EPA-460/3-77-012a
July 1977
CHARACTERIZATION OF
METHANOL/GASOLINE BLENDS
AS AUTOMOTIVE FUEL -
PERFORMANCE AND EMISSIONS
CHARACTERISTICS
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Ann Arbor, Michigan 48105
-------
h!
EPA-460/3-77-012a
July 1977
S-;-
!l-H
t
:i
CHARACTERIZATION OF
METHANOL/GASOLINE BLENDS
AS AUTOMOTIVE FUEL -
PERFORMANCE AND EMISSIONS
CHARACTERISTICS
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Ann Arbor, Michigan 48105
-------
TABLE OF CONTENTS
Page No,
I. INTRODUCTION 1
II. PRESENT INVESTIGATION 2
A. OBJECTIVES 2
B. FUELS 3
C. ENGINE 4
D. MEASUREMENTS 4
D-l Measuring Methods 4
D-2 Experimental Uncertainty 4
E. TEST PROCEDURES 5
E-l Calibration Check at "Standard"
Conditions 5
E-2 Type 0 Tests 6
E-3 Type I Tests 6
E-4 Type II Tests 6
F. METHODS EMPLOYED FOR TYPE 0 TEST
DATA ANALYSIS 7
F-l Objective 7
F-2 Data Presentation Format 8
F-3 Statistical Analysis - Description
of Methods Used 8
F-4 Statistical Analysis - Presentation
and Interpretation of Results 12
F-5 Discussion 14
-------
TABLE OF CONTENTS (cont.)
Page No.
III. EXPERIMENTAL RESULTS 16
A. TYPE 0 TESTS 16
A-l Fuel-Air Equivalence Ratio 16
A-2 MET Spark Advance 19
A-3 Torque 20
A-4 Brake Thermal Efficiency 21
A-5 Volumetric Efficiency 22
A-6 Carbon Monoxide Mass Emissions 23
A-7 Nitric Oxide Mass Emissions 23
A-8 FID Total Hydrocarbon Mass Emissions . . 24
A-9 Carbon Dioxide Mass Emissions 25
A-10 Oxygen Mass Emissions 25
A-ll Geometric Distribution 25
B. TYPE I TESTS 27
B-l Fuel-Air Equivalence Ratio 27
B-2 Torque, Engine Speed 27
B-3 Brake Thermal Efficiency 27
B-4 Carbon Monoxide Emissions 28
B-5 Nitric Oxide Emissions 28
B-6 FID Total Hydrocarbon Mass Emissions . . 28
11
-------
TABLE OF CONTENTS (cont.)
Page No,
C. TYPE II TESTS 28
C-l Manifold Vacuum 29
C-2 Blend Leaning Effect 29
C-3 Brake Thermal Efficiency 29
C-4 Oxygen Emissions 30
C-5 Carbon Monoxide Emissions 30
C-6 Nitric Oxide Emissions . . i i 32
C-7 FID Total HC Emissions 32
IV. SUMMARY AND CONCLUSIONS 33
V. ACKNOWLEDGMENTS 37
VI. REFERENCES 38
LIST OF TABLES 39
TEXT OF TABLES 40
LIST OF FIGURES 86
TEXT OF FIGURES 92
APPENDIX A - ANALYSIS OF EXHAUST GAS 166
APPENDIX B - PERFORMANCE AND EMISSIONS
CHARACTERISTICS PROGRAM 171
APPENDIX C - LIST OF STANDARD CONDITIONS
TEST RESULTS FIGURES 184
ill
-------
I. INTRODUCTION
Alcohol has been promoted as a motor fuel for almost 70
years. Most of the early work was concerned with the use of
ethyl alcohol (ethanol), which could be produced by fermen-
tation of grain and other farm products as well as synthe-
tically. The impetus behind these studies was the desire to
develop new outlets for farm produce and to develop energy
sources other than those based on petroleum. Excess cost and
the absence of technical advantages to justify a higher cost
prevented the general use of ethanol as a motor fuel (1)*.
Recent concern about environmental problems and the
eventual shortage of conventional petroleum-based fuels coupled
with the potential of obtaining methyl alcohol (methanol) as
a product of coal gasification (2) has b£OUght about a recent
interest in the use of methanol as a fuel.
In order to assess the feasibility of using methanol as
a motor vehicle fuel, either alone (neat) or as a blend in
gasoline-type base stocks, its performance, emissions and
practical use characteristics must be ascertained. To this
end the authors and their colleagues are conducting a series
of experiments which will determine methanol blend-fueled
engine characteristics information found to be lacking during
their preparation of Reference 3. This report contains some
of the results obtained to date. Other results have been
presented in Reference 4.
* Numbers in parentheses designate References in Section VI,
-------
II. PRESENT INVESTIGATION
II. A OBJECTIVES
The present study was concerned with two basic areas of
investigation. The first was the determination of the effects
on the performance and emissions characteristics of a multi-
cylinder, carbureted engine operating at MET spark advance,
resulting solely from a change in fuel from a base stock
representative of unleaded gasoline to blends of the base
stock and methanol. To achieve this first objective the
engine was operated at constant speed and manifold vacuum over
a range of fuel-air equivalence ratios. The fuel's effects on
performance and emissions characteristics were then ascertained
by comparing the various performance and emissions charac-
teristics determined while using methanol blends as a fuel
with those characteristics determined at the same fuel-air
equivalence ratio while using the base stock as a fuel. The
first area of study is felt to be of fundamental importance
and an aid to understanding the results obtained during the
second area of study.
The main purpose of the second area of study was to
estimate what would happen to its performance and emissions
characteristics if the above-described engine were to power an
automobile traveling at constant speed while being fueled by
various blends of methanol and gasoline. To achieve the goals
in the second area of the study the engine was fitted with a
carburetor whose fuel metering characteristics approximated
those of a stock 1974 carburetor. In addition the spark
advance was adjusted to the best as could be determined, stock
spark advance corresponding to the engine speed and manifold
vacuum. The speed of the vehicle being simulated during the
tests determined the engine speed and torque requirement.
A third area was investigated during the study which
involved determining the changes in performance and emissions
characteristics when methanol blends were substituted for gas-
oline while making no change to any of the controllable engine
-------
variables. This third area does not comprise a basic objective*
but since the information was readily obtained during testing
it is included for completeness.
In summary, the basic objectives of the present investi-
gation were:
1. Determination of the effect of methanol addition to
gasoline per se on the various performance and
emissions characteristics of a carbureted engine
when it is operated at the same as gasoline-fueled
operation engine speed, manifold vacuum (unequal
torque as the data showed) and equivalence ratio
with MET spark advance.
2. Determination of the effect of methanol addition to
gasoline on the various performance and emissions
characteristics of a carbureted engine when it is
operated at the same as gasoline-fueled operation
engine speed and torque (unequal manifold vacuum)
with no alteration to the controllable engine para-
meters other than the throttle setting and with the
fuel-air equivalence ratio being determined by a
stock carburetor and the spark advance adjusted to
the stock value corresponding to the engine speed
and manifold vacuum.
In the following sections the fuels, engine, measuring
techniques, test procedures, and statistical methods of data
analysis employed to attain the objectives are described.
II. B FUELS
Indolene H.O. Clear Motor Fuel III was used as the base
stock representative of unleaded gasoline. Mixtures of
Indolene and commercial grade methanol were used to repre-
sent methanol-gasoline blends. Blend levels of up to 30
volume percent of methanol in Indolene were tested. An X
volume percent blend was formed by taking X volume units of
methanol and combining them with (100-X) volume units of
Indolene. in this report Indolene is also referred to as
-------
0%M and X volume percent blend as X%M.
II. C ENGINE
The four cylinder engine used in this study was manufac-
tured by the Pontiac Motor Division of General Motors Corpor-
ation and is described in Reference 5. In order to simulate
a modern engine, it was fitted with a 1974 400 cu. in. Pontiac
engine cylinder head and cam. The compression ratio was
8.1 to 1.
A modified intake manifold which accommodates a four-
barrel Rochester Quadrajet carburetor was used. The car-
buretor, in turn, was modified to operate on only one of
the two primary and secondary circuits. For some of the
tests it was necessary to manually control the fuel-air
ratio. For th«se tests an adjustable mlin metering jet was
installed.
The spark advance was manually adjustable with the cen-
trifugal and vacuum advance mechanisms inoperable.
Coolant water inlet and exit temperatures were thermo-
statically controlled. The radiator and fan were replaced
by a cooling tower using fresh city water to maintain the
coolant inlet temperature.
II. D MEASUREMENTS
II. D-l MEASURING METHODS
Table 1 summarizes the various measurements that were
made during testing. Included are the methods used to make
the measurements along with an estimate of the precision (6)
of the instruments. These estimates were determined either
from manufacturers' specifications and/or calibrations per-
formed during the investigation. In the next section the
methods used to estimate the experimental uncertainty of
the various measurements are given.
II. D-2 EXPERIMENTAL UNCERTAINTY
In order to determine the experimental uncertainty of
4
-------
the various measurements and the reproducibility of the data,
the engine was operated prior to and periodically during the
course of each day's testing at a set of "standard" conditions
specified in Table 2.
Figures c 1 through C 11, Appendix C, illustrate the values
of the measured parameters measured during the "standard" con-
ditions tests. The horizontal axis test numbers refer to the
Test Number Values assigned to test points as given in
Table 3* which also contains the values of the various measur-
ed and derived parameters for all test points. Included in
the Appendix figures is the mean value (arithmetic average)
and the "standard" deviation of the various measurements at
the "standard" condition operating point.
In a similar way, Figures C 12 through C 19 illustrate
the values of the derived parameters for the "standard" con-
ditions tests. The mean and the "standard" deviation at the
"standard" conditions for the derived parameters are also
shown in each figure.
II. E TEST PROCEDURES
All testing was carried out under steady state conditions
with the engine connected to a water brake dynamometer. Three
types of tests were carried out: Type 0, Type I and Type II.
The three types are described below along with the "standard"
conditions check point mode of operation which was used for
calibration purposes.
II. E-l CALIBRATION CHECK AT "STANDARD" CONDITIONS
After performing necessary daily instrument calibrations
the engine was adjusted to the "standard" conditions described
in Table 2. This was done to detect engine and instrumenta-
tion malfunction. The engine was also operated this way
periodically during a day's testing. For comparison purposes
the measured horse power, and brake mean effective pressure were
corrected to standard conditions (12).
* Table 3 is the computer output which contains the test
results used in this report.
-------
II. E-2 TYPE 0 TESTS
In order to determine the effect resulting solely from the
addition of methanol to gasoline, that is, objective 1 of
Section II. A, the Type 0 Tests were conducted. During these
tests the throttle position, and dynamometer load control were
adjusted to maintain a constant engine speed (2000 RPM) and
manifold vacuum [16 in. Hg (54 kPa)] while the equivalence ratio
was varied over similar ranges for the various methanol blends
by changing the setting of the carburetor's adjustable main
metering jet. In addition, the spark advance was adjusted to
the predetermined MET spark advance value corresponding to the
equivalence ratio. Such tests were conducted for 0, 20 and 30%
blend levels.
II E-3 TYPE 1 "TESTS
During the Type I tests, the engine was adjusted to a
predetermined engine speed and manifold vacuum while using
Indolene fuel with the stock main metering jet in the car-
buretor and the ignition timing adjusted to manufacturers'
specifications. Subsequently, methanol blends (10, 20 and
30%) were substituted for the Indolene while making no change
in the engine adjustments. The throttle setting and the spark
advance were not changed; neither was the dynamometer load
control valve.
Since the Type I tests were carried out for only a limited
set of operating conditions, namely 2000 RPM engine speed and
16 in. Hg (54 kPa) or 10 in. Hg (34 kPa) manifold vacuum, and
since the engine adjustments and corresponding vehicle speed
are the same as those in some of the more extensive Type
II test series, the details of how the Type I tests operating
conditions were selected are described in the next Section.
II. E-4 TYPE II TESTS
The Type II tests were carried out to achieve the second
objective given in Section II. A. As in the Type I tests,
the engine was adjusted to a predetermined engine speed and
torque using Indolene fuel. Subsequently methanol blends
-------
(10, 20 and 30%) were substituted. This substitution resulted
in a decrease in engine speed and torque. The procedure was
to lower the manifold vacuum by opening the throttle until the
Indolene-fueled-operation engine speed and torque were regained.
In addition, if necessary, the spark was retarded to correspond
to the spark advance that would have been present had the
vacuum advance .mechanism been operable.
The engine speeds selected were 1150, 1500 and 2000 RPM
and corresponded to vehicle speeds of approximately 30, 40
and 52 mph (48, 64 and 84 km/hr).
The torque values selected approximated one-half the
torque (same mean effective pressure) requirement of a
full-sized American car, cruising at 30, 40 and 52 mph. In
addition, at 2000 RPM engine speed (52 raph), tests were
carried out at a torque value higher than the 52 mph cruise
torque value. The engine speed, torque, and corresponding
vehicle speed and Indolene-fueled-operation manifold vacuum
values are presented in Section III. B. Also presented are
the values of Indolene-fueled-operation spark advance. These
values were the best estimates that could be made from avail-
able information of spark advance versus engine speed and
manifold vacuum for a 1974, 400 cu. in., non California
vehicle, Pontiac engine.
The values of spark advance used during the methanol
blend-fueled operation Type II tests are given in Table 3.
II. F METHODS EMPLOYED FOR TYPE 0 TEST DATA ANALYSIS
II. F-l OBJECTIVE
The objective of the Type O tests was to answer the
question: What effect does methanol addition have on the
various performance and emissions characteristics when the
engine is operated at the same as gasoline-fueled operation
engine speed, manifold vacuum, equivalence ratio, and MET
spark advance?
As will be seen in Section III the changes in perfor-
mance and emissions characteristics determined during the
-------
Type 0 tests attributed to the methanol addition are small
being close in magnitude to the experimental uncertainty.
The objective of the data analysis presented in this Section
was to assess the statistical significance of the observed
changes. The format used for data presentation and the
methods of statistical analysis employed are described in
this Section.
II. F-2 DATA PRESENTATION FORMAT
For each of the blend levels tested the experimentally
determined characteristic of interest was plotted as a
function of the fuel-air equivalence ratio * . See for
example Figure 7 where the performance characteristic torque
is plotted versus equivalence ratio for Indolene. Also see
Figures 8 and 9 which illustrate similar information for the
the 20 and 30%M blends respectively. All such Figures are
for 2000 RPM, 16 in. Hg manifold vacuum and MET SA.
II. F-3 STATISTICAL ANALYSIS - DESCRIPTION OF METHODS USED
To estimate the degree of association or co-variation
of the various performance and emissions characteristics
with methanol blend level,statistical methods of regression
analysis and hypothesis testing were employed. The object-
ive of the regression analysis should not be misconstrued.
It was not to determine the best functional relationship
among the variables. Rather, the objective of the regress-
ion analysis as combined with the hypothesis testing was to
estimate the degree to which the different Variables are
associated (7).
The statistical analysis for each performance and
emission characteristic was comprised of three parts:
[1] The first part consisted of selecting a regression model
or function which correlated the measured characteristic
of interest with equivalence ratio for each of the blend
levels at constant engine speed, manifold vacuum and MET
SA. No single function was found which would satisfact-
orily correlate each of the characteristics with
8
-------
equivalence ratio over the entire range of equivalence ratios
tested. For the purpose of the present st^udy it was not
necessary to find such a function and over the range of
equivalence ratios of practical interest (viz. 0.88 <:
*c s 1.22) it was found that for each blend level a poly-
nomial function of the form
C = aO + Vc + Vc + Vc
-------
teristics resulting from methanol addition.
[2] The second part of the analysis consisted of performing
a regression analysis of the pooled 0, 20 and 30%M data
using the regression models
C = b0 + b1$c -Hb2«2 + ^3 f ^
and
The parameters of the regression models b. and c. were
determined by the method of least squares using the
computer program BMD 03 R described in Reference (9).
The reason for selecting two regression models
[Equations (2) and (3)] was that the methanol addition
appeared to influence some characteristics by the same
degree for all equivalence ratios; for other charac-
teristics the degree of methanol's influence appeared
to be a function of equivalence ratio. Equation (2)
would apply to the former and Equation (3) to the latter
situation.
As in part [1] of the analysis the objective here
was not to find the regression model which best fitted
the data. Rather the objective was to use a model which
correlated the data sufficiently well so that statis-
tical inferences could be made regarding the effect of
methanol addition on performance or emissions charac-
teristics. The Equations (2) and (3) regression models
served the purpose.
[3] The final step in the statistical analysis was to infer
whether the inclusion of the M term in Equation (2) or
the term MS in Equation (3) was statistically signifi-
cant. If significance was found then methanol was said
to have an effect on the performance or emission charac-
teristic of interest.
Two tests were performed to infer statistical
10
-------
significance of the M or M§ term. The first involved
c
a hypothesis test with the null hypothesis; b. = 0
(or c4 = 0) . The alternate hypothesis was b4 / 0
C4 7* °) • The pertinent test statistic was
b4 <°r C4)
- _ (4)
«-5) ~Sb (ors )
D4 C4
which is t-distributed with n-5 degrees of freedom (7) »
In Equation (4) : n is the number of experimental data
points (observations); t>^ (Or c ) is the value of the
parameter determined by the BMD 03 R computer program
(9); S (or S ) is the standard deviation or standard
b4 C4
error of the regression coefficient b. [or c.) and « is
the significance level of the test. The second test for
significance of the M or MS term was a test for lack of
c
fit (10) . For this test the experimental error sum of
squares was estimated from both "standard" conditions
check point data (Section II,, D-2) and data taken at
essentially identical values of the independent variables.
The pertinent test statistic for the null hypothesis
that there is no lack of fit was
LOF SS / v,
F , = _ Vl (5)
a ' vl' V2 EESS / v2
which is F-distributed with v, and v~ degrees of freedom.
In Equation (5) : v1 is the degrees of freedom of the
deviation about regression sum of squares minus the de-
grees of freedom of the experimental error sum of squares >
EESS? v2 is the degrees of freedom of EESS; LOF SS is
the lack of fit sum of squares which is equal to the
deviation about regression sum of squares minus the ex-
perimental error sum of squares. a' is the significance
level of the test.
11
-------
In addition to inferring the significance of the
M or M$ terms in Equations (2) and (3) the above de-
scribed hypothesis and lack of fit tests were used to
2 3
infer the significance of the parameters ? , $ , * in
Equations (2) and (3).
II. F-4 STATISTICAL ANALYSIS - PRESENTATION
AND INTERPRETATION OF RESULTS.
Pertinent results -of the statistical analysis described
earlier are presented in tabular form, an example of which is
given in Table 4. The interpretation of the Table is given
below.
The first entry in the Table is an estimate of the ex-
perimental error sum of squares, EESS, of the characteristic.
The EESS was found by pooling the sums of squares of the de-
viation about the mean for subsamples of values of the charac-
teristic. The test points comprising a subaample were for
a fixed blend level and the values of the independent variable
4 differed from each other by less than one percent. Mathe-
matically the experimental error sum of squares was calculated
using Equation (6).
7k 2
EESS = £ [ £ (C. - C) ] (6)
j=l i=l X
In Equation (6) C. is the measured value of the characteristic
C for test point number i. The summation over i is over the k
test points of a given blend level making up a subsample, each
point within the subsample having values of $ differing from
each other by less than 1 percent. C is the average value of the
C.'s for the k test points. There were seven subsamples, that
is seven distinct values of $ (± < 1%), as is denoted by the
summation over j. There were: three subsamples with 0%M and
$ = 0.876, 0.967 and 1.167; three subsamples with 20%M and
$ = 0.874, 0.968 and 1.111; one subsample with 30%M and $c =
1.086.
The next entry in Table 4 is the number of test points
or observations for all of the blends. In other words n is
the number of observations for the pooled 0, 20 and 30% blend
data.
12
-------
For each characteristic up to six functional forms of
Equations (2) and (3) were used. The six are listed below:
FUNCTIONAL
FORM FUNCTION
1 ci = ao,i H
2 C2 = aO,2 H
3 C3 = aO,3 H
4 C. = an A H
h al,l*c H
h al,2*c H
h a, -$ H
1,3 c
h a, . $ H
2
h a2,2$c + a3,2$c
h 92,3$c + a4,3M
^ a^ A $2 + a, A $3 + a, ,M
(7)
5 C,- = a + a $ + a. $2 + ac _M»
5 0,5 l,5c 2,5 c 5,5c
6 Cf. = a_ , + a, ,$ + a_ , $2 + a $3 + ac ,M$
6 0,6 1,6 c 2,6 c 3,6 c 5,6 c
For each of these functional forms the computer program BMD
03 R (9) was used to determine the values of the coefficients
a. .. In addition the corresponding values of the test statistics
i» J
fc = i>J (8)
were determined. Note that the subscripts in Equation (8) do
not represent the same things as the subscripts in Equation (4).
In Equation (8) S. .is the standard deviation of the regression
1 1 J
coefficient a. .. The t. . values are presented in the Statis-
!» D i»3
tical Significance of Test Results Tables 5-9.
If for a given functional form of Equation (7) the value
of t. .is large then the corresponding coefficient a is
' J i, j
statistically non-zero and thus the corresponding independent
2 3
variable ($ , $ § M or M$ ) is significant with regard to
t— {** \— C
correlating the characteristic C with that functional form. If,
on the other hand, the t. . value is small then the corresponding
1» D
independent variable is not significant and can be deleted from
the function. The previous two sentences are quantified by
13
-------
considering the significance levels a- • which are also pre-
!»D
sented in the Tables, a. . is the probability, assuming a. .
. , ifj I'D
to be zero, that a value of t. . greater than or equal to that
' J
given in the Tables could have been obtained by chance.
II. F-5 DISCUSSION
Since the regression model Equations (1), (2) and (3)
are not the true relationships between the variables C, ft
£
and M the resulting regression curve (C versus ft ) for a
given blend level M as obtained from Equation (1) was not
the same as the corresponding blend level curve obtained from
either Equation (2) or (3). To obtain identical curves the
true functional relationships between C, ft and M would have
to be exactly of the form given by Equations (1), (2) and
(3).
Limiting the extent of the data analysis to the use of
these functional form regression models led to the require-
ment of deciding which model [Equation (1) or Equations (2),
(3)] would be used to estimate the change in a particular
characteristic C resulting from methanol addition. It was
decided to use the regression curves obtained from Equation
(1) for this purpose. The reason for making this selection
was that each of the Equation (1) curves was generated us-
ing the data sample for a single blend level, and it was
therefore necessary to estimate the functional relationship
between C and only «c> The regression curves thus obtained
were found to be good estimates of C versus $ for each
blend level. The regression curves (2) and (3), on the other
hand, were obtained by pooling the data for all of the blend
levels and required the additional estimation of the function-
al dependence of C on M. The resulting regression curves for
the pooled data showed the functional dependence to be not as
good an approximation as the assumed functional form of C
versus $c for one blend level.
While better functional forms of C versus M could have
been found, it was decided that to do so was not necessary
because the form chosen served its purpose which was to
aid in deciding the statistical significance of methanol
14
-------
addition on the observed change in the characteristic C.
In summary: the shifts in the Equation (1) regression
curves (For example Figure 10) were used as estimates of
the change in C resulting from methanol addition and the
Equations (2), (3) regression analysis was used to determine
the statistical significance of the change.
15
-------
III. EXPERIMENTAL RESULTS
The experimentally determined performance and emissions
characteristics corresponding to the test procedures de-
scribed in Section II. E are described below. Table 3 was
generated by the computer program described in Appendix B.
In the following Sections, the experimental results con-
tained in this Table are described in detail.
III. A TYPE 0 TESTS
Sections labeled III. A describe the performance and
emissions characteristics measured during steady state opera-
tion at 2000 RPM, 16 in. Hg (54 kPa) manifold vacuum and MET
spark advance for 0, 20 and 30%M blends. During these tests
the fuel-air equivalence ratio was varied from approximately
20% lean ($ «=» 0.8) to around 30% rich ($ ™ 1.3).
III. A-l FUEL-AIR EQUIVALENCE RATIO
Two values of fuel-air equivalence ratio are presented
in Table 3. One of them, given in the seventh row of the
Table, is labeled EQ. RATIO FUEL/AIR and was determined by
dividing the measured fuel mass flow rate by the measured
air mass flow rate and dividing the result by the stoichio-
metric fuel-air ratio. In the subsequent discussion EQ.
RATIO FUEL/AIR will be denoted by $ , where the subscript m
m c
denotes that the value was determined from mass flow measure-
ments. The second fuel-air equivalence ratio/ given in
the twenty-eighth row of the Table, is labeled EQ. R. CHM.
and was determined from the measured exhaust constituents
and the chemical analysis given in Appendix A. in the sub-
sequent discussion EQ. R. CHM. will be denoted by $ , where
the subscript c denotes that the value was determined from
the chemical analysis and emissions measurements.
In Figures 1, 2 and 3 the value of $ from Table 3 for
c
each TEST NO. is plotted against the corresponding value of
$ . Also included in the Figures is the least squares
m
straight line obtained from the regression model:
16
-------
+ dl *m
For each blend level, the values, of d and d are
given in the Figures. It is observed that ft is greater
m 3
than 5^ on the average by about two percent over the range
of equivalence ratios tested for all three blend levels.
In Figure 4 the Equation (9) least squares straight
lines for the three blend levels are superimposed. The
discrepancy, that is difference, between $ and * is about
c m
the same for the three blend levels. There does not appear
to be any significant blend level effect. The cause of the
discrepancy must therefore be common to all of the blends.
A number of possible causes for the $ versus $
cm
discrepancy can be given. Some of them will only affect the
value of $c. Among those causes affecting dhly $ include
errors in: the emission instrument calibrations; the assumed
value of the water-gas reaction equilibrium constant K
[See Equation (A7); K = 3.8 was used in generating Table 3];
the carbon (X) and hydrogen (Y) content assumed for the
Indolene fuel [See Equation (Al); X = 7.0, Y = 13.02 was
used in generating Table 3]. Errors in fuel and/or air
mass flow rate calibrations would affect $ as would air
m
leaks downstream of the air flow meter.
To determine its effect on 4 , the water-gas reaction
c
equilibrium constant K was varied over the range 3.0
-------
been some air leakage downstream of the air flow meter.
Figure 4 shows the $c versus $m curve obtained assuming an
air flow leakage rate plus air flow meter calibration error
of 2.4% [that is, an approximately 4 Ib/hr (1.81 kg/hr) error
in the air flow measurement was assumed]. Such an error is
seen to account for a large portion of the discrepancy between
*c and V
It is of interest to compare the § versus ft data des-
c m
cribed above with that of D'Alleva and Lovell (11). Their
results were almost identical. They also found 8 to be on
m
the average approximately three percent greater than ft . In
the light of this finding, it would seem that a contributing
factor to the difference between ft and ft could be that the
c m
equilibrium analysis used to determine ft does not completely
describe the system. To evaluate the factoi? further work on
the exact kinetic condition of the exhaust gas at the sampling
location would be necessary, which is beyond the scope of
this work. However, the analysis presented in Appendix A
is a practical and straightforward means of obtaining ft and
is currently widely used.
It was decided that the discrepancy between ft and ft
cm
is probably attributable to problems associated with the air
flow rate measurement, and that $ is a better approximation
of the actual fuel-air equivalence ratio than ft . Thus,
m
ft rather than ft is used in the remainder of this report as
cm c
the fuel-air equivalence ratio.
It should be pointed out that if the decision of selecting
$c rather than ft is a bad one, it does not affect the con-
clusions made regarding the effect of methanol addition on the
various performance and emissions characteristics of interest.
Also, the selection of $c has the added feature of allowing
for easier comparison of Type 0 results with the Type I and II
results since only ft was measured during the latter type tests.
In addition, it is concluded from the above discussion that the
methods of determining fuel-air ratios from gasoline-fueled
engine exhaust gas composition (11) are also applicable to
methanol blend levels up to 30%M to the same degree of accuracy.
18
-------
III. A-2 MET SPARK ADVANCE
Prior to performing the Type 0 Tests it was necessary to
determine the MET spark advance (SA) for the various blend levels
at 2000 RPM and 16 in.Hg (54 kPa) manifold vacuum. To this end
tests were carried out to obtain the brake thermal efficiency
versus SA curves shown in Figure 5. Since the objective of
these tests was to determine MET SA and not absolute values of
brake thermal efficiency, efficiency ratios VH CI°BTC (wliere
T! K,o is the efficiency measured at 51 ETC SA) rather than
5 L ETC
absolute values of efficiency 7] are presented. The efficiency
at 51 ETC was arbitrarily chosen as the reference value, for this
was the SA selected for the "standard" conditions operating con-
dition described in Section II. E-l. Each of the curves in
Figure 5 is for a combination of blend level and average equi-
valence ratio as specified in the Figures. For example, Figure
5a is for 0%M (Indolene) at 3 « 0.865; Figure 5b for 20%M at
$ *»0.857; all such Figures are for 2000 RPM and 16 in.Hg(54 kPa) .
For each combination of blend level and equivalence ratio
the MET SA point is identified by an X on the curves in Figure
5. The so defined values of MET SA and the corresponding value
of equivalence ratio are plotted for all the blends in Figure
6. Also on the curves in Figure 5 are points labeled Y. These
Y points correspond to the dashed curve best estimate of MET SA
shown in Figure 6. From Figure 6 it is concluded that for
Indolene and up to 30%M blend-fueled operation at 2000 RPM and
16 in.Hg, the MET SA is the same over the range of equivalence
ratio 0.85<$ <1.14.
c
In Figure 5 it is noted that as the spark is retarded from
the MET value, the efficiency tends to decrease rather rapidly.
Therefore, to insure operation at close-to-peak efficiency, the
spark advances used in the Type 0 tests were those identified by
the solid curve in Figure 6. This curve is about 2 degrees
advanced from the dashed curve best estimate of MET SA. Thus
the Type 0 tests were carried out at values of SA about 2 degrees
advanced from MET SA.
19
-------
III. A-3 TORQUE
According to the format described in Section II. F-2, the
performance characteristic torque data is presented in Figures
7, 8 and 9 for the 0, 20 and 30%M blends respectively.
As expected, the torque as a function of equivalence ratio
falls off rather rapidly as the mixture is made lean.
Within the imposed restriction of using only the regression
model functional relationships given by Equations (1), (2) and
(3) the second order function of § (a_ = b. = c. = 0) was found
c j J J
to give the best fit. The Equation (1) regression curves which
are shown in Figures 7, 8 and 9, are seen to give a good fit
of the data except for equivalence ratios § greater than around
1.3. Over the range 0.79 < 4 < 1.22, however, the fit is good.
The Equation (1) regression curves for .the 0, 20 and 30%
blends are shown superimposed in Figure 10. it is observed that
the 20% and 30% blends exhibit an identical increase in torque
over that found for Indolene-fueled operation. The observed
increase in torque is approximately 2%. As discussed below, this
observed increase is statistically significant.
Table 5 summarizes the results of the Equations (2,3) re-
gression analysis of the pooled 0, 20 and 30%M blend torque data.
The t. . values are large for all of the terms used in the Equations
1»D
(2,3) regression models. The decision to include the methanol
effect in the model, (either M or M§ ) is significant at the tab-
ulated values of a. _ and a_ c..
Q i J D , J
The substantial reduction in the sum of squares of the
deviation about regression resulting from the inclusion of the
M or M$ term in the model is further evidence of the signifi-
cance of the methanol effect. Correspondingly, the F statistic
for the lack of fit test of hypothesis is seen to be reduced
substantially by introducing the M or M$ effect in the model.
c ,
Comparing the values of the lack of fit hypothesis test statistic, *
it is observed that the $ term (F=1.15) gives a slightly better
fit than the M$ term (F-1.25) showing that the effect of methanol
addition is about the same for all values of $ .
c
20
-------
In summary, the statistical analysis shows that
methanol has a positive effect on engine torque. This is con-
sistant with the observation made during engine testing of a
definite torque increase on switching from Indolene to methanol
blends. The torque increase does not appear to be a linear
function of blend level. The increase for both the 20% and 30%
blends was found to be approximately 2% of the torque measured
during Indolene-fueled engine operation.
III. A-4 BRAKE THERMAL EFFICIENCY
Figures 11, 12 and 13 illustrate the brake thermal
efficiency data for the 0, 20 and 30%M blends respectively.
As expected the efficiency is a function of equivalence ratio
with peak efficiency occurring on the lean side of stoichio-
metric. Also included in the Figures are the Equation (1)
regression model curves. A satisfactory fit was found using
o 3
all three $ terms (viz. § , $ and $ ) over the range 0.87 s.
>— Q^ C. C
*c * 1'17-
The regression curves for the three blend levels are
superimposed in Figure 14 . These curves show an increase in
efficiency resulting from methanol addition. This increase is
small and marginally significant from a statistical point of
view as discussed below.
Table 6 summarizes the results of the Equations (2, 3)
regression analysis of the pooled 0, 20 and 30%M efficiency
data. The high t values and the corresponding low values of
c
-^
2 3
a show that all of the I terms ($ , $ , $ ) are significant.
It should be noted, however, that the inclusion of the §
c
term gives only a slight improvement in fit as compared to
2
the fit obtained with only the $ and $ terms and is not
c c
necessary from a statistical point of view. The general
shape of the cubic function, however, was more satisfactory
and it was selected for both the Equation (1) and the
Equations (2, 3) regression analyses.
The results given in Table 6 show that while the in-
2
elusion of the $ and $ terms are significant at the 0.006
3
or less significance level and the 4 term at the 0.019
or less significance level, the inclusion of the M or M$
21
-------
terms is significant at the 0.08 and 0.095 significance levels
respectively. This means that the probability of making a
Type I decision error, that is the probability of rejecting
the null hypothesis: b4 = C^ = 0, when in fact they actually
are zero is 0.08 and 0.095 respectively. In other words, if
b^ or c^ is actually zero, then the probability of obtaining
values of t equal to or greater than the values 1.8 and 1.7
given in Table 6 by chance is 0.08 and 0.095 respectively.
Since the usually accepted maximum value of a is around 0.05
(that is, the decision rule for hypothesis testing is usually
done at the 5% significance level), the statistical
significance of including the M or M«c term is marginal.
It is thus concluded that at the 5% significance level
there is no effect of methanol addition on brake thermal
efficiency. At the 8% significance level tttere is a positive
methanol effect but it is small; the increase in efficiency
for a 20% blend being about 1.3% of the Indolene-fueled
operation efficiency at *c= 1.0. For the 30% blend level the
increase in efficiency is disproportionately larger, being
about 5% of the Indolene-fueled operation efficiency at
*c = 1-°-
III. A-5 VOLUMETRIC EFFICIENCY
Figures 15, 16 and 17 illustrate the volumetric
efficiency data for the 0, 20 and 30%M blends, respectively.
