that the value was determined from
the chemical analysis and emissions measurements.
     In Figures 1, 2 and 3 the value of $  from Table 3 for
                                         c
each TEST NO. is plotted against the corresponding value of
$ .  Also included in the Figures is the least squares
 m
straight line obtained from the regression model:
                           16

-------
               + dl  *m
     For each blend  level,  the values,  of  d   and  d   are
given  in the Figures.   It  is observed that ft   is  greater
                                            m    3
than 5^ on the average  by  about  two percent over  the range
of equivalence ratios tested for all three blend  levels.
     In Figure 4 the Equation  (9)  least squares straight
lines  for the three blend  levels are superimposed.   The
discrepancy, that  is difference,  between $ and *  is  about
                                           c       m
the same for the three  blend levels.  There does  not appear
to be  any significant blend level effect.  The cause of the
discrepancy must therefore  be common to all of the blends.
     A number of possible  causes  for the $ versus  $
                                           cm
discrepancy can be given.   Some  of them will  only affect the
value  of $c.  Among those  causes  affecting dhly $  include
errors in:  the emission instrument calibrations; the  assumed
value  of the water-gas  reaction  equilibrium constant K
[See Equation (A7); K = 3.8 was  used in generating Table 3];
the carbon (X) and hydrogen (Y)  content assumed for  the
Indolene fuel [See Equation (Al);  X = 7.0,  Y  = 13.02 was
used in generating Table 3].  Errors in fuel  and/or  air
mass flow rate calibrations would affect $ as would air
                                           m
leaks  downstream of the air flow  meter.
     To determine its effect on  4  , the water-gas reaction
                                  c
equilibrium constant K  was varied over  the range  3.0
-------
been  some  air  leakage  downstream of  the  air  flow meter.
Figure 4 shows the  $c  versus  $m  curve  obtained assuming  an
air flow leakage  rate  plus  air flow  meter  calibration  error
of 2.4% [that  is, an approximately 4 Ib/hr (1.81 kg/hr)  error
in the air flow measurement was  assumed].  Such an  error is
seen  to account for a  large portion  of the discrepancy between
*c and V
      It is  of  interest to compare the    versus ft  data  des-
                                       c          m
cribed  above with that of  D'Alleva  and Lovell (11).   Their
results were almost identical.   They also  found 8  to  be on
                                                  m
the average approximately three  percent greater than ft .   In
the light  of this finding,  it would  seem that  a contributing
factor to  the difference between ft   and  ft  could be that the
                                  c      m
equilibrium analysis used to determine ft   does  not  completely
describe the system.   To evaluate the  factoi? further work on
the exact  kinetic condition of the exhaust gas  at the  sampling
location would be necessary, which is  beyond the scope of
this work.  However, the analysis presented in  Appendix  A
is a practical and straightforward means of obtaining  ft   and
is currently widely used.
      It was decided that the discrepancy between ft  and  ft
                                                  cm
is probably attributable to problems associated with the  air
flow rate measurement, and  that  $  is  a better  approximation
of the actual fuel-air equivalence ratio than  ft .   Thus,
                                                m
ft  rather  than ft  is used in the  remainder of  this  report as
 cm                                    c
the fuel-air equivalence ratio.
     It should be pointed out that if  the  decision  of  selecting
$c rather than ft  is a bad  one,  it does not affect  the con-
clusions made regarding the effect of  methanol  addition on the
various performance and emissions characteristics of interest.
Also,  the selection of $c has the added feature  of  allowing
for easier  comparison of Type 0  results with the Type  I and II
results since only ft  was measured during  the latter type  tests.
In addition, it is concluded from the  above discussion that the
methods of  determining fuel-air  ratios from gasoline-fueled
engine exhaust gas composition (11)  are also applicable to
methanol blend levels up to 30%M to the same degree of accuracy.

                           18

-------
III. A-2  MET SPARK ADVANCE

     Prior to performing the Type 0 Tests it was necessary to
determine the MET spark advance  (SA) for the various blend levels
at 2000 RPM and 16 in.Hg (54 kPa) manifold vacuum.  To this end
tests were carried out to obtain the brake thermal efficiency
versus SA curves shown in Figure 5.   Since the objective of
these tests was to determine MET SA and not absolute values of
brake thermal efficiency, efficiency ratios VH CIBTC (wliere
T! K,o    is the efficiency measured at 51 ETC SA) rather than
  5 L ETC
absolute values of efficiency 7] are presented.  The efficiency
at 51 ETC was arbitrarily chosen as the reference value,  for this
was the SA selected for the "standard" conditions operating con-
dition described in Section II. E-l.  Each of the curves in
Figure 5  is for a combination of blend level and average equi-
valence ratio as specified in the Figures.  For example,  Figure
5a  is for 0%M  (Indolene) at 3  0.865; Figure 5b for 20%M at
$ *0.857; all such Figures are for 2000 RPM and 16 in.Hg(54 kPa) .
     For each combination of blend level and equivalence ratio
the MET SA point is identified by an X on the curves in Figure
5.   The so defined values of MET SA and the corresponding value
of equivalence ratio are plotted for all the blends in Figure
6.   Also on the curves in Figure 5  are points labeled Y.  These
Y points correspond to the dashed curve best estimate of MET SA
shown in Figure  6.   From Figure 6  it is concluded that for
Indolene and up to 30%M blend-fueled operation at 2000 RPM and
16 in.Hg, the MET SA is the same over the range of equivalence
ratio 0.85<$ <1.14.
            c
     In Figure  5 it is noted that as the spark is retarded from
the MET value, the efficiency tends to decrease rather rapidly.
Therefore, to insure operation at close-to-peak efficiency, the
spark advances used in the Type 0 tests were those identified by
the solid curve in Figure  6.   This curve is about 2 degrees
advanced from the dashed curve best estimate of MET SA.  Thus
the Type 0 tests were carried out at values of SA about 2 degrees
advanced from MET SA.
                          19

-------
III. A-3 TORQUE

     According to the format described in Section II. F-2, the
performance characteristic torque data is presented in Figures
7, 8 and 9 for the 0, 20 and 30%M blends respectively.
As expected, the torque as a function of equivalence ratio
falls off rather rapidly as the mixture is made lean.
     Within the imposed restriction of using only the regression
model functional relationships given by Equations (1), (2) and
(3) the second order function of    (a_ = b. = c. = 0) was found
                                  c   j    J    J
to give the best fit.  The Equation  (1) regression curves which
are shown in Figures 7, 8 and 9, are seen to give a good fit
of the data except for equivalence ratios   greater than around
1.3.  Over the range 0.79 < 4  < 1.22, however, the fit is good.
     The Equation (1) regression curves for .the 0, 20 and 30%
blends are shown superimposed in Figure 10.  it is observed that
the 20% and 30% blends exhibit an identical increase in torque
over that found for Indolene-fueled operation.  The observed
increase in torque is approximately 2%.  As discussed below, this
observed increase is statistically significant.
     Table 5 summarizes the results of the Equations (2,3) re-
gression analysis of the pooled 0,  20 and 30%M blend torque data.
The t.  .  values are large for all of the terms used  in the Equations
     1D
(2,3) regression models.  The decision to include the methanol
effect in the model, (either M or M ) is significant at the tab-
ulated values of a.   _ and a_ c..
                  Q i J      D , J
     The substantial reduction in the sum of squares of the
deviation about regression resulting from the inclusion of the
M or M$  term in the model is further evidence of the signifi-
cance of the methanol effect.   Correspondingly, the F statistic
for the lack of fit test of hypothesis is seen to be reduced
substantially by introducing the M or M$  effect in the model.
                                        c                           ,
Comparing the values of the lack of fit hypothesis test statistic, *
it is observed that the $  term (F=1.15)  gives a slightly better
fit than the M$  term (F-1.25)  showing that the effect of methanol
addition is about the same for all  values of $ .
                                              c
                          20

-------
     In summary, the statistical analysis shows that
methanol has a positive effect on engine torque.  This  is con-
sistant with the observation made during engine testing of  a
definite torque increase on switching from  Indolene to  methanol
blends.  The torque increase does not appear to be a  linear
function of blend level.  The increase for both the 20% and 30%
blends was found to be approximately 2% of  the torque measured
during Indolene-fueled engine operation.
III.  A-4  BRAKE THERMAL EFFICIENCY
     Figures 11, 12 and 13 illustrate the brake thermal
efficiency data for the 0, 20 and 30%M blends respectively.
As expected the efficiency is a function of equivalence ratio
with peak efficiency occurring on the lean  side of stoichio-
metric.  Also included in the Figures are the Equation  (1)
regression model curves.  A satisfactory fit was found  using
                              o      3
all three $  terms  (viz.  , $  and  $ ) over the range  0.87 s.
           >              Q^   C.      C
*c * 1'17-
     The regression curves for the three blend levels are
superimposed in Figure 14 .  These curves show an increase in
efficiency resulting from methanol addition.  This increase is
small and marginally significant from a statistical point of
view as discussed below.
     Table 6 summarizes the results of the Equations  (2, 3)
regression analysis of the pooled 0, 20 and 30%M efficiency
data.  The high t values and the corresponding low values of
                                                        c
                                                        -^
                                      2   3
a show that all of the I  terms ($ ,  $ ,  $ )  are significant.
It should be noted, however, that the inclusion of the 
                                                        c
term gives only a slight improvement in fit as compared to
                                       2
the fit obtained with only the $  and $  terms and is not
                                c      c
necessary from a statistical point of view.  The general
shape of the cubic function, however, was more satisfactory
and it was selected for both the Equation  (1)  and the
Equations (2, 3)  regression analyses.
     The results given in Table 6 show that while the in-
                       2
elusion of the $  and $  terms are significant at the 0.006
                                    3
or less significance level and the 4  term at the 0.019
or less significance level, the inclusion of the M or M$
                          21

-------
terms is significant at the 0.08 and 0.095 significance  levels
respectively.  This means that the probability of making a
Type I decision error, that is the probability of rejecting
the null hypothesis:  b4 = C^ = 0, when  in fact they  actually
are zero is 0.08 and 0.095 respectively.  In other words, if
b^ or c^ is actually zero, then the probability of obtaining
values of t equal to or greater than the values 1.8 and  1.7
given in Table 6 by chance is 0.08 and 0.095 respectively.
Since the usually accepted maximum value of a is around  0.05
(that is, the decision rule for hypothesis testing is usually
done at the 5% significance level), the statistical
significance of including the M or Mc term is marginal.
     It is thus concluded that at the 5% significance level
there is no effect of methanol addition on brake thermal
efficiency.  At the 8% significance level tttere is a positive
methanol effect but it is small;  the increase in efficiency
for a 20% blend being about 1.3% of the Indolene-fueled
operation efficiency at *c= 1.0.  For the 30% blend level the
increase in efficiency is disproportionately larger, being
about 5% of the Indolene-fueled operation efficiency at
*c = 1--
III.  A-5   VOLUMETRIC EFFICIENCY
     Figures 15, 16 and 17 illustrate the volumetric
efficiency data for the 0, 20 and 30%M blends, respectively.
Regression curves are not given in these Figures because
over the range 0.87 s $   1.17 the Equation (1) regression
was found to be not significant.  That is, over this range
of $c volumetric efficiency variations could not be explained
or accounted for by the Equation (1)  regression model.   In
fact, over this range,  the average value of the volumetric
efficiency for the 0,  20 and 30%M blends was 34.3,  34.4 and
34.2%,  respectively,  with corresponding standard deviations
of 0.51,  0.45 and 0.43.   It is thus concluded that over the
range 0.87 s $   1.17,  the volumetric efficiency is not
affected by the blend level for up to 30% methanol.
                           22

-------
III. A-6  CARBON MONOXIDE MASS EMISSIONS

     Figures  18,  19 and 20 illustrate the CO mass emission
data for the 0, 20 and 30%M blends respectively, as well as
the corresponding Equation (1) regression model curve.  In
                               2      3
the model all three terms $ , $  and   were used and the fit
                           c   c      c
is very good.  In Figure 21 the regression model curves for
the three blend levels are superimposed.  It is concluded
that for 0.87 s $   1.17 the CO mass emission for all three
                 c
blend levels are identical and that methanol addition to
Indolene has no effect on CO mass emission for up to 30%
blend levels.
III.  A-7   NITRIC OXIDE MASS EMISSIONS
     Figures  22,  23 and 24 illustrate the NO  mass emission
data for the  0, 20 and 30% methanol blends, respectively.
The cubic form of Equation  (1) was found to give the best fit
and the curves obtained are shown in these Figures as well as
in Figure 25.
     Shifts in the NO  vs  $  curves, as illustrated in Figure
                     X     C
25 indicate a decrease in NO  mass emissions with increasing
                            J^
blend levels.  The first test to infer statistical significance
of the M or MJ  term using the pooled 0, 20 and 30% blend data
showed the inclusion of these terms to be significant at the
0.008 and 0.007 significance level as reflected by the a values
given in Table 7.  This strongly suggests that there is a
methanol effect on NO  emissions.
                     X
     The second test for significance, the lack of fit test,
did not give  as strong an indication that the M or M$ term
was significant as reflected by the rather small decrease in
the sum of squares of the deviation about regression found
when the M or Mft  term was included in the regression analysis.
This small decrease, however, is probably due to the inadequacy
of the Equations  (2, 3) regression model where the methanol
dependence is assumed to be linear.  Contrary to the model,
Figure 25 shows the methanol effect to be non-linear.  Had the
proper non-linear M or M$  effect been used in the Equations

                          23

-------
 (2,  3) model  the  decrease  in  lack  of  fit would  have  been great-
 er.   It was thus  decided that the  decrease  in NO   mass  emiss-
   *                                             Jt
 ions, as reflected by  Figure  25  is significant.  The Ml  term
 was  found to  give slightly better  correlation indicating that
 the  methanol  effect  on NO  emissions  is somewhat greater for
                         Jt
 rich mixtures.
      In conclusion,  NO mass  emissions were  found  to decrease
                       Jt
 with methanol addition.  The  decrease was not proportional  to
 the  methanol blend level;  for operation at  ft =1, with the
 20%M blend the decrease was about  5.4% of the NO   mass
                                                Jt
 emission level found for Indolene-fueled operation,  for the
 30%  blend, at 8   = 1,  the  corresponding decrease was about
 14.5%.  For operation  at $ =1.1  the decreases were
 approximately 6.7% for the 20% blend and 14.7%  for the  30%
 blend.
 III.  A-8   FID TOTAL  HYDROCARBON  MASS EMISSIONS
      The FID total HC  mass emission data are shown in Figures
 26,  27 and 28.  The  linear portion of the Equation (1)  re-
 gression model was found to give a satisfactory fit  of  the
 data.  The resulting regression lines are also shown in
 Figures 26, 27 and 28.  The regression lines are superimposed
 in Figure 29 and  show  a decrease in FID HC mass emissions for
 increasing blend  levels.   This decrease was  found  to be sta-
 tistically significant.
      In Table 8 the  significance level of including  the $
 or Mc term is seen  to be  less than 0.001; a strong  indication
 that  the Figure 29 decrease in FID HC mass emissions with in-
 creasing methanol content  is  statistically significant.  In
 addition the lack of fit test statistic F and the  sum of
 squares of the deviation about regression are found  to  undergo
 substantial reductions when the M  or MS  term is included in
                                       c
 the Equations (2,  3)  regression model.
      In summary it is concluded that the addition of methanol
 to Indolene decreases FID total HC mass emissions.    The de-
crease is about 8% of the  Indolene-fueled operation mass emission
 level for the 20% blend;  the corresponding decrease  is  about

                           24

-------
 20%  for  the  30% blend.
 III.  A-9    CARBON  DIOXIDE  MASS  EMISSIONS
      Figures 30-32  illustrate  the  C02  mass  emission data and
 the  Equation (1)  regression model  curves.   The superimposed
 curves in  Figure 33 indicate  that there  is a methanol effect
 on CO^ mass  emissions with  the CO- decreasing with increas-
 ing  methanol content.   Results of  the  Equations (2,  3}  re-
 gression analysis given in  Table 9 shows  that the  effect is
 statistically significant.   The  quadratic  function with the
 M term (Function 3)  is  seen to give the best  fit.
 III.  A-10    OXYGEN MASS  EMISSIONS
      Figures 34  through 37  illustrate  the 02  mass  emission
 data  and the regression curves.  It is observed that  oxygen
 mass  emissions  are  unaffected  by the methanol blend level.
 III.  A-ll    GEOMETRIC  DISTRIBUTION
      Geometric  (cylinder-to-cylinder)  fuel-air ratio  distri-
 bution was determined by  placing 0.25  in.(0.635 cm )  outside
 diameter, stainless  steel tubing,  exhaust gas sampling
 probes in close  proximity to each  of the exhaust valves and
 monitoring the exhaust  gas  oxygen  concentration.   In  Figure
 38 the individual cylinder,  exhaust gas oxygen emission
 levels data  are  shown as  a  function of methanol blend level
 for two equivalence  ratios:  one near  stoichiometric,
 4  <=  0.97; the other for  lean  operation $   *  0.07.  As  w.itli
 the rest of  the  Type 0  test  points, the operating  conditions
were  2000 RPM, 16 in.Hg  (54  kPa)  and MBT spark advance.   Note
 that  the average of  the  individual  cylinder oxygen  emission
 levels is greater than  the  oxygen  emission  level correspond-
 ing to the c values (0.97  and 0.87) as shown in Figures  3'),
40 and 41, which were measured downstream of  the exhaust.
manifold. This difference in oxygen level is  due to oxidation
 reactions occurring downstream of  t.he  individual cylinder ex-
haust gas sampling probe  locations.
      In order to estimate the  individual cylinder

                          25

-------
equivalence  ratios  from  the  data  in  Figures  39,  40  and 41  it
was therefore necessary  to correct the  individual cylinder
oxygen emission  levels.   The correction involved multiplying
each of the  individual cylinder oxygen  emission  levels by  the
mixed, blend-averaged oxygen emission level  and  dividing by
the individual cylinder  averaged  oxygen emission level.  The
equivalence  ratios  thus  determined are  illustrated  in Figure
42 for c   0.97 and in  Figure 43 for 5  0.87.  In each
Figure the average  value  of the individual cylinder equiva-
lence ratios is equal to  the corresponding value of 5  =0.97
for Figure   42 and  0.87  for Figure 43.
     The inability  of the intake  system to deliver the same
fuel-air mixture to each  cylinder is reflected by the cylinder
to cylinder  variation in  equivalence ratio as is illustrated
in Figures 42 and 43.  The rear cylinders, 3 and 4, operate at
richer than  the average equivalence ratio while  the front
cylinders operate lean.  Methanol addition is observed to  affect
the distribution pattern with the richest cylinder, 3, becom-
ing richer and the  leanest cylinder, 1,  becoming leaner.   The
difference in equivalence ratio between the richest and lean-
est cylinder increases with blend level as shown in Figure 44.
The increase is probably due to the increased latent heat  of
vaporization and increased fuel mass flow rate for the blends.
A confounding effect is that during the experiments it was
necessary to make adjustments to the throttle position to
attain the required Type 0 test operating conditions when
blend levels were changed.  The adjustments,  however,  were very
slight and it is suspected that the observed changes in dis-
tribution are due mainly to the methanol blend level per se
and not throttle position.
     In summary,  it is concluded that,  at the Type 0 tests
operating conditions,  methanol addition to gasoline has a det-
rimental effect on geometric distribution.  With Indolene-fueled
operation the spread in fuel-air equivalence ratio between the
richest and the leanest cylinder was about 0.05.   The  spread
increases nearly linearly with blend level at a rate of approx-
imately 0.01 equivalence ratios per 10%M.
                          26

-------
 III.   B    TYPE  I  TESTS

      Sections  labeled III.  B describe, the performance and
 emissions  characteristics measured during the Type I tests
 during which 10,  20 and 30% methanol blends were substituted
 for  Indolene while making no engine or dynamometer control
 adjustments.  Testing was carried out with the engine adjusted
 to simulate  52  mph (83  km/hr)  cruise and acceleration.  Table
 10 identifies  the Indolene-fueled operation values of the engine
 parameters;  detailed information is given in Table 3 for all of
 the  Type I test data points.
 III.   B-l   FUEL-AIR EQUIVALENCE  RATIO
      The reduction in fuel-air equivalence ratio that occurs
 when blends  are substituted for  Indolene with no adjustment
 to the engine  is  illustrated in  Figure 45.   Multiple linear
 regression analysis showed  that  the blend leaning effect was
 the  same for both the 52 mph cruise and 52  mph acceleration
 tests.
 III.   B-2  TORQUE,  ENGINE SPEED
      Figure  46a shows the effect of methanol blend level on
 torque for the  Type I tests.   For both the  52 mph cruise and
 acceleration tests  there is  a  decrease in torque  with increas-
 ing blend  level.   Since the  water flow control valve  to  the
 dynamometer  was not changed  upon switching  to the blends  there
was a  corresponding reduction  in engine  speed.  The  reduction
 is illustrated  in  Figure 46b.
 III.    B-3    BRAKE THERMAL EFFICIENCY
     Brake thermal  efficiency  is  plotted  as  a  function of
methanol blend  level  for the Type  I tests in  Figure 47.  For
the Indolene-fueled operation  52 mph cruise  condition effi-
ciency rises with methanol blend  level for blend  levels up
to around  20%M.  For  the higher blend  level  the efficiency
appears to decrease.  Insufficient  52 mph acceleration data
were  taken to detect  trends  but  there  appears to be an increase
in efficiency with  increasing blend level.
                           27

-------
III.  B-4   CARBON MONOXIDE EMISSIONS
     The CO emission data for the Type  I tests are  illustrated
in Figure 48.  The effect of blend level on CO emissions  is  a
function of the fuel-air equivalence ratio for the  Type I
tests 0%M condition:  If the mixture is rich during Indolene-
fueled operation there is a significant decrease in CO emissions
when the blends are substituted; if the mixture is  lean
substitution of the blends results in much smaller  changes in
CO emissions.  The reader is referred to Section III. C-5 for
a detailed explanation.
III.  B-5   NITRIC OXIDE EMISSIONS
     Nitric oxides were found to decrease with increasing
methanol blend level for the Type I tests.  Figure  49 is
used to illustrate the reduction.
III.  B-6   FID TOTAL HYDROCARBON MASS EMISSIONS
     Flame lonization Detector Hydrocarbon volume and mass
emissions are shown as a function of blend level for the Type
I tests in Figures 50a and b.  A decrease in emissions is
noted.  The decrease tends to level off at around 30%M.   In
Figure 50c the FID HC mass emissions are presented  as a
function of equivalence ratio.  It is noted that there is a
strong correlation between the emission level and the equivalence
ratio.  In Figure 50c it is observed that the 30% blend mode
of operation equivalence ratio is near the lean misfire limit
when HC emissions start to rise with decreasing $ .  This
explains why the HC emissions reduction tends to taper off in
Figures 50a and b at 30%M.
III.  C   TYPE II TESTS
     In Sections labeled III. C the effects of methanol addition
to gasoline on performance and emissions characteristics when
the engine is operated at equal to Indolene-fueled operation
torque and engine speed (Type II tests)  are described.  In the
Figures used to illustrate the effects,  the various operating
conditions are identified by the nominal values of vehicle speed

                          28

-------
 and  load  level  (cruise  or  acceleration)  which corresponds to
 the  engine  speeds  and torques given in Table 10.
 III.  C-l  MANIFOLD  VACUUM
      In order to achieve the  same  torque and engine  speed with
 the  blends  as had  been  measured  during Indolene-fueled operation
 it was necessary to open the  throttle.   Figure 51  shows the  re-
 sulting manifold vacuums.   As  the  blend level is increased,  in-
 creasingly  greater manifold pressure  (less vacuum) was needed
 to achieve  equal-to-Indolene  fueled power output.  The required
 manifold  vacuum decrease for  the blends  appears to be  indepen-
 dent of the simulated vehicle  speed and  load, being on  the
 average 0.8 in. Hg  (2.7  kPa) for  the 20%  blend.
 III.  C-2   BLEND  LEANING  EFFECT
      One  consequence  of adding methanol  to gasoline  is the
 "blend leaning effect"  (3).  This  effect is  illustrated in
 Figure 52 where the fuel-air equivalence ratio  is  plotted
 as a  function of methanol  blend  level.   As the blend level
 increases the equivalence  ratio  is seen to  decrease.
 III.  C-3   BRAKE  THERMAL  EFFICIENCY
      Figure 53 illustrates  the brake thermal  efficiency data.
 It is observed that,  for the particular  set of conditions
given in Table 10  for Indolene-fueled operation, the brake
thermal efficiency increases when the engine  is fueled with
methanol blends at the  same torque  and engine speed and with
the spark advance adjusted  to the values given in Table  3.
      There  are a number of possible reasons that can be given
as to why the efficiency should change as the blend level in-
creases (3).  It should be pointed out, however, that  the spark
advance during Indolene-fueled operation was advanced
approximately 10 deg  from MET while the spark advance  for the
10 and 20% blend level mode of operation was about 6 degrees
advanced and 1 degree retarded from MET spark advance  re-
spectively.   This deviation from MET spark advance for
Indolene-fueled operation places  the Indolene fuel at  a dis-
advantage with regards to brake thermal efficiency comparisons.
                           29

-------
 III. C-4  OXYGEN  EMISSIONS

     As a result  of  the blend leaning effect oxygen emissions
 increase as  the methanol  blend level  is  increased.   To illustrate
 this increase  Figure 54 is  presented.

 III.  C-5  CARBON MONOXIDE  EMISSIONS

     Carbon  monoxide emission data  for the Type  II  tests  are
 shown in Figure 55.  A large  scatter  is  observed for the
 Indolene-fueled  (0%M) mode  of operation.  In  fact there were
 two 0%M-fueled operating  test points  at  40 mph  (64  km/hr)
 cruise, numbered  126 and  130,  which exhibited very  large  levels
 of CO (see Table  3)  and are not included in the  Figure.
     There is a reason for  the scatter in CO emissions which
 can be explained  by  considering Figure 56a where  the CO volume
 emissions are plotted as  a  function of fuel-air  equivalence
 ratio, I , for the 0%M data.   For convenience the data points
 have been identified by their corresponding Test  Point Number
 in the Figures.   From Figure  56a it is observed  that there
 were test-to-test variations  in S  for the 0%M-fueled mode of
                                 c
 operation.   In addition it  is  observed that the  equivalence
 ratios for the 0%M blend  level Type II tests are  in close
 proximity to the  "critical" fuel-air equivalence  ratio
 9   0.95 which separates the  lean region of operation
 (f < 0.95)  where  the CO emissions were found to be  independent
 of $  and the richer region ($  > 0.95) where the CO emissions
    c                          c
were found to rise with increasing $   (See Figure 18).   There
 is a good correlation between  the observed scatter  in the
 Figure 55a CO emissions,   including Test Points numbered 126
 and 130,  and the  equivalence  ratio  as shown in Figure 56a.
 Similar scatter was  not observed for the methanol blends be-
cause the equivalence ratios  for the blends were all on the
 lean side of the  "critical"  equivalence ratio $ *> 0.95 where
CO emissions were found to be  independent of $   (Figure 18).
     Another phenomenon regarding the CO emissions was observed
during the 0%M-blend fueled Type II tests.  This phenomenon is

                           30

-------
illustrated in Figure 56b where the CO NDIR analyzer output,
as obtained from the strip-chart recorder, is presented.  Test
points numbered 139 through 144 are included in the Figure;
they were all taken on the same day, consecutively, and without
engine shut-down.  For tests numbered 139 through 143 the
amplitude of the unsteadiness in the response of the analyzer
is essentially the same, there being slight changes in the
average response as reflected by the slight variations in
volume % CO shown in Figure 55a.  For test point number 144,
however, Figure 56b shows a larger amplitude of unsteadiness.
There is also a marked increase in the average instrument
response for this test point as is reflected by the increase
in CO emissions in Figure 55a.  This phenomenon of increased
CO emission level with increasing amplitude of the unsteadi-
ness in the CO analyzer response was also noted for other
tests with the 0%M blend level.  While it is not known for
certain, it is suspected that the large amplitude of un-
steadiness in CO analyzer response for the richer mixtures is
caused by time or cycle-to-cycle variations in the engine
operating conditions.  This variation in engine operating con-
ditions could have resulted from the engine running on both
sides of the "critical" value of $  with subsequent variations
in CO emissions.  Such large variations in CO emissions do not
occur for the leaner mixtures because cycle-to-cycle variations
in engine operating conditions do not raise the equivalence
ratio above the "critical" value.  Instead the engine cycles
in the region ($< 0.95) where CO emissions are independent
of *c.
     It is apparent from the above discussion and the data
given in Figures 55 and 56 that the effect of methanol blend
level on the CO emissions for the Type II tests depends on
the operating condition with Indolene.  For Indolene fueled
operation at $  less the "critical" value of approximately
0.95 the blend level does not appear to affect the CO volume
emissions for the 30 and 40 mph cruise tests.  (Figure 55a).
For the 52 mph cruise and acceleration tests there appears to
be a slight increase in CO volume emissions; approximately
                          31

-------
0.01% CO per 10%M.  The CO mass emissions on the other hand
increase with increasing methanol blend level for all of  the
speeds and loads with the increase appearing to be greater as
the speed and load increase.
     For Indolene-fueled operation at  $  greater than the
"critical" value of approximately 0.95 there is a decrease
in both CO mass and volume emissions when a 10% blend is
substituted.  A reason for this decrease in CO emissions  is
the reduction in  $  to values lower than the "critical" value
                  c
of 0.95.  Whether the CO mass emission will eventually in-
crease above the Indolene fueled value as the methanol blend
level is increased depends on the speed, load and the initial
Indolene-fueled value of 4  as can be seen by studying
Figure 55b.
III.  C-6   NITRIC OXIDE EMISSIONS
     Nitric oxide (NO )  mass emission data for the Type II
                     X
tests are illustrated in Figure 57.  It is observed that  for
all of the speeds and loads there is a decrease in NO
                                                     X
emissions as the methanol blend level is increased.

III.  C-7   FID TOTAL HC EMISSIONS
     FID total HC mass emission data for the Type II tests
are shown in Figure 58.   As the blend level increases the
emissions are seen to decrease.  This is consistent with
the results obtained during the Type 0 tests where the FID
total HC mass emissions were found to decrease with increasing
methanol blend level and with decreasing equivalence ratio,
$c  (Figure 29).  It is of interest to note that for the 30%M
blend the equivalence ratio for the Type II tests was around
0.8.  This value of equivalence ratio is near the lean misfire
limit observed during the Type 0 tests which were performed
at operating conditions close to those of the 52 mph cruise
Type II tests.   Had higher blend levels been tested during
the Type II tests it is expected that misfire would have been
encountered with subsequent increase in FID total HC emissions.
                           32

-------
                  IV.  SUMMARY AND CONCLUSIONS

     For one phase of the study  (Type O Tests) a multicylinder,
carbureted engine was fueled with blends of 0, 20 and 30 volume
percent methanol in a base stock representative of unleaded
gasoline  (viz. Indolene).  The engine was operated under steady
state conditions at constant speed, manifold vacuum and MET
spark advance over a range of fuel-air equivalence ratios.
Comparisons were then made of performance and emissions char-
acteristics for the various blends at equal equivalence ratios.
At the same engine speed  (2000 RPM), manifold vacuum [16 in. Hg
(54 kPa)], MET spark advance and equivalence ratio [over the range
(0.87  $c s 1.17)] i.e. for Type 0 Tests operating conditions:

1.  The MET spark advance was the same for all of the blend
    levels tested (0, 20, 30%M).

2.  The 20 and 30%M blends produced the same torque with the
    value being approximately 2% greater than the Indolene-
    fueled torque value.
3.  At the 5% significance level there was no effect of methanol
    addition on brake thermal efficiency.   (See note after
    conclusion 10).
4.  Volumetric efficiency was not affected by the blend level.
5.  Carbon monoxide  emissions were not affected by the blend
    level.
6.  Nitric oxide (NO )  mass emissions were found to decrease
                    X
    with increasing  blend level.   The decrease was not pro-
    portional to the blend level.  At $  =1.0 the 20%M blend
    exhibited a 5.4% decrease;  the 30%M blend a 14.5% decrease.
    At $c  = 1.1 the  decrease was  6.7% for  the 20%M blend and
    14.7% for the 30%M blend.
7.  FID HC mass emissions decreased with increasing blend level.
    The decrease was about 8% of the Indolene-fueled operation
    mass emission level for the  20%M blend and about 20% for the
    30%M blend.

