EPA-460/3-77-010
Jnlv 1977
HEAVY DUTY FUEL
ECONOMY PROGRAM
PHASE II - EVALUATION
OF EMISSION CONTROL
TECHNOLOGY APPROACHES
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Ann Arbor, Michigan
er
-------
EPA-460/3-77-010
HEAVY DUTY FUEL ECONOMY PROGRAM
PHASE II - EVALUATION OF EMISSION
CONTROL TECHNOLOGY APPROACHES
by
Charles M. Urban and Karl J. Springer
Southwest Research Institute
8500 Culebra Road
San Antonio, Texas 78284
Contract No. 68-03-2220
EPA Project Officers: Andrew Kaupert and Robert Wagner
Prepared for
ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Waste Management
Office of Mobile Source Air Pollution Control
Emission Control Technology Division
Ann Arbor, Michigan 48105
July 1977
-------
This report is issued by the Environmental Protection Agency to report
technical data of interest to a limited number of readers. Copies are
available free of charge to Federal employees, current contractors and
grantees, and nonprofit organizations - in limited quantities - from the
Library Services Office (MD-35), Research Triangle Park, North Carolina
27711; or, for a fee, from the National Technical Information Service,
5285 Port Royal Road. Springfield, Virginia 22161.
This report was furnished to the Environmental Protection Agency
by Southwest Research Institute, 8500 Culebra Road, San Antonio,
Texas, in fulfillment of Contract No. 68-03-2220. The contents
of this report are reproduced herein as received from Southwest
Research Institute. The opinions, findings, and conclusions
expressed are those of the author and not necessarily those of
the Environmental Protection Agency. Mention of company or
product names is not to be considered as an endorsement by the
Environmental Protection Agency.
Publication No. EPA-460/3-77-010
-------
ABSTRACT
This report describes the laboratory effort toward reducing emissions
and fuel consumption in a heavy-duty gasoline engine, while retaining current
durability performance. The goals were HC plus NOX of 6. 7 g/kW-hr, CO of
33.5 g/kW-hr, a ten percent reduction in specific fuel consumption and 1500
hours of service accumulation, using the procedures proposed for the 1979
model year. The initial laboratory evaluations involved standard carbure-
tors, a Dresserator inductor, a Bendix electronic fuel injection system,
exhaust manifold thermal reactors, exhaust gas recirculation along with a
number of other engine emissions control components and operating par-
ameters. Based on the project goals and the initial results, a system was
selected to undergo final optimization and service accumulation. The
system selected consisted of electronic fuel injection, thermal reactors
with air injection, exhaust gas recirculation and a high energy ignition
system with vacuum advance. This system met the emissions and specific
fuel consumption goals and completed 1500 hours of service accumulation.
During the last 750 hours of service accumulation, a heavy-duty oxidation
catalyst was included in the exhaust system as an add-on to the optimized
system. Subsequent to the 1500 hours of service accumulation, this
engine was installed into a heavy-duty truck for an evaluation of drive-
ability and performance.
111
-------
FOREWORD
This project, involving two separate phases, was initiated by the
Division of Emissions Control Technology, Environmental Protection
Agency, 2565 Plymouth Road, Ann Arbor, Michigan 48105. Phase I,
which involved an analysis of heavy-duty vehicle operating data from
several sources, has been discussed in a separate final report (EPA-
460/3-77-001) and is only briefly summarized in this report. The
Phase II evaluations, identified as Southwest Research Institute project
11-4311-002, are discussed in this report. The engineering effort on
which this report is based was accomplished by the Department of Emis-
sions Research of Southwest Research Institute, 6220 Culebra Road,
San Antonio, Texas. This project, authorized by Contract 68-03-2220,
began on June 30, 1975 and was completed July 30, 1977.
The SwRI Project Leader was Mr. Charles Urban who supervised all
work conducted in this project. The Lead Technicians on this project were
Mr. Robert Howard during the optimization phase and Mr. Eddie Grinstead
during the service accumulation evaluation. Mr. Robert Srubar provided
engineering assistance in conducting the service accumulation demonstration.
Mr. Karl Springer was Project Manager and was involved in the technical
and fiscal negotiation of the initial project and in subsequent major project
decisions.
The Project Officer during the negotiating and planning of this project
was Mr. Robert Wagner of the Technology Evaluation Staff, Environmental
Protection Agency. The Project Officer throughout the remainder of the
project was Mr. Andrew Kaupert. Another individual at EPA who provided
input and was directly associated with several aspects of the project was
Dr. Karl Hellman.
IV
-------
TABLE OF CONTENTS
Page
ABSTRACT
in
FOREWORD
iv
LIST OF FIGURES
vn
LIST OF TABLES
vin
SUMMARY
ix
I. INTRODUCTION 1
A. Project Objective i
B. Engine and System Selection j
C. Input from Phase I 2
D. Project Reviews 2
II. EQUIPMENT, INSTRUMENTS, PREPARATIONS AND
PROCEDURES 3
A. Engines 3
B. Dynamometers 3
C. Exhaust Sampling and Analysis 5
D. Emissions Test Procedures 5
E. Calculation Procedures and Output Format 8
F. Fuels and Lubricants g
III. DISCUSSION OF THE OPTIMIZATION EVALUATIONS 12
A. General Information 12
B. Baseline Evaluations and Systems Check 18
C. Standard Carburetor Evaluations 24
D. Dresserator Inductor 30
E. Bendix Electronic Fuel Injection 34
F. Selection and Assembly of a System for Service
Accumulation 47
IV. SERVICE ACCUMULATION DEMONSTRATION 53
A. Service Accumulation Schedule and Emissions
Test Sequence 53
B. Durability Test Stand and Instrumentation 55
C. Oxidation Catalyst 60
D. Emissions Test Results During Service Accumulation 6i
-------
TABLE OF CONTENTS (Cont'd.)
Page
E. Maximum Power and Exhaust Temperatures 64
F. Maintenance During Service Accumulation 68
G. Post Service Accumulation Demonstration
Emissions Results 74
H. Discussion of the Procedure Relative to this Project 75
V. DRIVEABILITY DEMONSTRATION 78
A. Driveability and Performance Test Procedures 78
B. Vehicle Acquisition and Instrumentation 79
C. Test Results 81
LIST OF REFERENCES 92
APPENDICES
VI
-------
LIST OF FIGURES
Figure
1 Dynamometers and instrumentation used in the optimization
evaluations 4
2 Heavy duty exhaust gas sampling and analytical train 6
3 Baseline Chevrolet 350 CID heavy-duty engine installed
on the dynamometer test stand 13
4 Fuel and emission controls used in the optimization evaluations 15
5 Relative emissions and torque vs air-fuel ratio at 2000 rpm 16
6 Illustration of the Dresserator Inductor 30
7 Illustration of the Electronic Fuel Injection System 35
8 Optimized system consisting of EFI, thermal reactors,
EGR and HEI 49
9 Test facility used in the service accumulation demonstration 56
10 Functional diagram of the engine and dynamometer
control system 53
11 Plot of the emissions results for the service accumulation
demonstration 65
12 Maximum power determinations for setting up emissions tests 66
13 Views of the truck and the durability engine installed
in the truck 80
14 Fuel economy as a function of vehicle test weight on the
San Antonio Road Route 90
VII
-------
LIST OF TABLES
Table Page
1 Description of Emissions Procedures 7
2 Experimental 23-Mode Emissions Test Schedule 9
3 Fuel Inspection Data 10
4 Fuel and Emissions Control Systems Evaluated 14
5 Engine Break-in Cycle 19
6 Results of the Baseline Evaluations - Engine 1 20
7 Results of the Baseline Evaluations - Engine 2 21
8 Modal Contribution to Nine-Mode Composite G/kW-Hr 23
9 Summarized Results of Emissions Control System with
Standard Carburetor 29
10 Effect of Fuel Injection Timing 42
11 Effect of Fuel to Air Ratio at WOT 46
12 Criteria Used in Final System Selection • 47
13 Emissions and SFC for Durability System 50
14 Service Accumulation Schedule Used in this Project 54
15 Service Accumulation Schedule Requirements 54
16 Emissions Results During Service Accumulation 62
17 Emissions Test Results With Oxidation Catalyst 63
18 Nominal Thermal Reactor and Oxidation Catalyst
Operating Temperatures 67
19 Scheduled Maintenance 69
20 Description of Scheduled and Unscheduled Maintenance
Performed 70
Vlll
-------
SUMMARY
A 1975 model Chevrolet 350 heavy-duty gasoline engine was optimized
to meet project emissions and fuel consumption goals of 6. 7 grams per kilo-
watt-hour (g/kW-hr) hydrocarbon (HC) plus oxides of nitrogen (NOx), 33.5
g/kW-hr carbon monoxide (CO), and a ten percent reduction in cycle composite
specific fuel consumption (SFC). Following system optimization, 1500 hours
of service accumulation were conducted with the engine in the optimized con-
figuration. The primary procedures utilized in this project were equivalent
to those given in the Proposed Rules for 1979 model heavy-duty gasoline
engines. The emissions test involved a 2000 rpm nine-mode cycle with
modes consisting of idle, cut-throttle, and 10, 25, 55, and 90 percent of
determined maximum power. The emissions measurement instruments
included: non-dispersive infrared (NDIR) for measuring CO and carbon
dioxide (CO2), chemiluminescence (CL) for measuring NOX and a heated
flame ionization detector (FID) for measuring HC.
Three basic fuel systems were evaluated; standard carburetor,
Bendix electronic fuel injection (EFI) and the Dresserator inductor (DI).
The standard carburetor was evaluated without modification other than
normal tune-up adjustment. The EFI had a potentiometer mounted on the
electronic control unit which enabled changing the air-fuel ratio by changing
the setting on the potentiometer. With the DI, large changes in air/fuel
ratio could be made by changing the relative location of grooved fuel con-
trol rods and smaller changes by adjusting the air bleed valves.
The primary emissions control components and systems evaluated
were; exhaust thermal reactors, exhaust port liners, air injection and
exhaust gas recirculation. Primary parameters evaluated were; fuel/air
ratio, ignition timing and partial opening of the throttle during the cut-
throttle mode. Potential capability of meeting the project's emissions goals
was demonstrated with all three of the fuel systems evaluated. However, the
fuel consumption goal was attained in this project only with the EFI system.
The primary problem modes in the emissions test cycle were the 90
percent power mode relative to CO and NOX and the closed throttle (CT) mode
relative to HC. With the leanest air/fuel ratio at which 90 percent of baseline
maximum power could be attained, the NOX emissions were at a very high
value. Therefore, lean optimization was found to be inapplicable for reducing
NOX in the 90 percent mode (without significant derating of the engine power
output). Also, use of EGR, in amounts enabling sufficient reduction of NOX
ix
-------
in the 90 percent mode, would require derating the engine. Therefore, re-
maining within the scope of this project (no reduction or 3-way catalyst being
used), rich fuel/air ratios with relatively small amounts of EGR were utilized
for reducing NOX in the 90 percent mode.
To control HC during the CT mode, shutoff of the fuel injection was used
with the EFI, whereas partial opening of the throttle was used with the carburetor
and the DI. Partial opening of the throttle during the CT mode, ior reduc-
tion of HC emissions, generally increased the proposed cycle composite
SFC by over six percent relative to shutting off the fuel. Fuel shutoff at
CT was a significant factor in being able to attain a ten percent reduction
in composite SFC with the EFI. With the fuel shutoff at CT, using the EFI
system, fairly significant HC levels were measured (i.e., levels which
would increase composite HC+NOX by 10 to 15 percent over the calculated
value obtained with the optimized system). Since the fuel flow was zero,
however, the calculated contribution to the emissions test composite
value was zero. Even if the actual measured HC emissions during CT
were included (nominally equivalent to approximately 0.7 g/kW-hr), the
HC+NOX values for the optimized system remained significantly below the
project goal.
The project emissions and SFC goals and the emissions test results
obtained with the baseline engine, the optimized system, and in the service
accumulation were as follows:
Emissions, Grams/kW-hr kg/kW-hr
SFC
HC
Baseline Engine 5. 7
Project Goals
Optimized System 0. 4
Service Accumulation
CO NO^
34 12.1
33.5
12.2 4.5
14.8
HC+NOX
17.8
6.7
4.8
3.9
0.450
<0.405a
0.392
0.398
a Based on a ten percent reduction from the baseline value
b Based on i25 hours plus the Deterioration Factor
The optimized system consisted of: electronic fuel injection, thermal
reactors with air injection, exhaust gas recirculation, and a high energy
ignition system with vacuum advance.
This optimized system completed 1500 hours of service accumulation
without any maintenance being required with the electronic fuel injection
system or,the thermal reactors. Some component repair and replacement
were necessary in the air injection and EGR systems. An oxidation catalyst
was included as an add-on during the last 750 hours of service accumulation.
No substantial reduction in catalyst conversion efficiency was noted during
the 750 hours of operation. In subsequent on-the-road evaluations, with this
engine installed in a heavy-duty truck, generally satisfactory driveability and
performance were demonstrated.
-------
I. INTRODUCTION
This is another in a series of reports concerning emissions from
engines used to power trucks and buses above 2122 kg (6000-lb) gross vehicle
weight. These reports^ -13)a cover WOrk begun at Southwest Research
Institute in 1967 on behalf of the Environmental Protection Agency (formerly
the National Air Pollution Control Administration of HEW). This report
describes evaluations aimed toward reducing both fuel consumption and
emissions from a heavy duty gasoline engine without detrimental effect on
durability of the engine.
A. Project Objective
The objective of this project phase was to evaluate emission control
technology approaches that will enable heavy duty gasoline engines to meet
relatively stringent emissions standards while simultaneously achieving fuel
economy improvement. Goals for this phase of the project were: a ten per-
cent or better improvement in specific fuel consumption (SFC), emissions
limits of 6.7 g/kW-hr{5 g/bhp-hr) HC+NOX. and 33.5 g/kW-hr (25 g/bhp-hr)
CO, and durability equivalent or superior to current engines. The primary
test procedure used in this project was the draft "Recommended Heavy Duty
Gasoline Instrumentation and Test Procedures1^14) which was subsequently
incorporated into the proposed rules for 1979 model year heavy duty
engines
B. Engine and System Selection
The engine selected was to be typical of engines currently used in
trucks above 8846 kg (19,501 Ib) gross vehicle weight. The Chevrolet 350
CID heavy-duty engine, in addition to currently meeting the preceding
criteria, had a significant number of fuel and emission control systems
readily available. Based to a large extent on the availability of oxidation
catalysts for heavy-duty applications and the questions involving sulfate
emissions at the time this project was initiated, catalysts were not included
in the optimization evaluations.
Three fuel systems were evaluated in this project. These systems
included: standard carburetors, a Dresserator inductor (DI) and Bendix
aSuperscript numbers in parentheses refer to the List of References at
the end of this report.
-------
electronic fuel injection (EFI). The primary emission control hardware and
methods evaluated were manual EGR, backpressure EGR valves (the rate of
recirculated exhaust gases was modulated by the exhaust backpressure),
cylinder heads with exhaust port liners, exhaust thermal reactors and air
injection. Generally air injection was used in conjunction with some other
control system. Parameters evaluated included: air/fuel ratio, ignition
timing, and the effects of air injection rate and partial throttle opening at cut-
throttle. The model and serial numbers of the engines and systems are
given in Table A-l in Appendix A.
C. Input From Phase I
Phase I of this project, reported separatelyU^), was to provide the
modal operating conditions which could provide definition of an SFC repre-
sentative of fuel consumption in vehicle operation. The Phase I study,
however, showed that there was no simple correlation between the nine-mode
BSFC and vehicle fuel economy, since variables such as vehicle weight and
power-to-weight ratio must be considered. The correlation could not be
significantly improved by change of modal weighting factors or by addition
of a few steady state modes. Therefore, Phase I did not directly provide
input into Phase II and a recommended procedure(l4) composite SFC was
selected as the primary optimization criteria for Phase II.
D. Project Reviews
A number of meetings, discussions, and reviews were held during the
course of this project with the Project Officer and the other individuals at
EPA involved in this project. The initial project planning meetings were held
at SwRI on August 4 and October 15, 1975. Those in attendance at the August
4 meeting included: Mr. Robert Wagner, Dr. Karl Hellman, and Ms. Marcia
Williams from the EPA and Mr. Charles Urban, Mr. Melvin Ingalls, and
Mr. Karl Springer from SwRI. Attendance at the October 15 meeting included
Messrs. Wagner, Urban, Ingalls and Springer, and Mr. Andrew Kaupert, the
new EPA project officer for this project. Other primary meetings involving
this phase of the project were held at the EPA facility in Ann Arbor on
January 6, July 29 and September 10, 1976. Dr. Karl Hellman from the EPA
and Mr. Charles Urban from SwRI were in attendance at each of these meetings
at the EPA. Mr. Ralph Stahman from EPA attended the January 6 meeting;
Mr. Andrew Kaupert from the EPA attended the July 29 and September 10
meetings; and Mr. Karl Springer from SwRI attended the July 29 meeting.
Others in attendance during portions of the meetings, in which this phase of
the project was discussed, include: Mr. Merrill Korth and Ms. Marcia
Williams from the EPA and Mr. Melvin Ingalls from SwRI.
Meetings were also held with representatives from the Electronic
Fuel Injection Division of Bendix and the Environmental Technology Division
of Dresser Industries.
-------
II. EQUIPMENT, INSTRUMENTS, PREPARATIONS AND PROCEDURES
This section describes the engines, facilities, instrumentation,
procedures and fuels utilized in this project.
A. Engines
Two Chevrolet 350 V8 heavy-duty gasoline engines of the same model
were utilized in this project. These engines were 1975 models used in
Series 50-60 trucks and Series 60 buses except in California. The engines
were equipped with two-barrel carburetors and the displacement and bore
and stroke are as follows:
Displacement 5737 cc 350 cu. in.
Bore & Stroke 102x88 mm 4. Ox 3. 48 in.
It was stated in the manufacturer's literature for the 1975 model year that
the gasoline engines are modified to operate efficiently on 91 octane (or
higher) no-lead, low-lead, or regular gasoline.
After baseline testing was initiated, it was found that although the
basic engine was a 1975 model, some of the components procured were not.
The primary problem involved the carburetors. The problem and the reso-
lution are discussed in detail in Section III. B. 2. which reports the results
of the baseline evaluations.
B. Dynamometers
Two all-electric absorbing-motoring stationary engine dynamometers,
with constant speed capability, were used in the baseline and optimization
evaluations. The dynamometer used in the majority of the optimization
evaluations was an Eaton Dynamatic with 373 kW (500 hp) absorbing and 149
kW (200 hp) motoring capability. The other dynamometer used for baseline
and some optimization evaluations, was a Midwest Eddy current absorber
with 130 kW (175 hp) capacity to which a 37 kW (50 hp) electric motor was
gear belt connected. This second unit enabled constant speed and motoring
capability at 1200, 2000 and 2300 rpm, the engine speeds of major interest;
based on the nine- and 23-mode procedures used in this project. These
dynamometer installations are shown in Figure 1.
-------
Midwest Eddy Current Dynamometer
Eaton Dynamatic Dynamometer
Emissions Instrumentation
Heated Flame lonization Detector
Figure 1. Dynamometers and instrumentation used in the
optimization evaluations.
-------
C. Exhaust Sampling and Analysis
The exhaust sampling and analysis system, partial views of which are
shown in Figure 1, was based on the draft "Recommended Heavy Duty Gasoline
Instrumentation and Test Procedures" dated July 11, 1975.U4) This
recommended procedure, with several modifications, was subsequently
published as proposed rules in the Federal Register(lS) for application in
1979 and later model years. This procedure requires the use of a heated
flame ionization detector (FID) for measuring hydrocarbons (HC) and a
chemiluminescence analyzer (CL) for measuring oxides of nitrogen (NOX).
Nondispersive infrared (NDIR) instruments are used for measuring carbon
dioxide (C02) and carbon monoxide (CO). A schematic of the system, as
specified in the recommended procedure, is shown in Figure 2.
One significant and several minor modifications to the recommended
procedure were made to the system as used in this project. The most
significant modification was that engine intake air flow was not measured.
Other modifications are illustrated as follows: (1) A single sample pump
large enough to handle the entire sample could not be obtained in time, so
two sample pumps were utilized. (2) The sample residence time of 5 seconds
specified in the recommended procedure could not be attained. The originally
allowed residence time was subsequently changed to 15 seconds total response
time in the proposed rulesjl*) (3) A few of the atmospheric and engine
operating parameters were recorded manually rather than on a recorder.
(4) Hydrocarbon hang-up requirements could not be met when the use of
very low ranges were required.
Although it was mutually agreed by both the EPA Project Officer and
SwRI Project Leader to utilize the recommended procedure in the project, this
project was specifically not intended to validate or demonstrate the new
procedure nor to perform procedural development. Therefore, the procedure
was followed as closely as deemed practical; with discretion being applied in
areas such as measurement of air flow and the several other areas of more
minor significance. The intent was to perform the research and laboratory
effort using the most recent EPA thinking regarding emissions testing of
gasoline engines for use in HD vehicles.
D. Emissions Test Procedures
Three emissions test procedures were utilized in this project. These
procedures included: the current nine-mode certification procedure(l 7) (FTP),
the recommended nine-mode procedure(14) (EPA), and a 23-mode procedure
dureUOJ(which has many of the characteristics of the 13-mode diesel certifi-
cation procedure). The nine-mode procedures are briefly described in
Table 1.
-------
OPTIONAL
Legend
Pirhculitr f itt*f
t^J
••
r\r— Li»« ''«» 9
^"—^ lnl»fn*l Control L
Bftchprtiturc Regulator with
lnt*rn«l Control Loop Shown
IOf wttft
Oop Shown
U^Cl "" •»>' Vjl.t or EqM,*»l*ni
L«g lnd Co-nmo
**tfl* V«lvt
Plug V«1v* O' Cqu.»»l*nt
-------
TABLE 1. DESCRIPTION OF EMISSIONS PROCEDURES
Percent of Time in Mode, Weighting
Man. Vac. Max. Torque Seconds Factors,
No. Mode FTPa
1 Idle
2 Cruise 16" Hg
3 PTA 10" Hg
4 Cruise 16" Hg
5 PTD 19" Hg
6 Cruise 16" Hg
7 FL 3" Hg
8 Cruise 16" Hg
9 CT
Total time per
Total time per
EPAb
-
25%
55%
25%
10%
25%
90%
25%
_
Cycle, minutes
Test, minutes
/I -7\
FTP
70
23
44
23
17
23
34
23
43
5
20
EPA
60
60
60
60
60
60
60
60
60
9
18
FTP& EPA
0.232
0.077
0.147
0.077
0.057
0.077
0.113
0.077
0.143
V_/Vjt A i t-iJ- U V^ V^ J. W A J- -I- ^* fc* ** J.'krf *•*• *. •» '-' •**• —• •— »
^Recommended Procedure^14'
-------
The primary differences between the nine-mode EPA and the nine-
mode FTP procedures are: modes in the EPA are specified as various "per-
cents of maximum torque", all modes in the EPA procedure are of one-
minute duration, and the EPA procedure has only two cycles of nine modes
per test, whereas the FTP has four cycles.
The experimental 23-mode procedure is listed in Table 2. This pro-
cedure had been used extensively in two previous emissions control tech-
nology projects. (6> 1°) This 23-mode procedure is quite similar to a 1500-
2500 rpm schedule studied in a project earlier than 1972, which was reported
in Reference 5. Each mode is of three minutes duration; the first minute
for changing speed and load, the second minute for stabilization, and the
third minute for measuring emission concentrations. The last nine minutes
of the twelve minutes allocated to mode 12 are for purging the sampling
system, changing sample filter media, draining sample condensate, and
zeroing and spanning the instruments.
E. Calculation Procedures and Output Format
Test results were calculated and reduced to required units in accord
with the applicable test methods. Primary exceptions to the preceding were:
(1) Use of metric units in reporting the results (as specified in the contract).
(2) In the nine-mode EPA procedure, the measured fuel/air ratio was not
calculated since air flow measurements were deleted from this project.
(3) In the 23-mode procedure, the NOx has been corrected for humidity
using the same formula as used in the federal certification test procedure:
k = 0.634+0. 00654H-0.0000222H2
The output formats on the computer printouts of the test data are defined in
Tables A-3, A-4 and A-5 in Appendix A.
F. Fuels and Lubricants
Three unleaded gasolines were used throughout the project. The
physical and chemical properties of these fuels are described in Table 3.
An unleaded gasoline meeting the requirements in the Proposed Rules was
used for the baseline evaluations and for the emissions testing during the
service accumulation demonstration. This gasoline was specially blended
by the Howell Refinery and was designated as SwRI code EM-268.
Commercially available Gulf Crest unleaded gasoline was used
throughout the engine mapping, optimization evaluations, and service
accumulation demonstration. An initially available quantity of the Gulf
Crest unleaded gasoline (SwRI code EM-237) was used throughout the engine
mapping and optimization evaluations. A reordered quantity of Gulf Crest
8
-------
TABLE 2. EXPERIMENTAL 23 MODE EMISSIONS TEST SCHEDULE
(Heavy Duty Gasoline Engines)
Engine Power Time in Minutes Weighting
Mode Speed, rpm Out, %a Mode Cumulative Factor
1 Idle 0 3 3 0.07
2 1200 2 3 6 0.06
3 1200 83 9 0.06
4 1200 18 3 12 0.05
5 1200 25 3 15 0.03
6 1200 50 3 18 0.06
7 1200 75 3 21 0.00
8 1200 82 3 24 0.04
9 1200 -92 3 27 0.00
10 1200 100 3 30 0.00
11 Idle 0 3 33 0.07
12 1200 0 (CT) 12 45 0.12
13 2300 100 3 48 0.025
14 2300 92 3 51 0.055
15 2300 82 3 54 0.035
I6 2300 75 3 57 ' 0.06
17 2300 50 3 60 0.06
18 2300 25 3 63 0.00
19 2300 18 3 66 0.065
20 2300 8 3 69 0.00
21 2300 2 3 72 0.00
22 Idle 03 75 0.08
23 2300 0 (CT)b 3 78 0.06
f-Observed at the flywheel, percent of maximum at the given engine rpm.
Power out is zero. Engine requires motoring in this mode.
-------
TABLE 3. FUEL INSPECTION DATA
Commercially Available
Gulf Crest Unleaded Gasoline
R.V.P., kPa (pounds)
Gravity, g/ml (°API)
Lead, mg/litre (g/gallon)
Sulfur, weight percent
Hydrocarbon Composition, percent
Aromatics
Olefins
Saturates
Phosphorus, mg/litre (g/gallon)
62.7 (9.10)
0.739 (59.9)
<1.3 (<0.005)
0.03
26.4
2.9
70. 7
68.7 (9.96)
0.734 (61.3)
3.4 (0.013)
0.03
24.1
3.6
72.4
Gasoline Blended by
Howell Refinery
Property
Distillation Range, °C(°F) IBP
10 Pet
50 Pet
90 Pet
EP
Pet Recovered
Pet Residue
Optimization
EM-237
32 (89)
52 (125)
103 (217)
170 (338)
211 (412)
97.9
1.3
Service
Accumulation
EM-268
28 (83)
18 (112)
102 (215)
162 (324)
217 (423)
98.0
1.0
Emissions
Testing
EM-259
31 (88)
56 (132)
104 (219)
159 (319)
202 (396)
98.0
1.0
<0.3(<0.001) <0.3(<0.00l)
Octane Number
Research
Motor
91.4
84.5
91.3
85.3
60.7 (8.8)
0.750 (57.0)
6.1 (0.023)
0.01
32.5
4.4
63.1
<0.3 (<0.001)
96.1
86.6
-------
unleaded gasoline (SwRI code EM-268) was used throughout the service
accumulation demonstration. Thiophene was added to the initial quantity
(EM-237) to increase the sulfur content to the requested level of 0.03
weight percent. The second quantity (EM-268), as received, contained 0.03
weight percent of sulfur. The gasoline used during the optimization evalua-
tions, in addition to being representative of commercially available gasolines,
met most of the requirements for use in exhaust emissions testing. The two
exceptions were a slightly higher temperature at the 90 percent distillation
point and a lower octane number.
The lubricant used throughout the project was Texaco Havoline SAE
30 which was designated for API service SD, SE, and CC. This lubricant
met the engine manufacturer's viscosity and service specifications.
11
-------
III. DISCUSSION OF THE OPTIMIZATION EVALUATIONS
This section describes the engine optimization evaluation phase of
this project task. Each of the three different fuel control systems evaluated
are discussed separately.
A. General Information
The two engines utilized in this project were ordered through the parts
department of an authorized Chevrolet truck dealership located in San Antonio,
Texas. Chevrolet heavy duty engines (along with many or most other makes
of heavy duty gasoline engines) for the replacement market, do not normally
come factory equipped with all accessories necessary to operate the engine
(i.e., carburetors, etc.). Before ordering the two engines for use in this
project, the basic engine number was cross-checked through a representative
of the Chevrolet Engineering Engine Group. Upon receipt, all components
were cross-checked among the three local Chevrolet truck dealers. This
cross-checking method had been used successfully in several previous projects.
1. Outline of the Optimization Evaluation
After mounting the engines on the stationary dynamometer test
stands, baseline evaluations, involving nine-mode certification^ ') (FTP),
recommended nine-mode U4) (EPA), and 23-mode(18) procedures, were
conducted. Several views of the baseline engine installed on the stationary
dynamometer are shown in Figure 3. Following the baseline evaluations, the
major fuel and emission control systems were evaluated.
Multi-parameter evaluations, involving each and every fuel and
emission control system, were beyond the scope of this project. In agree-
ment with the Project Officer, the combinations shown in Table 4 were to
be evaluated. Additional combinations, primarily those showing promise
of meeting the contract goals, were to be selected based on engineering
judgment and the results of the preceding evaluations. The decision was
made by the Project Officer to include an oxidation catalyst only as aft add-
on during the service accumulation evaluation. Several of the installed fuel
and emissions control systems are shown in Figure 4.
In'order to describe the engine configuration on the computer printouts
and on summary tables, a system of abbreviations was used. These
12
-------
Figure 3. Baseline Chevrolet 350 CID heavy-duty engine
installed on the dynamometer test stand.
13
-------
TABLE 4. FUEL AND EMISSIONS CONTROL SYSTEMS EVALUATED
Emission Standard Dresserator Bendix
Control System Carburetor3" Inductor EFI
Manual EGR X XX
Backpressure EGRb X XX
Thermal Reactors (TR) X XX
Port Liners (PL) X XX
TR+Air X XX
PL+Air X XX
aThe standard carburetors were to be run without modification.
A range of orifice-spring combinations were to be evaluated with at
least one fuel system.
abbreviations are defined in Table A-2 in Appendix A. Also, to facilitate
the use of this report, the letter designations in the appendices corre-
spond with the headings in this section of the report up through Section F
(i.e., Baseline results are reported in Section B and Appendix B, etc.).
2. Discussion of Wide Open Throttle Operation
Following the decision to utilize the recommended emissions
test cycle without any additional modes, it was concluded that derated
maximum power should not be used in establishing the percents of maximum
torque for the optimization evaluations. (Since the procedure does not re-
quire a WOT mode in the calculation of composite emissions, it appeared
reasonable to conclude that the design criteria for WOT would continue to
be the maximum power attainable.) The method selected was to use the base-
line torque in setting up the percents of maximum torque for the emissions
evaluations during the optimization evaluations. To account for changes in
atmospheric conditions, the baseline torque was adjusted using the equations
in the Recommended Procedure: .
BCF = 29.38/BARO
TCF = [(T+459.69)7(85+459.69)] °'5
CBT = Baseline Torque *(BCF * TCF)
Adjusted Torque = CBT/(BCF * TCF)
A discussion of the WOT operating conditions seems in order at
this point. Figure 5 is enclosed to show the effects of air-fuel ratio on
torque output and CO, and the relative effects on NOX, at the 2000 rpm
operating speed of the emissions test procedure. The figure represents a
14
-------
Exhaust Port Liners
Air Pump and Air Injection Manifold
Dresserator Inductor
Exhaust Thermal Reactor
BPEGR Mounted on Intake Manifold
BPEGR and HEI Distributor
Figure 4. Fuel and emission controls used in the optimization evaluations,
15
-------
100
Maximum
• Power
Range
10
12
14
AIR - FUEL, RATIO
Figure 5. Relative emissions and torque vs
air-fuel ratio at 2000 rpm .
16
-------
composite of several sources including: SAE paper 740104, EPA publications
"Factors Affecting Fuel Economy", SAE publication 76-3 "Emissions, Fuel
Economy, and Durability of Lean Burn Systems", and an article in the
December 1974 issue of Car and Driver about the Dresserator. It should
be pointed out that agreement as to the effect on NOX was not good and that
the single line for NOX drawn on the figure tends to represent the maximum
reduction that had been reported. Not shown on the figure is that maximum
efficiency occurs at about the same air to fuel ratio as for maximum NOX.
Figure 5 illustrates the following: First, the maximum power
effectively occurs in an air to fuel ratio range which produces CO between 2
and 7 percent. This generally coincides with the CO values which have been
measured at WOT on a significant number of heavy duty engines at this
laboratory. (10) Second, use of lean mixture or EGR to reduce NOX at WOT would
result in a reduction of maximum torque (i. e., a derating of the engine).
Third, that lean mixtures (i.e., high air to fuel ratio) producing 90 per-
cent of maximum torque produce near maximum NOX.
3. Discussion of the Chemiluminescence Instrument
A problem was encountered with the CL system used for measuring
NOX. The NO2 to NO converter in the CL system significantly affected the
oxides of nitrogen measured value when the CO exceeded one percent. There-
fore, for modes in which the CO exceeded one percent, the NO measurements
were made with the sample bypassing the converter. As determined in
several checks during this project, along with a number of previous deter-
minations, NO2 is generally not present in very significant quantities in
gasoline engine exhaust. In most cases (except where the converter has
an unknown effect on the values), no really significant differences in the
values has been distinguished when the converter is or is not bypassed. In
fact, in some instances involving dies el engines, the values have been
slightly higher when the converter was bypassed. (13)
A number of determinations were made to assure that this was an
apparent technological problem and not just a simple instrument operating
or maintenance problem. First at 2000 rpm the engine power output was
slowly increased by increasing the throttle opening. The CO, NO and NOX
emission measurements at various manifold vacuum settings at 2000 rpm were
as shown at the top of the next page. The rapid increase in CO between
manifold vacuums of 58 and 51 mm Hg was apparently associated with the
opening of the power valve in the carburetor. As can be seen from the data,
erroneous NOX readings began to occur between CO values of 0.8 and 1. 2
percent.
17
-------
Nominal Emissions Measurements
Manifold Vacuum. Hg CO, NO, NOX,
mm inches percent ppm PPm
127 5.0 0.8 2500 2500
84 3.3 0.8 2500 2500
64 2.5 1.2 2500 1500
61 2.4 1.6 2400 700
58 2.3 1.9 2200 0
51 2.0 4.8 0
Next, at engine operating conditions producing over 2 percent
CO, the converter temperature was varied from that for low N©2 to NO
conversion efficiency to a value exceeding that required for maximum con-
verter efficiency. At a temperature producing low NO2 to NO conversion
efficiency the readings were the same whether or not the sample went through
(NOx-mode) or bypassed (NO-mode) the converter. Between this temperature
and that for maximum converter efficiency, the CL, reading in the NOx-mode
was progressively lower than in NO-mode. At the temperature for maximum
converter efficiency, the reading in the NOx-mode was near zero and
remained near zero as the temperature was further increased.
In a final check, an ice-bath water trap was installed in the sample
line prior to the converter. This had no noticeable effect on the CL readings
in either the NO- or the NOx-mode.
B. Baseline Evaluations and Systems Check
This section describes the break-in and baseline evaluations of the
engines and initial check of the fuel and emissions control systems and
components.
1. Engine Break-In
Upon receipt, the two engines and components were assembled
and installed on the stationary dynamometer test stands. The engines were
then operated for 25 hours using the break-in cycle described in Table 5.
Engine operating conditions were monitored every 30 minutes for the 2800
rpm mode and twice a day for all other modes. The readings included:
coolant water in and out of the engine, dynamometer load, oil pressure and
temperature, exhaust backpressure and temperature, intake air restriction
and temperature, and fuel flow. Oil pressure varied from a low of 124 kPa
(18 psi) at idle to 290 kPa (42 psi) at the higher speed operating conditions.
Oil temperature nominally reached a high of 102° C (215°F). Water into the
engine was controlled at nominal temperatures of 60 to 66° C (140-150° F)
18
-------
TABLES. ENGINE BREAK -IN CYCLE
Man. Vac. , Hg Time, seconds
rpm mm inches Modal Cumulative
1 600 Idle Idle 30 30
2 2800 254 10 45 75
3 1200 CT CT 45 120
4 3200 76 3 35 155
5 600 Idle Idle 40 195
6 1600 406 16 90 285
7 1600 483 19 15 300
and water -out was controlled by the standard engine thermostat between 82
and 85" C (180 and 185° F). Intake air restriction ranged from nil at idle to
a high of 64 mm of water (2.5 inches) at 3200 rpm. Exhaust system back-
pressure ranged from nil at idle to a high of 107 mm mercury (4. 2 inches)
with Engine 1 and 90 mm mercury (3.5 inches) with Engine 2. Maximum
exhaust temperature at the exit of the exhaust manifold in both engines
approached 870°C (l600°F).
The maximum power output was determined at several speeds with
the baseline engines. The results (corrected to 29.38 BARO and 85° F per
the formula in the recommended procedure^14)) were as follows:
Engine Engine 1 Engine 2
kW BHP kW BHP
1600 55 74 56 75
2000 70 94 71 95
2400 86 H5 86 115
2800 98 132 98 132
3200 107 144 107 143
3800 116 155 116 156
2. Baseline Emissions and SFC Results
Following the 25 hour break-in, baseline evaluations involving
replicate tests using the nine-mode FTP, nine-mode EPA, and 23-mode test
procedures were conducted on each engine. These data are summarized in
Appendix Tables B-l and B-2 and the computer printouts are included as
Tables B-3 through B-l 2 and B-25 through B-32 of Appendix B. Average
results of these data using the initial carburetor are presented in Tables 6
and 7. The CO results by the nine-mode FTP, for the two engines as
19
-------
TABLE 6. RESULTS OF THE BASELINE EVALUATIONS - ENGINE 1
Average Results
Test
No.
101
105
103
104
106
107
109
107&109
108
107&109
Test
Type
9-FTP
9 -EPA
23-Mode
WOT
9-FTP
9 -EPA
9-EPA
9-EPA
23-Mode
WOT
Gram/kW-hr
Description
Baseline with Initial Carburetor
Baseline with Initial Carburetor
Baseline with Initial Carburetor
Baseline with Initial Carburetor
Baseline Garb. 6607
Baseline Carb. 6607
Baseline Repeat
Average of Tests 107 and 109
Baseline Carb. 6607
Average of Tests 107 and 109
HC
5.44
4.93
9.98
4.36
5.44
4.28
3.50
3.97
9.91
4.31
CO
58.02
67.17
98.99
291.90
22.43
30.67
29.07
30.03
99.91
247.64
NOX
11.69
9.81
10.14
6.12
12.07
10.72
11.15
10.89
9.51
5.23
kg/kW-hr
HC+NOX
17.13
14. 74
20.12
10.48
17.52
15.00
14.66
14.86
19.43
9.54
SFC
0.515
0.474
0.438
0.385
0.535
0.475
0.480
0.477
0.466
a. 368
-------
TABLE 7. RESULTS OF THE BASELINE EVALUATIONS - ENGINE 2
Test
No.
201
205
203
204
210
211
212
211 &212
209
211 & 212
Test
Type
9-FTP
9 -EPA
23 -Mode
WOT
9-FTP
9-EPA
9 -EPA
Baseline
Baseline
Baseline
Baseline
Baseline
Baseline
Baseline
Description
with Initial Carburetor
with Initial Carburetor
with Initial Carburetor
with Initial Carburetor
Garb. 6606
Garb. 6606
Repeat
Average of Tests 211 and 212
23 -Mode
WOT
Baseline
Garb. 6606
Average of Tests 211 and 212
Gram/ kW-.hr
HC
6.39
6.97
10.42
5.24
6.57
5.13
6.32
5.73
10.56
4.63
CO
NOV HC+NO^
53.39
69.
111.
325.
29.
21.
46.
33.
48.
235.
,99
.37
18
45
15
14
65
90
62
13.
13.
9.
3.
12.
13.
10.
12.
12.
5.
1*-
08
75
72
65
05
22
99
11
12
80
19.
20.
20.
8.
18.
18.
17.
17.
22.
10.
_A.
47
72
14
89
62
36
32
84
68
43
kg/kW-hr
SFC
0.486
0.480
0.432
0.389
0.530
0.447
0.453
0.450
0.429
0.355
-------
received, were essentially the same. These CO results, however, did not
agree with the reported certification results. Through the local dealers the
problem could not be identified. An associate in the Chevrolet Engineering
Engine Group identified the carburetors on our engines as 1974 models and
provided the part number of the carburetor used for certification on the
1975 models (7044134). An attempt was made to obtain the 1975 model
carburetors through local dealers but none of them recognized the number.
After considerable investigation, it was determined that updating of the
parts book is apparently a relatively long delayed process. According to
the local dealers, the parts cannot be obtained until they are listed. The
overall significance of this finding concerning parts availability is not known.
This situation, however, did have a significant effect in this project.
Since it was concluded that a basically standard i975 model base-
line was essential, an inquiry was made toward obtaining the carburetors
from the Chevrolet factory. The associate in the Engine Group agreed to
provide the carburetors since this would be the most expedient method.
Since the units were, at the time, apparently not obtainable through any
parts distributors, this was agreed to.
Upon receipt of the i975 model carburetors (6606 and 6607) from
the Chevrolet Engineering Engine Group, the baseline evaluations were
rerun. Average results of these data are presented in Tables 6 and 7.
The individual test results, along with the averages and the standard
deviations for each test are reported in Appendix Tables B-l and B-2.
The criteria followed was to obtain at least two good, repeatable runs in
each baseline configuration. Since computer printouts of the evaluations
were normally not available until a day or so later, making three runs
has been found to be the more efficient method of assuring two good
repeatable runs for purposes of establishing baseline or final optimization.
The results of the nine-mode FTP evaluations indicated that the
two engines being used in this project were reasonably similar to each
other in power, emissions and fuel consumption. The nine-mode FTP CO
emissions data and the carburetor flow curves indicated that these carbu-
retors were a little on the lean side of the 1975 certification engine.
However, they were judged to be within normally accepted limits.
Some of the nine-mode EPA and 23-mode test results, however,
were somewhat erratic; primarily relative to the CO values. These erratic
results were generally due to the extent of carburetor enrichment at the 90
percent mode of the nine-mode EPA or the 2300 rpm 92 percent mode of the
23-mode procedure.
22
-------
These baseline data generally show no significant difference in
HC emissions between the original carburetors and the 1975 carburetors.
The NOX emissions, in the procedures based on percent of power (9-EPA
and 23-mode), appear to vary in inverse relation to the change in CO emis-
sions. The primary factor appears to be related to the extent of power enrich-
ment at the higher power modes. Change in specific fuel consumption (SFC)
ranged from some decrease through some increase. The maximum change in
SFC occurred in the nine-mode FTP; an increase of nine percent with Engine
2, for the 1975 model relative to the original carburetor. In the nine-mode
EPA, with Engine 1 there was no significant change in SFC, whereas with
Engine 2 there was a decrease of six percent for the 1975 model relative to
the 1974 model carburetor.
As an aid to the control system optimization, these baseline data
were used to develop relationships between the emission concentration in the
exhaust and the modal contribution to the composite emission values in the
nine-mode EPA procedure. Due to the many variables, these relationships,
shown in Table 8, are approximations. An example illustrating the usage
of Table 8 is given in Appendix Table B-43.
TABLE 8. MODAL CONTRIBUTION TO NINE-MODE
COMPOSITE G/KW HR
Mode HC per ppm CO per PCT NOV per ppm
Idle 0.0002 3 0.0005
25% 0.0013 26 0.0043
55% 0.0009 18 0.0030
10% 0.0001 3 0.0004
90% 0.0008 16 0 0027
CT 0.0001 2 0.0003
In general, the modes of concern were: all modes except the 10 percent for
HC (CT is generally the most significant contributor of HC) and the 25, 55,
and 90 percent modes for CO and NOX (the 90 percent mode is generally
the most significant contributor of CO).
3. Fuel and Emissions Control System Check
Initially it was planned to perform an operational check on each
fuel and emissions control system prior to conducting the optimization
evaluations. Due to availability and operational difficulties experienced
with some of the systems, this approach was modified. The modified
approach involved conducting the preliminary optimization evaluations
immediately after a system was installed and made to function. Some
23
-------
examples of difficulties encountered include:
(1) The port liner extensions on the thermal reactors
required grinding and reshaping to enable installation
into the exhaust ports in the engine cylinder head.
(2) On the heads with port liners, the welds on the liners
required grinding to eliminate interference with the e^i-aust
manifolds and the valves required seating to improve
cylinder compression.
(3) With the EFI system a number of the electrical cables
did not have mating connectors and some of the color
coding was not in accordance with available schematics.
(4) One of the threaded holes, for intake manifold bolts,
in one of the cylinder heads was tapped all the way
through arid was in line with a valve push rod. Installa-
tion with standard length bolts when using the EFI intake
manifold resulted in bolt to push rod interference and
subsequent breakage of the push rod.
All difficulties encountered were resolved in an appropriate manner as
expeditiously as possible and the evaluation or optimization was resumed.
C. Standard Carburetor Evaluations
The standard carburetor was evaluated without modification or
rescheduling of the modal air/fuel ratio. It is important to take this into
account since in some instances this factor can have a significant effect on
the results obtained. For example, the extent of fuel enrichment in the
90 percent power mode can have a significant effect on the nine-mode EPA
composite HC and NOX and can have a very large effect on the composite
CO (in some tests over 75 percent of the total composite CO has been con-
tributed by the 90 percent power mode).
The data for the primary evaluations with the standard carburetor
are reported in Appendix C. Nomenclature used in the engine configuration
descriptions are defined in Appendix A-Z.
1. Thermal Reactors
The thermal reactors, loaned to SwRI by GM for use in this project,
were initially installed onto Engine 1 and several nine-mode EPA tests were
run. The primary results of the initial evaluations are summarized as
follows:
24
-------
' Gram/kW-hr SFC,
Test Run Description HC CO NQX HC+NOX kg/kW-hr
107 & BASELINE 4.0 30.0 10.9 14.9 0.477
109
THERMAL, REACTORS
110 1&2 Air Inj. on All Modes 10.2 5.9 12.2 22.4 0.480
HI 1 Air Inj. off at CT 2.1 6.6 11.8 13.9 0.479
2 Decel used and AI
off at CTa 0.2 4.9 11.5 11.7 0.506
aDeceleration control consisted of running the CT at a throttle setting
which would result in a no load engine speed of 1700 to 1800 rpm.
As shown by the data the thermal reactors were very effective in reducing
CO emissions and the BSFC was not substantially affected. The NOX emis-
sions increased somewhat and the overall effect of the thermal reactors in
reducing HC emissions depended to a large extent on the cut-throttle mode.
When air was injected during the CT mode the HC emissions
drastically increased; apparently due to quenching of the oxidation reaction
which continues in the exhaust system during normal cut-throttle operation.
(In the previous baseline evaluations, the CT mode contributed approxi-
mately 50 percent of the composite HC). When the CT mode was run in
the manner in which current deceleration control devices operate, the
composite HC emissions were reduced with the thermal reactors to the
very low value of 0.2 g/kW-hr. This method, however, increased fuel
consumption and utilized a device whose real life effectiveness is open to
question. (10> 13/
These initial evaluations, conducted with the thermal reactors,
illustrated that the thermal reactors, with air injection, very effectively
reduced HC and CO in all modes except normal cut-throttle. In the
evaluations with the throttle manually held open to an equivalent no load rpm
of 1700 to 1800 rpm during the CT mode, the HC composite emissions in
nine-mode EPA procedure evaluations were reduced to a very low value.
However, this decrease in HC was associated with a significant increase in
composite BSFC. Therefore, evaluations were conducted to determine
whether a large reduction in HC could be obtained in the CT mode without
significantly increasing BSFC.
The additional evaluations at CT involved ignition timing, fuel/
air ratio and exhaust manifold air injection flow rate. The results were
qualitatively evaluated directly from the charts without running the data
through the computer. At normal baseline CT fuel flow rates, the HC
25
-------
emissions at CT would start at a relatively low level and rapidly increase
with time. It generally required about one minute for the HC to attain a
reasonably stable value. Indications were that exhaust system temperature
was the primary factor and that the modes preceding CT had a significant
effect on the initial HC emission rate at CT. The addition of air injection
during CT generally increased the HC emissions. This increase in HC
emissions was apparently due to quenching of the oxidation reaction within
the exhaust manifold. In evaluations involving variation of ignition timing
and fuel/ air ratio during the CT mode, no large reductions in HC emissions
were obtained.
Partial opening of the throttle during the CT mode, however,
did have a definite, definable effect on HC emissions. In the engine involved
in these evaluations (Engine 1) the normal stable HC emission value at the
standard baseline CT throttle setting approached 15,000 ppm both with and
without the thermal reactor. The raw data results (using the thermal
reactor without air injection), at full and partial cut-throttle operation were
as follows:
Fuel Flow, fFuel Flow ^ HC ppm \a
g/hr (Ib/hr) HG, ppmb I .14 _
5443 (12) 160 6
4536 (10) 1600 52
3629 (8) 6000 156
2041 (4.5) 12000 175
aThese values provide a rough approximation of the relative
emission rate in g/hr.
^Nominal value -the test to test variability in these few tests
was around ± 50 percent of the nominal ppm value given.
Test to test variability was not statistically determined.
These data indicate that large reductions in HC emissions, obtained using
partial opening of the throttle, are associated with relatively large in-
creases in fuel flow.
2. Port Liners
The cylinder heads with stainless steel exhaust port liners were
initially evaluated on Engine 2. As previously mentioned, some modifica-
tions were required before the exhaust manifolds could be installed on the
cylinder heads and lapping of the valves was required. The primary results
of the evaluations are summarized as follows:
26
-------
Test Run
211 &
212
213
1 & 2
3
4
Description HC
Gram/kW-hr
BASELINE
PORT LINERS
Without Air Inj. 5
Air Inj. on all Modes 11
Air Inj. off at CT
SFC,
CO NOX HC+NOX kg/kW-hr
5.7 34 12.1 17.8 0.450
,2 30 12.0 17.2 0.465
,7 16.1 10.7 22.4 0.464
2.8 15.6 11.3 14.1 0.460
As shown by the data, the port liners with air injection reduced CO by about
50 percent while the BSFC increased a few percent. No specific cause for
the increase in BSFC was apparent. As with the thermal reactors, the
composite HC value was significantly influenced by the HC emission rate
during the CT mode.
The port liners appeared to be less effective than were the thermal
reactors in reducing CO (under similar operating conditions the composite
CO emission rate with the thermal reactors was less than half the rate with
the port liners). Modal analysis of the test results also indicates that the
thermal reactors reduced HC to significantly lower absolute values than
were attained with the port liners. Had deceleration control been used in
these evaluations with the port liners, the composite HC value (based on
analysis of the modal data) would have been around 0.8 g/kW-hr; as compared
with less than 0. 2 g/kW-hr with the thermal reactors.
3. Backpressure and Manual EGR
Engine 1 was reassembled with the standard original cylinder
heads, carburetor 6607, a light duty intake manifold with EGR ports, light
duty exhaust manifolds with air injection ports, and an HEI distributor.
A test was run in this modified baseline configuration (Test 115) to establish
a baseline for the EGR evaluations. In Test 115, the composite HC was
significantly increased over the original baseline and compOsite CO was
over double the original baseline value. This large increase in CO was
primarily due to the large increase in CO that occurred in the 90 percent
mode. Maximum power was also somewhat lower than in the baseline
evaluations. No specific cause could be found, but the variation between
cylinder to cylinder compression pressure had become marginally
acceptable. Therefore, additional optimization evaluations using this
engine were minimized and, after completion of the initial control system
evaluations, an exploratory overhaul was performed.
, 9?x With the Backpressure EGR valve (BPEGR MX-
-1223) in the as received configuration, followed by a single
27
-------
evaluation with the original orifice and each of the replacement springs
provided (Tests 116, 117 and 118). The results were not very significantly
different from the results in Test 115; the evaluation without the BPEGR
valve. Prior to running any additional 9-mode tests, the EGR rate at
various manifold vacuum settings was determined. One set of these EGR
vs MV determinations was made using the largest possible orifice size
(13.5 mm) that can reasonably be used in this BPEGR valve. The results
of these evaluations, given in Tables C-2 and C-3 in Appendix C ar
-------
14° BTDC at 2000 rpm. The AI was standard air injection into
the exhaust manifold using the heavy duty air pump provided for
this project. The high CO in the modified baseline configuration
was primarily due to the 90 percent power mode.
Although the NOX was significantly reduced using the BPEGR
valve, as shown in Test 123, this was associated with an increase in SFC.
Also, the HC and CO values are relatively high and considerably above the
goals of this project.
4. Emissions Control System
The emission control system and parameters evaluated with the
standard carburetor included: port liners with air injection, manual EGR,
the HEI with manual ignition advance, and deceleration control at CT. The
nine-mode EPA results are summarized as follows:
TABLE 9. SUMMARIZED RESULTS OF EMISSIONS CONTROL
SYSTEM WITH STANDARD CARBURETOR
Gram/kW-hr kg/kW-hr
Test Run Description HC CO NOX HC+NOX SFC
Project Goals - 33.5 - 6.7 -10%
107 & 109 Baseline 4.0 30 10.9 14.9 0.48
115 1 Modified Baseline 6.1 93 9.3 15.4 0.50
124 1 Mod. BL with PL&AI - 24 8.6 -' O.'sO
130 lXa PL-HEI-EGR-AI-IA 4.5 19 5.8 10.4 o!44
130 2Xa With 1400 NLRPM at CT 1.3 18 5.9 7.2 0.47
Estimated values with TRb 0.5 <18 5.9 6.4 0.47
IA - Ignition Advance
3-Runs IX and 2X were developed from results in modal evaluations.
HC and CO values are based on results of other evaluations involving
thermal reactors
These data indicate that the emission goals of the project are
attainable using carburetion. However, utilizing a higher no-load
engine speed (NLRPM) in the cut-throttle mode has been required in order to
reduce the HC emissions to acceptable levels (using the emission controls
included in this project). Therefore, a ten percent reduction from baseline
SFC has not been achieved with the standard carburetor. These evaluations
concluded the optimization evaluations of systems using the standard car-
buretor.
29
-------
5. Exploratory Engine Overhaul
An exploratory overhaul was performed on.Engine 1 in an effort
to determine causes for the higher BSFC and the decrease in maximum
power. Although no definite cause could be found, the appearance of the
piston rings and the cylinder walls indicated that the rings had not seated
properly. The overhaul included new piston rings and bearing inserts and
lapping of the valves. Results of the post overhaul nine-mode TUPA evalua-
tions, after a 25 hour break-in period, are given in Appendix B and arc
summarized as follows:
Test
Description
107& 109 Original BL
131 Post Overhaul BL
Gram/kW-hr
HC
4.0
5.1
CO
30
48
NOX
10.9
10.3
HC+NOX
14.9
15.4
kg/kW-hr
SFC
0.48
0.46
In addition to the improvement in SFC, the maximum power was returned to
essentially the same maximum power initially obtained with this engine and
repeatedly obtained with Engine 2.
D.
Dresserator Inductor
The Dresserator Inductor used in this project is illustrated in Figure
6. The primary difference is that the unit used is 2-throat, whereas the
unit in the illustration is a single throat.
Slider
Throat
Adjustable Fuel
Metering Rod
Air Bleed Valve for Fuel Control
Figure 6. Illustration of the Dresserator Inductor.
30
-------
The throat is reported to be a sonic nozzle which is adjustable by moving
the slider. Fuel is controlled by means of shaped grooves in the fuel
metering rod which is attached to the slider. Adjustment of the fuel flow
can be obtained by either moving the fuel rods relative to the slider or by
using the air bleed valve. Moving the fuel rod to the right, as one looks
down on the illustration, increases the fuel flow. Opening the air bleed
valve decreases the fuel flow by decreasing the pressure differential
between the fuel bowl and the throat.
The data for the primary evaluations with the Dresserator Induc-
tor are reported in Appendix D. Nomenclature used in the engine configura-
tion descriptions are defined in Appendix A-2.
1. Initial System Evaluation
The initial evaluation (Test 206 Run 1) was made with the unit as
received. The calculated air/fuel ratio varied from a little over 11 at idle
to a little over 15 at the 90 percent power mode. In Run 2 the air bleed was
adjusted to a CO concentration below 0. 2 at the 55 percent mode. In this
run the air/fuel ratio varied from approximately 13 to 16.5. After some
preliminary modal evaluations were conducted, the 1975 model baseline
carburetors were received from GM and the evaluation of the Dresserator
was discontinued until the baseline evaluations had been rerun using these
carburetors.
Engine 2 was assembled with the standard heads, an intake
manifold with EGR ports, exhaust manifolds with air injection ports, and
an HEI distributor. Test 219, Run 2, was run in this configuration with
the baseline carburetor 6606. The nine-mode EPA results in g/kW-hr
were6.0HC, 51 CO, 10.4NOX, l6.4HC+NOx, and the SEC was 0. 44 kg/
kW-hr. These results are similar to the repeat runs of the original base-
line. In a run with the distributor vacuum advance connected (Test 219, Run
3), the SFC was reduced to 0.39 kg/kW-hr while the NOX was increased to
14.9 g/kW-hr. The engine was judged to be operating satisfactorily, so the
carburetor was removed and the Dresserator Inductor (DI) was re-installed.
Initially, a number of steady state evaluations were run without
EGR (Test 220) followed by evaluations with manual EGR (Tests 221, 222,
223 and 224). The idle and CT modes were subsequently evaluated in more
detail in Test 231. These evaluations indicated that the adjustment of the
fuel rod was very critical; with small changes making large differences in
fuel flow. Also, the idle mode required adjustment of air bleed in addition
to the rods to obtain satisfactory idle setting. The reproducibility of the
idle mode was poor. It should also be pointed out that the inductor provided
for this project does not have fuel enrichment during acceleration and it was
difficult to accelerate from idle.
31
-------
Tests 225 through 227 were not fully processed since a problem
was experienced with the NO2 to NO converter used with the chemilumi-
nescence instrument. In measuring the CO2 in the intake for determination
of percent EGR, the sample was allowed to go through the converter. After
sampling from the intake the NOX values would read low for several minutes.
This situation with the CL instrument can probably be judged as being a
problem only in research projects of this type. The solution applied to the
problem in this project was to bypass the converter in situations where this
effect was likely to occur.
2. Thermal Reactors
The exhaust manifolds with air injection ports were replaced
with the thermal reactors and evaluations were conducted with and without
EGR. Based on the results of the previous steady state evaluations, nine-
mode EPA Tests 229, 230 and 232 were run using compromise DI settings
which were reasonable to attain during such a test. The results were as
follows:
Gram/kW-hr kg/kW-hr
Test Run Description HC CO^ NQV HC+NOX SFC
219
2
3
Modified
With Ign.
BL w/Carb.
Vac. Advance
6.
7.
0
8
51
43
10.4
14.9
16.
22.
4
8
0.
0.
44
39
DRESSERATOR INDUCTOR & THERMAL REACTOR
229 1&2 DI-TR 2.1 7 9.9 12.1 0.42
3 With Ign. Vac. Advance (VA) 3.0 13 14.1 17.2 0.38
230 1 With AI except at CT 2.3 7 10.5 12.8 0.42
3 With AI and 1250 NLRPM at CT 0.1 5 9.5 9.6 0.44
232 1 With VA, AI, MEGR&1250
NLRPM 0.2 7 6.4 6.6 0.41
2 Repeat of run 1 0.8 8 8.5 9.3 0.41
Note: Tests 229 through 232 were all with the thermal reactors installed.
The 90 percent power modes used in Tests 232 Runs 1 and 2 used
different rod settings which were determined separately from the
actual test. The difference in the NOX results between Runs 1 and 2
in Test 232 are primarily indicative of the difficulties involved in
obtaining the same settings at the 90 percent mode with the systems
used. The vacuum advance curve is given in Table A-6 in Appendix A.
The results of these evaluations indicate that, when using the Dresserator
Inductor along with TR and EGR, the emissions and the SFC can be
32
-------
significantly reduced. As was experienced with the carburetor, however,
simultaneously meeting both the emissions and fuel consumption goals
appeared unlikely (using the emission controls evaluated in this project).
3. Lean Fuel/Air Ratio
Additional evaluations were conducted on Engine 1 using the
cylinder heads with port liners, the intake manifold with EGR porting, and
the exhaust manifolds with air injection ports. Primary emphasis was placed
on the potential use of very lean fuel/air ratios.
Evaluations involving variation of fuel/air ratio are reported as
Tests 125, 126 and 127 in Appendix D-34 through D-45 . These data illustrate
the sensitivity of the air/fuel ratio to relatively small changes in the fuel
control rod settings. In addition, the NOX emission concentrations, in the
higher load modes, were not sufficiently reduced at lean air/fuel ratios to
enable meeting the emission goals while still producing low SFC. This is
illustrated in the following rounded-off and summarized data from the wide-
open throttle evaluation (Test 127, Run 2).
Emissions Power, Fuel, SFC
Rod Settinga CO, % NOX, ppm kW kg/hr kg/kW-hr
1.50 0.1 1300 53 18.0 0.34
1.56 0.4 1600 59 19.4 0.33
i-63 0.8 1500 62 20.4 0.33
I-6? 1.2 1200 64 20.5 0.32
I-?5 1.7 1100 65 20.8 0.32
1.81 5.6 700 70 23.9 0.34
1-88 6.8 400 70 25.8 0.37
!-94 7.4 300 70 26.0 0.37
2-°° "7.9 200 70 26.4 0.38
al,6 mm movement of the fuel rod between each setting.
4. Backpressure EGR
The results with the BPEGR valve as determined in Test 129 are
summarized on the next page. The configuration consisted of the Dressera-
tor inductor, cylinder heads with port liners, HEI, intake manifold with
EGR porting, and exhaust manifolds with air injection ports. As with the
other fuel systems evaluated, the BPEGR valve also does not appear to be
optimized for this engine system configuration using the DI. The relation-
ships of the recirculated exhaust flow rate of the BPEGR valve relative to
engine operating conditions, as given in the Appendix Tables C-2 and C-3
also generally apply to this system using the DI.
33
-------
Gram/kW-hr kg/kW-hr
Test Run Description HC CO NOX HC+NOX SFC
107 & 109 Original Baseline 4.0 30 10.9 14.9 0.48
DRESSERATOR INDUCTOR
129 1 No EGR, AI or VA-14B-
1.44 RODS 19.4 83 8.5 27.9 0.47
129 2 Run 1 plus BPEGR(.53& 7 Coil) 10.0 97 6.9 16.9 0.47
129 3 Run 2 plus AI except at CT 6.4 20 6.7 13.1 0.48
129 3XA Run 3 plus 1100 NLRPM at CT 0.7 15 6.7 7.4 0.49
129 3XB Run 4 plus Inserted Mode 7 0.7 17 4.2 4.9 0.50
5. General Discussion of the Dresserator Inductor
The specific model of Dresserator Inductor utilized in this
project had several limitations and shortcomings. Some of the more impor-
tant of these were: the fuel was not properly scheduled over the full range
from idle and CT to full load, the difficulty in resetting the fuel control rods,
and the difficulty in repeating specific modal conditions. These short-
comings of and the results obtained with the specific unit evaluated, were
significant factors in the decision not to attempt final optimization with the
Dresserator inductor.
A primary benefit of the Dresserator inductor, according to the
literature, is the potential capability of operating at very lean fuel/air
ratios. Evaluations in this and previous projects plus data in the literature,
however, have indicated that lean fuel/air ratios may not be applicable to
the 90 percent power mode, so important in the HD test of gasoline engines
(i.e., without significant derating of the engine). The 90 percent power
mode has generally been found to be the primary contributor of CO and NOX
in the nine-mode EPA test.
E. Bendix Electronic Fuel Injection
The Electronic Fuel Injection (EFI) system used in this project was
basically the same system that was optionally available in 1975 Cadillac
vehicles. A good description of the system is provided in the "1975
Cadillac Shop Manual - Electronic Fuel Injection Supplement." The system
is illustrated in the following sketch, from a Bendix publication.
34
-------
THROTTLE BODY
• THROTTLE POSITION
SENSOR
• COLD START AIR
CONTROL
ELECTRONIC CONTROL UNIT
• ELECTRONIC CIRCUITS
• PRESSURE SENSOR
SPEED SENSOR
• MAGNET ASSEMBLY
• REEDSWITCH
ASSEMBLY
FUEL PUMP (39 PSIGI
• CONSTANT FLOW
INTAKE MANIFOLD
• FUEL RAIL AND
INJECTOR MOUNT
• WATER TEMPERATURE SENSOR
• AIR TEMPERATURE SENSOR
• FUEL PRESSURE REGULATOR
Figure 7. Illustration of the Electronic Fuel Injection System,
As described by Bendix, the EFI system is a low pressure, two
group, pulsed-timed, intake manifold injection system, that
meters fuel to individual cylinders by injecting it in the vicinity
of the cylinder intake valve. The fuel is controlled by electrically
actuated, solenoid-injection valves operating with a supply
pressure differential of 268.7 kPa (39 Ib/in^). The injection
phasing and duration is controlled by an electronic control unit
(ECU) which computes the needed quantity of fuel from measure-
ments of intake-manifold pressure, engine speed, and air
temperature combined with a knowledge of engine physical and
operating parameters, engine phasing, and engine temperatures.
The injection timing is set to fire the first group of injectors 22
crank angle degrees before induction (i.e., intake valve begins to open)
of the first cylinder in that group. The only significant modification to the
system used in this project was a potentiometer mounted on the ECU which
enables changing the amount of fuel injected and, thereby, the fuel/air ratio.
Data for the primary evaluations with the EFI are reported in
Appendix E. The nomenclature used in the engine configuration descriptions
are defined in Appendix A-2.
35
-------
1. Initial Evaluations with the EFI
The fuel injection system was initially installed onto Engine 2
while retaining the cylinder heads with the exhaust port liners. Extra care
was taken in the assembly, since some electrical connectors did not utilize
mating connectors and were not color coded in accordance with the available
schematics. After assembly and initial debugging, the only malfunction of
any significance was that the fuel flow would shut off at full wid^-open throttle
position. This problem was discussed with the Bendix factory representative
and he agreed to provide whatever assistance became necessary. It w?s
subsequently determined that the wiring to a starting circuit had been in-
correctly assembled. After reassembly of the starting circuit, the fuel no
longer shut off at WOT and no other malfunctions were encountered with the
EFI system throughout the duration of the optimization evaluations. The
other effect of the incorrectly assembled starting circuit was a change in
the numerical setting on the fuel control potentiometer. It did not, however,
affect the scheduling of the fuel flow relative to engine operating conditions.
Tests 214 through 218 were run with the initial assembly, whereas all
subsequent evaluations with the EFI system were with the starting circuit
correctly assembled.
Initially, several runs were made with the fuel control
potentiometer on the ECU at different settings for each run. The configura-
tion consisted of the EFI and the exhaust port liners without air injection.
Results of these Test 2l4 evaluations were as follows:
ECU Gram/kW-hr SFC,
Test Run Setting TlC CO" NQXHC+NOX kg/kW-hr
BASELINE CARBURETOR 5.7 34 12.1 17.8 0.450
214 4 150 7.7 13 9.0 16.6 0.472
1&2 250 8.0 54 8.7 16.7 0.445
3 350 6.1 89 8.5 14.6 0.453
Each mode of the nine-mode EPA procedure was then evaluated over a wide
range of air to fuel ratios and these data are reported as Test 215, Runs 1
through 5. A best setting for each mode, with primary emphasis on SFC,
was then used to construct a nine-mode EPA test. The results of this
test, constructed of modal data, are enclosed as Test 215, Run X, and are
summarized as follows:
HC CO NOX SFC
Test Constructed from Modal Data 1.3 16 12.0 0.435
Based on a Bendix representative stating that, when using manifold fuel
injection, the fuel can be shut off at cut throttle without significantly affecting
36
-------
driveability, fuel shutoff at CT was used in this modally constructed,
modally optimized test. As shown by the results in modally constructed
Run X, relatively low HC and CO emissions resulted along with 3 to 6
percent improvement in SFC. It should be noted that most of the HC and a
significant part of the SFC improvement directly resulted from shutting the
fuel off at CT.
It was subsequently determined that the fuel flow at CT was
reduced to a very low flow rate in an ECU unit obtained from the local
Cadillac dealer. This finding, along with observation of the engine perfor-
mance on the dynamometer, further verified that the fuel can be shut off
at CT, when using fuel injection, without significantly affecting engine
operability.
A determination, at each individual cylinder exhaust port, was
made at idle and the 10, 25 and 55 percent power modes of the nine-mode
EPA procedure. These tests are labeled as Test 215, Runs 11 through 14.
In these checks, cylinder 1, except for idle, consistently had the highest
air to fuel ratio and cylinder 2 the lowest. The cylinder 1 injector was
interchanged with the cylinder 2 injector but this had no effect on the air to
fuel ratios in the respective cylinders as determined by sampling the
exhaust. With the exception of these two cylinders the air to fuel ratios
were essentially uniform from cylinder to cylinder.
2. Exhaust Gas Recirculation and Initial System Optimization
Additional optimization evaluations were conducted with tke
Bendix EFI in a system configuration including the cylinder heads with port
liners, manually operated EGR inputed through the spacer used to adapt the
throttle body of the EFI system to the intake manifold, air injection into the
exhaust port liners, and the HEI distributor. Initially, a check was made to
assure reasonable distribution of the EGR to each cylinder. The check
involved adjusting the EGR to a flow rate in the 55 percent of maximum
power mode which reduced the NOX by more than half relative to the baseline
values. The emissions from each cylinder were then sampled through the
ports for the air injection tubes. The processed results are included as
Test EGR in Appendix E. The NOX ppm values ranged from 550 to 724,
with a simple average for the eight cylinders of 630 ppm.
These data, although raising similar questions to those which
were applicable to the air to fuel ratio cylinder to cylinder data, indicate
reasonable agreement of exhausted NOX implying reasonable EGR mixing
and cylinder distribution. Some of the questions remaining unanswered
involve: the high HC values on the outside four cylinders (1, 2, 7 and 8),
the significant difference in total carbon between cylinder 2 and cylinders 1
and 8, and the difference in NOX values between cylinders 1 and 8 when
other emission values and the total carbon are similar.
37
-------
The EGR system used for these evaluations consisted of a 1/2
NPT pipe tapped into the exhaust system immediately after the "Y", a gate
valve for control of the EGR flow rate, asbestos insulation wrapped around
the pipe, and a 3/8 NPT threaded port into the throttle body spacer. A
single 12. 7 mm (1/2 inch) diameter hole was drilled into the 25.4 mm thick
spacer used between the throttle body and intake manifold. This hole opened
equally to each of the two openings into the intake manifold. The EGR
porting in the spacer is illustrated as follows:
' rj
25.4 nun
12.7 rraiDia
Drill
3/8-NPT Tap
A number of multi-variable determinations involving EGR flow
rate, ignition timing and air/fuel ratio were conducted. Some of the more
pertinent of these evaluations were processed through the computer and are
reported as Test EGR in Appendix E. The modal percent of maximum power
for the modes was determined on the basis of baseline maximum using the
procedure previously described. The formula is repeated as follows:
TORQUEa=CORRECTED BASELINE TORQUE * BARO.J85 + 459.69
29.38 \T + 459.69,
aTorque for setting up modes of the test procedure. .
0.5
From the data obtained in these determinations, settings producing
minimum emissions with minimum BSFC were selected and nine-mode EPA
tests were run using these settings. The selection of the settings was based
on engineering judgement with the aim of minimizing HC, NOX and BSFC
while keeping nine-mode EPA composite CO below 33. 5 g/kW-hr. One of the
factors affecting the selection was that the emission rates obtained in steady
state operation were not always identical to the rates obtained in the nine-
mode test. This variation between the steady state and nine-mode modal
emissions was primarily evident relative to CO in the 90 percent power mode.
Tests 217 and 218 were run as essentially standard tests with
all necessary adjustments to the EFI, EGR, etc. , made during the first few
seconds of each mode. Since the high energy ignition (HEI) distributor with
38
-------
vacuum advance was found to provide the near optimum ignition timing
pattern for each mode, this distributor was used. The ignition timing curve
used in these evaluations is presented along with the standard 1975
Chevrolet 350 HD and the 1975 Cadillac EFI system curves in Table A-6
in Appendix A. The engine configuration for each run consisted of the
following: electronic fuel injection (EFI), high energy ignition (HEI) set
at 16°BTDC at 2000 rpm with vacuum advance disconnected, exhaust gas
recirculation (EGR), heads with port liners, and air injection. The primary
test to test variables were air/fuel ratio and amount of EGR at the various
modes. The settings at which the tests were run, the modal EGR rates
and the air/fuel ratios are included along with the nine-mode EPA computer
print-outs in Appendix E. The EGR rates were calculated using the CC>2
as measured in the exhaust along with the CO2 as measured in the intake
manifold in a location downstream to the input of the EGR. The following
formula was used for the percent EGR calculations:
EGR % = -C°2 Intake - CO2 Background ^ 100 -CO2 Intake * 100
CO2 Exhaust 100 - CO 2 Exhaust
The air/fuel ratios, reported along with the EGR rates, were
calculated by the formula in the Recommended Procedure^14) using test
data obtained without air injection into the exhaust manifold. This method
of determining air to fuel ratio does not account for the air diluted EGR
which is recirculated when air injection is used. This effect would generally
be less than 2 percent. In final optimization configurations involving both
EGR and air injection, the air dilution in the EGR in the calculation of
air fuel ratio was accounted for.
The results of Tests 217 and 218 are summarized as follows:
Nine-Mode EPA, g/kW-hr
Test Run HC CO NOX as NO2 HC+NOX SFC
Project Goals -- 33.5 -- 6.7 0.405
217 1 1.2 35 4.8 6.0 0.392
217 3 1.5 20 6.2 7.7 0.386
217 5 1.2 36 5.2 6.4 0.399
218 l&2Avg. 1.3 34 5.5 6.8 0.428
Note: Primary difference between Test 217 and Test 218 was that in 217
the fuel was shut off at the CT mode, while in Test 218 a throttle
setting equivalent to 1700-1800 no-load rpm was maintained during
the CT mode. These results illustrated that substantial reductions
in HC, NOX, and SFC were achievable. A matter of interest was
that the fairly significant HC measured during the CT modes with
the fuel shutoff was not accounted for in the composite results.
This is an area which received closer observation in subsequent
evaluations with the EFI system.
39
-------
These tests completed the preliminary evaluation of the EFI system
and illustrated the potential for the EFI system in meeting both the emissions
and the fuel consumption goals of the project.
These results were achieved using ignition advance, relatively
high levels of EGR in the 25 and 55 percent modes, rich mixture at the 90
percent mode and fuel shutoff at cut-throttle. In these evaluations, there
was no apparent detonation or other reason to assume that the cyctem would
not be potentially useable. A primary contributing factor toward meeting
the desired reduction in fuel consumption with the EFI. system was the
capability of shutting off the fuel during cut-throttle operation.
3. Reassembly of the EFI System
Before reinstalling the EFI system onto the engine, a careful
examination was made of each fuel injection system component. The
primary item of importance observed was that the injectors were mounted
so close to the edge of the intake manifold that, when the manifold was
installed normally onto the engine, some of the fuel spray could impinge on
the intake manifold gasket. Therefore, during this installation, special
precautions were taken to assure that the fuel could not impinge onto the
gasket. In addition, the start-up enrichment circuit was carefully checked
and correctly connected during this assembly. This was the apparent cause
of the fuel cut-out at WOT. This also changed the relative potentiometer
setting on the electronic control unit (ECU), but did not have any apparent
effect on injection quality or relative fuel rate scheduling.
During cut-throttle operation with the fuel injection shutoff, the
HC emission rates were generally several thousand ppm. Some potential
sources for these emissions are residual fuel in the intake manifold,
leaky injectors and crankcase lubricant. During this period of time, several
cursory determinations were made in an effort to define the source of these
hydrocarbon emissions.
First, with a cold engine and without turning on the fuel pump or
the EFI Electronic Control Unit (ECU) the engine was motored at 2000 rpm.
The HC emissions were initially about 550 ppm and increased with time,
reaching 700 ppm in about five minutes. After five minutes the fuel pump
was turned on and the injector fuel manifold pressure was 270 kPa (39 psig).
No change in HC emissions were noted when the fuel pump was turned on.
Second, the engine was warmed-up to operating temperatures and
the cut-throttle was run with the ECU turned off. The initial HC emissions
were around 4500 ppm and decreased to around 3500 ppm in two minutes.
Then the fuel pump was shut off and the fuel pressure remained at 270 kPa.
Two minutes later the fuel manifold pressure was intentionally reduced to 0.
40
-------
Neither shutting off the fuel pump or reducing the manifold pressure appeared
to have any definite effect on HC emissions.
Third, a CT determination was made in which the CT rpm was
reduced stepwise from the initial 2000 rpm. In this evaluation, the fuel
pump was left on and the ECU was turned off. The initial HC emissions
level was a little over 5000 ppm. After one minute the HC emission level
was about 4500. After several minutes the HC emission level was 3000 ppm
at 1000 rpm and 3300 at 2000 rpm.
An HC emission rate of several thousand ppm at CT is approxi-
mately equivalent to between 50 and 100 grams per hour of hydrocarbons.
If the injectors were leaking, it would appear that the rate of the leak should
be affected by the fuel manifold pressure. Based on the second of the
evaluations, this was not the case. Of potentially significant importance to
this project is the fact that the calculations in the procedure do not take into
account emissions in any mode in which the fuel flow rate is zero. Therefore,
in those evaluations using fuel shutoff at CT, the calculated composite HC
emission rates are somewhat lower than actual rates emitted.
A subsequent cursory attempt at defining the HC source involved
chromatographic evaluation of the raw fuel, the used lubricant, and exhaust
emissions trapped during the 55 percent power mode and the CT mode.
The chromatographic peaks with the fuel began at a carbon number of C4 and
essentially ended by C12. The trace effectively returned to initial baseline
between C13 and C14. In the chromatogram for the exhaust sample during
the 55 percent of maximum power mode, the trace began to rise around
C13, peaked out between Cl6 and CIS, dropped off until a relatively stable
value was reached around C26 which lasted until around C30. At C30 the
trace began to rise, peaked, and then dropped back down by around C32.
With the CT exhaust emission sample, the trace began to rise around CIO,
peaked around C12 and dropped off to 10 percent of the peak by Cl6. From
C16 through C26 there was a similarity between the trace for the 55 percent
power mode and the CT mode. The chromatograph trace for the used
lubricant did not move off of baseline until C16 and remained at an essentially
negligible value until C20. The chromatogram traces for the raw fuel and
the CT mode exhaust sample are qualitatively illustrated as follows:
fuel
exhaust sample
during CT mode
lubricant
16
Carbon Number
24
41
-------
These traces indicate that the CT mode exhaust HC is neither
raw fuel or, except for a relatively minor portion, lubricant. Based on
these traces, residual high carbon number fuel components remain as one
of the prime suspects. This is an area where additional investigation
would be required to adequately identify the source and define the impact of
the HC emissions that have been measured during the CT mode with the
fuel shut off.
In a subsequent determination, the effects of fuel injection timing
were evaluated and the results are reported as Test 241 in Appendix E. These
results are summarized in Table 10.
TABLE 10. EFFECT OF FUEL INJECTION TIMING
Injection NOX, Total Fuel Cons.,
Mode Timinga ppm Carbon, % g/hr
55% 0 1112 11.64 13610
22 1112 11.64 13560
45 1136 11.64 13740
202 1136 11.76 13470
382 1136 11.76 13740
22 1136 11.64 13610
25% 0 350 9.91 8710
22 300 9.92 8620
202 330 9.91 8750
382 300 9.91 8710
a Crank angle degrees before the intake valve begins to open on
the first cylinder in that bank of injectors.
The results of these evaluations indicated that fuel injection
timing generally had a rather minimal effect on both emissions and fuel
consumption.
4. Thermal Reactors
Initial evaluations were conducted with the reassembled engine
to determine the ECU fuel control setting which produces results equiva-
lent to the values previously attained. Data obtained in these evaluations
with a setting of 570 on the ECU potentiometer compared reasonably well
with the data previously obtained with a setting of 250 when the ECU
starting circuit was incorrectly wired. In the following data for Test 233,
Runs 1 and 2 were run in the afternoon of the same day and Runs 3 and 4
42
-------
were made on the next day. The configuration for all runs except Test 216
was EFI, thermal reactors and HEI with standard ignition timing, and no
vacuum advance. Test 216 and Runs 1 through 3 of Test 233 were all
without air injection.
Gram/kW-hr
Test
216
233
233
233
233
Run
1
1
2
3
4
Condition
250 ECUa w/ PL
250 ECUa
570 ECU.b
570 ECUb
With air inj. except
at CT
HC
5.3
5.2
4.7
4.1
CO
66
74
77
74
NOV
8.3
9.2
8.6
8.4
HC+NOV
13.5
14.3
13.3
12.5
2.5 15 8.3
10.8
kg/kW-hr
SFC
0.450
0.433
0.428
0.440
0.445
a Starting circuit incorrectly connected
Starting circuit correctly connected
Note: In these evaluations the ECU was not shut off in the CT mode.
The next evaluations (Test 234), involved varying the ECU fuel
flow setting at each mode to equivalent settings to those used in the simulated
test that was previously described as Test 215 Run X. The results were
as follows:
Test Run
215
234
234
X
1
2
Gram/kW-hr
Description
EFI-PL
EFI-TR
With air injection
HC
1.2
1.0
0.1
CO
16
17
3
NOV
12.1
12.7
13.8
HC+NOV
13.3
13.7
13.9
kg/kW-hr
SFC
0.435
0.415
0.415
Note: ECU was shut off in the CT mode in Tests 215 and 234.
The emissions were essentially the same at equivalent fuel control settings.
The SFC was also essentially the same when it is taken into account that
the cylinder heads with port liners have consistently increased fuel consump-
tion by one to two percent.
Cylinder to cylinder air/fuel ratio checks (Test 235) indicated
that the distribution between cylinders was better in this reassembled con-
figuration than it was in the rnitial assembly. In Test 235, cylinder 7 had the
highest and cylinder 2 the lowest air/fuel ratio. For the three runs, the
difference in air/fuel ratio between the average value of all 8 cylinders and
cylinder 7 was 2.3 percent and the difference between the average and
cylinder 2 was 2. 2 percent. Before Run 3, the injectors for cylinders 2
43
-------
Gram/kW-hr
Description
Original Baseline
14BTDC
14, 24, 30 BTDC
14, 24, 30 BTDC &
1350 NLRPM
HC
5.7
0.3
0.3
0.6
CO
34
6
7
8
NOX
12.1
9.4
9.4
9.4
HC+NOV
17.8
9.7
9.7
10.0
kg/kW-hr
SFC
0.45
0.42
0.39
0.42
and 4 were replaced with spare injectors which were labeled as being
leaner than average. No significant difference in air/fuel ratio was
observed with these injectors relative to the original injectors.
Modal steady state evaluations (Tests 239 and 240) were con-
ducted using the baseline ignition timing and manually set ignition advance.
The ignition advance used was based on the vacuum advance obtained with
the HEI system. The results of these evaluations are best represented by
tests constructed from the modal results and designated as Test 239 Run X,
Test 240 Run X, and Test 240 Run XDC. The modal selection for these
constructed tests was based on lean optimization and a prime requirement
was a significant SFC improvement relative to baseline. The results of the
constructed tests with EFI, thermal reactors without air injection and HEI
were as follows:
Test Run
211 & 212
239 X
240a X
240a XDC
a Ignition timing at the 90, 55, 25 and 10 percent torque modes was 14, 24,
30 and 30°BTDC, respectively.
Note: ECU cut-off (i.e., no fuel flow) at CT in 239X and 240X. In 240 XDC
a throttle setting of 1350 rpm at no load was used during CT.
As shown by the preceding data, the use of lean optimization with
the engine configuration was effective in significantly reducing all emissions
and SFC. However, the reduction in NOX was rather limited due to the large
contribution of the 90 percent mode. Of the 9. 4 g/kW-hr of NOX, 5. 7 was
contributed by the 90 percent mode. It does not appear that lean optimization
can be used to drastically reduce NOX at the 90 percent mode without re-
sorting to derating of the engine. As previously discussed, the decision
was reached to attempt attaining the project goals without derating of the
engine The data also further illustrates the beneficial effect of ignition
advance on composite SFC, and the increase in SFC due to partial opening
of the throttle (Run XDC) during CT operation.
5. Backpressure and Manual EGR
Results of evaluations using the BPEGR valve are presented as
Test 237 and are summarized on the next page. The system consisted of the
44
-------
„ , D ^ Gram/kW-hr kg-kW-hr
Test Run Description HC CO NOy HC+NOY 5FC
211 & 2J2 Original Baseline 5.7 34 12.1 17.8 0.45
237 01R 14°BTDC, NOVA, 570 ECU 0.9 67 5.0 5.9 0.46
237 02R 14°BTDC, WVA, 570 ECU 1.0 70 9.8 10.8 0.41
237 01X Run 01R with Mode 7 Inserted 0.4 6 6.9 7.3 0.44
237 02X Run 02R with Mode 7 Inserted 0.5 11 11.6 12.2 0.39
EFI at a constant ECU setting and with fuel shutoff at CT, thermal reactors
with air injection, HEI, and the BPEGR valve with the 7 coil spring and 0. 53
orifice. The EGR flow rates reported in Appendix C are generally applicable
and the vacuum advance curve is given in Appendix A. As was determined
with the other fuel systems evaluated, the BPEGR valve does not appear to
be properly scheduled to obtain both low emissions and improved SFC with
this EFI system.
Test 243 Runs 01 through 03 were conducted using manual EGR at
similar conditions to those used in the previously reported Test 217; the
primary difference being the thermal reactors used in 243, whereas the port
liners were used in 217. The results were as follows:
Gram/kW-hr kg/kW-hr
Description HC CO NOX HC+NOY SFC
217 1&5 EFI-PL-EGR 1.2 35 5.0 6.2 0.40
243 1.2&3 EFI-TR-EGR 0.3 10 4.1 4.4 0.39
6. Lean Optimization at WOT
Additional modal evaluations were conducted as Tests 244 and
245. Of primary interest were Runs 01 and 02 of Test 244 which involved
the wide-open throttle operating condition. For Run 1, some of the primary
results of the effect of air/fuel ratio on WOT operation with the EFI are
summarized in Table 11. These summarized data further illustrate that
the emission goals could not be met using lean optimization in the 90 percent
power mode. Some nominal increase in power at the lean ratios was poten-
tially obtainable through some advance in ignition timing but only with an
increase in already unacceptable NOX emission levels.
In Test 244 Run 02, the maximum EGR obtainable through an
0 53 diameter orifice (approximately 5 percent) was added to the conditions
of Run 01. Maximum power was reduced by 6 to 7 percent and NO was
reduced by 30 to 40 percent at the richer air fuel ratios and by only 10 to 20
45
-------
TABLE 11. EFFECT OF FUEL TO AIR RATIO AT WOT
Concentration
Calc.
A/F
120
12.8
13. 2
13.8
14.6
15.0
15.8
16. 8
17.8
Power,
kW
72. 7
71. 2a
70.6
70.1
68.4
65.8
62. 8b
57.6
50.1
% BL
WOT
102
100
99
99
96
93
88
81
71
Vac.
mm
8
8
8
8
8
8
8
8
8
HC,
ppm
2224
1776
1552
1184
96
1
1
1
1
CO,
pet
6.96
4.75
3.36
1.87
0.31
0.03
0.02
0.02
0.02
as Measured
CO 2,
pet
10.3
11.8
12.9
13.9
14.6
15.0
15.8
16.8
17.8
CNOX,
ppm
329
647C
1041
1624
2147
2305
2114
1373
658C
SFC,
kg/kW-hr
0.35
0,33
0.32
0.30
0.30
0.30
0.31
0.32
0.35
a Baseline maximum power is approximately 71 kW
b90 percent of baseline maximum power is approximately 64 kW
CNOX level which would enable meeting project goals
Note? 14° BTDC at 2000 rpm, with TR, no air injection.
percent at the very lean air fuel ratios. These evaluations, along with
previously reported data, indicate that the required reductions in NOX in
the 90 percent mode can only be obtained using rich fuel/air mixture
optimization (unless significant derating of the engine is allowed or other
control methods, such as a three-way catalyst, are utilized).
In Run 04, the ignition timing was advanced while the air/fuel
ratio was adjusted to maintain a nearly constant NOX emission level. In
these, as in other previously reported evaluations, l6'BTDC at 90 percent
of maximum power appears to be a conservative value producing near
optimum results.
Test 245 Runs 01R through 03R evaluated the effect of ignition
timing on NO emissions at relatively constant rich, near stoichiometric,
and lean fuel/air ratios in the 55 percent of maximum power mode. For
as-measured NO concentrations around 600 ppm (the approximate value
necessary to meet project goals) the SFC ranged from about 0.326 at lean
ratios to 0.34 at rich ratios, or a little under five percent variation. Since
the 55 percent mode normally contributes about 25 percent of the total com-
posite fuel flow, this less-than-five percent variation in fuel flow would
change the composite nine-mode SFC by about one percent. Lean optimiza-
tion at the 55 percent of maximum power mode, therefore, appears to
result in some, but not any really substantial, improvement in SFC.
46
-------
F. Selection and Assembly of a System for Service Accumulation
Based on the results of the optimization evaluations, a system selec-
tion was made and an optimized engine was assembled for use in the service
accumulation evaluation.
1. System Selection for Service Accumulation
In selection of the system to undergo service accumulation, several
criteria were initially applied. These criteria are listed in Table 12.
TABLE 12. CRITERIA USED IN FINAL SYSTEM SELECTION
(1) The system should utilize currently in-use or reasonably
proven components.
(2) The system should have potential practical application to
heavy-duty gasoline engines by 1979.
(3) The system should minimize usage of devices or methods
currently known to have questionable effectiveness.
(4) The possibility should appear good that a reasonable,
self-contained, automatic system could be expeditiously
assembled for use in the service accumulation evaluation
phase of this project.
Of the fuel systems evaluated, only the carburetor and the electronic fuel
control system met all four of these criteria.
Using the carburetor along with emissions controls selected for
evaluation in this project, the HC emissions were reduced to acceptable
levels only when partial opening of the throttle or fuel shutoff was used
during the CT mode. When using partial opening of the throttle to reduce
HC, however, the specific fuel consumption goals were not attained. In
addition, there appears to be some cause for questioning the overall
effectiveness of this method for controlling HC emissions during the
CT mode. (10, 13)
The project goals were attained using electronic fuel injection
along with thermal reactors and EGR; and each of these systems essentially
met the four basic criteria listed in Table 8. For the service accumulation
demonstration, it was mutually agreed with the EPA Project Officer to use
the EFI, thermal reactors with air injection, EGR and the HEI system with
vacuum advance.
47
-------
2. Assembly of the System for Service Accumulation
The effort was then directed toward assembling a system for service
accumulation which requires a minimum of external control. Two initial
attempts were Tests 252 and 254 and the results are summarized as follows:
Gram/kW -hr kg/kW-hr
Test
252
254
n^rription HC CO NOX HC+HQx
Project Goals - 33.5 - 6.7
EFI-TR-HEI-EGRMBP 0.3 14 3.4 3.7
EFI-TR-HEI-EGR6010 0.4 11 4.1 4.4
SFC
0.405a
0.419
0.414
a Based on a 10 percent improvement from baseline
These two systems met all of the initial project goals with the exception of
SFC.
A 23-mode test was run with the same configuration as used in the
nine-mode EPA Test 252. The results compared with the baseline results
were as follows:
Gram/kW-hr kg/kW-hr
Test Description HC~ CO" NO^ HC+N5T SFC
209 Baseline 10.6 49 12.1 22.7 0.429
252 EFI-TR-HEI-EGR 0.4 23 6.8 7.2 0.386
Significant improvements were evident with all emissions and with SFC. The
primary improvement was in HC which was reduced by greater than 96
percent.
A self-contained automatic system was then assembled which
achieved emission and SFC results essentially equivalent to results obtained
during manually operated and modally optimized evaluations. The system
is shown in Figure 8 and consists of electronic fuel injection (EFI) wi h fuel
shut-off during cut throttle, thermal reactors (TR) with air injection (AI),
exhaust gas recirculation (EGR), and high energy ignition (HEI) with
vacuum advance.
48
-------
Figure 8. Optimized system consisting of EFI,
thermal reactors, EGR and HEI.
49
-------
The operating conditions and the results of repeated nine-mode EPA
evaluations, using this final system, are reported in Appendix F. (Included
are the results of duplicate 23-mode evaluations). These nine-mode EPA
results are summarized in Table 13.
TABLE 13. EMISSIONS AND SFC FOR DURABILITY SYSTEM
Gram/kW-hr kg/kW-hr
Test Description HC CO NOX HC+NOy SFC
211 & 212 Baseline 5.7 34 12.1 17.8 0.450
Project Goals --- 33.5 6.7 < 0.405
261, 262, 263 Emis. Cont. Sys.a 0.4 12.2 4.5 4.8 0.392
& 265
WAI-EGR-HEI WVA
As shown, project goals were achieved using primarily current technology
fuel and emission control systems. As previously indicated, no method has
been located for directly correlating operation on the dynamometer with
driveability in a vehicle. There has not been, however, any indication from
the dynamometer operation that this engine system would not be driveable.
As previously reported, this procedure does not account for the HC
during CT since the fuel flow is zero and the carbon balance procedure
calculates the emissions as zero when the fuel flow is zero. The actual
HC emission rate during CT (based on the measured HC emission values)
is estimated to approach 0. 7 g/kW-hr. This value has been calculated as
follows:
. HC M3, 200 ppm/45,000 ppm)# (1300 g/hr) ^95 g/hr (Based on
Test 213)
. (90 g/hr)* (.143) *\» 13 weighted gm/hr
. 13 g/hr/19 kW ^0.7 g/kW-hr (0. 5 g/bhp-hr)
Even if this approximate 0.7 g/kW-hr were added to the composite HC+NOX
value of 4.8, the resulting value of 5. 5 would still remain below the goal of
6.7.
The results of the duplicate 23-mode evaluations are summarized
on the next page.
50
-------
Gram/kW-hr kg/kW-hr
Description HC CO NOX HC+NOX SFC
10.6 49 12.1 22.7 0.429
264 Emis. Cont. Syst. 0.3 6 6.8 7.1 0.393
A few compromises were necessary in order to make this a self-
contained and automatic operating control system. These apply primarily
to very low power operation at slow to medium engine speeds where the
EGR rate is somewhat higher than optimum. This very low power operation,
however, is of minimal importance in the nine-mode EPA procedure. The
23-mode procedure, on the other hand, places somewhat greater emphasis
on the low power modes at an engine speed of 1200 rpm.
The EFI is operated at a constant setting on the ECU and fuel flow
is shut off during CT operation by a vacuum operated switch. The decision
to use a constant setting on the ECU was reached after it was determined
that results could be obtained which were essentially equivalent to modally
optimized results. Since fuel flow rate in this EFI system is controlled
by the engine speed and manifold vacuum, however, a constant setting on
the ECU required some balancing of the EGR rate with the ECU schedule.
(Note - time requirements, proprietary considerations and other factors
made it inadvisable to attempt making internal changes to the ECU).
External control of the ECU could possibly have been developed had the
previous approach not been successful.
The most difficult system to incorporate was an EGR system. All
available EGR valves (over a half dozen different units were tried) did not
have and could not readily be modified to have the appropriate schedule.
As an expediency, since this project was not intended as an EGR develop-
ment project, two EGR valves were utilized in parallel in the final system.
The valves utilized were modified backpressure EGR valves. One valve
operates in a manner in which some flow control is obtained by exhaust back-
pressure. The other valve provides the additional exhaust recirculation
required around the 55 percent power mode. The effective EGR rates along
with ignition timing for the nine-mode EPA procedure were as shown at the
top of the next page. The equation used is the same as that used in previous
calculations, with the addition of a term (total carbon/15) to account for
the amount of air injection in the exhaust. As previously mentioned, the
EGR rate at the 10 percent power mode was somewhat higher than optimum.
This, however, did not result in any noticeable misfire and the 10 percent
power mode is not a significant factor in the nine-mode EPA procedure.
51
-------
Percent Typical
Power Ignition
Mode Setting EEGR, %a Timing, " BTDC
1 Idle 0 5
2, 4, 6, 8 25% 13-14 29
3 55% 11-12 21
5 10% 16-17 30
7 90% 2 16
9 CT 0 5
aUsing EEGR = EGR % * Total Carbon
The HEI system was used for two primary reasons; the essentially
satisfactory vacuum advance curve and the fact that HEI appears to have
become the dominant system in light-duty applications and yearly is being
used in more heavy-duty applications. In the nine-mode EPA evaluations,
the 90 percent of maximum power mode is run two degrees advanced
relative to the manufacturer's specified value for the baseline configuration.
The manufacturer specified timing, however, was used in the WOT maximum
power determinations which were used in setting the power modes in the
nine-moda EPA procedure.
The ignition timing advance curve used compares well with the
advance curve used in the Cadillac engine with EFI. Based on this
similarity to the Cadillac advance curve and the high fuel/air ratio along
with a couple percent EGR in the 90 percent power mode, no detonation
should be expected to occur in any modes of the nine-mode EPA procedure.
52
-------
IV. SERVICE ACCUMULATION DEMONSTRATION
Following completion of the optimization evaluations, the engine in
the optimized systems configuration was moved to a durability test stand.
This test stand had recently been used in the evaluation of a 1977 model
heavy-duty durability data engine. This section of the report describes the
service accumulation demonstration; including the facility, equipment,
instrumentation, procedures and results. The engine configuration has
been previously described in Section IH.F. of this report. In brief, the
engine configuration consisted of a 1975 model heavy-duty gasoline engine,
electronic fuel injection with the fuel shut off at CT, exhaust thermal
reactors with air injection, exhaust gas recirculation, and high energy
ignition with vacuum advance. During the 750 through 1500 hours of service
accumulation, an oxidation catalyst was included as an add-on in the exhaust
system.
A. Service Accumulation Schedule and Emissions Test Sequence
The service accumulation schedule and emissions test sequence
used in this project follow the requirements in the proposed rules for 1979
model year heavy-duty gasoline engines. U5) This proposed schedule and
sequence differ from the currently applicable heavy-duty service accumula-
tion schedule and nine-mode emissions test cycle.
1. Service Accumulation Schedule
The service accumulation schedule used in this project is given
in Table 14. This schedule was designed to meet the requirements in the
proposed rules, which are summarized in Appendix Table A-7. The general
format and sequence were based on a service accumulation schedule which
was recently used on a 1977 model heavy-duty durability data engine. This
schedule was reviewed by the certification section at EPA and they verbally
replied that it met the basic requirements given in the proposed procedure.
This schedule utilizes eight steady state modes, plus a high speed
transient, and has a total cycle time of 15 minutes. The designed average
engine speed for the cycle is 1672 rpm. Required duration of CT operation
was attained in mode 8 which has a total time in mode of 275 seconds. This
is in keeping with a steady state type of cycle and the then available durability
test facility, which had single speed CT capability.
53
-------
TABLE 14. SERVICE ACCUMtfLATION SCHEDULE USED IN THIS PROJECT
Sequence
Number
1
2
3
4
5
6A
6B
7
8
T\rn Aver.
Mode
Idle
Cruise
PTD
Idle
PTA
PTA
PTA
FL
CT
Clvele rni
Engine
rpm
600
1550
1550
600
2000
3300
3200
2000
2000
m 1672
% of Max.
Torquea
Idle
25
10
Idle
55
55
55
90
CT
Totals
Time in
Mode, seconds
105
55
135
105
30
1
69
125
275
900
% of Time
in Mode
11.7
6,1
15.0
11.7
3.3
0.1
7.7
13.9
30.6
100.
aPercent of maximum torque measured at the respective engine rpm
The primary differences between the current and the proposed service
accumulation schedule requirements (other than using percent of maximum
power rather than intake manifold vacuum settings) are shown in Table 15.
TABLE 15. SERVICE ACCUMULATION SCHEDULE REQUIREMENTS
Modal Condition
Mode
Idle
CT
PTD
Cruise
PTA
FL
Current,
in. Hg
Idle
CT
19
16
10
3
Proposed,
% Torque3-
Idle
CT
10
25
55
90
Modal Time in Percent
Current^ ''
23
14
6
31
14
12
Proposed**3'
23
31
15
6
11
14
Modal Time in Sec
Based onl5-Min Cycle
Current
207
126
54
279
126
108
Proposed
207
279
135
54
99
126
a Percent of the maximum torque obtained at that operating speed.
54
-------
The engine speed requirements in the proposed schedule remain the same as
in the current schedule. Average speed shall be between 1650 and 1700 and
U?«nn Percent of the cYcle time must be operation at a speed in excess
of 3200 rpm. Maximum allowed cycle time is 15 minutes.
The current service accumulation schedule uses the same relative
modal weighting factors as used in the nine-mode emissions test procedure
As shown in Table 15, the proposed schedule more than doubles the time
spent in the CT and the PTD (10% power) modes and reduces the time spent
in the Cruise (25% power) mode from 31 to 6 percent of the total cycle time.
2. Emission Test Sequence
The ^missions test cycle given in the recommended procedure^)
' ^ USGd f°r
horf throughout the
hours of engine service accumulation. This cycle was previously
described in Section II. D. of this report. One of the primary differences
between the proposed nine-mode cycle and the current nine- mode cycTe i
that the modal settings are on the basis of percentages of maximum torque
rather than on fixed manifold vacuum settings.
B. Durability Test Stand and Instrumentation
is located in the
Research Department at Southwest Research Institute. The
altitude of this testing facility is 248meters (813 ft) above sea level. Several
views of the durability test facility, along with a view of the engine and the
oxidation catalyst, are shown in Figure 9.
1. Dynamometer System
FrfHir r ^he stationary engine dynamometer used was a 175 hp Midwest
Eddy Current absorption, dry gap electric dynamometer, Frame MD 1014
Absorbing capability of the dynamometer was 131 kW (175 hp) over the '
speed range of 2500 to 6000 rpm. Motoring of the engine was accomplished
Sa ™ 3? W "
Zrab IT™ 3? nW ^ M ^^ ^ drivin« dynamometer through
gear belt-cog pulley positive drive system and a clutch assembly. This
dynamometer and electric motor assembly is shown in Figure 9.
During the CT mode of the emission cycle and the service
accumulation cycle, motoring at nominal 2000 rpm was affected by the
engagement of the clutch. The clutch assembly; consisting of a C-60
Chevrolet truck (350 C!D) bell housing assembly including engine flywheel
to pinion shaft, clutch, pressure plate and throwout bearing, was minted
on the mo oring shaft support pedestal. Only the clutch prfssurJ £aT and
splmed pilot shaft rotate continuously with the Midwest dynamometer haft
55
-------
Overall View
Control Panel and Data-Trak
Engine-Dynamometer Installation
Optimized Engine
Oxidation Catalyst
Figure 9. Test facility used in the service accumulation demonstration
56
-------
For measurement of torque, the dynamometer lever arm actuated
a Baldwin-Lima-Hamilton BLH strain gage load cell Type U3G1. A Bell
and Howell mv Isolated Transmitter Model 18-115 was used with the load
cell. Digital readout was provided by a Newport Model 200A panel meter.
A system of known weights were used to precalibrate the load cell read-out
system and for dynamometer calibration prior to each emissions test.
2. Durability Cycle Control System
The engine-dynamometer control system utilized a Research
Incorporated Programmed - Closed Loop Speed Controller - Closed Loop
Load Controller. The system and individual components are illustrated in
Figure 10. The Research Incorporated Model 660D Digital Data-Trak
Programmer and Model 2204 excitation module, Model 2201 speed controller,
and the L&N Model 10970 Electropneumatic Converter and Honeywell
actuator MP909B are the major elements of the automatic control system.
A partial view of the Data-Trak programmer was shown in Figure 9.
This cycle controller was programmed using punched tape to
operate the 15 minute service accumulation schedule for this 1500 hour
evaluation. This control system was also used to maintain constant 2000 ±
100 rpm during the emissions test cycle. During emissions tests, however,
the engine throttle was operated manually.
3. Engine Parameter Instrumentation
SPeed - For determination of engine speed, a Herman H. Sticht
Co. Model ACA-2 tachometer generator was driven directly from the front
end of the engine crankshaft. The generator supplied a signal to the control
system, the recorder, and to a Model 451 Standco panel meter.
Manifold Vacuum and Exhaust Backpressure - A Viatron Model
108 vacuum transducer provided the manifold vacuum electrical signal to
the recorder. In addition, a mercury manometer was utilized as the
primary reference and for calibration, and a gauge was used as an assist
in running the emissions cycle. Mercury manometers were used for
measurement of exhaust backpressure.
Fuel Flow - Fuel flow rate was determined using a Flo-Tron
Inc. Model 10E mass flow transmitter in conjunction with a Flo-Tron
recirculating tank. The flow rate was displayed on a digital panel meter
and was permanently recorded on strip chart.
Temperatures - Thermocouples, an L&N Model 8246 multi-
position rotary switch and a Doric Model D5500 digital thermocouple readout
57
-------
Throttle Setting
Event Switch
1
2
3
4
5
6
7
R.I. 660D DATA-TRAK
PROGRAMMER
ANALOG SET POINT
RPM Event Switch 1
L&N 10970
ELECTRONIC
CONVERTER
HONEYWELL
MP909B
THROTTLE
ACTUATOR
OVERSPEED & OIL
PRESSURE SAFETY
1400 RPM
2000 RPM
3200 RPM
Clutch Apply/
AND
MOTOR
BELT-DRIVE
ASSEMBLY
2000 RPM
CLUTCH
R.I. 2201
SPBED
CONTROLLER
R.I.220
XCITATION
MODULE
LOAD
READ-OUT
LOAD
CELL
TACH.
GENERATOR
Figure 10. Functional diagram of the engine and
dynamometer control system.
58
-------
were utilized for temperature measurements. A precision mercury ther-
mometer was utilized as the primary reference for calibration of the
ambient and intake air temperature thermocouples.
Barometric Pressure and Humidity - Barometric pressure was
determined within the test area using a mercury barometer. Humidity, in
terms of temperature and relative humidity, was measured using a General
Eastern Model 400 C/D Relative Humidity and Temperature Indicator.
Other Pressures - Conventional Bourdon tube pressure gages
were used for monitoring such parameters as engine oil gallery pressure,
dyno water supply pressure, and fuel pump outlet pressure.
Safety Shutdown Systems - Systems were employed to automatically
shut down the engine in the event of low oil pressure, engine overspeed, and
overheat of engine or dynamometer cooling water.
4. Sampling and Analytical System
Sampling System - The exhaust sampling probe consisted of a
9.5 mm (3/8 inch) outside diameter (7.7 mm ID) stainless steel tube with
the end welded closed and nine holes 2.4 mm (3/32 inch) in diameter equally
spaced and randomly oriented. This probe was installed in the exhaust pipe
2.8 meters (9.2 feet) downstream of the engine exhaust manifold and 150 mm
(6 inches) downstream of the muffler. The length of the 9.5 mm OD heated
sample line was approximately 8 meters (26 feet). The sampling system,
except for a few minor deviations, followed the schematic illustrated in
Figure D79-1 in the Proposed RulesU5) (this figure was reproduced as
previous Figure 2 in Section II. C. of this report).
Emission Instruments - Multirange Beckman 315A non-dispersive
infrared analyzers were used for measurement of CO and CO2. NOX was
measured using a SwRI fabricated chemiluminescence and HC using an SwRI
fabricated flame ionization detector. The nominal instrument ranges used
in the emissions tests are listed as follows:
Emission Nominal Full Scale
C0 3500, 7000, 17000ppm
CO2 16 percent
HC 100, 200, 400, 800, 1600, 3200,
6400, 12800 ppm
N°x 100, 300, 1000, 3000 ppm
59
-------
Recorders - Four dual-pen Texas Instrument Servo/Riter II
strip chart recorders were used to record emissions and engine operating
parameters. The utilization was as follows:
Recorder Emission or Parameter Recorded
1 CO and CO2
2 HC and NOX
3 LOAD and RPM
4 MAN. VAC. and FUEL FLOW
Computer Data Processing System - The strip charts of HC,
CO, CO2> NO, Load, RPM, Fuel Flow and Manifold Vacuum obtained during
emission tests were manually read and reduced after each emission test.
Intake air temperature, humidity, barometric pressure and various other
pressures and temperatures were manually recorded during the nine-mode
test. Trained chart readers transferred the readings to computer input
sheets from which computer cards were keypunched and verified.
The cards were then entered into the CDC 6600 computer
facility of the McDonnel-Douglas Company in Santa Barbara, California
via dedicated phone lines. This batch type computer performs the
calculations, computes correction factors and applies and weights the
values as per requirements in the applicable procedure. Observed,
weighted and corrected data were then printed out in the Southwest Research
Institute computer terminal. The computer printouts are defined in
Table A-4 in Appendix A.
Calibration and Span Gases - Instrument calibrations were per-
formed monthly using gases referred to as Golden Standards. The Golden
Standard gases have all been either named at the Environmental Protection
Agency or using Bureau of Standards reference gases. Span gases are
named from these Golden Standard gases and are rechecked during each
instrument calibration. A span gas was provided for each instrument
range used.
C. Oxidation Catalyst
The oxidation catalyst, included as an add-on during the last 750
hours of service accumulation, was an Engelhard Exhaust Gas Purifier
PTX 7. 25-2-3MOD3. This unit contains a monolith substrate approximately
160 mm in diameter by 160 mm in length (about six by six inches). It was
installed between the "Y", joining the right and left exhaust of the engine,
and the muffler. The centerline of the catalyst was located about 1.5
meters (five feet) downstream of the exit from the left bank thermal reactor.
As received, the inlet and outlet to the catalyst were slightly less than 50
mm (two inches) in diameter. Therefore, as discussed with the Engelhard
60
-------
representative, the inlet and outlet cones were cutback to a diameter of 75mm
(three inches) and Marman clamp plates were heliarced onto the inlet and
outlet. Thermocouples were installed in the inlet and outlet of the catalyst.
A picture showing the catalyst installation was included in the
preceding Figure 9. A section of exhaust pipe the same length as the
catalyst assembly was also fabricated. This section of exhaust pipe was used
to replace the catalyst for emissions testing of the engine in the original
optimized configuration.
Exhaust backpressure was approximately doubled with the catalyst
installed. The values for each modal condition in the nine-mode EPA
procedure and for WOT at 2000 rpm were as follows:
Mode
4, 6 & 8
3
5
7
9
Percent
of Max. Torque
Idle
25
55
10
90
CT
WOT
Exhaust Backpressure, mm Hg
Without Catalyst With Catalyst
1
5
10
3
23
1
30
3
12
23
8
43
3
58
It is important to note that, as per agreement with the EPA Project Officer,
no system optimization was conducted with the catalyst installed. The in-
crease in exhaust backpressure can affect both the residual exhaust remain-
ing within the cylinder during the exhaust stroke and the rate of exhaust gas
recirculation, "
D.
Emissions Test Results During Service Accumulation
This section presents the results of the emissions tests and the
calculation of the deterioration factor. It should be noted that the emissions
test procedure used in this project differs from the current nine-mode
certification procedure.
1. Emissions Tests Results
For the first 750 hours, the engine configuration consisted of
electronic fuel injection with the fuel shutoff at cut-throttle, exhaust
thermal reactors with air injection, exhaust gas recirculation and a high
energy ignition system. At 750 hours of service accumulation, a heavy-
duty oxidation catalyst was installed in the exhaust system. From this point
61
-------
on, all service accumulation hours were with the catalyst installed. After
each 125 hours of operation, however, emissions tests were conducted
both with and without the catalyst installed.
The emissions test results during the service accumulation
demonstration are included in Tables G-2 through G-l6 in Appendix G and
are summarized in Table 16.
TABLE 16. EMISSIONS RESULTS DURING SERVICE ACCUMULATION
Without Oxidation Catalyst
Test
Number
Durability
Hours
Emissions, g/kW-
HC
Project Goals
Optimization Eval.
0-6
1-1
2-2
3-1
4-3
5-1
6-3
7-2
9-2
11-2
13-2
15-1
17-2
19-1
21-1
Average
Average
Average
Average
Standard
000b
125
250
375
500 Pre
500 Post
625
750
875
1000 Pre
1000 Post
1125
1250
1375
1500
000-500
500-1000
1000-1500
000-1500
Deviation
0.4
0.29
0.42
0.33
0.46
0.35
0.52
0.36
0.40
0.42
0.33
0.32
0.36
0.39
0.99C
0.36
0.37
0.41
0.48
0.42
0.17
Deterioration Factor
125 Hours + D.F.
CO
33.5
12.2
10.37
12.67
16.31
14.46
10.89
8.40
14.53
23.33
17.21
27.55
12.60
19.41
9.99
12.72
14.43
12.9
18.2
13.8
15.0
5.2
2.10
14.77
NOX
« — — —
4.5
3. 74
3.52
3.27
3.54
3.87
3.94
3.59
2.64
3.06
2.83
3.29
3.21
3.62
3.59
3.53
3.59
3.21
3.45
3.42
0.37
-
-
hr
HC+NOX
6.7
4.8
4.03
3.94
3.60
4.00
4.22
4.46
3.95
3.04
3.48
3.16
3.61
3.56
4.01
4.58
3.89
3.96
3.62
3.93
3.84
0.43
0.00
3.94
kg/kW-hr
SFC
0.405a
0.392
0.386
0.387
0.384
0.378
0.399
0.392
0.412
0.397
0.405
0.404
0.390
0.389
0.405
0.399
0.390
0.387
0.402
0.395
0.394
0.010
0.011
0.398
a Based on a 10 percent improvement from baseline
t>The basic engine was operated for 468 hours in the optimization evaluations,
c Engine misfire occurred in the Idle and some of the low power modes.
62
-------
Up to the 1000 hours, the NOX emissions generally decreased
while CO and to some extent the SFC increased. The primary contributing
factor associated with the increase in composite CO was the significant CO
increase in the 90 percent power mode. The CO emission rate in this mode
increased from initial values below 0.3 percent to values above 1.0 percent.
Contributing causes for the changes in emissions and SFC are discussed in
Section F which reports maintenance. The results in Table i6 show that
the basic goals of this project were met.
Emissions and SFC results during the 750 hours of operation
with the oxidation catalyst installed in the exhaust system are included in
Tables G-17 through G-25 in Appendix G and are summarized in Table 17.
The oxidation catalyst produced substantial reduction in HC in all modes.
Substantial reduction in CO emissions was achieved in those modes having
sufficient oxygen available in the exhaust.
Composite NOX emissions decreased and SFC increased with the
oxidation catalyst installed. The SFC increase is probably attributable to
the increase in exhaust backpressure. Possible causes for the NOX reduc-
tion are increased exhaust residuals in the combustion chamber due to the
increased backpressure and/or the catalyst acting as a reduction catalyst.
The 90 percent power mode was a significant source of NOX, CO and
exhaust heat. Under these conditions the catalyst could have been operating
as a reduction catalyst. Experiments to determine the cause of the NOX
reduction were not performed.
TABLE 17. EMISSIONS TEST RESULTS WITH OXIDATION CATALYST
With Oxidation Catalyst
Test
Number
8-1
10-1
12-1
14-1
Average
Standard
Catalyst
Hoursa
0
125
250 Pre
250 Post
375
500
625
750
000-750
Deviation
Emissions,
HC
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
07
07
11
04
07
08
08
08
08
02
CO
20.
19.
27.
7.
18.
9.
13.
15.
16.
6.
1
28
17
75
50
16
49
49
38
32
g/kW-hr
NOX
1.
1.
2.
1.
2.
2.
2.
2.
2.
0.
75
70
37
98
64
45 •
15
50
19
35
HC+NOv
1.
1.
2.
2.
2.
2.
2.
2.
2.
0.
88
81
48
02
61
53
23
58
27
33
kg-kW-hr
SFC
0.
o
0.
0.
0.
0.
0.
0.
0.
0.
410
414
408
396
396
398
409
402
404
007
a Catalyst hours equals engine durability hours minus 750.
63
-------
2. Determination of the Deterioration Factor
The deterioration factors for HC+NOX and for CO were cal-
culated using the emissions test data for service accumulation hours 125
through 1500. Both the pre- and post-maintenance test data at 500 and
1000 hours were included in the calculation. Deterioration factors were
0.00 g/kW-hr for HC+NOX and 2.10 g/kW-hr for CO. The service
accumulation emissions test data and the best fit straight line?; arc shown
plotted in Figure 11. The 125 hour values plus the deterioration factors
were 3.94 g/kW-hr for HC+NOX and 14.77 g/kW-hr for CO.
E.
Maximum Power and Exhaust Temperatures
This section presents the maximum power as determined and used in
setting up the service accumulation modal conditions, the corrected maximum
power determined before each emissions test, and the exhaust temperatures at
the exit of the thermal reactors and the oxidation catalyst.
1. Setting Up Service Accumulation Modal Conditions
Maximum power output was determined at each of the three speeds
included in the service accumulation schedule. These values were obtained
at atmospheric conditions approximating the average expected conditions
within the durability test cell. The maximum power and the service accumula-
tion modal conditions were as follows:
Service Accumulation Schedule
Maximum Man- Vac- •
RPM Power, kW Mode Power, kW Fuel, kg/hr mm Hg.
Idle
1550
1500
2000
2000
3200
2000
53.2
n
71.2
n
109.2
1 &4
2
3
5
7
6
8
0
13.3
5.3
39.2
64. 1
60.1
0
1.8
6.6
5.6
12.9
19.9
22.3
0
430
330
381
175
53
170
595
64
-------
T r
—HC+NO
x
1 1 1
•PROJECT EMISSIONS GOALS
35
CO
I
A
OC
O
5
u
a
30
25
i
^!
bfl
150"
U
10
HC+NO
250
CO:
_L
-L
0
500 750 1000
Service Accumulation Hours
1250
1500
Figure 11. Plot of the emissions results
for the service accumulation demonstration.
65
-------
The modal power was the control parameter utilized throughout the service
accumulation demonstration.
2. Maximum Power Determined for Each Emissions Test
The emissions procedure^"*) requires using modal conditions
established on the basis of maximum power determined, with a warmed up
engine, prior to each test. This requirement was followed for tj-c emissions
testing during the service accumulation demonstration. In Figure 12, the
determined maximum powers have been adjusted to uniform atmospheric
conditions using the formulas given in the recommended procedure. This
adjustment of the maximum power has been made to enable direct compari-
son of the values.
80nr
£60
o
0,40
6
w
£ 20
70. 1 Avg.-
-67.9 Avg.'
67. 7 Avg.
0
500 1000
Service Accumulation Hours
1500
Figure 12. Maximum power determinations for setting up emissions tests.
As shown in Figure 12, the maximum power remained essentially
constant for the first 500 hours of service accumulation. Between 500 hours
and 625 hours, an approximate three percent reduction in maximum power
occurred. The maximum power from 625 hours through 1500 hours then
remained essentially constant at this somewhat reduced level of power output.
The average maximum power output for 1125 through 1500 hours of service
accumulation was 96.6 percent of the power output for the first 500 hours.
66
-------
With the addition of the oxidation catalyst, the maximum power
output was reduced approximately one kW relative to maximum power with-
out the catalyst. This reduction in maximum power with the oxidation
catalyst installed was apparently due to the increase in exhaust backpressure.
3. Maximum Exhaust Temperatures
Maximum specified operating temperatures were 1066°C (1950T)
for the thermal reactors and 982° C (1800'F) for the oxidation catalyst. The
recommended range for the oxidation catalyst was 371 to 871°C (700 to
1600°F). Nominal operating temperatures attained during the emissions
cycle and the service accumulation schedule are given in Table 18.
TABLE 18. NOMINAL THERMAL REACTOR AND
OXIDATION CATALYST OPERATING TEMPERATURES
Emissions Cyclea
Temperature, °C
Mode
1
2
3
4
5
6
7
8
9
Load
Idle
25%
55%
25%
10%
25%
90%
25%
CT
Thermal
Reactor
425
575
725
695
705
685
870
740
445 c
Oxidation
Catalyst
In Out
360 550
420 500
535 500
535 540
515 530
520 525
700 650
600 665
425C 595C
Set-Up WOT 935d 755d 725d
Service Accumulation Sequence
Temperature, °C
Thermal Oxidation
Mode RPM Load Reactor Catalyst
1
2
3
4
5
6
7
8
600
1550
1550
600
2000
3200
2000
2000
Idle
25%
10%
Idle
55%
55%
90%
CT
345
565
620
540
650
845
925
205C
940d
315
290
400
400
400
650
730
370c
Set-Up 1550 WOT
Set-Up 2000 WOT
Set-Up 3200 WOT 1020d
Limit
1066
982
a During the second cycle of an emissions test
bNo substantial temperature difference between catalyst inlet and outlet
except at Idle and CT. Temperatures into catalyst at the end of the
Idle and CT modes were approximately 205° C
c Temperatures at CT were still decreasing at the end of the mode.
a At the end of two minutes of WOT operation
67
-------
The temperatures attained in the thermal reactors and the
oxidation catalyst, during the emissions cycle and the service accumulation
schedule, remained well below the specified operating limits. Thermal
reactor temperatures approached the operating limit only during the 3200
rpm wide-open throttle operation required for setting up the service
accumulation schedule.
F. Maintenance During Service Accumulation
The general approach toward maintenance in this service accumu-
lation demonstration was to schedule items which a manufacturer could
reasonably be expected to specify. Primary exceptions to this were the
oxidation catalyst and the EGR system, which were inspected more
frequently than would normally be expected. The scheduled maintenance
for the service accumulation demonstration is given in Table 19. This
scheduled maintenance involved reasonably extensive inspection, while
minimizing scheduled replacement of components. A summarized log
describing the maintenance performed during service accumulation
demonstration is given in Table 20.
Several component malfunctions and deteriorations, uncovered in
the 1000 hour scheduled maintenance were found to have been a factor in
the observed changes in the CO and NOX emissions and the SFC. With
reference to Table 20, at 1000 hours of service accumulation, replace-
ment of the leaky diverter valve reduced the CO at the 90 percent of
maximum power mode by about twenty percent. Changes in CO emissions
due to cleaning of the two air injection tubes could not be definitely defined.
However, there were no gross changes in CO emissions due to cleaning
of the tubes. In checking the air injection system, the air pump was
temporarily replaced with the air pump which had been used on the
other engine during the optimization evaluations. With the replacement
air pump, no gross changes in CO emissions were apparent. Since the
air pump, which had been used for the 1000 hours, could not be proven
to be defective, it was reinstalled on the engine.
Malfunction of the EGR system was found to be a primary factor
affecting the emissions and fuel consumption. As described in Table 20,
the orifice in the backpressure controlled system of the BPEGR valve had
become partially plugged. Overall effectiveness of the 1000 hour tune-
up and maintenance is illustrated in Table 15 by the emissions and SFC
results for the pre- and post-maintenance emissions tests at 1000 hours.
68
-------
TABLE 19. SCHEDULED MAINTENANCE
Hours of Service Accumulation
Item 125 250 375 500 625 750 875 1000 1125 1250 1375
Change Oil XXXXXXXXXXX
Replace oil filter X X X X X X
Adjust idle speed X X X
Replace sparkplugs - Gap to 1.52mm X X
Check spark plug wires X X
Check ignition timing X X
Adjust drive belts X X
Tighten throttle body mounting bolts X X
Replace air cleaner element X X
Check PCV system X X
Replace fuel filter X X
Check air injection system X X
Check EGR system - visual and manual X X Y
Visually check oxidation catalyst Y Y Y Y Y Y
X - scheduled at start of service accumulation
Y - scheduled after 750 hours of service accumulation
-------
TABLE 20.
DESCRIPTION OF SCHEDULED AND UNSCHEDULED
MAINTENANCE PERFORMED
Service
Accumulation
Hours
225
500
578
639
Maintenance Performed
750
870
1000
Repaired a loose electrical connection in the vv? ti^g to a
solenoid which shuts off the EGR system at CT and idle.
Adjusted the limit switch in the above described system.
Increased engine idle speed.
Reinstalled original fuel filter - the replacement unit was
found to adversely affect the operation of the fuel system.
Replaced the fabricated sections of exhaust pipe adapting
the thermal reactors to the exhaust elbow - the section on
the right side of the engine had cracked.
Maximum power was down about 20 percent. After
installing new spark plugs, normal power was restored.
Due to a fire at an adjacent test stand, which was
extinguished with a dry powder fire extinguisher, the
air filter element was checked and replaced.
Adjusted engine idle speed in approximately the same
amount but in opposite direction as required at 578 hours.
Replaced the air pump diverter valve - at higher loads air
leakage was observed through the diverter valve ports
which normally exhaust air to the atmosphere for only a
few seconds following a rapid increase in intake vacuum.
Cleaned two air injection tubes (cylinder 3 and 4) which
were plugged in a very limited area of the tubes to a dia-
meter of about 3. 2 mm (1/8"). The deposits were gray to
black and very similar in appearance to deposits normally
found within the combustion chamber. The other six air
injection tubes had only a very thin, insignificant coating of
deposits.
70
-------
TABLE 20 (Cont'd.) DESCRIPTION OF SCHEDULED AND
UNSCHEDULED MAINTENANCE PERFORMED
Service
Accumulation
Hours
1036
1295
1420
1425
1500
Maintenance Performed
The BPEGR valve was replaced due to a partially plugged
orifice in the backpressure controlled system. The
deposits, in this area and on the wire mesh screen filter
within the valve, were black carbonaceous and somewhat
oily in appearance.
Repaired broken connector in plug wires to number 6 and
number 7 cylinder.
Replaced leaking vacuum line to fuel shutoff solenoid. This
was preceded by adjustments to the fuel shutoff solenoid
valve and the idle speed until the specific problem was
located.
Number 3 spark plug fouled out and was replaced .
Number 2 spark plug fouled out during the night shift and
was replaced. The other six plugs were replaced the next
morning.
Due to severe misfire, number 2 and number 3 spark plugs
were replaced prior to determination of maximum power
with the oxidation catalyst installed.
71
-------
An item of concern was the relatively high rate of oil consumption
being experienced in the engine. The rate of oil consumption reached
approximately two liters per 24 hour period. No definite baseline rate of
oil consumption could be established since there were no specific data
available which was directly applicable to the service accumulation schedule
used in this project. A rate of oil consumption of almost two liters per 24
hour period, however, is thought to be excessive. The oil added to the
engine during each 125 hour period of service accumulation was as follows:
Service Liters Added Operating
Accumulation per Preceding 125 Hours per
Hours Hour Period Liter
125 3.5 36
250 5.0 25
375 6.0 21
500 5.5 23
000-500 Average 5.0 25
625 8.5 15
750 7.5 17
875 9.0 14
1000 9.0 11
500-1000 Average 8.5 15
1125 11.5a 11
1250 10.0 13
1375 9.5 13
1500 11.Oa ii
1000-1500 Average 10.5 12
aSome leakage occurred during each of these periods.
These values in the table include oil required to bring the oil level to the full
mark at the end of each 125 hour operating period.
Due primarily to the high oil consumption, a cylinder compression
pressure check was conducted on the engine shortly after the tune-up at
iOOO hours of operation. The results of this compression check were as
shown in the table at the top of the next page.
72
-------
Average
Cylinder Compression
1 135
3 133
5 155
7 133
Specification: 150±20
Cylinder
2
4
6
8
Average
Compression
155
153
153
158
As shown, the compression in three out of the four cylinders on the left
side of the engine was near the lower allowable specification limit.
Another item of concern was the spark plug fouling that began to
occur after 500 hours of service accumulation. The spark plugs that were
removed from the engine at 500 hours did not have any excessive or unusual
deposits. At 750 hours, however, number 3 spark plug was misfiring and
both number 2 and number 3 plugs had substantial deposits.
At 1000 hours, although no engine misfire was apparent, number 2
and number 3 plugs had very substantial deposits. At 1375 hours, some
misfiring was apparent during the emissions tests. Around 1465 hours,
number 2 and number 3 plugs were misfiring due to very substantial deposits.
After the 1500 hour emissions test, number 2 and number 3 plugs were
misfiring and had to be replaced prior to conductance of the emissions test
with the oxidation catalyst installed.
It is of interest that several things occurred with the engine at some
point after 500 hours of service accumulation.
(1) Maximum power was down about three percent at and after
625 hours relative to at and before 500 hours
(2) A substantial increase in oil consumption occurred after
500 hours
(3)
Spark plug fouling began to occur after 500 hours
It appears that some significant change may have occurred in the engine at
some point between 500 and 750 (probably between 500 and 625) hours of
operation. The specific cause or causes for the change in maximum power,
oil consumption and spark plug deposit rate after 500 hours of service
accumulation are not known.
No maintenance or replacement was required with the oxidation
catalyst during the 750 hours of service accumulation operation. After the
73
-------
750 hours, no significant deterioration of the catalyst was visually apparent.
Some minor catalyst plugging occurred, but the amount ot plugging was not
sufficient to result in any definite increase in exhaust backpressure or
decrease in catalyst efficiency. <
G. Post Service Accumulation Demonstration Emissions Results
Following completion of the service accumulation demonstration, two
23-mode experimental emissions tests were conducted with the service
accumulation engine. One emissions test, using the proposed nine-mode
cycle, was run prior to the 23-mode tests to assure no substantial change
had occurred with the engine since completion of service accumulation.
The results of this post-service accumulation emissions test are sum-
marized and compared with previous tests as follows:
kg/
g/kW-hr kW-hr
Test Description HC CO NOy HC+NOy SFC
23
21
263 +
2il &
265
212
r
Post-Service Accumulation
1500 Hours of S. A.
Pre-Service Accumulation
Baseline
0.
0.
0.
5.
42
36
38
7
14.44
14.43
10.02
33.6
3.
3.
4.
12.
94
53
45
1
4.
3.
4.
17.
37
89
83
8
0.
0.
0.
0.
395
390
395
450
The results of the post-service accumulation emissions test, as com-
pared with the results of the 1500 hours emissions test, indicate no substan-
tial change in engine operation. This is primarily evident by plotting these
data points onto the previous Figure 11; which graphically shows the results
of each 125 hour emissions test during service accumulation.
The averaged results of the 23-mode tests are summarized and
compared with previous tests as follows:
kg/
g/kW-hr kW-hr
Test Description HC CO NOX HC+NOy SFC
24
264
209
As shown, the post-service accumulation 23-mode test, relative to the pre-
service accumulation 23-mode test, had significantly higher CO and signifi-
cantly lower NOX. Although the HC emissions increased significantly on a
percentage basis, the absolute value remained low. The increase in CO in
the post-service accumulation 23-mode emissions tests was primarily due
to significantly increased CO emissions rates in some of the mid- and high-
load modes.
Post-Service
Pre-Service
Baseline
Accumulation
Accumulation
0.
0.
10.
60
31
6
21.
5.
48.
01
91
9
4.
6.
12.
69
81
1
5.
7.
22.
29
12
7
0.
0.
0.
388
393
429
74
-------
There was also some increase in the post-service accumulation
proposed emissions procedure test results (Test 23) relative to the pre-
service accumulation results (Tests 263 + 265). That increase, however,
was considerably less than the increase experienced in the 23-mode tests.
It is interesting to note that the ratios of post-service accumulation CO
emissions to baseline CO emissions, for the proposed nine-mode emis-
sions procedure and the 23-mode procedure, were essentially the same
with ratios of 0.43.
It should also be noted that there was a significant increase in the
CO emissions during WOT operation at an engine speed of 2000 revolutions
per minute (rpm). The post-service accumulation CO emission rate at
WOT was approximately three times greater than the rate in pre-service
accumulation determinations (1.47 percent CO in the post-service
accumulation WOT as compared with an average of 0.40 percent CO
for the pre-service accumulation WOT evaluations in Tests 26l, 262,
and 263).
H. Discussion of the Procedure Relative to This Project
The intent of this project was to utilize the Recommended Proce-
without this project becoming a test case for the new procedure.
Therefore, the requirements in the recommended procedure were com-
plied with in this project to the extent deemed practical. The major
deviation from the recommended procedure was that intake air flow
rate was not determined in this project. Therefore, the current method
for determining the wet to dry correction factor for HC concentration
was used and comparison of the measured and calculated fuel to air
ratio could not be made. It should be noted that when air injection into
the exhaust is used, the measured air flow required for fuel/air ratio
comparison purposes in tjie recommended procedure is the summation
of the intake air and the air injected into the exhaust.
Difficulties encountered in utilizing the recommended procedure
in this project were examined to a reasonable extent and reported in the
progress reports and in this final report. Such difficulties were resolved
when their resolution was within the scope of this project.
One area in which difficulties were encountered was remaining
within the modal torque limits. The limits for each power mode are ± 2
percent of maximum determined torque during the last 50 seconds of each
1 minute mode. The primary problem mode is the 25 percent of maximum
power mode that immediately follows the idle mode. It has been very
difficult to obtain stabilization within the first 10 seconds and to maintain
75
-------
stabilization throughout the remainder of this mode. In the other power
modes, the torque generally remained within the specified limits, with
only a few minor exceptions. A reasonably typical torque trace illustrating
the few modes in which the torque exceeded the limits, other than the 25
percent power mode following idle, is illustrated as follows:
End of 10 End of 60
Seconds Exceeds Upper Limit —^ Seconds
-Upper Limit (+2%)
Lower Limit (-2%)
There are several potentially applicable methods that could be applied to
the dynamometer, control and operating systems being utilized in this
project. These include: additional inertia, suppression of the torque
output oscillations, and closer control by the operator. The method applied
in this project was attempting closer control by the operator. Significant
improvement was achieved and strict compliance with these torque limits,
although relatively difficult, appears to be potentially achievable. In keeping
with the objectives of this project, minor excursions of the torque trace
outside the limits was not by itself cause for rejecting a test.
Another area in which full compliance with the procedure was not
attained is the sample system HC hang-up limit. The requirement is that
within 50 seconds of introducing HC zero-grade gas into the sample probe,
following an emissions test, the hang-up must not be greater than 5 percent
of full scale on the lowest range used during the test. With the engine
configuration being evaluated, this results in a required HC hang-up limit
of 5 ppm or less. (In some tests, a range below 100 ppm full scale would
have been required to maintain recorded values above the specified 20 per-
cent of full scale during the test. A range of 100 ppm full scale was the
lowest practical useable range on the hydrocarbon instrument used in this
project.) The HC hang-up significantly exceeded this requirement;
except for those tests with the oxidation catalyst installed.
As a system check, the entire sampling system was cleaned with a
solvent. Following this cleaning, there was no residual hang-up in the
sampling system. After sampling emissions during a low HC producing
power mode, the HC hang-up at 50 seconds was 3 ppm. After sampling
emissions during idle, the HC hang -up was 11 ppm. After sampling emis-
sions during CT, the HC hang-up was as high as 50 ppm. It appears that a
HC hang -up limit of 5 percent of full scale on the lowest range used may be a
very stringent requirement for engines having very low HC emissions during
some or many but not all of the modes.
76
-------
In the proposed rules, the percentage of total cycle time specified
for cut-throttle operation in the service accumulation schedule was more
than double the weighting factor (in percent) for CT in the emissions cycle.
It should be noted that should the weighting factors in the emission cycle be
subsequently changed to agree with the equivalent factors in the proposed
service accumulation schedule, some changes in engine optimization may
become applicable. However, since the optimized system utilized in this
project utilized fuel shutoff at CT, any such increase in the CT weighting
factor should result in improved composite specific fuel consumption with
this optimized engine system.
77
-------
V. DRIVE ABILITY DEMONSTRATION
Following completion of the service accumulation demonstration, a
decision was reached to conduct a demonstration of vehicle driveability with
the 1500 hour durability engine. Due to the limited remaining contract
funds, no overhaul of the engine or additional optimization, directed toward
driveability, could be performed.
At the conclusion of 1500 hours of service accumulation, the engine was
using a substantial amount of oil and the maximum power was lower than at
the start of service accumulation. Deterioration of some control systems
was becoming apparent, based on the post service accumulation emission
test results. It should also be recalled that all engine optimization had
been conducted under steady state operation on a stationary dynamometer.
Primary optimization emphasis was given to those modes of the proposed
nine-mode emissions test procedure*15). Accordingly, the primary purpose
of this on-the-road evaluation was to determine whether the durability
engine was driveable in a truck.
A. Driveability and Performance Test Procedures
The test procedures selected for use in this evaluation had been
initially developed and used in previous EPA contracts. (4> 10) The on-the-
road evaluations consisted of four major procedures.
The first was a cold start driveaway around a stop-and-go type
moderate speed closed course. The second was a warm driveability
rating of the vehicle's quality of operation after being fully warmed up.
The third procedure involved acceleration and grade performance to
assess the vehicle's performance under loaded, real driving type situations.
These three procedures are described in Appendix H-l. They were devel-
oped and revised with the advice and consent of the EPA Project Officer
and were initially approved for use in May of 1973. In general, they
utilize the then available methods in use by the leading truck manufac-
turers for this purpose and utilize rating definitions that are appropriate
to all motor vehicles; though most widely utilized with passenger cars.
The fourth procedure involved measuring fuel consumption over
the San Antonio Road Route (SARR). The SARR is a test course laid-out
within the city limits of San Antonio which contains traffic conditions
ranging from downtown stop-and-go to semi-congested freeway operation.
The SARR is illustrated in Appendix H-2.
78
-------
B. Vehicle Acquisition and Instrumentation
After considerable searching, an appropriate truck was located
which was powered by a 350 Chevrolet engine and met the GVW require-
ments of this evaluation. The truck was a 1976 Chevrolet Model C-60
Van with a Model 113-350 engine which had been certified for 1975 federal
emission standards. The Chevrolet truck, engine, and transmission are
described as follows:
Truck Engine Transmission
Make Chevrolet Chevrolet New Process Gear
Model C-60 113-350 542
Iden. or Ser. No. CCE626V107990 V0930TMX
Model Year 1976 1975
Style or Type Van (4.9 metre) V-8 5 Speed
Source Budget 16001
Usage Rental
Odometer, km 34 044
GVW, kg 9072
Empty Wt., kg 4468
Axle Ratio Single Speed
Tire Size 9.00-20
The condition of the engine and exhaust system and the operation of
the truck as received were exceptionally good. Although the ignition timing
and idle speed were within normally acceptable limits (3° BTDC and 550
RPM as received), they were adjusted to be as near the specified values
of 4° BTDC and 600 rpm as possible. No maintenance or new parts were
required.
In order to obtain a condition more conducive to demonstrate drive-
ability problems, the truck was loaded to one-half payload based on the
maximum GVW allowed in a C-60 truck van. Therefore, for these evalu-
ations the truck was loaded to a test weight of 7800 kg (17, 200 Ibs).
Several views of the truck and the installation of the durability
engine in the truck are shown in Figure i3. Since a suitable access hole
was not available into the cab from the engine compartment, the electronic
fuel control for the fuel injection system was mounted in the engine com-
partment behind the battery. Insulation was mounted in the engine com-
partment and the hood was propped open a couple of inches to deflect
79
-------
Truck Prepared for Road Evaluations
Hood Propped Open with Durability
Engine for Temperature Control of
Electronic Control Unit
.- i
Underhood Mounting of
Electronic Fuel Control
Durability Engine Installed in the
Truck
Figure 13. Views of the truck and the durability engine
installed in the truck.
80
-------
engine heat and direct outside air to the electronic fuel control and the
engine intake air inlet. This served to maintain the temperature of the
electronic fuel control within acceptable limits. Engine intake air temper-
ature, although reasonably stabilized in this manner, remained significantly
above ambient; primarily in city stop-and-go operation such as in the SARR.
The operations to determine cold start driveaway, warm drive-
ability and performance required instruments and equipment to measure
road speed, distance, engine speed, intake manifold vacuum, intake air
temperature and elapsed time. A Labeco 5th wheel provided the speed
and distance signals for read-out in the cab of the truck.
In addition to evaluating driveability, a determination was made of
the fuel consumed during operation over the driveability course and the
SARR. The fuel consumed was determined by the weight loss, from a
five-gallon fuel supply can, after operation over the road course. The
weigh scale used was graduated in intervals of 5 grams and was capable
of measuring to an accuracy of 5 grams (O.Oi Ibs).
C. Test Results
The initial on-the-road evaluations were conducted with the truck
as received, except for the minor tune-up performed on the engine.
Following the completion of these evaluations, the original engine was
removed, the 1500 hour durability engine was installed and the on-the-
road evaluations were repeated.
All accelerations from rest were with the transmission in 2nd gear.
First gear is designed for full load steep grade situations and is rarely
used in level road operation. Weather conditions were somewhat unstable
throughout the test period. With effort, however, it was generally possible
to schedule the tests around the periods of major atmospheric variation.
There was no known way, within the scope of this driveability evalu-
ation, to assure that the truck with the engine as-received was typical of
all trucks of that same configuration. Data generated in this evaluation
appeared to indicate that the as-received truck-engine combination was
better than average. The exceptionally good driveability and performance
of the truck as-received and the known deteriorated condition of the 1500
hour durability engine preclude direct comparisons of the test results.
Therefore, the results with the truck as-received and the results with the
durability engine installed in the truck will be discussed separately.
1. Truck As-Received
The truck had 34, 044 km (21, 154 miles) on the odometer as-
received. Its overall condition was judged to be very good. Operation
81
-------
and performance of this truck was found to be outstanding, based on experience
with other trucks in several previous projects. Results of the evaluations
conducted are discussed separately as follows.
a. Cold Start Driveaway
Three tests were conducted; each with a minimum overnight soak
of 16 hours at a soak temperature between 70-78°F. The manual choke was
used in accordance with manufacturer's recommendations. Cranking times
to initial start ranged from 1. 0 to 1. 5 seconds. In one of the three tests
the engine died immediately following initial start but readily restarted on
the second attempt. During all three tests, idle was somewhat rough for
several seconds following initial start. In all cases, idle was smooth and
was judged satisfactory following clearing of the engine (by depressing and
immediately releasing the throttle) 20 seconds after initial start.
The road operation, procedure is described on pages H-2 through
H-6 in Appendix H-l, consisted of part-throttle (PT) accelerations and de-
celerations, wide-open throttle (WOT) acceleration, steady speed operation,
full cut-throttle (CT) and idle. Maximum speeds were raised to 64 km/hr
(40 mph). During accelerations, rated maximum speed of the engine was
generally approached before upshifting to the next gear.
The entire operation on the road was uneventful in that there
were no stalls or discernable hesitation, stumble, stretchiness, surging,
detonation or backfires at any time. Satisfactory marks were given through-
out the cold start and driveaway evaluation; except for the previously
discussed initial start.
b. Warm Driveability
With the vehicle thoroughly warmed up, a series of manifold
vacuum readings were taken both ways over a level road course. The results
were as follows:
Speed Engine Trans. Manifold Vacuum
km/hr mph RPM Gear mm Hg inches Hg
32 20 2800 3 460 18.1
48 30 2650 4 452 17.8
64 40 2500 5 343 13.5
80 50 3100 5 300 11.8
These manifold vacuums are among the highest experienced at equivalent
vehicle speeds in previous projects.
82
-------
The warm driveability procedure, described on pages H-7
through H-9 in Appendix H-l, included a number of PT and WOT accelera-
tions and PT and CT decelerations. At no time did the engine stall, surge
or otherwise operate unsatisfactorily during any of these accelerations or
decelerations. Tip-in response was essentially instantaneous; being con-
siderably less than one-half second.
After several WOT accelerations, the engine was allowed to
idle 30 seconds and then was shut-off. The engine idled smoothly near 600
rpm and no after-run was noted following engine ignition shut-off. After
the 15 minute soak period, the engine restarted easily and idled satisfactorily
near 550 rpm. The engine was then shut-off again and no after-run was noted.
In summary of the warm driveability phase of the testing, the
engine operated satisfactorily in all respects. The engine manifold vacuums
during steady state operation appeared to be on the high side relative to the
range of vacuums experienced previously.
c. Vehicle Performance and Highway Operation
The third portion of the driveability series involved acceleration
performance and highway operation. Average times and distances required
to perform the designated accelerations and decelerations were as follows:
Acceleration or Deceleration, km
Time, seconds
Distance, km
Distance, miles
Gear
Based on previous experience, these accelerations could be considered as
being exceptionally good. Acceptable driving quality was noted for all these
acceleration and deceleration operations. There was never any discernible
surge, stretchiness, ping or other combustion noise, backfires (deceleration),
or any other undesirable characteristics.
The gradeability test was conducted on a portion of expressway
which is essentially level for about 1. 2 km followed by a relatively steep
grade for about 0.4 km. The average results of this test were as follows:
Time
Speed, km/hr Required,
Distance, km Start Maximum Ending Seconds,
1.627 0 91.5 75.5 82.7
0-32
8.8
0.047
0.029
2-3
0-64
22.7
0.249
0.155
2-4
0-88
49.2
0.816
0.507
2-5
32-80
30.7
0.523
0.325
4-6
80-32
42.7
0.639
0.397
5
Start
0
Maximum
91.5
83
Ending
75.5
-------
The replicate determinations repeated nicely with satisfactory driving
qualities.
The truck was then operated at relatively constant speed
operation of 72.5 and 88.5 km/hr (45 and 55 mph) and general driveability
characteristics were observed. The section of interstate highway, used
for the highway speed evaluations, contained various grades as the high-
way crossed over and under other roads and highways. The manifold
vacuum required to maintain a relatively steady road speed ranged from
150 to 400 mm of mercury at 72.5 km/hr and 100 to 375 mm at 88.5
km/hr. The only potentially undesirable characteristic noted during
highway operation was a noise condition which occurred occasionally
at a speed between 80 and 88 km/hr. The source of the noise was not
definitely located. This observed momentary noise, however, was
probably no more severe than has been the highway speed continuous
noise observed in some of the trucks evaluated in past projects.
The major conclusion from these tests was that the vehicle -
engine combination performed satisfactorily in all respects. Compared
to trucks tested in other projects, the performance during acceleration
and grade type tests appeared to be exceptionally good.
d. San Antonio Road Route (SARR)
The truck was then operated over the SARR (route is illustrated
in Appendix H-2). The SARR involves traffic conditions ranging from down-
town stop-and-go to semi-congested freeway operation. As in the other
evaluations conducted, no driveability or performance problems were
noted.
e. Fuel Consumption
The fuel consumed was measured for the cold start and drive-
away evaluation (CS&D) and the San Antonio Road Route (SARR). Results
of these fuel consumption evaluations were as follows:
Fuel Cons., Average
No. of Distance, Avg. Speed, 1/100 km Miles per
Evaluation Runs km km/hr Avg. S. D. Gallon
CS&D
SARR
SARR a
3
9
11.00
11.62
11.62
34.5
33.3
36.0
51.9 1.3 4.53
36.9 0.9 6.38
37.9 0.9 6.22
aThree run repeat after the as-received engine was reinstalled into the
truck.
84
-------
A fairly significant amount of data from previous projects
are available for comparison with the results for the SARR evaluations.
Based on data presented in the final report for EPA contract 68-03-044l(i 2\
the fuel consumption for this truck appeared to be low compared with
equivalent trucks evaluated in the past projects. The mean value re-
ported for trucks at 7800 kg test weight in past projects was approximately
42. 7 1/100 km, as compared with 36.9 for this truck. In the three-run
repeat of the SARR, after the as-received engine was reinstalled, the
average speed increased over two km/hr due to improved traffic condi-
tions. The fuel consumption repeated reasonably well; with an increase
of less than three percent, 37.9 versus 36.9 litres/100 km. This
repeat was conducted to assure the validity of the initial values.
2. Truck with Durability Engine Installed
The original engine was then removed from the truck and the 1500
hour durability engine was installed. After installation and minor tune-
up, the entire series of driveability and performance evaluations were
conducted. The operation and performance of the truck-engine combina-
tion was generally judged to be satisfactory, except in a few areas of
operation. A number of engine systems maintenance problems were
experienced during these evaluations. The results of these evaluations
are discussed separately as follows:
a. Cold Start Driveaway
Three tests were conducted; each with a minimum overnight
soak of 16 hours at a soak temperature between 70-78°F. Cranking
times to initial start in the three evaluations were 2, 3 and 7 seconds.
In the evaluation with the 2 second initial start, the engine died but
readily restarted within 1 second on the second attempt.
High speed idle was generally satisfactory immediately
following the initial start and throughout the idle operation. In one of
the three evaluations, a near stall occurred immediately following
the engine clear operation. The engine clear consisted of a depression
and immediate release of the throttle.
During the road operation (procedure is described on pages
H-2 through H-6 in Appendix H-l), the driveability was generally
acceptable, with a couple of apparently related exceptions. As with the
as-received engine, the maximum speeds were raised to 64 km/hr (40
mph). During accelerations, rated maximum speed of the basic engine
was generally approached before upshifting to the next gear.
The undesirable operating characteristics occurred during
initial acceleration from engine idle speed and upon reapplication of the
85
-------
throttle following a gear shift during WOT-fast-shift operation. In the
initial acceleration from engine idle speed, a moderate to heavy hesita-
tion generally occurred. During WOT-fast-shift operation, a backfire
would often result.
No specific problems or undesirable characteristics were
noted during the part-throttle accelerations or the part-throttle and full
cut-throttle decelerations. The observed undesirable operating charac-
teristics should be resolvable in a system receiving sufficient optimiza-
tion toward driveability. Such specific driveability related development
was beyond the scope of this project.
b. Warm Driveability
With the vehicle thoroughly warmed up, a series of manifold
vacuum readings were taken over a level road course. The results were
as follows:
Speed Engine Trans. Manifold Vacuum
km/hr mph RPM Gear mm Hg inches Hg
32 20 2800 3 376 14.8
48 30 2650 4 353 13.9
64 40 2500 5 224 8.8
80 50 3100 5 157 6.2
These manifold vacuums reflect the relatively high EGR rates and are
generally within the range of manifold vacuums obtained in a previous
emissions control technology project with EGR equipped engines. (1°)
The warm driveability procedure, described on pages H-7
through H-9 in Appendix H-l, includes a number of PT and WOT
accelerations and PT and CT decelerations of the vehicle in motion.
At no time did the engine stall, surge or otherwise operate unsatisfac-
torily during any of these accelerations or decelerations. Tip-in
response was essentially instantaneous, being less than one-half second.
Following several WOT accelerations, the engine was allowed
to idle 30 seconds and then was shut off. The engine idled smoothly near
600 rpm and there was no after-run following shut-off of the engine
ignition. After the 15 minute soak period, the engine readily restarted
and idled satisfactorily between 550 and 600 rpm. No after-run was
noted upon shut-off of the engine following a 30 second idle.
In summary of the warm driveability phase of the testing,
the engine operated satisfactorily throughout all operating conditions
specified.
86
-------
0-32
9.1
0.051
0.032
2-3
0-64
24.7
0.280
0.174
2-4
0-88
57.7
0.981
0.610
2-5
.32-30
36.3
0.631
0.392
4-5
80-32
34.2
0.508
0.316
5
c. Vehicle Performance and Highway Operation
The third portion of the driveability series involved accelera-
tion performance and highway operation. Average times and distances
required to perform the designated accelerations and decelerations were
as follows:
Acceleration or Deceleration, km
Time, seconds
Distance, km
Distance, miles
Gear
Acceleration times were somewhat longer than those obtained with the
truck as-received. These times, however, were within the range of
acceleration times obtained on trucks evaluated in the emissions control
technology project. UO) With the exception of the previously discussed
hesitation during initial acceleration and the occasional backfire following
a WOT-rapid-shift acceleration, acceptable quality was noted for these
acceleration and deceleration operations. There was no discernible
surge, stretchiness, ping or related combustion noise, or other un-
desirable characteristics.
The gradeability test was conducted on the portion of express-
way which is essentially level for about 1. 2 km followed by a relatively
steep grade for about 0.4 km. This was the same stretch of highway
used with the as-received truck. The average results for this test were
as follows:
Time
Total Speed, km/hr Required,
Distance, km Start Maximum Ending Seconds
1.628 0 90.0 72.5 85.7
The replicate determinations repeated within one second and driving
qualities were satisfactory.
The truck was then operated at relatively constant speed
operation of 7.2.5 and 88.5 km/hr (45 and 55 mph) and general driveability
characteristics were observed. The section of interstate highway utilized
was identical to that used in similar evaluations with the as-received
truck.
87
-------
The manifold vacuum, required to maintain a relatively steady
road speed, ranged from 100 to 375 mm of mercury at 72.5 km/hr and
75 to 300 mm at 88.5 km/hr. There were no undesirable characteristics
noted in this highway operation, except for the noise which occurred
momentarily at a speed between 80 and 88 km/hr. This noise was the
same type observed from the as-received engine.
In these tests the durability engine generally performed
satisfactorily. The performance during acceleration and grade type tests
was not quite as good as was obtained with the as-received truck-engine
combination but appeared to be within the range of values obtained on
trucks in previous projects.
d. San Antonio Road Route (SARR)
The truck with the durability engine installed was then operated
over the SARR route illustrated in Appendix H-2. Except for the two un-
desirable driving characteristics noted and discussed in the previous section
on cold start driveaway, no other driveability or performance problems
were noted. During the three runs over the SARR, when driveability was
specifically evaluated, there were a total of 10 backfires (two in one run
and four each in the other two runs). Nine of these ten backfires were
barely discernible and would have generally only been noticeable to
someone specifically listening for backfires. One of the ten backfires was
more severe and judged to have been obvious to any observer.
e. Fuel Consumption
The fuel consumed was measured for the cold start and drive-
away evaluation (CS&D) and the San Antonio road route (SARR). Results
of these fuel consumption evaluations were as follows:
Fuel Cons., Average
No. of Distance, Avg. Speed, I/100 km Miles per
Evaluation Runs km km/hr Avg. S. D. Gallon
CS&D 3 11.00 34.6 53.7 1.2 4.38
SARR 8 11.63 36.0 41.6 0.9 5.65
Fuel consumptions for the CS&D and the SARR with the durability engine
were higher than with the as-received engine. For the CS&D the increase
was between three and four percent, whereas for the SARR, the increase
was 10 to 13 percent. The fuel consumption results for the durability
engine on the SARR, however, were two to three percent lower than the
mean value reported for trucks at 7800 kg test weight in past projects
(41.6 1/100 km compared with 42.7 1/100 km). (I2)
88
-------
3. Discussion of the Driveability and Performance Results
As previously discussed, the durability engine was optimized over
stationary dynamometer steady-state procedures with primary emphasis
on the proposed nine-mode emissions procedure. Primary attention was
given to meeting the target reductions in exhaust emissions and fuel con-
sumption relative to the standard unmodified engine and to the assembly
of a system that would withstand the 1500 hour durability test. Although
driveability characteristics with the modified engine were considered and
evaluated to the extent practical on the stationary engine dynamometer,
specific optimization for driveability was not included as a part of this
project. Total stationary dynamometer operating hours on the durability
engine approached 2000 at the time of the vehicle driveability evaluation
and the engine was judged as being in need of an overhaul.
This driveability evaluation was conducted to determine whether
the durability engine, if installed in an appropriate truck application,
would result in a vehicle with acceptable driveability. This rather
cursory evaluation determined that driveability and performance with
the durability engine were generally satisfactory. With the two excep-
tions discussed in the results section, the driveability would be con-
sidered acceptable to most drivers. The vehicle evaluation, particularly
fuel consumption results, require further discussion.
The original intent of the road evaluation was to determine vehicle
driveability and the experimental design was sufficient to this end and
was cost effective. With the subsequent addition of fuel economy
measurements, however, back-to-back tests should have been conducted
with the engine in the emissions modified configuration, as it completed
the 1500 durability test, and then in its original configuration. Using
the same basic engine for these evaluations would have shown whether
road fuel economy was improved by the modified engine, as was
achieved in the laboratory following the prescribed nine-mode steady
state procedure. Thus, it is not possible to draw direct conclusions
from the fuel economy testing.
The as-received truck fuel economy values were better than in
previous experience with earlier model year vehicles as mentioned
previously. Figure 14, which is reproduced from a previous final re-
port, (12) illustrates the relationship between vehicle test weight and
fuel economy over the SARR. The as-received truck fuel economy is
shown on this graph for comparison. There is no simple or obvious
explanation for this apparent anomaly. On the other hand, the modified
durability engine powered truck gave results on the order of three percent
better than the mean for all trucks, as shown by the data point indicated
"durability engine" on Figure 14. This comparison may be more appro-
priate than durability engine to as-received engine, though neither
comparison is technically satisfactory.
89
-------
10
c
o
o
a;
a
S4
Q Gasoline (Contract EHS 70-113)(7)
A Gasoline (Contract 68-03-0441 )U 2)
Y Gasoline (This Contract)
As-received Engine
Durability Engine
25
30
cu
M
"S
g
o
40 3
o
o
50
60
1
1
i
1
1
100
22 045 44 090 66 140 88 180
Vehicle Test Weight, kg
Figure 14. Fuel economy as a function of vehicle
test weight on the San Antonio Road Route.
90
-------
It is not surprising that the fuel economy during transient operation
was no better, relative to the mean of the trucks on Figure 14, in light of
the known inability of the modal steady state test to predict vehicle fuel
economy. In the summary on page vii of the final report from Phase I of
this project, U°) it was concluded that:
"Changes in 9-mode FTP fuel rate and emissions from pre-
controlled to 1970 and 1974 levels of control were found not
to correlate with changes in dynamometer driving cycle
fuel rate and emissions from precontrolled to 1970 and 1974
levels of control. "
It is not known, but is likely, that this same lack of correlation can be
applied to the fuel consumption relationships associated with the proposed
nine-mode procedure and the SARR. The range of engine speeds encoun-
tered in road evaluations and the transient behavior of the engine are not
represented during these engine dynamometer tests.
In summary, the road evaluation demonstrated generally satisfactory
driveability and performance of the vehicle powered by the modified dur-
ability engine. The driveability, performance and fuel consumption of
this engine were not as good as were determined for the engine that was
in the truck as received. The truck as received, however, exhibited
superior driveability, performance and fuel consumption to similar
earlier model year trucks evaluated in previous projects. Lack of
direct, "back-to-back11 fuel economy measurements with the specific
test engine in modified and unmodified configurations has precluded
technically sound comparisons. The modified durability engine did
exhibit on the order of three percent improvement in fuel economy relative
to a group of similarly tested trucks. In conclusion, the driveability and
general performance of the truck powered by the modified engine were
quite encouraging.
91
-------
LIST OF REFERENCES
1. Springer, Karl J., "An Investigation of Emissions from Trucks
Above 6000-lb GVW Powered by Spark-Ignited Engines, " Final
Report to the U. S. Public Health Service, under Contract PH 86-67-
72, March 1969.
2. Springer, K. J., et al., "Emissions from Gasoline Powered Trucks
Above 10, 000-lb GVW Using PHS Proportional Sampling Techniques, "
AIChE Paper No. 53C, presented at the Sixty-First Annual Meeting,
Los Angeles, California, December 1968.
3. Olsen, R. W. and K. J. Springer, "Exhaust Emissions from Heavy -
Duty Vehicles, " SAE Paper No. 690764, presented at the National
Combined Fuels and Lubricants and Transportation Meetings,
Houston, Texas, November 4-7, 1969.
4. Tyree, C. D. and K. J. Springer, "Studies of Emissions from
Gasoline Powered Vehicles Above 6000-lb Gross Vehicle Weight, "
Final Report to the National Air Pollution Control Administration
under Contract PH 86-67-72, July 1970.
5. Springer, K. J. and C. D. Tyree, "Exhaust Emissions from Gaso-
line Powered Vehicles Above 6000-lb Gross Vehicle Weight, " Final
Report to the Environmental Protection Agency under Contract EHS
70-110, April 1972.
6. Springer, Karl J., "Baseline Characterization and Emissions Control
Technology Assessment of HD Gasoline Engines, " Final Report to the
Environmental Protection Agency under Contract EHS 70-110,
November 1972.
7. Ingalls, Melvin N., and Karl J. Springer, "In Use Heavy Duty Gaso-
line Truck Emissions, Part I - Mass Emissions from Trucks
Operated Over a Road Course, " Final Report No. AR-974 to the
Environmental Protection Agency, under Contract EHS 70-113,
February 1973.
92
-------
8. Storment, JohnO., and Karl J. Springer, "A Surveillance Study of
Smoke from Heavy Duty Diesel-Powered Vehicles --Southwestern
U.S.A.," Final Report AR-909 to the Environmental Protection
Agency under Contract EHS 70-109, June 1973.
9. Ingalls, Melvin N., "Baseline Emissions on 6,000 to 14,000 Pounds
Gross Vehicle Weight Trucks, " Final Report AR-896 to the
Environmental Protection Agency under Contract 68-01-0467, June
1973.
10. Urban, Charles M. and Karl J. Springer, "Emissions Control
Technology Assessment of Heavy Duty Vehicle Engines, " Final
Report No. EPA-460/3-74-007 to the Environmental Protection
Agency under Contract 68-03-0472, December 1973.
11. Ingalls, M. N. and K. J. Springer, "Mass Emissions from Diesel
Trucks Operated Over a Road Course, " Final Report No. EPA-460/
3-74-017 to the Environmental Protection Agency under Contract
68-01-2113, August 1974.
12. Ingalls, M. N. and K. J. Springer, "Mass Emissions from Ten Pre-
Controlled Gasoline Trucks, and Comparisons Between Different
Trucks on a Road Course, " Final Report No. EPA-460/3-75-004 to
the Environmental Protection Agency under Contract 68-03-0441,
April 1975.
13. Urban, Charles M. and Karl J. Springer, "Study of Emissions from
Heavy Duty Vehicles, " Final Report No. EPA-460/3-76-012 to the
Environmental Protection Agency under Contract 68-03-2147,
May 1976.
14. Environmental Protection Agency, "Recommended Heavy Duty
Gasoline Instrumentation and Test Procedures, July 11, 1975. (This
procedure, with some modifications, was included in the proposed
rules in Reference 15).
15. Federal Register, Vol. 41, No. 101, Environmental Protection
Agency, "Proposed Rules for Heavy Duty Engines, " May 24, 1976.
16. Ingalls, Melvin N. and Robert L. Mason, "Heavy-Duty Fuel Economy
Program - Phase I, Specific Analysis of Certain Existing Data, "
Final Report No. EPA-460/3-77-001 to the Environmental Protection
Agency under Contract 68-03-2220, January 1977.
93
-------
17. Federal Register, Vol. 37, No. 221, Environmental Protection
Agency, "Rules and Regulations for New Motor Vehicles and New
Motor Vehicle Engines", November 1972, with subsequent amendments.
18. Letter John J. McFadden to Karl J. Springer dated February 17, 1972,
with attachment titled "Test Procedure for Heavy Duty Motor Vehicle
Engines" dated February 17, 1972. (This attachment was included as
Appendix Y in Reference 6).
94
-------
APPENDICES
A - General Information
B - Baseline Results
C - Standard Carburetor Results
D - Dresserator Inductor Results
E - Electronic Fuel Injection Results
F - System Assembly for Service
Accumulation Demonstration
G - Service Accumulation Demonstration Results
H - Driveability and Performance Procedures
-------
APPENDIX A
GENERAL INFORMATION
A-l Description of Engines and Components
A-2 Test Nomenclature
A-3 Explanation of Nine-Mode FTP Computer
Printout Sheets
A-4 Explanation of Nine-Mode EPA Computer
Printout Sheets
A-5 Explanation of Experimental 23-Mode
Computer Printout Sheets
A-6 Ignition Timing at 2000 rpm
-------
TABLE A-l. DESCRIPTION OF ENGINES AND COMPONENTS
Baseline Components
Engine
Carburetora
Distributor
Air Cleaner0
Alternator
Starter
Spark Plugs
Plug Wires
Optimization Components
Electronic Fuel Injection
Dresserator Inductor"
Thermal Reactors"
Int. Man. with EGR Porting
Back Pressure EGR Valves
Exhaust Manifold with Air Injection Porting
Exhaust Manifold with Air Injection Porting
Air Pumpd
Air Injection Tube Assembly
Air Injection Tube Assembly
Diverter Valve
HEI Distributor
Spark Plugs
HEI Plug Wires
Part Number
343678
7044134
1111364
698364
1100543
1108362
6470779
8912437
ECU-1607250
Make or
Model No.
C-60
Rochester
Delco Remy
Description or
Serial No.
Cell 1
Cell 2
VI 21 OTMX
N6607
4L5
V0827TMX
N6606
4H12
R-44T
Bendix
Dresser
GM
Similar to 1975 Cadillac Sys.
345755
346222
346710
L-73641
355972
355973
7029295
1112880
MX-4809
1222 & 1223
Saginaw
254863V & 254293V
R44TX
8908551
a2-Barrel (The initial carburetors received were 7043424)
kflas centrifugal but does not have vacuum advance
c Substitute unit for unavailable model specified
Experimental Units
-------
TABLE A-2. TEST NOMENCLATURE
Initial Carburetors - Carburetors received with engines, which were
subsequently found to be 1974 rather than 1975 model carburetors.
Carburetors 6606 and 6607 - Carburetors received from General Motors
since 1975 model carburetors were not available through local dealers.
Test No. - 100 series are Engine number 1 and 200 series are Engine
Number 2.
Run - Sequential evaluations in a specific test. An X designates a
simulated test constructed out of modal data.
Type Test - 9-FTP -- Current Heavy Duty Gasoline Certification
Procedure (17) with instrumentation modification
9-EPA -- Recommended nine-mode procedure dated
/ 1 A \
July 11, 1975.1*'*' Modes are based on percent of maxi-
mum torque
23-Mode -- Modal experimental procedureU 8) which is
somewhat similar to the 13-mode diesel certification pro-
cedure
SS -- Individual Steady State Evaluations
WOT -- Wide Open Throttle Evaluation at 2000 rpm
Description: AI -Manifold Air Injection
BL - Baseline
BPEGR - Back Pressure EGR valve (i.e., EGR flow is
modulated by the exhaust back pressure).
Numbers are given to designate orifice and spring
used.
GARB - Carburetor
CT - Cut Throttle
DECEL - Throttle held to some equivalent no load rpm
above idle speed during the cut throttle mode
DI - Dresserator Inductor
BA - Bleed Air Valve Setting
ROD - Fuel Rod Setting
A-3
-------
TABLE A-2 (Cont'd.) TEST NOMENCLATURE
EFI - Bendix Electronic Fuel Injection System
ECU - Electronic Control Unit (number given designates
the setting on the potentiometer which controls fuel flow)
EGR - Exhaust Gas Recirculation
HEI - High Energy Ignition System
IA - With Manual Ignition Advance
MEGR - manually operated EGR
NOAI - no air injection
NOVA - no vacuum advance
NLRPM - number preceding is the equivalent no-load rpm
at which the throttle was held open during the CT mode
PL - Heads with stainless steel liners installed in the
exhaust ports
Standard Timing - 14° BTDC at 2000 rpm
TR - Thermal Reactors
WAI & W/AIR - with air injection
W/O Air - without air injection
WVA & W/VA - with distributor vacuum advance
XCT - except at cut throttle
XM1&9 - except modes 1 and 9
A-4
-------
TABLE A-3. EXPLANATION OF NINE-MODE FTp(17)
COMPUTER PRINTOUT SHEETS
COLUMN EXPLANATION
Column
1
2
3
7
8
10
11
12
13
14
Column Title
MODE
AS MEASURED HC-FID
AS MEASURED CO
AS MEASURED CO2
AS MEASURED NOX-CL
TOTAL CARBON
FUEL G/HR
CALCULATED G/HR HC
CALCULATEDG/HR CO
Explanation
Mode number and manifold vacuum
Measured hydrocarbon emissions, ppmC
Measured carbon monoxide emissions in
percent
Measured carbon dioxide emissions in
percent
Measured oxides of nitrogens emissions in
ppm NOX
The percentage of exhaust gas that is carbon
containing gas
Engine fuel consumption in Grams/Hr
Hydrocarbon emissions in Grams/Hr. calcu-
lated from measured HC (HC by FID corrected
to a dry gas basis)
Carbon monoxide emissions in Grams/Hr.
calculated from measured CO
CALCULATED G/HR NOX Oxides of nitrogen emissions in Grams/Hr.
calculated as NO2 from measured NOX
WT. FACT.
Weighting factor for each mode
WEIGHTED G/HR HC-FIC Hydrocarbon emissions in Grams/Hr. times
the weighting factor
Carbon monoxide emissions in Grams/Hr.
times the weighting factor
WEIGHTED G/HR CO
WEIGHTED G/HR NOX-CL Oxides of nitrogen emissions as
Grams/Hr. times the weighting factor
A-5
-------
TABLE A-3 (Cont'd). EXPLANATION OF NINE-MODE FTP
COMPUTER PRINTOUT SHEETS
(17)
COLUMN EXPLANATION
Column
15
16
Column Title
KW
H
Explanation
Engine dynamometer in kilowatts
Engine dynamometer horsepower
LINE EXPLANATION
1st Line
2nd Line
ENGINE - (X)
TEST - (X)
RUN - (X)
BETWEEN RUN & DATE
(XX) - (XX) - (XX)
K = (X.XXX)
HUM = (XX. X) G/KG
Line Starting
CYCLE COMPOSITE
Table number and Title
SwRI engine identification number
Test number. Tests numbered sequentially.
IXXfor Engine 1 and 2XX for Engine 2
Run number of a specific test
Brief description of engine configuration
Date in month, day and year
Humidity correction factor for cycle composite
NO2. K = .634 + .00654 H - .000022H2. Where
H = absolute humidity in grams/lb DA
Absolute humidity in grams/kilogram
Grams/kw-hr for cycle, summation of the
weighted emission for each mode divided by
the summation of the weighted power for each
mode, i. e.
^(Emission x W. F. )
£(kw x W. F.)
A-6
-------
TABLE A-3. (Cont'd) EXPLANATION OF NINE-MODE FTP(17>
COMPUTER PRINTOUT SHEETS
AVERAGE SUM - (COMPOSITE
VALUES FOR CYCLES 1 & 2)
AVERAGE SUM - (COMPOSITE
VALUES FOR CYCLES 3 & 4)
FOUR CYCLE COMPOSITE
CORRECTED NO2
SFC
SUM (Cycle 1) + SUM (Cycle 2)
2
SUM (Cycle 3) + SUM (Cycle 4)
2
Composite of all four cycles in Grams/kW-hr
and (grams/bhp-hr) using formula shown
Four cycle composites NOX as
humidity correction factor, K.
times the
Calculated in the same manner as the
emissions using the formulas given for
CYCLE COMPOSITE through FOUR CYCLE
COMPOSITE
A-7
-------
TABLE A-4. EXPLANATION OF NINE-MODE EPA(14) COMPUTER PRINTOUT SHEETS
COLUMN EXPLANATION (UPPER COLUMNS)
Column Column Title
Explanation
1
2
3
7
8
10
11
12
13
14
MODE
AS MEASURED HC-FID
AS MEASURED CO
AS MEASURED CO2
AS MEASURED NOX-
CL
TOTAL CARBON
FUEL G/HR
CALCULATED G/HR
HC
CALCULATED G/HR
CO
CALCULATED G/HR
WT. FACT.
WEIGHTED G/HR
HC-FID
WEIGHTED G/HR CO
WEIGHTED G/HR
NOX-CL
Mode number and % of max. torque
Measured hydrocarbon emissions, ppmC
Measured carbon monoxide emissions in
percent
Measured carbon dioxide emissions in
percent
Measured oxides of nitrogens emissions
in ppm NOX
The percentage of exhaust gas that is
carbon containing gases
Engine fuel consumption in Grams/Hr
Hydrocarbon emissions in Grams/Hr.
calculated from measured HC (HC by FID
corrected to dry gas basis)
Carbon monoxide emissions in Grams/Hr
calculated from measured CO
Oxides of nitrogen emissions in Grams/Hr
calculated as NO2 from measured NOX and
humidity corrected using factor K
Weighting factor for each mode
Hydrocarbon emissions in Grams/Hr.
times the weighting factor
Carbon monoxide emissions in Grams/Hr.
times the weighting factor
Oxides of nitrogen emissions as NO2
Grams/Hr. times the weighting factor
A-8
-------
TABLE A-4 (Cont'd). EXPLANATION OF NINE-MODE EPA
COMPUTER PRINTOUT SHEETS
(14)
COLUMN EXPLANATION (UPPER COLUMNS)
Column Column Title Explanation
CKW
15
16
VAC. MM
Corrected engine dynamometer power in
kilowatts
Measured manifold vacuum in millimeters
of mercury
COLUMN EXPLANATION (LOWER COLUMNS)
Column Column Title
MODE
ID
3
4
5
6
7
8
MV
CHP
CTQ
FC
BSFC
BSNOX
9 F/A
10 SFC KG/KW HR
11 RPM
12 CALC A/F
Explanation
Mode number and % of max. torque
Defined at bottom of the printout sheet
when column is used
Manifold vacuum in inches of mercury
Corrected brake horsepower
Corrected torque in ft-lbs
Fuel consumption in Ibs/hr
Brake specific fuel consumption in Ibs/bhp-hr
Brake specific NOX as NO2 emissions in
g/bhp-hr
Computer dry fuel to air ratio (computed
using HC and CO emission rates)
Specific fuel consumption in kg/kw-hr
Engine speed in revolution per minute
Inverse of the F/A in column 9
13-17 PERCENT OF TOTAL Percent contribution of that mode to the total
weighted composite value for that cycle.
A-9
-------
TABLE A-4 (Cont'd). EXPLANATION OF NINE-MODE
COMPUTER PRINTOUT SHEETS
LINE EXPLANATION
1st line
EXPLANATION
2nd line
ENGINE- (X)
TEST - (X)
RUN - (X)
(XX) - (XX) - (XX)
BETWEEN DATE & K
K = (X.XXX)
HUM = (XX.X) G/KG
Line Starting
CYCLE COMPOSITE
AVERAGE SUM - (COMPOSITE
VALUES FOR CYCLES 1 AND 2
AVERAGE SUM - (COMPOSITE
VALUES FOR CYCLES 3 AND 4)
FOUR CYCLE COMPOSITE
SFC
Table number and Title
SwRI engine identification number
Test number. Tests numbered sequentially.
1XX for Engine 1 and 2XX for Engine 2.
Run number of a specific test.
Date in month, day and year.
Brief description of engine configuration.
Humidity corrector factor for cycle
composite NO2. K = . 634 + . 00654 H
- . 0000222H2. Where H = absolute
humidity in grams/lb DA
Absolute humidity in grams/kilo gram
Grams/kW-hr for cycle, summation of
the weighted emission for each mode
divided by the summation of the weighted
power for each mode, i. e,
£ (Emission x W.F.)
£ (kWxW.F.)
SUM (cycle 1) + SUM (cycle 2)
2
SUM (cycle 3) + SUM (cycle 4)
2
Composite of all four cycles in Grams/kW-
hr and (grams/bhp-hr) using formula shown
Calculated in the same manner as the
emissions using the formulas given for
CYCLE COMPOSITE through FOUR
CYCLE COMPOSITE
A-10
-------
TABLE A-5. EXPLANATION OF EXPERIMENTAL 23-MODE<18)
COMPUTER PRINTOUT SHEETS
COLUMN EXPLANATION (UPPER COLUMNS)
Column Column Title
Explanation
1
2
3
4
6
7
8
9
10
11
12
MODE
SPEED
TQ N-M
KW
MV MM
FUEL KG/HR
A/F RATIO
DRY CONCENTRATION
HC
DRY CONCENTRATION
CO
DRY CONCENTRATION
CO 2
DRY CONCENTRATION
NOX
Mode number (1-23)
Engine speed in rpm
Measured dynamometer load in N. m.
Power calculated from dynamometer
load and speed using equation:
KW = (ft-lbs)x rpm * ?457
5252
Measured manifold vacuum in
millimeters of Mercury
Measured kg/hr of fuel used
Air-fuel ratio (calculated using the
equations in the Recommended Nine-
Mode Procedure(14)
Column not used
Measured hydrocarbon emission con-
centration (ppmC) corrected to a dry
basis
Measured carbon monoxide emission
concentration, % by volume. Measured
dry
Measured carbon dioxide emission con-
centration, % by volume. Measured dry.
Measured oxides of nitrogen emission
concentration as NO (ppm). Measured
dry.
A-ll
-------
TABLE A-5 (Cont'd). EXPLANATION OF EXPERIMENTAL
23-MODEU8) COMPUTER PRINTOUT SHEETS
COLUMN EXPLANATION (LOWER COLUMNS)
Column Column Title Explanation
2
3
6
7
8
9
10
11
MODE
CALCULATED GRAM/HR
HC
CALCULATED GRAM/HR
CO
CALCULATED GRAM/HR
NO.
x
WT. FAC.
E. UNITS TQ
E. UNITS FC
SPECIFIC GRAM/KW-HR
HC
SPECIFIC GRAM/KW-HR
CO
SPECIFIC GRAM/KW-HR
Mode number (1-23)
Column not used.
Calculated hydrocarbon emission
concentration in grams/hr
HC (g/hr) =
HC ... fuel flow (grams/hr)
10000
total carbon
Calculated carbon monoxide
emission concentration in grams/hr
CO =
2. 02 x CO x fuel flow (grams/hr
total carbon
Calculated oxides of nitrogen emis-
sion concentration as NO£ in
grams/hr
NO2 = 3.32 x NOX Yfuel flow (grarns/hr)
1000 total carbon
Weighting factor for each mode
Torque in ft-lbs
Fuel Consumption in Ibs/hr
HC, g/hr, (Column 3) divided by
kW (Column 4, upper table) for
the individual mode
CO, g/hr, (Column 4) divided by
kW (Column 4, upper table) for the
individual mode.
NO2, g/hr, (Column 5) divided by
kW (Column 4, upper table) for the
individual mode.
A-12
-------
TABLE A-5 (Cont'd). EXPLANATION OF EXPERIMENTAL
23-MODE(18) COMPUTER PRINTOUT SHEETS
CYCLE COMPOSITE
HC, CO, NOX
EXPLANATION
SFC
CORRECTED NOX
Summation of the weighted emission
(g/hr) for each mode divided by summation
of the weighted power (kW) for each mode.
Given in g/kW-hr and in (g/bhp-hr)
23
(Emission x W. F.)
i"^l (i) (i)
23
5""* (kW xW.F.)
i = 1 (i) (i)
Summation of fuel flow (kg/hr) times
weighting factor for each mode divided
by summation of weighted power (kW)
for each mode. Given in kg/kW-hr
and in (Ib/bhp-hr)
23
23
(Fuel flow (i) x W.F. (1)
(kWxW.F.)
