United States
Environmental Protection
Agency
Office of
Radiation Programs
Washington DC 20460
EPA 520/1-79-009
December 1979
(Reprint of ORNL-5532)
Radiation
&EPA
AIRDOS-EPA:
A Computerized Methodology
for Estimating Environmental
Concentrations and Dose
to Man from Airborne Releases
of Radionuclides
-------
This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
contractors, subcontractors, or their employees, makes any warranty,
express or implied, nor assumes any legal liability or responsi-
bility for any third party's use or the results of such use of any
information, apparatus, product or process disclosed in this report,
nor represents that its use by such third party would not infringe
privately owned rights.
Note: Corrections to the text and computer code through
December 1979 have been incorporated into this printing.
-------
EPA 520/1-79-009
AIRDOS-EPA: A Computerized Methodology
for Estimating Environmental
Concentrations and Dose to Man from
Airborne Releases of Radionuclides
R. E. Moore
C. F. Baes III
L. M. McDowell-Boyer
A. P. Watson
F. O. Hoffman
J. C. Pleasant
C. W. Miller
Prepared under Contract No. W-7405-eng-26
Interagency Agreement No. EPA-78-D-X0394
Reprint of ORNL-5532
Published June 1979
December 1979
Project Officer
Christopher B. Nelson
Office of Radiation Programs (ANR-461)
U.S. Environmental Protection Agency
Washington, D.C. 20460
-------
TABLE OF CONTENTS
Page
List of Tables ......................... V1-
Abstract ............................ vl--j
1 . Introduction ........................ 1
2. Applicability of the Computer Code for Atmospheric Disper-
sion Calculations and Radiological Assessments ....... 3
3. Atmospheric and Terrestrial Transport Models and Their
Computer Implementation ................... 6
3.1 Organization of the Code ............... 6
3.2 Atmospheric Dispersion and Deposition ......... 8
3.2.1 Input Parameters Characterizing the Nuclear
Facility or Release Site ............ 8
3.2.2 Meteorological Data .............. 9
3.2.3 Plume Rise ...... . ....... ..... 10
3.2.4 Plume Dispersion . . .............. 14
3.2.5 Deposition Processes . . ............ 19
3.2.6 Depletion of Airborne Plumes .......... 21
3.2.7 Values of Parameters Used in Dispersion
Equations ................... 28
3.2.8 x/Q Tabulations . . .............. 30
3.2.9 Area Sources .................. 30
3.2.10 Limitations of the Dispersion Treatment .... 32
3.2.11 Direct Input of Concentrations in Air and Rates
of Deposition on Ground Surfaces (Subroutine
DIRECT) .................... 35
ill
-------
IV
Page
3.3 Calculations of Radiation Doses, Environmental Concen-
trations, and Intake Rates by Man ........... 36
3.3.1 Air Immersion Doses .............. 36
3.3.2 Surface Exposure Doses ............. 37
3.3.3 Water Immersion Doses ............. 38
3.3.4 Inhalation Doses ................ 39
3.3.5 Ingestion Doses ................ 40
3.3.6 Calculations for Special Cases ...... ... 47
3.3.7 Environmental Concentrations and Intake Rates. . 53
pop
3.3.8 Working Level Calculations for Rn . ..... 53
3.3.9 Buildup of Radioactive Daughters on Surfaces
after Deposition of a Parent Radionuclide. ... 54
4. Use of the Code ..................... . 55
4.1 Options Available to the User ........ ..... 55
4.1.1 Options in the Main Program (MAIN; . ....... 5i>
4.1.2 Optional Features of Subroutine CONCEN ...... 60
4.1.3 Options and Optional Features of Subroutine
DOSEN ............... ...... 61
4.2 Data Input and Example Run . ............. 63
5. Terrestrial Transport Input Parameters ........... 8^
5.1 Agricultural Productivity by Unit Area Yy ....... 82
5.2 The Fraction of Atmospherically Depositing Radionuclides
Intercepted by Above-Ground Portions of Plants R. . . . 83
5.2.1 Interception Fraction RI for Forage Crops. ...
5.2.2 Interception Fraction R- for Leafy Vegetables
and Fresh Produce ...............
83
-------
Page
5.3 Deposition Velocity V. 86
5.4 The Plant/Soil Bioaccumulation Factor B 87
5.5 The Milk-Transfer Coefficient F 93
5.6 The Meat Transfer Coeffieicent Ff 93
5.7 Other Environmental Terrestrial Transport Parameters. . 95
5.8 Ingestion and Inhalation Rates U for the Average
Adult ?P 99
References 101
Appendix A Listing of the AIRDOS-EPA Code HI
Appendix B Output of an Example Case Run of the AIRDOS-EPA
Computer Code 177
-------
LIST OF TABLES
Page
1 Formulas recommended by Briggs for a and az for open-
country conditions 29
14
2 Dose conversion factors for C 51
3 Input parameters for main program 64
4 Input parameters for subroutine CONCEN 66
5 Input parameters for subroutine DIRECT 69
6 Input parameters for subroutine DOSEN 70
7 Data deck preparation for AIRDOS-EPA 76
8 Estimated values of above-ground agricultural productivity
for forage grasses and edible portions of vegetable crops . 85
9 Values of B. , derived from a review of the literature. . . 89
10 Values of B. 2 derived from a review of the literature. . . 90
11 Estimates of the milk-transfer coefficient F for dairy
cows 94
12 Estimates of the meat-transfer coefficient Ff for beef
cattle 96
13 Radiological decay constant X. for selected nuclides ... 97
14 Environmental parameters used in AIRDOS-EPA to estimate
radionuclide concentrations in meat, milk, and vegetables
consumed by man 98
15 Ingestion and inhalation rates U for the average adult. . 100
VI
-------
ABSTRACT
The AIRDOS-EPA computer code is a methodology, designed for use on
IBM-360 computers, that estimates radionuclide concentrations in air;
rates of deposition on ground surfaces; ground surface concentrations;
intake rates via inhalation of air and ingestion of meat, milk, and fresh
vegetables; and radiation doses to man from airborne releases of radio-
nuclides. This report describes the atmospheric and terrestrial transport
models used in the code, their computer implementation, and the applic-
ability of the code to the assessment of radiological impacts. A listing
of the code and a demonstration run of the code are presented in the
appendices.
A modified Gaussian plume equation is used to estimate both horizontal
and vertical dispersion of as many as 36 radionuclides released from one
to six stacks or area sources. Radionuclide concentrations in meat, milk,
and fresh produce consumed by man are estimated by coupling the output of
the atmospheric transport models with the U.S. Nuclear Regulatory Commission,
Regulatory Guide 1.109 terrestrial food chain models. Dose conversion
factors are input to the code, and doses to man at each distance and
direction specified are estimated for total body, red marrow, lungs,
endosteal cells, stomach wall, lower large intestine wall, thyroid,
liver, kidneys, testes, and ovaries through the following exposure modes:
(1) immersion in air containing radionuclides, (2) exposure to ground
surfaces contaminated by deposited radionuclides, (3) immersion in con-
taminated water, (4) inhalation of radionuclides in air, and (5) ingestion
of food produced in the area.
vii
-------
viii
The code may be run to estimate highest annual individual dose in
the area or annual population dose. For either option, output tables
summarize doses by nuclide, exposure mode, and organ. Also, for either
a square or circular grid option, ground concentrations of radionuclides
and intake rates by man are tabulated for each environmental location.
Working level exposures are also calculated and tabulated for inhalation
222
of Rn short-lived progeny. Run time is less than 5 min on the IBM
360/91, and the core requirement is 650 K (kilocore).
-------
1. INTRODUCTION
The AIRDOS-EPA computer code was developed at Oak Ridge National
Laboratory (ORNL) to be used by the U.S. Environmental Protection Agency
(EPA) as part of a methodology to evaluate health risks to man from
atmospheric radionuclide releases. This report describes the final
version of an interim methodology outlined under Task I of Interagency
Agreement No. EPA-78-D-X0394 between ORNL and the EPA. The models and
parameters described in AIRDOS-EPA will be reviewed and reevaluated
under Task II of this interagency agreement.
The code is a modified version of AIRDOS-II (Moore, 1977), which has
been used by the Environmental Sciences Division (ESD) and the Health and
Safety Research Division (HASRD) of ORNL for several years to assess
radiological impacts of routine operations of nuclear facilities. Both
point sources and uniform area sources of atmospheric releases of radio-
nuclides can be evaluated by AIRDOS-EPA, which estimates (1) concentrations
in air, (2) rates of deposition on ground surfaces, (3) ground surface
concentrations, (4) intake rates by man via food ingestion and air
inhalation, and (5) radiation doses received by man.
As many as 36 radionuclides released from one to six stacks or area
sources can be handled in a single computer run. Annual-average meteor-
ological data for the area surrounding a nuclear facility may be supplied
as input to the code, which then estimates air and ground concentrations
and intake rates by man for each radionuclide at various distances and
directions from the release point or the center of an area source. From
these values, doses to man at each distance and direction specified are
-------
estimated for total body, red marrow, lungs, endosteal cells, stomach
wall, lower large intestine wall, thyroid, liver, kidneys, testes, and
ovaries through each of five exposure modes. These modes are (1) immersion
in air containing radionuclides, (2) exposure to ground surfaces con-
taminated by deposited radionuclides, (3) immersion in contaminated
water, (4) inhalation of radionuclides in air, and (5) ingestion of food
produced in the area. The dose calculations are made with the use of
dose conversion factors supplied as input data for each radionuclide,
exposure mode, and reference organ or tissue.
At the option of the user, the area surrounding the source may be
subdivided either with a circular or a square grid. For the circular
option, as many as 20 distances may be specified for each of 16 compass
directions. Each distance represents the midpoint of a sector. The
square option employs a 20 by 20 grid with the source at the center.
The grid size is specified by the user.
The code may be run to estimate either the highest annual individual
dose in the area or the annual population dose. For either of these
options, tables are provided as output which summarize doses in several
ways - by nuclide, exposure mode, and organ. Also, for either option
selected, ground concentrations of radionuclides and intake rates by man
are tabulated for each specified environmental location. In addition,
working level exposures are calculated and tabulated for inhalation of
222
Rn and its short-lived progeny.
Section 2 of this report discusses the atmospheric and terrestrial
transport of released radionuclides and the methods used for calculating
the resultant dose to man from these radionuclides. Section 3 details
-------
the atmospheric and terrestrial transport models used in the code.
Section 4 describes the input data requirements for the various user
options. Section 5 lists terrestrial transport input parameters used in
a demonstration run of the code. The methods used to determine the
values presented are briefly discussed, and special problems in the
determination of parameter values are identified. A listing of the code
and a demonstration run of the code are presented in Appendix A and B,
respectively.
2. APPLICABILITY OF THE COMPUTER CODE FOR ATMOSPHERIC DISPERSION
CALCULATIONS AND RADIOLOGICAL ASSESSMENTS
Release rates (in curies per year) to the atmosphere from each
point or area source are known collectively as the source term. The
plume containing radionuclides is dispersed both horizontally and
vertically as it is blown downwind. The code estimates the annual-
average concentration (picocuries per cubic centimeter) of each radio-
nuclide in the source term in air at ground level as a function of
direction and distance from the source; annual-average frequencies of
wind direction, wind speed, and atmospheric stability category are
employed as input data.
Radionuclides in the form of participates or reactive gases deposit
on ground or water surfaces through scavenging processes, which primarily
consist of washout by rainfall, and through dry deposition processes.
The code estimates the deposition rate for each radionuclide in units of
picocuries per square centimeter per second for each location for which
estimated air concentrations are calculated.
-------
Both the air concentrations and the ground deposition rates are
average values in the crosswind direction over each of sixteen 22.5°
sectors emanating from the source. For the square grid option, the
22.5° sector-averaged values in a circular coordinate system are con-
verted to values in rectangular coordinates. Sector-averaging is a
realistic treatment for assessments using average meteorological data,
but the code does provide an option to the user to compute plume center-
line values if desired for a special application. Plume centerline
values are several times higher than sector-averaged values.
The average concentration of a radionuclide in air at ground level
at an environmental location is used to estimate the external dose from
gamma radiation to an individual living at that location for an entire
year as a result of his immersion in an assumed semi-infinite cloud of
that concentration. A conversion factor for immersion gamma dose at the
skin surface is supplied as input data for each radionuclide. These
values are multiplied by correction factors, also supplied as input, to
estimate the external gamma dose contributions for each radionuclide to
other reference organs.
The air concentration at each location is also used to estimate
internal dose via inhalation. Input dose conversion factors (rem per
microcurie) for each radionuclide and organ include contributions from
radioactive daughters growing in after human intake, and, when multiplied
by the intake for one year (microcuries), result in values for a dose
commitment resulting from that annual intake.
Rates of deposition on ground surfaces are employed to estimate
external doses resulting from gamma radiation emanating from contamin-
ated ground. A period of time, supplied as input, is allowed for
-------
surface buildup. Doses are estimated for a point 1 m above an infinite
plane with the calculated concentration in units of picocuries per
square centimeter. Dose conversion is handled in the same way as for
air immersion doses.
The external dose from water immersion is calculated as resulting
only from immersion in water subjected to deposition from the atmosphere.
It is usually estimated very conservatively in assessments, but even
so it makes almost no contribution to the total doses. The critical
pathway of exposure from water immersion is by swimming in a home out-
door swimming pool because the shallow depth of water in home pools
minimizes dilution of deposited radionuclides. Dose calculation is
similar to that for air immersion except that a use factor, often chosen
as 0.01 in assessments, is employed to account for the fraction of time
spent by a typical person in his home pool.
Ingestion doses resulting from deposition of radionuclides on crop
land and pasture are estimated separately for vegetable, meat, and milk
consumption. A terrestrial model described later in this report was
adopted to estimate steady-state concentrations in these three food
types for continuous deposition on agricultural land. Intake by man is
calculated from input values assumed for daily consumption of each of
the three types of food. Dose conversion factors (rem per microcurie)
supplied as input data for each radionuclide and reference organ are
used to calculate dose commitments resulting from one year's intake.
Dose contributions from radioactive daughters growing in after intake
are included in the dose conversion factors for each radionuclide
assumed to be ingested.
-------
The number of meat producing animals, dairy cattle, and square
meters of area on which vegetable crops are produced is specified for
each environmental location in the assessment region. When population
doses are to be estimated for a site-specific assessment, any additional
quantity (supplemental to locally produced supply) of each of the three
food types required to feed the population is assumed to come from
outside the assessment area in an uncontaminated state. Options in the
code allow the user to specify the fraction of each food type produced
at each individual's specific location, the fraction produced within the
entire assessment area, and the fraction which is consumed within the
area but produced outside the area.
No attempt is made in AIRDOS-EPA to assess either health risks or
genetic damage. However, concentrations in air and on ground surfaces
and intake rates by man, from which it may be possible to evaluate these
effects, are calculated and tabulated for each environmental location
for which doses are estimated.
3. ATMOSPHERIC AND TERRESTRIAL TRANSPORT MODELS AND
THEIR COMPUTER IMPLEMENTATION
The general organization of the models as implemented in the sub-
routines of the code are described in detail in this section.
3.1 Organization of the Code
AIRDOS-EPA, written in Fortran-IV computer language, is designed to
be run on the IBM-360 computers. It is organized as follows:
MAIN Program
1. SUBROUTINE CONCEN
1.1 SUBROUTINE QY
-------
1.1.1 SUBROUTINE QY1
1.1.2 SUBROUTINE QY2
1.1.3 SUBROUTINE QY3
1.2 SUBROUTINE QX
1.3 SUBROUTINE CHIQ
2. SUBROUTINE DIRECT
3. SUBROUTINE DOSEN
3.1 FUNCTION CV
3.2 SUBROUTINE RVALUE
3.3 SUBROUTINE DOSMIC
MAIN is a short program in which options are selected by the user
to apply to subroutine CONCEN or subroutine DIRECT. CONCEN calculates
and prints out concentrations in air and rates of deposition of radio-
nuclides on ground surfaces from the source term supplied as input.
Subroutine DIRECT may be called by MAIN to bypass CONCEN and to supply
the above values directly as input.
If CONCEN is called by MAIN, the program can then be terminated, or
alternatively, DOSEN will be called. If DIRECT is called by MAIN, DOSEN
is then called.
Subroutine QY (and subroutines QY1, QY2, and QY3 called by QY)
estimates depletion of radionuclide plumes as a result of dry deposition
on ground surfaces. Subroutine QX is used for the same purpose except
that it is used for the special cases in which gravitational fall of
radionuclide particulates is significant.
Subroutine CHIQ calculates and prints a table of x/Q values (the
ratio of actual concentration in air to the release rate) for each
radionuclide in the source term.
-------
8
Subroutine DOSEN, employing concentrations in air and rates of
deposition on ground surfaces calculated in CONCEN or input directly
using DIRECT, calculates environmental concentrations, intake rates by
man through ingestion and inhalation, and radiation doses. Function CV
and subroutine RVALUE are used in the ingestion model of DOSEN.
Subroutine DOSMIC, called by DOSEN, summarizes doses and prints
output tables.
3.2 Atmospheric Dispersion and Deposition
Subroutine CONCEN includes models used for plume rise above the top
of a stack or roof vent through which radionuclides are released, the
atmospheric dispersion model for dilution of radionuclides in an air-
borne plume while being blown downwind, and models describing deposition
processes. Parameter requirements for characterizing the nuclear facility
or the site releasing radionuclides, meteorological data requirements,
and a detailed description of atmospheric dispersion and deposition
models are given below.
3.2.1 Input parameters characterizing the nuclear facility or release site
Input data for CONCEN must include the number of radionuclides (36
maximum) released from the facility, the name of each radionuclide as a
representation with a maximum of eight alphameric characters (such as
opp
RN-222 for Rn) and the annual-average release rate for each radionuclide
in units of curies per year. The physical height of the release and the
effective diameter for an area source must also be entered. For plume
rise calculations based on the momentum of stack gases, the inside
diameter of the stack (meters) and the velocity of the stack gases
(meters per second) must be entered as input. Plume rise calculations
-------
based on buoyancy of hot stack gases requires that the heat release of
the stack in calories per second be entered as input.
3.2.2 Meteorological data
The quality of meteorological data for assessment areas varies from
that of great detail covering many years of observations taken at meteor-
ological towers located near a site to the other extreme of very sparse
information. In some cases, data from sites located some distance away
must be used with modifications based on regional mapping of weather
conditions. In any case, the data must be summarized in the specific
form described below.
First, the annual frequency of wind direction must be determined
for each of 16 compass directions starting at direction 1 for wind
blowing toward due north and proceeding countercloakurise through direction
16. Meteorological data are usually presented for the direction from
which the wind is blowing. The sum of the wind direction frequencies
must equal 1.
Next, the frequency of each Pasquill stability category for each of
the 16 wind directions must be determined. The extent of vertical and
horizontal dispersion of a windblown plume is a function of the stability
of the air. Pasquill (1961) described six atmospheric stability cate-
gories ranging from A (very unstable) to F (very stable). A seventh
category, G (extremely stable), is included in AIRDOS-EPA. The sum of
the frequencies for categories A through 6 will be equal to 1 for
each of the 16 wind directions. Meteorological data are often not
summarized by Pasquill category but instead may be grouped into categories
-------
10
denoted as stable, unstable, and neutral, or may be reported in terms of
solar input or vertical temperature gradients. In such cases, conversion
to the Pasquill system can be accomplished by reference to established
guidelines (Turner, 1969; Slade, 1968).
The average wind speed must be determined for each wind direction
and Pasquill category. Meteorological summaries usually present frequen-
cies for various ranges of wind speeds from which the average can be
derived. The atmospheric dispersion equation in the code has wind speed
in the denominator, however, so a wind speed derived from the average of
the reciprocals of wind speeds for the various ranges is used in AIRDOS-
EPA as discussed in Sect. 3.2.4. A second set of wind speeds (reciprocal-
averaged) must be calculated for each direction and Pasquill category.
The average depth of the atmospheric mixing layer (or lid) for the
area must be included. The lid value, which is usually within the range
500 to 2000 m (Holzworth, 1972), is the distance from the ground to the
bottom of a more stable layer of air lying above less stable air. The
lid restricts the vertical dispersion of an airborne plume after it has
travelled some distance downwind of the source. If a specific lid value
is not available from site data, it may be estimated from contour maps
(Slade, 1968; Holzworth, 1972). The average temperature in the area
(°K) is required input if plume rise resulting from buoyancy of hot
plumes is calculated by the code.
3.2.3 Plume rise
Gases discharged from a stack or roof vent will rise above the
stack as a result of the momentum of the gas or, if the gases are
-------
11
substantially above ambient temperature, because of thermal buoyancy.
This plume rise, Ah, when added to the actual physical height of the
stack, h, results in an important parameter for dispersion calculations,
H, which is referred to as the effective stack height. As a plume is
blown downwind from a stack, its centerline, which starts out at the
actual physical height of the stack, soon reaches an elevation of H,
where it remains unless gravitational settling of particulates produces
a downward tilt to the plume or until meteorological conditions change.
Plume rise calculations are subject to much uncertainty. Many
equations have been proposed for predicting plume rise, but none has
been entirely satisfactory (Turner, 1969). The user can elect, through
an option in the main program, to use either the equation given by Rupp
et al. (1948) to estimate plume rise for momentum dominated plumes, or
to use Briggs1 equations (1969) for hot plumes that rise because of
buoyancy, or to supply his own values for plume rise.
The equation given by Rupp et al. for momentum dominated plumes is
Ah = 1.5 vd/y , . (1)
in which
Ah = plume rise (m),
v = effluent stack gas velocity (m/sec),
d = inside stack diameter (m),
y = wind velocity (m/sec).
The code treats buoyant plume rise according to Briggs' recommendations
in the following way:
-------
12
For stability categories A, B, C, and D, the equation used is
, fi Fl/3 y 2/3
, u I • O r X / o\
Ah = , (2)
where
Ah = plume rise (m),
F = 3.7 x 10"5 QH,
x = distance downwind (m),
y = wind speed (m/sec).
The quantity (L is the heat emission from the stack due to the efflux
of stack gases in calories per second.
Equation (2) is valid to a point where x is approximately equal to
lOh, where the plume levels off. The equation used for values greater
than lOh is
Equation (2) is also used for stable categories E, F, and G to
-1/2
a distance x = 2.4 yS , beyond which the plume is assumed to level
off. For higher values of x, the equation used is
/p\l/3
Ah o 2.9^J , (4)
where S is the stability parameter defined as
in which
o
g = the gravitational acceleration (m/sec ),
T = air temperature (°K),
a
-------
13
z = vertical distance above stack (m),
r = adiabatic lapse rate of atmosphere (0.0098°K/m) .
The value of the vertical temperature gradient, 2T /8z, is positive for
a
stable categories.
Equations for both momentum and buoyancy plume rise contain wind
speed in the denominator, which obviously produces an unrealistic infinite
plume rise for an absolute calm. Very low wind speeds (i.e., a relative
calm) could produce unrealistically high values of plume rise. Inclusion
of relative calms in averaging plume rise over a series of wind-speed
categories can underestimate downwind pollutant concentrations. This is
especially true for real meteorological conditions in which wind speed
fluctuates considerably during downwind plume travel. An added factor
is that the average plume rise is particularly sensitive to wind shear,
dy/dz, at the low wind speeds, which would substantially reduce it from
a value calculated using the wind speed at the actual release height.
The true average wind speed for each Pasquill stability category is used
in the code to estimate plume rise because it is always greater than the
reciprocal-averaged wind speed, and therefore produces the most conservative
(smallest) plume rise values. This procedure does not risk underestimating
the significant contribution of relatively calm periods to downwind
pollutant concentrations which could ensue from direct use of a plume
rise based on each wind-speed category to be applied to dispersion calcula-
tions for that category.
There is, however, no completely satisfactory answer to the plume
rise question which covers all meteorological or assessment conditions.
For this reason, the option is available to compute plume rise by any other
-------
14
equation or under any other assumptions and to include a value in the input
data to be used for each Pasquill atmospheric stability category. The user
may use the Rupp equation with true average wind speeds for population dose
calculations, for instance, but might wish to use even more conservative
values for estimating the highest individual doses in the area to account
for local turbulence created by building wakes. In other instances, roof
vent releases may be subjected to the influence of other structures in the
area so that the user may not wish to account for plume rise at all.
In such cases, input values of zero would be used for plume rise. Negative
values for plume rise can even be used in some cases to account for downwash,
but the effective stack height, of course, should always be maintained above
zero. For estimating concentrations of pollutants from buoyant plumes during
periods of relative stagnancy (wind speed <1 m/sec), one can use Briggs1
(1969) recommended equation for calms (Ah = 5 F1//4 S~3//S) to estimate
specific input values for plume rise.
3.2.4 Plume dispersion
The basic equation used to estimate dispersion in an airborne plume as
it is blown downwind from a stack is the Gaussian plume equation of Pasquill
(1961} as modified by Gifford (1961).
where
X = concentration in air at x meters downwind, y meters crosswind,
and z meters above ground (Ci/m ),
Q = uniform emission rate from the stack (Ci/sec),
-------
15
y = mean wind speed (m/sec),
a = horizontal dispersion coefficient (m),
az = vertical dispersion coefficient (m),
H = effective stack height (physical stack height, h, plus the
plume rise, (Ah) (m),
y = crosswind distance (m),
z = vertical distance (m).
The downwind distance x comes into Eq. (6) through a and a , which
are functions of x as well as the Pasquill atmospheric stability category
applicable during emission from the stack. The code converts x in Eq. (6)
and other plume dispersion equations from units of curies per cubic meter
to units of picocuries per cubic centimeter.
Annual-average meteorological data sets usually include frequencies
for several wind-speed categories for each wind direction and Pasquill
atmospheric stability category. AIRDOS-EPA uses reciprocal-averaged
wind speeds in the atmospheric dispersion equations, which permit
a single calculation to replace separate calculations for each wind-speed
category. This procedure saves much computer running time. The recipro-
cal averaged wind speed yr for each direction and Pasquill category is
defined by the equation
J--£r -
Mr , Mn
in which
f = fraction of time for wind-speed category n,
yn = average wind speed within the wind-speed category n (m/sec).
-------
16
Equation (6) is applied to ground-level concentrations in air at the
center!ine of a plume by setting y = 0 and z = 0, which results in
[1 /H \2~l
•Ky •
(8)
The average ground-level concentration in air over a sector of 22.5°,
Xave> can be approximated by the following expression
*ave = f X > (9)
where f is the integral of the exponential expression exp - if ^-] in
Eq. (6) from a value of y = 0 to y = °° divided by y , the value of y at
the edge of the 22.5° sector, which is the value of the downwind distance,
x, multiplied by the tangent of half of the sector angle. The expression
f . _ - . (10)
ys .
The definite integral in the numerator of Eq. (10) is evaluated as
• (in
Since y& = x tan (11.25°),
6.300836 a
f-
The equation for sector-averaged ground level concentration in air is
therefore
-------
17
- Q I 1 /H x2
x ~ 0.15871 TTXO u exp I" 'I ~
(13)
This method of sector-averaging compresses the plume within the
bounds of each of the sixteen 22.5° sectors for unstable Pasquill atmospheric
stability categories in which horizontal dispersion is great enough to ex-
tend significantly beyond the sector edges. It is not a precise method,
however, because the integration over the y-axis, which is perpendicular
to the downwind direction, x, involves increasing values for x as y is
increased from 0 to °°.
An average lid for the assessment area is provided as part of the
input data. The lid is assumed not to affect the plume until x becomes
equal to 2xL> where XL is the value of x for which az = 0.47 times the
height of the lid (Turner, 1969). For values of x greater than 2xL, vertical
dispersion is restricted and radionuclide concentration in air is assumed
to be uniform from ground to lid.
The average concentration between ground and lid, which is the ground-
level concentration in air for values of x greater than 2x, , may be expressed
by
00
f X dz
*J o
*ave ~ L'
where x is taken from Eq. (6) and L is the lid height. The value of H
in Eq. (6) may be set at zero since xave is not a function of the effective
stack height. The resulting simplified expression
-------
18
00 Q
r expi
Jo Tr0ya2u
/ z2 \
I 2 4T
/ 2 \
P(" ~?~ }dz
\ 2 $)
L
Xaup I > (15)
may be evaluated for constant x and y values (o and a held constant)
by using a definite integral similar to that in Eq. (11). The result is
_ Q / y2 \
x ave = 2.5066 a Ly exp(" ^2 Y
One obtains the sector-averaged concentration at ground level by replacing
the exponential expression containing y by f in Eq. (12):
ave 0.397825 xLy '
It should be noted at this point that for values of the downwind
distance greater than 2xL> dispersion, as expressed in Eq. (17), no longer
can be said to be represented by the Pasquill equation. The model is
simply a uniform distribution within a rectangle of dimensions L and
2x tan (11.25°).
Equations (13) and (17) describe the usual case where radionuclides
are dispersed downwind as gases or as particulates too small in size to be
significantly affected by gravity during plume travel out to 80 to 160
kilometers.
Gravitational settling can be handled in the code, however, by
tilting the plume downward after it has leveled off at a value of H by
subtracting V x/y from H in the plume dispersion equations. Values for
V , the gravitational fall (or settling) velocity in meters per second, are
-------
19
provided as input data for each radionuclide in the source term. The sub-
tracted expression, V x/y, represents the fall of particulates at x meters
downwind. For most cases, V = 0, and the plume centerline remains at an
elevation of H. Subtraction of V x/y from H in Eq. (13) results in the
following equation used for sector-averaged ground-level concentration of
a radionuclide in air where gravitational settling is involved:
0.15871
i / H -
exp — - ' <18>
A problem arises, of course, if the value of V x/y becomes greater
than H because the centerline of the plume would be below ground level.
This problem is solved in the code by a statement which sets the effective
stack height equal to zero for all cases where H - V x/y has a negative
value.
3.2.5 Deposition Processes
Particulates and reactive or soluble gases may deposit on ground or
water surfaces through two distinctly different processes: (1) dry depo-
sition, and (2) scavenging. These are discussed in the following sections,
3.2.5.1 Dry deposition. Dry deposition is the .process by which
particles deposit on grass, leaves, and other types of surfaces by
impingement, electrostatic interactions, or chemical reactions, or by
which gases react chemically with surface components or dissolve in
surface moisture.
The rate of deposition on earth surfaces is proportional to the
ground-level concentration of the radionuclide in air {Slade, 1968),
-------
20
Rd=VdX , (19)
where
Rd = surface deposition rate (pCi/cm -sec),
•5
X = ground-level concentration in air (pCi/cm ),
Vd = deposition velocity (cm/sec).
It should be stressed here that Vrf is merely a proportionality constant
even though it has units of velocity. Values of Vd must be obtained from
field studies and wind tunnel experiments in which the ratio Rd/x can be
reliably determined. Care should be taken in selecting values for Vd to
be sure that the values represent the total deposited radionuclide per
unit of ground area and not just the quantity deposited on vegetation, which
is often reported in the literature (Hoffman, 1977; Miller et al., 1978).
If a radionuclide plume is treated as being tilted downward by gravitational
settling, the deposition velocity for the radionuclide should be at
least as great as its gravitational fall (or settling) velocity.
3.2.5.2 Scavenging. Scavenging of radionuclides in a plume is the
process through which rain or snow removes particles or dissolves gases
and deposits them on ground or water. The fraction of particles or
soluble gases removed by scavenging from a vertical column of air per
unit time during rain or snow is $, the scavenging coefficient, which
has units of second . The rate of deposition from scavenging is
R = $X L , (20)
where
R = surface deposition rate (pCi/cm -sec),
$ = scavenging coefficient (sec" ),
-------
21
= average concentration in vertical column up to lid height
(pCi/cm3),
L = lid height (cm).
The scavenging coefficient used for each radionuclide is the sum of
scavenging coefficients for washout, rainout, and snowout for particles
or the coefficient for dissolving gases in rain drops. The average
concentration in the vertical column, xave» is computed through use of
Eq. (17). The scavenging coefficient is averaged over an entire year,
which includes all periods during which rain or snow does not fall. The
treatment of scavenging can be described, therefore, as a continuous
removal of a fraction of the plume per second over an entire year.
The value for the total ground deposition rate, R., computed in
subroutine CONCEN for each environmental location, is the sum of Rd and
v
3.2.6 Depletion of airborne plumes
Deposition on ground surfaces by dry processes, scavenging, and
radioactive decay deplete the airborne plume as it is blown downwind
from the release point. Depletion is taken into account by substituting
a reduced release rate Q1 for the original release rate designated by Q
in Eq. (13) and (18) for each downwind distance x (Slade, 1968). For
scavenging, the depletion fraction Q'/Q for each x value is the simple
exponential expression
The value of t is the time in seconds that is required for the plume to
reach a point x meters downwind.
-------
22
The depletion fraction takes a much more complex form for dry depo
sition. Derivation of this depletion fraction (Van der Hoven, 1968)
starts with Eq. (6), where z is set equal to zero for ground-level
concentrations and the quantity V x/y is subtracted from H for a tilted
plume:
(H - V x/y)2
2oz
The rate of deposition on the ground is
w(x, y) = Vdx(x, y, 0) . (23)
Depletion per unit distance downwind is
|^= - r°w(x, y) dy . (24)
dX •'-co
If we let A represent the exponential expression containing H and recognize
symmetry, we now have
Q'VA 2
dy • (25)
The definite integral of Eq. (25) can be evaluated as
3CL1- /2\1/2 Q'VdA (26)
3x ~\
Then, by integrating
-------
23
/ ' \ /, \1 /2 >j< V A
In &-\ = -(!) 7 b^y" dx * (27)
After substituting for A, the depletion fraction can then be represented
by
{-
(H - V
exp
1/2
(28)
for any value of downwind distance x.
The integral expression must be evaluated numerically. Values for
the vertical dispersion coefficient o are expressed as functions of x
in the form x /F where D and F are constants with different values -for
each Pasquill atmospheric stability category.
Values for the quotient Q'/Q (the depletion fraction) for cases in
which V = 0 are obtained from Subroutine QY, which is called from
CONCEN. Subroutine QY obtains depletion fractions for the conditions Vd
= 0.01 m/sec and y = 1 m/sec for each Pasquill stability category from
the data storage subroutines QY1 , QY2, and QY3. These storage subroutines
contain values for release heights of 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9,
10, 12.5, 15, 17.5, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 120,
140, 160, 180, 200, 240, 260, 300, and 400 m and for the following
downwind distances in meters: 35, 65, 100, 150, 200, 300, 400, 500,
650, 800, 1,000, 1,500, 2,000, 4,000, 7,000, 10,000, 25,000, 60,000,
90,000, and 200,000.
-------
24
The stored depletion fractions were initially calculated numerically
by use of a Simpson's rule computer subroutine. Linear interpolations
by QY produce a fraction for the required x value, release height, and
Pasquill category for Vd = 0.01 m/sec and y = 1 m/sec. Then, QY converts
value to the appropriate value for the actual V. and y by use of
the equation,
100 V .
(29)
in which subscript 2 refers to the desired value and subscript 1 refers
to the value for Vd = 0.01 m/sec and y = 1 m/sec.
Calculation of depletion fractions by QY through use of stored
depletion fractions is a very fast computer process as compared with
numerical integration, which would be required otherwise. If V , the
gravitational fal? velocity, is not zero, however, QY cannot be used.
In this case, a Simpson's rule subroutine using numerical integration
(Subroutine,QX) is called by CONCEN to evaluate the depletion fractions.
For downwind distances greater than 2x, where Eq. (16) applies to
the ground-level concentration in air, the depletion per unit distance
downwind is
oo
331 „ _ r V"Q'
3x / 2.5066 o Ly
Integration is accomplished by using the definite integral
(30)
-------
25
a
/
(31)
where a = l/(/2 a ). The resulting equation
J
V.
d In Q- = - dx , (32)
when integrated from 2xL to x produces the relationship
Qx f Vd(x-2x.n
Qr-=exp - -*-,_ M , (33)
»O w I M I
2xL L J
in
in which Q' and Qi are the reduced release rates at distances x and
x txL
2xL, respectively, for x values greater than 2x.. The depletion frac-
tion at 2x. , Ql /Q, obtained from Eq. (28) is multiplied by Q'/QAV i
L CAi X <-Xi
Eq. (33) to give the depletion fraction at x, Q'/Q.
A
Use of a reduced release rate to estimate depletion by dry pro-
cesses, referred to as the source depletion model, is a descriptively
unrealistic treatment because it removes material from the entire
vertical column, while, in fact, removal occurs only at the bottom of a
plume. Proposed surface depletion models (Markee, 1967; Horst, 1977)
have not come into general use, however, because of their computational
complexities and because concentrations in air calculated from these
models do not differ greatly from those calculated using source de-
pletion for elevated releases and moderate deposition strength (Horst,
1977; Miller et a!., 1978). The source depletion model as implemented
-------
26
in AIRDOS-EPA meets the important requirements of maintaining material
balance as a plume is blown downwind of a source.
The depletion fraction for radioactive decay is
f-.~v 04)
in which X is the radioactive decay constant and t is the time re-
quired for plume travel. The decay constant used in CONCEN is referred
to as the "effective decay constant" since it is not the true radio-
logical decay constant for a radionuclide X^ in all cases. For example, if
a radionuclide is a short-lived daughter in equilibrium with a longer-
lived parent, the effective decay constant for the daughter would be the
true radiological decay constant of its parent.
The overall depletion fraction used in the code is the product of
the depletion fractions for dry deposition, scavenging, and radioactive
decay.
The atmospheric dispersion equations use the reciprocal-averaged
wind speed y^ but neither y,, nor the true average wind speed u. can
r r a
adequately be used to calculate reduced release rates to account for
radiological decay.and scavenging losses because averaging of exponential
terms is required. An approximate calculational method used in AIRDOS-
EPA for this purpose involves establishing three wind speeds (1 m/sec,
y_ m/sec, and 6 m/sec) to simulate the actual wind-speed spectrum for
a
each specific wind direction and Pasquill category. The wind speeds 1
and 6 m/sec were chosen because they approximate the upper and lower
bounds in most meteorological data sets.
If f,, f2> and f3 are designated as the time fractions for wind
speeds 1, y , and 6 m/sec, respectively, then
-------
27
f, + u f, + ef., =
1 a 2 3
and
f-1 + f2 + f3 = 1 . (37)
Solving the above three simultaneous equations results in
6-r~-y-
f? = r—n—r- • (38)
(w, - D(l - f,)
f3 --*—<, - ~ - (39)
and
fl = 1 - f2 - f3 • (40)
The depletion fraction to account for radioactive decay is then
approximated by
exp (-Xrx) + f2 exp[-Ar(^) J + f3 exp[-Xr(|)
(41)
in which x is the downwind distance in meters and X is the decay constant
r
in units of seconds" . Similarly, the depletion fraction accounting for
scavenging losses is
f, exp (-#x) + f2 exp-+ f3 exp -«f - (42)
The overall depletion fraction is
-------
28
exp (-«x) + f exp -«+ f
in which - is the depletion fraction for dry deposition.
\Q /dry
3.2.7 Values of parameters used in dispersion equations
The values of the horizontal and vertical dispersion coefficients,
a and a (Table 1), used for dispersion calculations in CONCEN and to
calculate depletion fractions in QY and QX are those recommended by G. A.
Briggs of the Atmospheric Turbulence and Diffusion Laboratory at Oak Ridge,
Tennessee (Gifford, 1976). These values, which are different functions of
the downwind distance x for each of the Pasquill stability categories A
through F, are used in the code as the functions a = x /C and a_, = x /F
to facilitate integrations over x. The parameters A, C, D, and F for
each Pasquill atmospheric stability category and specific ranges of x are
stored in a data statement. Pasquill category G (extremely stable) was
added to the code. Values for a and a for category G were derived by
•J
subtracting half of the difference between values for categories E and F
from the values for F for each downwind distance.
Reciprocal -averaged wind speeds for each wind direction and Pasquill
category are used for y values in the dispersion equations instead of the
true average values because y is in the denominator of the equations. The
process of averaging over a series of ranges of wind speeds actually in-
volves averaging a series of terms containing the factors I/PI,
etc.
-------
29
Table 1. Formulas recommended by Briggsa for a and
b ^
o for open-country conditions
Pasquill
type
ay
(m)
a
(m)
A
B
C
D
E
F
0.22 x (1 + 0.0001 x)"1/2
0.16 x (1 + 0.0001 x)"1/2
0.11 x (1 + 0.0001 x)"1/2
0.08 x (1 + 0.0001 x)"1/2
0.06 x (1 + 0.0001 x)"1/2
0.04 x (1 + 0.0001 x)"1/2
0.20 x
0.12 x
0.08 x (1 + 0.0002 x)"1/2
0.06 x (1 + 0.0015 x)"1/2
0.03 x (1 + 0.0003 x)"1
0.016 x (1 + 0.0003 x)
-1
a.
G. A. Briggs, Air Resources Atmospheric Turbulence and Diffusion
Laboratory National Oceanic and Atmospheric Administration, Oak Ridge,
Tennessee.
Values of x are downwind distances in meters.
-------
30
3.2.8 Y/Q tabulations
The value x/Q is the actual concentration of the radionuclide in air
at ground level divided by the release rate of the radionuclide. Subroutine
CHIQ called from CONCEN calculates x/Q values and prints a table for each
radionuclide listing x/Q values in seconds per cubic meter for each of the 16
compass directions for the specific downwind distances (from 1 to 20)
supplied as input. The x/Q values are not calculated if the assessment
area is a square grid.
3.2.9 Area sources
At the option of the user, the source can be a finite area with the
reference point for the grid system at its centroid. Radionuclides are assumed
to be released uniformly throughout the area. The method used to estimate
environmental concentrations resulting from area releases is a modification
by Christopher B. Nelson (EPA) of the method described by Mills and Reeves
(1973) and implemented by Culkowski and Patterson (1976).
The method consists basically of transforming the original area
source into an annular segment with the same area. This transformation
is dependent on the distance between the centroid of the area source and
the receptor. At large distances the transformed area source approaches
a point source at the origin while at distances very close to the centroid
it becomes a circular source centered at the receptor.
The principle of reciprocity is used to calculate the effective x/Q-
That is, the problem is equivalent to interchanging source and receptor and
calculating the mean x/Q from a point source to one or more sector segments
according to the angular width of the transformed source. The mean value
of x/Q for eacn sector segment is estimated by calculating x/Q at the
-------
31
distance which would provide the exact value of the mean if the variation
in x/Q were proportional to r for distances from the point source to
locations within the sector segment. The x/Q for the entire transformed
source is the sum of the x/Q values for each sector weighted by the por-
tion of the total annular source contained in that sector.
Point-source x/Q values for a typical annual-average meteorology
were found to be nearly identical to those for a circular area source
with a diameter of 718 m at distances greater than 1600 m from its
center. For this reason, the code includes a statement providing default
to point-source treatment if the ratio of downwind distance to source
diameter exceeds 2.5.
Any uncertainties in the area-source treatment stemming from the
assumption that x/Q is proportional to x or other assumptions in the
model are applicable only to locations near the edge of an area source.
Comparisons were made of calculated concentrations in air at ground level
with values calculated by AREAS (Moore, 1978), an area-source code based
on entirely different principles, which was developed to evaluate widely
dispersed pollutant sources within a 20 by 20 square grid system. A 718-m
diameter circular area was used. Agreement was within 10% at distances
greater than 600 m from the edge of the area source. The AREAS values were
20% higher at 330 m and 90% higher at 100 m from the edge.
The differences found within a few hundred meters from the edge of
the source may not be relevant, however, because, the AREAS values repre-
sent averages over a square grid. The average can differ substantially
from the actual value for a receptor point located in a region of rapidly
changing x/Q- Nevertheless, caution should be exercised when applying the
-------
32
area-source treatment where the ratio of distance from the center to the
diameter of a source is less than ^1.3.
3.2.10 Limitations of the dispersion treatment
The AIRDOS-EPA treatment of dispersion uses the Gaussian plume
equation. This equation is an empirical formula which is based on an
analytical solution to the diffusion equation under the restrictive
assumptions of constant wind speed, no wind shear, flat topography,
Fickian diffusion, and no chemical or physical interactions of plume com-
ponents during plume travel. The parameters a and o are not defined
explicitly by the mathematical assumptions of the model. They must be
determined empirically. The Gaussian plume equation has shown considerable
success under ideal field test conditions. However, dispersion in plumes
is increased by surface roughness caused by buildings, hills, and other
environmental factors. Thermal sources present in urban areas also increase
dispersion. The meteorological data employed in an assessment near a
source for which these factors are significant should reflect this increased
atmospheric instability.
There is a lower limit of applicability of the Pasquill equation with
respect to wind speed. Dispersion is treated only in crosswind and vertical
directions and is ignored in the downwind direction. Consequently, x
unrealistically approaches °° as wind speed approaches zero. The contri-
bution of periods of relative calm, which significantly affect average
pollutant concentrations, may therefore be overestimated. Wind speeds much
less than 1 m/sec should probably not be used in dispersion estimates.
The ideal plume described by the Pasquill equation often does not
exist under real atmospheric conditions. Instantaneous changes in wind
-------
33
direction, and updrafts and downdrafts produced by terrain features and
other meteorological changes produce significant deviations from the ideal
plume. Many of these deviations average out, however, when the equation
is used to estimate average concentrations of pollutants released continu-
ously from a source.
The dispersion treatment in AIRDOS-EPA assumes a continuous plume
extending indefinitely outward from the source in a single direction
with a single wind speed and atmospheric stability. Fractional contribu-
tions to downwind concentrations in each compass direction are based on
frequencies of wind speed and stability category. Realistically, however,
wind speed and direction often fluctuate almost continuously, and the
atmospheric stability will ultimately change as a plume is blown downwind.
also, deviations from site-specific annual-average meteorology can be
expected at locations beyond a few miles from the plant site.
These limiting factors as applied to dose assessments can be resolved
into two components: (1) factors affecting estimation of the highest
individual dose in the area, and (2) factors affecting population dose
estimates. The highest individual doses are usually close to the release
point — at the plant boundary at distances from the source of perhaps 800
to 1000 m or less for low-level releases or at distances of only a few
thousand meters for elevated releases. The Gaussian model as applied to
annual-average meteorology using sector averaging is generally regarded
as applicable over these short distances. Uncertainties arise mainly
because of possible air turbulence or downdrafts created by buildings
and other structures in the immediate plant area. Correction for building
effects can be accomplished in a conservative manner by reducing the
effective stack height.
-------
34
Population dose assessments depend largely on estimated concentra-
tions at greater distances. Uncertainties arising specifically from the
use of the Pasquill equation are eliminated at distances far enough
downwind that vertical dispersion is restricted by the lid. At such
distances sector-averaged dispersion is simply calculated as propor-
tional to the area of a rectangle with dimensions of the lid height
and the cross-section distance. The most serious question here concerns
deviations from site-specific meteorology, particularly with respect to
frequencies of wind direction. For a relatively uniform population
distribution, population dose estimates should be fairly reliable to the
extent that atmospheric dispersion is involved. On the other hand, if a
heavily populated area lies far out from the source, but within the assess-
ment area and contributes substantially to the calculated population
dose, a correction may have to be made for changes in frequencies of
wind direction.
Lid heights are not known precisely, and they vary greatly from
season to season and even change greatly from daylight to dark and vice
versa when solar input changes. Uncertainties in lid values can result
in dose uncertainties for those downwind distances great enough that
vertical dispersion is restricted by the lid. This would not usually
affect areas close to the plant where the highest individual dose will be
received but may affect population dose to some extent. The treatment in
the code would seem to overestimate concentrations at all distances some-
what, however, by not considering lid penetration. This effect can occur
at certain times, such as in early morning, when a low lid lying just above
the top of a stack is penetrated by the stack gases. Pollutants can be
-------
35
blown out of the area under these conditions without dispersing downward
at all. Conditions for lid penetration are infrequent at most sites.
Ignoring the effect, therefore, probably does not greatly affect dose
estimates, but it does impart a small degree of conservatism to the
calculations.