                              33

-------
8.   Carbon dioxide mass emissions were found to decrease with
     increasing blend level.
9.   Oxygen mass emissions were not affected by the blend level.
10.  For near stoichiometric  (4   0.97) and lean operation
     (4  KS 0.87) methanol addition was found to have a detri-
     mental effect on geometric (cylinder-to-cylinder) fuel-air
     ratio distribution.  The difference in fuel-air equivalence
     ratio between the richest and leanest cylinder was about
     0.05 equivalence ratios for Indolene-fueled operation. The
     difference increased nearly linearly with blend level at
     the ratio of about 0.01 equivalence ratios per 10%M.

     It was also found that the methods used for determining
fuel-air equivalence ratios from exhaust gas analysis during
gasoline-fuelea operations are also applicable, to the same
degree of accuracy, for up to 30%M blends.
 NOTB The conclusion regarding brake thermal efficiency
 for the Type 0 Tests depends on the values chosen for the
 lower heating value of Indolene and methanol.   Consider
 an engine operated at a given speed,  with a stoichiometric
 mixture, and fueled by Indolene and methanol blends.  If
 the volumetric efficiency is the same during Indolene and
 blend fueled operation (Conclusion 4) then
      T^   TB   LHVj
      \   TI   LHVB  SFAB
 where T] is brake thermal efficiency, T is torque, LHV is
 lower heating value, SFA is stoichiometric fuel-air ratio
 and the subscripts I and B denote Indolene and methanol
 blend respectively.  Assuming a 2% increase in torque for
 both 20 and 30% blend fueled operation (Conclusion 2) and
 estimating LHV  and LHV  from LHV  and LHV_ values presented
               J.        .D         J.        13
 by other investigators the equation above yields values of
 TU/T1T ranging between 1.014 and 1.018 for 20%M and between
  n  1
 1.011 and 1.016 for 30%M.  Thus, at best, efficiency gains
 of 1.8% and 1.6% can be expected based on conclusions 2
 and 4,  and published values of LHV  and LHV  for 20 and
                                   I        B
 30%M blends respectively.
                          34

-------
       During another phase of the study, experiments (Type II
Tests) were performed to determine the effect of methanol
addition to unleaded gasoline (Indolene) on the performance
and emissions characteristics of the same carbureted engine
if it were in a stock condition and used to power an automobile.
Engine torque and speeds selected simulated 30, 40 and 52 mph
cruise (48, 64 and 84 km/hr) as well as a higher value of
torque (corresponding to an accelerating condition) at the 52
mph  (84 km/hr) speed.  The results of these experiments showed
the  following:

1.     When 20 and 30%M blends were substituted for gasoline
       with no engine adjustments the torque and engine speed
       decreased.
2.     In order to regain the Indolene-fueled operation values
       of torque and engine speed it was necessary to lower the
       manifold vacuum by opening the throttle.  The required
       manifold vacuum decrease was practically independent of
       the simulated vehicle speed and  load condition.
3.     The fuel-air equivalence ratio with the blends was  found
       to be lower than that found during Indolene-fueled opera-
       tion.   With the 30%M blend the mixture was observed to
       have an equivalence ratio of around 0.8 which is close to
       the lean misfire limit.
4.     The brake thermal efficiency during blend-fueled operation
       was found to be greater than that during Indolene-fueled
       operation.  Part of the increase was attributed to the
       spark advance being closer to the MET value during blend-
       fueled operation.
5.     The effect of blend level on CO emissions was  found to
       depend on the Indolene-fueled value of fuel-air equiva-
       lence ratio.  When the Indolene-fueled operation fuel-
       air mixture was richer than $   0.95 methanol addition
       was found to decrease CO emissions.  For Indolene-fueled
                       W
       operation at   < 0.95 there was no significant effect of
       methanol blend level on CO emissions at the 30 and 40 mph

                           35

-------
 (48, 64 km/hr) cruise simulation condition; a slight  in-
crease in CO emissions, however, was observed for the 52
mph  (84 km/hr) cruise and acceleration simulation.
Nitric oxide  (NO ) emissions were found to decrease sub-
                H
stantially with increasing methanol blend level.
FID hydrocarbon emissions were also found to decrease
with methanol addition.  The rate of decrease with
methanol addition appeared to approach zero at around
the 30%M blend level operating condition which is in
close proximity to the lean misfire limit.
                     36

-------
                  V.   ACKNOWLEDGMENTS
     In addition to the grant investigators and major
contributors listed in the Title page, there are a
number of other individuals whose assistance is greatly
appreciated:

     Mr. T. Watts, superintendant, and the Staff of the
     Department of Laboratories at the University of
     Miami, School of Engineering and Environmental De-
     sign  (D. Ashworth, G. Kessler, S. Lancaster,
     H. Martz) for their assistance in the construction
     of the experimental apparatus.

     Messrs. L. Nagode, C. Wiesner, H. Pendieton,
     C. Rice and M. Grindle, for their assistance
     in the laboratory and in preparing this report.

     Ms. G. Freedlander, J. Moskowitz and S. Cherkiss
     for secretarial assistance and typing of this
     manuscript.
                          37

-------
                   VI.   REFERENCES
1.   Bolt, J.A., "A Survey of Alcohol as a Motor Fuel"
          SAE SP-254, June, 1964.

2.   Synthetic Fuels Panel, "Hydrogen and Other Synthetic
          Fuels", prepared for the Federal Council on
          Science and Technology.  R- and D. Goals Study Under
          Cognizance of the U.S. Atomic Energy Commission,
          Division of Reactor Dev. Technology, Sept., 1972.

3.   Adt, R.R., Jr., Doepker, R.D. and Poteat, L.E., "Methanol-
          Gasoline Fuels for Automotive Transportation - A
          Review" Prepared for U.S. Environmental Protection
          Agency, Office of Air and Waste Management, Office
          of Mobile Source Air Pollution Control, Alternative
          Automotive Power Systems Division, Ann Arbor,
          Michigan  48105.

4.   Adt, R.R., Jr., Chester, K.A., Pappas,  J.M., and Swain, M.R.
          "Methanol-Gasoline Blends:  Performance and Emissions"
          AIChE Meeting, Boston Massachusetts, Sept., 1975
          (To be Published in AIChE 1976 Air Series).

5.   Charles, J.P. and McKellar, M.R., "Pontiac's New Four-
          Cylinder Tempest Engine", SAE paper 307E, Jan. 1961.

6.   Schenck, H., Jr., Theories of Engineering Experimentation
          McGraw-Hill Book Co., Inc. 1961.

7.   Ostle,  B., Statistics in Research 2nd Edition, The Iowa
          State University Press, Ames,  Iowa, 1969.

8.   University of Miami Computing Center, Scientific Sub-
          routine Package Program Polynomial Regression
          (Polorg.).

9.   UCLA Biomedical Research Computer Program Number BMD 03 R.
          Revised 1-12-70.  Revised 2-14-69 by TNL N20-1944.

10.  Kirkpatrick, E.G.,  Introductory Statistics and Probability
          For Engineering, Science and Technology,  Prentice-
          Hall, Inc., New Jersey, 1974.

11.  D'Alleva, B.A.  and Lovell, W.G., "Relation of Exhaust
          Gas Composition to Air-Fuel Ratio", SAE Trans.
          Vol. 38, No. 3,  1936.

12.  Engine  Rating Code, SAE Standard J245.
                          38

-------
                      LIST OF TABLES

TABLE       TITLE                                        PAGE
  1         Measuring instrumentation                     40
  2         "Standard" Test Conditions                    41
  3         Performance and Emissions Character-          42
            istics Data
  4         Statistical Significance of Test              79
            Results - FORMAT
  5         Statistical Significance of Test              80
            Results - TORQUE
  6         Statistical Significance of Test              81
            Results - BRAKE THERMAL EFFICIENCY
  7         Statistical Significance of Test              82
            Results - NITRIC OXIDES (N0x)
            MASS EMISSIONS
  8         Statistical Significance of Test              83
            Results - FID TOTAL HC MASS EMISSIONS
  9         Statistical Significance of Test              84
            Results - CARBON MONOXIDE MASS EMISSIONS
 10         Nominal values of Operating Parameters        85
            for Type I and II Tests with Indolene
            Fuel
                           39

-------
Table 1    Measuring  Instrumentation
Variable
Method
                                                  Instrument Accuracy*
Air Flow

Fuel Flow


Manifold Vacuum


Spark Advance

Engine Speed

Torque



CO


co
NO. NO
Total HC
Wet, Dry
Bulb Temp.

Engine Temps,

Barometric
Pressure
Long-Radius Flow Nozzle

Rotameter


Mercury Manometer


Timing Light

Strobotac

Dynomometer Load Cells
NDIR Analyzer  (Span
gas calibration)

NDIR Analyzer  (Span
gas calibration)

Polarographic Analyzer
(Room air calibration)

Chemiluminescent Analyzer
(Heated sample, span gas
calibration)

FID Analyzer (Heated sample,
span gas calibration)

Mercury in Glass Thermometer
Chrome1-Alumel Thermocouples

U.S. National Weather Service,
University of Miami
2%

1% calibrated for
0,20,30% M blends

0.05 in Hg  (0.17
k PA)

1 deg.

10 RPM

0.5 ft Ib  cali-
brated during in-
vestigation

1%

1%
1%


1%



1%
0.5F
0.5F
*  From manufacturers specifications and/or estimates from
   calibration during the investigation.  See Section II. D-2
   for a discussion of experimental uncertainty of the various
   measurements.
                              40

-------
Table 2
"Standard" Conditions
       FUEL
       SPARK ADVANCE
       MANIFOLD VACUUM
       TORQUE
       ENGINE SPEED
       EXHAUST GAS OXYGEN
       WATER COOLANT INLET
       WATER COOLANT OUTLET
                    INDOLENE
                    51 BTDC
                    16 in. Hg (54 kPa)
                    47 ft lbf (64 N*m)
                    2000 RPM
                    1.35 VOLUME PERCENT
                    173F (78C)
                    189F (87C)
                           41

-------
                  TABLE  3

         PERFORMANCE  AND EMISSIONS
            CHARACTERISTICS  DATA *
*  Table entries with lines through them are
   invalid as a result of a measurement not
   being taken or a measurement not being
   correct due to instrument failure.   Brake
   horse power and brake mean effective
   pressure values are corrected to standard
   conditions [12],
                  42

-------
'.. '.IT .:u. ,'j
.J i-iL It!"  U 0
J.-'^L^^ '^*, V  j 1  O
.-.. 'til  mJi\C * 1 u.uO
i -':i':Gfo '*<> -0
FT. Ll.'j.
L.; , T J 1 c : i  u 5 iy
L..S*r.' . otSH
Lb:j/rlt' i i;t
Li)K  fji^LV  ^**  '.*
i3 . fj . 1 .
Ui.L. tTF . y, i . tfi
i.i.Til.t.  '. ?ulo
;j W 1.^5
i
: CO .j.fii'1
,- Cc^ lo.JO
n CH.iUti MU1
% hCnO ^U-
uo. PPM ,.. a*.oj.c
|-;0ii PHf-. V -4*.
..CX. PrVi -.-J ^jQ.C
lif. |ipi>i ri I'ijO.lJ
1-iAIJS 0i hi . 0 ji
oPl-ib/i il- rlK
,:/ '..! CO.-; <-)j.^.J^->
.^-.ss'iwT "'* j.-ud
....-"s"^"1' "'* -^u
.. . t ;\ . Cii.-.   '.j'v
I...SV !.J. -JO
 1 ^ '
l-.j.,jO 2-.i.uO 20. 00
j 1 . :1 J 1 . 0 51.Q
Ij./O 15. bil 15.50
'('j.uO U'f.LiO 46.50
 J7o.? .07ill .0761
.72jir .7.^15 ..7148
Ij.oi1 13.J7 17.2P.
3o-oJ S^.rin 3H . 73
i^.y* 2u.yu 21.19
i.;-:o J.iio <*.2o
.I'i'JS .1076 .1895
1^.0:1  i^.<:o li9o
^ *+ ^w
^uj. *e. .**
^nJO.Q 20UO.O 1750.P
3JO.O 3on.O 150*0
^'iJu.O 2<1.uH.O 19UO.O
B-jJ.O 7j,'i.O . 550.0
i/A.lin 2U5.2!i 227.6H9
y-l^3 . 9.^.-tO 8.9d5
*7.7'jij I').'ia2 11.317
3.1V* L=,47 1-432
.i<-.>'^ ..--.J4 -815
4
lU.OO
51.0
15.60
46.50
2oOO.nO
.0733
.7031
17.28
,'.TC
20.23
3.PO
.1935
12. RO
^Jfl.
^e.
23on.o
300.0 
260". 0
675.0
169.372
8.962
931.544
15.426
1-743
 P62
95
20. UO
51. 0
15.30
46.50
2000.00
.0781
.7148
17.28
34.73
21.19
3.80
.1976
12.30
M
^A.
1950.0
^
1950.0
600.0
199.182
. 9.062
8U6.4S9
10.818
1.538
 835
95
96
.00
34*0
in.OO
8ft. 50
200n>00
.0689
.5305
3P.14 .
6<*>60
*rr**,
25.25
1.80
.1697
13.70
rW
*
34nn.O
~+.
3400.0
eon.o
71.640
5.909
749.737
14.305
1.555
.923
96
07
10. no
34.0
9.85
85.00
1960.00
.0733
.5563
30.95
63.48
25.57
3.00
.1895
13.00
.*

2350.0
150.0
2500.0
400.0
124.071
6.856
739.259
11*290
 809
 869
97
98
, 20 '.00
. 34.0
. 9.80
84.00
1920*00
.0781
.56.94
29.96
.
62.73
26.60
3.50
.1935
 12.40
**
"**
1850.0
250'. 0
2100.0
400.0
145.297
7.H29 .
707.802
Q.A24
.813
.845
 98
. ' 99
10*00
34.0
. 9.60
AS. 50
2000*00
.0733
.5553
31.76
63*85
25.61
3.05
.1935
12.90
rW-
^*
2400.0
.' ^*"
2400.0
400.0
126.829
7.041
 737.586
10.551
.812
.866
99

-------
I !. iT i. J .

uc Pr>,v ,;

L^r 0 r=i;K
'..r'l u lU-iF
                              -Jl
in.tjOL.l .
          r.
     ' tAH.nnt.sb.
      M'rt  rLUii
.*     KUEL, FLU.
i.YL..-jG  1

CrL.,iC.  J  '
lYl-.iiO.  4

i,.1 ..'lA.-i. i .
NO-0.MOLLS
 r'iT. iiO
                 o'.i!i
                 V.6
                            35-5
                           ;:> /5
                1 1 . 77
                           11
-^2
5.21
7,-iq . 5
'59!4.n
.5
7n.5
2^.7S
2^." Q-
93
5.21
618.6
P137.1
B5.5
7.5
29.75
25 n
94
5.21
760.3
292B.7
35.5
74.5
29.75
57.0
95
5.21
677.4
2201.5
85.5
74.5
2*. 75
2m o
96
5i21
90P.1
3833.9
HS5
74.5
29'. 75
a ma. a
97 .
5.2.1
451.5
2821.6
85.5
74.5
29.75
. 3B7 .'0
98
5.21
452.1
2373.4
85-5
74.5
29.75
2Bft.Q
99
5.21
451. 'l
2706.5
85.5
.74.5
29.75
ceB.o
                                     34>rs06
                                     1.1?/a
                                                 12.66
                                               10 &>
                   90
35.430
1.124P
    93
            12.45
                                                              *
                                                                        ***
            12.66
                                                                     VflflQ _ fl
41.349     34.262
1*1264   .  1.1290
    94         95
                                                                                 17t48
 1&7.0
50.^44
1.1P.76
    96
            17.65
                                           11 'I B  0
                                                                                                             17.49
                                                                                                       477. Q.
18.09
                                                               " itao.o-
                                                                , iB97iO

                                                                   TO^ Q,*
                                                                                                 40.833 -   34.063     41.131
                                                                                                 1.1287    .1.1302   .  1.1277
                                                                                                     97         98         99

-------
U1
' -T ' J- 1o3 iill u2 Iu3
' i-t-ii:- ^o.jO .j.1) lu.oO 2u.oO
UL^. ' ,, i "11.
''<:j- -'^' *<-'> IJ-J-'J 1'J.OO 15.61;
KT. !_.'.,.
""li-'r.^1"" ^""J'' ^tKJ"J 1*5J'IJO lyU'00
L.- I\A 1 !(/  n - I > ? J. H i u c. -g ?a fe. i /L
,* ~ ^^^^" ^"^*^*^*^.^^^ VI^Bf^^B^qp
r/A jTolUI .j7al .06u9 . .07.43 .0781
L"u,^n; ,< 'J6df> *0<*rt3 *bh93 <71119
i.i^i< o.il.r. U.-3f. 17.^5 I'j.o4 15.51
L:;^. Es..,Lr-. f^.^J J-4.o3 34.31 32.81
w.iLi Ir  jij 4fcrfh4^ -^ -- y f| .it^Jfl *&*4UL
i.-fh-L* * ?o.o3 2J..J6 2i.J3 21.18
" ^2 o.nO Lot!- i.SO 3.00
^ CO i9jLj .lb.20 .1775 .1935
;^OH ^ ^ ^-^ u-3
 .IC.,0 ^0. W* ^  ^9.
'-' ^' 	 ifiuO.j J9UO.O 37on.O 2150.0
U'/2 PI',.. ,-; ,j_ .^i. ^ . |OO.C
IH.A I'H; ,y c^uNO 0*900. .1 37j.'!.0 255Q.O
" i"r'"' v ^.-:-i''.ii i-ijO.f) lOOn.o 800.0
,.j/.SS .0^ 14". 172 71.jnn 122.121 193.910
 '.^5 Cv; t**-)^ 6.71'j 7.^06 8.863
oKi-.b/liP i iR
1.1 ->f> LOt 7j7.-+l7 ^Ji 1.936 8rt&.^99 8ri5.279
 '> .'-^/. -T.7ol l'J.r5.j'4 1-0*1 44 15*306
 '* ''* .-it5 3.1*/,, ?..^yo 2.047
' ljl '-J- '--JU lol 'lU2 *103
104
3u.no
bl.O
15.30
42.00
1780. nO
&**3
 08.^6
.7844
13.87
31.32
&*Z
20.62
5.15
.2017
11.40
np
1000.0
*
1000.0
750.0
297.2ftO
10.188
904.7f,7
6.100
2.114
 778
104
105
30. on
51*0
14.40
46.00
2020.00
6-33A
.0836
.7599
17.24
34.31
0-03
21.29
5.10
.2143
11.40
.on<
900.0
-JX
900*0
600*0
285.292
10*489
876.853
5.322
1.639
.770
105
106
20.00
51.0
15,40
46.00
200n00
6 700
 0781
.7144
17.07
34.31
u^za
21 .20
3.90
 ?059
1?,20
Q0
Hnn-0
 0.
UnO.o
650*0
205.737
9.503
884.933
6.i36
1.675
.833
106
107
10.00
51.0
15.80
46.00
2ooo.no 
A. 637,
.0733
.6778
17.07
34.31
ii-JM
20.98
2.70
 1814
13.20
pQ
3400.0
~.
3400.0
850.0
133.590
7.855
898*024
17.822
2.05H
 R84
107
108
.00
34.0
10.00
89.50
2nOo.no
. O.S87
.0689
.5086
33.21
I
66.75
,,.7a
26*34
1.20
.3581
13.90

3450.0
^.
345n.O
1150.0
44.420
11.600
707.476
13.533
?.084
.959
108
109
10.00
34.0
9.90
88.50
1960*00
9-QH2,
.0733
.5256
32*18
66*00
.,lflffc
27.06
2.10
.1775
13.60
_ nfi
V U U
3200.0
200.0
3400.0
.750.0
78.334
5.793
697.544
13.907
1.374
.910
109

-------
,..yr \y. iuu
-iTL . j-21
liC F!J,'. .. -^L,.?. .fi
...:X ,-*,-, ,- ^.,2.7
^r^.rf S*5
''''Jco.?^ "' '^
i.-.-.CjOL. [ . a u  . Q
u^Lf,??:'r' "**"
r*.S.i.
Lljj/Hf<
l~  JL.L h l-Gi~iJ lot o^i
L D u / 1 1; <
L-J.H. TL.-iP.
OL.JO. i 11 l ;>
uiL.,40. ^ ^4-
^ yi _ |,p . ^ jLn'Jr- tb



CYU.:>l0.ii; 4 <''<.
{.YL-.^./..^ +^nr^.
ci\KL3. IJ(>bt: J u'/ . jj
> jo. o. MULLS 33.120
i iy  M .;-.- /L- . 1  i 3 i 3
itG'l . m. . i ,jij
lul U2 103-
i.-23 i.23 5.23
*&94.2 llig.fl 903.0
*405.(5 41. in. 4 2878. 3
)4.(J S4.0 84.0
/2.0 /.o.O 72.0
ijO^ >ii OO 7C OQ "7c
C?.r;j 7.f;j 2V. fS
175.0 173.0 170.0
iyo. o tar,.o 183.0
*aa ^u . ^M.
w<^^*liw ^}~C^^7u ^Jt^Bilt
H.'fft H.44 11.38

1009.0 ii)270 990 0
-tt- ^9. -H>-

\7rD.O 9<3 .^4.21?
i-.L2-J5 l.l^9fl 1.1287
lul 102 103
104
5.?3
845.4
1127.2
8'uO
7?.0
OQ ^ C
29.75
169.0
132.0
110.
W**
11.17

953.0
^4-

863.0

902.0
88.0
103.0
77.0
29.970
1.1272
104
10-5
5.23
676-5
1014.7
84.0
72.0
29.75
172.0
185.0
^flQ
^^JL^J^
^
13.45

1007.0
a-

926.0

967.0
83.0
99.0
74.0
29.981
1.1275
105
106
5.23
733.2
1240.7
H40
72.0
175-0
lfttf.0
^
*-
1S.52-

1013.0
^-

915*0

95?. 0
9h.O
liT9.0
fl7.0
34.499
1.1280
106
107
5.23.
960.5
3842.2
84.0
72.0
29.75
175.0
188.0
-4ML
n j -jn
11.88

1037.0
Jo.

929.0

970.0
104.Q
117.0
95.0
40.097
1.1300
107
108
5.23
1299.9
3899.6
84.0
72.0
29.75
176.0
194.0
-a*
e**?*
17.34

1034.0
0

1034.0

1077.0.
106-0
120.0
102.0
40.651
1.1303
. 108
' 109
, 5.23
050.5
3855.8
84.0
72.0
' 29.75
175.0
191.0
-JMU
-?*^4
17.36

1096.0
mQf

990.0

1043.0
99.0
114.0
95.0
38.983
1.1341
109

-------
.11 Ml. fM.

l'f fJ*i\  ^ij'v .
   Uf.vi.  liil'-l.
,-.,.i.'.  ;-\i:.
   lllCII.;-it.
   FT.  Li)i.
   i  . H . I'l 
in).  ilAilu
   FULL/AiX
r"/A  j
 ..j.f- .C.
   Ujj/rlP  iiiN
CijH   lii-itl

viiL/Eh'!

u.Th.E*  i

  02

*.  CO
in  OiJOi-i

^,  HCiiO

i-.O 
   j| ...b/hi-  i.K

li.ST  Ho.
                        3iO
                     "j.JO
                      o7.il
                         yfl
                         DL)
                          r.
:.,-X   ph'i-i  w

I iC    PPM   .,

l-ifi'jS Oc
   GH.'iS/nP  i
K.-'jE1. CO  
           i-  nR
i-.. 5S  rJU>         11  l..j
                     i  i J';

Ill 112 113
30* oU ,5:).uO 20.00
-i4.fi J^.O 34.0
9.20 el. 00 9.10 .
7'^.ijO ttri.JO 87.50
'6u-:iO. 200J.UO 2()00.00
 j8.Jb . Oa.i6 .0781
 &31f> .oiUO .5589
25.79 32.65 32.4fi
!ici'Ji: 6b.b3 65.26
2'j.ol 26. y2 27.10
4. -50 4.15 3.30
 leys .iini-7 .1895
11* oO 12. uO 12.60
'i-jQ.C Ifcun.o 2350*0
--**
4i0*0 l^ufi.O 2350*0
5 ii 0  0 33."i . 0 450*0
2-pyQ I75.?05 132*345
7.474 7.1,52 6.643
l.bci-* 09cjS97 694.811
f..9J7 6.2/iS 10*004
1 luti 7k6 *Q65 .
*.'li.3 .318 .P.55
iil 112 113

114
10. 00
34.0
9. no
88.50
2nOo.nO
10 06E
 0733
 5193
32.83
66.nO
27.39
2.5*0
.1736
12.20
3200.0
*
3200.0
600.0
102.680
6.238
688.985
13.8D6
1.196
.882
114

119
.00
51.5
16.00
46.50
2000.00
7.J7B.
.0689
.6564
17.13
34.42
_ll ^L
^^^F
20.41
1.10
.2448
14.50.
3250. a
."*"
 3250.6
2050*0
50.484
9.832
. 915.014
15. ASS
4.621
 970
119

120
lOtOO
51.5
15t70
4ft. 50
200HtOO
.n733
.6868
17.13
34.42
2n.71
?.35
. 1 697
13.60
31(10*0
1
3100.0
125n>0
114.146
7.212
908.307
16.000
2.981
.905
"120

121 ,
20.00
51,5:
15.40
46.00
. 2oob.no
.0781
.7226
16.94
34.05
20.96
3.50
.2017
12.80
2050.0
^-
2050.0
900.0
177.831
8.968
894.234
11.072
2.246
.854
121
.' . '" ' " ' -f ' '
. 122
i 20.00
50.0
15.40
*45.50
' 1990 >t)0
.0781
' ."7342
16.67
33.68
20.63
3.45
.201.7
12.80
1800.0
-e.
1800.0
760.0
178.323
9.123
.909.706
9. 892
1.930
.855
122
 .   .... N. '-
: 123
30.0.0
, - 51.5
14.90
46.00
2000*00
.0836
. .7675
16.94
34.05
>7t
21.08
4.55
.2059
12.00
750.0
^*
750.0
620.0
244.626
9.685
887.107
4.287
1.637
.807
123

-------
                                                                     F'Mlii.   .
                                                                                                                                                                                                                                                                    '*   .
CO
TrbT ilv..
o/ ir;
liC fVh D
nl,X i'f'l'l u
Lit-iV U Ti.Mp
.(i. 'f . Tfcj'iP
UL'o.K.
ir-.C JUL.I .
DCu.l-.
OL- I "COt-'L . T 
UEG.f- .
''P.b.'i^'
/'ilU FLO/;
HJC.L >:'Lov:
L>.H. "IC.MK.
CiL.i-iO* 2
CYL.,10. o
CYL.ijO- 4
CYL.I.C. 1.2
CVL.l,G.;4,u
L,M73 Pu.15 18.63
10J9.Q 1019.0 iOud.'O 1075.0
^p^^p fcrfi^ m^J^f ^b^X^
"4l.t 9^0.0 9iJ?.0 902*0
yi.O 962. U l!ll."5.0 1004*0
uH.I. 61.0 6] .0 90.0
vuu.c 94.0 a.o loo.o
t>2.0 7i-0 7.1.0 82*0
33.4y'0 c:9.0/f, 2p.ftil 33*528
l-i3il i.!3j.r I.i343 1.1322
lit! lil 112 113
114
5.23
672.3
3585.5
84.0
72.0
29.75
177.0
193.0
93.7U
. \
17.51
1099.0
^*
996.0
1035.0
9R.O
111.0
94.0
43.439
1.1205
114
119
6.10 
2324.8
3685*6
88.0
79.0
30.08
172.0
187.0
4*^
11.63
1315.0
959.0
1235.0
1287.0
109.0
124.0
102.0
46.737
1.1340
119
120
h.lO
1416.8
3513.6
 88 .0
79.0
30i08
171.0
IftB.O '
^
12*17
1279.0
939.0
1202.0.
1254.0
ins.o
120.0
97.0 .
38.847
1.1334
120
121
6.10-
1020.5
2324.5
88.0
79.0
30. OR
'171.0
184.0
?_^
12.66
1254.0
923*0
1178*0
1237.0
94.0
11 1.0
86.0
32.855
1.1339
121
.1 22
. ' 6.10
861.9
2041.3
8ft. 0
79.0
30*08
'171.0
184*0
23.51
12.66
1265.0
927.0
1192.0
1246.0
93.0
111.0
86.0
' 32.894
1.1340
122
123
1
703.1
850.5
88 .0
79.0
30.08
171.0
184.0
33.51.
13.45
1244.0
903. '0
1159.0
1229.0
83.0
101.0
76.0
2R.530
1.1340
123

-------
VO
i, ji nu. i^ii iUOJ6 .L'6rt9
li.ii. h.C. .7075 .blli?
Lr.f./iip iiK
CoR* b.iLlJ. >fu5 23.SI6
P.S.I.
\. L-L . E K . % 'I . /I n . i ?
*
u.lK.fc-* * Pi.ufl 16. b2
i OL i..:>5 , 1-j.O
x- CO e:0i>9 .4376
s. cci it.uo l*.&n
x CH.*OM w**> . iiO.
'/ hC'r.O  . u 0 . . . l;Q .
uC  i- Pi-i "... 7b fi . 0 i:2 50  0
i:-:.ir v:. A- -4 ' 130.0
f
t:C PPM v, f>in.o &luc:.o
,.;iSS 0.: 24U.f.26 ol-l.ia
;-,;'SS CO u.fci/": <:1.2bl
oK.-iG/i>i ni'.
L . ..!.Cn-.. ..Un7 .y?9
1i:7 128
Jfi.HD 20. UO
' 4M.U 48 0
17. bO 17.30
32 .01) 32  bQ
l49j.iiU 1490*00
i^^^LA*il* J*k*k*%2H&
.0733 *07dl
.fa 7, 3 6 .6645
a. 68 8.68
?J.96 23.96
17.06 .17.52
l.oO ii.bO
1736 .1582
14.30 13.60
^*- ^M.
^a. -**.
2413n.O 1900*0
a. so. n
c.4ar:.o 1950 0
17Gn.O 130U.O
i'!9u60 148.922
H.'.92 7.929
1099.U7S 107L096
I4.f,39 12.116
'(i'-.^3 3.6U1
.145 .898
li!7 128
129
30. nO
47.0-
17.20
32.50
IbOO.flO
U.152
.0836
.8807
S.94
' 23.96
ld.37
4.60
 lf.97
12.10
~4
^^
620.0
150.0
770.0
1050.0
281.187
9.P76
1017.Q11
5.526
3.154
-R09
129
130
.un
48.0
17. b5
32.50
1500.00
.0689
.8215
8.94
23.96
16.31
.95
.6988
14.60
. *a.
Oft
2350. ff
200.0
2550-0
2250*0
52.541
33.819
1110*280
15.673
6.133
 994
130
139
.00
45.0
19.20
23.00
1150.00
.0689
.9754
4.87
17.04
13.73
1.55
.1325
14.00
^n^v
^_f^^^
135n0
IOQ.O
14bll.O
2onn*o
UO. 276
B.250
1369.558
11.318
6.956
.950
139
140
. 10.00
45.0
18.80
23.00
1150.00
.0733
.9815
4.87
17.04
14.49
3.10
.1433
12.90
^00*
.04.
950.0
100.0
1050.0
leoo. n
226*007
9.145
1293.159
8.489
6.399
.870
140
141 '
20.00
45.0
. 18.35
23.00
.1150.00
.0781
1.0469
4.91
17.18
a. an
J4.47
4.25
.1507
12.10
.40-
*40.
460.0
100.0
560.0
1550. 0
329.947
10.238
1P91.647
5.024
5.H66
 H26
141
142
30.00
45.0
17.80
23.00
,1150*00.
.0836
1 1.0970
4.93
17.24
a-M.
14.75
5.30
.1397
11.40
M
*.
165.0
85.0
250.0
' 1S50.0
426.822
9.845
1262.346
2.510
6.087
.779
.142