Regression curves are not given in these Figures because
over the range 0.87 s $ £ 1.17 the Equation (1) regression
was found to be not significant. That is, over this range
of $c volumetric efficiency variations could not be explained
or accounted for by the Equation (1) regression model. In
fact, over this range, the average value of the volumetric
efficiency for the 0, 20 and 30%M blends was 34.3, 34.4 and
34.2%, respectively, with corresponding standard deviations
of 0.51, 0.45 and 0.43. It is thus concluded that over the
range 0.87 s $ £ 1.17, the volumetric efficiency is not
affected by the blend level for up to 30% methanol.
22
-------
III. A-6 CARBON MONOXIDE MASS EMISSIONS
Figures 18, 19 and 20 illustrate the CO mass emission
data for the 0, 20 and 30%M blends respectively, as well as
the corresponding Equation (1) regression model curve. In
2 3
the model all three terms $ , $ and § were used and the fit
c c c
is very good. In Figure 21 the regression model curves for
the three blend levels are superimposed. It is concluded
that for 0.87 s $ £ 1.17 the CO mass emission for all three
c
blend levels are identical and that methanol addition to
Indolene has no effect on CO mass emission for up to 30%
blend levels.
III. A-7 NITRIC OXIDE MASS EMISSIONS
Figures 22, 23 and 24 illustrate the NO mass emission
data for the 0, 20 and 30% methanol blends, respectively.
The cubic form of Equation (1) was found to give the best fit
and the curves obtained are shown in these Figures as well as
in Figure 25.
Shifts in the NO vs $ curves, as illustrated in Figure
X C
25 indicate a decrease in NO mass emissions with increasing
J^
blend levels. The first test to infer statistical significance
of the M or MJ term using the pooled 0, 20 and 30% blend data
showed the inclusion of these terms to be significant at the
0.008 and 0.007 significance level as reflected by the a values
given in Table 7. This strongly suggests that there is a
methanol effect on NO emissions.
X
The second test for significance, the lack of fit test,
did not give as strong an indication that the M or M$ term
was significant as reflected by the rather small decrease in
the sum of squares of the deviation about regression found
when the M or Mft term was included in the regression analysis.
This small decrease, however, is probably due to the inadequacy
of the Equations (2, 3) regression model where the methanol
dependence is assumed to be linear. Contrary to the model,
Figure 25 shows the methanol effect to be non-linear. Had the
proper non-linear M or M$ effect been used in the Equations
23
-------
(2, 3) model the decrease in lack of fit would have been great-
er. It was thus decided that the decrease in NO mass emiss-
* Jt
ions, as reflected by Figure 25 is significant. The Ml term
was found to give slightly better correlation indicating that
the methanol effect on NO emissions is somewhat greater for
Jt
rich mixtures.
In conclusion, NO mass emissions were found to decrease
Jt
with methanol addition. The decrease was not proportional to
the methanol blend level; for operation at ft =1, with the
20%M blend the decrease was about 5.4% of the NO mass
Jt
emission level found for Indolene-fueled operation, for the
30% blend, at 8 = 1, the corresponding decrease was about
14.5%. For operation at $ =1.1 the decreases were
approximately 6.7% for the 20% blend and 14.7% for the 30%
blend.
III. A-8 FID TOTAL HYDROCARBON MASS EMISSIONS
The FID total HC mass emission data are shown in Figures
26, 27 and 28. The linear portion of the Equation (1) re-
gression model was found to give a satisfactory fit of the
data. The resulting regression lines are also shown in
Figures 26, 27 and 28. The regression lines are superimposed
in Figure 29 and show a decrease in FID HC mass emissions for
increasing blend levels. This decrease was found to be sta-
tistically significant.
In Table 8 the significance level of including the $
or M§c term is seen to be less than 0.001; a strong indication
that the Figure 29 decrease in FID HC mass emissions with in-
creasing methanol content is statistically significant. In
addition the lack of fit test statistic F and the sum of
squares of the deviation about regression are found to undergo
substantial reductions when the M or MS term is included in
c
the Equations (2, 3) regression model.
In summary it is concluded that the addition of methanol
to Indolene decreases FID total HC mass emissions. The de-
crease is about 8% of the Indolene-fueled operation mass emission
level for the 20% blend; the corresponding decrease is about
24
-------
20% for the 30% blend.
III. A-9 CARBON DIOXIDE MASS EMISSIONS
Figures 30-32 illustrate the C02 mass emission data and
the Equation (1) regression model curves. The superimposed
curves in Figure 33 indicate that there is a methanol effect
on CO^ mass emissions with the CO- decreasing with increas-
ing methanol content. Results of the Equations (2, 3} re-
gression analysis given in Table 9 shows that the effect is
statistically significant. The quadratic function with the
M term (Function 3) is seen to give the best fit.
III. A-10 OXYGEN MASS EMISSIONS
Figures 34 through 37 illustrate the 02 mass emission
data and the regression curves. It is observed that oxygen
mass emissions are unaffected by the methanol blend level.
III. A-ll GEOMETRIC DISTRIBUTION
Geometric (cylinder-to-cylinder) fuel-air ratio distri-
bution was determined by placing 0.25 in.(0.635 cm ) outside
diameter, stainless steel tubing, exhaust gas sampling
probes in close proximity to each of the exhaust valves and
monitoring the exhaust gas oxygen concentration. In Figure
38 the individual cylinder, exhaust gas oxygen emission
levels data are shown as a function of methanol blend level
for two equivalence ratios: one near stoichiometric,
4 <=» 0.97; the other for lean operation $ «* 0.07. As w.itli
the rest of the Type 0 test points, the operating conditions
were 2000 RPM, 16 in.Hg (54 kPa) and MBT spark advance. Note
that the average of the individual cylinder oxygen emission
levels is greater than the oxygen emission level correspond-
ing to the «c values (0.97 and 0.87) as shown in Figures 3'),
40 and 41, which were measured downstream of the exhaust.
manifold. This difference in oxygen level is due to oxidation
reactions occurring downstream of t.he individual cylinder ex-
haust gas sampling probe locations.
In order to estimate the individual cylinder
25
-------
equivalence ratios from the data in Figures 39, 40 and 41 it
was therefore necessary to correct the individual cylinder
oxygen emission levels. The correction involved multiplying
each of the individual cylinder oxygen emission levels by the
mixed, blend-averaged oxygen emission level and dividing by
the individual cylinder averaged oxygen emission level. The
equivalence ratios thus determined are illustrated in Figure
42 for «c « 0.97 and in Figure 43 for 5 « 0.87. In each
Figure the average value of the individual cylinder equiva-
lence ratios is equal to the corresponding value of 5 =0.97
for Figure 42 and 0.87 for Figure 43.
The inability of the intake system to deliver the same
fuel-air mixture to each cylinder is reflected by the cylinder
to cylinder variation in equivalence ratio as is illustrated
in Figures 42 and 43. The rear cylinders, 3 and 4, operate at
richer than the average equivalence ratio while the front
cylinders operate lean. Methanol addition is observed to affect
the distribution pattern with the richest cylinder, 3, becom-
ing richer and the leanest cylinder, 1, becoming leaner. The
difference in equivalence ratio between the richest and lean-
est cylinder increases with blend level as shown in Figure 44.
The increase is probably due to the increased latent heat of
vaporization and increased fuel mass flow rate for the blends.
A confounding effect is that during the experiments it was
necessary to make adjustments to the throttle position to
attain the required Type 0 test operating conditions when
blend levels were changed. The adjustments, however, were very
slight and it is suspected that the observed changes in dis-
tribution are due mainly to the methanol blend level per se
and not throttle position.
In summary, it is concluded that, at the Type 0 tests
operating conditions, methanol addition to gasoline has a det-
rimental effect on geometric distribution. With Indolene-fueled
operation the spread in fuel-air equivalence ratio between the
richest and the leanest cylinder was about 0.05. The spread
increases nearly linearly with blend level at a rate of approx-
imately 0.01 equivalence ratios per 10%M.
26
-------
III. B TYPE I TESTS
Sections labeled III. B describe, the performance and
emissions characteristics measured during the Type I tests
during which 10, 20 and 30% methanol blends were substituted
for Indolene while making no engine or dynamometer control
adjustments. Testing was carried out with the engine adjusted
to simulate 52 mph (83 km/hr) cruise and acceleration. Table
10 identifies the Indolene-fueled operation values of the engine
parameters; detailed information is given in Table 3 for all of
the Type I test data points.
III. B-l FUEL-AIR EQUIVALENCE RATIO
The reduction in fuel-air equivalence ratio that occurs
when blends are substituted for Indolene with no adjustment
to the engine is illustrated in Figure 45. Multiple linear
regression analysis showed that the blend leaning effect was
the same for both the 52 mph cruise and 52 mph acceleration
tests.
III. B-2 TORQUE, ENGINE SPEED
Figure 46a shows the effect of methanol blend level on
torque for the Type I tests. For both the 52 mph cruise and
acceleration tests there is a decrease in torque with increas-
ing blend level. Since the water flow control valve to the
dynamometer was not changed upon switching to the blends there
was a corresponding reduction in engine speed. The reduction
is illustrated in Figure 46b.
III. B-3 BRAKE THERMAL EFFICIENCY
Brake thermal efficiency is plotted as a function of
methanol blend level for the Type I tests in Figure 47. For
the Indolene-fueled operation 52 mph cruise condition effi-
ciency rises with methanol blend level for blend levels up
to around 20%M. For the higher blend level the efficiency
appears to decrease. Insufficient 52 mph acceleration data
were taken to detect trends but there appears to be an increase
in efficiency with increasing blend level.
27
-------
III. B-4 CARBON MONOXIDE EMISSIONS
The CO emission data for the Type I tests are illustrated
in Figure 48. The effect of blend level on CO emissions is a
function of the fuel-air equivalence ratio for the Type I
tests 0%M condition: If the mixture is rich during Indolene-
fueled operation there is a significant decrease in CO emissions
when the blends are substituted; if the mixture is lean
substitution of the blends results in much smaller changes in
CO emissions. The reader is referred to Section III. C-5 for
a detailed explanation.
III. B-5 NITRIC OXIDE EMISSIONS
Nitric oxides were found to decrease with increasing
methanol blend level for the Type I tests. Figure 49 is
used to illustrate the reduction.
III. B-6 FID TOTAL HYDROCARBON MASS EMISSIONS
Flame lonization Detector Hydrocarbon volume and mass
emissions are shown as a function of blend level for the Type
I tests in Figures 50a and b. A decrease in emissions is
noted. The decrease tends to level off at around 30%M. In
Figure 50c the FID HC mass emissions are presented as a
function of equivalence ratio. It is noted that there is a
strong correlation between the emission level and the equivalence
ratio. In Figure 50c it is observed that the 30% blend mode
of operation equivalence ratio is near the lean misfire limit
when HC emissions start to rise with decreasing $ . This
explains why the HC emissions reduction tends to taper off in
Figures 50a and b at 30%M.
III. C TYPE II TESTS
In Sections labeled III. C the effects of methanol addition
to gasoline on performance and emissions characteristics when
the engine is operated at equal to Indolene-fueled operation
torque and engine speed (Type II tests) are described. In the
Figures used to illustrate the effects, the various operating
conditions are identified by the nominal values of vehicle speed
28
-------
and load level (cruise or acceleration) which corresponds to
the engine speeds and torques given in Table 10.
III. C-l MANIFOLD VACUUM
In order to achieve the same torque and engine speed with
the blends as had been measured during Indolene-fueled operation
it was necessary to open the throttle. Figure 51 shows the re-
sulting manifold vacuums. As the blend level is increased, in-
creasingly greater manifold pressure (less vacuum) was needed
to achieve equal-to-Indolene fueled power output. The required
manifold vacuum decrease for the blends appears to be indepen-
dent of the simulated vehicle speed and load, being on the
average 0.8 in. Hg (2.7 kPa) for the 20% blend.
III. C-2 BLEND LEANING EFFECT
One consequence of adding methanol to gasoline is the
"blend leaning effect" (3). This effect is illustrated in
Figure 52 where the fuel-air equivalence ratio is plotted
as a function of methanol blend level. As the blend level
increases the equivalence ratio is seen to decrease.
III. C-3 BRAKE THERMAL EFFICIENCY
Figure 53 illustrates the brake thermal efficiency data.
It is observed that, for the particular set of conditions
given in Table 10 for Indolene-fueled operation, the brake
thermal efficiency increases when the engine is fueled with
methanol blends at the same torque and engine speed and with
the spark advance adjusted to the values given in Table 3.
There are a number of possible reasons that can be given
as to why the efficiency should change as the blend level in-
creases (3). It should be pointed out, however, that the spark
advance during Indolene-fueled operation was advanced
approximately 10 deg from MET while the spark advance for the
10 and 20% blend level mode of operation was about 6 degrees
advanced and 1 degree retarded from MET spark advance re-
spectively. This deviation from MET spark advance for
Indolene-fueled operation places the Indolene fuel at a dis-
advantage with regards to brake thermal efficiency comparisons.
29
-------
III. C-4 OXYGEN EMISSIONS
As a result of the blend leaning effect oxygen emissions
increase as the methanol blend level is increased. To illustrate
this increase Figure 54 is presented.
III. C-5 CARBON MONOXIDE EMISSIONS
Carbon monoxide emission data for the Type II tests are
shown in Figure 55. A large scatter is observed for the
Indolene-fueled (0%M) mode of operation. In fact there were
two 0%M-fueled operating test points at 40 mph (64 km/hr)
cruise, numbered 126 and 130, which exhibited very large levels
of CO (see Table 3) and are not included in the Figure.
There is a reason for the scatter in CO emissions which
can be explained by considering Figure 56a where the CO volume
emissions are plotted as a function of fuel-air equivalence
ratio, I , for the 0%M data. For convenience the data points
have been identified by their corresponding Test Point Number
in the Figures. From Figure 56a it is observed that there
were test-to-test variations in S for the 0%M-fueled mode of
c
operation. In addition it is observed that the equivalence
ratios for the 0%M blend level Type II tests are in close
proximity to the "critical" fuel-air equivalence ratio
9 « 0.95 which separates the lean region of operation
(f < 0.95) where the CO emissions were found to be independent
of $ and the richer region ($ > 0.95) where the CO emissions
c c
were found to rise with increasing $ (See Figure 18). There
is a good correlation between the observed scatter in the
Figure 55a CO emissions, including Test Points numbered 126
and 130, and the equivalence ratio as shown in Figure 56a.
Similar scatter was not observed for the methanol blends be-
cause the equivalence ratios for the blends were all on the
lean side of the "critical" equivalence ratio $ «*> 0.95 where
CO emissions were found to be independent of $ (Figure 18).
Another phenomenon regarding the CO emissions was observed
during the 0%M-blend fueled Type II tests. This phenomenon is
30
-------
illustrated in Figure 56b where the CO NDIR analyzer output,
as obtained from the strip-chart recorder, is presented. Test
points numbered 139 through 144 are included in the Figure;
they were all taken on the same day, consecutively, and without
engine shut-down. For tests numbered 139 through 143 the
amplitude of the unsteadiness in the response of the analyzer
is essentially the same, there being slight changes in the
average response as reflected by the slight variations in
volume % CO shown in Figure 55a. For test point number 144,
however, Figure 56b shows a larger amplitude of unsteadiness.
There is also a marked increase in the average instrument
response for this test point as is reflected by the increase
in CO emissions in Figure 55a. This phenomenon of increased
CO emission level with increasing amplitude of the unsteadi-
ness in the CO analyzer response was also noted for other
tests with the 0%M blend level. While it is not known for
certain, it is suspected that the large amplitude of un-
steadiness in CO analyzer response for the richer mixtures is
caused by time or cycle-to-cycle variations in the engine
operating conditions. This variation in engine operating con-
ditions could have resulted from the engine running on both
sides of the "critical" value of $ with subsequent variations
in CO emissions. Such large variations in CO emissions do not
occur for the leaner mixtures because cycle-to-cycle variations
in engine operating conditions do not raise the equivalence
ratio above the "critical" value. Instead the engine cycles
in the region ($< 0.95) where CO emissions are independent
of *c.
It is apparent from the above discussion and the data
given in Figures 55 and 56 that the effect of methanol blend
level on the CO emissions for the Type II tests depends on
the operating condition with Indolene. For Indolene fueled
operation at $ less the "critical" value of approximately
0.95 the blend level does not appear to affect the CO volume
emissions for the 30 and 40 mph cruise tests. (Figure 55a).
For the 52 mph cruise and acceleration tests there appears to
be a slight increase in CO volume emissions; approximately
31
-------
0.01% CO per 10%M. The CO mass emissions on the other hand
increase with increasing methanol blend level for all of the
speeds and loads with the increase appearing to be greater as
the speed and load increase.
For Indolene-fueled operation at $ greater than the
"critical" value of approximately 0.95 there is a decrease
in both CO mass and volume emissions when a 10% blend is
substituted. A reason for this decrease in CO emissions is
the reduction in $ to values lower than the "critical" value
c
of 0.95. Whether the CO mass emission will eventually in-
crease above the Indolene fueled value as the methanol blend
level is increased depends on the speed, load and the initial
Indolene-fueled value of 4 as can be seen by studying
Figure 55b.
III. C-6 NITRIC OXIDE EMISSIONS
Nitric oxide (NO ) mass emission data for the Type II
X
tests are illustrated in Figure 57. It is observed that for
all of the speeds and loads there is a decrease in NO
X
emissions as the methanol blend level is increased.
III. C-7 FID TOTAL HC EMISSIONS
FID total HC mass emission data for the Type II tests
are shown in Figure 58. As the blend level increases the
emissions are seen to decrease. This is consistent with
the results obtained during the Type 0 tests where the FID
total HC mass emissions were found to decrease with increasing
methanol blend level and with decreasing equivalence ratio,
$c (Figure 29). It is of interest to note that for the 30%M
blend the equivalence ratio for the Type II tests was around
0.8. This value of equivalence ratio is near the lean misfire
limit observed during the Type 0 tests which were performed
at operating conditions close to those of the 52 mph cruise
Type II tests. Had higher blend levels been tested during
the Type II tests it is expected that misfire would have been
encountered with subsequent increase in FID total HC emissions.
32
-------
IV. SUMMARY AND CONCLUSIONS
For one phase of the study (Type O Tests) a multicylinder,
carbureted engine was fueled with blends of 0, 20 and 30 volume
percent methanol in a base stock representative of unleaded
gasoline (viz. Indolene). The engine was operated under steady
state conditions at constant speed, manifold vacuum and MET
spark advance over a range of fuel-air equivalence ratios.
Comparisons were then made of performance and emissions char-
acteristics for the various blends at equal equivalence ratios.
At the same engine speed (2000 RPM), manifold vacuum [16 in. Hg
(54 kPa)], MET spark advance and equivalence ratio [over the range
(0.87 £ $c s 1.17)] i.e. for Type 0 Tests operating conditions:
1. The MET spark advance was the same for all of the blend
levels tested (0, 20, 30%M).
2. The 20 and 30%M blends produced the same torque with the
value being approximately 2% greater than the Indolene-
fueled torque value.
3. At the 5% significance level there was no effect of methanol
addition on brake thermal efficiency. (See note after
conclusion 10).
4. Volumetric efficiency was not affected by the blend level.
5. Carbon monoxide emissions were not affected by the blend
level.
6. Nitric oxide (NO ) mass emissions were found to decrease
X
with increasing blend level. The decrease was not pro-
portional to the blend level. At $ =1.0 the 20%M blend
exhibited a 5.4% decrease; the 30%M blend a 14.5% decrease.
At $c = 1.1 the decrease was 6.7% for the 20%M blend and
14.7% for the 30%M blend.
7. FID HC mass emissions decreased with increasing blend level.
The decrease was about 8% of the Indolene-fueled operation
mass emission level for the 20%M blend and about 20% for the
30%M blend.
33
-------
8. Carbon dioxide mass emissions were found to decrease with
increasing blend level.
9. Oxygen mass emissions were not affected by the blend level.
10. For near stoichiometric (4 » 0.97) and lean operation
(4 KS 0.87) methanol addition was found to have a detri-
mental effect on geometric (cylinder-to-cylinder) fuel-air
ratio distribution. The difference in fuel-air equivalence
ratio between the richest and leanest cylinder was about
0.05 equivalence ratios for Indolene-fueled operation. The
difference increased nearly linearly with blend level at
the ratio of about 0.01 equivalence ratios per 10%M.
It was also found that the methods used for determining
fuel-air equivalence ratios from exhaust gas analysis during
gasoline-fuelea operations are also applicable, to the same
degree of accuracy, for up to 30%M blends.
NOTB The conclusion regarding brake thermal efficiency
for the Type 0 Tests depends on the values chosen for the
lower heating value of Indolene and methanol. Consider
an engine operated at a given speed, with a stoichiometric
mixture, and fueled by Indolene and methanol blends. If
the volumetric efficiency is the same during Indolene and
blend fueled operation (Conclusion 4) then
T^ TB LHVj
\ TI LHVB SFAB
where T] is brake thermal efficiency, T is torque, LHV is
lower heating value, SFA is stoichiometric fuel-air ratio
and the subscripts I and B denote Indolene and methanol
blend respectively. Assuming a 2% increase in torque for
both 20 and 30% blend fueled operation (Conclusion 2) and
estimating LHV and LHV from LHV and LHV_ values presented
J. .D J. 13
by other investigators the equation above yields values of
TU/T1T ranging between 1.014 and 1.018 for 20%M and between
n 1
1.011 and 1.016 for 30%M. Thus, at best, efficiency gains
of 1.8% and 1.6% can be expected based on conclusions 2
and 4, and published values of LHV and LHV for 20 and
I B
30%M blends respectively.
34
-------
During another phase of the study, experiments (Type II
Tests) were performed to determine the effect of methanol
addition to unleaded gasoline (Indolene) on the performance
and emissions characteristics of the same carbureted engine
if it were in a stock condition and used to power an automobile.
Engine torque and speeds selected simulated 30, 40 and 52 mph
cruise (48, 64 and 84 km/hr) as well as a higher value of
torque (corresponding to an accelerating condition) at the 52
mph (84 km/hr) speed. The results of these experiments showed
the following:
1. When 20 and 30%M blends were substituted for gasoline
with no engine adjustments the torque and engine speed
decreased.
2. In order to regain the Indolene-fueled operation values
of torque and engine speed it was necessary to lower the
manifold vacuum by opening the throttle. The required
manifold vacuum decrease was practically independent of
the simulated vehicle speed and load condition.
3. The fuel-air equivalence ratio with the blends was found
to be lower than that found during Indolene-fueled opera-
tion. With the 30%M blend the mixture was observed to
have an equivalence ratio of around 0.8 which is close to
the lean misfire limit.
4. The brake thermal efficiency during blend-fueled operation
was found to be greater than that during Indolene-fueled
operation. Part of the increase was attributed to the
spark advance being closer to the MET value during blend-
fueled operation.
5. The effect of blend level on CO emissions was found to
depend on the Indolene-fueled value of fuel-air equiva-
lence ratio. When the Indolene-fueled operation fuel-
air mixture was richer than $ » 0.95 methanol addition
was found to decrease CO emissions. For Indolene-fueled
W
operation at § < 0.95 there was no significant effect of
methanol blend level on CO emissions at the 30 and 40 mph
35
-------
(48, 64 km/hr) cruise simulation condition; a slight in-
crease in CO emissions, however, was observed for the 52
mph (84 km/hr) cruise and acceleration simulation.
Nitric oxide (NO ) emissions were found to decrease sub-
H
stantially with increasing methanol blend level.
FID hydrocarbon emissions were also found to decrease
with methanol addition. The rate of decrease with
methanol addition appeared to approach zero at around
the 30%M blend level operating condition which is in
close proximity to the lean misfire limit.
36
-------
V. ACKNOWLEDGMENTS
In addition to the grant investigators and major
contributors listed in the Title page, there are a
number of other individuals whose assistance is greatly
appreciated:
Mr. T. Watts, superintendant, and the Staff of the
Department of Laboratories at the University of
Miami, School of Engineering and Environmental De-
sign (D. Ashworth, G. Kessler, S. Lancaster,
H. Martz) for their assistance in the construction
of the experimental apparatus.
Messrs. L. Nagode, C. Wiesner, H. Pendieton,
C. Rice and M. Grindle, for their assistance
in the laboratory and in preparing this report.
Ms. G. Freedlander, J. Moskowitz and S. Cherkiss
for secretarial assistance and typing of this
manuscript.
37
-------
VI. REFERENCES
1. Bolt, J.A., "A Survey of Alcohol as a Motor Fuel"
SAE SP-254, June, 1964.
2. Synthetic Fuels Panel, "Hydrogen and Other Synthetic
Fuels", prepared for the Federal Council on
Science and Technology. R- and D. Goals Study Under
Cognizance of the U.S. Atomic Energy Commission,
Division of Reactor Dev. Technology, Sept., 1972.
3. Adt, R.R., Jr., Doepker, R.D. and Poteat, L.E., "Methanol-
Gasoline Fuels for Automotive Transportation - A
Review" Prepared for U.S. Environmental Protection
Agency, Office of Air and Waste Management, Office
of Mobile Source Air Pollution Control, Alternative
Automotive Power Systems Division, Ann Arbor,
Michigan 48105.
4. Adt, R.R., Jr., Chester, K.A., Pappas, J.M., and Swain, M.R.
"Methanol-Gasoline Blends: Performance and Emissions"
AIChE Meeting, Boston Massachusetts, Sept., 1975
(To be Published in AIChE 1976 Air Series).
5. Charles, J.P. and McKellar, M.R., "Pontiac's New Four-
Cylinder Tempest Engine", SAE paper 307E, Jan. 1961.
6. Schenck, H., Jr., Theories of Engineering Experimentation
McGraw-Hill Book Co., Inc. 1961.
7. Ostle, B., Statistics in Research 2nd Edition, The Iowa
State University Press, Ames, Iowa, 1969.
8. University of Miami Computing Center, Scientific Sub-
routine Package Program Polynomial Regression
(Polorg.).
9. UCLA Biomedical Research Computer Program Number BMD 03 R.
Revised 1-12-70. Revised 2-14-69 by TNL N20-1944.
10. Kirkpatrick, E.G., Introductory Statistics and Probability
For Engineering, Science and Technology, Prentice-
Hall, Inc., New Jersey, 1974.
11. D'Alleva, B.A. and Lovell, W.G., "Relation of Exhaust
Gas Composition to Air-Fuel Ratio", SAE Trans.
Vol. 38, No. 3, 1936.
12. Engine Rating Code, SAE Standard J245.
38
-------
LIST OF TABLES
TABLE TITLE PAGE
1 Measuring instrumentation 40
2 "Standard" Test Conditions 41
3 Performance and Emissions Character- 42
istics Data
4 Statistical Significance of Test 79
Results - FORMAT
5 Statistical Significance of Test 80
Results - TORQUE
6 Statistical Significance of Test 81
Results - BRAKE THERMAL EFFICIENCY
7 Statistical Significance of Test 82
Results - NITRIC OXIDES (N0x)
MASS EMISSIONS
8 Statistical Significance of Test 83
Results - FID TOTAL HC MASS EMISSIONS
9 Statistical Significance of Test 84
Results - CARBON MONOXIDE MASS EMISSIONS
10 Nominal values of Operating Parameters 85
for Type I and II Tests with Indolene
Fuel
39
-------
Table 1 Measuring Instrumentation
Variable
Method
Instrument Accuracy*
Air Flow
Fuel Flow
Manifold Vacuum
Spark Advance
Engine Speed
Torque
CO
co
NO. NO
Total HC
Wet, Dry
Bulb Temp.
Engine Temps,
Barometric
Pressure
Long-Radius Flow Nozzle
Rotameter
Mercury Manometer
Timing Light
Strobotac
Dynomometer Load Cells
NDIR Analyzer (Span
gas calibration)
NDIR Analyzer (Span
gas calibration)
Polarographic Analyzer
(Room air calibration)
Chemiluminescent Analyzer
(Heated sample, span gas
calibration)
FID Analyzer (Heated sample,
span gas calibration)
Mercury in Glass Thermometer
Chrome1-Alumel Thermocouples
U.S. National Weather Service,
University of Miami
±2%
±1% calibrated for
0,20,30% M blends
±0.05 in Hg (±0.17
k PA)
±1 deg.
±10 RPM
±0.5 ft Ib cali-
brated during in-
vestigation
±1%
±1%
±1%
±1%
±1%
±0.5°F
±0.5°F
* From manufacturers specifications and/or estimates from
calibration during the investigation. See Section II. D-2
for a discussion of experimental uncertainty of the various
measurements.
40
-------
Table 2
"Standard" Conditions
FUEL
SPARK ADVANCE
MANIFOLD VACUUM
TORQUE
ENGINE SPEED
EXHAUST GAS OXYGEN
WATER COOLANT INLET
WATER COOLANT OUTLET
INDOLENE
51° BTDC
16 in. Hg (54 kPa)
47 ft lbf (64 N*m)
2000 RPM
1.35 VOLUME PERCENT
173°F (78°C)
189°F (87°C)
41
-------
TABLE 3
PERFORMANCE AND EMISSIONS
CHARACTERISTICS DATA *
* Table entries with lines through them are
invalid as a result of a measurement not
being taken or a measurement not being
correct due to instrument failure. Brake
horse power and brake mean effective
pressure values are corrected to standard
conditions [12],
42
-------
'.. '.IT .:u. ,'j
.J i-iL It!" « U 0
J.-'^L^^ '^*, V • j 1 • O
.-.. 'til • mJi\C * 1 u.uO
i •-':i':Gfo£ '•*<>• -»0
FT. Ll.'j.
L.;« , T J 1 c : i • u 5 iy
L..S*r.'«« . otS»H
Lb:j/rlt' i i;t
Li)K • fji^LV • ^** • '.*
i3 . fj . 1 .
Ui.L. tTF . y, i . tfi
i.i.Til.t. « '.« ?u«lo
•;j W 1.^5
i
:„ CO .j.fii'1
,•- Cc^ lo.JO
n CH.iUti MU1
% hCnO ^U-
uo. PPM ,.. a*.oj.c
|-;0ii PHf-. V -4*.
..CX. PrVi -.-J ^jQ.C
lif. |ipi>i ri I'ijO.lJ
1-iAIJS 0«i hi . 0 ji
oPl-ib/i il- rlK
,:/ '.»•.! CO.-; <-)j.^.J^->
.^-.ss'iwT "'* j«.-»ud
....-"s"^"1' "'* -^u
.. . t ;\ . Cii.-. • • '.j'v
I...SV !.J. -JO
•• 1 ^ '«
l-.j.,jO 2-.i.uO 20. 00
j 1 . :1 J 1 . 0 51.Q
Ij./O 15. bil 15.50
'('j.uO U'f.LiO 46.50
• J7o.?» .07ill .0761
.72jir .7.^15 ..7148
Ij.oi1 13.J7 17.2P.
3o-oJ S^.rin 3H . 73
i^.y* 2u.yu 21.19
i.;-:o J.iio <*.2o
.I'i'JS .1076 .1895
1^.0:1 • i^.<:o li«9o
^ *+ ^w
^uj. «*e. .**
^nJO.Q 20UO.O 1750.P
3JO.O 3on.O 150*0
^'iJu.O 2<1.uH.O 19UO.O
B-jJ.O 7j,'i.O . 550.0
i/A.lin 2U5.2«!i 227.6H9
y-l^3 . 9«.^.-tO 8.9d5
*7.7'jij I').'ia2 11.317
3.1V* L=,47 1-432
.i<-.>'^ ..--.J4 -815
«4
lU.OO
51.0
15.60
46.50
2oOO.nO
.0733
.7031
17.28
,'.TC
20.23
3.PO
.1935
12. RO
^Jfl.
^e.
23on.o
300.0 •
260". 0
675.0
169.372
8.962
931.544
15.426
1-743
• P62
95
20. UO
51. 0
15.30
46.50
2000.00
.0781
.7148
17.28
34.73
21.19
3.80
.1976
12.30
•«M
^A.
1950.0
^
1950.0
600.0
199.182
. 9.062
8U6.4S9
10.818
1.538
• 835
95
96
.00
34*0
in.OO
8ft. 50
200n>00
.0689
.5305
3P.14 .
6<*>60
*rr**,
25.25
1.80
.1697
13.70
rW»
*»
34nn.O
~+.
3400.0
eon.o
71.640
5.909
749.737
14.305
1.555
.923
96
07
10. no
34.0
9.85
85.00
1960.00
.0733
.5563
30.95
63.48
25.57
3.00
.1895
13.00
.*•
««»
2350.0
150.0
2500.0
400.0
124.071
6.856
739.259
11*290
• 809
• 869
97
98
, 20 '.00
. 34.0
. 9.80
84.00
1920*00
.0781
.56.94
29.96
.
62.73
26.60
3.50
.1935
• 12.40
**
"**
1850.0
250'. 0
2100.0
400.0
145.297
7.H29 .
707.802
Q.A24
.813
.845
• 98
. ' 99
10*00
34.0
. 9.60
AS. 50
2000*00
.0733
.5553
31.76
63*85
25.61
3.05
.1935
12.90
rW-
^*
2400.0
.'• ^*"
2400.0
400.0
126.829
7.041
• 737.586
10.551
.812
.866
99
-------
I !. iT i. J .
uc Pr>,v ,;
L^r 0 r=i»;K
'..r'l u lU-iF
-Jl
in.tjOL.l .
r.
' tAH.nnt.sb.
M'rt rLUii
.* KUEL, FLU.
i.YL..-jG« 1
CrL.,iC. J '
lYl-.iiO. 4
i,.1 ..'lA.-i. i .
NO-0.MOLLS
r'iT. iiO«
o'.i«!i
V«.6
35-5
;»•:>• /5
1 1 . 77
11
•-^2
5.21
7,-iq . 5
'59!4.n
«.5
7n.5
2^.7S
2^." Q-
93
5.21
618.6
P137.1
B5.5
7«».5
29.75
25£ n
94
5.21
760.3
292B.7
35.5
74.5
29.75
£57.0
95
5.21
677.4
2201.5
85.5
74.5
2*. 75
2m o
96
5i21
90P.1
3833.9
HS«5
74.5
29'. 75
a ma. a
97 .