3.2.11 Direct input of concentrations in air and rates of deposition on
ground surfaces (subroutine DIRECT)
Environmental concentrations, intake rates by man, and radiation doses
can be calculated in AIRDOS-EPA from concentrations in air and ground
deposition rates provided directly as input to the code by specifying
OPTION (1) = 2 in MAIN. Subroutine DIRECT is called by this option, which
bypasses CONCEN, the atmospheric dispersion subroutine. Data required
for DIRECT are (1) integers specifying the lower and upper bounds of the
assessment area; (2) SQSD, as also required in CONCEN; (3) the specific
downwind distances (IDIST values) for the circular option; (4) S
opo
(SEQWL), the assumed fraction of equilibrium for Rn short-life progeny
used for working level (WL) calculations; (5) number of radionuclides
(NNUCS); and (6) a data set for each radionuclide consisting of the name
of the radionuclide, its deposition velocity, and its scavenging coefficient,
followed by 400 air concentrations in a 20 by 20 array and 400 ground
deposition rates in the same format. Tables of the input data are
printed listing air concentrations, and the dry, wet, and total deposition
rates. These data are used in DOSEN to calculate doses, environmental
concentrations, and rates of intake by man.
-------
36
3.3 Calculations of Radiation Doses, Environmental
Concentrations, and Intake Rates by Man
Subroutine DOSEN, called from the main program, estimates doses,
concentrations, and intake rates at specified environmental locations
through the use of ground-level concentrations in air and ground deposi-
tion rates computed in Subroutine CONCEN or provided directly as input.
Doses are estimated for 11 organs including total body. Modes of exposure
described below are (1) immersion in air, (2) exposure to ground surfaces
contaminated by deposited radionuclides, (3) immersion in water such as by
swimming in a backyard pool, (4) inhalation of air containing radionuclides,
and (5) ingestion of food produced on contaminated land.
3.3.1 Air immersion doses
The equation used for estimating external doses from immersion in
air containing gamma emitting radionuclides is
DimT,= (1.0xlO-6)(8760)xCimm , (44)
in which
D. = air immersion dose (rem/year),
X = ground-level concentration of the radionuclide in air
(pCi/cm3),
f/imm = dose conversion factor for immersion in an infinite cloud
o
(rems-cm /yCi hr),
1.0 x 10~6 » yCi/pCi,
8760 = hr/year.
The code receives a skin dose conversion factor as input data for
each radionuclide for infinite cloud exposure. This skin dose conversion
-------
37
factor is multiplied in the code by an external dose correction factor
(FROG) for total body and each reference organ, also supplied as input
data for each radionuclide.
Equation (44) applies to environmental locations at which the airborne
plume'has essentially reached ground level. It can, however, overestimate
doses near a low-level release because of the small vertical spread of the
plume under these conditions. On the other hand, Eq. (44) can underestimate
dose for overhead plumes at locations close to the stack where x may be
very low, but where the individual may be irradiated from above. A case
in point would be a release of energetic gamma emitters from a tall
stack of a plant with a close-in plant boundary. For such a case, a
separate calculation should be made for dose from the overhead plume,
and this dose should be added to the immersion dose calculated by Eq.
(44).
3.3.2 Surface exposure doses
Dose due to gamma emissions from radionuclides deposited on ground
surfaces is estimated by
1 - exp(-XTt)
-6
Dsurf ' (1-0 x 10-)(8760)Rt - W°°)Csurf ' (45)
XT
where
Dsurf = (*ose from surface exposure (rems/year),
2
Rt = surface deposition rate (pCi/cm -sec),
XT = radioactive decay constant Xf + environmental decay
constant (day ),
t = time allotted for surface buildup (days),
-------
38
C f = dose conversion factor for surface exposure to an
2
infinite plane at a point 1 m above ground (rems-cm /
i hr),
1.0 x 10"6 = uCi/pCi,
8760 = hr/year,
86400 = sec/day,
Input data includes a skin surface dose conversion factor which is
multiplied in the AIRDOS-EPA code by external dose correction factors (FROG)
for total body and reference organs.
The expression in Eq. (45),
1 - exp(-XTt)
Rt - (86400) , (46)
XT
represents the surface concentration in picocuries per square centimeter
after a buildup time of t days. There is very little available information
on environmental removal rates from ground surfaces, so a value of zero
is usually used for the environmental decay constant. The value of AT
then would be simply the radiological decay constant.
3.3.3 Water immersion doses
Doses resulting from immersion in water subjected to deposition of
radionuclides from the atmosphere are estimated similarly to those
resulting from air immersion. The ultimate concentration of a radionuclide
in a body of water is inversely proportional to its depth, so swimming
in a shallow body of water such as a backyard swimming pool is taken as
representing the most significant exposure pathway for water immersion.
Water immersion doses are included in DOSEN for completeness but normally
-------
39
do not contribute significantly to total dose even though assumed parameters
for assessments are usually very conservative.
The equation is
f. R. 1 - exp(-XTt)
D,,^mm = (1.0 x 10~D) (8760) -r- . — (86400)C. , (47)
wimm '* d AT wimrn
in which
D . = water immersion dose (rem/year),
Rt = surface deposition rate (pCi/cm -sec),
d = depth of water (cm),
XT = radioactive decay constant X + environmental decay constant
for water X (day ),
W
t = time allotted for buildup in water (days),
dose conversion factor for immersion in a
of infinite dimensions (rems-cm /yCi-hr),
C.m = dose conversion factor for immersion in a body of water
w iniin
1.0 x 10~6 = yCi/pCi,
8760 = hr/year,
86400 = sec/day .
3.3.4 Inhalation doses
The following equation is used to estimate inhalation dose at each
environmental location:
Dinh = (1'° x 10~6M8760) X BC. . (48)
where
frjnh - inhalation dose (rem/year),
X = ground-level concentration of the radionuclide in air
(PCi/cm3),
-------
40
o
B = breathing rate (cm /hr),
Cinh = close convers''ori factor for inhalation (rem/yCi),
1.0 x 10"6 = yCi/pCi,
8760 = hr/year.
The C-nh values are dose commitment resulting from the initial intake
of 1 yCi for the radionuclide. These dose conversion factors should in-
clude contributions of radioactive daughters growing in after the intake
of the parent nuclide.
3.3.5 Ingestlon doses
Doses to the various organs from the ingestion of radionuclides
other than H (tritium) and C are calculated from radionuclide concen-
trations in food and annual consumption rates for individuals or
populations. Radionuclide concentrations in meat, milk, and vegetables
are calculated through implementation of models described in U.S. Nuclear
Regulatory Commission (NRC) Regulatory Guide 1.109 (1977). The models
are described below by Pleasant (1979).
3.3.5.1 Concentrations in and on vegetation. Radioactive material
concentrates in vegetation as a result of deposition onto the plant
foliage and from uptake of activity initially deposited on the ground.
The following equation is used for estimating the concentration
cV(r, 6) in picocuries per kilogram of nuclide i in and on vegetation at
the location (r, 6):
v (R[l - exp(-AE.t )] B. [1 - exp(-A.tbm
C.v(r, 6) = d.(r, 9) 7_I_iLJ_ + _iv_ LJL_jexP(-A.th),
(49)
-------
41
where
d. (r, 8) = the deposition rate of radionuclide i onto ground at
location (r, 9), in pCi/m2-hr (d^r, 9) = 3.6 x 107 Rfc);
R - the fraction of deposited activity retained on edible
portions of crops, dimensionless;
A. = the radioactive decay constant of nuclide i, in hr~ ;
AE- = the effective removal rate constant for radionuclide i
from crops, in hr"1, where A£i = A.. + AW, and AW is the
removal rate constant for physical loss by weathering;
t = the time period that crops are exposed to contamination
during the growing season, in hr;
Y = the agricultural productivity (yield), of the edible
2
portion of vegetation in kg/m ;
B. = the concentration factor for uptake of radionuclide i from
soil by edible parts of crops, in pCi/kg per pCi/kg dry
soil;
t. = the period of long-term buildup for activity in soil, in hr;
P = the effective density of the top 15 cm of soil, in kg(dry soil)/
t, = a holdup time that represents the time interval between
harvest and consumption of the vegetation, in hr.
w
In the AIRDOS-EPA code, when Eq. (49) is used to calculate C.. for pasture
grasses, Y , and B. , values based on dry weight, are used for Y and
Biy. When the equation is used for fresh produce ingested by man, fresh
weight values Y and B are used. In addition a washing factor DD1 is
-------
42
multiplied by the first term of Eq. (49) to account for removal of surface-
adhered radionuclides during processing of food consumed by man.
The above model has several conceptual limitations. The model may
overestimate radionuclide concentrations in vegetation via root uptake
because the model assumes that radiological decay is the only removal
process from the soil. However, harvesting of vegetable crops, grazing of
pasture grasses, erosion of soil, and leaching of radionuclides in
percolating water may also remove radionuclides from the root zone soil.
The model may also underestimate radionuclide concentrations in vegetation
because radionuclides initially deposited on vegetation surfaces may be
incorporated directly into the plant matrix and not be completely removed
by environmental processes. Additionally, the model does not attempt to
simulate daughter buildup in the vegetation. A method to account for
daughter buildup in the AIRDOS-EPA code will be discussed elsewhere in
this report.
3.3.5.2 Concentrations in milk. The concentration of radionuclide i
in milk depends upon the amount and contamination level of the feed con-
sumed by the animal. The concentration of radionuclide i in the animal's
feed is calculated by use of the equation
cf(r. e> = VsC1(r* 8) + (1 - Vs)Ci(r> 9>'
where
C.j(r, 6} = the concentration of radionuclide i in the animal's feed,
in pCi/kg;
C^(r, 6) = the concentration of radionuclide i on pasture grass
[calculated using Eq. (49) with th = 0], in pCi/kg;
-------
43
C*(r, 9) = the concentration of radionuclide i in stored feeds [calculated
using Eq. (49) with th = 2160 hr {90 days)], in pCi/kg;
f = the fraction of the year that animals graze on pasture,
f£ = the fraction of daily feed that is pasture grass when the
animals graze on pasture.
Using the value of C-(r, 6) calculated by use of this equation, the concen-
tration of radionuclide i in milk is estimated as
Cf(r. 6) = FmC^(r, 6)QF exp(-X1tf) , (51)
where
M
, 6) = the concentration in milk of nuclide i, in pCi/liter;
.j
y
C.(r, 9) = the concentration of radionuclide i in the animal's feed,
in pCi/kg;
F = the average fraction of the animal's daily intake of
radionuclide i which appears in each liter of milk, in
days/liter;
Qp = the amount of feed consumed by the animal per day, in kg/day;
tf = the average transport time of the activity from the feed
into the milk and to the receptor;
Xi = the radiological decay constant of nuclide i, in days'1.
3.3.5.3 Concentrations in meat. The radionuclide concentration in
meat depends upon the amount and contamination level of the feed consumed
by the animal, as in the milk pathway. Using the value of C^r, 9) as
calculated in Eq. (50), the radionuclide concentration in meat is estimated
as
C-(r, e) = FfcV(r, e)QF exp(-X.ts) . (52)
-------
44
where
CUr, 6) = the concentration of nuclide i in animal flesh, in pd'/kg;
Ff = the fraction of the animal's daily intake of nuclide i
which appears in each kilogram of flesh, in days/kg;
cV(r, 6) = the concentration of radionuclide i in the animal's feed,
in pCi/kg;
QF = the amount of feed consumed by the animal per day, in kg/day;
A. = the radiological decay constant of nuclide i, in days" ;
t = the average time (days) from slaughter to consumption.
For concentration in beef, it is assumed that beef cattle are on open
pasture for the same grazing periods as given for milk cattle.
3.3.5.4 Calculation of annual organ doses. The following equation
is used to calculate the annual dose committed to organ j of an individual
3 14
resulting from ingestion of all radionuclides other than H and C in
produce, milk, meat, and leafy vegetables.
Dj(r. 6) = £DFI...[UVfgCy(r, 9} + UMC^(r, 6) + UFc!j(r, 9) + iff^r, 9)] , (53
where
D.(r, 9) = the annual dose committed to organ j of an individual
J
from dietary intake of atmospherically released radionuclides
DPI.. = the dose conversion factor for the ingestion of nuclide i
• J
for organ j in millirem/pCi;
UV, UM, UF» UL = the ingestion rates of produce (nonleafy vegetables,
fruit, and grains), milk, meat, and leafy vegetables,
respectively, for individuals;
f_ = the fraction of produce ingested grown in garden of
interest;
-------
45
f. = the fraction of leafy vegetables grown in garden of
interest.
The terms in Eq. (53) containing cV(r, e). c"J(r ,6), C^(r, 9), and C^(r, 6)
represent the dose to organ j from ingestion of produce, milk, meat, and
leafy vegetables, respectively. Equations (51) and (52) are used to cal-
culate C^(r, 6) and cij(r, e), respectively. Equation (49) is used to
calculate C^r, 6); the values used for the parameters te, Yy, and th are
those appropriate for produce consumed by man. Similarly Eq. (49) is used
to calculate c|r(r, 6) with parameter values tg, Yy, and th chosen so as to
be appropriate for leafy vegetables consumed by man.
Dose conversion factors for dose commitments resulting from an
annual intake of a radionuclide are provided as input to the code in units of
rem per microcurie and are converted to units of millirem per picocurie for
use in Eq. (53). The dose conversion factors should include contributions
by both the radionuclides and its daughters growing in after intake.
Doses resulting from ingestion of produce and leafy vegetables are combined
in DOSEN and designated simply as vegetable doses.
Input data required for calculation of ingestion doses include number
of meat producing animals, number of dairy cattle, and area (square meters)
of vegetable crop production for each environmental location. The area
of land associated with an environmental location is the grid area if
the 20 by 20 square grid option is used. For the circular option, the
area is that of the portion of a 22.5° sector having the environmental
location at its central point. Population data for each location are
included for population dose calculations.
-------
46
Various possible assumptions with regard to food sources can be
handled within the code. For each of the three types of food, a number
is included in the input data that specifies the ratio
A/(A + B) (54)
in which
A = quantity ingested which is produced at the individual's
environmental location, and
B = quantity ingested whose source represents an average produced
over the assessment area.
Another number for each food type specifies the minimum fraction the
individual ingests that comes from outside the assessment area altogether
and that is assumed to contain no radionuclides. The fraction imported
for each type of food may be calculated by the code and can be greater
than this minimum value if needed to meet the nutritional requirements
for the population. The user can exercise an option, however, to fix the
minimum value so that it will not be exceeded under any conditions.
If it were desired not to consider ingestion at all, each of the
three minimum fractions imported could be set at 1.0. For calculations
of the maximum individual dose in the area, it is usually desirable to
set and fix the minimum fraction to be imported at zero. If the ratios
defined in Eq. (54) each have values of 1.0, complete availability of
each of the three food types produced at the individual's specific
locatton is assumed in the code regardless of input values used for
numbers of meat producing animals and dairy cattle or area of vegetable
crop production.
-------
47
3.3.6 Calculations for special cases
If a radionuclide interacts with environmental components in a unique
fashion, it must be treated as a special case. Tritium ( H) and C are
given special treatment in Subroutine DOSEN because the stable forms of
these elements constitute significant fractions of the elemental composi-
tion of the human body and man's food and drink. Transport processes
within soil, plants, cattle, and man which apply to trace quantities of
radionuclides do not necessarily apply to cases where the corresponding
stable elements are present in such quantities that saturation effects are
significant.
If tritium (T) is released to the atmosphere as HT or T2, atoms of
T may exchange with hydrogen atoms in water molecules in the air, and we.
may wish to treat the plume as though it contained HTO initially. The
tritium may then be assumed to follow water almost precisely through the
environment. For this reason doses from drinking water are included for
tritium. Rather than attempting to relate the doses to the ground deposi-
tion rate, it is assumed that doses from ingestion of food and drinking
water at an environmental location are proportional to tritium concentra-
tion in the air (Killough and McKay, 1976).
The total ingestion dose from tritium if the source of all of an
individual's food and drinking water is assumed to be at his specific
environmental location is
Dt = Cf* + Cwx
where
D = total ingestion dose (rem/year),
-------
48
o
C-r = dose conversion factor for food (rem-cm /pCi-year),
C = dose conversion factor for drinking water (rem-cm /pCi-year),
w
X = ground-level concentration of tritium in air at an environ-
o
mental location (pCi/cm ).
For the purpose of summarizing in the code the food ingestion path-
ways for all radionuclides in a source term, the tritium ingestion dose
from food is artificially broken down into ingestion doses from vegetables
(D ), meat (DY), and milk (D ). The total food ingestion dose from
tritium (Dt) is equal to the sum of Dy, Db, and DC- The equations used
in the code are
Dv = 0.505 Cf(fylx + fv2Xv) . (56)
Db = 0.185 Cf(fMx + fb2Xb) . (57)
Dc = 0.310 Cf(fclx + fc2Xc) » (58)
where
D , Dh, and D = tritium food ingestion dose from vegetables, meat,
V D C
and milk, respectively (rem/year),
X = average ground-level concentration of tritium in air
over the assessment area weighted by quantities of
vegetables produced as a function of location,
Xb = as above for xv except applied to meat,
X = as above for xv except applied to milk,
f , = fraction of vegetable intake which is produced at
individual's environmental location,
f - = fraction of vegetable intake whose source represents
an average produced over the assessment area,
-------
49
f^l = as above for f ^ except applied to meat,
f^P = as above for f « except applied to meat,
fcl = as above for f , except applied to milk,
f 2 = as above for f 2 except applied to milk,
0.505 = the fraction of Cf for vegetable ingestion,
0.185 = the fraction of C- for meat ingestion,
0.310 = the fraction of Cr for milk ingestion.
-5
The total-body dose conversion factor for ingestion is 8.3 x 10
rem per microcurie (Killough et al., 1978). This number is used to derive
the value of Cf, based on the specific activity of tritium in atmospheric
moisture with an average specific humidity of 8 grams of h^O per cubic meter
of air (Killough and McKay, 1976). If tritium in food is in equilibrium with
atmospheric tritium and man consumes 1638 g of water daily in his food,
C. is 6.18 rem-cm /pCi-year. The C value for an assumed daily drinking
T W
3
water intake of 1512 g is 5.70 rem-cm /pCi-year. This value should be
used, however, only if the source of each individual's drinking water is
assumed to be at his specific environmental location. For all other
cases, C should be reduced to account for dilution by distant sources.
W
The code breaks down the food ingestion dose from tritium into percentage
contributions of 50.5% from vegetables, 18.5% from meat, and 31.0% from
milk. The percentages are based on approximate water contents of foods:
82.4% for vegetables, 62.3% for meat, 87.5% for milk (Moore, 1977), for
daily intakes of 0.532 kg of vegetables, 0.258 kg of meat, and 0.307 kg
of milk (Rupp, 1979).
Tritium is the only radionuclide in a source term in which the
total dose estimated to derive from vegetables, meat, and milk may not
-------
50
equal the total ingestion dose. The difference is the dose from drink-
ing water.
Tritium doses via inhalation of air and skin absorption are estimated
by the code and added to the dose estimated to be received via ingestion.
The dose conversion factor for inhalation of air containing tritium in-
cludes a contribution for skin absorption from air.
If C is released in the form of CCU, it will mix with atmospheric
COp, and become available for plant photosynthesis. Cattle grazing on
pasture will take in C in grass, and then man will receive it in milk
and beef. Factors in a data statement are used in the code to multiply
by the concentration of C in air to obtain an ingestion dose for each
reference organ. These dose conversion factors, listed in Table 2, are
based on specific activity calculations for C in body tissues in
equilibrium with atmospheric C (Killough and Rohwer, 1978).
14
Nearly all of the C doses come from ingestion. Breakdown by the
three food pathways is accomplished by estimating carbon intakes for
meat, milk, and vegetables. The weight of total carbon intake per day
is approximated by the relations (Moore, 1977)
Wy = 79.96 V , (59)
Wfa = 238.16 Tb , (60)
W = 68.9 T , and (61)
v* C
Wt = Wv + Wb + Wc , (62)
where
W , W. , VI , and VL = weight of daily carbon intake via vegetables, meat,
milk, and total intake, respectively
-------
51
Table 2. Dose conversion factors for C
n Dose conversion factors'2
Organ 2
(rem-cm/pCi-year)
Whole body 1.16 x 103
3
Red marrow 2.03 x 10
Lungs 5.07 x 102
Endosteal cells 1.85 x 103
Stomach wall 7.43 x 102
Lower large intestine wall 8.92 x 10
Thyroid 5.27 x 102
Liver 7.30 x 102
Kidneys 6.49 x 102
Testes 4.46 x 102
Ovaries 4.46 x 10
aThese factors are based on the assumption that the
specific activity in human tissue is equal to the average
steady state value in the atmosphere (Killough and Rohwer,
1978).
-------
52
V = daily vegetable consumption (kg),
Tb = daily meat consumption (kg),
TC = daily milk consumption (liters).
Normalization is accomplished by using weight fractions of C for
each food type in the dose equations:
Dv - CFV (fvlx + fv2xv) , (63)
Db = CFb ^fblx + fb2xb^ * and ^64^
Dc - CFC (fclX + fc2Xc) , (65)
14
where DV, D^, and D = ingestion dose for C from vegetables, meat, and
milk (rem/year);
1 VI O
C - dose conversion factor for C (rem-cm /pCi-
year);
Fy = weight fraction of C from vegetables (Wv/Wt);
Fb = weight fraction of C from meat (Wb/Wt);
FC = weight fraction of 14C from milk (Wc/Wt);
f , - fraction of vegetable intake which is produced at
individual's environmental location;
fy2 = fraction of vegetable intake whose source represents
an average produced over the assessment area;
fb-j - as above for f , except applied to meat;
fb2 = as above for fy2 except applied to meat;
fcl = as above for fyl except applied to milk;
fc2 = as above for fy2 except applied to milk;
X s ground-level concentration of C in air at
Individual's environmental location (pCi/cm );
-------
53
14
Xv = average ground-level concentration of C in air
over the assessment area weighted by quantities
of vegetables produced as a function of location;
XL = as above for xv except applied to meat;
Xc = as above for xv except applied to milk.
The total dose from C is the sum of Dy, Db, and DC.
3.3.7 Environmental concentrations and intake rates
Health risks to man as a result of radiation exposures are not
directly related to dose commitments, but are more closely correlated
with environmental concentrations and rates of intake of radionuclides
by ingestion and inhalation. To facilitate health risk estimations,
DOSEN calculates and prints tables of the following for each radionuclide
and specified environmental location: (1) concentration in air (curies
3 2
per m ); (2) ground concentration (curies per m), (3) ingestion intake
rate (picocuries per year), and (4) inhalation intake rate (picocuries
per year). In addition, these values are written as unformatted output
so that they may be used as input data for computer assessments of
health risks.
ppp
3.3.8 Working level calculations for Rn
ppp
Working level (WL) is calculated for Rn and its short-life
progeny at each specified environmental location. One WL is defined as
any combination of short-life progeny (218Po, 214Pb, 214Bi, and 214Po)
in one liter of air that will release 1.3 x 10 MeV of alpha particle
210
kinetic energy during decay to Pb. The equation used (Evans, 1969)
is
-------
54
WL = 0.01 SeC (66)
in which
opp
C = concentration of Rn in air (pCi/liter),
0.01 = conversion factor,
Sfi = assumed fraction of equilibrium for short-life progeny.
The value of Sg is input in CONCEN as SEQWL. The default value is 0.7.
Calculations of WL and printing of tables are done in subroutine DOSMIC.
3.3.9. Buildup of radioactive daughters on surfaces after deposition
of a parent radionuclide
A radionuclide building up on ground surfaces or in water as a
result of the deposition of its parent may contribute to doses from
surface exposure, water immersion, and food ingestion. To calculate
this effect, the daughter should be added to the source term with a zero
release rate if it is not also released to the atmosphere at the source.
Input parameters for the daughter are supplied as follows: II, 12, 13,
14, and 15 (integer indices for one to as many as five parent radionuclides
in the source term) and Fl, F2, F3, F4, and F5 (buildup factors for each
parent). The F factor is defined as the surface input rate of the
daughter from parent decay per unit aerial deposition rate of the parent.
The total surface input rate from buildup of a daughter is the sum
of the products of each F value multiplied by the aerial deposition rate
of the parent. This sum added to the aerial deposition rate of the
daughter, d^, is d. ^, the effective surface input rate.
The value of d..^ is used to calculate surface and water concentrations
after buildup time tb. The use of dieff for ingestion intake is more
-------
55
complicated and requires the use of a modified version of Eq. (49) for
calculating the concentration cV(r, 6) of a nuclide in and on vegetation.
The appropriate equation is
V
q(r, e) = d.(r, e)
1 n
V - exp(-A.t
VEi
d.eff(r, 6) B1v[1 " exP<-xiV] exp (X.th) . (67)
PXi
4. USE OF THE CODE
Options available to the user and data requirements are described below,
4.1 Options Available to the User
4.1.1 Options in the main program (MAIN)
The options available in MAIN are applied to subroutines CONCEN
and DIRECT. Option (1) specifies the flow of the code. If option (!) = 0,
CONCEN is called to estimate concentrations of the radionuclides in air and
rates of deposition on ground surfaces, and then subroutine DOSEN is called
to calculate doses to man, environmental concentrations, and intake rates.
If option (1) = 1, however, the program is terminated after completion of
the calculations in CONCEN. If it is desired to calculate doses and intake
rates directly from input values of radionuclide concentrations in air and
ground deposition rates, option (1) is specified as 2. MAIN will then call
subroutine DIRECT, which reads the required input data, and then it will
call DOSEN.
Option (2) determines whether a square grid environmental configur-
ation [option (2) = 0] or a circular configuration [option (2) = 1] are
used in the assessment.
-------
56
Option (3) determines whether the values calculated by CONCEN will
represent averages over sectors of 22.5° [option (3) = 0] or will repre-
sent the center!ine of a plume [option (3) = 1].
Option (4) determines how plume rise is calculated. If option (4) =
0, Briggs1 equations for buoyant plumes are used. If option (4) = 1, Rupp's
equation for momentum-type emissions is used. Specific values for plume
rise for each Pasquill atmospheric stability category can be entered as
input data if option (4) is specified as 2.
Option (5) allows the user to vary the deposition velocity of each
radionuclide in the source term with the direction and distance from the
plant. This option is invoked if option (5) = 1 and if the circular
configuration [i.e., option (2) = 1] is used.
Option (6) is an integer value from 0 to a maximum of 36 which
specifies the number of radionuclides in the source term for which con-
centrations in air and rates of deposition on ground surfaces are punched
on cards. For example, if option (6) = 4 and there are 16 radionuclides in
the source term, concentrations and deposition rates will be punched for
the first four radionuclides in the list.
Option (7) is specified as 1 if the radionuclides in the source term are
assumed to be released uniformly from a circular area such as from a tailings
pile of a uranium mill. The reference point for environmental locations is
the center of the circular area. If option (7) = 0, a point release is
assumed.
The user can eliminate the printing of the main output table of
CONCEN, which lists estimated concentrations in air and ground deposition
-------
57
rates in the environment, by setting option (8) = 1. If option (8) = 0,
then the table is printed.
A table of x/Q values for each radionuclide in the source term is
normally printed by subroutine CHIQ called by CONCEN if the assessment area is
circular, but the user can eliminate these tables from the output by setting
option (9) = 1. If option (9) = 0, then the tables are printed.
Details of options selected in MAIN are given below.
4.1.1.1 The circular option. For this option, the area around the
plant is divided into sixteen 22.5° sectors emanating from the release
point. The midpoint of each sector is one of sixteen compass directions
numbered 1 through 16 starting with direction 1 for due north and proceeding
counterclockwise to NNE for direction 16. As many as 20 distances are
entered as input data to represent midpoints of environmental locations for
all sectors.
The parameter SQSD in Subroutine CONCEN sets the length of a side of
each of the 400 grid squares for the square grid option discussed in
Sect. 4.1.1.2. A value for this parameter must also be selected for the
circular option because it is used in the code in a statement testing
the importance of radiological decay during plume travel. The SQSD value
should be approximately equal to 0.1 of the radius of the circular assess-
ment area.
4.1.1.2 The square grid option. If the square grid option is
selected in the main program, the code will estimate concentrations in air
and ground deposition rates at the midpoints of each of 400 square grids in
a 20 by 20 array with the release point located at the center. The array is
-------
58
aligned north-south and east-west with the abscissa numbers going from 1
to 20 from west to east and with the ordinate numbers going from 1 to 20
from south to north. An input parameter SQSD sets the length of the side
of each of the 400 grid squares.
The code computes concentrations by starting at grid (1,1) and pro-
ceeds through grid (1, 20), and then goes to (2, 1), proceeds to (2, 20),
and continues this process through grid (20, 20). For each grid square,
the center of the square is identified as within one of 16 sectors
emanating from the release point by reference to a data statement within the
computer code. The compass directions at the midpoints of each of these
22.5° sectors are numbered from 1 to 16 starting with 1 for due north
and proceeding counterclockwise through direction 16. Downwind distance
is calculated from the grid identifiers and the value of SQSD.
The very poor resolution for the area near the plant afforded by
the preceding procedure is improved within the computer code by recomputing
concentrations for the innermost 16 grid squares. This 16-grid area is
converted into a 20 by 20 grid; the concentration in each of the 16
inner grid squares is then computed as the average value for 25 uniformly
distributed smaller grid squares.
The square grid configuration has an advantage over the circular
configuration in that the environmental areas are more compact and,
hence, are more amenable to discrete characterization. A more important
consideration, however, is that concentration values in a.square grid
arrangement can be more readily adapted to multiple point source or area
source assessments.
-------
59
4.1.1.3 Option for varying deposition velocity. An input value
for dry deposition velocity is entered for each radionuclide in the
source term. In a normal computer run, this value is used to estimate
the rate of dry deposition of the radionuclide on ground or water surface
and the resulting depletion of the plume for all directions and distances
from the plant. This procedure is adequate for areas with relatively
uniform environmental characteristics, but it may be inaccurate for areas
consisting of a wide variety of surfaces such as tall grass, forests,
or lakes. There may be as much as an order of magnitude difference
in deposition velocity between bare soil and forest canopy (Sehmel et
al., 1973), for example, and this may lead to considerable differences
in air concentrations downwind of a forest versus a bare-soil region.
To assess non-uniform areas more realistically, the user of the
code may elect through option (5) to use a different value for deposition
velocity for each environmental location identified by direction and
distance from the plant. This option is available only for the circular
configuration [i.e., option (2) = 1] because integration of plume depletion
equations must proceed outward from the plant for each direction and
cover each environmental location in stepwise fashion. For this option,
multiplier parameters for each environmental location specified by
direction and distance and upper and lower bounds for distances must be
added to the input data. The deposition velocity for each radionuclide
within a specific environmental location is the product of the initial
deposition velocity entered for the radionuclide and the multiplier for
the location.
-------
60
4.1.1.4 The area source option. For this option, the source is
assumed to be an area such as a tailings pile with a uniformly distributed
rate of release of radionuclides. The dispersion treatment is described
in Sect. 3.2.9. The diameter in meters of a circle of the same area as
the source must be entered as input in CONCEN to use this option. If
this value is less than 10 m, however, the area source is treated as a
point source.
4.1.2 Optional features of subroutine CONCEN
The first data input of CONCEN are specifications of lower and
upper bounds for grid abscissa and ordinate as integer values for NOL,
NOU, NRU and NRU. Normally, for the square grid option, the abscissa
limits are NOL = 1 and NOU = 20, going from west to east, and the ordinate
limits are NRL = 1 and NRU = 20, going from south to north. The user
can, however, specify higher values for NOL and NRL or lower values for
NOU and NRU for special applications. Integers for NOL to NOU are
column numbers, and integers for NRL to NRU are row numbers. The circular
option requires that NOU must not exceed 16 as an upper bound for column
numbers because only 16 compass directions are involved. The numbering
starts at NOL = 1 for due north and proceeds counterclockwise to 16 for
NNE. The row numbers for the circular option (NRL to NRU), which may
range from 1 to 20, refer to distances in meters from the source, which
are supplied by the user as integer values of the IDIST input parameter.
If the square grid option is selected in the main program, the grid
size is specified in CONCEN as the value SQSD, the length of the side of
-------
61
the grid squares in meters. A value of 8000 m for SQSD produces a
square assessment area superscribing a circle with a radius of 50 miles.
For the circular configuration, the number of distances from the
plant in each compass direction (IDIST values) should be equal to the
value of NRU.
The assessment area for which doses and intake rates are calculated
in DOSEN is identical to that defined by the bounds set in CONCEN. The
agricultural and population input data entered in DOSEN in 20 by 20
arrays should contain 0 values for all elements of these arrays lying
outside the bounds of the assessment area.
4.1.3. Options and optional features of subroutine DOSEN
The first input data for DOSEN are six options. The first, LIPO,
is a specification as to whether the calculations are to be made for the
maximally exposed individual (LIPO = 0) or for the population in the
area (LIPO =1).
The second option (NNTB) determines the number of tables to be
printed listing doses by grid location, exposure mode and organ by indi-
vidual radionuclide. Each of these tables is lengthy, and it is usually
desirable to minimize the printed output by specifying NNTB = 0.
Doses by radionuclide, organ, and pathway are punched on cards if
option (3), NRTB, is specified as 1. If NRTB = 0, punching of these
values is omitted.
If option (4), NSTB, is 1, concentrations in air, ground concentra-
tions, ingestion intake rates, and inhalation intake rates by man for
2??
each environmental location for each radionuclide except Rn are
-------
62
printed and written as unformatted output. If NSTB = 0, output of
222
these values is omitted. Working levels for Rn are outputted if
NSTB = 1 and omitted if NSTB = 0.
The fifth and sixth options, NTTB and NUTB, control calculations
and printing by DOSMIC. Dose summary tables are printed if NTTB = 1 and
222
omitted if NTTB = 0. Working levels for Rn are calculated and tabu-
lated if NUTB = 1 but omitted if NUTB = 0.
In addition to the six specified options above, there are several
options available to the user for treating ingestion. The parameters
RVEG, RBEF, and RMLK for vegetables, meat, and milk specify the ratio of
the quantity of each type of food ingested by a person that is produced
at his environmental location to the sum of that produced at his location
and the quantity that he ingests that is produced throughout the entire
assessment area. The radionuclide content of each of the three food
types produced throughout the entire assessment area is a weighted
average over the grid system. The assessment area is bounded by the
integers NOL, NRL, NOU, and NRU in a 20 by 20 grid system. Therefore,
quantities of food produced (and human population) should be listed as 0
for all locations lying outside of these bounds.
The minimum fractions of each of the individual's intake of each
food type that comes from outside of the assessment area altogether, and
assumed to be uncontaminated, are specified as F3VE6M, F3BEFM, and
F3MLKM. The code can compute a higher imported fraction for each food
type if -,'equired to meet nutritional requirements as specified in the
-------
63
input data. The user can fix the minimum imported fractions to be actual
fractions by setting IMPFIX = 1.
Fallout interception fractions for pasture grasses and fresh
vegetables consumed by man are designated Rl and R2, respectively.
These factors are applied to all radionuclides, but may be optionally
changed for any specific radionuclide by setting IFLAG, normally 0, at 1
or 2. If IFLAG = 1, special parameters RD1 and RD2 are used instead of
Rl and R2. If IFLAG = 2, RD1 and RD2 are used for dry deposition, and
RW1 and RW2 are used for wet deposition.
4.2 Data Input and Example Run
The listing of the AIRDOS-EPA COMPUTER CODE IN Appendix A identifies
the order and format of the input parameters in the READ statements and
their corresponding FORMAT statements. Parameter names and their de-
finitions and units are listed in Tables 3, 4, 5, and 6 for the main
program and subroutines CONCEN, DIRECT, and DOSEN, respectively. Table
7 lists the parameters from these tables with their data card formats.
Appendix B is the output of an example run of the code.
-------
64
Table 3. Input parameters for main program
Name
Number of
values
Definition
WORD
OPTION
1
9
the word OPTIONS
Option (1) 0 to run the entire code
1. if it is desired to run
only subroutine CONCEN
2 if subroutine DIRECT is
to be called instead of
CONCEN
Option (2) 0 for the 20 by 20 square
grid configuration
1 for the circular con-
figuration
Option (3) 0 for sector-averaged
computations
1 for plume centerline
computations
Option (4) 0 to compute plume rise for
buoyant plumes using Briggs1
equations
1 to compute plume rise for
momentum-type emissions by
Rupp's equation
2 to use specific values for
plume rise entered as input
data for each Pasquill
atmospheric stability category
Option (5) 0 if deposition velocity is
not varied with direction and
distance for each radionuclide
1 if deposition velocity varies
with direction and distance [may
only be used if option (2) = 1]
Option (6) An integer from 0 to 36
specifying the number of radio-
nuclides in the source term for
which air concentrations and
ground deposition rates are
punched on cards
-------
65
Number of
values
Table 3. (continued)
Name
Definition
Option (7) 0 for point-source atmospheric
dispersion calculations
1 for calculations for a uniform
circular area source
Option (8) 0 to print the main output table
of CONCEN
1 to omit printing the above
Option (9) 0 to print x/Q tables
1 to omit x/Q tables
-------
Table 4. Input parameters for subroutine CONCEN
Number of
Name Values
NOL
NOU
NRL
NRU
PR
WORD
SQSD
SEQWL (Se)
IDIST
WORD
LIDAI (L)
RR
TA
TG
PERD
1
1
1
1
7
1
1
1
20
1
1
1
1
3
16
Definition
Lower grid limit (abscissa)
Upper grid limit (abscissa)
Lower grid limit (ordinate)
Upper grid limit (ordinate)
Specific plume rise for each Pasquill category
The word AREA
The exact length of the side of each grid square when using
the square grid configuration. A value for SQSD must also
be used for the circular option which corresponds to the
approximate length of each grid square in a 20 by 20 grid
superscribed on the circular assessment area
Assumed fraction of equilibrium for the short-life progeny
of 222Rn (default value = 0.7)
Distances from plant to be used with circular option
The word AIR
Height of lid
Rainfall rate in area
Average air temperature in area
Vertical temperature gradient for Pasquill categories E,
F, and G
Wind direction frequency (16 directions)
Units
meters
meters
meters
meters
centimeters/year
°K
°K/meter
CTl
CTi
-------
Table 4. (Cont'd)
Name
UDCAT (ur)
UDAV (ya)
FRAW
WORD
NUMST
™ (h)
DIA (d)
VEL (v)
QH (Qh)
DIM
WORD
NNUCS
NAMNUC
ANLAM
SC («)
VD (Vd)
VG (Vg)
REL (Q)
Number of
val ues
112
112
112
1
1
NUMST
NUMST
NUMST
NUMST
NUMST
1
1
NNUCS
NNUCS
NNUCS
NNUCS
NNUCS
NNUCS x NUMST
Definition
Reciprocal -averaged wind speeds (7 Pasquill categories,
16 directions)
True-average wind speeds (7 Pasquill categories, 16
directions)
Frequencies for Pasquill stability categories (each
of 16 directions)
The word STACKS
Number of stacks or release areas
Physical height of stack
Diameter of stack
Velocity of stack gases
Heat release from stack
Diameter of area source
The word NUCLIDES
Number of nuclides in. source term
Name of nuclide, such as 1-131 or RU-103
Effective radiological decay constant in the plume
Scavenging coefficient
Dry deposition velocity
Gravitational (or settling) velocity
Release rate of radionuclide from stack
Units
meters/sec
meters/sec
meters
meters
meters /sec
cal/sec
meters
day"1
sec'1
meters/sec
meters/sec
curies/year
-------
Table 4. (Cont'd)
Name
BOUND
Number of
val ues
20
Definition
First value is upper bound of area represented by first
Units
meters
IDIST value and lower bound of area represented by second
IDIST value, and continuing for all 20 possible IDIST
values [BOUND values and subsequent VDCOEF and LIST
values are to be entered only if Option (5) = 1]
VDCOEF (NOU-NOL+1) Factor to be multiplied by VD to give dry deposition
X(NRU-NRL+1) velocity representative of the area for a specific
compass direction and IDIST value
LIST 20 0 to print concentrations for distance corresponding to
IDIST
1 to suppress printing for IDIST distance
00
-------
Table 5. Input parameters for subroutine DIRECT
Name
NOL
NOU
NRL
NRU
SQSD
IOIST
SEQWL (Se)
NNUCS
NAMNUC
VD (V }
SC (*)
ACON (X)
GCON (R )
Number of
values
1
1
1
1
1
20
1
1
NNUCS
NNUCS
NNUCS
400
400
Definition
Lower grid limit (abscissa)
Upper grid limit (abscissa)
Lower grid limit (ordinate)
Upper grid limit (ordinate)
The length of the side of each grid square if input air
concentrations and ground deposition rates are for a
square grid configuration
Distances from point of release or center of circular
area source for a circular configuration
Assumed fraction of equilibrium for the short-life progeny
of 222Rn (default value = 0.7)
Number of nuclides in source term
Name of nuclide
Dry deposition velocity
Scavenging coefficient
Concentration in air at ground level for each environmental
location (input in a 20 by 20 array)
Rate of deposition on ground surface for each environmental
location (input in a 20 by 20 array)
Units
meters
meters
meters/sec
sec'1
t
picocuries/cnT
/
picocuries/cm'
sec
s
-------
Table 6. Input parameters for subroutine DOSEN
Name
LIPO
NNTB
NRTB
NSTB
NTTB
NUTB
NOBCT
NOMCT
INTFC
INTPA
INTWA
IMPFIX
Number of
values
1
1
1
1
1
1
400
400
400
400
400
1
Definition Units
Option — 0 for individual dose, 1 for population dose
Number of individual radionuclide dose tables by grid
location and pathway to be printed. Used to suppress
printing
Option - 1 for punching on cards doses by nuclide,
organ and pathway, 0 for omitting the above
Option - 1 for printing and unformatted output of envi-
ronmental concentrations and intake rates by man for each
nuclide, 0 for omitting the above
Option — 1 for printing dose summary tables, 0 for
omitting the above
Option — 1 for printing of working levels for 222Rn if it is
in the source term, 0 for omitting the above
Number of meat producing animals for each environmental location
(input in a 20 by 20 array)
Number of dairy cattle for each environmental location
(input in a 20 by 20 array)
2
Area of vegetable crop production for each environmental m
location (input in a 20 by 20 array)
Population for each environmental location (input in a
20 by 20 array)
Identification as to whether an environmental location
contains significant water areas (0 or 1) (input in a
20 by 20 array)
The integer 1 fixes the fraction of each food type imported
into the assessment area at the minimum fraction specified
as F3VEGM, F3BEFM, and F3MLKM defined below
-------
Table 6. (continued)
Name
Number of
values
Definition
Units
RVEG
F3VE6M
RBEF
F3BEFM
RMLK
F3MLKM
BRTHRT (Br)
DILFAC (d)
USEFAC
T (t)
DD1
TSUBH1 (thl)
TSUBH2 (th2)
TSUBH3 (th3)
TSUBH4 (th4)
LAMW (Xw)
1
1
1
1
1
1
1
1
1
1
1
1
1
1
The fraction representing the quantity of ingested vegetables
produced at the environmental location divided by the total
quantity ingested which is produced throughout the assessment
area including the quantity ingested which is produced at the
environmental location
The minimum fraction of ingested vegetables which is imported
into the assessment area. The code may compute a higher
value to be used unless IMPFIX = 1
Same as RVEG except applied to meat
Same as F3VEGM except applied to meat
Same as RVEG except applied to milk
Same as F3VEGM except applied to milk
Breathing rate of man
Depth of water to be used for water immersion doses
Fraction of time spent swimming
Buildup time allotted for surface deposition
Fraction of radioactivity retained on leafy vegetables
and produce after washing
Time delay - ingestion of pasture grass by animals
Time delay — ingestion of stored feed by animals
Time delay — ingestion of leafy vegetables by man
Time delay — ingestion of produce by man
Removal rate constant for physical loss by weathering
3
cm /hr
centimeters
days
hr
hr
hr
hr
hr
-1
-------
Table 6. (continued)
Number of
Name values
TSUBE1 (tel)
TSUBE2 (te2)
YSUBVl (Yv])
YSUBV2 (¥v2)
FSUBP (fp)
FSUBS (fs)
QSUBF (QF)
T5UBF (tf)
uv (uapv)
UM (UapM)
UF
-------
Table 6. (continued)
Name
TAUBEF
MSUBB
VSUBM
Rl (RT)
R2 (R2)
NUMORG
LAMRR (\.}
CFSBA (Cinn)
CFSBW (Cwiim)
CFSUR (Csurf)
KFLAG
TDCF (C.)
T
TDCW (C )
w
FROG
Number of
values
1
1
1
1
1
NNUCS
NNUCS
NNUCS
NNUCS
NNUCS
NNUCS
NNUCS
NNUCS
NNUCS X 11
Definition
Fraction of meat producing herd slaughtered per day
Muscle mass of meat producing animal at slaughter
Milk production of cow
Fallout interception fraction for pasture
Fallout interception fraction for vegetable crops
Number of organs considered for the radionuclide
Radioactive decay constant for the radionuclide
Skin dose conversion factor for submersion in air
Skin dose conversion factor for submersion in water
Skin dose conversion factor for surface exposure
Usually 0; a value of 1 is used for a radionuclide which
is a daughter product assumed to have an effective decay
constant in the plume (ANLAM) equal to the decay constant
of its longer-lived parent, and it is desired to use the
ANLAM value to calculate its decay on ground surfaces and
in water instead of its true decay constant, LAMRR
Dose conversion factor for food; always 0 except for
tritium
Dose conversion factor for drinking water; always 0
except for tritium
Dose correction factors for whole body and each reference
organ to multiply by external doses for skin. The order
of the organs is given under NAMORG in this table
Units
kilograms
liters/day
day"1
rem-cm /yCi Hir
rem-cm /yCi -hr
rem-cm^/uCi -hr
rem-cm /pCi -year
rem-cm /pCi-year
-------
Table 6. (continued)
Name
Number of
values
Definition
Units
FSUBMI (FJ NNUCS
FSUBFI (Ff) NNUCS
BSUBV1 (B.yl) NNUCS
BSUBV2 (Biv2) NNUCS
LAMSUR (Xy) NNUCS
LAMH20
I FLAG
RD1
RD2 (RD2)
RW1 (RV^)
RW2 (RW2)
NNUCS
NNUCS
NNUCS
NNUCS
NNUCS
NNUCS
Average fraction of animal's daily intake of nuclide which days/liter
appears in each liter of milk
Fraction of animal's daily intake of nuclide which appears days/kg
in each kg of flesh
Concentration factor for uptake of nuclide from soil for
pasture and forage (pCi/kg dry weight per pCi/kg dry soil)
Concentration factor for uptake of nuclide from soil by
edible parts of crops (pCi/kg wet weight per pCi/kg dry soil)
Environmental decay constant for surface for the radio- day"
nuclide
Environmental decay constant for water areas for the day
radionuclides
0 for a normal run;
1 if special values RD1 and RD2 are to be used instead of
Rl and R2.
2 if special values RD1 and RD2 for dry deposition processes
and special values RW1 and RW2 for wet deposition (scavenging)
processes are to be used.
