SEPA
United States
Environmental Protection
Agency
Robert S. Kerr Environmental Research
Laboratory
Ada OK 74820
EPA-600 2-79-173
August 1979
Research and Development
Evaluation of a
Hydrosalinity Model
of Irrigation Return
Flow Water Quality
in the Mesilla Valley,
New Mexico
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the ENVIRONMENTAL PROTECTION TECH-
NOLOGY series. This series describes research performed to develop and dem-
onstrate instrumentation, equipment, and methodology to repair or prevent en-
vironmental degradation from point and non-point sources of pollution. This work
provides the new or improved technology required for the control and treatment
of pollution sources to meet environmental quality standards.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/2-79-173
August 1979
EVALUATION OF A HYDROSALINITY MODEL
OF IRRIGATION RETURN FLOW WATER QUALITY
IN THE MESILLA VALLEY, NEW MEXICO
by
Lynn W. Gelhar
and
Stephen G. McLin
Department of Geoscience
New Mexico Institute of Mining and Technology
Socorro, New Mexico 87801
in cooperation with
New Mexico Water Resources Research Institute
Las Cruces, New Mexico 88003
Grant No. S803565
Project Officer
Arthur G. Hornsby
Source Management Branch
Robert S. Kerr Environmental Research Laboratory
Ada, Oklahoma 74820
ROBERT S. KERR ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
ADA, OKLAHOMA 74820
-------
DISCLAIMER
This report has been reviewed by the Robert S. Kerr Environmental Re-
search Laboratory, U. S. Environmental Protection Agency, and approved for
publication. Approval does not signify that the contents necessarily reflect
the views and policies of the U. S. Environmental Protection Agency, nor does
mention of trade names or commercial products constitute endorsement or rec-
ommendation for use.
ii
-------
FOREWORD
The Environmental Protection Agency was established to coordinate admin-
istration of the major Federal programs designed to protect the quality of
our environment.
An important part of the Agency's effort involves the search for informa-
tion about environmental problems, management techniques and new technologies
through which optimum use of the Nation's land and water resources can be as-
sured and the threat pollution poses to the welfare of the American people
can be minimized.
EPA's Office of Research and Development conducts this search through a
nationwide network of research facilities.
As one of these facilities, the Robert S. Kerr Environmental Research
Laboratory is responsible for the management of programs to: (a) investigate
the nature, transport, fate and management of pollutants in groundwater; (b)
develop and demonstrate methods for treating wastewaters with soil and other
natural systems; (c) develop and demonstrate pollution control technologies
for irrigation return flows; (d) develop and demonstrate pollution control
technologies for animal production wastes; (e) develop and demonstrate tech-
nologies to prevent, control or abate pollution from the petroleum refining
and petrochemical industries; and (f) develop and demonstrate technologies to
manage pollution resulting from combinations of industrial wastewaters or
industrial/municipal wastewaters.
This report contributes to the knowledge essential if the EPA is to meet
the requirements of environmental laws that it establish and enforce pollu-
tion control standards which are reasonable, cost effective and provide ade-
quate protection for the American public.
William C. Galegar
Director
Robert S. Kerr Environmental
Research Laboratory
iii
-------
ABSTRACT
A multi-cell lumped parameter model of irrigation-related water quality
is applied to the Mesilla Valley, an irrigated valley encompassing roughly
40,500 hectares (100,000 acres) adjacent to the Rio Grande in southern New
Mexico. The model, which was originally developed by the U. S. Bureau of
Reclamation (USER) for the Environmental Protection Agency (EPA), simulates
diversions and pumping to meet irrigation needs, irrigation return flows,
chemical transformations in the soil, and mixing in groundwater reservoirs.
Data on water quality at 35 surface and groundwater sites within the
valley were collected on a monthly basis over two irrigation seasons. These
data along with extensive data from previous and concurrent investigations
provide a data base which is suitable for testing the USBR-EPA model. Anal-
ysis of water quality data from several observation wells in the shallow al-
luvial aquifer underlying the irrigation area demonstrates that there has not
been a statistically significant change of the average salinity of the aqui-
fer over the last decade. A special regression technique is developed to
estimate the aquifer parameters required for the model.
The USBR-EPA model is evaluated in several computer simulations covering
the ten-year period from 1976 through 1976. It is found that the model ade-
quately simulates the observed seasonal pattern of salinity variation in the
Rio Grande at the lower end of the valley near El Paso, Texas. Simulation
results indicate that when irrigation efficiency is increased, there is a re-
duction in concentration of dissolved solids in the Rio Grande at El Paso,
especially during the winter months.
This report was submitted in fulfillment of Grant No. S-803565 by the
New Mexico Water Resources Research Institute (NMWRRI) under the partial spon-
sorship of the U. S. Environmental Protection Agency. This report covers a
period from February 17, 1975 to August 16, 1978. The work was completed as of
November 1, 1978.
iv
-------
CONTENTS
Foreword iii
Abstract iv
Figures vi
Tables viii
Acknowledgment x
1. Introduction 1
2. Conclusions 5
3. Modeling Developments 6
Model structure 6
Adaptation of model to Mesilla Valley 9
Preliminary simulations 12
4. Data Acquisition and Analysis 14
Existing data base 14
Data collection 15
Water balance and parameter estimation 15
Analysis of chemical and water-level data .... 20
Analysis of aquifer and well data 29
Consumptive use 35
5. Simulation Results and Conclusions ... 36
Model preparation 36
Simulations 37
References 46
Appendices 50
A. Mesilla Valley Input Data for the USBR-EPA Model ... 50
B. Fortran Listing of USBR-EPA Hydrosalinity Model
for the Mesilla Valley 155
C. Sample Data Input and Model Output for the
Mesilla Valley 177
D. Estimation of Missing Water Quality i>ata at
Leasburg
E. Conversion Table for English to SI Units 191
-------
FIGURES
Number Page
1 Location map of Mesilla Valley, New Mexico 2
2 Schematic flow chart showing the features simulated in each
node of the model 7
3 Nodal representation of Mesilla Valley v . 10
4 Mesilla Valley system flow chart 11
5 Schematic vertical section of an aquifer with a perched stream . 17
6 Monthly drain flow (CK) versus average water level (h) 18
7a Observed and predicted groundwater levels 19
7b Observed and predicted drain flows 19
7c Estimated recharge compared with observed irrigation diversion . 19
8a Water-table map, May-June,1967, northern Mesilla Valley 21
8b Water-table map, May-June, 1967, southern Mesilla Valley 22
9a IDS contour map in ppm, May-June,1967, northern Mesilla Valley . 23
9b IDS contour map in ppm, May-June,1967, southern Mesilla Valley . 24
lOa IDS contour map, May,1976, northern Mesilla Valley 26
lOb TDS contour map, May,1976, southern Mesilla Valley 27
11 Monthly TDS values from 15 observation wells for November,1975
to November, 1977 28
12 Comparison of analyses from New Mexico State University and
New Mexico Tech 31
13 Specific capacity versus depth for 76 wells in the Mesilla
Valley 33
vi
-------
Number Page
14 Log-normal probability plot of specific capacity and well depth . . 34
15 Simulated and average observed water-level changes, May,
1967 - December, 1976 38
16 Root mean square error in simulated aquifer water levels and
simulated outflow chemistry as function of consumptive
use multiplier 39
17 Observed and predicted TDS using an alluvial aquifer 24 meters
(80 feet) thick and irrigation efficiency of 50% 41
18 Observed and predicted TDS using an alluvial aquifer 46 meters
(150 feet) thick and irrigation efficiency of 50% 42
19 Observed and predicted TDS using an alluvial aquifer 24 meters
(80 feet) thick and irrigation efficiency of 75% 43
vii
-------
TABLES
Numbei
1
2
3
4
A-l
A-2
A- 3
A-4
A- 5
A-6
p
Statistical Analysis of Temporal Variability of Water
Quality
Comparison of Results as Measured by rms Error in TDS . . .
Rio Grande Flow and Water Quality Above Leasburg
Dam for 1967
Rio Grande Flow and Water Quality at El Paso (Crouchane
Bridge) for 1967
Mesilla Valley, Initial Soil Analysis
Blaney-Criddle Consumptive Use for 74622, Cropped
Page
8
13
30
40
50
60
61
62
72
Acres in 1967 73
A-7 Well Numbering System, Evaluations, Location, and
A-8
A-9
A-10
A-ll
Mesilla Valley Water Levels for 1946, All Units are
Surface Water Sample Locations Taken During this
Project Study
Monthly Drain Flows in Ac re- Feet /Month
Surface Flow and Water Quality Data, Mesilla Valley ....
83
84
115
116
117
A-12 Groundwater Sample Locations Taken During this
Project Study 128
viii
-------
Number PaSe
A-13 Depth-to-Water and Groundwater Quality Data,
Mesilla Valley 129
A-14 Depth-to-Water for Selected Wells, Mesilla Valley .... 154
D-l Regression Relationships for Estimating the Missing
Water Quality Data at Leasburg, Obtained from the
Data Listed in Hernandez (1976) 186
D-2 Results Obtained for November,1972, Using the Iteration
Procedure to Balance Cations and Anions so that the
Calculated TDS Obtained Equals the Observed TDS .... 187
E-l English-Metric Conversion Table 191
ix
-------
ACKNOWLEDGMENTS
The work reported here is part of a multidisciplinary project entitled
"Demonstration of Irrigation Return Flow Salinity Control in the Rio Grande"
which was supported primarily by the United States Environmental Protection
Agency. Dr. Arthur G. Hornsby of the Robert S. Kerr Environmental Research
Laboratory at Ada, Oklahoma, served as project officer.
The following individuals contributed to various aspects of the work re-
ported here:
Name Position
Adel A. Bakr Research Associate in Hydrology
Pongsarl Huyakorn Assistant Professor of Hydrology
Richard L. Naff Lecturer in Hydrology
Vijay P. Singh Assistant Professor of Hydrology
Denise Bierley Graduate Assistant
John B. Czarnecki Graduate Assistant
Santiago Pinzon Graduate Assistant
C. David Updegraff Graduate Assistant
David L. Buckout Undergraduate Assistant, Programmer
Lisa Cole Undergraduate Assistant
Michael Shea Undergraduate Assistant
John W. Clark, former Director of the New Mexico Water Resources Re-
search Institute, was instrumental in initiating this work and provided ad-
ministrative guidance during early phases of the work; Carrey E. Carruthers,
Acting Director of NMWRRI continued that support. The U. S. Bureau of Recla-
mation in El Paso, Texas, provided unpublished data from their files; the
cooperation of Daniel Farias and James W. Kirby is acknowledged. Data on
cropping patterns and soil properties were provided by Robert R. Lansford,
Department of Agricultural Economics and Peter J. Wierenga, Department of
Agronomy, both at New Mexico State University.
x
-------
SECTION 1
INTRODUCTION
The overall objective of this study is to implement and test a computer-
based mathematical model of irrigation-related water quality in the Mesilla
Valley of south-central New Mexico. The model, which was developed by the
U. S. Bureau of Reclamation (1977c) for the Environmental Protection Agency
(EPA), can represent a general water and mass balance for a river basin or por-
tion thereof (see Appendix B). The model includes components which simulate
surface and groundwater reservoirs, diversions to meet irrigation needs and
other uses, irrigation return flows, and chemical transformations in the soil.
Several nodes can be used to simulate the conditions in different segments of
a basin. The model is classified as a multicell lumped parameter model. In-
put data on water use, surface and groundwater quality, and streamflows and
diversions are required for its operation.
The Mesilla Valley, an alluvial valley adjacent to the Rio Grande in
southern New Mexico (Figure 1), extends approximately 96 kilometers (60 miles)
from Seldon Canyon to El Paso Canyon and has a maximum width of about 8 kilo-
meters (5 miles). The valley encompasses a gross area of about 40,500 hectares
(100,000 acres). The area has had a relatively reliable supply of surface
water for irrigation since the completion of the Elephant Butte Reservoir in
1916. Groundwater was developed extensively to supplement surface water during
the severe drought in the 1950's and continues to be an important source. The
major population centers include Las Cruces, New Mexico, and El Paso, Texas.
The valley has a fairly level topography with a relatively flat alluvial flood-
plain ranging in width from about 100 meters to about 8 kilometers; it is
bordered by steep bluffs of about 15 to 30 meters (50 to 100 feet) high, com-
posed of loosely cemented sand, silt, clay, and gravel. Recent alluvium on the
order of 30 meters (100 feet) thick forms the primary aquifer; this aquifer is
underlain by basin fill deposits (Santa Fe Group) which also yield substantial
amounts of water. The climate of the valley is predominantly semi-arid. It is
characterized by clear and sunny days, large diurnal temperature ranges, low
humidity and scant rainfall. The mean annual precipitation averages less than
25 centimeters (10 inches), with a recorded maximum of about 51 centimeters
(20 inches) and minimum of about 8 centimeters (3 inches). The summer months
are generally the wettest ones when tropical air masses from the Gulf of
Mexico predominate over the area and cause thundershowers.
Several previous studies have dealt with the groundwater resources and
irrigation in the Mesilla Valley. The work by King, et al. (1971) describes
the hydrogeology of the valley and adjacent areas, and Richardson (1971) uses
a digital computer model to simulate two-dimensional groundwater flow in the
-------
(S3
C OLD R A D 0
ARIZONA
t-
UPPER RIO GRA/VDE DRAINAGE BASIN
MEXICO I TEXAS
MESILLA VALLEY
ME SILL A VALLEY
EPA DEMONSTRATION FARM
r JNTHQNY NEW MEXICO
TEXAS
N E W MEXICO
MEXICO
EL PASO
Figure 1. Location map of Mesilla Valley, New Mexico.
-------
Mesilla Valley; both of these reports contain extensive reviews of earlier
studies of the groundwater conditions in the valley. Information on the hy-
draulic properties of the aquifer has been developed by Conqver (1954) and
Leggat, et al. (1962). Studies by the U.S. Salinity Laboratory (Wilcox,
1968) investigate salt balance conditions in the Mesilla Valley and other
areas of the upper Rio Grande Valley. Extensive records of surface and
groundwater are maintained by the International Boundary and Water Commission
and the U.S. Bureau of Reclamation. Recently, Hernandez (1976) has compiled
much of the historical data on the quality of surface waters and reported the
results for water quality monitoring at several sites in the valley. The
U.S. Geological Survey at Las Cruces is currently conducting extensive field
investigations which emphasize the groundwater conditions in the underlying
basin fill (Santa Fe Group). Generally, there is comprehensive data on hy-
drologic conditions in the valley, but little or nothing has been done to in-
corporate this information into a model to predict the impact of irrigation
on water quality.
Much emphasis in irrigation return-flow modeling has been on the flow
and chemical characteristics in the near-surface unsaturated zone above the
water table. Hornsby (1973) reviews modeling techniques which have been ap-
plied to predict the quality of irrigation return flows. Examples of recent
computer-based models of moisture and salt transport in soils include
Willardson and Hanks (1976); King and Hanks (1973); and Dutt, Shaffer, and
Moore (1972). The latter represents chemical equilibrium of major ions and
a kinetic approach to the nitrogen cycle in the soil. The inorganic soil
chemistry portion of the USBR-EPA model, which is being used in the current
study, is an outgrowth of that model.
When one considers the large volumes of water in groundwater storage, it
is evident that aquifers underlying irrigated areas can play a central role
in irrigation return-flow quality. At a recent workshop on irrigation return-
flow modeling, Walker (1976) noted the need for improved information on
groundwater behavior. Several recent modeling studies have emphasized the
groundwater flow in salinity models (Maddaus and Aaronson, 1972; Lyons and
Stewart, 1973; Konikow and Bredehoeft, 1974; and Hassan, et al., 1974); these
models all represent two-dimensional horizontal flow with total dissolved
solids taken as a conservative solute. In contrast, the Bureau of Reclama-
tion (Shaffer, Ribbens, and Huntley, 1977) considers two-dimensional ground-
water flow in a vertical plane and chemical equilibrium for major ions.
Gupta, Tanji, and Luthin (1975) have developed a three-dimensional distributed
parameter groundwater flow and quality model assuming a conservative solute.
Lumped parameter groundwater flow and quality models have been used by Gelhar
and Wilson (1974) and Mercado (1976); these models are similar to the struc-
ture implicit in the groundwater portion of the USBR-EPA model being used in
the current study.
There have been several efforts to test the USBR-EPA model for field
sites near Vernal, Utah; Cedar Bluff, Kansas; and in the Grand Valley in
Colorado (U.S. Bureau of Reclamation, 1977a, 1977b). However, these case
studies involved relatively small irrigated areas (around 4050 hectares or
10,000 acres) over simulation periods of only a few years, and the results
seem to be rather mixed. In several cases, there are major differences
-------
between the observed and predicted seasonal pattern of water quality varia-
tion. It ±s not clear whether these differences are due to limitations of
the input data or deficiencies of the model; the predictive capabilities of
the USBR-EPA model have not been established.
The main objective of this study is to evaluate the predictive capabili-
ties of the USBR-EPA model in a large scale complex irrigation system over a
relatively long time frame. The Mesilla Valley, with its extensive base of
existing data, is uniquely suited for this testing. The modeling results
will also serve as input for economic studies on the effects of improved ir-
rigation management in the valley.
-------
SECTION 2
CONCLUSIONS
The U. S. Bureau of Reclamation Conjunctive Use and Water Quality
Model, modified slightly to represent conditions in the Mesilla Valley, does
adequately simulate the observed seasonal variation of salinity in the Rio
Grande near El Paso, Texas, over the ten-year period from May, 1967 through
the end of 1976.
The data collected during this study, along with that available from
previous and concurrent studies, provides a suitable data base for evaluation
of the USSR-EPA model in the Mesilla Valley. The data on groundwater quality
are least adequate because of the high degree of spatial variability. The
problems of adequate sampling of spatially variable subsurface water quality
require attention in future research.
Analysis of data on dissolved solids from several shallow wells in
the alluvial aquifer underlying the irrigated area in the Mesilla Valley shov
that there has not been a statistically significant change of salinity over
the last decade.
The USBR-EPA model, with soil chemistry effects included, predicts
that an increase of irrigation efficiency during the last decade would have
significantly decreased the salinity of the outflow from the valley in the
Rio Grande at El Paso.
-------
SECTION 3
MODELING DEVELOPMENTS
MODEL STRUCTURE
An extensive description of the U. S. Bureau of Reclamation Conjunctive
Use and Water Quality Model (referred to herein as the USBR-EPA model) is
given in the users manual (U. S. Bureau of Reclamation, 1977c); here emphasis
is only on those features which pertain to the Mesilla Valley application.
The USBR-EPA model represents an irrigated area by a series of small sub-units,
each of which is called a node. The number of nodes depends on the physical
features of the study area, the availability of data, and the number of points
at which the model response is desired within the area. The model structure
is based on a water balance for a given time interval which is computed and
maintained for each node. The transfer of water between river and aquifer
may be essential to maintain this balance. A soil column is included to simu-
late chemical exchange reactions as water percolates through the soil. The
chemical exchange in the soil is represented by chemical equilibrium reactions
for major ions which contribute to salinity; this segment of the model is based
on the development by Dutt, Shaffer, and Moore (1972). The model allows the
mixing of one water with another, and computes the chemical quality of the
mixed waters in proportion to the volumes mixed. Thus, a chemical mass balance
is simultaneously maintained. All these computations are performed for one
node at a time and progress from the upstream to the downstream nodes.
A node includes simulation of several features as shown in Figure 2.
These are: magnitude and quality of river flow; surface diversion to meet the
irrigation demand; pumpage to meet irrigation demand; water transfer between
river and aquifer; and irrigation return flows directly to the aquifer, through
the soil to an aquifer, or to the river. The river flow at the start of a
nodal operation is a known quantity, a portion of which is diverted to meet
the irrigation demand. The irrigation return flow is then computed by sub-
tracting the crop consumptive use from the irrigation demand. The chemical
quality of mixed waters is computed at each point. At the end of a nodal op-
eration, the balance between inflow to and outflow from the river is deter-
mined. If the river flow is in excess of that observed, the additional water
is transferred to an aquifer; if the river flow is in deficit, water is with-
drawn from the aquifer to maintain the balance. Hydraulic properties of the
soil and aquifer are not considered directly in the model. These major fea-
tures of the model are summarized in Table 1.
The input data needed to operate the model include irrigation demand,
crop consumptive use, diversion, river-water quality, initial aquifer-water
-------
DIVERSION
RIVER
I
CONSUMPTIVE
USE
PUMPING
IRRIGATED
AREA
RETUR
\ FLOW
SOIL
COLUMN
AQUIFER
Figure 2. Schematic flow chart showing the features
simulated in each node of the model.
-------
TABLE 1. SUMMARY OF MAJOR MODEL FEATURES
MODEL FUNCTION
Multi-cell lumped parameter model
will accept up to 20 cells (or
nodes)
Irrigation water balance to com-
pute return flow
Irrigation water chemistry repre-
sented by eight chemical constitu-
ents and IDS (Ca4"*", Kg4*, Ha+,
so.
HCO,
CO,
00 Soil moisture movement thru as
many as 10 soil column segments
Soil chemistry includes reactions
Involving Ca**, Mg""", Na+, SO •
HCO,
and und is solved
CO,
and
Aquifer balance transfers water to
or from surface and to downstream
nodal aquifer(s)
Aquifer chemistry Included In
simulation
IMPLIED LIMITATION
All variables are functions of time
only
Deals with monthly average over nodal
area
Deals with monthly average over nodal
area
DATA REQUIRED
See following
Diversion, irrigation demand, GW pump-
age, irr. eft., consumptive use, % of
return to aquifer and to river
Surface diversion chemistry and GW
chemistry
Steady forced displacement each month Soil moisture content
Chemical equllibra approach where ex-
tended Debye-Huckel theory applies
Transfer of flow between river and
aquifer is forced to maintain water
balance
Uniform aquifer chemistry throughout
an entire node
Soil chemical analysis, cation ex-
change capacity, gypsum concentration
Initial aquifer volume
Average Initial aquifer chemistry
COMMENTS
Number of nodes depends on
available data and physical
features of area
Much of required data is
hypothetical
Chemistry based on volume
proportion of waters mixed
Optional feature of model
Neglects reactions involv-
ing Cl" and N0~
River-aquifer transfer
should depend on aquifer
water level
Equivalent to a "well-
mixed" reservoir assumption
-------
storage and chemical quality, and soil moisture content and its chemical
quality.
ADAPTATION OF MODEL TO MESILLA VALLEY
The Leasburg and Mesilla diversion dams, the two major water diversions
in the Mesilla Valley, form natural nodes for the model. The quantity and
chemical quality of flow in these diversions are observed. Therefore, two
nodes were used to represent the Mesilla Valley as shown in Figure 3. Each
node includes several operational features as depicted in Figure 4. The nodal
configuration and its subsequent operation are best described by a sequence of
operations that actually occur. Each operation is assigned a sequence number
in the order that it takes place (Figure 4). In the assignment of sequence
numbers, a positive number is assigned to inflow and a negative number to out-
flow or diversion. The configuration of operations in node 1 is essentially
the same as in node 2, thus only node 1 is explained here.
At the upstream end of node 1, the flow in the Rio Grande is observed.
The portion of this river flow diverted at Leasburg Dam is also observed. The
river flow remaining after diversion is then computed; this quantity of flow
is not available for irrigation use within node 1, and therefore is diverted
from the node through sequence 1. The irrigation demand for crops in the area
is computed independently, using the crop consumptive use and the overall ir-
rigation efficiency. If the amount of surface water diversion is not suffi-
cient to meet the demand, additional water is pumped from the aquifer. This
feature was not available in the model input data setup for the Vernal study.
Originally, the model would satisfy the demand either entirely by surface wa-
ter or groundwater. Then the return flow, the difference between the demand
and the consumptive use, is computed. A part of this return flow will go to
the river and a part to the aquifer through the soil. Once the return flow
mixes with river flow (after diversion), the chemical quality of river flow
is updated; this river flow is identified as the predicted river flow. At
the downstream end of the node the river flow, a combination of the waste
flows from the Del Rio Drain and the Rio Grande at Mesilla Dam, is observed.
A comparison is made between this observed flow and the predicted river flow
to establish the required water transfer between river and aquifer. If the
predicted flow is higher than the observed flow, the model forces a transfer
of water from river to aquifer. If the predicted flow is lower than the ob-
served flow, a transfer of water from aquifer to river is required. This ex-
change mechanism is essential to accomplish the hydrologic balance. When the
exchange is made, the chemical quality of the flow is updated simultaneously.
Finally, at the end of the nodal operation, the model yields the flow and its
chemical quality.
The monthly input data used to operate the model include: observed river
flow at the upstream end of the node and its chemistry, the amount of water
diverted, crop consumptive use and irrigation efficiency, and observed river
flow at the downstream end of the node; initial aquifer water storage, chemi-
cal quality, and soil chemistry are also necessary inputs. The soil chemistry
input data are based on data from field plots at the New Mexico State Univer-
sity Plant Science Farm (Wierenga, 1977, Appendix Tables A-7 through A-14); the
input data are averages of 42 analyses in each 10-centimeter (0.33 feet)
-------
LEASBURG
' DIVERSION DAM
CRUCES
MESILLA
DIVERSION DAM
° CURRENT WELL SAMPLING
SITES
° SITES OF EXISTING SURFACE
WATER DATA
BOUNDARY OF SURFACE
IRRIGATED AREA
MAJOR IRRIGATION CANALS
'
6 MILES
,- EL PASO
Figure 3. Nodal representation of Mesilla Valley.
10
-------
O
N SEQULNCE NUMBERS
-N = DIVERSION
+N = INFLOW
PUMPAGE FROM G. W. TO fi\
SUPPLY DEMAND ^/^S^
NODE
1 AQUIFER
RIO GRANDE FLOW BELOW
LEASBURG CANAL
**USE 'CONUSE' CARD TO /7\
IflOICATE THIS DISTRIBU-VC/
TION OF RETURN FLOW
O
RIO GRANDE AT HEAD OF SYSTEM
RIVER FLOW AFTER DIVERSION
(TO #3 BELOW)
IRR. DEMAND SUPPLIED FROM G. W.
IRRIGATION DEMAND
IRRIGATION
RETURN FLOW
NODE 1 WASTEWAYS TO RIVER
**% RETURNED TO RIVER
('SUR' ON CONUSE CARD)
**l TO SQII COLUMN
t('GUV ON CONUSE CARD) ;,.
NODE 1 AQUIFER
TRANSFER OF FLOW
RIVtK IU
-*K-4
INFLOW TO AOUIFER
FROM RIVER
TRANSFER OF FLOW
WAQUIFER TO RIVER
INFLOW TO RIVER FROM AQUIFER
(OBSERVED OUTFLOWS)
PREDICTED OUTFLOW OF MOiVL
EXCHANGE MECHANISM SFTS
HYDROLOGIC BALANCE
Node 1
O
sr\
PUMPAGE FROM GJ^^'
JTO SUPPLY DEW
NODE 2
AQUIFER
RIO GRANDF FLOW [
MESILLA DAM
*USE 'COHUSE' CA
NDICATE THIS DIS'
[ION OF RETURN FL
O
UJ
CS
O
ce
CO
UJ
z:
UJ
O
§
u_
1
UJ
I
O
0
cc
NIX^/^N
iELOW ^
*D TO /7N
FRIBU-Vlx
)W
3
O
u_
cc
ul
oi
1
1 EXCHANGE 1
"\ | MECHANISM 1
RIO GRANDE AT MESILLA DAM
* HtAl) Uh NUUt i
RIVER FLOW AFTER DIVERSION ^
(TO #3 BELOW)
IRR. DEMAND SUPPLIED FROM G. W.
IRRIGATION DEMAND IRRIGATED
AREA
®f-^ IRRIGATION m
VV RETURN FLOW _
NODE 2 WASTEWAYS TO RIVER §
**% RETURNED TO RIVER ) "
('SUR1 ON CONUSE CARD) / %
**1-. TO SOIL COLUMN /* 3
f ('GWV ON CONUSE CARD) ~ °
s §
SOIL p ^
IOLUMN w g
•K
*
NODE 2 AQUIFER
TRANSFER OF FLOW /^\
RIVER TO AQUIFER ^O/
©INFLOW TO AQUIFER
FROM RIVER
©TRANSFER OF FLOW
^AQUIFER TO RIVER
INFLOW TO RIVER FROM AQUIFER /-
J ^,
PREDICTED OUTFLOW OF MODEL
^ EXCHANfiF MFHIAillSM SETS
(OBSERVED OUTFLOW)
HYDROLOGIC BALANCE
Node 2
Figure A. Mesilla Valley system flow chart.
-------
depth range for May, 1973. These averages are listed in Appendix A.
PRELIMINARY SIMULATIONS
Preliminary simulations were then developed for the Mesilla Valley with
input data and operational procedures described above. The objectives of
these simulations were to determine what model structure is suitable for the
Mesilla Valley and to test the sensitivity of the model results to input
data. The model was implemented with existing field data for the period of
July, 1967 to June, 1968. A complete set of groundwater data was available
at the beginning of this period.
To test the sensitivity of the model results to input data, the model
response for both nodes in terms of total dissolved solids (TDS) in ppm from
July, 1967 through June, 1968 was then examined by varying several input
parameters. Initially the model was run using consumptive use of about 107
cm/yr (3.5 ft/yr) per unit area of cropland. The effects of several differ-
ent input variables were then explored in simulations, the detailed results
of which are given in previous annual reports (Lansford, et al., 1976, 1977).
The features examined in the sensitivity analyses included the effects of
(1) a 25 percent reduction in the initial aquifer pore
volume,
(2) a 50 percent reduction in the initial chemical con-
centration of aquifer waters,
(3) an average crop consumptive use of 61 cm/yr (2.0
ft/yr) with an irrigation efficiency of 50 percent,
and
(4) a 50 percent increase in the initial chemical con-
centration in the soil.
Results of the effect of the above changes on the predicted model out-
put are summarized in Table 2 and are discussed by McLin and Gelhar (1977).
The results of the sensitivity analyses demonstrate that, in contrast to the
minor role of soil chemistry and aquifer pore volume, the initial chemistry
of aquifer waters and the combined effects of crop consumptive use and
irrigation efficiency play an important role in the predicted TDS output.
These results influenced the emphasis in data collection and the final simu-
lations .
12
-------
TABLE 2. SUMMARY OF RESULTS OF MODEL SENSITIVITY ANALYSIS
Physical Feature
Effect
(1) Twenty-five percent reduction
in initial aquifer pore volume.
(2) Fifty percent in chemical con-
centration of aquifer waters.
(3) Consumptive use, 61 cm/yr; ir-
rigation efficiency, 50 percent.
(4) Fifty percent in initial chemi-
cal concentration in the soil.
No appreciable difference from origi-
nal predicted TDS output (i.e. iden-
tical to Figure 7)*.
Large systematic differences of sev-
eral hundred ppm were noticed as com-
pared to the original predicted TDS
output (see Figure 8)*.
Produced systematic differences in
predicted TDS output (see Figure 8)*.
The transfer of water from the aqui-
fer to the river remained practically
unchanged (not shown in Figure 8)*.
Produced only minor differences in
TDS from that originally predicted
for node 1. Node 2 differences are
somewhat larger (see Figure 9)*.
*Figures referred to are in Lansford, et al., 1977.
13
-------
SECTION 4
DATA ACQUISITION AND ANALYSIS
EXISTING DATA BASE
Surface water data for the Mesilla Valley during the last 50 years are
extensive; long-term records of flow since 1920 are available for most parts
of the Mesilla Valley, except for the Rio Grande at Mesilla Dam. The latter
information would be useful as a water balance check point for node 1, but
the data are not required to operate the model. Extensive data on chemical
quality are also available for the Rio Grande at the Leasburg Dam and at El
Paso. Complete analyses of major ions are available for much of the period
since 1920; however, some of the water quality data are in the form of elec-
trical conductivity or TDS. The main drains (Selden, Picacho, Del Rio, La
Mesa, East, and Montoya) have a long record of flow rates but a short record of
water quality, usually in the form of electrical conductivity. Irrigation
diversions (leasburg, East Side, and West Side canals) have excellent long-
term flow-rate records but no chemical records. It is assumed that the Leas-
burg canal chemical quality is the same as that of the Rio Grande at the
Leasburg Dam, and that the East Side and West Side canals have the same quality
as the Rio Grande at the Mesilla Dam. A detailed summary of the existing sur-
face water data availability is given in Table 2 of Lansford, et al., (1976).
Agencies that have provided surface water data are the Bureau of Reclamation
and the International Boundary and Water Commission, both at El Paso, Texas.
Wilcox (1968) and Scofield (1938) were also sources of useful surface water
data.
The groundwater data are less complete than the surface water data. The
only long-term, monthly measurements of water levels are done by the Bureau of
Reclamation in Las Cruces, New Mexico. Measurements of water levels in 40
shallow observation wells, penetrating into the upper portion of the flood
plain alluvium, have been made since 1946. The chemical quality of water from
these wells was apparently measured only once, during late May and early June
of 1967 (Easier and Alary, 1968). Otherwise, the records of groundwater levels
and quality are sporadic. Water-level and quality data were obtained from the
U. S. Geological Survey branch offices in Las Cruces, New Mexico, and El Paso,
Texas, the El Paso Water Utilities Public Service Board in El Paso, Texas, and
from the following publications: Easier and Alary (1968); Conover (1954);
Hudson and/or Bush (1964-1973); Leggat, Lowery, and Hood (1962); King, et al.
(1969, 1971); and Richardson (1971).
The available surface and groundwater data for the Mesilla Valley for
the period 1967 through 1976 are listed in Appendix A. Because of the lack
14
-------
of earlier quality data for groundwater, only this period could be simulated
with the model. Most of the earlier data are available in the appendices of
reports by Richardson (1971) and Hernandez (1976). Also included in Appendix
A are flow data collected by the Bureau of Reclamation as a part of their
operational activities for the irrigation system in the Mesilla Valley.
DATA COLLECTION
Because of the importance indicated by th'e sensitivity analysis, the
data collection program for this study emphasized groundwater quality. Month-
ly water samples were taken from 25 shallow two-inch diameter observation
wells. These wells are maintained by the USER or the USGS; their locations
are shown in Figure 3. The wells were sampled using a one-pint bailer and
were bailed at least 20 times, or until the well went dry. This was done to
insure that aquifer water was obtained. Water levels were measured in each
well before it was bailed. Electrical conductivity, temperature and pH were
measured in the field. Monthly surface-water samples were obtained at ten
locations as depicted in Figure 3. Electrical conductivity, temperature, pH,
and alkalinity were measured on site. The water samples were analyzed by the
Soil and Water Testing Laboratory at New Mexico State University; laboratory
analyses included conductivity, pH, Mg"*^, Na+, K+, Ca4^, Cl~, HC03~, C03=,
S0i,= , and N03~. A few check samples were also analyzed at the Water Chemical
Laboratory of the Bureau of Mines and Mineral Resources at New Mexico Tech.
Data collected during the project are also listed in Appendix A.
WATER BALANCE AND PARAMETER ESTIMATION
The specific yield of the aquifer must be determined in order to evaluate
the volume of water initially stored in the aquifer. A calibration technique,
or parameter estimation procedure, was developed for this purpose to deter-
mine the storage characteristic of the aquifer from observations of water
level and drain flow. A simple water balance equation is used, which may be
written in the form
where
h - average water level in the aquifer (m),
S = average specific yield of the aquifer,
q - rate of flow of water from river to aquifer per unit
r aquifer area (m/mo),
q, » outflow or drain flow from the aquifer per unit
aquifer area (m/mo) ,
q » net recharge per unit aquifer area (m/mo), and
£
t - time (mo).
15
-------
The outflow from the aquifer can be approximated by the linear term (Gelhar
and Wilson, 1974)
qd = ad
in which ad is an outflow constant (1/mo) , h (m) is the average aquifer water
level and hd is the elevation of water in the drains (m) ; at the drain level,
hd represents a reference level at which the outflow is zero (Figure 5).
The model represented by Equation (1) with the outflow in Equation (2)
is a lumped parameter model in the form of a linear reservoir. A sequential
linear regression approach was used to estimate parameters for the shallow
aquifer. In the following paragraphs the procedure is briefly described (for
details see Updegraff and Gelhar, 1978).
First, Equation (2) is used to estimate a, and h , given monthly
values of h and qd (see following section for computation of h). Then solv-
ing Equation (1) in finite difference form during the period of no irrigation
(i.e., q£ = 0) and applying the regression method to the resulting solution,
the parameters S and qr are estimated. Finally, the net recharge during the
irrigation season is computed numerically integrating Equation (1) with all
parameters known except qe> The term qr, which was taken to be a constant
during each year, represents leakage from the Rio Grande treated as a perched
stream, plus other unmeasured sources of inflow to the aquifer (such as
lateral flow from adjacent aquifers). This term, which averages about 1.8
cm/mo (0.06 ft/mo), reflects an additional net recharge to the aquifer over
the year.
Monthly values of drain flow, qd, are plotted in Figure 6 versus values
of average groundwater levels in the Mesilla Valley for the period March 1946
through February, 1951; the regression line fitted through the points is also
shown. The slope of this best fit gives the outflow constant, ad; its inter-
cept with the abscissa determines hd. Figure 7a is a comparison between ob-
served groundwater levels in the valley and those simulated using the esti-
mated parameters in Equation (1) for this period. The agreement between pre-
dicted and observed values is very good; the root mean square (rms) error is
4.0 centimeters (0.13 feet) and the maximum difference of about 9 centi-
meters (0.3 feet) occurs during the summer months. Total monthly drain flows,
qd, are depicted in Figure 7b versus the predicted values for the same period.
Again, the agreement between predicted and observed values is exceptionally
good (rms error =1.2 cm/mo (0.07 ft/mo)). Figure 7c illustrates a compari-
son of the estimated recharge term, q£, with the observed irrigation diver-
sion for the valley. The temporal variation of recharge is very similar to
that of the diversion but the amplitude is reduced as a result of water con-
sumption by vegetation.
Estimated average specific yield of the shallow alluvial aquifer in the
valley is 0.21. This value compares with the study by Richardson (1971)
which showed that a distributed groundwater model reasonably simulated the
historical water level data when the storativity of the aquifer was assumed
to be 0.20. Conover (1954) estimated that the specific yield of the alluvial
16
-------
water table
land surface
Figure 5. Schematic vertical section of an aquifer
with a. perched stream.
17
-------
0,3
0.2
u.
•>
•a
o-
u.
z
< O.I
a
0.0
Eq. 2
ad =0.0812 MO."1
3825
3826 3827
AVERAGE WATER LEVEL, h,FT
3828
Figure 6. Monthly drain flow (q^) versus average aquifer level (h).
18
-------
g 3827.0 -
1946 1947 1948 1949 1950 1951
Figure 7a. Observed and predicted groundwater levels.
t 0.20
o
-i r
O OBSERVED
SIMULATED
1 1
1946 I
947 1948 1949 1950 1951
Figure 7b. Observed and predicted drain flows.
A OBSERVED IRRIGATION DIVERSION
O ESTIMATED RECHARGE
1946 1947 1948 1949 1950 1951
Figure 7c. Estimated recharge compared with observed irrigation diversion.
19
-------
aquifer would probably average about 0.25.
The above parameter estimation procedure has also been done for the pe-
riod 1946 through 1976 using a nonlinear outflow relationship which is more
accurate than Equation (2) for small drain flows (see Pinson, 1978, for de-
tails). In this case, the specific yield was found to be 0.22; this value
was adopted to estimate the aquifer volume used in the final simulations with
the USBR-EPA model.
ANALYSIS 0¥ CHEMICAL AND UATm-LETOL DATA
The Thiessen polygon method (Linsley, Kohler, and Paulhus, 1975, p. 82-84)
was used to obtain areal average values of observed quantities of TDS and
water levels over each of the nodes of the model. This method is convenient
because it yields fixed weighting factors for a given configuration of wells.
The initial storage in the alluvial aquifer was determined by applying the
Thiessen weighting factors to the observed depths to water in the observation
wells to produce an average depth to water in each node. The bottom of the
alluvial aquifer was taken to be an average of 24 meters (80 feet) below the
land surface as indicated by King, et al. (1971). The horizontal extent of
the alluvial aquifer was taken to be the gross area encompassed by the bound-
ary of the surf ace- irrigated area as measured from the Elephant Butte Irriga-
tion District Map, Mesilla Valley unit, provided by the U. S. Bureau of
Reclamation; the areas of nodes 1 and 2 are 16,498 and 27,376 hectares (40,767
and 67,645 acres), respectively. As discussed previously, the specific
yield of the aquifer was taken to be 0.22.
Figure 8 shows the water-table contour map which was constructed from
the water level data for the 40 USER observation wells for May, 1967, the ini-
tial condition for the simulations. This map shows a general downvalley
gradient; the water-table configuration appears to be very smooth and regular.
A water-table map was also constructed for May, 1976; although there were some
minor differences in water level at individual wells, the general pattern of
the water-table contours was not significantly different from that in 1967.
If more observation wells were available, the water-table configuration might
be more complex. For example, using data for May, 1965 through August, 1968,
King, et al. (1971) have prepared a water-table map which includes the same
area. Their map shows the same general downvalley gradient but the water-
table configuration is more contorted in the area around Las Cruces. This
complexity seems to be associated primarily with the municipal well field
east of Las Cruces. This field is outside the area of the alluvial aquifer.
Some of the variations in the map by King, et al. (1971) may also reflect
seasonal or temporal changes in water level through the three-year period
which was used by them. In any case, the water-table configuration is quite
smooth so that the Thiessen method should yield accurate estimates (say with-
in a few percent) of the average water level in the valley.
As shown in Figure 9a, b, the spatial variation of groundwater quality
(TDS for May, 1967, from Basler and Alary [1968]) is much more complex than
that of the water table. Although there are large local variations of TDS
which probably depend on local drainage conditions or proximity of irrigation
ditches, there seems to be an overall trend of increasing salinity down the
20
-------
BOUNOAfl. OF SURFACE
(WKJATeti AREA
BRKiATiOH CANALS AND
DRAMS
_J '-
Figure 8a. Water-table map, May-June,1967, northern Mesilla Valley.
21
-------
mgap, c«*s «,
WANS
Figure 8b. Water-table map, May-Junt 1967, southern Mesilla Valley
22
-------
,
,
O TDS DATASTES
BOUNDARY Of SUWACf
*%/ fWCATED «£A
HtflGATOh CANALS AND
MAWS
Figure 9a. TDS contour map in ppm, May-June,1967, northern Mesilla Valley.
23
-------
TMI
O TOS DATA SITES
Figure 9b. TDS contour map in ppm, May-June,1967, southern Mesilla Valley.
24
-------
valley, as suggested by Conover (1954) and Leggat, Lowery, and Hood (1962).
Figure lOa, b shows the corresponding contour map of IDS for May, 1976, based
on data collected during this study. There seem to be major differences in
the water quality patterns between Figures 9a, b and lOa, b although some of
this difference may reflect the fact that fewer observation points were avail-
able for obtaining aquifer chemistry data in 1976. There remains, however, a
trend of increasing salinity down the valley.
Because of the complex spatial variation of aquifer water quality, another
method was considered for estimating the average concentration by integration
of the area surrounding given concentration isopleths on maps such as Figures
9a, b and lOa, b. This method was used to estimate average TDS from Figure
9a, b; an estimate for HCOs was also made from the data of Basler and Alary
(1968). The average TDS obtained from the integration method was 16 percent
higher than the value found using the Thiessen method, but the difference be-
tween the two methods was only 1 percent for HCOs . Because the construction
of concentration isopleth maps is quite subjective, especially with the small
number of data points available, the Thiessen method which yields a unique
set of weighting factors for a given configuration of wells was chosen.
The estimation of the average water quality of the aquifer is further
complicated by the fact that there are major changes of concentration in any
vertical direction selected in the valley. The water in the underlying Santa
Fe Group, which may be several hundred meters below the land surface, is gen-
erally of good quality; the TDS may be as low as 300 to 400 ppm. In contrast
the shallow wells which were sampled throughout this study, and earlier by
Basler and Alary (1968), probably represent only the upper part of the allu-
vial aquifer; average concentrations in these wells are about 1900 ppm of TDS.
Very little detailed information is currently available on the vertical
distribution of salinity, but some preliminary results of an on-going study
by the U. S. Geological Survey (C. A. Wilson, written communication, 1977)
indicate that the transition zone occurs in the range of 15 to 45 meters
(50 to 150 feet) below land surface. The transition does not necessarily
coincide with the geologic unconformity at the base of the recent flood-plain
alluvium. The concentration was assumed constant with depth to the assumed
average base of the alluvial aquifer at 24 meters (80 feet). (USER well no.
34 was not used in the calculations of average aquifer water quality because
we felt the extremely high TDS (greater than 11,000 ppm) was a local anomaly
which was not representative of the quality over the depth of the aquifer).
To further illustrate the variability of groundwater quality, Figure 11
shows monthly values of TDS from 15 of the observation wells over a two-year
period from November, 1975 to November, 1977. It can be seen that the tem-
poral variation at any one individual well is much less than the variation
between wells at a given time. There are some temporal changes which seem
common to most wells (e.g., the increase in November, 1976) but there does
not seem to be any clear seasonal pattern in the data.
The importance of the large variability of groundwater quality becomes
more evident if a statistical interpretation of temporal changes in the water
quality is made. Table 3(a) summarizes data for May of 1967, 1976, and 1977;
25
-------
O TDS DATA SITES
500
Figure lOa. TDS contour map, May,1976, northern Mesilla Valley.
26
-------
O TOS DATA SITKS
,
Figure lOb. IDS contour map, May,1976, southern Mesilla Valley.
27
-------
4000 T—
to
00
0
1976 ,977
Figure 11. Monthly IDS values from 15 observation wells for November,1975 to November,197:
-------
the Thiessen weighted and the arithmetic means are shown along with the
standard deviation of the arithmetic values. There are similar systematic
changes of the Thiessen weighted and arithmetic means over these years, but
one may then ask the question: Has there been a significant change in the
quality of the shallow groundwater in the Mesilla Valley over the last decade?
If it is assumed that the observations are spatially independent and that the
observations at any two times are independent, a standard test of hypothesis
based on the student t-distribution leads to the conclusion that the differ-
ences of the arithmetic means is not significant at the 95 percent level.
This is a robust result; the standard deviation would have to be at least one
order of magnitude smaller for the difference of means to be significant.
However, inspection of data in Figure 11 indicates that the TDS concen-
trations are correlated at least over the two-year period (November, 1975 to
November, 1977), and the concentration remains high throughout the period for
some wells and low for others. To determine whether this correlation has per-
sisted over the past decade, it is necessary to consider only wells for which
data is available for both of the periods being compared (e.g., May, 1967 com-
pared to May 1976; May, 1967 compared to May, 1977), and consider the statisti-
cal dependence of the observations. Table 3(b) summarizes the results of such
an analysis; the strong dependence of the samples at given wells, even over a
ten-year period, is indicated by the high correlation coefficients. None of
the changes in the mean TDS are significant at the 95 percent level; however,
the decrease in TDS from 1967 to 1976 would be significant at the 80 percent
level. The analysis which assumes independence (Table 3[a]) can be very
misleading as it implies that the decrease in TDS from 1967 to 1976 is far
from being significant. Thus, if one is attempting to monitor temporal change
of groundwater quality in a spatially variable system, it is important to use
the same network of wells throughout the observations. The results in Table
3(b) also imply that the similar spatial pattern of groundwater quality dis-
tribution has persisted in the Mesilla Valley over the last decade. In this
case, statistical analysis is required to identify this persistent spatial
pattern; subjective comparison of concentration isopleth maps (Figures 9 and
10) does not show this feature.
Statistical comparison of the results of the chemical analyses from the
laboratories at New Mexico State University (NMSU) and at the Bureau of Mines
and Mineral Resources at New Mexico Tech (NMT) were also made; typical results
are shown in Figure 12. The 95 percent confidence intervals on the slope
and intercept of the linear regression parameter indicate that these values
are not significantly different from one and zero, respectively; hence, in
conclusion the analyses from the two laboratories were consistent. The data
from the NMSU laboratory were used in subsequent analysis.
ANALYSIS OF AQUIFER AND WELL DATA
Some observations which pertain to the vertical extent of the alluvial
aquifer used in the USER-EPA model are considered. It is generally accepted
that the depth of the lat quaternary flood-plain and channel deposits of the
Rio Grande averages around 24 meters (80 feet) in the Mesilla Valley (see
King, et al., 1971, and several references therein). Drilling and well
29
-------
TABLE 3. STATISTICAL ANALYSIS OF TEMPORAL VARIABILITY OF WATER QUALITY
"' • — — - ....
(a) STATISTICA1
INDEPENDENT
Date
May 1967
May 1976
May 1977
No. of Wells
32
24
22
TOTAL DISSOLVED
Theisson
Weighted
Mean
1846
1777
1887
SOLIDS (PPM)* CHANGES
Arithmetic
Mean
1930
! ASSUMING
Sample
Standard
Deviation
1976
2310
2283
u
o
t-Statistics Test
1967(x) to 1976(y): Estimated standard deviation s=2124. m=32, n=24 degrees
of freedom . + n-2=54, 95% t-2.01. tW W(m + n)(x-y J/B-0.126 <2 01.
Difference is not significant at 95% level.
1967(x) to 1977(y): Estimated standard deviation s=2105,
m=32, n=22, degrees of freedom m + n-2=52, 95% t=2.0l|
t=0.242 < 2.01. Difference is not significant at 95%'level.
(b) STATISTICAL COMPARISON OF TOTAL DISSOLVED SOLIDS (PPM)* CONSIDERING
DEPENDENT PAIRED SAMPLES FOR MAY UJNblUtRING
No. of Wells Arithmetic Means
1976
1077
1977
1967
17
2096
2258
2031
2282 -186
2345 -87
2020 10.4
2655
2642
2331
2562
2730
2431
467 0.9846 1.65
341 0.9925 0.99
368 " 0.9889 0.13
Difference, z=x-y; correlation coefficient, r =[Zxy-(Zx)(Zy)/n]/[s s (n-l)l-
Z valance. .^-^ + %2. 2r^ B^. t 8tati&ic^t=l-_-\£/3^ l x yCn 1)J'
'"*'"'
HCO^ S^ojTVS ci2,!""of the ""J"Ions ""^l^TSTf-f:
95%t
2.12
2.15
2.09
-------
1500 -
I
M
I
1000 -
soo -
siop« p.9i •Coao.i.oz}
ntercept 18.3 -(-90.4, I27jo}
500
1000
NMSU-TOS (PPM)
IDS comparison
1500
2000
95%
Estimated Confidence
Pom meter Intervoli
Slope 0.97
Intercept O.O2 -To.ZJ.