(i) (1)
CYCLE COMPOSITE NOx times factor K.
Where K = .634 + .00654H - . 0000222H2
Given in g/kW-hr and in (Ib/bhp-hr)
A-13
-------
TABLE A-6. IGNITION TIMING AT 2000 RPM
Manifold
Vacuum, Hg
mm
0
50.8
101.6
152.4
203.2
254.0
304.8
355.6
406.4
457.2
508.0
Idle (60
inches
0
2
4
6
8
10
12
14
16
18
20
0 rpm)
350-HD*
Stock Dist.
14
14
14
14
14
14
14
14
14
14
14
4
350 -HEI**
Distributor
14
14
14
17
21
24
27
28
28
28
28
3
16
16
16
19
23
26
29
30
30
30
30
5
1975 Cadillac***
with EFI
16
16
16
18
21
24
26
28
30
30
30
12
Source of Data:
* - Measured on two engines in this project - Idle
set for Engine Label
** - Measured on one engine in this project
- 1975 Cadillac shop manual - EFI supplement
A-14
-------
Table A-7. Proposed Service Accumulation
The applicable sections of the Service Accumulation requirements
given in the Proposed Rules, U5) are reproduced in this appendix.
86.079-26 Mileage and service accumulation; emissions measurements
(a) NOT APPLICABLE
(b) (1) Paragraph (b) of this section applies to heavy duty engines.
(2) (i) For gasoline-fueled engines, the dynamometer service accum-
ulation schedule will consist of several operating conditions which give the
percent loads and the modes as specified in the following chart. The per-
centage of times in each mode must be held within the limits specified.
The maximum observed torque for each mode in the service accumulation
cycle, must be determined at the rpm at which the mode is being conducted.
The percent load for that mode will be determined from the maximum
torque at the rpm the mode is being conducted.
Observed torque
(percent of max- Percentage
Mode imum observed) of time
Idle Idle 23 (22-24)
Closed throttle (CT) CT 31 (30-32)
Part throttle deceleration (PTD) 10 15 (14-16)
Cruise 25 6(5- 7)
Part throttle escalation 55 11 (10-12)
Full load (FL) 90 14(13-15)
(ii) The equivalent control parameter for engine loading will be mani-
fold vacuum, manifold pressure, or torque. Usage of one of the three param-
eters will require approval in advance by the Administrator. The control
parameter values that correspond to the appropriate percent loads as specified
in the emission test cycle will be initially determined at the zero-hour point or
after an appropriate break-in procedure. The control parameter values
.determined initially will be used for the entire service accumulation schedule.
If at any time during the service accumulation, the 90% torque value cannot
be attained, the engine shall be operated at wide open throttle.
(iii) The average speed shall be between 1650 and 1700 rpm. Subject
to the requirements as to average speed, there must be operation at speeds in
excess of 3200 rpm (but not in excess of governed speed for governed engines
or rated speed for non-governed engines) for a cumulative maximum of 0.5
percent of the actual cycle time, excluding time in transient conditions. Maxi-
mum cycle time shall be 15 minutes. A cycle approved in advance by the
Administrator shall be used.
(3) - (5) NOT APPLICABLE
(6) Durability data engines: Each gasoline-fuel durability data engine
shall be operated, with all emission control systems installed and operating,
A-15
-------
for 1500 hours. Emission measurement, as prescribed, shall be made at 125
hours of operation. No zero hour emission test will be required ©* aUowed-.
(7) All tests required by this subpart to be conducted after 125 hours
of operation or at any multiple of 125 hours may be conducted at any accum-
ulated number of hours within 8 hours of 125 hours or the appropriate
multiple of 125 hours, respectively.
(8) - (12) NOT APPLICABLE
86.079-27 NOT APPLICABLE
86.079-28 Compliance with emission standards
(a) NOT APPLICABLE
(b) (1) Paragraph (b) of this section applies to heavy duty engines.
(2) - (3) NOT APPLICABLE
(4) The procedure for determining compliance of a new engine
with exhaust emission standards is as follows:
(i) Separate emission deterioration factors shall be determined
from the emission results of the durability data engines for each engine-
system combination.
(A) The applicable results to be used in determining the deterioration
factors for each combination shall be:
(1) All emission data from the tests required under 86. 079-26(b)(6).
(2) & (3) All emission data from the test conducted before and after
maintenance
(B) All applicable emission results shall be plotted as a function of
durability hours which shall be consistently rounded to the nearest hour.
Emission data shall have two figures to the right of the decimal. The best
fit straight lines, fitted by the method of least squares shall be drawn
through these data points. The interpolated 125-hour and 1500-hour points
for gasoline-fueled engines or the 1000-hour points for Diesel engines on
each line, rounded to whole numbers in accordance with ASTM E 29-67, must
be within the standards specified in 86.077-10 for gasoline-fueled engines
or the data shall not be used in the calculation of the deterioration.
(C) The interpolated values shall be used to calculate a deterioration
factor as follows:
Factor = Exhaust emissions interpolated to 1500 hours for
gasoline-fueled engines or to 1000 hours for Diesel engines
minus the exhaust emissions interpolated to 125 hours.
(Negative deterioration factors shall be considered zero).
(ii) The appropriate deterioration factor, carried out to two places
to the right of the decimal point, shall be added to the exhaust emission test
results, carried out to two places to the right of the decimal point, for
each emission data engine.
(iii) The emission values to compare with the standards shall be the
adjusted emission values of paragraph (b)(4)(ii) of this section rounded to whole
numbers in accordance with ASTM E 29-67 for each emission data engine.
A-16
-------
APPENDIX B
BASELINE RESULTS
B-l Summary of the Results - Engine 1
B-2 Summary of the Results - Engine 2
B-3 through B-24 Computer Printouts - Engine 1
B-25 through B-46 Computer Printouts - Engine 2
-------
TABLE B-l.BASELINE EVALUATIONS - ENGINE 1
Test Run
No. No.
101
105
103
a
106
107
109
108
Type
Test
9-FTP
9-EPA
23-Mode
104 2&3 WOT
104 2&3 S.S.
9-FTP
9-EPA
9-EPA
9-EPA
23-Mode
107 1.2& 3 WOT
109 1.2&3 WOT
WOT
Baseline
Baseline
Baseline
Baseline
Description
with Initial Carburetor
Average
Standard Deviation
with Initial Carburetor
Average
Standard Deviation
with Initial Carburetor
Average
Standard Deviation
with Initial Carburetor
GRAM/kW Hr
HC
5.721
5.474
5.123
5.439
0.30
4.773
4.976
5.039
4.929
0.14
10.183
9.756
9.996
9.978
0.21
4.36
CO
56.073
59.629
58.351
58.018
1.04
61.686
67.909
71.899
67.165
5.15
71.769
114.005
105.217
96.997
22.29
291.90
NO,
11.301
11.624
12.157
11.694
0.43
9.437
10.088
9.899
9.808
0.34
11.758
8.962
9.701
10.140
1.45
6.12
HC+NOX
17.022
17.098
17.280
17.133
0.13
14.210
15.064
14.939
14.738
0.46
21.941
18.718
19.697
20.119
1.65
10.48
KG/
kW HR
SFC
.517
.522
.505
.515
.009
.479
.472
.471
.474
.004
.441
.436
.436
.438
.003
.385
Various Extra Modes with Initial Carburetor
Baseline
Baseline
Baseline
Carb. 6607
Average
Standard Deviation
Carb. 6607
Average
Standard Deviation
Repeat
Average
Standard Deviation
Average of Tests 107 and 109
Baseline
Carb. 6607
Average
Standard Deviation
5.544
5.355
5.432
5.444
0.10
4.727
4.070
4.038
4.278
0.39
3.560
3.444
3.502
0.08
3.968
9.935
9.867
9.937
9.913
0.04
22.483
20.101
24.698
22.43
2.30
36.350
25.318
30.341
30.670
5.52
27.826
30.303
29.065
1.75
30.028
92.909
102.396
104.418
99.908
6.15
12.421
12.082
11.711
12.071
0.36
10.264
10.956
10.936
10.719
0.39
10.925
11.383
11.154
0.32
10.893
9.815
9.480
9.240
9.512
0.29
17.965
17.437
17.143
17.515
0.417
14.990
15.025
14.974
14.996
0.03
14.485
14.827
14.656
0.24
14.860
19.750
19.347
19. 177
19.425
0.29
.534
.535
.535
.535
.001
.478
.476
.471
.475
.004
.482
.477
.480
.004
.477
.467
.465
.466
.466
.001
Appendix
Table
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10
B-ll
B-12
B-12
B-13
B-14
B-15
B-16
B-17
B-18
B-19
B-20
B-21
B-22
B-23
4.14 241.98 5.88 10.02 .366
4.48 253.30 4.58 9.06 .369
Average of Tests 107 and 109 4.31 247.64 5.23 9.54 .368
B-24
B-2'l
-------
TABLE B-2. BASELINE EVALUATIONS - ENGINE 2
td
Test
No.
ZOI
205
203
204
204
210
211
2i2
-
209
Run Type
No. Test
2 9-FTP
3
2 9-EPA
1 23 -Mode
2
3
1 & 2 WOT
1&2 S.S.
1 9-FTP
2
3
2 9-EPA
3
1 9-EPA
2
9-EPA
1 23 -Mode
2
Description
Baseline with Initial Carburetor
Average
Standard Deviation
Baseline with Initial Carburetor
Average
Standard Deviation
Baaeline with Initial Carburetor
Average
Standard Deviation
Baseline with Initial Carburetor
Baseline
Baseline Carb. 6606
Average
Standard Deviation
Baseline Carb. 6606
Average
Standard Deviation
Baseline Repeat
Average
Standard Deviation
Average of Tests 211 and 212
GRAM/kW Hr
HC
5.609
7.168
6.389
1.10
7.026
6.919
6.973
0.08
10.373
10.131
10.769
10.424
0.32
5.24
6.685
6.717
6.318
6.573
0.22
4.755
5.520
5.138
0.54
6.368
6.273
6.321
0.07
5.729
Baseline Carb. 6606 10 409
10.716
Average 10.563
Zll
212
-
2 8, 3 WOT
1 & 2 WOT
WOT
Standard Deviation
Average of Tests 211 and 212
0.22
4.49
4.77
4.63
CO
58.268
48. 509
53.389
6.90
68.087
71.885
69. 986
2.69
87. 268
125.226
121.606
111.367
Z0.95
325.18
26.798
29.975
31.588
29.454
2.44
20.663
21.628
21.146
0.68
36.793
55.495
46. 144
13.22
33.645
43.614
54.177
48.896
7.47
233.54
237.70
235.62
NO,,
12.637
13.531
13.084
0.63
13.837
13.663
13.750
0.12
10.923
9.033
9.201
9.719
1.05
3.65
11.821
12.226
12.103
12.050
0.21
13.436
12.999
13.218
0.31
11.803
10.190
10.997
1.14
12.107
1 1 . 898
12.341
12.120
0.31
6.17
5.43
5.80
HC+NOX
18.246
20.699
19.473
1.74
20. 863
20.582
20. 723
0.20
21.296
19.164
19.970
20.143
1.08
8.89
18.506
18.943
18.421
18.623
0.28
18.191
18.519
18.355
0.23
18.171
16.463
17.317
1.21
17.836
22.307
23.057
22.682
0.53
10.66
10.20
10.43
KG/
kW HR
SFC
.485
.486
.486
.001
.475
.484
.480
.006
.436
.424
.435
.432
.007
.389
.526
.530
.533
.530
.004
.440
.454
.447
.010
.453
.452
.453
.001
.450
.427
.431
.429
.003
.353
.357
.355
Appendix
Table
B-25
B-26
B-27
B-28
B-29
B-30
B-31
B-32
B-32
B-33
B-34
B-35
B-36
B-37
B-38
B-39
B-40
B-41
B-42
B-42
-------
dd
ENGINE 1
MODE
1 IDLE
8 Ib HG
3 10 HG
1. Ib HG
s 19 HG
b Ib HG
7 3 HG
B Ib HG
9 C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ifa HG
S 19 HG
b Ib HG
7 3 HG
s ib HG
9 C.T.
1 IDLE
a Ib HG
3 10 HG
1 Ib HG
s 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
i Ib HG
3 10 HG
1 Ib HG
s 19 HG
b ib HG
7 3 HG
8 Ib HG
9 C.T.
AVERAGE
AVERAGE
I TEST-101 RUN-1 CHEV. 350 BASELINE 03-ll-7b K
CONCENTRATION AS MEASURED TOTAL FUEL
HC-F10 CO C02 NOX-CL CARBON G/HR
3725
SOb
898
151
1317
3b3
817
3b3
.b28 11.12 38 18.121 1721
.771 13. Sb 280 11.122 9027
.BSb 13.98 1050 11.98b 110b2
.771 13.83 300 11. bib 9027
.510 12.71 90 13.111 blb9
,b90 13. 93 300 ll.SSb 9027
,b!3 13.98 1875 H.b7S 1950S
.915 13.70 270 H.bSl
18173 .193 9.15 19 11.190
351b ,b9Q 10.99 10 12.035
725
S10
153
1318
153
90S
109
.801 13. Sb 2B5 11.137
.83B 13.98 1050 11.909
.821 13. Sb 310 11.127
.1b9 18.87 IQS 13.171
.771 13. Sb 320 11.37b
.70b 13.98 2050 11.777
1.038 13. Sb 280 H.b39
18108 .181 S.IJS IS 11.078
3b3B .bSO 11.12 11 12.171
718
887
b!2
ins
177
S78
131
.728 13.70 350 11.197
.801 13.98 1125 11.873
.915 13. Sb 290 H.Sbb
.112 12.87 110 13.153
.BSb 13.70 320 11.b03
.838 13.98 2025 11.9lb
.982 13. Sb 300 11.585
Ib109 .181 9.bb 21 11.182
3b18 .b13 11.12 13 12.118
b80
955
199
1231
177
9bb
151
.771 13. 5b 300 11.399
.821 13.9P USD 11.897
1.038 13.11 270 11.198
.510 12.35 95 13.013
.891 13.70 310 H.h3R
.771 13.98 1900 11.818
.982 13.70 300 11.727
17127 .193 9.15 80 11.385
9027
Ib78
1721
9027
H0b2
9027
blbS
9oa7
1S505
9027
Ifa78
1721
9027
110b2
9027
blb9
9027
1SSOS
S027
Ib78
1721
9027
H0b2
9027
blb9
9087
1950S
9087
lb7B
I n A t« W I* A | 3
"1.015 HUM = 13.0 G/KG
CALCULATED G/HR'
HC CO N02
53
57
85
88
b2
23
109
22
270 .
51
IS
8b
28
b2
28
120
85
279
58
17
81
38
b5
89
188
87
210
SO
13
90
31
SB
29
127
88
257
161
975
Ib89
9bO
501
8bS
Iblb
1173
57
200
lOlb
1597
1038
131
978
1883
1293
55
197
908
153b
1183
109
lObB
8215
1227
S3
185
97b
ISbb
130b
517
1110
201b
1215
57
2
58
388
bl
11
b8
887
SS
1
8
59
329
bl
Ib
b7
898
57
1
2
78
353
bO
17
bb
879
b8
1
2
b8
3bO
Sb
IS
b3
829
bl
1
HT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
Io77
.057
.077
.113
.077
.113
FOUR CYCLE COMPOSITE - HC- FIO o.3S( s.a)
CO- NOIR 0.
N08-CL 0.
3S( 53. b)
35( 10.7)
+ 0.bS(
+ 0.bS(
+ O.b5(
5
57
10
CORRECTED
.7) s
.1) =
.S) =
N02 =
SFC s
5.721
Sb.07*
10.817
11.301
.517
WEIGHTED G/HR
HC-FIO CO NOg-CL KM
12.3
1.1
18.1
2.2
3.5
1.7
12.3
1.7
38. b
5.7
11.8
3.5
12. b
2.2
3.5
2.2
13. b
3s!s
5.9
12.0
3.b
18.3
2.9
3.7
2.3
11.1
8.1
31.3
Sib
11.7
3.3
13.3
3.3
8.3
11.3
8.1
3b.7
5.7
5Q
• B
5.7
G/ KM
G/ KM
G/ KM
G/ KW
KG/ KH
12
75
839
71
29
fa7
IBb
90
B
52
Ib
78
835
80
25
75
813
100
a
SS
Ib
70
886
Si
23
88
850
SI
8
57
13
75
830
101
89
85
831
SI
8
SB
51
57
HR
HR
HR
HR
HR
.1 0
1.5 12
18.3 35
1.7 12
.8 0
1.8 12
S3.S 58
1.2 12
.1 0
10.1
.1 0
l.b 12
18.3 35
5.0 12
,9 0
5.1 12
101.5 58
11 IP
" 4 T AC
.1 0
10.9
.5 0
S.b 12
51.9 35
l.b 18
1.0 0
5.1 18
99.3 58
1.7 is
.1 0
11.1
.5 0
1.8 12
53.0 35
1.3 12
.9 0
1.9 12
93. b 58
1.7 12
.1 0
10.7
10.7
10.9
( 1.2bb BS)
(11.811 BS)
( S.Obb BS)
( 8.128 83)
( .819 BS)
HP
0
Ib
18
Ib
0
Ib
78
Ib
0
Q
Ib
18
Ib
Ib
78
1 b
A D
0
1 1*
A D
18
Ib
Q
Ib
78
Ib
0
o
Ib
IB
Ib
Q
Ib
76
Ib
0
-------
ENGINE-1
TABLE B-4. MASS EMISSIONS BY NINE-MODE FTP -METRIC UNITS
TEST-101 RUN-2 CHEV. 350 BASELINE 03-ll-7b K *l.oSB HUM » 13.8
G/KG
W
I
MODE
1 IDLE
2 Ib HG
3 10 HG
4 Ib HG
5 11 HG
b Ifa HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
Z Ib HG
3 10 HG
1 Ifa HG
S 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
4 Ib HG
S 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
4 Ifa HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
CONCENTRATION AS MEASURED TOTAL
HC-FID CO C02 NOX-CL CARBON
3555
714
8faS
401
818
430
887
341
14bb3
.fa28 11.35
.blS 13.83
.143 13.18
.BSb 13.83
.183 12.74
.bl4 13.70
.821 13.18
.115 13.70
.181 l.bb
•I r rnMonoTTe TU
3554 .b!3 11.35
714
888
357
1387
151
132
3b3
.811 13. Sb
1.011 13.18
.873 13. Sb
.442 12.35
.101 13. Sb
.821 13.18
1.057 13. Sb
15712 .113 l.bb
3287 .518 11.35
b12
887
453
1581
153
1215
131
.8Sb 13.70
.145 13.83
.811 13. Sb
.415 12.47
.70b 13.70
.bSI 13. Sb
1.038 13.41
1533b .113 1.45
2b70 .551 11.51
717
875
151
IbbO
130
1017
131
.145 13.28
.811 13.83
.182 13. Sb
.415 12.74
.blO 13. Sb
1.000 13.18
.1b3 13. Sb
I31b7 .113 l.bb
44 12.334
330 14.524
1100 15.001
330 14.727
IS 13.313
320 14.357
1175 14.810
2BO I4.b71
23 11.308
47 12.311
30n 14.530
1150 IS. 088
310 14.4fa1
15 12.130
300 14.514
2025 14.815
300 14.faS4
22 11.424
41 12.277
300 H.fa2S
1100 14.8fa3
210 14.41b
100 13.044
350 14.451
1850 14.343
250 14.411
21 11.17fa
47 12.411
280 14.211
1150 14.808
210 14.587
100 13.321
320 14.213
2025 15.085
300 ll.Sbb
24 11.241
FUEL
G/HR
1724
1027
11118
1027
b033
1027
H3fa1
1027
1724
1724
1027
11118
1027
fa033
1027
H3b1
1027
1724
1724
1027
14118
1027
b033
1027
113fa1
1027
1721
1724
1027
14118
1027
b033
1027
113b1
1027
1724
CALCULATED 6/HR
HC CO N02
50 177
41 772
82 1801
25 lObO
41 112
27 771
115 21S8
21 1173
221 Sb
SO 173
41 1118
81 1137
22 1100
faS lib
28 1111
121 2157
22 131b
237 51
4b 170
43 10b7
85 1823
28 1120
74 388
28 811
IbB 1717
27 130b
237 faO
37 155
47 1205
84 1725
28 1227
75 380
27 881
134 2514
27 1205
214 bO
2
b8
345
fa?
14
b?
853
57
1
2
b2
351
bl
IS
be
874
bl
, 1
2
bl
341
bO
IS
73
821
52
1
2
51
3bb
bO
IS
b?
8b3
bS
1
NT.
FACT.
.232
.077
-.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
AVERAGE
«*«" \uwnru*»iic VALUCO r\jn iinca x unu e
SUM— (COMPOSITE VALUES FOR CYCLES 3 AND 1
FOUR CYCLE COMPOSITE -
HC- FID 0.3SC
CO- NDIR 0.35C
N02-CL 0.3S(
5.3)
51.5)
11.1)
* O.bSC 5
t 0.faS( 51
t O.faSC 10
CORRECTED
.5) =
.7) »
.1) =
N02 =
SFC =
5.474
S1.b21
lO.IBb
Il.b24
.522
WEIGHTED G/HR
HC-FID CO N02-CL KM
11.5
3.8
12.0
1.1
2.3
2.1
13.0
l.b
32.0
53
• C
11.5
3.8
12.3
1.7
3.7
2.2
13.7
1.7
33.1
5c_
. b
10.7
3.3
12.4
2.2
4.2
2.2
11.0
2.1
33.8
Sg
. B
S.b
3.b
12.3
2.2
4.3
2.1
15.2
2.1
30. b
5.3
S3
. 3
5.5
G/ KH
G/ KM
G/ KW
G/ KH
KG/ KM
41
51
2bS
82
es
bO
241
10
8
r •*
57
10
8b
285
85
21
88
211
101
8
U 3
be
31
82
2faB
8b
22
fal
203
101
1
c 7
9 f
3fa
13
251
11
22
b8
213
13
1
up
DC
u n
bu
faO
HR
HR
HR
HR
HR
.5 0
5.2 12
SO.B 35
5.2 12
.8 0
5.1 12
lb.1 58
1.4 12
.2 0
In Q
10. 1
.5 0
1.8 12
52.8 35
1.1 12
.8 0
4.8 12
18.8 58
4.7 12
.2 0
ny
• c
.S 0
44? 12
51.3 35
4.b 12
.1 0
S.b 12
13.7 58
4.0 12
.2 0
in 7
1U, f
.5 0
1.5 12
53.8 35
l.fa 12
.1 0
5.2 12
17.5 58
1.8 12
.i 0
Up
. t
it i
11.1
10.1
( 4.082 BS)
(H.lbS BS)
( 8.112 BS)
( B.bb8 BS)
( .BSB BS)
HP
0
Ib
18
Ifa
0
Ib
78
Ifa
0
0
Ib
48
Ib
0
Ifa
78
Ib
0
0
Ib
48
Ib
0
Ifa
78
Ib
0
0
Ib
48
Ib
0
Ib
78
Ib
0
-------
ENGINE-1
T*SL.E B"5' "*33 EH"8IONS BY NINE-MODE FTP -METRIC UNITS
-101 RUN-3 CMEV. 350 BASELINE 03-ll-7b K «1.0fa2
HUM a
G/K6
td
MODE
1 IDLE
2 Ib HR
3 10 HG
1 Ib HG
5 19. HG
b Ifa HG
7 3 HG
8 Ifa HG
9 C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
5 19 HG
fa Ib HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ifa HG
S 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
S 19 HG
fa Ib HG
7 3 HG
8 Ib HG
9 C.T.
AVERAGE
CONCENTRATION AS MEASURED TOTAL
HC-FID CO C02 NOX-CL CARBON
3513 .1fa9 11.12 17 11.913
792 .b13 13. Sb 320 11.283
830 .915 13.83 1175 11.858
108 1.038 13.11 290 11.189
1278 .1fa9 12. bD 100 13.197
108 .891 13. Sb 350 11.192
795 .722 13.99 2100 11.782
3b3 1.097 13. 11 330 11.513
15713 .198 9.bb 21 11.130
3731 .583 11.35
792 .b90 13. Sb
808 .909 13. 9R
131 .982 13.11
131b .128 12.71
131 .8Sb 13. Sb
8b3 .873 13.83
310 1.117 13.11
13980 .193 9.77
3912 .551 11.17
717 .722 13. Sb
807 .915 13.83
10fa .982 12.71
1031 .1b9 12. bO
3b3 .801 13.70
781 ,7ob 13.98
38fa 1.097 13.11
lt.385 .21b 9.15
........CYCLE COMPOSITE
18 12.30b
310 11.329
1175 11.9b9
320 11.135
110 13.303
310 11.159
2075 11.789
280 ll.Sfal
23 11.3bl
18 12.115
310 11.357
1200 11.855
285 13.7b2
105 13.172
3bO 11.511
2100 11.7b1
280 11.515
23 11.305
IN G / KM UP.
3552 .510 11.35 SO 12.215
793 .873 13. Sb - 320 11.512
853 1.019 13.83 1200 11.931
153 1.038 13. 2B 310 11.3b3
1120 ,1b9 12.17 loS 13.051
108 .8Sb 13. Sb 3bO 11.157
795 .771 13.83 2125 ll.bBo
3b2 1.077 13.28 300 11.393
Ib033 .193 9.15 23 11.21b
SUM — (COMPOSITE VALUES
AVERAGE SUM— (COMPOSITE VALUES
FOUR CYCLE COMPOSITE -
FUEL
G/HR
1721
8751
13835
8751
5851
87S1
19187
8751
Ifa33
1721
8751
13835
8751
5851
8751
19187
8751
Ib33
1721
8751
13835
8751
5851
8751
19187
8751
Ib33
1721
8751
13835
8751
5851
8751
19187
8751
Ib33
CALCULATED
HC CO
51 137
19 797
77 1777
25 12b7
57 120
25 1087
103 1893
22 1333
221 57
52 IfaS
18 852
75 Ib9b
2b 1202
59 381
2fa 1017
112 2288
20 13Sb
201 Sb
51 155
Ib 889
75 1777
2b 12bl
Ib 121
22 978
102 1851
23 1333
237 fa3
SO 153
18 lObl
79 1907
28 1278
SO 125
25 1017
101 2035
22 1323
233 Sb
G/HR
N02
2
faS
3b3
58
IS
70
90S
bb
1
2
b9
3bl
bl
Ifc
b8
891
Sb
1
2
b9
371
bO
15
72
9ob
Sb
1
2
bl
3b9
b3
Ib
72
922
bl
1
HT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
FOR CYCLES 3 AND 1
HC- FID 0.3S(
CO- NOIR 0.35(
N02-CL 0.35(
5.0)
57.9)
11.3)
t 0.bS( S
+ 0.bS( 58
+ D.bS( 11
CORRECTED
.2) =
.b) =
.5) =
N02 =
SFC =
5.123
58.351
11.112
12.157
.505
WEIGHTED G/HR
HC-FID CO N02-CL KN
11.9
3.7
11.1
1.9
3.2
1.9
11.7
1.7
32.1
5.1
12.1
3.7
11.0
2.0
3.1
2.0
12.7
l.b
28.7
5.0
12. b
3.5
11.0
2.0
2.b
1.7
11.5
1.8
33.8
5.2
11. b
3.7
11. b
2.1
2.9
1.9
11.7
1.7
33.3
5.2
5.0
5.2
G/ KM
G/ KN
G/ KM
G/ KN
KG/ KN
32
bl
2bl
98
21
81
211
103
(f
57
38
bb
219
93
22
81
259
101
8
59
3b
bB
2fal
97
21
75
209
103
9
57
3b
82
28Q
98
21
81
230
102
8
bO
58
59
HR
HP
HR
HR
HR
.5 0
5.0 12
53.1 35
1.5 12
.8 0
5.1 12
102.3 58
5.1 12
.1 0
11.1
.5 o
5.3 12
53.0 35
5.0 12
.*> 0
5.3 12
101.0 SB
1.3 12
.2 0
11.3
.5 0
5.3 12
51.5 35
l.b 12
.9 0
5.5 12
102.1 SB
1.3 12
.2 0
11.1
.5 0
1.9 12
51.3 35
1.8 12
.S 0
5.b 12
101.2 58
1.7 12
.2 0
11. b
11.3
11.5
( 3.820 BS)
(13.512 BS)
( 8.533 BS)
( 9.0bS BS)
( .830 BS)
HP
0
Ib
18
Ib
0
Ib
78
Ib
0
0
Ib
18
Ib
0
Ib
78
Ib
0
0
Ib
18
Ib
0
Ib
78
Ifa
0
0
Ifa
18
Ifa
0
Ifa
78
Ifa
0
-------
TABLF B-6. MASS EMISSIONS RY NINF-MOOE EP* - METRIC UNITS
ENGINE-l
TEST-105 RUN-l
CHEVROLET 3SO-CID HD ENGINE PROJECT Il-t311
CHEV. 350 BASELINE 03-3t-7b K= 1.04? HUMa 12.B G/KG
CONCENTRATION A3 MFASUHFO
MODE
1 IDLE
3 35 PCT
3 55 prT
t as PCT
s in PrT
b as PCT
7 in PrT
.8 as P.CT
1 C.T.
1 TOLF.
a as PCT
3 5s PCT
t as PCT
5 10 PCT
b as PCT
7 in PCT
8 35 PCT
1 C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
HC-FID
aBnn
370
700
37(1
300
a7n
830
350
it7?n
3Sbn
tHO
b7(l
33n
3to
380
uin
310
it?3o
CO
.380
. t30
.110
.tlo
.710
.tlO
1.100
.550
.310
.(.70
.tin
.110
,»10
.170
.tbo
a. tno
.blO
.3in
CO?
11. 1b
It. 37
13.01
13. 1»
13. Sb
13. ''B
13. IS
13.18
10.31
13. ni
13. ''B
13.70
13.»3
I3.lt
It. I 3
13. tl
It. 13
10.31
Nftx-CL
ts
son
1087
tss
330
t«o
lb7S
tSS
33
i*1*
S10
11?S
5?S
200
t9o
1350
t80
33
TOTAL
C»RPON
l?.hS3
It.7t3
It .R3n
l».sni
1*.3«!»
1».S01
15.175
lf.55"
13.135
1H.031
IH.S11
JH.hBh
1».1S7
1».1"H<
!H.b33
I5.b37
!H.7bS
13.135
FUFL
G/HR
nso
10t7fl
1501*
q«179
BlbS
10115
301B5
9979
nso
l?hO
IO?S7
IfhSb
in?nfc
7<»38
10115
308b5
9">7<)
H50
C»LCUL»TEI) fi/HR
HC
»8
30
«1
31
11
?1
13b
It
3bO
53
35
7h
37
33
30
Ibl
3*
3bO
CO
1JLB
b!7
l»b?
bt)l
Iflh
blO
3t5h
7b3
b8
179
703
1«31
70*
1099
b»3
ShbO
«33
b8
NOX
3
133
381
108
»3
lib
771
108
1
a
las
389
iai
31
117
b33
113
1
XT.
FACT.
.a33
.077
.1»7
.077
.057
.077
.113
.077
.1*3
.33a
.077
.1*7
.077
.057
.077
.113
.077
.1*3
WEIGHTED G/HR
HC-FID
11. ?
a. 3
11.8
l.h
1.1
l.t>
!».?
1.5
37.1
13.3
2.7
11. a
a.p
i.a
3.3
it.i
1.8
37.1
CO
a?
*B
37»
sa
S3
S3
33»
5"»
10
»1
S»
370
5»
b3
»9
(.10
bt
10
NOX-CL
.«•
1.5
Sb.O
8.3
3.5
8.1
87.1
«.3
.2
.5
l.b
57.3
1.1
a. a
1.0
70. »
a.b
.3
CKN
0.0
17. H
37.8
17.3
b.7
17.3
b3.7
17.3
0.0
0.0
17. »
37.1
17.3
b.8
17.5
b3.8
17.5
0.0
VAC.
MM
»37
3bb
33*
3tb
»37
3bb
71
3bb
blO
•»37
3bb
est
3bb
»37
3bb
71
3bb
blO
w
I
UNITS AS SPECIFIED IN THF 7-11-75 PROCEDURE
MODE
1 IOLE
3 35 PCT T
3 55 PCT T
t 3S PCT T
5 10 PCT T
b 35 PCT T
7 10 PCT T
8 ?S PCT T
1 C.T.
1 IDLE
3 ?.S PCT T
3 55 PCT T
t 35 PCT T
5 10 PCT T
b 3S PrT T
7 io PCT T
8 35 PCT T
1 C.T.
MV
17.3
1 1. t
1.3
It.t
Ib.B
It.t
a. B
It.t
?t .0
17.3
It.t
1.3
It.t
Ib.B
It.t
J.B
It.t
3t.O
CHP
0.0
33.3
50. b
33.1
1.1
33.1
8t.l
33.1
O.ll
II. 0
33. t
SO. «
33.1
1.1
33. t
8t.3
33.*
0.0
SUM (COMPOSITE
e | | U /^nkln.iATrf
5 1 ™
TWO CYCLE
COMPOSITE -
CTQ
0
bl
13?
M
3t
M
317
hi
n
0
*>l
13?
bl
3t
bl
317
bl
n
VAI ME FOR
V A 1. U t r f) R
FC BSFC
*.3
33.1
33.1
?a.o
18.0 i.
33.3
tt .5 .
?3.O .
t.3
t.l
33>
33.*
33.5
17.5 1.
33.3
*b.O
33.0
*.3
CYCLE 1)-
r vn F a ^ —
UTl.LC »* 1 —
HC- FTO
CO- NOTR
NOK-CL
R
113
b5*
153
181
Ibt
531
ISO
"
R
17]
b37
17?
130
95T
Sth
13B
R
0.*5<
o. *s<
0. 3M
8.1NOX
R
5.3
7.5
t!s
5.0
i.a
t. 7
R
R
s.t
7.7
S.b
t.3
5.0
7.*
*.R
R
: t.s)
tq.7i
: i.i)
3FC
C*LC
F/A KG/KH HR RPM A/F
.058
.Ubb
.Ob 7
.ObS
.ObS
.ObS
.Obi
.Obb
.OSb
.nbt
.ObS
.nbb
.ObS
.Obt
.Obb
.071
.Obb
.nsh
+ 0.
* n.
* o.
R
. bflt
.318
i.aio
.SRb
.3??
.578
R
R
.511
.3«R
.511
.580
.33?
.571
R
bSf *
faS( bH
bS( 9
HC +
too
3030
2030
3000
3000
3000
aoto
3000
1180
bOO
?nao
3020
3000
3000
3030
ao*o
3030
1180
.1) =
.1) =
.2) =
NOX =
SFC =
17. »
15.1
isis
15. »
15.3
1* .b
15.3
17.8
JS.b
15.3
15.1
15.5
IS.b
is. a
1* .0
15.0
17.8
t.773
bl .b8b
1.t37
It. 310
.*71
HC
13.5
2.8
1*.*
a.o
1.3
a.o
17. a
1.8
*5.0
13.7
3.0
13.5
3.3
1.*
3.b
31.3
2.0
tl.3
t.s
M Q
T • T
G/KK
G/KH
G/KW
G/KW
KG/KW
CO
3.0
5. a
30.1
5.8
5.7
5.1
3b.8
b.5
1.1
3.3
t.3
21.7
t.3
5.0
t.O
51.3
5.1
.8
bO
b 8
HR
HR
HR
HR
HH
ENT OF T
NOX
.3
5.2
30.1
t.b
1.*
t.l
«8.0
*.b
.1
.3
5.7
3t.l
5.1
1.3
S.t
ta.o
5.2
.1
1.1
q?
. c
( 3.559
(t5.999
( 7.037
(lU.SIb
( .787
FUEL
5.1
i.a
25.1
8.7
5.3
8.8
as.i
8.7
3.3
t.1
1.0
3t.5
8.9
5.1
8.8
eb.8
8.7
3.2
BS)
RS)
BS)
RS)
89)
POKER
0.0
7.3
30.3
7.3
3.1
7. a
38. b
7.3
0.0
u.o
7.3
30.3
7.3
3.1
7.3
38.5
7.3
0.0
-------
TABLE B-7. MASS FMJSSinNg BY NINF-MODE EPA - METRIC UNITS.
ENGlNE-m TEST-IPS RUN-02
1975 CHEVROLET 350-CIO HO ENGINE PROJECT 1
CHEY. 3Sn BASELINE 03-21-7b K= 1.075
HUH= 11.9 G/KG
ttf
I
co
MODE
1 IDLE
2 25 PTT T
3 55 PCT T
1 25 PCT T
5 10 PCT T
b 25 PCT T
7 9o PCT T
8 25 PCT T
9 C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
1 25 PCT T
5 10 PCT T
b 25 PCT T
7 9Q PCT T
8 25 PCT T
9 C.T.
CONCENTRATION
HC-FID
3200
120
80H
300
310
300
1130
280
11720
31?n
190
850
3bn
310
330
1130
28fl
153bO
CO
.290
.580
1.101
.520
1. ino
.SbO
l.9io
.(.in
.210
.380
.580
1.10Q
.520
1.100
.•ihO
1.790
.5bO
. ;?1°
— — UNITS A3
MODE
1 IDLE
2 25 PfT T
3 55 PfT T
1 25 PCT T
5 10 PCT T
b 25 PCT T
7 9p PCT T
8 25 PCT T
9 C.T.
1 IDLE
2 ?S PCT T
3 55 PCT T
1 ?5 PCT T
5 10 °fT T
b 25 PCT T
7 90 PCT T
8 25 PCT T
9 C.T.
MV
17.5
11.8
9.3
11.5
17.1
15.0
2.5
H.7
21.3
17.5
15.0
9.1
11.5
17.5
11.7
2.5
H.7
21.3
CHP
0.0
23.3
SO. 7
?3.3
•M
23.3
81.8
23. b
0.0
0.0
23.1
51.?
?3. b
9.J
?3.b
81.8
23.5
n.o
Dnft T TC
SUM — -(COMPOS TTE
TWO CYCLF COMPOSITE -
AS MEASURED TOTAL FUEL
CO? NOX-CL CARBON G/HR
11.7? SO l?.3bb 1950
13.98 530 ll.bO* 10?0b
13.93 1187 15.321 11170
11.12 530 I».b7» 10?0b
13.28 220 11.119 8071
13.98 5?n 11.571 10?Pb
13. Sb 1525 )5.b29 20112
11.12 510 11.79? I0?ob
10.31 10 1?.13S 1950
13.28 38 11.011 1811
13. 9R, 5?S ll.bll |n?nh
13.98 l?oo 15.177 11170
H.l? 530 ll.bBl 10?0b
1?.95 ?05 11.088 8071
13.98 5?0 11.577 10?0b
13. Sb 1550 15.179 20112
11.12 510 11.71? 10?0b
_i2:2! ?. ll:!!2 . 18fc!
CALCULATED G/HR
HC
Sb
33
8b
21
2?
21
Ib9
2?
2faO
1b
38
92
28
22
2b
170
2?
2bl
SPECIFIED IN THE 7-11-75 PROCEOURF----
CTO FC BSFC BSNOX
0 1.3 R R
»•! ??.S .9b5 5.7
133 -U.9 .b29 B.o
bl ??.5 ,9hb 5.7
21 17.8 1.951 1.9
bl 22.5 .9bb S.b
218 15.0 .531 8.5
b) ??.S .955 5.1
0 1.3 R R
0 1.0 R a
bl ?.?. .5 ,9h3 5.7
133 31.9 .b23 8.1
bl 32.5 .951 5.7
?1 l'. 8 1.9?8 l.b
bl ?2.5 .951 S.b
?lq »5.0 .531 8.7
hi ?2.5 .95«- 5.1
0 1.1 P R
HC- FID D.35( 5.0)
CO- NOTR 0.15( 72. bl
NOX-CL 0.35f 10.0)
CO
9?
819
2b71
731
1211
792
5118
89?
b8
99
818
2118
730
1273
792
17b8
785
bb
SFr
NOX
3
13?
100
132
11
130
711
12b
1
2
131
108
131
1?
130
729
12b
1
F/A KG/KM HR RPM
.OSb
.Obb
,0b9
.Obb
.Ob5 1
.Obb
.071
,0b7
.OSb
.Ob3
.nbb
,0b9
.Obb
.Obi 1
.nbb
.070
.Obb
.nsb
t 0.bS(
+ n. >-s(
» 0.bS(
R
.597
.383
.587
.187
.587
.323
.581
R
R
.58*«
.379
.Sfln
.173
.580
.325
.582
p
5
b5
in
HC t
ban
2000
2000
2000
2000
2ono
2010
2020
2000
b2Q
2000
2020
2020
2020
2010
2020
2000
.0) =
.1) =
.1) =
NOX =
SFC =
WT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.1*3
.23?
.077
.117
.077
.057
.077
.113
.077
.113
PAI P
\f " Irlr
A/F
17.7
15. S
is!l
15.3
15.2
l».l
15.0
17.8
15.8
15.2
11. b
15.1
15. b
15.2
is!l
18.0
1.97b
b7.909
10.088
15. Obi
.17?
WEIGHTED
HC-FID
13.0
2.b
12.7
1.8
1.2
1.8
l!?
37.1
10. b
2.9
13. b
2.?
1.3
2.0
l!7
37.3
CO
21
b3
393
Sb
71
bl
578
fa9
10
23
b3
311
Sb
73
bl
539
faO
9
G/HR
NOX-CL CKH
.7 0.0
10.2 17.1
58.8 37.8
10.1 17.1
2.5 b.8
10.0 17.1
80.3 b3.2
9.7 17. b
.1 0.0
• ^ 0*0
10.1 17.1
bo.0 38.2
10.1 17. b
2.1 b.9
10.0 17. b
82. 1 b3.2
9.7 17.5
.2 0.0
VAC .
MM
111
37b
23b
3h8
112
381
b3
373
bl7
111
381
239
3b8
111
373
h3
373
b!7
HC
11.3
2.8
13.9
2.0
1.1
2.0
20.9
IO!B
11. b
3.2
1S.O
2.1
?.?
21.2
111)
5 . n
5.0
G/KH
G/KW
G/KH
G/KH
KG/KK
CO NOX FUEL
l.b
1.8
29.7
1.3
5.1
l.b
»3.7
5.2
.7
1.9
5.3
2b.O
1.7
b.l
5.1
s!i
.8
73
bS
HR
HR
HP
HR
HR
.1 5.2
S.b 9.0
32.3 21.3
S.b 9.o
1.1 5.?
5. 5 9.0
»1.0 2b.3
5.3 9.0
.0 3.2
.2 1.8
5.1 9.n
32.1 21.1
5. 5 9.o
1.3 5.3
5.1 9.o
11.5 2b.1
5.2 9.n
.1 3.0
10.0
10.1
( 3.710 BS)
(50. blO BS)
( 7.523 BS)
(11.233 BS)
( ,77b BS)
POHER
0.0
7.3
30.1
7.2
2. 1
7.2
38.7
7.3
0.0
0.0
7.2
30.3
7.3
2. 1
7.3
38.5
7.3
0.0
-------
TABLE B-B. M«SS EMISSIONS BY NINF-MODE EPA - METRIC UNITS
TEST-105 RllM-03
197S CHEVROLET 3SO-CID HD ENGINE PROJECT 1
CHF.tf. I5n BASELINE 03-3H-7h Ks l.obB HUMS !».» G/KG
w
I
NO
CONCENTRATION
MODE HC-FIO
1 IDLE 38UO
3 35 PCT T 390
3 55 PCT T 83n
f as PCT T 3?q
S in PCT T 380
fa as PCT T a8n
7 9n PCT T io"n
B as PCT T aso
9 C.T. 1»0»0
1 IDLE 37bo
a as PCT T ffao
3 55 PrT T Bio
» as PCT T 3fo
5 10 PCT T 350
b as PPT T 3?n
7 9n PCT T mo
e ?s PCT T aRn
9 C.T. 153bO
CO
.filO
.blO
i.3nn
.b70
1.170
. 58Q
1 . 9H n
.bHO
.310
.san
.f90
l.ino
.bill
1.330
.bio
3. 170
.SSO
.370
AS H£ASU»EO
CO?
11.73
19.98
13.98
i*. i a
is. a"
1*. 13
13. Sb
if. ia
in. 53
11. 9f
1*. 13
1*. 13
i*. ia
13. a«
1* . 1 a
13. HI
I*. 13
10. n9
TOTAL
NOX-CL CARBON
SO
530
1175
530
315
5f n
1533
530
33
50
SRO
1350
530
aos
550
)f 37
555
?2
I3.f3i
If .b3f
IS. 375
if .«ah
if .f 8a
1*«733
1 5.h?3
If. 793
13.388
ta.S7R
if .bba
ts.3ia
If .7b9
If .550
If .7bb
15.707
1».71?
13.nf3
FUEL
G/HP
1950
loaob
If f 70
inaob
8[) 71
1 020^
anf ia
loaob
1950
1950
loaob
If f 70
1030b
807f
loaob
aof 13
I030b
1950
CALCULATED G/HR
HC
f9
31
89
35
18
33
Ibl
aa
3fb
bS
3h
87
37
aa
IbS
aa
CO
137
859
af 71
933
1318
"12
5130
b7
ion
bR9
3100
853
1379
853
785
88
NOX
3
131
393
139
f 3
133
70b
130
1
3
If 3
f 19
137
135
bb3
137
1
NT.
FACT.
.333
.077
.If 7
.077
.057
.077
.113
.077
.332
.077
!o77
.057
.077
.113
.077
WEIGHTED G/HR
HC-FIO
11.3
13.1
1.9
1.0
1.7
18.3
1.7
35.1
15.0
3.8
12.8
2.1
1.3
1.9
18. b
39^0
CO NOX-CL
29
fab
3b3
73
75
b2
579
b9
10
23
S3
309
fab
79
bb
bf f
bO
13
.b
10. 1
57. b
10.0
io!a
79.7
10.0
.3
.b
11.0
bl.b
9.8
a. 3
10. f
7f.B
10.5
.2
VAC.
CKW MM
0.0 f3f
17. S 3bb
38.3 331
17. f 3b8
b.R f3f
17. b 373
b3.3 b3
17. b 3bb
0.0 SOS
0.0 f3f
17. 3bb
38. 33b
17. 3b8
b. »3f
17. 373
b3.5 b9
17. b 3b8
0.0 bOS
MODE MV
iJITS AS
CHP
SPECIFIED IN
CTO FC
THE 7-11—75
B3FC
PPrtrFntiBF»—«»
~~Ul. CUVIKt
BSNOX F/A
epr
or C
KG/KH HR
RPM
A/F
HC
CO
NOX FUEL POHER
I IDLE
3 25 PCT T
3 55 PCT T
f 3S PCT T
S 10 PCT T
b as PCT T
7 9n PCT T
8 as PrT T
9 C.T.
1 IDLE
a as PCT T
3 SS PCT T
f 35 PCT T
S 10 PfT T
b as PCT T
7 9o PrT T
B as PCT T
9 C.T.
17.1
If .f
9.1
If .5
17.1
If .7
a. s
If .f
?3.8
17.1
If .f
9.3
Jf .5
17.1
If .7
3.7
1* .5
33.8
0.0
?3.+
51.9
23. f
q.l
33. S
85. n
33. b
n.n
0.0
33. b
51.3
a3.b
".a
33. b
R5.1
33. b
o.n
n
ba
1 33
bl
?f
bl
a (9
bi
n
n
bi
133
bl
pf
bl
219
m
n
3UM— — — ( c OM POS I T E VALUE Ft]
TWO CYCLE
COMPOSITE -
f.3
aa.s
31.1
aa.s
17.8 1.
aa.s
fS.O
aa.s
f.3
f.3
aa.s
31.9 .
?a.s
aa|s !
fS.O
aa.s
•». 3
10 p vr i F i l ••
1" L ' i, L F. 11
i u p v f* i IT ^ ^ •
1** I . T ij L r. r* t
HC- FTD
CO- NOTW
HOX-CL
R
9bO
bai
9b3
9H5
953
53(1
95?
9
P.
953
bal
953
93b
95?
sa9
9Sf
R
•1.35C
n. 3SC
n.isc
R
5.7
7.8
S.b
f . 7
5.7
P.f
S.b
R
P
b.a
8.3
5.5
».f
5.8
7."
5. q
R
f .
7a.
9.
.057
.Obb
.070
.Ob7
.Obb
.Obb
.071
.nh7
.057
.n57
.nbb
Iob9
.Ob7
.Obb
.nbb
.o?a
.nbb
.nsb
7) + II. t
5 ) + n . t
9) + n.ii
R
.Sflf
[378
.585
1.183
,58n
.333
.579
R
R
.5PO
.378
.S8n
1.173
.579
.sea
,5Bn
R
>S( S
•S( 71
>S( 9
HC t
bOO
2000
2030
3000
3000
3030
30fO
3000
faOO
aoao
?oan
ao3n
aoan
2030
aof o
aoao
aooo
.a) =
.«.) =
.91 =
NOX =
SFC =
17.7
15.2
lf.»
15.0
15.3
15.1
15.0
17. fa
17. f
15.3
If .5
15.0
IS. 2
15.0
1* .0
15.1
17.9
5.039
71 ,9f 5
9.899
If .939
.f 71
13.1
2.7
15.3
3.3
1.3
3.0
21. 1
3.0
fO.b
15.8
3.9
13.5
a. a
1.3
3.0
j9.(.
1."
H~j
• f
5.3
G/KW
G/KW
G/KW
G/KH
KT./KW
3.3
5.0
37. f
S.f
5.7
f3J7
5.3
,7
1.8
f .0
23.5
5.0
b.O
5.0
f. 1
f .tt
i!o
72
HR
HP
HR
HR
HR
....
5Jb
31.9
5.5
1.3
S.b
-ff.l
5.5
.1
^
b.l
3*.0
S.f
K3
nis
5.8
.1
Q n
9.9
( 3.758
(53.bf9
f 7.383
(11. Ifo
( .775
5.3
q.O
af .3
9.0
5.3
9.0
3b.3
3i3
s.a
3f Is
''.0
5.3
3b^3
3i3
B3)
83)
83)
BS)
B9)
0.0
7.3
30.3
7.3
2.1
7.3
38.5
7.3
0.0
0.0
7.3
30.3
7.3
3.1
7.3
38.5
7.3
0.0
-------
TABLE B-9. MASS EMISSIONS BY S3 MODE PROCEDURE
ENGINE-1 TEST-103 HUN-1 CHEV. 350 BASELINE 03-22-7b
MODE
1
2
3
*
S
b
7
8
9
10
1 1
12
13
IS
Ib
17
18
20
22
23
MODE
i
2
3
*
S
b
7
8
9
10
11
12
13
1*
IS
Ib
17
18
19
20
21
22
23
CYCLE
TQ Mv FUEL A/F
SPEED N-M KM MM KG/HR RATIO
<>00 0.0 Q *52 1.8 18.1
1200 5.3 1 *37 *.l 18.0
1200 23.1 3 *22 *.b 17. b
1?00 51. b b 37b 5.3 17.7
1200 73.0 9 335 b.l lb.9
1200 1**.2 19 23* 7.b Ib.*
1200 217.2 27 8b 9.b lb.9
1200 S3b.8 30 7b 10.7 lb.3
1200 2bS.2 33 7b 11.8 15.2
1SOO 288.* 3b 3 13.0 13.0
bOO 0.0 a *b7 1.9 17.0
1200 0.0 ij Sb* 2.0 17.2
2300 3*1.9 82 S 28.1 12.2
2300 315.1 7b 71 23.9 1*.2
2300 279.5 b7 107 22.0 15.1
2300 2Sb.3 b2 137 21.2 15.0
2300 170.9 *i 259 lb.1 1*.B
2300 85.* 21 381 11.7 15.3
2300 bg.3 IS *11 10.2 15.5
2300 2b.7 b »S7 8.8 15.5
2300 7.1 2 »78 7.7 15. b
bOO 0.0 0 *S2 1.8 17.7
2300 0.0 0 b25 1.8 18.*
CALCULATED GRAM/HR WT. g. UNITS
HC CO NOX FAC. TO FC
59.7 82 2.b .070 0 *.0
30.1 109 12.1 .ObO * 9.1
18.9 U9 19.0 .ObO 17 10.2
11.* 181 3*.0 .050 38 11.7
1*.S 19b 53.8 .030 5* 13.*
3*.* 733 158.1 .ObO lOb lb.8
*5.9 399 291.7 0.000 IbO 21.1
30.* 871 3b*.3 .0*0 175 23.5
80.9 191b *b*.2 0.000 19fa 2b.O
5b.7 823fa 335.2 0.000 213 28. b
3b.2 l*b 3.0 .070 0 *,2
950.9 1*7 .fa .120 0 ».*
312.0 21537 ***.S .025 252 bl.9
19*. 0 SS85 97*.* .055 232 52.7
fa7.9 Ibbl 115*. 0 .035 20b *8.S
78.3 2203 928.9 .ObO 189 »b.8
b3.7 2108 *73.3 .ObO 12b 35. b
l*.b 79b IfaS.O 0.000 b3 25.7
fa.* 5*3 100.9 .QfaS *b 22.*
8.* 907 *7.0 0.000 20 19.*
13. b 935 28. 0 0.000 5 17.0
S5.2 9* 2.1 .OBO 0 *.0
*91.S gfa .fa .ObO 0 *.0
DRY CONCENTRATION
HC CO C02
3991 .270
89Q .IbO
513 .IbO
2b8 .210
31* .210
b07 ,b*0
b27 .270
388 .550
998 1.170
720 5.180
2*S8 ,»90
SblS2 ,*30
1923 b.S70
125b 1.790
*S* .550
5*5 .7bQ
592 .970
181 .*9Q
91 .380
13b .730
2*9 .850
3779 .320
3102* .270
SPECIFIC GRAM/
HC CO
R R
**.88 lbS.8
b.SO *0.9
1.7b 27.9
1.58 21.*
1.90 *O.S
I.b8 l*.b
1.02 29.3
2.*3 57. S
l.Sb 227.3
R R
R R
3.79 2bl.b
S.Sb 73. b
1.01 2*. 7
1.27 35.7
l.SS 51.2
.71 38.7
.*3 3b.2
1.30 1*1.1
7.90 5*5.*
R R
R R
11. *7
11. Sb
12.35
12.21
12.89
12.7*
12.7*
13.01
13.28
11.23
12.21
5.7*
10.5*
13. Sb
1*.12
13.98
13.98
13.98
13.98
13. Sb
13.28
11.72
8.08
KH-HR
NOX
ft
18.1
b.S
S.2
5.9
B.7
10.7
12.2
13.9
fa. 5
R
S.*
12.8
17.1
15.0
11.5
7.9
b.7
7.3
lb.3
R
R
NOX
53
108
155
2*0
350
8*0
1200
1*00
1725
900
bl
11
S2S
1900
2325
i960
1325
blO
*30
230
155
**
11
COMPOSITE HC 10.183 GRAM/'KM HR ( 7.S93 BS)
CO 71.7b9 GRAM/ KM HR (53
NOX 11.9Bb GRAM/ KM HR (8
SFC .**! KG/ KM HR (
CORRECTED NOX 11.758 GRAM/ KM HR (8
.518 BS)
.938 BS)
.725 S3)
,7b8 BS)
B-10
-------
TABLE B-IO. MASS EMISSIONS BY 23 MODE PROCEDURE
ENGINE-l TE3T-103 KUN-2 CMEV. 350 BASELINE 03-22-7b
MODE
i
2
3
*
5
b
7
8
q
10
n
12
13
1*
15
Id
17
18
11
2n
81
22
23
TO
SPEED N-M
hOO
1200
1200
1200
1200
1200
1200
1200
1200
uyo
bOO
1200
2300
3300
2300
2300
8300
230(1
2300
23(10
2300
bOO
2300
0.0
5.3
23.1
51. b
73.0
144.2
217.J
23b.H
2bS.2
288.4
0.0
17.8
343. b
315.1
279.5
2Sb.3
170.9
85.*
fa2.3
Sb.7
7.1
0.0
0.0
MV FUEL A/F
KM
0
1
3
b
S
18
27
30
33
3b
0
2
83
7b
b7
b2
»1
ai
15
b
2
0
0
MM KG/HR RATIO
442 1
442 4
40b 4
37b 5
3*5 b
244 7
8b 10
7b 10
71 11
3 13
4b2 1
Sb9 2
25 28
at 24
97 21
132 20
25^ Ib
381 11
Ml 10
472 B
478 7
452 1
b25 1
CALCULATED GRAM/HR
MODE
1
2
3
»
5
b
7
8
9
10
11
12
13
14
IS
Ib
17
18
n
20
21
22
23
CYCLE
HC
S3.1
25.0
13.7
11. "»
17.3
30.3
45.9
57.1
84.3
152.7
44. b
883. b
312.3
2bl.2
Sb.l
90.9
7b.3
20.0
''.b
10.7'
lb.2
H8.9
43fa.b
COMPOSITE
CORRECTED
CO
88
159
131
IBS
418
893
510
1053
207b
83*2
124
151
212b3
1B913
208b
2530
859*
1082
700
1085
1077
95
8b
HC
CO
NOX
SFC
NOX
NOX
3.5
14.7
19. S
41.4
59.1
isa.o
301.0 0
3bB.2
44b.2 0
244.8 o
2.8
.b
505.3
1*9.1
1091.9
970.9
4b8.0
177.8 0
119.7
50.9 Q
32.8 0
2.b
.8
9.7Sb
11*. DOS
9.b31
,43b
B.9b2
.8 18
.7 17
.b 17
.7 17
.4 Ib
.8 15
.3 Ib
.7 Ib
.b 15
.4 12
.8 17
.0 17
.1 12
.3 11
.1 14
.8 14
.1 1*
.8 15
.3 IS
.7 IS
.8 IS
.8 17
.8 18
WT.
FAC.
.070
.ObO
.ObO
.050
.090
.ObO
.000
.0*0
.000
.000
.070
.120
.025
.055
.035
.ObO
.ObO
.000
.ObS
.000
.000
.080
.ObO
GRAM/
GRAM/
GRAM/
KG/
GRAM/
.1
.7
.4
.3
.7
.9
.8
.1
.0
.7
.3
.8
.0
.8
.9
.7
.»
.0
.2
.0
.5
.7
.»
E.
UNITS
TO
0
»
17
38
5»
lOb
IbO
175
19b
213
0
13
253
232
20b
189
12b
b3
«b
20
S
0
0
KM
KM
KM
KM
KM
»
10
10
12
1»
17
22
23
25
29
«f
t
bl
S3
*b
»5
35
2b
22
19
17
»
»
HR
HR
HR
HR
HR
FC
.0
.3
.1
.5
.0
.1
.8
.fa
.b
.b
.0
.»
.9
.5
.S
.a
.5
.1
.8
.3
.3
.0
.0
DRY CONCENTRATION
HC CO
35i»8 .290
fab9 .210
380 .180
2b8 .210
359 .430
5*1 .790
583 .320
7»H ,b7Q
10b7 1.300
l
-------
TABLE B-ll. MASS EMISSIONS Br 23 MODE PROCEDURE
EN6INE-1 TEST-103 RUN-3 CHEV. 350 BASELINE 03-33-7b
MODE
1
2
3
*
5
b
7
B
9
in
11
12
13
11
IS
Ib
17
18
19
30
ai
aa
33
TO
SPEED N-M
bOO
1200
1200
1200
1300
1200
1200
1300
1300
1200
bOO
1200
2300
2300
2300
2300
2300
2300
3300
2300
2300
bOO
2300
0.0
3.b
33.1
51. fa
73.0
111.3
217.2
23b.B
3bS.3
381.8
0.0
17. B
311.8
315.1
274.5
3Sb.3
170.9
85.1
bl.l
ab.7
7.1
0.0
0.0
MV FUEL
KM
0
0
3
b
4
18
27
30
33
3b
0
2
83
7b
fa?
b3
*1
31
IS
b
3
0
0
MM KG/HR
»*7
*13
»11
371
3*0
334
97
7b
7b
3
*S7
Sbl
30
7b
Bfa
137
359
37b
101
157
*78
117
b30
CALCULATED GRAM/HR
MODE
1
2
3
*
S
b
7
B
4
10
11
12
13
1*
IS
Ib
17
18
19
30
ai
23
33
CYCLE
HC
»1.8
20. b
12.7
11.8
15.7
38.0
53.2
Sb.O
84. b
Ib7.0
*4.7
437.7
381.3
35*. 1
b3.7
b4.7
50.4
28.7
b.S
4.*
17.1
54. 7
501. 3
COMPOSITE
CO
IbO
97
133
383
357
858
*31
1081
3328
8703
129
1*5
31*58
17839
I*b2
1888
1459
782
IbS
879
883
83
b4
HC
NOX
8.5
13.9
14.4
»!.*
58.7
Ib*. 1
331.8
*05.*
»5».*
8*8.5
8.5
.b
577.1
815.1
1188.8
1030.3
SO*. 3
180.4
124.0
S3.*
38.1
a.b
.4
4.44b
CO 105.217
CORRECTED
NOX
SFC
NOX
10.513
,*3b
9.701
1.8
1.5
1.8
5.7
b.l
8.0
10.3
11.1
11.4
11.0
1.4
2.0
28.1
21.1
ai.fa
20. S
15.4
11. b
10.3
8.5
7. fa
1.8
1.8
WT.
FAC.
.070
.ObO
.ObO
.050
.030
. .ObO
0.000
.0*0
0.000
0.000
.070
.180
.035
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
A/F
RATIO
17.5
18.1
17. b
17.1
lb.8
ib.n
lb.4
15.4
11.4
12.7
17. b
17.0
12.1
13.1
15.2
15.1
1*.8
15.2
1S.S
15.5
lb.1
18.1
18.8
0»r CONCENTRATION
E. UNITS
TO
0
3
17
38
S*
lOb
IbO
175
14b
810
0
13
853
833
30b
184
13b
b3
17
30
S '
0
0
*
4
10
18
13
17
38
8*
8b
30
if
*
b3
S3
*7
*S
35
25
38
18
Ib
4
*
FC
.0
.4
.5
.5.
.5
.7
.8
.5
.2
.9
.1
P1
.0
.1
.7
.8
.1
.5
.7
.8
.7
.0
.0
GRAM/ KW HR (
GRAM/ KM HR (
GRAM/ KW HR (
KG/ KM HR (
GRAM/ KM HR (
HC CO
3845 .550
SSb .130
335 .IbO
8b4 .320
33b .380
bS* .730
b72 .270
fa99 ,b70
1113 1.370
2008 5. 180
3337 ,*30
SS5B7 .130
1739 b.S70
180* b.270
131 .140
500 .b70
178 .410
3b3 .140
41 .380
154 .730
315 .740
3441 .270
304bl .210
SPECIFIC GRAM/
HC CO
R R
*5.4* 817.0
1.37 12.2
1.81 13. b
1.71 34.0
a. 10 *?.3
1.45 15.8
1.88 3b.1
a.b4 bb.8
*.b7 8*3. 8
R R
111.70 bl.B
3.12 3b0.b
3.35 835.1
.45 21.7
1.13 30. b
1.81 17. b *
1.34 38.0
.18 30.1
l.*7 13b.7
10.17 511. B
R R
R R
7.15* BS)
7B.*bl BS)
7.834 BS)
.717 BS)
7.83* BS)
C02
11.73
11. 4b
13.35
13. bO
13.7*
13.01
13.7*
13.1*
13.38
11. *7
11.73
5.47
10. bS
10. bS
11.12
13.48
13.48
11.12
13.48
13. Sb
18.87
11. »7
7.40
KW-HR
NOX
R
31.0
b.8
b.
b.
4.
18.
13.
13.
b.
R
.3
7.0
8.8
17.7
lb.7
18.3
8.8
8.*
8.3
18.7
R
R
NOX
58
113
158
285
380
850
1375
1525
1700
400
SO
11
1075
*bO
3*35
3325
1*35
bSO
510
270
175
S3
• Ib
B-12
-------
W
ENGINE-1
TABLF B-IZ. STEADY STATF EMISSIONS BY EPA PROCEDURE - MFTRIC UNITS
1M75 CHEVROI FT "O-CIO HP ENGINE PROJECT 11-1311
TEST-101 PUN-? 03-?3-7b CHFV. 350 BASELINE
KB
HUMr
q.3 G/KG
CONCENTRATION
MODE
1
2
3
H
5
b
RPM HC-FID
?onn i7?o
?700 520
?7nn Ho
jinn ?»o
lion isbon
1100 1b7?0
cn
b.S70
.880
i.mo
.270
,2»0
.380
AS MpASURED
CO?
10. «1
M.I?
M.I?
12.17
l.lih
5.81
NOX-CL
775
1125
ISO
270
11
12
TOTAL
CARBON
j7.3n«
1 ¥.051
J5.?lh
JP.7b7
11.385
11.P13
FUEL
CONS.
2730k
21103
I5f»7b
5171
2118
uns
CALCULATED G/HR
HC
3M
Ib
58
11
381
BIO
CO
20l3b
2881
211?
221
12b
130
NO?
IDb
103h
321
3b
1
1
CORRECTED G/HR
HC-FID
3M.3
Ib.O
58,3
10.1
381.5
831.8
CO
2013b
2881
211?
221
l?b
130
NOx-CL
3H.5
118.1
317.1
35.0
3.b
.7
VAC.
CKW MM
71.1 IS
70.2 152
31.1 330
5.5 3Sb
0.0 183
0.0 5Sb
MODE
1
2
3
1
5
b
in MV
.b
b.n
13.0
it.o
1S.O
21.1
CHP
15.3
11.1
•5.7
7.1
0.0
o.n
CTQ FC
250
183
BO
35
0
0
bO.2
53.8
35.0
U.I
b.5
H.J
HSHC
3.?7
1.0?
J.27
l.lb
R
R
BSCO BSNOX
218. 09
30.18
17.75
21.75
R
R
1.23
in. ib
7.17
1.81
R
R
BSFC
.b31
.572
. 7bb
1.512
R
R
A/F F/A
12.2
M.7
M.b
17.3
18.1
18.2
08?
Ob8
Obi
058
053
055
HC
1.31
1.3b
1.70
l.Sb
R
R
CO
212. Ib
10.88
bl.01
31.10
R
R
NOX
S.b?
11.70
1. t>J
b.Sb
R
R
KG/KM HR
.381
.318
.Ibb
.138
R
R
10 =
ENGTNE-l
TEST-10H RIIW-3
STEADY STATE EMISSIONS PY EpA PROCEDURE - MFTRIC UNITS
CHEVROLET 3«iO-CID HO ENGINE---PROJECT 11-1311
?3-7f, CHFV. 350 BASELINE
HUMS
9.7 G/KG
CONCENTRATION
MODE
1
2
3
1
5-
b
PPM HC-FID
pono i7no
?7nn HP
27no Hhn
lino 2in
linn Mo8n
'lino ib7?n
CO
h.570
. P2n
l.ino
.270
.2HO
.380
AS MFASUKFO
C02
in.be
i *. i ?
M.I?
) ?.W7
"t.fif.
b.P5
wnx-CL
inn
1175
175
200
31
12
TOTAL FUEL
C»pBON CONS.
J7.117 2b113
l«.gqe 21P10
15. ?7? Ib057
IP.7S7 5?b2
11.137 21n3
11.3fin 1105
CALCULATED G/HR
HC
305
BP
55
11
310
821
CO
20530
?b5b
233b
225
123
121
N02
1b2
1051
3HO
3B
3
1
CORRECTED G/HR
HC-FID
301.1
87. b
55.2
11.1
310.1
828.7
CO
20530
2b5b
233b
225
123
121
NOX-CL
151.1
102b.b
332.3
37.1
3.?
.7
VAC.
CKH MM
70.1 15
70.1 15?
35.5 330
b.l 35b
U . 0 1 « 3
0.0 55b
MODE
I
2
3
1
5
b
in HV
.fc
b.O
13.0
1H.O
11.0
?i.i
CHP
13.1
oi.n
17. h
B. ?
n.o
P."
AS SPECIFIED
CTO
?«7
1 B3
13
3"
n
n
FC
51.1
53.0
35.1
1 1 . b
(,.1
'«.•'
IN THE 7-11-75 PR(
H^HC BSCO
3.23 P17.35
.13 28.10
] . It IB. 75
1.3* 27.2S
v »
P R
BSNOX
i.«q
U.I?
7. IP
» . SI
H
R
BSFC
.b3?
.5b1
. 7*>
H
P
10 =
-------
ENGINE-l
TABLE B-13.HASS EMISSIONS BY NINE-MODE FTP -METRIC UNITS
TEST-lOb RUN-1 8*SELINE CARB. bb07 05-18-7b K * .1b7
HUM * 1.3 G/KG
w
I
MODE
1 IDLE
2 Ib HG
3 10 HG
•1 Ib HG
S 11 MG
b ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 11 HG
b Ib HG
7 3 HG
B Ib HG
* C.T.
1 IDLE
2 ib HG
3 10 HG
* Ib HG
S IS HG
b Ib HG
7 3 HG
8 Ifa HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
5 14 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
A VCD APC
A'tKAwt
* UC-Q A pc
CONCENTRATION AS MEASURED TOTAL
HC-FID CO CO? NOX-CL CARBON
H38b .125 10. 3D
271 .312 13.78
b12 .350 11.23
305 .381 13.78
81b .113 12.71
2bO .3b3 13.13
Sbb .151 It. 08
227 .*02 It. 08
ISSSb .151 l.bl
1103 .120 10. 7b
373 .115 13. b»
b70 ,37b 11.23
211 .381 13.13
828 .21b 12. bS
211 .102 13.13
513 .151 IV.QB
215 .37b 13.13
H.727 .113 1.13
3175 .131 11.12
117 ,37b 13. bl
bBO .102 11.08
317 .102 13.13
b73 .113 12.13
283 .102 13.78
588 .153 11.08
211 .3b3 13.13
Ib030 .113 1.13
1111 .120 11.21
57fa .115 13. bl
b17 .102 11.23
331 .115 13.78
785 .21b 12.13
211 .3b3 13.78
317 .170 11.08
227 .37b 11.08
17313 .113 1.2B
QiiM^^B f rnMPrm T TF VAI IIPQ
oun— itun^uo i i c »*Lut3
oiiu___ f rnMDno » Tc UAI lire
HVt"*l*t ^Vn \.wvrirvtf A "fc »"U.S*t»»
FOUR CYCLE COMPOSITE -
Ib lO.Bbt
350 11.111
1277 ll.bll
330 11.111
115 13.072
350 11.311
2101 11.215
370 11.501
22 11.331
11 11.320
1000 11.012
1335 11.b72
3b5 11.318
110 12.111
3bO 11.3bl
2011 11.213
370 11.327
21 11.215
Ib ll.bIB
355 H.ObS
131b 11.550
3BO 11.3b3
120 13.HO
3bO 11.210
2113 11.J12
3bS 11.318
21 11.22b
11 11.780
310 11.113
131b 11. bib
370 11.221
125 13.221
370 11.172
2085 11.282
375 11.178
?1 11.152
FUEL
G/HR
1151
B7Q1
13b11
8701
bill
8701
18771 .
8701
1151
1151
8701
13b11
8701
bill
8701
18771
8701
1151
1151
8701
13b11
8701
bill
8701
18771
8701
1151
1151
87Q1
13b11
8701
bill
87Q1
18771
8701
1151
CALCULATED G/HR
HC CO N02
71
17
bS
11
11
Ib
71
11
2b1
7b
23
b3
IB
11
18
71
13
281
b7
31
b1
11
33
17
77
IS
271
70
3b
bO
21
38
18
12
11
301
15
381
bfal
181
112
115
121
187
55
12
518
708
17b
217
112
121
Ibl
b?
11
170
7b1
112
110
117
. lOb
lib
bB
10
517
7Sb
513
212
150
151
ISb
b8
3
72
31fa
b7
11
71
118
71
1
3
205
111
71
18
72
113
75
1
3
73
181
7fa
11
73
122
71
1
3
70
117
75
20
75
110
75
1
*T.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
.838
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
HC- FID 0.35C S.b)
CO- NOIR 0.
N02-CL 0.
35( 21.8)
35( 13.0)
* U
+ 0
t 0
.bS( S
.b5( 22
.bS( 12
CORRECTED
.5) »
.1) =
.8) =
N02 s
SFC =
5.511
22.183
12.850
ia.121
.531
WEIGHTED G/HR
HC-FID CO N02-CL • KM
18.3
1.3
1.5
1.1
2.5
1.2
8.1
1.0
37.8
Sc
I 3
17. b
1.8
1.2
1.1
2.3
1.1
8.1
1.0
11.3
S)
• f
15.1
2.1
1.1
1.5
1.1
1.3
8.7
1.2
31.8
Sc
.9
lb.1
2.7
8.1
l.b
2.2
1.1
1.7
1.1
13.5
5c
• b
S«b
5c
• 3
G/
G/
G/
G/
KG/
11
30
17
37
11
31
18
38
8
3 |
C 1
10
10
101
37
12
38
IB
3b
10
33
Cc
10
3fa
112
38
11
38
Ib
31
10
3 ^
C3
1
10
111
10
12
35
51
35
10
aa
C 3
22
aa
C 3
KH HR
KM HR
KH HR
KM HR
KM HR
.b 0
S.S 11
58.3 35
S.2 11
1.1 0
5.1 11
103.7 57
5.7 U
.2 0
la C
12. b
.b 0
15.8 11
bO.B 35
5.7 11
1.0 0
S.b 11
103.2 57
5.7 11
.2 0
la tt
13.1
.b 0
S.b 11
bl.B 35
5.1 11
1.1 0
S.b 11
101.2 57
5.7 11
.2 0
13 Q
»«•"
1 .b 0
S.I 11
bl.2 35
S.B 11
i.e o
5.8 11
102.1 57
S.B 11
.2 0
la 7
le. '
13.0
1 3 ft
le . H
( 1.131 BS)
(lb.7bS BS)
( 1.582 BS)
( 1.2b2 BS)
( .878 BS)
HP
0
11
Ib
11
0
11
7b
11
0
0
It
Ib
11
0
11
7b
11
0
0
11
Ib
11
0
11
7b
11
0
0
11
Ib
11
0
11
7b
11
0
-------
TABLE B-14. MASS EHISSIQNS BY NINE-MODE FTP -METRIC UNITS
ENGINE-1 TEST-lob RUN-? BASELINE CARS, bb07 05-18-7b K a .955 HUM e
8.4 G/KG
w
I
H—
(Jl
MODE
1 IDLE
2 Ib HG
3 10 HG
i ib HG
5 14 HG
b Ib HG
7 3 HG
8 Ib HG
* C.T.
1 IDLE
2 Ib HG
3 10 HG
* Ib HG
5 It HG
b Ib HG
7 3 HG
B Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
5 IS HG
b Ib HG
7 3 HG
8 Ib HG
* C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
S 14 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
AVERAGE
A VFRAfir
CONCENTRATION AS MEASURED TOTAL
HC-FID CO C02 NOX-CL CARBON
4102 .115 10. 7b 11 11.315
5*3 .350 13.78 315 11.18*
bbO .300 11.51 1335 11.40b
2bl .350 11.08 3bO H.ISb
450 .201 13.21 110 13.154
215 .337 13.13 350 11.281
24s .117 11. aa aoi? 11.107
182 .337 11.83 370 11.585
18121 .193 9.13 17 11.135
4425 .125 11. 3b 11 11.42R
725 ,3b3 13. 93 350 11.3b5
bbO .350 11.51 131b 11.9Sb
283 .37b 13.93 3bS 11.331
ISO .113 13.21 120 13.118
227 .337 11.08 375 11.110
511 .117 11.83 2113 11.132
227 .350 11.23 380 11.b02
18818 .193 9.13 14 11.501
4588 .135 11.00 IS 11.581
bla .3b3 11.08 310 11. SOI
b37 .337 11.51 131b 11.411
283 .37b 11.08 370 11.181
354 .201 ia.«»3 IDS 13.170
22b .37b 13.93 370 11.328
245 .112 11.23 218b 11.101
143 .312 11.23 IQO H.Sbl
lb7S7 .143 9.b1 19 11. SOB
»41b .120 11.1? 11 Il.b82
504 ,3b3 13.43 310 11.311
bll .350 11.51 1358 11.451
317 .384 11.08 3SS 11.500
354 .181 13.07 iao 13.287
238 .312 11.23 370 H.Sbh
521 .117 11.23 2075 11.130
201 .337 11.08 3HS 11.138
15721 .143 9.75 14 11. SIS
FUEL
6/HR
1451
8815
13711
8815
b3SO
8815
18779
8815
1405
1451
8815
13711
8815
(.350
8815
18774
8845
1405
1451
8815
13711
8815
b3SO
8815
18774
8815
140S
1451
B81S
13711
8815
b3SO
881S
18779
8815
1405
CALCULATED
HC CO
7b
31
bl
Ib
21
13
38
11
302
72
IS
bl
17
21
11
71
H
312
77
37
54
17
17
11
38
12
277
71
31
5b
14
17
11
f>8
12
2bO
10
111
558
132
145
122
388
113
b5
11
151
b14
IbB
181
117
388
428
fal
13
117
b2b
1b3
J44
IbB
371
383
bl
10
isa
bSO
174
175
383
3R8
117
bl
G/HR
N02
2
bS
104
73
17
72
88b
71
1
2
7?
Ill
75
14
7b
413
7fa
1
3
b4
111
75
17
7b
41b
81
1
2
70
111
72
14
75
847
78
1
KT.
FACT.
.232
.077
.I*?
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.147
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.113
FOUR CYCLE COMPOSITE - HC- FID o.ssc s.to
CO- NOIR 0.35(
N02-CL 0.35(
14.4)
12.5)
* 0.bS(
+ O.b5(
+ O.b5(
5
20
12
CORRECTED
.2) =
.2) *
.7) =
N02 =
5FC =
5. 355
20.101
12.bS7
la.osa
.535
WEIGHTED G/HR
HC-FIO CO N02-CL KW
17.b
2.b
8.4
1.2
1.2
1.0
1.3
.8
43.2
5.1
ib.e
3.4
8.4
1.3
1.2
1.1
8.0
1.1
11. b
S.B
17.4
2.4
8.b
1.3
1.0
1.1
».3
.4
34.7
5.2
17.1
2.1
8.3
1.5
1.0
1.1
7.7
1.0
37.2
53
.2
S.b
S3
. C
G/ XH
G/ KM
G/ KM
G/ KH
KG/ KH
4
31
82
33
11
32
11
32
9
14
10
35
45
3b
10
32
11
33
4
20
10
34
42
3b
11
3b
12
24
4
20
9
35
45
37
10
a4
14
32
9
20
20
3n
CU
HP,
HR
HR
HR
HR
.5
5.0
bO.l
S.b
1.0
5.5
100.1
5.7
.1
12.1
.b
s.s
bO.l
S.B
1.1
5.4
103.1
5.4
.1
12.7
.b
5.3
kO.1
5.8
1.0
5.8
10b.4
b.2
.1
12.4
.b
5.1
bO. 4
5.5
1.1
5.7
101.3
b.O
.1
12. b
12.5
la "3
le . /
( 3.493
(11.484
C 4.138
( 4.009
( .879
0
11
35
11
0
11
57
11
0
0
11
35
11
0
11
57
11
0
0
11
35
11
0
11
57
11
0
0
11
35
11
0
11
57
11
0
BS)
BS)
BS)
BS)
BS)
HP
0
11
Ib
11
0
11
7b
11
0
0
14
4b
11
0
11
7b
11
0
0
11
Ib
11
0
11
7b
11
0
0
If
Ib
11
0
11
7b
11
0
-------
CT-
i n w i_ i_ jj-ij. • f n vi a C'T1*3OIUMO DI n
ENGINE-l TEST-lob RUN-3 CARB. bb07 BASELINE
MODE
t IDLE
2 lb HG
3 10 HG
* lb HG
S 19 HG
b lb HG
7 3 HG
8 lb HG
9 C.T.
1 IDLE
: lb HG
3 10 HG
f lb HG
S 19 HG
b lb HG
7 3 HG
8 lb HG
9 C.T.
1 IDLE
2 lb HG
3 10 HG
f lb HG
5 19 HG
b lb HG
7 3 HG
B lb HG
b If.fSh
20f .f02 13.93 170 If. 352
Ibb99 .20f 9.22 20 11.09*
379* .120 11.00 f3 Il.f99
blO .f28 13. bt 3bO If. 129
bf7 .f02 If. 23 1357 If.b9b
272 .f02 13.93 380 If. 359
359 ,Jb3 12.93 110 13.229
2f9 .f83 13.93 380 If.f38
510 .181 If. 23 2n«b If.fb2
193 ,f28 13.93 390 If. 378
Ib727 .193 9.f3 jl 11.295
f8f8 .125 10.88 f2 Il.f90
5f3 ,f02 13.78 370 lf.23b
b25 .ff2 If. 39 I3fb lf.89f
295 .f2B 13.93 370 If. 388
381 .193 12.93 120 13.1bl
2f9 ,f02 13.93 370 If. 357
521 .193 If. 23 20fb If.f75
20f .ffj 13.93 390 If. 392
Ib030 .193 9.f3 gl H.22b
inc.— nuuc rir -nt 1
05-18-7b K
FUEL
G/HR
1905
893fa
13789
B93h
b21f
B93b
1873f
893b
1905
1905
B93b
13789
893b
b21f
893b
I873f
893b
1905
1905
893b
13789
B93fa
ban
B93b
1873f.
893b
1905
19Q5
893b
13789
893b
b21f
893b
1873f
893b
1905
NIL UNITS
a .937 HUM a 8.2 G/KG
CALCULATED 'G/HR
HC CO NO?
73
52
55
If
3b
If
bS
11
282
7f
SO
b?
17
35
If
b2
13
287
fa3
39
bl
17
17
15
bb
12
282
80
3f
58
IB
18
lb
b?
13
272
f2
Sfl
737
SOS
203
bOf
533
538
fa2
f3
Sfl
810
5Sf
20f
538
fib
SOS
71
fo
Sf7
7bl
SOS
250
bOf
f7f
538
bb
f2
509
82b
537
IBf
SOS
SOf
SSf
bb
2
71
feo
7»
19
78
887
33
1
2
75
f2b
7f
20
78
890
35
1
2
7b
f23
79
17
78
880
60
1
2
77
flf
7b
19
7b
879
80
1
WT.
FACT.
.232
.077
.If7
.077
.057
.077
.113
.077
.If3
.232
.077
.If7
.077
.057
.077
.113
.077
.1H3
.232
.077
.If7
.077
.057
.077
.113
.077
.If 3
.232
.077
.If7
.077
.057
.077
.113
.077
.If3
SU«- — (COMPOSITE VALUES FOR CYCLES 1 AMD 2)- - -
FOUR CYCLE COMPOSITE - HC- FID o.asc s.b)
CO- NDIR 0.35(
N02-CL 0.35C
2».S)
12. f)
* O.bSt
+ 0.bS(
» 0.bS(
5
2f
12
CORRECTED
,
.f)
• 8)
.S)
N02
SFC
S.f 32
2f .b98
12. f 92
11.711
.535
WEIGHTED G/HR
HC-FID CO N02-CL
17.0
f .0
8.?
1.1
2.0
1.1
7.3
.9
fO.f
s.s
17.2
3.8
9.1
1.3
2.0
1.1
7.0
1.0
fl.O
S.b
If .b
3.0
8.9
1.3
1.0
1.2
7.5
.9
fO.3
5.3
18. b
2.b
B.S
l.f
1.0
i.e
7.b
1.0
38.9
S.f
51
. b
S.f
G/ KM
G/ KM
G/ KN
G/ KN
KG/ KH
10
f 2
10B
39
12
f b
bO
f 1
S
25
10
f 2
119
f 3
12
f 1
f 7
39
10
2f
S
f 2
112
39
If
f fa
Sf
HI
9
25
10
39
121
f 1
10
39
57
f 3
9
25
25
25
HR
HR
HR
HR
HR
.b
S.f
bl.7
5.7
1.1
b.O
100.3
2,5
.2
12.3
.b
5.8
b2.b
5.7
1.2
b.O
lOO.b
2.7
.2
12.5
.5
S.B
b2.1
b.O
1.0
b.O
99. f
b.2
.2
12. b
.5
5.9
bO.B
5.9
1.1
5.9
99.3
b.2
.2
12.5
12. f
12.5
( f.OSl
(18. f 17
( 9.315
( 8.733
( .880
KN
Q
11
35
11
Q
11
57
11
0
Q
1 1
35
1 j
Q
11
57
11
0
Q
11
35
1 1
Q
1 1
57
1 1
0
Q
11
35
11
o
11
57
11
0
BS)
BS}
BS)
63)
BS)
HP
Q
1 f
Hb
14
Q
14
?b
14
0
Q
14
Hb
14
Q
14
7fa
14
0
14
4b
14
g
14
7b
1 1
* ~
0
Q
If
f b
If
0
If
7b
If
0
-------
TAHLF.B-16. M«SS FMTSSIOM3 RV NTNF-MODE EPA - METRIC UNITS
ENGlNF-01 TEST-107 3UN-01
1175 CHEVROLET 35O-CIO HO ENGINE —PROJECT 11-*311
BASELINE CARB. bbfl? 05-11-78 K= .1*b HUMs
8.5 6/KG
CONCENTRATION AS MpASUREO TOTAL FUFL
MODE HC-FID CO CO? NOX-CL CARflON G/HR
i IDLE tono
2 25 PCT T 2bO
3 55 PCT T *8Q
* 25 PCT T I8n
S 10 PCT T I8n
fa 25 PCT T ISO
7 10 PCT T 1*0
B 25 PCT T 1*0
1 C.T. 13**0
1 IDLE 31.00
2 25 PCT T 380
3 55 PCT T 520
* 25 PCT T 210
5 10 PCT T 1«0
b ?5 PCT T 110
7 10 PCT T IbO
B 25 PCT T IhO
1 C.T. 1*721
.115
.231
.350
.231
.*17
.231
1.350
.251
.1R1
.1?5
.251
.37b
.251
.3-17
.251
1.350
.251
.113
10. 7b
13.78
1*.31
13.13
13.13
13.13
1*.23
1».OB
8.81
11.00
13.78
I*. 31
13.13
J3.7R
13.13
1*.?3
13.13
1.01
«0 11.315 IRbO
530 1».0*1 10*78
l*bO 1*.71* 1*123
575 l».!lO 10387
•220 1*.*»7 8021
570 I*.l87 10*33
1723 iS.hBB 20R20
580 1*.3»7 10251
21 10.**7 lllh
*S 11.522 1150
520 1*.07* 10523
l*bO 1*.825 1*R7R
530 I*. 205 103*2
220 1».137 7183
530 1».2I)3 10*33
1723 IS.hlQ 20b8»
51Q 1*. Ill 10*33
2h 10.8OO 1150
CALCULATED
HC CO
72
22
55
15
11
13
1*3
11
278
b7
32
51
17
11
Ib
1*5
13
288
38
3hn
713
35*
558
355
3bH
3fa2
70
*3
371
7bl
3b1
385
373
3515
373
70
G/HR
NOX
j
12*
132
38
132
718
130
1
2
122
*bQ
121
31
122
713
13b
1
WT.
FACT.
!o?7
.1H7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1»3
WEIGHTED
HC-FID co
ib.e
1.7
B.I
1.1
.fa
1.0
Ib.l
.1
31.8
IS.b
2.5
8.7
1.3
.7
1.2
Ib.*
1.0
HI. 3
1
28
105
27
32
27
28
10
10
21
112
2B
22
21
»0b
21
10
G/HR
NOX-CL CKW
.5 0.0
l.b 17. b
bB.O 38. b
10. 8 17. b
2.2 7.1
10. 1 17. b
81.1 b3.*
10.0 17. b
.2 0.0
.fa 0.0
1.» 17. b
b?.b 38. b
1.3 17. b
2.2 7.1
1.* 17. b
80. b b3.3
10.5 17. b
.2 0.0
VAC.
MM
*11
351
221
351
*22
351
bl
351
b02
*J 1
351
221
351
*27
353
hi
351
b02
-..-IINTT4 A9 SPFrlFTI
MODE MV
1 IDLE lh.2
2 25 PCT T 13.8
3 55 PCT T 8.7
» 25 PCT T 13.8
5 10 PCT T Ib.b
b 25 PCT T 13. R
7 10 PCT T 2.7
8 25 PCT T 13. R
1 C.T. 23.7
1 IDLE lb.2
2 25 PCT T 13.8
3 55 PCT T 8.7
* 25 PrT T 13. R
5 10 PCT T Ib.R
b 25 PCT T 13.1
7 10 PCT T 2.7
8 ?5 PCT T J3.R
1 C.T. 23.7
CHP
0.0
23. b
51.7
23. b
".fa
23. b
BS.O
?3.h
n.o
0.0
?3.b
51.8
23. b
l.b
23. b
8* .1
?3.b
0.0
3ijH--— ( COMPOS i TE
SUM--- (COMPOSITE
TWO CVCI.E COMPOSITE -
CTQ
0
b2
13h
h2
25
*<2
223
b?
0
n
b2
13h
b?
25
h?
223
b?
n
V AL UF FOR
VALUE F n H
*D IN THE 7—11-75 PROCE
FC BSFC BSNOX
* . 1 R R
23.1 .178 5.3
32.1 ,h3b 1.0
72.1 .Ihl 5.b
17.7 1.853 *.0
23.0 .173 S.h
*5.1 .5*0 8.5
22. h .ISb 5.5
*.* R 1*
».3 R R
23.2 .18? 5.2
32.8 ,b33 R.I
72.8 .1b5 5.2
17. b 1.8*3 *.l
?3.0 .173 5.2
15. b .537 R.*
?3.0 .171 5.8
*. 3 " R
MC- Fin 0.35C *.
CO- NDIH 0.3«.( 3h.
NOX-CL 0.35C 1".
F/A
.052
,0b3
.Obb
.Oh*
.OhS
.Ob*
.071
.ObS
.0*1
.053
,0b3
.Ob7
.Ob*
.Ob*
.Ob*
.071
.Oh*
.050
bl + n.»
3) + O.t
31 + O.t
QFr
3rC
KG/KH HR RPM
R
.515
.387
.510
1.127
.512
.328
.581
R
R
.517
.385
.587
1.171
.512
.327
.512
R
<5( *
<5( 3h
.5( 10
HC t
bOO
2000
2000
2000
2000
2000
2000
2000
2000
bOO
2000
2000
2000
7000
2000
7000
2000
3oon
.8) =
.*) =
.?) =
NPX -
SFC *
r Ai r
CALL
A/F
11.3 •
15.8
15.0
15.7
15.*
15.7
15.5
20.5
11.0
15.8
15.0
IS.b
15.7
15. fa
is!?
11.8
*.727
3b.3SO
l').2b*
I*. 110
.*7R
HC
11.5
2.0
U3
.8
1.2
18.7
1.0
*b.2
17. fa
2.8
1.8
1.5
.7
1 *
18^5
1.2
»b.S
* . b
tt O
* . H
G/KW
G/KW
G/KW
G/KW
KG/KW
CO NOX FUEL
1.3
isis
.0
.7
.1
b .b
.1
.5
.5
.3
Ih.b
*.2
3.2
bO. 2
l!s
"
^«
ab
HR
HR
HR
HR
HP
.2 *.P
5.0 1.0
35.* 2».b
5.3 1.0
1.1 5.1
5.3 l.fl
*2.3 2b.*
5.2 8.8
.1 3.2
.3 5.1
5.0 1.1
35. b 2*. 5
*.1 8.1
1.2 5.1
5.0 1.0
»2.5 2b.7
5.S 1.0
.1 3.1
in P
AU . c
( 3.525 BS)
(27.10b BS)
( 7.bS* BS)
(H.17B BS)
( .78b BS)
POWER
0.0
7.3
30.*
7.3
2.2
7.3
38.*
7.3
0.0
0.0
7.3
30.*
7.3
. 2.2
7.3
38.3
7.3
0.0
-------
TARIEB-17. MASS EMISSIONS RV NINE-MODE EPA - METRIC UNITS
ENGlNE-01 TEST-107 RllN-0?
1175 CHEVROLET 350-CIO HO ENGINE PROJECT 11-*311
R»SElIfjE CARR. bbn? 05-11-7b K= .123 HlJMs
7.7 G/KG
MODE
1 IDLE
2 25 PCT
3 55 PCT
* 25 PfT
s in PCT
b 25 PCT
7 In PPT
8 25 PCT
1 C.T.
1 IDLE
2 25 PCT
3 55 PCT
» 25 PCT
s in PCT
b 25 PCT
7 in PCT
a 25 PCT
1 C.T.
CONCENTRATION
HC-FIO CO
T
T
T
T
T
T
T
T
T
T
T
T
T
T
*2*n
350
520
200
180
I7n
IbO
130
131?0
*320
2*0
sin
200
IbO
170
*00
ISO
12800
.125
.2b3
.3**
,?.7S
.*na
.2b3
1.373
.251
.181
.1211
.31?
.381
.275
.**2
.251
.21b
.300
.151
AS MEASURED
en? NOX-CL
10. 7b
1 *.0«
)*.5»
13.13
13.13
13.13
1*.23
l*.0f>
1.75
10.88
13.13
1*.S*
13.13
13.13
i*.n»
1*.31
1*.OB
<<.7S
*0
SbO
15nS
510
300
bOO
17«»»
515
?1
»3
5P5
1*1*
510
280
blO
s n? a
b20
21
TfiTAL
CAKRflN
11
1*
1*
1*
1*
1 *
15
1*
1'
11
1*
1*
1*
1*
1*
1*
1*
11
.35?
.383
.1*3
.22R
.35?
• ?12
.713
.3*b
.3b»
.*7b
.2b<<
.187
.228
.310
.350
.bS)
.317
.30*.
FUFL
G/HR
IBbO
Io7n5
15105
10387
8o7*
1 n* 33
?07?1
10?17
IRbC
l«bO
10*33
I*"b1
103*?
7183
103*2
20*1?
10217
CALCULATED G/HR
HC CO NOX
7h
30
bO
17
11
14
1*5
11
23*
77
?n
58
lb
111
1*
b3
12
230
*1
31fa
701
*0b
*5b
310
3b5B
3b*
bo
31
*bl
78*
*0*
*1S
3bb
b07
*33
S3
2
128
*bb
132
52
135
705
131
1
2
131
*57
131
*8
135
Bbb
13b
1
WT.
FACT.
.232
.077
!o77
.057
.077
.113
.077
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
WEIGHTED G/HR
HC-FID CO NOX-CL
17.7
2.3
8.8
1.3
.7
1.1
lb.*
33is
17.1
1.5
8.5
1.3
.b
1.1
7.1
.1
32.1
10
30
103
31
2b
30
28
1
1
35
115
31
28
28
bl
33
B
.5
1.8
hB.B
10. t
2.1
10.*
71.7
10.1
.e
.5
10.1
b7.2
10.1
2.7
10.*
17.8
10.5
.a
CKM
0.0
17. b
38.5
17. b
7.1
17. b
b3.3
17. b
0.0
0.0
17. b
38. b
17. b
7.1
17. b
b3.*
17.7
0.0
VAC.
MM
*1 1
353
221
351
353
bl
353
bOS
*0b
353
22*
351
*27
353
71
351
bOS
.---UNTTS A1 SPFfTFtFD TN THF
MODE
1 IDLE
? 25 PCT
3 55 PCT
» 25 PCT
s in PCT
b 25 PCT
7 10 prT
8 25 PCT
H C.T.
1 IDIE
2 25 PCT
3 55 PCT
* 25 PCT
5 in PCT
b 25 PCT
7 10 PtT
8 25 PCT
1 C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
SiM
TWO CYCLE
MV
lfa.2
13.1
8.7
13."
lh.8
13.1
2.7
13. •»
23.8
lb.0
13. "»
B.R
13."
lb.8
13.1
5.8
13.8
23. R
CHP
0.0
23. b
51.7
23. b
^.5
?3.b
8*.1
23. b
0.0
1.0
23. b
51.8
23. b
l.b
23. b
85. 0
P3.7
0.0
JDrtC T Tcr
1---(Cf)MPOSITF
COMPOSITE .
CTO
0
b2
1 3b
b?
?S
b2
223
b?
n
n
••?
1 3b
«>?
25
b?
223
b?
n
VALUE FOR
VALUE Fn*4
EC
*.l
23. b 1
33.3
?2.1
17.8 1
23.0
*S.7
22.7
».l
*.l
p3.0
33.0
22.8
17. b 1
?2.8
*5.0
22.7
*.l
rvn F i ^
L T LL C 1 t
c vCL^ ? ^
HC- FIO
rn- wriT
HOX-CL
BSFC BSNOX F/A
p
.000
.<>**
.171
.8b5
.17*
.^38
.lb?
P
P
.173
,b37
.lb*
.8*3
.lb*
.521
.151
p
0.35
H 0. 3«i
0.3S
R
5.*
1.1
S.b
5.*
5.7
8.3
S.b
R
R
S.b
8.1
S.b
5.0
5.7
10.2
5,»
H
f *.
f 3b.
( 10.
.05?
.ObS
,0b7
.Ob*
.ObS
.Ob*
.071
.Ob*
.053
.053
.Ob*
.Ob7
.OS*
.ObS
.ObS
.Obb
.ObS
.05?
*) t II. 1
bl » n.i
*) + n.i
*" \f
KG/KH
R
.bns
.312
.511
1.135
.513
.328
.585
R
R
.51j
.388
.58b
1 . l?l
. 5"b
!322
.583
R
-5(
.5(
••5(
HC
HR RPM
bOO
2000
2000
2000
2000
2000
2000
2000
2000
bOO
2000
2000
2000
2000
2000
2000
2000
2000
3.1) =
11.2) =
11.3) =
+ NOX =
SFC =
\,*^UI»
A/F
11.2
15.5
I*.*
IS.b
15.5
IS.b
isis
H.O
11.0
IS.b
isib
15.*
15.5
15.2
15.*
11.1
*,070
25.318
lO.ISb
15.025
.*7b
HC
21.5
2.8
10.7
1.5
.8
1.3
11.8
1.0
»0.b
2*.1
2!l
11.1
1.8
l!s
10.0
1.3
*5.8
* . *
3Q
. T
G/KW
G/KX
G/K*
G/KH
KG/KW
wDPDf*FUT ftr TflTAl _
™rLNwE.«I Ur 1 u 1 *U~™
CO NOX FUEL
1.*
*.S
15.2
*.b
3.8
».*
bO. 7
* .1
1.3
?.b
1.1
32.3
8.7
7.1
7.1
11.2
".3
2.1
37
1 1
HR
HR
HP
HR
HR
.2
S.I
35. «.
5.3
1.5
S.*
'1.*
5.2
.1
.e
*.8
32.1
*.8
1.3
5.0
*b.7
5.0
.1
10 . *
11.3
( 3.035
(18.880
( 8.170
(11.20*
( .782
*."
tia
2*. 8
8.1
5.1
*.o
2b.2
8.1
3.0
*.1
•
-------
TABLE B-IS.MASS FMTSSIONS RY NINF-MODE EPA - METRIC UNITS
TFST-107 MUN-P3
CHEVROLET s-;n-cin HD ENGINE—PROJECT 11-1311
BASELINE CARS, bbn7 OS-11-7b K= .930 HUM =
8.3 G/KG
W
I
MODE
1 IDLE
a as PCT T
3 SS »CT T
» as PCT T
s in °CT T
b as Prr T
7 1(1 PCT T
B as PCT T
1 C.T.
1 IOIE
S 81 BCT T
3 55 PCT T
i as PCT T
s 10 PCT T
b as PCT r
7 1o PCT T
a as PCT T
1 C.T.
CONCENTRATION AS MF'S'JREP
HC-FIO
3520
am
son
1*0
isn
isn
soo
em
131*0
nan
3bn
sin
aio
IbO
IbO
isn
im
laeoo
CO
.ias
.at.3
.ma
.abl
.HB3
.inn
.287
.?75
.151
,ian
.a"
.381
.IPS
.5*0
.as1'
i.aio
.275
.151
COP
11.1?
13. 13
11.51
li. na
13.13
13. 13
11.51
11.0"
l.bl
11. on
13.1?
11.31
11.08
J3.13
11. np
1*. P3
11. 0«
l.ht
NOX-CL
11
••10
1SP7
blO
275
blO
?OSb
b0S
?1
13
hlO
IS?7
SRn
P70
5*0
l7Pb
SB5
ai
TnTAL
CARBON
Il.b31
11. ?an
11.199
J1.?bJ
11.131
]1.?17
11.PB1
l-f.371)
1 !.?•>»
11. SS?
11.?»b
l*.8*n
IH.tp"
1»."»8H
1H.337
15.579
l1*.^?!
11. fS
FUEL
6/HP
17b9
ID*?!!
1H9J3
1R297
7938
10387
?osoa
loanb
17b9
17b<»
10133
1»R7R
inanb
807-*
103*8
?0»S7
ioaob
17b9
CALCULATED G/HR
HC
59
an
57
13
in
ia
78
17
pan
bh
3n
b?
17
in
13
1»3
11
aai
CO
39
31?
807
381
537
Ml
son
395
sn
37
•»07
787
"»b»
bo7
319
33*0
315
51
NOX
a
1»0
»73
13b
»7
131
88a
13»
1
P
131
»77
ias
•»7
133
731
ias
1
WT.
FACT.
.asa
.077
.1»7
.077
.057
.077
.113
.077
.1»3
.?3?
.077
.I*?
.077
.057
.077
.113
.077
.1*3
WEIGHTED G/HR
HC-FIO
13.7
1.5
B.3
i.n
.b
1.0
8.9
1.3
sa.t
1S.»
a. 3
1.0
1.3
.b
1.0
lb.1
.1
31.5
CO
9
30
111
S9
31
3»
10
30
7
1
31
lib
3b
35
37
3?a
30
7
NOX-CL
.5
10.8
bl.b
10.5
a. '
10.7
11.7
10.3
.1
.5
10.7
70.1
1.8
a. 7
10. e
aa.b
10.0
.1
CKW
0.0
17.7
38.7
17.7
7.1
17.7
b3.S
1'.7
n.o
o.n
17.7
38. b
17.7
7.1
17.7
b3.»
17.7
0.0
VAC.
MM
11*
351
aai
351
»a7
353
71
351
blO
VI*
353
aai
351
•»B7
353
71
353
blO
----UNITS AS
MODE MV CHP
1 IDLE lb.3
a as PCT T 13. «
3 55 PCT T 8.7
1 as PCT T 13. B
5 10 PCT T Ib.B
fa as PCT T 13.9
7 1o PfT T a.B
B as PCT T t3.n
i C.T. ?.».n
1 IOLE lb.3
a PS PCT r 13.1
3 55 PCT T B.7
i as PCT T 13.8
S in PCT T ih.B
b as PCT T 13.1
7 in PCT T P.B
8 as PCT T 13.1
i C.T. a».n
o.n
as. 7
51.1
a3. 7
t,b
?3. ~>
85.1
?3. 7
n.n
n.n
?3. 7
SJ.B
P3.7
23.7
85.11
P3.7
n.n
1PFPTFTFD TN THP 7— 11— 7C aonrf rtllor___.. or»>
"~ci*Jrit" l "i i n t * 1 1 f
CTQ FC BSFC
n
b?
13b
b?
as
b?
??3
b?
n
n
b?
13b
b?
;>5
b?
?P3
b?
n
SUM — — ~( COMPOS I TE VAl IIF F(1
S(IH~»*( COMPOST TE VM UE ^fl
Tun CYCLE COHPOSITF -
3.1
P3.1
32.1
pp. 7
17.5
••s.'a
=>a.5
3.1
3.1
P3.n
32. B
?a.s
17. »
2?.B
??!s
3]l
"^ CYCLE
iff r vn F
rfT U T '• L t
HC-
ro-
NOX-
R
.175
,b3»
.151
1 .H?7
. 1h7
.53)
.151
w
R
.17?
,b33
.151
.1b3
,53n
]lSl
R
FTO n.?5
NOIH n.ss
Cl. 0.351
J f- r* \f\^ dl/Un
B3NOX
R
b.O
1.2
S.B
s.n
5.1
10.1
5.7
a
R
5 .1
1.3
S.I
s>
fl.b
5.5
R
t 3.7)
r PI. i)
r n. b)
F/A
.053
.Obi
,0b7
.ObS
.nhi
.nb7
.ObS
.052
,ns3
.nbi
.Ob7
.ObS
.nbs
.Obi
iobS
.05?
«• n.
+ 0.
* n.
or i.
KC/KN HR RPM
R
.513
,38fa
.583
1.111
.588
.323
.S7B
R
R
.511
.3R5
.578
1.13?
.S8b
.383
.578
R
b5( »
b5( 35
bSf in
HC +
bOO
aooo
aooo
aooo
2000
aoon
anon
aooo
aoon
bno
anno
aooo
anno
aooo
aooo
anoo
aooo
aono
.?) =
.7) =
.b) =
NOX -
3FC =
r Al r
CALC
18.8
iS.b
is!s
15.1
15. b
15.0
15.5
11.1
18.1
15. b
15.0
15.1
15.3
15.5
isis
11.?
i.nifl
30.311
10.13b
11.171
.171
HC
11.8
a. a
12.0
!B
la.'a
1.1
17. b
11.7
a.i
11. b
1.7
.7
1.3
ao.b
1.1
10.1
37
. f
1 . ?
G/KW
G/KM
G/KH
G/KW
KG/KM
CO NOX FUEL
a.i
7.1
31.3
7.7
B.I
1.0
S3. B
B.O
1.1
1.3
1.7
17.5
sia
Sbil
ill
HR
HR
HR
HR
HR
.a
5.0
I.4
1.3
5.0
lb.1
1.8
.1
.i
5.1
35. b
5.0
1.1
s. a
ia.o
5.1
.1
11 i>
1 1 . b
In &•
IP. b
( 3.011
(aa.bas
C B.155
Ol.lbb
( .77*
1.7
1.2
ai.i
1.0
S.J
1.1
ab.3
8.1
1.7
i!i
ai.i
B.I
s.a
1.1
?b.3
8.9
2.9
BS)
BS)
BS5
BS)
BS)
POMER
o.n
7.3
30.1
7.3
2.2
7.3
38.3
7.3
0.0
0.0
7.3
30.1
7.3
a. a
7.3
38. 3
7.3
0.0
-------
TAnLE B-J9. MASS EMISSIONS RY NINF-MODE EPA - METRIC UNITS
ENGINE-ni
CHEVROLET 35n-CID HD ENGINE --- PROJECT 1
TEST-inf RUN-nl BASELINE RF.PF.AT os-?"!-?!, K= 1.059 HUMs 13.8 6/KG
MODE
1 IDLE
2 35 PCT
3 55 PCT
1 25 PCT
5 in PCT
b 25 PCT
7 9n PCT
8 35 PCT
S C.T.
I IDLE
3 35 PCT
3 55 PCT
1 35 PCT
5 10 PCT
b 25 PCT
7 9n PCT
8 25 PCT
1 C.T.
CONCENTRATION
HC-FID co
T
T
T
T
T
T
T
T
T
T
T
T
T
T
3nn
530
inn
I7n
l"o
bnn
130
I313n
2280
310
510
3on
iBn
i"n
bnn
HO
1"720
,15b
.387
.15b
. 300
. Sb9
.337
.511
.300
.aib
,55»
.375
.ISb
.393
.510
.337
.511
.337
.237
AS MF*SIIRED
CO? NOX-CL
13.53
11.23
11.39
11.33
11.33
l».7o
11.33
11. 2»
13.07
11.08
11.51
11.33
11. OR
11.33
11.51
11.3?
11.00
19
510
11R3
190
335
19(J
1 7b5
525
21
51
I9n
I3n>
sin
315
520
iBn?
510
21
TOTAL
CARBON
13
11
15
11
11
15
11
12
1 3
1*
15
1 *
11
11
IS
11
.351
.55)
.nst.
.710
.RIP
.5R8
.279
.511
.907
."81
.391
.057
.Sib
.bin
.5BR
.119
.583
FUFL
G/HR
10133
8310
10133
193SB
10387
17h9
18)1
10*33
117R7
10387
BlhS
1 ni33
19323
10387
CALCULATED G/HR
HC CO NOX
38
35
hn
15
11
IS
87
11
199
31
3B
bO
lb
11
15
87
11
12.853 I7b9 331
13b
135
910
h3b
187
1308
132
hO
lib
103
901
133
boB
187
1319
185
b3
3
131
132
Ifa
123
787
132
1
2
135
117
138
IB
13)
813
135
1
WT.
FACT.
.332
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
WEIGHTED G/HH
HC-FIO CO NOX-CL
B.B
ts'.a
1.1
.b
1.1
9.8
.8
28.1
7.8
2.1
8.1
1.2
.b
l.l
.q
33.0
33
33
3b
37
118
33
1
31
31
133
33
35
37
119
37
9
.5
10.1
bO.1
3^b
9.5
88.9
10.1
.1
.5
bl.3
1.1
2J7
10.1
H.7
10.1
.1
CKH
0.0
17. Q
38.2
17.0
b.8
17.0
bn.5
17.0
0.0
0.0
17.0
38.2
17.0
b.8
17.0
bO. 7
17.0
0.0
VAC.
MM
218
119
315
b3
313
blS
117
315
218
315
315
b3
313
blS
(33
t\J
o
- — --IIUTTC A« aOEfT
MODE
i IDLE
3 35 PCT T
3 55 °CT T
1 35 PCT T
s in PCT T
b 25 PCT T
7 9n PCT T
8 35 PCT T
9 C.T.
1 IDLE
3 35 PCI T
3 55 PCT T
1 25 PCT T
5 10 PCT T
b 35 PCT T
7 90 PCT T
8 35 PCT T
1 C.T.
3(jf_, ^ ,inr P*J
MV CHP
17.5
13.5
8.b
I3.b
lb.5
13. b
3.5
13.5
21.2
17. b
13. b
".h
13. ">
lb.5
13. b
2.5
13.5
31.2
0.0
22. B
5] .3
3?.B
1.1
23. R
81.2
33.1
n.n
n.n
23.9
51.3
??,8
1.1
33. 1
81.3
32.''
n.n
uone T Tc i
SUM /•rnuDnflTTc i
TWO CYCLE
COMPOSITE -
CTfJ
n
hn
131
bn
21
bn
213
hn
n
n
bo
135
bn
31
bn
311
bO
0
j Ai ur
• *L''t
J AI IIP
If « i u C
FTFft TN THE* 7— 11— ?S BDnrtFnllBe-____ 9fr.
rjcil I** 'nt "AJL'3
FC BSFC
1.0
33.5
32.8
23.0
18.1
33.0
13.7
22.9
3.9
1.0
23.0
32. b
22.1
ifl.n
23. n
12. b
22.9
3.9
Fnp r vri r
~ ijn L T LL t
Koo CvCLF
HC-
CO-
R
l.nsn
.1,11
1.008
1.983
i.no»
.53b
1.002
r>
R
i .nob
.b3b
1.003
1.9b9
l.nnb
.521
1 ,nn3
p
FID n.35(
HOIH O.35(
NOX-CL t>.35(
r r> UVC.
BSNOX
R
5.8
8.1
S.I
5.1
5.5
9.8
5.1
R
R
5.5
".3
5.7
5>
10. I
b.O
R
3
37
in
l*w^t
F/A
.nho
.nb5
.ObB
.Obb
.Ob7
.Obb
.Ob9
.Ob5
. nbo
.Ob3
!ob5
.nb"
.nh5
iobh
.nhb
.OhB
.Obb
.n59
.1) * n
,b> + n
.8) » n
or L
KG/KN HR
R
.b27
.390
.b!3
1.20b
.b!3
.320
.b09
R
R
,b!2
.387
.bin
1.198
."•IB
.319
.bQ9
R
.h5( 3
.b5( 37
.b5( 11
HC +
RPH
bOO
3000
2000
2000
3000
2000
2000
2000
2000
ban
2000
3000
2000
3000
2000
2000
2000
3onn
.b) =
.9) =
.n) =
NOX =
SFC =
f> A I r
C *LC
A/F
Ib.b
IS. 3
11.8
15.1
15.0
15.3
11. b
15.3
Ib.B
15.9
15.1
11.8
15.3
15.3
15.3
H.7
15.3
Ib.B
3.5bn
?7.S3h
10.935
11.185
.182
HC
11.1
3.1
11.3
1.8
1.0
1.8
lb.0
1.3
1b.3
13.1
3.3
13.8
1.1
1.0
1.7
15.3
1.3
19.5
3*
* T
3f
• **
G/KW
G/KW
G/KW
G/KW
KG/KW
CO
5.9
b.7
27.2
?!i
7.b
30.0
b.8
1.7
b.8
h.2
2b.7
7^0
.7.5
29.9
7.5
1.8
30
C a
yo
CD
HR
HR
HP
HP
HR
NOX FUEL
.3 1.8
5.3 9.1
31.5 2S.O
1.1 1.3
1.1 5.1
1.1 9.3
lb.1 35.0
5.3 9.1
.1 2.9
.3 1.8
1.1 1.2
31.2 25.0
5.0 9.2
l.» 5.3
5.1 9.2
1b.7 35.1
5.3 9.3
.1 3.1
In H
1 U * B
Uri
* u
( 2.bS1 BS)
(20.750 83)
( 8.117 BS)
(10.801 BS)
( .793 BS)
POKER
0.0
7.3
31.0
7.3
2.1
7.2
37.8
7.3
0.0
0.0
7.3
31.0
7.3
2.1
7.2
37.8
7.3
0.0
-------
TABLE B-ZO. Htss FMTSSTONS
NINF-MODE EPA - METRIC
ENGtMF-ol TEST-inq RUN-02
1175 CHEVROLET 35n-CID HO F.NGINE---PROJECT 11-H3U
BASELINE REPFAT os-2s-?b KS I.OSH HUM=
IS.b G/KG
CONCENTRATION AS HfASORFD
MODE
1 I OLE
2 25 PCT T
3 55 PCT T
» as PCT T
s in PCT T
b 25 PCT T
7 So PCT T
8 25 PCT T
"» C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
» 25 PCT T
s in PCT T
b 25 PCT T
7 In PCT T
B 25 P«~T T
1 C.T.
HC-FID
lain
2*0
5?0
i"n
2nn
IbO
Sbn
150
1H720
sano
320
5Bo
2no
1"0
2nn
570
I7n
153SO
en
.771
.37S
.5HO
.37b
.b!3
.350
.»»1
.350
.317
.51"
.3h3
.511
.3b3
,5b1
.350
."Hi
.337
.325
CO?
12.79
lt.?3
l».7o
Jt.31
i».nB
It. 3"
l».7o
1».31
11. »8
12.71
J».23
lt.5»
l«t.31
1».OB
1H.23
l».7n
1H.31
11. »B
NOX-CL
52
520
12*2
550
250
5*0
JBIB
5b5
25
53
555
1230
530
2»0
550
1717
5h5
25
TOTAL
CARBON
13.7b1
I».b33
15. ft*
1».7B7
it.7ib
1H.759
15.312
1».7S7
n.^So
13. b3?
!H.b21
IS. 117
I1*. 775
IH.bbl
H.bO?
is.211*
t».7»b
13.508
FUEL
G/HR
172*
io»78
1»B78
10*33
8lb5
103«7
113bR
103B7
Ib7fl
172»
10»7B
1»7»2
10387
am
10387
l'«278
I03»2
172»
CALCULATED G/HR
HC
25
20
SB
IS
13
13
81
12
20»
31
?l>
(,»
lb
11
lb
82
1»
217
CO
l^S
5H3
10bO
535
b«7
»fl7
1151
•H7
as
153
525
1157
515
b3b
503
11»B
»78
8*
NOX
2
13*
«35
KO
SO
137
833
1»3
1
2
1»3
*2<»
13*
*8
1»1
811
1»3
1
WT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.na
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
WEIGHTED G/HR
HC-FID
s.s
1.5
B.S
1.2
.7
1.0
1.2
."»
2".l
7.3
2.P
•».»
1.2
.b
1.2
1.3
1.0
31.1
cn
»s
»2
I5b
•n
31
38
130
38
12
35
»0
170
to
3fa
31
130
37
12
NOx-CL
.5
10.3
<»3.1
10.7
2.8
10. S
•»•».!
11.0
.8
.b
11.0
b3.1
10.3
2.7
10.8
12. b
11.0
.8
CKW
0.0
17.1
38. »
17.1
b.8
17.1
bO. 8
17.1
0.0
0.0
17.1
3B'.»
17.1
b.8
17.1
bO.1
17.1
0.0
VAC.
MM
tH7
3»3
218
3>»3
>»11
3»S
bb
3»S
blS
t»t
3H3
218
3»3
•»22
3"»3
bb
3»3
b20
W
MODE
MV
AS SPECIFIED IN
CHP CTU FC
7-11-75
BSFC HSNOX
F/A
SFC
KG/KH HR RPH
A/F
HC
-PERCENT OF TOTAL--
CO NOX FUEL
POKER
1 IDLE
2 25 PCT T
3 55 PCT T
•• 25 PCT T
5 10 PCT T
b 25 Pf.T T
7 10 PCT T
B 25 PCT T
1 C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
» 25 PCT T
s in PCT T
b 25 PCT T
7 10 PCT T
8 25 PCT T
1 C.T.
SOf
TWO CYCLE
17. b
13.5
B.b
13.5
Ib.S
13. b
2.b
13. b
2*. 2
17.5
13.5
B.b
13.5
Ih.b
13.5
2.b
13.5
?».»
'
0.0
22.1
51.5
32.1
1.2
22.1
R! .b
22.1
0.0
n.o
si!s
22.1
i.e
23.0
BJ.h
23.0
n.o
|P f* C T TC
• DMC T TC
COMPOSITE -
0
bO
135
hn
3*
b|l
21 *
hO
n
n
hn
135
hn
?*
bO
21 *
bO
n
\/ * i i if c no
V *»„ vJt rlJK
V Al L)F F OW
3.8
23.1 1.
32.8
23.0 1.
18.0 1.
22.1
2?.1 .
3.7
3.8
?3. 1 1 .
32JS
17> l!
»2!s ',
22.8
^.8
HC- FID
CO- MOTH
NOX-CL
R
OOB
b37
noi
1b2
11B
52»
11B
q
R
nii7
h3l
IIP
110
117
52)
113
R
0.35f
n.?5(
n. 3i(
R
b.O
B.b
b.2
5.5
h.l
10. »
b.*
R
R
b.*
B.5
b.O
5.3
b.3
10.2
b.3
R
r,
30
11
.Ob2
.Obb
.Obi
.Obb
.Obb
.Obb
.ObS
.Obb
.Ob2
.Ob2
.Obh
.nbB
.nbb
.Obb
.nfab
.nbB
.Obb
.nb?
.31 » n.
.<») + n.
.5) * n.
R
.b!3
.388
.blO
1.113
,b07
.318
.bo7
R
R
.b!3
!b07
1 .18b
,bQ7
.317
.bOf
R
b5( 3
b5( 30
b5( 11
HC »
bOO
2000
2000
2000
2000
2000
2000
2000
2000
bOO
2000
2000
2000
2000
2000
2000
2000
2ono
.5) =
.2) =
.3) =
NOX =
SFC =
lb.0
15.2
l"f .b
15.1
15.1
15.1
IH.b
15.1
lb.1
lb.2
15.2
I'f.b
15.1
15.1
15.2
It .b
15.1
lb.0
3.<«H<*
30.303
11.3B3
It. 827
.»77
10.1
2.b
l*.b
2.0
1.8
1.7
15. B
l.b
SO.?
11.5
3.2
1».1
1.1
i.n
2.0
1*. 7
l.b
*1.?
3C
. 3
G/KH
G/KW
G/KW
G/KW
KG/KW
8.3
7.7
28.7
7.b
7.2
7.1
21.0
7.1
2.2
b.b
7.5
31. b
7.*
h.7
7.2
21.1
b.8
S.2
30
HR
HR
HR
HP
HR
.3
5.1
31.3
5.3
1.*
5.2
tb.l
S.*
.1
.3
S.H
31.2
S.I
1.3
s.t
»5.8
S.*
.1
Uc
. j
na
. J
( 2.5b8
(22.517
( B.tBg
(11.057
( .78*
».b
l!s
25.2
1.2
5.1
l.j
85.2
1.2
2.8
».b
ils
25.0
1.2
5.3
1.2
25.2
1.2
2.8
88)
BS)
83)
BS)
BS)
0.0
7.2
31.1
7.2
2.1
7.2
37.8
7.2
0.0
0.0
7.2
31.0
7.2
2.1
7.8
37.8
7.2
0.0
-------
TABLE B-21. MASS EMISSIONS BY 33 MODE PROCEDURE
ENGIME-1 TE3T-108 RUN-1 BASELINE CARB. bfa07 1175 CHEV 350
MODE
2
3
*
5
b
7
8
q
10
11
12
13
1*
15
17
IS
20
21
22
23
MODE
1
x
g
3
5
b
7
g
q
10
11
12
13
1*
15
lb
17
18
i q
A ^
20
22
?3
TQ
SPEED N-M
bOO
1200
1200
1200
1200
1300
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.3
57.0
78.3
153.1
22b.l
2*1.2
271.5
30*.*
0.0
0.0
3*0.0
311.5
275.1
25*. h
170.1
83.7
bO.5
2b.7
5.3
0.0
5.3
KM
0
1
3
7
10
28
31
35
38
0
0
83
75
bb
bl
*1
20
15
b
1
0
1
MV FUEL
A/F
DRY CONCENTRATION
MM KG/MR RATIO
*52 1.1
*22 *.S
38b 5.1
330 5.1
305 b.*
118 8.5
bb 10.3
bl 11. 2
*b 12.8
8 1*.B
*57 1.8
58* 1.1
20 30.3
51 28.1
fab 22.1
8b 31.5
231 lb.7
3bl 12.2
311 11.0
*37 1.2
*b7 8.2
*S7 1.7
b30 1.8
' CALCULATED GRAM/HR WT.
HC CO NOX FAC.
37. fa
Ib.S
b.3
12. b
15.5
3*. 7
5*.b
7b.S
13b.l
172.0
3b.5
187.8
21b.O
2b3.1
b8.5
37. b
5*. 3
13.0
5.1
5.7
b.*
2b.2
*15.1
CYCLE COMPOSITE
CORRECTED
1*8
511
13
lib
2b*
358
fa!2
1171
*b1*
800*
lb*
135
20315
ISSSb
1151
718
1273
fa31
*3*
383
501
112
72
HC
CO
NOX
SFC
NOX
2.* .070
12.2 .ObO
20.7 .ObO
*0.2 .050
SB. 3 .030
188.3 .ObO
313. b 0.000
*05.8 .0*0
2b0.3 0.000
2*2.5 0.000
2.3 .070
.5 .120
511.7 .025
*bl.3 .055
lbl.1 .035
120.3 .ObO
503.2 .ObO
1B0.1 0.000
12b.b .ObS
50.5 0.000
3b.* 0.000
2.3 .080
.1 .ObO
lb.5
lb.*
17.5
17.0
Ib.b
lb.0
IS.b
15.0
13.5
12.1
lb.*
lb.1
12.1
12. b
l*.b
1*.1
1*.*
1*.1
15.2
15.3
15.3
Ib.b
17.1
E. UNITS
TQ FC
0
*
18
*2
58
113
Ib7
18*
20b
225
0
0
851
230
20*
188
13b
b2
*S
20
*
0
*
1.135 GRAM/ KW
12.101 GRAM/ KM
10.513 GRAM/ KW
,*b7 KG/ KM
q.81S GRAM/ KW
v
1
11
12
1*
18
Z3
a*
B8
32
«
bb
bl
50
H7
3b
2fa
2*
80
18
3
3
HR
HR
HR
HR
HR
.!
.1
.2
.1
.0
.8
.7
.7
.2
.b
.0
II
.1
.•*
.5
.1
.8
.2
.3
.0
.8
.1
HC
2b10
*15
ISb
280
32fa
Sb*
72*
1011
1722
113b
2b11
bblOS
1711
151b
*Sb
2b2
503
151
faB
11
113
2018
277*3
CO
.525
.87b
.115
.21b
.375
.287
.*02
.771
2.1*0
*.*faO
.518
.*15
5.8*0
*.b10
.b*3
.275
.583
.381
.287
.300
.**2
!231
cue
12.52
12.52
12.52
12.71
13.07
13. *1
13.78
13.13
13.07
11.11
12.52
S.*2
11. bl
12.25
1*.5H
1*.70
l*.8b
1*.5*
1*.31
1*.23
1*.OB
12. bS
8.81
NOX
51
110
155
270
370
120
1572
IblS
112
832
51
11
815
8*fa
1130
1130
1*03
b70
510
2*0
115
52
18
SPECIFIC GRAM/ KW-HR
HC CO NOX
R
2*.bl
2. 00
1.7b
1.57
1.81
1.13
2.**
3.88
*,50
R
R
3.bl
3.*1
1.03
.bl
1.32
.b*
.35
.81
*.1S
. R
322. bl
( 7.*08
(bl.283
( 7.831
( .7b8
( 7.311
R
880. fa
21.7
27.3
3b,8
18. b
21.5
37. b
133.7
201.2
R
R
2*8.1
207.3
21.*
13.0
30.1
31.7
21. B
51. b
381.8
R
Sb.2
BS)
BS)
BS)
BS)
BS)
18.2
fa.b
S.b
5.1
1.8
13.1
13.0
7.*
b.3
R
b.3
b.l
1*.S
15.0
12.2
1.0
8.7
7.8
28.3
R
.7
B-22
-------
TABLE B-22. MASS EMISSIONS BY 23 MODE PROCEDURE
ENGINE-: TEST-108 RIJN-S BASELINE CARS. fab07 1979 CHEV 3SO
MOUE
1
2
3
*
S
b
7
8
9
10
11
13
13
1*
15
Ib
17
18
19
20
21
22
23
MODE
i
2
3
*
5
b
7
8
9
10
11
12
13
1*
15
Ib
17
18
19
30
31
33
33
CYCLE
TGI
SPEED N-M
bOO
1300
1300
1300
1300
1300
1200
1200
1200
1?00
bOO
1300
2300
3300
3300
2300
3300
£300
2300
2300
2300
bOO
2300
0.
5.
2*.
55.
78.
151.
337.
251.
279.
299.
0.
1.
33b.
313.
377.
25*.
Ib9.
85.
bO.
28.
7.
0.
7.
0
3
9
2
3
3
9
0
S
1
0
B
S
3
7
b
1
*
5
S
1
0
1
KW
0
1
3
7
10
19
29
32
35
38
0
0
81
75
b?
bl
*1
21
IS
7
3
0
2
MV FUEL A/F
MM KG/HR RATIO
*b2
"23
381
3*5
305
303
71
bl
*1
8
*b2
58*
20
*b
bb
81
339
3bl
3Bb
*33
*b2
*57
b30
CALCULATED GRAM/HR
HC
31. b
15.3
l.b
11.9
lb.0
32.7
5*.0
77.*
1*8.1
IbS.l
33.1
9b3.3
31b.2
38b.9
8*. 2
38.9
53.9
1S.S
b.8
2.9
b.*
2b.3
*15.1
COMPOSITE
CO
179
5b*
90
193
2b*
350
531
1130
58b8
7091
Ib2
133
Bohoe
18135
3bSl
8b3
129b
772
509
370
53*
13*
72
HC
NOX
2.1
12.7
20.1
31. fa
58.3
17b.3
3*0. a
*0*.*
301.5
221.8
3.2
.b
*7b.7
35b.l
883.8
922.0
50*. 0
19*. 8
13*. 1
bS.b
37.*
2.2
.1
1.8b7
CO 102. 39b
CORRECTED
NOX
SFC
NOX
1.113
.*b5
1.*80
1.7
*.s
5.0
5.8
b.*
8.3
10.3
11.*
12.9
13.7
1.7
1.1
30. b
28. b
22.8
21.2
Ib.S
12.2
11.0
1.3
8.1
1.7
1.8
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.0*0
0.000
0.000
.070
.130
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
Ib.*
Ib.b
17.3
17.0
Ib.S
lb.0
15.9
15.0
13.3
12.9
Ib.*
lfa.3
12.2
13.3
15.0
1*.5
1*.8
15.1
15.3
15.*
Ib.b
17.9
E. UNITS
TO
0
*
18
*1
58
112
Ib8
185
SOb
221
0
1
2*8
331
305
188
125
b3
*S
31
S
0
5
FC
3.8
1.1
11.0
12.7
l*.o
18.*
22. b
25.2
38.*
30.2
3.7
b?!*
b3.1
50.3
*b.7
3b.3
37.0
2*. 3
30.*
17.1
3.8
3.1
GRAM/ KW HR (
GRAM/ KM HR
DRY CONCENTRATION
HC CO CO*
2*b9 .b9Q
**9 .823
2*b .lib
2b9 ,31b
337 .275
5*1 .287
733 .3b3
999 .733
188b 3.700
3018 *,290
2b*7 ,b*3
b*158 ,*Qg
1810 5.8*0
1738 S.**Q
571 .891
273 .300
502 .598
19* ,*b9
11 .337
*S .287
113 ,*b9
2017 .511
277*3 .239
SPECIFIC GRAM/
HC CO
R R
23. b7 839.7
3. Ob 28.8
1.71 27.8
I.b3 2b.8
1.72 18.*
1.89 18.8
2.*5 35.8
*.22 Ib7.1
*.39 188.7
R R
*30S.b7 5**.b
3.90 25*. 3
3.80 2*0.3
1.3b 39. b
.b3 l*.l
1.32 31.8
.77 37.5
,*7 3*.1
.»2 53.9
3.73 311.3
R R
2*3.02 *2.3
7.358 BS)
12.52
12.38
12. bS
12.79
13.07
13. *9
13. *9
13.93
13.53
12.25
12.53
5.57
11. *8
11.73
1*.S*
1*.5*
1*.70
1*.S*
1*.31
1*.23
13.93
13.53
8.81
KN-HR
NOX
•—
18.9
b.*
5.7
5.9
9.3
11.9
13.8
5.7
b.l
2.7
5.9
*.7
13.3
15.0
12.*
1.5
1.2
l.b
21.8
.5
NOX
*9
113
155
270
370
880
1393
1573
773
8*b
S2
13
822
bSO
1807
19*9
1*15
720
5*0
310
200
52
IB
(7fa.357 BS)
GRAM/ KM HR (
KG/ KW HR (
GRAM/ KW HR (
7.*51 BS)
,7b* BS)
7.0b9 BS)
B-23
-------
TABLE B-23. MASS EMISSIONS BY 33 MODE PROCEDURE
ENGINE-! TEST-108 RUN-3 BASELINE CAR8. bb07 1175 CHEV 350
MODE
1
2
3
H
5
fa
7
8
Q
10
11
12
13
1*
15
Ib
17
18
11
20
21
22
23
MODE
1
2
3
H
5
b
7
8
1
10
11
12
13
1*
15
Ib
17
18
11
30
31
33
33
CYCLE
TU
SPEED N-M
bOO
1300
1200
1200
1200
1200
1300
1300
1300
1300
bOO
1200
3300
33Q.O
3300
3300
3300
3300
3300
3300
3300
bOO
3300
0.0
5.3
3*.1
57.0
78.3
153.1
33b.l
351.0
279.5
311.1
0.0
0.0
33*. 7
311.5
377.7
25b.3
lfal.1
83.7
fao.s
39.5
7.1
0.0
8.1
KM
0
1
3
7
10
28
33
35
38
0
0
81
75
b?
*1
20
15
7
3
0
3
MV FUEL A/F
MM KG/HR RATIO
*b3
*37
381
335
310
118
bb
bl
*b
8
*S7
58*
30
*b
bb
7b
331
3bl
38b
*33
*b3
*S3
b30
CALCULATED GRAM/HR
HC
31.0
17.*
11.1
12.1
17.3
3*.0
Sb.1
83.0
1*7.1
IfaS.I
35.5
1*b.3
30*. fa
385.3
101.1
**.*
bl.O
Ib.S
8.5
5.0
1.0
38.*
**0.7
CO
1*1
7*
133
317
303
373
bOO
1317
5b55
753*
Ib3
131
20bbb
18b?1
3838
1*8
1*53
7fab
5*b
*32
571
118
73
COMPOSITE MC
NOX
3.3
13.3
33.3
38.7
51.0
188.0
37b.l
311.*
311.1
331.3
3.3
.b
*0b.b
301.1
871.*
lib. 8
*87.7
171.7
133.7
b3.2
3b.8
2.3
.8
1.137
CO 10*.*18
NOX
SFC
CORRECTED NOX
l.bbS
.*bb
1.2*0
1.8
*.*
5.3
S.I
fa.*
8.*
10.7
11.5
13.1
l*.l
1.8
1.1
30.*
38.1
32.1
21.5
Ib.b
13.0
10.1
1.3
8.3
1.8
Ib.S
17. b
17. b
lb.1
lfa.5
Ib.?
15.1
15.0
13.3
13.0
Ib.* '
lb.1
13.3
12.3
1*.*
15.0
l*.b
15.0
15.2
15.3
15.*
17.1
1.7 17.7
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.0*0
0.000
0.000
.070
.130
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
GRAM/
GRAM/
GRAM/
KG/
GRAM/
E. UNITS
TO
0
*
18
*a
58
113
Ib7
185
20b
331
0
0
3*7
330
305
181
135
b2
*5
31
5
0
7
KM HR
KM HR
KW HR
KM HR
KM HR
FC
3.S
1.8
11.*
13.1
1*.2
18. b
23.5
25.3
28.8
31.0
3.1
b?!l
b2.0
50.5
*7.5
3b.7
2b.S
2*.0
30.*
18.1
*.o
3.8
DRY CONCENTRATION
HC CO C03
3333
*11
310
3b1
3bO
553
7*5
105b
1831
1113
2b13
b357b
1731
17b3
b85
307
551
305
113
71
151
3011
30*71
.55*
. 10*
.151
.331
.313
.300
.381
.811
3.500
*.*00
.b!3
.*38
5.8*0
5.710
.1*5
.335
.bSI
.*b1
.3b3
.337
.*17
.*1S
.351
SPECIFIC GRAM/
HC
R
35.1*
3.81
l.bS
1.7S
1.77
2.00
3.bQ
*i*1
R
R
3.78
3.80
1.53
.73
1.50
.83
.58
.7*
S.Jfa
R
205.55
CO
R
110.7
*2.1
30.3
30.7
11.*
21.1
**.3
lbl.0
300.5
R
R
2Sb.*
2*8.1
*3.*
IS.*
35.7
38.0
37.5
b3.0
333.7
R
3*. 3
13.53
13.38
13.38
13.71
13.07
13.35
13. *1
13.78
13. 65
11.11
13.53
5.71
11. 3b
11. *8
1*.31
1*,5*
1*.S*
1*.31
1*.23
1*.23
13. S3
13.35
8.b2
KW-HR
NOX
R
11.8
7.1
5.*.
b.O
1.8
13.3
12.7
b.O
fa. 2
R
R
5.0
13.0
1*.8
12.0
8.1
8.5
1.3
31.5
.*
NOX
SO
113
Ib3
2bO
370
130
1*83
15H1
718
833
53
13
bll
575
l?bS
1101
13* fa
b?0
5QO
300
US
SO
Ib
( 7.*10 BS)
(77. 8b* BS)
t
(
7.307 BS)
.7bb B£
1)
( fa. 810 BS)
B-24
-------
ENGTNE-UJ
TABLE B-Z4. STEADY STtTF EMISSIONS BY EPA PPOrF.PUPE - METRIC UNITS
1975 CHFVBOLET 3«;n-CIO HD ENGINF---PROJFCT ll"»3il
TF.ST-107 RUN-POT nc;-i9-7t, BASELINE CA|>B. bb07
K=
HUM =
B.3 G/KG
CONCENTRATION AS MpASUFEr) Tf
MODE
1
2
3
PPM
?Cinn
20(>n
?nnn
HC-FIO
Ib2fi
Ib7n
J7bp
CO CO? NOX-CL C'
5.570 11. »" «»b l~.
5.b»(l 1 l.»8 B?2 1"
5.7)n 1J.»R R?» 11
ITAL FUEL C»IC"L*TFD G/HR
IHROH COM3. HC CO NO?
'.23P 25915 282 Ib935 »?3
'.31? 25591 ?9|) 17103 »10
'.1q» 259» TOTAL FUEL
NPY-CI rAPfON CONS.
h2S 17. "to 2517*
m7 lb.B(U 25220
CALC"LATFO G/H" COROFCTFO G/HR
HC CO NO? HC-FID CO NOX-CL
3(in 175B2
30(1 1M17
31h 300.1
1 7*» 8 ? 925 9
lb«fl? 3*"*.^
VAC.
CKW MM
hS.2 8
b».5 IS
MOPF 10 MV THP CTO
1 .3 11 .<; i?»n .
2 .^ 9!.9 ?H|
;IFIFD IN THF 7-11-75 PRO
FC 8*Hr BSfO
SS.1; '.3* 1 q5. 15
OSHOK KSFC
3.3? ,b07
3.51 ,bH5
A/F F/A HC
12. J .OR? H.H8
12. »• .079 t."»7
ro NOX
2»Hib2 HJ71
KH/KW HR
lib?
10 =
-------
ENGINE-?
TABLE B-25. MASS EMISSIONS BV NINE-MODE FTP -METRIC UNITS
TEST-201 RUN-2 CHEV. 350 BASELINE 03-lb-7b K = .B2b HUM
1.7
G/KG
w
MODE
1 IDLE
8 Ib HG
3 10 HG
1 Ib HG
s 11 HG
b Ib HG
7 3 HG
6 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ifa HG
1 C.T.
AVERAGE
CONCENTRATION AS MEASURED TOTAL
HC-FIO CO COZ NOX-CL CARBON
3Sb1 .240 12.21
725 .730 13.70
lllb .170 13.18
155 1.170 13.70
153 .aiO 13.18
3Bb .730 13.18
IHb .170 13.18
387 .850 13.18
2311b .100 10.31
— rvn c mMDfiQTTF TM
33bb .320 12.87
727 .820 13.83
1117 1.3UO 13.83
132 .850 13.83
2b1 .2HO 12.71
120 .730 13.18
1101 .1*0 13.18
387 .110 13.18
117B3 .350 10.53
3351 .350 12. bO
715 .850 13.83
1110 1.170 13.18
151 .710 13.83
217 .210 13.01
13a .730 13.18
lllb 1.000 13.18
101 .850 13.18
11t-5b .380 10.01
PvPl C fflMOnQTTF IU
335* .870 12.17
750 .730 13.18
Il8b 1.200 13.18
155 .110 13.83
ail .210 12.71
132 .730 13.18
1012 .110 13.18
110 .HO 13.18
20311 .HOt) in. 31
c Vf* I c rnMDnciTC TM
b3 12.B07
530 11.503
1875 IS.Obg
b!3 11. lib
113 H.2bS
b25 11.711
2700 I5.0b2
blO 11.8b1
33 13.102
b7 13.527
580 11.723
1750 15.250
SRB 14.723
120 13.U07
bSO 11.752
2?SO 15.030
blO It. 121
37 12.852
b8 13.28b
SOS 11.7bO
1775 I5.2fa1
b38 H.bbS
130 13.275
blO 11.753
2700 15.012
blO 11.871
35 12.13b
73 13.075
510 It. 785
1775 15.211
575 I1*. 785
US 12.171
715 11.753
2750 15.021
blO 11.131
39 12.750
SUM — (COMPOSITE VALUES FOR CYCLES 1 AN
FUEL
G/HR
Ib31
1180
11878
1180
bb23
1180
2U231
1180
18bO
Ib31
1180
11878
1180
bb23
1180
20231
1180
IBbO
Ib31
1180
11878
1180
bb23
1180
20231
1180
IBbO
Ib31
1180
11B78
1180
bb23
1»80
20231
1180
IBbO
FOUR CYCLE COMPOSITE - HC- FID 0.35( 5.7)
.-.. -• •.. . .
CO- NOIR 0.
NOa-CL 0.
35( 58.1)
3S( 15.1)
CALCULATED G/HR
HC CO N02
Ib
17
110
21
21
25
150
25
310
11
17
117
as
11
27
111
25
285
11
51
111
21
12
28
ISO
2b
211
12
18
115
21
15
28
117
2b
218
4 0
+ 0
t 0
b!
Ibl
113b
1502
225
118
2b32
1015
115
78
10b7
25fa2
llOb
217
118
2SSb
lib?
102
87
1103
2301
1032
212
118
2708
1015
115
b8
lib
2357
1171
21b
118
25Sb
Ilb7
118
.bS( 5
.b5( 58
.bS( IS
CORRECTED
3
115
blS
121
17
133
1201
135
2
3
121
Sb7
12b
20
115
1221
135
2
3
10B
571
137
22
117
1202
135
2
3
12b
573
122
11
153
1221
135
2
.b) =
.1) =
.3) =
N02 =
SFC =
WT. WEIGHTED G/HR
FACT. HC-FIO CO N02-CL KH
.232
.077
.117
.077
.057
.077
.113
.077
.113
.S3a
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
S.bOl
58.2bR
15.301
12.b37
.185
10. b
3.7
lb.2
a. 2
1.2
1.1
lb.1
1.1
IH.b
5.1
1.1
3.b
17.2
2.1
.6
2.1
Ib.B
1.1
10.8
5.5
lib
3.1
lb.3
2.3
.7
a.i
lb.1
2.0
12.0
c c
j . 3
1.7
3.7
17.0
2.2
.8
2.1
Ib.b
2.0
12. b
S.b
5.7
5L
• »
G/
G/
G/
G/
KG/
11
71
285
lib
13
73
217
81
Ib
Sb
IB
82
377
85
11
73
2B1
10
IS
bO
20
85
331
71
11
73
30b
B1
Ifa
51
Ib
73
317
11
ia
73
281
10
17
58
58
58
KH HR
KH HR
KM HR
KM HR
KH HR
.fa 0
8.1 IS
10.1 31
10.0 15
1.0 0
10.3 15
13b.l b3
10.1 15
.2 0
15.1
.b 0
1.5 IS
83.3 31
1.7 15
1.2 0
11. 2 15
138.1 b3
10.1 IS
.3 0
ic 3
A 9 « J
.b 0
8.3 IS
81.1 31
10.5 15
1.2 0
11.3 15
135. B b3
10.1 IS
.a o
15 2
* 3 . K
.7 0
1.7 IS
81.2 31
1.1 IS
1.1 0
11.7 15
138.1 b3
10.1 15
.3 0
15 1
* a . ^
15.1
1C 3
A 3 • J
( 1.183 83)
(13.150 BS)
(11.110 83)
( 1.123 BS)
( .718 BS)
HP
0
20
52
20
0
20
85
20
0
0
20
52
20
0
20
85
20
0
0
20
52
20
0
20
85
20
0
0
20
52
20
0
20'
85
20
0
-------
W
I
ENGINE-2
T«:«T TABLE B-26. MASS EMISSIONS BY NINE-MODE FTP -METRIC UNITS
TEST-eoi RUN-3 CHEV. 350 BASELINE O3'lb-7b K « .821, HUH = »'
CONCENTRATION AS MEASURED TOTAL FUEL
MODE HC-FID CO C02 NOX-CL CARBON G/HR
CALCULATED G/HR
HC CO N02
FACT.
7 G/KG
WEIGHTED G/HR
HC-FID CO N02-CL KH
HP
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
5 19 HG
b Ib HG
7 3 HG
8 Ib HG
9 C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
5 19 HG
b Ib HG
7 3 HG
B Ib HG
S C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
s 19 HG
b Ib HG
7 '3 HG
8 Ib HG
* C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
S 19 HG
b Ib HG
7 3 HG
B Ib HG
1 C.T.
2SOb .210 12.17 b8 13.001
80S .blO 13.83 b30 11.520
1227 .7bO 13. S8 1913 I1.8b3
b81 .790 13.83 b2S ll.faSB
359 .350 12.71 135 I3.12b
b3b .790 13.83 blO H.fa81
1211 ,b70 13.83 2850 11.b21
b3b .880 13.83 590 11.771
31287 .130 9,bb 30 13.519
2b93 .41,0 12.71 71 13.1b9
907 ,7bO 13.70 bSO 11.551
1273 .820 13.98 18b3 11.927
718 .850 13. 5b b25 11. IBS
112 .290 12. bO 120 12.939
b80 .7bO 13.70 bBO 11.528
1179 .(,70 13.83 2850 H.blS
b!3 .850 13.70 570 ll.bll
33199 .430 9.35 30 13.130
2t>89 ,»00 12. bO 73 13.2b9
b2» ,7bO 13.83 590 11.b52
1251 .850 13.98 1837 11.S5S
bSg .850 13.70 575 H.blS
318 .350 12.87 110 13.255
bSH .730 13. 5b b70 11.353
1157 .b70 13.83 2900 11. bib
bOl .850 13.70 bSO 11. bin
33528 .130 9.45 30 13.233
2379 .490 12.74 72 I3.4b8
Bib .b70 13.70 bOO 11.152
1158 .820 13.83 1900 11.7bb
b!3 .790 13.83 bOO H.bSl
397 .blO 10.51 220 ll.lSo
578 ,b70 13.83 b50 11.558
1112 .700 13.83 29QO ll.bll
5b8 .820 13.83 hSO 11.707
30719 .490 9.45 31 13.015
AVERAGE SUM— -(COMPOSITE VALUES FOR CYCLES 1 AND 2
AVERAGE SUM— (COMPOSITE VALUES FOR CYCLES 3 Awn »
FOUR CYCLE
Ib31
9480
11878
9480
bb23
9180
20230
9480
mo
Ib31
9480
11878
9180
bfa23
9180
20230
9480
ISbO
Ib31
9480
11878
9180
fab23
9180
20230
9180
18bO
Ib34
9180
1187S
91BO
bb23
9180
20230
9480
COMPOSITE - HC- FID 0.3S( 7.4)
co- NOIR o.3S(
N02-CL 0.35(
17.4)
lb.4)
37
S3
123
11
18
11
Ib8
11
172
33
59
127
19
25
11
Ib3
10
175
33
10
121
15
17
12
IbO
39
171
29
51
117
10
21
38
151
37
439
+ O.b5(
+ 0.bS(
t 0.bS(
bl
801
1537
1030
357
1030
1873
1111
120
113
1000
IbSl
1121
300
1002
1873
1111
123
100
993
1708
1113
353
971
1B73
1111
122
12fj "
888
IbfaS
1030
729
881
1951
10fa8
111
7
19
Ib
CORRECTED
3
137
b3b
131
23
131
1309
12b
1
3
111
bib
13b
20
117
1309
123
1
3
127
bo7
121
23
117
1333
HO
1
3
131
b02
129
43
111
1330
139
1
.0) s
.1) =
.1) =
N02 =
SFC =
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
""""*
.077
.117
.077
.057
.077
.113
.077
.113
• 232
.077
.117
.077
.057
.077
.113
.077
.113
7.1b8
18.509
lb.381
13.531
.18b
8.5
1.0
18.1
3.1
1.0
3.2
19.0
3.1
b7.S
7.1
7.b
l.b
18.7
3.8
1.1
3.1
18.1
3.1
b7.9
7.1
7 7
3.1
18.3
3.5
1.0
3.2
18.1
3.0
b7.4
7.2
b • 7
1.1
17.2
3.0
1.3
2.9
17.1
2.8
b2.8
b.8
7.1
7.0
G/ KM
G/ KH
G/ KH
G/ KH
KG/ KM
14
fa2
22b
79
20
79
212
88
17
Ifa
2b
77
87
17
77
212
8b
18
19
7b
251
8b
20
75
212
8b
17
19
bB
215
79
12
b8
221
82
20
19
17
HR
Hf?
HR
HR
HR
.7
10.5
lo!3
1.3
10.1
117.9
9.7
lb.4
.7
10.8
10. b
10.5
1.2
11.3
118.0
9.5
.2
lb.3
S.8
89.2
1.5
1.3
11.3
150. b
10. B
lb.1
10.1
88.5
s.s
2.5
10.8
150.3
10.7
.2
lb.1
lb.1
lb.4
( 5.315
(3fa.l73
(12.217
(10.09Q
( .800
0
IS
39
IS
0
11
b3
11
0
0
IS
39
15
0
11
b3
11
0
IS
39
15
0
11
b3
11
0
15
39
IS
0
11
b3
11
0
BS)
BS)
BS)
as)
BS)
0
20
52
20
0
19
85
19
0
0
20
52
20
0
19
85
19
0
20
52
20
0
19
85
19
0
0
20
52
20
0
19
85
19
0
-------
TABLE B-27. MASS EMISSIONS ny NINF-MODE EPA - METRIC UNITS
ENGlNE-02 TEST-JOS RUN-OS
1975 CHEVROLET 3SO-CIO MO ENGINE PROJFCT 11-H3U
CHEV. 350 BASELINE 03-29.7b K= ,9bl HUH=
9.1 G/KG
td
to
00
CONCENTRATION
HOOF HC-FID
1 IDLE ?20n
2 25 PCT T H3<1
3 55 PCT T I08n
H as PCT T *2n
5 10 PCT T 2BQ
b 25 PCT T >»nn
7 80 PCT T inhn
8 25 PCT T 38n
8 C.T. 3?0no
1 IOLE ?200
2 25 t>CT T b*0
3 55 PCT T 10RO
» as PCT T HOP
5 in PCT T 320
b 25 PCT T H30
7 8n PCT T linn
8 25 PCT T i»?a
8 C.T. 32000
CO
.320
.b7Q
1.170
.730
.870
. 790
1.300
.820
.HbO
.HUO
.790
1.300
.850
.810
.850
1.370
.850
.HbO
AS MEASURED TOTAL FUEL
C02 NOX-CL CARBON G/HR
12. H7
13.98
13.83
13.83
13. 5b
13.83
13. S3
13.83
9.05
13.01
13.83
13.83
13.83
13. Sb
13.83
13.83
13.83
9.05
b8 I3.03b IRbO
800 I"».b99 9979
1700 15.123 !H9b9
750 IH.bClR 9979
320 I».5b2 71,20
770 I».bb5 9979
S350 15.251 20*1?
720 I*.b93 9979
?R 12.991 Jfll-»
72 J3.b57 18bO
775 1».S93 9979
I7n0 15.253 lH9h9
750 1H.725 9979
3-SO lH.50b 7ban
770 1H.729 9979
2375 15.325 20b8»
720 1H.728 9979
28 1?. 991 1RI*
CALCULATED
HC
35
33
122
33
17
31
Ib?
29
H8t>
3»
»9
121
31
19
33
Ib9
32
»8b
CO
92
919
2339
1007
1025
108b
3515
1125
110
110
108»
2577
llbH
9bb
Ilb3
3735
llt-3
130
G/HR
NOX
3
173
537
Ibt
53
Ib7
100»
iSb
1
3
Ib8
532
Ib2
55
Ibb
1023
15b
1
WT.
FACT.
.232
.077
.1H7
.077
.057
.077
.113
.077
.1H3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
HEIGHTFD
HC-FIO
8.1
2.b
17.8
2.5
2.H
18,3
2.3
b9.S
7.8
3.8
17.8
2.H
1.1
19!l
2.5
b9.S
CO
21
71
78
58
397
87
19
2b
83
379
90
55
90
90
19
G/HR
NOX-CL CKW
.7 0.0
13.3 17. H
78.9 38.0
12. b 17.3
3.0 b.9
12.9 17.3
113. » h2.3
12. P 17.2
.2 0.0
.7 0.0
12.9 17.2
78.3 37.9
12.5 17.3
3.2 b.9
12.8 17. H
115. b ba.7
12.0 17.3
.2 0.0
VAC.
MM
H3H
358
221
3b3
H19
3hb
bl
3bl
•MH
3bB
229
358
373
bl
373
597
-UNITS AS
MODE MV
1 IDLE 17.1
2 25 PCT T I*. I
3 55 PCT T 8.7
» 25 PCT T l*.l
5 10 PCT T lb.5
b 25 PCT T 1H.H
7 9Q PCT T a.H
8 25 PCT T IH.2
8 C.T. ?3.»
1 IDLE 17.1
2 25 PCT T 1H.5
3 55 PCT T 9.0
H 25 PCT T lf.1
5 10 PCT T Ib.b
b 25 PCT T 1H.7
7 80 PCT T 2.«
8 25 PCT T It.'
9 C.T. ?3.5
CHP
0.0
23. H
51.0
23.?
".2
23.2
03. b
23.1
0.0
n.o
23.1
50.8
23.2
9. 3
23.3
8». 1
23.?
0.0
SUM— — — frnMPn^TTF
•Tt'^1 \.LI.'P1~U*>1 I p.
SUM--- (COMPOSITE
T*0 CYCLE COMPOSITE -
SPECIFIED IN THE 7-11-75 PROCEDURE----
CTQ FC BSFC BSNOX F/A
0
bl
133
bl
?5
bl
21 7
bl
0
0
bl
133
h?
?5
b?
218
h?
0
V A( UF FOR
VALUE FOH
H.I R P
?2.0 .9"»0 7.b
33.0 .bH7 in. 8
22.0 .9HR 7.2
lb.8 1.819 S.9
22. 0 .9HR 7.1
H5.0 .538 12.3
22.0 .953 b.9
H.O R R
H.I R R
??.n .95? 7.i»
33.0 .b5n lo.«
?2.0 .918 7.2
Jh.B 1.813 b.l
22.0 .9*5 7.3
H5.b ,5H? 12.5
22. n .S»9 b.**
4.0 R R
HC- Fin n.3>;( b.91
CO- NftTR 0.35( bH.5)
NOX-CL 0.35( 13.81
.059
.nbb
.ObR
.Obb
.Obb
.Obb
,0b9
.Ohb
,0b2
.Clb2
.nbb
.Ob9
.Obb
.Obb
.nbb
.Ob9
.Obb
.Oh2
+ n.
+ n.
+ n.
8FC
KG/KH
R
.572
1577
1.107
.577
.328
.580
R
R
.579
^577
1.103
.575
.330
.577
R
b5(
b5(
bS(
HC
HR RPH
hOO
2000
2012
1987
1975
1987
2025
1975
1987
587
1975
2000
1975
1975
1987
2025
1975
1987
7.1) =
70.0) =
13.9) =
+ Nnx =
SFC =
1. *•*. W
A/F
lb.9
15.1
is!2
15.2
15.1
M.S
15.1
lb.2
lb.2
15.1
15.0
15.3
15.0
1*.H
15.0
lb.2
7. nab
bR.OB7
13.837
20.Rb3
,t7S
HC
b.5
2.1
2.0
.8
1H. 7
K8
55.9
b.2
3.0
1^9
.9
2.0
15.1
2.0
55.0
"
b.9
7t
. I
G/KH
G/KH
G/KW
G/KH
KG/KH
CO NOX FUEL
1.8
b.l
29.7
b.7
5.0
7.2
3».3
7.5
l.b
2.0
b.7
30.3
7.2
7JS
33.7
7.2
1.5
b5
HR
.HP .
HR
HP
HR
.3 5.0
5.1 8.8
31.9 25.3
5.1 R.8
1.8 5.0
5.2 B.8
H5.9 ab.S
H.9 8.8
.1 3.0
.3 H.9
5.2 B.B
31.5 25.2
5.0 8.8
1.3 5.0
5.2 R.B
Hb.b 2b.B
H.B 8.8
.1 3.0
. . _--..
13.8
13 Q
13. "1
( S.239 BS)
(50.772 BS)
(10.318 nS)
(15.557 BS)
( .781 BS)
POKER
0.0
7.3
30.5
7.3
2.1
7.3
38. H
7.2
0.0
0.0
7.2
30.3
7.3
2.1
7.3
38. b
7.2
0.0
-------
T*BIF. B-Z8. MASS EMISSIONS PY NINE-MODE EPA - METRIC UNITS
ENGINE.0? TEST-ans RUN-03
J175 CHEVROLET 350-CIO HD ENGINE PROJECT H-H311
CHEV. 350 BASELINE n3-21-7b K= 1.008 HUHs 11.1 G/KG
CONCENTRATION
MODE HC-FID CO
1 IDLE 23aO .350
2 25 PCT T 18n .730
3 55 PCT T 1010 1.300
i 25 PCT T i3o ,b?n
S 10 PCT T 320 .170
b 25 PCT T tin .730
7 1o PCT T llbn 1.570
8 25 PCT T 110 .710
1 C.T. 30720 .130
1 IDLE 2100 .350
2 as PCT T 700 .7bn
3 55 PCT T 1180 1.370
1 25 PCT T 130 .730
s in PCT T iao i.oio
b ?5 PCT T ISO .730
7 io PCT T i2an i.bsn
8 as PCT T 1«0 .830
1 C.T. 2H»n .130
AS MEASURED TOTAL
C02 NOX-CL CARflON
12.71
i». la
13.83
11.12
13. Sb
13i70
it. ia
1.21
12.71
If . U
13.83
i*. la
13.70
If .12
13.83
if . ia
1.15
70 13.350
780 11.105
IbSO I5.2f1
7BO 11.831
310 If.Sbb
750 11.817
2150 lS.fn2
710 ll.lbO
32 13.017
bl 13.351
810 ii.ibo
Ibb2 15.335
8)0 11.811
330 11.788
8nO 11.105
?lh2 IS.bSn
810 15.005
32 13.013
FUEL
G/HR
18bO
1971
)11b1
1171
7b20
1171
1171
1811
18bO
1171
Lllbl
1171
7b?0
1171
anbfli
1171
1811
CALCULATED
HC CO
3h
37
lib
33
11
31
178
33
Ibb
37
53
131
33
as
37
181
3b
115
18
187
2578
1)0
loas
188
lObt
iai
IB
1021
2701
188
1083
187
1185
1115
ian
G/HR
NOX
3
175
5f 2
17b
bO
IbB
Ibb
17b
1
3
181
513
182
57
171
157
180
1
FACT!
• a32
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
WEIGHTED
HC-FIO CO
8.1
a.B
17.1
2.5
1.1
Z.
20.
2.
bb.
8.
n!
2.5
a!»
ao.8
a. 8
fa3.7
23
7b
371
70
58
7b
82
17
23
71
317
7b
b2
7b
507
8b
17
G/HR
NOX-CL CKH
.8 0.0
13.5 lb.8
71.7 37.1
13.5 lb.1
3.» b.7
12.1 17.0
101.2 bl.1
13. t> 17.0
.a n.o
.7 0.0
13.1 17.0
71.8 37.3
11.0 17.0
3.2 b.8
13.8 17.0
108.1 bl.b
13.1 lb.1
.2 0.0
VAC.
MM
152
3bb
231
3b8
13t
bl
3b8
bl7
ttl
3bb
aai
358
373
bl
373
b!7
..-.UNITS AS
MODE MV CHP
1 IDLE 17.8 n.U
2 as PCI T 11.1 ?a.s
3 55 PCT T 1.1 11.7
f as PCT T ii.s 22.7
S 10 PCT T 17.1 1.0
b 25 PCT T 15. n 22.7
7 1o PCT T 2.» 83.1)
B as PCT T ii.s aa.s
1 C.T. ?t. 3 0.0
1 IDLE 17.5 o.i)
a i"i PCT T 11.1 ??.3
3 55 PCT T 1.0 50. 0
» as PCT T i». i 22.8
5 in PCT T lb.8 1.1
b 25 PCT T 11.7 ?2.R
7 m PCT T 2.1 Ba.b
B as PCT T 11.7 22.7
1 C.T. 21.3 'o"n
StIH — — . ( rrtMPn^ T rr v
SPECIFIED IN THE 7-11-75 PDnrcnllDr_.__ err-
CTO FC BSFC
0
bn
121
bn
at
bn
2U
bn
n
n
bn
1 ?n
bn
at
bn
?i?
bn
n
• 1 HC C !->(_>
•T u >n ^Ut'T^ilolIt •»l_"1 rifn
SUM... (TOMPQST IE VAI MF FOH
TWO CYCLE COMPOSITE -
1.1 R
aa.o .177
33.0 .bbf
22.0 .Ibl
Ib.B 1.87?
aa.o .ib7
15. b .511
?a.o .IBS
1.0 p
1.1 P
?a.n .ih5
33.0 .bbn
aa.o .ibs
lb.8 J.812
aa.o .ibs
15. b .55?
220 .171
1.0 R
HC- Fin n.35(
CO- NDJH 0.15(
NOX-CL 0. 35(
i ••>v\.k.wwr
RSNOX
R
7.7
10.8
7.7
7. f
11. b
7.7
R
R
7.1
in.R
7.1
b.2
7.8
11. b
7.1
*R
b.81
bl.7)
13. b)
C.
F/A
.Obi
.Ob7
.Obi
.Ob7
.Obb
,0b7
,n7o
.0*t7
.Oh2
. Ubl
.Ob7
.Obi
,nb7
.Ob7
.nb7
.071
nip
.nba
+ n.
+ ii.
+ n.
KG/KW HR RPM
R
.511
!sio
1.131
.588
.331
.587
R
R
.587
]S87
1.120
.587
,33b
R
b5( 7
b5( 73
•-5( 13
HC +
bon
1187
2025
aoon
aooo
aoba
20OO
2000
575
aoon
aoas
aoon
aoon
2000
anso
aooo
.0) =
.1) =
.7) =
NOX =
SFC =
r 4i r
L *LL
A/F
Ib.S
11.1
1».S
15.0
15.2
11J3
11.8
lb.2
lb.5
It .8
11. f
11.9
15. 0
11.1
It .1
11 R
i ~ . o
lb.1
b.911
7K88S
13.bb3
ao.saa
.181
HC
b.e
a. 3
13.8
a.n
.1
1.1
2.1
53.1
b.1
3.2
15.3
a.o
1.1
a.a
lb.5
?P
• C
50. 5
b • 8
711
• '*
G/KW
G/KW
G/KW
G/KW
KG/KW
CO NOX FUEL
1.8
b.n
30.0
5.5
b.O
b.S
1.7
b.O
3n.o
5.8
si?
38.3
he
• 3
1.3
70
f ^
r 3
HR
HP
HR
HR
HR
.3 1.1
5.5 8.8
32.3 25.?
5.5 8.8
I.* 5.0
s.e B.B
it.3 ab.a
5.5 8.8
.1 3.0
.3 f .q
S.b 8.8
32.2 25. 2
S.b 8.8
1.3 S.o
S.b 8.8
13. b 2b.8
.1 3.0
1 3 . b
n5
. f
( s.ibn BS)
(S3.b01 PS)
(10.188 BS)
(15.318 BS)
( .71b S3)
POHER
0.0
7.e
30.2
7. a
2.1
7. a
38.8
7.3
O.D
0.0
7.3
30. t
7.3
a.i
7.3
38.5
0.0
-------
TABLE B-29. MASS EMISSIONS BY 23 HOPE PROCEDURE
ENGINE-2 TEST-203 RUN-1 CHEV. 350 BASELINE
03-lB-?b
MODE
1
2
3
t
5
b
7
a
q
10
11
18
13
It
IS
Jb
17
18
iq
20
SI
22
23
TQ
SPEED N-M
too
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
S.t
2t.t
St. 2
75.9
151. 9
22b.t
2th. 8
27b.h
301.0
0.0
0.0
3tt.4
311.8
271.2
2S2.2
Ib9.5
8h.8
59.7
27.1
b.8
0.0
0.0
MV FUEL
KH
0
I
3
7
10
19
28
31
35
39
0
0
83
75
bS
bl
tl
21
it
7
2
0
0
A/F
MM KG/HR RATIO
t37
t!7
39b
353
328
229
8b
b3
Sb
5
tS7
Sb9
S
58
lot
It2
2fa7
373
til
tS2
t78
tt7
blS
CALCULATED GRAMYHR
MODE
1
2
3
t
5
b
7
B
q
10
11
12
13
It
IS
Ib
17
13
iq
20
21
22
23
CYCLE
HC
tO. 5
9.1
8.3
11 , t
21. t
51. t
b5.7
77. S
llb.b
193.0
32.9
831.1
325.3
175.5
13t.2
135. 0
107.7
31.2
18.3
t7.7
32.7
29. t
b77.3
COMPOSITE
CORRECTED
CO
119
IBt
2tO
32t
tt2
870
faOt
7t2
2t9S
87bO
202
131
208bQ
5920
3312
32b8
3522
Itt3
1153
1192
855
118
lib
HC
CO
NOX
SFC
NOX
NOX
2.5
lb.0
20.9
t2.1
b9.t
208.2
t!9.1
t97.3
t57.1
178.2
2.5
.7
313.0
793.5
1023.5
895.2
33b.b
195.5
12b.O
SB.t
28.9
2.5
.b
10.373
87.2fa8
11.135
l.b
t.t
t.9
5.7
b.5
8.5
10.3
11.2
12.0
It.t
l.b
l.b
25.8
2t.t
21. t
20.1
15.7
11.5
10.1
8.5
7.2
l.b
l.S
MT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.OtO
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
lb.2
17.0
lb.9
Ib.S
lb.2
15. t
lb.1
is. q
It.t
12.8
15.9
15. t
11.8
It. 2
It. 5
It.t
It. 2
It. 7
It. 8
It. 8
15.3
lb.1
15.8
E. UNITS
TQ
0
t
18
to
Sb
112
Ib7
182
20t
222
0
0
25t
230
200
IBfa
125
bt
tt
20
5
0
0
FC
3.b
9.7
10.7
12.5
It. 3
18.7
22.7
2t.fa
2b.S
31.7
3.b
3.b
Sb.8
53.7
t7.1
tt.t
at. 7
25.3
22.2
18.7
15.9
3.b
3.3
GRAM/ KM HR
GRAM/ KM HR
GRAM/ KM HR
.t3b KG/ KM HR
10.923
GRAM/ KM HR
DRY
HC
33b7
2b9
22t
270
tso
872
879
970
It82
22t8
2792
fabtsq
22t3
1120
958
102?
10b3
tio
273
8t2
b57
2t75
57927
CONCENTRATION
CO
.t90
.270
.320
.380
.tbO
.730
.too
.tbO
1.570
5.050
.850
.520
7.120
1.870
1.170
1.230
1.720
,9tO
.850
i.oto
.850
,t90
.t9Q
SPECIFIC CRAM/
HC CO
R
13.32
2.71
l.b?
2.2t
2.70
2.31
2.50
3.35
5.10
R
R
3.S2
2.3t
2.05
2.22
2.bt
1. t9
1.28
7.31
20. Ob
R
R
( 7.735
R
270.1
78.2
t7.b
tb.3
tS.b
21.2
23.9
71.8
231. b
R
R
251. S
78.8
50.7
53.8
Sb.3
bS.O
80.2
182. t
523.9
R
R
BS)
C02
12. 7t
12. 7t
12. 7t
13.01
13.lt
13. Sb
13.28
13. tl
13. Sb
11. t7
12. 7t
5.89
10. t2
13. Sb
13,98
13.98
13.70
It. 12
It. 12
13.83
13. Sb
13.01
b.52
KW-HR
NOX
*
23.5
b.8
b.2
7.3
10.9
It. 7
lb.0
13.2
t.7
R
R
3.8
10. b
15.7
It. 7
8.2
9.t
8.8
8.9
17.7
R
R
NOX
b2
113
170
300
tto
10b3
Ib88
187S
1750
b25
bS
Ib
bSO
1525
2200
2050
1000
775
SbS
310
175
bt
IS
f
(bS.07b BS)
( 8.303
( .7lb
( 8. Its
BS)
BS)
BS)
B-30
-------
TABLE B-30. MASS EMISSIONS BY 23 MODE PROCEDURE
ENGINE-2 TE3T-203 RUN-2 CHEV. 350 BASELINE 03-18-7b
MODE
1
2
3
*
5
b
7
8
q
10
11
12
13
1*
15
lb
17
13
20
21
22
23
MODE
1
2
3
*
5
b
7
8
q
10
11
12
13
1*
15
Jb
17
18
11
20
21
22
?3
CYCLE
TIJ
SPEED N-M
bOO
1200
1200
12UO
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.*
2*.*
5*. 2
73.2
151.1
227.8
2*fa.8
273. q
301.0
0.0
n.o
3**.*
311.8
271.3
25*. S
IbH.l
8*.l
b2.*
27.1
b.8
n.o
0.0
KM
Q
1
3
7
q
11
21
31
3*
38
0
0
83
75
b7
bl
*o
20
15
7
2
0
0
MV FUEL
MM KG/HR
**2
*17
31b
353
328
221
8b
b3
5b
S
*57
5h1
S
58
1*2
2b7
373
*11
*52
*78
**7
blS
CALCULATED GRAM/HR
•
HC
3*. 3
15.7
12.8
1*.0
11.0
*2.*
b3.Q
80.8
128. b
115.8
27.7
735.8
335.7
213.0
1*8.8
1*2.2
107. b
28. b
21.0
15.8
12.0
3*.0
b8*.*
COMPOSITE
CO
lib
222
23S
2b1
3bO
82*
5b5
1028
37b*
10818
12*
118
217*1
11725
3281
3070
2173
1182
10S1
1170
103*
111
121
HC
NOX
2.5
15.7
IS. 7
*0.0
b2.1
111.S
310.1
*bb.*
338.8
151. 7
2.*
.b
301.1
113.*
1002. b
105. 7
*31.7
178.2
115. S
55.5
37.3
2.7
.7
10.131
CO 125. 22b
CORRECTED
NOX
SFC
NOX
1.*58
.*2*
1.033
l.b
H.*
t. 7
5.*
b.O
8.0
10.1
10.1
12.1
1H.7
1.5
1.5
2b.O
2*.*
21.2
11.8
15.1
11.1
1.8
8.3
7.8
l.b
1.5
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.0*0
0.000
0.000
.070
.120
.025
.055
.035
.Obtf
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
A/F
RATIO
lb.3
17.2
17.1
lb.1
lb.*
IS.*
lb.1
IS.*
13.1
12.3
lb.0
lb.1
12.0
12. 0
i*!s
1*.3
1*.8
l*!l
is!l
lb.3
15. b
DRY CONCENTRATION
HC CO C02
£. UNITS
TO
0
*
18
*0
S*
112
IbB
182
202
222
0
0
25*
230
aofa
188
12*
b2
*b
20
S
0
0
FC
3.5
1.7
10. »
12.0
13.2
17.7
22.3
2*.0
2b.7
32.5
3.»
3.3
57.3
53.7
•»b.7
3s!*
2*.*
21.7
18.3
17.1
3.b
3.3
GRAM/ KW HR
GRAM/ KM HR
GRAM/ KW HR
KG/ KW HR
GRAM/ KW HR
2118 ,*qo
»S1 .320
353 .320
33b .320
t27 ,*00
751 .730
3Sb .380
lOb* ,b?0
Ib70 2.*20
2212 b.270
2*7b .550
blb77 ,*1Q
22*8 7.210
2112 7.0*0
1072 1.170
1015 1.170
lOlb 1.500
387 .710
311 .710
28* 1.0*0
227 .170
2831 .*bO
Sl30b .520
SPECIFIC GRAM/
HC CO
R R
23. Ob 325.1
t.11 7b.7
2.05 31.*
2.07 3q.l
2.22 *3.2
2.20 11.7
a.bO 33.1
3.7* 101.*
5.18 28b.O
R R
R R
*.OS 2b2.2
3.10 2b2.b
2.21 *8.8
2.32 SQ.O
2.bb 73.*
l.*l 58.*
l.tO 70.0
2.*3 171.2
7.3* b33.S
R R
R R
( 7.555 BS)
(13.381 BS)
( 7.053 BS)
( .b17 BS)
( b.73b BS)
12.
12.
12.
12.
13.
13.
13.
13.
13.
10.
13.
S.
1.
10.
13.
13.
13.
It.
1*.
13.
13.
12.
b.
7*
*7
bO
7*
01
5b
59
Sb
1*
7b
01
81
17
31
18
18
83
12
12
83
70
87
52
NOX
fa3
138
Ib3
210
*20
1075
IfaOO
1850
1325
Sb3
bb
15
b25
2175
2100
1325
725
530
300
213
b7
17
KW-HR
23
b
S
b
10
13
15
q
*
3
2
1*
1*
10
8
7
8
22
NOX
R
.0
.*
.q
.7
.5
.7
.0
.8
.2
R
. 7
.b
• ™
.8
. 7
.8
.7
.5
.1
R
B-31
-------
TABLE B-31. MASS EMISSIONS BY 23 MODE PROCEDURE
ENGINE-2 TEST-203 KUN-3 CHEV. 350 BASELINE 03-18-7b
MODE
1
2
3
4
S
b
7
8
9
in
11
12
13
14
IS
lb
17
18
19
20
21
Si
23
TQ
SPEED N-M
bOO
1200
1200
1200
1200
1200
1?00
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
5.4
23.0
51.5
74. b
149.1
222.4
244.0
273.9
301.0
0.0
0.0
339.Q
BOb. 4
273.9
252.2
IbS.l
8%. 8
59.7
27.1
8.1
0.0
0.0
KW
0
1
3
b
9
19
28
31
34
38
0
0
82
74
bb
bl
40
21
14
7
2
0
0
MV FUEL
MM KG/HR
**7
*17
378
335
325
22*
7b
bl
Sb
3
*b2
Sb*
10
b3
107
1*7
259
353
391
**2
*b2
4*7
blO
CALCULATED GRAM/HR
MODE
1
2
3
4
5
b
7
8
9
10
11
12
13
14
IS
Id
17
J8
19
?0
21
22
23
CYCLE
HC
20.5
11.0
8.7
10.*
17.2
50.2
bl.b
73.2
1*9. 1
207.*
2*.b
7bS.b
370.1
31*. 3
Ib0.2
155. b
117.7
35.9
23.9
lb.1
12.2
30.5
7*0.9
COMPOSITE
CO
190
251
ISO
197
391
8bl
5b7
950
5812
1083b
Ib8
118
20979
183**
312*
2920
30bl
1258
103*
1157
1053
125
120
HC
NOX
1.8
1*.5
lb.2
35.*
59.8
182.2
3*9.8
*lb.l
190.5
178.7
2.*
.b
2b9.*
183. b
875.3
807.2
402.5
170.2
lib.*
'52.9
33.5
2.*
.b
10.7b9
CO 121. bOb
CORRECTED
NOX
SFC
NOX
8.b71
.*35
9.201
1.2
*.3
*.*
5.9
b.l
8.4
10.2
10.9
12.2
15.3
l.b
1.5
2b.l
2*. 3
21.*
19.8
15. b
11.8
10.*
8.8
7.9
l.b
l.b
WT.
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.0*0
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
A/F
RATIO
15.3
lb.8
17.7
17.*
lb.3
15.*
lb.1
15.7
13.3
12.*
15.8
15.5
11.9
12.0
l*.b
1*.7
14.3
14.8
14.9
1*.9
15.1
IS. 7
15.*
DRY CONCENTRATION
HC CO C02
E. UNITS
TQ
0
*
17
38
55
110
lb*
180
202
222
0
0
250
2Sb
202
18b
12*
b*
**
20
fa
0
0
2
9
9
13
13
18
22
2*
27
33
3
3
57
53
*7
43
3*
2b
23
19
17
3
3
PC
.7
.5
.7
.0
.5
.5
.*
.0
.0
.8
.5
.*
.b
.5
.1
.b
.*
.0
.0
.3
.*
.5
.5
GRAM/ KW HR (
GRAM/ KW HR
2397 1.100
33b .380
2*5 .210
223 .210
383 .430
BbO .730
83* .380
9*9 .blO
1975 3.810
2312 5.980
21b* .730
b*478 .*9Q
2509 7.0*0
227* b.S70
1139 1.100
1184 1.100
llbS l.SOQ
455 .790
3*1 .730
273 .970
227 .970
2707 .550
b!33S .490
SPECIFIC GRAM/
HC CO
R R
lb.17 3b9.0
2.99 51.8
l.bO 30.*
1.8* *1.7
2.bB 45.9
2.21 20.3
2.39 31.0
4.33 Ib8.9
5.48 2Bb.S
R R
R R
4.53 257.0
4.2b 2*8.5
2.*3 *7.*
2.5b 48.1
2.91 75. b
1.72 faO.2
l.bb 71.9
2.*7 177.1
b.23 537.2
R R
R R
8.031 BS)
13.01
12.7*
12.21
12. *7
13.1*
13. Sb
13.28
13.41
12.21
10.88
13.01
b.OS
10. *2
10. 7b
13.98
13.83
13.83
14.12
14.12
13.83
13.70
13.28
b.S2
KW-HR
NOX
R
21.2
S.b
s.s
b.*
9.7
12.5
13. b
5.5
*.7
R
R
3.3
2.5
13.3
13.3
9.9
8.1
8.1
8.1
17.1
R
R
NOX
fa3
133
138
230
4QO
940
1*25
IbJS
7bO
bOO
b3
IS
550
*00
1875
1850
1200
bSO
500
270
188
b*
lb
(90.b81 BS)
GRAM/ KW HR (
KG/ KW HR (
GRAM/ KW HR (
b.*bb 93)
.715 BS)
b.8b2 BS)
B-32
-------
ENGINE-?
TABLE B-3Z. STEADY STATE EMISSION* py EPA PROCEDURE - METRIC UNITS
1175 CHEVRDl FT 35n-CIR "0 FWGINF PROJECT 11->»311
TEST-20H RIJN-1 03-19-7b CHEV. 350 BASELINE
HUM= 11.q G/KR
MODE
1
2
3
H
5
b
CONCENTRATION
PP» HC-FID CO
?0(m ?ioo
?7no 980
27r)n 920
11 nn 200
llCHl 17bOO
lion b78tO
7.?10
1 .t 70
1.R7P
.290
.270
.too
AS KpA
cn?
IP. 31
13.83
13. 5b
l?.bn
'.bb
5.7>»
SIIREO TOTAL
NPX-CL C*RnOM
510
1550
7bO
197
35
It
I7.7bt
15. »1?
15.535
1 *.°1?
11. "5?
13.300
FUEL
CONS.
2b9t3
?3t9b
15377
t7b3
8" 12
It97
CALCULATED G,
HC CO
37n
171
lot
8
t5b
80b
??.090
tS27
3739
2] b
129
91
/HR
NO?
257
785
250
?t
3
1
CORRECTED G/HR
HC-FID CO NOX-CL
370.1
170.5
lOt.l
8.3
tSb.O
80S. 3
22090
tCfl?
3739
21b
129
2b3.0
803.5
255.8
2.8
.5
CKW
bB.t
bb.5
31.7
t.t
O.P
o.n
VAC.
MM
15
152
330
3Sb
5bl
MODE
I
2
3
t
5
b
10 MV
.f>
b.O
13.0
it. a
19.0
22.)
UNITS
CHP
91.7
89.?
t?.5
5.9
0.0
P.n
A? SPFflF'pn
CTO
2tl
1 7*
P-3
28
0
0
FC
59. if
51.8
33.1
10.5
b.2
3.3
Ifi THE 7-
p-SHr
t.05
1.9?
2. t7
1 .*!