5.2.1
451.5
2821.6
85.5
74.5
29.75
. 3B7 .'0
98
5.21
452.1
2373.4
85-5
74.5
29.75
2Bft.Q
99
5.21
451. 'l
2706.5
85.5
.74.5
29.75
ceB.o
34>rs06
1.1?/a
12.66
10 &£»•>•
90
35.430
1.124P
93
12.45
*«•
***
12.66
VflflQ _ fl
41.349 34.262
1*1264 . 1.1290
94 95
17t48
1&7.0
50.^44
1.1P.76
96
17.65
11 'I B 0
17.49
477. Q.
18.09
" itao.o-
, iB97iO
« TO^ Q,*
40.833 - 34.063 41.131
1.1287 .1.1302 . 1.1277
97 98 99
-------
U1
'• -T ' J- 1o3 iill u2 Iu3
' i-t-ii:- ^o.jO .j.1) lu.oO 2u.oO
UL^. ' ,, i "11.
'•'<:j- -'^' *•<-'> IJ-J-'J 1'J.OO 15.61;
KT. !_•.'.,.
"•"li-'r.^1"" ^°""J'' ^tKJ"J° 1*5J'IJO ly°U'00
L.-« I\A 1 !(/ • n - I > ? J. H i u c. -g ?a fe. i «/L
,*» ~ ^^^^" •^"^*^*^*^.^^^ •VI^Bf^^B^qp
r/A jTolUI .j7al .06u9 . .07.43 .0781
L"u,^n; ,„< 'J6df> *0<*rt3 *bh93 <71119
i.i^i< o.il.r. U.-3f. 17.^5 I'j.o4 15.51
L:;^. Es..,Lr-. f^.^J J-4.o3 34.31 32.81
w.iLi £Ir • jij 4fcrfh4^ -^ -- y f| .it^Jfl *&*4UL
i.-fh-L* * ?o.o3 2J..J6 2i.«J3 21.18
"• ^2 o.nO Lot!- «i.SO 3.00
^ CO «i9jLj .lb.20 .1775 .1935
;^OH ^ ^ ^-^ u-3°
« .IC.,0 ^0. W* ^» • ^9.
'-'• ^' ifiuO.j J9UO.O 37on.O 2150.0
U'/2 PI',.. ,-; ,j_ .^i. ^ £. «|OO.C
IH.A I'H; ,y c^uNO 0*900. .1 37j.'!.0 255Q.O
"•• i"r'"' v ^.-:-i''.ii i-ijO.f) lOOn.o 800.0
,.j/.SS .0^ 14". 172 71.jnn 122.121 193.910
•• '.^5 Cv; t**-)^ 6.71'j 7.^06 8.863
oKi-.b/liP i iR
1.1 ->f> LOt 7j7.-+l7 ^Ji 1.936 8rt&.^99 8ri5.279
••• •'£> .'-^/. -T.7ol l'J.r5.j'4 1-0*1 4«4 15*306
••• •»'•* ''*• .-it5 3.1*/,, ?..^yo 2.047
' ljl '-J- '--JU lol 'lU2 *103
104
3u.no
bl.O
15.30
42.00
1780. nO
&*£*3
• 08.^6
.7844
13.87
31.32
&*Z
20.62
5.15
.2017
11.40
np
1000.0
—*
1000.0
750.0
297.2ftO
10.188
904.7f,7
6.100
2.114
• 778
104
105
30. on
51*0
14.40
46.00
2020.00
6-33A
.0836
.7599
17.24
34.31
0-03
21.29
5.10
.2143
11.40
.on<
900.0
-JX
900*0
600*0
285.292
10*489
876.853
5.322
1.639
.770
105
106
20.00
51.0
15,40
46.00
200n«00
6 700
• 0781
.7144
17.07
34.31
u^za
21 .20
3.90
• ?059
1?,20
Q0
Hnn-0
— 0.
UnO.o
650*0
205.737
9.503
884.933
6.i36
1.675
.833
106
107
10.00
51.0
15.80
46.00
2ooo.no •
A. 637,
.0733
.6778
17.07
34.31
ii-JM
20.98
2.70
• 1814
13.20
pQ
3400.0
~«.
3400.0
850.0
133.590
7.855
898*024
17.822
2.05H
• R84
107
108
.00
34.0
10.00
89.50
2nOo.no
. O.S87
.0689
.5086
33.21
I
66.75
,,.7a
26*34
1.20
.3581
13.90
3450.0
^.
345n.O
1150.0
44.420
11.600
707.476
13.533
?.084
.959
108
109
10.00
34.0
9.90
88.50
1960*00
9-QH2,
.0733
.5256
32*18
66*00
.,lflffc
27.06
2.10
.1775
13.60
_ nfi
V U U
3200.0
200.0
3400.0
.750.0
78.334
5.793
697.544
13.907
1.374
.910
109
-------
,..yr \y. iuu
-iTL . j-21
liC F!J,'. .. -^L,.?. .fi
...:X ,-*,-, ,- ^.,2.7
^r^.rf °S*5
''''Jco.?^ "' '^
i.-.-.CjOL. [ . a u » . Q
u^Lf,??:'r' "**"
r*.S.i.
Lljj/Hf<
l~ • JL.L h l-Gi~iJ lot o^i
L D u / 1 1; <
L-J.H. TL.-iP.
OL.JO. i 11 »l ;>
uiL.,40. ^ ^4-
^ yi _ |,p . ^ jLn'Jr- tb
CYU.:>l0.i»i; 4 <'•'<.»
{.YL-.^./..^ +^nr^.
ci\KL3. IJ(>bt: J u'/ . jj
> jo. o. MULLS 33.120
i iy « M .;-.-• /L- . 1 • i 3 i 3
itG'l . m. . i ,jij
lul U2 103-
•i.-23 i.23 5.23
*&94.2 llig.fl 903.0
*405.(5 41. in. 4 2878. 3
•)4.(J S4.0 84.0
/2.0 /.o.O 72.0
ijO^ >ii OO 7C OQ "7c
C?.r;j £7.f;j 2V. fS
175.0 173.0 170.0
iyo. o tar,.o 183.0
*aa ^u . ^M.
w<^^*«£liw ^}~C^^7u ^Jt^Bilt
H.'fft H.44 11.38
1009.0 ii)27»0 990« 0
-tt- ^9. -H>-
\7rD.O 9<3 .^4.21?
i-.L2-J5 l.l^9fl 1.1287
lul 102 103
104
5.?3
845.4
1127.2
8'uO
7?.0
OQ ^ C
29.75
169.0
132.0
110.
«W**
11.17
953.0
^4-
863.0
902.0
88.0
103.0
77.0
29.970
1.1272
104
10-5
5.23
676-5
1014.7
84.0
72.0
29.75
172.0
185.0
^flQ
^^JL^J^
^
13.45
1007.0
»a-
926.0
967.0
83.0
99.0
74.0
29.981
1.1275
105
106
5.23
733.2
1240.7
H4«0
72.0
175-0
lfttf.0
^
«*-»»
1S.52-
1013.0
^«-
915*0
95?. 0
9h.O
liT9.0
fl7.0
34.499
1.1280
106
107
5.23.
960.5
3842.2
84.0
72.0
29.75
175.0
188.0
-4ML
n j -jn
11.88
1037.0
•Jo.
929.0
970.0
104.Q
117.0
95.0
40.097
1.1300
107
108
5.23
1299.9
3899.6
84.0
72.0
29.75
176.0
194.0
-a*
e**?*
17.34
1034.0
0
1034.0
1077.0.
106-0
120.0
102.0
40.651
1.1303
. 108
' 109
, 5.23
050.5
3855.8
84.0
72.0
' 29.75
175.0
191.0
-JMU
-?*^4
17.36
1096.0
mQf
990.0
1043.0
99.0
114.0
95.0
38.983
1.1341
109
-------
.11 Ml. fM.
l'»f f»J*i\ ^ij'v .
Uf.vi. liil'-l.
,-.,.i.'. ;-\i:.
lllCII.;-it.
FT. Li)i.
i « . H . I'l •
in). ilAilu
FULL/AiX
r"/A j
..j.f- .C.
Ujj/rlP iiiN
CijH « lii-itl
viiL/Eh'!
u.Th.E* i
» 02
*. CO
in OiJOi-i
^, HCiiO
i-.O •
•j| ...b/hi- i.K
li.ST Ho.
3iO
"j.JO
• o7.il
yfl
DL)
• r.
:.«,-X ph'i-i w
I iC PPM .,
l-ifi'jS Oc
GH.'iS/nP i
K.-'jE1. CO •
i- nR
i-.. 5S rJU> 11 • l..j
i • i J';
Ill 112 113
30* oU ,5:).uO 20.00
-i4.fi J^.O 34.0
9.20 el. 00 9.10 .
7'^.ijO ttri.JO 87.50
'6u-:iO. 200J.UO 2()00.00
• j8.Jb . Oa.i6 .0781
• &31f> .oiUO .5589
25.79 32.65 32.4fi
!ici»'Ji: 6b.b3 65.26
2'j.ol 26. y2 27.10
4. -50 4.15 3.30
• leys .iini-7 .1895
11* oO 12. uO 12.60
'i-jQ.C Ifcun.o 2350*0
-«•-«•**•
4i»0*0 l^ufi.O 2350*0
5 ii 0 • 0 33."i . 0 450*0
2-pyQ I75.?05 132*345
7.474 7.1,52 6.643
l.bci-* 09cj«S97 694.811
f..9J7 6.2/iS 10*004
1 «luti «7k6 *Q65 .
*.'li.3 .318 .P.55
iil 112 113
114
10. 00
34.0
9. no
88.50
2nOo.nO
10 06E
• 0733
• 5193
32.83
66.nO
27.39
2.5*0
.1736
12.20
3200.0
•*•
3200.0
600.0
102.680
6.238
688.985
13.8D6
1.196
.882
114
119
.00
51.5
16.00
46.50
2000.00
7.J7B.
.0689
.6564
17.13
34.42
_ll ^»L
•^^•^••F
20.41
1.10
.2448
14.50.
3250. a
."*"
• 3250.6
2050*0
50.484
9.832
. 915.014
15. ASS
4.621
• 970
119
120
lOtOO
51.5
15t70
4ft. 50
200HtOO
.n733
.6868
17.13
34.42
2n.71
?.35
. 1 697
13.60
31(10*0
1
3100.0
125n>0
114.146
7.212
908.307
16.000
2.981
.905
"120
121 ,
20.00
51,5:
15.40
46.00
. 2oob.no
.0781
.7226
16.94
34.05
20.96
3.50
.2017
12.80
2050.0
^-
2050.0
900.0
177.831
8.968
894.234
11.072
2.246
.854
121
.' . '" ' " ' -f ' '
. 122
i 20.00
50.0
15.40
*45.50
' 1990 >t)0
.0781
' ."7342
16.67
33.68
20.63
3.45
.201.7
12.80
1800.0
-e.
1800.0
760.0
178.323
9.123
.909.706
9. 892
1.930
.855
122
• . • • .... N. '-
: 123
30.0.0
, - 51.5
14.90
46.00
2000*00
.0836
. .7675
16.94
34.05
•>»7t
21.08
4.55
.2059
12.00
750.0
^*»
750.0
620.0
244.626
9.685
887.107
4.287
1.637
.807
123
-------
F'Mlii. £.
'•* .
CO
TrbT ilv..
o/ ir;
liC fVh D
nl,X i'f'l'l u
Lit-iV U Ti.Mp
.•(i. 'f ».• Tfcj'iP
UL'o.K.
ir-.C JUL.I .
DCu.l-.
OL- I "COt-'L . T «
UEG.f- .
''P.b.'i^'
/'ilU FLO/;
HJC.L >:'Lov:
L>.H. "IC.MK.
CiL.i-iO* 2
CYL.,10. o
CYL.ijO- 4
CYL.I.C. 1.2
CVL.l,G.;4,u
L,M73 Pu.15 18.63
10J9.Q 1019.0 iOud.'O 1075.0
^p^^p fcrfi^ m^J^f ^b^X^
"4l.t 9^0.0 9iJ?.0 902*0
°yi.O 962. U l!ll."5.0 1004*0
uH.I. 61.0 6] .0 90.0
vuu.c 94.0 a«.o loo.o
t>2.0 7i-0 7.1.0 82*0
33.4y'0 c:9.0/f, 2p.ftil 33*528
l-i3il i.!3j.r« I.i343 1.1322
lit! lil 112 113
114
5.23
672.3
3585.5
84.0
72.0
29.75
177.0
193.0
93.7U
. \
17.51
1099.0
^*
996.0
1035.0
9R.O
111.0
94.0
43.439
1.1205
114
119
6.10 •
2324.8
3685*6
88.0
79.0
30.08
172.0
187.0
4*^
11.63
1315.0
959.0
1235.0
1287.0
109.0
124.0
102.0
46.737
1.1340
119
120
h.lO
1416.8
3513.6
• 88 .0
79.0
30i08
171.0
IftB.O '
^
12*17
1279.0
939.0
1202.0.
1254.0
ins.o
120.0
97.0 .
38.847
1.1334
120
121
6.10-
1020.5
2324.5
88.0
79.0
30. OR
'171.0
184.0
?_^
12.66
1254.0
923*0
1178*0
1237.0
94.0
11 1.0
86.0
32.855
1.1339
121
.1 22
. ' 6.10
861.9
2041.3
8ft. 0
79.0
30*08
'171.0
184*0
23.51
12.66
1265.0
927.0
1192.0
1246.0
93.0
111.0
86.0
' 32.894
1.1340
122
123
1
703.1
850.5
88 .0
79.0
30.08
171.0
184.0
33.51.
13.45
1244.0
903. '0
1159.0
1229.0
83.0
101.0
76.0
2R.530
1.1340
123
-------
VO
•i, ji nu. i^ii iUOJ6 .L'6rt9
li.ii. h.C. .7075 .blli?
Lr.f./iip iiK
CoR* b.«iLlJ. >fu5 23.SI6
P.S.I.
\. L-L . E K . % 'I . /I n . i ?•
*
u.lK.fc-* * Pi.ufl 16. b2
i OL i..:>5 , 1-j.O
x- CO »e:0i>9 .4376
s. cci it.uo l*.&n
x CH.*OM w**> . iiO.
'/ hC'r.O • . u 0 . . . l;Q .
uC • i- Pi-i "... 7b fi . 0 i:2 50 • 0
i:-:.ir »v:. A- -4« ' 130.0
f
t:C PPM v, f>in.o &luc:.o
,.;iSS 0.: 24U.f.26 ol-l.ia
;-,;'SS CO u.fci/": <:1.2bl
oK.-iG/i>i ni'.
L . ..!.Cn-.. ..Un7 .y?9
1i:7 128
Jfi.HD 20. UO
' 4M.U 48 «0
17. bO 17.30
32 .01) 32 • bQ
l49j.iiU 1490*00
i^^^LA*il*» J*k*k*%2H&
.0733 *07dl
.fa 7, 3 6 .6645
a. 68 8.68
?J.96 23.96
17.06 .17.52
l.oO ii.bO
•1736 .1582
14.30 13.60
^*- ^M.
^a. -**.
2413n.O 1900*0
—a. so. n
c.4ar:.o 1950 «0
17Gn.O 130U.O
i'!9«u60 148.922
H.'.92 7.929
1099.U7S 107L096
I4.f,39 12.116
'(•i'-.^3 3.6U1
.145 .898
li!7 128
129
30. nO
47.0-
17.20
32.50
IbOO.flO
U.152
.0836
.8807
S.94
' 23.96
ld.37
4.60
• lf.97
12.10
~«4
^^
620.0
150.0
770.0
1050.0
281.187
9.P76
1017.Q11
5.526
3.154
-R09
129
130
.un
48.0
17. b5
32.50
1500.00
.0689
.8215
8.94
23.96
16.31
.95
.6988
14.60
. *«a.
•Oft
2350. ff
200.0
2550-0
2250*0
52.541
33.819
1110*280
15.673
6.133
• 994
130
139
.00
45.0
19.20
23.00
1150.00
.0689
.9754
4.87
17.04
13.73
1.55
.1325
14.00
^n^v
^_f^^^
135n»0
IOQ.O
14bll.O
2onn*o
UO. 276
B.250
1369.558
11.318
6.956
.950
139
140
. 10.00
45.0
18.80
23.00
1150.00
.0733
.9815
4.87
17.04
14.49
3.10
.1433
12.90
^00*
.04.
950.0
100.0
1050.0
leoo. n
226*007
9.145
1293.159
8.489
6.399
.870
140
141 '
20.00
45.0
. 18.35
23.00
.1150.00
.0781
1.0469
4.91
17.18
a. an
J4.47
4.25
.1507
12.10
.40-
*40.
460.0
100.0
560.0
1550. 0
329.947
10.238
1P91.647
5.024
5.H66
• H26
141
142
30.00
45.0
17.80
23.00
,1150*00.
.0836
1 1.0970
4.93
17.24
a-M.
14.75
5.30
.1397
11.40
M
*««.
165.0
85.0
250.0
' 1S50.0
426.822
9.845
1262.346
2.510
6.087
.779
.142
-------
P/..JL £.
ic.ST MO. \&\ l,:f, 127 128
L 1L i,.il: C..J.1 o.ll o.ll
• iC i-'i -I-: i: 7o3.i i:i-jt».i ma?. 7 1433.9
I.U'A Hf'i-, ... «l,n.S. i7i:n.9 279,?. 5 2225.fi
litfi L> Tfcf-ip c»».U ci5.fi 8F..O 85.0
OliO.F.
>.rT i, ic,^.,' /Q.g Vt5.fl 7ft. 0 78.0
r.-,K.M.Q ).7f,. 0 17&.0
L/Eo.l" '.
ui.iT.LOUL. I". IhU.O I'-Jl.n 19o«0 189*0
JE o.r .
P . L> • i .
H..EL r-i-:-^. 1J-4S /..j.l - /.o9 7.97
i.y.il. TLMH.
t-i'L-uU. ;; Hi't.j J27.Q 02--J.O 825.0
Cri-..JO. o i\/.l.:J i.i.45.0 112^.0 1114.0
CfL-nC. ^ i?J6.0 il71.0 lla^.O 1133*0
v.'i'i..: iiH..) 118.0 9-i.O 105*0
CYL.!JO..S'4 lo^.O 129.0 l^i*. 0 117.0
CArtiJ. o;,iE 76.0 1J9.0 lU.^.O 94.0
i.-';. D.^OLdS i:f(.:jJO -+5.6^3 36.^44 30.95«
. jij.M. •.-.'. /u. LiJ-fO 1.13J2 1.1393 i.1415
'ir.3f. -v. IdM I,i6 1^7 128
129 ,
6.11
1191.1
873.5
85.0
7P.O
30.12
176.0
13P.O
23 ,fi
8.18
1167.0
813.0
1095.0
1116.0
101.0
114.0
92.0
28.271
129
130
6.11
2560.1
2901.4-
85.0
78.0
30.12
177.0
192.0
?3 ^
7f.63
1213.0
822.0
1136.0
1166.0
118.0
129.0
108.0
45.002
1.1378
liO
139
6.16
2257.4
1636.6
B7*0 '
76*0
30,03
166*0
1AO.O
'.05
3^.67
u. 91
1095*0
69?* 0
1010.0
1036.0.
117.0
1?7.0
lnu.0
48.752
1.1287
139
140
. 6*16
2026.3
1182.0
87.0
76.0
30.03
170.0
184. 0
.05
. 4.95
1067.0
673. '0
972.0
990.0
110.0
120. 0
98.0
40.798
1.1257
140
141
' 6.16
1744.6
630.3
96.0
76.0
30.03
16R.O
182.0
.00
•33.55.
5.27
1070.Q
543.0
995.0
976.0
106.0
117.0
94.0
34.649
1 . 1255
141
1«2
6.16
1745.2
281.5
. 100.0
76 . 0
30.03
169.0
182.0
.00
5.53
109*.0
692.0
989.0
994.0
. 102.0
, 115.0
91.0
29.899
1.1259
. 142
-------
Ul
i. bl :.J. 143 It4 1 +6 ' 147
i ,-.j;-i!-;. 'o.jii --JO .00 10.00
f^A;^ A..-.. -»^.C i1"..!-. -*?.b ' 47.5
....-,N. v;iC« Tti.^5 l^-Lfl 17./0 17.60
ixji^jijif 2-J.uQ 23.50 .T«i.:'>0 32.50
r '[ . Urib.
...i«j. bij.-.c.j llr-u.JO 1150«00 IJ5J.OO 1560.00
K . i- • ft *
.-/A jfJILH .u7.il «u6d9 .Oft69 .0733
...b. K.<-. i.o:»o9 . *5*7 . /A99 .7962
v.-j;<'j.n.P. 4.y.3 3-06 9. .44 9.34
•„•!<• rSrHLr. if.<;4 1.7.69 2-4. U6 24.06
P.^. i.
:i. [>(.£• A, It. +7 1-+.U3 lo.96 17.36
, » o2 ' -t.U i«4fl 1.40 2.45
i CO .i6)'*1* '.1976 • in95 .1507
i C0 »**
ii.). r>P.Ji .-. • ^o-J.O l.il)0«0 2AJO.O 2300.0
.. j-2 PI'i-. i '.uO.-j IbO.O 2JO.O 200-0
,iOX Pi1!-! w «>oO.O toaO-O 2BO:i.O 2500.0
ii-J r"Pivi iM iUjO.3 iH'30'0 iPin-O l5bO«0
,-i »j'j 0* .Ji^.-'io? -J6..1J6 JO-^oft 140.851
0:\:.-:i/!ir s-tft
i-i.iSS C^ . i0.5J? il.9bl 9.S16 7.582
in? '.S/i ii" i irt '
tiK 'i'j/1 ;r" nK
*»^ i\I-j ^ l^ » ^u '^ L.OUO 17.r»b3 15.8'fS
.'i./ji i!'^ ^..'SdT 7. oil r>«-i75 4.3ol
.'h'.'civ!'. ' . r.-jj «9jl .'»b5 .903
"" srT^. It'. L^4 146 147
me
20. (iO
47.5
17. nO
32.50
1540.00
JU^B^
• 0781
.8513
9.22
24*06
«W+*»
17.79
3.70
• lf.97
12.40
.-^
1350.0
150.0
ISon.O
iian.o
228.476
9.168.
1052.R43
10.228
3.^64
• 845
]43
. 149
30.00
47.5
16. bO
32.50
1560.00*
'1 — U 'I
.0836
.8615
9.34
24.06
6~4»»
18.78
4.75
.1775
11.80 .
_ QQ.
. 720.0
70.0
790.0
1 1.00*0
290.788
P. 507
993.269
5.371
3-299
.R01
149
150
30.00
45*0
17,70
23*50
1200*00
2,7fi'r'
.0836
.1.0184
5.19
17.40
*^M
15.89
5.40
.14.70
11.30
. ^
IftR.O
ln5«0
270.0
1450.0
407.301
9.703
1171.933
2.593
5.329
.774
150
151
20 . 00
45.0
18.10
23.50
1200.00
3 T Of) 5*
.0781.
1*0348
5.19
17.40
7_W.
. 14.63
4.25
.1470
10.10
..00-
'**
575.0
110. 0
685.0
1400.0
389.590
11.792
1273.043
7.061
6.141
.797
151
152
10.00
.45.0
18.60
23.50
1200*00
3.017-
.0733
.9744
•
5.19
17.40
7*99
.14.60
3.80
.1397
12.90
.00.
1300.0
100.0
1400.0
1650.0
275.452
8*862
1285.744
11.120
5.832
.850
152
153
.00
f
45.0
19.00
23.50
1200.00
3 0??
.0689
.9415
5*19.
17.40
•W*>
14.23
1*45
..1507
13.60
^
- 1700.0
100*0
1ROO.O
2300.0
102.051
Q.281
1316.108
13.754
7.886
.956
153
-------
to
m.^1 ,';o. ] -,-;,
^••'iTc o.if:
lij I-'.-'." !.• lV/5.0
iji.;X f'Pi-i LJ ' 709.?
LiilY o I'H.i-.P luil.d
LJE O . F .
".-.7 .> ii-.i-iP 7(j.O
INCH, n'3- •
li:-CJO;_.7. 1o7.fj
Dt-J.r .
txS:£S&-- 'uo
Li:.j/lili
^'L^A?' b"i7
LXH. TLHi;.
CVL.ijO* i irMQ.'J
^ru.,-,0. i: *.,3.u
CYL.NU. J 9t>7.f)
cvL.,,0. ^ u.14.0
LYL.,j0.j»2 Jx,1.U
>-YL.iiO.:'. r4 1.JO.Q
L/.RIi. HAbE 1U3.0
i-<0 » D. MOLt S .^u • 6fi6
J *C' • ^*' > iv • / L • 1 • 1. .? o7
i ,-..5T • J ^o • I ^K>
144 146 147
6.16 -j.i7 6.17
.:5J9.9 22Ut.^ 1751.5
i.q-j2.6- 3tol.6 2825*0
U5.0 fiy.Q 87.Q
76-0 77.0 77.0
•5U.03 SJ.iJD 30.05
169.0 170.0 170.0
lii^.O 13?i.O 184.0
.:Jf> .21 .20
*^a. *w** ^^..
4.J1 7.63 7.t.9
11U7.Q 1211.0 1160.0
713.;! 'Jil .0 801 .0
iOJrt.O il3.,.0 1114.0
lUifj. n iij.j.o 1105.0
131. .1 1M.O 112.0
l^O-iJ 12ri.O 124.0
117.0 lJi-,.0 105. 0
•ffl.'tj^ .4.o.S79 .-59.661 .
JL.i2.j.'i Li?yi i."1300
14U 146 147
1
6.17
1332.4
1693.8
87.0
77.0
30. 05
167.0
181.0
.26
S3 . i .fl-
8.12
1165.0
789.0
1107.0
1090.0
107.0
120.0
101 .0
33.891
1.1292
148
149 .
6.17
1244.2
893*6
87.0
77.0
30.05
167. »
180.0 -
.17
Q3.6B
8.32
1156.0
792.0
1101.0
1182.0
100.0
115.0
94.0
20.941
1.1311
149
150
6.17
1E>31>2
303.7
87.0
77.0
30t05
1M.O
,02
*L-AA
S.47
1077.0
7ns. o
loni.o
1003*0
99.0
116.0
R6.0
30.167
1.1250
150-
151
• 6.17
1546.8 .
756.8
87.0
77.0
30.05
165. Q
179.0
.06
53.6R.
5.56
1075.0
697.0
1000.6
990.0
103.0
120.0.
96.0
41.389
1*1049
151
152
6.17
1857.7
1576.2
87.0
77.0
30.05
172.0
186.0
.04
03 ft 8
5.23
1086.0
697.0
1003.0
lOOR.O
112.0
12A.O
103.0
40.R&1
1.1259
152
153
6.17
2586.9
2024.5
87.0
77.0
30.05
171.Q
187.0
.02
9M*.
5.06
1102.0
692.0
inii.o
1019.0
118.0
134.0
110.0
49.966
1.1247
, 153
-------
OJ
r.br ,,u. i,.,7
., r-ltrn. .>>!'
jii AUK .'»i.i- . L.I.G
uLu . i» i jC
!'!;":'•). './HC • . To.'jti
li-iCh.iit.
"ic-ROijL no.'ji;
FT. i_,-.b.
K.j'.il.
f"Uc.L/ A i K
h /A ijlUiCii •Ubo'l
Lfii/nj' MK
C0i< Ll.i-i.i-. 17. Uti
P.i.i.
VCL. El-'. YJ •«•• • ib-
b.Trl.E.' * . PU.11
« 02 I.o5
x CO .i>*J«t4
» CG2 It.irj
^ CHjOn .. jQ
;u HCilG »t*«-
i;C. i'Prf ,-. ' 31bO.O
i.C'ii PKM « iso.u
l:OX PlJ!-. '.•' J.^uO.O
in.. (-FM •.•; £1:jO.(;
Mfti»S 0*i o?-J6fi
OK,',S/nr MR
Cih,-:5,/|ih nR
,,..j>S Ml. 'J.6.1i
i f i>1 NO. ' In?
Io3 ;-o7
•JO .00
si.n ai.O'
IL'J.UO Ib.OO
47* UO 47. JO
^JOG.JO 2000. 11 0
.1373 .008
. 06.')9 iOHH9
• L>414 >bux4
17.^7 17.30
3-+. 71 34.78
34.18 31.39
. 20.iiQ 2u.o-T
!Ori 1.35
.b94l .6067
lJ««iri I3.d0
m^&* «^p^0«
*^>- ^*-
oo J o«o 30dn«o
2bO.O 15,-. .0
j2'jo.n 3i5r. .0
.0 injn.o
65-737 62. nbfl
.Oo'i'i 4«ii;jl
.9'i» .'-in?
l.:13 ^U7
240
.00
51.0
16.00
47.00
2iiOO.OO
• 993
.0689
.6574
17.11
35.00
34.01
20.38
1.35
.7797
13.60
«M.
-^e-
2950.0
250-0
3200.0
1600.0
62-961
31.818
864>95i
16.494
3.658
• 96"
242
.00
51.0
16. no
46.50
2600. no
.989
.0689
• 6564
17.24
34.66
31.81
20.41
1.35
.4376
13.70
,*a.
M*.
3450.0
300.0
3750.0
1550.0
64.835
18.390
9ii4.6H5
19.RF.7
3.639
.957
242
256
.00
51.0
16.00
47.00
2000.00
.993
.0689
• 657W
17.33
34.84
34.54
20.38
1.35
.6988
13.70
,40-
•40.
3800.0
100.0
3900.0
2050.0
63-522
28.772
886.369
19.71)1
4.720
.970
256
271
.00
. 51.0
I6i00
4ft, 00
2000.00
.984
.11689
..6358
17t67
35.51
3U.34
21 .07
1.35
.5944 .
13.90
-^CUO.
«0.
.0
.0
.0
.0
62.021
23.894
878.051
.noo
.000
.956
288
20.00
51.0
16.07
49.00
2000.00
1 .182
.0781
.8458
18.14
36.45
34.50
17.91
.50
3.5130
11.80
"-M.
^M-
1175.0
75.0
1250.0
2800.0
24.924.
153.227
8.08.789
6.903
. 6.922
1.116
288
289
30.00
.51.0
.16.00
49.00
2000.00
1.104
.OA36
.8503
18.05
36.28
34.52
19.02
.57
3.24.39
s!2.flO
-JWl
2200.0
100.0
- 2300.0
2650.0
25.4A8
126.922
786*993
11.484
5.975
1.095
289
290
30.00'
51.0
16.00
49.50
2000*00
1.065
.0836
:. • .8115
18.24
36.67
34.55
.19.93
.62
2.2120
13.30
, -ftft..
-*«.
2800. 0
. 150.0
2950.0
2450.0
27.389
85.502
807.856
14.585
5.448
1.056
290
-------
U)
li.bT liO. . lu? I.i3 ?ii7 240
i. -'.It: &.^4 U.2S o.27 6.30
i-'O Pr'M i, 2^«d2.0 .0 2034.6 1810.7
i-'C* PP*' L1 J7;j7.9 Jt»o2-l 35un.5 3621*4
ul"V ti Ith.P o7.0 06. 0 6^.5 92*0
•..£T o li>',P 77.0 76.0 7f,.S .71.5
01" o.K.
bAK.pHt.SS. ?O.J.V 3U.10 3U.uO 30.01
ln.CoOL..i. 173.0 173. 0 17fi*0 173«0 -
LJt o « r •
u'jT.CCCL .T. 1r>9*0 1BH..O IciR.O 189.0
t.Xn.Hi.iLoj • * ii 1. »15> .19 .21.
P . b . i .
i-( LI. ^LOn 1.i.o.3 11.48 li.nO 11.77
c-X.il. TLr-:P.
CYL.iMO. i l^h.O 12^2.0 12o1 .t) 1269.0
^'rL«i^U» £ 'lu4>o Rii4«o B4n.O 822* 0
CYL.ijO. C. l?il.fl 120C.O 1201.0 1192.0
C^i_«;jO« 4 15>b3.f; 1249.0 124S.O 1246*0
ifjT.MAW.l .
CYL.KC.ir2 luO.O 99.0 9R.Q 101-0
CvL..M-3..1r'+ IA!>.(I 113.0 112.0 114.0
C;:RB. U;.«^E ^3.0 91. 0 ^n.o 93. 0
uO.O.MOLt.fj • 4fi.p'-*6 SO. 745 47.405 47.423
PrJ< • rtOLu F
.-.=.;. M././U. l-j.3<:7 1*1263 1.1303 1.1317
IpST. iJO« In7 K';3 ?;j7 240
242
6.30
1749.2
4232*0
93*0
79.5
30.01
170.0
186.0
.22
170.67
11.63
1276.0
821.0
1242.0
1239.0
101.0
114.0
94.0
48.908
1.1285
242
256
7.10
2315.9
4405.8
89.0
76.0
30.07
174.9
189.0
.10
i
171.93
11.77
1268.0
815.0
1203.0
1248.0
99.0
113.0
91.0
47.845 '
1.1297
256
271
. 7.03
.0
0
.0
«8.0 -
7A.O
3n.lO
17.1-0
.12
l7i .40
Ili63
126?. 0
810.0
1204*0
12U6.Q
99.0
112.0
91.0
48.294
1.1333 •
271
288 .
• .. 7.03 :
3206.2
1431.3
90.5
77.5
30.00
•173.0 .
189.0
.19
170.88
15.79
1227.0
766.0
1110. 0
1172.0
77.0
85.0
63.0
27.538
1.1451
288
289
7.03
3084.8
2677.4
•89.0 ;
77.0
30.10
174.0
190.0
.17
172.01
15.87
i
1244.0
781.0
1134.0
1200.0
69.0
80.0
57.0
21.418
1.1641
289
290
- 7.03
2847.5
.. 3428.6
•-- 89.5
77.0
30.10
J73.'0
- 189.0
.17
171.96
15.30
1259.0
766.0
y '
iisi.o
1214.0
VJ •
71.0
80.0
58.0
22.172
. 1.1622
290
-------
i:-l ••-•' 34\ 29? ,-J3 294
••• i'-=ti:i. . u(.! .1.10 . jtO .00
br--Af-K i.:/v. ^l.u 37.5 37.5 38. P
l/L'o. :.. l:)C
I-.J-IM. VM«. . lo.uO' lu.OO Ib. JO 16. Ofl
ivi^Out. '»V.JO 5i«oO 51. JU 50.75
1-7. u.i.