Figure 12.
3456
NMSU VALUE FOR CL'IMEO/l.)
Chloride comparison
Comparison of analyses from New Mexico State University
and New Mexico Tech.
31
-------
logging data which is being collected by the U. S. Geological Survey as part
of an on-going study of the groundwater resources of the area also supports
this value for the depth of the recent alluvium (C. A. Wilson, written com-
munication, 1977). Previous studies also indicate that hydraulic conductivity
of the underlying Santa Fe Group is substantially lower than that of the al-
luvium; aquifer test data reported by Leggat, Lowery, and Hood (1962) imply
that the hydraulic conductivity of the alluvium is ten times that of the Santa
Fe aquifer, and Conover (1954) indicates threefold differences in the hydraulic
conductivity between the two aquifers.
This contrast in hydraulic conductivity is also implied from the analysis
of specific capacity data for many wells in the Mesilla Valley. Using data on
water levels in pumping wells as collected by the U. S. Geological Survey
(C. A. Wilson, written communication, 1977) and estimates of the static water
levels obtained by interpolation between wells in the United States Bureau of
Reclamation network, calculations were made of the specific capacity of 76
wells ranging in depth from 19 to 230 meters (62 to 750 feet). These are
mainly irrigation wells which are usually screened or perforated over the en-
tire depth. However, some of the deeper wells are known to be screened only
in the Santa Fe aquifer. The data are summarized in Figure 13, which shows
that the logarithm of specific capacity of these wells tends to decrease with
increasing well depth. Although there is a substantial amount of scatter, the
negative slope of the regression line is significant at the 95 percent level.
Because the specific capacity is proportional to the transmissivity, this re-
sult further demonstrates a significant reduction of hydraulic conductivity in
the Santa Fe aquifer. Figure 14 shows a normal probability plot of these data
in terms of the logarithms of depth and of specific capacity. The roughly
linear relationships imply that both variables follow approximatley a lognormal
distribution.
From Figure 14 it is evident that many irrigation wells will produce from
the alluvium and the Santa Fe aquifer; the median well depth is around 46 me-
ters (150 feet). Also, over the years, the average depth of irrigation wells
seems to have increased because new wells are drilled deeper to obtain the
better quality water. This fact further complicates the definition of the
lower boundary and the initial chemical quality of the aquifer used in the
model; the depth of 24 meters (80 feet) has been arbitrarily selected to repre-
sent the alluvium since the primary interest is in the aquifer water chemistry
resulting from the influence of irrigation (see previous discussion).
The areal extent of the alluvial aquifer and possible lateral inflows to
it are also difficult to define precisely. The water-table map of King, et al.
(1971) indicates that lateral inflow could be significant from the area east
of the valley; considering the transmissivity of the Santa Fe aquifer and the
indicated gradient, the amount of lateral inflow may be on the order of 1.23
x 10 m /yr (10,000 ac-ft/yr). This inflow may be partly compensated for by
the outflow from the alluvium which is induced by pumping in the Las Cruces
well field and other municipal supplies; such outflows are probably similar
in order of magnitude to the lateral inflow. Phreatophyte transpiration may
also account for a loss of water of about his same magnitude, but this will
be balanced to some extent by contributions from the precipitation over non-
cropped areas and intermittent surface runoff from adjacent areas. However,
32
-------
1000
0.
O
100
u>
U)
O
Q.
O
O
U.
5 10
UJ
Q.
CO
200
400
WELL DEPTH,FEET
600
800
Figure 13. Specific capacity versus depth for 76 wells in the Mesilla Valley.
-------
1000
500
200
5
Q.
CO
O
< 100
o
(J
u.
o
Q.
en
e«
50
20
10
1 1 1 1 \ r
I
I I I I
IOOO
I
1
J
I
I
50O
200
UJ
ui
u.
1000.
Q
UJ
50
20
10 20 30 40 50 60 70 80 90 95 98 99
PROBABILITY, PERCENT
Figure 14. Log-normal probability plot of specific capacity and well depth.
34
-------
the above flows are typically at least one order of magnitude less than the
amount of water applied in the valley for irrigation (say 3.1 x 108 m3/yr or
250,000 ac-ft/yr). Because of the secondary role of the other sources of in-
flow or outflow, their generally compensatory nature, and the difficulty in
determining their influence on the alluvium, any explicit consideration of
these sources in the model setup has been omitted.
CONSUMPTIVE USE
The crop consumptive use is one of the most important input parameters
for the model. In preliminary calculations, two different methods were used
to estimate the consumptive use. The modified Jensen-Haise method (Jensen,
Robb and Franzoy, 1970) was applied using data on solar radiation and air
temperature for Las Cruces, New Mexico, and El Paso, Texas, in the pro-
gram EVPCOM which was also prepared by the U. S. Bureau of Reclamation (1974).
The Jensen-Haise method, with cropping patterns of the Mesilla Valley, yields
a consumptive use per area of crop land of about 107 cm/yr (3.5 ft/yr) (Table
3, Lansford, et al., 1976); this value is much higher than the commonly ac-
cepted estimate of around 61 cm/yr (2.0 ft/yr) based on the Blaney-Criddle
equation (Henderson and Sorensen, 1968; Lansford, et al., 1973).
Measurements reported by Gregory and Hanson (1976) for alfalfa in the
Mesilla Valley show an annual consumptive use of around 150 centimeters (5.0
feet); they found that their observations were in reasonable agreement with
values computed by the Jensen-Haise method. In contrast, the Blaney-Criddle
method (Blaney and Hanson, 1965) predicts a consumptive use of around 100
centimeters (3.0 feet) for alfalfa in the Mesilla Valley. On the other hand,
recent lysimeter work (Al-Khafaf, 1977) with cotton in the Mesilla Valley
yielded an annual consumptive use of 52 centimeters (1.7 feet) in 1976; the
Blaney-Criddle method yields a consumptive use of about 61 centimeters (2.0
feet) for cotton in the same area (Blaney and Hanson, 1965). It is evident
that the various methods of calculating consumptive use can yield quite di-
vergent results and that similar differences have been observed by several
independent workers. Hanson (personal communication, 1977) attributed some
such differences to variations in water management and crop yield.
Because of the general uncertainty concerning the evaluation of consump-
tive use, the simple and widely accepted Blaney-Criddle method was chosen to
estimate the consumptive use for input to the USBR-EPA mode. This method
requires only mean monthly temperature and precipitation. The procedures of
Blaney and Hanson (1965) were followed throughout the calculations using the
crop coefficients and effective precipitation relationships which they sug-
gest. Data on cropping acreage for each year were provided by New Mexico
State University (Lansford, et al., 1978). In the USBR-EPA model simulations,
these initial consumptive use estimates, were further adjusted so that the
simulated and observed aquifer water levels followed similar trends. Values
of calculated consumptive use for each node of the model are listed in Ap-
pendix A.
35
-------
SECTION 5
SIMULATION RESULTS AND CONCLUSIONS
MODEL PREPARATION
As noted previously, an initial trial aquifer thickness of 24 meters (80
feet) was selected on the basis of geological, aquifer, and chemical data.
Because of the paucity of information regarding the quality and quantity of
water from the deeper aquifer, pumpage from this deeper system was ignored in
the modeling process. Instead all pumpage to supplement irrigation was as-
sumed to originate in the shallow alluvial aquifer and to reflect its average
chemistry.,
Consumptive use for the cropped area, as predicted by the Blaney-Criddle
method and adjusted to include effective precipitation, was further modified
so as to minimize the rms error in average valley water levels. This modifi-
cation was made using an average consumptive-use multiplier. Initial and
modified values for consumptive use are listed with the input data in Appendix
C. Allowance for effective precipitation slightly decreases the model input
values for consumptive use, resulting in an average annual value of approxi-
mately 52.4 cm/yr (1.72 ft/yr), based on the yearly cropped acreage, or 82.9
cm/yr (2.72 ft/yr), based on monthly cropped acreage (see Appendix A for com-
plete listing of consumptive use). Additionally, calculation of irrigation
demand necessitates the estimation of an average irrigation efficiency for
the valley. The often cited value of 50 percent was used (R. R. Lansford, per-
sonal communication, 1977), which is somewhat smaller than some field plot
irrigation efficiencies cited by Blaney and Hanson (1965). This irrigation
efficiency implies that one-half of the irrigation demand is used by the crops
and one-half percolates through the soil root zone to the alluvial aquifer.
In most irrigation systems, some amount of water is lost from unlined
canals before the water can be delivered to the fields. In this model, al-
lowance was made for these losses via a delivery system efficiency factor,
rather than actually specifying individual monthly values in each node (this
feature was not originally available in the model but was incorporated here).
The USBR-EPA model already has the capability of incorporating monthly irri-
gation losses to the river or to the aquifer, with or without being subject
to soil column chemistry reactions. However, the model makes these loss cal-
culations after first subtracting the consumptive use. The resulting water
has a considerable higher dissolved solids content than applied water, whereas
water derived from canal losses is expected to reflect the chemistry of
applied water, before any modification by consumptive use. Thus, the model
was modified to allow for a direct transfer of diverted river water to the
aquifer by means of a delivery system efficiency factor. This factor was
36
-------
calculated to be 55 percent (USER water distribution records, El Paso, Texas),
which implies that 45 percent of a given monthly surface diversion is lost
directly to the alluvial aquifer. The use of a delivery system loss factor
is justified, at least in the Mesilla Valley, in that it attempts to more
closely represent actual system water and mass transfers. This factor is
user specified and remains constant throughout the simulation period.
The modeling process was initiated with shallow aquifer water quality
data from Easier and Alary (1968) averaged for each node as discussed pre-
viously. Since no other compatible subsurface chemical data exists over the
valley in the intervening years between 1967 and 1976, the model output was
only compared against existing surface water quality data for the Rio Grande
at El Paso, Texas, for the entire ten-year period.
SIMULATIONS
The ten-year period, 1967 through 1976, was used in the final simulations
to evaluate the USER-EPA model in the Mesilla Valley. The following factors
were considered in these simulations:
(1) the influence of changes in consumptive use,
(2) the influence of including chemical reactions within the soil,
(3) the effect of increasing the aquifer depth, and
(4) the effect of improved irrigation efficiency.
Because of the uncertainty in the estimated consumptive use, its optimal value
was obtained by minimizing the difference between the predicted and observed
average water levels in the aquifer: it was found that the predicted average
water level in the aquifer is very sensitive to the value chosen for consump-
tive use. Figure 15 illustrates water-level changes over the ten years during
which the consumptive use is taken to be 1.6 and 1.7 times that determined by
the Blaney-Criddle method. The results of several runs made to determine the
optimal value of this comsumptive use multiplier are summarized in Figure 16.
The root mean square (rras) error in predicted water level shows a very dis-
tinct minimum around 1.7; the rms error in predicted TDS shows a linear rela-
tionship, but is much less sensitive to the multiplier.
The multiplier of 1.7 implies an average consumptive use of around 89
cm/yr (2.92 ft/yr) based on the total cropped acreage, which average around
30,000 hectares (75,000 acres) over this period. However, the total area of
the valley encompassing the alluvial aquifer was taken to be 43,874 hectares
(108,412 acres); there are undoubtedly other significant sources of water con-
sumption related to the additional area, such as phreatophytes, evaporation
from water surfaces, and municipal depletions. If it is assumed that the same
consumption rate applies over cropped and uncropped areas, the average consump-
tive use per acre of cropland is about 61 cm/yr (2.0 ft/yr). This estimate
implies a net depletion; with an average effective precipitation of 19.1
centimeters (7.5 inches) (Blaney and Hanson, 1965), the total average consump-
tion of water per acre of cropland would be about 79 centimeters (2.6 feet).
Interestingly, Meyer and Gordon (1973) have estimated the crop consumptive
use in the lower Mesilla Valley in Texas to be 79.6 and 82.0 centimeters
depth per hectare (2.61 and 2.69 acre-feet per cropped acre) for 1970
37
-------
LL)
>
LU 6
_l
o:
UJ
cc
o
a: 2
o:
UJ
CO
0
_L
_L
500
CO
Q
400 f:
cc
o
ct
cc
300
CO
^
o:
1.4 1,6 1.8
CONSUMPTIVE USE MULTIPLIER
Figure 16. Root mean square error in simulated aquifer water levels
and simulated outflow chemistry as function of consump-
tive use multiplier.
38
-------
U>
vO
Observed average aquifer water level
o Predicted water level using an ET multiplier of 1.7
o Predicted water level using an ET multiplier of 1.6
(nia67.0Q 1368.00 1969.00 1970.00
1971.OD
TIME IN
1972.00
TERRS
1973.00
374.00 197
1975.00
1977
Figure 15. Simulated and average observed water-level changes, May,1967 - December,1976.
-------
and 1971, respectively.
Once the optimum value for consumptive use was selected, the effects of
the previously mentioned factors were examined using the same ten-year simu-
lation period. With the consumptive use multiplier of 1.7 and a water deliv-
ery system efficiency estimated to average 55 percent, the following simula-
tions were made:
(1) an initial irrigation efficiency of 50 percent and an average aquifer
saturated thickness of 24 meters (80 feet);
(2) an initial irrigation efficiency of 50 percent and an average aquifer
saturated thickness of 46 meters (150 feet); and
(3) an increase in irrigation efficiency from 50 percent to 75 percent,
using an average aquifer saturated thickness of 24 meters (80 feet).
Two computer runs were made for each of the above cases. The first run took
into account chemical reactions within the soil zone, while the second run
was made without such reactions. The effects of soil zone chemical reaction
simulations could therefore be directly evaluated under several varying condi-
tions. For all cases, the time history of average predicted water levels re-
mains unchanged, as any change in infiltrated water must be equal to a change
in pumpage (surface diversions are constrained by observation and consumptive
use by the aforementioned optimization procedure). Thus, the time history of
predicted water levels for all cases is identical to that of Figure 15 with a
consumptive use multiplier of 1.7.
Figures 17 through 19 show a comparison of predicted and observed total
dissolved solids for the various cases examined. The predicted TDS values
are compared with observed data in the Rio Grande at El Paso, Texas, over the
ten-year simulation period. It can be seen that the model simulates the ob-
served seasonal variation in water quality quite well for all cases. This
seasonal pattern seems to be related to the fact that the relatively high sa-
linity groundwater, which drains from the aquifer after the irrigation season,
is the predominate source of flow during the winter months. However, in the
early part of the growing season, large quantities of relatively low salinity
surface diversions are applied; these waters tend to dilute the drainage
waters.
Table 4 shows a summary of results for the simulation cases considered.
Figures 17 and 18 seem to indicate that the USBR-EPA model reproduces the
TABLE 4. COMPARISON OF RESULTS AS MEASURED BY RMS ERROR IN TDS
Aquifer
depth
meters (feet)
24
24
24
24
46
46
(80)
(80)
(80)
(80)
(150)
(150)
Soil
chemistry
yes
yes
no
no
yes
no
Irrigation
efficiency
%
50
75
50
75
50
50
nns error
in TDS
ppm
344
329
319
328
328
330
40
-------
D.
o Observed Doto Points
A Predicted Data Points
TIMF !N
(a) Without soil column chemical reactions
C'C* 1U7"]
o
Oo
Q.
Q.
Or
-------
o Observed Data Points
Predicted Data Points
'.Qlvl.C'C :G«5S.l?a 1370.DC 1971.00 1272.CO 1373.CD :37U.DD ',375 OC :37S CC ' 71
TIME IN TEPR5
(a) Without soil column chemical reactions
° Observed Doto Points
Predicted Doto Points
(b) With soil column chemical reactions
Figure 18. Observed and predicted IDS using an alluvial aquifer 46
meters (150 feet) thick and irrigation efficiency of 50%,
42
-------
CT
-------
total dissolved solids in the Rio Grande at El Paso slightly better when soil
chemistry effects are not included in the model, especially toward the end of
a given simulation run. This is true for both aquifer depths considered,
though the rms error between observed and predicted TDS for an alluvial thick-
ness of 24 meters (80 feet) is somewhat lower than when it is taken to be 46
meters (150 feet). The rms error from both cases, however, is still relatively
small. It would thus appear that the aquifer thickness is not a major para-
meter in the USBR-EPA model simulations.
Comparison of Figures 17a and 17b shows that inclusion of the soil-water
chemical interaction effects in the USBR-EPA model has a significant effect
on the predicted TDS in the Rio Grande, although this effect is not evident in
the first few years of the simulation. This observation emphasizes the slow
chemical response of soil-aquifer systems in general. The influence of the
soil-water chemical reactions is most important when the irrigation efficiency
is increased from 50 percent to 75 percent as illustrated by Figures 19a and
19b. The results with and without the model soil column reactions differ impor-
tantly in these cases; the conservative system (i.e., without the model soil
column reactions) with a 75 percent efficiency indicates a significant predic-
ted TDS increase in the Rio Grande at El Paso over that for the 50 percent
efficiency case. On the other hand, the more complete description with soil
chemistry effects included shows a definite predicted TDS decrease in the Rio
Grande, especially towards the end of the simulation period.
The simulation results indicate that a significant decrease in the Rio
Grande TDS at El Paso would have occurred if the irrigation efficiency had
been increased to 75 percent for the period of 1967 to 1976, if we accept the
more complete model with soil chemistry reactions. Comparison of the simulation
results with soil column chemical reactions in Figures 17b and 19b shows that
in the last four years of the ten year simulation period the average maximum
TDS in the Rio Grande was typically about 550 ppm lower with the higher irri-
gation efficiency. This management option appears to be a viable method for
improving downstream water quality. The technique does, however, take some
time before giving any noticeable improvements in water quality. In the
Mesilla Valley, this time period would apparently have been about six years.
All of the above simulations were made with the USBR-EPA model as repre-
sented by the FORTRAN listing in Appendix B. Only minor changes of input data
are required to simulate the various cases presented above. A typical listing
of input data and output are shown in Appendix C for the case with 50 percent
irrigation efficiency with soil chemical reactions. To exclude the soil
chemistry, monthly CONUSE cards are changed as indicated in the data listing,
Appendix C. A complete program source listing with ten-year data input and
simulation output for the Mesilla Valley is available on microfilm form the
Environmental Protection Agency, Ada, Oklahoma. Appendix C lists only the
first two months of data input and simulation output for the valley. The
aquifer depth is changed simply by altering the initial volume of water in the
aquifer. Changes in irrigation efficiency are introduced as indicated in the
program listing in Appendix B; changes in the water delivery system efficiency
can also be changed as indicated in Appendix B.
The results of the above simulations demonstrate that the USBR-EPA model
44
-------
can simulate pre-existing conditions quite well if adequate data are available
to describe the overall water balance and the conditions of the aquifer. The
experience with the Mesilla Valley system indicates that the overall data on
flow are quite reliable and consistent. The resolution of the groundwater
quantity data also seems adequate, but the groundwater quality shows a very
high degree of horizontal spatial variability. The vertical extent of the
higher salinity groundwater is not well defined. For example, is one addi-
tional well (USER Well No. 34) were included in the calculation of average
aquifer quality, the initial dissolved solids concentration would be increased
over 300 ppm.
The actual predictive capabilities of the USER-EPA model are less clear.
In order to predict the effects of changes in water application, one must be
able to synthesize the resulting changes of flow in and out of the system.
Because the USBR-EPA model completely ignores the dynamics of flow in the
aquifer (e.g., no aquifer hydraulic properties are used in the model), changes
in outflow which result from changes in aquifer water level are not simulated
by the model. For example, in the Mesilla Valley simulations, the flow of the
Del Rio drain appears as a flow transfer from node 1 to node 2. When the
simulation for improved irrigation efficiency was developed, it was necessary
to make some assumption about this flow as input data for the model. The
drain flow was arbitrarily assumed to be unchanged. Because of features such
as this, the predictive capabilities of the USBR-EPA model may be quite lim-
ited in some situations. If reliable information is available on how the
water balance and flow conditions will change, the USBR-EPA model can provide
reasonable predictions. However, this is just another way of saying that the
model is not complete in its description of flow dynamics.
These features may seem to suggest that the USBR-EPA model should be
modified to incorporate some dynamic characteristics of the groundwater flow.
However, it is not suggested that the present model be modified because it is
generally very difficult to use, especially if any changes of program struc-
ture are required. The documentation of the computer program was not consid-
ered to be adequate for most users.
Considering the very simple conceptual framework of the USBR-EPA model
(i.e., the aquifer in each node is simply a mixing cell), the computer program
seems unnecessarily complicated. Models which incorporate the mixing cell
structure plus the flow dynamics of the aquifer are already available (Gelhar
and Wilson, 1974), and have been applied with reasonable success to the irri-
gation return flow situation in the Arkansas River Valley near La Junta, Col-
orado (McLin, 1978). These models can be operated with much simplier computer
programs; the calculations can be performed quite conveniently on a program-
able pocket calculator.
45
-------
REFERENCES
Al-Khafaf, S., 1977, Observed and computed water content distributions in
layered soils under cotton. Unpub. Ph.D. dissertation, Agronomy Dept.,
New Mexico State Univ., Las Cruces, New Mexico, 200 p.
Easier, J. A. and L. J. Alary, 1968, Quality of the shallow water in the
Rincon and Mesilla Valleys, New Mexico and Texas. USGS, open file re-
port.
Blaney, H. F. and E. G. Hanson, 1965, Consumptive use and water requirements
in New Mexico. N. Mex. State Engr., Tech Bull. 32, Santa Fe, New Mexico,
82 p.
Conover, C. S., 1954, Groundwater conditions in the Rincon and Mesilla Valleys
and adjacent areas in New Mexico. USGS Water Supply Paper 1230.
Dutt, G. R., M. J. Shaffer, and M. J. Moore, 1972, Computer simulation model
of dynamic bio-physiochemical processes in soils. Agricultural Experi-
ment Station, Tech. Bull. 196, Univ. of Arizona, Tucson, Arizona, 101 p.
Gelhar, L. W. and J. L. Wilson, 1974, Groundwater quality modeling. Ground-
water, v. 12, n. 6, p. 399-408.
Gregory, E. J. and E. G. Hanson, 1976, Predicting consumptive use with clima-
tological data. N. Mex. Water Resources Research Institute, Report No.
66, Las Cruces, New Mexico, 43 p.
Gupta, S. K., K. K. Tanji, and J. M. Luthin, 1975, A three dimensional finite
element groundwater model. California Water Resources Center, Contribu-
tion 152, Univ. of California, Davis, California, 119 p.
Hassan, A. A., D. C. Kleinecke, S. J. Johanson, and C. E. Pierchala, 1974,
Mathematical modeling of water quality for water resources management,
two volumes. Research Grant Technical Completion Report to the Office
of Water Resources Research, U. S. Dept. of Interior, Washington, B.C.
Henderson, D. C. and E. F. Sorensen, 1968, Consumptive irrigation requirements
of selected irrigated areas in New Mexico. Agricultural Experiment Sta-
tion, Bull. 531, N. Mex. State Univ., Las Cruces, New Mexico, 55 p.
Hernandez, J. W., 1976, Rio Grande water quality base line study 1974-75,
Summary Report. N. Mex. Water Resources Research Institute, Report No.
64, Las Cruces, New Mexico, 97 p.
46
-------
Hornsby, A. G., 1973, Prediction modeling for salinity control in irrigation
return flows. (EPA-R2-73-168), National Environmental Research Center,
Corvallis, Oregon, 55 p.
Hudson, J. D. and/or Bush, F. E., 1964-1973, Groundwater levels in New Mexico,
basic data report. N. Mex. State Engr., Santa Fe, New Mexico, yearly
reports.
Jensen, M. E., D. C. N. Robb, and C. E. Franzoy, 1970, Scheduling irrigation
using climate-crop-soil data. J. Irr. Drain. Div., ASCE, v. 96, n. IR1,
p. 25-38.
King, L. G. and R. J. Hanks, 1973, Irrigation management for control of quali-
ty of irrigation return flow. (EPA-R2-73-265), U. S. Environmental
Protection Agency, Washington, B.C. p. 307.
King, W. E., J. W. Hawley, A. M. Taylor, and R. P. Wilson, 1969, Hydrogeology
of the Rio Grande Valley and adjacent intermontane areas of Southern New
Mexico. N. Mex. Water Resources Research Institute, Report No. 6, Las
Cruces, New Mexico, p. 141.
, 1971, Geology and groundwater resources of Central and Western
Dona Ana County, New Mexico. N. Mex. Bureau of Mines and Mineral Re-
sources, Hydrologic Report No. 1, Socorro, New Mexico, 64 p.
Konikow, L. F. and J. D. Bredehoeft, 1974, Modeling flow and chemical quality
changes in an irrigated stream-aquifer system. Water Resources Research,
v. 8, n. 4, p. 546-562.
Lansford, R. R., S. Ben-David, T. G. Gebhard, Jr., W. Brutsaert, and B. J.
Creel, 1973, An analytical interdisciplinary evaluation of the utiliza-
tion of the water resources of the Rio Grande in New Mexico. N. Mex.
Water Resources Research Institute, Report No. 20, Las Cruces, New Mexico
152 p.
Lansford, R. R., P. J. Wierenga, L. W. Gelhar, T. A. Howell, C. M. Hohn, and
G. 0. Ott, 1976, Demonstration of irrigation return flow salinity con-
trol in the upper Rio Grande, Annual Report, Year 1. N. Mex. Water Re-
sources Research Institute, Report No. 70, Las Cruces, New Mexico, 121 p.
1977, Demonstration of irrigation return flow salinity control in
the upper Rio Grande, Annual Report, Year 2. N. Mex. Water Resources
Research Institute, Report No. 86, Las Cruces, New Mexico, 94 p.
, 1978, Demonstration of irrigation return flow salinity control in
the upper Rio Grande, Final Report, Las Cruces, in press.
Leggat, E. R,, M. E. Lowery, and J. W. Hood, 1962, Groundwater resources of
the lower Mesilla Valley, Texas and New Mexico. Texas Water Commission,
Bull. No. 6203, 191 p.
47
-------
Linsley, R. K.-> Jr., M. A. Kohler, and J. L. H. Paulhus, 1975, Hydrology for
Engineers, 2nd edition, McGraw-Hill, New York, 482 p.
Lyons, T. C. and J. Stewart, 1973, Groundwater model development and verifi-
cation for the San Jacinto groundwater basin. Water Resources Engineers,
Inc., Final Report on Task XV(s)-l.
Maddaus, W. and M. A. Aaronson, 1972, A regional groundwater resource manage-
ment model. Water Resources Research, v. 8, n. 1, p. 231-237.
Mercado, A., 1976, Nitrate and chloride pollution of aquifers; a regional
study with the aid of a single-cell model. Water Resources Research, v.
12, n. 4, p. 731-747.
Meyer, W. R. and J. D. Gordon, 1973, Water-budget studies in lower Mesilla
Valley and El Paso Valley, El Paso County, Texas. U. S. Geological Sur-
vey, open file report, 43 p.
McLin, S., 1978, Validity of the lumped parameter hydrosalinity model in pre-
dicting irrigation return flow. Unpub. Ph.D. dissertation, New Mexico
Institute of Mining and Technology, Socorro, New Mexico, in progress.
McLin, S. G. and L. W. Gelhar, 1977, Hydrosalinity modeling of irrigation re-
turn flow in the Mesilla Valley, New Mexico. International Conference on
Managing Saline Water for Irrigation, Texas Tech Univ., Lubbock, Texas,
August 16-20, 1976, p. 28-48.
Pinzon, S., 1978, A non-linear lumped parameter model for the Mesilla Valley,
New Mexico. Unpub. Independent Study, New Mexico Institute of Mining
and Technology, Socorro, New Mexico, in progress.
Richardson, G. L., 1971, Water table investigation in the Mesilla Valley.
Unpub. M.S. thesis, Civil Engr. Dept., N. Mex. State Univ., Las Cruces,
New Mexico, 206 p.
Scofield, C. S., 1938, Quality of water in the Rio Grande Basin above Fort
Quitman, Texas. USGS Water Supply Paper 839.
Shaffer, M. J., R. W. Ribbens, and C. W. Huntley, 1977, Prediction of mineral
quality of irrigation return flow, vol. V, Detailed return flow salinity
and nutrient simulation model. Robert S. Kerr Environmental Research
Laboratory, EPA-600/2-77-179e, Ada, Oklahoma, 229 p.
Updegraff, C. D. and L. W. Gelhar, 1978, Parameter estimation for a lumped
parameter groundwater model of irrigation return flow. N. Mex. Water
Resources Research Institute, Las Cruces, New Mexico, in press.
U. S. Bureau of Reclamation, 1974, Irrigation management services, annual re-
port for 1973, Rio Grande Project, New Mexico and Texas. Bureau of
Reclamation, Southwest Region, Amarillo, Texas, 92 p.
48
-------
U. S. Bureau of Reclamation, 1977a, Prediction of mineral quality of irriga-
tion return flow, vol. I., Summary report and verification. (EPA-600/2-
77-179a), Robert S. Kerr Environmental Research Laboratory, Ada, Oklahoma,
59 p.
, 1977b, prediction of mineral quality of irrigation return flow,
vol. II, Vernal field study. (EPA-600/2-77-179b), Robert S. Kerr Environ-
mental Research Laboratory, Ada, Oklahoma, 106 p.
, 1977c, Prediction of mineral quality of irrigation return flow,
vol. Ill, Simulation model of conjunctive use and water quality for a
river system or basin. (EPA-600/2-77-179c), Robert S. Kerr Environmental
Research Laboratory, Ada, Oklahoma, 285 p.
Walker, W., 1976, Assessment of irrigation return flow models. (EPA-600/2-76-
219), Robert S. Kerr Environmental Research Laboratory, Ada, Oklahoma,
75 p.
Wierenga, P. J., 1977, Influence of trickle and surface irrigation on return
flow quality. (EPA-600/2-77-093), Robert S. Kerr Environmental Research
Laboratory, Ada, Oklahoma, 157 p.
Wilcox, L. V., 1968, Discharge and salt burden of the Rio Grande above Fort
Quitman, Texas, and salt balance conditions of the Rio Grande project,
summary report for the 30-year period 1934-1963. U. S. Salinity Labora-
tory, Research Report No. 113, Riverside, California.
Willardson, L. S. and R. J. Hanks, 1976, Irrigation management affecting
quality and quantity of return flow. (EPA-600/2-76-226), Robert S. Kerr
Environmental Research Laboratory, Ada, Oklahoma. 191 p.
49
-------
APPENDIX A
A. MESILLA VALLEY INPUT DATA FOR THE USBR-EPA MODEL
MONTH
FLOW
AC -FT
CA
MG/L
K
MG/L
MG/L
HC03
u ^ y v
WVJ/*I
MG/L
S04
MG/L
N03
MG/L
MG/L
TO
MG/
£
Ui
o
'
.»jH:
?««?:
56609.
5030.
3860.
3770*.
421!
47<
2-
2«
2«
0.
i§:
o.
0.
I
189.
200.
200.
170,
16«i.
0,
2*
0.
60.
103.
106.
120?
200.
177j
INFORMATION SOURCE: USSR; EL PASO, TEXAS
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
0.
o!
9t
o.
Ot
o
o.
2*
o«
o;
(Continued)
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1968
MONTH
PLOW
ftC-FT
K NA HCOJ
MG/L MG/L MG/L
304
MG/L
MG/L
MG/L
TD8
MG/L
Ul
1690.
\m.
160.
il 1
Of
:
06.
Hi:
400.
161.
INFORMATION SOURCE: USER; EL PASO, TEXAS
NOTE: INDIVIDUAL ION CONCENTRATIONS FROM JULY
COMPLETE DETAILS, ALL OTHER DATA IS OBSERVED.
7!
6]
8
:
:
1968 TO DECEMBER 1975 ARE ESTIMATED. SEE APPENDIX D FOR
(Continued)
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1969
HOHTH
Ul
ro
i
4
5
6
8
9
}Q
h
FLOW CA
AC-FT MG/L
slf:
67,
69,
66,
69,
69,
89.
156,
1651
139,
MG/L MG/L
H:
VI 4 A
12:
8ft.
«?:
HC03
MG/L
C0
i»: M: If
!?!•' Ill: 1s
179. 15ft. * 1 n.
504
MG/L
i$o; sio; 141
N03
MG/L
o.
G/
o.
2«
•
o.
o,
Q d
o!
897,
933!
M||
6
080.
INFORMATION SOURCE: USSR; EL PASO, TEXAS
NOTE: INDIVIDUAL ION CONCENTRATIONS FROM JULY 1968 TO DECEMBER 1975 ARE ESTIMATED
FOR COMPLETE DETAILS, ALL OTHER DATA IS OBSERVED. i^TIMATED.
SEE APPENDIX D
(Continued)
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1970
MONTI.
Ul
CO
FLOW CA
AC-FT Mg/L
K HA HC03
MG/L MG/L MG/L
11
8
o
27
172. 5
Ifi: 5
173
504 N03 CL IDS
MG/L MG/L MG/L MG/L
i: mi
I
2.
11:
ill.
o!
o.
0.
8:
o.
o,
s«
0.
o°; !HI:
8: III:
o, sis;
8: tt|:
o. 449;
0 743.
0, 1088,
o il$2
0. 1029
INFORMATION SOURCE: USER; EL PASO, TEXAS
NOTE: INDIVIDUAL ION CONCENTRATIONS FORM JULY 1968 TO DECEMBER 1975 ARE ESTIMATED.
FOR COMPLETE DETAILS, ALL OTHER DATA IS OBSERVED.
SEE APPENDIX D
(Continued)
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1971
MONTH
FLOW
SA K NA HCQ3 CQ3 504 NOJ CL IDS
/L MG/L MG/L MG/L MG/L MG/L MG/L NG/L MG/I
1320i
1280.
»: «5-
4;
2}t
2!:
o,
t
o;
INFORMATION SOURCE: USER; EL PASO, TEXAS
NOTE: INDIVIDUAL ION CONCENTRATIONS FROM JULY 1968 TO DECEMBER 1975 ARE ESTIMATED.
FOR COMPLETE DETAILS, ALL OTHER DATA IS OBSERVED.
SEE APPENDIX D
(Continued)
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1972
MONTH
Ul
Ul
6
9
FLOW CA
AC-FT MG/L
77
34
18,
16!
53:
45
76.
K NA HC03 C03 S04 N03 CL IDS
MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L
o.
2»
"
INFORMATION SOURCE: USER; EL PASO, TEXAS
NOTE: INDIVIDUAL ION CONCENTRATIONS FROM JULY 1968 TO DECEMBER 1975 ARE ESTIMATED.
FOR COMPLETE DETAILS, ALL OTHER DATA IS OBSERVED.
SEE APPENDIX D
(Continued)
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1Q71
MONTH
o>
FLOW CA
AC-FT
680,
692,
63988;
67400.
65380
91760;
841801
123380;
68770J
6250.
912,
922;
67;
11-
:
Ill;
NA_ HC03
MG/L MG/L MG/2 J&l Mg?J Md7£
INFORMATION SOURCE: USER; EL PASO, TEXAS
9
8
9
'i
SI!
10
T0 DECEMBffi
NQ3
"
:
*
2*
o.
MG
/L
TO
!g
SEE APPENDIX D
(Continued)
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1974
MONTH
FLOW
980,
647!
101050,
66300,
74570,
lltlti:
97590.
54520
1230;
K NA HC03 C03 504 N03 CL
MG/L MG/L MG/L MG/L «G/L MG/L MG/L
29
0.
t
IDS
li:
11031
INFORMATION SOURCE: USER; EL PASO, TEXAS
NOTE: INDIVIDUAL ION CONCENTRATIONS FROM JULY 1968 TO DECEMBER 1975 ARE ESTIMATED.
FOR COMPLETE DETAILS, ALL OTHER DATA IS OBSERVED.
SEE APPENDIX D
(Continued)
-------
TABLE Al.
RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1975
MONTH
00
INFORMATION
NOTE: INDD
FLOW
AOFT MG/L
K NA HC03
MG/L MG/L MG/L
80 3
XL
504
N03 CL TD5
MG/L MC/L MG/L
i975
:
o.
ESTIMATED. SEE APPENDIX D
(Continued)
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1976
MONTH
FliQW
AC -FT
MG/L MC/L
803 S04 NQj
/L MG/L MG/L
MG/t
TDS
WG/L
vo
199RO.
21580,
02430.
85800,
104010,
87300.
1094
04
40
0
5
1*
12
0.
0.
0,
0.
0,
46.
il:
li!
86,
99,
113,
?'
2:
is:
!0j
23! 152.
174,
2591
1981
18?:
209,
US:
ill:
$
8*
*
:
:
903.
INFORMATION SOURCE: USER; EL PASO, TEXAS
-------
TABLE A2. IRRIGATION DIVERSION AT LEASBURG DAM
1967
1963
1969
1970
1971
1972
197?
1974
1975
1976
JAN
FEB
MAR
JUN
AUC
SEP
OCT
PEC
9
0
0
0
0
0
0
0
0
271
0
140
0
1444
0
0
0
0
1010
3001
18157
111BS
19752
19021
17522
9578
7944
1717J
9361
14199
*9c<3
P740
10763
1.1374
7724
3310
H2P7
t?093
1'604
If0i6
5«J90
51B7
H121
13099
7407
1199
9021
14647
13111
Ibl45
6969
14459
17361
16797
11454
2231
15879
21030
16382
17937
13516
16455
26099
27083
1654R
820ft
146J2
134B2
207^2
19351
13317
17732
297f>9
25143
17274
8859
21800
172S9
196P4
21 928
15439
13974
10471
16545
101R9
3539
17252
12580
12908
15493
252U
2980
39 SO
4030
1120
40
44S5
119
22^5
292(J
1310
972
1 4 0 0
1211
0
0
0
o
0
l>
0
0
0
0
tj
u
0
0
0
u
INFORMATION SOURCE: USBR; EL PASO, TEXAS
NOTE: NET SUPPLY MINUS TOTAL WASTES REPORTED HERE.
ALL UNITS ARE IN AC-FT/MONTH.
-------
TABLE A3. IRRIGATION DIVERSION AT MESILLA DAM
YEAR
JAN
MAR
MA*
J'JL
AUG
StP
fCT
oec
967
968
969
970
971
972
973
974
975
1976
33
0
0
0
0
0
0
0
524
8530
0
0
0
1321
0
0
0
0
859
14996
35407
27348
34262
32846
3S31S
26183
20629
36440
23553
32185
U4*2
1 f 8 n 3
206;?4
244o5
17H9
K'7?6
2?8t 1
2M?3
276^3
3Mo9
13474
145S«
20443
25220
J8673
4935
215^4
27982
25941
35756
13404
27033
JHd12
33220
25760
5017
34075
39317
3353H
J5B15
23400
^1197
50376
45232
32129
20513
35891
36355
4J192
3fe9d*
26819
38152
56266
45419
33000
1748J
46990
370*4
43831
4615H
?0«02
19882
?0b76
22930
12540
3424
)360b
19V4b
2S371
23b9b
n
0
0
143
0
0
225
39
J735
99
n
0
n
0
n
u
a
0
o
o
o
0
0
0
0
(J
0
u
0
0
INFORMATION SOURCE: USER; EL PASO, TEXAS
NOTE: NET SUPPLY MINUS NET TO RIVER REPORTED HERE.
ALL UNITS ARE IN AC-FT/MONTH.
-------
TABLE A4.
MONTH
to
H
FLOW CA
AC-F-T MG/L
iBI: i»:
K NA HC03
MG/L MG/L M•
?I
7 .
(Continued)
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1968
MONTH
FLOW CA
AOFT MG/L
MG/L MG/L
HCOJ
MG/L
C03
MG/L
§04
MG/L
N03
MG/L
SL
/L
IDS
MG/L
U)
27
8
5
4
4
J
it
1
!
I
1
1C
it:
|:
I:
j:
:
»»:
S:
?•
1629
16l9
5*1
924
i
INFORMATION SOURCE: USER; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
(Continued)
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CRQUCHANE BRIDGE) FOR 1969
MONTH
6
«i
II
FLOW
AC-FT
K Njk HC03
MG/L MG/L MG/L
\l: JH:
lie.
15:
i.
I:
7,
i:
135.'
3UI
INFORMATION SOURCE: USER; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE,
if:
JP?:
09,
80,
?l:
125l
i!!:
265,
5S5,
j:
1:
z«7.
fH:
§04 N03 CL IPS
MG/L MG/L MS/L MG/L
v •
P!
m1
90
8
1448
1584
1396
(Continued)
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1970
MONTH
01
FLOW CA K NA HC03 COJ 504 ND3 CL IDS
AC-FT Mfi/L MG/L MG/L Mg/L MG/L M?/L MG/L MG/L M$/L
IS*o:
4677!
6726!
lif: i|: II?: Ill: U
f:
ii:
"I
16.
li
15:
INFORMATION SOURCE: USER; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
S9
i:
i:
8
(Continued)
-------
ON
TABLE A4. KEOGRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1971
MONTH
i
10
u
.
8,
351.
INFORMATION SOURCE: USSR; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
o.
0.
0. J560.
0. !§40,
(Continued)
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1972
MONTH
I
10
FLOW CA
AC-FT MG/L
125,
•6
•M:
K N* HC03
MG/L MG/L MG/L
IR-
?9t
19.
22.
*
19,
384.
42P
*
if at*
15ftt ]28,
209! 172*
' 540.
2.
5,
1
INFORMATION SOURCE: USER; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
14
C03 504 N03 CL IDS
MG/L MG/L MG/L MG/L
05, 578,
35; 598!
*
,
334!
426!
*
Jit:
I
236
0.
o|
o;
0. 1600.
O; 1690.
O. 685,
J:
•
it 65.
It 1970,
0. 1640.
0. 2060,
0. 926.
(Continued)
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1973
MONTH
oo
FLOW CA
AC-FT MG/L
}ff:
Hi
S
MG/L MG/L
8.
116;
INFORMATION SOURCE: USBR; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
HC03
MG/L
2,
•* •* •
'8:
'I'
182^
Ill:
Q3
S04
MQ/L
!:
i:
III-
m\
288.
NUJ
HG/L
MG/L MG/L
0. 2040
; 309"
(Continued)
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1974
MONTH PLOW CA K N» HC03 C03 SQ4 N03 CL TD5
AC-FT MC/L MG/L MG/L MG/L MG/b MG/L MG/L MG/l MG/2
o>
vo
9
10
il
m-.
86,
791
89.
97J
110.
IB:
INFORMATION SOURCE: USER; EL PASO
NOTE: FIRST FOUR MONTHS AEE NOT REPORTED HERE.
'
0,
(Continued)
-------
TABLE ^AA. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1975
MONTH
9070.
6703,
32145!
38402!
41462;
498371
49144!
55585.
47040.
13446!
9047!
8880!
9ft
27*
1=
tJJ«
8'
ii:
B:
INFORMATION SOURCE: USER; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
X*
S:
8:
o,
0 •
8:
9t
0, 1540
A • Afn
14
.
0|
•
• 868,
• 1
o! i
?! i
(Continued)
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1976
MONTH
I
H
12
FLOW CA
AC-FT MG/L
K NA
MG/L MG/L
5B.
'l:
ii
4*
6.
INFORMATION SOURCE: USER; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
HC03
WG/L
209.
239.
*K'.
U:
Hi
C03
MG/L
279*
i??:
S38?
504
MG/L
279 929 428 96*
f*«• ***• *•"• *OD«
§19. 255. 478. 279;
305. 249; 469! 276.
Nt>3
MG/L
o.
•
*
o.
CL
MG/L
o.
IDS
MG/L
8: H?8-
8:
il
O. 135
-------
t-0
CONSTITUTE?*?
CA (MEQ/L)
MC (MEQ/L)
NA (MEQ/L)
CL (MEQ/L)
S04 (MEQ/L)
HC03 (HCQ/L)
C03 (MEQ/L)
N03 (MEQ/L)
SOIL/WATER RATIO
OF EXTRACT
VOLUME or WATER IN
SOIL 5EG. (ML)
CATION EXC. CAP.
(MEQ/100 GM)
GYPSUM (MEQ/100 GM)
SOIL BULK DENSITY
(GM/CC)
LENGTH OF SOIL SEG
(CM)
SOIL SEGMENT NO.
1
10.0
2.7
H.4
3.0
9.8
11.0
0,0
0,6
0,7
10.0
20.0
0.4
1.4
20.0
2
10,4
3,0
13,1
2.8
12.7
10.4
0.0
0.8
0.7
lo.l
20.0
0.4
t.4
20, P
3
20.7
6.3
20.2
3.7
33.6
9.0
0,0
0.6
0,8
10,1
20,0
0.4
1.3
20,0
4
32.0
10. 3
30.2
6.2
56,8
8.1
0,0
1.2
0.7
10.7
20.0
0.4
1.5
20.0
5
32.6
11.4
38.4
10,9
59.9
8.0
0,0
3.0
0.4
5.8
5.0
0.2
1.5
20.0
6
22,9
7,1
27.6
9.0
38,9
7,4
o.o
1,8
0,4
5,2
5,0
0.2
1.5
20,0
7
17.6
5.5
22.3
7.5
29,4
6,9
0,0
1.1
0,3
5.4
5,0
0.2
1.6
20,0
8
15.9
4.6
20,3
6,4
26.1
6.7
0,0
0,9
0,3
4,9
5.0
0.2
1.6
20.0
INFORMATION SOURCE: NMSU, LAS CRUCES
-------
TABLE A6. BLANEY-CRIDDLE CONSUMPTIVE USE FOR 74622, CROPPED ACRES IN 1967
MONTH
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
oec
TOTALS!
NODE 1
(AC-FT/MO)
136,7
77,2
4243,7
7300^9
10622,2
10&4X*
3690.6
2486,6
2580,2
47lo
F.T (FT/YR)
ET (FT/YR)
ET (FT/YR)
NOPE 2
TPTAl FOR
(AC»FT/MO) (»C»FT/K))
226
128
7041
931?
12114
17625
6123
4125
4281
1475
78
§ASFD
ASED
8ASFO
ON
OK
ON
:?
:S
:|
if
:S
l
ENTIRE
YEARrY
MOWTWL
363,5
205,3
14924^1
19415,2
78247,6
28296.il
6612^5
2364^0
125,0
?B514,3
TOTAL FOR TOTAL CROPPED TOTAL *.T
VALLfcY
(FT/MQ)
,
,
t
•
*
,
•
,
,
•
1.
004H7
00275
15J23
20000
26018
37854
37919
ofldM
09195
03168
00167.
72
ACRES
4843,
1997,
67014,
67014,
67014,
66606!
26303,
24203^
25611,
16231,
2846,
PKR ACRE
(FT/MO)
0
0
0
0
0
Q
0
0
0
0
0
0
2
•
,
*
•
t
,
•
,
,
t
i
,
,
0750fe
10282
16840
22270
28972
42410
4248.3
37313
27321
26791
14564
04.191
91
VALLEY ACREAGE s 1.19
CROPPED ACHLAGt s 1.72
Y CROPPED
ACREAGE s 5,«1
E AR^AS PRODUCE '"UI-TIrLF YEARLY
(Continued)
-------
TABLE A6. BLANEY-CRIDDLE CONSUMPTIVE USE FOR 82820. CROPPED ACRES IN 1968
MONTH
JAN
FEB
HAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
TOTALS!
NODF 1
(AC-FT/MO)
HO, 4
57.8
1944,9
5077*,9
14469*3
9475,8
2538*.7
2522,2
2451,2
290,0
75,3
ET (FT/YR)
FT (FT/YR)
F.T (FT/YR)
SOHE AREAS
NODE 2 TOTAL, I- OR
(AC-FT/f'O) (*
133,5
95,9
3061,3
8425,7
14553,1
24008,7
15723*2
4212,4
4185,0
4067,2
124*9
BASED ON F;MTIP
BASED 0* YEART.
BASFft ON MONTH
PRODUCE M!J£,TIr
VAUUbY
C»FT/**Q)
213,9
153,6
4906,2
13503,6
23323,8
3&47P.O
25190,0
*75l",0
6707,2
6518.4
771^1
200,2
126726,0
F VALI-EY A
Y CROPPED
Lv ccnpPEO
Lp Y£ART,^
TOTAL FOR TOTAL CHOPPED TUT&L F.T
VALLO
(KT/MU)
^OOlPS
.05924
.16J05
.28162
,46460
.30426
,08151
.0809S
,07871
.00931
.00242
1.S3
CRKAGF a 1 17
ACREAGE = 1.53
ACREAGE * 2,4*
CKUPS
&CRES
3022*
73478,
73478,
73478*
717H3*
27488*
25410,
27004,
15565,
3196,
)
PER ACPK
(FT/MO)
0,03440
0,05083
0,06677
0,18378
0.31743
0,53603
0,35104
0,24560
0,26396
0,24139
0,04954
0,06264
2,40
(Continued)
-------
TABLE A6. • BLANEY-CRIDDLE CONSUMPTIVE USE FOR 81497. CROPPED ACRES IN 1969
Ul
M01TH
MODE 1
AiOOF 2
(AC •FT/MO) (AC -FT/MO)
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
oec
TOTALS!
93.6
3758^5
6067,5
7836.1
12360.3
7583^8
4761.2
2776^0
1740.6
1068.9
0.0
155.2
141^5
6236.4
10067.8
13002.4
20509.4
12583 E
7900.3
4606,7
1773U
0.0
TOTAL FOR
(PC-FT/MO)
248.8
9994^8
J6135.3
32869^7
12661 *5
7382,2
462§.7
f'I6
1?799h, 4
XOTAli KOP TJTAF. CROPPED TUTAL ET
VALLEY A.CRES PER ACRE
(KT/MQ)
,00305
,00278
, 1 2264
19799
.25570
,40332
124746
.15536
0^058
,05680
,03488
.00000
1,57
5432,
2422,
72265,
72265.
72265 .
71952,
71952^
28301 .
26641.
28144,
16508.
3010.
(FT/Mli)
v, 04580
0,09363
0,13831
0,22328
0,2883*
0,45683
0.28029
0,44739
y, 27710
0,16446
0,17219
0,00000
2,59
ET (FT/YR
ON tNTlPF VALliKY ACREAGE a 1.18
ET (FT/YR) BASED ON YEAHfY CHOPPED ACREAGE s J 57
ET (FT/YR) BASED OK MONTPLY CROPPED ACREAGE s 2,59
SOME A«EAS PRUDUC6
CRUfS
(Continued)
-------
TABLE A6. BLANEY-CRIDDLE CONSUMPTIVE USE FOR 83619.