R
R
PSCO BSNOV
2tl,70
51.20
88. b9
3b.11
R
R
2.81
8.87
5.92
t . 1 1
R
P
BSFC
.b*8
581
.'17
1.77t
R
R
A/F F/A
11.8
It. 3
17.1
18.1
15.0
.085
.070
.071
.058
.055
.Ob7
HC
S.t3
3.31
1.81
R
R
CO
3?t,13
bB.bb
118. 9H
tl.tl
R
*
NOX
3.77
11.90
5.52
R
R
KG/KW
.*9t
.?53
.H85
1.079
P
R
HR
ID =
W
I
u>
CO
ENGINE-2
TFST-20H RUN-2
STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
117<; CHEVROLET mn-CIO HO ENGINE PROJECT ll-»3ll
03-]1-7b CHEV. 350 BASELINE
1.021
CONCENTRATION
MODE
1
2
3
t
5
b
PPM HC-Fin
?onn 3onri
?7pri R
-------
TABLE B-33.HA33 EMISSIONS BY NINE-MODE FTP -METRIC UNITS
TEST-eiO RUN-1 BASELINE CARB. bbOb OS-11-7b K = .871 HUM » b.l G/KG
tt
I
oo
MODE
1 IDLE
2 Ib HG
3 10 HG
1 IK HG
5 It HG
b Ib HG
7 3 HG
B Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
S 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
1 Ib HG
S IS HG
b Ib HG
7 3 HC,
8 Ib HG
S C.T.
AVERAGE
CONCENTRATION AS MEASURED TOTAL
HC-FID CO CO? NOX-CL CARBON
2722 .125 11.31 bb 11.788
727 .510 11.08 370 H.b12
8bS .37b 11.51 I*-*1* 15.002
155 . .«fbl 11.31 170 11. Bib
317 .21b 13.13 1HO If. 177
523 .Ibl 11.39 130 11.103
725 .113 11.23 2177 11.115
501 ,b!3 11.31 IbO 15.053
3*833 .350 1.22 22 13.053
2828 .117 13.07 bB 13.500
133 .b!3 14.23 100 11.13h
ISb .381 11.51 1505 15.021
Sib .b71 11.23 170 11.151
331 .325 13.78 135 11.138
500 .583 11.23 ISO 11.8b3
772 .170 11.31 2230 H.b37
525 .blO 11.51 500 15.283
311bl .350 l.bl 22 I3.13b
IbBB ,13b 13.07 bS 13.375
157 .531 11.51 130 15.175
131 .37b 11.70 1111 IS.lbl
513 .blO 11.31 ISO 15.131
283 .287 13.13 115 H.21b
178 .112 11.51 170 15.030
772 .113 11.31 2115 H.bbO
ISb .b!3 11.51 IbO 15. HI
30701 .337 1.13 21 12.83B
2817 .117 11.51 5b ll.lbl
110 .117 11.31 ISO 11.178
15b .381 11.51 1505 15.021
blS .b13 11.31 ISO 15.015
317 .231 13.13 110 11.201
501 .5b1 11.51 130 15.151
773 .I7b 11.51 2230 11.713
178 .b!3 11.31 180 15.051
30707 .350 1.13 21 12.851
FUEL
G/HR
17b1
8701
13bQB
8701
S80b
8701
IBIbO
8701
Ib33
17b1
8701
13b08
8701
SBOb
8701
IBIbO
B7U1
Ib33
17b1
8701
13bQB
8701
SBOb
8701
IBIbO
8701
Ib33
17b1
8701
13bn8
87Q1
S8Qb
87Q1
IBIbO
8701
Ib33
CALCULATED G/HR
HC CO N02
33
13
78
27
13
31
15
21
13b
37
51
87
32
H
21
100
30
311
22
55
81
31
12
28
100
2b
311
33
S3
87
35
13
21
11
28
310
3U
bib
bB8
511
178
511
501
717
88
31
722
711
713
2b1
blO
115
715
88
3b
b25
b80
802
237
517
503
710
87
35
581
711
750
118
bfaO
151
717
10
3
73
13b
11
11
83
115
88
1
3
77
153
11
18
88
151
15
1
3
82
115
8b
20
10
113
88
1
2
87
153
8fa
11
82
111
12
1
HT. HEIGHTED G/HR
FACT. HC-FIO CO N02-CL
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
.832
.077
.117
.077
.057
.077
.113
,077
.113
SUM— (COMPOSITE VALUES FOR CYCLES 1 AND 2) — -— — —
AVERAGE SUM (COMPOSITE VALUES FOR CTCLtS ' ««D -n
FOUR CYCLE COMPOSITE - HC- FID 0.35 b.l)
CO- NOIR 0.3SC 27.0)
N02-CL 0.35C 13. b)
+ 0
t 0
+ 0
.bS( b
.bS( 2b
.bS.( 13
COHRECTEO
.b) =
.7) =
.b) =
N02 =
SFC =
b.bBS
2b.718
13.5b1
11.821
.S2b
7.b
3.3
11.5
2.0
.7
2.1
10.7
2.2
b2.3
b.l
8.b
1.2
12.7
2.1
.8
2.3
11.3
2.3
55.1
b.8
5.2
1.2
12.3
2.b
.7
2.1
11.3
2.0
55.1
b.S
7.7
1.1
12.7
2.7
.7
2.2
11.2
2.1
55.8
b.7
b.l
b.b
G/
G/
G/
G/
KG/
7
50
101
12
10
12
58
55
13
25
1
Sb
105
bl
15
S3
SO
bl
13
28
8
18
100
b?
13
10
57
SS
12
27
8
15
105
SB
11
51
51
55
13
27
27
27
KM HR
KN HR
KM HR
KH HR
KN HR
S.b
bl.l
7.0
1.1
b.l
lOb.B
b.i
.1
13.1
.7
b.O
bb.S
7.0
1.0
b.7
108.1
7.3
.1
13.7
.7
b.S
bS.1
b.b
1.1
7.0
lOb.S
b.?
.1
13.5
.5
b.7
fab.S
b.b
1.1
b.3
107.2
7.1
.1
13. b
13. b
13. b
( 1.185
(11.183
(10.111
( 8.815
( .8b1
KM
0
11
33
11
0
11
57
11
0
0
11
33
11
0
11
57
11
0
0
11
33
11
0
11
57
11
0
0
11
33
11
0
11
57
11
0
BS)
BS)
BS)
B3)
83)
HP
IS
IS
IS
0
IS
7b
15
0
0
15
15
IS
0
15
7b
IS
0
15
IS
IS
0
15
7fa
IS
0
0
IS
IS
IS
0
IS
7b
IS
0
-------
ENGINE-?
TABLE B-34. MASS EMISSIONS BY NIME-KOOE FTP -METRIC UNITS
TEST-210 RUN-2 BASELINE CAHB. bt>nt> 05-lt-7b K « .881 HUM
b.b
G/KG
UJ
Ul
MODE
1 IDLE
2 lb HG
3 10 HG
* lb HG
5 11 HG
b Ifa HG
7 3 HG
B lb HG
1 C.T.
i IDLE
2 lb HG
3 10 H6
% Id HG
5 11 HG
b lb HG
7 3 HC
8 lb HG
1 C.T.
1 IDLE
2 lb HG
3 10 HG
* lb HG
5 H HG
b lb HG
7 3 HG
a ib HG
1 C.T.
1 IDLE
2 lb HG
3 10 HG
t lb HB
5 11 HG
b lb HG
7 3 KG
8 Ifa HG
1 C.T.
AVERAGE
AVERAGE
CONCENTRATION AS MEASURED TOTAL
HC-FID co co? NOX-CL CARBON
20tD .131 12.13 b7 13.2bS
?0t .StO If. 08 ttO It. blO
738 .350 It. 23 ItbO It.bSt
tSt .771 13.13 ttO lt.7tb
803 .275 13. fat ItO 13.13b
t32 .b!3 It. 23 tSO It.BBb
b3t .181 It. 08 BUS It. 325
3bt .518 It. 23 tlO It.BbS
3ots3 .350 1.22 22 i?.b3s
22tt .13d 13.07 bS I3.t31
705 .583 It. S3 »30 It. 881
728 .tSS It. 39 ItfaO lt.118
501 ,bt3 It. 23 tbO lt.12t
22b .251 13.78 150 It.tlSt
t77 ,b!3 It. 08 tbO lt.7tl
703 .11B It. ?3 2115 it. til
t32 .b!3 It. 2] tbO IH.SBb
27110 .325 1.t3 23 12.5t5
2020 .It? 13.07 5b 13.t20
72b ,b7t 13.13 tSO It.b77
715 .tSS It. 23 It37 lt.7bS
500 .b!3 It. 23 t70 1».813
B7D .227 13. tl 12D 13.7tt
tSt ,«,13 It. OB tSD It. 731
702 .187 It. 08 2213 it. 337
tot .blO It. OB »80 l».81i
27Bbb .350 1.2S 22 12.35b
22t2 .125 12.13 52 13.280
7t1 .Sbl It. 08 thO lt.7?t
818 .tlS It. S3 ItlS It. 727
t77 ,b!3 It.riB t80 lt.7»i
2t8 .287 13. bt 125 13.152
til ,b7» 13.13 tSO It.bSt
b71 ,2Dt it. 08 2213 it. 352
t55 .771 It. 08 tBO It.BIb
2?8fab .350 1.22 22 12.3Sb
FUEL
G/HR
1105
B7O1
13bS3
87Q1
S7bl
8701
H233
8701
1105
1105
8701
13bS3
8701
S7bl
B70<»
11233
8701
1105
1105
8701
13b53
8701
S7bl
B701*
11233
B701
1105
nos
87g1
13bS3
8701
S7bl
87Q1
H233
8701
H05
CALCULATED
HC CO
21
ta
bl
27
B
25
85
21
tb2
32
tl
b7
21
1
28
13
25
t2t
21
t3
7t
21
11
27
It
2t
t30
32
It
7b
28
10
30
11
27
tsn
38
btb
bSB
120
230
725
til
708
107
31
bBI
Bt2
751
208
732
532
725
100
t2
808
851
7Bt
113
732
SOb
820
101
3b
b71
777
732
?to
BIO
55?
110
101
G/HR
N02
3
87
tS2
8b
11
87
178
IS
1
3
81
ttt
81
eo
10
1b7
81
1
3
81
ttl
11
17
88
18b
It
1
2
10
t3b
It
17
81
185
13
1
WT.
FACT.
.232
.077
.It?
.077
.057
.077
.113
.077
,lt3
.232
.077
.It?
.077
.057
.07?
.113
.077
.its
.232
.077
.It?
.077
.057
.077
.113
.077
.It3
.232
.077
.1*7
.077
.057
.077
.113
.077
.its
FOUR CYCLE COMPOSITE - HC- FID 0.3S( b.7)
CO- NDIR 0.35C
N02-CL 0.3S(
28.1)
13.7)
+ O.faSC
+ O.b5(
+ O.faSC
b
30
13
CORRECTED
.7) =
.5) =
.8) =
N02 =
3FC =
b.717
21.175
13.7bO
12.22b
.530
WEIGHTED G/HR
HC-FID CO N02-CL KH
b.B
3.2
10.1
2.1
.5
1.1
l.b
l.b
bb.l
b.B
7.t
3.2
1.8
2.2
.5
2.S
10.5
1.1
bO.b
b.b
b.7
3.3
10. B
2.3
.b
2.1
10. fa
1.1
bl.t
b.7
7.5
3.t
11.1
e.2
.t>
2.3
10.3
2.0
bl.t
b.8
b-j
. f
b-j
. '
G/ KM
G/ KH
G/ KH
G/ KM
KG/ KH
1
SO
17
71
13
Sb
Sb
55
IS
28
1
S3
ist
58
12
Sfa
bO
Sb
It
30
10
b2
125
Sb
11
Sb
57
b3
lb
31
B
52
lit
Sb
It
t>2
b2
70
Ifa
3 a
C T
HR
HR
HR
HR
HR
.7
b.7
fafa.t
b.b
1.1
b.7
110. b
7.3
.2
13.8
.7
b.<
bs.e
b.l
l.i
b.S
101.2
b.1
.2
13. b
.b
b.B
fat. 8
7.0
1.0
b.8
lll.t
7.2
.2
13.8
.b
7.0
bt.O
7.2
1.0
b.8
111.3
7.2
.2
13.6
\ t ">
1 J . *
13 B
A 3 . D
( 5.001
(22.353
(10.2bl
( 1.117
( .871
0
il
3t
11
0
11
57
11
0
0
11
3»
11
0
11
5?
11
0
a
11
3t
11
0
11
57
11
0
0
11
3t
11
0
11
57
11
0
B3)
BS)
BS)
BS)
BS)
HP
0
15
tb
IS
0
15
?t>
IS
0
0
15
tb
IS
0
is
7fa
16
0
0
15
tb
15
a
is
7b
is
n
0
is
tb
IS
0
15
7b
IS
0
-------
to
OJ
(T-
ENGINE-2
TABLE B-35. MASS EMISSIONS BY NINE-MODE FTP -METRIC UNITS
TEST-210 RUN-3 BASELINE CARS. bbOfa CI5-lt-7b K = .851 HUM
5.7
G/KG
CONCENTRATION AS MEASURED TOTAL FUEL
HC-FID CO C02 NOX-CL CARBON G/HR
CALCULATED G/HR
HC CO N02
MT. WEIGHTED G/HR
FACT. HC-FIO CO N02-CL KM
HP
1 IDLE
2 Ib HG
3 10 HG
t Ib HG
5 19 HG
b Ib HG
7 3 HG
8 ifa HG
1 C.T.
I IDLE
2 Ib HG
3 10 HG
t Ib HG
5 1") HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
t Ib HG
5 11 HG
b Ib HG
7 3 HG
8 Ib HG
1 C.T.
1 IDLE
2 Ib HG
3 10 HG
t Ib HG
S It HG
b Ib HG
7 3 HG
8 Ib HG
S C.T.
AVERAGE
2503 .170 12.52 bb 12.1tO
Sb8 .525 1H.OB WO It.bb2
773 .381 It. 31 1527 lt.8Sb
tSt .738 13.78 tHO IH.SbH
181 ,2b3 13. bt 1*0 13.121
HOB .b!3 13.13 t50 It.SBt
b71 .113 1H.OB 2230 lt.3tl
tlO .738 It. 23 500 15.001
31300 .37b 1.01 23 12. Sib
1717 .131 13.21
727 .blO It. 08
715 .Hbl It. 23
t77 .b!3 1H.08
22b ,3b3 13.78
tSS .blO It. 08
713 ,21b It. 08
H10 .b!3 It. 31
285b3 .350 1.22
.......CYCLE COMPOSITE IN
2111 .131 13.07
727 .b!3 It. 08
Bt2 .tbl It. 31
t5S .722 1». 08
237 .312 13. b*
»St .b7t 13.13
b71 ,21b lt.0«
tSS .70b It. 08
27lb7 .337 1.22
853 .125 13.07
728 .55* It. 23
811 .tbl It. 31
500 .bSI It. 08
237 .231 13.78
tSt .b!3 It. 08
8bO .210 It. 08
tSb .BOt It. 23
Zbt73 .350 1.22
. .----CYCLE COMPOSITE IN
b? 13.521
tso it.sts
ItbO It. 771
ttO lt.7tl
150 It.lbS
tlO It.Blb
2230 It. 375
525 IS.Ott
22 12. t2b
Sb 13.t21
130 lt.7fab
It71 It. 135
ttO It.8t7
ItO 13.1?b
t30 It.bSO
2230 lt.3bt
t80 It. 832
22 12.27H
52 13.281
tBO It. 857
Ittl Jt.ltl
t70 It. 781
ISO It. Ot3
t?0 It. 731
22tB lt.3?b
tbO IS. 080
21 12.217
17b1 3t
8800 3t
ItQlb 73
8800 2?
5188 8
8800 25
11278 11
8800 2t
172t t31
17b1
8800
ItOlb
8800
5188
8800
11278
8800
172t
17b1
8800
ItOlb
8800
S1B8
8800
11278
8800
I72t
17b1
8800
ItOlb
8800
5188
8800
11278
8800
I7?t
2t
t3
75
28
10
27
lOb
2t
31b
21
t3
71
27
10
27
11
27
382
11
t3
8t
30
10
27
115
27
37t
t7
b37
7tl
101
221
7t?
523
87t
lot
35
827
B8t
731
310
828
S8t
72t
18
35
738
8?t
8fat
270
818
585
Btb
Ib
3t
bb3
8?t
712
20b
731
Sbl
its
100
3
88
t78
Ib
20
10
115
17
1
3
81
tbO
17
21
17
113
102
1
2
85
tSB
87
20
8b
lit
IS
1
2
It
tsi
13
21
13
1001
81
1
.232
.077
.It?
.077
.057
.077
.113
.077
.its
.232
.077
.It7
.077
.057
.077
.113
.077
.It3
.232
.077
.It7
.077
.057
.077
.113
.077
.It3
.232
.077
.It?
.077
.057
.077
.113
.077
.It3
SUM— (COMPOSITE VALUES FOR CYCLES 1 AMD 2)
AVERAGE SUH— (COMPOSITE VALUES FOR CYCLES * AND *J— — —
FOUR CYCLE COMPOSITE - HC- FID 0.35( b.S)
CO- NOIR 0.3S( 31.0)
N02-CL 0.35( It. 2)
t 0
» 0
t 0
.bS( b
.b5( 31
.b5( It
CORRECTED
.2)
.1)
.0)
N02
3FC
b.31B
31.588
it.ott
12.103
.533
7.1
2.b
10.7
2.1
.t
1.1
10.3
1.1
bl.7
b.7
5.5
3.3
11.1
2.2
.5
2.1
12.0
1.8
Sb.7
fa.t
b.7
3.3
11. b
2.1
.b
2.1
10.3
2.1
St.b
fa. 3
2.b
3.3
12. t
2.3
.b
2.1
13.0
2.0
53. t
b.2
b.S
b.2
G/
G/
G/
G/
KG/
11
tR
101
bl
13
58
51
b?
IS
30
8
bt
130
57
18
bt
bfa
Sb
It
32
8
57
128
b?
15
b3
bb
bS
It
32
8
51
128
bl
12
57
bt
73
It
31
31
32
KM HR
KH HR
KM HR
KH HR
KM HR
.7 0
b.B 11
70.3 3t
7.t 11
1.1 0
b.1 11
112.5 57
7.5 11
.2 0
It. 3
.7 0
b.8 11
fa?.b 31
7.5 11
1.2 0
7.t 11
112.2 57
7.1 11
.1 0
It. 2
.b 0
b.b 11
b?.t 3t
b.7 11
1.1 0
b.b 11
112.3 57
7.3 11
.1 0
lt.0
.5 0
7.3 11
bb.S 3t
7.1 11
1.2 0
7.2 11
113.1 57
b.1 11
.1 0
M.l
It .2
lt.0
( t.711 83)
(23.555 BS)
(10.510 BS)
( 1.025 BS)
( .87b BS)
0
IS
tb
15
0
IS
7b
IS
0
0
15
tb
IS
0
15
7b
IS
0
0
IS
tb
IS
0
IS
7b
15
0
0
15
tb
IS
0
15
7b
15
0
-------
e B-36.*USS EMISSIONS BY NINF-MODE EPA - METRIC UNITS
EuGlNE-0? TF.ST-511
I 175 CHEVROLFT 350-CIO HO ENGINE PROJECT 11-1311
BASELINE CARB. bbOb r>5-17-7b K= .112 HUM =
8.1 G/KG
W
OO
HODE
1 IDLE
2 25 PCT T
3 55 PCT T
1 25 PCT T
5 10 PCT T
b 25 PCT T
7 ID PCT T
8 25 Pr.T T
1 C.T.
1 IDLE
2 25 PCr T
3 SS PCT T
i 25 PTT T
s 10 PCT T
b 25 PfT T
7 In PCT T
8 25 PCT T
1 C.T.
CONCEN
HC-FIO
unn
1r)0
bbO
31)0
ibn
abo
bhp
230
?11bO
2080
550
720
310
18(1
2bO
bbr)
210
23b«0
TRATTdN
CO
.125
.337
.37b
.337
.102
. 30h
. 325
.337
,3b3
.125
.337
,3?b
.325
.311
.312
.325
.3?S
.3b3
C02
13.07
11. OB
11.23
11.08
13. bl
13.13
1 1 .,?. 3
11.?'
1.»a
13.07
11 .1"
11.23
11.23
13. bl
11. no
11.23
H.?3
1.13
SlJHFfi TOTAL
MOX-CL C»"BO»J
70 13.35?
710 11.1b2
I7h5 11. ban
7RO 11.15]
210 ii.nbn
750 ]l.2b5
2591 11.b29
710 11.513
?1 12.515
bS 13.121
7?0 11.171
l7Sb 11.b87
770 11.513
210 11.011
7?O 11.121
2551 11.b29
730 11.58?
21 12.375
FUEL
G/HR
158H
Iblb
) 1?13
1571
bHOI
Ibtb
11550
lp.53
17b1
1721
Iblb
11?8B
1752
b577
1R13
11550
1571
lb7B
C*UUL»TEO
HC CO
11
an
73
23
i
20
ion
17
3R5
30
11
80
2b
10
20
ino
i"
350
3n
153
73b
151
313
lib
R7b
132
101
33
152
73R
138
3b7
87b
130
11
NO*
3
15*
S3b
15S
3b
158
1083
117
1
3
ISO
Ibl
31
10b7
150
1
FACT*
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
"n77
.057
.077
.113
.077
.113
NEIGHTFO G/HR
HC-FIO CO NOX-CL
1.3
2*3
10.7
1.7
.5
1.5
1J.3
1.3
55.0
b.1
3.2
11.7
2.0
.5
1.5
11.3
50.1
7
35
10B
35
it
11
33
15
8
35
108
21
33
11
33
.b
11.''
78.8
z!l
12.2
11*3
.1
.b
11.5
71.1
I!B
11.8
120.5
11.5
.1
CKK
O.d
Ib.b
39.1
18.3
b.3
18.3
b?..B
18.3
n.o
0.0
17. B
31. b
1".
5.
18.
b2.
18.
0.0
VAC.
MM
112
37b
231
371
152
371
bl
37B
bns
111
371
221
3b8
155
371
bb
371
hoS
— --—KWTTS A4 QDrrTPrcrt TM Tur
MODE MV
1 I Dl E 17.1
i ?5 PrT T 11. P
3 55 PCT T 1.1
1 25 PtT T 11. b
s 10 PCT r i?. R
b 25 PCT T 11. t,
7 In PfT T 2.7
8 ?s PCT T i».q
1 C.T. 23.8
1 IflLE 17. S
2 25 prj r n. b
3 55 PCT T l.n
1 25 PCT T l».5
5 in PCT T 17.1
b 25 PCT T 11. h
7 In PCT T ?.(,
B 25 PCT T 11. b
1 C.T. P3.H
CHP CTO FC
n.n
22.3
S?.2
21. b
S.I
21. b
B1.2
21.5
o.n
o.n
pj_ R
53. 0
(•5.1
'b.1
81.3
?5.1
o.n
3UM« — • f CDHPOS 1 T E
*^ U M — — — ( r tt M P* 0 S t T F"
TWO CVCLE COMPOSITE -
0
Si
137
b^
2?
b5
220
b5
n
0
b3
1 31
b7
18
b5
??0
b7
n
WAI 1 1C F r
• ' 1 . u r r [
V A L 1iF F^1
3.5
21.2
31.1
21.1
15.0 1
21.2
2n|i
3.9
3."
?l f
3l!s
21. S
11.5 2
"1.7
*3.1
2l!l
3.7
lid fVflF 1 ^
IK L T l,| C 1 i
(•^ CvCIF ?1
HC- ^10
7—11—75
BSFC
B
.151
.bOl
.058
.775
.Bb?
.512
."31
R
R
.BMfl
.511
.B17
. 10b
.RBs
.511
."31
R
n.35(
PROCEDUK
83NOX
P
7.0
in. 3
t.*
1.3
b.5
13.0
b. I
9
R
b. ?
in^3
b.1
1.5
b.3
1?."
fc.O
R
1.R)
CO- NDI« O.35f ?n.11
MOX-CL
n.35 (
13. h)
F/A
.Dbn
.ObS
.Obb
,nb5
.nb3
.nbi
.Obb
.Obh
.051
.nbl
.Ilb5
.nbb
.nbb
,0b3
. Ob5
.Obb
.Obb
.f)5B
+ 0.
+ n.
» n.
KC/KW HR RPM
P
.S7S
. 3bh
.52?
1.080
.521
.311
.5ob
R
R
.511
,3bl
,51b
1.281
.137
.311
.SnS
R
b5( 1
bSC 2n
b5( 13
HC t
bOD
2000
soon
2000
2000
2000
2010
1110
2000
b5n
2000
2000
2000
1110
?ono
2010
eooo
?010
.7) =
. h } =
.i) =
wx =
SFC =
r Al r
L *L L
A/F
Ib.b
15.1
1S.1
IS.1
is!b
15.2
15.2
17.0
Ib.S
15.3
15*2
15.8
15.1
15.2
• 5.3
17.2
1.755
20.bb3
13.13b
18.111
.110
HC
1.1
12. O
2.0
.b
1.7
12.7
1.1
b2.n
7.8
3.b
13.2
e.2
.b
1.7
12. B
l.b
Sb.S
u C
T . P
1.7
G/KN
G/KW
G/KW
G/KK
KG/KM
CO NOX FUEL
1.8
asio
5.8
B.3
25. b
8.b
3.8
2.0
1.0
28.2
R.8
5.1
B.b
25.7
B.b
3.7
p 1
C i
3 1
C 1
HR
HR
HR
HP
HP
.2 1.5
1.7 1.0
31.1 25.1
1.8 8.1
.8 1.7
1.8 1.0
18.7 2b.8
1.5 B.b
.1 3.1
.2 1.8
l.b B.q
31.1 25.3
S.C 1.0
.7 1.5
1.7 "M
18.2 2b.b
l.b R.I
.1 2.1
UC
• o
13 M
( 3. SIS H»)
(15.108 flS)
(10.020 BS)
(13.5b5 BS)
( .723 BS)
POUER
0.0
b.8
30. b
7.b
1.1
7.b
38.0
7.5
O.D
0.0
7. a
30.8
7.7
1.5
7.5
37. b
7.7
o.n
-------
TiqLEB-37. MASS EMISSIONS flY NINE-MODE EPA - METRIC UNITS
ENGIHF.-02 7EST-2I1 RUN-03
1175 CHEVROLET 3511-Cin HO ENGINE PROJECT 11-4311
PASELT.ME CARH. b&ni, 05-17-7b «= .tan HIJM=
7.0 G/K6
dd
I
(Jj
00
HOOF
1 IDLE
2 ?5 PCT T
3 55 PCT T
4 25 PTT T
5 in PCT T
b 25 PCT T
7 In PCT T
B 25 PrT T
1 C.T.
1 101 E
2 25 PCT T
3 55 PCT T
4 25 PTT T
5 in PCT T
b 25 PCT T
7 10 PrT T
a 25 PCT T
1 C.T.
CONCENTRATION AS MpASUSFD
HC-FTI) CO CO? Nnx-CL
2400
bOCI
120
500
1 btl
3bO
7»n
S20
2bflBO
24110
btin
7bO
3SO
240
3?0
».«0
1M
abSSO
.115
.337
.37b
.312
.402
.275
.381
.275
.31.3
,13b
.310
.37h
.37b
.483
.325
.325
.275
,3b3
UNITS AS
HOOF
i IIHE
2 25 PrT T
3 55 PCT T
4 25 PrT T
5 1<) PCT T
b 2S PrT T
7 in PTT T
R 25 PCT T
1 C.T.
I IPLE
2 25 PCT T
3 55 PCT T
•» 25 PCT T
5 10 PCT T
fa 25 PCT T
7 10 PCT T
R 25 PTT r
1 C.T.
SUV
TWO CYCLE
MV
17.0
14. K
i.n
14.5
17. S
14. b
2.5
14. b
23. b
17.1
14. b
8.1
14.5
17.0
14.7
2.b
14.7
'3.7
I— — — ( roMP
|---(CuMF>
CHP
o.n
2U5
52.?
23.8
7.7
??.3
R3.4
21.5
n.o
o.n
?1.S
52.3
22.3
'.7
22.4
R3.b
23.1
o.n
nslTF
COMPOSITE,.- ....„
12.52
J^H,
14. ?3
13. b4
13.13
14.23
13.13
1.??
12.79
14. OR
14.23
13.13
13. b4
14'?'
14.21
1.0J
1,8
1714
720
330
7) 0
?5U
750
?I
75
730
171,5
73P
240
710
730
?1
TOTAL
CARROM
12.903
14.1R5
I4.7in
14.590
14,nbn
14.J4*-
14. 70?
14.230
12.501
13.195
14 ,44R
14. bl?
14.3th
14.150
14.21J
14. b3?
14.52?
..If:!!!...
SPECIFIED IN TMF 7-11-75
CTO
r
57
137
b2
20
5R
21R
57
(1
0
57
137
59
20
59
21 R
M
0
V A I U E F f
V A[ tiF Ff
FC
3.7
21.2
31.1
21.1
14.8
21.2
4? , R
20.8
3.7
3.8
?1 . 3
M.I
? I . 1
15. n
21.1
4?. 5
?0. R
3.7
>p r YCLF
)3 CrCtE
MC-
ro-
MOY-
BSFC
R
.184
.Ml
.R87
1.12R
.152
.513
.IbS
R
R
.1R1
.hOR
. 945
1 .155
. 9l»U
.5HR
.in?
R
FID u.35(
HDTR n.i^t
CL o. 3S(
FUFI.
G/HR
lb7P
i«™
1571
b7J3
Iblb
1141**
143S
Ib7"
17?*
1bb2
J4424
1571
bR04
1571
1435
lb7R
CALCULATED G/H»
HC CO NOX
35
45
103
37
1
27
111
17
313
35
45
P5
27
13
10?
12
311
PROCEOURE--"
flSNOX F/A
R
b,4
1.1
b.O
4.3
b.5
12. n
7.0
R
R
b.R
10.0
b.b
4.5
b.4
l?.n
b.2
R
5.
?.l.
1 3.
.051
,0b5
,0bb
.Pbb
.Ofa3
,0b4
,0bb
,0h4
.051
.ObO
. nb5
.Obb
,(1b5
,0b4
.Ob4
.Obb
.Pb5
.05R
7\ + O.t
Rl + n ,fc
n) + n.d
30 3
452 137
• 74b 513
413 141
3*7 33
375 143
103b 111
3hR J41
1R 1
3b 3
405 14b
745 518
50b 145
4b1 34
431 142
Rb4 1R1
3bl 142
100 1
SFr
* ^
KG/KW HR RPM
P bOD
.518 2000
.371 2000
.531 2000
5.173 2000
.571 2000
.31? 2010
.587 2000
R 2000
R bOO
.bn? 2000
.370 2000
.575 2000
1.181 1110
.574 2000
.3nl 2010
.54R 2000
R 2000
5< 5.H) =
>5< 21.5) =
i5< 13. n) =
HC + NCX =
HFC =
WT.
FACT.
.232
.077
.147
.077
.057
.077
.113
.077
.1H3
.232
.077
.147
.077
.057
.077
.113
.077
.143
WEIGHTED
HC-FIO co
R.I 7
3.5 35
15.1 110
2.1 32
.5 22
2.1 21
12.5 117
1.3 28
5b.l 14
8.1 8
3.5 31
12. S )01
2.) 31
.7 27
1.1 34
11.5 18
.1 28
57.0 14
G/HP. VAC.
NOx-CL CKW MM
.b 0.0 432
10.5 lb.1 371
75.4 31.0 ??1
10.1 17.7 3b8
1.1 5.7 447
11.0 Ib.b 371
111.'' b2.2 b3
11.4 lb.1 371
.1 0.0 511
,7 0.0 434
11.8 lb.1 371
7b.l 31.Q 22b
11.2 lh.7 3b8
2.0 5.7 t52
10.1 lb.7 373
111.7 be. 3 bb
10.1 17.2 373
.1 0.0 b02
A/F
17.1
15.3
15.1
IS. 2
15. B
15. b
15.1
15. b
lb.1
Ib.7
15*4
15.1
15.5
15.7
15. «,
15.2
15.3
17.2
S.520
2 1 . b2B
12.119
18.519
.454
HC CO NOX FUEL POrfER
7.1 1.1
3.4 8.8
14.8 27.1
2.8 8.1
.5 5.b
2.1 7.3
12.3 21.7
1.2 7.2
55.0 4.b
fl.3 2.1
3.b 8.0
IS. 7 2S.3
2.1 10.0
.8 b.1
1.1 8.7
11.7 25.1
.1 7.2
58.1 3.7
5.7 22
5.4 22
G/KW-^HO.
G/KK HR
G/KH HR
G/KW HR
KG/KW HP
.3 4.7 0.0
4.5 8.1 b.8
32.2 25.7 31.5
4.b 8.1 7.5
.8 4.b 1.8
4.7 8.1 7.0
47.1 2b.S 38. b
4.1 8.8 b.8
.1 2.9 0.0
.3 4.8 0.0
4.8 1.0 b.8
32.4 ?5.b 31.5
H.8 8.1 7.0
.8 1.7 1.8
4.7 8.1 7.CI
47. b 2b.3 38. b
4.b 8.8 7.3
.1 2.1 0,0
13.0
13.0
( 4. lib B3)
(Ib.lEB B3)
( 1.b13 83)
(13. RIO 83)
( .74b 83)
-------
W
OJ
TABLFB-38. MASS EMISSIONS BY NINF-MODF FPA - METRIC UNITS
,175 CHEVROLET 35n-CIDHO_ENGINE — PROJ£CTQll-4uM= ^^
£NGINE-n3
MODE
1 IDLE
a 25 PCT
3 55 PCT
H 35 PCT
5 10 PCT
b 25 PCT
7 In PCT
8 25 PCT
1 C.T.
1 IDLE
a 25 PCT
3 55 T>CT
4 25 PCT
5 10 PCT
b 25 PCT
7 in PCT
8 25 PCT
1 C.T.
TEST-313 RUN-nl BASELINE REPEAT n5-24-7h
CONCE*
HC-FtO
T
T
T
T
T
T
T
T
T
T
T
T
T
T
IhflO
42n
730
320
200
3on
800
300
1880
540
710
3<»0
2bO
340
11*0
330
313bO
CO
.115
.391
[438
.554
.443
.540
.400
.151
.442
.511
.443
.h!3
.442
1.310
.410
.3b3
AS MEASURED
C03 NOX-CL
IP. 52
13.13
14.23
14. ?3
13. h4
14.33
14.23
1.01
12.71
1". ?3
14.33
13. b4
14.33
14.23
14.33
o.ni
hS
5hO
1312
2PO
5BO
PO
hO
530
13f>1
555
210
570
10
TOTAL
CARBON
12.013
l».3hh
14.70h
12.780
13.151
14.733
14.715
14.283
15.584
I4.75h
12.7BP
FUEL
G/HR
IBhO
1888
14470
7)b7
Ihlh
10142
1571
IPbO
1P14
1525
14117
1525
1571
11550
K= l.llf
"
CALCUL*TEO G/HR
HC CO NOX
2b
33
80
? 4
c T
11
32
117
22
40
85
as
15
25
33
484
34
540
5hh
5h4
584
1404
h43
107
44
577
578
baS
581
3000
104
3
138
481
133
40
131
135
1
3
123
38
130
853
132
1
• 1 3 | f.
• •_••••««
WT.
FACT.
.asa
.077
!o77
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
•••••••*••—«
._---•
._---.--.
WEIGHTED G/HR
HC-FID CO NOX-CL
b.O
a. s
11.8
1.8
.7
1.7
13.2
1.7
70.0
b.7
3.1
12.5
2.2
.8
1.0
10.1
1.8
bl.2
8
42
133
44
32
45
150
41
15
10
44
145
44
3b
45
340
41
15
.8
10. b
71.8
10.2
a. 3
10.1
105.7
10.4
.1
.7
0.5
bl.O
o.o
a. a
10.0
Ob. 4
10.1
.1
CKK
n.o
17.4
38.2
17.1
b.4
17.4
b3.0
17.4
0.0
0.0
17.4
38.3
17.4
b.4
17.4
b2.7
17.4
0.0
VAC.
MM
427
3bh
3b8
442
371
58
b05
437
373
231
371
442
371
5b
371
b05
UNITS AS
MODE MV CHP
„__.__._-----------------
1 IOIE lb.8 0.0
? ?5 PfT T 14.4 33.3
3 55 PCT T 0.0 51.2
it 35 PCT T 14.5 P4.1
5 10 PCT T 17.4 8.5
b 25 PCT T 14. h 23.3-
7 00 PCT T 2.3 83.2
8 35 PCT T 14.5 23.3
1 C.T. 33.» n.n
1 101 F. lb.8 n.n
2 35 PCT T 14.7 33.3
3 55 PCT T 1.1 51.4
4 25 PCT T 14. h J3.3
5 10 PCT T 17.4 R.b
b as PfT T 14. h 33.3
7 In PCT T 3.2 84.0
R 25 PCT T 14,b 23.3
1C.T. 23.8 n.n
SUM — -(COMPOSITE
SUM (COMPOSITE
TWO CYCLE COMPOSITE -
SPECIFIED IN THF 7-11-75 PROCEDURE- SEC
CTO FC 8SFC BSNOX F/A KG/KH HR RPM
0
bl
134
32
hi
PI*
hi
(I
n<;
hi
hi
VALUE
VALUE
•--------•
4.1
21.8
31.0
31.2
15.8
21.2
4?.?
4.1
4.11
?-l .1
31.3
21. n
21.1
'43.1
21.0
4.0
FOR CYCLE
•——————"
.13h
.h33
.010
.507
.104
R
.ion
.Mil
.inn
1.85B
.513
.ion
n— -
HC- FID 0.
cn- NDTK n.
NOX-CL o.
b.n
0.7
5.b
4.7
5.7
11.5
5.1
R
5.4
1.3
5.b
4.5
5.7
X0.4
5."
R
35 ( h
35( PI
3»n.i) =
11.5) =
t NOX =
3FC =
C»LC
A/F
17.2
15.5
15.0
15.1
15. b
15.1
14.1
15.1
lb.5
Ib.B
15.1
15.0
15.1
15.5
15.1
14.2
15.1
lb.5
h.3b8
3h.713
11.803
18.171
.453
. — -PERCENT OF TOTAL
HC CO NOX FUEL
5.5
2.3
10.7
1.7
.b
l.b
12. n
1.5
b4.3
5.7
a.b
10. b
1.8
.7
l.b
lb.3
1.5
5S.O
b.l
b.S
G/KV
G/KW
G/KW
G/KW
KG/KW
1.5
7.1
B5.2
8.3
b.l
8.5
so. a
0.4
a.o
1.4
b.O
11.7
b.O
4.8
b.l
47.3
h.7
a.o
21
41
HP
HR
HP
HR
HR
.4
4.8
32.3
4.b
1.0
4.S
47. b
4.7
.1
.3
4.5
33.2
4.8
1.0
4.8
4b.4
4.0
.1
12.3
11.5
(27.437
( 8.801
(13.550
( .745
5.2
o. 1
as. 4
8.8
4.1
8.8
as. s
8.8
3.2
5.1
8.8
25.1
8.8
4.0
8.1
2b.5
8.8
3.1
BS)
BS)
BS)
BS)
BS)
POWER
0.0
7. 3
30.5
7.5
2.0
7.3
38.1
7.3
0.0
u.o
7.3
30.5
7.3
2.0
7.3
38.4
7.3
0.0
-------
UBLF B-39. M*ss FMI5SIONS BY MINF-MODF EPA - METRIC UNITS
TEST-?!? RIIN-ft?
1175 CHEVROLET 35n-CIO HO ENGINE PROJECT ll-*31l
BASELINE RFPFAT p<;-jH-7b K= 1.053 HUM= 13.5 G/KG
MODF
1 IDLE
2 25 PrT
3 55 PCT
* 25 PCT
s in PCT
b 25 PCT
7 io PCT
B 25 PTT
1 C.T.
1 IDLE
2 25 PCT
3 55 PCT
* 25 PCT
5 10 PCT
b 25 PCF
7 in PCT
8 25 PCT
1 C.T.
CONCENTRATION
HC-FID co
T
T
T
T
T
T
T
T
T
T
T
T
T
T
iibn
3bn
720
3nri
530
5T
l!on
3nn
28fino
ibnn
Sbn
71Q
370
son
3sn
1H20
son
30080
.125
.MH?
.525
.tbl
.771
.Hfel
1. 3lb
.5>-1
.35b
.I3b
.5*0
.5P3
.*55
,*h1
.*17
2.3*n
.525
.350
AS MEASURFD TOTAL
co? NOX-CL CA"HON
1P.71
1*.08
I1*. 23
1*.23
13.*>*
it. 1)8
13.13
lt.0"
i.nt
12.'"
1*.08
i*.ns
13.13
J3.71
13.13
13. tl
i*.nB
H.IJ
b? i3.n»5
555 l*.5b?
} S) 8 I*. 837
5nO I*. 733
? J fl j if . H 3 7
ssn i*.58i
l?Hb lS.*b3
530 It.hBJ
11 12.*1b
*7 I3.inb
555 I*.b83
1358 1*.753
5bO 1».*27
180 I*. 27?
570 lu.«hB
1*15 15.113
570 I*.b3<»
18 12.525
FUEL
C/HR
17K1
1hb2
1*288
1blf>
7212
Ihlb
11777
i*8n
I7b1
1721
175?
1*2*3
1525
b815
IbbS
?03hb
1525
17b1
CALCULATED R/MR
HC CO NOX
18
27
71
22
13
21
175
j>?
H*3
2*
»2
87
28
11
27
2n7
22
*bl
3*
51?
1022
blS
778
bPS
3bOb
7*2
102
3b
72»
113"
bn7
*5B
b7n
bnn
blQ
ino
3
121
*10
11*
37
127
711
120
1
2
121
*58
121
30
133
b30
130
1
WT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
HEIGHTED G/HR
HC-FID co NOX-CL
*.i
2.1
11. b
1.7
.7
l.b
11.8
1.7
b3.*
5.5
3.3
12.7
2.1
.b
2.1
23.*
1.7
bb.O
8
*b
ISO
*8
**
*8
*07
57
IS
B
Sb
Ib7
*7
2b
52
bBO
S3
M
.7
1.1
bO. 3
8.8
2.1
1.8
10.3
1.2
.1
.5
1.1
b7.*
10.0
1.7
10.2
71.2
10.0
.1
CKM
0.0
17.*
38.1
17.*
b.*
17.5
l?!s
0.0
0.0
17.5
38.*
17.5
b.*
17.5
*>3.S
17.5
n.o
VAC.
MM
*27
371
231
373
**«
373
58
371
bns
*17
371
23*
373
373
58
373
b07
tfl
I
HOOF.
1 IOLE
2 25 ofT
3 55 PCT
* 25 PCT
5 10 P«"T
b 25 PCT
7 10 PCT
8 25 PtT
1 C.T.
1 IDLE
2 25 PCT
3 55 PCT
* 25 PCT
s in PCT
b 25 PCT
7 m PCT
8 25 PCT
1 C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
IV
Ib.8
IH.b
1.1
H.7
17.5
1*.7
2.1
l*.b
23.8
lb.»
11. h
1.2
H.7
17. b
1*.7
2.3
JV.7
23.1
(UTTe Ac
l~ 1 I o * J
CWP
n.n
J3.H
S2.2
23.1
(».*•
23.*
8* . 3
23.*
n.n
n.o
?3.*
51.5
?3.»
8.b
23.*
"5.2
23.*
0.0
SIJW— — - 1 CHMPOS I TE
SUM-— -fCOMPOSTTE
T«n CVCLF COMPOSITE -
> eppp TF 1
J o~ tL 1" J
CT
n
VALUE Fi
VALUF Fi
! fn T M Tuc
1 1 u i ™ ' " K
FC
3.1
?1 .3
31.5
21.2
15.1 t
21.?
*3.b
20.1
3.1
3.B
21 . 5
3] .*
21.0
15.2 1
21.3
21. n
3.1
'« CYCLE 1 )
1R CvCI F ? )
HC- FID
rn- Nni
wox-r.L
7*11-7'
RSKf
p
.112
.b03
. in7
.85*
. ID*-
.517
.Pit
a
a
.•M7
.bni
.B9I.
.7bB
."0"
.527
.«m
R
11.351
R n. 35(
n. *c.i
BSNOX
R
<;.b
8.0
5.0
*.*
5.b
1.7
5.2
R
R
5,b
1.1
5.7
3.b
5.8
7.h
5.7
R
' S.
; 15.
l".
' 11 1 —
F/A
.051
.nbb
,0b7
.nbb
,nb5
m 0 h b
• o * n
.Obb
.051
.051
.Obb
.nbb
.nb5
,nb*
.rtb5
.073
.nbb
.nsi
il + n
1 1 + n
51 * n
or L
KG/KM HR
P
.555
,3b7
.552
1.128
.551
.31*
.5*2
R
R
.558
.371
. 5*5
1.075
.551
.321
.5*5
R
.bS( h
.i-5( bn
.bif in
Hf t
RPH
faon
2000
2000
2000
2000
?oon
2000
2000
2000
bOO
2non
2ron
2000
2000
2onn
?nno
soon
20Qn
.5) =
.1) =
.
-------
,„
OHY COMCENTRATION
HC CO C02
b°°
1200
3
*
5
b
7
8
S
10
11
is
13
IS
Ib
17
18
an
ai
ee
MODE
i
a
3
*
5
b
7
8
q
10
11
ia
13
it
15
Ib
17
16
IS
20
21
23
23
CYCLE
lain
0.0
Sb.S
7*.b
3
7 3Sb
9 333
1200 301.0
38
7*
b3
51
5
8,
S,
10,
12,
1*.
1.
1.
28.
3300
2300
5bS.7
Ib.?
lb.1
15.7
Ib.S
15.S
13.b
12.8
lb.2
lb.2
12.b
isli
1571
b?1*
1012
1085
1101
IQbO
183b
21*5
1575
baass
18SS
1177
375
.las
.1SS
,aib
,2b3
.275
.510
2.850
4.S3Q
.337
.131
.300
2300
2300
20
2300
7.S
b.8
1.*
CO NOX FAC.
37 2.* .070
S7 ai.»
5bS
1*7
170
283
170
17SS
b!008
.275
.*1S
.821
,37«,
13.07
13.21
13.21
13.35
13.35
13.*S
13.07
13.35
13.07
11.bl
13.35
5.8b
11.3b
It.08
It.23
1*,23
13. b*
13.S3
13.07
b.oa
NOX
bS
aia
75
*00
*30
13*b
13S2
1207
1112
72*
78
13
SbS
2028
2230
2085
1505
770
500
280
180
SS
13
TO >C
SPECIFIC SRAM/ KW-HR
HC CO NOX
:
•0.8
-
iS5 B!:,1 ,::::
70» 303.0 .OfO
200.* 0.000
si a. 7
53.0
*
10.8
:
>
8Sb 10fb.7 .035
508. S .ObO
°-000
,0b5
0 3.1
5 S.O
20 S.*
*a 11. b
55 la. 8
12 17. b
b* 21.5
a* 23. a
ob a? , o
22 30.8
0 3.1
0 3.b
*b b3.0
20 50.1
'b *5.S
33 ^ ^ o
- c 33.8
'2 2* . 1
*a 20.5
>0 17. S
5 1S.O
n 3
-------
TABLE B-41. MASS EMISSIONS BY 23 MODE PROCEDURE
ENGI.ME-2 TEST-SO1? RUN-2 BASELINE CARB. b&Ob 1975 CHEV 3SO
T« MV FUEL A/F
MODE SPEED N-M Krt MM KG/HR RATIO
1
2
3
*
5
b
7
8
1
10
11
12
13
1*
15
lb
17
18
11
20
21
22
23
MODE
1
2
3
*
5
b
7
B
1
10
11
12
13
If
IS
lb
17
18
19
20
21
22
23
CYCLE
bOO 0.0 0 *27 l.S lb.1
1200 8.1 1 *27 *.l lb.5
1200 2*.* 3 311 *.S Ib.b
1200 Sb.9 7 358 S.* lb.*
1200 73.2 9 325 5.9 lb.1
1200 151.9 19 208 8.2 15.8
1200 222.* 28 71 10.1 lb.7
1200 2**.0 31 b3 10. b 15.*
1200 271.3 35 53 12.1 13.7
1200 301.0 38 5 13.1 12.7
bOO 0.0 0 *21 1.5 lb.8
1200 0.0 0 5*1 1.7 lb.1
2300 330.8 80 18 28. b 12. b
2300 301.0 72 b3 22.8 1*.3
2300 2bS.7 b* 89 eo.3 15.3
2300 2**.0 59 122 H.2 15.1
2300 Ib2.7 31 251 15.0 11.8
2300 81.3 20 373 10. b 15.2
2300 51.7 1* 39fa 9.8 15.1
2300 2*.* b **7 8.0 15.3
2300 8.1 2 *70 7.2 15.2
bOO 0.0 0 *29 1.5 17.2
2300 0.0 0 599 1.7 lb.5
CALCULATED GRAM/HR WT. E. UNITS
HC CO NOX FAC. TO FC
18.1 28 2.7 .070 0 3.2
13.8 99 IS. 8 .OfaO b 9.1
38.1 117 9.0 .ObO 18 10.0
7b.3 193 55. 8 .050 *2 11.9
b?.* 238 71.0 .030 S* 13.0
18.7 553 291. b .ObO 112 18.0
102. b *2* 3fa9.8 0.000 lb* 22.2
108.5 913 38*. 7 .0*0 180 23.*
13b.O *103 310.7 0.000 20b 2fa.7
170.9 8195 231.1 0.000 222 30. b
lb.0 28 2.1 .070 0 3.2
82b.* 91 .7 .120 0 3.7
318.7 18*83 b21.0 .025 2** b3.0
178.8 *ib* 1022.5 .055 222 SO. 3
53.9 777 1053.0 .035 lib **.8
• *0.0 823 935.7 .OfaO 180 *2.*
Sb.9 1177 513.7 .ObO 120 33.1
11.5 5b7 IbS.* 0.000 bO 23.3
1.8 *SO 120.8 .ObS ** 21.5
13. 9 8bb 51.7 0.000 18 17.7
10.7 7*0 31.0 0.000 b IS. 9
22.8 30 2.0 .080 0 3.*
?8b.3 103 .b .ObO 0 3.7
COMPOSITE HC 10.71b GRAM/ KW HR (7
CO 5*. 177 GRAM/ KW HR (ifO
NOX 13.310 GRAM/ KM HR (9
SFC ,*31 KG/ KM HR (
CORRECTED NOX 12.3*1 GSAM/ KW HR (9
DRY CONCENTRATION
HC CO C02
Ib3* .125
**9 .159
1122 .170
HOI .239
157b .275
Ib92 .*b1
13*5 .275
1*71 .b!3
1787 2.b7Q
2077 *,930
1*57 .125
falbbS .337
1895 S.**Q
1210 1.39b
38b .275
307 .312
Sb9 .583
159 .389
1*8 .337
2*1 .771
21b .738
1899 .125
S7fa9* ,37b
SPECIFIC GRAM/
HC CO
R R
13.53 lb.*
12. *3 38.Q
10. fa7 27.0
7.33 25.1
5.17 21.0
3.b7 IS. 2
3.5* 21.8
3.87 lib. 9
*.S2 21b.7
R R
R R
*.00 232.0
2.*7 57.*
.8* 12.1
.b8 1*.0
l.*S 30.0
.59 28.9
.bB 31.*
2.3b 1*7.*
5.*b 377.5
R R
R R
.111 83)
.*00 BS)
.125 BS)
.708 BS)
.203 BS)
12.79
13.21
13.07
13.07
13.35
13.35
12.79
13. b*
13.07
11.73
12.93
fa. 02
11. 3b
13.13
1*,23
1*.39
1*.31
1*.23
1*.31
13. b*
13.78
12.52
b.17
KM-HR
NOX
R
1S.S
e.i
7.8
7.7
15.3
13.2
12.5
8.1
b.l
R
R
7.8
lb.5
15.1
13.1
8.*
8.* :
8.8
15.8
R
R
NOX
72
155
80
*20
500
1505
l*bO
1572
1230
8*b
58
15
1112
2085
2270
2151
15*9
bIQ
S50
280
188
50
13
B-42
-------
tt
I
^
OO
ENGTNE-np
TAPl.F B-42. STEADY STATE EMJSSIONS RY EPA PROCEDURE - METRIC UNITS
lt?5 CHEVROLET 3Sfl-CIO HD ENRIME PROJECT ll-i»311
J RUN-WOT ns_l7_7b BASELINE C»RH
K= .919
HUHs
7,h G/KG
CONCENTRATION *s MEASURED TOTAL FHFL CALCULATED G/HR CORRECTED G/HR
HODE PPM HC-FID CD CO? NOX-CL CA^HON CONS. HC CO NO? HC-FID CO NOX-CL
f ?000 1R*0
3 ?0"0 1900
5.570 11. »R "»b 17.PM ?5>»ol 313
5.57O 11. 3b 9»«t !7.iSo 3»9o? JJ9
Ib55b
1S338
•M3 313. H IbSSb
»S5 319.1 Ib338
379.9
tie. 3
C*, 15"<'7 3*3 335. b 15B97
5.b»n 11.1? 7?* lh.977 3»993 3SO Ib77? 3S» 319.7 Ib773
•US. 9
377.5
CKW
70.3
70.5
VAf.
MM
13
15
HOOF tt) MV
1 .5
? . .h
- UNTTS AS SPErlFlFD lit TKF 7 J1-7C; PRQCTDUPF------- ---CALC--- .-»-.». -G/KW
fHP rTfJ FT HSUT BSCO PSNOX BSFC A/F F/A HC CO
<"«.3 ?»P t.<;.h J.bx 17P.50 H.?l~ .589 I?. h .080 H . R " ?31.33
NOX
5.71
5.15
SFC
KG/KW
.iss
HR
10 =
-------
TABLE B-43. ILLUSTRATIVE EXAMPLE FOR USING RELATIONSHIPS
GIVEN IN TABLE 8 IN REPORT SECTION III. B. 2.
W
Measured Emissions
Factors from Table 8
Approximate Contribution
to Composite g/kW-hr =
Mode
Idle
25%
55%
10%
90%
CT
HC, ppm
2400
400
900
200
700
25000
CO, %
0.1
0.3
0.4
0.4
0.4
0.3
NOX, ppm
100
700
1700
200
2500
50
HC
0.0002
0.0013
0.0009
0.0001
0.0008
0.0001
CO
3
26
18
3
16
2
NOX
0.0005
0.0043
0.0030
0.0004
0.0027
0.0003
HC
0.48
0.52
0.81
0.02
0.56
2.50
CO
0.3
7.8
7.2
1.2
6.4
0.6
NOxa
0 1
3.0
5. 1
0 1
6 8
0.0
Estimated Composite 9-EPA Emissions in g/kW-hr = 4.89 23.5
15.1
NOX values can be corrected for humidity by multiplying the
values shown by the appropriate humidity correction factor
-------
APPENDIX C
STANDARD CARBURETOR EVALUATIONS
C-l Summary of the Results
C-2 BPEGR Rate Vs Manifold Vacuum - Test 120
C-3 BPEGR Rate Vs Manifold Vacuum - Test 121
C-4 through C-31 Computer Printouts - Engine 1
C-32 through C-38 Computer Printouts - Engine 2
-------
TABLE C-l .STANDARD CARBURETOR EVALUATIONS - ENGINES 1 (Tests 1XX) AND 2 (Tests 2XX)
Test Run
No. No.
110 2
3
111 1
2
115 1
116 1
117 1
11X
118 1
119 1-4
122 1
123 1
n 124 l
1
^ 130 1
2
3
4
5
6
130 IX
2X
131 1
2
3
WOT
213 1
2
3
4
1 t 2
3&4
219 2
3
Type
Test
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
WOT
9-EPA
S.S.
9-EPA
9-EPA
9-EPA
S.S.
9-EPA
9-EPA
9-EPA
WOT
WOT
9-EPA
Gram/k'W Hr
Description
TR with Air Inj. on All Modes
Average
TR with Air Except at CT
TR and Decel - Air Off at CT
HC
10.418
9.951
10.185
2.103
0.164
Mod. BL-Carb. 6607 . Ported In-Ex Man HEIWOVA 6. 122
BPEGR'6. 4mm orifice - Spring 1 - Mod. Conf. 115
BPEGR 6.4mm orifice - Spring 2 - Mod. Conf. 115
WOT for Tests 115-117
BPEGR 6.4mm orifice - Spring 3 - Mod. .Conf. 115
Modal Evaluations Using Conf. 115 and Manual EGR
BPEGR 13.5mm orifice - Spring 2- Mod. Conf. 115
BPEGR -HEIWAI - 14BTDC - . 53/x 7 coil
Carb-PL-HEI WAIALLMODES -14BTDC Eng. Ck.
Carb-PL-HEI 4BTDC Idle
Carb-PL-HEI 14BTDC M1+2-30B M3+4 10 Pet
Carb-PL-HEI-MEGR.53 30BTDC-WAI 25 Pet
Carb-PL-HEI-MEGR.53 24BTDC-WAI 55 Pet
Carb-PL-HEI-MEGR.53 14BTDC-WAI 90 Pet
Carb-PL-HEI 14BTDC-NOAI Ml +2 CT
Carb-PL-HEI MEGR. 53-WAIXM1 , 5, 9-14, 24, 30B
Same as Run 1 Except with 1400NLRPM at CT
Post Overhaul Baseline - Carburetor 6607
Post Overhaul Baseline - Carburetor 6607
Post Overhaul Baseline - Carburetor 6607
Post Overhaul Baseline - Carburetor 6607
Garb. 6606, port Liners W/O Air
Carb. 6606, Port Liners W/O Air
Carb. 6606. Port Liners With Air
Carb. 6606, Port Liners With Air X-CT
Carb. 6606 , Port Liners W/O Air
Carb. 6606, Port Liners With Air
Mod BL-Ported In-Ex Man Carb 6606, HEIWOVA
Same Conf. as Run 2 except WVA
7.347
7.755
4.74
6.793
5.764
12.395
10.015
4.542
1.288
4.852
4.587
5.743
5.173
5.163
11.681
2.777
4.94
0.79
6.043
7.811
CO
5.361
6.457
5.909
6.637
4.929
93.323
93.111
104.824
259.99
80.911
115.369
42. 903
23.569
18.911
18.424
44. 920
48.006
50.321
29.058
30.643
16.102
15.595
252.68
118.83
51.196
43.368
NOX
12.766
11.603
12.185
11.833
11.493
9.255
7.808
7.983
7.60
8.341
4.819
4.585
8.572
5.842
5.945
10.744
9.777
10.509
12.305
12.009
10.689
11.328
5.44
4.27
10.381
14.944
HC+NOX
23.183
21.554
22.369
I3/937
11.656
15.377
15.156
15.738
15.134
10.583
16.980
18.587
10.384
7.232
15.596
14.364
16.252
17.478
17.172
22.370
14.105
10.38
5.06
16.424
22.755
Kg/ •
kWHr
SFC
.482
.478
.480
.479
.506
.495
.487
.484
.369
.483
C-l 3
.505
.531
.503
.444
.468
.457
.457
.458
.464
.465
.464
.460
.369
.362
.444
.390
Appendix
Table
C-4
C-5
C-6
C-7
C-8
C-9
C-10
C-ll
C-12
- C-16
C-17
C-18
C-19
C-20
C-21
C-22
C-23
C-24
C-25
C-26
C-27
C-28
C-29
C-30
C-31
C-32
C-33
C-34
C-35
C-36
C-36
C-37
C-38
BPEGR Spring 1 = 5 coils - .094 -1.38
BPEGR Spring 2 = 7 coils - . 063 - 2.44
BPEGR Spring 3 = 5 coils - . 125 - 1.56
-------
TABLEC-2.BPEGR RATE VS. MANIFOLD VACUUM
Test 120 - 10.3mm Orifice
With Vacuum Advance Except Spring Labeled 2*
Exhaust CO2
Intake CO 2
Approx. % EGR
Man. Vac, Hg
mm
457
432
406
381
356
330
305
279
254
229
0 203
w 178
152
127
102
76
5l
25
inches
18
17
16
15
14
13
12
11
lO
9
8
7
6
5
4
3
2
1
With Spring No.
1
13.35
13.35
13.78
13.78
13.64
13.64
13.64
13.64
13.93
13.93
13.93
13.93
13.93
13.93
14.08
14.08
11.12
11.24
2 2*
13.49
13.78
13.78 13.93
13.78 13.93
13.78 13.93
13.78 13.93
13.78 14.08
13.78 14.08
13.78 14.08
13.93 14.08
13.93 14.08
14.08 14.08
14.08 14.23
14.08 14.23
14.08 14.23
14.08 14.23
11.24 14.23
11.24 1 1 . 24
3
13.07
13.49
13.49
13.64
13.64
13.64
13.64
13.64
13.93
13.93
13.93
13.93
13.93
13.93
14.08
11.48
11.36
11.36
With Spring No.
1 2
0.08 0.08
0.08 0.15
0.27 0.23
0.35 0.27
0.47 0.39
0.51 0.55
0.59 0.59
0.59 0.63
0.63 0.63
0.63 0.67
0.63 0.67
0.67 0.67
0.67 0.67
0.67 0.67
0.63 0.67
0.59 0.55
0.15 0.08
0.08 0.08
2*
-
0.27
0.27
0.27
0.27
0.67
0.67
0.67
0.67
0.67
0.67
0.75
0.75
0.75
0.63
0.31
0.08
3
0.08
0.08
0.08
0.08
0.08
0.08
0.15
0.15
0.15
0.19
0.19
0.19
0.23
0.15
0.08
0.08
0.08
0.08
Approximate Manifold Vacuum at Percent of Maximum
Spring No.
1, 2 & 3
2*
10%
460
410
25%
400
310
55%
190
140
90%
50
50
With Spring No.
1
0
0
1.5
2.2
3.2
3.5
4.2
4. 2
4.5
4.5
4.5
4.8
4.8
4.8
4.4
4.1
0. 7
0
Power, mm
2
0
0.6
1. 2
1.5
2.5
3.8
4.2
4.5
4.5
4.8
4.8
4.7
4.7
4.7
4.7
3.9
0
0
2*
_
1.5'
1.5
1.5
1.5
4.7
4.7
4.7
4.7
4.7
4.7
5.4
5.4
5.4
4.4
1.8
0
3
0
0
0
0
0
0
0.6
0.6
0.6
0.9
0.9
0.9
1. 1
0.6
0
0
0
0
Spring 1-5 coil - 3/32 wire - 1-3/8 ext. ht.
Spring 2-7 coil - 1/16 wire - 2-7/16 ext. ht.
Spring 3-5 coil - 1/8 wire - 1-9/16 ext. ht.
* Without Vacuum Advance
-------
TABLE C-3.BPEGR RATE VS. MANIFOLD VACUUM
Test 121 - 13.5mm Orifice
With Vacuum Advance Except Spring Labeled 2*
Exhaust CO2
Intake CO?
Appro*. % EGR
Man.
mm
457
432
406
381
356
330
305
279
254
229
203
178
152
127
102
76
51
25
Vac, Hg. '
inches
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
With
1
13.21
13.21
13.35
13.64
13.64
13.64
13.64
13.64
13.64
13.64
13.64
13.78
13.93
13.93
13.93
13.93
11.61
11.24
Spring No.
2
13.21
13.35
13.64
13.64
13.64
13.78
13.93
13.93
13.93
13.93
13.78
13.93
13.93
13.93
13.93
13.07
11.61
11.36
2*
-
1 3'. 64
13.64
13.64
13.78
13.78
13.93
13.93
13.93
13.93
13.93
13.93
13.93
13.64
11.86
11.48
11.48
With
1
0.08
0.08
0.08
0.31
0.39
0.55
0.63
0.71
0.71
0.71
0.71
0.63
0.67
0.71
0.79
0.75
0.15
0.08
Spring
2
0.08
0.15
0.35
0.67
0.71
0.71
0.79
0.79
0.84
0.84
0.84
0.84
0.88
0.84
0.79
0.63
0.08
0.08
No.
2*
.
-
0.08
0.08
0.08
0.15
0.75
0.75
0.75
0.75
0.75
0.79
0.92
0.92
0.92
0.88
0.15
0.08
With
1
0
0
0
1.9
2.5
3.9
4.5
5.2
5.2
5.2
5.2
4.5
4.8
5.1
5.8
5.5
1.1
0
Spring
2
0
0.7
2.2
4.9
5.2
5.2
5.8
5.8
6.2
6.2
6.3
6.2
6.6
6.2
5.8
4.8
0
0
No.
2*
—
-
0
0
0
0.6
5.5
5.5
5.5
5.5
5.5
5.8
6.9
6.9
7.1
7.6
0.6
0
Approximate Manifold Vacuum at Percent of Maximum Power, mm
Spring No. 10% 25% 55% 90%
1 & 2
2*
460
420
400
310
190
130
55
55
Spring 1 - 5 coil - 3/32 wire - 1 3/8 ext. ht.
Spring 2-7 coil - 1/16 wire - 2 7/16 ext. ht.
*Without Vacuum Advance
-------
TABLE C-4. MASS EMISSIONS PV NINF-MOOE EPA - METRIC UNITS
ENGINF-01 TEST-110 RUN-02
]17S CHEVROLET 350-CIf> Mn ENGINE PROJECT 11-4311
Oh-03-7b THERMAL REACTOR WITH AIR INJ. ON ALL MOOES
K= 1.081 HUMS lb.1 6/KG
MODE
CONCENTRATION AS MpA.IUREO TOTAL FUEL
HC-FID CO CO? NOX-CL CARBON G/HR
CALCULATED G/HR
HC CO NOX
WT. WEIGHTED G/HR VAC.
FACT. HC-FID CO NOX-CL CKW MM
1 IDLE
2 25 PCT
3 55 PCT
1 25 PCT
5 10 PCT
b 25 PCT
7 10 PCT
8 25 PCT
1 C.T.
1 IOLE
2 25 PCT
3 55 PCT
1 25 PCT
S 10 PCT
b 25 PCT
7 10 PCT
8 25 PCT
1 C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
580
?5
5
5
40
10
5
5
37i?n
100
175
in5
70
IS
50
30
25
38400
.115
.072
.051
.04h
. inl
,04h
.035
.030
.21b
.120
.Oh7
.051
,04b
.051
.04h
.035
.030
.21b
R.11
11. on
12.38
11.00
10.41
10. 8B
13.41
u. on
1.17
8.81
10. 7b
12.12
10.88
10.07
10.88
13. b4
10.88
2.17
41
4hO
1115
410
2n5
110
lh«8
470
12
51
470
12P7
485
200
415
Ib2b
415
13
1.087
11.075
12.431
11.04h
10.523
10.127
I3.52b
U.031
5.173
1.027
10.84b
12.183
10.133
10.131
10.131
I3.h71
10.113
b.311
lllb
10217
14742
lOlbO
7847
IDlbO
11822
10070
ll'jn
1150
IPlbO
HbSl
10)15
7B47
10115
11h8b
10070
lllb
14
3
1
1
3
I
1
1
1237
21
IB
14
7
R
5
<3
3
1241
51
135
122
85
Ibl
Rb
IDS
Sh
143
52
12b
124
85
BO
85
103
5b
138
4
155
512
Ib3
55
IbS
873
155
1
4
151
S25
Ib2
5b
Ibb
Bib
IbS
1
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
3.2
.2
.1
.0
.2
.1
.1
.0
17b.B
4.1
1.1
2.1
.5
.5
is
.;>
177.5
12
10
IB
7
q
7
12
4
20
12
10
18
7
S
7
12
4
20
.1
11. 1
75.3
12.5
3.1
12.7
18. b
11.1
.2
.1
12.3
77.1
12. S
3.2
12.7
15. b
12 7
.2
0.0
17.0
37.4
17.0
b.B
17.0
bl.2
17.0
0.0
0.0
17.0
37.4
17.0
h.8
17.0
bl.2
17.0
0.0
450
358
22b
35b
432
358
hi
358
blO
455
358
2,2b
35b
434
358
bb
358
b!5
UI
MODE
1 IDLE
2 25 PCT
3 55 PCT
4 25 PCT
5 10 PCT
b 25 PCT
7 in PCT
8 25 PCT
1 C.T.
1 IDLE
2 25 PCT
3 55 PCT
1 25 PCT
S 10 PCT
b 25 PCT
7 10 PCT
8 25 PCT
1 C.T.
(
fj. ..
T
T
T
T
T
T
T
T
T
T
T
T
T
T
1 1 IK
JU"
nit
TWO CYCLE
MV
17.7
11.1
8.1
11.0
17.0
14.1
2.4
14.1
24.0
17.1
14.1
8.1
14.0
17.1
14.1
2.b
11.1
21.?
CHP
0.0
22.8
50.2
22. B
1.1
22.8
"2.1
22.8
n.o
n.o
22.8
50.2
22.8
1.1
22.8
82.1
22.8
O.tl
JDnovTr I
1 — ~~ V v fr-ir ij o i, i r^. i
COMPOSITE -
SPEC IF IE
CTO
0
bn
13?
hO
?4
hO
2)h
hn
n
0
hn
13?
bn
24
hO
2lh
hn
n
j » i i ir P no
i «i_ HE. r nn
y & i i ic* F no
f A L Uri ~ ' ***
_ 1 * _ ^C
D IN THE '~ * i — f ^
FC BSFC
4.4
22.7
32.5
22.4
17.3 1.
22.4
43.7
22.2
».3
4.3
22.4
32.3
17J3 ll
P2.3
43.4
22.2
4.4
f Vf 1 F 1 "\ »
CYCLc. l 7
f Vfl P 3 A •
LYULC *?'
HC- Fin
CO- NDJ*
NOX-CL
R
lib
b48
182
Bib
18?
532
173
R
P
1R2
b44
178
Rlh
17R
521
173
R
0.35(
n.lSC
n. 35f
PD nf cm ID
"KUC tUun
BSNOX
R
b.1
10.3
7.2
7!3
10.8
h.1
R
R
7.1
in.h
7.2
h.2
10.4
7.*
R
in. 21
5. hi
12. Bl
F/A
.042
.050
.05b
.050
.018
.050
.Obi
.050
.021
.042
.041
.055
.050
.nib
.050
,0b2
.050
.031
+ 0.
+ 0.
+ 0.
KG/KH
R
.bOb
.311
.517
1.151
.517
.321
.512
R
R
.517
.312
.515
1.151
.515
.3.2?
.51?
R
b5(
t>5(
*>5(
HC
HR RPM
bOO
2000
2000
2000
2000
2000
2000
2000
2000
bOO
2000
?noo
2000
2000
2000
2000
2000
2000
10. b) =
5.2) =
1?.8) =
+ NOX =
SFC =
r Ai r
C*LC
A/F
23.1
11.8
17.8
11.1
20.8
20.1
lb.4
11.1
34.0
24.1
20.2
18.1
20.1
21. b
20.1
lb.2
?n.i
32.2
10.418
5.3hl
)2.7bb
HJ.183
.48?
HC
1.8
.1
.1
.0
.1
.0
.1
.0
17.8
2.b
.7
1.1
.3
.2
.2
.3
.1
14.4
10.2
1 0 • b
G/KW
G/KW
G/KW
R/KN
KG/KW
CO NOX FUEL
11.1
10.5
18.1
b.h
1.4
b.7
11.1
4.3
20. h
13.0
10.4
H.5
7.0
4.1
7.0
12.1
1.7
21.1
5
HP
Hfl
HO
HP
HB
.4
5.2
33.1
5.5
l.»
S.b
43.4
5.3
.1
.4
5.4
33.1
5.5
1.4
S.b
42.1
S.b
.1
12.8
12.8
( 7.7bB
( 3.118
( 1.511
(17.288
( .712
5.3
1.1
24.8
1.0
5.1
1.0
25.7
8.1
3.2
5.2
1.0
24.8
1.0
5.2
1.0
25. b
8.1
3.3
BS)
BS)
BS)
BS)
RS)
POWER
0.0
7.3
30.5
7.3
S.I
7.3
38.3
7.3
o.n
0.0
7.3
30.5
7.3
2.1
7.3
38.3
7.3
0.0
-------
TARLEC-5. MA3R EMISSIONS RV NINE-MODE EPA - METRIC UNITS
TEST-110 RUN-03
1975 CHEVROLET 350-CID HO ENGINE PROJECT 11-H311
Ob-03-71- THERMAL REACTOR WITH AIR INJ. ON ALL MODES
1.103 HUH= 17.7 G/K6
O
I
CONCENTRATION
MODE HC-FID co
1 IDLE BOO
2 25 PCT T 20
3 55 PCT T 5
H 25 PCT T 5
5 10 PCT T 20
b ?S PCT T 5
7 9o PCT T 5
8 25 PCT T 5
9 C.T. 37120
1 IDLE 8*0
2 25 PfT T 155
3 55 PCT T 90
H 25 PCT T t>5
5 in PCI T bO
b 25 PfT T HS
7 9|j PTT T 30
8 25 PCT T 30
9 C.T. 35200
.125
.131
.Ohl
.OSb
.072
.Obi
.051
.OHb
.21b
.131
.OBB
.Ob7
.OSb
.072
.OSb
.0»b
.OHb
.227
AS MEASURED TOT*L
C02 NOX-CL CARflON
8.81
11 ,nn
12.38
11.00
10.30
11.00
l».nfl
11.1?
1.B8
R.91
11.00
1?.?5
11.00
10. HI
11. on
1H.23
11.12
2.07
H5 9.022
»9n u.133
121R 12. Ht?
H9S 11.057
205 10.37H
500 Il.nh2
12hS It. 131
520 ll.lbb
1H S.SRn
51 9.13?
500 11. HIS
1253 1?.3?7
515 Il.flb3
210 10.HPB
515 11. Obi
1207 1H.J79
5?S Il.lb9
13 S.R9?
FUEL
6/HP
199b
lOJhO
1HS51
10115
78H7
10115
19958
1002*
1905
1905
io?nb
1HS1S
10070
7802
inns
199S8
9979
1905
CALCULATED
HC CO
19
2
1
1
2
1
1
0
122b
19
lb
12
7
5
S
5
3
Ub2
Sb
2H1
IHb
103
110
113
1HS
93
1H1
55
Ib3
158
103
108
103
129
B?
1H9
G/HR
NOX
«
IbH
525
Ibb
57
Ib7
bSt
171
2
^
IbB
SHO
17?
57
173
bin
172
2
WT.
FACT.
.232
.077
.1H7
.077
.057
.077
.113
.077
.1H3
.232
.077
.1H7
.077
.057
.077
.113
.077
.1H3
HEIGHTED
HC-FID CO
H.H
.2
.1
.0
.1
.0
.1
.0
175.3
H.H
l!?
1.7
.5
.3
.3
.5
.2
lbb.2
13
19
21
8
b
9
lb
b
20
13
13
23
a
b
8
IS
b
21
G/HR VAC.
NOX-CL CKW MM
.8 0.0 HH7
12. b 17.1 358
77.2 37.7 22b
12.8 17.1 3Sb
3.2 b.9 "(27
12.9 17.1 358
73.9 bl.7 bb
13.2 17.1 35b
.2 0.0 bio
.9 0.0 Ht7
13.0 17.) 358
79. H 37,b ejfc
13.2 17.1 351
3.3 b.8 «27
13.3 17.1 358
b9.8 bl.S bb
13.2 17.1 35b
.2 0.0 blO
----UNtTS AS
MODE MV
1 IDLE 17. b
2 25 PCT T 1H.1
3 55 PCT T 8.9
H 25 PCT T l*.o
s in PCT T ib.s
b 25 PCT T 1H.1
7 90 PCT T 2.b
8 25 PfT T IH.O
9 C.T. 2H.O
1 IDLE 17. b
? 25 PCT T U.I
3 55 PCT T 8.9
H 25 PCT T 13. 8
S 10 PCT T Ib.R
b 25 PCT T 11.1
7 9n PrT T e.b
B 25 PCT T 1H.O
9 C.T. ?».0
CHP
0.0
22.9
50.5
23.0
9.?
23.0
8?. 7
23. n
o.n
n.o
S3.0
50.5
22.9
9.2
22.9
82.5
22.9
0.0
SUM---CCOMPOSITE
SUM---(COMPnSITE
THO CYCLE COMPOSITE .
SPECIFIED IN THE 7-11-75
CTQ FC BSFC
n
bn
133
bn
?»
bn
217
bn
n
n
bO
133
bO
2»
bO
217
bn
n
VAl IIP
¥ " L ' ' r.
VAl IJF
H.H R
22. t ,97fc
32.3 .b39
?2.3 .97n
17.3 1.881
22.3 .97n
HH.O .53?
22.1 .-»bl
H.2 R
H.? R
?2.5 .979
32.0 ,b3»
22.2 .988
17.2 1.B77
??.3 .973
•H.O .S3H
22.0 .9bn
H.2 R
HC- Fin o.i«;(
ro- N n 1 s o . i s (
SOX-CL n.isr
PROCEDURE---- «tf
BSNOX F/A
R
7.3
10. b
7.»
b.3
7SH
«3.l
7.b
p
R
7.5
in. 9
7.b
b.»
7.7
7.h
7.b
R
10.1)
h.7)
1 l.h)
.OH2
.051
.OSb
.050
.OH7
.050
.Ob3
.051
.029
.n»2
[osi
.OSb
.050
.OH8
.050
.ObH
.051
.029
4 O.t
* ^ . >
+ n.»
wi u
KG/KM
R
.59H
.389
.590
1.1H»
.590
.32H
.SflS
R
P
.595
.38b
.589
1.1H2
.59?
.325
.5B1
R
,«;(
.«;(
• 5(
HC
HR RPM
bOO
2000
2000
2000
2000
2000
2000
2000
2000
bOO
2000
2000
2000
2000
2000
2000
2000
2000
9.9) =
»•- 3) =
11. b) =
* NC1X =
SFC =
r Ai r
t, "UV.
A/F
2H.1
19.7
17.8
19.9
21.1
19.9
15.8
19.7
3H.S
23.8
19.8
17.9
19.9
20.9
19.9
15. b
19.7
3H.5
9.951
b.HS?
ll.bD3
?1 .55H
.H7B
HC
2.5
.1
.1
.0
.1
.0
.1
.0
97.2
2.5
.7
1.0
.3
.2
.2
.3
.1
9H.7
10.1
9,9
G/KW
G/KW
G/KH
G/KW
KG/KH
CO NOX FUEL POWER
10.9
15. b
18.0
b.7
5.3
7.3
13.8
5.H
17.0
11.3
11. I
20. b
7.0
s.s
7.1
12.9
S.b
IB. 8
7
b
HR
HR
HP
HB
HR
.H 5.3 0.0
b.l 9.0 7.2
37.3 2H.7 30.5
b.2 8.9 7.3
l.b 5.1 a. 2
b.2 8.9 7.3
35.7 JS.9 38. 3
b.H 8.9 7.3
.1 3.1 0.0
.H 5.1 0.0
b.3 9.1 7.3
38.5 a».b 30.5
b.H 9.0 7.3
l.b 5.1 i.l
b.H 9.0 7.3
33.8 2b.l 38.3
b.H 8.9 7.3
.1 3.1 0.0
11. b
11 .b
( 7.421 BS)
( H.81S 83)
C B.b52 BS)
(lb.073 BS)
( .785 83)
-------
TAPLE c-6. MASS EMISSIONS RY NINE-MODE EPA - METRIC UNITS
ENGTNE-OI TE9T-1U P'JN-ni
CHEVROLET 350-CID HO ENGINE PROJECT 11-1311
tm-03-71, THERMAL REACTOR NITH AIR EXCEPT AT CT
1.105 HUM= 17.9 G/KG
n
I
CONCENTRATION AS MEASURED TOTAL
MODE HC-FID CO
i IDLE 130 .i3b
2 25 PCT T 30 .093
3 55 PCT T 5 .072
1 25 PCT T 5 .Obi
5 10 prT T 5 .n72
b 25 PCT T 5 .ohl
7 9n PCT T 5 .072
8 25 PCT T 5 .Olb
9 C.T. 12800 .115
1 IDLE bbO .170
i 25 PCT T 9o ,o93
3 55 PCT T 10 .Obi
1 25 PCT T ?o .O5b
S10PCTT 30 .077
b 25 PTT T 10 .nbi
7 9n PCT T 5 .051
8 25 PCT T 5 .nib
9 C.T. 11720 ,1b9
C02
9.0)
11 .00
1?.5?
1J.21
10.53
11. 31
1*.51
11.21
11. on
9.ni
11.2*
12.5?
11. ?1
10.53
11.1?
11.39
11.3*.
10.53
NOX-CL CARRON
52 9.193
530 l).09b
1253 12.59?
510 11.30?
230 10. ho?
550 11.30?
U3b 11. hi?
5hO 11 .281,
2b 12.830
51 9.?S?
5no 11.313
1288 l?.5Bb
500 1I.S98
2?0 10. bin
510 H.IB2
1277 1».111
5hO 11 .?Bh
2b I?.h21
FUFL
G/HR
IBbn
in?5i
I*b51
10115
7*02
10115
20t>38
10021
IBbO
1905
mi is
115bO
10021
7817
1 oo 7n
20729
10021
1905
CALCULATED
HC
q
3
1
n
0
0
1
0
205
IS
9
5
2
2
1
1
0
215
CO
Sb
171
lt>9
111
107
111
205
82
122
71
IbB
113
101
115
112
118
82
113
G/HR
NOX
1
180
535
177
b2
181
589
182
1
1
Ibl
517
Ib3
bO
178
b73
182
1
WT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.1*3
WEIGHTED
HC-FID
e.2
.2
.1
.0
.0
.0
.1
.0
29.3
3.1
.7
.8
.2
.1
.1
.1
.0
35.0
CO
13
13
25
9
b
9
23
b
17
lb
13
21
8
7
9
17
b
20
G/HR
NOX-CL CKN
.9 0.0
13.8 17.2
78. b 37.8
13.7 17.2
3.5 b.9
13.9 17. B
bb.5 b2.3
11.1 17.2
.2 0.0
.9 0.0
Iff.b 17.2
80.1 37.8
12.5 17.2
la!? 17J2
7I,.0 bl.B
11.1 17.2
• 2 0.0
VAC.
MM
112
358
221
351
127
358
bl
351
b05
112
358
221
353
127
358
bl
353
b07
UNITS AS SPECIFIED IN THE 7-11-75
MODE MV CHP
1 IDLE 17.1 n.o
2 25 P«-J T 11.1 23.0
3 55 PfT T 8.7 qn.7
1 25 PCT T 13.8 23.1
s in PrT T ib.R 9.2
b 25 PCT T 11.1 23.1
7 9p PCT T 2.1 83. b
B 25 PCT T 13.8 ?3.l
9 C.T. ?3.B n.O
1 IDLE 17.1 il.O
2 25 pri T i«t.j j^)
3 55 PCT r 8. 5n.7
1 ?5 PCT T 13. 23.1
5 10 PCT T lb. 9.2
b 25 PCT T 11. ?3.o
7 9n PCT T 2. "2.9
B 25 PCT T 13. »3.0
9 C.T. ?3. 0.0
SUM--- (COMPOSITE
SUM--- (COMPOSITE
TWO CYCLE COMPOSITE -
CTQ
n
SO
133
hi
21
M
21"
hi
n
n
h)
133
hi
?1
hO
218
hn
0
EC B.9FC
1.1 R
?2.b .981
32.3 .h37
??.3 .9bb
17.? l.Bb?
?2. 3 .9hb
15.5 .515
??.! .957
1.1 R
1.2 . R
?2.3 .9hh
32.1 .h33
??. 1 .959
17.3 1.87li
??.? ."hi
15.7 .551
??.! ,9(,n
1.2 R
PROCEDURE
BSNOX
R
8.0
10.8
7.q
t>.9
8.0
7.?
"R
R
7.3
11.0
7.2
h.h
8^3
8.1
R
F/A
.012
iosi
.057
.051
.018
.051
.Ohh
.051
.059
.013
!o52
.057
.051
.018
.051
.05)
.059
SFC
KG/KH HR RPH
R
.597
.387
.587
1.133
.587
.331
.582
R
R
.587
.385
.583
1.111
.58h
!335
.581
R
hOO
2000
2000
2000
2000
2000
2010
2000
2000
bOO
2000
2000
2000
2000
2000
2000
2000
2000
CALC
A/F
23.7
19.8
17. b
1«.S
20.7
19.5
15.3
lb]q
23.5
19.1
17. b
19.5
20.7
19.7
15.1
19.5
17.1
HC- Fin 0.35(
CO- wr)IH 0.35C
NOX-CL 0.35(
1.8)
h.8>
11.5)
+ O.h
» n.fc
5(
5( •
+ O.h5( 1-
HC +
>.3> =
*.(.) =
'.n) =
Ndx =
SFC =
2.103
b.h37
11.833
13.937
.179
HC
b.B
.7
.3
.1
.1
.1
.3
.1
91.1
B.S
1.7
!i
.3
^f
.1
8b.7
1a
• *
a a
• 3
G/KW
G/KW
G/KH
G/KW
KG/KW
CO
10.7
11.0
20.5
7.0
5.0
7.0
19.1
5.2
11.3
H.l
11.1
18.0
h.b
5.h
7.1
H.3
5.1
17.5
•J
HR
HR
HR
HR
HR
NOX FUEL
.1 1.9
b.7 9.0
38.3 21. h
b.7 8.9
1.7 5.1
b.B 8.9
32.1 2b.7
b.8 B.B
.1 3.0
.1 5.1
5.9 8.9
37. b 21.5
5.9 S.B
!.«> S.I
b.1 8.9
35.5 2b.8
b.b P.P
.1 3.1
Uc
. 5
IP n
1C . U
( 1.5b9 BS)
( 1.919 83)
( 8.821 SS)
(10.393 BS)
( .7BB BS)
POxER
o.n
7.2
30.1
'.2
2.1
7.2
38.5
7.2
o.n
o.n
7.3
30.5
7.3
2.1
7.3
38.3
7.2
o.n
-------
TABLE C-7. MASS EMISSIONS RV NINE-MODE EPA - METRIC UNITS
ENGINF-fll TEST-lll RUN-Q2
1^75 CHEVROLET 350-CID HD ENGINE PROJECT 11-1311
Ob-o3-7b THERMAL REACTOR AND DECEL - AIR QFF MQDE 9
K= l.flSb HUMS 13.fa G/KG
O
I
00
MODE
1 IDLE
2 25 PCT T
3 55 PCT T
1 25 PCT T
5 10 PCT T
b 25 PCT T
7 1p PTT T
8 25 PCT T
9 C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
H 25 PCT T
5 10 PCT T
b 25 PCT T
7 90 PCT T
8 25 PCT T
9 C.T.
CONCENTRATION
HC-FIO CO
5bo
15
10
5
20
S
5
5
80
270
15
5
5
30
S
5
5
80
.101
.093
.072
.Obi
.Obi
.Obi
.Obi
.010
.030
.115
.Ob7
.051
.051
,0h7
.Obi
.051
.010
.030
-UNITS AS
MODE
1 IDLE
2 25 PCT T
3 55 PCT T
1 25 °CT T
5 10 PCT T
b 25 PCT T
7 9o PCT T
8 25 PCT T
1 C.T.
1 101 E
2 25 PCT T
3 55 PCT T
1 25 PCT T
5 10 PCT T
b 25 OCT T
7 HO PCT T
8 25 PCT T
1 C.T.
MV
17.5
11.1
R.R
13. R
lb.8
H.l
2.1
13. R
11.3
17.7
11.1
8.P
13.1
Ib.R
13.9
2.1
19.8
H.3
CHP
II. 0
23.0
50.7
23.1
9.2
23.1
81.0
23.1
0.0
o.n
23.1
50.7
23.1
1.2-
21.0
82.9
23.0
o.n
SUM---( COMPOS i TE
si|M---rrnMPnsTTF
T H 0 C v C l. f
COMPOSITE -
»s MEASURED TOTAL
en? NOX-CL CARBON
R.Rl
11.10
12.52
11.21
10.53
11.21
11.70
11.21
13.07
11.21
11.21
12.5?
1 1.21
11.21
1 l.?f
11.70
11.21
13.35
•»5 B.97»
510 11.01R
1323 12.513
570 11.302
230 10.593
510 11.302
1207 H.7b2
SRO 11.281
105 13.101
51 11.381
5bfl 11.308
1300 12.571
IbS 11.291
210 11.310
SbO 11.302
1218 11.751
580 11.281
110 13.381
SPECIFIED TN THF 7-1 1
CTO
0
bo
1 33
bl
21
b|
21H
bl
0
n
bl
133
bl
30
fcn
21R
bO
O
S/ Al IIP
» "*L *'t
VM I'E
FC 8SFC
1.1 R
22.5 .177
32.3 .h37
22.2 ,9bl
17.1 1.851
22.2 .9bl
ib.o ,S»R
22.0 .953
11.8 H
1.1 R
22.3 .9b|-
32.0 .b31
22.0 .951
17.3 l.R7b
22.2 .9t.ii
15.1 ,55«t
?2.0 .95b
11.8 B
HC- Fin n.
CO- NOI« 0.
NOX-CI 0.
FUEL
G/HR
IRbn
1020b
Hb51
10070
775b
10070
208b5
9979
5352
IRhO
10115
11515
9979
7817
10070
20R2C
9979
5352
CALCULATED
HC CO
13
5
1
0
2
0
1
0
H
5
1
1
0
2
0
1
0
1
-75 PPOCEDtlRF----
BSNOX
P
7.7
in. 9
7.9
b.b
7.5
7.3
8.0
R
P
7.8
10. b
b.1
b.5
7.8
7.1
*R
v-(
15( 5.
35C 11.
F/A
.011
.051
.057
.051
.018
.051
.Obb
.051
.051
.052
.051
.057
.051
.P51
.051
.Obb
.051
.ObO
21*0.
hi * 0,
bl t II.
13
173
Ib9
110
91
110
175
72
25
38
120
119
91
93
110
115
72
21
SFr
«?r \,
KG/KM
R
.59*
.387
.585
1.12b
.585
.333
.579
n
R
.587
.381
.580
1.111
.58b
.337
.58?
R
«-5f
b5(
b5(
HC
G/HR
NOX
3
171
510
178
59
Ibl
SIS
180
15
3
17b
52b
111
58
175
b03
180
15
HR RPH
bOO
2000
2000
2000
2000
2000
2020
2000
2000
bOO
2000
2000
2000
2000
?000
2000
2000
2000
.1) =
* . b) =
11. S) =
t NOX =
SFC =
NT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.1»3
.232
.077
.117
.077
.057
.077
.113
.077
.113
r At r
v ^ LL
A/F
21.2
11.8
17. b
11.5
20.7
H. S
15.1
11.5
lb.9
11.3
11. »
17. b
11.5
11.1
19.5
15.1
H.5
Ib.b
.lb»
1 ,9?9
11.191
1 1 ,b5>-
.SOb
WEIGHTFD G/HR VAC.
HC-FIO CO NOx-CL CKK MM
2.9
!?
.0
.1
.0
.1
.0
.5
1.1
.1
.1
.0
.1
.0
.1
.0
.5
HC
b8.2
8.2
1.5
.9
2.1
.9
2.1
.9
12.2
51.7
5.2
1.3
1.7
b.O
1.7
1.1
1.7
23.5
. 2
G/KH
G/K*
G/KW
G/KW
KG/KW
10
13
25
8
5
a
20
b
1
9
1
17
7
S
B
Ib
b
3
CO
10.1
13.1
25.0
P.b
5.2
B.b
19. «»
S.b
3.b
10.7
11.3
21.3
S.b
b.5
1P.1
2n.l
b.B
1.1
b
HR (
HP (
HR (
HP (
HR (
.8 0,0 111
13.1 17.2 358
79.3 37.8 ??*
13.7 17.2 351
3.1 b.1 »?7
13.0 17.2 358
b7.b b2.b bl
13.9 17.2 351
2.1 0.0 190
.7 0.0 150
13.5 17.2 358
77.1 37.8 221
11.1 17.2 353
3.3 b.9 ' "»?7
13.5 17.2 353
bS.l bl.8 bl
13.9 17. S 351
2.2 0.0 190
flE TnTAI — — — —
NOX FUEL POKER
.1 1.7 0.0
b.5 B.5 7.2
38.3 23,3 30.3
b.b 8.* 7.?
l.k 1." 2.1
b.3 B.» 7.2
32. fa 25.5 38. b
b.7 8.3 7.2
i.n 8.3 o.o
.1 1.7 0.0
b.b 8. 7.3
38.0 23. 30.5
5.1 8. 7.3
l.b 1. 2.1
b.b B. 7.3
33. H 25. 38.3
b.B 8.3 7.2
1.1 8.3 0.0
11 .b
11.1
.122 BS)
3.b75 BS)
8.570 BS)
8.b9? BS)
.831 BS)
-------
TABLE C-8. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-01 TEST-US RUN-01
1175 CHEVROLET 350-CIO HO ENGINE—-PROJECT 11-1311
OB-01-7b MOO BL-CARB bb07-PORTED INtEX MAN-HEIWOVA
K= 1.011 HUMa lb.3 G/KG
O
I
sD
CONCENTRATION AS MEASURED TOTAL FUFL
MODE HC-FID
1 IDLE 1280
2 25 PCT T 312
3 55 PCT T Sbo
1 25 PCT T 220
5 10 PCT T 220
b 25 PCT T 212
7 10 PCT T 15b8
8 25 PCT T 212
1 C.T. 23010
1 IDLE 1120
2 25 PCT T 381
3 55 PCT T b32
1 25 PCT T 2b1
5 10 PCT T 280
b 25 PCT T 2bo
7 10 PCT T Ib32
8 25 PCT T 210
1 C.T. 22100
CO
.312
.181
.(.51
.201
,1b1
.H3
1.120
.201
.312
.350
.21b
.b13
.755
.312
.227
1.180
.21b
.325
CO? NOX-CL CARBON G/HR
12. 3R
11.08
13.13
13.13
13.13
13.13
12.12
13.13
".»3
12.25
13.13
13.13
13.13
13.78
13.13
12.12
13.13
•».13
55 12.835 lllb
580 11.217 10133
1230 H.bSS 15211
510 11.151 1020b
300 11.121 7183
hOO 11.117 10251
718 lb.120 22b31
b30 11.158 1020b
20 12.2S* lllb
b2 12.811 lllb
t>10 11.181 10217
1300 11. b15 15150
bOO 11.711 lOlbO
300 11.121 7138
b20 11.187 10251
800 lb.188 22581
b?0 11.173 1020b
10 12.117 lllb
CALCULATED G/HR
HC
22
2b
hb
1»
!•»
17
211
17
»oi
31
32
71
21
18
21
257
20
100
CO
18
2b7
1385
217
521
282
11172
217
103
110
3lb
1315
1052
351
332
115b8
311
107
NOX
3
153
1b3
151
bO
158
318
IbS
1
3
IbO
187
ISO
bl
Ib2
317
Ib2
1
WT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.1*3
.238
.077
.117
.077
.057
.077
.113
.077
WEIGHTED
HC-FIO
5.2
2.0
1.7
1.1
.8
1.3
28.1
1.3
58.5
7.7
io!i
l.b
1.0
21 1
lls
57.1
CO
23
21
201
23
30
22
121b
23
15
2b
21
118
81
20
2fa
1307
21
15
G/HR
NOX-CL CKW
.7 n.O
11.8 17.1
b8.1 38.1
11. ^ 17.1
3.1 b.8
18.1 17.1
15.0 b2.7
12.7 17.1
.8 0.0
.8 n.o
12.3 17.1
71. b 38.2
11. b 17.1
3.5 S.8
12.5 17.1
11. •» b2.1
12.5 17.1
.1 0.0
VAC.
MM
12»
35b
20B
35b
132
35b
b3
3Sb
blS
121
3Sb
35b
132
35b
bl
3Sb
blS
----UNITS AS
MODE My CHP
1 IOLE lb.7
2 25 PCT T 11.0
3 55 PCT T 8.2
1 25 PCT T 11.0
5 10 PCT T 17.0
b 25 PCT T 11.0
7 10 PCT T 2.5
B as PCT T 11.0
1 C.T. 21.2
1 IDLE lfa.7
2 25 PCT T 11.0
3 55 PCT T B.I
1 25 PCT T 11.0
5 10 PCT T 17.0
b 25 PCT T 11.0
7 ID PCT T 2.1
8 25 PCT T 11.0
1 C.T. 21.2
3IIM«wf PflMU
o.n
23.3
51.1
23.3
•».!
a3.3
81.1
23.3
0.0
0.0
83.3
51.2
23.3
•M
23.1
81.1
23.1
0.0
ana r Te- 1
SPFfTFTFD TN THF 7-11-75 PPnrPf*' ">£•____ or**
orci,*'lCU I** inc. ^ ™ A J ™ r 3 rr*UC C L
CTO FC BSFC BSNOX
0
bl
131
bl
21
bl
221
bl
0
0
bl
131
bl
21
bl
22?
bl
0
if A i lie- C rtO
3 Un™™" I J,Un»~ vo 1 *C '"l-'-'c ryrr
SUM* — —fCOMPOSITE V A l_ U F FOR
TWO CYCLE COMPOSITE -
1.1 P R
23.0 .188 b.7
33. b .bSB q.2
22.5 .1b7 b.7
17. b 1.131 b.7
22. b .170 b.8
11.1 .513 1.8
22.5 .1b5 7.2
1.1 P H
1.1 R R
22.7 .171 7.0
33.1 ,bS3 l.fa
22.1 .Ibl b.5
17.5 1.115 b.8
22. b .IbB 7.1
11.8 .510 1.8
?2.S ,1b? 7.0
1.1 R R
HC- FIO 0.35C b.
CO- NOIR 0.35( 11.
NOX-CL 0.35( 1.
r v r\ t
F/A
.058
.Obi
.Obb
.nbi
.ObS
.Obi
.07b
.Obi
.ns8
.058
.Obi
.PbS
.Obb
.Obi
.Obi
.07b
.Obi
.057
n) + n.
0) + n.
1) + n.
nr u
KG/KM HR RPM
R
.bni
.100
.588
1.175
.510
.3bl
.587
R
R
.512
.317
.581
l.lbS
.581
.351
.585
R
bS( b
•><;( 11
b5( 1
HC *
bOO
2000
2000
2000
2000
2000
2000
2000
2000
bOO
2000
2000
2000
2000
2000
2000
2000
2000
.2) =
.b) =
.3) =
NOX =
SFC =
p Ai r
L **LL
A/F
17.2
iS.b
1S|7
15.1
15.7
13.2
15.7
17.1
17.2
15.7
15.1
15.1
15.7
15.7
13.1
15.7
17.5
b.12?
13.323
1.255
15.377
.115
HC
1.8
1.8
*.o
1.3
.7
1.2
25.1
1.8
51.0
b.1
?.l
l.b
1.1
.1
1.1
25.7
1.3
50.5
b . 0
hp
• c
G/KW
G/KW
G/KW
G/KW
KG/KW
CO NOX FUEL
1.1
I. 2
I?. 3
1.1
1.8
1.3
7R.3
.1
1.5
1.1
11.5
1.7
1.2
1.5
7b.O
1.1
.1
1 1
T 1
15
HR
HR
HP
HP
HR
.1 5.1
7.1 R.»
11.1 81. »
7.1 B.h
a.i s.o
7.3 8.b
27.1 27.1
7.f> 8.b
.1 3.1
.5 5.1
7.3 B.7
ie.e 21. i
b.8 R.I.
2.1 5.0
7.1 B.b
2h.1 28. n
7.3 «.b
.11 3.1
1 1
1.3
( I.SbS BS)
(bl.SIl BS)
( b.101 BS)
(ll.lbb 8S)
( .815 BS)
POWER
o.n
7.3
30.1
7.3
2.1
7.3
38. 5
7.3
o.n
0.0
7.2
10.1
7.2
2.1
7.3
38.5
7.3
n.u-
-------
TABLEc-9. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-01 TEST-llb RUN-1
1175 CHEVROLET 350-CID HD ENGINE PROJECT Il-t311
OR-05-7b BPEGR 0.25-5COILSX.01tXl.3BH -MOD CONF US
K= 1.018 HUM= 17.0 G/KG
O
I
CONCENTRATION
MODE HC-FID CO
1 IDLE JBlb
2 25 PCT T 320
3 55 PCT T 5RO
t 25 PCT T 2bH
5 10 PCT T 280
b 25 PCT T 232
7 10 PCT T 1SBH
8 25 PCT T 22t
1 C.T. 28800
i IDLE 3ibB
2 25 PCT T tbH
3 55 PCT T bbt
* 25 PCT T 318
5 10 PCT T 320
b 25 PCT T 30H
7 10 PCT T Ib32
8 25 PCT T 2b>»
1 C.T. 30080
1.331
.287
.788
.312
.blO
,30b
3.110
.30b
.350
.325
.350
.BOt
.325
.(.51
.337
t.230
.325
.337
— UNITS AS
MODE MV CHP
1 IDLE lb.7
2 25 PCT T 13.8
3 55 PCT T 7.1
» 25 PCT T 13.8
5 10 PCT T 17.0
b 25 PCT T 13.1
7 10 PCT T 2.5
8 25 PCT T 13.8
9 C.T. 23.8
1 IDLE lb.7
2 25 PCT T 13.8
3 55 PCT T 7.9
t 25 PCT T 13.1
5 10 PCT T 17.0
b 25 PCT T 13.1
7 1Q PCT T 2.5
8 25 PCT T 13.8
1 C.T. 23.8
n.o
23. t
51.
23.
1.
23.
83.
23.
0.0
0.0
23. t
51.5
23. t
1.2
23.5
8*.l
23.5
o.n
SUM — -(COMPOSITE
TWO CYCLE COMPOSITE -
AS MEASURED TOTAL FUEL
C02 NOX-CL C»RBON G/HR
11.11 b3 1?.S*3 1105
13.7B 525 It. lot 10217
13.13 lOlb It. 783 15150
It. 23 StO It. 572 10115
13.78 210 It. 502 7813
It. 23 550 It.Sb? lOlbO
1?.S2 780 Ib.bl2 2H01
It. OP StS It. til 10070
1.01 17 12.tB9 1950
11. Bb bS 12.b2b 1905
It. OR SbO It.t82 10217
It. OP 1028 It.lbO 15150
1».23 535 It. 510 10115
It. 08 210 It. 775 7B13
it. 23 555 it.boa inibn
12.38 bP5 lb.718 219n1
It. 33 550 It.SSt 10070
8.71 lb 12.307 1150
CALCULATED G/HR
HC CO NOX
ts
2b
hR
21
17
IB
18
HB1
b7
37
77
BS
11
2tb
21
517
73
Ib30
t37
751
lOtlb
*32
110
11
502
IbtS
711
llltt
»53
108
3
1*0
380
137
58
ito
375
131
1
its
380
135
Sfa
It!
32b
138
1
SPECIFIED IN THE 7-11-75 PROCEDURE SFC
CTO FC 8SFC BSNOX F/A KG/KW HR RPM
n t.2 R R
bl 22.7 .170 b.l
135 33.* .b5o 7.5
bl 22.3 .153 5.1
2» 17. » 1.101 b.t
bl 22.* .157 b.l
220 t8.3 ,57b 1.5
bl 22.2 .1t8 b.O
0 t.3 R R
f> *.2 R R
b? 22.7 .9b9 b.3
135 33.* .btp 7.5
b2 22.3 .151 5.1
2t 17.* ).R9b b.3
b2 22.* .155 b.l
221 *8.3 .57* 3.1
b2 22.2 .lib b.O
C *.3 R R
HC- FID H.35( b.<»)
CO- NOIR 0.3S( «1.S)
NOX-CL 0.3S( 8.0)
.057
.Ob*
,0b7
.nbs
.ObS
.ObS
!obS
.051
.058
.ObS
,0b7
.Obb
,0b7
.Obb
.078
.nbb
.058
4 n.
4 n.
4 n.
R
.510
,31b
.580
l.lSb
.582
.350
.577
R
R
.581
.31t
.S7S
1.153
.581
.3*1
,S7b
R
bSC 7
">S( 15
b5( 7
HC 4
bOO
2000
2000
2000
2000
2000
2000
2000
2000
bOO
2000
2000
2000
2000
2000
2000
2000
2000
.b) =
.0) =
.7) =
NOX =
SFC =
HT.
. FACT.
.23?
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.23?
.077
.1*7
.077
.057
.077
.113
.077
.1*3
C»LC
A/F
17.5
15.7
15. D
15.3
15.3
15.3
13. n
15.*
lb.1
17.*
15.3
is!?
15.0
15.?
12.1
15.3
17.1
7.9*7
13.111
7. ROB
15. 15b
."»H7
WEIGHTED
HC-FIO co
11.0
2.0
1.1
l.b
1.0
27.2
1.*
bl.1
IS. 5
2.1
11.2
1.1
1.1
1.8
27.7
l.b
73.1
HC
8.P
l.b
7.1
1.3
.8
1.1
21.7
1.1
55.7
11.2
e.i
8.2
1.*
.8
1.3
20.2
1.2
53.7
b.S
G/KM
G/KW
G/KM
G/K*
KG/KW
17
33
2*0
33
1177
33
lb
J3
31
35
3b
1251
35
15
CO
1.0
2.0
2.1
2.7
72!»
2.0
1.0
1.3
1*.0
2.0
2.3
2.1
73.0
2.0
n
is
HR
HP
HP
HP
HP
G/HR
NOX-CL
.8
10.8
55.8
10.5
3.3
10.8
loi?
.1
.8
11.2
55 B
"*-'•'*
10.*
3.2
10.8
3fa.B
in. 7
.1
ENT OF T
NOX
" "b"
7.*
38.*
7.2
2.3
7.*
21. S
7.t
.1
.b
8.0
31.1
7.t
2.3
7.8
7.b
.1
8.0
7.7
( S.*79
(b1.*33
( 5.823
(11.301
( .BOO
CKW
0.0
17.*
3». 3
17.*
b.8
17.5
b2 . b
17.5
o.n
0.0
17.5
38. H
17!5
b.8
I7.'s
b2. 7
175
* • »
n.n
n T At «
FUEL
t .1
8 . 8
2t.7
8. 7
5.0
8.7
27.5
s!l
t .1
P.P
2*. 7
8.7
5.0
8.7
27.5
8.b
BS>
BS)
BS)
83)
38)
VAC.
MM
"~~*2*
3S 1
3S1
H 3?
353
b 3
351
bns
* ?*
351
353
* 3?
353
351
bns
POWER
o.n
7.3
3n s
3 " . 3
7.3
2.1
7.3
38.3
7.3
0.0
Q . 0
7.3
30.5
7.3
2.1
7.3
38.3
7.3
o.o
-------
TABLE C-10. MASS EMISSIONS BY NINE-NODE EPA - METRIC UNITS
ENGINE-01 TEST-117 RUN-1
1175 CHEVROLET 35O-CID HO ENGINE---PROJECT 11-4311
OR-ns-7b BPEGR o.25-7COiLsx.ob3x2.44H -MOO CONF us
1.101 HUM= is.1; G/KG
O
i
CONCENTRATION
MODE
1 IDLE
2 25 prT T
3 55 PCT T
4 '25 PCT T
5 in PCT T
b 25 PCT T
7 10 PCT T
B as PCT T
1 C.T.
1 IDLE
2 35 PCT T
3 55 PCT T
4 25 PCT T
5 10 PCT T
b 25 PCT T
7 10 PCT T
9 25 PCT T
<* C.T.
HC-FID
3810
100
b5b
2RB
288
2«B
IbOO
288
2b880
5440
480
718
328
320
21b
Iblb
2S8
28800
CO
.147
.287
.771
.337
.bSI
.312
4.810
.337
.287
.251
.31,3
.755
.325
.518
.287
4.810
.325
.325
AS MEASURED TOTAL FUEL
C02 ' NOX-CL CARBON G/HR
11.73 51 12.304 IHbO
14.23 blO 14.5b3 10217
14.23 1112 I5.07b 14923
14.23 580 14.bOn 10024
13.13 310 14.b22 7bbb
14.23 510 14.575 10024
11.19 bOO lb.185 22581
14.23 570 14.bOO 111*
B.B1 8 12.012 1950
11. 8h b8 12.71b 1150
14. OB bOO 14.497 10)15
14.39 1151 15.22b 149b1
14.23 blO 14.592 1971
13.13 310 14.5bS 7b20
14.23 bOO 14.551 1134
11. 8b bnfl Ib.flbb 22544
14.31 530 14.7*7 1888
8.42 8 11.857 1950
C*LCOLATED G/HR
HC
bl
32
74
22
17
22
24b
22
473
13
38
80
25
11
23
2b2
22
512
CO
45
410
1542
4b8
b18
433
12122
4bS
14
78
511
1418
448
b32
31b
12187
440
108
NOX
3
1SS
405
147
bO
141
214
143
0
4
154
411
154
bO
151
2"
-------
TABLE C-U. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 3SO-CID HD ENGINE-—PROJECT 11-4311
---™:!L-J!-I:"X^RUN-WOT OB-0"-7b "°° 8L-CAR8 b(,07-PORTED IN-EX MAN-HEINOVA K* 1.091 HUM* lb.3 G/KG
MODE RPM
1
2
3
2000
20OO
CONCENTRATION
HC-FID CO
1888
IBSb
188B
S.8HO
b.050
S.BfO
AS MEASURED TOTAL FUEL CALCULATED G/HR
C02 NOX-CL CARBON CONS. HC CO N02
11.13 IQlb 17.178 2
11. 2» 1028 17.505 2
11. 3b 1112 17.H19 a
»9<»3 318
»902 3flb
»b7S 310
171b3 »9l
17385 IBb
lb7U 533
CORRECTED G/HR
HC-FID CO NOX-CL CKW
317.8
30b.3
310.0
17lb3
17385
Ib711
535.5 b7
539.8 b7
570.7 b7
.3
.0
.3
VAC.
18
18
18
-------UNITS AS SPErlFlFO IN THC 7-11-75 i >nrrnnDr_______ „ * i „ _ _
MODE
ID
MV
—CALC-"
BSFC A/F F/A
-------G/KH KR--- SFC
HC CO NOX KG/KW HR
lib
117
.7
.7
.7
10.3
8R.S
SO. 3
237
?3b
237
55. 1
3.59
1S3.S3
It7.5b
s.ss
5.52
.blO 12.*
,bll 12.1
,b02 12.3
.081
.083
.082
».ea abo.o? 7.Hf .371
*.b7 abt.SB 7.»0 .371
».7a as».bb 7.97 ,3bb
ID = TEST NO.
n
-------
TABLEC-1Z. MASS EMISSIONS RY NINE-MODE EPA - METRIC UNITS
ENGlNE-01 TEST-11B RUN-1
1975 CHEVROLET 350-CIO HO ENGINE—PROJECT 11-4311
OB-ob-7b BPEGR o.25-scoiLsx.i8Sxi.sbH -NOD CONF iis
Ke 1.081
HUM =
15.1 G/KG
O
I
t—
OJ
CONCENTRATION AS MEASURED
MODE
1 IDLE
8 85 PCT
3 55 PCT
1 25 PCT
5 10 PCT
b 25 PCT
7 9o PCT
a 85 PCT
9 C.T.
1 IDLE
8 85 PCT
3 55 PCT
1 85 PCT
5 10 PCT
b 25 PCT
7 90 PCT
8 25 PCT
* C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
HC-FID
8880
304
552
221
aoo
lib
1110
208
219bO
3810
lib
b2i
280
218
aiB
1178
232
25bOO
CO
.831
.28b
,70b
.239
.1b9
.827
3.310
.8fa3
.875
.875
.275
,b9Q
.2b3
.1b9
.239
3. bOO
.875
.300
CO?
11.73
13.78
13. bl
13.13
13.11
13.13
12. bS
13.93
1.22
11. 99
13.13
13.78
13.13
13.19
13.78
18.58
13.13
8.b2
NOX-CL
58
505
lObl
515
830
5?0
1b8
510
IS
57
520
1112
520
810
5?0
871
"HO
B
TOTAL
CARBON
18.881
11.010
11.109
14.195
13.188
11.182
lb.125
11.217
12.210
18.b13
14.252
11. SH
11.225
13.187
11.017
lb.2B9
11.231
Il.b91
FUEL
G/HR
11<4b
inibo
11878
1888
7711
10024
22181
9B.»3
199b
199b
10070
11787
1888
775b
1131
22871
1813
lllb
CALCULATED G/HR
HC
5?
85
b5
IS
18
17
287
It.
Ill
b7
33
72
22
Ib
20
231
18
H73
CO
78
330
1173
337
523
325
qii7
3b8
11
87
313
1118
3b1
525
342
1113
381
103
NOX
3
131
311
121
1b
138
178
187
1
3
138
lOb
130
18
138
187
122
0
WT.
PACT.
.838
.077
.117
.077
.057
.077
.113
.077
.113
.832
.077
.117
.077
.057
.077
.113
.077
.113
WEIGHTED G/HR
HC-FID
12.1
1.1
1.5
l.»
.7
1.3
25.7
1.3
b3.5
15. b
2.b
10. b
1.7
.1
1.5
2b.l
l.»
b7.7
CO
18
25
21b
2b
30
25
1031
28
13
20
30
808
28
30
2b
1121
30
IS
NOx-CL
.7
10.1
57. 1
1.1
2.b
10.2
51.0
1.8
.1
.7
10.8
51. b
10.0
2.7
10.2
18.3
I.1*
.1
CKH
n.n
17.3
38.1
17.3
f>.8
17.3
b3.n
17.3
0.0
0.0
17.3
38.5
17.3
b.8
17.1
b3.0
17.1
0.0
"AC.
M«
12*
3b8
221
371
11?
371
b3
371
<>)2
12*
3b8
221
371
112
371
b3
371
hi?
UNITS AS SPECIFIED IN THE
MODE
1 IDLE
2 25 PCT T
3 55 PCT T
1 25 PCT T
5 10 PCT T
b 85 PCT T
7 90 PCT T
8 25 PCT T
1 C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
1 25 PCT T
5 10 PCT T
b as PCT T
7 90 PCT T
B 25 PCT T
9 C.T.
MV
lb.7
11.5
8.7
11. b
17.1
14. b
2.5
14. b
81.1
lb.7
11.5
8.7
11. b
17.4
14. b
2.5
14. b
21.1
CHP
n.o
23.2
51.5
23.2
1.1
23.2
84.5
23.3
0.0
0.0
83.3
51. b
23.3
9.1
23.3
81.5
23.3
0.0
SUM— (COMPOSITE
SUM— (COMPOSITE
THO CYCLE COMPOSITE -
CTO
0
bl
135
bl
21
bl
222
bl
0
0
bl
bl
bl
222
0
VALUE
VALUE
FC
4.1
22.1
32.8
21.8
17.0 1
22.1
18.9
21.7
1.1
1.1
22.2
38. b
21.8
17.1 1
?1.9
11.1
21.7
4.1
FOR CYCLE 1)
FOR CYCLE ?)
HC- FID
7-11-75
BSFC
R
.IbS
.b37
.138
.Bhl
.951
.571
.933
R
R
.951
.b3?
.937
,B7fl
.910
.581
.93?
R
0 35 (
CO- NOIR n.35(
NOX-CL
0. 35(
PROCEDURE
BSNOX
R
5.7
7.7
sii
5.7
5.7
"R
P
5.7
8.0
s!3
5.7
S.I
5.3
R
b.
77.
8.
F/A
.05b
.nb3
.Ob5
.Obi
.Ob3
.Obi
.071
.Obi
.058
.058
.Obi
.Qbb
.Obi
,0fa3
.Ob3
.075
.Obi
.055
1) + O.I
7) + n.l
5) + n.l
SFC
KG/KH
R
.587
.387
.570
1.137
.578
.353
,5b7
R
w
.580
.381
.570
1.142
.57?
.353
,5b7
R
-S(
-S(
'5(
HC
HR RPM
bOO
2000
2000
2000
2000
2000
2000
2000
2000
bOO
2000
8000
8000
8000
?000
8000
8000
eoon
7.0) =
SP.b) =
8.3) =
+ NOX =
SFC =
CALC
A/F
17.1
15.8
15.4
15.7
15.9
15.7
13.5
15. b
17.4
17.3
15. b
15.8
15. b
15.8
15.8
13.3
15. b
18.1
b.793
80.111
8.3*1
IS. 13*
.481
HC
10.3
l.b
8,1
1.2
.b
1.1
21.9
1.1
54.1
12.8
2.0
8.3
1.3
.7
1.2
20.1
1.1
52.8
b.1
7.0
G/KW
G/KW
G/KW
G/KW
KG/KW
CO
1.3
1.8
15.2
l.B
2.1
l.B
73.1
2.0
.9
1.3
2.0
13.8
1.9
2.0
1.7
71.3
8.0
1.0
78
83
HR
HR
HR
HR
h»
NOX FUEL
.5 5.2
b.S 8.7
37.3 ?*.1
b.1 8.5
1.7 4.9
b.S R.b
31.8 28.0
b.3 8.5
.1 3.2
.5 5.8
b.7 8.7
39.5 81.3
b.b B.S
1.8 4.1
b.7 B.b
31.9 28.1
b.2 8.5
.0 3.?
8.5
8.3
( S.Ohb RSI
(b0.33b BS)
( b.220 BS)
(ll.JSb BS)
( .795 HS)
POWER
0.0
7.2
30.5
7.2
2.1
7.?
38.5
7.2
0.0
0.0
7.2
30.5
7.?
2.1
7.2
38.5
7.2
o.n
-------
O
ENGINE-01
TABLE C-13. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 3SO-CIO HO ENGINE—PROJECT 11-»311
TEST-HI RUN-1A 0«-01-7b 25 PCT LflAO-MAM EGR- NO VAC ADV - CoNF 115
K« 1.110 HUMS IB.8 G/KG
CONCENTRATION
MODE RPM HC-FID CO
1 2000
2 2000
3 2000
1 2000
S 2000
b ?000
MODE ID
100
33b
272
320
3fa8
MV
.312
,2b3
.231
.300
,37b
.312
— UNITS
CHP
AS MEASURED TOTAL
C02 NOX-CL CARBON
11.51
11.23
11.23
11.08
11.23
11.31
b?0
535
120
310
205
IBS
AS SPECIFIED
CTQ FC
11.103
11.538
11.507
11.111
H.b12
11.711
IN THE 7-
BSHC
FUEL
CONS.
1752
10070
10178
1070S
11P31
11718
CALCULATED G/HR
HC CO NOg
33
31
28
S3
21
33
11-75 PROCEOURE"
BSCO BSNOX
112
3b8
311
ISO
502
B3FC
lib
123
101
7b
55
11
— CALC — -
A/F F/A
CORRECTED G/HR
HC-FID co NOX-CL
33.3
31.1
27.5
28.1
21.1
33.3
HC
112
3b8
311
ISO
b!3
502
--G/KH
CO
Ibl.b
13b.fa
111.8
81.1
LI i
51.3
NOX
VAC.
CKH MM
17.2 3bb
17.3 315
17.3 317
17.3 210
17.5 173
SFC
KG/KW HR
1
2
3
1
5
b
0.08
0.39
0.71
1.18
1.73
1.12
1H.1
13. b
12.5
11. 1
8.8
b.8
23.1
23.2
23.2
23.3
23.2
23. S
bl
bl
bl
bl
bl
b2
21.5
22.2
23.1
23. b
2b.l
25.1
1.H8
1.10
1.22
1.G2
1.31
1.18
18.33
lb.3fa
15.51
IS. 11
27. 2b
22.32
b.»7
S.t7
».»8
3.»0
2.»S
2.18
."01
.157
.11*
1.015
1.123
1.10»
11.1
15.3
15.3
15. »
IS. 2
15.1
.Ob7
.ObS
.Ob5
.Ob5
.Obb
.Obb
1.S1
1.87
l.bH
1.3b
1.75
1.11
2t.S8
21. It
20.80
2b.BO
Bb.SS
21.13
8.b8
7.33
b.OO
».Sb
3.28
2.12
.Sbb
.582
.bOS
.b!7
.1)83
.b72
ID
INTAKE C02
ENGINE-01 TE9T-111 RUN-IB
STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 350-CID HO ENGINE---PROJECT U-H3M
08-oi-7t 25 PCT LO»D-MAN EGR-HITH v*c ADV- CONF us
1.110 HUMS 18.8 G/KG
MODE
2
3
1
5
b
CONCENTRATION AS MEASURED TOTAL
RPM HC-FID CO C08 NOX-CL CARBON
?onn si2
2000 102*
^ooo i"»»
2000 128
2000 112
2000 8*8
.838 13.11
.771 13. b»
.bSI 13.78
.b!3 13.78
.StO 13. 7B
.102 13.78
1572
1300
871
575
»02
305
UNITS AS SPECIFIED
MODE
1
2
3
»
5
b
ID MV
0.08 1S.1
0.31 15. b
0.71 1S.1
1.27 It.H
l.bl 13.5
2.0? 11.7
CHP CTO
23.3 bl
23.3 bl
23. » bl
23. » bl
23. H bl
23. » bl
FC
18.2
18.3
IB. 8
11. »
11. b
20. S
l».38b
H.S27
11. Sib
H.118
1».»23
11.278
IN THE 7-11
BSHC
1.18
2.15
2.79
2.81
2.83
2.7B
FUEL
CONS.
8255
8301
8528
8800
8810
1219
CALCULATED 6/HR
HC CO N02
33
bb
b3
(>1
hi
b2
172
810
780
752
b7?
528
B3CO
13.11
31.55
31. b8
33.11
21. Bb
23.11
BSNOX
13.31
10. 1b
7. S3
5.15
3.bb
2.13
BSFC
.780
.781
.803
.831
.838
.878
211
217
170
lib
82
bb
CORRECTED G/HR
HC-FID CO NOx-CL
33.3
bb.3
b2.7
b3.e
b3.7
b2.5
"-CALC-—
A/F
IS.f
15.2
15.2
15.3
15.1
15.5
F/A
.Ofa^
.Obb
.Obb
.ObS
.ObS
.Obi
HC
1.18
3.15
3.71
3.80
3.71
3.72
172
81Q
780
752
b72
528
CO
57.12
53.03
1b.51
11.80
10.01
31.50
332.5
273 B
188.2
128. b
1J.3
73.2
NOX
17.85
11.70
10.10
b.Sl
1.10
3.13
VAC.
CKH MM
17.1 101
17 1 31t>
17.5 311
171 3fob
17 1 313
17.1 217
SFC
KG/KW HR
,*7»
.177
.189
. SOS
.510
.531
ID
INTAKE C02
-------
ENGINE-01
TABLE C-14. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 350-CID HO ENGINE—PROJECT 11-1311
TEST-ns RUN-2A OB-09-7b 55 PCT LOAD-NAN EGR- NO VAC ADV - CONF US
1.113 HUMa 22.b G/KG
CONCENTRATION
MODE RPH
1 2000
2 9000
3 2000
i 2000
5 2000
HC-FID
73b
b72
S»1
3bB
132
CO
.85b
.821
.738
.115
.»97
AS MEASURED
CO? NOX-CL
11.23 1505
14.23 1207
11.23 81b
11.08 b30
11.08 b?0
TOTAL
CARBON
15.170
15.128
15.030
11.537
11.b2b
FUEL
CONS.
11379
HSbO
15122
15377
ISbOl
CALCULATED G/HR
HC
79
71
bl
11
52
CO
Ib38
1597
1530
887
1071
NO?
171
38b
288
221
220
CORRECTED G/HR
HC-FID
79.5
73.7
b3.S
11.1
52.3
CO
Ib38
1597
1530
887
1071
NOX-CL
527.1
1*29.3
320.8
Z1b.2
811.1
VAC.
CKH MM
38.3 21b
38.3 19b
38.2 IbO
38.2 97
36.2 79
MODE ID
1 0.09
2 0.3<»
3 0.75
* 1.18
5 1.32
Mv
8. 5
7.7
b.3
3.6
3.1
"UNITS
CHP
51. 3
51.1
51.3
51.2
51.2
AS SPECIFIED
CTO FC
135 31.7
135 32.1
135 31.0
13* 33.1
135 31.1
IN THE 7-11-75 PROCEDURE
BSHC
l.bl
1.19
1.28
.89
I.Ob
BSCO
33.10
32. 2b
30.
-------
ENGINE-01
TABLE c-i5. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 350-CIO HO ENGINE—PROJECT 11-1311
TEST-m RUN-3* 08-001-7b 10 PCT LOAD-MAN EGR-HITH VAC ADV- CONF 115
K* 1.101 HUMx g.»., G/KG
MODE RPM
1 2000
2 2000
3 2000
1 200O
S 2000
b 2000
MODE ID
CONCENTRATION
HC-FID CO
SbO
511
S7b
bio
bflo
1188
MV
.510
.511
.117
.510
.b!3
.blO
CHP
AS MEASURED TOTAL
C02 NOX-CL CARBON
13.35
12. "3
13.35
13.11
13. bl
13.07
770
550
135
280
200
US
AS SPECIFIED
CTO
FC
13.153
13.502
13.112
11.102
11.330
13.128
IN THE 7-11
BSHC
FUEL
CONS.
b078
b577
bill
faBOl
7031
7575
CALCULATED G/HR
HC CO N02
28
30
30
35
38
11
175
503
IbS
S2b
b08
758
-75 PROCEDURE- —
BSCO
BSNOX
BSFC
111
81
b7
IS
33
21
CALC- —
A/F F/A
CORRECTED 6/HR VAC.
HC-FID CO NOX-CL CKH MM
27.5
21.8
30.1
31.1
37.8
11.2
HC
175
503
IbS
52b
b08
758
CO
122.1 b.i »«•«
18.2 b.
73.8 b.
11.5 b.
3b.O b.
22.1 b.
1b2
150
111
1 22
3bl
NOX KG/KM HR
1
2
3
1
&
b
O.OB
0.17
0.79
1.23
l.bl
2.17
18.3
18.2
17.7
17.5
Ib.b
1"».2
.3
.3
.3
.3
.3
.3
21
21
21
21
21
21
13. »
11.5
H.2
15.0
1S.S
lb.7
3. Ob
3.31
3.31
3.88
1.20
10.11
S2.7S
55.87
51. bl
S8.12
b7.Sl
81.25
12.37
1.88
7.13
1.18
3.b2
2.31
1.111
l.SbO
1.528
l.bll
l.bbB
1.717
15.1
lb.1
15.1
15.7
15. S
15.8
.Ob3
.Obi
.Ob3
.Obi
.ObS
.Ob3
1.10
1.11
1.18
S.20
S.b3
13.51
70.71
71.92
bl.21
78.35
10.51
112.18
Ib.SI
13.25
l.lb
b.bB
1.85
3.01
.87b
.919
.929
.982
1.015
1.093
ID > INTAKE C02
-------
ENGINE-01
TABLE C-16. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 350-CID HD ENGINE—PROJECT 11-1311
TEST-US RUN-» 08-0l-7b 10 PCT LOAD-MAN EGR- NO VAC AOV - CONF IIS
Ks l.lOh HUM* 2».l G/KG
MODE
1
2
MODE
1
2
CONCENTRATION
RPM HC-FID CO
POOO Iblfa
2000 185b
ID MV
n.oa z.s
0.35 1.0
b!l30
—UNITS
CHP
83. b
83. b
AS MEASURED TOTAL
C02 NOX-CL CARBON
11.11
11.21
8SO
315
AS SPECIFIED
CTO FC
Z?0
220
IB.b
51. b
17.585
FUEL
CONS.
23105
CALCULATED G/HR
HC CO N02
251
287
IN THE 7-11-75 PROCEDURE"
BSHC BSCO BSNOX
3.11
3.51
117.30
203. 1b
l.bl
1.72
11191 3'1
IblSl 131
— CALC—
BSFC A/F F/A
.591 12.1 .077
.fal7 12.1 .083
CORRECTED G/HR
HC-FID CO NOX-CL
258.8 11131
28b.7 IblSl
— .... 6/KW
HC CO
1.28 117.51
1.7S 272.85
issli
NOX
b.H
2.30
VAC.
CKH MM
b2.1 b3
b2,1 25
SFC
KG/KM HR
.353
.375
ID a INTAKE C02
n
-------
TABLE C-17. «4SS EMISSIONS PY NINE-MODE EPA - METRIC UNITS
ENGINE-]
1175 CHEVROLET 350-CIO HD ENGINE—PROJECT Il-t31l
TEST-1P3 RUN-p) 08-18.7b BPEGP 0.53-7COILSX,Ob3X2.t3H -MOD CONF .]]
1.013 HUMS tb.5 G/KG
MODp
1
e
3
t
5
b
7
8
1
1
2
3
t
S
h
7
8
1
IDLE
25 PCT
55 PCT
25 PCT
10 PfT
25 PCT
in PC T
25 PCT
C.T.
IDLE
25 PCT
55 PCT
85 PCT
in PCT
85 PCT
in PCT
25 PCT
C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
CONCFf
HC-FID
25bO
30t
t73
200
112
112
Ibbt
11?
11200
307?
tno
5**
8t8
200
2tp
1728
2P8
11?00
ITRATION
CO
.251
.227
.b7»
.251
.tbl
.21b
5.**n
.2?7
.275
.275
.275
.bt3
.?51
.tbl
.827
5.57n
.275
.275
A? MEAS
en?
11. 8b
13. bt
13.78
13.13
13. bt
13. 7B
11. tR
13.13
10.07
12.12
13.78
13.13
13.13
13. bt
13.13
11 .?t
13.13
"».»?
UREO
NOX-CL
St
330
550
315
225
335
tPO
310
10
t3
3*0
570
310
113
310
tso
210
10
TOTAL
CARBON
iP.au,
13. ip?
1*.50B
1*.?0*
It. 131
It. 017
17.112
1* . 1 7°
I?.tt1
12.738
It.inp
I*.b35
1* . ?0l
It. 13?
It. 185
17.P10
It. 221
11.71P
FUEL
G/HR
18bO
10b51
1S1P1
lot 33
707b
10t78
22152
10387
18bO
IBbO
!P5b1
15830
10387
fa185
1 nt33
82H7
10387
IRbO
CALCULATED G/HR
HC CO NOX
*3
?b
SI
17
11
lb
258
lb
31*
50
3*
b?
21
11
20
27P
17
330
7b
3S2
1*15
373
t75
3?b
1*731
337
83
PI
*17
itnb
37]
*b8
338
15218
*Ob
SB
3
12
211
*1
11
23t
83
1
2
18
82t
82
35
83
221
77
1
WT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
!o77
.057
.077
.113
.077
.1*3
WEIGHTED G/HR
HC-FID CO NOX-CL
1.1
2.0
B.fa
1.3
i!a
21.2
1.2
11. b
P.b
1.8
l.b
.b
1.5
30.5
1.3
»7.2
18
27
220
87
as
Ibb5
3b
12
11
32
207
21
87
2b
1711
31
13
.7
7.1
32.2
b.S
2.3
7.0
8b.t
b.3
.1
.5
7.1
32.1
fa. 3
2.0
25. D
5.1
.1
CKM
0.0
17.*
37.8
17. *
b.R
17. t
b?.n
17.*
0.0
0.0
17.*
37.1
17.*
b.S
17.*
17.*
n.o
VAC.
MM
* 1 1
T 1 T
320
132
323
*SO
320
5b
320
b07
*11
320
132
320
1 50
320
5b
320
b07
o
I
b—
00
----UNITS AS SPECIFIED IN THF
MODF MV
1 IDLE lb.5
2 25 PCT T 12. b
3 55 PCT T 5.2
t 25 PCT T 12.7
5 10 PCT T 17.7
b 25 PCT T 12. h
7 10 PCT T 8.2
8 25 PCT T 12. b
1 C.T. 83.1
1 IDIF. lb.5
2 25 PCT T 12. b
3 5S PCT T 5.?
t 25 PfT T 12. b
5 10 PCT T 17.7
b 25 PCT T 18. b
7 in PfT T 2.2
B ?5 PCT T le.b
1 C.T. 23.1
CHP
n.o
23.3
50.7
?3.3
1.1
?3. 3
83.2
?3.3
0.0
n.n
23. t
sn.e
33.3
•M
23.3
83.2
?3. 3
o.n
CTO
0
hi
133
hi
?t
bl
21"
H
P
0
hi
133
bl
?t
bl
PIP
bl
P
SUM — (ci'HPosiTE V»LUF
SUM.--.rcoi.
s
«) =
r At r
C HUv.
A/F
17.7
lb.0
15.3
15. b
15.7
15.8
12.5
15.7
17.2
17.3
15.7
15.8
15. b
15.7
15.7
12.5
IS.b
18.1
5.7b*
115. 3b1
*.BH
HC
10.0
2.0
8.7
1.3
.b
1.3
21. t
1.2
*5.t
in.i
2.*
1.2
1 .5
.h
1.*
28.1-
1 .?
5.5
5.1
G/KW
G/KW
G/Kw
CO NOX FUEL
.1
1.3
IP. 7
l.t
1.3
1.2
81.3
1.3
.b
.1
1.5
1.8
l.t
1.3
1.2
81.8.
1.5
113
lib
HR
HR
H9
.8
8.0
3b.t
7.3
2. b
7.1
21.8
7.2
.b
8.3
36.2
7.3
2.3
2l!o
b.''
.1
, S
*
f . 8
(Bb.030
( 3.51*
*.7
8.1
25.3
B.7
t.t
8.7
28. P
B.b
t .7
25.2
8.7
*.3
".7
28.)
".7
?.1
BS)
RS)
8S1
PO«ER
0.0
7.3
30.3
7.3
2.1
7.3
38.3
7.3
0.0
0.0
7.3
30.*
7.3
2.1
7.3
38.2
7.3
0.0
-------
TABLE c.is. MASS EMISSIONS BY MINE-MODE EPA - METRIC UNITS
ENGINF-l
TEST-ia3
117S CHEVROLET 3SO-CIO HD ENGINE PROJECT 11-1311
f)8-a3-7b CARB-BPEGR-HEI HAIXCT-11BTOC-.531X7COIL
K = I.OH HUM* Ib.b G/KG
n
I
e-
vO
CONCENTRATION AS M.FASHREO TOTAL FUEL
MODE
1 IDLt
2 35 PfT T
3 55 PCT T
1 35 PCT T
5 10 PfT f
b as PCT T
7 9o PCT T
8 25 PCT T
9 C.T.
1 IDLE
2 ?5 PCT T
3 SS PCT T
1 25 PCT t
s 10 PHT T
b 25 PCT T
7 ID PCT i
B as PCT T
9 C.T.
HC-FIO
aa»n
3»»
asb
l?b
11?
I7b
111
11800
17bO
»'JO
ano
aai
200
i?i
iaa
issao
co coa
.us s.ni
.117 11. ?1
.117 11.99
.101 u.ai
.013 in.7b
.093 11.00
I. "70 13.93
,nl3 11. »8
.151 ' i. •'I
.135 l.fll
.US 11. ?»
.117 11.99
. fj99 11.18
.093 10.71.
.093 11. H8
i.«70 13.13
.013 11.1"
.117 1.88
NOX-CL CARSON G/HR
15 9.1b7 1105
aSO 11.13S 11121
snn iP.ibt. ibasi
210 11.3b3 11881
ISO 10.873 8810
aao 11.111. 11713
3bO 15. R20 ?3133
110 11.581 11718
7 S.10S 199b
19 9.33b HOS
110 11.399 11718
150 12.170 lb?75
I"0 11. bOO llt.57
ISO 10.P78 «93b
?10 11.595 Hbl2
380 IS.B31 23ab9
330 11.587 115b7
5 b.lbl I11b
CALCULATED
HC
11
10
38
an
17
a?
21
Ib
iiao
39
Ib
13
23
20
aa
31
1»
1370
CO
17
311
39^
219
153
199
5521
190
100
S3
?38
101
200
151
188
SSSb
187
92
G/HR
NOX
3
95
213
11
IS
85
191
70
1
1
71
aeo
b9
15
87
203
83
1
HT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.1»3
.asa
.077
. 117
.077
.057
.077
.113
.077
.1*3
WEIGHTED
HC-FID
11.5
3.1
S.b
l.b
.1
1.7
3.3
i.a
203.0
1.0
3.5
b.S
1.7
1.2
1.7
3.5
1.1
195.8
CO
11
ai
59
17
9
IS
b21
15
11
12
18
59
15
9
11
b28
11
13
G/HR
NOx-CL CKM
.8 O.D
7.3 17.1
35.7 38. b
7.0 17.1
2.5 b.B
b.S 17.1
21. b b3.3
5.1 17.1
.1 0.0
.3 0.0
S.S 17.1
32.3 38. b
5.3 17.1
2.b b.B
b.7 17.1
22.9 b3.1
b.1 17.5
.1 0.0
VAC.
MH
122
2b2
8b
aba
3bl
2ba
18
2b2
bOS
iea
2b?
89
2b2
3bl
2b2
18
?ba
b07
...-UNITS A3 SPECIFIED IN THE 7-11-75 PROCEDURE
MODE 10
1 I
a as
3 55
1 ?S
5 11)
b as
7 ID
B ?«:
9 CT
1 I
a as
3 55
i as
s in
b as
7 1(1
a as
9 CT
MV
Ih.b
10.3
3.1
10.3
11.2
1U.3
1.1
aal»
ib.b
10.3
3.S
10.3
11.?
I'l. 3
1.1
Hi. 3
CHP CTO
U.O U
as. 3 >.i
SI. 8 13b
a3.1 bl
9.1 ?1
aj.i HI
23.* si
o.n o
n.o o
23.1 bl
51.8 131.
as.i . M
9.2 ?1
33.1 bl
85. »l 2?1
33.1 b2
0 . 1] n
SUM (COMPOSITE V«l UE
SUM--- ( COMPUo 1 1 1 VAl.ll*:
T»IO CVCLF. r.OMM'lSITF. -
10 =
FC BRFC BSNOx
i.a R R
?**. 3 i.iac .1
35.1 .b93 .8
2V.. a i.iee .0
19. b ?.H3 .1
ab.n 1.11? .7
si.o .boi a. 3
aS.l 1.107 3.0
1.1 R «
i.a P R
£•5.1 1.108 3.1
3b.l .h1>, 1.3
?5.7 1.IJ11 3.n
19.7 a.isa s.o
-------
o
t\j
o
TEfll-184
TABLE C-19. MASS EMISSION? BY NINE-MODE EPA - METRIC UNIT3
.1975 CHEVROLET 350-CID HD ENGINE —-PROJECT 11-4311
N-U1 OR-eb-7b CAffB-PL-HEI KAIALLMODE3-14BTOC ENG. CHECK
K= 1.097 HUM= lb.9 G/KG
HOUE
1 IDLE
2 25 PCI I
3 55 PCT T
4 85 PCT 1
S in PCT T
fa 85 PCT T
7 9n PCT T
8 ?S PCI 1
1 IDLE
2 85 PCT I
3 55 PCT T
4 85 PCT T
s 10 PCT T
b 85 PCT T
7 95 PCT T
8 8F PCf T
1 C.T.
MODE Il>
1 I
8 ?S
3 55
4 85
S 10
b 85
7 90
8 85
9 CT
1 I
2 25
3 55
5 10
8 85
CONCENTRATION AS MEASURED TOTAL
HC-FIO CU C'l? NOX-CL CARHUN
484 .147
121) .1?4
80 - 1 3b
5h .077
"•O .078
b8 .078
1b .9HS
3? .t|b7
'"inn ,i7n
lien .170
inn .ns?
l"n .I3b
138 -.078
1* .078
lot .078
70 .H71
bo .Obi
38100 . |S9
Mv CHP
lb.9 0.0
13. b 23.3
7.9 51. b
13. b 83.3
Ib.b 9.1
'3.b 83.3
8.3 84.0
13. b ?3.3
ft. I n.O
lb.9 o.o
13. b ?3.3
R.n 51.t.
13. b 83.3
Ib.b o.i
13. b ?3.3
_!lii Hi"..
SUM /COMPOSITE
Slln
THO CYCLE
III c
(COMf'ORTTF
tr>MPOSIiF. -
11.110 450
12-3* *<>fl
1 1 . 8 4 4 R o
in. 7h e>o
11.12 4n[|
14. "b SSO
11. ?» 4Rp
?.17 10
11. on 4f,o
18.58 lOlb
IP. 53 830
11. Ofl 475
11.54 590
11.?* 49o
8.17 9
CTO FC
n 4.1
bl 83.5
135 34.1
bl 83.4
?4 18.1
bl 83.4
881 50.1
b) 83.1
n 4.8
n 4.1
b] ?3J8
84 13.0
bl ?3.3
bl 73.]
ii 4.8
1 1.137
l?-39«;
11.383
J 1 .310
Q.788
11.10?
18.b77
in.b!3
11.1183
15.419
11. SUB
b.PSl
THE 7-11-75
RSFC
R
l.nlo
l.onb
l.9Hb
1.P05
.59b
R
R
1 . no?
. b 70
J .nuo
:""
R
FUEL
6/HR
IBhO
lnbS9
10bl4
S810
10t7B
IPbO
10583
BlbS
105b9
19Q5
CALCUL*TEO G/HR
HC CO NOX
q
13
11
.b
3
fa
b
3
83
iq
85
11
B
11
12
b
1195
59 3
210 157
344 445
lib Ibl
110 bb
137 159
2713 888
121 Ib8
101 1
fab 3
159 IbO
311 158
13h 171
112 bl
138 Ib5
2b03 318
115 IbS
98 1
PROCEDURE ' 8FC
8SNOX F/A KG/Kh HR RPM
R
b.R
8.7
7.1
7.1
b.1
3.S
7.0
R
P
7.M
".0
7.1
7.8
7.2
3.8
7.8
R
.013
.051
.U5b
.051
.019
.051
.071
.051
.031
.015
.051
.057
.051
.018
.nso
.051
.031
R fatlO
.fall 2000
.108 8000
.bia 8000
1.208 8000
.bll 2000
.3b3 2000
,b03 2000
R 2000
R bOO
.bll 2000
.108 2000
.bob 8000
1.201 2000
.b09 8000
.3H 8000
.bo3 80OO
R 2000
HT.
FACT.
.232
.077
.147
.077
.057
.077
.113
.1)77
.113
.232
.077
.117
.077
.057
.077
.113
.077
.143
C*LC
A/F
23.1
17^8
11.1
80.3
11. b
11.1
32.1
22.4
19. B
17.4
11. b
80.7
19.8
14.4
19.4
38.5
VAIUF F0«< CYCLt 11
VALUE Fn*J CfCI
CO-
10*
FID u.^si
M n 1 H l> . 1 5 (
-CL H.35(
9
?1
P
.7) 4 n.
.1 1 + 0.
.3) t n.
bS( 1O.2) =
b5( 83.1) =
b5( 8.7) =
HC + NOX =
3FC =
10.015
83.5h9
P. 578
1H.597
.503
WEIGHTED
HC-FID CO
e.i
1.0
l.b
.4
.8
.5
.7
.3
170. b
5.4
1.5
3.7
1.1
.5
.8
1.3
.5
170.9
14
18
51
11
b
11
310
10
15
IS
12
50
10
b
11
9
14
G/HR
NOX-IL CKM
.8 0.0
12.1 17.4
bS.4 38.5
12. b 17.4
3.8 b.8
12.2 17.4
32. S b2.7
12.5 17.1
.2 0.0
.8 0.0
12.3 17.4
b7.3 38.5
13.2 17.4
3.7 b.B
12.7 17.4
35.1 b2.7
12.7 17.4
.1 0.0
VAC.
MM
421
345
201
345
422
345
58
345
b!8
429
345
203
345
428
345
58
345
b!8
HC
1.2
.5
'.3
.1
.3
.4
.1
2.9
.8
2.0
.b
.3
.5
.7
.3
12.1
>.......
9. 7
10.2
&/KW
R/KH
G/KW
G/KH
KG/Ktt
CO NOX FUEL
3.1
1.1
11.4
8.5
1.1
2.1
bl.b
2.2
3.1
3.b
2.9
11.1
2.5
1.5
2.5
b9.7
2.1
3.3
.......
24
23
HR
HR
HP
HR
HR
.5 1.7
7.1 8.8
13.0 21.5
8.3 8.8
2.S 5.0
8.0 8.8
21.1 27.7
8.2 8.7
.1 2.9
.5 l.b
7.8 8.8
12.4 21.8
8.3 8.7
2.3 50
8.0 8.7
28. b 27.7
8.U 8.7
.1 2.9
>....-. -.....__._
8.3
8.7
( 7.1b9 83)
(17.575 63)
C b.392 83)
(13.8bO BS)
( .827 BS)
POWER
U.O
7.8
3D. b
7.2
2.1
7.2
38.3
7.8
0.0
0.0
7.8
30. b
7.8
* i
7.8
38.3
7 g
0.0
....
-------
O
ENGINE-1
TAHLEC-ZO. STEADY STATE EHISSIONS HY EPA PROCEDURE - HETRIC UNITS
1S75 CHEVROLET 3Sn-cII) HO ENGINE PROJECT 11-»311
TtST-130 RUN-ni OS-(17-7b CARB-PL-HEI 1BTDC IDLE
1.088 HUH:
lb.0 G/KG
MODE
1
2
MODE
1
2
CONCENTRATION
RPM HC-FID CO
bOO 720
bno bio
ID HV
NO 17.2
YES 17.2
.227
.115
CHP
0.0
O.d
AS MEASURED TOTAL
C02 NOX-CL CARBON
13.21 57
AS SPfCIHEO
era FC
0 1.2
0 ».5
13.518
FUEL
CONS.
1SOS
20*1
IN THt 7-11-75 PRl
HSHC BSCO
H
R
R
P.
CALCULATED G/HR
HC CO N02
11
IS
BSNOX
R
R
bS
50
BSFC
R
R
3
3
— -CA
A/F
lb.1
23.2
CORRECTED G/HR
HC-FtD CO NOX-CL
11.1
15.1
F/A HC
.Ofal R
.0*3 R
bS 2.1
50 3.1
CO NOX
R R
R K
VAC.
CKH MM
0.0 137
0.0 137
SFC
KG/KH HH
R
ID = AlK
TABLE C-21. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
ENGINE-1
MODE
1
2
3
MODE
1
2
3
PPM
2000
2oan
201111
10
NO
Y£S
NO
YfcS
TF.ST-130 RUN-02 OS-()7-7b CARB-pL-HEI
CONCENTRATION
HC-FID CO
181
180
200
HV
17.5
nlo
.102
.n82
.227
.115
— UNITS
CHP
s!i
AS MEASURED TOTAL
C02 NOX-CL CANHON
mill 178
13.78 380
*p gptcifiEo
CTIJ ft
ft 17.1
2» 13>
2H 13.7
I1.b53
10.500
It. 028
IN Th£ 7-11
BSHC
1.23
.bl
1.01
1.57
FUEL
CONS.
775b
7bbb
bPbU
11BTOC
Mlt2-30B M3 + 1 111 PCT
CALCULATED G/HR
HC CO N02
5
S
-75 PROCEDURE"
BSCU BSNOX
13. IS
22.77
Ib.bS
1.78
H.7S
b.2b
^.23
130
121
205
150
BSFC
1.H8}
1.858
1.517
l.SOS
13
Sb
— CALC™
A/F F/A
IS. 2 .nbb
20. S .018
15.8 ,0b3
22.8 .0*1
K =
: 1.088 H'JMs Ih.n li/KG
CORRECTED G/HR
HC-FIO CO NOx-CL
11.1
5.1
S.I
11.1
HC
l.bS
.81
1.35
2.11
130
121
205
ISO
CO
bl.OO
18.08
30.51
22.38
Ib.B
Ib.S
bl.2
bl.O
NOX
b.12
siss
8.3b
VAC.
CKW MM
b.B 111
b.B 111
b.B 183
b.B 183
SFC
KG/K* MR
l.llb
1.13U
.S23
.SIS
II) =
JNJ.
-------
ENGINE-1
TEST-130 RUN-03
TABLE C-ZZ. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVHOU1 350-CID HO ENGINE---PROJECT U-f31t
U9-07-7S CAR&-PL-HEI-MEGR.53 30BTOC-H*! 25 PcT
K= 1.091 MUM= lb.3 G/KU
MODE
1
8
3
S
b
MODE
1
2
3
5
b
RPM HC-FID
2OIIO 880
?OIII| 1*0
?000 3bO
2000 3faO
8000 SbO
?onn 9bp
CO
.198
.181
.187
.170
.170
.193
ID MV CHP
0.08 '1 b . 7
P. 51 lb.1
0.13 lb.3
).23 11.*
I.b9 11.8
1.83 10.1
83.2
23.3
83.3
23.3
23.3
23.3
CO?
10.53
10. 7b
10. 7b
10. 7b
10. 7b
10. b*
NOX-CL
710
5*0
300
175
CARPON
10.759
10.910
in. 987
10.970
10.99?
10.938
AS SPECIFIED IN THE 7-;
CTCI FC BSHC
bl
bl
bl
fal
bl
bl
18.3
18.7
19.9
19. b
20.7
2P.8
1.03
I.b3
1.35
2J89
3.9b
rutL C»LCl<
CONS. HC
8301 81
8182 37
8573 31
8B90 38
9381 53
1*35 91
BSCO BSNOX
13.11 7.91
18.88 b.08
12.81 1.51
12.09 3.51
12.75 2.1b
I1*. 51 1.87
ILAFED 6/HH
CO Nl'8
309 188
283 138
815 101
878 Bl
293 50
33b 13
BSFC A/F
.787 20.1
.SOt 20.0
.'818 80.0
.8*8 8Q.O
.889 19.9
.898 «o.O
• • ™ •• •• ™<
LC---
.019
.050
.050
.050
.050
.050
COHI
HC-FID
23.7
37.*
30.9
32.1
52.7
91.1
HC
1.38
2.18
1.80
1.87
3.07
5.31
"« 8.70 8.87
.bR 7.99 b.1'5
.b« 7.i|H 1.7*
.11 b.01 3.79
.5b7
.570
.577
.S97
J8.2
18.2
18.1
18.1
18.3
.055
.055
.055
.OS5
.055
.90
.91
.91
.92
1.09
13.25
11. bb
10.70
8.10
13.98
11.09
8.25
b 3b
5.09
. 3*7
.351
353
. 3h3
ID = INTAKE L02
-------
TABLE C-24 STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 3SO-CID HD ENGINE—PROJECT 11-1311
ENGINE-1 TEST-130 RUN-OS 09-07-7b CAR.B-PL-HEI-MEGR.S3 11BTDC-HAI 90 PCT K* 1.098
MODE
1
8
MODE
1
8
CONCENTRATION
RPM HC-FIO CO
8000
8000
ID
O.OB
0.87
IbO
800
MV
8.5
1.1
.585
8.100
— UNIT8
CHP
81.1
•1.S
AS MEASURED TOTAL
C08 NOX-CL CARBON
15.08
13.13
bfaO
380
AS SPECIFIED
CTO FC
828
883
si!i
lb.188
FUEL
CONS.
8131*
83511
CALCULATED G/HR
HC CO N02
85
13»
IN THE 7-11-75 PROCEDURE —
BSHC BSCO BSNOX
.30
I.b8
17.51
71. b3
3.b8
1.87
1153
b!91
BSFC
.557
.bll
300
155
— CALC—
A/F F/A
11.3
13.7
.070
.073
CORRECTED G/HR
HC-FIO CO NOx-CL
85.1
131.1
HC
.11
8.17
1153
6/KH
CO
83.18
100.08
38S.S
170.3
HR— —
NOX
1.85
8,51
VAC.
CKM HM
b3.0 b3
b3.3 3b
KG/KM HR
.339
.378
ID * INTAKE C08
n
1 TABLE c-zs. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
^ I97S CHEVROLET 35D-CID HD ENGINE---PROJECT 11-1311
ENGINE-. TEST-130 RUN-Ob U9-n7-7b CARB-PL-HEI^llBTOC^NOA^Ml^ CT ^.i^...^...^^^^.
CONCENTRMION'AS'MM^ED"""^^""^^ C^C^^ED'G/HR rT"^'"^^ CKH "MM*
MODE RPM MC-FIO CO COP NOX-CL CARBON CONS. HC CO N02 HC-F1D ^.....Il.b.—..-- -----
I wooKbnn .350 ...i i» n.w m. 133 lio * . uo ; o.n o
t «ono iou .obi 12.7. 101 la.esb «« g »• JJ-J ^ }3:8 o;o Slb
3 200C, HHO .Ob 8.33 bl 8..39 »990 28 73 13 ?? ^^ ^Q ^
1 ?ono HOC .dbl 8.33 73 8.131 1811 ei te. n • ..___._____--.-_.._ — ...—
"II"IuNITs"As"sPECIFIED"lN"THr7lTl37S PROCFDUHt CALC--- G/KM "«----— JFC
HODE ID MV CHP CT« FC «JSHC BSCO BSNOX BSFC A/F F/A HC _CO ^____^!~!!_
R R R R
17.7 .OSb R R « • H
1 buo 21.o o.n n i.l R R N « x<., . — - - -
8 1100 20.3 ll.n 0 11.0 R " « P "•« •"" ^ S H H
3 JHOO SO.l 0.0 0 11.0 R R H R 25.7 .039 R H
17.3 0.0 0 in.8 R R R R 25.7 .039 R R «
NLHPM
-------
TABLE c-26. MASS EMISSIONS er NINE-MODE EPA - METRIC UNITS
O
i
= 1.08!
IS. 7 U/KG
1... f --!.-. *°*I^_ C**SON G/HR HC CO NOX FACT. HC-FID CO NOx-CL CKw
1 IDLE 720 .227
2 25 PCT T 3bo .170
3 55 PCT T 280 ,15S
1 25 PCT T 3bo .170
5 10 PCT T 180 .227
b 25 PCT T 3bo .170
7 SQ PCT T Ibfl .525
8 as PCT T 3bO .170
S C.T. 2SbOO .350
1 IDLE 720 .227
2 25 PCT T 3bO .170
3 55 PCT T 280 .1SS
t 25 PCT T 3bO .170
S 10 PCT T 180 .227
b 25 PCT T 3bO .170
7 S0 PCT T ibo .525
8 25 PCT T 3bO .170
S C.T. 25bOO .350
13.21
10. 7b
11. SS
10. 7b
13.78
is!o2
10.71.
8.81
13.21
10. 7b
11. SS
10. 7b
13.78
10. 7b
15.02
10. 7b
8.81
57 13.518
300 10.S70
t>50 12.180
3no io.s7o
3RD If. 028
300 10.S7Q
bbO iS.SbH
300 10.170
17 11.S37
57 13.518
300 10.S70
bSO 12.180
300 10.S70
380 1H.028
300 10.S70
bbO I5.5bt
300 10.S70
17 11.S37
UNITS AS SPECIFIED IN THE 7-11-75
MODE ID MV CHP CTO FC 8SFC
1 I 0.08 17.2 0.0
2 25 1.23 !•».•» 23.3
3 55 1.23 b.S 51.8
» 25 1.23 !•».» 23.3
S 10 0.08 1S.O S.I
b 25 1.23 1».1 23.3
7 So 0.08 2.5 8». »
8 85 1.23 l».t 23.3
S CT 0.08 2V. 0 0.0
1 I 0.08 17.2 0.0
2 25 1.23 !».* 23.3
3 55 1.23 b.S 51.8
» 25 1.23 !».* 23.3
S 10 0.08 1S.O S.I
b 25 1.23 11. H 23.3
7 So 0.08 2.S 81. »
B 25 1.23 !».•» 23.3
S CT 0.08 2V.O 0.0
SUM— (COMPOSITE
SUM— -(COMPOSITE
TMO CYCLE COMPOSITE -
ID * INTAKE co?
bl
13b
bl
bl
222
bl
0
0
bl
13fa
bl
bl
222
bl
0
VALUE f-ofi
VALUE FOR
*.2 R
3o!l !s8l
IS.b .8*5
13.8 1.517
»7|o J557
IS.b .8*2
».l R
».2 R
3o!l !s8l
IS.b .B*?
13.8 1.517
IS.b .8*2
»7.0 .557
»!» ' R
HC- FID 0.3S{
CO- NDIfc 0.35(
NOX-CL n.3S(
1SOS
8BSO
13hS3
8890
b2bO
88SO
2131S
88SO
18bO
1SOS
8810
131.53
88SO
b2bO
88SO
2131S
88SO
IBbO
11
32
35
32
S
32
25
32
»33
11
32
35
32
9
32
25
32
»33
bS 3
278 88
351 gbj
278 88
205 bl
278 88
1*53 3gb
278 88
110 1
bS 3
278 88
35S eb£
278 88
205 bl
278 88
1"»S3 32b
278 88
110 1
PROCEDURE SFC
BSNOX F/A KG/KH HR RPM
R
3.8
5.1
3.8
3? 8
3.S
3.8
R
R
3.8
5.1
3.8
b.S
3.8
3.S
3.8
R
l«!s)
5.8)
.Obi
.050
.055
.050
.Ob3
.050
.070
.050
.OSb
.Obi
.050
.055
.050
,0b3
.050
.07(1
.050
.OSb
+ O.b5(
* U.<>5(
+ n.t»5(
R bOO
.512 2000
.353 2000
.512 2000
.S23 2000
.512 2000
.33S 2000
.512 2000
R 2000
R bOO
.512 aooo
.353 2000
.512 2000
.123 2000
.512 2000
.33S 2000
.512 2000
R 2000
-------.--.._
1.5} =
18. S) =
5.8) =
HC + NOX =
SFC =
.238
.077
!o77
.05?
.077 \
.113
.077
.It3
.232
.077
!o77
.057
.077
.113
.077
.1*3
CALC
A/F
2U.O
18.1
20.0
15.8
20. U
20.0
17.?
20.0
16.1
20.0
15.8
20.0
20.0
17.7
WWWWMVM
18.111
10. 3H^
.I*1*
2.5
S.I
2.5
.5
2.5
bl]s
2!-;
5.1
2.5
.5
2.5
2^5
bl.S
HC
3.2
3.0
b.2
3.0
.b
3.0
3.H
3.0
7».b
3.2
3.1)
3io
.b
3.0
3.-»
3.U
71. b
——————
t.S
G/KW
G/K»<
G/Kr«
1/Kx
KG/KH
15 .7
21 b.7
53 38. b
21 b.7
12 3.5
21 b.7
lb» 3b.8
21 b.7
lb .1
15
21
S3
21
12
21
21
lb
CO
b!2
15.3
b.2
b'.i
b'.i
b!2
15.3
b!2
H7.b
t.b
-------
11
HR
HA
MH
HH
HP
.7
b.7
38. b
b.7
3.5
b.7
3b.B
b.7
.1
CENT OF T
NOX
.b
b.3
3b.2
b.3
3.3
b.3
b*3
.1
.fa
b.3
3b.£
b.3
3.3
b.3
bis
.1
•--------•
S.B
5.H
( 3.3B7
( ».35b
( 7.7*3
( .7*1
(J.O
38. b
17.*
h.fl
17. »
b3.t)
17. f
o.u
0.0
17.4
38. b
17.*
b.8
17. H
b3.0
17. t
0.0
FUEL P
5.1
B.3
a'.i
»'.3
2H.3
3.?
S.t
a. 3
sis
3ie
------.-,
US)
60 )
HS)
flf.)
vAC.
MM
•«37
3bh
175
j)bb
3bb
b3
3bb
bJU
437
3bb
176
3hb
3hb
b3
3fab
blO
--_-
u.o
7.1?
3U.7
7.2
2.1
sait
u.o
0.0
30.'
2.1
7.2
0.0
-------
TABLEC-Z7. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
O
CO
ENGINE-1
TE3T-130 RUN-2X
1175 CHEVROLET 350-CID HO ENGINE—-PROJECT 11-1311
Oq.o7-7fa SAME AS RUN I EXCEPT NITH HOONLKPM AT
CT
LOSS HUMS 15.7 (-/KG
CONCENTRATION
MODE
1 IDLE
2 25 PCT T
3 SS PCT T
1 25 PCT T
5 10 PCT T
b 25 PCT T
7 10 PCT T
8 25 PCT T
1 C.T.
1 IDLE
2 25 PCT T
3 SS PCT T
1 25 PCT T
S 10 PCT T
b 25 PCT T
7 1Q PCT T
8 25 PCT T
1 C.T.
NODE ID
1 I 0.08
2 25 1.23
3 SS 1.23
1 25 1.23
S 10 0.08
b 25 1.23
7 lO 0.08
8 2s 1.21
i CT 0.08
1 I 0.08
2 25 1.23
3 SS 1.23
1 25 1.23
S 10 0.08
b 25 1.23
7 10 1.23
B ZS 1.23
1 CT 0.08
HC-FID
720
3bO
280
3bO
180
3bO
IbO
3bO
100
720
3bO
280
3bQ
180
3bO
IbO
3bO
100
CO
.227
.170
.151
.170
.227
.170
.525
.170
.Obi
.227
.170
.151
.170
.227
.170
.525
.170
.Obi
—•UNITS AS
MV CHP
17.2
11.1
b.1
11.1
11.0
11.1
2.S
ll.l
20.3
17.2
H.l
b.1
11.1
11.0
11.1
2.5
11.1
20.3
0.0
23.3
51.8
23.3
1.1
23.3
81. 1
23.3
0.0
0.0
23.3
51.8
23.3
1.1
23.3
81.1
23.3
0.0
SUM— (COMPOSITE
SUM-— (COMPOSITE
TWO CYCLE COMPOSITE -
to s TNI
TAKE co;
t
AS MEASURED TOTAL FUEL
C02 NOX-CL CARBON G/HR
13.21 57 13.518 HOS
10. 7b 3(10 10.170 8810
11.11 bSO 12.180 13bS3
10. 7b 300 10.170 8810
13.78 380 11.H2B b2faO
10. 7b 300 10.170 8810
15.02 bbO IS.Sbl 21311
10. 7b 300 10.170 BB10
12.71 101 12. Bib 1110
13.21 57 13.518 HOS
10. 7b 300 10.170 8810
11.11 bSO 12.180 13bS3
10. 7b 300 10.170 8810
13.78 380 11.028 b2bO
10. 7b 300 10.170 8810
15.02 bbO IS.Sbl 21311
10. 7b 300 10.170 BRIO
12.71 101 12.81b 1110
CALCULATED G/HR
HC
11
32
35
32
1
32
25
32
17
11
32
35
32
1
32
25
32
17
SPECIFIED IN THE 7-11-75 PROCEDURE
CTQ FC BSFC B3NOX F/A
0 1.2 R R
hi 11. b .812 3.8
13b 30.1 .581 5.1
bl H. b .812 3.8
21 13.8 1.517 b.8
bl 11. b .812 3.8
22? 17.0 .557 3.1
bl 11. b .812 3.8
0 11.0 R R
0 1.2 H R
bl 11. b .812 3.8
13b 30.1 .581 S.I
bl 11. b ,8la 3.8
ai 13.8 1.517 b.8
fel 11. b .812 3.8
332 17.0 .557 3.1
bl 11. b .812 3.8
0 11.0 R R
HC- FIO 0.3S( 1
CO- NUIR 0.3S( 18
NOX-CL 0.35( S
.Obi
.050
.055
.050
.Ob3
.050
.070
.osn
.058
.Obi
.050
.055
.050
.Ob3
.050
.070
.050
.058
.3) «• 0.
.1) «• 0.
.1) * 0.
CO
bS
278
351
278
205
278
1153
278
18
bS
278
351
278
205
278
HS3
278
18
SFC
KG/KN HR
R
.512
.353
.512
.123
.512
.331
.512
R
R
.512
.353
.512
.123
.512
.331
.512
R
•SC 1«
bSC 5
HC t
NOX
3
88
2b2
88
bl
88
32b
88
11
3
88
2b2
88
• bl
88
32b
88
11
RPM
bOO
8000
2000
2000
aooo
2000
2000
2000
2000
bOO
2000
2000
2000
2000
2000
2000
2000
2000
.3) =
.1) =
.1) =
NOX =
SFC =
HI.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
CALC
A/F
lb.1
20.0
18.1
20.0
15.8
20.0
11.3
20. U
17.2
lb.1
20.0
18.1
20.0
15.8
20.0
11.3
en. ij
17.?
1.288
18.121
S.M^S
7.i3>?
.»b3
WEIGHTED G/HR
MC-FIO
2.b
2.5
5.1
2.5
.5
2.5
2.8
2.5
2.5
2.b
2.5
5.1
2.5
.5
2.5
2.8
2.5
2.5
HC
11.3
10.5
21.8
10.5
a. 2
10.5
ia.i
10.5
10.5
11.3
in.s
21. «
in.1;
2.?
10. S
12.1
1U.S
10. S
1. J
1.3
G/KW
G/KW
G/KW
G/KW
KG/KM
CO NOX-tL 0*
15
21
53
21
12
21
Jbl
21
7
15
21
S3
21
12
21
Ibl
21
7
—PERCENT
CO
1.5
b.1
15.7
b.1
3.5
b.1
18.8
b.1
2.0
1.5
b.1
15.7
K.f
3.5
b.1
18.8
h.1
2.0
18
18
UK (
.? n.o
b.7 17. •»
38. b 38. b
b.7 17. »
3.5 b.8
b.7 17. H
3b.8 b3.P
b.7 17. »
2 . (1 0.0
.7 It . 0
b.7 17. *
38. b 3«. b
b.7 17. t
3.5 b.R
b.7 17. t
3b.8 bJ.O
b.7 17. »
2.0 0.0
OF TOTAL — -
NOX FUtL
.b b.1
b.2 7.M
35. b 23.?
b.2 7.1
3.2 1.1
b.2 7.S
33.1 27.8
b.2 7.1
1.1 ».?
.b 6.1
b.2 7.1
35. b ?3.e
b.£ 7.1
3.2 ».l
b.2 7.1
33.1 P7.R
b.2 7.1
1.1 &.Z
5.1
5.1
.IbO US)
VAC.
MM
137
3bh
1VS
3bb
H83
3bb
b3
3hb
Sib
137
3bb
175
3bb
183
3hb
b3
3bb
Sib
POHEH
U.U
7.2
3U.7
7.2
2.1
7.2
3H.1
7.2
0.0
O.IJ
7.2
3U.7
7.cJ
2.1
7.2
38.1
7. i
0.0
1H (13. f 31 F»O }
HR C
HH (
HP (
1.133 US)
5.313 BS)
.7b1 r»S)
-------
TABLE C-28. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
O
I
ro
FwrikiF i TC«T ,, », 1<"5 CHEVROLET 350-CID HO ENGINE PROJECT 11-*311
ENGINE-1 TEST-131 RUN-01 10-0*-7b POST OVERHAUL BASELINE - CARBURETOR bbO?
CONCENTRATION AS MEASURED TOTAL FUEL
MODE HC-riO CO C08 NOX-CL CARBON G/HR
8 85 PCT T 8*0
3 55 PCT T 580
* 25 PCT T 200
5 10 PCT T 880
b 85 PCT T 198
7 90 PCT T 78*
8 85 PCT T 188
9 C.T. 80*80
1 IDLE 17bO
Z 85 PCT T 3b*
3 55 PCT T bib
* 85 PCT T 8bQ
5 10 PCT T 8bO
b 85 PCT T 8*0
7 90 PCT T b8o
8 85 PCT T 880
1 C.T. 80*80
.8b3
.839
.788
.275
.SHO
.851
1.51*
.875
;337
,»8B
,8fa3
.80*
.875
.5b9
.875
i.8ii
.875
.337
11. 3b S3 11.83b 1950
13.78 *90 l*.0»b 993*
13.93 1118 1*,777 1*838
1».08 5*0 1*.37B 9707
13. b* 850 1*.80» 7711
13.93 530 1*.803 9798
13. b* lbS9 15.8** 803fab
1».83 SbO 1».S87 9707
8.81 8* 11.31,8 1905
11. *B 59 18.10* 1950
13.78 5*0 1*.OB* 98*3
13.93 HS9 1*.80* I*b9b
13.93 550 1*.83S 970?
13. b* 850 1*.83B 7bbb
13.93 SbO 1*,838 9798
13. 13 1?83 15.887 8087b
1*.?3 SbO 1*.S30 9707
8.*8 83 10.971 18bO
CALCULATED G/HR
HC CO NOX
35
19
59
IS
1*
IS
119
1*
378
31
89
b9
80
Ib
11
103
17
375
88
3*8
1597
375
598
350
*OB7
371
11*
139
371
lb!3
379
bl8
383
3279
371
115
3
12b
*OS
138
*9
133
80*
13b
1
3
137
»17
13b
*9
1*0
838
13b
1
UNITS AS SPECIFIED IN THE 7-11-7S PROCEDURE SFC
MODE ID MV CHP CTO FC BSFC BSNOX F/A KG/KM HR RPM
8 85 11.8
3 55 9.8
* 85 11.8
5 10 17. *
b 85 1».B
7 90 8.b
8 85 14.8
9 CT 83.8
1 I lb.9
8 85 1*.B
3 55 9.3
* 85 11.8
5 10 17. »
b 25 11.8
7 90 8.b
8 85 14.8
9 CT 83.8
0.0
8».0
58.5
23.9
1.7
8».0
85.7
8».0
0.0
0.0
8*.0
58. b
8».0
1.7
81.0
85.7
8*.0
0.0
9UM (COMPOSITE
SUM— —(COMPOSITE
TMO CYCLE COMPOSITE -
0 *.3 R R
b3 81. .91* 5.3
138 38. ,b83 7.9
b3 81. .89* S.b
25 17. 1.755 5.8
b3 81. .901 S.b
225 **. .58* 9.b
b3 81. .898 5.8
0 »,8 R R
0 *.3 R R
b3 81.7 .905 5.8
138 32. .bib 8.1
b3 81. .898 5.8
85 Ib. 1.7*3 5.1
b3 21. .901 b.O
885 **. .581 9.9
b3 81. .892 5.8
0 ».l R R
HC- FID 0.35( *.8)
co- NDIR o.3s( »7.*>
NOX-CL 0.35( 10.5)
.05*
.Ob3
.Ob7
.ObS
.Ob*
.Ob*
.Ob9
.ObS
.053
.055
.Ob3
.Ob?
.Ob*
.Ob*
.Ob*
.Ob9
.ObS
.058
» 0.
t 0.
+ 0.
R
.SSb
.371
.5**
I.Ob?
,S*8
.311
.5*3
R
p
.550
.375
.5*3
l.ObO
.5*8
.317
.5*3
R
bS( *
b5( *3
b5( 10
HC +
bOO
8000
8000
8000
2000
8000
2000
8000
8000
bOO
8000
2000
8000
8000
8000
8000
8000
8000
.9)
• b)
.9)
NOX
SFC
WT.
FACT,
.838
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.838
.077
.1*7
.077
.057
.077
.113
.077
.1*3
CALC
A/F
18.5
15.8
1S.O
15. 5
iS.b
IS.b
1*.S
15.3
18.7
18.1
15.8
15.0
IS.b
IS.b
IS.b
1»*5
15.3
19.*
*.8S8
**.980
10.7**
15.59b
.»S7
K»
1.093
WEIGHTED
HC-FID CO
8.1
1.5
8.7
1.8
.8
1.8
13.5
1.1
53.8
7.3
8.2
10.8
1.5
.9
1.*
11.7
1.3
S3,?
HC
1.1 '
1.7
1.8
1.3
.9
1.3
15.1
1.2
59. b
8.1
8.5
11.3
1.7
1.0
l.b
12.9
l.»
59.5
*.8
*.9
6/KM
G/KH
C/KM
G/KH
KG/KH
80
8b
835
81
3*
87
*b8
89
Ib
38
89
83?
89
35
89
371
29
17
CO
8.3
3.0
8b,7
3.3
3.8
3.1
58. b
3.3
1.1
*.o
3.5
21.
3.
»,
3.
*S.
3.5
8.0
*7
**
HR
HR
HR
HR
HR
HUM*
Ib.* G/KG
B/HR
NOX-CL CKH
.7
1.7
59.5
10.8
2.8
10.8
10.8
10,5
.8
.8
10,5
bl.S
10.5
2.B
10,8
9*;0
10.*
,8
EHT OF T
NOX
.»
5.0
30, b
5.8
' 1.*
5.8
*b,7
5.*
.1
,n
5.8
30.5
5.8
1.*
5.3
»b,7
5.8
.1
10. S
10.9
( 3. blS
(33.*17
( 8.018
(Il.b30
( ,751
0.0
17. 1
, 39.1
17.9
7.8
17.9
b3.9
17.9
0.0
0.0
17.9
39.8
17.9
7.8
17.9
b3.9
17.9
FUEL
59
B.8
25.8
B b
5 i
8.7
2b.b
8.b
3.1
c a
8 8
85.1
8.7
5 i
8.8
2b.b
8.7
3.1
BS)
BS)
BS)
BS)
BS)
VAC.
*89
37b
83*
37b
*»8
37b
bb
37b
bOS
*89
37b
83b
37b
**8
37b
bb
37b
POMER
7 a
30. 5
7 a
2p
7 a
38.8
7 a
0.0
7 a
30.5
7 a
83
7 a
38.8
7 3
0.0
-------
TABIEC-29. HAS3 EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-1
TEST-131 RUN-02
1175 CHEVROLET 3SO-CIO HD ENGINE—--PROJECT 11-1311
10-04-7b POST OVERHAUL BASELINE - CARBURETOR bfa07
K» 1.040 HUM" 18.7 6/K6
O
ro
CONCENTRATION AS MEASURED
MODE HC-FID
1 IDLE IbOO
2 25 PCT T 248
3 55 PCT T 512
4 25 PCT T 21b
5 10 PCT T 240
b 25 PCT T 200
7 10 PCT T 744
8 25 PCT T 172
1 C.T. 204BO
1 IDLE 17bO
2 25 PCT T 3b8
3 55 PCT T b40
4 25 PCT T 2bO
5 10 PCT T 240
b 25 PCT T 240
7 10 PCT T Bib
8 25 PCT T 21b
1 C.T. IBSbo
CO
.350
.227
.821
.275
.b!3
.251
1.531
.279
.337
,4b1
.275
.788
.287
.b!3
.275
1.570
.275
.325
C02
11.11
13.13
14.23
14.23
13.13
14.23
13.13
14.54
1.01
11.11
14.23
14.23
14.31
13.13
14.23
14.23
14.54
1.22
TOTAL
NOX-CL CARBON
55
510
1088
530
240
550
IblS
570
23
bO
510
1183
550
250
54TJ
Ib37
SbO
23
12.518
14.185
15.110
14.530
14.570
14.504
15.554
14.835
11.572
12.bSS
14.547
15.010
14.707
14.570
14.532
15.814
14.840
11.5b4
FUEL
G/HR
1150
1134
14742
1718
7711
1718
20457
1707
1105
1150
1718
14bSl
1707
7711
1752
20502
1bb2
18bO
CALCULATED 6/HR
HC
28
20
57
17
14
IS
112
13
3bb
30
28
71
11
14
IB
121
Ib
325
CO
110
322
Ibll
375
bSS
343
4088
3b4
112
14b
374
, 1545
383
bSS
373
4011
3b2
105
NOX
3
123
3bb
123
44
128
733
121
1
3
111
317
125
4b
125
721
12b
1
HT.
FACT.
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
,057
.077
.113
.077
.143
WEIGHTED G/HR
HC-FID
b.4
US
8.4
1.3
.8
1.2
12. b
1.0
52.4
7.0
2.2
10.4
1.5
.8
1.4
13. b
1.2
4b,4
CO NOX-CL CKH
2b
25
238
21
37
2b
Ib?
28
Ifa
34
21
227
30
37
21
4b2
28
15
.7 0.0
1»5 17.1
53.1 31.1
1.5 17.1
2.5 7.2
1.1 17.1
82.1 b3.1
1.1 17.1
.2 0.0
.7 0.0
1.1 17.1
58.3 31.2
1.7 17.1
2.b 7.2
l.b 17.1
82. 4 bl.O
1.7 17.1
.2 0.0
VAC.
MM
421
37b
23b
37b
441
37b
bfc
37b
bOS
121
37b
23b
378
442
37b
bb
37b
bOS
MODE 10 NV
1 I lb.1
2 25 14.8
3 55 1.3
4 25 14.8
5 10 17.5
b 25 14.8
7 10 2.b
B 25 14.8
1 CT 23.8
CHP
0.0
23. 1
52. 5
23.1
1.7
24.0
85. 7
24.0
0.0
9OC f* TP
SPEC I»
CTQ
0
b3
138
b3
25
(.3
225
b3
0
ten TU
FC
1.3
2l!l
32.5
21. b
17.0
21. b
45.1
21.1
4.2
m?M t i _ i
7—11—7
BSFC
R
.115
.bll
.102
1.755
.101
.527
.812
R
c Don(*ci\f
5 rnUCcDi
B3NOX
R
5.2
7.1
5.3
4.b
5.5
8.7
5.5
R
F/A
.057
.Ob4
.ObS
.ObS
.Obb
.ObS
.070
,0b7
.054
KB/KM HR
R
.SSb
.377
.541
I.Ob?
.548
.320
.543
R
RPM
bOO
2000
2000
2000
2000
2000
2000
2000
2000
r AI r
CALL
A/F
17. b
15.7
14.7
15.3
IS. 2
15.3
14.2
15.0
18.4
HC
.5
.B
.8
.5
.0
.4
14.8
1.2
bl.2
CO
2.1
2.8
2b.B
3.3
4.2
3.0
S2.1
3.2
1.8
NOX FUEL
.» 5.2
5.3 8.8
30.1 25.0
5.3 8.7
1.1 5.1
S.S 8.7
4b.3 2b.7
S.S B.b
.1 3.1
POKER
0.0
7.3
30.5
7.3
2.2
7.3
38.2
7.3
0.0
-------
O
I
ro
oo
TABLE C-30. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
curtur , TCOT ,, 1
-------
TABLE C-31. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
117S CHEVROLET 350-CID HD ENGINE—PROJECT 11-1311
ENGINE-l TEST-131 RUN-NOT 10-01-7b POST OVERHAUL BASELINE - CARBURETOR bbO?
KB l.Obl HUM« 11.5 G/KG
NODE PPM
1
2
3
200O
2000
2000
CONCENTRATION
HC-FID CO
IbOO
IbOO
IbOO
5.710
5.8*0
5.8*0
AS MEASURED
C02 NOX-CL
11.12
11.00
11.21
1088
1088
1088
TOTAL
CARBON
17.015
17.025
17.2bS
FUEL
COM3.
257b1
25711
25112
CALCULATED 8/HR
HC CO N02
280
271
271
171bS
17821
17118
517
Sib
533
CORRECTED S/HR
HC-FID CO NOX-CL
280.0
871.1
273. b
171bS
17821
17118
581. S
583.5
570.3
CKM
70.8
70.5
70.5
VAC.
MM
13
13
13
MODE
ID
MV
-UNITS AS SPECIFIED IN THE 7-11-75 PROCEDURE-
CHP CTO FC BSHC BSCO BSNOX
..-CALC—
BSFC A/F F/A
HC
•G/Kt* HR—-*»
CO NOX
SFC
KG/KK HR
11.1
11.5
11.b
811
218
218
Sb.8
Sb.7
Sb.?