'L't!^«tL° 2"r'°"Jt' -^"y^o zunn.no 2000. DO
L...,. ivAli'O .'.<('? 1.174. 1 • ! J3 1*039
r/A r,T.,KM .(,f,69 *06«,9 ,oftoq • .G689
L.S.h.C. .&4-M .73110 .u«73 .6753
v.i i"' u.ii.l . 17.2S U.yO Iri.rtt* 16.63
c^.^HLr. m*07 3-/.yg 3V. o7 37. H5
vOL. E*1 . 1= "Vi.j3 3l>.^7 ' 3«t.7<} 34.66
^ rl.Tn.t- i »u.u3 IcJO? 19.21 19.84
Ul
A Oi£ i--»5 t37 -1*5 -SB
A CO .b5^7 b.*7*4 3.',rlti5 ?.G79l
* C0i Ki.yu 11. oo i^.yo 13.50
'* hCl,0 ^- .^*. ^- ^Hl-
i-.t;« HPl-i V. . H^jO.i'l 9-*l).Q lf»uf:.l? P2JO.O
niiZ HHh. ./ ?;jO.(J 10.0 Un.ll 100..0
:.CX PfJ,. ..- '»Uii0.ll CJO.Q 17ur,.0 2300.0
< .c: HF';-i iv k n b o . (• LO« u . n <: 7 u n . o 255o • o
br:>ib/nl: riH
••'iSb CO «r^.3«S tj7 lJir.r,dt3 fil.07]
of-.:',i>/riP HI1!
r-.ASSi C'»/;j ai-^.li-g 7i3.bo7 777..i-:yi S.j,j6 5.593
L . « I'. . (. 1 IK • . <•'•_ * I'lll0 1 . 1 b3 1*0 \1^
:: ST i—. 2«*| . 2^2 • 393 29*1
295
.no
40. 0
16.00
49.75
2000.00
1.041
.0689
.6587
18. ?6
3fa.71
3H.f>6
20.34
.80
.9770
13.90
vM.
3000.0
lon.o
3100.0
cf3l)0 . 0
36.U56
38.957
070.952
15*Ph5
5.114
1*007
296
*uo
42*5
16.00
49.00
2000.00
• 970
.0689
.6229
18.00
36.18
34.68
21.50
1.22
.7067
14.00
M
3400.0
200.0 •
3600.0
2000.0
53.291
27.010
840-863
17.192
4.286
.976 .
296
297
,00 '
4IS.O
16,00
46.70
?OOOtOO
.949
.nf>S9
• 6375
17,15
34.48
3'4.57
21.01
?,00
.2724
13.56
^W
3lnQ.O
2r.Q.O
3300*0
17hO.O
95.211
11.348
887.605
17.119
3.947
.926
297
298
.00
50.0
16*00
43.40
2ooo.no
.902
.0689
.6600
15.94
32*04
35.00
20.29
2.95
.1614
12.96
-Oft
2700.0
150.0
2850*0
1450.0
153.275
8.249
925.884
15.985
.3.655
• 879
298
299
.00
'. • 54.5
16.00
38.30
2000.00 •
.819
.0689
.6892
14.07
28-29
35.55 '
19.43
4.55
.1830
11.84
^*>
1350.0
200.0
1550.0
1700.0
•>6A.Q30
9.466
962*237
10.184 .
4.828
.812
?99
. 300
20.00
--• 37.5
16*00
51.50
2000*00
1*394
.0781
.9713
18.92
38*04
34.92
15.59
• 45
4.8106
11*90
-' Qgr
850.0
50.0
.. 900.0
2800.0
23.643
221.153
859.672
5.270
7.356
1.156
300
-------
ic s 1 ! ;0 . ;• -, i
J.-il'L Y.u'i
I.C I'l'i" i, iJA7.7
ii'_'A ijfvi L. !jCiJi?*r
L'=-lt ,1 lL>:r-' oV.f.
will' 11 Ir'T'i!-' V'i..h
Ls,',K «iJKc.Si> « -^u«Li8
i [•>(,'! i • r i j*
*i-!'CuOL.T . 1 /"?..0
' i-'t'o.r.
LxH.r-Kc-'jS.. .JL!
Mrt hLOi- i "»-..-»!
Lbi/iiR
hi:£L FLoi. 1 i .L»J
L/il« Te !••;>'.
CYL.jjO. i-. 7v*t>.G
LYL.i«0> o iPlil.C
LYL..JO. w i?^3.0
v, i L.uO* ; » ^ i'+> 0
LrL.r,0..sM, luh.o
C/.KC. o,-,St t,5.0 .
r.C.L.vOLLE, q7.f>7r
h1.- i<.i>iCi.L F
i.Ci.i-'.V.'./U. i-i3ut
i t'Si . i;o« ;>-j]
2^2 ?^3 294
i'.ij'» 7.0'4 7.04
o3u2.9 i07s.4 2897.5
if'6?.0 1^3.', .4 2613*4
ii4 . 0 tiS ' 0 84.5
74.0 74.5 74.5
3u«Je- Z-0.08 30. 0«
170.0 1/3-0 171.0
l.-jG.ily lo.'*.0 1S6«0
• ic, .15 .17
14.. 54 Ij.b3 13.06
*2i4.c- 12 ri'. 0 128P..O
7«7.(j 7y.1i.O 821.0
*lH2.0 llon.O 1109. n
i2-i6.0 1^27.0 . 1249.0
«,9.r, ^.o «:o
I'jl.O lau.O 106*0
.40 • 0 b3 • 0 64 • 0
J * iSii'J 1.1IWO 1.1363
2'J2 ""93 294
?95
7. (14
^606.1
3512.6
84.5
74.5
30.08
171.0
186.0
.17
174.00
12.48
1233.0
831.0
1204.0
1270.0
94.0
107.0
ae.o
46.242
1.1331
P95
296
7.04
2265.2
4077.3 .
85.0
74.5
30.08
170 JB
186.0
.17
173.95
11.63
1278.0
813.0
1210.0
1267. 0
95.0
108.0
87.0
46.875
1.1326
296
297
7.04
1914*1
3715.6
85«0
75.0
3 fit 08
173.0
lP.7.0
.10
17.1.41
11 .34
123H.O
7*7-0
llqq.O
1256.0
96.0
1(16*0
H7.0
49.915
1.1259
297
298
7.04
1624.1
3192.1
85.0
75 . 0
30.08
171.0
185.0
.16
175.55
10.91
1211.0
769.0
1170.0
1230.0
96.0
106.0
87.0
52.616
1.1200
298
299
7.04
1885.9
1719.5
'85.5
75.5
30.08
169.0
182.0
.16
178.16
10.06
1178.0
7.51.0
1141.0
1201.0
9B.O
107.0
8ft. 0
57.322
1.1094
299
300
- 7.04
3232.7
1039.1
" N 85.5
75.5
30.08
. 170.0
185*0
.19
174.97
, 19.06
' 1253.0
775.0
s
1125.0
1196.0
73.0
81.0
58.0
25.274
1.1545
300
-------
i?ST 1.0. 3ul
iv K'lh. ?L-U('
i-t »-h,. >iL.\, . J7.b
01 *. i.v::i.
FT. ui.i,.
. u • I* . i-i .
L(.- • i
L • "( 1 1 • L" • to 1 1* • 4 L>
*, ^ .3li
V-, CO J.rj'»'j2
.a C"02 1^.-*fc
A HCiiO -^0.
I:;. • I'Pi'i i-. . • i 125. 0
i.c.-i:- P!j;-. ?i vs.n
i*';A t-'tji'i -f.1 i'-U:0.l!
,,C FP.>. :• 'J:ft0.).u
s^bS Ot c-'« .Bu?
oK,.iS/;-,f- ilR
OP.:.iS/i:K .iH
Gf-.-v.'j/.iP nl'.
'"'"'oK- -/Ml- Hi- Si°Vt"
l....i?.Ln:-:. 1 . 1 10
i -.SI '-lu. iiJl
J-i;2 3u3 304
^0 .f 0 ' 2u.iiO 2U.O.O
5b.() 4n .11 42*5
16- .10 iu.uO 16.00
lil-'jO OU.7U 49. 80
2l)00>uO 2UOU.OO ,?nOO.OO
1-0^2 1.02:9 1*007
•UVol -U7«l .0761
.75411 .7?18 .7198
1:1. 'J3 Id. 64 13.J5
3o«u6 37.47 36.68
J4t62 34.62 34.83
2'J.iJB 2U.. 0 2700* 0
tUU.O 2JO.O 200.0
i7jO.O 2'HJC.O 2900.0
Z^liO'O kll'jfi.O 135J.O
«M.ly3 40.M71 52.588
f;ji).4ifs n3Fj-Pfi5 847.841
M.;?'.-?S ll.oji I4.3b9
rj.l.3:S u.;i'-J7 4.Q35
l.Ujl l«OJ:i «9o4
3J^ :',i|J 3QU
305
2u.no"
46.0
16.1)0
47.80
2000. nO
• 933
• 07fll
• 7031
17.62
3b.42
35. ?8
21.54
1.95
• 3317
13..0
^0
2650.0
250.0
2900.0
1325.0
89.711
13.354
860.304
14.950
3.017
• 928-
3115
306
20. uO
50.0
16. UO
44.75
2000~.00
.888
.0781
.7177
16.48
33.13
35.35
21.10 .
3.05
.1814
12.90
.00,
2550.0
100.0
2650.0
1225.0
152.575
7.942
887.313
.14.382
3.011
• «74-
306
•^07
20,00
54.5
16,00
39,90
2000.00
.811
.0781
.7489
14.69
29.52
3ft, 96
20.22
4.55
.1854
11.90
, QQ
155n.O
150.0
1700.0
1125.0
257.108
9.168
924.601
10.600
3.095
.808
307
30B
.00
,51.0
16.00
47.00
2ooo.on
.993
. .0689
.6653
17.23
34.64
34.58
20.13
1.35
.6232
13.70
.00,
3300.0
250.0
3550.0
1950.0
64.677
26.126
902.490
18.683
4.570
.967
308
309
.00
42.5
16.00
US. 00
2000.00
.993
.0689
.6515
17.60
35.38
34.58
- 20.56
1.25
.6306
13.50
»OO>
-OO
2400.0
300.0
2700.0.
1750.0
59.521
26.272
883.887
14.398
4.070
.972
309
310
.20.00.
U2.5
1.6.00
49.00
2000*00
. .979
.0781-
- .7240
18.00
36.18
35.20 .
20*92
1.25
.7467
13.80
r
, Q Q .
, ; 2350.0
250.0
2600*0
1650.0
' 56.587
29.578
858.998
13.313
3.713
.976
310
-------
|. '-.T iJ.
,,.1L
IK. (V.-. L
,!.•* PP.'i L
Ui'lf i f"t-f'i--^
~/c 'j » r .
..:.T j ii>..->
u,.rt^^-L.
1 i.CjOL.l .
^JT.'I-OUL.T.
uLo.r.
•...'H.KRt'jb.
P.b.i.
rtlLt^r/n'
hiJt-L Fi_Ut.
Lb.i/l-i...
c_.\rl. Tt-i-.H.
i.YL-,,0. a
L i i_ «nO • c.
i.M-.,,0. ^
I ,i-.MA,,.-|.
iVL.,i0.i»a
L t L >• jG *.*. • 4
LJ-.KB. u«sE
i • j • D. ^.Ol_LS
1-' r<...iG>-u F
\t\J •>''•• •'. • /L, •
,,'bT. ^u.
^ )1 i '2 .103 304
/.uu 7.J4 7.04 7.04
r:'1-*^-! ^7u9.4 jO.O 27b«>.3 3332*5
i>5«0 i36«0 -3n«0 ti8«5
/5*iJ 75. (i /S-0 76*5
^u»of? 3u*J* 3J.U3 30.0fl
1/J.O IjQ.O Io9.0 167*0
ifil-l) ljb-0 IdS.O lt»2.0
• « ij 8o5.(j 91.^*0 802*0
1U1.U :l,,7.0 llj^.u U34.0
iPl.J.O 4.2J1.Q l?5r-,.0 1256*0
/'j.n 7b«i 7n.o 80*0
o3.0 d-*«n uH.J 90.0
jO.j ul-O 63.0 65.0
^f-.;^.i ^7.1*: i an.r,.i4 28.793
• l«lSJl l.I'j-i(l I«i49b 1«141J1
Sul 3^2 ^u3 304
T5U5
7.04
1514.1
3314.0
89.0
77.0
30. n8
166.0
181.0
.19
175. h8
12.80
1224.0
784.0
1195.0
1245.0
92.0
92.0
67.0
30.570
1-1427
305
306
7.04
1389.7
3006.2
88.0
76.5
30.08
163*0
177.0
.16
176.31
12.24
1197.0
762.0
1174.0
1220.0
81*0
92*0
67*0
32.565
1.1344
306
307
7t04
1264*7
1911*1
87*5
76*5
30.08
161.0
174.0
.18
17Q.54
11.38
1169*0
74] *0
1128*0
llRB.O
02*0
92*0
68.0
35.254
•
1*1242
307
30fl
7.08
2202.1
4009.0
82.5 "
"
74.0
30.06
175.0
191.0
.19
174.13
11.91
-S.
781.0
-* .
-*
95.0
197.0
86.0
48.132
1.1293
• 308
309
. 7.08
1973.5
3044.9
82.5
74.0
30.06
173.0
189.0
.12
174.13
11.91
*«•
800.0
' -*>
-*
96.0
. 108.0
86.0
4A.856
1.1277
309
310
7.08
1893.5
2983.8
84.5
74.5
30*06
175.0
190.0
• .15
176.60
13.51
-4-
801. 0
~i>
,*
82.0
92*0
67.0
29.215
1.1476
310
-------
5u ,'•":£ in. . 11 0 . u (J
^ •'* ™ "* J • *J «J f • ,J
Lic-.i. blJC
r-iArt. V(»C. 1.J.OC Is.... JO
I rich, r it .
lOKQutT i"'j.{jC JjJ.o'j
KT. Llji.
tiiG. SiJLc.O 2i)f">ii • iiU
hO . pPi-i A. 2?bQ.u 5<;0 « 0
liU2' pf>M vv ?UO.U '.O.O
HUX PPM -.V ii'iaO.O . SoO.O
hC t>p|.( ;v lf=iuft.O ii650.0
iiAbS Oi hf*.6:i4 l7.fj<>7
bK..iS/HK HK
I'.AbS Co 17.2U4 212. 2i5
"!A^/M,- „:: ^;>>7lt- 7j?':i^
Cii<..l5/: .r hi;
^^LSnr' ,,P '*S^ 5'?°fi
L.V^K.C 1 -.!-.. .Cj.iJ J .I'/!;
326 3^7
.1)0 . uO
-57.5 38.0
lo.iiO 16.00
• 51.50 51.00
20 0(1. nO 2000*00
1*140 I. 087
. U689 .0669
.6945 ' .6646
In. 41 18.72
36.01 37.o3
3-t.ti4 34.31
1^.^:9 20.15
.40 .55
3.ri474 2.2120
1J.50 13.20
WO. ^*-
-*>«. .M.
7(95.0 125Q.O
lOS.O 100.0
9.JO.O 1350.0
?4uO.O 2250.0
16.S10 24.433.
13R.943 65.984
7fce.]b«4 806.296
4.P44 6.652
4.9^3 4.912
l.lll 1.0-J9
3^6 327
328
.no
40.0
16.00
49.75
2ooo.no
1.042
• 06R9
.6512
IB. 26
36.70
34. ?0
20.57
.75
1.0432
13.70
•*»*>
^*>
1800.0
125.0
1925.0
2000.0
34.166
41.5R1
BfiB.125
9.629
4.4F.7
1.011
328
329
.00
42*5
16.00
49.40
2000.00
.990
.0689
*6254
18.12
36.43
34.28
21.42
1.25
• 4262
13.90
0(L
^0.
2275.0
75.0
2350*0
1750.0
56.370
16*816
861.891
11.418
3.863
• 967
329
330
• 00
46.0
16*00
.47*40
2000*00
.943
.0689
.6202
17.40
34*99
34.33
21*60
2.05
.9404
13.50
00
^w.
23nO.O
200.0
2500.0
1450.0
95.761
9.825
R67.101
12.847
3.302
.Q22
330
331
.00
50.0
16.00
44.50
2000.00
• 893
• 0689
• 6353
16.36
32*89
34.93
21.08
2.95
.1736
12.96
na
ng
2100.0
100.0 .
2200.0
1250.0
147.866
7.612
.893.211
11.862
3.040
• 87Q
331
332
• 00
53*0
. 16.00
41.15
. 2000.00
.839
.0689
.6506
15.15
30.46
-35.31
20.59
3.80
• 1697
12.30
-, pp.
1600.0
lon.o
1700.0
iion.o
205*606
8.033
915*081
• 9.910
- 2.R72
• R39-
332
333
..00
54 • 0
16.00
39.50
2000.00
..816
.0689
.6588
14.54
29.23
35.31
20.33
4.20
.1361
12.10
nn
V^V^V
1375.0
125.0
1500.0
1050.0
234*569
6.651
929.202
9. 123
2.825
.820
333
-------
iLjT no.
(-•Aft:
i iC Pri'. u
iiOX j'i-'.'i ij
nil ¥ i i I'Li-iP
riEI 11 Illi'lP
Uf.v3.r-~.
tsAK.PKt.SL>.
I MOM. rib.
iit.CoO^.l .
OEo • P •
our. COOL« T.
-»••-. .•— _.
Lba/i-tK
FUf;L Fi_0v,
tXH. TL.MP.
CYL.rjO. 1
CYL.uO. iL
CYL.iJO. i
CYL..JO. 4
ifiT .i-iAu. T .
CYL..,0.3»a
LAKIJ. ,JAi£
140.0. MOLLS
-t.M.wt/u.
IL'.ST. UO.
3«i4 32rJ 326
/.^l 7.^1 7.^1
1«J3.5 .>£H7.9 2753.6
i:7u9.3 6J7.7 10i2.6
»'4.0 ,34.0 rtu.0
/4.5 74.5 74. b
^U.u6 3j.i>6 30. 06
' 1o7.3 lr>6.4 167.5
.2U
l^l.nS i7«i.92 173.45
1 A • «> 5 m.icO 13.63
in^2.9 lObb.O 1097.2
7«1.3 747.0 7rt7.2
1924.5 • 10J7.1 1177.5
I?:i9.6 1193.3 1221.1
f>8.7 63-7 t!5.1
1U2-3 '^6.0 97. B
t>0.1 ?4.2 75.5
4". 214 ^n.lr>7 39.721
1 «i3u3 1.13MB i.1473
324 3^5 3?6
327
7.21
2553.0
1531.8
83.5
74.5
3U.U6
163.2
.iiC
172.43
12.91
1112.1
800*1
1195.4
1246.3
86*9
99.6
77.4
44.679
1.1347
327
328
7.21
2264.1
2179.2
83.5
74.0
30.06
168.7
1A4.8
.20
171.90
12.34
1281.9
803.5
1077.1
1260.0
88.3
101.4
29.0
46.761
1.1320
3P8
329
7.21
1977.6
2655.7
83.0
74.5
30.06
167.8
183.9
.21
•
172.48
11.77
1098.1
780.0
1224.1
1261.7
89 .«>
102.8
29.0
48.196
1.1301
329
330
7t21
1631.9
2813.6
84.0
74.5
30t06
1*6.4
Irt2.6
.21
I72t38
11,20.
1076.7
755.1
1212.5
1247.6
90.1
103.7
.29.0
50.347
1.1255
330
331
7.21
1400.3
2464.5
85.5
76.0
30.06
164.6
179.4
.22
174.91
10.77
1053.3
735.8
1186.9
1228.8
91.9
103.7
29.0
52.736
1.1202
331
332
7.21
1225.7
1894.2
87.0
7ft. 5 .
30.06
164.2
178.1
.20
176.35
10.20
104A.1
731 .9
1168.9
1207.4
9?. 8
104.6
29. 0
55iS90
1.1142
332
333
7.21
1167.8
1668.3
87.0
76.5
30.06
163-7
178.1
• .20
176.35
9.91
1048.1
727.2
1156.5
1195.0
93.7
104.6
85.1
56.667
1.1122
333
-------
IL'j-l i'iJ. 3j'J
/\< i' St'iiLO 2uOu.i)0
R . H . "i .
.-/i/SToiU, .yfi.,9
b«'j.r"«C« • «»9-t7
C'Ji* i-.r i.t-1. 1o.-J8
CON. Ui'iLp1. P.i.il
VOL. E> . '« -*b.-.»l
LI. Th.L « i- \~~j •£ -j
'•••' O2 ' -4 ..iC
* U> .L«l'.
> U* I,.*-
in CH30M -•'•"
A i-lCiiO **>(*-
NO. HFrt U. HaO.0
1.02 PPM w \on.o
iiOX HHM W l^yQ.n
nC HPi-i W 10^5.0
,'IASS 02 27S.7b7
MASS CO Q.5i7
GR^iS/HP HR
i'-;.'.j'j Hi. ?.'*:>4
c. •',; • i\ . Ci if i . tftii^f
3j& 336
• 1)0 2i"j.OO
b6.0 3fl.5
lo.JG , lo.OO
3b.'jf> bl.90
2u0.j.,Ji) 200UiflO
.rtuf) i.?oa
.06.9 .07«i
.136Q .8129
13. 06 19.13
2o.^6 3d. 45
3:i.72 34.15
1(1.^:7 16.63
', .J5 .ifO
.iii'-J!.> b.27r»U
li.t.O 11.7ft
^ji^^ •iX^L^
^^./V ^^r^f^
iQJO.O 490.0
IbO.O 3M.O
1100.0 520.0
11JO.O 24UO.O
319.010 1-7.305
H.2b5 2.514
J.4U2 5.200
.7'jO 1.170
335 336
337
20.00
37.5
16.00
52.50
2UOO.OO
1.129
.07dl
.7610
19.34
3ti.07
34.59
19.90
.SO
3.45^5
12.70
^a
*••
920.0
40.0
960.0
2150.0
21.368
129.329
746.291
4.. 541
4.596
1.1U2
337
338
20. no
38.0
16.00
52.no
2noo.no
1.081
• 07R1
.73?4
19.57
38.54
34.49
20.68
.(SO
2.34H9
13.20
*fA
•*»*
1275.0
75.0
1350.0
2050.0
25.652
-87.870
775.979
6.421
4.375
l.Oftl
338
339
20.00
40.0
16.00
51.50
2000.00
1.023
.0781
.7033
18.96
38.12
34.57
21.53
.80
.4908
13.70
ULO,
^
1700*0
ioo.tr
1800.0
1800*0
36.012
19.330
847.961
8.951
4.016
.992
339
3^0
20*00
42.5
IftiOO
50.45
2(100*00
.986
..0781 -.
.6884
1R.55
37.29
34*29
22.00
1.25
.3793
13*60
UU>
^
PlRO.O
ino.p
2250.0
1550.0
. 55.227
14.663 .
838.347
10.923
3.396
.964
340-
341
20.00
46.0 .
16.00
48. 00
2000.00
.940
.07fll
.,69P4
17.63
.35.44
34.35
21.87
2.10
.2228
13.44
, f)n .
^
2300.0
100.0
2400.0
1200.0
97.096
9.015
854.445
12.127
2.741
.918
341
342
20.00
50.0
16.00
45.00
,2000.00
.882
.0781
.6972
16.53
,33.23
34.56
21.72
3.05
' .1697
12.76
UUfc
^
2100.0
150.0
2250.0
1050.0
150.155
7.309.
863.760
12*185
2.537
.871
342
343
20.00
54.5
_
16*00
39.50
2000.00
.807
.0781
-- .7376
14.51
29.17
- 35.10
20.53
4.55
.1736
11.70
-Ofe
^«.
itoo.o
150.6
1250.0
950.0
258.127
8.616
912.664
7.938
2.620
.804
343
-------
IL'^T I/O. ?.->H
uAlL ~t*A ppi»i L. 1 V.7.7
L»HY i. FEtfP 66. S
*t~. f U fc.'-iP 76.U
[JEii.K.
uAR.prtt'Jo. ^U.uo
iNCI'i. no.
iii.CoOL.T. Iu4.6
t3Ei? • H •
uur.cOv/i_.r. i /.R.S
LiE-o • F •
l_XH.r'Kdb^. .iP
P.S.i.
«!(< r-'Low i7d.;jU
LBS/nh
rUEL Fi_0i\ ' lu.Jo
tiXn. TLHH.
CYL.i-jO. i 1141.7
CfL-.JO. 2 ^1.9
«.YL.:40. J ilol.fi
CiYu.NO. *• 11 *7.6 -
iMT.iViAN.l .
LYL. 140.1.2 93.7
CYL.;-J0.3»4 105.0
CAi^B. LiAiL" H5. 1
NO.D.KULcS ;>7.f),»J
HCK.,-iOLt_ F
IJO.K.W./u. J.ilul
It'lST. ,<0. 3j4
^.»ri 3.56
7.21 7.21
i2i3.7 2775.2
1218.7 6U1.3
86 . T. «8 . 0
76.0 77.5
'
30-06 3u.06
1^4.2 171. B
178.1 1*17.5
•ZG .21 .
i7.i.b3 170.23
^•^1 16.07
1048.1 1041. "7
7i:3.4 744.0
.148.4 113h.9
j.231.0 11^0.5
-34.. 2 c>R.3
1J4.0 7R.7
«5.l 04. b
=>3.7o3 24.3h7
1.1079 I.i563
3j5 336
337
7.21
24h2.9
1108.6
67.5
77.0
30.06
171.3
167.5
.20
172.58
15.22
1077.6
766.3
1166.4
1211.7
70.1
79.6
. 55.5
26.240
1.1 54B
337
338
7.21
2362.7
155R.9
88.5
77.5
30.06
171.8
187.5
.22
171.77
(
14.51
1087.0
781.7
1177.9
1235.2
72.4
81.9
57.3
27.274
1.1526
. 338
339
7.21
2060.1
2060.1
87.0 .
76.0
30.06
171.8
188.4
.23
172.63
.13.80
1084.4
802.2
1203.1
1255.3
74.2
85.1
58.7
29.904
1*1445
339
340
7t21
1774.7
2576.1
85.5
7S.O
30t06
171.8
188.0
.23
I7t t70
IS. 23
105Q,.0
794.1
121ft. 1
12*5.6
75.1
R6.9
59.6
29.987
1.1449
340
341
7.21
1368.5
2736.9
84.5 •
74.0
30.06
169*1
184. n
.23
172.33
12.66
1033.2
759.8
1215.5
1241.6
75.5
86.9 .
59.6
31.198
'1.1404
341
342
7.21
1189.7
2549.4
84.5
. 74.5
30.06
16ft. 4
182.1
• 22
173.40
11.95
1007.6
738.4
1187.7
1213.8
76.9
89.2
61.9
32.993
1.1331
342
343
7.21
1066.1
1402.7
84.5
74.5
30.06
- 1 64 .2
178.1
.20
176.07
11.10
998.7
726.4
1137.3
1184.7
78.7
90.1
63.7
35.936
1.1222
343
-------
ii'.31" !J^. 3««--f 345
A i-'.KiH. '•'u.LiU 20 .1:3
J''SEK "ri.Jv; :i3'°- :32'°
;.,;., i. ''\/«c. ' ^ IH...O i6.,..o
IliCH.Iiv..
I'vKi'iui-. "o.trj '12 -oo
FT . ebb.
iiNG.JiPEi.0. 2.>Ou.uO ^uOb.uO
c.:. . ;\liO .3 2 6 .H.'iQ
r'Ui L/A1K
i- /A ;iTuIO'l »u7ol «07ril
u.b.F.v.. .7376 .7119
Ctfft K.il.P. 14.,-iH l'j.c.2
cOK . 3.-iEH. ?^.^t 31.40
'' • S • 1 •
VOL. Cr . < ^^.1? 3:'j«12
u.Til.t. * ' ?i<>£>5 21.&7
to w£l >t./cO 3«oO
* CC .i77'J .1775
* 0V ^*U 1^.16
ib CH.iOn -••" '--'in
« rtC.iO i uU« >«kO
..0. PP.-, .. • 1^75.0 1575.0
i.Oi PHi', ';,' ?uC.() 1 /b.O
I.OX PHM \l 1'iHS.U I7j0.0
iiC ,-Pi-i ..v n;;0.0 9.iO.!J
MASS O.i li^i/n.9i»r. 2jO«2v2
wR..lS/nP nR
c:ASS Cj 39^.5ftl P..ld6
GIJ.i«iS/nP nR
1-iAbSi Cuii iOui> niil.2H3
6R.-iS/HH iiR
I'.AsL TiuX 371.5^6 10.265
'^i'Hl "'„ "^-IJ7 2.i.,a
ILJ^I:'.UIW. ' -*^. .3.17
FLjT !Jvi. 3-i •* 3-+T)
346
."50. no
JH.O
16.00
-52.90
2000. (10
1.092
.0836
.7806
1^.44
39.08
31.37
20.72
.50
3.790*
12.50
UU.
wo.'
810. 0
40-0
Siin.o
2i:->n.o
20.2H9
134.595
697.4^?
3.A62
fc.i.03
1.115
.146
347
30.00
38. 0
16.00
52.50
2000.00
1-.U46
.0836
.7509
19.29
38.77
'
34.21 '
21.51
.55
2.3028
13.26
•vA^U
«4^4J«
I2tio.n
65.0
1315.0
19bO>0
22.192
32.100
715.596
6.018
1.017
1.0i>2
347
318
30.00
. 10.0
16.00
52.00
2000.00
.976
• 0836
.7077
19.10
38.10
34.21
22.86
.85
.9211
13.70
,04.
-»«.
1675.0
lon.o
1775.0
1700.0
31.901
33.212
773.531
8.117
3.500
1.002
348
319
30.00
12.5
16.00
51.00
2000.00
.911
.0836
.6996
18.71
37.68
31.37
23.12
1.20
• 6988
13.86
~oo.
.40.
195Q.O
100.0
2050.0
1150.0
19.Q22
21.980
778.539
9.326
2.970
.976 .
319
350
30.00
16.0
16tOO
18.50
^nootoo
.898
.0836
.7018
17*82
35.81
34,56
22.95
2.00
.2101
13.16
^_^1^L
^^^^^—
?lnO.O
Ino.o
2200.0
ilno.o
87.670
9.219
Pll.271
10.619
2.102
.922
350
351
3o.no
50.0
16.00
15.50
2ooo.no
.883
.0836
.7131
16.71
33.60
SI. 78
21.77
3. no
.1851
12.80
»*«."
•00.
1 950 • 0
200.0
2150.0
950.0
116.102
7.918
858.889
11.791
2.291
.871
351
352 ,
30.00
52.0
16.00
13.50
2000.00
.851
.0836
.7511 .
15.99
32.11
31.80
21-. 53
3.75
.1775
12.20
*oo.
Ufl.
1600.0
130.0
1750.0
930.0
191.118
8.039
86* • 356
10.086
2.368
.839
352
• 353
30.00
53.0
16.00
11.50
200o". 00;
.835
.0836
.7696
15.25
30*66
31*76
21.02
1.20
.1775
11*90
Aft
^^^^^^™
^4-
1250.0
150.0
1100.0
P25.0
228.171
8.137
888.928
8.536
2.165
.819
353
-------
lc:VT '.HI. ^4
uAJE. ' t*S.\
rtC PK**I O *"Vi 0 • 9
IvJ.A r'hVi 0 1^6- '4
L*r ,i ItMP rtS.O
*i'f .> ILMP /5.0
utii.F .
Ai'lLtl. llG.
1ft. COOL >T . 1 oil .2
UEt. . F .
OU r «CL;UL.T . 17 P.I
LXM.r'RLbb « • 19
M!I\ FLuiV i"^u.:j2
LB.S/HK
FULL Ki_0,r. 11. JS
LdS/nK
LXiU TcM'.
CYL.ijO. 1 lOjl.7
•CYL.nO. i: 7^9.8
CYu.;jO. i 11:j2.3
CYL.uC. '» 11S4.6
CYL.i<0.1»2 V8.3
CYL.:-jO.J»4 yfl.1
OA«li. liAbE o3.7
Pt'(?ioLtLF 16tJ°'^tf
ItST. -*0. 344
3*5
7. .11
1070.6
1972.2
Hb.O
7S.O
3u- J6
165.5
i/y.4
•1.9
I7ci.o2
9^2.7
7.50.7
1203.1
110b.4
77.4
49.2
»2.S
1.1270
345
346
7.21
2505.0
990.3
8S.O
75.0
30.06
170.0
I*i5.7
•19
172.29
lti.73
10bl.6
766.7
1154.0
1238.2
f>2.8
72.8
50.0
21.174
l.l 6bl
346
347
7.21
2267.8
1529.3
84.5
74-5
30.06
170.9
187.5
•lg
171. 80
15.02
1069.5
796.2
1180.5
1230.9
64.2
73.7
B0.5
22.132
1.1630
347
348
7.21
1967.7
2054.6
84.5
74.5
30.06
170.5
186.6
.18
171. RO
14. (12
1069.9
810*8
1207.4
1257.5
66.9
76.0
5?. 3
23.631
1.1575
. 348
349
7.21
1678.7
2373.4
85.0
75.0
30.06
169.6
185.7
.18
172.29
13.59
1052.4
806. 9
1213.4
1266.5 .
68.3
77.8
53.2
23.783
1.1577
349
350
7t21
1265.0
2530.0
84.5 •
. 74.5
30,06
170.5
1A6.2
,16
173,40
13,02
9R8.4
772.7
1223.2
1248.0
f.9.6
78.7
54.1
25.330
1.1 500
350
351
1 7.21
1085.3
2456.1
84.5
74.5
30.06
•- -168.2
182.6
.16
174.47'
12.88
1007.2
741.8
1192.4
1212.1
64.2
73.7
50.5
26.748
1.1424
351
352
.7.21
1056.2
1987.5
. 85.0
75.0
30.06
• 16fi.4-
181.2
.16
174.42
12.45
09?. 7
733.7
1165.1
1185.2 .
i
66.0
75.5
51.0
28.057
1.1357
352
-353
7.21
1047.4
1585.3
85.0
77.5
30.06
164.2
178.1
.16
174.23
12.17
985.9
725.5
1152.7
1174.0
66.0
74.6
. 51 .9
28.750
1.1324
353
-------
IL^T :iu. 3..M
* «H.|... ^..l.«
jiV,K.N «Lv. 64.*
Dt-iu. nfnc
I'lrtu . V/tL . 1 o • UO
INCH. lite.
lOKdiiL 'tu-'.jO
KT. LL»S>.
LNG. SHELL) 2i)flU>i)0
K . P . i'i .
L.O. rfMIu .3*1
F/A jTulCH .U036
b'.S.h.C. .7744
LHs/HP Hi*
tOii fni-i.H. lH.rt9
eon. b*LP. ?v.<*3
VO^F.^ * ^.'J9
D.TH.E. A ?j.76
o\
01
* 02 4.!i5
i CO .1775
* CO* 11. VO
* CHJ0.1 -Jfl.