-------
P/..JL   .
ic.ST MO. \&\ l,:f, 127 128
L 1L i,.il: C..J.1 o.ll o.ll
 iC i-'i -I-: i: 7o3.i i:i-jt.i ma?. 7 1433.9
I.U'A Hf'i-, ... l,n.S. i7i:n.9 279,?. 5 2225.fi
litfi L> Tfcf-ip c.U ci5.fi 8F..O 85.0
OliO.F.
>.rT i, ic,^.,' /Q.g Vt5.fl 7ft. 0 78.0
r.-,K.M.Q ).7f,. 0 17&.0
L/Eo.l" '.
ui.iT.LOUL. I". IhU.O I'-Jl.n 19o0 189*0
JE o.r .
P . L>  i .
H..EL r-i-:-^. 1J-4S /..j.l - /.o9 7.97
i.y.il. TLMH.
t-i'L-uU. ;; Hi't.j J27.Q 02--J.O 825.0
Cri-..JO. o i\/.l.:J i.i.45.0 112^.0 1114.0
CfL-nC. ^ i?J6.0 il71.0 lla^.O 1133*0
v.'i'i..: iiH..) 118.0 9-i.O 105*0
CYL.!JO..S'4 lo^.O 129.0 l^i*. 0 117.0
CArtiJ. o;,iE 76.0 1J9.0 lU.^.O 94.0
i.-';. D.^OLdS i:f(.:jJO -+5.6^3 36.^44 30.95
. jij.M. .-.'. /u. LiJ-fO 1.13J2 1.1393 i.1415
'ir.3f. -v. IdM I,i6 1^7 128
129 ,
6.11
1191.1
873.5
85.0
7P.O
30.12
176.0
13P.O
23 ,fi
8.18
1167.0
813.0
1095.0
1116.0
101.0
114.0
92.0
28.271
129
130
6.11
2560.1
2901.4-
85.0
78.0
30.12
177.0
192.0
?3 ^
7f.63
1213.0
822.0
1136.0
1166.0
118.0
129.0
108.0
45.002
1.1378
liO
139
6.16
2257.4
1636.6
B7*0 '
76*0
30,03
166*0
1AO.O
'.05
3^.67
u. 91
1095*0
69?* 0
1010.0
1036.0.
117.0
1?7.0
lnu.0
48.752
1.1287
139
140
. 6*16
2026.3
1182.0
87.0
76.0
30.03
170.0
184. 0
.05
. 4.95
1067.0
673. '0
972.0
990.0
110.0
120. 0
98.0
40.798
1.1257
140
141
' 6.16
1744.6
630.3
96.0
76.0
30.03
16R.O
182.0
.00
33.55.
5.27
1070.Q
543.0
995.0
976.0
106.0
117.0
94.0
34.649
1 . 1255
141
12
6.16
1745.2
281.5
. 100.0
76 . 0
30.03
169.0
182.0
.00
5.53
109*.0
692.0
989.0
994.0
. 102.0
, 115.0
91.0
29.899
1.1259
. 142

-------
Ul
i. bl :.J. 143 It4 1 +6 ' 147
i ,-.j;-i!-;. 'o.jii --JO .00 10.00
f^A;^ A..-.. -^.C i1"..!-. -*?.b ' 47.5
....-,N. v;iC Tti.^5 l^-Lfl 17./0 17.60
ixji^jijif 2-J.uQ 23.50 .Ti.:'>0 32.50
r '[ . Urib.
...ij. bij.-.c.j llr-u.JO 115000 IJ5J.OO 1560.00
K . i-  ft *
.-/A jfJILH .u7.il u6d9 .Oft69 .0733
...b. K.<-. i.o:o9 . *5*7 . /A99 .7962
v.-j;<'j.n.P. 4.y.3 3-06 9. .44 9.34
!< rSrHLr. if.<;4 1.7.69 2-4. U6 24.06
P.^. i.
:i. [>(. A, It. +7 1-+.U3 lo.96 17.36
,  o2 ' -t.U i4fl 1.40 2.45
i CO .i6)'*1* '.1976  in95 .1507
i C0 **
ii.). r>P.Ji .-.  ^o-J.O l.il)00 2AJO.O 2300.0
.. j-2 PI'i-. i '.uO.-j IbO.O 2JO.O 200-0
,iOX Pi1!-! w >oO.O toaO-O 2BO:i.O 2500.0
ii-J r"Pivi iM iUjO.3 iH'30'0 iPin-O l5bO0
,-i j'j 0* .Ji^.-'io? -J6..1J6 JO-^oft 140.851
0:\:.-:i/!ir s-tft
i-i.iSS C^ . i0.5J? il.9bl 9.S16 7.582
in? '.S/i ii" i irt '
tiK 'i'j/1 ;r" nK
*^ i\I-j ^ l^  ^u '^ L-i75 4.3ol
.'h'.'civ!'. ' . r.-jj 9jl .'b5 .903
"" srT^. It'. L^4 146 147
me
20. (iO
47.5
17. nO
32.50
1540.00
JU^B^
 0781
.8513
9.22
24*06
W+*
17.79
3.70
 lf.97
12.40
.-^
1350.0
150.0
ISon.O
iian.o
228.476
9.168.
1052.R43
10.228
3.^64
 845
]43
. 149
30.00
47.5
16. bO
32.50
1560.00*
'1  U 'I
.0836
.8615
9.34
24.06
6~4
18.78
4.75
.1775
11.80 .
_ QQ.
. 720.0
70.0
790.0
1 1.00*0
290.788
P. 507
993.269
5.371
3-299
.R01
149
150
30.00
45*0
17,70
23*50
1200*00
2,7fi'r'
.0836
.1.0184
5.19
17.40
*^M
15.89
5.40
.14.70
11.30
. ^
IftR.O
ln50
270.0
1450.0
407.301
9.703
1171.933
2.593
5.329
.774
150
151
20 . 00
45.0
18.10
23.50
1200.00
3 T Of) 5*
.0781.
1*0348
5.19
17.40
7_W.
. 14.63
4.25
.1470
10.10
..00-
'**
575.0
110. 0
685.0
1400.0
389.590
11.792
1273.043
7.061
6.141
.797
151
152
10.00
.45.0
18.60
23.50
1200*00
3.017-
.0733
.9744

5.19
17.40
7*99
.14.60
3.80
.1397
12.90
.00.
1300.0
100.0
1400.0
1650.0
275.452
8*862
1285.744
11.120
5.832
.850
152
153
.00
f
45.0
19.00
23.50
1200.00
3 0??
.0689
.9415
5*19.
17.40
W*>
14.23
1*45
..1507
13.60
^
- 1700.0
100*0
1ROO.O
2300.0
102.051
Q.281
1316.108
13.754
7.886
.956
153

-------
to
m.^1 ,';o. ] -,-;,
^'iTc o.if:
lij I-'.-'." !. lV/5.0
iji.;X f'Pi-i LJ ' 709.?
LiilY o I'H.i-.P luil.d
LJE O . F .
".-.7 .> ii-.i-iP 7(j.O
INCH, n'3- 
li:-CJO;_.7. 1o7.fj
Dt-J.r .
txS:S&-- 'uo
Li:.j/lili
^'L^A?' b"i7
LXH. TLHi;.
CVL.ijO* i irMQ.'J
^ru.,-,0. i: *.,3.u
CYL.NU. J 9t>7.f)
cvL.,,0. ^ u.14.0
LYL.,j0.j2 Jx,1.U
>-YL.iiO.:'. r4 1.JO.Q
L/.RIi. HAbE 1U3.0
i-<0  D. MOLt S .^u  6fi6
J *C'  ^*' > iv  / L  1  1. .? o7
i ,-..5T  J ^o  I ^K>
144 146 147
6.16 -j.i7 6.17
.:5J9.9 22Ut.^ 1751.5
i.q-j2.6- 3tol.6 2825*0
U5.0 fiy.Q 87.Q
76-0 77.0 77.0
5U.03 SJ.iJD 30.05
169.0 170.0 170.0
lii^.O 13?i.O 184.0
.:Jf> .21 .20
*^a. *w** ^^..
4.J1 7.63 7.t.9
11U7.Q 1211.0 1160.0
713.;! 'Jil .0 801 .0
iOJrt.O il3.,.0 1114.0
lUifj. n iij.j.o 1105.0
131. .1 1M.O 112.0
l^O-iJ 12ri.O 124.0
117.0 lJi-,.0 105. 0
ffl.'tj^ .4.o.S79 .-59.661 .
JL.i2.j.'i Li?yi i."1300
14U 146 147
1
6.17
1332.4
1693.8
87.0
77.0
30. 05
167.0
181.0
.26
S3 . i .fl-
8.12
1165.0
789.0
1107.0
1090.0
107.0
120.0
101 .0
33.891
1.1292
148
149 .
6.17
1244.2
893*6
87.0
77.0
30.05
167. 
180.0 -
.17
Q3.6B
8.32
1156.0
792.0
1101.0
1182.0
100.0
115.0
94.0
20.941
1.1311
149
150
6.17
1E>31>2
303.7
87.0
77.0
30t05
1M.O
,02
*L-AA
S.47
1077.0
7ns. o
loni.o
1003*0
99.0
116.0
R6.0
30.167
1.1250
150-
151
 6.17
1546.8 .
756.8
87.0
77.0
30.05
165. Q
179.0
.06
53.6R.
5.56
1075.0
697.0
1000.6
990.0
103.0
120.0.
96.0
41.389
1*1049
151
152
6.17
1857.7
1576.2
87.0
77.0
30.05
172.0
186.0
.04
03 ft 8
5.23
1086.0
697.0
1003.0
lOOR.O
112.0
12A.O
103.0
40.R&1
1.1259
152
153
6.17
2586.9
2024.5
87.0
77.0
30.05
171.Q
187.0
.02
9M*.
5.06
1102.0
692.0
inii.o
1019.0
118.0
134.0
110.0
49.966
1.1247
, 153

-------
OJ
r.br ,,u. i,.,7
., r-ltrn. .>>!'
jii AUK .'i.i- . L.I.G
uLu . i i jC
!'!;":'). './HC  . To.'jti
li-iCh.iit.
"ic-ROijL no.'ji;
FT. i_,-.b.
K.j'.il.
f"Uc.L/ A i K
h /A ijlUiCii Ubo'l
Lfii/nj' MK
C0i< Ll.i-i.i-. 17. Uti
P.i.i.
VCL. El-'. YJ   ib-
b.Trl.E.' * . PU.11
 02 I.o5
x CO .i>*Jt4
 CG2 It.irj
^ CHjOn .. jQ
;u HCilG t*-
i;C. i'Prf ,-. ' 31bO.O
i.C'ii PKM  iso.u
l:OX PlJ!-. '.' J.^uO.O
in.. (-FM .; 1:jO.(;
MftiS 0*i o?-J6fi
OK,',S/nr MR
Cih,-:5,/|ih nR
,,..j>S Ml. 'J.6.1i
i f i>1 NO. ' In?
Io3 ;-o7
JO .00
si.n ai.O'
IL'J.UO Ib.OO
47* UO 47. JO
^JOG.JO 2000. 11 0
.1373 .008
. 06.')9 iOHH9
 L>414 >bux4
17.^7 17.30
3-+. 71 34.78
34.18 31.39
. 20.iiQ 2u.o-T
!Ori 1.35
.b94l .6067
lJiri I3.d0
m^&* ^p^0
*^>- ^*-
oo J oo 30dno
2bO.O 15,-. .0
j2'jo.n 3i5r. .0
.0 injn.o
65-737 62. nbfl
.Oo'i'i 4ii;jl
.9'i .'-in?
l.:13 ^U7
240
.00
51.0
16.00
47.00
2iiOO.OO
 993
.0689
.6574
17.11
35.00
34.01
20.38
1.35
.7797
13.60
M.
-^e-
2950.0
250-0
3200.0
1600.0
62-961
31.818
864>95i
16.494
3.658
 96"
242
.00
51.0
16. no
46.50
2600. no
.989
.0689
 6564
17.24
34.66
31.81
20.41
1.35
.4376
13.70
,*a.
M*.
3450.0
300.0
3750.0
1550.0
64.835
18.390
9ii4.6H5
19.RF.7
3.639
.957
242
256
.00
51.0
16.00
47.00
2000.00
.993
.0689
 657W
17.33
34.84
34.54
20.38
1.35
.6988
13.70
,40-
40.
3800.0
100.0
3900.0
2050.0
63-522
28.772
886.369
19.71)1
4.720
.970
256
271
.00
. 51.0
I6i00
4ft, 00
2000.00
.984
.11689
..6358
17t67
35.51
3U.34
21 .07
1.35
.5944 .
13.90
-^CUO.
0.
.0
.0
.0
.0
62.021
23.894
878.051
.noo
.000
.956
288
20.00
51.0
16.07
49.00
2000.00
1 .182
.0781
.8458
18.14
36.45
34.50
17.91
.50
3.5130
11.80
"-M.
^M-
1175.0
75.0
1250.0
2800.0
24.924.
153.227
8.08.789
6.903
. 6.922
1.116
288
289
30.00
.51.0
.16.00
49.00
2000.00
1.104
.OA36
.8503
18.05
36.28
34.52
19.02
.57
3.24.39
s!2.flO
-JWl

2200.0
100.0
- 2300.0
2650.0
25.4A8
126.922
786*993
11.484
5.975
1.095
289
290
30.00'
51.0
16.00
49.50
2000*00
1.065
.0836
:.  .8115
18.24
36.67
34.55
.19.93
.62
2.2120
13.30
, -ftft..
-*.
2800. 0
. 150.0
2950.0
2450.0
27.389
85.502
807.856
14.585
5.448
1.056
290

-------
U)
li.bT liO. . lu? I.i3 ?ii7 240
i. -'.It: &.^4 U.2S o.27 6.30
i-'O Pr'M i, 2^d2.0 .0 2034.6 1810.7
i-'C* PP*' L1 J7;j7.9 Jto2-l 35un.5 3621*4
ul"V ti Ith.P o7.0 06. 0 6^.5 92*0
..T o li>',P 77.0 76.0 7f,.S .71.5
01" o.K.
bAK.pHt.SS. ?O.J.V 3U.10 3U.uO 30.01
ln.CoOL..i. 173.0 173. 0 17fi*0 1730 -
LJt o  r 
u'jT.CCCL .T. 1r>9*0 1BH..O IciR.O 189.0
t.Xn.Hi.iLoj  * ii 1. 15> .19 .21.
P . b . i .
i-( LI. ^LOn 1.i.o.3 11.48 li.nO 11.77
c-X.il. TLr-:P.
CYL.iMO. i l^h.O 12^2.0 12o1 .t) 1269.0
^'rLi^U  'lu4>o Rii4o B4n.O 822* 0
CYL.ijO. C. l?il.fl 120C.O 1201.0 1192.0
C^i_;jO 4 15>b3.f; 1249.0 124S.O 1246*0
ifjT.MAW.l .
CYL.KC.ir2 luO.O 99.0 9R.Q 101-0
CvL..M-3..1r'+ IA!>.(I 113.0 112.0 114.0
C;:RB. U;.^E ^3.0 91. 0 ^n.o 93. 0
uO.O.MOLt.fj  4fi.p'-*6 SO. 745 47.405 47.423
PrJ<  rtOLu F
.-.=.;. M././U. l-j.3<:7 1*1263 1.1303 1.1317
IpST. iJO In7 K';3 ?;j7 240
242
6.30
1749.2
4232*0
93*0
79.5
30.01
170.0
186.0
.22
170.67
11.63
1276.0
821.0
1242.0
1239.0
101.0
114.0
94.0
48.908
1.1285
242
256
7.10
2315.9
4405.8
89.0
76.0
30.07
174.9
189.0
.10
i
171.93
11.77
1268.0
815.0
1203.0
1248.0
99.0
113.0
91.0
47.845 '
1.1297
256
271
. 7.03
.0
0
.0
8.0 -
7A.O
3n.lO
17.1-0
.12
l7i .40
Ili63
126?. 0
810.0
1204*0
12U6.Q
99.0
112.0
91.0
48.294
1.1333 
271
288 .
 .. 7.03 :
3206.2
1431.3
90.5
77.5
30.00
173.0 .
189.0
.19
170.88
15.79
1227.0
766.0
1110. 0
1172.0
77.0
85.0
63.0
27.538
1.1451
288
289
7.03
3084.8
2677.4
89.0 ;
77.0
30.10
174.0
190.0
.17
172.01
15.87
i
1244.0
781.0
1134.0
1200.0
69.0
80.0
57.0
21.418
1.1641
289
290
- 7.03
2847.5
.. 3428.6
-- 89.5
77.0
30.10
J73.'0
- 189.0
.17
171.96
15.30
1259.0
766.0
y '
iisi.o
1214.0
VJ 
71.0
80.0
58.0
22.172
. 1.1622
290

-------
i:-l -' 34\ 29? ,-J3 294
 i'-=ti:i. . u(.! .1.10 . jtO .00
br--Af-K i.:/v. ^l.u 37.5 37.5 38. P
l/L'o. :.. l:)C
I-.J-IM. VM. . lo.uO' lu.OO Ib. JO 16. Ofl
ivi^Out. 'V.JO 5ioO 51. JU 50.75
1-7. u.i.
'L't!^tL 2"r'"Jt' -^"y^o zunn.no 2000. DO
L...,. ivAli'O .'.<('? 1.174. 1  ! J3 1*039
r/A r,T.,KM .(,f,69 *06,9 ,oftoq  .G689
L.S.h.C. .&4-M .73110 .u73 .6753
v.i i"' u.ii.l . 17.2S U.yO Iri.rtt* 16.63
c^.^HLr. m*07 3-/.yg 3V. o7 37. H5
vOL. E*1 . 1= "Vi.j3 3l>.^7 ' 3t.7<} 34.66
^ rl.Tn.t- i u.u3 IcJO? 19.21 19.84
Ul
A Oi i--5 t37 -1*5 -SB
A CO .b5^7 b.*7*4 3.',rlti5 ?.G79l
* C0i Ki.yu 11. oo i^.yo 13.50
'* hCl,0 ^- .^*. ^- ^Hl-
i-.t; HPl-i V. . H^jO.i'l 9-*l).Q lfuf:.l? P2JO.O
niiZ HHh. ./ ?;jO.(J 10.0 Un.ll 100..0
:.CX PfJ,. ..- 'Uii0.ll CJO.Q 17ur,.0 2300.0
< .c: HF';-i iv k n b o . ( LO u . n <: 7 u n . o 255o  o
br:>ib/nl: riH
'iSb CO r^.3S tj7 lJir.r,dt3 fil.07]
of-.:',i>/riP HI1!
r-.ASSi C'/;j ai-^.li-g 7i3.bo7 777..i-:yi S.j,j6 5.593
L .  I'. . (. 1 IK  . <'_ * I'lll0 1 . 1 b3 1*0 \1^
:: ST i. 2*| . 2^2  393 29*1
295
.no
40. 0
16.00
49.75
2000.00
1.041
.0689
.6587
18. ?6
3fa.71
3H.f>6
20.34
.80
.9770
13.90
vM.
3000.0
lon.o
3100.0
cf3l)0 . 0
36.U56
38.957
070.952
15*Ph5
5.114
1*007
296
*uo
42*5
16.00
49.00
2000.00
 970
.0689
.6229
18.00
36.18
34.68
21.50
1.22
.7067
14.00
M
3400.0
200.0 
3600.0
2000.0
53.291
27.010
840-863
17.192
4.286
.976 .
296
297
,00 '
4IS.O
16,00
46.70
?OOOtOO
.949
.nf>S9
 6375
17,15
34.48
3'4.57
21.01
?,00
.2724
13.56
^W
3lnQ.O
2r.Q.O
3300*0
17hO.O
95.211
11.348
887.605
17.119
3.947
.926
297
298
.00
50.0
16*00
43.40
2ooo.no
.902
.0689
.6600
15.94
32*04
35.00
20.29
2.95
.1614
12.96
-Oft
2700.0
150.0
2850*0
1450.0
153.275
8.249
925.884
15.985
.3.655
 879
298
299
.00
'.  54.5
16.00
38.30
2000.00 
.819
.0689
.6892
14.07
28-29
35.55 '
19.43
4.55
.1830
11.84
^*>
1350.0
200.0
1550.0
1700.0
>6A.Q30
9.466
962*237
10.184 .
4.828
.812
?99
. 300
20.00
-- 37.5
16*00
51.50
2000*00
1*394
.0781
.9713
18.92
38*04
34.92
15.59
 45
4.8106
11*90
-' Qgr
850.0
50.0
.. 900.0
2800.0
23.643
221.153
859.672
5.270
7.356
1.156
300

-------
ic s 1 ! ;0 . ; -, i
J.-il'L Y.u'i
I.C I'l'i" i, iJA7.7
ii'_'A ijfvi L. !jCiJi?*r
L'=-lt ,1 lL>:r-' oV.f.
will' 11 Ir'T'i!-' V'i..h
Ls,',K iJKc.Si>  -^uLi8
i [>(,'! i  r i j*
*i-!'CuOL.T . 1 /"?..0
' i-'t'o.r.
LxH.r-Kc-'jS.. .JL!
Mrt hLOi- i "-..-!
Lbi/iiR
hi:L FLoi. 1 i .LJ
L/il Te !;>'.
CYL.jjO. i-. 7v*t>.G
LYL.i0> o iPlil.C
LYL..JO. w i?^3.0
v, i L.uO* ;  ^ i'+> 0
LrL.r,0..sM, luh.o
C/.KC. o,-,St t,5.0 .
r.C.L.vOLLE, q7.f>7r
h1.- i<.i>iCi.L F
i.Ci.i-'.V.'./U. i-i3ut
i t'Si . i;o ;>-j]
2^2 ?^3 294
i'.ij' 7.0'4 7.04
o3u2.9 i07s.4 2897.5
if'6?.0 1^3.', .4 2613*4
ii4 . 0 tiS ' 0 84.5
74.0 74.5 74.5
3uJe- Z-0.08 30. 0
170.0 1/3-0 171.0
l.-jG.ily lo.'*.0 1S60
 ic, .15 .17
14.. 54 Ij.b3 13.06
*2i4.c- 12 ri'. 0 128P..O
77.(j 7y.1i.O 821.0
*lH2.0 llon.O 1109. n
i2-i6.0 1^27.0 . 1249.0
,9.r, ^.o :o
I'jl.O lau.O 106*0
.40  0 b3  0 64  0
J * iSii'J 1.1IWO 1.1363
2'J2 ""93 294
?95
7. (14
^606.1
3512.6
84.5
74.5
30.08
171.0
186.0
.17
174.00
12.48
1233.0
831.0
1204.0
1270.0
94.0
107.0
ae.o
46.242
1.1331
P95
296
7.04
2265.2
4077.3 .
85.0
74.5
30.08
170 JB
186.0
.17
173.95
11.63
1278.0
813.0
1210.0
1267. 0
95.0
108.0
87.0
46.875
1.1326
296
297
7.04
1914*1
3715.6
850
75.0
3 fit 08
173.0
lP.7.0
.10
17.1.41
11 .34
123H.O
7*7-0
llqq.O
1256.0
96.0
1(16*0
H7.0
49.915
1.1259
297
298
7.04
1624.1
3192.1
85.0
75 . 0
30.08
171.0
185.0
.16
175.55
10.91
1211.0
769.0
1170.0
1230.0
96.0
106.0
87.0
52.616
1.1200
298
299
7.04
1885.9
1719.5
'85.5
75.5
30.08
169.0
182.0
.16
178.16
10.06
1178.0
7.51.0
1141.0
1201.0
9B.O
107.0
8ft. 0
57.322
1.1094
299
300
- 7.04
3232.7
1039.1
" N 85.5
75.5
30.08
. 170.0
185*0
.19
174.97
, 19.06
' 1253.0
775.0
s
1125.0
1196.0
73.0
81.0
58.0
25.274
1.1545
300

-------
i?ST 1.0. 3ul
iv K'lh. ?L-U('
i-t -h,. >iL.\, . J7.b
01 *. i.v::i.
FT. ui.i,.
. u  I* . i-i .
L(.-  i
L  "( 1 1  L"  to 1 1*  4 L>
*, ^ .3li
V-, CO J.rj''j2
.a C"02 1^.-*fc
A HCiiO -^0.
I:;.  I'Pi'i i-. .  i 125. 0
i.c.-i:- P!j;-. ?i vs.n
i*';A t-'tji'i -f.1 i'-U:0.l!
,,C FP.>. : 'J:ft0.).u
s^bS Ot c-' .Bu?
oK,.iS/;-,f- ilR
OP.:.iS/i:K .iH
Gf-.-v.'j/.iP nl'.
'"'"'oK- -/Ml- Hi- SiVt"
l....i?.Ln:-:. 1 . 1 10
i -.SI '-lu. iiJl
J-i;2 3u3 304
^0 .f 0 ' 2u.iiO 2U.O.O
5b.() 4n .11 42*5
16- .10 iu.uO 16.00
lil-'jO OU.7U 49. 80
2l)00>uO 2UOU.OO ,?nOO.OO
1-0^2 1.02:9 1*007
UVol -U7l .0761
.75411 .7?18 .7198
1:1. 'J3 Id. 64 13.J5
3ou6 37.47 36.68
J4t62 34.62 34.83
2'J.iJB 2U.. 0 2700* 0
tUU.O 2JO.O 200.0
i7jO.O 2'HJC.O 2900.0
Z^liO'O kll'jfi.O 135J.O
M.ly3 40.M71 52.588
f;ji).4ifs n3Fj-Pfi5 847.841
M.;?'.-?S ll.oji I4.3b9
rj.l.3:S u.;i'-J7 4.Q35
l.Ujl lOJ:i 9o4
3J^ :',i|J 3QU
305
2u.no"
46.0
16.1)0
47.80
2000. nO
 933
 07fll
 7031
17.62
3b.42
35. ?8
21.54
1.95
 3317
13..0
^0
2650.0
250.0
2900.0
1325.0
89.711
13.354
860.304
14.950
3.017
 928-
3115
306
20. uO
50.0
16. UO
44.75
2000~.00
.888
.0781
.7177
16.48
33.13
35.35
21.10 .
3.05
.1814
12.90
.00,
2550.0
100.0
2650.0
1225.0
152.575
7.942
887.313
.14.382
3.011
 74-
306
^07
20,00
54.5
16,00
39,90
2000.00
.811
.0781
.7489
14.69
29.52
3ft, 96
20.22
4.55
.1854
11.90
, QQ
155n.O
150.0
1700.0
1125.0
257.108
9.168
924.601
10.600
3.095
.808
307
30B
.00
,51.0
16.00
47.00
2ooo.on
.993
. .0689
.6653
17.23
34.64
34.58
20.13
1.35
.6232
13.70
.00,
3300.0
250.0
3550.0
1950.0
64.677
26.126
902.490
18.683
4.570
.967
308
309
.00
42.5
16.00
US. 00
2000.00
.993
.0689
.6515
17.60
35.38
34.58
- 20.56
1.25
.6306
13.50
OO>
-OO
2400.0
300.0
2700.0.
1750.0
59.521
26.272
883.887
14.398
4.070
.972
309
310
.20.00.
U2.5
1.6.00
49.00
2000*00
. .979
.0781-
- .7240
18.00
36.18
35.20 .
20*92
1.25
.7467
13.80
r
, Q Q .
, ; 2350.0
250.0
2600*0
1650.0
' 56.587
29.578
858.998
13.313
3.713
.976
310

-------
|. '-.T iJ.
,,.1L
IK. (V.-. L
,!.* PP.'i L
Ui'lf i f"t-f'i--^
~/c 'j  r .
..:.T j ii>..->
u,.rt^^-L.
1 i.CjOL.l .
^JT.'I-OUL.T.
uLo.r.
...'H.KRt'jb.
P.b.i.
rtlLt^r/n'
hiJt-L Fi_Ut.
Lb.i/l-i...
c_.\rl. Tt-i-.H.
i.YL-,,0. a
L i i_ nO  c.
i.M-.,,0. ^

I ,i-.MA,,.-|.
iVL.,i0.ia
L t L > jG *.*.  4
LJ-.KB. usE
i  j  D. ^.Ol_LS
1-' r<...iG>-u F
\t\J >'' '.  /L, 
,,'bT. ^u.
^ )1 i '2 .103 304
/.uu 7.J4 7.04 7.04
r:'1-*^-! ^7u9.4 jO.O 27b>.3 3332*5
i>50 i360 -3n0 ti85

/5*iJ 75. (i /S-0 76*5
^uof? 3u*J* 3J.U3 30.0fl
1/J.O IjQ.O Io9.0 167*0
ifil-l) ljb-0 IdS.O lt2.0

   ij 8o5.(j 91.^*0 802*0
1U1.U :l,,7.0 llj^.u U34.0
iPl.J.O 4.2J1.Q l?5r-,.0 1256*0

/'j.n 7bi 7n.o 80*0
o3.0 d-*n uH.J 90.0
jO.j ul-O 63.0 65.0
^f-.;^.i ^7.1*: i an.r,.i4 28.793

 llSJl l.I'j-i(l Ii49b 1141J1
Sul 3^2 ^u3 304
T5U5
7.04
1514.1
3314.0
89.0

77.0
30. n8
166.0
181.0

.19

175. h8
12.80


1224.0
784.0
1195.0
1245.0

92.0
92.0
67.0
30.570

1-1427
305
306
7.04
1389.7
3006.2
88.0

76.5
30.08
163*0
177.0

.16

176.31
12.24


1197.0
762.0
1174.0
1220.0

81*0
92*0
67*0
32.565

1.1344
306
307
7t04
1264*7
1911*1
87*5

76*5
30.08
161.0
174.0

.18

17Q.54
11.38


1169*0
74] *0
1128*0
llRB.O

02*0
92*0
68.0
35.254

1*1242
307
30fl
7.08
2202.1
4009.0
82.5 "
"
74.0
30.06
175.0
191.0

.19

174.13
11.91


-S.
781.0
-* .
-*

95.0
197.0
86.0
48.132

1.1293
 308
309
. 7.08
1973.5
3044.9
82.5

74.0
30.06
173.0
189.0

.12

174.13
11.91


*
800.0
' -*>
-*

96.0
. 108.0
86.0
4A.856

1.1277
309
310
7.08
1893.5
2983.8
84.5

74.5
30*06
175.0
190.0

 .15

176.60
13.51


-4-
801. 0
~i>
,*

82.0
92*0
67.0
29.215

1.1476
310

-------

5u ,'": in. . 11 0 . u (J
^ '*  "* J  *J J f  ,J
Lic-.i. blJC
r-iArt. V(C. 1.J.OC Is.... JO
I rich, r it .
lOKQutT i"'j.{jC JjJ.o'j
KT. Llji.
tiiG. SiJLc.O 2i)f">ii  iiU 
hO . pPi-i A. 2?bQ.u 5<;0  0
liU2' pf>M vv ?UO.U '.O.O
HUX PPM -.V ii'iaO.O . SoO.O
hC t>p|.( ;v lf=iuft.O ii650.0
iiAbS Oi hf*.6:i4 l7.fj<>7
bK..iS/HK HK
I'.AbS Co 17.2U4 212. 2i5
"!A^/M,- :: ^;>>7lt- 7j?':i^
Cii<..l5/: .r hi;
^^LSnr' ,,P '*S^ 5'?fi
L.V^K.C 1 -.!-.. .Cj.iJ J .I'/!;
326 3^7
.1)0 . uO
-57.5 38.0
lo.iiO 16.00
 51.50 51.00
20 0(1. nO 2000*00
1*140 I. 087
. U689 .0669
.6945 ' .6646
In. 41 18.72
36.01 37.o3
3-t.ti4 34.31
1^.^:9 20.15

.40 .55
3.ri474 2.2120
1J.50 13.20
WO. ^*-
-*>. .M.
7(95.0 125Q.O
lOS.O 100.0
9.JO.O 1350.0
?4uO.O 2250.0
16.S10 24.433.
13R.943 65.984
7fce.]b4 806.296
4.P44 6.652
4.9^3 4.912
l.lll 1.0-J9
3^6 327
328
.no
40.0
16.00
49.75
2ooo.no
1.042
 06R9
.6512
IB. 26
36.70
34. ?0
20.57

.75
1.0432
13.70
**>
^*>
1800.0
125.0
1925.0
2000.0
34.166
41.5R1
BfiB.125
9.629
4.4F.7
1.011
328
329
.00
42*5
16.00
49.40
2000.00
.990
.0689
*6254
18.12
36.43
34.28
21.42

1.25
 4262
13.90
0(L
^0.
2275.0
75.0
2350*0
1750.0
56.370
16*816
861.891
11.418
3.863
 967
329
330
 00
46.0
16*00
.47*40
2000*00
.943
.0689
.6202
17.40
34*99
34.33
21*60

2.05
.9404
13.50
00
^w.
23nO.O
200.0
2500.0
1450.0
95.761
9.825
R67.101
12.847
3.302
.Q22
330
331
.00
50.0
16.00
44.50
2000.00
 893
 0689
 6353
16.36
32*89
34.93
21.08

2.95
.1736
12.96
na
ng
2100.0
100.0 .
2200.0
1250.0
147.866
7.612
.893.211
11.862
3.040
 87Q
331
332
 00
53*0
. 16.00
41.15
. 2000.00
.839
.0689
.6506
15.15
30.46
-35.31
20.59

3.80
 1697
12.30
-, pp.