3.01 187.80
3.OS 112.bb
2.1b 188.30
5.88
5.10
5.77
.SIB
.bOO
.511
12.5
12.S
12.3
.080
.080
.081
1.01 251.81
1.0S 258.3b
3.17 252.51
7,81
?.fl
7.73
.3b1
.3bS
.3bl
ID
O
I
-------
TABLE c-32. MASS EMISSIONS RY NINF-MODE EPA - METRIC UNITS
)975 CHEVROLET 350-Cin HD ENGINE —PROJECT Il-t311
ENGINE.? TF.3T-S13 RUN-oi PORT LINERS WO AIR Ob-01-7h Kr 1.109 HUMs iB.b G/KG
MOOF.
1
2
3
t
5
b
7
8
S
1
3
t
5
b
7
8
q
IDLE
25 PCT
55 PCT
25 PCT
LO PCT
25 PCT
9o PCT
25 PCT
C.T.
IDLE
25 PCT
55 PCT
25 PCT
10 PCT
25 PCT
ID PTT
25 PCT
C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
CONCENTRATION
HC-FIO CO
118(1
250
btO
220
220
Ibo
10?0
180
22ton
Rill
280
b20
20O
inn
ItO
7(10
ItO
23b80
.20t
.227
.tlS
.251
.598
.227
1.117
.312
.t'»2
,2(lt
.251
.t2B
.251
,5tO
.227
.598
.239
.t?8
AS MEASURER
co? NOX-CL
I 3 . t 9
It .23
It .5t
lt.5t
13.93
It. OP
I*. 23
1* .5t
10.07
13. b»
It. 39
lt.5t
It ,5t
13.93
It .23
13.93
It. 23
P.b2
77
570
1323
bon
250
590
1828
590
2t
79
Sf.0
590
230
590
I9b9
bJO
23
TOTAL '
CARBON
13.827
It.HBb
15.028
It. 81b
It. 553
lt.32b
It. 872
12.970
13.9t3
15.039
It .lit
It.t90
It.t73
It.hOR
I».t85
11. bit
FUEL
G/HR
20tl
ltt,9h
mi is
7938
103t2
?0775
10070
20tl
2132
10251
ltB32
10070
7711
1020b
20tS7
1002t
2132
CALCULATED G/HR
HC CO NOX
20
20
71
17
It
13
15b
It
387
15
22
70
15
11
11
111
11
t71
bl
325
820
3tb
bS9
332
3030
•27
ItO
b3
3St
853
3t5
580
32t
Ib92
33t
159
,
t7b
151
SO
157
It 7
1
*
. t8()
its
t5
153
1015
155
2
HT.
FACT.
.232
.077
.It7
.077
.057
.077
.113
.077
.It3
.232
.077
!o77
.057
.077
.113
.077
.It3
WEIGHTED G/HR
HC-FIO CO NOX-CL
t.b
l.S
10.5
1.3
.8
1.0
17.7
1.1
55.3
3.5
1.7
10.2
1.2
.b
.9
12. fa
.8
b7.t
It
25
121
27
38
2b
3t2
33
20
15
27
125
27
33
25
2b
23
1.0
11. »
70.0
11. b
12J1
102.,?.
11.3
.2
1.0
11.1
70.b
11. t
2.b
11.8
12.0
.2
CKW
0 • 0
17.7
39.1
18.2
7. 3
18.1
bS.O
17. b
n.o
0.0
17. b
18.2
b.B
18.2
bS.9
18.0
0.0
VAC.
MM
1 3t
3bb
23b
373
1 1 2
3bb
bl
373
b38
tt2
3b8
23b
373
tt t
3b8
bl
3bb
blO
o
I
MODE
1
2
3
t
S
b
7
8
9
1
2
3
t
S
b
7
B
9
IDLE
25 PCT
55 PfT
25 PCT
10 PfT
25 PCT
in PfT
25 PpT
C.T.
IDLE
25 PCT
55 PCT
25 PCT
10 PCT
25 PCT
9n PCT
25 PCT
C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
UNITS AS
HV CHP
17.1
It.t
1.3
It. 7
17. t
It.t
2.t
It. 7
25.1
17. t
It. 5
9.3
It. 7
17.5
It. 5
2.t
It.t
2t.O
n.n
23.7
52. t
2t.t
9.8
2t.3
87.2
2?. 5
o.n
0.0
23.1.
52.3
2t.t
1. 1
2t.t
88. t
?t .2
0.0
SPECIFIED IN THE 7-11-75 PROCEDURE
CTO FC BSFC BSNOX F/A
0
b3
138
bS
2b
b5
228
b3
n
0
b3
138
b5
2t
S5
230
••5
n
t.S
22. b
32. t
22.3
17.5
22.8
tS.8
22.2
t.5
t.'
22. b
32.7
22.2
17.0
22.5
t5.1
22.1
*.7
R
.953
.MR
.913
1.782
.938
.525
.9t3
p
R
,95b
.h25
.910
1.177
.921
.51(1
.lit
R
R
b.t
9.2
b.3
5.2
h.b
10.5
S.t
R
R
f,.?
1.3
b.2
5.1
*»•*
11.7
h.5
R
.Ob?
.OhS
.Ob8
.Obb
.Obb
.Obt
.070
,0b7
.Obi
,f'b3
.Obb
,0b8
.Obb
.ObS
.Ob5
.Obb
.Ob5
.055
SFC
KG/KM HR
R
.580
.37b
.555
l.OSt
.571
.319
.57t
R
R
.5»2
.380
.553
I.lt2
.SbO
.310
.55b
R
RPH
bOO
1170
1990
1970
1950
HbO
2010
iibn
1980
bOO
1990
1970
1150
1170
2020
1950
1970
C»LC
A/F
lb.0
is.t
It. 8
15.0
15.2
15.5
It. 3
15.0
Ib.t
15.9
15.2
It.p
15.0
15.3
is.t
15.2
15. t
18.2
HC
t.9
l.b
11.2
l.t
.8
1.1
18.9
1.1
59.0
3,b
1.7
10.3
1.2
.b
.9
12.7
.9
b8.1
CO
2.2
3.1
18.7
t.l
5.8
t.O
53.1
5.1
3.0
5.b
25.5
S.t
b.7
5.1
38.1
5.2
tjb
NT OF T
NOX
,t
5.1
31. »
5.2
1.3
S.t
t5.9
5.1
.1
.t
t.7
30.0
t.B
1.1
5.0
t8.7
5.1
.1
FUEL
5.3
8.1
2t.t
8.8
5.1
1.0
2b.S
8.7
3.3
S.b
8 9
*
8.8
5.0
8.1
2b.l
8.7
3.t
POWER
0.0
7.2
30.2
7.t
3 p
t . c
7.3
38. b
7.1
0.0
0.0
7 i
• . X
30.0
7.3
2.0
7.3
39.0
7.3
0.0
SUM --- (COMPOSITE VALUE FOR CYCLE
SUM --- (COMPOSITE VALUE F(J* CYCLE
HC- FID
ro- NO
NOX-CL
CYCLE COMPOSITE -
0.
R o.
n.
35(
35(
35(
5.0) + O.b5(
3t.«;i + n.b5(
11.91 * n.bs(
5.3)
2*i. 1)
12. S)
HC t NOX
SFC
-
=
s
=
r
S
29
12
17
.173
.058
.305
.t78
.tbt
5.0
5.3
G/KH
G/KM
G/KM
G/KM
KG/KM
3t
2b
HP
HR
HR
HR
HR
1
1
( 3
(21
( 1
(13
(
1.1
2.5
.857
.bb9
.17b
.033
,7b3
BS)
BS)
BS)
BS)
BS)
-------
TABLE C-33. M»SS EMISSIONS BY NINF-MOPE EPA - METRIC UNITS
ENGINE-?
TEST-213 RUN-02
1975 CHEVROLET 350-CID HO ENGINE—PROJECT 11-*311
PORT LINERS WO AIR tlb-01-7b K = 1.113 HUMS 19.b G/KG
MODE
1 IDLE
2 25 PCT T
3 55 PCT T
* 25 PCT T
5 10 PCT T
b as PCT T
7 9n PCT T
8 25 PCT T
9 C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
» 25 PCT T
5 in PCT T
b 25 PCT T
7 9f) PCT T
S 25 PCT T
1 C.T.
CONCENTRATION AS MFASURED
HC-FIO
RfO
2bO
b2n
200
200
ibn
7*0
150
23b8o
lion
3bO
b«0
2bO
200
200
1000
1*0
22*00
CO
.US
.20*
.•us
.231
.5b9
.2lb
.M3
.275
,*Sb
.239
.251
,*2R
.300
,*97
.227
1.038
.275
.**2
CO?
13.35
1*.0In ^l,IIP1f^U31 It
SUM-- -(COMPOSITE
TWO CYCLE COMPOSITE -
» ^1, «t r If
VAL'JF FOR
*.S
22l7
32.*
22. b
I'.l ?
*5|3
32.1
H.b
?2.7
32.1
22.2
1 fa P ?
*• " • " c
22.5
*5.2
».'
f Vfl C \ \
C'CLn i)
r vn F a "t
1 « L. l_ C f* I
HC- FID
co- NDI
MOX-CL
R
.9b2
.b!7
.958
.072
.9SB
.520
.9*0
R
R
.955
.b2?
.910
• OS ^
["21
.511
.909
R
o.sq
R 0.-"i
n.3«i
R
b.3
b'.l
5.7
b.S
11. b
b.3
R
R
b.3
9.2
b.l
^ 3
10.5
b.O
R
f 5
( 2b
f 12
.Ob2
.Ob*
.Obb
.Obb
.Ob*
.Of.5
,0b7
.Obh
.Obi
.Oh3
.Obb
.ObS
.Obb
ni. t
« U w o
.Obb
,n7n
.Obb
.059
.0) + O.
.3) + 0.
.») + o.
R
.585
.375
.583
1.2bO
.582
.31b
.572
R
R
.581
.376
.553
• p 3 *
IsbO
.311
.553
R
bSf
hs( 3
b5( 1
HC »
hOO
1970
2000
1970
19*0
19hQ
2010
19bo
1980
bOO
1980
1990
1970
1970
2020
19bO
1990
5.3) =
3.0) =
1.8) =
NOX s
SFC =
lb.2
IS. 5
15.1
15.2
IS.b
15.*
!*.•»
15.2
lb.5
15.8
15.2
1*.B
15.1
isle
15i2
17.0
5.1b3
30.b*3
12.009
17.172
.*b5
3.b
1.8
11.2
1.3
.8
1.1
1.0
b5.1
*.3
2.2
11.2
l.b
_
1.2
17.3
1.1
bO.*
5.0
5^
. 3
G/KW
G/KM
G/KW
G/KW
Kn/Kf
2.8
*.'
85.8
5.3
7.3
».8
39.*
b.O
2.7
*.*
19.9
5.8
*.o
50.7
1.7
3.5
2b
HR
HR
HR
HR
HR
.* 5.*
».9 9.0
30.0 8*.*
5.2 8.9
1.1 5.0
5.0 8.9
18.5 2b.3
».9 8.7
.1 3.»
.» 5.5
5.2 9.0
31.0 8*. 3
5.1 8.8
5.3 B.S
*b,7 2b.3
5.0 8.8
.1 3.5
12.*
11 8
( 3.850 B3)
(88.851 BS)
( 8.9S5 BS1
(12.805 93)
( ,7b* 83)
0.0
7.2
30.5
7.2
l.t
7.2
38.9
7.2
0.0
0.0
7.2
29.7
7.*
7.*
7)3
0.0
-------
TABLEC-34. MASS EMISSIONS BY NINF-MODE FPA - METRIC UNITS
ENGINE-02 TEST-213 RIIN-03
)9?5 CHEVROLET 350-CIO HO ENGINE —PPOJECT 11-*311
PORT LINERS W «IR Ob-01-7b K= 1.107 HUMs
18.3 G/KG
CONCENTRATION AS MEASURED
MODE
1
2
3
*
5
b
7
8
9
1
2
3
*
S
b
7
B
9
IOLE
25 PCT
55 PCT
25 PCT
10 PCT
25 PCT
9n PCT
25 PCT
C.T.
IDLE
25 PCT
55 PCT
25 PCT
10 PCT
25 PCT
90 PCT
25 PCT
C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
HC-FID
8*0
IbO
180
90
50
8n
95
50
**800
1200
3bO
300
1R0
130
1*0
1?0
90
HBOOO
CO
.125
.115
.20*
.109
.109
• 10*
.37b
,n9fl
.1»7
.131
.13b
.181
.10*
.09B
.10*
.**2
.098
.10*
CO?
9.V3
11.00
12.25
11.?*
10.53
11.?*
11. PI
11. 3h
1.97
1.*3
11.2*
12.1?
11 .?*
1 0 . * I
11. ?»
13. b*
11. 3b
1.50
NOX-CL
39
390
io»n
*?o
IbO
•»oo
15?7
*30
11
37
*in
101 b
*30
120
*00
139?
*?0
B
TOTAL
CAPRON
9.b*7
] 1.132
12. *7*
11.359
10.b*5
11.353
I3.51b
11. *b*
h.b85
9.b9?
1 1 .»lb
12.335
11 .3b»
10.523
11.359
I*. 015
11 .*b8
b.*75
FUEL
G/HR
199b
103*2
1501*
lOlbO
775b
lOlbO
2050?
100?*
1950
I99b
10?97
I*b51
10115
7*8*
10?0b
20775
98*3
1905
CALCULATED R/HR
HC
19
lb
2*
9
*
8
lb
5
1333
27
3b
*0
18
10
1*
20
q
1*33
CO
52
215
*9b
197
Ibl
187
11**
17*
B7
5*
2*9
*3S
18b
1*1
188
1315
170
b?
NOX
3
133
*bo
138
»3
132
8*7
138
1
3
13b
***
1*1
31
132
75*
133
1
WT.
FACT.
.232
.077
.n?
.077
.057
.077
.113
.077
.1»3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
WEIGHTED G/HR
HC-FID
*.*
1.3
3.b
.7
.2
.b
1.8
.»
190. b
fa. 2
2.8
5.8
.b
1.1
!?
205.0
CO
12
17
73
IS
1*
129
13
12
13
b*
11
8
1*
13
9
NOX-CL
.7
10.3
b7.7
10. h
in!i
10. b
.2
.b
10.5
b5.2
10.8
1.8
10. e
85.2
10.2
.1
CKW
0.0
17.8
38. b
18.*
b.3
17.8
bS.9
17. b
0.0
0.0
17.8
38.7
18.3
b.2
17.8
bS.7
17. b
0.0
VAC.
MM
*3*
3bb
23b
3b8
***
3b8
bl
3bb
bl?
*SO
3b.b
3hb
*50
3hb
bl
373
hi?
O
l*>
ro
MODE
UNITS AS SPECIFIED IN THE 7-11-75 PROCEDURE—- SFC
MV CHP CT1 EC BSFC BSNOX F/A KG/KH HR
RPM
A/F
HC
-PERCENT OF TOTAL--
CO NOX FUEL
POHER
1 IDLE
? 25 PCT
3 55 PCT
1 25 PCT
5 10 PCT
b 25 PCT
7 90 PCT
8 25 PCT
9 C.T.
1 IDLE
2 25 PCT
3 55 PCT
» 25 PCT
S 10 PCT
b 25 PCT
7 90 PCT
8 25 PCT
1 C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
«iu
17.1
!».»
9.3
1».5
17.5
1».5
2.*
1H.*
?*.!
17.7
!*.»
9.*
!*.»
17.7
1*.*
2.*
1*.7
?*.3
n.n
?3.8
51.8
?».b
B.*
23.9
P8.*
23.7
0.0
n.o
23.''
5). 9
2*.b
8.3
23.9
88.1
23. b
0.0
*Dne T Tt
SHI..- (COMPOS I TE
TMO CYCLE COMPOSITE -
0
b3
1 3b
h5
22
••3
230
b3
0
O
b3
1 3b
1.5
2?
b3
230
*>3
0
y 41 (jp
VAI UF
• " I vc
».*
??.B
33.1
2?.*
17.1 2.
22.*
"5.2
22.1
».3
».»
22.7
32.3
PS. 3
lb.5 1 .
??!5
»5.a
?1. 7 .
•».?
FnR r YTI F 1
F(m CYCLE ?) —
HC- Fin
co- NOIW
MOV-CL
R
9Sb
b39
9QQ
038
93R
511
93*
R
R
9*9
b22
9QB
985.
9*n
5?0
921
P
n.?5(
O . ^S |
n . 35 1
R
5.7
9.0
5.7
5.2
S.b
9.7
5.1
R
R
5.8
".7
5.8
3.8
5.b
8.7
5.7
R
10.1)
15. HI
11.1)
.0**
.051
.057
.052
.0*9
.052
.Obi
.05?
.033
.0**
.05?
.05b
.052
.0*8
.05?
.nb*
.052
.03?
* 0.
* n.
* 0.
R
.582
.389
.553
1.2*0
.570
.311
.SbB
R
R
.577
.378
.5e2
1.207
.572
.31b
.5SO
R
b5(
^5(
b5(
HC
faOO
1910
2000
1110
1170
1110
2020
1970
1970
bOO
1910
2000
1980
1150
1190
2010
19bQ
2000
!?.!> =
lh.3) =
10.*) =
» NOX =
SFC =
22. b
11. 7
17.7
11.1
20. b
lb!s
H.8
30.1
22.5
11.3
17.9
11.3
20.8
19.*
15.7
31.0
ll.bBl
lb. 1(1?
.in.b89
??.370
.*b»
2.2
.b
1.7
.3
.1
.3
.1
.2
93.7
?.8
1.2
!b
.3
.5
1.0
.3
90.8
in o
10.9
13 1
le. 1
G/KM
G/KM
G/KM
G/KM
KG/KM
" »" "
S.
s!
3.
»3l7
•»!2
'.2
b.3
21.1
*.7
2.7
*1.0
*.3
?!l
lb
i •
lb
HP
HR
HR
HR
HR
.3
3e!s
S.I
1.2
*5.9
S.I
.1
.3
33.'S
S.b
.9
5.2
5.2
.1
11.1
In k
10.*
( 8.710
(12.007
( 7.971
(Ifa.b81
( .7b2
5.2
2s|o
8.8
5.0
8.8
8.7
3.2
5.3
1.0
2».5
8.9
l!o
?b.7
'•1
BS)
BS)
BS)
BS)
BS)
0.0
7.2
29.9
7.*
1.1
7.2
31.2
7.2
0.0
0.0
7.2
30.0
7.*
1.1
7.2
31.1
7.1
0.0
-------
TABLE C-35. M»SS EMISSIONS RY NINE-MODE EP» - METRIC UNITS
ENGINE-?
TEST-213 RIIN-01
1975 CHEVROLET 3SO-CID HO ENGINE—PROJECT 11-1311
LINERS M »IR X-CT Oh-01-7b K* 1.111 HIJMs
19.0 6/KG
O
I
OJ
CONCENTRATION AS MF.ASURED TOTAL
MODE Ht-FIO
1 IOLE nip
2 25 PCT T 17(1
3 55 PCT T lln
1 25 PCT T 80
5 10 PCT T 50
b 25 PCT T 7o
7 Io PCT T 120
8 25 PCT T 3"j
1 C.T. 153«,0
1 IDLE 7bO
2 25 PCT T 110
3 55 PCT T 170
1 25 PCT T -»S
5 10 PCT T b5
b 25 PCT T ?n
7 In PCT T 115
8 25 PCT T 15
9 C.T. ihonn
CO
.101
.170
.233
.125
.115
.120
.251
.101
.3b3
.125
.117
.201
.120
.115
.120
,3M
.101
.37b
CO? NOX-CL CARBON
1.32 13 1.51H
11.21 310 11.129
12.38 1028 12.b35
11. 3S 310 11.111
in. 7b 155 io.88n
11. 3b 100 11.188
13.21 Ib37 13.175
11 . 3s IKS 1 1 ,»be
1.»3 ?b H. Ib*
9.53 13 9.73P
11.21 380 11.109
12.52 lOlb 12.713
11. 3b 390 11.190
11. 3b 31.5 11.18?
11. 3b 3*,5 11.189
13.11 15?7 IS.Bht.
11.18 3b5 11.581
9.13 ?S 11.551
FUEL
G/HR
1905
103R7
11123
lOlbO
7R17
10312
20518
10115
1811
IRbO
10312
15011
lOlbO
8029
lOlbO
20729
10021
1811
CALCULATED
HC CO
25 12
17 312
25 557
R 221
1 Ib7
. 7 218
21 773
3 185
2b5 lib
Ib 18
11 270
22 18b
1 211
5 Ib2
8 211
11 1095
1 181
271 119
G/HR
NOX
3
131
118
127
133
315
2
3
127
112
127
91
111
812
lib
1
WT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.113
.232
.077
!o77
.057
.077
.113
.077
.113
WEIGHTED
HC-FID
5.7
1.3
3.7
.b
.2
.5
2.3
.3
37.1
3.7
1.5
3.3
.7
.3
2.2
.3
39.2
CO
10
21
82
17
10
17
87
11
17
11
21
71
Ib
9
Ib
121
11
17
G/HR
NOX-CL
.7
10. 1
bS.B
1.8
2.1
10.2
101.1
21.3
.7
9.8
bl.9
1.8
5.1
1.2
15.2
1.0
.2
CKW
0.0
18.1
31.3
18.0
7.0
18.1
b5.8
1R.O
0.0
O.O
18.0
39. b
17.9
7.5
18.0
bS.8
17.9
0.0
VAC.
MM
1?7
3bb
23b
3bb
112
3bb
Sbb
b!5
112
3bb
231
3bb
371
371
bl
371
b]0
----UNITS AS SPrnFTFfi TM Tuc 7-li-ic PDnrrniior_._. er«-
MOO? MV
1 IDLE Ih.R
2 25 PCT T 11.1
3 55 PCT T 9.3
1 ?5 PCT T 11.1
5 in PCT T 17.1
b 25 PCT T 11.1
7 9n PCT T 2.1
8 25 PCT T 11.1
9 C.T. ?1.2
1 IDLE 17.1
2 25 PCr T 11.1
3 55 PrT T 9.2
1 25 PCT T 11. »
3 10 PCT T 11. b
b 25 PCT T 11. b
7 9o PCT T 2.1
8 25 PCT T 11. h
1 C.T. 21. n
CHP
0.0
21.3
52.7
?1 .?
1.3
21.3
88.2
21.2
n.o
n.o
?*.?
53.0
21.1
10.1
21.2
88.2
21.1
0.0
SIJM-- — (COMPOSITE
SUM--- (COMPOSITE
TWO CYCIE COMPOSITE -
CTO FC BSFC
0 1.2 R
bl 22.9 .911
138 32.1 ,b25
hi 22.1 .1?h
25 17.3 l.B5b
b3 22. R .138
227 »5.3 .513
bl 22.3 .121
n i.o R
0 1.1 R
bl 22.8 .91?
137 33.1 .b21
b3 22.1 .931
27 17.7 1.753
•.1 22.1 .92b
221 15.7 .518
S3 ?2.1 .919
n 1.0 R
HC- FIO 0.35(
CO- NOIR 0.35C
NOX-CL 0.95f
RSNOX
R
S.I,
8.7
5.1
1,5
5.b
in. 7
13.3
R
R
5.1
8.5
5.1
5lo
1.8
5.0
R
J.8)
11.8)
12.2)
F/A KG/KM HR RPM
.011 R
.052 .571
.057 .380
.052 .Sb3
.050 1.121
.052 .571
.Obi .312
.052 .Sbl
.053 P
.015 R
.052 .573
.058 ,38n
.052 .Sbb
.052 l.Obb
.052 .5b3
.Ob3 .315
.053 .551
.051 R
+ 0.fcS( 2
+ n.(,5( 11,
t n.fcsf in
HC +
bon
1990
2010
2000
1110
2010
2010
2000
2010
bOO
2000
2030
1110
1110
2000
2020
1110
2000
.R) =
.n) =
.9) =
NOX =
3FC =
r At r
L *UC
A/F
2?. 8
iq p
A ~ • C
17.5
20.2
11.1
lb.1
11.2
18.7
22.1
11.3
17.3
H.l
11.2
11.1
lb.0
19.0
18. b
2.777
15.515
11.328
11.105
.HbH
HC
10.9
2 5
7^0
1.1
.1
1.0
is
72.1
7.1
2.8
b.1
'.t,
1.2
1.2
75.7
2.8
G/KM
G/KH
G/KH
G/KH
KG/KM
CO NOX FUEL
3.5
8 7
29^5
3.1
3l!s
5.1
b.O
3.7
b.9
23.8
5.5
3.1
5.5
l.b
5.7
1 c
1 9
Ib
HR
HR
HR
HR
HR
.3
28.9
1.0
»s!7
10.7
.1
.3
1.8
31.8
2>
1.5
Ib.b
1.1
.1
12.2
( 2.071
(11 .b29
( 8.117
(10. SIB
( .7Sb
5.0
21.1
8.1
5.1
1.0
2b.3
8.8
2.9
t.1
1.0
25.0
8.1
5.2
8.1
2b.5
8.7
2.9
B3)
83)
83}
83)
63)
POHER
0.0
30.1
7.2
2.1
7.3
38.8
7.2
0.0
0.0
7.2
30.3
7.2
3.?
7.2
38.7
7.?
0.0
-------
O
i
to
ENGINE-8
TABLE C-36. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
117* CHEVROLET imi-CID HD EWGINE---PROJECT J
TEST-?) 3 RUM-WOT ni--ni-7b POPT LINERS
* = 1.101
HUW =
R/KG
MODE
3
MODE
1
?
3
*
CONCENTRATION A <*b.i ?5? 57.5
.b 97.3 ?51 S7.7
8SHC BSCO R3NOX HSFC A/F
3.b7 lPR.7b 3.93 ,b05 1?.5
3.7P 1RB.OB ».17 .bn? !?.»
,b9 9b.31 3.?9 .598 13. b
.51* 91.1)1 3.08 .593 13. »
F/A
.nso
.081
.07*
.O71*
35?. 7 l?9"tn
59.3 81*?
51. b BhSS
•HH.l 7?. n 15
•»•»!. n 7?.t is
3»H.3 71.8 15
3JH.3 7?.*, 15
HC CO
*.le 253.13
.9H 115. bl
.73 IJ8.0*
NOx KG/Kk HR
S.?8 ,3bS
S.S9 ,3b9
».13 .3bl
10
-------
1ABLE C-37. MASS EMISSIONS
NINE-MODE EPA - METRIC UNITS
ENGINF-2
MODE
1 IDLE
2 ?5 PCI T
3 55 PCT T
* 25 PCT T
S 10 PCT T
fa 25 PCI T
7 9u PCT T
8 25 PCT T
9 C.T.
1 IDLE
i 25 PCT T
3 55 PCT T
* 25 PCT T
s 10 PCT T
b 25 PCT T
7 9p PCT T
8 25 PCT T
* C.T.
1975 CHEVROLET 350-CIO HO F.NC.I NE ---PROJECT ll-*311
TEST-219 RUN-2 OS-U3-7b MOD. 6L-POR1EO INtEX MAN-CARB bbOb-HElHOVA K=
CONCENTRATION *S MEASURED
HC-FID CO C02 NOX-CL
17bo
27h
S3b
220
132
IRQ
99g
172
339*0
lElh
3bO
SbO
£»»
1*0
Elh
528
1 '2
25bnu
.3*0
.f80
.b30
.300
.3*0
.290
1.720
. 3*0
.(•711
.530
.3*0
.bbO
.3*0
.3bO
.3*0
J.790
.3*0
,b30
12. 2P
13.78
13.19
13.78
13.19
13. 7P
13.35
13. «3
7.bR
13.07
13.78
13. b*
13.70
13.35
13.93
13.35
13.93
8.23
«7
190
1125
550
250
520
IbSO
510
2*
b2
180
1150
5*0
270
530
It>25
SbO
22
TOT*L
CARBON
12.7Bb
1*.091
1* . 1"1
1H.1US
13. BIS
11.090
15.183
11.289
12.00*
13.737
1*. Ibl
1*. ^b3
1*. lip
13.727
1*.29*
15.2*b
11.280
ll.bSfi
FUEL
G/HR
18bQ
9*35
1*7*2
93F9
7303
9389
2Ub81
93**
20*1
IRbll
9389
1*787
9253
73*8
9389
210*7
4253
2087
CALCULATED G/HR
HC CO NOX
29
21
b3
17
8
1*
15*
13
b21
19
27
bS
18
9
Ib
lib
13
*97
IPO
379
1323
*03
3b2
340
*733
**9
23n
1*5
155
1373
389
*S1
1992
115
228
2
119
*2*
133
12b
81*
121
1
3
115
*29
128
52
12b
813
131
1
HT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
1.091
HUM =
HE1GHTEO G/HR
HC-FID CO NOX-CL
b.b
l.b
i.'a
I'.O
17.1
1.0
88.8
*.3
2.1
^ ^
.S
1.2
Ib.5
1.0
71.1
23
29
31
30
535
35
33
3*
35
202
35
35
Sb*
31
33
,b
9.2
be. 3
10.2
2.7
* • '
9.7
92.0
|2
.7
8.9
b3.0
9.9
3.U
9.7
91.8
10. I
.2
lb.3 G/KG
CKH
0.0
17.3
39.7
17.
7
f .
17.
b5.<
17.
0.0
0.0
17.9
17.8
7.5
17.9
bfa.b
17.8
0.0
VAC.
MM
157
389
229
389
1*7
389
b3
389
549
*57
389
22b
489
*17
389
b3
384
o
CO
MODE
UM15 AS SPECIFIED IN THE 7-11-7S PROCEDURE"" SFC
MV CHP CTO FC BSFC B3NOX F/A KG/KK HR
RPM
A/F
HC
-PERCENT OF TOTAL
CO NOX FUEL POWER
1 IDLE 1ft. 0
^ 25 PCr T 15.3
3 55 PCT T 9.0
» 25 PCT T 15.3
S 10 PCT T 17. b
b 25 PCT T 15.3
7 90 PCT T ^.S
8 25 PCT T 15.1
9 C.T. 23. b
1 IDLE 18.0
2 25 PCT T 15.3
3 55 PCT T fi.9
* 25 PCT T 15.3
5 10 PCT T 17. b
b 25 PCT T IS. 3
7 9o PCT T c.5
8 25 PCT T 1S.H
9 C.T. ?fi.8
0.0
23.1
53.2
23.4
9.9
21.0
88.*
21.0
0.0
li. (1
2*.0
53.7
23.9
10.1
21.0
8",3
33.4
0.0
SUK---( CliKPOS IT E
T*o CYCLE COMPOSITE -
P
bl
HO
h3
2b
b3
230
h3
0
n
S3
110
b3
2b
b3
230
S3
0
V ALUF F OH
VALljf f* OH
1.1
20.8
32.5
20.7
lb.1 1
20.7
»5.b
20. b
1.S
*.l
?0.7
32. b
20.*
lb.2 1
?0.7
*b.1
20.1
*.b
r v r i P' 11
<- I I*LC 1 /
CYCLE ? )
HC- FID
CO- NOI
NO*-CL
c
.899
.blO
.Rb5
.MR
,8b3
.Sib
.857
P
R
.8b2
.b07
.853
.bOP
.8b?
.519
.SST
R
U.35(
K 0.351
0.35(
R
S.?
8.1
5.b
*.4
5.3
4.*
5.J
H
R
1.9
8.1
S.*
5.3
5.3
".3
S.b
R
b.8)
1H. 3)
10.1)
.058
,0b3
.Ob*
.Ob*
.Ob2
.Ob3
.Ob9
.Ob*
.058
.Ob2
.Ob*
.ObS
.Ob*
.Ob?
.Obi
.Ob9
.Ob*
.055
+ n.b5(
+ O.b5(
+ O.b5(
P bOO
.5*7 2000
.371 2000
,52b 2000
.981 1980
.525 2000
.311 2020
.522 2000
R 2000
N b80
.52* 2000
.3b9 2010
.519 1990
.978 2000
.521 2000
.31h 20*0
.SJ.4 1990
R 2000
5.7) =
52.2) =
10.1) =
HC + NOX s
SFC =
17.2
15. H
IS.b
15.7
Ib.U
IS. 8
1*.S
IS. 5
17.1
lb.1
15.7
IS.*
15.7
lb.1
15.5
1*.*
15.5
18.1
b.o*a
51.14b
10.381
lb.*21
.111
5.2
1.3
7.3
1.0
.»
.8
13. b
.8
b9.7
1.0
1.9
I*.!
.5
1.1
15.3
bb.U
b.8
5.7
G/KW
6/KM
G/Kh
G/KW
KG/KM
2.S
3.1
20.9
3.3
2.2
3.2
57.5
3.7
3.5
3.*
3.5
20.3
3.5
2.2
3.5
Sb.8
3.*
3.3
*9
52
HR
HR
HR
HR
HR
.3
3l!s
5.2
1.*
».1
»b.9
*.7
.1
.*
*.s
32. U
5.0
1.5
*.9
1b.5
5.1
.1
10.1
10.1
( ».5Ub
(38.177
{ 7.7*1
(12.2*7
( .730
S.I
8.5
25.1
8.5
1.9
8.5
27.1
8.*
3.*
5.0
8.*
25.*
8.3
*.4
8.*
27.7
8.3
3.5
83)
BS)
BS)
83)
BS)
U . 0
b.9
30.1
7.2
2.2
7.2
38.9
7.2
0.0
0.0
7.1
30.
7.
2.
7.
38.
,7.
0.0
-------
TAPLfc C-38. MASS EMISSIONS HY NINE-MODE EPA - METRIC UNITS
ENGINE-?
.1075 CHEVROLET 350-CID HO ENGINf PROJECT 11-1311
TEST-219 RUN-3 08-03-7b hITH VAC ADV - ALL OTHER SAME A3 RUN 2
K = 1.085 HUM= 15.7 G/KG
O
CONCENTRATION
MODE HC-FIP CO
1 IDLE IHSb .310
2 25 PCT T 752 .550
3 55 PCT T 10*0 .530
1 25 PCT T b72 .blO
S 10 PCT T £1R .190
b 25 PCT T b8« .blO
7 10 PCT T BOO 1.210
8 25 PCT T blO .blO
•» C.T. 332SO .350
1 IDLE lS5b .IbO
2 25 PCT T 700 .bOO
3 55 PCT 1 10»0 .530
» 25 PCT T 720 .bin
5 in PCT T 2CP .190
b 25 PCT T b«6 .blO
7 9n PCT T IBSb 1.130
8 25 PCT T b21 .hlO
^ C.T. 32b10 .310
AS MEASURED TOTAL
CO?
J?.?S
13.35
13. bl
13.35
12. 7">
13.35
13. bl
13.35
7.32
12.52
13.35
13. bl
13. 3".
12.79
13.35
13.19
13.35
7.15
NOX-CL CARBON
1b 12.717
1050 13.985
2550 11.2BB
1050 Jl.Obb
350 13. OUR
1050 ll.ObB
1700 11.171
1100 11. Ob?
22 11.231
55 13.188
1100 14.020
2boO 11.28P
1075 11.071
355 13.012
1050 11.038
17?S 15.131
1100 11.030
22 10.980
FUEL
e/na
Ib78
7938
12383
7802
5571
7817
20185
7711
1905
1105
79«3
12171
775b
5715
775b
20230
7bbb
1905
CALCULATED G/HR *T.
HC
27
18
102
12
12
11
123
10
bOI
30
ts
103
15
11
13
282
38
bOb
CO
90
b31
92B
717
IbS
721
3377
709
120
131
b9o
935
713
Ibl
bBl
38b2
fa73
119
NOX
2
215
79b
210
51
211
82b
217
1
3
225
818
213
Sb
201
831
217
1
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
WEIGHTED
HC-FID
b.3
3!?
15.0
3.2
.7
3.3
13.9
3.1
Bb.1
7.0
3.5
15.1
3.5
.8
3.3
31.9
3.0
Bb.b
CO
21
19
13h
55
9
Sb
382
55
17
31
53
55
10
52
13b
52
17
G/HR
NOX-CL
,S
Ib.S
117. b
lfa.2
3.1
lb.2
13.3
lb.7
.2
.7
17.1
120.2
lb.1
3.2
lb.1
93.1
lb.7
.2
CKH
0.0
17.9
10.1
17.9
7.5
17.9
bS.8
17.9
0.0
0.0
18.1
»0.0
18.0
b.l
17.8
bb.S
18.1
0.0
VAC.
Hh
157
132
287
132
110
132
bb
132
bOS
155
132
287
132
190
132
bb
131
bOS
UNITS AS
MODE MV CHP
1 IDLE 1S.O 0.0
S 25 PCT T 17. n ?1.1
3 55 PCT T 11.3 53.8
•» 25 PCT T 17.0 23.1
S 10 PCT T 1«.3 10.0
fa 25 PCT T 17. L' 23.9
7 HO PCT T ?.b 88.3
8 25 PCT T 17. P 23.9
9 C.T. ?3.» O.n
1 IDLE 17.9 0.0
2 25 PCT T 17.0 21.2
3 55 PCT T J1.3 53. b
1 25 PCT T 17. n 21.1
S 10 PCT T 19.3 9.3
b 25 PCT T 17.0 23.8
7 90 PCT T 2.b P9.1
8 25 PCT T 17.1 21. b
9 C.T. 23. B n.u
suh--- ( ci'MPos i TE ^
Mjti---(r.(jnPnsi TE \
TMO CYCLE COMPOSITE -
SPECIFIED IN THE 7-11-75
CTO FC 6SFC
0
b3
111
b3
2'
b3
22H
b3
0
0
1)3
111
hi
21
b3
231
b5
"
/ Ai nf f
3.7 R
17.5 .727
27.3 .507
17.2 .718
12.3 1.231
17.3 .722
11.5 .501
17.0 .7in
1.2 R
1.2 R
17. b .727
27. <: .513
17.] .71P
12. b 1.35P
17.1 .717
11. 'b .SOO
lb.9 .b87
1.2 R
HC- FIO ll.35(
CO- NDIS 0.35C
NOx-CL n.35(
PROCEDURE—--—
6SNOX F/A
R
1.1
15.1
8.9
5.5
1.0
1.5
1.2
R
R
1.5
15. b
i.n
b.2
B.S
1.5
1.0
R
7.
11.
H.
.058
.Ob3
.Obi
.Obi
.051
.Obi
.ObB
.Obi
.051
.ObO
.Ob3
.Obi
.Obi
.059
.Mb3
.nbi
.Ob3
.053
2) + 0.
?) + 0.
8) t 0.
SFC
KG/KH HR
R
.112
.308
.137
.719
.131
.307
.132
R
R
.11?
.312
.132
.82b
.H3b
isoi
.118
R
bS( P
b5( 11
bS( IS
HC t
RPM
bOO
2000
2010
1990
1980
1110
2030
199Q
2000
b30
2010
2000
2000
1990
1180
2030
1980
2000
.2) s
.5) =
.0) -
NOX =
SFC =
r Ai r
I. *Ll*
A/F
17.2
IS. 8
15.5
15.7
17.0
IS. 7
H.8
IS. 7
18. b
lb.7
IS. 8
15.5
15.7
17.0
15.8
11. b
15.8
19.0
7.811
13.3bR
11.911
22.755
.390
HC
l.b
2.7
11 .1
2.1
.5
2.5
10.2
2.3
b3.7
1.5
2.2
1.8
2.2
.5
2.1
20. b
1.1
Sb.O
1
7.2
ft . 2
B/KW
G/rtta
G/KH
G/KW
Kb/KM
CO NOX FUEL
2.7
b.2
17.5
7.1
1.2
7.1
11.0
7.0
9.2
3.7
b.3
lb.3
b.S
1.1
b.2
51.7
b.l
2.0
11
15
HH
HP
HR
HR
HR
.2
5.1
11.8
S.8
1.1
S.8
33.3
b.O
.1
.2
b.l
12.2
5.8
1.1
5.7
33.0
S.I
.1
11.8
15.0
( 5.825
(32.331
(11.111
(Ib.lbl
( .bll
5.2
8.2
21.3
8.0
1.2
8.1
30.1
7.1
3.b
5.8
8.1
21.3
7.1
7.1
30.2
7.8
3.b
83)
BS)
BS)
BS)
BS)
POHER
0.0
7.2
30. b
7.1
2.2
7.1
38. b
7.1
0.0
0.0
7.2
30.1
7.2
2.0
7.1
38.8
7.3
0.0
-------
APPENDIX D
DRESSERATOR INDUCTOR EVALUATIONS
D-l Summary of the Results
D-2 through D-33 Computer Printouts - Engine 2
D-34 through D-51 Computer Printouts - Engine 1
-------
TABLE D-l. DRESSERATOR EVALUATIONS
Test
No.
206
206
219
220
221-224
221
222
223
224
229
230
231
232
Run
No.
1
2
1
2
3
1-6
Type
Test
9-EPA
WOT
9-EPA
S.S.
Gram/kW Hr
Description
HC
Dresserator and HEI- As Received 11.397
Dresserator and HEI - Leaner Air Bleed Setting
Dresserator and HEI
Garb 6606 - HEIWOVA - Mod BL-Ported In -Ex Man
Garb 6606 - HEIWVA - Mod BL-Ported In-Ex Man
DI-HEI Port Int+Exh - Modal Evaluations
8.130
2.42
6.043
7.811
CO
82.106
42.015
22.30
51.196
43.368
NOX
13.
11.
17.
10.
14.
565
830
41
381
944
HC+NOX
24.
19.
19.
16.
22.
962
960
83
424
755
Kg/
kWHr
SFC
.468
.457
.320
.444
.390
D-5
Appendix
Table
D-2
D-3
D-4
C-37
C-38
-D-l 2
DI-HEI Port Int+Exh. Manual EGR on Intake Manifold
1-3
1-4
1-4
1
2
1
2
3
2&3
1
2
3
1-6
1
2*
S.S.
S.S.
S.S.
S.S.
9-EPA
WOT
9-EPA
WOT
S.S.
9-EPA
1 . 44 Rod Setting - Modal Evaluations
1 . 47 Rod Setting - Modal Evaluations
1 . 50 Rod Setting - Modal Evaluations
1 . 53 Rod Setting - Evaluation of 90% Mode
1 . 56 Rod Setting - Evaluation of 90% Mode
DI-TR-HEI NOVA-NOAI-14BTDC-1 . 44 Rod
+.25 Ml +9
Run 1 Conf. + Vac. Adv.
DI-TR-HEI AIXCT NOVA 1. 44 Rod +. 25BAinMl&9
Run 1 Conf. + Vac. Adv.
Run 1 Conf. + 1250 NLRPM at CT
DI-TR-HEI CT Optimization Evaluations
DI-TR-HEI- MEGR AIXCT 14 BWVA-1.44 Rod
x 1.5M7
2.043
2.246
3.016
0.20
2.270
4.200
0.077
0.12
0.194
0.813
7.517
6.776
13.134
8.99
6.537
12.843
4.693
1.74
6.624
8.268
10.
9.
14.
12.
10.
15.
9.
12.
6.
8.
055
822
143
74
510
314
504
85
355
530
12.
12.
17.
12.
12.
19.
9.
6.
9.
097
068
159
94
779
514
581
-
549
344
D-13
D-15
D-17
.419
.412
.378
.291
.421
.389
.443
.292
D-29
.411
.406
- D-14
-D-16
-D-18 .
D-19
D-20
D-21
D-22
D-23
D-24
D-25
D-26
D-27
D-28
- D-31
D-32
D-33
1 Set-up reproducibility problems on the 90 percent mode was the reason Run 2 results differ from Run 1 results.
-------
TABLE D-l (Cont'd.) DRESSERATOR EVALUATIONS
d
I
oo
Test
No.
125
126
127
Run Type
No. Test
2 S.S.
3
4
5
6
7
2 S.S.
3
4
5R
1 S.S.
2
Description HC
DI-PL-HEI 25 Pet NOAI-30BTDC
DI-PL-HEI 55 Pet NOAI-25BTDC
DI-PL-HEI 10 Pet NOAI-30BTDC
DI-PL-HEI 90 Pet NOAI-14BTDC
DI-PL-HEI CT NOAI-14BTDC-600NL RPM
DI-PL-HEI CT-DEC NOAI-14BTDC RPM=NLRPM
DI-PL-HEI 25 Pet WAI-30BTDC
DI-PL-HEI 55 Pet WAI-24BTDC
DI-PL-HEI 10 Pet WAI-30BTDC
DI-PL-HEI 90 Pet WAI-14BTDC Less than 90 Pet
DI-TR-HEI WOT WAI-14BTDC
DI-TR-HEI WOT NOAI-14BTDC
Kg/
Gram/kW Hr kW Hr Appendix
CO NO,, HC+NO*. SFC Table
D-34
D-35
D-36
D-37
D-38
D-39
D-40
D-41
D-42
D-43
D-44
D-45
128 2 S.S. DI-PL-HEI NOAICyl to Cyl A/F-148-1.47Rod D-46
129 1 9-EPA DI-PL-HEI NoEGR-NOAI-14B NOVA-1. 44Rods+BA 19.461 83.385 8.467 27.928 .468 0.47
2 Dl-Same as Run 1 except BPEGR . 53X7 Coil 9.980 97.458 6.937 16.917 .474 D_48
3 Dl-Same as Run 02 Except WAIXCT 6.413 20.465 6.666 13.079 .475 0.49
3XA DI-Run 03 with Mode 9 at 1100NLRPM - R4M1 0.708 15.377 6.717 7.425 .490 D-50
3XB DI-Run 03 with Modes 7+9 Inserted - R5M344M1 0.709 17.394 4.170 4.878 .497 D-51
-------
TABLE D-2. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-02 TEST-20fa RUN-01
1175 CHEVROLET 3SO-CID HD ENGINE—PROJECT 11-1311
DRESSERATOR * HEI 0«-lb-7b K = 1.03b HUM« 12.5 G/KG
MODE
1
2
3
*
S
fe
7
8
S
1
2
-3
1
S
b
7
B
S
IDLE
25 PCT
55 PCT
25 PCT
10 PCT
25 PCT
10 PCT
25 PCT
C.T.
IDLE
25 PCT
55 PCT
25 PCT
10 PCT
25 PCT
ID PCT
25 PCT
C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
CONCENTRATION
HC-FID CO
5b80
1010
700
lObo
1110
1050
b7Q
1000
blOOO
b880
IblO
10bO
1010
1330
1120
b20
1170
blOOO
7.370
1.157
.37b
1.211
2.1faO
1.30b
.511
1.710
3. SbO
7.370
1.0S7
.117
1.038
2.800
1.178
.315
l.'7SO
3.110
AS MEASURED
C02 NOX-CL
10.30
11.21
11.21
H.OS
13.52
11.21
13.15
13.15
1.85
10.30
11.31
11.31
11.21
13.38
11.21
13.80
13.15
1.78
13
b7S
IbSO
bbO
270
bIS
2300
SbO
18
12
blO
1700
720
225
bbS
2275
SbO
11
TOTAL
CARBON
18.331
15.521
11. bIS
IS.SOb
lb.111
IS.fabb
11.537
15.855
15.b2fa
18.170
I5.b71
15.007
15.317
lb.333
15.515
11.2bS
15.871
IS.bOl
FUEL
G/HR
22faB
1752
HOfal
1752
7181
1752
H278
1752
2011
22b8
1752
HObl
1752
7181
1752
11278
1752
2011
CALCULATED 6/HR
HC CO NOX
82
78
7b
7b
bl
75
101
70
103
SB
117
113
75
70
80
SS
82
101
1812
Hb8
72b
IbIS
2308
Ib12
13bS
2221
1011
1828
1378
110
1328
25S2
11S2
107S
2221
1033
2
lib
5*3
1*3
*3
138
118
1
2
1*8
518
157
35
1*1
1058
118
1
HT.
FACT,
.232
.077
117
!o77
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
WEIGHTED B/HR
HC-FID co NOX-CL
1S.O
b.O
11.2
s.s
3.5
S.B
11.1
S.I
12S.2
22.8
s.o
lb,b
5.8
1.0
b.2
10.7
b.3
121.3
127
113
107
127
132
12b
1SS
171
lib
121
lOb
138
102
118
115
122
171
118
,1
11, £
7S.8
11,0
2.5
10. b
118. b
1.1
.1
.1
11.1
BO.S
12,1
2.0
11,1
111.5
1.1
.1
CKM
0.0
17.1
37.7
17.1
b.S
17.1
bl.7
17.1
0.0
0.0
17.1
37.7
17.1
b.8
17.1
bl.S
17.1
0.0
VAC.
MM
150
37b
2*1
381
ISO
381
S3
311
b02
157
381
23b
373
157
381
1b
311
b02
MODE
UNITS AS SPECIFIED IN THE 7-11-75 PROCEDURE SFC
MV CHP CTO FC BSFC B3NOX F/A KG/KM HR
RPH
HC
•PERCENT OF TOTAL--
CO NOX FUEL
POKER
1 IDLE
2 25 PCT
3 55 PCT
1 25 PCT
5 10 PCT
b 25 PCT
7 10 PCT
8 25 PCT
1 C.T.
1 IDLE
2 25 PCT
3 55 PCT
1 25 PCT
5 10 PCT
fa 25 PCT
7 10 PCT
8 25 PCT
1 C.T.
17.7
T 11.8
T S.b
T 15.0
T 17.7
T 15.0
T 2.1
T 15.1
23.7
18.0
T 15.0
T 1.3
T 11.7
T 18.0
T 15.0
T 1.8
T 15.1
23.7
0.0
23.0
50.5
23.0
1.2
23.0
82.7
23.0
0.0
0.0
23.0
so.s
22.1
1.2
22.1
82.5
23.0
0.0
SUM-— — (COMPOSI TE
SjH--- (COMPOSITE
TWO CYCLE COMPOSITE -
0
faO
133
bo
21
bO
. 217
bO
0
0
bO
133
bO
21
bO
217
bO
0
VALUE FOR
VALUE FON
S.O R
21.5 .S3b
31.0 .bll
21.5 .S3b
Ib.S 1.717
21. S .S3b
12.5 .511
21.5 ,S3b
1.5 R
5.0 R
21.5 .<<3b
31.0 .fall
21.5 .S37
lb.5 1.7S8
21.5 .137
12.5 .515
21.5 .S3b
1.5 R
HC- FID 0.3S(
CO- NDIR 0.35(
NOX-CL 0.35(
R
b.*
10.8
b.2
1.7
b.O
12.8
s.a
R
R
b.S
10. S
b.S
3.1
b.3
12.1
5.2
R
10. S)
83.2)
13.5)
.088
.070
.Obb
.070
.073
.071
.Obb
.072
.080
.08S
.071
.ObB
.ObS
.075
.070
.Obi
.072
.080
4 0
+ 0
» n
R
.570
.373
.570
1.013
.570
.312
.570
R
R
.570
.373
.570
1.0S1
.570
.313
.570
R
.bS(
.bS(
.bS(
HC
bOO
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
11.7) s
Bl.S) «
13. b) *
t NOX e
SFC s
11.1
I*. 3
15.1
H.3
13. b
11.1
IS. 3
13. S
12.1
11.3
H.l
11.8
11.1
13.1
11.2
iS.b
13. S
12.5
11.397
82.10b
U.SbS
21.1b2
.IbB
l.b
3.1
5.7
3,0
1.8
2.1
5.8
2.8
bS.S
10.
1,
7.
2.
1.
2.
5.1
3.0
bl.1
10. S
11,7
G/KN
G/KH
G/KN
G/KH
KG/KM
28.1
7.5
7.1
8.1
8.8
8.1
10.3
11.1
1.7
28.8
7.2
1.1
b.1
10.0
7.8
8.3
11. fa
10.0
83
82
HR
HR
HR
HR
HR
.2 b.2
l.b 8.8
32.8 21.3
1,5 B.B
1.0 5.0
1.1 8.8
18.7 es.b
3.7 8.8
.0 3.1
.2 b.2
l.b 8.8
32.7 21.3
1.1 8.8
.8 S.O
1.5 8.8
18.5 25. b
3.7 8.8
.0 3.1
- — --------
13.5
13. b
( 8.1S-* BS)
(bl.22b BS)
(10. lib BS)
(18. bll BS)
( .7bS BS)
0.0
7, 3
30.5
7.3
2.1
7.3
38.1
7.3
0.0
0.0
7.3
30.5
7.3
2.1
7.3
38.3
7.3
0.0
-------
TABLE D-3. MASS EMISSIONS R* NTNF-MOOE EPA - METRIC UNITS
ENGlNF-08 TEST-SOb RUN-P8
1175 CHEVROLET 350-CID HD ENGINE —PROJECT 11-1311
ORESSERATOR » HEI n>»-lt,-7b K = 1.071 HUMe 11.7 G/KG
CONCENTRATION AS MFA3URED TOTAL
MODE HC-F1D CH
1 IDLE 3180 1.)Bfl
8 85 PCT T bOO ,37b
3 55 PCT T IbO .170
1 85 PCT T IbO .585
s in PCT T 7on i.sn
b 85 PCT T 870 ,1»1
7 10 PCT T 180 .851
8 85 PCT T 110 .1"3
1 C.T. blOOO 3.810
1 IDLE 1000 5.180
8 85 PCT T 880 .585
3 55 PCT T bOO .13*
1 85 PCT T 510 .585
S 10 PCT T 780 1.511
b 85 PCT T 530 ,1b«
7 10 PrT T 530 .851
8 85 PCT T 530 .70b
i C.T. binno 3.8io
C08 nnX-CL CARBON
11.81 55 Ih.JIR
13.15 b80 11.313
13.58 13]8 13.718
11.81 580 11.817
13.15 830 15.511
13.15 7jn 11. Ib?
13.11 17nO 13.115
11.01 b30 1*.M1
5.8b 1? 15.371
11.81 53 lb.851
11.01 510 11.708
13.5? 1885 13.781
11.81 bOO 11.838
13.15 815 15. Sib
'11.81 bnO 11.7bP
13.11 Ib50 13.1«1
11.81 580 IS.OOb
S.8b 18 15.371
----UNITS AS SPFPTFTFn TN THr 7-1I.7C
MODF MV CHP
1 IDLE 18.1 0.0
8 85 PCT T 11.1 ?3.1
3 55 PCT T 3.8 51.0
1 85 PCT T 11. 7 ?3.P
5 10 PCT T 17. S 1.3
b 85 PCT T 13.8 83.1
7 in PCT T 7.5 B3.3
8 85 PCT T 11.? ?3.8
1 C.T. 23.7 n.n
I IDLE 18. b 0.0
8 85 PCT T 11.1 83.8
3 55 PCT T 8.1 51.0
1 85 PCT T 11.1 ?3.8
5 in PCT T 17.1 1.3
b 85 PCT T 11.1 ?3.2
7 1o PCT T 7.5 B3.5
B 85 PCT T 11.7 ?.3.£
1 C.T. 83.7 n.n
SU*-— -(rOMPOSI TF
TWO CYCLE C'tHPOSITF -
CTO FC 83FC
0 1.5 R
bl 81.0 .108
131 33.5 .b57
bl 81.0 .107
81 lb.0 1.7S1
hi 81.0 .IQB
811 18.5 .Sin
bl 81.0 .107
n 3.5 R
0 ».Q- R
hi 81.0 .107
131 33.5 .h«57
hi 81.0 .107
81 15. S I.b73
<•! 80.5 .R81
811 »;..o .S03
bl •"I.S ."Si
0 3.5 R
MC- FTO n.-»<;(
CO- NOT" 0.35f
NOX-CL u.*<;(
FUFL
G/HR
8011
1585
15115
1585
7857
1585
11878
1585
15RB
1811
1585
15115
1585
7031
1811
linsi
1811
15B8
CALCULATED
HC
»5
IS
57
31
37
81
7fl
3n
713
SO
fan
75
13
37
38
R5
37
713
PROCEDURE--—
CO
1051
508
371
b8j>
1188
81b
781
h3b
b70
1187
b87
305
bBl
1383
515
780
881
b?n
err-
G/HR
NOX
3
lib
Sib
133
38
170
8b1
lib
1
8
13b
188
137
31
131
833
188
1
KT.
FACT.
.838
.077
.117
.077
.057
.077
.113
.077
.113
.838
.077
.117
.077
.057
.077
.113
.077
.113
HELGHTED
HC-FID
10.1
3.5
8.1
8.b
8.1
l.b
8.8
8.3
101.1
11.5
l.b
11.0
3.3
8.1
8."
8|l
101.1
CO
815
31
Sb
53
Bl
H
a?
11
Ib
8bl
S3
15
58
71
Ib
81
b8
Ib
G/HR
NOX-CL
.b
11.8
75.1
10.8
8.8
13.1
is. e
11.8
.1
.5
10.5
70.1
10. b
8.8
10.3
i|e
.1
CKM
0.0
17.3
38.0
17.3
b.1
17.3
b8.1
17.3
0.0
0.0
17.3
38.0
17.3
b.1
17.3
b8.8
17.3
0.0
VAC.
MM
IbO
358
17
373
158
335
lin
3bl
b08
178
3bb
80b
358
118
3bb
110
373
t>oe
BSNOX F/A KG/KM HR RPM
R
b.1
10.3
5.8
1.8
7.1
10. h
b.1
R
R
5.1
l.b
b.n
1.3
5.1
10.1
S.b
R
7.8)
1 1 . B )
18.3)
.07b
.ObS
,0b8 "
.Ob7
.070 1
.Obi
.Obi
.Obb
.078
.071
.Obb
.OS8
,0b7
,fi7n 1
.Ohb
,nb]
.ObK
.U7B
+ n.bSC
*
-------
ENGINE-n?
TABLE D-4. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1-»7S CHEVROLET 3511-clD HD ENGINE—PROJECT U--»311
TEST-30H RUN-WOT 0»-)K-7b RFSSFPATOR+HEI
K= 1.071
HUM=
G/KG
MOOF
3
CONCENTRATION AS MpASUHEO
PPM HC-FID CO CO? NOX-CL
?0(IO 1380
?onn I3t>o
?oon i£3o
.3Sfl 13.07
.357 13.35
315"1
TOTAL FUEL
C»RMON CONS.
ii-Si :i:
CALCU
HC
315
L»TFD 6/MR CORRECTED G/HR
CO NO? HC-FID CO NOx-CL
1880
1015
737
lUb 315.1
1030 ?1"'.7
77b ISH.fl
1«BO
1015
737
1380.3
1103.1
P31.S
CKH
bB.fa
MM
30
30
MODF
1
a
3
10 hv
.8
.8
.8
CHP CTO
Bl!o 311
"»0.1 337
:IFIEO I
FC
»B.O
»3.0
»3.0
N THt 7-11-75 PP(
R*HC HSCO
3.35 30.57
3.75 13.70
3.3) 8.3*
RSNOX
J3.08
BSFC
.583
.531
.'77
A/F F/A HC
15.1 .Obb 3.1b
lb.? .Okl 3.b«
lb.1 .01.3 3.9b
CO
37.58
17.01
11. H
NOX
17.5*
17.37
SFC
KG/KN
.317
.933
HR
10 =
-------
ENGINE-02
TABLE D-5. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 350-CID HO ENGINE—PROJECT 11-1311
TEST-220 RUN-1A 08-0b-7b DRESSERATOR - IDLE -HEI-PORT IN*EX- 1 8TOC
Ks 1.100 HUMa 17.3 G/KG
CONCENTRATION AS MEASURED TOTAL FUEL
MODE RPM HC-FID CO C02 NOX-CL CARBON CONS.
CALCULATED 0/HR
HC CO N08
CORRECTED 6/HR VAC.
HC-FIO CO NOX-CL CKH MM
1
2
3
1
S
b
7
bOO
bOO
bOO
bOO
bOO
bOO
faOO
blOOO
biie
3*88
31b8
315b
1032 !
1352
.900
.350
.b30
.IbO
.990
..120
.Ibl
b.09
9.32
io.li
10. 7b
10.30
10.19
9.23
21
31
38
38
31
31
1
31.218
lb.370
15.137
15.581
IS.bSI
15.770
9.857
3357
2011
1950
1905
18bO
181*
1905
1113
87
50
11
17
S3
91
esai
1599
1182
1108
1195
1190
bl
1
1
2
I
1
1
0
1113.5
87.3
50.2
11.8
Ib.B
53.0
91.1
BS81
1599
1182
1102
1195
1190
bl
1.1
1.1
1.8
1.7
1.5
1.3
.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
127
172
178
178
178
175
353
MODE ID
MV
-UNITS A3 SPECIFIED IN THE 7-11-75 PROCEDURE-
CHP CTO FC BSHC BSCO- B3NOX
—CALC—
BSFC A/F F/A
HC
•S/KN MR—-•
CO NOX
3FC
KG/KM HR
1
2
3
1
5
b
7
1.50
1.11
1.38
1.31
1.25
1.19
1.13
lb.8
IB.b
18.8
18. 8
18.8
18.7
13.9
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0
0
0
0
0
0
0
7.1
1.5
1.3
1.2
1.1
1.0
1.2
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
8.9
18.8
13.8
13.7
13.5
13.1
ZZ.O
.113
.078
.072
.073
.071
.071
.015
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
H
R
R
R
R
R
R
R
R
R
R
ID B ROD SET.
ENGINE-2 TEST-220 RUN-IB
STEADY STATE EMISSIONS BY EPA PROCEDURE - HETRIC UNITS
1975 CHEVROLET 3SO-CID HD ENGINE—PROJECT 11-1311
08-13-7b DRESSERATOR - RERUN OF RUN 1A CONDITIONS
K« 1.081
HUM'
15.b G/KG
MODE
1
2
3
1
5
b
CONCENTRATION
RPM HC-FIO CO
bOO 219fa
blO 2b88
bOO 315b
bOS IbOO
bOO 2810
bno HbO
2.310
3.210
.511
1.019
.510
.337
AS MEASURED TOTAL
C02 NOX-CL CARBON
12.38
11.73
•12.12
12.93
12.52
11.18
15
»7
21
17
31
23
15.001
I5.21fa
13.017
11.130
13.311
12.279
FUEL
CONS.
U33
1721
1512
Ib78
1588
1197
CALCULATED 6/HR
HC CO N02
31
35
1b
21
30
Sb
511
733
122
815
130
83
8
2
1
2
1
1
CORRECTED 0/HR
HC-FIO CO NOX-CL
30.9
31. b
15.7
21.5
29.9
Sb.3
S11
733
122
815
130
83
1.8
1 V
1.0
8.0
1.3
1.0
VAC.
CKM MM
0.0 185
0.0 180
0.0 155
0.0 1b7
0.0 1b2
0.0 152
MODE
1
2
3
1
5
b
ID MV
1.31 19.1
1.28 18.9
1.25 17.9
1.23 18.1
1.22 18.2
1.20 17. B
CHP
0.0
0.0
0.0
0.0
0.0
0.0
AS SPECIFIED
CTO FC
0
0
0
0
0
0
3.b
3.8
3.1
3.7
3.5
3.3
BSHC BSCO BSNOX
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
BSFC
R
R
R
R
R
R
-••CALC'~~
A/F F/A
11.5
11.2
lb.9
IS.b
Ib.S
17.8
.Ofa9
.070
.059
.Obi
.ObO
.OSb
HC
R
R
R
R
R
R
CO
R
R
R
R
R
R
NOX
R
R
R
R
R
H
3FC
KG/KM HR
R
R
R
R
R
R
ID a ROD SET.
-------
TABLE D-6. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 350-CID MD ENGINE—PROJECT 11-1311
ENGINE-2 TEST-220 RUN. 1C 08-13-71, DRESSERATOR
MODE
1
2
3
1
5
CONCENTRATION
RPM HC-FIO CO
bOO 3520
bOO 2bB8
bOO 2112
bOO 1172
575 2880
S.110
3.500
1.510
.100
.170
AS MEASURED TOTAL
CO? NOX-CL CARBON
10.07
11.21
12.25
12. bS
ll.Bfa
10
11
12
32
15.113
15.015
13.118
13.215
12.350
FUEL
CONS.
1811
1811
1721
lfa7B
Ib33
- 1.11 RODS » 0
TO 1 AIR BLEED
CALCULATED 6/HR
HC CO N02
1b
37
21
12
1253
053
37b
103
15
2
2
2
2
1
KB
1.081 MUM« is.b G/KG
CORRECTED 0/MR
HC-FID CO NOX-CL
15.1
3b.8
21.3
21.0
»2.3
1253
853
37b
103
IS
l.b
i!i
i!«
VAC.
CKM MM
0.0 183
0.0 183
0.0 1b7
0.0 157
0.0 131
MODE
1
2
3
1
5
ID HV
0.00 11.0
0.25 11.0
0.50 18.1
0.75 18.0
1.00 17.3
CHP
0.0
0.0
0.0
0.0
0.0
AS SPECIFIED
CTO FC
0
0
0
0
0
1.0
B!B
3.7
3.b
IN THE 7-11-75 PR(
BSHC BSCO
R
R
R
R
R
R
R
R
R
R
BSNOX
R
R
R
R
R
BSFC
R
R
R
R
R
— CALC —
A/F F/A
13.3
11.3
15. b
lb.7
17.8
.075
.070
.Obi
.ObO
.OSb
HC
R
R
R
R
R
CO
R
R
R
R
R
NOX
R
R
R
R
R
SFC
KG/KM HR
R
R
R
R
R
10 • AIR BLEED
d
oo
-------
rurtur
ENCINE-02
TABLE D-7. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 3SO-CIO MO ENGINE—PROJECT 11-1111
) RUN-2A 08-0b.7b ORESSERATOR -?S PCT-HEI-PORT lNtEX-11 BTOC
K« 1.080 HUM* 15.3 G/KG'
unit* CD* J°S"MTR*TION *' INSURED TOTAL FUEL CALCULATED 6/MR
MODE RPM MC-FIO CO COe NOX.CL CARBON CONS. HC CO NO?
CORRECTED G/HR VAC.
HC-FIO CO NOX.CL CKH MM
2
3
1
S
2000
2000
2000
2000
S3b
71
120
7.110
5.120
.1b3
.072
.115
1.13
11. 3b
13.78
12.71
11.21
AH JIDFr
115
2bO
110
510
230
irrcn i
17.727
lb.711
12is7o
11.3b8
k TMr •)_•
1718
8B1S
inns
in
137
3b
b
12
1153
bObl
Ilb2
100
20b
51
117
bl
137.3
3b.1
5.7
11.1
bob!
lib?
100
20b
25.1
SI. 7
105.0
12b.1
71.1
17.1
17.1
17.1
17.1
132
373
MODE ID
MV
CMP CT8 FC BSHC BSCO "BSMOX BSFC A/FC*LCF/A HC°co" M""NOX~" KG/KW MR
1
2
S
.53
.50
.17
.11
.11
17.0
17.1
Ib.S
11.7
11.5
21.0
21.0
21.0
21.0
21.0
b]
bl
bl
bl
21.1
21. b
11.5
H.b
22.3
• .01
5.81
1.51
.21
.SO
121. Sb
2Sb.7B
11.22
• 172
1.00
2.11
1.12
1.15
2.BI
l.OOb
.101
.113
.•17
11.7
12.8
15.0
17.2
11.9
.Olb
.078
.Ob7
.058
.052
10.71
7.80
2.07
.32
.b?
SbS.32
311.35
bb.Ol
S.bl
ll.bl
2.87
S.S2
b.bl
3.lb
.b!2
.SIB
|l17
.SbS
ID • ROD SET.
d
I
STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 3SO-CIO MO ENGINE—PROJECT 11-1311
ENGINE-OJ TEST.220 RUN-JB OS-Ob-7b ORE8SERATOR -2S PCT-HEI-POUT IN*EX.MITM VA K. 1.080 HUM. 1S.J G/KC
CONCENTRATION AS MEASURED TOTAL FUEL
MODE RPM HC-FID CO C02 NOX-CL CARBON CONS.
CALCULATED 6/HR
HC CO N02
CORRECTED B/HR VAC.
MC-FIO CO NOX-CL CKM MM
1 2000 3152
2 2000 2bOI
3 2000 1501
< 2000 MO
5 rOOO bit
I.2b0 1.»3
b.050 10. 7b
1.110 13.21
.131 12.13
.187 10. bl
310
120
1118
313
325
18.057
17.111
15.321
11.115
10.103
1002*
Hb3
7138
7*75
7813
20*
Ibl
• 1
31
SS
12b3
bSIl
2030
153
273
72
75
117
bO
78
203.
Ibl.
88.
31.
51.
12b3
b511
2030
15-3
273
77.7
• 0.7
213.3
bl.B
• 1.1
17. ISO
17. 1S2
17. 152
17. 121
17. 3b8
MODE
ID
MV
•UNITS AS SPECIFIED IN TME 7-11-75 PROCEOURE-
CHP CTO FC BSHC BSCO BSNOX
BSFC
—CALC—
A/F F/A
HC
•G/KH MR——
CO NOX
SFC
KG/KM MR
1 .53 17.7
2 .50 17.1
3 .17 17.8
» .11 lb.7
S .11 11.5
2«.0
21.0
21.0
21.0
21.0
bj
bj
bl
bl
bl
22.1
20.2
17. S
lb.7
17.»
«.b2
b.13
3.7b
1.32
2.32
312.33
277.17
85.11
b.17
11.51
3.01
Lib
B.3b
2. SI
3.31
.120
.•»!
.721
.b15
.721
11. .087
12. .081
11. .070
Ib. .051
20. .050
11.57 52b.l2
1.17 371. bl
5. OS 115.32
1.7b 8.b7
3.11 15.52
1.01
».21
11.22
3.11
1.11
,5bO
.S 12
.113
.*•!
.1*0
10 • ROD SET.
-------
ENGINE.OS
TABLE D-8. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 350-CIO HD ENGINE—PROJECT 11-1311
TEST-J20 RUN-3A 09-nb-7b DRESSERATOR -55 PCT-HEI-PORT IN+EX-11 BTDC
Ke 1.090 HUMa lb.2 G/KG
MODE
1
2
3
5
CONCENTRATION AS MEASURED TOTAL
RPM HC-FIO CO C02 NOX-CL C»RBON
1990 1728
l99g 928
1990 202
199Q 101
2000 38
1.870 11.73
1.119 13. bl
.300 13. bl
.112. 13.35
.101 12.12
513
1277
1312
1118
711
lb.799
IS.lbS
13.9b3
13.501
12.228
FUEL
CONS.
11832
135b2
13109
13381
11170
CALCULATED G/HR
HC CO N02
17b
95
21
12
5
BbSb
2Sb3
SbB
281
218
150
379
109
378
279
CORRECTED G/HR
HC-FIO CO NOX-CL
17b.O
91. b
21.1
11. b
5.0
BbBb
2Sb3
SbB
281
218
Ib3.9
113.2
115.7
lll.b
301.1
VAC.
CKW MM
39.1 287
39.1 271
39.3 219
39.3 218
39.5 137
MODE
ID MV
CHP CTQ
:IFIED
FC
IN THE 7-11-75 PR(
BSHC BSCO
BSNOX
BSFC
— C»LC
A/F F/A
HC
CO
NOX
SFC
KG/KM HR
t
2
3
1
S
1.53
1.50
1.17
l.»»
l.»l
11.3
10.8
•«.8
B.b
S.»
52.5
52.5
S2.7
52.7
53.0
138
138
139
139
139
32.7
29.9
28.9
2*.S
31.9
3.12
1.83
.12
.22
.10
IbS.SS
19.71
11.03
5.51
1.79
2.92
7.3b
7.91
?.33
5.39
.b23
.570
.sit
.SbO
.b02
12.8
11. b
15.9
lfc.1
18.1
.078
.Ob9
.Ob3
.Obi
.055
1.58
2.1b
.Sb
.30
.13
22b.03
bb.70
11.79
7.3S
b.12
3.91
9.87
10. bl
1.83
7.23
.379
.317
.331
.310
.3bb
ID • ROD SET.
G
i
ENGINE-02 TEST-220 RUN-3B
STEADY STATE EMISSIONS BY EPA PROCEDURE " METRIC UNITS
1975 CHEVROLET 350-CID HD ENGINE—PROJECT H-1311
08-0b-7b DRESSERATOR -55 PCT-HEI-PORT INtEX-MITH VA
1.090 HUMa lb.2 G/KG
CONCENTRATION
MODE RPM
1 2000
2 1"0
3 2000
1 2000
5 2000
HC-FID
2032
1712
1280
faQ8
31b
CO
1.120
3.030
.85*.
.112
.131
AS MEASURED
C02 NOX-CL
11. 8h 1195
12.79 iSbl
11.23 2b30
13.31 2172
11.99 1230
TOTAL
CARBON
lb.213
Ib.Olb
15.232
13.520
12.lSb
FUEL
CONS.
13789
13151
12020
11718
12202
CALCULATED G/HR
HC
198
Ibl
115
59
35
CO
7078
5027
13b1
219
2b5
N02
337
12b
b89
713
110
CORRECTED G/HR
HC-FID
198. 1
Ibl. 2
115.1
59.1
35.3
CO
7078
5027
13b1
219
2bS
NOX-CL
3b7.7
1b3.9
750. ^
777.2
lib. 7
VAC.
CKH MM
39.5 315
39.3 302
39.5 307
39.5 272
39.5 221
MODE ID
1 1.53
2 1.50
3 1.17
1 1.11
5 1.11
MV
12.1
11. 1
12.1
10.7
B.B
CHP
53.0
52.7
53.0
53.0
53.0
»S SPECIFIED
CTO FC
139 30.1
139 29. 0
139 2b.S
139 25.9
139 2b.9
IN THE 7-11-75 PRI
BSHC
3.83
3.13
2.22
1.15
.bB
BSCO
13b.b7
97.55
2b.31
1.81
5.12
BSNOX
b.52
B.2b
13.31
13.77
7."U
BSFC
.573
.550
.500
.189
.507
— C*LC—
A/F
13.3
13. b
11. b
lb.1
18.1
F/A
.075
.071
.Obi
.Obi
.055
HC
5.11
1.19
2.98
1.51
.91
CO
183.28
130.82
35.32
b.15
b.87
NOX
8.71
11.08
17.81
18.17
10. bl .
SFC
KG/KH HR
.319
.331
.301
.297
.309
ID * ROD SET.
-------
ENGINE.0?
TABLE D-9. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 3SO-CID HD ENGINE—PROJECT 11-1311
TE8T-220 RUN-*A 08-0b-7b DRESSERATOR -10 PCT-HEI-PORT IN»EX-l* BTOC
K« 1.080 HUM* 15.3 6/KG
MODE RPM
1
2
J
*
S
2000
2000
2010
199Q
. — !!!L
CONCENTRATION
HC-FID CO
3712
20*8
2bO
*B
IbO
9.bBO
b.270
.7ob
.082
.115-
AS MEASURED TOTAL
CO? NOX-CL CARBON
8.1*
10.53
13. b*
11.73
11.00
b8
203
100
39
AS SPECIFIED
18.252
17.037
l*.37b
11.818
IN THE 7-
FUEL
CONS.
9117
7b20
b7S9
707fa
7711
11-75 PROC
CALCULATED 6/HR
HC CO N02
21b
lOb
1*
3
...."„
97b7
SbbS
b71
100
IbO
11
Ifa
32
20
9
— CA
CORRECTED G/HR
HC-FID CO NOx-CL
21b.O
105.8
13.8
3.2
12.2
LC—
97b7
SbbS
100
IbO
--G/KH H
12.2
17.0
3*. 2
21.5
R. .
VAC.
CKH MM
7.0 »90
7.0 *98
7.0 *7S
b.9 *J*
b.9 373
SFC
MODE 10
MV
CHP CTQ FC BSHC BSCO B3NOX BSFC A/F F/A HC CO NOK KG/KN HR
1 .53
2 .50
3 ,»7
» .»*
S .»!
19.3
19. b
18.7
lb.7
1».7
.1
.*
.»
.3
.3
25
25
25
25
25
20.1
lb.8
!».•»
IS.b
17.0
23. b3 I0b8.fa9
11.58 b!9.8b
1.51 73.01
.35 10.15
1.3* 17. b2
1.23
1.72
3.»S
2.H
.SI
2.1»7
1.71*
1.583
l.b?*
1.825
11. .010
12. .081
IS. .ObS
18. .OS*
H. .051
31. H 1*33.1*
15.53 831.25
2.02 97.10
.*7 11. bi
1.80 23. b3
l.bS
2.31
*.b3
2.13
1.32
1.30b
1.091
,9fa3
1.019
1.110
ID * ROD SET.
O
I
ENGINE-02 TEST-220 RUN-*B
STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 350-CID HO ENGINE—PROJECT 11-*311
08-0b-7b DRESSERATOR -lo PCT-HEI-PORT INtEX-MITH VA
KB 1.080 HUHs is.3 G/KG
MODE
1
2
3
*
5
CONCENTRATION
RPM HC-FIO CO
1990 S21b
1990 281b
1990 1008
1S9Q 27b
1990 1920
9.990
b.730
1.830
,13b
.2*5
AS MEASURED TOTAL
CO? NOX-CL CARBON
7.50
10.19
12.93
11.2*
9.*3
SB
1*1
300
130
21
18. im
I7.2»b
1».875
ll.*07
9.88*
FUEL
CONS.
8029
bS32
5*88
5897
b*8b
CALCULATED 6/HR
HC CO NO?
2b9
123
*2
lb
137
8953
51*9
13b*
1*2
325
9
18
37
22
S
CORRECTED G/HR
HC-FID CO NOX-CL
2bB.9
123.3
*2.3
15.8
137.3
8953
51*9
13b*
1*2
325
9.2
19.1
39.7
8».l
*.•«
VAC.
CKM MM
7.0 Sib
7.0 521
b.9 51b
b.9 «b5
b.9 *0*
MODE
10 MV
CHP
AS SPECIFIED
CTO FC
IN THE 7-11-75 PR(
BSHC BSCO
BSNOX
BSFC
CALC —
A/F F/A
HC
CO
NOX
SFC
KG/KM HR
i
2
3
*
5
1.S3
1.50
l.*7
1.**
1.91
20.3
20.5
20.3
18.3
IS. 9
9.3
9.3
9.3
9.3
9.3
2S
25
25
25
25
17.7
I1*.*
12.1
13.0
1*.3
29.57
13. Sb
».bS
1.73
15.10
98*. S*
Sfab.21
1*9. «»S
iS.bb
35.7*
.9*
1.9S
*.o*
2.*5
.50
1.898
1.5**
1.300
1.398
l.S3b
11.1
12.2
1».B
19.3
22.0
.090
.082
.Ob8
.052
.0*5
39. bS 1320.29
18.19 759.30
b.23 201.1*
2.33 21.00
20.2* »7.93
1.2b
2.bl
s.*e
3.29
,b7
1.155
.939
.791
.850
.93*
ID * ROD SET.
-------
ENGINE-02
TABLE D-10. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 350-CIO HD ENGINE—PROJECT 11-1311
TE3T-220 RUN-S* OB-Ob-7b DRESSERATOR -10 PCT-HEI-PORT INtEX-11 BTDC
Ks 1.0b9 HUM« 11.5 6/KG
MODE RPM
i 2020
i 2030
3 2010
1 2010
5 2010
b 20*0
7 2010
MODE ID
CONCENTRATION
HC-FID CO
208Q
ISbB
1311
792
210
108
bl
MV
b.27o
1.570
3.700
2.020
1.01B
.b28
.102
CHP
AS MEASURED TOTAL
C02 NOX-CL CARBON
10. S3
11.73
11.99
12.93
13.35
13. 19
13. bl
seo
110
113b
1191
150S
ms
1505
AS SPECIFIED
CTO
FC
17.010
lb.180
15.811
15.0*0
11.125
11.131
11.019
FUEL
CONS.
22135
21591
21228
2027b
19958
20230
203bb
CALCULATED G/HR
HC CO N02
312
23fa
20b
122
38
17
10
Ib158
12091
10011
5501
2928
1817
117b
IN THE 7-11-75 PROCEDURE—
BSHC
BSSO
B3NOX
SSFC
250
131
SOS
bb9
b91
b?3
721
CALC—
A/F F/A
CORRECTED G/HR
HC-FIO CO NOX-CL
312.2
23b,1
20b.2
121.5
37. b
17.5
10.5
HC
lb1S2
12091
10011
5501
2928
1817
117b
CO
2b?.1
1b0.3
510.1
711.7
"' 738.9
718.9
771.2
NOX
VAC.
CKH MM
b5.3 112
bS.7 109
bb.O 99
bb.O 81
bb.O fa3
bb.O 38
bb.O 30
SFC
KG/KH HR
1
2
3
1
5
b
7
I.b3
1.59
l.Sb
1.53
1.50
1.17
1.11
1.1
1.3
3.9
3.3
2.5
l.S
1.2
87. b
88.1
88.5
88.5
88.5
88.5
88.5
228
228
228
228
228
228
228
18.8
17. b
1b,8
11.7
11.0
1».b
11.9
3.bb
8.75
8.39
1.11
.11
.20
.12
192.1,8
110.91
lib. 13
b3.79
33. 9b
21.07
13. bl
2.93
5.02
5.8b
7.75
8.02
7.80
8.10
.557
.510
.529
.505
.197
.501
.507
12.1
13.0
19.7
11. b
15.3
IS. 7
IS. 8
.081
.077
.073
.Ob9
.ObS
.Obi
,0b3
1.90
3.b9
3.21
1.89
.59
.27
.lb
258.39
189.01
155.73
85. SS
IS. SI
28. 2b
18.29
3,93
b.73
7.8b
10.10
10.75
10. lb
11. 2b
.339
.329
.322
.307
.302
.307
.309
ID s ROD SET.
t\>
ENGINE-02 TEST-220 RUN-SB
STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 3SO-CID HD ENGINE—PROJECT 11-1311
08-0b-7b DRESSERATOR -SO PCT-HEI-PORT INtEX-NlTH VA
K* 1.0b9 HUM* 11.5 G/KG
CONCENTRATION
MODE RPM
1 20bQ
2 20bo
3 PObO
1 20bO
5 20bQ
b 20bO
7 20bo
HC-FID
1952
Ib32
137b
1088
510
152
9b
CO
b.880
5.210
1.180
2.7bO
1.H9
.779
.108
AS MEASURED
C02
10.19
11.12
11. 8b
18.52
13.21
13.19
13. »9
NOX-CL
588
871
1010
1"»37
1392
1392
IblS
TOTAL
CARBON
I7.29b
lb.518
lb.198
15.101
11.b9fl
H.28b
13.909
FUEL
CONS.
23b78
22271
21591
20H2
20003
20b81
20775
CALCULATED G/HR
HC
309
253
211
IbS
83
25
lb
CO
19025
1121b
11255
7388
3903
2279
1232
NO?
2b7
389
IbO
b32
b29
bb9
801
CORRECTED C/HR
HC-FID
309.1
252.9
210. b
Ib1.5
83. 5
21.9
lb.2
CO
1°02S
1121b
11255
7388
3903
2279
1232
NOX-CL
285.7
llb.O
191.9
b75.7
b72.7
715.2
SSb.O
VAC.
CKN MM
bb.9 101
bb.9 102
bb.9 19
bb.7 99
bb.B 7b
bb.7 38
bb.7 30
MODE ID
1 .b}
2 .59
3 .Sb
1 .53
5 .50
b .17
7 .11
MV
1.1
1.0
3.9
3.9
3.0
l.S
1.2
CHP
89.7
89.7
89.7
89.1
89.5
89.1
89.1
AS SPECIFIED
CTO
229
229
229
228
228
228
228
FC
58.8
19.1
17. b
15.0
11.1
»5.b
15.8
IN THE 7-11-75 PROCEDURE-
BSHC
3.SS
2.90
2.12
1.89
.9b
.29
.19
83CO
818.19
Ib3.b0
129.25
81.81
11.82
2b.l7
11.15
BSNOX
3.07
1.17
5.29
7.2b
7.23
7.b8
9.20
BSFC
.982
.517
.531
.503
.193
.510
.512
—CALC
A/F
18.1
12.9
13.3
11.2
15.0
15.5
15.9
...
F/A
.082
.078
.075
.071
.Ob7
.ObS
.Ob3
HC
1.77
3.89
3.21
2.53
1.29
.38
.25
— 6/KW
CO
293.00
219.10
173.33
113.77
bO.10
35.10
18.97
NOX
1.12
S.99
7.09
9.71
9,b9
10.30
12.33
SFC
KG/KH HR
.351
.333
.323
.30b
.300
.310
.311
ID = ROD SET.
-------
ENGINE-02
TABLE D-ll. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
« „„., . "" CHEVROLET 3SO-CID HO ENGINE—PROJECT 11-1311
220 RUN-bA 08-0b-7b DRESSERATOR - CT -NEI-PORT IN+EX-11 BTOC
KB 1.010 HUMS lfa.2 G/KG
CONCENTRATION
MODE RPM HC-FID CO
1 2000138100 .811
2 200Q2l7bOO 1.310
3 2000 S7bQO 3.1bO
1 1110 51080 ,»iS
5 2000 SSb80 .275
MODE ID
1 l.Sb
2 1.53
3 1.50
1 1.17
S 1.11
MV
23.0
23.2
23.1
23.3
23.2
UNITS
CHP
0.0
0.0
0.0
0.0
0.0
C02 NOX-CL CARBON CONS.
.55 11 IS.SbS S7bl
2.22 23 23 171 1
1013 100 1
BSCO B3NOX
R R
R R
R R
R R
R R
BSFC
R
R
R
R
R
— CALC—
A/F F/A
2.5 .317
5.3 .110
12.0 .083
17.8 .OSb
11.1 .050
CORRECTED 6/HR VAc.
HC-FIO CO NOX-CL CKH HM
5571.7 J2b .s o.O 581
3Sb7.1 1355 1.3 o.O 581
1217.5 151b 1.3 0.0 511
Ilb3. 2 1?1 .8 0.0 51?
1012. b 100 .fa Q.o 581
HC CO NOX KG/KM HR
R R R R
R R R R
R R R R
R R R R
STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
PNPTMP , TC«T ,, „..., "" CHEVROI-ET 350-CIDjHD ENGINE PROJECT 11-1311
ENGINE-2 TE3T-220 RUN-bS 08-13-7b DRESSERATOR . l.», RODS » 0 TO 1 AIR BLEED K. l.OSb HUM. 15.8 G/KG
CONCENTRATION A3 MEASURED TOTAL FUEL
MODE RPM HC-FIO CO C02 NOX-CL CARBON CONS.
CALCULATED 6/HR
HC CO N02
CORRECTED 6/HR VAC.
HC-FID CO NOX-CL CKH
1
2
3
1
MODE
1
2
3
1
2000 11120
2000 13520
2000 3008Q
2000 32000
ID MV
0.00 21.3
0.25 21.2
0.50 21.1
0.75 23.3
1.038
.b!3
.21b
.21b
UNITS
CHP
0.0
0.0
0.0
O.O
b.18
7.32
7.50
5.57
11
13
11
8
AS SPECIFIED
CTO FC
0
0
0
0
1.0
3.8
3.5
3.7
13.380
12.b01
10.138
9. 157
1721
1588
Ifa78
727
blB
IN THE 7-11-75 PROCEDURE—
BSHC BSCO BSNOX
R
R
R
R
R
R
R
R
R
R
R
R
281
Ibl
t>3
80
BSFC
P
R
R
R
1
1
1
0
727.1
b38.8
1b7.7
bl7.1
CALC
A/F F/A HC
15.2
lb.3
11.2
22. b
.Ofafc R
.Obi R
.052 R
.011 R
281
Ibl
80
--6/KW
CO
R
R
R
R
.7
.b
.b
.5
HR— —
NOX
R
R
p
R
0.0 b!7
0.0 bl5
0.0 b!8
0.0 512
3FC
KG/KH HR
R
£
R
* AIR BLEED
-------
ENG1NE-2
TABLE D-1Z.STEADY STATE EHISSION3 BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 350-CID HD ENGINE—PROJECT 11-4311
TEST-280 RUN-bC OB-13-7b DRE39ERATOR - 1.44+AIR BLEED+1700 RPN NL
KB l.HSb HUM* IS.8 G/KG
CONCENTRATION AS MEASURED TOTAL FUEL
MODE RPM HC-FIO CO C08 NOX-CL CARBON CONS.
CALCULATED 6/MR
HC CO N02
CORRECTED G/HR VAC.
HC-FID CO NOX-CL CKM MM
1 2000
2 ?000
3 7000
HOO
3?0
180
.077
.013
.1»7
11. 3b
11.3d
11.00
va
so
Si
11.H81
11. 488
11. ZOO
5715
b713
5171
it
?1
84
77
110
138
7
10
8
28.0
20.7
84.4
77
110
138
7.5
10.5
8.7
0.0 4b7
0.0 432
0.0 488
MODE ID
1 0.00
2 0.25
3 0.50
MV
18.%
17.0
H.2
CHP
0.0
0.0
0.0
CTQ FC
0
0
0
IZ.b
11.8
11. »
B3HC BSCO BSNOX
R
R
R
R
R
R
R
R
R
BSFC
R
R
R
\* *\*\r
A/F F/A
IS. 8
11.1
19. b
.052
.058
.051
HC
R
R
R
CO
R
R
R
NOX
R
K
R
KG/KH HR
R
R
R
10 * AIR BLEED
d
-------
TABLE D-13. STEAD* STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
2000 528 .125 U. "IB 300 ll.bb* ~Sl2b 2b ul M ........... 2S~7 TM
2000 880 .170 11. »B US M.7»7 (.80* Sb 199 32 "5 !,,
" "
—•—UNITS A3 SPECIFIED IN THE 7-11-75 PROCEDURE——— — CALC— — G/KM*HR-----~
___>.*!} "* 5"* ^° _ FC BSHC B8CO B3NOX B3FC A/F F/A HC CO NOX
e 0« "f> 17.1 ^« 8 2b 15.0 5_ 13 20.87 333 159k IB? nca * oe 31 * oo »"M ^ *«•»«
a n a i i 9 a o a »i_ •» * «.. "*• j»aa j, • a JD Ao«f •UaJ '«ib e r. 18 T.'f/ ."3^
f !:"..":!....!:! ". i!;f !:!!._.i!:"._..!:!!_. i-*M iq-° -053 *•" "•" b-b3 •B8»
ID • INTAKE C02 ——— — .................. ............... ... ........ ,.
o
I
•—'
en
STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
,. ...A MU.. „
1
i
3
MODE
1
2
3
1
2000 *00
2000 880
.125
.1»2
.21b
-——UNITS
ID MV CHP
n.08 Ib.b
1.73 M.2
2.*8 12.0
?.BO 10.9
23.8
23.8
23.7
23.7
12.52
12.52
12. bS
9»»
300
170
AS SPECIFIED
CT8 FC
b2
b2
b2
b2
lb.8
18.2
19.8
20.1
12.b9Q
12.707
12.9b<>
IN THE 7-1
BSHC
1.15
1.25
*.8b
7b20 2?
8255 29
8981 b8
9117 H3
BSCO BSNOX
b.SS 8.10
8.02 2.79
12.99 l.bB
19.78 1.15
152
18b
BSFC
.70b
.7b5
.835
.8*8
188
b5
39
A/F
17. »
17!o
17.0
" F/A
.057
.058
.059
.059
2b.8 152 195.0
29,0 I8b b7.1
bS.2 302 *0«5
112.9 9bO 2707
HC CO NOX
1.55 8.78 10. Bb
I.b8 10.75 3.7*
3.9* 17. »3 2.2b
b.S2 2b.S3 1.55
I?)? 3bl
SFC
KG/KN HR
!508
,51b
ID s INTAKE C02
-------
ENGlNE-02
TABLE D-i4.STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 350-CID HO ENGINE—PROJECT 11-1311
TEST-221 RUN-03 08-10-7b ORES3 1.11-MEGR ON IN MAN-S5 PCT-HEI21BTOC
K< 1.03b HUM* 12.5 G/KG
CONCENTRATION
MODE RPM
1 2000
2 2000
3 2000
1 2000
5 2000
HC-FIO
720
9bQ
880
592
blO
CO
.13b
.13b
.887
.38-1
.511
AS MEASURED
C02
12.79
12.79
12. hS
12. bS
12.79
TOTAL
NOX-CL CARBON
20bS
1207
730
530
380
13.007
13.031
13.03*.
13.105
13.373
FUEL
CONS.
12020
12171
12701
13018
13381
CALCULATED 6/HR
HC
71
103
9h
bb
72
CO
251
2b3
Sbb
780
1033
N02
b31
381
23b
175
12b
CORRECTED 6/HR
HC-FID
71.5
102.9
9b.O
bS.9
71.9
CO
251
2b3
5bh
780
1033
NOX-CL
bSb.S
397.1
211.7
181.1
130.8
VAC.
CKW MM
38.8 277
38.9 2
-------
ENGINE-02
TABLE D-IS. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
, „. 1975 CHEVROLET 3SO-CIO HO ENGINE—PROJECT 11-1311
TE9T-222 RUN-01 08-ll-7b DRESS 1.47-MEGR ON IN MAN-10 PCT-HEI30BTOC
K» 1.102 HUM» 17.5 G/KG
HOOE
1
z
3
1
MODE
1
2
3
1
CONCENTRATION
RPM HC-FID CO
20on 720
?000 73b
2000 73b
?000 83?
ID . MV
0.08 20.0
1.09 18.9
l.SO 18. b
9,17 17.3
,9b3
.927
.891
.873
CHP
9.b
9.b
9.b
9.b
AS MEASURED TOTAL
C02 NOX-CL CARBON
12.93
12.93
18. 93
12. 93
320
2bO
ISO
90
AS SPECIFIED
CTO FC
25
25
25
25
18. 9
11.0
13.8
15.0
13.971
13.9»o
13. 901
13.897
FUEL
CONS.
5851
b350
<>2bO
bBol
CALCULATED G/HR
HC CO N02
3*
38
37
1b
IN THE 7-11-75 PROCEDURE—
BSHC B3CO B3NOX
3.57
3.97
3.93
».83
85. 55
89. 5b
85.08
90.70
1.b7
1.13
2.3b
1.51
811
853
810
8b3
83FC
1.3*5
l.lbO
1.139
1.5b3
11
39
22
15
— CALC
»/F
is. a
15.8
IS. 9
15.9
F/A
.Ob3
,0b3
,0b3
.Ob3
CORRECTED G/^R
HC-FIO CO NOx-CL
31.0
37.8
37. »
»5.9
HC
».79
5.33
5.2b
b.1*?
81*
853
810
Bb3
— G/KW
CO
111.72
120.10
111.10
121. b3
19.0
»3.3
2*. 7
lb.1
NOX
b.27
5.51
3.1b
2. Ob
VAC.
CKM HH
7.2 508
7.2 *BO
7.S »72
7.2 »39
3FC
KG/KM HR
.818,
.888
.875
.951
ID « INTAKE C02
O
I
ENGINE.Q2 TEST.222 RUN.Q2
STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 350-CID HO ENGINE—PROJECT ll-»31l
08-11-7b DRESS 1.*7>MEGR ON IN HAN-25 PCT-HEI30BTDC
Ks 1.102 HUMa 17.S G/KG
HODE
1
2
3
"»
S
b
HODE
1
2
3
*
S
b
CONCENTRATION AS MEASURED TOTAL
RPM HC-FIO CO C02 NOX-CL CARBON
2000 9bO
2000 912
?000 9»»
2000 91*
2000 992
2000 12BQ
ID HV
0.08 17.2
0.92 Ib.b
1.32 lb.1
l.Bfl 15.0
2.27 11.2
3.30 11.0
1.097 12.93
1.077 12.93
1.177 12.93
1.057 12.93
1.210 12.93
1.328 12.93
1159
590
130
280
200
100
—UNITS AS SPECIFIED
CHP CTO
23.8 b3
23.8 b3
23. B b3
23.8 b3
23.8 b3
23.8 b3
FC
18.0
17.9
18.1
18.8
19.7
21.2
11.135
11.110
H.211
11.09<»
11.283
11.102
FUEL
CONS.
SlbS
8119
R31b
8528
893b
9blb
CALCULATED 6/HR
HC CO N02
b3
59
b3
bS
70
97
1280
1252
139b
1292
15b8
1791
BSHC
2.b5
2.51
2.bS
2.73
2.97
1.10
BSCO
51.19
53.02
59.15
51.71
bb.10
75.81
B3NOX
9.11
1.77
3.55
2.38
1.7b
.91
BSFC
.755
.751
.772
.789
,82b
.889
222
113
81
Sb
12
22
CORRECTED G/HR
HC-FID CO NOX-CL
b2.b
59.3
fa2.7
bl'.S
70.2
9b.7
—CALC—
A/F
IS.b
15. b
15.5
IS.b
15.1
15.3
F/A
.Obi
.Obi
.OfaS
.Obi
.ObS
.ObS
HC
3.5b
3.37
3.5b
3.bb
3.99
5.19
1280
1252
139b
1292
ISbB
1791
---G/KH
CO
72.fa7
71.10
79.32
73.10
89.01
101.70
215.0
121.2
92.1
b2.0
15.8
21.1
NOX
12. b2
b.10
1.7b
3.19
2.3b
1.2b
VAC.
CKH MM
17.8 137
17.8 «22
17.8 *09
17. B 381
17.8 3bl
17.8 279
SFC
KG/KH HR
.IbO
.157
,170
,»80
.502
.511
ID
INTAKE C02
-------
TABLE D-16.STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 3SO-CID HO ENGINE—PROJECT 11-4311
ENGINE-02 TE3T-222 RUN-03 OB-ll-7b DRESS 1.17-MEGR ON IN MAN-SS PCT-HEI21BTDC
K» 1.101 HUM = 17.1 G/KG
NODE
1
2
3
1
5
b
MODE
1
2
3
1
S
b
CONCENTRATION AS MEASURED
RPM HC-FID CO C02 NOX-CL
2000 ''28
?onn Bon
2000 832
2000 7b8
2000 sia
2000 320
ID MV
n.08 11.7
0.35 11.3
1.05 10.1
1.51 8.7
1.12 7.3
2.17 5.1
1.281 12. bS
1.017 12. S3
l.OH 13.07
1.077 13.07
.9b3 12.13
.891 13.07
lbS9
HbO
992
750
500
340
—UNITS AS SPECIFIED
CHP CTB FC
52.1 137
52.1 138
52.1 138
52. 1 138
52.5 138
52.5 138
28.8
si. s
21. b
30.1
30.7
31.7
TOTAL
CARBON
11.038
11.117
11.183
11.231
13.951
13.997
FUEL
CONS.
130b3
13381
1312b
13789
1392S
11371
CALCULATED G/HR
HC CO N02
97
8b
89
8
-------
ENGINE-OS
TABLE D-17. STEADY STATE EHISSIONS BY EPA PROCEDURE - METRIC UNITS
- ,T ,_, H7S CHEVROLET 350-CIO HO ENGINE—PROJECT
T£ST-883 RUN-01 08-11-71) • — --• --- - -
...........__..... «-'• OKEoa i.su-HEGR ON IN M*N-10 PCT-HEI30BTDC K» 1.071
CONCENTRATION «S MEASURED TOTAL
MODE RPM HC-FID CO COS NOX-CL CARBON
1
Z
3
1
MODE
1
i
3
1
SOOO
sooo
2000
1000
ID
0.08
0.31
i.ni
1.51
Ibbl
Iblb
IBS*
lt>38
MV
SO.*
11.1
11. b
11.8
3.110 11. 8b SBO
3.^10 11.11 810
1.080 11. 8b 1SS
3.750 18.18 ISO
—UNITS AS SPECIFIED
CHP CTO FC
l.b 85 11.0
•».b 85 11.3
t.7 85 11.5
'.7 ss 11.1
IS.Ibl
lb.015
lb.081
lb.OS7
FUEL
CONS.
b350
falSb
bS77
b7S1
CALCULATED 6/HR
HC CO N08
7b
78
8b
71
IN THE 7-11-75 PROCEDURE-
BSHC BSCO BSNOX
7.17
8.81
8.18
a. 87
330. OB
331.35
318.1,8
331.10
3.81
3.37
S.81
1.7b
3118
3183
3380
3188
BSFC
1.153
1.181
1.508
1.511
37
38
n
17
— CALC—
A/F F/A
13.5 .071
13.1 .071
13.1 .075
13.5 .071
HUM* 11.8 G/KG
CORRECTED G/HR
HC-FID CO NOX-CL
75. 1
78.1
85. 5
78.8
HC
10. bl
11.01
IS. OS
11.10
3118
3183
3380
3188
— G/KH HR
CO
118. bS
118.38
1b7.51
111.11
31.7
31.5
28. fc
18.0
NOX
5.81
i.se
a.ib
8.3b
CKH
7.8
7.8
7.8
7.S
SFC
KG/KH
.881
.103
.111
.131
VAC.
MM
518
SOS
118
IBS
HR
ID B INTAKE COS
D
t—
vO
STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 350-CID HO ENGINE—PROJECT 11-1311
ENGINE-OS TEST-883 RUN-OS 08-ll-7b DRE3S 1.50-MEGR ON IN MAN-8S PCT-HEI30BTDC
MODE
1
8
3
1
5
b
MODE
RPM
8000
8000
8000
8000
8000
8000
ID
CONCENTRATION
HC-FIO CO
S17b
8118
Ibbl
Iblb
Ih38
833b
MV
3.500
3.500
3.150
3.100
3.810
3.700
"UNITS
CHP
AS MEASURED TOTAL
COS NOX-CL CARBON
18.18
IS. IS
18.85
18.85
18.85
11.11
773
510
100
300
800
bB
AS SPECIFIED
CTO FC
IS.Sbl
l5.8faS
15.811
1S.B11
15,b17
15.158
FUEL
CONS.
8bb1
8701
8701
8800
813b
1888
CALCULATED 6/HR
HC CO N08
13b
133
101
108
107
Ibfa
IN THE 7-11-75 PROCEDURE—
8SHC BSCO BSNOX
3BfaO
38B8
3811
3811
3703
1b31
BSFC
110
108
73
55
38
11
— CALC—
A/F F/A
CORRECTED G/HR
HC-FIO CO NOX-CL
13b.O
138.7
101.1
107.8
lOb.S
lbS.8
HC
3BbO
3888
3811
3811
3703
1b31
--6/KM
CO
150.1
115.5
78.1
51. 1
10.7
15.0
HR
NOX
CKH
17.
17.
17.
17.
17.
17.
8FC
KG/KH
VAC.
MM
155
111
137
1S8
311
307
HR
1
8
3
5
b
n.08
0.51
1.05
1.50
8.07
3.81
17.1
17.5
17.8
Ib.b
15.1
18.1
81.0
S1.0
81.0
81.0
81.0
81.0
b3
b3
b3
b3
b3
b3
If.J
H.8
H. 8
H.1
n.7
81.8
S.7h
S.b?
».18
1.57
•>.si
7.08
Ib3.18
lbl.11
lbl.77
Ibl.Sb
lSb.85
Hb.lb
5.13
I.Sb
3.08
8.31
l.bl
.51
.717
.sni
.801
.801
.888
.101
13. b
13.7
13. b
13.7
13. •*
13.5
.073
.073
.073
.073
.078
.071
.78
.51
.11
.18
.05
.18
811.83
880.18
81b.11
Slb.bS
810.33
8b3.0b
7.1b
b.ll
1.13
3.11
8. IS
.71
.185
.188
.188
.118
.SOD
.553
ID a INTAKE C08
-------
TABLE D-18.STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 350-CID HO ENGINE—PROJECT 11-1311
ENGINE-OS TEST-223 RUN-03 08-ll-7b DRESS l.SO-MEGR ON IN MAN-55 PCT-HEI21BTDC K» 1.07b HUMr 15.0 G/KG
MODE
1
e
3
1
5
b
1
a
3
1
5
b
CONCENTRATION AS MEASURED
RPH HC-FID CO C02 NOX-CL
?000 IbOO
8000 lt>00
2000 l7bQ
2000 15b8
?000 15b8
2000 1552
10 MV
0.08 12.3
0.23 11. 1
0.12 11.8
1.50 10.3
3.07 8.5
8.18 7.0
2.910 12.25
2.180 18. 35
3.070 18.38
8.b70 18. bS
2.850 12. SB
8,b70 12. 7*
1527
llbO
992
7bO
500
350
—UNITS AS SPECIFIED
CHP CTQ FC
52.7 138
52.7 138
52. 7 138
52.8 139
52.8 131
52.8 139
81.3
81. »
29.5
81.7
30.7
31.0
TOTAL
CARBON
15.372
15.113
iS.bSl
is.iii
15.519
15.b37
FUEL
CONS.
13290
1333b
13381
13172
13125
HObl
CALCULATED G/HR
HC CO N08
158
158
172
ISb
ifao
IbO
5131
5808
5302
1b88
SISb
1850
IN THE 7-11-75 PROCEDURE——
BSHC BSCO BSNOX BSFC
3.05
3.05
3.32
3.00
3.10
3.08
99.11
100.57
102.37
90.52
91.55
93. bi
8.1b
8.10
S.11
1.83
8.87
2.02
.SSb
.558
.SbO
.5b3
.582
.587
138
119
282
811
111
101
CORRECTED G/HR
HC-FIO CO NOX-CL
157.8
197.9
172.0
155. b
IbO.I
151.5
— CALC —
A/F F/A HC
11.1
11.1
13. <»
11.1
11.0
11.0
.071 1.01
.071 1.09
.078 1.15
.071 1.03
.071 1.15
.078 1.13
5131
5208
5308
IbBB
S15b
1850
— G/KW
CO
138. "<5
131. Bb
137.88
181.31
133.50
185.58
171. b
151.3
303.0
83b.O
IbO.O
118.1
HR --
NOX
11.35
10. Bb
7.81
S.bB
3.85
8.71
VAC.
CKW MM
31.3 312
31.3 210
31.3 881
31.1 2b2
31.1 21b
31.1 178
SFC
KG/KM HR
.338
.331
.311
.318
.351
.357
ID * INTAKE C02
d
I
IV
o
ENGINE-08 TEST-283 RUN-01
STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 3SO-CID HD ENGINE—PROJECT 11-1311
08-ll-7b DRESS l.SO-MEGR ON IN MAN-IO PCT-HEI11BTOC
Kc 1.07b HUMS 15.0 G/KG
MODE
1
a
3
1
5
MODE
1
8
3
1
CONCENTRATION
RPM HC-FIO CO
8000
8000
2000
2000
2000
ID
0.08
0.39
0.71
1.05
838
832
918
928
MY
3.9
3.3
2.7
1.8
.b
1.870
1.870
2.020
2.850
2.250
CHP
Bb.3
8b.3
8b.3
8b.1
8b.1
AS MEASURED TOTAt FUEL CALCULATED G/HR
C02 NOX-CL CARBON CONS. HC CO N08
18.93 1189
18.93 1819
12.79 1137
18.79 992
12.79 770
AS SPECIFIED IN
CTQ FC
227 13.8
827 13.9
227 11.0
227 15.1
827 IS. 2
11.909
11.895
1».90S
15.153
15. lib
THE 7-11
BSHC
1.72
1.50
1.50
1.80
I.b9
198b7 US 5031
19913 12b 5050
19958 187 Slbl
20157 153 b!3b
20502 113 l>152
-75 PROCEDURE——
BSCO BSNOX BSFC
51.51 10.11 .507
59.71 9.71 .509
b1.b3 7.5b .510
72.58 S.2b .582
72.78 1.09 .523
880
821
b39
115
—CALC
A/F F/A
11.7 .ObB
11.7 .ObB
11.7 .ObB
11.1 .Obi
11.5 .Obi
COR
HC-FID
115.1
12b.S
18b.7
152. b
113.1
HC
8.31
2.01
2.01
2.12
2.27
RECTED 6
CO
5031
5050
Slbl
b!3b
blS2
CO
79.85
80.11
Bb.b7
97.33
97.59
/HR
NOX-CL
91b.
883.
b87.
178.
372.
HR— —
NOX
13. 9b
13.08
10.13
7.05
5.19
VAC.
CKK MM
bl.1 99
bl.1 81
bl.1 bi
bl.1 30
bl.1 15
SFC
KG/KH HR
.309
.309
.310
.318
.318
ID * INTAKE C02
-------
TABLE D-19. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
J«^
IKS
III
ID • INTAKE CO?
d
I
ro
TABLE D-20. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
is ::
ar
ID « INTAKE CO?
-------
TABLE D-ZI. MASS EMISSIONS PY NINE-HOPE EPA - METRIC UNITS
1975 CHEVROLET 350-CID HO ENGINE PROJECT 11-1311
E-2 TEST-229 RUN-01 08-lb-7b OI-TR-HEI NOVA-NO.AI-HBTDC-1 .IIRODt.2SM1+9
K= 1.091 HUH* lb.3 G/KG
ro
CONCENTRATION
MODE HC-FIO CO
1 IDLE 131? .873
2 35 PCT T bl .030
3 55 PCT T hO .Obi
i 25 PCT T 3? .010
5 10 PCT T 28 .010
b as PCT T 2b .010
7 in PCT T 25 .035
8 25 PCT T 2b .010
9 C.T. 12000 .275
1 IDLE 195? 2.310
e es PCT T it>* .020
3 55 PCT T 11? .051
1 25 PCT T 81 .010
5 10 PCT T 7b .005
fa 25 PCT T 7? .010
7 9o PCT T bO .030
8 25 PCT T 51 .010
9 C.T. llb«0 .275
....UNITS AS
MODE MV CHP
1 IOLE 18. 1 0.0
2 ?5 PCT T 15.1 ?1.0
3 55 PCT T 10.2 52.8
•» ?5 PCT T 15.5 21.7
5 10 PCT T 17.7 10.1
b 25 PCT T 15.7 21.0
7 90 PCT T 1.1 87.3
B 25 PCT T 15.7 21.1
q C.T. 21.0 o.o
1 IDLE 18.5 0.0
2 25 PCT T 15.7 pl.l
3 55 PCT T 10.3 53.2
1 25 PCT T 15.7 21.1
5 10 PCT T 17.9 10.0
b 25 PCT T 15.7 21.1
7 9o PCT T 1.1 87. B
8 25 PCT T 15.7 23.8
9 C.T. 21.0 0.0
SUM- — (COMPOSITE
SUM (COMPOSITE
TNO CYCLE COMPOSITE -
AS MEASURED TOTAL
C02 NOX-CL CARBON
12. b5 1b I3.b71
13.19 H90 13.52B
13. 7H 1300 13.818
13. 19 510 13. 50*
12.93 195 12.913
13.19 500 13.503
13.35 1159 13.3BP
13.19 530 13.503
9.13 17 11.013
11.73 19 11.291
13.19 510 13.529
11. OB I'M? 11.111
13. 49 580 J3.509
12.79 205 12.803
13. 19 5bO 13.50*
13. bl 1277 I3.b77
13. bl 510 13.b5h
9.22 17 10.7bb
FUEL
G/HR
15BR
9117
13bS3
9o?b
b8«»9
8B90
20321
8K1S
17b9
1S8B
8890
13517
B93b
bbbB
B981
203bb
8709
Ih78
CALCULATED G/HR
HC CO NOX
17
5
7
?
2
;
t
2
210
as
i?
i?
t.
i
5
in
»
19P
SPECIFIED IN THE 7-11-75 PROCEDURE
CTO FC BSFC BSNOX F/A
0 3.5 R
b3 20.1 .839
139 30.1 .57(1
bS 19.9 .805
27 15.1 1.501.
b3 19. b .B17
?27 11.8 .513
b3 19.5 .BOB
n 3.9 R
n 3.5 R
b3 19. b .81?
139 29. S .5bO
b3 19.7 .817
?7 11.7 1.1b8
b3 19.8 .881
2?7 »».9 .511
b3 19.2 ."07
n 3.7 R
HC- FIO n.
CO- NOIR 0.
NOX-CL 0.
R
5.1
".0
5.1
3.8
5.1
7.5
5.3
R
R
s.1*
9.»
5.9
3.9
5.7
B.O
5.1
R
35( I
15( 5
3S( 9
.Ob?
.Obi
.Ob2
.Obi
.05«
.Obi
.ObO
.nb)
.051
.Obb
.Obi
.Oh*
.nbi
.058
. ntji
.nb?
.Obl
,nsn
.9) » n.
.2) + n.
.b1) » P.
205
n
122
l»
11
13
109
13
89
525
27
98
13
5
13
91
13
87
SFC
KG/KM MR
R
.510
.3*7
,»89
.11-1
.»97
.312
.»91
R
R
,-»91
.3-H
.197
.893
.H9<»
.311
.»91
R
b5( 2
b5( «
bs( in
HC +
2
120
Hb-»
1?»
37
119
b37
l?b
1
2
129
H90
139
39
135
b89
118
1
RPM
SOO
199Q
2000
199Q
1990
1990
2020
2000
2000
bOO
2000
2010
2000
1980
2000
2030
1970
?000
.1) =
.8) =
.3) =
NOX =
SFC =
MT. WEIGHTED G/HR
FACT. HC-FIO CO NOX-CL
.232
.077
.J"
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.H3
C*LC
A/F
lb.1
lb.»
lb.1
lb.»
17.1
lb.«»
Ifa.b
lb.»
19.5
15.2
lb.»
15.7
lb.-»
17.3
lb.1
lb.2
lb.3
20.0
2.0*3
7.517
10.055
12. (197
.H19
1.0
.»
1.0
.2
.1
.1
.5
.1
30.0
5.7
.9
1.8
.5
.3
.1
1.1
.3
28.3
18
3
IB
1
1
1
12
1
13
122
t
11
1
0
1
10
1
12
.•»
9.2
bB.3
9.5
2.1
9.2
72.0
9.7
.1
.5
9.9
72.0
10.7
8.2
10.1
77.9
9.1
.1
CKM
0.0
17.9
3-».1
19.1
7.5
17.9
k5.1
1B.O
n.o
0.0
18.0
39.7
18.0
7.5
1B.O
b5.5
17.8
0.0
VAC.
MM
391
?59
391
150
399
2B
399
blO
170
399
2^2
399
155
399
28
399
blO
. —PERCENT OF TOTAL— -—
HC CO NOX FUEL POHER
1.0
2.7
.5
.3
.»
1.3
.»
82.5
11.5
?.•»
».s
u?
.b
1.1
2.9
.8
72.1
1.9
2.1
G/KW
G/KW
G/KW
G/KW
KG/KW
3.3
18.1
1.1
.h
1.1
12. b
1.0
13.1
71.1
1.2
B.8
.b
.2
.b
b.3
.b
7.5
5
9
HR
HR
HR
HP
HR
.2
5.1
37.8
5.3
1.2
5.1
39.9
5.*
.1
.2
5.1
37.1
S.b
1.1
5.1
10.1
1.7
.1
9.b
10.3
( 1.523
( 5.b05
( 7.19B
( 9.021
( .b89
8.7
21.8
B.b
•».«
8.5
?8.»
8.1
3.1
l.b
8.5
21. B
B.b
*.7
B.b
28.7
8.1
3.0
RS)
BSJ
83)
BS)
BS)
7.2
30.2
7.1
2.2
7.2
38.5
7.2
0.0
7.2
30.1
7.2
2.2
7.2
38. b
7.1
0.0
-------
TABLE D-Z2.MA33 EMISSIONS BY NINE-MODE EPA - METRIC UNITS
O
I
HUMS
15.1 G/KG
MODE HC™F ID CO CO? NOX«CL C ARBON G/HR UP /*n * "EIGHTED G/HR
_ "C CO NOX FACT. HC-FID CO NOX-CL CKW
1 IDLE 720 .350
2 25 PCT T 2b .025
3 55 PCT T 22 .oifc
* 25 PCT T 11 .010
5 10 PCT T 12 .005
b 25 PCT T M .010
.7 10 PCT T 11 .is*
8 25 PCT T 12 .010
* C.T. 111(10 .275
1 IDLE 1010 .127
2 25 PCT T 81 .ojs
3 55 PCT T 80 .131
1 25 PCT T ib .010
5 10 PCT T 10 .DOS
b 25 PCT T 37 .010
7 10 PtT T 3b .101
8 25 PCT T 23 .010
* C.T. IbOOO .337
UNITS AS
MODE MV CHP
i IDLE 17.7 n o
2 25 PCT T 15.7 j>3.5
3 55 PCT T 10.3 52.2
1 25 PCT T 15.7 23. S
5 10 PCT T 17. b 1.1
b 25 PCT T IS.b 23. h
7 10 PCT T 1.1 8b.7
8 25 PCT T 15.8 23.5
1 C.T. 21.1 no
1 IDLE 17.8 0.0
2 25 PCT T 15.8 ?l.g
3 55 PCT T 10.3 S3.b
1 25 PCT T 15.8 21*2
5 10 PCT T 17.7 10 1
b 25 PCT T 15. B ?1.0
7 10 PCT T 1.1 87.1
1 25 PCT T 15.8 21.o
' C.T. 21.0 o 0
12. 3B 13
13.35 180
13.78 HIS
13.35 170
12.fa5 180
13.35 170
13.13 1230
13.11 510
8.81 17
12.71 17
13. bl 525
1^.23 HbO
13. bl 510
13.07 230
13. bl 510
13.13 1253
13. bl 520
8.»2 11
13.378
13.828
13.3b2
12.b5b
13.3bl
11.010
13.501
10. bib
13.831
13.h75
11.370
13.bS5
13.071
13.bS1
13*b53
10.187
SPECIFIED IN THE 7-11-75
CTO FC BSFC
131 28*1
b3 11.1
2b H. b
b3 11.1
22« 13.7
bl 18. b
3.5
0 3.1
hi 11.3
131 21.7
bl 11.0
27 11.1
bl 18.8
228 11.2
•-1 18.7
SUM— (COMPOSITE VALUF FOR CYCLE
SUM (COMPOSITE VALUF FnR CYCLE
TWO CYCLE COMPOSITE - HC-
.821
.551
.811
1.553
."11
.501
.712
R
R
.718
.551
.785
1.182
.781
.507
.780
R
fin o.35(
CO- NOIR 0.-?5(
NOx-CL 0.3«i(
1512
8800
13101
Sbbl
bb22
Sbbl
-11822
8137
1588
1512
8751
13172
81,18
b7S1
8528
20011
8182
Ib33
10
2
2
1
1
1
2
1
233
13
b
8
3
2
3
b
2
2b1
85 2
33 111
88 181
13 110
5 31
13 110
151 b2S
13 115
83 1
201 2
33 121
21B 111
13 Ufa
5 13
13 115
211 bib
13 117
lOb l
PROCEDURE SFC
BSNOX F/A KG/KM HR RPH
• •••"«•••
R
5.0
1.5
1.8
3.7
s'o
R
R
5.1
7*b
5.0
R
.......
2.0)
5.5)
1.7)
• ••••«•••!
.058
.Obn
.Ob2
.Obn
.057
.ObO
,0b3
.050
.Ob3
.Ob2
.OfaS
.Obi
.051
.Ohl
,0b3
.Obi
.Ol1'
.»••«»•••
+ o.bsr
f n.(,s(
» n.«,s(
-——-—-——————-—'
R bOO
.501 1150
.337 1170
.111 1150
.111 1130
.113 1150
.307 2000
R bOO
.185 2000
.337 2020
.177 2000
.102 1180
.177 1180
.301 2010
.175 1180
R 2000
_-._-.-.-.___.
2.1) =
7.5) s
1.1) =
HC + NOX =
SFC =
.832
.077
.117
.077
.057
.077
.113
.077
.232
.077
*077
.057
.077
.113
.077
.113
CALC
A/F
»•-••••*.
17.2
Ib.b
lb.1
Ib.b
17.5
Ib.b
15.8
Ib.S
20.1
15.1
lb.3
15.5
lb.3
17.0
lb.3
15.8
lb.3
20.3
""•"•""""
2.211.
*\l™
i2.nbR
.11?
2.2
.1
.3
.1
.0
.1
.3
.1
33.3
3.0
.5
1.2
.3
.1
.2
.7
.1
38.5
HC
•>••....
b.2
|l
.2
.1
.2
.7
,2
fa. 8
1.0
2.8
,b
.3
1.5
.3
8fa.3
2.0
2.1
G/KM
G/KW
G/KM
G/KW
KG/KW
3
13
1
0
1
51
12
18
3
3b
1
0
1
1
15
CO
••—•._...•
11.5
2.5
12.7
i.n
.3
1.0
50.3
1.0
11.7
!.*»
2b.l
.7
.2
.7
21.2
.7
10.1
7
HP (
HR (
HR (
HR (
HR (
.1 0.0
8.8 17. b
71.2 38.1
B.S 17. b
l.t 7.0
B.S 17. b
70. b Sl.b
8.1 17.5
.1 0.0
72 .'b
8.1
8*1
73.0
II
NT OF 1
NOX
• •«•••..
.2
31." 8
ill
1.7
31.5
5.0
.1
.2
5.1
31.3
1*3
31*5
1."»
.0
1.7
1.1
I.b75
s.nss
7.321
8.111
.b77
0.0
18.0
lU.'l
7.5
17.1
faS.O
17.1
0.0
FUEL
•.—.....
H.b
".7
21.7
B.b
1.8
28^8
8.3
2.1
1.5
8.1,
25.2
sis
sO
3.0
HS1
RS)
BS)
8S)
68)
VAC.
MM
ISO
311
2fa2
31S
117
ini
fa!2
2b2
150
3b
blO
POWER
.....
0.0
7.2
30.1
7.2
2.1
7.2
38.8
7.2
0.0
0.0
7.?
30. b
7.2
2.2
7.2
38.3
7.2
0.0
-------
TABLE D-23. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-?
TEST-aaq RUN-03
1975 CHEVROLET 3SO-CID HD ENGINE—PROJECT 11-H311
08-lb-7b OI-TR-HEI HVA-NOAI-l»BTDC-l.>»»RODf .
1.075 HUMa If.9 G/KG
CONCENTRATION
MODE
1 IDLE
a 25 PCT
3 55 PCT
» as PCT
5 10 PCT
b 25 PCT
7 <«o PCT
8 PS PCT
9 C.T.
1 IDLE
a as PCT
3 ss PCT
» as PCT
5 10 PCT
b as PCT
7 <«o PCT
8 as PCT
9 C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
HC-FIO
ISbB
15?
7b8
58
lt>
28
an
13
Ib9b0
H72
ino
800
52
in
3B
32
2b
i7bon
CO
1.589
.10*
.as1*
.Obl
.035
.Obl
.aa?
.035
.350
1.13?
.082
.23*
.Obl
.o»b
.Obl
.227
.OSl
.»b9
AS MEASURED
coa
12.38
13. »9
13. b»
13.35
11. 99
13.35
13.93
13.35
9.13
12. bS
13.07
13. b»
13.21
11.99
13.07
13. b*
13.35
9.22
NOX-CL
»3
ias3
ebb9
ia30
300
inio
ma
1088
19
52
1183
28bl
1159
210
10S»
1183
10b»
21
TOTAL
CARBON
11. Hb
13.hH
13.9bb
13.11*
1?.087
13. 'I1*
H.lbO
13.387
Il.b29
13.953
I3.lb«
I3.9b9
13.277
12.039
I3.13fa
I3.«7i
13.101
Jl.b07
FUEL
G/HR
151?
7711
11718
7303
5307
7391
20157
7257
1588
isi2
7181
USB*
7303
5?b?
7303
a03bb
7lb7
1721
CALCULATED G/HR
HC
19
10
73
if
1
2
3
1
?sa
1«
h
77
3
1
a
5
a
ass
CO
350
119
10b
b7
3?
b8
bbl
39
9b
asH
95
111
b8
10
b9
b7l
SS
111
NOX
a
253
801
239
17
aoi
573
210
1
a
210
8b8
aa7
33
an
b20
203
1
WT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1H3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
WEIGHTED G/HR
HC-FID
i.s
.7
10.7
.3
.0
.1
.1
.1
3b.l
1.3
.5
11.3
.2
.1
.a
.b
.1
10.7
CO
Bl
9
bO
5
2
5
75
3
11
59
7
bO
5
a
5
7b
1
ao
NOX-CL
.1
19.5
117.7
1B.1
i.f
15.7
fa*. 8
ib.a
.1
.5
18.5
187. b
17.5
1.1
ib.e
70.0
IS.b
.2
CKW
0.0
1B.O
39. H
17.9
b.9
18.0
bb.n
17.8
n.o
0.0
17.9
39. a
17. 1,
7.1
17.7
bS.3
17. b
0.0
VAC.
MM
170
131
31?
117
195
111
3H
111
blS
1b2
139
302
139
»93
tf?
38
<»H4
blS
d
I
ts)
UNITS AS
MODE MV
1 IDLE 18.5
2 25 PCT T 17.1
3 55 PCT T 12.3
1 25 PCT T 17. b
5 10 PCT T 19.5
h 25 Pf.T T 17.5
7 9(1 PCT T 1.5
B as PCT T 17. S
9 C.T. 21.2
1 IDLE 18.2
2 25 PCT T 17.3
3 55 PCT T 11.9
1 as PCT T 17.3
5 10 PCT T 19.1
b 25 PCT T 17.1
7 90 PCT T 1.5
8 35 PCT T 17.5
9 C.T. 21.2
CHP
0.0
21 1
S2>
21.0
9.3
BBJS
23.9
n.n
0.0
21.0
sa.b
9)5
8?ib
83. b
0.0
SUM— (COMPOSITE
SUM--- (COMPOSITE
TWO CYCLE COMPOSITE -
SPECIFIED IN THE 7-11-75
CTO
0
b3
139
b3
25
M
227
b3
0
0
b3
139
b3
2fa
b3
a2i
b3
0
VALUE
VALUE
FC
3>v
17^0
25.9
lb.1
11.7
lb.3
lb!o
3.5
3.»
lb.5
2b.2
ll!b
lb.1
11.9
15.8
3.8
FOR CYCLE
FOR CYCLE
HC-
co-
BSFC
R
.705
.190
.b71
1.2bO
.b7b
.509
.b7n
R
R
.hflB
.198
.b8a
1. 229
.(.78
.513
,b?n
R
FID 0.35(
NOtR n.35(
WOX-CL 0.1S(
PROCEDURE
BSNOX
R
10.7
15.5
10. a
s. a
8.7
b.b
9.0
R
R
10. a
lb.9
9."
3.5
9.1
7.3
P.B
R
2.
13.
13.
9FC
F/A KG/KM HR RPM
.ObS
.Obl
,0b3
.nbo
.055
.nbo
.Obl
.nbo
.051
,nt>3
,ns9
,0b3
.obn
.nss
.059
,nb2
.ohn
.051
8) + II. b
s) + n.h
h) + n.l.
R
.»29
.298
.10B
,7b7
.m
.310
.108
R
R
.119
.303
.115
.711
.118
.312
,in7
R
s(
«;(
s(
HC
bOO
aooo
2000
1990
1990
aooo
20SO
1980
aooo
bOO
I99n
1990
I9b0
1950
1970
2020
19bO
2000
3.1) =
12.9) a
11.1) =
+ NOX =
SFC =
CALC
A/F
15.5
lb.3
15.9
Ib.S
18.3
Ib.S
15.7
Ib.h
18.1
15.8
Ib.B
15.9
lh.7
18.3
lb.9
lb.0
Ib.b
18.1
3. nil.
13.131
11.113
17.159
.37B
HC
8.5
1.*
ao.2
.5
.1
.3
.7
.1
bfl.2
7.. 3
.8
19.5
.1
.1
.3
1.0
.2
70.2
8.B
3.1
G/KM
G/KW
G/KM
G/KW
KG/K«<
CO
31.9
3.b
33.5
2.0
.7
2.1
-9,5
1.2
S.I
ai.s
3.0
as. a
2.2
1.0
2.2
31. «
1.8
8.1
13
HR
HP
HR
HR
HO
NOX FUEL
.a s.o
7.b 8.2
lb.1 21 .0
7. a 7.8
1.1 ».2
b.a 7.9
25. 3 38.1
b.3 7.8
.1 3.1
.8 5.0
b.9 8.0
17. b ai.a
b.S 7.P
.7 i .a
b.l 7.9
ab.l 31.9
5.8 7.7
.1 3.1
13. b
11.1
( a.ai9 BS)
( 9.791 BS)
(10. Sib BS)
(ia.795 8S)
( .b22 83)
POWER
0.0
7. a
30. a
7.2
2.1
7.2
38.9
7. a
o.n
0.0
7.2
30.1
7.1
a.i
7. a
38.8
7.1
0.0
-------
TABLED-24. STEADY STATE EMISSIONS BY EP» PROCEDURE - METRIC UNITS
°°LE'
TABBON rn^ CALCULATED G/HR CORRECTED*^ "*".
."!"!!.._"!!!: Uf 5° ™f "5:!I°. co NOX-CL CKw ""
_________ ;.:;L.:!;L :" ':«' -:« :«' S:S :!" :B
10 = "" """" """ ---- — — — — — ------------ ......
O
tv>
ui
-------
TABLE D-ZS. MASS EMISSIONS
NINE-MODE EPA - METRIC UNTTS
ENGINE-2
TEST-eso RllN-n]
1975 CHEVROLET 35n-CID HD ENGINES-PROJECT 11-H311
o*-ih-7i, OT-TR-HFI
K= 1.078 HUH= 15.I G/KG
CONCENTRATION
MODE
1 IDLE
? 25 PCT
3 55 PCT
H 25 PCT
s 10 PCT
b es PCT
7 9n PCT
B 25 PCT
S C.T.
1 IDLE
2 25 PCT
3 55 PCT
» ?5 PfT
5 10 PCT
b 25 PCT
7 to PCT
8 25 PCT
1 C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
HC-FIt)
300
2f-
10
8
11
8
1
?
Ib9bo
28n
70
»0
30
26
22
11
12
IbSbO
CO
i.oon
.nsb
.072
.0*0
.OHO
.051
.035
.015
.337
.21b
.Obi
.072
,0»b
.0*0
.051
.O^O
.OHO
.337
AS ME*SUPED
COP
9.32
10.1<<
11. 2»
10.07
''.22
J0.3n
1 1 .»b
10.30
9.t,»
9.13
10.19
1 1 . 3b
10.30
".32
10. *1
11.99
10. »1
9.b»
NOX-CL
27
HHO
12n7
»>»n
lf-0
»BO
1088
•»30
18
17
»30
1230
»50
155
IbO
11)2
<»90
18
TOTAL
•CARBON
10.353
J0.2HM
11.313
10.111
9.2b2
10.352
l).P9f.
in.33b
11. "30
•».b7b
10.259
11.13b
10.1»9
9.3bH
lO.Hb*
12.032
in."»S2
11.830
FUEL
G/HR
Ih78
8981
13517
8890
fe7l3
9n2b
iqqj3
893b
171,9
17b9
R800
13H72
E7S»
feh22
8981
20003
8890
m*
CALCULATED G/HR
HC
5
2
1
1
1
1
0
0
277
fa
7
5
3
2
2
2
1
277
CO
327
99
173
7a
59
90
120
b2
102
CO
lOb
171
78
58
8P
13b
70
in?
NOX
2
138
Sib
138
»2
150
b52
133
1
3
132
519
13b
39
1»1
bb2
1*9
1
NT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1H3
.232
.077
.1»7
.077
.057
.077
.113
.077
.1»3
WEIGHTED G/HR
HC-FID
1.2
.2
.2
.1
.0
.1
.0
.0
39. b
1.3
.5
.8
.2
.1
.2
.2
.1
3<>.b
CO
7b
8
2S
b
3
7
1*
5
15
IB
8
25
b
3
7
IS
5
IS
NOX-CL
.»
10. b
75.9
10.7
2.-»
11.5
73.7
10.2
.1
.7
10.2
7h,2
1U.5
2.2
10.9
7H.8
11.5
.1
CKH
0.0
17.7
39.2
17.8
7.»
17.8
bS.l
17.8
0.0
n.n
17. -8
39.2
17.7
7.»
17.8
b5.1
17.7
0.0
VAC.
MM
H80
HOl
2b»
»01
»57
399
38
HOI
bo5
»72
»01
2bH
»01
»57
399
38
toi
bOS
o
I
UNITS AS SPECIFIED IN THE 7-11-75
MODE
1 IDLE
2 25 PCT
3 55 PCT
1 25 PCT
s in PCT
b 25 PCT
7 In PCT
a 25 PCT
9 C.T.
1 IDLE
2 25 PCT
3 55 PCT
1 25 PCT
5 10 PCT
b 25 PCT
7 9|) PCT
8 25 PCT
9 C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
Bilk
J1J»"
TWO CYCLE
HV
18.9
15.8
10.1
15. (•
18.0
15.7
1.5
15.8
23.8
18. b
15.8
10.1
15.8
Ifl.n
15.7
1.5
15.8
23.8
CHP
n.o
?3.
52.
23.
9.
23.
"7.3
23.9
n.n
0.0
23.9
52.1.
23.8
in.n
23. 1
87. 1
23.7
0.0
HPOSITE
UDnCTTC
COMPOSITE -
CTQ FC
0 3.7
*3 19.8
138 29.8
b3 lq.b
2h 11.8
«.* 1".
b3 I"*.
n 3.
0 3.
t-3 l«<.
138 29.7
b? 19.3
Pfc II.*1
b3 19.8
22»- 11.1
b3 l9.b
P 3.1
• *"Li'^ FOR C'CLE
VAI IIF F(l(? rvPt F
VnL^'t, r 1 1 F l< T *• L w
HC-
ro-
8SFC
P
.831
.5b7
."21
1.193
.833
.503
."21
R
D
.81?
,5hH
.812
1 . 1M
.829
.505
.828
R
FIO 0.35(
NniH n.i5(
MOX-CL n.35(
PROCEDURE SFC
BSNOX
R
5.9
10.0
5."
1.3
b.1
7.b
5.7
R
R
5.b
10.0
5.8
1.0
b.O
7.7
b.1
R
2
n
10
F/A
.018
!oi7
.051
.Olb
.012
.017
.051
.017
.n55
.011
!ni7
.052
. n H /
, fi*^ ?
.018
.055
.018
.055
.2) •» n
.H> * n
.11 + 0
KG/KM
R
.507
.315
.199
.908
.507
.30*-
.501
R
R
.191
.313
.191
.891
.501
.307
.501
HR RPM
bOO
198n
2000
199Q
1970
1990
2030
1990
2000
bOO
1990
2000
1980
I98n
1990
2030
1970
R 2000
.•-5C
.••"iC
.S5C
HC
2.3) =
S . 5 ) =
10.5) =
+ NOx =
SFC =
C»LC
A/F
21.0
21. 1
l9.t
21. b
23.5
21.2
18.5
21.2
18.1
22.5
?1 .3
19.2
21.2
23.3
20.9
18.3
21.0
18.1
2.270
b.537
in. 510
12.779
.121
HC
3.0
.5
.5
.1
.1
.1
.1
.0
95. b
3.0
1.2
1.8
.5
.3
.»
.5
.2
92.1
?p
. <'
2.3
G/KW
G/KW
G/KW
G/Kw
KG/KM
CO
18.2
1.8
lb.1
3.5
2.1
1.1
8.b
3.0
9.2
17.9
7.9
21.3
5.8
3.2
b.b
11. 9
5.2
11.1
HP
HP
HR
HP
HR
NOX FUEL
.2 1.9
5.1 8.b
38.8 21.8
5.5 8.S
1.2 1.8
5.4 8.7
37.7 aB.l
5.2 8.b
.1 3.2
.1 5.1
5.2 8.5
38.7 21.7
5.3 8.1
1.1 1.7
5.5 B.b
37.9 28.2
5.8 8.5
.1 3.2
in 1
* U . T
in 5
A U . 3
{ I.b92 BS)
( 1.875 RSI
( 7.837 BS)
( 9.530 BS)
( ,b93 BS)
POHER
0.0
7.2
30.3
7.2
2.2
7.2
38.7
7.2
0.0
0.0
7.2
30.3
7.2
2.2
7.2
38.7
7.1
0.0
-------
TABLF D-Z6. MASS FMISSIONS RY NINE-MOOF EPA - METRIC. UNITS
CHEVROLET 350-CIO HI
K= 1.090
H.UMs
lb.1 G/KG
CONCENTRATION A.9 MEASURED TOTAL
MODE HC-FID co co? NOX-CL CARBON
1 IDLE IS? .70b
a as PCT T i?8 .013
3 55 PCT T 1?1 .!70
» as PCT T i? .093
S 10 PCT T 10B .088
b as PCT T n? .093
7 10 PCT T b .on
8 as PCT T »? .082
q C.T. 32000 1.589
1 IDLE »»o .873
? as PCT T 89n .io»
3 55 PCT T 208 .US
* as PCT T 1*9 .093
5 10 PCT T 1*R .088
b 25 PCT T 1*9 .098
7 9o PCT T 38 .OM
8 as PCT T b5 .082
11 C.T. ?R8UO 1.077
....UNITS AS
MODE MV CHP
1 IDLE 19.3 0.0
i ?S PCT T 17.2 23.8
3 55 PCT T 11.1 52.5
* as PCT T 17.? ?3.b
5 10 PCf T 11.3 1.5
b as PCT T 17.3 23.7
7 9o PCT T 1.1 87 n
8 25 PCT T 17.3 23.5
1 C.T. 2».2 0.0
1 IDLE 19.1 p.o
2 35 PCT T 17.2 ?3.7
3 55 PCT T 11.9 sa.O
* 35 PCT T 17.2 23.5
S 10 PCT T 19.3 q 5
b 25 PCT T 17.? ?3.*8
7 9,j PCT T i., P7.0
8 25 PCT T 17.3 ?3 5
9 C.T. 33 q n „
• • *• J • ' • U
SUM — (COMPOSITE v
JP.07
9.??
10. 7b
1.93
8.33
9.3?
11. »R
8.9?
9.»3
R.?3
11.73
31
8(10
ROD
710
10RR
800
?b
39
BOO
800
IbO
RIO
1118
790
10. 9M
9.533
•».S17
13.50^
10.781
9.SbO
10.897
9.539
B.33»
11.795
9.519
SPECIFIED IN THE 7-H-7S
CT9 FC BSFC
_
b3
M
b3
'
n
b3
13P
b3
b3
??S
•
n
AIIIF FOR
SUM— (COMPOSITE VHHE FOR
TWO CYCLE COMPOSITE -
1 1
^ * *
lh.8
ia!s
•
it,' i
M |
'* I
K 1
^ * *
?b]b
t a
if* 4
1 B. 5
"*. 3
CYCLE
CYCLE
HC-
CO-
R
.705
.51?
.b9l
* ^
,sn»
.b87
p
-. .......
R
7 nn
. f un
.51P
. b n
.7ns
.MI
p
FTO 0.3S(
NDIR n.^s(
NOX-CL n.3«5f
FUEL
G/HR
18bO
18808
73q»
5579
7»39
198J.7
7303
IBbO
IRbO
7530
laObb
73»B
19913
739»
11SO
CALCULATED G/HR WT. WEIGHTED
HC CO NOX FACT. HC-FTO CO
3
11
15
8
8
10
1
8
?1
?5
12
10
13
b
5
2*b 8
153 23fa
393 899
l»b ??»
117 93
1*8 803
813 b77
188 822
309 ?
IbS 2?B
25b 9«?
lib 38
159 ?3«
309 b79
18" aaa
33b 1
PROCEDURE SFC
BSNOX F/A KG/KM HB RPM
. ........
R
10.1
17. »
8.7
7.9
q.*-
R
........
R
!•»;»
q .b
loio
7.9
** . ^
R
........
isis)
15.0)
. ........
.0*9
.0*3
.050
.(I'M
.039
.0*3
.OS?
* O'f'l
m nbS
..,*...•.
.050
.050
.0**
.038
!o5»
. Of*
.nbo
....•»•....
•(• O.»,5f
+ 0.hS(
+ 0.«.5(
............
R bOO
,»89 1990
.318 8000
.»?0 1970
.787 1970
,*8i iqso
.30b 8030
.» 18 i qbo
P 8oon
............
R bOO
'.3ii iqso
.980 19bO
.771 I9bo
."»a9 1990
.307 3030
,»aa i9bo
R aoon
.............
i?.'I) =
15.5) =
HC + hOX =
SFC =
.83a
.077
.1»7
.077
.057
.077
.113
.077
.asa
.077
Jo77
.057
.077
.113
.077
.193
CALC
A/.F
........
80.8
anio
aa.
aa!
i*1.
aa.
15.
........
ao.a
ea.i>
ao.i
aa.9
aa|9
?2.'q
Ib.b
........
t.eoo
15.31*
19.51*
.3R1
.7
.q
a.?
,*7
.1
.3
bB.R
1.9
l.b
3.7
.9
.b
1.0
.7
b9^?
57
12
Sb
11
7
11
10
71
13
38
11
7
18
10
98
G/HR .
NOX-CL CKW
.* 0.0
IB. a 17.8
132. a 31.1
17.3 17. b
8.5 7.1
15. b 17.7
7b.b b».9
17.1 17.5
.a o.n
.5 0.0
17. b 17.7
138. » 38.7
17. 6 17.5
8. a 7.1
1R.O 17.8
7b,7 b».1
17.1 17.5
.8 0.0
VAC.
MM
»90
»37
302
*37
»10
*39
»39
blS
302
»90
?8
»39
b07
HC
.........
.9
i.a
3.0
.e
.b
1.0
.a
.*
92.0
........
a.»
a.o
i!a
.7
i.a
Is
........
*.o
G/KH
fi/K*
G/KW
G/XV
KG/KW
CO NOX FUEL
..........
aa!-»
a!?
1.5
9.b
3.9
25.1
.......
30. *
5.5
ib.a
9.8
a. 8
5.3
10.2
9.3
ao!?
........
13
13
HR
HP
HR
HR
HO
...............
.8 5.9
b.S 8.0
»7.8 ?*.»
b.2 7.B
sib ?!B
87.3 30. b
b.l 7.7
.1 3.b
...............
.8 s.q
b.l 7.1
b^D 7)7
.7 *.a
b.3 8.n
ab.7 30. t-
5.9 7.7
.1 3.8
................
15.0
15. S
( 3.132 BS)
( 9.577 93)
(1 1.4 19 RS)
(19.551 BS)
( ,b»0 BS)
POWER
.....
0.0
7. a
30. »
7.2
8.1
7. a
38.7
7.1
0.0
....
0.0
7. a
so. a
7.1
2.1
7.3
38.9
7.1
o.n
....
-------
TABLE 0-27.MASS EMISSIONS BY NINF-MOOE EPA - METRIC UNITS
d
CO
1975 CHEVROLFT 350-CID HD ENGINE PROJECT 11-4311
ENGINE-2 TEST-?30 RUN-P3 U8-17-7b RUN i CONFIGURATION * i?5o NLRPM AT
CONCENTRATION AS MEASURED TOTAL
MODE HC-FID
1 IDLE 98
2 25 PCT T 2b
3 55 PCT T 10
4 25 PCT T 9
5 in PCT T 12
b 25 PCT T 9
7 9n PCT T 0
B 25 PCT T 3
9 C.T. IhO
1 IDLE *b
2 25 PCT T 14
3 55 PCT T 7
4 25 PCT T 7
5 10 PCT T 11
fa 25 PCT T 10
7 9ri PCT T 1
8 25 PCT T 4
9 C.T. 80
CO C02
.525 in. 53
.051 10.07
.Ob7 11.24
.040 in. 07
.035 9.?p
.040 10.19
,04b 11.99
.010 10. 07
.030 11.48
.159 9.b4
.040 10.30
.Obi 12. b5
.010 10.30
.030 «.43
.010 10.30
.04b 11.99
.025 10.19
.020 11.71
NOX-CL CARBON
?9 ll.Obb
350 10.124
10»0 11.308
380 10.111
125 9.?3?
370 10.231
10b4 J?.03b
390 10. 101
38 11.528
42 9.804
380 10.312
1088 1?.71?
4DO in. 341
145 9.4bl
370 10.34?
113b 12.03b
430 10.21b
39 11.759
FUEL C*LCUL*TED G/HR
G/HR
1R1*
R890
13381
8800
b532
R93b
19913
8bb4
435*
20*1
8890
13290
8800
b577
8ROO
19958
8709
4351
HC
?
2
1
1
1
1
n
0
7
1
1
1
1
1
1
0
0
3
CO
17*
90
159
71
51
71
153
52
23
b7
70
129
70
43
70
153
43
15
NOX
2
111
*44
119
32
117
b35
121
S
3
118
410
123
3b
11*
bBO
129
5
CT
KT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.1*3
.232
.077
.147
.077
.057
.077
.113
.077
.143
Ks 1.087
HUM= 15.9 G/KG
WEIGHTED G/HR
HC-FIO
.»
.2
.2
.1
.1
.1
0.0
.0
1.0
.2
.1
.1
.1
.0
.1
.0
.0
.s
CO
40
7
23
S
3
b
17
1
3
15
5
19
5
2
5
17
3
2
NOx-tL CKw
.4 0.0
8.S 17.7
b5.3 39.1
9.2 17.7
1.8 7.3
9.0 17.7
71.8 b4.5
9.3 17.5
.7 0.0
.7 0.0
9.1 17.7
bO.3 39.0
9.5 17.8
2.1 7.1
8.7 17. B
7b.B b5.0
9.9 17.5
.7 0.0
VAC.
MM
488
399
2b2
399
457
39b
28
399
523
475
399
2b2
39b
455
399
28
39b
523
UNITS AS SPECIFIED IN THE 7-11-75 PROCEDURE
MODF. MV
1 IDLE 19.2
2 21 PCT T 15.7
3 55 PCT T 10.3
1 25 PCT T 15.7
5 10 PCT T 18.0
b 25 PCI T IS.b
7 90 PCT T 1.1
8 25 PCT T 15.7
9 C.T. 20. b
1 IPLE 18.7
2 25 PCT T 15.7
3 55 PCT T 10.3
4 25 PCT T IS.b
5 10 PCT T 17.9
b 25 PCT T 15.7
7 9Q PCT T 1.1
8 25 PCT T 15. b
9 C.T. 20. b
CHP CTO
0.0 0
23.8 b3
52.5 138
23.7 b3
9.8 2b
23.7 t-3
8b.5 225
23.4 b3
0.0 0
0.0 0
23.7 b?
52.3 13B
23.8 b?
9.5 25
23,8 b3
87.2 2?b
23.5 b3
0.0 n
SUM — (COMPOSITE VALUE
SUM---(COMPOSlTE VAI I)F
TWO CVCLF COMPOSITE -
FC BSFC
1.0 R
19. b .924
29.5 .Sb?
19.4 .819
11.4 1.4b5
19.7 .832
43.9 .50B
19.1 .815
9.b fl
4.S P
19. b .82*.
29.3 ,5bO
I9.* ."14
14.5 1.52*
19.4 ."1*
**,0 .50*
19.2 .Rib
9.b R
HC- FIO n.
CO- NOIW 0.
NOX-CL 0.
BSNOX
R
4.7
8.b
5.1
3.3
5.0
7." .
5.2
R
•
5.0
8.T
5.2
3."
4.8 .
7.9
5.b
F/A
051
0*b
051
Olb
042
047
OSS
04b
052
DIS
0*7
057
047
043
0*7
055
0*7
R .053
35( .11
35( 5.9)
15( 9.4)
» 0.
* 0.
» 0.
SFC
KG/KM HR
R
.501
.342
.498
.891
.SOb
.309
.*9b
R
R
.503
.3*1
.495
.927
.49S
.307
.*97
R
bsr
b5( *
bS( 9
HC *
RPM
faOO
1990
2000
1980
19bO
1980
2020
19bO
2000
bOO
190IJ
1990
1990
1970
1990
2030
19bO
2ono
.1) =
.1) =
.5) =
NOX =
SFC =
C*LC
A/F
19.8
21. b
19.4
21. b
23. b
21.*
IB. 3
21.7
19.1
22.3
21.2
17.4
21.2
23.1
21.2
18.3
21.4
18.7
.077
4.b93
9.50*
9. '5 81
,**3
HC
21.0
9.8
9.8
3.*
2.7
3.4
0.0
1.1
48.8
21.0
8.8
10.*
4 .4
4.1
b.2
1.8
2.5
4P.7
.1
G/KH
G/K*
G/KK
G/KK
KG/KM
CO
37.0
b.4
21.*
5.0
2.b
5.0
15.8
3.7
3.0
20.4
7.1
25.1
7.1
3.2
7.1
22.8
4.4
2.8
b
HR
HP
HP
HO
HP
NOX FUEL
.2 5.0
I.* 8.?
37.1 23. h
5.2 8.1
1.0 4.5
5.1 8.2
10.8 Zb.9
5.3 B.n
.1 7.5
.1 S.b
5.1 8.2
33.9 ?3.3
5.3 8.1
1.2 1.5
1.9 8.1
43.2 2b.9
S.b R.n
.4 7.4
9.5
( .057 PS)
( 3.500 88)
( 7.087 B,9)
( 7.1*4 PS)
( .728 BS)
POWER
0.0
7.2
30.4
7.2
2.2
7.2
38. b
7.1
0.0
0.0
7.2
30.3
7.2
2.1
7.2
38.8
7.1
0.0
-------
o
I
tv
NO
TABLE
ENGINE-2 TEST-230 RtlN-n3
.MASS FHISSIONf pv NINE-MOPE EPA - MET»IC UNITS
1175 CHEVROLET 35n-CIO HO ENGINE—PROJECT 11-»311
OP-17-7b RUN 1 CONFIGURATION + l?qo NLRPM AT CT
I.n87
HUM =
IS.9 G/KG
CONCENTRATION AS HfASUOED
MODE HC-FID CO COe NOX-CL
1 IDLE
2 25 PCT T
3 55 PCT T
* 2S PCT T
s in PCT T
b 25 PCT T
7 9n PCT T
8 25 PTT T
9 C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
» 25 PCT T
5 in PCT T
b 25 PCT T
7 90 PCT T
8 ?5 PCT T
9 C.T.
98
10
9
12
0
3
IbO
7
7
11
10
1
80
.5?5
.051
Io»o
.035
.0*0
.030
.030
.159
.0*0
.nbi
.0*0
.030
.0*0
.0*b
.025
.020
10.53
JO. 07
11.2*
10.07
10.19
11.99
10.07
11. *R
9.b*
10.10
I?.b5
10.30
10.30
11.99
10.19
11.73
29
350
10*0
380
125
370
I0b»
390
3R
*2
3RD
1088
370
39
TOTAL
CARPON
ll.lbb
I1.30R
10.111
9.?37
10.231
t?.03»-
10. JO]
10.3*?
12.71?
10.3*1
10.3*?
12.01*'
10.21b
11.759
FUFL
G/HR
9890
133R1
8800
b532
893fa
19913
Pbh*
20*1
8R9D
13290
8800
8ROO
19998
CALCULATED G/HR
HC CO NOX
£
2
1
1
1
r
n
0
7
1
1
1
1
1
0
0
3-
"0
159
71
51
71
153
52
23
b7
70
129
70
70
153
*3
15
2
111
119
3?
117
b3S
121
5
118
•HO
123
129
5
WT.
FACT.
91P
.077
.1*7
.077
.057
.077
.113
.077
.232
.077
i.077
.057
.077
.113
.077
.1*3
WEIGHTED G/HR
HC-FID CO NOX-CL
.2
.2
.1
.1
.1
0.0
.0
1.0
.2
.1
.1
.1
.0
.1
.0
.0
.5
7
23
5
3
fa
17
3
15
5
19
5
2
S
17
3
2
B.S
bS.3
9.2
1.8
9.0
71.8
9.3
.7
.7
9.1
bO. 3
9.5
2.1
8.7
7b.B
9.9
.7
CKW
0.0
17.7
39.1
17.7
7.3
17.7
17^5
0.0
0.0
17.7
30.0
17.8
7.1
17.8
b5.0
17.5
n.o
VAC.
MM
*88
399
2b2
399
*57
39b
2R
399
523
399
39b
*S5
399
?8
39b
S?3
-------
TABLE D-ZS.STEADY STATF EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 350-CID HD ENGTNE---PROJECT 11-H311
l£8T-a30 RUN-WOT OB-]l,-7(, DT-TP-HFJ AI-
K = 1.08?
MUM:
15.5 G/KP
CONCENTRATION
MODE
1
2
3
PPM
?000
2000
POOO
HC-Fin
50
BO
a
CO
.OHO
.035
.030
AS MEASURED
cn? NOX-CL
1?.?S IhBO
11.99 1S9»
J?.P5 1505
TOTAL
CARBON
l?.?9l.
l?.03t
1?.?81
FIIFL
CONS.
?Oh3B
aoo<»9
?0»57
CALCULATED 6/HR
HC
9
15
0
CO
137
119
10?
N02
S3b
8B2
832
CORRECTED G/HR
HC-FIO CO
9.3 137
1».B J19
.» 102
NOX-CL
1013.1
95t.l
900.8
VAC.
CKW MM
70. H 18
kl.3 IB
H9.9 18
MODE
1
2
3
ID
MV
.7
.7
.7
CHP
91. »
92.9
"3.7
AS SPECIFIED
CTO FC
?•»« 45.5
p<»» 1H.P
?»*. _ »«;.i
IN THE 7-11
BSHC
.10
. !•>
.00
BSCO PSNOX
1.1S
1.30
1.11
10. OB
9.bS
9.03
RSFC
.482
.V7b
.»81
A/F
18.0
18.3
18.0
F/A HC CO
.OSb .13 1.98
.oss ,aa 1.75
,05b .01 l.HB
"
NOX
13.51
12. 9H
12.11
3FC
KG/KM HR
.a93
,?B9
."3
ID
OO
o
-------
ENGINE-?
TABLE D-29. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 350-CIO HO ENGINE PROJECT U-»311
TE8T-231 RUN-fM OR-l7-7b DI-TK-HFI -CT- JAI-NQVA-1.»»ROD- bOONLRPM
K= 1.090
HUMi
G/KG
CONCENTRATION
MODE PPM
1 ?0f)0
2 ?oon
3 ?nnn
» ?ono
HC-FID
2b8«0
137bO
17bno
11200
en
.317
,1b9
1.870
.350
AS MEASURER
CO? NOT-CL
3.0? 8
10.07 21
9.b» ?1
9.8b ?3
TOTAL
CARBON
b.l?9
IS. 0*9
13.157
ll.»3b
FUFL
CONS.
2132
2087
2132
17b9
CALCULATED G/HR
HC
9b»
2b2
308
190
cn
237
Ibt
598
109
NO?
1
1
1
1
CORRECTED G/HR
HC-FIO
9M.I
2bl.S
308.5
189. b
CO
?37
Ibt
598
109
NOX-CL
1.0
1.3
1.2
1.3
C*H
o.n
o.o
o.o
o.o
VAC.
MM
b07
b05
blO
blO
MODE ID
1 0.25
2 0.25
3 0.00
» n.5ii
MV
23. q
23. B
?t.o
2».o
CHP
0.0
0.0
0.0
0.0
CTQ FC
n ».7
0 t.b
0 H.7
0 3.9
BSHC
P
R
R
R
BSCO BSNOX
R
R
R
R
R
R
R
R
BSFC
R
R
R
R
A/F
33. b
17.9
1S.R
18.9
F/A
.030
.OSb
.Ob3
.053
HC
R
R
R
R
CO
R
R
R
R
NOX
R
R
R
R
SEC
KG/KW
R
R
R
R
HR
10 = BLEED AIR
O
I
ENGINE-2
TEST-231 RUN-0?
STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 3«;(|-CIO HO ENGINE—PROJECT 11-H311
oB-i7-7b OI-TR-HFI -CT- IAI-NOVA-I.MROD-^OONLRPM
K= 1.010 HUMS lb.2 G/KG
MODE
1
2
3
RPM
?000
2000
?000
CONCENTRATION
HC-FID co
to
b
.035
.010
.005
AS MEASURED
co? NOX-CL
P. 12
11.73
12.52
31
89
TOTAL
CARBON
B.lbn
11.71?
FUEL
CONS.
5398
CALCULATED G/HR
HC CO NO?
3
1
0
S3
11
8
lb
13
CORRECTED G/HR
HC-FlO CO NOX-CL
3.2
.8
.3
S3
11
R.8
Id."
13.9
VAC.
CKH MM
0.0 »b7
O.P »b2
0.0 »98
MODE
1
2
3
in
n.?5
0.25
n.oo
MV
18.1
18.?
19. b
CHP
0.0
0.0
0.0
AS SPE(
CTO
0
0
n
Fr
13.7
13. fa
11.9
[N THE 7-11-75 PR(
BSHC BSCO
R
R
R
R
R
P.SNOX
R
R
R
BSFC
R
R
R
— CALC —
A/F F/A
25.7 .039
18.8 .053
17.7 .057
HC
R
R
R
CO
R
R
R
NOX
K
R
K
SFC
KG/KW HR
R
R
R
TO = BLEED AIR
-------
t)
I
ENGINE-?
TABLE D-30 . STEADY STATF EMISSIONS BY EPA PROCEDURE - METRIC UNITS
t97t; CHEVPOLFT HSO-Cin HO ENGINE PROJECT 11-1311
TEST-an RUN-03 ciH-i7-7b DI-TR-HEI -CT- 1AI- HVA-1.11ROO- bOONLRPM
K = t.JOO HUMs 17.? G/KG
CONCENTRATION
MODE
1
a
3
*
PPM HC-FID
?ono 3"iBio
anno easno
?nnn llboo
?ono asbno
CO
,?n»
.115
?.5on
•3"
AS MEASURED
coa
l.(,q
7.15
h.b*
7.sn
NOX-CL
JS
?3
S3
?b
TOTAL
CARBON
5.51]
in.hf7
13.1-!'?
in.hni
FUEL
CONS.
1905
1905
anm
17b9
CALCULATED G/HR
HC
iasi
551
b7f
"fSB
CO NO?
11? 2
isn i
751 ?
i2a i
CORRECTED G/HR
HC-FIO
1253.9
551.1
157.9
CO
11?
ISO
751
12?
NOX-CL
] 9
1.5
1.8
VAC.
CKw' MM
0.0 blO
o.n bos
n.n bi?
o.n bos
MODE
1
?
3
1
10 MV
n.?s ?i.n
n.as ?3.8
n.nn ai.i
o.so a3.n
CHP
o.n
0.0
o.n
0.0
A3 SPECIFIED
CT(J FC
n
n
0
0
1.2
1.?
1 .5
3.9
IN THF 7-11
HSHC
R
p
R
P
BSCO BSNOX
R
R
R
R
R
R
R
R
BSFC A/F
R 3b.7
R 19.7
R 11.9
R 19. B
F/A HC
.027 R
.051 R
.Ob7 »
.050 R
CO
R
R
R
R
NOX
R
R
P
R
SFC
KG/KW HR
H
R
R
R
10 = BLEED AIR
ENGINE-2
TEST-331
3TEAOY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 35P-CID HD ENGINE-—PROJECT U-H311
ns-i7-7h DI-TR-HEI -CT- IAI- WVA-1.44ROD-1700NLRPM
1.100 HUMS 17.
MODE
3
RPM
?ono
aono
?ooo
?nnn
CONCENTRATION
HC-FID co
IbPO
3?0
21
880
.101
.030
.ias
AS HEASURED
CO? NO*-CL
b.hS 39
10.»1 5?
11.18 133
9. Of, »5
TOTAL
7.nni
in. 08?
FUEL
CONS.
Ib7?
1?1"
CALCULATED G/HR
HC CO NOa
ins
1
10
225
85
IQb
8
7
17
b
CORRECTED G/HR
HC-FID co NOX-CL
101.7
11.2
1o!2
2es
85
25
101.
8.8
7.7
18.?
CKH
0.0
0.0
0.0
0.0
VAC.
MM,
5?3
Sib
sib
513
MODE
1
2
3
1
in
n.?5
n.as
n.n ii
o.Sn
MV
?0.b
?0. 3
?n. 3
ao.a
CHP
n.n
n.n
n.n
n.n
CTP FC BSMC BSCO BSNOX
n 9.5
n 9.»
n in. <
n 9.3
D
p
p
p
p
R
R
P
w
n
R
R
9SFC
R
R
R
R
A/F F/A
30.7
?0. 9
19.1
?1.7
.033
. nin
.05?
.nfi.
HC
R
R
R
R
CO NOX
R
R
R
R
P
p
K
"
Qtrr
KG/KH
a
^
R
R
HR
ID s BLEED AIR
-------
ENGINE-?
TAHLE D-31. STEAD* STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1<»7S CHEVROLET 35n-Cin HO ENGINE---PROJECT 11-1311
T£ST-?31 RUN-ns nn-l7-7t, m-TR-HEI -cT- NOAI- *VA-J.11ROO-NBA-DECEL
1.091 HUM= Ib.b G/KG
CONCENTRATION
MODE RP* HC-FIO CO
1 POOO *0
2 ?onn mo
3 POOO 2080
1 2000 3520
5 ?000 5faOO
.035
.OSb
.251
. 3b3
.115
AS MFASUREO TOTM
C02 NOX-CL CARRON
J1.1S
11.21
10.53
9.«b
"».••?
1(10
h8
»2
33
?9
11.52n
1 1.3Q7
tl.oin
lO.bOP
10.151.
FUEL
CONS.
• 153b
1128
3719
353P
3102
CALCULATED 6/HR
HC CO N02
p
1
77
129
199
28
11
171
211
273
13
8
5
if
3
CORREClED G/HR
HC-FID CO NOX-CL
1.7
t.o
77.3
128.5
198.8
28
11
171
?73
M.3
9.0
S.2
3.1
VAC.
C"W MM
0.0 Slfc
0.0 52B
0.0 538
0.0 511
0.0 Sib
MODE 10 MV
1 17UO 20.3
2 Ibnn 20.8
3 150P 21.2
» 1100 21. 1
5 1300 21.5
CHP
o.n
o.o
o.o
o.o
o.o
AS
9.Rfc
9.0!
NOX-CL
78
h5
(.?
5?
37
31
20
17
TOTAL
CARBON
12.25t.
1?.?5?
IP. 125
11.735
I l.*05
9.919
10.251
9.595
FUEL
CONS.
5113
5035
191*
It. 7?
1351
1085
3t>7»
3117
CALCULATED 6/HR
HC
0
0
0
0
2
7
b3
12(1
CO
1
1
it
1
IS
bO
ISb
182
NO?
ia
9
8
7
5
1
2
2
CORRECTED G/HR
HC-FID
.1
.1
n.o
.0
1.7
7.?
b2.7
119.8
CO
1
1
1
1
15
bO
iSfa
18?
NOX-CL
12. b
".7
9.2
7.5
5.1
l.b
2.b
2.2
VAC.
CKw MM
0.0 193
0.0 505
o.o SOB
0.0 Sib
0.0 52»>
0.0 531
0.0 538
n.n 511
MODE
ID
MV
CHP
AS SPE
CTO
CIFIFO IN THF 7-11-75 PR!
FC
BSHC
BSCO
BSNOX
BSFC
"-CALC---
A/F F/A
HC
CO
NOX
SFC
KG/KM HR
1
2
3
»
5
(,
7
9
I7no
IbOO
1500
1100
J3on
1200
lion
loon
19.1
19.9
20.0
20.3
20.7
20.9
21.2
?1.1
o.n
0.0
o.o
o.n
o.o
o.n
o.o
n.n
0
0
o
0
n
n
n
n
1?.0
11.1
10.9
10.3
9.».
9.0
«.l
7.1-
R
R
T
P
R
R
R
R
p
4
R
i?
R
R
R
a
R
R
P
R
R
R
R
R
R
R
R
R
R
R
R
R
18.0
18.0
18.2
1R.R
19.1
22.0
J1.3
??.b
.055
.055
.055
.053
.05?
.Olb
.017
.011
P
P
I
R
R
R
R
R
R
R
R
R
R
R
R
P
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
ID = NO t.D.
-------
TABLE 0-32. MASS EMISSIONS RY NINE-MODE EPA - METRIC UNITS
ENGINE-?
TF.ST-83J RUN-ni
1975 CHEVROLET 350-CID HO ENGINE PROJECT ll-*31l
nfl-i7-7t, DI-TR-HEI-MEGR
KB l.ino HUMS J7.3 G/KG
MODE
1 IOLE
8 85 PCT
3 55 PCT
* 85 PCT
s 10 PCT
b 85 PCT
7 9n PCT
8 ?5 PCT
9 C.T.
1 IDLE
2 ?5 PCT
3 55 PCT
* 25 PCT
5 10 PCT
b 85 PCT
7 9n PCT
B 85 PCT
9 C.T.
CONCENTRATION
HC-FIO CO
T
T
T
T
T
T
T
T
T
T
T
T
T
T
lb*
8b
88
57
108
88
*
33
8*0
38
bS
13
51
93
77
*
38
180
.755
.10*
.125
.093
.0*2
.098
.010
.088
.0*0
.887
.093
.088
.093
.082
.093
.010
.077
.030
AS MEASURER
en? NOX-CL
10. *1
9.75
11.2*
9.75
8.33
9.8b
13.07
9.8h
11. *8
10.53
9.9b
11.*"
9.9b
".*?
9.9h
18.93
9.8b
11. *8
?9
3*0
850
310
198
3*0
800
3*0
35
35
310
580
350
800
290
780
870
37
TOTAL
CARBON
11.113
9.8t>3
11.3b8
9.B*9
R.12*
9.9fe7
13.08n
9.9*f,
11.517
io.«e?
lo.nbo
1 l.5b*
10.059
8.51?
lo.nbi
12.9HO
9.94(1
11.52*
FUEL
G/HR
181*
775b
11975
7hbb
S**3
7938
19958
7893
*173
18bO
78*7
13018
775b
5398
7802
801BS
7b?0
*2b*
CALCULATED G/HR
HC CO NOX
3
7
3
5
8
. 7
I
3
10
I
b
2
*
b
7
1
3
5
8*7
Ib5
2b7
l*b
107
158
31
132
30
100
1*7
187
1*5
ins
32
119
23
2
98
327
88
*7
99
**b
99
5
8
88
81*
99
*b
82
**5
7fa
5
«T.
FACT.
.238
.077
• 1*7
.077
.057
.077
.113
.077
.238
.077
.1*7
.077
.057
.077
.113
.077
.1*3
WEIGHTED G/HR
HC-FIO CO NOX-CL
.7
.b
.5
.*
.*
.5
.1
.8
.2
.*
.8
.3
.*
.5
.1
.2
.7
57
13
39
11
b
12
3
10
*
23
11
28
11
b
11
. 9
3
.»
7.5
»B.l
b.B
8.7
7.b
50.*
\?
.5
b.B
31. *
7.b
8.b
b.3
50.2
5.8
.7
CKW
0.0
17. B
39.5
17.9
7.8
17.9
hS.l
17.9
0.0
0.0
18.0
39.*
18.0
7.8
18.0
b5.8
17.8
0.0
VAC.
. MM
*78
39b
2**
389
*88
389
33
389
583
*90
391
20b
38b
*85
38h
33
391
523
U
I
----UNITS AS SPFrtFTFn IN TUB- 7-ii.ic
MODE MV
1 IDLE 18. b
2 ?.S PCT T 15. h
3 55 PCT T 9.b
* 85 PCT I 15.3
S in PCT T 19.8
b 85 PCT T 15.3
7 9n PfT T 1.3
B 85 PCT T 15.3
9 C.T. 80. b
1 IDLE 19.3
8 85 PCT T 15.*
3 55 PCT T 8.1
* 85 PCT T 15.8
S 10 PCT T 19.1
b 85 PCT T 15.8
7 9n PCT T 1.3
8 85 PCT T 15.*
9 C.T. 80. »<
CHP
0.0
23.9
58.9
8*.0
9.b
8».0
87.3
2*.0
0.0
o.o
?*.!
58.9
2H.1
'•''
?* .1
8R.3
23.9
0.0
SUM——— (COMPOSITE
Sl|M---(CCMPOSITE
TWO CYCLE COMPOSITE -
CTO
0
b3
h3
8b
b3
827
b3
o
0
b3
139
b3
?*>
h3
?87
b3
0
vf 1 1 lie*
V B I ur.
V A LUF
FC BSFC
».o
17.1 .
lb^9 |
12.0 ) .
17.5 .
** .0 .
17. H
•».?
».l
17.3
?«.7
17.1
11.9 l.
17.8
»*.S .
lh.8
9.*
FOR r VPI F 1 1 —
r 1 IK L ~ i,l_ C. I i
FoH r vfi F P ^ *
r**" l» T lU C r j
HC- FID
co- NOTH
NOX-CL
R
7lb
703
2*5
788
50*
72*
R
P
717
5*3
70q
237
713
50*
703
R
0.15(
0.35(
0.35(
PROCEDURE1*--— wr
ttc/-
B3NOX F/A KG/KM HR RPM
R
•O
sis
?.0
».2
5.?
'R
R
3.7
*.2
».''
3.5
5.8
3.2
R
.3)
P.*)
7.1)
.051
0*5
!o58
.0*5
.039
.0*b
!o59
.0*5
.052
.0*9
,0*b
.053
,0**<
.039
,0*b
.05"
.0*5
.058
+ O.M
•f n.t.<
+ d.^'
R
,3n3
,*88
.757
,**3
.307
.**!
R
R
.*3b
.330
.*3?
.758
.'3*
.307
,*28
R
;(
a
u
HC -f
bOO
I ifln
i T O U
2000
199Q
1980
1990
2020
2000
boo
2000
2000
8000
1980
8000
20*0
19BQ
?000
.2) =
5.7) r
h.O) =
NOx =
SFC =
fUl,
A/F
19.5
33 1
ec * JL
22)2
85.8
17^0
22.0
20.2
21.7
19.0
2s]s
17J1
?2.0
l".l
.19*
t>.b2*
b.355
h.5»9
.*11
HC
13 n
1 C * U
10.1
7.8
9.0
11. b
l.b
*.b
28.9
5.5
•>'."
11.0
18.0
lb.7
b^B
23.3
.
G/KW
G/KN
G/KW
G/KW
K G / K W
CO NOX FUEL
Bt
. 1
25.0
7.2
3.9
7.8
2.2
b.S
8) .8
10. b
25.9
10.5
5.7
10. h
3.3
8,b
3.0
8
b
HR
HR
MR
HR
HR
.3 S.*
3b.S 22.7
5.2 7.S
2.0 ».n
5.8 7,9
38.3 ?9.l
5.8 7 . R
.5 7.7
.5 5.»
8s|l 8*]l
b.B 7.5
2.* 3.9
5.b 7.h
**.8 88.8
5.8 7.*
'.b 7.7
7.1
b.O
f .1** BS)
( *.939 BS)
f *.739 BS)
( *.B8* BS)
( .(,/b BS)
POWER
0.0
30.*
7.2
2.1
7.8
38. b
7.2
o.o
0.0
7.2
30.2
7.2
8.1
7.2
38.8
7.2
0.0
-------
TABLE D-SS.MASS FMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE.?
TEST-232 RUN-02
1175 CHEVROLET 350-CIO HI) ENGINE—PROJECT 11-4311
on-i7-?b DI-TR-HEI-MFGP AIXCT-IIBHVA-I.HPODXI.SM?
1.081 HUMs 15.b G/KG
CONCENTRATION
MODE
1 IDLE
2 25 PCT
3 55 PCT
H 25 PCT
5 in PCT
b 25 PCT
7 In PCT
8 25 PCT
1 C.T.
1 IOLE
2 25 PCT
3 55 PCT
H 25 PCT
s in PCT
b 25 PCT
7 10 PCT
8 25 PCT
9 C'T-
T
T
T
T
T
T
T
T
T
T
T
T
T
T
HC-FID
bO
71
2H
18
18
b8
1
2b
1888
18
55
21
b2
121
85
1
2b
230H
CO
,3b3
.101
.115
.101
.018
.101
.nib
.013
.170
.013
.101
.125
.115
.10H
.115
.OSb
.013
.201
AS MEASURED
C02
10.88
1.75
10.88
1.53
".23
1.53
11.8k
1.53
in. S3
1 !.H8
1.75
11.00
1.53
A. 23
l.bl
11 .11
1.53
10.30
NOX-CL
32
270
"50
270
155
2bS
1230
230
27
31
270
870
2ns
Ib3
280
1230
230
25
TOTAL
CARpON
11.21"
1.8b2
10.117
1.b31
8.331
1.b17
11. 1()k
1.b?b
in. in7
ll.57<;
i.Rkn
I1.12R
l.kSl
B.317
1.7b1
12.011*
1.b2b
in. 757
FUEL
G/HR
IBhO
7813
12?12
780?
5318
7817
11158
7131
1082
IRbO
7817
12217
7530
5318
7817
20195
7131
1037
CALCULATED G/HR
HC
1
b
3
1
7
b
0
2
78
n
s
3
5
1
7
0
2
IS
CO
121
Ib8
251
170
121
171
155
115
128
3n
Ib7
271
180
135
18b
110
1HS
155
NOX
2
78
3H2
71
3b
78
712
bl
*
2
77
3HS
58
38
Bl
7H2
bl
3
WT.
FACT.
.232
.077
.1H7
.077
.057
.077
.113
.077
.1H3
.23?
.077
.1H7
.077
.057
.077
.113
.077
WEIGHTED C/HR
HC-FID
.3
.5
.1
.3
.1
.5
.0
.2
11.1
.1
.1
.1
.1
.5
.b
.0
.2
13. b
CO
28
13
38
13
7
11
17
11
18
7
13
HI
11
8
1H
21
11
22
NOx-CL
.1
b.O
50.3
b.l
2.1
b.U
83.8
H.I
.5
.5
b.n
50.7
H.I
2.2
b.2
83.8
1 1
.5
CKW
0.0
17.1
31. b
18.0
7.2
19.0
bl . 1
17.7
n.o
0.0
18.0
31. S
17.8
7.2
17.1
bS.fi
17.7
n.o
VAC.
MM
110
381
21H
381
185
381
33
3H
523
110
381
211
381
IBS
3Bb
33
381
523
y .—UNITS AS SPECIFIED IN THE 7-11-7S
, MODE MV
Ui 1 IDLE It. 3
2 25 PCT T 15.3
3 55 PCT T l.b
1 25 PfT T 15.3
5 10 PCT T 11.1
b 25 PCT T 15.3
7 10 PCT T 1.3
8 25 PCT T 15.1
1 C.T. 20. b
1 IDLE 11.3
2 25 PCT T 15.3
3 55 PCT T 1.5
1 25 PCT T 15.3
S in PCT T 11.1
b 25 PCT T 15.2
7 1|) PCT T 1.3
8 25 PCT T 15.3
1 C.T. 20. b
.....
CHP
0.0
"il
l.b
2H. 1
Bbio
23.8
0.0
n.n
2H.1
53^1
23. 1
2l|n
88.3
23.7
0.0
SUn---lCI'h'-ii.Ti it
SUM-—— (COMPOS I TF
TWO CYCLF COMPOSITE -
CTQ
0
h3
J31
b?
2k
b3
227
b3
0
n
bl
131
b3
2k
k3
227
b3
0
. . . .
VALUE FOR
VALtJF Fnp
FC BSFC
».l
1 7.H .
27.1 .
17.2
11.1 1.
17.3
Ib^H '.
•».o
H.I
17.3
27.0
Jk.b
11.1 ).
17.3
1H.S
s]i
CYCLE I ) -
r* i/p i F ^ ^ •.
C y C I. r. ? ) -
HC- Ftn
CO- NnIR
NOX-CL
R
72b
Sin
711
?3b
717
511
bin
p
P
717
sn8
klh
23b
7?)
5n<
bll
R
o . -i 5 (
n. s^f
n. 35(
PROCEDURE — -
B.1NOX
R
3.3
b.b
3.3
3.8
3.3
B.B
2.8
R
R
3.3
b.b
2.5
1.0
3.H
B.b
?."
R
.7)
R.k)
B.b)
SFC
F/A KG/KN HR RPM
.051
.015
.050
.nil
.038
.011
.15*
.011
.osn
.053
.015
.051
.011
.038
.015
.055
.011
.011
+ 11. ki
•f n.K
+ n.b<
R
.HH1
.310
.H31
.752
!311
.H11
R
R
,13b
.301
.H23
.752
.»3B
.307
.H21
R
;(
;(
HC *
bOO
1110
2010
2oon
1180
2000
1110
1170
2000
bOO
2000
2010
1180
1180
1110
20HO
1170
2000
.1) =
8.1) =
8.5) =
NOX s
SFC =
CALC
A/F
11.5
22.2
20.0
?2.b
2b.O
22. b
18.5
22.7
20.1
11.0
22.2
11.7
22. b
2b.n
22.1
18.3
22.7
20.3
.Bll
fl.?kfl
R.53P
1.311
.10k
HC
1.1
S.b
3.2
2.H
2.1
3.H
.2
1.2
81.3
.5
2.3
2.3
2.5
3.1
3.b
.1
1.1
81. b
^ 7
q
G/KW
6/KW
G/KW
G/KW
KG/KH
CO
17.5
8.1
S3. 7
R.I
H.b
R.b
10.1
7.0
11. S
H.h
8.5
27.0
*<.?
5.1
1.1
1H.2
7.1
in;b
q
HP
HP
HP
HP
HP
NOX FUEL
.3 S.b
3.7 7.8
31. H 23.3
3.8 7.7
1.3 H.n
3.7 7.8
52. H 21. n
3.1 7.1
.3 7.5
.3 S.b
3.7 7.8
31.8 23.?
2.8 7.5
l.H 1,0
3.1 7.P
52.7 21. H
3.1 7.1
.3 7.1
B.b
8 . S
( .hOb BS)
( b.lbS «S)
f b.Sbl BS)
( b.lbR RS)
( .bbB PS)
POWER
0.0
7.2
30.7
7.3
2.2
7.3
38.2
7.2
0.0
0.0
7.2
30. H
7.1
2.1
7.2
38.8
7.1
0.0
-------
ENGINE-1
TABLE D-34.STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 350-CID KD ENGINE—PROJECT 11-1311
TEST-125 RUN-02 08-27-7b DI-PL-HEl 25PCT NOAI-30BTDC
1.082 HUM* 1S.B G/KG
CONCENTRATION
MODE RPM HC-FID CO
1 2000 210
2 2000 232
3 20UO 520
.13b
.120
l.bBO
AS MEASURED TOTAL
C02 NOX-CL CARBON
11.11
13.07
150
lObl
lObl
12.153
12.13b
11.801
FUEL
CONS.
8301
775b
8528
CALCULATED G/HR
HC • CO N02
18
Ifa
31
188
115
1151
102
812
203
CORRECTED G/HR
HC-FIO CO NOX-CL
18.2
15. b
31.0
188
115
110.1
221.1
220.0
VAC.
CKM MM
17.5 381
17.5 117
17.5 131
MODE ID My
1 1.11 15.3
2 1.11 lb.1
3 1.17 17.3
CHP
23.5
23.5
23.5
AS SPECIFIED
CTO FC
b2
b2
fa2
18.3
17.1
18.8
IN THE 7-11-75 PR(
BSHC BSCO
.71
,b8
1.18
8.18
b.32
Sl.tb
BSNOX
1.11
1.21
8.81
BSFC
.771
.727
.800
—CALC
A/F
18.1
17.1
11.1
F/A
iOSS
.058
.Ob?