Special value for Rl as defined for IFLAG
Special value for R2 as defined for IFLAG
Special value for Rl as defined for IFLAG
Special value for R2 as defined for IFLAG
-------
Table 6. (continued)
Name
I SOL
AMAD
F1INH
n
12
13
14
15
Fl
F2
F3
F4
F5
NAMORG
CFINHA
FUNG
CFINGA
Number of
values
NNUCS
NNUCS
NNUCS
1
1
1
1
1
1
1
1
1
1
NUMORG X NNUCS
NUMORG X NNUCS
NUMORG X NNUCS
NUMORG X NNUCS
Definition
Solubility class for nuclide
D = days
W = weeks
Y = years
Particle size for nuclide
Gastrointestinal uptake fraction for inhalation
Index integer for a parent radionuclide contributing
to surface buildup
As above for a second parent
As above for a third parent
As above for a fourth parent
As above for a fifth parent
Surface input rate for the nuclide resulting from
decay of parent 11 per unit aerial deposition
rate of 11
As above except for parent 12
As above except for parent 13
As above except for parent 14
As above except for parent 15
Name of organ, to be written as follows: TOT. BODY
(for whole body), R MAR, LUNGS, ENDOST, S WALL,
LLI WALL, THYROID, LIVER, KIDNEYS, TESTES, OVARIES
Dose conversion factor for the organ for inhalation
Gastrointestinal uptake fraction for ingestion
Dose conversion factor for the organ for ingestion
Units
y
rem/yCi
rem/pCi
-------
Table 7. Data deck preparation for AIRDOS-EPA
Parameters
Number of Number of
val ues cards
Data type
Format
Main program
WORD, OPTION
NOL,NOU,NRL,NRU
PR
WORD
SQSD
SEQWL
IDIST
WORD
LIDA1
RR.TA.TG
PERD
UDCAT
UDAV
FRAW
1 for WORD,
9 for OPTION
Subroutine
1 for each parameter
7
1
1
1
20
1
1
1 for RR,
1 for TA,
3 for TG
16
112
112
112
1
CONCEN
1
1
1
1
1
3
1
1
1
1
7
7
16
WORD=OPTIONS
OPTIONS values-
integer
Integer
Fixed point
WORD=AREA
Fixed point
Fixed point
Integer
WORD=AIR
Integer
Fixed point
Fixed point
Fixed point
Fixed point
Fixed point
A8,5I1,I2,3I1
8110
8F10.0
A8
8F10.0
F10.0
8110
A8
8110
8F10.0
16F5.0
16F5.0
16F5.0
7F10.0
-------
Table 7. (Continued)
Parameters
WORD
NUMST
PH,DIA,VEL,QH,DIM
WORD
NNUCS
NAMNUC
ANLAM.SC.VD.VG
REL
BOUND
VDCOEF
LIST
Number of
val ues
1
1
(1 for each parameter)
x value of NUMST
1
1
1
1 for each parameter
Value of NUMST
20
(NOU-NOL + 1 ) x
(NRL-NRU + 1 )
20
Number of
cards
1
1
Value of NUMST
1
1
1
1
1
3
Number required
for a maximum of
10 values per card
1
Data type
WORD= STACKS
Integer
Fixed point
WORD=NUCLIDES
Integer
Alphameric
Fixed point
Fixed Point
Fixed point
Fixed point
Integer
Format
A8
8110
8F10.0
A8
8110
AS
8F10.0
a
8F10.0
8F10.0
10F8.4
b
2011
Subroutine DIRECT
NOL.NOU.NRL.NRU
SQSD
IDIST
SEQWL
NNUCS
NAMNUC.VD.SC
ACON
GCON
1 for each parameter
1
20
1
1
1 for each parameter
400
400
1
1
3
1
1
1
50
50
Integer
Fixed point
Integer
Fixed point
Integer
Alphameric,
fixed point,
floating point
Floating point
Floating point
8110
8F10.0
8110
F10.0
8110
A3
F12.4
E10.3
8E10.3
8E10.3
a
-------
Table 7. (Continued)
Parameters
LIPO
NNTB,NRTB,NSTB,NTTB,
NUTB
NOBCT
NOMCT
INTFC
INTPA
INTWA
IMPFIX
RVEG.F3VEGM.RBEF,
F3BEFM.RMLK.F3MLKM
BRTHRT.DILFAC,
USEFAC.T.DDl
TSUBH1.TSUBH2,
TSUBH3.TSUBH4
LAMM
TSUBE1 .TSUBE2
YSUBV1 .YSUBV2
FSUBP
FSUBS
QSUBF
Number of
values
Subroutine
1
1 for each parameter
400
400
400
400
400
1
1 for each parameter
1 for each parameter
1 for each parameter
1
1 for each parameter
1 for each parameter
1
1
1
Number of
cards
DOSEN
1
1
25
25
50
50
10
1
1
1
1
1
1
1
1
1
1
Data type
Integer
Integer
Integer
Integer
Floating point
Fixed point
Integer
Integer
Fixed point
Fixed point
Floating point
Floating point
Floating point
Floating point
Floating point
Floating point
Floating point
Format
5110
5110
1615
1615
8E10.3
8F10.1
4012
110
6F10.3
6F10.3
8E10.3
8E10.3
8E10.3
8E10.3
8E10.3
8E10.3
8E10.3
CO
-------
Table 7. (Continued)
Parameters
TSUBF
UV,UM,UF,UL
TSUBS
FSUBG,FSUBL
TSUBB
P
TAUBEF.MSUBB.VSUBM
RT ,R2
NUMORG, LAMRR,CFSBA,
CFSBW,CFSUR,KFLAG,
TDCF,TDCW
FROG
FSUBMI.FSUBFI.BSUBVl,
BSUBV2
LAMSUR,LAMH20,IFLAG,
RD1,RD2,RW1,RW2
11, 12,13,14, I5.F1.F2,
F3,F4,F5
ISOL,AMAD,F1INH
NAMORG.CFINHA
FUNG
CFINGA
Number of
values
1
1 for each parameter
1
1 for each parameter
1
1
1 for each parameter
1 for each parameter
1 for each parameter
11
1 for each parameter
1 for each parameter
1 for each parameter
1 for each parameter
1 for each parameter
x value of NUMORG
1
Value of NUMORG
Number of
cards
1
1
1
1
1
1
1
1
1
1
1
1
1
1
NUMORG
1
NUMORG
Data type
Floating point
Floating point
Floating point
Floating point
Floating point
Floating point
Fixed point
Fixed point
Integer and
floating point
Fixed point
Floating point
Floating point,
integer, and
fixed point
Integer and
floating point
Alphameric and
floating point
Alphameric and
floating point
Floating point
Floating point
Format
8E10.3
8E10.3
8E10.3
8E10.3
8E10.3
8E10.3
10F8.4
10F8.4
I10.4E10.3,
I10.2E10.3
11F5.3
8E10.3
2E10.3,I1,
6F8.4
5I4.5E10.3
T11.A1.T15,
E10.3.T27,
E10.3
A8.T10.E10.3
T11,E10.3
T11.E10.3
d
-------
aA set of the three cards in this bracket is required for each radionuclide. The number of
these sets of cards must be equal to the value of NNUCS.
fcThe cards in the bracket for BOUND, VDCOEF, and LIST should not be included in the data
deck unless OPTION (5) = 1.
CA set of the cards in this bracket is required for each radionuclide. The total number of
these sets is the value of NNUCS.
One set of cards in this bracket is required for each radionuclide. Each set is referred
to as the radionuclide data deck for the specific radionuclide. The number of radionuclide data
decks must be equal to the value of NNUCS. The set of cards for NAMORG, CFINHA, FUNG, and
CFINGA for each radionuclide is referred to as the organ data deck for the specific radionuclide.
-------
81
5. TERRESTRIAL TRANSPORT INPUT PARAMETERS
The parameter values listed in the following sections have been
used in the demonstration computer run given in Appendix B. For the
parameters B^, F , and Ff, a review of original references is currently
being performed. The values listed for these parameters reflect the
current status of this review. The listed values will undoubtedly
change as new references are reviewed or become available. Many of the
other parameter values listed are derived from the extensive and well-
documented reviews by Ng et al. (1977) and Hoffman and Baes (1979). A
statistical distribution has been described for many of the parameters
reviewed by Hoffman and Baes (1979), and the values taken from this
review and listed in this section are the mean values with respect to
the distribution described for the parameter.
The values listed for the soil-plant bioaccumulation factor B. ,
the forage-to-milk transfer coefficient Fm> and the forage-to-meat
transfer coefficient Ff were derived from a review of original experimental
data according to the methodology described below. Individual observations
or the average of replicate observations (whichever given by the author)
specific for the parameter were taken from the reference. When necessary,
reported Biy data were transformed to adhere to the strict definitions
of the parameter by using appropriate fresh weight-dry weight conversion
factors (Morrison, 1956; Spector, 1956). Ingestion rates given by Liden
and Gustafsson (1967) and Bell (1978) were used to derive some values of
Ff from associated meat and forage data. All measurements applicable to
the parameter in a reference were used to calculate an arithmetic mean
-------
82
value for that reference. Finally, the values for each reference were
used to derive an unweighted arithmetic mean for all references combined.
This final value, unless otherwise noted, is the value listed for the
parameter.
The parameters used in the terrestrial transport models in Sect. 3
are designed to represent annually averaged values at equilibrium over a
wide range of environmental conditions. Empirical data used in deriving
values for these parameters may not always reflect annual average or
equilibrium conditions. In addition, data from laboratory or otherwise-
controlled experiments which do not adequately simulate field conditions
may lead to erroneous evaluations for specific assessment sites. Further-
more, empirical data may not adequately reflect the true distribution of
values associated with each parameter under various conditions. Thus,
caution should be used in the interpretation of parameter values presented
and results generated by the sample run.
5.1 Agricultural Productivity by Unit Area Y
In this report agricultural productivity, in kilograms per square
meter, is given in dry weight for the above-ground portion of pasture
grasses Y^ and in fresh weight for the edible portions of leafy vegetables
and produce ingested directly by man Yv2- Since dry weight measurements
of productivity for pasture grasses are most commonly found in the
literature, direct comparison with productivity estimates for stored
feeds and silage can be made. Fresh weight productivity estimates for
leafy vegetables and produce consumed directly by man are appropriate
because data on human food consumption is generally given in fresh
-------
83
weight. In addition, modern packaging and refrigeration techniques are
designed to reduce desiccation and present a product as similar to
harvest condition as possible. Table 8 presents mean values of Y , and
Y 2 derived from the review and analysis of agricultural productivity by
Baes and Orton (1979).
5.2 The Fraction of Atmospherically Depositing Radionuclides
Intercepted by Above-Ground Portions of Plants R
The fraction of atmospherically depositing radionuclides inter-
cepted and initially retained on above-ground portions of either forage
crops or leafy vegetables and fresh produce ingested by man is symbol-
ized by R-, and R2> respectively, where R,, Rp £ 1. It is assumed in the
model that unedible portions of vegetable crop plants are plowed into
the soil at harvest.
5.2.1 Interception fraction R, for forage crops
Caution must be exercised when selecting a value of R-j for assess-
ment purposes because a correlation between R and Y has been demonstrated
for forage crops (Chamberlain, 1970; Miller, 1979b). This correlation
is likely because the fraction of an atmospherically depositing nuclide
intercepted by a plant is highly dependent on the surface area available
for interception. For forage crops, the available surface area or leaf
area index is highly correlated to the above-ground standing crop bio-
mass or productivity Yy^.
Miller (1979a) analyzed associated measured values of R and Y and
described a distribution for the ratio R/Yy based on lognormal statistics.
The resulting distribution of this ratio has been used in the present
-------
84
report to derive an arithmetic mean value of R, = 0.57. This R, value
has been determined such that when combined with the mean Yyl value of
0.28 (Table 8) the resultant ratio of Ri/Yyi numerically equals the mean
value (2.03) of the distribution of R/Yy described by. Mi Her (1979a).
5.2.2 Interception fraction R, for leafy vegetables and fresh produce
The correlation which Chamberlain (1970) demonstrated between R and
YV is specific for pasture grasses. Such a relationship is not expected
to exist for all leafy vegetables and fresh produce ingested by man for
the following considerations:
1. On a weight basis, the edible portion of vegetable plants
varies by species from nearly 100% for leafy vegetables to a
very small fraction for food grains;
2. Surface area-to-weight ratios differ greatly among various
types of vegetables; and
3. Edible portions of some vegetables are enclosed by tissue
layers and fail to intercept atmospheric radionuclides (i.e.,
corn, peas, etc.).
Measurements of the interception fraction R2 specific for edible
portions of leafy vegetables and fresh produce ingested directly by man
are unavailable. It is expected that the value of Rg will be less than
that of R-| since most vegetable crops are usually cultivated in rows.
On a unit area basis, this spacing of vegetable crops exposes more
surface soil than the dense spacing of most forage crops. Booth et al.
(1971) recognized this problem 1n their terrestrial model TERMOD and set
the Interception fraction value for fresh produce and vegetable crops
lower than that for grasses. However, the magnitude of the actual
difference between RI and Rg Is speculative. The R2 value of 0.2 used
by the NRC (U.S. Nuclear Regulatory Commission Regulatory Guide 1.109,
-------
85
Table 8. Estimated values of above-ground agricultural productivity
for forage grasses and edible portions of vegetable crops
Mean Valuea
Parameter (kg/no2)
Y -I measured in dry weight 0.28
(forage grasses)
Yv2 measured in fresh weight 1.9
(leafy vegetables)
Y 2 measured in fresh weight 0.57
(non-leafy vegetables)*3
aThe mean estimates given above are the inverse of values
derived by Baes and Orton (1979) for estimates of 1/Y based on experi-
mental data. v
YV2 for leafy vegetables Is based on edible portions of cabbage,
lettuce, and spinach.
CYV2 for nonleafy vegetables is based on edible portions of broccoli,
cauliflower, green peas, lima beans, and sweet corn.
-------
86
1977) is less than the RI value of 0.57 presented in Sect. 5.2.1; and
therefore, we chose the NRC value for use in the AIRDOS-EPA sample run
(Appendix B).
5.3 Deposition Velocity Vd
The deposition velocity Vd (centimeters per second) is used in the
code as a transfer factor relating an air concentration to a surface
deposition rate (Hoffman, 1977; Miller et al., 1978). Field measure-
ments of Vd are generally based on measured concentrations in vegetation
cut at a specific height above the ground surface and fail to measure
total deposition on a unit area basis. The fraction of radionuclide
deposited on soil, leaf litter, and uncut vegetation is usually not
measured. Thus, an estimate of Vd appropriate for the total deposit oh
a unit area basis is derived from a v"d specific for deposition onto
vegetation by the following method:
Vd (total) = Vd (specific for vegetation)/R , (68)
where R is the fraction of atmospherically depositing nuclides inter-
cepted by the above-ground edible portion of the vegetation. Values of
Vrf (total) are appropriate for use in the AIRDOS-EPA code because Vd is
used to estimate plume depletion and total ground area deposition.
The following values of Vd appear to be relevant for forage grasses
under dry conditions (Heinemann and Vogt, in press):
1. 2 cm/sec for reactive gases (molecular iodine),
2. 0.1 cm/sec for small particulates (<4 urn in diameter), and
3. 0.01 cm/sec for relatively unreactive gases (CHjI).
-------
87
Dividing the above specific Vd values by a mean forage grass inter-
ception fraction R-J of 0.57 (Sect. 5.2.1) produces the following values
of Vd (total):
1. 3.5 cm/sec for reactive gases,
2. 0.18 cm/sec for small particulates, and
3. 0.018 cm/sec for relatively unreactive gases.
These values are specific for deposition on grasslands. It is
assumed in the code that the V. (total) for grasslands is equal to the
Vd (total) for vegetable crops. This assumption may be false since
depositional conditions for grasslands and vegetable croplands are
probably different (Hosker, 1974); however, measured values of V.
(total) have not been published for vegetable crops. We propose that
the value of Vd (total) for particulates >4 ym in diameter be set equal
to the gravitational fall velocity of the particle size considered
(Sehmel et al., 1973).
There is a potential for error in calculating plume depletion in
atmospheric transport models from a specific value of Vd (total) calcu-
lated for a grassland environment. When various environmental conditions
such as buildings, trees, rough terrain, and other potential scavengers
are present, the use of a different Vd (total) may be warranted.
5.4 The Plant/Soil Bioaccumulation Factor B.
The transfer of radionuclides from soil to the above-ground portions
of pasture grasses is parameterized by B|yl. Radionuclide transfer from
soil to the edible portions of leafy vegetables, and fresh'produce ingested
by man is parameterized by Biv2. In the model, it is assumed that
-------
radionuclides incorporated into nonedible portions of vegetable crops
are returned to the soil by the plowing under of the nonedible portion
after harvesting of the edible portion.
A review of the available literature was made to determine values
of B. i and B. £ for various elements. Measurements of radionuclide
concentrations in soil and vegetation reported in the literature are
given in both fresh and dry weight for vegetation and may be specific
for both edible and nonedible plant portions. Thus, only data which was
applicable to (or could easily be converted to conform with) the following
definitions of B- -, and B- « were considered. The definitions of B- •,
and B. g are as follows:
B. , = radionuclide concentration in entire above-ground portion of
plant at maturity per unit dry wt
radionuclide concentration in soil per unit dry wt
B. - = radionuclide concentration in edible portion of plant at
maturity per unit fresh wt
radionuclide concentration in soil per unit dry wt
The effects of chemical and physical forms of the element will
likely influence B. values to a greater extent than isotopic effects.
Therefore, element-specific, rather than isotope-specific values of B.
were chosen. This consideration allows consolidation of measured B.
values and incorporation of a greater number of references into the
determination of B. .
Determinations of Bivl and Biv2 (Tables 9 and 10, respectively)
were made from original literature references whenever available.
However, the review document by Ng et al. (1968) was used to derive Biv
values when original sources were unavailable. References in which
-------
89
Table 9. Values of B. , derived from a review of the literature
Element B. References
Sr 1.2 x 10° Hardy et al., (1969) Arkhipov et al . (1974)
Romney et al. (1957) Romney et al. (1966).
Tc 2.2 x 102 Wildung et al. (1977).
I 2.0 x 10"1 Ng et al. (1978).
Cs 1.5 x 10"1 Rediske et al. (1955); Haak and Eriksson
(1973); Frederiksson et al. (1966); Frederik-
sson et al. (1969); Evans and Dekker (1968);
Hardy et al. (1977); Romney et al . (1957);
Barber (1964).
Pb 1.1 x 10"1 Cox and Rains (1972); Zimdahl et al. (1978);
Rabinowitz (1972); Dedolph et al. (1970).
Po 4.2 x 10"3 Matters et al. (1969).
Ra 9.7 x 10"2 Kirchmann et al. (1968); Taskayev et al.
(1977); Debortoli and Gaglione (1972).
Ac 1.0 x 10"2 Ng et al. (1968) (based on 25* dry matter).
Th 2.7 x 10" 3 Bondietti et al . (in press).
Pa 1.0 x 10"2 Ng et al. (1968) (based on 25* dry matter).
U 8.5 x 10"3 Bondietti et al . (in press). Adams et al .
(1955).
Pu 2.2 x 10"3 Romney et al. (1970); Price (1972); Rediske
et al. (1955); Cummings and Bankert (1971);
Adams et al. (1975); Hardy et al. (1977);
Brown and McFarlane (1978); Bondietti et al.
(in press).
-------
90
Table 10. Values of B. „ derived from a review of the literature
Element B. « References
Sr 2.9 x 10"1 Romney et al. (1957); Essington et al. (1962);
Arkhipov et al. (1974); Hardy et al. (1977).
Tca 1.1 x 10° Wildung et al. (1977).
I 5.5 x 10"2 Ng et al. (1978).
Cs 9.3 x 10"3 Romney et al. (1957); Schulz (1965); Haak
and Eriksson (1973) Fredriksson et al.
(1966); Fredriksson et al. (1969); Evans and
Dekker (1968); Hardy et al. (1977); Essington
et al. (1962).
Pb 3.9 x 10"3 Wilson and Cline (1966); Ter Haar (1979); John
and Van Laerhoven (1972); Rabinowitz (1972);
Dedolph et al (1970).
Po 2.6 x 10"4 Matters et al. (1969).
Ra 6.2 x 10"2 Vavilov et al. (1964); Mordberg et al. (1976);
Kirchmann et al. (1968); DeBortoli and
Gaglione (1972).
Ac 2.5 x 10~3 Ng et al. (1968).
Th 3.5 x 10 Bondietti et al. (in preparation).
Pa 2.5 x 10"3 Ng et al. (1968).
U 2.9 x 10 Bondietti et al. (in press); Adams et al.
(1975).
Pu 2.0 x 10"4 Cline (1968); Wilson and Cline, (1966); Cummings
and Bankert (1971); Dahlman et al (1976);
Bondietti and Sweeton (1976); Schulz et al.
(1975); Adams et al. (1975); Hardy et al. (1977)j
Brown and McFarlane (1978).
aThe derived value for technetium was 5.5 x 10 . This value has been
adjusted to account for removal of vegetable crops by harvesting over 100
years (see Sect. 5.4.1).
-------
91
directly deposited or resuspended material may have significantly con-
tributed to the reported plant radionuclide concentration were not
considered in our analysis of B. .
The derived value of Biv2 for technetium is relatively high with
respect to B. ~ values for the other elements (Table 10). The harvesting
and removal of vegetable crops from the soil may remove significant
quantities of technetium from the agricultural system over long periods
of time. This removal after 100 years may be quite significant. The
following procedure to adjust the technetium B. « is made to simulate the
effect of harvesting and removal of vegetable crops on the soil concen-
tration of technetium. Without an adjustment of the B. ~ value for tech-
netium given in Table 10, the AIRDOS-EPA model would overpredict technetium
concentrations in vegetables after 100 years with an average of one harvest
per year, because the model assumes no radionuclide loss from the soil via
uptake by crop plants and their subsequent harvesting. An estimate of this
removal effect k is given by the following equation:
k = f5H , (69)
Lsn
where
k = adjustment factor to account for removal of technetium from
soil via harvesting of crops,
C . = concentration of technetium in soil after 100 years with
harvesting of vegetable crops,
C = concentration of technetium in soil after 100 years with no
harvesting of vegetable crops.
The concentration of technetium in soil with a deposition rate of 1
? 2
Ci/m -year would be C$n = 100 Ci/m after 100 years with no removal via
-------
92
harvesting or other removal processes. The concentration of technetium
in soil with removal by harvesting of the crop after 100 years is given
by:
100 n 1 1
Csh • E ds f"-' - ds 1-j--f- , (70)
where
f = the fraction of technetium remaining in the soil after one
year,
n = time in years = 100 years,
o
d = deposition rate on soil (Ci/m -year).
o
The fraction of technetium remaining in the soil after one year is given
by:
1 - (Biv2 • Y 2)
f= - ^ - — . (71)
where
B. ~ = the plant/soil bioaccumulation factor,
Y 2 = the standing crop biomass of the edible portion of the
vegetable crop in kg/m ,
2
P = the effective surface density of the soil in kg/m .
2 1
Using values of n = 100 year, dg = 1 Ci/m year, Biv2 • 5.5 x 10 ,
Yy2 = 2.0 kg/m2, and P = 215 kg/m2 and substituting Eq. (71) into Eq.
(70), a value of Cgh = 2.0 x 10 results. Thus, the value of k in Eq.
(69) 1s 2.0 x 10" . Multiplying k by the above value of B1y2 for tech-
netium gives an effective B of 1.1 x 10 . This adjusted value of
B. 2 is given in Table 10. For our determination of B.^, it is assumed
-------
93
that technetium removed from the soil by forage plants is returned to
the soil via excretion by grazing animals and decay of ungrazed grasses.
Thus, the above calculation was not performed for B. ,.
5.5 Milk-Transfer Coefficient F
m
The milk-transfer coefficient Fm represents the fraction of the
total daily intake of a nuclide which is transferred to a liter of the
cow's milk at equilibrium. Unfortunately, very few measurements of F
involve equilibrium conditions. Usually, single oral doses are adminis-
tered to the cow, and milk concentrations are monitored for several
days. Values of Fm can be derived from such experiments according to
the methodology described by Ng et al. (1977) in which the total fraction
of the oral dose recovered in milk after six days or more is divided by
the daily rate of milk production.
Determinations of Fm (Table 11) were made from original literature
references whenever available. However, for many elements the well-
documented review by Ng et al. (1977) was the primary literature source.
References in which the chemical form of the nuclide administered orally
to the cow was clearly atypical of forms found in the environment were
excluded from the analysis of Fm. As for the analysis of B-v, the values
of Fm given in Table 11 are element- rather than nuclide-specific.
5.6 The Meat-Transfer Coefficient Ff
The meat-transfer coefficient Ff represents the fraction of the
total daily intake of a nuclide which is transferred to a kilogram of
muscle in the meat-producing animal at equilibrium. (For the demonstration
-------
94
Table 11. Estimates of the mi Ik-transfer coefficient F for dairy cows
Element
Sr
Tc
I
Cs
Pb
Po
Ra
Ac
Th
Pa
U
Pu
Fm
(day/ liter)
2.4 x 10"3
9.9 x 10"3
1.0 x 10"2
5.6 x 10" 3
9.9 x 10"5
1.2 x 10"4
5.9 x 10"4
2.0 x 10"5
5.0 x 10"6
5.0 x 10"6
1.2 x 10"4
4.5 x 10"8
References
Cragle and Dermott (1959); Garner et al (1960);
Squire et al . (1958); Comar et al. (1961).
Ng et al. (1977).
Ng et al. (1977); Hoffman (1979).
Hawthorne (1967); Ward et al . (1965); Johnson
et al. (1968).
Stanley et al . (1971); Kerin and Kerin (1971);
Nelmes et al. (1974); Donovan et al . (1969);
Bovay (1971); Lynch et al . (1974).
Mclnroy (1973).
Kirchmann et al . (1972).
Ng et al. (1977).
Ng et al. (1977).
Ng et al. (1977).
Chapman and Mammons (1963).
Sansom (1964); Garten (1978)a
^Derived from range based on a review of Stanley et al. (1976) and
reported by Garten (1978).
-------
95
run, beef is the meat consumed at the specified environmental locations.)
It is assumed that equilibrium conditions exist when slaughter occurs.
Measured intake rates and associated meat and forage elemental concentra-
tions may yield values of Ff which are suspect, because it has not been
conclusively shown that equilibrium between intake rate and meat con-
centration are ever attained. Thus, the age and time of exposure from
intake for each animal may significantly influence the measured value.
However, a review of the available literature was made to give estimates
of Ff for beef cattle (Table 12).
Values of Ff based on immature cattle (less than 6 months of age)
were excluded from analysis when data for adult cattle were available.
Data for other ruminant species were included when literature references
for cattle Ff's were unavailable. Extrapolation from these species to
beef cattle may result in invalid conclusions.
5.7 Other Environmental Terrestrial Transport Parameters
A list of environmental parameters used in the AIRDOS-EPA code
demonstration run, and not previously discussed above, are given in
Tables 13 and 14. Values of the radiological decay constant X. (day"1)
are taken from Kocher (1977). The values for the parameters f ,
fs, QF, and P (defined in Table 6) are the means of their respective
statistical distributions as described in Hoffman and Baes (1979). Other
parameter values are taken from the U.S. NRC Regulatory Guide 1.109
(1977).
-------
96
Table 12. Estimates of the meat-transfer coefficient F for beef cattle
Element
Sr
Tc
I
Cs
Pb
Po
Ra
Ac
Th
Pa
U
Pu
Ff
(day/kg)
3.0 x 10"4
8.7 x 10"3
7.0 x 10"3
1.4 x 10~2
9.1 x 10"4
4.0 x lO"3*
5.0 x 10"4i
1.6 x 10'60
1.6 x l
-------
97
Table 13. Radiological decay constant Xj for selected nuclidesa
Nuclide X.
(day"1)
3H 1.54 x 10"4
14 7
C 3.32 x 10"7
89Sr 4.32 x 10"2
9°Sr 6.54 x 10"5
"Tc 8.92 x 1(T9
131I 8.62 xlO-2
21°Pb 8.52 x 1(T5
21°Po 5.02 x 10"3
Rn 1.81 x 10"1
226Ra 1.19X10'6
228Ra 3.15 x 1(T4
227Ac 8.72 x 1CT5
228Th 9.93 x ID"4
23°Th 2.47 x ID'8
232Th 1.35xlO-13
231Pa 5.82xlO-8
234U 7.77 x ID'9
235U 2.68 x ID'12
238U 4.25 x ID'13
238Pu 2.17 x 1CT5
239Pu 7.79 xlO-8
aDerived from Kocher (1977).
-------
Table 14.
98
Environmental parameters used in AIRDOS-EPA to estimate
radionuclide concentrations in meat, milk,
and vegetables consumed by man
a
Parameter Value
tel 720
te2 1440
fp 0.4
fs 0.4
QF 16
tf 4
ts 20
tb 8.76 x 105
*hl °
th2 2160
th3 336
th4 336
AW 0.0021
P 215
RD^ 0.63
RD2 0 . 20
RW-f 0.63
RW^ 0.20
Units Reference
hr U.S. NRC Reg. Guide 1.109
(1977)
hr U.S. NRC Reg. Guide 1.109
(1977)
Shor and Fields (1979b)
Shor and Fields (1979b)
kg/day Shor and Fields (1979a)
days U.S. NRC Reg. Guide 1.109
(1977)
days U.S. NRC Reg. Guide 1.109
(1977)
hr
hr U.S. NRC Reg. Guide 1.109
(1977)
hr U.S. NRC Reg. Guide 1.109
(1977)
hr U.S. NRC Reg. Guide 1.109
(1977)
hr U.S. NRC Reg. Guide 1.109
(1977)
hr'1 U.S. NRC Reg. Guide 1.109
(1977)
2
kg/m (dry wt) Derived from Baes (1979)
aFor a description of the parameter see Table 6.
We have not been able to determine values of R, and R~ specific
for dry and wet deposition.
-------
99
5.8 Ingestion and Inhalation Rates IK for the Average Adult
ap
The available surveys on food ingestion and air inhalation rates
have recently been reviewed by Rupp (1979). The values in Table 15 are
the mean values of the ranges found by Rupp and are specific for the
average adult. These values are used in the demonstration run of the
code to estimate population doses.
-------
100
Table 15. Ingestion and inhalation rates U for the average adulta
Pathway Rate
Leafy vegetables UapL 18 kg/year
u
Other fresh produce U 176 kg/year
Meat (excluding fish) U F 94 kg/year
Milk UflpM 112 liter/year
Inhalation U! 8030 m3/year
aValues listed are given by Rupp (1979).
-------
101
6. REFERENCES
Adams, W. H., J. R. Buckholz, C. W. Christenson, G. L. Johnson, and E. B.
Fowler. 1975. Studies of Plutonium, Americium, and Uranium in
Environmental Matrices. LA-5661, Los Alamos Scientific Laboratory,
Los Alamos, New Mexico.
Arkhipov, N. P., Y. A. Fedorov, E. F. Bondar, R. M. Aleksakhin, G. N. Romanov,
and L. T. Feuraleva. 1974. Predicting 90Sr accumulation in the crop
harvest as a result of its uptake from the soil. Soviet Soil Soi. 6(4):
412-419.
Baes, C. F., III. 1979. The soil loss constant X ,, due to leaching from
soils. IN Hoffman, F. 0. and C. F. Baes, III (eds.). A Statistical
Analysis of Selected Parameters for Predicting Food Chain Transport
and Internal Dose of Radionuclides. final Report. ORNL/NUREG/TM-282.
Baes, C. F., Ill and T. H. Orton. 1979. Productivity of agricultural
crops and forage Y . IN Hoffman, F. 0. and C. F. Baes, III (eds.).
A Statistical Analysis of Selected Parameters for Predicting Food
Chain Transport and Internal Dose of Radionuclides. Final Report.
ORNL/NUREG/TM-282.
Barber, D. A. 1964. Influence of soil organic matter on the entry of
cesium-137 into plants. Nature 294: 1326-1327.
Beasley, T. M. and H. E. Palmer. 1966. Lead-210 and polonium-210 in biologi-
cal samples from Alaska. Science 152: 1062-1064.
Bell, C. Professor, Animal Science Department, University of Tennessee,
Knoxville, Tenn. 37916. 1978. Personal communication to A. P.
Watson, August 17, 1978.
Bondietti, E. A. and F. H. Sweeton. 1976. Transuranic speciation in the
environment, pp. 449-476. IN Transuranics in Natural Environments.
NVO-178.
Bondietti, E. A., J. R. Trabalka, C. T. Garten, and G. G. Killough. In press.
Biochemistry of actinides: A nuclear fuel cycle perspective. IN
Radioactive Waste in Geologic Storage. American Chemical Society Symposium
Service.
Bondietti, E. A., C. T. Garten, Jr., C. W. Francis, and Eyman, L. D.
(in preparation). Uranium and thorium 1n the biosphere: A review
emphasizing behavior applicable to the thorium fuel cycle. Journal
of Environmental Quality.
Booth, R. S., S. V. Kaye, and P. S. Rohwer. 1971. Systems analysis method-
ology for predicting dose to man from a radioactively contaminated
terrestrial environment, pp. 877-893. IN Radionuclides in Ecosystems,
Proceedings of the Third national Symposium on Radioecology. CONF-710501.
-------
102
Bovay, E. 1.971. Accumulation of Pb on vegetation along expressways. Feeding
tests on dairy cows with forage contaminated with Pb. pp. 101-117. IN
Switzerland Federal Committee for Air Hygiene Investigations: The Problem
of Leaded Gasoline. Bull, der Eidg. Gesundheitsamtes Suppl. B, No. 3.
Briggs, G. A. 1969. Plume Rise, AEC Cri.ti.oal Review Series. TID-25075.
Brown, K. W. and J. C. McFarlane. 1978. Plutonium uptake by plants grown
in soil containing plutonium-238 dioxide particles. Health Phys.
35:481-485.
Chamberlain, A. C. 1970. Interception and retention of radioactive aerosols
by vegetation. Atm. Environ. 4:57-78.
Chapman, T. S. and S. Hanmons, Jr. 1963. Some observations concerning uranium
content of ingesta and excreta of cattle. Health Phys. 9: 79-81.
Cline, J. F. 1968. Uptake of 21tlAm and 239Pu by plants, pp. 8.24-8.25. IN
Thompson, R. C. and Paulette Teal (eds.). Paeific Northwest Laboratory
Annual Report for 196? to the USAEC Division of Biology and Medicine,
Volume I. BNWL-714.
Comar, C. L., R. H. Wasserman, and A. R. Twardock. 1961. Secretion of calcium
and strontium into milk. Health Phys. 7: 69-80.
Cox, W. J. and D. W. Rains. 1972. Effect of lime on Pb uptake by five plant
species. J. Environ. Qual. 1(2): 167-71.
Cragle, R. G. and B. J. Demott. 1959. Strontium and calcium uptake and excretion
in lactating dairy cows. J. Dairy Soi. 42(8): 1367-1372.
Culkowski, W. M. and M. R. Patterson. 1976. A Comprehensive Atmospheric
Transport and Diffusion Model. ORNL/NSF/EATC-17.
Cummings, S. L. and L. Bankert. 1971. The uptake of cerium-144, pro-
methium-147, and plutonium-238 by oat plants from soils. Radiat.
Data Rep. 12(2): 83-85.
Dahlman, R. C., E. A. Bondietti, and L. D. Eyman. 1976. Biologi-
cal pathways and chemical behavior of plutonium and other actinides in
the environment, pp. 47-80 IN A. M. Friedman (ed.). Aotinides in
the Environment, ACS Symposium Series 35. American Chemical Society,
Washington.
DeBortoli, M. and P. Gaglione. 1972. Radium-226 in environmental materials
and foods. Health Phys. 22(1): 43-48.
Dedolph, R., G. Ter Haar, R. Holtzman, and H. Lucas, Jr. 1970. Sources of
Pb in perenniel ryegrass and radishes. Environ. Soi. Teohnol. 4(3):
217-225.
-------
103
Donovan, P, P., D. T. Feeley, and P. P. Canavan. 1969. Lead contamination
in mining areas in Western Ireland II. Survey of animals, pastures, foods,
and waters. J. Soi. Fd. Agrio. 20: 43-45.
Essington, E., H. Nishita, and A. Wallace. 1962. Influence of chelates on
availability of fission products to plants grown in a contaminated soil.
Soil Soi. 94: 96-105.
Evans, E. J. and A. J. Dekker. 1968. Comparative Cs-137 content of agricultural
crops grown in a contaminated soil. Can. J. Plant Soi. 48: 183-188.
Evans, R. D. 1969. Engineer's guide to the elementary behavior of radon
daughters. Health Phys. 17: 229-252.
o
Fredriksson, L. A. Eriksson, and H. Lonsjo. 1966. Studies on Plant Accumu-
lation of Fission Products under Swedish Conditions. VIII. Uptake of 137Ce
in Agricultural Crops as Influenced by Soil Characteristics, and Rate of
Potassium Fertilization in a Three Year Micro Plot Experiment. Research
Institute of National Defense. Stockholm, Sweden, FOA 4 Rapport A 4486-
4623.
o
Fredriksson, L., H. Lonsjo, and A. Eriksson. 1969. Studies on Plant Accumu-
lation of Fission Products under Swedish Conditions. XII. Uptake of
137Cs by Barley and Peas from 12 Different Top Soils Combined with 2 Sub-
soils in a Long Term Micro Plot Experiment. Research Institute of
National Defense. Stockholm, Sweden, FOA 4 Rapport C 4405-4428.
Garner, R. J., H. G. Jones, and B. F. Sansom. 1960. Fission products and the
dairy cow: 2. Some aspects of the metabolism of the alkaline earth ele-
ments calcium, strontium, and barium. Biochem. J. 76: 572.
Garten, C. T. 1978. A review of parameter values used to assess the
transport of plutonium, uranium, and thorium in terrestrial food chains.
Environmental Research (in press).
Gifford, F. A., Jr. 1961. Use of routine meteorological observations for
estimating atmospheric dispersion. Nucl. Saf. 2(4): 47-57.
Gifford, F. A., Jr. 1976. Turbulent diffusion-typing schemes: A review.
Nucl. Saf. 17(1): 68-86.
o
Haak, E. and A. Eriksson. 1973. Studies on Plant Accumulation of Fission
Products under Swedish Conditions. VIX. Uptake of l37Cs by Wheat and
Timothy from Six Different Soils as Influenced by Bate of K-Fertilization
and by Type and Pate of A'-Fertilisation in Pot Experiments. The Research
Institute of National Defence, Stockholm, Sweden, FOA 4 Rapport C
4557-A3.
-------
104
Hardy, E., J. Rivera, I. Fisenne, W. Pond, and D. Hogue. 1969. Comparative
utilization of dietary radium-226 and other alkaline earths by pigs
and sheep, pp. 183-190. IN Sikov, M. R. and D. D. Mahlum (eds.).
Proceedings of the Ninth Annual Hanford Biology Sumposium, Richland,
Washington., May 5-8, 1969. CONF-690501.
Hardy, E. P., B. G. Bennett, and L. T. Alexander. 1977. Radionuclide Uptake
by Cultivated Crops. HASL-321, Health and Safety Laboratory, New York.
Hawthorne, H. A. 1967. Field studies of the transfers of 137Cs from fallout
to milk. pp. 77-85. IN B. Aberg and F. P. Hungate (eds.). Radiological
Concentration Processes, Proceedings of an International Symposium in
Stockholm, Sweden, April 1966.
Heinemann, K. and Vogt, K. 0. In press. Messungen zur ablagerung und
biologischen halbwertszeit von jod auf vegetation. Proceedings of the
12th Annual Symposium of the Fachverband fur Strahlenschutz, October
2-6', 1978, florderney, Federal Republic of Germany.
Hill, C. R. 1965. Polonium-210 in man. Nature 208(5009): 423-428.
Hoffman, F. 0. 1977. A reassessment of the deposition velocity in the
prediction of the environmental transport of radioiodine from air to
milk. Health Phys. 32(5): 437-441.
Hoffman, F. 0. 1979. The coefficient for the transfer of radionuclides
from animal intake to milk F . IN Hoffman, F. 0. and C. F. Baes, III
(eds.). A Statistical Analysis of Selected Parameters for Predicting
Food Chain Transport and Internal Dose of Radionuclides. Final Report.
ORNL/NUREG/TM-282.
Hoffman, F. 0. and C. F. Baes, III (eds.). 1979. A Statistical Analysis of
Selected Parameters for Predicting Food Chain Transport and Internal
Dose of Radionuclides. Final Report. ORNL/NUREG/TM-282.
Holtzman, R. B. 1966a. Natural levels of lead-210, polonium-210 and
radium-226 in humans and biota of the arctic. Nature 210: 1094-1097.
Holtzman, R. B. 1966b. 226Ra and the natural airborne nuclides
210Pb and 2l°Po in arctic biota, pp. 1087-1096. IN Snyder, W. S.
(ed.). Proceedings of the First International Congress of Radiation
Protection. IRPA. Rome, 5-10 September 1966.
Holzworth, G. C. 1972. Mixing Heights, Wind Speeds and Potential for
Urban Air Pollution throughout the Contiguous United States.
Publication No. AP-101. U.S. Environmental Protection Agency,
Office of Air Programs, Research Triangle Park, N.C. 27711.
Horst, T. W. 1977. A surface depletion model for deposition from a
Gaussian plume. Atmos. Environ. 11: 41-46.
-------
105
Hosker, R. P., Jr. 1974. Estimates of dry deposition and plume
depletion over forests and grassland, pp. 29-309. IN Physical
Behavior of Radioactive Contaminants in the Atmosphere. Proc. of a
Symposium jointly organized by the IAEA and the World Meteorological
Organization. Vienna, 12-16 November 1973.
John, M. K. and C. J. Van Laerhoven. 1972. Lead distribution in plants
grown on a contaminated soil. Environ. Lett. 3(2): 111-116.
Johnson, J. E., G. M. Ward, E. Firestone, and K. L. Knox. 1968.
Metabolism of radioactive cesium (13l*Cs and 137Cs) and potassium by
dairy cattle as influenced by high and low forage diets. J. Nutr.
94: 282-288.
Kerin, D. and Z. Kerin. 1971. Lead contamination of milk and honey
caused by industrial lead aerosols. Prot. Vitae 2: 61-62.
IN lettering Abstracts 9(240): 206-207.
Ki Hough, G. G. and L. R. McKay. 1976. A Methodology for Calculating
Radiation Doses from Radioactivity Released to the Environment.
ORNL-4992.
Kil lough, G. G. and P. S. Rohwer. 1978. A new look at the dosimetry
of ll*C released to the atmosphere as carbon dioxide. Health Phys.
34: 141-159.
Killough, G. G., D. E. Dunning, Jr., S. R. Bernard, and J. C. Pleasant.
1978. Estimates of Internal Dose Equivalent to 22 Target Organs
for Radionuclides Occurring in Routine Releases from Nuclear Fuel-
Cycle Facilities. Vol. 1. ORNL/NUREG/TM-190.
Kirchmann, R. , A. Lafontaine, J. van der Hoek, and G. Koch. 1972.
Comparison of the rate of transfer to cow milk of 226Ra from
drinking water and 226Ra incorporated in hay. C. R. Soc. Biol. 166(11):
1557-1562.
Kirchmann, R., R. Boulenger, and A. LaFontaine. 1968. Absorption
of 226Ra in cultivated plants, pp. 1045-1051. IN W. S. Snyder et al.
(eds.). Proceedings of the IRPA Congress on Radiation Protection.
Rome, 1966, Vol. II, Pergamon Press.
Kocher, D. C. (ed.). 1977. Nuclear Decay Data for Radionuclides Occurring
in Routine Releases from Nuclear Fuel Cycle Facilities. ORNL/NUREG/TM
Kocher, D. C. 1979. Dose-Rate Conversion Factors for External Exposure
to Photon and Electron Radiation from Radionuclides Occurring in
Routine Releases from Nuclear Fuel Cycle Facilities. ORNL/NUREG/TM-283.
-------
106
LideVi, K., and M. Gustafsson. 1967. Relationships and seasonal variation of
137Cs in lichen, reindeer and man in Northern Sweden 1961 to 1965. p. 193.
IN Proceedings of International Symposium, Stockholm^ 1966. Pergamon
Press, Oxford, 1967.
Lynch, G. P., D. G. Cornell, and D. F. Smith. 1974. Excretion of cadmium
,and lead into milk. pp. 470-474. IN Hoekstra, W. G., J. W. Suttie,
H. E. Ganther, and W. Mertz (eds.). Trace Element Metabolism in
Animals - 2. University Park Press, Baltimore, Md.
Mclnroy, J. F. 1973. Polonium-210 Metabolism in Ruminants. Ph.D.
Dissertation. Colorado State University. Fort Collins, Colo.
Markee, E. H., Jr. 1967. A parametric study of gaseous plume depletion by
ground surface adsorption, pp. 602-614. IN Mawson, C. A. (ed.).
USAEC Meteorological Information Meeting, September 11-14, 1967.
AECL-2787.
Mills, M. T. and M. Reeves. 1973. A Multi-Source Atmospheric Transport
Model for Deposition of Trace Contaminant. ORNL/NSF/EATC/2.
Miller, C. W. 1979a. The interception Fraction. IN Hoffman, F. 0. and
C. F. Baes, III (eds.). A Statistical Analysis of Selected Parameters
for Predicting Food Chain Transport and Internal Dose of Radionuclides.
Final Report. ORNL/NUREG/TM-282.
Miller, C. W. 1979b. Validation of a model to predict aerosol interception
by vegetation. IN International Symposium on Biological Implications of
Radionuclides Released from Nuclear Industries. IAEA-SM-237/53. Vienna,
26-30 March 1979.
Miller, C. W., F. 0. Hoffman, and D. L. Shaeffer. 1978. The importance of
variations in the deposition velocity assumed for the assessment of
airborne radionuclide releases. Health Phys. 34: 730-734.
Moore, R. E. 1978. AREAS: A Computer Code for Estimating Air Pollutant
Concentrations from Dispersed Sources. ORNL/TM-6364.
Moore, R. E. 1977. The AIRDOS-II Computer Code for Estimating Radiation
Dose to Man from Airborne Radionuclides in Areas Surrounding Nuclear
Facilities. ORNL-5245.
Mordberg, E. L., V. M. Aliksandruk, G. F. Kovygin, I. I. Shevckenko,
V. M. Blyumshtein, and G. F. Yushkevich. 1976. Translocation of
isotopes of the uranium-radium series into the grain of some
agricultural crops. Gig. Sanit. 2: 58-61 (Abstract only, Chem. Abstr.
84: 134563).
Morrison, Frank B. 1956. Feeds and Feeding. A Handbook for the Student
and Stockman. 22nd ed. The Morrison Publishing Co., Ithaca, New York.
-------
107
Nelmes, A. J., R. St. J. Buxton, F. A. Fairweather, and A. E. Martin. 1974.
The implication of the transfer of trace metals from sewage sludge to
man. pp. 145-153 IN Proceedings of the University of Missouri 8th Annual
Conference on Trace Substances in Environmental Health.
Ng, Y. C., C. A. Burton, S. E. Thompson, R. K. Tandy, H. K. Kretner, and
M. W. Pratt. 1968. Prediction of the maximum dosage to man from the
fallout of nuclear devices. IN Handbook for Estimating the Maximum
Internal Dose from Eadionuclides Released to the Biosphere. UCRL-50163,
pt. IV. Lawrence Radiation Laboratory.
Ng, Y. C., C. S. Colsher, D. J. Quinn, and S. E. Thompson. 1977. Transfer
Coefficients for the Prediction of the Dose to Man via the Forage-Cow-
Milk Pathway from Eadionuclides Released to the Biosphere. UCRL-51939,
Lawrence Livermore Laboratory.
Ng, Y. C., W. A. Phillips, Y. E. Ricker, R. K. Tandy, and S. E. Thompson. 1978.
Methodology for Assessing Dose Commitment to Individuals and to the
Population from Ingestion of Terrestrial Foods Contaminated by Emissions
from a Nuclear Fuel Reprocessing Plant at the Savannah River Plant - Draft
Report. UCID-17743.
Pasquill, F. 1961. The estimation of the dispersion of windborne material.
Meteorol. Mag. 90: 33.
Pleasant, J. C. 1979. INGDOS - A Conventional Computer Code to Implement
U.S. Nuclear Regulatory Guide 1.109 Models for Estimation of Annual
Doses from Ingestion of Atmospherically Released Radionuclides in Food.
ORNL/TM-6100.
Price, K. R. 1972. Uptake of 237Np3 233Pu3 2>tlAm3 and 2**0n from Soil
by Tumbleweed and Cheatgrass. AEC Research and Development Report.
BNWL-1688.
Rabinowitz, M. 1972. Plant uptake of soil and atmospheric lead in Southern
California. Chemosphere 1(4): 175-180.
Rediske, J. H., J. F. dine, and A. A. Selders. 1955. The Absorption of
Fission Products by Plants. HW-36734.
Romney, E. M., A. J. Steen, R. A. Wood, and W. A. Rhoads. 1966. Concentra-
tion of radionuclides by plants grown on ejecta from the sedan thermo-
nuclear cratering detonation, pp. 391-398. IN Radioeoological Concen-
tration Processes. Proceedings of International Symposium, Stockholm,
Sweden.
Romney, E. M., H. M. Mork, and K. H. Larson. 1970. Persistence of
Plutonium in soil, plants, and small mammals. Health Phys. 19:
487-491.
-------
108
Romney, E. M., J. W. Neel, H. Nishita, J. H. Olafson, and K. H. Larson.
1957. Plant uptake of 90Sr, 91Y, 106Ru, 137Cs, and ^"Ce from soils.
Soil Sci. 83: 369-376.
Rupp, A. F., S. E. Beall, L. P. Bornwasser, and D. H. Johnson. 1948.
Dilution of Stock Gasses in Cross Winds. USAEC Report AECD-1811
(CE-1620). Clinton Laboratories.
Rupp, E. M. 1979. Dietary intake and inhalation rates U . IN Hoffman,
F. 0. and C. F. Baes, III (eds.). A Statistical Analysis of Selected
Parameters for Predicting Food Chain Transport and Internal Dose of
Radionualides. Final Report. ORNL/NUREG/TM-282.