1600.0
lon.o
1700.0
iion.o
205*606
8.033
915*081
 9.910
- 2.R72
 R39-
332
333
..00
54  0
16.00
39.50
2000.00
..816
.0689
.6588
14.54
29.23
35.31
20.33

4.20
.1361
12.10
nn
V^V^V
1375.0
125.0
1500.0
1050.0
234*569
6.651
929.202
9. 123
2.825
.820
333

-------
iLjT no.
(-Aft:
i iC Pri'. u
iiOX j'i-'.'i ij
nil  i i I'Li-iP
riEI 11 Illi'lP
Uf.v3.r-~.
tsAK.PKt.SL>.
I MOM. rib.
iit.CoO^.l .
OEo  P 
our. COOL T.
--. . _.
Lba/i-tK
FUf;L Fi_0v,
tXH. TL.MP.
CYL.rjO. 1
CYL.uO. iL
CYL.iJO. i
CYL..JO. 4
ifiT .i-iAu. T .
CYL..,0.3a
LAKIJ. ,JAi
140.0. MOLLS
-t.M.wt/u.
IL'.ST. UO.
3i4 32rJ 326
/.^l 7.^1 7.^1
1J3.5 .>H7.9 2753.6
i:7u9.3 6J7.7 10i2.6
'4.0 ,34.0 rtu.0
/4.5 74.5 74. b
^U.u6 3j.i>6 30. 06
' 1o7.3 lr>6.4 167.5
.2U
l^l.nS i7i.92 173.45
1 A  > 5 m.icO 13.63
in^2.9 lObb.O 1097.2
71.3 747.0 7rt7.2
1924.5  10J7.1 1177.5
I?:i9.6 1193.3 1221.1
f>8.7 63-7 t!5.1
1U2-3 '^6.0 97. B
t>0.1 ?4.2 75.5
4". 214 ^n.lr>7 39.721
1 i3u3 1.13MB i.1473
324 3^5 3?6
327
7.21
2553.0
1531.8
83.5
74.5
3U.U6
163.2
.iiC
172.43
12.91
1112.1
800*1
1195.4
1246.3
86*9
99.6
77.4
44.679
1.1347
327
328
7.21
2264.1
2179.2
83.5
74.0
30.06
168.7
1A4.8
.20
171.90
12.34
1281.9
803.5
1077.1
1260.0
88.3
101.4
29.0
46.761
1.1320
3P8
329
7.21
1977.6
2655.7
83.0
74.5
30.06
167.8
183.9
.21

172.48
11.77
1098.1
780.0
1224.1
1261.7
89 .>
102.8
29.0
48.196
1.1301
329
330
7t21
1631.9
2813.6
84.0
74.5
30t06
1*6.4
Irt2.6
.21
I72t38
11,20.
1076.7
755.1
1212.5
1247.6
90.1
103.7
.29.0
50.347
1.1255
330
331
7.21
1400.3
2464.5
85.5
76.0
30.06
164.6
179.4
.22
174.91
10.77
1053.3
735.8
1186.9
1228.8
91.9
103.7
29.0
52.736
1.1202
331
332
7.21
1225.7
1894.2
87.0
7ft. 5 .
30.06
164.2
178.1
.20
176.35
10.20
104A.1
731 .9
1168.9
1207.4
9?. 8
104.6
29. 0
55iS90
1.1142
332
333
7.21
1167.8
1668.3
87.0
76.5
30.06
163-7
178.1
 .20
176.35
9.91
1048.1
727.2
1156.5
1195.0
93.7
104.6
85.1
56.667
1.1122
333

-------
IL'j-l i'iJ. 3j'J
/\< i' St'iiLO 2uOu.i)0
R . H . "i .
.-/i/SToiU, .yfi.,9
b'j.r"C  9-t7
C'Ji* i-.r i.t-1. 1o.-J8
CON. Ui'iLp1. P.i.il
VOL. E> . ' -*b.-.l
LI. Th.L  i- \~~j  -j
'' O2 ' -4 ..iC
* U> .Ll'.
> U* I,.*-
in CH30M -'"
A i-lCiiO **>(*-
NO. HFrt U. HaO.0
1.02 PPM w \on.o
iiOX HHM W l^yQ.n
nC HPi-i W 10^5.0
,'IASS 02 27S.7b7
MASS CO Q.5i7
GR^iS/HP HR
i'-;.'.j'j Hi. ?.'*:>4
c. ',;  i\ . Ci if i . tftii^f
3j& 336
 1)0 2i"j.OO
b6.0 3fl.5
lo.JG , lo.OO
3b.'jf> bl.90
2u0.j.,Ji) 200UiflO
.rtuf) i.?oa
.06.9 .07i
.136Q .8129
13. 06 19.13
2o.^6 3d. 45
3:i.72 34.15
1(1.^:7 16.63
', .J5 .ifO
.iii'-J!.> b.27rU
li.t.O 11.7ft
^ji^^ iX^L^
^^./V ^^r^f^
iQJO.O 490.0
IbO.O 3M.O
1100.0 520.0
11JO.O 24UO.O
319.010 1-7.305
H.2b5 2.514
J.4U2 5.200
.7'jO 1.170
335 336
337
20.00
37.5
16.00
52.50
2UOO.OO
1.129
.07dl
.7610
19.34
3ti.07
34.59
19.90
.SO
3.45^5
12.70
^a
*
920.0
40.0
960.0
2150.0
21.368
129.329
746.291
4.. 541
4.596
1.1U2
337
338
20. no
38.0
16.00
52.no
2noo.no
1.081
 07R1
.73?4
19.57
38.54
34.49
20.68
.(SO
2.34H9
13.20
*fA
**
1275.0
75.0
1350.0
2050.0
25.652
-87.870
775.979
6.421
4.375
l.Oftl
338
339
20.00
40.0
16.00
51.50
2000.00
1.023
.0781
.7033
18.96
38.12
34.57
21.53
.80
.4908
13.70
ULO,
^
1700*0
ioo.tr
1800.0
1800*0
36.012
19.330
847.961
8.951
4.016
.992
339
3^0
20*00
42.5
IftiOO
50.45
2(100*00
.986
..0781 -.
.6884
1R.55
37.29
34*29
22.00
1.25
.3793
13*60
UU>
^
PlRO.O
ino.p
2250.0
1550.0
. 55.227
14.663 .
838.347
10.923
3.396
.964
340-
341
20.00
46.0 .
16.00
48. 00
2000.00
.940
.07fll
.,69P4
17.63
.35.44
34.35
21.87
2.10
.2228
13.44
, f)n .
^
2300.0
100.0
2400.0
1200.0
97.096
9.015
854.445
12.127
2.741
.918
341
342
20.00
50.0
16.00
45.00
,2000.00
.882
.0781
.6972
16.53
,33.23
34.56
21.72
3.05
' .1697
12.76
UUfc
^
2100.0
150.0
2250.0
1050.0
150.155
7.309.
863.760
12*185
2.537
.871
342
343
20.00
54.5
_
16*00
39.50
2000.00
.807
.0781
-- .7376
14.51
29.17
- 35.10
20.53
4.55
.1736
11.70
-Ofe
^.
itoo.o
150.6
1250.0
950.0
258.127
8.616
912.664
7.938
2.620
.804
343

-------
IL'^T I/O. ?.->H
uAlL ~t*A ppii L. 1 V.7.7
LHY i. FEtfP 66. S
*t~. f U fc.'-iP 76.U
[JEii.K.
uAR.prtt'Jo. ^U.uo
iNCI'i. no.
iii.CoOL.T. Iu4.6
t3Ei?  H 
uur.cOv/i_.r. i /.R.S
LiE-o  F 
l_XH.r'Kdb^. .iP
P.S.i.
!(< r-'Low i7d.;jU
LBS/nh
rUEL Fi_0i\ ' lu.Jo
tiXn. TLHH.
CYL.i-jO. i 1141.7
CfL-.JO. 2 ^1.9
.YL.:40. J ilol.fi
CiYu.NO. * 11 *7.6 -
iMT.iViAN.l .
LYL. 140.1.2 93.7
CYL.;-J0.34 105.0
CAi^B. LiAiL" H5. 1
NO.D.KULcS ;>7.f),J
HCK.,-iOLt_ F
IJO.K.W./u. J.ilul
It'lST. ,<0. 3j4
^.ri 3.56
7.21 7.21
i2i3.7 2775.2
1218.7 6U1.3
86 . T. 8 . 0
76.0 77.5
'
30-06 3u.06

1^4.2 171. B

178.1 1*17.5

ZG .21 .

i7.i.b3 170.23

^^1 16.07

1048.1 1041. "7
7i:3.4 744.0
.148.4 113h.9
j.231.0 11^0.5

-34.. 2 c>R.3
1J4.0 7R.7
5.l 04. b
=>3.7o3 24.3h7

1.1079 I.i563
3j5 336
337
7.21
24h2.9
1108.6
67.5
77.0

30.06

171.3

167.5

.20

172.58

15.22

1077.6
766.3
1166.4
1211.7

70.1
79.6
. 55.5
26.240

1.1 54B
337
338
7.21
2362.7
155R.9
88.5
77.5

30.06

171.8

187.5

.22

171.77
(
14.51

1087.0
781.7
1177.9
1235.2

72.4
81.9
57.3
27.274

1.1526
. 338
339
7.21
2060.1
2060.1
87.0 .
76.0

30.06

171.8

188.4

.23

172.63

.13.80

1084.4
802.2
1203.1
1255.3

74.2
85.1
58.7
29.904

1*1445
339
340
7t21
1774.7
2576.1
85.5
7S.O

30t06

171.8

188.0

.23

I7t t70

IS. 23

105Q,.0
794.1
121ft. 1
12*5.6

75.1
R6.9
59.6
29.987

1.1449
340
341
7.21
1368.5
2736.9
84.5 
74.0

30.06

169*1

184. n

.23

172.33

12.66

1033.2
759.8
1215.5
1241.6

75.5
86.9 .
59.6
31.198

'1.1404
341
342
7.21
1189.7
2549.4
84.5
. 74.5

30.06

16ft. 4

182.1

 22

173.40

11.95

1007.6
738.4
1187.7
1213.8

76.9
89.2
61.9
32.993

1.1331
342
343
7.21
1066.1
1402.7
84.5
74.5

30.06

- 1 64 .2

178.1

.20

176.07

11.10

998.7
726.4
1137.3
1184.7

78.7
90.1
63.7
35.936

1.1222
343

-------
ii'.31" !J^. 3--f 345
A i-'.KiH. ''u.LiU 20 .1:3
J''SEK "ri.Jv; :i3'- :32'
;.,;., i. ''\/c. ' ^ IH...O i6.,..o
IliCH.Iiv..
I'vKi'iui-. "o.trj '12 -oo
FT . ebb.
iiNG.JiPEi.0. 2.>Ou.uO ^uOb.uO
c.:. . ;>5 21.&7
to wl >t./cO 3oO
* CC .i77'J .1775
* 0V ^*U 1^.16
ib CH.iOn -" '--'in
 rtC.iO i uU >kO
..0. PP.-, ..  1^75.0 1575.0
i.Oi PHi', ';,' ?uC.() 1 /b.O
I.OX PHM \l 1'iHS.U I7j0.0
iiC ,-Pi-i ..v n;;0.0 9.iO.!J
MASS O.i li^i/n.9ir. 2jO2v2
wR..lS/nP nR
c:ASS Cj 39^.5ftl P..ld6
GIJ.iiS/nP nR
1-iAbSi Cuii iOui> niil.2H3
6R.-iS/HH iiR
I'.AsL TiuX 371.5^6 10.265
'^i'Hl "' "^-IJ7 2.i.,a
ILJ^I:'.UIW. ' -*^. .3.17
FLjT !Jvi. 3-i * 3-+T)
346
."50. no
JH.O
16.00

-52.90

2000. (10
1.092

.0836
.7806
1^.44
39.08

31.37
20.72
.50
3.790*
12.50
UU.
wo.'
810. 0
40-0
Siin.o
2i:->n.o
20.2H9

134.595

697.4^?

3.A62
fc.i.03
1.115
.146
347
30.00
38. 0
16.00

52.50

2000.00
1-.U46

.0836
.7509
19.29
38.77
'
34.21 '
21.51
.55
2.3028
13.26
vA^U
4^4J
I2tio.n
65.0
1315.0
19bO>0
22.192

32.100

715.596

6.018
1.017
1.0i>2
347
318
30.00
. 10.0
16.00

52.00

2000.00
.976

 0836
.7077
19.10
38.10

34.21
22.86
.85
.9211
13.70
,04.
-.
1675.0
lon.o
1775.0
1700.0
31.901

33.212

773.531

8.117
3.500
1.002
348
319
30.00
12.5
16.00

51.00

2000.00
.911

.0836
.6996
18.71
37.68

31.37
23.12
1.20
 6988
13.86
~oo.
.40.
195Q.O
100.0
2050.0
1150.0
19.Q22

21.980

778.539

9.326
2.970
.976 .
319
350
30.00
16.0
16tOO

18.50

^nootoo
.898

.0836
.7018
17*82
35.81

34,56
22.95
2.00
.2101
13.16
^_^1^L
^^^^^
?lnO.O
Ino.o
2200.0
ilno.o
87.670

9.219

Pll.271

10.619
2.102
.922
350
351
3o.no
50.0
16.00

15.50

2ooo.no
.883

.0836
.7131
16.71
33.60

SI. 78
21.77
3. no
.1851
12.80
*."
00.
1 950  0
200.0
2150.0
950.0
116.102

7.918

858.889

11.791
2.291
.871
351
352 ,
30.00
52.0
16.00

13.50

2000.00
.851

.0836
.7511 .
15.99
32.11

31.80
21-. 53
3.75
.1775
12.20
*oo.
Ufl.
1600.0
130.0
1750.0
930.0
191.118

8.039

86*  356

10.086
2.368
.839
352
 353
30.00
53.0
16.00

11.50

200o". 00;
.835

.0836
.7696
15.25
30*66

31*76
21.02
1.20
.1775
11*90
Aft
^^^^^^
^4-
1250.0
150.0
1100.0
P25.0
228.171

8.137

888.928

8.536
2.165
.819
353

-------
lc:VT '.HI. ^4
uAJE. ' t*S.\
rtC PK**I O *"Vi 0  9
IvJ.A r'hVi 0 1^6- '4
L*r ,i ItMP rtS.O
*i'f .> ILMP /5.0
utii.F .
Ai'lLtl. llG.
1ft. COOL >T . 1 oil .2
UEt. . F .
OU r CL;UL.T . 17 P.I
LXM.r'RLbb   19
M!I\ FLuiV i"^u.:j2
LB.S/HK
FULL Ki_0,r. 11. JS
LdS/nK
LXiU TcM'.
CYL.ijO. 1 lOjl.7
CYL.nO. i: 7^9.8
CYu.;jO. i 11:j2.3
CYL.uC. ' 11S4.6

CYL.i<0.12 V8.3
CYL.:-jO.J4 yfl.1
OAli. liAbE o3.7
Pt'(?ioLtLF 16tJ'^tf
ItST. -*0. 344
3*5
7. .11
1070.6
1972.2
Hb.O
7S.O
3u- J6
165.5
i/y.4
1.9
I7ci.o2
9^2.7
7.50.7
1203.1
110b.4

77.4
49.2
2.S
1.1270
345
346
7.21
2505.0
990.3
8S.O
75.0
30.06
170.0
I*i5.7
19
172.29
lti.73
10bl.6
766.7
1154.0
1238.2

f>2.8
72.8
50.0
21.174
l.l 6bl
346
347
7.21
2267.8
1529.3
84.5
74-5
30.06
170.9
187.5
lg
171. 80
15.02
1069.5
796.2
1180.5
1230.9

64.2
73.7
B0.5
22.132
1.1630
347
348
7.21
1967.7
2054.6
84.5
74.5
30.06
170.5
186.6
.18
171. RO
14. (12
1069.9
810*8
1207.4
1257.5

66.9
76.0
5?. 3
23.631
1.1575
. 348
349
7.21
1678.7
2373.4
85.0
75.0
30.06
169.6
185.7
.18
172.29
13.59
1052.4
806. 9
1213.4
1266.5 .

68.3
77.8
53.2
23.783
1.1577
349
350
7t21
1265.0
2530.0
84.5 
. 74.5
30,06
170.5
1A6.2
,16
173,40
13,02
9R8.4
772.7
1223.2
1248.0

f.9.6
78.7
54.1
25.330
1.1 500
350
351
1 7.21
1085.3
2456.1
84.5
74.5
30.06
- -168.2
182.6
.16
174.47'
12.88
1007.2
741.8
1192.4
1212.1

64.2
73.7
50.5
26.748
1.1424
351
352
.7.21
1056.2
1987.5
. 85.0
75.0
30.06
 16fi.4-
181.2
.16
174.42
12.45
09?. 7
733.7
1165.1
1185.2 .
i
66.0
75.5
51.0
28.057
1.1357
352
-353
7.21
1047.4
1585.3
85.0
77.5
30.06
164.2
178.1
.16
174.23
12.17
985.9
725.5
1152.7
1174.0

66.0
74.6
. 51 .9
28.750
1.1324
353

-------
IL^T :iu. 3..M
* H.|... ^..l.
jiV,K.N Lv. 64.*
Dt-iu. nfnc
I'lrtu . V/tL . 1 o  UO
INCH. lite.
lOKdiiL 'tu-'.jO
KT. LLS>.
LNG. SHELL) 2i)flU>i)0
K . P . i'i .
L.O. rfMIu .3*1
F/A jTulCH .U036
b'.S.h.C. .7744
LHs/HP Hi*
tOii fni-i.H. lH.rt9
eon. b*LP. ?v.<*3
VO^F.^ * ^.'J9
D.TH.E. A ?j.76
o\
01
* 02 4.!i5
i CO .1775
* CO* 11. VO
* CHJ0.1 -Jfl.
% MCliO '. Jj-
NO. PPi-i f.  1-liiO.O
UO2 PPM '. IbO.O
i.OX PPM '.-) l^JO.O
.iC PP,., << t.0.o
rtAbS 0* 2S4..4*i
i-iASS Ct; H.jiJirJ
i>. ,'i 'j S C o if fi M   fa :ic
GRwS/hl1 liR
1'iAiiS 1 Iv^X P . 1 77
ul*.-ib/hr nl*
MftSS h\. ?.fmO
^o  ['< .C. II-:  . 'lu11
IL'.iT !iU- 3f>4
3Lj'J 3S>7
3u.urj .no
ri'j.'J ol.O

In.JO Ib.OU

37.00 43.40

2uOj.fiO 2000.110

.794 .ft99
. . j8jb .0689
.H3*9 .n341

13. bO In.tlO
27.jf> 32.17
3ii.ol 33.93
1^.42 21.12

j-15 3.00
.18^4 .1635
11. tQ 12.60
^Bj^ .^j^^
W*-. ^
75(1.0 2050.0
200.0 j*>n.o
950.0 2200.0
9-JO.O 1350.0
3i5.4.s9 ' 154.270
9.938 7-3bfl
^oU.0^9 yyO-911

fj.ft.i7 12.274

2.8/0 3.3ft8
.779 .S74
3L>5 . 357
3^8
.00
55.0

16. 00

40.80

2000.00.

.849
.0689
.6470

15.06
30.27
34 . 54
, 20.70

4.00
.1620
11. .90
-UMk
-**
1650.0
150.0
1800*0
1150.0
222.335
7.879
9U9.487

10.87P.

3.074
.27
358
359
30.nO
43.0

16.00

49.RO

2ooo.no

.985
 0836
.7315

18.40
37.00
33.96
22.11 ...

1.35
.4997
13.40
^>a.
e
2150.0
150.0
2300.0
1350.0
60.419
-19.R68
824.607

11.495

3.ni2
 Q61
359
360
30.00
50.0

16.00

45.80

2000.00

.900
.0836
.7382

16.97
34.02
34.50
21.91

3.00
.1620
12.44
^afl.
,*
2300.0
200.0
2500.0
1050.0
149.701
7.073
853.544

13.878

2.583
 870
360
361
30.00
54.0

16.00

43*00
'
2000*00

.857
.0836
.7602

15*89
31*94
35,04
21*28

4,00
.1658
11,84
^^^^^^^L
^^^^O.
I6n0>0
200.0
1800. .0
95n.O
215.862
7.830
878.557

10.916

2.513
.825
361
363
30.00
54.0

16.00

41.00

2000.00

.819
.0836
.7608

15.12
30.40
34.84
21.26
J
4.45
.1658
11.74
^^^^^^J
^^^^^L
135Q.O
150.0
1500.0
975.0
242.278
7.900
878.869

9.117

2.599
.808
363.
364
2o.no
43.0

16.00

49.00
-
2000.00

. .996
.0781
.7011

18.08
36.. 35
33.79
21.60

1.30
.4141
13.84
_*a-
*
2550.0
100.0
2650.0
1550.0
58.197
16*219
851.919

12.998

3.443
.962
364
. 365
20.00
50.0
f
16.00

45.50
 "
2000.00

.893
.0781
.6895

16.79.
33.76
34.43
21.96

3.10
.1582
13.84
.44.
.40.
2200.0
100.0
2300.0
1525.0
138.969'
6.206
853.091

11.312

3.387
.882
365

-------
L  2
TEST ."\iij- Wi
UrtiE 7.^1
HC Pr'l'l Li mV3.t,
 iiOX f'P.V L> iu(>
hET b ILNiP 77.5
uAK.i'HtiSS. Jj.Jo '
II-JLH. I,G.
Iriijt-o?p!r" 1oS'"li
. oUT.COuL.T. 1 /O.O
uXh.^cSS. . .i6
P.S.I.
lr< hLO'.V 17r>.^lt
^ LBb/nR
o* rllLL FLUVI 12 .02
Lbs/rtK
C.XIH. 7Li*:r .
CYL.,,0* 1 -y?..6
V.YL..IO. ^ 7^5.1
CYL.iiO. J 11..4.1
CYL.iiO. H 11u9.3
INT.MA^.I.
CYL..J0.1-? ' 06. 4
CYL.ijC.if't "/5.1
CAKf. . liAbE :j2-3
NO.D.rtOLLS ^.2.7
US. 5 -A7.5
77.5 78.0
30.U6 30.1)3

le.S.5 166.0
179.0 lol.2
 .16 .15

i7a.2 .169,13

11.74 10.48


-Crt5.4 1216.8
7Q.l 7'*9.1
i!41.3 Ild7.3
1164.2 1218.9

6ft. 3 92.8
/**9 104*6
J3.7 d3.7
i9.9:,l bU.204

J..i2r.9 1.1167
Jjb .TS7
'358
7.24
1277.0
1998.7
88.5
76-5
30.03

166.0
130.3
17

171.86

10.06


1232.2
730.2
1164.2
1183.9

94.6
105.5
85.1
57-426

1.1104
358
359
7.24
1554.1
2647.6
90.0
76.0
30.03

171.3
187.5
.20

168.51

13.88


1254.5
807.8
1209.1
1245.9

65.5
75.1
51.0
24.919

1.1R12
3R9
360
7.24 -
1195.0
2845.3
90.0
76.0
30.03

I70.
-------
iiT.'jT Ml). ?r,7 Ju3 :5h9
- i':i. il:> . ;i'J . jO .f;0
ilVift.\ ~LV . .i.'l.i: .Jfl.O .48.0
>iAig. V(*C . . lu.iiCX 16 uO In.OO
IGHQ'.IF. Si..;t> 51. iO 51.00
i-' r . i_Li-j 
Lttb. SHELJ ^i/'u.uu suoii.oo 2'*0.0 iiJ/ib.'J 14t>0>0
iiC jJPrl A' ^LiO.U ii4ufl.(J 22JQ.O
.:ASS Oei l^.j,-:,? ^1.276 25.705
oR.-,b/ili'' IIK
rt.'SS Co I9?.9il 1J2..342 H4.615
i-iASS Cu^ 7u^.2-43 7J7.214 777.576
..A^S lioX T-.OoO ' '*.77l 6.732
uH.-iS/H!i' nK
I'i^SS (iC ^.fifj b.O/iO 4.n33
m.N.Cnl-i. l.lnj 1.1J5 1.057
370
.UO
4Q.O
16. UO
50.50
2000.00
1.017
 0639
.6118
i a ^7
1 a  j f .
37.33
33.51
21.89
.80
.5593
13.70
WA
^
1970.0
55.0
2025.0
2000.0
35.385
21.647
8.33.215
9.616
<*.325
.995
370
371 .
.no
42.0
i6.no
48.60
2noo.no
.980
.0689
 6101
 7 nil
i f ?*
36.07
33.51
21.96
1.25
.5664
13.90
~aa
M.
2400.0
200.0
2600.0
1850*0
54.417
21.574
832.038
12.493
3.945
.P72
371
372
.00
46*0
.16.00
47.00
2000.00
.949
.0689
.6175
4 7 4tt
17. Zo
34.74
33.73
21.69
2.05
.2315
13.50
UWk
00.
2500.0
250.0
275Q.O
155Q.O
95.328
9.421
863.179
14.145
3.513
 922
372
373
tOO
. 50.0
IA.00
44*40
?non.oo
.901
.0689
 ~ YY
intjj
3? 82
34,15
21*32
3.00
.1544
12*80
i40.
^w.
P250.0
2no.o
245n*0
1250.0
150.749
6.791
884.394
13.473
3.043
.874
373
374
.no
55.0
16.00
38.00
2ooo.no
.832
.0689
.6749
*] * ft *
m  o i
28.15
34.16
19.85
4.45
.1544
11.80
.4fl
M
1650.0
150.0
1800.0
1300.0
259.971
7.895
947.871
11.422
3.649
.810
374
375
.no
55.0
16.00
40.80
2000*00
.853
.0689
.6470
 c n v
15.03
30*21
34*24
20*70
3.90
.1433
12.20
*46.
M.
2100*0
150.0
2250.0
1250.0
211*692
6*808
910.546
13.196
3.?71
.833
375
376
20*00
38.0.
16.00
52*00
2000*00
1.207
.0781
.8041
 f\ 4 C i
19.15
38.49
33.79
1R. 83
.45
5.2070
11.60
nn.
^^^^^
U*>
525*0
30 .0
R55.0
- 2700.0
. 19.478
197.206
690.379
2.674
5.841
1.170
376

-------
.-.     z
i:.^T i,\j 7-.7 3oi!
*" "" r~    *~
L/M i F. / ..ij 7 e:b
liC P^Ni t; 2^9.1 277 3fJt<
36*:
7.25
164B.8
4.0
73.0
3J.H3
l?ft.3
19?. 9
.20
168.00
1300.3
7dl-3
1203.1
1214.7
94. 2
109.1
rt4.6
44.566
1.1350
369
370
7.25
2257.6
2285.8
84*5
73.0
30.03
176.3
192.9
.20
167.96
11.77
1283.2
779.1
1225.8
1246.8
95.5
109.1
H6.0
48.326
1*1288
370
371
7.25
2092.2
2940.3
84.5
73.5
30.03
176.3
192.9
.19
167.96
11.34
1272.5
1114.7
1236.5
1263.9
. 96.4
110.0
87.8
47.698
1.1309
371
372
7.25
1744.2
3094.5
84.5
73.0
30.03
173-1
188.9
.20
169.03
11.06
1087.0
755. 1
1221.9
1060.9
9T.3-
110.5
88.3
50.338
1.1253
372
373
7.25
1
1398.3
2740*6
04*5
73*5
30t03
171*8
1B7.1
.20
171.18
10,63
1066.1
739.7
119s. 8
1042.6
97.3
110.0
AS. 3
53. 458 *
1.1186
373
.374
7.25
1442.0
1996.7
.. 87.0 .
74.5
30.03
168.7
183.0
. .20
170.40
9.77
1034.9
721.2
1161.2
995.7
100.1
110.9
91.0
57.858 '
1.1093 ,
374
375
7-25 .
1391.2
2504.1
. . 86.5
74.0
30.03
-.-169; 6
183.9
.19
170.99
10.06
1033.2
722.5
116Q.8
100?. 5
99.1
110. 0
90.1
56*079
1.1130
375
376
7.25=
3115.5
640*4
. 86.0
74.0
30.03
174.5
190.2
..22
168.89
15.93.
1056.7
736.2
1131.3
997.8
72.4
81.9
57.8
25.149
1.1539
376

-------
U:=.T IK*. \\f7
'-' **'L III* * it t . i \j
:il''is.. MLr'v. o-fl . 0
LJn. til PC
h/iij. VAC. lu.tjC
r'T. i_uS
uriu. br't-tL) 2u^ii.i)0
U  r> * M 
FUfcL/.'UR
F/A sFvjlCM .ii7fil
LliS/iiK HH
COU ;.i.ri.F. l^.jb
P.S.i.
VOL. Er. Ai :v*.C5
i-' Iri.t  A) PU .09
 02 .30
* Co 3.t>6/a
* co'> ' 1i:-bc
% CH:>OI _p44.
* HCnO W4i-
liO. MP.>i A. P^5.0
WOii PPM W c-5.0
..OX PHM rt OaO.O
nC t'J9i'\  i?^iiO.O
G^.-.iS/tlr1' riK
fiiiS Co Ij?.5rt2
yK-iS/hP urt
viRMS/Hr \\R
lAiS MJX . 'i. '^3
""'bLs/hr rift C":5lj3
i-.. ./i.CiiM. 1 .liC-
 t.^T .'io. 377
3/S 37S
^:J.-'i:- 20.00
3.?-. iJ '20.0
!:.. .10 lo.OO
b.2.jO 51. (SO
2uOcj.uo 2ono.no
1.0-J3 l04b
.07.il .07H1
*72:i' .7020
1*.35 1-J.01
36.So 33.21
3*. U5 33.81
2U...J3 21.57
 iiO .flO
i.j4^9 1.U04-2
13-10 13.tiQ
^fAi^L^ ^^^^^^
^^^^^^_ ii n
1225.0 1700.0
30.0 100. 1)
i27'j.Q louO.O
^TluO.U 2000.0
^5.!i*3 3t*'rt3
:>7.'4.itJ 3R.313
7-.,&.2.,7 815.398
S.976 fl.t',90
l-fi/9 U.3.^3
l.0o'4 1-009
o/.J 379
. 380
20.00
42.0
16.00
50.20
2000.00
 992
.0761
 6841
18.19
37.17
33.81
22. i3
1.25
.5873
13.90
-r04>
-M.
2200.0
125.0
2325.0
1700.0
53.688
22.073
820.896
ll.ObO
3-629
.972
300
381
2o.no
16.0
I6.no .
17.50
2000.00
.939
 0781
.6810
17.51
35.19
33.83
22.11
2.05
.2101
13.60
x00
4*0.
2300.0
200.0
2500.0
1100.0
92.291
9.4*9
P41.876
12.564
3.117
3fll
382
20.00
50.0
16.00
45.20
2000.00
.898
.0781
.6911
16.67
33.50
31.18
21.82
3.05
.1511
12.90
oo ,
M
2200. 0>
200.0
2400.0
1200.0
147.882
6.552
8&n.Q21
12.924
2.858
 873
382
383
20*00
54.0
16.00
41.00
poon.oo
.831
 n781
.7197
15.11
30*38
34.69
21.04
4*20
.1582
12.10
_ nft.
^^^^^
 ftft^
llnn.O
150.0
1550*0
1000.0
225.151
7.421
891.891
9.225
2.615
.821
383
384
20.00
51.0
16.00
39.50
2ooo.no
 816
 0781
 7376
11.55
29.25
34.88
20.53
4.55
 1620
11*80
Q0.
-*a
1106.0
200.0
1300.0
950.0
256.234
7.983
913.713
8.341
2*603
.805 .
384
385
30.00
38.0
16.00
52.50
2000.00
1.133
.0836
.7936
19.38
38.95
33.68
20.38
..50
3.4585
12.70
^p^
^U>
900.0
40.0
940.0
2250.0
20*781
125.772
725.762
4.363
4.718
1.105
385
386
30.00
.' 38.0
. .16*00
52.50
2000.00
1.095
.0836
.7722
19.35
38.90
i
33.83
20*95
.60
. 2.3953
13.20
_otf
-nn
1225.0
50.0
1275.0
2100.0
25.155
87.873"
760.945
5.949
. 4.134.
1.064
386

-------
i! C^T !:-. l-n
'.-"''It .!.*-
nt PPN-. L- i-P:.2.?..
iiC'X rFfM U irt-jfi.tf
L%;i.Fn:mp 7"'
ft ill" ,i lLi'.P /4.0
u'Art.'prttSS. 3u.J3
INCh. HG.
lU.CoOi_.T. 175.'*
OEw.F.
OUT.CCJL.T. 1*2.0
^H.HHjbS. .A
win FLUrt Ifiy.rt?
FUEL rut).'. Jlj.Jjfl
irL..tO. 1 107B.9
CYL.=A.. ^ 7^.5
CYL.ijO. 3 I'hO.ii
CYL.,0. 4 -ioao.6
i^r.MAw.i.
CYL.NO.1.2 74.6
CYt.,.0.3.H 63.7
tAKC. ..AliE. ^.^
NO. D. MULLS ^.p..3^^
NO.M.w./il . I . i'jol
lt.bl. .,0. 377
27::-. 370
V.;^bi 7.25
.-6-47.9 JJ294.1
1U&7.0 2064.7
-i7.0 rift. 5
74.5 7U.5
3u*ii3 3U.n3