IN
MONTH
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
MOV
DEC
NnDF 1
(AOFT/MO)
144,1
56,1
3202^9
5846.5
8943*8
14494*,7
14133*,0
5591,5
3685,5
2649.6
1300,2
108,9
NODE 2
(AC-FT/MO)
239,0
93,0
5314,6
9701,1
14840.4
24051,0
2345018
9261,4
6J15J3
4396,5
2157.4
TOTAL HJR
UcirT/5o>
383,1
149,1
8517,5
15547,6
3«545|7
14842^9
9800.7
7046,1
3457,6
289,7
TOTAL FOR
VALLE*
(FT/*Q)
,00458
.00178
,10186
,19593
.28444
,46097
!4494t>
,17751
111721
,08426
,04135
,00346
TOTAL CHOPPED
ACPKS
5008,
I9r)i;
75481*
75526*.
7552^1
30562.
2807b,
29627;
1870*.
3104.
TUTAL ET
Pc-H ACRE
(FT /MO)
U,076SO
0.07832
0^20598
0.31510
0,51036
OJ49763
0.48567
0123783
0,18482
0,09334
TOTALS!
1«.994P,0
gT fFT/YR) BftSKD 0* tMlPE VALIKY »CRKAviF, = 1.48
|T (FT/YR) BASED UN YEAHr Y CROrpEl) ACKEAOE «"!?91
FT CFT/YR) BASFD ON MOHTMLy CPOpPEC ACHEAfiK = J.l
SOME RREAS PRODUCE
YEARLY CHOPS
3,15
(Continued)
-------
MOUTH
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
NODE 1
(AC -FT/MO)
1K'4
54,4
4627,1
5607,6
8880,7
15280,1
Ill65*4
Ml!:?
"?§:!
None 2
(AC -FT /«0)
174.3
90,3
7677,7
9304.7
1473516
20335^1
8902,7
5799^0
2876^7
1826,0
83^3
T'3T*L FOR
(AC -FT /MO)
279,3
144J7
J7304.9
23M6J3
40634,3
14268 Jl
9293,9
4610^
2926,5
133,5
TOTAL FOR
\TALL.E*
(FT/MU)
,00344
,00178
Il8390
,29123
,5011"
,'40190
^17595
,11461
,05685
,03609
,00165
TOTAL CPni-JPEi:
ACRES
3902,
1322,
74665^
7466S,
74665,
75233,
75233.
29786,
77233.
2852?,
18701,
2580.
? TOl'AL ET
PER ACRE
(FT/MO)
0.07159
0,10943
0,16480
0,19972
Oj540tl
OI43-HQ
0,47902
0,34127
0,16164
0.15649
0,05176
TOTALS!
155714.6
1,92
3,03
FT/YR) BASED ON KKTlPE VAMtY ACRtftOR a t.44
FT/YR5 8A5F.P ON YEAPt-Y CPOPPEO ACRRAGfi a 1.92
FT/YR) BASED OW MGNU
-------
TABLE A6. BLANEY-CRIDDLE CONSUMPTIVE USE FOR 78575. CROPPED ACRES IN 1972
00
MONTH
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
NODE 1
(AC-FT/MQ)
89.8
60,4
4924.0
6048.3
8546.8
10957.4
12753ll
3323J6
2585U
521.8
1039.9
46.6
MOPK 2
(AC-FT/MO)
149.0
100.2
8170.4
10035.9
14191.6
18181,5
5514^8
4289.4
865,9
1725.6
77.3
TOTAL FOR
VALL-EY
(Af.FT/MO)
238.7
160.6
13094,4
16094,2
2272814
29138,9
"883«;4
6*74, i
1387.7
2765.5
123,9
TUTAL FOR TOTAL CROPPED TOTAL F,T
VALLKK
(FT/MO)
.00304
.00204
,16665
,20470
,23926
,37084
,43162
,11248
.0*749
,01766
,03520
,00158
ACRES
399t>,
1419.
73030,
73030,
72561^
72561,
28013.
26088,
27376,
18263,
2576,
PtR ACRE
(KT/rtO)
0.05976
0,11315
0, 17930
0,22024
0. H122
0^46739
0,31551
0.26351
0,05069
0,15143
0.04609
TOTALS!
135349,4
1.72
k.58
ET (FT/YR) BASED ON FNTlcE VALLE* ACREAGE s
ET (FT/YR) BASED ON YEARlY CPOPPKO ACRKAGt =
ET (FT/YR) BASED nN MONTHLY CROPPED ACREAGE
1.25
1,72
SOME AREAS PRODUCE MUI.TIrLr YEARL* CHOPS
(Continued)
-------
TABLE A6. BLANEY-CRIDDLE CONSUMPTIVE USE FOR 82787. CROPPED ACRES IN 1973
MONTH
NODE 1
(AC-FT/M05
JAN
FE8
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
TOTALS I
0.0
2^6
3696.3
5747^3
ft!58.3
12273^3
757215
5893.4
4182.9
1053.0
1473.2
12210
F.T fFT/YR)
fcT fFT/YR)
SOME AREAS
MODE 2 TOTAL /OR
(AC-FT/FO) UC-FT/VJ)
0.0 0.0
4^4 7jO
6133,2 9829,4
9536^4 15283,7
13537^1 216V5.4
20365,0 32638,3
12565,0 70137,6
9778,9 15672,3
6940,6 11123,4
5074,1 8132.)
2444.5 3917,7
202^4 324.3
138761 .3
lOTAli FOR
(FT/MO)
.00000
.00008
,11873
.19461
.26206
.39424
Hl»931
"13436
.09823
.0*732
,00392
i.6«
BASED ON ENTIRE VALl-EY ACREAGE s 1.
BA5F.D ON YEART Y CROPPED ACREAGE s 1
BASF-D ON MONTHLY CPHpreO ACREAGE «
PRODUCE MULTIPLF YKARtiX
CROPS
TOTAL CROPPED
ACRES
4ft 71.
1491,
75338,
7533d.
75338.
75871,
7587ll
32096.
29824^
31390,
20504.
3180,
28
.68
2,73
TUTAL RT
PER ACRE
(FT/rtO)
0,00000
0,00469
0,13047
0,20287
0,28797
0,43018
1>I 26542
0,48829
0^37297
0,25907
0,19107
0,10199
2,73
-------
MONTH
JAN
FE8
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
NODE 1
(AC-FT/MO)
38.7
43>
4050,3
6136.2
9433,2
1572415
8954*7
3145,5
1403,9
1221,6
1108,7
29 H
NODE 2
(AC-FT/MO)
64,2
*7JJ:73
10181.7
15652^5
26091 .5
14P5fe*5
5219,4
?329*.4
2027,0
1639*.;
49,4
TOTAL FUR
VALLEY
(/OFT/MO)
102.P
114,3
1077i;o
16318,0
75085*,7
41816,1
73813^2
8364*,9
3733*.3
3248*,7
2948.4
79,2
TOTAL FOR
VALLt*
(FT/MO)
,00125
,00139
.13141
,19909
,30606
,51018
.29054
,10206
.04S55
,0?964
.03597
,00097
TOTAL CROPPED
ACRES
349fi,
iU»:
76936,
7683*1
76P68,
76868,
28320^
26933*
28038,
18544,
2380,
TOTAL £T
PKH ACRE
(FT/HO)
0,02940
0.10223
0,14018
0,21237
y, 32648
0,544no
0,30979
0.29537
0.13861
0,11587
0,15900
O.C3328
TOTALS!
136395,6
SiiiB gS
KT (Ff/YR) BASED ON MO«T«,Y CROPPBO
SOME AREAS PRODUCE
YEARL? CHOPS
(Continued)
-------
TABLE A6. BLANEY-CRIDDLE CONSUMPTIVE USE FOR 80796. CROPPED ACRES IN 1975
oo
MONTH
NODE 1
(AC-FT/MO) 1
JAN
FEP
MAR
APR
MAY
JUN
HA
SEP
OCT
NOV
DEC
TOTALSl
203,7
366.4
3967*,6
7893*,2
12692.1
Ilol*6
1077*9
NODE 2
[AC "FT/MO)
338,0
607.9
6583.3
9549.1
13097.1
21059.9
197*7^2
7448.7
4450,9
3*22,3
178P.6
92,8
TOTAL FOR
VALLEY
CK-FT/MO)
541,8
10550*9
15304JO
70990,3
33752,1
31648*.!
11937*8
7133,3
6125.9
148*7
141973, fc
TOTAL. FOR TOTAL CROPPED
VALLEY ACRES
(FT/^0)
,00671
,01206
,13059
, 1 "942
,25979
,41774
".39170
,14775
.08829
107582
,03548
,00184
1,76
14667.
12733.
74231,
74231 ,
74231,
63953,
63953,
32757.
31950,
324821
17168.
2134.
TOTAL ET
PfcR ACRE
(FT/MO)
0,03644
0,07651
0 • 1 4 2 1 4
0,20617
0, 2*277
0.52776
0,49437
0,36443
0.22327
0,18859
0.16697
0,06968
2.78
ET (FT/YR) BASED Of' ENTIFE VALLKY ACREAGE a 1.31
ET (FT/YR) BASED ON YEAP-IY CROPPED ACREAGE = 1.76
F.T (FT/YR) 8ASED ON MONTHLY CROPPED ACREAGE « 2,78
SOME AREAS PRODUCE MULTIPLF YEAHLY CROPS
(Continued)
-------
TABLE A6. BLANEY-CRIDDLE CONSUMPTIVE USE FOR 79558. CROPPED ACRES IN 1976
oo
10
MONTH
JAN
PEB
MAR
APR
HAY
.TUN
JUL
AUG
SEP
OCT
NOV
DEC
NODE 1
(AC-KT/MO)
132.9
165.6
4261.9
4761,6
8123.4
12210.4
10937,8
6008,1
2783.7
1847.8
541,2
76,9
NODE 2
(AC-FT/MO)
?20.5
274,7
7071,7
7900,9
13479,2
20760,6
9969^1
4619,0
3066,1
898.0
127,6
TOTAI FUK
VRLLEY
353.3
440.3
11333,6
12662,6
71602,6
32471,0
29f-86,8
15977^2
7402^7
4913.9
1439.2
204.6
TOTAL FOR TOTAL. CROpP^n TOTAL KT
VALLfcY
(FT /MO)
.00444
.00553
,14246
,15916
^40814
,36561
,20082
,09305
,QM76
.01809
.00257
ACRES
7193,
4925.
73406,
73406,
73406.
70401 ,
70401 1
29934,
2914?,
30410.
15108.
2268,
PE;R ACRP:
(FT/MO)
0,04912
0.08940
U, 15440
0,17250
0,29429
0,46123
0,41316
0,53375
0,2S402
0.16159
U, 09526
0.09019
TOTALSt
137887.7
1.73
2,77
ET
ET
ET
FT/YR) BASPD ON ENTIpE VALLEY ACREAGE = 1,27
FT/YRS BASED DN YEAPf.Y CRQPfKD ACREAGE = 1,73
FT/YR) BASED QN MONTHLY CROPPED ACREAGE a 2,77
SOME AREAS PROnuCF MOLTlPLF YEARLY CROPS
-------
TABLE A-7. WELL NUMBERING SYSTEM, ELEVATIONS. LOCATIONS. AND THEISSEN WEIGHTING FACTORS.
oo
u>
WELL NO. ELEV LOCATION
Wl W2 WT
26 3928,52 225, 1 £.09. 241 0,03142 O.OQGOu 0,01 1<30
20 3926*59 22S*lE!09.333 0.07481 0.00000 0.02833
;
19 3921,84 22S.1E:16.431 0.07494 0.00000 0.02*3*
5 3904,81 22S.iEt33.341 0.03753 0.00000 0.01421
8 1908*,3S 22P IE 3b 343 0*.H945 oJOQOOO 0,04524
7 3908.21 22S,lE*35,434 0,15349 O.nOGOU 0,05813
6 3893,13 53S*iE!l6,211 0,03067 0,00000 0.01162
I 3894jl9 235I1EJ16I424 0^03741 0^00000 0,014»3
1 3880*79 23S*JE!27l334 0.03915 O.nOoOO 0.01417
3 |86l!36 24S;?EtOfl|434 0*24RR9 0*01B09 0,10548
4 3860,40 24S;jE!09,433 0,04214 0,0025b 0,01757
0 38^9.85 24S.9E!23.133 0.03317 O.OOB13 0.01761
9 3847:08 24S:9E!23:342 0^02456 0.01482 0.01851
8 38^9.00 ?4s:9E!28.
25 3833.74 25S;?E;01,
7 1845,47 25S.7C!04
6 3827*,05 25S!9E*23.
5 3819178 25S:9e!25:
24 3817:41 25S;U!20;
4 3812.76 25S:iF.:31.
27 3fli5:06 25S;iE!33;
21 3808.98 26S.3EI04.
,
i
\
j
3 3807,50 26S.3E 06.
2 3803*18 26S*|E;09,
3 381 .01 26S.SE.06.
[8 3804,95 26S,3E*15,
2 1793,08 26S,3E*22,
1 3791.35 26S*.3E*.22,
0 3792,96 26S,|E'22,
19 3788153 26S.lE!)l2.
1! mm !!«:»:«:
1 3769,70 27S.3E!28,
2 3771.68 27S.3E*32,
37 3753.92 2SS,3E*11,
36 3753,15 28S,|E*15,
35 3746,57 28S,3E*26,
33 3745.79 28S,§E*24,
34 3733,97 29S,4E*06,
THE ELEVATION IS IN FEET fBcVE
331 0.00000 0,04036 0,025,07
411 0,00000 0,05637 0.03626
114 0,00000 0.04362 0, 02710
212 0.00000 0,06506 0.04042
322 0,00000 0.04056 0,02521
321 ^.00000 0,03359 0.020R7
321 0.00000 0.02668 0,01657
121 0,00000 0,01360 0.00845
122 OJOOOOO 0.01269 0.007H9
211 0.00000 0,01968 0,01223
212 0,00000 0,01216 °«09I56
211 y'oooOO 0,05282 0«0?2P2
12 OJOOOOO 0;01991 0,01237
; 44 0.00000 0,02690 0.01672
•43 0.00000 0,00988 0.00614
J 12 Q. 00000 0,01064 0, 006M
' 41 OJOOOOO 0*08513 0,05288
! 12 0,00000 0,03618 0,022'ln
. 44 OJOOOOO 0,07689 S«8i9,22
: 14 0,00000 0,06b2» 0,04056
1 5l 0,00000 0,01778 0,01105
3il 0*00000 0,04385 0.02725
222 0,00000 0,05434 0,03376
244 0*00000 0^2440 O^HJS
223 0,00000 0.0253d 0,01577
243 0,00000 0,03861 0.02399
MEAN SEA LEVEL (USCfcG DATUM).
THE LOCATION IS GIVEN USlrG THE USGS SYSTEM.
Wl IS THE THEISSEN POLYGON WEIGHT KACTOR FOR NODE 1
W2 IS THE THEISSEN POLYGOr WEIGHT FACTOR FOR NODE 2 „, „,.,., m „...«,„
WT IS THE THEISSEN POLYCOM WEIGHT FACTOR FOR THE ENTIRE MESILLA VALLEY
USE THESE FACTORS TO CALClfLATE AVERAGE 4ATER LEVELS,
-------
TABLE A3.
05BR
WBU, N0
JAN
rCB
00
MAP
39J9.12
39 9;S9
39l5:54
3897:91
J8S1.._
\l\\\ll
3«if:30
3S?sl9i
APR
3882
MA*
3827,54
3887.45
3791.00
JUN
.JUL
AUG
SEP
net
3920,42
392i:39
3916:34
3898:Sl
3898:sl
3898,91
3885:53
3882:39
ii5i:i
Mill*
\lfr.lt
I82«:64
!2?I^Z
*i\i-.n
!iol:U
IK22S
isoijfeo
I798:08
1803:81
I798J75
)7B8|78
nR7:85
BRJ56
>7"2.93
782.34
774.14
1760,70
764:j8
748:62
740:48
l*i. n
739J59
1730147
3921.32
392U39
3917.04
3898.91
3849.25
3899:41
3805:43
3882:99
3876^9
3855^6
3853.40
3842.95
3839.38
3841,00
3828:64
|835:87
3820:05
3811J48
3812.91
3805^6
3808.06
3802. 3D
3803.40
379§:38
3804.11
3798^5
3789«3«
3787^95
3787.56
3783.73
?7752:|44
3J?!i:?g
IM'.tt
374U87
3739^9
3730J77
3922,12
3922.19
3916.94
3899:41
3899.75
3900.11
3885.53
38R2.79
3876.49
3856.26
3853^0
3843.65
3839.39
3841,60
3829184
3836,17
3820.25
3812.18
ssuhi
3807:26
3808.46
3802.88
3802.90
379H.4H
3804.21
3798^5
3789:38
37B8.15
3787.66
3784.03
3782:64
3775^4
3761,50
376S:3R
3748:92
3749:25
3741.97
3739.39
3730.37
3922.92
3922^9
3916^4
3899.31
3900.05
39U0.21
38*5.53
3882,89
3876,19
3856.36
3854.21
3843.95
3839.48
3841.40
3829.74
3836,17
3820.55
3811. 9fl
3813.21
3807.36
3808.66
3803.18
3802.80
3798, 7S
3804,31
3799:85
3789,84
378H:55
3787.56
3783.93
3782174
377»:S4
3761,20
376S:4B
3749.02
3749;if
3741^7
3738.89
3730.27
39"!2.12
3921.69
3915.54
38-38:51
389^:95
3«99:7l
3H05.63
3M82.49
3^75.09
3rib5.bt>
3853,30
3843^5
3839. 4H
3841. 20
38?»:34
3836.07
3*19.85
3810.9(9
3)112.81
3806.66
3808,26
3b02!78
3801.70
3797. 3fe
3803.81
3799j2b
37R8:4«
37»«:o5
3797,36
37fl3.03
3782. b4
J774I54
3/60. 1U
3764.78
374il.52
3747;?5
37*0.77
373B.09
3729.47
3921.32
3920.49
3414.94
3S98,bl
3»98.3b
3898,41
3»R5,63
3)iti2.09
,^74.79
3»54,bh
385.2.00
3«42.7b
3b39,4H
3S39.90
3826.94
3H15.17
3«iy,25
J8I0.4H
3«tl,71
3U(ih,16
380b,b»»
3«01.7«
3nno,bo
370b, bh
3603.41
3?97.35
37R7.3B
3786.35
37B7J46
3/81.93
3781.34
3773.24
3/59.80
37*4. IB
3/48.C2
3746. 9b
3M0.27
3/37J59
3/28,87
39?0,02
3919.99
39)4.44
3(>9S.01
38<»B.3b
3B97.71
36Bs.fc3
3h«1.89
3f74.7«*
3b'i3,8b
3652.20
3P42.45
3H39.4M
3W3V.»0
3S26.44
9M14.H7
JHI(,,B5
JB10.1U
3bl 1 .SI
3H'ib.Hr
3Bitb.lt)
360l.il.
3Mno,3ii
379(,:i«
3hC3.il
3707.15
37Pt..9S
37S6.yb
3787. 2t
3781.73
37*1,14
3772.64
37S9.80
37f>3.7H
3717.92
3746.75
3740.57
3737. b9
372H.67
3828.01
3888.01
3791.42
3828.37
3888.52
3791.69
382R.42
3888.60
3791,73
3827.68
3887.93
3790.94
3a26fes
3887.18
3790.06
382*. 53
38P6./5
3789.80
i EC
— -A- , -.
3>H.<2
3*19.4*
3*14.04
3>>97.71
3"9H.lb
3<<*7.u
l»dS.b3
3-Hl.<>9
3« M.<>9
3«S3,4t>
301. 9o
3-n.9b
3" 49.3«
3<3H.90
3-«. ')•*
3 -J4.»7
J"i3.iS
3»<>9.*f
3*11. 21
3*OS.46
3-MM.96
3-itl .ft*
3/99.30
3VJS.7H
3"U3.Z1
i'ye.^b
J'Hb.bS
jV8b.75
3V*7.lb
3 «1.43
3 hi. 04.
3'V2.14
S/b^SO
3>*>3.1rt
3 '47.92
3M&.3S
3MU.37
3'37.19
.H23.b7
3*«b.38
37«
-------
TABLE A6. (CONTINUED)
MESIULA VALLEY WATER LEVCl S FOP 1947. ALL UNITS ARE IN FEFT AbOVE MKAN SEA I.t.^fc',,
INFORMATION SOTiRfEl H0080N(1971)
WELL MO.
JAN
FEB
VAp
APR
MA*
JU"
.JUI,
AUC.
3BP
OCT
tiOV
UfcC
00
Ul
VALLEY
MCArt...
NODE 1
MEAN...
NODE 2
MEAN,,,
3919.42
3919*,29
I?!,3:??
3898.05
3897*,01
3885,43
3881.59
3874.49
lo1!?:!*
iKi:SZ
3838)60
3825.34
3834:27
..759.10
3763,18
3747182
3746)35
3740.27
1737139
728)47
j
3825.96
3886.13
3789.26
ipj:jf
•897*75
3896.81
3865.43
38RI.39
3874.59
3852,66
3851,60
384ll6->
3839.38
3838.60
3825.44
3834.37
3818,15
3810.08
3811.0)
3805*36
3404,86
3801,08
3799,00
3795j4P
3803,11
3796,85
3786,30
37R5.65
3786,9*,
3781 *,03
3781*14
377ljB4
3759,40
3762,9R
3747,82
3746)25
3740.47
3737*. 29
3728*37
3825,89
3885,95
3789,27
)7P6^66
K"»IS?
3882.29
3§7b.69
3853.76
3852.60
3842.55
3039.28
384y.5o
3827.34
3835*37
3819,05
3811.38
3812.4]
3806.26
380^,18
3801,So
3797.08
3803.91
3798)4$
3788)48
3787)05
37*6.96
3782.93
3782.44
1774114
JO '? I
3854,OB
3R53llO
3842.55
3839.28
3841,30
382B)t4
3819)25
3811.49
3812,61
380h)8*S
3807, 6**
3801,«8
3787,05
3787,36
3783)23
3782)64
3774,44
3760,90
3764.08
3748,62
3748.15
3741,37
3738,89
3730.27
3920.82
392U79
3916.04
3898.71
3898.85
3898.41
3865.33
3881.99
3876.09
3855.26
3853.40
3842.65
3839.20
3841.80
3828.84
3836.17
3808.66
3802.08
3801.50
3796,9R
3804,21
3798.35
3788)38
3786.9S
3786,98
3783)63
3782.64
3775)l4
37bl.OO
3764,20
374«)82
3748,75
3741.87
3738)99
3827.»t
3887.71
3921.92
3921,79
391ft, 74
3900.05
3899.SI
36*").43
3HH1.89
387(,,09
.
3843. 3S
3840. 2W
3830.14
J«3t>,57
3730,17 3730
3802,7R
37^8)48
3804.41
379ft.-W:\l
3802.'/»
379H)i)'<
37H9.0W
37H7.75
3775)74
37n1 ,10
37SO*42
3749.71
374|.h7
373o|l7
3921. U2
39^0.09
1914.84
I!j09.0b
3H98.91
3 M 4 u. 3 »
3M29I44
3H?iu5S
'» c 1. ft a
~l).5K
37«]
374B.HS
3 71< b . S H
37«7.bS
i / fc a. 3 6
»71) 3, (> 3
UK*.24
17 <• U ! (> 0
3 ? 4 H * 9 '1
3740,77
17 »B,19
3921.32
3919,29
3914 24
3697,91
3b98.45
3898.21
3874.49
3H55.16
3bi2.70
3842.75
3H40.2R
3H40.80
3b?b,44
3H19*6S
3810,78
-
JK00.26
.2
.5«>
3U01 ,b8
J799.40
3(303.51
3797.05
3787.18
3?Sh4*
37A1.93
3773,54
3759.80
3764.H8
1748,22
3746,95
37*0.07
3737,49
3728.97
3919.62
39)8.89
3913.64
3897.81
3898.35
3697.71
3BB5.23
3880.69
3874.39
3854.46
3852.50
3842.35
3840,IV
3839.50
3825.54
3834.67
3818,9b
3U10.3M
3811,11
3805,8b
3804,96
3H01.38
3706,90
3795,Hi
3803.31
. 9b
.
3796.
37R0.94
375«IttU
3746*12
3746,65
374&.07
3737ji?
3*19.
HHii
.34
)71
31*98,35
3ob5l23
3MK0.39
3d74.39
3«53.76
3*62.20
344o)l8
3438,90
3^25.44
JBlljsS
3810.18
3011.01
3*05.76
3004.76
3«01, 18
98,
*
3798
3«03.2t
3796,85
37H5;»b 37bbl75
3'K1.33
3/«0,94
3759)50
3/b3.28
374H.02
3746,45
3/4u,07
3737)39
3/28.67
3791.77
(Continued)
-------
TABLE A8. (CONTINUED)
NESIUiA VAtLEIT HATER LCVClS FOR 1948. AU, UNIT* ARK IK FEET ABOVE MEAN SE* LEVEL,
IHrORBATIOM 301'RrEl HUDSON(1971)
KELL HO.
JAN
FEB
MAR
AI>H
JUN
JUL
StP
HCT
oo
aas.
NODE 1
«»»,..
•OPE 2
MEAD...
ffll:ii
IS*?:*?
3(98:35
ini-.n
I52?I»I
38POI1
3874^19
3852*. 1*.
3851I4Q
841 6S
KU:H
38A0.
1919.22
3913;74 3914;04
3893:61 38§8;jl
3898^5 3898?35
3897,bl -
3885.03
---?:7?
3897,91
3885.03
3881.09
3875.19
853. S*
852.40
3842^35
3840.19
3839,30
828
834
,30
.44
,87
U*:U
807.86
3802.08
3802,30
3797.18
3804.11
3788.08
1787105
3760.80
3763.68
3748J7S
3741.97
3919.62
3920.49
3914^4
3898.41
3808.3S
3890.01
3885.03
387^69
3854.3*
3852.70
3840:18
3839.70
3828.94
3835.17
3813.21
3806.3*
3808.16
3802.IB
3802.70
3797.«P
3803.31
3798J95
3788:0fi
3787.15
3782.14
3774.74
3761.10
3763.80
3749,42
3749:15
----?:i7
3742.
J739.39
3729.
97
3920.22
39ll:24
3808.81
3*99.35
3899.01
3885,03
3876,19
J85S.9f,
3853.30
3840.30
3829.94
3835^47
3H13.ll
3806,56
J802.6«
3803,20
3797,8P
3798,75
3789,28
3788,05
37S3.54
3775,94
3761.50
3764,9H
3750,32
3750.05
3742.37
9.97
J73
37?
1921.02
3915:74
3899,01
3899,95
3899.61
33*5.03
3»75:3<»
3854:40
3X40,30
3813.11
1806, 6*
3802.8B
3803.00
379B.OR
379«:05
3789.18
33??i:r«
mi:iS
!?54§:il
3741,97
B«:B
1920.92
392U59
391S.34
3H6,sS
3307.26
3802,4H
3HOJ.30
3J9J.3S
3798,5b
3788.46
17B7.15
37*2,04
377b:34
3760.90
3764.88
1749.22
3748.65
3740.97
373V.69
3729,57
3b9H,21
3B7429
3B-S*.B«
3H52I70
3840.28
3a«dl20
3877^14
3t*J2i01
37S748
3781.24
3774.74
3760.20
1764.1R
3748.72
3747.35
3740.47
r ov
3920.22 1919. 62
392«:49 39 l«',l*
3914,64 3!*is!l4
:?!
3H42
3B11 71
3BOfc!ofc
371*1.04
3774.04
3760, IP
-1763:-/H
3748.S2
3746.95
3740.31
372897 372»
»9
Ir/
SOllJsi
3B97:7l
3??».35
3»4 29
3"bl!6b
39b2 oo
3«4J 35
3s4o!l«
3»-3fi!5o
3t04,7h
3fOS.lt
3t Ou|oO
379S:5B
3/H1.H4
37/2^4
3M6.75
3MOJ37
3737J39
(Continued)
-------
TABLE A6. (CONTINUED)
ME6ILLA VALLEY WATER LEVEfS FOR 1949. ALL UNITS ARE IN FEET ABOVE *KAN SEA LfcVET,,
INFORMATION SOl'RcEl HUDSON(1971)
USBR
HELL »0,
JAN
VAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
OO
VALLEY
HUH...
3898.35
3898.i
>.19
3854,56
3852.90
3842,85
3839,98
3839 SO
3828.54
3835*57
3818,95
ami
3805.86
3807.66
3801.98
782,03
761.94
773;l4
760.39
3763,78
i^§:Si
.?«:»
3J?332:I?
3(25.90 1(25,87 3826.18 3827.01 3827.28
3919.92 3920.62
•- 3921.49
3916.14
3899.Si
3898.65 3900.25
3898;81
3884*ll
3875*,9<>
3854.96
3853.10
3842,95
3839.90
3839150
3828.64
38)5137
3819135
3900^65
3899J91
3885,33
38A2.09
3875.79
3856.66
3854.60
3844,05
3840,08
3839,40
3829.14
3835,37
3820.05
^8H;$?
3806.3*
3808,6h
3803,38
3803,40
3797.5«
3803,41
3798155
3789.58
37«9 25
3787.56
3782.63
3783.54
3774J44
3760.90
37S4.78
3748,72
3749115
374i;77
3739.99
3730^07
3828.06 3828.11
3921,82 3921,32
3921.19 3920.89
3916*64 39JS.74
3899.61 3900.31
SODE 1
EAN,,. 3889,11 3185.88 38*5,99 3886,90 3887.26 3887.46 3888.38 3888.57
NOPE 2
ME AM... 3789.32 3789.27 3799.70 3790.50 3790.70 3790.83 3791.28 3791.25
3899.35
3U99.31
3885.53
3881,8$
3874, B9
385b.66
3854.90
3843,65
3840.18
3839, Ou
382U.54
383b.27
3bl9.6S
3811.38
3tll^21
3D06.2f>
3807.86
3b03.08
3802. OP
3?97.1b
3/P8.88
3787.65
3786.96
3JH2.13
3783,04
3/74.34
3760.80
9764.38
3748.32
3747 75
3741.27
3738,79
3729,77
3827.63
3888,00
3790.80
3920,32
3920.09
3914.94
3898,51
3898.51
38S5.33
3H81.29
1SZ2-29
.
3852,90
3043.25
3038.10
1826.94
3b35.07
3019.05
3810.48
3012,01
3005. 86
3006.16
3801.78
3BOC.30
3796J2B
3603.21
3797. 4b
.1787,98
,
3780^93
3782.14
3774.24
3760. 70
.911
^82
*75
3740*.37
3737,49
3728,97
3763.
3747^
3746*
*
3026.87
3087.24
3790.06
3*19.72
3919. b9
3914.44
3H9S.41
3*9b.3b
3W97.91
3874.29
3854. 20
3HS2.50
3843.05
3840.16
3H38.00
3826, b4
3834,67
3818. bb
3blo, IB
3(*05,bb
3bU1.28
3799.70
3795.8*.
37P6.0b
378H.7J
37F1.34
3774. u4
3746.45
3739.87
3737.J9
3720.77
3826.52
3886.82
3789.75
3^19,22
3^19, 19
3V14.04
3^98,11
3«9Q,ib
3«97. 51
3PK0.69
- . 9
b6
3»427b
3" II, 41
J"05.4b
3-05.36
3>>oi,2b
3/99*00
3"03.21
3V9h,9S
3787.08
J'Bh.Ob
3/85.86
3/80.73
3/B1.34
377J.44
3700,50
3'bJ.Oti
3/4f:b2
3/46,45
3739,77
i'37,29
3V2B.57
3826.25
3086.40
3789.51
(Continued)
-------
TABLE A8. (CONTINUED)
00
00
ME8ILLA VALLEY WATER LEVELS FOR 1950, ALL UNITS ARE I«i FCKT AbOVE MEAN SEA
INFORMATION SOURCEI HUD»ONfl971)
JAN
FEB
MAP
APR
MAY
JUN
JUL
Ml';
SEP
l!K:ti
IHfctt
1899,35
1899:21
til!:ii
«H-M
3420.42
3920.99
3915.44
3899:21
3899.75
3899.51
.13
1.99
3875.49
3855^6
1852.80
3844,25
3839.98
3839.70
3829.04
835 67
819175
3760,70
3763J7P
748 32
747:75
74lj77
737179
729J57
3827.60
3887,86
3790.84
3920,52
3915J74
3899J41
3899:81
3885,13
3882,09
3875.4"
3856,76
3853.60
3844.45
3839.98
3839.50
3829.24
3835 47
3819.95
3811.78
3921.1?
3922.29
3915.84
3899.51
3900.75
3900,11
3885,13
3882.29
3875.69
3856.46
3853.HO
3844. 45
3840.08
3839.10
3829.64
3835,57
3820.35
3812 IB
3813.3}
3805126
3808,56
J803.08 3802.58
3782.24
3773J94
3760.50
3764138
37P9J8
3786,95
3787.06
-M
-y r ^ » • ^*/
3742137
3737J59
3729177
3920.72
3920, 90
3S1b.24
3899,11
4874,99
3Hbb,ab
3BS2.90
3826.34
383b.27
?«?0,05
3812,08
3B12.41
3805ll£
3807.16
38U2.28
.1800. OU
3796.68
3803.21
3797J25
37P7.76
3786,45
3786.96
37*1,73
3781,44
3774,14
3760.40
3764.08
3748,32
3747.65
3740,57
3737,29
3729.67
OCT
U74.29
Jb54.76
3H43.35
3b40.1V
3838,10
3876.64
3834:67
3H19.25
3811.28
3811.11
3805. 1»>
3806. lb
3801,56
3798.90
3795, 88
3803.21
3796175
3786.98
3785,85
3785.96
.93
.84
3747.82
3746.65
3739,87
377394
3759190
3763^8
373729
3729.37
f'OV
3920,12
3920.39
3914.24
3H98.61
?B98.4b
3H98.71
3b»1.49 3880
3919,52
3919.29
3914,04
3898.21
J5«:«
3885.23
3b74.29
3854^6
3852^0
3843.05
3840.06
3837,70
3875 84
3834.27
3B18.75
3810.78
3810.51
3804*66
3801.Ob
3786.48
3784.85
3785,86
3780173
3780. 54
3773164
3759.60
3763,08
3747:72
3746.35
3739,47
373/J29
3728,97
l>tC
3^19.12
3*18189
3913.74
3o9?:ai
3*98.35
3b97j81
3<*65 23
3Bb5 69
3b74,29
3H52.40
3B42.95
3b40,08
3«37,40
3*25,44
3»10,28
3»10 31
.
3aul,Q8
3798 70
3795,Od
3*03,21
3/90 45
3'86,28
3'{b5,8b
3'b5,86
3/80.73
3'bO,44
3(73 34
3?59,60
3762.98
3J46.72
3746J35
3739,67
3737J29
(Continued)
-------
TABLE A8. (CONTINUED;
MELLBHO,
oo
VALtE* MATER LEVELS FOR 1951, ALL UNITS ARE
INFORMATION SOnPfEl HUDSON (1971)
IN FEET ABOVE MEAN SEA
JAM
TEB
APR
JO J1•^ I
3818,45
3810,48
3811.21
05.16
m
&:»
^ 6:§6
ip
"BIB
- 46.49
m
MAX
5884,
N^*
ilii3:^
\lll:\l
\IIMI
3810.91
3805106
3805.26
llllli
3797.95
5784158
3785195
6^76
3740,07
3737I39
3729,07
JU*
JUL
AUG
SEP
OCT
M1V
918,0
,94
I?'
38
3898.65
3897,21
3884.93
HH:??
}i!!:H
3839^38
!!!i:H
Hftli
}?«:»
3728,87
3918,32
3919:59
3913,94
3898.01
3898.6b
3997.21
3894:73
3879.09
3875.29
3852.96
3852.20
3841,95
3839,78
3838.70
3826.84
3834.77
3818.55
3809.78
3811.11
3005,26
3806,86
3801.28
3799.90
3796.08
3803.31
3797.65
3787,08
786.15
786.46
0.10
0,68
376
3748.62
3746.4?
3741.17
3737,49
3729.17
3918.62
3920.69
3914.04
3897.91
J898.65
3897.21
3884.83
3080.49
3875.49
3852.86
3851.60
3839:78
3S39.10
3625.44
3S34.77
m«.45
3811.80
3810.71
3805,16
38Q7.76
3801.78
._-' r " fj fl » -J
r w t w JroO^Jo
2?ot|3 37S0.63
3781,24
3772164
3760.10
.
3741,07
3737,49
3729,17
1825.90 3825.84 3875.93 3826,32 3825,99 3826,19 3826.24 3826,29
"",!. 3886.17 3886.11 3M6.03 3886.52 3886.15 3886.15 3886.22 3886.33
SE>N.?. 3789.14 3789.08 37*9.29 3789.61 3789.31 3789.62 3789.66 3789.67
3918.32
3919.69
3913.54
3897.81
3898,65
3897,31
38fi4.83
3880.69
3874.69
3051.60
3841.8b
3819.66
3838.50
3825.54
3834.57
3B09.78
3810,91
3805,16
3805,66
3801.28
3799.20
3795.48
3803.31
3796.95
3783.5*
3785,95
3786.16
3780.43
3780.64
3772.64
3759.70
3761.08
*,^,.,s 3747,72
3746.45 3746.45
3739.87
3737.39
3729.17
3d26,01
3886.29
3789,25
\l\\\H
3U9«.5b
3897,21
3884.73
3U80.39
3874.49
3052.56
3851/30
3041,85
3H39.4R
3825^4
3B34.47
3818.bb
3809,7«
381".21
3bnS.lt>
3b04.26
JdOl.28
3799.20
3/94J78
3003.31
3796.bb
37PS.4B
37B6.05
3786.06
3780.23
37B0.14
3772,64
3759.50
3761,68
3741 32
3746155
373V.57
3737.59
3728.87
3K85.9S
3789,14
3918.32
3919^09
3913.54
3897.61
3897.21
3884.73
38B0.29
.1874.49
3B52.56
385!.20
3841.85
3839.38
3837.60
3875.44
3034.47
3«lH,4b
3809,66
3BJ0.01
38()b,o6
3803.90
37"4:5P
3003,31
3796.35
3785.3«
37P5.95
3796.06
3780.03
3779.94
3772154
37b9.30
3761,bb
3747,22
3746J45
3739.47
37J7.49
3728.67
3885.98
3789.01
UEC
3*17.32
3^18:59
3V13.34
3H96.11
3-96J31
3*83.e3
3hD0.19
3^72.79
3*bl.5&
3ebl,60
3437^8
3W37.bO
3*33.07
3>>UO.5»
3796.40
'
.
3'bb.38
3'»4,6b
3'79,84
3769.94
3VS9.30
3761,7*
374bj5b
3J39.47
3'J6.29
3'V8,47
3825.83 3825,75 3o24,77
3788,04
(Continued)
-------
•JTA1H.E AB. CONTINUED ^
VO
O
MESILLA VALLEY
USSR
WELL NU.
LEY HATER LEVELS FOR 1952. ALL U
INFORMATION SOTJRrEl HUDSON(1971)
ALL UNITS ABE IM FEET ABOVE MEA» SEA LEVEl.
JAN
res
J'AP
APR
WAV
JUN
JUL
»UG
5BP
OCT
NOV
3916.62
m?i«
:837.1
838.60
819)24
834)17
i8io;4i
3803.96
3804.56
3800.68
3794,90
3793,98
37RS.46
3778J93
3780.34
3770.54
3759.70
3760.78
3916.62
^59
3795.96
3778)93
3780.24
3771)34
3759.90
3760.68
3747)62
3745.45
37*0,97
3737)69
3728)57
KiS:!i
tiU:!i
\in\i\
388U63
38»<1.39
385o)46
3852.00
3840.95
3837.08
3839.00
3834^7
3817.35
3809.08
3811.71
"04.16
06.06
01.08
3785)96
3779)23
378l)?4
377234
3759)«0
37bt)lR
374B)l2
3746.25
374l))7
3737)19
3728)87
3916.82
3919)4<>
3913.04
3897.11
389S.2*
3*95.01
3883.03
3MR0.04
3ft5l)36
3851.90
3841.25
3837.OP
3839.10
377
378ll4
3772)94
3759)90
3760)88
3748)52
3747)ll
374l)l7
373^)59
3729)o7
MEA&". 3824.69 3824.59 3853.87 3824.33 3824.34 3824.56 3824.69 3825.17
HEAN.i. 3884.75 3884.67 3883.75 3884.09 3884.04 3884.16 3884.23 3884.82
MEAN.?. 1788.07 3787.98 "»'.?JL 37_!lt!0. .. 3787.93 3788.22 3798.39 3788.80
3917.32
3919.29
^yU««4
3U97.31
3H<»6,4S
3834.87
3818.25
3809.78
3611.31
3804.76
3805.66
iS0,**3,"
37Hoo3
37
37
375
3761.68
3745)52
3746.75
374^97
373b)99
3728)97
3825.45
3885,11
3789,07
3916.82
3919.09
3913.34
3896,91
3895.195
3M9S.
3680.29
3873.79
3851.06
3851.60
3841)35
3B3b.9«
3838.10
3821.84
3834.27
3817)75
3809,68
3810.91
3004.76
3804.56
l§2sf?8
:
3785)46
3779^3
3780.34
3770.84
3759.40
3761.68
374?)92
3746 25
3/39.47
3736.59
3728.77
3824.97
3884.83
3788.45
3916.72
3916.99
3913.14
llll'.X
l?°3)53l
3850 bb
3851.4U
3841.15
3«3f-.9ft
383H.UO
3823.64
3b33,77
3817. bb
3809.7H
3810.71
3H<.<4.b(>
3b04, l«i
3800,Vb
-
-.
3785. 2*>
3779.43
37H0.04
3770.5*
3759.50
88
72
95
3739.47
3736.49
5728.57
3761.88
3747.72
3745.95
3884.53
3788.44
DEC
3916.52
39l8;t>9
3912.94
3895,45) 3«V5.25
3b95.01
3883)63
3X80.49
3«bo)jb
3«bl,3o
3«3b)78
3H.J7.90
3"Jj)47
3ul7,45
Jii/9.68
3«in,51
i v 0 4 . 7 h
31-03.96
3*)00,b8
3'»4.8t>
3779.13
3779, §4
5'"'g)4*
3.59.20
3/bj.88
3747,72
3'45)75
3739.47
3736.49
3727.87
3824.84 3b24.70
3884.35
3788.32
(Continued)
-------
TABLE A6. ICOSTIOTJED)
USSR
NELL NO,
MESILLA VALLEY WATER LEVELS FOR 195J, ALL UNITS ARE
INFORMATION SOURCE I HUDSON(1971)
IV FEET ABOVE MEAN SEA LEVEL.
JAN
FEB
VAP
APR
3894.41
3882.43
5879;49
'874,49
850.46
850,90
65
.78
HEAll", 3824.72 3824.50 38J4.65 3825.01 3824.59
HEAN.j, 3884,68 3884.45 38(13.99 3884.50 3883.95
JON
3916,02
HH:«
3896.71
3894.15
3??4:31
1540185
3837.28
1838:30
SoJjie
804,86
372
JUL
AU«
3915.92
l! 29
3916.02
391§:6<»
1111:11
3850o
3840.45
382574
38,15:17
3816
17
:75
3804i6
3805:26
iiii-
3851150
3840^5
3835:88
3838140
3823:44
383S:07
3816J65
3808;«8
3810;«1
3804. Ofc
3806:7*.
Hi
i!i
3785:4!.
378bUf
l?l?-,443
l?a:4S
SEP
3916.12
3918.99
3912.04
382J.74
3834,87
3816,45
3H09.38
3811,61
3«n4,5b
SBOb.lb
i!8i !
iK2; i
3785.95
37Hb,46
m-M
4
OCT
3*15.52
39IH.59
J912.M
_ woy
3915,32
3917.79
3911.94
"Sb.Sl
3S50.60
?d40.45
3837. 1H
|f5?,30
3640,35
3837. 1«
3823.74
3834.17
3815.75
3809,58
3810.51
3§?3.94
3833. «/
3B15.05
3SD9.48
3804.56 ig1'^*^6
J8o4,b6 3805. It,
,
ffl&
ilisi
3785.35
3785. 4h
3«o':5j
;»:$.
Ii3:!
i giti
37B5.35
! «:«
7
i77l 5?
3*15,32
3viija*
:
j.
3b40,S5
3"J7.0H
3«33,17
^^J-'S
3<.W9,$H
JriI2'?i
fu?«4?
»o03.7b
ISSi S
:
i :
:
(Continued)
-------
TABLE Afi. (CONTINUED)
NJ
VALLEY WATER LEVELS TOR 1954, ALL UNITS ARE IN FEET ABOVE MEAN SEA LEVEL.
INFORMATION SODRcEl HUDSON(1971) '
JAN
I!
«»?!.
NODE 1
MEAN...
NODE 2
MEAN...
FEB
MAR
APR
MA*
JUN
JUL
^u
B«:8?
AUG
1912.62
3824,33 3823.96 38?3.33 3823.31 3823.14 3822.79 3822.20 3822.20
3883,45 3883,15 3802,68 3882,47 3882.18 3881.82 3880,95 3880.70
3J78i,27 3787,86 3787.14 3787,23 3787,13 3786^10 3186,39 3786,53
SEP
3912.32
3915)55
3908,84
3894.41
389U.1S
3890,01
3«7»)l3
3077.89
3872.79
3846.8b
3847.70
3838.25
3834."
OCT
ill
J8»991
iiljill
3*47. 6fc
3847.40
3B39 35
3835)38
«
ill
3b9o)ol
!Hj:«
3B47)b«>
3847 3u
3836 45
3883:25
liils
IB
3822,44 3822.3*
3881.28 3B81.2&
3786.55 3786,48
DEC
3/12.12
3*lS,by
3909)24
3-S4.11
3*9i>.2b
3"47.1C)
3^38.45
37bt:94
3/bb,6U
3/bH.hh
J7*b.92
3/43.35
3738.67
3/36,49
3/27)47
3t.22.40
3M81.0K
37H6.62
(Continued)
-------
TABLE AS. (CONTINUED)
VD
U>
MESILLA VALLEY WATE* LEVEtS FOR 1955,, ALL UNITS ARC IN KECT »bOVE MEAN SEA
INFORMATION SOI'RcEf HUDSONC1971)
vSBR
BELL. »0,
_JAM
"SIM*
HH:K
389g065
9889,8
mil
Will
3»46090
3838,*5
3833,48
$636,20
Ji!i!ll
3809J9J
3802,86
3R03,3-6
|792°7§
3001,31
3796033
3783.38
378«o33
3784^6
3778,73
S77?:|4
04?
FES
3893^1
3890,65
Mf?!7l
935.38
. 136,80
3818,64
3831.17
3|09,9l
3803^36
3800,48
3795,00
380],°of
3796,25
3783,38
3784,|5
««:«
mill
8K:?°
lU-'l
"
BPO 5$
87*;29
J?71 S?
38.61,96
"Mill
APR
391
391
ttft:?i
i9??»i5
HAY
JUN-,
JUL
3838,35
3833,08
3836,40
3817,44
3831,47
381^,35
3S05°88
3809,11
3801,66
3803,76
3791°lo
3799^71
3796°35
3783,58
3783,75
3786,76
3776,83
3779*34
376509fl
373«,90
Slfl.'la
3911,02
3,29
3837J55
3833,98
3»35050
38 IS,14
3830,87;
3813,95
3799,31
3796,05
3782,18
3783,55
3786,56
3776J03
3779,54
3765,14.
3754,60
smi
iiii&
3727^07
*2?9o«i 3909,82
m*:|3
HIM
mii\
3877,29
3872.39
3845^10
3837,05
3831,OB
3834,70
3815,04
3830,*7
3813,45
3808^71
3BOl!<>6
379^78
3790,30
37.92, IP
3798,81
3795,95
37B1,7S
3783,45
3786,36
3775,33
3779.04
3765,14
3733.90
3756,58
3745,22
3741,35
3738,37
3735,59
3726,87
391U79
39(16.44
3893,31
3887,55
3856^91
3873019
3844,60
3836,65
3831,8H
3834.30
38t5,14
3830.77
3802,
3799,
379-
9fl
0
3809,01
3800,26
—|;!fi
379§;38
3798,61
3796.25
3781.8S
37R.1.65
3786,56
3775.2J
3779,24
3766,34
3756,40
3756,48
3745,0?
3740.95
'38,97
. J6.09
3727,67
I?
RUG
3909,32
3912.89
3906.74
3693,11
38H6.7J
3«77,o.l
3877,49
3H73119
3844i80
AS 30, 4 P
3815,7*
3829, ¥7
3812,95
3/99,9*.
3«02,3t
3799,«8
3790,50
37«7,2S
379h,3--,
37B6.86
3775.73
3779.54
3766.24
3752.PO
3755.9S
3744.92
3740^75
3339.17
3736 49
3727,97
VALLEY
MEAM,,,,
NODE 1
NODS 2
9833,33
3881,07
3796,86
3822,41
38BlgOO
3786,68
3871,36
38P0035
38210|8
3879,73
3793,49
3630,72
3784,93
3820,20
3878,70
3784,33
3820.17
JB7R.20
3819,92
3878,10
37P4.39
StP
39C9.12
39)2, 7<*
38*7.,»!>
?8»8.-M
3H7J,J9
1 b 4 6 ' 3 0
1S 3 2 ', * 8
JW33.-10
3-b 1 d . S 4
3B29.67
3912,7S
379V.I
^ / 9 I. B 0
3792.4h
3796JdS
37S6.76
3V75.73
3779.24
3V5b.7h
3744, Tl
3740.65
^739,07
3737,59
1777,37
3819,99
ocr
3939.02
3912.89
3907,24
_. J,OS
3BR6.91
3<*78. Hi
3872,79
1775.93
3766,04
J7S3.60
i7bfi.lH
37-15,02
3740.65
3754,60
3737.29
3726.97
3H7P.35
3D7D.64
37»4,7»
3913.49
3907,44
31)93.41
38«b.35
3B79.39
3872129
3k*46. jo
3b33,7fi
3834.10
3620,54
3H28.M7
3B12.55
.1803, Sit!