% MCliO '. Jj-
NO. PPi-i f. • 1-liiO.O
UO2 PPM '.« IbO.O
i.OX PPM '.-) l^JO.O
.iC PP,., << «t.0.o
rtAbS 0* 2S4..»4*i
i-iASS Ct; H.jiJirJ
i>. ,'i 'j S C o if fi M ° « fa :ic
GRwS/hl1 liR
1'iAiiS 1 Iv^X P . 1 77
ul*.-ib/hr nl*
MftSS h\. ?.fmO
^o • ['< .C. II-: « . 'lu11
IL'.iT !iU- 3f>4
3Lj'J 3S>7
3u.urj .no
ri'j.'J ol.O
In.JO Ib.OU
37.00 43.40
2uOj.fiO 2000.110
.794 .ft99
. . j8jb .0689
.H3*9 .n341
13. bO In.tlO
27.jf> 32.17
3ii.ol 33.93
1^.42 21.12
j-15 3.00
.18^4 .1635
11. tQ 12.60
^Bj^— .^j^^
W*-. ^»»
75(1.0 2050.0
200.0 j*>n.o
950.0 2200.0
9-JO.O 1350.0
3i5.4.s9 ' 154.270
9.938 7-3bfl
^oU.0^9 yyO-911
fj.ft.i7 12.274
2.8/0 3.3ft8
.779 .S74
3L>5 . 357
3^8
.00
55.0
16. 00
40.80
2000.00.
.849
.0689
.6470
15.06
30.27
34 . 54
, 20.70
4.00
.1620
11. .90
-UMk
-**
1650.0
150.0
1800*0
1150.0
222.335
7.879
9U9.487
10.87P.
3.074
.«27
358
359
30.nO
43.0
16.00
49.RO
2ooo.no
.985
• 0836
.7315
18.40
37.00
33.96
22.11 ...
1.35
.4997
13.40
^>a.
«e»
2150.0
150.0
2300.0
1350.0
60.419
-19.R68
824.607
11.495
3.ni2
• Q61
359
360
30.00
50.0
16.00
45.80
2000.00
.900
.0836
.7382
16.97
34.02
34.50
21.91
3.00
.1620
12.44
^afl.
,«*
2300.0
200.0
2500.0
1050.0
149.701
7.073
853.544
13.878
2.583
• 870
360
361
30.00
54.0
16.00
43*00
'
2000*00
.857
.0836
.7602
15*89
31*94
35,04
21*28
4,00
.1658
11,84
^^^^^^^L
^^^^O.
I6n0>0
200.0
1800. .0
95n.O
215.862
7.830
878.557
10.916
2.513
.825
361
363
30.00
54.0
16.00
41.00
2000.00
.819
.0836
.7608
15.12
30.40
34.84
21.26
J
4.45
.1658
11.74
^^^^^^J
^^^^^L
135Q.O
150.0
1500.0
975.0
242.278
7.900
878.869
•
9.117
2.599
.808
363.
364
2o.no
43.0
16.00
49.00
-
2000.00
. .996
.0781
.7011
18.08
36.. 35
33.79
21.60
1.30
.4141
13.84
_*a-
*«•
2550.0
100.0
2650.0
1550.0
58.197
16*219
851.919
12.998
3.443
.962
364
. 365
20.00
50.0
f
16.00
45.50
• "
2000.00
.893
.0781
.6895
16.79.
33.76
34.43
21.96
3.10
.1582
13.84
.44.
.40.
2200.0
100.0
2300.0
1525.0
138.969'
6.206
853.091
11.312
3.387
.882
365
-------
L 2
TEST ."\iij- Wi
UrtiE 7.^1
HC Pr'l'l Li mV3.t,
• iiOX f'P.V L> iu(>
hET b ILNiP 77.5
uAK.i'HtiSS. Jj.Jo '
II-JLH. I,G.
Iriijt-o?p!r" 1oS'"li
. oUT.COuL.T. 1 /O.O
uXh.^cSS. . .i6
P.S.I.
«lr< hLO'.V 17r>.^lt
^ LBb/nR
o* rllLL FLUVI 12 .02
Lbs/rtK
C.XIH. 7Li*:r .
CYL.,,0* 1 -«y?..6
V.YL..IO. ^ 7^5.1
CYL.iiO. J 11..4.1
CYL.iiO. H 11u9.3
INT.MA^.I.
CYL..J0.1-? ' 06. 4
CYL.ijC.if't "/5.1
CAKf. . liAbE :j2-3
NO.D.rtOLLS ^.2.7
US. 5 -A7.5
77.5 78.0
30.U6 30.1)3
le.S.5 166.0
179.0 lol.2
• .16 .15
i7a.«2 .169,13
11.74 10.48
-C»rt5.4 1216.8
7£Q.l 7'*9.1
i!41.3 Ild7.3
1164.2 1218.9
6ft. 3 92.8
/**9 104*6
J3.7 d3.7
«i9.9:,l bU.204
J..i2r.9 1.1167
Jjb .TS7
'358
7.24
1277.0
1998.7
88.5
76-5
30.03
166.0
130.3
•17
171.86
10.06
1232.2
730.2
1164.2
1183.9
94.6
105.5
85.1
57-426
1.1104
358
359
7.24
1554.1
2647.6
90.0
76.0
30.03
171.3
187.5
.20
168.51
13.88
1254.5
807.8
1209.1
1245.9
65.5
75.1
51.0
24.919
1.1R12
3R9
360
7.24 -
1195.0
2845.3
90.0
76.0
30.03
I70.
-------
iiT.'jT Ml). ?r,7 Ju3 :5h9
-• i«':i. il:> . ;i'J . jO .f;0
ilVift.\ ~LV . .i.'l.i: .Jfl.O .48.0
•>iAig. V(*C . . lu.iiCX 16« uO In.OO
IGHQ'.IF. Si..;t> 51. iO 51.00
i-' r . i_Li-j •
Lttb. SHELJ ^i/'u.uu suoii.oo 2'*0.0 iiJ/ib.'J 14t>0>0
iiC jJPrl A' ^LiO.U ii4ufl.(J 22JQ.O
.»:ASS Oei l^.j,-:,? ^1.276 25.705
oR.-,b/ili'' IIK
rt.'»SS Co I9?.9il 1J2..342 H4.615
i-iASS Cu^ 7u^.2-43 7J7.214 777.576
.••.A^S lioX T-.OoO ' '*.77l 6.732
uH.-iS/H!i' nK
I'i^SS (iC ^.fifj b.O/iO 4.n33
m.N.Cnl-i. l.lnj 1.1J5 1.057
370
.UO
4Q.O
16. UO
50.50
2000.00
1.017
• 0639
.6118
i a ^7
1 a • j f .
37.33
33.51
21.89
.80
.5593
13.70
WA
^»
1970.0
55.0
2025.0
2000.0
35.385
21.647
8.33.215
9.616
<*.325
.995
370
371 .
.no
42.0
i6.no
48.60
2noo.no
.980
.0689
• 6101
• 7 nil
i f •?•*
36.07
33.51
21.96
1.25
.5664
13.90
~aa
M.
2400.0
200.0
2600.0
1850*0
54.417
21.574
832.038
12.493
3.945
.P72
371
372
.00
46*0
.16.00
47.00
2000.00
.949
.0689
.6175
4 7 4tt
17. Zo
34.74
33.73
21.69
2.05
.2315
13.50
UWk
•00.
2500.0
250.0
275Q.O
155Q.O
95.328
9.421
863.179
14.145
3.513
• 922
372
373
tOO
. 50.0
IA.00
44*40
?non.oo
.901
.0689
« £~ YY
intjj
3?» 82
34,15
21*32
3.00
.1544
12*80
i40.
^w.
P250.0
2no.o
245n*0
1250.0
150.749
6.791
884.394
13.473
3.043
.874
373
374
.no
55.0
16.00
38.00
2ooo.no
.832
.0689
.6749
*] *•• ft *
m • o i
28.15
34.16
19.85
4.45
.1544
11.80
.4fl
M
1650.0
150.0
1800.0
1300.0
259.971
7.895
947.871
11.422
3.649
.810
374
375
.no
55.0
16.00
40.80
2000*00
.853
.0689
.6470
• c n v
15.03
30*21
34*24
20*70
3.90
.1433
12.20
*46.
•M.
2100*0
150.0
2250.0
1250.0
211*692
6*808
910.546
13.196
3.?71
.833
375
376
20*00
38.0.
16.00
52*00
2000*00
1.207
.0781
.8041
• f\ 4 C i
19.15
38.49
33.79
1R. 83
.45
5.2070
11.60
nn.
^•^^••^•^
U*>
525*0
30 .0
R55.0
- 2700.0
. 19.478
197.206
690.379
2.674
5.841
1.170
376
-------
.-. z
i:.^T i,\j» 7-.»7 3oi!
*" "•" r~ • •• •• *~
L/M i F. / ..ij 7 «e:b
liC P^Ni t; 2^9.1 277 3fJt<
36*:
7.25
164B.8
«4.0
73.0
3J.H3
l?ft.3
19?. 9
.20
168.00
1300.3
7dl-3
1203.1
1214.7
94. 2
109.1
rt4.6
44.566
1.1350
369
370
7.25
2257.6
2285.8
84*5
73.0
30.03
176.3
192.9
.20
167.96
11.77
1283.2
779.1
1225.8
1246.8
95.5
109.1
H6.0
48.326
1*1288
370
371
7.25
2092.2
2940.3
84.5
73.5
30.03
176.3
192.9
.19
167.96
•11.34
1272.5
1114.7
1236.5
1263.9
. 96.4
110.0
87.8
47.698
1.1309
371
372
7.25
1744.2
3094.5
84.5
73.0
30.03
173-1
188.9
.20
169.03
11.06
1087.0
755. 1
1221.9
1060.9
9T.3-
•110.5
88.3
50.338
1.1253
372
373
7.25
1
1398.3
2740*6
04*5
73*5
30t03
171*8
1B7.1
.20
171.18
10,63
1066.1
739.7
119s. 8
1042.6
97.3
110.0
AS. 3
53. 458 *
1.1186
373
.374
7.25
1442.0
1996.7
.. 87.0 .
74.5
30.03
168.7
183.0
. .20
170.40
9.77
1034.9
721.2
1161.2
995.7
100.1
110.9
91.0
57.858 '
1.1093 ,
374
375
7-25 .
1391.2
2504.1
. . 86.5
74.0
30.03
-•.-169; 6
183.9
.19
170.99
10.06
1033.2
722.5
116Q.8
100?. 5
99.1
110. 0
90.1
56*079
1.1130
375
376
7.25=
3115.5
640*4
. 86.0
74.0
30.03
174.5
190.2
..22
168.89
15.93.
1056.7
736.2
1131.3
997.8
72.4
81.9
57.8
25.149
1.1539
376
-------
U:=.T IK*. \\f7
'-' **'L III* * it t . i \j
:il''«is.. MLr'v. o-fl . 0
LJ£n. til PC
h/iij. VAC. lu.tjC
r'T. i_uS«
uriu. br't-tL) 2u^ii.i)0
U • r> * M •
FUfcL/.'UR
F/A sFvjlCM .ii7fil
LliS/iiK HH
COU ;.i.ri.F. l^.jb
P.S.i.
VOL. Er. Ai :v*.C5
i-'« Iri.t • A) PU .09
» 02 .30
* Co 3.t>6/a
* co'> ' 1i:-bc
% CH:>O»I _p4»4.
* HCnO W4i-
liO. MP.>i A. P^5.0
WOii PPM W c-5.0
..OX PHM rt OaO.O
nC t'J9i'\ « i?^iiO.O
G^.-.iS/tlr1' riK
••fiiiS Co Ij?.5rt2
yK-iS/hP urt
viRMS/Hr \\R
••lAiS MJX . 'i. '^3
""'bLs/hr rift C":5lj3
i-.. ./i.CiiM. 1 .liC-
• t.^T .'io. 377
3/S 37S
^:J.-'i:- 20.00
3.?-. iJ '20.0
!:•.«. .10 lo.OO
b.2.jO 51. (SO
2uOcj.uo 2ono.no
1.0-J3 l«04b
.07.il .07H1
*72:i'» .7020
1*.35 1-J.01
36.S»o 33.21
3*. U5 33.81
2U...J3 21.57
• iiO .flO
«i.j4^9 1.U04-2
13-10 13.tiQ
^fAi^L^ ^^^^^^—
^^^^^^_ ii n
1225.0 1700.0
•30.0 100. 1)
i27'j.Q louO.O
^TluO.U 2000.0
^5.!i*3 3t*'«rt3
:>7.'4.itJ 3R.313
7-.,&.2.,7 815.398
S.976 fl.t',90
l-fi/9 U.3.^3
l.0o'4 1-009
o/.J 379
. 380
20.00
42.0
16.00
50.20
2000.00
• 992
.0761
• 6841
18.19
37.17
33.81
22. i3
1.25
.5873
13.90
-r04>
-M.
2200.0
125.0
2325.0
1700.0
53.688
22.073
820.896
ll.ObO
3-629
.972
300
381
2o.no
16.0
I6.no .
17.50
2000.00
.939
• 0781
.6810
17.51
35.19
33.83
22.11
2.05
.2101
13.60
x00
•4*0.
2300.0
200.0
2500.0
1100.0
92.291
9.4*9
P41.876
12.564
3.117
3fll
382
20.00
50.0
16.00
45.20
2000.00
.898
.0781
.6911
16.67
33.50
31.18
21.82
3.05
.1511
12.90
oo ,
M
2200. 0>
200.0
2400.0
1200.0
147.882
6.552
8&n.Q21
12.924
2.858
• 873
382
383
20*00
54.0
16.00
41.00
poon.oo
.831
• n781
.7197
15.11
30*38
34.69
21.04
4*20
.1582
12.10
_ nft.
^^^^^
• ftft^
llnn.O
150.0
1550*0
1000.0
225.151
7.421
891.891
9.225
2.615
.821
383
384
20.00
51.0
16.00
39.50
2ooo.no
• 816
• 0781
• 7376
11.55
29.25
34.88
20.53
4.55
• 1620
11*80
Q0.
-*a
1106.0
200.0
1300.0
950.0
256.234
7.983
913.713
8.341
2*603
.805 .
384
385
30.00
38.0
16.00
52.50
2000.00
1.133
.0836
.7936
19.38
38.95
33.68
20.38
..50
3.4585
12.70
^p^
^U>
900.0
40.0
940.0
2250.0
20*781
125.772
725.762
4.363
4.718
1.105
385
386
30.00
.' 38.0
. .16*00
52.50
2000.00
1.095
.0836
.7722
19.35
38.90
i
33.83
20*95
.60
. 2.3953
13.20
_otf
-nn
1225.0
50.0
1275.0
2100.0
25.155
87.873"
760.945
5.949
. 4.134.
1.064
386
-------
i! C^T !:•-. l-n
'.-"''It .!.*-
nt PPN-. L- i-P:.2.?..
iiC'X r»FfM U irt-jfi.tf
L%;i.Fn:mp °7"'
ft ill" ,i lLi'.P /4.0
u'Art.'prttSS. 3u.J3
INCh. HG.
lU.CoOi_.T. 175.'*
OEw.F.
OUT.CCJL.T. 1*2.0
^H.HHjbS. .A
win FLUrt Ifiy.rt?
FUEL rut).'. Jlj.Jjfl
irL..tO. 1 107B.9
CYL.=A.. ^ 7^.5
CYL.ijO. 3 I'hO.ii
CYL.,0. 4 -ioao.6
i^r.MAw.i.
CYL.NO.1.2 74.6
CYt.,.0.3.H 63.7
tAKC. ..AliE. ^.^
NO. D. MULLS ^.p..3^^
NO.M.w./il . I . i'jol
lt.bl. .,0. 377
27::-. 370
V.;^bi 7.25
.-6-47.9 JJ294.1
1U&7.0 2064.7
-i7.0 rift. 5
74.5 7U.5
3u*ii3 3U.n3
175.8 17F>.4
1^2.'* 192.0
• «:0 .P2
ibS.rf7 16d.B4
It.al 13. HO
iOrfG.7 101P.-1
777.0 790.4
1178.3 1204.8
1034.1 1057.5
76 .9 79 . 6
^6 . 0 90 . 1
i>1.4 63.7
<:7.3'5
. 7.25
2621 .0
1095.0
88. 5
75.5
30*03
174.9
191.1
.21
167.58
15.87
1058.8
777.8
1154.0
1014.Q
64 .2
74.2
52.3
21.329
1.1649
385
386
7.25
2442.0
1482.6
87.0
74.5
30.03
174.5
190.6
• 20
168.79
15.44
1075.4
791.5
1171.9
1026.0
65.1
74.6
' 51.9
22.112
1.1629
386
-------
i^T i-u. 3:. 7 36-?. 389
'v •'£ ri-;. •'j.iji' :•'..;.;,£ 30.00
'jf-'Ar«i\ «L< v • »fi-li 43.0 tfi.O
i-iAi-i. V*C • 1r>. uU lo«ul) 16*00
KiCH.lib.
Kvjoiit s^.pn 50-70 MS. so
FT. LL'-b*
c.i!6* SHLLO «i(:fio.uO ;ioOlj.(tO 2uOO.OO
tl.S. LI .
U«'?* .tAilo 1.0. >7 .986 .937
*-'/,", STjlCH • OH.jb *ijB36 .OR36
o.S.r'.i. .73.i7 ./Io5 .7203
LBS/ril' MK
C'Jrt i-t.n.P. 1'-i*i:3 Ij.oci 17*ftfl
C:JK. L-i«iilt-!> ';>..»6 37. o4 35.93
VOL. t>"« < ^3.7(1 33*70 34.05
Li.TH.E* * ?2«ul> 22. bl 22.46
* 02 *.iO 1.25 2.05
* CO 1.00*2 .o3/9 .2404
* COP 13. 70 13.80 t 13. SO
* CH.tOii - 'in ^ Tin , nn
£ HCtiO ^o*£> ^4i»0« — »4rt«
i iJSJO.O
iiC HP.-. W i-^jO.O 1450." llbO-0
MASS 0<: b^..rJ4fe 3?. 379 91*517
MASS CO 37.1/4 <:3*6L4 9.3rt9
viR,\iS/i-iH nR
.-:ASS Cj£ 7S?^.«?75 ;i02*703 828.679
piASS r40> ^.'4^1 i0.9i7 12.422
p.-'^S ML ^.R^O 3.073' 2.5HU
L.w.K.C-i!-i. '.Oiift .971 .920
ILJT !-o. .1^7 3.-i3 • 389
390
30.00
50.0
16.00
46.00
2UOO.OO
• 871
• 0836
.7106
16.95
34.08
34.26
22.77
3.00
.2448
12.90
, pfl
^XU
2150.0
200.0
2350.0
1020.0
138.235
9.872
817.314
12.140
2.329
.877
390
391
30.00
54.0
16.00
41.00
2ooo.no
• 816
• 08.^6
• 7608
15.10
30.36
34.88
21. ?6
4.40
• 1620
11.90
~ao>
«A&
1350.0
150.0
150(1.0
950.0
236.533
7.'ft20
879.609
9.016
2.504
.811
391
392
30.00'
55.0.
16.00
39.00
2000.00
. .794
.0836
.7806
14.36
28.87
34.97
20.72
4.80
.1620
11*60
• ., nn.
uxa.
1100.0
200. cr
1300.0
. 1000.0
271.333
8.013
901-617
8.415
2.764
.794.
392
393
30,00
56.0
16*00
37*50
?nOn.oO
.775
• n836
.R018
13*82
27.78
35*44
20.17
. 5.20 .
•1620 .
11*36
^^Q^V
_n^^
800>0
200.0
1000. 0
1050.0
308.032
8.397
925.281
6.921
3.034
.777
393
396
.00
.50.0
16.00
44.30
2ooo.no
• 8R7
. .0689
• 6297
16.27
32.71
34.68
21.27
3.00
.1620
12.90
UXJ1
~OA
2175.0
150.0
2325.0
1200.0
149.920
7.084
886.404
12.616
.2.908
• 875
396
397
20.00
Sn.o
16.00
44.50
2000.00
.891
.0781
.7134
16.37
32-90
34.75
21.23
3.05
.1736
12.80
-*aa-
l00
2oon.o
200.0
2200.0
loon.b
153*198
7.628
884.026
12.313
2.466
397
. 398
30.00
50.0
16.00
44.90
2000*00
.877
.0836
. .7447
16.52
33.21
34.77
21.72
3.00
.1799
12.86
-M
T^ftj
2075.0
150.0
2225.0
950*0
1
146.109
7.665
861.188
12.029
2.291
.874
. 398
-------
ii.jT ,,j. 7J.-.7
uATt /.^5
ilL F-f'iV D pfM'i.b
liOX h'FVi U ^riot'S-
ULCi.r •
i\LT .j ILhP 74.5
Jtu.*1 .
INCH. no.
lil.CoOL.T • 174.5
uUt.COOL.T. 1*1.5
P.S.I.
Altx r'LG'ti l^>ij..sl
U-;S/nR
N> HUEL FwOu 1-+...9
LBS/tir\
c.XH. TcMH.
LYL.UO. 1 inoS.b
l.YL«.gO. 2 «14.6
CYL.;-jO. J 11-^3.3
CYL.MO. 4 ' 104«.b
CYL.lj0.1»2 oft. 9
LYL.iviU.3'4 76*0
LAHE. oASE o3.2
iiO.D.MuLc.5 2^.4fi&
PL;-<.yiOLE F
• 40 .f-i . \j • /u . 1 > i '5-~lO
l£iT. uO* 3«i7
3;s'.v 3rt9
7.^5 7.25
i6/7.0 1334.4
26ul)..t 2B75.?i
.16 .5 87 . 0
74.0 75.0
3u*(j3 3i)>03
1/4.9 173.1
191.1 lrtfl.9
.,52 ' .20
i6.:*.«ol 169*rt7
IJi.oS 13.31
iP"tb.2 1032.8
3J2.7 771.8
1210.8 1213.8
iOu5.4 10-+1.3
o9.2 71.0
77.8 30 . 1
54.6 5f,.4
23.9aO 25.245
I.l5o6 1.1S04
3'»-? 3H9
390
7.25
1166.8
2688.2
87.0
74.5
30.03
170.9
186.2
.20
170.94
12.45
1022.6
753.8
1189.0
1009.8
71.9
60.5
56.4
26.410
1.1439
390
391
7.25
1075.6
1698.3
86.5
74.5
30.03
167.8
182.1
.20
174.19
11.88
1007.6
738.4
1151.4
982.9
73.7
82.4
58.2
28.780
1.1322
391
392
7.25
1128.9
1467.5
86.0
74.0
30.03
168.2
182.1
.20
174.77
11.60
1011.9
736.2
1050.3
978.6
74.6
83.3
58.7
29.494
1.1289
392
393
7.25
1182.5
1196.1
87-0
74.0
30*03
167.3
181.2
,18
I76i80
11,46
1024.3
737.1
1131.3
973.9
75.1
83.7
59.2
30.089
1.1261
393
396
7.30
1343.6
2603.2
85.0
75.0
30.08
161.5
175.8
.16
173.95
10.63
1033.2
731.9
1164.6 .
1013.2
86.9
99.1
77.8
53.045
1.1196
396
397
7.30
1133.6
2493.9
86.5
75.5
30.08
162.4
177.2
.16
173.80
12.09
1075.9
764.1
1169.3
1190.7
72.8
85.1
57.8
32.H97
1.1336
397
398
7.30
. 1085.8
2543.2
87.0
76.0
30.08
. 162.8
177.6
.17
173.75
12.74
1058.4
734.1
1173.2
. 1164.2
63.7
72 '.8
49.1
26.637
1.1430
398
-------
i.--s.r ;iu. j^c ujo 4J1
..' iLfll. ?.|..|!) . uO .HO
^l-V'n!-").. :'°'° ' b°'° "^
.-.AM. VrtC. lo.u'l Jo.. JO 1-.».GO
IhCH.no.
li-i><0 ^OOJ.uO 2000. ilO
ii.H.i-l.
LO. nAClJ «H-*0 . b^-jQ «QR7
F-/A STulCM .u7.il .00.49 .JJ689
d"LtisA,P M *7°:'5 "^ '°*HS
COS .xii.P. 1i>..-><4 Io*i7 17.94
C'iu. Li>.LP. "»J.^5' 3-2. LiO 3b.06
H.S.I.
;'.!_. tH. * '^.7S 34.70 34.30
L>.Til.tI.~ * ?i..»7 2-J.ri5 21.31
» Oi? d.yS 2.^5 1.30
••• CO .1697 .1620 .ontt7
'•> COP iy..iu 12*^0 13.flO
Xi LII/iOM T Un- ' j*7 - _ OP-
> iiCHU -to. -*a. ^MX.
.j^. W,-, i.. 2 Ul 0.0 21JO.O 2275.0
i-:OSi PPi'-i VJ li;S.O 175.0 l^S.O
i*'JX PPM « e??tS.() c?3p,., V.1 iitJO.iJ 1175.0 IftSn.O
mASS O« l::,ft.n.ih 1'oO.Hli3 50.625
iiP.i'ib/iil'' iifi
i-iA:iS Co. 7.J»:i& 7.2,.-9 24.020
"''S-S/hl- i,U a73"°'il' lij^'"-i:5 S55.703
..-OS f-'OA l?.7^1 i?|.«J*7 11.7.H')
OI.siS/l'i- nl-
:-."aS tic '.6:16 ?.9jft 3.643
i.'.. .1'. .C.if. ..':'•. 1 3 .H77 • 'h'l^
iL-.ljl -
275.0
12.0
287.0
2900*0
18.062
P67.218
664.339
1.411
6.444
1.223
415
416
.00
38.0
16.00
52.00
2000.00
1 .197
.06R9
.7095
19.04
38.28
33. R2
18.88
.40
5.2070
11.60
UUJ-
-00
470.0
40.0
510.0
2650.0
17.372
197.874
692.720
2.460
5.667
1.167
416
417
.00
3R.O
16.00
51.70
2000.00
1.111
.0689
• 66^9
18.93
38.06
33.82
20.21
.50
3.5130
12.50
.00.
*0»
875.0
45.0
920.0
2400.0
21.313
131.024
732.619
4.285
5.033
1.104
417
419
.00
38.0
16.00
51.00
2000.00
1.107
.0689
.6940
18.70
37.58
35.12
19.30
.50
3.6230
12.50
UUJU
^«-
910.0
40.0
950.0
2400.0
22.164
140.528
761.893
4.588
5.237
1.107
419
-------
1 1-.-.,! ;•:«. I-,-')
i^.TE /.Jll
nC rVi"1 L- 11:j-3«9
i-.CX HF.'i u? ^1/3.5
LiK'r n Ithr* ofi.O
L/Eii.F .
».i£T rj IL.-.P 75. C
JLij.r.
u/irt.i-'RtiJ'j. *ii«j!3
INCH. nS.
II.'.CjOu.l. 1:i7.4
uEii • !• .
ouT.COoL.T. 172. 2
c.
-------
Ul
t'..5;T (.•„. q-cC 1,^1
,..,£,.-:. P...UO- Jii.uO
sr'«rtK «L'V • ^fl.O jfr • 0
Oh' n. LI IDC
lOhGiif-' ^i-.tiO 5.1 .lit)
FT. urtb.
c-i'-iip « br'E.t-U «n'inu«uO /?GOU«uO
K.P.M.
FUt.L/Ai.J
LbS/iiP Hi< '
l-OK hi.H.f-. 1v«ut> 19'45
W». HWtK. 1.,.J2 3*.,,9
^Ou'.^. * :.02 Pi-M i-.' *?..G *4J.
u'JX PPM I-.' 960.0 »oO*0
nC ppf.| ft1 ??j£i.O c.lJil.0
•jrii-iS/nl' MR
;«iAbS Co 13*-. 2^* I 1/J7.7.33
C>R.»
245.0
20.0
265.0
2700.0
17.919
268.670
659.068
t.348
6.098
1.236
423
424
30. nO
38.0
i ft nn
iO » II U
53.no
2nOO.nO
1.343
.9767
19.46
39.11
34.98
16.56
.40
7.8669
9.90
.«&
~
-------
PA-.C ^
ItST NO. '^rj . u,u
-ML .-,.,* .j.i,4
riC FVf! L? 2 ^5 .2 iP 74.0 74.0
DEu.F.
INCH. nS.
l!J.C()Oi_.|. lr.i^.5 Ib3.7
OUT • v.GuL . T . ldl.7 Ici0.3
LJLo.r .
cAji-HKcib. ...6 04
/tIR r'UU'tf l7b.nl i"7o«l3
i-LJ'j/ilK
f~ i i ' ' — - * .^ • ••
cXH. TiiMH.
CYi_..3»7
^YL-.jO. f. . lli-i.'j il<29.2
LYL.i-jO. i 11H9.3 il'4&.3
LfL.ijO. M i?ul.G H97.1
uYL.:j0.1»2 vi-.T.3 59.2
LY^.,.0.3.'*' .0.1 /O.I
LAMB. t^AbE 04.1 ^7.3
NO.D.MOLtS ;?.<=>. 5-+ 0 2l.fi 24
i iC . M .'n . /u • 1> 15^*4 i« 161 3
TEST. iiu« 420 4i?l
422
8.04
2737.9
532.5
84.0
74.0
30.08
162.8
179.0
.34
.175.65
I/. 30
1029.0
10-39.3
1114.3
1169.6
56.4
66.9
*5.9
20.466
1.1651
422
4*3
&.U4
3143.0
308.5
84.0
74.0
30.08
162.8
178.5
.28
175.65
18.87
1000.0
iObl.R
1080.6
1130.1
53.7
63.7
44.1
19.601
1.1641
423
4?4
8.04
3422.9
203.1
84.5
74.5
30.08
163.7
17R.5
.26
175.60
19.72
982.0
1036.2
1056.7
1111.3
52.8
62.3
43.2
19.340
1.1603
424
425
8.04
3451.2
195.6
84.0
74.0
30.08
162.8
177.6
.28
175.65
18.91
990.1
1037.5
1058.4
1111.7
59.2
68.3
47.8
2^.603
1.1504
425
426
At04
3171.3
288.3
H4.0
74.0
3nt08
164.2
179.9
t28
17t92
«»*
1062.6
e»*
^*
61.0
70.5
49.1.
24.171
1.1532
426
427
8.04
2862.2
519.4
84.0
74.0
30.08
166.0
182.1
.30
174.04
16.50
**»
V**
39^*
ao.o-
65.1
74.2
51.9
25.187
1.1541
427
430
A. 05
2787.0
1069.3
86.0
75.5
30.08
170.0
185*7
..26
167.95
13.06
1043.0
1117.3
1150.6
1210.4
8ft. 7
101.9
79.2
42.246
1.1375
430
431,
A. 05
. 2958.6
660.0
86.0
75.5
30.08
169.6-
185.7
.28
16R.49
13.91
1016.2
1095.1
1122.4
1184.7
87.4
100.1
. .77.4
40.691
1.1379
431
-------
iiisT :jj. '\.>c.
:i •«-!!«.
•-il'AKh ,u>v. J8.0
Jf-.i. LI DC
r-ilVi't. VrfC • lo.ilO
iNi.ii. HO.
iOKGilE 'iu...»0
rT. i-tfi.
«.NG. SHLL.O 2unk|.. ju
rt * H . r-'i .
cij • iH
P . s . i •
w CL . f r . % "*•+ • i 9
J.Th.t . !• 1 'ft 12
ta 02 ..>5
it CO h«u7.i7
;<• Co,? • lo.iso
% liCtlO . J J
i'iO. HP.'i ,-J . .^j.5.0
ii-ji> PH.-/: :•; io.a
I.CU PPM .V .^2fi.Cl
,,c »»Prf :v iouo.o
riA-JS Oii 1^.5.>0
GIViS/HP nR
1-iA'jS Cw ii5r>«6i*7
ul^,.iS/i;P nt'.
"iA,^. C/"J h i>o0'1-J'-
i-iA&s"ijwX " i.Sii'i
oRi-iS/iii-1 nR
"iA;>£j '^ ,. .. ft'3'*''1
4 .13 434
•uO 20. nn
ifl.O . 38.0
lu'tiO 16.00
'
5i.;iO 52.00
2oOo*!jO 2oOO.iiO
1.3io 1.133
. ;H>o9 . u?Hl
• •!)0o.o
220.0 90Q.O
.SQ-JO.O 2225.0
1B.D09 21.502
3i4.U«*2 131*3nfl
' t.t2.6u 7 742*686
l.i) n J 4.2oO
o.^iH 4.781
I* ^ I*j 1 1*11]"'^
* f— »
-------
f-ifjr uo. 4o2
uATE I...I5
rtC PPM u 3°yn.b
uOX i'Pi.i u *o9.4
L»Kr li FEfcP 86.0
iJtvi.l- •
wi£T .1 rU'P 75.5
OAxJ PRESS. ^U.uil
ihCM. US.
iN.CoOL..T • 16R.7
UE6.F*
OUT . J,OvJi_«T . 1t>4.4
L/H.PhtlSb. .26
P.S.I.
Ali< J-LO« I^I.IM
LbS/HK
FUEL f-LOft iH.ui
Li3S/Hl<
t-Xri. TiiN'-P.
LYL.wO. 1 inuO.O
CYL.U.O. ^ . ino6.9
CYL.,>lO. i in*#3.3
CYL.iMO. 4 1155.7
lUT.«A*;i.
CtL.l4C.li2 65.1
LYL.i-j0.3''+ 97.3
CA^B. dASE /5.1
fJO.D. MULLS • 3Q.3iS
PLK.MOLL F
NO.M.Vi./C-. I.i3o7
IEST. iv.0. 4,,2
••^5 U.i4
6«u5 H.05
jivol.9 2566.5
2'-f4.7 10^n.2
d6.0 88. 0
75.5 76.0
3J.(^3 3U.Ofl
167.3 170.5
Io2.fs 231.4
.^3 .26
I7i.25 16-2.57
lD*i}3 15.08
985. 0 1061.8
i.OuS.5 lluF>.3
1076.7 1140.7
1142.0 1206.1
ti3.7 71.4
95.5 81.9
73«3 rio.9
•iS.^'jb 26.400
i.l3ol I.L535
4J3 434
435
8.05
2827.2
594.3
86.0
• 76.0
30. 06
171.8
187.5
• 28
169.57
15.79
1030*2
1081.4
1113.4
1178.3
69.6
79.6
55.5
25.342
'
1*1540
435
436
8.05
3113.1
345.9
86.5
75.5
30.08'
169.6
184.8
.28
171.13
16.78
996.5
1054.5
1087.0
1152.7
66.4
75.5
53.2
24.447
1*1530
436
437
8.05
3450.3
• 0
86*0
75.5
30.08
168 -»
183.0
• 30
171.71
17.92
986.3
1028.1
1060.9
1119. &
"63.7
73.3
51.4
23.828
1.1501
437
438
R.05
2266*5
1336.7
A6.0
75.5
3(lt08
171.3
_
187.5
1 30
169t57
15i44
1080.6
1121.1
1157.8
1216.8
62.3
73.3
5(1.5
22.266
1 . 1 623
438
439
8.05
2450.6
921.9
86.5
76.0
30.08
171.3
•
187. 1
.30
168.98
15. B7
1056.7
1101.9
1136.9
1200.5
-
61.0
71.4
49.6
21.082
1.1669
. 439
.440
8.05
2740.0
.0
86.5
76.0
30.08
•
170.5
.