175.8 17F>.4
1^2.'* 192.0
 :0 .P2
ibS.rf7 16d.B4
It.al 13. HO
iOrfG.7 101P.-1
777.0 790.4
1178.3 1204.8
1034.1 1057.5

76 .9 79 . 6
^6 . 0 90 . 1
i>1.4 63.7
<:7.3'5
. 7.25
2621 .0
1095.0
88. 5
75.5
30*03

174.9
191.1
.21
167.58
15.87
1058.8
777.8
1154.0
1014.Q

64 .2
74.2
52.3
21.329
1.1649
385
386
7.25
2442.0
1482.6
87.0
74.5
30.03

174.5
190.6
 20
168.79
15.44
1075.4
791.5
1171.9
1026.0

65.1
74.6
' 51.9
22.112
1.1629
386

-------
i^T i-u. 3:. 7 36-?. 389
'v ' ri-;. 'j.iji' :'..;.;, 30.00
'jf-'Ari\ L< v  fi-li 43.0 tfi.O
i-iAi-i. V*C  1r>. uU loul) 16*00
KiCH.lib.
Kvjoiit s^.pn 50-70 MS. so
FT. LL'-b*
c.i!6* SHLLO i(:fio.uO ;ioOlj.(tO 2uOO.OO
tl.S. LI .
U'?* .tAilo 1.0. >7 .986 .937
*-'/,", STjlCH  OH.jb *ijB36 .OR36
o.S.r'.i. .73.i7 ./Io5 .7203
LBS/ril' MK
C'Jrt i-t.n.P. 1'-i*i:3 Ij.oci 17*ftfl
C:JK. L-iiilt-!> ';>..6 37. o4 35.93
VOL. t>" < ^3.7(1 33*70 34.05
Li.TH.E* * ?2ul> 22. bl 22.46
* 02 *.iO 1.25 2.05
* CO 1.00*2 .o3/9 .2404
* COP 13. 70 13.80 t 13. SO
* CH.tOii - 'in ^ Tin , nn
 HCtiO ^o*> ^4i0  4rt
i iJSJO.O
iiC HP.-. W i-^jO.O 1450." llbO-0
MASS 0<: b^..rJ4fe 3?. 379 91*517
MASS CO 37.1/4 <:3*6L4 9.3rt9
viR,\iS/i-iH nR
.-:ASS Cj 7S?^.?75 ;i02*703 828.679
piASS r40> ^.'4^1 i0.9i7 12.422
p.-'^S ML ^.R^O 3.073' 2.5HU
L.w.K.C-i!-i. '.Oiift .971 .920
ILJT !-o. .1^7 3.-i3  389
390
30.00
50.0
16.00
46.00
2UOO.OO
 871
 0836
.7106
16.95
34.08
34.26
22.77
3.00
.2448
12.90
, pfl
^XU
2150.0
200.0
2350.0
1020.0
138.235
9.872
817.314
12.140
2.329
.877
390
391
30.00
54.0
16.00
41.00
2ooo.no
 816
 08.^6
 7608
15.10
30.36
34.88
21. ?6
4.40
 1620
11.90
~ao>
A&
1350.0
150.0
150(1.0
950.0
236.533
7.'ft20
879.609
9.016
2.504
.811
391
392
30.00'
55.0.
16.00
39.00
2000.00
. .794
.0836
.7806
14.36
28.87
34.97
20.72
4.80
.1620
11*60
 ., nn.
uxa.
1100.0
200. cr
1300.0
. 1000.0
271.333
8.013
901-617
8.415
2.764
.794.
392
393
30,00
56.0
16*00
37*50
?nOn.oO
.775
 n836
.R018
13*82
27.78
35*44
20.17
. 5.20 .
1620 .
11*36
^^Q^V
_n^^
800>0
200.0
1000. 0
1050.0
308.032
8.397
925.281
6.921
3.034
.777
393
396
.00
.50.0
16.00
44.30
2ooo.no
 8R7
. .0689
 6297
16.27
32.71
34.68
21.27
3.00
.1620
12.90
UXJ1
~OA
2175.0
150.0
2325.0
1200.0
149.920
7.084
886.404
12.616
.2.908
 875
396
397
20.00
Sn.o
16.00
44.50
2000.00
.891
.0781
.7134
16.37
32-90
34.75
21.23
3.05
.1736
12.80
-*aa-
l00
2oon.o
200.0
2200.0
loon.b
153*198
7.628
884.026
12.313
2.466
397
. 398
30.00
50.0
16.00
44.90
2000*00
.877
.0836
. .7447
16.52
33.21
34.77
21.72
3.00
.1799
12.86
-M
T^ftj
2075.0
150.0
2225.0
950*0
1
146.109
7.665
861.188
12.029
2.291
.874
. 398

-------
ii.jT ,,j. 7J.-.7
uATt /.^5
ilL F-f'iV D pfM'i.b
liOX h'FVi U ^riot'S-
ULCi.r 
i\LT .j ILhP 74.5
Jtu.*1 .
INCH. no.
lil.CoOL.T  174.5
uUt.COOL.T. 1*1.5
P.S.I.
Altx r'LG'ti l^>ij..sl
U-;S/nR
N> HUEL FwOu 1-+...9
LBS/tir\
c.XH. TcMH.
LYL.UO. 1 inoS.b
l.YL.gO. 2 14.6
CYL.;-jO. J 11-^3.3
CYL.MO. 4 ' 104.b
CYL.lj0.12 oft. 9
LYL.iviU.3'4 76*0
LAHE. oASE o3.2
iiO.D.MuLc.5 2^.4fi&
PL;-<.yiOLE F
 40 .f-i . \j  /u . 1 > i '5-~lO
liT. uO* 3i7
3;s'.v 3rt9
7.^5 7.25
i6/7.0 1334.4
26ul)..t 2B75.?i
.16 .5 87 . 0
74.0 75.0
3u*(j3 3i)>03
1/4.9 173.1
191.1 lrtfl.9
.,52 ' .20
i6.:*.ol 169*rt7
IJi.oS 13.31
iP"tb.2 1032.8
3J2.7 771.8
1210.8 1213.8
iOu5.4 10-+1.3
o9.2 71.0
77.8 30 . 1
54.6 5f,.4
23.9aO 25.245
I.l5o6 1.1S04
3'-? 3H9
390
7.25
1166.8
2688.2
87.0
74.5
30.03
170.9
186.2
.20
170.94
12.45
1022.6
753.8
1189.0
1009.8
71.9
60.5
56.4
26.410
1.1439
390
391
7.25
1075.6
1698.3
86.5
74.5
30.03
167.8
182.1
.20
174.19
11.88
1007.6
738.4
1151.4
982.9
73.7
82.4
58.2
28.780
1.1322
391
392
7.25
1128.9
1467.5
86.0
74.0
30.03
168.2
182.1
.20
174.77
11.60
1011.9
736.2
1050.3
978.6
74.6
83.3
58.7
29.494
1.1289
392
393
7.25
1182.5
1196.1
87-0
74.0
30*03
167.3
181.2
,18
I76i80
11,46
1024.3
737.1
1131.3
973.9
75.1
83.7
59.2
30.089
1.1261
393
396
7.30
1343.6
2603.2
85.0
75.0
30.08
161.5
175.8
.16
173.95
10.63
1033.2
731.9
1164.6 .
1013.2
86.9
99.1
77.8
53.045
1.1196
396
397
7.30
1133.6
2493.9
86.5
75.5
30.08
162.4
177.2
.16
173.80
12.09
1075.9
764.1
1169.3
1190.7
72.8
85.1
57.8
32.H97
1.1336
397
398
7.30
. 1085.8
2543.2
87.0
76.0
30.08
. 162.8
177.6
.17
173.75
12.74
1058.4
734.1
1173.2
. 1164.2
63.7
72 '.8
49.1
26.637
1.1430
398

-------
i.--s.r ;iu. j^c ujo 4J1
..' iLfll. ?.|..|!) . uO .HO
^l-V'n!-").. :'' ' b' "^
.-.AM. VrtC. lo.u'l Jo.. JO 1-..GO
IhCH.no.
li-i><0 ^OOJ.uO 2000. ilO
ii.H.i-l.
LO. nAClJ H-*0 . b^-jQ QR7
F-/A STulCM .u7.il .00.49 .JJ689
d"LtisA,P M *7:'5 "^ '*HS
COS .xii.P. 1i>..-><4 Io*i7 17.94
C'iu. Li>.LP. "J.^5' 3-2. LiO 3b.06
H.S.I.
;'.!_. tH. * '^.7S 34.70 34.30
L>.Til.tI.~ * ?i..7 2-J.ri5 21.31
 Oi? d.yS 2.^5 1.30
 CO .1697 .1620 .ontt7
'> COP iy..iu 12*^0 13.flO
Xi LII/iOM T Un- ' j*7 - _ OP-
> iiCHU -to. -*a. ^MX.
.j^. W,-, i.. 2 Ul 0.0 21JO.O 2275.0
i-:OSi PPi'-i VJ li;S.O 175.0 l^S.O
i*'JX PPM  e??tS.() c?3p,., V.1 iitJO.iJ 1175.0 IftSn.O
mASS O l::,ft.n.ih 1'oO.Hli3 50.625
iiP.i'ib/iil'' iifi
i-iA:iS Co. 7.J:i& 7.2,.-9 24.020
"''S-S/hl- i,U a73"'il' lij^'"-i:5 S55.703
..-OS f-'OA l?.7^1 i?|.J*7 11.7.H')
OI.siS/l'i- nl-
:-."aS tic '.6:16 ?.9jft 3.643
i.'.. .1'. .C.if. ..':'. 1 3 .H77  'h'l^
iL-.ljl -
275.0
12.0
287.0
2900*0
18.062

P67.218
664.339
1.411

6.444
1.223
415
416
.00
38.0
16.00

52.00

2000.00

1 .197
.06R9
.7095
19.04
38.28

33. R2
18.88
.40
5.2070
11.60
UUJ-
-00
470.0
40.0
510.0
2650.0
17.372

197.874
692.720
2.460

5.667
1.167
416
417
.00
3R.O
16.00

51.70

2000.00

1.111
.0689
 66^9
18.93
38.06

33.82
20.21
.50
3.5130
12.50
.00.
*0
875.0
45.0
920.0
2400.0
21.313

131.024
732.619
4.285

5.033
1.104
417
419
.00
38.0
16.00

51.00

2000.00

1.107
.0689
.6940
18.70
37.58

35.12
19.30
.50
3.6230
12.50
UUJU
^-
910.0
40.0
950.0
2400.0
22.164

140.528
761.893
4.588

5.237
1.107
419

-------
1 1-.-.,! ;:. I-,-')
i^.TE /.Jll
nC rVi"1 L- 11:j-39
i-.CX HF.'i u? ^1/3.5
LiK'r n Ithr* ofi.O
L/Eii.F .
.iT rj IL.-.P 75. C
JLij.r.
u/irt.i-'RtiJ'j. *iij!3
INCH. nS.
II.'.CjOu.l. 1:i7.4
uEii  ! .
ouT.COoL.T. 172. 2
c.
-------
Ul
t'..5;T (.. q-cC 1,^1
,..,,.-:. P...UO- Jii.uO
sr'rtK L'V  ^fl.O jfr  0
Oh' n. LI IDC
lOhGiif-' ^i-.tiO 5.1 .lit)
FT. urtb.
c-i'-iip  br'E.t-U n'inuuO /?GOUuO
K.P.M.
FUt.L/Ai.J
LbS/iiP Hi< '
l-OK hi.H.f-. 1vut> 19'45
W. HWtK. 1.,.J2 3*.,,9
^Ou'.^. * :.02 Pi-M i-.' *?..G *4J.
u'JX PPM I-.' 960.0 oO*0
nC ppf.| ft1 ??ji.O c.lJil.0
jrii-iS/nl' MR
;iAbS Co 13*-. 2^* I 1/J7.7.33
C>R.
245.0
20.0
265.0
2700.0
17.919
268.670
659.068
t.348
6.098
1.236
423
424
30. nO
38.0
i ft nn
iO  II U
53.no
2nOO.nO
1.343
.9767
19.46
39.11
34.98
16.56
.40
7.8669
9.90
.&
~
-------
PA-.C  ^
ItST NO. '^rj . u,u
-ML .-,.,* .j.i,4
riC FVf! L? 2 ^5 .2 iP 74.0 74.0
DEu.F.
INCH. nS.
l!J.C()Oi_.|. lr.i^.5 Ib3.7
OUT  v.GuL . T . ldl.7 Ici0.3
LJLo.r .
cAji-HKcib. ...6 04
/tIR r'UU'tf l7b.nl i"7ol3
i-LJ'j/ilK
f~ i i ' '  - * .^  
cXH. TiiMH.
CYi_..37
^YL-.jO. f. . lli-i.'j il<29.2
LYL.i-jO. i 11H9.3 il'4&.3
LfL.ijO. M i?ul.G H97.1
uYL.:j0.12 vi-.T.3 59.2
LY^.,.0.3.'*' .0.1 /O.I
LAMB. t^AbE 04.1 ^7.3
NO.D.MOLtS ;?.<=>. 5-+ 0 2l.fi 24
i iC . M .'n . /u  1> 15^*4 i 161 3
TEST. iiu 420 4i?l
422
8.04
2737.9
532.5
84.0
74.0
30.08
162.8
179.0
.34
.175.65
I/. 30
1029.0
10-39.3
1114.3
1169.6
56.4
66.9
*5.9
20.466
1.1651
422
4*3
&.U4
3143.0
308.5
84.0
74.0
30.08
162.8
178.5
.28
175.65
18.87
1000.0
iObl.R
1080.6
1130.1
53.7
63.7
44.1
19.601
1.1641
423
4?4
8.04
3422.9
203.1
84.5
74.5
30.08
163.7
17R.5
.26
175.60
19.72
982.0
1036.2
1056.7
1111.3
52.8
62.3
43.2
19.340
1.1603
424
425
8.04
3451.2
195.6
84.0
74.0
30.08
162.8
177.6
.28
175.65
18.91
990.1
1037.5
1058.4
1111.7
59.2
68.3
47.8
2^.603
1.1504
425
426
At04
3171.3
288.3
H4.0
74.0
3nt08
164.2
179.9
t28
17t92
*
1062.6
e*
^*
61.0
70.5
49.1.
24.171
1.1532
426
427
8.04
2862.2
519.4
84.0
74.0
30.08
166.0
182.1
.30
174.04
16.50
**
V**
39^*
ao.o-
65.1
74.2
51.9
25.187
1.1541
427
430
A. 05
2787.0
1069.3
86.0
75.5
30.08
170.0
185*7
..26
167.95
13.06
1043.0
1117.3
1150.6
1210.4
8ft. 7
101.9
79.2
42.246
1.1375
430
431,
A. 05
. 2958.6
660.0
86.0
75.5
30.08
169.6-
185.7
.28
16R.49
13.91
1016.2
1095.1
1122.4
1184.7
87.4
100.1
. .77.4
40.691
1.1379
431

-------
iiisT :jj. '\.>c.
:i -!!.
-il'AKh ,u>v. J8.0
Jf-.i. LI DC
r-ilVi't. VrfC  lo.ilO
iNi.ii. HO.
iOKGilE 'iu...0
rT. i-tfi.
.NG. SHLL.O 2unk|.. ju
rt * H . r-'i .
cij  iH
P . s . i 
w CL . f r . % "*+  i 9
J.Th.t . ! 1 'ft 12
ta 02 ..>5
it CO hu7.i7

;< Co,?  lo.iso
% liCtlO . J J
i'iO. HP.'i ,-J . .^j.5.0
ii-ji> PH.-/: :; io.a
I.CU PPM .V .^2fi.Cl
,,c Prf :v iouo.o
riA-JS Oii 1^.5.>0
GIViS/HP nR
1-iA'jS Cw ii5r>6i*7
ul^,.iS/i;P nt'.
"iA,^. C/"J h i>o0'1-J'-
i-iA&s"ijwX " i.Sii'i
oRi-iS/iii-1 nR
"iA;>j '^ ,. .. ft'3'*''1


4 .13 434
uO 20. nn
ifl.O . 38.0

lu'tiO 16.00
'
5i.;iO 52.00

2oOo*!jO 2oOO.iiO

1.3io 1.133

. ;H>o9 . u?Hl
 !)0o.o
220.0 90Q.O
.SQ-JO.O 2225.0
1B.D09 21.502

3i4.U*2 131*3nfl

' t.t2.6u 7 742*686
l.i) n J 4.2oO

o.^iH 4.781
I* ^ I*j 1 1*11]"'^
* f 
-------
f-ifjr uo. 4o2
uATE I...I5
rtC PPM u 3yn.b
uOX i'Pi.i u *o9.4
LKr li FEfcP 86.0
iJtvi.l- 
wiT .1 rU'P 75.5
OAxJ PRESS. ^U.uil
ihCM. US.
iN.CoOL..T  16R.7
UE6.F*
OUT . J,OvJi_T . 1t>4.4
L/H.PhtlSb. .26
P.S.I.
Ali< J-LO I^I.IM
LbS/HK
FUEL f-LOft iH.ui
Li3S/Hl<
t-Xri. TiiN'-P.
LYL.wO. 1 inuO.O
CYL.U.O. ^ . ino6.9
CYL.,>lO. i in*#3.3
CYL.iMO. 4 1155.7
lUT.A*;i.
CtL.l4C.li2 65.1
LYL.i-j0.3''+ 97.3
CA^B. dASE /5.1
fJO.D. MULLS  3Q.3iS
PLK.MOLL F
NO.M.Vi./C-. I.i3o7
IEST. iv.0. 4,,2
^5 U.i4
6u5 H.05
jivol.9 2566.5
2'-f4.7 10^n.2
d6.0 88. 0

75.5 76.0
3J.(^3 3U.Ofl

167.3 170.5

Io2.fs 231.4
.^3 .26

I7i.25 16-2.57

lD*i}3 15.08


985. 0 1061.8
i.OuS.5 lluF>.3
1076.7 1140.7
1142.0 1206.1

ti3.7 71.4
95.5 81.9
733 rio.9
iS.^'jb 26.400

i.l3ol I.L535
4J3 434
435
8.05
2827.2
594.3
86.0

 76.0
30. 06

171.8

187.5
 28

169.57

15.79


1030*2
1081.4
1113.4
1178.3

69.6
79.6
55.5
25.342
'
1*1540
435
436
8.05
3113.1
345.9
86.5

75.5
30.08'

169.6

184.8
.28

171.13

16.78


996.5
1054.5
1087.0
1152.7

66.4
75.5
53.2
24.447

1*1530
436
437
8.05
3450.3
 0
86*0

75.5
30.08

168 -

183.0
 30

171.71

17.92


986.3
1028.1
1060.9
1119. &

"63.7
73.3
51.4
23.828

1.1501
437
438
R.05
2266*5
1336.7
A6.0

75.5
3(lt08

171.3
_
187.5
1 30

169t57

15i44


1080.6
1121.1
1157.8
1216.8

62.3
73.3
5(1.5
22.266

1 . 1 623
438
439
8.05
2450.6
921.9
86.5

76.0
30.08

171.3

187. 1
.30

168.98

15. B7


1056.7
1101.9
1136.9
1200.5
-
61.0
71.4
49.6
21.082

1.1669
. 439
.440
8.05
2740.0
.0
86.5

76.0
30.08

170.5
.
185.7
.30

170.06

17.15


1029.0
1071.6
1109.6
1169.8

50.2
6ft. 3
47.8
20.304

1.1660
440
.441
8.05
3141.3
.0
86.5

75.5
30.08

170-0
.
185.3
.30

170*06
.
18*29

i
1002.1
1039.6
.1077.1
1130.5

56.4
66*0
46.4
19.609

1.1634
441

-------
Table 4   Statistical Significance of Test Results - FORMAT
Experimental Error Sum of Squares, EESS:
Number of Observations, n:


Functional
Form
r -.
2
3
4
5
6

1
2
3
4
5
6
Independent Variables and
Their Equation (2 or 3)
Coefficients' t values
$c
fci.i
"Ll-2
tl,3
L 4
%
J- / o
2
$
c
b2.L
^.2
fc2.3
fc2,4
S.5
fc2.6
3
$
c

^.2

fc3.4

t, c
J 1 -~>
M


'4.3
"4,4


Approximate Significance
l.l
"1.2
l,3
1.4
1.5
l,o
"2.1
-2,2
"2,3
2,4
"2.5
Ve

^3,2

-3,4

3,


"4.3
"4.4


M$c ;




V.5
fc5,.
Level ot




"5.5
o1- .
Sum of Squares
Deviation
About
Regression






F , 
or . v^ Vj














V






                                 79

-------
 Table 5  Statistical Significance of Test. Results- TORQUE
Experimental Error Sum of Squares, EESS: 3.45
Number of Observations, n: 83


Functional
Form
1
2
3
4
5
6

1
2
3
4
5
6
Independent Variables and
Their Equation (2 or 3)
CoefficientSr"' t values
$c..
15.8

25.6

24.5

2

c_.. .
14.5

23.6

22.5

3
$
c






M


11.9



M
c




11.3

Approximate Significance Level or
<0.001

<0.001
<0.001

<0.001

<0.001
<0.001








<0.001





<0.001

Sum of Squares
Deviation
About
Regression
47.5

17.0

18.1

F ,
a t v^ ^2
3.7

1.15
1.25









. a1
0.001

0.49
0.31

                                80

-------
Table 6  Statistical Significance of Test Results -
         BRAKE THERMAL EFFICIENCY
Experimental Error Sum of Squares,  EESS:  2.15
Number of Observations, n:  83


Functional
Form
1

2
3
4
5
6

1
2
3
4
5
. . 6
Independent Variables and
Their Equation (2 or 3)
Coefficients' t values
c


3.3

3.5

3.5
2
$
c.


2.9

3.1

3.1
3
$
. .C


2.4

2.6

2.6
M




1.8


MS
c

i




1.7
Approximate Sic^iifieauce Level a

0.001

<0.001

<0.001

0.006

0.002

0.002

0.019

0.01

0.01



0.08







0.095
Sum of Squares
Deviation
About
Regression


12.0

11.4

11.7
F. , 
or * vj_ ^2

1.36

1.28

1.33









a'

0.21

0.28

0.24
                                 81

-------
Table 7  Statistical Significance of Test Results - NITRIC OXIDES (NO )
         MASS EMISSIONS
Experimental Error Sum of Squares,  EESS:  5.85
Number of Observations, n:  66


Functional
Form
1

2
3
4
5
6

1
2
3
4
5
6
Independent Variables and
Their Equation (2 or 3)
Coefficients' t values
V


5.15

5.07

5.12
2
$
C..


5.09

5.01

5.06
3
$
. .c


4.89

4.79

4.84
M




2.81


M$
C

k




2.89
Approximate Significance Level or

<0.001

<0.001

<0.001

<0.001

<0.001

0.001

<0.001

<0.001

<0.001



<0.008







0.007
Sum of Squares
Deviation
About
Regression

.
57.1

52.1

50.6
F. , 
a  v^ ^2

2.75

2.53

2.44









a1

0.001

wO.OOl

0.001
                                 82

-------
Table 8   Statistical. Significance of Test Results - FID TOTAL HC
          MASS EMISSIONS
Experimental Error Sum of Squares, EESS: 1.4
Number of Observations, n:'  83


Functional
Form
1
2
3
4
5
6

1
2
3
4
5
6
Independent Variables and
Their Equation (2 or 3)
Coefficients' t values
ic
22.3
27.1
27.8



2
$
c.






3
$
.C






M

6.8




Approximate Significance
<0.001
<0.001
<0.001
















<0.001




M$
c


6.7



Level a


<0.001



Sum of Squares
Deviation
About
Regression
13.5
8.6
8.7



F ' ,
2.47
1.49
1.51











u1
0.001
0.15
0.14



                                 83

-------
 Table  9   Statistical  Significance of Test Results - CARBON MONOXIDE
                                                    MASS EMISSIONS
Experimental Error Sum of Squares, EESS:  6432
Number of Observations, n:  78


Functional
Form
1
2
3
4
5
6

1
2
3
4
5
6
Independent Variables and
Their Equation (2 or 3)
Coefficients' t values
5c
1.77
0.918
3.38
0.903
3.35
0.791
2
$
c.
2.86
0.895
4.85
0.835
4
4.75
0.721
3
$
. . C

0.794

0.662

0.552
M


7.87
7.70


M$
c




7.42
7.25
Approximate Significance Level 
0.094
>0.1
0.001
>0.1
0.001
>0.1
0.006
>0.1 
<0.001
>0.1
<0.001
>0.1

>0.1

>0.1

>0.1


<0.001
<0.001






<0.001
<0.001
Sum of Squares
Deviation
About
Regression
36600
36600
20100
20400
21100
21500
F , 
a  v' ^2
1.46
1.48
0.67
0.70
0.72
0.75








'
0.165
0.160
>0.5
>0.5
>0.5
>0.5
                                 84

-------
               Table 10    Nominal Values of Operating Parameters for Type I
                           and II Tests with Indolene Fuel.
oo
Vehicle Speed, mph(km/hr)
Load Level
Engine Speed, RPM
Torque, ft Ib,. (n*m)
Spark Advance, deg BTDC
Pmanifold,in-H9 {kPa)
30(48)
cruise
1150
23.5(31.9)
44.5
19(64)
40(64)
cruise
1500
32.5(44.1)
47.5
18(60)
52(84)
cruise
2000
46.5(63.0)
51.0
16(54)
52(84)
accelera-
tion
2000
89.5(121)
34.0
10(34)

-------
                      LIST OF FIGURES
FIGURE   TITLE                                                   PAGE

  1      Chemical vs. Mass Fuel-Air Equivalence Ratio  for         92
         Indolene Fuel, 2000 RPM, 16 in.Hg, MET Spark.

  2      Chemical vs. Mass Fuel-Air Equivalence Ratio  for         93
         20 Percent Methanol-Indolene Blend Fuel,  2000
         RPM, 16 in. Hg, MET Spark.

  3      Chemical vs. Mass Fuel-Air Equivalence Ratio  for         94
         30 Percent Methanol-Indolene Blend Fuel,  2000
         RPM, 16 in. Hg, MET Spark.

  4      Superimposes the $  versus *  Regression                 95
         Analysis Curves for 0, 20 ana 30%M Blends,
         2000 RPM, 16 in- Hg, MET Spark.

  5      Brake Thermal Efficiency versus Spark Advance            96
         (2000 RPM and 16 in. Hg  (54 kPa) manifold
         vacuum") *
         MET Spark Advance versus Equivalence Ratio,  $  ,         101
         for 0, 20 and 30%M Blends at 2000 RPM and 16 c
         in. Hg (54 kPa) manifold vacuum.
  7      Torque vs. Chemical Fuel-Air Equivalence Ratio         102
         for Indolene Fuel, 2000 RPM, 16 in. Hg, MET Spark.

  8      Torque vs. Chemical Fuel-Air Equivalence Ratio         103
         for 20 Percent Methanol-Indolene Blend Fuel,
         2000 RPM, 16 in. Hg, MET Spark.

  9      Torque vs. Chemical Fuel-Air Equivalence Ratio         104
         for 30 Percent Methanol-Indolene Blend Fuel,
         2000 RPM, 16 in. Hg, MET Spark.

 10      Equation  (1) Regression Model Curves for Torque        105
         vs. Chemical Fuel-Air Equivalence Ratio, 2000
         RPM, 16 in.Hg, MET Spark.

 11      Brake Thermal Efficiency vs. Chemical Fuel-Air         106
         Equivalence Ratio for Indolene Fuel, 2000 RPM,
         16 in. Hg, MET Spark.

 12      Brake Thermal Efficiency vs. Chemical Fuel-Air         107
         Equivalence Ratio for 20 Percent Methanol-
         Indolene Blend Fuel, 2000 RPM, 16 in.Hg, MET Spark.

 13      Brake Thermal Efficiency vs. Chemical Fuel-Air         108
         Equivalence Ratio for 30 Percent Methanol-Indo-
         lene Blend Fuel,  2000 RPM, 16 in.Hg, MET Spark.
                             86

-------
                    LIST OF FIGURES - Cont.


FIGURE   TITLE                                                   PAQE

  14     Equation  (1) Regression Model Curves  for Brake          109
         Thermal Efficiency vs. Chemical Fuel-Air Equi-
         valence Ratio, 2000 RPM, 16 in. Hg, MET Spark.

  15     Volumetric Efficiency vs. Chemical Fuel-Air             110
         Equivalence Ratio for Indolene Fuel,  2000 RPM,
         16 in.Hg, MET Spark.

  16     Volumetric Efficiency vs. Chemical Fuel-Air             111
         Equivalence Ratio for 20 Percent Methanol-
         Indolene Blend Fuel, 2000 RPM, 16 in.Hg, MET
         Spark.

  17     Volumetric Efficiency vs. Chemical Fuel-Air             112
         Equivalence Ratio for 30 Percent Methanol-
         Indolene Blend Fuel, 2000 RPM, 16 in. Hg,
         MET Spark.

  18     CO Mass Emissions vs. Chemical Fuel-Air Equi-           113
         valence Ratio for Indolene Fuel, 2000 RPM,
         16 in. Hg, MET Spark.

  19     CO Mass Emissions vs. Chemical Fuel-Air Equi-           114
         valence Ratio for 20 Percent Methanol-Indo-
         lene Blend Fuel,  2000 RPM,  16 in.Hg, MET Spark.

  20     CO Mass Emissions vs. Chemical Fuel-Air Equi-           115
         valence Ratio for 30 Percent Methanol-Indo-
         lene Blend Fuel,  2000 RPM,  16 in. Hg, MET Spark.

  21     Equation (1)  Regression Model Curves for CO             ng
         Mass Emissions vs. Chemical Fuel-Air Equiva-
         lence Ratio,  2000 RPM,  16 in. Hg, MET Spark.

  22     NO  Mass Emissions vs.  Chemical Fuel-Air Equi-          117
         valence Ratio for Indolene Fuel, 2000 RPM, 16
         in. Hg,  MET Spark.

  23     NO  Mass Emissions vs.  Chemical Fuel-Air Equi-
         vaTence Ratio for 20 Percent Methanol-Indolene
         Blend Fuel,  2000  RPM, 16 in. Hg, MET Spark.

  24     NO  Mass Emissions vs.  Chemical Fuel-Air Equi-
         vaTence Ratio for 30 Percent Methanol-Indolene
         Blend Fuel,  2000  RPM, 16 in. Hg, MET Spark.

  25     Equation (1)  Regression Model Curves for NO             120
         Mass Emissions vs. Chemical Fuel-Air Equiva-
         lence Ratio,  2000 RPM,  16 in. Hg,  MET Spark.
                             87

-------
                    LIST OF FIGURES - Cont.
FIGURE   TITLE                                                   pAGE

  26     FID HC Mass Emissions vs. Chemical Fuel-Air Equi-       121
         valence Ratio for Indolene Fuel, 2000 RPM, 16  in.
         Hg, MET Spark.

  27     FID HC Mass Emissions vs. Chemical Fuel-Air Equi-       122
         valence Ratio for 20 Percent Methanol-Indolene
         Blend Fuel, 2000 RPM, 16 in. Hg, MBT Spark.

  28     FID HC Mass Emissions vs. Chemical Fuel-Air Equi-       123
         valence Ratio for 30 Percent Methanol-Indolene
         Blend Fuel, 2000 RPM, 16 in.Hg, MBT Spark.

  29     Equation (1) Regression Model Curves for FID HC         124
         Mass Emissions vs. Chemical Fuel-Air Equivalence
         Ratio, 2000 RPM, 16 in. Hg, MBT Spark.

  30     CC>2 Mass Emissions vs. Chemical Fuel-Air Equi-         125
         valence Ratio for Indolene Fuel, 2000 RPM, 16
         in. Hg, MBT Spark.

  31     CC>2 Mass Emissions vs. Chemical Fuel-Air Equi-         126
         valence Ratio for 20 Percent Methanol-Indolene
         Blend Fuel, 2000 RPM, 16 in.Hg, MBT Spark.

  32     COo Mass Emissions vs. Chemical Fuel-Air Equi-         127
         valence Ratio for 20 Percent Methanol-Indolene
         Blend Fuel, 2000 RPM, 16 in. Hg, MBT Spark.

  33     Equation (1) Regression Model Curves for CO,            128
         Mass Emissions vs. Chemical Fuel-Air Equiva-
         lence Ratio, 2000 RPM, 16 in. Hg, MBT Spark.