3836,55
3833.68
3o34,|0
3H19,!J4
" ~"'M
IB 19^71
3802l7f>
»79jjuli
3792,66
3795.7S 3795.75
3HUV,7h
38(12. Vb
r/°9.7«
ns*:??
37H6.76
377S.93
3753.to
3756,43
3740.95
3^7.77
3727.°J7
3b20,5b
3B7B.9H
37P4,94
UEC
3'J1 j.69
3*07,44
3"^3,11
3«H7,01
*B H 0 , 4 3
3*79,49
3*72.09
, 8«
,5U
3.0 a 1 . 0 4
3-*'28,67
3"12,95
3*09,71
3ti(/t , 16
3?02,96
J794ITO
3"' V -J t 7 I
37»5.7b
3 71* I, i u
''"•1,'65
3776.23
3_779^)«
3?56,7i<
373^57
ytnltii
3i*20.74
3VHS.J9
(Continued)
-------
BkE. A6. (CONTINUED).
MESILLA VALLEY WATER LEVELS FOR 1956. ALL UNITS APE IN FEET ABOVE MEAN SEA LEVEL,
INFORMATION SOURCE I HUDSON(1971)
USSR
NELL NO.
JAN
FEB
MAR
APR
\o
aw«.
,00. 1
2?
3820,77
MEAN,;, 3179,03
EA5,?, 3715.24
3*20,67 3819,66
3078,85 3877.26
3789.19 37M.84
HAY_
3909,12
3911)99
3906)24
3892)91
3887)0-
JUN
72
3819,98 3819.50
3177,75 3877,41
3784,78 3784,19
_ JUL
3908.22
3909.69
3905)64
3892.51
3885.65
3853,81
S^)!l
m-,^
\\m
I
)4B
3798)66
3802)46
3799)88
3789)50
3790.58
3797)31
3795,55
3778)98
3782)85
3785)96
3773.73
i???:!:
Will
i?JS:Ji
3734)17
H8:W
3818.40
3876,07
3783.24
AUQ
3907.72
3911.49
3905.04
3892.71
3885.45
3880,41
6,73
4|84
3872,09
3876,73
3874|84
3839.46
3841.90
3834)55
Str
UCT
3907.22
39C9.49
3905,04
3892,31
38»b.lS
3H83.51
3876,43
3876.69
3872.29
3839,86
3841.40
3834.25
3906.92
3910.79
3905.24
3892.01
3884.75
3083.81
3877,03
3876.79
3*71)69
3840,36
?8*1.?9
NOV
3907.12
3911 49
390S 24
3891 91
3885,35
3884,11
3876,23
3877)39
IK:."
»«:»
S;?2
3818,84
3828)77
3810.95
3800.6ft
3809,01
3798 26
3802,36
3799 58
3799)70
3790.01)
3797)11
3795)45
3778)78
3782)25
3786.36
3773)83
3778)34
3762,34
3750.30
3754)48
3744)52
3741 05
3739.37
3736)69
3727)07
3818.15
3875.44
3783.21
3819.04
3828.07
3810.55
3800.28
3808,91
3798.16
3801,66
3799.28
3789,80
3790.28
3707)11
379b)l5
3779,98
3782.15
37*5.96
3773.83
3778.14
3763)24
3750,00
3754.28
3744,22
3740)55
3738.57
3736,89
3726.47
3818.25
3875.85
3783.13
3818.94
3«27)57
3910.35
3800.78
3008.91
37«8.36
380l)66
3798.98
3790,40
3790)38
3797)41
3/95)05
3779)98
3781 95
3785.76
iiitili
m-Al
Ktt:!l
3738,07
3736,69
3726)37
3818.38
3876,09
3783,18
3819,04
3827,27
3810,25
3801.38
USM*
!JSl:H
mill
ixi'.n
HH:JI
3785)76
»H:H
3763.74
3750,90
3754)48
3743)82
374l)45
3737)67
I236.49
3726)67
3818.59
3876,39
3783,34
DEC
381 ..
3827127
3810,55
3b01,88
MM
j||W|
3'9j)58
MM
tiu:is
MM
3/77)84
3763,94
375l)40
3743.92
3741)85
3737|S7
3.
41)
37|
3736)49
3726,87
3818,74
3876.39
3783,97
(Continued)
-------
TABLE A8. (CONTINUED)
USSR
WELL NO.
MESILLA VALLEY HATER LEVEf.S FOR 1957. ALL UNITS ARE IN FEET ABOVE MEAN SEA LEVEL.
INFORMATION SOURCE! HUDSON(1971)
Cn
JAM
rca
APR
3891.61
ISi:i?
^i;
]1}^M
HX:tt
3829.58
im
3O£9mV f
3806175
380i;08
3807;91
3797.96
3801.46
3798,58
3789;50
379212^
j » -* m • *w
3796.31
3794:5$
J ' J 0 f ., ,
3736 29
3726^7
MAY
§•• r ^ « v
33.55
3829.08
— :io
85i;;
!27:5t
360S
3 OC
19 J
II i
07J71
98.3f
89 .'40
91.68
JUN
JW«3
JH1 Q • U J
3875.04
3871.99
$838.66
3839.20
*O t 1 •)•
3800;96
3798.08
3788.20
3794.08
K;M
lllii
?»
796,61
794J85
777,88
-78i;65
3785,06
3771,73
3777.94
3761.04
1,2i
:l
374
)74
,
...
3738.97
3736.79
J726 87
JUL
3
3
3905.92
1907.69
J903.14
3892.21
3883.95
3882.11
3875.53
3875^59
3872^49
3838,06
3838,80
l?23»93
3829
05
18
3827,77
3908.35
3799.28
3796166
3801.66
IZ'g.5?
3779;98
3781,65
378S 56
3771,63
3779^04
3763.14
3749,10
3753.48
3742^62
3742.45
3740.47
3737.49
3727.17
AUG
3905.92
3912.09
39*5.64
3893.01
3884.65
3883.11
3877.43
3877.69
3874.09
3838.16
3839,10
3833.35
3830.J«
3800.28
3808.91
3797.46
3802.56
3798.58
3/90.30
3792.88
3797:51
SEP
3906.62
3912.79
3906,44
3893.61
3885,85
3883 8'
3879 '
81
.03
,89
382
3833,1
3830.98
3836,10
3821,44
3828.37
3809.55
3&00.8B
3809,91
3797.96
3803.56
,88
3778t . .
3764.24
3750.80
""^3.78
.02
,15
3740.57
3737 89
3727.77
jrav.t
3753.7
im:\
OCT
HCAN.I. 3876.68 387ft.56 3875,57 3875.20 3875.09 3874.86 3874.48 3875.55
tt. 37t3.il 3713.90 37»3.10 ._ 3782.67 3782.44 3783,29 3782,45 3783,27
3876.44
3784,06
3906.92
3913.09
3906.74
3b93.71
3885.85
3884.21
3879.53
3879.19
3873,89
3840.66
NOV
3743. 4b
3739,67
3737,39
3727.17
3819,00 3819,01 3818,13 3817,72 3817.54 3817,36 3817.31 3818.22 3819.06 3819.34
3876. 90
3784.23
3907.42
3913 69
3907.04
3893.71
3H86.5S
3884.61
38M0.33
3879,S9
3873.49
3t)41.26
3840.20
3h34,4b
3B3J.6b
3836.00
3K21.H4
382(i.27
3810.6b
3602^38
3809^91
3799^26
3803.16
3799J18
3793.bu
3754 3D
3744,82
J'43.75
1877.33
37B4.M
OEC ,
3^07.92
391J.99
3i07.14
3S93.71
J»d6.15
3^84,81
3dbl,33
3*79,59
3073.19
3841.56
3o*U.40
38J1.68
3*35.4U
3021.94
3«2B,27
3bll.25
3t)02,9B
3*09,91
3799^6
3*03.10
3/99.38
3794.30
3793.SB
3/99.01
3/95.Ib
3't ez.lt>
3/B2.95
3786.06
3/76.03
3778.04
3'63.94
37bi;90
3/b4.9t»
3/45.12
3744.Ob
3/J8.57
3'J7:i9
3/26.67
3019.«1
3d77.46
3784.65
(Continued)
-------
TABLE A6. (CONTINUED)
VO
-SSILLA V*^5roSSIf;oNEs§^c"RHu?loA(t^"ir"S *RE " FEET *B°™ MEAN SE» LEVfit"
HELL NO.
VALLEY
MEM,,.
MODE 1
MEAN...
NODE 2
MEAN...
840,70
834,95
831,99
II 2
*!{:*!
'
FEB
H!S:H
HH:H
03,58
09.
00
.91
,56
3782 78
37§2 95
3786,*06
3776^3
3778^4
3764,54
'»!:«
*Ap
APR
3909,42
3915J49
3908J64
3819*99
3874^9
3841*96
3895,01
sseajij
3885 9l
3881.63
3880,79
3875.39
3842.76
3841.40
3836,25
3833,18
3840,00
3624 04
3B3U.07
3813 25
3804.68
3HU.Q1
3601 46
MAY
JUN
3910,02
msjjsi
3909J74
384b 51
3886^5
3886.31
3R82!33
3801,09
3875,59
3844,16
384i:&0
3835^5
3832. 7P
3840.80
3825.64
3831.87
3813. 8S
3805.68
381 1,41
3802:06
)80&:9«.
3801.28
3796,70
3795, 0«
3801, ut
3796^5
3784^8
3784^5
3787146
3779,53
3779,04
3767,04
3753^0
3755 78
3746.32
3746.15
3740,97
3738.49
3727,47
i
3890.05
3887,21
3881.49
3876,39
3845.46
3842.00
3836.0'.
3833,58
i84t:3o
3827^4
3833.37
3«15:75
3808.18
iloi:^
3807.56
3801.68
3799,00
3796:88
3768.06
3780^3
3779^4
3768^4
3754J20
3755^8
3747J02
3747ll5
3741.67
3739^9
3727157
3823.08
3880.37
3788.14
3911,82
391 lj94
389X21
3890.95
3887,41
3883^3
3882,09
3846.16
3843.20
3836,65
3833,98
3841 ,10
3828:84
3833,67
3817.15
3809,58
381 1 ,11
3803.76
380H.66
3802,SR
3799,80
3796,5R
3802.91
37R6|28
3785,55
3788^6
3782.33
377o|2«
3754.90
3756.38
3747,52
3747J95
3741.67
3739.09
3728.27
3823.82
3881,01
3788.95
AU<;
SEP
OCT
3913,32
3919,59
3913.44
3896.41
3891. 7S
36H8.R1
3884.0)
3882.09
3376,59
3R47.36
3844.40
J837.3S
JS40.50
3B79.64
'833. 87
381 7.8!)
3810. Ifl
1*13.71
1804.36
SIOH.Hf-
3803. IN
1799.90
379H.1H
3803.81
1799:7-)
3787. 2R
37H6.35
3790,01
.
3780J04
3771.54
3760.40
3756.68
3747. 8J
3748,7")
374^67
3739,09
3727^7
3824.80
3882.01
3789,91
3*13.92
JV2D.29
391 4.24
3896.81
-1H84.43
.
3338, Ob
38.lb.Hh
3H3K.HO
3n 10.08
1HOJ.7H
3709 i
37*at OH
1/H7.25
3790.06
l'»2.33
17PU.34
3757.48
3749,12
37«9, Ob
.1741.67
374U.09
3728.57
3825.15
380^.55
3790,14
3914.01
3H96.S1
3811 J7!«
3UR9.H1
38R4.53
38*1.79
3875.09
1H48.36
3H45.50
3836. 2»
3638,80
3«27,<»4
3813.17
3t>t8.15
3809.68
3t)t 2.41
3805.66
3804.21
3787.38
3787.25
3789. 6*
37H1.7J
37R0.44
3771,44
37bu,bli
3758. 1R
37-19.22
374R.7b
3742. S7
3738.69
37?8.77
3024,94
3R82.56
37R9.79
NUV
3914.62
3919.39
3913.54
3096,11
V. VI
38R4.33
.
3H74. 1
. Ts
-.lh
3 D 3 ft . j 0
.
3H12.11
3805. «fc
3bu3.91
3798. bb
37B7.08
37Hh.4b
y. Ju
.
37J.C.34
1771.04
37<-0,«0
3 7 b h , o K
37*h,t>i
3748. 2b
3740. B 1
173H, 19
3727. b7
3824,67
38H2.55
3709,37
JEC
14.72
*«**'$*
3"/3J4V
Jo'tbjAO
3"3h:lb
3-32J77
3*1 'U91
3 "1. 3. HI
.
3 'HI ,(})
3/b(j,24
3' 'n.^4
3 ">o,bu
J'S9.0«
3/1H.32
3V4«.OJ>
3'4.,,77
j 1 iT ,•»<>
3/^7.37
3'W9.19
(Continued)
-------
TABLE A8. (CONTINUED)
VO
MGSILLA VALLEY MATER LEVELS FOR 1959. ALL UNITS ARE IN FEET ABOVE MEAN SEA
INFORMATION SOURCE I HUDSON(1971)
HELL NO. JAN FEB pAp APR MAY JUN JUL
I
8»:..
jiiUo1
«lt:W
\l\l:tt
MM
*l\:ti
w-.\l
803.51
ISli'l
?8* *
78
pi,
1727147
!!!?:?!
»«:?}
3891.55
iSH*
''7^74
3760.90
3760lb8
i
"-Is?
AUG
3740..
3738 99
3728,67
iv«\
3875,f»
3850,66
3848.60
3840.95
3837.78
3840.20
3828,84
3834.07
3818.65
3812^1
3805.16
3807.66
3802.68
3799.40
3797J8S
3803.41
3797,6->
3788!5fl
3787.lb
3789.26
3782133
3774^24
3761.50
3762^78
3750.32
3750.55
3741.67
3739.09
3727197
SEP
im:ii
IM:K
3895.55
3B92.51
3883.73
3880.19
3450.86
38*9,10
3B41.2S
3*38.18
3839,90
3828.74
3833.87
3818,75
3809,98
3011.71
1804,96
i i(l/b, 86
3802.28
.V/98,70
. 1
3797
,01
^55
3787,25
3788.96
3781, 4J
mi. 34
3773.34
mi. 20
3762,68
3M9.82
3749,65
374U.57
3733.59
3727,27
MEKN... 3124.28 1823.97 3824.53 3824,95 3825,03 3825,39 3825.89 3826.10 3B75,8fa
NEAN.i, 1883.12 3881.88 31*2.05 3882.52 1882,65 3181.19 3881,77 3884.34 38*4.3*
NODE 2
MEAN... 1789.JIO _178S,65 _J7j.9.«.6_ JI'lL'i8.4 3789.89 3790.tt 3790.60 3790.59 3790.17
OCT
3917.92
3919.09
3913.54
3894*75
3892^1
3883.33
3860.79
3873.89
3850.96
3840,90
3840,95
3037,58
3838.30
3826.14
3d33.27
3818,Ob
3809,38
3810.81
3804.56
3805.26
379^40
3796.38
3U02.S1
3796,95
37B6.98
3786.05
37NH.J6
3780.43
3780.64
3771.74
3760.90
374H.82
374H.45
3739,9/
3737,79
3b25.19
3«H4.1!>
3789.23
3917. 42
3918.79
3913.24
3094.65
3.13
H.79
387.
3*173.39
3850,96
3048,70
3840,65
3836,98
3837,50
3825.64
3832.67
3817.85
3809.08
3610.31
3804.46
3604.56
3801. 3H
379t),»y
379fc.u8
3802.41
3796. 7b
37«6.3»
378!,:55
3787.96
37SO.i3
37bO 24
3771,14
376b,bO
3740.52
3747^85
3739.97
3737.49
3727^27
3b24.89
3683,96
3788,B7
UEC
3^17.42
3^18.59
3*12.64
J'SS^J
3"94.35
.
3"/3.39
3"i>0,86
3t-48,60
3f.'40,45
3»3*;78
3»J7,30
3X25.34
3blO,01
3t-02,31
3'9o,bb
3'Kh.OB
3'«7,86
3/79,93
3/79^94
3/70.94
3760.60
3/02,08
3/47.22
3M7.25
J7J9.97
3/J7J49
3727,37
3d24.68
31*83, 82
3788.62
(Continued)
-------
TABLE Afi. (CONTINUED)
MESILIA V*I-«»W*TER LEVEl 8 FOR I960, ALL UNITS ARE
INFORMATION SOURCE* HUDSON(1971)
IN FE6T ABOVE MEAN SEA LEVEL,
HEM, fco. JAN
FEB
vA*
VO
00
APR
VALLCI
Hft
3eo6;ii
m:ii
3706I5P
IfSHs
I;'!?;™
3786 55
3788,76
3781,03
P:«
3761,10
Hilh
88:8
S824t" 3I24*42 3la4*82 3825*57
MAY_
3917,82
nil:ii
JU«
"Blfiii
»H:?t
3896.05
3893,41
~:i!:M
87|:i9
6
0
37i48
38.50
3829.04
3833,47
3818,35
3809,78
3811,81
3804,46
3808.56
JSOl.98
3799.50
3796,78
3803 11
3797.45
3788,58
3786195
3788,86
3780,'83
JUL
AUC!
SBP____
3919,62
3^1V.69
^14.H4
3H97.61
3»97:5b
38^4,61
3HP3 93
38B1J19
3U74.99
3HS4.46
3850,90
3»41,75
3«3?,bH
3839.20
3H28.24
3^33^97
3814.45
3dlO 38
3811.91
336.00
3826.34
3032.97
3818 Sb
3BC"y.oB
3810.bl
3H(;4.bt>
JH04.V6
30(il.btt
3797120
3796,JB
3»0i.«.l
379b,bb
37Pb.i>«
376b.o&
37hS,4b
37«o:23
378U.24
3770,94
3760.1C
3762.bB
3747,32
*747l2!>
3740127
3737.69
3727177
WBC
3U18.62
J^ld.99
3^13,44
3*)«blbl
3KV6.35
3*94,91
3«8j;33
3«»o;4V
3«73.99
3sb2,6b
3o49.90
3?40,8S
3'<30,78
3.JJ7.70
3>25.b4
it>J2.h7
J«1H,25
J«09,3B
3-1U.S1
3"U4,56
3eu4,bb
3P01.2K
3797.00
3V9b,HH
3tU2,51
3/9b,7b
3'«b,l8
J'bsjlb
37U8.26
3'N.93
37/9^94
J77U.64
3'bO.OO
3'h2j4P
3/47,22
3746^9!,
3/40.37
3/J7;b9
3/27J67
3789.47 37B9.03 37KB.79
(Continued)
-------
TABLE A6. (CONTINUED)
MESILLA VALLEY HATER LGVEfS rOR 1961. ALL UNITS ARE IN FEET ABOVE MEAN SEA LEVEL,
INFORMATION SflURCEl HUDSOri(1971)
USSR
WELL NO.
JAN
FEB
VAP
APR
HAY
JUN
JUL
SO
JB91,0
3850.20
3840.85
3836,28
3838,50
3825 54
la i*> at
AUG
3894.91
Will
3875 19
3852136
3850.50
3641.05
3837.48
3838.60
3827,84
38S3i47
3818.25
3808.38
3812!Sl
H8l:K
'III:!*
SEP
3919.52
3919 69
??U.84
5896.65
3H94.91
3883.33
3B80.79
3874.69
3851.86
3850,80
384i;25
3U37.88
3838.60
3627,84
3833,47
OCT
3825.26
3884.84
1788.93
NOV
3918.62
3919,09
3913,04
3896.81
3695.65
3894,51
3874J09
3850,96
3841*05
3837, 2tt
3836.90
3825.24
3832.37
3817.65
3909.08
3810.31
3804.56
3804.46
3800.4k
06,48
86,35
37*8.46
37HO,03
3779,94
3771J24
3760,10
3762,58
3747,12
374b,85
373K.77
3736.69
77
3736
3727.
3825.01
3884.61
37B8.65
uEC
3'*1B.32
3*18.79
3*95l55
3»>74,09
3«sy.««>
J*>«9,80
3*40.75
3-,J6.9b
3937.00
3«17,45
3olO.ll
3«U4.46
HUi.bl
3/96.95
3/B6.18
3VD5.65
"9,93
(79174
3/71.24
3'bO,10
3'62.3b
3/47,12
3746. TS
3738,97
3/J6.79
3727^77
3B84.45
3/HH.54
(Continued)
-------
TABLE
(CONTINUED^
O
o
NEBULA VALLEY HATER LEVELS FOR 1962, ALL UMTS ARE IN FEET ABOVE MEAN SEA LEVEL,
INFORMATION SOURCE I HUDSONU971)
HCLL'NO.
JAN
FEB
MAR
APR
MAY
3917.92 3917.82
3896:51 3897:01
\\l\ll\ llll fe
my us* ii
«•*« " Ji7|:49
4 w _ QB
3740.47
3737.29
3728.57
J1JN
3919,52
""ill*
JUL
641,75
fiilr-
828
:!
3803:21
372887
3920.72
3920J39
3914.64
3898.01
3897195
l\i\ii\
i!u:9!
3853,86
3851,40
3642:05
3838^8
3839,90
3829 44
3834.37
3819 05
381i:08
ssofljse
3802.68
3799,80
37P8J48
3803,61
3798:65
3789,48
3787 65
3789.96
3782,03
I74U07
1738.59
1729.47
HQDl 2
MEAM... 3788.38 3788.32
AUG
3914.44
3898.01
3897.25
3896121
39IO,If
3854.16
3852,00
38*2105
3838,4*
i o ^ a a /\
Jw1 I •V"
ffli:Sl
3808,36
3802:68
3799,70
3798^8
3803.81
3795165
3789.9ft
3787:55
3789,76
3782J03
378i:34
??|9;27
9824,71 3824,59 3824.65 3825,57 3825.84 3826,36 3826.98 3827.01
3884,28 3884.07 3883.83 3884.95 38H5.22 3885.76 3886.44 3886.47
17 3789.35 3789.63 3790.13 3790.72 3790.74
StP
;;
*:*;
3896,81
3814,13
3««1.59
3875,I'
3854.J
JB51,'.
384} 25
1838:48
\lllill
380/.06
3802.48
3798,50
3796148
3803.71
379«:ib
3781.43
3781.64
3760^0
3763.68
3748.42
3748.95
3729^37
3826.80
3486.57
3790.35
OCT
3*20.42
392U.09
3913,74
3»97:21
3897,25
3U96.41
3884,03
3d«1.19
3874,69
3853,66
3851.30
3842.35
3H3?:88
3B38.80
3827:24
3B33.77
»!8:S8
}^:il
3805.66
3X01.7H
3797,80
3795J58
3S22I"
3797,55
378814"
8
3788.56
3780.63
3780,94
3204
3760,60
3763:28
3747,82
3747:9b
3740,37
3737 19
.J728.57
3826.29
3886.13
3789. 80
3919, *2
3919.79
3913,44
3896, 9b
3S9b yl
3883.83
3bPO,96.15
3788, 2b
3780,43
377ll4
3760. 40
3762. 9b
mill
374U.27
3736^9
3778,17
3V19.42
3919,59
3*13.24
3^96,81
3«V6.65
3"»5,81
3083.63
3-U,70
3«41.35
3^37,18
3138,10
3^33.07
3*18.6!>
3»09.78
3-!l(J.51
3-Ub.lfi
3"u4.bh
3*01,18
3/97l?l;
3/94. «H
3'J02,91
3/«7.Ui)
3'b0.23
37b0.24
3770^4
3/b0.30
3'62:88
37*7.52
3M7.2S
3/40.07
3736,69
3728,07
3825.87 3825,63
3665.84 3nb5.59
37R9.30 3789,06
(Continued)
-------
ME8ILLA VALLEY MATER
INfQRMATH
USSR
WELL NO.
26
20
15
18
17
16
12
11
ii
10
9
27
1 i
^
2'
o c
5
2J
21
' 3!
3'
39
29
30
A
3 7
4 t
35
VALLEY
MEAN...
NODB 1
MEAN...
NODE 2
HE**...
JAN
3919,22
$919)39
3913)14
3896)71
3897.15
3895)41
3883 7S
3880,79
3874,19
3852.66
3850)50
3«Ml)l5
3836.98
3837)90
3R.25.34
3832,77
3818,25
5809,68
' '904 • 96
3804.26
JfOlJoS
3797)06
3794)68
3802.71
: 797.05
: 786)38
; 785.65
787)96
: 780)13
: 780.14
jl77o)64
1 T62 i%
'747 42
< <* J A Aft
m
3825.42
1885,42
3788.83
FEB
3918.82
3919.19
3912)64
3896.61
3895,45
3894)91
1883,63
3880.49
3873.99
3052.16
3850.20
3836)58
3837)50
3824,64
3832.57
3817)95
3809.38
3810.11
3804,66
3804,26
3800)9*
3?96*95
3786)08
3785,15
3787,76
3780,03
Will!
1759,90
3762.58
3747)12
3746)85
3739)57
3736,59
3727.87
3875.08
3884.90
3788.60
LEVElS FOR
CAR
3918.02
3919)79
3913)24
3807)01
3806)25
3805)61
18B3)71
38Bl)09
1875)69
3812)26
30*0)60
38 a 0 85
3fllP'oO
3876)24
3812)87
3Bj7)85
3810)28
3810)41
3804)86
3805)36
3001)58
3796)70
3705)28
3803)41
37o7)65
37P6)45
37pl)04
3771)44
37 ft 3* (*B
3748)32
37^7)85
3741.07
3737,*89
3BJ5.65
3805,32
37P9.26
TABLE *6
1963. ALL UNITS ARC
HUOSONU971)
APR
3919.42
3919.69
3413,84
3897)31
3896,95
3896,11
3804)03
3S**S 1 19
387b,19
3853.46
1851.20
3B41.3S
3B1»)00
3820,34
1813.37
3818,25
3809,90
3bll.31
3804,86
3005,96
3801,58
3797)bO
3803)01
3797,05
3787.78
3788)56
mu,63
1780.84
3772)24
1760.30
374B)02
3748)45
IWill
3729)i7
3826. U2
3885,90
3789.50
HAY
3919.42
3919.09
3914)04
3897.31
3896.55
3896)ll
1884.03
1881.09
3875.09
1853.66
184l)25
3837)00
3P26.04
.1833)57
3818.45
3809)68
3811,71
3804.56
3R06.36
3801.68
3798,30
3795,18
3802.71
3797)95
37S7)l8
1786.05
1788.46
3780)73
3780)54
3771)74
1760)00
3761,98
3748.02
3748.25
374u,(>7
3737:59
3728)87
3825.92
3885.88
3789.35
(CONTINUED)
IN FEET ABOVE MEAN
JUN
3919,32
39!a)74
3897.21
3896.35
3896.11
1883.33
3081.09
1875,09
1851.86
3850.90
3840. «
3836.6*
3838.20
3826.84
3833,57
3818,15
1009,98
3811.01
3804.66
,1807,06
3801, 58
1798,40
3795,38
3802.81
3797. 65
3786.08
3/85.75
1788,96
3780. n
3780,74
3772)44
3760,00
3761, 4*
3747,82
3748.25
3740.87
3738,09
3728)77
3825,77
3885,34
3789,44
JUL
3919.72
3919)39
3913.34
3897.01
3896.75
3896.21
3883.03
3877)99
3875,59
3850.26
3851,30
3840.95
3337.58
3838.60
3826.24
3833)77
3809)48
3812.11
3804,46
3807,96
3802,78
3797)70
3796,68
3803.21
3797,55
3788.98
3787,65
3789.16
3781.03
3781.24
3771,94
3760.20
3762. 2H
3747,82
3749.25
3741.27
37J8.99
3729.47
3825.78
3884.91
3789.72
SEA f.EVEL.
AUG
3920.12
1919.49
3913.54
3897.51
3896.45
3894.61
3083.63
3800.89
3875.09
38*0.56
3851.40
3841.15
3837.18
3838.50
3827.04
1833)97
3817.45
3809.08
3812.01
3804.56
3808. 56
3802)8(4
3798.20
3796. IB
1802.91
3798)65
3787. SB
3706.35
3789,16
378l)43
3701.54
3771.64
3760.20
3761.98
3747.82
1748. 8b
3741,07
3737)69
3728,67
3825.60
3884.86
3789.59
SEP
3919.72
1919.49
19U.34
.1096)45
1895.41
^ij R Q % &9
3874,49
1850,46
3851,20
3837)38
3838,70
1B26.34
183J.67
3010,85
\H \ 1 % (j 1
lt.n4.So
3006, 3b
3802.28
3797,80
1795.20
3802.91
1/97.95
1787.68
1786.55
178o)93
3/81,04
3769.44
3760,90
1762.78
1/47,72
3748. Ob
3740,07
3/37,29
3728.47
3u25.53
3B84, 90
3789,31
OCT
3919,12
3919,39
3y 1 3 • 24
3096.51
3896.05
3895.21
3803.63
^b 0 0 . 7 9
3b73,99
30S0.46
3850.80
3841,05
3836,78
3*37)20
3624,84
1«33)l7
3018,05
3b 09 , 18
3bt0.7t
3004.66
3H04,fi^
3 b f I • 4 H
3797.10
379i,8H
!b"2.6t
1797. 3S
3786.60
) '/ 3 5 • 9 b
3788.16
3780,41
37B0.34
3770.04
3/60.40
3 7 ** 2 . 5^
3747)42
3747,25
3739)67
373b)69
3727.67
3025.13
3»H4.7<)
3/08.81
liflV
391P.72
3919.19
1912)94
3H9»,41
3 H S J> fctb
38P->,yl
^ B P £ v 7 3
3tj H l> _ tj<)
38/3. 4«
3B^i)bO
3 b 4 *.; , 7 b
3«37)t/0
3b12)77
3H17.75
1 tf 0<^ _ oh
3H10.41
j tj (j t\ Q fj h
_j f) (1 4^ J f>
3 0 0 1 . U W
3T>»> .90
3794. b8
1802. bl
1797. Ob
37B6.18
37S!>. 7S>
37B7.8b
37M0.13
3779. «4
3770,44
»760,)0
1762,^8
3 7 fl 7 • J 2
3717.05
1719.67
3736, S9
3727)57
3825.00
3-M.T8
3768. bb
uec
3^13.
3V12)
3 f *^S *
3 ^ y 4 §
3 '"' * 3 •
J r H () ,
3 •* / "5 .
3^n)
3 " 4 v> (
!'•*'•
3 n I i )
3 -> U 0 .
-«'J4*
3 * 04 )
3-00,
3.J1**.
3'Vb)
3 / b*> j
•i ' ** *$ t
3 707.
3//v)
3/70.
3/bO,
3 f t>2 •
3' 47.
.1./47,
3127)
1.24.
3^04,
3/b8.
62
?9
4
3 1
5*5
7 1
8 3
*i V
IV
40
Sb
1«
57
f>^l
9o
4 1
4b
1^
^i>
70
9b
8H
S&
7b
74
34
00
7 8
32
05
hi
H«
50
«
(Continued)
-------
TABLE A6. (CONTINUED)
O
N>
HESILLA VALLEY HATER LEVEtS FOR 1964. ALL UNITS ARE IN FEET ABOVE MEAN SEA LEVEL.
INFORMATION SOl'RfEl HUDSON (1971)
HELL NO, JAN FEB HAP APR MAY JUN JUL AUG
SEP
OCT
rlOV
HEA^!. 3824.75
3884.30
378».42
3184,03
JJlJLi 1'
3917.32
3917159
3891,
3873.09
3846,76
3834.28
3835,10
«!!:«
3816,25
3406. 9fl
3809,61
3802 76
3603:86
iiii:ii
«2?.f«
879.39 3B7R.S9
3873.39
3845:66
3848,00
3439:25
3834.40
3821*94
l'|l2§
5894171
3891125
3891.01
3879:23
3877;of
3874,19
•"I:?'
iiiiiio
3843 96
3847,40
3838:35
•?3.08
o
809.2}
602 U
803.86
9J78
3820,44
383lj67
J!o '§8
3809:21
38oi:afi
3804.16
3799.66
3792,20
3!?ll5
•* W A ** f -• '
3909,04
3894:51
3889,95
3889,91
3878 53
3874.99
3672.89
3842,36
3847,20
3837.45
3833.28
3833aO
3y?:15
3914,52
39is:i9
3909.24
5 IS
».2<
• •71
?«?4.7l
0.25
3877:39
3873:49
3843.06
3846.40
3836,95
3833.48
3836.10
3820.64
3831.17
3813.45
1804.28
3810.01
3800.76
3803.96
3799.68
3792:20
3793.38
3799.21
.65
3914.22
3915,69
3909.54
3894.21
3889.85
3889.41
3879:93
3878,69
3872J69
3842.96
3845,90
1836,65
3833.38
3835180
3820.94
3M30.67
3813.05
3M04.6*
3809,71
3801.06
3«03,36
3799J78
3793^0
3792,96
3799^1
3796.35
3782,9H
3783175
3913.92
3915. 7«»
3909.54
3093.91
3890.05
3889.2)
38UC.b3
3B79:<9
3872.69
3844. Jb
3845.20
3836,85
3633.2»
3835.60
3821,34
3 8 3 u , 3"/
3813.05
3805.08
3809.51
36'ii,j6
3H02.9t>
3799178
3794.10
3793^8
3799.61
37??.25
37R6.66
3776,93
-77BJ64
766,14
.755,00
3757:18
I 'EC
3^13.92
3*09*44
3»79.49
3X/2.89
3->45:oO
31J3»i8
3-30^27
3oo9.51
3HU1.56
3HU2,96
3/99.88
3/44.40
3/93,28
3cOO,01
3'9b,15
3/82.98
37»3l45
3VH6.66
3777,13
3/78.44
3766^34
3/55,40
3785,15
778:83
758.88
745J72
745J4S
744.8
743^7
3/37;37
3738.97
3735J70
3727147
3BB0.15
3'd5.66
(Continued)
-------
TABLE A6._ (CONTINUED)
NESILLA VALLET HATCH LEVELS FOR 1965. ALL UNITS ARE IK FEET ABOVE MEAN SEA LEVEL,
INFORMATION SOURCEI HUDSON(t971)
HELL NO. JAN FEB
;
:
2
»
2
|
,
I
}
6
I
|
!
I
i
;
1
1
: .
i:
I
!'
1 j
11
j i
1 !
i ' ]
6 ' i
8 :!
' 1* ^
;
1
i
i
7
M
'
,
1
; :
: .
i,'
!
:
1
3,1
j 't
,
' t
ij
4^1*
i i !(
; 2l
. ID .
;;i.
13*
0 .
I1:!
9 J
8i'*l
§| ,
•i ,i
jfii
45^
44,
I?!:
I
j
i
i
8
s
s
6
I
4
|
|
?
APR
MAY
JUN
JUL
*«[:«
»!:lf
88.45
3739,87
3737.39
3728.17
AUG
3914,22
3915.09
390$!74
'895,81
889165
.- ..
3756.
3745.52
3746,OS
3740.27
1737.39
3728,17
MEAS.!. 3160.15 3680,03 3879.72 3678.38 3678.16 3678,08 3878.25 3879.68
3896101
mgllS
3889.
«!f:
3*32.88
3839,60
3824.84
3832.67
3813.05
3806.28
3K14.01
3802.06
3804.16
3801.58
3797,80
8
3/84
3787. 96
37R1.03
3778.54
376^,34
375b,20
3757,08
3746.12
3746.25
3739.67
3737,09
3720.17
3121.49 3621,46 3871.12 3820.21 3819.97 3820.11 3620,59 3321.82 3U22.45
3880,00
3787.3b
OCT
NOV
3913.92
3915,99
3910.34
3895,51
IW;\!
HWl
««:!?
3i44;|0
3836,55
||"«98
3811.71
3802.56
3802.26
3800.78
3796,90
3794.38
3801,41
3796.95
3784,28
3784 4S>
3787.56
3780,33
'US!*!
3916,39
3910.24
3681,63
3880.09
3844^26
3844.20
3836.75
3033.18.
3837170
3823.04
3831.57
38lS,3b
3807.48
3810191
3802.96
3i*02.3t>
3B00.6B
3796.60
3794.3H
^801.61
""96.75
84.28
-.84. 3J>
3787.4t>
3'lo:23
utC
3*13.9?
3«V5.31
3a90.4b
38b9.01
3U82.03
SweoJoS
3«73.79
3»44,10
3036.85
J " W f • V v
3010,61
3«u3.16
3HU2.36
3VU0.
3796^70
3794.38
. dl
, 7b
3787. 4b
3i4'), 13
3'/o7i74
37b(j,00
3'36.19
3727147
3«bo.3b
37t*7.08
(Continued)
-------
1AHLE AH. (CONTINUED)
HESILLA VALLEY WATER LEVELS FOR 1966, ALL UNITS ARE IN FEET ABOVE MEAN SEA LEVEL,
INFORMATION SOURCE I HUDSON(197t)
US8R
HELL NO,
JAN
FEB
HAp
VALLEY
MEAN...
NODE 1
MEAM...
NODE 2
Mr.AS...
808.
APR _
««T«
il,?:??
llib1:!?
- -flO 1 ^
5x*tz
,80,39
875)29
844)96
844,30
836)85
833,88
839,20
825)44
i3})l7
111.02
iU|:tt
?!??.2§
,88 38
3783)45
3786,66
3U:tt
3770.04
3756,30
3758)38
3747;32
3747)45
3737)47
3739)39
3728)47
3823.33
3880.74
3788.33
MAY
3914.62
3916.89
KU:H
3890,7!
JUN
38D9;B1
3882.33
3885.2T
3875.3?
3845)36
3844.10
3837)45
834)38
--•:ij
3804
3801.
3801.38
ti*i:t!
WJ:H
3786.48
3783)85
37R6.86
Will
3770)74
3759,70
3758,78
-747)42
747)55
.737.57
3738)79
3728.17
^
3823.71
3881.04
3788.75
1^:?i
ittirJi
3891.35
3890.91
1182,53
37?5;50
3793)98
HH:W
mill
3787,46
3782.53
3779,54
3772)34
3759)18
3747)3?
3747)65
3717,77
3739 79
3730,07
3824.37
3881,68
3789,42
JUU
JO 7O * UI
3892.35
3890.21
3882.73
38H0.69
3876.19
3847,46
3845.30
3838,35
3836,28
3839.80
3827,24
3833)l7
3817.95
3809.88
3812.71
3805)86
3808,16
3802.68
3800.60
3795)48
3804.21
3798)25
3789.98
3786.15
3788.26
3782.93
37HO)44
3772)54
AUG
3759.88
3747.72
3748)25
3737)97
3739,69
3728,47
3824.86
38(12.26
3789,85
SEP
OCT.
UfiC
3916,72
3919.59
3914.84
3896.91
3892.95
3890.91
38B4.23
3881.19
3876.19
3848,76
3846.20
3839.05
3836, 7"
384U.40
3828.14
3833.47
3818.45
3810. 2B
3812,71
380§)4S
3809.06
3802,98
HSS:M
Mm
3789,98
3786,25
3788.86
3783.43
3781)04
3774:34
3761.20
3761.38
HJJ:503
3738)37
3740,39
3730,57
3825. 65
3883,18
3790.57
3917.32
3919,79
3914.24
3896.81
3693.25
389l)31
3883.73
3881.39
3875.49
3849,36
3«4b,70
3839,25
3836,98
3tHu,60
3825.74
38.13,47
3818,85
3811.08
3012.61
3806,66
3808,16
3802.58
JWJ:«
3804.81
3798,65
3788,78
3786,85
3789.26
37*2,93
3780,94
3773,54
376l)78
3743,62
3748.65
3739.97
3739,79
3729,97
38?5.59
3803.41
3790,33
3917.42
3914)04
3896.41
3893.05
3b<»1.41
3883,53
3e8i)09
3874.69
3849,86
3847.10
3840.25
3036,66
3b39.40
3825.74
3832,87
3818,85
3810.58
3811.21
3805.96
3805.46
3801.78
^?§S:?§
J?«:H
3789.28
3786,05
3788. 8fr
3783,03
3780)44
3772.14
3760.60
3760.88
3748,02
3747)35
3737,27
3738,69
3728.47
3825. If*
3b83.50
3789,61
3917.12
3919.59
3913.54
3B96.21
3892.85
3(.91.31
3BP3.33
3881.09
3874.79
3849,66
3847,io
3839.85
3836,3b
383H.70
3825)24
3832)57
38IU.35
3810.08
3810.71
3805.66
3804,56
3801.48
3800.40
3792)78
3803.11
3797)75
3766.98
3785.45
3788.46
3781.23
3780.24
3771)44
376l)l§
3747.82
3747.05
3737.17
3739,69
3728.27
3824.84
3b«3.31
3789.18
3'<17.02
3*13)34
3*90.21
3»92.75
3b^l ,21
3«D3 23
3»M1 19
3074.49
3-"«9,3o
J^IO.dO
3"J9,45
3rfJb,8«»
3e24)54
3»32,47
3*>l7,85
3«09.3B
3aU4)26
3M01,o(i
3000.20
3b02)41
3'97,35
3/b8,68
3?85 15
3/88,26
37B0.93
3'"/9,94
3/70,94
37bo,30
3/4»)9*>
3 ''id, 97
3'/3*,69
372B)l7
3ti24,55
3sb3,12
J7BHJJ2.
(Continued)
-------
TABLE A6. (CONTINUED)
w
ME
w
w
• t •
I
I • •
2
», «
JAU
FEB
PAR
APR
MAY
JUM
JUL
SEA LEVEL,
AUG
SEP
OCT
J / MJ.94
3760.on
3760,6B
3747,42
3747,«5
3736,97
37J8.39
J72«,17
ffi 193
879^9
: 875.69
:846.46
845.80
838:95
.
3806,86
1801.08
3799*50
3791.98
3602,81
3797.65
3788,78
3784.95
3788.16
3781.03
3779,fl4
3770.74
3759.20
3759.9P
3747.62
3746.95
3736.87
3738.89
3720*27
KiMi
»«:«
3816,85
"P?!z?
Jioi:o8
379§:|0
3791,38
3803,31
3798.55
3789,30
37B5.85
3708.76
3781.13
3779.94
3770.84
37S9.10
3759.6"
3747.02
3747,Hb
3737,37
3739.29
37?B,!>7
•J O 7 V
3862.jj
3879,09
3875.59
3846.96
3846.20
3839*25
2§I6«?'
8
JOJD.f
3938.3,
3826.84
3832.97
3807.86
3801*48
3792:68
380J.21
3798*35
3789,3«
3786*15
3789.06
3780*23
J7&9.40
3759.OS
374H.42
3747^5
J737.57
3739,1«>
3728,B7
3916,02
17*
391
69
iti
:A
,83
3882,8
3880.69
3876,39
3847.96
3846,60
3839.35
3836*96
3838,60
3828,34
3833137
3818.85
3U09.28
3812.41
3UOS.06
3807. 8b
3HOJ.88
3799.70
379l'g8
3803.51
3798.45
37«9.58
3780.05
3788.36
3780,63
378U.04
3771.64
3759.60
37S9.68
U4/,7^
3747.4b
3/37,37
371H.79
377H.37
3124.45 3624.13 3823.99 3873.89 3824.27 3824.62
3882.66 3882.45 3802.09 3881,80 3881,30 3881.78 3H8i,45
3709,08 ^789.08 1788,78 3788.69 3788.89 3789.21 3789.36
3915.72
3918,79
3912.24
389S.81
3891.95
3890,51
3802.83
3860.49
3876.09
3847,26
3846.10
3839.35
3836.38
3837.50
3828.14
3032,87
3818.55
3809.b«
3810.91
3804.76
3804.Hb
3B01.28
3799.iO
3791,98
3802.71
3797.55
3788.98
3785.15
378B.26
3780.13
3779.64
J770.34
37-S9.30
3759.68
3747.22
374h.75
3/37,17
3/38,29
372H.17
NOV
3915,82
39U*59
3912.04
3895.71
3892.15
3890:61
3882.93
3880.59
3*75,19
3847.06
3846.00
3838.35
3836.08
3837.1fa
31)26*74
3832.17
3818,15
3BOb,8B
3810.61
3804.66
3804.36
3801,18
3799.40
3792,48
3802,51
3797,35
3780,68
3787*56
37H0.23
3779.44
3770*34
3759.40
3759,«B
3747132
3746.6">
373b,07
3738:29
3727.27
3824.18 3823.96
3682.22 38B2.1U
3788,7H 37P6.50
l»EC
.
3*18.39
3'J11.94
3^95.71
3*91.95
3»t>2.49
3^75,69
3B47.26
3*39.15
3*17,95
7b
3^04. 16
3*01.08
3/99.40
3/92, 2B
3--02.41
3/HB.33
3'«4.75
37«7,66
3/SU.13
3 //9,34
3//0.04
3 '59,40
3/bu.OS
3/47,12
3/«6, 4S
3/38,29
3727J87
3^23.86
3*82.16
37H8.31
(Continued)
-------
TABLE A8. (CONTINPED)
MESILIA VALLEt NATER LEVELS POR 1968. ALL UNITS ARE IN*?EET ABOVE MEAN SEA LEVEL.
INFORMATION SOURCEI HUDSON(1971)
WBLLJfOj JAN
!
FEB
APR
MA If
JUN
JUL
NODE
AUQ
SEP
,., 9t33.lt 3823,57 3824.27 3824.15 3823,95 3824.03 3824.52 3825.08
MEAN,.. 3882,31 3881.74 3882.31 3882.26 3881.60 3881.46 3881.79 3882.60
I7M.24 3781.09 3798.87 3788.71 3788.79 3789.01 _37e9,5e 3790.00
OCT
KOV
7916,9?
3919.49
3913J44
3696181
3893.25
J70..
,760.60
3761.38
3747.12
3747.45
373«-,97
3738,49
372«,17
3824.45
3882.80
3788.87
UEC
3^16,9
'
37H8.6B
3 04.65
3787.76
3/7^73
3780.24
3770^24
3'61.48
3/46.82
3M6.95
37J6.97
3/38,59
3/^127
3768.54
(Continued)
-------
TABLE A8. (CONTINUED)
USSR
HELL NO.
MESILLA VALLEY HATER IiEVEl.S FOR 1969, ALL UNITS ARE IN FEET ABOVE PEAN SEA LEVEL,
INFORMATION SOURCE I HUDSONU971)
JAN
FEB
APR
HAY
JUN
JUL
:
•'
Hi:
!5:;
ii
p
r
AUG
3919.4
.42
3897,41
3895.85
3894.21
3884,53
3383 89
3876.49
3850,96
3849,10
3840.75
MElJi;,. 3124.01 3123.73 38?4.25 3(24.75 3824.83 3829.01 3826.01 3826.63
"258.1, 3(82.46 3(82.23 38*2.57 3883,20 3883.20 3883,33 3884.31 3885.20
aSSS.?. 1788.36 3788.05 37M.68 37(9.11 3JT89,23 3789.45 J790.46 3790.91
_JSEP ___
39)9.22
3921,39
3915.24
3U97.11
3894,4
3«84.3
3876.29
3851,36
3849.70
3840.95
3008,06
3802.78
3800,00
794.3
_ jlCT
3918,92
3920,49
3896^81
3896,05
3894.51
3884^33
3882^49
3875.29
385'
3918,62
3919,09
3913174
79.13
3778.84
3771?94
376
761.10
?s?:fe
i|5»:«
«»:??
3825.74 3825.38
3885.08 38114.73
3789.56 3789,19
V EC
3*18,32
3919.29
3'U3.U4
3*96,41
3074.69
3030.76
304V.20
303&I98
3138.10
3025.34
30J3.47
3018,05
3010,48
3010.51
3005,46
3004,86
3001.48
3799,30
3/93|l8
3003,01
3/i>7|65
3788,88
J787I2S
3708,16
3119,23
3778.94
4771,94
J/HI : < n
j)4:f52
Mliti
3129,11
3025.24
3084.38
3709,16
(Continued)
-------
TABLE A8. (CONTINUED)
KATEP LEVELS FOR 1970,
INFORMATION -•---•
O
00
ALL UNITS ARE IN FEET ABOVE MEAN SEA LEVEL,
378896
3780^03
778:84
772:34
76(j:§0
762^8
m
3729127
3789 .-
BH:?8
BK: .
mill
376- --
3740,09
3729J47
_AUG
K«7?i
HIM
3897.55
3895,31
3885.03
3884,19
3876,79
3852.16
3852 50
3841.75
3838.18
3839,80
3630,34
3835,07
imiil
iSi*:!*
3810,lh
3602.38
seoi'io
3797 28
3805,41
3799.55
3790.58
3787 25
3789,96
3»25.10 3824,73 38J5.49 3825.48 3825.80 3826,13 3826.71 3827,04
NODI t
MEAN,,. 3884.47 3883.52 38M.74 3884.44 3884.53 3884.80 3885.39 3885.89
NODE 2
jy^ASJ— 1H!±!L_.3"8.87 3789.35 3789.51 3789,99 3790.35 3790.92 3791.15
SEP
3920.22
3919.99
3914144
3897.21
3»97l75
3896,01
3885.03
3884.19
3876.19
3052.76
3852.30
J642.05
3«3fJ.S8
183W.70
3828.54
3834,77
3820,55
am.4g
3812.01
3806.46
1807.66
3601,88
3800,30
3793.88
3805,11
379B.95
3790.28
37S&J35
3789,26
3760.93
37B1.34
37721]
3826.73
3886,19
3790.46
_OC_T_
3919.32
3919.5
3912.h
3896161
UEC
3919.42
3919.49
3912.6*
3B96.61
3H97.55
3895,71
3HB4.43
jc.cs.yv
3K74,b9
if»Sl,9b
3*51.70
3blJ ,kb
3B37.38
3b3B.40
3»?H, 04
3S34.07
3619,65
3810, (,8
3M1.U1
3»i'h,36
3805.56
3BU1.6W
3799,80
3793. *8
3603.31
3797,95
37b9,lb
37«5 4b
37^8,96
3779,43
3780.94
3771,04
i?&S2
3WS:6H
3737 87
3739.89
3726.67
3'>19,32
3*»19jl<)
iill,44
3^96:31
3X97J45
Shyslll
3"t>4.Qj
J083.69
3H74.29
3hbl,96
3»>5Q.50
jc 39,95
3^37.08
3»J7.70
3«27,74
310,48
3S10.71
J^U6,06
3'.i)5.2b
3»U1.58
3799140
3193a8
31-03. 11
3797*75
3 ''»H,88
3/84J95
3/88.50
3'79 13
3780,74
3'70,74
3/60,50
3762*5»
J'«7*52
3745J85
3/37,37
3/39^89
3?2«i;77
3626,07 3625.97 3«25.62
3885.62 3885.53 3«B5.30
3789.73 3789.64 3789.22
(Continued)
-------
TABLE A8.