HC
I.Ob
.11
1.18
CO
10.17
8.17
113.11
NOX
S.1S
12.35
11. 8b
3FC
KG/KM HR
.171
.112
.187
ID = ROD SET
d
I
ENGINE-1
TABLE D-35. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 350-ClD HO ENGINE—PROJECT 11-1311
TEST-12S RUN-03 08-27-7b DI-PL-HEI S5PCT NOAI-21BTDC
KB 1.082 HUM: 1S.S G/KG
MODE
1
2
3
1
CONCENTRATION AS MEASURED TOTAL
RPM HC-FID CO C02 NOX-CL CARBON
2000 80
2000 iSb
200C1 121
7000 IbO
.153 10. 7b
.13b 11. bl
.201 13.35
1.017 13.11
120
1230
2132
2111
10.122
13.b02
11. bib
FUEL
CONS.
13bS3
12882
123R3
12711
CALCULATED G/HR
HC CO N02
11
11
13
15
38b
302
375
H28
382
117
735
bll
CORRECTED G/HR
HC-FID CO NOX-CL
11.0
18.1
13.1
11.8
38b
302
375
H28
113.0
183.7
715.1
bbl.3
VAC.
CKN MM
38.1 137
38.1 201
38.1 2b1
38.1 287
MODE
1
2
3
ID MV
1.38 5.1
1.11 7.1
1.11 10.1
t.17 11.3
CHP CTO
52.2 137
52.2 137
52. 1 137
52.2 137
:IFIEO
FC
30.1
28.1
27.3
28.2
IN THE 7-11-75 PRl
BSHC BSCO
.22
.37
.85
l.Bb
7.58
5.12
7.3b
37.81
BSNOX
7.11
8.77
11.11
12.13
BSFC
.577
.515
.521
.511
CALC—
A/F F/A
20.1
18.7
lb.3
15.0
.050
.053
.Obi
,0b7
HC
.21
.50
1.11
2.11
CO
10. Ib
7.13
1.87
50.70
NOX
10.01
11. ?b
11.33
lb.27
SFC
KG/KM HR
.351
.331
.31S
.321
ID = ROD SET
-------
ENGINE-1
TABLE D-36. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 350-CID HD ENGINE—PROJECT 11-»311
TEST-IPS RUN-O* oa-27-7b DI-PL-HEI IOPCT NOAI-SOBTDC
K« 1.08*
HUMS
is.b G/KG
MODE
1
2
3
*
CONCENTRATION
RPM HC-FID CO
2000 200
2000 H2
2000 1328
2000 313b
.151
.2b3
3.120
8.550
AS MEASURED TOTAL
CO? NOX-CL CARBON
10. b*
13. *1
12.1?
B.»2
188
*80
305
71
10.821
13.775
15.31?
17.333
FUEL
CONS.
blbl
Sb25
b?l*
807*
CALCULATED G/HR
HC CO N02
13
q
bl
Ibl
183
217
25*5
80*5
3b
bS
12
CORRECTED G/HR
HC-FID CO NOX-CL
12.5
8.8
bl.2
lbl.0
183
217
25*5
80*5
38. b
70.5
*».3
13.2
VAC.
CKH MM
b.1 *32
b.1 500
b.1 511
b.1 511
MODE
1 .
2
3
ID MV
l.»l 17.0
1.** 11.7
l.»7 20.1
1.50 20.1
CHP
1.2
1.2
1.2
1.2
AS SPECIFIED
CT8 FC
2*
2*
2*
2*
13. b
12.*
13.7
17.8
IN THE 7-11-75 PR(
BSHC BSCO
1.31
.18
b.80
18.78
20.21
2*. 11
282.73
813.10
B3NOX
3.15
7.23
*.S*
1.3b
BSFC
l.*75
1.3**
l.*8b
1.132
CALC—
A/F F/A
20.3
lb.1
ills
.0*1
,0b2
.071
.085
HC
1.87
1.32
1.12
25.18
CO
27.21
32.33
371.1*
1118.75
NOX
5.30
1.70
b.Ol
1.82
SFC
KG/KM HR
.817
.817
.10*
1.175
ID = ROD SET
ENdNE-1
TABLE D-37.STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 350-CID HD ENGINE—PROJECT 11-1311
TEST-12S RUN-05R 01-01-?b DI-TR-HEI IDpCT NOAI-ltBTDC
K» 1.10* HUMe 17.8 G/KG
Lo
-O
CONCENTRATION
MODE RPM
1 2020
a 2000
3 2000
* ?ono
S 20UO
b 2000
7 2000
B aoou
1 2000
HC-FID
2HO
128
200
100
bBO
8b»
llbB
1328
1152
CO
.115
.125
1.570
3.500
5.570
b.ano
7.210
7.-100
7. BIO
AS MEASURED
C02
12.71
l-».23
1».23
12.13
11.73
11. 2»
10.53
10.07
10.30
NOX-CL
lOlb
1312
520
230
ISO
138
138
133
188
TOTAL
CARBON
12.131
l».37o
15.823
lb.17b
17.379
17.5»0
17.871,
18.125
18.21*
FUEL
CONS.
201HO
11731
218b3
23851
2b03b
2b308
28032
28S7b
2B18S
CALCULATED G/HR
HC
t2
20
32
b?
118
ISO
213
2»»
21»
CO
3bO
3*8
•»3B2
10238
lbB5b
1878*
22831
2SlfaO
2SOb3
N02
525
b3S
231
111
75
bl
72
70
11
CORRECTED G/HR
HC-FID
11.8
11.1
31.7
bb.7
118.2
1SO.S
213.2
21H.2
213.7
CO
3bO
3*8
*382
10238
IbBSb
1878*
22831
2SlbO
2SOb3
NOX-CL
SB0.2
700.8
2b3.*
122.1
82.*
75. 1
71.3
7b.1
101.5
VAC.
CKH MM
bl.2 30
bO.b 7*
(,0.7 81
bO. 7 81
bO.7 7*
bO.B bl
bO.B Sb
bO.B SI
bO. 8 *8
MODE ID
MV
CHP
A3 SPECIFIED
CTO
FC
IN THE 7-11-75 PR(
8SHC
BSCO
BSNOX
BSFC
"-CALC —
A/F F/A
HC
CO
NOX
SFC
KG/KM HR
1
2
3
*
S
b
7 ]
8 I
i :
L.50
.Sb
.b3
.bl
.75
.81
.88
.1*
>.on
1.2
2.1
3.5
3.2
2.1
2.7
2.2
e.ti
1.1
82.1
81.3
81.*
81. t
81. *
81.5
81.5
81.5
81. b
213
213
21*
21*
21*
21*
21*
21*
21*
»*.»
*3.5
*8.2
52. b
57.*
58.0
bl.B
b3.0
b3.1
.52
.25
,*0
.83
l.*B
1.B8
a.b?
3.05
2.b7
*.*b
*.3S
S».78
127.18
210.70
23*. 81
BBS. *8
31*. 50
313.21
b.SO
7.13
2.18
1.38
.13
,8b
.ID
.87
1.2*
.5*1
.535
.512
,b*b
.705
.712
.758
.773
.783
17.1
15.5
1».0
13.2
12.3
12.1
11.8
11.5
11.*
.058
.dbS
.072
,07b
.081
.083
.085
.087
.087
.bl
.33
.53
1.12
1.18
2.52
3.57
*.oi
3.58
5.18
5.83
73. *b
171. b2
282. Sb
31*. 88
382.8*
*21.75
*20.13
8.72
10. b*
*.oo
1.85
1.25
1.15
1.20
1.17
l.bb
.321
.325
.3bO
.313
.*21
.»33
.»bl
.*70
.*7b
ID = ROD SET
-------
ENGINE-1
TABLE D-38. STEADY STATE EHIS3IONS BY EPA PROCEDURE - METRIC UNITS
1S7S CHEVROLET 350-CIO HD ENGINE—-PROJECT 11-1311
TE3T-12S RUN-Ob 08-27-7b DI-PL-HEI CT NOAI-llBTDC-bOONL RPM
KB l.Obl HUHs l».l G/KG
CONCENTRATION
MODE RPM HC-FID CO
1 2QUO 25bOO
2 2000 2BBOO
MODE ID MV
1 1.11 21.1
2 1.11 21.1
3 1.17 21.0
.197
.915
l.blO
—UNITS
CHP
0.0
0.0
0.0
AS MEASURED TOTAL
C03 NOX-CL CARBON
8.81
1.13
5.28
22
31
21
AS SPECIFIED
CTO FC
0
0
0
s!i
12.087
13.531
19.75b
FUEL
CONS.
1811
2011
2b7b
CALCULATED G/HR
HC CO N02
117
17b
132b
IN THE 7-11-75 PROCEDURE--
BSHC BSCO BSNOX
R
R
R
R
R
» "
R
R
R
151
288
1283
BSFC
R
R
R
1
2
1
—CALC
A/F F/A
17. S
IS.b
.057
.Obi
.105
CORRECTED 6/HR
HC-FIO CO NOX-CL
117.1
132s!?
HC
R
R
R
151
2B8
1283
CO
R
R
R
i.e
i.?
1.1
NOX
R
R
R
VAC.
CKH MM
0.0 b!2
0.0 b!2
SFC
KG/KM HR
R
R
R
ID s ROD SET
U)
oo
ENGlNt-1
TABLE D-39.STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1S75 CHEVROLET 350-ClD HD ENSINE—PROJECT 11--»311
TEST-12S RUN-07 08-27-7b DI-PL-HEI CT-DEC NOAI-ltBTOC RPM*uLRPM
K> l.Obt HUMS !•».! G/KG
MODE
1
2
3
CONCENTRATION
RPM HC-FID CO
1900 880
1200 320
2000 1280
.131
.030
1.810
AS MEASURED TOTAL-
COS NOX-CL CARBON
10.53
13.07
11. bl
19
18
93
10.758
Ib!sb7
FUEL
CONS.
faflQl
3102
SBOb
CALCULATED 6/HR
HC CO N02
bl
52
Ib?
Ib
3105
1
11
CORRECTED G/HR
HC-FID CO NOX-CL
bl.l
1.3
51.7
Ib7 1.2
Ib 1.1
3105 11. S
VAC.
CKN MM
11. b 127
9.2 SSb
15.1 S2b
MODE
1
2
3
ID MV
1.11 lb.8
1.11 21.9
1.17 20.7
CHP
19. b
12.1
20. b
AS SPECIFIED
CTO FC
SI
SI
51
15.0
7.5
12.8
IN THE 7-11-75 PR(
BSHC BSCO
3.22
.77
8.80
1.33
170.25
BSNOX
.21
.31
.51
.BSFC
.7b7
.bOb
.b21
— CALC—
A/F F/A
20.1
lb.9
13.0
.019
.059
.077
HC
1.3?
1.01
3.1b
CO NOX
11.80 .28
1.78 .Ib
228.31 .73
SFC
KG/KM HR
.1b7
.3b9
.378
10 = ROD SET
-------
ENGINE-1
TABLE D-40. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 350-CIO HD ENGINE—-PROJECT 11-4311
TE3T-12b RUN-02 08-30-7b DI-PL-HEI 25PCT HAI-30BTDC
K* 1.010 HUMs lb.2 G/KG
MODE
1
2
3
CONCENTRATION AS MEASURED TOTAL
RPM HC-FIU CO C02 NOX-CL CARBON
20UO 31b
7000 272
2000 72
.101 1.12
.181 10. HI
.b!3 11.18
350
110
110
1.2b3
10.b21
12.101
FUEL
CONS.
8482
8910
1117
CALCULATED G/HR
HC CO NO?
31
23
b
202
283
133
lOb
241
123
CORRECTED G/HR
HC-FID CO NOX-CL
31.4
23.1
b.O
202
283
133
llfa.O
2b3.1
133.7
VAC.
CKM MM
17.3 38S
17.3 131
17.3 142
MODE
1
2
3
IP MV
1.11 15. 3
1.41 17.1
1.47 17.4
CHP CTQ
23.2 bl
23.2 bl
23.2 bl
:IFIED
FC
18.7
18.1
20.1
IN THE 7-11-75 PR(
83HC BSCO
1.37
1.00
. .««•
8.77
12.30
10.57
BSNOX
4,b3
10.11
5.33
8SFC
.807
.781
,8b8
—CALC—
A/F F/A
23.5
20. b
18. 1
.013
.041
.055
HC
1.B3
1.35
.35
CO
11,77
Ib.SO
51.10
NOX
b.2U
11.07
'.is
3FC
KG/KM HR
.111
.175
.528
ID = ROD SET
O
ENGINE-l
TABLE 0-41. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
117S CHEVROLET 350-ClD HD ENGINE—PROJECT 11-1311
TE3T-12b HUN-03 08-30-7b OI-PL-HEI SSpCT NAI-24BTDC
Kr 1.010 HUMS lb.2 G/KG
MODE
1
2
3
H
CONCENTRATION
RPM HC-FIO CO
20(10 180
2000 200
2000 HI
?OUO 10
.120
.125
.153
.251
AS MEASURED TOTAL
CO? NOX-CL CARBON
10.07
11.00
11. bl
12. S3
bSO
1437
Ib37
lOlfa
10.210
11.117
11.785
13.182
FUgt
CONS.
13381
130fa3
12837
13S71
CALCULATED G/HR
HC CO N02
2b
2b
23
1
318
297
397
538
2Sb
551
ssa
357
CORRECTED G/HR
HC-FID CO NOX-CL
25.8
25.8
23. t
1.2
318
217
337
538
322.7
b01.7
bIS.b
381.8
VAC,
CKH MM
38.4 175
38.4 24b
38.5 2b4
38.5 282
MODE
1
g
3
1
ID MV
1.38 b.S
1.11 "1.7
1.44 10.1
1.47 11.1
CHP
51.5
51.5
-51. b
51. b
AS SPECIFIED
CTQ FC
135
135
135
13b
21.5
28.8
28.3
30.8
IN THE 7-11
BSHC
.51
.51
.4b
.02
-75 PR(
BSCO
b.23
5. 82
b.bO
10.54
BSNOX
5.80
10. Sb
11. bl
7.01
BSFC
.572
.551
.518
.Sib
—CALC
A/F
21.1
11.7
18.7
Ib.B
F/A
.017
.051
.054
.ObO
...... -G/KH
HC CO
,b8
.b8
.b2
.03
8.35
7.81
B.8S
14.13
NOX
7.78
11.70
15.57
1.10
SFC
KG/KM HR
.348
.310
.331
.3b3
ID = POO SET
-------
ENGINE-1
TABLE D-4Z. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
. .. I1*'? CHEVROLET 3SO-CID HD ENGINE-—PROJECT 11-1311
T£ST-12b RUN-01 08-30-7b Dl-PL-HEl 10PCT NAI-30BTDC
K« 1.081 HUN* 15.7 6/KG
CONCENTRATION AS MEASURED TOTAL FUEL
MODE RPM HC-FID co coa NOX-CL CARBON CONS.
CALCULATED G/HR
HC CO HOI
2 2000
3 200O
1 20UO
MODE ID
801
88
0
MV
.120 8.01
.098 9.12
.583 10.30
.37b 11.08
78
325
188
75
—UNITS AS SPECIFIED
CHP CTO FC
8.205
9.210
10.893
11.155
b?13
blb9
fabbB
8709
37
IS
b
0
198
133
721
157
IN THE 7-11-75 PROCEDURE- —
BSHC BSCO BSNOX BSFC
21
78
38
IS
— CALC—
A/F F/A
3b.b
11.8
5.9
0.0
198 23.0
133 78.1
781 11.1
157 lb.3
-— — 6/KH HR— —
HC CO NOX
b.B 189
b.B 190
b.B 513
b.B SOS
SFC
KG/KM HR
K!i lb''1 *'1 " "•" *'07 «•«" 2'35 l.fc» 8*-» -038
•17 ,n'l M II 13^ A-bH **•" 8-°° i'lf88 B3-b •»«
!'c ?2'! • * l -7 b B0'1'1 *•" 1'b°f| eo-1 '"so
1.50 19.9 9.1 81 H.e o.OO 50.78 I.b7 8.099 15.1 .ObS
5.15 29.55 3.lb ,9Bb
8.20 19.75 10.73 .90S
.88 107.17 S,b9 .978
0.00 b8.09 8.81 1.877
ID = ROD SET
d
I
TABLE 0-43. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNits
run*,: , TC.T ., 4<"5 CHEVROLET sso-cio HD ENGINE—PROJECT 11-1311
ENGINE-l TEST-18b RUN-OSR 09-01-7b DI-PL-HEl 90PCT KAI-11BTOC LESSTHAN 90PCT
KB 1.101 HUM« 17.B G/KG
CONCENTRATION AS MEASURED TOTAL FUEL
MODE RPM HC-FIO CO C02 NOX-CL CARBON CONS.
CALCULATED G/HR
HC CO N02
CORRECTED G/HR VAC.
HC-FID co NOX-CL CKM
8
3
5
b
7
2000 1798
2000 2128
2000 81b1
2000 2818
2000 32b1
2000 1352
MODE ID MV
1
2
3
*
5
b
7
1.50 1.1
l.Sb 3.b
I.b3 3.b
I.b9 3.5
1.75 3.1
1.81 3.1
1.88 2.7
.722
3.100
5.570
7.890
8.810
9.b80
9.990
—UNITS
CHP
81.7
81.7
81.8
81.7
81.7
81.7
81.7
13.93
18.79
11.18
10.30
9.32
8.81
8.18
1010
1010
530
300
170
138
123
11.b7o
lb.39b
I7.29b
17.87b
18.193
18.872
18.919
AS SPECIFIED IN THE 7-
CTO FC BSHC
215
215
815
215
211
211
211
13.
17.
51.
51.
57.9
bO.9
.30
3.20
3.87
1.71
S.bO
b.bS
9.30
19777
203fab
21727
2319b
21902
2b2b3
27b21
21
25b
309
377
•118
532
711
11-75 PROCEDURE--
BSCO BSNOX
21.58
lOb.bl
17b.b7
211.91
300.57
310.11
3b8.30
5.82
5.3b
8.7b
l.bl
.95
.80
.75
19bb
8531
11131
19355
2101b
87211
291b1
BSFC
.533
.519
.S8b
.b31
,b72
.709
.71b
IbS
989
881
131
7b
bl
bO
— CALC—
A/F F/A
15.1
13.3
18.3
11.7
11.1
10.8
10.7
.Obb
.075
.081
.085
.090
.093
.091
23.
255.
309.
37b.
117.
531.
713.
HC
.10
1.29
5.19
b.31
7.51
8.92
12.17
19bb
8531
11131
19355
8101b
87211
291b1
511. 1
173.7
811.1
lll.b
83.9
70.9
bS.8
— G/KN HR— —
CO NOX
32. 9b
113.00
23b.92
321.11
103.08
ISb. 11
193.90
7.80
7.19
3.71
2.19
1.2?
1.07
1.00
bO.9 88
bO. 9 91
bl.O 91
bO.9 B9
bO.9 8b
bO.9 79
bO.9 b9
SFC
KG/KH HR
.381
.331
.3Sb
,38b
109
.131
.151
ID = HOD SET
-------
ENGINE.1
TABLE D-44. STEADY STATE EHIS310NS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 3SO-CIO HO ENGINE—PROJECT 1
TE3T-127 Rim-01 010
CALCULATED G/HR
HC
8
3
3
3
7
lb
3b
bO
es
CO
S3b
351
bbl
1508
210b
S100
8b37
12821
15310
N02
722
813
bSfa
483
314
284
eob
142
103
CORRECTED G/HR
HC-FID
8.2
3.3
2,b
3.1
7.0
lb.3
35. b
fao.o
8».8
CO
S3b
351
bbl
1508
210b
5100
Bfa37
isaai
15310
NOX-CL
710.3
1Z3.3
751.3
528. b
V31.8
311.5
225.3
155.1
lie. 3
VAC.
CKH MH
bl.7 IB
bS.S IB
b8.1 IB
bl.5 18
bl.S 18
bl.5 18
b1.» IB
b8.b 18
b8. 3 IB
.
MODE ID
HV
CHP
.. .. _ . . . .
AS SPECIFIED IN
CTO FC
BSHC BSCO B3NOX
B3FC
A/F F/A
HC
CO
NOX
SFC
KG/KN HR
1
2
3
•»
S
(•
7
8
q
1.50
1.5fa
I.b3
l.bl
1.75
1.81
1.88
1.1*
2.00
.7
.7
.7
.7
.7
.7
.7
.7
.7
82.7
87.1
12.5
13.1
13.1
13.1
13.1
12.0
11. b
217
231
2»3
e»s
2*5
2»S
2M
2»2
2*1
»».B
»5.1
»8.1
»1.8
52.0
53.1
55. 1
57.3
58. »
.10
.01
.03
.03
.08
..IB
.31
.b7
.15
fa.bl
•».17
7.31
lb.57
31.13
5b.0»
1».11
135.71
171. lb
8.11
1.80
7.58
5.30
».33
3.13
2.2fa
1.58
1.15
.5*2
.513
.521
.535
.558
.570
.512
,b23
,b3B
18.1
lb.8
15. »
1».8
1».3
14.0
13. b
13.3
12.1
.055
.ObO
.ObS
.ObB
.070
.071
.07*
.075
.078
.!»
.OS
.04
.05
.10
.24
.52
.81
1.27
8.87
S.bO
1.11
22.22
42.82
75. lb
127.28
18it10
230. bO
11. 1S
13. 15
10.17
7.11
5.81
4.11
3.03
2.12
1.54
.330
.312
.322
.325
.340
.347
.3bO
.371
.388
ID = ROD SET
-------
ENGINE-!
TABLE D-45. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
H« CHEVROLET 350-CID HD ENGINE—PROJECT 11-*311
TEST-127 RUN-02 Oq-01-7b DI-TR-HEI WOT NOAI-1»BTOC
LOSS HUM* lb.7 G/K6
MODE PPM
1 2000
2 2000
3 2000
* 2000
S 2000
b 2000
7 2000
B 2000
1 2000
MODE ID
1 1.50
2 l.Sb
3 I.b3
* l.bl
S 1.75
b 1.81
7 1.88
8 1.1*
1 2.00
CONCENTRATION A3 MEASURED
HC-FID co co2 NOX-CL
220
220
372
bOO
11b8
21?b
2272
2*32
MV
.125 12.13
.3b3 13. *1
.771 13.78
1.2*0 13.78
l.bSO 13. b*
S.S70 11. 3b
b.800 10.53
7.370 1.11
7.100 1,b*
1323
Ib37
1183
1088
bBO
»10
330
a»s
—UNITS AS SPECIFIED
CHP CTQ FC
70.7 18b
71.5 201
83. b 211
85.1 223
Bfa.b 228
13.8 2*fa
13.8 2*b
13.7 2*b
13.1 2*5
3Q .
»2.8
*H.1
»5.2
*5.8
52.7
Sb.1
57.*
58.3
TOTAL
CARBON
13.080
13.877
1».SBS
I5.0b3
15.358
17.1SB
17.582
lb.822
17.823
FUEL
CONS.
171b2
11*1*
203bb
20502
20775
2310*
25801
2fa03b
2b**»
CALCULATED
HC CO
35
58
13
317
371
*0b
IN THE 7-11-75 PROCEDURE"
BSHC BSCO BSNOX
.»S
.58
.bl
1.10
3.»7
».OS
».*3
13.22
2b.b8
n.oi
53.35
171.32
220. 3b
251.82
2b0.1S
8.7*
1.81
8.31
b.*»
S.78
3.**
2.18
l.BS
1.33
1025
B175
15b7b
20U3
230*2
23b78
BSFC
™* *""•••
.SbO
.531
.537
.531
.521
.Sb2
,b07
,b!3
.b2b
G/HR
N02
b03
7bO
fa77
S3S
315
200
170
121
CORRECTED
HC-FIO CO
— CALC—
A/F F/A
••••••••
lb.1
lb.0
IS. 2
12!*
12.0
12. »
11. b
*•*"• ™"
.051
.Ob3
.Obfa
.ObB
.070
.080
.08*
.081
.OBb
33.1
3».7
S?!?
12. b
317.1
370, fa
*OS.S
HC
*•»••••
.bb
.bO
.77
.13
l.»7
*.bS
S.*3
5.1*
b.18
3*8
102S
2175
3*10
*SOB
15b7fa
201b3
230*2
23b7B
.......
CO
*•••»•»••
b.7b
17.73
35.71
55.10
71.55
2Z1.7*
215.51
337.70
3»8.«I3
G/HR
NOX-CL
bbO.S
832, b
7*1.2
585.*
535. 1
3»*.»
218.8
185.7
132.2
.........
NOX
•••••••»•
11.72
13. Ib
11, It
8.b*
7.75
*.bl
Z.13
l!?8
VAC.
CKM MM
52.7 15
51.3 IS
b2.3 IS
b3.S IS
b*.b IS
70.0 IS
70.0 15
bl.8 IS
bl.S IS
SFC
KG/KM HR
• «••„•«••••
.3*1
.328
.327
.323
.322
.3*2
,3b1
.373
.381
-------
ENGINE-2
TABLE D-46. STEADY STATE EMISSIONS PY EP* PROCEDURE - METRIC UNITS
1975 CHEVROLET 350-CID HO ENGINE PROJECT 11-4311
e RUN-n? o9-oi-?b DI-PL-HEI NQAI CYL TO CYL A/F-i48-i.»7Roo
K = 1.000
HUMS
1.0 6/KG
o
I
CONCENTRATION
MODE
1
Z
3
*
5
b
7
8
RPM
JOUfl
aooo
?ooo
?onn
?onn
?OUII
?0(IO
3000
HC-FID
lf.lh
4I»0
f>72
21b
17b
29S
Sb4
1884
CO
.em
.170
.IS1*
.115
.1»S
.IbH
.170
.39b
AS MEASURED
cue
13. bt
13.78
13.<»3
13.-J3
If .OP
1».23
13.78
It. S3
NOX-CL
HbO
?10
SSS
»00
S80
•»80
%30
b30
TOTAL
C4HBCN
13.SB7
13.<«95
l».lbS
I».0b9
14.242
1*.»28
l^.nt?
1».7S3
FUEL
CONS.
0
0
u
0
0
0
0
0
CALCULATED G/MR
HC
0
0
u
0
0
0
0
0
CO
0
0
0
0
0
0
0
0
Noe
0
0
0
0
0
0
0
0
CORRECTED G/HR
HC-FIO
o.n
o.n
0.0
0.0
o.n
0.0
0.0
0.0
CO
0
p
0
0
0
0
0
0
NOX-CL
0.0
o.u
o.u
0.0
0.0
o.u
0.0
0.0
VAC.
CKH MM
17. H 37B
17.1 378
17. S 378
17.9 378
17.9 378
J7.9 378
17.9 378
17.9 378
MODE
1
i
3
4
5
b
7
8
in
1
e
3
4
5
b
7
8
*W
I1*.1*
n.9
it. 9
14.9
11.9
lt.9
lt.9
n.q
CHP
?-».o
e».o
e».o
s».o
2H.O
a».o
24.0
?».o
AS SPECIFIED IN
CTQ FC
b3
b?
b3
b3
b3
b3
b3
b3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
THF 7» 1 1
B3HC
0.00
0.00
0.00
0.00
n.no
0.00
0.00
o.on
BSCO BSNOX
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
n.oo
0.00
0.00
0.00
BSFC
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
A/F F/A
15. *
15. S
IS. 7
15.8
IS.b
15.1
15.8
15.0
.Ob3
,0b3
.Ob*
.Ob3
.ObH
.Ob5
.Ob3
.Ob7
HC
0.00
0.00
0.00
o.ou
0.00
0.00
0.00
0.00
CO
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
NOX
o.ou
0.00
0.00
u.oo
O.OD
o.ou
o.ou
0.00
KG/KH H"
U.OOU
O.PUO
0.000
o.noo
u.oou
0.000
o.noo
o.oou
ID = CYLINDER
u>
-------
TftRLfc D-47.MSS EMISSIONS HY NU'E-MQOE fPA - MF-TRIC UNITS
O
I
ENGINE-]
MODE
2
3
»
5
b
7
8
1
t
3
H
s
b
7
H
-,
es PCT
55 PCT
25 PCT
in PCT
2S PCT
in PCT
2s PCT
C.T,
IDLE
25 PCT
SS PCT
25 PCT
10 PCT
2S PCT
1i) PCT
2b PCT
C,T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
1175 CHFVROLET 35n-CIO HD ENGINE—PROJECT 11-1311
TES1-1?1 WIJN-01 I11-0.3-7b UI-pL-Htl NOERR-NOAI-lIB NOVA-1 .11RODS+BA K»
CONCENTRATION
HC-FIO co
ihQ
832
*R«
Rib
Rlhi)
H80
hlhOH
1 152
1120
I'M
lib
innfln
8HI1
7n«*nn
5.710
1.137
.SP3
1.137
1 ,3Mb
3.700
h. 130
1.077
1.038
,tB3
U137
1.0(10
3.h«iO
AS MF4«
C"?
10.11
11.23
11.23
11. St
11.23
1 I. hi
11.23
S.no
10.07
It. 23
11.23
It. 23
11.70
11.23
11.23
5.11
SIS
1 183
SIS
2hS
510
ett,
520
23
SI
Sin
525
?SS
S20
822
520
23
TOTAL
CARRON
lb,H77
ls|l7B
lS,»b2
iS.tbO
13,111
IS, hi'*
lb.220
lb,h?3
1S.H38
15.171
15.37K
lb.221
15.217
13.712
15,331
lb.3H1
FUEL
G/HR
17b1
11787
7131
1707
21017
1707
181"»
17b1
1718
1*878
Iblb
7318
i;i8
20775
1707
..-!—..
CALCULATED G/HR
HC CO NOX
38
107
51
Ib
51
1517
811
IS
83
125
b7
18
bl
1702
b«
811
1238
13bO
IbSO
$78
318R
Ibl2
R3b
1318
1381
Ib2b
1311
12SB
1271
807
2
111
1*0
117
117
Ibb
118
1
2
118
120
*$
121
»S3
ieo
i
WT,
FACT,
.232
,077
.1*7
.077
.057
,077
,113
.077
,l»J
.232
.077
,077
.057
,077
.113
.077
.113
1.017
HUM! lb,9 G/KG
WEIGHTED G/HR
HC'FID CO NOX»CL
8,1
17l|l
120,3
10,*
IB)*
5,2
1.1
1.7
112,3
120.8
287
105
110
33
111
12*
120
30b
lOb
231
101
27
17
312
IS
US
.»
B.b
ki.7
».*7
9.0
58.7
1,1
.1
,5
1.1
b3.3
2,b
1.3
51,1
9,2
.1
0.0
17.3
98 0
17.3
b.8
1?,3
bS.b
17 H
0,0
u • o
17, •»
38,1
17.3
b.8
!».»
bp.b
17. H
0,0
VAC,
H75
319
31b
IbS
31b
20
b30
175
39b
211
tbS
31b
39b
h30
MOOE
2 2S
3 55
» 25
5 10
b 25
7 9Q
8 25
1 CT
2 25
3 SS
* 25
5 10
h 25
7 10
8 2S
1 CT
T*n
H)
----UNITS AS SPECIFIED IN THE 7-11-75
I" MV CHP CTO FC HSFC
18
IS
1
IS
IS
is
is
?•«
1R
IS
s
1 S
IB
is
IS
24
SllH.--
SHM---.
.7
.?
. 7
.b
. 3
.h
.*
.h
.»
.7
.^
.»
.b
.3
«b
.1
• *>
. °
(CO
ll-n
0.0
21,?
si, n
23.?
1.1
23.3
H3,1
21.3
n.n
o.n
23.3
SI , t
21.3
1.1
23, J
SH.O
21,3
o.n
MHOSITfc
•4PI1I3 T TC
CYCLF crvpnsMf. -
—
0
h 1
1 31
bl
2t
hi
??0
bl
n
n
hi
131
bl
?t
hi
??1
hi
0
VAKIL H
y A L(lf t (
3.1
20,?
32, b
21.2
lh.1
21. H
>»b.H
21.1
1.0
3.1
21. b
32.8
?1 .<"
lh.?
f 1 .»
HS.8
21.1
f.M
'H r.YCLF
\Lr r Y i" i f
r 1. ' l_ L L.
Mt - r
CO- N
t'lX-C
R
.870
,btO
• US
I.BP2
,120
,SS3
.111
R
p
,II?R
,b*f
.H!
1. 778
,12R
.5»S
.1 11
H
]).. — _...
in n.js(
u 1R n.sst
1 n.JS(
PROCEDURE-—
B8NOX F/A
R
1.8
8.3
5.1
^l
S.b
5.1
R
R
5.1
8.5
5.2
5.0
S.I
5.S
5.?
H
IB. t)
H 7 . II )
H.H)
.078
.070
,0b8
.070
.ObB
,070
.Obi
.071
.08*
,071
,070
.Ob8
,0h1
,0b8
,0b1
,0b3
.Obi
.081
+ n.
* 0.
* "•
SFC
KG/KW HR RPM
R
,sei
,381
,555
l.Olb
,5bO
,33b
.551
R
R
,Sb«
,311
,551
1,082
.Sh*
.332
.551
R
bS( 20
h!>( 81
bS( 8
HC +
bOO
2000
2000
2000
?oon
2000
2000
2000
2000
bOO
2000
2000
2000
2oon
2000
2000
20on
2000
.0) 3
,1) ~
.5) =
NOX =
SFC a
CALC
A/F
1Z, 8
M.3
H ,b
11.3
11,7
1*«3
IS.b
I*. 2
11.1
12,7
11,3
11,1
IH.b
11. S
15.8
11,5
11.1
ll.tbl
83,385,
H.«tb7
27,128
,1bR
HC
l!i
1 1
.3
1.3
51.1
35|l
?.1
l!«
5.0
1.1
.3
1.3
52.8
1.3
33.2
18, t
20,0
G/KH
(;/KW
G/K*
G/KW
KG/K«
CO NOX FUEL
18,2
b.b
15.3
b.1
7JO
28.5
7.8
7.b
20, b
7.2
lb.1
b,8
1,8
b.S
2b,S
b.b
7.8
87
81
HR
HR
HR
HR
HR
,3 1.8
• — ' W
S.b 8,2
10,3 25,3
5,9 B.b
1,8 1,1
S.I 8,7
31.1 27,7
5,1 8, 7
.1 3,0
.3 1,8
5.1 8.8
»1.0 25, »
b.O 8,b
1.7 1,9
b.O 8,8
33.1 27.2
b.O 8,7
.1 3,0
8.1
D , T
8,5
(11.512 BS)
(b2.180 BS)
( b,311 PS)
(2U,82b BS)
( ,7b1 BS)
POWER
0.0
7,3
30. H
J U t T
7 3
» t •»
2.1
c- f *
7t 3
7§ j
n.o
0.0
VI ( W
7.3
r t j
30,1
7.3
r t J
2,1
7,3
38,5
7.3
* f *
0,0
-------
TAHLfc D-48. MASS EMISSIONS HY N1NF.-MODE EPA - METRIC UNITS
ENGP4E-1
TfcST-1?1* RUN-HP
1975 CHtVHOLlt 35H-C1D HO ENGINE —PROJECT 11-4311
09-03-7h OI-SAME AS RUN 1 tXCEPT BPEGR .S3X7COIL
1,098 HUMs lb,4 G/KG
m!MrF»IT»ATTllN AS MFASIJHF.D
MODE
1 IDLE
2 25 FCT
3 55 PCT
4 2S PCT
S 10 PCT
b 25 PCT
7 90 PCT
8 25 PCT
1 C.T.
1 lOLt
8 25 PCT
3 55 PCT
4 8s. PCT
5 ID PCT
b ?5 PCT
7 90 PCT
8 2S PCI
9 C.T.
T
T
T
T
T
T
T
T
T
7
r
T
f
HC-FID
19R4
912
72U
7bN
•tan
33920
"l"f"~
tit*
112U
1 int
inon
97b
7200H
CP
J.i' in
1.137
.9*5
l.)9R
1.178
1.057
1.514
1.810
b . 5 7 |)
till?
I.SR9
1 .f)3B
U018
l.bSO
1.400
CO?
9.1?
1 3.15
13.93
13.78
l-».?3
13.91
1 3,b4
13. b4
4.14
>.?t
13. 15
13,93
13. 7B
13.93
Il.bt
13. b4
1 3,b4
4. fab
NOX-Cl
tg
bOO
178
2b5
1230
21
3fl
2b(l
255
1RO
1300
23
TOTAL
CARBON
12.371
14,590
It.9b9
14J75b
IS. 19b
It , 75?
lb.2Sh
11.59J
15.092
15.194
ls)(J3h
15,401
15.401
15,797
FUEL
G/HR
17b9
JOII24
15785
9934
7?S7
9752
20321
9798
1950
I7b9
98BB
15981
9934
7303
9888
20418
9888
1905
CALCULATED G/HR *T,
HC
38
71
100
54
J4
5b
75
bb
b!3
59
100
131
81
33
73
101
72
933
CO
875
1577
2018
1597
* 94
1587
8948
19b4
1895
Ibt3
8103
8*0b
8058
1019
8140
8140
828
NOX
8
71
889
bl
32
b2
bit
bl
1
1
b8
880
59
32
59
bS8
59
1
FACT,
.238
,077
,117
,077
,057
,077
.113
.077
.us
,832
,077
,077
.057
,07?
,113
,077
..!"!..
WEIGHTED G/HN
HC-FID
7.3
s.s
14,7
1,2
.8
1,3
8.5
5.1
87, b
13.7
7,7
b|8
1.1
S,b
11.1
5,5
133,4
CO
803
181
89b
183
28
118
332
151
185
381
Ib8
354
158
58
IbS
328
IbS
118
NOX-CL
.5
5.5
33.7
1.7
1.8
1.7
b9.4
1.7
•*
.3
1.8
3«.1
4,b
1.8
4,b
73.7
l.b
.1
CKt*
0.0
17,1
38,3
17,4
b,8
17,5
bl.O
17.5
0,0
0.0
17,5
38,3
17.5
b,B
17,5
b3,0
17,5
0.0
VAC.
MM
475
3b8
15?
3b8
444
3b8
80
3b8
blO
455
1b8
158
3bB
444
3bB
80
3b8
bin
MODE
i
2
3
4
5
7
R
9
|
8
3
4
5
b
7
8
9
e-s
55
25
I n
?5
90
fT
I
25
5,5
?5
10
25
TT
ID
ID
O.OR
.it
.it
. "i
n. 1 1
0,"«
~o~c,~
Lit
i . J t
l.ni
I.It
0 1 1
i.it
II, (I R
SIM
SH'
c
z I f .' T
....UNITS AS SPECIFIED IN THE 7-11-75
MV CHP CTO FC H3FC
1ft
It
b
1 7
It
1 1
?t
17
b
1 1
1 7
It
1 1
...
...
/\KF
.7
.5
.n
^
.5
. 8
5
.8
, q
.0
, 5
.5
• ^
.5
(.
(f
11
r
n.n o 3.9 P
23. H bl ?2.l .91b
S1.1 135 3H.B ,b7B
?3.» bl 81.9 .137
9.? 24 lb.0 1.749
8.1.4 bl PI. 5 .919
H4.5 ?2? 44, B .53P
?1 4 bl Jl.b .923
n.o 0 4.1 C
n.n n 3.9 H
23.4 f, I ai.B .931
5.J.4 115 35.1 ,b83
?3.t bl 21.9 ,93h
9.? ?t If.. 1 1 ,7«;8
B4S ?«'? 45. n .53?
r>1.» h? ?1.P ,9il
n.n i. '».? k
SI Tf - Hf- K I I' H. 3"if
(p. i||'[B f'.35t
Pt"
PROCEDURE —
BSWOX F/A
R
3.1
3.5
2.7
7.4
R
R
2.7
4,4
2.b
7!9
*R
7.b)
85.1.)
b.9)
,058
,0bb
,0fa8
.OfaS
,0bh
,0b9
,0b7
Obi
,058
,0b9
,0b9
,0b9
,f)70
,0b8
,0711
,Hb7
.1)70
,OB?
+ o.
+ 0,
SFC
KG/KW HR
R
.575
|570
1.0b»
.559
,383
,5bl
R
H
,5b7
.HIS
,5h9
1.0h9
,*Jbb
.324
.Sbh
R
b5( 11
h5( 103
b5( 7
HC +
RPM
bOO
8000
8000
2000
2000
2000
8000
2000
2000
bOO
8000
8000
8000
POOO
2000
8000
2000
2000
.3) *
.8) =
, 0 ) s
NOX *
SFC ='
CALC
17.3
IS.l
14, B
15.1
11, b
15.0
11.5
17.3
14,5
14. b
14. b
11.8
H.7
11.3
15.0
it. 3
9,980
97.458
b.937
lb.917
.474
HC
5,1
io!b
3,0
,b
3.1
b.8
3.7
bl.S
b,7
3.8
9,b
3.0
g'.B
s,s
2.7
b5,l
7,b
11.1
G/KH
G/K«
G/KW
G/KH
KG/KW
CO NOX FUEL
13.0
7,8
19.0
1.8
7.5
81.3
1.7
11.1
80,2
B.b
18.7
8.4
3.1
8.7
17.1
8.7
Bb
104
HR
HR
HR
HR
HR
ill
i!»
1,1
3.8
55.4
3,7
.1
.2
3.8
25.5
l.b
l|b
58.1
3,b
.1
b.9
7,n
( 7.442
(72,b74
( 5.173
(18,bl5
( .780
8J8
8J7
1.7
8.b
8b,8
B.b
3.8
t,7
8,7
?b.b
8.7
8.7
2b,2
8.7
3.1
BS)
B3>
83)
83)
B3)
POnER
0.0
7.3
30,1
2.1
7.3
38,5
',3
0,0
0,0
7.3
30,1
7.3
2,1
7.3
38.5
7.3
0,0
-------
T/1HU D-49. K4SS tMSSIOMS HV
F.PA - *f TRIC UNITS
F.NGIUfl
1175 CNFVROLtT 3«,"-CIt> HO FNGINfc——PROJECT U-1311
0.9-n.1-7b OI-SAMt AS MUM 0? EXCEPT WAlXCT
K3 1.093 HUM* lt,,S G/KG
d
I
fONCFNTRATTUN
«oot HC-HD cn
J IDLE HUH
2 25 PC T T 1 (11
3 55 PCT T 9j
1 25 PCT T bh
5 10 PCT T h»
b 25 PCT T 5fe
7 in PCT T 52
B 2S PCT T in
9 C.T, 7?nPP
1 IfjLF MPO
2 25 PCT T 272
3 55 PCT T ?np
1 25 PCT T 111
5 11 PCT 1 llh
b ?S PCT I inn
7 1'J PC f T 9s
R ?5 PCT T Rh
9 C.T. moon
........
Moor in '.v
1 1 o,n« IP. 7
2 25 ,11 11.5
3 55 .27 b.O
1 25 .11 l».h
S in .01 17. s
b 25 ,11 11.5
7 in P,l 1 .»
B 25 1.11 11.5
9 CT 0,118 ?*,9
1 I • n.lifl IH.7
2 ?5 ,11 Jt.b
3 55 .27 h.n
1 25 ,11 11.5
5 10 ,P| 17.5
b ?5 .11 1^.5
7 1U 0.1 1 .8
R 25 1.11 11.5
9 CT O.im ?I.H
Si jf*... ( r o^
Si!* :••. t ro^i
T»fi crCLf Cr.'-'F'.iRt
ID s iNTAKf- CI12
1.2HH
.181
.17(1
.1»9
.nIR
.115
. m
.Clfi
}.?)!)
1.III1P
.159
.117
.1119
.1193
.115
.193
,(|9H
2. 250
JITS AS
THp
O.n
?3.1
51.*
29,1
9,2
?1.1
81.7
".5
n.n
fi.O
'3.5
51.5
?3.5
".2
23.5
P« .R
R3.5
"."
•Jfic t T (.
'o j ' r
r f -
AS MFASURFP
CC2 NOX-CL
9.??
1 I.1S
1 1 .hi
1(1.53
1 l.bl
1 ?.*«5
1 1 .hi
5.. 10
12.79
1 l.M
12,52
1 1 .hi
111.53
1 1.1H
12.79
11. bl
h.b5
» 7
1 IP
R3
151}
111?
) 55
21
2«
HR
1'S
155
9P
155
12M7
lh?
2h
TOT AI.
CARbOf,
10.511
1) ,h73
12.7PP
11.72b
10. H5
11.731
12.HHH
11 .71?
15.957
13.880
11,799
I?.b9(l
11.735
ll.bUb
12.993
11.717
13.229
SPfCIFTFli IN THf J.ll.je,
CTtt
P
b)
135
b2
21
h?
?2?
b2
0
n
b2
135
HP
2"
h?
721
b?
r,
I t1 1 1 '!• CTiG
» *• L ' c r u "
FT
1.P
22.1
'5,9
21. B
lh. 1
21 .5
15. 1
21.1
1.3
3.7
21.7
35.7
f \ ,f-
Jh.1
?1 ,5
15.4
?J.1
1.2
r vr i F
\, f i, t r
r y r i L
1 * i- L r
Hf-
co-
^ OX-
BSFC
K
.959
,b11
,931
1 ,7Sb
,917
,533
,9] 2
P
P
,q21
.•"13
.9?(l
1 ,7»3
.911
.5.41
.IT:"
*
FlP H.3S(
M. IK P. 4S(
CL n. J5 (
FUf t
G/HR
1B11
lOlbd
lh2B1
9PRR
7303
1752
20157
9707
1950
lb7R
9813
lb)93
979P
7139
9752
PP51R
9707
1105
CALCULATED
HC CO
9
10
13
b
S
S
9
1
117
11
25
21
13
1
10
17
B
b23
PROCEDURE"*"
HSNOX F/A
R
I.1'
3,8
2.0
?.3
?,P
'.'
2.0
R
R
1."
».o
?,P
2.5
2.1
H.3
?.l
H
7.H)
23.2)
h.1 )
,011
.053
,057
.053
,011
.053
.058
,053
,082
,0b3
.OS*
.057
,P51
,n»9
,053
.P59
.053
,0b5
4 P.
4 0,
+ o.
132
319
110
IBb
135
192
bll
Ib3
793
211
2b7
380
181
131
191
blS
U3
b55
Sf r
ore
KG/KM
R
,583
,H?5
,Sbb
I,0b8
,558
.321
.555
R
R
,5b?
,H?1
,559
1.181
,S5b
.325
,553
H
b5(
H5(
b5(
HC
G/HH
NOX
1
13
111
1b
21
15
b12
17
1
1
IS
201
23
17
big
11
1
HR RPH
bOO
2000
200D
2000
2000
2000
2000
2000
2000
bOO
2000
2000
2000
2000
2000
200(1
20on
20(10
5,b) *
19,0) a
b.B) =
t MOX x
SFC =
FACT)
,232
,077
.077
,057
,077
.111
,077
.113
.232
|o77
,117
,077
,057
,077
.113
.077
.113
CALC
A/F
?0 1 b
18.8
17.1
18.8
20, b
18.8
17,2
18.8
12.2
15.1
IB. 7
17, »
18,8
20. b
19,0
17. n
18. R
15.1
b.113
20,1b5
h.hfcti
13,079
.175
WEIGHTED
HC-FIO CO
2,1 100
.8 25
1.1 b5
.5 11
.3 8
,1 15
1,0 70
.3 13
U5, <» H3
2.5 57
1,1 21
1.? Sb
1,0 11
.5 7
,8 15
1,1 70
,b 13
89,2 9H
C/HR VAC,
NOX-CU CKM MM
,t 0,0 175
3,3 17.1 3bB
28,0 38.3 152
3,5 17,5 371
1,2 b,B 111
3,5 17,5 3b8
7J, b b3,2 to
3,b 17,5 3bB
.1 0,0 b30
,3 0,0 175
3,1 17,5 371
29, b 3R,1 152
3,b 17,5 3b8
1.3 b,1 111
3,b 17,5 3b8
78,3 b3.3 20
3,8 17, S 3b8
.2 0,0 b30
HC CO NOX FUEL POWEH
1,5 23,8
.5 5.8
1.1 15.3
.3 3.1
,2 1.8
.3 3.5
.7 Ib.fa
.2 3,0
11.9 2b,8
2,5 lb,1
1,9 h'.O
1.1 lb,2
1.0 1,1
.5 2,2
.8 1,3
1.1 20,1
.«• 3,b
Bb.1 27,1
70 a ^
»H 23
5, h 19
G/KK HR
G/KH HR
G/KK HR
G/Kr» HR
KG/KH HK
.2 1,7 0,0
8.8 8,8 7,2
81.2 27,0 30,1
3,0 B,b 7,3
1.0 1.7 2,1
3.0 8.5 7.3
bf, 5 2h,l 38,5
3,1 8,H 7,3
.1 3.1 0,0
,2 1,1 0,0
2,8 8. fa 7,3
23,1 27.1 30,1
2,1 8,b 7,3
1.0 1.8 2,1
2.9 8,5 7,3
t-3,11 «b,H 38,5
3.0 8,5 7,3
.2 3.1 0,0
b.1
b,B
( 1.782 BS)
(IS.ebl BS)
( 1.971 BS)
( 9,753 BS)
( ,781 BS)
-------
TiFtir. D-50. USS H"1SSION3 BY NW-MQDt EPA - METRIC UNITS
ENGINE-1
1975 CHf VBOU-T 3SO-CID hD ENGINE—PROJECT 11-1311
RUN-3XA t»i-n.3-7b OI-RUN 03 WITH "ODE i AT IIOONLRPM •
Ka
HUMS lb,7 G/K6
o
I
MODE
I IDLE
2 25 PCT 1
3 55 PCT T
1 25 PCT T
S 10 PCT T
b ?s PCT T
7 10 PCT T
8 25 PCT T
1 C.T.
1 I OLE
2 25 PCT T
3 55 PCT T
1 ?.S PCT T
5 in PCT T
b 2S PCf T
7 10 PCT T
8 25 PCT T
«ODK 10
1 I
f 25
3 55
1 PS
5 10
b 25
7 In
8 ?•;
9 CT
1 I
2 25
3 55
1 25
5 10
b 25
7 in
R 25
1 CT
sin
S.I'-
T*n CYCLf
in =
HC-FID
1RR
1 Ul
12
hb
ht
Sb
to
?21
Rjnn
?7
-------
oo
EN6INE-1
TABLE D-51.MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
1975 CHEVROLET 350-CID HO ENGINE—PROJECT 11-1311
TEST-189 RUN-3XB 09-03-7b DI-RUN 03 KITH MODES 7+9 INSERTED-R5M3+1M1
K= 1.095 HUM* lb.7 G/KG
MODE
1 IDLE
e as PCT T
3 55 PCT T
i as PCT T
5 10 PCT T
b as PCT T
7 in PCT T
8 85 PCT T
9 C.T.
1 IDLE
a as PCT T
3 55 PCT T
i as PCT T
5 10 PCT T
b 85 PCT T
7 90 PCT T
e as PCT T
9 C.T.
MODE 10
1 I
a as
3 55
i as
5 10
b as
7 «»0
B as
9 CT
i i
a as
3 55
i as
5 10
b as
7 «»o
B as
9 CT
CONCENTRATION
HC-FIO CO
188
101
98
bb
b*
Sb
88
10
aai
800
a'a
800
111
lib
108
86
8b
881
i.Bio
.181
.170
.109
.098
.115
.385
.0*8
.Obi
1.000
.15*
.1*7
.10^
.O'lS
.115
.sas
.098
.Obi
-—UNITS A3
MV CHP
18.7
1». 5
b.O
l».b
17.5
M.5
1.7
1».S
ai.3
18.7
11. b
b.O
1V.5
17. S
11.5
1.7
11.5
ai.3
0.0
83. »
51.1
83. »
•».?
83.1
85. a
83.5
0.0
0.0
83.5
51.5
83.5
•".a
83.5
85.8
83.5
0.0
SUM*-- (COMPOSITE
SUM— -t COMPOSITE
THO CYCLE
ID s
COMPOSITE -
AS MEASURED TOTAL FUEL
C08 NOx-CL CARBON G/HR
9.aa 17 10. sit iBii
ll.»8 135 H.b73 lOlbO
18.5? 110 18.700 IbaBI
11. bl ISO 11. ">lb 9888
10.53 83 10.b3S 7303
11. bl ISO 11.731 9758
11. 8b SlO 15.195 81818
11. bl 155 11.718 9707
8. 18 35 8. SOS 3810
18.79 a8 13.880 Ib78
11. bl 118 11.799 9S13
13.58 135 18.b90 Ibl93
11. bl 155 11.735 9798
10.53 90 10.b3b 7*39
11.18 155 11. bob 9758
11. Bb 510 15.195 8iei8
11. bl Ib3 11.717 97Q7
8.18 35 8.505 3810
CALCULATED G/HR
HC CO NOx
9
10
13
fa
5
5
H
1
11
11
85
89
13
9
10
1»
a
11
SPECIFIED IN THE 7-11-75 PROCEDURE—-
CTO FC B8FC B3NOX F/A
0 1.0 R R
bl 88.1 .959 !.9
135 35.9 ,b99 3.8
b8 81.8 .931 2.0
8» lb.1 1.7Sb 2.3
b8 81.5 .91? a.o
88"» »8.1 .Sbl 3.8
b8 81.1 .91? 8.0
0 8.1 R R
0 3.7 R R
b8 81.7 .981 a.O
135 35.7 .b93 1.0
b8 81. b .980 8.0
81 lb.1 1.783 8.5
b8 81.5 .911 8.1
88» »8.1 .Sbl 3.8
b8 81.1 .909 8.1
0 8.1 R R
HC- FID 0.3SC .5)
CO- NDIR 0.35( 19.1)
NOX-CL 0.35( 1.1)
.019
.053
.057
.053
.019
.053
.ObB
.053
.039
.Ob3
.051
.057
.053
.019
.053
.Ob8
.053
.039
4- 0.
* 0.
+ 0.
138
319
110
l«b
135
193
918
Ifa3
55
811
8b7
380
181
131
191
•«18
Ib3
55
9FC
KG/KM HR
R
.583
.»aS
.Sbb
l.ObB
.558
.313
.555
R
R
,5b8
.»81
.559
1.081
.SSb
.313
.553
R
bS(
bS( Ib
bS( 1
HC +
1
13
191
Ib
ai
IS
8bb
17
b
1
15
802
17
83
17
8bb
19
b
RPM
bOO
8000
8000
8000
8000
8000
800O
8000
1100
bOO
8000
8000
8000
8000
8000
8000
8000
1100
.8) =
.3) »
.8) =
NOX a
SFC s
WT.
FACT.
.838
.077
.117
.077
.057
.077
.113
.077
.113
.838
.077
.I"
.077
.057
.077
.113
.077
.113
CALC
A/F
80. b
18.8
17.1
18. B
80. b
18. B
1».7
18.8
85.5
15.9
18.7
17.1
18. B
80. b
19.0
I1*. 7
18.8
85.5
.709
17.391
1.170
1.878
.197
WEIGHTED
HC-FID CO
8.1
.8
1.9
.5
.3
.»
l.b
.3
1.5
a. s
i.*
».8
1.0
.5
.8
l.b
.b
1.5
100
as
bS
11
B
15
10b
13
8
57
81
5b
11
7
IS
lOb
13
8
G/HR
NOx-CL CKH
.8 0.0
3.3 17.1
88.1 38.3
3.5 17.5
i a b B
* . *• w . °
3.5 17.5
30.1 b3.S
3.b 17.5
.B 0.0
.3 0.0
3.5 17.5
89.7 38.1
3.b 17. S
1.3 b.9
3.b 17.5
30.1 b3.5
3.8 17.5
.8 0.0
VAC.
MM
175
3bB
158
371
9} If 9}
3b8
13
3b8
511
175
371
158
3b8
111
3b8
13
3b8
511
HC
88.7
8.8
80.5
5.0
a."*
».8
17.8
3.0
lb.1
i?. a
13.1
88.1
' 7.0
3.1
5.2
11.0
1.1
10.5
.5
• 8
G/KH
G/KH
6/KM
G/KH
KG/KM
CO NOX FUEL
88.1
b.9
18.3
».l
8.8
1,8
30.1
3.b
a. a
19.1
b.9
18.8
1.8
8.5
5.0
35.9
1.8
8.7
19
Ib
HR
Hfl
HR
HR
HR
.3 1.5
1.1 8.1
37.8 as.8
1.8 8. a
l.b IS
* • f • —
1.7 8.1
10. s at.b
».B 8.1
1.1 5.9
.1 1.8
1.5 8.8
38.7 85.8
1.7 8.8
1.7 l.b
1.8 8.1
39. a 8b.B
».* 8.1
1.1 5.9
1.1
1.8
( .589 BS)
(18.971 BS)
( 3.109 BS)
( 3.b38 BS)
( .Bib BS)
POwER
On
• u
7 g
' • c
30.3
7 P
• • •
Bl
• *
? a
* • ™
38. b
7.3
0.0
0.0
7.8
30.3
7.8
3 1
t . *
7.3
38. b
7.3
0.0
-------
APPENDIX E
ELECTRONIC FUEL INJECTION EVALUATIONS
E-l Summary of the Results
E-2 through E-71 Computer Printouts
-------
TABLE E-l. FUEL INJECTION EVALUATIONS - ENGINE 2
Test Run Type
No. No. Test
21? 1 9-EPA
2
3
4
1 fe 2 WOT
3 fc 4 WOT
214 1 9-EPA
2
3
4
215 11-14 S.S.
215 1-6 S.S.
215 X 9-EPA
M EGR 1-15 S.S.
1
^ 216 I 9-EPA
2
217 1 9-EPA
3
5
217 1.3&5 S.S.
218 1 9-EPA
2
218 1&2 S.S.
233 1 9-EPA
2
3
4
1 , 2 fc 3 WOT
4 WOT
Description
Carb. 6606, Port Liners W/O Air
Carb. 6606, Port Liners W/O Air
Carb. 6606, Port Liners, With Air
Carb. 6606, Port Liners With Air X-CT
Carb. 6606, Port Liners W/O Air
Carb. 6606, Port Liners With Air
Fuel Inj. ECU at 250, Std. Tim, PL W/O Air
Fuel Inj. ECU at 250, Std. Tim, PL W/O Air
Fuel Inj. ECU at 350, Std. Tim, PL W/O Air
Fuel Inj. ECU at 150, Std. Tim, PL W/O Air
Fuel Inj. Air/Fuel Cyl to Cyl Checks at
Various Power Settings
HC
5.173
5.163
11.681
2.777
4.94
0. 79
8.639
7.273
6.107
7.673
Gram/kW Hr
29.058
30.643
16.102
15.595
252.68
118.83
62.938
45.319
88.930
12.932
12.305
12.009
10.689
11.328
5.44
4.27
8.390
8.948
8.467
8.954
HC-fNOv
17.478
17.172
22.370
14.105
10.38
5.06
17.029
16.220
14.574
16.627
Modal Fuel Inj. Evaluations at Various ECU Settings
Fuel Inj. - Modes Selected for Best BSFC
Modal Evaluations with Manual EGR
HEI - 14BTDC at 2000, 250 ECU, PL W/O Air
Same Conf. as Run 1 + Vac. Adv.
Modally Optimized EFI-HEI-WVA-EGR-PL W/Air
Air/Fuel Ratio Check for Test 217
Modally Opt. EFI-HEI WVA-EGR-PL W/Air,
1700 NLRPM
Air/Fuel Ratio Check for Test 218
EFI-TR-HEI NOAI-14BTDC-250 ECU x Old Hookup
570 ECU x New Hookup
Same Conf. as Run 2 but WAIXCT
1.271
5.265
6.266
1.219
1.499
1.240
1.325
1.254
5.162
4.715
4.102
2.491
3.14
1.76
15.897
66.411
77.160
34.517
20.421
36.347
31.783
36.292
73.651
76.652
74.008
16.389
223.71
214.74
12.027
8.262
12.526
4. 754
6.179
5.189
5.406
5.671
9.167
8.481
8.380
8.335
1.30
1.28
13.298
13.527
18.791
5.973
7.678
6.430
6.731
6.924
14.329
13.196
12.481
10.826
4.44
3.04
Kg/
kW-hr
SFC
.464
.465
.464
.460
.369
.362
.448
.442
.453
.472
E-8
.435
E-31
.450
.406
.392
.386
.399
E-27
.427
.429
.433
.428
.440
.445
.371
.372
Appendix
Table
C-32
C-33
C-34
C-35
C-36
C-36
E-2
E-3
E-4
E-5
E-6 &
E-7
- E-ll
E-12
- E-21
E-22
E-23
E-24
E-25
E-26
&E-28
E-29
E-30
E-31
E-32
E-33
E-34
E-35
E-36
E-36
-------
TABLE E-l (Cont'd.) FUEL INJECTION EVALUATIONS- ENGINE 2
Test
No.
W
CO
241
243
244
245
Run
No.
Type
Test
234
235
237
239
239
240
240
1
2
1A
IB
2
1R
2R
IX
2X
1-6
X
1-5
X
XDC
9-EPA
S.S.
9-EPA
S.S.
9-EPA
S.S.
9-EPA
1
2
1
2
3
1
2
3
4
5
6
7
8
9
1R
2R
3R
S.S.
9-EPA
S.S.
S.S.
Description
EFI-TR-HEI NOAI-14BTDC-Equiv.ECU as Test 215 0.967
Same Conf. as Run 1 but WAI
EFI Cyl. to Cyl. Air/Fuel Check - ECU 470
EFI Cyl. to Cyl. Air/Fuel Check - ECU 625
EFI A/F Check - ECU 625 - Lean Inj. in Cyl. 2&4
EFI-TR-HEI WAIXCT-14B-570 ECU-BPEGR
WVA .531-7C
Run 01R with Inserted Mode 7
Run 02R with Inserted Mode 7
EFI-TR-HEI NOAI-14BTDC at Various Power Modes
EFI-TR-HEI Modal NOAI - 14 BTDC 0.308
EFI-TR-HEI NOAI - Lean Optimization Evaluations
EFI-TR-HEI Modal NOAI MVA14, 24, 30-ECU-ID
EFI-TR-HEI Modal NOAI MVA CT 1350 NLRPM
Effect of Injection Timing EFI-TR-HEI WAI
Effect of Injection Timing EFI-TR-HEI WAI
EFI-TR-HEI-MEGR.53 WAI-16B WVA
EFI-TR-HEI-MEGR.53 WAI-16B WVA
EFI-TR-HEI-MEGR.53 WAI-16B WVA
EFI-TR-HEI 14B-NOAI Effect of A/F at WOT
EFI-TR-HEI 14B-NOAI-WEGR Effect of A/F-WOT
EFI-TR-HEI NOAI-14B-MAXEGR.53XM1 90 Pet
EFI-TR-HEI NOAI-14, 16,18, 20B-MAXEGR. 53 90
EFI-TR-HEI NOAI-14B-Effect of A/F 55 Pet
EFI-TR-HEI NOAI-14B-Effect of A/F 25 Pet
EFI-TR-HEI NOAI-14B-Effect of A/F 10 Pet
EFI-TR-HEI NOAI-24B-MAXEGR. 53 55 Pet
EFI-TR-HEI NOAI-30B-MAXEGR. 53 25 Pet
EFI-TR-HEI NOAI-MAXEGR. 53-335 to 305 ECU
EFI-TR-HEI NOAI-MAXEGR. 53-265 to 255 ECU
EFI-TR-HEI NOAI-MAXEGR. 53-1 50 to 175 ECU
Gram/kW Hr
HC
0.967
0.114
0.899
1,036
0.379
0.541
CO
17.408
2.701
67.456
70.027
6.107
10.522
NO,,
12.697
13.786
5.013
9.784
6.853
11.628
HC+NOx
13.664
13.900
5.912
10.820
7.232
12.168
Kg/
kW Hr
SFC
.415
.413
.460
.414
.437
.391
Appendix
Table
E-37
E-38
E-39
E-40
E-41
E-42
E-43
E-44
E-45
5.906 9.360 9.668
E-46 - E-48
.416 E-49
E-50 - E-52
0.310
0.601
0.216
0.267
0.279
6.940
7.825
6.952
8.832
13.595
9.395
9.415
4.579
3.938
3.882
9.705
10.017
4.795
4.204
4.161
.388
.417
.395
.395
.389
E-53
E-54
E-55
E-56
E-57
E-58
E-59
E-60
E-61
E-62
E-63
E-64
E-65
E-66
E-67
E-68
E-69
E-70
E-71
-------
TiRLE E-2. M4ss FJMTSSTONS BY NIMf-HOnF FP» - METRIC UNITS
M
TFST-P11 HUN-1
CHEVROLET 3511-CIO HP ENGINE PROJECT 11-1311
nb-i 13.R7T
lllbl 13. «Hn
3RO 13. bno
130 l?.58o
375 |3.b8b
1393 15.87b
H10 13.53?
R -:.311
Sb I*. 735
305 13.709
1 ORR 13.195
355 I3.5ba
iao i?.bi9
310 13.501
1 1 95 ) b. 1 7a
350 13.539
b I.RbS
1905
I n n ? i
111 7l>
101 15
aibs
io?s i
ao^sb
10?0b
*b?
1 b7R
1031?
11b(lb
ill is
93Hb
io?si
aisoo
10070
Rb?
HC
aa
9
ff
1
• a
3
311
1
79?
p,
3P
3R
11
10
10
33b
9
785
ILATED H/HR
co
H5
1357
?bO
999
599
9a7
blob
b9b
bl.
5?
1335
?39
9?1
173
Rbn
7b51
bR7
7?
NOX
3
78
H05
100
30
100
bsa
110
0
f
sa
H1R
91
?R
9a
Sbl
9?
0
WT.
FACT.
.asa
.077
. 1H 7
.077
.057
.077
.) 13
.077
.1H3
.asa
.077
.1*7
.077
.057
.077
.113
.077
.1H3
WEIGHTED G/HR
HC-FIO
5.0
.7
3. a
.3
.1
.a
35. a
.3
113.?
S.n
a. s
S.b
1.1
.5
.8
37.9
.7
na.3
CO
an
105
3R
77
31
71
b9Q
51
9
1?
103
35
71
a?
bb
RbS
53
10
NOX-CL CKW
.7 0.0
b.O 17.7
59. b 39.1
7.7 18.0
1.7 b.9
7.7 19. a
73.7 bS.O
8.5 19. a
.1 o.n
.b 0.0
b.3 18.1
bl.1 39.1
?.a 19.3
l.b 7.0
7.1 18. B
b3.7 bb.9
7.1 18.7
.1 0.0
VAC.
MM
H1H
3ao
188
317
378
315
81
315
b07
117
317
188
315
37b
317
79
317
h07
————UNITS AS
HOOE MV CHP
1 IIHE 17.5 0.0
a as PCT T la.b as. a
3 55 PCT T 7.1 sa.
i as PCT T ia.s ?».
S 10 PCT T 11.9 9.
b as PCT T la.H as.
7 90 PCT T 3\? *1\
n ?5 PCT T la.H ?5.»
9 C.T. as. 9 o.n
1 IDLE 17. b n.n
a as PCT T ia.s ai.?
3 55 PCT T 7.1 Sa.9
i as PCT T ia.i as. 9
S 10 PCT T 11.8 9.1
b as prT T ia.s as. 3
7 9n PCT T 3.1 «9.7
8 as PCT T ia.s as.o
s C.T. ?3.9 n.n
9iiM---rrnHPn9iTF
* ™ "/rnMPn? TTF
TWO CYCLE COMPOSITE -
SPEC T
CTQ
o
ba
137
h3
bti
bR
0
n
bl
137
b<>
?S
hb
a3o
bb
n
i/Al IIP
if 41 |(r
v • L 1 1 r
FTFn TN THC 7-ii
FC. RSFC
1.3 R
??.i .9?n
31.9 ,bOR
a?. 3 ,9ai
IR.O 1.931
«•>.? .530
aa.s ,R73
1.9 R
3.7 a
??. R ."* i
3a.a .bo"
aa.3 .Pbi
IR.f ) ,9b?
aa.b .R9q
17.1 .5aR
aa.a .RR7
1.9 R
HC- Fin n.ist
CO- MOT« n.3c;(
NIU-CI. n.?s(
pDnrFnllQ
~** UL r IJUH
BSNOX
R
3.»
7."
" .a
3.3
u n
^ * •-'
7.7
1 .*
R
R
3.5
R.I
3.7
3.1
3.7
3."
R
8.1)
SB. Si
B.fl)
F/A
.Obl
.Ob3
.Obl
.Ob?
.057
!o?a
.Ob)
,0?7
.I'b?
.oba
.obi
,'lb)
.057
.Obl
.fi7"»
.Obi
,0?1
+ o.
+ 0.
+ 0.
qrp
T ~ 1.
KG/KM HR
R
.Sbb
.370
.5b?
1.177
c -i •*
« ? J .7
.3??
.5)1
P
R
.573
.370
.sai
1.191
.SHI
.3?!
.510
R
bS( R
b5( »>5
b5( R
HC *
RPM
bOO
aooo
anio
aooo
P nun
C HIM"
ao3o
anoo
?l|00
bno
aooo
aoao
aoio
aono
aoan
aosn
aoon
?oon
.7) =
.3) =
.?•> =
NOX =
3FC =
r Al r
i. *LL
A/F
IS. 7
15.9
jb. H
ib. a
17.5
1 b ?
1 " . C
lb.<»
37.5
Jb. 1
Ib. 1
Ib.H
jb. 3
17.5
13J5
1H.3
Hl.l
B.b39
ba. 93S
8.390
17.n?p
.118
HC
3. a
.5
• a.o
.a
.1
aa.a
71. b
3.0
1.5
3.1
.b
!?
.5
a?.R
.1
b7.5
B«
• ~
R 7
G/KW
G/KH
G/KW
G/KW
KG/KW
CO NOX FUEL
).8
R!S
3.5
7.0
3.1
be
. ^
» .9
."»
1 .0
1.3
?.R
5.7
P. a
5.3
h9.b
».3
.8
CO
3 1
* C
n 3
HR
HP
HR
HR
HP
.•» 5.1
3.»> 8.9
3b.O ai.b
H.7 9.o
1.0 5.1
Hi. 5 a7.H
5.1 •».!
.0 l.H
.1 1.5
".1 •».!
34. b ai.7
1.7 8.9
1.0 5.5
H.S 9.1
Hl.l a7.9
l.b 8.9
.0 l.H
BO
• "
Bp
* t
C b.lla BS)
(1b.933 BS)
( b.?5b BS)
Cia.b99 RS)
( .73b BS)
POWER
0.0
7.1
30.0
7. a
a.i
38. a
7.7
0.0
0.0
7.1
at. 7
7.b
a.o
7.H
38.7
7.1
n.o
-------
TABLF E-3. M/»-?S
nv MTNF-MOOE FP/V - MFTPIC UNITS
ENGJNE-2
TEST-211 RUN-HP
H7S CHEVROLFT 350-CIO HD ENGINE PRO.IFfT 11-4311
im-iu,7f, FIIFL IN.I POT AT ?sn sin TIM PL wo AIR
K= 1.101 HUMr IB.5 G/KG
W
I
Ul
CONCENTRATION AS MFAS!IRm
HOOF HC-FIP
1 IDLE 1420
2 ?5 PCT T Ifl
3 55 PCT T 12":
4 25 PCT T 10
5 10 PCT T 5
fc 25 P""T T 5
7 Io PCT T 2280
8 25 PCT T in
1 C.T. 40b4n
1 TtHF. 248o
2 25 PCT T 300
3 55 PCT T 245
425PCTT i? n
5 in PCT T 75
b 25 PCT T S9
7 Io PCT T 2200
8 25 PCT T ?•;
1 C.T. 377ho
CO
.441
.0(18
.115
.0»-1
.035
.051
2.h3O
.040
.015
.312
.077
. 104
.0**>
.030
.051
2.b7o
.040
.010
THIAL
C'>2 MOX-CL rA"nnu
13.11 m
13.07 T50
13.78 lfl(,4
13.15 '»25
1 2.b5 135
13.35 400
13.41 1358
13.41 »«S
.15 5
13.78 ht
13.2) IBS
13. M 101.4
13.15 470
12. b5 140
13.21 440
13.1.4 !3,<;
13.35 4SO
.15 5
1 H .531
13.)bP
1 3.101
1 1.41?
1 2.h8f,
1 1.401
1 h.3B2
13.^14
4.235
14.172
13.1?1
13.771
) 1.420
I?.h81
I3.?b8
Ih.siio
13.117
l.->4?
F'JFI
G/HR
)B|4
1 00? 4
1 1125
101 15
7B11
10115
21001
10P70
m*
IK78
10115
14107
mi hn
77«ife
1171
201] 1
1114
h35
CALCULATED R/HR
HC
2n
R
11
1
n
n
331,
i
bin
33
2b
2»
10
5
5
320
t;
bOl
CO NOX
113 3
1 35 18
232 312
13 US
44 31
78 m
(,811 h4 x
bl 122
* 0
74 3
118 1UR
?15 HOI
8b 131
17 32
77 122
bSol b20
bl 123
3 0
HT.
FACT.
.232
.077
.147
.077
.057
,077
.113
.077
.143
.232
!o77
.147
.077
.057
.077
.113
.077
.143
WEIGHTED
HC-FIO
4.7
.b
?. I
. 1
• H
38.0
.2
87.3
7.b
2.0
4.2
.8
.3
.4
3b.l
.4
87.1
CO
2b
in
34
7
3
b
770
5
1
17
32
7
2
b
5
0
G/HR
NOx-CL CKW
.7 0.0
7.b 17.1
57. b 38.1
1.1 18.5
1.8 b.1
''.b 18.5
72.4 bS.7
1.4 18.5
. n o.o
.b 0.0
8.3 in. 5
51.0 38.8
in.i 11.1
1.8 b.1
1.4 18.4
70.1 b5.2
1.5 18.5
.0 0.0
VAC.
MM
447
32S
201
323
381
323
81
323
b05
450
325
11R
323
381
323
325
b05
UNITS AS SPFrlFTFD TM
MODE HV
1 IDLE 17. h
2 ?5 PCT T 12.8
3 55 PCT T 7.1
4 25 PCT T 12.7
5 10 PCT T 15.3
b 25 PCT T 12.7
7 Io PCT T 3.2
B 25 PCT T 12.7
1 C.T. 23.8
1 IDLE 17.7
2 25 PCT T 12.8
3 55 PCT T 7.8
4 25 °CT T 12.7
5 10 PCT T 15.3
b ?5 PCT T 12.7
7 In PCT T 3.2
8 25 PCT T 12.8
1 C.T. 23.8
SilM---f TOM
CMP
0.0
24.0
51.1
24.8
1.3
24.8
08. 1
24.8
0.0
0.0
24. B
52.0
25. S
1.?.
?4.7
87.4
24.7
0.0
Urt<4 T TC
SI IKi ---(COMPOSITE
TWO CYCLE COMPOSITE -
CTQ FC
O 4.0
b! 22. )
134 30.7
b5 22.3
24 17.4
••5 22.3
2?" 4b.'3
1.5 22.2
0 1.4
0 3.7
b5 PP. 3
13h 31.1-
•>' 22.4
?4 17.1
b5 2? .0
228 4b. 1
h5 ? J .T
0 1.4
THF 7- i 1-75
HSFC
R
. 1??
.••01
.100
l.«8n
. pqi
.52*
.813
9
R
.BIB
.SIR
.87";
1.P54
.Bio
.527
. HH5
R
PROCEOURF----
BSNOX F/A
P
4.2
7.8
» .P
1.4
4 . f.
7.«
5.0
R
R
4.4
<;.?
1.5
5.n
7.2
5.1
R
.Obb
.051
.Ob3
.ObO
.057
.nbo
.075
.nbl
.021
.„(,•;
.nhn
.0^2
.nbo
.n"
.OhO
.07b
.MbO
,n2o
8FC
KG/KK MR RPM
R bOO
.5bl 2000
.3bb 2000
.547 2000
1 . l»4 1110
.547 2nno
.320 2030
.543 20PO
P 1 110
R bUO
,54b 20OO
. 3b4 2000
.532 2000
1.128 1180
.541 1 110
.121 2010
.598 1110
R 2000
r Al r
L "U L
A/F
15.3
lb.9
lb.0
lb. 5
17~4
Ib.b
13.4
lb.4
47.4
15.4
lb. t.
Ibll
17^4
lb.7
13.2
Ib.b
51.1
HC- FIO 0.3«!(
cn-
HOX
NO"* 0. 15(
-CI. n.isf
7.1)
45.1)
B.I)
+ O.h
+ O.b
•f 0 . ^
5( 7.4) =
5( 4S.O) =
5( 1.0) =
HC + NOX z
SFC =
7.273
45.311
8. 1HR
lb.2?n
.412
HC
3.5
.H
l.b
.0
.n
.0
.1
bS.7
5.5
1.4
3.n
'.?
.3
II
7|
« I
7u
m *f
G/KW
G/KW
G/KM
G/KH
KG/KM
CO NOX FUEL
3.0
1.2
4.0
."
.3
.7
81.4
.5
?.n
i .1
3.7
!i
.7
10. B
.1
4 h
4 5
HR
HP
HP
HR
HR
.» 5.0
4.5 1.1
34.5 24.1
5.4 1.2
1.1 5.3
5.1 1.2
43.3 2".0
S.b 1.1
.0 1.1
.4 4.h
4.1 1.2
14.1 24.5
b.O 1.3
1.1 5.2
S.b 1.1
41.5 28.0
S.b 1.0
.0 1,1
8.1
1.0
( 5.423 HS)
(33.714 RS)
( b.h72 RS)
(I?. 015 B3)
C .727 BS)
POWER
0.0
7.2
21.4
7.5
2.1
7.5
38.1
7.5
0.0
0.0
7.4
7!7
2,0
7.4
38.4
7.4
0.0
-------
TAPLE E-4. M*SS EMISSIONS RY MTNF-MODE EPA - METRIC UNITS
ENGINF-a
RUN-Q3
CHEVROLET 3<;n-Cir> HD ENGINE PROJECT 11-H3J1
Ob-lH-7h FUEL INJ POT AT 350 STO TIM PL HO AIR
K= 1.0S7 HUM= 13.7 G/KG
W
I
MODE
1
a
3
H
5
b
7
8
9
1
a
3
H
S
b
7
8
q
IDLE
as PCT
55 PCT
as PCT
10 PCT
as PCT
10 PCT
as PCT
C.T.
IDLE
as PCT
55 PCT
as PCT
10 PCT
as PCT
io PCT
as PCT
C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
CONCENTRATION
HC-FIO CO
abHo
HS
7nn
HS
5
30
a3Bn
»5
an*Ro
iiao
IBS
730
in
50
bS
asno
b5
aa*on
a.*bo
.115
. »a8
.013
.035
.077
H.aio
.08"
.381
1.118
.inn
,H*a
.08?
.n*o
.1)77
*.B|0
.077
.as7
AS MEASURED
CO? NOX-CL
ia.7i
13.13
1*.SH
1*.31
J3.ai
1*.31
) a. as
1*.3"
5.71
13. b*
1H.?3
1H .31
1*.?3
13.35
i* .as
n.n
1H.31
b.oa
hB
535
15HS
b?0
ais
5«S
7BS
ban
i1
b?
530
15*1
bns
aos
SbO
b*n
b30
in
TOTAL
C»RPON
IS. 551
1».OS7
is.n*B
1H.H8B
I3.?*h
1».*70
Ib.BlH
1*.*P3
8.?b?
15.057
1H.3SS
1 * .115
IH .3aa
13.31b
1H.31*
1 7.f)81
1H.*7*
B.b7R
FUEL
G/HR
an»i
isas
i *a*3
Ibb?
7530
isas
ai8h3
ibba
1315
l«bO
isas
l*aBR
isas
7575
isas
?a?ab
i»Bn
1315
CALCULATED G/HR
HC CO NOX
*n
q
75
3
n
a
357
3
3**
a?
i*
Bn
7
3
5
37b
5
351
bsa
157
niq
ias
HI
loa
nabs
11B
ias
an
131
855
111
*b
10*
iab37
ina
81
3
ia7
515
1H5
H3
135
358
1H8
1
3
ia3
sai
1H1
HI
131
?ia
1H5
i
FACT.V
.asa
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.asa
!o77
.1*7
.077
.057
.077
.113
.077
.1*3
WEIGHTED G/HR
HC-FID CO NOx-CL
i.e
.7
ii.i
.3
.0
.a
*0. 3
.3
HI. 3
b.3
1.1
11.7
.5
.a
*a!s
.*
51.*
151
la
i an
10
a
8
ia?3
q
18
bl
11
iab
q
3
8
inaB
8
13
.7
1.8
75.7
n. a
a.*
10. H
HO.S
n.*
.1
.b
ils
7b.b
io!i
a. 3
10.1
33.0
u. a
.1
CKW
0.0
17.5
31. 8
18.0
b.1
18.0
18.0
0.0
0.0
17.*
31.1
18.0
7.0
18.0
bH.b
1B.O
0.0
VAC.
MM
»sa
3b8
asi
3bb
3bR
1*
3bb
bOS
*bO
3h8
331
3b8
3bb
11
3b8
bOS
UNITS AS SPECIFIED IN THF
MODE
I IDLE
a as PCT T
3 55 PCT T
* as PCT T
5 10 PCT T
b as PCT T
7 in PCT T
B as PCT T
1 C.T.
I IDLE
a as PCT T
3 SS PCT T
* as PfT T
S 10 PCT T
b as PCT T
7 in PrT T
B as PCT T
1 C.T.
SUM
MV
17.8
1*.S
1.*
1H.H
Ib.S
1H.S
3.7
1H.H
P3.1
1B.1
1H.5
q. »
1H.S
Ib.S
1*. *
3.b
1*.S
as. B
CHP
n.o
as. 5
sa.b
a* . i
1.3
a*. a
87.0
a*. a
n.n
n.o
a$.*
sa.*
a*. a
1.*
a* .a
8b.b
a*. a
n.n
jDne T Tr
TWO CYCLE COMPOSITE -
CTQ
n
hi
137
b3
as
b3
aas
b3
O
0
hi
137
b3
as
b3
aas
b*
n
U A 1 IIET
v * L u r.
VAI UF
FC
*.s
ai.o
31.*
ai.3
lb ,b |
ai.o
?1.3
a.i
H.I
ai.o
11 .5
ai.o
lb. 7 1
ai.o
H1.0
ao.i
a.i
FnD r v r i f \ )
> 'IK i, • n. r. •• }
FOR c vCl F ? 1
HC- FID
CO- NOT
NOX-CL
7-11-75
BSFC
R
.815
.517
.8B3
.7RH
.Bbl
.55*
.88)
R
R
.RIB
.bni
,8b1
.78S
.8bq
.Sbb
.8bH
P
o.isf
R 0. 35(
n.3S(
PROCEDURE
RSNOX
R
5.5
10. n
b. 1
H.7
S.7
*.a
b.a
R
R
5.*
jo. a
b.O
H.S
5.5
3.5
"R
b.
"b.
8.
F/A
.071
.Ob3
.ObR
.nbS
,nbn
.nbS
.07B
.nbS
.031
.ObB
.nbH
.Ob7
,nb*
.nbo
.Ob*
.oBn
.Ob5
.0*1
0) + 0.
3) + 0.
7) + n.
SFC
KG/KW
R
.5**
.3b3
.537
1.085
.sas
.337
.53b
R
R
,S*b
.Ibb
,S?8
i.nss
.558
.3**
.sas
R
bSC
b5(
b5(
HC
HR RPM
bOO
aoio
aoao
anon
mn
anon
ao3o
aooo
anio
bOO
aooo
anio
anoo
anoo
aoon
aoao
aooo
anno
b.a) r
10.*) =
B.3) =
•f NOX =
3FC =
CALC
A/F
1*.0
15.8
1*.8
IS.*
lb.7
1S.H
ia.s
1S.»
as.*
1*.7
15.5
1*.1
is'.b
Ib.b
IS.b
ia.b
is.*
a*. a
b.107
88.130
8.*b7
I*. 57*
.*S3
HC
B.a
.b
10.0
.a
.0
.a
3b.a
.a
»*.3
5.5
.1
10.?
.5
.a
.3
37.1
.3
*s.o
b . O
b.a
G/KW
G/KW
G/KW
G/KW
KG/KW
CO
1.*
.8
7.5
.b
.1
.5
71.*
.b
1.1
H.I
.b
is
.a
.5
85.3
.5
8b
on
"0
HP
HR
HR
HR
HP
ENT OF T(
NOX
.*
b.O
*b.7
b.1
1.5
aslo
7.0
.1
.*
b.a
*1.7
7.1
1.5
b.5
7Je
.0
8f
. 7
8.3
( *.S5»
(bb.31S
( b.31*
(IQ.BbB
( .7*5
FUEL
5.5
8.5
s|b
5.0
1.5
as. 7
8.b
a. a
5.0
8.5
a*.*
B.5
s.o
8.S
ai.a
8.5
a. a
RS)
BS)
83)
BS)
RS)
POWER
o.o
7.1
30.*
7.3
a.i
7.3
38. b
7.3
0.0
0.0
7. 1
30.3
7.3
S.I
7.3
38.5
7.3
0.0
-------
TABLF E-5. MASS EMISSIONS BY NINF-MODE EPA - METRIC UNITS
TEST-21t RUN-'Jt
1175 CHEVROLET 350-CIO HO ENGINE —PROJECT 1]-»311
Hb-lt-7b FllFL INJ POT AT ISO STO TlM PL WO AIR
K= J.053 HUM= 13.5 G/KG
M
I
CONCENTRATION
MOOF HC-FID
1 IDLE 2320
2 25 PCT T 200
3 55 PCT T In
•» 25 PfT T bn
5 10 PCT T 210
b 25 PCT T bS
7 in PCT T 710
8 25 PCT T 35
t C.T. 35200
1 IOLE tbto
2 25 PCT T 3bn
3 55 PCT T lln
% 25 PCT T 150
s in PCT T 37p
b 25 PCT T IPO
7 to PCT T 77n
B 25 PCT T 75
1 C.T. 33120
CO
.153
.115
. lot
.082
.082
.072
.'55
.05h
.015
.l«l
.115
.018
.077
.077
.077
.t?8
.05b
.015
AS MEASURED
C02
u.i?
11.12
1?. J?
11. 3b
11.00
11.2t
It ,5t
11. ?b
.15
J l.no
11.1?
1?.?5
) 1 . 3b
10. SB
11 .tH
It. 11
11. t«
.11
TOTAL
NOX-CL CARBON
15
1O
Sto
US
SO
15
?25b
US
b
2B
. BS
580
105
ts
105
22Sb
1)5
S
.521
.?57
?.?3t
.ttl
.lit
.31"
15.085
I).t20
3.bin
M.b13
1 1 .?7t
IP.lbt
n.tst
10. HP
11.570
it.itib
u.stt
3.5?1
FUEL
G/HR
lllb
ll?tt
15331
U20t
1117
ll?1t
?ono3
110??
«n7
mit
1 1?1*
153tJ
112tt
102b
113BS
11113
11201*
bBO
CALCULATED R/HR
HC
tt
22
13
b
2b
7
111
t
«b7
71
tn
2h
lb
33
13
117
R
h5b
CO
5t
231
?b3
Ib3
13h
its
1220
101
7
57
23?
?»S
153
1?8
153
U 51,
110
b
NOX
P
31
237
31
It
33
lOtb
31
1
2
30
250
3b
13
3b
lost
31
0
WT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.232
.077
io77
.057
.077
.113
.077
.113
WEIGHTED G/HR
HC-FIO
10.3
1.7
1.8
.5
1.5
isis
.3
123.1
18. t
3.1
3.8
1.3
1."
1.0
13.2
.b
13.8
CO
12
18
13
B
11
138
e
i
13
18
12
7
12
131
B
1
NOX-CL
.5
?.t
3t.8
3.0
.8
2.b
118.2
3.0
.1
.t
2.3
3b.7
2.8
.7
2.8
111.1
3.0
.0
CKM
0.0
17. t
38.1
18.5
isil
bS.1
18.1
0.0
0.0
18.0
31.0
18.0
7.0
18.1
bS.3
18. b
0.0
VAC.
MM
toi
23t
m
221
310
23t
b3
23*
51t
toi
231
231
310
22b
b3
231
Sit
.-.-ill.
MODE MV
ITS AS
CHP
eprr f E
ar t L 1 r
CTO
r f n T u
1 1 u i w
FC
Tuc 7_ 11-7
1 Wf- * 1 I — r
BSFC
c pDnrCnli
3 KnULtliu
BSNOX
F/A
SFr
KG/KH HR
RPH
t,«i_t.
A/F
HC
CO NOX FUEL
POHER
1 101 E 15. 1
2 25 PCT T 1.2
3 55 P^T T t.S
t ?5 PCT T 1.0
5 in PCT T 12.?
b 25 PCT T 1.2
7 in PrT T 2is
B 25 PrT T 1.2
1 C.T. 23. »
1 IDLE 1S.B
2 25 PCT T 1.1
3 55 PCT T t.S
t 95 PrT T 1 1
TCT'll 1 ^ » 1
5 10 PCT T 12.2
b 25 PCT T 8.1
7 to HCT T 2.5
B 25 PCT T 1.1.
1 C.T. 23. t
0.0
23. t
S?.l
?t .1
P t P
V • . £
88. t
?t .?
o.o
n.n
?-».2
S?.2
pu 3
pit p
c T • c
87. h
25.0
0.11
SUM— — — (COMPOSITE
SUM— --( COMPOS i TE
TWO CYCLE COMPOSITE -
O
bl
137
bh
?5
??"
bt
n
0
bt
137
L •*
** J
L U
n ^
Hh
n
V A 1 1 If F Oft
VALMF FO^
t.t R
?».B I.nb2
33.8 .btl
?t.7 .lit
20.1 2.157
3 14 Q f n9 R
C^ . T 1 . IIC "
tt.l .tio
?t.3 1.00?
2.0 R
t.O R
2t.1 1.031
33. b .btj
11.1 P.I. IS
?5 1 1 OTb
?t.7 .18H
1.5 0
HC- FID 0.15(
CO- NflTR 0.15(
NOx-CL l).15(
R
l.»
•».»-
».!•
!.»•
l?!l
l.b
R
R
1 .3
t.t
i!»
I q
1 • ^
1 .b
P
8.3)
J3.3)
B.I)
.053
.051
.055
.052
.05) 1
iobB
,05?
.01"
.nst
.051
.05b
nCp
, II T C
.oSn l
n c 3
. US 3
,0b7
.052
.017
+ 0.bS(
+ O.h5(
» n.bs(
R
,btb
.315
in?
[sot
.bin
R
R
,b2b
.3H
L PU
« o r. ~
.305
.bin
R
7
1?
q
HC +
bOO
2000
2000
itto
ifo
20»0
2000
2010
bOO
?000
?000
mo
2000
2020
2000
?010
.t) =
.8) =
.0) =
NOX =
3FC =
H.O
It . 5
18.0
It.?
ll.B
I*!?
11.3
St. 8
18.7
11.5
17.1
| Q p
20.0
11.0
lt.1
jl. 1
57.5
7.b73
12.132
s.tst
lb.b?7
.t72
b.7
1.1
1.2
i!o
8^7
.2
BO.t
13. »
2.2
2.8
• "
,
is
b8.t
8 a
• J
7U
* ~
G/KW
G/KW
G/KW
G/KN
KG/KM
5.0
7.2
15. b
5.)
3.1
H C
ssi?
3.t
.»
5.5
7.5
15.1
M a
* • "
3.1
c n
5.0
St.1
3.b
•*
"
HR
HR
HR
HR
HR
.3 5.1
l.S 1.S
21.0 2*. 8
1.8 1.5
.5 5.7
71.5 2».t
1.8 l.t
.0 l.t
.2 t.7
1.* t. 7
21.1 2t.t
.» 5.7
71.0 25.0
1.8 l.b
.0 1.1
BO
• "
q 0
( 5.721 BS)
( 1.bt3 BS)
( b.b77 BS)
(12.318 B3)
( .777 BS)
0.0
7.0
21.1
7.5
2.1
31.0
7.3
0.0
0.0
7.3
30.0
2.1
38. fa
7.5
0.0
-------
i
co
TEST-215 RUN-ii
TABLE E-6. STEADY STMF FHISSTONS BY EP» PROCEDURE - METRIC UNITS
1975 CHEVROLET 35n-cin Hn ENRINF PROJECT 11-1311
nh-17-7t, FUFL INJ AlP-FllFI. CYL TO CYI. CHECK »T IDLE
K= .990 HI|M= 10.3 O/KR
MODE RPM
1 bOO
? bOO
3 boo
H bOO
s boo
b boo
7 boo
a bnn
CONCENTRATION
HC-PID CO
?5?0
1080
10«n
1?10
1110
7OO
19?0
.7b3
.300
.13"
Il19
. 78B
.3?5
.b%9
AS MF.A3UPFP
CO? NOX-CL
11.30 75
11.51 1,7
It. 39 71
11.3° 7h
11.39 71
11.39 77
11.51 71
It. 51 BO
TOT«L FI'FL CA|.Cl'L*TF.D G/HR
C«RRON cows. HC co NO?
15. 'tin IB 11 31 ]B1
Ii.9b3 1B11 IS 73
l».94P )fl]1 15 107
11.913 )B11 13 un
15.31? 1PJ1 19 ]8B
11. 941 IP 11 in BO
15.111 1P11 ?b 157
3
3
3
3
3
3
3
3
CORRECTED C/HR
HC-FIO CO NOX-CL
33. s
11.9
I*.''
lb.9
1?.7
19.1
9.7
?S.R
Id
73
107
1*5
110
)8R
80
157
3.0
3.0
3.0
3.n
3.1
VAC.
CK* MM
0.0
n.o
0.0
0.0
0.0
0,0
o.n
n.o
0
0
0
0
0
0
0
0
MODF ID
1
i
3
1
s
b
7
8
ID =
MV
0.0
0.0
0.0
n.n
o.n
o.n
o.n
O.n
UNI TS
CHP
0.0
n.o
n.n
o.o
o.n
n.n
0.0
n.o
CTCI FC
0 1.0
0 1.0
0 1.0
0 1.0
0 1.0
0 1.0
0 1.0
o i.o
BSHt PSCO RSNOX HSFC
P R R R
R R R R
R R R R
R R R R
P R R R
9 R 0 p
R R R R
R R R R
STEADY STATE EMISSIONS BY EPA PROCEDURE -
1975 CHEVROLET 350-CID HO ENRINE PROJECT
ENGINE-?
TEST-Z15
PUN-IE Oh-l 7-7b
CONCENTRATION
MODF RPM
1 POOP
P. ?000
3 ?0nn
1 POOn
5 ?onn
b POOO
7 ?oon
8 ?onn
HC-FID
7bo
?*o
70
30
in
10
sen
??o
CO
.???
.13b
.07?
,0»b
.051
.nbi
. 1?5
.159
AS MEASURFO
CO* NOX-CL
11.73 BS
IP. 93 153
1 ?. '* 1 ?5
1?.70 171,
12. ?5 130
1?.3R 15R
1 ?. ?5 1 1 B
1P.3B 135
FUEL IN.I AIR-FIIFL CYL TO CYL
---CALC'-~
A/F F/A
11.1
11.9
11.9
11.7
11.9
11.5
11.9
11.1
METRIC
.07n
.Ob7
.Ob7
.ObR
.01,7
.Ob9
.Db7
.Ob9
UNITS
HC
R
R
R
R
R
R
R
R
CO
R
R
R
R
R
R
R
R
NOX
K
R
K
R
R
R
R
SFC
KG/KM HR
w
R
R
R
R
K
R
1 1-1311
CHECK
in PCT
TOTAL FUEL CALCULATED G/HR
CAPPON CONS. HC CO
l?.03f. Rlh5 57 301
1^.093 Blb5 17 17?
I?.1bn Rlb5 5 95
1P.B3" B m5 ? 59
IP. 30-; 81b5 3 bR
1?. lib B}bS 3 Bl
l?.»nn BlbS lb Ib7
I?.5b9 B]b5 ?0 ?OB
NO?
eo
3?
?7
37
p.9
31
?b
?9
Ks
.990 H
UM =
CORRECTED G/HR
HC-FIO
57.3
Ib.B
5.1
S.I
3.n
?.**
Ib.l
19. b
CO NOX-CL
301
17?
95
59
bfl
Rl
POP
19. b
31. H
?(,. 9
3K.8
jp 3
3H.1
?5.S
PP.8
in. 3 G/KG
VAC
CKH MM
b.8
b.8
b.8
b. R
b.8
b.8
b.8
b.fl
0
n
0
n
0
n
n
0
MODE ID
MV
UNITS
CHP
AS SPECIFIED
CTO FC
PSHT RSCO RSNOX aSFc
A/F F/A
HC
CO
NOX
_--.
SFC
KG/KH HR
i
z
3
1
5
b
7
B
0
0
0
0
0
0
0
n
.n 9.?
.0 9.?
.0 9.?
.n 9.?
.0 9.?
.0 9.?
.n 9.e
.0 9.?
?1 1B.O
?1 1B.O
?i ifl.n
?1 |B.O
?.1 1B.O
?1 1B.O
?i iB.n
?1 1B.O
b.?f,
1.B1
,5b
. •"'
.3?
.3P
1.77
?. 11
^•3.??
IB. BO
10.10
b.1?
7.1fc
B.B9
IB.P.5
PP.77
e.17
3.H7
?.9B
1.07
3.13
3.77
?.B?
3.19
1.9bl
1 . 9bl
1.9bl
1 . 9bl
1 .9bl
1.9bl
1.9bl
1.9bl
IB. 3
1b.9
17.7
17.?
18.0
17.9
17. B
1'. b
.055
.059
,05b
.O5B
.05b
.05b
.n5h
.057
B.10
S.lb
.75
.31
.13
.*3
P. 37
8.P7
11. 5b
?S.?1
13.95
B.bl
10.01
11.9?
30.51
?.91
1,b5
3.99
5.H5
1.PO
S.OS
3.78
».??
1.193
1.J93
1.193
1.113
1.193
1.193
1.193
1.193
ID =
-------
ENGINE-?
w
I
vO
TAPLF E-7. STEADY STATF FMTSJIOMS RY F.PA PROCFOURE - METRIC UNITS
1975 CHFVP? NP»-CL C»pfWJ
1
2
3
1
S
b
7
8
MOOF
1
3
S
b
B
?0"n ?2bn
2000 loPo
POOO 210
POno 12n
?onn HO
Pono 2?o
2000 710
POOO 1300
ID MV
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10 r
.2?? 1?.?5 255
.201 11.0" S10
.109 13. 3s 370
.093 13. 7P 510
.077 13.35 110
.109 IP. 95 »55
.153 13.35 ino
.J^S 13.07 3b5
"-UNITS AS SPECIFIED
CHP CTO FC
23.7 b? ??.o
23.7 h? P2.0
23.7. b? fi.O
23.7 b? ?.?..o
23.7 b? 2P.O
23.7 b2 22.0
23.7 b2 P2.0
?3.7 b? ??.0
liliob
1 3.1Rb
1 3.RR7
13.S8b
F'lFL CALCULATED G/HR
CONS. HC CO N02
9979 '95 ?Rb
"979 fn ] h 3
9979 m 135
">979 bi jjp?
9979 ln9 29n
IN THp. 7-11-75 PROCFOURE------
fifHT R3CO BSNOX B3FC
".37
3.59
.85
.11
.28
.80
2.59
l.bO
J 1 . "' 2.81 .928
1 c? . 1O 5. ?b . 9?S
•'."'1 3.85 .''PS
5.7? 5.i»b .9?R
1.89 1.28 .9?8
'.13 1.89 ,9?p
".bl 1.13 .928
12. 2b 3. PP. .928
STEADY STATE EMISSIONS PY EPA PROCEDURE -
1975 CHEVROIET 350-CJO HD ENGINE PROJECT
ENGINE-? TEST-Z15 BUM-14 Ob-J7-7b FUEL INJ AIR-FUEL CYL TO CYL
MODE
1
2
3
H
S
b
7
8
MODE
1
?
3
S
b
CONCENTRATION A3 MpAPURFD
RPM HC-FID ro co? NOX-CL
POOO 57bO
POno 30R0
POOO 7bO
POOO BSO
POOO 100
POOO ii?o
POOO P3bO
POnn 381n
ID MV
0.0
0.0
0.0
P.O
0.0
0.0
o.o
o.n
.227 12.79 9(,«
.18) 13.93 mi;
,?"3 11.33 ]bn5
.15* 11.08 1103
.215 11. OR 1 ?3n
.187 13.07 in?
— UNITS AS SPECIFIED
CHP CTO FC
51.3 135 3?.n
51.3 135 3?.n
51.3 135 3?.n
SI .3 13S 3?.n
51.3 135 3?.n
51.3 135 3?.n
51.3 135 3?,0
51.3 1 3S 3P.II
Tnl AL
CARBON
11.197
11.59P
1 ^.fcHP
IN THE 7-11
R.9Hf
H.4V
b.bc
1.7?
1 ,9»
.9n
?.*>?
5.?1
n.9(.
bb
121
91
129
101
115
9R
---CALC —
A/F F/A
17.3
15.1
1 b.1
lb.0
Ib.S
17.0
lb.3
Ib.S
METRIC
.058
.ObS
.Obi
.Ob?
.Obi
.059
.Obi
.Obi
UNITS
11-1311
CHECH 55 PCT
FUEL CALCULATED 6/HR
CONS. HP CO NO?
115)5 bRb 188
11S15 339 ?pi»
11515 88 371
11515 <»b 3?b
11515 1?9 503
11515 ?bb 193
11515 H57 »nO
BSCO RSNOX HSFC
T.5b b.bl ,b?1
11. f 9.01 .b?H
7.33 9. HI ,b?1
11.53 in. 37 .bgt
b.3P 9.?fl .b?H
9.R5 in.RB .b?«
9.b5 7.9h .b?u
7.R5 9.05 ,b?1
311
1b3
1HO
529
173
555
*0b
CALC
A/F F/A
lb.1
15.7
15.?
15. b
15.5
IS. ?
1-..1
.0*-?
.Ob7
.Obi
,n(-b
.Obi
.Obb
.Ob?
C0*l
HC-FIO
1S7.7
81.7
?n.o
9.7
b.7
18."
bl.l
ins.b
HC
11.23
1.81
1.13
.55
.38
1.07
3.17
b.17
K =
'ECTFO G/HR
CO NOx-CL CKW
351
?Mb
13S
lib
IbB
227
— G/KW
CO
I*.**
lb.28
7.b7
b.Sb
9.5b
12.89
Ib.fS
.990
b5.7
12? 9
•»o.o
127.5
100.1
111.2
8H.3
HR
NOX
3.77
7. Ob
B.lb
7.3J
5.71
b.55
5.51
5.12
HUM:
17.7
177
17.7
17.7
17.7
17.7
17.7
17.7
SFC
KG/KW
.Sbl
.Sbl
.Sbt
*5h»
.Sbl
.Sbl
.Sbl
VAC.
MM
0
0
0
0
0
0
0
HR
in. 3 B/KG
CORRECTED 6/HH
HC-FID co NOX-CL CKW
b85.b
339. »
87. B
99.1
Ib.O
128. b
?b5.9
157.1
HC
18. n?
B.9?
2.31
2. bO
1.21
b.99
IP.ni
188
721
371
588
503
»no
.-G/KM
CO
1P..82
19.03
15.17
R.Sb
13.21
12.85
10.5?
337.9
158.5
175.1
523.5
1b8.5
519. b
102.0
157.2
NOX
8.97
12.17
12. b2
13.9U
12.11
11.59
10. b7
12.11
3B.2
38.?
38. 2
3P.2
3F.2
38.2
38.2
3H.2
SFC
. 380
380
. *80
. 380
. 380
. 380
. 380
.380
VAC.
MM
0
0
0
0
0
0
0
0
HR
in =
-------
W
I
ENGTNE-2
TARI E E-8. STEADY STATF FMISSIONS RY FP» .PHOCEOURE - MFTRIC UNIT?
117S CHFVROLF.T 35II-CIO HO EhGTNf---PROJECT 11-1311
TEST-215 HUN-1 UK-?|.?f, F(iFL IN,I - IOLF MnDF JSn-350 POT SETTING
K= l.nbl HU«= 11.0 G/KG
CONCENTRATION
MODF
1
2
3
1
S
b
7
8
q
RPM HC-FID
S3n I7nn
Sin lino
Sbn 13bn
ssn 1110
Sio 1300
bnn I7l»n
bin 2120
b2M 21bO
b3n 2R2n
CO
. H2
.112
.159
.231
.155
.Hb*
1 . 2b2
1.710
2.380
AS MF*S
C02
12. 3R
12. h5
12.13
12.13
13. n7
1 ?.n7
12.79
12.52
12.25 .
TOTAI
NOX-CL TAHRON
•11
53
bO
«.b
b7
bb
h5
b3
b2
12.71?
12.11"
1 3.211
1 3.331
I a.f-72
I". 131
in ,?q i
11.589
11.950
FHFL
CONS.
!«11
1 7h9
IRhn
1950
2nll
2087
2177
2177
2177
CAtCl'lATFn G/HR COR*
HC
27
21
21
21
22
29
3b
1?
•"
CO
11
31
15
71
J37
258
38B
S'tn
7nn
N02
2
2
3
3
3
3
3
3
3
HC-FID
27.1
21.1
21.1
23. b
21. R
21.0
3h.S
11. b
Ib.b
tCTFD G/HR
CO
*1
39
15
71
137
25B
38R
510
7(10
NOx-CL
' 2.2
2.b
s!o
3.1
3.5
3.1
3.S
3.3
3.2
VAC.
CKH MM
0,0 117
n.D 127
o.n 131
n.n 112
n.n »17
n.o 152
n.o 157
n.o ib2
n.n ibs
MOOF
1
2
3
»
5
b
7
8
S
ID MV
lb.1
lh.8
17.1
17.1
17. b
17.8
18. n
18.2
IB. 3
CHP
n.n
o.o
o.o
o.o
n.n
n.o
n.n
0.0
n.o
AS SPFrlFlFD
CTO
n
n
n
n
n
n
n
n
n
FC
1.0
3.9
1.1
1.3
1.5
l.b
* • "
1.8
1.R
IM THF 7-
HRHr
R
R
R
R
R
p
R
R
R
1 1-75 PRf
BSCO
R
R
R
R
R
R
R
R
R
PSNOX
R
t(
R
R
R
R
R
R
R
BSFC
R
R
R
R
R
p
R
R
P
C»LC
A/F F/A
17.3 .OSR
17.1 .059
'lb.7 .Obn
Ib.b .ObO
lb.2 ,nb2
IS.b .Obi
15.1 .ObS
1S.O ,0b7
11. b .Obi
HC
R
R
R
R
R
R
a
a
R
CO
R
R
R
R
R
R
R
R
R
NOX
N
R
h
R
R
R
R
R
R
SFC
KG/KM HR
K
R
R
R
R
R
R
R
«
ID
ENGINE-2
TF.ST-215 RUN-Z
8TEAOY STATF CHISSIONS BY EPA PROCFDIIRF. - METRIC UMIT3
1175 CHF.VPOI FT -»sn-cln HO ENGINE PRO.JFCT 11-1311
Ob-21-7b H|Ft IN.I - m PCT POMFR 200-100 POT. SET.
K= l.nbl HUHs 1»,0 G/KG
CONCENTRATION AS HFA3URFO TOTAL FUFL
MODE RPM HC-FID C" CO2 Nnx-CI. C»"nON CONS.
C»LCUL*TED G/HR
HC CO N02
CORRECTFO G/HR VAC.
HC-FIO CO NOX-CL CKH MM
1
i
3
H
5
fa
7
8
S
?oin
203n
2n3ti
?n3n
?02n
?03n
2H2H
?02n
?02n
110
3S
20
2n
10
IS
20
?n
20
.n?5
,n3n
.020
.025
.025
.02S
.n3n
.030
.n3n
12. ?S
12.71
12.71
13.21
13. 70
13. 79
11.23
J».31
i».n«
130
]bO
1 7fl
2nn
210
2nn
270
270
2sn
12.^01
12.P21
12.CJ?
13.237
1 3.Rft»>
13.«n7
11.2b3
|1.»23
11.113
1211
R»no
Bhbl
P573
BlbS
Rn71
7911
7R91
7B02
12
^
f
1
1
1
1
1
J
51
12
27
33
3fl
30
31
33
31
33 11.8
3b 2.7
10
13
11
31
5n
11
1b
.5
.5
.7
.0
.3
.2
.2
51
12
27
33
30
30
31
3.3
34
31. b
3P.7
12.1
IS.b
13. B
n. e
53.0
52.1
18.7
b.9
7.n
7.n
7.0
7.n
7.0
7.0
7.0
7.0
313
3bb
381
311
HOH
11.1
111
121
132
MODE
-UNITS AS SPFrlFTFO IN THp 7-) 1-7? PRlJCfOHPF-
CHP CTQ FT BSHr RSCO PSMOX
HSFC
CALt—--
A/F F/A
HC
-G/KW HR
CO NOX
3FC
KG/KH HR
1
i
3
1
S
b
7
8
1
13.5 R.3
11.1 .1
15.0 .1
15.1 .1
15.1 ,
-------
w
I
ENGTNF-S
T*BLE E-9. STEADY .9TATF FMISSIOMS BV EPA PBOCFDIIflE - MFTHIC UNITS
1975 CHFVROIFT 35n-clO HO ENGINF PROJECT 11-1311
TEST-215 RUN-3 nt,-?J_?(, K|iFI. TN,I - P5 pCT POWER POO-100 POT. SET.
K=
HUM= 1H.7 C/KG
MODF
1
2
3
1
S
b
7
B
9
CONCENTRATION
PPM HC-FIfl CO
POln 30
. 201 n 5
?010 5
2010 5
?oin 5
?o in )o
?01n 25
?D10 (-0
?oio mo
.Obi
.035
.03?
.030
.035
.nib
.Ob7
.101
.233
AS MfiSIJPFD TOTAL
C02 NOX-CL C'RxnN
12. 3d 210
12.79 280
13. 3S 310
13. 7B 1HU
11.00 S?0
H.31 570
1 "^ • S t ti 1 0
lH.7n hOO
I».BK bsn
l?.»»q
12.82b
1 *. sot-
13.011
1 1 . 1 !••
11.137
li.hoT
If.Hlb
)5.in5
COM3.
11113
J 0523
10297
9979
9931
9931
1971
10115
10021
C'LC1
HC
3
n
o
n
n
1
?
c;
a
')L*TEO G/hR
CO N02
1) 1
59
Si;
11
sn
bl
12
I5n
313
b2
7b
100
lOb
121
130
13h
13b
113
COR9ECTFO G/HR
HC-FIO CO NOx-CL
3.0
.5
.1
.1
. H
. "
1.1
7.b
111
59
55
50
bl
150
313
bb.B
BI.B
lOh.8
113.2
130.3
131. b
115. B
153. b
VAC.
CKW MM
17.9 377
18.0 3)2
10.11 328
18.0 313
10.0 351
18.0 3bl
1".3 3bb
1 B . '1 3 b 3
18.3 371
MODE
1
2
3
1
S
b
7
8
9
10 My
10.1
12.3
12. 1
13.5
13."
11.2
11.1
11.3
11. b
CMP
21.0
21.1
21.1
21.2
21.2
21.2
21. b
25.1
21. b
AS S°EC IF IE n
cio FC
b3 21.5
b3 23.2
b3 22.7
b 3 2 2 . f 1
b3 21.9
b3 21.9
b3' ?2.0
b5 22.3
b3 22.1
HSHf
.n
.02
.02
.02
.02
.03
.OB
.f
.31
R.1CO BSMfl*
l.bb
2.17
2.32
l.Bb
2.12
3. PI
b.05
12.99
2.b2
3.21
1.20
5.12
s.n
5.b5
5.17
HSFC
1.019
.''b2
.110
.110
.105
.905
.895
.B71
.899
•~-C*LC~"
A/F F/A
17. B
17.3
Ib.b
lb.1
15.8
15.1
15.3
15.1
11.8
.05b
.058
.ObO
.Ob2
.Ob3
.Ob5
.Ob5
.Obb
.ObB
HC
.17
.03
.02
.02
.01
.11
.12
CO
b.25
3.32
3.11
2.50
2.81
3.59
5.11
a. 12
17.12
NOX
3.52
1.31
5.b3
5.97
b.87
7.3b
7.58
7.31
7.98
SFC
KG/KW Hf?
b?0
51S
.5^2
551
.5S1
5"5
,53't
.517
ID =
-------
W
I
ENGINE-?
TARLF E-10. STEADY STATF EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEV90LFT -»SO-CID HO ENGINE PROJFCT 11-1311
TEST-215 RUM-1 tll,-21-7b FMFL INJ - 55 PCT POWER 150-350 POT. SET.
K= 1.07?
HUMs
11.7
CONCFNTRATION
MODE PPM HC-FID CO
I POSO
2 ?05o
3 '050
5 POSn
b ?o5n
7 ?o5n
8 PoSn
1 P 0 5 0
30
35
10
50
RO
110
220
550
.035
.035
* Ol 0
• 0^1
.Obi
AS MFASUPFD
co? NPX-CL
13.35
13.13
1 1 . n »
lli'i
110
515
730
1323
1137
1H5
TOTAL
M.tn?
11.801
15.127
FUEL
CONS.
15377
15105
I17H2
11170
11P13
115)5
CALCULATED G/HR
HC CO N02
1
5
5
h
7
q
bn
11
fll
1b
1 11
130
IbS
1307
187
3bO
31?
117
152
451
CORRECTED G/HR
HC-FIO CO MOX-Cl
1.3
1.1
5.3
H.2
7.1
1.2
15.»
21.1
bO. I
11
111
130
Ibl
IbS
1307
200.1
22S.1
305.1
lBb.0
179.5
IBM!?
187.?
VAC.
CK* MM
31.1 111
3q.q 130
10.0 155
31.7 175
1o!o 211
10.0 218
10.0 33b
sq.q 23b
MODE 10
1
a
3
1
5
b
7
B
q
MV
1.5
5.1
b.l
b.1
7.b
8.3
B.b
q 3
1.3
. . -
CHP
53.5
53. b
53. b
53.3
S3.b
53. b
53. b
53. b
53. h
..
TTO
137
137
137
137
137
137
137
137
137
..... - -
FC PSHc nsco RSNOX
ai.t.
33.1
33.3
32.7
3l.«
31.1
31.1
32.0
.0?
.01
.in
.1?
. 11
.1"
.30
1.15
1.75
1.71
1.B1
2.11
2.11
3.21
5. fab
8.B1
25.00
3.57
1.01
5.15
7.5I
8.55
1.07
R.bl
R.bl
HSFC
.b17
. b21
. bll
. ho7
.513
.515
.5R5
.51R
- — C*LC
A/F F/A
18.0
18.0
17.3
Ib.b
15.1
15.7
15.3
15.1
11.7
.05b
.OSb
.05»
.ObO
.Ob3
.Obi
.Ob5
.Obb
.ObR
HC
.11
.13
.11
.lb
.18
.21
.10
.b2
1.51
CO NOX
2.31
2.21
2.17
a. 13
3.31
1.31
7.bO
11.1?
33.52
1.78
5.11
7.31
1.2?
10.08
11. lb
12. lb
11.51
11. bS
KR/KW HR
.311
.395
.378
.3"
. 3bq
.3bl
. S*1?
.3Sb
.3b3
ID
-------
E-ll.lTE*r>V ST^TF FHT.'SIONS BY f.Ot, PUOrEfillOF - MEIRlC UMITB
1975 CHEVHOLFT J5H-CIO HO FNSTNE PROJECT
M
I
ENGINE-?
TEST- 215 RUN-"; nh-?i-7b FnFL IN.! - in pry pnnFo jon-?5n POT. SET.
CONCENTRATION AS MfASURFD TnlJL FUFL CALCULATED G/HR
HOOF
1
a
3
5
b
7
MODE
1
2
3
S
b
7
«PW
" ?ll5p
pribn
?o5n
?nbo
in
ID -
HC-FID
5,n
f.?n
lo?n
I51Q
1 nj(j
?inn
MV
1.2
?•*
2.b
2 1
3.1
CO
350
tt?
.755
? n?o
3.1?0
CHP
88 t
R1.2
B8.b
BP.R
PA 1
81.2
81.3
CD? NOX-CL C»WHOK CONS. HC
14 ^1 ??bS I1*.""! ?t>593 85
tit j^ ??^o it. 7»? 2nno3 IK
It. 39 2159 15.JM ?018S 15t
|4.n" l?flb 15.58H ^nb8t ?3t
13 71 l7o? lb.0f)9 ?10f 7 27t
J t . 5 •* l?3fl 17.1f)t 217?7 ?9b
]g.79 in?P l*t.5t*i ?110l 338
CTfl EC BPHC HSCO BSNOX
??b t5.t .1" n.35 i?.n7
?27 t*.l l.lo 13. 1J Jl.St
ff^ H^b 27 fl tl,OP 1.08
??« th.t 3.1b bl.U 8.57
2?7 t7.1 3. to 87.83 5.b1
2?8 tR.3 3.8" 107.51 S.l*
CO
°B3
1 ? 1 1
?O Lb
35bO
531,5
7b»R
"3b?
nSFc
.sit
. t15
.5n2
.511
.5??
.537
.5tl
STEADY STATE FHISS10NS BY f(>k PROCEDURE -
1175 CHEVROLET 350-CID HO ENGTNE PROJECT
ENGINE.?
TE*T-215 »llN-b Hb-?l-7b FHFL TNJ . CT MODE
r.ONCFNTRAHOM
MODE
1
2
3
t
5
b
7
8
9
PPM
?onn
POIIO
?oin
?oin
?nin
?l)lo
?0in
?0)n
He-HP
3Hin
3810
?5bno
f» t 000
HH oin
57bl)0
^ 7 bOO
S9s?n
55bsn
en
.005 i
.005
.no5
.151
.170
.n?5
.170
.18?
OFF-»nO
NO?
intb
1U05
1H8
787
7t3
tlb
t5?
A/F F/A
J5.0 .Ob7
15.1 .Obb
It. 5 .nbi
It.? .D71
13. 7 .073
12.3 .082
13.1 .07b
METRIC OMITS
n-tait
POT. SET.
AS MFA3URED TOTAL FUFL CALCULATED G/HR
TO? MOX-CL CA"«nn CONS. HC
.nt i ,3«9 o n
.nt i .t?i *s ti
.nt i ?,bnb im i7«
?.17 S B.B(-b J58B 1171
l.b" * *.37n ]b78 13H5
.15 t 5.9t5 1<|17 It53
1.97 t B.n)1* lt-3' 1 1^7
2.1b t 9,?7? 19bO 1??"
3.95 S 9,17^ 1150 1131
CO
0
1
1
57
bl
1 f)
70
7b
It
N02
n
0
0
n
0
o
0
0
0
K =
1. 107
CORRECTED
HC-FID
85. '»
''S.S
153.8
233.5
?7t .?
21b.5
33R.3
CO
98?
l?ll
2Olb
3SbO
53b5
7ht8
13b?
HC CO
1.3?
1. t7
2. 38
3.b)
**.?*
t.57
5.21
K =
15.21
18. b5
31.20
55.01
83.0?
117.71
ltt.10
1.107
CORRECTED
HC-EIO
n.n
tO.b
178.3
l]7o.b
1305.1
It??. 7
1 llb.1
l?2B.b
1)31.?
CO
D
1
1
57
bl
13
71
7h
1*
HtlHr
G/HR
NOX-CL
IISR.'I
mi.**
1UH9.H
871.1
822.3
StB.S
500.2
NOX
Ib.lH
15. t7
It .b7
)2.l8
11.50
7. (.3
b.9b
18.? r,/t
CK"
b5.1
bb.S
bfe.l
f-b.2
bb. 3
bb.S
bb. b
5FC
.31?
,3nl
.305
.312
.318
.327
.3ft
(C,
VAC-
MM
3D
H8
bl
bb
71
7t
79
HR
HUM= 18.2 «/KG
G/Hfi
NOX-CL
0.0
.0
.0
.3
. 3
.H
.3
.3
•*
C*W
0.0
0.0
0.0
o.n
n.o
0.0
o.n
o.n
o.n
VAC.
MM
567
58*
SSt
set
5»2
58?
582
587
587
MODE
1
2
3
i)
5
b
7
B
ID
MV
S3. I
?3.0
?3.n
23. n
?2.1
fit .1
23.1
23.1
CHP
0.0
o.o •
n.n
o.n
n.o
0.0
0.0
n.o
0.0
CTP FC P*HC RScn RSNOX
n n.n T I I
n .) p H o
n .» P R R
0 3.5 P R R
13.7 1 R R
0 3.3 P R R
n 3 . t. (? R »
0 t.l R » R
n t .3 " R °
BSFr
I
R
R
R
R
P
P
R
R
A/F F/A
S3b.l .OOP
*fl5.1 .Oil?
78.3 .013
??.3 .O»S
? 3 . h .Ot?
33.? .030
?i.» .nto
?1. 5 .ot 7
?n.i .nsn
HC
I
P
R
R
R
R
P
R
0
CO
T
R
R
R
R
R
S
S
a
NOX
I
H
H
H
R
R
a
H
H
SFC
KS/KH
. I
P
P
R
R
P
P
K
R
HR
ID =
-------
TABLE E-12.MA33 EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-?
TEST-215 RUN-X
1975 CHEVROLET 3SO-CIO HO ENGINE PROJECT 11-1311
ob-2i-7b FUFL INJ. - MODES SELECTED FOR BEST BSFC
K= l.OHb HUMS IS.9 G/Kfi
w
I
CONCENTRATION
MODE HC-FIO
1 IDLE
a as PCT T
3 55 PCT T
1 25 PCT T
5 10 PCT T
b as PCT T
7 90 PCT T
8 25 PCT T
9 C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
1 25 PCT T
S 10 PCT T
b 25 PCT T
7 90 PCT T
B 25 PCT T
9 C.T.
1300
S
80
S
20
5
1020
S
3110
1300
5
80
5
20
5
1020
S
3110
CO
.155
.030
.082
.030
.030
.030
.755
.030
.000
.155
.030
.082
.030
.030
.030
.755
.030
.000
—UNITS AS
MODE 10
1 I
2 25
3 55
1 25
S 10
b 25
7 «<0
B 25
9 CT
1 I
2 25
3 55
1 25
5 10
b 25
7 9Q
B 25
R CT
MV
17. b
13.5
8.3
13. S
Ib.S
13.5
2.1
13.5
83.1
17. b
13.5
8.3
13.5
Ib.S
13.5
2.1
13.5
23.1
CHP
0.0
21.8
53. b
21.8
21^2
BB.b
21.2
0.0
0.0
21.2
S3.b
21.2
21.2
88. b
21.2
0.0
SUM— (COMPOSITE
SUM--- (COMPOSITE
TWO CYCLE COMPOSITE -
TO c
AS MEASURED TOTAL FUEL
C02 NOX-CL C*RBON G/HR
13.07 b7 I3.b72 2011
13.78 110 11.811 9979
11.08 1323 11.171 11121
13.78 110 13.811 9979
11.23 270 H.eb3 7938
13.78 110 13.811 9979
11.39 2159 lS.2bl 20185
13.78 110 13.811 9979
.00 0 .311 0
13.07 b7 13.b72 2011
13.78 110 13.811 9979
11.08 1323 11.171 11121
13.78 110 13.811 9979
11.23 270 Il.8b3 7938
13.78 110 13.811 9979
11.39 3159 jS.2bl 80185
13.78 110 13.811 9979
.00 0 .311 0
CALCULATED G/HH *T .
HC
22
n
9
0
i
o
151
n
0
23
1)
9
0
1
0
151
0
0
SPECIFIED IN THE 7-11-75 PROCEDURE
CTQ FC BSFC BSNOX
0 1.5 R R
b3 88.0 .910 1.8
137 31.8 .593 9.3
b3 82.0 .910 1.8
ai 17.5 1.8b7 5.9
b3 22.0 .910 1.8
227 11.5 .502 11.9
b3 28.0 .910 1.8
0 .0 R R
0 1.5 R R
b3 aa.O .910 ».B
137 31.8 .593 9.3
b3 22.0 .910 1.8
B1 17.5 1.8b7 5.9
«,3 22.0 .910 1.8
287 11.5 .508 11.9
b3 22.0 .910 1.8
0 .0 R R
HC- FID 0.35( 1
CO- NOIR 0.35( IS
NOX-CL 0.35( 12
F/A
,0b2
.Ob2
.Obi
.Ob2
.Obi
.Ob2
,0b9
.Ob8
.002
.Ob2
.Ob8
.Obi
,0b2
.Obi
.Oba
.Ob9
.Ob2
.002
.3) 4 0.
.9) » 0.
.0) + 0.
CO
137
11
|h9
11
31
11
201b
11
n
137
11
Ib9
11
31
11
201b
11
0
SFC
KG/KM HR
R
.551
.3bl
.551
1.135
.551
.305
.551
R
R
.551
.3bl
.551
1.135
.551
.305
.551
R
bS( 1
bS( IS
bS( 12
MC 4
NOX
1
115
18b
lib
51
115
1030
US
0
1
115
I8b
115
51
115
1030
115
0
HPM
590
2010
2050
2010
2020
2010
2050
2010
2noo
590
2010
2050
2010
2020
2010
2050
2010
2000
.3) =
.9) =
.0) =
NOX =
SFC =
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.07?
. 14 7
.077
.057
.077
.113
.077
.1*3
CALC
A/F
lb.2
lb.1
15.7
lb.1
15. b
lb.1
11.5
lb.1
faObk2
lb.2
lb.1
15.7
lb.1
iS.b
lb.1
11.5
lb.1
bOb.2
1.271
1S.M97
12.027
13.298
.135
WEIGHTED G/HR
HC-FIt)
5.1
.0
1.1
.0
.1
.0
17.4
.0
.0
5.1
.U
1.4
.0
.1
.0
17.1
.0
.0
HC
21.1
.1
S.b
.1
.3
.1
72.1
.1
.0
21.1
.1
S.b
.1
.3
.1
72.4
.1
.0
1.3
1.3
G/KH
G/KM
G/KH
G/K*
KG/KX
CO
32
3
25
3
2
3
228
3
0
32
3
25
3
2
3
228
3
0
NOX-CL CK*
.B n.o
8 . H 1 8 . 11
71.1 lrt.il
8.8 1». (I
3.1 7.0
B.b 18. u
llb.1 bb.l
8.8 13. 0
.U 0.0
. H H . 0
8.8 18.0
71.4 40. 0
8.8 1 8 . ll
3.1 7.0
8.8 H.()
llb.1 hfe.l
B.H 18.0
.11 n . n
•-PERCENT OF TOTAL — -
CO
10. b
1.1
8.3
1.1
.b
1.1
75.9
l.l
.0
10. b
l.l
".3
1.1
.b
1.1
75.9
1.1
.0
Ib
Ib
MR
US
MS
HP
HP
NOX PU^L
.1 S.b
3.9 9.1
31.4 25.?
3.9 9.1
1.1 5.1
3.9 9.1
51.3 27. f
3.9 9.1
.0 .n
.1 S.b
3.1 ^. 1
31.1 25.2
3.9 9.1
1.4 5.4
3.9 9.1
51.3 27.2
3." 9.1
. u . o
18.0
12. U
{ .918 HS)
(11.851 BS)
( 8.9b8 US)
( 9.91b MS)
C .718 «S1
VAC.
MM
117
313
211
3U
111
313
bl
343
587
447
343
211
343
419
343
^1
3<3
SR7
POWER
0.0
7.2
30. S
7.2
2.1
7.2
38.7
7.2
0.0
U.O
7.2
3J.S
7.2
2.1
7.2
38.7
7.2
0.0
-------
M
i
ENGIMF-2
TAPLF E-13. STEADY STATF FMIR«?InN5 PY FPA PROCFmiRF - MFTRIC UNITS
Iq75 rHFVPnLET 9t;n-cIO HO FMGINF PROJFCT 11-1311
RUN-I 07-13-71- Mnnf: 7 70-1SO EC" PnT MAX ERR 11 HTOC
Kr 1.098 HUM: 17.0 G/KG
MODE RPM
1 PIMIO
2 ?ono.
3 pnon
» 201)0
5 ?nno
b 201)0
7 2onn
8 ?nnn
9 ?onn
MOOF ID
1 70
? BO
3 9n
i inn
5 tin
b l?n
7 130
8 HO
9 150
HC-FTD
blO
1000
lb?n
1 7in
1900
i 9t-n
2120
."11..
MV
.5
.h
.8
.8
.9
.9
1.1
1.1 .
1.1
NTRA r ION
CO
.591
.909
1.30^
1.910
2.500
3.2bO
3.7(JO
1.520
5.120
•--UNITS
CHP
87.1
87.1
87.1
87.1
87.1
87.1
87.1
87.1
87.1
AS UFA
en?
11. 51
11.39
13.79
13.19
12.93
i P.b1;
1 2. 3s
11. Bb
A9 SPE(
rTn
230
230
230
230
230
230
230
230
230
SURFn THTAL
NOx-CL r.ARHOM
1137
1 3b9
1330
1052
993
bR7
5RR
»13
3b3
:IFIEO
FC
1».9
15.3
••5.0
Ib.R
17. b
18.8
18.8
19.9
M.I
15.?n»
J5.H 13
IS. SI*.
15.90h
lb. 1 90
lb.108
lb.57h
I7.ni5
17.?39
FUFL
cnws.
?03bb
2051B
20112
21228
21591
22135
22135
22b31
23179
CALCULATED G
HC CO
98
J5?
21R
2bb
295
301
32S
318
IN THp 7-11-75 PROCEDURE"
BSHC BSCO HSNOX
1.1»
1.70
a. 3i
2.9"
5.11
3.11
3.5?
3.80
1.1.7
18. b5
28.55
10.11
bl.01
78. bO
103. hR
lib. 19
H1.7fa
Ib2.29
7.lb
7.07
b.2b
5.11
1.5b
3.59
3.01
2.13
1.89
J598
?117
31bS
5230
b735
8881
99R1
1? J 1b
139pb
flSFC
.511
.518
.515
.535
.515
.558
.558
.571
.585
/HR
NO;
b39
bob
537
Ibb
391
308
2bl
182
Ib2
CORRECTED G/HR
HC-FIO co NOX-CL
— CALC —
A/F . F/A
11. b
11.1
13.8
13.5
13.3
13.1
12.7
12.1
.Ob8
.Ob9
.070
.072
.071
.075
.07b
.079
.080
^7.7 1598
152.2 2117
198.1 3ih5
?»7.7 5230
2bb.1 b735
291.7 8981
301.3 99R1
325.8 12|1b
318.5 139nb
G/KW
HC CO
1.53 25.02
2.38 38.29
3.10 51.23
3.88 81. Bb
t.17 105.11
».bl 139.01
1.72 15b.21
5.10 190.10
5.15 217. bl
701 . ••
588.9
511.7
337.8
28b.2
200 2 '
177.9
MR
NOX
10.00
9. IP
8.10
7.30
*>.!?
1.82
1.08
2.85
2.51
CK»
"b"e"
b5.2
b5.2
b5.2
b5.2
b5.2
b5 2
bS.2
SFC
.312
.315
.313
.32h
.331
.310
.310
.3Sb
VAC.
MM
1 3
15
20
20
23
28
28
28
HR
ID = ECU
-------
ENGINE-?
TABLE E-i4.sTE»nv STATF EMISSIONS BY FPA PPOCEOUWE - METRIC UNITS
1975 CHEVROLET 350-cIO HD ENGINE PROJECT ll-»31l
TEST-ERR RUN-? 07-13-7b MoOF 7 7O-150 ECU PnT MAX EGR It- HTOC
K=
HUM=
G/KG
CONCENTRATION
MODE
i
2
3
1
5
b
7
8
9
RPM
2000
?onn
?OI10
?000
?oon
?onn
?0oo
?00(l
?ono
Hf-FID
400
700
1200
ISbO
j 740
188P
2020
21»n
2280
CO
.350
.591
1.019
1.281
1.830
2.500
3.210
3.750
4.570
AS MEASURED
CO?
14. ?3
1* . 3q
14.08
H.08
13. 7B
13. ?1
1 P.79
12.5?
11.99
NOX-CL
1549
I 483
11 ?(,
1288
111?
944
73b
M?
438
TOTAL FUFL
C»"PON CONS.
14.S25 200*9
|5.nt>o 20003
I'S.PSt 20)85
15.54? 20412
15.809 2O1S5
15.925 • 20b8»
lfc.?3? 2 l?2P
1*«.51S 2l5Hb
tb.B?3 219119
CALC1IL»TFO G/HR
HC
b?
j n(-
1 81
23*
254
28n
303
321
34?
cn
9h9
1585
?727
3405
472O
bS59
84Hn
988?
i2(ie?
NO?
705
t>54
b?7
Sb2
471
407
320
2f<5
1S9
CORRECTED B/HR VAC.
HC-FIO
b?.?
105.9
181.?
234.0
254.?
279. 7
303.3
321.2
34?. 4
CO
9b9
1585
2727
3405
*7?0
b559
84BO
988?
1202?
NOX-CL CKW MM
771.0 (.4.9 13
715.2 h4.9 ?0
b8b.U b». 23
b!4.2 (>4. 28
515.5 b4. 30
44S.2 b4. 3b
3»9. S b4. 3b
289.9 S4. 3b
207.1 (.4. 3b
~ --------- - - - - -
MODE
ID
MV
.
CHP
AS SPECIFIED
CTO
FC
IN THE 7-11-75 PR(
8SHP BSCO
R8NOX
B8FC
CALC
A/F F/A
HC
ro
NOX KG/KM HR
1 70 .5
2 80 .«
3 ^0 .<»
H 100 .1
5 110 .?
b 120 .•»
7 130 .»
8 1»0 .>»
S 150 .»
87. ??<»
87. 2?"
87. 2?<<
87. 22<«
87. 220
87. ??•»
87. 221*
87. ??<(
87.1 ?2<(
»•».?
t*.!
HH.5
»5.0
11.5
•»5.«.
»b.8
H7.5
•»8.3
.73
1.2»
2.11
?.73
?."7
3.21-
3.5»
^.75
t.on
11.30
18.50
31.83
3"».7H
5S.08
7b.55
98.97
115.33
1»0.31
8.2?
7. S3
'.3?
b.55
5.50
».75
3.73
3.0""
2.21
.507
.SOS
.511
.517
.511
.52»
.537
.5H5
.555
15.?-
11.8
1».5
1H.2
IS.''
13.7
13. •»
13.1
12.8
.Obb
.ObB
.ObS
.070
.072
.073
.075
.07b
.078
.97 15. lb
l.bb 2H.80
2.8-» H2.b8
3.bb 53.30
3.98 73.87
».38 102. bb
•».7S 132.72
5.03 15».bb
S.3b ISB.lb
11.03
10. 2»
9.H2
8.79
'.38
b.37
5.00
1.15
J.lb
.3"^
.30«
.311
.31*
' .311
.318
.327
.332
.337
w
t—f
tr-
ECU
-------
ENGINE-?
TABLE E-15. STEADY STATF EMISSIONS BY EPA PPOCEOIJPE - METRIC UNITS
l«7S CHEVROLET 3r.n-clO HO ENGINE PROJECT 11-1311
TEST-EGR RUN-3 07-l3-7b MpP-F 7 qn-ISn ECU POT MAX EGR IB BTOf
K= 1.0S1 HUMr lb.5 G/KG
CONCENTRATION
MODE °"M HC-FIP CO
2
3
«,
b
7 •
?ono SBO
200O 13bO
?ooo isbn
?ooo is?o
?oon lino
?ono ?oin
?nnn 2lbo
.5bl
.sos
1.210
1.7SC1
2.380
3.030
3.bSn
• — UNITS
AS MFASUPFO TOTAL FUEL CALCULATED G/HR CORRECTFO G/HR
CO? NOX-CL CARBON CONS. HC CO NO? HC-FID CO NOX-fL Cl
11. ?3
11. OB
I'.ol
13. 7B
13.35
I?. S3
12. 5?
IbjS
|5lb
1312
IO?B
Bns
hf.2
AS SPECIFIED
11.S03 1S3J3 |M H70 bSS 11».S 1«70 7b0.1 hi,
15. IIS ISSSS ??S 31bR SSI e?s|j 3jbB b3S*tl bl'
15.77R isqiJR 2S3 1S71 So7 jb3 H 1S71 i?5H 1 bl
15. SIB ?01B5 e?S bOBS 13? ?7S*S bp85 17?*b bl'
Ib.lSl ?ob38 2SH 7B00 31? ?S8.1 78QO 37l"l b»311
07-1 3-7b MODE 7 10-1 "in ECU POT MAX EGR ?0 RTOC
Ks l.OBf
HUM=
G/KG
CONCENTRATION AS MEASURED TOIAL FUFL
MODE PPM HC-FID CO CO? NOX-CL CA"PO>i CONS.
2
3
5
b
7
2000 12bO
2000 1380
?000 17Rf|
?oon jsnn
?0»o 2120
?OOO ?1<>0
.1S7 11.80
.755 11. ?3
1.0S7 11.08
l.hlO 13. 7R
2.170 13. •>•>
2.800 13.07
3.500 I?.b5
157? 15.13S 1S051
IflBR 15.B7B ?O01q
"71 Ih.m ?0321
bR7 lb,3SB ?07?S
CALCULATED G/HR
HC .CO NO?
1 B 11 .1 ? 5 h
IBS 1S1B
?Sb HI87
?7S S535
307 7)33
31* 8S37
hBn
5«7
5?R
15h
3h5
?8B
CORRECTFO G/HR VAC.
HC-FID co NOX-CL CKH MM
IBn.n
IBS.?
222.3
255.5
27H.7
30b.b
313. B
l?Sb 713. S bl.
1<"18 71R.5 bl.
P7b8 b1?.0 bl.
<»OB7 577.2 bl.
5S35 1SB.8 b».
7133 3S8.S bl.
8«37 315.3 bl.
30
38
13
lb
lb
51
UNITS AS SPECIFIED IN THF 7-11-75 PROCEDURE-
MODE ID My CHP CTO EC BSMr RSCO PSNOx
.... cALc._.
RSFC A/F F/A
HC
-G/KM HR-----
TO NOX
SFC
KG/KW HR
1
2
3
if
5
b
7
so
inn
110
120
130
110
150
1.?
1.5
1.7
1."
l.s
l.R
2.0
87.
87.
87.
B7.
87.
"7.
"7.
22" 1?.h
?2S 1?.0
?'S 12.3
??S 13.?
?2S 11.?
?P 9 <» f . a
?P1 15.7
?.!» 11. bb
?.?! ??.3S
2.5" '2.31
?.SB 17.70
^.21 Sl.bO
3.SS R3,?5
3.bb 101.31
7. SI
7.b7
b. B5
b. lb
5!3?
3! 37
.IBS
.IB?
.HBb
.HQ(,
.507
.51*
.525
lO
11.1
11.1
13. B
13. K
13.?
.ObS
.ObB
.ObS
.071
.07?
.071
?.B?
?.1b
3.18
1.00
1.30
1.RO
1.SI
iS.bb
30.03
13.3?
h3.Sb
8b.>-3
lll.bl
13S.88
10. bl
10.28
s.is
7.11
5.71
1.51
.2SS
.?S3
.2SS
.3n?
.3ns
.313
.31S
ID = ECU
-------
ENGtNE-2
TABLE £-16. SIF.ADY STATF FMTSSIOMS RY FPA pporEniiRF - MFTPIC UNITS
lq7c; CHFVROIFT 3";o-CID HD ENGINE PRO.IFCT 11-H311
TEST-EGR PIIN-5 n?-)3-7(, HOOF 3 l2S-?sn FCU POT NO EGR 1* BTDC
G/KG
MODE
1
2
3
5
fa
MODE
I
2
3
5
b
CONCENTRATION
RPM HC-FID CO
?nnn
20110
20OO
2000
2000
2000
10
..--.-.
150
17S
?no
22q
250
ion
80
BO
80
MV
3 b
*.»
5.0
5.9
b.B
7.*
.082
.05b
.051
.nib
.Ohl
--UNITS
CHP
53 1
53. »
53 1
53.1
53.1
AS MEASURED
13.93
12J5?
12.93
13.19
b?5
798
980
117)
TOTAL
rAPHUM
)H.n?b
12.317
12.^85
13.550
AS SPECIFIED IN THK 7-1
CTQ
"ll"
)10
110
110
110
FC
35.0
33.7
33.2
3P.7
32.3
32. b
8SHC
.29
.20
.19
.19
.18
FHFL
CONS.
1597b
15n59
CAI Cl'l
HC
15
1 1
10
10
q
_ATED G/HR
CO N02
IBP
105
1 11
129
1-75 PROCFDURE
nsr.o
3.58
P..hB
?. 31
8. 01
2.1?
P.lb
BSNOX
2.95
t.02
1.73
5.7b
b.b9
7.73
RSFC
.bS5
.b31
.bPl
.bl?
.bOe.
.bin
155
211
303
35?
CORRECTED G/HR
HC-FID CO NOx-CL
15.3
13.8
10.7
10.2
9.7
9.5
---CALC—
A/F
15.9
17.9
17. b
17.)
lb.1
15.7
F/A
.Ob3
,05b
.057
.059
.Ohl
.Obi
HC
.39
.35
.27
. 2b
.25
.21
188
123
105
111
129
Ib9.7
231.2
27). 7
331.0
381.8
CO
1.80
3.59
3.11
2.b9
2.B1
3.30
NOX
3.9b
5.39
b.31
7. 78
8. 98
10.37
VAC.
CKH MM
39.8 91
39.8 112
39.8 127
39.8 150
39. R 173
39.8 188
SFC
KG/KW HR
.399
.381
.378
.372
.3b8
.371
ID
ECU
CO
STEADY STATF FMJSSlONS BY EPA PPOCFDURE - METRIC UNITS
1975 CHEVMOI ET 350-Cin HD ENGINE PROJECT H-f311
ENGINE-2 TEST-EGP RUN-b 07-13-7b HODE 3 lbr)-2»0 ECU PPT 1.P5 EGR 1* BTtK
HUM= lb.5 G/KG
HOOF RPM
1
2
3
S
2000
POOO
?oon
CONCENTRATION
HC-FIO co
nn
bn
2Bl|
900
.0*0
.051
.125
1.137
AS MEASURED TOTAL
CO? HOX-CL CAHHOfl
11.08 575
H.SH 575
11.70 590
11. 8h 510
11.39 535
11.125
11.59<;
I s.mn
-----•"----•
TU 1HT 1 1
FUEL
CONS.
15558
15-tbB
15122
15b91
i ic puni
CALCULATED G/HR
HC CO N02
5
7
32
103
91
110
9H9
2305
211
203
?0*
180
178
---CM C---
CORRECTED G/HR
HC-FID CO NOX-CL
5.0
?!l
32.1
103. »
91
110
2b1
2305
-. G/KH
231.3
222. b
P23.1
I9h.9
195.1
HR
CKW
39.8
39.8
39.8
39.8
39.8
SFC
VAC.
MM
119
127
137
150
IbO
MOD€ ID MV CHP CT(3 FC BSHr HSCO RSNOX
HC
1
2
3
S
IbO
)8n
son
22n
210
5.0
5.1
5.9
b.3
53.
53.
53.
53.
53.
110 31.5 .in
110 31.3 .0"
1HO 3VO .M
l»n 31. 1, 1.97
1.7?
P.09
5.03
18.07
13.87
1.0?
3.87
3.89
3*. 39
.btb
.bH?
.b3B
,b3b
.bIB
15.8
15.3
15.0
.Ob3
.ObS
.Obh
.Ob9
.071
.13
.1?
.18
.8?
2.31
2.80
2»]23
58.83
5.10
5.19
5.21
•K55
.393
.391
.388
.387
.391
TO = ECU
-------
ENGTNE-2
TABLE E-17. STEADY STATE EMISSIONS pv EPA PROCEDURE - METRIC UNITS
TEST-EC* PUN-? "",^.EVRnl "..^-EIn.H? !^INE—PROJECT n-i3U
o?-i3-7b
it,n-?s,r» ECU POT i.?s EGR~ IP RTOC
CONCENTRATION AS MEASURED TOTAL FUFL
MODE RPM HC-FID Cn rO? NOX-CI. rA«ROM CONS.
K= 1.09H HUMr 1 (,. 5 G/KG
CALCULATED G/HR
HC CO NO?
1
CORRECTED G/HR
Hf-FID CO NOx-CL
20110
?ooo
2000
2000 7oo
2000 ISIfl
2000 1SOO
sn
85
220
.Ob7 13.7R
.099 l».pR
.227 JH.51
.59R (I.Rb
1.178 11.OR
1.720 13.93
7?0
I1*. ISO
M.79?
1S.S3B
J*.*"
IF.S??
!»•»?••
1»379
HO 232.5
75
1125
1H7B7
^l^
i^e
IbB
71.5
119
1125
825b
3217
255.7
233.3
ein.i
183.3
VAC.
CKW MM
39.8 1»2
39.8 ibo
39.B 173
3".B 183
39.8 190
3".8 190
MOPE
1
?
3
t
ID
IbO
180
200
220
210
2bO
ID = ECU
I'NITS AS SPECIFIED IN THE 7-11-75 PROCEDURE-
HV CHP CTO EC RPHr H.9CO flSMOX
S.b
b.3
b.R
'.a
7.5
7.5
S3.
53.
53.
53.
53.
53. »
iin
mn
31.8
31.7
31. *»
31."
.10
.If
3.05
3.8H
8.55
^.^,^
B3FC
.5«5
!597
.597
.bio
---CALC-" •
A/F F/A
lb.0
15.7
15.1
13. q
.Ob?
.nbf
.Obb
.070
.070
.07?
HC
^25
K90
•G/KM HR
CO NOX
SFC
HR
3.57
5.15
11. »7
28.71
57.57
88. 9b
5.R*
S.97
,3b?
.3bl
.3h3
,3b3
.3b7
.371
vd
ENGINE-2 TEST-EGP RUN-B
"V EP* PROCE"URE - METRIC UNITS
?e0-CID HD ENGINE—PROJECT 11-»3U
i it,o-2hfi ECU POT MAX EGR m BTDC
K= I.fl9f
HUM=
r./KG
CONCENTHATION AS MF»SUPFD TOTAI
MODE PPM HC-FIP Co en? NOK-CL CAPftnM
?»on
Z
3
•> ?onn
5 ?nnn
b ?oon
330
.125 l».no
.?75 1H.51
,70h !».39
1.3R» 13. "3
?.17n l?.b»
15. 191,
15. »7?
15.091,
FUFL
CONS.
1H170
!»»?••
I«h9b
J»R32
CALCULATED G/HR
HP CO N02
CORRECTED G/HR VAC.
HC-FID CO NOX-CL CKW MM
(8
37
95
150
172
258
5»2
135»
I7b
17b
158
93
3b.b
95.2
1»9.7
172.2
191.1
258
5»2
1351
•»0b5
5blb
192.1
192.8
172.3
155.2
121.b
101.3
39.8
39. B
39. B
39.8
39. R
39.8
112
150
173
MODE
10
UNITS AS SPECIFIED IN THr 7-11-75
MV CHP CTO FC 8SHC
RSNOx
BSFC
— C*LC —
A/F F/A
-G/KM MR-
SEC
1
2
3
5
b
1»0 5.9
2PO b.b
220 h.8
2bO 7.1
ID = ECU
53.1
53.'l
53.1
53. »
53.1
lin 31. R
)*0 32. 1
110 3?. 7
110 33.8
^70
1.81
3!?«
».9O
in. 31
25. 7b
50.51
'7.35
10b.R7
3.35
3.OO
2.70
2.17
.517
.597
.595
15. t,
1S.O
13^7
13.5
.Obi
.Ob7
.Obfl
.070
.073
.071
!93
2.13
3.82
b.5B
13. "2
b7|?8
103.72
113.32
1.18
1.50
1.02
3.b2
2.91
2.3b
.31.3
.3fc2
.3b9
.372
.385
-------
ENGINE-?
TARLF E-18. STEADY STATF FMTSSIONS BY FPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 35n-Cir> HO ENGINE*—PROJFCT Il-t3il
TEST-EGR RtlN-i |i7-l3-7b Mnnp » ibn-?bo ECU POT MAX FGR ?? BTPC
«= 1.08? HUMr 15.s (!/KP
MODE PPM
1 ?000
a ?000
3 ?0np
» ?000
5 ?noo
b aooo
CONCENTRATION
HC-FIO
3bO
1 1 U
iao
ittn
1 blO
isbn
CO
.153
.?ts
.b!3
i.aba
a.o?o
?.itn
AS MFASMREO
CO?
13.13
1».08
It .?3
13.78
13.i-t
11 .t8
NOX-CI
tin
530
51O
Its
315
300
TOTAL FUEL
rAKPnu CONS.
1*. l?t 11515
It. 17? lt?<»3
I t . Itfl 1H1 17
I5.?0b It) 17
1 5. 151 Itblb
It.h31 1H83?
CALCULATED G/HR
HC
t?
tb
1""
153
171
?lt
Cn
318
1 1)
I I 7b
?38n
3783
bO?l
NO?
1H7
)7t
Ibl
138
J?S
101
COKRECTFD G/HR
HC-FIO
tl .8
tb.O
11. t
153.?
171. t
?13.7
CO
318
til
11 7b
?380
3783
bO?l
NOX-CL
15,8. B
1. 7H.II
Itl. 3
131. b
101.3
VAC.
CKW MM
31.1 137
31.1 157
31.1 Ib8
31.1 180
31.'< 183
31.1 188
MODE ID
i ibn
a 190
3 ano
"* ??0
s a + o
b abo
My
5.t
b.?
b.b
'.1
7. a
7.t
CHP
53.5
53.5
53.5
53.5
51.5
53.5
CTO FC
Itl
Itl
) 1 1
I'M
Itl
Itl
3?.0
31. t
31 .3
31.3
3?. t
3?. •>
BSHr BSCO BSNOX
.pp b. nt
.98 1.3t
1.81 ??.38
J.ll t5. ?1
3 . * 1 71.11
t.07 lit. 57
?.71
3.3?
3. Ob
?.ha
3.31
1.1?
BSFC
.518
.587
.5B5
. hn5
.bll
~~-CALC~-~
A/F F/A
15.7 ,0bt
IS. 5 ,0b5
lt.1 .Ob7
It. 5 .Obi
13.1 .07?
it. a ,ob8
HC
1.07
1.1?
3. "U
5.t5
CO
6.11
30.0?
bO.73
1b.53
153. bt
MOX
3.7t
t.ts
t.10
3.5?
3.10
?.5B
SFC
KG/KH HR
3bt
.357
.35b
.37?
ID = ECU
M
i
ENGINE-P
TEST-ERR
STEADY STATF EMISSION? BY EPA PROCFDURF - METRIC UNITS
1175 CHEVROLET 150-CIO HO ENGINE PROJECT 11-l^n
o7-i3-7b MOOF ? tho-?bn ECU POT i.n FOR i» BTDC
K= 1.08? HUh= IS.5 G/KG
CONCENTRATION
MODE
1
a
3
H
5
b
RPM HC-FIO
?onn 5
?oon 5
?oon 5
?000 15
?onn i7n
?noo 58o
co
.n?o
.o?o
.030
.131
.t7b
1.157
AS MFASIIRFO
TOTAL
en? NOX-CL CARBON
13. bt
lt.?3
lt.7n
15. 3t
15.18
l».7n
155
175
t R5
?05.
IIS
IPO
13. bb)
It . '51
It. 731
I5.t73
15. ^75
|5.1?3
FUEL
CONS.
Il?t1
1013?
105?3
lOBtl
10387
10705
CALCULATED G/H«
HC
O
O
0
1
1 ^
t5
CO
33
31
Ht
) 85
b17
1571
NOa
t?
ts
tt
H8
tl
to
CORRECTED G/HR
HC-FIO
.5
.t
.t
1.?
ia.i
tt.7
CO
33
31
tt
185
b37
1571
tlOx-CL
ts.i
ts.a
H7.5
51. b
tb.H
t3.5
VAc.
CKW MM
18.0 ?tt
18.0 2b7
18.0 ?10
i8.o aio
18.0 3oa
18.0 305
MOOF
10 Hw
CHP
AS 3PFCI
CTO
FIFO
FC
IN THF 7-1
BSHC
11-75 PROC
HSCO
RSNOx
BSFC
— -CALC —
A/F F/A
HC
CO
NOX
SFC
KG/KM HR
1 ibn
? iRn
3 ?on
t a?o
s atn
b ahO
l.b ?t.
in.s ?t.
11. t ?t.
n. t ?t.
11.1 ?t.
12.0 at.
b3 ?t.1
b3 ?t.l
b? ?3.e
b3 ?3.1
b3 ??.1
b3 ?3.b
.1?
.0?
.n?
.05
.55
1 .81
l.t? .71
i . ia ,8i
1.85 .8h
7.85 ?.n?
?b.H ,fl?
bb.5t .70
1.03n
i.nni
,1b3
.11?
.151
.181)
)b.3
15. b
15.?
It.S
it. a
13.1
.Obl
.Obt
.Obb
.Obi
,n7n
.n7?
.03
.0?
.0?
.07
.'3
a.st
1.10
1."
10.5?
3b.J1
81. ?3
a.ti
a. 53
e.ti
2.71
a.tt
a.aa
>b?K
.hOI
.58b
.hOt
.578
.51b
It) = EC"
-------
ENGINF-3
UHLE E-19. STF.ADV STATE FM1SSIONS PY ED» PROCFDIIPE - METRIC UNITS
J975 CHEVPQI.F.T 3c;n-cir> HO ENGINE PROJECT 11-1311
RUN-II 07-13-7b MODE ? ibo-8bo FCU POT i.n EGH IR BTDC
CONCENTR«TION AS MEASURED TOTAL FUEL
MODE RPM HC-FIO CO CO? NOX-CL CARBON CONS.
CALCULATED G/HR
HC CO NO?
K= 1.088 HUM= 15.5 p/^p
CORRECTED G/HR VAC.
HC-FID co NOX-CL CK* MM
1
8
3
5
b
MODE
1
2
3
1
5
b
8000 10
8000 in
80110 80
80IIO 8n
8000 18lJ
8000 980
in MV
IhO 11.1
180 11.7
800 18.3
880 12. b
210 IS. 9
8bO 13.8
.riio
.010
.077
.888
1.388
— UNITS
CHP
81.0
81.0
81.0
81.0
81.0
81.0
13.93
1».83
isiis
ll^Rb
175
190
195
805
180
AS SPECIFIED
CTO FC
b3 28.8
b3 81. b
b3 81^5
13.97?
11.87?
IN THr 7-
BSHC
.03
.03
.Ob
10070
9931
9707
975P
U-75 PROCF
RSC.O B
8.50
8.11
1
8
b
31
b7
1URF-
SNOX
.77
."b
.'73
.78
59
103
Ib05
BSFC
.183
."11
^890
18
1b
HI
3b
---CALC —
A/F F/A
15.9 .Ob3
15. b .Obi
15.1 .Obb
11.5 ,0b9
H.l .071
13. b .073
.8
.9
1.5
33)9
b7.1
HC
.05
.01
.09
.33
sins
59
57
103
81O
lb!15
G/KW
CO
3.35
3.83
S.Rh
lb.01
17.70
91.11
15.3
17.5
So.O
15^1
3P.7
HR
NOx
8.38
8!b3
8.38
2.38
8.03
17.9
17.9
17.9
17.9
17.9
17.9
SEC
KG/KM
.5b8
.551
.Sib
.511
.511
.511
888
897
388
335
HR
w
I
IV
ENGINE-8
MOOE
STEADY STATE EMISSIONS BY EpA PROCEDURE - METRIC UNITS
1975 CHEVROIFT ^eo-CID HO ENGINE —PROJECT 11-H3H
TEST-EGR RUN.j? D7-13-7b MOOF ? lbn-8RO ECU POT 1.0 EGR 8? BTDC
MODE RPM
1 8 Oil II
2 ?000
3 8000
1 8000
5 pnno
b 80OO
CONCENTRATION AS MpASUREO Tf|T«L
HC-EIO CO CO? NOX-CL C«HBOM
So
7o
880
b9o
1HO
.078 13.b'l
.078 11.83
.115 11.51
.887 |H.8b
.738 JH.70
1.819 11.39
1.7bo 13. M3
190
880
19Q
1«O
UNITS AS SPECIFIED
13.717
11.307
15.17?
IN THr 7-1
FUEL
CONS.
iblb
95P5
9389
9jb3
CALCULATED G/HR
HC CO N08
1 IPP
» 97
5 118
lb 3bl
18 9np
7b 1131
101 8091
lb
17
17
15
37
35
CORRECTED G/HR
HC-FID co NOX-CL
3.8
5.1
15. b
17.7
75.9
101.8
108 17.7
"7 50.1
118 5(1.5
908 IR!B
1.131 39. b
8091 38. o
CKK
11.11
18.0
19.H
18.0
18.0
18.0
18.0
VAC.
MM
897
317
328
335
313
351
351
1-75 PROCEDURE — -CAl C— G/KW HR SFr
ID
HV
BSFC
A/F
F/A
HC co NOX KG/KW HR
1
8
3
1
5
b
7
ISO 11.7
1«0 18.5
800 18.9
280 13.8
810 13.5
8bo 13.8
?«0 13. R
81. bl PI. 8
81. b3 ?l.o
81. b3 80.7
81. b3 80.8
81. b3 80.7
81. b} ?n.?
81. b3 811. b
. 1 ••
. p?
.bb
8.0?
3.83
1.89
H.31 ,H7
».Cl9 .97
b. 87 .98
1 5 . ? 9 .01
38.?? .91
bO.78 ,5b
88.71 .19
.880
.878
.859
.Sbl
.859
lb.8
15. b
15.8
11.7
It. 3
11.1
13.9
,0b8
.ObH
.Obb
.ObR
.070
.071
.078
.80
.81
.89
.89
2.71
1.31
5.75
5.78
5.19
8.11
81). SO
Bill?
118. 9b
8.51
8.b1
8.bb
8.70
2.57
8.0-1
2.00
.535
.53(1
.523
.585 .
.583
.510
.580
10 = ECU
-------
ENG1NE-2
TABI.EE-20. STr»OY STATf- FUTSSIONS BY F.P» PROCFO')»E - METRIC UNITS
1975 CHFVPOI ET J^II-CTO Hf) ENGINE PROJECT 11-H311
TEST-EGR PIIN-J i n7-j i-7». MOOF ? 200 ECU PPT i.n FGR I»-?R BTOC
K= I.n79
HUM =
15.? G/KG
MODE
1
2
3
5
b
7
8
MODE
CONCENTRATION
RP1 HC-FIO CO
POOH
?oon
POOH
?00n
POOO
2000
2OOn
POOO
10
80
70
bO
70
70
IbO
250
MV
.05b
.Obi
.Obi
.072
.ORP
.101
.112
.m
CHP
CO?
11.39
11.39
11. PI
11.19
11. 5»
1 1 .5t
11.19
AS S"Er
CTQ
lIRfl) TnT»L
NOX-CL CARBMH
190
1 qt;
1 90
POO
210
P15
2 til
?70
FC
1-.155
) t.',09
1 1 .15P
11.31(1
IH.tPb
|u.f,5i)
ii.7on
11.1-00
IN THf 7-1
B3HC
FUFL
CONS.
11P19
10115
9979
9bb2
9135
91b3
R9RI
RROO
CALC'HATEO G/HR CORRECTED G/HR
HC CO NO? HC-FID CO NOx-CL
7
b
5
s
5
b
1 1
17
RR
1 Rb
85
98
115
131
175
"'.
BSC"
RSNOX
BSFC
»9 7.1
•»5 5.5
»» 1.7
15 S.I
15 5.2
»S b.H
H9 11.1
51 17.1
CALC
»/F F/A HC
R8
Bb
R5
98
115
1 31
175
P21
CO
53.0
18.1
17.0
18.1
19.0
IB. I
52.5
58.3
HR
NOX
CKw
18.0
18. 0
1R.O
18.0
1S.O
18.0
18.0
18.0
SFC
KG/KM
VAc.
MM
2b1
295
305
317
325
333
310
313
HR
1
3
r
,
7
B
11 10.1
lb 11. b
IP 12.0
20 12.5
2? 12.8
21 13.1
2b 13.1
28 13.5
"**"j
2".:
21.
21.
21 .
21.
21.
21.
bl ?1."
b3 ??"o
bl 21.3
bl ?II.P
b3 )9.8
in"
" j^
.20
.2?
^27
!7?
3.71
3.h3
3.b2
1.15
1.R8
5.55
7.12
2.0" 1.030
1 . 9n ,92b
1.81 .9J.3
1.9C1 ,RR»
1.9? .8b1
1.89 .839
2'.ob !R?P
2.29 .80S
15.1
15.3
15.1
15. b
15.1
15.2
15.2
15.3
.Ob5
.ObS
.ObS
.Ob»
.Ob5
.Obb
.Obb
.Obb
.10
.31
.27
.30
.2q
.3b
,b3
.''7
5.01
t.R7
1.85
5.5b
b.S5
7. It
S.95
12.53
2.79
2'.55
2.17
2.55
2.58
2.51
2.77
3.07
.b2b
ISM
.55b
.S3P
.525
.510
.500
.190
M
i
tv
ID = BTOC
ENGINE-2
TE3T-EGR
STEADY 9TATF EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 350-tin HO ENGINE PROJECT 11-»311
07-1 ?-7f, MODf 2 200 EC" POT MO EGR 11-38 BTDC
K= 1.079 HUM= 15.2 G/KG
MODE
1
2
3
H
5
7
MODE
j
j
3
5
fa
7
CONCENTRATION
RPM HC-FID CO
POOO
POOH
2onn
pnort
pnnn
?non
poon
ID
M
i"
2?
3 ci
38
80
Rn
80
120
2in
300
MV
11. b
13.5
13.8
11.3
11. b
11.7
.035
.nsb
.077
.101
.131
.117
.1"
CHP
21
2"».
21.
2»
21.
21.
AS MEASURED
en? nnx-ci
IP.
IP.
12.
1 1.
1 1
1 1.
11.
AS
5P Pin
25 P50
1? 250
99 2(-n
99 nn
Pb *nn
hi 115
SPECIFIFD
CTQ FC
f.
l
»
t
t
1
f
1 ?P 8
1 PO.5
.3 19.3
.? l«.3
-3 17.8
.1 1 7.b
•3 17.3
TOUl
12.5b»
IP. 115
1?.?0b
1?. 107
12.119
IP. 031
i i .no?
IN THf 7-1
HRHC
.31
_P7
.39
.5"
bb
."»
FUFL
CONS.
10H2
9299
R751
8101
Rn7i
7983
7R»7
CALCULATED G/HR
HC CO N02
7
7
b
9
IP
15
22
59
Rb
1 1?
11H
1 7b
1MB
213
1-75 PROCEDURE
BSCO
2.19
1.72
b.oP
7.15
R.37
9.0?
RSNOX
P.bb
2.*>5
2.5?
2.51
3.09
3.71
1.9"
RSFC
.917
.851
.801
,7bO
.719
.731
.718
S3
b3
bO
59
73
88
92
CORRECTED G/HR
HC-FIO CO MOX-CL
7.3
b.7
b.1
1.1
11."
15.5
22.1
— -CALC—
A/F
17. b
17.9
18.1
18.2
18.2
18.3
18.7
F/A
.057
.OSb
.055
.055
.055
.055
.051
HC
.12
.IP
. 3*>
.52
.b7
.88
1.2h
59
Rh
) 12
1 H»
I7b
198
213
— G/KW HR-
CO
3.31
H.8h
b.31
R.lb
9.99
11.23
12.10
IT.*
b7.b
bl.2
b3.B
78. b
15.1
98. H
NOX
3.57
3.5b
3.38
3.3b
1.11
5.01
5.20
VAC.
CHh MM
18. n 295
18.0 328
18.0 313
18. fi 351
1R.H 3b3
18.0 371
18. P 373
SFC
KG/KM HR
.S7b
.518
.1P7
.lt-2
.150
.•,*»
.137
ID = BTDC
-------
w
I
w
CA)
ENGINE.a
TARLF E-ZI.STEAD* STATE FMISSIONS BY EPA PROCEDURE - METRIC UNITS
li?1; CHEVROIFT 35o-rin Hn FNRINF—PROJECT ii-tsu
TEST-ECU mm-)* ri7-I-»-7h urine s 351 ECU POT NO EGR lt-3? BTOC
K= 1.P7R
IS.? G/KG
CONCENTRATION
MODE
1
2
3
*
RPH
7000
?000
?onr>
?nno
Hf-FlO
b5
75
35(1
••50
cu
.otn
• O'ib
.oea
.115
AS MFAOII&En TflT»L FIIFL CALCULATED G/HR
CO? WX-CL rjPfinw CONS. HC CO
13. bt ?)3 J3.b8fl 7t30 » It
12. ""3 Sin I?.""*: bS32 1 57
1J.7O ?n8 1P.OOO b033 13 78
1?.5? If" IP.bB^ 5«0'> ?3 lOfc
NO?
3B
3S
3a
i*
CORRECTED G/HR
HC-FID CO MOX-tL
t.O »» -H.5
t.a s; 37. c
13.1 78 3H.B
23.0 10b 3D. 8
VAC.
CK" HH
7.? tH
7.? tta
7.? t57
7,? »70
MODE
1
I
3
*
ID
it
so
?b
3?
HV
lfa.5
17. »
iB.n
IS. 5
CHP
0>7
q.*
".7
".7
CTO Fr fiSHC BSC1 flSNO* BSFC
Sb Ib."* .H? H,b7 t.oH l.bBO
?b It.t .»t 5. SB 3.bR I.tfl3
?b J3.3 1.37 P.17 • 3.3P l-Sb'
'b 1*." ?."•? 1J.12 3. on l.Slfl
"•C*LC""
A/F F/A
lb;? .Obi
17.0 .OS*
J7.3 .05B
17. » .057
- -- .-
HC CO NOX
,5b b.Sb S.tl
.51* 8.0? H.OH
3. a* it. oi t.o?
SFC
K P / K W HR
1.0?7
ooa
. B33
.»(!?
10 = BTOC
STEAOY STATE EMISSIONS BY E»A PPOfFDURF -
i^?"; cMFVRtiLET -<<;n-ciri HO E.MGII-F — PROJECT
EMRINE-? TEST-ERR RUN-OTST n7-u-7b fonp 3 cyu )-" J°P ECU POT
CONCENTRATION
MODE
1
a
3
»
5
b
7
B
RPM
?otm
jnnn
?f)00
?oon
?0no.
?ooo
7000
?ooo
HC-FID
58to
?3*>0
500
300
Ibo
530
! RBr)
3ato
en
.?S7
.300
.tt7
.193
. 10*
.1"!
.153
.170
HETRTC UNITS
U-%311
n.o EGR
AS MpASIIPEn TOTiiL FUEL CALCULATED G/HP
to? NOX-CI. CAHHON CONS. HC CO
13.2) 5SO It.lSt I5?S») 711 Sb?
15.0? 575 15.5H9 IS?fb ?bt 50t
It. 31 b(iO lt.50* 15?8b 50 3ia
l*.7o b37 I1*.1!?? ]5?Rb gr gqp
i*.3i (.00 it. IIP i5?8b 10 aai
l».7n «>7» l».ai*l I5?8b h? 37»
lt.?3 5HB I'.SOl, 15?Bb ??3 3?t
13. b» 7?» It. |7? ]<;?Pb 30t ?70
noa
108
187
ao*
217
avt
a?o
aot
as.0 G/KG
VAC.
CKki MM
30. b It?
30. b ita
39. b l i»?
30. b it?
-------IIN7 TS At.s
15.?
15. b
.nbt
.Ojn
.ntib
.0«.7
.Ob5
,0b7
,0bb
.Obt
IB.lt
b.7t
1.53
.SO
,to
1.5 '
5. SO
10.05
It .3*
15.15
7.0»>
10.1'
5.b3
O.Sh
B.?b
S.tt
s. a*
t J?8
5.38
5.53
b.?t
5.B1
5.??
b.bl
.3Hb
.38b
.38b
,3«b
. 3Rb
. 3Bh
.30*,
,3ftb
ID *
-------
TABLE
SS FWISSIONI RY NINE-MODE EPA - METRIC UNITS
ENGINE-?
TfST-21b RUN-l
1175 CHEvR"l.ET 350-CIO HD ENGINE PROJECT 11-1311
07-11-7b HFI-11 BTDC AT 20OO ?5fl ECU POT PL WO AIR
1.018 HUM: 17.0 G/KG
W
I
CONCENTRATION
MODE HC-FID
1 IDLE 1850
2 25 PCT T 110
3 55 PCT T 205
1 25 PCT T 10
5 10 PCT T ?0
fa 25 PCT T 30
7 in PCT T 2i?n
8 25 PCT T 35
1 C.T. 28800
1 IDLE 25bO
2 25 PCT T 2"n
3 55 PCT T 2Ml
1 25 PCT T 10
s in PCT T bo
b 25 PCT T bo
7 10 PCT T 2080
8 25 PCT T bo
1 C.T. 2B800
CO
1.107
.088
,05b
!o35
,05b
3. bOO
.Olh
.2b3
1.531
.082
.117
.05b
.035
,05b
3 bsn
.nib
.217
UNITS »S
MODE MV
11 DIE 17.5
2 25 PCT T 11.0
3 55 PCT T 8.2
1 25 PCT T 11.0
5 10 PCT T lb.7
b 1* PCT T 13.1
7 1q °CT T 3.5
8 25 PCT T 11.0
1 C.T. ?1.1
1 IDLE 17.7
i 25 PCT T H.O
3 55 PCT T 8.2
1 25 PCT T 11.0
5 10 PCT T lh.7
fa 25 PCT T 11.0
7 10 PCT T 3.5
8 25 PCT T 11.0
1 C.T. 21.1
CHP
0.0
?3.3
51. b
23.2
23.2
85.5
23.3
n.n
0.0
23.3
5> .fa
22.1
8.8
?3. 1
81.3
23.1
O.P
SUM— (COMPOSITE
SUM. ..(COMPOSITE
TWO CYCLE COMPOSITE -
AS MEASURED TOTM.
CO? NOX-CL CARBON
13.35 51 H.ifa7
13.fai inn t3.7io
13.13 J?n7 11.015
13. 7R lit) 13.811
13. ?1 185 13.21B
11. OR m,i; )1 . t 31
12.71 IfaB Ib.b31
13.13 1b5 13.180
5.1? 1 8.711
13.35 50 15.1»0
13.78 inn 13.H85
11.31 1277 11.5b7
13.13 150 13. lib
13.11 IRQ n.532
11. ?3 370 11.213
12. bS IhR lb.531
11.08 500 11.132
1.72 11 7. IHR
SPECIFIED IN THE 7-l|-
CTd FC BSFC
01.1 R
h? ?n.1 .817
137 31.3 .bi)fc
b3 ?0.7 .81)
21 15.7 1.7b?
b3 ?0.8 .BIB
221 11.. 2 .511
b3 ?H.b .181
0 2.0 R
0 1.3 R
b3 20.1 .Rib
137 31.1 .b03
h3 ?0.1 .B7b
21 15.1 1.753
S3 20.1 .881
225 »5.B .«:i3
b3 20.5 ."8R
0 2.0 P
VALUE FOR CYCLE 1)
HC- FIO 0.
CO- NOIR 0.
NOX-CL 0.
FIIFL CALCULATED G/HR
G/HR
2??3
inn
J1J17
1381
7l?l
1135
2015k
1311
107
1150
1180
11) 07
1117
MHS
1?53
P0775
1?11
107
HC
31
q
?3
3
1
?
308
3
31b
37
IS
21
7
3
1
301
1
311
•75 PROCEDURE
8SNOX
R
1.3
R.b
1.7
".1
1.1
5.3
1.1
a
R
1.3
R.B
1.7
3.''
3."
5.3
5.3
R
35( 5
35( b5
35( R
F/A
.OhB
.Oh?
.nb3
.nb2
.ObO
.Obi
.077
.(Ib3
.012
.Obi
.Ob?
.Ob5
,0b3
.Obi
.Obi
,07b
.Ob3
.038
.0) t O.
.8) t 0.
.?) + 0.
CO
12?
1??
281
77
3"
7b
11M
b?
55
311
111
281
71
37
73
1?hl
bl
50
SFC
KG/KM HR
R
.515
. Sb**
.51?
1.07?
.Sib
.321
.538
R
R
.515
. 3fa7
.533
' 1 .Obb
.538
.330
.510
R
b5( 5
b5( bb
b5( B
HC +
NOX
3
101
113
101
3b
113
111
113
0
2
100
151
107
31
87
113
120
0
RPM
b70
llbfl
1180
USD
1130
11*0
2000
1150
2000
fa30
1150
1170
H20
1100
1130
1170
H30
2000
.1) =
.7) =
.3) =
NOX =
SFC =
NT.
FACT.
.?32
.077
.1*7
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
C»LC
A/F
11.7
lb.2
15.8
lb.1
lb.7
15.7
13.1
15.1
23.1
11.5
lh.0
15.3
15.1
lb.1
15. b
13.1
15.8
2b.l
5.2b5
bb.111
B.2b2
13.527
.isn
WEIGHTED G/HR
HC-FID
7.2
.7
3.*
.2
.1
.2
31.8
.2
15.1
8.7
1.2
1.2
.5
.2
.3
31.0
.3
11.2
CO
18
1
12
b
2
b
1035
5
8
13
1
12
b
2
b
inib
5
7
NOX-CL CKW
.7 0.0
7.7 17.1
bS.l 38.5
8.1 17.3
2.1 b.b
8.7 17.3
50.2 b3.7
8.7 17.1
.0 0.0
.5 0.0
7.7 17.1
fab. 3 38.5
8.2 17.1
1.1 fa.b
b.7 17.2
50.1 b2.1
1.2 17.2
.1 0.0
--PERCENT OF TOTAL—
HC
7.1
.7
3.7
.3
.1
.2
37.8
.2
11.1
8.8
1.2
1.3
.5
.2
.3
31.5
.3
»1.1
5.0
5.1
G/KH
G/KW
G/KW
G/KW
KG/KM
CO
8.1
.8
3.5
.5
.2
.5
85.1 .
.1
.7
7.b
. 7
3.5
.5
.2
.5
8b. 1
.*
.b
bb
b7
HP
HR
HR
HR
HP
NOX FUEL
.1 b.l
5.1 8.7
12.'' 21.8
5.5 B.b
l.» ».B
5.7 B.b
33.1 28.2
5.7 B.b
.0 1.5
.» 5.5
5.1 8.B
11.0 25.1
5.5 B.S
1.3 ».8
1.5 B.b
33.2 28. 1
b.l 8.7
.0 l.b
8.2
8.3
( 3.12b BS)
(11.523 BSJ
( b.lbl BS)
(10.087 BS)
( .731 83)
VAC.
MM
111
35b
208
3Sb
121
353
81
35b
h!2
150
35b
208
35b
121
35b
81
35b
b!2
POWER
0.0
7.2
30.5
7.2
2.0
7.2
38.8
7.2
0.0
0.0
7.3
30.7
7.1
2.0
7.2
38.5
7.2
0.0
-------
TA9LE E-23.MASS FMTSSinNP fly NINF-MOnE EPA - METRIC UNITS
W
I
ro
ENGIWF P TFOT aiu o,,y , *^5 CHEVR°L*T 350-CIO HO FNGINE— PROJEC T ll-*3
EN6INF-? TEST-aib RIIN-a 07-l*-7(, HFI-ii PLUS VAC AOV 250 FCU POT
CONCENTRATION AS MpASUREll TOTAL
M°OF HC-FIO CO CO?. NOX-CL CARBON
i IOLE 21*0 a.aso
2 25 PCT T *00 .153
3 55 Per T 10*0 .217
* 25 PrT T asri ,ne
s in PrT T 130 .us
b 25 PrT T 28o .1*7
7 90 prT T ?a*o *.n'o
8 25 PrT T 195 .13b
S C.T. 2*91,0 P51'
1 ir>l E ?**0 l.bSO
2 25 pry T 5*0 .153
3 55 PCT T iino .an*
» 25 PCT T 320 .1*7
5 10 PCT T 170 .115
b a5 PCT T 300 .1*7
7 90 PCT T aibo 3.910
8 25 PCT T 225 .1*3
8 C.T. 25bOO ,?75
UNITS A9
MOOE MV CHP
1 IDLE 17. b 0.0
2 25 PCT T lb.1 ?3.?
3 55 PCT T 10. b 51.*
* 25 PCT T lb.1 a3.2
S 10 PCT T 18.5 8.8
b 25 PCT T lb.1 ?3.3
7 So PCT T 3.3 85. a
8 25 PCT T lb.1 ?3.a
SC.T. 2*1 00
1 IDLE 17. b 0.0
2 25 prT T ib.i aa.3
3 55 PCT T 10. b 50.7
» 25 PCT T ib.i a?. 3
S 10 PrT T 18.5 ' 8 9
b 25 PCT T Ib.O 22.3
7 Sn PrT T 3.3 R*.5
8 25 PCT T lb.1 33.0
ia.3R *9
13.35 8*0
13. S3 Ph30
13.35 995
12. b5 210
13.35 9jo
12. PS 785
13. *9 980
12. S3 50
13.35 S?0
13. *S S?o
12.5? 195
12. 3B 835
13.35 10?S
».S9 15
SPECIFIED TN
CTO FC
0 . *.3
b3 17. a
137 ?b.S
b? lb.9
2* 12.5
b2 17.1
P2* *7.7
b3 1 b. R
0 *.l
bl lb. 8
137 Pb.3
bl ]b.t>
bl lb*9
22* »b.9
b3 Ib.b
0 2.1
1*.873
13.523
IP. 779
lb.578
7. 58?
1*.B57
13. 5b*
13.b7»
13.b7l
lb.539
13.517
7.5*0
THE 7-H-75
BSFC
R
.523
.7a9
l.*l*
.73*
.5bO
.723
"
9
.755
.519
1 .*23
.759
.555
.721
R
FUEL
G/HR
1950
1220?
5K70
9n7
IRbO
7beo
11929
7530
5715
7bbb
?1?73
7530
953
CALCULATED
HC . CO
32
101
18
b
18
t?
31 ?
35
3*
10h
20
9
32P
1*
338
59h
178
Ib2
103
171
1O730
15*
bl
*17
35?
Ib*
Ib7
10159
IbO
70
G/HR
NOX
177
185
3*
1S3
375
200
1
2
189
833
IBS
1SS
383
20S
1
PROCEDURE SFC
BSNDX F/A KG/KW HR RPM
R
7.7
lb.1
8.1
3.9
8.3
O
R
lb|b
s!?
8.8
*.7
R
.nbB
.Obi
,nb*
.058
.Obi
.077
.flbl
.03b
.ObB
.Obi
.nba
.057
.Ob?