Sansom, B. F. 1964. The transfer of plutonium-239 from the diet of a cow
to its milk. Br. Vet. J. 120: 158-161.
Schulz, R. K. 1965. Soil chemistry of radionuclides. Health Phys. 11:
1317-1324.
Schulz, P. K., 6. A. Tompkins, and K. J. Babock. 1975. Uptake of plutonium
and americium by plants from soil: uptake by wheat from various soils
and effect of oxidation of plutonium added to soil. IN Proceedings of
International Symposium on Transuranium Nualides in the Environment.
San Francisco, 17-21 November 1975, Vienna, IAEA (1976) as quoted by
Bulman, R. A. 1976. Concentration of Actinides in the Food Chain.
NRPB-R44, Harwell, Didcot, OXon. 0X11 ORQ. June 1976.
Sehmel, G. A., S. L. Sutter, and M. T. Dana. 1973. Dry deposition processes.
pp. 43-49. IN Pacific Northwest Laboratory Annual Report for 1972
to the USAEC Division of Biomedical and Environmental Research.
Volume II Physical Sciences, Part 1 Atmospheric Sciences. BNWL-1751
PT1.
Shor, R. W. and D. E. Fields. 1979a. Animal feed consumption rate QP. IN
Hoffman, F. 0. and C. F. Baes, III (eds.). A Statistical Analyses
of Selected Parameters for Predicting Food Chain Transport and Internal
Dose of Radionuclides. Final Report. ORNL/NUREG/TM-282.
Shor, R. W. and D. E. Fields. 1979b. The fraction of total feed composed
of fresh forage F and the fraction of the year fresh forage is utilized
F . IN Hoffman, F. 0. and C. F. Baes, III (eds.). A Statistical Analysis
of Selected Parameters for Predicting Food Chain Transport and Internal
Dose of Radionualides. Final Report. ORNL/NUREG/TM-282.
Slade, D. H. (ed.). 1968. Meteorology and Atomic Energy - 1968. U.S.
Atomic Energy Commission/Division of Technical Information.
Spector, William S. 1956. Handbook of Biological Data. W. B. Saunders
Co., Philadelphia, p. 187.
-------
109
Squire, H. M. , L. J. Middleton, B. F. Sansom, and C. R. Cold. 1958.
Experiments on the metabolism of certain fission products in dairy
cows. pp. 207-219. Extermann, R. C. (ed.)- IN Radioisotopes in Scientific
Research, Vol. IV, Pergamon Press.
Stanley, R. E., A. A. Mullen, and E. W. Bretthauer. 1971. Transfer to
milk of ingested radiolead. Health Phys. 21: 211-215.
Taskayev, A. K. , V. Ya. Ovchenkov, R. M. Aleksakhin, and I. I. Shirktomova.
1977. Uptake of 226Ra by plants and change in its state in the soil-plant
tops-litterfall system. Poahvovedeniye 2: 42-48.
Ter Haar, G. 1979. Air as a source of lead in edible crops. Environ. Sai.
. 4(3): 226-230.
Turner, D. B. 1969. Workbook of Atmospheric Dispersion Estimates. Air
Pollution Control Administration. Cincinnati, Ohio.
U.S. Nuclear Regulatory Commission. 1977. Regulatory Guide 1.109,
Calou.1a.tion of Annual Doses to Man from Routine Releases of Reactor
Effluents for the Purpose of Evaluating Compliance with 10 CFR Part
50 Appendix I (Revision 1). Office of Standards Development.
Van der Hoven. I. 1968. Deposition of particles and gasses. pp. 202-208. IN
Slade, D. (ed.). Meteorology and Atomic Energy - 1968. U.S. Atomic
Energy Commission. USAEC TID-24190.
Vavilov, P. P., 0. N. Papova, and R. P. Kodaneva. 1964. The behavior of
radium in plants. Dokl. Akad. Nauk.-S.s.s.R. 517: 992-994 [translated
abstract Nucl. Sci. Abstr. 19(2): 2016].
Ward, G. M. and J. E. Johnson. 1965, The cesium-137 content of beef from
dairy and feed-lot cattle. Health Phys. 11: 95-100.
Ward, G. M., J. E. Johnson, and H. F. Stewart. 1965. 137Cs passage from
precipitation to milk. pp. 703-710. IN A. W. Klement, Jr. (ed.).
Radioactive Fallout from Nuclear Weapons Tests. USAEC Symposium Series
#5.
Watters, R. L., J. E. Johnson, and W. R. Hansen. 1969. A Study of Unsupported
Polonium-210 for Ion Exchange in Soil and Uptake in Veaetation. COO-1 733-3.
Colorado State University, Fort Collins, Colo.
Wildung, R. £., T. R. Garland, and D. A. Cata7do. 1977. Accumulation of
technetium by plants. Health Phus. 32: 374-317.
Wilson, D. 0. and J. F. dine. 1966. Removal of plutom'um-239, tungsten-185,
and lead-210 from soils. Nature 209: 941-942.
Zimdahl, R. L., 0. T. McCreary, and S. M. Gwynn. 1978. Lead uptake by
plants - the influence of lead source. Bull. Environ. Contam. Toxiool.
19(4): 431-435.
-------
Ill
Appendix A
LISTING OF THE AIRDOS-EPA CODE
-------
113
C
c
C
c
c
c
AIRDOS-EPA CODE
R. E. MOORE HEALTH AND SAFETY RESEARCH DIV. ORNL
COMMON /OCOM/ HAHNOC(36),WORD,NNUCS,ANLAH(36),BR,SQSD, ACON(36,20,
> 20),GCON(36,20,20),LIPO,NOHH(36,11),NRHH(36,11), 03MODI(36,12,8)
> , VD(36),VDCOEF(20,20),NOL,NOa,
HEAL*8 NAMNDC
INTEGER OPTION(9)
BEAL*8 WORD,OPT
DATA OPT/'OPTIOHS '/
READ (50,9004) WORD,OPTION
IF (WORD.NE.OPT) GO TO 20
WRITE(51,9005)
WRITE (51,9006)
W«ITE(51,9007)
WRITB{51,9008)
WHITE(51,9017)
WRITE(51,9009)
WRITE(51,9019)
GO TO 10
(OPTION(1)
(OPTION(1)
(OPTION(2)
(OPTION(2)
EQ.1)
EQ.2)
IF
IF
IF
IF (OPTION (2) .SQ.O)
IF (OPTION(1).HE.2)
CALL DIRECT(OPTION(2))
CALL DOSED
STOP
10 IF (OPTION(3).SQ
IF (OPTION(3).EQ
IF (OPTION(4) .EQ
IF (OPTION(4).EQ
IF (OPTION(5).EQ
IF (OPTION(5) .EQ
IF (OPTION(5).BQ
IF (OPTION(6).NE
IF (OPTION(7).EQ
IF (OPTION(3).SQ
IF (OPTION(9).EQ
IF (OPTION (I»).EQ. 2)
WHITE(51,9011)
WHITE(51,9010)
WRITE(51,9012)
WRITE(51,9013)
1.AND.OPTION(2).EQ.1)
1. AND. OPTION (2) .NE.1)
LAND. OPTION (2) .NE.1)
H3ITE(51,901d)OPTION(6)
HRITE(51,9000)
WRITE(51,9001)
WHITE(51,9002)
WHITE(51,9014)
WBITE(51,9015)
WHITE(51,9016)
STOP
CHI/Q TABLES ABB NOT PRINTED")
DECK. PROGRlt! TERMINATED.
WORD-1 , A8)
CALL CONCEN(OPTION(2),OPTION (3) ,OPTIOS(4) ,OPTION(5),OPTION (6) ,
> OPTION (7), OPTION (8) ,OPTION (9) , 520)
IF (OPTION (1). SQ.O) CALL DOSEN
STOP
20 WRITE (51,9003)WORD
STOP 10
9000 FORMAT(• 'jTSO.'THE CALCULATIONS ARE HADE FOR A UNIFORM CIRCULAR A
>REA SOORCE1)
9001 FORHATC ',130,'THE MAIN OUTPUT TABLB IN SOBSOOTINE COSCEN IS HOT
>PRINTED«)
9002 FOBHATI* ',T30,'THE
9003 FORMAT('OERROR IN DATA
9004 FORMAT(A8,5I1,I2,3I1)
9005 FORMAT(•1',T50,'OOTPUT OF AISD3S-EPA COMPUTES CODE')
9006 FORHATCO')
9007 FORMAT(• •,T20,'OPTIONS SELECTED—•)
9008 FORMAT ('O^TSO,1 PROGRAM TERMINATED AFTER PRINTING RADIONUCLIDE CON
>CENTRATIONS')
9009 FORMAT(• •,T30,•RADIONUCLIDE CONCENTRATIONS ARE LISTED FOR DIRECTI
>ON AND DISTANCE F80B FACILITY')
9010 FORMAT(• «,T30,•HADIONUCIIDE CONCENTRATIONS LISTED ARE PLUME CENTE
>HLINE VALUES')
9011 FORMAT('0»,T30,'RADIONUCLIDB CONCBNTBiTIOHS LISTED ARE SECTOR-AVER
>AGED VALUES')
9012 FORHATC «,T30,'PLUME RISE IS COMPUTED FOR BUOYANT PLUSES BY BRIGG
>S EQUATIONS')
9013 FORHATC ',T30,
> 'PLUME RISE IS COMPUTED FOR MOMENTUM-TYPE EMISSIONS')
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
-------
114
901U FORMAT{' •,T30,'SPECIFIC PLUME RISE OSSD FOE EACH AIR STABILITY CL 330
>ASS (METEHS)-*) 335
9015 FORMAT('0',T30,'DEPOSITION VELOCITY IS VARIED WITH DIRECTION AND D 340
>ISTAKCE') 315
9016 FORHAT('0',T30, "ERROR—ILLEGAL DSE OF VARIABLE DEPOSITIOK VELOCITY 350
> WITH SQUARE GRID') 355
9017 FOEtlAT('Ol,T30,'DOSES ARE CALCULATED FROM INPUT AIR CONCENTRATIONS 360
> AND GRODNO DEPOSITION RATES') 365
9018 FORMAT(• ',T30,'AIB CONCENTRATIONS AND GROUND DEPOSITION RATES ARE 370
> PUNCHED ON CARDS FOR THE FIRST ',12,' RADIONUCLIDES*) 375
9019 FORtlATC ',T30,'THE ASSESSHENT iREA IS A 20 BY 20 SQUASE GRID1) 380
END 385
SUBROUTINE CONCEN(LORT,LOST,LRISE,LDEP,LPUN,LAEE,LTAB,LCHI,*J CONC 0
C COSC 5
COMMON /OCOH/ NRMNUC(36), HOBD, NNUCS, ANLAM (36),BR,SQSD, ACON(36,20,COHC 10
> 20),GCON(36,20,20),LIPO,NOMM(36,11),NflHH(36,11), ORMODI(36,12,8)CONC 15
> , VD (36) ,VDCOEF (20,20) ,NCL,NOT7,NFL,NRU CONC 20
COMMON /PCOH/ REL (6,36) ,IDIST{20) ,NU!1ST CONC 25
COMMON /FCO.V FEQHL,INTPA{20,20) CONC 30
REAL*8 KAHNOC,WOBD CCNC 35
C CONC <40
REAL*8 W1,H2,W3,H4 CO*>C 45
DIHENSION AA(7,4,4),DIA(6),FRAW(7,16),PERD(16),AVON{20,20), PH(6),CONC 50
> PE(7),QH(6), SC(36) ,TAI (36) ,TG (3) ,TGD{36) , UDAV{7,16), UDCAT{7, CONC 55
> 16) ,VEl(6) ,VG(36) , NOH A{36) ,NSPTHO (20,20) , SSPTH1 (20 ,10) , COKC 60
> FDSTOR(36,6,7) ,BCUND{21) ,LIST(20) CONC 65
DIHENSION DIM (6) CONC 70
DATA NCMA/3€*0/,ALPH/' */ CONC 75
DATA JM/'AREA «/»W2/'AIH •/,H3/'STACKS •/,W4/'B0CLIDES'/ COTTC 80
EQUIVALENCE (NSPTMO (1 , 11) , NSPT!11 (1, 1) ) CONC 85
DATA NSPTHO/ 07,07,07,07,08,08,08,08,09,09,09,09,10,10,10,10,11, CONC 90
> 11,11,11, 07,07,07,07,08,08,08,08,09,09,09,09,10,10,10,10,11,11, CONC 95
> 11,11, 07,07,07,07,07,08,08,08,08,09,09,10,10,10,10,11,11,11,11, CONC 100
> 11, 07,07,07,07,07,07,08,08,08,09,09,10,10,10,11,11,11,11,11,11, CONC 105
> 06,06,07,07,07,07,08,08,08,09,09,10,10,10,11,11,11,11,12,12, 06, CONC 110
> 06,06,07,07,07,07,08,08,09,09,10,10,11,11,11,11,12,12,12, 06,06, CONC 115
> 06,06,06,07,07,07,08,09,09,10,11,11,11,12,12,12,12,12, 06,06,06, CONC 120
> 06,06,06,07,07,08,09,09,10,11,11,12,12,12,12,12,12, 05,05,06,06, COtfC 125
> 06,06,06,06,07,08,10,11,12,12,12,12,12,12,13,13, 05,05,05,05,05, CONC 130
> 05,05,05,06,07,11,12,13,13,13,13,13,13,13,13/ CORC 135
DATA NSPTM1/ 05, 05, 05,05, 05,05, 05,05,01,03,15,1«,13,13,13,13,13, CONC 140
> 13,13,13, 05,05, 01*, 04, OH, OH, OU, 04,03,02,16, 15,14,10,14,14,14,14, COSC 145
> 13,13, 04,04,04,04,04,04,03,03,02,01,01,16,15,15,14,14,14,14,14, CONC 150
> 14, 04,01,04,04,04,03,03,03,02,01,01,16,15,15,15,14,14,14,14,14, CONC 155
> 04,04,04,03,03,03,03,02,02,01,01,16,16,15,15,15,15,14,14,14, 04, CONC 160
> 04,03,03,03,03,02,02,02,01,01,16,16,16,15,15,15,15,14,14, 03,03, COKC 165
> 03,03,03,03,02,02,02,01,01,16,16,16,15,15,15,15,15,15, 03,03,03, CONC 170
> 03,03,02,02,02,02,01,01,16,16,16*16,15,15,15,15,15, 03,03,03,03, CONC 175
> 02,02,02,02,01,01,01,01,16,16,16,16,15,15,15,15, 03,03,03,03,02, CONC 180
> 02,02,02,01,01,01,01,16,16,16,16,15,15,15,15/ CONC 185
C CONC 190
C THIS AFHA? HOLDS THE VALUES FOR CONSTANTS ASSOCIATED WITH EACH CONC 195
C OF THE 7 PASQUILL AIE S1AEILITY CATAGOHIES (A,C,D,T). CONC 200
C CONC 205
DATA AA/.9757,.9986,.9767,.9600,.9615,.9733,.9986, .8660,.8493, CONC 210
> .8540,.8670,.8670,.S540,.8360, .8660,.8493,.8540,.8670,.8670, COBC 215
> .8540,.8360, .6294,.6303,.6254,.6342,.6260,.6342,.8360, 3.928, CONC 220
> 6.205,7.623,10.00,14.13,21.28,31.03, 1.841,2.213,3.266,5.261, COBC 225
> 7.357,9.333,10.093, 1.841,2.213,3.266,5.261,7.357,9.333,10.093, CONC 230
> .2083,.2946,.3977,.6166,.8042,1.233,10.093, 1.000,1.000,.9540, CONC 235
> .8061,.8600,.8823,.8257, 1.000,1.000,.8330,.6715,.6290,.6321, COHC 240
> .6547, 1.000,1.000,.8330,.5099,.4054,.3710,.3818, 1.000,1.000, CONC 245
> .5524,.5251,.11 10,.1106,.1106, 5.020,8.350,10.015,7.48,15.50, CONC 250
> J4.70,61.25, 5.020,8.350,4.400,2.950,3.150,6.132,18.80, 5.020, CONC 255
> 8.350,4.UOO,.8100,.5240,.7640,2-115, 5.020,8.350,.3320,.9300, CONC 260
> .0349,.0694,.1739/ CONC 265
C CONC 270
C ENC OF DECLARATIONS CONC 275
-------
115
DO 20 N0=1,20
DO 10 NR=1,20
10 VDCOEF(NO, NR)=1,
20 CONTINUE
HEAD(50,9008)NOL,NOD,NBL.NHO
HEAD(50,9909) PS
READ(50,9011)WORD
IF (WORD.HE.HI) RETURN 1
READ(50,9009) SQSO
READ (50,9000)SEQWL
READ(50,9008) IDIST
READ(50,9011) WORD
IF (BORD.NE. W2) RETURN 1
READ(50,9008)HDA1
READ(50,9009) HR,TA. TG
READ(50,9010)PERD
RBAD(50,9010) {(DDCAT(I,J) ,J=1,16) ,1=1,7)
READ(50,9010) (( ODAT(I,J) ,J=1,16),1=1,7)
READ(50,9012)FRAW
READ(50,9011)WORD
IF (WORD.HE.W3) RETURN 1
READ(50,9008)NOHST
DO 30 J=1,NU3Sr
30 READ (50,9009) PH(J) ,DIA(J) ,TEL (J) ,QH (J) ,DIU (J)
READ(50,9011)WORD
IP (WORD.HE. W4) RETURN 1
BEAD(50,4008) NNOCS
DO 40 I=1,NNDCS
READ (50,9011) NANNUC(I)
HBAD(50,9009) ANLAH(I) , SC(I) ,VD{I) ,VG(I)
HO RERD(50,9009) (RE1 (J,I) ,J=1,HOHST)
IF (LDEP.ME.1) GO TO 50
RBAD(50,8009) (BOOHD(I),1=2,21)
FEAD(50,9059) ((7DCOEP(I,J) ,J=NHL,MHO),I*H01,NOO)
READ(50,9060) LIST
BOOHD(1)=0.0
50 LID1=tID41
FBQVt=SBQWL
1A1=LIDA1
IF (LIDA1.EQ.10000) Li1=ALPH
IF (LRISB.EQ.2) tRITB(51,90HI) PR
1TRITE (5 1,9013)
iRITE(51,9015)
WRITE (51,9013)
»BITE(51,9013)
WRITE(51,9016)TA
WRITE(51,9017)
WRITB(51,9018)TG(1)
WHITE (51, 9019)16 (2)
WHITE(51,9020)TG(3)
WHITE (51,9022) 8R
WHITE (5 1,9021) LAI
WHITE (51,9023)NOHST
WfiITE(51,9013)
WRITE(51,9013)
WRITE(51,9024)
WRITE(51,9013)
cone
COHC
CORC
COHC
COKC
CONC
CORC
COHC
COHC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
COHC
CONC
CONC
COHC
CONC
CONC
CONC
CONC
CONC
CONC
COBC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
CONC
COHC
COEC
COHC
CONC
CONC
CONC
CONC
CONC
COHC
CONC
CONC
CONC
CONC
CONC
COHC
CONC
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
-------
116
60
70
80
WRITE(51,9025)
WHITE(51,9026)
WHITE (5 1,9027) (PH (I) ,1=1, HtJHST)
WRITE (51,9028) (DIA(I) ,I*1,NHI!ST)
WRITE(51,9029)(VBL(I),1*1,HURST)
WRITE (51,9030) (QH (I),1=1,NUHST)
IF (IARE.EQ.1) WRITE (51 ,9066) (Dill (I) ,1=1,HURST)
WRITS (51,9035)
WRITE (5 1,9036)
WRITE (51,9037)
WRITE(51,9013)
DO 70 J=1,ITOHST
DO 60 I=1,NNOCS
WRITE(51,9038) J, HAHHtJC(I) ,BEL (J.I)
CONTIN0E
CONTINUE
WHITE(51,9039)
WRITE (51,9040)
WRITE(51,9041)
WRITE(51,9042)
WHITE (51,9013)
DO 80 I*1,HNtJCS
WRITE(51,9043) NAHVOC(I) ,TG(I) ,VD(I),SC(I) ,ANLAN{I)
CONTINUE
WRITS (51,9031)
WRITE(51,9013)
WRITE(51,9032)
WRITE(51,9033)
WRITE (51,9013)
DO 90 MO*1,t6
»HITE(51,9034)HO,(FH>W(I,nO) ,1*1,7)
90 CONTINUE
WRITE (51,9044)
WHITE<51,9013)
WHITE(51,9015)
WHITE(51,9046)
WRITE(51,9047)
WHITE(51,9013)
DO 100 1*1,16
WHITB(51,9048)I,PERD ODCAT(4,I),ODCAT(5,I) ,TJDCAT (6,1) ,UDCAT(7,I)
100 COHTINOE
WHITE (51,9049)
WRITE(51,9050)
WRITE(51,9013)
WRITE(51,9045)
WRITE(51,9046)
WRITE(51,9047)
WRITE (51,9013)
DO 110 1-1,16
WRITE(51,9051)I,PERD(I) ,DDAV(1,1),ODAV(2 ,1),ODAV(3,1),UDAV
> , DDAV(5,I),ODAV(6,I),ODA7(7,I)
110 COMTIHUB
WRITE (51,9049)
I? (LDEP.NE.1) GO TO 130
WHITE (51,9061)
WRITE(51,9062)
COKC 570
COHC 575
CONC 580
COHC 585
COHC 590
COHC 595
COHC 600
CONC 605
COHC 610
CONC 615
CONC 620
CONC 625
CONC 630
CONC 635
CONC 640
CONC 645
CONC 650
COHC 655
CONC 660
CONC 665
CONC 670
CONC 675
COITC 680
CONC 685
CONC 690
CONC 695
COMC 700
CONC 705
CONC 710
CONC 715
CONC 720
CONC 725
COHC 730
CONC 735
CONC 740
CONC 745
CONC 750
CONC 755
CONC 760
CONC 765
CONC 770
COFC 775
CONC 780
CONC 785
CONC 790
CONC 795
CONC 800
COHC 805
CONC 810
COHC 615
CONC 820
(4,1) CONC 825
CONC 830
CONC 835
CORC 840
CONC 845
CONC 850
CONC 855
-------
117
C-
c-
C-
c
c-
c-
c-
c-
c
WRITE(51,9063)
WRITE(51,9013)
DO 120 I=NOL,NOU
DO 120 J=NRL,NRU
WHITE(51,9064)I,IDIST(J) ,VDCOEF(I,J)
120 CONTINUE
IF (LTAB.EQ. 1) GO TO 150
130 WRITE (51,9052)
WRITE(51,9053)
WRITE (51,9054)
IF (LORT.EQ.0) GO TO 140
WHITE(51,9055)
WRITB(51,9056)
VRITE(51,9013)
GO TO 150
140 WHITE (5 1,9057)
WRITE(51,9013)
150 CONTINUE
DO 170 J=1,NUMST
DO 160 I=1,NNUCS
160 REL(J,I)=REL(J,I)*3.17098E4
170 CONTINUE
END OF INPUT ROUTINE
THIS SUBROUTINE CALCULATES AIE CONCENTRATION(ACON)
AND GROUND DEPOSITION RATE(GCON)
DO 180 K=1,20
DO 180 J=1,20
DO 180 I«1,36
AVON(J,K)-0.
ACON(I,J,K)=0.
180 GCON(I,J,K)=0.
IF(EXP(-(ANLAH(I)*SQRT(2*10*SQSD*»2) /(2*8.64E4)).LT.0.99))
REDUCES TO
IF(ANLAN(I).GT.(122.188054/SQSD) )
DISTG«122.188054/SQSD
.____THIS BLOCK EXAMINES CERTAIN INPUT VALUES FOR EQUALITY. IF THEY
——ARE EQUAL, THEN MUCH OF THE FOLLOWING CALCULATION HEED NOT BE
PERFORMED FOB THAT NUCLIDE. NOMA IS THE ARRAY OF FLAGS THAT
EQUALITY HAS BEEN FOUND 8 WITH WHICH NUCLIDE.
DO 190 I=2,NNUCS
IEN=I-1
DO 190 M=1,IEN
IF (REt(1,H).EQ.O) GO TO 190
IF (VD(I).NE.VD(M)) GO TO 190
IF (VG(I).NE. 7G(M)) GO TO 190
IF (SC(I).NE.SC(M)) GO TO 190
IF (ANLAH(I).GT.DISTG) GO TO 190
IF (ANLAH(H).GT.DISTG) 30 TO 190
NONA (I)-N
M=IEN
190 CONTINUE
IF (LORT.EQ.1.AND.NOU.GT.16) STOP10
C
c-
C
THIS BLOCK LOOPS THRU THE GRID COVERING THE AREA AROUND THE PLANT
CONC 860
CONC 865
CONC 870
CONC 875
CONC 880
CONC 885
CONC 890
CONC 895
CONC 900
COHC 905
CONC 910
COHC 915
CONC 920
CONC 925
CONC 930
CONC 935
CONC 940
CONC 945
CONC 950
CONC 955
CONC 960
CONC 965
CONC 970
CONC 975
CONC 980
CONC 985
CONC 990
CONC 995
CONC1000
CONC1005
CONC1010
CONC1015
CONC1020
CONC1025
COHC1030
CONC1035
CONC1040
CONC1045
CONC1050
CONC1055
CONC1060
CORC1065
CONC1070
CONC1075
CONC1080
CONC1085
CONC1090
CONC1095
CONC1100
CONC1105
CONC1110
CONC1115
COHC1120
CONC1125
CONC1130
CONC1135
.CONC1140
CONC1145
-------
118
DO 680 NO=NOL,NOU
DO 200 I=1,NNUCS
IF (LDBP.NE.1) GO TO 210
DO 200 J=1,NOHST
DO 200 K=1,7
FDSTOH(I,J,K)=1
200 CONTINUE
210 DO 670 Hfi=HRL,HHO
JFLAG=0
DO 220 I=1,NNUCS
TAI(I)=0.
220 TGD(I)=0.
IF (LORT.BQ.1) GO TO 240
COHC1150
COHC1155
COKC1160
CONC1165
COHC1170
CONC1175
CONC1180
CONC1185
COHC1190
CONC1195
COHC1200
COHC1205
CONC1210
C ROUTINE TO HEFINE THE 4 BY 4 BLOCK OF SQUARES AT THE CENTER OF THECONC1215
C SQUARE GRID BY DIVIDING EACH SQUARE INTO 25 SMALLER SQUARES COHC1220
IF (NO.LT.9.0R.NO.GT.12) GO TO 230 CONC1225
IF (NR.LT.9.0R.NH.GT.12) GO TO 230 CONC1230
JFLAG=1 COBC1235
DO 610 NOP=1,5 CONC1240
DO 610 NHP=1,5 COWC1245
C COMPUTE DISTANCE FROM CENTER OF SUBSQDARE TO CENTER OF GRID CONC1250
X=SQRT((11.-NO-(NOP*2.-1.)/10.) **2*(11.-NR-(NRP*2.-1.) CONC1255
> /10.)**2) *SQSD CONC1260
C EACH SUBSQUARE IS EVALUATED IN DIRECTION THAT IT WOULD BE IB IF ITCONC1265
C WERE IN THE SAME POSITION AS A FULL-SIZE SQUARE
MO=NSPTMO(5*(NO-9) *NOP,5*(NH-9) +NRP)
60 TO 250
230 X=SQRT( (10.5-SO)*(10.5-NO)*(10.5-NR)*(10.5-NR) ) *
> SQSD
HO=NSPTHO(NO,NR)
GO TO 250
240 1>IDIST(NH)
HO-NO
250 XO=X
THETA=1.0
K»0
C
C-
C
THIS BLOCK LOOPS THRU THE STACKS (ERISSION POINTS)
DO 600 J=1,NUMST
IF (LARE.EQ.O) GO TO 290
C
C AREA SOURCE BLOCK (BY CHRISTOPHER B. NELSON,EPA).
C
C...
C...
C
CONSIDER SOURCES TO BE POINT SOURCES IF LESS THAN 10 METERS
DIAM. OR IF RATIO OF DISTANCE X TO THE DIAH. IS GREATER THAN 2.5.
TESTAR=X/(DIM(J) +.00001)
IF (DIM(J) .LT.10..OR.TBSTAR.GT.2.5) GO TO 290
C
C... HO IS THE RADIUS OF THE SOURCE.
C... H1 IS THE INNER RADIUS OF THE TRANSFORMED SOURCE.
C... R2 IS THE OUTER RADIUS OP THE TRANSFORMED SOURCE.
C... X IS THE EFFECTIVE DISTANCE FOR CALCULATING CHI/Q.
C... THETA IS THE ANGULAR WIDTH IN SECTORS OF THE TRANSFORMED SOURCE.
C... (MULTIPLY THBTi BY PI/8.0 TO CONVERT THETA TO RADIANS.)
C... 0.88622693*SQRT(PI/4.)
C... 2.5198421=4,0**{2/3)
CONC1270
CONC1275
CONG1280
CONC1285
CONC1290
COHC1295
CONC1300
CONC1305
COHC1310
CONC1315
CONC1320
CONC1325
COKC1330
CONC1335
CONC1340
CONC1345
CONC1350
CONC1355
CONC1360
COHC1365
CONC1370
CONC1375
CONC1380
CONC1385
CONC1390
CONC1395
CONC1400
CONC1405
CONCIftIO
CONC1A15
CONC1420
CONCU25
CONC1430
CONC1435
-------
119
C.
C
C
C.
H.5135167=8./SQHT(PI)
RO=DIM(J)/2.0
IF (XO.GT.0.88622693*RO) GO TO 270
IF (XO.GT.0.5*HO) GO TO 260
O.LE.XO.LE.RO/2.
H1=0.
R2=RO
X=H2/2. 5198421
THETA=16.
GO TO 280
C
C..
RO/2.LT.XO.LE.RO*SQRT(PI/4.)
260 R1=0.
R2=2.*XO
X=R2/2.5198421
THETA=4.0*(RO/XO) **2
GO TO 280
C RO*SQRT(PI/4).LT.XO
270 R1=XO-0.88622693*RO
R2=XO+0.88622693*RO
X= (XO* (SQRT (R2) tSQRT (R 1) ) /2. 0) **0. 66666667
THETA=4.5135167*RO/XO
.. M IS THE NUMBER OF SECTORS ON EACH SIDE OF MO WHICH
.. INCLUDE THE TRANSFORMED SOURCE,
280 M=INT(THETA/2.0*0.5)
.. DTHETA IS THE ANGULAR WIDTH OF THE TRANSFORMED SOURCE IN THE FIRST
.. AND LAST SECTORS.
DTHETA=AMOD((THETA/2.0+0.5),1.0)
IF (DTHETA.GT.O.) GO TO 290
M=M-1
DTHETA=1.0
290 IF (M.EQ.O) DTHETA=THETA
C... LL IS THE TOTAL NUMBER OF SECTORS WHICH CONTRIBUTE TO CHI/Q.
LL=2*M+1
C... L1 IS THE INITIAL SECTOR.
L1=NOD(MO-N+15,16)+1
DO 580 L=1,LL
MO=MOD(L1+L+14,16)+1
IF (L.EQ.1.0R.L.BQ.LL) GO TO 300
PESW=PERD (MO)/THETA
GO TO 310
300 PERW=PEHD(MO) *DTHETA/THETA
C
C.
C.
C.
C.
END OF AREA SOURCE BLOCK.
C
C—
C
C THIS BLOCK LOOPS THRU THE 7 PASQOILL AIR STABILITY CATEGORIES.
C
310
DO 580 JH=1,7
IF (FRAW(JH,HO).EQ.O) GO TO 580
U = UDA7(JH,SO)
UD=UDCAT(JH,MO)
IF (U.GT.6.0H.U.LT.1.) GO TO 320
FF2=(1.167-U/6.-1./UD) / (1.167-U/6.-1./U)
FF3= ( (U-1.) * (1.-FF 2))/5.
CONC1UUO
CONC1445
CONC1450
CONC1455
CONC1460
CONC1465
CONC1470
CONC1475
CONC1480
CONC1485
CONC1490
CONC1495
CONC1500
CONC1505
CONC1510
CONC1515
CONC1520
CONC1525
CONC1530
CONC1535
CONC15UO
CONC1545
CONC1550
CONC1555
CONC1560
CONC1565
CONC1570
CONC1575
CONC1580
CONC1585
CONC1590
CONC1595
CONC1600
CONC1605
CONC1610
CONC1615
CONC1620
CONC1625
CONC1630
CONC1635
CONC1640
CONC1645
CONC1650
CONC1655
CONC1660
CONC1665
CONC1670
CONC1675
CONC1680
CONC1685
CONC1690
CONC1695
CONC1700
CONC1705
CONC1710
CONC1715
CONC1720
CONC1725
-------
120
FF1=1.-FP2-FP3 CONC1730
GO TO 339 COSC1735
320 PF1=0. COKC1740
FF2=1. CONC1745
FF3=0. CONCT750
C THIS BLOCK CALCULATES PLUME RISE COKC175S
C 8ISB=O..BRIGGS' EQUATIONS FOB BUOYANT PLUSES COKC1760
C BISE=1. .RUPP'S EQUATIONS FOB HOMEHTUM-TYEE SHISS10NS CONC1765
C SISB=2..HEAD PLOHE HISE FROM CARDS CONC1770
330 IF (LRISE. SQ.1) SO TO 360 COHC1775
IF (LRISE.EQ.2) GO TO 370 COHC1780
IF (LHISE.KE.O) STOP11 CONC1785
IF (JH.GT.4) GO TO 340 COHC1790
IF (X.tE.10.*PH{JH GO TO 350 COHC1795
H =PH(J}+(1.6/0*( (.0037000*QH(J)*PH(J)*PH(J)COMC1800
> )** .33333333}) CONC1805
GO TO 380 COHC1810
340 3=9.80665/TA*(TG(JH-4)*.0098) COHC1815
IF (X.LE.2.!**U/SQHT{S)) GOTO 350 CONC1820
H =PH(J|*(2.9*( (.000037*QH{J)/TJ/S)** CONC1825
> .33333333 J ) COHC1830
GO TO 380 CONC1835
350 H =PH(J)*(1.6/a*( |.000037*8H|J)*I*X) ** CONC1840
> ,33333333 JJ COHC1845
GO TO 3BO CONC1850
360 H =PH(JJ M. S*VEL (J| *DIA{J)/CT CONC1855
GO TO 330 COHC1860
370 H =PH(J1*?aiJH) COTSC1865
C EHD OF PLOHE RISE CALCULATIONS COHC1870
380 HX=1 COHC1875
IF (X.GT.1000) NX=2 COHC1880
IF (X.GT.3000) NX=3 COHC1885
I? (X.GT.10000) NX=4 COHC1890
A=AA(JH,HX,1) COHC1895
C=AA (JH,HX,2) COHC1900
D=AA(JH,HX,3) COHC1905
F=AA(JH,SX,4) COHC1910
C CONC1915
C THIS BLOCK LOOPS THRO THE DIFFERENT NUCLIDES SELEAS2D IN THB PLaMECONC1920
C CONC1925
DO 570 I=1,NNIICS COMC1930
IF (UO*A(I).ST.Q.1HQ.J.-EQ.1) GO TO 570 COHC1935
C DETERMINE 3CLIDO (TALDE OF X WHEBE LID AFFECTS VERTICAL DISP3SSION) COHC19HO
T1=0. COMC19H5
Y2=10000. COMC1950
DO 410 1X1=1,3 COHC1955
DO 390 1X2=1,10 COUC1960
Y=Y1+Y2*IX2 COSC1965
IF (X**D. GT. (.47*P*(LID1 + Y*7G(I)/OD| COHC1970
> }) SO TO 400 COHC1975
390 CONTIHUE CONC1980
400 Y1=Y1+Y2*(1X2-1) COHC1985
U10 Y2=Y2/10. COKC1990
XLIDO=2.*Y COHC1995
C THIS BLOCK FINDS DEPLETION FRACTION CONC2000
VD1=VB(I) CONC2005
c SECTIOB TO FIND DEPLETIOS IF BY VMIABZE DEPOSITIOK cOHC20io
C LDEP=1 IS OPTIOK FOR VARIABLE DEPOSITION VELOCITY CORC2015
-------
121
C ----- BOUND (NR) IS THE LOWER BOUND OH THE INTERVAL OF INTEGRATION
C ----- BOOND(NR+1) IS THE OPPEH BOUND
IF (LDEP.NE. 1) GO TO 480
VD1=VD1*VDCOBF(NO,NR)
IF (X.GT.XLIDO) GO TO 420
CALL QX(BOUND(NH),X,0,OD,H,VD1,VG(I),JH,
> FDD)
GO TO 440
420 IF (BOUND (NR) .GE.XLIDO) GO TO 430
CALL QX(BOOND(NR) ,XLIDO,0, OD, H, VD1 , VG (I) ,
> JH, FDD)
FDD=FDD*EXP (- ((X-XLIDO) *VD1/(LID1*OD) ) )
GO TO 440
430 FDD=FDD*EXP (- ((X-BOOND (NR) ) *VD1/(LID1*OD) )
> )
440 FDD=FDD*FDSTOR(I,J,JH)
IF (X.BQ.BOOND(NH+1)) FDSTOH (I, J, JH) =FDD
IF (X.BQ.BOOND(NR+1)) GO TO 530
IF (BOUND (NR* 1) .GT.XLIDO) GO TO 450
CALL QX(X,BOOND(NR+1) ,0, UD, H, VD1 ,VG (I) r JH,
> FD1)
GO TO 470
450 IF (X.QT.XLIDO) GO TO 460
CALL QX(X,XLIDO,0,OD,H,VD1,VG(I),JH,FD1)
FD1=FD1*EXP(-((BOUND(NH+1)-XLIDO)*VD1/
> (LID1* OD)))
GO TO 470
460 FD1=EXP(- ((BOUND (NB + 1) -XLIDO) *VD1/(LID1*
> OD)))
470 FDSTOR(IrJ,JH)=FDD*FDl
GO TO 530
c ----- EUD VARIABLE DEPOSITION SECTION
c ----- SECTION FOR DEPLETION IF BY CONSTANT DEPOSITION
480 IF (X.GT.XLIDO) GO TO 500
IF (TG(I).NE.O) GO TO 490
CALL QY(0,X,0,ODrH,VD1,VG(I),JH,FDD)
GO TO 530
490 CONTINUE
CALL QX(0,X,U,OD,H,VD1,VG(I) ,JH,FDD)
GO TO 530
500 CONTINOE
IF (VG(I).NE.O) GO TO 510
CALL QY(0,XLIDOrO,OD,H,VD1,VG(I),JH,FDD)
GO TO 520
510 CONTINOE
CALL QX(0,XLIDO,OrOD,H,VD1,VG(I),JH,FDD)
520 CONTINUE
FDD=FDD*EXP (- ( (X-XLIDO) *VD1/(LID1*UD) ) )
CONSTANT DEPOSITION SECTION
CONTINUE
c -----
530
C ----- END DEPLETION FRACTION BLOCK
QRED=-ANLAH (I) *X/86400.
QRED=REL(J,I)*FDD*(FF1*EXP(-SC(I)*X)*FF2*
> EXP(-SC(I)*X/0)*FF3*EXP (-SC (I) *X/6.) ) *
> (FF1* EXP(QRED)*FF2*EXP(QHED/0)+FF3*
> EXP(QHED/6.))
CHA D=QRED/(6. 2832* ( (X**A) /C) * ( (X**D) /F) *
> OD)
CONC2020
CONC2025
CONC2030
CONC2035
CONC2040
CONC2045
CONC2050
CONC2055
CONC2060
CONC2065
CONC2070
CONC2075
CONC2080
CONC2085
CONC2090
CONC2095
CONC2100
CONC2105
CONC2110
CONC2115
CONC2120
CONC2125
CONC2130
CONC2135
CONC2140
CONC2145
CONC2150
CONC2155
CONC2160
CONC2165
CONC2170
CONC2175
CONC2180
CONC2185
CONC2190
CONC2195
CONC2200
CONC2205
CONC2210
COKC2215
CONC2220
CONC2225
CONC2230
CONC2235
CONC2240
CONC2245
CONC2250
CONC2255
CONC2260
CONC2265
CONC2270
CONC2275
CONC2280
CONC2285
CONC2290
CONC2295
CONC2300
CONC2305
-------
122
IP ((VG(I)*X)/UD. GE.H) H= (VG (I) *X) /UD CONC2310
IF ( (- 5* ( ( ( ( (VG (I) *X) /UD) *H) / ( (X**D) /FJ ) **CONC231 5
2)).GT. 50) BX=0 CONC2320
IF ({.5* (((((VG(I)*X)/UD) «-H)/((X**D)/FM**CO»TC2325
2)).GT.50| GO TO 540 CONC2330
BX=CHAD* (EXP (-. 5* {(( ((VG(I) *X)/tJD) -H) /( (X*COSC2335
*D) /F))**2M* EXP(-.5*(((({-VG(I)*X)/UD) CONC23KO
51*0
550
560
570
C ----- END
580
C ---- END
590
600
C -----
610
C ----- FIND
620
630
+H>/ {(X**D)/F)) **2)})
BT=BX
BU=0
VERT=QRED/(2.5066*((X**A) /C)
IF (X.LE. XLIDO) GO TO 550
BT=VEET
BU=BT
7ERT=0
FHAC= (6.300335* ((X**A)/C) )/X
IF (LOST^EQ. 1) FRAC=1.
PRAC=FRAC*PERW
VERT=FRAC*VEP.T
BO =FRAC*BO
BT =FRAC*BT
IF (I.EQ. 1| AVOS(NO,NR) = (FRAW(JH,MO)»
(VERT+BO)) /1000000-*AVON{NO,NR)
TGD(I)=T3D(I) *FRAW(JH,MO) * (TD 1*BT*SC( U *
LID1* ((fERT + BtJ))
T AI (I) =TAI (I) *FRAW {JH, HO) *BT
CONTINUE
OF NOCLIDE LOOP ----------------------------------------------
CONTINUE
OF PASQUILL CArAGORY LOOP -----------------------------------
DO 590 I=1,NNOCS
M=NOHA(I)
IF (B.LE.O.OR. J.GT. 1) GO TO 590
TGD(I)=TGD(M)*REL(J,I) /REL(J,[1>
TAI (I) =TAI (M) *REL ( J,I) /BEL (J, M)
CONTINUE
CONTINUE
OF SPACK LOOP -----------------------------------------------
IF (JFLAG.NE. 1) GO PD 630
COHTINtJE
AVERAGE OF CONCENTRATIONS OF SOBSQUARES
DO 620 I=1,NNUCS
TGD(I)=TGD(I)/25.
TAI(I)=TAI(I)/25.
CONTINUE
AVON(NO,NR) =AVON(»0,HR) /25.
IF (LDEP.EQ. LAND. LIST (NR) .EQ. 1) GO TO 670
(LORT. EQ.1) GO TO 650
6UO I*1,NNUCS
ACON (I,NO,NR)=TM(I) /1000000.
GCON (I , NO, NH) =TGD(I) /10000.