O
VD
USBR
WELL NO
ME8ILLA VALLEY WATER LEVEl.S FOR 1911, ALL UNITS ARE IN FEET ABOVE MEAN SEA LEVEL,
INFORMATION SOURCE I HUDSON(197i)
JAN
94,75
95 31
83:43
)!:!!
U!l
l{t:tt
1837130
:itt:8!
1il:tt
§0§:n
I84:lt
799 40
795.78
m
:«:"
:i':
ilr
86
• l
8
3850.56
3849150
JB'OISS
?
APR
MAY
JUN
JUL
AUG
«!?:«
»«tt
38QSI35
3895111
38P3!o3
38*3:39
3875179
38?0*16
5849:30
3840^05
383*128
BBzIz
37fl4:65
37P8J66
I279:i3
3789,28
3784245
M
3760.60
799.60
3796, 3B
3804.51
3798.
3789
3704
3788.06
3779^33
3780,44
.15
,18
.45
3917,92
3919,49
3912.94
3896,51
3894.35
388ll93
3884.39
3873,89
3849.26
3848:70
3840.55
3837.48
3835,20
3825,94
3853187
3805,96
3801.68
3799,90
3794.68
3804,91
3798.35
3788,98
3785.05
3788.26
3779153
3780,64
3772:14
.50
3918.62
3917.29
3913.14
3896:31
3894.75
3893.61
3881.53
38H4.39
3873.69
3849.06
3848.70
3840.45
3837.38
3835,00
3825.84
3834.57
3817.65
3810.48
3808,16
3801.78
3799,50
3794.58
3803.61
3798.95
3789.08
3737.77
3741.79
}72« 27
3788.86 3788.59 37»8.I
SEP
3917.22
3917.69
3«96:41
3894.15
3893:61
3882.63
3884,19
3073.89
3850,36
3849.20
3840.15
3836.58
3835,20
3825.44
3834,37
3817.65
3809.58
3011,71
3004.76
3806,46
3802.08
3799,70
3793.98
3803.21
3779:83
3779.74
3769.94
3760.50
3761.08
3746.82
3746185
3736,97
3741.19
3728.47
MEAH... 3825.13 3824,73 3824.99 3824.89 3825.12 3825.02 3825,23 3825.04 3824.88
MEAN.!. 3884.65 3884.07 38M.28 3883.91 3883.95 3883.81 3884.00 3883.73 3883.96
3788.89 3789.24 3789.17 3789.39 3789.24 3788.84
OCT
3916,02
3*18.19
3911.64
3b96,ll
3894^5
3893.31
3882.93
3884.19
3873.79
3650.16
3849.00
3839.55
3836.28
3834,60
3825,24
3b33,27
3817,05
3809.68
3810.91
3804.56
3805,86
3801.48
3799.50
3793.68
3802.71
3797.65
NOV
3S16.72
Ml*. 19
3912,24
3ta9b,01
3893. 9b
3892. HI
3&S2.93
3882.99
3873.5?
3B49.3P
3P4H.UU
3839, 55
3B35,bB
3838,20
3832.67
3817. b!>
3Bo9.4t<
3810.51
3604.46
38(.4,26
3801.Je
3799,40
3792.2b
3«02,41
3797.25
3787,98
37H5.15
3787.36
3778.83
3779.54
3760.00
37.6i.2B
3787;«S
3784.8b
3786.36
3778^73
3779174
3760.94
3760.40
376U28
3747.32
3746,05
1111:11
3728.27
3824.52 3824.4!)
3883.78 3883.40
3788.38 3788.50
3^24.34
3b32.87
3^04.66
J7V2.48
3BU3.01
3797.35
3V88.48
3/05,3i>
37H7.5*-
3/78.93
3779,74
3/7ol24
V'?o.?o
3761.18 3/61.48
3747.12 3/4?:62
3747,45 3/47145
3736.«7 1736.97
1/30.97
3/40.09
3b24.68
3083.63
3788.73
(Continued)
-------
TABLE A6. (CONUNUEP)
MESILLA VALLEY HATER LEVEtS FOR |972. ALL UNITS ARE IN FEET ABOVE MEAN SEA LfVEL,
INFORMATION SOtlRcEl USBR» EL PASO, TEXAS
2
24
JAN
FEB
MAR
APR
MAX
JUN
JOL
AUG
3915.72
3914*39
3908.04
0.00
3191*15
3890,81
3888*55
3882.29
3873,; 9
3845.36
3916,4
3?07;9I>
UUlll
7°9*.!1
il!!:*
3810.21
3803,06
3803.46
46
i?
NCM... 3823.32 3823.11 3822.93 3*22.73 3822.86 3822.65 3767.32 3822.54 3022,92
NODS 1
MEAN... 3882.03 3882.00 3881.84 3881.67 3881.70 3881.56 3734.74 3880.54 3881.11
NODE 2
~ I... 3787.SI 3787.H 3787,01 3784.78 3786.98 3786.72 3787,14 3787.17 3787.43
^ V w * 9 ~w '^
3798.78
|793*70
3794.OB
3802.01
3796,05
3703.08
3783.45
3784,4fc
3776.93
3778,44
3771*04
3767.1
3757*
3743.
SEP
3915.62
"5.89
3907,74
391S
3894.71
.35
PCT
*3,y«
.,,43.75
3738*47
3737.19
3729.17
3823.54
3882.34
3787,68
NOV
3916,1*
3916^9
3908,44
3894^1
3891,65
3895.31
3b»b.T3
3877,69
387^59
iitt:U
llliill
3807.b8
3809,21
3801*86
3803.56
111:?1
3778.64
3772*74
3767.30
3757:58
3744.112
5743,75
3738.37
3737109
3728.87
3823.49
3882.34
3787,60
UEC
~3im.32
3*16.79
3*08,84
3«94:71
3*91,85
3X/8.09
3S72.79
3*48,16
3M45.30
3»35*.08
3*iJ6,60
3il32*i7
J"14.4b
s^oalzfr
3«U3,86
3799.58
3^95*30
3001*41
Iji]i5i
i?5!.:Il
5/72I84
3/67.40
3757^8
3744:92
3 43,95
3/38.47
37,37.59
3««2,61
3787,79
(Continued)
-------
TAR1.F A8. (CONTINUED)
U58R
WELL "0.
XE3ILLA VAUiEV MATER LEVELS FOR 1973. ALL UNITS ARE
INFORMATION SOURCEI USBRl EL PASO, TEXAS
IN rtCT ABOVE MEAN SEA LEVEL.
2
2
JAN
FEB
HAP
APR
NAY
JUN
74535
737.97
737:39
3728.97
JUL
:fi
Bttiif
ISS!:4
i|tt:H
3893,61
'«|:jf
7RS.26
5I73
AUG
SfcP
OCT
NQV
389
3
02.61
96,65
728.47 3728.1
SEAS.,. 3002.09 3001.34 3003,55 3082.SB 3083.05 3881.42 3001,03 3882.47
.8Bt?t - Jm..<>« 1700.41 1700.47 3700.JO 3790.61 3700f2» 3709.01 3789.27
«j4j27
3818.05
3811.46
3811,01
3804,16
3024.00 3824.39 3024.49 3824.01 3024.38 3823,5* 3824.17 3824.58 3824.60
3882.28
3789.42
3916.92
3918, 61
1910.84
)«96,21
.
3891,71
3883,43
3H79.49
01.i
96^5
84:78
njjs*
?W$
80^4
MM
3759.4b
3747.02
37«6.5!)
Jifiif
3824.50
3882.47
3789.14
3917.52
391W.59
3910.74
3«96,01
3892:i5
3B9I 61
38B3.13
3b79i$9
3871.99
3847,86
3Mb,10
384i:«5
3834.48
3836^0
3824.34
3833^7
3817,25
3810.Ob
3809J71
3b03,56
3805^6
3g00.38
3796.90
3795,98
3795^5
3784,4H
3783:45
3785.16
3779,33
3779.64
3772,74
37»«.10
J/bU.6H
3V4*>,72
3'4>>.05
37J7I57
3'J69
3/26,97
37HB.S3
(Continued)
-------
TART.R A8-
to
MESILLA VALLEY WATER LEVELS FOR 1974, ALL UNITS ARE IN FEET AbOVE MEAN SF.A LEVEL.
INFORMATION SOURCE! USBR| Eli PASO* TEXAS
U5BR
WELL NO, JAN FEB MAP APR HAY
JUW
JUI.
AUG
ttP
OCT
3918,12
3917,19
3910.24
3895, 81
389l)7S
3891.81
3884,03
*
J V^V• T w
3833)98
93* 10
3823)64
3832)97
*B1?)05
3796.
3794J3
ittWi
3783.68
3782,75
3784)36
3778)03
3767)70
3759)08
3745.8?
3744,45
3737)77
3736,59
J727.97
3916.72
39 5*59
3910*64
3895)51
893)45
l?2.Jl
3799)18
H53:18
ffl!;U
3784)98
Pill
766)64
3758)78
3745)72
Htftt
«!?:»
476b,60
37S8.08
3746.02
3746)05
3730)77
3737;59
3729 07
3912)9*
.»*•<• y • » ^
3872.79
3848.76
3847.40
3838.05
3835.48
3838.30
3803,66
3800,2»
3799)10
3795)6R
3803.61
3796)25
3784)88
««:«
Bi:H
!2*Z.!<
S747;92
-748,05
739,57
738.19
729.77
,12
)99
3911
391«..,,
3913.64
3895)21
3893,65
3893,01
3882)33
3880.59
3872,99
3849.5%
3848.00
3838.55
3836)'°
3838
3
" • <**•
6.18
-v8.20
^823)44
3833.87
3818.05
3811,58
3811.11
3804.46
1803.86
1800, 68
17,2S'62
^ i w o e i? •»
3766,60
3760.28
3748.02
3748)55
3739)57
3738)19
3729)37
jo*» i
3847. to
3838,25
3836)68
3837.80
3823.64
3834.57
3818.25
3811.68
3811.31
3804.86
3918,52
3919,49
,
3913.04
3895.41
3893.85
3894.01
3882.73
3080.79
3870.69
3849.16
3847,80
3037.95
3837)50
3023.04
3835.07
3018.45
3011.88
3810.81
3002.96
3804.56
3801.10
3796.30
797)20
«• ' f r • * *.
3804.61
""*t'2
3 OU^I |
3Z?6,
3784.98
3784.95
3787.46
3769.14
3760.60
3761.88
1740.62
374/,65
3739.77
3730.49
3730.57
3918.12
3919.5'J
3913.04
4894,HI
3893,55
3093.71
3882.43
3M80.49
3870,19
3848.86
3847)70
3037,45
3035.68
3038.90
3823.04
3034.67
3818.05
3810,78
3809.91
3002.96
3804.26
3800.70
3797,40
3796.98
3004,31
3784.68
3784.55
3706.96
3780.64
3779)64
3768.74
3767.90
3761.38
3747,82
3739.37
3737.59
3730.47
VALLEY
MEArt...
NODE 1
HEM,,.
NODE 2
NEAii...
3823,78
3882.14
3788.19
3823.54
3881.96
3787.92
3823.04
3882.24
3786,92
3823,70
3882,67
3787,73
3824.34
3882.92
3788.61
3824.74
3883.16
3789.11
3824.92
3883,29
3789.33
3825.03
3883,37
3789,45
3825.13 382
3883.45 386
3789.56 376
MlV
3917.72
.59
391b
'''1C
3696
'''1C. 44
,71
5
3H92.41
3BS3.8J
3872.59
3B4b.
3b4fe,
3B4b.b6
,70
383(5,48
3bj7,00
3034.27
3017,25
3010.50
3810,71
30(14.36
3004.86
3801.81
3796.65
3784.90
37H3.15
r/h5.16
3779.53
3772)44
3759,b8
37*6.72
3746,7b
3737,37
3738.J9
3727,97
3824,79 3H24.63
38B3.20 38B2.91
!7_8_9.J16 3709,Ob
(Continued)
uEC
3V17.32
3"72)l9
3ii48,4(>
3X47.30
3^42.05
ja J6-.60
3»17,55
3*09)61
3»U2.26
J ' ' J f JQ
3^03,51
3/9b.6b
3/03.58
37H2.25
3/04.76
3/V9.U
3779)S4
3/71,54
3/68,50
4/bl,4B
3/47)52
3/36)97
3/47,39
3728.77
3x03.22
3'88.0l
-------
TABLE A8. (CONTINUED)
met!
USSR
-.L HO,
NESILLA VALLEY HATER LCVEl.S FOR 1975, ALL UNITS ARC
INFORMATION SOURCE I USBRf EL PASO, TEXAS
IN FEET ABOVE MEAN SEA LEVEL,
JAN
FEB
MEAN.?. 3789.29 3788.94 3789.25 3789.32 3.?_••».»•
OCT
3919.9
3920.6
3913.4
3896,31
3894.25
3896.41
3885,23
3881,"
lal 4
02,81
96.35
-85.28
782,95
88?'
783.35
785,76
785193
779I44
771.J4
HEAfl... 3825,07 9(24,76 3825.09 3825.05 3825.34
MEAN... 1103,7J 3883.49 3883,87 3883,64 3884,29
3919,0-!
3919.19
3912.^4
3»9t,0l
3894. 35>
.
3U«3.33
38H1.19
3872.99
3849. 8t>
3648, 20
3842.85
3835.48
3836,50
3824.74
3833^47
3818. 2b
3810,78
3808.51
3804,56
,
3800,38
3797,00
379S.3H
3802. ul
3796.35
3785.58
37S5I25
3785.46
3778.53
377B.64
3770,74
37*8.20
3760,18
3746.92
3746,15
3728,97
3824.68
3884.09
3788.76
DEC
3>18,52
3^19.09
., - - It, 41
3^94.85
1162J&3
3*80,69
3*72.59
3^48^40
3*39,35
3*36)00
3424.24
3*32.97
3»17,55
3010,28
3"08.41
3»03,76
3/96^00
3/94.68
3«02.51
3/V6.4&
3/85,08
3VH2.85
!/7flJ03
3778.34
3V70I34
3''b7.70
3760,86
3/45.92
3/45.65
I(??»9Z
3728.47
3024,48
3083.78
3708,32
(Continued)
-------
MESILLA VALLEV HATER LEVELS FOR 1976, ALL UNITS APE IN FEET ABOVE MEAN SEA LEVEL.
INFORMATION SOURCE 1 USBRj EL PASO, TEXAS
HELL NO. JAN FEB MAR APR NAY JUN
i
j
i 3
|
5 i
9
2
2
2
:
i
i
i
i
i
i
i
J!
1
!
1
j
J
i 1
,
i
|
2
i
1 1
1 1
,
j 1
J j
<
n \
5' !
I!
; '
i
j
' J
9 V
^
\
:
; i
;
;
!
j
ji
4
1 '
! '_
I j
r
ii
• '
0
0
ii
5
1 I1
*
\ ,\
(
4!
i i
! c
c
i
i !
i
I
6
o : t
5 : :
i : i
o : t
4 : i
7 1
:
; i
; i
: i
1
?
\\lti I
!)HJ :
lili
48 40 3
4! 85
! • 7
'. ' 2
7 0
0 6
0 4
1 i *
05 6
°i 1
96 3
03
l :
i
1
1 h i i
1
68 !
60
't
\ 9 1
\
1
JUL AUG
919.12 3919.02 3920.12 392<
919,19 3918,49 3919.39 3921
913.44 3913,14 3912,64 391
896;|l 3897*81 3896.61 389
892,55 3896.15 3893,85 389
896.71 3896.41 3896.41 389:
183.33 $883,63 3882.93 399'
81.59 3882.09 3882.09 388
71.99 3872,49 3872.99 387
' fit 6 3851,16 3851*16 384
47!' 0 mo! 80 3849!fiO 384
8
D'
i
g
Bi
8
:?
,
,
•
1
1 '
1
4.1
i:
,
v
§
g'
t
t
,
f
t
s :
8 3
0 3
842 '
838.;
839!'
:825;-
7 !
j
1 (
ii
1
i
8
5
S
4
A
•1
:? i
|i|:<
8 1 1 • C
804 • \
805 8>4
11
'''IS*'
Jijlij
/' • -1
jbij
5
8 1
4 :
7 5
5 :
8 ]
1
* 1
839,85 :83
837,88 383
838,10 383
825.74 :i82
835,97 383
819,65 381
« 11*98 381
811.71 381
6 3805;06 380
8 3802,38 379
0 3797.90 379
8 3796.58 379'
1 3799,81 380
5 3796.85 3791
8
3
4 :
i '
SEP
act
wl)V LiEC
),22 3920.12 3919.82 3V11.52 3'19,12
>,09 3920.59 3919,09 39lfitb9 J*18,b9
•i4 391J'<>4 3913.04 3*17.04 3''12.44
.01 3897.01 3896.51 3b9b.21 3-98.81
,65 3894.35 3d94,75 3%93.VS J>93.95
.71 3896.01 3H9b.7l 3891.71 3»95.81
.33 3885.13 3885.53 3&86.13 3*»5.13
.99 3882.19 3883, It 38*1.89 3*»1.89
.99 3871^9 3872J29 3672.49 3176*99
*46 385U.56 3849.26 3846,96 3eb2,46
.90 3848.30 3847.80 3847. 50 3d47.SO
.25 3842.65 3840.65 3839.25 3*42,55
,58 3835.68 3835.98 1H35.48 3e39.08
.00 3838.00 3837.80 3*36, b" 3»J6.30
,54 3826.94 3825.24 3824.24 3*28,54
.97 3835,07 3834*27 3B33.67 3M3 27
,45 3819.05 3819.05 3UI6.65 3P18.25
,78 3812.18 3811.3*1 381l's8 36O9 78
*61 3810*71 3810.21 3808,91 3*09 51
,86 3803.76 3804.46 3803.46 3007 16
,56 3803,86 3805.06 3801. Hh 3UU4.16
.48 3800.88 $
:W Ht?:H ;
i:Is i?^:™
785.28 3782, SB 31
783*15 3782*75 31
786.56 3784.16 3'
781.03 3778,13 3
779.64 3777.84 3
771*34 3772*04 3
IJ'?! 3
'85l56 3
80,33 3
7o!54 3
769.20 37M.80 3768.20 3
763188 3759*16 3761.68 3
749.02 3745*42 3747.72 3
7 47 1 95 3747:7S 374&I75 3
71 |«,7 : 738177 3738107 3'
? 1
1737.99 3737,89 3"
I730*,37 3710*57 3
37.47 3]
'36*99 3
f29*,97 3J
101,78 3801.40 3794,88
98.50 3797,00 3796*,80
96.78 3796.48 3/96,38
St:U 3!Si:?i itfta
!):» IWM 1^:51
85.96 3
BO, 23 :
79.84 3
70.54 3
1786.06 3/87,66
778.93 3//B 73
779194 3779^64
768.04 3773.64
68.20 37*7.20 3769;ao
61,48 3761. SH 3761.18
47*62 3747.52 3/47132
45.45 3746,25 3/45^75
38.57 3738,57 3'39 67
138,29 3737.29 3lil,l9
29*37 3728.47 3/27 37
NBA*.., 1824.65 3824.59 1134,63 3835.34 1825.38 3825.92 3825.84 3824.60 3825.57 3825.27 3824.45 3825.90
MODI t
NEAM,,, 1881,54 3883,57 1881.70 1884,19 3884.23 3885.11 3884.72 3883.55 3884.70 3884.25 3883.20 JbBS.17
"258.?. 1718,73 1788.62 1788.61 1789.44 1789.48 3789.82 3789.94 3788.65 3789.51 3789.30 3788.62 3/89.76
(Continued)
-------
TABLE A9. SURFACE WATER SAMPLE LOCATIONS TAKEN DURING THIS PROJECT STUDY
Site #
Name and general location
Remarks
water quality assumed
equal to Site #6
water quality assumed
equal to Site #6
1 Rio Grande at Leasburg Dam
2 Leasburg Canal at Leasburg Dam water quality assumed
equal to Site #1
3 Selden Drain at N.M. State Route 85
4 Leasburg Drain near N.M. State Route 85
5 Pacacho Drain below Nusbaum Lateral
6 Rio Grande at Mesilla Dam
7 East Side Canal at Mesilla Dam
8 West Side Canal at Mesilla Dam
9 Del Rio Drain at East Side Canal
10 Mesilla Drain at East Side Canal
11 Mesquite Drain near East Side Canal at
Bannock Lateral
12 Del Rio Drain at Vado off N.M. State Route
80-85A
13 Chamberino Drain off N.M. State Route 266;
north of LaMesa Drain and Marquez Lateral
14 LaMesa Drain at Rio Grande above W.W. 31
15 Anthony Drain above East Drain and South
of Anthony, Texas
16 East Drain below Anthony Drain Junction
17 West Drain at Texas State Route 260
18 Nemexas Drain at Texas State Route 260
19 Montoya Drain at N.M.-Texas State Cine
20 Rio Grande at El Paso (Crouchane Bridge)
115
-------
TABLE AiO.
HL* ORAtN FLO*S Ifc ArRp-FEKl/MONTH,
Slie YEAR JAM FEB *AK APR 4AX JlltX JUL AUG 5EP OCT <«OV DEC
5
12
12
14
16
17
17
if
I*
i H
1?
1975
197b
1975
1976
1975
1976
1975
1976
1974
1975
1976
1974
1975
1976
1975
I97b
215,
357,
2029,
25«2.
2/7,
R6tH
603,
1722,
1 2* 1 ,
7 u 7 ,
2*75,
2705*
194,
1588.
3060,
400,
1007,
518*
255,
1272,
1311.
25 J,
4*3,
3 0 7 7 I
295. 298,
246J 446,
2214. 3142.
3720^ }285.
113*; i54/!
3«1. 583.
615* 1 *57.
584. 1696,
1051, 1380.
1599. 1993,
4333.
2707,
2005,
360J,
1125.
J 19y.
1220,
3005,
4493,
307,
277,
3720,
3843,
2367,
?49U.
1045,
1722,
2054,
2214,
1599^
IbbO,
1537,
3658,
3720,
307,
369,
4027,
3413,
2798,
156H.
1691,
2029,
1875,
3794,
1722,
1537,
1476,
3720.
3400.
446,
3898,
3421,
3570,
3005,
2410,
1934,
2358,
4195,
3671,
1952,
16b6.
1428,
5224.
J291,
523,
282,
4027,
3376.
3105,
1347.
2490,
855.
2152.
4027.
1882.
1783.
1875.
1314.
5257.
3074.
226.
297,
2987.
1815.
2249.
863.
1607,
893,
1363,
2856.
1220.
655.
1202,
595,
4034,
2975^
277,
228f
2337,
2017,
107n,
73b,
7931
1906,
1107,
922.
769,
646,
2423,
2472,
-------
TABLE A-ll. SURFACE FLOW AND WATER QUALITY DATA. MESILLA VALLEY
SOE DATE
19/ 9/75
20/11/75
14/ 1/76
26/ 2/76
2/ 4/76
30/ 4/76
17/ 5/76
iM/ 6/76
29/ 7/76
26/ 8/76
4/10/76
2/11/76
7/12/76
10/ 1/77
3/ 2/77
3/ 3/77
14/ 4/77
9/ 5/77
7/ 6/77
Jl/ 7/77
9/ 8/77
»/ 9/77
9/10/77
6/11/77
FLO*
AC-FT
0,00
0.00
0.00
0.00
0.00
o.oo
0.00
0.00
0.00
0.00
0.00
0.00
0,no
6,00
o;oo
0,00
o.oo
0,00
0.00
0,00
0.00
o.oo
0,00
0,00
MG/L
173.0
152.0
91,0
87,0
73lo
*2,0
7liO
70,0
72lo
75,0
148.0
303.0
240,0
206.2
186.8
217.6
102.6
l
98.9
181.7
K
HG/L_
10.6
12^9
9^4
jjj
5j5
5^5
o
CA
135.0
143.0
187.0
78.0
63.0
62.0
61.0
62,0
6ojo
130,0
110,0
135.0
121.2
10^9 134,9
7;4 67,1
O 74^
9.2 7lj3
7*8 12'?
7JO
64,5
J19.0
135,5
MC
MG/L
24.2
28.6
35. «
13.4
11.4
11.7
11.2
fW
24.1
HC03
MG/L
260.0
248.. 0
265,0
204;o
168,0
170,0
i57'0
200,0
204,0
167,0
218.0
CO 3
MG/L
0.0
0.0
0.0
0.0
12.6
0.0
0.0
24.0
0.0
S:2
0.0
ig;g
3,6
10,6
.0
0
,
0.0
0.
CL
MG
/L
133,0
158,0
96.0
45.0
40.0
46;o
42. U
43lo
47,0
125!u
386.0
252 0
370,6
162 1
196.4
80 8
504
MG/L
359.0
255.0
Soejo
N03
MG/L
0.4
0,1
0,5
23
2,0
1-2
0,0
ojo
0.0
0
0.2
PH
0,0 0,00
-.u
8.21
8.35
8.31
8 23
.54
t?
6
66
7.40
,3 8.15
02 8.2
SEE PRECEDING TABLES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE OR
WERE NOT RECORDED.
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS^RUCES. AVAILABLE- (CONTINUED)
-------
TABLE A-11 (CONTINUED)
oo
SITE DATE
19/ 9/7
2^/11/7
i4/ 1
26/ 2
y 4
30/
/76
.in
un
6/76
7/
4/
5/10/J6
Kli/i
I*
9/10/
I/'
^^•
FLOW
AOFT
8:
o.oo
8:83
0.00
0.00
0,00
0.00
0.00
0,00
0.00
0.00
.
162.4
165 1
CA
K«/b
130
157
•M
«
66
121
'?!
Hf
163
•M
93
.
,
*
.
*
.
.
.
.
.
.
.
.
.
*
.
*
0
0
0
o
0
0
0
0
0
0
0
0
0
7
6
i
MG
MG/L
26.9
2H.6
11:?
2!
ii
2
I!
2.
21
2»
•:i
.7
:!
<*•
• 9
'••!
1.7
2?'Z
25.8
20.6
22.3
HC03 C03
MG/L MG/L
CL
MG/L
504
MG/L
198.0
?IH
:
•1*2. "
181,0
333*0
328,0
154.0
U:8
319*0
»»»:'
hl:J
0,0
8:8
0.0
8:8
0:0
8:8
8:2
1 :
0.0
8*8
0.0
16.8
0.0
160.0
i$W
U:S
136.0
M6,0
ISOiO
15420
162:0
'!:«
160 0
159^
18:t
J."^
N03
MG/L
!iS;
«t?
4,
60,0
?i;i
solo
:8
370,,
0,0
SEE PRECEDING TABLES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE, OR
WERE NOT RECORDED.
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
(CONTINUED)
-------
TABLE A-U (CONTINUED)
SITE DATE
10/ 1/77
3/ 2/77
3/ 3/77
14/ 4/77
9/ 5/77
7/ 6/77
ll/ 7/77
S 9/ 8/77
5 »/ 9/77
5 9/10/77
5| 6/U/77
FLOW
AC-FT
0.00
0.00
0,00
ojoo
0,00
0.00
0.00
0,00
NA
MG/L
221.0
157.0
11:8
I79i0
201.0
8.0
8.0
N03
MG/L
PH
"""
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
UNAVAILABLE, OK
(CONTINUED)
-------
TABLE A-11 (CONTINUED)
SITE DATE
FLOW
AC-FT
NA
6
6
£
5
6
6
6
6
6
6
i
6
6
6
6
6
6
6
6
19/ 9/75
20/11/75
14/ 1/76
26/ 2/76
31/ 3/76
29/ 4/76
17/ 5/76
24/ 6/76
29/ 7/76
26/ 8/76
4/10/76
2/11/76
7/12/76
10/ 1/71
3/ 2/77
3/ 3/77
14/ 4/77
9/ b/77
7/ 6/77
ll/ 7/77
9X 8/77
8/ 9/77
9/10/77
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
•
1
1
Q
f
f
f
f
f
f
g
1
•
•
•
t
f
t
f
•
00
00
00
00
00
00
00
00
00
00
00
Ou
00
00
00
00.
00
00
00
00
O'.OQ
0.00
0.00
183
163
234
92
72
62
70
78
75
164
202
207
203
186
2i7
18J
87
91
. i?i
f
f
9
f
g
f
1
•
*
•
•
t
•
^
•
•
•
0
0
0
o
0
0
0
0
0
0
0
0
8
0
5
2
5
7
4
K
MG/I.
".!
CA
MG/L
123,6
141,0
MG/L
HC03
MG/L
178.0
165,0
184,0
205,0
168,0
221.0
)9.0
C03
MG/L
CL
MG/L
184;o
20410
4:
4|
i;
:
1
18
304
MG/L
N03
MG/L
PH
00
ol
,S?S ffr
Hi
4 6
; i
4 ft
0 5
6 4
0 10
?:1
I;'
ti
!;
ii
o.o
850 0
40 0
650,0
66f -
64(
63C
>|i§:8
1:1
1: I
•i5
:
Ii
60,0
SEE PRECEDING TABLES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE, OR
WERE NOT RECORDED.
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE. (CONTINUED)
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
-------
TABLE A-11 (CONTINUED)
SITE DATE
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
FLO*
AC -FT
MA
hG/L
K
MG/T
CA
MG/L
20/11/75
14/ 1/76
26/ 2/76
Jl/ 3/76
29/ 4/76
i7/ 5/76
24/ 6/76
29/ 7/76
26/ 8/76
4/10/76
2/11/76
1/12/76
icy 1/7
3/ 2
1
/77
3/ 3/77
4/77
5/77
7/ */77
ll/ 7/77
9/ 3/77
8/ 9/77
9/10/77
6/11/77
0,00
o.ou
0.00
0.00
0.00
0.00
0.00
0.01)
O.Ob
0.00
0.00
0.00
0.00
0.00
0,00
0.00
0,00
o.oo
0,00
0.00
0,00
0.00
0.00
131.0
146.0
140.0
144.0
128.0
122.0
121.0
141.0
134,0
138.0
4
142.6
5.9
153.4
129*3
126.5
123.7
125.3
144J4
75,0
99jo
98.0
102,0
119,0
»8.| H!«°
?:I
II
$
O f»,U
7J8 107^
J -----
;i
M
89,0
101, 8
110.4
104.6
HC03
MG/L
C03
NG/L
117.0
,0
Ui.O
107,0
113,0
107.0
104.0
259.0
V.9.0
— --f ** V f
Mil:i
PH
3.6
1.4
2.5
2:0
0,5
0,4
0.*4
0,5
0,3
227
ois
08
2,8
1170,0
1450:0
1220.0
mill
T VALUES °F ZER° INDICATE THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
UNAVAILABLE, OR
(CONTINUED)
-------
TABLE A-11 (CONTINUED)
NJ
to
SltK OATt,
11
11
ii
It
I!
11
it
11
11
11
11
11
u
1
iu/11/75
14/ 1/76
26/ 2/7h
31 / 3/7«.
4/7b
4/ 6/76
7/76
S/76
4/10/76
2/11/7*
7/12/70
10/ 1/77
3/ 2/77
3/ J/77
14/ T/77
*/ 5/77
7/ 6/77
tl/ 7/77
«/ 9/77
AC-FT
O.Ol.
O.i)')
O.oc
O.Oil
O.di)
li.WO
ii. OH
0.00
o.f'l'
c.oo
0.00
0.00
0.00
0,00
P. I/O
0 . 00
0,00
M
396.0
41V,0
263,0
1S9.U
713.0
21).0
285.0
12V.0
'
7,t-
497.1)
467.0
413.3
. 4
101,7
931*
99, H
90,6
88.*
iyo.7
C*
MG/U
23.9 170.0
16.0 16*.0
14.b 9i,o
11*0 7 JIo
l'V3 196*0
ta * *. *f r. f •
™.n r'' § I/
1S|4 132ju
• **•*_ A 4 • v .
HS
.
130.7
116.2
toy.n
70,7
66,7
74,§J
64, b
63,)
bb.b
51.4
36.8
2UJ
24j/
24.3
32. b
16.7
b/.
.l
,9
SU.3
\M »
.O
U.9
14.1
i;.b
U. /
14.0
HC03
MG/L
~3"u7o
499.0
243.0
200,0
260.0
175.0
233I.
181,0
277 Ju
323.0
212.3
256.2
146.4
9.8
6^9
207,4
184.3
196.5
201.3
U3
0.0
0.0
0.0
0.0
0,0
b.O
10,8
0.0
0,0
0.0
lb.8
0.0
10.8
0.0
8*4
18.0
10.8
0.0
14 4
8.4
0.0
2990.0
820.0
4SOJO
3220.0
930.0
880,0
900.0
83010
820.0
880.0
SEE PRECEDING TABLES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE OR
WERE NOT RECORDED. '
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
(CONTINUED)
-------
TABLE A-11 (CONTINUED)
OJ
SURFACE; FLU* A*O *ATKH OUAMI'Y IJATA, MICSILLA
Slit OATE
*6/ 2/7h
31/ 3/76
it/ 4/7*
17/ 5/76
.
2<»/ 7/7b
Z6/ «/76
4/10/7*
2/J>J/7fc
7/J2/76
t/77
/77
6/77
9/ 8/77
80/97/71
9/JO/77
6/11/77
^04
^03
PH
2,6
ii!
15
if
• 9 !
,
*
II
85
17
46
a
} 045,0
i9?:o
J.J
1460,0
460;0
SEE PRECEDING TABLES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE, OR
WERE NOT RECORDED.
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
(CONTINUED)
-------
TABLE A-ll (CONTINUED)
ilTE
14
14
14
1*4
14
11
14 ,
I*
14
14
1 4
14
14
14
14
14
14
14
14
14
14
14
DATE
19/ 9/75
20/11/75
14/ 1/76
26/ 2/7h
31/ 3/76
29/ 4/7b
l7/ 5/7b
24/ 6/76
^9/ 7/76
ibt 8/76
4/10/76
2/11/76
7/12/76
10/ 1/77
3Y 2/77
3/ 3/77
iS/ 4/77
10/ 5/77
7/ o/77
ll/ 7/77
9/ 6/77
6/ 9/77
9/10/77
6/11/77
FLO.*
AC -FT
0.00
U . 00.
0,00
O.IM
0,00
0,00
0,00
0,00
0,00
(i.O (.1
',',00
". 00
11,00
0,00
«',00
0,0 ii
0,00
0,00
0 , 0 0
0,00
0,00
0,00
0 , 0 u
Uj.00
MU/L
23H.O
t h 3 . 0
254,0
205. 0
217jo
182,0
175,0
20^.0
1 9 ] , 0
215,0
252,0
252.0
237.8
213.9
241.0
187J9
1 P 4 , 2
190,0
1*2.2
181.9
177. *
234,6
304,8
K
MC/t.
11,3
1 o* 2
10:2
9 t>
9IH
9^4
9 C
9*6
9*6
13J7
9 J"
io;9
10 2
12*1
10*9
10^
113
10.2
10j9
9^
\b\9
CA
159,0
160,0
2 1 fc . 0
Hl:8
103,0
103,0
145, U
96 , 0
125.0
211.0
213,0
20P.4
147, V
169,1
134!$
134J7
146,7
125,9
135^
163! 7
167,3
MG/t
29.8
n:^
36,4
30 , 0
'**'•$
1*,$
27.7
J2.6
36.2
Jo. 7
35.4
35 . ?
28.0
25.8
26 Is
25:8
3o,0
35.6
HC03
MG/l,
323.0
301.0
445.0
299.0
212^
310,0
162,0
308.0
319, u
170,0
261,0
333jo
342.9
203. b
270:«»
253.8
244.0
316.0
248,9
256^
257,5
285,5
C03
0.0
0.0
0.0
0.0
0.0
6:0
0.0
o.o
0.0
44.4
10.8
0.0
0.0
0.0
10^
21.6
0^
18.0
16,8
18.0
0,0
0^
QL
MG/L
"789 ","o
203.0
?23.9
S04
MG/L
448.0
357.0
515.0
405,0
366?0
383.0
391.0
36i;o
388,0
427.0
472,0
599.0
567jo
618.6
518,2
588:4
403,0
397,7
424.6
420.7
409:2
380.4
542,7
5B&:0
N03
nG/L
PH
2.4
l!l
5.3
2,0
1:1
\\l
W
IDS
MG/L
1400.5
1229.4
1702,7
1257:$
1098 8
_ 86.4
1235;2
I08b 4
I294J7
165715
t.C,
fc"*O
1000,0
1610:0
2370.0
1740JO
1600.0
1680.0
1570,0
1500,0
1620.5
1450.0
1720,0
2030.0
2040,0
1930,0
20!8»0
1650.0
1630,0
1610,0
2l9
SEE PRECEDING T^LES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE, OR
WERE NOT RECORDED.
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
(CONTINUED)
-------
TABLE A-11 (CONTINUED^
ISS
sue
16
$•6
16
16
6
6
i
6
6
6
6
it
ft
16
16
16
16
16
16
DATE
19/ 9/75
20/11/75
14/ !/•"»
26/ 2/76
31/ 3/76
2«/ 4/76
17/ 5/76
24/ 6/76
29/ 7/76
26/ 8/76
5/10/76
2/11/76
7/W/76
13*/ 1/7?
3/ 3/77
14/ 4/77
9/ 5/77
7/ 6/77
ll/ 7/77
9/ 8/77
8/ 9/77
9/10/77
6/11/77
FLOW
AC: »FT
0,00
0.00
0,00
0.00
0,00
0,00
0,00
0,00
0.00
0,00
0,00
0.00
0,00
V ff W
0.00
0,00
0.00
0,00
0,00
0,00
0.00
0.00
0,00
MA
462.0
383.0
704.0
96.0
320.0
444.0
247.0
390.0
367.0
22^0
611.0
678.0
659.2
685.9
677.6
296.9
488.5
444^
soojo
318l8
183.5
601.2
603.1
9!i
CA
J«G/li
134,0
138,0
77jo
•«:8
^W
58.0
A 46,0
102^
till
105,6
99,2
95^
88^
94^
12V. 9
97.2
MG
MG/L
35.1
11:1
W.
HC03 C
MG/b_ MG
438,0
409,0
600,0
210,0
2310
3S5.0
198,0
!?§:<•
03
MG/L
0,0 414,U
" %
S04
MG/L
0.0
0.0
589
ffi-j
330.0
286,0
i9i;o
481,0
572JO
575iS
?!«•»
422,3
390!|
407,8
?S3."
I73I7
)42|3
525^2
N03
MC/L
PH
B.C.
t'»6
SEE PRECEDING TABLES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE, OR
WERE NOT RECORDED.
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE. (CONTINUED)
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
-------
TABLE A-11 (CONTINUED)
SITE
Is)
SKf,
19
J»
0.00
§:SS
8:88
l
8:88
s»:8
287.0
i!5:S
211:8
ill
7^5
364,0
356.0
495.0
298,0
201,0
3t? 0
25.2
0.0
8:8
256,0
295*0
314^0
226^0
204^0
219. 0
200,0
208;o
196,0
219,0
m f
t
300 7
226J6
220,6
ll-
S?8:2
«1
43!
2.7
'
3.
*
.1
*Z
*
.
0,5
1.0
IF N°T LISTED THERE' THKH THEY ARE
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
UNAVAILABLE, OR
(CONTINUED)
-------
TABLE A-11 (CONTINUED)
SITE DATE
20/11/75
14/ 1/76
26/ 2/76
31/ 3/76
29/ 4/76
17/ b/76
24/ to/76
29/ 7/76
2«/ 8/7e
4/10/76
2/11/76
7/12/76
lt>/ 1/77
3/ 2/77
4/ 3/77
9/ 5/7
ll/ 7/7
9/ 8/77
8/ 9/7'f
9/10/77
AC»KT
0.00
0.00
0.00
0.00
0.00
0.00
ojoo
0:00
0.00
0.00
0*00
0.00
ojoo
ojon
0.00
0.00
3.00
0.00
NA
HC/b
266.0
361.0
190.0
132!o
120,0
118.0
216^
164jo
244.0
310JO
jujo
356^0
461.1
193,4
176:9
»!7:i
134i3
431,9
36.9 :.8
CL
M^
/L
S04
HC/L
494,0
488:0
0.0 301.4 !
S 0 269^9
NU3
MC/L
2.2
• 4
PM
0,9
1,0
9 ?
:s
»«g
IDS E.G.
G/L 6-6
!P-?
2090,0
2400.5
1510.0
I030jo
"9:8
SEE PRECEDING TABLES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE, OR
WERE NOT RECORDED.
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
-------
TABLE A-12. GROUNDWATER SAMPLE LOCATIONS TAKEN DURING THIS PROJECT STUDY
Site #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Well #
USER #26
USER #20
USER #19
USBR #18
USGS-Well Nest
USBR #16
USGS-Well Nest
USBR #12
USGS-Well Nest
USGS-Well Nest
USBR #13
USBR #14
USBR #8
USBR #7
USBR #6
USBR #24
USBR #5
USGS-Well Nest
USBR #22
USGS-Well Nest
USBR #28
USBR #39
USBR #29
USBR #1
USBR #2
USBR #7
USBR #36
USBR #33
USBR #34
Name USGS Location Remarks
22S.1E.09.241
22S.1E.09.333
22S.1E.16.433
22S.1E.35.343 WL only
Highway 70 N. 23S.1E.10.134 North Well
23S.1E.16.211
Firehouse 23S.1E.13.411 South Well
23S.1E.16.424
USBR yard 23S.2E.18.313 North Well
Harris Farms 23S.1E.34.423 South Well
24S.2E.08.434
24S.2E.09.433
24S.2E.28.331
25S.2E.04.114
25S.2E.23.212
25S.3E.20.321
25S.2E.25.322
Berino East 26S.3E.03.344 2nd well from east
26S.3E.09.212
Berino West 26S.2E.12.421 Middle Well
26S.3E.15.112 WL only
26S.3E.32.441
27S.3E.02.112
27S.3E.28.314
27S.3E.32.231
28S.3E.11.311
28S.3E.15.122
28S.3E.24.323
29S.4E.06.243
128
-------
TABLE A-13. DEPTH-TO-WATER AND GROUNDWATER QUALITY DATA, MESILLA VALLEY
SITE DATE
ro
vo
DEPTH
FEET
NA
MG/L
K CA NC HCOJ
MG/L MG/L MG/L MG/L
CL
MG/L
S04
MG/L
N03
MG/L
PH
:l
i:S
?is
li!
9^0
; i
23
2!
ilii
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; AND NHSU, LAS CRUCES.
22-
57,
.0
:
§4
i.
w
8*2
ill
i •'
5ii
3 7,4
liW
(Continued)
-------
u>
o
TABLE A-13. (CONTINUED)
SITE DATE
DEPTK
FEET
MG
MG/L
HC03
MG/L
C03
MG/L
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
CL
MG/L
129.0
tllii
ft;
504
MG/L
321.0
7°2°:8
isHo
iliil
n-.
99J
45 J
4.2
ii!
8»?
:
?•!
iii
5:JS
i:W
8.01
ii
.15
43
E»
1560.0
i21o!
1:
t
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
DEPTH
F
io;a ios.0
781 !fi:8
& i!l:S
i: 18:8
9? ISOJS
Ii i!
i«i?
... }«:»
"iLlli;*
29.0
l»:8
31)0
442.0
M4.0
i , O • V
i«:§
H!:8° 1:1:8
"•* i§fU
249,0
1W
h:t
3?;8
0.1
g;|
8'?
8:?
*:
,
0,
8:§ ?
0,4
0.8
0,3
o;4
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
co
NJ
SITE DATE
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
16/ 1/76
26/ 2/76
2/ 4/76
30/ 4/76
17/ 5/76
J4/ 6/76
29/ 7/76
26/ 8/76
4/10/76
3/11/76
7/12/76
10/ 1/77
3/ 2/77
3/ 3/77
9/ 5/77
7/ 6/77
i/ 7/77
$/ 8/77
8/ -9/77
13/10/77
10/11/77
l
DEPTH
FEET
0,00
1.78
J:I?
1:1!
3.81
3.96
4^09
4,20
joo
3j29
2.30
2.93
4^20
4.39
NA
MG/L
K
MG/L
c»
MG/L
MG
HG/L
HCD3
MC/li
C03
MG/L
CL
MG/L
504
MG/L
N03
MG/L
'11:8
80.0
86.0
92.0
98 0
9fe|o
108.0
117.0
8* t ,
.•i
9 f
95.0
rslo
65.0
66.0
20o;i
179,4
18413
58.6
). 5
6.2
15.6
10^8
uU
0.0
0,0
6,0
0,0
'i
0.0
0,0
91.0
fS:S
tl:«
II 1
50jo
50 0
73,0
59^0
4* 7
45 4
46;«
55 3
83^0
8914
4 4
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
PH
0,0 7.97
8-i l:fi
nil a 4,4
,44
I:!*.*
I 33
!:»
li
o;s
o.i |;o7
oJO §41
7.83 681
690J7
854,4
R20.1
4
70,(
50.
60jl
7o:<
20,1
8oJ(
30,(
90V
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
DEPTH
FEET
NA
MG/L
MG/L
MG
MG/L
HC03 C
MG/L NG
03 CL
/L MG/L
504
NG/L
N03
MG/L
PH
IDS
MG/L
co
ii
1
li:.
Jlj
!i
4*'
*
;;||
x*
J.
*•
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
0.0
0,5
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
i
i
i
I
DEPTH
FEET
IS/ 1/76
' 1/7
36/ 4/76
17/ 5/76
6/76
_ . 7/76
26/ 8/76
1/10/76
VAW
' ' 1/77
„. a/77
3/ 3/77
4/ 4/77
9/ 5/77
7/ 6/77
I/ 7/77
9/ 8/77
8/ 9/77
3/10/77
0/11/77
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE CUTE
9
9
I
9
9
I
9
I
9
9
IB!
IB ?<2?
a«/
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
i560((
i?7o;<
u $:<
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
DEPTH
FEET
NA
MG/L
CA
HG/L
MG
MG/L
HC03
MG/L
C03
MG/L
504
HG/Ii
N03
MG/L
PH
M W
CO
)0
10
!*
io
}8
10
i8
to
1*
10
i!
ii
10
16/
2/
1/76
_ 4/76
30/ 4/76
1-7/ 5/76
24/ 6/76
29/ 7/76
26/8/76
3/ll>
7/12/
ll/ f>
i/10/76
L/76
n/-}fl»
" ?«?
1/77
9/ 5/77
7/ 6/77
ll/ 7/77
9/ 8/77
8/ 9/77
13/10/77
10/11/77
•J r
M
M.O
103.0
115,5
10.9
14?2
13,
13,6
!!:!
11:1
21 6
194.0
0,0
0.0
f:i
6.0
§•2
9,6
0:8
5:S 67.
U6 ios;o
8:8 \n:l
. *•-•-
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
DEPTH
FEET
NA
ftC/L
K
MG/f
CA
*G/L
("G
MG/L
BU
M
Ml f*
11
ti
i
\\
11
ll.?4
21/11/75
IS/ 1/76 12^46
26/ 2/76 12.56
31/ 3/76 Ills*
?»' «'2§ ll«0
29/ 7/76
26/ 8/76
4/10/76
3/11/76
7/12/7
10/ 1/7
3/ 2/7
1.26
-J:lf
11,99
11
!:S
;
S:8
•
8;8
| 8
•
S:S
.
85lo
88,0
2fli° 217,c
79,0 236,C
85.0 250.0
**$ 533|0
8:8
i;i
8-8
'6g;o
05,0
«7,0
"0
,0
o.o
0.0
0,0
o.o
930,0
llm
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
OJ
00
SITE DATE
DEPTH
FEET
NA
MG/L
K
MG/T
MC*
MG
MG/L
HC03
MG/L
CO 3
MG/L
CL
MU/L
SQ4
MG/I.
NO 3
MG/L
PH
IDS
MG/L
t.C.
fc*""O
!i
12
2/76
3/76
15/ 1/76
26/
1^ an
24/ 6/76
29/ 7/76
26/ 8/76
4/10/76
2/11/7*
7/12/76
10/ 1/77
3/^2/77
3/ 3/77
14/ 4/77
9/ 5/77
7/ 6/77
ll/ 7/77
9/ P/77
8/ 9/77
13/10/77
10/11/77
!M
126.0
107.0
135.0
140,0
123*0
126,0
Hl:l
168.0
»§?"*
:
8 349.0
0.0
0,0
32l4
2:8
I:*
i:S
2?*!
i-g
o;o
0.0
A 2EKU VALUE INDICATES THE INFORMATION IS
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU,
NOT AVAILABLE.
LAS CRUCES.
•
:••;?
!S:S
1J?:S
215.0
fii:l
3B:8
273*0
30< -
29'
0,0
0,0
0*2
0*5
ill
5*9
?»9
8:1
887,6
in:
»«:!
8?W
m'2
1190.0
880.0
1110*0
1160.0
1080,0
io«o;o
1180.0
1010 *
12000
(Continued)
-------
TABLE A- 13. (CONTINUED)
U)
VO
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
FFET
HA
«G/L
CA
MG/b
M(J
MG/L
HC03
MG/L
C03
MG/L
CL
MG/L
S04
MG/L
M03
MG/L
PH
IDS
§•£
£•6
•e-
o
ii
ii
ii
14
i!
15/ 1/76
27/ 2/76
is iinfli
17/ 5/76
5S/ 6/76
JO/ 7/76
27/ 8/76
5/10/76
2/11/76
8/12/76
ll/ 1/77
4/ 2/77
4/ 3/77
4/77
5/77
6/77
7/77
B/77
9/77
15/
to/
8/
12/
to/
9/
13/10/77
IO/il/77
224,0
276,0
285,0
290,0
267,0
254,0
283,0
253,0
268.0
278,0
274*2
2§3.5
11?:?
270,9
27 U9
24* 4
274*,4
293JO
266*,3
8,0
69,0
58. 0
43.0
209,0
195.0
166*1
'!!:!
182.4
139.5
142;?
30,6
27 5
26,6
29,4
29j7
5b 5
42.6
4?|S
42 7
383,1
126.1
158,1
155,0
165,9
68 3
242,6
163*5
J48 §
1:1
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
1,1 9.61
0.2 1.5-
3:6
'.* 1.58
III 7ii§
694,8
1039 0
!HS»S
1640.0
1640,0
1760.0
18!8:8
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
16
16
16
U
16
16
16
J/7*
ffl
5/77
.. 6/77
H/ 7/7J
V 8/77
%/ 9/77
13/10/77
10/11/77
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE 0»TE
Off 1H
FFET
HA
MG/L
K
*G/T
C».