.07K
.llbl
.H3b
R
.318
.BbO
!3*1
R
R
[sib
!338
R
faOO
1S50
1S70
1950
1920
2000
1950
2000
bOO
1S30
11*0
1830
1120
1830
i98n
2000
11
PL WO AIR K= 1.101
WT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
CALC
A/F
1*.7
lb.*
IS.b
Ib.*
17.3
lb.*
13.0
lb.3
27.*
1*.B
lb.3
15.9
lb.2
17.5
lb.2
13.1
lb.*
27. h
SUM (COMPOSITE VALUF FnR CrCLF 1)
SI/M (COMPOSITE VAI UF FOR rvn F 31
TWO CYCLE COMPOSITE -
HC-
CO-
Fin n.3sr
NDT3 0.35(
Nn»-CI_ n.35(
b.
"1.
12.
01 + O.b5(
n t n.b5(
?1 + O.b5(
h
75
1?
HC +
.*) =
.b) =
• 7 ) —
NOX s
SFC =
b.2bb
77.1
-------
TABLE E-24. MA33 EMISSIONS BY NIMF.-HOOE EPA - METRIC UNITS
ENGINE-2
TEST-217 RUN-1
1175 CHEVROLET 35n-CID HP ENGINE PROJECT 11-H311
07-11-7S MODALLY OPTIMIZED EFI-HEI MVA-EGR-PL H»IR
1.087 HUM= lb.0 G/KG
M
I
CONCENTRATION
MODE HC-FTO
1 IDLE
2 25 PCT T
3 55 PCT T
H 25 PCT T
5 10 PCT T
b 25 PCT T
7 1Q PTT T
B 25 PCT T
1 C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
H 25 Prj T
S 10 PTT T
b 25 PCT T
7 10 PCT T
B 25 PCT T
9 C.T.
ban
SHO
H50
235
235
2*0
70
100
73bo
132n
510
5hO
275
2bn
300
100
115
78HO
C"
.35b
.738
.882
.583
.120
.525
.30b
.H02
.nns
.181
!si8
.1H5
.Sbl
.109
!3b9
.H28
.020
AS MFASUREO TOTAL FUEL
CO2 NOX-CL C»"BON R/HR
1.?2 Pi 1
11.12 230 11
11. Bb 575 12
11. 3b 115 11
1.22 3HO 1
1 1.2H ?3n i i
1H.5H b70 It
11. M 275 1?
.11 15
B.91 35 1
11.12 215 n
11.91 5BO 1.2
11. ?H 235 H
1.22 310 9
11. 2H 2H5 11
1».5H bl5 I*
11. H" 235 11
.11 15
.h50 15H2
.11B B52B
.712 13517
.ibi 83ni
.3b5 5352
.71h R3Hb
.«SH 2(15H8
.1)23 8H37
.93? 0
.23H 15H?
.775 H52"
.197 13101
.83? BHR?
.357 5171
,7b3 B?55
.120 20321
.121 83»b
.991, . n
CALCULATED G/HP
HC
12
53
1*
15
22
11
8
n
2H
HI
b3
22
Ib
23
15
q
0
cn
115
10b7
1883
817
138
751
855
Sbl
n
bl
875
112H
B13
122
hlH
1015
fcOh
0
NOX
2
59
211
HI
70
59
335
70
0
2
bl
211
bl
b2
b2
302
59
0
WT.
WEIGHTED G/HR
FACT. HC-F1D
.232
.077
.1H7
.077
.057
.077
.113
.077
.232
.077
.1H7
.077
.057
.077
.113
.077
.1*3
2.7
3.3
7.8
l.H
.8
1.7
1.2
.b
n.o
5.5
3.?
1.3
1.7
.1
1.8
l.B
.7
0.0
CO
27
82
277
b3
8
SB
17
HH
0
1H
b7
283
b3
7
S3
115
H7
0
NOX-CL CKW
.H 0.0
H.b 17.8
32.2 38.1
3.8 17.1
H.O 7.2
H.S 18.0
37.8 bS.1
S.H 18.1
n.n o.o
.5 0.0
H.7 18.0
31.0 31.8
H.7 17.1
3.5 7.2
H.S 17.1
3H.2 bS.H
H.b 17.1
0.0 0.0
VAC.
MM
503
HOI
239
HOI
tSB
399
bl
311
b27
Sib
31b
23H
381
500
391
bb
319
b27
UNITS AS
MODE
1 IDLE
2 25 PCT T
3 55 PCT T
H 25 PCT T
5 in PCT T
b 25 PCT T
7 10 PCT T
B 25 P«"T T
9 C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
% 25 PCT T
S 10 PCT T
b 25 PCT T
7 90 PCT T
8 25 PCT T
1 C.T.
MV
19.8
15. B
1.H
15. B
11. b
15.7
2.7
15. H
2».7
20.3
15. b
^.2
is. n
11.7
15.7
2.b
15.7
2H.7
CHP
0.0
23.8
52.2
2H.1
9. 7
2H]2
88.3
2H.2
n.n
0.0
53in
2H.O
2t!n
87. b
2H.O
n.n
SUM--- (COMPOSITE
eiiu //•nuOr»otTt
3"J~
THO CYCLE
COMPOSITE -
SPECIFIED IN THE
CTO FC
n 3.H
b3 18.8
13b 21. B
b3 IB. 3
25 11. B 1
b3 18. H
225 H5.3
b3 iB.b
o n.n
0 3.H
b3 18. B
13R 28.1
b3 18.7
25 11. H 1
b3 IB. 2
22b HH .8
b3 IB[H
0 n.n
V*L"£ F OR C VCI.F 1)
UAIIIF F n(J f vP 1 F 3)
VULUt 'UK t. Yl* l_ C c 1
HC- FItl
?. 11-75 PROCEDURE
RSFC BSNOX
R R
.7BB 2.5
.571 ».3
.7bl 2.1
.22? 7.H
.7bO 2.5
."513 3.8
.7b7 ?.9
I I
R R
,7Rn ?.b
.5HI H.O
. 78n 2.*>
.185 b.5
.75B ?.b
.511 3.5
.7b5 2.5
I 1
1 0.35( 1
CO- ND1H 0.35( 3H
NOX-CL
0.35( H
F/A
.OH*
.OSH
.058
.055
.OH3
.OSH
,nb7
.055
.OOH
.OH?
.05H
Io51
.05H
.OH3
.05*
.Ob7
.nSH
.005
.0) » 0.
.7) » 0.
.1) » 0.
SFC
KG/KN HR
R
.HflO
.3H8
.Hb3
.7H3
.Hb3
.312
.Hb7
I
P
.H75
.321
.H7H
.721
.Hbl
.311
.Hhb
I
bS( 1
h5( 3H
HC +
RPM
bOO
2000
2020
2010
2000
2020
20bfl
2020
2000
bOO
2010
2030
20110
1110
2000
2(1HO
2000
2000
.3) =
.H) =
.7) *
NOX =
SFC =
CALC
A/F
22.5
1B.H
17.2
18.3
23.3
18. b
15.0
18.3
223.0
23.5
18. b
lb.1
18.5
23.3
18.7
1».1
1B.H
.208.7
1.219
3H.517
H.75H
5.173
.312
HC
1H.O
Ifc.B
31.8
7.1
H .2
B.b
b.3
3.1
0.0
22. H
12.7
37.5
b.B
3.b
7.2
7.1
2.8
0.0
1.0
1.3
G/KH
G/KW
G/KM
G/KH
KG/KM
CO
H.I
12. b
H2.3
l.b
1.2
8.8
1H.8
b.7
0.0
2.2
10. H
H3.b
l.b
1.1
B.2
17.7
7.2
0.0
35
3H
HR
HR
HR
HR
HR
NOX FUEL
.H H.7
H.9 8.7
3H.B ab.3
H.I 8.5
H.S H.O
H.I 8.5
Hn.B 30.7
5.8 B.b
0.0 0.0
.b H.S
5.H 8.8
35.3 25.8
5.3 8.8
H.O 3.1
5.H 8.5
38. B 30.8
5.2 B.b
0.0 0.0
H.I
( .901 BS)
(25.731 BS)
( 3.SH5 BS)
( H.H5H BS)
( .bHH BS)
POWER
0.0
7.2
29.9
7.2
2.1
7.3
39.0
7.3
o.n
0.0
7.J
30.5
7.2
2.1
7.2
38.5
7.2
0.0
-------
Table E-24 (Cont'd.)
Test 217, Run 1, MODAL, TEST CONDITIONS
Air EGR,* Air/**
Fuel**
Mode _lnk % Fuel /Air
1 (idle> ON o.O 14.5 066
2(25%> ON 15.4 13.9 072
3<55%> ON 14.0 14.0 071
4(25%) ON 15.4 13.6
5(10%) ON 0.0 15 7
M25%) ON 15.4 13;7
7(90%) ON 6.6 13.2
8(25%) ON 15.4 13.7
OFF 0.0 .o
Reference Conditions***
EGR EFI
A L . o """ """ °-° 25°
2, 4, 6, &8 12.86 1.83 1>0 200
j! 13-49 1.73 2.5 180
^ '-- "- 0.0 350
7 H-99 0.76 2.5 150
9 "-- --- 0.0 OFF
ECO2 & ICO- - Exhaust CO2 and Intake CO? in %
Background CO2 = 0. 06%
*EGR%= C02 Intake - CO2 background + 100 . CQ2 Intake *
C02 Exhaust 1 00 -C02 Exhaust 10°
** Using the equation in the recommended procedure - data obtained with
air injection system cut off
*** These reference conditions are specific to the systems used and, with
2> °nly S6rVe ^ d°CUment the settings ^r possible
E-27
-------
TABLE E-25.HASS EMISSIONS f»Y NINF-MODE EPA - MFTRIC UNITS
w
oo
ENGINE-?.
TEST-217 RUN-3
|97S CHEVROLET 3SO-CJn HP ENGINE PROJECT 11-*311
,,7-19-7., MOOALLY OPTIMIZED EFI-HEI WVA-EGR-PL WAIR
K= 1.072 HtlM =
G/KG
CONCENTRATION
MODE HC-FID CO
1 IDLE 7Sn .755
a as PCT T son .120
3 55 °CT T S7S .170
* ?S PCT T 310 .131
5 10 PfT T 210 .098
b 25 PCT T 3»0 .131
7 90 PCT T 125 .b51
B 25 PfT T 210 .1*2
q C.T. B7?o .n?o
1 IDLE S8n .*28
2 25 PCT T S2n . 1 3b
3 55 PCT T blS .217
* 25 PCT T 375 .1*2
5 10 PCT T 2bO .093
b 25 PCT T *10 .1*2
7 9n PCT T ISO .b\3
B 25 Pf.T T 290 .1*2
9 C.T. 8*00 .015
UNIT3 »3
MODE HV CHP
... — ---- — -------- — ----
1 IDLE 18. b O.n
a 25 CCT T 1*.* 23.1*
3 55 PCT T 8.1 52.5
* as PCT T IS.? 23.9
5 10 "CT T 19.7 9.5
fa as PCT T is.o a*.o
7 9n PCT T ?.b Pb.8
8 25 PCT T 15.? 2*.0
9 C.T. 2*. 7 0.0
1 IDIE 18.8 n.n
2 25 PCT T 15.0 2*.0
3 55 PC.T T 8.* 52.7
* as PCT T is.* 2*.n
5 10 PCT T 19.7 9.7
b 25 PCT T 15.0 2*.0
7 90 PCT T a.b 97.3
B 25 PCT T 15.* 23.2
9 C.T. 2*. 8 0.0
SUM (COMPOSITE
S|,H (COMPOSITE
TWO CYCLE COMPOSITE -
AS MEASURED TOTAL
CO? NOX-CL CARPON
9.*3 30 in.?b7
in.3rt 3*o in.*75
11. *8 7flO 11.71*
9.?? ?7S 9.38B
9.01 295 9.131
13!b* 735 11.305
in.*l ?95 1H.S75
,o» m
10.30 305
10. b* 770
10.53 285
8.91 3in
10.53 295
13. b1 7*n
in. 30 ?7n
.19 10
10.175
10.9?i»
10.713
10.717
I*. 270
1.0*7
SPECIFIED IN THE 7-11-
CTQ FC BSFC
_.„.---—--•—----
0 3.*
t.3 18.5
13B ?8.»
b3 17.1
25 11.*
b3 17.9
b3 17.?
o n.n
K3 17.7
138 27.9
b3 17.5
?5 11.7
b3 17.9
2?b **.B
bl n.b
n ' n.n
VALHF FOR CYCLE
... .---
.77*
.5*1
lil"
.7*7
I
.529
.728
l.?0b
.7*5
.513
.8*3
I
n
HC- Fin n.
CO- xolR n.
NOX-ri. n.
FUFL
G/HR
IS*?
8391
1288?
775b
5171
?0?30
1*97
7938
8119
20321
8890
C»LCtlL»TFO G/HR
HC CO NOX
12 2?9 a
«H 19* ^7
70 377 ?7*
31 ?IB 81
13 112 59
3? 205 80
?n isbn 370
17 211 77
Ib
78
31
17
2*
27
75 PROCEDURE
9SNOX F/A
5^3
b]3
3.»
3.3
I
3.5
b.l
3.2
•O
3.3
*.*
3.b
I
35( I
35( ?0
3S( b
n*7
.o*R
.053
.0*3
.n*?
.0*8
.nbs
.0*8
.no*
0*7
,n*8
.050
.(1*9
.0*1
.n*9
.Ob*
.0*8
.005
.*) » 0
.8) + n
.01 + n
127
211
Sn7
21?
11?
217
I7b*
2*3
SFC
KG/KW HR
R
.H71
.329
.*35
.72B
,*S*
.313
,*3b
I
.**B
.32?
.**3
.733
.*53
.31?
.513
I
.b5( 20
HC »
2
B3
318
7S
bb
77
375
82
__---.
RPM
hno
2non
2000
2000
1970
2000
2020
2000
2000
bOO
2000
?nnn
?ooo
aono
2000
2030
2ono
2000
^21 =
.3) =
NOX =
SFC =
HT. WEIGHTED G/HR
FACT. HC-FID CO NOx-CL CKw
.232 ?."< 53 .* 0.0
.077 3.* IS 7.5 17.8
1*7 10.3 55 »0.3 39.1
077 2.H 17 b.2 17.8
.057 .7 b 3.* 7.1
077 2.5 Ib b.2 17.9
.113 2.3 210 *1.B b*.7
.077 1.3 Ib b.O 17.9
1H3 n.n 0 0.0 0.0
.232
.077
!o77
.057
.077
.113
.077
1*3
C»LC
A/F
21.2
20. *
18.8
23.2
23.8
20. ««
15.5
20.7
222.5
21.*
20.9
20.1
20.5
21.*
20.*
15.5
20.9
198.5
8D.*21
b.179
7.b78
.38b
3.7
3.*
11.5
1.0
2.7
2.1
0.0
30
Ib
75 '
Ib
b
17
199
19
0
.———PERCENT
HC CO
11.1
13.2
«»!?
B!S
5.1
n.o
12.5
11.5
39.*
B.O
3.3
7.1
o.n
l.h
G/KW
G/KW
G/KH
G/KW
KG/KN
13.7
3.8
lib
n.o
7.8
19^7
U7
s?Is
5.0
0.0
21
20
.* 0.0
b.* 17.9
»b.7 39.3
5.8 17.9
3.7 7.2
5.9 17.9
*2.'» bS.l
b.3 17.3
0.0 0.0
OF TOTAL--
NOX FUEL
.3 *.9
b.7 8.8
3b.l aS. 9
S.b 8.2
3.0 *.0
5.5 S.b
37.* 31.3
5.3 8.2
n.o o.o
.3 *.7
5.* 8.*
39.7 85.3
*.•» 8.3
3. a *.i
5.0 8.5
3b.l 31.3
5.3 9.3
0.0 0.0
b.O
fa. 3
VAC.
MM
3hb
aob
38b
500
381
bb
38b
b27
*7B
381
213
391
500
381
bb
391
b30
-----
POWER
0.0
7.2
30.3
7. a
2.1
7.3
38.5
7.3
0.0
0.0
7.3
30.*
7.3
2.2
7.3
38.7
7.0
0.0
HR ( 1.118 88)
HR (IS. 228 63)
HR ( *.bU8 B3)
HR ( 5.72b 83)
HR (
.(,3* BS)
-------
Table E-25 (Cont1 d.)
Test 217, Run 3, MODAL TEST CONDITIONS
Air EGR,* Air/** Fuel**
% Fuel /Air
1 (idle) ON 0.0 14. 1 .071
2(25%) ON 14.5 14.9 .067
3 (55%) ON 13.0 14.9 .067
4 (25%) ON 14.5 15.0 .067
5 (10%) ON 0.0 15.6 .064
6 (25%) ON 14.5 14.9 .067
7 (90%) ON 6.0 13. 1 .076
8(25%) ON 14.5 15.0 .067
9 (CT) OFF 0.0 0.0
Reference Conditions***
EC02 ICO? EGR EFI
1 0.0 250
2, 4, 6, & 8 14.31 1.88 1.0 260
3 14.23 1.69 2.5 220
5 0.0 350
7 11.86 0.71 2.5 150
9 0.0 OFF
EC02 & ICO, - Exhaust CO2 and Intake CO? in %
Background CO2 = 0. 06%
* EGR % = C02 Intake - CO2 background # ioo-CQ? Intake
C02 Exhaust 100 - CO2 Exhaust * 10°
** Using the equation in the recommended procedure - data obtained with
air injection system cut off
*** These reference conditions are specific to the systems used and with
the exception of CO2, only serve to document the settings for possible
future use. v
E-29
-------
TARLEE-Z6. MASS EMISSIONS RY N1NF-MOOE EP» - METRIC UNITS
M
I
OJ
o
TE9T-J17 RUN-5
1975 CHEVROIFT 350-CIO HD ENGINE PROJECT 11-1311
07-21-71, MtlOALLY OPTIMIZED EFI-HFI WVA-EGR-PL HAIR
K= 1.091 HUMs lh.3 G/KG
CONCENTRATION AS MEASURED TOTAL
MODE HC-FIO CO CO? NflX-CL CAKRON
i IDLE sis
2 ?5 PCT T 110
3 55 PCT T blO
1 25 PCT T 2bS
s 10 PCT T IRO
b 25 PCT T 2bO
7 9n PCT T i3n
8 25 PCT T inn
9 C.T. 83?n
1 IDI E b9n
2 25 PCT T 17n
3 55 PCT T blS
1 25 PCT T 2b5
5 10 PCT T 250
b as PCT T a?o
7 9o PCT T 110
B as PCT T 125
9 C.T. 7520
.3b9 9.53
.na 10. SB
.382 11. Bb
.525 11. 1?
.117 13.19
,1b8 11.00
.85b 13. bl
.IbB 11.12
.nis .15
.239 9.3?
.5b9 11.00
.551 11.99
.551 11.1?
.IS1 13. ^3
.155 11. On
.838 13. 7R
.155 11.12
.015 .15
28 9.955
285 11.370
SBO l?.31n
390 »3.b58
255 11.197
s?5 1 1 .5 in
?70 11.599
5 .990
30 9.1,31
S75 ] ?.*il 3
??5 11.703
535 11.12?
?35 11.185
580 )1.b31
2?5 11.5B9
5 .918
FUFL
G/HR
1721
8981
13381
8573
5398
8573
20593
8301
0
1S7B
8?S5
5715
?0"bS
7983
0
CALCULATED G/HR
HC CO NOX
10
38
71
2?
a
21
21
8
0
13
70
11
22
23
10
0
UNITS A3 SPECIFIED IN THE 7-11-75 PROCEDURE
HOOF MV CHP CTQ FC BSFC BSNOX F/A
1 101. E 18.7
2 25 PCT T 15.0
3 55 PCT T 8.5
1 25 PCT T 15.3
5 10 PCT T 19.9
b 25 PCT T 15.3
7 9o PCT T 2.1
8 25 PtT T 15.1
9 C.T. ?1.b
1 IDLE 18.7
2 25 PCT T 15.5
3 55 PCT T 8.8
1 25 PCT T 15. b
5 10 PCT T 19.5
(, p5 pCT T 15. b
7 9o PCT T i!.1
8 25 PCT T 15.8
9 C.T. ?•».«.
0.0 0
21.9 bS
52.7 137
23.8 b2
9.5 25
23. •» S3
Bb.i 225
23.8 b3
0.0 0
0.0 n
23. <* S3
52.7 13"
23.8 S3
10.0 ?b
23.9 b3
87.1 225
2?. 9 SI
0.0 0
SUM— (COMPOSITE VALUE
SUM--— f COMPO3I TF VALUF
THO CYCLE COMPOSITE -
3.8 R
19.R .791
?9.S .5bO
18.9 .795
11.9 i. as?
18.9 .79!
15.1 .5?5
1B.3 .770
0.0 I
3.7 R
18.9 .791
?B.1 .539
18.2 .7bb
12. b 1.25S
18.8 ,78b
IS.o .Sab
17. b .7bB
0.0 T
FOR CYCLE 11
HC- FIO 0.
CO- NOIR 0.
NOX-CL n.
R
3.3
?!''
s.i
?.q
3.8
1.0
I
R
3.3
1."
?!9
3)5
?.5
1
1S( 1
35( 35
35( 5
.nib
.05?
.OSb
.053
.Ob?
.05?
.Obb
.053
.005
.011
.053
.057
.053
.llbl
.052
.Obh
.053
.001
.2) + 0.
.0) + 0.
.1) + 0.
1?9
70S
839
779
118
70S
2153
S77
n
31
817
1113
799
131
2H5
bjl
0
SFC
KG/KM HR
R
.193
.311
.183
,7b2
.181
.320
.IbB
I
R
[328
.Ihh
.7b1
.178
.320
.1S7
I
b5( 37
b5( 5
HC +
2
B?
2b8
b9
Sb
b9
321
70
O
2
79
aso
58
78
b3
300
5b
0
RPM
bOO
aoon
2020
2000
19PO
anno
2020
1990
2000
bOO
2000
aoio
1990
2000
2000
emn
1980
2nno
.3) s
.1) =
.1) =
NOX =
SFC s
WT. WEIGHTED G/HR
FACT. HC-FIO CO NOX-CL CKW
.232
..077
.1*7
.077
.057
.077
.113
.077
.113
.23?
.077
.117
.077
.057
.077
.113
.077
.113
CALC
A/F
21.9
17]9
1.8.8
lb.3
I'M
15.3
18.9
aoa.o
22. b
18.9
IB!?
15.7
15.1
18.9
2?S.»
i.aio
3b.317
5.189
b.130
.399
a. 3
3.0
10. •»
1.7
.5
1.7
2.1
.b
n.o
3.0
3.0
10.3
l.b
.7
1.7
a.s
.7
0.0
HC
9.9
13.0
17. b
7.3
?.o
7. a
10.1
?.7
o.o
1?.9
ia.b
bis
2.8
7.3
10.9
3.1
0.0
1.2
1.3
G/KW
G/KN
G/KM
G/KH
KG/KM
30
51
bO
7
51
?77
52
0
20
bS
IbB
bl
8
53
?73
19
0
.1 0.0
b.3 18. b
39.1 39.3
5.3 17.7
3.2 7.1
5.3 17.8
3b.3 bl.1
5.1 17.7
0.0 0.0
.1 0.0
b.l 17.8
3b.7 39.3
1.1 17.7
1.5 7.5
1.9 17.8
33.9 bS.2
1.3 17.1
0.0 0.0
•-PERCENT OF TOTAL-
CO NOX FUEL
».b
18^7
".I
1.0
8.3
*2. 1
1.*
0.0
a. B
•'.i
21.2
8.7
1.1
7.b
39. a
7.0
0.0
35
37
HP
HP
HR
HR
HR
.1 5.2
S.2 9.0
38.8 25.7
S.a B.b
3.1 1.0
5.2 B.b
35.8 30.1
5.3 8.1
0.0 0.0
.5 5.2
b.l 8.8
38. b 25.1
1.7 8.1
1.7 1.3
5.1 8.7
35. b 31.3
1.5 8.2
0.0 0.0
5.1
5.1
( .925 BS)
(27.101 BS)
( 3.870 BS)
( 1.795 BS)
( .bSb BS)
VAC.
MM
175
381
21b
389
SOS
389
bl
391
b25
175
391
39b
195
39b
bl
101
bas
POKER
0.0
7.5
30.1
7. a
2.1
7.2
38.3
7.2
0.0
0.0
7.2
30.1
7. a
a. a
7. a
38.8
b.9
0.0
-------
Table E-26 (Cont'd.)
Test 217, Run 5, MODAL TEST CONDITIONS
Air EGR,* Air/** Fuel**
In.J' % Fuel /Air
1 (idle) ON 0.0 14.2 .070
2 (25%) ON 15.3 14. 1 .071
3 (55%) ON 14.2 14.4 .069
4 (25%) ON 15.3 14.0 .071
5 (10%) OFF o.O 16.1 .062
6 (25%) ON 15.3 14. 1 .071
7 (90%) ON 6.7 13.6 .074
8 (25%) ON 15.3 14.3 .070
9 (CT) OFF 0.0 oo 0.0
Reference Conditions***
EC02 IC02 EGR EFI
1 ---- ---- 0.0 250
2, 4, 6, & 8 13.21 1. 86 1.0 250
3 13.78 1.78 2.5 200
5 ---- ---- 0>0 35Q
7 12.12 0.79 2.5 150
9 ---- ---- 0.0 OFF
ECO2 & ICO, - Exhaust CO2 and Intake CO? in %
Background CO2 = 0. 06%
*EGR%= C°2 Intake - CO? background ^ 100 . CQ2 mtake . . ,.
C02 Exhaust 100 - CO2 Exhaust
** Using the equation in the recommended procedure - data obtained with
air injection system cut off
*** These reference conditions are specific to the systems used and with
the exception of CO2, only serve to document the settings for possible
future use .
E-31
-------
M
i
ENGINE-?
TAPLE E-27.STEADY STATF K» -11
i? °3 -n
13.35 -n
I?.b5 -0
13.93 -0
IP. 93 -0
1?.'5 -0
i*:I* :1__
inT»i
c»«H'n!
15. nl?
1* . 7? 1
15.71°
1 5.9H1
1 * . 151
1 9.19?
1^.^75
15. "3P
AS SPECIFIFD IN THE 7-1 t
0 0.0
t>3 O.T
13« n.n
h3 n.o
?5 n.o
t>3 no
??5 n.o
h3 n.n
I
n nn
O.nn
n.nn
P.nn
n »in
O.on
O.nn
FUEL C*LC"LATFD G/HR
CONS. HC CO NO?
noon
n o o o
n n o n
oooo
n n n o
o n o o
o n o o
n o n o
-7S PROCEDURE CALC
BSCO flSNOX pSFC */F F/A
I I I 11.5 .Ob9
n.nn n.nn n.nnn 13.9 .07?
n.no n.nn n.nnn n.n ,n7?
n.no n.on n.nnn 13. b .n?3
o.nn o.no o.nnn 15.7 .obi
n nn n.nn n.nnn 13.7 .n73
n.nn n.in n.onn 13.? .n7i>
n.nn n.nn n.nnn 13.7 .n73
CORRECTED G/HR
HC-FIO
0.0
0.0
0.0
0.0
0.0
n.n
n.n
o.n
HC
I
o.nn
O.nn
n.oo
o.oo
o.on
o.oo
o.on
CO
0
0
0
•n
0
0
0
0
-G/KW
CO
I
0.00
o.no
o.no
o.oo
0.00
O.dO
0.00
NOx-LL
0.0
o.n
o.u
n.o
0.0
n.u
o.n
o.u
MR
NO*
1
o.on
o.nn
n.nn
o.oo
0.00
o.oo
o.oo
VAC
C*M MM
n.o
17.8
39.1
17.8
7.?
17. B
17.8
SFC
KG/KH HR
I
n.nno
O.ono
0.000
n.o'jo
o.ooo
O.OGO
o.ono
.
0
II
IJ
0
u
u
u
u
tn =
STEADY STATF FMISSION3 RY EpA PROCEDURE - METRIC UNITS
ENGINE-?
MODE
1
9
5
b
7
P
MODE
7
8
PPM
""oii
?ono
POOn
?nnn
?nnn
POOO
?onn
10
197S CHEVROLET 35n-cln HQ ENGINE PROJECT 11-1311
TF.ST-S17 RUN-3 n7-?3-7(. AIR/FUEL RATIO CHECK FOR TEST ?l7 RUN 3 K =
CP^CE'
HC-FID
?b7?
l?9h
9?B
17?
S3?
IB"?
75?
MV
-o o
— n n
-0 n
-0 0
-o.o
-0.0
(TRATION
CO
"? 9in
5?5
.K7H
,h!3
.1 70
.53?
UNITS
CHP
?3 9
P3 9
9 7
?3 9
"AS MEASURED
CO? NOX-CL
IP. I? -0
14. OP -n
1H.O" -0
ni.n« -n
11. ?3 -0
1».?3 -P
A«s SPFCIFIEP
CT" FC
n n n
f,T no
1 3R n.n
1.1 n.n
?5 n n
ft 3 n n
??"; n.n
(>i n.n
TnlAi
C»"H(1M
15.3M
f .C59
(it. on?
]1» . 790
It .'^"
11.07"
i::;s
JM THC 7-1
BSHC
T
n.nn
n.nn
p.nn
n.nn
0 nn
n.'io
n.nn
FUEL CALCULATED G/HR
CONS. HC CO NO?
n n n o
n n o o
o n n n
n n n o
n n o o
n n n n
n n n n
o n o n
1-75 PROCEDURE CALC
RSCO RSNOY R?FC A/F F/A
I I I n.i .n7i
n nn n.nn n.ntm 11. 9 ,nb7
n.nn n.nn n.onn 11.9 .nb7
n nn n.nn n.nnn 15.0 ,ns?
n on n.no n.non 15. fe .OH
n nn n.nn n.pnn H.9 .nb7
n.no n.n" n.nnn 13.1 .n7K
n. nn n.iiu n.nnn I5.n .OH7
I .nil
HUM =
1?.B G/KG
CORRECTED G/HR VAC.
HC-FID
n.o
a.n
n.n
0.0
0.0
n.n
0.0
0.0
HC
I
o.on
O.nn
o.oo
O.nn
O.on
0.00
o.on
CO
0
0
0
0
0
0
0
0
--G/KW
CO
I
O.OD
o.oo
O.on
0.00
o.on
0.00
o.on
NOX-CL
o.n
o.n
0.0
o.u
0.0
0.0
o.n
o.u
HR
NO*
I
n.on
o.on
0.011
o.np
o.no
o.nn
o.no
CK* MM
0.0
17.8
39.1
! 7.8
'.?
1 7. B
M .n
17.9
KG/KM HR
1
o . n n n
O.nrin
n.nnn
o.ooo
n.nno
0.000
n.nno
1)
u
u
u
u
II
IJ
0
ID =
-------
M
UJ
ENGINE.
T4PLFE-28. STF4DY STATF FMTSStONS BY FOA PROrFOUPF - MFTPIC UNITS
, Dl Iq7l; rHEVPni.Fl 5<=n-rln HO EfcGHiF — -PROJFCT
RHN-S Il7-?.1.7i.
HOOF.
1
3
1
5
b •
7
8
MODE
1
P
3
1
S
b
7
B
PPM HC-FIO ro
ponn ?b«?i ?.7bn
?onn is«"i ?.n?n
pnnn isn» j . 3^0
Pnnn iboo ?.i"»o
POIIO ibn .n'ts
?nno ibnu ?.?sn
?onn IT*S 3.i*5n
Ponn ISP* ?. |in
UNITS
If MV CHP
-o.o n.o
-o.n ?3 n.n
??5 n.n
b? n.n
n.nn
n.nn
n.nn
n.nn
n.nn
n. nn
n.nn
/MIM «
rONR.
n
n
0
n
0
0
n
'»TIO CHFCI
K FOR
TEST ?17 RUN 5
C»LC"I ATF.O G/HP
HC CO NO?
0 n n
n n n
n n n
n n o
" n n
o n o
'J n o
n n o
1-75 P80CF.DURF. —
"SCO BSMOX
n.nn
n.no
n.nn
o.oo
o.no
o.nn
n.on
----....
I
n.nn
n.nn
n.nn
n.nn
n.on
n.nn
n.on
BSFC
......
I
o.nnn
P. Pop
n.nnn
n.nnn
n.nnn
D.noo
o.nno
— CALC —
AXF F/A
--.-.—--.-.--.-
i».e .070
I».J .071
J't.'o .'o71
tb.l .Ob?
!•».! .071
l?.b .07H
1».3 .070
K= l.o»l
1P..B G/KG
COPBECTFU G/HR VAC.
HC-FIO CO MOx-CI. TKw MM
n.n n n.n n.o 0
0-0 0 u.O 17.9 o
n.o o n.n 11.? o
o.n o o.i/ 1 7 . '» o
o.n o n.o 7.,? n
O.n n i).n J7.1 o
n.n n n>n h3.q 0
°.n o o.o 17.1 o
HC
-------
I
o.nn
o.on
O.on
0.00
O.OP
0.00
0.00
----G/KK HR — —
CO NOX
-...--__..
I
o.nn
o.on
o.nn
n.oo
0.00
0.00
0.00
......
I
o.on
0.00
n.oo
0.00
0.00
0.00
3FC
KG/KW HR
...--.«......
I
o.nnn
O.nno
o.nno
0. ono
n.ooo
n.nnn
o.noo
10 =
-------
TABLE E-29. M»SS FMTS3^
11. PI P?n 11.790 8800
ll!ia 2*0 11. b** BI19
13.07 355 13.?19 5»BR
11. P* 235 11.701 «n7*
13.7" h*5 l».h"!5 ?05*B
11. 3b 3*0 11.805 7993
l?.?s inn " " ""'"
B.71 35
11.2* 3on
12.12 7*5
11 . 3h ?no
9.3? *1S
11.13 ?so
i* ,nn b^o
11. 2H 255
11.12 itn
1 1 .7211
12.59? 1
1 1.903
1 1 .515
!ub71 *
ll'.lH
SPECIFIED IN THE 7-11-75
CTQ FC BSFC
0 3.b
b5 19. H
137 28.5
bl 17.9
2* 12.1
h9 17.8
b3 17J*
0 9.*
0 3.5
b5 19.1
139 2«.3
bl 17.9
ab la.b
b5 lfl.7
P2S *5.2
b3 17.9
n 1.9
VALUE FOR CYCLE
VALUE FOR CYCLE
HC-
co-
MOX-
P
.801
^759
1.32*
Isa?
R
• BWWW~««
H
.77*
.777
I.3S3
.7bl
.533
.7bo
R
1)
Fin n.3S(
CL 0.35(
ir'h1'
158R
«1]9
5715
8*03
B119
ll!i._
CALCULATED G/V
HC CO
ia isb
*0 7H9
78 9*0
a* b90
in ins
?3 597
ai 2Si7
11 578
ID ° "^
1"
20
SB
17
15
1 *
11
1 3
PROCEDURE
BSNOX F/A
R
?.•»
?!b
5.B
a.s
3."
a.s
p
R
3.3
5. a
9.1
a. 7
3.8
a. 7
R
1
5
,n*b
!o57
.053
IoS3
•°
.011
.053
.057
illSI
.Obb
.053
.051
.5) + 0
.SI » 0
. 1 ) + "
n r
51
b'>0
855
71*
1*0
583
SFC
KG/KM HR
R
!333
!BOS
'.321
.»S2
a
R
!32S
]7hB
!318
R
.b5( 1
.b5( 29
.b5( S
HC +
m
NOX
SB
bn
S3
58
321
57
IP
2
79
271
b5
323
20
RPM
bOO
1970
2000
1980
19BO
19bO
aoio
I9b0
anoo
bOO
aooo
anao
1990
1110
pnao
?oon
.3) =
.3) =
.h) =
NOX =
SFC =
HT. HEIGh
FACT. HC-FIO
.232 3.8
.077 3.1
.1*7 11.5
.077 1.8
.057 .5
.077 1.7
.113 2.3
.077 .9
.1*3 2.b
.332
.077
!o77
.057
.077
.113
.077
.1*3
CALC
A/F
ai.b
IB.b
17.*
18.8
lb.8
18.8
15.1
18. b
17.8
2*. 2
18.7
17.5
18.*
23.0
18.9
1S.1
18.8
19.5
1.325
31.783
S.»db
b.711
.*27
*.b
a. a
8.5
1.3
U7
l.b
l!9
IIED G
CO
3b
58
138
53
b
*b
*5
13
13
51
12b
55
8
50
191
13
i/MH
NOX-CL CKH
.3 0.0
*.5 18.1
35. B 38.9
*.b 17. b
3.0 b.8
*.* 17.*
3b.3 b*.l
».* 17.5
1.7 0.0
.5 0.0
b.l IB.*
39.8 39.5
3.7 17. 2
5.1 7.*
5.0 18.3
3b.S b*.S
*.9 17. h
a. B o.o
V »L .
MH
ais
39b
*90
39b
b3
*01
531
521
378
2ai
399
b3
31b
521
— PERCENT OF TOTAL
HC CO NOX FUEL POHER
10.3
11.2
b!?
2.0
b.*
B.b
3.1
9.5
19.7
1.3
3b.3
5.5
7.3
b.9
3.5
8.0
1.5
1.3
G/KM
G/KH
G/KH
G/KW
KG/KW
5.3
B.S
20. *
7. B
.9
b.8
*1.1
b.h
1.8
2.1
9.3
32.1
10.0
1.5
9.0
3*. 7
8. a
3b
29
HR
HR
HR
HR
HR
*.7 8.*
37.7 33. b
*.B 7.B
3.1 3.9
*.7 7.7
38. 3 38.8
*.!> 7.5
1.8 7.b
.5 *.S
5.8 8. a
38.1 a3.3
3.b 7.7
*.i ».n
*.8 B.I
35.0 28. b
*.7 7.7
a. 7 7.1
5.1
S.b
( .98B BS)
(33.7U1 BS)
C *.031 BS)
( 5.019 BS)
( .703 BS)
0.0
30.5
7.2
2.1
7.2
38.5
7. a
o.o
.....
o.o
30.5
7.0
a. a
•7.*
38.3
7.1
0.0
-------
TARLE £-30. MASS EMISSIONS nr NINF-MOOE EPA - METRIC UNITS
M
U)
U1
ENGTNF-8 TFST-?1R RUN-?
19?s CHEVROLET 350-CID HO ENRINE— PROJFCT 11-H311
07-?l-7b MODALLY OPT EFI-HEI MVA-EGR-PL HAIR-DECEL
1.0b9
HUM=
G/KG
CONCENTRATION A3 MEASURED TOTAL
MODE HC-FIP CO CO? NOx-CL CARBON
1 IOLE b3fl
2 2s PCT r 195
3 55 PCT T bBo
1 25 PCT T 3nn
s in PCT T 8bo
b 85 PCT T 890
7 S0 PCT T 190
8 85 °CT T Ih5
8 C.T. lBri
1 IDLE 3bO
2 85 PCT T 3»5
3 55 PCT T 535
1 25 PCT T 335
5 10 PCT T 2»n
b 85 PCT T 8Bs
7 80 PCT T 190
8 85 PCT T 155
•» C.T. 19n
.510
,57b
.IbB
.5*7
.Ibl
.17b
.RSI,
.197
.115
.251
.•»5S
.511
.585
.159
.190
.BOH
.490
.115
UNITS A9
MODE MV CHP
1 IDLE 18.7
? 25 PCT T 15.0
3 55 PCT T R.7
1 25 PCT T 15. b
5 10 PCT T 19.5
b 85 PCT T 15. B
7 9D PCT T j.5
B 25 PCT T 15.1
1 C.T. 20.5
1 IDLE IS. 9
2 35 PCT T 15.0
3 S5 PCT T 8.9
» 25 PCT T JS.b
S 10 PCT T 19.5
b 25 PCT T 15.3
7 90 PCT T 2.1
B 25 PCT T 15.3
''C.T. ?0. 3
o.n
33.9
53.1
83.7
'.b
33.7
8b.l
3».8
n.o
o.n
2».0
5?.b
21. b
".b
23.8
"7.1
21.5
n.n
9.53 ?1
11.1? 235
11.99 b90
11.12 315
11.09 5?0
11.12 2tO
13. M »,?o
11. 3b 3?0
13. b5 175
9.«.H *p
11.3* 3bO
11.99 7bO
11. 3b 8bS
13. 7B 5B5
11.24 3(15
11.08 bbO
11. 3b 3(1"
12. b5 IBn
SPECIFIED IN
CTO FC
0 3.1
b3 19.1,
138 38.9
b3 17. P
?5 U.B
b3 1«. 8
2?5 15.1
b5 IB.b
n 10. n
n 3.5
b3 ]9.1
138 38.3
b5 18. »
85 IP. 3
b3 1R.3
235 t5.f
b5 |S.j
n 10. b
SUM (COMPOSITE VALUE FOR CVCl F
SUM (COMPOSITE VAI IIP FOB rvn p
TWO CYCLE COMPOSITE -
HC-
co-
in.l 3B
1 1.751
13.53-*
1 1.700
)».?7*
ll.bfR
1».5|S
11. "75
13.7B5
•>.qao
11.73H
(?.m
11. "M I
13.9bb
11 .7bl
M.90S
1.1 .Bb7
l?.7Bb
THE 7-11-75
BSFC
R
.B20
.551
.753
1.835
,7b7
^8-»
.751
q
R
.BOB
.53b
.7H(,
I .277
.7bb
.581
.73"
R
))
FID n.35(
NOIM 0.35(
NOX-CL n.35(
FIIFL
G/HR
15»3
3B90
13109
nn7-»
5358
HP55
80»57
Bl»37
»51b
15BB
8R(in
1879)
>mh
5579
8301
20593
8810
1HOH
C»LC"l.*TED R/HR
MC CO NOX
10
12
79
23
11
23
29
13
7 •
b
29
bl
IB
11
22
30
12
B
Ibb i
810 b3
989 J5h
7b8 bO
181 b9'
hB3 bO
2»3b 310
713 81
88 88
Bl 8
b90 9b
1051 875
713 hb
128 83
b9R 7h
2215 32*
bB5 7«
R7 8»
PROCFDOPE SFC
flSNOX F/A KB/KM HR RPH
p
2.7
*.q
2.b
7.3
2.K
3.b
3.3
R
R
».l
5.3
2.7
8.8
3.3
3."
3.1
P
1.
38.
5.
.0*7
,f)5»
.057
.053
.nb<»
.053
.Obb
.fl5t
.05B
.Otb
.053
.057
.OS1*
.Pb3
.05*
,Hb7
.05H
.05H
») t n.bs(
l) * n.b5(
1) + n.bs(
R bOO
.»99 8000
.335 2000
.157 19RQ
.751 19BO
.•»b7 19BQ
.319 8010
.157 3000
R 3OOO
R bOO
.19? 8000
.33b 2000
.151 199o
.777 199Q
.Ibb 1990
.317 3030
.119 19BO
R 8000
1.8) =
35.3) =
5.8) =
HC t NOX =
SFC =
WT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
C*LC
A/F
21.5
IB. 7
17. b
18.7
IS.b
lfi.9
15.3
18.5
17.3
28.0
18.7
17.5
18.1
15.9
18.7
11. •»
18.5
17.3
1.251
3b.893
S.b71
b.98»
.H89
WEIGHTED
HC-FIO co
2.1*
3.2
11.7
1.8
.(.
1.8
3.3
1.0
1.0
1.5
2.2
8.9
1.1
.b
1.7
3.1
."»
1.1
HC
t.l
12. n
»3.7
b.b
2.1
b.b
12.2
3.8
3.8
b.7
10.1
11.0
b.S
2.8
7.9
15.5
».2
5.2
1.1
1 .2
G/KH
G/KW
G/KM
G/KW
KG/KW
38
b8
115
59
7
S3
275
55
12
19
53
155
57
7
51
251
S3
12
CO
5.1
•".s
20. H
8.2
1 .0
7.1
38.7
7.7
l.b
8.8
8.0
23.3
R.b
t.l
8.1
38.8
7.9
1.9
3B
35
HP
HR
HR
HP
HR
G/HR VAC.
NOx-CL CKW MM
.3
1.9
37. b
l.b
3.9
1.7
35.0
b.2
3.2
.1
7.1
10.1
5.1
1.7
5.8
3b.b
5.7
3.1
:ENT OF T
NOX
.3
1.8
37.5
l.b
3.q
».b
31.9
b.2
3.1
.1
b.7
3b.9
l.b
».3
5.1
33.1
5.2
3.1
5.1
5.8
( .935
(87.ob3
( 1.829
( S.lb3
( .705
0.0 175
17.8 381
39.1 sji
17.7 39b
7.1 195
17.7 101
bt.8 b3
18.5 381
0.0 581
0.0 180
17.9 3B1
39.8 ggb
18.1 39b
7.2 195
17.8 389
bS.O bl
18.3 389
0.0 Sib
FUEL POWER
».1 0.0
8.» 7.8
23.7 30.1
7.b 7.8
3.7 8.1
7.8 7.8
28.1 38.1
8.0 75
1.5 0.0
8.3 7.8
23.0 30.2
7.9 7.1
3.* 2.1
7.B 7.2
28.5 38.5
77 71
8.1 0.0
BS)
83)
US)
BS)
BS)
-------
Table E-30 (Cont'd.)
Test 218 Run 18<2 MODAL TEST CONDITIONS
Air EGR,* Air/** Fuel**
Mode . Inj. . % -EHSL -!*±-
l(idle) ON 0.0 14.2 .070
2 «» ON 15.4 4.1 .071
'
5853
Reference Conditions***
ECO ICO EGR EFI
2 4 6 & 8
:§
I
7
'
9
13.21
13. 78
_ _ _ —
12. 12
._..
1.86
1. 78
_ _ _ _
0. 79
_ _ _ —
0.0
1.0
2.5
0.0
2.5
0.0
250
250
200
350
150
300
ECO2 & ICO, - Exhaust CO2 and Intake CO2 in %
Background CO2 = 0.06%
*EGR%= C02 Intake - CO7 background ^ 100 - CQ2 Intake A , ftn
C02 Exhaust 100 - CO 2 Exhaust
** Using the equation in the recommended procedure - data obtained with
air injection system cut off
*** These reference conditions are specific to the systems used and with
the exception of CO2> only serve to document the Bet-ings for possxble
future use .
E-36
-------
w
I
OO
ENGINE-?
T4RLFE-31. STE40Y STATr FMISSlnNS RY fPt, PRnrFPHRE - METRir UNITS
i'?? r.HFVPniFT i^n-cin nn FHGJNF—PROJECT ii-*3ii
TEST-SIR RIIN-1 + ? 07-33-71, AIR/FUEL RATIO CHECK F0R TEST SIR RUN 1-P
rONCENTRATION
MODE BPM HC-MO CO
J ?nnn 15R*
3 Pnnn 15"«
* ?nnn Ifenn
fc ?nnn moo
8 Ponn 150*
•1 ?onn 13«>n
MODE in MV
1 -n.o
2 -n.o
3 -o.n
* -0.0
-0.0
b -o.n
7 -o.n
8 -o.n
"* -0.0
?.7bO
?.o?o
1.350
?.380
?.?50
3.*-5P
?. l»0
.)?5
UNITS
CHP
n.o
5?]5
?t.n
^.7
85^7
?1.p
n.o
AS HE4SIIREO TOTAL
CO? NOX-CI c'RHOM
13.71
13.07
13.07
1?.) ?
is. n?
1P.71
-0
-n
-p
-n
-0
-0
-n
-0
-n
*S SPECIFIED
CIO FC
n
) 3"
b?
?5
b3
??5
f?3
0
0.0
n.o
n.n
n.n
n.o
o.n
o.n
0.0
o.O
i •; . 3 1 1-
15.10?
i"!«na
15. ^71
1 1; . ^qp
1 i.nt-P
IH TI'F 7-1
T
n.on
O.nn
O.nn
o.nn
o.nn
n.nn
n.on
I
FUFL
CP'IS.
0
0
n
0
p
n
n
0
0
1-75 PRf
BSCO
I
0.00
n.on
n.nn
n.nn
n.nn
n.nn
n.oo
I
CALCULATED G/HR
HC CO NDS
n
n
n
I)
0
n
n
n
d
«SMOX
t
o.nn
n.nn
n.nn
n.nn
n.nn
n.nn
n.nn
I
n
p
n
n
0
0
n
n
n
BSFC
I
n.nnn
n.oon
n.non
n.onp
o.ooo
n.nnn
n.ooo
I
o
0
0
0
0
0
0
n
0
— C*LC™
A/F F/A
1H.8
l^:i
1H.O
lb.1
islh
1*. 3
lb.9
.070
.071
.OKI
."71
.Ob?
.071
.07*
.070
.059
CORRECTED G/HR
HC-FID co NOX-CL
0.0
n.o
o.n
n.n
0.0
0.0
0.0
n.n
HC
1
0.00
0.00
0.00
o.oo
o.on
0.00
0.00
I
0
0
0
0
0
r\
0
0
— G/KW HR'
CO
I
o.on
o.on
0.00
o.oo
o.oo
o.oo
o.oo
I
o.n
o.n
o.n
O.I)
0.0
n o
o.n
n.n
NOX
I
o.nn
O.nn
o.oo
o.oo
o.oo
o.oo
o.oo
I
VAC.
CKW MM
n.n o
1 7 . '1 0
3<».;' o
17. q o
7.P 0
171 0
*>3 t 0
SFC
Kfi/Kv, HR
I
o.nnn
n.nnn
O.noo
O.noo
n.nno
o.ooo
Q..noo
I
TO =
-------
URLEE-3Z. MASS F1I8SIPNS t)Y NUIF-MODE EPA - METRIC UNITS
W
W
00
ENGINE-2 TEST-233 RUN-ni
350-cio HO ENGINE—PROJECT
KFI-TP-HEI Nn»I-ltBTDC-25t)ECU X uLD HQOKUP
= 1.097 HUH= lb.9 G/KG
COr'CENTHAT IDN AS MCA
MOl'F. t|C-FIl' CO CO?
1 IDLE
2 25 PCT T
3 55 PCT T
t 25 PCT T
S 1'J PCT T
b 25 PCT r
7 9o PCT T
B 25 PCT 1
9 C.T.
1 I OLE
2 ?5 PCT T
3 55 PCT T
H 25 PCT T
5 10 PCT T
fa 25 PCT T
7 9n PCT T
B 25 PCT T
9 C.T.
MODE 10
1 r
Bpc
3 55
t 25
5 10
7 90
8 25
S CT
2 25
3 55
5 10
b 25
8 25
S CT
SI
Ib32
tn
20
18
!*>
1520
2?ti)0
17b(t
I* H
HB
bh
1BR9
52
.9tS 13.07
. C. ? 0 12.93
.025 13.93
.tll'l 13.07
.PII5 11.99
.010 13.0?
t.23fl 11.99
.Old 13.07
.78* 13.21
.o-'o 13. u7
.025 13.93
. 1) 1 ij 13.07
.1105 12. t9
.010 13.07
t.23l> 11."''
.11111 13.07
..--UNITS AS SPECI'
hV CHP CTQ
1 R. 3
1H 1
lt.1
lb.3
It 1
It 1
2t.1
18.3
lt.1
5.2
It 1
lb.3
It 1
It. I
?t.3
H— (CO
n . n o
53 ' 13R
2t.l b3
9.b ?5
HH.l 2?b
o.u n
0.0 0
5 i . i 13"
23 9 t>3
9.b 25
HR 3 22b
23.9 (, ?
0.0 0
MPOSlTf. VALUE
TWO CYCLE CONPOSITE -
SUi'En
NOX-Ll.
1572
tso
q
lb«l)
5tm
510
800
5in
10
TOT AL
C»KHUN
13.9SR
1 1.497
13.n82
2. "58
I?. 107
1 1.9bS
13.0«5
1 3-Oflb
IEO I" THF 7-11-
FC BSFC
3 9
?(i B
3n 3
20. 7
15.7
2D ?
20. 1
1.1
3.8
20. b
30. fc
2n. i
15. b
?0.7
20. b
1.1
FOR CYCLE
HC-
Tlt-
R
.flb7
.P59
I.b3«
.Bfj?
. Ht 1
R
R
."S
,9tn
I.b2t
.9bO
5M
.PM
R
1)
?)----
Fin n.
mu-n n.
TD -
FUEL CALCULATED G/HR
(;/H^ HC Cn NOX
17b'( 23
9t35 3
Itoib 3
7121 1
2?3b2 300
9117 2
199 393
1 72t 2t
93t"» 12
1 3 P 8 P 10
9 1 1 7 5
9399 H
2?t53 297
93Ht t
H99 3Bh
•75 PKOCF.Dl'PE
OSNOX F/A
ti .Obt
to -.058
IP. 9 .Pb3
5.b .059
3.t .nst
5.1) .059
t.b .Il7b
5.9 .u59
K .Hit
R .Ubt
t.t .I.IS9
ll.b .Pb3
5.H .059
3.3 .057
s b .059
t.b .07b
5.b .059
R ' .('13
3s( 5.D t 0.
35t '3.b) * U.
35( iJ.9) » 0.
23H
30
51
It
Ilb22
7b
SI
It
b
It
It
82
SFC
KG/KW HR
P
.527
.3511
.522
.997
.52t
.512
P
P
.518
.350
.511
.9BP
.523
.3tl
.52t
R
b5( 5
t5( 73
SSC "
HC »
3
95
575
133
32
118
39b
1
3
b08
127
31
133
398
133
1
RPM
bOO
2000
2QtO
2010
19RO
2000
2050
1990
2000
bOO
2010
2020
1990
19RO
2000
2050
1990
2000
.2) =
.7) =
.3) =
NOX =
SFC =
WT. HEIGHTED G/HR
FACT. HC-FID CO NOX-CL CKW
.232
.077
.1H7
.1)77
.057
.077
.113
.077
.1*3
.232
.077
.It7
.077
.057
.077
.113
.077
.its
C*LC
A/F
15.5
17.
IS.
Ib.
IP.
13.
Ib.
71. b
15.5
lb.9
15.9
lb.9
17.7
lb.9
13.1
lb.9
77.0
5.1b2
7S.b51
9.1b7
It. 329
.t33
5.3 55
.3 2
.5 8
. 1 1
.1 0
.1 1
33.9 1313
.? 1
Sb.2 11
S.t- ts
.1 2
1.5 7
.t 1
.2 0
.3 1
33.5 1319
.3 1
55.1 12
.b 0.0
7.t 17.9
Bt.S tO.O
1U.3 18.0
1.8 7.1
9.1 17.9
tt.8 bS.7
1U.7 17.8
.1 0.0
.b 0.0
8.0 18.0
89. t 39.7
9.B 17.8
1.6 7.2
10.3 17.1
tS.O bS.8
10.2 17.8
.1 0.0
PERCENT OF TOTAL--
HC CO NOX FUEL
5.5 t.O
.3 .2
.5 .5
.1 .1
.1 .0
.1 .1
35.1 9t.3
.2 .1
58. 2 .8
5.7 3.2
." .2
1.5 .5
.t .1
.2 .0
.3 .1
3H.3 95.0
.3 .1
Sb.t .8
5.1 7t
5.2 71
G/KW HR
G/KM HR
G/KK HR
U/KW HR
KG/KW HR
.t t.9
t.3 8.7
•»9.9 at. 7
b.l 8.7
S.t H.7
2b.S 30.3
b.3 B.t
.0 .9
.t t.8
t.b 8.7
51.0 2t.5
5.b S.t
1.0 t.9
5.9 8.7
25.7 30.5
S.8 8.7
.1 .9
8.9
9.3
( 3.850 BS)
(St. 922 BS)
( b.83b BS)
(10.b85 BS)
{ .713 BS)
VAC.
MM
tbS
358
231
358
tit
358
8b
358
bl7
tfaS
358
23t
358
tit
358
Rh
358
b!7
POWER
0.0
7.S
3U.b
7.2
2.1
7.2
38. b
7.1
0.0
0.0
7.2
30. t
7.2
2. 1
7.2
38.7
7.2
0.0
-------
TABLE E-33. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-2
TEST-233 KUN-02
1975 CHEVROLET 350-CIO HD ENGINE—PROJECT 11-1311
08-20-7b EFI-TR-HEI NOA1-11BTDC-S70ECU X NEH HOOKUP
K= 1.010 HUM: lb.2 G/KG
W
OO
vO
CONCENTRATION AS MEASURED TOTAL
MODE HC-FID
1 IDLE 2112
2 25 PCT T 100
3 55 PCT T 81
1 25 PCT T 120
5 10 PCT T 111
fa 25 PCT T 132
7 9o PCT T 201b
8 25 PCT T 120
1 C.T. 19200
1 IDLE Ib9b
2 25 PCT T 220
3 55 PCT T Ibo
1 25 PCT T 121
5 10 PCT T 100
b 25 PCT T 88
7 90 PCT T 1920
8 25 PCT T 72
1 C.T. 19200
CO
1.177
.030
.030
.015
.010
.015
l.lbo
.015
.101
.771
.030
.030
.020
.010
.015
1.570
.020
.21fa
CU2 NOX-CL CARBON
12.79
12.79
13.93
13.07
11.99
12.79
11.99
13.07
.23
13.07
12.79
13.93
13.07
11.99
13.07
11.73
13.07
.23
59 11.20b
100 12.831
HbO 13.970
500 13.098
130 12.01b
180 12.820
720 I*>.fa82
180 13.098
8 2.2bn
b2 11.032
H30 12.815
1572 13.978
»90 13.101
130 12.011
»BO 13.095
700 lb.521
580 13.098
10 2.371
FUEL
G/HR
Jb78
9117
13bS3
9072
7Jb7
9072
21SOO
9117
3b3
Ib78
9072
135b2
902b
7121
9117
21»10
902b
3b3
CALCULATED G/HR HT.
HC CO
28 281
8 13
9 bo
1 21
10 12
10 21
299 llbll
9 21
309 31
23 18b
17 13
18 59
10 28
7 12
7 21
28b Il9b3
b 28
295 b7
NOX
3
103
Sib
125
28
123
33b
121
0
3
110
552
122
28
121
328
115
1
— — - — UNfTS AS SPFrTFTFn TM Tur 7-II-7C Donr-mnor ot~
MODE ID MV
1 I 18.3
3 25 11.3
3 55 9.2
» 25 11.3
5 10 lb.3
b 25 11.3
7 10 3.7
B 25 11.3
9 CT 21.3
1 I 18.3
2 25 11.3
3 55 9.2
1 25 11.3
5 10 lb.3
b 25 11.3
7 9o 3.7
8 25 11.3
9 CT 21.3
CHP
0.0
23.8
52. b
23.9
1.5
23.7
Bfa.1
23.1
0.0
0.0
S3.b
52.1
23.5
1.5
23.1
Bb.1
23.5
0.0
SUM— — — ffOMPn^TTF
Quri \l»unrU3l 1C
SUM--- (COMPOSITE
TWO CYCLE COMPOSITE -
ID s
CTO FC B8FC
0
b3
139
b3
2b
b3
227
S3
0
0
b3
139
b3
2b
b3
227
b3
0
VALUE FOR
VALUE FOR
3.7 R
20.1 .813
30.1 .573
20.0 .838
15.8 l.bbB
20.0 .813
17.1 .519
20.1 .812
.8 R
3.7 R
20.0 .Bib
21.1 .571
19.9 .817
15.7 l.bSb
20.1 ,B12
17.2 .Sib
19.9 .815
.8 R
HC- FID 0.35(
CO- NDIR 0.3S(
NOX-CL 0.35(
> n v*\« |_ |/wn
BSNOX
R
H.I
10.0
5.1
3.0
5.3
1.0
5.2
R
R
1,7
10.8
5.3
3.0
5.2
3.9
b.3
R
>.B)
7s!s)
8.2)
>b **r u
F/A KG/KN HR RPM
.ObS R
.058 .513
.Ob3 .318
.051 .510
.051 1.011
.058 .513
.077 .331
.051 .512
.011 R
.Ob1 R
.058 .515
.Ob3 .311
.051 .515
.051 1.007
.051 .512
.077 .332
.059 .511
.012 R
+ O.b5( 1
+ 0.bS( 77
+ O.bSC B
HC +
bOO
1980
199Q
1980
1950
1970
2000
1980
2000
bOO
19bO
1970
1950
1950
1980
2000
1150
2000
.7) =
.2) =
.b) =
NOX =
SFC =
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.1*3
.232
.077
.I1*?
.077
.057
.077
.113
.077
.113
r A i r*
CALL
A/F
15. 5
17.3
15.1
lb.1
18.1
17.3
12.1
lb.1
90.9
15.7
17.2
15.9
lb.9
18.1
lfa.1
13.0
lb.9
Sb.S
1.715
7b.bS2
8.181
13. lib
.128
WEIGHTED
HC-FID
b.S
1 1
!?
.5
.8
33.8
.7
11.2
5.3
1.3
2. fa
.7
.1
.5
32.1
.1
CO
bS
3
9
2
1
2
1312
2
5
13
3
9
2
1
2
1352
2
10
G/HR
NOx-CL CKw
.b 0.0
7.9 17.8
75.9 39.2
S.b 17.8
l.b 7.1
9.5 17.7
37.9 bl.1
9.3 17.8
.1 0.0
.b 0.0
8.5 17. b
81.1 38.8
1.* 17.5
l.b 7.1
9.3 17.8
37.1 bl.S
11.1 17. fa
.1 0.0
VAC.
MM
IbS
3b3
231
3b3
111
3b3
91
3b3
bl7
IfaS
3b3
231
3fa3
111
3b3
91
3b3
bl?
HC
7.3
.7
1.5
.8
.b
.1
37.1
.B
11.5
b.2
l.b
3.0
.1
.1
.b
37.7
.5
1.8
1.7
G/KN
G/KH
G/KH
G/KM
KG/KH
CO NOX FUEL
1.7
.2
.b
.1
.0
.1
13.7
.1
.3
3.0
.2
.b
.2
.0
.1
95.0
.2
.7
7b
77
HR
HR
HR
HR
HR
.» 1.8
5.2 8.7
19.8 21.8
b.3 8. fa
1.0 S.I
fa. 2 S.b
21.9 30.0
b.l 8.7
.0 .b
.1 1.8
5.3 8.7
51. 1 21.8
5.9 S.b
1.0 5.0
5.9 8.7
23.1 30.1
7.0 S.b
.0 .b
8.2
S.b
( 3.51b BS)
(S7.1faO BS)
( b.321 BS)
( 9.810 BS)
( .703 BS)
POWER
0.0
7.2
30.5
7.2
2.1
7.2
38.5
7.2
0.0
0.0
7.2
30.3
7.2
2.1
7.3
38.7
7.2
0.0
-------
E-34. M«SS FMISSJPHR RY NINF-MOl>
I 3
1
1,
j}
1 3
1 3
I?
13
lb
| 3
1
.87?
.B2b
.151
.f.03
.(103
,1TB
. UJh
. !lB1
.111
.^13
.101
.151
.08?
.?b 1
.085
.157
.?2h
.882
FUFL
G/HR
17b1
1l>h2
1111)7
13R1
7S30
1S2S
2I*-B2
-------
ENGINE-2
UflLFE-35. MASS EMISSIONS BY NINF-HOOE EPA - METRIC UNITS
1175 CHEVROLt
TEST-S33 RUN-n»
35II-CII) HO ENGINE PROJECT 11-1311
(•FI-TR-HFI WAIXCT-1HB-S7PFCU X NEW HOOKUP
K= 1.081 HUM= 15.1 G/KG
CONCENTRATION
MODE
1 IDLE
2 25 PCT
3 55 PCT
1 25 PCT
5 10 PCT
b es PCT
7 m PCT
8 as PCT'
1 C.T.
1 IDLE
2 as PCT
3 55 Pn
H as PCI
s in PCT
b 25 PCT
7 in PCT
s as PCT
1 C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
HC-F1D
1BR
30
Ib
13
15
11
100
10
?»oon
7UH
111
mi
b8
bO
51
10
ibnoo
en
.Ibl
.nbl
.(IHI)
.O3n
.035
.n35
l.OiB
.oao
.21b
.37b
.Obi
.n«*n
.030
.H 35
.030
.183
.oao
.aib
AS ME A
CO?
1.22
1(1.30
11. bl
10. in
1.13
10.53
1* .51
JO. 53
.S5
1.«3
10.30
11.73
in. S3
1.13
in. ?n
11. 8b
10.53
.31
SIHE!)
NOX-CL
37
330
123(1
35n
1 30
100
500
mo
5
•»?
3»0
13(10
3 "H
12(1
370
bHO
1(10
S
T(lT»L
CARHON
1.712
10.3b?
1 1 .b52
in. 33?
1.Hh7
10.5h7
15.511)
10.551
3.113
«.Bf2
in. 377
11.78?
10. Sb"
1.17?
l".33b
15.351
10.551
FUEL
G/HR
17S1
Ib lb
13171
1571
7bbb
1718
228bl
1180
3b3
1721
i7n7
1HJHP
17Q7
775b
1718
2211"
1381
3b3
CALCULATED G/HR
HC
Id
3
?
1
1
1
17
1
2>b
13
15
11
7
5
<;
12
if
273
CO
172
115
18
57
58
bb
3075
3b
5(1
132
lib
11
5b
51
SB
1130
3b
71
NOx
a
110
521
lib
38
133
2b3
12S
0
3
11H
5bb
125
35
12b
337
128
0
HT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
WEIGHTED G/HR
HC-FID
2.2
.2
.3
.1
.1
.1
1.9
.1
3"».1
3.1
1.1
a.i
.5
.3
.H
1.3
.3
31.1
CO
10
1
• 1H
1
3
S
3H7
3
7
31
1
IS
H
3
1
iba
3
11
NOx-CL
.b
8.5
77.8
1.0
2.2
10.3
21.7
1.1
.0
.b
8.8
83.2
"'.k
2.0
B.7
38.1
1.8
.0
CKW
0.0
17.8
31.3
17.1
7.1
17.1
bS.3
17.8
0.0
0.0
17.1
31. b
17.1
7.1
18.0
b5.7
17.1
0.0
VAC.
MM
HbS
35b
22b
35b
HOI
353
Bb
353
b20
HbS
353
a?i
353
HOI
35b
8b
3Sb
b20
UNITS AS SPECIFIED IN THE 7-11-75
MODE
1 I
a 25
3 55
H 25
S 10
b 25
7 ID
B as
* CT
i i
a as
3 55
H as
s in
b as
7 10
8 as
i CT
ID MV
18.3
11.0
8.1
11.0
is!1'
3.1
13.1
1R.3
13.1
8.8
13.1
Ib.l
11.0
3.1
11. n
P1.H
CHP
o.n
23.1
52. b
23.1
ai !o
P7.'s
?3,«
II. 0
O.U
21.0
53.1
21.0
l.b
86.1
21.0
(1.0
SUM""™ (COMPOS! TE
C i lU __S^nuDilCTTC'
TWO
IP
o \j r> • •• ~ ^ \* \.- n
CYCLE COMPOSI
-
TE -
CTQ
0
b3
137
25
eai
0
n
b3
13B
b3
b?
b3
1)
VALUE
t/ AI iir
" ™ I. " r.
Fr
3.1
si.a
30.8
21.1
21 !*
50.1
2n .1
.'«
3.B
3l!s
21.1
17.1
?l .b
?o]?
.8
FOR CYCLE
FOR CYCLE
HC- F
CO- N
>•'(>¥-<:
BSFC
R
.«B7
.585
.881
1.7bB
,57b
."77
R
R
.?1?
.513
.81?
1 .781
.815
.BS?
R
10 n.35(
ni« n.35(
L U. J5(
PROCEDUPE
flSNOX
R
1.7
10.2
H."
1.0
S.b
3.1
5.5
R
R
1 .B
10.8
5.3
3.7
5.3
5.1
P
e
?3
7
F/A
.015
.017
.053
.1)17
.013
.018
.070
,01H
.nib
.015
.017
.053
.018
.013
.017
.Ubl
.018
.01(1
. 1) + 11. 1
. 1 ) » M.I
.i) + n.i
SFC
KG/KM HR
R
.Sin
!s3b
1.07b
.5H8
.350
.533
R
R
.SH3
,3bl
!SH3
1.085
.SHS
.3H2
.521
R
hs( e
f>5( 12
>.S ( 8
HC +
RPM
bOO
2000
2020
aooo
1180
aooo
2050
1110
aooo
bOO
2000
2020
aooo
lisa
aoio
aobo
aooo
aooo
.b) =
.B) =
.b) =
NlIX =
SFC =
C*LC
A/F
22.3
21.1
18.1
21.2
B3.1
eo.8
11.2
20.8
bl.3
aa.o
ai.i
18.7
20.7
as.o
ai.a
11.5
ao.8
lb.5
2.111
lb.381
8.335
10.82b
.115
HC
5.0
.5
.7
.2
.a
.2
1.3
.2
88.7
b.l
a.i
1.3
1.1
.b
.8
a. 7
.b
81.0
2.1
2.b
G/KW
G/KW
G/KH
G/KW
KG/KN
CO
i.e
2.n
3.3
1.0
.8
1.2
80.2
.b
l.b
ia.7
3.7
b.O
1.8
1.1
1.1
b7.0
1.2
1.1
33
13
HR
HR
HR
HR
HR
NOx FUEL
.1 1.B
S.7 8.7
sa.b ai.a
b.l B.7
1.5 5.1
b.l B.I
ao.i 30.1
b.7 B.b
.0 .b
.1 H.7
5.1 B.B
51.1 21. 7
b.O 8.8
1.2 5.2
b.O 8.1
23.5 21.1
b.l 8.5
.0 .b
7.1
S.b
( 1.858 BS)
(12.221 BS)
( b.alS 83)
( 8.073 83)
( .731 BS)
POWER
0.0
7.2
30.3
7. a
a.i
7. a
38.7
7. a
0.0
0.0
7.2
30.1
7. 3
a.i
7. a
38.7
7. a
0.0
-------
TABLE E-36. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
,ur,.... • lq75 CHEVHOLET 35II-CIO HO ENGINE- — PROJECT Il-t311
ENUINF.-2 TEST-233 RUN-WOT Ofl-20-71, EFI-TR-HEI 1>»BIDC-250ECUM 1 oH-570ECUM?-*NH
K= 1.0S7 HUM= lb.9 G/KG
MODE
1
2
3
MODE
1
2
3
*
RPM
? 1)011
?onn
? 0 0 11
?II(H|
in
NO
NO
NO
YES
CONCENTRATION AS MEASURED TOTAL
HC-FIO CO CO? NOX-CL CARB'IN
12*0
list
11?D
— -I!..
MV
.7
.3
.3
.3
5.310 11. HP 155
H.b^O 1 1 .Bb 110
H.570 11. SB 170
H.blO 11. 9P 170
•--UNITS AS SPECIFIED
CHP CTQ FC
lb.1 ?5H bll.H
11.7 2b2 5q.n
1H.O ?57 bf).2
9B.7 JS9 bO.t
lh.93P
IS.K87
Ih. 171
Ih. 75B
FUEL
CONS.
?73S7
2H7b2
?730b
273M7
CALCULATED GXHR
HC CO N02
23<<
21S
217
127
17350
151"»H
15581
15»89^
IN THE 7-11-75 PHOCEDURE — -"-
8SHC
2.51
2.?5
2. 2h
1.31
BSCO
)82.2t
155. flb
lb?.3b
Ib0.13
BSNOX
.87
1.0»
,S1
.15
B3FC
.b23
.bin
.b!2
83
101
S5
S2
CORRECTED G/HR
HC-FIO CO NOx-CL
23S.2
211.0
217.1
12b.8
— CALC—
A/F
12. b
12.1
13.3
12.8
F/A
.071
.078
.075
.07B
HC
3.37
3.01
3.03
1.7b
17350
ISlIf
15581
-i!!!!.
G/KW
CO
2*1 31
201.01
217.73
21H.7H
H.3
110.1
101. 5
101.2
HR
NOX
1.17
1.33
1.28
VAC.
CKW MM
72.3 18
7* . 3 8
73.1 8
73. b 8
SFC
KG/KM HR
™
. 3bO
.37*
.372
ID = AIR INJ.
M
ro
-------
TABLE E-37. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-2
TEST-231 RUN-Ol
1S7S CHEVROLET 35n-CID HD ENGINE PROJECT 11-1311
on-23-7b EFI-TK-HEI NOAI-HBTDC
K= 1.099 HUM= 17.1 G/KG
M
CONCENTRATION
MODE HC-FID CO
1 IDLE 300 ,2t>3
2 25 PCT T 8 .015
3 55 PCT T 7 .020
1 25 PCT T 3 .OflS
S 10 PCT T 2 .005
b 25 PCT T 2 .010
7 So PCI T b8fl .771
8 25 PCT T 7 .005
S C.T. b()8o .030
1 IDLE 83? .20*
2 25 PCT T 71 .025
3 55 PCT T 50 .020
1 25 PCT T 37 .010
5 10 PCT T 29 .005
b 25 PCT T 21 .005
7 90 PCT T 9bQ 1.13'
8 25 PCT T IS .005
S C.T. 57bO .051
AS MEASURED TOTAL FUEL
C02
12.79
13.07
11.23
13.35
12.79
13.35
11.23
13.35
.15
12.79
13.35
11.23
13.35
12.79
13.35
13. S3
13. IS
.23
NOX-CL CARBON G/HR
5b 13.087 17b9
500 13.0Bb 9?S3
1527 11.251 133H1
5*0 13.355 8981
230 12.795 7303
520 13.3bO Slb3
2017 15.07B 19232
51,0 13.3Sh 8981
1 .789 0
bO 13.087 IBbO
550 13.38* 9389
IblS 11.25b 13b98 '
bBO 13.3b1 93*1
230 12.798 7121
570 13.357 9525
2008 l5.1?b 20003
550 13.1S7 9389
5 .858 0
CALCULATED G/HR
HC
5
1
1
0
0
0
99
1
0
13
b
5
3
2
2
11*
1
0
CO
72
22
38
7
b
11
I98b
7
n
59
3b
39
11
b
7
302b
7
0
NOX
3
129
523
133
18
130
SS3
137
0
3
111
5bb
173
17
118
Sbb
HO
0
HT.
FACT.
.238
.077
.1*7
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
WEIGHTED G/HR
HC-FID
1.1
.0
.1
.0
.0
.0
11.2
.0
0.0
3.1
.1
.8
.e
.1
.1
lb.3
.1
0.0
CO
17
2
b
1
0
1
221
1
0
11
3
b
1
0
1
312
1
0
NOX-CL
.b
9.9
7b.S
10.2
2.7
10.0
107.7
10. b
0.0
.7
10.6
83.2
13. »
2.7
H.1*
10S.1
10.8
0.0
CKH
0.0
17.5
38.7
17.7
7.1
17.7
bl.l
17. B
0.0
0.0
18.0
3S.b
17. S
7.2
18.2
bb.l
17.9
0.0
VAC.
MM
155
358
211
3b8
12S
3b8
81
3b8
blS
150
3bl
23S
3bb
129
3bb
7b
3bB
blS
UNITS AS
MODE 10 MV CHP
1 I 170 17. S OiO
2 25 b2S 11.1 23. »
3 55 b2S S.b 51. S
1 25 b25 11.5 23.7
S 10 8no Ib.S 1.5
b 25 b25 It. 5 23.7
7 So 3*0 3.2 Bb.O
8 25 b25 I1*. 5 23. S
9 CT OFF 21.2 0.0
1 I 17o 17.7 0.0
2 25 b25 11.2 21.1
3 5S b2S S.I 53.1
1 25 b25 11. 1 21.1
5 10 800 Ib.S q.l>
b 25 b25 I1*.1* 21.1
7 90 3*0 3.0 88. b
8 25 b25 H.S 21.0
S CT OFF 21.2 0.0
SUM---(COMPOSITE
SUM--- (COMPOSITE
TWO CYCLE COMPOSITE -
TO = ECU SET
SPECIFIED IN THE 7-11-75 PROCEDURE — --
CIO
0
b3
138
fa3
25
b3
22fa
b3
0
0
b3
138
b3
2S
b3
22b
b3
0
VALUE
VALUE
FC BSFC BSNOX
3.S R R
20.1 .870 S.b
2S.S .Sb9 10.3
19.8 .83S 5.7
lb.1 1.701 5.2
20.2 .BSl S.b
H2.* .tsg H.3
19.8 .829 5.9
0.0 I I
H.I R R
20.7 .859 h.o
30.2 ,5bB 10. S
20. b .BSb 7.3
15.7 I.b3f 5.0
21.0 .Bb2 b.2
H».l .198 11.1
20.7 .8b2 5.9
0.0 I I
HC- FID 0.35(
CO- NDIR 0.35( 13
NOX-CL 0.35( 12
F/A
.OSS
.059
.Obi
.ObO
.05B
.ObO
.nb8
.ObO
.001
.OSS
.ObO
.Obi
.ObU
.058
.ObO
,0b9
.Obi
.001
.7) + 0.
.(.) + 0.
.1) + 0.
SFC
KG/KM HR
R
.529
,31b
.508 •
1.035
.518
,3no
.501
I
R
.523
.31b
.521
.S91
.525
.303
.521
I
b5( 1
bSC IS
b5( 1?
HC +
RPM
bOO
1S50
1SBO
1S70
1S50
1S70
2000
1980
20UO
bOO
2000
2030
2000
1S80
2020
20bO
1SSO
2UOO
.1) =
.1) =
.8) =
NOX =
SFC «
CALC
A/F
Ib.S
Ib.S
IS.b
Ib.b
17.3
Ib.b
1».7
Ib.b
2b3.7
Ib.S
Ib.b
IS.b
Ib.b
17.3
Ib.b
11. b
Ib.S
212. b
.Sb7
17.108
12.bS7
13.bb1
.115
.— ——PERCENT OF TOTAL—
HC
8.S
.1
.s
.1
.1
.1
as.b
.3
0.0
1».S
2.1
3.8
1.1
.5
.*>
7b.S
.5
0.0
.7
1.1
G/KH
G/KM
G/KM
G/KM
KG/KH
CO
b.b
.7
2.2
.2
.1
.1
8S.5
.2
0.0
3.7
.8
l.t>
.3
.1
.2
S3. 3
.1
n.o
11
19
HR
HR
HR
HR
HR
NOX
.3
1.3
33. b
1.5
1.2
1.1
»7.i
l.b
0.0
.3
1.5
31.1
5.5
1.1
1.7
1S.1
•».»
0.0
12.1
12.8
( .721
(12.S81
( S.lbS
C10.18S
( .b83
FUEL
5.3
S.2
25.3
8.S
5.1
S.I
28.0
8.S
0.0
S.I
s.o
25.1
s.o
5.1
S.2
28.2
s.o
0.0
US)
BS)
BS)
BS)
BS)
POWER
0.0
7.2
30.3
7.2
2.1
7.3
38. b
7.3
0.0
0.0
7,2
30.3
7.2
2.1
7.3
38. B
7.2
0.0
-------
UHLF E-38.M»ss I-MISSIONS RY NINE-MODE EPA - METRIC UNITS
ENGINE-2
TES1-23H RIIN-U2
CHtvRriiFT 350-CIO HO ENGINE PROJECT 11-H3J1
23-Pf. FFl-IFi-HFI WAIXCT-1HBTOC
K= 1.097 HUH= lb.9 G/KG
W
CONCENTRATION
MODE HC-FID
1 IDLE
2 25 PCT T
3 55 PCT T
H 25 PCT T
5 10 PCT T
b 25 PCT T
7 9fl PCT T
8 25 PTT T
9 C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
H 25 °CT T
5 10 PCT T
b 25 PCT T
7 90 PCT T
8 25 PCT T
9 C.T.
HOO
1H
H
5
3
H
1
1
bHOO
too
1H
H
5
3
H
1
1
htno
CO
.125
.051
.1130
.030
.035
.035
.030
.025
.OHfl
.193
.030
.OHO
.010
.1)10
.010
.020
.1)20
.H51
AS MFAPUPfn
co? UOX-CL
B.8 1 H3
10.10 400
11.73 13b9
Jli.n7 4311
9.H3 170
10.30 H30
12.79 191-9
J.0.3P 4M1
.23 b
8.91 H9
10.30 H 7 0
11.73 13«2
10.30 H R 0
9.43 1 H 0
10.30 H9||
13.07 1 9 H 1
10.53 5|Q
.23 HI
TOUU
CAHROH
B.979
10.35? .
I1.7bl
in.mi
9.Hbb
in. 13b
12.B20
in. 325
."12
9.l)Hb
10.312
11.771
1 1) . 1 1 1
9. 4 111
10.310
I3.n9n
J 0 . 5 5 1)
."23
FUFL
G/HR
lb7B
9571
13B9M
9 J S3
7257
0?HH
18bH3
92S3
n
1M3
9HI»(J
13971
9117
7257
9H35
!9hBb
9lh3
0
CALCULATED
HC
B
1
1
n
n
0
0
0
0
R
1
1
0
0
0
0
0
n
CO
H ;
95
72
5b
55
b5
89
Hb
0
70
5b
97
18
Ib
18
b 1
35
0
G/HR
NOX
3
135
588
142
47
1H2
10H2
150
0
3
157
bOl
155
50
Ib3
10b7
Ibl
0
WT.
FACT.
.232
.077
!o?7
.057
.077
.113
.077
.1H3
.232
.077
.147
.077
.057
.077
.113
.077
.1*3
WEIGHTED
HC-FIO CO
1.9 11
. 1 7
.1 11
.0 H
.0 3
.0 5
.0 10
.0 »
0.0 0
1.8 Ib
.1 H
.1 1H
.0 1
.0 1
.0 1
.0 7
.0 3
0.0 0
G/HR VAC.
NOX-CL CKH MM
.7 0.0 HbO
10. H 18.0 3bb
Bb.S 39. S 244
10.9 17.8 3b8
2.7 7.1 »32
10.9 17. S 3bb
117.8 b-».H 8b
11. b 17.7 3b8
0.0 0.0 blS
.7 0.0 H5S
12.1 18.0 3bb
88. H 39.5 2H1
11.9 18.0 3bb
2.9 7.2 H32
12. b 18.0 3bb
120. b bS.B BH
12. H 17.9 3bB
0.0 0.0 blS
UNITS AS
MODE U>
11 H7n
2 25 b25
3 55 b25
H 25 *e$
5 10 300
b 25 b?S
7 9n 3 HI;
B 25 b?5
9 CT OKF
11 H>lj
2 25 b25
3 55 b25
H 25 b25
S 10 3(JO
b 25 b25
7 9n 3Hp
8 25 b25
9 CT OFF
MV
lg.1
IH.H
9.b
J4.5
17.0
It .H
3.H
14.5
?1.2
17.9
14. H
5.5
14 .*
17.0
IH.H
3.3
11.5
2H.2
CHP
n.u
2H. l
52.9
23. P
9.5
2H .0
Rb.H
23 . S
0.0
0.0
21* . 1
53.11
2H.1
9.7
2H . 1
BB.2
JH .0
0.0
SUM— — — CcUMPoSl T F
S||M---( COMPOSITE
THO CYCLE COMPOSITE -
SPECIFIED IN
CTQ FC
0 1.7
b3 21.1
I3R 30. b
b3 20.2
?b Ib.p
K3 pn.b
22b H 1 . 1
b -1 20. H
0 0.0
0 l.b
b i 20.9
13° 30.8
b3 20.1
2b ib.n
b3 20.9
2?b H3.H
b3 ?0.2
o n.n
VAIIIF F nH rYrl
* " l_ ' 'c r un L'LI
VALUE M'tf tyCl
HC-
co-
THE 7-j 1-75
BSFC
R
. H7b
.578
.BHB
1.1-79
."59
.17h
.P5H
I
H
.Hbb
.581
.83H
1 .b52
. 8b2
,H9J
.PHI
I
Fin 0.35(
MOIR 0.35(
UOX-CL II.35C
•
ID : FCU
SET
PRQCEQUR
BSNOX
R
5.7
11.3
b.l
5.1
b.O
12.3
b .5
'i
- R
b.b
11. b
b.5
5.3
b.9
12. H
b.9
I
.1)
3.0)
13.5)
F/A
.I1H1
.OH 7
.1)53
.OHb
.OH3
.0H7
.058
.OH7
.OOH
.OH2
.OH7
.P53
.OH 7
.OH3
.OH7
.(159
.OH8
.nnn
+ n
•f fi
+ 0
- SFr
i.' r L
KG/Krt
R
.533
.352
.Sib
1.021
.522
.289
.522
I
R
.527
.353
.507
1.005
.52*
.299
.512
I
.b5(
.b5(
.b5(
HC
HR RPM
bOO
2000
2020
1980
19bO
199Q
2010
1970
2000
bOO
2000
2020
2000
1990
2000
2050
1990
2000
.1) =
2.b) =
13.9) =
t HOX =
SFC =
U" Ul.
A/F
2H.2
21.2
18.7
21.7
23.1
21.2
17.3
21.2
228.2
2H.O
21.2
18.7
21.2
23.1
21.2
lb.9
20.8
225. b
.11H
2.701
1 3.7Hh
13.900
.H13
HC CO NOx FUEL POwEK
Bb.H 20.0
5.0 13.3
3.5 19. H
1.8 7.B
.7 5.7
l.t 9.1
.8 18.3
.3 b.H
0.0 0.0
Bb.O 33.8
5.1 9.o
3.7 g9. fa
1.8 2.9
.7 1.8
1.5 3.0
.9 1H.3
.3 5.b
0.0 0.0
1^
3
• 1 3
G/KW Hp
G/KW HR
G/KW HR
G/KW HR
KG/KM HR
.3 5.0 0.0
H.I 9.H 7.3
3*.H gb.l 30. b
H.3 9.0 7.2
1.1 5.3 2.1
H.3 9.2 7.3
Hb.9 ab.9 38.3
H.b 9.1 7.2
0.0 0.0 0.0
.3 1.8 0.0
*.b ^.2 7.2
33.8 25.9 30.3
H.5 8.8 7.2.
1.1 5.2 2.1
».8 9.g 7.2
Hb.l 28.0 38.7
H.7 8.9 7.2
0.0 0.0 0.0
1 ^ c
13.3
13.9
( .085 BS)
( 2.01H BS)
(10.280 BS)
(10.3bS 63)
( .b79 BS)
-------
ENGINE-?
TABLE E-39. STEADY STATF {-MISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHtVRQLtT 350-CID HO ENGINE —PROJECT 11-H311
TEST-235 HIJN-niA os-P3-7b EFI CYL TO CYL A/F CHECK - ECU»70
K= 1.0S7 HUMs lb.9 G/KG
CONCENTRATION
MODE
1
i
3
t
5
b
7
8
PPM
?000
?ono
?oon
?noo
soon
20UU
?nno
?non
HC-FID
its
I7b
9b
1»U
mo
1«0
mi
e3?
CO
.130
.120
.1011
.100
.100
.131)
.090
.130
AS MEASURED
CU2
1?.79
13.07
IE. 79
1P.9?
IP. 79
12.b5
ie.se
12. hS
NOX-CL
»00
390
2PO
3*0
310
3n(l
?hO
3t.O
TOf*L
CARBON
ie.9t 1
I 3. '.10
12.9(11
13.'T»b
15.901
12.90tl
I?.b2?
12. "Ob
FUEL
CONS.
0
0
0
0
0
0
n .
0
CALCULATED G/HR
HC
0
0
0
0
u
0
0
0
CO
0
0
0
0
0
0
0
0
NO;
0
0
0
0
0
0
0
0
CORRECTED G/HR
HC-FID
o.n
0.0
0.0
o.n
0.0
0.0
0.0
0.0
CO
0
0
0
0
0
0
0
0
NOX-CL
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
CKM
18.0
18. 0
18. 0
18.0
18.0
18.0
18.0
18.0
VAC.
MM
330
330
330
330
330
330
330
330
MODE
ID
MV
CHP
A 9 SPEC I F IED
CTQ FC
B.SHC
BSCO BSNO<
B3FC
A/F F/A
HC
CO
NOX
KG/KM
HR
1
2
3
1
5
b
7
a
i
;>
3
t
$
fa
7
8
13.0 21.1
13.0 ?1.1
13.0 21.1
13.0 21.1
13.0 21.1
13.0 2».l
13.0 21.1
13.0 2».l
b3
b3
b3
b3
b3
b3
b3
h3
n.n
o.o
o.n
0.0
0.0
r-.n
0.0
0.0
n.no
o.on
n.no
o.nn
n.on
".DO
o.no
0.00
n.no
n.no
n.no
u.oo
n.oo
n.no
0.00
n.uo
0.00
n.oo
0.00
0.00
n.oo
n.oo
0.00
0.00
O.DOP
0.000
0.000
0.000
0.000
0.000
u.noo
0.000
17.1
lb.8
17.2
17.0
17.2
17.3
17. S
17.3
.058
.ObO
.058
.059
.058
.058
.057
.058
0.00
.0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
o.ou
o.ou
0.00
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
M
Ul
ID = CYLINDER
TABLE E-40. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 3SO-CIO HO ENGINE PROJECT 11-<»311
ENGINE-? TF.sT-ess RUN-OIB oB-a?-7b EFI CYL TO CYL A/F CHECK - ECubes K= i.os? HuMr ib.9 G/KG
CONCENTRATION
MODE
1
e
3
f
5
b
7
8
PPM
?nno
?onn
znnn
20CO
?ooo
?noo
2000
20UO
HC-FIO
30»
352
Ib8
Eb»
W
'•OO
17b
SbQ
CO
.130
.150
.100
.130
.0«»0
.130
.0811
.130
AS MEASURED
C02
13.3-5
13.78
13.35
13. 7«
13. »9
13. *9
13.21
13. »9
NOX-CL
b?0
590
190
trio
bnn
h?0
530
bhO
TOTAL
CARRON
13.S1H
13.970
13.1b<»
13."»»o
13.h()2
13. Kb?
13.310
13.b83
FUFL
CONS.
0
0
0
0
0
0
fl
0
CALCULATED G/HR
HC
0
0
0
0
0
0
0
0
CO
0
0
0
0
0
0
0
0
N02
0
0
0
0
u
0
0
0
CORRECTED G/HR
HC-FIO
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
CO
0
0
0
0
0
0
0
0
NOX-CL
o.u
0.0
0.0
0.0
0.0
0.0
0.0
0.0
VAC.
CKM MM
18.0 3*0
18.0 3<»0
18.0 3*0
18.0 3YO
18.0 3HQ
18.0 3»0
18.0 3*0
18.0 3*0
MODE
1
2
3
1
5
b
7
8
ID
1
S
3
1
S
b
7
ft
MV
13. »
13. »
13. »
13. H
13. »
13. »
13. H
13. »
CHP
2H.1
2».l
2».a
2t.l
2H.1
2t.l
2t.l
2H.1
AS SPECIFIED IN
CTQ
b3
t>3
b3
H3
b3
h3
b3
b3
FC
0.0
o.n
0.0
o.n
0.0
0.0
0.0
o.n
THF 7-
BSHC
o.no
o.nn
o.on
U.ltll
ii. on
0.00
0.00
o.no
11-75 PRC
esco
11.00
n.oo
n.on
n.on
0.01)
0.00
n.no
n.oo
BSNOX
0.00
0.00
0.00
0.00
o.on
0.00
0.00
0.00
BSFC
0.000
0.000
0.000
0.000
0.000
o.oon
0.000
O.oon
C*LC
A/F
lb.-»
15.9
lb.5
1S.<*
lb.3
lb.2
lb.7
lb.2
...
F/A
.Obi
. Ot>3
.Obi
.Ob3
.Obi
.Ob2
.ObO
.Ob?
HC
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
CO
0.00
0.00
0.00
0.00
0.00
o.oo
0.00
o.no
NOX
0.00
0.00
0.00
o.ou
0.00
o.ou
0.00
o.ou
SFC
KG/KM HR
0.000
0.000
0.000
0.000
0.000
o.ooo
0.000
0.000
ID r CYLINDER
-------
M
i
_.,.
ENGIME-P
TABLE E-4i. STEADY STATF FMISSIONS RY EPA PROCEDURE - METRIC UNITS
1175 C.HtVHOLtT 3>;ri-CIO HO ENGINE --- PHOJECT 11-H311
TE3T-S35 PUN-il? UB-?3-7f, EFI A/F CHECK-ECUb25 - LEAN INJ. IN CYL2 + H
K= 1.0S7
HUM=
G/KG
MODE
1
2
3
5
8
MODE
1
2
3
5
b
7
8
CONCENTRATION AS MEASURED TOTAL
RPh HC-FIO CO CO? NOX-CL CARBON
2000 2bO
2000 212
21100 120
2000 ?»0
2Cinn ISb
20(10 218
2000 11?
POUR 3*0
ID MV
) 13.5
2 13.5
3 13.5
H 13.5
5 13.5
b 13.5
7 13.5
B 13.5
.110 13.78
.Ibu 13.13
.100 !3.bH
.1*0 13. 7B
.100 13. HI
.IHU 13. HI
.OSO 13.35
.120 13. HI
750
bOO
Hhn
710
570
bno
Bnu
— UNITS AS SPECIFIFD
CHP CTO FC
BH.l b3
?* . 1 b3
2H. 1 b3
2 H . 1 b 3
5H.1 b3
2H.1 fa3
?».! b3
Pf.l b3
o.n
o.o
n.o
0.0
0.0
0.0
0.0
0.0
1 3.1H9
1 '» . 1 1 H
13.75H
1 3.1H7
13.hOB
1 3.bb3
1 3.HHR
IN THE 7-1
BSHC
I'.OO
0.00
n.no
o.no
o.oo
o.oo
u.oo
o.oo
FUEL
CONS.
0
0
0
0
0
0
0
0
CALCULATED G/HR
HC CO NO?
0
U
0
0
0
0
0
0
1-75 PROCEDURE--
BSCO RSNOX
0.00
0.00
0.00
0,00
0.00
(1.00
n.uo
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
o.ou
0
0
0
0
0
0
0
0
HSFC
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0
0
0
0
0
0
0
0
— CALC—
A/F F/A
15. S
15. B
lb.2
is.q
lb.3
lb.2
Ib.S
lb.3
.Ob3
.Ob3
.Ob?
.Ob3
.Obi
.Ob?
.Obi
.Obi
CORRECTED G/HR
HC-FID CO NOX-tL
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
HC
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0
0
0
0
0
0
0
0
--G/KH
CO
u.oo
0.00
0.00
0.00
0.00
0.00
D.OO
0.00
0.0
o.u
0.0
0.0
0.0
0.0
0.0
0.0
HR
NOX
o.ou
0.00
0.00
0.00
0.00
0.00
0.00
0.00
VAC.
CKW MM
IB 0 3t3
IB 0 3H3
1B.O 3H3
18.0 3H3
18.0 3H3
18.0 3H3
18.0 3H3
18.0 3H3
SFC
KG/KM HR
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
ID = CYLINDER
-------
M
ENGINE-2
TABLE E-43. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
1175 CHEVROLET 3SO-CID HO ENGINE PROJECT 11-*311
TEST-237 RUN-01R 01-02-7b EFI-TR-HEI HAIXCT-.53,82 BPEGRXM1+1-1*NOVA
K= 1.017 HUM= lb.1 G/KG
CONCENTRATION
MODE HC-FID CO
1 IDLE HOO .5HO
2 25 PCT T b* .051
3 55 PCT T - »8 .030
H 25 PCT T 52 .030
5 10 PCT T 7b .OHO
b 25 PCT T 70 .035
7 10 PCT T 50* 3.210
8 25 PCT T 52 .020
1 C.T. 70*0 .Obi
1 IDLE H»0 .SHO
2 25 PCT T 200 .082
3 55 PCT T lib .030
H 25 PCT T 88 .035
5 10 PCT T BO .OHO
b 25 PCT T bH .035
7 10 PCT T Hlb 3.3bO
8 25 PCT T 50 .025
9 C.T. bBOO .10*
UNITS AS
MODE 10 My CHP
1 I 570 18.2 0.0
B 25 570 13. b 23.1
3 55 570 8.1 53.0
H 25 570 13. b 23.1
5 10 570 IS. 7 1.2
b 25 570 13. b 23.8
7 10 570 2.2 87.5
8 25 570 13. b 23.7
9 CT 570 23.* 0.0
1 I 570 18.2 0.0
2 25 570 13. b 2*.0
3 55 570 8.1 52.8
H 25 570 13. b 23.8
5 10 570 15.7 l.b
b 25 570 13. b 2*.0
7 10 570 2.2 88.5
B 25 570 13. b 23.1
1 CT 570 23.* 0.0
SUM— (COMPOSITE
SUM — (COMPOSITE
TWO CYCLE COMPOSITE -
AS MEASURED TOTAL
C02 NOX-CL CARBON
1.32
10.11
12.12
10.30
1.32
10.30
12. bS
10. b*
.23
10.30
12.25
10. b*
1.32
10. HI
12. b5
10. 7b
.23
*1 1.103
300 10.2*P
70S 12.15b
330 10.?3b
105 1.3b1
320 10.3*3
2PO 15.118
270 lO.bbb
5 .117
33 10.228
320 10. HO*
770 12.213
210 ID.bBS
10B 1.3b1
350 10.HS2
200 Ib.0b7
270 10.711
b l.Olb
SPECIFIED IN THE 7-11
CTO FC BSFC
0
b3
13B
b?
2*
b3
225
b3
0
0
b3
138
b3
25
b3
22b
b3
0
VALUE
VALUE
3.1 R
21.1 .lib
32.3 .bin
21.2 .8Bb
Ib.B 1.831
21.2 .810
5H.1 .b27
20.1 .881
0.0 I
3.1 R
21.8 .101
32.0 .bOb
20.8 .872
Ib.b 1.735
21.2 .88*
55.1 .b32
20.1 .875
0.0 I
FOP. CYCLE 1)
HC- FID 0.
CO- NDIR 0.
NOX-CL 0.
FUFL
G/HR
17b1
113*
I*b51
Iblb
7b20
Iblb
2*102
1*80
0
17b1
1B88
1*515
1*35
7530
Iblb
2535b
1*80
0
CALCULATED G/HR
HC CO NOX
8
7
b
5
7
7
10
s
0
8
21
IS
7
b
10
S
0
-75 PROCEDURE
BSNOX F/A
R
sii
H.7
3.H
H.b
1.3
3.7
I
R
H.7
b.*
H.O
s'.o
1.3
3.7
I
35( .8)
3S( b5.3)
35( H.I)
,0*b
.0*7
.055
.0*7
.0*3
.0*7
.073
.0*1
.005
.0*7
.0*8
,05b
.0*1
.0*3
.0*8
.07*
.OH1
.005
t 0.
+ 0.
+ 0.
115
ion
7*
57
bb
101**
3b
0
188
158
7S
b3
bb
10711
*5
0
SFC
KG/KH HR
R
.557
.371
.531
1.11*
.5*1
.382
.53b
I
R
.553
.3b8
.531
1.05b
.538
.38*
.532
I
b5(
bS( b8
b5( 5
HC +
3
lOb
310
112
31
108
11*
87
0
2
111
331
13
32
117
115
Bb
RPH
faOO
2000
2020
2000
1180
20HO
1180
2000
bOO
2000
2010
1110
1180
2000
20bO
1110
2000
!b) =
.i) =
NOX =
SFC =
WT. WEIGHTED G/HR
FACT. HC-FIO CO NOX-CL CKW
.232
.077
.It7
.077
.057
.077
.113
.077
.1H3
.232
.077
.1*7
.077
.057
.077
.113
.077
CALC
A/F
22.0
21.*
18.2
21.2
23.3
21.2
13.7
20. b
208. b
21.3
21.0
18.0
20.5
23.3
21.0
13.5
20.3
20*. 8
.811
b7.*5b
5.013
5.112
.*bO
l.B
.5
.1
.*
.H
.5
10.2
.*
0.0
1.1
l.b
2.2
.7
!s
10.2
0 0
HC
11.1
b.2
2.7
2.5
b7.1
2.b
0.0
10.8
12. b
3.7
2.2
2.8
Sb.1
2.1
0.0
.8
.1
G/KW
U/KW
G/KW
G/KW
KG/KW
*5
B
11
*
5
ll*b
3
0
12
11
5
*
5
1210
3
0
.b 0.0
8.2 17.8
*5.5 31.5
B.b 17.1
1.8 b.B
8.3 17.8
12.1 bS.3
b.7 17.7
0.0 0.0
.5 0.0
8.5 17.1
*8.7 31.*
7.2 17.8
1.8 7.1
1.0 17.1
13.0 bb.O
b.7 17.8
0.0 0.0
VAC.
MM
Hb2
3*5
20b
3*5
311
3*5
5b
3*5
51*
*b2
3*5
20b
3*5
311
3*5
Sb
3*5
51*
—PERCENT OF TOTAL— —
CO NOX FUEL POWER
3.7
.1
.*
.3
13.5
.2
0.0
3.»
.8
.H
.3
is!s
.3
0.0
bS
b1
HR
HR
HR
HR
HR
a B 87
*1.1 2*. 5
1.3 8.*
1.1 H.I
10 8.*
13.1 32.0
7.3 8.3
0.0 0.0
.5 ».7
81 87
51.1 2H.3
7.5 8.3
1.1 H.I
1.5 8.*
13. b 32. b
7.U 8.3
0.0 0.0
5.1
( ,b71 BS)
(50.302 BS)
( 3.738 BS)
( H.H09 BS)
( .75b 83)
7 2
30.5
7.2
2.0
7.2
38.7
7.1
0.0
0.0
7.2
30.2
7.2
2.1
7.2
38.1
7.2
0.0
-------
TABLE E-43. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
M
i
£»
00
curT.,^ » . 1^75 LHtVKULET 350-CID HD ENGINE-
ENGINE-2 TEST-237 RUN-02R 09-02-7b EFI-TR-HEI WAIXCT-
CONCENTRATION AS MEASURED TOTAL
MODE HC-FID CO C02 NOX-CL CARBON
1 IDLE *5b .Hbl
2 25 PCT T 18H .I3b
3 55 PCT T 72 .170
* 25 PCT T 88 .120
5 10 PCT T 200 .1*7
b 25 PCT T 108 .125
7 10 PCT T *72 3.210
8 25 PCT T HO .013
1 C.T. 8000 .051
1 IDLE BOO ,*28
2 25 PCT T 300 .1*2
3 55 PCT T 120 .151
* 25 PCT T 132 .125
5 10 PCT T 2bO .1*7
b 25 PCT T 130 .125
7 ID PCT T *BQ 3.210
8 25 PCT T H8 .013
1 C.T. 8000 .051
1.12 *0 1.h31
1.32 b30 1.*7b
11. 3b 1811 11.538
1.32 b50 1.HSO
8.1* 130 n.301
1.22 SbO 1.357
12.71 220 Ib.OS*
l.bH bPO 1.737
.23 10 1.P83
1.22 21 1.735
1.32 bbO 1.*15
11. bl 17Rb 11.782
1.*3 7BO 1.570
8.0* 120 8.215
1.*3 b50 1.57n
12. bS 225 15.115
l.b* bbO 1.738
.23 15 1.083
" — UNITS AS SPECIFIED IN THE 7-11-7S
MODE ID MV CHP CTO FC BSFC
1 I 18.3 0.0
2 25 15.3 2*.0
3 55 10.* 53.1
•» 25 IS.* 2*.0
5 10 17.2 10.1
b 25 1S.» 2*,0
7 10 2.3 88.0
B 25 15.3 2*.0
1 CT 23.* 0.0
1 I 18.3 0.0
2 25 15.* 2*.0
3 55 10.* 53.1
* 25 15.3 2*.0
5 10 17.2 10.0
b 25 15.3 2*.0
7 10 2.3 BB.»
8 25 15.3 23.8
1 CT 23.* 0.0
SUM— (COMPOSITE
SUM — (COMPOSITE
TWO CYCLE COMPOSITE -
TD -
0 3.8 R
b3 18.2 ,7bo
138 28.1 .521
b3 17.8 .7*3
?b 13.5 1.3*1
b3 17. b .73*
22b 55.3 .b2B
b3 17.7 .738
0 0.0 I
03.8 R
b3 17.7 .737
138 2B.3 .533
b3 17. b .73*
2b 13.3 1.321
b3 17. b .73*
225 55.8 ,b31
b3 17.* .730
0 0.0 I
VALUE FOR CYCLE 1)
HC- FIO 0.35(
CO- NtHR 0.35C
NOX-CL 0.35(
FUEL
G/HR
172*
8255
127*b
807*
b!23
7183
2508*
8021
0
172*
8021
12837
7183
b033
7183
25310
7B13
0
--PROJECT
.53,32 BP
U-*3H
CALCULATED G/HR
HC CO NOX
1
17
9
8
Ib
10
85
0
15
28
12
21
12
88
H
0
Ibl
2*0
371
207
220
21b
10131
155
0
153
2*2
3*1
211
219
211
10312
152
0
3
111
7*1
201
35
173
125
203
0
2
202
?0b
23b
32
117
130
11*
0
PROCEDURE SFC
BSNOX F/A KG/KW HR RPM
R
B!S
3.5
7.3
1.*
B.b
I
R
B.b
13.5
10.0
3.2
B.3
1.5
8.3
I
.1)
bl.7)
1.8)
.OH3
.052
.0*3
.038
.0*3
.0*5
.005
.0*5
.0**
.OS*
.0**
.038
.0**
.073
.0*5
.005
+ n.
+ 0.
+ n.
R
.*b2
.322
.*52
,**b
.382
.HH1
I
R
.HH9
.32*
,*Hb
.808
.HHb
.38*
.***
I
bS( 1
bS( 70
bS( 1
HC t
bOO
2000
2020
2000
2000
2000
2050
2000
2000
bOO
2000
2020
2000
1110
2000
20bO
1910
2000
.1)
.2)
.B)
NOX
SFC
HT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
C*LC
A/F
22. b
23.0
11.1
23.1
2b.l
23.3
13. b
22.*
111.9
22.3
23.0
18.7
22.8
2b.*
22.8
13.7
22.*
111.9
1.03b
70.027
1.78*
10.820
.»!*
> WV* K.
= 1.013
WEIGHTED
HC-FIO CO
2.1
1.3
1.3
.b
.1
.8
l.b
.3
0.0
B.b
2.1
2.1
.9
1.2
.1
1.1
.3
0.0
HC
12.2
8.0
7.7
3.7
5.*
*.b
Sb.8
l.b
0.0
17.0
10.1
10.1
*.*
S.b
*.3
H7.0
l.b
0.0
.1
1.1
G/KW
G/KW
G/KW
G/KW
KG/KW
31
18
Sb
Ib
13
17
11*5
12
0
3b
11
51
Ib
12
Ib
llbS
12
0
CO
3.0
1.*
*.2
1.2
1.0
1.3
87.0
.1
0.0
2.7
1.*
3.1
1 2
.1
1.2
87. B
.9
0.0
70
70
HR
HR
HR
HR
HR
HUM =
G/HR
NOx-CL
.b
15.3
108.1
15.5
2.0
13.3
is!?
0.0
.*
15. b
103.8
18.2
1.8
15.1
i*!i
0.0
CENT OF T
NOX
.3
8.3
58.7
8.*
1.1
7.2
7.b
8.*
0.0
.2
8.*
5b.2
SB
1.0
8.2
7.1
B 1
0.0
1.8
1.8
( .773
(52.211
( S.ObB
( .bBl
lb.5 G/KG
CKH
0.0
17.1
31.
17.
7.
17.
bS.
17.
0.0
0.0
17.1
31. b
17.1
7.5
17.1
bS.1
17.8
0.0
FUEL
5.0
8.0
23. b
7.8
*.*
7.7
35.7
7.B
0.0
5.0
7.8
23.7
*.3
7.7
3b.O
7 h
0.0
BS)
BS)
BS)
83)
BS)
VAC.
MM
*bS
381
2b»
311
*37
311
SB
381
51*
*b5
311
2b*
381
*37
381
58
381
51*
POWER
0.0
7.2
30.*
7.2
2.2
7.2
38.7
7.2
0.0
0.0
7.2
30.3
2.2
7.2
38.8
0.0
-------
TABLE E-44. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
1975 CHEVROLET 3SO-CIO HD ENGINE—PROJECT 11-1311
M
i
ENGINE-2
MODE
1 IDLE
2 25 PCT T
3 55 PCT T
f 25 PCT T
S 10 PCT T
b 25 PCT T
7 SO PCT T
8 25 PCT T
9 C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
f ?•; PCT T
5 10 PCT T
b 25 PCT T
7 10 PCT T
8 25 PCT T
S C.T.
MODE ID
1 I 570
2 25 570
3 55 570
f 25 570
5 10 S7n
b 25 570
7 90 310
8 25 570
9 CT 570
1 I 570
2 25 570
3 55 570
* 25 570
S 10 570
b 25 570
7 90 3fO
8 25 570
9 CT 570
TEST-237 RUN
CONCENTRATION
KC-FIO CO
100 .SfO
bl .051
f8 .030
52 .030
7b .0*0
70 .035
17 .098
52 .02(1
•MO .510
200 .085
lib .030
88 .035
80 .0*0
bl .035
17 .098
50 .025
bSOO .10<»
-UNITS A9
MV CHP
18.2 0.0
13. b 21.0
8.1 53.1
13. b 21.0
15.7 9.2
13. b 23.9
2.1 Bb.b
13. b 23.8
23.1 0.0
18.2 0.0
13. b 21.0
8.1 52.9
13. b S3. 9
15.7 9.b
13. b 21.0
2.1 8b.b
13. b 23.9
23. 1 0.0
SUM— --(COMPOSITE
SUM (COMPOSITE
TWO CYCLE COMPOSITE -
vn . err
II «CT
-01X 09-02-7b EFI-TR-BPEGR RUN 01R HITH INSERTED MODE 7 K= 1.097 HUH= 1 b . 1 b^™___
AS MEASURED TOTAL FUEL
C02 NOX-CL C*"BON G/HR
9.32 11 9.903 17b9
in. 19 3no in.2i8 9931
12.12 705 12.1Sb IfbSl
10.30 330 ll).33b 9blb
9.32 IDS 9.3b9 7b20
10.30 320 in. 3*3 9blb
11.70 800 11. BOO 20820
10. bH 270 in.bbb 9180
.23 S .997 0
9.bf 33 10.228 17b9
10.30 320 lO.fOI 9888
12.25 770 12.293 11515
10. bf 290 Ifl.bSS 9f3S
9.32 108 9.3b9 7530
10.11 350 10.f52 9blb
If. 70 800 If. 800 20820
10. 7b 270 10.791 9180
.23 b l.Olb 0
CALCULATED
HC CO
8
7
b
S
7
7
3
5
a
8
21
IS
9
7
b
3
5
0
SPECIFIED IN THE 7-11-75 PROCEDURE
CTQ FC BSFC BSNOX F/A
0 3.9 P R
b3 21.9 .91* f.S
138 32.3 .bOB 5.9
b3 21.2 .88f 1.7
2f lb.8 1.827 3.f
h3 21.2 .RHB f.b
227 fS.9 .530 f.B
b3 20.9 .R79 3.7
0 0.0 I 1 .
0 3.9 R R
b3 21.8 .907 1.7
138 32.0 .b05 b.f
b3 20.8 .871 f.O .
25 Ib.b 1.732 3.1
b3 21.2 .882 5.0
227 f5.9 .530 f . 8
b3 20.9 .B73 3.7
0 o.n I I
VALUE FOR CYCLE 1)
HC- FID 0.35( .3)
CO- NOI" 0.3S( b.O)
NOX-CL 0.35( b.B)
Ofb
Of?
055
Of7
Of3
Of7
Obb
Of9
005
Of7
OfB
OSb
Of 9
Of 3
OH 8
Obb
Of9
005
+ 0.
+ 0.
+ 0.
195
100
7f
57
b7
bb
279
3b
0
IBS
158
72
b3
bb
fab
279
fS
0
SFC
KG/KH
P
.SSb
.370
.538
1.112
.SfO
.322
.535
I
R
.552
.3b8
.530
1.053
.537
.322
.531
I
b5(
bS(
bS(
HC
G/HR
NOX
3
lOb
309
112
31
108
f 10
87
0
2
111
331
93
32
117
f 10
8b
0
HR RPM
bOO
2000
2020
2000
1980
1990
2000
19BO
2000
bOO
2000
2010
1990
1980
2000
2000
1990
2000
-f) =
b.2) =
b.9) s
+ NOX =
SFC =
WT. WEIGHTED G/HR
FACT. HC-FID CO NOX-CL
.232
.077
.If7
.077
.057
.077
.113
.077
.If3
.232
.077
.If7
.077
.057
.077
.113
.077
.113
C»LC
A/F
22.0
21. f
18.2
21.2
23.3
21.2
15.1
20. b
208. b
21.3
21.0
1B.O
20.5
23.3
21.0
15.1
20.3
201. B
.379
b.107
b.BS3
7.232
.f 37
1.8
.5
.9
.f
.1
.5
.3
.1
0.0
1.9
l.b
2.2
.7
.1
.5
.3
.1
0.0
HC
31.0
9.8
17.8
7.7
7.2
10.3
5.B
7.1
0.0
21.1
20.0
28.0
8.2
5.0
b.2
3.8
l.b
o.n
.3
.1
G/KM
G/KW
G/KW
G/KW
KG/KW
IS
B
11
1
1
5
32
3
0
11
12
11
S
1
5
32
3
0
-PERCENT
CO
10. b
b.9
9.7
3.9
3.1
l.b
28.1
2.5
0.0
38.0
10. b
9.2
f .2
3.3
f .f
27. f
3.0
0.0
b
b
HR (
HR (
HR (
HR (
HR (
.b
8.2
15.5
B.b
1.8
B.3
fb.3
b.7
0.0
.5
B.S
18.7
7.2
1.8
9.0
fb.3
b.7
0.0
CKW
0.0
17.9
39. fa
17.9
b.9
17.8
bl.b
17.7
0.0
17.9
39.5
17.8
7.1
17.9
bf .b
17.8
0.0
OF TOT»L"
NOX FUEL
.5
b.S
3b.l
b.B
I.*
b.b
3b.7
5.3
0.0
.1
b.b
37.8
S.b
1.1
7.0
3b.O
5.2
0.0
b.B
b.9
.283
f .551
5.110
5.393
.718
f .9
«<.2
25.9
8.9
5.2
B.9
28.3
8.8
0.0
5.0
9.2
25.8
8.8
5.2
8.9
28. 1
8.8
n.o
BS)
BS)
BS)
BS)
BS)
VAC.
MM
1b2
315
20b
315
399
315
53
315
591
f b2
315
20b
315
399
315
S3
3f5
59f
POWER
0.0
7.2
30. b
7.3
2.1
7.2
38.1
7.2
0.0
0.0
7.3
30.5
7.2
2.1
7.3
38.1
7.2
0.0
-------
TABLE E-45.n*s3 EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-2
TEST-237
1175 CHEVROLET 350-CID HO ENGINES-PROJECT 11-1311
RUN-02X 01-02-7b EFI-TR-BPEGR RUN 02R WITH INSERTED MODE 7
K= 1.017 HUMs lb.1 G/KG
MODE
CONCENTRATION AS MEASURED TOTAL FUEL
HC-FIO CO C02 NOX-CL CARRON G/HR
CALCULATED G/HR
HC CO NOx
WT. WEIGHTED G/HR VAC.
FACT. HC-FID CO NOx-CL CKw MM
1
2
3
t
5
fa
7
B
1
1
2
3
t
5
fa
7
8
1
IDLE
as PCT
55 PCT
as PCT
in PCT
25 PCT
1Q PCT
25 PCT
C.T.
IDLE
25 PCT
55 PCT
25 PCT
10 PCT
25 PCT
ID PCT
85 PCT
C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
ISfa
IB*
7?
88
2no
108
17
10
8000
800
300
120
132
2t>0
130
17
18
8000
.Ibl
.I3b
.I'D
.120
.1*7
.125
.0*9
.0*3
.051
.128
.112
.151
.125
.1*7
.125
.018
.013
.051
1.12
1.32
11. 3b
1.32
8.11
1.22
11.70
1.b»
.33
1.22
1.32
11. bl
1.13
B.01
1.13
1H.70
l.bl
.23
»o
b30
1811
bSO
130
SbO
BOO
bBo
10
21
bbO
l78b
780
120
bSO
BOO
bbO
IS
1.b31
1.t7b
11.538
1.150
8.301
1.357
H.BOO
1.737
1.083
1.735
1.115
11.782
1.570
B.215
1.S70
I1*. BOO
1.738
1.083
1721
8255
127»b
8o7t
M23
7183
20B20
8021
0
1721
8021
12837
7183
b033
7183
20820
7813
0
1
17
1
8
lb
10
3
t
0
15
2B
11
12
21
12
3
"»
0
Ibl
2*0
371
207
220
21b
271
155
0
153
212
3»1
211
211
211
271
152
0
3
200
7M
202
35
171
no
201
0
2
203
701
237
32
117
no
us
0
.232
.077
.1*7
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.1*3
2.1
1.3
1.3
.b
.1
.8
.3
.3
0.0
3.b
2.1
2.1
.1
1.2
.1
.3
.3
0.0
31
18
5b
lb
13
17
32
12
0
3b
H
51
lb
12
lb
32
12
0
.b
15.1
101.1
IS. fa
2.0
13.1
1b.3
15.7
0.0
.1
iS.7
10t. 2
18.2
1.8
15.2
lb.3
15.0
0.0
0.0
17.1
31.7
17.1
7.5
17.1
bt.b
17.1
0.0
0.0
17.1
31.7
17.1
7.5
17.1
bt.b
17.8
0.0
IbS
381
2b1
311
137
311
S3
381
Sit
tbS
311
2b1
381
»37
381
S3
381
Sit
i
b3
227
b3
0
U • | ttf
VALUE
VALUE
COMPOSITE -
SET.
FC BSFC
3.8 R
18.2 .758
28.1 .S2«
17.8 ,7»l
13.5 1.338
17. b .732
15.1 .530
17.7 .73b
0.0 I
3.8 R
17.7 .73b
28.3 .53?
17. fa .732
13.3 1.32b
17. b .732
15.1 .530
17. •» .728
0.0 I
HC- FID 0.35C
CO- NOIR 0.3SC
NOX-CL 0.35C
PROCEDURE- —
BSNOX
R
8.5
a!b
3.5
7.1
1.8
R.b
I
R
8.b
13.5
10. 0
3.3
8.1
1.8
8.3
I
10
11
F/A
.011
.013
.052
.013
.038
.013
.Obb
.015
.005
.015
.011
.051
.011
.038
.011
.Obb
.015
.005
.1) + 0.
.8) t 0.
.7) + 0.
SFC
KG/KM HR
R
.Ibl
.321
.151
.811
.115
.322
.MB
I
R
.118
.323
.115
.807
.MS
.322
.113
I
bS(
bS< 10
b5( 11
HC +
RPM
bOO
2000
2020
2000
2000
2000
2000
2000
2000
bOO
2000
2020
2000
1110
2000
2000
1110
2000
.b) =
.1) =
.b) =
NOX =
SFC =
C*LC
A/F
22. b
23.0
11.1
23.1
2b.l
23.3
15.1
22.1
111.1
22.3
23.0
18.7
22.8
2b.1
22.8
15.1
22.1
111.1
.511
10.522
Il.b28
12.1b8
.311
HC
27.2
17.7
17.1
8.3
11.1
10.2
1.1
3.b
0.0
31.2
18.5
18. b
8.0
10.2
7.1
2.7
2.8
0.0
.b
G/KH
G/KH
G/KH
G/KH
KG/KW
CO
11.1
1.1
27. b
7.1
b.2
8.2
IS.b
5.1
0.0
18.3
l.b
2b.S
8.1
b.l
8.1
lb.3
b.O
0.0
10
HR
HR
HR
HR
HR
NOX FUEL
.3 5.1
7.0 8.5
50.1 25. 1
7.1 8.3
.1 1.7
b.l 8.2
21.2 31.5
7.2 8.3
0.0 0.0
.2 5.1
7.2 8.3
HB.O 25. 1
8.1 8.3
.8 t.b
7.0 8.3
21.1 31. b
b.l 8.2
0.0 0.0
n7
• r
11. b
( .103 BS)
( 7.817 BS)
( 8.b71 BS)
( 9.071 BS)
( .b12 BS)
POWER
0.0
7.2
30. b
7.2
2.2
7.2
38.3
7.2
0.0
0.0
7.2
30. b
7.2
2.2
7.2
38.3
7.2
0.0
-------
ENGIHE-2
U8LF E-46. STEADY STATE FMISSIOMS BY EP* PROCEDURE - METRIC UNITS
117P CHEVROLET 35II-CJO HO ENGINE PROJECT 11-H311
TEST-231 RUN-OI OB-?S-7(- EFI-TR-HEI MO»I-HBTDC IDLE MQDE
K= 1.07H HUM= l>f.8 G/KG
MODE
1
3
*
5
MODE
1
s
3
t
5
CONCENTRATION
PPM HC-FIO CO
HSn 13bO
H80 15b8
500 20H8
510 2Hb»
515 2b72
ID MV
300 Ib.S
HOO 17.0
500 17.5
bflO 17.7
700 17.8
.120
.381
1.350
2.500
3.210
—UNITS
CHP
0.0
0.0
0.0
0.0
0.0
AS MEASURED TOTAL
C02 NOX-CL CARBON
11.11
12.25
11. 3b
11.00
H3
SO
50
AS SPECIFIED
CTO FC
0
n
0
0
0
3.0
3.3
3.5
3.7
3.8
I?.2M
I?. Hit
13.570
1H.13R
IN THE 7-11
BSHC
R
R
R
R
R
FUEL
CONS.
13bl
1H17
1588
lb7B
172H
CALCULATED G/HR
HC CO N02
17
20
27
33
3b
-75 PROCEDURE--
BSCO HSNOX
R
R
R
R
R
R
R
R
R
R
27
12
311
511
770
BSFC
R
R
R
R
R
2
2
2
2
2
CALC
A/F
18.0
17.2
lb.1
15.3
1H.1
F/A
.05b
.058
.Ob2
.ObS
.Ob7
CORRECTED G/HR
HC-FID CO NOX-CL
lb.8
20.5
2b.1
33.0
35.1
HC
R
R
R
R
R
27
12
311
511
770
CO
R
R
R
R
R
1.7
2.0
2.1
2.1
2.1
NOX
R
rt
R
R
R
VAC.
CKH MM
0.0 H11
0.0 H32
0.0 HHH
0.0 H50
0.0 HS2
SFC
KG/KM HR
R .
R
R
R
R
ID = fCU SET
M
I
STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 350-CID HO ENGINE — PROJECT 11-H311
ENGINE-2 TEST-231 RUN-02 OB-25-7b EFI-1R-HEI NQAI-IHBTDC 10 PCT MODE K=
HUM:
It.8 G/KG
CONCENTRATION
MODE RPM HC-FIO CO
1 1120
2 1120
3 1130
5 1130
b 1130
8 }12il
MODE 10
11
11
v
2
1
1
1
MV
.005
.0(15
.1)05
.005
.1)05
.005
.0115
.DOS
CHP
AS MEASURED TOTAL
C02 NOX-CL CARBON
11. HP
11.73
12.38
12.71
13. n?
13. 3S
13. HI
bO
17
135
1'8
?30
AS SPECIFIED
CTO FC
11.73b
12.385
12.715
13.075
13.355
13.H15
IN THE 7-
HSHC
FUEL
CONS.
8800
Rill
7hbb
71b7
7()7b
7031
bBOH
CALCULATED
HC CO
1
1
1
0
0
0
0
0
G/
8
7
7
b
b
5
5
5
11-75 PROCEDURE
BSCO BSNOX BSFC
HR
N02
Ib
23
21
2b
33
38
31
38
—CALC —
A/F F/A
CORRECTED G/HR
HC-FIO CO NOX-CL
1.0
.1
.7
.3
.1
.1
.1
.1
HC
8
7
7
b
5
5
5
----G/KH
CO
17.7
22!s
27.8
35. 1
HI. 2
H2.0
HI. 3
HR
NOX
VAC.
CKH MM
b.b 317
b.1 3bb
7.0 31b
7.3 H32
7.3 H31
SFC
KG/KH HR
1
2
3
"»
5
b
7
fl
3UU 12.5
nnn IH.H
500 15. b
Mm lb.»
700 lb.7
Bnn I7.n
SOU 17.3
1000 17. b
ID = ECO SET
P.I
1.3
1.3
l|.'
25
27
27
2b
11. H
17. 1
is!*
isio
.11
.01
.07
.03
.01
.01
.01
.01
. 78
. 72
!bl
.57
1.88
2.31
2.BH
3.5b
H.02
H.ll
H.21
2.17B
1.12H
1.805
I.b12
l.bbO
1.585
1.583
i.bns
20. b
11.2
18.8
17.8
17.3
17.0
Ib.b
Ib.S
.OH1
.052
.053
.OSb
.058
.051
.ObO
.Obi
.15
.13
.10
.OH
.02
.01
.01
.01
1.28
1.05
.Ib
.Bfa
.82
.7b
.75
.75
2.52
3.3H
3.10
3.81
H.77
5.31
5. 51
S.bS
1.325
1.170
1.018
1.021
1.010
.IbH
,1b3
.175
-------
M
Ul
tv
ENGINE-?
TABLE E-47. STLADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1S7S CHtVROieT 350-CID HO ENGINE PROJECT 11-1311
TEST-23S PIJN-M3 (is-?!;.;,. EFt-TP-HEl MnAI-llBTOC 25 PCT MODE
K* 1.072 HUMs 11.7 G/KG
CONCENTRATION AS MEASURED
MODE
1
2
3
1
S
b
7
PPM
|SbO
1 ssn
lS5()
]Sbo
ISbo
ISbo
]S7o
HC-FID
i
i
i
i
i
2
1
CO t(J2
.010 11.00
. f» 1 0 11.73
.01(1 12.5?
.010 13.07
.010 13.35
.010 11.08
.020 11. ?3
NOX-CL
11U
Pan
310
H ?o
500
5SU
bf.0
TOTAL
CARHON
11. '1 1(1
11 . 7in
12.530
13.090
13.3bO
ii.osn
11.P50
FUEL
CONS.
10705
S7[)7
S253
So?b
8S3b
88SQ
8SR1
CALCULATED G/HR
HC
0
0
0
0
0
0
0
CO
20
17
15
11
11
13
?b
N02
3b
55
83
SS
111
121
138
CORRECTED G/HR
HC-FID
.1
.1
.1
.1
.1
.1
.1
CO
20
17
IS
11
11
13
2b
NOX-CL
38.1
58.8
8S.1
105. b
11S.O
132.5
118.0
VAC.
CKH MM,
17. b 251
17.3 323
17.3 351
17.1 371
17.1 381
17.7 3S1
17.8 3S1
MODE
1
2
3
1
5
b
7
10
3110
too
500
bOO
700
800
soo
MV
q.s
12.7
13.8
11. b
15.1
15.1
15.5
CHP CTQ FC
23. b b3
23.1 b?
23.1 b2
23.3 b2
?2.S bl
23.7 b3
i?3.8 b3
23. b
?1 . *
20. *
IS. S
1 S. 7
IS.b
IS.B
BSHC
.no
.00
.00
.on
.0(1
.01
.00
BSCO BSNOX
.BS
. 71
.bb
.bl
.bO
.55
1.10
1.53
2.12
3.fa8
t. 33
I.Sb
5.31
S.S1
BSFC
.SSS
,S25
.882
.851
,8bO
.828
.832
A/F F/A
20.0
18.8
17.7
17.0
Ib.fa
IS. 8
IS.b
.050
.053
.057
.OSS
.ObO
.Ob3
.Obi
HC
.01
.01
.00
.00
.00
.01
.00
CO
1.1»
.SS
.88
.82
.81
1.18
NOX
2. Ob
3.25
5.80
b.bS
7.1b
SFC
KG/KH HR
.bOB
.Sb3
.53b
.SIS
.523
.5U3
.SOb
ID = ECU SET
ENGINE-?
TEST-23S RUN-Qif
STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1S75 CHEVROLET 350-CID HD ENGINE PROJECT 11--»3U
OR-25-7b EFl-TR-HEI NOAI-i»BTDC 55 PCT MODE
K= 1.072
HUMs
G/KG
CONCENTRATION AS M£*SURED
HOOE RPM
1 J SSo
2 POim
3 jssn
<» ispn
5 JS80
b PU2I)
7 ?nsn
HC-FID
I
2
2
3
3
25
HHO
CO CU2
.111" 11. 3b
.01(1 1 1 . R h
.010 1P.7S
.015 13. "»S
.020 1».?3
.15S 1H.5H
.771 it. 23
NOX-CL
300
hOO
SS?
Jtl5
|5?7
15ns
13ib
TOTAL
CARRON
11 .370
1) .870
12.800
13.505
1».?50
1H.7U1
IS.USI
FUEL
CONS.
1H7B7
ItSlS
IHObl
13bOB
)32'»S
1378S
1*107
CALCULATED 6/HR
HC
0
0
0
0
0
3
17
CO
2b
25
22
31
38
300
1-fbO
N02
Ibt '
«•»•»
3b2
173
171
IbS
IIS
CORRECTED G/HR
HC-FID
.1
.3
.2
.3
.3
2.7
17.0
CO
2b
25
22
31
38
300
ItbO
NOX-CL
175. S
?bl.l
387.8
507. »
505.1
502.3
1H8.S
VAC.
CKH MM
3S.1 102
3S.b 137
3S.1 178
38. S 218
38. S 211
"»0.0 21S
»0.0 251
HOOF. ID
1 ' 2UH
i arm
3 »0li
H 500
S bUO
b 7(111
7 BOO
MV
».o
5.H
7.0
e.b
S.5
S.B
10.0
CHP CTO
52.5 138
53.1 13S
52.8 13S
52.2 13S
52.2 13S
53.7 IfO
53.7 Itn
CIFIFD
FC
32. h
3?.n
?!.»
311.0
?S.2
30. »
31.1
IN THF 7-11
BSHC
.Oil
.01
.0(1
.01
.01
.05
.sn
-7«i PRI
BSCO
.51
,»B
.»3
.hO
.?•»
5.71
27. SI
BSNOX
3.ai
».7U
7.02
S.30
S.?fa
B.Sb
8.01
BSFC
.b22
,b03
.587
.575
.5SS
,5bb
.57S
CALC-"
A/F
1S.1
18. b
17.3
lb.1
IS.b
15.2
1».7
F/A
.052
.05*
.058
.Obi
,0b»
.Obb
.ObB
HC
.00
.01
.01
.01
.01
.07
1.20
CO
.bS
.b»
.58
.81
.SS
7.70
37.1?
NOX
•».3U
b.31
"».»?
12. *7
!?.•»?
12.0?
10.74
SFC
KG/KW HR
.378
.3b7
.357
.350
.310
.311
.352
ID = ECU SET
-------
ENGINE.8
TAHLE E-48.STHADY STATf EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVMlltT 3511-Cin HO ENGINE PROJECT 11-43M
TEST-23H RUN-U5W 08-2b-7b EFI-TR-HEI MOAl-ltBTDC 90 PCT MODE
K= 1.077 HUM= 15.1 G/KG
MODE
1
2
3
5
b
MODE
1
2
3
*
s
b
•RPH
?ono
?oon
liiu
2OUU
?nnn
2000
ID
I5n
2(10
25(1
300
350
CONCENTRATION
HC-FID co
,
3
100
13bO
1520
MV
.3
1.8
8.*
S.7
3.0
3.2
.010
.010
.312
1.178
1.180
2.7bo
CHP
Bb.7
Rb.R
8b.5
87.1
87.1
87.1
AS MEASURED TOTAL
C02 NOX-CL CARHON
13. 35
13.35
13.13
13. 7B
13.35
12.13
20hh
2151
20nB
1 R91
1572
1253
CTQ FC
22«
228
828
229
229
12.1
HI .t
HI 3
H?. 8
H3 S
HH.7
I3.3b0
I3.3bo
1H.P53
15.0b7
15.HB5
15. 8b"
HSHC
.01
.01
.18
I.b7
2. 31)
?.b3
FUEL
C"NS.
imib
18779
18733
11H1"»
Iq9l3
?027b
CALCULATED G/HR
HC CO N02
1
0
15
1H1
200
222
29
28
R28
3Pb5
S1H3
712b
BSCO BSNOX
.3*
.31
1.85
bO.RH
R4.21
1 l.bO
11 .92
10. *2
I.Sb
7. It
b.21
BSFC
,H8b
.»77
.H78
,H92
.SOH
.513
980
1007
87b
808
b71
532
CORRECTED G/HR
HC-FID CO NOX-CL
,b
.5
1H.1
1*0.8
119.7
222.5
A/F F/A
Ib.b
Ib.b
15. b
1H.7
1*.8
13.8
.ObO
.ObO
.Ob*
.Ob8
.070
,073
HC
.01
.01
.8*
8.83
3.17
3.53
89
28
828
30bS
51*3
712b
CO
.*b
.*5
13.81
H8.b2
81.58
113.03
105b.3
1085.5
1**.0
870.7
723.1
572.8
HR .
NOX
15.55
15.18
13.17
18.82
10. b5
a.*3
CKH
h*.b
b*.7
bH.S
b* . 9
bS.O
bS.U
SFt
KG/KX
.295
.290
.291
.899
.30b
.312
VAC.
MM
B
Hb
bl
b9
7b
81
HR
10 = ECU SET
M
I
Ui
UJ
STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1<1?S CHEVHOLfcT 3Sn-Cin HD ENGINE PROJECT 11-«»311
ENG1NE-2 TEST-231 RUN-Ob Ofl-25-7h EFI-TW-HEI NOAI-ltBTDC CT MODE
K= 1.058 HUM= 13.8 G/KG
MODE
I
2
3
1
S
MODE
1
2
3
V
5
CONCENTRATION
RPM HC-FIO CO
20IHI 73bil
2000 aPlbO
?OI)n 38800
?OOO 48000
?000 51200
ID MV
OFF 8t.k
711(1 et.b
BOO 2"».b
100 2H.5
|0nn ?».5
,fl»0
.0*0
.051
.077
.115
— UNI fS
CHP
rj.o
o.u
0.0
0.0
n.o
AS MEASURER TOTAL
C02 NOX-CL CAHHON
. 15
.15
.15
.15
.23
»S SPEC If-
CTQ
0
i)
0
0
n
H
t
b
b
7
IFO
FT.
ii. u
. i
.3
J .0
1.3
.9*8
2.210
3.U8b
5.037
5.*8l
IN THE 7-1
BSHC
I
R
H
K
a
FUEL
CONS.
o
•»5
13b
t5H
59(1
CALCULATED G/HR
HC CO • N02
u
•u
127
»33
553
1-75 PROCEDURE —
asco PSNOX
I
R
R
R
R
I
R
R
R
R
0
2
5
!»
25
BSFC
I
R
R
p
R
U
0
0
0
0
. — -CALC"-
A/F F/A
82*. 1
12.8
bS.9
39. b
3b.2
.OUf
.011
.015
.025
.028
CORRECTED G/HR
HC-FID CO NOX-UL
0.0
•U.f
127.2
«33.?
552. b
HC
I
R
R
R
R
0
2
S
I1*
2S
— G/KM HR-
CO
I
R
R
R
R
U.U
.0
.1
.2
.3
NOX
I
R
K
R
K
CKH
O.U
0.0
0.0
0.0
0.0
SFC
KG/KH
I
R
R
R
VAC..
MM
b25
b2S
b2S
b22
b22
HR
ID a ECU SET
-------
TABLE E-49. MASS FMISSIONS HY NINE-MODE EPA - METRIC UNITS
ENGINE..?
TEST-231 RUN-x
H7S CHEVROLET 1MI-CID HD ENRINE PROJECT 11-1311
U8-?.b-7h EFI-TR-HEJ HnDAL-N0AI-l1BTDC-ECu=IO
K= 1.058 HUMr 13.8 G/KG
M
i
Ul
MODE
1 IDLE
2 25 PCr T
3 55 PfT T
H 25 PCT T
5 10 PCT T
b 25 PCT T
7 ID PCT T
8 25 PCT T
1 C.T.
1 101 E
2 25 PCT T
3 55 PCT T
1 25 PCT T
5 10 PCT T
b 25 PCT T
7 Io Pf.T T
8 25 PCT T
9 C.T.
MODE ID
1 I 3no
2 25 5(10
3 55 3(io
1 25 500
5 10 bon
b 25 5|if|
7 10 25n
B 25 5|1||
1 CT OFF
1 I 3IM1
2 25 Sun
3 55 31)11
1 25 51.10
5 10 bun
b 25 5(in
7 Io 25o
B 25 50(1
9 CT OFF
HC-FIO C'l
13bi) .120
1 .ni n
1 .010
i .nns
i .010
100 .312
1 .010
73^0 .n»o
13ho .120
1 . (1 > 0
2 . n 1 n
1 .OKI
1 .005
i .010
ion .312
1 .010
73bfl .010
— -UNITS AS
MV r.HP
1 b . 5 0 . U
13.8 23.1
5.1 53.1
13.8 J3. 1
lb.1 1.3
13. B 23.1
2.1 8b.3
13. » 23.1
21. b d.O
Jb.5 n.n
13.8 23.1
5.1 53.1
13.8 J3.1
lb.1 1.3
13.8 ?3.1
2.1 8b.3
13.8 e3.1
21. b 0.0
.-- f rfiMPnst Tp
SUM — ( COMPOS? T'F
TWO CYCLE
IP r FCU
COMPOSITE -
RET
AS ^EA9U»H) TOTAL HIFI
CM? NUX-Cl CAPPON G/HH
1) .11
IP. 5?
U.Sb
12.52
12. T8
1P.S2
13.13
12.52
.15
11 .11
IP. 52
11. Mb
12.5?
12.38
12.5?
13.13
12.52
.15
"3 ]?
boo 11
3t(l 1?
20n8 i*
3»n 1?
•4
13 12
3^0 1?
bOO 11
1?5 12
2008 l»
310 12
1
SPECIFIED IN THE
CTG FC
0
b?
131
b2
2b
b?
228
b?
0
0
b2
131
b2
2b
b2
228
b2
0
VALUE ^ OH
VALUE FllR
3.0
2(1. H
32.0
?n.i
15.8 ]
20.1
11.3
20. H
0.0
3.0
20.1
3?.0
?0.1
15.8 1
20.1
11.3
?n.i
0.0
r vn F 11
C • \* L L i /
CYCLE ?i
HC- Ftp
co- *ni
NOX-CL
-2bl 13hl
."?0 11515
.530 1?53
.?53 18733
.^30 1?S3
.128 u
.2bi Hbl
. 5 3 rj 1 ? S 3
.87o 11515
.385 7]b7
.253 18733
.530 1253
.128 0
CALCULATE!! G/HR
HC CO NOx
17
0
(I
0
0
0
IS
0
0
17
0
(1
0
u
0
15
0
0
7-11-75 PROCEDURE
HSFC BSNOX F/A
R R
.88? 3.1
.b03 5.0
.88? 3.1
.bl2 3.0
. "82 3.1
."7P 11.0
.882 3.1
I I
R R
.882 3.1
.b03 5.0
.882 3.1
.b12 5.0
.882 3.1
.178 11.0
.892 3.1
I I
0.3"i( .3)
R fJ.35( 5.1)
0.35( 1.1)
.OSb
.057
.051
.057
.05b
.057
.Obi
.057
.001
.05b
.057
.051
.057
.05b
.057
.Obi
.057
.001
+ 0.
4 0.
+ O.
27
25
15
b
15
828
15
0
27
15
25
15
b
15
828
15 .
0
SFC
KG/KW HR
R
.53b
.3b7
.S3b
1.021
.53b
.211
.S3b
I
R
.53b
.3b7
.53b
1.021
,S3b
.2H
.S3b
I
bS(
b5( 5
b5( 1
HC +
2
88
258
88
27
88
127
88
0
2
88
258
88
27
88
127
88
0
RPM
150
1150
2000
1150
1120
1150
1110 .
HSo
2000
ISO
1150
2000
1150
1120
1150
1110
1150
2000
.3) =
.1) =
.1) =
NOX =
SFC =
WT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
CALC
A/F
1B.O
17.7
18. b
17.7
17. B
17.7
15. b
22l!l
18.0
17.7
18. b
17.7
17.8
17.7
15. b
17.7
221.1
.308
S.lOb
1.3bO
1.bb8
.lib
"SIGHTED
HC-FID CO
3.1 b
.0 1
.0 1
.0 1
.0 0
.0 1
1.7 11
.0 1
0.0 0
3.1 b
.0 1
.0 1
.0 1
.0 0
.0 1
1.7 11
.0 1
0.0 0
G/HR
NOx-CL CKW
.1 0.0
b.B 17.3
37.1 3S.b
b.B 17.3
l.t> 7.0
b.8 17.3
101.8 bl.1
b.B 17.3
0.0 0.0
.1 0.0
b.B 17.3
37.1 31. b
b.8 17.3
l.b 7.0
b.B 17.3
101. B bl.1
b.8 17.3
O.U 0.0
VAC.
MM
111
351
137
351
117
351
bl
351
b25
111
351
137
351
117
351
bl
351
HC CO NOX FUEL
bfl.1 5.8
.1 1.1
.7 3.3
.1 1.1
.3 .3
.1 1.1
21.7 8b.3
.1 1.1
0.0 0.0
b8.1 5.8
.1 1.1
.7 3.3
.1 1.1
.3 .3
.1 1.1
21.7 8b.3
.1 1.1
0.0 0.0
.3 b
.3 b
G/KH HR
G/KH HR
G/KW HR
G/KW HR
KG/KM HR
.2 1.0
1.0 1.1
22.1 27.3
1.0 1.1
.1 s'.i
1.0 1.1
bl.O 27J1
1.0 1.1
0.0 0.0
.2 1.0
1.0 1.1
22.1 27.3
1.0 1.1
.1 s.j
1.0 1.1
bl.O 27.1
1.0 1.1
0.0 0.0
1.1
1.1
( .230 BS)
( 1.101 BS)
( b.171 BS)
( 7.201 88)
( .b8l BS)
POWER
0.0
7.1
3KO
7 i
r . *
2. i
. i
7 i
' . Jl
38 7
J w . r
7 i
. *
0.0
0.0
' • JL
7 i
* • *
2 • 1
7 i
• * *
38.7
7.1
0.0
-------
ENGINE-?
TABLE E-SO. STEADY STATE EMISSIONS PY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 350-CIO HD ENGINE PROJECT H-13U
TEST-2HO RUN-ul <)B-?<;_7b EFI-Th-HFl NOA1-30BTDC 10 PCT MODE
K= 1.0S3 HUM= 13.1 G/KG
CONCENTKA1ION
MODE
1
2
3
H
5
b
7
8
PPM
I97n
11 7o
1990
1180
J110
?on»
?onn
1990
HC-FID
100
10
?b
S3
20
18
118
10
CO
.051
.1130
.1)30
.025
.n?o
.nan
.080
.nan
AS MEASUKF.P
CO?
i.ib
in.bt
11.21
11. IP
11. 11
12. a1;
la.sa
12. S5
NOX-CL
b3
9b
135
i«;o
2HO
2bo
3 no
3110
TOlAL
CARBON
i o . u a a
HJ.b7S
11.273
11. SOB
i a . u i ?
ia.?72
12.553
I?.b71
FUEL
CONS.
707b
b577
bSHb
b07R
blf33
blbl
bn?8
SB97
CALCULATED (i/HR
HC
B
3
2
1
1
1
b
1
CO
73
38
35
27
20
20
ao
11
N02
IS
20
2b
2b
10
13
is
1b
CORRECTED G/HR
HC-FID
7.7
2.7
1.7
1.3
1.1
1.0
b.*
.5
CO
73
38
35
27
20
20
20
It
NOX-CL
15. S
20.7
27.1
27.7
»2.1
15.7
50.8
18.8
CKM
7.2
7.5
7.5
b.1
7.5
7.3
7.b
7.0
VAC.
MM
37b
101
121
f 1»
»52
»S7
-------
ENGINE-?
TABLE E-51. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
iqJi, CHFVKQLET 3S(l-i:in HI) ENGINE PROJECT 11-H311
TEST-810 HUN-03 OR-?5.-7b EFI-TR-HFI Nt)AI-2HBTDC 55 PCT MODE
K= 1.072 HUM=
G/KG
CONCENTRATION
MODE
1
2
3
H
5
b
7
RPM
2020
?02ll
?03O
?030
2050
2Q5o
POSlI
HC-FID
2
?
1
3
h
130
BHR
CO
.025
.025
. 0 3 IJ
.030
.035
,2b3
.Bll
AS MfA
CO?
11 .3b
11.73
12.71
13. b*
1H.?3
1H.SH
1H.23
SUITED
NOX-CL
5RO
(-50
.1323
J.RH1
2fl?8
11 til
18*1
TOTAL
CA"BON
11.385
11. 755
12. "20
13.b71
l"».2hb
1H.P18
15.217
FUEL
CONS.
IHhlb
13boB
J 30b3
12837
13101
1333b
13H2b
CALCULATED G/HR
HC
0
0
0
0
1
13
RS
CO
bb
51
b2
57
fab
H7R
1587
NO?
2HS
250
HH8
S7b
bll
570
5H2
CORRECTED G/HR
HC-FID
.3
.3
.1
.3
.b
13.3
85.3
CO
bb
51
b2
57
bb
H78
1587
NOX-CL
2bb.H
2b7.8
b!7.1
bb3.1
bll.H
580. S
VAC.
CKH MM
31.7 10H
31.7 ibn
31.1 221
HO. 3 2Hb
HO. 7 2b2
HO.b 27H
HQ.b 282
MODE
ID
MV
CHP
CTQ FC
IN T HE 7-1 1
BSHC
BSCO BSNOX
BSFC
A/F F/A
HC
CO
NOX
SFC
KG/KM HR
1
2
3
H
5
b
7
£UO
ion
'JOO
500
bno
7UO
800
H.I
b.3
B.7
1.7
10.3
10.8
11.1
53.3
53.3
53. b
SH.o
5H.5
5H.5
5H.5
131
J31
131
1HO
itn
1»0
1HO
32. H
30.0
29.8
28.3
28.1
2^.H
21. b
.01
.00
.00
.01
.111
.25
l.bl
1.27
1.13
1.20
1.01
1.2H
1.01
SI. 10
t.7S
t.81
8.58
10.17
M.bS
10. 7H
10.20
,b08
.Sb3
.538
.52H
.530
.SHO
.5H3
11.3
18.8
17.3
lb.3
IS.b
15.0
14. b
.052
.053
.058
.Ob2
.ObH
.Obb
.Obi
.01
.01
.00
.01
.02
.3H
2.15
1.70
1.52
l.bu
1.H7
l.bb
12.08
HO. 10
b.H2
b.HS
11.50
1H.70
15. b3
1H.H1
13. b8
.370
.3H2
.327
.311
.322
.328
.330
M
i
m
o
in = ECU SET
STEADY 3TATF. EMISSIONS BY EPA PROCEDURE " METRIC UNITS
1175 CHEVHOLET 350-Cin HO ENGINE PROJECT 11-H311
ENGINE. 2
TEST-2HO BUN-OHH OB-2b-7b
CONCENTRATION
MOD£ MPM
1 tiin
2 liPn
3 |1Bo
H lIHo
5 Jlto
b lIBn
HC-FID
q
h
8
1*0
1 1I)H
1312
CO
-n?o
.025
.035
.2R?
l.2»n
1.1*11
AS MEASURED
CO?
13.t.»
13.13
1H.23
1H. 11
13. 7P
13.35
NOX-CL
?7«h
?7PS
J7nK
2511
ee?i
Jb51
EFI-TR-HEI NOAI-18BTDC 10
TOTAL
CARBON
13. KM
l3.H5h
11.?bb
I».b13
iS.lHh
I«;.»HI
FUF.L
CONS.
] R01R
1 >735
17M5
17117
1HS5?
1B733
PCT MODE
CALCULATED G/HR
HC
1
1
1
11
1SH
113
CO
5H
b5
88
7(J8
30b1
H7S2
N02
1208
1175
1112
1017
10b
bb8
Ks
1.077
HUM= 15.1 G/KG
CORRECTED G/HR
HC-FID
1.3
.1
1.1
11. H
15H.O
112.7
CO
5H
faS
88
708
30bS
H752
NOX-CL
1301.3
12bb.O
1118.1
1015.3
17b.b
711. b
CKM
bH.fa
bH.3
bH.2
bH.2
bH.S
bH.2
VAC.
MM
28
S3
7H
81
8b
H
MODE ID
1 150
2 2tlO
3 25il
» 3(JO
5 350
b HUO
MV
1.1
2.1
2.1
3.2
3.H
3.b
CHP
Bh.b
Bb.?
Bb.l
8b.O
8b.«-
8b.l
CTO FC
221
221
22«
??8
P.SH
22"
31.1
31.1
3R.1
31.5
H0.1
HI. 3
11 n 1
BSHC 8SCO BSNOX
.02
.01
.01
.23
1.83
2.30
.bH
.77
l.nh
fl.Hb
3h.»1
5b.7«
lH.3b
It. OH
13.21
12.15
10.78
7.18
8SFC
.Hhl
.H5H
.»52
.H51
.H73
.HSO
C ALC —
A/F F/A
lb.3
15.1
IS.b
15.2
IH.b
1H.2
.Obi
.Ob3
.ObH
.Obb
.Obi
.070
HC
.02
.01
.02
.31
2.Hb
3.01
CO
.8b
l.OH
1.H2
11. 3»
H8.13
7b.lH
NOX
ii.afa
18.83
17.82
lb.21
1H.HS
10. 7U
3FC
KG/KM
.280
.27b
.275
.271
.288
.212
HR
ID = ECU SFT
-------
ENGINt-8
1A8LE E-5Z. STEADY STAFF EMISSIONS "Y EPA PROCEOUHE - METRIC UNITS
1175 CHEVROLET 35ll-tir> HU ENGINE PROJECT 11-H311
TEST-2^0 RUN-OS (i8-?5-7k EFI-TK-HF.I NOAI-H8TDC 20QORPMCT NL = RPM
K= 1.081 HUMs 15.H G/KG
MODE
1
2
3
CONCENTRATION
RHM HC-FID CO
Iflll HBll
1»?S hOO
itin b*o
135(1 1M)
. 10H
.115
AS MEASUHFD
C02 NuX-CL
J 11.117
10.31)
1 n . s 3
in. 53
1 7
30
TCTdL
fAHHOH
in.tfln
1(1.737
111. 7m
FUFL
CONS.
'f 3 1 j 1
1 082
3P5fc
CALCULATED G/HR
HC CO N02
27
38
88
1*
105
111
e
3
3
CORRECTED G/HR
HC-FIO CO NOX-CL
ee.i
2b.7
37.7
88
105
i.b
2.1
3.0
2.7
CKH
U.O
0.0
0.0
0.0
VAC.
HM
SOS
511
518
S31
MODE
1
2
3
H
10 MV
700 11.
-------
TAHLE E-53.MASS E"JS?inNS HY NINE-MODE EPA - METRIC UNITS
I
Ul
oo
ENGINE-?
TEST-2HO RUN-X
1175 CHEVROLET 35n-ciD HO ENGINE PROJECT 11-H3U
Op-?(,-7i, EFI-TR-HEI MnD*L-N()Al-MvAlH,2H.3P-ECU=ID
K= l.Ofa? HUM= 1H.3 G/KG
MODE
1 IDLE
2 25 PCT T
3 55 PCT T
H 25 PCT T
5 in PCT T
b as PCT T
7 1o PCT T
B 25 PCT T
1 C.T.
1 IDLE
a as PCT T
3 55 PfT T
H 25 PCT T
5 10 PCT T
b 25 PCT T
7 ID PCT T
8 25 PCT T
1 C.T.
CUNCENTHATIUN
HC-FIO en
13bO .120
2 .0*0
2 .025
2 .OHO
23 .P2S
2 .PHo
100 .312
2 .OHO
73bO .OHO
13bO .120
2 .()H|)
2 .0?5
2 .0*0
23 .025
a .OHO
ion ,3ie
2 .OHO
73bO .OHO
AS MFASUOEn
COS NPx-CI.
11.^1 H 3
i 1 . *" 3 H 0
11.73 b50
11. HR 3in
11. HF 150
11. HR 3HO
13.13 200"
11. H8 3HQ
. 15 H
11.11 »3
11. MB 3tn
11.73 hSO
11. HR 3HO
11. "8 i5n
1 1 .H8 3HO
13.13 200'
11. tB 3HO
.15 H
T01 AL
CARI'ON
l?.Pbl
11.521
11.755
1 1 .521
11 .50P
u.sai
IH .ass
11.521
.12P
l?.2bl
11 .531
11.755
1 1.521
11.508
1 1 .521
IH ,?53
1 1 .521
.128
FUEL
G/HR
13bl
R311
13bO»
R3*<1
h() 78
8311
1R733
B311
U
J3bl
R3H
13fanB
P3 -
R
.77P
.Sb3
.77R
1.HH9
.77B
.H7R
.77P
I
R
.77P
,5h3
.77P
l.HH}
.77P
.H7B
.778
I
FIP 0.35C
NDIR n.35(
CL f'.35(
PROCEDURE
USNOX F/A
H
3.B
5.1
1. B
3.1
3.P
11.1
3.8
I
H
3."
5.1
3.P
3.1
3.B
11.1
3.8
I
b.
1.
.OSb
.052
.053
.052
.052
.nsa
.ObH
.052
."OH
.OSb
,nS2
.053
.(152
.052
.052
.ObH
.052
.OOH
3) + 0.
1) * 0.
t) + o.
SFC
KG/KH HR
R
.t73
.3t2
. t 73
.878
. t 73
.an
.H 73
I
R
.H 73
. 3ta
.t 73
.87R
,t73
.ail
.t73
I
bS(
bS( h
b5( 1
HC +
RPM
tso
2000
2020
2000
1180
2000
1110
2000
2000
HSO
2000
2020
2000
11BO
2000
1110
2000
2000
.3) =
It) =
NOX =
SFC =
W"l_*-
A/F
18.0
H.l
18.8
H.l
H.l
11.1
iS.b
11. 1
22t.l
18. D
11.1
18.8
I'M
H.l
11.1
15. b
11.1
22H.1
.310
b.lHO
1.315
1.705
.388
HC
b7.1
.2
.7
.a
1.3
.2
ai.3
.a
0.0
b7.1
!?
.2
1.3
.a
21.3
.2
0.0
. 3
.3
G/KW
G/KW
G/KW
G/KW
KG/KH
CO NOX FUEL POHER
H.I
S.b
b.7
S.b
1.2
3.b
7a.i
3.b
0.0
t.9
S.b
b.7
3.b
1.2
3.b
72.1
3.b
0.0
7
7
H,R
HP
HR
HR
HR
.2 H.3 o.O
3.1 B.B 7.2
aa.s a?. a 30.8
3.1 8.8 7. a
.1 t.7 a.i
3.1 8.8 7. a
bO. 8 28.7 38.3
3.1 8.8 7. a
0.0 P.O 0.0
.2 H.3 o.O
3.11 8.8 7.2
22.5 27.2 30.8
3.* 8.8 7. a
.1 H. 7 J.I
3.1 8.8 7.2
bO.B 28.7 38.3
3.1 8.8 7.2
0.0 0.0 0.0
1.H
1.H
( .231 BS)
( 5.175 BS)
( 7.00b BS)
( 7.237 BS)
( .b38 BS)
-------
TAHLE £-54. MASS EMISSIONS RY NINE-MODE EPA - METRIC UNITS
ENGINf -2
TEST-a»n RUN-XPC
CHEvRtlLEl 350-CIO HO ENGINE --- PROJECT ll-t3H
OB-2b-7b f-.FI-TR-HFJ MPDAL-NOA I-MVA-CT 1350NLRPM
K= 1.0b7 HUM= It.3 G/KG
CONCENTRATION AS MfA
MODE
I IDLE
2 25 PCT
3 55 PCF
t 25 PCT
5 in PCT
b 2s PI-T
7 in PCT
8 85 PCT
1 C.T.
1 IDLE
8 25 PCT
3 55 PCT
H 25 PCT
5 in PCT
b 25 PCT
7 ID' PCT
B 25 PCT
1 C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
HC-FID
13bU
2
2
2
23
?
ino
2
Ibl)
I3hn
2
2
f
23
2
inn
s
ibo
CO
.121)
.oto
.025
.rmi
.025
.ntn
.312
.ntn
.151
.121)
.(T»U
.025
.Oil)
.025
.nti)
.312
.nto
.151
C02
1 1.11
1 I.t8
11.73
11. t«
11 .ta
11. tH
13. 13
1 1 .tB
in. 53
11.11
11. t9
11.73
11. tB
ll.ta
1 l.tfl
13.13
11. tB
10.53
5UREU T01AL
NOX-CL CAPfiON
tj I2.2M
3to 11.521
b5d 1 ) .755
3tO 11.521
150 11 ,5nS
3tO
2nnP
3m
?1
t3
3tll
h5CI
3fO
1 .S21
f .P53
1.521
n.71H
2.2bl
1.521
1.755
1.521
150 11.508
3 H n 11.521
2Hn8 It.?53
3HO 11.521
21 10.71t
FUEL
G/HR
13bl
8311
1 3f-oS
8311
bn78
H3H
IB7J3
R311
3B5h
13hl
8311
13ho8
8311
bp78
8311
18733
83H
3"5b
CALCULATED G/HR
HC
17
0
0
n
1
D
IS
II
3H
17
0
0
0
1
u
15
0
38
CO
27
bo
51
bO
27
bO
828
»<0
11»
27
bO
51
bO
27
bO
828
bO
II*
NOx
2
88
2bb
88
28
88
135
8fl
3
2
88
2bb
88
28
88
135
88
3
NT.
FACT.
.232
.077
.1*7
.077
.057
.U77
.113
.077
.113
.232
.077
.I*?
.077
.057
.077
.113
.077
.1*3
WEIGHTED G/HR
HC-FID
3.1
.0
.0
.0
.1
.0
1.7
.n
s.t
3.1
.0
.0
.0
.1
.fl
1.7
.0
S.H
CO
b
5
1
5
2
5
1»
5
Ib
b
5
1
5
2
5
91
5
Ib
NOx-CL
.»
b.B
31.2
b.8
l.b
b.8
105. b
b.B
.»
.H
b.8
31.2
b.B
l.b
b.B
105. b
b.«
.1
CKw
0.0
17.7
31.7
17.7
b.1
17.7
b*.»
17.7
0.0
0.0
17.7
31.7
17.7
b.1
17.7
bH.«
17.7
0.0
VAC.
MM
•Ml
3b3
IbO
3b3
•»H»
3b3
bl
3b3
531
H11
3b3
IbO
3b3
H»1
3b3
bl
3b3
531
UNITS AS SPECIFIED IN THE
MODE
1 I
5 25
3 55
•» 25
5 10
h 25
7 10
B 25
•» CT
i i
2 25
3 55
t 25
5 10
b 25
7 10
B 25
1 CT
10
3nn
ton
3MO
too
bOII
ton
250
ton
jonn
3011
ton
3 0 1)
too
bpn
too
25n
too
J Ollll
eiiu
MV
Jb.S
It. 3
b.3
It. 3
17. S
It . 3
2.t
It. 3
?n.i
lb.5
It. 3
b.3
It. 3
17.5
It. 3
2.t
It. 3
2U.1
CHP
11.0
23.8
53.3
?3.8
1.3
P.'.B
Eb.3
23. B
0.0
0.0
23.8
53.3
23.8
".3
23.9
8b.3
23.8
0.0
»r»rt e rlc
QHM /•rnuDncr ic
TWO
ID
CYCLE
= tcu
— ^l*wri> l/ vf *. T l_
cnMPnsiTE -
SET
CTO
0
b2
131
H?
?S
hp
??P
b2
0
0
b2
131
*i?
25
b2
22P
I-?
n
U A 1 lie
• p L l'r.
II A 1 lip
V * L '.T.
FC
3.0
IB. 5
30.0
IB. 5
13. t 1
1". 5
1 1.3
1".5
sis
3.0
1 ".5
?n.o
1".5
is!t i
19.5
HI .3
l«.S
B.5
r OV CYCLE 1 /
FOR r v r 1 F PI
HC- Fir«
TO- hi) I
MOX-CL
7-11-75
HSFC
R
.77R
.Sh3
.778
.ttl
.778
.t 78
.778
R
H
.778
,5b3
.778
.tt3
.778
.» 78
. 778
R
l'.35(
H n. 3s(
o.35(
PROCEDURE SFC
BSNOX
R
3.8
5.1
3.8
3.1
3.8
11. 1
3.8
R
R
3.8
5.1
3.8
3.1
3."
11.1
3. B
" H
.b)
7.8)
1. t )
F/A
.OSb
.052
.053
.052
.052
.052
.Obt
.052
.ott
.05b
.052
.053
.052
.052
.052
.Obt
.052
.ntl
» 0.
+ 0-
+ 0.
KG/KH
R
.t73
.3t2
.t73
.878
.t73
.211
.t73
R
R
.t73
.3t2
,t73
.878
.t73
.211
.t73
R
bS(
hs(
h5(
HC
HR RPM
tso
2000
2020
2000
1180
2000
mo
2000
2000
tso
2000
2020
2000
1180
2000
1110
2000
2000
,b) =
7.8) =
l.t) =
+ NOX -
SFC =
C*LC
A/F
18.0
1M
18.8
11.1
11.1
H.l
IS.b
11. 1
20.3
18.0
11.1
18.8
Jl.l
I'M
H.i
IS.b
H.i
20.3
.bOl
7.H85
i.tis
10.017
,t!7
HC
35.0
.1
.3
.1
. 7
.1
15.1
.1
tB.t
35.0
.1
.3
.1
.7
.1
15.1
.1
tB.t
G/KW
G/KW
G/KM
G/KW
KG/KM
CO
t.3
3.2
b.O
3.2
1.1
3.2
bt.7
3.2
11.3
t.3
3.2
b.O
3.2
1.1
3.2
bt.7
3.2
11.3
HR
HR
HR
HR
HR
NOX FUEL
.2 t.O
I.* 8.2
22.5 25.3
3.1 8.2
.1 t .H
3.1 8.2
bO.b 2b.7
3.1 8.2
.2 7.0
.2 t.O
3.1 8.2
22.5 25.3
3.1 8.2
.1 t.t
3.1 8.2
bO.b 2b.7
3.1 8.2
.2 7.0
1 t
1 t
( .ttl 88)
( 5.835 OS)
( 7.021 88)
( 7.tb1 BS)
C .bBb BS)
POWER
0.0
7.2
30.8
7.2
2.1
7.2
38.3
7.2
0.0
0.0
7.2
30.8
7.2
2.1
7.2
38.3
7.2
0.0
-------
ENGINE-2
TABLF. E-55. STEADY SUTF EMISSIONS HY EPA PROCFDUKF. - METRIC UNITS
1175 CHEVROLET 35H-CIO HI) FNGINF. PRuJFCT 11-H311
TES1-2HJ RUN-oi 01-nH-7b EFFECT OF INJtcrION TIMING EFI-TR-HEI WAI
K= 1.10S HUM = 17.9
CONCENTRATION
MODE PPM HC-FJO CO
1 ?noi) Sb
,2 iiin ho
3 1^10 ?
H lIRll 8
.OHb
.051
.OHb
.051
AS MEASURED TO'AL
cue NUX-CL C«HHON
i.Bb 3sn
I.Pb 3fiO
I.Bb 310
I.Bb 300
1.11?
1.H7
1. 1(lb
1."»1?
FUEL
CONS.
871)1
PblB
P75H
171)1
CALCULATED U/MH
HC CO NO?.
5
b
0
1
«1
81
B?
Ill
105
87
17
88
CORREC'FD G/HR
HC-FID CO Nlix-tL
5.H
5.7
.?
.8
81
81
sa
10
112. b
15 . b
i n 7 . u
VAC .
CKt, MM
17.8 JBH
17.7 378
17.7 378
17. b 37b
MODE ID My
1 n 1 5 . i
2 22 1H.1
3 211? IH.q
H 38? 11. R
CHP
23. H
23.8
23. H
23.7
AS IPtC IF I ED
CT(J FC
b3 11.2
b3 11.0
b3 11.3
b3 11.2
IN THF 7-1
B3HC
.23
. 2H
.ni
.03
BSCO BSNOX
3.HH
3.BH
3.H7
3.07
H.32
3.hH
H.I?
3. '»
USFC
.8112
. 711
.HI]
."U
I ni_l
A/F F/A
22.1
22.0
22.1
22.1
.OH5
.OH5
.0*5
.0*5
HC
.31
.32
.01
.OH
CO
H.bl
5.10
H.bb
5.18
NOX
5. HO
H.1H
5.53
5.02
SFC
KG/KM HR
HS8
.Hflb
.H^H
.HS3
ID = INJ TIMING
M
I
O-
o
ENGINE-2
TAflLE E-56. STEADY STATT FM1SSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHF.Vh'niET mn-CIO HI) ENGINE PHOJFCT 11-H311
TEST-21*! HUN-02 MS-u8-7b FFFECT OF INJECTION TIMING fcFl-TR-HEI WAI
K= 1.10S
HUM=
CONCENTRATION
MODE PPM HC-FID co
1
2
3
•»
S
b
?U3n
?020
?020
20311
?02n
?030
1 I
10
11
13
1H
15
.02S
.025
.025
.025
.1125
.025
AS MEASURED TOTAL FUEL
CO? NUX-CL CA«[!ON CONS.
11 .bl
11. H
11. hi
11.73
11.73
11. bl
1112 1) .»-3b 1 3b(l«
1112 ]
J 1 Jb t
11 Jb I
113b 1
113fa 1
.Mb 135H2
.b3h 137H'»
.75? 11H72
.757 137HH
.b37 13bnB
CALCULATED G/HR
HC CO N02
I
1
1
2
2
2
bll
51
bU
Sp
bl)
hn
H32
H30
HH5
H32
HH1
HH1
CORRECTED G/HR
HC-FID CO MOx-CL
l.H (.0
1.3 51
l.H bl]
1.7 58
l.« bo
l.H bO
H77.U
H75.H
H12.2
H 77.5
HH7.1
HB7.3
CKW
31.7
31. b
31. b
39.9
31. b
31.8
VAC.
MM
?Hb
2HH
23*
2Hq
23b
2H1
MODE
ID
-UNITS AS SPECIFIED IN THE 7-U-7S PROCEDURE-
CHP CTQ FC HSHC BSCO BSNOX
---CALC-"
8SFC A/F F/A
HC
-G/K" HR ------
co NOX
SFC
KG/KM HR
1
2
3
•»
5
b
n
2?
H5
2l<2
3^2
22
1.7
S.b
1.2
1.B
1.3
1.S
53.3
53.1
53.1
53. fa
53.2
53.1
138
13P
138
131
138
130
3n.n
21. 1
3H.3
21.7
10.3
30.1)
.03
.11?
.113
.03
.113
.Ot
. 1 3
.13
.15
.11
. I1*
.13
8.?1
8.23
8.5?
".22
R.H3
».31
.5b3
,5h3
.57]
.55H
.570
.5be
11.1
ie.i
18.1
18.7
18.7
18.1
.053
.053
.053
.053
.053
.053
.n1*
.03
.OH
.OH
.05
.05
1.52
1.52
1.5»
1.H1
1.53
1.52
11. Ul
11.03
11. H2
U.U3
11.30
11.25
,3t3
.3*2
.3H7
.337
.3H7
.3H2
ID = INJ TIMING
-------
TABLF E-57. MASS FMISSIONS BY *'INF-MnOt FPA - "FTRIC UMITS
ENGINE.?
TFST.JH3
1175 CHFVHMLM 350-Cin HO FNGINF. PROJtCT 11-H311
Ol-n1-7b -fF I-TW-HH.MFGR.53 *AI-)hH WVA
K= 1. Ilil HUMs 18.1, G/KG
MODE
i
2
3
5
b
7
8
9
1
2
3
*
5
b
7
8
9
IDLE
?5 PCT
55 PCT
?5 PCT
10 PCT
25 PCT
10 PCT
25 PCT
C,T,
IDLE
25 PCT
55 PCT
25 PCT
10 PCT
25 PCT
10 PCT
S5 PCT
C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
CONCENTRATION AS *'EA3IIRtO
HC-nn CO C02 NOX-CL
SB*
100
5
B
180
15
1
b
S1SO
720
bO
1
11
12
13
1
I*
5*<»n
.030
!l3b
.Jib
.104
.151
.010
.1*7
.181
.020
.151
, 1 3b
.20*
,05b
.1*7
.nio
ll.in
13. *n
11.70
B.20
11.50
I5.no
11. bO
.OR
1,20
11.10
13.10
11.70
8.20
11,50
l"».in
11.20
.OR
*2
Hin
115
150
2 In
b 35
1 10
3
3)
330
*on
220
170
200
750
27n
5
TOTAL
CARHOM
1U327
H, 15h
11.717
15. Id*
11 . 7S1
.bn?
1,*?h
11.2HB
13,121
H ,BbO
8,3Hb
ll,7fib
1* , 15b
11.3*1
,b3*
FDFL
G/HR
Bill
11517
5** 3
8255
?n8?n
R2S5
n
15*2
8111
135b2
8210
5*88
Bill
2U820
Blb5
0
CALCULATED G/HR
HC CO NOX
in
B
1
1
13
1
0
n
0
13
5
1
1
7
1
0
1
0
31?
hi
P23
1 71
3117
?H1
225
0
*1
2b3
HO
22?
IB)
2Bb
158
21*
n
3
bb
50
3h
bO
3?d
HI
0
2
87
1 **
5b
*1
51
385
72
0
WT,
FACT,
.232
,077
, n7 7
, OS 7
,077
.113
.077
.1*3
,232
.077
,1*7
,1177
,057
,077
.113
.077
.1*3
HLIGHTED R/HN
HC-FID co NUX-CL r:K«
!i
.0
.7
• *
.n
.0
o.n
J.u
,*
.1
.1
.1
.n
.1
0.0
15
2*
1
17
U)
2*
33
17
0
11
20
b
17
10
ff
IB
17
0
.h
2b.7
2.1
H .b
3b.H
3.8
n.n
.*
b.7
H , 3
2.3
3.1
H 3,5
5.5
0,0
o.n
31,2
17. M
7.2
I 7.1
ti5,2
18, U
U.O
0.0
17.7
31.5
17,1
;,?
17.8
bS, 2
1 7,B
0.0
VAC.
ShS
3B1
381
*b7
381
hh
3B1
5R*
41.5
JH*
2i?b
381
*b 7
381
bb
38 1
SS*
w
MODE
i i
2 25
3 55
* 25
5 ID
b 25
7 in
8 25
1 CT
1 I
2 2S
3 55
* 25
5 10
b 25
7 10
B 25
1 CT
T*0
ID
ID MV
*7o 18.3
Slo 15.0
500 8.1
510 15.0
son is.*
510 15.0
3*0 2.b
510 15.0
OFF 21.0
*7o 18.3
510 15.1
500 8.1
510 15.0
800 IB.*
Slo 15.0
3*0 ?.b
510 15.0
OFF 23.0
_
S|iM.v_fr 1 —
L'LLt CJ~
HC- FID
CO- MDIP
NOX-CL
R
75*
5bb
757
2*3
758
5?5
75b
1
R
75*
Sb*
755
253
7HB
525
75?
I
n.35{
II. 35(
n. 15 f
* r A
8SNOX F/A KC/KW HR RPM
R ,0*3
2.B .052
3,5 ,nbn
2.1 .05*
3.8 ,031
2,5 ,053
3,7 ,ObB
2.1 .053
I ,001
R ,n*3
1,7 ,051
2,7 .Obi
2 ,* ,05*
*,3 ,038
2.2 ,053
*.5 ,nb7
3.0 ,05?
I .003
.2) t O.bSf
7.1) + n.b5(
*,*) 4 n,»,5(
R
,*51
,*t,l
, 75b
.tb)
.311
,*bO
I
R
,'»5B
.3*3
,*hO
,7b?
.*55
.311
."»57
I
Hf «
bOO
1110
2010
2010
2 o o n
2010
20*n
2010
2000
bnn
1110
2020
2nnn
?nno
2I10P
?n*n
2000
2000
.2) =
b.*) =
* , •; ) =
NOX c
SFC =
r AI r
I ALL
A/F
23. n
11.*
lb,5
IB.b
2b.n
18.8
1H.8
18.7
3*5.8
23,1
11.5
ib.n
18. b
2h,0
18. M
1* ,1
11.*
J2B.2
.21b
b.152
».571
* . 715
. 315
HC
bO,0
15.2
2.1
1.2
1R,0
2.3
.*
.1
n.n
72,*
1,0
3.5
1 . b
1.1
1.1
, *
2.1
n.o
• '
G/K*
fi/K«
1',/Xfi
O/KH
K G / K W
CO NOX MJFL POwh"
1.1
lb.2
b.l
11.5
b.l
15.1
21.1
IJ.h
o.n
1.3
lb.7
* , B
1*. 1
H,5
IB. 2
I*. 7
1 1. b
n.o
HP
HP
HR
HR
HR
.7 * ,7
b.l B.3
a, i ?b.»
*.b R,*
2.5 *.l
5.5 R.*
H 3 . 1 11.2
*.b 8.H
n.o o.o
.5 ».S
7.7 ".I
?*. P 2b .5
H,1 H.H
2.7 *.2
*.5 8.3
HI. 5 11.3
b.l H.*
n.n n.o
* . H
* 7
( 5.18* riS)
( (.Hit MS)
( 3,575 HS)
( ,b»1 BS)
0.0
7|?
30,3
?• 2
2,2
7.2
38.7
7.3
n,u
n.o
7.)
3U.5
7,2
2.2
7.2
38, b
7.2
n.n
-------
TARLE E-58.MBSS f MISSIONS Hr NINt-MODE EPA - METRIC UNITS
ENGINE-2
TE3T-8H3 RIJN-08
1175 CMfVPniHT 350-Cin HO ENGJNf. PROJECT 11-1311
oq.nq.jt, EH-TR-HFI-MFGR.51 WAI-ISB wv»
K= l,nf,H
li/Kf,
MODE
1 IDLE
8 85 PCT
3 55 PCT
1 25 PCT
5 10 PCT
b 85 PCT
7 10 PCT
B 85 PCT
* C.T.
1 IDLE
8 85 PCT
1 55 PCT
1 85 PCT
5 10 PCT
b 85 PCT
7 10 PCT
B 85 PCT
•< C.T.
CONCENTRATION
HC-FIO CO
T
T
T
T
T
T
T
T
T
T
T
T
T
T
bPO
15
5
7
110
Ib
i*
5
b080
744
100
33
87
I8b
10
Ib
17
5110
.827
.181
.080
.117
.185
,21b
.151
.Ub
.020
.153
.851
,080
.125
.185
.m
.81b
.Ub
.010
AS MEASURED
C08 NOX-CL
1.20
1 1 ,bO
13.80
11. in
B.80
11. bO
15.00
11. bO
.15
1.30
11.50
13, RO
18.10
8.30
11.50
15.00
11. bO
.15
18
825
4411
801
lb(l
2in
5R5
85n
"
»S
23(1
4 7n
180
11(1
220
570
810
5
TOTAL
f.ARHON
q
I 1
1 1
12
R
1 1
15
1 1
1
11
1 3
12
8
11
15
11
.HI
.7H3
,S8l
,ntR
,14b
,R17
,151
.73?
.771
.531
,7b8
,884
.888
.445
.bib
,21R
,71H
,7n5
FUEL
G/HR
1518
R] 11
1 3178
R074
531R
RO74
20781
R810
n
15RB
8071
neon
88jn
5113
Bill
80775
R210
0
CALCULATED G/HH
HC CO NOX
11
1
0
0
13
B
1
8
13
8
8
1
(1
75
858
to
8(10
Ibl
818
43R
113
0
51
34B
31
170
Ibl
870
515
J13
0
2
55
158
11
37
51
883
b2
0
,
5b
151
13
13
54
875
58
n
"T.
FACT,
,8.38
,077
.117
.1177
.057
,077
.113
,077
.113
.238
.077
.14?
.077
,057
,077
.113
,077
.113
ft IGHTEO G/HR
HC-FIO CO MOX-CL C**<
8.5
, )•
.1
.0
«R
.1
.1
.0
0.0
3.1
f (,
.5
.8
.7
.2
.3
.1
0,0
17
11
b
IS
q
23
5n
15
0
18
e?
b
11
1
81
b7
1 5
n
.b
1 8
88J3
3. 7
2. 1
31.1
o.n
.b
1.3
23.1
1.3
8.5
3l!)
H.fi
p.n
n.o
17, 7
31.3
17,7
1?!?
17!l
n.o
n.n
31.8
1R.O
7.8
17. b
bb.O
17.1
n.o
VAC.
wr
Hb7
3R1
281
3d
4b7
Id
bh
3d
5R4
tb?
3P1
28b
Id
1R1
b3
5B4
w
o
to
b 85 PCT T 10 .111
7 10 PCT T Ib ,81b
B 85 PCT T 17 .lib
*< C.T, 5110 .010
11.50
15.00
11. bo
.15
220 11.
570 15,
810 11 .
5
bib
218
71H
7n5
Bill
80775
R210
0
8
8
1
(1
270
515
J13
0
54
875
58
n
,077
.113
,077
.113
.2 81
.3 b7
.1 15
o.o n
1.2 17. b
31.) bb.O
1.C 17.1
n.n n.o
1R1
b3
5B4
•*M-UNITS AS
MODE 10 yv C«P
1 I 17Q 1R.4 0,0
2 85 510 15.3 81,7
3 55 50n 1.0 52.7
4 85 51n 15.0 83, R
5 10 BD|) )R,H 1,b
b 25 5lQ 15.0 81.8
7 10 3*0 ?.b Bh.O
« 85 5lQ 15.0 81.0
* CT OFF 83.0 0,0
1 I . 170 18.8 0.0
8 85 510 15.0 83. R
1 55 500 R.I. 58.5
1 25 5ln 15.0 8>»,l
5 10 800 18.3 1,7
b 85 510 15.0 21. b
7 10 310 8.5 87.1
» 25 510 15.0 «?1.1
1 CT OFF 83.0 O.n
SUM... rrnMPDii Tr
1nM...rrnMPniTTc
•m^1 — — i i«u w~u»j i IT
TWO CYCLE COMPOSITE -
10 s ECU SET,
epff trfrn IN THf 7*1 1— it DDnr c IMIDC — -. — _
O'uviriciJ i '" i *•£ f *• i
CTO FC BSFC
0
bl
13H
b3
85
bl
?8b
bl
0
0
bl
111
b3
85
b8
885
b2
0
ii . i iir r f
V A L'lt r I
UAI HC C(
V Hl^up h 1
3.1
17.1
21.7
17. H
U.I 1.
17, R
15.7
IB. I .
O.n
3.5
17. B ,
8". I
IB.l
1 8 . (i 1 .
17.1
15. B
IR.l
n. n
)
10 r vc i c P ) —
JK l.TLUT f / ~
HC- flO
CO- ND1H
NPX-CL
R
755
Sbl
741
2HO
7*1
531
751
I
H
741
551
758
848
757
58b
75b
I
n.
0.
0.
— T J r " l*C t
HSNOX
R
2.3
e!l
.1.1
2,8
3.1
'i
R
2,1
3.1
1.8
4.b
2.1
3.2
8,8
I
15(
35f B
35( 4
F/A
,044
,054
,0b2
,055
,03R
,054
.ObR
.051
,OQ4
.044
.051
,0b2
.055
,011
.051
,053
,003
.2) + 0.