IF
DO
DRYCO»=ACON(I,NO,NH)*VD1*100
HETCOS=(GCON(I,NO,NRJ -DRICOS» * (SC (I) / (SC (I) +1.E-30JI
IP (LTAB. BQ. 1) GO TO 670
6UO WRITE(51,9058J NO, NR, HAHHUC (I) , ACON (I,»0, NR) ,DR?CON,
> WEICON, SCOH(I,NO,NR)
GO TO 670
CONC2345
CONC2350
CO«C2355
CONC2360
CONC2365
CONC2370
COHC2375
COSC2380
CONC2385
CONC2390
COSC2395
COMC2100
CONC2105
COSC2H10
COHC2415
CONC2H20
CONC2125
CONC2t30
COHC2135
COHC24UO
-CONC2445
COHC2450
-COSC2155
COHC2160
CONC2U65
COHC2470
CONC2475
COSC24BO
COHC2H85
CONC2490
-CONC2495
COSC2500
COHC2505
CONC2510
CONC2515
CONC2520
COHC2525
CONC2530
CONC2535
CONC2540
COHC2550
CONC2555
CONC2560
CONC2565
CONC2570
CONC2575
CONC2580
CONC258«
CONC2585
CONC2590
CONC2595
-------
123
650 DO 660 I=1,NNUCS COHC2600
ACON (I,NO,NR)=TAI(I)/1000000. CONC2605
GCON (I,NO, NR)=TGD(I) /10000. CONC2610
VD1=VD(I) CONC2615
IF (LDEP.EQ.1) VD1=VD1*VDCOEF(NO,NR) CONC2620
DRYCON=ACON(I,NO,NR)*VD1*100 CONC2625
WETCON=(GCON(I,NO,NR)-DRYCON)*(SC(I)/(SC(I)+1.E-30)| COHC2630
IF (LTAB. EQ. 1) GO TO 670 CONC263*
660 WRITE(51,9058) NO.IDIST (NR) , HAMHUC(I) , ACON (I,NO,NH) , CONC2635
> OPYCON,WETCON, GCON(I,NO,NR) COMC26HO
670 CONTINUE COHC26H5
680 CONTINUE CONC2650
IF (LCHI. EQ. 1) GO TO 690 CONC2655
IF (LORT.EQ.1) CALL CHIQ CONC2660
690 IF (LPUN.EQ.O) GO TO 710 CONC2665
DO TOO I=1,LPUN CONC2670
PUNCH 9065,((ACON(I,KO,NR) ,NR=1,20),N0=1,20) CONC2675
PUNCH 9065,((GCON(I,NO,NR),NR=1,20),NO=1,20) CONC2680
700 CONTINUE CONC2685
710 CONTINUE CONC2690
IF (LORT.EQ. 1) GO TO 720 CONC2695
ASQSD=((SQSD**2)*UOO.)/1.B6 COHC2700
WRITE(5 1,9001) CONC2705
WRITE(51,90021 ASQSD CONC2710
WRITE (51,9003) CONC2715
WRITE(51,900HJSQSD COHC2720
WRITE(51,9005) CONC2725
WRITE(51,9006) CONC2730
WRITE(51,9007) CONC2735
C END OF GRID LOOP CONC27HO
720 RETURN CONC2745
9000 FOR MAT(F10.0) CONC2755
9001 FORMAT ('1',T30,'NOTE-THE AREA SURROUNDING THE PLANT IS A SQUARE CONC2760
>WITH AN AREA') CONC2765
9002 FORMAT(• ',T35,'OF',F10.1,1X, COHC2770
> 'SQUARE KILOMETERS WITH THE PLANT AT THE CENTER.') COWC2775
9003 FORMATC ',135,'THE SQUARE AREA IS ALIGNED DUE NORTH-SOUTH AND EASCONC27BO
>T-WEST. THE') CONC2785
9000 FORHATC «,T35,'400 SMALLER SQUARES, WHICH ARE EACH «,F7. 1,U, COHC2790
> 'METERS ON A SIDE,') COHC2795
9005 FORHATC «,T35,'ARE IDENTIFIED BY COLUMN AND ROW. COLUMNS ARE NUHBCONC2900
>ERED FROM') CONC2805
9006 FORMATC ',T35,M TO 20 FROM WESI TO EAST. HOWS ARE NUMBERED FROM CONC2810
>1 TO 20 FROM') CONC2815
9007 FORHATC ',T35r« SOOTH TO NORTH.') COKC2820
9008 FORMAT(8110) COSC2925
9009 FORMAT(8F10.0) CONC2830
9010 FORMAT (16F5.0) COHC2835
9011 FORMAT(A8) CONC28UO
9012 FORMAT (7F10.0) CO»C29«l5
9013 FORMAT ('0') COHC2850
901» FORMATC • ,130, ' A« ,F10. 1, ' B',F10.1,« C',F10.1r« D',F1D.1, CONC2855
> ' E',F10.1,' F',710.1,' G*,F10.1) ' CONC2860
9015 FORMAT('1',T20,'METEOROLOGICAL AND PLANT INFORMATION SUPPLIED TO PCOHC2865
>ROGRAM ') COHC2870
9016 FORMAT('0',T30,'AVERAGE AIR TEMPERATURE (DEG K)',T100,F10. 1) COHC2875
9017 FORMAT('0',T30,«AVERAGE VERTICAL TEMPERATURE GRADIENT OF THE AIR (CONC2880
>DEG K/METER)') COHC2895
-------
124
9018 FORMAT('0',T40,'IN STABILITY CLASS E • ,T100, F10. 4) CONC2890
9019 FORMAT('0',T40,'IN STABILITY CLASS F« ,T 100, F10.4) CONC2895
9020 FORHAT('0',I40,'IN STABILITY CLASS G1 ,T100,F10.4) CONC2900
9021 FORMAT('0',T30,'HEIGHT OF LID (METERS)',T100,I10) COHC2905
9022 FORMAT('0',T30,'RAINFALL RATE (CM/YEAR) • ,T100,F10. 2) CONC2910
9023 FORMAT('0',T30,'NOMBER OF STACKS IN THE PLANT',T100,I10) COHC2915
9024 FORMAT('0',T30,'STACK IMFOHHATIOH—•) COHC2920
9025 FORMAT('0',T89,'STACK SOMBER') COHC2925
9026 FORNATCO',T70r'1',T80,'2',T90,'3',riOO,'4',T110,'5',T120,'6') CONC2930
9027 FORMAT('0«,T20,'HEIGHT (MBTEBS) • ,T62,6F10. 4) CONC2935
9028 FORMAT('0',T20,'DIAMETER (METERS)',T62,6F10.4) CONC2940
9029 FORMAT{'0',T20r'EFFLUENT VELOCITY (METERS/SEC)•,T62,6F10.4) CONC2945
9030 FORMAT(«0',T20,'SATE OF HEAT EMISSION (CAL/SECOND)•,T62,6B10.2) CONC2950
9031 FORMATH DIRECTION') COHC2960
9032 FOEHAT('0«,T7,'SECTOR',T40, COKC2965
> 'FRACTION OF TIME IN BACH STABILITY CLASS') CONC2970
9033 FORMAT('0',T25,'A',T37,»B•,T49,•C',T61,'D',T73,•B«,T85,'F«,T97, CONC2975
> «G') CONC2980
9034 FORHATC ' ,T7,I1»,T23,F6. 4,T35,F6. 4,T47, F6.4 ,T59,F6. 4,T71,F6.4, COSC2985
> T83,F6.4,T95,F6.4) CONC2990
9035 FOBHAT('1',T50,'RELEASE RATES FOR RADIONOCLIDES') CONC2995
9036 FOPHAT('0',T45,'STACK*rT61,'NUCLIDE',T80,'RELEASE RATE') CONC3000
9037 FORHATC ' ,T80r • (CORIES/YEAE) ') CONC3005
9038 FORMATC ',TH5r I2,T63r A8,T80,E10. 3) CONC3010
9039 FORMAT(•1',T46,•PLOME DEPLETION AND DEPOSITION PARAMETERS') CONC3015
9040 FORHAT(«0',T20,'NOCLIDE«rT'»0,'SRA7ITATIONAL'/T60, CONC3020
> 'DEPOSITION VELOCITY',T85,'SCAVENGING',T100, COBC3025
> 'EFFECTIVE DECAY CONSTANT') CONC3030
9041 FORMATf ',T40,'FALL VELOCITY',T85,'COEFFICIENT',T108,'IN PLOME») CONC3035
9042 FORMATC • ,T41,' (METERS/SEC) •,T63,'(METEBS/SEC)',T87r• (1/SEC)', CONC3040
> T108r'(PEH DAY)') CONC3045
9043 FORMATC • ,T21, A8,T37,F10.3,T61, F10. 5,T85,E 1 0.3rT107, E10.3) CONC3050
9044 FORHAT('1',T36,'FHBQOENCIES OF BIRD DIRECTIONS AND HECIPROCAL-AVERCONC3055
>AGBD WIND SPEEDS') CONC3060
9045 FOHMATCO',T20,'WIND TOWARD' ,T50, 'FREQOENCY ' ,T82, CONC3065
> 'WIND SPEEDS FOB BACH STABILITY CLASS') CONC3070
9046 FORMATC ',T94, ' (METEHS/SEC) •) CONC3075
9047 FORNATCO',T73,tA',T81r«BI,T90,'C«,T99,'D',T108,«B«,T116,«F«,T124,CONC3080
> *G') CONC3085
9048 FORMATC ',T25,I2,T52rF5.3,T71, P5.2,T79,F5. 2,T88rF5.2,T97,F5.2, CONC3090
> T106,F5.2,T114,F5.2,T122,F5.2) COHC3095
9049 FORMAT CO',T20,'WIND DIHECTIOHS ARE NUMBERED COUNTERCLOCKWISE STARCONC3100
>TING AT 1 FOR DOE NORTH') CONC3105
9050 FORMAT(•1«,T38,'FREQUENCIES OF HIND DIRECTIONS AND TROE-AVEHAGE WICONC3110
>ND SPEEDS') CONC3115
9051 FOBMATC ' ,T25,12,T52,F5. 3,T71,F5.2 , T79rF5. 2,T88,F5. 2,T97,F5.2, CONC3120
> TIOS^S^.TlUrFS. 2,T122,F5.2) CONC3125
9052 FORHATC1',T46,«ESTIMATED RADIONOCLIDE CONCENTRATIONS') CONC3130
9053 FORHATCO'jTIO, 'AREA', T30,'NOCLIDE', T42, 'AIR CONCENTRATION1 ,T6 4, CONC3135
> 'DRY DEPOSITION RATE',T88,'WET DEPOSITION RATE'rT112, CONC3140
> 'GROOND DEPOSITION RATE') CONC3145
9054 FORMAT(T47,'(PCI/CC)',T64,«(PCI/SQOARE CM-SEC)•,T88, CONC3150
> •(PCI/SQOARE CM-SEC) »,T113,'(PCI/SQOARE CM-SEC)*) CONC3155
9055 FORMATC WIND TOWARD',T17,'DISTANCE') CONC3160
9056 FORMATC • ,T17, ' (HBTEBS) ") CONC3165
9057 FORMATC «,T4,'COLOMN' ,T21, «HO»«) CONC3170
9058 FORMATC ' ,T6,I2,T18,I6, T31, A8, T45, E1 0. 3 ,T68,E10. 3,T92fE10.3,T118, CONC3175
-------
125
> B10.3) CONC3180
9059 FORHAt(10F8.4) CONC3185
9060 FORMAT(2011) CONC3190
9061 FORHATCI'.TSO,' DEPOSITION VELOCITY COEFFICIENTS') COHC3195
9062 FORHAT(«0«,T37f«DIRECTION',T55,»DISTANCE',T72, CONC3200
> 'DEPOSITION COEFFICIENT') CONC3205
9063 FORHATC ' ,T55, ' (HETERS) « ,T78,M»0 ONITS) «) CONC3210
9064 FORHATC ',T40,I2,T57rI6,T78,Pa. ft) COHC3215
9065 FORRAT(8B10.
-------
126
SUBROUTINE QY(BND,X,U,UD,HS,VD,7G,INDEX1,QXR) QY 0
C QY 5
C R. E. MOORE HEALTH AND SAFETY BESEiRCH DIV., OHNL 3-1-78 QY 10
C Q¥ 15
C A TABLE CALLOtJT SUBROUTINE FOB DETERMINING DEPLETION FRACTIONS FQY 20
C DEPOSITION FOR CONSTANT DEPOSITION TELOCITY AMD FOB ZERO GRAVITAQY 25
C EFFECT. QY 30
C QY 35
C TABULATED VALUES IN DATA STATEMENT WERE DERIVED THROUGH THE USE QY UO
C SUBROUTINE QX, A SIMPSON'S RULE SUBROUTINE WRITTEN ORIGINALLY BYQY 45
C D. E, DUNNING, MODIFIED BY J. F. H3LL, AND LATER CHANGED BY QY 50
C D. P. STEWART. QY 55
C QY 60
COMMON /QCOM/ REFA(34,7,20) QY 65
DIMENSION XIDI(20),KP(34) QY 70
HEAL KP QY 75
INTEGER IDOM QY 80
DATA XIDI/35.,65.,100.,150.,200.,300.,400.,500.,650.,800.,1000., QY 85
> 1500.,2000.,4000.,7000.,10000.,25000.,60000.,90000.,200000./ QY 90
DATA KP/1.,1.5,2.,3.,4.,5.,6.,7.,8.,9.,10.,12.5,15.,17.5.20.,25., QY 95
> 30.,35-,UO.,50.,60.,70.,80.,90.,100.,120.,110.,160.,180.,200., QY 100
> 240.,260..300.,400./ QY 105
IF (IDOM.EQ.121) GO TO 20 QY 110
10 CALL QY1 QY 115
CALL QY2 QY 120
CALL QY3 QY 125
IDOn=121 QY 130
20 JH=INDBX1 QY 135
H1=HS QY UO
DO 30 10=1,20 QY 145
IF (X.LT.XIDI(ID)) GO TO 50 QY 150
30 CONTINUE QY 155
10 ID2=35 QY 160
GO TO 60 QY 165
50 ID1=ID QY 170
ID2=ID-1 QY 175
60 DO 70 KR=1,34 QY 180
IF (HI.LT.KP(KRJ) GO TO 90 QY 185
70 CONTINUE QY 190
80 KP2=21 QY 195
GO TO 100 QY 200
90 KP1=RR QY 205
KP2=KR-1 QY 210
100 IF (KP2.EQ.O.AND.ID2.EQ.O) GO TO 140 QY 215
IF (KP2.EQ.O) GO TO 150 QY 220
IF (ID2.EQ.O) GO TO 170 QY 225
IF (X.GE.200000.) GO TO 110 QY 230
IF (H1.GB.llOO.) GO TO 130 QY 235
CUX1=HEFA(KP1,JH,ID2)-((REFA(KP1,JH,ID2)-REFA(KP1,JH,ID1))* ((X- QY 240
> XIDI(ID2))/(XIDI(ID1)-XIDI(ID2)))) QY 245
CUX2=REFA(KP2,JH,ID2)-((HEFA(KP2,JH,ID2)-REFA{KP2,JH,IDin* ((X- QY 250
> XIDI(ID2))/(IIDI(ID1J-XJDI(ID2))n QY 255
CTnCA=CUX1-(((CUII-C(rr2J*(fC?(!CPt)-H1)|/(KP(KP1)-K:P(KP2U) QY 260
GO TO 190 QY 265
110 IF tH1.GT.400.) GO TO 120 QY 270
CUX1=T*((RBPA(KP1,JH,20)-REFA((CP1,JH,19))/110000.)+ (REFA (KP1, JH, QI 275
-------
127
> 19)-.8181818*(REFA(KP1,JH,20)-REFA(KP1,JH,19))) QY 280
COX2=X*((REFA(KP2,JHr20)-REFA(KP2,JH,19))/110000.)+ (REFA(KP2,JH, QY 285
> 19)-.8181818*(REFA(KP2,JH,20)-REFA(KP2,JH,19))) Qt 290
CaXA=COX1-(((ClJX1-CaX2)*{KP(KP1)-H1))/(KP(KP1)-KP(KP2))) QY 295
GO TO 190 QY 300
120 CaM1=H1*((RBFA(34,JHr20)-REFA{33,JH,20))/100.)+4.*REFA(33,JH,20)- QY 305
> 3.*REFA(34,JH,20) QY 310
COM2=H1*<(RSFA(34,JH,19)-Ri;FA(33,JH,19))/100.)+'».*REFA(33f JH,19)- QY 315
> 3.*REFA(34,JH,19) QY 320
COXA=((COH1-COH2)/110000.)*X*CaB1-1.8181818*(CDH1-COH2) QY 325
GO TO 190 QY 330
130 CUX1 = H1*((BEFA(3l»,JH,ID1|-REFA(33,JH,ID1))/100.)*4.*REFA(33f,JH, QY 335
> ID1)-3.*REFA(34,JH,ID1) QY 3I»0
COX2=H1*((REFA{3<*,JH,ID2)-REFA(33,JH,ID2))/100.)+4.*REFA(33,JH, QY 3»5
> ID2)-3.*REFA(34,JH,ID2) QY 350
CBXA=((CaX2-COX1)/(XI0I(ID2)-XIDI(ID1)))*(X-XIDI(ID1))+COX1 QY 355
GO TO 190 QY 360
1*0 CtJXA=1.-(1.-REFA(1,JH,1)*(X/XIDI(1)» QY 365
GO TO 190 QY 370
150 IF (X.GE.200000.) GO TO 160 QY 375
CtJXA=HEFA(1,JH,ID2)-((REFA(1,JH,ID2)-BEFA(1,JH,ID1})* ((X- QY 380
> XIDI (ID2))/(XIDI(ID1)-XIDI (ID2)))) QY 385
GO TO 190 QY 390
160 CUXA=((REFA(1,JH,20)-REFA(1,JH,19))/110000.)*X+REFA(1fJH,20)- QY 395
> 1.8181818*(REFA(1,JH,20)-REFA(1,JH,19)) QY UOO
GO TO 190 QY HOS
170 IF (H1.GT.400.) GO TO 180 QY 410
OJX1=1.-(l.-REFA(KP1,JHr1)*(X/XIDI(1))) QY 415
CUX2=1.-(1.-REFA(KP2rJH,1)*(X/XIDI(1)» QY 420
COXA=CUX1-(((COX1-COX2)*(KP(KP1)-H1))/(KP(KP1)-KP(KP2))) QY 425
GO TO 190 QY 430
180 CaX1 = 1.-((1.-REFA(33,JH,1) )*(X/XIDI(1))) QY 435
COX2=1.-((1.-REFA(34,JHf 1)) * (X/XIDI (1))) QY 440
CaXA=((COX2-COX1)/100.)*H1+COX1-3.*(COX2-COX1) QY 445
190 QXR=COXA**((100.*VD)/OD) QY 450
RETORN QY 455
END QY 460
-------
128
SUBROUTINE QY1 QY1 0
COMMON /QCOH/ REPA(34,7,20) QY1 5
DIMENSION SEFA (34,7,20) QY1 10
DIMENSION AA(114),AB(114) , AC (114) , AD (114) ,AE (114) , AF( 114) ,A6(114),QY1 15
> AH(114),AI(114),AJ(114),AK(114) ,AL(114) ,AM (114) , AN (114) , AO (70) QY1 20
EQUIVALENCE (SEFA( 1,1, 1),AA(1)),(SEFA(13,4, 1),AB (1)),(SEFA(25, QY1 25
> 7, 1),AC(1)),(SEFA( 3,4, 2) , AD (1)) , (SEFA(15,7, 2),AE{1)), QY1 30
> (SEFA(27,3, 3),AF(1)), (SBFA( 5,7, 3) ,AG (1) ) , (SEFA (17,3, 4),AH(1))QY1 35
> ,(SEFA(29,6, 4) ,AI (1)) , (SEFA ( 7,3, 5), AJ (1) ) , (SEFA (19,6, 5),AK(1)QY1 40
> ),(SEFA(31,2, 6),AL(1)),(SEFA( 9,6, 6) , AM (1)) , (SEFA (21,2, 7), QY1 45
> AN(1)) , (SBFA(33,5, 7),AO(1)) QY1 50
DATA AA/ .9229E 00,.9370E 00,.9483E 00,.9639E 00,.9728E 00,.9798E QY1 55
> 00, .9851E 00,.9882E 00,.9919E 00,.9941E 00,.9957E 00,.9982E 00, QY1 60
> .9991E 00,.9993E 00,.999/E 00,.1000E 01,.1000B 01,.1000E 01, QY1 65
> .1000E 01,.1000E 01,.10002 01,.1000E 01,.1000E 01,.1000E 01, QY1 70
> .1000E 01,.1000E 01,.1000E 01,.10002 01,.10002 01,.10002 01, QY1 75
> .1000E 01,.10002 01,.10002 01,.1000E 01,.90512 00,.92832 00, QY1 80
> .9448E 00,.9665E 00,.9790E 00,.9878E 00,.9929E 00,.99592 00, QY1 85
> .9978E 00,.9988E 00,.9991E 00,.9997E 00,.10002 01,.1000E 01, QY1 90
> .1000E 01,.1000E 01,.10002 01,.10002 01,.10002 01,.10002 01, QY1 95
> .1000E 01,.1000B 01,.10002 01,.1000B 01,.1000E 01,.1000E 01, QY1 100
> .1000E 01,.1000E 01..1000E 01,.1000E 01,.1000E 01,.1000E 01, QY1 105
> .1000E 01,.1000E 01,.8943E 00,.9259E 00,.9476E 00,.97382 00, QY1 110
> .9874E 00,.9943E 00,.9976E 00,.9990E 00,.9990E 00,.9996E 00, QY1 115
> .9999E 00,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QY1 120
> .1000E 01,.1000B 01,.1000E 01,.1000E 01,.1000E 01..1000E 01, QY1 125
> .1000E 01,.1000B 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QY1 130
> .1000E 01,.1000E 01,.10002 01,.1000E 01,.10002 01,.1000E 01, QY1 135
> .8839E 00,.9234E 00,.9494E 00,.9791B 00,.9922E 00,.9974E 00, QY1 140
> .9992E 00,.9994E 00,.9999E 00,.1000E 01,.1000E 01,.1000E 01/ QY1 145
DATA AB/ .1000E 01,.1000E 01,.1000B 01,.1000E 01,.1000E 01,.1000E QY1 150
> 01, .1000E 01,.1000E 01,.1000E 01,.10002 01,.1000E 01,.1000E 01, QY1 155
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.10002 01,.1000E 01, QY1 160
> .1000E 01,.1000E 01,.1000B 01,.1000E 01,.89582 00,.9496E 00, QY1 165
> .97752 00,.9966E 00..9988E 00,.9999E 00,.10002 01,.1000E 01, QY1 170
> .1000E 01,.10002 01,.1000E 01,.10002 01,.10002 01,.10002 01, QY1 175
> .1000E 01,.10002 01,.1000E 01,.1000E 01,.1000B 01,.1000E 01, QY1 180
> .1000E 01,.1000E 01,.1000E 01,.10002 01,.10002 01,.10002 01, QY1 185
> .10002 01,.10002 01,.10002 01,.10002 01,.1000E 01,.10002 01, QY1 190
> .1000E 01,.1000B 01,.9598E 00,.9944E 00,.99942 00,.10002 01, QY1 195
> .10002 01,.10002 01,.1000B 01,.10002 01,.10002 01,.1000E 01, QY1 200
> .10002 01,.1000E 01,.1000E 01,.10002 01,.10002 01,.1000E 01, QY1 205
> .1000E 01,.1000B 01,.1000E 01,.1000E 01,.10002 01,.1000E 01, QY1 210
> .10002 01,.10002 01,.10002 01,.10002 01,.10002 01,.10002 01, QY1 215
> .1000E 01,.10002 01,.1000E 01,.1000E 01,.10002 01,.10002 01, QY1 220
> .9994E 00,.10002 01,.1000E 01,.1000E 01,.10002 01,.1000E 01, QY1 225
> .1000E 01,.1000E 01,.1000E 01,.10002 01,.10002 01,.10002 01, QY1 230
> .1000E 01,.10002 01,.10002 01,.1000E 01,.10002 01,.1000E 01, QY1 235
> .10002 01,.10002 01,.10002 01,.10002 01,.10002 01,.10002 01/ QY1 240
DATA AC/ .10002 01,.10002 01,.1000E 01,.1000E 01,.10002 01,.10002 QY1 245
> 01, .1000E 01,.1000E 01,.1000E 01,.10002 01,.9004E 00,.9151E 00, QY1 250
> .9256E 00,.94082 00,.95102 00,.95902 00,.9655E 00,.9708E 00, QY1 255
> .97522 00,.9789E 00,.9820E 00,.9875E 00,.99212 00,.9948E 00, QY1 260
> .99672 00,.9987B 00,.9989E 00,.9996E 00,.99992 00,.1000E 01, QY1 265
> .1000E 01..1000E 01,.10002 01,.1000B 01,.10002 01,.10002 01, QY1 270
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QY1 275
-------
129
> .1000E 01,.1000E 01,.8687E 00,.8921E 00,.9090E 00,.9326E 00,
> .9491E 00,.9611E 00,.9701E 00,.9772E 00,.9826E 00,.9B68E 00,
> .9900E 00,.9953E 00,.9979E 00,.9991E 00,.9990E 00,.9998E 00,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01..1000E 01,
> .1000E 01..1000E 01,.1000E 01,.1000E 01,.1000E 01..1000E 01,
> .1000T! 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .8445E 00..8766E 00,.8997E 00,.9319E 00,.9535E 00..9683E 00,
> .9786E 00..9858E 00,.9907E 00..9940E 00,.9963E 00,.9989E 00,
> .9992E 00..9998E 00,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.10005 01,
> .1000S 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01..1000E 01,
> .1000B 01..1000E 01,.1000E 01,.1000E 01,.8222E 00,.8620E OO/
DATA AD/ .8919E 00,.9340E 00,.9603B 00,.9772E 00,.9875E 00,.9934E
> 00, .9965E 00,.9983E 00,.9992E 00..9997E 00,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,,1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.10003 01,.1000E 01,
> .1000E 01,.1000E 01,.8008E 00,.8664E 00,.9116E 00,.9637E 00,
> .9867E 00,.9957E 00,.9987E 00,.9990E 00,.9997E 00,.9999E 00,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.10002 01,.10002 01,.10002 01,.1000E 01..1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .8356E 00,.9325E 00,.9758E 00,.9980E 00,.9996E 00,.1000E 01,
> .1000E 01..1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01..1000E 01,
> .1000E 01,.1000E 01,.10002 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01r.10002 01,.1000E 01,.1000E 01,.10002 01,
> .1000E 01..1000E 01,.1000E 01,.1000E 01,.9672E 00..9983E 00,
> .9998E 00,.1000E 01,.1000E 01,.10002 01,.1000E 01..1000E 01,
> .1000E 01,.1000E 01,.10002 01,.10002 01,.1000E 01,.10002 01/
DATA AE/ .1000E 01,.10002 01,.1000B 01,.10002 01,.1000E 01,.10002
> 01, .1000E 01,.10002 01,.1000E 01,.10002 01,.1000E 01,.1000E 01,
> .1000E 01,.10002 01,.10002 01,.10002'01,.10002 01,.10002 01,
> .1000E 01,.1000E 01,.88502 00,.8995E 00,.9098E 00,.9246E 00,
> .9352E 00,.94362 00,.9501E 00,.95562 00..9617E 00..9647E 00,
> .9683E 00,.97572 00,.9813E 00,.9856E 00,.9882E 00,.9936E 00,
> .9964E 00,.99802 00,.9990E 00,.9993B 00,.9998E 00..1000E 01,
> .1000E 01..10QOE 01,.1000E 01,.1000E 01,.1QOOB 01,.1000E 01,
> .1000E 01,.10002 01,.10002 01,.10002 01,.10002 01,.10002 01,
> .8442E 00,.86732 00,.8838E 00,.90752 00,.9243E 00,.9391E 00,
> .94773 00,.9561E 00,.9631E 00,.96892 00,.9739E 00,.98322 00,
> .9893E 00,.99332 00,.9959E 00,.9986E 00,.9988B 00,.9996E 00,
> .99992 00,.10002 01..1000E 01,.10002 01,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.10002 01,.1000E 01,.1000E 01,.81012 00,.8412E 00,
> .86Q2E 00,.8973E 00,.9207S 00,.9386B 00,.95222 00..9629E 00,
> .9701E 00,.9779E 00,.9831E 00,.99162 00,.99612 00,.9983B 00,
> .9993E 00,,9997E 00,.10002 01,.10002 01,.10002 01,.1000E 01,
> .10002 01,.10008 01,.10002 01,.10002 01,.1000E 01,.1000E 01/
DATA AF/ .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.10002
> 01, .1000E 01,.1000E 01,.7752E 00,.81412 00,.8452E 00,.8897E 00,
> .922IE 00,.94542 00,.96022 00,.97*52 00,.9832B 00,.9892E 00,
> .9932E 00,.99792 00,.9992E 00,.9996E 00,.9999E 00,.1000E 01,
> .1000E 01,.10002 01,.1000E 01,.10002 01,.1000E 01,.10002 01,
> .1000E 01,.10002 01,.10002 01,.1000E 01,.1000E 01,.10002 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000B 01,.10002 01,
> .7287E 00,.79572 00,.84465 00,.9118E 00,.9519E 00..9752E 00,
QY1
QY1
Q.Y1
QY1
QT1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QI1
QY1
QY1
QY1
QY1
QY1
QY1
QT1
QY1
QI1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
-------
130
> .9879E 00,.9945E 00,.9976E 00..9989E 00,.9987E 00,.9999E 00,
> .1000E 01,.1000B 01..1000E 01,.1000E 01..1000E 01,.1000E 01,
> .1000E 01,.10002 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.10002 01,.1000E 01,.10002 01,.10002 01,.1000E 01,
> .1000E 01,.10002 01,.1000E 01,.1000B 01,.7165E 00,.8349E 00,
> .9091E 00,.9773E 00,.9957E 00,.99922 00,.9997E 00,.1000E 01,
> .10002 01,.10002 01,.10002 01,.10002 01..1000E 01,.1000E 01,
> .1000E 01,.10002 01,.1000E 01r.1000E 01,.1000E 01,.1000E 01,
> .10002 01,.10002 01,.1000E 01,.10002 01,.1000E 01,.1000E 01,
> .10002 01,.10002 01,.10002 01,.10002 01,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.8569E 00,.97302 00,.9965E 00,.9999E OO/
DATA AG/ .1000B 01,.10002 01,.10002 01,.1000E 01,.10002 01,.1000E
> 01, .1000E 01..1000E 01,.10002 01,.1000E 01,.1000E 01..1000E 01,
> .10002 01,.10002 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .10002 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .10002 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .87072 00,.88502 00,.89522 00,.90982 00,.9203E 00,.9285E 00,
> .93522 00,.9412E 00,.94582 00,.95012 00,.9529E 00,.9630E 00,
> .96832 00,.97342 00,.97772 00,.98432 00,.9882E 00,.9923E 00,
> .99472 00,.99762 00,.99902 00,.99892 00,.9995E 00,.9998E 00,
> .99992 00,.10002 01,.10002 01,.10002 01,.10002 01,.1000E 01,
> .10002 01,.10002 01,.10002 01,.10002 01,.8217E 00,.8442E 00,
> .86042 00,.88382 00,.9006E 00,.91372 00,.9243E 00,.9333E 00,
> .94092 00,.94772 00,.95352 00,.9651E 00,.97392 00,.9796E 00,
> .98552 00,.99222 00,.99592 00,.9980S 00,.9990E 00,.9994E 00,
> .99992 00,.1000E 01,.10002 01,.1000E 01,.1000E 01,.1000E 01,
> .10002 01,.10002 01,.10002 01,.1000E 01,.1000E 01,.1000E 01,
> .10002 01,.10002 01,.77822 00,.80832 00,.8307E 00,.8633E 00,
> .88722 00,.90582 00,.92082 00,.9335E 00,.9439E 00..9527E 00,
> .96012 00,.97422 00,.98372 00,.98982 00,.9938E 00,.9979E OO/
DATA AH/ .9994E 00,.9994E 00,.9999E 00,.1000E 01,.10002 01,.1000E
> 01, .1000E 01,.1000E 01..1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .10002 01,.10002 01,.10002 01,.1000E 01,.1000E 01,.1000E 01,
> .72962 00,.76682 00,.7964E 00,.8420E 00,.8765E 00,.9035E 00,
> .9251E 00,.94212 00,.9556E 00,.9663E 00,.9748E 00,.9884E 00,
> .9950E 00,.99792 00,.9992E 00,.9997E 00,.1000E 01,.1000E 01,
> .1000E 01,.10002 01,.10002 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.10002 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.10002 01,.10002 01,.1000E 01,.6637E 00,.7259E 00,
> .7745B 00,.84652 00,.89682 00,.93182 00,.95622 00,.9726E 00,
> .98342 00,.99022 00,.99442 00,.9987E 00,.9992E 00,.9999E 00,
> .1000E 01,.1000E 01,.10002 01,.10002 01,.1000E 01,.1000E 01,
> .10002 01,.10002 01,.10002 01,.10002 01,.1000E 01,.1000E 01,
> .10002 01,.10002 01,.10002 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.10002 01,.6022E 00,.71932 00,.8070E 00,.9160E 00,
> .96802 00,.9892E 00,.9968E 00,.9990E 00,.9992E 00,.9998E 00,
> .10002 01,.10002 01,.10002 01,.10002 01,.1000E 01,.1000E 01,
> .10002 01,.10002 01,.10002 01,.1000E 01,.1000E 01,.1000E 01,
> .10002 01,.10002 01,.1000E 01,.10002 01,.1000E 01,.1000E 01/
DATA AI/ .1000E 01,.1000E 01,.1000B 01,.1000E 01,.1000E 01,.1000E
> 01, .6767E 00,.8770E 00,.9627E 00,.9981E 00,.9998E 00,.1000E 01,
> .10002 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01/.1000E 01,
> .10002 01,.10002 01,.10002 01,.10002 01,.1000E Ot,.1000E 01,
> .10002 01,.10002 01,.1000E 01,.10002 01,.1000E 01,.1000E 01,
> .10002 01,.1000E 01,.1000E 01,.10002 01,.1000E 01,.1000E 01,
> .10002 01,.10002 01,.10002 01,.1000E 01,.8607E 00,.8749E 00,
> .88502 00,.89952 00,.9098E 00,.9180E 00,.9246E 00,.9303E 00,
> .93522 00,.9399E 00,.9436E 00..9515E 00,.9581E 00,.9645E 00,
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QT1
QY1
QY1
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
630
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
345
850
855
-------
131
> .9683E 00,.9757B 00,.9813E 00,.9856B 00,.9882B 00,.9936E 00,
> .9964E 00,.9980E 00,.9990E 00,.9987E 00,.9993E 00,.9998E 00,
> .1000E 01,.1000E 01..1000E 01,.1000B 01,.10002 01,.1000E 01,
> .1000E 01,.1000B 01..8062E 00,.82832 00,.8«»42E 00,.8673E 00,
> .8838E 00,.8952E 00..9075E 00,.91662 00..9243E 00,,9312E 00,
> .9391E 00,.9500E 00,.9597E 00,.9676E 00..9739B 00,.9832E 00,
> .98938 00,.9933E 00..9959E 00,.9986E 00,.99882 00,,9996E 00,
> .9999E 00,.1000E 01..1000E 01,.1000E 01..1000E 01,.1000E 01,
> .1000E 01,.1000E 01..1000E 01,.1000B 01,.10002 01,.1000E 01,
> .7559E 00,.78522 00,.8070E 00,.8391B 00,,86362 00,.8815E OO/
DATA AJ/ .8968E 00,.9123E 00,.9209B 00..9306E 00,.9392E 00..9560E
> 00, .9682E 00,.9774B 00,.9840E 00,.9923E 00,.9965E 00,.9985E 00,
> .9991E 00,.9997E 00,.1000E 01,. 1000E 01,.1000E 01,.1000E 01,
> .1000B 01,.1000E 01..1000E 01,.10002 01,.1000E 01..1000E 01,
> .1000E 01,.1000B 01,.1000E 01,.1000E 01,.69652 00,.7324B 00,
> .7610E 00,.8058E 00,.8406E 00,.8687E 00,.89202 00,.9115E 00,
> .9276B 00,.9410E 00,.9523E 00,.9727B 00,.9851E 00,.9922E 00,
> .9961E 00,.9991E 00,.99953 00,.9999E 00,.1000E 01,.1000E 01,
> .1000E 01,.10QOE 01r.1000B 01,.10002 01,.1000B 01,.1000E 01,
> .10008 01,.1000B 01,.1000E 01,.1000E 01,.10002 01,.1000B 01,
> .1000E 01,.1000E 01..61763 00,.6765B 00..7245E 00,.7950E 00,
> .8481E 00,.8886B 00..9187E 00,.9422E 00,.9593E 00,.9719E 00,
> .9809E 00,.9933E 00..9977E 00,.9993B 00,.9995E 00,.1000E 01,
> .1000E 01,.1000S 01,.1000E 01,.1000E 01..1000E 01,.1000E 01,
> .1000E 01,.10002 01,.1000E 01,.10002 01,.10002 01,.1000E 01,
> .1000E 01,.10005 01,.1000E 01..1000B 01,,1000E 01,.1000E 01,
> .5252E 00,.5346E 00,.7217E 00,.84622 00,.92092 00,.9626E 00,
> .9834B 00..9933E 00..9975E 00,.9990E 00,.9989E 00,.9999E 00,
> .1000E 01,.1000B 01,.1000E 01,.1000B 01,.10002 01,.10002 01/
DATA XK/ .1000B 01,.10002 01,.1000E 01,.10002 01..1000E 01,.10002
> 01, .1000B 01,.1000E Q1,.10QOE 01,.1000E 01,.1000E 01,.10002 01,
> .1000B 01..1000E 01,.1000E 01,.1000E 01,.5351E 00,.7565E 00,
> .8911E 00,.9856B 00,.9988E 00,.9997E 00..1000E 01,.1000E 01,
> .1000B 01,.1000E 01,.10002 01,.1000E 01,.1000B 01,.1000E 01,
> .1000E 01,.1000E 01..1000E 01,,10002 01,.10002 01,,10006 01,
> .1000E 01,.10002 01,.1000E 01,.10002 01,.10002 01,.10002 01,
> .1000E 01,.1000B 01,.10002 01,.10002 01,.1000E 01,.1000E 01,
> .1000E 01..100QB 01,.84692 00,.8607B 00,.8707B 00,.8850E 00,
> .3952E 00,.9032E 00,.9098E 00,.9157B 00,.9203E 00,.92462 00,
> .92852 00,.9357B 00,.9436E 00,.94902 00,.9529B 00,.9630B 00,
> .96832 00,.9734E 00,.9777E 00,.9843B 00,.9882E 00,.9S23B 00,
> .9947E 00,.9964B 00,.9976E 00..9990B 00,.99898 00,.9995B 00,
> .9998B 00,.9999B 00,.JOOOB 01,.1000B 01,.1000B 01,.1000B 01,
> .7847E 00,.80612 00,.8217E 00,.84422 00,.8604B 00,.87332 00,
> .8838E 00,.39282 00,.9006E 00,.9075B 00,.9137B 00,.9267B 00,
> .9391E 00,.9460B 00,.9535E 00,.9651B 00..9739B 00,.97962 00,
> .9855E 00,.9922B 00,.9959E 00,.9930E 00,.9990B 00,.9988B 00,
> .9994E 00,.9999E 00,.1000E 01,.10008 01,.1000B 01,.1000B 01/
DATA Al/ .1000E 01,.1000B 01,.10002 01,.10002 01,.7250E 00,.75322
> 00, .7742E 00,.8052B 00,.8283E 00,.8466B 00,.86272 00,.67512 00,
> .88422 00,.8966B 00,.9056E 00,.92452 00..9396B 00,.9515B 00,
> .9611E 00,.9753E OOr.9846E 0 .9992E 00,.99963 00,.99992 00,.10008 01,.1000E 01,.1000E 01,
> .10002 01,.10002 01,.1000B 01,.10002 01,.10002 01,.1000B 01,
> .1000E 01,.1000E 01,.6494B 00,.68312 00,.7101E 00,.7532E 00,
> .7869B 00,.8151E 00..8393B 00,.86012 00,.880«B 00,.8943E 00,
> .9085E 00,.9366E 00,.9568B 00,.97UB 00,.9814B 00,.9927E 00,
> ,9972E 00,.9991E 00,.9992B 00,.9999B 00,.1000B 01,.1000B 01,
QT1
QT1
QY1
QT1
QY1
QY1
QX1
QY1
on
QT1
QT1
QT1
QT1
QTT1
QT1
QT1
Otl
QT1
QT1
QTT
QT1
QT1
QT1
QI1
QH
QY1
QT1
OY1
an
QI1
QX1
QY1
QI1
QY1
QY1
QT1
QY1
QT1
QY1
QY1
on
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QT1
on
QY1
QY1
QY1
QT1
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
-------
132
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.10002 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .5547E 00,.6084E 00,.6516E 00,.7197E 00,.7728E OOr.8157E 00,
> .8510E 00,.8803E 00,.9042B 00,.9238E 00,.9401E 00,.9682E 00,
> .98IHE 00,.9925E 00,.9966E 00,.9994B 00,.9997E 00,.1000E 01,
> .1000E 01,.1000E 01,.1000B 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.42712 00,.5210E 00,
> .6001E 00,.7257E 00,.8180E 00,.8833E 00,.9280E 00,.9574E OO/
DATA AH/ .9758E 00,.9866E 00,.9929E 00,.9986E 00,.9993E 00,.9999E QY1
> 00, .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000B 01,.1000E 01,.1000E 01,
> .1000E 01,.1000B 01,.3527E 00,.5497E 00,.71442 00,.9105E 00,
> .97902 00,.9961E 00,.9993E 00,.9997E 00,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.1000B 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.1000B 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.1000B 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .8372E 00,.85092 00,.8607E 00,.87492 00,.8850E 00,.8930E 00,
> .8995E 00,.9050E 00,.9098E 00,.9141E 00,.9180E 00,.9261E 00,
> .9328B 00,.9380E 00,.94362 00,.9515E 00,.9581E 00,.96452 00,
> .9683E 00,.9757B 00,.9813E 00,.9856E 00,.9882E 00,.9916E 00,
> .9936E 00,.9964E 00,.9980E 00,.9990E 00,.9987E 00,.9993E 00,
> .9998E 00,.9999E 00,.1000E 01,.1000B 01,.7698E 00,.7909E 00,
> .8062E 00,.8283E 00,.8442E 00,.8568E 00,.8673E 00,.8761E 00,
> .8838E 00,.8906B 00,.8952E 00,.9099E 00,.9206B 00,.9295E 00,
> .9391E 00,.9500B 00,.9597E 00,.9676E 00,.9739E 00,.9832E OO/
DATA AH/ .9893E 00,.9933E 00,.9959E 00,.9976E 00,.9986E 00,.9988E QT1
> 00, .9996E 00,.9999E 00,.1000E 01,.1000E 01,.1000B 01,.1000E 01,
> .1000B 01,.1000B 01,.7036E 00,.7309E 00,.7513E 00,.7815E 00,
> .8040E 00,.8220E 00,.8370E 00,.8500E 00,.8621E 00,.8716B 00,
> .8807E 00,.9000B 00,.9157E 00,.9287E 00,.9398E 00,.9569E 00,
> .9681E 00,.9784E 00,.9850E 00,.9932E 00,.9969B 00,.9987E 00,
> .9993E 00,.9995E 00,.9998E 00,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.1000B 01,.1000E 01,.1000B 01,.1000E 01,.1000E 01,
> .6157B 00,.6478B 00,.6735B 00,.7146E 00,.7474E 00,.7750E 00,
> .8000E 00,.8200E 00,.8387B 00,.8555B 00,.8731E 00,.9023E 00,
> .9268E 00,.9457B 00,.9602B 00,.9797E 00,.9902E 00,.9956E 00,
> .99802 00,.99918 00,.99992 00,.1000E 01,.1000E 01,.10002 01,
> .10002 01,.10002 01,.10002 01,.10002 01,.10002 01,.10002 01,
> .10002 01,.1000E 01,.1000E 01,.1000B 01,.51202 00,.5618E 00,
> .60202 00,.66632 00,.71742 00,.75992 00,.80022 00,.82672 00,
> .85332 00,.87642 00,.8960E 00,.9340E 00,.9594E 00,.97582 00,
> .9861E 00,.99592 00,.9988E 00,.9991B 00,.9998E 00,.1000E 01,
> .10002 01,.10002 01,.10002 01,.10002 01,.10002 01,.10002 01,
> .1000E 01,.1000B 01,.1000E 01..1000B 01,.1000E 01,.1000E 01/
DATA AO/ .1000E 01,.1000B 01,.36622 00,.4477E 00,.5183E 00,.6357E QY1
> 00, .72892 00,.80252 00,.85902 00,.90162 00,.93312 00,.95562 00, QY1
> .9712E 00,.9910E 00,.9976B 00,.9993E 00,.9995B 00,.1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.10002 01,.10002 01,
> .10002 01,.10002 01,.10002 01,.10002 01,.10002 01,.10002 01,
> .10002 01,.1000E 01,.1000B 01,.1000E 01,.1000E 01,.1000E 01,
> .24972 00,.40852 00,.5622E 00,.7974E 00,.9235E 00,.9758E 00,
> .99352 00,.99842 00,.99932 00,.99972 00,.10002 01,.10002 01,
> .1000E 01,.10002 01,.10002 01,.1000E 01,.1000B 01,.10002 01,
> .10002 01,.10002 01,.10002 01,.10002 01,.10002 01,.10002 01,
> .10002 01,.10002 01,.10002 01,.10002 01,.10002 01,.10002 01,
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
QY1
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
-------
133
> .1000E 01,.10001 01,.1000B 01,.10001 01/ OT1 1»»0
00 30 1*1,34 QT1 1*«5
DO 20 K»1,7 QTM 14SO
DO 10 t-1,7 QT1 1455
10 BBFMIrKrL)-Sir»(I,R,l» QT1 1«60
20 COMTIIOE QT1 1«65
30 COSTIWOB QT1 1470