MG/L
HG
HG/L
HC03
MC/L
COS
NG/L
CL
NG/L
504
MG/L
NOJ
MG/L
PH
IDS
G/L
E.G
t,»6
, I
17
1
7
17
17
17 27/ 2/76
[7 J1/ 1/76
17 29/ 4/76
|7 17/ 5/76
17 25/ 6/76
17 So/
.-. 7/76
7 27/ 8/76
7 4/10/76
2/11/76
8/12/76
l«J«?
5/77
8/ 6/77
17 12/ 7/77
J7 !
,/ 8/77
9/ 9/77
17 13/10/77
17 10/1
1/77
9.79
9;os
8,97
8.67
1:1!
5;SI
9.92
»:li
j8:|{
10J58
10,76
10*76
10 95
11,00
'43,0
786J8
902.0
837*,0
864,0
2!2l?
R35.4
935.9
295.0 486,0
448,0 1100,0
»l: iiiis.
0
,0 1460.0
1:1 nil:!
422.0
2410.0
»t{;l
4J40IO
4340,0
mlil
"iw
*:*
I3o o
50,0
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
Ul
TABLE A- 13.
(CONTINUED)
SITE DATE
19 21/11/75
19 14/ 1/76
19 26/ 2/76
19 31/ 3/76
19 29/ 4/76
19 17/ 5/76
19 24/ 6/76
19 29/ 7/76
19 26/ 9/76
19 4/10/76
19 2/11/76
19 7/12/76
19 10/ 4/77
19 3/ 2/77
19 3/ 3/77
19 14/ 4/77
19 9/ 5/77
19 7/ 6/77
19 ll/ 7/77
19 9/ 8/77
19 8/ 9/77
19 13/10/77
19 10/11/77
DEPTH
FEKT
7,96
8.31
*;35
h,20
7,41
6l54
6,94
6,38
7*51
7.86
8.00
8.25
8*44
7,55
6.98
7*32
R.19
7*76
7*20
flj30
NA
MG/L
291.0
574,0
759;o
695,0
736.0
775.0
7$3 *,o
715,0
761.0
678.0
747*,0
769.0
700,3
663.8
650.7
650.0
M5.8
675.0
667.0
656.7
84U8
799*,0
821.1
K
MG/T
43.4
6114
74*.7
62*2
7l*,2
72*,7
64*9
70*,4
f>9.9
73*9
74*7
79*.4
68*,0
71*2
73*.!
68*.4
76*2
78*.2
78*2
91 1 i
84!S
103 o
CA
MC/L
49.0
2o;o
2* Jo
24lo
23,0
24,0
i7*o
16,0
13*0
36 |o
27ll
32 1
38,5
26,1
29;s
24 2
19J4
17,2
25j7
26,9
25 7
MG
MG/L
H:i
HC03
MG/L
> 188.0
) 34610
43,9 388JO
31.7 282.0
37,9 360.0
tf:j
1 354.0
P 372.0
42.4 354iO
32,3 298.0
31, t
57l,
> 331.0
I 472!0
53.7 332^0
47,7 303,8
21,3 286.7
53,0 262,3
48,8 233.1
49JS
50,.
5ljj
43j<
45.3
74,'
> 275.8
t 272,1
\ 275,8
> 228,2
I 394,1
f 385*6
> 377JO
C03 CL
MG/L MG/L
504
MG/L
14:! 83:8 JH:8
29.7 699*0 631.0
32.4 656,0 540,0
10.6 633.0 600.0
47.4 654.0 647.0
31,2 657jo 590.0
522:f W:\
52*8 575jl
20|4 703.|i
24.0 695. (
H:| SM:
31,2 602.
32,4 600,
20.4 582.2
20.4 620^5
i tig'S
1 °610.0
> 889.0
Wl:!
«»:«
693.1
701,2
686*8
20,4 585,1 696,4
33.6 613.5 662,8
25l2 757*4 83o!|
40,8 756,0 845,3
25*2 750;o 888.6
N03
MG/L
PH IDS
MG/L
0,5 8.84 1054,0
00 8!26 1987!l
0.5 i
0,6 i
3.0 i
2.0 1
3^5 (
3.7
4*1 I
0*3 !
1.21 2653J8
1^61 2323 9
1.24 2494;7
J.76 2620,8
182 2527*1
>,60 2474.6
J.84 2575.6
l!72 :366!s
01 li:32 ! 09217
0*,2 (
§:! !
?:S !
J.37 2777J6
U40 2554*3
1*89 2281,6
•:7? l^f:i
i . fy < J an .1
0.1 8i59 2373.4
1*5 §147 2427*6
0.0 8,42 239K7
0,5 8.95 2334. S
33.5 8.58 3045.0
0,4 1
04 1
1 39 3015 1
1^34 3067 Jl
t.c.
£•6
1490,0
3110,0
3760*0
34io;o
3670,0
Hifj
HI8:S
3390*.0
405o;o
3770,0
MM
HIM
J550.0
3630,0
3630*0
36iO.O
4400.0
4750.0
4750,0
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
20
20
20
20
20
30
20
20
JO
20
20
0
0
0
20°
38
I*
20
20
19/ 9/75
27/ 2/76
Si/ 3/76
29/ 4/76
17/ S/76
25/ 6/76
So/ 7/76
27/ 8/76
5/10/76
2/11/76
8/12/76
ll/ 1/77
4/ 2/77
3/ 3/77
15/ 4/77
10/ 5/77
8/ 6/77
W/ 7/77
10/ 8/77
9/ 9/77
13/10/77
iO/H/77
DEPTH
FEET
0,00
5.26
748
8.61
8*,83
8*,99
10.6B
*
0.00
9.0J
NA
MG/L
107.0
99,0
119,0
ll?Jo
104.0
109.0
106.0
115,0
109,0
127,0
122.1
108.6
Ul.l
115,9
117*3
124,9
114.3
116.6
U0.4
9.9
127,7
K
NG/T
C*
MC/L
MG
HG/L
HC03
M6/L
C03
MG/L
65,0
U:8
68,0
fi:8
BO;O
65,0
i04;8
139^0
136,1
87^4
?! S
93^0
94^
93*
2
*.4
1J.§ ?9?«?
169.0
523 0
162 0
215,0
212*0
195*0
207*0
19410
22l!o
216 0
181.8
189 1
176.9
135U
nit
\i:t
15.4
11:1
J?:l
B:J
14.6
IS,2
1 =
1:1
0.0
16,
224.5
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A^13. (CONTINUED)
SITE DATE
DEPTH
FEET
MA
MG/L
K
MG/T,
21/11/75
4/ 1/7*
7/ 2/76
1/ 3/76
29/ 4/76
17/ 5/76
J5/ 6/76
30/ 7/76
26/ 8/76
5/10/76
2'l
6/1
ll/
4/
3/
15/
10/
7/
ll/
9/
13/10/77
10/11/77
i'76
2/76
1/77
2/77
3/77
4/77
5/77
6/77
7/77
8/77
186.0
396.0
333.0
18,8
17*2
14*,9
16!4
2l!l
23*,5
2o!s
2|*,S
,
2|!9
l\\\
19.4
19.9
19J2
17*,2
J9!5
H'e
17*6
192
18!8
17^2
3.0
1.0
?•!!
l»"
36jo
34.0
14.0
155.0
H?:l
m-.i
94.0
\&l
'« j
27 J 3
38.3
560
278lo
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
i!?.?
63;o
i8l!
1130,0
2500,0
2150,0
2000,0
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
00
21/11/75
14/ 1/76
26/
3/76
13!
4/ 6/7K
9/ 7/76
2/11/76
iili!
7/ 6/77
l\',im
MAW
10/11/77
DEPTH
FEKT
NA
MG/L
K
MC/I
CA
MG/L
MG
MG/L
HC03
MG/L
MG
C03
/t
CL
KG/L
804
MG/L
N03
NG/L
PH
7.93
a;o4
7^88
lilt
6.84
26/ 8/76 6 4
6.73
:l
205,0
345^0
277*.0
.
345,*5
24
0,0
o.o
ojo
*3
o.
3^8
6*,o
f
0
6
0.
0,0
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
211.0
300.0
.» v
11
151:
ii*:»
18
346*,8
I*^
tl :i
5187
TD*
MG/L
999,
8
2.6
3 5
1290.0
2MU 0
Oo
60*,0
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE
!J
5/7
6/77
7/77
DEPTH
ue.Tn
?«:!
W:l
-?7:X
•» * •* ' rrrr • v • * «r
4 9/ 8/77 10.04
4 8/ 9/77 9.74
4 13/10/77 10.43
4 10/11/77 10,54
8
8
866;2
599;
§40.
732J!
li:!
?6.?
K
:i 1
t •
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
804
N03
PH
IDS
i«».
li!i:'
liil:!
1:1
0,4
fliUi!
469,
E.
(Continued)
-------
TABLE A-13. (CONTINUED)
01
o
SITE UATE
DEPTH
FEET
NA
K
MG/I
CA
MG/L
MG/L
II 14/1/76
25 27/ 2/76
25 5J/ S/76
25 29/ 4/76
25 l7/ 5/76
25 24/ 6/76
25 29/ 7/76
25 26/ 8/76
25 5/10/76
25 2/11/76
25 8/12/76
25 li/ 1/77
25 3/ 2/77
25 4/ 3/77
25 IS/ 4/77
25 10/ 5/77
|5 7/ 6/77
55 U/ 7/77
25 9/ 8/77
25 8/ 9/77
25 13/10/77
25 10/11/77
10. SB
1275
67.0
67.0
45jo
44jo
44!o
36jo
i!:S
11:8
26.5
Hi!
30.5
44^
25,0
17j2
14.9
HC03
MG/L
620, 0
«•?:!
.0
566.0
397.0
426o
4
22.7 390;5
23.0 346J5
'j:J 3!?:!
0:0 ojo
15.6 29§:i
2oj6 20714
is!? 1S3JO
IB:O. 201)3
SO 4
MG/L
N03
MG/L
PH
IDS
Hti/L
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
e.c.
£-6
3580.0
"solo
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
DEPTH
FEKT
j
26/ B/76
S/10/76
2/11/76
tfe
14/ 4/77
WKB
5l75
1049
!lif
9I2I4
?J5il
I3l7
111!
il
MG
MC/L
Si:
*ol
*i:j-
s4:!
i?:i
HC03
•H ffi:8
?»4 i!3l2
!i i|M
i7
352
C03
MG/L
0,0
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
N)
SITE
i!
27
27
27
27
27
27
27
1?
27
11
DATE
21/11/75
14/ 1/76
27/ 2/76
31/ 3/76
29/ 4/76
17/ 5/76
24/ 6/76
29/ 7/76
lf>/ 8/76
5/10/76
2/11/76
7/12/76
ll/ 1/77
3/ 2/77
4/ 3/77
DEPTH
FEET
8.29
8.42
6*,74
6.38
h 20
6,12
5^99
5*,79
6.28
7^75
P.34
8)62
files
NA
MG/L
97,0
95.0
9010
100,0
95,0
116.0
87.0
88.0
96.0
92.0
101.0
H2 0
99.1
115.0
1Mb
47,0
52.0
60,0
32.0
30,0
42,0
59jo
i9*,0
47*,0
26.0
46,3
43*,3
58j7
MG
MG/L
1§:2
s
HC03 C03
MG/L MG/L
196.0
254 0
205.0
211,0
157^0
171^0
198.0
202l<
190.<
504
MG/L
NP3
MG/L
64,2
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
PH
.26
:P
I5«
IDS
L
MG/
583,0
640 0
594 5
589*4
504 4
626.3
568 3
587^8
604.8
4b4;i
1^:1
iilii
,0
;o
*0
740.
910*
810.
770JO
700,0
910.0
720.0
790.0
75U.O
610,0
740^0
730^0
if 00,0
§oo|o
960 "
(Continued)
-------
TABLE A-13. (CONTINUED)
to
SITE DATE
21/11/75
14X 1/76
36/ 2/76
31/ 3/76
29/ 4/76
29
29
29
29
29
29 17/ 5/76
29 J4/ 6/76
29 29/ 7/76
29 ?6/ 8/76
29 15/10/76
29 2/11/76
29 7/12/76
29 10/1/77
29 3/ 2/77
29 4A3/77
29 14/ 4/77
29 9/ 5/77
29 7/ 6/77
29 li/ 7/77
29 9/ 8/77
29 13/10/77
29 10/11/77
DEPTH
FEET
5.10
5.42
5.09
4?38
4*54
3*94
4l39
|J95
4*36
4*64
6*61
.55
*
MA
MG/L
• is6;o
;583jo
•649jo
282jo
Hi:*
Hi:9
7°:8
•..i
;l
;4
if
PH
320.0
'«:«
40,0
18:8
oo,-
ii
\\
0(0
8:8
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
-------
Oi
DriPfH-TlJ.WAfER FOP SELECTED WFlTS, J-ESiLbA
CME.MISTR* UNAVAILABLE, INFORMIJQK souHCti
SITE
4
4
4
21
il
28
28
28
YEAR
1975
1976
1977
1975
1976
1977
1975
1976
1977
JA<
o.oo
15.50
14.^5
0.00
9,58
<*.5P
0,00
8,79
8,73
FtR
o.oo
16, Of
t 5 , U
0,00
9,46
9,5*
0,00
8,60
8,80
MAFt
0,OC
15,74
15,69
0.0f>
8, HO
9.44
0,0c
8.3P
e.a?
APR
o,oc
15.65
15.73
0.00
8.59
H.H3
o.oo
8,10
P. 23
MAX
0,00
15,64
0,00
0.00
8.J5
«.b7
0,00
?,b8
8,67
VALLEY
NMlMf, &OCUKRO
J'JH
0,00
lb,50
15.65
0,00
8,58
8.82
0,00
7, '95
«,60
JUL
0,00
14,39
16,20
0.00
B.26
B,
-------
APPENDIX B
B. FORTRAN LISTING OF USBR-EPA HYDROSALINITY MODEL FOR THE MESILLA VALLEY
Model Revision
The revision of the model from its original form to the present Fortran
version consisted of the following changes:
a. The subroutines PWROPR, RESOPR, and DTABLE, describing the
operation of a surface reservoir and power plant, were deleted, for
they are not needed in either the Vernal case study or Mesilla Valley
study. Necessary changes, as a result of the deletion of these sub-
routines, were made in the subroutine PERUSE.
b. Originally, the computer program for the model was written
for a Control Data Corporation computing system. To make the pro-
gram compatible with an IBM 360-44 system, three types of changes
were made:
1. Definition of variables and arrays — Several vari-
ables and arrays were defined by alphanumeric fields (A-
FORMAT) having work lengths of more than four bytes (e.g.,
A6, A8, etc). Because of the smaller word length available
on the IBM 360-44 (four bytes or less), a provision was made
to accommodate such variables and arrays. Some data arrays
were part alphanumeric and part real variable. These data
arrays were changed so that they could be accommodated on an
IBM 360-44.
2. Format statements — The original program used an
R-FORMAT to define a number of variables. These variables
were redefined by nonexecutable statements (e.g., integer
or real statements). The A-FORMAT statements involving Ai,
i > 4 (e.g., A6, A8, etc.) were changed.
3. Dimension statements — The dimension of the ar-
rays containing 20 nodes were changed to 5 nodes, since we
do not propose to use more than 5 nodes in this study.
This reduced the computer storage space and made the program
more efficient.
c. The form of the data input was modified to allow the irriga-
tion requirement to be met by both surface and groundwater when sur-
face water is not sufficient.
These changes do not alter the basic structure of the model; all changes are
indicated in the source listing following.
155
-------
Before proceeding with simulations for the Mesilla Valley, the model was
tested to see if it would reproduce the previous results for the Vernal, Utah,
case study. After the program was modified to permit internodal transfer from
the upstream aquifer to the downstream aquifer, the model produced results
which were identical to those given by the U. S. Bureau of Reclamation (1977b).
Program Source Listing
The following code is used in the USBR-EPA model source listing to indi-
cate changes made by us.
A: cards changed
B: cards added
CN: cards deleted,
N = number of cards
156
-------
" Y^( 122) ."Y'M i;
r**** THIS "HwpuTfft An"£ !r 'T T n*
;*.** AVO'CTMJDMrf IVF USf""Jnn?l
'-iwMTN / T,FN5L / 'iTITLF (16) , •»
?« IUNED *S A SY5TC"« ANALYSIS
A NODAL CONCEPT" IN DIVIDING"
OR RCSPONSIVE CRITKAL
OPL DES1T.N AS WAS
K<«M ,
rnM'^T / PC5PO
1 •M'"ei"MS, '1^,121,1? MA Mn(5,l),l6),K
ir>rMMM< S, 10, IM , K->IMN«( 5, 10.16*
-r«*nM / PRriocp / SOIL! 5,
I -,OTANK< 5, 10) , NS"=r, f 51
5,
3), MOPES,
51
_.. (5,161
10, 21), RTANK( 5. 10), TTANM
- rt mi ir r- * IT • X Irti
, 30)
IYR1EG, MTEND,
"• 5, JO)
10)
» 5, 10
II " )" i I^OWJ ( 5,10).
5 K = 1, 4
J^^AH = K
CALL i'EPUS':( JREAO, t« , I R , El PA SO )
r.****
- ****
r ****
20
C*»**
:****
IYR = IYRBEG
IMITIAIIIZE PASS INDEX OF EACH NODE FDR USE IN
STARTING INDICES FOR NODE (MINI AND
ITERATIVE SCHEME
SEQUENCE ( MINA
A
C1
c****
*****
WRITF(IK,16) _________
CP,RMAT I IHI, RX I HY000460
PCGIN ITERATIVE SCHEME FOR EACH NDOF i*HERE NU»NOD » NUMBER 3F NODEHrDOO*70
TT 600 KNM.NUMNPO HVDOO^ftO
CHFCK TD OETERMIN= IF THIS IS THE FIRST PASS THROUGH THIS N3DE HVD00490
THIS IS THE FIRST PASS THROUGH THIS N10E ** INITIALIZE RIVER HYDOOSIO
FLOW AND CHEMISTRY ARRAY ( OINRIV 1 AND UPDATE AQUIFER ASSUME ONE HYD005ZO
MONTH LAG IN CHEMISTRY MIX ** LET ARRAY BEGHR « BEGINNINS HYD00530
CONDITIONS OF AOUI FER AT START IF TIME FRAME HYDQOStO
DO 25 K - I, 10
C1
25
r****
C****
30
OINRIV (K) * 0.0
BTANK ( KN, K >
TTANK ( KM, K I
BFGWR (KN, K I °
0.0
0.0
GRTANK
( KN, K )
PORTION 3F THE SUBROUTINE !
NUMBER OF SEQUENTIAL OPERATIONS
NS - SJMSEO I KN)
LOOP THROUGH EACH SEQUENCE IN NODE
FLFAK-0.45
09-503 KS-l.NS
IS ' IABS ( ISEO (KN, KS 1 I
'F ( ISEO (KN, KS)) 50, 500, 40}
HIS-2>51,52,55
F(OEMANO(KN,IS.MO) .ME. 0.0)GO TO 54
EMAND(KN,IS,MO)«QINRIV(1)
S USED FOR ALL PASSES ** LET
IN T
THIS NODE
NS'
II
52
5?
55
:****
c«»«*
c****
c****
:*••*
:*»**
LB
DEMAND(KN,IS,MO)«QINRIV(1)-DEMAMD(KN,1S,MO) . .
IF(DEMANO(KN,IS,MO) .GT. QINRIV(I)IDEMANDIKN,IS,MOI'QINRIV(11
HYDOOS70
HYD0058Q
HYD00590
HVD00600
HYD00610
HYD00620
HYD00430
HV000640
HYD00650
HYD00660
HYD00670
GO TO 55
RLEAK(1»-
Q(NR!Vm
FLEAK»OINRIV( 11
«QIN= (AB5( DEMAND! KN, IS, MO i I.LE.l
DEMANDIKN, IS. MO)'0.0
C9NST'DEMAND(KN,tS,MOI
TEST ?_DEMAND «.KN, IS.i 14)
KN,^,MO)-QINRIV(ll
,0)DEMANO(KN,3.Ma)-QtNRIV(l)
If C
2.0.
AND.
ST
LT.
t. .01 «bl. ^«U. HIVU. IC^I . L I .
HIS OPERATIONAL SEQUENCE REPRESENTS
" BE FROM THE RIVER (
WHOSE SOURCE MAY BE
AQUIFER T SUBSURFACE FL
MUNICIPAL AND INDU
on
IF
?r
F 1 TEST . E.
TF.NPR « QtNRtV
IF ( ABS (TEMPR
ROM THJ
. ... .OW ) . .
AND INDUSTRIAL R
6.0 ) GO TO 250
.._ . . A DEMAND IN THE NODE
RIVER ( SURFACE FLOW ) OR FROM
TO SUPPLY EITHER, AN IRRIGATION
THE
F ( DEMAND (KN, IS, 13 I .GT. 1.0 I GO TO 170
FMANO IS TO BE SUPPLIED FROM RIVER I SURFACE FLOW)
F I TEST . EQ. 6.0 ) GO TO 230
11 - CONST
. . ... ....... .LT. 1.0 I
IF < TEMPR . LT. 0.0 ) GO i
DEMAND CAM BE FULLY MET BY
INDY • 1
C4LL RET
AID ALL3,
SHORTAGE I
SHORTAGE C
URN
CATf
FLOW AND SHORTAGE
RETURN FLOW MASN
F ANY i ..::.: ;..::
TERIA RFCOMP WILL TERMINAT
TEMPR * 0.0
FLOW IN THE RIVER SET INDEX lINDVt
SUBROUTINE ( RFCOMP ) TO COMP
FLOW MAGNITUDE AND CHEMISTRY AND COMPAR
WITH SHORTAGE.INDf "~ ~
IF THE TEST
IPt
•UTATION
FAIL
CALL RFCOMP f OINRIV, KN, IS, INDY, MO, CONST, IW I
SET ACTUAL. DIVERSION AND CHEMISTRY OF MATERS DIVERTED
DEMAND ( KN,
OINRIV (I)
DQ_M.K • 2
Rri
C****
;•***
c****
c***«
c****
100
TEMP*
ll
6 I
CONST
K I
OINRIV (Kl
TO DEfERM
AMD ALL DC
TERMINATE
IMOV • 2
CONST * OINRIV
TEMPR « 0.0
UPSTREAM
QUAL TO ..
SHORTAGE
NO ..
ION F
NE IF
TION. IF SHORTAG
COMPUTATION
RVOIRS AVAILABLE FOR ADD
IN RIVER AND CALL ROUT
TOLERABLE AND COMPUTE ...
TOLERABLE ROUTINE
TOLERA6
IS NOT
ITU
INE
"IT
HVOC
HYDO
HVDC
HYOO
HVOC
HVDO
HYDO-
ONAL RELEASESHVOO
RFCOMP
TURN FLOW
RFCOMP HILL
II)
HVDO
HVDO
HYOO
HYDO
HVDO
HYOO _ .
HYDO OBO
157
-------
ii»R?H6?OR AVAILABLE JPSTREAM RESERVOIRS FOR »OSSIBLE ADDITIONAL HYD§t?o8
;**** RELEASES TO MEET THIS DEFICIT
11Q CONTINUE
;**** D?MANV?S TO It SUPPLIED FROM AQUIFER ( SUBSURFACE FLOW I
170 TEMPR * GRTANK f KN. I ) - CONST
~~ ' TEST .EQ. 6.3 I 60 TO 3*0
;»»»»
c****
c**««
c****
;****
C****
180
IF (
IE!
INDY
C4LL
_ * EQ — - - - - - - — — - —
IBS ( TENPR ) .LT. 1.0 I TEMPR «
TEMPR . LT. 0.0 » GO TO 220
D CAN BE FULLV SUPPLIED FROM AQU
INDEX (IN1Y)
0.0
AQUIFER ( SUBSURFACE FLOW I
HY00111C
HVDO
HYDO
HYDO
HYOO
HVDO
HYOO
RETURN FLOW AND SHORTAGE SUBROUTINE ( RFCOMP ) TO COMPUTE
KN, K I
•***»
190
'00
t *** «
" ****
270
" ** * *
• ***•*
•*«**
• ***«
• ****
r**«*
7****
?50
;*«**
r****
AND ALLOCATF RETURN FLOW MAGNITUDE AND CHEMISTRY AND COMPARE
SHORTASE ( IF ANY I WITH SHORTAGE INDEX ** IF THE TEST FAILS
SHORTAGE CRITERIA RFCOMP WILL TERMINATE COMPUTATION
0? 185 K - 2. 10
TEMP (K) * BEGWR (
CONTINUE
CALL RFfOMP I TFMP , KN, IS, INOY, MO, CONST, IW )
G'TANK { KN. I I * TEMPR
ACTUAL DIVERSION AND CHEMISTRY OF WATERS DIVERTED
ND ( KN , IS, 16 I * CONST
n^ ?00 K * I, 10
C-IF«O^ ( KN, IS, K I = RFGHR ( KN, K I
•1MTINUF
THE
WILL
nc
Tr<4p,>
IF (
R"HJTINF
T4N HAVF RpRCOMPUTEo'vOLUMES
SIMULATION
IF ( DEMAMT I KN, IS, 13
MORTAGE
RFCOMP
CAM NOT BE FULLV SUP°LIFn BY AQUIFER- COMPUTE !
FLTW AND ALLOCATION ( IF SHORTAGE NOT TOLERABLf
TPCVIJ^ATF COMPUTATION I
* G9TANK ( KN, 1 I
= 0.0
190
, REPRESENTS A SURFACE FLOW THAT IS TRANSFERRED OUT
HYOO
HYDO
HYDO
HYDO
HYOO
HYDO
HYDO
HYOO
HYOO
HYDO
= OIN"IV ( 1) - CONST
FMP-! . |.T. 0.0 I GO TT 1010
70
MAMD ( KM, !<;. 1*1 THE DESTINATION OR USE INDEX
0 SIMPLE TPANSFERS PF FL3W ARE TREATED AS DEMAND
RFCHMP WILL SFT UP THE PROPER QINFLO ARRAY. THE!
HYDO
HYOO
IS GREATER HYDO
' SO THAT HYOO
E TRANSFFRHYDO 920
MA
,
OF
. WILL
OR SOU COLUMN
Ic ( TEST.FQ. 3
TFMPP z QINRIV
IF ( TFMPR . LT
17 TO 60
TPANSFFRS WILL PF MADE
RIVER ** CONDITIONALLY
FROM THE
(INPUT DATA I OR WILL BF. COMPUTED IN HYDO
HYDO
HYOO
I .GT. 1.0 I
PI
.!.
760
770
780
790
800
810
R20
880
890
900
910
930
9*0
950
- CTNST
IVER (SURFACE FLOWI TO AQUIFER HYDO 960
HYDC
HYDC
HYDC ...
HYD02000
0.0 HYD02010
HYD02020
HYDO 20 30
FROM THF AOU1FER (SUBSURFACE FLOW ) TO THE HY0020*0
IF THE AQUtFFR IN ANY NODE CANNOT MEET THE HYD02050
I
0.0 I GO TT 1060
:***
r*»*
c»«*
r»«»*
~ ****
r*»«*
295
0.0
TRANSFER REQUIREMENT. AN INTFRNOOAL TRANSFER TO THE RIVER HILL
BE ALLOWED ONLY FROM THE NODF IMMEDIATELY UPSTREAM Of THE NDDE
IN DEFICIT
TFMPR , GRTANK ( KN, 1 I - CONST
IF ( «BS ( TFMPR I . LT. 1.3 I TEMPR
t* ( KN. GT. 1 » GO TO 295
IF ( TEMPS . LT. 0.0 ) GO " 1070
SrT 01NFLO ARRAY ** IFT NOPF = KUSF ( KN, IS,
KllSF ( KN, IS , 25 ) . AL?n SFT UPSTREAM AOUIrc" mi
( KN, IS, 78 I Fno INTFRN004L TRANSFER ( IF REQUIRFD
LN ' KUSF ( KN, «, 2 NFINO ( LN
LN » KUSF ( KN, r, 24 )
IF ( LN . EO. 0 GH Tr«
K" * "HMN1 ( LN
KZ » KUSE ( KN, IS , 2
1= ( TFMPI . Lf. o.O )
NO TNTEPNOOAl TOANSFFR
300
C*»**
c«*»*
310
DO 3JO K • I, 10
( KP, KZ, K
1070
GO T0 310
0.0
5" TO
AN INTFRNTOAL TRANSFER IS P?3UPEP :HF.CK CONDITIONS OF AQUIFER
UOSTRCAM NODE
COMP * A8S ( TFPPP )
COMPA « GRTANK ( KG, 1 ) - rOMP
IF ( :OMP» . LT. 0.3 I GO TO 530
JOSTREAM AQIIIFFP CAN XF FT OFFICIT S
320
• ****
r»*»*
3*0
•*«**
•*»•»
r ****
*00
39"
roMPA
) « GRTANK (
SFT QINFLO AND GRTANK ARRAYS
K I
GRTANK ( KG, I )
m 3?0 K . 2. 10
QINFLO ( KP, KZ, K
CONTINUE
( K», KZ, 1 I
. ..'. *::.":: OEMANIHKN, is,HOI - OINFLO(KP,KZ,II
r.^NST » OEMANTCKN.IS.MO)
GO TO 180
THIS OEMAYO REPRESENTS i SIWSURPACE FLOW THAT IS TRANSFERRED
OUT OF SYSTEM
|F t TFMPR . LT. 0.3 ) CO TO 1)20
r,n TD 190
THIS IS A RESFRVPIS UPPATE
THIS PORTION OF THF PROGRAM INCLUDFS THE VOLUME AND CHEMISTRY
U<> PATES FOR ALI INFLOWS Tn THC M1PF
TMKN .FQ. 2»oc TO 309
GO T0( 409,409,*02,*03,409,43*,*05,409,409.409),IS
"50 TT(*09,409|40?,*03,*09,*09,*09,*09,*09) , IS
HYD02430
GO
TO *09
.l l-QINRIVdl-OINFLTIKN, 3,1)
«?.lO
DO 406 K«?.lO
406 ft':Xr.SIKN,Kl«aiNRIV(KI
GO TO 409
40* P" 407 K«2,10
158
-------
O'Nft. "!( L.6 ,K )
3TNFL1tl,T,l|
m 40*3
f r-V ( I, K »
MO
K'2,io
QTwrLiJ l,7,K|cOINFI
0" 4U K*l ,15
TTMO (K) * OINFIP (
IS, K )
T=«iT
r~NST r OTNFL
( TF 433
THIS IS AM INFIIW TO THr RIVER
IF(OIMRIVd) .FO. 0.0 .AND. C^M^T
CALL :HFM°V i OINPIV, CONST, K
?'N'rV5oo " °INPTV '" * CCmT
IF ( TFST . MB, 7.0 ) GO T"<
THIS IS AN INCLCW TO THE A
TALL rHFMGR"
GSTANK ( KN
CO TO 500
IF ( TfST
THIS "
. eij
is i
3.3IGD TO 503
J-:MGn TQ 50:)
< 440
II F?*
INFLCH
, CONST, *m,
GOT/INK (KN,
01 GO TO t
— THF
r,0
500
I I * CONST
pnnt
HYD02540
HYP 0 2 550
HYP02560
HYD02570
HY002580
HYD02590
HYD02600
HY002610
HYD02620
HY002630
HYn02A43
HY002650
HYD02660
HY002670
HYn02690
HYD02690
450
****
C«*
C**
c**
c***
500
f.**«*
:•**»
*****
C**»*
c****
c**»*
540
550
560
IF(TFMP(l) .P) go ,»NO. CONST ,EO. O.OIGO TO 500
CAIL CHFMTT i TEMP, CHNST, KN, is I HYno27oo
TTANK I KN, I ) « TTANK f KN, 1 I i CONST HY002710
Gn TO 500 HYnO?7?O
IF ( TFST .NE. 4.0 ) GC TO 1333 HY002730
JIc^LS,?0I2L!SrIHE MODFL :«'TEHia FOR THE OPERATION OF THF HY002740
SYSTF.M IS R = ODIPFO. THF OPERATIONAL CRITERIA SHOULD BE FORMULA TEDHYn02750
Sf!2-J«E!TSR.i.s * 5"S?.Syil!!i£ HR A_SFRIES OF suBRguTi--- - - -- TEDHYn°??5°
FUNCTION
P3IMT.
APE MONITORSO -W THE
SUB{gUTlNE_CALLEO AT^TH??
THIS AN OTSERVFP CHECK POINT
CALL VERNAL SUBROUTINE TO SIMULATE TRANSFERS OF FLOW
BETWEEN SURFACE ANO SUBSURFACE FACILITIES TO OBTAIN HYDRAULIC
BALANCE IN NOOE
CHL VERNAL (KN,IS,MO,OBSFRV,9INRIV»
CHECK TC DETERMINE IF A SOU COLUMN EXISTS IN THIS NODE
IF ( TTANK ( KN, I I . LE. 0.0 I UP TT 540
CHECK TO DETERMINE IF SOIL -OLUMN OATA EXISTS FOR THIS NQOF
NSOIL « NSEG (KN »
IF ( NSOIL . EO. 0 I T.O TO 1030
SOIL COLUMN OATA EXISTS PERCOLATE WATERS IN TTANK
TH WATFH IN BTANK
SOIL COLUMN INTP BTANK
CALL SOILCO «. KN, IW, IR. NSOIL I
UPOiTE AQUIFER WITH flNEAR Mfx WI
BTANK IKN, II « TTANK ( KN, I I
on 520 K « i, 10
TEMP (K) > RTANK ( KN, K I
CALL CONVER « TFMP , 2 ,IWI
CALL CHEM3T ( TEMP , 3., KN, I »
SFT UP TRANSFERS OF OUTFLOW FROM THIS NOOE TO NEXT ...
?HDE - WHERF NO- NODE NUMBER OF NEXT LOWER NODE AND NS
NTERING SEQUENCE OF NFXT LOWER NOOE
NO « VCTRL I KN, 2 1
IF ( KN . FO. NUMNOO I
NO > NFIND (NO)
NS « NCTRL ( KN, 3 )
00 550 K » I, 10
OINFLO (NT, NS, K»
CONTINUE
01 570 K - It 10
PREOIC ( KN, K I «
755VAL L KN, K
GO TO 560
ORSERV (K)
HY002860
HYD028TO
HYDO 30 J
HY00303
HY00304
HYD030S
HV00306
HYD0307
ZALL UPtT(MO,IYR,IW,KKOUNT,CVQ,:YP,TX,OEXCS)
KYR»IY»»1900
MO « Ml * I
74<> FOHMATJ
R ,EO. I VEND .AND. NO .ST. MOENOIWR ITE< 7,749IKYR.KH
N*?!, l),GRTANKh,l6),GRtANK(2,lt,GRTANK(2,10)
T«I5,I3,' t«,2F10.1,» 2',2F10.1»
R.EO.fvRENO .AND. MO.GT.MOENOICALl GRAFFICYO.CYP,TX,
KHONTH,
KKOUNT,
0 * \
IYR -
IVR »
;****
1000
180*
GO TO 770
^LLTOP
PR OCRA
WRITE
ERUSEIJREAD,IW,IR.ELPASOI
M CONTROLLED ERROR MESSAGES ARE GENERATED HERE
( IW, 100
'
I TEST
f 20HOESTINATION INDEX
« .F3.0.12H IS IN ERROR I
HY003170
HVD031AO
HY003I90
HYD03230
HYD03210 Cl
HYD03230 .
ISi?
1030
1035
\%$
IS?7?
GO TO
FORMAT
GO TO
WRITE
FORMAT
GO TO
WRITE
F1RMAT
f,1 TO
m>
IWt 19151
HL,7X,45HDEMANO LEAVING SYSTEM FROM SURFACE IN DEFICIT!
IW, 1025 I ' 'HY003330
Hl,7X,48HDEMA\»0 LEAVING SYSTEM FROM SUBSURFACE IN DEFICITIHVD03340
93 . HY003350
iW , 1035 I
I 1H1, 7X, 25HNO SOIL COLUMN DATA FOUND
1500
I
,
f IW , 1065 I HY0
J IHl, 7X, 42HSURFACE TRANSFER AS A DEMAND IS IN DEFICIT 1 HVD
1SOO HY 0
Cl*
HY 003360
HYD03370
HY 00 3380 C6
3450
.3460
IW . 1075 . UYn^^9
'Hi, 7X.45HSUBSURFACE TRANSFER AS A DEMAND IS IN OEFICITIHYC
END
EXIT
,3
HYD03540
159
-------
jppy pcO!MSrMF:NT<; QOlrCC fYTES
JHFST SEV=RITY CPD£ WAS 0
SUBROUTINE °EiHISE( JPFto.IW, IR.
^"MMON / GFNBL / LTITLFI 16I,NCTRL( 5, 3), MOREG, IYRBEG, MOEND, IHYD03560
4YRFND, NUMNOD, ISC0( 5, 201, KPRT, NUMSFQ( 51, NOWTR( 5, 20) HYD03570
CPMMQVI / PFSER /
\ PINFLK 5, 10,121 ,OEMAND<5,10, 16) ,K
10EMNM1 5, 10,16), KWNM( 5, 10,161 , KAOUNM (5,161
riMMPN / PROPEP / SOIL! 5, 10, 21), 3TANM 5, 101, TTANM 5, 10I
I G3TANM 5, 13) , NSEG ( 5) , 70NUSF t 5, 10, 30)
DIMENSION KUSE(5.10,30I
cQUtVALFNrE ( CPNUSF, KUSE )
HYD00090 A
HY000100
HYD03630
HYO03640
HYD03660
HY003670
INTEGER tCON/'CPN '/.tNOD/'NOD • / , tSEO/ • SEQ '• /, tWAT/ • W4 T '/,«FM
MFND'/.tAQD/'AQU "/.tSUR/'SU" '/,«RFS/'RES '/.tCHM/'CHM '/,$GRT
MGRT '/,tCOL/'COL '/, »PEG/"?CG •/, it SEG/• SEG «/,$EOU/'EQU •/,*$£
*SEO
DIMENSION LTEMPI22I, r TFMP( 15 ) , NTEMP( 16)
REAL * B lCHK,tSCl/'CONUSc '/
INTEGER tCON/'CPN '/.{NOD/1
2/
3/-SFH '/,STWR/'TWP •/, tEfip/'FFF i/,tCAP/>CAP • /, tPOW /« PQ W '/,«RUl
«/'RUL '/,*FVP/'FVP '/,$RNK/'1NK • /, SO"1 M/' DEM • / , *GWR / ' GWR '/,»IRR
5/«'RR '/.»M«I/«Mfl! V.tGWV/'GWV '/,«OUT/'nUT •/.JOIM/'OIN «/,«CHK/
S'^HK •/,*T«N/ITRN «/,*TnA/1TOA '/.tPDA/'POA '/,iENE/"=NE '/
T**** SFT RF«D AMD WRITF LHGtrAL UNITS
C**** WRITE INPUT LISTING HEADING ANO VALUES r)F JREAD
WRITF ( IH, 10 I
10 FTRMAT (1H1, 24X, 13H *** LISTING HF INPUT DA TA *»*
WRITE ( IW , 30 ) JRFAD
30 FORMAT (IN , 8HJRF4D = , 13 )
;***** WHEN JREAT = I RF40 ANO ST">RF SYSTEM STRUCTURE - CONCLUDE THIS ____ ._.
C****«t»FAn WITH CARD CONTAINING THE VORO CONFND IN THE FIRST SIX CnLUMNSHYD03760
C HY003770
;*****WHEN JRFAD - 2 RFAO AND STPPF TITLES ANO INITIAL CONOITIONS PF ----------
C*****SJRFACF RESFRVHIRS ANO AOUI«RS ( SUBSURFACE RESERVOIRS) .
HHEN JREAO = 2 °EAD AND ?TORF INITIAL SOIL CONTITIDNS AS
/ / )
C*****WFLL »S STIL '.OLUMN PHYSICAL FEATURES. CONCLUDE THIS READ WITH
C*****CAPD CONTAINING THE WOT COLENO IW THE = !RST SIX COLUMNS
C
HY003780
HY003790
HY003800
HY003BIO
HYD03820
HY003830
HY0038*0
HYD03850
HY003860
HYD03870
C*****WHFN JR=AO = 3 READ AND STORE MATHEMATICAL REPRESENTATIONS OF
r****«ocpTINFNT SURFACE FACILITIES PHYSICAL FEATURES . CONCLUDE THIS
r»**»«RCAO WITH CARD CONTAINING FOUEND IN THE FIRST SIX COLUMNS
C*****WHEN JREAD = 4 RFAH INFLOWS ANO DEMANDS WITH TITLES FIR THE FIRST
C*****FRAME ONLY NOTE ** TITLE MUST PRECEDE EACH INFLOW ANO DEMAND DATA HY00389.
C*****CONCLUr>E THIS RFAO WITH CARD CONTAINING THE WORD ENOATA IN THE HY003900
:*****FIRST SIX COLUMNS HY003910
C HY003920
;***»*WHCN JREAD = 5 PFAD INFLOW AND DEMAND DATA CARDS SUSEQUENT TO THE HYD03930
(-.*****FIRST TIME FRAME AS WELL AS ANY TRANSACTION CARDS-- CONCLUDE THIS HYD03940
r****
40
60
*!)
100
120
140
C****
150
160
r ****
^ * ***
171
100
" *** A
7)1
211
"***•€
r ****
- *rt*rt
r ****
730
*• ^r *> V niin \* i*r. u i. u'i • » i 'v i i«v? i^c •» j ^ L/ -z 'TJ « i « in • nc rinji s*** OUL.V.
ETFAC = 1.7
EJ'0.50
GH'TO ( 40, 220, 2000, 600, 650 I , JRFAD
RFAD SYSTEM CONTROL CARDS
READ ( IR, «,3 ( 1 TITLE, KPRI
FIRMAT (16A4, H6)
WRITE ( IW, 80 ) LTITLf , K°RI
FORMAT (IH ,16A4, 116)
JK = 0
JJ = 0
READ ( H, 120IIPNF, TT^P, (LTF' TP tOOO
IF ( ITWI . Nc. $N1D I GO in i (,Q
JK = JK t I
NUMNOO = JK
On 150 K = 1, 3
N'TSL (JK, K I - LTFMP (Kl
rn^T T ^ U F
r,n rn ibo
IF ( ITWO . N=. l^Q 1 Gn TT 1^0
JK = NFIND ( LTF"P ( 11 )
STO7E WUMH CR OF S'QUFMTP PPINTS Iw A MODE
NtJMSEI ( JK ) = LTFVP (7)
NS = ITFMP (2)
CHECK TO DETER"!*"' IF MIMRFR "F ^r-o'rE\icc P^I^TS EXCFFT •>•)
IF ( NS . GT. 20 ) G- T1 1170
ni 170 K = 1 , NS
KX * < t •>
ISrU (JK, K ) = LT=MO (KX)
rONTINUE
GO TO 100
TF ( ITWO . Nc. SWAT ) fin T^ 715
JK = NFINT ( LTF»P (1) I
ST1I5F SYSTEM F| nw APRAY
"n 201 K = 1, 20
KX = K * 2
NOWTP ( J<, K ) - LTFMP (KX)
r *^N T I ^K^C
G-> 'I 100
tc [ I TWO . ME. fFNO ) GC Trl 1040
ST"1"C DATCS C"^R npf:i \jw |fctr, £V1 CNP ^r ^TU DY P F° 'OP
Mrocr, = LTE«H ( 1 ) " '
TY5^*-'^ = L T c M° (?J
M-^CM.) i L T<=MP ( 3|
TY'^N:! = LTFMP (4)
"i n T"> ?D01
?cAn ^^'0 *;T^PC TMTTAL VALUES ^\iri MAT"ci*ATiraL Rr °Rr sr'JT^TirNS
nr SYSTEM PHYSKAl FCATIJRCC i\$ yr\ ( AS TITLES PF"SAM= if-
• POL l-dUL? - SCII m.u"N P'rTI'.l. «^n PHYSICAL DATA AR= IVLJDE"
TV) THIS PncTI^l*1 CF Tur SU^° "*UT IN-
"CAD (10, 7311 If»'F, ITWH, (IT = MP(I), I = 1, 3), (NT=MP(J),J»l,
FORMAT (263,12, IX, 13, A3, 16*41
w°TT= (IW, ?'«0) 'ONE, ITWC, (LIMPID, I = 1, 3) , I NTF»P( J ) , J = l ,
/m^ji^ii/wj-y^w
OHYD0396
HY003970
HYD03980
HY003990
HY004000
HY004010
HYD04020
HYD04030
HY004053
HYT04070
HYP04080
HYD04090
HYD04100
HYD04110
HY004120
HY034130
HY004140
HY004 160
HYri04L60
HYP04200
HYD14210
HYD042i?0
HYP04230
HYP 14240
HYD04250
HYD04260
HYP04270
HYD04280
HY004290
HYP04300
MY 004310
HYDJ432)
HY004330
HYP04340
HVP04350
HYP04360
MYP04380
HYP04390
HYD04403
HYD04410
HVP04420
HYD04430
HYD04440
HYD04450
HYDQ4460
HYD04470
l6)OY0044flO
HYP 04490
16IHYD04500
B
a
B
A
A
160
-------
250
790
Ir ( ION? . Nr .
STHRF TITI r OF
JK = NFTN1 ( LTFM" ,
300
340
;****
M, 10) , (LT6MI>(KI , K = 5, 7)
3 F1RMATUH ,2A3,I2,Il,I3,A3.i=7.
1 IF ( IO\'F . NE. tr,Pt I GO T*
« ST1»E INITIAL CAPACITY AND THE
JK = NF INO ( LTEMPOl)
(CTEMPUI, J
360
•-.•., v r. CONST ITUFNTS ARP RE°
•>i>j v,j-i>-u'r TOTAL SALTS ON BASIS HF Cn
CALL CONVEX ( CTEMP, LTEMP (21.IW)
in 363 K =2, 10
pp" 4RE R6PORTEO
ORTED CONVERT TO PPM
Nt ENTSAT IONS
( JK,
CTFMP (Kl
NEXP
FAT =
ITFMP (6)
10.0 ** NEXP
C****
370
* FAC
READ SOIL DATA F0» SOIL COLJMN - FACH
------- _ _ - - - - IT NUMB|:R
SEGMENT IN SOIL COLUMN MUST
ONE IS SEGMENT NEAREST
*EN
O )
IF
IF ( ITWO .EO. '
IF ( ITWO . NE.
LSFG * 0
KNOOE * LTF.«ip<2i
JK = NFIND (KNOOE I .
N?<=G ( JK) = LTEMP (I)
LNOOE * KNODE
1AX * NSET (JK)
DO 433 J = I, MAX
I GO TO 1080
GO TO 2000
) GO TO
00
HY004540
HY004550 C2
HY 004580 C7
IHYD04660
HY004670
HYD04680
= HY004690
HY004700
HY004710
HYD05050
HY005060
HYD05070
HYOOS080
HYD05090
HYD05
HYD05
HY005
HYD05
HYD05
HY005
HYD05
HY005
HYD05 __
HYDOS 190
HYD05200
HYD05210
HYD05220
HYD05230
HY005240
HY 005250
HYD05260
HY 005270
HYD05280
,on
390
IIM0' «T?HP (KA», K
,IX, 8 < F6. 1, IX) ,F3.2,
I ,2A3
;ix,P5.1)
IF ( IONF .NE. *COL I GO TO 1100
1= ( ITWO .NE. tSFC, ) Gn TO 1100
KNOPE = LTEMP (II
IF ( KNOOE . NE . LNOOE I GO, T^ 1100
LSFG * LSEG + 1
IF ( LSEG .NE. LTEMP (2|| Gn TO 1100
KS = LSEG
on 403 K * I, 15
SOIL ( JK, KS, K I * CTFMP (K)
CONTINUE
GO TO 220
RFAO AND STORE INFLOW, DEMAND, AND CONSUMPTIV
TIME CRAME ONLY WHERE TITLE CARDS MUST PRECED
IF ( JREAO . GT. 4 I GO TO 650
READ ( IR , 230 ) IONE , I" ~
WRITE ( IW, 240 ) IONE , I
IF ( IONE . EO. $ENO ' '
IF ( IONE . NE. tSU"
JK = NFIND I LTFMP (2)
IS « LTEMP (1)
IF ( ITHO . NE. *OEM I GO TO 620
C»**« STORE TITLE OF DEMAND OR DIVERSION REQUIREMENT
D? 610 K = I, 16
KOEMN1 ( JKt IS, Kt - NTEMP(K)
CONTINUE
GO TO 650
STORE TITLE OF INFLOW SOURCE
On 630 K« I, 16
KOINNM ( JK, IS, K I ~ NTEMP(K)
CONTINUE
o^^
?CTENPIKB»,K8.1,15I
, IX, J( F.2, IX ),Fl.O,lX,F4. 2,
*00
:****
c »***
600
HY005420
HY005430
HYO054*0
HY005450
HYOOS460
ITHO,(
MO
;****
620
630
C****
C****
650
WOITE' (Iw; 3bb)'IONE, ITWO.
Al, 101, (LTEMP(K). K » 5, 7)
IF I IONE . EO. «END I GO TO 2000
JK « NFIND ( LTEMP (31 )
IS "LTEMP II)
MO * LTEHP (51
C**** RAISE MAGNITUDE OF DEMAND BY POWER OF
NEXP » LTEMP (61
FAC » 10.0 ** NEXP
STFMP (I) » CTEMP (l» * FAC
F(JK .EO. 2)80 TO 651
F(LTEMPT4) .NE. ICHKJSO TO 651
IF(IS .NE. 5IGO TO 653
ELPASO=CTEMP(ll
GO TO 651
IF( IS .NE. 6IGO TO 651
653
652
651
CTEMP1 j")*G(5TANK(
DEMANO ( JK. IS, MO
STORF. SOURCE INO"
USE :ARDS FOR
DATA CARDS
r,J)
C**** STORF_nEMAND DATA WITH OR WITHOUT REQUIRED CONSUMPTIVE USE DATA
CTEMP (I)
IN LOCATION 1
ONLY TWO SOUR
OF DEMAND ARMY
' SUPPLYING DEMANDS
.. ..... .... .,- - .-ICATOR
:**** SYMBOLICALLY THERE ARE _. ...