.3) * n.
.0) f n,
et f
or v.
KG/KW HR
R
.151
,313
.155
.751
,155
.323
,158
I
P
.155
.337
.157
,75b
,1hO
,380
,1hO
I
b5(
b5( 1
b5( 3
HC »
RPM
bOO
1180
8000
Hfln
11HO
iqRo
8000
8cnn
8000
bOO
11RO
1 11(1
8000
jqin
8nnn
8nio
8('20
2nnn
.3) =
.1) »
NOX =
SFC =
CALC
A/F
88.1
1R.7
lb.1
1R.J
2b,n
IR.fa
H.7
1R.R
8b7.8
88.fi
18.7
lb.1
18,0
85,7
18, R
11.7
18. P
815, h
,8b7
8.832
1 , 1 3 R
1.8(1*
.315
HC CO
bB.O 11,2
2,1 18. b
2,2 3,8
1.1 1.1
80.1 b.O
2,b IV, R
1.1 32,0
.8 l.b
o.o n.o
55.0 7.P
10.3 15. R
R.2 3.1
2.7 7.7
13.0 5.5
1.1 12,3
5.0 31. b
l.B R.7
ii. o n,n
?0
H
)g
M
G/KW HR (
G/Kft HR (
G/KM HR (
G/HtV HR (
KG/KR HH (
nt i n T A i B
*OX FUtL
.R 1.H
5.7 R.3
30.3 8b,H
5.1 R.I
8.H ».l
5.3 8.3
H.5 31. 1
b.5 R.*
n.n n , P
.8 1.1
5.1 8. .3
31.1 25.1
4.5 R.5
1.4 1.1
5.7 R.4
42. S 31.1
5.5 R.S
o.o n , n
t .11
In
, M
.111 RS)
b.5Rb HS)
8.13b HS)
1.) 15 HS)
,M1 HS1
PO.*FK
o.o
'.8
3(1, b
7.8
8.8
7,2
38.3
n.o
0.0
7,2
3(1, 3
',3
2,2
7.2
18,7
7 g
0,0
-------
TARLF E-59. MASS FM(SRII>MS HY NTNF-MPDE EPA - METRIC UNITS
ENGINE.-?
TEST-SHI
197"; CHtVRIHFT ssn-CTD HO FNG INE---PRO JFCT 11-H311
o9-nH-7b F.FI-TM-HE i-«EGK.53 *AI-HB «v«
K= 1,058
HUMS
G/KG
W
i
cr-
CONCENTRATION AS MEASURE" 101AL
NODE HC-FIO co
1 IDLE 558 .80H
8 85 PCT T b8 ,??a
3 55 PCT T Ib .080
H 85 PCT T 10 .10H
5 10 PCT T 150 ,1?0
b 85 PCT T 1H .170
7 10 PCT T 18 .585
8 85 PCT T H ,10H
HC.T, 57 ho .010
1 IDLE 7?8 .185
8 85 PCT T 10H ,?lb
1 55 PCT T H3 .015
H ?S PCT T 38 .180
5 10 PCT T 18b .185
b 85 PCT T 83 ,15H
7 HO PCT T 83 ,5HO
8 85 PCT T 15 .180
H C.T, 5HHO ,81h
CO?
H.in
11. HO
13.80
11.70
8, HO
1 l.bO
I4.no
11.9(1
. 15
9. -3 H
11. HO
13.80
18.00
8.30
11. bO
l». 70
11. bO
.1H
MOX-CL CA»H(lN
H7 H.khH
815 ll.bJP
HHn 11.8??
?8() | 1 , B|)5
JOO H.S3b
870 11.771
59n 15,')?7
810 IP.OHH
4 .7*7
5) 9,5115
8bS 1 1 ,b?7
H5P 1 3 , 8 ? 0
?H5 1 8, li?H
ISO 8.HH5
1HO 11.7bl
530 15.8H?
880 11.788
b .HS?
FIIFL
G/HR
1SR9
8074
1 11 7?
8119
54 H 3
8^55
80775
H810
n
Ib33
81 1H
1 1 5 h ?
8119
5398
BlbS
80593
Blt>5
0
CALCULATED
HC
10
5
8
1
10
1
8
0
0
1H
B
M
8
13
8
H
1
0
CO
b8
311
HO
1HH
155
?41
14?H
1H 3
0
HH
30H
30
Ib?
Ib?
?8?
1178
IbH
0
G/HH
«OX
3
58
150
b7
H5
bb
878
55
0
3
b5
15H
S7
HO
Hb
850
b8
0
WT. WEIGHTFH
FACT.
.838
.077
.1H7
.077
,OS7
.077
.111
.077
,1H3
.818
.07?
,1H7
.077
.057
,077
.113
,077
,1H3
HC-FID
8. i
,4
.3
.1
.b
.1
.8
.0
0,0
3.8
.b
.7
.8
.7
.1
,H
.1
0,0
CO
Ib
8H
h
11
9
19
Ibl
11
0
10
83
*
1 3
9
17
)bb
11
0
G/HR
NOX-CL CKW
,h n.o
H.O I;.-*
?8,U 39. b
5.8 1R. I
8.5 7.J
5.1 18.1
3 1 , H h 5 , 7
H .8 1 R . 1
0 . 11 C . 0
.7 o.n
5.0 1 K , II
88.7 411,8
H,-» IX, i
8.3 7.3
3.5 18.1
88,3 bb.4
5.? 18.4
n.o n.o
VAC,
MM
HhS
381
88b
1H1
4h7
•IH1
b3
3M1
597
H55
381
884
JH1
Hb?
381
fc3
381
587
«- ---• — — -
----UNITS AS SPECIF
MODE 10 MV CHP CTO
1 I H7n In. 3 0.0
8 85 5Hn 15.0 8H.O
1 55 500 8.1 51.1
H 85 5H0 I5.n 3H.?
5 10 800 18.4 H,H
b 85 5H0 15.0 8H.3
7 HO 3Hn 8.S 88,1
8 85 5Hn 15.0 8H.3
H CT OFF 83.5 O.n
1 I H7o 17. H 0.0
8 85 5Ht) is.o ?.H,p
3 55 500 8.8 51,9
H 85 590 15.0 8H.3
5 10 800 18.4 9,7
b 85 SHn IS. (I 8H.3
7 90 3HO 8,5 89,0
8 85 SH'o 1<5,0 8H.7
H CT OFF 23.1 0,0
SUM— (COMPOSITE
3ljM---( COMPOSITE
TWO CYCLE COMPOSITE •
ID * ECU SET,
0
hi
13H
bH
8b
bH
888
bH
0
0
b 3
13H
bH
?b
bH
888
bH
0
VALUE F
Iff} IN THE 7-11-75
FC HSFC
1.5 R
17,8 . ?H3
89.7 ,5bO
17.9 .739
18.0 1,889
18.2 ,7H8
H5.B ,580
18.1 ,74b
0.0 I
3.b R
17^9 ,7H|
?9.9 ,555
17. H ,738
11. H 1,883
18.0 .741
HS.H .510
18. n ,7JO
0.0 I
Hf- F IP 0.15(
CO- MD IB 0. 3r. {
MOX-CL 0,35(
PROCEDURE
BSNOX
R .
8.8
8.9 ,
8.8
H.7
8.8
3.8
8.1
* t
H
8.7
8.H
* • " •
• ^ *
8.0
8^8 i
I .
.8)
11.7)
H.O)
--•- an.
F/A KG/Kfc HR RPM
OHH
051
Of,?
054
019
051
ObH
05H
004
044
053
Ob?
055
039
053
Oh8
(151
005
* 0.
t 0.
+ 0,
R
.H58
,3HO
,450
,7HB
,155
,31h
,454
I
R
,450
.338
, 4H9
, 74H
.H51
.310
.H44
I
b5(
bSf 1
b5(
HC »
bOO
1990
8000
8000
8000
8010
8030
8000
8000
h80
?000
8030
8000
1990
800(1
8050
8030
8000
.1) =
3.5) =
3.8) =
NOX =
SFC =
r A i r
L ALL
A/F
88,5
18. H
lb.1
18,7
85. »
18.7
1H ,1
IB. 4
88?, b
88. H
18.9
lb.1
18. e
85.7
18.7
14. h
18. R
818. b
.879
13,595
3.8H?
H.lhl
.3B9
HC
59.1
9.5
b.7
1.5
15.8
8.8
5.H
,b
0.0
58.5
10.1
11. b
3.1
18.1
8.1
b.7
1.5
0.0
.8
G/KW
G/KW
G/KHV
G/Kw
KG/HN
CO MIX FUEL
b.l
9.1
8.3
H.3
1.H
7.8
fa 1.0
H.3
0.0
1.9
H.l
1.7
H,H
l.b
h.7
h5.0
5.1
0,0
14
1 u
1 »
HR
I'M
HR
HK
HR
.8 4.9
5.1 8.1
89.3 8b.3
b.H R. 3
1.H H.l
b.B 8.5
Hl.B 31.8
5.b R.H
n.o 0,0
1,0 5.0
b.H R.I
31. H ?h.5
h.l 8.3
3.8 H.l
4,9 H , 4
3H.8 31.0
7.1 B.H
0,0 0.0
H.n
3 B
( ,808 H3)
( 10. 11R HS)
( 8.895 HS)
( 3.103 HS)
( .b39 US)
POwf R
0,0
7.8
30.3
7.8
8.8
7. 3
38. b
7,3
0,0
o.n
7.8
10, H
7.8
8.1
7,8
38. b
7.J
0,0
-------
M
ENGINf-2
TAHLK E-60. STEADY STATI FMJssJn'ls BY Ep» PHoCEOUHE - MFIRIC UNITS
197q CHF Vr'iJLf-'T 1511-tIO Ht) E'JRINt PKlUKfT 11-H3H
TFST-2HI* HUN-0) m-|-»-7b FFT-1H-HEI |H«-NOAI tKFF.CT OF A/F AT WOT
K= l.OSb HUM: Ih.B G/Kr;
MODF I'PM
1 20(10
2 2000
3 2 o n o
* 20011
5 20110
b 1990
7 20011
s poun
f 2UOI)
CONCENTRATION
HC-FID CO
222*
177b
1552
1 1"1
Mb
1
1
1
1
b.9bU
1. 750
3.3bT)
1.870
.310
.030
.020
. 0 f U
.020
AS MEASUKtn T'llAL
CU2 NOX-CI. fAHrtON
10.30
11. 8b
12.93
13.13
15.02
11. Rb
It. 09
1 3 . ? I
1 2 . 3 R
mo
590
T)0
11H2
1*'5<'
21n3
1 "129
1253
boo
1 '.M9
l'i . 915
1 b . '» tv 9
1 5 . '1 3 b
15.311
)H.!I9II
1" . Ill"
1 1.2^U
12,1110
H'FL
COMS.
aOb^B
?3B 11
2t"1 Jb
21 1 B1
POJBS
1 9 '1 1 1
1 92 12
1 8280
1 7 1 1 B
CALcULAIfcD G/MR
HC CO M)2
377
?9(l
2H 7
180
1.1
0
II
0
0
205bH
13589
9103
5U21
821
79
55
5b
57
Kb
277
137
bS«
Bbb
910
871
S7S
280
CORKfcc'ELI R/np
HC-FlU CO NUX-LL
377.3
2^0.2
217.1
1H0.1
11. H
.1
.2
.2
.2
205b8
1 3589
snsi
821
79
55
5b
S7
159.7
30H.O
47H.9
71b.B
937.9
997.7
9571
b30.U
30h. ?
VAC.
CKW MM
'2.7 8
71.2 8
7 0 . b 8
'0.1 8
b8.1 B
b5.8 8
b2.8 8
57. b 8
50.1 B
MODE II)
1 170
a 350
3 295
1 251)
S 205
b 18n
7 150
8 125
9 105
MV
.3
.3
.3
.3
.3
.3
. 1
.3
.3
CUP
97.4
95.5
HI . 7
91 .0
91. S
PR. 3
81 .2
77.2
b7.2
A 9 SPEC I F I F_ 0
CTQ Ff.
?5b
25 1
219
217
21 1
233
221
203
177
5K.5
52.5
SO. 3
1b.7
11.5
1?. 8
12.1
H 0 . 3
3R.1
BSur
3.911
3.07
2. b'l
l.'il
. Ib
.00
.00
.nn
.no
IISCU HSNOx
212. bl
113.8-1
UK). 41
51 .01
9.09
. fl
. bb
.73
,8b
1.51
2. HI
H.bh
7.01
•".11
10.15
10.52
7.55
H.22
BSFC
.5HO
.550
.531 •
.19 ?
.185
.t"5
.501
. 522
.571
A/F F/A HC
12.0
12.8
13.2
13.8
IH.b
15.0
15.8
lb.8
17.8
.083 5.23
.07B 1.12
.C17b J.51
.072 2.bO
.Ob9 .21
."b7 .00
,0b3 .00
.ObO .00
.05b .110
c»
2R5.1h
192 95
131 b I
72.17
12.19
1.^2
.89
1.15
NOX
2.n<;
b 2b
9.11
12. bb
I1*. 01
1*. 11
10. 12
S.bb
SFC
KG/K« hrt
.351
.33t
.323
.30?
.295
,30b
.317
ID = ECU SET
-------
H
ENGINE-?
TAHLE E-&I.SIEADY ?T«!F K.MISSIONR HV F.PA PHOCFDUHF - METHIC UNITS
1175 rHEVKOIFT 35n-Cll) HI) ENR1NK PROJECT 11-H311
TE:>T-?44 RllN-0? U1-14-7b hFI-TH-HEI 14 B-NQAI - wEGH EFFECT 0? A/F-WOT
K= l.HHb
IHIM= lh.8
MOOF.
1
3
4
5
b
7
8
9
CU'TH
KPM MC-FII)
?noo
20HIJ
?onn
?UO(I
?onn
?onii
?OUII
18?4
115?
35
b
5
3
cn
b.qbii
3.4(10
l.R7n
.33.1
.Oil)
,0?i]
,0?D
AS Mf A
CO?
11. •>!
J 3.41
J4.?n
1 4.54
13.13
1 ?. 0 7
1P.3H
3UWEL'
NIIX-CI
inn
1 flr-?
1 41 B
\_ ** h p
i n 1 1
'•HI
ini A|_
r. 'A KHUN
1 7.411?
14.734
1 3. nil
j?.ion
Fl'FL
CONS.
11
1 75l|1
170U1
CALC'M.ATED G/HH
HI; cn Nii2
35b
211
254
. 17b
18
5
1
1
11
13114
5055
B?
54
55
IS?
285
4b7
.514
b?R
b54
451
255
CORBEC'FU G/HR
HC-F1D Cd NUX-CL
3bfa.? ISBb?
2H1.2 13144
253.7 15U*
17fa.u SPS5
1B.1 887
5.? 31b
.1 82
. 7 bl
.5 55
512.2
KS1.4
b 8 S . o
41H .b
?7H.5
VAC.
CKw MM
b 7 ] 3 »
bb.7 8
bb.4 8
bH.? 8
b?. 5 8
b(l. 3 8
ss.i a
41.3 a
MODE
1
2
3
4
5
b
7
B
1
10
4JII
305
?bn
?in
17(1
JbO
14IJ
115
1011
MV
. 3
. 1
.3
. 3
.3
.3
. 3
.3
.3
CHP
in.?
1U. ?
PI. 5
si. a
Rb.l
B3.8
80.B
73.1
bb.?
AS SPECIFIED
CTU
237
237
?35
?34
?2S
??0
21?
114
174
Ff
54.2
511.5
48.7
15.7
43.2
4?. 3
41.5
)R.b
37.5
IN THE 7-
HSHC
4. cn
3.27
?.S7
?.«!
.21
.Ob
.dt
.01
.Ml
11-7S PRl
encn
???.10
147.51
107.57
57.71
10.41
'f .Rl
1.H3
.75
.Rb
HSNOX
.15
?.04
3.22
5.34
7.03
7.b3
P.?5
b.?4
3.14
RSFC
.bUl
.5bO
.544
.513
.5U2
.505
.514
.583
CALC
A/F
12.1
13.0
13. b
14.?
15.1
15.?
1S.1
lb.1
17.8
F/A
.083
.077
.071
.070
.Obb
.Qbb
.Ob3
.051
.nsb
_
HC CO
S.3b 21P.11
4.38 117. Hi
3.85 144. 2b
2.70 77.31
,?1 14. Ub
.08 b.45
.0? 1.38
.01 1.00
.01 1.15
NUX
J .27
d.74
4.32
7.1b
1.43
1 0 . ? 3
11.07
R.3b
S.?8
SFt
K (" / K h hR
.3bh
. 34 [1
.331
.31?
.305
.30?
.31?
.318
.345
ID = ECU SET
-------
w
I
ENGINE-2
TAHI.F E-62. STFADY S U TP tMTSSKIN'? HY FP» PWOCEtllJHE - METRIC UNITS
M75 rHH»R(i| F T 35M-CIn Hf) ENGINE fSOJECT 11-1311
1EST-211 RMH-IJ3 Oq-l'l-7b EF1-TP-HEI NtlA 1-HH-n AXEGH. b 3KM1 10PCT
HUM= lb.1 IS/KG
CONCENTRATION
MODE "PM t.c-Fio co
1 ?onn
3 ?oou
i eoon
5 200(1
b 2011(1
7 2000
B 2000
1 20(1(1
MODE 10
1 520
2 21(1
3 27(1
1 20(1
5 210
b 22'l
7 230
B 21(1
1 25(1
150*
1501
1280
137b
Iblb
lt,1b
HV
2.8
. 1
1 .1
. 1
.M
.8
.8
.9
.7
3.100
2. Slit
3.12'J
3.551
1.07()
1.S7H
1 .91K
•--UNITS
CHF
85.8
85.8
HS.1
Bh.l
Ob.l
8b.?
8b.2
Hb.3
Bb.3
AS ME»SU»EO
CU2 NiiX-CI
11.73 mn
1 2 . 7 n b j n
12. b r. b b 0
13.35 880
13.07 7qo
12. 7T b50
12.25 540
11.11 IbO
ll. at- aid
AS SPtClFlEU
CTO FC
225 47.8
225 'If-.l
?2b "> b . 3
22b »4.7
22b 15. S
22h Ib.b
22b 17.8
227 -.8.2
227 »fi.5
1 n I AL
(JwhMPM
It-. 71 I
Ih. )b3
lb.'>73
1 (> . r, 0 1
1 b. 711,
1 '.'lib
TONS.
20-Ml
2lnnl
20b38
21)37
21bB2
218b3
3iqqq
CALci
HC
2b(l
221
18b
200
217
232
213
253
IL*TED G/HR
CO N02
12B81
3777
b187
1181
10B05
12n5?
13(101
IN TH£. 7-11-75 PRUCEOUWE
H3HC
3.08
2 .b 1
2.bl
2.2(1
2. 3b
2.57
2.75
2.88
2. Ml
RSCO
11B.H5
1IH.82
111.11
?b.73
11.11
IdB.bO
127. PI
112. 5b
153.88
nsNux
3.20
3.Ub
3. 30
4. 37
3.b7
3.27
2.71
2.3b
I . 1 B
BSFC
.557
.537
.531
.511
.52"
.510
.551
.551
.5b2
271
251
271
3b1
310
27b
23b
111
Ib7
CALC
12.8
13.3
13.2
13.7
13.3
13.2
13.1
12.1
12. b
F/A
.078
.075
.07b
.073
.075
.(17b
,07b
.078
.071
CCRRtCTFO G/HW
HC-FID CO WOX-LL
2bn.1 125«'t
221.0 877?
22(1. 7 S100
185. b b18?
1 Ml. 7 71Sh
232.4 10805
213.3 J2P5?
253. u 1 SnO1*
G/KW
HC CU
1.13 lll.bl
3.51 131.22
3.50 111.11
2.11 1U2.10
3.17 12b.21
3.11 115. bl
3.b1 171.10
3.8h 111.18
1.01 2flb.3S
217.1
3db.1
105.2
30 3. i
2SB.5
21H.7
J (1 3 . 3
HR
NOX
1.3U
1.11
1.13
5.8b
1.M2
1.3B
3.71
3.1b
VAC.
CK>< MM
b3.1 71
bl.O 23
bi.l 3b
bl.2 23
bl.2 23
bi.3 2U
bl.3 2U
bl.3 20
bl.3 18
SFC
K P / K HH
.33"
. 32 )
.32H
.31b
.321
. 321
. 337
.3*0
.342
10 = ECU StT
ENGINE-2
TABLE £-63. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 3SO-CID HD ENGINE PROJECT 11-1311
TEST-SI* RUN-01 Oq-11-7b EFI-TR-HEI NOAI-11,Ib,IB,20B-MAXEGR.53 90
K= 1.017 HUMS lb.1 G/KG
MODE
1
Z
3
1
MODE
1
Z
3
»
RPM
JOOO
2000
2000
2000
ID
230
210
SIS
250
CONCENTRATION
HC-FID CO
!Sb8
IbBO
1712
1S20
MV
1.0
1.3
l.S
l.b
3.310
3.550
3.810
».120
CHP
Bb.l
Bb.l
8b.2
Bb.3
AS MEASURED TOTAL
COS NOX-CL CARBON
12.52
12.38
12.12
11.11
bio
b25
b20
bQS
AS SPECIFIED
CTO FC
22b
22b
22b
227
HS.1
15.2
11.7
11.8
15.110
lb.123
Ib.l3b
lb.331
IN THE 7-
8SHC
2.78
2.10
3. Ob
3.25
FUEL
CONS.
20820
20502
2027b
20321
CALCULATED G/HR
HC CO N02
235
215
258
275
8185
1111
1b71
1035b
BSCO RSNOX
100.37
107.87
111.31
122.50
3.21
3.12
3. Ob
2.1b
BSFC
.533
.525
.518
.511
278
2b1
251
250
CORRECTED G/HR
HC-FID CO NOX-CL
23S.1 8185
215.1 1111
258.1 1b71
271.5 1035b
A/K F/» HC CO
13.7
13.5
13.1
13.2
.073 3.73 131. bf]
.074 3.81 lll.bS
.075 1.10 153.11
.07b 1.35 lbl.27
30S.O
281.1
283.7
271. e
NOX
1.11
1.11
1.10
3.1b
CKH
bl.2
bl.2
bl. 3
bl.3
SFC
KG/KM
. 321
. 311
.315
.31b
VAC.
MM
25
33
38
11
HR
ID = ECU SET
-------
M
i
ENGINE-2
HHLEE-64. Sl£4[ir STAII F.MISPIUNR pv tpA PKOCEOUUE - METRIC UNITS.
19?S CHfVUOl t I i«n-CII> HO F.NGINt PRO.JIiCT ll-»31l
TE.ST-21H KUN-uS iiq-H-71, EFI-IR.HFl NOAI - j tH-F FFEC T OF A/F 55PCT
x= 1.0M2 hUH= 15.5 G/KG
CONCENTRATION
MODE
1
2
3
1
5
b
7
B
«PM HC-FIO
2000 r*2f
2000 113b
2 0 !' 0 b 2 *
2000 120
2OIIO 7
2000 7
2000 S
20110 b
CO
2.690
1 .910
1.070
.030
.010
.010
.010
.010
*s HEASIIIVLU
CU2
12.9}
13. M
I1*. 39
1H .8b
11 .OR
13.07
12. 3R
11.73
Miy-ci
Mqll
|l)P8
1 ?h5
1 t37
ISlb
JOlt.
boo
35(1
TdlAL FIJFL
CAHlinN CONS.
jc.qgj 1 '( 3 3 1
] r- . 7 1 n 13125
lS.r-31 )35b2
M . 'M'H 1 312h
J".'ni 1333b
1 1 . ') H ) 1 > 3 R I
12. Jl] 1 3M25
n. m 1151,0
CALCULATED G/HR cnH1
HC
lib
) 15
h?
12
1
1
. 1
1
CO
52 3s
31 7't
1B87
55
n
21
3
25
N02
217
320
3b7
»JO
171,
315
22t
1H1
HC-FID
llb.1
115.2
b2.3
12.3
.7
. p
.b
.9
.71,,
.Rill,
.055
HI21*
A/F F/A
It. 8
15. b
Ib.b
18.2
20.2
.Ob 7
.Obi
.Obi)
.055
.050
HC
.15
.03
.03
.02
.03
CO
12.27
l.tll
.7b
.89
l.H
NOX
b.91
7.28
b. 21
3.3b
l.'HS
K f / K w. HH
.H'lb
.180
. 1 H 0
. 52U
.b23
ID = ECU 6Ef
-------
ENGINE-?
TABLE £-66.STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 3SD-CIP HD ENGINE---PROJECT 11-H311
TEST-2H-* RUN-07 Ol-l»-7h EFI-TR-HEl NOAI-1-»B-EFFECT OF A/F 10PCT
K= 1.101 HUM= 17.* G/KG
CONCENTRATION
MODE
1
1
3
H
5
b
7
8
1
RPM
2000
2000
2000
?ooo
?ooo
2000
2000
2000
2000
HC-FID
2
1
1
1
1
1
1
2
3
CO
.010
.010
.001
.001
.001
.001
.001
.001
.001
AS MEASURED
CO?
13. t>»
13.35
13.07
12. b5
12.3B
11. R5
11. an
10. 7h
1.8b
NOX-CL
2H8
2?3
IBB
113
1»S
98
73
55
27
T01AL
CARBON
13.fc5tl
I3.3b0
13.071
\?..b*l
12.381
1 1.B51
I 1.JH1
10.7bl
I.Hhl
FUEL
CONS.
7031
b1B5
7031
7031
7*31
7311*
802"»
8S15
] 17tB
CALCULATED G/HR
HC
0
0
0
0
0
0
0
n
0
CO
10
11
i
i
i
i
i
2
2
N02
f2
3S
3"»
26
21
20
17
15
11
CORRECTED G/HR
HC-FIO
.1
.1
.1
.1
.1
.1
.1
.2
.*
CO
10
11
1
1
1
1
1
2
2
NOX-CL
*b.7
•»e.b
37.0
31.1
31.1
22. H
11.1
Ib.S
11. B
CKW
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
VAC.
MM
»52
H»7
f»2
•»37
»11
101
378
330
IbS
MODE
ID
HV
CHP
CTQ FC
8SHC
HSCO BSNOX
BSFC
A/F F/A
HC
CO
NOX
KG/KM
HH
1
2
3
1
5
b
7
8
1
1000
100
800
700
bOO
500
»00
300
200
17. B
17. b
17. H
17.2
Ib.S
lb.1
1».1
13.0
b.S
.b
.b
.b
.b
.b
.b
.7
.7
.7
25
25
25
25
25
25
25
25
25
15.5
IS.*
15.5
15.5
lb.»
lb.3
17.7
n.s
25.1
.01
.0)
.0]
.01
.01
.01
.01
.02
.OH
1.01
1.11
.11
.12
.13
.13
.15
.17
.25
H.HS
H.07
3.53
2.17
3.0»
2.13
1.82
1.S8
1.12
I.bl3
I.b03
l.falO
l.blO
1.702
l.blO
1.B3H
2.018
2.b78
lb.3
Ib.b
17.0
17. S
17.1
18. b
11. b
20. •»
22. a
.Obi
.ObO
.051
.057
.OSb
.051
.051
.0*1
.0*5
.02
.01
.01
.01
.01
.01
.01
.03
.05
1.H7
l.i»1
.15
.lb
.17
.18
.20
.23
.3»
5.17
S.tS
».73
3.18
<*.07
e.ab
2.-*1*
2.11
l.SO
.181
.175
.171
.171
1.035
1.028
1.115
1.228
I.b21
M
i
o
CO
ID = ECU SET
-------
ENGINE-2
TABLE E-67.STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 3SO-CID HO ENGINE PROJECT 11-1311
TEST-211 RUN-08 09-15-7b EFI-TR-HEl NOAI-21B-MAXEGH.S3 SSPCT
K = 1.105
HUM= 17.8 G/KG
CONCENTRATION
MODE RPM
1 2000
2 2000
3 2000
» 2000
S 2000
b 2000
7 2000
8 2000
9 2000
HC-FID
1311
1810
IbOO
1312
b9
IS
11
8
7
CO
b.270
S.180
3.310
1.870
.010
.020
.010
.020
.020
AS MEASURED
C02
10. 7b
11. bl
12.93
13.78
11. 8b
11.08
13.07
12.38
11.73
NOX-CL
125
155
210
375
570
bSO
100
330
?no
TOTAL
CARBON
17.18b
17.H03
lb .121
15. BOO
11.B7B
11.1U2
13. OBI
12.10)
11.7-U
FUEL
CONS.
151.91
11B7B
11107
13172
13018
1 31Q9
13200
135K2
13971
CALCULATED G/HR
HC
112
IBh
158
128
7
2
1
1
1
CO
llSbb
915b
5713
3221
18
38
20
11
18
N02
38
IS
b8
lOb
Ibb
201
131
120
79
CORRECTED G/HR
HC-FIO
112.1
IBb.O
158.1
128.1
b.9
l.b
1.2
1.0
•"
CO
llSbb
SISb
S713
3221
IB
38
20
11
IB
NOX-CL
11.9
IS. 7
75. b
117.3
182.9
221. b
118.0
132.1
87.2
VAC.
CKW MM
39.2 180
39.3 180
39.3 183
39.3 183
39.3 IbS
39.3 115
39.1 119
39.1 91
39.1 b3
MODE ID
MV
CHP
AS SPECIFIED IN
CTQ
FC
THE 7-11
BsHC
-75 PRC
BSCO
BSNOX
BSFC
— CALC —
A/F F/A
HC
CO
NOX
SFC
KG/K* HR
1
2
3
1
S
b
7
8
9
bOO
500
100
335
225
200
ISO
100
70
7.1
7.1
7.2
7.2
b.S
5.7
1.7
3.b
Z.S
52. b
52.7
52.7
52.7
52.8
52.8
52.8
52.8
52. 1
138
138
138
138
139
139
139
139
139
3-». b
32.8
31.1
2^.7
28.7
88.9
29.1
29.9
30.8
2.71
3.59
3.05
2.17
.13
.03
.02
.02
.02
223.33
17b.79
110.89
b2.19
.31
.73
.39
.85
.93
.73
.87
1.32
2.05
3.20
3.87
2.59
2.31
1.52
.bS8
.b23
.591
.Sb3
.511
.518
.551
.Sbb
.583
12.3
12. b
13.3
13. •*
15.0
15.8
lb.9
17.8
18.8
.081
.071
.075
.072
.Ob7
.Ob3
.059
.OSb
.053
3.b8
1.82
1.09
3.32
.18
.01
.03
.03
.02
291.19
237.08
118.70
83.10
.1b
.17
.S3
1.11
1.21
.98
1.17
1.77
2.75
1.2S
5.19
3.17
3.10
2. OH
.400
.379
.3SS
.313
.331
.333
.335
.311
.351
w
I
ID = ECU SET
-------
TABLE E-68. STEADY STATT EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 350-CIO HD ENGINE---PHOJECT 11-H311
ENGINE-2 TEST-a»» RUN-01 01-15-7b EFI-TR-HEI NQAI-30B-MAXEGR.53 25PCT
K= 1.105 HUM= 17.8 G/KG
MODE
1
2
3
H
5
b
7
MODE
1
2
3
S
b
7
CONCENTRATION
RPM HC-FID CO
?000 2781
2000 mo
2000 17bO
2000 153b
2000 100
2000 30
2000 1120
ID MV
520 12.7
217H
135
115
lOOb
BSFC
!l!2
.858
.828
.807
.822
.12b
10
Ib
IS
11
25
20
18
— CALC"-
A/F F/A
12.1
15.0
13.5
14.0
15. t
17.5
21.0
.082
,0b7
.07*
.071
.Ob5
.057
.0*8
CORRECTED G/HR
HC-FID CO NOX-CL
115.8
112.0
lib. 8
101.1
b.1
20s!l
HC
11.12
b.3b
b.b3
S.7»
.31
Il!b5
8350
38bb
217H
135
115
IQOh
CO
231. bB
211. Sb
123. »7
7.b5
b.St
57.13
11.1
17.1
Ib.S
20.7
27. H
21.7
11.7
HR
NOX
.57
.88
.85
I.Ob
K12
1.01
VAC.
CKW MM
17.1 323
17.1 317
17.1 317
17.1 310
17.1 210
18.0 2-»b
18.0 ' IbO
SFC
KG/KM HR
.588
.555
.522
.50*
.500
.5b3
ID = ECU SET
i
~j
o
-------
ENG1NE-2
TABLE E-69. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 350-CID HO ENGINE PROJECT H-f3U
TEST-2fS RUN-01R 01-20-7h EFI-TR-HEI NOAI-MAXEGR.S3-33ST0305ECU 55
K= I.Gib HUM= lb.8 G/KG
CONCENTRATION
MODE
1
2
3
f
S
b
7
RPM
2000
2000
2010
2000
2010
2010
2010
HC-FID
13ff
If 08
If fO
If 72
153b
lS3b
ISbS
CO
1.870
1.B70
1.870
1.870
1.870
1.830
1.830
AS MEASURED
C02
13. fl
13. ft
13. fl
13. f 1
13. fl
13. ft
13. ft
NOX-CL
f fO
510
580
bfO
b70
700
7bO
TOT«L
C»WBON
15.513
15.521
is.saf
IS. 528
15.535
15.t15
15. f 1*
FUFL
COM3.
13880
13b08
13b08
13f 2b
1333b
13101
13200
CALCULATED G/HR
HC
137
1*1
iff
If5
151
If 8
152
CO
3380
331?
3311
32bb
32f 3
3127
31f B
N02
131
If8
Ibl
IBf
111
117
215
CORRECTED G/H«
HC-FID
137.3
Ifl.D
Iff. 2
IfS.f
ISO.b
If 8.f
152.5
CO
3380
3312
3311
32bb
32f3
3127
31*8
NOX-CL
If 3.2
Ib2.7
18f .S
201.3
201.2
215. f
?35.f
CKW
31.7
31.7
31.1
31.8
fO.O
»0.0
f 0.0
VAC.
MM
157
Ib5
Ib8
170
175
180
180
MODE
ID
MV
CHP
CTO FC
BSHC
BSCO BSNOX
8SFC
A/F F/A
HC
CD
NOX
KG/KM
HR
1
2
3
f
S
b
7
20
22
2f
2b
28
3U
32
b.2
b.S
b.b
b.7
b.1
7.1
7.1
53.2
53.2
53.5
53.3
S3.b
53. b
S3.b
IfO
IfO
IfO
IfO
IfO
IfO
IfO
30. b
30.0
30.0
21. b
21. f
28.1
21.1
2.b5
2.72
2.77
a. si
2.81
2.85
2.13
bS.2b
B3.1S
b3.bl
b3.0b
b2.30
bO.08
bO.fB
2.52
2.87
3.2f
3.55
3.b7
3.78
f .13
.575
.Sbf
.5bO
.555
.Sfl
.531
.5f2
If .2
If. 2
If .2
If. 2
If .2
If .2
If. 2
.071
.071
.071
.071
.071
.070
.070
3.Sb
3.bS
3.71
3.7b
3.88
3.82
3.13
87.51
85.75
85.31
8f .57
83.51
80.57
81.11
3.38
3.8f
f.3S
f .7b
f .12
5.07
S.Sf
.350
.3f 3
.3fl
.338
,33f
.328
.330
w
I
-o
ID = IGN BTDC
ENGINE-2
TABLEE-70. STEADY 3TATF EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1175 CHEVROLET 350-CID HD ENGINE—-PROJECT Il-f311
TEST-2fS RUN-02R Oq-20-7b EFI-TR-HEI NOAI-MAXEGR.S3-2b5T02S5ECU 55
K = l.Olb
HUM: Ib.B G/KG
CONCENTRATION
MODE RPM
1 2000
2 2000
3 2000
f 2000
S 2000
HC-FIO
5
f
f
f
f
CO
.If7
.21b
.275
.275
.312
AS MEASURED
C02
If .5f
If .5f
If .31
If .31
If .23
NOX-CL
S70
510
bSO
7fO
95(1
TOTAL
CAROON
If .f>88
If .75b
If .Sbt,
n.t-bb
l*.5f?
FUEL
CONS.
13880
13f 72
13210
12882
l?bSS
CALCULATED G/HR
HC
1
0
0
n
0
CO
282
318
Sof
f 88
5f8
NO?
171
171
lib
21fa
2fb
CORRECTED G/HR
HC-FID
.5
.f
.f
.f
,f
CO
282
318
SOf
188
5f 8
NOX-CL
115.1
H5.S
21f .3
23b.5
2b1.1
VAC.
CKH MM
31.8 135
31.8 If?
31.8 150
31.8 155
31.1 IbO
MODE ID
MV
CHP
CTQ FC
HSHC
BSCO pSNOx
BSFC
A/F F/A
HC
CO "
NOx
SFC
KG/KM HR
1
?
3
f
5
IB
30
22
2f
2b
5.3
5.8
5.1
b.l
b.3
S3.f
S3.»
S3.f
S3.f
53.5
IfO
IfO
IfO
IfO
If 0
30. b
21.7
21.3
28. f
27.1
.01
.01
.01
.01
.01
5.ff
7.b8
1.73
1.f3
in. si
3.f5
3.f5
3.78
f.17
f ,7f
.573
.55b
.Sf8
.532
.522
15.2
15.1
15.2
15.2
15.3
.Obb
.Obb
.Obb
.Obb
,0b5
.01
.01
.01
.01
.01
7.21
10.30
13. Of
12. bf
If .20
f ,b3
f.b3
S.Ob
5.51
b.3b
.3f1
.338
.33f
.323
.317
ID = IGN BTDC
-------
ENGINE-2
TABLE E-71. STEADY 3T»TF EMISSIONS BY EP» PROCEDURE - METRIC UNITS
1175 CHEVBOLET 3SO-CID HD ENGINE PROJECT 11-4311
TE3T-245 RUN-03R ni-2fl-7b EFI-TH-HEl NOAI-MAXEGR.53-150T017SECU 55
K= 1.100
HUM= 17.2 G/KG
CONCENTRATION
MODE RPM HC-FID CO
1
?
3
H
5
b
7
2000
2000
2000
2000
2000
2000
2000
1
1
1
1
1
1
1 .
.025
.025
.030
.OHO
.051
.072
.082
AS MEASURED
COS NOX-CL
12.71
12.79
12. bS
12. b5
12.71
12.71
12.71
500
HbO
5bO
b20
bflO
ano
850
TOTAL
CARBON
12. BIS
12.P15
12. ban
I?.b1l
12.8H1
12.8b2
12.B72
FUEL
CONS.
137S1
13210
1301B
1274b
12383
12212
12020
CALCULATED G/HR
HC CO N02
0
0
0
0
n
0
0
55
S3
b3
62
11
131
1SS
171
158
111
207
218
271
2b4
CORRECTED G/HR
HC-FID CO NOX-CL
.1
.1
.1
.1
.1
.1
.1
55
53
b3
82
11
131
155
lib. 4
174 .Z
201.1
227.4
231. 4
307.1
281.8
CKH
31.1
31.1
31.1
31.1
^O.O
\0.0
»0.0
VAC.
MM
112
iia
117
111
127
130
137
MODE
ID
MV
-UNITS AS SPECIFIED IN THE 7-11-75 PROCEDURE-
CHP CTO FC BSHC BSCO BSNOX
...CALC---
HSFC A/F F/A
HC
.G/KW HR — —
CO NOX
SFC
KG/KW HR
1
2
3
4
5
b
7
20
22
24
2b
28
30
32
"-•-••
4^4
4.7
5.0
5.1
5.4
53.5 11
53.5 11
S3.b 11
33. b 11
53. b 11
53. fa 11
S3.b 11
U 30.4
U 21.3
U 28.7
U 28.1
U 27.3
H 27.1
U 2b.5
.00
.on
.on
.00
.00
.00
.00
I.Ob
1.02
i.ai
1.51
2ib8
3.00
3.45
3. Ob
3.b1
3.11
4.20
5.39
5.01
,5bB
.548
.53b
.525
.501
.SOb
.414
17.3
17.3
17.5
17.4
17.2
17.2
17.2
.056
.058
.057
.057
.058
.058
.058
.00
.00
.00
.00
.00
.00
.00
1.42
1.37
1.B3
2.13
2.57
3.51
4.02
4.b2
4.10
4. S4
5.35
S.b4
7.23
b.82
.34b
.333
,32h
.31''
.310
.306
.301
M
i
-j
ro
ID = IGN BTOC
-------
APPENDIX F
SYSTEM ASSEMBLY FOR SERVICE
ACCUMULATION DEMONSTRATION
F-l Summary of the Results
F-2 through F-25 Computer Printouts
-------
TABLE F-l. SYSTEM ASSEMBLY FOR SERVICE ACCUMULATION DEMONSTRATION
Test
No.
252
253
254
260
261
262
263
264
265
Run
No.
1
2
1
1
1
2
1
•1
J
WOT
1
2
3
WOT
1
2
1EGR
2EGR
4
WOT
1
2
1
2
EGR
Type
Test Description
9-EPA EFI-TR-HEI WAIXM5 f9-WVAl6B-375ECU-
FGRMBP
23-Mode EFI-TR-HEI WAI- WVAI6B-EGR 13 to 18
23-Mode EFI-TR-HF.I WVA16B-WAIM7-275 ECU-EGR6010
9-EPA EFI-TR-EGR-HEI WAI-l6BWVA-Auto Sys
XMEGRM3
9-EPA EFI-TR-EGR-HEI 16BWVA-WAI-275 ECU Auto Sys
Same as Run 01
Same as Run 01
9-EPA EFI-TR-EGR-HFI 16BWV A-WAI-275 ECU Auto Sys
Same as Run 01
Same as Run 01
Same as Run 01
9-EPA EFI-TR-EGR-HEI I'.BW VA-WAI-275ECU Auto Sys
Same as Run 01
Sample of Recirc'ilated Exhaust
Sample of Recirculated Exhaust
Sampled from Side with Al Disconnected
EFI-TR- EGR-HEI I6B-WAI-275 ECU Auto Sys
23-Mode EFI-TR -AEGR -HE! 16BWVA- WAI-275 ECU
EFI-TR-AEGR-HEI 16BWVA- WAI-275 ECU
9-EPA EFI-TR-EGR-HEI 16BWVA-WAI- 275 ECU Auto Sys
EFI-TR-EGR-HEI 16BWVA- WAI-275 ECU Auto Sys
Sample of Recirculated Exhaust
HC
0.356
0.310
0.435
0.356
0.334
0.292
0.330
0.294
0.353
0.398
0.348
0.333
0.352
4.754
4.858
2.213
0.319
0.297
0.404
0.365
5.086
Gram/kW
CO
14.141
13.335
22. 700
11.122
14.481
13.721
14.698
14.584
12.575
11.740
12.217
12.034
10.817
35.011
36.833
62.234
5.589
6.231
9.200
10.797
36.417
Hr
Nr\.
IN Lie
3.387
3.372
6.759
4.077
4.788
5.503
4.382
4.082
4.806
4.530
4.325
4. 767
4.598
5.968
5. 702
5.101
6.559
6.771
4.310
4.337
5.312
HC+NOx
3.744
3.682
7.194
4.434
5.121
5.795
4.712
4.377
5.160
4.928
4.674
5.100
4.949
10.722
10.559
7.314
6.878
7.068
4.715
4.703
10.397
Kg/
kW Hr
SFC
.420
.417
.386
.414
.396
.391
.391
.388
.389
.387
.392
.394
.391
.398
.385
.385
.395
.391
.398
.399
.401
Appendix
Table
F-2
F-3
F-4
F-5
F-6
F-7
F-8
F-9
F-10
F-ll
F-12
F-13
F-14
F-15
F-16
F-17
F-18
F-19
F-20
F-21
F-22
F-23
F-24
F-25
-------
TABLE F-2. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-2 TEST-2S2 RUN-01
1179 CHEVROLET 3SO-CID HO ENGINE PROJECT U-»311
09-2P-7b EFI-TR-HEI HAIXM5tq-HVAlbB-37SECU-F.GRMBP
= 1.003 HUM= 10.8 G/KU
CONCENTRATION
MODE HC-FID CO
1 IDLE bSb .115
2 25 PCT T 77 .337
3 55 PCT T 13 .093
* 25 PCT T 12 .10*
S 10 PCT T 17 .Obi
b 25 PCT T 10 .115
7 10 PCT T 12 .*55
8 25 PCT T 3 .0*0
9 C.T. 7200 .010
----------------._-_...__.
1 IDLE 880 .098
2 25 PCT T 8b .337
3 55 PCT T 70' .Obi
» 25 PCT T SO .072
S 10 PCT T *b .Obi
b 25 PCT T 35 .088
7 90 PCT T *2 .5*0
8 25 PCT T 2* .030
1 C.T. 7200 .020
— --UNITS AS
MODE ID MV CHP
1 I 18.0 0.0
2 25 13.9 23.7
3 55 8.9 52. b
* 25 13.9 23.5
S 10 17.1 q.b
b 25 13.1 23. b
7 10 2.1 85.1
8 25 13.9 23.8
9 CT 22.9 00
2 25 l».o 23.8
3 55 8.1 52.2
» 25 13.1 23.7
S 10 17.2 q.b
b 25 13. q 23.9
7 10 2.1 85.3
8 25 13.1 23.8
9 CT 22.1 0.0
AS MEASURED TOIAL
C02 NOX-CL CARBON
8.81
11.73
12. 7M
12.25
11.12
12.12
1*.S*
12.52
.15
8.*2
11.73
12.79
12.52
11.2*
12.25
1*.S*
12.52
.15
33 8. 1Mb
595 12.88t
90 12.355
138 11.183
85 12.23b
5?0 1*.997
98 12.5bl
3 .HR1
30 R.bl3
85 12.077
510 12. RSI
H3 12.597
IBS ll.SOb
90 12.3*1
510 I5.08t
93 IS. 553
3 .811
SPECIFIED IN THE 7-11-75
CTQ FC HSFC
0
b2
137
be
25
b2
223
b2
b2
137
b2
25
b2
22*
b3
0
SUM (COMPOSITE VALUE FOR
SUM (COMPOSITE VAI UF FOR
TWO CYCLE COMPOSITE -
ID 3
3.9 R
20.3 .R55
29.5 .5bl
11.8 .8*3
12.5 1.305
20.0 .ft*b
*b.B .550
20.1 .8*5
20.5 .Hbl
21.1 .558
11. b .828
12. b 1.308
20.* .858
tb.S .5*5
19.9 .835
o.n i
CYCLE 1)- -.
HC- FIO 0.3SC
CO- NOIR 0.35C
NO«-CL 0.35(
FUEL
G/HR
17b1
1?08
13381
8181
Sb70
1072
21228
1117
0
17b1
1211
1320U
8810
5715
1253
21012
102b
0
CALCULATED
HC CO
1*
7
2
1
1
1
2
0
11
7
8
t
3
3
7
2
0
*s
519
195
152
b3
171
1302
51
*1
52*
127
102
b3
133
152*
n
G/HR
NOX
2
22
20b
22
23
21
2tS
2
22
17*
19
31
22
237
22
0
PROCEDURE SFC
BSNOX F/A KG/KH HR RPM
R
.1
3.1
.9
2.*
.1
2.1
1.0
I
.1
3.*
.8
3.3
1.0
2.8
.9
I
B
J3.
3.
.0*1
.055
.058
,05b
.1)51
.055
,0b7
.057
.oot
.055
.058
.057
.051
.fiSb
,0b8
.057
.nu*
2) + O.bSC
1) + O.bSC
b) + n.b5(
R
.520
.3*1
.513
.79*
.515
.335
.51*
I
R
.52*
.339
.50*
.795
.522
.332
.508
I
It
3
HC +
bOO
2000
2020
1980
2000
1910
2000
2000
2000
bOO
2000
2000
1990
2010
2000
2000
2000
2000
.H) =
.3) =
.3) =
NOX =
SFC =
FACT!
.232
.077
.077
.057
.077
.113
.077
.1*3
.232
.077
.077
.057
.077
.113
.077
.1*3
CALC
A/F
2*. 2
IB. 2
17.2
17.9
19.7
18.0
17. b
23b.O
2S.2
18.2
17.2
17. b
19.5
17.9
1*.8
17. b
233.3
.35b
It.ltl
3.387
3.7tt
.*20
WEIGHTED
HC-FID CO
3.2
.5
.2
.1
.1
.1
.2
.0
0.0
*.5
.b
1.2
.3
.1
.2
.8
.1
0.0
11
*D
21
12
t
13
It7
5
0
9
to
19
8
10
172
3
0
G/HR
NOX-CL CKH
.5 0.0
1.7 17.7
30.2 39.2
1.7 17. S
1.3 7.1
l.b 17. b
27.7 b3.t
1.8 17.7
0.0 0.0
.5 0.0
1.7 17.7
25. b 38.9
1.5 17. b
1.8 7.2
1.7 17.7
2b.8 faS.b
1.7 17.8
O.U 0.0
VAC.
MM
*S7
353
22b
353
353
7t
353
582
*57
35b
22b
353
*37
353
7*
353
582
HC
73.7
11.*
5.1
1.7
1.2
5.0
.*
0.0
57. b
7.2
1S.1
3.9
1.1
2.9
9.b
1.9
n.o
.2
.*
G/KW
G/KW
G/KM
G/KW
KG/KM
CO NOX FUEL
*.l
IS.*
11.1
t.S
1.*
5.1
Sb.7
l.B
0.0
3.b
15.2
7.0
3.0
1.3
3.8
bt.8
1.3
11. U
It
It
HR (
HR (
HR (
HR (
HR (
.B 5.2
2.5 9.o
2.5 sis
2.0 t.l
2.* 8.8
*l.b' 30.*
2.7 8.9
0.0 0.0
.» S.i!
2.7 9.1
*1.8 2*. 7
2.* 8.7
2.9 *.l
2.S 9.1
*3.7 30.3
2.8 8.8
U.H U.O
3.b
3.3
.2fab BS)
10.5*5 BS)
2.52b BS)
2.79e BS)
.b90 BS)
POnER
U.O
7.3
30.7
7.2
2.2
7.2
38.2
7.3
0.0
U.O
7.3
30.5
7.2
2.2
7.3
38.3
7. 3
0.0
-------
ENGlNE-2
TABLE F-3. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
TEST-aSa RUN-02
1175 CHEVROLET 350-CID HD ENGINE PROJECT 11-*311
oq-2B-?b EFI-TR-HEI SAME AS RUN i
HUM= 1D.U G/KG
CONCENTRATION
MODE HC-FID CO
1 IDLE
a as PCT T
3 55 PCT T
* as PCT T
S 10 PCT T
b as PCT T
7 10 PCT T
8 as PCT T
1 C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
* as PCT T
5 10 PCT T
b 25 PCT T
7 10 PCT T
8 25 PCT T
1 C.T.
SbO .120
bO .300
1* .10*
10 .013
15 .OSb
8 .018
1 ,3Sb
* .0*0
bSBO .030
720 .10*
13* .350
bS .072
*B .077
*S .073
30 .013
3* .535
22 .0*0
b*00 .0*0
AS MEASURED TOTAL FUEL CALCULATED G/HR «i.
C02
1.01
11.73
12.52
12.25
11. 3b
12.38
1*.70
12.71
.15
B.b2
11.73
13.07
12.52
11. 3»
12.52
l*.Bb
ia.7i
.15
NOX-CL CARBON G/HR
33 1.111 172»
80 l?.03b 1381
b05 I?.ba5 1333b
13 12.3** 1208
113 ll.*17 580b
83 12.*71 102b
550 15.057 20721
13 12.831 1117
3 .Rbl 0
30 R.R02 17b1
78 12.015 1117
SbO 13.1*1 13*ab
85 12. boa 8810
IbO 11.317 5bBS
75 la.blb 8BOO
500 is.381 aom
83 12.833 8bl8
3 .832 0
HC
11
5
2
1
1
1
1
0
n
IK
11
7
*
e
2
5
2
0
CO
*S
*72
221
1*0
58
1**
111
58
n
*a
533
1*8
1111
7J
131
i**a
55
0
NOX
2
20
201
23
32
20
2*7
22
0
2
11
187
20
eb
17
223
IB
0
WEIGHTED G/HR
FACT. HC-FID
.332
.077
.1*7
.U77
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
2.b
.*
.2
.1
.0
.0
.2
.0
0.0
3.b
.1
1.1
.3
.1
.2
.b
.1
0.0
CO NOX-CL CKW
11
3b
33
11
3
11
112
*
0
10
*1
22
B
*
10
Ib3
*
0
.5 0.0
l.b 18.0
30.7 31.1
1 . V 17.7
1.6 7.3
1.5 17.7
27.1 b3.2
1.7 17.8
0 . U l>. 0
.5 0.0
l.b 17.7
a?.* 31.3
i.s 17. a
1.5 7.1
1.3 17. b
25.1 b3.7
l.H 17.0
0.0 0.0
VAC.
MM
*57
3S3
33b
353
*37
353
7*
353
SB2
*57
353
22b
3Sb
*37
353
7*
35b
582
MODE 10
1 I
a 25
3 55
* as
S 10
fa as
7 10
8 as
1 CT
1 I
a as
3 55
* es
S 10
b as
7 10
8 as
1 CT
UNITS AS
MV CHP
1B.O 0.0
13.1 a*.i
B.I se.*
13.1 a3. 8
17.2 1.7
13.1 33. 7
2.1 B*.8
13.1 a3.8
aa.i o.o
18.0 0.0
13.1 33.7
8.1 52.7
1*.0 83.0
17. 8 l.b
13.1 23. h
e.i BS.»
1*.0 22. S
aa.i o.n
SUM— (COMPOSITE
SUM--- (COMPOSITE
THO CYCLE COMPOSITE -
10 =
SPECIFIED IN THE 7-11-75 PROCEDURE
CTQ
0
b2
137
b2
as
ba
aa»
b3
0
0
ba
137
bO
25
b3
22*
bl
0
VALUE
VALUE
FC BSFC BSNOX
3.8 R R
20.7 .RSB .1
21. » .Sbl *.0
20.3 .85* 1.0
12.8 1.315 3.3
11.1 .8*0 .8
*5.7 .531 a.1
20.1 .8** .1
0.0 I I
3.1 R R
20.1 .8*1 .8
21. b .5bl 3.b
11. b .851 .1
12.* 1.217 2.7
11.* .823 .7
*b.l .5*0 2.b
11.0 .833 .8
(1.0 I I .
HC- FID 0.35( .2)
CO- NOIP 0.35( 11.1)
HOX-CL 0.3S( 3.b)
F/A
0*2
OSS
057
OSb
052
OSb
nbB
(158
00*
0*1
OSS
US1
057
051
057
Obi
058
00*
+ 0.
+ u.
+ 0.
SFC
KG/KW HR
R
.522
.3*1
.511
.8110
.511
.328
.513
I
R
.Sib
.3*1
.518
.781
.500
.328
.SOfa
I
b5(
hS( 1*
bS( 3
HC +
PPM
bOO
2030
2010
2000
2030
1110
1110
2000
aooo
bOO
1110
2020
2000
1110
1180
2000
1180
2000
.*) =
.1) =
.2) =
NOX =
SFC =
CALC
A/F
23.7
18.3
17.5
17.1
H.3
17.7
1*.8
17.3
231.2
2*. 7
18.2
lb.1
17.5
11.*
17.5
1*.S
17.3
aso.a
.310
13.335
3.372
3. bH2
.*17
HC
73.0
11.1
b.7
1.8
1.1
1.*
*.*
.7
0.0
52.*
ia.s
15.8
*.a
e.o
2.b
8. fa
1.8
0.0
.2
G/Kk
G/KH
G/Kh
G/KH
KG/KM
CO
*.8
Ib.S
1*.7
* .1
l.S
5.0
50.7
2.0
0.0
3.7
15. b
8.3
3.2
I. fa
3.8
ba.i
l.b
0.0
12
1*
HR (
HP (
HR (
HR (
HR (
NOX FUEL
.7 5.1
2.3 1.2
*S.S 2*.1
a.b 1.0
2.7 *.2
2.2 8.8
*1.S 31.8
2.5 6.1
0.0 0.0
.8 S.3
2.5 1.0
*5.b 25.3
3.5 8.8
2.5 *.l
2.2 8.7
*1.7 3D. 3
2.3 8.5
0.0 0.0
3. fa
3.2
.231 BS)
1.1** BS)
2.51* BS)
2.7*b BS)
.bBb BS)
PUMER
0.0
?.*
30. b
7.3
3.2
7.2
38.1
7.3
0.0
0.0
7.3
30.1
7.1
3.2
7.2
38.*
7.0
0.0
-------
TAdLE F-4. MASS EMISSIONS BY 23 MODE PROCEDURE
ENGINE-2 TE3T-253 RUN-i EFI-TR-ntl *A l-«VAlfa8-EGRr3TCU8
MODE
1
S
3
5
b
7
8
1
10
15
13
15
17
IS
1"
20
21
22
23
MODE
1
2
3
t
S
b
7
8
1
10
11
12
13
It
15
Ib
1 7
1 8
11
2 0
3 t
el
22
23
CYCLE
SPEED
bOO
1SOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
23nn
5300
2300
asoo
2300
2300
5300
2300
2300
bOO
2300
Tii
N-M
0.0
b.8
81. '3
IbO.Q
238. fa
2b0.3
2U. 1
313. b
0.0
0.0
3**.*
31'.3
331.7
257. b
I70.fi
8h.8
ba.t
27.1
8.1
0.0
MV FUEL
A/F
KW MM KG/HR RATIO
Q
1
3
7
10
20
30
33
37
+ 0
0
0
83
7b
bl
ba
15
7
0
ttt
311
tl?
38b
287
1SS
117
5b
3
551
10
sl
35b
571
CALCULATED GHAI-/HH
HC CO NOX
13.5
.1
7.1
20.8
18.7
27.0
5.2
,t
t.o
10. b
11.5
0.0
3b.q
18.8
S.3
3.2
2.1
1.2
. 8
. ?
.5
t.3
0.0
COMPOSITE
CORRECTED
30
IS
117
107
10S
1*2
17*
*8
218b
38b2
3t
0
blOl
• t20fa
Ibl
*b
IS
70
55
*8
13
52
0
HC
CO
NOX
SFC
KOX
1.7
b.7
t .8
ao.a
b?.t
3*3.5
tb7.8
305.*
85. t
72.3
1.8
0.0
218. t
ati.o
31*. fa
t87.3
331.8
50.5
131. b
3t.t
17.1
1.1
0.0
.t3S
aa.7od
b.7S1
.38b
b. 7bb
1.5
t.3
3.2
t.2
*.8
b.t
8.8
10.3
13.3
It. 5
25. b
11.3
20. t
25.3
23.8
ao.i
18. S
It .3
l.b 25.3
o.o H7t.a
27. b If.*
25.1 IV. (,
52. a 15. t
20.2 Ib.*
lt.1 17.3
10. b 17.8
3.0 la. 7
b.S 11. q
7.3 11. b
1.7 is. a
0.0 1357.5
FAC.
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.Oto
0.000
0.000
.070
.120
.025
.055
.035
.ObO
.ObO
0.000
.ObS
0.000
0.000
.080
.ObO
E. UNITS
TQ FC
0
5
18
ta
bO
118
17b
112
aib
335
0
0
2St
23*
210
110
lab
fat
tfa
20
b
0
0
3.t
".t
7.1
1.2
10. S
It. 2
11.5
22.7
21.3
32.7
3.b
0.0
bO.S
55.3
tl.a
tt.b
32.1
83. t
17. b
It.t
lb.0
3.7
0.0
GRAM/ KW MR (
GRAM/
' KK HR
GRAM/ KW HR
KG/
GRAM/
rt** HR
nrt M W
C
r
C
UK Y CO
HC
7*2
2 +
t27
3bO
t31
b
*7 1
112 2
bOt
881
20* 1
11^ 1
21
It
12
12
8
311
10*0
CO
.082
.Jeo
*113
.101
.lot
.115
.115 .
.030
.2b2
.050
.088
.010
.b80
.2b2
.051
.015
.0*0 •
.OtO
.0*Q
.Oto
.010
.187
.010
SPECIFIC G«An/
HC CO
K
1.07
a. sa
2.11
1.83
1.3*
.17
.01
.11
.27
R
I
.ts
.25
.08
.05
.05
.Gfa
.Ob
.11
.25
R
I
.32* BS)
lb.127 8S)
5. OtO dS)
5.0*5 BS)
R
17.1
38.0
15.0
10.7
7.1
5.8
1.5
51.*
Ib.S
£
I
73. fa
55.0
2.3
. 7
2.3
3.3
3.7
7.*
b.7
I
C02
8.33
11. 3b
10.53
a,*2
1.01
10.30
11. bl
is. ai
It. 23
13. bt
8.*2
.08
13. k*
13.13
it. 31
13. tl
12.71
12.38
11.73
11.00
11.2*
11. 8b
.0*
NOX
R
7.1
l.b
2.8
b . b
17.1
15. b
T . 3
2.3
1.8
r
Jl
3 . b
3.2
J » t
5.8
7.1
8.3
2. *
1.3
5.3
8.7
I
NOX
28
S*
ta
125
310
Ib80
I8fa1
1183
300
230
21
2
SQO
tto
7bQ
"80
SSQ
178
b20
175
80
ta
3
F-5
-------
TABLE F-5. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-2
TEST-254 RUN-01
1175 CHEVROLET 350-CIO HD ENGINE PROJECT 11-4311
Oq-30-7b EFI-TR-HEI WVAlbB-WAlM7-?7SECU-EGHb010
9.7 G/KG
CONCENTRATION
MODE HC-FID
1 IDLE
3 25 PCT T
3 55 PCT T
4 35 PCT T
5 10 PCT T
b 25 PCT T
7 10 PCT T
8 25 PCT T
1 C.T.
1 IDLE
2 85 PCT T
3 55 PCT T
4 25 PCT T
5 10 PCT T
b 25 PCT T
7 10 PCT T
8 25 PCT T
9 C.T.
3bO
48
q
25
It
25
10
If
4800
1051,
240
b4
95
b2
98
21
28
4800
CO
.113
.082
.030
.Obi
.072
.Ob7
.337
.051
.010
.181
.13b
.051
.013
.013
.125
.435
.082
.010
AS MEASURED TOTAL FUEL'
C02 NOX-CL CARRUN G/HR
10.30 21 10.532 18bO
12.71 IBS 12.878 1117
13.35 530 13.381 135b2
13.35 248 13.414 902b
9.8b 10 q.q33 b31b
13.35 218 13.411 8181
13.13 S4D 14.2b8 21727
13. HI ?55 13.5*2 B84S
.11 b .bill 0
10.07 30 1(1. 3b7 1814
13.21 225 13.373 BB10
13.35 710 13. »OR 135b2
13. tq ?hfl 13.5-14 88UO
9.Bb 13 q.qbO b214
13. 4q 270 I3.b2b 8800
13.13 510 14.367 2lBh3
13.13 2BO 14.015 8bb4
.11 7 .t.01 0
CALCULATED G/HR
HC
7
4
1
2
1
a
2
1
0
20
18
7
7
4
7
4
2
0
cu
bl
118
b2
83
13
in
1037
b7
0
b4
183
104
122
117
Ib4
1337
103
0
NOX
2
43
174
54
11
47
2bb
54
0
2
48
232
54
11
5b
251
5b
0
WT.
WEIGHTED G/HR
FACT. HC-FID
.232
.077
.147
.077
.US7
,077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
l.b
.3
.2
.1
.1
.1
.2
.1
0.0
4.7
1.4
1.1
.5
.2
.5
.4
.2
0.0
CO NOX-LL CKw
lb
S
9
b
5
7
117
5
0
15
14
15
q
7
13
151
8
0
.4 0.0
3.3 17. 1
25. b 31.3
4.£ 17.8
1.1 7.2
3.b 17. 1
30.1 bS.l
4. i IB. 3
o.o n.o
.4 0.0
3.7 17.8
34. 2 3S.4
4.2 IB. 4
1.1 7.4
4.3 11. U
28.4 b5.b
4.3 19.0
0.0 0.0
VAC.
MM
401
312
IbU
312
4(11
312
48
318
5bb
401
312
IbO
318
401
318
48
318
Sbb
- — UNITS AS
MODE ID
1 I
e 25
3 55
-------
TABLE F-6. MASS EMISSIONS BY MINE-MODE EPA - METRIC UNITS
1S7S CHEVROLF.I 350-CID HO ENGINE — PROJECT 11-4311
ENGINE-a TEST-abO HUN-O1 10-aO-7t, EF I-TR-EGR-HEI WA1-1bBHVA-AUTO SYS XMEGRM3 K= .S4C1 HUM* 8.3 G/KG
I
-J
CONCENTRATION AS MEASURED TOTAL
MODE HC-.FID co coa NCX-CL CARHON
1 IDLE 440 .077
a as PCT T 100 ,ib4
3 55 PCT 'T la .077
4 as PCT T ao .131
s 10 PCT T la .ios
b as PCT T la .147
7 So PCT T 13 .4S7
B as PCT T 7 ,08a
s C.T. sano .ons
1 IDLE Sbo ,07a
2 a5 PCT T JOB .118
3 55 PCT T 44 .082
4 35 PCT T as .131
5 10 PCT T 18 ,OS3
b as PCT T 3o ,ias
7 So PCT T 30 .554
8 as PCT T 11 .051
S C.T. 3200 .005
7.S5
in. is
11. bl
10.fa4
10. 7b
10. b4
14.33
in.7b
.11
7.8b
10.30
11. bl
10. M
10. 7b
10. b4
13. S3
10. 7b
.11
33 B.II74
340 H).3bS
BbS U.bBB
330 10.773
bl in. 87o
aba in.7ss
5S5 14. 7aH
250 1M.B43
11 .43S
37 B.tl35
240 10.5ai
7ai) ll.bS7
300 in. 774
bl 10.BSS
2SO 10.7bB
SSO l».48b
310 lO.Ria
13 .435
UNITS AS SPECIFIED IN THE 7-11-75
MODE ID MV CHP CTQ FC BSFC
1 I 17.3 0.0
2 25 13. S 23.7
3 55 7.0 53.1
4 25 14.0 54.5
S 10 15.8 S.2
b 25 13. S 24.5
7 So a.l Bb.8
B 35 13. S 24.1
<» CT aa.s u.u
1 I 17.3 0.0
2 25 13. S 23.7
3 55 7.0 52. S
4 25 14.0 34.4
S 10 lb.0 S.2
b 25 14.0 a4.S
7 so a.o sb.a
8 25 14.0 34.5
s CT aa.s o.o
SUM--- (COMPOSITE
SUM- --(COMPOSITE
TWO CYCLE COMPOSITE -
ID =
0
ba
138
b4
24
b4
22b
b3
a
0
faa
138
b4
34
b4
eat
b4
0
VALUE FOR
VALUE FOR
3.b R
18.1 .7bt
28. S .537
17.7 .783
14. S I.ba4
18.0 .735
45.8 .537
17.3 .717
O.tl 1
3,b R
18. a .7b8
38.7 .542
1R.O .737
14.7 l.SSS
18.3 .747
4b.O .533
18.0 .734
0.0 I
HC- FID 0.3S(
co- HOIK o.3S(
NOX-CL D.35(
FUEL
G/HR
Ib33
saio
iasa?
aoas
b7SS
30775
7847
0
lt>33
sass
13018
BlbS
bbba
8301
BlbS
0
CALCULATED
HC CO
10
S
1
a
i
i
2
1
0
ai
IB
5
a
i
a
3
1
0
31
I7a
1S7
137
aas
141b
lao
0
as
314
IBS
200
115
1S5
7R
n
G/HR
NOX
3
84
ass
74
12
2b2
5b
0
2
5S
aso
71
12
70
afas
73
0
PROCEDURE SFC
BSNOX F/A KG/KW HR RPM
R
3.5
s.f.
3.0
1.3
3.5
3.0
a. 3
I
R
a.s
4.7
3.S
1.3
3.8
3.1
3.0
I
.a)
13.7)
S.O)
.037
.047
.053
.04S
.050
.04S
.Obb
.04S
.noa
.037
.048
.053
.04S
.04S
.04S
.ObS
.04S
,ooa
+ 0.bS(
+ o.bs(
* 0.bS(
R
.4b4
.327
.44(1
.S88
.447
.331
,43b
I
R
,4b7
.330
.448
.S73
.454
.335
.44b
I
14
4
HC +
bOO
anio
anao
aoio
anio
aoio
aoao
2010
2000
bOO
2010
2020
2010
2010
2010
2020
2010
2000
.4) =
.1) =
.7) =
NQX =
SFC =
•n.
FACT.
)077
.147
.077
.057
.077
.113
.077
.143
.233
.077
.147
.077
.057
.077
.113
.077
.143
CALC
A/F
2b.8
21.1
18.8
an. 4
ao.a
ao.3
15.1
ao.a
47S.S
ab.s
ao.e
18.8
20.4
ao.a
ao.4
IS. 3
30.3
47S.S
.334
14.481
4.788
s.iai
.3Sb
WEIGHTED
HC-FID CO
3.2
.7
.3
.1
.0
.1
.2
.0
0.0
4.S
1.4
.8
.2
.1
.1
.4
.1
0.0
7
to
as
is
8
17
IbO
S
0
7
IS
7
15
182
b
0
G/HR
NOX-CL CKW
.5 0.0
b.5 17.7
43. S 3S.b
5.7 IB. 2
.7 b.8
4.8 18.3
as.b b4.B
4.3 18.0
U.O 0.0
.4 0.0
4.5 17.7
3b.8 3S.5
5.5 IB. a
.7 b.S
5.4 18.3
30.0 b4.3
S.b 18.3
0.0 0.0
VAC.
MM
43S
353
178
3Sb
401
353
S3
353
57S
43S
353
178
3Sb
40b
3Sb
51
3Sb
S7S
HC
bl. J
18.4
b.O
3.5
1.3
2.1
b.5
1.2
n.o
1.2.0
17. b
10.2
2.0
.S
1.7
4.7
.S
0.0
G/KH
G/KW
G/KM
G/KW
KG/KN
CO NOx FUEL POxER
2.8
7.7
S.b
5.8
3.0
b.b
bl.O
3.5
0.0
a. 4
8.5
S.b
5.4
2.3
5.3
b4.3
2.1
0.0
HR
HR
HR
HR
HR
.S 5.1
b.7 8.4
HS.7 as. 4
b.o B. a
.7 5.1
5.U 8.4
30.8 31.3
4.5 8.1
0.0 0.0
.4 5.0
5.1 8.4
41.4 as. 3
b.2 8.3
.8 5.0
b.l 8.5
33.8 31.2
b.3 8.3
O.U 0.0
5.0
4.7
(10.7S8 BS)
( 3.570 BS)
( 3.819 BS)
( .bSO BS)
0.0
7.1
30.5
7.4
a.o
7.4
38.3
7.3
0.0
0.0
7.1
30. S
7,4
a.i
7.4
38.2
7.4
0.0
-------
TABLE F-7. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGlNE-e
TEST-2bO RUN-02
1175 CHEVROLET 350-CID HD ENGINE PROJECT 11-4311
10-20-7b EFI-TR-EGR-HEI HA I-IbBWVA-AUTO SYS XME6RM3
.143
HUM =
6.5 G/KG
CONCENTRATION
MODE
1 IDLE
2 25 PCT
3 55 PCT
4 25 PCT
5 10 PCT
fa 25 PCT
7 10 PCT
8 25 PCT
1 C.T.
1 IDLE
S 25 PCT
3 55 PCT
4 25 PCT
5 10 PCT
b 25 PCT
7 ID PCT
8 25 PCT
1 C.T.
HC-FID
384
T 38
T 7
T 8
T 1
T 11
T 7
T 7
5280
848
T 110
T 33
T 38
T 33
T 21
T 13
T 11
5120
CO
.018
.251
.077
.147
.120
.151
.441
.013
.020
.082
.204
.013
.151
.I7b
.170
.37b
.013
.030
AS MEASURED TOTAL FUEL
CO? NOX-CL CARHON G/HR
7.15 340 R.010 Ib33
10.53 112 in. 785 8255
11.24 BbO 11.31" 12127
10. 7b 234 10.10B 8074
10.53 b2 Ifl.bSl bbb8
10.53 2bO 10. bio Bui
13. h4 b73 14.081 2Qlll
10.11 335 1(1.284 7575
.11 130 .731 n
7.77 2fl? 7.143 Ib33
10.07 270 10.215 8301
11.12 8l5 11.217 12837
10.30 282 10.4b3 8u2l
10.30 70 10.471 bb22
10.30 310 10.473 8210
13. b4 bHB 14.017 208b5
10.41 255 10.504 7530
.23 110 .774 0
CALCULATED G/HR
HC
a
3
1
1
1
1
1
1
0
11
17
*
3
2
2
2
1
0
CO
40
388
178
221
152
243
1345
138
0
34
332
215
24b
224
2b1
1121
135
0
NOX
21
4b
308
54
12
b2
313
77
0
18
b8
212
b8
14
7b
321
57
0
*T.
FACT.
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
WEIGHTED G/HR
HC-FID
1.1
.2
.1
.1
.0
.1
.1
.0
0.0
4.3
1.3
.b
.2
.1
.2
.2
.1
0.0
CO
1
30
2b
17
1
11
152
11
0
8
2b
32
H
13
21
128
10
0
NOX-LL CKH
5.0 0.0
3.S 17.8
45.2 31.8
4.2 18.1
.7 b.B
4.8 18.3
35.3 b4.S
b.U 18.4
0.0 0.0
4.2 0.0
5.2 17.7
42. 1 31.7
5.2 18.3
.8 7.1
5.1 18.3
3b.e b4.4
4.4 18.3
0.0 0.0
VAC.
MM
431
353
178
353
404
353
53
3Sb
584
431
353
178
353
4flb
353
53
353
584
UNITS AS
MODE ID MV
1 I
2 25
3 55
4 25
S 10
b 25
7 10
8 25
1 CT
1 I
2 25
3 55
•» 25
5 10
b 25
7 SO
8 25
S CT
17.
13.
7 .
13.
15.
13.
2.
14.0
23.0
17.3
13.1
7.0
13.1
lb.0
13.1
2.1
13.1
23.0
CHP
0.0
23.1
53.3
24.2
1.2
2*.b
Bb.S
24. b
0.0
0.0
23.8
53.2
24. b
1.5
24. b
8b.4
24. b
0.0
SUM— (COMPOSITE
SUM---(COMPOSITE
TWO CYCLE COMPOSITE -
ID =
SPECIFIED IN THE 7-11-75 PROCEDURE
CTO FC BSFC BSNOX
0 3.b R R
b2 18.2 .7b3 1.1
131 28.5 .534 5.8
b3 17.8 .735 2.2
2H 14.7 ].b02 1.3
b4 17.1 .728 2.5
225 4b.l .533 3.b
b1* lb.7 .b78 3.2
n o.o I I
0 3.b R R
b2 18.3 .7b1 2.1
138 28.3 .532 5.5
b» 17.7 .720 2.8
25 14. b 1.521 1.5
bf 18.1 .737 3.1
225 4b.O .532 3.7
bH Ib.b .b7S 2.3
0 0.0 I I
HC- FID 0.35(
CO- NDIR 0.35( 14
NOX-CL n.3S< 5
F/A
.037
.041
.051
.050
.041
.041
.Ob4
.047
.004
.037
.047
.051
.048
.048
.048
.Ob3
.048
.004
.1) + 0.
.3) + 0.
.5) + 0.
SFC
KG/KM HR
R
,4b4
.325
.447
.175
.443
.324
.412
I
R
.4b8
.323
.438
.130
.448
.324
.411
I
b5(
b5( 13
b5( 5
HC *
HPM
bOO
2010
2020
2010
2000
2010
2020
2010
2000
bOO
2010
2020
2010
2000
2010
2020
2010
2000
.4) =
.4) =
.5) =
NOX =
SFC =
CALC
A/F
2b.8
20.3
11.4
20.1
20. b
20.5
15.7
21.3
281. S
27.2
21.2
11. b
20.1
20.1
20.1
15.8
20.1
2b1.5
.212
13.721
5.503
5.715
.311
HC
73.2
1.3
4.1
1.1
1.3
2.7
5.0
l.b
0.0
bO.1
18.1
8.b
3.5
1.8
2.7
3.5
.1
0.0
.1
G/KW
G/KW
G/Kri
G/KM
KG/KW
CO
3.4
11.0
l.b
b.2
3.2
b.1
55.8
3.1
0.0
3.1
10.0
12.4
7.4
5.0
8.1
41.1
4.1
0.0
14
I 3
HR
HR
HR
HR
HR
NOX FUEL
4.B 5.1
3.4 8.5
43.2 25.4
4.0 8.3
.7 5.1
4.5 8.3
33.8 31. b
5.7 7.8
0.0 0.0
4.0 5.1
5.0 8.b
40.1 25. 3
5.U 8.3
.8 5.1
S.b 8.5
34.5 31. b
4.2 7.8
0.0 0.0
5.5
5.5
C .217 BS)
(10.232 BS)
( 4.10H BS)
( 4.321 BS)
( .b43 BS)
PO«ER
0.0
7.2
30. b
7.3
2.0
7.4
38.1
7.4
0.0
O.U
7.1
30.5
7.4
2.1
7.4
38.1
7.4
0.0
-------
TABLE F-8. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
1175 CHEVROLET 3SO-C1D HD ENGINE —PROJECT ll-t3U
ENGINE-2 TEST-8bl RUN-02 10-21-7b EFI-TR-EGR-HEI IbBHVA-HAI-27SECU AUTO SYS K= .105 HUM= 7.1 G/KG
CONCENTRATION AS MEASURED TOTAL
MODE HC-FIO CO C08 NOX-CL CARBON
1 IDLE ttB
8 IS PCT T SB
3 55 PCT T 21
t 25 PCT T it
5 10 PCT T tl
b iS PCT T 2b
? so PCT T it,
8 25 PCT T 11
1 C.T. 35bO
1 IDLE IbO
i 25 PCT T Ibo
3 55 PCT T bo
t 25 PCT T 3t
5 10 PCT T tS
b 25 PCT T ?7
i io PCT T 17
8 25 PCT T I*
1 C.T. 33bO
.088
.227
.082
.170
.181
.17b
.tbl
.088
.015
.078
.2b3
.018
.151
.17b
.17(1
.tbl
.018
.010
7.8b 33 7. lib
10. 7b 211 10. lit
11. 11 712 18.075
10. 7b 2t3 10. 933
10.11 73 10.51b
11.00 251 11.178
It. 83 bt3 It. 701
11.12 287 11.201
.15 7 .58?
7.8b 28 8.035
10.53 200 10.811
12.18 7tO 18.285
11.00 2tO Il.lb2
10.30 75 10.t8o
10. 7b 2tS 10.133
13.13 b80 It.tOl
10.88 250 10. 180
.11 7 ,t5b
UNITS A3 SPECIFIED IN THE 7-11-75
MODE ID MV CHP CTQ FC BSFC
1 I 18.1
2 25 11.5
3 55 7.b
t 25 It. 5
5 10 lb.7
b 25 It. 5
7 ^0 8.3
8 25 If. 5
1 CT 83.8
1 I 1R.1
2 25 If. 5
3 55 7.b
t 25 It. 5
5 10 lb.7
b 25 It. 5
7 10 2.2
8 25 It. 5
S CT 23.8
0.0
23.8
53.2
8t.b
1.1
8t.2
87.2
2t.b
o.n
n.n
23.8
53.3
2t.b
10.0
2t.8
87.2
8t.b
0.0
SUM-— (COMPOSITE
SUM--- (COMPOSITE
TWO CYCLE COMPOSITE -
ID =
0 3.t R
be 18.2 .7bS
138 88.7 .531
bt 17.1 .781
8b 1H.5 l.tbl
b3 18.0 ,7tt
22b Hb.O .587
b1* 17.0 .bll
0 0.0 I
0 3.5 R
b2 18.1 ,7bO
138 88. t .533
bt 18.8 .7fl
8b It. 5 l.tS2
b3 18. t .7bl
22b tb.t .532
fat Ib.B .bB8
0 0.0 I
HC- FID 0.35C
CO- NDIR 0.3SC
NOX-CL 0.35(
FUEL
G/HR
15t2
B8S5
13018
BUI
bS77
BlbS
2R8b5
7711
0
1588
8210
18888
SPSS
bS77
83tb
210H7
7b20
0
CALCULATED
HC CO
1
5
3
2
3
2
3
1
0
20
13
7
3
3
2
3
1
0
3»
3t5
171
255
227
251
13H5
128
0
21
tot
201
237
222
2b2
1385
138
n
G/HR
NOX
2
tl
231
5t
It
57
27t
t7
0
2
tb
23t
53
It
5b
211
52
0
PROCEDURE-— SFC
BSNOX F/A KG/KM HR RPM
R
2.1
t .3
2.2
l.»
2.3
3.1
1.1
I.
R
1.1
t.1*
2.2
l.»
2.3
3.»
2.1
I
.2)
It. 3)
t.3)
.037
.050
.055
.050
.OH8
.051
.Obb
.051
.008
.037
.OH1
.055
.051
.OHB
.050
.OfaS
.050
.002
+ O.bSC
+ O.bSC
+ 0.bS(
R
.tbS
.388
.tt3
.881
.tS3
.321
.t20
I
R
.tb2
.32t
.tso
.883
.tb3
,32t
.tis
I
It
t
HC t
bOO
2020
2030
2020
2010
2020
2030
2020
8020
bOO
2020
8030
2020
8020
2020
2030
2020
2020
.t) =
.1) =
.t) =
NOX =
SFC '
XT.
FACT.
.232
.077
.It7
.077
.057
.077
.113
.077
.It3
.232
.077
.It7
.077
.057
.077
.113
.077
.It3
CALC
A/F
27.1
11.1
18.3
20.1
20.7
H. b
15.1
11. b
too.i
2b.1
20.3
18.1
11.7
20.1
20.1
is.t
20.0
tS7.3
.330
It.bIS
t.3B2
t.712
.311
WEIGHTED
HC-FID CO
2.2
.t
.t
.2
.2
.2
.3
.1
0.0
t.7
1.0
1.0
.8
.8
.2
.3
.1
0.0
B
87
2b
20
13
20
152
1
0
7
31
31
18
13
20
ISb
11
0
G/HR
NOX-CL CKW
. t 0.0
3.8 17.7
33.1 31.7
t.2 18. 3
.8 7.t
t.t 18.0
31.0 bS.O
3.b 18.3
0.0 0.0
.t 0.0
3.5 17.8
3t.S 31.7
t.l 18.3
.8 7,t
t.3 18.0
33.8 bS.O
t.O 18. t
0.0 0.0
VAC.
MM
t faO
3b8
113
3b8
1 8t
3bB
58
3b8
b05
tbO
3b8
113
3b8
t2t
3b8
Sb
3bB
bOS
HC
57.1
1.1
1.1
t.l
t.3
t.3
7.8
1.7
0.0
bo.i
13.3
13.3
2.8
2.3
2.3
t.l
1.1
0.0
. 2
. t
G/KW
G/KW
G/KW
G/KW
KG/KW
CO NOX FUEL
2.1
1.7
l.b
7.1
t.7
7.3
55.3
3.t
0.0
2.3
10.8
10.7
b.t
t.t
7.0
St.b
3.7
0.0
It
1 c
15
HR
HR
HR
HR
HR
.5 t.B
t.b 8.5
tl.3 25. b
5.1 8.3
.1 5.0
5.3 B.t
37.8 31.5
».» 7.1
0.0 0.0
.5 t.l
t.l B.t
tO.t 85.2
t.B 8.5
.1 5.0
S.I B.b
31.5 31.7
t.7 7.8
0.0 0.0
t.3
t.t
( .2tb BS)
(IQ.IbO 83)
C 3.2bB BS)
( 3. Sit BS)
( .bt3 BS)
POWER
0.0
7.1
30. t
7.t
8.2
7.2
38.3
7.t
0.0
0.0
7.1
30. t
7.t
2.2
7.2
38.3
7.t
0.0
-------
TABLEF-9. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-2
1975 CHEVROLET 3SO-CID HD ENGINE PROJECT 11-H311
TEST-abl RUN-03 10-21-7b EFI-TR-EGR-HEI IbBWVA-WAI-27SECU AUTO SYS
KE .878 HUM: fa. 3 G/KG
I
o
CONCENTRATION
MODE HC-FID
1 IDLE
8 85 PCT T
3 55 PCT T
t 25 PCT T
5 10 PCT T
b 25 PCT T
7 90 PCT T
B 25 PCT T
9 C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
H 25 PCT T
5 10 PCT T
fa 25 PCT T
7 90 PCT T
8 25 PCT T
9 C.T.
tSb
S3
17
21
to
23
IS
11
tlbO
97b
138
38
3h
5b
29
en
13
3920
CO
.093
.339
.077
.It7
.Ibt
.170
.tis
.072
.010
.Obi
.382
.093
.Ibt
.17b
.I7b
.•»97
.Ob7
.010
AS MEASURED TOTAL FUEL
COa NOX-CL CHRRUN G/HR
7.95 34 8.09? IHq?
10.88 213 11.125 8301
12.38 722 12.t59 130b3
11.12 232 11.270 8029
10. tl 72 10.579 btSb
11.00 2tO 11.17? BlbS
It. 08 723 lt.H97 21092
11. 2t 223 11.313 7575
.11 ID .S3h 0
7.8b 29 8.02b ItOb
11. at 15b Il.b37 83tb
11.99 737 13.0R7 12973
11.12 205 11.288 8119
10.30 77 in. t8g bb22
11. 13 208 11.299 8lbS
It. 39 blB 1H.8B9 210t7
11. at 208 11.308 7711
.15 8 .553 0
CALCULATED
HC
9
if
2
2
3
2
a
i
0
IB
11
S
3
H
a'
3
1
0
CO
35
3bl
Ib3
212
aos
asi
iaao
97
0
ea
553
202
a39
22t
2Sb
Itll
92
0
G/HR
NOX
2
tb
221
tB
13
51
307
tt
0
1
33
230
t3
It
tt
ess
ti
0
KT.
WEIGHTED G/HR
FACT. HC-FID
.232
.077
.It7
.077
.057
.077
.113
.077
.It3
.232
.077
.It7
.077
.057
.077
.113
.077
.It3
2.1
.3
.3
.1
.2
.1
.3
.1
0.0
t.3
.8
.7
.a
.2
.2
.t
.1
0.0
CO NOX-CL CKK
8
as
at
ib
la
19
138
7
0
5
t3
30
18
13
20
IbO
7
0
.t 0.0
3.b 17.8
32. t 39. b
3.7 18.3
.7 7.t
3.9 IB.t
St.b bS.3
3.t 18.3
0.0 0.0
.3 0.0
2.5 17.8
33.9 39.8
3.3 IB.t
.8 7.5
3.t 18. t
28.8 bS.S
3.2 IB.t
0.0 0.0
VAC.
MM
tbO
3b8
193
3bB
tat
3b8
5b
3b8
b07
tS7
3b8
193
3bB
net
3b8
Sb
3b8
b07
UNITS AS
MODE ID
1 I
2 as
3 55
t 25
5 10
b 25
7 90
8 as
9 CT
1 I
a as
3 55
t 25
5 10
fa as
7 90
s as
9 CT
MV
18.1
It. 5
7.b
It .5
lb.7
It. 5
2.2
It. 5
23.9
18.0
It. 5
7.b
It. 5
lb.7
It. 5
2.2
It. 5
23.9
CHP
0.0
23.9
S3.0
et.s
10.0
at. 7
87.5
at. s
0.0
0.0
B3.9
S3.t
2t.b
10.0
at. 7
87.8
at. 7
n.o
SUM— (COMPOSITE
B..kj r^ntjnneTTe
S(Jr
TMO CYCLE
ID *
COMPOSITE -
SPECIFIED IN THE 7-11-75 PROCEDURE
CTO FC BSFC BSNOX
0 3.3 R R
b2 18.3 .7b7 1.9
138 aB. 8 .St3 t.2
bt 17.7 .722 2.0
2b It. 3 1.135 1.3
bt 18.0 .730 2.1
aab tb.5 .531 3.5
bt lb.7 .b80 1.8
o n.o I I
0 3.1 R R
ba 18. t .770 l.t
138 a8.b ,53b t.3
bt 17.9 .72b 1.7
2b It.b I.t5» l.t
bt 18.0 ,7aB 1.8
227 tb.t .529 2.9
bt 17.0 .hBS 1.7
n o.o I I
HC- FID 0.3S(
CO- NDIR 0.35( 13
NOX-CL 0.35( H
F/A
.037
.051
.OSb
.051
.OtB
.051
,0b5
.051
.003
.037
.053
.055
.051
.Ot8
.051
,0b7
.051
.003
.3) t 0.
.1) + 0.
.3) + 0.
SFC
KG/KH
R
.tb7
.330
. t 39
.873
. ttt
.323
.tit
I
R
. tbB
.32b
. tf 2
.885
,t*3
.322
. t!8
I
b5(
bS(
bS(
HC
MR RPM
bOO
eoeo
aoao
2010
aoio
eoao
2030
2010
2010
570
aoao
2030
aoao
2020
2020
2030
2020
2020
.t ) =
IS.t) =
t.O) =
t NOX =
SFC a
CALC
A/F
2b.8
19.7
17.7
19.5
20.7
19.7
15.3
19. t
388.7
a7.o
18.9
18.3
19.5
ao.9
19. t
It. 9
19. t
377. b
.29t
It. SBt
t.082
t.377
.388
HC
bO.l
9.b
B.t
3.b
t.t
t . 1
8.0
1.8
0.0
ba.t
la.t
9.8
3. a
3.2
a.b
5.3
1.1
0.0
.a
^ if
G/KN
G/KM
G/KM
G/KM
KG/KM
DC Off UT
CO
3. a
11.0
9.5
b.S
t.b
7.7
St.b
3.0
n.o
1.7
It.t
10.0
b.e
t.3
b.7
St. 3
a.t
n.o
13
HR (
NOX FUEL
.5 t.b
t.3 8.5
39.2 aS.b
t.S 8.3
.9 t.9
t.8 B.t
tl.8 31.8
t.O 7.8
0.0 0.0
.5 t.t
3.3 8.b
tt.S 25.5
t.3 B.t
1.1 5.0
t.t a.t
37.8 31.8
t.2 7.9
0.0 0.0
t.3
t .0
.219 BS)
POWER
0.0
7.1
30.3
7.3
2.2
7.t
38. t
7.3
0.0
0.0
7.1
30.3
7.3
a. a
7.t
38.3
7.t
0.0
HR (10.875 BS)
HR (
HR (
HR (
3.0f» BS)
3.2bt BS)
.b38 BS)
-------
ENGINE-?
TABLE F-IO. STEADY STATF EMISSIONS BY EP* PROCEDURE - METRIC UNITS
19?S CHEVROLET 350-CID HO ENGINE PROJECT 11-H311
TEST-Jbl RUN-WOT 10-?l-7b EFI-TR-EGR-HEI lfaB-WAI-27SECU AUTO SYS
K = ,93b
HUM =
B.S G/KG
CONCENTRATION
MODE RPM HC-FID CO
1 ?G30
? sain
3 ?030
1b .HB3
»2 .37b
58 .155
AS MEASURED TOTAL
CO? NOX-CL C*RBON
13.78
13.93
14.39
1052
1040
11.310
It. 85?
FUEL
CONS.
S?Bbl
CALCULATED G/HR
HC CO NO?
S
8
10
157? S3?
121? 558
113? 534
CORRECTED G/HR
HC-FIO CO NOX-CL
7.b
10.?
157?
198.?
522.1
499.3
VAC.
CKH MM
75.8 8
75.5 8
75. 7 8
MODE ID
1
3
Mv CHP
.3 101.7
.3 101.3
.3 101. S
AS SPECIFIED
CTQ FC
?b3
?b?
?b3
50.7
50.1
50. b
IN THE 7-
BSHC
.08
.08
.10
11-75 PR(
BSCO
15.53
11.97
BSNOX
S.?b
5.51
S.?7
BSFC A/F
.199 15. b
.198 15. S
.199 1S.O
LC — -
F/A
.Obi
.Obi
,0b7
HC
.11
.10
.13
CO
20.82
Ib.OS
IB. 83
NOX
7.05
?Io7
SFC
KG/KM HR
.303
.303
.303
ID
-------
TABLE F-II. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-2
T£ST-2b2 RUN-01
1S7S CHEVROLET 350-CID HO ENGINE PROJECT 11-1311
jn-22-7b EFI-TH-EGR-HEI UBHVA-HA I-275ECU AUTO SYS
K = 1.001 HUM: 10.8 G/KG
I
i—
fo
CONCENTRATION AS MEASURED TOTAL FUEL
MODE HC-FID
1 IDLE
2 US PCT T
3 55 PCT T
* z% PCT T
5 10 PCT T
fa 25 PCT T
7 So PCT T
8 25 PCT T
S C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
1 25 PCT T
S 10 PCT T
b 25 PCT T
7 So PCT T
8 25 PCT T
1 C.T.
532
101
12
35
52
12
13
12
33bO
BSb
230
35
5»
bl
55
18
IS
33bO
CO C02
.088 7.S5
.187 10.30
.082 11. sq
.I1*? 10. '•I
.21b 10.53
.1SS 10.11
.128 11.08
.10* 10. bl
.010 .11
.072 7.8b
.181 10. 11
.OSS 11.73
.117 10.53
.201 10.30
.15S 10.30
.325 11.08
.101 10.11
.010 .11
NOX-CL CARRON G/HR
12 8.US5 Ib78
308 1H.1S8 BlbS
5bB 12.071 13018
329 lO.Sbl 8071
b8 1U.751 b532
333 10.573 BUS
h2b 11.5111 208b5
233 in. 715 7711
10 -15b 0
2S 8.028 1588
252 HI. bib 8210
580 11.832 130b3
302 10.b83 BlbS
bS 10.511 bb22
31b lO.lbS BlbS
723 11.107 20S5b
2S8 lO.Slh 713S
13 .ISb 0
CALCULATED G/HR
HC
12
q
1
3
3
1
2
1
0
IS
20
»
5
1
S
3
1
0
....UNITS AS SPECIFIED IN THE 7-11-75 PROCEDURE--
MODE ID
1 I 0.15
2 25 1.83
3 55 l.bS
1 25 1.73
5 10 2.37
b 25 1.78
7 ^0 0.31
8 25 1.78
S CT 0.08
1 I
2 25
3 55
t 25
5 10
b 25
7 SO
B 2S
q CT
MV
17.1
It. 5
7.b
It. 5
Ib.b
11.5
2.2
1H.S
23.5
17.7
11.5
7.b
11.5
Ib.b
11.5
2.2
11.5
23.5
CHP CTQ
0.0 0
23. S b2
53.5 138
21.7 bH
S.7 25
21.7 bl
87. b 227
21.7 bl
0.0 0
0.0 0
23. S b2
53.5 138
21.7 bH
10.0 ?«»
21.7 bl
87. b 227
21. b bl
0.0 0
SUM— (COHPOSITE VALUE
SUM---CCOMPOSITE VALUE
TWO CYCLE COMPOSITE -
TO = IN
TAKE CO
2
FC BSFC BSNOX
3.7 R R
18.0 .752 3.3
28.7 .537 3.8
17.8 .721 3.1
11.1 1.1S2 1.1
17. S .721 3.5
Ib.O .525 3.1
17.0 .b8S 2.3
0.0 I I
3.5 R R
18.1 ,75b 2.7
28.8 .538 1.0
18.0 .72S 3.1
11. b l.lSt, 1.1
18.0 .72S 3.3
ft,. 2 .527 1.0
lb.1 .bb7 2.S
O.U I I
HC- FID 0.35(
CO- NOIR 0.35( 13
NOX-CL 0.35( 1
F/A
.037
.018
.055
.018
.ois
.018
.ObS
.OIS
.002
.037
.018
.051
.OIS
.018
.018
.ObS
.018
.OU2
.2) + 0.
.b) + 0.
.fa) + 0.
CO
37
2S1
17S
228
2b5
21b
1211
ISO
0
2S
283
21S
228
2bO
250
S53
1H8
0
3FC
KG/KW HR
R
.157
.32b
.13S
.SOB
.111
.31S
.IIS
I
R
,1bO
.327
.111
.88b
.111
.321
,10b
I
b5(
bS( 12
bS( 1
HC +
NOX
2
80
201
81
11
85
2SS
5b
0
2
bS
213
77
11
82
350
70
0
RPM
bOO
2020
2030
2020
2020
2020
2030
2020
2020
faOO
2020
2030
2020
2020
2020
2030
2010
2010
.1) =
.0) =
.S) =
NOX *
SFC =
WT.
WEIGHTED G/HR
FACT. HC-FID
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
CALC
A/F
2b.8
20. S
18.3
20.7
20. H
20.7
15.3
20.1
157.3
27.0
20. b
18. b
20.5
20.8
20. S
15. -»
20.8
157.3
.353
12.575
I.BOb
S.lbO
.38S
2.7
.7
.2
.2
.2
.3
.2
.1
0.0
1.1
1.5
.b
.3
.3
.1
.3
.1
0.0
HC
5S.3
11.3
1.b
1.S
1.3
s.s
5.2
l.fe
0.0
55.1
18. S
7.S
1.1
3.2
l.b
1.2
1.1
0.0
.2
. if
G/KH
G/KW
G/KM
G/KH
KG/KH
CO NOX-CL CKW
q
23
2b
IB
IS
IS
111
12
0
7
22
32
IB
IS
iq
108
11
0
CO
3.3
8.7
10.1
b.7
5.8
7.3
53. B
1.1
0.0
2.q
q.i
13. S
7.b
b.H
8.3
Ifa.b
».q
0.0
11
U
HR (
HR (
HR (
HR (
HR (
.5 0.0
b.l 17.8
2S.S 3S.S
b.l 18.1
.8 7.2
fa.S 18.1
33.8 bS.3
1.3 18.1
0.0 0.0
.1 0.0
5.0 17.8
31.3 3S.S
S.S 18.1
.8 7.5
b.3 18.1
3S.S bS.3
5.1 18.3
0.0 0.0
NOX FUEL
.b 5.2
b.S 8.1
33.8 25.5
7.3 8.3
.S S.O
7.1 8.3
38.2 31.1
1.8 7.S
0.0 0.0
.5 1.S
5.3 8.1
33.1 25. b
b.2 B.I
.8 S.O
b.7 8.1
11.8 31. b
5.7 7.b
0.0 0.0
l.b
H.S
.2b3 B3)
S.377 BS)
3.58» BS)
3.817 BS)
,b3S 83)
VAC.
MM
155
3b8
1S3
3bB
122
3b8
Sb
3b8
SS7
ISO
3b8
1S3
3b8
128
3bB
Sb
3b8
5S7
POHER
0.0
7.1
30.1
7.1
2.1
7.1
38.3
7.1
0.0
0.0
7.1
30.1
7.3
2.2
7.3
38.3
7.3
0.0
-------
TABLEF-12. MASS EMISSIONS 8Y NINE-MODE EPA - METRIC UNITS
ENGINE-2
TE3T-2b2 RUN-02
1S7S CHEVROLET 350-CIO HO ENGINE PROJECT 11-1311
10-22-7H EFI-TR-EGR-HEI lbBWVA-WAI-27SECU AUTO SYS
K» 1.001 HUH = 10.8 G/KG
I
t—'
(JO
CONCENTRATION AS MEASURED
MODE
1 IDLE
2 2s PCT
3 55 PCT
1 25 PCT
5 10 PCT
b 25 PCT
7 SO PCT
8 25 PCT
S C.T.
1 IDLE
2 25 PCT
3 55 PCT
1 25 PCT
S 10 PCT
b 2S PCT
7 So PCT
8 25 PCT
S C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
HC-FID
b3b
155
21
5b
58
52
IS
17
3110
lOlb
251
10
b3
bb
58
IS
20
3b80
CO
.088
.1S3
.OS3
.1*7
.1S8
.Ibl
.331
.115
.005
.082
.201
.OS3
.117
.1SS
.Ibl
.318
.115
.010
C02
8.23
10. 7b
12.25
10. 7b
10. 7b
10.88
11.51
11. on
.08
8.23
10. 7b
12.25
10. bl
10. 7b
10. bl
11.51
10.88
.08
NOX-CL
as
18S
510
280
bO
2SO
bb3
210
S
as
232
513
312
h3
312
711
277
13
TOTAL
CARBON
B.38b
10.S70
12.31b
lo.su
10. ^bS
ii.nso
11.873
11. lib
.12S
B.122
10. SS?
12.317
10.7S1
lO.Sbb
10.811
ii.Bbo
10.SS7
.158
FUEL
G/HR
1588
8210
12S73
BUS
b18b
802S
2DS11
7131
0
Ib33
8210
12837
7S38
bill
7S83
21001
713S
0
CALCULATED G/HR
HC
13
13
3
S
1
1
2
1
0
21
21
S
5
1
5
3
1
0
CO
33
2S1
1S7
222
237
211
S10
155
0
32
308
1SS
21S
235
215
SQS
15b
0
NOX
2
17
IBS
bS
12
70
310
S3
0
2
SB
188
7b
12
77
318
bj
0
XT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.113
WEIGHTED G/HR
HC-FID
3.0
1.0
.1
.1
.2
.3
.3
.1
0.0
i.s
l.fc
.7
.1
.2
.1
.3
.1
0.0
CO
B
22
2S
17
11
IS
lOb
12
0
7
21
2S
17
13
IS
103
12
0
NOX-CL
.1
3.b
27.7
5.3
.7
S.f
35.0
».l
0.0
.»
».»
Z7.b
5.S
.7
s.s
3S.3
t.B
0.0
CKH
0.0
17.7
3S.7
18.3
7.5
18. •»
b5.2
18.1
0.0
0.0
17.8
3S.8
18. »
7.5
18. •»
bS.2
18. 1
0.0
VAC.
MM
ISO
3b8
1S3
3bB
»22
3b8
Sb
3b8
SS7
ISO
3b8
1S3
3b8
H22
3b8
Sb
3b8
SS7
_.__IIIUITC 1Q
MODE
1 I
2 25
3 55
1 2S
S 10
b 8s
7 So
8 25
S Cf
1 I
2 85
3 55
1 25
S 10
b 25
7 SO
8 25
S CT
ID MV CHP
n.is 17.7
1.83 11.5
1.73 7.b
1.83 11.5
2.b1 Ib.b
1.83 11.5
0.27 2.2
1.83 11. S
0.08 23.5
17.7
11. S
7.b
11.5
Ib.b
11.5
2.2
11.5
23.5
0.0
83.8
53.2
21. b
10.0
21. b
87.1
21.3
0.0
0.0
23. S
53.1
21. b
10.0
21. b
87.5
21. b
0.0
IflO T TC u
\jvn \t-unri/\J4 1C »
QiiM___r rnMDne T TC *«
TWO
ID
SPFrTFTFn ? N THF 7— 1 1 — 7£ DonrcnllDC«___ Qcr
orc(*l'lCLr 1 " inc r — 1 1 — / 3
CTQ FC BSFC
0
b2
138
bl
2b
bl
227
b3
0
U
fa2
13S
bl
2b
bl
227
bl
0
Ai t ic f no
*l_"t "UK
AI lie1 c no
CYCLE COMPOSITE -
s INTAKE C02
3.5
18.1
28. b
17.9
11.3 1.
17.7
lb.1
lb.1
0.0
3.b
18.1
28.3
17.5
11.2 1.
17. b
1b.3
lb.1
0.0
HC- FID
CO- NDIR
NOX-CL
R
7bl
538
728
131
71S
528
b7h
I
R
758
530
710
118
711
529
bbb
I
0.35C
0.3SC
0.3SC
• n u^ i. v vr
RSNOX
R
2.0
3.b
2.8
1.2
2.S
3.b
2.2
I
R
2.1
3.5
3.1
1.8
3.1
1.0
2.5
I
.3)
11.8)
1.3)
*s. wr u
F/A KG/KM HR RPM
.039
.050
.OSb
.050
.050
.050
,0b7
.051
.002
.03S
.050
.OSb
.01S
.050
.019
.Ob7
.050
.002
t O.bSC
t O.b5(
+ 0.bS(
R
.1b3
.327
.113
.870
.137
.321
.111
I
R
.Ibl
.322
.132
,8b3
.131
.322
.105
I
11
1
HC +
bOO
2010
2020
2010
2010
2010
2020
2010
2010
bOO
2010
2020
2010
2010
2010
2020
2010
2010
.5) =
.7) =
.7) s
NOX =
SFC =
P AI P
I *LL
A/F
25. S
20.0
17.9
20.1
20.0
1S.S
15.0
IS. 8
IBb.l
25.7
IS. 9
17. S
20.3
20.0
20.3
1S.O
20.0
155.2
.398
11.710
1.530
1.S28
.387
HC
53.1
17.1
7.3
b.2
3.8
5.7
1.8
1.7
0.0
5b.8
18. b
7.S
1.5
2.8
1.2
1.0
1.3
0.0
G/KW
G/KW
G/KW
G/KW
KG/KW
CO NOX FUEL
3.1
s.s
12.8
7.S
b.O
8.2
Ib.S
5.3
0.0
3.3
10. b
12.8
7.5
b.O
8.1
1S.S
5.1
0.0
1 y
1 C
i p
1 C
HR
HR
HR
HR
HR
.5 1.9
l.t 8.5
33.7 25. b
b.S 8.1
.8 S.O
b.fa 8.3
12.5 31.7
S.O 7.7
0.0 0.0
.5 S.I
S.O 8.5
31.0 25.1
b.b 8.2
.8 1.9
b.b 8.3
11.2 31.9
5.1 7.7
0.0 0.0
3
1.7
( .2S7 BS)
( 8.755 BS)
( 3.378 BS)
( 3.b7S BS)
( .b3b 83)
POWER
0.0
7.1
30.1
7.3
2.2
7.1
38.3
7.3
0.0
0.0
7.1
30.1
7.3
2.2
7.3
38.3
7.3
0.0
-------
TABLE F-13. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-2
TE3T-2b2 RUN-03
1175 CHEVROLET 350-CIO HD ENGINE---PROJECT 11-1311
10-22-7b EFI-TR-EGR-HEI IbBWVA-WA1-27SECU AUTO SYS
K = .985
HUM = 10.1 G/KG
CONCENTRATION
MODE
1 IDLE
2 25 PCT T
3 55 PCT T
1 25 PCT T
5 10 PCT T
b 25 PCT T
7 9o PCT T
B 25 PCT T
9 C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
1 25 PCT T
s in PCT T
b 25 PCT T
7 90 PCT T
8 25 PCT T
9 C.T.
HC-FID
52R
112
13
39
Ib
11
11
11
3110
120
222
35
51
SB
51
Ib
17
3200
CO
.082
.181
.077
.13b
.181
.Ibl
.37b
.101
.005
.072
.113
.088
.153
.181
.151
.337
.101
.005
AS MEASURED TOTAL
C02
8.11
10.30
12.38
10. 7b
10. bl
10. 7b
11.23
10. 7b
.08
7.95
10.53
12.12
10.53
10.11
10.53
11.23
10.53
.08
NOX-CL CARBON
30 B.279
2b3 10.193
193 12.158
291 in. 901
57 1 u . 8 2 b
300 10.929
bHO 11.b07
2h3 in.SbB
b .129
25 H.121
2?0 10.7H7
S[J2 12.211
2bS Ill.b89
58 10.518
3[|S 10. Ml
bbl 11.5h9
290 10.b3b
B .105
FUEL
G/HR
15B8
8137
13101
7983
b532
8Lb5
21183
7bbb
0
158B
SPSS
13151
8119
bS77
8210
21273
77Sb
0
CALCULATED G/HR WT .
HC
11
10
2
3
3
3
2
1
0
19
11
1
5
1
1
3
1
0
CO
32
211
Ibl
202
221
218
1100
118
0
2B
219
Hi
235
227
21b
991
153
0
NOX
2
bl
170
70
11
73
301
bl
0
2
55
177
bb
12
77
317
bS
0
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.1*3
WEIGHTED G/HR
HC-FID
2.5
.8
.2
.2
.2
.3
.2
.1
o.o
1.S
1.1
.b
.3
.2
.3
.3
.1
0.0
CO NOX-CL CKM
7
23
21
Ib
13
11
121
11
0
7
23
28
18
13
11
112
12
0
.1 0.0
5.3 17.8
21.9 31.3
5.1 18.1
.b b.1
S.b 18.1
31.3 bS.S
1.7 18.1
0.0 0.0
.1 0.0
1.3 18.0
2b.O 31.1
5.1 18. b
.7 b.9
5.1 18.5
35. B bS.7
5.3 18.5
0.0 0.0
VAC.
MM
155
3bS
113
3bB
122
3b8
Sb
3b8
517
155
3bB
113
3b8
122
3b8
Sfa
3b8
597
____IIUfTC A Q GDC f 1
MODE ID
1 I 0.15
2 25 I.b9
3 55 .l.bl
1 25 l.bl
S 10 2.32
b 25 I.b9
7 10 0.31
8 25 1.B8
1 CT 0.08
1 I
2 25
3 55
1 25
S 10
b 25
7 10
Bpc
C 9
1 CT
aiii
Our
SUf
TWO CYCLE
Will IU 1*3
MV CHP
17.9
11.5
7.b
11.5
Ib.b
11.5
2.2
11.5
23.5
17.9
11.5
7.b
11.5
Ib.b
11.5
2.2
ss!s
0.0
23.1
52.7
21.7
1.3
21.7
87.8
21.7
0.0
0.0
21.1
53.5
21.1
1.3
21.9
88.1
p u q
C T . T
0.0
*n9 T TF
UO 1 1 C
>AC T TC
COMPOSITE -
*jr fci. 1
CTQ
0
b2
137
hi
21
bS
228
b5
0
O
b3
138
bS
21
b5
228
L C
O 9
0
U A 1 1 IF
V *LUC
F T Ffl T N T HC 7 w 1 1 • 7C
• i CIS i r< Int '41/3
FC BSFC
3.5 R
18. b .779
28.1 .511
17. b .713
11.1 1.555
18.0 .721
1b.7 .532
1 b . 1 . b B 3
0.0 I
3.S R
IB. 2 ,7Sb
21.0 .512
17.1 .719
11. S 1.5b3
18.1 .728
1b.9 .532
171 U R R
1. r ( i • n f? e
0.0 I
HC- FID 0.35C
CO- NDIR 0.3S(
NOX-CL 0.35(
ppnrrni ID
r nULCUUK
BSNOX
R
2.9
3.2
2.9
1.2
3.0
3.5
2.5
I
R
2.3
3.3
2.7
1.3
3.1
3.b
Jo
. O
I
.2)
12.5)
1.3)
F/A
.038
.018
.05b
.050
.011
.050
.Obb
.050
.002
.037
.011
.055
.011
.018
.011
.ObS
n* 9
. U T T
.002
+ 0
* 0
+ 0
_ 9Pr
— or L
KG/KW HR
R
.171
.331
.131
.91b
.113
.321
.lib
I
R
.IbO
.330
.138
.951
.113
.321
U • Q
• T 1 O
I
.b5(
.b5( 12
.bS( 1
HC *
ID = INTAKE C02
RPM
bOO
2010
2020
2010
2010
2010
2020
2010
2010
faOO
2020
2030
2020
2010
2020
2030
Pn a fi
cue U
2020
.1) =
.1) =
.1) =
NOX =
SFC =
r AI r
L ALL
A/F
2b.2
20.9
17.7
20.1
20.3
20.1
15.2
20.2
IBb.l
2b. 7
20.1
18.1
20.5
20.7
20.5
15.3
y n L
C U * O
515.0
.318
12.217
1.325
1.b71
.392
HC
Sb.7
17.1
5.0
5.1
3.9
5.8
l.b
l.S
0.0
57.1
18.1
7.1
1.1
2.9
1.2
3.8
i^
• 3
0.0
u
G/KH
G/KM
G/KM
G/KM
KG/KM
CO
3.1
l.b
10.2
b.b
5.3
B.I
52.1
1.8
0.0
2.8
1.9
12.1
7.8
S.b
8.2
18.5
SI
• 1
n.o
I 3
1C
» 3
1C
HR (
HR (
HR (
HR (
HR (
nc TnT 1 1
NOX FUEL
.5 1.1
b.S fl.b
30. b 25.5
b.7 8.1
.8 1.1
b.1 8.3
12.1 31.7
5.7 7.8
0.0 0.0
.1 1.1
5.1 8.1
31.2 25.5
b.1 8.3
.8 5.0
7.1 8.3
13.0 31.8
0.0 0.0
»3
• 3
u U
.2bO BS)
1.110 BS)
3.225 BS)
3. IBS B3)
.bll 83)
POMER
0.0
7.1
30.1
7.1
2.1
7.1
38. S
o!o
0.0
7.1
30.3
7.1
2.0
7.1
38.1
0.0
-------
ENGINE-?
TABLE F-14. STEADY STATE EMISSIONS BY EPA PROCEDURE - METRIC UNITS
1975 CHEVROLET 35C-CIO HO ENGINE PROJECT 11-H311
TEST-2b2 RUN-HOT 10-22-7b EFI-TR-EGR-HEI lbB-WAI-275ECU AUTO SYS
Ks 1.001 HUM= 10.8 6/KG
CONCENTRATION
MODE RPH HC-FID CO
1 2030
2 2030
3 2030
MODE ID
1
2
3
50
55
52
MV
.3
.3
.3
.•us
!518
CHP
101.0
101.2
101. »
AS MEASURED TOTAL
C02 NOX-CL CARBON
13.93
It. 23
1».23
920
BP2
AS SPECIFIED
CTO FC
2bl
2b2
2b2
50.9
50.7
52.0
lH.72b
1».75H
IN THE 7-
BSHC
.'10
.09
FUEL
CONS.
23088
22997
23587
11-75 PR(
BSCO
13.12
15.38
Ib.bS
CALCULATED G/HR
HC CO N02
9
10
9
BSNOX
1.89
1.H8
lb?3
BSFC
.SOH
.501
.513
H57
tsi
"-CALC —
A/F F/A
15.5
15.1
15.1
.OfaS
.Obb
.Obb
CORRECTED G/HR
HC-FIO CO NOX-CL
9!8
MC
.IB
.13
.13
1S»S
Ib73
CO
18.00
20. bj
22.33
t92.1
HSR.O
H51.3
NOx
fa.Sb
b.10
b.Ol
VAC.
CKN MM
75.3
75.5
75. b
SFC
KG/KH HR
.307
.305
.312
8
8
8
ID -
-------
TABLE F-15. MAS3 EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-2
TEST-2b3 RUN-01
1975 CHEVROLET 350-CID HD ENGINE PROJECT 11-1311
. lo-2S-7b EFI-TR-EGR-HEI IbBHVA-WA1-275ECU AUTO SYS
K= .950 HUM= 8.7 G/KG
CONCENTRATION
MODE HC-FIO CO
1 IDLE 552
2 25 PCT T 108
3 55 PCT T 15
1 25 PCT T 2b
5 10 PCT T 11
b 25 PCT T 3b
7 SO PCT T 12
8 25 PCT T It
9 C.T. 3200
1 IDLE 880
2 25 PCT T 200
3 55 PCT T 3b
1 25 PCT T 11
5 10 PCT T b?
b 25 PCT T 17
7 9o PCT T 20
B 25 PCT T 19
S C.T. 3200
.093
.170
.082
.117
.193
.170
.300
.098
.010
.082
.2b3
.101
.193
.201
.193
.300
.101
.020
-UNITS AS
MODE 10 MV CHP
1 I 0.27 17.5
Z 25 1.78 lt.1
3 55 1 b* 7.0
* 25 1.78 11.1
5 10 2. 37 lb.2
fa 25 1.78 11.1
7 9n 0.39 2.1
825 217 11.1
9 CT 0.15 23.5
IT 17. 1
225 11.1
3 55 7.0
125 11.1
510 lb.2
b 25 1H.1
7 90 2.1
8 25 11.1
9 CT 23.5
0.0
21.0
53.1
21.8
9.3
21.8
87.2
21.8
0.0
o.n
21. 1
53.8
21.8
9.3
21.9
87.5
21.9
0.0
SUM— (COMPOSITE
SUM (COMPOSITE
THO CYCLE COMPOSITE -
ir - TMTAKF rn
a
AS MEASURED TOTAL
C02 NOX-CL CARBON
8.23 37 8.382
10.53 270 10.712
11.99 bSO 12.071
10. 7fe 3)0 in. IIP
10.53 90 10.727
10. bl 305 10.811
11.23 715 11.531
10.88 320 in. 980
.11 8 .110
8.01 31 8.217
10.53 220 10.815
11. Bb b50 11.9b8
10. 7b 2hS 111.957
10.53 100 10.711
10. 7b 290 10.958
15.23 730 15.532
10. 7b 280 lO.Bbb
.15 10 .191
SPECIFIED IN THE 7-11'
CTO Ft B3FC
0 3.5 R
b2 18.1 .7b7
139 29.1 .550
bl 17.1 .72?
21 11. b 1.577
fa5 18.0 .725
2Ph 1b.5 .533
b5 17.1 .b89
0 . 0.0 I
03.1 R
b3 18.5 .7bB
139 29.7 .552
h5 17.9 .720
21 11. B 1.587
b5 18.1 .728
22b Ib.b .533
b5 17.1 .b87
0 0.0 I
VALUE FOR CYCLE 1)
HC- FID 0.
co- NDIR o.
NOX-CL 0.
FUEL
G/HR
1588
R31b
1333b
BJ 19
bb22
81b5
21092
775b
0
1512
8391
13172
8119
b713
8210
21137
77Sb
0
CALCULATED G/HR
HC CO NOX
11
9
2
2
3
3
2
1
0
18
17
5
1
5
1
3
1
0
-75 PROCEDURE
BSNOX F/A
R
2.8
1.3
3.0
1.9
3.0
3.8
2.9
I
R
2.3
1.3
2.5
2.1
2.8
3.b
2.b
I
35(
35( 11
35( 1
.039
.019
.055
.050
.019
.019
.ObS
.050
.002
.038
.019
.051
.050
.019
.050
.Ob9
.050
.002
.2) + 0.
.3) + 0.
.9) + 0.
3fa
2b7
181
222
210
259
879
110
0
31
112
23b
288
258
291
821
150
0
SFC
KG/KH HR
R
.1b7
.335
.131
,9fao
.111
.321
.119
I
R
.1(>7
.335
.138
,9bS
.113
.321
.118
I
bS(
b5( 12
bS( 1
HC +
2
bb
22b
73
18
73
327
71
0
2
51
231
b2
20
b9
313
b3
0
RPM
bOO
2020
2020
2020
2010
2020
2030
2020
2020
580
2020
2030
2020
2020
2020
2030
2020
2020
.1) =
.1) =
.7) =
NOX =
SFC =
WT. WEIGHTED G/HR
FACT. HC-FID CO NOX-CL CKH
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
CALC
A/F
25.9
20.5
18.3
20.1
20.1
20.3
15.3
20.0
171.0
2b.1
20.3
18.1
20.0
20.1
20.0
11.1
20.2
125.5
.333
12.031
1.7b7
5.100
.391
2.b
.7
.3
.2
.2
.2
.2
.1
0.0
1.1
1.3
.7
.3
.3
.3
.1
.1
0.0
HC
SB. 5
15.9
b.l
3.7
3.8
5.2
5.0
1.9
0.0
55.7
17.8
8.9
3.7
3.5
1.0
1.8
l.b
0.0
.2
, 1
G/KH
G/KM
G/KW
G/KM
KG/KW
B
21
27
17
11
20
99
11
0
• 7
32
35
22
IS
22
93
12
0
•-PERCENT
CO
3.B
9.5
12.5
7.9
b.3
9.2
15.8
5.0
0.0
3.0
13.1
11. b
9.3
b.2
9.1
39.2
1.8
0.0
11
12
HR (
HR (
HR (
HR C
HR (
.5 0.0
5.1 17.9
33.3 39.8
S.b 18.5
1.0 b.9
S.b 18.5
37.0 bS.O
5.5 18.5
0.0 0.0
.1 0.0
1.1 18.0
33.9 10.2
1.8 IB. 5
1.1 7.0
5.3 18.5
35.1 bS.2
1.9 18. b
0.0 0.0
OF TOTAL--
NOX FUEL
.5 1.9
5.5 8.5
35. b 25.9
b.O 8.2
1.1 5.0
b.O 8.3
39.5 31.1
5.9 7.9
0.0 0.0
.5 1.7
l.b 8.5
37.7 2b.O
5.3 8.2
1.2 5.0
5.9 8.3
39.1 31.1
5.1 7.8
0.0 0.0
H.9
1.7
.218 B3)
8.971 BS)
3. 555 BS)
3.803 BS)
.b17 BS)
VAC.
MM
111
358
178
358
111
358
53
358
597
112
358
178
358
111
358
53
358
POHER
0.0
7.2
30.1
7.1
2.0
7.1
38.2
7.1
0.0
0.0
7.2
30.5
7.1
2.1
7.1
38. 1
7.1
0.0
-------
TABLE F-I<>.MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-2
TEST-2b3 RUN-02
1975 CHEVROLET 350-CIO HO ENGINE PROJECT 11-*311
io-25-7b EFI-TR-EGR-HEI ibBwvA-wAi-27SEcu AUTO srs
HUM =
7.b G/KG
MODE
CONCENTRATION AS MEASURED TOTAL FUEL
HC-FID CO COS NOX-CL C»"BON G/HR
CALCULATED G/HR
HC CO NOX
HT. WEIGHTED G/HR VAC.
FACT. HC-FID CO NOX-CL CKW MM
1 IDLE
8 25 PCT
3 55 PCT
» 25 PCT
s 10 PCT
b 25 PCT
7 9n PCT
8 2? PCT
* C.T.
1 IDLE
2 25 PCT
3 55 PCT
* 25 PCT
5 10 PCT
fa 25 PCT
7 So PCT
8 25 PCT
<» C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
58*
12*
P2
31
b"t
*h
17
19
3520
9bO
200
*2
So
83
50
2D
20
3520
.082
.113
.ose
.159
.187
.181
,2b3
.07*
. b80*
8301
20820
7802
0
1?
10
3
2
*
*
3
1
0
18
lb
5
*
b
*
3
2
0
31
293
177
231
23b
270
733
133
0
28
*2*
189
25b
232
297
bBl
1**
0
2
b*
217
b*
21
73
303
59
0
2
*7
222
bb
21
b3
31b
59
0
.232
.077
.1*7
.077
.057
.077
.113
.077
.1H3
.232
.077
.1»7
.077
.057
.077
.113
.077
.1*3
2.7
.8
.*
.2
.3
.3
.3
.1
0.0
*.3
1.2
.7
.3
.3
.3
.»
.1
. 0.0
7
23
2b
18
13
21
83
10
0
b
33
28
20
13
23
77
11
0
.5
S.O
31.9
*.9
1.2
S.b
3*. 3
*.b
0.0
.5
3.b
32. b
S.I
1.2
*.«»
35.7
*.s
0.0
0.0
17. S
39.8
18. S
b.9
18.5
bS.O
18.5
0.0
0.0
17.9
*0.0
18. S
7.5
18.5
bS.l
18.5
0.0
*»7
358
17H
358
*li
• 358
53
358
597
**7
358
178
358
*u
358
S3
358
597
..._IIMTT
-------
TABLE F-17. MASS EMISSIONS PY NINE-MODE EPA - METRIC UNITS
ENGINE-2b3 TEST-2b3
1975 CHEVROLET 350-CID HD ENGINE PROJECT 11-1311
RUN-1EGR 10-25-7b SAMPLE OF RECIRCULATED EXHAUST
,9b5
HUM =
4.3 G/KG
oo
CONCENTRATION
MODE HC-FID
1 IDLE 8b1
2 25 PCT T bOB
3 55 PCT T 781
1 25 PCT T 180
S 10 PCT T 172
b 25 PCT T 19b
7 90 PCT T 2112
B 25 PCT T 132
9 C.T. 3300
1 IDLE 8b1
2 25 PCT T bOB
3 55 PCT T 781
1 25 PCT T 180
S 10 PCT T H72
b 25 PCT T 19b
7 90 PCT T 2112
8 25 PCT T 132
9 C.T. 3200
CO
.051
,13b
.101
.117
.21b
.170
1.137
.101
.010
.051
.13b
.101
.117
.21b
.170
1.137
.101
.010
UNITS AS
MODE ID MV
1 I 17.5
2 25 11.1
3 55 7.0
1 25 11.1
S 10 lb.2
b 25 11.1
7 9Q 2.1
8 25 11.1
9 CT 33. 5
1 I 17.5
2 25 11.1
3 55 ' .0
1 25 11.1
5 10 lb.2
b 25 H.l
7 90 2.1
B 25 11.1
9 CT 23.5
CHP
0.0
23.9
52.7
21.7
9.2
21. b
87.0
21.7
0.0
o.n
23.9
52.7
21.7
9.2
21. b
87.0
21.7
0.0
SUM---(COHPOSITE
SUM--- (COMPOSITE
THO CYCLE COMPOSITE -
ID =
AS MEASURED TOTAL FUEL
C02
b.17
9.8b
10. bl
10. 19
9. Kb
10.19
8.81
10.07
.15
b.17
9.8b
10. bl
10.19
10.19
8.81
10.07
.15
NOX-CL CARBON G/HR
15 b.312 1588
190 10.0b3 831b
b20 10.830 1312b
210 10.310 8210
90 in. 127 b801
250 10.111 8301
770 10.177 21001
2bO 10.221 775b
8 .180 0
15 b.312 1588
190 10.0b3 831b
b?0 10.830 131S(.
210 10.390 8210
90 10.127 bBOl
250 10.111 8301
770 10.177 21001
2bO 10.221 775b
8 .I8n 0
CALCULATED G/HR
HC
23
55
107
12
35
13
17b
3b
0
23
55
107
12
35
13
H7b
3b
n
SPECIFIED IN THE 7-11-75 PROCEDURE
CTO
11
b2
137
bl
21
bl
225
bS
0
0
b2
137
bl
21
bl
225
bS
0
VALUE
VALUE
FC BSFC BSNOX
3.5 R R
18.1 .7b9 J.I
29. b .5b2 1.7
18.1 .731 2,5
15.0 I.b23 2.1
18.3 .713 2.b
1b.3 .532 5.9
17.1 .b92 2.b
0.0 I I
3.5 R R
18.1 .7b9 2.1
29. b .5fc? 1.7
18.1 .731 2.5
15.0 I.b23 2.
18.3 .713 2.
lb.3 .532 5.
17.1 .b92 2.
0.0 1
HC- FID 0.35C 1
CO- NDIR 0.3S( 35
NOX-CL 0.35C b
F/A
.029
.OHb
.019
.017
.Olb
.018
.017
.017
.002
.029
.Olb
.019
.017
.Olb
.018
.017
.017
.002
.8) + 0.
.0) t 0.
.0) t 0.
CO
2b
229
2bO
235.
293
271
1738
159
0
2b
229
2bO
235
293
271
1738
159
0
SFC
KG/KW HR
R <
. .1b8
.312
.lib
.987
.152
.321
.121
I
R
.IbB
.312
.lib
.987
.152
.321
.121
I
bS( 1
b5( 35
b5( b
HC +
NOX
1
SO
21b
bl
19
bl
509
b3
0
1
50
21b
bl
19
bl
509
b3
0
RPM
bOO
2010
2020
2010
2010
2010
2030
2010
2020
bOO
2010
2020
2010
2010
2010
2030
2010
2020
.8) =
.0) =
.0) =
NOX =
SFC =
HT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
C»LC
A/F
31.1
21.7
20.2
21.1
21. b
21.0
21.2
21.1
131.5
31.1
21.7
20.2
21.1
21. b
21.0
21.2
21.1
131.5
1.751
35.011
5.9bB
10.722
.398
WEIGHTED G/HR
HC-FID
5.3
1.2
15.7
3.2
2.0
3.3
53.8
2.8
0.0
5.3
1.2
15.7
3.2
2.0
3.3
53.8
2.8
0.0
CO
b
IB
38
18
17
21
535
12
0
b
18
38
18
17
21
535
12
0
NOX-CL CKM
.3 0.0
3.9 17.8
3b.2 39.3
1.7 18.1
1.1 b.9
1.9 18.1
57.5 bl.9
1.9 18.1
0.0 0.0
.3 0.0
3.9 17.8
3b.2 39.3
1.7 18.1
1.1 b.9
1.9 18.1
57.5 bl.9
1.9 18.1
0.0 0.0
VAC.
MM
111
358
178
358
111
358
53
358
597
111
358
178
358
111
358
53
358
597
HC
5.9
1.7
17.1
3.5
2.2
3.7
59.5
3.1
0.0
5.9
1.7
17.1
3.5
2.2
3.7
59.5
3.1
0.0
1.8
1.8
G/KW
G/KH
G/KH
G/KH
KG/KH
CO
.9
2.b
5.7
a. 7
2.5
3.2
80.5
1.8
0.0
.9
2.b
5.7
2.7
2.5
3.2
80. 5
1.8
0.0
35
35
HR
HR
HR
HR
HR
NOX FUEL
.2 1.8
3.1 8.1
31.9 25.9
1.1 8.3
1.0 5.1
1.3 B.I
50.7 31.2
1.3 7.8
0.0 0.0
.2 1.8
3.1 8.1
31.9 25.9
1.1 8.3
1.0 5.1
1.3 8.1
50.7 31.2
1.3 7.8
0.0 0.0
b.D
b.O
( 3.515 BS)
(2fa.l08 B3)
( 1.151 83)
( 7.99b BS)
( .bSS BS)
POHER
0.0
7.2
30.2
7.1
2.1
7.1
38.3
7.1
0.0
0.0
7.2
30.2
7.1
2.1
7.1
38.3
7.1
0.0
-------
TABLE F-is. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINES
1175 CHEVROLET 350-CID HO ENGINE PROJECT 11-1311
TEST-2b3 RUN-8EGR 10-8S-7b SAMPLE OF RECIRCULATED EXHAUST K= .911 HUMS 7.3 G/KG
CONCENTRATION AS MEASURED TOTAL
MODE HC-FID
1 IDLE nao
a as PCT T S9a
3 55 PCT T 752
i as PC.T T iib
s in PCT T IBO
b as PCT T 180
7 10 PCT T ea?a
B as PCT T lib
1 C.T. 3800
1 IDLE 1120
2 as PCT T sia
3 55 PCT T 7Sa
i as PCT T iib
s in PCT T IBO
b 25 PCT T 1BQ
7 10 PCT T 3278
8 35 PCT T lib
1 C.T. 3800
CO
.077
.170
.153
.113
.21b
.201
1.157
.13b
.020
.077
.170
.153
.113
.21b
.201
1.157
.13b
.020
COa NOX-CL CARBON
b.17 11 b.3bS
10.07 eoO 10.305
10. 7b b30 10.99b
10.30 abS 10.517
I.ib 80 10.a?8
10.30 850 10.557
8.71 BIO 10.115
I.ib a?5 10.118
.15 10 .111
b.17 11 b.3b5
10.07 800 10.305
10. 7b b30 10. Hb
10.30 2bS 10.517
I.ib 80 10.22B
10.30 250 10.557
8.71 "10 10.115
i.ib 875 io.ua
.15 10 .111
FUEL
G/HR
H0b
8810
13109
Bill
bill
Bass
aneao
7bbb
n
110b
sain
13101
8119
bill
8?55
2U"2Q
7bbb
0
CALCULATED G/HR
HC
ab
52
91
12
33
11
510
31
0
2b
sa
99
12
33
11
510
31
0
CO NOX
31 1
873 18
3b8 887
300 b8
271 is
388 51
1811 SOI
208 b3
0 0
31 1
873 18
3bB 887
3nn b8
871 15
383 51
1811 501
808 fa3
0 0
WT.
FACT.
.838
.077
.117
.077
.057
.077
.113
.077
.113
.23a
]077
.117
.077
.057
.077
.113
.077
.113
WEIGHTED
HC-FID
b.l
1.0
11.5
3.2
1.1
3.2
57. 7
a.b
0.0
b.l
1.0
11.5
3.2
1.1
3.2
57.7
2.b
0.0
CO
8
81
51
83
Ib
as
S11
Ib
0
8
ai
51
23
Ib
25
511
Ib
0
G/HR
NOX-CL CKM
.8
3.7
33.1
1.8
.S
l.b
57.0
1.8
0.0
.e
3.7
33.1
1.8
.1
l.b
57.0
1.8
0.0
0.0
18.0
10.8
IS.b
7.5
18. b
b5.2
18. b
0.0
0.0
18.0
10.2
18. b
7.5
18. b
bS.8
18. b
0.0
VAC.
MM
117
358
178
358
111
358
53
358
517
117
358
178
358
111
358
53
358
517
—-——UNITS AS SPFrTFfFn TM Tur ?_li_ic Donr?nllDC____
MODE 10 MV
1 I 17. b
8 as 11.1
3 55 7.0
i as n.i
s in ib.a
b as 11.1
7 m a.i
B as 11.1
1 CT 33.5
1 I 17. b
2 25 11.1
3 55 7.0
» 25 11.1
5 10 lb.8
b 25 11.1
7 10 2.1
8 25 11.1
1 CT 23.5
CHP
0.0
21. a
51. 0
ai.i
in.i
21.1
87.5
21.9
n.o
0.0
21.2
51.0
ai.i
10.1
21.1
87.5
21.1
0.0
SUM---CCOMPOSITE
SUM--- (COMPOSITE
TWO CYCLE COMPOSITE -
ID a
CTO FC BSFC
n 3.1 R
b3 18.1 .719
IHO aa.i .535
bS 17.1 .719
2b 11. a i.io5
bS 18. a .731
aab 15.9 .gas
bS lb.9 .b 78
o o.n i
0 3.1 R
b3 18.1 .719
1»0 as. 9 .535
bS 17.9 .719
2b 11.2 1.105
bS 18. 2 .731
22b 15.9 .525
bS lb.9 .b78
o n.o i
HC- FID 0.3SC
CO- NDIR 0.35(
NOX-CL 0.3S(
1 l\ Vb> 1.1
BSNOX
R
a.o
1. 3
a.s
1.5
S!B
a.b
*i
R
a.o
1.3
2.5
1.5
a.i
5.8
?L
• O
I
,.
3b.
S.
QCr
l/wr\i. wt v
F/A KG/KW HR RPM
.030
.017
.050
.018
.017
.018
.017
• 01 b
.002
.030
.017
.050
.018
.017
.018
.017
fltti.
• U T O
.002
1) t O.bSC
8) + O.bSC
7) + O.b5(
R S70
.isb aoao
.32b 8030
.138 aoao
.851 3020
.115 aoao
.319 2030
.113 aoao
I 8020
R 570
.isb 2020
.32b 8030
.138 aoao
.851 8080
.115 2080
.311 8030
it i 3 9n 9 n
• ^ J. 3 CUCU
I 2020
1.1) =
3b.8) =
5.7) *
HC + NOX =
SFC =
r AI r
L ALL
A/F
33.8
21.2
11.1
20.7
21.1
20.7
21.3
PI 5
t A . 3
125.5
33.8
21.2
11.1
20.7
ai.i
20.7
21.3
91 C
C 1 • 3
125.5
1.858
3b.B33
5.702
10.551
.3BS
HC
b.S
H.3
IS.b
3.S
2.0
3.1
bl.1
ep
• o
0.0
b.S
1.3
IS.b
3.5
2.0
3.1
bl.1
2g
. 0
0.0
1.1
1.1
G/KN
G/KW
G/KM
G/KM
KG/KM
CO NOX FUEL
1.1
3.0
7.7
3.3
2.2
3.5
77.0
Bq
• 3
0.0
1.1
3.0
7.7
3.3
2.2
3.5
77.0
?j
• 3
n.o
37
37
HR
HR
HR
HR
HR
.2
3ols
1.3
.8
1.2
S2.1
0.0
.2
3.1
30.5
1.3
.8
1.2
52.1
0.0
5.7
5. 7
( 3.b82
(27.1bfa
C 1.2S2
( 7.871
( .b32
1.1
B.S
25.8
8.1
1.1
B.S
31. b
0.0
1.1
8.5
25.8
8.1
1.1
B.S
31. b
0.0
B3)
BS)
BS)
83)
BS)
POWER
0.0
7.2
30. S
7.1
2.8
7.1
3B.O
0.0
0.0
7.8
30.5
7.1
2.2
7.1
38.0
0.0
-------
TABLE F-19. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-a
1175 CHEVROLET 350-CID HO ENGINE---PROJECT 11-H3U
TEST-2b3 RUN-Ot !O-a5-7b SAMPLED FROM SIDE WITH AI DISCONNECTED
HUM:
7.9 G/KG
I
N>
O
CONCENTRATION AS MEASURED TOUL
MODE HC-FID
1 IDLE
a as PCT T
3 55 PCT T
t as PCT T
5 10 PCT T
b as PCT T
7 1o PCT T
B as PCT T
1 C.T.
1 IDLE
a as PCT T
3 55 PCT T
t as PCT T
5 10 PCT T
b as PCT T
7 In PCT T
B as PCT T
1 C.T.
S7b
too
HBO
aoo
too
aat
1S8»
aat
stto
IQRfl
too
bat
aat
33b
a?a
itat
ato
5120
CO COa NOX-CL CAfHON
.151 13.07 53 13-?13
.113 It. 31 3bO lt.b?B
,t17 It. 70 730 15. ?5?
.131 It.St 510 It. bit
.H17 1*.70 ItO 15.?t3
.151 It.St 500 lt.7at
s.abo ia.52 ioo is.iba
.170 lt.8b StO 15.055
.020 .15 10 .715
.151 ie.i3 t? n.au
,i7o it. as too it.->ts
.518 It.St 750 15.201
,13b It.SH 530 It. 70?
.381 lt.8b IbO I5.a87
.aib it.st sao it. 787
3.210 ia.3S ItO 15.753
.20t It. 70 530 It. "31
.015 .15 10 ,b7B
FUEL
G/HR
Ib33
83tb
13101
7813
b532
8210
20bBt
7711
0
lt-33
aaio
13101
7813
bssa
aaio
20513
7711
0
CALCULATED G/HR
HC
8
ab
t7
12
20
It
235
13
0
IS
afa
bl
It
Ib
17
ais
It
0
CO
31
aaa
8b3
ite
t30
171
8533
17b
n
to
115
10-U
its
335
ata
8t7b
213
0
NOX
a
b3
113
8t
11
8b
3bQ
85
0
a
70
111
88
ai
81
371
8t
0
HT.
FACT.
.238
.077
.It7
.077
.057
.077
.113
.077
.It3
,332
.077
.It7
.077
.057
.077
.113
.077
.It3
WEIGHTED S/HR
HC-FID
1.8
a.o
b.1
.1
1.1
1.1
ab.b
1.0
o.o
3.5
a.o
1.0
1.1
.1
1.3
at.i
1.1
0.0
CO
1
17
ia?
11
25
It
Ibt
It
0
q
15
153
11
11
11
158
Ib
0
NOX-CL CKH
.5 0.0
t.1 18.0
28. t tO. 8
b.S 18. b
1.1 7.b
b.b 18. b
tO.b bS.t
b.b 18. b
0.0 0.0
.t 0.0
S.t 18.0
21.3 to. 3
b.B 18. b
1.2 7.b
b.1 18. b
t2.B bS.S
b.S 18.7
0.0 0.0
VAC.
MM
ttt
358
178
358
til
358
53
358
Sit
ttt
358
178
358
toi
35B
S3
358
Sit
UNITS AS SPECIFIED IN THE 7-11
MODE ID
1 I
a as
3 55
t as
5 10
b as
7 ID
8 25
1 CT
1 I
a as
3 55
t as
5 10
b 25
7 10
8 25
1 CT
MV
17. S
lt.1
7.0
lt.1
ib.a
it.i
a.i
it.i
17.5
lt.1
7.0
lt.1
lb.1
lt.1
a.i
it.i
23. t
SUM — (CO
CHP CTO FC BSFC
0.0 0 3.b R
at.i b3 18. t ,7b3
St.O ItO aS.1 ,53b
at.i bs 17. t .bii
lo.i ab it.t i.tai
at.i b5 18.1 .72b
87.7 aa? ts.b .sao
2H.1 bS 17. n ,bB2
0.0 0 0.0 I
0.0 n 3.b R
at.2 b3 18.1 .718
st.i i»n an.i .531
as.o bS 17. t .bi7
10. a ah it.t I.HII
as.o bs is.i .7at
87.1 ea7 tS.f .517
25.0 bS 17.0 .bBO
0.0 0 0.0 I
SUM---(COnKU3i ( t v*i_uc run i.n_(_c c j
THO CYCLE COMPOSITE - HC- FID 0.
ID =
CO- NOIR 0.
NOX-CL 0.
-75 PROCEDURE
BSNOX
R
a. 7
3.b
S.t
1.1
3.5
t.a
3.5
I
R
a.i
3.7
3.b
a.i
3.b
t.t
S.t
I
35( a
35( bl
3S( 5
F/A
.ObO
.Obb
,0b8
.Obb
.ObB
.Obb
.073
.Ob7
.003
.ObO
.ObS
.ObB
.Obb
.obq
.Obb
,o?a
.Ob7
.003
.?) * 0.
.5) + 0.
.0) t U.
SFC
KG/KH HR
R
.tbt
.sab
.tas
.8bt
. tHl
.31b
.t!5
I
R
.tss
.3as
.tat
.8b3
.ttl
.31t
,t!3
I
bS( 2
bs( ba
b5( 5
HC +
RPM
b20
aoao
2030
aoao
aoao
aoao
2030
aoao
aoao
fa?0
aoao
2030
aoao
aoao
aoao
2030
aoao
aoao
• a) =
.b) =
.2) =
NOX =
SFC =
CALC
A/F
lb.7
is. a
It.b
is. a
It.b
15.1
13. b
It .8
211.3
lb.7
IS.t
It.b
is. a
it.b
15.1
13.8
lt.1
307. t
a.ais
ba.as*
5.101
7. 31t
. .385
HC
t.t
t.B
lb.7
2.3
a. 7
a.b
bt.l
2.t
0.0
8.1
t.b
21.0
2.H
a. a
3.1
Sb.O
a. s
0.0
2.2
a. a
G/KH
G/KH
G/KH
G/KN
. KG/KH
CO
.8
1.*
10.7
.1
2.1
1.2
81.7
1.1
0.0
.B
1.3
12. a
.1
l.b
l.b
71.8
l.t
0.0
ba
b3
HR
HR
HR
HR
-------
TA8LEF-20. STEADY STATF EMISSIONS BY EPA PROCEDURE - METRIC UNITS
ENGINE-2 "• ~ -- !"!_C^EVROLFT "n-cio H0 ENGINE PROJECT ll-f3U
icoi-eoj HUN'
CONCENTRATION
MODE RPM HC-FIO CO
1 2030
2 2030
MODE ID
1
2
50 ,»S7
»S .37b
— UNITS
MV CHP
.3 100. b
•KQI in-e^-7\
> EFI-T
R-EGR-I
AS MEASURED TOTAL FUEL
COS NOX-CL CARBON 'CONS.
13.78 907
I't.S'l 180
AS SPECIFIED
CTO FC
abO 51. 0
258 50.1
O.5B3
IN THE 7-11
B9HC
.01
.on
23133
HEI lbB-WAI-a75ECU AUTO SYS
CALCULATED G/HR
HC CO N02
8 1155 »9b
-75 PROCEDURE CALC
BSCO BSNOX BSFC A/F F/A
lb.37
11. b8
».
-------
TABLEF-21. MASS EMISSIONS BY 23 MODE PROCEDURE
ENGINE'S TEST-2b* RUN-1 EFI-TR-AEGR-HEI IbBWVA-WAI-275ECU
MODE
1
2
3
*
S
b
7
8
q
10
11
12
13
1*
IS
lb
17
19
19
20
SI
22
23
TQ
SPEED M«M
bOO
1200
1200
1200
1200
1200
1200
1200
1200
1200
bOO
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
bOO
2300
0.0
8.1
2*.*
Sb.9
78. b
IbO.O
23B,b
2bO,3
293.9
32S.7
0.0
0.0
353,5
323.7
28*. 7
2bO, 3
17b,3
8b, 8
bl,0
27.1
1.5
0.0
0.0
MV FUEL A/F
KW
0
1
3
7
10
20
30
33
37
*1
0
0
as
78
b^
b3
*2
21
15
7
2
0
0
MM KG/HR RATIO
**2 1
38* *
373 *
353 5
3*0 S
2*9 b
79 11
bl 12
*b 12
5 1*
*»* 1
58* 0
8 2b
38 23
5b 22
7b 21
183 1*
325 10
39* 8
*27 7
*39 b
**2 1
blO 0
.8 27
.7 18
.8 17
.1 18
.3 ia
.8 20
.3 15
.0 15
.5 15
.0 IS
.8 27
.0 55"
.1 IS
.9 IS
.* 15
,0 15
.8 18
.7 17
.2 21
.1 21
.5 21
.8 27
.0 bfa*
CALCULATED GRAM/HR WT.
MODE
1
2
3
it
S
b
7
P
q
10
ll
12
13
1*
15
lb
17
18
19
20
22
23
CYCLE
HC
19.0
5.1
.1
2.3
7.5
18.3
1.2
1.1
1.3
1.*
l*.b
o.o
3.5
2.1
I!B
i!s
2.9
3.0
3.b
lb.7
0.0
COMPOSITE
CORRECTED
CO
2S
lOfa
23
235
S3*
153
a
17
18
88
33
0
b9b
137
321
75
7b
**
173
17b
Ifab
38
0
HC
CO
NOX
SFC
NOX
NOX
1.8
3. fa
3.9
b.b
11. b
19*. 7
98.5 0
12*. 7
218.9 0
2*3.2 0
2.3
0,0
751.1
b90,7
335.3
313.0
307.2
3b.S 0
57.3
22. b 0
15.8 0
2.8
0.0
.319
5.589
b,559
.395
5,989
FAC.
.070
.ObO
.ObO
.050
.030
.OfaO
.000
.0*0
,000
.000
.070
,120
.025
.055
.035
.ObO
.ObO
.000
.ObS
,000
.000
.080
.ObO
GRAM/
GRAM/
GRAM/
KG/
GRAM/
.1
.2
.b
.3
.7
.3
.3
,5
. b
.3
.1
.*
.3
.b
.2
.b
,*
.8
.0
,»
.9
.0
•q
E. UNITS
TQ
0 3
b 10
18 10
*2 11
58 11
118 15
17b 2*
19? 2b
21b 27
238 30
0 *
0 0
2bO 57
238 52
210 *9
192 *b
130 32
b* 23
*5 18
20 15
7 1*
0 *
0 0
KM HR
KW HR
KM HR
KM HR
KM HR
FC
,q
.3
,b
.2
.7
.0
,9
,5
,b
.8
.0
.0
.5
.7
."*
.3
.7
.5
.0
.b
,*
.0
.Q
<
(
f
(
t
DRY
HC
859
133
22
5b
Ibb
290
IS
1*
15
15
b**
2882
19
12
11
12
lb
1*
3b
**
Sb
739
22*2
CONCENTRATION
CO
,OSb
,13b
.030
.275
.583
.120
,005
.010
,010
,0*b
,072
,005
,1*3
,0*0
.10*
,025
.030
.025
,109
.125
.125
,082
,010
SPECIFIC GRAM/
HC CO
R
5.02
.28
.33
,7b
,91
.0*
.03
,0*
.03
R
I
,0*
,03
.03
,03
.05
.Ob
.1"
,*b
1.59
R
I
.238
*,lbB
*,891
,bSO
*.*bb
R
103,7
7, fa
32.9
s*.o
7.b
.3
,5
.S
2.2
R
I
8,e
1,8
* . 7
1.2
1.8
2,1
11.8
2b.S
72.*
R
I
BS)
BS)
BS)
BS)
BS)
C02
7.8b
11.99
12.52
11.73
11.12
10. b*
1*,08
1*.39
1*,23
1*.S*
7,8b
.08
1*,39
1*.23
1*,5*
1 * . 2 3
11.99
12.38
10.30
10,07
9,8b
7,Sb
,08
KM-HR
NOX
R
3.5
1.3
, 9
1.2
^« 7
3.3
3.8
5,9
b.O
R
I
8.8
8.9
*,9
5,0
7.2
1,7
3.9
3.5
b,9
R
I
NOX
25
28
31
*7
77
930
370
*50
750
7bS
31
2
12bS
12*2
bbO
b*0
750
123
220
98
73
37
1
F-22
-------
TABLE F-22. MASS EMISSIONS BY 23 MODE PROCEDURE
ENGINE-2 TEST-2fa4 RUN-2 EFI-TR-AEGR-HEI lbBWVA-WAI-27SECU
MODE
2
3
4
5
fa
7
8
q
10
11
IS
13
14
IS
18
19
20
21
22
23
MODE
2
S
b
7
8
10
12
13
14
IS
lb
17
18
19
20
21
22
23
CYCLE
SPEED
TQ
N-M KW
MV FUEL A/F
MM KG/HR RATIO
bOO 0.0 0 442
1200 b.8 1 384
1200 27.1 3 373
1200 Sb.9 7 353
1200 81.3 10 34Q
1200 Ib2.7 20 239
1200 244,0 31 74
1200 2bS,7 33 53
1200 298.3 37 »i
1200 325.4 41 S
bOO 0.0 0 447
1200 0.0 0 579
2300 352.5 85 8
2300 322.7 18 3b
2300 290.1 70 Sb
2300 2b3,0 b3 7b
2300 17b.3 42 180
2300 89.5 22 323
2300 fa2.4 15 3gq
2300 29.8 7 422
2300 9,s s 439
bOO 0,0 0 442
2300 0,0 0 blO
CALCULATED GRAM/HR
HC CO NOX
17.3
10.4
1.2
b!?
17.3
1.0
. "
.
1.
14.
0.
2,
•
•
•
•
•
1.
2.
3.
lb.
0.
COMPOSITE
^
'
0
0
0
q
b
4
3
*
3
a
b
3
0
0
CORRECTED
30
107
7b
270
5b3
182
40
52
55
ISO
31
0
912
122
333
7b
b4
44
181
181
Ib9
32
0
HC
CO
NOX
3FC
NOX
2.1
3,b
*. 7
7.0
12.1
198.5
91.7
129,1
223.3
227.2
2,3
0.0
731.2
7b2.8
379.9
312.1
301.1
37.1
bl.O
23.2
15.1
2.*
0.0
.297
b.231
b.771
.391
b.SbS
1.8 27,1
*.b 18,7
4.8 18. fa
».^ 19.0
5.4 19.1
b.8 20.5
11.0 15,8
11,9 15.8
12.5 15.9
13.8 IS.b
1.7 27,4
0.0 559,4
2b.O 15.4
23,8 15.9
32,5 IS. 7
21.0 15.8
15.0 18, fa
10. b 19,2
8.S ?1,2
7.1 21.9
b.S 23.3
l.b 27, b
0.0 720, fa
*»T. E. UNITS
FAC. TO FC
.070
.ObO
.ObO
.050
.030
.ObO
0.000
.040
0.000
0.000
,070
.120
,025
.055
.035
.ObO
,ObO
0,000
.ObS
0.000
0.000
.080
.ObO
GRAM/
GRAM/
GRAM/
KG/
GRAM/
Q
S
SO
42
bO
120
180
19b
220
240
0
0
2bO
238
214
194
130
bb
4fa
22
7
0
0
KW HR
KW HR
KW HR
KW HR
KW HR
3.9
10.1
10,5
10.9
11.8
15.0
24.2
2b.3
27. b
30.4
3,7
0,0
57.4
S2.4
49.7
4b,4
33.0
23.4
18,7
15,7
14,4
3.5
0,0
(
C
(
c
DRY CONCENTRATION
784 ,0fa7 7,8fa 28
2bfa ,13b 11. bl 28
2* ,093 11,73 35
55 ,312 11,24 49
144 ,598 10,88 78
272 ,142 10,53 94Q
12 .025 14,08 355
10 ,030 14.08 4bO
10 iQ30 13,93 750
10 ,077 14.23 710
bbl .072 7,77 32
2882 ,005 ,08 3
lb .251 14,23 1225
3 ,035 13,93 i3SD
2 .104 14,08 720
2 ,025 14,08 !>30
3 .025 U. Sb 720
3 .035 12,12 128
22 .109 10,19 223
37 .125 9.8fa 98
^ ,125 9.fa4 bS
789 ,077 7.b8 35
2050 .005 ,08 1
SPECIFIC GRAM/ KW-HR
p
12.15
.34
.33
,bb
,85
.03
.03
.02
.02
R
I
.03
.01
,01
.01
.01
.01
.12
•37
R
I
.221 BS)
4,fa4b BS)
5,049 BS)
,b43 BS)
4.749 BS)
p
125,9
22,2
37.7
55,1
8.9
1.3
1.5
1.5
3.7
R
I
10,7
lib
4,8
1,2
1.5
2.1
~ • *
15.1
* • t *
25,1
p
I
4
1
1
1
q
3
3
b
S
8
q
5
4
7
,2
,4
.0
,2
. 7
fl '
.0
.0
.b
R
T
i
»b
. 8
, if
. i
r • •
1.7
* . r
4.1
~ . *
3.2
bL
. B
O
I
F-23
-------
TABLE F-Z3. MASS FMTSMONS BY NTNF-MODE EPA - METRIC UNITS
ENGINE-2
TEST-2b5 RUN-PI
1175 CHFvnnt.Fi 350-cio HD ENGINE — PROJECT n-H3ii
in-?7-7t, FF I-TR-EGR-HEI 1 bfiWV A-HA I-275ECU AUTO SYS
K=
HUM =
1.3 G/KG
I
IV
CONCENTRATION AS MFASURF.D
MODE
1 IDLE
2 25 PCT T
3 55 PCT T
H as PCT T
5 10 PCT T
b 25 PCT T
7 10 PCT T
B 25 PCT T
1 C.T.
1 IDLE
2 2S PCT T
3 55 PCT T
* 25 PCT T
S 10 PCT T
b 25 PCT T
7 10 PCT T
8 25 PCT T
1 C.T.
HC-FID
520
131,
21
*b
bS
*7
17
23
3200
BSb
2HB
*3
bl
71
bl
22
2*
3520
CO CO? NOx-ri
.ORB H. 21 3*
.lb* 10. "3 2(.n
.08B 12.1" 510
.131 10. M 210
.I7b 10.53 7n
.17b 10. b* 2«0
.227 l*.7n 530
.013 10. If 2^0
.005 .11 H
.077 7. fit, ?P
.lh* 10. S3 215
.013 12.1? 550
. 13b 10. 7h ?75
.]7b 10.30 75
. 1*? 10.5' Pin
.170 l*.7o b85
.013 11.00 PRO
.005 .11 lb
TClT AL
C A R R 0 N
R. 371
1 n. 7nT
1 P.* 70
)0.77t,
11. 71^
1 n . R ? i
I*. 12"
in.i7b
.*35
B.H33
10.721
IP. 21«
1 ". qO*
10. HB*
10,b71
1 *. "7?
1 1 . n i b
.*b7
FUEL
G/HR
17b1
PP10
13POO
7183
b7) 3
8301
P0513
7711
0
172*
8301
13101
7138
bbbP
8210
20775
775b
0
CALCULATED G/HR WT.
HC
I?
11
2
t
H
H
3
2
0
21
21
5
b
b
b
3
?
0
CO
37
25*
187
lib
222
272
b3*
13?
0
33
257
202
201
225
220
* 71
131
0
NOX
3
b*
200
bl
1*
71
23*
b5
0
2
53
181
b*
15
71
307
b3
0
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
WEIGHTED G/HR VAC.
HC-FID
2.7
.*
. 5
.3
.3
.3
.1
0.0
*.B
lib
. R
.1
.3
. C'r\ilDc' — — — ~ c.c *•
— f*3 rMUCtU*J«r
BSNOX F/A
R
P. 7
3.B
2.^
1.5
3.0
2.7
?.7
I
R
?.2
3.b
2.7
1.7
3.0
3.b
2.b
I
,5(
3S( i!
35( *.
.031
.0*1
.05b
.0*1
.0*1
.0*1
.Ot>7
.050
.on?
.017
.0*1
.055
.0511
.0*8
.0*1
,0b7
.051
.002
3) + n.
1) » 'i.
1) + 0.
^r ^
KG/KW HR
R
,*bO
.33b
,**7
.172
,*bS
.321
.*32
I
R
,*b5
.333
,**5
,1b5
,*bO
.32*
,*3*
I
b5(
(>5( R
b5C *
HC 4-
RPM
bOO
2020
2030
2020
?020
2020
2030
2020
2020
bOO
2020
2030
2020
2020
2020
2030
2020
2020
.5) =
.R) =
.*) =
NOX =
SFC =
f A 1 f
C *LC
A/F
25. t
20.5
1 7.7
20.3
20.5
20.3
1* .1
20.0
*7q.S
27.0
20.*
18.1
20.1
20.1
20.5
15.0
11.8
**b.S
,*0*
q^oo
*.310
*,715
.31B
HC
52.0
lb.7
b. 1
5.5
*.8
5.8
5.7
2.b
o.n
53.fi
18.3
B.5
*.a
3.5
5.0
*.*
l.b
0.0
. 3
.
G/KN
G/KW
G/KW
G/KW
KG/KW
CO
H.7
10.5
1H.8
P.I
b.B
11.2
3fl.*
5.5
n.o
*.b
11.1
17.8
1.3
7.7
10.2
32.5
h.l
0.0
i n
i U
O
T
HR (
HR (
HR (
HR (
HP (
NOX FUEL POnER
.7 5.* 0.0
b.3 8.* 7. 3
37.7 ?5.7 30.5
b.B 8.2 7.3
1.0 5.1 2.1
7.0 8.5 7.3
3*.0 30.1 38. 3
b.* 7.1 7.3
o.n o.o o.o
.5 S.3 0.0
*.1 fi.5 7.3
33.1 25. b 30.5
5.1 8.1 7.3
1.0 5.0 2.1
b.b 8.* 7.3
*1.7 31.? 38.3
5.8 7.1 7.3
0.0 0.0 0.0
* 1
* H
.302 BS)
b.Sbl BS)
3.21* BS)
3.51b BS)
.b55 BS)
-------
TABLE F-24. M»3S EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-2
TE3T-2h5 RUN-
1975 CHEVROLET 350-
ln-?7-7«, FFI-
•CtD HO ENGINE PROJECT 11-1311
•TR-EGR-HEI 1».RWVA-WAI-27SECU AUTO SYS
<= .981
HUMr
G/KG
CONCENTRATION AS MEASURED TOT«L
MODE HC-FID CO CO? NOX-CL CARBON
1 IDLE b08 .082
i 25 PCT T 110 .170
3 55 PCT T IS .093
1 25 PCT T 12 .112
S 10 PCT T 53 .I7b
b 25 PCT T IS .117
7 90 PCT T 8 ,?75
8 ?5 PCT T 12 .098
9 C.T. 3200 .010
1 IDLE 89b .088
2 25 PCT T 201 .181
3 55 PCT T 38 .093
1 25 PCT T 58 .I3b
S 10 PCT T 57 .ibl
b 25 PCT T 11 .1H7
7 90 PCT T Ib .281
8 25 PCT T 18 .093
9 C.T. 3520 .010
— --UNITS AS
MODE ID MV CHP
1 I 17.2 0.0
2 25 11.2 23.9
3 55 7.0 52.5
t 25 11.2 23.9
S lo ib.i q.2
b 25 11.2 23.9
7 90 2.1 85.9
B 25 11.2 23.9
9CT 231 00
1 I 17.2 0.0
2 25 11.? J3. q
3 55 • 7.0 52. b
t 25 11.2 23.9
5 10 lb.1 9.2
b 25 11.2 ?3.q
* *" 2.1 8b.O
B 25 11.2 23.9
9 CT 23.1 0 0
8.01 31
10.53 215
1?.?S 5BO
11.21 210
JO. 53 70
10.53 2*0
11.51 blS
10.53 3|5
.15 Ib
8.11 10
10.53 2?0
12.25 ,51,0
10. bi ?iin
10.53 no
10. 7b 2PO
11. 7n bto
10.71, 305
.11 If-
SPECIFIED IN
CTO FC
0 3.7
b2 18.3
13*. 29.1
•>? 17.1
21 11.5
b2 18.1
222 15.9
b2 17.1
n o.n
0 3.7
b? 18.1
13b 29.0
b? 17.5
21 11. b
b? 10.3
223 Ib.n
b* 17.?
SUM— (COMPOSITE VALUE FOR CYCI E
SUM (COMPOSITE VALUE FOR rvfl F
TWO CYCLE COMPOSITE -
HC-
co-
l?. 315
11.387
in. 7ii
in.b82
in.t-3o
.180
10.731
12.317
in. 783
in. 700
in. 9i?
10.855
.17?
THE 7-11-75
BSFC
R
.7bb
.551
.729
1 .57n
.758
.531
I
R
.770
.55)
.733
1 .579
.7bb
.535
.72n
I
1)
FIO 0.35(
HOIK 0.35(
FUEL
G/HR
lf.7P
R3fll
13200
7893
bS77
8?10
20820
0
lh7B
831b
13151
7938
bb22
2081.5
7802
0
CALCULATED
HC CO
13
12
2
3
1
1
1
0
19
17
5
S
1
3
1
0
31
2bb
201
199
218
781
J1S
0
3b
285
200
203
205
227
791
135
0
G/HR
NOX
2
51
202
51
11
70
282
75
0
2
Sb
191
b7
Ib
b9
277
71
0
PROCEDURE— SFC
BSNOX F/A KG/KM HR RPM
R
2.3
3.8
2.3
1.5
2.9
3.3
3.1
I
R
3!?
ii?
2,9
3.2
3.0
I
10.
Nnx-CL n,15( 1.
ID =
.038
.019
.05b
.052
.019
.019
.Obb
.OHB
.00?
.038
.019
.019
.050
.Ob7
.019
.002
3) * O.b5(
7) * O.b5(
i) + n.b5(
R
.Ibb
.337
.111
.955
.Ibl
.325
.135
I
R
,1b9
.335
.lib
.9hl
.Ibb
.325
.138
I
in
1
HC +
bOO
2020
2030
2020
2020
2020
2030
2020
2020
bOO
2020
2030
2020
2020
2020
2030
?020
2020
.1) =
.83 =
.3) =
NOX s
SFC =
NT
FACT
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
C*LC
A/F
2b.S
20.1
17.9
19.3
20.5
20.5
15.0
?0.b
131.5
2b.O
17^9
20.3
20.5
20.1
11.9
20.2
111.7
.3b5
10.797
1.337
1.703
.399
WEIGHTED
. HC-FID CO
3.1
.9
.3
.2
.2
.3
.1
.1
0.0
1.5
1.3
.7
.1
.2
.3
.3
.1
0.0
8
20
30
15
12
18
88
11
0
8
22
29
Ib
12
17
89
10
0
G/HR
NOX-CL CKW
.5 0.0
1.2 17.8
29.7 39.2
1.2 17.8
.8 b.9
5.1 17.8
31.8 bl.l
5.8 17.8
0.0 0.0
.5 0.0
1.3 17.8
28. b 39.2
5.2 17.8
.9 b.9
5.3 17.8
31.3 bl.l
5.5 17.8
0.0 0.0
VAC.
MM
137
3bl
178
3bl
117
3bl
53
3bl
591
137
3bl
178
3bl
117
3bl
S3
3hl
591
HC
59.2
17.5
5.0
1.7
3.9
S.b
2.8
1.1
0.0
58.0
17.3
8.5
l.b
2.8
3.b
3.7
1.1
0.0
.3
.1
G/KW
G/KW
G/KW
G/KW
KG/KW
CO NOX FUEL
3.9
10.1
11. b
7.5
b.l
8.7
13. b
5.5
o.n
10.7
11.1
7.b
5.7
8.5
13.8
5.1
0.0
11
11
HR
HR
HR
HR
HR
.b 5.2
5.1 8.5
3b.l 25.8
5.1 8.1
1.0 5.0
b.b P.I
38.7 31.2
>.CJ 7.9
0.0 0.0
.fc 5.2
5.3 8.5
35. U 25. b
b.3 8.1
1.1 5.0
b.b 8.5
38.1 31.2
b.7 8.0
0 . f 1 0.0
1.1
1.3
( .273 BS)
( 8.052 6S)
( 3.231 BS)
( 3.507 BS)
( .bS7 BS)
POWER
0.0
7.3
30.5
7.3
2.1
7.3
38.1
7.3
0.0
0.0
7.3
30.5
7.3
2.1
7.3
38.1
7.3
0.0
-------
TARLE F-Z5. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
ENGINE-*
TEST-2b5 RUN-FGR
CHEVROIFI 3<;n-cin HD ENGINE—PROJECT u-H3ii
ln-27-7«- SAMPLE DF RECIRCUl. ATED EXHAUST
.13H
HUM =
B.I G/KG
MODE
1 IDLE
2 25 PCT
3 55 PCT
H 25 PCT
5 10 PCT
b 25 PCT
7 so PCT
8 25 PCT
1 C.T.
1 IDLE
2 25 PCT
3 55 PCT
H 25 PCT
s in PCT
b 25 PCT
7 in PCT
8 25 PCT
1 C.T.
CONCENTRATION
HC-FIO CO
T
T
T
T
T
T
T
T
T
T
T
T
T
T
128
b72
880
5bO
HBO
53b
2080
SOH
3200
1280
70H
888
5bO
HbH
S7b
2080
528
3200
.05b
.120
.151
.IOH
.300
.115
1.178
.IOH
.010
.Obi
.115
.1H7
.018
.2b3
.IOH
1.178
.OB8
.ons
AS MFASURED
CO? NOX-CL
b.17
l.bH
in. 53
1.53
10.07
l.bH
8.11
l.lb
.15
5.1H
l.feH
10. bH
l.bH
l.lb
l.bH
8.8)
l.bH
. 15
1(<
11B
510
2t-n
7n
250
b70
211 .
?l
13
113
570
P?1!
75
215
hfln
2Pn
in
TOTAL
CARBON
h
1
in
•>
in
a
10
in
h
i
10
q
in
i
10
q
. -I7H
.B33
. 7S5
.M5
.H??
.B13
.315
.111
.HBn
. 13b
.B31
.«B5
. 711
.27H
. "nh
.215
.785
.H75
FUEL
G/HR
172H
B255
13200
7(113
bHHl
B021
20«b5
77Sb
n
lt.7B
P?55
132H5
Bill
b532
Bill
20H1
775b
0
CALCUl
HC
27
h2
11"
sn
33
HB
HbO
H2
n
37
bH
111
51
32
52
Hb5
Hb
0
.ATED G/HR
CO NOX
31
20H
312
171
37H
181
HBH
Ibl
0
3H
11H
3b3
Ib5
33B
) 73
HBhl
1HO
n
1
52
11H
bb
13
b3
H20
51
0
1
50
215
71
15
7b
H32
bl
0
WT.
FACT.
.232
.077
.1H7
.077
.057
.077
.113
.077
.1H3
.232
.077
.1H7
.077
.057
.077
.113
.077
.1H3
WEIGHTED G/HR
HC-FID CO NOX-CL
b.2
H. 7
17. H
3.8
1.1
3.7
52.0
3.3
0.0
B.b
5.0
17.5
3.1
1."
t.n
52. b
3.5
0.0
7
Ib
58
13
21
IS
SHH
12
0
8
15
S3
13
11
13
550
11
0
.3
H.D
2B.S
5.1
.8
H?Is
H.b
0.0
.3
3.1
31. b
S.H
.8
5.8
H8.8
5.3
0.0
CKW
0.0
17.7
31.0
17.7
b.1
17.7
b3.7
17.7
0.0
0.0
17.7
31.1
17.7
171?
b3.7
17.7
0.0
VAC.
MM
H37
3bl
178
3bl
H17
3bl
S3
3bl
S1H
H37
3bl
178
3bl
H17
3bl
53
3bl
S1H
MODE
1 I
2 25
3 55
H 25
S 10
b 25
7 in
8 25
1 CT
1 I
2 25
3 55
H 25
5 10
b 25
7 10
B 25
1 CT
TWO
10
10 MV
17.2
1H.2
7.0
1H.2
Ib.H
1H.2
2.1
1H.2
23. H
17.2
1H.2
7.0
1H.2
Ib.H
1H.2
2.1
1H.2
23.4
QIIIJ_B_ ( pru
3U™ V (*U1
QiiM.B^/rnu
IU T T Q A
JN 113 *
CHP
n.o
23.7
52. H
23.7
1.2
83.7
B5.H
23. B
n.n
n.n
23. R
52. H
23.8
1.2
23.8
85.5
23.8
0.0
hipnc * TP
nr uo lit
MOna T TC
OU™™~™ lUUi-irvoi. i c.
CYCLE COMPOSITE -
T
1 1PF P T
CTQ
0
b2
13b
b2
?H
*»?
222
b2
n
0
b2
13b
b2
2H
b2
222
b2
0
U At IIP
V »LUt
\l » | up
V ALUt
FC
3.8
IB. 2
21.1
17. H
1H.2 )
17.7
Hb.n
17.1
n.n
3.7
IB. 2
21.2
17.1
1H.H |
17.1
Hh.l
17.1
0.0
_
Fnp r vr i f z\
r tm l, f l.L c. f J
HC- Fin
co- NOI
NOV-CL
~)— 1 1 • 7C
' 1 1 t 3
BSFC
R
. 7b7
.SSb
.733
.5H5
. 7H5
.531
.711
I
n
. 7bb
.557
.753
.5hH
.753
.531
.711
I
n.3-;c
R 0.35C
n. 3s(
OOnPpmifSP___
pMuuruUNt— — —
RSNOX F/A
R
2.2
3.7
2.8
1.5
2.7
H.I
2.5
I
R
2.1
H.I
3.0
1 .b
3.2
5.1
2.1
I
5.0)
3h.S)
5.1)
.021
.OH5
.nni
.OHH
,OHB
,OH5
.OHB
.OHb
.P02
.021
.('H5
.n5n
,OH5
.OH7
.OH5
.OH7
.OH5
,nn2
+ 0
+ 0
•f n
Off-
- Sr C
KG/KM
R
.Hb7
.338
.HHb
.1HO
.H53
.32R
.H38
I
R
.Hbb
.331
.HSB
.151
.H5B
,32B
.H 37
I
.b5(
.bS(
.b5(
HC
HR RPM
bOO
2010
2020
2010
2010
2010
2020
2010
2010
boo
2010
2020
2010
2010
2010
2020
2010
2010
5.2) =
3b.H) s
5.H) B
+ NOX =
SFC =
f Al P
L ALL
A/F
3H.O
22.2
20.3
22.5
21.0
22.2
21.0
21. b
H3H.S
35.0
22.2
20.1
22.3
21.3
22.3
21.2
22.3
H31.)
S.OBb
3b.H17
5.312
10.317
.HOI
HC
b.7
5.1
18.7
H.I
2.0
H.O
55.1
3.5
0.0
8.1
5.1
1B.O
H.n
1.1
H.I
5H.3
3.b
0.0
b . 0
53
. r
G/KH
G/KH
G/KH
G/KM
KG/KH
CO
) .0
2.3
B.H
1.1
3.1
2.1
71.3
1.8
0.0
1.2
2.2
7.8
1.1
2.8
2.0
80. b
l.b
0.0
•* ^
3 f
HR
HR
HR
HR
HR
PUT nP TnTii _
NOX FUEL
.3 5.3
H.2 B.H
21.8 es.8
5.3 8.1
.8 H.I
5.1 8.2
HI. 7 31.3
H.B 7.1
n.o o.o
.3 5.2
3.8 B.H
31.0 25. B
5.3 8.3
.8 H.I
5.7 8.3
H7.1 31.3
5.2 7.1
0.0 0.0
51
• J-
5 H
( 3.712 BS)
(27.15b 83)
( 3. Ibl BS)
( 7.753 83)
( .bbO 83)
POHER
0.0
7.3
30. b
7.3
2.1
7.3
38.3
7.3
0.0
0.0
7.3
30. b
7.3
2.1
7.3
38.3
7.3
0.0
-------
APPENDIX G
SERVICE ACCUMULATION DEMONSTRATION RESULTS
G-l Summary of the Results
G-2 through G-l6 Computer Printouts for Optimized Engine
G-l 7 through G-24 Computer Printouts with Oxidation Catalyst
-------
TABLE G-l. SERVICE ACCUMULATION DEMONSTRATION RESULTS
KG/
o
Test
No.
0
1
2
3
4
5
6
7
9
11
13
15
17
19
Zl
8
10
12.
14
16
18
20
22
Dur.
Hours
000
125
250
375
500
500
625
750
825
1000
1000
1125
1250
1375
1500
Cat.
Hours
000
125
250
250
375
500
625
750
Type
Test
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
9-EPA
GRAM/kW HR
Desc ription
Opt) mizecl
Optimized
Optimized
Optimized
Optimized
Optimized
Optimized
Optimized
Optimized
350 CID
350 CID
350 CID
350 CID
350 CID
350 CID
350 CID
350 CID
350 CID
Chfv 350 CID W/O
Chev 350 CID W/O
Optimized
Optimized
Optimized
Optimized
Optimized
Optimized
350 CID
350 CID
350 CID
350 CID
350 CID
350 CID
Chevrolet Engine
Chevrolet Engine
Chevrolet Engine
Chevrolet Engine
Chev Pre-Maint
Chev Post Maint
Chevrolet Engine
Chevrolet Engine
Chev W/O Cat
Cat Pre-Maint
Cat Post Maint
Chev W/O Cat
Chev W/O Cat
Chev W/O Cat
Chev W/O Cat
Chev W Oxi Cat
Chev W Oxi Cat
Chev 350 CID HD W/ Cat Pre-Maint
Chev 350 CID HD W/ Cat Post Maint
Optimized
Optimized
Optimized
Optimized
350 CID
350 CID
350 CID
350 CID
Chev W/ Oxi Cat
Chev W/ Oxi Cat
Chev W/ Oxi Cat
Chev W/ Oxi Cat
HC
0.290
0.421
0.327
0.463
0.354
0.523
0.364
0.396
0.418
0.333
0.317
0.355
0.390
0.996
0.357
0.069
0.072
0.113
0.043
0.073
0.077
0.080
0.075
CO
10.366
12.669
16.307
14.460
10.890
8.404
14.530
23.332
17.211
27.553
12.595
19.405
9.985
12.720
14.430
20.155
19.282
27.171
7.751
18.497
9.158
13.494
15.494
NOX
3.736
3.524
3.271
3.538
3.868
3.937
3.587
2.636
3.059
2.826
3.293
3.205
3.622
3.594
3.529
1.751
1.696
2.374
1.982
2.637
2.447
2.154
2.499
HC+NOX
4.026
3.944
3.598
4.002
4.222
4.460
3.951
3.032
3.477
3.159
3.610
3.559
4.012
4.590
3.886
1.820
1.768
2.487
2.024
2.709
2.524
2.234
2.575
kW HR
SEC
.386
.387
.384
.378
.399
.392
.412
.397
.405
.404
.390
.389
.405
.399
.390
.410
.414
.408
.396
.396
.398
.409
.402
Appendix
Table
G-2
G-3
G-4
G-5
G-6
G-7
G-8
G-9
G-10
G-ll
G-12
G-13
G-14
G-15
G-16
G-17
G-18
G-19
G-20
G-21
G-22
G-23
G-24
-------
TABLE G-2. MASS FMI38IMNS By NINF-MODE FPA - METRIC UNITS
o
I
CO
ia-07-7h 153b PM TEST o-b
1H75 CHEVROLET 3SO-CIO HO ENGINE — PROJECT Il-t3n
nnn OUR HMS OPTJMUFD 350 ciu CHEVROLET HO GAS ENGINE
Ks .833
HUM =
».9 G/KG
CONCENTRATION AS MEASURED nil AL
MODE HC-FID CO C02 HUX-CI CAMHON
1 IDLE 3«8 .117
2 25 PCT T 117 .?39
3 55 PCT T It .080
» 25 PCT T 2t .15t
S 10 PCT T 2b .123
b 25 PCT T 27 .IbO
7 90 PCT T 17 .29t
8 a5 PCT T 20 .077
9 C.T. »8no .017
1 IDLE 9hB .091
a as PCT T i7S .323
3 SS PCT T 51 .Ob9
t 25 PCT T 52 .159
S 10 PCT T t9 .139
b 25 PCT T tt ,lb7
7 90 PCT T 28 .289
B as PCT T a9 .Oso
1 C.T. tStt .013
UNITS AS
MODE Kv CHP
1 I 17. b 0.0
2 25 13.5 aS. a
3 55 b.B 53.9
* ?S 13.8 aa.7
5 10 15 7 9 b
b 25 13.5 ?H.q
7 1" 2.1 85. b
8 25 13.7 23.3
1 CT 23 2 00
1 I 17.5 0.0
2 25 13. b at. 9
3 55 b.9 52. t
» 25 13.7 at. 3
S 10 IS.b 1(1.1
b 25 13.5 2t.9
7 In a. 1 85.5
8 25 13.5 at. 9
9 CT 235 on
8.55 ?B
11.7? ?15
12.80 7iS
12.07 1 H
12.01 h2
12.07 ao7
It. 73 775
12.J9 (PR
.13 5
".te ?9
11. bo 2?3
12. RO blS
11.95 2{lb
11.95 f,0
12.07 209
It. 73 770
12. M 7 p 1 9
.17 b
SPECIFIED IN
CTQ FC
II t.8
bb 18. a
ItO ?7.9
59 17. R
e"i i* .1
bt 18. a
??t H 3.9
bl 17.9
n 2.1
bS 18.1
137 ?7.fl
b 3 |7.9
2b It. 9
bt IB.?
bS IB]I
SUM— (COMPOSITE VALUE FOK C*CLE
SUM (COMPOSITE VALUE FOR CyCLE
THC1 CYCLE COMPOSITE - HC-
B. 709
11.971
1?..R82
I?. I3h
l?.233
*
P. blS
U.9t2
12.115
12.1(95
12. ?t?
IS. 022
.b3P
THF 7-11-75
R
.510
.7B3
.732
.513
.7b7
R
.727
.531
.73b
1 . t b 9
.732
.513
I
Fin n.3s(
CO- NPIR U.35C
MOx-CI. 0.35(
FUFL
U/HR
?l J?
)2bSS
BPSS
1 9913
"119
R?l 0
12blO
"119
b759
"210
0
CALCULATED G/HR
HC CO NOX
111
9
2
2
a
2
3
1
13
b
3
3
2
0
59 a
332 t7
159 I9t
20h 31
139 10
218 39
78B 28t
103 3t
n o
23 1
I3b Ib7
21b 38
157 9
228 39
77t 282
bH t5
0 0
PROCEDURE SFc
BSNOx F/A KG/Kw HR RPM
K
1.1
1.0
l.b
3.3
1.5
I
R
1.8
lib
3.3
l.«
I
.........