  34     Oxygen Mass Emissions vs. Chemical Fuel-Air Equi-       129
         valence Ratio for Indolene Fuel, 2000 RPM, in.
         Hg, MBT Spark.

  35     Oxygen Mass Emissions vs. Chemical Fuel-Air Equi-       130
         valence Ratio for 20 Percent Methanol-Indolene
         Blend Fuel, 2000 RPM, 16 in.Hg, MBT Spark.

  36     Oxygen Mass Emissions vs. Chemical Fuel-Air Equi-       131
         valence Ratio for 30 Percent Methanol-Indolene
         Blend Fuel, 2000 RPM, 16 in. Hg, MBT Spark.

  37     Equation (1) Regression Model Curves for 02 Mass        132
         Emissions vs.  Chemical Fuel-Air Equivalence
         Ratio, 2000 RPM, 16 in.Hg, MBT Spark.
                            88

-------
                   T.TST OF FIGURES - Cont.


                                                                PAGE
FIGURE   TITLE

  38     individual Cylinder Exhaust OJW611^"1??" ve"SB
         Percent Methanol, 2000 RPM, 16 in. Hg  (54 kPa) , MET
         Spark.

  39     Oxygen Percent vs. Chemical Fuel-Air Equivalence         134
         Ratio for indolene Fuel, 2000 RPM,  16  in. Hg,
         MBT Spark.

  40     Oxygen Percent vs. Chemical Fuel-Air Equivalence         135
         Ratio for 20  Percent Methanol-Indolene Blend
         Fuel, 2000  RPM,  16 in. Hg, MBT Spark.

  41     Oxygen Percent vs. Chemical Fuel-Air Equivalence         136
         Ratio for 30  Percent Methanol-Indolene Blend
         Fuel, 2000  RPM,  16 in. Hg, MBT Spark.

  42     Illustrates the  Effect of Methanol on  Geometric         137
         Distribution, 2000 RPM,  16  in-Hg,  MBT  Spark,
          5  w 0.97.
           c
  43      illustrates the  Effect of Methanol on  Geometric         138
         Distribution, 2000  RPM,  16  in. Kg,  MBT  Spark.
          $  = 0.87.
           c
   44      illustrates the Effect of Methanol on Maximum           139
          Spread in Geometric Fuel-Air Equivalence Ratios
          as Determined from Figures 42 and 43.

   45      illustrates  the Reduction in Fuel-Air Equivalence       140
          Ratio when Methanol Blends are Substituted  for
          indolene with No Engine Adjustments (Type I Tests).

    46a   Illustrates  the Reduction in Torque Occurring when      141
          Methanol Blends are Substituted for Indolene with
          No Engine  Adjustments  (Type I Tests).

    46b   Illustrates  the Reduction in Engine Speed Occurr-       142
          ing when Methanol Blends are Substituted for  In-
          dolene with  No  Engine Adjustments  (Type I Tests).

    47    Brake Thermal Efficiency When Methanol Blends  are       143
          Substituted  for Indolene with No  Engine Adjustments
           (Type I Tests).

    48a   Carbon Monoxide Volume  Emissions  when Methanol         I44
           Blends are Substituted  for  Indolene with No
           Engine Adjustments  (Type  I Tests).
                              89

-------
                   LIST OF FIGURES - Cont.
FIGURE   TITLE                                                  PAGE

  48b    Carbon Monoxide Mass Emissions When Methanol Blends     145
         are Substituted for Indolene with No Engine Adjust-
         ments (Type I Tests).

  49a    Illustrates the Reduction in Nitric Oxide Mass          146
         Emissions Occurring when Methanol Blends are
         Substituted for Indolene with No Engine Adjust-
         ments (Type I Tests).

  49b    Illustrates the Reduction in Nitric Oxide Volume        147
         Emissions when Methanol Blends are Substituted
         for Indolene with No Engine Adjustments (Type I
         Tests).

  50a    Illustrates the Reduction in FID HC Volume              148
         Emissions when Methanol Blends are Substituted
         for Indolene with No Engine Adjustments (Type
         I Tests).

  50b    Illustrates the Reduction in FID HC Mass Emiss-         149
         ions when Methanol Blends are Substituted for
         Indolene with No Engine Adjustments (Type I
         Tests).

  50c    Shows the Effect of Fuel-Air Equivalence Ratio          150
         on FID HC Mass Emissions for the Type I Tests.

  51     Shows the Reduced Manifold Vacuum Required for          151
         Methanol Blends to Attain the Same Torque and
         Engine Speed as Found with Indolene (Type II
         Tests).

  52     Shows the Fuel-Air Equivalence Ratio Decrease           152
         (Blend Leaning Effect) as a Function of Methanol
         Blend Level for the Type II Tests.

  53     Shows the Increased Efficiency Obtained with            153
         Blends at Equal-to-Indolene Torque and Engine
         Speed Operation (Type II Tests).

  54     Shows the Oxygen Emissions as a Function of             155
         Methanol Blend Level for the Type II Tests.

  55a    Shows the Effect of Methanol Addition on CO             156
         Volume Emissions at Equal-to-Gasoline Fueled
         Torque and Engine Speed (Type II Tests).
                             90

-------
                   LIST OF FIGURES - Cont.
FIGURE   TITLE
  55b    Shows the Effect of Methanol Addition on CO Mass
         Emissions at Equal-to-Gasoline Fueled Torque and
         Engine Speed (Type II Tests).

  56a    illustrates the Effect of Fuel-Air Equivalence Ratio    158
         on the CO Volume Emissions  for the 0%M Type II Tests.

  56b    Shows the CO NDIR Analyzer  Response for Tests           159
         Numbered 139 through 144  (Type II Tests).

  57     Illustrates the Reduction in Nitric Oxide Mass          160
         Emissions with Methanol Blends at Equal-to-
         Indolene Torque and Engine  Speed Operation
         (Type II Tests).

  58a    Illustrates the Reduction in FID HC Volume              162
         Emissions with Methanol Blends aft Hfttal-to-
         Indolene Torque and Engine  Speed Operation
          (Type II Tests).

  58b    Illustrates the Reduction in FID HC Mass                164
         Emissions with Methanol Blends at Equal-
         to- Indolene Torque  and Engine  Speed
         Operation  (Type  II  Tests).
                              91

-------
cc
CC

LU
u
z
LJ
_l
CC
o
UJ
UJ
ra
u.
UJ
X
               *c=0. 03056 + 0. 9492
               O=0 PERCENT METHRNGL DRTfl
               0.90       1.00      1 -10      1-20


                    MRSS  FUEL-RIR  EQUIVRLENCE RRTIQ


      FIGURE 1  CHEMICRL  VS.  MRSS  FUEL.-RIR  EQUIVRLENCE

                RRTIQ TOR  INDQLENE  fUEL,200Q  RPM.16

                IN.HG.MBT  SPRRK.
1 .30
                             92

-------
a
^*
^
CE


UJ
u

Ul
_l
CE
a:

CE
 I
CE

-------
QC
OH

Ul
o
z-
UJ
_J
a:
o   ~
a:


-------
     1-3- _
 o
o
H
41
01
a
5

f
Q>
a
01
                        0%M;  C
                              c

                        20%M;  9
0.0306 + 0.949  
          0.900

          0.894
                        Assumes 2.4% (4 Ibm/hr)

                        air flow measurement error
                0.9        1.0        1.1         1.2       1.3


                    Mass Fuel-Air Equivalence  Ratio,  ft
                                                       m



       Figure 4 - Superimposes the  9  versus 5 Regression Analysis

                  Curves for 0, 20  and 30%M Blends, 2000  RPM,  16  in.

                  Hg, MBT Spark Advance
                                  95

-------
       1.0  .
   %
   m
   %  o.s  .
  m
  F=-


  >


  

  o
  i-l


  a
  I
  H
  U
  H
  H
               30
      1.0
      0.9
40
50
60
       30 % M



       c  0.857


          I
                                              I
                                                               (a)
                                                               (b)
                                                               (c)
              30        40          50         60



                    Spark Advance,  deg ETC



Figure  5 - Brake Thermal Efficiency versus Spark Advance




            (2000 RPM  and 16  in.Hg (54 kPa) manifold vacuum).
                           96

-------
    1.0
    0.9
   !     XAJ_
            V   30
o
H
P
10
(U
H
U
H
H
w
W
I

-------
     n
     in
        i.o
          Q
         "
    
    rl
    U
   
    H
    I
    M

       1.0
        0.9
                30
30
                J_
          40
                                      50
                         *  1.004
                         c
40
                     50
         30 % K



         *c  0.964



           I
                30    .    40         50



                     SparX Advance, deg BTC
                               &0
                    60
                              60
                                                            (g)
                                            (h)
                                                            (i)
Figure  5  - Brake Thermal Efficiency versus Spark Advance
(cont.)


             (2000 RPM and 16. in Hg (54 kPa) manifold vacuum).




*   In Figure 24  (h)  the efficiency ratio is T]/T\ 48 deg BTC
                   98

-------
0)
TJ

i-l
in
O
H
O
c
U
H
W
0)
e
0)
m
      1.05
      0.95
     1.05
      0.95
      1.05
      0.95
                    30
                    30
                              X
                           Indolene
                           fi   0.987
                            c
                             40
50
                                1.044
                             40
50
                                1.027
                               I
                                        I
                                                           (j)
                                                           00
                                                           (1)
Figure  5

(cont.)
                    30       . 40-         50


                     Spark Advance, deg  BTC


           - Brake Thermal Efficiency versus  Spark Advance


             (2000 RPM and 16 in.Hg  (54  kPa)  manifold vacuum)
                            99

-------
   o
   EH
   Q)
   O
  O
  H
  P
  (0
  
-------
  u
  t<
  n
  9
   
   0)
   a

   I
   (0

   0,

   (0
   b 

   
50
       40
       30
                        Curve Used to Define

                        MET Spark Advance  for

                        Type 0 Tests.
                                              O-
         V
          O - Indolene


          A - 20%M



          D - 30%M





         	L_
              0.8
                  0.9
1.0
1.1
                 Fuel-Air Equivalence Ratio,  8





Figure  6 - MET Spark Advance versus Equivalence  Ratio,  $ ,



            for 0, 20 and 30%M Blends at  2000  RPM and 16 in. Hg



            (54 kPa) manifold vacuum. -
                          101

-------
     TORQUE =-
          O =
03
-J
LU
U
O
    O
    O
     
    CM.
    \n
o
o
 
CD.
O
O
                  18.347 + 85.619$  +-46.251  2
                  0 PERCENT  METHpfilBL  DRTfl  c
                                       O
                          O
    o
    o
     
    o.
     D.80
      FIGURE 7
           0.90      1-00       1.10       1.20       1.30

              CHEMICRL FUEL-RIR ^QUIVRLENCE RRTIQ,  ff
                                                     c .
            TGRQUE VS. CHEMICRL FUEL.-RIR  EQUIVflL-
            ENCE RRTIQ FOR  INDOLENE FUEL .2000
            RPM.16 IN.HG.MBT SPRRK.
                            102

-------
    o
    a
     *
    csi.
    O
    o
     r
    CD.
\jj   O
j   O
CD
    O
    a
     *
    0_
         TORQUE = -19.769 + 90-690  *  +-49.548  $2
              A = 20 PERCENT METHfiNQL  DRTR  c
     C.80
0.90
1 .00
1 .10
1.20
1 .30
                  CHEMICRL FUEl.-RIR ^QUiVRLENCE RRTIO ,  *
      FIGURE 8  TORQUE VS. CHEMICRL FUEL-RIR EQUIVRL-
                ENCE RRTIG FGR 20 PERCENT METHRNOL-
                INOOLENE BLEND FUEL.200C RPM.16 IN.
                HG.M3T SPRRK.
                            103

-------
CD
liJ
'=3
O
eg
CD
O
O
 *
CM.
If)
O
O
 
co_
O
O
    O
    O
     
    o_
          TQRQUE  --44.515+141.947 $c+-75.221
              D  r  30  PERCENT METHRNOL DflTfl
                                                  CD
   an
     U-80
      FIGURE 9
           0.90       1-00       1.10       1.20

              CHEMICflL FUEL-RIR ^QUIVRLENCE  RRTIO

            TORQUE VS. CHEMICRL FUEL-RIR  EQUIVRL-
            ENCE RRTIQ FBR 30 PERCENT  METHRMQL-
           ; INDOLENE  BLEND FUEL,2000 RPM.16  IN.
            HG.MBT SPRPK.
1.30
 ft
                            104

-------
    o
    o
     

    CM.
    1/3
    o
    o

    co_
CD
UJ
a:
o
o
o
    o
    o

    o.
        00 PERCENT flETHflNOL

        20 PERCENT METHflNQL

        30 PERCENT METHflNBL
     0.80
           0.90      1.00       1.10       1-20      1.30


              CHEMICRl FUEL-RIR EQUIVflLENCE RRTIO, $
      FIGURE 10 EOUflTION 11 J REGRESSION MODEL CURVES

                FOR IQRClUE VS. CriEniCflL FUEL-fllR

                EQUIVflLENCE RflTI

                nBT SRRRK.
                               ,2000 RPM.16  IN. HG
                           105

-------
LU
O
z
LLJ
CJ
LU
a:
LU
X
a:
o
ca
    o
    o
    CM
    o
    o
     
    CM_
    CSI
    O
    O
 O
 O
 

'CD-
 CM
    cn_
    o
    o
     
    co_
    o
    o
        BTHE---220.Q + 678.3 *c +
           0=0 PERCENT METHRNGL  DRTfl
 CSD
  O

CD
       CD
O

CD
                                                      CD
     0.80
            0-90       1.00      1.10       1.20      1-30

               CHEMICRL -FUEL-RIR EQUIVRLENCF.  RRTI3,  
      FIGURE  11 BRRKE THERMRL  FFFICENCY VS. CHEMiCni

                 FUEI.--RIR FQUIVRLENCE  RRTIQ FGR  IN

                 DQLENE FUEL. ,2QGC  RPM.16 IN. HG.f*3T

                 SPflRK 
                             106

-------
I-
z
UJ

on
LU
CL
z
LJ
O
t*
LL.
U.
UJ

-------
UJ
u
o:
UJ
o_
UJ

*-H
U_
u_
LU

_J
or

cc
UJ
x
t

UJ

cr

CO
    O
    o
    CM
    O
    O


    CM.
    CM
    O
    O
    (XI
    O
    O
     

    ' O_
    (M
    O
    O
    o
    o
     t
    co_
    o
    o
        BTHE=-Z56.8 + 772.3 * +-696-0  *2+202-8

           0 =30  PERCENT METHflNQL DRTRC
HUE)

 m

3
     0.8C
                C.90      1 .00       1 .10      1 .20      1 -30

                   CHEMICflL FUEL-FUR  EQUIVflLENCE  RRTIO,  
      FIGURE  13 BRflKE THERfiPL EF;F ICENC Y  VS.  CHEMICPL

                 FUEL-fllR FGUiVflLFNCF  RRTIG  FGR 30

                 PERCENT METHflNQL-INDQLENE BLEND FUEL

                 .2000 RPh.lS IN.HG.M3T SPRRK .
                            108

-------
    o
    o

    CM.
    CM
    O
    O
    Cvl
LL)
U
a:
LU
a.
    o.
    CM
    o
    o
re
UJ
Ul
Si
cc.
a:
00
o
o
 
co_
    o
    o
00 PERCENT METHRNQL

20 PERCENT METHRN0L

30 PERCENT flETHRNOL
     0.80
           0.90
                  1 .00
1 -10
1 .20
1 .30
                   CHEMICflL FUEL-fllR EQLIIVRLENCE  RRTIO
      FIGURE  14 EQURTION  (1) REGRESSION MODEL  CURVES

                FOR  BROKE  IHERflP.L EFFICENCY  VS.

                CHEMICflL  FUEI.-RIR EQL'IVflLENCE  RRTIO

                 .2000  RPM.16 IN. HG.nBT SPRRK .
                            109

-------
UJ
u
Q
UJ
Q_
UJ
2=

Z3
-J
O
    I/)
    CO
    O

    O
     

    l/J.
    o
    1/3
u
z
UJ
o   *.
   en
u.
u.
UJ
    o
    o
en
    o
    in
     
    m_
    n
           0=0  PERCENT riETHRNOL  OflTfl
       o
        o o
         o
         o
   o
          o
          o
              o
         o
                   o
                   0
                       O
                   O
                    o o
                            o
                             o
                                  o
                                      o
                                  o
                                  CD

                                 .o


                                   o
                                            o
                                             o
                                                      o
o

o
                                                   CD
     0.80       0.90'     1.00       1.10      1-20       1-30


                   CHEfllCRL FUEL-fllR  EOUIVRLENCE RflTIQ,  $c


      FIGURE  15 VOLUMETRIC EFFICENCY VS. CHEMlCflL FUEL.

                 -FUR EQUiVRLENCE  RRTIO FOR INOOLENE

                 FUEL.20GO RPM.16, 'IN  HG.MBT SFflRK .
                             110

-------
Z
LU
CJ
z
LU
Lu
s:
    o
    in
     
    in.
    irn
    o
    LO
~   m
Lu
u.
    o
    .o
    *.
    o
    in
    en
              =  20 PERCENT METHRN0L OflTR
I'.OO.
     D.80
0.90 '
1.10
1 .20
                                                        1 .30
                  CHEniCRL  FUEL-RIR EGUIVRLENCE RRTI8,  $
      FIGURE 16 VOLUMETRIC  EFFICF.NCY VS. CHEMI.CRL FUEL.

                -RIR EOUiVRLENCE  RRTIO FOR 20 PER-

                CENT METHRNQL-INDOLENE BLENO FUEL.

                2000 RPM.16  IN.HG.MBT SPRRK .
                            Ill

-------
UJ
O
o:
UJ
Q_
UJ
u
u.
UJ
a:
H-
UJ
    O

    10
     

    1/5.
o
o

in.
    o
    o
    ro
          D r 30 PERCENT  METHflNQL DRTfl
                                     ID
                                              Q
        a
             S
                      a
                       a   a
                                 (D
                                 a
     0.80
0.90
1.00
1.10
1.20
                                                    1.30
                  CHEMlCflL  FUEL.  FIR EQUIVPLtNCE
      FIGURE 17 VOLUMETRIC  EFFICENCY VS. CHEMlCflL FUEL

                -FUR  EQUiVflLENCE  RflTIQ FCR 30 PER-

                CENT  METHflNQL-INOeLENE BLEND FUEL,

                2000  RPM.16 IN. HG.nST SPRRK .
                            112

-------
II
o
a:
x
 t
0-
V3
o
a

o_
o
a

o_
v;


uj   o
    o

in   O_
cc   
O
u
    o
    a
         CO =7082-^-22095 c

          0=0 PERCENT METHRNQL  DRTR
 j.8G      0.90      1.00       1.10       1-20


              CKEMICRL FUEL-RIR EQUIVRLENCE  RRTIO ,


  FIGURE 18 CQ MRSS EMISSIONS VS. CHEMICRL FUEL--

            RIR EQUIVRLENCF RRTIO .FQR  INOQLENE

            FUEL.2000 RPM.16  IN. HG.MBT  SPRRK .
                                                        1.30
                            113

-------
II
o
o:
:c
 i
Q_
to
z
(O
I *

r:

UJ
CO
cr
o
o
 
o.
en
o.
CM
O
O
     CO =6S74+-19139

      A = 20 PERCENT  METHRNQL  rffiTfl
                            +1712S  *2 +-4822 *3

                                            C
        A A
     J.80      0.90       1.00       l.!0      1-20      1-30

                  CHEMICRL FUEL-RIR  EQUIVRLENCE  RRT19 ,  fic


      FIGURE 19 CO MRSS EMISSIONS  VS.  CHEMICRL  FUEL.-

                RIR EQUIVRLENCE  RRTIO  FOR  20  PERCENT

                METHRNCL-INOGLENE  BLEND FUEL.20CG

                RPM.iG  IN. HG^MST SPRRK .
                           114

-------
 ti
o
Ci)


CO
Z
3
I*

CO
CO
II

SI
UJ
CO
cr
2=

C3
CJ
    Q
    O


    O_
    o
    o
     
    o.
    CM
    O
    O
     

    0_
    o
    o
         CO =5861+-16141

          D = 30  PERCENT
                          METHflNGL DRTfl
      J-80      Q.90       1.00      l.IQ      1.20      1-30

                  CHEMICRL  FUEL-RIR  E*GUIVRLENCF RflTIQ..  *c

      FIGURE 20 CO MRSS EMISSIONS  VS -  CHEMICRL FUEL-

                RIR EQUIVRLENCE  RflTIQ  F3R  30 PERCENT

                METHRNGL-IND3LENE  BLEND FUEL,200G
                RPM.16  IN. HG.MBT SPRRK .
                            115

-------
II
a
 I
Q_
X

O

to
z
o

V?
t/3

n
LU

cn

-------
    o
    1/3
    CD
    O
     f

rv   V~\

X   
z
CD
ft

CO
LU
UJ
o:
    i/j
    a
    o
     
    ID'
    o
    in
    o
    a
        NGX  =-

           0=0  PERCENT"'METHRNGLt'3RTR

              O
                        CD
       O
         CD
        CD
     J.80      0.90       1.00      1.10       1.20


                  CHEMICRL  FUEL-RIR EQUIVflLENCE  RRTIQ


      FIGURE 22 NGX  MRSS  EMISSIONS VS. CHEMICRL  FUEL-

                RIR  EQLJiVHLENCE RRTIG FCR  IN03LENE

                FUEL.2CQG RPM.16' IN. HG,n3T SPRRK .
                                                         1.30

                                                          $
                            117

-------
         NQX  =-954 + 2879$  +-2817^
          A  =  20 PERCEN? METHRNQL  DflTR
OIL
x
 i
QL
X
X.
C3
 
VJ
UJ
V3
i i
sr
LU

CO
CO
cr
z:
CD
    o
    in

    CM_
o
o
 t
0_
    o

     
    r-~
o
o
    o
    LO

    CM"
    o
    o
 J-80      0-90       1-00      1.10      1.20

              CHEMICfiL  FUEl.-fllR  EGLIVRLENCE RRTIC

  FIGURE  23 NQX MRSS  EMISSICN'S  VS.  CHEMICPL FUEL-
            HIS EQUIVRLENCE-.  RRTIQ  FOR 20 PERCENT
            nETHPNCL-INOSLENE  BLEND FUEL. ,2000
            RPM.16  IN.HG.M5T SFRRK .
                                                         1.30

                                                         $
                            118

-------
Q_
3:
CO
2
CD
I I
CO
to
 I
31
LU

to
CO
cr
o
z
    o
    ID
     
    CM.
    O
    CD
     
    o_
in
o
o
 
ID'
    o
    in
     
    CNJ'
    o
    o
        NQX  =-634+1976 c+-1975 i +642 $
          O  =^30  PERCENT METHflNQL DflTH  
        CD
        D
 3.80      0.90       1.00      l.!0      1-20

              CHEMICRL  FUEL-RIR  EQUiVRLENCE RRTIQ

  FIGURE 24 NQX MRSS  EMISSIONS  VS.  CHEMICRL FUEl.-
            RIR EQUIVRLENCE  RRTIQ FOR 30 PERCENT
            ME1HRNQL-IN03LENE. BLENO FUEL.2000
            RPM.16  IN. HC.M5T  SFRRK.
                                                         1 .30
                            119

-------
QC
X
 I
o.
W7
Z
O

V?
w
C/5
x
E)
Z
    O
    1/3
     

    CVJ.
    O
    O
     

    O.
    O
    1/7
    O
    O

    in'
    o
    o
        00 PERCENT METHRNCL

        20 PERCENT flETHRNOL

        30 PERCENT riEVHRNOL
     3.50      0.90       1 .00       1.10      1 -20

                  CHEMICRL FUEL-RIR  EQUIVRLENCE  RRTIQ

      FIGURE 25 EQURTieN  (13 REGRESSION  MODEL  CURVES

                F0R N9X HRSS EMISSiCNS  VS.  CHEMICRL

                FUEL-RIR  EQUiVRLENCE  RRTI0.ZOOO  RPM,

                16 IN. HG.nBT SPRRK .
                                                        1 .30
                            120

-------
X
 I
o.
X
CO
CO
CL
CJ
X
    o
    (^
     
    r-
O
o
 
CD
CO
z
a
 
CO
to
    U3
O
O
    O
    O
    O
    O
          HC =-4.880+9-160 $c
           0=0  PERCENT  METHRNGL DRTfl
       O
     O

    O
        o
                                            CD
                                o
 o
     0.80
           0.90
1 .00
1.10
! .20
1 .30
                  CHEMICRL FUEL-HIR  EQUIVflLFNCF RRTI0,  $
      FIGURE 26 FID HC MRSS EMISSIONS  VS.  CHEM.ICRL

                FUEL-RIS EGUIVRLF.NCE RRTIQ FOR IN-

                DI3LENE FUEL .2000.RPn.I6  IN.HG.MBT

                SPRRK.
                            121

-------
    o
    o
X
 I
OL
X
to
O
O
 *

CD'
    o
    o
U3
U3
-   1/J
LLJ


CO
cr
z:
X

a
o
o
    o
          HC =-5.770+9.743  $

           A= 20  PERCENT  ME^HRNOL DRTR
     0.80
           0.90       1.00      l.!0      1.20      1.30


              CHEMICRL  FUEL.-RIR  EQLIVRLEMCE RRTIB, 9
      FIGURE  27 FID  HC  fRSS  EMISSIONS VS.  CHEMICRL

                FUEL-RIR  EGUIVPLENCE RRTIQ FGR 20

                PERCENT FETHRNQL-INDeLENE  BLEND FUEL.

                .2000 RPM.16  IN. HG.MBT SPRRK.
                            122

-------
    o
    o
ec
x
 i
Q_
X
O
o
 
to'
ii   O
V3   O

-------
    o
    o
oc,
X
 I
Q_
X
>
C3
 *
V)
z
CD

CO
V)
   in
E
UJ
O
O

CD'
o
o
to
CO

-------
    O
    O
X
 I
0-
X
(O
2
CD
I I

tn
z:
LU
(O
CT
3d


CM

O
o
o

o
o.
en
o
o

o
U3.
CO
o
o

o
o.
00
o
o
 
o
in.
r-
    o
    o
     
    o
    o.
    r-
    o
    o
  D


   O


   O
         CQ2  ---.-2171+9018 $c+-8355 $

            0=0  PERCENT hETHRNQL DRTR
              O
                                O
                                                      (D
                                                      O
     0.80
0.90       1.00       l.!0      1.20

   CHEMICRL FUEl.-RIR  EQUiVRLENCE RRTIQ
                                                     1.30
      FIGURE  30  C82  MflSS EMISSIONS VS. CHEMiCRL  FUEl.-

                 RIR  EQUIVRLENCE RRTIO FGR  INGGLENE

                 FUEI..ZOQQ RPh.lS  IN.HG.^aT  SPRRK.
                             125

-------
QL
1C
 I
Q_
X
Z
CD

VJ
VJ
LJ

tQ
V3
CE
CO
CD
U
    o
    o
     *
    o
    1/3-
    O)
    o
    o
    o
    o.
    CD
O
O
 *
O

co'
o
o
 
o
o.
00
o
o
 
o
in.
    o
    o
     
    o
    o.
    r-
    o
    o
     
    o
    in.
    CO
     C02 --
                              -15353  *  +4596
             =  20  PERCENT METHRNQL  DRTfl
     0.80
0.90
1.00
1.10
                                           1.20
l.30
                   CHEMICRL FUEl.-RIR  EQUIVRLFNCF RRTIO
      FIGURE  31 C02 MP.SS EMISSION'S  VS.  CHEniCRL FUEL-
                 RIR EQUIVRLENCF.  RRTIG  FGR 20 PERCENT
                 METHRNOL-INJ'SLF.NE 51.END FUEL .2000
                 RPM.ie IN. HG.MBT SFRRK.

                             126

-------
          C02  =-824+5651  +-5697 $2 +1858 $3

             = 30 PERCENf METHRNQL0 ORTfl  
    o
    o
     
    o
    1/3.
    cn
    o
    o
    o
    o.
    O)
  -D
o:
I
 i
a.
X
(O
z
V)
V3
UJ

w
W
o:
s:

CM
O
U
O
O
 
o
in-
to
o
o
 v
O

oo'
o
o

o
in.
    o
    o
     
    o
    o.
    o
    o
     
    o
    ID.
    CO
        03

       CEP CD
                                       CD
     O.SQ
           0.90       1.00    '  1.10       1.20      1.30

              ChEMICflL FUEL.--RIR EQUIVRLENCE  RflTIC ,  $
      FIGURE 32  CQ2  MRSS EMISSIONS VS.  CHE.^ICnL FUEl.-

                 niR  EQUIVflLENCE RHTIQ.FGR  20  PERCENT

                 METHflNQL-INUGLENF BLEND  FUFl. .2000

                 RPM.16 IN.HO,HOT SPRRK.

                             127

-------
I
Q_
CtJ


t/3
Z





V7


3=
v;
to
a:
CM
a
    o
    o
     
    o
    a.
    en
    o
    o
     *
    o
     in.
    03
o
o
 
o
o.
CO
    o
    o

    o
    LO.
    r-
o
o
 
o
a.
r-
    o
    in.
    (>
    00 PERCENT  flETHflNOL

    20 PERCENT  METHRNQL

    30 PERCENT  METHRNQL
            0.90      1 -00      1.10       1-20      1 .30

               CHEniCRL  FUEL.-fltR EQUIVHLEHCE  RRTI3 ,  *
     0.80
      FIGURE  33  EQUflTIQN 11) REGRESSI3S  neCEL.  CURVES
                 FOR  CGZ HR3S EnissieNs vs.  CHEMICRL

                 FUEL.--RIR EGUIVflLENCE RflTie.ZOOO

                 !6  IN.HG.MBT SPRRK .
                             128

-------
cc
:n
 i
QL
I
ID
2
CD
t4

0-5
07
to
CC
CM
CD
o
o

o

CM'
o
o
 g
o

Csl"
O
O
 

o
LT3
O
O
    o
    o
     
    o_
    LO
    !
     . i
         02 =10066+-26302SC +22958*^ +-6682S3
          P =  0  PERCENT METHRNQL DRTfl       
       o
       O
o
 o
 CD
                          G
                0.90
                      1 .00
                            1.10
1 .20
1 .30
                   CHEMICRL FUEL-RIR EGUIVRLENCE  RRTIG

      FIGURE 34  OXYGEN  MP.SS EMISSIONS VS. CHEMICRL
                 FUEL-RIR EGUIVRLENCE RRTII3 FQR  IN-
                 D0LENE  FUEL..2000 RPM.16  IN. HG.1ST

                 SPRRK .
                            129

-------
DC
X
 I
Q_
a
2
O
LJ
V3
u:
z:

CM
         Q2
         A
        =10382+-27421*c  +24213J2  +-71343
        = 20 PERCENT METHRN8L
    o
    o
     
    o
    CM'
o
o

o
o.
CM
O
O
 

O
1/3J
O
O
 
O
o_
    o
    o
     
    o.
    1/3
    O
    O
      ,30      C.90    .1 .00      1 .10      1 .20      1 .30

                  CHEMICRL  FUEL-RIR  EQUIVRLENCE  RRTIG,
                                                        c
      FIGURE 35 0XYGEN MflSS  EMISSIONS  VS.  CHEMICRL
                FUEL-RIR  EGUiVRLENCE  RRTIG FGR  20
                PERCENT KETHRNOL-IND3LENE  BLEND  FUEL
                 .2000 RPM.16 IN.HG.MBT SPRRK.
                            130

-------
on
X
 I
OL
X
CO
CO
CO
UJ

CO
CO
cr
CM
    O
    o
    l/3_
    CM
 O
 O
 

 O
 o_
 CM
 O
 O
 

 O
 1/3 J
O
O
 

o
'OJ
    o
    o
     
    o_
    10
    o
    o
         02
          a
         =10S03+-27646 $c+24677 $^+-7295

         = 30 PERCENT METHRNOL ORTR
       D
       D
Q
                                                       CD
            0.90:     1.00       1-10      1.20

               CHEMICRL FUEL.-RIR  E'QUJVRLENCE  RRTIQ

   FIGURE  36 QXYGEN MRSS EMISSIONS  VS.  CHEMICRL

             FUEl.-RIR EQUIVRLENCE RRTIO F3R  3C

             PERCENT METHRNOL-INOBLENE  BLEND  FUEL.