C**** NAMELY , SURFACE AND SUBSURFACE SOUR
IF ( ITWO . EO. tSUR ) DEMAND ( JK,
IF ( ITWO . EO. tGwR I DEMANO ( JK,
;**** IN LOCATION 14 OF THE DEMAND ARRAY I
C**«* OR MUNICIPAL AND INDUSTRIAL OR THE D
C*«»* FLOWS FROt FACILITY TO FACILITY
IF ( LTEMP (41 . EO. (IRR I DEMAND ( JK, IS, 14 I « 1.0
IF ( LTEMP (4) . EO. tMAI ) DEMAND ( JK. I!, U ! - l!o
H YD 0642 a
HYD06430
w8o
HYD06460
HVD0647C
HY00648C
HYD06490
(RIGATIONHY006500
=ER OF HVD06510
HY.006520
HY 0065 30
HYD06540
161
-------
!<•
|_T CM»
LTEMP
K)
FO.
•=0.
*SUR
JK, IS,
;, is.
JK
JK,
ft ) =
14 ) =
U I
IF ( ITFKP (4) . FO. *nUT ) riF»ANn ( JK fs,¥ 14 = 6.0
:**** 1TEMP (2) CONTAINS INDICATOR 0?SIGNATIMQ CONSUMPTIVE USE DATA
C**** DP TRANSFER DATA WILL OP WILL NOT FOLLOW OEMANO CARD
3.0
*. J
5.0
WPITF (
'
F9.0,
13, 12, 13)
16X, 12
I
•(CTEMP" , 16X, 12
:*"* :rsu«PTIVE USE OR TRANSFER DATA WILL BF READ AND STORED
JK * NFINO ( LTEMP (.11 )
MO = LTFMP ( 15)
CTNUSP ( JK, IS, MO ) = CTEMP (U
£2^JS.E ! JK' IS' 13 ' • CTFMP (2)
rnNUSF I JK, IS, 14 I = CTEMP (3)
fMTS.NF.3IGO TO 20J1
CONUSEI JK, I S, MO I =r TEMPI 1)*ETFA'-
" 1 JK,IS,MQ|/El
1 ' ,IS,MOI/E2
HYD06550
HYD06560
HYD06570
HYD06580
HYD06590
HY006600
HYD06610
HYD06620
HY906630
HY006640
HYD06650
HVD06660
HYD06670
HYD06680
HY006690
HY006700
HY006710
HYD06720
HY006730
HYD06740
HYD06750
HY006760
HY006770
2004 OFMANOIJK,is,Moi=02
WRITF(i,2002inEMAND(JK,IS,MO),CONUSE(JK.IS,MO).E2.ETFAC
'xr2?!!AT(/{f25Xl'*** CALCULATED INPUT 04TA ***',//, 20X,' IRRIGATION 0
'"'NO « ',F8.1,/,20X,'CONSUMPTIVE USE = • ,F8. 1,3X,'BOTH CALCULATED
ITH IRR. EFF. = ',F4.2,/,50X,'AND ET*FACTOR « NEW ET, WITH FACTO
* "•Fo .31
sAlviN!?^:°v?F8Ri:5r10
R
2003)01, El, OELDW
,„„ , , l, LDW
2003 F3RMJTI//,20X,lOLn IRRIGATION OEMANO = • , F8. 1, /
-------
DJZZOl »YTF<;
F WAS o
StIR POUTING KRIT(Mit TYP , tw,KKOUNT,CYO,CYP,TX,OEXCS)
OI^FNSIPN 0=XCS(2.10>
TTMCNSICN CYO(122I,CYP(122),TX(122I
-r|i»MnN' / r.cNIU / ITITL E( 161 ,NCTRL( 5, 3), MOBEG, IYRBEG, MOENO,
\YOFNO, NUMNDD, ISFQl 5, 20), KPRI , NUMSFQJ 5K NDWTPt 5, 201
CpMMQS_/ RFSF? /
4
IHY007790
HVD07800
4 OINFt'MS,10.12).DEMAND(5,10,161 i*
^OITMNM( 5, 10.16) i KQINNMI 5, 10,16) , KAQUNM (5,161
;OMM-)N / PROPER / SOIL< 5, 10, 21), «ITANK( 5, 101,
I SBTAIM 5, 101 , NSEG ( 51 , CONUSE t 5, 10, 301
DTMFNSION KUSE(5,10.30)
r^MOM / PAPA* / BFGRES ( 5, II ) . *FGwR I 5, 10 ) ,
I PREDIC ( 5, 10 I , OBSV4L ( S.IOI, CHEMDM < 5, 10,
"MANSION WON (121 , LTFMP (20 ) , TFMP ( 10), NTFMP( 10)
INTEGER *JAN/'JAN''/,*FEB/'FEB «/,*MAR/'MAR ' / , iMAV/ 'MAY •/,«
l/'JUN '/,*JUL/'JUL •/, *AUC,/'Aur, '/,*SEP/«SEP '/.iOCT/'OCT •/,
HYD00100
TTANKI 5, 10),HYD07860
HY007870
HY007890
HYD07900
HY007910
10)
tJUN
$NOV
EOUIVAIFNCE ( CONUSE
14TA MON/'JAN '.'PER • , • MA
I'SFP • ,'OCT «,'NOV • ,'OFC
DATA IPAP.E / 0 /
«r)»)TH » MON (MO )
KYR » IYR » 1900
KMONTH»MO-l
•JUN ','JUL ','AUG ',
HYO07920
- 1,16
19HNUMBER OF NODES
I , IPAGE
2
6X,
DO 700 KN « I, NUMN10
WRITS * IW, 'si) (LT1TLE (K)
50 FORMAT) 1H1, 7X.16A4, 3X,
1 8HPAGE NO. . 13 /
KNODE • NCTRL (KN,l)
W9ITE ( IW, 60 I KNOOE, MONTH, KYR
60 FORMAT ( 8X, 14HNODE NUMBER • , 13, 5X, 9HMONTH OF , A3, 10X,
I 5HYEAR , 14 // 58X, 6HV1LUME, 4X, 2HCA . 4X, 2HMG, 4X,
•>. 2HNA, 4X, 2HCL, 4X. 3HS04 , 2X, 4HHC03 , 3X, 3HC03 , 3X,
3 3HNHJ , ix, UHTQTAL SALT<; f 56X, 9HACRE FEET,
4 9 (3X, 3HPPM ) , 3X, 7HTONS/AF / I
Utt TTP t TW TOI
70 FTRMAT ( fli, 42HOPE«ATIONAL SEQUENCE OF SURFACE FACILITIES / >
95 GO TO (100,1101,KN
MA REFERS TO THE "IRRIGATION DEMAND" CARD OPERATION
NUMBER. FOR NOPF 1'THIS SEQUENCE NUMBER IS -3, BUT IT IS THE 5TH
OPERATION IN THE NODE 1 SEQUENCE OF OPERATIONS.
MB REFFRS. TO THF 1ST OBSEPV?n OUTFLOW OPERATION NUMBER.
THIS SEOUEMCF NUMBER IS 5, flIJT IT IS THE 8TH OPERATION
1 SEQUENCE OF OPERATIONS.
FOR NODE 1
IN THE NODE
MC REFER
1 THIS S ECU FNC F "NUMB ER'IS'7. .
NDDF I SEOUENCE OF OPERATIONS.
TO THE LAST OBSERVED OUTFLOW
-— -- - BUT IT IS
OPERATION NUMBER. FOR NODE
THE IOTH OPERATION IN THE
C MO REFERS TO THE "IRRIGATION RETURN FLOW" CARD NUMBER. FOR NODE
C THIS SEOUENCE NUMBER IS 8, BUT IT IS THE HTM OPERATION IN THE
C NODE 1 SEOUENCE OF OPERATIONS.
100 MA«5
MC-10
MO- 1 1
GO TO 150
110 MA>5
MB-8
M:.-B
MD*9
150 NS - SUMSEO 1 KN )
MARK * 0
00 490 KS « 1, NS
IS - IABS ( ISEO ( KN, KS 1 )
C**** WRITE OUTPUT OF LINFS CONTROLLED BY INDEXCMAI MNFLOWS- OtMANOSI
IF < K$. GT. MA 1 GO TC 190
160 IF ( ISEO ( KN, KS 1 .GT . 0 1 GO TO 450
IF I ISEO ( KN, KS ).LT. 0 1 SO TO 300
GO TO 490
190 IF I KS . NE. MB ) GO TO 220
210 FORMiT 3EGWR ( KN, K )
240 CONTINUE
IFtKN .60. 2)GO TO 239
NODEl'KN
A01VOL-BEGWRIKN, 1)
AOICHM-BFGWR(KN.IO)
GO TO 242
239 IFIKM3NTH .GT. OIGO TO 241
KMONTH-12
KYEAR«KYR-l
HYD 08170
HVD08270
HYD08280
HYD08290
HVD08 300
HYD08310
KYOOB320
HVO OK 330
HY008340
HYD08350
HY008360
HVD08370
HY008380
HYD08390
HYD08400
HYD08410
HY0084ZO
HYD08480
HY008490
HYO 08 500
HYD08510
C
C
241 WRITE{7,243IKYEAR,KMQNTH,NOOEl,A01VOL,A01CHM,KN,BEGWR(KN,l),BEGMRI
243 FORMAT! 1 5, 13, 1 2, 2F 10. 1,1 5, 2F10. 11
242 CONTINUE
TONS * BEGWR ( KN, 10 ) * 1.36E-3
WRITEIIH,245MLTEMPm,K«6,i5»,TONS
245 FORMAT < 11X ,40HAQUIF6R CONDITIONS OF LAST TIME FRAME ,5X,I9,
, <8(2X,I4),2X7T5,3X,F6.3)
250 IF ( KS . LF. NS I GO TO 160
-***** THIS PORTION OF THE SUBROUTINE SETS UP ALL DEMANDS FROM SYSTEM
C*****(N CORRECT OUTPUT MODF
HYD 08 520
00000059
HY 008 550
HYO 08560
{
(
163
-------
300 nn 320 K = it 10
NTEMP(KI«KOEMNM( KN.IS.KI
LTEMP (Kl = KOEMNM t KN. ISf K )
320 ClTEOT!l . DEMAND ( KM , IS, 16 .
2, 10
330 DO 340 K
K» * K » 5
LTEMP (KA)
405
408
CHEMOM ( KN, IS, K I
GO TO 408
0 ) GO TO 408
•**** THIS IS THE GENERAL OUTPUT STATEMENT FOR MOST OF THE OUTPUT
400 IF ( MARK .GT. 8 )
IF ( LTEMP (6) .GT,
TONS- 0.0
01 405 K = 6, 15
LTFMP (K) « 6
CONTINUE
IFtlSEOIKN.KSI .NE. 4)GO TP 410
IF(QEXCS(KN,1) -EO. O.OIGO TO 410
00 411 KM,10
K»=K+5
411 LTEMP(KA)=OFXCS(KN,KI
TONS»QEXCS(KN,lO)*l.36E-3
*L° WRITER.409)(NTEMP(KI , K= I , 10 I . ( LTEMPII J) , J-6. 15) , TONS
409 FaRMAT(llX.10A4,5X,I9,8(lX,I5),2X,15,3X,F6.3>
IF ( ISEO ( KN, KS ) . GT. 0 ) 1Q TO 496
IF } DEMAND ( KN, IS, 14 ) . GT. 2.0 ) GO TO 490
c**». THISPORTION OFTHE SUBROUTINE COMPUTES ANO OUTPUTS THE SHORTAGES
C**** FROM THE IDEAL DEMANDS
KTEM > DEMAND ( KN , IS, MO I
LTEMP (171 ' KTEM - LTEMP (61
430 FgUATVttx^lHSHof^GE^ROM THE IDEAL DEMAND
C**** THIsnPOR?10N OF THE ROUTINE SETS UP ALL INFLOWS TO THE
C**** SYSTEM IN THE CORRECT OUTPUT MOTE
HYD08570
HYD08580
HY008590
HY008600
HY 008610
HYD08620
HY 008630
HYD08640
HY 008650
HYD08660
HY0086TO
HY008680
HY008710
HY008720
HY008730
HYD08740
HYD08750
HYD08760
14X, 19 I
450 00 463 K « I, 10
~ ' O&SVAL I KN, K ) - OINFLO (KN, 1, K I
LTFMPK(KA? - TEMP (KI
580 TSKmEMP ,10, • U36E-3
LIEMP.(6).;.0.
585 ?gH?'?K?":'j*EOIC (KN, K ) - OINFLO IKN, I, K
LTFMP^IKA) - TEMP (K)
590 CHMTINUF
LTFMP (61 * 0
TONS ^TEMP_( tp)_*._l.36Fr3ji5) >TOMS
HYD093_.
HYD09330
00000119
,7X,19,8(IX,I5HYD09345
HY009420
430
IF ( KN . NE. NUMNOO ) GO TO'TOO
600 FlTRiiTl(I/'sx?026HCHEM'lCAL CHANGES IN SYSTEM / )
?rMpl?K| = OBSVAL ( KN, K ) - OINFLO (I, 1, K)
KA « K t 5
LTFMP (KA ) - TFMO (K)
MO CONTINUE
164
*
r Y0(K
-------
•YP(KKPUNT)=PREDIC(KN,10)
rx(KK1IINT)=KKOUMT
LTFMP (6) - 0
TONS = TEMP (10 ) * 1.36F-3
m 623 K = I, 10 ' '
;PMP (K) = PREOIC (KN, K I - OINFLO (I, I, K »
KA = K t 5
(KAI = TEMP (K)
LTFMP (6| = 0
TOMS , TEMP ( 10 I * 1.3*^-3
<
703
2303 PFTUBN
FNT": 0-J1964 BYTES
SEV^ITY C30E WAS 0
HYP 09700
HYP09710
HY00975J r?
HY009760
HYn09770
HY009780
HYD09790
HY009800
HVD09810
HY009B30
HYD09850
FUNCTION NFINO ...„.,._,
5s::\^?fe^i«sSia;»«asaw* S53HSS;
0" 5 J » I, NUMNOO
UPEND, IHYD15970
201 HY015980
ARGUMENTHYI115990
HY016000
C711
10
?0
HYP 16020
HY016030
HYD160*0
HV016050
HY016060
HYD16070
HYO 16080
HVD16090
HYD16120C1
FORMAT (IHl, **HNC MATCH WAS ^DUN" IN CONNOD FOR NODE NUMBER, I5IHYD16130
FNn HYD 161*0
r,C T3 15
NFINQ * JK
RETURN
10
rnNT"0l|Cn
ARE GENERATED HERE
MFMORY REQUIREMENTS 000270 BYTES
Hlf.HFST SEVERITY CODE WAS 0
5UBROUTIN|fRFCOMP ( OFLPW, MK, IP, INOY, MO, CONST, IW
A 3INFLDI5,10,12).OFMANO(5,13,16),K
3DEMNMI 5, 10,16) "~ '-J'-'°'»
. _.. . KOINNM( ..
_ _ / PROPER / SOIL! 5, I
I ",RTANK 15, 10) , NSEG ( 51 ,
P.'.e£NSJ°N..K.ys?(.51 io,30) . .. 10
"FLOW (K) = OFLPW (Kl * ( VOL* / V°L« I
100 CONTINUF
110 K=15
120 K * K t 4
IF ( K . GT. 27 ) GO Tn 2033
KOE5 = KUSE ( NK, IP, K)
KNOOE = KUSC (NK, IP, K * I )
IF ( KNDOF . LE. 3 )
KSFQ = KUSE ( NK, IP,
KPFR = KUSE ( NK, IP, K
JK = NFIN1 (KNOPE )
PER * KPFH
QfNFLO ( JK, KSEO, I )
O"1 HO KA = 2, 10
130
" *#**
r ****
• ****
200
IF
GT TO 123
K t •> I
3 )
PFLPW (l) * PER « i.QE-2
( KOFS . FO. tSIJ" ) OINELP( JK, KSFO, 11 ) = I .0
!•= ( KDES . EO. «r,^R ) OINCLP( JK, KSFO, U ) = 2.0
IF ( KPFS . FT.
-------
:****
c****
_ I 1.0 - { TFMCU / ONUSE
COMPARE SHORTAGE WITH SHORTAGE.INOEX
SHORT
(NK, IP. MOID * 1.0E2
IF ( SHORT . C,T. CONUSF < NK, IP, 1* I) 60 TO 1000
SHORTAGE IS LESS THAN SHORTAGE INDEX COMPUTE RETURN FLOW
RFLOW (II » CONST - TPMCU
COMUSE
NK, IP,
C****
r**»*
c****
300
CO TO 90
WHEN THE INDEX (
THE DEMAND!
CPNSUMPTIV
KDES « KUS
KNOPE
KSEQ
JP « NFI
IF I CONST
00 310 K
OINFLO( JP
CONTINUE
GO TO 330
OINFLlT JP,
DO 320 K «
OINFLO (
CONTINUE
IFF ! K?1
IF ( KDf. .
TO 2000
JTE f tW,
... . INOV I IS r.REATFR THAN 2 THE ROUTINE TREATS
AS TRANSFERS DF FLOW WITHOUT RETURN FLOH OR
INK, IP, 191
E (NK, IP, 20)
KNOOE!
. GT. o.
• I, 10
, KSEO, K
^SEO, 1 ) =
' ;sio, K i
21 )
GO TO 315
0.0
CONST
' OFLOM (K)
> QINFLO(
I OINFLO(
JK,
KSEQ, 11 I
JK, KSEO. 11 I
11 I
QINFLO( JK, KSEQ,
1.0
1:8
1010
1015
) WRITE fiW, 1005) (KDEMNM ( NK, IP, K) . K-
5 F1RMAT I IHl, 7X, 32HSHCRTAGE INDEX IS VtOLAT
1 13HFOR NODE NO. , 13, 5X, 12HSEGMENT N
CALL EXIT
WRITE ( IW,
FORMAT ( IHl, 7HINDY
1 13HFOR NODE NO.
CALL EXIT
2000 RFTURN
ENO
MEMORY REQUIREMENTS OOOAFC BYTFS
HIGHEST SEVERITY CODE WAS 0
1015 » INDY , NK, IP
, N*, IK
. 13, 5X. 24HWHICH IS GREATER THAN 5
, 13, 5X, 12HSEGMENT NO. , 13 >
HYD
HYD
SUBROUTINE CHEMGR ( OFLOM
COMMON / RESER /
CONST , KN. KS )
A giNFI 0(5,10,121,DEMAND!5,10.161.K
SOEMNMl 5, 10,16), K9INNM( 5, 10,16)
COMMON / PROPER / SOIL( 5, 10, 21),
1 GRTANK( 5, 10) , NSEG ( 5) ,
DIMENSION KU$E(5,10,30)
EQUIVALENCE ( CONUSE, KUSE )
KAQUNM (5.161
BTANKI 5, 101, TTANK(
"0, 301
CONUSE I 5, I
_ . _ nuac, *U3C 9
ION QFIQW( 10),QINRIV(10),TEMP(10)
UBROUTINE IS USED TO COMPUTE A LINEAR MIX OF CHEMISTRY
:**** FOR Fl nw ADDED TO THE RIVER ( SURFACE) , TO THE AOIIIFFR ( SIIRSiiRFAC.HY
DIMEN
C»**» THI
£***J . TO THE "ONDING PPOL ABOVE SOIL COLUMN, AND FLOW ADDED TO THE
* .^
C****
C**»*
?FLOW • FLOW IN RIVFR ARRAY . _
FOUE1CE RESPECTIVELY, CONST « OEMAN
HIS ENTRY MIXES RIVE' FLOW WITH AOU
KAT»1
VILA . CONST
VH8 • GRTANK (KN, 1 )
VOLUME « VOLA » VOLB
IF (VOLUME.LE.0.0) GO TO 2001
OT 53 K - 2, 10
OP TANK (KN, K ),' ( QFLOW (K) * VOLA
I / VOLUME
50 CONTINUE
GT TO 2000
C«**» THIS ENTRY MIXES RIVE*
ENTRY CHEMTTIQF ~ ""
KAT»2
VOLA « CONST
VOLB * TTANK (KN, I )
VOLUME « VOLA * VOIB
IF (VOLUME.LE.0.01 GO TO 2001
. - INDICES FOR NODE
DIVERSION
* GRTANK (KN, K I * VOLB I
FLOH WITH PONDING POOL
LOW, CONST, KN.KS)
UME. LE. 0.
DO 60 K ' 2, 10
TTANK (KN, K ) «
..... I OFLOW (K) » VOLA » TTANK (KN, K ) * VOLB )
1 / VOLUME
60 CONTINUE
GO ~
ENTRv'CHEMRvVoiNRlv^CONSfiKN.KS)
VOLA « QINFLO( KN, KS, 1 )
TO 2000
S ENTRY MIXES FLOW TO RIVBR WITH RIVER
LB-OINRIVI1)
LUME « VOLA + VOLB
(VOLUME.LE.0.0) GO Tn 20OI
!NR!V(K|-(QINFLO(KN,KS,K)*vnLA+OINRIV(K)*VOLB)/VOLUMF.
70 CONTINUE
GO TO 2000
C*«»* THIS ENTRY MIXES AOUIF
ENTRY CHEMAO(QFLOW,CrtN
VOLA • QFLPW (1)
V"IR « GRTANK (KN, 1 I
V3LUMF « VOLA * VPL?
IF (VOLUME.LE.0.0) GO TT 2001
DO 133 _ K. • 2
•P FLOW WITH RIVER FLOW
;T,KN,KS>
9FLOW (K»
GO TO 2000
;.*«« THIS fNTRY
« I QFL
HYD17*60
HrD17*70 A
HYD I 7*80
B
W (K| « VLA » R9TANK ( KN
. PS BTANK WfTF« WITH AQUIFER
FNTRY CHEMIST (OFLOW, CONST, KN.KS)
KAT»5
VDLA « OFL"W (1)
VPL<> « GRTiNK (KN, 1)
V'llUMF « VILA * VOL?
IF (V-)LIMF.LE.O.O) r-0 Tr 2001
HYD17810
K I * VOLB)/ VOLUME HYD178?0
HYD17H30
HYDI 78*0
HYD17850
HYD1TB60
HYO17870
HY017880
HYO 17890
166
-------
1
,
( KM, K)
V^Lu
I4i CONTINUE
G»T»HK (KN, 1 |
(">n TO 2000
(KN,K)
VXB I /
2011 X"!!TF( 6 ,2002 )KN,KS, K» T
700? <^°MAT(5X, 'VOLUME LESS THAN no CQUAI To ,PRO COR NODE «.rs.2v.
1'SEQUENCE EOU9L TO • , 15, 2X , 'K «T = ',12/1 «l'»**t
SNO
MEMORY SFQujpcMfsTS 330413 BYTES
Hf.Hcs'- SFV<=OITY CODE w»s o
MVOl7Q>J
HYD17910
HYD17920
HYP 17930
HYO 17940
HY017950
HY017960
SUBROUTINE CONVER ( TpMP , KR ,IW)
-**** THIS SUBR3UTINE IS USC0 TO :ONV=RT IN»UT UNITS TO PPM AND
C**** ALSO TO CHECK BA14NCF RFTWFFv ---•-••- Y..-*Tf.'-*-.'-v rr™ *"u
- **** UNI TS ARE IN MILLTFQUIVAL FNT S PFR ITTFR f HFf" K ^IIM nc TATtnuc
(•***« AND ANIONS IITFR CHECK SUM OF CATIONS
C**** SUM CATIONS
10 SUMC » 0.0
J" 20 K = 2, 4
SUMC » SUMC » TEMP IKI
20 CTNTINUE
C**** SUM ANIONS
SUMA * 0.0
DO 30 K » 5,9
SUMA » SUMA * TEMP (Kl
30 CONTINUE
OIFF « ?UMC -. SUMA
IF ( OIFF . GT. 0.0 I GO TO 43
?S"?o'?i " TEMP m * *BS ' nl" »
40 TFMP (61 ' TEMP(6I » DIFF
CONVERT FROM MILL IEOUIVAL ENTS PER LITER TO PARTS PER MILLION
-r ** DH 50 K »• Z t 9
50 ^Ml 'l TEHP IK» * EOV-T ' " '
COMPUTE TOTAL DISSOLVED SOLIDS CROM ANALYSIS
TDS • 0.0
0? 70 K
IF ( K
2,
EQ.
9
7 )
E""
60
70
75
TEMP (10 I
WRITE ( IM,
TO20
VERT
TOS
75) <
< 10 '
GO TO 60
TEMP (Kl
1, 10 I
:**S« «2NXIRT PA5TS PER Ml<-LION TO MILLIFOUIVALENTS PER LITER
"° S2 25K!1 T 2' '
M CT^,NUE ' TEM" '^ ' EWHT '"'
GO TO 10
2000 RETURN
END
MEMORY REQUIREMENTS 0004B4 BYTES
HIGHEST SEVERITY CODE WAS 0
HYD
HVO 181
HYD '
$0°
HYD
HYD
HYD 18300
HY018310
HY018320
HYD18330
HY018340
HYol§360 *
HYO18370
HYO 16 380
HY018390
HYD184OO
HYDIB410
HY018420
HVO 18430
HY018440
HYO18450
-
£****
:****
SUBROUTINE VERNAL t KN, IS. MO,PI>
-------
170
V"LHM" = VTI 4 t \l~
TF( VOLUME. IF. 1.0)
m 170 K = ', 10
01STRV IK) * ( "P-.
I VPLU"E
II
" no
IK) * V°l \ t II'! FLO IKN, IS. K I * VOLB I /
SERV< I) =V
ir ( IS.LT.
I
T
°V (II -
L^. 0.0
) ir
(li
TO 190
T S G'C«TFR THAN THE PRFDICTFD OUTFLOW
Fl^W TO THF SQUIFfR
TIFF = (Ifi
IF ( DTFF
-**** VOLUM? TF .......
r**** JCT UP TIM'ISFFR OF RIVFR
DrMAN?> i KN, K>, <*o i =
OFM4NO ( K«|, KB, «C I = 6.0
Gl T3 ?000
r**** VTLUMF OF IBSFRVFO OUTFLOW IS LFSS THUM THF PREDICTED OUTFLOW
***** SCT UP TRANSFrR FROM THF AOUIFFP T° THE RIVER
190 OFMAND I KH, KA, MO ) = 0.0
DFMAND (KM, K«, Ml I = ABS (DIFFI
2300 RFTURN
0014F3 BYTFS
SFV = »ITY CnnE MAS 0
HYniB7PO
HYCH879D
HV"»18800
HY018810
HYD18B20
HYD18830
HYD18850
MY018860
HY018870
HYni8880
HYD18890
HY01B900
HYD18910
HY018920
HYD18930
HY0189*0
HY0189SO
HY018960
HYD18970
HYD18980
HY018990
FUNCTION ROOTHO ( KNOOF
:*LrULATF ROOT OF (XI USING QUADRATIC
C**** x « ( - B »• SORT ( B*8 - 4 * A
C**»* INDEX AND KSF.G « SEGMENT INDEX
C**** IM DECREASING POWERS OF (XI
DIMENSION CA (10)
RAD = CA (21 * CA (21 - I 4.0 * CA
IF ( *AO . IE. 0.0 I SO TO 1000
R10TWT, * ( - ".A (2) » SORT ( RAO
: *o WRITE ( iw , 50 i "OIF , CAIII
C 50 FORMAT ( 1MI, flX, P6
C 1 9HCA
CA , MOLE , IW )
WHERE
C I / 2 A KNODE = NODE
CA * ARRAY OF COEFFICIENTS
r ALPHA DEFINITION OF (XI
III =
(21 =
2X,
F15.U
(1) * CA (31 I
I) /(2.0 * CA III)
CAI2I , CAI3I , RAD
ROOTWO
2X,
F15.9, ?X,
2X,
-IX,
1HC4
C 1 9HCA (3)
f. 1 9HRAOCAL
C 1 9HROOTHO
r,T TO 2000
1303 WRITE ( Iw , 1005 I KNOOE , KSFG , MCL E
1005 F-IOMAMIHI, ax, 25HPRC1BAPLY MOT A PFAL ROOT , 5x,
I 5H 7FRT , 5X, 7HNOD? = , 13 , 5X, 6HSEG *
7 4HFOR , A6, 2X, 11HCOMPUTATION I
2000 RETURN
MEMORY REOUIRFMFNTS 000300
HIGHFST SEVERITY :ODE HAS o
HYD19010
HYD19020
HYD19030
HYD19040
HYD
HVO
11HSET ROOT
• 13, 5X,
HYD
HYD. .
TO HYD19
HVD19 . .
HYD19200
HYD19;:10
HYD 19220
FUNCTION ROOT (CONST, XMAX, XMI1* , MOLE , CA, TEST* I
C**** THIS FUNCTION WILL COMPUTE THE REAL "nOT IF ONE EXISTS
' - ' ROOT EXISTS IN THIS
TF A
•-**** IN THF RANGE XMIN - XMAX ILLUSIVE. . ...
C**** MOLE WILL BE SET = TRUE, IF NO ROOT EXISTS , MOLE WILL BE SET -
C**** FALSE. F (X) - CONST AND COEFFiriFNTS CA (II II CA (N»l I ARE
r**** T»ANSFFRREO THROUGH ARGUMENT LIST IN INCREASING POWERS OF THE
r**** INDEPENDENT VARIABLE. IN THE FUNCTION FOFX NK * 5 , SO IF A
C**** A HIGHER THAN FOURTH DEGREE POLYNOMIAL IS TO SOLVED RESET NK
r**** IF NO ROOT IS FOUND AFTER TWENTY ITERATIONS NO ROOT WILL BE
:**** CONSIDERED AND MOLF WILL BE SET = HONE.
DIMENSION CAI10I
INTEGER «SC4/tFALS'/,*SC6/1NONF«/,lsr7/1TRUE1/
XA - l.E-1 * XMAX
IF ( XMIN . LT. 0.0 ) XA « l.E-l * XMIN
XB - XA «• XA
HVD19240
RANGEHYD19290
HYD19260
WRITE ( IW , 5 ) XMAX , XMIM
5 FTPMAT ( IH1. 8X, 7HXMAX * '
I 4HFOR , R6 // I
00 15 K- I, 5
WRITE I IW ,
10 FORMAT ( 8X,
15 CONTINUE
WRITE I IH , 18 I
18 FORMAT ( IOX, 2HXA
MOLF
F15.8,
5X, 7HXHIN « , F15.8 , 5X,
4Hcl«
TA
12
(K)
, 5H
, F20.8 // )
"•*« , I O A, -J'l*- AB ,
16X, 5HCONST / )
CONST
. XA,
1 I
20
30
100
1 I
lux,
2HXC
MOLE * $SC7
NK = 0
CAI1I « CAI1 I -
FXA « FOFX { CA
GO TO 30
FXA » FXB
NK » NK * 1
IF(NK.GT.20I GO TO
FXB * FOFX ( CA, XP
OX =• XB - XA
OXPP » FXB - FXA
IFIDXDP.EO.O.OI GO TO so
XC « XB - DX * FXB / DXOP
WRITEC6I, *0) XA, FXA, XB, FXB, XC, CONST
40 FDRMAT ( 6E20.10 I
FPSLON = ABS (XC - XR I
IF ( ABS (EPSLONI . LT. TESTA I GO TO 50
XA > XB
XB - XC
GO TO 20
50 ROOT ' XB
IFJXB.6T.XMAX.OR.XB.LT.XMINI MOLE * $SC4
GO TO 2000
18X, 3MFXA . IRX. 2HXB , 18X, 3HFXB , 1SX,
HYD 19270
D19280
HYD193*0
HVD19350
HYD19360
HYD 942
HYD 943_
HVO 9440
HVD
HVO
HVO 9591
---
HYD
HYD
HVD
HVD
HYD
HVD
HVD
_ 9480
HYD 9490
HYD
HVD
HV8
HVD
HYD:
HYD
9580
9600
9630
9640
168
-------
100 ROOT «
MOLE «
ZOOO RETURN
0.0
»SC6
E'lD
KEMOPY P60Uf»»-M''NT<- 00041C BYTES
HIGHEST SEVERITY CODE HAS 0
N FOFX(CF,X, KAM I
NCTION EVALUATES ANY POLYNOMI,
DEGREE INCLUSIVE ( SEE SETTIN
-'• EVALUATED RESET
FUNCTION
C**** THIS FU
C**** FOURTH -
C*«** POLYNOMIAL IS TO BE
DIMENSION CF(IO)
FOFX * 0.0
SK = 5
30 FOFX = FOFX » CHNKI
FOFX = FOFX » -X
NK * NK - 1
IF(NK.GT.l) GO TO 30
FOFX > FOFX * CF(l)
If ( KAM . NE. 0 ) GO TO 2000
00 40 K « 1, 10
CF (K) * 0.0
40 CONTINUE
2000 RETURN
END
AL FROM 1ST
G Of NK I IF
NK WHERE NK
DESREE TO HYD 19760
A HIGHER DEGREE HYD19TTO
- I « DEGREE HYD197BO
REQUIREMENTS 000278 BYTES
HIGHEST SEVERITY CODE WAS 0
C****
r****
c*»*»
c****
:****
c****
c****
c****
c****
SUBROUTINE SOILCO ( KNODE , IW , IR , NSEGS)
THIS SUBROUTINE IS USED AS 4
ROUTINES USED IN THE SIMULAT1
VERTICALLY THROUGH A SOIL COLUMN
SOLUTION ~~ ~ "
4 MONITOR SUBROUTINE FOR ALL SUB-
T10N OF PERCOLATING APPLIED WATERS
OLUMN USING PISTON DISPLACEMENT OF
FROM SEGMENT TO SEGMENT. THE FIRST STEP IS TO CHECK
FOR FIRST CALL TO THIS SUBRDUTINE -- IF FIRST CALL CLEAR ARRAY
ITER WHERE TALLY IS KEPT F0« NUMBER OF TIMES SEGMENT HAS BEEN
EQUILIBRATED FOR EACH APPLICATION OF WATERS TO BE PERCOLATED
"10 ALSO ARRAY KWATER WHERE TALLY IS KEPT OF EACH APPLICATION
ASC
OF NEW WATER.
COMMON /SOLUTE / SLCA,
1 SLN03 .
COMMON /SOLID/ CATEX, GY __ .
I EXTRAC , DEPTH.
DIMENSION ITER (20, 10 I , KWAT
DATA IFIR / 0 /
IF ( IFIR ,NE. 0 I GO TO 25
DO 20 K « [, 20
KWATER. (K) « 0
20 CONTINUE
IFIR
SLNA, .SLCL , SLS04,
. .
UMGS04
IME .BOENSi
EGVOL , INTER
R (20) , CA I 10)
SLHC03, SLC03,
EXCA ,EXNA, EXMG
25 03 30 I « 1, 2
DO 30 J * 1. H
ITER I It Ji «
If ( KWATER (K
30
1SH
MAX
MIN
C**** BEGIN
C**** A f-~
NSEGS
0
(KNODE
GT. 3 t GO TO 300
35
C**»*
ALL SEGMENTS
INDEX
ARTL
200 K * MIN , MAX
UPDATE°COUNTER (ITER) WHICH INDICATES
KTH SEGMENT HAS BEEN EQUILIBRATED
IN SOIL COLUMN FOR A
NUMBER OF TIMES THE
C****
C****
ITER (KNOOE , K I - ITER ( KNOOE i K I «• I
PLACE DATA FROM SOIL ARRAY INTO COMPUTATIONAL
NAME SEQUENCE FOR THE KTH SEGMENT
NSEGS, ISM »
lH{,Sx,41HBEGINNING e'oNDIHoNS-IOulLIBRATION NO. »
8X, 11HFOR NODE > , 13, 5X, IOHSEGMENT » , I2/
SVARIAftLF
ME~SEOUENCE>OR--- ,--,- ^ » «•»«
CALL SETUP ( KNOOE
C WRITE ( IM
C 40 FORMAT ( "
C I
CALCULATE MOISTURE CONTENT (WRATIOI - GRAMS OF WATER / GRANS OF
... .. ___ _.._ - -TIAL sou ANALYSIS WRATIO « EXTRACT (EXTRAC) .
APPLIED WATERS IS A FUNCTION OF VOLUME OF MATER,
V AND DEPTH OF KTH SEGMENT
MOISTURE CONTENT IN PERCENT (PRATIOI - WRATIO * I.E2
IF ('((WATER1 (KNODE) . GT. 0 I WRATIO > SEGVOL / ( 80 ENS * DEPTH
HYDl
HYDl
•wo; |i
HYD; s
HYDZ
HYO;
HYl
I2/
TUREHYD2I
HVO '
HYO
C****
CALL
PRATIO ' MRATIO * 1.E2
!FF APpi!,TEgRwlTNEgDSEHivE Sof §EEN PE^OL^ED THROUGH SOIL
SUBROUTINE TO EQUILIBRATE INITIAL SOIL ANALYSIS FOR EACH
"CALL'FRsflM
C CALL SCRIBE
c****c —
IW I
SEGMENT
COLUMN - EQUILIBRATE ON BASIS OF ORIGINAL SOIL ANALYSIS
CALL SUBROUTINE TO CALCULATE SOLUTION - PRECIPITATION OF GYPSUM
tYPEX(KNOOE
CRIBE (IW)
SCRI6EJIWI
,K,IW,PRATIOI
0440
:ALL
c
CALL-EXCANA0 (*KNODE ; K, IW
SU3ROUTI
CALL EX.
CALL SCRIB
f*k?
IW)
ATE EXCHANGE OF CALCIUM AND SODIUM
_._,£ (I
CALL SUBROUTINESTO*CALCULATE
-ALL EXCAMG I KNODE ,
ALL SCRIBE ( IW)
STO CALCULATE
CALL CALCAR SJSKNODE .
CALL SCRIBE (IW)
EPR°.VfS-»
ca
CA~(3)'« S
:ALL SUBROUTINE
C**** BICARBONAT
EXCHANGE OF CALCIUM AND MAGNESIUM
K, IW , PRATIO I
REACTION OF CALCIUM WITH CARBONATE -
K, IW , PRATIO I
(0680
169
-------
C« <4) = SLTA
T-i OETFRMINT I
HS<; ncpN ATTAINED IN TH^ SOIL - WAT
"F CAl'TU" IN SOLUTION AS THE
'***• SYSTEM USING
rn«jucp(-.FMT VARIASL11
r WS[T<: ( IW, hO ) NfT , ( C« «Tvr ARPLIEO MATE" IMTP FIP«T SCGMFNT AND EQUILIBRATE
300 MIN • 0
-**** uPOATr COUNTER PF NUMOFD OF APPLICATIONS OF SURFACE WATERS
KWATE* ( KNOriE I = KWifFR (KNOOE ) » I
TSH * 3
310 MTN * MIN 4- I
IF ( MIN . GT. NSEGS ) GO T" 353
KV = MIN
CALL S*OVER ( KNOOF , KV , NSFGS , ISW I
-««** THIS°TS5THF L»ST FOII11T RRATT OW FIR THIS SOIL COLUMN FOR THIS TIME
C**** FRAME ** MIX SOLUTION IK' LOWFRF"OST SCGMENT WITH BTANK **** SET
r««** VOLUME OF
350 ISW » 4
CALL SMPVER ( KNOOF t KV t NSEGS
2000 BFTURN
END
MFTRY REQtJTOFMFNTS 00098C BYTES
HIGHEST SEVERITY ;HOE WAS 0
SU^ROUTINC SETUP ( KN , KV. NSEGS. isw )
-,»** THIS SUBROUTINE HAS MULTIPLC ENTRIES ANR CONTROLS THE TRANSFER HYD21160
C**** OF riATA TI ANO FROM THE COMPUTATIONAL VARIABLE NAME SEQUENCE AS HYD2U70
C**** THIS DATA RELATES TO THAT STOREO IN THE ARRAY TITLED SOIL. THE
r**** SUBROUTINE ALSO SI"i)LATFS THF VC»TICAI DISPLACEMENT OF SOLUTION
C**** FROM D>(F SFGMENT TO THE NEXT LOWER SFGMENT (PISTON
C**** KV IN THE ARGUMENT LIST RFPRFS^T THF NODE
C**** RESPECTIVELY.
COMMON / PROPER / SOIL! 5, 10. 21), "TANK! 5,
. NSFG t
§LCA, SLM
5,
5)
MG,
HYD21180
HY021190
T). KN ANOHYD21200
HENT INCEXHY021210
HY 021220
.... TTANKI 5, 10),HY021230
301 HY021240
, SLHC03, SLC03, --*---
(PISTON EFF
INOEX AND S
10),
I SPTANK 15, lot
COMMON /SOLUff
I SLN03 ,UCAS14 , U»»GSn*
rn«MQN /SOLID/ CATEX, GYPSUM, SLI"F ,BOENS, EXCA ,EXNA, FXMG ,
EXTRAC , OEPTH, SFGVOL , INTER
FQVWT (81
REAL INtER
OATA EOVWT
DATA ((FQVWT(K) , K<1 ,8)
VALNCE
DATA VALNCE
20.4 ,12. 16. 23. ,35.*6,*3.03, 3D. ,61. 01,
6?. 009 /
20.4 ..12.16.21.1 35.^6, 48. 03, 30.. 61. 01.
62.00B I
C**** THE MAiN'ENfRY TO THIS SUBROUTtN? CONVERTS UNITl 5F INITIAL SOIL HYO
ANUYIS INTO COMPUTATIONAL UNITS
HYO
____
CONVERSION OF MILLIEOUIVALENTS PFR LITFR (MFO/L) TO COMPUTATIONAL UNITS HYD21380
!,.«».- 3i^"-. - -_i^ ----- ------------ „.. ..... „ ,(MEO/L| /(VALENCE » 1.E3HYD21390
;.«*« OF MOLS PER LITER (SOLUTION)- M3LS/LITCR
IF ( ISW . NE. 0 I GO TO 70
50 00 60 K * 1,8
SOIL (KN.KV.K) * SPIL (KN.KV.K) / IVALNCE JK) * 1. E31
CONTINUE
%i
HY021400
HY021410
HY02U20
HYD21430
MtLLIEQUIVALENTS PER 100 GRAMS TO COMPUTATION UNITS OF WLS/GRAMHY021440
CrNVERMpN_IS NECESSARY.Fn^tNITIAL.SOIL.ANALYSIS
C1EO/100GRAHS) /(VALENCE « I.ESI
«CIL (KN.KV.ll)/ (VALNCFI4I* 1.E5I
SOIL (KN.KV.12I/ (VALNCE(S)* I.ESI
ZERP COMOUTATIONAL UNITS RETAINED
D NO
yjpM f Cy » f\
C***« PFR GRAM (SOLint-'MOLS/GRAM
SOIL (KN.KV.ll) =
-------
" * * * rt
•" ****
r * * * *
r ****
r, ***• *
(•' * * * *
*• ****
90
C **«*
95
97
100
\? ",
•c ****
HI
:*»**
c*»**
c****
2000
TUTS C\TRY MHVF^ ^F S^LMM ' '
wnnp ynuvn 01 -»c \
PSBTS PER "ILLICWPMi WHTOC PPW * MOLCS PER^LITER *' "=<3U IVALENT HYD 21760
HEIGHT OF SPECIFS * VH FMrr ~F F3 4 L so MOVES SOLUTIO;HYD21770
nr. r,NF cEGMpNT To NFVT ^nc: » I
m 101 K = i, B
S1IL«M,KP,K) = ^"ILIKN.KR.KI
CONTINUE
S"IL (KN.KP.19I = SriL(KN,K1',
S"'L (KN,KP,20) = S"IL(KN,KH,
0? TI q?
ir ( =NT HEIGHT * VALENCE * I.E3)
HYD21810
HYD21820
HYD21830
HYD 2 1840
HY021850
HY021860
(SOIL (KN.KR.K)* FQV*T(K) * VALNCE (K )HYD2 1880
TC NEXT LOWER SEGMENT
10)
CRMOIST SEGMENT
(=OVWT(K) * VALNCE(K) * I.F3)
HY021B90
HY021900
HYD21910
HYD21920
HY021930
HYD21940
HYD2195Q
HYO 2 1960
HYD21970
HYD2L980
HY021990
HY022000
HY022010
HY 02 20 20
HY022030
HY022040
HY022050
HYD22060
HYD22070
MV n y t nfi n
AT TH? CnMO(. = TION IF EO IL I !"»» T I1N "F EACH SEGMENT THIS ENTRY RELOAHYD22095
ARPAY S^IL ^Y TPANSccp r>F piri c»c« r 1MPUT AT I PNAL VARIABLE NAME HY022100
SFQUENTF. MI UNITS \P.F. IN :O«OIJTATTINAL UNITS. HYOZJIIO
ENTRY aFLH'Vn
S1^ I L (K^fKVt 1) — SLTfi
S"IL (KM.KV, 2) = SLMG
S"IL (KN.KV, 3) SLNS
SOIL (KN.KV, 4) SLCl
S9II (KN.KV, 5) SLS»M
Sn'L (KN,KV, 6) SLHtO?
SOIL (KN.KV, 7) *LCn3
SHIL (KN.KV, 3) SLN03
SOTL (KN.KV.12) r-YPSUM
SOIL (KN.KV, 13) SI T**
SOIL (KN.KV, 16) FXC4
SIR (KN.Kv.i7) FXMG
SOIL (KN.KV, 18) EXNA
SOIL (KN.KV, 19) UCASO4
S?IL (KN.KV, 20) UMGSH4
S1IL (KN.KV, 21) INTER
R=TURN
END
HYD22120
HYD22130
HY022 40
HYD22150
HYD22160
HYD22170
HY022180
HYD22190
HYP22200
HY022210
HYD22220
HYD2224O
HYD22250
HYD22260
HY022270
HYD22280
HYD22290
HYD22300
EHDRY REQUIREMENTS OOOAAC BYTES
IGHEST SEVERITY CODE WAS 0
SUBROUTINE FRSTIM ( KNODE , KSF" . IW )
C**** THIS SUIRDUTINF IS USED TO CALCIJLATF IONIC CONCENTRATIONS
C**** or CALCIUM, MAGNESIUM .SULFATF 4NO TH= UNOISSOCIATEO CALCIUM
C**** S'.JLFATE ANO MAGNESIUM SUL=ATF . THE SUBROUTINE ALSO CALCULATES
r**** TH? 5XCHANGFARIF CALCIUM .MAGNESIUM ANO SODIUM . THIS SUBROUTINE
HYY81!!!o°
9¥-8!!!458.
i » T T ^ ir»7- ^^ c n«^«>r woir ^»i.k,iu'" t™« n'j-v c j i u~i a rnu auu iu« • t ni a iUO'MJU ' \r* c ni i/cc?7V.
-**** is USED ONLY ONCE FOP. EACH SOIL SEGMENT ANO USES DATA FROM 1NIT IALHY022360
'
SLS04, SLHC03, SLCOJ,
r**** sniL ANALSIS.
COMMON /SOLUTE / SLCA, SLMG, SLNA, ._ _
I SLN03 .UCAS04 , UMOS14
COMMON /SOLID/ CATFX.GYOSUM, SL1M = , BOENS, EXCA, EXNA, EXHG, HYDZ24OO
I EXTRAC, DEPTH, SEGVPL, INTER HY022410
DIMENSION CA (10) HY022420
INTEGER *Sr,l/'FRST1/,«SC2/'TRUE'/ |
04TA T=C4/ 4.9F-3/, TEfMG/ 5.9E-3/ HY022430
r»LrULAT= ACTIVITY COEFFICIENT FOR DIVALENT ION (GAMMA2I HYD22440
GAMMA2 * 5(2)
CALCULATE C3NCCNTRAT ION PF UNCOMBINED SULFATE ION AS A POSITIVE REAL HY022460
C**** ROOT OF A THIRD DEGREE PDLNHMIAL . LET THERMQOYNAMIC EQUILIBRIUM HY0224TO
C**** CONSTANTS FOR UNOISSOCIATEO CALCIUM SULFATE ANO MAGNESIUM SULFATE HY022480
r«»** « 4.9E-3 ANO 5.9F-3 RESPECTIVELY HY022490
:HF.CK FIPST TO DETERMINE IF SULFATE is IN SOLUTION - IF NO SULFATF is HYD22500
r*«** SOLUTION BYPASS COMPUTATIONS WHERE SULFATE IS A VARIABLE HYD22510
IK(SLSn*.LE.O.O> r,n TO 60 HYD22S20
CALCULATF C1FFFICIENTS FOR THIRD DEGREE POLYNOMIAL HYD22530
DO 50 K « 1,10 HY022540
CA(K> » 0.0 HYD22550
50 CONTINUE HY022560
GSQR « GAMMA2 * GAMMA2 HVD225TO
"OR * GSOP HYD22580
}R *(TFCA + TECMG I «• 3SOR * GSQR * (SLCA + SLMG -SLS04) HY02259Q
§CA« TFCMG » GSQR «(TECMG* SLCA * TECA* SLMg - SLS04 « HY022400
(TECA + TECMG))
~CMU » - SLS04 * TECA « TECMG
C**** CALCULATE UNCTHHINFO S04 AS ROOT GREATER THAN ZERO ANO LESS THAN
C**** SLS04
CALCULATE5! POSITIVE ROOT (REALI IN RANGE XMIN - XHAX
XMIN - 0.0
XMAX a SLS04
SET CONVERGENCE CRITERION «T€STA» SO THAT FIXI IS LESS THAN
TESTA « l.E-6
MOLE » $SC1
4 - R03T (CO
MOLE.NE.*SC2
C1NCENTRATI
XMIN, HOLE , CA , TESTA
OMST.XNAX,
i GO TO 900
ON OF UNDI SSOCt ATED CAS!H IMOLS/LITERI
ES04
IF(MOLE
CALCULATE C1N
UCAS04 • SLCA * FS04 * GSQR / (TECA <• GSQR * FS04I
CALCULATE UNCOMBINEO CA (MOLES/ L'TERI
HYO?
HYD2
HV02
HYD2
HY02
HYO?
HY02
HY02
l.E-6 HY02
HVD2
HYD 2
HYD227__
HY022730
HYD 22740
171
-------
HVRJP770
- I <; / LITrPI H
022800
HY022840
HY022850
HYD22860
6.7E-1HY022920
HYD22930
HYO22950
HYr-22960
HVD22970
HYD23000
HYD23010
HY023020
HYD73030
HY023040
.12HSEGMFNT NO. , t3,
.r
(TM.965) FS-1* , SLSH*
965 F"R>14T (RX , ?OHPOPT IS TUT "F BANC.c , 7HROOT = .F10.5 ,
x'l5HRANr5^ = '-0 TT , F10.5 )
.. ,
F10.5 ) HY023130
HYD23150
HYH23160
RFOl|TOrMCNrs Q00600 RYTFS
<;^V:PITY r.nnE WAS o
GY'FX IKNODE, KSFG, !W, PRATIO )
^^^
p UNOJSSOCI.T™ JON P.,|gfC«0* A^D MGS3*.