.2)
HI. 5)
3.9)
.ntn
.ost
.U5R
.055
.055
.055
,0b7
.003
.flSt
.HSR
.(155
.055
.1)55
.Ob 7
.055
.003
————————
t U.b-U
» M.b5(
+ n.b?(
R bbS
.t3R 2020
.315 2015
.t7b 2020
.9tl 2025
.ttS 2025
.312 2010
.tb7 2025
I 2015
R btO
.tt? 2025
.323 2015
.ttR 2025
.89t 2025
.ttS 2025
.312 2010
,tt3 2025
. I 2015
.............
.3) =
10.3) =
3.7) =
HC + NOX =
SFC =
FACT!
.232
.077
.077
.057
.077
.113
.077
.1*3
.233
.077
Io77
.057
.077
.113
.077
.its
CALC
A/F
2t. 9
18. t
i7.a
18.0
18.2
18.0
It. 8
18.0
331.8
25.2
18. t
17.2
18.2
18.2
18.0
It. 8
18.2
32b.8
-------
.290
10.3bb
3.73b
t.02b
.38b
WEIGHTED G/HR
, HC-FID CO NOX-CL CKK
2.t
.7
.2
.1
.1
.2
.3
.1
0.0
3.1
1.0
.8
.3
.2
.3
.5
.2
0.0
HC
58.8
lb.7
5.5
3.3
2.2
3.8
7.0
2.7
t8.9
lb.1
13.1
t.8
2.8
t.l
7.b
2.7
0.0
.2
.3
G/KK
G/KN
G/Kw
G/KM
KG/KW
It
2b
23
Ib
8
17
89
B
0
S
35
20
17
9
18
87
S
0
CO
b.B
12.8
11.7
7.9
tt8;s
0.0
2.8
17. b
10.2
8.5
i!o
tt.7
2.7
0.0
11
10
HR (
HR (
HR (
HR (
HR (
.t
3.b
28. b
2.t
.5
3.0
3a.i
2.b
0.0
.2
2t|s
Is
3.0
31.9
0.0
NT OF 1
NOX
.b
39*0
3.3
t!i
t3.8
3.b
.3
3s!o
t.e
.8
ts.b
t.9
0.0
3.9
3.7
.21b
7.730
2.78b
3.002
,h3t
0.0
18.8
to. 2
17.0
7.2
18.5
b3.8
17. t
0.0
0.0
IB.b
39.1
18.1
?.b
18.5
b3.8
18.5
0.0
FUEL 1
b.7
8.5
8^3
B!S
*'.3
3.5
8.7
25.5
8.b
5.3
8.7
31.0
8.7
0.0
BS)
as)
BS)
VAC.
MH
3t3
173
351
399
3t3
53
3t8
589
3tS
175
39b
3t3
S3
3t3
597
'OHEH
u.o
BI.'O
b.9
2.1
7.5
37.9
7.0
0.0
0.0
7.5
30.1
7.3
2.3
7 5
37.8
7.5
0.0
-------
o
I
TABLE G-3. "ASS EMISSIONS BY NINF.-MODF EPA - METRIC UNITS
1S7S CHF.VROLFT 350-CID HO ENGINE PROJECT 11-1311
12-l»-7b 1227 PM TEST 1-1 1?5 OUR HRS OPTIMIZED 350 CIO CHEVROLET HD GAS ENGINE
K= .875 HUM= b.2 G/KG
CONCENTRATION
MODE
1 IDLE
2 25 PCT
3 55 PCT
1 35 PCT
s in PCT
b 85 PCT
7 9o PCT
8 35 PCT
9 C.T.
1 IDLE
2 85 PCT
3 51 PCT
1 25 PCT
5 111 PCT
b 25 PCT
7 9(1 PCT
8 25 PCT
* C.T.
T
T
T
T
T
T
T
T
T
1
T
T
T
T
HC-FID
MIS
?b5
17
55
59
53
3*
38
1221
892
220
91
•18
h7
S5
"1
1b
Illb
CO
.118
.2bi
.11)9
.18n
.Ib5
.181
.1211
.()R7
.U12
.081
.3*5
.092
.Ib8
.IB1'
.Ib7
.3*>9
.o9i
.0115
AS MEASURED
CO?
8. 75
J 1.71
J?.«iP
ll.fll
11.7?
11.95
11.93
l?.Jq
.11
8.74
11. M)
12. «0
11.95
1 1.95
11. 95
11. 7}
11. P.I
. HI
NOX-CL
25
174
M)5
1«3
55
Ibl
h2
118
S
19
I5b
5Bn
Ib5
55
Ib2
745
231
S
ml AL
CAHHOU
H . 9 3 '»
J?.'l"l
1 r . 791
l?.()2f-
1 1 ."t'l
IS. 137
15. 351
i?.e»i
. 511
B.9bl
H.9b9
I?.9ii3
12. l?9
IP.n9t-
1?.]2S
J^. Hit
II.1'?1'
.5*7
FliFL
G/HH
lt.33
8391
12?17
SlhS
bbJ??
Pn7t
inqis
71H3
(1
Ib33
»2in
123H1
»(!?'<
bb2?
793«
jqne;R
7938
n
CALCULATED G/HR
MC
12
20
5
1
1
1
S
3
0
Ib
17
1(1
7
*
5
h
3
0
CO
»3
3b7
211
2»b
IBb
ett
uni
nt
n
30
t?9
17<(
22*
1S»
221
985
12b
n
NOx
1
3b
Ib8
3b
q
38
257
SB
0
3
31
Ib2
32
S
31
28b
HS
0
WT.
FACT.
.232
.077
.1H7
.077
.057
.077
.113
.077
.1H3
.232
.077
.1»7
.077
.057
.0'7
.113
.077
.1*3
WEIGHTED G/HR
HC-F10
2.8
l.b
.?
.3
.2
.3
.b
.2
0.0
3.8
1.3
l.»
.b
.2
.*
.7
.3
0.0
CO
10
28
31
!•»
11
!•»
12H
H
0
7
37
2b
17
q
17
111
10
0
NOX-CL
.3
2.8
2t.7
2.8
.5
2.*
29.0
2.2
0.0
.b
2.H
23.8
2.*
.5
2.H
32.3
3.5
0.0
CKM
0.0
!•«.•»
3^.1
18.2
7.1
17.5
b<».0
lb.7
0.0
0.0
18.3
3-1.1
17. S
7.1
17.1
bt.7
17.9
0.0
VAC.
MM
>»3»
328
ISO
3*3
399
3H3
S3
3H8
592
t39
3»3
18Q
3H8
399
3»3
51
3H8
592
UNITS AS SPECIFIED IN THE
MODE
1 I
2 25
3 55
1 25
5 in
b 25
7 90
8 25
9 CT
1 I
2 25
3 55
1 25
5 in
b 25
7 90
8 25
9 CT
MV
17.1
12.9
7.1
13.5
15.7
13.5
2.1'
13.7
23.3
17.3
13.5
7. I
13.7
15.7
13.5
2.0
13.7
23. 3
CHp
O.U
2b.l
52.5
21.5
9.5
23.5
85.8
22.5
0.0
n.u
21.5
52.1
23.5
9.5
23. U
8b.7
23.9
U.'i
jo ci o T T r
enu /rnuDnCTTC
THO
jun™ — — \vvnr u rjjj r vn f a~\
r i in l*Tl*l_C £ )
HC- FIO
7-11-75
HSFC
p
. 710
.511
.73b
.539
. 75R
.512
. 781
I
R
.739
.•=21
. 755
.510
,7b?
.507
.731
I
0.35(
CO- NliIK 0.35C
NOX-CL
n.35(
PROCEDURE SFC
RSNOX
R
1.1
3.2
1.5
.9
1.3
3.0
1.2
I
R
1.3
3. 1
1.3
. 1
1.3
3.3
1.9
1
13
3
F/A
.(111
.1)55
.058
.055
.1)51
.nss
.Qb9
.OSb
.003
.(HI
.1)51
.1158
.1)55
.1155
.055
.(IhB
.051
.1103
.1) + 0
.2) + 0
.1) + 0
KG/KW HR
R
.132
.313
.117
.93b
.Ibl
.311
.177
I
R
.119
.317
.159
.937
.1b3
.309
.111
I
.b5(
.bS( 12
.bS( 3
HC +
RPM
bOO
2000
2000
2000
2000
2000
2000
2000
2000
bOO
2000
2(100
2000
2000
2000
2000
2000
2000
.5) =
.1) =
.b) =
NOX =
SFC =
CALC
A/F
21.3
18.2
17.3
18.3
18.5
18.2
11.5
18.0
383.1
21.3
18.1
17.2
18.2
18.2
18.2
11.8
18.5
381. 0
.121
12.bb9
3.521
3.911
.387
HC
11.5
23.5
11.0
1.8
3.1
l.b
8.5
3.2
0.0
11.0
11.9
Ib.b
b.1
2.7
1.2
8.1
3.0
O.P
'
G/KW
G/KW
G/KW
G/KW
KG/KM
CO
1.0
11.3
12.1
7.b
1.2
7.5
19. b
3.5
0.0
3.0
15.7
11.3
7.1
3.7
7.3
17.5
1.2
0.0
I a
1 3
HR
HR
HR
HR
HR
NOX FUEL
.S 5.2
1.3 8.8
38.2 21. b
1.3 B.b
.8 5.2
3.8 8.5
11.9 30.7
3.3 8.1
0.0 0.0
.9 5.2
3.5 8.7
35.0 21.9
3.b 8.5
.7 5.2
3.5 8.1
17. b 30.9
5.1 8.1
O.U 0.0
3 a
. ~
3 . b
( .311 BS)
( 9.117 83)
( 2. b2B BS)
( 2.911 BS)
( ,b35 BS)
POWER
0.0
7.9
30.1
7.1
2.1
7.1
38.2
b.a
0.0
0.0
7.1
30.1
7.1
2.1
7.0
38.7
7.3
0.0
-------
TAHLE G-4. MASS EMISSIONS RY MINE-MODE EPA - METRIC UNITS
CHEVROLET 350-ciu HD ENGINE—PROJECT ii-tsu
IS 21 7b 2S2S PM TEST 2-2 ?5H OUR HMS OPTIMIZED 350 CIO CHEVROLET HO GAS ENGINE
K= .7SS
HUM =
G/KG
O
I
Ul
CONCENTRATION AS MEASURED TOTAL
MODE HC-FIO CO CO? NUX-CL CARHDN
1 IDLE bib .JHH
a aS PCT T IhH .231
3 55 PCT T 33 .107
•» aS PCT T tb .Ib7
S in PCT T 35 .155
fa 35 PCT T 37 .Ifa5
7 So PCT T IS . bfl
8 as PCT r is .012
S C.T. H|)32 .021
1 IDLE HSh .nSl
a 25 PCT T 209 ,31t
3 55 PCT T t7 .OSS
» 35 PCT T 58 .1*8
S 10 PCT T H5 .]tb
b as PCT T it .ibs
7 S0 PCT T 27 .bHO
B as PCT T ?a .oso
s C.T. 38Ho .oau
S.llll
11. bO
12. bB
11. SS
12. n7
13.0?
It. 73
12. 1 i
.1'
B.xq
11. Ml
12. Bn
11. SS
12.07
11. S5
It. 73
13.07
.13
?,
22?
7) n
I1*?
52
1 Rt.
b5S
113
1
27
IbP
bSII
2111
5.1
Iflh
bRo
1S5
1
i.!7b
ll.Rtl
12.711
12.133
12.231
12.331
15.373
1 2 ,?8t
.555
1.Q7B
I1.S37
I y . q (l e;
is. iet
ia.231
12. iat
15^373
13.lb3
.53H
FUEL
B/HR
It17
H07H
1 2t28
7S38
bS77
«03S
2(ll|St
7138
0
ItSl
RllS
12R1S
7S83
bf33 BS)
-------
TABLE G-5. MASS EMISSIONS BY N1NF-MOOE EPA - METRIC UNITS
O
I
1? 27 7b 1117 AM TEST 3-1
CHF.vRPLFT 350-riO HO ENGINE PROJECT ^-T^I
DUR HKS OPTIMIZFD 350 CIO CHEVROLET HD GiS ENGINE
K = .780
HUM =
3.5 6/KG
CONCENTRATION AS MEASURED
MODE
1 IDLE
2 25 PCT
3 55 PCT
1 25 PCT
5 10 PCT
b 25 PCT
7 ID PCT
8 25 PCT
1 C.T.
l~ir>LE~
2 ?5 PCT
3 55 PCT
t 25 PCT
5 10 PCT
b 25 PCT
7 In PCT
8 25 PC.T
1 C.T.
MODE
1 T
1 i
?. 25
3 55
i as
5 1O
b 25
7 in
8 35
1 CT
I j
a 25
3 55
1 25
5 10
b 25
7 10
8 25
1 CT
HC-FIO
72B
T 22»
T 11
T inn
T 82
T 11
T H
T 31
11H1
T 3lH
T 5h
T lull
T 11
T 1h
T 25
T 38
CO CO?
.12(1 i.nn
.111 11.11
.lib 12. b»
.158 11.37
.2UO l.l.bn
.170 11.1"
.171 11.73
.113 11. 5R
.O2b .11
.011 i.nn
.231 11.25
.118 12.80
.15h 11. "?17
.118 11.18
.Ihl 11.37
.520 11.73
.inl 11. IP
.025 .1*
NUX-CL
?1
21b
7?0
270
f-2
330
710
300
*
12
2(1 7
b7n
aiii
hb
310
blO
270
b
TOIAL
C»^HON
1. 1 11
1 1.3H1
1P.RII?
1 1.531
1 l.B(H
1 1. **bO
15.3(13
D.S-17
,M5
1.2H
1 1.515
1 ?. 125
11.537
u.bse
11.512
15.253
11.513
.51,5
UNITS AS SPECIFIED IN THE 7-11-
Mv CHP CTO FC 8SFC
I7.o
13.1
b.1
11.0
13.7
2.1
13.8
23.3
17. 1
13.8
b.1
13.8
15.8
13.8
2.2
13.1
23.1
o.n M
23.1 hi
52.7 IHl
23.1 bl
1.1 21
25.2 bh
83.7 223
23.5 h2
n.it n
n.n n
23.2 bl
52.1 HI
23.7 b2
10.1 27
21.2 hi
83.5 222
23.2 M
n.o n
SUM— (COMPOSITE VALUE
SUM---(COMPQSITE VALUF
THO CYCLE COMPOSITE -
'.5
Ib.S
2«.0
Ib.tl
13.5
11.8
13.5
lb.3
n.n
3.5
17.3
2«.n
lb.5
13.5
11.8
13.3
lb.3
ll.li
FDR CYCLE
F OH CVC( E
HC-
CU-
R
.71t
.531
ilm
.588
.5211
.MS
I
R
.715
.521
.bit.
1 . 331
.bl 1
.511
.7(12
I
1)
Fin 0.
HPIR o.
FUF.L
G/HH
1588
7*81
1P701
7257
b!23
b713
11731
7311
(1
1588
7HH7
12701
7H81
M23
b7i3
llhll
7111
n
CALCULATED G/HR
HC
11
lb
5
7
5
b
3
2
O
21
23
b
7
5
b
H
3
0
-75 PROCEDURE
BSNOx F/A
R
l.b
3.5
I.1'
.1
2.0
2.1
2.1
I
R
l.b
1.3
2.1
.1
2.0
2,b
I.''
I
35(
35( 13.
.012
!(J52
.058
.052
.051
.053
.ObP
.053
.003
.n»2
.052
.1158
.052
.053
.P52
.lib?
.053
.1103
1) + 0.
1) + u.
7) * II.
CO
12
2b1
233
201
201
118
1231
115
0
33
318
235
201
201
181
1352
no
0
SFC
KG/KM HR
R
.131
.323
.H21
.107
.358
.31b
.123
I
R
.153
.322
.121
.815
.372
.315
.127
I
bS( 11
bS( 3
HC +
NOX
1
37
185
11
B
11
231
11
0
1
37
170
11
q
17
213
15
0
RPM
550
1115
1175
1115
1115
1115
1175
1175
1110
550
1115
1175
1115
1115
1115
1175
1115
1110
.5) =
.8) =
.1) =
NOX =
SFC =
HT. WEIGHTED G/HR
FACT. HC-FID CO
.232 3.2 10
.077 1.3 30
.117 .8 31
.077 .5 15
.057 .3 12
.077 .1 15
.113 .3 131
.077 .2 11
.113 0.0 0
.232 1.8 8
.077 1.8 as
.117 .1 35
.077 .b lb
.057 .3 12
.077 .5 15
.113 .1 153
.077 .2 11
.113 0.0 0
NOX-CL CKW
.3 0.0
2.B 17.2
27.2 31.3
3.1 17.2
.5 b.8
3.8 18.8
27.0 b2.1
3.8 17.5
o.o o.o
.3 0.0
2.8 17.3
25.1 31.1
3.8 17.7
.5 7.5
3.b 18.1
21.1 ba.3
3.1 17.3
0.0 0.0
CALC PERCENT OF TOTAL—
A/F HC CO NOX FUEL
23.7 15.1 3.8
11.3 18.0 7.1
17.3 11.5 13.3
11.1 7.7 b.O
18. b 3.1 l.b
18.1 b.1 5.1
11.7 H.b 51.2
18.8 2.b 1.3
331.0 0.0 0.0
23. b 50.8 2.8
11.1 18.7 1.0
17.1 l.b 12.7
H.l 5.1 5.8
18.8 3.3 1.1
11.1 5.1 5.1
H.b 1.1 Sb.l
11. 0 2. a 1.0
3b1.0 0.0 0.0
.1b3 G/KW HR
ll.lbO G/KW HR
3.538 G/KW HR
1.002 G/KH HR
.378 KG/KW HR
.» 5.2
».l 8.2
31. b 2b.S
1.1 7.1
.7 5.0
5.5 7.3
31.2 31.7
5.5 8.1
0.0 0.0
.5 5.2
1.1 8.5
31.1 2b.1
5.1 8.2
.8 1.1
5.7 7.3
37.1 31. H
5.1 8.1
o.n o.o
3.7
( .315 BS)
(10.783 03)
( 2.fa31 BS)
( a. 181 BS)
( .bai BS)
VAC.
MM
132
353
175
35b
101
318
53
351
512
131
351
175
351
101
351
5b
353
511
POWER
0.0
7.1
31.0
7.1
2.1
7.7
37.8
7.2
0.0
0.0
7.1
31.0
7.3
2.3
7.1
37.7
7.1
0.0
-------
o
01 til 77 3:it
TABLE G-6. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
1975 CHEVRDLFT JSH-C10 HO ENGINE PROJECT 11-1311
TEST 1-3 Sim UUR HRS OPTlMl/FO 350 CIO CHEV HO GAS PRE-MAlNT
K= .835
HUM =
5.0 G/KG
MODE
1 IDLE
2 25 PCT
3 55 PCT
1 25 PCT
5 10 PCT
b 25 PCT
7 9n PCT
8 25 PCT
9 C.T.
1 IDLE
2 25 pCT
3 55 PCT
1 25 PCT
S 10 PCT
b 25 PCT
7 HQ PCT
8 25 PCT
1 C.T.
MODE
1 I
2 ?5
» ?s
5 10
7 90
8 25
9 CT
1 I
1 25
s in
b PS
7 So
8 25
9 CT
CONCENTRATION AS MfASIJRED TntA|_
HC-FID co co? NOX-CL CARKON
SMI .129
T So .211
T 2? .(I7b
T 1* .100
T 33 .108
T 18 .o90
T 13 .3b5
T 11 .ObQ
151? .029
!!!"» .082
T lib .319
T 52 .075
T 12 .112
f »3 .101
T 31 .112
T 23 .3bl
T 21 .Ob8
IHb .013
-—UNITS AS
Kw CHP
17.1 n.o
12. 9 23.7
h.S 52.2
13.1 S3. b
15.R 8.0
2.1 83. b
13.3 23.3
?3.1 II. H
17.11 O.U
1J.9 PI. 2
b.b 51.1
13. n 21.2
IS.b 9.1
13.1 S3. 8
2.1 83. 5
13.1 23.7
23.1 0.0
9. in
12.55
12.80
12. bB
12.31
12. Bo
11.87
!l3
9.1(1
12.31
12.8(1
12.55
12.31
12.55
11.87
12.19
.11
?n
135
55
135
855
179
7
31
137
b7()
1S8
bO
Ib7
2(1 3
g
SPECIFIED IN
CTQ FC
0
"
b2
2? I!
bl
n
0
bi
135
b3
b2
219
b?
II
SUM (COMPOSITE VALUF FOR
SUM (COMPOSITE VALUF fnH
TWO CYCLE
COMPOSITE -
3.b
1".3
27. S
18.0
11.3
H.3
12. S
17. S
O.ll
3.b
1 "<. fi
1 B . 1)
H.5
IB. 7
I7!s
n.n
CYCLE
CYCLF
HC-
CO-
12*7bb
12J7B2
12.122
12.892
15.237
9.31(1
12. bIS
12.bb7
12.115
l5.?3H
THE 7-11-75
BRFC
R
.S2b
1.778
.PIS
.509
. 753
I
H
. 7BH
.713
1.SH1
. 791,
!?39
I
1)
FIP 0.3S(
NOIR 0.3S(
FUEL CALCULATED G/HR
G/HR HC CO NOx
m33 n
8101 1
RlbS 1
b18b 2
8751 i
19278 2
7918 1
0 o
Ih33 23
8bl8 11
12927 b
BtbS ' 3
b577 3
8182 3
1^731 3
793H i
PROCEDURE —
BSNOx F/A
R .013
.q .058
.» .058
.0 .1158
.0 .OSb
.1 .058
.b .Ob8
.1 .057
I .003
R .013
1.1 .(157
3.7 .058
1.2 .1157
1.0 .nSb
1.3 .057
*.? .ObB
l.b .(I5b
I .003
1b 1
119 i?9
129 21
111 8
123 25
•>33 300
7B 32
0 0
29 2
138 2b
153 i8b
lib 28
108 9
152 31
89 38
0 0
SFC
KG/KH HR RPM
R 550
.*7i 2000
.320 2000
1.081 2000
.•Ufa JOOS
.309 1995
.158 SOOO
I 2000
R 515
.177 2000
.337 2000
.152 8005
.SbS 2010
.178 2010
.317 2000
.119 2005
I 1995
.2) t 0.bS( .1) =
in.i) + (i.b
S( 11.2) =
"UX-U. U.35( 3.7) + 0.bS( 3.1) =
HC + NOX =
SFC =
IT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.113
C»LC
A/F
23.1
17.3
17.2
17.3
17.8
17.2
17J7
311.5
23.1
17.5
17.2
17.5
17.8
17.5
18.0
3b9.2
.351
10.890
3.8b8
1.22?
.399
••EIGHTED
HC-FID CO
2.5
.3
.1
.1
.1
.1
.2
.1
0.0
5.2
>
.2
.1
.2
.1
.1
0.0
11
21
22
10
b
9
105
b
0
7
31
22
11
b
12
107
7
0
G/HR
NOx-CL CKN
.3 0.0
1.7 17. b
2b.2 39.0
1.8 17. fa
.5 b.O
2.0 17.7
33. 1 b2.3
2.1 17.3
0.0 0.0
.3 0.0
2.0 18.1
27.1 38.3
2.2 18.1
.5 b.8
2.1 17.7
31. s b2.2
2.-» 17.7
0.0 Q.O
VAC.
MM
131
328
IbS
333
101
328
S3
338
591
132
328
Ib8
330
333
S3
310
591
HC
bb.7
7.5
2)8
2.B
5.7
2.1
0.0
bS.l
10.7
10.7
2.9
1.8
2.1
1.8
1.7
0.0
.2
.1
G/KH
G/KW
G/KM
G/KH
KG/KW
CO NOx FUEL
S.b
11.1
11.1
5.2
3.1
5.0
55.2
3.1
0.0
3.3
lb.1
10.9
5.5
3.0
5.7
51.9
3.3
0.0
10
11
HR
HR
HR
HR
HR
.5 5.2
21 87
38.2 25.1
2.7 B.b
7 51
2.8 9.2
19.3 29.8
3.5 8.f
n.o o.o
.5 5.1
2.7 8.9
37.7 25. S
3.0 8.1
.7 5.0
3.3 8.8
»B.l 30.0
1.0 8.2
0.0 0.0
3.7
3.9
( .2b1 BS)
( 8.121 BS)
( 2.B85 BS)
( 3.1H9 S3)
( .bSb 83)
POHER
0.0
7 3
30.9
7.3
1 B
7.3
38.0
7.2
0.0
0.0
7.5
30.3
7.5
2.1
7.1
37.9
7 3
0.0
-------
TABLE G-7. (-1*3:; EMISSIONS HY NjNf-MOOE EPA - METRIC UNITS
111 OH 7?
TEST S-l
CHFVROLFT
Snn OUR HKS
Smi-CIU HO ENGINE --- PROJECT 11-4311
OP1IMJZFI1 350 CID CHEV HD GAS POST MAINT
K= .817
HUMS
4.5 G/KG
o
I
CO
CONCENTRATION AS MFA.SIIWFP ("1*1
MODE
1 IDLE
8 85 PCT
3 55 PCT
H 85 PCT
5 in PCT
b 8? PCT
7 9n PCT
8 25 PCT
9 C.T.
1 IDLE
8 85 PCT
3 55 PCT
4 ?5 PCT
5 1(1 PCT
b 85 PCT
7 9(1 PCT
B 85 PCT
9 C.T.
HC - F I D
B5b
T 85h
T 41
T b?
T 71
T 7H
T 13
r IB
H4)b
isen
T 8'8
T 5f
T Rn
T Br)
T b3
T 19
T 37
5848
CU CII8
,Jb7 9. no
.18(1 11.37
.071 18.J-P
.159 J ? . n 7
.Ib8 18.19
.154 11. 83
.11" 14.73
.104 11.7?
.fi?P .1.8
.094 9.RP
.331 11. Ri
.089 18. bB
.157 18. H7
.158 18.19
.157 18.19
.134 14.73
.1110 18. (17
.082 .1)
NOX-CL rtPHON
83 9
Ibl 1 I
53(1 1?
171 1 ?
49 1?
8?5 11
10?0 1M
8?B 11
h
29 S
147 1?
5 fill IP
1 Rb IP
54 1?
l"b 1?
991) lu
8 (1 4 1 ?
7
.859
.57B
. 7b4
i ?3b
. 3bll
.993
. M5I1
."89
.SR4
.43B
.19)
. 7 7b
. ?3S
.351
. 354
. flhb
.174
,b5B
f HF L
G/HR
1R14
B391
1 ?q87
P3D1
bSO4
7484
1R779
7938
0
1R14
7647
J 2b 10
HI 19
bP95
7993
18Bb9
7938
0
CALCULATED G/HR
HC
18
81
5
5
4
5
8
3
(1
88
11
b
b
5
5
3
3
U
CO
bb
8b4
Ib8
218
180
195
308
142
0
37
43o
178
810
171
804
344
131
0
NOX
1
38
IHb
31
7
38
350
48
0
8
8b
155
33
8
33
341
3b
0
WT.
FACT.
.238
.077
.147
.077
.057
.077
.113
.077
.It3
.838
.077
.It7
.077
.057
.077
.113
.077
.1*3
WEIGHTED G/HR VAC.
HC-FID CO NOX-CL CKW MM
4.8 IS
l.b 80
.7 84
.t 17
.8 10
.H 15
.8 3»
.8 11
0.0 0
b.4 8
1.5 33
.9 8b
.5 lb
.3 10
.3 lb
.3 39
.8 10
0.0 0
.3 0.0 409
8.H 17.3 335
81.4 39.8 145
2.4 17.3 340
.4 b.4 401
8.1 17.8 340
39.5 b8.9 53
3.8 17.8 340
0.0 0.0 584
.4 0.0 487
8.0 17.8 335
88.8 38.0 Ib3
8.b 17.8 338
.5 7.8 399
2.5 18.1 333
38.5 b8.8 S3
8.8 17.4 343
O.U 0.0 592
UNITS AS SPECI
MODE
1 I
8 85
3 55
H 85
5 Id
b 85
7 9n
B 85
9 CT
1 I
2 i"*
3 55
H 85
5 ID
b 85
7 in
B 85
i CT
KV
lb.1
13.8
5.7
13.4
15.8
13.4
8.1
13.4
?3.(1
lb.8
13.?
b.4
13.3
15.7
13. I
8.1
13.5
83.3
CHP CTQ
B . (I 11
83.8 bl
53.4 ]4i
83.3 b)
P . b 83
83.8 b?
PH. 3 8??
23.8 h3
r . o u
li.o n
23.8 b?
s 1 . n 134
83.8 b3
9.b 25
?H. 3 b4
83.4 819
23.3 bl
|i. H (1
SUM (CUMPOSITE VALUE
MDn ^ 1 J f: u A I 1 1C*
TWO CYCLE COMPOSITE -
FIGD IN THF
FC
4.0
IB. 5
88.5
18.3
15.0 1
lb.5
41.4
17. S
(1.0
4.0
17.3
?7.8
17.9
15.2 I
17. b
HI. b
17.5
0.0
F"H CYCLE 1)
F OH C vCI E P )
HC- Fill
7-11-75
BSFC
R
.791,
.534
.787
.74]
,b9?
. 49J
.73«;
I
R
. 7?7
.•515
.758
.57b
.783
.499
.751
I
0.3S(
CO- NDIR il.3S(
NOX-CL
U.35(
PROCEDURE
BSNOX
R
I.1*
8.B
1.4
_9
l.b
"* .?
1.8
I
R
) .1
1.1
1 ."*
,9
lit
4.1
l.b
I
7.
3.
F/A
.043
.053
.058
.055
,05b
.1154
.(Ih7
.(154
.003
.1143
.(155
.1)58
.055
.Il5b
.llSb
,nb7
.055
.1103
4) * 0.
9) + 0.
3) + 0.
SFC
KG/KH HR
R
.484
.385
.479
1.059
.421
.899
.447
I
R
.448
.338
.457
.158
."•*0
.304
.457
I
b5(
b5( 8
b5( 3
HC +
RPM
b85
8000
1115
8000
2005
8005
1995
8000
1995
550
8000
1995
8000
8005
8000
1915
8000
1915
.b) =
.7) =
.1) =
NOX =
SFC =
CALC
A/F
83.5
11.0
17.3
18.0
17.1
18.4
IS.n
18. b
3Sfa.8
83.1
18.1
17.3
18.0
17.9
17.1
15.0
18.1
31b.7
.523
8.404
3.137
4.4bO
.392
HC CO
53.8 10.4
11.1 13.8
B.b lb.3
».S 11.5
3.1 7.0
5.8 10.2
8.7 83.3
2.7 7.4
0.0 0.0
bl.4 5.4
IT. 3 80.1
9.0 . Ib.S
T.3 10.8
2.7 b.2
3.3 9.9
3.0 84.5
8.0 b.H
0.0 0.0
.H 8
.fa 9
G/KW HR (
G/KW HP (
G/KW HR (
G/KW HR (
KG/KH HR (
ft C TOT A 1
NOX FUEL POWER
.4 5.B 0.0
3.H 8.8 7.1
21.5 ab.o 31.3
3.3 8.8 7.1
.*> 5.3 2.0
H.O 7.1 7.3
54.4 J9.1 37.9
H.H B.H 7.3
0.0 0.0 0.0
.5 5.8 0.0
8.7 8.3 7.4
31.7 85.5 30.8
3.b B.b 7.4
.»> S.H 2.8
3.5 8.S 7.b
53.5 21.4 38.0
3.1 B.H 7.2
0.0 0.0 0.0
3.1
3 9
.390 BS)
b.8fa? BS)
2.13b BS)
3.38b BS)
.faHH B3)
-------
TABLE G-8. M«ss FMIS3IUUS BY NINE-MODE ERA - METRIC UNITS
01 10 77 »:?8 PM TESTb-3
CHrvRutri 3sn-cii) HD ENGINE—-PROJECT ii-f3ii
b?S OUR MRS OPTIM|7FO 3SO ClD CHEVROLET HD GAS ENGjNE
K= .723 HUMS 2.0 G/KG
CONCENTRATION AS MEASURED T')1«L
MODE HC-FID C" C02 NOX-r.L C»RPON
1 IDLE tto .127
2 25 PCT T S8 ,2jS
3 55 PCI T 19 .080
H 25 PCT T 32 .It3
5 10 PCT T 21 .int
b 25 PCT T 28 .1*3
7 9o PCT T IB .bl»
8 2S PCT T 15 .010
I.I **** •°*S
1 IDLE l(i?t .1112
2 25 PCT T IBt .288
3 SS PCT T Sb .083
t 25 PCT T 58 .i»i
5 10 PCT T 39 .nib
b 25 PCT T tb .i-»0
7 10 PCT T •"« .t5b
8 25 PCT T 27 ,n8b
"* C.T. tS'in .OtH
UNITS AS
MODE KV CHP
1 I 17.1 o.n
2 25 13.1 23.7
3 55 b.b »9.b
t 25 13. b 2?. b
5 10 15.9 B.t
b ?5 13.5 23.3
B ?5 13. h 22.7
11 17.1 n. n
2 25 13.7 2?.B
3 55 b.7 »9.7
* 25 1 3.5 22.8
510 15.7 9.1
b 25 13. t 23.3
7 10 2.0 81.8
B 25 13.7 22.0
9 CT 23.4 0.0
9.10 29
12.1)7 iHij
12.55 b3o
11.83 23t
12. »3 Sb
11.15 225
It.Hh 77o
11.15 2?»
. lb 7
8.89 31
11.83 177
12. bP b25
11.83 233
12. H3 bo
11.8.3 2SS
It.Sb B10
.lb 8
1.P75
ll!9?b
12.011.
15.n7h
.b9R
'<.1U2
1P.13B
ll!"77
1?.S30
1 J .1?<;
|t.9|9
1 " . 1 1 9
.bBS
SPECIFIED IN THE 7-11-75
CTO FC BSFC
" 3.8
b3 20.1
132 ?R.S
bO 17.3
22 11. 5
hi Ib.R
ho I7."l
n n.o
n 3.B
bO IR.H
132 2B.3
bfi 17.5
M Ibis
51 17.1
n o.o
SUM (COMPOSITE VALUE fOR CYCLE
SUM— -(COMPOSITE VALUE FOR CYCLE
TWO CYCLE COMPOSITE - HC
co-
NOX-
R
.BtB
.575
.7bS
1.751
.7??
!?S2
I
P
.Rllb
.5b9
.7b7
1.571
. 709
. 77b
I
FIf> fl.35(
N01H II.35C
I:L o.-isc
FIIFL
G/MR
1117
7117
7b20
0
83th
12"37
7938
Pill 85
0
CALCULATED
HC CO
9
5
2
2
1
2
3
1
fl
21
It
b
2
3
2
n
t8
323
Ibb
189
110
181
lb»2
117
0
39
too
Ib8
188
17b
12t5
113
0
G/HR
NOX
1
32
155
37
7
31
2*5
3b
0
1
29
151
37
8
38
289
37
0
PROCEDURE SFC
BSNOx F/A KG/KW HR RPM
R
J.3
l.b
.8
1.5
1.0
I
R
t.3
3.0
j .(,
1 b
1.7
I
.2)
lb. 0)
3.t)
.Ot3
.OSb
.057
.05t
.1157 1
.055
.dbB
.055
.003
.Ot2
.OSS
.058
.05*
.OS7
.Ub7
.OSt
.003
+ 0.bS(
* n.b5(
+ O.b5(
R
.Sib
.tbS
,ota
,t39
.331
,tS8
I
R
.3tb
.9Sb
.331
I
13
3
HC +
bOO
1110
1180
1185
1195
1915
1175
1910
1180
bOO
1995
1980
1995
1915
1995
1175
1975
1175
.5) =
.7) =
.7) =
NOX =
SFC =
HT.
FACT.
.232
.077
!o77
.057
.077
.113
.077
.its
.232
.077
.It7
.077
.057
.077
.113
.077
C*LC
A/F
23.5
17.1
17.5
IB.t
17. b
18.2
isis
218. t
23.1
18.1
17.3
18. •»
17. h
1 8 H
18.5
30t.3
.3bt
It. 530
3.587
3.151
-t!2
WEIGHTED
HC-FID co
2.1
Is
'.i
.2
.3
.1
0.0
1.1
.3
.1
is
.a
0.0
11
25
IS
b
It
18b
9
0
9
31
25
IS
b
m
9
0
G/HR
NOX-CL CKW
.3 0.0
2.5 17.7
22.7 37.0
2.8 lb.1
.t b.3
2.b 17.3
27. b bO. 3
2.8 lb.9
0.0 0.0
.3 0.0
2.2 17.0
22.2 37.1
2.1 17.0
.t 7.0
2.9 17. *
32. b bl.o
2.8 ib.t
0.0 0.0
VAC.
333
Ib8
3tS
»0t
3t3
51
3tS
59g
318
170
311
3»0
51
3t8
Sit
HC
58.2
10. t
1.0
5.1
2.0
8.7
2.3
0.0
51. B
13.2
11.2
l.b
5.1
1.9
0.0
.2
.5
G/KW
G/KW
G/KW
G/KW
KG/KW
CO NOX FUEL
3.8
B.b
8.t
5.0
2.2
bt.o
3.1
0.0
3.b
12. t
10.0
5.8
5b.7
3.S
0.0
lb
1*
HR
HR
HR
MR
HR
.5 S.I
t.O 9.5
3b.8 25. b
t.b 8.1
.7 5.1
t.2 7.9
tt.7 30. t
t.5 8.0
0.0 0.0
.5 S.t
3.t 8.7
33.3 eS.b
t.3 8.3
.7 5.2
tl.l 30.9
t.3 8.1
0.0 0.0
3.t
3.7
( .272 83)
(10.835 63)
( 2.b7t BS)
( 2.1tb BS)
( .b77 BS)
POWER
0.0
7.b
30. t
7.3
2 0
7.5
38.0
7.3
0.0
0.0
7.3
30.3
7.3
2.2
38. t
7.0
0.0
-------
TABLE c-9. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
01 17 77 1552
TEST 7-1
1975 CHEVROLET 350-CID HD ENGINE-—PROJECT 11-4311
751 OUR HHS OPTIMIZED 350 CIO CHEVROLET HD GAS ENGINE
K= .755 HUM= 2.8 G/KG
O
I
CONCENTRATION
Mooe
1 IDLE
2 25 PCT
3 55 PCT
4 25 PCT
5 10 PCT
b 25 PCT
7 s0 PCT
8 25 PCT
9 C.T.
1 IDLE
2 2s PCT
3 55 PCT
4 25 PCT
S 10 PCT
fa 25 PCT
7 S0 PCT
8 25 PCT
S C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
HC-FID
bSb
bO
29
4b
74
43
57
27
5184
1024
2UO
bO
t>2
8B
55
b8
34
4Bb4
CO
.130
.277
.094
.183
.208
. iSb
l.OOb
.109
.040
.100
.438
.104
.180
.20b
.193
1.015
.107
.040
AS MEASURED
C02
9.30
12. BO
12.98
12.07
11.83
12.19
14. 4b
12.19
.18
9.10
12.07
13.05
12.07
11. "3
12.19
14. 4b
12.19
.14
NOX-CL
35
9b
570
174
bl
2(1 4
bOO
Ib5
4
34
1 3^
530
174
58
174
570
180
3
TOTAL
CAKBON
9.502
13.1134
13.017
12.P5R
12.047
17.391
15.473
12.3U2
.739
9.311
12.530
1 3. 1 bl
1?.<*57
12.045
12.389
15.483
12. 301
.bbB
FUEL
G/HR
2041
B9B1
1215b
7938
b759
793B
1955(1
793H
0
1270
7B47
12020
8255
bB49
8(174
1 S 1 B 7
8210
0
CALCULATED G/Hrt *T.
HC
15
5
3
3
S
3
8
2
0
15
14
b
S
b
4
10
3
0
CO
57
384
177
24Q
23b
254
2Sb8
142
n
28
554
192
245
23b
254
2542
145
0
NOX
2
17
134
2B
1
33
190
27
0
1
21
121
29
8
28
177
30
0
FACT.
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
WEIGHTED G/HR
HC-FID
3.b
.4
.4
.3
.3
.2
.9
.1
0.0
3.5
1.1
.9
.4
.3
.3
1.1
. 2
0.0
CO
13
30
efa
18
13
20
290
11
n
b
43
2B
19
13
20
287
11
0
NOX-CL
.!»
i.'a
19. b
2.2
.!>
2.S
21. S
2.1
O.U
.3
l.b
17.8
2.3
.b
2.2
20. U
2.3
O.U
CKx
0.0
18.2
38.4
lb.4
7.4
17.5
bl.l
lb.3
O.U
O.U
17.1
37.9
lb.7
7.4
17.1
00.8
17.1
0.0
VAC.
MM
434
317
170
35b
404
353
53
3Sb
S97
434
jtl)
173
351
4(11
348
53
31**)
b97
UNITS AS SPECIFIED IN THE 7-11-75
MODE
1 I
2 25
3 55
4 as
5 10
b 25
7 SO
8 25
9 CT
1 I
2 25
3 55
4 25
5 10
fa 25
7 SO
B 25
S CT
MV
17.1
12.5
b.7
14.0
15. S
13.9
2.1
14.0
23.5
17.1
13.4
b.R
13.8
15.8
13.7
2.1
13.7
23.5
CHP
0.0
24.5
51.4
ai.s
10.0
23.4
81. S
21. S
0.0
0.0
23.0
50.8
22.4
10.0
23.0
81. b
22. S
o.n
SUM (COMPOSITE
eiiu s*>nun«ievTe'
TWO
CYCLE COMPOSITE -
CTO
O
b4
135
SB
?f>
bl
21b
58
0
0
bO
133
59
2b
bO
214
fan
o
VALUE
VALUE
FC
4.5
19.8
2b.B
17.5
14.9
17.5
43.1
17.5
0.0
2.8
17.3
2b.5
J8.2
15.1
17.8
42.3
18. 1
0.0
FOR CYCLE
C f\O P V P 1 F
r UK L T l*U t
HC-
CO-
NOX-
BSFC
R
."in
.521
.7SB
1.49R
.747
.52b
.799
I
R
.753
.522
.B12
1.513
.775
.519
.790
FID n.3S(
NDIR o.35(
CL o.35(
PROCEDURE SFC
BSNOX
R
.7
2.b
1.3
. 9
1.4
2.3
1.2
I
R
.9
2.4
1.3
.8
1.2
2.2
1.3
I
23
2
F/A
.044
.059
.059
.05b
.055
,05b
.070
.OSb
.004
.043
.057
,()S9
,05b
.055
,05b
.070
. 05b
.(103
.3) * II
.0) + 0
.7) + 0
KG/KW HR
R
.493
.317
.485
.907
.455
.320
,48b
I
R
.458
.317
.494
.920
.472
.315
.481
I
.b5(
.b5( 23
.bS( 2
HC +
RPM
bOO
2005
2005
2000
2005
2000
1995
2000
1995
bOO
2005
2000
2000
2005
2005
2000
2000
1995
.4) =
.5) =
.fa) =
NUX =
SFC =
CALC
A/F
22.9
Ib.S
17.0
1B.O
18.3
17.8
14.4
17.9
281. 9
23.4
17. b
lb.8
18.0
18.3
17.8
" 14.3
1 ~i • ^
312.1
.39b
23.332
2.b3b
3.032
.397
HC
57.*
5.7
7.2
4.1
4.2
3.8
15.0
2.4
O.n
45.3
13."
11. b
4.b
4.1
4.1)
14.0
2.5
0.0
.3
G/KW
G/KW
G/KW
G/KK
KG/KM
CO
3.1
7.0
b. 2
4.4
3.2
4.b
b8.9
2. fa
0.0
1.5
10. n
b.b
4.4
3.1
4.b
b7.2
2 . b
0.0
23
24
HP
HR
HR
HR
HR
NOx FUEL
.9 b.4
2.5 9.4
39.2 24.2
».3 9.3
1 . (1 5.2
5.U 8.3
42.9 29. q
4.1 8.3
O.U 0.0
.b 4.1
3.1* 8.5
38.11 24. B
4.8 8.9
l.U S.S
4.7 8.7
42. b 30.5
o.u n . o
2.7
2 . b
( .295 83)
(17.399 BS)
( 1.9bb BS)
( 2.2bl B5)
( .bS3 BS)
PO«ER
0.0
7.7
30.9
fa.1*
2.3
7.4
37. S
b.9
0.0
0.0
7.3
3U.7
7.1
2.3
7.3
38.0
0.0
-------
O
TABLEG-io. MASS EMISSIONS RY NINE-MODE EPA - METRIC UNITS
1S75 CHEVROLET 350-CID HO ENGINE PROJECT 11-H311
01 2>» 77 1253 PM TEST S-2 B75 OUR HRS OPTIMIZED 350 CID CHEV HD ENGINE W/0 CAT
K= .832 HUM= >».S G/KG
MODE
1 IDLE
2 25 PCT
3 55 PCT
» 25 PCT
s in PCT
b 25 PCT
7 so PCT
B 25 PCT
S C.T.
1 IDLE
2 25 PCT
3 55 PCT
•» 25 PCT
S 10 PCT
b 25 PCT
7 s0 PCT
8 25 PCT
•» C.T.
MODE
i 1
2 25
3 55
H 25
sin
b 25
7 SO
8 25
S CT
1 I
2 25
3 55
» 25
5 in
b 25
7 S()
8 25
S CT
CONCENTRATION A3 MEASURED TOTAL
HC-FID CO CU2 NOX-CL CAHRdM
880
T 75
T 23
T IS
T Hb
T IS
T 35
T 13
3»5b
1280
T Ib8
T 37
T 31
T bl
T 23
T 3fa
T IS
3328
.128
.218
.07H
.070
.100
.087
.782
.02S
.035
.080
,370
.077
!l!2
.ns?
.7hH
.Olb
.037
S.08
12.88
12. S3
12. S?
11. SS
12. b8
IH.bQ
13.05
.35
s.nn
12. to
I2.se
12. bP
11.83
12.80
l».bO
12. b2
3t S.101
35 13.10b
550 12.SS7
127 IP.SSe
bl 12.055
1*2 12.7bS
b8S 15.385
3 .73?
108 12.78S
530 13.001
1H7 12.771
57 ll.s»S
138 |2. Son
b8S 15. 3b8
3 '.771
UNITS AS SPECIFIED IN THE 7-11-75
MV CHP CTO FC BSFC
17.1
12.7
b.8
12. S
15. b
13.2
2.0
12. S
23. S
17.0
12. S
b.8
13.2
15.8
13.1
2.0
13. t
23. S
n.n
22. b
»S.b
23.1
s.b
23.1
B2.0
23. b
0.0
O.n
23. b
SO.l
23.1
S.I
23. b
82. 0
22.5
n.o
SUM--- (COMPOSITE
SUM fCOMPnSITE
TNO CYCLE
COMPOSITE -
n
SS
130
bO
25
bn
215
hp
n
n
b2
131
bn
2*
h2
215
SS
0
VALUE FOR
VALUE FOR
3.S R
n.O .8*1
27.1 .5»b
18.7 .80S
i».t i.sos
18.3 .7S1
12. b .520
18.8 .7SB
n.o i
S.b R
IB.S .Boo
27.1 .SHI
18.1 .783
lt.0 1.5H1
18. •» .77S
"*2.5 .51S
17. S .7SH
0.0 I
HC- FID 0.3S(
CO- NDIR 0.3S(
NOX-CL n.J5(
FUEL
G/HR
17bS
8bl8
122S2
bS32
8301
1S323
8528
0
Ib33
8573
82111
b350
83tb
1S278
8llS
0
CALCULATED G/HR
HC CO NOX
IB
h
2
1
3
1
5
1
n
25
13
2
2
S
1
0
»S 2
28S b
S3 23
110 S
11H 25
1S83 23S
38 23
1) 0
2S 2
501 20
1*7 138
118 2b
120 8
127 25
lS3b 237
SS 88
n o
PROCEDURE SFC
BSNOX F/A KG/KM HR RPM
R
.3
2.S
1.0
1.0
1.1
2.S
1.0
I
R
.8
2.8
1.1
.s
1.0
2.S
1.2
I
.3)
Ib.B)
3.0)
.0*3
.05S
.OSS
.oss
.055
.058
.ObS
.oss
.OQH
,0'«2
.058
.USS
.OSS
,05»
.058
.ObS
.CIS7
.on*
» o.bs(
t 0 . b S (
+ n.bsc
R fa20
.511 2010
.332 2005
.HS2 2010
.Sib 2015
.H81 2010
,31b 2000
.485 2005
1 2000
R bOS
."»87 2010
,32S 2005
,t77 2010
.S37 2020
.f7H 2010
.315 2000
.H83 2005
I 21)00
.5) =
17. f) =
3.1) =
HC + NOX s
SFC =
WT.
FACT.
.232
.077
!o77
.057
.077
.113
.077
.232
.077
'.Q?7
.057
.077
.113
.077
.1*3
C*LC
A/F
23. »
Ib.S
17.0
17.0
18.3
17.3
It. 5
Ib.S
285. H
23. b
17.3
17.0
17.3
18. f
1*.S
17.5
271.1
.»18
17.211
3. OSS
3.H77
.»05
WEIGHTED
HC-FID CO
».a
.1
.2
.1
.b
.1
0.0
5.7
1.0
.b
.2
.2
.1
.b
.1
0.0
11
22
21
7
b
S
221
3
0
7
3S
22
S
7
10
S
0
G/HK VAC.
NOX-CL CKW MM
.» 0.0 H3H
5 Ib S 323
21.1 37.0 173
1.8 17.2 328
.!> 7.1 3Sb
2.U 17.2 335
27.0 bl.l 51
1.7 17 b 338
O.U 0.0 bfl7
.t 0.0 H32
l.S 17. b 328
20.3 37.3 173
2.0 17.2 335
.5 b.8 101
I.1' 17. b 333
2b.B bl.l 51
2.1 lb.8 J»o
0.0 0.0 b07
HC
70.1
7.1
b.O
1.8
2.b
1.8
1.2
0.0
b7.7
11.5
b.8
2.n
2.1
1.5
b.S
1.0
0.0
.3
.5
G/KH
G/KM
G/KH
G/KVf
KG/KM
CO NOx FUEL POHER
3.8
7.3
b.s
2.3
2.1
73.8
i.n
0.0
2.1
12.2
b.8
2.S
2.2
3.1
bS.3
n.o
17
17
HR
HP
HR
HR
HR
. 8 5 b 00
.S S.O 7 2
38. » 2».S 30.1
3.2 8.8 7.3
.S S.o 23
3.b 87 7 »
» S.I 2S.b 383
3.2 B.S 7.5
0.0 0.0 0.0
.7 5.2 0.0
2.8 S.i 7.5
3b.b 2*. 8 30 3
3.b 8.7 7.3
.** S.O 2.1
3.* 8.8 7.5
»8.2 2S.S 38.1
3.8 8.b 7.1
0.0 0.0 0.0
3.U
3.1
( .312 BS)
C12.B3H 63}
( 2.2B1 83)
( 2.SS3 BS)
( .bbS 83)
-------
TABLEG-ll. MASS EMISSIONS RV NINE-MODE EPA - METRIC UNITS
O
1-31-77 1131 AM
TEST 11-
CONCENTRATION
MODE
1 IDLE
2 25 PCT T
3 55 PCT T
* as PCT T
S 10 PCT T
b 25 PCT T
7 "0 PCT T
8 25 PCT T
1 C.T.
1 IDLE
2 ?5 PCT T
3 55 PCT T
* 25 PCT T
5 10 PCT T
b 25 PCT T
7 in PCT T
8 £5 PCT T
q C.T.
HC-FID
5H*
120
52
50
52
**
1b
33
3*5b
SbR
1*2
*?
*2
»2
33
73
2*
3bB(l
CO
.132
.251
.nb*
.tiq*
.082
.011
1.51*
.011
.023
.Ob*
.270
.lib!
.088
.071
.OH
1.31b
.0**
.02b
1175 CHFVRlll.FI 3Sn-CIO HO ENGINE PROJECT
•1 limn DUR HH CHEV 350 CIO HO GAS M/0 CAT
AS MEASURED
CH2 NOX-CL
1.51
12.11
12.1?
12.11
12.11
12.31
l*.n7
12.31
.*(!
l.pl'
11.78
IP. bp
11.15
11.15
IP. 1 1
13.1*
12.11
.*"
35
1*'
570
171
bl
171
*7S
1KB
*
J7
151
57S
177
51
110
5 '15
173
5
TMTAI.
C4HRON
1.701
1P.*5*
12.1111
IP. pill
1P..P7B
l?.*0b
15.b75
IP. 339
.770
I.IPt.
U.tlUt-
1 P. • 7Hh
12.0*3
12.03*
12.2B5
I5.rb*
lP.?3h
.87b
FUEL
G/HR
172*
B311
12*7*
7711
b*8b
8021
201B5
7bbb
n
1588
Bill
1P701
7B02
b532
Bo7*
201«S
7711
0
11-*311
PRE-MAINT
CALCULATED G/HR
HC
11
1
b
3
3
3
1*
2
0
10
11
5
3
3
2
11
2
0
CO
*7
3*2
125
iiq
88
111
*l*b
2*
0
22
3b1
123
115
87
121
3515
Sb
n
NOX
2
2b
1*3
28
8
30
IbO
27
0
2
28
1*1
JO
B
31
IBS
28
0
WT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
K: .78b
WEIGHTED
HC-F10 CO
2.* 11
.7 2b
.8 18
.3 1
.2 5
.2 q
l.b *b8
.2 2
0.0 0
2.* 5
.8 28
.7 18
.2 1
.1 S
.2 1
1.2 317
.1 *
0.0 0
HUM: 3.b G/KG
G/HR VAC.
NOX-CL CKW MM
.* 0.0 *31
2.0 17.5 3*5
21.0 38.1 178
2.2 lb.* 3Sb
.5 7.* »0b
2.3 17.1 351
18. U bl.O 53
2.1 lb.7 35b
0.0 0.0 511
.* 0.0 t31
2.2 17.1 351
22.0 38.1 175
2.3 lb.7 358
.s 7.1 *oq
2.* 17.1 353
21.2 bl.7 53
2.2 lb.3 358
o.o o.o sq?
MODE
1 I
2 25
3 55
* 25
S 10
b 25
7 in
8 25
q CT
1 1
2 25
3 55
* 25
5 in
b 25
7 10
B 25
q CT
----UPU 1 O A3
KV CHP
17.3
13. b
7.0
l*.o
lb.0
13.8
2.1
1*.0
23. b
17.3
13. B
b.1
l*.l
lh.1
13. q
2.1
l*.l
23.5
0.0
23.*
51.1
22.0
10.0
23.0
81.1
22.*
n.o
0.0
22.1
51.1
22.*
1.5
22. q
82.8
21. q
0.0
SUM— --(COMPOSITE
qnu / rnuDno TTC
3\)~
TWO CYCLE
COMPOSITE -
SPECIFIED IN 'HE 7-11-75
CIO FC BSFC
0
b2
135
SB
2b
bn
21b
51
0
n
«.n
lie,
51
pc;
bn
21"
SB
0
.
V AL (IE f° PR
u A i i IF F tiu
V *L U>- ' '•**
3.8
!».?
27.5
17. U
17.'?
**.S
lh.1
n.o
3.5
17.1
2B.n
17.3
1*.*
17.8
** . 5
17|n
II. n .
c VCLE
r v r i F
{• T LI.C
HC-
cu-
R
.781
.53"
.77*
l.*31
.770
.5**
.753
I
a
.7H(|
.5*0
. 7bP
1.523
.77B
.53B
.77b
I
FID (l.35(
NOIH 0. 35(
NUX-CL o.isf
PROCEDURE—--—
BSNOX F/A
R
1.1
2.8
1.3
.8
1.3
1.1
1.2
I
R
1.2
2.1
1.3
.1
1.3
2.3
1.3
I
3o!
2.
.0**
.OSb
.051
.OSb
.OSb
.OSb
.071
.OSb
.00*
.0*3
.055
.058
.055
.055
.OSb
.Obi
.055
.00*
*) + 0.
2) t 0.
7) > 0.
QCr*
3r C
KG/KM HR
R
,*"0
.327
• *7l
.871
,*b1
.331
.*58
I
R
.*75
.333
.*b7
.12b
.*73
.327
.*72
I
b5(
bS( 2b
bS( 2
HC t
RPM
blS
2000
1110
2000
2000
2000
1110
2000
1115
blO
2000
1115
2000
2000
2000
1110
2000
HIS
.3) =
.1) =
• q) =
NOX =
SFC =
f A 1 f
CALC
A/F
22.5
17.7
17.1
18.0
18.0
17.8
1*. 1
17.1
271.3
23.*
18.3
17.*
18.3
18.3
18.0
1*.5
18.0
238. b
.333
27.553
2.82b
3.151
.*0*
HC CO NOX FUEL POHER
38.0 2.0
ID.8 *.8
12.8 3.3
*.2 1.7
2.7 .1
3.8 1.7
2*.1 85.3
2.7 .3
o.u o.o
»!.* 1.1
i*.u b.o
11.7 3.8
*.U 1.1
2.5 1.0
3.2 2.0
21.2 83.*
2.2 .1
O.U 0.0
.* 30
G/KM HR
G/KM HR
G/KM HR
G/KM HR
KG/KM HR
.8 5.5 0.0
*.l 8.8 7.*
*3.3 25.0 30.1
*.•» B.I b.i
1.0 5.0 2.3
*.8 8.* 7.3
37.2 31.1 38.0
*.3 8.0 7.1
0.0 0.0 0.0
.7 S.O 0.0
*.l 8.5 7.3
*!.* 25.5 30. 1
».3 8.2 7.1
.1 S.I 2.2
».S 8.S 7.2
*O.D 31.1 38.*
*.l 8.1 b.1
0.0 0.0 -0.0
a 7
c . •
2.q
( .2*1 BS>
(20.5*b 83)
( 2.1U7 83)
( 2.3Sb 83}
( .bb* 83)
-------
TABLE G-1Z. HASS FMISSK'MS RY MINF-MODE EPA - METRIC UNITS
1175 CHEVRON! 3<;o-ciD HH ENGINE—PROJECT 11-1311
oa-ria-77 1028 AM TEST 13-? IfinO OUR HP3 CHEV ?5n CIO HO GAS W/0 CAT POST MAINT KB .890 HUMs b.fc 6/KG
CONCENTRATION AS MEASURED
MODE
1 1DIE
2 is per
3 55 PCT
i 25 PCT
s in PCT
b as PCT
7 so PCT
s as PCT
1 C.T.
1 IDLE
2 2s PCT
3 55 PCT
1 25 PCT
s in PCT
fa 25 PCT
7 tu PCT
B as PCT
9 C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
HC-f ID
133
en
an
35
IBB
10
IB
i1*
3715
771
19R
32
ib
Ibl
51
It
aib
358V
CO
.133
.373
.OBb
,13b
.111
.iba
.157
.MB5
.021
.nsb
.•»ii
.077
.120
.110
.117
.377
.077
.088
coa
i.in
H.72
12.12
11. "(5
10.17
11.15
11.73
11. bS
.31
1.10
11.83
12.12
11.7?
lu.an
12.07
11. hO
11.72
.33
NOX-CL
31
118
sao
IBS
fi
175
702
??S
1
35
1?1
117
182
hb
108
73U
?0
1
TOTAL
C»fOON
1-?37
11.115
13.KHB
I?. 081
in. hi?
1P.117
15.181
H .737
. 7511
1.?70
I?.2h5
1 J.nrtH
1 1 .Rib
1R.15B
i?.?ei
Ii.osn
I 1 . S ? 1
.717
FUEL
G/HR
17(,<»
?1f)3
i ??na
7RQ?
S7hl
7q3«
iinob
7'»R1
0
i^BS
Bill
12212
?),>,».
5)151
793B
ilOOb
7bbb
0
CALCULATED G/HR
HC
3
1
2
3
11
3
3
1
0
11
11
3
3
10
1
3
Ib
(1
CO
17
3b7
iba
177
155
ais
1155
1U1
0
30
553
lib
ISA
151
113
1b7
101
0
NOX
a
21
It*
35
1?
31
2bO
12
0
2
21
131
35
10
21
271
1
0
WT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.113
.232
.077
.117
.077
.057
.077
.113
.077
.It3
WEIGHTED G/HR
HC-FIO
.b
.1
.3
.2
.b
.2
.3
.1
0.0
3.1*
1.1
.5
.3
.S
.3
.3
i.a
o.o
CO
11
28
21
11
1
17
130
e
0
7
13
22
12
t
IS
lOt
B
0
NOX-CL
.1
2.2
21.8
2.7
.7
a.b
21.3
3.3
0.0
.»
l.t
20. »
2.7
.!>
l.b
30. t
.3
0.0
CKW
0.0
17.1
37. »
17.1
b.3
i?.a
bl.S
17.1
0.0
0.0
17.5
37.1
lb.7
b.3
17. S
bl.3
17.1
0.0
VAC.
HM
137
310
IBS
353
127
318
bl
3b3
511
131
318
183
3bl
121
351
bl
3bl
b02
a
MODE
1 I
a 2s
3 55
1 25
S 10
b 25
7 m
8 25
1 CT
1 I
? 25
3 55
1 25
5 in
b 25
7 10
8 25
1 CT
T*0
HV
17. a
13.1
7.3
13.1
ib.a
13.7
a.i
11.3
23. b
17.3
13.7
7.2
11,2
lb.7
13.8
2.»
11.2
23.7
QiiM---f rni*
wVirT~~™\4,upi
CYCLE COMPOSI
JNI I"S A
CMP
0.0
22.1
50.2
23.1
8.5
23.1
ea.i
23.1
0.0
0.0
23. S
50.8
22.1
8.5
23.5
82.1
22.1
0.0
pne-r re
~UO 1 i C
pno T re
~Uo lie
TE -
>5 SPEC I " I E
CTO
a
bO
132
bl
22
t>3
217
hi
0
n
b2
133
51
22
b?
21b
bO
0
VALUE FOR
"
•fi T u TMC
,\> 1H 1 Ht
FC
3.1
17. b
Jb.1
17. S
ia.7 i
17.5
11.1
lb.5
0.0
3.5
17.1
27.1
lb.1
ja.q i
i7.5
»1.1
Ib.1
0.0
r vri f i >
U T LL. C L J
r vri F ai
t« I L L C c t
HC- FID
co- nni
NOX-CI,
7_ i | — 1C
"11" /a
BSFC
=i
.7b7
.53b
. 73h
,SOO
.733
.108
.705
I
A
. 7ba
.533
.751
.511
.715
.510
. 737
I
0.35C
R II.3SC
n.35(
RrjNOx F/A KG/KH HR RPH
R
1.3
i!s
1.1
j .<»
3.1
l.B
I
R
1.0
2.7
1.5
*, 9
3.3
.2
I
13
3
.oie
.051
.051
.055
.011
.OSS
.ObB
.053
.001
>im
.05b
.051
.051
.nsn
.055
.Ob 7
.051
.003
.1) * 0.bS(
.?) * O.b5(
.1) t O.t>5(
R
,1b7
,32b
,118
.112
.lib
.301
.121
I
R
.Ibl
.321
.ISfl
.121
.153
.310
.118
I
talO
2005
2000
2000
2005
2000
1115
2000
2000
blO
2005
2000
2000
aoos
2005
2000
2000
2000
.1) =
12.3) =
HC •»•
3.2) =
NOX =
SFC =
b"L.U
A/F
13. b
18. »
17.0
IB. Z
20. b
18.2
11.7
18.8
B78.1
23.5
17.1
17,0
18. b
20.0
18.0
l*.t
18. b
211.1
.317
12.515
3.213
S.blO
.310
HC
as. s
*.5
ia.3
7.7
25. »
B.I
11.5
if .1
D.O
•»».b
11.2
b.b
3.1
7.3
1.0
1 1
15.1
0.0
.
• •
.
G/KH
G/KN
G/KN
G/KH
KG/KH
CO NOX FUEL
l.b
11.7
1.1
S.b
3.7
b.t
51.2
3.5
0.0
3.1
11.0
l.b
5.1
3.8
b.7
18.1
3.S
0.0
1 1
i 3
1 3
1C
HR
Hfl
HR
HR
HR
.7
3.b
3».0
1.3
1.1
»7!o
s. a
0.0
.7
3.2
3*. 7
l.b
1.0
2.7
52. b
.5
0.0
3tt
• T
3 a
• c
( .23b
( 1.312
( 2.15b
( 2.b12
( .bll
S.B
8.7
as. 3
8.S
l.b
B.b
30.3
8.1
0.0
S.2
8.8
as.s
8.3
1.7
B.b
30.1
8.3
0.0
83)
as)
BS)
BS)
as)
POWER
0.0
7.2
30.3
7.1
2.0
7.5
38.2
7.1
0.0
0.0
7.1
30.7
7.1
a.o
7.H
38.1
7.Z
0.0
-------
TABLE G-13. MA3S EMISSIONS BY NINE-MODE EPA - METRIC UNITS
0? 08 77
1S7S CHEVROLET 35H-CIO HO ENGINE PROJECT 11-H311
103b AM TEST 15-1 11?1 OUfl MRS OPTIMIZED 350 CIO CHEV HO ENGINE H/0 CAT
KB .871 HUMS b.l G/KG
O
I
CONCENTRATION
MODE HC-FID
1 IDLE
2 35 PCT T
3 55 PCT T
H as PCT T
5 10 PCT T
b as PCT T
7 SO PCT T
8 as PCT T
S C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
» 25 PCT T
5 10 PCT T
b 25 PCT T
7 So PCT T
8 25 PCT T
S C.T.
b2b
112
15
3S
103
*b
23
3795
752
200
32
58
132
h2
Sb
32
358H
CO
.12H
.279
.OS1
.115
.12H
.133
.857
,07b
.nab
.073
.ass
.087
.103
.115
.112
.S28
,0b7
.017
UNITS AS
MODE
1 I
2 25
3 55
H 25
S 10
b 25
7 So
B 25
S CT
1 I
2 25
3 55
H 25
S 10
fa 25
7 SO
B 25
S CT
MV
17. H
13.5
7.2
1H.3
Ib.S
1H.3
2.*
23.7
17. b
13.8
7.2
1H.3
Ib.S
1*.*
2.H
1H.7
23.7
CHP
U.O
23.7
HS.7
23.2
S.H
23.7
81.2
22.7
0.0
o.n
21. s
HS.7
23.2
S.S
23.2
81.3
2?. 7
0.0
SUM---(COHP09ITE
SUM--- (COMPOSITE
THO CYCLE COMPOSITE -
A3 MEASURED TOTAL FUF.L
coa NUX-CL CARHON G/HR
8.89 31 9.082 17b9
11.83 1*3 1?.121 BHB2
13.05 Sob 13.1H3 12H7H
11. ho 2?8 11.719 7975
11.1* bB 11.27b 5897
11. bO 2HB 11.738 7711
l».*b bHl 15.322 1S051
11.37 ?bS ll.HHS 7303
,3b * .7b7 0
8.89 33 9.11*5 1»S7
11. bO 15S 11.92? Bri7H
13.05 H70 13.1H1 ien?0
11. H8 2*3 ll.'iBS 7*39
10. SI 71 II. OHO 5BS7
11. HP ?58 11.599 7HBH
IH.Hb b20 15.395 I89b0
11.37 270 11. HM 7212
.HO H .777 0
CALCULATED G/HR
HC
13
S
2
3
b
3
7
2
O
13
15
3
H
8
n
8
2
0
SPECIFIED IN THE 7-11-75 PROCEDURE----
CTO FC BSFC BSNOX
0 3.9 R R
b2 18.7 .7R9 1.2
131 27.5 .553 2.8
hi lb.7 .731 1.8
?5 13.0 1.387 1.1
ba I7.o .71? a.n
21* »a.o .517 a.R
bn Ib.l .7119 2.2
n n.o I I
n 3.3 R R
5fl 17.8 .911 1.3
131 2b.S .533 2.5
bl Ib.H .707 l.S
2b 13. U l.31b 1.1
bl lb.5 .711 2.0
21* HI. 8 .51* 2.7
bn 1S.S .700 ?.l
o n.n I I
HC- Kin 0.351
co- NniR n.35( is.
NOX-CL n.35( 3.
F/A
.11*2
.055
.OSS
.053
.1)51
.053
.ObS
.052
.OOH
.OH2
.OSH
.05S
.053
.050
.053
.ObS
.052
.OOH
3) + n.
2) + 0.
3) + 0.
CO
HS .
3S*
17*
150
131
177
2151
SB
0
2*
HQS
Ibl
133
12*
IHb
2301
8b
0
SFC
KG/KM HR
R
.H80
.337
,*3q
.BHH
.H37
.315
.132
I
R
,*S»
.32H
.H3(l
.801
.»32
.313
• *2b
I
bS(
b5( IS
hS( 3
HC +
NOX
a
as
13S
*3
10
H7
231
SO
0
2
31
12H
H5
11
H8
221
HS
0
RPM
bOS
2000
1SSS
2000
2000
2000
1SSS
2000
1SSS
b20
2000
1SS5
2000
2000
2000
1SSS
2000
1SS5
.H) =
.5) =
.2) =
NOX =
SFC =
HT.
"SIGHTED G/HR
FACT. HC-FID
.232
.077
.1H7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1H7
.077
.057
.077
.113
.077
.1*3
CALC
A/F
23. S
18.2
Ib.S
18.8
IS. 5
18.8
1*.5
IS. 2
272.3
2».0
18. S
Ib.S
1S.O
1S.S
1S.O
1H.H
IS. 2
2b8.8
.355
1S.H05
3.205
3.559
.38S
3.1
.7
.2
.2
.3
.3
. 7
.1
0.0
3.1
1.2
.5
.3
.*
.3
.S
.2
0.0
HC
5*. 3
11.''
*.2
3.8
b.O
*.b
13.1
8.8
o.o
*S.l
lfa.7
7.0
H.b
b.H
H.S
12.8
8.5
0.0
.3
G/KH
G/KH
G/KH
G/KH
KG/KH
CO NOX-CL CKH
11
30
2b
12
7
1*
2*3
8
0
b
32
2*
10
7
11
8bl
7
0
"PERCENT
CO
3.2
8.7
7.3
3.3
8.1
3.1
bS.3
8.2
0.0
l.b
8.8
fa.b
2.S
2.0
3.1
73.1
1.8
0.0
IS
20
.* 0.0
2.2 17.7
20. H 37.1
3.3 17.3
.b 7.0
3.b 17.7
2b.l bO.S
3.8 Ib.S
0.0 0.0
.* 0.0
2.* Ib.H
18.3 37.1
3.5 17.3
.b 7.»
3.7 17.3
25.0 bO.b
3.8 Ib.S
0.0 0.0
OF TOTAL—
NOX FUEL
.7 5.8
3.7 S.2
33.8 25.7
s.* B.e
1.0 1.7
b.O 8.3
•»3.1 30.8
b.3 7.S
0.0 0.0
.b S.O
».8 1.0
31.7 25. S
b.O 8.3
1.1 H.S
b.H 8.3
*3.3 31.0
b.b 8.0
0.0 0.0
3.3
3.2
VAC.
MM
1*2
3*3
183
3b3
*1S
3b3
bl
373
b02
4*7
351
183
3b3
*1S
3fab
bl
373
boa
POHER
0.0
7.5
30.8
7.H
8.2
7.S
37.1
7.8
0.0
0.0
7.0
30.*
7.*
8.3
7»*
38. 8
'.3
0.0
HR ( .2bH BS)
HR (1H.H70 BS)
HR (
HR (
HR (
2.390 BS)
2.bSH BS)
,b3S S3)
-------
TABLE G-14.HASS K«IS3II)NR BY NINF-MODE EPA - METRIC UNITS
CHFVROLKT SSn-CIO HO ENGINE PROJECT 11-1311
02-11-77 1817 PM TEST 17-2 125(1 OUR HHS OPTIMIZED 350 CID CHEV HO ENGINE H/0 CAT K= .818 HUH= b.1 G/KG
O
CONCENTRATION AS MEASURED TOTAL
MODE HC-FID CO CO? NOX-CL CARBON
1 IDLE 73h
i 25 PCT T It.
3 55 PCT T 10
1 25 PCT T 8
S 10 PCT T 1BR
b 25 PCT T b
7 1o PCT T 11
B 25 PCT T 5
•» C.T. 1112
1 IDLE 1232
2 25 PCT T 55
3 55 PCT T 2b
1 25 PCT T 18
S 10 PCT T 312
b 25 PCT T 13
7 ID PCT T 20
8 25 PCT T 20
1 C.T. 31h8
.133
.0*7
.052
,nss
.OBb
.038
.133
.neb
.017
.082
.118
.052
.035
.011
.0*1
.125
.023
.017
UNITS AS
HOOE My CHP
1 I 17.3
2 25 12.2
3 55 b.b
1 85 12.5
5 10 lb.2
b 25 12.3
7 So 2.3
8 25 12. b
S CT 23.7
1 I 17.3
2 25 12.2
3 55 b.b
1 BS 12. b
5 10 lb.1
b 85 12.5
7 SO 2.3
8 25 12. b
1 CT 23.7
0.0
2*. 3
50.2
23.1
B.b
23. b
82. b
23.1
0.0
(1.0
21.1
SO.l
83.1
S.b
83.1
81. b
23.1
o.n
8. 79 35
12. Bn inS
12.M 175
12.12 107
10. b'' 80
13. of 11
13. "U 88fi
12.1? 113
.in 1
B.71 3»
l?.8o 1H
12.bfl IbQ
12. "0 107
10.17 83
12.1? inS
13.11 8h5
18. BO 107
.11 1
1.003
12.889
12.731
12. ISt.
1(1.717
13.081
11.371
I?. 117
. flbfl
1.00s
12.151
12.735
1^.837
10.b07
12. •"!>;>
H.3b8
12.82h
.885
SPECIFIED IN THE 7-11-7S
CTO FC BSFC
0 3.8
b3 20.1
13? 2b.B
bl H.l
22 13.1
b2 11. b
218 11.2
bl 11.0
0 0.0
U 3.5
t>3 11.1
13? 27.2
bl 11.0
22 13.5
bl 11.5
21b 11.0
bl 11.0
0 0.0
8UM---(COMPOSITE VALUE FOR CYCLE
SUM---(COMPOSITE VALUE FOR CYCLE
TWO CYCLE COMPOSITE - HC-
CO-
R
.«27
.531
.827
l.Sbl
.831
.111
.822
I
R
.8?1
.513
.821
1.577
.B1f>
.503
.821
I
Fin o.3SC
NOIR o.ssc
NOX-CL 0.35C
FUEL
6/HH
J721
1117
1215b
Bbbl
b078
8R10
J8ti88
8bl8
0
1588
1n2b
123J8
8hlB
b!23
8815
1BS17
8bl8
0
CALCULATED G/HR
HC CO NOX
IS
1
1
1
12
O
2
0
0
81
1
3
1
25
1
3
2
0
52 2
121 22
101 135
17 21
18 13
52 20
1137 311
35 22
0 0
?1 8
201 20
102 133
17 21
110 11
Sb 21
1112 331
32 21
0 0
PROCEDURE-— SFC
BSNOX F/A KG/KM HR RPM
R
.1
2.7
.1
l.b
.1
1.1
1.0
I
R
.8
2.7
.1
1.7
.1
1.1
.1
I
.3)
1.1)
3.b)
.011
.058
.058
.058
.011
.051
.ObS
.OSB
.001
.011
.051
.058
.OSB
.018
.051
.ObS
.058
.001
t O.SS(
+ O.bSC
+ O.bSC
R bOO
.503 8020
.325 2005
.503 2005
.151 2010
.505 2000
.303 1115
.500 2000
I 1115
R bOO
.501 2000
.330 1115
.501 1115
.151 8005
.511 I'm
.30b 1180
.501 1115
I 1180
.5) =
10.0) =
3.b) a
HC * NOX =
SFC =
NT.
FACT.
.232
.077
.117
.077
.057
.077
.113
.077
.113
.238
.077
.117
.077
.057
.077
.113
.077
.1»3
CALC
A/F
81.1
17.8
17.1
17.1
80.3
lb.1
IS. 5
17.1
210. b
81.1
17.1
17.1
17.8
80.7
17.1
1S.S
17.3
235.1
.310
1.185
a. baa
1.012
.105
WEIGHTED G/HR
HC-FIO CO NOx-CL CKW
3.5
.1
.2
.0
.7
.0
.2
.0
0.0
s.s
.3
.1
.1
l.»
.1
.3
.1
0.0
12
10
IS
1
b
1
12B
3
0
7
lb
IS
1
b
1
12b
2
0
.5 0.0
1.7 18.1
H.1 37.5
l.b 17.2
.8 b.1
1.5 17. b
38.5 bl.b
1.7 17.2
0.0 0.0
.1 0.0
l.b 1B.O
H.S 37.3
l.b 17.2
.8 fc.1
l.b 17.8
37.7 bo. 8
1.7 17.8
0.0 0.0
VAC.
MM
131
310
Ib8
317
111
312
SB
320
b02
131
310
Ib8
320
101
317
SB
320
b02
HC
73.7
8.0
3.3
1.0
13.8
.7
1.1
.b
0.0
bb.2
1.0
5.0
1.3
17. a
.1
1.0
1.1
0.0
.5
G/KM
G/KW
G/KN
G/KM
KG/KM
co NOX FUEL
b.b
5.3
B.2
2.0
3.1
2.8
71.0
1.5
n.o
3.8
8.1
8.3
8.0
3.5
2.1
bl.8
1.1
0.0
10
10
HR (
HR (
HR (
HR (
HR (
.7 5.1
8.b 1.5
30.0 81.3
2.5 1.1
1.8 ».7
8.3 1.3
58.2 28.7
2.b 9.0
0.0 0.0
.b 5.0
2.1 1.5
30.1 21.7
8.5 1.0
1.3 1.8
8.5 1.3
58.0 28. b
2.5 1.0
0.0 0.0
S.b
3.b
.211 BS)
7. lib BS)
2.701 BS)
2.111 B3)
.bbb 83)
POHER
0.0
7.b
30.2
7.3
2.0
7.1
38.2
7.3
0.0
U.O
7.7
30.1
7.3
8.0
7.3
38.0
7.3
0.0
-------
TABLE G-15. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
02-?l-77 1039
1975 CHEVROLET 350-CIO HO ENGINE PROJECT 11-4311
TEST 19- 1 1375DUR MRS OPTIMIZED 350 CIO CHEV HD ENGINE H/0 CAT
K= .91b HUMS 7.5 6/KC
O
I
CONCENTRATION
MODE HC-FID
1 IDLE 1824
2 25 PCT T ?1
3 55 PCT T 23
4 25 PCT T 32
5 1O PCT T 152
b 25 PCT T 34
7 9o PCT T 25
8 25 PCT T 23
9 C.T. 34Sb
1 IDLE 3202
2 25 PCT T 3*8
3 55 PCT T 3b
4 25 PCT T 39
S 10 PCT T 218
b 25 PCT T 34
7 9o PCT T ?b
8 25 PCT T 23
9 C.T. 377b
CO
.155
.137
.050
.085
.090
.093
.525
.Ob?
.030
.OBl
.182
.0*9
.078
.092
.092
.525
.Ob2
.024
..—UNITS A3
MODE MV CHP
1 I Ib.S
2 25 13.2
3 55 b.3
4 25 13.8
5 10 lb.0
b 25 13.8
7 90 2.3
8 25 14. b
9 CT 23.1
I I lb.8
2 25 13.1
3 55 b.3
4 25 13.8
5 10 lb. 1
fa 25 13. b
7 90 2.4
g 25 14.2
9 CT 23.1
0.0
23.5
50.3
23.*
9.0
22.9
82. 0
22. 4
0.0
o.u
23.0
50.8
22.9
8.5
23.4
81.8
22.5
0.0
SUM— (COMPOSITE
SUM (COMPOSITE
TWO CYCLE COMPOSITE -
AS MEASURED TOTAL
C02 NOX-CL CARBON
B.b9 35 9.0»2
11. bb 141 H. BOB
12. bB 390 12.733
11.25 207 11.339
11.30 f.3 11.407
11.25 201 11.3H7
13. 9H 79Q 14.4b8
11.03 24Q 11.097
.39 5 .7b7
B.02 33 8.441,
11. bo 120 ll.B?l
12. bB 390 12.733
11.25 192 11.333
10.91 bO U.02b
11.37 192 11.4bb
13. 91 7bo I4.4b*
11.03 2?2 11.094
.39 4 .794
SPECIFIED IN THE 7-u^
CTQ FC BSFC
0 '•.O R
b? 19.0 ,7b7
132 28.1 .5SB
b2 17.1 .730
24 14.0 1.557
bO 17.3 .755
21b 41. R .510
59 lb.5 .73b
00.0 I
0 4.0 R
bO IB. 5 ,B05
133 28.4 .559
bO 17.2 .751
22 13. P l.bZS
b2 17.3 .730
215 41.5 .508
59 lb.5 .734
0 0.0 I
VALUE FOR C»CLE 1)
HC- FID 0.
CO- NDIR 0.
NOX-CL 0.
FUEL
G/HR
1814
BlhS
1274b
77St>
b350
7847
I89b0
7484
0
1814
8391
12882
7802
b2bO
7847
18»24
7484
0
CALCULATED G/HR
HC
HO
5
3
2
9
3
4
2
0
74
27
t
3
1»
3
H
2
0
-75 PROCEDURE —
BSNOX F/A
R
1.3
2.4
1.8
1.2
1.8
3.8
2.2
I
R
1.1
2.4
1.7
1.2
1.7
3.7
2.0
I
3S(
35( 12.
3S( 3.
.0*2
.054
.058
.052
.052
.052
.ObS
.051
.004
.039
.054
.058
.052
.050
.052
.ObS
.050
.004
b) + 0.
B) 4 (|.
7) + 0.
CO
b3
192
102
117
102
130
1389
8B
0
35
2bl
ion
109
10b
127
1380
84
0
SFC
KG/KH HR
R
.4bb
.3HO
.144
.947
.459
.310
.448
I
R
.490
.340
.»57
.988
.449
.309
.447
I
bS( 1
bS( 12
b5( 3
HC +
NOX
Z
30
119
43
11
42
315
49
0
2
2b
120
40
10
40
301
4b
0
RPM
b45
2005
2000
2000
200S
2000
1995
2000
2000
b40
2005
2000
2000
2085
2000
1995
2000
2000
.2) =
.7) =
.fa) s
NOX z
SFC =
•IT.
WEIGHTED G/HR
FACT. HC-FID
.232
.077
.147
.077
.057
.077
.113
.077
.143
.232
.077
.147
.077
.057
.077
.113
.077
.143
CALC
A/F
24. 0
18.7
17. •»
19.4
11.3
19.4
15.3
19.8
272.5
25. b
18. fa
17.4
19.4
19.9
H.2
15.3
19.8
2b3.2
,99b
12.720
3.594
4.590
.399
9.2
.4
.4
.2
.5
.2
.4
.1
0.0
17.2
2.1
.b
.2
.8
.2
.4
.1
0.0
HC
80.2
3.7
3.3
l.t.
4.7
1.7
3.7
1.1
0.0
79.3
9.8
2.8
1.1
3.b
.9
2.0
.b
0.0
.b
1.2
G/KH
G/KN
G/KH
G/KH
KG/KH
CO NOX-CL CKH
IS
IS
IS
9
b
10
157
7
0
8
20
15
8
b
10
ISb
fa
0
—PERCENT
CO
b.2
b.3
b.»
3.9
2.5
4.3
b7.4
2.9
0.0
3.b
B.8
b.4
3.b
2.b
4.3
b7.9
2.8
0.0
13
13
HR (
HR (
HR (
HR {
HR (
.5 0.0
2.3 17.5
17.4 37.5
3.3 17.5
.b b.7
3.3 17.1
35. b bl.2
3.8 lb.7
0.0 0.0
.5 0.0
2.0 17.1
17. b 37.9
3.1 17.1
.b b.3
3.1 17.5
34. U bl.O
3.5 lb.8
0.0 0.0
OF TOTAL
NOX FUEL
.7 5.8
3.» 8.7
2b.l 2b.O
5.0 8.3
.•» 5.0
4.9 8.4
53.3 29.7
5.7 8.0
0.0 0.0
.B 5.8
3.1 8.9
27.4 2b.2
4.8 8.3
.9 4.9
4.8 8.4
52.8 29.4
5.4 8.0
O.U 0.0
3.7
3.b
.743 BS)
9.485 BS)
2.bBO BS)
3.423 BS)
.b5b BS)
VAC.
MM
429
335
IbO
351
40b
351
58
371
587
427
333
IbO
351
409
345
bl
3bl
587
POHER
0.0
7.4
30.5
7.4
2.1
7.3
38.2
7.1
0.0
0.0
7.3
30.8
7.3
2.0
7.4
38.1
7.1
0.0
-------
TABLE G-lb. MASS EMISSIONS BY NINE-MODE EPA - METRIC UNITS
O
0? 28 7? lifts AM TEST 21-1
1975 CHEVROLET 350-CID HO ENGINE—PROJECT 11-1311
1500 OUR HRS OPTIMIZED 350 CIO CHEV M/0 CAT
K» ,7bb HUH* 3.1 G/KG
MODE
1 IDLE
2 25 PCT T
3 55 PCT T
1 25 PCT T
S 10 PCT T
b 25 PCT T
7 9o PCT T
8 25 PCT T
9 C.T.
1 IDLE
2 55 PCT T
3 55 PCT T
1 25 PCT T
5 10 PCT T
b 25 PCT T
7 90 PCT T
8 25 PCT T
9 C.T,
CONCENTRATION AS MEASURED TOTAL
HC-FIO CO CO? NOX-CL CARRON
bSb
111
11
IS
39
15
23
28
3810
821
1'2
38
b3
Sb
52
31
81
3552
.121 B.bO
.218 11.37
.070 12.13
.101 11.11
.131 11.18
.112 Hill
.598 13. 9»
.078 ll.H
,02b .29
.082 8.50
.208 H. f)3
,0b7 12.31
.097 11.03
.133 11.37
.109 11,11
.581 13.91
,0b7 11.03
,02b .29
35
189
510
252
bO
858
810
St.?
S
37
515
213
b2
258
855
2?b
5
8.795
ll.bOO
12.502
11.219
11. blS
11.257
11.511
11.221
.701
B.b?l
11.259
12.38?
11.131
11.509
11.255
11.525
11.100
,b72
FUEL
G/HR
1811
8071
12217
7181
bISO
7530
18733
7391
0
1588
7711
12217
7391
b3SO
7181'
18881
7391
0
CALCULATED 6/HR
HC CO NOX
IS
9
2
3
2
3
3
2
0
Ib
15
1
S
3
1
5
2
0
52
30b
138
HO
111
151
ISSb
101
0
30
287
131
130
119
m
1521
0
2
33
127
13
8
11
275
IS
0
2
33
130
»1
9
11
282
17
0
FACT)
.238
.077
.117
,077
.057
,077
,113
.077
.1*3
.232
,077
,117
.077
.057
.077
.113
,0?7
.113
WEIGHTED G/HR
HC-FID CO NOx-CL
3.1
,7
.3
,3
.1
.3
',1
0.0
3.8
1.1
II
.8
.3
.5
.1
0.0
12
21
20
H
8
12
I7b
a
0
7
22
20
10
8
11
172
7
0
,1
2.b
18.7
3.3
.5
31.1
0.0
.1
Z.b
19.0
3.2
3.1
31.8
3.b
0.0
CKH
0.0
18.1
37.1
Ib.S
b.b
lb,9
bO.b
Ib.S
0.0
0,0
lb.9
37.5
Ib.b
7.0
17.3
bO.b
Ib.S
0.0
VAC.
MM
139
313
1?3
3bl
111
358
bl
35b
597
112
35b
173
3fa3
111
358
bl
3bb
597
—UNITS AS SPECIFIED
IN
THE 7-U-7S
MODE
RPM
A/F
HC
POKER
1 I
2 25
3 55
1 25
5 10
b 25
7 90
8 25
9 CT
1 I
2 25
3 55
1 25
S 10
b 25
7 90
8 25
9 CT
17.3
13. S
b.8
1».2
lb.2
l».l
2.«
11.0
23.5
17.1
11.0
b.8
1».3
lb.3
l».l
2.1
!».»
23.5
0,0
2*. 2
19,8
28.1
8.9
28.7
81.3
22.2
0.0
0.0
22.7
50.2
82.2
9,1
23.1
81.3
28.2
0.0
SUM---(COMP08ITC
aim— f rnnon
*. f wl_C e J
HC- FID
R
.735
.512
,71b
.581
.738
.506
,73b
I
R
.750
.537
.731
.»92
.713
.511
.735
I
0.3S(
CO- NOIR 0.35C
NOX-CL
0.35(
R
2!s
>
3)3
2.0
I
R
1.5
8*5
1.8
ill
3.1
8.1
I
.3)
11.9)
3.5)
,0111
.053
.057
.051
.053
.05]
.Obb
.051
.003
.010
.051
.OSb
.051
.052
.051
.ObS
,051
.003
* 0.bS(
+ O.bSC
* 0,faS(
R
'.330
.151
,9b2
,115
.309
,117
I
R
,1Sb
.327
.»'7
.908
.131
.311
.117
I
11
3
HC +
blO
2005
2000
1995
1995
2000
199S
1995
199S
blO
1995
1995
2000
2000
1995
1995
199S
1995
.»)
.2)
.b)
NOX
SFC
21.7
i'!'
18^9
is!s
19, fc
297.7
25.0
17)8
H.7
19.5
15.3
19,8
310.5
.357
11.130
3. 529
3. BSb
.390
bl.1
12.8
5.5
2 1
1 b
bl*
8.8
0.0
53.9
lb.0
8.8
S.I
2.8
'.8
l|l
0.0
.
G/KH
G/KH
G/KH
G/KW
KG/KH
1,1
8,7
i|o
3.0
bslo
3.0
0.0
2.7
e.b
'.7
3.9
3.3
*.»
bb,7
8.7
0.0
a f
IS
11
HR
HR
HR
HR
HR
.7 b.O
».l 8,8
29.5 25.5
5.2 8,2
.8 S.I
S.3 8.2
19.1 30.0
5.1 8,1
0.0 0.0
.b S.3
1.0 8.5
29.5 25.8
1.9 8.2
.8 5.2
S.8 8.3
19.1 30.5
S.b 8.2
0.0 0.0
• 3.5
3,b
( .2bb BS)
(10.7bl BS)
( 2,b32 BS)
( 2.898 BS)
( ,b12 BS)
0.0
7.8
30.5
7.1
2.1
7.3
38.2
o'.a
0.0
7.3
30.7
7.1
2.2
7.1
38.2
7.1
0.0
-------
TABLEG-17. MASS EMISSIONS PY NINE-MODE EPA - METRIC UNITS
01 18 7? 3:30
TEST 8-1
1175 CHEVROLET 350-CID HO ENGINE PROJECT 11-H311
000 CAT MRS OPTIMIZED 350 CID CHEV HO ENGINE w OXI CAT
K=
HUM=
3.3 G/KG
CONCENTRATION
MODE
1
2
3
»
5
b
7
8
1
1
Z
3
H
S
b
7
B
9
IDLE
25 PCT
55 PCT
25 PCT
10 PCT
25 PCT
SO PCT
25 PCT
C.T.
IDLE
85 PCT
55 PCT
25 PCT
10 PCT
25 PCT
10 PCT
25 PCT
C.T.
HC-FID
T
T
T
T
T
T
T
T
T
T
T
T
T
T
11
a
H
7
I*
13
HI
12
13
20
20
10
10
1H
11
HH
8
15
CO
.009
.001
.001
.009
.oot>
.OOb
1.213
.OOb
.OOb
.003
.003
.003
.003
.003
.003
1.2SH
.003
.003
AS MEASURED
C02
1.72
12.31
13.55
12. 11
11.15
12.11
IH.bO
12.31
.75
''.Si
12.11
13. H3
12. 11
11.15
12.31
IH.bO
12.31
.'b
NOX-CL
H2
207
H70
2bH
70
2b7
84
227
10
35
108
HS2
238
b7
237
71
2?2
q
TOTAL
CARBON
1.7311
12.320
13.551
1P.111
11.157
12.117
15. SIR
1?.317
.757
1.515
12.H5
13.H3*
IP. II*
1J.1SH
12.31H
1*.«51
12.31H
.7SH
FUtL
G/HR
1150
8210
12B82
7B17
b31b
713«
11H3
7BS3
n
IBbO
B07H
12?ol
7183
b31b
8lb5
11158
7138
0
CALCULATED G/HH
HC
0
1
0
1
1
1
7
1
n
0
1
1
i
1
1
b
1
0
CO
1
12
17
11
b
8
3271
8
n
1
»
b
»
3
t
3187
t
0
NOX
2
35
115
Ht
10
HS
27
37
0
2
30
110
HO
9
HO
23
38
0
HT.
FACT.
.232
.077
.1H7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1H7
.077
.057
.077
.113
.077
.1H3
WEIGHTED G/HR
HC-FID
.1
.0
.1
.0
.0
.1
.8
.1
o.n
.1
.1
.2
.1
.0
.1
.7
.0
0.0
CO
1
1
2
1
11
1
370
1
0
0
0
1
0
0
0
3bQ
0
0
NOX-CL
.5
2.7
lb.1
3.H
.5
3.H
3.1
2.1
0.0
.H
2.3
lb.1
3.1
.5
3.1
2.b
3.0
0.0
CKW
0.0
17.8
37.7
Ib.fa
t>.7
17. H
51.1
Ib.b
0.0
U.O
17.0
37.7
17. H
7.0
17.7
bfl.H
17.3
0.0
VAC.
MM
•»OH
3-»3
Ib3
35b
tni
351
53
J5b
512
H42
358
Ib8
351
HOI
JH5
53
J53
51H
O
I
•—•
CO
_l ILJ * T a * a o n r- •* T
MODE
1 I
2 25
3 55
H 25
5 10
b 25
7 10
8 25
1 CT
1 I
2 25
3 SS
H 25
5 10
b 25
7 10
8 25
i CT
MV
15.1
13.5
b.H
1H.O
lb.1
13.8
2.1
1H.O
23.3
17. H
1H. 1
b.b
13.8
lb.1
13. b
5.1
13.1
23. H
«l IU___ / *»OI
'r* i i o no \>r C.L. l
CHP CTO
0.0
23.8
50.5
22.3
8.1
23.3
80. H
22.3
0.0
0.0
22.8
50.5
23.3
1.H
23.8
81.0
23.2
0.0
jncio » T r
oun— — -tuunru^l >C
SoM— (COMPOSITE
THO
0
b2
133
51
23
bl
212
51
0
O
bO
133
bl
25
*>2
213
bl
0
U A t lie
»«L'JE
VALUE
CYCLE COMPOSITE -
r 1 1 u l ™ i M t " 1 1 •• / 3
FC BSFC
H.3
IB!I
28. H
17.3
1H.1
17.5
H3.1
17. H
0.0
H.I
17.8
I7*b
1H.1
1B.O
HH.O
17.5
0.0
fOR CYCLE
FOH CYCLE
HC-
co-
R
,7bn
.Sb2
.777
1 .578
.751
.5Hb
.7811
I
R
.782
. 55H
.75b
I .tSf
.757
.5*3
. 751
I
FIO 0.3S(
NDIR 0.35(
NOX-CL n.35(
r r^uj, ti
BSNOX
R
1.5
2.2
1.1
1.1
1.1
.3
1.7
I
R
1.3
?.2
1.7
1.0
1.7
.3
l.b
I
20
1
F/A
.OHS
.OSb
.Obi
.055
.flS*
.055
.072
.OSb
.OOH
.OH*
.058
.UbU
.055
.nsH
.OSb
.1)71
.OSb
.nan
.1) t n.
.8) » 0.
.81 + 11.
*»r i.
KG/KH HR
R
.Hb2
.3H2
.H72
.IbO
.H57
.332
.H75
I
R
.H75
.337
.HbO
.101
.HbO
.330
.H51
I
b5(
bS( 11
b5( 1
HC t
RPM
bSO
2005
2000
2000
2000
2noo
mo
2000
1115
bHS
2000
2000
2000
2005
2000
1115
1115
1115
.1) =
.8) =
.7) =
NOX =
SFC =
U«t-i.
A/F
22.5
17.1
Ib.H
18.1
18.5
18.1
1H.O
17.1
277. »
22.1
17.2
Ib.S
18.1
18.5
17.1
IH.l)
17.1
27H.8
.Obi
20.155
1.751
1.820
.H10
HC
H.7
3.1
5.3
3.3
H.O
b.l
b7.2
S.b
0.0
7.b
B.H
12.1
H.3
3.7
H.8
55. b
3.H
0.0
.1
G/KW
G/KM
G/K«
G/Kt>
KG/KW
CO
.2
.2
.7
.2
.1
.2
18.3
.2
0.0
.1
.1
.2
.1
.0
.1
11.3
.1
0.0
3 1
C 1
20
HR
HR
HP
HR
HR
NOX FUEL
l.S b.l
8.2 8.5
So. 5 25.5
10.1 8.1
l.b 1.1
10.3 3.2
1.2 30.3
S.b 8.2
0 . U O.I)
1.3 5.8
7.5 S.t
51. 8 2S.2
1.1 *. 3
1.7 H.I
10.0 fl.S
8.3 3d.S
1.5 H.3
0 . U U.O
i!?
( .051 rjR)
(15.021 ttS)
( 1.30b BS)
( 1.357 08)
( .b?» HS)
POwER
O.I)
7.b
30.8
7.1
2.1
7.5
37.7
7.1
0.0
0.0
7.2
30. b
7.H
2.2
7.5
37.7
7.H
0.0
-------
TABLEG-18. "ASS EMISSIONS BY NINE-MOOE EPA - METRIC UNITS
1975 CHEVROLET 350-CIU HD ENGINE PKOJECT 11-1311
01-21-77 2:39 PM TEST 10-1 129 CAT HRS OPTIMIZED 350 CID CHEV HO ENGINE H OXI CAT Ka .788 HUMs 3.7 6/K6
O
CONCENTRATION AS MEASURED TOTAL
MODE HC-FID CO CO? NOX-CL CARBON
1 IDLE B
.7R
38 9.725
117 12.929
»2n 13.307
IhS 12.b87
b? IP.19B
1*7 12.927
ecf lS.83b
151 13.H57
b .B0(-
38 9.bl7
121 1?.B07
395 13.131
1»» 12.8U3
bO 12.073
115 12.S83
200 15. Bob
151 12. b8?
b .783
UNITS AS SPECIFIED IN THE 7-11-75
MODE Mv CHP CTQ FC B9FC
1 I lb.7 0.0
2 25 12. fl 22.5
3 55 b.7 18.2
» 25 13.1 23.0
S 10 15. b 9.u
b 25 13.0 23.5
7 9(1 2.1 79.2
8 25 13.3 22.5
9 CT 23. b 0.0
1 I Ib.b 0.0
2 25 i3.1 22. b
3 55 b.8 18.5
•» 25 13.2 23.1
5 10 15.8 8.5
b 25 13.1 23.1
7 SO 2.1 79. b
B 25 13. 1 22. b
* CT 23. b 0.0
SUM— .(COMPOSITE
SUM (COMPOSITE
TWO CYCLE COMPOSITE -
0
59
127
bn
?i
b?
209
59
U
0
S9
127
bO
22
bO
209
59
0
VALUE FOR
VALUE FOR
H.O R
18.9 .8*1
27.1 .5b2
17. S .77f
11. 3 1.58H
IB. 5 .78P
12.1 .53?
18.0 ,B01
0.0 I
3.7 R
18.5 .BlR
27.1 .559
18.3 .79<»
11.0 I.b39
18.1 .797
12.5 .531
17.8 .788
0.0 I
HC- FIO 0.35(
CO- NDIR 0.35(
NOX-CL 0.35(
FUEL
G/HR
IBl*
8573
12?92
8o7-»
h<*Bh
8391
19232
B]b5
n
Ib78
8391
12292
8301
b350
R'ifb
19278
8n7»
0
CALCULATED
HC CO
1
2
1
1
1
1
»
1
0
1
2
1
1
1
1
»
1.
0
0
8
11
7
b
8
302*
7
0
1
H
S
2
1
2
2lb2
2
0
6/HR
NOX
2
20
101
27
9
25
bb
25
0
2
21
95
2H
B
25
b
-------
TABLEG-19. M»S3 EMISSIONS Br NINE-MODE EPA - METRIC UNITS
117S CHEVROLET 350-CIO HO ENGINE PROJECT 11-1311
ni 3i 77 0120 PM TEST 12-1 zsu CAT MRS CHEV 350 cio HO GAS WITH CAT PRE MAINT
.892
HUM:
b.7 6/K6
O
I
CONCENTRATION
MODE
1 IDLE
2 25 PCT
3 55 PCT
1 25 PCT
s in PCT
fa 25 PCT
7 90 PCT
B 25 PCT
9 C.T.
1 IDLE
2 2S PCT
3 55 PCT
1 25 PCT
s 10 PCT
b 25 PCT
7 10 PCT
8 25 PCT
1 C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
HC-FIU
33
13
7
7
1
in
bl
11
11
37
29
Ib
17
17
15
bB
12
13
CO
.001
.002
.001
.002
.002
.002
1.703
.002
.000
.001
.P03
.002
.001
.001
.001
1.703
.003
.000
AS MEASURED
en?
9.93
12.81
13.31
12.55
12.55
12. b8
11.20
12. b8
.91
9.82
12. bR
13.13
12.55
12.13
12. bR
11.20
12. bB
.87
NOX-CL
38
135
i(
TWO
oun»~— luunruo j. * c.
CYCLE COMPOSITE -
CTQ
(1
bn
133
b?
21
b?
21b
bl
n
0
b?
131
(•0
22
b2
215
bO
n
VALUE
u Al 1 1C
V ALUt
FC
3.8
11.5
27.1
17.2
11.0
17.8
11.1
17.0
.7
3.1
17.8
28.0
17.3
11.3
17.8
11. n
17.0
.7
rOR CYCLE
f no r vn F
r \jn u YILC
HC-
CO-
BSFC
R
.R1R
.557
.731
1.551
.75b
.513
.7H7
R
R
.75b
.Sb3
.751
l.bSB
.75S
.53S
.73S
R
FID o.3S(
NDIR 0.3S(
NOX-CL 0.3S(
PROCEDURE—
BSNOX
R
1.2
2.b
1.5
.S
1.5
1.5
1.3
R
R
1.2
2.5
1.5
1.0
1.5
1.5
1.3
R
27
2
F/A
.015
.058
.ObO
.057
.057
.057
.072
.057
.001
.015
.057
.ObO
.057
.05b
.057
.072
.057
.001
.1) + 0
.3) * 0
.1) + 0
SFC
KG/KM HR
R
.Sib
.33S
.lib
.SIS
.IbO
.330
.118
R
R
.IbO
.313
.iss
1.027
.1b2
.328
.IIS
R
.bS(
,bS( 27
.b5( 2
HC +
RPM
bOO
2000
1SBS
1SS5
2000
2000
1S<»0
2000
11S5
b20
2000
1SSO
2000
2000
2000
1SS5
2000
1115
.1) =
.1) =
.1) -
NOX a
SFC =
CALC
A/F
22.0
17.3
Ib.b
17. b
17. b
17.5
13. S
17.5
22S.S
22.3
17.1
Ib.S
17. b
17.8
17.5
13. S
17. S
210.3
.113
27.171
2.371
2.187
.108
HC
B.I
1.3
b.2
2.1
l.b
3.1
S8.S
1.1
11. S
b.?
7.3
11. S
1.2
2.b
3.8
50.7
2.''
10.3
i
. *
,1
G/KW
G/KM
G/KM
G/KW
KG/KM
CO
.1
.0
.2
.0
.0
.0
SS.b
.0
.0
.0
.1
.1
.0
.0
.0
SS.7
.1
.0
?7
C r
27
HR
HR
HR
HR
HR
NOX FUEL
1.0 5.1
1.9 S.2
13.7 25.0
b.l 8.1
1.1 1.9
b.2 8.1
31.7 30. b
s.e s.o
.8 .b
1.0 1.9
5.2 8.5
12. b 25.1
b. 8.2
1. 5.0
b. 8.5
32. 30.7
S. 8.1
.b
.
g^
( .081 83)
(20.2bl BS)
( 1.771 BS)
( 1.855 BS)
( .b?l BS)
POWER
0.0
7.3
30.3
7.1
2.1
7.5
38.1
7.3
0.0
0.0
7.5
30.2
7.3
2.0
7.5
38.2
7.3
0.0
-------
TAP.LF.G-ZO. M»S3 EMISSIONS RY NINE-MODE EPA - METRIC UNITS
02-02-77 1235 PM TEST 11-1
1175 CHEVROLET 350-CIO HO ENGINE PROJECT 11-1311
250 CAT MRS CHFV 350 CID HO GAS KITH CAT POST MAINT
Ks .900 HUM: 7.0 G/KG
O
I
t\>
CONCENTRATION
MODE HC-FIO CO
1 IDLE 37
2 25 PCT T 20
3 55 PCT T 5
1 25 PCT T 10
S 10 PCT T ?7
b 35 PCT T S
7 90 PCT T 13
8 25 PCT T b
S C.T. Sb
1 IDLE 37
2 25 PCT T 31
3 55 PCT T 5
1 25 PCT T 9
S 10 PCT T 35
b 25 PCT T B
7 90 PCT T 9
8 25 PCT T 5
S C.T. 1b
.003
.003
.003
.003
.000
.000
.5fa2
.000
. nno
.000
.000
.000
.000
.000
.000
.150
.000
.000
AS MEASURED TOIAL
CO? NOX-CL CARBON
9.51 31
12. fed 101
13.17 370
12.19 1(,1
11.11 75
12. bB 13?
11.73 231
11.95 1B9
.R3 b
9.10 35
12.19 13b
13.17 3bb
12.19 171
11.03 70
12.55 131
11.73 351
11.95 1B3
.80 5
9.517
l?.t>85
1 3. J 71
12.1911
11.113
12. >>8)
15.293
11.951
.R3b
9.10»
12.191
13.171
12.191
11.1133
12.551
15.181
11.951
.805
FUEL
G/HR
Ifc78
8137
1 2519
7X93
S»97
Blb5
19051
7575
0
1588
Blb5
12128
7B17
5897
BlbS
19051
7711
0
CALCULATED
HC CO
1
1
I
i
I
1
2
n
0
1
2
0
0
1
1
b
1
0
0
1113
0
0
0
0
0
0
0
0
1110
0
0
G/HR
NOX
2
20
105
32
12
25
8b
3b
0
2
27
103
33
11
2b
SS
35
0
WT.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
WEIGHTED
HC-FID CO
.3
.1
.1
.1
.1
.0
tg
!o
o.o
.2
.2
.1
.0
.1
.0
.1
.0
0.0
0
0
1
0
0
0
IbO
0
0
0
0
0
0
0
0
129
0
0
G/HR VAC.
NOX-CL CKW MM
.1 0.0 127
l.S 17. b 325
1S.1 37.1 IbO
2.1 17. b 313
.7 7.1 111
2.0 18.0 333
S.7 bO.5 Sb
2.8 lb.9 351
0.0 0.0 587
.1 0.0 129
2.1 17. b 338
15.3 37.1 IfaB
2.5 17. b 313
.b b.7 111
2.0 17. b 335
10.8 bO.3 Sb
2.7 Ib.S 351
0.0 0.0 587
— —UNITS AS
MODE MV
1 I lb.8
3 35 12.8
3 55 b.3
1 35 13.5
5 10 lb.3
b 35 13.1
7 90 2.2
8 25 13.8
S CT 23.1
1 I lb.9
2 25 13.3
3 55 h.b
1 25 13.5
S 10 lb.3
b 25 13.2
7 SO 2.2
B 25 13.8
9 CT 23.1
CHP
0.0
23. b
50.1
23. b
S.b
21.2
81.1
22. b
0.11
0.0
23. b
IS. 7
23. b
s.o
23. b
80.9
22. b
0.0
SIJM---(COMP03ITE V
SPECIFIED IN
CTO FC
0 3.7
h2 18. b
131 27. b
b2 17.1
25 13.0
b3 IB.O
213 12.0
59 lb.7
0 0.0
0 3.5
bl lfl.0
131 27.1
b2 17.3
21 13.0
b2 18.0
212 12.0
59 17.0
0 0.0
At Mr Fno r wri r
SUM---(COMP03ITE VALUE FOR CYCLE
TWO CYCLE COMPOSITE - HC-
CO-
THF 7-11-75
8SFC
R
.789
.551
.737
1.359
.711
.51R
.73B
I
R
.7b3
.551
.731
1.137
.7b3
.519
.751
I
FID 0.35(
NDIR 0.35(
NOX-CL 0.35C
PROCEDURE- ---
arc
BSNOX F/A KG/KM HR HPM
R
.8
2.1
1.3
1.3
1.1
1.1
l.b
I
R
1.1
3.1
1.1
1.2
1.1
1.2
l.b
I
.0)
B.S)
1.9)
.Oil
.057
.fl59
.055
.051
.057
.Ob9
.051
.001
.013
.055
.059
.055
.050
.057
.ObB
.051
.001
+ O.bSC
* O.bSC
+ O.bSt
R
.180
.335
.118
.827
.153
.315
.119
I
R
.ibl
.335
.117
.871
.Ibl
.31b
.157
I
HC +
bOO
2010
2010
2010
3015
2015
2000
2010
3000
blS
2015
2000
2010
2015
3010
3000
3015
3000
.0) =
7.1) =
2.0) =
NOX =
3FC »
P A 1 f*
CALL
A/F
22.9
17.1
lb.8
1B.1
17^5
11. b
18.5
251.1
23.3
18.1
lb.8
18.1
1S.S
17. b
11. 7
18.5
3bl.O
.013
7.751
1.982
2.021
.39b
HC
21.3
10.1
7.1
11.5
21^8
1.3
0.0
30. b
23.3
10.3
b.S
11.0
s.a
1S.O
3.b
0.0
_
.
G/KH
G/KH
G/KH
G/KH
KG/KH
CO NOX FUEL POWER
.1
.2
.5
.2
.0
.0
99.0
.0
0.0
.0
.0
.0
.0
.0
.0
SS.9
.0
0.0
S
HR
HR
HR
HR
HR
1.2 S.I 0.0
1.1 S.O 7.5
11.2 25. fa 30.3
7.0 8.5 7.5
l.S .1.7 2.2
S.b 8.7 7.7
27.8 2S.S 37.7
7.S 8.1 7.2
O.D 0.0 0.0
1.1 5.2 0.0
S.B 8.8 7.5
11.8 25. b 30.3
7.0 8.S 7.S
1.8 1.7 2.1
5.5 8.8 7.5
29. b 30.3 37.8
7.S 8.3 7.2
0.0 0.0 0.0
....
l.S
2.0
( .033 BS)
( 5.780 BS)
( 1.178 BS)
( 1.510 BS)
( ,bS2 BS)
-------
TABLE G-21. MASS EMISSIONS RY NINE-MODE EPA - METRIC UNITS
02-08-77 2!8b PM TEST lb-1
1*175 CHEVROLET sso-r.io HO ENGINE—PROJECT 11-1311
375 CAT HHS OPTIMIZED 350 CID CHEV HD ENGINE W OXl CAT
K = .P88
HUM =
b.b G/KG
CONCENTRATION
HODE
1
2
3
i
5
b
7
8
1
1
8
3
1
5
b
7
8
1
IDLE
85 PCT
55 PCT
as PCT
10 PCT
25 PCT
to PCT
85 PCT
C.T.
IDLE
85 PCT
55 PCT
85 PCT
10 PCT
85 PCT
10 PCT
85 PCT
C.T.
HC-FID
T
T
T
T
T
T
T
T
T
T
T
T
T
T
31
11
1
1
IS
8
35
5
91
10
88
5
10
88
18
35
S3
11
CO
.003
.003
.003
.003
.003
.003
1.107
.003
.003
.003
.003
.003
.003
.003
.003
1.111
.000
.000
AS MEASURED
CU8
B. as
18.11
18. 9?
11.78
11.03
11.18
13. b8
11.85
.BR
9.00
11.18
18.18
11.85
10.80
11.18
13. b8
11.85
.81
NOX-CL
37
13b
375
SOI
78
851
180
275
h
37
171
375
850
bl
211
381
850
7
TIITAU
CAKBON
R.BIb
1?.H1
13.183
11 .783
11 .035
11.181
I*. 711
11 .853
.R13
1.01)7
ll.IBb
IP. 183
11.851
lll.POS
11.181
1H.715
11 .2Sb
.8511
FUFL
G/HR
Ib33
8301
12171
7138
5118
7138
113bB
7303
0
1117
8071
12383
7181
5187
7817
11501
7181
0
CALCULATED G/HR
HC
)
1
0
11
1
1
5
IJ
It
1
8
1
JL
1
1
5
1
0
CO
1
1
b
1
3
1
8181
1
0
1
1*
b
1
3
1
8151
0
0
NOX
8
87
107
to
11
51
iba
S3
0
8
37
inb
11
11
11
118
11
0
WT.
FACT.
.832
.077
.117
.077
.057
.077
.113
.077
.113
.838
.077
.117
.077
.057
.077
.113
.077
.113
"EIGHtED G/HR
HC-FiD
.1
.1
.0
.0
»1
.0
.b
.u
0.0
. .•;
.8
.1
.1
.1
.1
.b
.3
o.u
CO
0
0
1
0
0
0
331
0
0
0
n
i
0
0
0
331
0
0
NOX-CL
.5
8.1
15.7
3.1
. .7
3.1
18.3
1.1
0.0
.1
8.1
IS.b
3.8
.b
3.8
lb.7
3.8
0.0
CKH
0.0
17.8
37.0
17.7
b.7
17.7
bO.1
17.0
0.0
0.0
17.1
3b.1
17.1
b.7
17.7
bO.l
17.0
0.0
VAL.
MM
117
33S
Ib8
318
117
35b
Sb
3bb
S11
112
3bl
Ibtt
358
111
353
58
3bl
511
o
tv
-UNITS AS
MODE
1 I
8 85
3 55
1 85
5 10
b 25
7 11)
9 85
1 CT
1 I
8 85
3 55
1 85
5 10
b 25
7 10
8 85
1 CT
MV
17. b
13.8
b.b
13.7
lb.1
11.0
8.8
11.1
23.1
17.1
13. R
b.b
11.1
lb.5
13.1
2.3
11.8
83.1
CHP
0.0
83.8
83!s
8.1
83.8
81.1
82.8
0.0
0.0
23.3
11.1
83.3
8.1
83.8
80. b
88.8
o.n
SPECIFIED IN THE 7-11-75
CTO
0
b3
130
b8
83
b8
813
hn
0
0
bl
130
bl
23
b8
818
hO
0
Q|iufr>M..nf*Q*Te WAI IIC
5Un*~" I COMPOS I it V*LUC
01 iu _. s**nLjnnn*Te- •• A I IIP-
THO
oun— --icunruo 1 1 c vwuuc.
CYCLE COMPOSITE -
FC
3.b
18.3
87.5
17.5
13.1
17.5
H8.7
lb.1
n.O
3.3
17.8
87.3
lb.5
13.8
17.3
13.0
lb.5
0.0
t r\u f yp 1 F
rOK t'CLt
f no f vT\ f
r UK I, YULC
HC-
CO-
PSFC
R
.7b1
.555
. 73b
1 .Ibl
. 73b
.527
.70b
I
R
.7b1
.552
.7f)fl
1.180
.727
.531
.723
I
FID U.35C
ND1H 0.351
NOX-CL 0.35(
PROCEDURE
B3NOX
R
1.1
8.1
J.7
1.3
8.1
8.0
2.3
I
R
l.b
2.1
2.1
1.3
2.0
1.8
8.)
I
IB!
2.
F/A
.011
.055
.058
.053
.1150
.052
.lib?
.1)51
.001
.011
.058
.058
.051
.1)11
.05?
.Ob7
.1151
.001
1) + U.
3) + n.
7} + (I.
SFC
KG/KM
R
.IfaB
.338
.118
.813
.118
.380
.130
I
R
.Ibl
.33b
.131
. 100
.118
.325
.110
I
b5(
b5(
b5(
HC
HR RPM
b85
2000
2000
2000
2000
8000
1115
8000
1115
b85
8000
1115
8000
8000
2000
1115
2000
1115
.1) =
18. b) =
2.b) =
» NOX =
SFC =
C»LC
A/F
81.5
18.1
17.1
18.8
11.1
11.2
15.0
11.5
235.3
81.8
11.8
17.1
11.5
80.3
11.8
15.0
11.5
817.1
.073
18.117
2.b37
2.701
.31b
HC
11. S
b.7
1.7
2.1
5.3
1.1
bl.S
2.1
o.u
11.1
11.1
5.2
3.'
5.1
l.o
31.3
11. "»
o.'J
I
. *
G/KM
G'KH
G/KM
G/KM
KG/KM
CO
.1
.1
.2
.1
.1
.1
11.3
.1
0.0
.1
.1
.2
.1
.1
.1
11.1
.0
0.0
1 8
11
HR
HR
HR
HR
HR
NOX FUEL
1.0 5.3
1.1 B.I
32.5 85. b
b.1 8.5
1.3 1.7
8.2 8.5
37.1 30. b
8.1 7.8
o.u n.o
.1 1.1
b.O B.B
32.7 25.7
7.1 B.I
1.1 1.8
8.U 8.5
35.8 31.1
7.1 8.1
o.u- o.o
8.7
8 . b
( .051 BS)
(13.7H3 BS)
( l.lbb BS)
C 8.080 HS)
( .bSl PS)
POMEH
0.0
7.b
30.1
7.b
2.1
7.b
37.8
7.3
O.U
0.0
7.5
30.8
7.5
8.1
7.b
37.8
7.3
0.0
-------
CO
TABLE G-22. MASS F.HISSt«JNS BV NINE-MODE EPA - METRIC UNITS
1S?S CHEVROLFI 350-CIO HO ENGINE PROJECT 11-1311
02-11-77 312 TEST 18-1 SnO CAT MRS OPTIMIZED 350 CIO CHEV HD ENGINE H OXI CAT K= .8S8 HUMS b.S G/KG
MODE
1 IDLE
a as PCT T
3 55 PCT T
1 85 PCT T
s in PCT T
b as PCT T
7 SO PCT T
B as PCT T
S C.T.
1 IDLE
a as PCT T
3 ss PCT r
•» as PCT T
5 10 PCT T
b 25 PCT T
7 SO PCT T
8 25 PCT T
S C.T.
CONCENTRATION AS MEA3UHED
HC-FIO
bfj
IS
8
B
lit
10
Ib
8
SB
15
15
7
in
1*0
10
17
7
100
CO
.000
.000
.0011
.000
. onu
.000
.527
.000
.lion
.Odd
.00(1
.000
.000
.000
.000
.SbS
.000
.000
cue
S. Ill
12. H3
12.55
12. IS
s. in
12.07
13. SI
11. "3
.S3
s.on
12.55
12. Bn
11.37
S.10
11. S5
13. SI
11.37
.S3
NfJX-Cl
31
110
375
lit
12S
ISO
380
Iflb
S
35
107
3bS
221
l?b
15b
3bO
210
fa
rnUL
CAKHON
1. 107
12.132
12.551
12.1S1
1.1 1?
12.071
1».1b8
1 1 . B 3 )
.SKJ
S.MOS
12.552
12.801
11.371
S.US
11. SSI
1H.S11
11.371
.sin
FUEL
G/HR
1S8B
8815
11S2S
BlbS
5715
8071
18SIJ7
7802
0
11S7
8S28
12383
7b2U
Sb70
807*
18552
71.20
0
CALCULATED G/HR
MC
1
2
1
1
8
1
2
1
(1
1
1
1
1
S
1
2
1
0
CO
n
0
n
u
0
n
13bl
it
u
n
u
0
n
0
0
1170
n
0
NOX
2
23
lOb
2S
21
30
its
37
0
2
22
IDS
It
23
31
137
12
0
HI.
FACT.
.232
.077
.1*7
.077
.057
.077
.113
.077
.1*3
.232
.077
.117
.077
.057
.077
.113
.077
.1*3
WEIGHTED G/HR
HC-F1Q
.3
.1
.1
.U
.1
.1
.3
.u
o.u
.£
.1
.1
.1
.5
.1
.3
.0
o.u
CO
0
u
0
0
0
n
ISf
0
0
0
0
0
0
0
0
Ibb
0
0
NOX-CL
.1
l.H
15. b
2.2
1.1
2. 3
Ib.t
2.B
O.U
.1
1.7
15.5
3.1
1.3
2.t
15.5
3.2
0.0
CKM
0.0
17.1
35.2
17.1
b.O
17.1
5H.7
17.1
0.0
0.0
17.1
3b.S
Ib.t
b.t
17.2
bU.2
lb.8
0.0
VAC.
HM
12S
312
180
330
tlS
333
58
313
blO
13*
3211
IbO
318
US
333
58
351
blO
——UNITS AS SPFrTFIFn IN THt
MODE
1 I
a as
3 55
1 25
S 10
b 25
7 SO
8 25
S CT
1 I
2 25
3 55
t as
5 10
b as
7 SO
8 as
S CT
MV
Ib.S
ia.3
7.1
13.0
Ib.S
13.1
a. 3
13.5
21.0
17.1
12. b
b.3
13.7
Ib.S
13.1
a. 3
13.8
21.0
CHP
0.0
88. S
17. a
88. S
8.0
83.0
80.1
82. S
0.0
0.0
23.0
IS. 5
28.0
8.5
23.0
80.8
22.5
0.0
SUM--- (COMPOS I TE
SUM-— r rnxpns TIC
TWO
CYCLE COMPOSITE -
CIO FC
0
bO
125
bO
ai
bO
213
bl
0
0
bO
130
SB
aa
bl
213
5S
11
VALUE Fljti
VALUE t*OK
3.5
IS. 5
2b.3
18.0
la.b 1
17.8
10.8
17.2
0.0
3.3
18.8
37.3
Ib.B
ia.s j
17.8
10. S
lb.8
o.n
r vn F iv
l» * w I_C if
r vn F y 1 •
^ T Ul_ C. c }
HC- FID
CO- NOII
NOX-CL
7-11-75
BSFC
H
.851
.557
.785
.577
.775
.SOS
.750
I
R
.81R
.55?
. 7bl
.tbb
.77?
.SOb
.7*7
I
I).3S(
* 0 . .1 5 (
n. 35(
PRnrFnllRF---- srr
r ** ut# Cl/un t — — — ~ OrL
BSNOX F/A KG/KH HR RPM
H
1.0
2.2
1.3
3.0
1.3
1.8
l.b
I
R
.R
2.1
2.0
2.7
1.1
1.7
l.S
1
.1)
8.8)
2.1)
.ota
.OSb
.057
.055
.0*2
.05S
.OhS
.051
.not
.(ill
.US7
.058
.052
.ota
.051
.ObS
.052
.on*
•f O.bSC
<• O.bSC
t O.bSC
H
.517
.33S
.178
.sss
.171
.310
.*Sb
I
H
,1SH
.33b
.1b5
.asa
.17(1
.30S
.151
I
HC +
575
1SSS
1SSO
1SSS
1SS5
1SSS
1S7S
1SSO
1SSO
SSS
isss
1SS5
ISSS
2000
2000
1SSO
isss
.1) =
S.I) =
2.1) =
I«UX -
SFC =
C ALC
A/F
23. S
17.8
17. b
18.1
23. S
18.3
15.3
18. b
21.2
17. b
17.3
IS.t
83. S
18.5
15.3
1S.1
223. b
.077
S.158
2.117
2.521
.3S8
HC
1S.1
8.b
s.e
3.1
32. b
is!a
3.3
O.U
13. &
fa.1
8.2
1.2
3S.b
8o!5
o!u
.
_
G/KW
G/KW
G/KW
G/KW
KG/KH
Co NOX FUEL PO«f-R
.0
.0
.0
.0
.0
.0
SS.S
.0
0.0
.0
.0
.0
.0
.0
.0
SS.S
.0
0.0
s
HR
HR
HR
HR
HR
1.0 5.2
t.e s.b
3b.t 21.8
5.2 8.S
3. H * . b
5.1 8.8
38.8 2S.b
fc.b 8.5
O.U 0.0
.S l.S
3.8 S.3
35. b 25. S
7.8 8.3
3.1 t.b
S.b 8.8
35.7 as. 8
7.1 8.3
O.U 0.0
Sit
. ^
2.1
( .(JS7 BS)
( b.aas BS)
C 1.825 BS)
( 1.BH2 63)
( .hSS BS)
0.0
7.S
2S.S
7.5
l.S
7.5
38.5
7.5
0.0
O.U
7.1
30.5
7.1
2.0
7.1
38.3
7.3
0.0
-------
TABLE G-23. 1*33 EMISSIONS BY MIHF-MODE EPA - METRIC UNITS
02-21-77 2:3b PH TEST 20-1
1S7S CHEVROLET 350-CIO HO ENGINE PROJECT
fag5 CAT HR3 OPTIMIZED 350 CIO CHEV HO ENGINE H OXI CAT
.S3S
HUH:
8.1 G/KG
CONCENTRA1ION
MODE
1
2
3
H
5
b
7
8
S
1
2
3
»
5
fa
7
8
S
IDLE
85 PCT
55 PCf
25 PCf
10 PCT
25 PCT
So PCT
25 PCT
C.T.
IDLE
25 PCT
55 PCT
25 PCT
10 PCT
25 PCT
10 PCT
25 PCT
C.T.
T
T
T
T
T
T
T
T
T
T
T
T
T
T
HC-FID
17*
5
Z
5
q
s
2»
»
1«H
1»8
in
»
b
q
8
25
7
Ibg
CO
.nob
.nob
• OOb
. Ollb
.003
.003
.8-52
.000
.000
.000
.000
.000
.000
.nno
.uoo
.772
.UOO
.000
AS MEASURED
cue
q.30
12. S?
13. »3
11. *8
11. H8
11.72
13.81
11. bO
.88
S.iO
12.55
13. H2
11. bo
11. »8
11. bn
13. bB
11.37
.8»
NUX-CL
3b
78
222
IBS
SH
17H
3SO
183
b
HI
87
222
180
5b
183
3b5
1S8
7
TdlAL
CARBON
S.32S
12. sab
IS.HBb
ll.HHb
11. H8*
11.723
I».bb5
ll.bOl
.Rsq
S.Hlb
12.551
13.H21
ll.bOl
11. 181
ll.bUl
l».fSS
11.371
.857
fUF.L
G/HR
1811
SH35
12bl(j
73SH
b350
7S38
1MOS1
7H8t
0
181H
88V5
13381
7b20
b3Sb
7S38
ISQSI
7711
0
CALCULATED G/HR
HC
)
u
0
0
1
0
H
0
0
3
1
U
u
1
1
t
1
u
CO
a
q
11
8
3
1
223b
0
n
0
0
it
0
0
ii
20Sb
0
0
NOX
2
18
bS
38
10
37
157
37
0
2
IS
bS
37
10
39
its
»2
0
HT.
FACT.
.232
.077
.1H7
.077
.057
.077
.113
.077
.H3
.232
.077
.l-»7
.077
.057
.077
.113
.077
.113
WEIGHTED G/HK
HC-FID
.S
.0
.0
.0
.0
.0
.»
.0
0.0
.7
.1
.1
.0
.0
.0
.H
.0
0.0
CO
1
1
2
1
0
0
253
0
0
0
0
0
0
0
0
232
0
0
NOX-CL
.5
l.»
S.S
2.S
.b
2.8
17.8
2.8
0.0
.b
1.5
10.1
a. a
.b
3.U
Ib.S
3.2
0.0
CKW
0.0
17. b
37.1
Ib.S
b.»
Ib.S
bO.O
17.3
0.0
0.0
18.0
37.5
17. b
b.O
17. b
SS.7
lb.8
0.0
VAC.
HH
»17
2S7
1»2
351
3Sb
3H3
58
.3*8
582
»1S
312
US
318
3SS
3*3
58
351
582
o
____llLivie A fe t r»r *» »
MODE
1 I
e as
3 SS
* 25
S 10
fa 25
7 Sn
B 25
S CT
1 I
Z 25
3 55
* 25
S 10
b 25
7 SO
B 25
S CT
VI. 1 10 r*& vlr^Ul
K.V CHP CTO
lb.-»
11.7
S.b
13.8
15. b
13.5
2.3
13.7
22. S
Ib.S
12.3
5.7
13.7
IS. 7
13.5
2.3
13.8
32. S
0.0
a3.b
»s.7
22. b
S.b
22. b
80.5
23.1
11. U
0.0
21.2
50.3
23. b
8.1
23.7
80.1
22.5
0.0
SUM- — (COMPOSITE
d i IU f^flMDfiCTTC'
THO
3 U ' * — — vuurirvwA It.
CYCLE COMPOSITE -
0
be
131
5S
2?
SS
211
bl
n
0
b3
132
b2
21
b2
211
SS
II
VALUE
V ALUE
r»pn TU T UIC 7 • 1 1 « 7C ne*r\f*ci\tiBf e c *»
rjtv IN infc /™ii~/s
FC BSFC
1.0
20.8
27.8
lb.3
11 .n l .
17.5
12.0
Ib.S
n.n
1.0
IS. 5
?q.s .
lb.8
11.1 1 .
17.5
12.0
17.0
n.o
FOR CYCLE 1)-
tnu PVPI F 3i«
"UK !»YLl_t rj
HC- FID
CO- NDIP
NOX-CL
R
8BJL
SS9
721
S37
773
522
713
I
R
8U7
58b
711
75n
71il
521
75-»
I
0.35C
0. 35(
ll.35(
rnuc t.
BSNOX
R
.8
1.3
1.7
i. a
l.b
a.n
l.b
i
H
.8
.H
.b
.2
.7
.q
.q
I
it
2
F/A KG/KM
.0*3
.058
.Obl
.052
.052
.053
.Obb
.053
.001
.0*3
.057
.obn
.053
.052 1
.053
.ObS
.052
.001
.1) + 0.bS(
.»} + U.bS(
.2) + n.bS(
„
.S3b
.3*0
.138
.qsb
.170
.317
.131
I
' H
.1S1
.357
.132
.ObS
.ISO
.31S
.isq
i
HC
HR RPM
bIS
aooo
2000
2000
2000
2000
2000
2000
1SS5
bSO
2000
2000
2000
aooo
2000
isso
ISSo
ISSO
.1) =
13.0) -
2.2) =
* NOX =
SFC s
r* A I f
c ALC
A/F
23.1
17.1
Ib.S
IS. 2
lS.2
18.8
15.1
1S.O
233.8
23.2
17. b
Ib.S
1S.O
IS. 2
1S.O
15.3
1S.H
215.1
.080
13. HS*
2.151
2. 23*
.HOS
HC
SS.S
2.2
2.2
l.S
a. a
2.0
28.1
l.S
u.o
50. b
1.3
l.b
2.1
2.2
3.3
2S.7
2.8
0.0
.1
G/KH
G/KN
G/KM
G/KH
KG/KM
CO NOX FUEL
.2
.3
.b
.2
.1
.1
SB. 5
.0
0.0
.0
.0
.0
.0
.0
.0
100.0
.0
n.o
1 3
A 3
HR
HR
HR
HR
HR
1.3
3.b
21.8
7.b
l.S
7.1
»b.»
7.1
0.0
l.S
3.8
ab.e
7.3
i .1
7.8
13.7
8.3
0.0
2.2
ep
• c
C .OSS
do.obe
( I.b07
( l.fabb
( .b72
5.8
10.0
25. S
7.8
5.0
js.b
7.S
0.0
5.7
s.a
2b.7
8.0
sis
as.e
B.O
0.0
BS)
BS)
BS)
83)
BS)
POKER
0.0
7.b
30.5
7.3
2.0
7.3
37. S
7.1
0.0
0.0
7.7
30. b
7.5
1.1
7.5
37.5
7.2
0.0
-------
O
TABLE G-Z4. MASS EMISSIONS BY NINE-MODE EPA • METRIC UNITS
„- ,p ,, ,.,L M _ , 197S CHEVROLET sso-cio HO ENOINE—PROJECT 11-1311
!!l!!l!I. II ""* 7S° C*T HRS OPTIMIZED 350 CIO CHEV M OXI CAT
CONCENTRATION AS MEASURED TOTAL
MODE HC-FID co coa NOX-CL CARBON
K« ,772 HUM* 3.3 C/KC
FUEL
6/HR
CALCULATED C/HR MT.
HC CO NOX FACT.
z as PCT T
3 SS PCT T
i as PCT T
S lo PCT T
b 85 PCT T
7 ^0 PCT T
• as PCT T
S C.T.
1 IDLE
a as PCT T
3 55 PCT T
» as PCT T
S 10 PCT T
k as PCT T
7 So PCT T
B as PCT T
S C.T.
as
i
7
11
1
38
3
its
35
b
11
ao
17
3b
8
880
.003
,00b
,00b
.003
.000
.003
.Sbl
,000
.000
.000
.003
.003
.000
,000
.000
,S3b
.000
.000
1.10
11.18
12.80
11.37
11.83
11.18
13, 11
11.37
.88
1.00
11.37
12.80
11.11
11.7?
11.37
13. Si
11. as
.88
35
US
100
aaa
57
aio
130
813
11
38
113
110
ass
58
asi
ias
300
11
1.101
11.181
12. Sob
11.371
11.831
11.181
11.105
11.370
.101
I.OOb
11.377
ia.8oi
11.11?
11.7??
11.37?
H.BBo
ii.asi
.108
1811
7817
18383
7S7S
b3SO
7b20
188?1
7181
0
1811
7817
12817
7b80
b3SO
7bbb
18821
7b?0
0
1
8
0
1
I
1
S
0
0
1
3
1
1
1
1
S
1
0
1
8
11
1
0
1
aise
0
0
0
1
b
0
0
0
2313
0
0
a
31
11
38
8
U
131
11
0
a
38
101
IS
8
13
138
5?
0
.838
.077
.!»>
.077
.057
.077
,U3
.077
.113
.238
.077
.If?
.077
.057
.077
.113
.077
.1*3
.3
.8
.0
.0
.0
.1
.5
.0
0.0
.3
.2
.1
.1
.1
.1
.*
.0
0.0
0
1
a
0
0
0
877
0
0
0
0
1
0
0
0
870
0
0
.f
a.b
11. b
2.1
.f
3.1
15.7
3.2
.s
8.S
If. 8
3.S
.5
3.3
15. b
1.0
0.0
0.0
lb.7
3b.S
Ib.b
b.3
lb.7
58.7
It,. 3
0.0
0.0
17. b
3b,3
l?.l
b.3
17.1
58.1
17.1
0.0
132
3Sb
173
3b3
117
3bl
bl
3bb
131
3Sb
175
3bl
117
3S8
bl
3bl
587
HODE
——UNITS AS SPECIFIED IN THE 7-11-7S PROCEDURE—
MV CHP CTO FC 8SFC BSNOX F/A
SFC
K6/KH HR RPM
C»LC
A/F
HC
•PERCENT OF TOTAL-
CO NOX
1 I
8 85
3 SS
f 85
5 10
b as
7 10
a as
1 CT
8 as
3 55
1 85
S 10
b 85
7 SO
s as
s CT
17.0
11.0
b.B
If. 3
If .8
8.f
If.f
83.0
17.3
11.0
b.S
If. 8
Ib.f
lf.1
8.f
11.8
83.1
0.0 0 1.0
88.3 SS !7.3
18. S izl 87.3
88.3 51 Ik. 7
8.f 22 11.0
82.1 51 lb.8
78,7 ao? fl.S
ai.s s? ik.s
0.0 0 0.0
0.0 0 f.O
83. b bl 17.3
f8.7 188 a?.o
aa.i ko ib.a
8.5 88 If.o
aa.i bo ib.i
78,1 80? 11,5
83.3 bl lb.8
0.0 0 0.0
SUM— (COMPOSITE VALUE FOR CYCLE
SUM— (COMPOSITE VALUE FOR CYCLE
R
.775
.558
.750
l.bSB
,71S
.sa?
.755
I
R
.731
.555
.731
l.bSS
.738
,S8b
.720
I
1)
g)..—...
R
1.5
2.0
ll«
R
2^1
8,0
.s
2J2
I
.018
.052
.058
.05?
.OSf
.osa
los?
.oof
.011
.058
.058
.051
.053
.058
.Ob?
.051
.001
R
^310
,1Sb
1,008
,1Sb
.381
,fS1
R
,ffb
.338
,ffb
1,00?
,11S
.380
.138
I
b?S
2005
1115
2000
8005
aoio
isss
8000
8000
blQ
8015
8000
2005
2005
8005
2000
2000
2000
83. S
17*3
I8.b
IS. 8
If."
is.f
831.1
8f,8
17^3
18^8
H.f
is)b
831.3
83. b
lf.«
2.8
3.5
3.3
f.s
fb.8
1.5
0.0
18.5
if. a
b.S
S.b
f.?
b.?
fo.s
3.8
0.0
.1
. I
.1
.2
.1
.0
.1
18.1
.0
0.0
.0
.1
.3
.0
.0
.0
SS.b
.0
0,0
Ib
1«
l.o
fc.l
33.1
1.0
7.3
3b.b
1.0
38*8
llo
3flb
8.S
0.0
• c
s.s
8.5
85.?
5.1
8.3
30.0
8.1
8*5
25.1
8.3
5.1
8.3
30.1
8.3
0.0
0.0
3o|?
8.1
7.1
38.Q
0.0
sola
8|o
?.f
37. b
7,b
O.J5C
THO CYCLE COMPOSITE . HC- FID
CO- NDIR 0.3S(
NOir-CL 0.3S(
.1)
1S.1)
2.1)
0.bS(
0,bS(
O.b5(
MC
.1)
15.3)
8.5)
t NOX
SFC
.075
15.111
8,111
8.575
,108
C/KN
6/KM
6/KN
6/KM
K6/KN
HR
HR
HR
HR
HR
( .OSb 83)
(ll.Sif 83)
( l.Bbl 83)
( 1.120 83J
( ,bk8 83)
-------
TABLEG-Z5. MASS EMISSIONS B* NINE-MODE EPA - METRIC UNITS
03 01 77
1175 CHEVROLET 350-CID HO ENGINE — -PROJECT 11-1311
inSb AM TEST 83-1 POST SER ACC OPTIMIZED 350 CIO CHEV w/0 OXI CAT
K = .810 HUMs 1,3 G/KG
O
I
MODE
1 IDLE
2 25 PCT T
3 55 PCT T
1 25 PCT T
5 10 PCT T
b 25 PCT T
7 10 PCT T
B 25 PCT T
1 C.T.
1 IDLE
2 25 PCT T
3 55 PCT T
1 25 PCT T
5 10 PCT T
b 25 PCT T
7 1o PCT T
8 25 PCT T
1 C.T.
CONCENTRATION
HC-FID
b21
138
38
Sb
57
53
3fa
31
10b8
832
20O
51
77
81
bb
12
11
3810
CO
.123
.210
.071
.108
.123
.111
.521
.080
.028
.083
.221
.071
.101
,13b
.US
.182
.071
.027
AS MEASURED TOTAL FUEL
C02 NOX-CL CARBON G/HR
8.8b 31 1.050 1811
11.15 171 11.705 8071
12.58 110 12.bS5 12383
11.27 231 11.385 7bbb
11.27 51 11.100 b31b
11.18 237 Il.b05 77S*>
13.18 BbO 11.505 iBBbl
11.18 222 11.5b3 7575
.33 1 ,7b7 0
B.bl 3fa 8.783 17b1
11.25 181 11.501 7138
12.55 500 12.b27 12128
11.25 211 H.3bO 7711
11. bo 57 11.715 b350
11.37 231 11.112 7181
11.18 8bO 11.1b7 I88b1
11.37 231 11.151 7575
.31 1 .722 0
CALCULATED
HC
13
11
1
1
1
1
5
2
0
IB
IS
b
b
5
5
7
3
0
CO
so
33H
110
117
HO
Ibl
13b1
105
0
31
320
HI
131
111
151
1535
10b
0
G/HR
NOX
2
32
121
12
B
13
301
31
0
2
35
132
IS
8
11
3bS
11
0
«T.
FACT.
.232
.077
.117
.077
.057
.077
,113
.077
.1»3
.232
.077
.117
,077
.057
.077
.113
.077
.113
HEIGHTFD
HC-FIO
3.1
.8
,b
.3
.2
.3
.b
.2
0.0
1.2
1.2
|l
,3
.1
.8
.2
0.0
CO
12
2b
21
11
8
12
155
a
0
8
25
21
11
8
12
173
B
0
G/HR
NOx-CL CKM
.1 0.0
2.» 17.5
11.0 37.1
3.3 17.1
.5 b.O
3.3 17.5
31.0 bl.l
3.0 lb.7
0.0 0.0
.5 0.0
2.7 17.5
H.S 37.1
3.5 17.0
.5 b. 3
3.2 17.0
11.2 bo.1
3,2 lb.7
0.0 0.0
VAC.
MM
121
313
170
353
101
351
58
3Sb
581
132
315
170
351
101
351
58
35b
587
....UNITS Aft
MODE ID
1 I
2 25
3 55
1 25
5 10
b 25
7 10
8 25
1 CT
1 I
2 25
3 SS
1 25
5 10
b 25
7 10
8 25
1 CT
MV CHP
lb.1
13.5
b.7
13.1
lb.1
13.8
2.3
11.0
23.0
17.0
13. b
b.7
13.8
lfa.1
13.8
2.3
11.0
23.1
n.fl
23.5
11.7
22.1
8.0
23.1
82.0
22.1
n.o
O.D
23.5
50.2
22.8
8.5
22. B
81.7
22.1
0.0
SUM... (COMPOS I TE
SUM.--(CONPOSI TE
TWO CYCLE COMPOSITE -
ID =
SPECIFIED IN THE 7-11-75 PROCEDURE—-- SFC
CTO FC BSFC BSNOX F/A KG/KM HR RPM
n i.o R R
bl 17.8 .758 1.3
131 27.3 .511 2,b
bO lb.1 .738 l.B
21 11.1 1.7b5 1.0
b2 17.1 .730 1.8
21b 11. b .507 3.7
51 lb.7 .715 1.7
n o.n i I
0 3.1 R N
b2 17,'S ,71b 1.5
132 27.1 .Sib 2.b
bO 17.0 .711 2.0
22 11.0 l.bSS 1.0
faO Ib.S .723 1.8
21b 11. b .501 1.1
51 lb.7 ,71b 1.8
0 0.0 I I
HC- FIO 0.3S( .3)
CO- NDIR 0.3S( 11.0)
NOX-CL 0.35( 3.b)
,012
.053
.057
.052
.052
.053
.ObS
.053
,001
.010
.052
.057
.052
.053
.052
.051
.052
.003
t 0.
» 0.
+ 0.
R
Ibl
,331
,111
1.073
.111
.301
.»53
I
R
.151
.332
.153
1.007
.110
.310
.151
1
b5(
bS( 1<
bS( '
HC +
blS
2005
1115
2000
2005
2000
1115
2000
1115
fa20
2000
1115
1115
2000
1115
mo
2000
1110
.5) >
t.7) r
t.l) *
NOX >
SFC =
r Al r
C*LC
A/F
21,0
18.8
17.5
11.3
11.3
11.0
15.3
11.0
272.3
21.7
H.l
17.5
IB)?
H.l
18.1
H.2
281,0
.122
11.113
3.113
1,3bS
.315
HC
50.7
13.2
1.1
5.2
3.3
1.1
1.7
3.1
0.0
11.1
11.0
10.1
5.3
3.3
1.1
1,1
2.1
0.0
.
.
G/KH
G/KH
G/KH
G/KH
KG/KN
CO NOx FUEL
l.b
10.2
8.2
1.5
3.2
1.1
bl.3
3.2
0.0
3.0
1.3
7.8
1.0
3.2
1.1
bS.3
3.1
0.0
11
15
HR
HR
HP
HR
HR
,b 5.1
3.7 8.7
28.8 25.5
5.0 8.3
.7 5.1
5.0 8.1
51. b 21.1
l.b 8.2
0.0 0.0
.b 5.8
3.b B.b
2b.3 25.7
1.7 B.I
.b 5.1
1.3 8.1
55. fa 30.0
1.3 8.2
O.D 0.0
3.b
1.1
( .315 B3)
(10.770 BS)
( 2.110 BS)
( 3.255 BS)
( .bll BS)
POWER
0,0
7,5
30.3
7.3
• • •*
1.1
7.5
38.1
7.2
0.0
0.0
7.5
30. b
7.3
2.0
7.3
38.2
7,1
0,0
-------
TABLE G-26. MASS EMISSIONS BY 23 MODE PROCEDURE
T63T-21* RUN-1 POST 1500 HR SERVICE ACCUMULATION
MODE
1
e
3
+
S
b
7
8
1
10
11
12
13
1 +
IS
Ib
17
13
11
20
21
22
23
TO
SPEED N-M
b+0 0.0
1200 8.1
1200 23.1
1200 57,0
1200 7b.S
1200 153.1
1200 227.1
1200 251.0
1200 281.3
1200 30b.2
b+0 0.0
1200 0.0
2300 338.2
2300 311.5
2300 275.1
2300 2S+,b
2300 172.7
2300 85.+
2300 bO,5
2300 2b,7
2300 7.1
b+0 0.0
2300 0.0
MV FUEL
K*
0
1
3
7
10
11
21
32
35
38
0
0
81
75
bb
bl
+ 2
21
IS
b
2
0
0
A/F
MM KG/HR RATIO
+ 32
373
358
335
320
22 +
7b *
bb
+ 8
8
+ 32
S77
IB
S3
71
81
lib
320
381
+ 11
+ + +
+ 32
517
1.
+ .
+ .
5.
5,
b.
10.
11.
11.
13.
1.
0.
25.
22.
21.
20.
13,
10.
B.
7.
b.
1.
0.
CALCULATED GRAM/HR
MODE
1
2
3
+
5
b
7
8
1
10
11
12
13
1 +
15
Ib
17
18
1H
20
21
22
23
CYCLE
HC
10,1
ib2,a
7.+
1.7
3,1
5.8
3.2
2.1
1.5
10.1
13.7
0.0
13.1
1.3
5,5
2.7
I.U
.7
1,1
1.7
1.1
12,1
0.0
COMPOSITE
CORRECTED
CO
35
1183
IbB
17
300
2 + 1
llOb
+ 21
332
3271
3 +
0
3582
200
2+33
1575
72
+ 3
m
121
83
+ b
0
HC
CO
NOX
3FC
NOX
NOX
2.2
2.7
3,8
s.s
8.1
111.3
Sb,+
Ib.b
17+.0
8 + ,+
2,3
0.0
S + 0.7
813.5
213,5
2 + b.l
231. b
27.0
+ 0,b
13,1
8.b
a.s
0.0
.7bB
22,bb3
S,1fa3
.381
+ ,bSO
3 2+
5 17
7 17
0 17
2 17
7 11
7 15
1 IS
7 15
+ 1+
B 25
0 +11
0 15
2 Ib
» 15
1 15
B 17
3 Ib
2 11
1 11
5 11
1 25
0 51 +
"T.
FAC,
f
*
.
•
,
f
0,
o\
0.
,
,
,
,
,
,
,
o,
o!
0.
t
.
070
ObQ
ObO
050
030
ObO
000
0 + 0
000
000
070
120
025
OSS
035
ObO
ObO
000
ObS
000
DUO
OBO
ObO
GRAM/
GRAM/
GRAM/
KG/
GRAM/
.1
.2
.1
,»
.«!
.0
,*
,S
.1
,7
.+
.1
.0
,2
.3
I?
.0
|2
.1
,1
.0
E.
UNITS
TQ FC
0
7
17
+2
Sb
113
Ibfl
185
207
22b
0
0
2+1
230
20 +
188
127
b3
+5
20
5
0
0
KW
KM
KM
KM
KW
3.1
1.1
10.+
11.1
U.+
1+.8
23.5
2+.S
25.1
2S.S
+ .0
0.0
55.1
H1.0
H7.1
30,' 5
22. b
18.0
IS.b
*.l
0.0
HR
HR
HR
HR
HR
DKT CONCENTRATION
HC
S + 0
+ 555
201
+ +
12
100
+ 3
3b
18
122
b+7
3 + 10
82
a
37
ll
1
1
27
28
11
Sbl
278b
CO
.085
I,b31
.228
.121
,35 +
,20b
.7 + 1
.2bl
.lib
1.820
,071
,00b
1,0 + 5
.Obi
.818
,558
.032
.021
,100
,017
,073
,10b
,003
C02
B.bO
10. + 7
12, b8
12.55
11.15
11.37
13. bS
la.ba
13.81
13.17
8. + 0
.07
13, bB
13. b8
13. b8
13,81
12. + 3
13.85
11.25
11,37
11. +8
8.50
.07
NOX
33
23
31
+ 5
b +
b20
230
3fa5
b2S
285
33
3
IbO
1515
bOO
530
t>50
110
170
b8
+ b
35
3
SPECIFIC GRAM/ M-Hft
HC CO
K
1H5, 5+
2.53
.2 +
',30
,11
,01
.0 +
.28
R
I
.17
,02
,08
.0*.
.02
,03
.13
.27
.b2
R
I
( .572
(lb.100
( + .»»?
( ,b + 0
( 3,+b8
R
1057,8
57,1
13. b
31.2
12.5
38. b
13.3
s»
85,2
R
I
+ + .0
e.7
3fa,b
25,7
1.7
3.1
10. U
18.8
+ 8.3
R
I
BS)
83)
8S)
BS)
83)
NOX
R
2.+
1.3
.8
.1
b.2
2.0
3.1
f.S
2.2
R
I
b.b
10,8
+ ,+
t.O
5,8
1.3
2.8
5*0
R
I
G-27
-------
TABLE C-Z7. MASS EMISSIONS BY 23 MODE PROCEDURE
TEST-24 RUN-2 POST 1500 HR SERVICE ACCUMULATION
MODE
1
2
3
4
5
b
7
8
q
10
11
12
13
15
lb
17
18
20
21
22
23
TO
SPEED N-M
b40
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
2300
2300
2300
2300
2300
2300
2300
2300
2300
b40
2300
0.0
5,3
2b.7
55.2
7b.S
154.1
221. b
241.2
281.3
30b.2
0.0
0.0
341.8
311.5
277,7
254. b
170.1
85.4
bO.S
2b.7
7.1
0.0
0.0
KM
0
1
3
7
10
11
21
31
35
38
0
0
82
75
b7
fal
41
21
15
b
2
0
0
MV FUEL A/F
MM KG/HR RATIO
432
37b
3Sb
333
317
221
7b
bb
48
8
437
574
18
53
bl
81
118
320
381
411
444
437
511
1.8 24
3,1 lb
4,8 17
5,0 17
5.2 17
b.b 11
10,7 15
11.1 15
11.7 15
13.2 14
1,8 25
0,0 418
25,0 14
22,2 15
21,3 IS
20.0 IS
13.7 17
10.2 lb
8,1 11
7.1 11
b,4 11
1.8 25
0,0 bOS
CALCULATED GRAM/HR *T.
MODE
1
2
3
4
5
b
7
8
q
10
11
12
13
14
15
lb
17
18
20
21
22
23
HC
21.8
43,4
ill
7*1
s!a
2.3
.8
10)1
0.0
1.2
.7
i|s
,b
.5
1.8
2.1
is!s
0,0
CYCLE COMPOSITE
CORRECTED
CO
47
573
125
300
182
1122
921
354
2411
32
0
3023
150
20b7
1428
b3
41
12b
12b
17
42
0
HC
CO
NOX
SFC
NOX
NOX FAC,
2.
2.
4.
5,
1.
121.
so.
8b.
Ib3.
10.
2.
0.
571,
823.
301.
231.
223.
30.
41.
I*.
1,
2.
0.
• T J
2 .070
3 .ObO
1 .ObO
7 ,050
1 ,030
1 .ObO
S 0.000
7 .040
3 0.000
5 0,000
3 ,070
0 ,120
0 .025
0 .055
0 .035
7 .ObO
b .ObO
3 0,000
Z .ObS
7 0,000
0 O.OUO
3 .080
0 ,OfaO
10 GRAM/
11,3b3 GRAM/
S.It
,8 GRAM/
.387 KG/
4.733 SRAM/
.2
.8
.1
.3
.7
.1
.2
,4
.7
.1
.2
.7
.1
.1
.0
.1
.4
.8
.2
,4
,2
.4
.b
E.
UNITS
TO FC
0
4
20
41
5fa
114
Ifal
184
207
22b
0
0
252
230
205
188
12b
b3
45
20
5
0
0
KM
KM
KM
KM
KW
4.0
8.7
10. b
11,1
11. S
14.5
23. b
24.4
25.8
21,2
4.0
0.0
55.1
41,0
4b,1
44.2
30.2
22.5
17.1
15. b
14.2
4,0
0,0
HR (
HR (
HR (
HR (
HR {
DRY CONCENTRATION
HC CO C02
1471
1433
108
28
Bb
131
31
21
10
103
518
342b
55
5
24
11
b
7
25
33
21
b31
2b10
.115
,13b
,lb7
.118
.354
.158
,7Sb
,511
.212
1.380
,07b
,00b
,888
,047
.711
.511
,021
,02b
.088
.100
.085
.017
,00b.
8,70
11.15
12.80
12,b8
12,07
11,37
13.81
13.81
13.14
13.43
8,50
.07
13. 1*
13,14
14,07
14,20
12. fa8
13,17
11,37
11.25
11,37
8.40
,07
NQX
32
23
33
44
bS
b40
207
340
515
305
33
3
1035
I5b0
b30
530
b25
118
175
71
48
33
3
SPECIFIC CRAM/ KH-HR
HC CO
R
b4.bS
1.11
.lb
.37
,M
.10
,07
.02
.24
R
I
.11
.01
.05
.03
.01
,03
.12
.32
.14
R
I
,321
14.431
4.451
,b3b
3,521
R
853. S
37.3
13.5
31.2
1.3
38,1
21.7
10,0
b4,7
R
I
3b,7
2.0
30.1
23.3
1.5
2.0
8,b
11. fa
Sb.3
R
I
B3)
83)
83)
BS)
BS)
NUX
R
3.4
1.2
.8
.1
b.2
1.7
2.8
*.b
2,*
R
I
7.0
11.0
4.5
3.1
5.*
1.5
2.8
2.3
5,2
R
G-28
-------
APPENDIX H
DRIVEABILITY AND PERFORMANCE
TEST PROCEDURES AND THE
SAN ANTONIO ROAD ROUTE
-------
APPENDIX H-l. HEAVY TRUCK DRIVEABILITY RATING PROCEDURE*10)
Applicability: Truck and truck tractors above 7250 kg (16, 000 Ibs) GVW
powered by gasoline engines and diesels intended for
comparable type operation (i.e., mid-range diesel engines).
Objective: Determine for a given truck equipped with a given emission
control system whether its operation, safe handling and
general performance are impaired relative to the same
truck without emission control driveability.
Approach: Operate a given truck without and with emission control
system operative to determine on a "back-to-back" basis
whether emission control deterioratsd vehicle driveability
as herein defined. The reference truck will be the truck
in "standard" or non-emission control configuration and
evaluation and comparison made against this reference
for a given vehicle.
Definitions: The following are definitions of terms to be used.
1. Road Load - A fixed throttle position which maintains
a constant vehicle speed on a level road.
2. Coast - Deceleration at closed (curb idle) throttle.
3. Wide Open Throttle (WOT) Acceleration - An accel-
eration made entirely at wide open throttle (from
any speed).
4. Part Throttle (PT) Acceleration - An acceleration
made at any fixed throttle position less than WOT.
5. Tip-In - Vehicle response (up to two seconds in
duration), to the initial opening of the throttle.
6. Crowd - An acceleration made at a continually
increasing throttle opening.
7. Idle Quality - An evaluation of vehicle smoothness,
with the engine at curb idle in drive, as judged from
the driver's seat.
8. Backfire - An explosion in the induction or exhaust
system.
9. Hesitation - A temporary lack of initial response
in acceleration rate.
H-2
-------
10. Stumble - A short, sharp reduction in acceleration rate,
11. Lean Operation - This condition, depending on its
severity, can manifest itself as outlined in the
following categories:
A. Stretchiness - A lack of anticipated response
to throttle movement. This may occur on slight
throttle movement from road load or during
light to moderate accelerations.
B. Surging - A condition of leanness, resulting in
short, sharp fluctuations. These may be cyclic
or random and can occur at any speed and/or load.
12. After-run^ - A condition where the engine continues
to run after the ignition has been shut off.
13. Detonation (spark knock) - A knock or ping which is
recurrent or repeatable in terms of audibility.
Rating Scale: The following four step rating scale will be employed
where judgment is required.
Satisfactory (S) - a rating indicating no malfunction.
Trace (T) - Rating of a malfunction that is just
discernible to a test driver.
Moderate (M) - Rating of a malfunction that is judged
to be probably noticeable to the average driver.
Heavy (H) - Rating of a malfunction that is pronounced
and judged to be obvious to any driver.
Procedure: This procedure consists of four major parts.
I. Preparations: The vehicle is to be prepared by adding sufficient
weight to bring the vehicle to one-half payload using
concrete blocks or drums of water. One-half payload
is empty or curb weight plus one-half the nameplate
GVW - curb weight. Install intake manifold pressure
gage, engine rpm tach and fifth wheel with velocity
and distance traveled accessories. Drain tank and
use same fuel used in stationary tests. Locate truck
for overnight soak 8 hr. minimum and straight out
driveaway. A smooth-surf ace road, free of traffic
interference including turns, moderate uphill, downhill
but mostly level closed course will be used. The same
crew must be used on all tests with a given truck.
H-3
-------
II. Cold Start and This part is intended to evaluate the "cold" start and
Driveaway subsequent driveability of the truck before fully warmed-
up. Cold soak means allowing the vehicle to sit over-
night (minimum of 8 hours) at ambient temperatures
of 10-27° C (50-80°F). Outdoor or indoor soak is
allowed as long as all tests on a given vehicle are con-
sistent.
Three areas of operation are to be rated, idle,
acceleration and deceleration as shown by the attached
data sheet. Major emphasis is given the idle quality
as S, T, M, or H and number of stalls and the
acceleration quality and stalls.
Using Figure i to depict the road course and the
attached cold start driveaway data sheet, the step-
wise procedure will be to:
Step 1. Start engine using Manufacturer's Recom-
(Idle) mended Procedure. On manual choke, use
as recommended and required normally.
Record engine rpm in neutral immediately
after start, with foot off throttle pedal. Idle
20 seconds (Note position of manual choke).
During the 20 second period, evaluate idle
quality and record number of stalls.
Step 2. At end of 20 seconds, clear engine by accel-
(Idle) crating briefly to moderately high idle speed
and remove foot from throttle and record
engine rpm (neutral). Evaluate quality of
idle as satisfactory or rough (T, M or H)
and number of stalls during 10 second idle.
Step 3. Depress clutch and place transmission in
(Idle) proper low gear for driveaway. (Not nor-
mally 1st or low low). During 5 second
idle, record engine rpm, evaluate idle
quality and stalls.
Note: In event engine stalls during idle phase,
restart engine and begin idle sequence with
Step 1, Step 2, if stall occurred in Step 2 or
Step 3 if stall occurred in Step 3. Also, on
manual choke, use no more choke than
necessary and eliminate choke use as soon
as practical. Note when choke movement
is made and amount of movement.
H-4
-------
Step 4.
(PT accel)
A to B
Step 5.
(Hold)
B to C
Step 6.
(WOT accel)
C to D
Step 7.
(CT decel)
D to E
Step 8.
(PT accel)
E to F
Step 9.
(Hold)
F to G
Make a moderate acceleration to 40 km/h (25
mph) on level road using normal driving habit
to upshift through the gears necessary to
achieve a high gear from which a WOT accel
to 56 km/h (35 mph) can be achieved without
additional shifting. During the PT accel,
record accel quality as satisfactory or in terms
of T, M or H, if a malfunction is noted. If
engine stalls, restart and begin at Step 3 and
note same. If engine stalls again, move
choke as required, note movement, and re-
start at step 3.
Maintain 40 km/h to point C. No rating nec-
essary during this brief downhill portion of
course.
Accelerate WOT from 40 to 56 km/h in pre-
viously selected gear up slight hill to point D
on course. Evaluate quality and if engine
stalls, return to Step 3.
Decel, foot off throttle, from 56 to 0 km/h
and note quality, backfires, etc. This is a
slight uphill decel.
Acceleration at part throttle on level road
from points E to F from 0 to 40 km/h and
note quality.
Maintain 40 km/h to point F. No rating
necessary.
Step 10.
(CT decel)
G to H
Step 1.1.
(WOT accel)
H to J
Step 12.
(CT decel)
I to J
Step 13.
(PT accel)
J to K
Deceleration at closed throttle from 40 to 0
km/h and note quality. This is a constant
speed decel for most part to stop sign at H.
Accelerate at wide open throttle from 0 to 64
km/h (0 to 40 mph) and note quality on mostly
level course from points H to J.
Decelerate at cut throttle from 64 to 0 km/hr
and note quality. This is mostly constant speed
decel on downhill portion of course from I to J.
Accelerate at heavy part throttle from 0 to 40
km/h and note quality over course from J
through K, level road.
H-5
-------
Step 14.
(WOT accel)
K to L
Step 15.
(Decel)
L to M
Step 16.
(WOT accel)
M to N
Step 17.
(CT decel)
N to O
Step 18.
(PT accel)
O to P
Step 19.
(WOT accel)
P to Q
WOT accel from 40 to 56 km/h as in Step 6
but on level road (points K to L,). Note
quality.
Decelerate, foot off throttle, from 56 to 40
km/h into left and right turns. Note quality
and backfires.
Come out of double turns (level road) from
point N to O with WOT accel from 40 to 56
km/h and note quality.
Decel at closed throttle to rest from 56 km/h
so that vehicle is positioned for accel from
stop. Note quality during decel.
This is a fairly heavy part throttle accel from
0 to 40 km/h up moderate part of uphill por-
tion of course from point O to P, note quality.
WOT accel from 40 to 64 km/h on moderately
uphill leg of course from points P to Q.
Step 20.
(PT decel)
Q to R
Step 21.
(WOT accel)
R to S'
This is rapid deceleration due to uphill nature
of course from Q to R. Use some light throttle
to complete 64 to 0 km/h deceleration at R.
WOT accel through gears to reach 40 km/h
from rest on uphill portion R to S.
Step 22.
(PT Decel)
S to A
This final decel returns vehicle to rest at point
A (starting point) and may be made a light part
throttle.
Step 23.
(Idle 30 sec.)
Idle for 30 seconds, clutch pedal depressed,
transmission in gear. Evaluate idle quality
and record engine rpm.
Repeat Steps 4 through 23 above to complete
data sheet. The speed ranges specified can
be changed based on gear selection available
and performance characteristics of the truck
at the discretion of the test engineer. All
tests on a given vehicle are to be consistent.
Evaluate driveability on all steps except steps
5 and 9.
H-6
-------
III. Warm Vehicle This part is intended to evaluate the driveability and
Driveability performance of a fully warmed-up truck and utilizes
a separate data sheet (attached). The maximum speed
involved should be the legal limit of 88.5 km/h (55 mph)
if this can be achieved readily with the load, etc. , on
level road. If not, decrease to 80.5 km/h and stay
consistent with all tests on a given truck. All accels
and decels to follow normal driving habit and good
driving practice on upshifting and on which speed
axle, etc., to use. Also, the repetitive 40 to 64 and
40 to 56 km/h accels can be shifted to other speeds
depending on the capabilities of given truck at the
discretion of the test engineer. All runs on given
truck to be consistent.
The following stepwise procedure relates to the
data sheet. The procedure begins with vehicle thor-
oughly warmed up with equivalent of about 16 kilometres
of freeway driving.
Step 1.
Idle
Step 2.
Cruise
Step 3.
WOT accel
Step 4.
CT decel
Step 5.
WOT accel
After completion of warm-up, allow vehicle
to come to rest and begin 30 second idle.
Evaluate idle quality.
This is a series of road load runs each made
both directions over a level course and the
results averaged and recorded. Use the gear
which gives best overall truck operation at
lower engine speed where there is option.
Note quality of operation and record.
Accelerate WOT with rapid fast action and
throttle opening from 40 to 64 km/h in same
gear used in cold start driveaway procedure.
Evaluate quality.
Decel, foot off throttle, from 64 to 40 km/h and
note quality, backfires, etc.
Repeat Step 3, but with a slow deliberate foot
action to achieve WOT.
Step 6.
PT decel
Step 7.
PT accel
Decelerate at very light part throttle (approxi-
mately 485 mm Hg)a from 64 to 40 km/h and
note quality.
Accelerate at light constant part throttle
(approximately 355 mm Hg)a and note quality.
aUse manifold vacuums which produce equivalent power
output on engines using EGR.
H-7
-------
Step 8. Decelerate, throttle closed, from 56 to 40
CT decel km/h and note quality, backfires, etc.
Step 9. Same as Step 7 PT accel, but with moderate
PT accel constant part throttle (approximately 255 mm
Hg)a and note quality.
Step 10. Same as Step 8, but at very light throttle
PT decel opening of about 485 mm Hga.
Step 11. Same as Step 7, but with heavy constant
PT accel throttle opening at about 150 mm Hga.
Note and record quality.
Step 12. Same as Step 8.
Step 13. This is part throttle crowd accel with light
PT accel throttle action in that throttle is opened
more with time, but at a slow or "light"
rate. Evaluate quality.
Step 14. Same as Step 6.
Step 15. Same as Step 13, but with a moderate rate
of crowd, i. e. , between a slow and fast crowd.
Step 16. Same as Step 4.
Step 17. Same as Step 13, but with a rapid or fast
rate of crowd.
Step 18. Same as Step 14.
Step 19. Moderate part throttle accel from 40 km/h
PT Tip-in cruise. Measure time required to recognize
a change in vehicle speed following initial
opening of throttle plate. Repeat test after
return to 40 km/h cruise for 30 seconds.
Step 20. Same as Step 19, but from 56 km/h cruise.
Step 21. These are pre-conditioning runs for Steps
WOT accels 22 and 23 and are run in rapid succession.
aUse manifold vacuums which produce equivalent power
output on engines using EGR.
H-8
-------
Step 22. Immediately on completion of a CT decel
from the last 0 - 88.5 km/h accel in Step
21, allow engine to idle for 30 seconds and
evaluate quality.
Step 23. Cut-off engine switch and note any after-run.
Soak
Step 24. Restart engine and allow to idle for 30 seconds.
Idle evaluate quality.
Step 25. Cut-off ignition switch and note any after run.
Engine off
IV. Accel-Decel This part is to establish acceleration and decel-
Performance eration performance of the truck over level road
course. Operation both ways over the course is
required and results averaged. Attached is sample
data sheet that is reasonably self-explanatory. Step
1 is a sequence of 0 - 32 km/h WOT accels. Steps
2 and 3 are similar WOT accels from rest. Step 4
is a WOT accel from 32 to 80. 5 km/h followed by a
CT decel. A ten second idle precedes each accel
and a 5 second stabilization at each max speed is
effected before each decel.
Step 5 will consist of measuring the max speed
achieved and time required to accelerate from rest
over a course starting with level road and ending
with a fairly steep uphill grade. This type of driving
represents the real world and is included to give
some measure of performance on a grade. The
same course will be used for a given truck though
the course may be different for tractors than for
trucks.
H-9
-------
Cumulative
Point
A-B
/ B-C
CTN
D-E
E-F
F-G
G-H
H-I
I-J
J-K
K-L
L-M
W M-N
\\ N-0
i^-^— 1 0-P
N\ P-Q
Yl Q-R
T R-S
N A 1 S-A
Stop \
^AJ X
Description
Level curved
Sharp dwnhill curved
Steady, mod. uphill straight
Steady, mod. uphill straight
Level, curved road
Level, curved road
Mod. dwnhill, curved road
Mostly level, straight
Mod. steady, dwnhill, straight
Level, straight
Level, straight
Level, double sharp bends
Level, sharp bend and straight
Level, straight
Slight to mod. uphill, straight
Mod. uphill, straight
Mod. to light uphill, straight
Mod. uphill, straight
Light uphill to level, curved
Miles
0. 104
0.060
0. 178
0. 120
0.227
0. 175
0. 150
0.315
0. 181
0.229
0.240
0.245
0.180
0.161
0.269
0.214
0.140
0. 100
0. 146
Miles
0. 104
0. 164
0. 342
0.462
0.689
0.854
1.014
1. 329
1.510
1.739
1.979
2.224
2.404
2.565
2.834
3.048
3. 188
3.288
3.434
Km
0.167
0. 264
Or~ f r\
. 550
0.743
1.109
1.374
i.632
2. 138
2.430
2.798
3. 184
3.578
3.868
4. 127
4.560
4.904
5.129
5. 290
5.525
APPENDIX H-l. FIGURE 1. COLD START DRIVEABILITY ROAD ROUTE
-------
APPENDIX H-l. COLD START AND DRIVEAWAY EVALUATION
p. 1 of 2
Vehicle No.
Date:
GVW:
Engine No.
License No.
Time: Start
kg Empty
Finish
Odo. : Start
Finish
Test Weight
Vehicle
Make
Model
Year
Trans. Gears
Rear Speeds
Tire Size:
Remarks:
Start Time (Sec)
Weather
Temp.: Wet/Dry0 C /
Bar. Press mm Hg.
Road Conditions:
Wet Dry
Wind: Speed km/h
Soak Time (hrs)
Attempts
Crew
Driver:
Recorder:
Observer(s):
Step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Ib
16
17
18
1?
20
21
22
23
Condition
Fast Idle Cam 28 sec
Clear
Neutral 20 sec
Low Gear^S sec
PT accel A to B (0-40)
Hold 40 B to C
WOT accel C to D (40-56)
CT Decel D to E (56-0)
PT accel E to F (0-40)
Hold 40 F to G
CT decel G to H (40-0)
WOT accel H to I, (0-64)
CT deceit to J (64-0 )
PT accel J to K (0-4Q
WOT accel K to L (40-56)
CT decel L to M (56-40)
WOT accel M to N (40-56)^
CT decel N to O (56-0)
PT accel O to P (0-40J^
WOT accel P to Q (40-64)
PT decel Q to R (64-0)
WOT accel R to S (0-40)
PT decel S to A (40-0)
Idle (30 sec)
Rpir
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Idle
Qu
m
•3
&
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
al
3
SP
o
C*
X
X
X
X
X
X
X
X
X
xj
X
X
X
X
X
X
X
X
X
X
«•-!
O CO
*i
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Acceleration
Quality
09
fl
4->
rt
CO
X
X
X
X
X
X
x
X
X
X
X
X
X
X
H
o>.
9
4
X
X
X
X
X
X
X
X
X
X
X
X
X
X
*
V
I—I
H
•4
a
CO
X
X
X
X
X
X
X
X
X
X
X
X
}
X
*
A
o
-1
s
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Surge*
X
X
X
X
X
X
X
X
X
X
X
J
X
X
Detonation*
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-------
APPENDIX H-l. COLD START AND DRIVEAWAY EVALUATION
p. 2 of 2
Vehicle No.
Date:
Engine No.
License No.
.
Step
4
5
6
7
8
9
10
11
1?
n
14
15
If,
17
18
19
20
21
22
23
Condition [Rpn:
PT accel A to B (0-40)
Hold 40 B to C
WOT accel C to D (40-56)
CT Decel D to E (56-0)
PT accel E to F (0-40)
Hold 40 F to G
CT decel G to H (40-0)
WOT accel H to I fo-64)
CT decel I to J (64-0 )
PT accel J to K (0-40)
WOT accel K to L (40-56)
CT decel L to M (56-40)
WOT accel M to N (40-56)
CT decel N to O (56-0)
PT accel O to P (0-40)
WOT accel P to Q (40-64)
PT decel Q to R (64-0)
WOT accel R to S (0-40)
PT decel S to A (40-0)
Idle (30 sec)
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Idle
Qu
W
• H
4->
&
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Rough*| PL j
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
*H
O co
f— 1
o' 3
Z to
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Acceleration
Quality
to
• H
4->
rt
co
X
X
X
X
X
X
X
X
X
X
^
H
w.
V
£
X
X
X
X
X
X
X
X
X
X
a)
r— 1
x>
5
u>
CO
X
X
X
X
X
X
X
X
X
X
Stretch*
X
X
X
X
X
X
X
X
X
X
surge*
X
X
X
X
X
X
X
X
X
X
Detonation*
X
X
X
X
X
X
X
X
X
X
>4>4
O CO
—4
o 3
2 co
X
X
X
X
X
X
X
X
X
X
No. of
Backfires
Decel
Qual
M
•H
•*->
rt
to
X
X XI
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
(Surge*
X
X
X
X
X
X
X
X
X
A
X
X
X|X
No. of
Backfires
X
X
X
X
X
X
X
X
X
X
X
X
X
o »
r-4
o 5
Z w
X
X
X
X
X
X
X
X
X
. ._
X
X
X
X
*T-Trace, M-Moderate, H-Heavy
H-12
-------
APPENDIX H-l. WARM VEHICLE DRIVEABILITY EVALUATION
Vehicle No.
Date:
GVW:
Time
kg
Engine No.
: Start Finish
Empty
kg
License No.
Odo. : Start Finish
Test Weight
kg
Vehicle
Make
Model
Year
Trans
Rear
Gears
Speeds
Tire Size:
Remarks:
Weather
Temp.: Wet/Dry°C /
Bar. Press mm Hg.
Road Condi
Wet Dry
Wind: Speed km/h
Step
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Conditions
Idle 30 sec
Cruise
(Run both
directions
and average
WOT Accel
CT Decel
WOT Accel
PT 19 in Decel *
PT 14 in Accel a
CT Decel
PT 10 in Accel a
PT 19 in Decel a
PT 6 in Accela
CT Decel
PT Light Crowd
PT 19 in Decel*
PT Mod Crowd
CT Decel
PT Heavy Crowd
PT 19 in Decela
PT Tip - In 1 @
2 @
PT Tip - In 1 @
2 @
WOT Accels
Idle 30 sec
Soak 15 min
Idle 30 sec
Engine off
Km/H
0
32
48
64
80
40-64
64-40
40-64
64-40
40-56
56-40
40-56
56-40
4n_5A
56-40
40-64
64-40
40-64
64-40
40-64
64-40
40
40
56
56
ftfi
0
After B
After B
Gear
Low
XXXX
low
un Yes
un Yes
Rpm
XRapid
XXXX
XSlow i
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
XXXX
Repea
No
No
Vac.
openXX
XXXXX
^pen XX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
XXXXXX
3 times i
Crew
Driver:
Recorder:
Observer(s):
Idle
3ual
CO
•H
•*->
nj
CO
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
n
#
A
r
<*
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
m
CO
3
$
CO
•
o
2
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
:c
Drive Conditions
Quality
-------
APPENDIX H-l. ACCEL-DECEL PERFORMANCE
Vehicle
Date:
GVW:
No.
Time:
kg
Engine No.
Start
Empty
Finish
kg
Odo. :
License No.
Start
Test Weight
Finish
kg
Vehicle
Make
Model
Year
Trans. Gears
Rear Speeds
Tire Size:
Remarks:
Weather
Temp. : Wet/Dry °C /
Bar. Press mm Hg.
Road Conditions:
Wet Dry
Wind: Speed km/h
Soak Time (hrs)
Crew
Driver:
Recorder:
Observer(s):
Gear
Step Condition Run km/h Start End Time^ Counts Quality Note
WOT Accel 1 0-32
(1)
WOT Accel
0-32
(2)
(3)
(4)
(5)
WOT Accel
WOT Accel
WOT Accel
WOT Accel
WOT Accel
CT Decel
WOT Accel
CT Decel
Grade Perf.
1
2
1
2
1
1
2
2
1
2
0-64
0-64
0-88
0-88
32-80
80-32
32-80
80-32
Max/ Final
0- /
0- /
Idle 10 sec before each accel.
Hold max speed in accel 5 sec before each decel.
H-14
-------
SOLEDAD
Miles
1.860
1.750
0.312
0.343
0.380
2.075
0.520
7.240
Km
2.993
2.816
0.502
0.552
611
339
0.837
11.650
DOWN)
OVER OR UNDER PASS
TRAFFIC LIGHT
SCHOOL ZONE
ZARZAMORA
START
LAYOVER POINT
Speed Limit - 48 km/h unless otherwise
specified
APPENDIX H-2. SAN ANTONIO HEAVY DUTY GASOLINE(4)
TRUCK ROAD ROUTE
H-15
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing}
1. REPORT NO.
EPA-460/3-77-010
2.
3. RECIPIENT'S ACCESSION>NO.
4. TITLE AND SUBTITLE
Heavy Duty Fuel Economy Program
Phase II - Evaluation of Emission Control Technology
Approaches
5. REPORT DATE
July 1977
6. PERFORMING ORGANIZATION CODE
AR-1200
7. AUTHOR(S)
Charles M. Urban and Karl J. Springer
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Southwest Research Institute
6'220 Culebra Road
San Antonio, Texas 78284
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-03-2220
12. SPONSORING AGENCY NAME AND ADDRESS
Environmental Protection Agency
2565 Plymouth Road
Ann Arbor, Michigan 48105
13. TYPE OF REPORT AND PERIOD COVERED
Phase II Final Report
14. SPONSORING AGENCY CODE
EPA/200/05
15. SUPPLEMENTARY NOTES
16. ABSTRACT
This report describes the laboratory effort toward reducing emission and fuel con-
sumption in a heavy-duty gasoline engine, while retaining current durability
performance. The goals were HC plus NOx of 6.7 g/kW-hr (5g/bhp-hr) CO of 33.5 g/
kW-hr (25 g/bhp-hr), a ten percent reduction in specific fuel consumption and 1500
hours of service accumulation, using the procedures proposed for the 1979 model year
The initial laboratory evaluations involved standard carburetors, a Dresserator
inductor, a Bendix electronic fuel injection system, exhaust manifold thermal reacto
exhaust gas recirculation along with a number of other engine emissions control
components and operating parameters. Based on the project goals and the initial
results, a system was selected to undergo final optimization and service accumu-
lation. The system selected consisted of electronic fuel injection, thermal
reactors with air injection, exhaust gas recirculation and a high energy ignition
system with vacuum advance. This system met the emissions and specific fuel
consumption goals and completed 1500 hours of service accumulation.
During the last 750 hours of service accumulation, a heavy-duty oxidation catalyst
was included in the exhaust system as an add-on to the optimized system. Subsequent
to the 1500 hours of service accumulation, this engine was installed into a
heavy-duty truck for an evaluation of driveability and performance.
•s,
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
COS AT I Field/Group
Fuel Consumption
Exhaust Emissions
Trucks
Heavy-duty Vehicles
9-mode emission tests
23-mode emission test
DISTRIBUTION STATEMEN1
Unlimited
19. SECURITY CLASS (ThisReport)
21. NO. OF PAGES
389
20. SECURITY CLASS (Thispage)
22. PRICE
EPA Form 2220-1 (9-73)
------- |