185.7
.30
170.06
17.15
1029.0
1071.6
1109.6
1169.8
50.2
6ft. 3
47.8
20.304
1.1660
440
.441
8.05
3141.3
.0
86.5
75.5
30.08
170-0
.
185.3
.30
170*06
.
18*29
i
1002.1
1039.6
.1077.1
1130.5
56.4
66*0
46.4
19.609
1.1634
441
-------
Table 4 Statistical Significance of Test Results - FORMAT
Experimental Error Sum of Squares, EESS:
Number of Observations, n:
Functional
Form
r -.
2
3
4
5
6
1
2
3
4
5
6
Independent Variables and
Their Equation (2 or 3)
Coefficients' t values
$c
fci.i
"Ll-2
tl,3
•L 4
%»
J- / o
2
$
c
b2.L
^.2
fc2.3
fc2,4
S.5
•fc2.6
3
$
c
^.2
fc3.4
t, c
J 1 -~>
M
'4.3
"4,4
Approximate Significance
•l.l
"1.2
•l,3
•1.4
•1.5
•l,o
"2.1
-2,2
"2,3
°2,4
"2.5
Ve
^3,2
-3,4
°3,€
"4.3
"4.4
M$c ;
V.5
fc5,£.
Level ot
"5.5
o1- •.
Sum of Squares
Deviation
About
Regression
F , •
or . v^» Vj
V
79
-------
Table 5 Statistical Significance of Test. Results- TORQUE
Experimental Error Sum of Squares, EESS: 3.45
Number of Observations, n: 83
Functional
Form
1
2
3
4
5
6
1
2
3
4
5
6
Independent Variables and
Their Equation (2 or 3)
CoefficientSr"' t values
$c..
15.8
25.6
24.5
2
§
c_.. .
14.5
23.6
22.5
3
$
c
M
11.9
M§
c
11.3
Approximate Significance Level or
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
Sum of Squares
Deviation
About
Regression
47.5
17.0
18.1
F ,
a t v^» ^2
3.7
1.15
1.25
. a1
«0.001
0.49
0.31
80
-------
Table 6 Statistical Significance of Test Results -
BRAKE THERMAL EFFICIENCY
Experimental Error Sum of Squares, EESS: 2.15
Number of Observations, n: 83
Functional
Form
1
2
3
4
5
6
1
2
3
4
5
. . 6
Independent Variables and
Their Equation (2 or 3)
Coefficients' t values
•c
3.3
3.5
3.5
2
$
c.
2.9
3.1
3.1
3
$
. .C
2.4
2.6
2.6
M
1.8
MS
c
i
1.7
Approximate Sic^iifieauce Level a
0.001
<0.001
<0.001
0.006
0.002
0.002
•
0.019
0.01
0.01
0.08
0.095
Sum of Squares
Deviation
About
Regression
12.0
11.4
11.7
F. , •
or * vj_» ^2
1.36
1.28
1.33
a'
0.21
0.28
•
0.24
81
-------
Table 7 Statistical Significance of Test Results - NITRIC OXIDES (NO )
MASS EMISSIONS
Experimental Error Sum of Squares, EESS: 5.85
Number of Observations, n: 66
Functional
Form
1
2
3
4
5
6
1
2
3
4
5
6
Independent Variables and
Their Equation (2 or 3)
Coefficients' t values
V
5.15
5.07
5.12
2
$
C..
5.09
5.01
•
5.06
3
$
. .c
4.89
4.79
4.84
M
2.81
M$
C
k
2.89
Approximate Significance Level or
•
<0.001
<0.001
<0.001
<0.001
<0.001
£0.001
<0.001
<0.001
<0.001
<0.008
0.007
Sum of Squares
Deviation
About
Regression
.
57.1
52.1
50.6
F. , •
a • v^» ^2
2.75
2.53
2.44
a1
«0.001
wO.OOl
0.001
82
-------
Table 8 Statistical. Significance of Test Results - FID TOTAL HC
MASS EMISSIONS
Experimental Error Sum of Squares, EESS: 1.4
Number of Observations, n:' 83
•
Functional
Form
1
2
3
4
5
6
1
2
3
4
5
6
Independent Variables and
Their Equation (2 or 3)
Coefficients' t values
ic
22.3
27.1
27.8
2
$
c.
3
$
.C
M
6.8
Approximate Significance
<0.001
<0.001
<0.001
<0.001
M$
c
6.7
Level a
<0.001
Sum of Squares
Deviation
About
Regression
13.5
8.6
8.7
F ' ,
2.47
1.49
1.51
u1
«0.001
0.15
0.14
83
-------
Table 9 Statistical Significance of Test Results - CARBON MONOXIDE
MASS EMISSIONS
Experimental Error Sum of Squares, EESS: 6432
Number of Observations, n: 78
•
Functional
Form
1
2
3
4
5
6
1
2
3
4
5
6
Independent Variables and
Their Equation (2 or 3)
Coefficients' t values
5c
1.77
0.918
3.38
0.903
3.35
0.791
2
$
c.
2.86
0.895
4.85
0.835
4
4.75
0.721
3
$
. . C
0.794
0.662
0.552
M
7.87
7.70
M$
c
7.42
7.25
Approximate Significance Level «
0.094
>0.1
0.001
>0.1
0.001
>0.1
0.006
>0.1 •
<0.001
>0.1
<0.001
>0.1
•
>0.1
>0.1
>0.1
<0.001
<0.001
<0.001
<0.001
Sum of Squares
Deviation
About
Regression
36600
36600
20100
20400
21100
21500
F , •
a • v±' ^2
1.46
1.48
0.67
0.70
0.72
0.75
»'
0.165
0.160
>0.5
>0.5
>0.5
>0.5
84
-------
Table 10 Nominal Values of Operating Parameters for Type I
and II Tests with Indolene Fuel.
oo
Vehicle Speed, mph(km/hr)
Load Level
Engine Speed, RPM
Torque, ft Ib,. (n*m)
Spark Advance, deg BTDC
Pmanifold,in-H9 {kPa)
30(48)
cruise
1150
23.5(31.9)
44.5
19(64)
40(64)
cruise
1500
32.5(44.1)
47.5
18(60)
52(84)
cruise
2000
46.5(63.0)
51.0
16(54)
52(84)
accelera-
tion
2000
89.5(121)
34.0
10(34)
-------
LIST OF FIGURES
FIGURE TITLE PAGE
1 Chemical vs. Mass Fuel-Air Equivalence Ratio for 92
Indolene Fuel, 2000 RPM, 16 in.Hg, MET Spark.
2 Chemical vs. Mass Fuel-Air Equivalence Ratio for 93
20 Percent Methanol-Indolene Blend Fuel, 2000
RPM, 16 in. Hg, MET Spark.
3 Chemical vs. Mass Fuel-Air Equivalence Ratio for 94
30 Percent Methanol-Indolene Blend Fuel, 2000
RPM, 16 in. Hg, MET Spark.
4 Superimposes the $ versus * Regression 95
Analysis Curves for 0, 20 ana 30%M Blends,
2000 RPM, 16 in- Hg, MET Spark.
5 Brake Thermal Efficiency versus Spark Advance 96
(2000 RPM and 16 in. Hg (54 kPa) manifold
vacuum") *
MET Spark Advance versus Equivalence Ratio, $ , 101
for 0, 20 and 30%M Blends at 2000 RPM and 16 c
in. Hg (54 kPa) manifold vacuum.
7 Torque vs. Chemical Fuel-Air Equivalence Ratio 102
for Indolene Fuel, 2000 RPM, 16 in. Hg, MET Spark.
8 Torque vs. Chemical Fuel-Air Equivalence Ratio 103
for 20 Percent Methanol-Indolene Blend Fuel,
2000 RPM, 16 in. Hg, MET Spark.
9 Torque vs. Chemical Fuel-Air Equivalence Ratio 104
for 30 Percent Methanol-Indolene Blend Fuel,
2000 RPM, 16 in. Hg, MET Spark.
10 Equation (1) Regression Model Curves for Torque 105
vs. Chemical Fuel-Air Equivalence Ratio, 2000
RPM, 16 in.Hg, MET Spark.
11 Brake Thermal Efficiency vs. Chemical Fuel-Air 106
Equivalence Ratio for Indolene Fuel, 2000 RPM,
16 in. Hg, MET Spark.
12 Brake Thermal Efficiency vs. Chemical Fuel-Air 107
Equivalence Ratio for 20 Percent Methanol-
Indolene Blend Fuel, 2000 RPM, 16 in.Hg, MET Spark.
13 Brake Thermal Efficiency vs. Chemical Fuel-Air 108
Equivalence Ratio for 30 Percent Methanol-Indo-
lene Blend Fuel, 2000 RPM, 16 in.Hg, MET Spark.
86
-------
LIST OF FIGURES - Cont.
FIGURE TITLE PAQE
14 Equation (1) Regression Model Curves for Brake 109
Thermal Efficiency vs. Chemical Fuel-Air Equi-
valence Ratio, 2000 RPM, 16 in. Hg, MET Spark.
15 Volumetric Efficiency vs. Chemical Fuel-Air 110
Equivalence Ratio for Indolene Fuel, 2000 RPM,
16 in.Hg, MET Spark.
16 Volumetric Efficiency vs. Chemical Fuel-Air 111
Equivalence Ratio for 20 Percent Methanol-
Indolene Blend Fuel, 2000 RPM, 16 in.Hg, MET
Spark.
17 Volumetric Efficiency vs. Chemical Fuel-Air 112
Equivalence Ratio for 30 Percent Methanol-
Indolene Blend Fuel, 2000 RPM, 16 in. Hg,
MET Spark.
18 CO Mass Emissions vs. Chemical Fuel-Air Equi- 113
valence Ratio for Indolene Fuel, 2000 RPM,
16 in. Hg, MET Spark.
19 CO Mass Emissions vs. Chemical Fuel-Air Equi- 114
valence Ratio for 20 Percent Methanol-Indo-
lene Blend Fuel, 2000 RPM, 16 in.Hg, MET Spark.
20 CO Mass Emissions vs. Chemical Fuel-Air Equi- 115
valence Ratio for 30 Percent Methanol-Indo-
lene Blend Fuel, 2000 RPM, 16 in. Hg, MET Spark.
21 Equation (1) Regression Model Curves for CO ng
Mass Emissions vs. Chemical Fuel-Air Equiva-
lence Ratio, 2000 RPM, 16 in. Hg, MET Spark.
22 NO Mass Emissions vs. Chemical Fuel-Air Equi- 117
valence Ratio for Indolene Fuel, 2000 RPM, 16
in. Hg, MET Spark.
23 NO Mass Emissions vs. Chemical Fuel-Air Equi-
vaTence Ratio for 20 Percent Methanol-Indolene
Blend Fuel, 2000 RPM, 16 in. Hg, MET Spark.
24 NO Mass Emissions vs. Chemical Fuel-Air Equi-
vaTence Ratio for 30 Percent Methanol-Indolene
Blend Fuel, 2000 RPM, 16 in. Hg, MET Spark.
25 Equation (1) Regression Model Curves for NO 120
Mass Emissions vs. Chemical Fuel-Air Equiva-
lence Ratio, 2000 RPM, 16 in. Hg, MET Spark.
87
-------
LIST OF FIGURES - Cont.
FIGURE TITLE pAGE
26 FID HC Mass Emissions vs. Chemical Fuel-Air Equi- 121
valence Ratio for Indolene Fuel, 2000 RPM, 16 in.
Hg, MET Spark.
27 FID HC Mass Emissions vs. Chemical Fuel-Air Equi- 122
valence Ratio for 20 Percent Methanol-Indolene
Blend Fuel, 2000 RPM, 16 in. Hg, MBT Spark.
28 FID HC Mass Emissions vs. Chemical Fuel-Air Equi- 123
valence Ratio for 30 Percent Methanol-Indolene
Blend Fuel, 2000 RPM, 16 in.Hg, MBT Spark.
29 Equation (1) Regression Model Curves for FID HC 124
Mass Emissions vs. Chemical Fuel-Air Equivalence
Ratio, 2000 RPM, 16 in. Hg, MBT Spark.
30 CC>2 Mass Emissions vs. Chemical Fuel-Air Equi- 125
valence Ratio for Indolene Fuel, 2000 RPM, 16
in. Hg, MBT Spark.
31 CC>2 Mass Emissions vs. Chemical Fuel-Air Equi- 126
valence Ratio for 20 Percent Methanol-Indolene
Blend Fuel, 2000 RPM, 16 in.Hg, MBT Spark.
32 COo Mass Emissions vs. Chemical Fuel-Air Equi- 127
valence Ratio for 20 Percent Methanol-Indolene
Blend Fuel, 2000 RPM, 16 in. Hg, MBT Spark.
33 Equation (1) Regression Model Curves for CO, 128
Mass Emissions vs. Chemical Fuel-Air Equiva-
lence Ratio, 2000 RPM, 16 in. Hg, MBT Spark.
34 Oxygen Mass Emissions vs. Chemical Fuel-Air Equi- 129
valence Ratio for Indolene Fuel, 2000 RPM, in.
Hg, MBT Spark.
35 Oxygen Mass Emissions vs. Chemical Fuel-Air Equi- 130
valence Ratio for 20 Percent Methanol-Indolene
Blend Fuel, 2000 RPM, 16 in.Hg, MBT Spark.
36 Oxygen Mass Emissions vs. Chemical Fuel-Air Equi- 131
valence Ratio for 30 Percent Methanol-Indolene
Blend Fuel, 2000 RPM, 16 in. Hg, MBT Spark.
37 Equation (1) Regression Model Curves for 02 Mass 132
Emissions vs. Chemical Fuel-Air Equivalence
Ratio, 2000 RPM, 16 in.Hg, MBT Spark.
88
-------
T.TST OF FIGURES - Cont.
PAGE
FIGURE TITLE
38 individual Cylinder Exhaust OJW611^"1??" ve"SB
Percent Methanol, 2000 RPM, 16 in. Hg (54 kPa) , MET
Spark.
39 Oxygen Percent vs. Chemical Fuel-Air Equivalence 134
Ratio for indolene Fuel, 2000 RPM, 16 in. Hg,
MBT Spark.
40 Oxygen Percent vs. Chemical Fuel-Air Equivalence 135
Ratio for 20 Percent Methanol-Indolene Blend
Fuel, 2000 RPM, 16 in. Hg, MBT Spark.
41 Oxygen Percent vs. Chemical Fuel-Air Equivalence 136
Ratio for 30 Percent Methanol-Indolene Blend
Fuel, 2000 RPM, 16 in. Hg, MBT Spark.
42 Illustrates the Effect of Methanol on Geometric 137
Distribution, 2000 RPM, 16 in-Hg, MBT Spark,
5 w 0.97.
c
43 illustrates the Effect of Methanol on Geometric 138
Distribution, 2000 RPM, 16 in. Kg, MBT Spark.
$ «=» 0.87.
c
44 illustrates the Effect of Methanol on Maximum 139
Spread in Geometric Fuel-Air Equivalence Ratios
as Determined from Figures 42 and 43.
45 illustrates the Reduction in Fuel-Air Equivalence 140
Ratio when Methanol Blends are Substituted for
indolene with No Engine Adjustments (Type I Tests).
46a Illustrates the Reduction in Torque Occurring when 141
Methanol Blends are Substituted for Indolene with
No Engine Adjustments (Type I Tests).
46b Illustrates the Reduction in Engine Speed Occurr- 142
ing when Methanol Blends are Substituted for In-
dolene with No Engine Adjustments (Type I Tests).
47 Brake Thermal Efficiency When Methanol Blends are 143
Substituted for Indolene with No Engine Adjustments
(Type I Tests).
48a Carbon Monoxide Volume Emissions when Methanol I44
Blends are Substituted for Indolene with No
Engine Adjustments (Type I Tests).
89
-------
LIST OF FIGURES - Cont.
FIGURE TITLE PAGE
48b Carbon Monoxide Mass Emissions When Methanol Blends 145
are Substituted for Indolene with No Engine Adjust-
ments (Type I Tests).
49a Illustrates the Reduction in Nitric Oxide Mass 146
Emissions Occurring when Methanol Blends are
Substituted for Indolene with No Engine Adjust-
ments (Type I Tests).
49b Illustrates the Reduction in Nitric Oxide Volume 147
Emissions when Methanol Blends are Substituted
for Indolene with No Engine Adjustments (Type I
Tests).
50a Illustrates the Reduction in FID HC Volume 148
Emissions when Methanol Blends are Substituted
for Indolene with No Engine Adjustments (Type
I Tests).
50b Illustrates the Reduction in FID HC Mass Emiss- 149
ions when Methanol Blends are Substituted for
Indolene with No Engine Adjustments (Type I
Tests).
50c Shows the Effect of Fuel-Air Equivalence Ratio 150
on FID HC Mass Emissions for the Type I Tests.
51 Shows the Reduced Manifold Vacuum Required for 151
Methanol Blends to Attain the Same Torque and
Engine Speed as Found with Indolene (Type II
Tests).
52 Shows the Fuel-Air Equivalence Ratio Decrease 152
(Blend Leaning Effect) as a Function of Methanol
Blend Level for the Type II Tests.
53 Shows the Increased Efficiency Obtained with 153
Blends at Equal-to-Indolene Torque and Engine
Speed Operation (Type II Tests).
54 Shows the Oxygen Emissions as a Function of 155
Methanol Blend Level for the Type II Tests.
55a Shows the Effect of Methanol Addition on CO 156
Volume Emissions at Equal-to-Gasoline Fueled
Torque and Engine Speed (Type II Tests).
90
-------
LIST OF FIGURES - Cont.
FIGURE TITLE
55b Shows the Effect of Methanol Addition on CO Mass
Emissions at Equal-to-Gasoline Fueled Torque and
Engine Speed (Type II Tests).
56a illustrates the Effect of Fuel-Air Equivalence Ratio 158
on the CO Volume Emissions for the 0%M Type II Tests.
56b Shows the CO NDIR Analyzer Response for Tests 159
Numbered 139 through 144 (Type II Tests).
57 Illustrates the Reduction in Nitric Oxide Mass 160
Emissions with Methanol Blends at Equal-to-
Indolene Torque and Engine Speed Operation
(Type II Tests).
58a Illustrates the Reduction in FID HC Volume 162
Emissions with Methanol Blends aft Hfttal-to-
Indolene Torque and Engine Speed Operation
(Type II Tests).
58b Illustrates the Reduction in FID HC Mass 164
Emissions with Methanol Blends at Equal-
to- Indolene Torque and Engine Speed
Operation (Type II Tests).
91
-------
cc
CC
LU
u
z
LJ
_l
CC
o
UJ
UJ
ra
u.
UJ
X
*c=0. 03056 + 0. 9492
O=0 PERCENT METHRNGL DRTfl
0.90 1.00 1 -10 1-20
MRSS FUEL-RIR EQUIVRLENCE RRTIQ
FIGURE 1 CHEMICRL VS. MRSS FUEL.-RIR EQUIVRLENCE
RRTIQ TOR INDQLENE fUEL,200Q RPM.16
IN.HG.MBT SPRRK.
1 .30
92
-------
a
^*
^
CE
UJ
u
Ul
_l
CE
a:
CE
I
CE
-------
QC
OH
Ul
o
z-
UJ
_J
a:
o ~
a:
-------
1-3- _
o
o
•H
41
01
a
5
f
Q>
a
01
0%M; C
c
20%M; 9
0.0306 + 0.949 «
0.900
0.894
Assumes 2.4% (4 Ibm/hr)
air flow measurement error
0.9 1.0 1.1 1.2 1.3
Mass Fuel-Air Equivalence Ratio, ft
m
Figure 4 - Superimposes the 9 versus 5 Regression Analysis
Curves for 0, 20 and 30%M Blends, 2000 RPM, 16 in.
Hg, MBT Spark Advance
95
-------
1.0 .
%
m
% o.s .
m
F=-
>
«
o
•i-l
a
I
•H
U
•H
H
30
1.0
0.9
40
50
60
30 % M
•c « 0.857
I
I
(a)
(b)
(c)
30 40 50 60
Spark Advance, deg ETC
Figure 5 - Brake Thermal Efficiency versus Spark Advance
(2000 RPM and 16 in.Hg (54 kPa) manifold vacuum).
96
-------
1.0
0.9
! XAJ_
V 30
o
•H
•P
10
(U
•H
U
•H
«H
«w
W
I
-------
n
in
i.o
Q
•"
§
•rl
U
•
H
I
M
« 1.0
0.9
30
30
J_
40
50
* «1.004
c
40
50
30 % K
*c « 0.964
I
30 . 40 50
SparX Advance, deg BTC
&0
60
60
(g)
(h)
(i)
Figure 5 - Brake Thermal Efficiency versus Spark Advance
(cont.)
(2000 RPM and 16. in Hg (54 kPa) manifold vacuum).
* In Figure 24 (h) the efficiency ratio is T]/T\ 48 deg BTC
98
-------
0)
TJ
i-l
in
O
•H
O
c
U
•H
W
0)
e
0)
m
1.05
0.95
1.05
0.95
1.05
0.95
30
30
X
Indolene
fi » 0.987
c
40
50
1.044
40
50
1.027
I
I
(j)
00
(1)
Figure 5
(cont.)
30 . 40- 50
Spark Advance, deg BTC
- Brake Thermal Efficiency versus Spark Advance
(2000 RPM and 16 in.Hg (54 kPa) manifold vacuum)
99
-------
o
EH
Q)
•O
O
•H
•P
(0
-------
u
t<
n
9
»
0)
a
I
(0
0,
(0
b •
§
50
40
30
•Curve Used to Define
MET Spark Advance for
Type 0 Tests.
•—•O-
V
O - Indolene
A - 20%M
D - 30%M
L_
0.8
0.9
1.0
1.1
Fuel-Air Equivalence Ratio, 8
Figure 6 - MET Spark Advance versus Equivalence Ratio, $ ,
for 0, 20 and 30%M Blends at 2000 RPM and 16 in. Hg
(54 kPa) manifold vacuum. -
101
-------
TORQUE =-
O =
03
-J
LU
U
O
O
O
•
CM.
\n
o
o
•
CD.
O
O
•18.347 + 85.619$ +-46.251 «2
0 PERCENT METHpfilBL DRTfl c
O
O
o
o
•
o.
D.80
FIGURE 7
0.90 1-00 1.10 1.20 1.30
CHEMICRL FUEL-RIR ^QUIVRLENCE RRTIQ, ff
c .
TGRQUE VS. CHEMICRL FUEL.-RIR EQUIVflL-
ENCE RRTIQ FOR INDOLENE FUEL .2000
RPM.16 IN.HG.MBT SPRRK.
102
-------
o
a
*
csi.
O
o
r
CD.
\jj O
—j O
CD
O
a
*
0_
TORQUE = -19.769 + 90-690 * +-49.548 $2
A = 20 PERCENT METHfiNQL DRTR c
C.80
0.90
1 .00
1 .10
1.20
1 .30
CHEMICRL FUEl.-RIR ^QUiVRLENCE RRTIO , *
FIGURE 8 TORQUE VS. CHEMICRL FUEL-RIR EQUIVRL-
ENCE RRTIG FGR 20 PERCENT METHRNOL-
INOOLENE BLEND FUEL.200C RPM.16 IN.
HG.M3T SPRRK.
103
-------
CD
liJ
'=3
O
eg
CD
O
O
*
CM.
If)
O
O
•
co_
O
O
O
O
•
o_
TQRQUE --44.515+141.947 $c+-75.221
D r 30 PERCENT METHRNOL DflTfl
CD
an
U-80
FIGURE 9
0.90 1-00 1.10 1.20
CHEMICflL FUEL-RIR ^QUIVRLENCE RRTIO
TORQUE VS. CHEMICRL FUEL-RIR EQUIVRL-
ENCE RRTIQ FBR 30 PERCENT METHRMQL-
; INDOLENE BLEND FUEL,2000 RPM.16 IN.
HG.MBT SPRPK.
1.30
ft
104
-------
o
o
•
CM.
1/3
o
o
co_
CD
UJ
a:
o
o
o
o
o
o.
00 PERCENT flETHflNOL
20 PERCENT METHflNQL
30 PERCENT METHflNBL
0.80
0.90 1.00 1.10 1-20 1.30
CHEMICRl FUEL-RIR EQUIVflLENCE RRTIO, $
FIGURE 10 EOUflTION 11 J REGRESSION MODEL CURVES
FOR IQRClUE VS. CriEniCflL FUEL-fllR
EQUIVflLENCE RflTI
nBT SRRRK.
,2000 RPM.16 IN. HG
105
-------
LU
O
z
LLJ
CJ
LU
a:
LU
X
a:
o±
ca
o
o
CM
o
o
•
CM_
CSI
O
O
O
O
•
'CD-
CM
cn_
o
o
•
co_
o
o
BTHE---220.Q + 678.3 *c +
0=0 PERCENT METHRNGL DRTfl
CSD
O
CD
CD
O
CD
CD
0.80
0-90 1.00 1.10 1.20 1-30
CHEMICRL -FUEL-RIR EQUIVRLENCF. RRTI3, §
FIGURE 11 BRRKE THERMRL FFFICENCY VS. CHEMiCni
FUEI.--RIR FQUIVRLENCE RRTIQ FGR IN
DQLENE FUEL. ,2QGC RPM.16 IN. HG.f*3T
SPflRK •
106
-------
I-
z
UJ
on
LU
CL
z
LJ
O
t—*
LL.
U.
UJ
-------
UJ
u
o:
UJ
o_
UJ
*-H
U_
u_
LU
_J
or
cc
UJ
x
t—
UJ
cr
CO
O
o
CM
O
O
CM.
CM
O
O
(XI
O
O
•
' O_
(M
O
O
o
o
t
co_
o
o
BTHE=-Z56.8 + 772.3 * +-696-0 *2+202-8
0 =30 PERCENT METHflNQL DRTRC
HUE)
m
3
0.8C
C.90 1 .00 1 .10 1 .20 1 -30
CHEMICflL FUEL-FUR EQUIVflLENCE RRTIO, §
FIGURE 13 BRflKE THERfiPL EF;F ICENC Y VS. CHEMICPL
FUEL-fllR FGUiVflLFNCF RRTIG FGR 30
PERCENT METHflNQL-INDQLENE BLEND FUEL
• .2000 RPh.lS IN.HG.M3T SPRRK .
108
-------
o
o
CM.
CM
O
O
Cvl
LL)
U
a:
LU
a.
o.
CM
o
o
re
UJ
Ul
Si
cc.
a:
00
o
o
•
co_
o
o
00 PERCENT METHRNQL
20 PERCENT METHRN0L
30 PERCENT flETHRNOL
0.80
0.90
1 .00
1 -10
1 .20
1 .30
CHEMICflL FUEL-fllR EQLIIVRLENCE RRTIO
FIGURE 14 EQURTION (1) REGRESSION MODEL CURVES
FOR BROKE IHERflP.L EFFICENCY VS.
CHEMICflL FUEI.-RIR EQL'IVflLENCE RRTIO
.2000 RPM.16 IN. HG.nBT SPRRK .
109
-------
UJ
u
Q£
UJ
Q_
UJ
2=
Z3
-J
O
I/)
CO
O
O
•
l/J.
o
1/3
u
z
UJ
o «*.
— en
u.
u.
UJ
o
o
en
o
in
•
m_
n
0=0 PERCENT riETHRNOL OflTfl
o
o o
o
o
o
o
o
o
o
o
0
O
O
o o
o
o
o
o
o
CD
.o
o
o
o
o
o
o
CD
0.80 0.90' 1.00 1.10 1-20 1-30
CHEfllCRL FUEL-fllR EOUIVRLENCE RflTIQ, $c
FIGURE 15 VOLUMETRIC EFFICENCY VS. CHEMlCflL FUEL.
-FUR EQUiVRLENCE RRTIO FOR INOOLENE
FUEL.20GO RPM.16, 'IN HG.MBT SFflRK .
110
-------
Z
LU
CJ
z
LU
Lu
s:
o
in
«
in.
irn
o
LO
~ m
Lu
u.
o
.o
«*.
o
in
en
= 20 PERCENT METHRN0L OflTR
•I'.OO.
D.80
0.90 '
1.10
1 .20
1 .30
CHEniCRL FUEL-RIR EGUIVRLENCE RRTI8, $
FIGURE 16 VOLUMETRIC EFFICF.NCY VS. CHEMI.CRL FUEL.
-RIR EOUiVRLENCE RRTIO FOR 20 PER-
CENT METHRNQL-INDOLENE BLENO FUEL.
2000 RPM.16 IN.HG.MBT SPRRK .
Ill
-------
UJ
O
o:
UJ
Q_
UJ
u
u.
UJ
a:
H-
UJ
O
10
•
1/5.
o
o
in.
o
o
ro
D r 30 PERCENT METHflNQL DRTfl
ID
Q
a
S
a
a a
(D
a
0.80
0.90
1.00
1.10
1.20
1.30
CHEMlCflL FUEL. FIR EQUIVPLtNCE
FIGURE 17 VOLUMETRIC EFFICENCY VS. CHEMlCflL FUEL
-FUR EQUiVflLENCE RflTIQ FCR 30 PER-
CENT METHflNQL-INOeLENE BLEND FUEL,
2000 RPM.16 IN. HG.nST SPRRK .
112
-------
II
o
a:
x
t
0-
V3
o
a
o_
o
a
o_
v;
uj o
o
in O_
cc —
O
u
o
a
CO =7082-^-22095 »c
0=0 PERCENT METHRNQL DRTR
j.8G 0.90 1.00 1.10 1-20
CKEMICRL FUEL-RIR EQUIVRLENCE RRTIO ,
FIGURE 18 CQ MRSS EMISSIONS VS. CHEMICRL FUEL--
RIR EQUIVRLENCF RRTIO .FQR INOQLENE
FUEL.2000 RPM.16 IN. HG.MBT SPRRK .
1.30
113
-------
II
o
o:
:c
i
Q_
to
z
(O
I— *
r:
UJ
CO
cr
o
o
•
o.
en
o.
CM
O
O
CO =6S74+-19139
A = 20 PERCENT METHRNQL rffiTfl
+1712S *2 +-4822 *3
C
A A
J.80 0.90 1.00 l.!0 1-20 1-30
CHEMICRL FUEL-RIR EQUIVRLENCE RRT19 , fic
FIGURE 19 CO MRSS EMISSIONS VS. CHEMICRL FUEL.-
RIR EQUIVRLENCE RRTIO FOR 20 PERCENT
METHRNCL-INOGLENE BLEND FUEL.20CG
RPM.iG IN. HG^MST SPRRK .
114
-------
ti
o
Ci)
CO
Z
€3
I—*
CO
CO
I—I
SI
UJ
CO
cr
2=
C3
CJ
Q
O
O_
o
o
•
o.
CM
O
O
•
0_
o
o
CO =5861+-16141
D = 30 PERCENT
METHflNGL DRTfl
J-80 Q.90 1.00 l.IQ 1.20 1-30
CHEMICRL FUEL-RIR E*GUIVRLENCF RflTIQ.. *c
FIGURE 20 CO MRSS EMISSIONS VS - CHEMICRL FUEL-
RIR EQUIVRLENCE RflTIQ F3R 30 PERCENT
METHRNGL-IND3LENE BLEND FUEL,200G
RPM.16 IN. HG.MBT SPRRK .
115
-------
II
a
I
Q_
X
O
to
z
o
•—«
V?
t/3
n
LU
cn
7
a:
21
C3
LJ
O
a
•
o.
tn
a
o
•
o.
CSJ
a
o
«
o_
o
o
00 PERCENT METHflNGL
20 PERCENT METHRNOL
30 PERCENT METHRNQL
0-90 1 .00 1-10 1 .20 1 .30
CHEMICRL FUEL-RIR EQUIVRLENCE RRTI3, $c
FIGURE 21 EOURTION (13 REGRESSION MOCEL CURVES
FOR CO MRSS EMISSIONS VS. CHEniCRL
FUEL-RIR EQUiVflLENCE RRTIO.ZOOO RPM .
16 IN. HG.MBT SPRRK .
116
-------
o
1/3
CD
O
f
rv V~\
X —•
z
CD
f—t
CO
LU
UJ
o:
i/j
a
o
•
ID'
o
in
o
a
NGX =-«
0=0 PERCENT"'METHRNGLt'3RTR
O
CD
O
CD
CD
J.80 0.90 1.00 1.10 1.20
CHEMICRL FUEL-RIR EQUIVflLENCE RRTIQ
FIGURE 22 NGX MRSS EMISSIONS VS. CHEMICRL FUEL-
RIR EQLJiVHLENCE RRTIG FCR IN03LENE
FUEL.2CQG RPM.16' IN. HG,n3T SPRRK .
1.30
$
117
-------
NQX =-954 + 2879$ +-2817^
A = 20 PERCEN? METHRNQL DflTR
OIL
x
i
QL
X
X.
C3
•
VJ
UJ
V3
i— i
sr
LU
CO
CO
cr
z:
CD
o
in
CM_
o
o
t
0_
o
•
r-~
o
o
o
LO
CM"
o
o
J-80 0-90 1-00 1.10 1.20
CHEMICfiL FUEl.-fllR EGLIVRLENCE RRTIC
FIGURE 23 NQX MRSS EMISSICN'S VS. CHEMICPL FUEL-
HIS EQUIVRLENCE-. RRTIQ FOR 20 PERCENT
nETHPNCL-INOSLENE BLEND FUEL. ,2000
RPM.16 IN.HG.M5T SFRRK .
1.30
$
118
-------
Q_
3:
CO
2
CD
I— I
CO
to
»— I
31
LU
to
CO
cr
o
z
o
ID
•
CM.
O
CD
•
o_
in
o
o
•
ID'
o
in
•
CNJ'
o
o
NQX =-634+1976 §c+-1975 i +642 $
O =^30 PERCENT METHflNQL DflTH • °
CD
D
3.80 0.90 1.00 l.!0 1-20
CHEMICRL FUEL-RIR EQUiVRLENCE RRTIQ
FIGURE 24 NQX MRSS EMISSIONS VS. CHEMICRL FUEl.-
RIR EQUIVRLENCE RRTIQ FOR 30 PERCENT
ME1HRNQL-IN03LENE. BLENO FUEL.2000
RPM.16 IN. HC.M5T SFRRK.
1 .30
119
-------
QC
X
I
o.
W7
Z
O
V?
w
C/5
x
E)
Z
O
1/3
•
CVJ.