             .2000 RPM.16 IN.HG.M3T  SPRRK.
                                                         1 .30
                            131

-------
a:
 i
Q_
X
1/3
Z
CD
z:
UJ

(O
w
a:
r:
    o
    p
     '
    o
    o.
    CM
O
o
 
o
1/3,
    o
    o
     
    o
    o.
    o
    o
     
    o.
    in
    o
    o
    00 PERCENT  METHRNOL

    20 PERCENT  METHRNGL

    30 PERCENT  METHRNBL
                0.90
                      1 .00
1 .10
1 .20
1 .30
                   CHEMICRL FUEL-RIR E^QUIVRLENCE  RRTIQ

      FIGURE 37  EQUflTIBN il.) REGRESSION JIQCEL CURVES

                 FOR  02 MRSS EMISSIONS VS. CHEMICRL

                 FUEL-RIR EQUIVRLENCE RRTI0.20QQ  RPM,

                 16 IN..HG.M3T SPRRK.

                            132

-------
    o
    e
    o
    H
    n
    w
    4J
    n
    9
    (0


    I
   o

   -S
   i-l

   CJ
   H


   H

   O
   C
   H
             cylinder  (1)   _____-
                 
                c
(4)




(3)
                          10              20


                          Percent Methanol. %M
                                  30
Figure 38 - Individual cylinder Exhaust Oxygen' Emissions versus


            Percent  Methanol. 2000 RPM. 16 in.Hg (54  kPa),  MET


            spark.
                 133

-------
    o
    o
     
    1/3
    O
    O
o
oc
LJ
Q_

Z
X
o
    o
    o
    o
    o
     
    CM
    CD
    O
    O
    o
          O r 0 PERCENT METHflNQL OflTR
       O
        O

        0
          o
       30      0-90'     1.00       1.10       1-20      1-30

                  CHEMICRL FUEL-fllR EQUIVRLENCE RflTIO, $
                                                        c

      FIGURE 39 OXYGEN PERCENT VS.  CHEMICflL FUEL-fllR

                EQUlVflLENCE RflTIO FOR  INDOLENE FUEL,

                2000 RPM.16 IN. HG.flBT  SPRRK .
                            134

-------
    o
    o
     f
    in
    o
    o
UJ
u
Z
UJ
O
o
o
o

CO
o
o
 
CM
    o
    o
    o
    o
            = 20 PERCENT METHflNQL ORTfl
               0.90      1.00       1.10       1.20

                  CHEMICflL FUEL-fllR EQUIVRLENCE RRTI6 ',

      FIGURE 40 OXYGEN PERCENT VS.  CHEniCflL FUEL-FUR
                EOUIVflLENCE RRTIO FOR 20 PERCENT
                riETHflNGL-INOOLENE-BLEND FUEL,2000
                RPM ,16 IN.HG.MBT SPRRK .
                                                    1 .30

                                                    ft
                            135

-------
    o
    o
    o
    o
z
UJ
C.J

UJ
a.
UJ
O
>-
X
CD
    O
    o
     
    (*)'
    o
    o
     
    CM'
    o
    o
    o
    o
          D -  30  PERCENT METHRNGL OflTfl
        CD

        CO
                      CD
                                            CD
    =b.80
               0.90      1.00      1.10       1.20       1.30

                   GHEMICRL FUEl.-fllR EQU1VRLENCF RflTIQ ,  $^
      FIGURE 41 OXYGFN  PERCENT VS .  CHEfllCRL FUEL-RIR

                EQUIVRLENCE  RRTIO F0R 30 PERCENT

                nETHRNOL-lNOGLENE BLEND FUEL. .2000

                RPM .16  IN. HG.nBT SPRRK .
                            136

-------
4J
ra
ttJ


-------
0
rH


10

-------

-------
   U
ivalence .Ratio
Air E
  
-------
        90




    s"-   ;
    4J   85
    0)

    g-
        80
                     52 mph aiccel.
                          10
                    20
                                                     30
    4J
    m
 /M
                                    30
Figure 46a- Illustrates  the  Reduction in Torque Occurring

            when Methanol Blends  are substituted for Indolene

            with No Engine Adjustments (Type I Tests)
                          141

-------

ti
o
0)
g,
w
0
H
      2000
      1800
      2000
      1800
           >
                           10
                                              52 mph cruise
20
30
    52 mph accel
                           10             20
                             Percent Methanol,  %M
               30
     Figure  46b  -  Illustrates  the  Reduction in Engine Speec
                   Occurring  when Methanol Blends  are Substituted
                   for  Indolene with  No Engine  Adjustments (Type I
                   Tests)
                       142

-------
>1
u
c

-------

0.3

| 0-2
n
c
o
._J
 A
s <
rl i
i '
> (108)*
m
.52 mph accel.
1
i *
 


r , , ,
0 10 20 30
0)
a
	 i
rt
X'  '


g 0.3
e

n
3
Q.2
<

.


i (119)*
52 mph cruise
*** JUH ^^5
r i  i
                          10             20
                         Percent Methanol, %M
30
Figure 48a - Carbon Monoxide Volume Emissions when Methanol
             Blends are substituted for Indolene with No Engine
             Adjustments  (Type I Tests)
                          144

-------

11
10

9
J~l O
I i
^
in
rt 6
0
H J
^s (108)*
 
..
52 mph accel.
-
-
& fi


.
j> /-,
ID 
p! f . ' . r I
w 0 10 20 30
(0
U)
s
(U
S 10
X
o
I .; 9
c
0
iQ Q
U
7



(1I9)* 5.? mph cruise
' /\
LJt
A A



J A
A
>
                         10        .      20
                         Percent Methanol, %M
30
Figure 48b - Carbon Monoxide Mass Emissions* W\en
             Blends are Substituted for Indoleno with No
             Engine Adjustments  (Type I Tests).
                          145

-------
15



io
5


J? o
\

1 A
k
A A
A

52 mph accel.


1 1
01 0 10 20
%
01
e
o
H
10
n
'jJ 2C
fZ w V
10
10
5 15
g
o
.H
4J
a 10

5

0


> ^
^
L
^


A
"" 52 mph cruise




1 I
0 10 20









1
30











A

A

i
30
                         Percent Methanol, %M

Figure 49a- illustrates  the  Reduction  in Nitric Oxide Mass
            Emissions  Occurring  When Methanol Blends are  Substituted
            for  Indolene with No Engine Adjustments  (Type I Tests)
                 146

-------
     3000
     2000
                                        52 mph  accel.



                                        A


                                        A



                                        I        	
                        10
                                        20
30
uidd
SUOTSS

u
.H
H
4J
H
55
o
0
o
*t
     3000
     2000
     1000
         \
                                        52 mph cruise
                                        A

                                        A

                                        1
                         10             20

                          Percent Methanol, %M
                                                        30
Figure  49b- Illustrates the Reduction in-Nitric Oxide Volume

             Emissions when Methanol Blends are Substituted  for

             Indolene with No Engine Adjustments  (Type I Tests)


                         147

-------
  i
  PI
  C
  o

       1000
        500
                                   52 mph accel
              A
              A'
10
                                          20
                          10             20
                           Percent Methanol, %M
                              30
M
8
f
S3
M 2000
S
0) '
V
o
g 1500
, 	 
n
41
a
rl
c
0
H '
a, 1000
S

500
0



i

. 52 mph cruise


^ '


A


A
& 
A


i i i
                             30
Figure  50a- illustrates the Reduction in FID HC Volume Emissions
             when Methanol Blends are Substituted for Indolene
             with No Engine Adjustments (Type I Tests)
                 148

-------
  n
  f
  
  u
  o
c
o
H
4J
CJ
CD

(U
a

c
o
H
4J

N
  (U
  s
  to
        2.0
        0.0
       4.0
       3.0
       1.0
       0.0
                                        52 mph accel.






                                         A


                                         A
                           10
                                         20
30
                                         52 mph cruise
                         1
                                          1
                          10               20

                           Percent Methanol,
                                                        30
Figure 50b - Illustrates  the  Reduction in FID HC Mass Emissions


             when Methanol  Blends are Substituted for Indolene


             with No Engine Adjustments (Type I Tests)
                          149

-------

2.0




1.0

b
,c
i
a o

%
c
o
-H
(0
0)
H
I
(0 4-
CO
2
^4
%
Q
 3.0

2.0
^
52 mph accel.
- O Indolene O
O 10%M  
^ 20%M , O
0
7
A
^ o



A I i  i
0.8 0.85 0.9 1.0

 ^
52 mph cruise O
O Indolene
O 10&M
A 20%M
D 30%M O
0

-
O
D A
          ^

                    0.8       0.85      0.9       1.0
                      Fuel-Air Equivalence Ratio, $
Figure 50c - Shows the Effect of Fuel-Air Equivalence Ratio
             on FID HC Mass Emissions for the Type I Tests
                          150

-------
 K
  
 3
 O
 10
O
 H
 c
       18
       16
       14
       12
       10
        8
8
B
                                         _
                                         8
                                                       e
                                                       
                                                       D
                   O 30 mph cruise
                   O 40 mph cruise
                   A 52 mph cruise
                   A 52 mph accel.
                         A


                         10             20
                         Percent Methanol, %M
                                                        30
Figure 51 - Shows the Reduced Manifold Vacuum Required  for
            Methanol Blends to Attain, the Same Torque and
            Engine Speed as Found with Indolene  (Type II Tests)
                          151

-------
  0
  H
  U
  10
  0)
  u
  c
  fO
  >
  H
  3
  cr
  H

  M
  H
  <

  i-\
  (0
  3
       1.0
1.0
       0.9
       0.9
          0
                   D


                   D
                           10
                          o

                          o
                                         40 mph cruise
                                          D
                                   D
                                                         B
                                   20
30
                                  30  mph cruise
                                          8

                                          o

                                          i
                   10              20

                   Percent Methanol, %M
30
Figure 52 - Shows the Fuel-Air  Equivalence Ratio Decrease

             (Blend Leaning  Effect)  as a Function of Methanol

            Blend Level  for the Type II Tests
                          152

-------
  o
 o
 -rl
 P
 id
 
-------
                >i
                u
                c
                0)
               H
               
                                                                     A
                                      A
                                D


                                D
                D

                D

O  30 mph cruise

D  40 mph cruise

A  52 mph cruise

A  52 mph accel.
8
                                       .
                                                     _L
                                                                            28
                                                                            27
                                                                            26
                                                                            25
  10              20

  Percent Methanol, %M
                                                                     30
             Figure  53  -  Shows  the Increased Efficiency Obtained with Blends

                          at  Equal-to-Indolene Torque and Engine Speed

                         Operation  (Type  II  tests).

-------






*
I
i-l

Oxygen Emissions,





5
4
3
2
<
(
4

3
2
1
0
C
5
4

3
2
<
G
-
-
-
_
i
)





i-
>
_


-
)
i
r
i
A
A
& 2
& 52 mph cruise
A 52 mph accel.
l i i
10 20 30
0

O

D 
O
40 mph cruise
1 l t
10 20 30
8

o
o
30 mph cruise
1 1 i
" 10 20 30
                         Percent Methanol, %M

Figure 54 - Shows the Oxygen Emissions  as  a  Function  of
            Methanol Blend Level for  the Type II  Tests.
                155

-------
1
0.3


Emissions, Vol. %
0 0
M ^ M
Carbon Monoxide
0 0
 
10 h->

0.1
i (108)
(Test No.)
- 52 mph cruise
52 mph accel.
* (119)
A
i .
f , ,
0 10 20 30
(Test No.)
40 mph cruise
] (146) _
D D 0
D  D
?
0 10 20 30
(Test No.)
r (144) 30 mph cruise
0 (143)
> 0 (140) g (141) Q
> (139)  (142

4 ,
                           10             20
                          Percent Methanol, %M
30
Figure 55a - Shows the Effect of Methanol Addition on CO Volume
             Emissions at Equal-to-Gasoline Fueled Torque and
             Engine Speed (Type II Tests)
                          156

-------
         10
          8
,.(119)*
              A

              A
                          10
                                         A
                                         A
                                        52 mph cruise
                                        52 mph accel.
                              20
                                                         30
*
n
 10
ri
n
0)
i
g 8
i <


J (146)* D

D D
D
40 mph cruise
r , i 
So 10 20 30
X
0
c
 u
e
n)
u

10



8
<

r (144)*
.

0
O
8
> 0
0
)
30 mph cruise
>
                          10             20
                          Percent Methanol, %M
                                            30
Figure 55b - Shows the Effect of Methanol Addition on CO Mass
             Emissions at Equal-to-Gasoline Fueled Torque and
             Engine Speed (Type II Tests)
                   157

-------

0.6


* 0.5
1 '
 *
a
c
n
!
g Q.3
i .
1
3 0.2
0.1
0.0
(130) U
(Test No.)
A 52 mph accel
 A 52 mph cruise
O 40 mph cruise
O 30 mph cruise


(126) D
i*
(108)*
V
A (119)
"" (^6)O (144)
. (90) j3
O
(139)
^
. I ' ' ' ' 	 1 	 1 	 1 	 1 	 1 	 L_
            0.92      0.94      0.96      0.98
                 Fuel-Air Equivalence Ratio,  *
                                              c
Figure 56a- Illustrates the Effect of Fuel-Air Equivalence
            Ratio on the CO Volume Emissions  for the 0%M
            Type II Tests
                   158

-------
                     (Test No.) %M
                                            (Test No.) %M
    (0
    o
    e
    o
    u
    0)
    (0
         20%
                      (141)    20%
         30%
                       20%
 30%
                                             (144)
                                              0%
    c
    H
     

    O
    c
    o
    H
    0)
    H
    >
    H
    Q

    0)

    O
    0)
20%
         20%
30%

        Fffl
        30%
                       (140)
                       (139)
                      10%
              0%
 30%
                       20%
30%
                                     (143)
      (142)
               20%
30%
         CO NDIR Analyzer Response,  % Full Scale




Figure 56b- Shows the CO NDIR Analyzer Response for Tests

            Numbered 139 through 144 (Type II Tests),
                         159

-------
15

>-i
X 10

Emissions g/
J
j Q 40 mph cruise
D 
D
D
1 I i R
1 .10 20 30
   CO
   CO
   u
   -H

   4J
   H
   2
         10
           0
                           I
                                               30 mph  cruise
                                          O
                                          O
10             20

Percent Methanol, %M
30
Figure 57  - Illustrates the Reduction in Nitric Oxide Mass

             Emissions with Methanol Blends at Equal-to-

             Indolene Torque and Engine Speed Operation

             (Type II Tests)
                          160

-------
a
x
Omissions, g/
M
U1
 10
Q)
rH
0
H ^
- 1
ty. 1
^ A 52 mph cruise
A 52 mph accel.
^ ^
: A
> 
A 
A
'
A
r A
i i i
                          10              20
                          Percent Methanol, %M
                                              3.0
Figure 57
 (cont'd)
- Illustrates the Reduction in Nitric Oxide Mass
  Emissions with Methanol Blends at Equal-to-
  Indolene Torque and Engine Speed Operation
  (Type II Tests)
                          161

-------
 a
 0]
 C
 o
 H
 (0
 (0
 o
 a
 ro
 O
 O
 u
 (1)
 4J
 (I)
 Q
 O
 H
 N
 rH
      2500
      2000
      1500
      2000
      1500
D

D
                           10
                          O

                          O
                                    40 mph cruise
                O

                D
                20
          30 mph cruise
                                                         B
30
                               O

                               O
          0
 10              20


 Percent  Methanol, %M
30
Figure 58a - Illustrates  the  Reduction in FID HC Volume


             Emissions with Methanol Blends at Equal-to-


             Indolene Torque  and Engine Speed Operation


              (Type II Tests).
                          162

-------
CO
c
o
H
W
ID
H
3
(0
U
o

TJ
H
O
4J
U
0)

(U
c
0
H
.p
(0
N
H
C
o
H

(U
       2000
       1500
       1000
        500
                                    52 mph cruise

                                    52 mph accel.
                        A


                        A
                          10             20


                           Percent Methanol, %M
                                                       30
Figure 58a
  (con   )
                Illustrates the Reduction in FID HC Volume  Emissions

                with Methanol Blends at Equal-to- Indolene Torque and

                Engine Speed Operation  (Type II Tests)
                             163

-------
fi
1
a 6.0
<
*
w
c
0
H
w 5.0
(0
H
W
(0
(0
'S
4.0
c
o
iQ
1C
O
0 >


.
40 mph cruise
I
.
*




D

D


H


B


i  ? ' o
*NJ  A   "
^ 1 1 1 1
n 0 10 20 30
o
u

0)
Q
O
ri
a 7.0
N
'c
o
H

^ 6.0


>
.
)
v 30 mph cruise
_



O
o o
o o
o
fill
                       10              20
                                             i
                        Percent Methanol, %M
30
Figure 58b - Illustrates the Reduction in FID HC Mass Emissions
             with Methanol Blends at EquaLto-Indolene Torque
             and Engine Speed Operation (Type II Tests)
                          164

-------
 CO
 C
 o
H
 10
 0)
H
 (0
 (0
 e
 o
 (0
 0
 0

I
 u
 
-------
      APPENDIX  A
ANALYSIS OF EXHAUST GAS
          loJ

-------
             APPENDIX A - ANALYSIS OP EXHAUST GAS
     In this Appendix equations are developed  (or given) which
were used to determine fuel-air equivalence ratios and exhaust
mass emissions from exhaust gas concentration measurements.
To this end consider the combustion with air of one mole of a
fuel blend composed of f moles of methanol  (CH..OH) and  (1 - f)
moles of hydrocarbon CUB.,*  The chemical equation representing
this combustion process may be expressed in the following form:

     (1-f) C H  + f CH3OH + n O2 + 3.76 n N2   ^

     (H20)w Nw H20 + (C02)D ND C02 + (00)D NQ CO +
           ND 2 +  'Ww Nw C*PB +  (NO)w Nw NO +

                .                                            (Al)
     In Equation  (Al),  (i) is the molar concentration of species
i.  The subscript D identifies those species whose concentrations
were determined after the exhaust sample had been dehumidified
by passing it through a refrigerated condenser; subscript W
identifies those species whose concentrations were determined
in a wet sample which was heated to prevent exhaust-gas water
condensation.  N  is the total number of moles in the wet sample
                W
per mole of fuel blend and N  is the total number of dry moles
per mole of fuel blend.
     In Equation  (Al) the unburned hydrocarbons are considered
to be C H_.  If the total hydrocarbon content is expressed in
terms of an equivalent carbon content such as would be measured
with a flame ionization detector (FID) then for a FID calibra-
tion gas C H   (neglecting differences in FID relative hydrocarbon
response) I
              = p  (CpHq) ,                                   (A2)

During the present investigation methane, CH,., was used as the
FID calibration gas.  Thus, in the following equations  (CH4)
rather than A(CAHB) will appear.
                          167

-------
     Conservation of  mass  applied to the carbon, hydrogen and
oxygen atoms yields the  following three Equations:
      (l-f)X +  f  =  (C02)DND + (CO)DND + (CV^             (A3)

      (l-f)Y +  4f =  2(10)     + 4(0)     + 2(1)             (A4)
     2n + f =  (E20}^ +  2(C02)DND 4- (CO)DND
              2(02)DND  +  (NO)^   .                        (A5)
From the definition of NTT and N_
                        W      JJ
     NW - ND *  'Ww     '                                D  

W (A7) where K is the equilibrium constant. The above equations may be combined to yield the following expression for the fuel-air ratio (F) 137'28 " (A8) *A' (1-f) (12X+Y) + 32f where n = [(C02)D + 0.5(CO)D + (02)D - 0.5]ND + [0.5 (1 + (NO)W)]NW - f/2 , (A9) NW = r ND + 6 , (AID) 168


-------
            (l-f)X +  f  -  (CH4)   6
     N  = -   .                   (All)
      D     (co2)D +  (co)D  +  (CH4)W r

            (1-f)  (Y/2) + 2f
       1       2
     r-[= 1 + -     -         ,                         (A13)
                    e
                 (co)
     3=1+ - 2 -      '   ,                         (A14)
               K  (C02)D

In arriving at Equation  (A8)  the molecular weight  of  oxygen and
nitrogen were taken to be 32  and 28 respectively.   For  the
present investigation the base  fuel was Indolene with X = 7 and
                                          .I,.;  ,
Y = 13.02. A value of 3.8 was assigned to the water-gas equi-
librium constant K.
To determine the fuel-air equivalence ratio,

   =     F/A
 c      (F/A) STOICH.
                                                            (A15)
the following equation, taken from Reference  (3), was used  to
calculate the stoichiometric fuel-air ratio:
    (I)
             97.02 - 65.02 f
          = 	                        (A16)
  STOICH.
            1407.81 - 1201.89 f
     The above equations are in terms of methanol mole fraction
f.  During the experiments the various methanol blends were
mixed on a volume basis as is described in Section II. B. Equation
(A17) gives the relation between mole fraction and mass fraction,
mf,  (3):
     f =
            65.02 mf + 32
                                                            (A17)
                          169

-------
The mass fraction in turn  is  related by Equation (A18)  to the
volume fraction of methanol,  %M,  (3):
                   %M
     mf = -                           (A18)
           %M + 0.93  (100  - %M)

In Equation  (A18) the  specific gravity of  Indolene  is taken to
be 0.74; for methanol  0.796.
     The following equations, from Reference  (3), were  used
to calculate the mass  emissions:

     gm HC/HP-hr = 16  Z  (CH4)W N^^                       (A19)

     gm CO/HP. hr = 28  Z  (CO)D                              (A20)
     gm C02/HP-hr = 44 Z  (C02)D                             (A21)
     gm NOj/HP-hr =  (14 +  16 R) Z  (N0x)w NW/ND              (A22)
where            . 453.59 BSFC  [ (1-f )  7 +  f]
     Z =
         [(C02)D +  (CO)D +  (CH4)W + Nw/fcD][(l-f)(97.02)+ 32f]  .(A23)
In Equation  (A22),  (14 + 16 R)  is the volume-averaged  molecular
weight of the NO  emissions where
                2C
          2  (N00) +  (NO)
     R = 	?	                                (A24)
                          170

-------
        APPENDIX  B







PERFORMANCE AND EMISSIONS





 CHARACTERISTICS PROGRAM
          171

-------
                Definitions of Fortran Symbols Used
Fortran
 Symbol
           Text
          Symbol
AFHCF

AFLO

AFPCF

APR

AFTCF

B


BETA

BHP

BP

BSFC

BTHE

CBHP

CBMEP

CH30HP


CH4D



CH4FD


CH4FW



CH40FD
0

bhp



bsfc
bmep

(CH3OH)
          (CH4}D
          (CH4>W
          (CH3OH)D
Description

Average Number Carbon Atoms  in Exhaust
  Gas Average Hydrocarbon

Air Flow Humidity Correction Factor

Air Mass Flow Rate

Air Flow Pressure Correction Factor

Air Flow Gauge Reading

Air Flow Temperature Correction Factor

Average Number of Hydrogen Atoms in
  Exhaust Gas Average Hydrocarbon

Defined by Equation  (A14)

Brake Horse Power

Barometric Pressure

Brake Specific Fuel Consumption

Brake Thermal Efficiency

Corrected Brake Horse Power

Corrected Brake Mean Effective Pressure

Volume Concentration of Methanol in
  Exhaust

HC Volume Concentration in Dry Exhaust
  Sample

Same as CH4D except Volume Fraction
  Rather than ppm Units

HC Volume Fraction Measured by FID
  in Wet Exhaust Sample

Methanol Volume Fraction in Dry Exhaust
  Sample
                                                       Units
                                                                 Ibm/hr
                                                                 in. H20
                                                                  hp

                                                                 in, hg

                                                                 Ib/hp-hr

                                                                   %

                                                                  hp

                                                                  psi
                                                                  ppm
                              172

-------
Definitions of Fortran Symbols Used (cont.)
Fortran
Symbol
COFD
COM
COP
COR
CO2FD
C02M
CO2P
CO2R
CTI
CTIV
CTO
CTOV
D
DATE
DBT
DELTA
EP
ER
ERCHM
ETV1
ETV2
ETV3
ETV4
Text
Symbol Description Units
(CO) CO Volume Fraction in Dry Exhaust Sample 	
CO Mass Emissions g/hp-hr
CO Volume Percent CO in Dry Exhaust Sample %
CO Analyzer Meter Reading 	
(CO?) CO- Volume Fraction in Dry Exhaust Sample 	
C02 Mass Emissions g/hp-hr
CO- Volume Concentration CO2 in Exhaust %
CO_ Analyzer Meter Reading 	
Coolant Inlet Tbm|Jerature F
Coolant Inlet Thermocouple EMF mv
Coolant Outlet Temperature F
Coolant Outlet Thermocouple EMF mv
D Engine Displacement cu in,
Date the Test Point was Run 	
T _, Dry Bulb Temperature F
6 Defined By Equation (A12) 	
P Exhaust Pressure psi
ex
$ Fuel-Air Equivalence Ratio Determined 	
m from Fuel and Air Mass Flow Measurements
9 Fuel-Air Equivalence Ratio Determined 	
from Chemical Analysis (Appendix A)
Exhaust Thermocouple EMF Cyl. No. 1 mv
Exhuast Thermocouple EMF Cyl. No. 2 mv
Exhaust Thermocouple EMF Cyl. No. 3 mv
Exhaust Thermocouple EMF Cyl. No. 4 mv
                  173

-------
Definitions of Fortran Symbols Used  (cont.)
Fortran
Symbol
ET1
ET2
ET3
ET4
F
FAC
FARS
FF
FFR
GAMMA
HC
HCHOFD
HCHOP
HCM
HPCF
I
J
JN
Text
Symbol Description
Exhaust Temperature Cylinder No. 1
Exhaust Temperature Cylinder No. 2
Exhaust Temperature Cylinder No. 3
Exhaust Temperature Cylinder No. 4
f Mole Fraction of Methanol in the Fuel
Blend
(F/A) Fuel-Air Ratio Determined from Chemical
Analyses (Appendix A)
FA Stoichiometric Fuel-Air Ratio
m_ Fuel Mass Flow Rate
Fuel Flow Rotameter Reading
r Defined by Equation (A13)
HC Volume Concentration of HC in Exhaust
(HCHO) Formaldehyde Volume Fraction in Dry
Exhaust Sample
HCHO Volume Percent of Formaldehyde in
Exhaust
HC Hydrocarbon Mass Emissions
Horse Power Correction Factor
Internal Step Counter (1=1, First Data
Point; 1=2, Second Data Point...)
Range of the CO Analyzer (Lo 1, Jn=l;
Lo 3, Jn=2; Hi 1, Jn=3; Hi 2, Jn=4)
Intermediate CO Range Selection Index
                                                      Units
                                                      lb/hr
                                                       ppm
                                                      g/hp-hr
          (Lo 1, Jn=l; Lo 3, Jn=2; Hi 1, Jn=3;
         Hi 2, Jn=4)
                  174

-------
            Definitions of Fortran Symbols Used (cont.)
Fortran
 Symbol
 Text
Symbol
M



NBFUEL


NS

NTEST

OP

02 FD



02M

02 P

PM

RATWD


RK


RLHVB

RLHVG

RLHVM

RMF

RMV

RN

RND
Nw/Nd
mf
 man
N
Description                                   Units

Intermediate Air Flow Meter Nozzle Size        	
  Selection Index  (Nozzle Size = 0.5 in
  Diameter, L=l; 0.75 in, L=2; 1.183 in,
  L=3; 1.75 in, L=4; 2.75 in, L=5; 4.5 in,
  L=6)

Intermediate Base Fuel Selection Index         	
   (M=l, Indolene; M=2, Isooctane)

Base Fuel Index  (I or In=l, Indolene;          	
  I or In=2, Isooctane)

Same as L                                      	

Test Number                                    	

Oil Pressure                                   psi

Oxygen Volume Fraction in Dry Exhaust          	
  Sample

0_ Mass Emissions                             g/hp-hr

Volume Percent of 0_ in Exhaust                 %

Volume Concentration of Methanol in Blend       %

Ratio of the Number of Wet to Dry Moles        	
  of Exhaust

Average Number of O Atoms in NO  Defined       	
  by Equation (A24)

Lower Heating Value of the Blend              BTU/lb

Lower Heating Value of the Base Fuel          BTU/lb

Lower Heating Value of Methanol               BTU/lb

Mass Fraction of Methanol in the Blend         	

Manifold Vacuum                               in.Hg

Engine Speed                                   rpm

Number of Moles of Dry Exhaust per Mole        	
  of Fuel
                                                             m
                                                             m
                                                             m
                              175

-------
            Definitions of Fortran Symbols Used  (cont.)
Fortran
Symbol
RNO
RNOX
RNOXD
RNOXFD
RNOXFW
RNOXM
RNO2
RNW
RRK
RRN
SA
SGB
SGG
SGM
T
TET
TIMVl
TIMV2
TIMV3
Text
Symbol Description
NO Volume Concentration of NO in Exhaust
NOX Concentration of NOX in Exhaust
NO NO Volume Concentration in Dry Exhaust
A J
(NO ) Same as RNOXD Except units are Volume
u Fraction
(NO ) NO.. Volume Fraction in Wet Exhaust
AW X
NO Mass Emissions
N02 Volume Concentration NO- in Exhaust
N Number of MoleluAf Wet Exhaust per Mole
W of Fuel I>IT
K Water-gas Reaction Equilibrium Constant
[See Equation (A7) ]
n Number of Moles of Exygen per Mole of
Fuel Blend in Fresh Charge [See
Equation (Al)]
SA Spark Advance
YB Specific Gravity of the Blend
YG Specific Gravity of the Base Fuel
YM Specific Gravity of the Methanol
T Torque
Total Engine Time
Intake Port Thermocouple EMF Cylinders
1 and 2
Room Air Thermocouple EMF
Intake Port Thermocouple EMF Cylinders
                                                                  Units



                                                                   ppm



                                                                   ppm



                                                                   ppm
                                                                 g/hp-hr



                                                                  ppm
                                                                  BTDC
TIMV4
                     3 and 4
Carburetor Base Thermocouple EMF
ft-lbi



 hr



 mv





 mv



 mv





 mv
                              176

-------
            Definitions of Fortran Symbols  Used (cont.)
Fortran
 Symbol

TIM1
TIM2

TIM3


TIM4

VE

WBT

X

XXI 
xxii
 Text
Symbol
\
 wb
Description                                   Units

Intake Port Temperature, Cylinders             F
  1 and 2
                                               o
Room Air Temperature                            F

Intake Port Temperature, Cylinders             F
  3 and 4

Carburetor Base Temperature                     F

Volumetric Efficiency                           %

Wet Bulb Temperature                           F

Number of Carbon Atoms in Base Fuel            	

Intermediate Calculation Steps Used in         	
  Chemical Analysis Equations of Appendix A

Number of Hydrogen Atoms in Base Fuel          	
                              177

-------
     <:.i  iriu Oiic. l,Ti-iE:ir>iG:,irtL. r-!/\TKiClES.
      > ulrtti-JSJOi-i  i-HtSl t^u) f.^fUtLdii) 'J(IO) .NSCin) ruAlEdi)) Pi4d.O) OBTdn
      *) n.ol (10) op( lu) KFPdij) '.Vi?i U) TcT(lj) CflvdO) CTJVdf)) OP(10) 
      *ir.PUu) F;,.,VdO) S/;(l-i) ic:Ri lu) rCniwUHdn) HCHCPdO) LTVl (10) FTV2(10) 
      *-t Ttfjiio) rfci VH dn; TT,.iVi dn)  i i.-,yi;dn) fTiMv^dO) riMV*do) LS\/do)
                    iltc. KF.-iCL r^>
                    tiKt Tu) F/\^j( 10) K.;-i.iPdO) H<;FC(10) CHMEP(iO> VE(10) RTHE(
                                                           lfJ) KNOXrt(10) HGM(in)  AP
                                                           JO) LTM (10) TlMl dQ) TIM
                                              iJ.K'U( HI) : EfET i  = TO  OI-.-E.
       i = i             .
       jxtiAU  TnE I'M!/. CAuOS,.  ]ij  iT^ijio  TO  A  f-f^Rut n  SPACES EACH  ITE>i.
       :;LALHblS).-JlLSl (i) f'-uF-.j^H i j  J( I) fj;(I) r)ATL(I) PM(I) iJf3T(I) WHT(I
      * ) i of1 d )  i; f:K (1 )  Ar !\ ( T <  I f."i d )  C i 1 V (I > . CTOV (1 )  OP ( I ) r EP d >  RMV (I )  SA
      *(1) rivi-Jl I )  I ( i )
      i h OKl!rt T ( I ^  o 1 c  oF'ii  fi ' i Or"<-:  w )
       AK t;:Tc.Sf d) .Li. u)  '-.'   iO  9(.f 3.->)LOi-. ( * ) CtiJl T ; :. !.;./( . ) rl/.-Otil T ) RuOX( 1 ) HC( I) CO?P(-I) CH30H
            niCi'.-./fJl j ; cT.i < "! ' 'i: ! vlM i ) f :. VvJ>( T ) p Llv'i* (U 'TIl^Vl d> 
              ) Tji"-v < J i i_sv ' i)
             i-:  T;,L  C^:.'L-. fr,iilr.  TJ  jr JJl;.i.:  l.'i TIICJ  CALCULATlONb.
    'l -J Li'JI'l li  /'?.!
    V, u :\UnV l-i-iih-t1-: . U
    :i:-j L,'-i'j/.(j
    6'J. .v^=V (t.lJ + KiiiOt ( x ) J M'.'-ul I ) '/:x.!oXl I )
    hi IF (IM-. >LT . L .0 )-:''.:> = j. *ii
c      .x rci-.xii.i-..  .j/.:j;;:  .i:-.;iii.  ^'i.i  . M^-J^G  A^,sorTATF:> ^iihi  ir
    uL'  iiijh Ui_L \. I )
    7'..' ,:0  1 ^'( /!>f,j) I"1
    'V ,jW  I 'J  -Jl.:
    : .". :,oO i;  cA'v
    . ., /,-ri'O
    : i i - J.V.. . i.1
    .. ivl.l I l/U- i VllU l)  t
       ..r:'|^iM-liiii  liii. :-:/.j:j  "..:
                                         178
                                            C i .'( oll|t; OF 'i:.: fi |A(jOL IN
                                             ( :.,j -;.-:'( I ) / x ,, 0 . u ) 
                                                                                    )* +