CA (131
SLC03-
TF A:TIVITY CHFFFTCIENCT OF DIVALENT ION (GAMMA2) HY023260
,,4MM42 , r,(2) HYD23270
GSQR = GAMMA2 * GAMMA2 HYD23280
CALCULATF CHANGES IN C ONC <=NTP AT IONS OF CALCIUM AND SULFATE (X). GIVEN THHYD23290
r**** SOLUBILITY PRODUCT (KSPI OF GYPSUM = 2.4E-5. SOLVE FOR IX) USING HYD23300
-.**** QUADRATIC FORM HF KSP = ((SLCA » XHSLSOt *X)»* GAMMA2 **2 . WHENHYD23310
C**«* (X) IS POSITIVE SOLUTION IS UNDERS4TURATED. WHEN (X) IS ZERO OR HYD23320
:**.* igi:c,ATiVf: SOLUTITN IS SATURATED 09 SUPERSATURATED. COMPUTE COEFF 1C IHYD23330
C**** CTB QUADRATIC EQUATION HYD2
40 C»( II = 1.0 HYD2
r«(2l » SLCA » SLS04 HYD23360
r«(3l - (SLCA » SL60*) - <2.*E-5 / GSORI HYD23370
MOLE = tSCl HYD23380
CONVFR.T GYPSUM (SOLID) FROM MOLS/GRAM TO MOLES PER LITER - PRATIO IS
C«**» MOIST'JPF CONTENT IN PERCENCT - MOLS/LITER = (1.0 /PRATIT)* I.E5
GYPSQL » GYPSUM * (I.0 /PRATIOI * I.E5
X = ROOTW'l (KNOnE,KSeG,CA, MOLE, IW)
I'M X.LT.O.OI GO TO 60
CiNDIMnM-STLUTION IS UNOERSATUREO
Y = GYPSOL - X
IF(Y.LE.O.O) GO Tr> 50
CHNDITIDN - ENOUGH GYPSUM IN SOLID STATE TO SATURATE SOLUTION - UPDATE
;«»»* rALCIIJM AND SULFATE CONCENTRATIONS.
SLCA = SLCA » X
SLS04 - SLSD4 * X
GYPSOL = Y
rONDITION-NOT ENOUGH GYPSUM IN SOLID STATE TO SATURATE SOLUTION DISSOLVEHYD23530
C**** 41L GYPSUM - UPDATE CALCIUM AND SULFATE CONCENTRATIONS HYD23540
50 GYPSDL =0.0 '
SLCA » SLCA + X
SLS1« = SLS04 + X
GO TO 100 HY
T.ONOITION-SnLUTION IS SUPERSATURATED ADO EXCESS TO GYPSUM IN SOLID STATEHYD23590
(-**»* U"DATE CALCIUM AND SULFATE CONCENTRATIONS HYD23600
60 X * A3 SIX) HYD23610
GYPSOL = GYPSOL » X HYD23620
SLCA « SLCA - X HY023630
SLSO* » SLS04 - X HYD23640
CONDITION - TEST IF UNOISSOCIATED CASO* (UCASO*) IS AT MAXIMUM CONCENTRAHYD23650
C**«* OF 4.987E-3 MOLS /LITER HYD23660
70 IF (LCASfH.GE.4.987E-3l GO TO 90 HY023670
CONDITION - UCAS04 NOT AT MAXIMUM CONCENTRATION HY023680
M « 4.987E-3 - UCASO* HYD23690
IF (W.IT.GYPSOL) GO TO 80 HYD23700
riON-N^T ENOUGH RESIDUAL GYPSUM TO BRING UCAS04 TO MAXIMUM CONCENTRHYD23710
UCASO* « UCASO* » GYPSIU HYD23720
GYPSOL - 0.0 HYD23730
G" TO 100 HY023740
CONDITION - ENOUGH RESIDUAL GYPSU" TO MEET MAXIMUM CONCENTRATION OF UCASHY023750
«0 GYPSOL » GYPSOL - W HYD2J760
UCASO* - 4.987E-3 HY023770
rONVERT-RFSIDUAL GY°SUM FOR MOLS/LITFR BACK TO MOLS/GRAM HY023780
90 GYOSUM » GYPSOL * PRATIO / 1,E5 HYD23790
172
-------
r-0 TO 20t1 HY023ROO
•ALr|JLATF CHANGES IN tAinu* ANO SUIF.1TC CONCENTRATIONS (X) TO SATISFY HYr>238U
;**** uNniSSHC!ATFD CAST* (UCASn*l - WHFRE EQUATION OF EQUILIBRIUM IS HYD23820
;**** ciiiiLiBRUJM CONSTANT = *.9F-3 - COEFFICIENTS FOR SECOND'DEGREE HYD23830
-**** COUATITN ARE AFTER ",EtnMpuT ING IONIC STRENGTH HY023B*o
ino C,A«MA2 = GI2I
t C.AWMA2 HY023860
HYD23870
(SLCA * SLSO*) » *.9E-3
SLCA* SLSO*) -(*.<>E-3 * IJCASO*!
110 CA(U
(U = GSQR
.IJI = GSQR
CM3) MGSQR.
MrUF = $SC2
X = ROHTWO
-.**** iionATF CONCENTRATIONS
U"«SO* = UCASD* - X
SLCA = SLCA * X
SLSn* = SLSO* t. X
r i , MPLF , IH)
CASO*, CA AND SO*
HY023BBO
HY023890
HYO23900
HY023910
HY023920
HYD23930
HV023940
HY023950
C>SLCULATE CHANGES IN MAGNESIUM AND SULFATf CONCENTRATIONS (XI TO SAT ISFYHYD23960
C**** IJNOISSTCtATFD MGSOA (UMGSD41- WHERE EQUATION OF EOUtmRIUM IS HYD239T3
;***•* (UMGSTJ -X ) K = GAMHA2**2t(SL«G +X MSLSO* *X I) AND K * THERMOnYNHYD23980
r»,«* EQUILIBRIUM CONSTANT » 5.9E-3 - COEFFICIENTS FOR SECOND DEGREE HY023990
r**** EQUATION ARE - HYD24000
200 C.AIU = GSOR HY024010
CAI2) = GSQR * (SLMG t SLSQ*) t 5.9E-3 HYD24020
CA(3) = (GSOR * SLMG * SLSTVI -(5.9E-3 * UMGSH^t HYD2A030
"OLE = *SC1 HYD240*0
X = ROHTWO (KNHOE, KSFG, CAt «"LC, IW) HYD2A050
r**** UPDATE CONCENTRATIONS HF «"GSO*, W, AND SO* HYD24060
UMGSH4 = UMGST* - X HYr>2*070
SLMG = SLMG + X HY024080
SI EPTH, SFGVOL , INTER
nlMFNSION CA (101
DIMENSION T(*|
OEX = 7.07E-1
C**** IF THEPF IS NO SODIUM IN SOLUTION CR SOLID PHASE EXIT ROUTINE
IF ( SLNA .EO. 0.0. AMD.FXNA . FO. 0.3 I GO TO 2000
CALCULATE M3NOVALENT ACTIVITY COEFFICIENT GAMMA1
6n 50 K°«'l, 10
CA (Kl = 3.0
50 CONTINUE
BETA * ( 1.0 / PRATID) * I.F5
APPANGE ORDER OF COEFFICIENTS IN INCREASING POWERS OF (XI
GSOR = GAMMAl * GAMMA1
BETA2 « BFTA * BETA
EXNA
CA(2)
CAI3)
SLCA I - ( PEX2 * EXCA * EXCA
SLCA * BETA * EXNA I 4- 2.3 * DEX2*
CAU)
SLNA 1
- *.0*BETA2
EXCA * BETA «• GSOR » DEX2 *
* DEX2
HYP2*130
HYD24140
HYD2*150
HYD2*160
HYD24170
HYD2*180
HY02*190
-- 10
DEX2 = DEX * OEX
CAIll = ( GSOR * EXNA
* SLNA * SLNA )
GSOR * EXNA * ( *.0 * - . - . _ -
EXCA * SLNA * ( SLNA + 2.0 * BETA * EXCA I
*.0 * GSOR * { SLCA + BFTA * CXNA I - *.0 « OEX?* BETA *
FXCA * ( P.ETA * FXCA + 2.0 * SLNA I - OEX2 * SLNA* SLNA
*.0 * BETA * I 2.0 * DFX2 ~ ~
CAI5I
ISW * I
CALCULATE A POSITIVE ROOT (REAL) IN RANGE XMIN - XMAX
XMIN = 0.0
XMAX = EXCA
IF ( EXCA ,GT. FXNA I XMAX = FXNA
60 MOLE - tSCl
:*.«* SET CONVERGENCE CRITERION (TESTAI SO THAT F(XI IS LESS THAN l.E-R
TESTA * 1*E~8
X - ROOT ( CONST, XMAX , XMIN , MOLE , CA , TESTA I
IF « MOLE . EO . *SC2 I GO TO 68
GO TO ( 75, 68 I , ISW
:**** TEST ROOT TO INSURE NO UPDATED CONCENTRATIONS ARE LESS THAN ZERO
T(2J « EXCA - X
TI3I « SLNA - I 2.0 * BETA * X
T(4) « SLCA » t BETA * X )
DO 70 K » I,*
IF < T (Kl
70 CONTINUE
GO TO 80
75 IF ( ISW
LE.0.0 I GO TO 75
I GO TO 1000
CSLCULATE A NEGATIVE ROOT (REAL)'IN RANGE XMIN - XMAX
XMIN
XMAX*
ISW
- XMAX
0.0
GO TO 60
r»*«* UPDATE CALCIUM AND SOOIUM CONCENTRATIONS IN SOLUTION ANO SOLID
BO FXNA = T( II
fXCA = TJ2J
LNA = T(3I
SLCA = T(*l
GO TO 2000
HY02*520
>530
HYDZ*5
HYD2*5
HYO2*5
173
-------
1001 W°ITr (
1005 P-IPM4T (
1005 ) KM
( IHI, PWAT ( // RX, *HX =
lrsLL =X
JOOO
MFMflRY RFOUIOFMFNTS OOOiFfl BYTES
HTf.HfST SFV^TTY CODE WAS 0
cpnT rxr5TS TN RAN
, SX. nH$sr,MFNT =
MIN, X«4X. MOL p1
F?0.fl , 3X, 74XMI-J
F'1P CA-« F1
.13)
' ' J '
. <=20.B , 3X.
'= , ASI* '
HVD24830
HY124IHO
HY024850
HYD24S6O
HY024870
HYD24880
HYD24890
HY024900
HY024910
r****
c****
c****
c****
r****
• ****
c****
c****
/SOLUTE / |L'CA, SLMC, SLMA, SLCL , SLS04, SLHCOS, SLC03,
.'COMMON /SOLID/ CATEX, GYPSUM,*SL! ME J«OENSt,FXCA .EXNA, EXMG ,
THF
HY024930
HYD24950
(DIVALENT) EXCHANGE WITH
A
v
;*»**
C****
'
( BETA * X )
2000
EMI)
NFMORY REOUIREMFNTS 000?EC BYTES
HIGHEST SEVERITY C006 WAS 0
IF THE OIVALENT ION HY025000
r..., „-,„,-,. CALCULATE THF HYr)25010
.JMIAL - BETA « CONVERSION HYD2502Q
.fOLS.P6R.LITeR_AND HAS UNITS OFHY02503C
HY025040
HT.!?25Q5Q
i
SOL UTiOM. EXCHANGE COEFFICINT
* ANOFMAGNESIU« IN SOLUTtON AND
HY02
C *^** WITH THF CAR ROMA TC c f c
£**** PHASE THE INDICATOPSLIMF
r**** PRESENT S!'.!/Iv.!Ji"' >Linf-
:•*** L3Sio i
C**«* IN PERCcn,, *r*inf - SLC
I!!! S=iA32ftz iNO INTER * INT
**** DERIVED 111 INC i ctu»i g
45
DO 45 1C « 1.
CA (KI « o.o
CONTINUE
GD TO 55
c uni. T run C4LH SO I
* (PRATIO « * 1.68)
CPRATIO ** l
IN SOLID PHASE ASSUME INTER
PRATIO ** 1.681
HY 0252 JO
fL"*,'«,SLRi ' SLS04. SLHC03, SLC03,
HYO25+60
5470
^t^i?^^8'4Kr^a:s%s^^.;^:s^?a!sr?HEN\iv^
Bi- E S3LOSILITY OF
£:: frrH"l^c^C""T«S.*-uCHANGE"N CONCENT
*:". n1 ^,??ETNT?NFnRN IS^D'ggG^^LYNSMU^S ,NC
""•CULAT^A^POSITIVE ROOT (RF*U IN RANGE XMIN -XMAX
lsw'«siHC03 *GT> SLCA ' XM4)( * SLC*
60 rJ ill " 1 5p*t"E / ( GAMMA I * GAMMA1 * GAMMA2 )
f J III " i'S * ?L5? * SI-HC03 » < SLHC03 * SLHC03 •
X? I?! 7*2 ' SLHC03 » SLCA J
CA (41 * 4.0
65 M"LF « JSCl
rnw
-------
HY|525T90
HY1?5810
) GO T" mo HY025820
F r»LnilJM ISlCi) 4NO BICARBONATE (SLHC33I HYf>?5R30
SAMMA1 * C.AMMA2
isw = 2
r,^ TT 60
61 1= ( v(r)|.F .Mr. «<;'.?
~***A l)Of)iTc CO*4C FNTP A T T ^
rtt*** |v SOIUTf'T*!"
f>9 060
HY026070
1EMORY REOUIREMENTS 0013B8 BYTES
f. HIGHEST SEVERITY CODE WAS 0
FUNCTION
r**»*«
C****»THIS FUNCTION CALCULATES THE ACTIVITY COEFFICIENT (GAMHAI
COMMON /SOLUTE / S.CA
SL"C. SLNA,
ONIC STRENGTH #CK2*S*#l
OF CONCENTRATION
CALCULATE Tl
C**** U> l/;
.U « 2.6 * (SLCA'i'SLMG + SISO* »
LCL
°
F
SLS04. SLHC03, SLC03.
SOLUTION (Ul WHERE
( MOLS/LITER) TIMES
SICOST* 5.E-1 » (SLNA » SLCL »
JALCULATS AiTlVITY'CbEFFlClENT ******************** toN USING OEBYE-
C»*»* *}UCKEL FORMULA AS A FUNCTION OF IONIC STRENGTH AND VAliNCE
RTIUI
O.IIGP TP 55
Ut-A
-
CO
CO
IMP « 0.0
- J«!
• GT
so ?:n T0 i,
100 i°T0 i°i
,. S2.TO 201
101
105
10*
200
' COMP / t 1.0 » COMP
•XP ( -4.68804 * COMP / I' 1.0 * COMP
GO TO 105
180
190
HY026210
HY026220
HY026240
HY02«
HY02t.
HY026|.-
HVD2*|aO
HY 026290
HYO •""
HVO
HVO
HYD
HYO
HYD
HYO
HVO —
HYO 26 370
HY026380
HV026390
HV026391
HY026391
B-FXPI-4168804*(COMP/(l.O+COMPt~0.3*ut I
S2.13.200
6,10
1061
•THE IONIC STRENGTH IS G»EAT?R THAN 0.5'»
. MEMORY REQUIREMENTS 000308 BYTES
' HIGHEST SEVERITY CODE WAS 0
CYP,TX,N,MOiIY»|
500 MO
501
IP'MO-I|500'500,501
"*T*5T5°03
55*" NO
^
•W-MO-1
00 *
> IY*
50,
175
-------
icacacacamcaoQcQmcocacacocamcixacocasaaoG
OUJUJLUlUU'UJUJU-'UjLlJUJU.'UJilJUJU-'UJUJUJLr
o«««r««*«r«««t
-------
APPENDIX C
C. SAMPLE DATA INPUT AND MODEL OUTPUT FOR THE MF.SILLA VALLEY
*** LISTING HP INPUT QATA ***
AO = 1
IN CONJUNCTIVA
100
1 0 0
\-\--\
p p 1
0
CONWOOIO? 0
TNSFQ101 15
CONSFOIO? 14
CPNWATIOI 0 .
rONH»Tl02 0101 0
CPNFMO 5 67 4 75
5«= ?TIJHY PQR THP MFSILI* P"")JPCT
U3"
0 3
0 0
2 -3
2 -3
0 3
0 3
0 0
> i ij
0
0
3
0
3
1 IT
0
0
4
4
0
0
0
~'JH
8
0
0
0
i r
0
6
6
0
0
0
i*^ ri
3
0
7
0
0
0
C .T 1 1. 1 "
0 0
0 0
8 -4
7 -5
0 0
0 0
0 0
0
0
9
8
0
0
o
0
0
-5
9
0
0
0
0
0
10
0
0
3
0
0
0
0
0
0
0
0
0
0
3
°0
0
0
§
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
*** LISTING OF TNPUT
JBFAD «
roV'»«J
r.pTAMK
57
DILUVIAL AQUFFR FOP NT1F. I
'? 106376. 135.0IL33!ol
101.0 15P.O 5'5.0 283
359.0 282.0 705. 0~4??
06375.00 229.1? 33.00
?
3
5
6
7
q
1
4
5
IS
10.0
10.4
20.7
K*S
10. 0
10.4
'0.7
32 '.6
17. 0
17.6
15.9
2.7
3.0
6.3
1 0.3
11.4
7.1
5.5
4.6
2.7
3.0
6.3
1 3.3
H.4
7.1
5.5
4.6
11.4
30T?
39.4
27.6
22.3
20.3
11.4
13. I
20.2
33.2
38.4
27.6
22.3
20.3
3.0
?3'.7
6.?
10.9
9.0
7.5
6.4
3.0
2.8
3.7
6.2
10.9
9.0
7.5
6.4
9.8
12.7
33.6
56.8
59.9
38.9
29.4
26.1
9.8
12.7
33.6
56.8
59.9
38.9
29.4
26.1
358.00
11. 0
10.4
9.0
8.1
8.3
7.4
6.9
6.7
U.O
10.4
9.0
3.1
8.0
7.4
6.9
6.7
.0 2.0 0
158.00
.0 4.0 0
.7
9
282.00
0.0
3.5
0.0
0.0
0.0
0.0
0.0
0.0
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.6
0.8
0.6
1.2
3.3
l.'l
0.9
0.6
0.8
0.6
I.?
3.0
1.8
l.l
0.9
.71
.73
.78
.70
.38
.35
.34
.31
.71
.73
.78
.70
.38
.35
.34
.31
0.0 5067
525.30
0.0 5167
705.00
10.05
13.39
10.06
15°:771
5.'0
5.41
4.93
10.35
10.09
10.06
10.72
5.78
5.23
5.41
4.93
20.00
20. 30
20.00
20.00
5.33
5.00
5.00
5.00
20.30
20.00
20.00
20.03
5.00
5.00
5.00
5.00
293.00
423.00
0.40
3.40
0.40
0.40
3.23
0.20
3.20
0.20
3.40
0.40
0.43
3.40
0.20
3.20
0.20
0.20
• 1.42
* 1.38
1.29
1.54
1.52
1.49
1.61
1.61
1.42
1.38
1.29
1.54
1.52
1.49
1.61
1.61
2.00
4.30
20.0
20.0
20.0
20.0
23.0
20.0
23.0
20.0
20.0
20.0
20.0
20.0
20.0
23.0
20. C
20.0
0. 73
3.90
1222.97
1823.52
. ISTINf.
IN»I»T DATA ***
TN I 101 "IP r,!M
LU«*<»Ar,e FOOM G.M. TO SUPPLY DEMAN'5
0.
0.0 0.0
0.0
0.0 0.0
OINFLO
<;i)00ei«l
0. 0.50.SURIOI 2100SUPIOI 2100SOP101
TP». OEMANO SUPPLIED FPHM G.W.
0.
0.0
0.0
0.0 0.0
2 101
•»»131Stlo
3 131
M101TP' 5133. 0.0 0.0 0.0 0.0
mNUSFlOl 3 7301. 0.50.-.WVIOI BIOOGWV101
0.0
0.0
10.0
1
0.0
3100
0.0
2100
0.0
0.0
8100
3
0
0
0
0
.3
71.
.0
.0
.0
.0
0
00
0
0
0
0
.0 517.
3
i
261.
.0
.0
.0
.0
0.
0.
0.
0.
0
0
0
0
i
5
I
5
I
I
5
6
5367
70
6
5067
67
6
5067
67
6
1367
6
5067
67
90.00
0.0
0. 0
553.70
-------
*** LISTING OF INPUT 0*Ta ***
JREAD * 5
QINFLO 12101SUP 47<»33.
47930.30
OE*SUR lintMAT 69
CPNUSFlOl 1
f>E*GWR 21101SU»
O«IUSE101
72.0 15.0 «8.0 6«.0 192.0 89.0
72.00 15.00 88.00
-69. 0.0 0.0 0.0 0.0 0.0 0.0
0. 0.50.SUR101 3100SIJR101 3100SIKUOI 3100
5205. 0.0 0.0 0.0 0.0 3.0 0.0
0. 0.50.SURIOI 2100SUR101 2100SUR131 2100
DF*S(IR 31101 TRR 18615. 0.0 0.0 6.0 0.0 0.0 0.0
CPNUSFlOl 3 10622. 0.50.~,UV131 8100CWVIOI SlOOGUVlOl 8100
0.0 0.0 499.0 6067
68.00 ' 253.41
0.0 0.0 0.0 6067
6 67
0.0 0.0 3.0 6067
6 67
0.0 0.0 0.0 6067
6 67
89.00
0.0
3.1
*** CALCULATED INPUT DATA ***
IRRIGATION DEMAND
"ONSUMPTIVF USE «
• 36114.8
18357.4 10TH CALCULATED UITH IRR. EFF. = 0.50
A»in PT«F»rTOR = NFW FT, WITH FACTOR =
1.700
00
OLD IRRISATION DEMAND
IRRIGATION EFF.
OIFF. (WATFR
OINFIO 52101CHK 6164.
6364.00
OINFIO 62131CHK 1664.
1664.00
OINFIO 72IOICHK o.
DE1SU*. 11192«"AI 13*3*.
CONUSEIO? 1 0. 0
36114.8
0.50
ING?! .
COVUSFloT*'"'- '-O'.'b,
DEMSUR 31107IPR 31025.
CONUSE102 3 17625. 0
72.0
72
119.0
266
0.0
0.0
,50.SU»102
0.0 0
50.SUR102
0.0 0
50.GWV132
15,
00
10,
84
0,
0.
0.5
8ft.0 6B.O 192.0 19.0
15.00 3*.00
153.0 156.0 321.0 102.0
31.SO 110.?3
0.0
0.0
0.0 0.0 0.0
0.0 0.0 0.0
3100SUR102 3100SU°102 3100
0
.0 0.0 0.0 0.0 0.0
2100SURIO? 2100<;URIO? ?100
,0 0.0 0.0 0.0 0.0
6100GWV132 tlOO'-,WV102
0.0 0.0
68.00
0.0 0.0
159.86
0.0 0.0
0.0 " "
0.0
0.0
0.0
0.0
499.0 6067
253.41
889.7 6067
553.16
0.0 6067
0.0 6067
6 67
0.0 6067
6 67
0.0 6067
6 67
89.00
780.56
0.0
1.95
0.0
?.. 10
540.91
1266.2?
*** '. ALCULATFD »NPUT
CONSUMPTIVE use «
• 599?5.0
29962.5 "PTH CSLCULATFO WITH IOP. PFC
tun FT*FACTOP * NEW ET, WITH
0.50
1.700
nL>> TRRI5ATION OEMAMD * 59925.0
f3Li> IRRIGATION EFF. = 0.50
n=HANO OIFF. JWATFR SAVINGS I =
3.3
OINFLO 5?102CHK 25298.
25293.30
00 0 3.
90.0 l*.0 144.0 113.0 25R.O 237.0
9?.23 18.00 I44.0-)
0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.9 P05.0 6067
11,3.3J 258.03
0.0 0.0 0.0 00 0
2J2.00
1.9D
744.1 )
1*057.38
?9962.4«
447.44
447.44
73.69
73.69
543.12
543.12
264.91
264.91
19»3.86
1923.H6
706.19
206.19
0.0
0.0
67.94
67.9't
3424.06
3424.06
-------
fnfaHc.ru."
t.700
»BOVF
,
.
t"
o.o
INGS) = o.0
o.o o.o o.o o.o
5«S? PUTFMws0'0 °'°
r PI nu -2.00 71.
' 101.00 " Isa.
0'0 0.0 0.0 0.0
Tr>°AO'MF8o?72 3ftv> °*°
Of WA^O
?°??00«:35?}2 5i§, °'°
• J* •
* °'0 0.0 0.0
?°6tOO--.8viT2 6101 °*°
0,0
0.0
00°'°
00°'°
0.0
0.0
0.0
0.0
0.0
3.0
0.0
0.0
0.0
0.0
0.0
1 6
0.0 1067
0.0 1067
517.0 5967
«if:£L 90*°°
o>;L 283'°° 2-°° »•» »«.,T
„ 106
0.0 1067
106
0.0 1067
1 67
y, 106
0.0 1067
106
0.0 1067
1 67
» 106
0.0 1367
106
0.0 1067
106
0.0 5067
5 67
« 106
0.0 5067
5 67
0.0 1067
„ 106
0.0 5067
5 67
-------
D INPUT DAT* ***
= 41187.6
= 20593.8
CALOILATEO WITH IRR. EF = .
AND CT*F4CT3R = MCW f T , WITH
= 0.50
I.TOO
niNFi?
«UP1IN 4
I n
ILO IRPIGUTTDN DEMAND
"Ln. i R°4 PA Ti ON FFF.
41187.6
0.50
OIFF. (WATfR SAVINGS)
oin r,R4Mnc ct n» RELOH MESILLA DAM
0. 0.0 0.0 0.0 0.0 0.0
PTVFs DIVERSION
0.0
0.0
10'
1T<
107
_ . 0. 3.0 0.6 0.0 0.0 0.0 0.0
!">? 'f G'ANOE lyTFLOW AT COURCHESNE .^RIOGE,
247.09.36
;4TTHN "FTUPN FLPW
0.0 0.0
0.6 0.0
91.0 1B.O 154.0 121.0
96.58 18.00
4TTHN "FTU°M FLPW
0. 0.0 0.0 0.0 0.0
TOA*KF = 7 pp FLTH FROM " ~* ~-
0. 0.0 0.0 0.0
7100
OINFIO h'lO'V-W
'',wo
oi"cin Taio^rtw
^IJPOEM 5 102
np«r,wP 5HO'cu1'
fPNU?ciO? 5
"JURf'^1 • IT
OINFin i>0iri?5ll'' 0. 0.0 0.0
5UPOTN 9 10?--- "'ITFnNr|r>«L TRANS ~~
" O0l0?ru' ). 0.0 0.0
0. 0.0 0.0 0.0
0, 0,0 0.0 0.0
TC
0.0
0 0
0 000
0.0 0.0
0.0
:p TO
0.0 0.0 . 0.0
• u. u 'J. \j u.'> u.u u.i.1 i u. J
0.50.SU?10| «100SU°10? PlOO^IPlOl 1100
0.0
0.0
0.0 0.0 0.0
IJDSTOFAX ACUITY
0.0 0.0 0.0
0.0
c.o
12.0
121.
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.6
30
0.0
0.0
0.0
0.0
0.0
0.0
106
0.0 1067
5 6
0.0 1067
106
R31.0 5067
? BO .00
106
0.0 1067
106
0.0 1067
1 67
106
0.0 1067
106
0.0 1067
1 67
106
0.0 1067
106
0-0 1067
204.00
12.00
J.60
764.1=1
OPERATIONAL NOTES:
(1) To eliminate the soil column simulations, change each monthly "CONUSE101 3" and "CONUSE102 3" card as follows: replace the letters "GWV" with "GWR"
(2) To change the ET multiplier or Irrigation efficiency, see the Subroutine Peruse, Appendix B, the three lines below line // HYD03950.
(3) To change the water delivery system efficiency, see the main program, Appendix B, one line below line # HYD006AO.
(A) Note that the listing of input data for all monthly inputs following the first month is abbreviated.
.6«
. 70
450.30
450.30
72.49
544.64
544.64
265.35
265.35
1923.16
1928.16
206. 5*
206.58
0.0
0.0
on..05
6R.05
-------
RCSCAPCH TN CONJUNCTIVE USE STUDY FOP THF MCSRLA PROJECT
NODE NUM3eR - I0l MONTH OF MAY Y=«R 1967
SEQUENCE OF SURFACE FACILITY
010 GRANDE AT HEAD OF SYSTEM
5,T,Xb! ELOW *PT?R °lv- PLUS Ft PASO TAR.
PUMPRGE FROM G.W. TO SUPPLY OFMANO
T»o. DEMAND SUPPLIED FROM G.W.
IRsnUTION DEMAND
SMOPJArE F»CN THE IDEM OF. MAW
ern GRAND* FLOW ABOVE MFSTILA OAM
EXCESS RIVER DIVERSION
NUMBER OF NODES
PAGE NO.
00
OUTFLOWS FROM NODE
FL PASO CARRIAGE AMD HASTE-ORS. OUTFLOWS
1FL RIO DRAIN - OSSFRVFO OUTFLOW ulrLl"5
Rin -,RANDE OUTFL1W AT MESflLA 0AM
SUBSURFACE npcR4TIONS AND FLOW TRANSFERS
OF FLOW FROM AO. TO DEL «Mtt
T^» OEl RIH DRAIN FROM AQUIFER
INDEX
TOTAL ^SFRVEO OUTFLOWS FRPM MODE
PRFDICTED 3UTFLOWS FROM NOTF
CHE^TCAL CHXN^F"; IN NODE
neSFRvPf) THANGF
PRFDICTEP CHANGE
IF FEET
42150
36160
21528
21528
24823
0
36160
0
6934
1771
29226
602412
12411
0
0
1771
1771
37931
37931
0
0
0
CA
PPM
73
73
263
263
238
73
0
73
263
73
263
477
0
0
263
263
82
R2
0
8
ft
MG
PPM
14
14
30
30
28
14
0
14
30
14
30
57
0
0
30
30
15
15
0
0
0
NA
PPM
92
92
100
100
99
92
0
92
100
92
100
199
0
0
130
100
92
92
0
0
0
CL
PPM
70
70
157
157
146
70
0
70
157
70
157
292
0
0
157
157
75
75
0
4
4
S04
PPM
261
261
524
524
490
261
0
261
524
261
524
980
0
0
524
524
273
273
0
12
12
HC03
PPM
89
89
282
282
257
89
0
«9
282
89
2«2
514
0
0
282
2P2
99
99
0
9
9
:o3
PPM
3
i
i
3
0
0
0
1
0
0
1
0
0
3
0
0
N03
PPM
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TOTAL
PPM
558
558
1222
1222
1134
558
0
558
1222
558
1222
2269
0
1222
589
589
0
31
31
SALTS
TONS/A=
0.760
0.760
1.663
1.663
1.543
3.760
0.0
0.760
1.663
0.760
1.66?
3 .397
olo
1.663
1.663
0.802
0.802
0.003
0.042
0.042
-------
RESEARCH IN CONJUNCTIVE USE STUDY FOR THE *?!sIlU "PHJECT
NOD? NUMRF» •» 132 MONTH OF MAY VCAR
OPERATIONAL SEQUENCE OF SURFACE FACILITIES
°TO nftMnE AT MESILLA ^AM-HEAR OF NODE 2
RIVFR FLOW AFTFR DIVERSION
PUMPARF FRIM r..w. TQ SUPPLY OEMANO
IRR. OEHANO SUPPLIED FROM P.M.
IRRIGATION OEMANI
SHPRT»GF f9*t( THE 10EAL OFHANO
Rin r,RAMOF FLOW BELOW MFSILL& DAM
EXCCSS
OBSERVE" DUTFLHW*: FRpt.
RIO r,Ra«»n(: ?UTFL?M AT
SUBSURFACE ^"ERATION^ ANO FLCW TRANSFERS
AOIIIFFR C"NPTTIONS OF LAST TIME FRAHF
2*209
RETURN FL
TRANSFER "F FLPM ffQtt R IVFR TP AOUIFER
INFLOW TO 10UIFFR FROM RIVER
TRANSFFP OF-PIOM FRO*1 AOUI FFR TP RIVER
INFLOW TO RIVFR FPPM AOUIFFR
TPANS FROI UPSTPEAM AQUIFER
NUMBER
NCOFS = 2
P4T.P NO.
V3LUMF
5E FEET
37931
24457
33776
33776
41187
0
24457
0
CA
PPM
82
82
?29
?29
202
82
0
MO
PPM
15
15
32
32
29
15
0
MA
PPM
92
92
357
357
310
92
0
CL
PPM
75
75
281
?44
75
0
S04
PPM
273
273
704
704
627
273
0
Hfr>3
PPM
99
99
4??
422
364
99
0
C03
PPM
C
0
3
3
0
•03
PPM
„
0
0
3
0
0
0
TITAL
PPM
589
SBT
1823
1123
IftOl
589
0
SALTS
TIMS/AT
0.802
o.ao?
'.4*0
2.48U
2.176
0.83?
0.0
96
17 153
120
279
203
11
7B4
1.066
1063760
?0593
24ft
248
0
0
0
229
405
a?
82
0
0
0
32
59
15
15
0
0
0
357
620
9?
92
0
0
0
281
489
75
75
0
0
0
704
l?54
273
273
0
0
0
422
729
99
99
0
0
0
3
6
0
0
0
0
1
0
0
c
0
1823
3203
589
599
0
0
0
2.483
4.356
G.H02
3.832
0.0
O.C
0.0
COMPARISON IN1F.X
TPT»L ORSFRVFO O'JTFLOWS FRPM NODE
TOTAL P9FPICTF.D 1UTFLOWS FROM NODE
SIMPLE DIFFERENCE (OBSFRVEP-PREOITTFOI
CHEMICAL 'MANSES IN NODE
09SFRVEO CHANGE
PREPICTEO CHANGE
CHEMICAL, tHANSES IN SYSTEM
OBSERVED CHANGE
•REOICTEO CHSNGF
24209
24209
0
0
0
0
0
96
82
13
13
0
22
A
i75
153
92
2 61
2
0
61
0
61
0
120
7
279
5 273
45 6
45
0
50
4
18
1?
203
99
104
104
114
9
11
0
11
11
3
II
0
784
589
194
194
3
225
1.066
3.832
0.264
0.264
•3.033
0.307
0.042
-------
t \'
- ,TT-,\,,L
ptyF1? n nw 4FTFP riv. PLUS ct
n|,»pi-;r rn-^j| s.w. TT SUP°LV
IP?, r,e,MM") SKOPLJE!) FopM G.W.
r->O
cnoyc^ ->iJTC|
~\ p^ci -^o()t^
ITL oin
01- '•.?
FO" THF
KIN
FACILITIES
1 CAR.»
NUMHER OF NODES = 2
DAM
00
S
AST
FP.-1M P,IVfP
^M sr), Tf Pf]
pp.Afr FPTM
/>Ol)TFCp
«T"'PI=
( ""S FPVcr-PPpOTr 'F
<: IN
nujMF
•F FEET
40961
322 *1
32281
36114
0
40961
0
6364
1664
34597
594219
IS057
0
0
1664
1664
42625
42625
0
0°
CA
PPM
71
71
266
266
246
71
0
71
266
71
266
492
0
0
266
266
79
79
0
7
MG
PPM
it
31
31
30
14
0
14
31
14
31
60
0
0
31
31
15
15
0
0
0
NA
PPM
87
87
110
110
107
87
0
87
110
87
110
215
0
0
110
110
88
88
0
0
0
CL
PPM
67
67
159
159
150
67
0
67
159
67
159
300
0
0
159
159
71
°
!
SCI4
PPM
253
553
553
521
253
0
253
553
253
553
1042
0
0
553
553
265
265
0
It
HC03
PPM
88
88
280
280
260
88
0
88
280
88
280
520
0
0
280
280
96
96
0
7
7
PAGE NO.
PPM
0
0
i
0
0
0
0
N03
PPM
0
0
2
i
0
0
0
2
0
0
0
2
2
0
0
0
0
0
TOTAL
PPM
540
540
1266
1266
1189
540
0
540
1266
540
1266
2378
0
0
1266
1266
569
569
0
28
28
SALTS
TONS/AF
8.736
.736
I »722
1.617
0.736
0.0
0.736
1.722
0.736
i-.Hi
0.0
0.0
l.Tfc
0.774
8.774
.000
0.039
0.039
-------
oo
ACRE FEFT
»ESCAPCH IN CONJUNCTIVE USE STUDY FOR THE MESILLA PPnjECT
NODE NUMBER = 102 MONTH OF JUN YEAR 1967
SEQUENCE OF SURFACE FACILITIES
R!« GRANDE AT MESILLA RAM-HEAD CF NnOE 2
RIVE* FLOW AFTER DIVERSION
PUMP4GE FROM G.W. TO SUPPLY DEMAND
IRR. 9EMANO SUPPLIED FROM G.W.
IRRIGATION DEMAND
SHORTAGE FROM THE IDEAL DEMAND
OTO GRANDE FLOW BELOW MESILLA DAM
EXCESS RIVER DIVERSION
"RSFRVED luTPLOwS FPPM NODE
PIP G9ANOE OUTFLOW AT COUPCHFSNE «PIDGF
SlflSu"FArF OPCR4TIQNS AND FLOW TRANSFERS
AO'IIFFO CONDITIONS OF I AST TJME FRAME
TRDI^iTTDN RETURN FLOW
TR4NSFFR IF FLOW FROM RIVeR TH AQUIFER
tMFL"W TO 4QUIFE* FROM RTVEP
TRANSFER OF FLOW FROM AQUIFER Tfl RIVE"
TO RIVER cpQM AOUIFFR
TRANS FROM UPSTREAM 4QUIFEO
25293
NUM3ER
CA
PPM
93
MG
PPM
NA
PPM
NODES
CL
PPM
SO*
PPM
HC03
PPM
NO. 4
-.03 N03 TOTAL
op ft pp
-------
APPENDIX D
D. ESTIMATION OF MISSING WATER QUALITY DATA AT LEASBURG
In order to run the USBR-EPA hydrosalinity model and simulate chemical
interaction effects in the unsaturated zone above the water table for the ten-
year period (1967-1976), complete chemical analyses of the river water at
Leasburg is required, since this is the input point at the head of the nodal
system of the model. Montly TDS values, hpwever, are the only available water
quality data for much of this period (see Appendix A). There are some other
available records of river flow at Leasburg with complete chemical analyses
for earlier years (Hernandez, 1976, Appendix B). Regression methods were
applied to this earlier data in order to establish relationships between the
major individual ion species present (Ca"*"*", Mg"*"1", Na+, Cl~, Soi^, HCOa",
C02=, and NOs") and the mean monthly river flow. Once these regression rela-
tionships were established, the concentration of major individual ion species
could be estimated for the missing data in the ten-year simulation period.
The monthly records for two periods, 1940-1944 and 1959-1963, were used
in establishing these regression relationships (see Hernandez, 1976, Appendix
B). For the period 1940-1944, the logarithm of the mean monthly discharge
(CFS) was compared against the logarithm of the respective ions (meq/1) men-
tioned above. For the period 1959-1963, the logarithm of mean monthly dis-
charge (CFS) was compared against the individual ion fraction, which is de-
fined as
. ,. . . individual ion species (ppm)
ion fraction = , .. ' r ...—>*« (
total dissolved solids (ppm)
The latter method of comparison gave very low correlation coefficients, where-
as the former method gave relatively higher ones. Therefore the regression
relationships obtained from the first method, based on the 1940-1944 period,
were used to estimate the concentration of major ion species for the missing
data in the ten-year simulation period. These relationships are listed in
Table D-l. After estimating these ions, a cation-anion balance was made in
order to calculate a TDS value, since this procedure is automatically per-
formed in the USBR-EPA model. The model utilizes this calculated TDS based
on the ion balance in all subsequent internal simulations. In calculating
this TDS value, the USBR-EPA model will add any cation-anion deficit to either
the calcium or sulfate concentration, depending on whether the deficiency is
from the cations or anions, respectively. When this procedure was used to
calculate TDS values for the simulated input data, large discrepancies between
these and observed values often existed. In several cases this calculated TDS
value was almost twice the observed TDS value. To remedy this situation so
that the model utilized the observed TDS data, the estimated individual ion
values for the major ions present were further modified. The iteration pro-
cedure used is explained below in a sample calculation. Results are shown in
Table D-2.
185
-------
TABLE D-l. REGRESSION RELATIONSHIPS FOR ESTIMATING THE MISSING WATER
QUALITY DATA AT LEASBURG, OBTAINED FROM THE DATA LISTED IN
HERNANDEZ (1976)
Ion
species
Calcium
Magnesium
Sodium
Bicarbonate
Sulfate
Chloride
Nitrate (3)
Regression relationship
(1)
log(Ca)
log(Mg)
log(Na)
log(HC03)
log(S04)
log (Cl)
log(N03)
(2)
- -0.195 log(Q) + 2.428
- -0.196 log(Q) + 1.757
= -0.222 log(Q) + 2.594
- -0.061 log(Q) + 2.110
- -0.252 log(Q) + 3.017
= -0.284 log(Q) + 2.658
= +0.033 log(Q) - 0.090
Correlation
coefficient
-0.868
-0.924
-0.957
-0.429
-0.956
-0.944
+0. 110
Estimated ion concentration (meq/fc) in the Rio Grande at Leasburg.
(2)
v Observed river flow (CFS) above Leasburg Dam.
Not used in subsequent calculations. The nitrate concentration in
the Rio Grande was assumed to be zero for the missing data period
shown in Appendix A.
186
-------
00
TABLE D-2. RESULTS OBTAINED FOR NOVEMBER,1972, USING THE ITERATION PROCEDURE TO
BALANCE CATIONS AND ANIONS SO THAT THE CALCULATED TDS OBTAINED
EQUALS THE OBSERVED TDS
1.
2.
3.
4.
5.
6.
7.
8.
lon(i) BI
Ca 20.04
Mg4"*" 12.16
Na+ 23.00
Cl~ 35.46
S04" 48.03
*HC03~ 61.01
C03" 30.00
NO ~ 62.01
Xiu(ppm)
162
34
222
219
544
119
0
0
o° - 1240.5
a.__ - 912
OBS
X^ppm)
119.1
25.0
163.2
161.0
399.9
87.5
0
0
a1 - 950.6
Y^Gneq/Jl)
5.94
2.06
7.10
4.54
8.33
1.43
0
0
BAL - 0.80
X± (ppm)
114.3
24.0
156.7
154.5
420.5
84.0
0
0
a2 - 912.1
Y^meq/*)
5.70
1.97
6.81
4.36
8.76
1.38
0
0
BAL - -0.02
*0nly one-half of the reported bicarbonate concentration is used In calculating
total dissolved solids (a).
-------
The water quality data that is missing (July,1968 to December,1975) and
estimated by the procedure described here, is listed in Appendix A, along with
all of the observed data required to operate the USBR-EPA model.
Description of Iteration Procedure
Complete chemical analyses of major ions for surface waters are observed
at Leasburg for only a portion of the ten-year simulation period (1967-1976),
whereas the TDS is observed for the entire period. The detailed chemical
analyses cover the periods of May,1967 to June,1968, and from January,1976 to
December,1976. The missing chemical analyses of major ions in the ten-year
interval (i.e., July,1968 to December,1975)were estimated, based on the re-
gression method described above, and the iteration procedure described here.
Once the individual ion concentrations (for Ca44", Mg44", Na4", Cl~, SOi+=, HCOs",
C02=, and NOs") were obtained from the regression coefficients and observed
river flow at Leasburg, they were further modified by an iteration procedure.
This was done so that the calculated TDS equaled the observed TDS.
This iteration procedure is best described by a series of calculations
listed below. The results obtained for November,1972 are shown in Table D-2.
The symbols appearing in the table are defined as:
a). - ion equivalent weight, which is equal to the ion atomic weight
divided by its valence.
X. - concentration (ppm) of the respective ion (i), obtained from
the regression relationship.
X. - the corrected concentration (ppm), as described in the itera-
tion procedure below; j refers to the iteration number.
Y - the concentration of X. , in meq/&.
The steps in the iteration procedure are:
(1) compute the ratio of observed to calculated TDS, i.e.
912
yi/ = 0.735
(2) Multiply X by the ratio obtained in (1) above, to obtain X , as
shown in column 4, Table D-2.
(3) Compute Y. from X , i.e.
(4) Calculate the cation-anion balance using the values Y , obtained
from step (3) above, i.e.
188
-------
sum of cations = Y + Y. + Y = 5.94+2.06+7.10
Z Cat. = 15.10 meq/£
sum of anions = Y. + Yc + Y, + Y-. + Y0
45678
Z Ani. = 4.54 + 8.33 + 1.43 = 14.30 meq/8,
BAL = Z Cat. - Z Ani. = 15.10 - 14.30
BAL = 0.80 meq/£
(5) Since the balance (BAL) in step (4) is greater than zero, there are
more cations than anions; an anion deficit exists. The sulfate (SOi^) ion
concentration is therefore corrected using the expression
1 v 1 1
X5 = o)5 • I Y , letting Y = 0.0
Here 015 is the equivalent, weight for sulfate and n is the total number of in-
dividual ions (8). The summation is done for the ion concentration in meq/fc
(column 5 of Table D-2). Thus,
Xg1 = 48.03 (5.94 + 2.06 + 7.10 - 4.54 - 0.0 - 1.43)
X_ = 438.5 ppm
The corrected sulfate concentration in column 4 should now be 438.5 ppm, and
not 399.9 ppm as listed.
If a cation deficit were calculated (i.e., BAL less than zero), the cal-
cium (Ca"1"*") concentration would be corrected using a similar relation, or
Xj1 + a>l • I Y^ , letting Yj1 = 0.0
Now U, would be the equivalent weight for calcium.
(6) A new TDS is obtained using the sulfate concentration from step (5)
above (or the calcium concentration if a cation deficit were found), and the
remaining data from column 4. Thus,
1 n 1
- £ X = 119.1 + 25.0 + 163.2 + 161.0 + 438.5 + 0.5(87.5)
1
a = 950.6 ppm
Note that only one-half of the bicarbonate concentration is used to calculate
the TDS.
189
-------
(7) A new ratio can now be found; the iteration procedure is repeated.
(8) Multiplying X.^ by the new ratio found in step (7) to obtain X±2
(column 6, Table D-2). Remember that the sulfate concentration was modified
in step (4) above.
(9) Repeat steps (3) through (6) to obtain a new BAL. If the BAL is
within one percent of the cation sum, the procedure is terminated. Otherwise
continue with steps (7) through (9).
190
-------
APPENDIX E
E. CONVERSION TABLE FOR ENGLISH TO SI UNITS
TABLE E-l. ENGLISH-METRIC CONVERSION TABLE
1.0 inch
1.0 inch
1.0 foot
1.0 foot
25.4 millimeters
2.54 centimeters
30.48 centimeters
0.3048 meters
1.0 acre
1.0 acre
4047 square meters
0.4047 hectares
1.0 gallon
1.0 gallon
1.0 cubic foot
1.0 cubic foot
1.0 acre-foot
1.0 acre-foot
1.0 gallon per minute
1.0 gallon per minute
1.0 gallon per minute
1.0 gallon per minute
1.0 cubic foot per second
1.0 cubic foot per second
3.7854 liters
0.0037854 cubic meters
28.32 liters
0.02832 cubic meters
1,233,000 liters
1233 cubic meters
3.7854 liters per minute
0.06309 liters per second
0.0037854 cubic meters per minute
63.09 x 10 cubic meters per minute
28.32 liters per second
0.02832 cubic meters per second
191
-------
TECHNICAL REPORT DATA
(f'lease read Instructions on the reverse before completing)
1 REPORT NO.
EPA-600/2-79-173
4. TITLE AND SUBTITLE
Evaluation of a Hydrosalinity Model of Irrigation
Return Flow Water Quality in the Mesilla Valley,
New Mexico
3. RECIPIENT'S ACCESSION-NO.
5. REPORT DATE
August 1979 issuing date
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Lynn W. Gelhar, Stephen G. McLin
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
New Mexico Institute of Mining and Technology
Socorro, New Mexico 87801
10. PROGRAM ELEMENT NO.
1BB770
11. CONTRACT/GRANT NO.
S803565
12. SPONSORING AGENCY NAME AND ADDRESS
Robert S. Kerr Environmental Research Laboratory
Office of Research and Development
U. S. Environmental Protection Agency
Ada, Oklahoma, 74820
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
EPA/600/15
15. SUPPLEMENTARY NOTES
16. ABSTRACT
A multi-cell lumped parameter model of irrigation-related water quality is ap-
plied to the Mesilla Valley, an irrigated valley encompassing roughly 40,500 hectares
(100,000 acres) adjacent to the Rio Grande in southern New Mexico. The model, which
was originally developed by the U.S. Bureau of Reclamation (USER) for the Environ-
mental Protection Agency (EPA), simulates diversions and pumping to meet irrigation
needs, irrigation return flows, chemical transformations in the soil, and mixing in
groundwater reservoirs.
Data on water quality at 35 surface and groundwater sites within the valley were
collected on a monthly basis over two irrigation seasons. Analysis of water quality
data from several observation wells in the shallow alluvial aquifer underlying the
area demonstrates that there has not been a statistically significant change of the
average salinity of the aquifer over the last decade.
The USBR-EPA model is evaluated in several computer simulations covering the
ten-year period from 1967 through 1976. It is found that the model adequately simu-
lates the observed seasonal pattern of salinity variation in the Rio Grande at the
lower end of the valley near El Paso, Texas. Simulation results indicate that when
irrigation efficiency is increased, there is a reduction in concentration of dis-
solved solids in the Rio Grande at El Paso, especially during the winter months.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Water Quality
Irrigation
Mathematical Models
Simulation
Irrigation Return Flow
68D
is. DISTRIBUTION STATEMENT
RELEASE UNLIMITED
19. SECURITY CLASS (This Report/
Unclassified
21. NO. OF PAGES
202
20. SECURITY CLASS (Thispage)
Unclassified
22. PRICE
2220-1 (9-73)
192
-657-060/5421
------- |