BETOBB OT1 1»75
BUD QY1 1»80
-------
134
SOBHOOTINE QY2 QY2
COMMON /QCOM/ RBFA(34,7,20) QY2
DIMENSION SEFA(34,7,20) QY2
DIMEHSIOH BQ(98),BC (114),BD (111) ,BE (114) ,BF (114),BG(114),BH (114), QY2
> BI(114),BJ(114),BK(114),BL(114) ,BN(114) ,BN (114) ,BO (114) ,BP (86) QY2
EQUIVALENCE (SBFA( 1,1,14) ,BQ(1)),(SEFA(31,3,14),BC (1)),(SEFA( 9, QY2
> 7,14) ,BD(1)),(SEFA(21,3,15) ,BE(1)), (SEFA (33,6, 15) ,BF(1)), QY2
> (SEFA(11,3,16),BG(1)),(SEFA(23,6,16),BH(1)),(SEFA( 1,3,17) ,BI (1)) QY2
> , (SEFA (13,6, 17) ,BJ(1)),(SEFA(25,2,18),BK(1)),(SEFA( 3,6, 18) ,BL(1) QY2
> ),(SBFA(15,2,19),BM(1)),(SEFA(27,5,19),BH(1)),(SEFA( 5,2,20),
> B0(1)) ,(SEFA(17,5,20),BP(1))
DATA BQ/ .7636E 00,.7761E 00, .7850E 00,.7979E 00,.8071E 00,
> .8143E 00,.8204E 00..8254E 00, .8298E 00,.8306E 00,.8372E 00,
> .8448E 00..8509E 00,.8562E 00, .8607E 00,.8685E 00,.8749B 00,
> .8803E 00,.8850E 00,.8930E 00,
> .9141E 00,.9180B 00,.9246E 00,
> .9436E 00,.9501E 00,.9518E 00,
> .6785E 00,.6915E 00,.7105B 00, .7242E 00,.7351E 00,.7440B 00,
> .7517E 00,.7585E 00,.76»4E 00, .7698E 00,.7813E 00,.7909E 00,
> .7990E 00,.8061E 00,.8182E 00,
8995E 00,.9050E 00,.9098E 00,
.9303E 00,.9352E 00,.9399E 00,
,9581E 00,.9683E 00,.6605E 00,
.8283E 00,.8367E 00,.8442B 00,
> .8568B 00,.8673E 00,.8761E 00, .8838E 00..8906E 00,.8952E 00,
.90758 00,.9166E 00..9243E 00,
.9521B 00,.9597E 00,.9739E 00,
.9312E 00,.9391E 00,.9477B 00,
,5360E 00,.5569E 00,.5725E 00,
> .5956E 00,.6084E 00,.6267E 00, .6384B 00,.6485E 00,.65353 00,
> .6656B 00,.6733E 00,.6889E 00, .7024E 00,.7141E 00,.7246E 00,
> .7402E 00,.7575E 00,.7707B 00, .7824E 00,.8028E 00..8199B 00,
> .8348E 00,.8483E 00,.8604E 00, .8714B 00,.8912E 00,.9076E 00,
.9219E 00,.9343B 00,.9441E OO/
QY2
QY2
QY2
QY2
QY2
QY2
QY2
QY2
QY2
QY2
QY2
QY2
QY2
QY2
QY2
QY2
QY2
QY2
QY2
DATA BC/ .9600E 00,.9662E 00,.9781E 00,.9923E 00,.3404E 00,.3582E QY2
> 00, .3726E 00,.3958B 00,.41463 00,.4309E 00,.4453E 00..4585E 00, QY2
> .4706E 00,.4819E 00,.4925E 00,.5167E 00,.5369E 00,.5585E 00, QY2
> .5771E 00..6110E 00,.6417E 00,.6700E 00,.6964E 00,.7441E 00, QY2
> .7871E 00,.8225E 00,.8547E 00,.8820E 00,.9051E 00,.9409E 00, QY2
> .9648E 00,.9799B 00,.9890E 00,.9940B 00..9984E 00,.9993E 00, QY2
> .9999E 00,.1000E 01,.2136E 00..2346E 00,.2518E 00,.2797E 00, QY2
> .3028E 00,.3229B 00,.3409E 00,.3574E 00,.3737E 00,.3873B 00, QY2
> .4011E 00,.4330E 00,.4622E 00,.4896E 00,.5157E 00,.5642E 00, QY2
> .6101E 00,.6527E 00,.6928B 00,.7648E 00,.8252E 00,.8741E 00, QY2
> .9116E 00,.9401B 00,.9605B 00,.9840E 00,.9940B 00,.9978E 00, QY2
> .9994E 00,.9998B 00,.1000E 01,.1000E 01,.1000B 01,.1000E 01, QY2
> .6861E-01,.8460E-01,.9887E-01,.1246B 00,.1481E 00,.1703E 00, QY2
> .1917B 00,.2126B 00,.2331E 00,.2535E 00,.2738E 00,.3243E 00, QY2
> .3750B 00,.U260E 00,.4769E 00,.5765E 00,.6685E 00,.7496E 00, QY2
> .8175E 00,.9120E 00,.9625E 00,.9853B 00,.9947E 00,.9981E 00, QY2
> .9995E 00,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QY2
> .1000E 01,.1000E 01,.1000E 01,.1000B 01,.3687E-02,.6718E-02, QY2
> .1064E-01,.2151E-01,.3705E-01,.5805E-01,.8520E-01,.1190E OO/ QY2
DATA BD/ .1596E 00,.2075E 00,.2S97B 00,.4086E 00,.5628E 00,.6993E QY2
> 00, .8076E 00,.9341E 00,.9816E 00,.9953E 00,.9990E 00,.1000E 01, QY2
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QY2
> .1000E 01,.1000E 01..1000B 01,.1000B 01,.1000E 01,.1000E 01, QY2
> .1000E 01,.1000E 01,.7439E 00,.7537E 00,.7619E 00,.7801E 00, QY2
> .7864E 00,.7963E 00,.8020E 00,.8071E 00,.8085E 00,.8152E 00, QY2
> .8187E 00,.8260E 00,.8321E 00,.8372E 00,.8417E 00,.8493E 00, QY2
> .8555E 00,.8607E 00..8654B 00,.8732E 00,.8796E 00,.8850E 00, QY2
> .8897E 00,.8939E 00,.8977E 00,.9043E 00..9098E 00,.9147E 00, QY2
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
-------
135
> .9190E 00,.9229B 00,.9295B 00,.9325B 00..9370E 00,.9483E 00, QY2 280
> .6364E 00,.6536E 00,.6662E 00,.6845E 00,.6977E 00,.7082E 00, QY2 285
> .7168E 00,.7242B 00,.7307E 00..7364B 00,.7416E 00,.7527E 00, QY2 290
> .7619E 00,.7698E 00,.7767E 00,.7883E 00,.7979E 00,.8062E 00, QY2 295
> .8133E 00,.8255E 00,.8356E 00,.8442E 00,.8477E 00,.8584E 00, QT2 300
> .8646E 00,.8749E 00,.8838E 00,.8916B 00,.8973E 00,.9051E 00, QY2 305
> .9154E 00,.9200E 00,.9283B 00,.9448B 00,.4937E 00,.5129E 00, QY2 310
> ^5273E 00,.5486E 00,.5604B 00,.5772B 00,.5880B 00,.5974E 00, QY2 315
> .6019E 00,.6131B 00,.6201B 00,.6346E 00,.6470B 00,.6578E 00, QY2 320
> .6675E 00,.6820E 00,.6980B 00,.7103E 00,.7212E 00,.7403E OO/ QY2 325
DATA BE/ .7566E 00,.7708E 00..7838E 00,.7957E 00,.8066E 00,.8265E QY2 330
> 00, .8438E 00,.8593E 00,.8733E 00,.8889E 00,.9075E 00,.9173E 00, QY2 335
> .9332E 00,.9617B 00,.2670E 00,.2811B 00,.2923B 00,.3106E 00, QY2 340
> .3254E 00,.3382B 00,.3496E 00,.3599B 00,.3695E 00,.3785E 00, QY2 345
> .3869E 00,.4062E 00..4225B 00,.4399B 00,,4551B 00,.4831E 00, QY2 350
> .5091E 00,.5333E 00,.5568E 00,.6012E 00,.6437E 00,.6817E 00, QY2 355
> .7185B 00,.7525E 00,.7844B 00,.8389E 00..8837B 00,.9185E 00, QY2 360
> .9445E 00,.9632B 00,.9851E 00,.9910E 00,.9970E 00,.9998E 00, QY2 365
> .1454E 00,.1597B 00,.1714E 00,.1905E 00,.2062E 00,.2200E 00, QY2 370
> .2324E 00,.2439E 00..2552E 00,.2647E 00,.2744E 00,.2970E 00, QY2 375
> .3181E 00,.3383E 00,.3579B 00,.3958B 00,.4330B 00,.4700E 00, QY2 380
> .5069E 00,.5794E 00,.6489E 00,.7132E 00,.7713E 00,.8220E 00, QY2 385
> .8646E 00,.9267E 00,.9635B 00,.9831E 00,.9930E 00,.9971E 00, QY2 390
> .9995E 00,.9998B 00,.1000E 01,.1000B 01,.3230B-01,.3984E-01, QY2 395
> .4660E-01,.5883E-01,.7010E-01,.8089B-01,.9144E-01,.1019E 00, QY2 400
> .1124E 00,.1229B 00,.1337B 00,.1615B 00..1913B 00,.2232E 00, QY2 405
> .2573E 00,.3320B 00,.4135E 00,.4982E 00,.5821E 00,.7337E 00, QY2 410
> .8479E 00,.9214E 00,.9629E 00,.9836B 00,.9935E 00,.9988E 00, QY2 415
> .9999E 00,.1000B 01,.1000B 01,.1000B 01,.1000E 01,.1000E 01/ QY2 420
DATA BF/ .1000B 01,.1000E 01,.5537B-03,.1017B-02,.1627E-02,.3389E-QY2 425
> 02, .6080E-02,.1002E-01,.1563B-01,.2338B-01,.3384E-01,.4774E-01, QY2 430
> .6506B-01,.1285B 00,.2219B 00,.3402E 00,.4721B 00,.7158E 00, QY2 435
> .8758E 00,.9541E 00,.9853E 00,.9984B 00,.9999E 00,.1000B 01, QY2 440
> .1000E 01,.1000B 01..1000E 01,.10008 01,.1000E 01,.1000E 01, QY2 445
> .1000E 01,.1000B 01,.1000B 01,.1000E 01,.1000E 01,.1000E 01, QY2 450
> .7360E 00,.7484E 00,.7567B 00,.7691B 00,.7780E 00,.7850B 00, QY2 455
> .7907E 00,.7956E 00,.7999B 00,.8037E 00,.8071E 00,.8143B 00, QY2 460
> .8204E 00,.8254E 00,.8298B 00,.8372B 00,.8434E 00,.8486B 00, QY2 465
> .8531E 00,.8607B 00,.8672E 00,.8725E 00,.8771E 00,.8813E 00, QY2 470
> .8850E 00,.8916B 00,.8970B 00,.9018E 00,.9060E 00,.9098E 00, QY2 475
> .9166E 00,.9194E 00,.9246B 00,.9352E 00,.6215E 00,.6386B 00, QY2 480
> .6506E 00,.6684E 00,.68138 00,.6916E 00,.7000E 00,.7034E 00, QY2 485
> .7135E 00,.7192B 00,.72428 00,.7351B 00,.7441E 00,.7517B 00, QY2 490
> .7584E 00,.7698B 00,.7792B 00,.7872E 00,.7943B 00,.8062E 00, QY2 495
> .8160E 00,.8244E 00,.8318B 00,.8383B 00,.8442B 00,.8545E 00, QY2 500
> .8632E 00,.8709E 00,.8777B 00,.8838B 00,.8944B 00,.8991B 00, QT2 505
> .9075B 00,.9243B 00,.4667B 00,.4849B 00,.4984E 00,.5185B 00, QY2 510
> .5297B 00,.5456E 00,.55588 00,.56478 00,.5690E 00,.5795B OO/ QY2 515
DATA BG/ .5862B 00,.5999E 00..6116B 00,.6219E 00,.6308E 00,.6446E QY2 520
> 00, .6597E 00,.6713B 00,.68178 00,.69991 00,.7154E 00,.7290E 00, QY2 525
> .7415E 00,.7529B 00..7767E 00,.7828B 00,.7998E 00,.8153E 00, QY2 530
> .8294E 00,.8417B 00,.8651B 00,.8752B 00,.8939B 00,.9284B 00, QY2 535
> .2202B 00,.2318B 00,.2410E 00,.2561E 00,.2683E 00,.2789B 00, QY2 540
> .2883B 00,.2969B 00,.3048B 00,.3122B 00,.3192E 00,.3353E 00, QY2 545
> .3488B 00,.3634E 00,.3761E 00,.3999B 00,.4222B 00,.4431E 00, QY2 550
> .4637E 00,.5033B 00,.5422E 00,.5783B 00,.6143E 00,,6489E 00, QY2 555
> .6820E 00..7447B 00,.7983E 00,.8447E 00,.88338 00,.9140E 00, QY2 560
> .9563E 00,.9699E 00,.9863B 00,.99848 00,.1055E 00,.1158B 00, QY2 565
-------
136
> .1243E 00,.1382E 00,.1496E 00,.1597E 00,.1688E 00,.1772E 00, QY2 570
> .1854E 00,.1925E 00,.1996E 00,.2164E 00,.2323E 00,.2476E 00, QY2 575
> .2626E 00,.2922E 00,.3221E 00,.3526E 00,.3839E 00,.4484E 00, QY2 580
> .5145E 00,.5819E 00,.6441E 00,.7043E 00,.7591E 00,.8489E 00, QY2 585
> .9119E 00,.9520E 00,.9756E 00,.9882E 00,.9977E 00,.9985E 00, QY2 590
> .9997E 00,.1000E 01,.1705E-01,.2104E-01,.2461E-01,.3111E-01, QY2 595
> .3713E-01,.429«E-01,.4865E-01,.5437E-01,.6016E-01,.6608E-01, QY2 600
> .7216E-01,.8827E-01,.1061E 00,.1258E 00,.1479E 00,.1992E 00, QY2 605
> .2602E 00,.3299E 00,.4059E 00,.5647E 00,.7102E 00,.8240E OO/ QY2 610
DATA BH/ .9016E 00,.9489E 00..9753E 00,.9951E 00,.9987E 00,.9998E QY2 615
> 00, .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QY2 620
> .1117E-03,.2060E-03,.3318E-03,.7035E-03,.1294E-02,.2200E-02, QY2 625
> .3561E-02,.5560E-02,.8440E-02,.1255E-01,.1809E-01,.4159E-01, QY2 630
> .8444E-01,.1521E 00,.2460E 00,.«827E 00,.7077E 00,.8603E 00, QY2 635
> .9419E 00,.9927E 00,.9988E 00,.9999E 00,.1000E 01,.1000E 01, QY2 640
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QY2 645
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.7105E 00,.7221E 00, QY2 650
> .7294E 00,.7414E 00,.7500E 00,.7567E 00,.7623E 00,.7641E 00, QY2 655
> .7711E 00,,7748E 00,.7780E 00,.7850E 00,.7907E 00,.7956E 00, QY2 660
> .7999E 00,.8071E 00,.8130E 00,.8180E 00,.8224E 00,.8298E 00, QY2 665
> .8358E 00,.8410E 00,.8455E 00,.8495E 00,.8531E 00,.8594E 00, QY2 670
> -8647E 00,.8693E 00..8734E 00,.8771E 00,.8835E 00,.886UE 00, QY2 675
> .8916E 00,.9018E 00..5851E 00,.6005E 00,.6130E 00,.6289E 00, QY2 680
> .6410E 00,.6506E 00,.6586E 00,.6654E 00,.6713E 00,.6766E 00, QY2 685
> .6814E 00,.6916E 00,.7000E 00,.7034E 00,.7135E 00,.7242E 00, QY2 690
> .7331E 00,.7366E 00,.7472E 00,.7584B 00,.7677E 00,.7714E 00, QY2 695
> -7825E 00,.7887E 00,.7943E 00,.8040E 00,.8079E 00,.8195E 00, QY2 700
> .8261E 00,.8318E 00,.8419E 00,.8464E 00,.8544E 00,.8709E OO/ QY2 705
DATA BI/ .3878E 00,.4029E 00..4142E 00,.4309E 00,.4402E 00,.453UE QY2 710
> 00, ,4619E 00,.4692E 00,.4728E 00,.4816E 00,.4871E 00,.4985E 00, QY2 715
> .5083B 00,.5168E 00,.5243E 00,.5357E 00,.5«84E 00,.5580E 00, QY2 720
> .5667E 00,.5820E 00,.5950E 00,.6065E 00,.6171E 00,.6268E 00, QY2 725
> .6470E 00,.6528E 00,.6678E 00,.6817E 00,.6945E 00,.7060E 00, QY2 730
> .7285E 00,.7386E 00,.7579E 00,.7982E 00,.1120E 00,.1179E 00, QY2 735
> .1226E 00,.1303E 00,.1365E 00,.1419E 00,.1467E 00,.1511E 00, QY2 740
> .1552E 00,.1590E 00,.1626E 00,.1709E 00,.1779E 00,.1855E 00, QY2 745
> .1922E 00,.2049E 00,.2170E 00,.2286E 00,.2402E 00,.2633E 00, QY2 750
> .2871E 00,.3104E 00,.3349E 00,.3598E 00,.3851E 00,.4379E 00, QY2 755
> .4903E 00,.5431E 00,.5949E 00,.6448E 00,.7339E 00,.7732E 00, QY2 760
> .8399E 00,.9423E 00,.2555E-01,.2807B-01,.3013E-01,.3351E-01, QY2 765
> .3631E-01,.3879E-01,.4104E-01,.4313E-01,.4521E-01,.4700E-01, QY2 770
> .4885E-01,.5325E-01,.5754E-01,.6182E-01,.6617E-01,.7524E-01, QY2 775
> .8513E-01,.9603E-01,.1082E 00,.1365E 00,.1712E 00,.2131E 00, QY2 780
> .2608E 00,.3156E 00,.3761E 00,.5068E 00,.6372E 00,.7521E 00, QY2 785
> .8426E 00,.9065E 00,.9727E 00,.9851E 00,.9968E 00,.1000E 01, QY2 790
> .1007E-02,.1244E-02,.1457E-02,.1849E-02,.2219E-02,.2584E-02, QY2 795
> .2953E-02,.3335E-02,.3733E-02,.4154E-02,.4604E-02,.5880E-02/ QY2 800
DATA BJ/ .7439E-02,.9372E-02,.1178E-01,.1852E-01,.2885E-01,.4429E-QY2 805
> 01, .6657E-01,.1385E 00,.2527E 00,.4015E 00,.5617E 00,.7066E 00, QY2 810
> .819/E 00,.9452E 00,.9864E 00,.9972B 00,.9996E 00,.9999E 00, QY2 815
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.9405E-07,.1762E-06, QY2 820
> .2900E-06,.6541E-06,.1310E-05,.2483E-05,.4578E-05,.8309E-05, QY2 825
> .1494E-04,.2677E-04,.4723B-04,.1902B-03,.7132E-03,.2424E-02, QY2 830
> .7350E-02,.4533E-01,.1642E 00,.3761E 00,.6127E 00,.9074E 00, QY2 835
> .9854E 00,.9983E 00,.9999E 00,.1000E 01,.1000E 01,.1000E 01, QY2 840
> . 1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QY2 845
> .1000E 01,.1000E 01,.6847E 00,.6959E 00,.7021E 00,.7136E 00, QY2 850
> .7219E 00,.7283E 00,.7337E 00,.7359E 00,.7422E 00,.7458E 00, QY2 855
-------
137
> .74881! 00,.7556E 00,.7611E 00,.7659E 00,.7698E 00,.7769E 00, QY2
> .7824E 00,.7874E 00,.7915E 00,.7986E 00,.8045E 00,.8096E 00, QY2
> .8138E 00,.81778 00,.8211E 00,.8271E 00,.8324E 00,.8367E 00, QY2
> .8407E 00,.8442E 00,.8504E 00,.8531E 00,.8580E 00,.8680E 00, QY2
> .5533E 00..5684E 00,.5795E 00,.5933E 00,.6048E 00,.6138E 00, QY2
> .6213E 00,.6278E 00,.6334E 00,.6384E 00,.6429E 00,.6525E 00, QY2
> .6605E 00,.6673E 00,.6732E 00,.6832E 00,.6915E 00,.6987E 00, QY2
> .7049E 00,.7155E 00,.7242E 00,.7317E 00,.7382E 00,.7440E OO/ QY2
DATA BK/ .7493E 00,.7585E 00,.7663E 00,.7731E 00..7792E 00,.7847E QY2
> 00, .7943E 00,.7985E 00,.8062B 00,.8217E 00,.2979E 00,.30958 00, QY2
> .3181B 00,.3310E 00,.338 IE 00,.3l»82E 00,.3548E 00,.3604E 00, QY2
> .3631E 00,.3699E 00..3741E 00,.3829E 00,.3904E 00,.3969E 00, QY2
> .4027E 00,.4115E 00,.4212E 00,.4287E 00,.4353E 00,.4471E 00, QY2
> .4572E 00,.«661E 00,.4743E 00,.4819E 00,.4975E 00,.5022E 00, QY2
> .5141E 00,.5251E 00,.5355E 00,.5448E 00,.5634E 00,.5719E 00, QY2
> .5884E 00,.6248E 00,.4172E-01,.4391E-01,.4567E-01,.48528-01, QY2
> .5085E-01,.5286E-01,.5465E-01,.5629E-01,.5781E-01,.5923E-01, QY2
> .6058E-01,.6369E-01,.6636E-01,.6923E-01,.7177E-01,.7661E-01, QY2
> .8127E-01,.8579E-01,.9037E-01,.9965E-01,.1094E 00,.1193E 00, QY2
> .1299E 00,.1410E 00..1527E 00,.1783E 00..2057E 00,.2356E 00, QY2
> .2675E 00..3011E 00,.37225 00,.4091E 00,.48358 00,.6592E 00, QY2
> .1276E-02,.1402E-02,.1506B-02,.1676B-02,.1818E-02,.1946E-02, QY2
> .2062E-02,.2172E-02,.2283E-02,.2380E-02,.2482E-02,.2732E-02, QY2
> .2987E-02,.32538-02,.3539E-02,.4178E-02,.4948E-02,.5884E-02, QY2
> .7036E-02,.1020E-01,.1500E-01,.2226E-01,.3285E-01,.4840E-01, QY2
> .69848-01,.1372B 00,.2418E 00,.3787E 00,.5296E 00,.6713E 00, QY2
> .8716E 00,.9266E 00,.9798E 00,.9995E 00,.2537E-05,.3139E-05/ QY2
DATA BL/ .3686E-05,.4710E-05,.5708E-05,.6729E-05,.7808E-05,.8974E-QY2
> 05, .1025E-04,.11688-04,.13288-04,.18288-04,.2532E-04,.3544E-04, QY2
> .5018E-04,.1039E-03,.2224E-03,.4847E-03,.1058E-02,.4772E-02, QY2
> .1847E-01,.5763E-01,.1418E 00,.2781E 00,.4481E 00,.7576E 00, QY2
> .9219E 00,.9801E 00,.9957E 00,.9991E 00,.1000E 01,.1000E 01, QY2
> .1000E 01,.1000E 01,.2950E-13,.5676E-13,.9703E-13,.2437E-12, QY2
> .5664E-12,.1298E-11,.3005E-11,.7108E-11,.1725E-10,.4305E-10, QY2
> .1090E-09,.1209E-08,.1404E-07,.1584E-06,.1625E-05,.1032E-03, QY2
> .2736E-02,.2892E-01,.1371E 00,.6007E 00,.9042E 00,.9849E 00, QY2
.9978E 00,.9998E 00,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QY2
.1000E 01,.1000B 01,.1000B 01,.1000E 01,.1000E 01,.1000E 01, QY2
> .6645E 00,.6754E 00,.6814E 00,.69258 00,.70068 00,.70688 00, QY2
> .71203 00,.7141E 00,.7203E 00,.7238E 00,.7267E 00,.7333E 00, QY2
> .7386E 00,.7432E 00,.7470E 00,.7539E 00,.7593E 00,.7641E 00, QY2
> .7681E 00,.7750E 00,.7807E 00,.7857E 00..7897E 00,.79358 00, QY2
> .7968E 00,.8027E 00,.8078B 00,.8119E 00,.8158E 00,.8193E 00, QY2
> .8252E 00,.8279E 00,.8327E 00,.8423E 00,.5379E 00,.5526E 00. QY2
> .5608E 00,.5762E 00,.5873B 00,.5961E 00,.6034E 00,.6096E 00. QY2
> .6151E 00..6200E 00..6243E 00,.6336B 00..6414B 00..6480E OO/ QY2
DATA BM/ .6538E 00,.6635E 00,.6716E 00,.6784E 00..6845E 00,.69478 QY2
> 00, ,7032E 00,.7105E 00,.7169B 00,.72258 00,.72768 00,.7365E 00. QY2
> .744 IE 00,.7507E 00..7566E 00,.7620E 00,.77138 00,.77548 00, QY2
> .7828E 00,.7979E 00,.2533E 00,.2632B 00,.2705E 00,.28148 Oo! OY2
> .2875E 00,.2962E 00,.3017E 00,.3065E 00,.3088E 00,.31468 00, OY2
> .3182E 00,.3256E 00,.3320E 00,.3376E 00..34248 00,.3499E Oo' QY2
> .3582E 00,.3646E 00,.3702E 00,.38038 00,.3888E 00,.3965E 00. OY2
> .4035E 00,.4100E 00,.4233E 00,.4273E 00,.4375E 00,.44708 00. QY2
> .4559E 00..4640E 00,.4801B 00..4876E 00,.50218 00,.53458 00 OY2
> .2252B-01,.2370E-01,.2465E-01,.2619E-01,.2745E-01,.2854E-Oll
> .2950E-01,.3039B-01,.3121E-01,.3198E-01,.327lE-Oi;.3439E-Ol'
> .3584E-01,.3739E-01,.3878E-01,.41418-01,.43958-01,.4643E-Ol' QY2
>
>
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
-------
138
> .4895E-01,.5407E-01,.5950E-01,.6503E01,.7104E-01,-7740E-01, QY2 1150
> .8414E-01,.9908E-01,. 1155E 00,.1338E 00,.1539E 00,.1866E 00, QY2 1155
> .2239E 00,.2502E 00,.3064B 00,.4595E 00,.1152E-03,.1266E-03, QY2 1160
> .13603-03,.1515E-03,.1645E-03,.1762E-03,.1870E-03,.1973E-03, QY2 1165
> .2077B-03,.2170E-03,.2268E-03,.2513E-03,.2771E-03,.30«7E-03, QY2 1170
> .3352E-03,.4064E-03,.4970E-03,.6136E-03,.7655E-03,.1225E-02, QY2 1175
> .2019E-02,.3404E-02,.5762E-02,.9766E-02,.1636E-01,.4290E-01/ QY2 1180
DATA BN/ .9892E-01,.1957E 00,.3315E 00,.4878E 00,.7641E 00,.8557E QY2 1185
> 00, .9550E 00,.9986E 00,.2082E-07,. 2579E-07,.3034E-07,.3895E-07, QY2 1190
> ,4752E-07,.5651E-07,.6627E-07,.7711E-07,.8938E-07,.1035E-06, QY2 1195
> .1198E-06,.1739E-06,.2568E-06,.3873E-06,.5966E-06,.1504E-05, QY2 1200
> .4044E-05,.1136E-04,.3259E-04,.2618E-03,.1804E-02,.9618E-02, QY2 1205
> .3775E-01,.1086E 00,.2360E 00,.5815E 00,.8398E 00,.9532E 00, QY2 1210
> .9887E 00,.9971E 00,.9999E 00,.1000E 01,.1000E 01,.1000E 01, OY2 1215
> .1773E-18,.3477E-18,.6103E-18,.1653B-17,.4267E-17,.1117E-16, QY2 1220
> .3040E-16,.8674E-16,.2603E-15,.8231E-15,.2698E-1<»,.6198E-13, QY2 1225
> .1639E-11,.4478E-10,.1145E-OB,.4389E-06,.5783E-04,.2241E-02, QY2 1230
> .2790E-01,.3603E 00,.7961E 00,.9608E 00,.9944E 00,.9992E 00, QY2 1235
> .9999E 00,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QY2 1240
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.5953E 00,.6050E 00, QY2 1245
> .6104E 00,.6204E 00,.6276E 00,.6332E 00,.6379E 00,.6398E 00, QY2 1250
> .6453E 00,.6484E 00,.6510E 00,.6569E 00,.6617E 00,.6658E 00, QY2 1255
> .6692E 00,.6754E 00,.6802E 00,.6845E 00,.6881E 00,.6943E 00, QY2 1260
> .6994E 00,.7038E 00,.7074E 00,.7108E 00,.7138E 00,.7190E 00, QY2 1265
> .7236E 00,.7274E 00,.7308E 00,.7339E 00,.7393E 00,.7417E 00, QY2 1270
> .7460E 00,.7546E 00,.4818B 00,.4950E 00,.5024E 00,.5161E OO/ QY2 1275
DATA BO/ .5261E 00,.5340E 00,.5405E 00,.5461E 00,.5510E 00,.5554E QY2 1280
> 00, .5593E 00,.5676E 00,.5746E 00,.5805E 00,.5857E 00,.5944E 00, QY2 1285
> .601 7E 00,.6078E 00,.6132E 00,.6224E 00,.6300E 00,.6365E 00, QY2 1290
> .6422E 00,.6472E 00,.6518E 00,.6598E 00,.6666E 00,.6725E 00, QY2 1295
> .6778E 00,.6826E 00,.6909E 00,.6946E 00,.7013E 00,.7148E 00, QY2 1300
> .1665E 00,.1730E 00,.1778E 00,.1850E 00,.1890E 00,.1947E 00, QY2 1305
> .1983E 00,.2015E 00,.2030E 00,.2068E 00,.2092E 00,.2140E 00, QY2 1310
> -2182E 00,.2219E 00,.2251E 00,.2300E 00,.2355E 00,.2397E 00, QY2 1315
> .2434E 00,.2500E 00,.2556E 00,.2607E 00,.2653E 00,.2696E 00, QY2 1320
> .2784E 00,.2811E 00,.2879E 00,.2942E 00,.3003E 00,.3058E 00, QY2 1325
> .3168E 00,.3216E 00,.3315E 00,.3541E 00,.4445E-02,.4679E-02, QY2 1330
> .4866E-02,.5170E-02,.5418E-02,.5633E-02,.5824E-02,.5999E-02, QY2 1335
> .6162E-02,.6314E-02,.6458E-02,.6792E-02,.7078E-02,.7388E-02, QY2 1340
> -7663E-02,.8189E-02,.8693E-02,.9191E-02,.9700E-02,.1077E-01, QY2 1345
> .1186E-01,.1301E-01,.1427E-01,. 1562E-01,.17082-01,-2036E-01, QY2 1350
> .2409E-01,.2837E-01,.3324E-01,.3873E-01,.5173E-01,.5932E-01, QY2 1355
> .7684E-01,.1353E 00,. 3120E-07, .3430E-07,.3686E-07,.4112E-07, QY2 1360
> .4477B-07,.4811E-07,.5126E-07,.5433E-07,.5752E-07,.6046E-07, QY2 1365
> .6362E-07,.7194E-07,.8128E-07,.9203E-07,.1046E-06,.1374E-06/ QY2 1370
DATA BP/ .1849E-06,.2553E-06,.3616E-06,.7781E-06,.1815E-05,.4514E-QY2 1375
> 05, .1165B-04,.3083E-04,.8184E-04,.5435E-03,.3051E-02,.1348E-01, QY2 1380
> .4544E-01,.1173E 00,.3945E 00,.5580E 00,.8127E 00,.9910E 00, QY2 1385
> .1555E-U,.1933E-14,.2286B-14,.2977E-14,.3706E-14,.4522E-14, QY2 1390
> .5473E-1»,.6609E-14,.7995E-14,.9711B-14,.1186E-13,.2018E-13, QY2 1395
> .3607E-13,.6798E-13,.1349E-12,.6143E-12,.3299E-11,.2013E-10, QY2 1400
> .1339E-09,.6559E-08,.2887E-06,.9102E-05,.1779E-03,.2027E-02, QY2 1405
> .1354E-01,.1542E 00,.4907E 00,.7884E 00,.9324E 00,.9820E 00, QY2 1410
> .9988E 00,.9998B 00,.1000E 01,.1000E 01,.2217E-33,.2222E-33, QY2 1415
> .223lE-33,.2266E-33,.2369B-33,.2738E-33,.4361E-33,.1266E-32, QY2 1420
> ,6106E-32,.3799E-31,.2696E-30,.5640E-28,.1856E-25,.7880E-23, QY2 1425
> ,3573E-20,.4526E-15,.1309E-10,.4985E-07,.2293E-04,.2535E-01, QY2 1430
> .3578E 00,.7910E 00,.9570E 00,.9932B 00,.9988E 00,.1000E 01, QY2 1435
-------
139
> .1000E 01,.1000E 01..1000E 01,.1000E 01,.1000E 01,.1000E 01, QI2 1440
> .1000E 01,.1000E 01/ Q*2 1445
DO 30 1=1,34 Q*2 H»50
DO 20 K=1,7 Q*2 1155
DO 10 1=14,20 Q*2 1460
10 HEPA(I,K,L)=SEFA(I,K,L) Q« 1465
20 CONTINUE 0^2 1470
30 CONTINOE QY2 1I175
RETORN Q*2 1U8°
END
-------
140
SOBBCWTINE QT3 QT3 0
COHHOtt /QCOM/ HEFA(34,7,20) QY3 5
DIHBHSION SEFA(34,7,20) QT3 10
DIMENSION C1(44),AP(114),AQ(114),AR(114) , AS (114) , AT (114) , AU (114) , QY3 15.
> AV(114),AH (114),AX(114),AY(114) ,AZ <1 U) ,BA (11«) , BB (16) QT3 20
EQUIVALENCE (SBFA( 1,1, 8),CA(1)), (SE?A(11,2, 8) ,AP(1)),(SEFA(23,QY3 25
> 5, 8) ,AQ(1)),(SBFA( 1,2, 9) ,AR (1)) , (SBPA(13,5, 9),AS(1)), QY3 30
> (SEFA(25,1,10),1T(1)),(SEFA( 3,5,10) ,AU (1) ) , (SEFA (15, 1,11) ,AV (1)) QT3 35
> , (SEFA(27,4,11),AW(1)), ),(SEFA(29,7,12),AZ(1)), BB(1J) QY3 50
DATA CA/ .8298E 00,.8434B 00, .8531E 00,.8672E 00,.8771E 00, QY3 55
> .8850E 00,.8916E 00,.8970E 00, .90182 00..9060E 00,.9098B 00, QY3 60
> .9180E 00,.9246E 00,.9303E 00, .9352E 00..9436E 00,.9501E 00, QY3 65
> .9556E 00,.9617E 00,.9683E 00, .9744E 00..9792E 00,.9831E 00, QY3 70
> .9863E 00,.9882E 00..9928E 00, .9954E 00..9972E 00,.9983E 00, QY3 75
> .9990E 00,.9991B 00..9994E 00, .9998E 00,.1000E 01,.7585E 00, QY3 80
> .7792E 00,.7943E 00,.8160E 00, .8318B 00,.8442E 00,.8545E 00, QY3 85
> .8632E 00,.8709E 00,.8777E OO/ QT3 90
DATA AP/ .8838E 00,.8952B 00,.9075B 00,.9166E 00,.9243E 00,.9391E QY3 95
> 00, .9477E 00,.9561E 00,.9631B 00,.9739E 00,.9816E 00,.9871E 00, QY3 100
> .9911E 00,.9940E 00,.9959E 00,.9932E 00,.9993E 00,.9992E 00, QY3 105
> .9997E 00..9999E 00..10003 01..1000E 01..1000E 01..1000E 01, QT3 110
> .6871E 00,.7139E 00..7338E 00,.7634E 00,.7853E 00,.8030E 00, QI3 115
> .8178E 00,.8306B 00,.8418E 00,.8518E 00,.8616E 00,.8804E 00, QY3 120
> .9963E 00,.9120E 00,.92133 00,.9401E 00,.9542E 00,.9652B 00, QT3 125
> .9737E 00,.9853E 00,.9922E 00,.9959E 00,.9979E 00,.9990E 00, QT3 130
> .9987E 00,.9997E 00,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QT3 135
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.5895E 00,.6204E 00, QY3 140
> .6450E 00..6846B 00,.7163B 00,.7432E 00..7667B 00..7875E 00, QY3 145
> .8063E 00,.8232E 00,.8386E 00/.8717B 00,.8986E 00,.9202E 00, QY3 150
> .9373E 00,.9631E 00,.9790E 00,.9886E 00,.9940E 00,.9985E 00, QY3 155
> .9991E 00,.9998E 00,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QY3 160
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01, Q73 165
> .1000E 01,.1000E 01,.4799E 00,.5268E 00,.5647E 00,.6257E 00, QY3 170
> .6746E 00,.7160E 00,.7515E 00,.7825E 00,.8098E 00,.8339E 00, QY3 175
> .8553E 00,.8987B 00,.9304E 00,.9532B 00,.9692E 00,.9876E 00, QY3 180
> .9955E 00,.9983E 00,.9992E 00,.9999B 00,.1000E 01,.1000E 01/ QY3 185
DATA AQ/ -1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E QY3 190
> 01, .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QY3 195
> .3226B 00,.39592 00,.4595E 00,.5680B 00,.6573E 00,.7318E 00, QT3 200
> .7931B 00,.8«24E 00,.8820E 00,.9129B 00,.9370E 00,.9737E 00, QY3 205
> .98992 00,.9965E 00,.9987E 00..9996E 00,.1000E 01,.1000E 01, QT3 210
> .1000E 01,.1000E 01,.1000E 01..1000E 01,.1000E 01,.10002 01, QY3 215
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.10008 01,.1000E 01, QY3 220
> .1000E 01,.1000E 01,.1000E 01,.1000B 01..1865E 00,.3136E 00, QY3 225
> .4461E 00,.6825B 00,.8441E OOr.9331E 00,.9746E 00,.9914E 00, QY3 230
> .9973E 00,.9991E 00,.9991E 00,.1000E 01,.1000E 01,.1000E 01, QY3 235
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QY3 240
> .1000E 01,.1000E 01..1000E 01,.1000E 01,.1000E 01,.1000E 01, QY3 245
> .1000E 01,.1000E 01..1000B 01,.1000E 01..1000E 01,.1000E 01, QY3 250
> .1000E 01,.1000E 01,.8211E 00,.83172 00,.8443E 00,.8551E 00, QY3 255
> .8680E 00,.8758E 00,.8792E 00,.8876B 00,.8924E 00,.8966E 00, QY3 260
> .9004E 00,.9060E 00,.9151E 00,.9207E 00,.9256E 00,.9337E 00, Q?3 265
> .94082 00,.94612 00,.9510B 00,.9590B 00,.9655E 00,.9708E 00, Q?3 270
> .9752E 00,.9789E 00,.9820E 00,.9868E 00,.9906E 00,.9933E 00, QY3 275
-------
141
SUBROUTINE CHIQ CHIQ 0
C01HOH /OCOH/ NAHNUC(36),HORD,N»OCS,ANLAH(36),RR,SQSD, ACON(36,20,CHIQ 5
> 20),GCON(36,20,20) ,LIPO,NONN(36,11) ,NRHH(36,11) , ORHODI(36,12,8) CHIQ 10
>, VD(36),VDCOEF(20,20) ,NOL,NOU,HRL,HRU CHIQ 15
REAL'S NAMNOC,HORD CHIQ 20
COMMON /PCOB/ REL(6,36) ,TDIST(20| ,NUMST CHIQ 25
COMMON /TCOM/ KIQ (36,20,20) CHIQ 30
DIMENSION REGL(35) CHIQ 35
REAL KIQ CRIQ 40
DO 30 I=1,NNUCS CHIQ 45
DO 20 N0=1,16 CHIQ 50
DO 10 NR=1,20 CHIQ 55
10 KIQ(I,NO,NR)=0 CHIQ 50
20 CONTINUE CHIQ 65
30 CONTINUE CHIQ 70
DO 50 I=1,NNOCS CHIQ 75
REGL(I)=0 CHIQ 30
DO 40 J=1,NUMST CHIQ 85
HO REGL(I) =REGL(I)+REL (J,I) CRIQ 90
50 CONTINOE CHIQ 95
DO 90 I=1,NNUCS CHIQ 100
DO 80 NO=NOL,NOO CHIQ 105
DO 60 NR=NRL,NRU CHIQ 110
IF (REGL(I) .EQ.O) GO T3 TQ CHIQ 115
60 KIQ(I,NO,NR)=(ACON(I,NO,NR)/REGL(I))*1.E6 CHIQ 120
GO TO 80 CHIQ 125
70 KIQ(I,NO,NR)=0. CHIQ 130
80 CONTINOE CHIQ 135
90 CONTINOE CHIQ 140
DO 130 I=1,NNUCS CHIQ 145
WRITE(51,9000)NAMNUC(I) CHIQ 150
WRITE(51,9001) CHIQ 155
WRITE(51,9002) CHIQ 160
WRITE(51,9003) CHIQ 165
WRITE(51,9001) CHIQ 170
WRITE(51,900U) CHIQ 175
WRITE(51,9005) CHIQ 130
N0=1 CHIQ 185
DO 100 NR=NRL,NRO CHIQ 190
100 WHITE(51,9007)IDIST(NR),KI3{I,HO,HR),KIQ(I,HO*1,HR),KI3(I, CBIQ195
> NO»2,NR).KIQ(I,NO*3,NR),KIQ(I,HO+«»,HB),KIQ(I,HO*5,NH), CHIQ 200
> KIQ(I,NO*6,NR), KIQ(I,NO*7,HR) CHIQ 205
ISP= (22-2*(NRO/2)) /2 CHIQ 210
DO 110 IG»1,ISP CHIQ 215
HO WRITE(51,9001) CHIQ 220
WRITE(51,9006) CHIQ 225
WRITE(51,9005» CHIQ 230
N0=9 CHIQ 235
DO 120 NR=NRL,NRO CHIQ 240
120 HHITE(51,9007)IDIST(NR),Kia(I,NO,NR),KIQ(I,HO*1f5R),KI3(I, CHIQ 245
> NO*2,NR),KIQ(I,NO+3,NR),KIQ{I,HO+U,HR),KIQ(I,HO*5,HR), CHIQ 250
> KIQ(I,NO+6,NR), KIQ(I,NO*7,NRJ CHIQ 255
130 CONTINOE CHIQ 260
RETURN CHIQ 265
9000 FORMAT (M« ,T25,'GROUND- LEVEL CHI/Q VALOES FOR »,A8, CHIQ 270
> «AT VARIOUS DISTANCES III EACH COMPASS DIRECTION') CHIQ 275
-------
142
DATA ATI/ .4898E 00,.5434E 00,.5870E 00,.6243E 00,.6570E 00,.6864E QT3
> 00, .7092E 00,.7373B 00,.7594B 00,.8073E 00,.8465E 00,.8788E 00, QY3
> .9048E 00,.9i»31E 00,.9673B 00,.9820E 00,.9905E 00..9977E 00,
> .9992E 00,.9997E 00,.9999B 00,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,,
> . 1000E 01,,
>
1000B 01,.1000B 01,.1000B 01,.1000E 01..1000E 01,
1000E 01,.2448E 00,.3011E 00,.3507E 00,.437«E 00,
5127E 00,.5794E 00..6387E 00,.6915B 00,.7383E 00,.7795B
> .81U7E 00,.8848E 00,.9315E 00,.9610B 00,.9788B 00,.9944E
> .9985B 00,.9990E 00,.9998B 00,.1000B 01,.1000B 01,.1000E
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E
> .1000E 01,.1000E 01,.1000E 01,.1000B 01,.1000B 01,.1000E
> ,9490E-01,.1655E 00,.2472E 00,.4257B 00,.5953E 00,.7377B
> .8409E 00,.9094E 00,.9514E 00,.9753B 00,.9881E 00,.9984B
00,
00,
01,
01,
01,
00,
00,
> .9993E Oa,.9999E 00..1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000B 01,.1000E 01..1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.8071B 00,.820«E 00,
8298E 00,.8435E 00,.8531B 00,.8607E 00,.8672E 00..8725E
00,
.8771E 00,.8781E 00,.8850E 00,.89308 00,.8995E 00,.9050B OO/
QY3
QT3
QY3
QY3
QT3
QY3
QY3
QY3
QY3
QY3
QY3
QY3
QY3
QY3
QY3
QY3
QY3
DATA AT/ .9098E 00,.9I80E 00,.9246E 00,.9303E 00,.9352E 00,.9436E QY3
> 00, .9501E 00,.9556B 00,.9617B 00,.96«»7E 00..9683E 00,.9744E 00, QY3
.9792E 00,.9831B 00,.9863E 00,.9882E 00,.9928E 00,.99i»3E 00,
> .9964E 00,.9990E 00,.7242E 00,.7«»41E 00,.7584B 00,.7792E 00,
> .79U3B 00..8062B 00,.8160B 00,.824ttB 00,.8318E 00,.8383E 00,
8673E 00, .87618 00,.8838E 00,.8952E
> .8442E 00,.8568E OOr
> .9075E 00,.9166E 00,.9243E 00,.9391E 00,.9477E 00,,9561E
> .9631E 00,.9689E 00,.9739E 00,.9816E 00,.9871E 00..9911E
00,
00,
00,
9940E 00,.9959E 00,.9982E 00,.9989B 00,.9988E 00,.9999E 00,
> ,6376E 00,.6624E 00,.6809E 00,.708<»E 00,.7236E 00,.7«t53B 00,
> .7592E 00,.7712B 00,.7770E 00,.7913B 00,.8003E 00,.8186B 00,
> .83H3E 00,.8477E 00,.8597B 00, .87708 00,.8960B 00,.9098E 00,
> .9216E 00,.9408E 00,.9552E 00, .9662E 00,.9718E 00,.9813B 00,
> .9862E 00,.9930E 00, .99648 00,.9932B 00,,9992E 00,.9990E 00,
> .9998E 00,.9999B 00,.1000B 01, .10008 01,.5086E 00..5353E 00,
00,.6429B 00,.6639B 00,.6829E 00,
QY3
QY3
QY3
QY3
QY3
QY3
QY3
QY3
QY3
QY3
QY3
> .5567E 00,.5911E 00,.6190E
> .7002E 00,.7162B 00,.7310E
00,.76«1E 00,.790«E 00,.8176E 00,
QY3
QY3
QY3
> .8398E 00,.8768E 00,.9062E 00,.92388 00,.9471E 00,.9718E 00, QY3
> .9858E 00,.9932E 00,.9970B 00,.9986E 00,.9991B 00,.9997E OO/ QY3
DATA AH/ .1000E 01,.1000B 01,.1000E 01,.1000E 01,.1000E 01,.1000E QY3
> 01, .1000E 01,.1000B 01,.3873B 00,.4252E 00,.4561E 00,.5062E 00, QY3
> .547IE 00,.5823E 00,.6133B 00,.6412E 00,.6683E 00..6901E 00,
> .7120E 00,.7596B 00,.7997B 00,.8338B 00,.8630E 00,.9079B 00,
> .9398E 00,.9618E 00,.9764E OOr.9918E 00,.9975E 00..9992E 00,
9993E 00..9998B 00,.1000E 01,.1000E 01,.1000E 01..1000E 01,
01,.1000E 01,.1000E 01,.1000E 01,
3830B 00,.4S05E 00,.5112E 00,
7040E 00,.74172 00,.8196E 00,
> .8777E 00,.9196E 00,.9487E 00,.9810B 00,.9936E 00,.9981E 00,
> .9994E 00,.9999B 00,.1000E 01,. 1000E 01,.1000E 01,.1000E 01,
> ,1000E 01,.1000B 01,.1000B 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01..1000E 01,.1000B 01,.1000E 01,.67002-01,.
00,.6098B 00,.7277E 00,,
9908B 00,.9983E 00,.
> .1000E 01,.1000E 01,.1000E
> .2134E 00,.2627E 00,.3062B 00,
> .566UE 00,.6167E 00..6625E 00,
.1182B 00,
.3190E 00,
.9989E
00,
> .1791E 00,.3204E 00,.4701E
> .8851E 00,.9300E 00,.9590E 00,.