-------
                                                             )+*20+0.002*TlMV3( I )**
      * .;  U
    si a i- = ( l .-0  ISb^TwS (I )*?. 0 + 0 . 002*ETV3 ( 1 > **3  I)
                                        )-J l3ij*LTv+( I ) **20 + 0.002*ETVU( 1 )**30
       CAuCULATii  IhL  rtlii  FLOW  Tc.^.*  PUcS'o. +  HUM.  uOkH.  FACTORS
       AFf'Ctr=0.ulo6+!.iH( iHn.
    iicl  iFUJijTU j .u1.5.i.i9.fli4r).*oTl i; ,i_T . 57. ^) AFHCF= I (UBT ( I ) -55. II ) *i) .0004 )
      + *0.9t;<;i
    ,i^  i F i ,vbT ( 1 ) . Of . S /  '*  ^ i.f) . v;o r v J ) . LT ..6ir . "=< ) AF, -if.F= I < UflT C I ) -60 . fl ) *0 . Ofi04 )
      * + 0.y;->
        ;F(..tr(I.i ol t62.  iF ( kul' ( I )  ol  ;'i V  'f5. A,,u . A'ol i t ) . i_T . 7i! . S ) AFriCF= l {t)BT ( I ) -70 . 0 ) *0 . Of)OU )
      *---o.9/l:>
   l.iu  ii-'lV.u'i ( 1) .o'T.7^.'S).a.*U.L. r li i .i_T.77.^)AFHC^ = ( =2^
f       ntlttxi'iilMc  *.riiCn VOK*cJL  10 Ujf. ACCOnlNG  TO  Flit rULL  AND CALCIILATF
C     *  liiii.  :"jlGiCi!iLlv/J.li;lL i  '.'r.L.  .'Ur<  ^nTlO.
   1 j. L!  \j(J  I 0 C ilrSf ill; ) i  ;
   1 .!:;  r-^-.bl J ) = l'.-V.u^ J .!'., ^'-FJ / i i.-t J 7  .-li-l^O 1 .Ji9+F)
   l;-o  r'A;-:ati) = (J .L'+.I.i-.-'^.n-'r ) / ( 17 j.o. fi-.
C       v-AL^OLATi-:  inL  iiI'VCiP AC  I.HN;I. . I'l Y  OH  V '*"  r-CfHAIJUl.
f.       .jiLlLl-.i^ilit.  I'S't-  l'Jl'Oi:'Lr!  Ai-^  TL.-J.J  ..OJ/MTOM A.yi!.^ CrtLCULAFF  THE"  AlK
C     >i,-l Hu'JiiL'11.-,  r,_l.  nU.ii<.-
   l.'.ii  i--. ib(i)
   1-40  '.'J  i ^-( iu i ibu  ib':j K-.v.' i 6lJ' i  /o) L
   1-t j  riF^U l I ) = (2-'V*:?o;i:*i5>. ---yS-v*  AI-K I 1 ) -i^.7ii2n
   1 :;.u  /,Kv_0 ( I ) = il'..i^.:L-i4t /'". S.'i7 i .-;n\r '< I I ' -!t* .??-;'+ 1 *,'\F ( I J
      t..^( i ) -: j.ii-i .ol,i't.^:- "'". i ! ' *T.^.O)*MFliC!--*Ar ICr"*AFl->CF

   lt,a  ,-i'FLut.i ) =Va-i^.-J.-.-ili, ;.-.>.- r;-1.1.';'  .rf? I I j-t..^?.:in + AFP(I)
      *'.. I i J * 4 -i  .!-' 1-- -.>,,"' /'.; I' i I > * ''*   .1 ' *..Ki-iO + ftF: I Ch + nr iJCF
        ..'.;  K;  j.7r,
   I .-.u  .il-'i. u ( i ) - i L J , V 7 * ii :,  .:.'- .  -r 'V, 1 '  '.. " i i ) -: 1 7 . /.7 j.?* -\rT'. ( I J **2 .
      ..(..) t.*J.,,-iL. .."..>-.-. 'i-!-:i :/>', .OJ ,,f-,irc:*/vF fCF*MFi-CI"
        ..J  i'w  J.7:-,
   l,-.j  ..K^uii )= U / i-. ?:'.: i. -.1 >.-,-ij7fl,,---'i J )-^v>.9 i.".*Arfl ( I ) **P.('+9fi.V93^ AK1-?
   t '/u  ;..L.>l i=l^o:...:;.;V," j' uv
       * i i l ' :* ...  !s. J * r,l f-.Ct- * .' t i I"! ; !' f r-r
        v-Mi-Cv..-:  M".. i.ii-  i^-.-...  ^i.-'V.  i-' s1^'.1'....! a h'P"8'  i,'?.ii
   1 , ..  i r li- ,'';) .Li_  i. ) oO  '! . .  i'? -j

                                    179

-------
            rtd) .Li_.^!jJGo  10 I/O
            iv.l i) .L.L.  3u)uO TO  i7/
            i-,(i) .LL.luiiJuO Tu  L7o
        oO Tu  lc?b
   17b  rFm = lG.
        v>0 i'y  ib:--.
   177  rrll)=(0.2abU+FFK(ll-0.8U)
        GO ro  ie^
   17o  rrli) = lO.
        uO TO  Ifc6
   179  HFU) = (0.
C       LALCULATr  i'nL 'oRAKt.  r.O.-vSc
       iAL(.U.Alc  (HL  HP CO^ix MCTUH  THEIM I'MF  CORR  HP
C      oALV-ULATi-:  irlL  LiKAKt  SPciCiFlC  FUEu  COMSUMPTION  IN POUNDS  PER .DRAKE
C     *i;Oi<:->L  FOrttK nOUR.
   190 l}SrCll)=f.K(l)/bHt'
C      L^LCuLATL  Ihu  COi\K I'.MF.r1  IN PSI          /..'.'.'
   1S1 CB^tl't DrCuI'lKl 1) *'/S?t.CUil>/l.O'Ri,( 1 ) )     .".T.::
C      LAuCuLATi"  UiL.  wOLUM^IKiC  LKFcCiErtCY.
   ?UU V 1 1 1 ) = ( Ai- Lu I 1 > +4 o3S> . o* I !) T i ][ ) +4DU  0  / (RH ( I ) +RN ( I ) *D )
C      LAuCuLATi-. .  Inc.  i_0.vKi;  utrliNb  tfAUJt  OP  THE Lt.i>lO
   Pl',0 i\Li-1Vi:=i-";M|- +i\Lr:V.-;*- ( I . "-fJi-if- ) *!\LhV-j
C      LALCuLAlr  Ihu  o'\,-\i:  I'lli-.Ki-iML  cFF I C IcXCY .
C      C-MLvULATr:  'lilt. rl.'-L-^l!'  r'..JiV.iLc:KiC[: '"'ATJO.
   ?1J tK(I)=FFll )/(AFLotl.)*ri,r.!J(iJ >
C      CAuuoLAlr  inL r'ii:'' u ) i J. j
            i I =-ii  1U7 luOt ' i f  'i **-/.!
      K* J ij  o-**-i+. j*^0i-x ( i ) * *;. u *'o +lo?>uj9'*ir. 0**-H. (.i*COR
                                                     I ) *j .i)OUOU5o731 33*COR
                                  i ) **-.;. j
                                                            ) ^0 .970i4*10  0**-7.  0*C
                                                            0  6S0970* 1 0 . 0**-7
      ;* . i U ij il J u i J-. / 1-.'-; i j * L 'j. , ( j )   .1  L
   ?'-;.. i. '.v:-i-L'jv i 1 J
       ;,vl  i o  I'J -it- it. '/ ;-^ J > i_'... ;' :
C      ,,Lr i;:t.  C.it :--.lv. .-'.!_  /,.-,.' i'^r,  ;i,;::.  ,_i)UA T'cV-iS r!-l,<  MLATLD HC  AMO  liOX
   >-!-D v..'-./t; r L.-v-CV1"1 i i J / 1 .!..  \'
       v.Ji-tv-Ocii1 1 j J /i 'iu . >i
       I. Oi1 L1 = i. wt  v 1 J / * s. j  u
       v.l i-fwt- ij-C, :iv>! II ( . ) / j i;f . :1
       i iC; ivy'i .. -i-:^t :^r I i J /: :.;; . j
       V.F I4f ,v-i 1C V 1 ) / i ' ..; '.' .  ; .  (i

                                   180

-------
C

C


C

C'

C
C

r
XXs=l (l.J-i-
CALCULATE 1 hi.  VvEl  AMtJ  uii-lCri4K'.1*?\lE.LrA) )/XA3
i;;-Ji=UiAMn-,A*RiV)l 1 ) ) -HVL i A  .
v_Ai_C.ULATh.  int.  i.'ii=l < l.ii-r
        i:i-_ i'^-1 . 04- (v.
        u.'\f^i/.^= ( A  iJ- I ?.
                                           -  n
        V..AUCUL.MT..;-  iVit.  ..iii  ,/-'
                /iTr.  1 1 it
                                     J  ..'Kr  i"ini .
i .-Li- *i .'.. f-'-.;i'.i_  -^!...  c ^.-' '.'.T i'.-!-ji
,.K,,- I -,.!!; I  J ;. \-ti- r (;"'.. '.< X :j.'-i ) ) -(i- // 0
,v ../., I ., H/A
I  MK.-A <:>/ li  .
-------
        v,AL.Cvi.'nTL  i_.-,iS::.UN^  ./   A v.'cT  iV.SlS
         iYi-f..JU( i)
        KlMUl i)-YYl/KAT..'!'i 1 )
               I)=,iC il)
        nCii J=Clu!:(i)/itAi,-;u ( i )
C       LjliHAi-.L  iMuKt  i-.Uo. c.;ii,TiO,.S
   P/J AX7-1 .1 . o-F
        A X i 1- ( XX I U*A/.7 ) / v Xx - -X
        V.ALCL-LAT,-;  fh.L. ,-,>:". 'i,  r.-iT.-
   ? -5u  i F I i . LL . j. U ) ow  I 0 <_5i*
                   ( I li ) n-i.iO) r lit.-a i) I = li 1 n) i (
                   ( I i  i-jL'i1'1 J   iC.-,nP( i )  I-J > i n')
                     v ':' i-::.-,T  !.'.;.    '  J.Ui li.//1nx .
                   ' i i'.lr lui/f i^* '.'i-.vj.  ..-TuC  ' / H)X
                   / iLXi ' i :-,>'\j!;.       ' r ^r.'riu.^/i.ix.
                   .L^,..   i::. i-1.!"*'/ 1 uX ..Q.  i. ,o... ( i ) , i - j  i o 3  ( ;-iC 1 1 )  T = i  i ri ) f c 02M ( i )  1=1 r i o )  i CON' ( T
       X  l-JL'iU)  iCv.-.^ .,t i ) , r^i , j j) , (..^loXrit i ) . 1 = 1 , ID)  Ci-lCM( i) I = llCi) r (FPCH
       -,,< i ) ' 1 = J  jo)  (.Ji.V, i ( . )  J-l f ju)
   ."V,   f-OiM-'iMl (/   IVIA':.OA   f-'i- '  V. ' ' iJt-Mi.. J.//1/1X* 'MC   PPr-i   W  1 OK1M . 1//1 HX  '
       *...Abi  -!^      i'!c.) i:. .',/i':'  .'-.. ..,/,-.!'  r'r\  / 1 ii> ,  , \l\^':>  CO    '  lOF-'J 0  3/ 12X 
       "l-i;{.-:j/:-iP  in-, '/ i o s.   .. n..."  Cw-   '  i -.if i u . ""i/1? A ,  C,.xi1S/: lu  !ii< ' /I HX t 'MASS '!
       + ,.;:    '' Li:r > ...-/. < ,.< r,, ,.,/:,.-  .,-.< /I, ,;.;  Mf-iS  . 1C     '  iOr 1 J  5/1 2X  ( KHMS/
        , ,ij  urs ' /J ,i,\r '( ____ fV.ii:..-.  '  i'l, ! . .,/ L',/..  Tj-.S i'  ij(.J.    ''lulidj
   ~\l-:.  ..:! i I i_ ( o i .jlo)
   ,* !.^  i'.'.'!'.!'!,* f I l.i I ' JoX '  i .".-'/   " ' )
   .Tj  ..<\i i ;.(.; .j-. -o) < :.;-. '.I M A . t = ,.;,). l,.-x'| ^ ( T )  I -1 f 1 ii )   (v, HHi.it I )  1 =1  10 )  ( ^
       .   w,^ i J i , ,-_, t \ .,/ , i ,> i j ,, A:-._ f L.-.j  (  ..:-. T ( T )  1 = 1.  I'l)  C}i-'( l)f! = lilU)(CT
       i ,(:>.,-! , Li; J r l^ ,(;!, 3 _J  J .,y
   .S-i,  r  -V , -,-. i t/ L'- .-. " r,.1.":- 1  ..ri.    i\ . 1,  // J -i. > 'ATr.         ' iOr 10tii//luX 'nC "
       -:  .    '' . n i- ii'. .// i .,'  ,-.. ..  ,:-..  ..   '  i "ri u . i// U)>.  ,jr?'r  >  TfTN'P1 'lOHiii
       > ; .-'i...-  ';.. '. . ^ . ' / i o '.  '..-..!  .  i..- ..:!'" - . 'U  1  . j / I'-'.A  * '"'i G.F. '/HiX 'i; AK.fKlr.S
                                       182

-------
     *:-,. iUt-lu.*Vi.A lfiu)  i-ipv j )  r-; it; )  IAI-LU< I >  T-I iu)  (FF(I)  i=i 10)  IETIII
     <-M 1=1  10) > it i v(i) i=if iu)  i.^r^n ) i-i io)  (t:r4(i) i'i=iio>
  ?S^u  i-Oi\rtfjT(/iC.A ?E;.!l.Pi-.F.-,S.' J.iFiU.2/l*iVi  P.S.I. '/lOXi  AIR  FLO*1   10F
     *iU.c/liXr 'UjS/hrr/iOA' 'Fut'i. FLOW  f  InFlO .^/liiX  'LfcJS/HR ' /.IOX  'EXH. .
     + itMH.'/lnX 'LYL.i-0.  JL  fiOKli).l//lUXilCYi..NO.  2  '  10F10 . 1//10X* CY
                                                                I )  1 = 1  10 )  (RN-
                                 = 1 lu)  (,jTti^T(I) l = l.lu)
          i-iAi l//luX  IU'1 .I'i/^i'j. T. VlOX CYL.MO.l2  luFl 0 . 1//10X  CYL.N0.3
      + ' 1UF'10.1//10>.   'GAPu.  RAbc.1 luF10.1//10X  NO. D MOLES1  1 nFi0..1/l()X
      *'PuK.;".OLL I- '/J.oX'/iiO. :-'!.;;. /,J. ' HOFlG.tt//10Xf ' ILST. NO.  '10ilU)
      wO  Vo 7
FOF AT-  Lii.L. 2
?S?<).f/.*
FND LL'iT
                                183

-------
        APPENDIX  C




LIST OF STANDARD CONDITIONS




    TEST RESULTS FIGURES
           184

-------
                    TEST RESULTS FIGURES


FIGURE   TITLE                                                  PAGE

  Cl     CO Emissions, %, Dry Exhaust at "Standard" Con-         187
         ditions Check Points Including Average Value
         (x) and Standard Deviation (S).

  C2     C02 Emissions, %, Dry Exhaust at "Standard" Con-        187
         ditions Check Points Including Average Value
         (x) and Standard Deviation (S).

  C3     NOX and NO Emissions, ppm. Wet Exhaust at               188
         "Standard" Conditions Check Points Including
         Average Values  (x)  and Standard Deviation  (S).

  C4     FID, HC Emissions,  ppm, Wet Exhaust at                  188
         "Standard" Conditions Check Points Including
         Average Value (x) and Standard Deviation  (S).

  C5     Wet and Dry Bulb Temperature at "sfcanSard"              189
         Conditions Check Points Including Average
         Values (x) and Standard Deviations (S).

  C6     Barometric Pressure at "Standard" Conditions            189
         Check Points Including Average Value  (x)  and
         Standard Deviation (S).

  C7     Inlet and Exit Coolant Temperature at                   190
         "Standard" Conditions Check Points Including
         Average Values  (x)  and Standard Deviations
         (S).

  C8     Air Mass Flow Rate at "Standard" Conditions             190
         Check Points Including Average Value  (x)
         and Standard Deviations (S).

  C9     Fuel Mass Flow Rate at "Standard" Conditions            191
         Check Points Including Average Value  (x)  and
         Standard Deviation (S).

  CIO    Exhaust Temperatures  at "Standard"  Conditions           191
         Check Points Including Average Values (x)  and
         Standard Deviations (S).

  Cll    Intake Manifold Temperatures  at "Standard"              192
         Conditions Check Points Including Average
         Values (x) and Standard Deviations  (S).
                           185

-------
                   TEST RESULTS FIGURES - Cont.


FIGURE   TITLE                                                   PAGE

  C12    Volumetric Efficiency at "Standard" Conditions          192
         Check Points Including Average Value  (x) and
         Standard Deviation  (S) .

  C13    Brake Thermal Efficiency at "Standard" Con-             193
         ditions Check Points Including Average Value
         (x) and Standard Deviation  (S).

  C14    02 Mass Emissions at "Standard" Conditions              193
         Check Points Including Average Value  (x)
         and Standard Deviation (S).

  CIS    CO Mass Emissions at "Standard" Conditions              194
         Check Points Including Average Value  (x)
         and Standard Deviation (S).

  C16    C02 Mass Emissions at "Standard"  <2$hSitions             194
         Check Points Including Average Value  (x)
         and Standard Deviation (S).

  C17    NQx Mass Emissions at "Standard"  Conditions             195
         Check Points Including Average Value  (x)
         and Standard Deviation (S).

  CIS    FID HC Mass Emissions at "Standard" Check               195
         Points Including Average Value (x)  and
         Standard Deviation (S).

  C19    Chemical Fuel-Air Equivalence Ratio, 8  at              196
         "Standard"  Conditions Check Points  Including
         Average Value (x)  and Standard Deviation (S).
                           186

-------
a
3
jj 0.7
* 0.6
r-i
n
J 0.4
n
.S <
H 1
8
Fi
4J
n
S
1
u
a 14


-l
B "
 <
 1
n
H
JT
8"

f

gure
r


o
x = 0.554
 S = 0.080
0 0  0 0
0 o Oo  o 0
0  o o
0  0 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
^OCOO^^fiAr^O^OrH^OIinvDvDtT^O^OOrHrH CM CM ^
"Standard" Conditions, Check Point Test Dumber
Cl - CO Emissions, %, Dry Exhaust at "Standard" Conditions Check Points
Including Average Value (x) and Standard Deviation (S) .
O
_ _ o o o  o
00 00 000 0Q 00000
o  - 13'8
S = 0.16
-1  1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
^ fl r* OCNvD^H^^CO CNfirtvO *w vD ^ to ^ lA roGOOOO^ro
\o oo o tf ^f in r** o^ o ^ ^ TO 1/1 ^ vo o^ o^ o o ^ *^ CM c^ ^*
^ ^ CM CM CM CM CM CM c*i ro r'l ro ro ro n (^ r^ *sf ^* 
-------
    n
    3
    id
        3000
   a
   c

   .2
   n
   m
   i
2000
                          o  o
                                                0

                                                0
             I
           O  NOX     x =  3122


             NO      x =  3003


           -II	1	1	'   i   '
                          0

                          0
      S  =  381


      S  =  530


     J	1	1	1	1    i   i   i   i   i
                                                                           '  i   '
                                                                                        J.
                  vD co  o  ^-   ^  m  r   oo  i-if-icMiniDvootoi   o  o  r-i  1-1   CMCM^-
                  -(-i  rv)NtNfMfNfNnnnnnnnnpn^^r^j't'3''J1^)1


                               "Standard" Conditions, Check  Point tfllt Number




            Figure  C3  - NOx and NO Emissions,ppm.  Wet Exhaust  at "Standard"  Conditions Check



                         Points Including Average Values  (x) and Standard  Deviations (S).
          2000
                    O
m



H
m
a
  1800
    m

    a

    I
         1600   .
              i
                         O


                         _l_
JI	'      '
                                                       O     O

                                                           o
 x = 1851



 S = 132





-I	1	'-  '   '
                                                                           o  o
               00   O
               H   CN
                             sT't  in  r-  en
                             M  fN  (N(M(N
          oo  O\
                             n   on
                                                                           OO  i-i-<
                                                                                 oo
                                                                                 tN
                                                                                           cr>
                                                                                           fM
                                "Standard" Conditions,  Check Point  Test Number  '





            Figure  C4 - FID, HC  Emissions, ppm. Wet Exhaust at "Standard" Conditions Check



                         Points Including Average Value (x") and Standard Deviation (S) .
                                              188

-------
Temperature, F
J 00 \O
o o o
/V

O Dry Bulb x = 85.6 S = 3.04
 Wet Bulb x = 74.9 S = 1.84
0  ' .
O n
  Oo
0 o  o o  Oo 
 
0 0
 e  
. ^.
m
i 1 1 i i i i i i i i i i i i i i i i i i i i i
r*rof^o CM \o r-i 1-1 co CM n M vo CM vo a- in ^inrooo 030>n
vO eo o ^r ^r in r~ 
n
n
m
                          "Standard" Conditions,  Check Point Test Number





         Figure  C5  - Wet and Dry Bulb Temperature at "Standard" Conditions Check



                     Points Including Average Values (x)  and Standard Deviations (S).
     30.5
     30.0
1
                   x = 30.1



                   S = 0.04
                     0  0  0
                     J	1	1	1	1	L
                                                    0  0  0  0
J	L
                                                    J	1	1	1	L
                                                                          1  i  i  i  1
                                    cr>
                                    01
                          "Standard" Conditions. Check Point Test Number




         Figure C6 _ Barometric Pressure at. "Standard" Conditions Check Points



                     Including Average Value  (x) and Standard Deviation (S).
                                   189

-------
200

O

0
g 190
a
0
Ot

J 18
S
0 170
8 <"
w V


O Inlet x = 171 S = 4.41
 Exit x = 187 S = 4.47



. . *   *
*  *   . 
W
 A
w 
  
 
o o . 
_ o o 
o o o  o 0 o . o
o o o o
^ o .
	 1  i  i  i  i i i i i i i i i , i i , , , , , 9 i i
  E;2 SVD '-'r' oocMn nvDNvo^ in ^r in n eo ooJ>n
S388SB5S8SSSB85SSSS33S3S
                  "Standard"  Conditions,  Check Point Test Number
 Figure C7 -  Inlet and Exit Coolant Temperature at "Standard"  Conditions Check
             Points Including Average  Values (x~)  and Standard  Deviations (S).

1 180
*
&
 170
h
to

s 1
3
x = 169.48
S = 5.79
0 o o
0 o   Q  0 -0 OO 0
0 00
o o o
o
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
vooooTr^mr^cnor-tHCMinvovocnon o o IH i-< CM CN ^r
i-ii-t CNCM tMCMCMOinn nmn nnnn '*'*'* ^r ^^ 
-------
     12
     11
CO

0)
          o     o                                     o
o            o     o  o     o  o  o                      o        o
   o  o                              o           o            o
                                             o  o            o        o  o
                                          o

x = 11.55

S = 0.174
       <
3        r
fe        I	ii   i   i   i   i   i    i   i   i   it   i   i
             VDOO
                                         f^  VD   *f if\  ^  if\  f"l  CO  00  O^  ro
                                         vo^o   cnoi  oo  1-1  ^  <\i  
3 1200
ID
^
O Cylinder 1 x = 1180 S = 112
O Cylinder 3 x = 1205 S = 17
& Cylinder 4 x = 1240 S = 17
0

O ,-. A
o o  o o o 
aSD Ag A A
A P A
AA^AAA O^Q Q ^
D
L 	 1  1 	 1 	 1  1  1  1 	 1 t i i i i t i i i i i i i i .,

H r-l CN (Nf\JCN C>JtN SMM tNlTJ HJlOOTl O\OOrH^H (N CN 5
n n rr|rr)'*>'*>^^'^ji^ii^>jirt.
                         "Standard"  Conditions, Check Point  Test  Number




      Figure CIO  - Exhaust Temperatures at "Standard" Conditions Check Points


                    Including Average Values  (x) and Standard  Deviations (S) .
                                    191

-------

Ck,
0
* 120
i>
3
4->
 no

1
| 100

o
0 90
H
C
I
S 80
V
X
to
C
kj
<;


F

ficiency, %
U)
*>.
H-l
U
o
iH
1 1
I 33
,-1



A Cylinders 1, 2 x = 94.1 s = 4.83
O Cylinders 3,4 3c = 107 S = 5.42
O Below Carburetor x" = 85.5 S = 5.52


Q
0 Q 0 0 o
o
O O n
. *A AA 0  n  <
A ^ A A O
 A A A n
O O O ^ n A
O OO A A A ^ ^
0A o   ^ A A
A o  o   (
u o 
0 0
o
L 	 ^ 	 1 	 1 	 1 	 1 	 L_J 	 ' ' ' ' i t i i i i i t t , , | ,
*rt!-rt ^OCN\DiHi-HOOfNfOro ^Drsivo^* inTtmrooOCOO^'*!
voo) O'T^tmr-o>Oi-ii-i(N iniovoin (nooi-ir-irMCM^1
"Standard" Conditions, Check Point Test Number
igure Cll - Intake Manifold Temperatures at "Standard" Conditions Check
Points Including Average Values (x) and Standard Deviations (S) .
O
0 0 0 0 
0 0
00 0  0 0
.00
O
x = 34.0 Q  
o
S = 0.51 O
O
i i i i i i I i i i i i i I i I i i I I I I I I
^O 00 O ^ ^f lA r*1* Q\ O ^ ^H f^ tO vO vO Q\ 0^ O O " ' ^ fN M ^*
^ r~i ^N fN (N 01 oj 04 ro ' ro ro rn ro n rn n ro ^* ^d* ^* 
-------
Intake Manifold Temperature , p
_ i i i
CO 10 o h- 10
0 0 0 0 O

]
Volumetric Efficiency, %
U> Ul
U> 4k
^

<

Pi
>

A Cylinders 1, 2 x = 94.1 s = 4.83
O Cylinders 3,4 x" = 107 S = 5.42
0 Below Carburetor x" = 85.5 s = 5.52
.   a    Q Q -
o  a  Q 0
O O O ^ n A
O o OO A A A ^ ^
0^oO0^ *0o0
0 0
o
	 1  1  1  1  1  1 1.. 1 1 1 1 1 1 1 1 1 Iff 1 t 1 1 t
^ f^'O'N\O'~'~^OOCNfy>n vDCNvD^ iD^lOMCOGOO^m
*& co o^^ior^o^Or^r^r^j i/i^ovoo^ (^oo*~ii-^fMrj^1
"Standard" Conditions, Check Point Test Number
gure Cll - Intake Manifold Temperatures at "Standard" Conditions Check
Points Including Average Values (x) and Standard Deviations (S) .
0
o o o o o
0 0
00 0  0 0
.0 o
O
x o 34.0 Q 00
o
S = 0.51 O
O
4
i i i i i i i i i i r i t i i i i i i i i i i i
P** (*> r*- o f^i v)  < riQ&f^iF) fOvDCNvO^fin ^inrOQDCQO^ n
                 "Standard" Conditions, Check Point Test Number





Figure C12 _ Volumetric Efficiency at  "Standard" Conditions Check Points



             Including Average Value  (x") and Standard Deviation  (S) .
                               192

-------
*
0
S 21
o
H
U
H
10
E 20
0)

01
 , ^
. o
F
O Mass Emissions, g/hp-hr
^  W * Ul
0 00 0
A
0 0 0 0
.  o  o -
00 00 0 o
o  o  
0 o o o
 x = 20.9
S =* 0.39
1 	 1 	 1 	 L- 1 1 I < 1 1 1 1 1 I 1 I 1 1 I i i i | i
*^ ^* ^^ C) ^1 \Q rH *~4 00 ^i ^0 r^ vO ^J ^D ^* ^^ ^* -O ro oo OQ ^^ r*i
^O 00 ^5 ^* ^f irt P"* 0^ ^3 ^H ^H ^^ u^ "tD ^3 0^ C^ ^3 ^5 ^^ ^H f^ ^^ ^*
"Standard" Conditions, Check Point Test Number
igure C13 - Brake Thermal Efficiency at "Standard" Conditions Check Points
Including Average Value (?c) and Standarl 'Deviation (S) .
O
x = 62.6
0 0 s = 1-39
0 
 0  
- 0 o o  0
o
> 
1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f^*1^ r^O (NvDrHi i co (N fi n vDfNvo ^fm^inmcooo or* rn
                 "Standard" Conditions,  Check Point  Test Number





Figure C14 _ 02 Mass Emissions at "Standard"  Conditions  Check Points



             Including Average Value ("x)  and  Standard Deviation (S).
                               193

-------
  14


  t
  U
  c
  0
 H
  H
  CO
 H
  CO
  m
26


25


24


23


22

21  _


  i
              -I	1	1	1	1	1	1
3   i 2  3*  s
                                  x = 23.3

                                  S = 6.28
                                                          -I - 1 - 1 - 1 - 1-  i   i    i   t
                                                                                       i
                                S  3  3  3   * s
                                                                S  3  i  3 3  3  3  3
                          "Standard" Conditions,  Check Point Test Number


       Figure CIS  - CO Mass Emissions  at  "Standard"  Conditions Check Points

                     Including Average  Value  (x)  and  StaneUirJ Deviation (S) .
M

p.

H
CO
CO
H
 rg
O
CJ
     800


        {

                                 o     o
                                    o
           x  =  878

           S  =  14.8


        J	1	1	1	1	1	1	1	1	I	I	t   I   t
                                                            J	I   '   i
                                                                     J	'   i   i
              r>  m  r-  o  CN  VB IH
                                                            tfin^fin  mcocoom
                         "Standard"  Conditions,  Check  Point  Test  Number
         Figure C16 -  co_  Mass  Emissions  at  "Standard"  Conditions  Check  Points

                      Including Average Value  (x)  and Standard  Deviation (S).
                                    194

-------
k
04

i
 m

 0
H
   o  o
<)  r-i  ^r  Tf

CO  O>  n


            r  m
            vooo
                   o  ^
                   CM  r\j
                            vo  -^
                            m


1 1 1
-i -J CO
N r>j m


1 ' 1
 ff> O O
<

1 1 1 1 1
n co 00 O^ n
-i 1-1 pg CM ^
                        "Standard" Conditions,.Check Point Test Number




      Figure CIS  - FID HC Mass Emissions at  "Standard"  Conditions Check Points


                    Including Average Value  (x)  and  Standard Deviation (S).
                                      195

-------
11
o
e
at
"S 0.97
H

hi
f 0.96
0)
g
Cu
u
S * <
 - r

U 



' 0 0 
 00
o   o _ 0oo
x = 0.963


S = 0.006
O
O
	 H  '  '  '  '  i  i  "  ' ' 	 i....,,

                "Standard" Conditions,  Check Point Test Number





Figure C19 - chemical Fuel-Air Equivalence Ratio,  c  at "Standard" Conditions




             Check Points Including Average. Value  (x)  and Standard Deviation (S)
                         196

-------