O
O
«
O.
O
1/7
O
O
in'
o
o
00 PERCENT METHRNCL
20 PERCENT flETHRNOL
30 PERCENT riEVHRNOL
3.50 0.90 1 .00 1.10 1 -20
CHEMICRL FUEL-RIR EQUIVRLENCE RRTIQ
FIGURE 25 EQURTieN (13 REGRESSION MODEL CURVES
F0R N9X HRSS EMISSiCNS VS. CHEMICRL
FUEL-RIR EQUiVRLENCE RRTI0.ZOOO RPM,
16 IN. HG.nBT SPRRK .
1 .30
120
-------
X
I
o.
X
CO
CO
CL
CJ
X
o
(^
•
r-
O
o
•
CD
CO
z
a
•— «•
CO
to
— • U3
O
O
O
O
O
O
HC =-4.880+9-160 $c
0=0 PERCENT METHRNGL DRTfl
O
O
O
o
CD
o
o
0.80
0.90
1 .00
1.10
! .20
1 .30
CHEMICRL FUEL-HIR EQUIVflLFNCF RRTI0, $
FIGURE 26 FID HC MRSS EMISSIONS VS. CHEM.ICRL
FUEL-RIS EGUIVRLF.NCE RRTIQ FOR IN-
DI3LENE FUEL .2000.RPn.I6 IN.HG.MBT
SPRRK.
121
-------
o
o
X
I
OL
X
to
O
O
*
CD'
o
o
U3
U3
•-• 1/J
LLJ
CO
cr
z:
X
a
o
o
o
HC =-5.770+9.743 $
A= 20 PERCENT ME^HRNOL DRTR
0.80
0.90 1.00 l.!0 1.20 1.30
CHEMICRL FUEL.-RIR EQLIVRLEMCE RRTIB, 9
FIGURE 27 FID HC fRSS EMISSIONS VS. CHEMICRL
FUEL-RIR EGUIVPLENCE RRTIQ FGR 20
PERCENT FETHRNQL-INDeLENE BLEND FUEL.
.2000 RPM.16 IN. HG.MBT SPRRK.
122
-------
o
o
ec
x
i
Q_
X
O
o
•
to'
i—i O
V3 O
-------
o
o
oc,
X
I
Q_
X
>»
C3
*
V)
z
CD
CO
V)
— in
E
UJ
O
O
CD'
o
o
to
CO
-------
O
O
X
I
0-
X
(O
2
CD
I— I
tn
z:
LU
(O
CT
3d
CM
O
o
o
o
o.
en
o
o
o
U3.
CO
o
o
o
o.
00
o
o
•
o
in.
r-
o
o
•
o
o.
r-
o
o
D
O
O
CQ2 ---.-2171+9018 $c+-8355 $
0=0 PERCENT hETHRNQL DRTR
O
O
(D
O
0.80
0.90 1.00 l.!0 1.20
CHEMICRL FUEl.-RIR EQUiVRLENCE RRTIQ
1.30
FIGURE 30 C82 MflSS EMISSIONS VS. CHEMiCRL FUEl.-
RIR EQUIVRLENCE RRTIO FGR INGGLENE
FUEI..ZOQQ RPh.lS IN.HG.^aT SPRRK.
125
-------
QL
1C
I
Q_
X
Z
CD
VJ
VJ
LJ
tQ
V3
CE
CO
CD
U
o
o
*
o
1/3-
O)
o
o
o
o.
CD
O
O
*
O
co'
o
o
•
o
o.
00
o
o
•
o
in.
o
o
•
o
o.
r-
o
o
•
o
in.
CO
C02 --
-15353 * +4596
= 20 PERCENT METHRNQL DRTfl
0.80
0.90
1.00
1.10
1.20
l.30
CHEMICRL FUEl.-RIR EQUIVRLFNCF RRTIO
FIGURE 31 C02 MP.SS EMISSION'S VS. CHEniCRL FUEL-
RIR EQUIVRLENCF. RRTIG FGR 20 PERCENT
METHRNOL-INJ'SLF.NE 51.END FUEL .2000
RPM.ie IN. HG.MBT SFRRK.
126
-------
C02 =-824+5651 « +-5697 $2 +1858 $3
° = 30 PERCENf METHRNQL0 ORTfl °
o
o
•
o
1/3.
cn
o
o
o
o.
O)
-D
o:
I
i
a.
X
(O
z
V)
V3
UJ
w
W
o:
s:
CM
O
U
O
O
•
o
in-
to
o
o
v
O
oo'
o
o
o
in.
o
o
•
o
o.
o
o
•
o
ID.
CO
03
CEP CD
CD
O.SQ
0.90 1.00 ' 1.10 1.20 1.30
ChEMICflL FUEL.--RIR EQUIVRLENCE RflTIC , $
FIGURE 32 CQ2 MRSS EMISSIONS VS. CHE.^ICnL FUEl.-
niR EQUIVflLENCE RHTIQ.FGR 20 PERCENT
METHflNQL-INUGLENF BLEND FUFl. .2000
RPM.16 IN.HO,HOT SPRRK.
127
-------
I
Q_
CtJ
t/3
Z
V7
3=
v;
to
a:
CM
a
o
o
•
o
a.
en
o
o
*
o
• in.
03
o
o
•
o
o.
CO
o
o
o
LO.
r-
o
o
•
o
a.
r-
o
in.
(£>
00 PERCENT flETHflNOL
20 PERCENT METHRNQL
30 PERCENT METHRNQL
0.90 1 -00 1.10 1-20 1 .30
CHEniCRL FUEL.-fltR EQUIVHLEHCE RRTI3 , *
0.80
FIGURE 33 EQUflTIQN 11) REGRESSI3S neCEL. CURVES
FOR CGZ HR3S EnissieNs vs. CHEMICRL
FUEL.--RIR EGUIVflLENCE RflTie.ZOOO
!6 IN.HG.MBT SPRRK .
128
-------
cc
:n
i
QL
I
ID
2
CD
t—4
0-5
07
to
CC
CM
CD
o
o
o
CM'
o
o
g
o
Csl"
O
O
•
o
LT3
O
O
o
o
•
o_
LO
°!
. i
02 =10066+-26302SC +22958*^ +-6682S3
P = 0 PERCENT METHRNQL DRTfl °
o
O
o
o
CD
G
0.90
1 .00
1.10
1 .20
1 .30
CHEMICRL FUEL-RIR EGUIVRLENCE RRTIG
FIGURE 34 OXYGEN MP.SS EMISSIONS VS. CHEMICRL
FUEL-RIR EGUIVRLENCE RRTII3 FQR IN-
D0LENE FUEL..2000 RPM.16 IN. HG.1ST
SPRRK .
129
-------
DC
X
I
Q_
a
2
O
LJ
V3
u:
z:
CM
Q2
A
=10382+-27421*c +24213J2 +-7134«3
= 20 PERCENT METHRN8L
o
o
•
o
CM'
o
o
o
o.
CM
O
O
•
O
1/3J
O
O
•
O
o_
o
o
•
o.
1/3
O
O
,30 C.90 .1 .00 1 .10 1 .20 1 .30
CHEMICRL FUEL-RIR EQUIVRLENCE RRTIG,«
c
FIGURE 35 0XYGEN MflSS EMISSIONS VS. CHEMICRL
FUEL-RIR EGUiVRLENCE RRTIG FGR 20
PERCENT KETHRNOL-IND3LENE BLEND FUEL
.2000 RPM.16 IN.HG.MBT SPRRK.
130
-------
on
X
I
OL
X
CO
CO
CO
UJ
CO
CO
cr
CM
O
o
l/3_
CM
O
O
•
O
o_
CM
O
O
•
O
1/3 J
O
O
•
o
'OJ
o
o
•
o_
10
o
o
02
a
=10S03+-27646 $c+24677 $^+-7295
= 30 PERCENT METHRNOL ORTR
D
D
Q
CD
0.90: 1.00 1-10 1.20
CHEMICRL FUEL.-RIR E'QUJVRLENCE RRTIQ
FIGURE 36 QXYGEN MRSS EMISSIONS VS. CHEMICRL
FUEl.-RIR EQUIVRLENCE RRTIO F3R 3C
PERCENT METHRNOL-INOBLENE BLEND FUEL.
.2000 RPM.16 IN.HG.M3T SPRRK.
1 .30
131
-------
a:
i
Q_
X
1/3
Z
CD
z:
UJ
(O
w
a:
r:
o
p
'•
o
o.
CM
O
o
•
o
1/3,
o
o
•
o
o.
o
o
•
o.
in
o
o
00 PERCENT METHRNOL
20 PERCENT METHRNGL
30 PERCENT METHRNBL
0.90
1 .00
1 .10
1 .20
1 .30
CHEMICRL FUEL-RIR E^QUIVRLENCE RRTIQ
FIGURE 37 EQUflTIBN il.) REGRESSION JIQCEL CURVES
FOR 02 MRSS EMISSIONS VS. CHEMICRL
FUEL-RIR EQUIVRLENCE RRTI0.20QQ RPM,
16 IN..HG.M3T SPRRK.
132
-------
o
e
o
•H
n
w
4J
n
9
(0
I
•o
-S
i-l
CJ
•H
•H
•O
C
H
cylinder (1) _____-•
« «
c
(4)
(3)
10 20
Percent Methanol. %M
30
Figure 38 - Individual cylinder Exhaust Oxygen' Emissions versus
Percent Methanol. 2000 RPM. 16 in.Hg (54 kPa), MET
spark.
133
-------
o
o
•
1/3
O
O
o
oc
LJ
Q_
Z
X
o
o
o
o
o
•
CM
CD
O
O
o
O r 0 PERCENT METHflNQL OflTR
O
O
°0
o
30 0-90' 1.00 1.10 1-20 1-30
CHEMICRL FUEL-fllR EQUIVRLENCE RflTIO, $
c
FIGURE 39 OXYGEN PERCENT VS. CHEMICflL FUEL-fllR
EQUlVflLENCE RflTIO FOR INDOLENE FUEL,
2000 RPM.16 IN. HG.flBT SPRRK .
134
-------
o
o
f
in
o
o
UJ
u
Z
UJ
O
o
o
o
CO
o
o
•
CM
o
o
o
o
= 20 PERCENT METHflNQL ORTfl
0.90 1.00 1.10 1.20
CHEMICflL FUEL-fllR EQUIVRLENCE RRTI6 ',
FIGURE 40 OXYGEN PERCENT VS. CHEniCflL FUEL-FUR
EOUIVflLENCE RRTIO FOR 20 PERCENT
riETHflNGL-INOOLENE-BLEND FUEL,2000
RPM ,16 IN.HG.MBT SPRRK .
1 .30
ft
135
-------
o
o
o
o
z
UJ
C.J
UJ
a.
UJ
O
>-
X
CD
O
o
•
(*•)'
o
o
•
CM'
o
o
o
o
D - 30 PERCENT METHRNGL OflTfl
CD
CO
CD
CD
=b.80
0.90 1.00 1.10 1.20 1.30
GHEMICRL FUEl.-fllR EQU1VRLENCF RflTIQ , $^
FIGURE 41 OXYGFN PERCENT VS . CHEfllCRL FUEL-RIR
EQUIVRLENCE RRTIO F0R 30 PERCENT
nETHRNOL-lNOGLENE BLEND FUEL. .2000
RPM .16 IN. HG.nBT SPRRK .
136
-------
4J
ra
ttJ
-------
0
•rH
10
-------
-------
U
ivalence .Ratio
Air E
-------
90
s"- ;
4J 85
0)
g-
80
52 mph aiccel.
10
20
30
4J
m
°/M
30
Figure 46a- Illustrates the Reduction in Torque Occurring
when Methanol Blends are substituted for Indolene
with No Engine Adjustments (Type I Tests)
141
-------
§
ti
•o
0)
g,
w
0
H
2000
1800
2000
1800
>
10
52 mph cruise
20
30
52 mph accel
10 20
Percent Methanol, %M
30
Figure 46b - Illustrates the Reduction in Engine Speec
Occurring when Methanol Blends are Substituted
for Indolene with No Engine Adjustments (Type I
Tests)
142
-------
>1
u
c
-------
0.3
| 0-2
n
c
o
._J
™ A
s <
•rl i
i '
> (108)*
m
.52 mph accel.
1
i *
» •
r , , ,
0 10 20 30
0)
•a
i
•rt
X' • '
g 0.3
e
£
n
3
Q.2
<
«.
i (119)*
52 mph cruise
*** JUH ^^5
r i § i
10 20
Percent Methanol, %M
30
Figure 48a - Carbon Monoxide Volume Emissions when Methanol
Blends are substituted for Indolene with No Engine
Adjustments (Type I Tests)
144
-------
11
10
9
J~l O
I i
^
in
rt 6
0
•H J
^s (108)*
• •
..
52 mph accel.
-
-
& fi
.—
j> /-,
ID
•p! f . ' . r I
w 0 10 20 30
(0
U)
s
(U
S 10
X
o
I .; 9
c
0
iQ Q
U
7
(1I9)* 5.? mph cruise
' /\
LJt
A A
J A
•A
>
10 . 20
Percent Methanol, %M
30
Figure 48b - Carbon Monoxide Mass Emissions* W\en
Blends are Substituted for Indoleno with No
Engine Adjustments (Type I Tests).
145
-------
15
io
5
£
J? o
\
1 A
k
A A
A
52 mph accel.
1 1
01 0 10 20
%
01
e
o
•H
10
n
'jJ 2C
fZ w V
10
10
5 15
g
o
.•H
4J
a 10
5
0
«•
> ^
^
L
^
A
"" 52 mph cruise
1 I
0 10 20
1
30
A
A
i
30
Percent Methanol, %M
Figure 49a- illustrates the Reduction in Nitric Oxide Mass
Emissions Occurring When Methanol Blends are Substituted
for Indolene with No Engine Adjustments (Type I Tests)
146
-------
3000
2000
52 mph accel.
A
A
I
10
20
30
uidd
SUOTSS
u
.•H
H
4J
•H
55
o
0
o
*t
3000
2000
1000
\
52 mph cruise
A
A
1
10 20
Percent Methanol, %M
30
Figure 49b- Illustrates the Reduction in-Nitric Oxide Volume
Emissions when Methanol Blends are Substituted for
Indolene with No Engine Adjustments (Type I Tests)
147
-------
i
PI
C
o
£
1000
500
52 mph accel
A
A'
10
20
10 20
Percent Methanol, %M
30
M
8
f
S3
M 2000
S
0) '
V
o
g 1500
, §
•n
41
a
•rl
c
0
H '
a, 1000
S
•
500
0
„
i
. 52 mph cruise
^ '
A
A
& £
A
•
i i i
30
Figure 50a- illustrates the Reduction in FID HC Volume Emissions
when Methanol Blends are Substituted for Indolene
with No Engine Adjustments (Type I Tests)
148
-------
n
f
u
o
c
o
•H
4J
CJ
CD
(U
a
c
o
•H
4J
N
(U
s
to
2.0
0.0
4.0
3.0
1.0
0.0
52 mph accel.
A
A
10
20
30
52 mph cruise
1
1
10 20
Percent Methanol,
30
Figure 50b - Illustrates the Reduction in FID HC Mass Emissions
when Methanol Blends are Substituted for Indolene
with No Engine Adjustments (Type I Tests)
149
-------
2.0
1.0
b
,c
i
a o
§
%
c
o
-H
(0
0)
•H
I
(0 4-°
CO
2
^4
%
Q
£ 3.0
2.0
^
52 mph accel.
- O Indolene O
O 10%M • ••
^ 20%M , O
0
7
A
^ o
A I i • i
0.8 0.85 0.9 1.0
— ^
52 mph cruise O
O Indolene
O 10&M
A 20%M
D 30%M O
0
-
O
D A
^
0.8 0.85 0.9 1.0
Fuel-Air Equivalence Ratio, $
Figure 50c - Shows the Effect of Fuel-Air Equivalence Ratio
on FID HC Mass Emissions for the Type I Tests
150
-------
K
•
3
O
10
•O
•H
c
18
16
14
12
10
8
8
B
_
8
e
°
D
O 30 mph cruise
O 40 mph cruise
A 52 mph cruise
A 52 mph accel.
A
10 20
Percent Methanol, %M
30
Figure 51 - Shows the Reduced Manifold Vacuum Required for
Methanol Blends to Attain, the Same Torque and
Engine Speed as Found with Indolene (Type II Tests)
151
-------
0
•H
•U
10
0)
u
c
fO
>
•H
3
cr
H
M
•H
<
i-\
(0
3
1.0
1.0
0.9
0.9
0
D
D
10
o
o
40 mph cruise
D
D
B
20
30
30 mph cruise
8
o
i
10 20
Percent Methanol, %M
30
Figure 52 - Shows the Fuel-Air Equivalence Ratio Decrease
(Blend Leaning Effect) as a Function of Methanol
Blend Level for the Type II Tests
152
-------
o
o
-rl
•P
id
-------
>i
u
c
0)
•H
A
A
D
D
D
D
O 30 mph cruise
D 40 mph cruise
A 52 mph cruise
A 52 mph accel.
8
.
_L
28
27
26
25
10 20
Percent Methanol, %M
30
Figure 53 - Shows the Increased Efficiency Obtained with Blends
at Equal-to-Indolene Torque and Engine Speed
Operation (Type II tests).
-------
*
I
i-l
£
Oxygen Emissions,
5
4
3
2
<
(
4
3
2
1
0
C
5
4
3
2
<
G
-
-
-
_
i
)
—
—
i-
>
_
-
)
i
r
i
A
A
& 2
& 52 mph cruise
A 52 mph accel.
l i i
10 20 30
0
O
D °
O
40 mph cruise
1 l t
10 20 30
8
©
o
o
30 mph cruise
1 1 i
" 10 20 30
Percent Methanol, %M
Figure 54 - Shows the Oxygen Emissions as a Function of
Methanol Blend Level for the Type II Tests.
155
-------
1
0.3
Emissions, Vol. %
0 0
M ^ M
Carbon Monoxide
0 0
• •
10 h->
0.1
i (108)
(Test No.)
- 52 mph cruise
52 mph accel.
* (119)
A
i .»
f , ,
0 10 20 30
(Test No.)
40 mph cruise
] (146) _
D D 0
D • D
?
0 10 20 30
(Test No.)
r (144) 30 mph cruise
0 (143)
> 0 (140) g (141) Q
> (139) ° °(142
4 ,
10 20
Percent Methanol, %M
30
Figure 55a - Shows the Effect of Methanol Addition on CO Volume
Emissions at Equal-to-Gasoline Fueled Torque and
Engine Speed (Type II Tests)
156
-------
10
8
,.(119)*
A
A
10
A
A
52 mph cruise
52 mph accel.
20
30
*
n
§ 10
•ri
n
0)
i
g 8
i <
J (146)* D
•
D D
D
40 mph cruise
r , i •
So 10 20 30
X
0
c
» u
e
n)
u
10
8
<
r (144)*
.
0
O
8
> 0
0
)
30 mph cruise
>
10 20
Percent Methanol, %M
30
Figure 55b - Shows the Effect of Methanol Addition on CO Mass
Emissions at Equal-to-Gasoline Fueled Torque and
Engine Speed (Type II Tests)
157
-------
0.6
* 0.5
1 '
• *
a
c
n
!
g Q.3
i .
1
3 0.2
0.1
0.0
(130) U
(Test No.)
A 52 mph accel
•• A 52 mph cruise
O 40 mph cruise
O 30 mph cruise
—
(126) D
i*
(108)*
V
A (119)
"" (^£6)O (144)
. (90) j3
O
(139)
^»
. I ' ' ' ' 1 1 1 1 1 L_
«•« 0.92 0.94 0.96 0.98
Fuel-Air Equivalence Ratio, *
c
Figure 56a- Illustrates the Effect of Fuel-Air Equivalence
Ratio on the CO Volume Emissions for the 0%M
Type II Tests
158
-------
(Test No.) %M
(Test No.) %M
(0
•o
e
o
u
0)
(0
20%
(141) 20%
30%
20%
30%
(144)
0%
c
•H
•
O
c
o
•H
0)
•H
>
•H
Q
0)
O
0)
20%
20%
30%
Fffl
30%
(140)
(139)
10%
0%
30%
20%
30%
(143)
(142)
20%
30%
CO NDIR Analyzer Response, % Full Scale
Figure 56b- Shows the CO NDIR Analyzer Response for Tests
Numbered 139 through 144 (Type II Tests),
159
-------
15
>-i
X 10
£
Emissions g/
J
j Q 40 mph cruise
D •
D
D
1 I i R
1 .10 20 30
CO
CO
u
-H
4J
•H
2
10
0
I
30 mph cruise
O
O
10 20
Percent Methanol, %M
30
Figure 57 - Illustrates the Reduction in Nitric Oxide Mass
Emissions with Methanol Blends at Equal-to-
Indolene Torque and Engine Speed Operation
(Type II Tests)
160
-------
a
x
Omissions, g/
M
U1
£ 10
Q)
•rH
0
•H ^
- 1
ty. 1
^ A 52 mph cruise
A 52 mph accel.
^ ^
: A
> «
A £
A
'
A
r A
i i i
10 20
Percent Methanol, %M
3.0
Figure 57
(cont'd)
- Illustrates the Reduction in Nitric Oxide Mass
Emissions with Methanol Blends at Equal-to-
Indolene Torque and Engine Speed Operation
(Type II Tests)
161
-------
a
0]
C
o
•H
(0
(0
o
•a
ro
O
O
u
(1)
4J
(I)
Q
O
•H
N
•rH
2500
2000
1500
2000
1500
D
D
10
O
O
40 mph cruise
O
D
20
30 mph cruise
B
30
O
O
0
10 20
Percent Methanol, %M
30
Figure 58a - Illustrates the Reduction in FID HC Volume
Emissions with Methanol Blends at Equal-to-
Indolene Torque and Engine Speed Operation
(Type II Tests).
162
-------
CO
c
o
•H
W
ID
•H
3
(0
U
o
TJ
H
O
4J
U
0)
(U
c
0
•H
.p
(0
N
•H
C
o
H
(U
2000
1500
1000
500
52 mph cruise
52 mph accel.
A
A
10 20
Percent Methanol, %M
30
Figure 58a
(con )
Illustrates the Reduction in FID HC Volume Emissions
with Methanol Blends at Equal-to- Indolene Torque and
Engine Speed Operation (Type II Tests)
163
-------
fi
1
a 6.0
<
*
w
c
0
•H
w 5.0
(0
•H
W
(0
(0
'S
4.0
c
o
iQ
1C
O
0 >
.
40 mph cruise
I
.
*
—
D
D
•
H
B
i • ? ' o
*NJ • A • • ™"
^ 1 1 1 1
n 0 10 20 30
o
•u
0)
Q
O
•ri
a 7.0
N
'c
o
H
^ 6.0
>
.
)
v 30 mph cruise
_
O
o o
o o
o
fill
10 20
i
Percent Methanol, %M
30
Figure 58b - Illustrates the Reduction in FID HC Mass Emissions
with Methanol Blends at EquaLto-Indolene Torque
and Engine Speed Operation (Type II Tests)
164
-------
CO
C
o
•H
10
0)
•H
(0
(0
e
o
(0
0
0
I
u
-------
APPENDIX A
ANALYSIS OF EXHAUST GAS
loJ
-------
APPENDIX A - ANALYSIS OP EXHAUST GAS
In this Appendix equations are developed (or given) which
were used to determine fuel-air equivalence ratios and exhaust
mass emissions from exhaust gas concentration measurements.
To this end consider the combustion with air of one mole of a
fuel blend composed of f moles of methanol (CH..OH) and (1 - f)
moles of hydrocarbon CUB.,* The chemical equation representing
this combustion process may be expressed in the following form:
(1-f) C H + f CH3OH + n O2 + 3.76 n N2 — ^
(H20)w Nw H20 + (C02)D ND C02 + (00)D NQ CO +
ND °2 + 'Ww Nw C*PB + (NO)w Nw NO +
. (Al)
In Equation (Al), (i) is the molar concentration of species
i. The subscript D identifies those species whose concentrations
were determined after the exhaust sample had been dehumidified
by passing it through a refrigerated condenser; subscript W
identifies those species whose concentrations were determined
in a wet sample which was heated to prevent exhaust-gas water
condensation. N is the total number of moles in the wet sample
W
per mole of fuel blend and N is the total number of dry moles
per mole of fuel blend.
In Equation (Al) the unburned hydrocarbons are considered
to be C H_. If the total hydrocarbon content is expressed in
terms of an equivalent carbon content such as would be measured
with a flame ionization detector (FID) then for a FID calibra-
tion gas C H (neglecting differences in FID relative hydrocarbon
response) I
= p (CpHq) , (A2)
During the present investigation methane, CH,., was used as the
FID calibration gas. Thus, in the following equations (CH4)
rather than A(CAHB) will appear.
167
-------
Conservation of mass applied to the carbon, hydrogen and
oxygen atoms yields the following three Equations:
(l-f)X + f = (C02)DND + (CO)DND + (CV^ (A3)
(l-f)Y + 4f = 2(10) + 4(0) + 2(1) (A4)
2n + f = (E20}^ + 2(C02)DND 4- (CO)DND
2(02)DND + (NO)^ . (A5)
From the definition of NTT and N_
W JJ
NW - ND * 'Ww ' D W
(A7)
where K is the equilibrium constant.
The above equations may be combined to yield the following
expression for the fuel-air ratio
(F) 137'28 " (A8)
*A' (1-f) (12X+Y) + 32f
where
n = [(C02)D + 0.5(CO)D + (02)D - 0.5]ND
+ [0.5 (1 + (NO)W)]NW - f/2 , (A9)
NW = r ND + 6 , (AID)
168
-------
(l-f)X + f - (CH4) 6
N = - . (All)
D (co2)D + (co)D + (CH4)W r
(1-f) (Y/2) + 2f
1 2
r-[= 1 + - - , (A13)
e
(co)
3=1+ - 2 - ' , (A14)
K (C02)D
In arriving at Equation (A8) the molecular weight of oxygen and
nitrogen were taken to be 32 and 28 respectively. For the
present investigation the base fuel was Indolene with X = 7 and
.I,.; ,
Y = 13.02. A value of 3.8 was assigned to the water-gas equi-
librium constant K.
To determine the fuel-air equivalence ratio,
= F/A
c (F/A) STOICH.
(A15)
the following equation, taken from Reference (3), was used to
calculate the stoichiometric fuel-air ratio:
(I)
97.02 - 65.02 f
= (A16)
STOICH.
1407.81 - 1201.89 f
The above equations are in terms of methanol mole fraction
f. During the experiments the various methanol blends were
mixed on a volume basis as is described in Section II. B. Equation
(A17) gives the relation between mole fraction and mass fraction,
mf, (3):
f =
65.02 mf + 32
(A17)
169
-------
The mass fraction in turn is related by Equation (A18) to the
volume fraction of methanol, %M, (3):
%M
mf = - (A18)
%M + 0.93 (100 - %M)
In Equation (A18) the specific gravity of Indolene is taken to
be 0.74; for methanol 0.796.
The following equations, from Reference (3), were used
to calculate the mass emissions:
gm HC/HP-hr = 16 Z (CH4)W N^^ (A19)
gm CO/HP. hr = 28 Z (CO)D (A20)
gm C02/HP-hr = 44 Z (C02)D (A21)
gm NOj/HP-hr = (14 + 16 R) Z (N0x)w NW/ND (A22)
where . 453.59 BSFC [ (1-f ) 7 + f]
Z =
[(C02)D + (CO)D + (CH4)W + Nw/fcD][(l-f)(97.02)+ 32f] .(A23)
In Equation (A22), (14 + 16 R) is the volume-averaged molecular
weight of the NO emissions where
2C
2 (N00) + (NO)
R = ? (A24)
170
-------
APPENDIX B
PERFORMANCE AND EMISSIONS
CHARACTERISTICS PROGRAM
171
-------
Definitions of Fortran Symbols Used
Fortran
Symbol
Text
Symbol
AFHCF
AFLO
AFPCF
APR
AFTCF
B
BETA
BHP
BP
BSFC
BTHE
CBHP
CBMEP
CH30HP
CH4D
CH4FD
CH4FW
CH40FD
0
bhp
bsfc
bmep
(CH3OH)
(CH4}D
(CH4>W
(CH3OH)D
Description
Average Number Carbon Atoms in Exhaust
Gas Average Hydrocarbon
Air Flow Humidity Correction Factor
Air Mass Flow Rate
Air Flow Pressure Correction Factor
Air Flow Gauge Reading
Air Flow Temperature Correction Factor
Average Number of Hydrogen Atoms in
Exhaust Gas Average Hydrocarbon
Defined by Equation (A14)
Brake Horse Power
Barometric Pressure
Brake Specific Fuel Consumption
Brake Thermal Efficiency
Corrected Brake Horse Power
Corrected Brake Mean Effective Pressure
Volume Concentration of Methanol in
Exhaust
HC Volume Concentration in Dry Exhaust
Sample
Same as CH4D except Volume Fraction
Rather than ppm Units
HC Volume Fraction Measured by FID
in Wet Exhaust Sample
Methanol Volume Fraction in Dry Exhaust
Sample
Units
Ibm/hr
in. H20
hp
in, hg
Ib/hp-hr
%
hp
psi
ppm
172
-------
Definitions of Fortran Symbols Used (cont.)
Fortran
Symbol
COFD
COM
COP
COR
CO2FD
C02M
CO2P
CO2R
CTI
CTIV
CTO
CTOV
D
DATE
DBT
DELTA
EP
ER
ERCHM
ETV1
ETV2
ETV3
ETV4
Text
Symbol Description Units
(CO) CO Volume Fraction in Dry Exhaust Sample
CO Mass Emissions g/hp-hr
CO Volume Percent CO in Dry Exhaust Sample %
CO Analyzer Meter Reading
(CO?) CO- Volume Fraction in Dry Exhaust Sample
C02 Mass Emissions g/hp-hr
CO- Volume Concentration CO2 in Exhaust %
CO_ Analyzer Meter Reading
Coolant Inlet Tbm|Jerature °F
Coolant Inlet Thermocouple EMF mv
Coolant Outlet Temperature F
Coolant Outlet Thermocouple EMF mv
D Engine Displacement cu in,
Date the Test Point was Run
T _, Dry Bulb Temperature F
6 Defined By Equation (A12)
P Exhaust Pressure psi
ex
$ Fuel-Air Equivalence Ratio Determined
m from Fuel and Air Mass Flow Measurements
9 Fuel-Air Equivalence Ratio Determined
from Chemical Analysis (Appendix A)
Exhaust Thermocouple EMF Cyl. No. 1 mv
Exhuast Thermocouple EMF Cyl. No. 2 mv
Exhaust Thermocouple EMF Cyl. No. 3 mv
Exhaust Thermocouple EMF Cyl. No. 4 mv
173
-------
Definitions of Fortran Symbols Used (cont.)
Fortran
Symbol
ET1
ET2
ET3
ET4
F
FAC
FARS
FF
FFR
GAMMA
HC
HCHOFD
HCHOP
HCM
HPCF
I
J
JN
Text
Symbol Description
Exhaust Temperature Cylinder No. 1
Exhaust Temperature Cylinder No. 2
Exhaust Temperature Cylinder No. 3
Exhaust Temperature Cylinder No. 4
f Mole Fraction of Methanol in the Fuel
Blend
(F/A) Fuel-Air Ratio Determined from Chemical
Analyses (Appendix A)
FA Stoichiometric Fuel-Air Ratio
m_ Fuel Mass Flow Rate
Fuel Flow Rotameter Reading
r Defined by Equation (A13)
HC Volume Concentration of HC in Exhaust
(HCHO) Formaldehyde Volume Fraction in Dry
Exhaust Sample
HCHO Volume Percent of Formaldehyde in
Exhaust
HC Hydrocarbon Mass Emissions
Horse Power Correction Factor
Internal Step Counter (1=1, First Data
Point; 1=2, Second Data Point...)
Range of the CO Analyzer (Lo 1, Jn=l;
Lo 3, Jn=2; Hi 1, Jn=3; Hi 2, Jn=4)
Intermediate CO Range Selection Index
Units
lb/hr
ppm
g/hp-hr
(Lo 1, Jn=l; Lo 3, Jn=2; Hi 1, Jn=3;
Hi 2, Jn=4)
174
-------
Definitions of Fortran Symbols Used (cont.)
Fortran
Symbol
Text
Symbol
M
NBFUEL
NS
NTEST
OP
02 FD
02M
02 P
PM
RATWD
RK
RLHVB
RLHVG
RLHVM
RMF
RMV
RN
RND
Nw/Nd
mf
man
N
Description Units
Intermediate Air Flow Meter Nozzle Size
Selection Index (Nozzle Size = 0.5 in
Diameter, L=l; 0.75 in, L=2; 1.183 in,
L=3; 1.75 in, L=4; 2.75 in, L=5; 4.5 in,
L=6)
Intermediate Base Fuel Selection Index
(M=l, Indolene; M=2, Isooctane)
Base Fuel Index (I or In=l, Indolene;
I or In=2, Isooctane)
Same as L
Test Number
Oil Pressure psi
Oxygen Volume Fraction in Dry Exhaust
Sample
0_ Mass Emissions g/hp-hr
Volume Percent of 0_ in Exhaust %
Volume Concentration of Methanol in Blend %
Ratio of the Number of Wet to Dry Moles
of Exhaust
Average Number of O Atoms in NO Defined
by Equation (A24)
Lower Heating Value of the Blend BTU/lb
Lower Heating Value of the Base Fuel BTU/lb
Lower Heating Value of Methanol BTU/lb
Mass Fraction of Methanol in the Blend
Manifold Vacuum in.Hg
Engine Speed rpm
Number of Moles of Dry Exhaust per Mole
of Fuel
m
m
m
175
-------
Definitions of Fortran Symbols Used (cont.)
Fortran
Symbol
RNO
RNOX
RNOXD
RNOXFD
RNOXFW
RNOXM
RNO2
RNW
RRK
RRN
SA
SGB
SGG
SGM
T
TET
TIMVl
TIMV2
TIMV3
Text
Symbol Description
NO Volume Concentration of NO in Exhaust
NOX Concentration of NOX in Exhaust
NO NO Volume Concentration in Dry Exhaust
A J±
(NO ) Same as RNOXD Except units are Volume
u Fraction
(NO ) NO.. Volume Fraction in Wet Exhaust
AW X
NO Mass Emissions
N02 Volume Concentration NO- in Exhaust
N Number of MoleluAf Wet Exhaust per Mole
W of Fuel I>IT
K Water-gas Reaction Equilibrium Constant
[See Equation (A7) ]
n Number of Moles of Exygen per Mole of
Fuel Blend in Fresh Charge [See
Equation (Al)]
SA Spark Advance
YB Specific Gravity of the Blend
YG Specific Gravity of the Base Fuel
YM Specific Gravity of the Methanol
T Torque
Total Engine Time
Intake Port Thermocouple EMF Cylinders
1 and 2
Room Air Thermocouple EMF
Intake Port Thermocouple EMF Cylinders
Units
ppm
ppm
ppm
g/hp-hr
ppm
BTDC
TIMV4
3 and 4
Carburetor Base Thermocouple EMF
ft-lbi
hr
mv
mv
mv
mv
176
-------
Definitions of Fortran Symbols Used (cont.)