> .9998E 00,.1000E 01,.1000E 01,.1000B 01,.1000E 01..1000E 01,
> .1000E 01,.10008 01,.1000E 01,.1000E 01,.1000B 01..1000E 01,
> .1000E 01,.1000E 01,.1000B 01,.10008 01,.1000E 01,.1000E 01,
> .1000E 01,.10008 01,.7941E 00,.80718 00,.8164E 00,.8298E OO/
QY3
QY3
QY3
QY3
QY3
QY3
QY3
QY3
QY3
QY3
QT3
QY3
QY3
QY3
QT3
QY3
QY3
DATA AX/ .8394B 00,.8469B 00,.8531E 00,.8556B 00,.8630E 00,.8672E QY3
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
-------
143
> 00, .8707E OOr.8786E OQ,.8850E 00..8906E 00,.8952E 00,.9032E 00, QY3 860
> .9098E 00,.9157E 00..9203E 00,.9285E 00,.9352E 00,.9412E 00, QY3 865
> .9458E 00,.9501E 00,.9529E 00..9617E 00,.9659E 00,.9705E 00, QY3 870
> .9744E 00,.9777E 00,.9831E 00,.9854E 00,.9882E 00,.99i»7E 00, QY3 875
> .7050B 00,.7242E 00..7382E 00,.7584E 00,.7731E 00,.7847E 00, QY3 880
> .7943E 00,.8025E 00,.8096E 00,.8160E 00,.8217E 00,.8340E 00, QY3 885
> .8U42E 00,.8529E 00,.8604E 00..8733E 00,.8838E 00,.8928E 00, QY3 890
> .9006E 00,.9137E 00,.9243E 00..9333E 00..9409E 00,.9477E 00, QY3 895
> .9535E 00,.9631E 00,.9707E 00..9768E 00,.9816E 00,.9855E 00, QY3 '900
> .9911E 00,.9931E 00,.9959E 00,.9990B 00,.6087E 00,.6323E 00, QY3 905
> -6500E 00,.6763E 00..6908E 00,.7115B 00,.7248E 00,.7363E 00, QY3 910
> .7419E 00,.7556E 00..7642E 00..7819E 00..7970E 00,.8101E 00, QY3 915
> .8217E 00,.8389E 00,.8578E 00,.8719E 00,.8846E 00,.9053E 00, QY3 920
> .9217E 00,.9350E 00,.9463E 00,.9556E 00,.9635E 00,.9757E 00, QY3 925
> .9839E 00,.9897E OOt.9935E 00,.9954E 00,.9985E 00,.9992E 00, QY3 930
> .9998E 00,.1000E 01..4609E 00,.4851E 00,.50«5E 00,.5358E 00, QY3 935
> .56115 00,.5829E 00,.6022E 00,.6197E 00,.6357E 00,.6505E 00, QY3 940
> .6643E 00,.6956E 00,.7209E 00,.7476E 00,.7698E 00,.8086E OO/ QY3 945
DATA AY/ .8417E 00, .8686E 00,.8920E 00,.9283E 00,.9536E 00,.9709E QY3 950
> 00, .9823E 00,.9894E 00,.9937E 00,.998JE 00,.9995E 00,.9999E 00, QT3 955
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QY3 960
> .3359E 00,.3688E 00,.3957E 00..4394E 00,.4751E 00..5061E 00, QY3 965
> .5336E 00,.5586E 00,.5829E 00,.6029E 00,.6229E 00,.6678E 00, QY3 970
> .7071E 00,.7418E 00,.7731E 00,.8259E 00,.B678E 00,.9011E 00, QY3 975
> .9272E 00..9633E 00,.9828E 00,.9919E 00,.9962E 00,.9986E 00, QY3 980
> .9995E 00,.1000E 01..1000E 01,.1000E 01,.1000E 01,.1000E 01, QY3 985
> .1000E 01..1000E 01,.1000E 01,.1000E 01,.1628E 00,.2005E 00, QY3 990
> .2340B 00..2936E 00,.3469E 00,.3958E 00,.4414E 00,.4842E 00, QY3 995
> .5245E 00,.5625E 00,.5984E 00,.6790E 00,.7479E 00,.8050E 00, QY3 1000
> .8525E 00,.9203E 00,.9601S 00,.9816E 00,.9921E 00,.9985E 00, QY3 1005
> .9998E 00,.1000E 01,.10003 01,.1000E 01..1000E 01..1000E 01, QY3 1010
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01, QY3 1015
> .1000E 01,.1000E 01,.3335E-01,.5966E-01,.9211S-01,.1735E 00, QY3 1020
> .2716E 00,.3792E 00,.4885E 00,.5918E 00,.6846E 00,.7639E 00, QY3 1025
> .8284E 00,.9314E 00,.9764E 00,.9921E 00,.9975E 00,.9999E 00, QY3 1030
> .1000E 01,.1000E 01,.1000E 01,.1000E 01..1000E 01,.1000E 01, QY3 1035
> .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01/ QY3 1040
DATA AZ/ .1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E QY3 1045
> 01, .7850E 00,.7979E 00,.8071E 00,.8204E 00,.8298E 00,.8372E 00, QY3 1050
> .8435E 00,.8486E 00,.8531E 00,.8540E 00,.8607E 00,.8685E 00, QY3 1055
> .8749E 00,.8803E 00,.8850E 00,.8930E 00,.8995E 00,.9050E 00, QY3 1060
> .9098E 00,.9180E 00,.9246E 00,.9303E 00,.9352E 00,.9399E 00, QY3 1065
> .9436E 00..9501E 00,.9556B 00,.9617E 00,.9647E 00,.9683E 00, QY3 1070
> .9744E 00,.9769E 00,.9813E 00,.9882E 00,.6916E 00,.7105E 00, QY3 1075
> .7242E 00,.7440E 00,.7584E 00,.7698E 00,.7792E 00,.7872E 00, QY3 1080
> .7943E 00,.8005E 00,.8062E 00,.8182E 00,.8283E 00,.8367E 00, QY3 1085
> .8442E 00,.8568B 00,.8673E 00,.8761E 00,.8838E 00,.8952E 00, QY3 1090
> .9075E 00,.9166E 00,.9243E 00,.9312E 00,.9391E 00,.9177E 00, QY3 1095
> .9561E 00,.9631E 00,.9689E 00,.9739E 00,.9816E 00,.9846E 00, QY3 1100
> .9393E 00,.9959E 00,.5876E 00,.6105E 00,.6276E 00,.6529E 00, QY3 1105
> .6669E 00..6870E 00,.6998E 00,.7109E 00,.7163E 00,.7295E 00, QY3 1110
> .7379E 00,.7550E 00,.7697E 00,.7824E 00,.7937E 00,.8106E 00, QY3 1115
> .8292E 00,.8431E 00,.8554E 00,.8764E 00,.8936E 00,.9081E 00, QY3 1120
> .9207E 00..9322E 00,.9414E 00,.9567E 00,.9679E 00,.9766E 00, QY3 1125
> .9839E 00,.9883E 00,.9947E DO,.9965E 00,.9981E 00,.9998E 00, QY3 1130
> ,4262E 00,.4485E 00,.4665E 00,.4955E 00,.5190E 00,.5392B OO/ QY3 1135
DATA BA/ .5572E 00,.5734E 00,.5884B 00,.6022E 00,.6152E 00,.6447E QY3 1140
> 00, .6689E 00,.6945E 00,.7160E 00,.7543E 00,.7876E 00,.8162E 00, QY3 1145
-------
144
> .8<*21E 00,.8851E 00,.9171E 00,.9tt25E 00,.9609E 00,.9739E 00,
> .9829E 00..9933B 00,.9976E 00,.9989E 00,.9997E 00,.9999E 00,
> .1000E 01..1000E 01,,1000E 01,.1000E 01,.299aE 00,.3288E 00,
.3527E 00,.3918E 00,.»238E 00,.«»516E 00,.476«E 00,.4990E 00,
> .5211E 00..539UE 00,.5578E 00,.5996E 00,.6368E 00,.6706E
00,
00,
10
20
30
7015E 00,.7556E 00,.8020E 00,.8416E 00,.8?l|6E 00,.9251E
> .9579E 00,.9776E 00,.9884E 00,.9917E 00,.9975E 00,.9994E 00,
> .9999E 00,.1000E 01,.1000E 01,.1000E 01f.1000E 01,.1000E 01,
> .1000E 01,.1000E 01,.1309E 00,.16t2E 00, .18831! 00,.2366E 00,
> .2801E 00,.3206E 00,.3588E 00,.3952E 00,.tt300E 00,.4635E 00,
> .4958E 00,.5713E 00,.6UOOB 00,.7018E 00,.7565E 00,.8450E 00,
> .9075E 00,.9U81E 00,.9725E 00,.9934E 00,.9981E 00,.9996E 00,
> .9999E 00,.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .1000E 01f.1000E 01,.1000E 01,.1000E 01,.1000E 01,.1000E 01,
> .19038-01, .3428E-01,.53»5E-01,. 1031E 00,.1678E 00,.21H»3E 00,
> .3296E 00,.t19itE 00,.5092E 00,.5953E 00,.6741E 00,.828«E 00,
> .920UE 00,.9661E 00,.9875E 00,.9984E 00,.9998E 00,.1000E 01/
DATA BB/ .1000B 01,.1000S 01,.1000E 01,.1000E 01,.1000E 01,.1000E
> 01, .1000E 01,.1000E 01,.1000B 01,.1000E 01,.1000Z 01,.1000E 01,
> .1000E 01,.1000E 01,.1000E 01,.1000E
DO 30 1=1, 3H
DO 20 K=1,7
DO 10 1=8,13
HEPA(I,K,I.)=SEFA(I,K,t}
CONTINUE
HETOHN
END
QY3 1150
QY3 1155
QT3 1160
QT3 1165
QT3 1170
QY3 1175
QY3 1180
QY3 1185
QY3 1190
QY3 1195
QY3 1200
QY3 1205
QY3 1210
QY3 1215
QY3 1220
QY3 1225
QY3 1230
QY3 1235
QY3 12UO
QY3 12U5
QY3 1250
QY3 1255
QY3 1260
QY3 1265
QY3 1270
QY3 1275
QY3 1280
QY3 1285
-------
145
SUBROUTINE QX(BUD,X,0,OD,HS,VD,VG,INDEX1,QXK) QX 0
C QX 5
C NUMERICAL INTEGRATION BY SIMPSON'S BULB QX 10
C ROUTINE CHANGED BY D.P.STEWART 7/76 QX 15
C QX 20
FUNC(D,F,HH,X)=F*BXP(-(HH**2*F**2)/(2.*X**(2*D)))/X**D QX 25
REAL AB(7,4,2) QX 30
INTEGER AC<5,4) QX 35
C 1234567 QX 40
DATA AB/ 1.0000, 1.0000, .9540, .8061, .8600, .8823, .8257, QX 45
> 99.9999,99.9.999, .8330, .6715, .6290, .6321, .6547, 99.9999, QX 50
> 99.9999, .5524, .5099, .4054, .3710, .3818, 99.9999,99.9999, QX 55
> 99.9999, .5251, .1110, .1106, .1106, 5.0200, 8.3500,10.0150, QX 60
> 7.4800,15.5000,34.7000,61.2500, 99.9999,99.9999, 4.4000, 2.9500, QX 65
> 3.1500, 6.1320,18.8000, 99.9999,99.9999, .3320, .8100, .5240, QX 70
> .7640, 2.1150, 99.9999,99.9999,99.9999, .9300, .0349, .0694, QX 75
> .1739/ QX 80
C 12345 QX 85
DATA AC/ 0, 0,99999, 1000, 1000, 1000, 1000, 0,10000, 3000, 10000,QX 90
> 3000, 0,99999,10000, 0,10000, 0, 0,99999/ QX 95
IF (INDEX1-3) 10,20,30 QX 100
C SET OP BOUNDS OF INTEGRATION QX 105
C INDEX3 GIVES COLUMN OF AC CONTAINING LOWER BOUNDS QX 110
C INDEX4 GIVES COLUMN WITH UPPER BOUND QX 115
C LIM1 AND LIN 2 DETERMINE THE ROWS OF AC USED QX 120
C THEY ALSO DETERMINE WHICH VALUES OF D AND F SHOULD BE USED QX 125
10 INDEX3=1 QX 130
INDEX4=3 QX -|35
LIH2=1 QX 140
LIH1=1 QX 145
GO TO 40 QX 150
20 INDEX3=1 QX 155
INDEX4=4 QX 160
LIM2=3 QX 165
LIM1=1 QX 170
IF (BND.GE.1000.) LIH1=2 OX 175
IF (BND.GE.10000) LIM1=3 OX 180
GO TO 40 QX 185
30 INDEX3=2 QX 190
INDEX4«5 QX 195
LIN2=4 QX 200
LIM1=1 QX 205
IF {END.SB.1000) LI«1=2 QX 210
IF (BND.GE.3000) LIH1=3 QX 215
IF (BND.GE.10000) LIN1=4 QX 220
40 QXB=0 QX 225
STOH1=AC(IKDEX3,LIM1) QX 230
AC(IND£X3,LIH1)=BND QX 235
AC(INDEX4,LIM2)=X QX 240
EPS=.1 QX 245
c THIS LOOP SPLITS THE INTEGBATION ACCORDING TO CHANGES IN D AND F QX 250
DO 90 INDEX2*LIH1,LIM2 QX 255
D=AB(INDEX1,INDEX2,1) QX 260
F=AB(INDEX1,INDBX2,2) QX 265
B=AC(INDEX4,INDEX2) QX 270
IF (X.LT.B) B=X QX 275
-------
146
A=AC(INDEX3,INDEX2) QX 280
WIDTH* (B-A)/2. QX 285
JLIB=1 QX 290
C FOFA AHD FOFB ARE THE FONCTIOH VALUES AT BNDPOIHTS OP IWTEETAL QX 295
FOFA=0.0 QX 300
IF (A.EQ.0.0) GO TO 50 QX 305
HA=HS-VG*A/tJD QX 310
IF (HA.LT.1.0) HA*1.0 QX 315
FOFA=FUNC(D,F,HA,A) QX 320
50 HB=HS-VG*B/OD QX 325
IF (HB.LT.1.0) HB=1.0 QI 330
FOFB=FUNC(D,F,HB,B) QX 335
X1=A+WIDTH QI 3flO
H1=HS-VG*X1/UD QX 3U5
IF (H1.LT.1.0) H1=1.0 QX 350
C COHPOTE FIRST APPROXIHATIOIT OF SIHP QX 355
SIHP=(FOFA+t*FaNC(DtF,H1,X1)+FOFB) *WIDTH/3. QX 360
C THIS SECTION IS REPEATED UNTIL THE CHANGE IB SIHP IS LESS THAH EPSQX 365
60 FtJHC1=0.0 QX 370
FOMC2=0.0 QX 375
WIDTH=HIDTH/2 QX 380
JLIN=JLIH*2 QX 385
OLDS=SIMP QX 390
JLESS=JLIS-1 QX 395
DO 70 J=1,JLESS QX 400
X1=A*(2*J-1.)*ITIOTE QX 405
H1=HS-VG*n/OD QX 410
IF {H1.LT.1.0) H1*1.0 QX U15
POHC1=FnNC1*FONC{D,F,HlrX1) Qt U20
X2=A+2*J*WIDTH QI 125
H2=HS-VG*X2/UD QX H30
IF (H2.1T.1.0) H2=1.0 QX 435
FOKC2=FaNC2*FnSC(D,F,H2,]C2) QX UtO
70 COHTISaE QX U«5
X1=A+2*JII«*WIDTH QX «50
H1=HS-TG*Xl/aD QX 455
IF (B1.1T.1.0) H1-1.0 QX 460
FOMC1=FOHC1+FOKC(D,F,H1,I1) QX 465
SIBP=(FOFA*4*FaHC1+2*FOHC2*FOFB) *«IDTH/3 QX U70
IF (ABS(SIHP-OLDS).GT.BPS) GO TO 60 QX 475
C END SIHP APPHOXIHATIOH LOOP QX 480
80 QTCE=QXR+SIMP QX 485
IF (X.LT.AC(IBt)EXl»,IHDBX2}) BO TO 100 QX 490
90 COHTISaE QX 495
100 QXB=EXP(-.79788*QXR*VD/OD) QX 500
AC(INDEX3,I.It!l)=STOH1 QX 505
RETORM QX 510
END QX 515
-------
147
SUBBOUTIHB CHIQ CHIQ
COHHON /OCOH/ NAHNOC(36),HOBD,SNOCS,ANLAH(36),RB,SQSD, ACOK(36,20,CHIQ
> 20),GCON(36,20,20),LIPO,NOHH(36,11) ,HRHH(36,11), OBBODI(36,12,8)CHIQ
> , VD(36),TDCOBF(20,20),NOL,NOOrNBL,NHU CHIQ
REAl*8 NAMIHTC,WORD CHIQ
COHHON /PCOH/ HEL{6,36),IDIST(20| ,NOHST CHIQ
COHHON /TCOH/ KIQ (36,20,20) CHIQ
DIHENSIOH BEGL(35) CHIQ
REAL KIQ CHIQ
DO 30 I=1,NNOCS CHIQ
DO 20 10=1,16 CHIQ
DO 10 NB=1,20 CHIQ
10 KIQ(I,NO,NR)=0 CHIQ
20 CONTINUE CHIQ
30 CONTINUE CHIQ
DO 50 I=1,NNUCS
BEGL(I)=0
DO 40 J=1,NtJNST
50 CONTINUE
DO 90 I=1,HNOCS
DO 80 NO-NOL,NOU
DO 60 NB=NRL,NBU
IF (REGL(I).EQ.O) GO TO 70
60 KIQ(I,NO,NR) = (ACON(I,SO,NH)/REGL(I))*1.E6
GO TO 80
70 KIQ(I,HO,NR)=0.
80 CONTINUE
90 CONTINUE
DO 130 I=1,NNOCS
WRITS(51,9000)NAHNUC (I)
WRITE(51,9001)
WRITE(51,9002)
HRITE(51,9003)
WRITE(51,9001)
WBITE(51,9004)
VBITB(51,9005)
H0=1
DO 100 NB=NRL,NBU
100 »HITB(51,9007)IDIST(1TB),KIQ(I,HO,NB),KIQ(I,NO+1,NR),KIQ(I,
> HO+2,NR),KIQ(I,NO+3,NR),KIQ(I,NO+4.NR),KIQ(I,HO+5,NR),
> KIQ(I,NO*6,NB), KIQ(I,NO+7,NB)
ISP=(22-2*(NBU/2) )/2
DO 110 16=1,ISP
110 WRITB(51,9001)
HRITE(51,9006)
WRITE(51,9005}
N0*9
DO 120 NB=NRL,NRU
120 "BITE (51,9007) IDIST(NB) ,!CIQ (I,BO,NB) ,KIQ (I,HO*1 ,NR)
> MO+2,NE),KIQ(I,NO*3,NR),KIQ(IrNO+4rNR)rKIQ(I,IO*5,NR),
> KIQ(I,HO*5,HR), KIQ(I,NO+7,NB)
130 CONTINUE
RETURN
9000 FOBHAT('1',T25,'GHOUND-LEVEL CHI/Q VALUES FOR «,A8,
> «AT VARIOUS DISTANCES IN EACH COMPASS DIBECTIOW1)
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ
CHIQ 220
CHIQ 225
CHIQ 230
CHIQ 235
CHIQ 240
CHIQ 245
CHIQ 250
CHIQ 255
CHIQ 260
CHIQ 265
CHIQ 270
CHIQ 275
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
-------
148
9001 FORMAT (»0«)
9002 FORMAT (•
9003 FORflAT {»
9004 FORH*T{«
> T98t*SV*
9005 FOHH»T(«
9006 FOBHAT(*
CRXQ 290
,T20,»DtST»HCB»,T52.»CHT/Q 90V&BD IIDICiTBO DIRBCTIOR*) CHIQ 285
,T20,*(IUTBRSt*»TCO,*(SBC/CVBIC H2TEB)*) CHIQ 290
Ti09?*ssii«) * * * 'CHIQ 300
* t • • i T98,«liB»,Tl09'»m«> ' * .... »CHIQ 3^
9007 FORSiTC • ,T19,I7.T30,B9.3,T«1.H«».3,T52,W.3,T63,B9.3,T7»,E9. 3, CRIQ 320
> T85,B9.3,T96,B9.3.T1I)7,B9.3» CHIQ 325
BUD CHIQ 330
-------
149
SUBROUTINE DIRECT (10RT)
C READS AIR CONCENTRATIONS AND GROUND DEPOSITION RATES FOR
C RADIONUCLIDES DIRECTLY FOR TRANSMISSION TO THE DOS.Efl
C SUBROUTINE.
COMMON /OCOS/ NAMNffC(36),WOED,NNUCS,ANLAH(36),RR,SQSD, ACON(36,20,
> 20) ,GCON(36,20,20) ,LIPO, NOHM (36, 11) ,NRHH(36,11) , ORMODI (36, 12,8)
> , 7D(36),VDCOEF(20,20) ,NOL, SOU, NHL,NRU
COMMON /PCOM/ HEL(6,36) ,IDIST{20) ,NDNST
COMMON /FCOH/ FEQWI.,INTPA (20,20)
DIMENSION SC(36)
REAL*8 NAHNt)C,90RD
READ (50 ,9000) NOL , NOO , NRL, NRU
READ(50,9001)SQSD
READ (50, 9000) IDIST
READ (50, 9002) SEQWl
READ (50, 9000) NNTJCS
DO 10 I=1,NNDCS
READ (50,9003) NAMNUC(I) ,7D(I) ,SC(I)
READ (50, 9004) «ACON(I,NO,HH) ,NR*1 ,20) ,NO=1,20)
RE AD (5 0,9 004) ( (GCON (I,NO,NR) ,NR=1,20) ,NO=1,20)
CONTINUE
FEQWL=SBQWL
WRITE (51, 9005)
WRITE (5 1,9006)
WRITE (5 1,9007)
IF (IORT.BQ.O) GO TO 20
WRITE (5 1,9008)
WHITE (5 1,9009)
WRITE (5 1,9019)
GO TO 30
20 WRITE (51,9010)
WRITE (51, 9019)
30 CONTINUE
IF (LORT.EQ. 1) GO TO 70
DO 60 NO=NOL,NOU
DO 50 NR=NRl,NRU
DO 40 I=1,NNOCS
10
DRYCON=ACON(I,NO,NR) *VD 1*100
WETCON=(GCON(I,NO,NH)-DBTCON)*(SC(I)/(SC(I) + 1.
40 HRITE(51,9018) NO,NE,NAMNUC(I) , ACON (I, BO, NB) ,DR7CON,
> WETCON, GCON (I, NO, NH)
50 CONTINUE
60 CONTINUE
GO TO 110
70 CONTINUE
DO 100 N03NOt,NOU
DO 90 NB=NRL,NRU
DO 80 I*1.NNUCS
80
90
100
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
DRYCON=ACON(I,NO,NR)*VD1*100
WETCON= (GCOS (I, NO, NR) -DRICON) * (SC (I)/ (SC (I) + 1. E-30) )
«RITE(51,9018) NO, IDIST (NR) ,HAMNUC (I) ,ACON(I,NO,NR) ,
DRYCOS, WETCON, GCON(I,NO,HR)
CONTINUE
CONTINUE
DIRE
DIRE
DIRE
DIRE
DIRS
DIRE
DIRE
DIRE
DIRE
DIBE
DIRB
DIRE
DIRE
DIRE
DIRE
DIRE
DIRE
DIRE
DIRE
DIRE
DIRE 100
DIRB 105
DIBE 110
DIRE 115
DIRE 120
DIRE 125
DIRE 130
DIRE 135
DIRE 140
DIRE 145
DIRE 150
DIRE 155
DIRE 160
DIRE 165
DIBE 170
DIRB 175
DIRE 180
DIRE 185
DIRE 190
DIBE 195
DIRE 200
DIRB 205
DIRE 210
DIRE 215
DIRE 220
DIRE 225
DIRE 230
DIRE 235
DIRE 240
DIRE 245
DIRE 250
DIRE 255
DIRE 260
DIRE 265
DIRE 270
DIRB 275
-------
150
110 CONTINUE DIRE 280
120 CONTINUE DIRE 285
IP (LORT.EQ.1) 60 TO 130 DIRE 290
ASQSD=((SQSD**2)*400.)/1.B6 DIRE 295
WRITE (51,9011) DIRE 300
WRITE(51,9012)ASQSD DIRE 305
WRITE (51,9013) DIRE 310
WRITE (51,9014)SQSD DIRE 315
WRITE(51,9015) DIRE 320
WHITB(51,9016) DIRE 325
WRITE(51,9017) DIRE 330
C END OF GRID LOOP DIEE 335
130 RETURN DIRE 340
9000 FORMAT(8110) DIRB 345
9001 FORMAT (8F10.0) DIRE 350
9002 FORMAT(F10.0) DIRE 355
9003 FORHAT(A8,F12.4,B10.3) DIRE 360
9004 FORMAT(8E10. 3) DIRE 365
9005 FORHATC 1',**8,'II»PaT HADIOHUCLIDB CONCENTRATIONS') DISE 370
9006 FORHAT(«0',T10,'AREA',T30,'NOCLIDE',142,»AIB CONCENTRATION*,T64, DIRE 375
> 'DRY DEPOSITION RATE*,T88,•SET DEPOSITION HATE',T112, DIRE 380
> 'GROUND DEPOSITION BVTB') DIRE 385
9007 FOHHAT(T47,'(PCI/CC) ',T64,«(PCI/SQBABB CH-SEC)',T88, DIRE 390
> • (PCI/SQUARE CM-SEC)«,T113,'(PCI/SQUARE CM-SEC)') DIRE 395
9008 FOHHATC WIND TOWARD1,T17,'DISTANCE*) DIRE 400
9009 FORMAT{• «,T17,• (SETEHS)«) DIRE 405
9010 FORM AT (• • ,T4,'COLOH!I',T21, »BOW») DIRE 410
9011 FOBHAT(«1',T30,«irOTB-THE AREA SURROUNDING THE PLANT IS A SQUARE DIRE 415
>WITH AN AREA') DIRE 420
9012 FORHATC *,T35,'OF« ,F10.1, IX, DIBE 425
> 'SQUARE KILOMETERS WITH THE PLANT AT THE CENTER.1) DIRE 430
9013 FORHAT(§ ',T35,"THE SQUARE ABBA IS ALIGNED DOB NORTH-SOOTH AND EASDIKE 435
>T-WEST. THE') DIRE 440
9014 FORHATC ',T35,'400 SHALLBH SQUARES, WHICH ARE EACH ',F7.1,1X, DIRE 445
> 'HBTERS ON A SIDE,') DISE 450
9015 FORHATC ',T35,'ARE IDENTIFIED BT COLUMN AND ROW. COLUMNS ARE NDMBDIRE 455
>BHED FP.OH') DIRE 460
9016 FORHATC «,T35,«1 TO 20 FHOH BEST TO EAST. ROWS ARE NUHBE3ED FROH DIRE 465
>1 TO 20 FROM') DIKE 470
9017 FORHATC ',T35,'SOUTH TO NORTH.*) DIKE 475
9018 FOHHATC «,T6,I2,T18,I6,T31,A8,T45,H10.3,T68,E10.3,T92,B10.3,T118,DIRE 480
> E10.3) ' DIRE 485
9019 FORHAT('0») DIRE 490
END DIRE 495
-------
151
SOBEOOTINE DOSEN OOSE 0
C DOSE 5
C tJSNRC REG. GUIDE 1.109 MODELS FOR INGESTION DOSE CALCULATIONS DOSE 10
C HEBE IMPLEMENTED AND INCORPOHMED WITHIN DOSEH BY J. C. PLEASANTDOSE 15
C OF THE 1ATHEMATICS DEPARTMENT, EAST TENNESSEE STATE UNIVERSITY. DOSE 20
C DOS'? 25
COHHON /OCOH/ NAHNUC(36) , HOED,NKOCS,ANLAB£36),RR,SQSD, ACON (36,20,DOSE 30
20) ,<3CON(36,20,20) ,LIPO,NOBM (36 ,11) ,NHBfl(36,11) , ORMODI (36, 12,8) DOSE 35
40
> , VD(36) ,VDCOEF{20,20) ,NOL,N00, NRL, HRD
COHHOM
COHMOH NOHL(11) ,NEML(11)
COWBON /R7AL/ S1 , S3 , SD1 ,S D3, ACN,SCH, S 11 ,SW3
COMHOH /TCOM/ KIQ (36,20,2 0)
CONHON /PCOM/ EEL(6,36» ,IDIST(20| .SafiST
COKHON /FCOM/ FEQWL, IKTPA (20,20>
C
DIMENSION VASAC(36) ,VAGCONt36) ,BAGA=136} ,BAGCO«(36)
DIHEHSIOB FIMG(36,20,20),GBOP{35, 23,20»
DIMENSION GI(36,U),PABSIZ(36),CLASS{36)
DIHEHSIOH GFIH(36,20,20)
REAL Kig
REAL*8 NADBN
EEAL*8 NABSOC,WOED,NADEC1rMADEC3, NAHBSJ11) ,KAMORG111)
REAL CFIBGA(11) ,CFINH\( 11 ) , DOSIM3 (11J ,FROG{11) ,INTPA,
> LAHH20.LA1SOR,HSOBB,LA1RR,ISrF;(20,20}, DCC1U (1 1) ,DOSIS (1 1 ,36) ,
> VEGDOS (11) ,BEFDOS(11) ,nLKDOS(11| , L AMI ,LAMW,LEFDOS,HAGAC (36) ,
> HAGCON (36)
INTEGER INTWA(20,2t» .NO^CT (20, 20| .HaMCT (20, 20) ,TKOBCT .TNOHCT
INTEGER CLASS
DATA HAflES/'TOT.BODY1,1^ MAR •t>LV1IGS 'r»EHDOST ','S BALL
> «LLI WALL", 'THYROID •, 'LIVER ','KIDKEYS «,'TESrE5 ',
> 'OVARIES •/
DATA HADRN/'RH-222 •/
DATA NADECl/«H-3 ' /,NADEC3/« r-1 » '/
DATA DCC1U/1. 16E3,2.03E3,5.07E2. 1.85E3,7,t»3B2,8.92E2,5,27E2,
> 7.30E2,6.49E2,«.46E2,d.«6E2/
C— -END OF DECLARATIONS
DO 10 K=1,36
BO 1 0 J=1, 11
DOSIH{JrK)=0.
DO 10 1=1,8
10 ORMODI(K,J,I)=0
DO 40 1=1,36
DO 30 N0=1,20
DO 20 NR=1,20
GBOP(I,NOrNH}=0.
PINS(I,HO,NB)=0.
20 CONriNUE
30 CONTINOE
HO CONTINOE
READ(50,9061JLIPO
BEAD(50,9061) NNTB,lfETB, HSTB, HTTB, NOIB
SEAD(50,9062) ( (HOBCT {I, J) , J=1 , 20) ,1=1,20)
READ{50, 9063) ((«OHCT(1,J» ,J=1, 20) ,1=1,20)
KEAD(50,906H) ((INTPC(I,J) ,J=1,20) ,1=1,20)
READ(50,9Q65) ((INTPA(I,J) ,J=1,20J ,1=1,20)
50
55
60
65
70
75
BO
85
90
95
DOSE
DOSE
DOSE
DOSE
DOSE
DOSE
DOSE
DOSE
DOSE
DOSE
DOSE
DOSE
DOSE 100
DOSE 104
DOSE 105
DOSE 110
DOSE 115
DOSE 120
DOSE 125
DOSE 130
DOSE 135
',DOSB 140
DOSE 145
DOSE 150
DOSE 155
DOSE 160
DOSE 165
DOSE 170
DOSE 180
DOSE 185
DOSE 190
03 SE 195
DOSE 200
DOSE 205
DOSE 210
DOSE 215
DOSE 220
30SE 225
DOSE 230
DOSE 235
DOSE 250
DOSE 255
DOSE 260
DOSE 265
DOSB 270
275
-------
152
PEAD(50,9066)((INTWA(I,J),J=1,20),1=1,20)
READ(50,9067)IMPFIX
READ (50,9068)RVEG,F3?EGM,RBEF,F3BEFM,RHLK,F3HLKH
READ{50,9069)BRTHRT,DILFAC,USEFACrT,ODl
READ PARA8ETERS FOR SBC MODEL
READ (50,9000) TSUBH1 ,TSOBH2,TSOBH3,rStIBH4
READ(50,9000) LAMW
READ(50,9000) TS0BB1,TSOBE2
READ(50,9000)YSUBV1,YSOBV2
READ(50,9000)FSOBP
READ(50,9000)FSOBS
REAO(50,9000)QSDBF
READ(50,9000) TSOBF
READ (50,9000) tJVrUM,UF,aL
READ(50,9000)TSOBS
READ(50,9000)FStJBG,FSOBL
READ (50,9000)TSOBB
BEAD(50,9000) P
READ (50,9070) TAUBEF, HStJBB,VSOBH
TAnCM=UM/365.
TAUBH=aF/365.
V=(dL+aV)/365.
A=(DT+UL)/YSOBV2
READ(50,9070)R1,H2
S10=R2
S30=R1
S1=H2
S3=R1
WHITE(51,9001)
IF (1IPO.EQ.1)
WRITE (5 1,9002)
GO TO 60
WRITE(51,9003)
CONTINUE
IF (NNTB.GT.O)
WRITE (51, 9004)
GO TO 80
WRITE (51, 9005) NNTB
CONTINUE
IF (HRTB.BE.O)
IF (HSTB.HE.O)
IF (HTTB.KE.OJ
IF (NOTE.BE.0)
WRITE (51, 9071)
WRITE(51,9072)
WRITE(51,9072)
WRITE(51,9073)
WRITE(51,907a)
WRITE(51,9075)
WRITE (51,9076)
WRITE(51,9072)
DO 100 N0=1,20
DO 90 HR=1,20
WRITE(51,9077)NO,NR,NOBCT(NO,N3) ,HOHCT(NO,»R),INTFC(NO,HE) ,
> IHTHA(HO,KR) ,INTPA(HO,HR)
50
60
70
80
GO TO 50
GO TO 70
WRITE(51,9006)
WRITE(51,9007)
WRITE(51,9008)
HRITE(51,9009)
90
100
COHTIHOE
COHTIHOE
DOSE 280
DOSE 285
DOSE 290
DOSE 295
DOSE 300
DOSE 305
COSE 310
DOSE 315
DOSE 320
DOSE 325
DOSE 330
DOSE 335
DOSE 340
DOSE 315
DOSE 350
DOSE 355
DOSE 360
DOSE 365
DOSE 370
DOSE 375
DOSE 380
DOSE 385
DOSF, 390
DOSE 395
DOSE 400
DOSE U05
DOSE U10
DOSE U15
DOSE U20
DOSE 425
DOSE U30
DOSE U35
DOSE 440
DOSE 445
DOSE 450
DOSE 455
DOSE 460
DOSE 465
DOSE 470
DOSE 475
DOSE 480
DOSE 485
DOSE 490
DOSE 495
DOSE 500
DOSE 505
DOS? 510
DOSE 515
DOSE 520
DOSE 525
DOSE 530
DOSE 535
DOSE 540
DOSE 545
DOSE 550
DOSE 555
DOSE 560
DOSE 565
-------
153
110
120
130
140
WRITE(51,9078)
WRITE(51,9079)
WRITE(51,9080)NUUCS
WRITE (51,9012)TSOBH1
WRITE(51,9013)TSOBH2
WRITE (51, 9011») TSOBH3
WRITE (51,9015)TSOBH4
WRITE(51,9016) LAMM
WRITE (51,9017)TSUBS 1
WRITE (51,9018)TSOBE2
WRITE(51,9019)YSOBV1
WRITE(51,9020)TS0BV2
WRITE(51,9021)PSOBP
WRITE(51,9022)FSOBS
WHITE (51, 9023) QSOBF
WRITE(51,9024)TSOBF
WRITE (51, 9025) 0V
WRITE(51,9026)OH
WRITE(51,9027)OF
WRITE (51,9028)OL
WRITE(51,9029)TSOBS
WRITE(51,9030)FSOBG
WRITE (51,9031)FSOBL
WRITE(51,9011) TSOBB
WRITE (51,9010)P
WRITE (51,9081)RVEG
WRITE(51,9082) RBEF
WRITE (51,9083)RMLK
WRITE(51,9072)
IF (IMPFIX.EQ.O) GO TO 110
WRITE(51,9084)
GO TO 120
WRITE(51,9085)
WRITE (51,9086)F3VBGN
WRITE(51,9087)F3BEFH
WRITE(51,9088)F3MLKH
WRITE(51,9089)BRTHRT
WRITE(51,9090)T
WRITE(51,9091)DIIFAC
WRITE (51,9092)OSBFAC
WRITE(51,9093) MSOBB
WRITE(51,9096)TAOBEP
WRITE(51,9097)VSOBH
WRITE(51,9094)31
WRITE(51,9095)33
WSITE(51,9098)DD1
TPOP=0
TNOBCT=0
THOMCT=0
TARFC=0
00 140 HO=NOL,HOO
DO 130 NR=HRL,HRIJ
TPOP=IUTPA(NO,HR)+TPOP
TKOBCT=MOBCT(HO,SB) +TNOBCT
THOHCT=NOMCT(HO,HR)+THOMCT
TARFOINTFC(NO,NR)+TAHFC
COHTIHOE
AHOHH=TAHFC/A
DOSE 570
DOSE 575
DOSE 580
DOSE 585
DOSE 590
DOSE 595
DOSE 600
DOSE 605
DOSE 610
DOSE 615
DOSE 620
DOSE 625
DOSE 630
DOSE 635
DOSE 640
DOSE 645
DOSE 650
DOSE 655
DOSE 660
DOSE 665
DOSE 670
DOSE 675
DOSE 680
DOSE 685
DOSE 690
DOSE 695
DOSE 700
DOSE 705
DOSE 710
DOSE 715
DOSE 720
DOSE 725
DOSE 730
DOSB 735
DOSE 740
DOSB 745
DOSE 750
DOSE 755
DOSE 760
DOSE 765
DOSE 770
DOSE 775
DOSE 780
DOSB 785
DOSE 790
DOSE 795
DOSE 800
DOSE 805
DOSE 810
DOSE 815
DOSE 820
DOSE 825
DOSE 830
DOSB 835
DOSE 840
DOSE 845
DOSE 850
DOSE 855
-------
154
TKGBCA=TA0BH*365. *TPOP
ANOBCT=TNOBCT
TKGBPA=aNOBCT*TAOBBP*365. *SSIJBB
CONMK=TAaCH*TPOP
AMOMCT=THOHCT
PHNMK=VSaBM*AHOHCT
YCONHK=CONHK*365.
YPRNHK=PRNMK*365.
PPCY=YSOBV2*TARFC
CPCY=TPOP*V*365.
AF=ANOMH/TPOP
IF (ANUMM.GE.TPOP) AF=1.
IF ((1.-AFJ.GE.F3V) F3T=1.-AF
IF (IHPFIX.EQ. 1) F3V=F3VEGH
F1V=SVEG*{1--F3V)
F2T=1.-F3V-F1V
BP=TKGBPA/TKGBCA
IT (TKGBPA.GE.TKGBCA) BF=1.
F3B*F3BEFM
IP ((1.-BF).GE.F3B) F3B=1.-BF
IP (IMPFIX.EQ.1) F3B=F3BEPB
F1B=RBEF*(1.-F3B)
P2B=1.-P3B-F1B
CP=P8HHK/COHHK
IP (PRNMK.GE.CONMK) CF=1.
F3M=P3HL!CM
IF ((1.-CF).GE.F3B) F3H=1.-C?
IP (IHPPIX.EQ. 1} F3H=F3HLKM
F1M=RHLK*{1.-F3MJ
F2«=1.-P3M-F1H
WRITE {5 1,9099}
URITE(51,9100)TPOP
WRITE(51,9101)TMOBCT
WHITE (51, 9102) TNOBCT
WRITE <51,9103)TABPC
WRITE (51, 9104)TKGBCA
VHITE(51,9105)TKGBPA
WRITE(51,9106)YCOHMK
WRITE{51,9107)YPHHMK
W8ITE(51,9108)CPCY
HHITE(51,9109)PFCY
DO 680 1=1, NNOCS
READ (50, 9 110) HOHORG,LAHHH,CFSBA,CPSBW,CFSOR,KFLAG, TDCF,
HEAD (50,9111) (PROG(IH) ,IH=1,11)
READ (50,9000) PSOBMI,PSUBFI,BSOBV1 rBSOBV2
8EAD(50,9112)LAMStJRrLAMB20,IPlAG, HD1,ED2,RW1,RW2
REID (50.9032) II, 12,13,11, 15,FT,F2, F3, F4, P5
LAST = IAKBE/2a.
C IFlftG=1 IF SPECIAL VALaES USED FOR Hi AND E2
C IP1AS=2 IP H1 AKD E2 ARE GIVES FOR DRY iHD WET DEPOSITION
SD3=RD1
SD1=HD2
SW3=RH1
SW1=HB2
C R2AD IHHAIATIOH DOSE COHVERSION FACTORS
C HEADER CARD GIVES SOLDBI1ITY, PARTICLE SIZE, AND G.I. UPTAKE
READ (50, 9033) ISOL,AHAD,F1IHH
DOSE 360
DOSE 865
DOSE 870
DOSE 875
DOSE 880
DOSE 885
DOSE 890
DOSE 895
DOSE 900
DOSE 905
DOSE 910
DOSE 915
DOSE 920
DOSE 925
DOSS 930
DOSE 935
DOSE 940
DOSE 9H5
DOSE 950
DOSE 955
DOSE 960
DOSS 965
DOSE 970
DOSE 975
DOSE 980
DOSE 985
DOSE 990
DOSE 995
DOSE1000
DOSE1005
DOSE1010
DOSE1015
DOSE1020
DOSE1025
DOSE1030
DOSE1035
DOSE1040
DOSE10H5
DOSE1050
DOSE1055
DOSE1060
DOSE1065
DOSE1070
TDCW DOSE1075
DOSE1080
DOSE1085
DOSE1090
DOSB1095
DOSE1100
DOSE1105
DOSE1110
DOSE1115
DOSE1120
DOSE1125
DOSE1130
DOSE1135
FRACTIOHDOSE1UO
DOSE1145
-------
155
DO 150 J=1,N0HORG
READ (50,9034) NAHORG (J) ,CFIHHA (J)
150 CONTINUE
C BEAD INGESTION DOSE CONVERSION FACTORS
C HEADER CARD GIVES G.I. UPTAKE FRACTION
READ (50, 9035) FUNG
DO 160 J=1,NUHORG
READ(50,9035)CFINGA(J)
160 CONTINUE
d.ASS(I)=ISOL
PARSI2(I)«ANAD
GI(I,1)=F1INH
GI(I,2)=F1ING
IF (I1.EQ.O) SO TO 170
IF (I2.EQ.O) 12=1
IF (I3.EQ.O) 13=1
IF (I4.EQ.O) 14=1
IF (I5.EQ.O) 15=1
170 CONTINUE
IF (I.GT.SNTB) GO TO 180
WRITB(51,9113)NAHHUC(I)
HRITE(51,9072)
WBITE(51,9114)
HRITE(51,9115)
WRITE{51,9072)
WBITE(51,9116)
»BITE(51,9117)
IBITE(51,9072)
180 VAGCON(I)=0.
BAGCOH(I)=0.
HAGCON (I) sQ.
VAGAC(I)=0.
BAGAC(I)=0.
HAGAC(I)=0.
IF (I1.NE.O) GO TO 210
DO 200 NO=HOL,NOU
DO 190 NR=NRL,KHU
VAGCON(I)=INTFC(HO,H8)*GCOH(I,HOfMB)*VAGCON(I)
BAGCON(I)=NOBCT(NO,HB) *GCOH(I,NO,NR)+BAGCOK(I)
HiGCOH(I)=HOBCT(HO,!Itt| *GCOH (I,HO,HB)+H1SCOH(I)
VAGAC(I) =INTFC(HO,HB) *iCOH(I,NOrKR)+VAGAC(I)
BAGAC(I)=HOBCT(NO,MB)*ACON(I,HO,HE)*BAGAC(I)
HAGAC(I)=NOHCT(BO,HH)*ACOH(I,NO,HR) tHAGAC(I)
190 CONTINUE
200 COBTINOE
V&GCON (I)=VAGCON(I)/TABFC
BAGCON (I) =BAGCON (I) /ANOBCT
HAGCON(I)=MAGCOH(I)/AHOHCT
V»GiC (I) =f 1GAC (I) /T1BFC
BAGAC (I) =BAGAC(I) /ANOBCT
HAGKC(I)=BAGAC(I)/AHOHCT
GO TO 290
210 IF (FBI. (1,1). HE. 0.) GO TO 240
DO 230 NO=NOt,NOU
DO 220 NR=NRL,NRU
GCI*F1*GCON(I1,HO,NB)*F2*GCOH(I2.NO,Hlt)*F3*GCOH(I3,lfO,
> * F4*GCON(I4,NO,HB)*F5*GCOH(I5,»0,NB)
VAGCOH(I)-INTFC(NO,NR) *GCI+ViGCOH(I)
DOSE1150
DOSE1155
DOSE1160
DOSE1165
DOSB1170
DOSE1175
DOSE1180
DOSE1185
DOSE1190
DOSE1195
DOSE1200
DOSE1205
DOSE1210
DOSE1215
DOSE1220
DOSB1225
DOSE1230
DOSE1235
DOSE1240
DOSE12U5
DOSE1250
OOSE1255
DOSE1260
DOSE1265
DOSH1270
DOSB1275
DOSE1280
DOSE1285
DOSE1290
DOSE1295
DOSE1300
DOSE1305
DOSE1310
DOSE1315
DOSE1320
DOSE1325
DOSE1330
DOSE1335
DOSB1340
DOSE1345
DOSE 1350
DOSE1355
DOSE1360
DOSE1365
DOSEl370
OOSB1375
DOSE1380
DOSB1385
DOSE1390
DOSB1395
DOSB1400
DOSE1405
DOSE1410
DOSE1415
DOSE1420
NR)DOSB1425
DOSE1430
DOSE1435
-------
156
BAGCON(I)=NOBCT(NO,NB) *GCI+BAGCON(I) DOSE1UHO
MAGCON(I)=NOMCT(NO,NB) *GCI*HAGCON(I) DOSEW5
220 CONTINOE DOSE1450
230 CONTINUE DOS21455
VAGCON(I)=VAGCON(I) /TARFC DOSE1460
BAGCOH(I)=BAGCON(I)/ANOBCT DOSE1465
HAGCON (I) =BAGCON (I) /ANOMCT DOSE1470
GO TO 290 DOSE1475
210 MODE=1 DOSE1480
BSOBV=BSOBV2 DOSE1485
TSOBE=TSOBE2 DOSE1490
YSOBV=YSOBV2 DOSE1495
TS0BH=TSOBHH DOSE1500
DB=DD1 DOSE1505
DO 260 MO=SOLrMOa DOSE1510
DO 250 NR^NHL^HO DOSE1515
GCN=GCOH(I,SO,NR) DOSE1520
ACN=ACOM(I,NO,KB) DOSE1525
CALL RVAHJE(IFLiG,HODE,I,NO,HR,K) DOSE1530
A=C7(I,LAMI,1.,1.,TSOBE,YSOBV,TSa3H,R) DOSE1535
GCI=F1*GCOM(I1rHO,HR)*-F2*GCON(I2,NO,HR)*F3*GCON(I3,HO,lIR) DOSE15UO
> + Fa*GCON(It»rNO/HR)*F5*GCOS(I5,MO,NR) DOSE15U5
GFA=GCON(I,NO,NR)*-RATOA*GCI DOSE 1550
TAGdOH(I)=INTFC(MO,HR) *GFA+7AGCON(I) DOSE1555
250 CONTINOE DOSE1560
260 COHTINUE DOSE1565
VAGCON(I)=7AGCON + F4*GCOB(I«»,NO,NRJ+F5*GCON(I5,HO,IIR) DOSE1640
GFA=GCON(I,NO,NR)+BiTaA*GCI DOSE1645
BAGCON(I)=NOBCTtHO,NB) *GFA*BAGCON(I) DOSE1650
NAGCO!I{I)=NOHCT(NO,NR) *GFA*HAGCOH (I) DOSE1655
270 CONTINOE DOSE1660
280 CONTINOE DOSE1665
BAGCON(I) =BAGCON(I)/ANOBCT DOSB1670
MAGCON(I) =MAGCON(I) /ANOUCT DOSE1675
290 CONTINUE DOSE1680
IF (NAHNOC(I)-NADECI) 300,310,300 DOSE16B5
300 NTRIT = 0 DOSE1690
GO TO 320 DOSE1695
310 NTHIT = 1 DOSE1700
320 CONTINOB DOSE1705
DO 560 NO=NOL,NOO DOSE1710
DO 550 NR=NHL,NRU DOSE1715
GCI=0 DOSE1720
IF (I1.EQ.O) GO TO 330 DOSE1725
-------
157
GCI=F1*GCON(I1,NO,NR)«-F2*GCON(I2rNO,NR)+F3*GCON(I3,NO,NR)
> + F4*GCON(I4,NO,NH)*F5*GCON(I5,NO,NB)
330 GCN=GCON(I,NOrNR)+GCI
340 ACN=ACON(IrNO,NR)
IF (11. MB. 0) GO TO 350
D1=1.
02=1.
D3=1.
D4=1.
IF fGCON(I,HO,HR).EQ.O.) GO TO 350
D4=F1H*F2B*(MAGCOH(I)/GCOH(I,NO,NR)J
D3=F1B+F2B*(BAGCON(I)/GCOM(I,HO,NR))
D2=F1V+F2V*(VAGCON(I)/SCON(I.NO,NR))
D1=D2
GO TO 360
350 IF (REL(1,I).NE.O.) GO TO 360
DH=F1M+F2H*(MAGCON(I)/GCI)
D3=F1B+F2B* (BAGCON (I) /SCI)
D2=F1V+F27*(VAGCOH(I) /SCI)
D1=D2
360 CONTINUE
370 DO 540 J=1,11
X=LANRR+LAMSBB
IF (KFLAG.EQ.. 1) X=ANLAH(I)+LAHSOB
DO 380 N=1,NUMORG
IF (NASES(J)-NAHOHG(N)) 380,390,380
380 CONTINUE
L=1
GO TO 400
390 l=H
C INHALATION DOSE CALCULATIONS
400 CPIHH=CPINHA(L)
CFING=CFINGA(L)
IF (ACN.EQ.O) DOS1=0
IF (ACN.EQ.O) DOS2=0
IF (ACN.EQ.O.) GO TO 410
DOS1=ACN*1.E-6*BHIHHT*8760. *CFISH
C AIR SUBHEHSION DOSE CALCULATIONS
DOS2=ACN*1.E-6*8760.*CFSBA*FH06 (3)
C S0RFACE EXPOSURE DOSE CALCOLATIOMS
410 ALT=r*T
IF (ALT.GT.0.03) GO TO 420
DOS3=GCN*1.E-6*8760. *CFS08*FBOG (J)*((0.1666667*ALT-
> 0.5)*ALT+T) *3600.*2«.
GBOP(I,NO,NH)=GCB*1.E-8*24.*3600.* ( (0. 1666667*ALT-
> 0.5)*ALT+T)
GO TO 430
420 DOS3=GCN*1.E-6*8760.*CFSBH*FBOG (J)*(1-EXP (-X*T))/X*
> 3600.*24.