Fortran
Symbol
TIM1
TIM2
TIM3
TIM4
VE
WBT
X
XXI •
xxii
Text
Symbol
\
wb
Description Units
Intake Port Temperature, Cylinders °F
1 and 2
o
Room Air Temperature F
Intake Port Temperature, Cylinders °F
3 and 4
Carburetor Base Temperature F
Volumetric Efficiency %
Wet Bulb Temperature °F
Number of Carbon Atoms in Base Fuel
Intermediate Calculation Steps Used in
Chemical Analysis Equations of Appendix A
Number of Hydrogen Atoms in Base Fuel
177
-------
<:.•i iriu Oiic. l,Ti-iE:ir>iG:,irtL. r-!/\TKiClES.
> ulrtti-JSJOi-i i-HtSl t^u) f.^fUtLdii) 'J(IO) .NSCin) ruAlEdi)) »Pi4d.O) •OBTdn
*) n.ol (10) »op( lu) »KFPdij) '.Vi?i U) »TcT(lj) »CflvdO) »CTJVdf)) »OP(10) •
*ir.PUu) »F;,.,VdO) »S/;(l-i) »ic:Ri lu) rCniwUHdn) »HCHCPdO) »LTVl (10) »FTV2(10) •
*-t Ttfjiio) rfci VH dn; »TT,.iVi dn) » i i.-,yi;dn) fTiMv^dO) »riMV«*do) »LS\/do)
iltc. KF.-iCL r^>
tiKt Tu) »F/\^j( 10) »K.;-i.iPdO) »H<;FC(10) »CHMEP(iO> »VE(10) »RTHE(
lfJ) »KNOXrt(10) »HGM(in) • AP
JO) »LTM (10) »TlMl dQ) »TIM
iJ.K'U( HI) »: »EfET i = TO OI-.-E.
i = i .
jxtiAU TnE I'M!/. CAuOS,. ]ij iT^ijio TO A f-f^Rut n SPACES EACH ITE>i.
:;LALHb»lS).-JlLSl (i) f'-uF-.j^H i j » J( I) »fj«;(I) »r)ATL(I) »PM(I) »iJf3T(I) »WHT(I
* ) i of1 d ) » i; f:K (1 ) » Ar !\ ( T < » I f."i d ) » C i 1 V (I > . CTOV (1 ) » OP ( I ) r EP d > » RMV (I ) » SA
*(1) rivi-Jl I ) • I ( i )
i h OKl«!rt T ( I ^ » o 1 c » oF'ii • fi ' i Or"<-: • w )
AK t;:Tc.Sf d) .Li. u) '-.' iO 9(.f 3.->)LOi-. ( * ) »CtiJl T ; »:. !.;./( . ) rl/.-Otil T ) »RuOX( 1 ) »HC( I) »CO?P(-I) »CH30H
niCi'.-./fJl j ; »cT.i < "! ' 'i: ! vlM i ) f :. VvJ>( T ) p Llv'i* (U 'TIl^Vl d> »
) »Tji"-v« < J i »i_sv ' i)
i-: T;,L C^:.'L-. fr,iilr. TJ jr •JJl;.i.: l.'i TIICJ CALCULATlONb.
'l -J Li'JI'l— li • /'•?.!
V, u :\UnV l-i-iih-t1-: . U
:i:-j L,'-i'j/.(j
6'J. .v^=V (t.lJ + KiiiOt ( x ) J M'.'-ul I ) '/:x.!oXl I )
hi IF (IM-. >LT . L .0 )-:''.:•> = j. *ii
c .x rci-.xii.i-.. .j/.:j;;: .i:-.;iii. ^'i.i •. M^-J^G A^,sorTATF:> ^iihi ir
uL' •••— iiijh Ui_L \. I )
7'..' ,:0 1 ^'( /!>«f,j) I"1
'V ,jW I 'J -Jl.:
: .". :,oO— i; • cA'v
•. ., /,-ri'O
: i i - J.V.. . i.1
..•» ivl.l I l/U- i VllU l) • t
..r:'|^iM-liiii liii. :-:/.j:j "•..:
178
»C i .'( oll|t; OF '••i:.: fi |A(jOL IN
( :.,j -;.-:'( I ) / x ,, 0 . u ) •»
)* +
-------
)+*2»0+0.002*TlMV3( I )**
* .•; • U
si a i- = ( l .-0 • ISb^TwS (I )*»?.• 0 + 0 . 002*ETV3 ( 1 > **3 • I)
)-J« l3ij*LTv«+( I ) **2»0 + 0.002*ETVU( 1 )**3«0
CAuCULATii IhL rtlii FLOW Tc.^.* PUcS'o. + HUM. uOkH. FACTORS
AFf'Ctr=0.ulo6+!.iH( iHn.
iicl iFUJijTU j .u1.5.i.i»9.fli4r).*oTl i; ,i_T . 57. ^) AFHCF= I (UBT ( I ) -55. II ) *i) .0004 )
+ *0.9t;<;i
,i^ i F i ,vbT ( 1 ) . Of . S / • '»* • ^ i.f) . v;o r v J ) . LT ..6ir . "=< ) AF, -if.F= I < UflT C I ) -60 . fl ) *0 . Ofi04 )
* + 0.y«;->
;F(..tr(I.i «ol t62. iF ( kul' ( I ) • ol • ;'i V • '»f5. A,,u . A'ol i t ) . i_T . 7i! . S ) AFriCF= l {t)BT ( I ) -70 . 0 ) *0 . Of)OU )
*--»-o.9/l:>
l.iu ii-'lV.u'i ( 1) .o'T.7^.'»S).a.*U.L. r li i .i_T.77.^)AFHC^ = ( =2^
f ntlttxi'iilMc *.riiCn VOK«*cJL« 10 Ujf. ACCO»nlNG TO Flit rULL AND CALCIILATF
C * liiii. :"jlGiCi!iLlv/J.li;lL i '.'r.L. .'Ur< ^nTlO.
1 j. L! \j(J I 0 C ilrSf ill; ) i •;
1 .!:; r-^-.bl J ) = l'.-«V.u^— J •.!•'., ^'-FJ / i i.-t J 7 • .-li-l^O 1 .Ji9+F)
l;-o r'A;-:ati) = (J .L'+.I.i-.-'^.n-'r ) / ( 17 j.o. fi-.
C v-AL^OLATi-: inL iiI'VCiP AC I.HN;I. .• I'l Y OH V '•*••" r-CfHAIJUl.
f. .jiLlLl-.i^ilit. I'S't- l'Jl'Oi:'Lr! Ai-^ TL.-J.J ..OJ/MTOM A.yi!.^ CrtLCULAFF THE" AlK
C >i,-l Hu'JiiL'11.-, r,_l. nU.ii<.-
l.'.ii i--. ib(i)
1-40 '.'J i ^-( iu i» ibu » ib':j» K-.v.'» i 6lJ' i /o) »L
1-t j riF^U l I ) = (2-'«V*:?o;i:*i5>. ---yS-v* AI-K I 1 ) -i^.7ii2n
1 :;.u /,Kv_0 ( I ) = il'..i^.:L-i4t «•/'"•. S.'i7 i .-;n\r '< I I ' -!t«* .??-;'»•+ 1 *,'\F» ( I J
t..^( i ) »-»: j.ii-i .ol,i't.^:-« "»•'"». i ! ' *T.^.O)*MFliC!--*Ar ICr"*AFl->CF
lt,a ,-i'FLut.i ) =Va-i^.-J.-.-ili, «;.-.>.- r;-1.1.';' .rf? I I j-t.«.^?.:in + AFP(I)
*•'.. I i J * 4 -i • .!-'«• 1-- -.•>•,,"' /'.;• I' i I > * •'••'* • .1 ' *..Ki-iO + ftF: I Ch + nr iJCF
..'.; K; j.7r,
I .-.u .il-'i. u ( i ) - i L J , V 7 * ii :, » .:.'•- . • -r 'V, 1 ' •'.. " i i ) -«: 1 7 . /.7 j.?* -\rT'. ( I J **2 .
•»..(..) t.*J.,,-iL. ..•"..>-•.-.•••••• 'i-!-:i :/>•'•, .OJ ••,,f-,irc:*/vF fCF*MFi-CI"
..J i'w J.7:-,
l,-.j ..K^uii )= U / i-. •?:•'«.: i. -.1 >.-,-ij7fl,,---'i J )-^v>.9» i.".*Arfl ( I ) **P.('+9fi.V93^ AK1-?
t '/u ;..L.>l i=l^o:...:;.;V," j' uv
* i i l »' :* ... • !s. J * r,l f-.Ct- * .' t i I"! ; ••!•' f r-r
v-Mi-Cv..-: M".. i.ii- i^-.-... ^i.-'V. i-' s1^'.1'....! a h'P"8' i,'?.ii
1 , .. i r li- •,'';) .Li_ • i. ) oO '! . . i'? -j
179
-------
rtd) .Li_.^!jJGo 10 I/O
iv.l i) .L.L. 3u)uO TO i7/
i-,(i) .LL.luiiJuO Tu L7o
oO Tu lc?b
17b rFm = lG.
v>0 i'y ib:--.
177 rrll)=(0.2abU+FFK(ll-0.8U)
GO ro ie^
17o rrli) = lO.
uO TO Ifc6
179 HFU) = (0.
C LALCULATr i'nL 'oRAKt. r.O.-vSc
iAL(.U.Alc (HL HP CO^ix MCTUH THEIM I'MF CORR HP
C oALV-ULATi-: irlL LiKAKt SPciCiFlC FUEu COMSUMPTION IN POUNDS PER .DRAKE
C *i;Oi<:->L FOrttK nOUR.
190 l}SrCll)=f.K(l)/bHt'
C L^LCuLATL Ihu COi\K I'.MF.r1 IN PSI /..'.'.'
1S1» CB^tl't DrCuI'lKl 1) *'/S?t.CUi»l>/l.O'»Ri,( 1 ) ) .".T.::
C LAuCuLATi" UiL. wOLUM^IKiC LKFcCiErtCY.
?UU V 1 1 1 ) = ( Ai- Lu I 1 > +4 o3S> . o* I !)£ T i ][ ) +4DU • 0 » / (RH ( I ) +RN ( I ) *D )
C LAuCuLATi-. . Inc. i_0.vKi; utr»liNb tfAUJt OP THE £«Lt.i>lO«
Pl',0 i\Li-1Vi:=i-";M|- +i\Lr:V.-;*- ( I . "-fJi-if- ) *!\LhV-j
C LALCuLAlr Ihu o'\,-\i: I'lli-.Ki-iML cFF I C IcXCY .
C C-MLvULATr: 'lilt. rl.'-L-^l!' r'..JiV.iLc:KiC[: '"'ATJO.
?1J tK(I)=FFll )/(AFLotl.)*ri,r.!J(iJ >
C CAuuoLAlr inL r'ii:•'•' u ) i J. j
i I =-ii • 1U7 luOt ' i f» • 'i **-/.!
K* J ij • o-**-i+.» j*^0i-x ( i ) * ••*«;. u *'o ••+lo?>uj9'«*ir». 0**-H. (.i*COR
I ) *j .i)OUOU5o731 33*COR
i ) *•*-.;. j
) ^0 .970i4«*10 • 0**-7. • 0*C
0 • 6S0970* 1 0 . 0**-7
;* . i U ij il J u i J-. / 1-.'-; i j *• L 'j. , ( j ) » •• .1 • L
?•'•-•;.. i. '.»v:-i-L'jv i 1 J
;,vl i o I'J -it- it. '/ ;-^ J > i_'... •;' :
C ,,Lr i;:t. C.it :--.lv. .-'.!_ /,.-,.' i'^r, ;i,;::. ,_i)UA T'cV-iS r!-l,< MLATLD HC AMO liOX
>-!-D v..'-./t; r L.-v-CV1"1 i i J / 1 •.!•.. • \'
v.Ji-tv-Ocii1 1 j J /i 'iu . >i
I. Oi1 L1 = i. wt • v 1 J / * s. »j • u
v.l i-fwt- ij-C, :iv>! II ( . ) / j i;f . :1
i iC; ivy'i .. -i-:^t :^r I i J /: :.;•; . j
V.F I4f ,v-i 1C V 1 ) / i ' •..; '.' . • »; . • (i
180
-------
C
C
C
C'
C
C
r
XX«s=l (l.J-i-
CALCULATE 1 hi. VvEl AMtJ ui«i-lCri4K'.1*?\lE.LrA) )/XA3
i;;-Ji»=UiAMn-,A*RiV)l 1 ) ) -HVL i A .
v_Ai_C.ULATh. int. i.'ii=l < l.ii-r
i:i-_ i'^-1 . 04- (v.
u.'\f^i/.^= ( A • iJ- I •?.
- • n
V..AUCUL.MT..;- iVit. ..iii ,/-'
/iTr. 1 1 it
J ..'Kr i"ini £.
i .-Li- *i .'.. f-'-.;i'.i_ -^!...« c ^.-' '.'.T i'.-!-«ji
,.K,,- I -,.!!; I » J ••;. \-ti- r (;"'•.. »'.< X :j.'-i ) ) -(i- //•• 0
,v ../., I ., H/A
I MK.-A <:>/ li .
-------
v,AL.Cvi.'nTL i_.-,iS::.UN^ •./ • A v.'cT iV.SlS
iYi-f..JU( i)
KlMUl i)-YYl/KAT..'!'i 1 )
I)=,iC il)
nCii J=Clu!:(i)/itAi,-;u ( i )
C LjliHAi-.L iMuKt i-.Uo. c«.;ii,«TiO,.S
P/J AX7-1 .1 . o-F
A X i 1- ( XX I U*A/.7 ) / v Xx -° »-X
V.ALCL-LAT,-; fh.L. ,-,£>:". 'i, r.-iT.-
? -5u i F I i . LL . j. U ) ow I 0 <_5i*
( I li ) n-i.iO) r lit.-a i) »I = li 1 n) i (
( I i » i-jL'i1'1 J » iC.-,nP( i ) » I-J > i n')
• v '•:»' i-::.-,T !.'.;. ' » J.Ui li.//1nx» ».
' i i'.lr lu«i/f i^*» '.'i-.vj. ..-TuC ' / H)X
/ iLXi ' i :-,>'\j!;. ' r ^r.'riu.^/i.ix.
.L^,.. » • i::. i-1.!"*'/ 1 uX» «..Q. i. ,o... ( i ) , i - j » i o 3 • ( ;-iC 1 1 ) • T = i » i ri ) f c 02M ( i ) » 1=1 r i o ) » i CON' ( T
X » l-JL'iU) » iCv.-.^ .,t i ) , r^i , j j) , (..^loXrit i ) . 1 = 1 , ID) » Ci-lCM( i) »I = l»lCi) r (FPCH
•-,,< i ) ' 1 = J • jo) » (.Ji.V, i ( . ) » J-l f ju)
."V, „ f-OiM-'iMl (/ IVIA»':.OA f-'i- ' V. ' ' iJt-Mi.. J.//1/1X* 'MC PPr-i W » 1 OK1M . 1//1 HX » '
*...Abi «-!^ « »i'!c.) i:. .',/i':' .»'-.. •..,/,-.!' r'r\ • / 1 ii> , • , •\l\^':> CO ' » lOF-'J 0 • 3/ 12X »
"•l-i;{.-:j/:-iP in-, '/ i o s. » • .. n..." Cw- ' » i -.if i u . ""i/1? A , • C,.xi1S/: lu !ii< ' /I HX t 'MASS '•!
+ ,.;•: '' Li:r > ...-/. < ,.< »r,, ,•.,/:,.- .,-.<• /I, ,;.;»• Mf-iS . 1C ' • iOr 1 J • 5/1 2X » ( KHMS/
• , ,ij urs ' /J ,i,\r '( ____ fV.ii:..-. ' • i'l, •! „. .,/ L',/.. • Tj-.S i' ij(.J. ''lulidj
~\l-:. ..:! i I i_ ( o i .jlo)
,*» !.^ i'.'.'!'.!'!,* f I l.i I ' JoX ' • i •.".-'•/ •" ' )
.Tj ..<\i i ;.(.;• .j-. -o) < :.;-. '.I M A . t = ,».;,). «l,.-x'| ^ ( T ) • I -1 f 1 ii ) • (v, HHi.it I ) » 1 =1 » 10 ) » ( ^
. w,^ i J i , ,-_, t \ .,/ , i •,>••• i j ,, A:-._ f L.-.j • ( ..:-. T ( T ) » 1 = 1. » I'l) » C}i-'( l)f! = lilU)»(CT
i ,(:>.,-! , Li; J r l^ ,•„(;•!, 3 _J • J .,y
.S-i, r -V , -,-. i t/ L'- .-.• " r,.1.":- 1 ..ri. » i\ . 1, // J -i. > '•••ATr. ' »iOr 10tii//luX» 'nC "
••••-: . '' . n i- ii'. .// i •.,•••'• ,-.. .. ,•:-.. .. ' • i "ri u . i// U)>. » »,jr?'r •> TfTN'P1 'lOHiii
> ; .-'i...- • ';.. '•. . ^ . ' / i o '. •• '..-..! .• i..- ..:!'" - . 'U 1 »• . j / I'-'.A » * '"'i G.F. '/HiX» 'i; AK.fKlr.S
182
-------
•*:-,.» »iUt-lu.*Vi.£A» »lfiu) » i-ipv j ) » r-;» it; ) » IAI-LU< I > • T-I» iu) » (FF(I) » i=i» 10) » IETIII
<-M 1=1 » 10) > it i v(i) »i=if iu) • i.^r^n ) »i-i »io) » (t:r4(i) i'i=i»io>
?S^u i-Oi\rtfjT(/iC.A» ?E;.!l.Pi-.F.-,S.' »J.iFiU.2/l*iVi • P.S.I. '/lOXi « AIR FLO*1 »»10F
*iU.c/liXr 'UjS/hrr/iOA' 'Fut'i. FLOW f » InFlO .^/liiX » 'LfcJS/HR ' /.IOX » 'EXH. .
+ itMH.'/lnX» 'LYL.i-0. JL •fiOKli).l//lUXilCYi..NO. 2 ' » 10F10 . 1//10X* »CY
I ) » 1 = 1 » 10 ) » (RN-
= 1» lu) » (,jTti^T(I) »l = l».lu)
i-iAi l//luX» • IU'1 .I'i/^i'j. T. VlOX» «CYL.MO.l»2» » luFl 0 . 1//10X » »CYL.N0.3»
+ '»« »1UF'10.1//10>. » 'GAPu. RAbc.1 »luF10.1//10X» • NO. D« MOLES1 » 1 nFi0..1/l()X
*'PuK.;".OLL I- '/J.oX'/iiO. :-'!.;;. /,J. ' HOFlG.tt//10Xf ' ILST. NO. '»10ilU)
wO Vo 7
FOF AT- Lii.L. 2
?S?<).f/.*
FND LL'iT
183
-------
APPENDIX C
LIST OF STANDARD CONDITIONS
TEST RESULTS FIGURES
184
-------
TEST RESULTS FIGURES
FIGURE TITLE PAGE
Cl CO Emissions, %, Dry Exhaust at "Standard" Con- 187
ditions Check Points Including Average Value
(x) and Standard Deviation (S).
C2 C02 Emissions, %, Dry Exhaust at "Standard" Con- 187
ditions Check Points Including Average Value
(x) and Standard Deviation (S).
C3 NOX and NO Emissions, ppm. Wet Exhaust at 188
"Standard" Conditions Check Points Including
Average Values (x) and Standard Deviation (S).
C4 FID, HC Emissions, ppm, Wet Exhaust at 188
"Standard" Conditions Check Points Including
Average Value (x) and Standard Deviation (S).
C5 Wet and Dry Bulb Temperature at "sfcanSard" 189
Conditions Check Points Including Average
Values (x) and Standard Deviations (S).
C6 Barometric Pressure at "Standard" Conditions 189
Check Points Including Average Value (x) and
Standard Deviation (S).
C7 Inlet and Exit Coolant Temperature at 190
"Standard" Conditions Check Points Including
Average Values (x) and Standard Deviations
(S).
C8 Air Mass Flow Rate at "Standard" Conditions 190
Check Points Including Average Value (x)
and Standard Deviations (S).
C9 Fuel Mass Flow Rate at "Standard" Conditions 191
Check Points Including Average Value (x) and
Standard Deviation (S).
CIO Exhaust Temperatures at "Standard" Conditions 191
Check Points Including Average Values (x) and
Standard Deviations (S).
Cll Intake Manifold Temperatures at "Standard" 192
Conditions Check Points Including Average
Values (x) and Standard Deviations (S).
185
-------
TEST RESULTS FIGURES - Cont.
FIGURE TITLE PAGE
C12 Volumetric Efficiency at "Standard" Conditions 192
Check Points Including Average Value (x) and
Standard Deviation (S) .
C13 Brake Thermal Efficiency at "Standard" Con- 193
ditions Check Points Including Average Value
(x) and Standard Deviation (S).
C14 02 Mass Emissions at "Standard" Conditions 193
Check Points Including Average Value (x)
and Standard Deviation (S).
CIS CO Mass Emissions at "Standard" Conditions 194
Check Points Including Average Value (x)
and Standard Deviation (S).
C16 C02 Mass Emissions at "Standard" <2$hSitions 194
Check Points Including Average Value (x)
and Standard Deviation (S).
C17 NQx Mass Emissions at "Standard" Conditions 195
Check Points Including Average Value (x)
and Standard Deviation (S).
CIS FID HC Mass Emissions at "Standard" Check 195
Points Including Average Value (x) and
Standard Deviation (S).
C19 Chemical Fuel-Air Equivalence Ratio, 8 at 196
"Standard" Conditions Check Points Including
Average Value (x) and Standard Deviation (S).
186
-------
a
3
jj 0.7
* 0.6
r-i
n
J 0.4
n
.S <
H 1
8
Fi
4J
n
S
1
u
a 14
•
•
«-l
B "
§ <
• 1
n
•H
JT
8"
f
gure
r
o
x = 0.554
° S = 0.080
0 0 ° 0 0
0 °o Oo ° o 0
0 ° o o
0 ° 0 °
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
^OCOO^^fiAr^O^OrH^OIinvDvDtT^O^OOrHrH CM CM ^
"Standard" Conditions, Check Point Test Dumber
Cl - CO Emissions, %, Dry Exhaust at "Standard" Conditions Check Points
Including Average Value (x) and Standard Deviation (S) .
O
_ _ o o o ° o
°°00 00 000 0Q 00000
o « - 13'8
S = 0.16
-1 — 1 — 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
^ fl r* OCNvD^H^^CO CNfirtvO *w vD ^ to ^ lA roGOOOO^ro
\o oo o tf ^f in r** o^ o ^ ^ TO 1/1 ^ vo o^ o^ o o ^ *^ CM c^ ^*
^ ^ CM CM CM CM CM CM c*i ro r'l ro ro ro n (^ r^ *sf ^*
-------
n
3
id
3000
a
c
.2
n
m
i
2000
o o
° 0
• 0
I
O NOX x = 3122
• NO x = 3003
-I—I 1 1 ' i '
0
0
S = 381
S = 530
J 1 1 1 1 i i i • i i
' i '
J.
vD co o ^- ^ m r» o»o i-if-icMiniDvootoi o o r-i 1-1 CMCM^-
•-(•-i rv)«NtNfMfNfNnnnnnnnnpn^^r^j'»t'3''J1^)1
"Standard" Conditions, Check Point tfllt Number
Figure C3 - NOx and NO Emissions,ppm. Wet Exhaust at "Standard" Conditions Check
Points Including Average Values (x) and Standard Deviations (S).
2000
O
m
§
•H
m
a
1800
m
a
I
1600 .
i
O
_l_
J—I ' « '
O O
o
x = 1851
S = 132
-I 1 '- ' '
o o
00 O
H CN
sT't in r- en
M fN (N(M(N
oo O\
n on
OO i-«i-<
oo
tN
cr>
fM
"Standard" Conditions, Check Point Test Number '
Figure C4 - FID, HC Emissions, ppm. Wet Exhaust at "Standard" Conditions Check
Points Including Average Value (x") and Standard Deviation (S) .
188
-------
Temperature, F
•J 00 \O
o o o
/V
O Dry Bulb x = 85.6 S = 3.04
• Wet Bulb x = 74.9 S = 1.84
0 ° ' .
O n
° ° Oo
0 o « o o ° Oo °
• °
0 0
• •e ••• ••
. •••••^••.••«
m
i 1 1 i i i i i i i i i i i i i i i i i i i i i
r*rof^o CM \o r-i 1-1 co CM n M vo CM vo «a- in ^inrooo 030>n
vO eo o ^r ^r in r~
n
n
m
"Standard" Conditions, Check Point Test Number
Figure C5 - Wet and Dry Bulb Temperature at "Standard" Conditions Check
Points Including Average Values (x) and Standard Deviations (S).
30.5
30.0
1
x = 30.1
S = 0.04
0 0 0
J 1 1 1 1 L
0 0 0 0
J L
J 1 1 1 L
1 — i — i — i — 1
cr>
01
"Standard" Conditions. Check Point Test Number
Figure C6 _ Barometric Pressure at. "Standard" Conditions Check Points
Including Average Value (x) and Standard Deviation (S).
189
-------
200
O
•
0
g 190
a
0
Ot
§
J 18°
S
0 170
8 <"
w V
O Inlet x = 171 S = 4.41
• Exit x = 187 S = 4.47
•
•
. . * • « *
* • * • • . •
W
• A
w •
• • •
• •
o o . •
_ o o °
o o o ° o 0 o . o
o o o o
^ o .
1 — i — i — i — i i i i i i i i i , i i , , , , , 9 i i
£ £ E;2 SVD '-'r' oocMn nvDNvo^ in ^r in n eo oo«J>n
•S388SB5S8SSSB85SSSS33S3S
"Standard" Conditions, Check Point Test Number
Figure C7 - Inlet and Exit Coolant Temperature at "Standard" Conditions Check
Points Including Average Values (x~) and Standard Deviations (S).
£
1 180
*
&
§ 170
h
to
«
s 1
3
x = 169.48
S = 5.79
0 o o
0 o ° ° Q ° 0 -°0 OO 0
0 00
o o o
o
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
vooooTr^mr^cnor-tHCMinvovocnon o o IH i-< CM CN ^r
i-ii-t CNCM tMCMCMOinn nmn nnnn '*'*'* ^r ^•^
-------
12
11
CO
0)
o o o
o o o o o o o o o
o o o o o
o o o o o
o
x = 11.55
S = 0.174
• <
3 r
fe I ii i i i i i i i i it i i
VDOO
f^« VD *f if\ ^ if\ f"l CO 00 O^ ro
vo^o cnoi oo 1-1 ^ <\i
3 1200
ID
^
O Cylinder 1 x = 1180 S = 112
O Cylinder 3 x = 1205 S = 17
& Cylinder 4 x = 1240 S = 17
0
»
O ,-. A
o o ° o o o °
°aSD° A£g A A
A P A
AA^AAA O^Q Q ^
D
L 1 — 1 1 1 — 1 — 1 — 1 1 t i i i i t i i i i i i i i .,
H r-l CN (Nf\JCN C>JtN SMM tNlTJ HJlOOTl O\OOrH^H (N CN 5
n n rr|rr)'*>'*>^^'^ji^ii^>»jirt.
"Standard" Conditions, Check Point Test Number
Figure CIO - Exhaust Temperatures at "Standard" Conditions Check Points
Including Average Values (x) and Standard Deviations (S) .
191
-------
Ck,
0
* 120
i>
3
4->
£ no
1
| 100
•o
0 90
•H
C
I
S 80
V
X
to
C
kj
<;
F
ficiency, %
U)
*>.
H-l
U
o
•iH
1 1
I 33
,-1
A Cylinders 1, 2 x = 94.1 s = 4.83
O Cylinders 3,4 3c = 107 S = 5.42
O Below Carburetor x" = 85.5 S = 5.52
Q
0 Q 0 0 o
o
O O n
. *A AA 0 ° n ° <
A ^ A A O
« A A A n
O O O ^ n A
°O OO A A A ^ ^
0°A o ° ° ^ A A
A o ° o ° ° (
u o °
0 0
o
L ^ 1 1 1 1 L_J ' ' ' ' i t i i i i i t t , , | ,
*rt!-rt ^OCN\DiHi-HOOfNfOro ^Drsivo^* inTtmrooOCOO^'*!
voo) O'T^tmr-o>Oi-ii-i(N iniovoin (nooi-ir-irMCM^1
"Standard" Conditions, Check Point Test Number
igure Cll - Intake Manifold Temperatures at "Standard" Conditions Check
Points Including Average Values (x) and Standard Deviations (S) .
O
0 0 0 0 °
0 0
00 0 ° 0 0
.00
O
x = 34.0 Q ° °
o
S = 0.51 O
O
i i i i i i I i i i i i i I i I i i I I I I I I
^O 00 O ^ ^f lA r*1* Q\ O ^ ^H f^ tO vO vO Q\ 0^ O O ••" ' ^ fN M ^*
^ r~i ^N fN (N 01 oj 04 ro ' ro ro rn ro n rn n ro ^* ^d* ^*
-------
Intake Manifold Temperature , °p
_ i— i— i—
CO 10 o h- 10
0 0 0 0 O
]
Volumetric Efficiency, %
U> Ul
U> 4k
^
<
Pi
>
A Cylinders 1, 2 x = 94.1 s = 4.83
O Cylinders 3,4 x" = 107 S = 5.42
0 Below Carburetor x" = 85.5 s = 5.52
. ° ° a ° ° ° Q Q -
o ° a ° Q 0
O O O ^ n A
O o OO A A A ^ ^
°0^oO°°0^ *0o0
0 0
o
1 — 1 — 1 — 1 — 1 — 1— 1.. 1 1 1 1 1 1 1 1 1 Iff 1 t 1 1 t
^ f^'O'N\O'~'»~^OOCNfy>n vDCNvD^ iD^lOMCOGOO^m
*& co o^^ior^o^Or^r^r^j i/i^ovoo^ (^oo*~ii-^fMr»j^1
"Standard" Conditions, Check Point Test Number
gure Cll - Intake Manifold Temperatures at "Standard" Conditions Check
Points Including Average Values (x) and Standard Deviations (S) .
0
o o o o o
0 0
00 0 ° 0 0
.0 o
O
x o 34.0 Q 00
o
S = 0.51 O
O
4
i i i i i i i i i i r i t i i i i i i i i i i i
P** (*> r*- o f^i v£) »— < r—iQ&f^iF) fOvDCNvO^fin ^inrOQDCQO^ n
"Standard" Conditions, Check Point Test Number
Figure C12 _ Volumetric Efficiency at "Standard" Conditions Check Points
Including Average Value (x") and Standard Deviation (S) .
192
-------
*
0
S 21
o
••H
U
•H
10
E 20
0)
€
01
• , ^
. o
F
O Mass Emissions, g/hp-hr
^ W *»• Ul
0 00 0
A
0 0 0 0
. • o ° o -
00 00 0 o
o ° o ° °
0 o o o
° x = 20.9
S =* 0.39
1 1 1 L- 1 1 I < 1 1 1 1 1 I 1 I 1 1 I i i i | i
*^ ^* ^^ C) ^1 \Q rH *~4 00 ^i ^0 r^ vO ^J ^D ^* ^^ ^* -O ro oo OQ ^^ r*i
^O 00 ^5 ^* ^f irt P"* 0^ ^3 ^H ^H ^^ u^ "tD ^3 0^ C^ ^3 ^5 ^^ ^H f^ ^^ ^*
"Standard" Conditions, Check Point Test Number
igure C13 - Brake Thermal Efficiency at "Standard" Conditions Check Points
Including Average Value (?c) and Standarl 'Deviation (S) .
O
x = 62.6
0 0 s = 1-39
0 °
° 0 ° °
- 0 o o ° 0
o
> °
1 1 1 1 • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f^*1^ r^O (NvDrHi— i co (N fi n vDfNvo ^fm^inmcooo or* rn
"Standard" Conditions, Check Point Test Number
Figure C14 _ 02 Mass Emissions at "Standard" Conditions Check Points
Including Average Value ("x) and Standard Deviation (S).
193
-------
14
t
U
c
0
•H
H
CO
•H
CO
m
26
25
24
23
22
21 _
i
-I 1 1 1 1 1 1
3 i 2 3* s
x = 23.3
S = 6.28
-I - 1 - 1 - 1 - 1- i i i t
i
• S 3 3 3 * s
S 3 i 3 3 3 3 3
"Standard" Conditions, Check Point Test Number
Figure CIS - CO Mass Emissions at "Standard" Conditions Check Points
Including Average Value (x) and StaneUirJ Deviation (S) .
M
£
p.
§
•H
CO
CO
•H
rg
O
CJ
800
{
o o
o
x = 878
S = 14.8
J 1 1 1 1 1 1 1 1 I I t I t
J I ' i
J ' i i
r> m r- o CN VB IH
•tfin^fin mcocoom
"Standard" Conditions, Check Point Test Number
Figure C16 - co_ Mass Emissions at "Standard" Conditions Check Points
Including Average Value (x) and Standard Deviation (S).
194
-------
k
04
i
m
0
•H
o o
<») r-i ^r Tf
CO O> n
r» m
vooo
o ^
CM r\j
vo -^
m
1 1 1
-i -J CO
N r>j m
1 ' 1
ff> O O
<
1 1 1 1 1
n co 00 O^ n
•-i 1-1 pg CM ^
"Standard" Conditions,.Check Point Test Number
Figure CIS - FID HC Mass Emissions at "Standard" Conditions Check Points
Including Average Value (x) and Standard Deviation (S).
195
-------
11
o
e
at
"S 0.97
•H
hi
f 0.96
0)
g
Cu
u
S * <
« - r
U «
' 0 0 °
° 00°
o ° ° o _ °0oo
x = 0.963
S = 0.006
O
O
H — ' — ' — ' — ' — i — i — " — ' ' i..»..,,
"Standard" Conditions, Check Point Test Number
Figure C19 - chemical Fuel-Air Equivalence Ratio, »c at "Standard" Conditions
Check Points Including Average. Value (x) and Standard Deviation (S)
196
------- |