6BnP(I,NOrHB)=GCH*1.E-8*2ll.*3600.*(1.-EXP(-X*T))/X
C IHGESTIOH DOSE CALCULATIONS
<»30 IF (TJTRIT.NE. 1. AKD.NAHNUC(I) .NE.HADEC3) GOTO 450
IF (HTHIT.HE.1) 60 TO 440
C ISGBSTION DOSE CALCULATIONS FOB H-3
7EGDOS(J) = (F1V*ACN*F2V*VAGAC(I) )*TDCF*.505
BEFDOS(J) = (F1B*ACN*F2B»BAGAC(I))*TDCF*.185
HLKDOS(J) = (F1M*ACN+ F2H*MAGAC(I) )*TDCF*.310
DOSING(J)=VEGDOS(J)*BEFDOS(J)+HLKDOS(J)+AC!l*TDCW
DOSE1730
DOSE1735
DOSE1740
DOSE1745
DOSE1750
DOSE1755
DOSE1760
DOSE1765
DOSE1770
DOSE1775
DOSE1780
DOSE1785
DOSE1790
DOSE1795
DOSE1800
DOSE1805
DOSE1810
DOSE1815
DOSE1820
DOSE1825
DOSE1830
DOSE1835
DOSE1840
DOSE1845
DOSE1850
DOSE1855
DOSE1860
DOSE1865
T)OSE1870
DOSE1875
DOSE1880
DOSE1885
DOSE1890
DOSE1895
DOSB1900
DOSB1905
DOSE1910
DOSE1915
DOSE1920
DOSE1925
DOSE1930
DOSE1935
DOSE1940
DOSE19a5
DOSE1950
DOSE1955
DOSE1960
DOSE1965
DOSE1970
DOSB1975
DOSE1980
DOSB19B5
DOSE1990
DOSE1995
DOSE2000
DOSB2005
DOSE2010
DOSE2015
-------
158
KIQ(I,NO,NR) = <{(F17*ICN*F27*7AGAC(I) ) *1.E6)/8.)*1560.*DOSE2020
> . 505*365. *({(&CN*1-E6)/8.)*1«HO,*365.)*(TDCK/5.70) DOSE2021
GFIN (I, NO,NR) = ( ( *.185*365. DOSE2026
PING(I,NO,HH| = <( (F1M*ACI»*F2M*HAGACJI) | *1- E6) /8.» *1 560. DOSE2030
> *.310*365. DOSE2031
TDCWB=TDCW DOSE2034
SO TO 480 DOSE2035
440 CONTINUE DOSE2040
C INGESTION DOSE CALCOLATIONS FOR C-1» DOSE2045
»TC7=79.96*7 DOSE2050
HTCB=238.16*TAOBH DOSE2055
»TC!l=68.9*TAnCM DOSE2060
DOSB2065
(DCC14(J)/BTF)*(WTC7*(F1V*ACH*F27*7AGAC(I))«-DOSE2070
> WTCB*(F1B*ACH*F2B*BAGAC(I)) *WTCH*(F1H*ACN+F2H* DOSE2075
> HAGAC(I))) DOSE2080
/EGDOS(J) = (DCC1H(J)/»TF| *(HTCT*(F1T*ACH*F2V*7AGAC(I)) \ DOSE2085
BEFD3S(J) =(DCC1H(J)/»TF)*(BTCT*(F1B*ACH*F2B*BAGAC(I)))DOSE2090
HLKDOS (J) = ( DCC11» {J) /»TF) * (HTC7* (F1H*ACS+T2B*HAG AC (I) ) > DOSE2095
KI8 (I,HO, MB) = ( (F1V*ACN«-F2T*TAGAC (I) ) /1. 8E-7) *BTCV*365. DOSE2100
SFIH(IrKO,MB) = ((FlB*lCH*F2B*BAGAC(I|)/1.8E-7|*HTCB*365DOSE2105
> DOSE2106
PIHG(I,HO,U8)=((ria*lCH*F2r!*»AGAC(I))/1.8E-7)*HTC^*365DOSE2110
> DOSE2111
SO TO 480 DOSE2115
C IHGESTIOH DOSES DEFINED AS ZERO IF SROtJND COHCEMTRATION IS ZERO DOSE2120
450 IF (GCN.NE.O) GO TO 460 DO5E2125
DOSIHG(J)=0. OOSE2130
7E8DOS(J)=0. D03E2135
BEFDOS(J)=0. DOSE2140
HLKDOS(J) =0. DOS F, 214 5
KIQ(I,NO, NR)=0. DOSE2150
5FIN(I, H0,»a)=0. DOSE2155
FING(I,NO,HR)=0. DOSE2160
GO TO 480 DOSE2165
C INGESTIOH DOSE CiLCOLATIONS OSIHG HRC HODEL DOSE2170
C CALCaHTB CI7=CO»CENTRATIOH OF RADIOHOCLIDE IN THE AHIHAL'S FEED OSIHGDOSE2175
C SLI8HTLT SIMPLIFIED FORM OF EQ C-11, BBS GUIDE 1.109.27. DOSE2130
C CT7= FSDBP*FSOBS*(CONC. OF NOGLIDE OR PASTDRE GRASS) DOSE2155
C * I1.0-FSOBP*FSOBS)*(COHC. OF HOCLIDE IB STORED FEEDS) DOSE2190
C OSE PARAHETEHS FOR GRASS-COW-HILK-BAH-PATOTAT DOSE2195
C FIRST TER9.. OSE TSOBH 7ALOE FOR INSESTION BI AMIHALS OF PASTORS GRASDOSE2200
C THE DEPOSITION HATE GCH IS IH OHITS 3F PCI/SQUARE CH-SEC. DOSE2205
C TO CONVERT TO PCI/SQDARE SBTER-HH,HOLTIPLI BI 3.6E7. DOSE2210
460 DEPRAT- GCH*3,6B7 DOSE2215
SCRO=GCOH(I.NO.NH)*3.6E7 DOSE2220
GCN=GCRO/3,6B7 DOSB2225
TSOBH=TSOBH1 DOSE2230
TSaBE«TSOBEl DOSE2235
rSOBV=YSOBT1 DOSB2240
BSOBV-BSOBT1 DOSB2245
C LAHI IS THE RADIOACTIVE DECAY CONSTANT OF NOCLIDE I, IN HR**-1. DOSB2250
LANI = LAHRR/24. DOSE2255
HODE=2 DOSE2260
CALL R7ALOE(IFLiG.BODE,1,80,NR,H) DOSE2265
DR=1. DOSE2270
TER!!1=FSOBP*FSOBS *CV(I,LAHI,DEFEAT,GCRO,TSDBE,TSDB7, DOSE2275
-------
159
> TSUBH, R) D3SE2280
C SECOND TERM.. DSE TSUBH VALUE FOR INGESTIOH BY ANIMALS OF STORED FEEDDOSE2295
TSDBH=TSOBH2 DOSE2290
rERM2=(1.0-FSUBP*FSUBS) *CV(I,LAMI,DEPR AT, GCRO,TSOBE , DOSE2295
> YSUBV, TSUBH, R) DOSE2300
CIV=TESM1 * TERM2 DOSB2305
C DOSE2310
C CALCULATE CIM=HOCLIDE CONCENTRATION IN MILK OSIN6 EQ C-10, RES 60IDE DOSE2315
C 1.109-27 DOSE2320
CIH=FSUB»I*CIV*QSUBF*EXP(-LAHRK*TSUBF| DOSE2325
C DFIJ IS THE DOSE CONVERSION FACTOR FDR THE INGESTION OF NUCLIDE I, ORGDOSE2330
C IN MREM/PCI. DOSE2335
DFIJ = 0.001*CFING DOSE23HO
C CALCULATE HLKDOS (J) = ANNUAL DOSE TO ORGAN J FROM INGESIION OF RADIONUCLDOSE23H5
C IN MILK USING EQ C-13, REG GUIDE 1.109-28. DOSB2350
IF (I1.NE.O.AND.REL(1,I).NE.O.) D4=F1 M*F2 H* (MAGCON(I) /DOSE2355
> (GCON(I,NO, NR)+RATUA*GCI)) DOSE2360
IF (J1.NE.O.XND.REL(1,I| .NE.O.) D3=F1B*F2B* (BAGCON (I) /DOSE2365
> (GCON(I,NO, NR)+RATUA*GCI)) DOSE2370
MLKDOS(J) =DFIJ*UM*CIM*D» DOSE2375
C THE NRC MODEL GIVES DOSES IN MREM/YR. TO CONVERT TO REH/YR, DOSE2380
C MULTIPLY BY 0.001 DOSE2385
MLKDOS(J) = MLKDOS(J)*.001 DOSE2390
C CALCULATE CIF=NUCLIDE CONCENTRATION IN BEAT USING EQ C-12, REG SOIDE 1DOSE2395
CIF=FSUBFI*CIV*QSUBF*EXP(-LAHRR *TSUBS) DOSB2I»00
C CALCULATE BEFDOS ( J) =ANNDAL DOSE TO ORGAN J FROM INGESTION OF DOSB2405
C RADIQNUCLIDE I IN MEAT. (REG GUIDE 1.109-28, EQ C-13) DOSE2U10
BEFDOS (J)=DFIJ*UF*CIF*D3 DOSE2U15
BEFDOS (J) = BEFDOS (J| *.001 DOSE2420
C CALCULATE CIVP=CDNCENTSATION OF RADI3NDCLIDE IN PRODUCE CONSUMED BY MADOSE2U25
C USE PARAMETERS FOR CROP /VEGETATION-MAN PATHWAY,, TSUBH ViLUE FOH PRODUDOSE2430
TSUBE= TSUBE2 DOSE2135
YSUBV= YSUBV2 DOSE2 (GCON(I,NO,NR)+RArtIA*GCI)| DOSE2490
D1=D2 DOSE2U95
PRODOS=DFIJ*UV*FSUBG*CIVP*D2 DOSE2500
C CALCDLATE CIVL=CDNCENTRATION OF RADIONOCLIDE IK LEAPT VEGETABLES. DOSE2505
C OSE PARAMETERS FOR CROP/VEGET ATION-MAN PATHWAY. DOSE2510
C THE TSDBH VALUE IS FOR LEAFY VEGETABLES. DOSB2515
TSDBE=TSUBE2 DOSE2520
YSUB7-YSUBV2 ™llllll
TSUBH=TSUBH3 DOSE2530
^"BV=BSUBV2 DOSE2535
DR=DD1 DOSE2540
riVL=CV(I,LAMI,DEPRAr,GCRU,TSOBE,YSOBT,TSUBH,R) DOSB25H5
op
LEFDOS=DFIJ*0L*FSUBL*CIVL*D1 DOSE2560
C VEGDDS(J) IS THE ANNUAL DOSE TO ORGAN J FROH INGESTION OF RADIONUCLIDEDOSE2565
-------
160
C IN PRODUCE AND LEAFY VEGETABLES. DOSE2570
VEGDOS(J)=PRODOS * LEFDOS DOSE2575
VEGDOS(J) = VEGDOS(JI *.001 DOSE2580
DOSING(J)=BEFDOS(J) * HLKDOS(J) * VEGDOS(J) DOSE2595
IF (J.NE.11) GO TO 1*70 DOSE2590
KIQ(I,10.NR)=OL*FSaBL*:iTL*Dl*OV*FSOBG*CIVP*D2 DOSE2595
GFIN(I,NO,NR)=OF*CIF*D3 DOSE2600
FING(I,NO, NR)=OM*CIll*D4 DOSE2605
470 GCN=DEPRAT/3. 6E7 DOSE2610
C HATER SUBVERSION DOSE CALCOLATIOHS DOSE2615
480 X=LAHRR«-LASH2O DOSE2620
IF (KFLAG.EQ.1) X»ANLAH(I)*LAMH20 DOSE2625
490 IF (GCN.EQ.0) DOS5=0 DOSE2630
IF (GCN.EQ. 0| GO TO 510 DOSE2635
ALT=X*T DOSE2640
IF (ALT.GT.0.03) GO TO 500 DOSE2645
DOS5=GCN*1.E-6*8760.*CFSBH*FHOG(J)*USEFAC/DILFAC* DOSE2650
> ({0.1666667* ALT-0.5)*ALT+T)*3600.*24. DOSE2655
GO TO 510 DOSE2660
500 DOS5=GCN*1.E-6*8760.*CFSBH*FROG(J)*USEFAC/DILFAC*(1- DOSE2665
> EXP(-X*T))/X *3600.*24. DOSE2670
510 TDOS=DOS1*DOS2*DOS3+DOSING(J)+DOS5 DOSE2675
IF (I.GT.NNTB) GO TO 520 DOSE2680
HRITE(51,9118)NO,NR,HAMES(J),DOS1,DOS2,DOS3,DOSING(J),DOSE26B5
> DOS5,TDOS DOSE2690
520 COMTIHOE DOSE2695
IF (LIPO.EQ.O) GO TO 530 DOSE2700
C POPOLATIOH DOSE CALCULATIONS DOSE2705
ORMODI(I,J,1| =DOS1*IHTPA(HO,NR)*ORHODI(I,J,1) DOSE2710
ORNODI(I,J,2)=DOS2*IUTPA(NO,HR)*ORMODI(I,J,2J DOS E2715
ORHODI(I,J,3)=DOS3*IHTPA(HO.NR)*ORHODI(I,J,3) DOSE2720
ORHODI(I,J, U| »DOSING(J) *INTPA (NO, NR) »OHHODI(I, J,») DOSE2725
DRHODI(I,J,5) =DOS5*IHTPA(NO,NH) *ORHODI(I,J,5) DOSE2730
ORHODI(I,J,6)=7EGDOS(J) *INIPA(NO,NB)*ORMODI(I,J,6) DOSE2735
DRMODI(IrJ, 7) =BEFDOS(J) *INTPA (NO,MR) *ORMODI (I, J,7) DOSE27UO
3RMODI(I, Jr8)=I1LKDOS(J)*INTPA(NO,HB)*ORMODI (I,J,8) DOSE2"'U5
SO TO 5<»0 DOSE2750
C CALCULATIONS OF THE HIGHEST INDIVIDUAL DOSE FOR EACH RADIONOCLIDE DOSE2755
C AND ORGAN AND GRID LOCATION WHERE RECEIVED DOSE2760
530 IF (TDOS.LE.DOSIN(J,I)| GO TO 5HO DOSE2765
NOMM(IrJ)=NO DOSE2770
NRMM(I,J)=NR DOSE2775
OHHODI(I,J,1|=DOS1 DOSE2780
OBMODI(I,J,2)=DOS2 DOSE2785
ORMODI(I,J,3)=DOS3 DOSE2790
ORBODI(I,J,H)=DOSING(J| DOSE2795
ORMODI(I,J,5>=DOS5 DOSE2800
ORMODI(IfJ,6)=VEGDOS(J» DOSE2805
ORHODI(I,J,7) =BEFDOS(J) DOSE2810
ORMODI(I,J,8)=HLKDOS(J| DOSE2815
DOSIN(J,I)=TDOS DOSE2820
540 CONTINUE DOSE2825
550 CONTINUE DOSE2830
560 CONTINUE DOSE2835
570 CONTINUE DOSE2840
580 WRITE(51,9119)NAHNUC(I) DOSE2845
It (IFLAG.GT.2.0H.IFLAG.LT.0) PEINT 9120 DOSE2850
590 IF (IFLAS. NE.1) GO TO 600 DOSE2855
-------
161
600
610
620
630
640
650
WRITE(51,9121)SD1
HRITE(51,9122) SD3
IF (IFLAG. NE.2) GO TO 610
WEITE(51,9123) SD1
HRITE{51,9124) SH1
WRITE(51,9125) SD3
WRITE(51,9126) SW3
WRITE(51,9127) 1AMRR
IF (KFLAG. NE. 1) GO TO 620
WRITE(51,9128)
WRITE(51,9129)
WRITE(51,9130)LAHSUR
HRITE(51,9131) LAMH20
IF (NTRIT. NE.1) GO TO 630
WRITE(51,9132) TDCF
HRITE(51,9133) TDCW
IF (NTRIT. EQ. 1) GO TO 650
WRITE(51,9036) FSUBMI
WRITE(51,9037) FSUBFI
WRITE(51,9038) BSOB71
HRITE(51,9039)
WRITE(51,9040) BSDBV2
HRITE(51,9041)
WRITE{51,90U2) F1INH
WRITE(51,9043) F1ING
WRITE(51,90U4) AM&D
WRITE(51,9045) ISOL
IF (11. EQ. 0) GO TO 640
HRITE(51,9046)
KRITE(51,9047)
WRITE(51,9048)
WRITE(51,9049) HIMNOC(H) ,F1
IF
-------
162
C START OP MAXIMIZING CALCULATIONS FOR THE INDIVIDUAL DOSE OPTIOH
IF (LIPO. EQ. 1) GO TO 850
DO BUO J=1,11
ADSE=0
DO 750 NO=NOL,NOU
DO 7«0 KB=WRL,tfRCT
DSE«0
AKR=0
BKR=0
DKR=0
BSF=0
A1E=0
DO 730
AC=
IF
AKR
BKR
BC=
IF
DKR
EKE
IF
,HEHW(I, J) )
690
I=1.NNtJCS
ACON(I,NOHM{I,J)
(AC.EQ.O.) GO TO
=OFHODI(Ir J,1)/&:*ACDH(I,HO, NR}*AKR
=OBMODI (I, J,2) /AC*ACDN (I,NO,MR) *BKR
GBUP (I, NOMK (I,J| , KRHK (I, J) J
(BC.EQ.O) GO TO 700
=OB^ODI(Ir J,3) /BC*GBUP (I,NO, NR) +DKR
=OHaODI(I, J,5)/BC*GBtIP(I,BO,NR} *EKR
(NAHR(JC(I| .EQ.HADEC1.0R. HAKWOC (I) . EQ. KADEC3) 30 TO
(I, J|
690
700
IF (BC.EQ.O) GO TO 720
eEG=OR«ODI (I, J,6) * (KIQ{I, SO, NR| /(KIQ (I,
> »RHH (I,J|) *1.B-60)J*VES
BEF=OE80DI(I, J,7)* (3FIU (IrNO,NR)/ (GPIK (I, HOHM (I,
> NRHH(X,J}) +1.E-60)) *BEF
MIE=OEBODI II,Jf8)* (FIKG BRHM (I, JM +1.8-60)1 *A«E
GO TO 720
710 ACO=ACON(I,NO.K5)
VEG= ( (F17*ACO+F2V*VA3AC(IJ) /(F1V*AC+F2V*V AGAC (I)
> 60))* OBHODT(I,J.6»*VEG
BEF=( (F1B*ACO+F2B*BAGAC(I) ) / (P1B*AC*F2B*BAGAC (I)
> 60)) * OR-iODI (I, J, 7)*BEF
ABE=( (F1fl*ACO+F2M*MAGAC(I)) / (F1K*AC+F2H*diGAC(I)
> 60))* OKHODI {I,J,8» *AME
IT (tfA«HOC{I| .EQ.»AOEC1» AMB=AHE+ ACO*FDC»B
720 COHTIWOE
riNG=TEG+BEF+AHE
730 DSE=AKR+BKR+DKR*EKR*riNG
IF (0SE.LT.ADSE) GO TO 7 UO
ADSE=DSE
NOHL(J)=NO
flSKL (J) - KR
7UO COBTINOE
750 CONTINOE
KO=HOMI.(J)
HH=NKSL(J)
DO 830 I=1,HNOCS
AC=ACOH(I,MOHM(I,J) ,SRBH {I, J))
IF (AC.BQ.O.) GO TO 760
HCI=ACOS(I,MOr»R)
IF (ACI.EQ.O.) GO IO 760
ORHODI(I,J,1)=ORHODI[I,J,1) /AC*ACI
J) ,
+ 1.E-
»1. E-
*1. E-
DOSE3150
DOSE3155
DOS-E3160
DOSE3165
DOS S3 170
DOSE3175
DOSE3180
DOSE3185
DOSE3190
DOSE3195
DOSE3200
DOSE3205
BOSS 32 10
DOSE3215
DOSE3220
DOSE 322 5
DOSE3230
DOSE3235
DOSE32'»0
DOSE32«5
DOSE3250
DOSE3255
DOSE3260
DOSE3265
DOSE3270
DOSE3275
DOSB3280
DOSE3285
DOSE3290
DOSE3295
DOSE 3300
DOSS3305
DOSE3310
DOSE3315
DOSE3320
DOSE3325
DOSE3330
DOSB3335
DOSE33HO
DOSE33H5
DQSS33H9
DOSE3350
DOSE3355
DOSE3365
DOSE3370
DOSE3375
DOSE3380
DC3SE33S5
DOSE3390
DOSE3395
DOSE3UOO
DOSE3410
DOSB3U15
DOSE34t9
DOSE3420
DOSE3425
DOSE3430
-------
163
ORBODI(I,J,2)=ORHODI(IrJ,2»/AC*ACI DOSB3435
GO TO 770 DOSE3410
760 ORHODI (I, J, 1)=0. D3SE3445
OBBODI(I,J, 2)=0. DOSE3450
770 BC=GBOP(I,HOBM(T.J) ,NRBH(X,J)| DOSE3155
IF (BC.EQ.O.) GO TO 780 DOSB3459
BCI=GBaP(I,KO,NR( DOSB3460
IF (BCI.EQ.O) GO TO 780 DOSE3465
ORHODI(I,J,3»=OBHODI(I,Jr3)/BC*BCI DOSE3470
ORBODI(I,J,5) =ORHODI(I,J,5J/BC*BCI DOSE3475
GO TO 790 DOSE3480
780 ORNODI(IrJ,3)-0 DOSE3485
ORHODI (I. J, 5) =0 DOSE3490
790 IF (RABNaC(X).EQ. N&DEC1.OR. N&HNUC(X).EQ.N&DBC3) GO TO 810 DOSE3495
IF (BCI.EQ.O) GO TO 800 DOSE3500
OMODI{I,J,6)=ORHODI{I,J,6)*(RIQ{I,IO.NRJ/(KIQ(I,iroHH(I,J)» DOSB3505
> NRHfl(I,J)) +1.2-60)) DOSE3510
ORHODI (I, J,7) =ORHODI (I, J,7| *(GFIN (I,NO,NR) /(GFIN(I. NOHH (I. J| DOSB351 5
> .NRHH{I,J)) + 1.E-60)) DOSE3520
05HODI(TrJ,8)=ORBODI(I,J,8)*(FING(IrNOt»R)/(FING(I,HOBS{r,J) DOSB3525
> ,BRHH{I,J)) + 1.B-60» DOSE3530
GO TO 820 DOSB3535
800 OEMODI(I,J, 6) =0 DOSB3540
OBBODI(I,J,7)=0 DOSE3545
OBBODI(I,J,8)=0 DOSB3550
GO TO 820 DOSE3555
810 CONTINOE DOS53560
> 1.E-60)')* ORHODI(T,J,6) DOSE3570
ORHODI(I,J,7)»((F1B*lCI+F2B*BAGiC(I))/(F1B«AC+F2B*BAGAC(I) + DOSB3575
»HAt\T *^ Y ^» «kdk ««^r>AM
1.E-60) )* ORHODI(I,J,7)
OHHODI(I,J,8) = ((F1H*»CI+F2B*aiGAC(I)) /{FlH*iC*F2H*HXGAC(I|
> 1.E-60) )* ORBODI(I,J,8)
820 OBHODI(I,J,4)=ORHODI(I,J,6l *ORHODI(I,J,l)+ORBODI(I,J,8)
IF (MHNDC(I).EQ. NADEC1) OBB9DI (I, J,U) »ORHODI (I,J,4I +ACI*
> TDCHB
830 COHTIHBE
840 CONTINUE
C END OF HAIIHIZING CHLCDLATIOMS FOR THE INDIVIDO&L DOSE OPTION
850 IF (BRTB.EQ.O) GO TO 880
DO 870 I-1VNNOCS
PUNCH 9139,NAHHUC(I)
DO 860 «!D=1,8
PONCB 9140,(ORHODI(IrJ.llD|,J=1,11)
S60 CONTINUE
870 CONTINOE
880 CONTINUE
C OUTPUT FOR HEALTH BISK CALCULATIONS
IF (NSTB. BQ.O) GO TO 980
IF (FEQWL.BQ. 0.) FBQWLsO.7
DO 970 I*1,HNUCS
TIIB=0 uuaoaoo?
»BITE(25)NAHNOC(I).PARSIZ(I).CLASS (I), (GI (I, J) , J*1.«) ,TIBB,LIPODOSB3690
WRITE(25mOL,HOO,NRL.NRUf (IDIST(IG) ,IG«HRL.NHO) DOSE3695
IF (LIPO,EQ.1) GO TO 890 DOSE3700
WBITB(51,9051)NAHNOC(I) DOSE3705
GO TO 900 DOSB3710
890 HRITE(51,9052)NIHNOC(I) DOSB3715
DOSE3580
DOSE3585
DOSE3590
DOSE3595
DOSE3600
DOSB3605
DOSB3610
DOSB3615
DOSE3620
DOSE3625
DOSB3630
DOSE3635
DOSE3640
DOSB3645
DOSE3650
DOSE3655
DOSE3660
DOSE3665
DOSB3670
DOSE3675
DOSB3680
DOSB3685
-------
164
900 CONTINUE DOSE3720
WRITE(51,9053) DOSE3725
I? (IIPO.EQ.1) GO TO 910 DOSE3730
WRITE(51,905 (INTPA(NO,NR)-1.)»1.) DOSE3795
FINH=HCON(I,NO,NR) *BRTHBT*8T60.*(ALIP*(IHTPA (HO,NR)-1. )* DOSE3800
> 1.J DOSE3805
WRirE(51,9059)NO,IDIST(NR) ,ACUP,GBIP,FIOP,FINH DOSE3810
IF (NASNUC(I).EO..NADRN) GO TO 930 DOSE3815
WRIIE{25) ACUP,GBIP,FIOP,FINH DOSE3820
GO TO 9UO DOSE3825
930 WAL=FEQWL*10. *ACON(I,HO,NR) *(ALIP*(IKTPA(NO,NR)-1.)*1-) DOSE3830
WRITE(25) FEQWL,HAL DOSE3835
910 CONTINUE DOSE38HO
950 CONTINUE DOSE38H5
960 CONTINUE OOSE3350
WHITE(51,9060) DOSE3855
IF(LIPO.EQ.1)WRITE(25)INTPA DOSE3856
970 CONTINUE DOSE3860
980 CONTINUE DOSE3865
CALL DOSRIC(HTTB,NUTB) DOSE3870
990 RETURN DOSE3375
9000 FORMAT(8E10. 3) DOSE3885
9001 FORHAT(«1»,TH2, DOSE3890
> 'OPTIONS SELECTED FOR DOSE AND INTAKE CALCULATIONS') DOSE3895
9002 FORMAT («0«,T20,'CALCULATIONS ARE MADE FOR THE MAXIMALLY-EXPOSED INDOSE3900
>DI7IDUAL.') DOSB3905
9003 FORMAT («0',T20,'CALCULATIONS ARE MADE FOR THE POPULATION.') DOSE3910
900l» FORMAT (' • ,T20,'TABLES FOR EACH NUCLIDE LISTING DOSES BY ORGAN ANDDOSE3915
> PATHWAY AT EACH ENVIRONMENTAL LOCATION ARE OMITTED.') DOSE3920
9005 FORMAT (• ',T20,TABLES LISTING DOSES BY ORGAN AND PATHWAY AT EACH DOSE3925
>ENVIRONMENTAL LOCATION ARE PRINTED FOR ',I2,« NUCLIDES') DOSE3930
9006 FORMAT (' ',T20,'DOSES BY NUCLIDE,ORGAN, AND PATHWAY ARE PUNCHED ONDOSE3935
> CARDS') DOSE3940
9007 FORMATC ',120,•ENTIRON1ENT&L CONCENTRATIONS AND INTAKE RATES BY MDOSB39H5
>AN FOR EACH NUCLIDE ARE PRINTED AND WRITTEN UNFORMATTED.') DOSE3950
9008 FORMAT(' ',T20,«DOSE SUMMARY TABLES ARE PRINTED') DOSB3955
9009 FORMAT {• •,T20,'WORKING LEVELS ARE CALCULATED FOR RN-222 IF IT IS DOSE3960
>IN THE SOURCE TERM') DOSE3965
9010 FORMAT('0',T13,'EFFECTIVE SURFACE DENSITY OF SOIL (KG/SQ. M, DRY*,DOSE3970
> • WEIGHT) (ASSUMES 15 CM PLOW LAYER)',T110,E12.4)
9011 FORMAT('0',T13r'PERIOD OF LONG-TERM BUILDUP FOR '.
> 'ACTIVITY IN SOIL (YEARS) ' ,T110, E12. H)
9012 FORMAT ('0«,T13,TIME DELAY--INGESTION OF PASTURE GRASS BY ',
> • ANIMALS (HR) «,T110,E12. 4)
9013 FORMAT ('0',T13,TIME DELAY—INGESTION OF STORED FEED BY ',
> 'ANIMALS (HR)',T110,E12.H)
DOSE3975
DOSE3980
DOSE3985
DOSE3990
DOSE3995
D03E4000
DOSE4005
-------
165
9014 FORMAT (»0»,T1 3,TIHE DBUT" XBQBStlOB OF IE Iff fESBTABLBS *, DOSB4010
> «BT RAW (HP) * ,T110,B12.4) OOSB4015
9015 FOHBAT('0».T13,«TIt!E DBUT— IIGBST16B OF PBODOCE BT •. 'BAR (HB|*,00SB4Q20
T110,B12.4)
9016 FORMAT («0»,T13,«RE1!0?AL RATE COWSTABT. FOR PRYSXCAL LOSS BY
> 'BEATHCTIHG (PER HOUR) »,T110,118,11
f FORMAT(»0»,T13,'PERIOD OF EtfOSOfcl 01
> "PASTDRE GRASS (RR)•,T110,Bli«4|
9017 FORMAT(»0»,T13,'PERIOD OF BtfOSOfcf A0BXBG OBOBZBQ SSASOB—«,
DOSB4025
DOSB4030
DOSE4035
DOSE4040
DOSB4045
DOSE4050
DOSB4055
DOSE4060
DOSE4065
OOSB4070
DOSBM75
DOSB4080
9018 PORBAT('0',T13, 'PERIOD OF BffbsBRB D OBI IS GBOIIBO S5ASOB— •«
> 'CROPS OR LBAFT TEGETABtBS (Hi) » »MlO,B12.«)
9019 PORBAT('0',T13,'AGHICOITORAI FBQDQCT{fZTT BT OBIT ftBBl •«
> ' (GRXSS-COB-HILK-HAH PlTBfA| (K8/S3, BBtBtl) •,f110,Bl2.HJ
9020 rOHHAT('0',T13,'AGFICOlTOlAl, PBODOCTIflTT BT OBIT AHB1 «,
> • (PRODUCE OR LSI FT VEQ ZB6ESTBO BT BIB (BO/SQ. HETBR)) • ,t1 13,
> E12.ll)
9021 FOItHAT(*0*,T13v*FBACTXOB OF TEAR IBIBtLS 01AZE OB PASTURE «, T110,D03E»035
> E12.4) DOSBH090
9022 FORMAT (»OM13, •FSICTIOB OF DAILT FEBD THAT IS FASTtJBE GRASS *. DOS E» 095
> 'BHEH ARiaAL GRAZES Off PASTURE' ,T110,B12.«) DOSB4100
9023 POEBHT('0',T13,»CONSUBPTIO!I BATE OF COBTAHIBATED FEED OB F01AGB ',005811135
> 'BT AH ARIHAL IB KG/DAT (DBT iBISBT}* ,T110(B12. •) DOSB4110
9024 F03HAT(*0*,T13. *IRABSPORT TIME FROB ABXH&L FBBO-MXLK-BKB (D»TJ • , DOSE*115
> T110,E12.«IJ DOSB«120
9025 FORMAT («0»,T13f 'RATE 3F IBGBSTIOB Of 9BOD0CB Bf HAB (KG/TB)*V DOSB»125
> T110,B12.«) DOSE«130
9026 PORBAT(»0«,T13,«RATE OF XBGESTION OF HI IK BT HAB CLXZBBS/TB) • . DOSE4135
> T110,E12.«) DOSE* 140
9027 FORMAT (»0»,T13, 'RATE OF INGESTX3B OF MAT BT HAB (KG/TR)*, T110, DOSBtUS
> B12.4) • DOSB41SO
9028 FORMAT ( «0»,T13, 'RATE OF XBGBSTXOB OF LBAFT TBOBfABLBS BT HAB «, DOSE 41 5 5
> •( KG/TRI «,T 110, B 12. «) DOSE4160
9029 FORDAT(*0*,T1 3, • AVERAGE TIBB FBOR SLA03HTBB OF HEAT ABIHIL TO «. DOSE 416 5
> •COHSOHPTIOH (D»TJ «,T110,E12.4» BOSE4170
9030 FORHAT(*0*,T13,*FRACTXOK OF PRODUCE XHGBSTCD OBOBB XB GAROBB «, DOSB4175
> «OF IHTEREST',Tl10fB12.») DOSB4180
9031 FORHAT(*0*rT13,*FRACTXOR OF LEAF! TBGBTABLBS GftOBB XB GARDBB *. DOSB4195
> «OF IIITEREST«,T110,B12.») DOSB4190
9032 FORMAT (514, 5B10. 3) DOS 14 19 5
9033 FOHHAT(T11,M,ri5,B10.3,T27,B10.3) DOSB4200
9034 FORNAT(A8,T10,E10.3) DOSE4205
9035 ?ORHAT(T11tE10.3) DOSE4210
9036 70B8AT(»0«,T13f»Af BRACE FBACTXOB OF ABXHAL**S DAIIT XBTAKB «. DOSE4215
> 'OF HtrCLIDE WHICH APPEARS XB BASH L OF BXLR (DATS/I.) *« T110, DOSB4220
> B12.4) DOSE4225
9037 FORMAT{«0«,T13,»FRACT10B OF ABXBAt*«S OAXtT XOTAIB OF BOCIXDB «. DOSB*230
> «HHICH APPEARS IB EACH KG OF FIESE (DATS/KOI »,T110,E12.«» DOSB4235
9038 FORMAT(»0',T13,«COBCBITHATXOB Pi: TCI FOR OPT Alt B OF BOCtXOB FBOH SOOOSB4240
>IL FOR PASTURE AID FORAGE*, T11d,El2.») OOSW245
9039 FORHATC • ,T20,« (IB PCX/KG DBT IBIGBT PBB PCX/KG DBT SOU)*! DOSE4255
9040 FORHAT(»0«,T13f»COBCBBTRAIXOB PACTOB POB OWAKB OP BOCIXOB FBOR SODOSE4255
>IL BT EDIBLE PARTS OF CROPS*, T110,B12.«| DOSB4260
9041 FOPKAT(« «,T20f « (II PCI/KO iBT BEIOHT PBB PCI/KG DRT SOIL) «| DOSB4265
9042 FORHAT(«0'.T13f«GI OPTAKB FBACHOB (I1BAIATIOB)* ,M10.E12.4) DOSB4270
9043 FORMAT («0«.T1 3, tGI OPTAKB FBACTIOB (TiGBSTTOI)' ,T110,E12.4 COSE4275
9044 FORHAT('0'.T13,«PAHTIC1B SIZE (HXCBOBSI «.T110.E12.4» DOSB4280
9045 FORMAT («0«,T1 3, •SOIOBILITT CUSS' ,T1 10, A1| DOSB4285
XICIW8 COBTBIBDOSBH290
«
FROM
OOSB4295
-------
166
901*7 FOBHATf ',120,'DECAY OP THE FOLLOWING PARENT HOCLIDES AFTER DEPOSDOSE4300
>ITION—•) DOSE4305
9048 FORMAT('0',T40, 'NUCLIDE',T67,'BUILDUP FACTOR1) DOSE4310
90*9 FORMAr('0',T41,A8rT69,E10.3) DOSE4315
9050FORMATC • ,T41 , A8 ,T69,E10.3) DOSE4320
9051 FORMAT ('1',r45,'CONCENTRATIONS AND INTAKE BATES FOR ',A8> DOSE4325
9052 FORMAT ('1',T30, • POPULATION-!!EIGBTED CONCEHTRATIONS AHD POPULATION DOSE4330
>INTAKES FOR «,A8)
9053 FORHAT(«0',T10,'AREA',T42,'AIR CONCENTRATION',T63,
> 'GROUND CONCENTRATION' ,T89, 'INGESTION INTAKE1 ,T11 4,
> 'INHALATION INTAKE')
9054 FORMATC ' , T4 1 , • (CURIES/CUBIC MEIERl•,T63,«(CURIES/SQUARE HETER) ' , DOSE4355
> T92,' (PCI/YEAR) ',T117,'(PCI/TEAR)') DOSE4360
9055 FORMAT {• ',T38,' (MAN-CURIES/CUBIC METER)',T62,
> • (KAN-CURIES/SQUARE NETER) ' ,T90, ' (BAH-PCI/TEAB) ' , T115,
> ' (MAN-PCI/YEARIM
9056 FORMAT (• ',13,'DIRECTION',T19,'DISTANCE')
9057 FORMAT(' ',T19,' (METERS)')
9058 FORMAT {'O'l
9059 FORMAT(' ',T6,I2,T18,I7,T45,E10.3,T68,B10.3,T92,E10.3,T118,B10.3> DOSE4395
9060 FORMAT(«0«,T10,'DIRECTIONS ARE NUMBERED COUNTERCLOCKWISE STAHTINS DOSE4UOO
>AT 1 FOR DDE NORTH')
9061 FORMAT(5110)
9062 FORMAT(1615)
9063 FOR HAT (1615)
9064 FOR MAT(8E10. 3)
9065 FORMAT (8F10.1)
9066 FORMAT(UOI2)
9067 FORMAT (110)
9068 FORMAT(6F10.3)
9069 FORMAT (6F10.3)
9070 FORMAT (10F8. 4)
9071 »ORMAT('1')
9072 FORMAT («0«)
9073 FORMAT('0«,T48r'SUMHARY OF ABEA SURROUNDING PLANT')
9074 FORMAT('0',T20,'AREA',T40,'NO. HEAT ANIMALS',160,
> 'NO. MILK CATTLE' ,T80,'FOOD CROPS',T95,'WATER AREA',T113,
> 'POPULATION)
9075 FORMAT (• ',T78,•(SQOAHE SETEBS)')
9076 FORMAT ('0',T16,'COLDMN',T26,'ROW')
9077 FORMAT (' ',118,12,127,12,145,15,164,15,T78,El0.3,T100,12,1113,
> F10.1)
9078 FORMATC ',T20,«FOR HATER AREAS--0= NONE OR MINIMAL AND 1
>ATER ARIA PRESENT')
DOSE4335
DOSE4340
DOSE4315
DOSE4350
DOSE4365
DOSE4370
DOSE 4375
DOSE4330
DOSE4385
DOSE4390
DOSS4405
DOSE4410
DOSE4415
DOSE4420
DOSE 4425
DOSE4430
DOSE4435
DOSE4440
DOSE4445
DOSE4450
DOSE4455
DOSE4460
DOSB4465
DOSE4470
DOSE 447 5
DOSE4480
DOSE4485
D05E4490
DOSE4495
DOSE4500
DOSE4505
MAJOR HDOSB4510
DOSE4515
9079 FORMAT ('1',T36,'LIST OF INPUT VALUES FOR RADIONUCLIDE-INDEPENDENT DOSE4520
VARIABLES') DOSE4525
9080 FORMAT ('0«,T13,'NUMBER OF NUCLIDES CONSIDERED',T110,112) DOSE4530
9081 FORMAT ('0',T13,'VEGETABLE INGBSTION RATIO-IMMEDIATE SURROUNDING ARDOSE4535
>EA/TOTAL WITHIN AREA',T110,B12.4) DOSE4540
9082 FORMAT('0',T13,'MEAT INSESTION RATIO-IMBED1ATE SURROUNDING AREA/TODOSEU545
>TAL HITHIH AREA',T110,E12.4) DOSE4550
9083 FORHAT(«0',T13,'MILK INGESTION RITIO-IHHEDIATE SURROUNDING AREA/TODOSE4555
>TAL WITHIN ARBA',T110,E12.4) DOSBU560
9084 FORMAT (» ',T25,'KINIMDK FRACTIONS OF FOOD TYPES FROM OUTSIDE AREA DOSE4565
>LISTED BELOW ARE ACTUAL FIXED VALUES') DOSE4570
9085 FORMAT (' ',125,'ACTUAL FRACTIONS OP FOOD TYPES FROM OUTSIDE AREA CDOSE4575
>AN BE GREATER THAN THE MINIMUM FRACTIONS LISTED BELOW') DOSB4580
9086 FOHMAT('0',T13, DOSE4585
-------
167
> 'HINTHOH FRICTION VEGETABLES INGESTED FROM OUTSIDE ARBA',T110, DOSE4590
> E12.4) DOSE4595
9087 FORMAT (»0«,T13, 'MINIMUM FRACTION MEAT INGESTED FROM OUTSIDE ARE*' , DOSE4600
> T110,E12.4) DOSE4605
9088 FORMAT ('0« , T13, • MINIMUM FRACTION HILK INGESTED FROH OUTSIDE AREl' , DOSE461 0
> T110,E12. 4) DOSE4615
9089 FORMAT ('0' ,T1 3,« INHALATION HATE OF NAN (CUBIC CENTIMETERS/HRl • , DOSE T110,E12.4) DOSE4625
9090 FORMAT («0',T1 3, 'BUILDUP TIME FOR RADIONUCLIDES DEPOSITED OH GHOONDDOSE4630
> AND WATER (DAYS) « ,T110,B12. 4) DOSE4635
9091 FORMAT('0',T13, 'DILUTION FACTOR FOR WATER FOR SWIMHISG (CS) • ,T110, DOSE4640
> E12.4) DOSE4645
9092 FORMAT ('0«,T13, 'FRACTION OF TI HE SPENT SHIHMING' .T110.E12. U) DOSEUSSO
9093 FORMAT(«0'fT13, 'MUSCLE BASS OF AHIHIL AT SLAUGHTER (KG)',T1t3, DOSEU655
> E12.U) DOSEU660
909U FORHAT{'0',T1 3, 'FALLOUT IHTBRCEPTION FRACTION-VEGETABLES', T110, DOSEa665
> B12.H) DOSEU670
9095 FORMAT('0',T13f 'FALLOUT IHTERCEPTIOH FRACTION-PASTURE', T110,B12. »» DOSE4675
9096 FORMAT ('0',T1 3, 'FRACTION OF ANIHAL BERD SLAUGHTERED PER DAI' ,T110,DOSE1680
> E12. H) DOSE4635
9097 FORMAT{«0', 113, 'HILK PRODUCTION OF COW (LITERS/DST) • , T110,E12.«J DOSE4690
9098 FORMAT («0',T13, 'FRACTION OF RADIOACTIVITY RETAINED ON LEAFY VE6ETADOSBH695
>BLES AND PRODUCE AFTER WASHING', £ 110, E12. H) DOSEU700
9099 FORMAT («1',T51, 'COMPUTED VALUES FOR THE AREA») DOSB4705
9100 FORMAT («0',T13, 'TOTAL POPULATION* ,T1 10, F1 2. 1) DOSB 'TOTAL AREA OF VEGETABLE FOOD rROPS (SQUARE METERS) « ,T110,E12. 1) DOSE4730
910« FORHAT(»0',T13, 'TOTAL MEAT CONSUMPTION (KG PER YEAR) • ,T110,E12. ft) DOSB8735
9105 FORMAT(*0',T13, 'TOTAL MEAT PRODUCTION (KG PER YEAR) ' ,T1 10, E12. 4) DOSE4740
9106 FORMAT (fO»,Tl 3, 'TOT AL MILK CONSUMPTION (LITERS/YEAR) ' ,T110,E1 2. 4) DOSB4745
9107 FOHMAT('0',T13, 'TOTAL MILK PRODUCTION (LITERS/YEAR) ' ,T1 10, B1 2. 4) DOSE4750
9108 FORMAT («0',T1 3, 'TOTAL VEGETABLE FOOD CONSUHPTION (KG PER YEAR)', DOSE4755
> T110,E12,4) DOSB4760
9109 FORMAT (»0',T13, 'TOTAL VEGETABLE FOOD PRODUCED (KG PER YEfcR) • ,T1 10, DOSE4765
> B12. 4) DOSB4770
9110 FORHAf (110, 4810. 3,110, 2E10.3) DOSE4775
9111 FORMAT (11F5. 3) DOSE47BO
9112 FORMAT (2E10. 3, II .6F8.4) DOSE4785
9113 FORMAT ('1',T»2, 'RESULTS OF DOSE COMPUTATIONS FOR NUCLIDE ',A8» DOSE4790
9114 FORMAT(«0'.T15.*AREA*,T26, 'ORGAN* ,T60, DOSE4795
> 'DOSE THROUGH EACH PATHWAY (REMS/YEAR) • ) DOSB4800
9115 FORBVT («0',T11, 'COLUMN • .120, 'ROW* ) DOSE4805
9116 FORMAT («0«,T40, 'INHALATION', T55,« SDB8BRSION«,T70, 'SURFACE*, T85, DOSB0910
> 'INGBSTION',T100,tSUBHEHSION'.T117,'TOTALM DOSE4815
9117 FORMAT(* ',157,'IN AIR* ,T69, *BXP3SORB«,T102.«IU WATER') DOSB4820
9118 FORMAT (..,T13I2.T20,I2;T25,A8,T40,B10.3,T55,B10.3,T70,E10.3,T85,DOSB4825
> B10.3,T100,B10.3,T115,B10.3) TJOSEdfttO
9119 FORMAT (*T,T47,t LIST OF INPUT DAtA FOR NUC1IDE *,A8) DOSE4835
9120 FORMAT ('0',T13, 'FLAG ERROR') DOSE48»0
9121 FORMAT (*0«,T1 3, 'FALLOUT INTBRCEPTI08 FRACTION-VEGETABLES', T110, DOSE4845
> E1 2. 4) DosEuasa
9122 FORMAT CO',T13, 'FALLOUT INTERCEPTION FRACTION-PASTDRB',T110,B12. 4) DOSE4855
9123 FORMAT (0«.T13. 'FALLOUT INTERCEPTION FRACTION(DRY) -VEGETABLES', DOSE4860
T110, B12.4)
9124 FORMAT ('O'jTIS, 'FALLOUT INTERCEPTION FBACTIOH(WET) -VEGETABLES* , DOSB4870
> T110. E12.H) DOSB4875
-------
168
9125 FOR MAT{«0'.T13,'FALLOUT
> E12.4)
9126 FORMAT {•()« ,T13,«FALLOUT
> E12.4)
9127 FORMAT CO',T13,'RADIOACTIVE DECAf
9128 FORMAT(»0',T25,'RADIOACTIVE DECAY
INTERCEPFION FRACTIONARY) -PASTURE' ,
INTERCEPTION FRACTION(WET) -PASTURE',
T110,DOSEER IH9EHSION PROCEEDS IN ACCOSDAHCE HITH THE'}
9129 FORHAT(« ',T25,'EFFECTIVE DECAT TONSTANT IN THE
>HE ABOVE VALUE')
9130 FORMATCOSTia, • ENVIROMHENTAL DECAY CONSTANT— SURFACE
> T110,E12.4)
9131 FORHAT(«0',T13,' ENVIROSHENTAL DECAY CONSTANT—MArER (PER
9132 FORMAT ('0',T13,'DOSE CONVERSION FACTOR FOR FOOD INGESTION
>PCI-YEAR) ',T110,E12.U|
9133 FORMAT('0',T13,'DOSE CONVERSION FACTOR FOE WATER
>/PCI-YEAR)«,T110,B12,0)
9134 FORMAT ('0',T55,'DOSE CONVERSION FACTORS')
9135 FORMAT('0',T5,'ORGAN".T20,'INHALATION',T38,'INGESTION',T58,
> 'SUBMERSION IN AIR',T83,'SURFACE EXPOSURE*,T107,
> 'SUBVERSION IN BATESM
9136 FORHATC ',T17,« (REMS/HICROCUEIEI ' ,T3U,'(REMS/HICROCORIEI ' ,T59,
> "(REHS-COBIC CS/',T83,«(REMS-SQUARE CM/',T109,'(REMS-CUBIC CH/'J
9137 FORMAT (' « ,T60 ,'MICROCURIE-HR) ' ,r8<»r ' MICROCURIE-HR) • ,T110,
> 'MICROCURIE-HR) ')
9138 FORHATC ' ,T4 ,A8,T2 1 ,E1 0. 3,T38,E1 0. 3 ,T61, E10. 3,T86, El 0.3,T111 ,
> E10.3)
9139 FORHAT(A8)
91*0 FORMAT(6E10.4)
END
DOSB4910
PLUSE INSTEAD OF TDOSEU915
DOSE4920
(PEB DAY)', DOSE4925
DOSE4930
DAY|', DOSE4935
D03EH940
(REB-CC/DOSE49H5
DOSE4950
INGESTIOS (REM-CCDOSEH955
DOSE49SO
DOSE4965
DOSEH970
DOSE4975
DOSE4980
DOSE4985
DOSE4990
DOSE4995
DOSE5000
DOSE5035
DOSE5010
DOSE5015
DOSE5020
DOSE5025
-------
169
FUNCTION CV(I,LAHI,DEPRAT,GCRU,TSUBE,YSUBV,TSUBH,R) CV 0
C CALCULATES THE CONCENTRATION OP NUCLIDE I IN AND ON VEGETATION USING CV 5
C EQ C-5, BEG GUIDE 1.109-25. THE INPUT PARAMETERS ARE DEFINED AS FOLLOWCV 10
C CV 15
C I INDEXES NUCLIDE CV 20
C LAJ1I RADIOACTIVE DECAY CONSTANT FOR THE NUCLIDE (HB**-1) CV 25
C DEPHUT DEPOSITION BATE OF RADIONUCLIDE I ONTO GROUND CV 30
C At THE GIVEN LOCATION ( PCI /H**2-HH) CV 35
C TSUBE PERIOD OF CROP, LEAFY VEGETABLE, OR PASTURE GRASS EXPOSUCV *0
C DURING GROWING SEHSOS (HR) CV 45
C YSUBV AGRICULTURAL PRODUCTIVITY BY UNIT AREA (MEASURED IN WET CV 50
C WEIGHT) (KG/M**2) CV 55
C TSUBH TIME DELAY BETWEEN HARVEST OF VEGETATION OR CROPS AND CV 60
C IHGESTION (HR) CV 65
C R FRACTION OF DEPOSITED ACTIVITY RETAINED CV 70
C ON CROPS, DIHENSIONLBSS CV 75
C CV 80
REAL LAMEI,LAHI,LAMHR,LANW CV 85
COHMON /INGDOS/L*MW,TSUBB,P,BSUBV,DR,RATUA CV 90
COHHON /OCOM/ NAHNUC(36),WORD,NNUCS.iNLAM(36),RB,SQSD,ACON(36,20, CV 95
> 20) ,GCON(36,20,20) ,LIPO, NOHM (36 , 11) ,NRMH(36, 11) ,ORHODI (36, 12,8) , CV 100
> VD(36),VDCOEF(20,20),NOL,NOU,HRL,NRU CV 105
REAL*8 NAMNOC,WOBD CV 110
C THE EFFECTIVE REMOVAL RATE CONSTANT FOR THE BADIONUCLIDB FBCM CHOPS CV 115
C IN HR**-1 IS (REG GUIDE 1.109-4) CV 120
LAMEI = LAHI + LAMW CV 125
C WHERE LAHW IS THE HEHOVAL HATE CONSTANT FOR WEATHERING. CV 130
C CV 135
C THE FOLLOWING CODE CALCULATES CV= CONCENTRATION OF NUCLIDE I USING BQ CV UO
STUBB=TSUBB*8760. CV 1U5
ALT=LAMEI*TSUBE CV 150
IF (ALT.GT.0.03) GO TO 10 CV 155
XNUD1=(R*3R/YSUBV)*((0.1666667*ALT-0.5)*ALT*TSUBE) CV 160
GO TO 20 CV 165
10 XNUD1 = (R*DR/YSUBV)*((1.0-BXP(-LAHEI*TSOBE))/LAMEI) CV 170
20 CONTINUE cy 175
ALT=LAMI*STUBB CV 180
IF (ALT.GT.0.03) GO TO 30 CV 185
XNOD2=(BSUBV/P)*((0.1666667*ALT-0.5)*ALT+STUBB) CV 190
GO TO 40 CV 195
30 XNUD2=(BSUBV/P)*((1.0-EXP(-LAHI*STUBB)>/LAHI) CV 200
1)0 CONTINUE cv 90S
STJM=XHUD1*XNUD2 cy 210
PBOD=sSUM*EXP(-LAHI*TSUBH) cv 215
SU«2=*XWHD2 cv 220
PROD2=SUH2*EXP(-LAMI*TSUBH) CT 225
RATUA=SUH2/SUH cv j30
CV = GCRU * PROD * (DEPHAT-GCHU) *PHOD2 CV 235
RETURN cv
END cv
-------
170
SVAL
BVAL
RVAL
RVAL
RVAL
SUBROUTINE RVALUE (IFLAG, HODE, I, NO,:.R,R)
COHHON /BVAL/ S1 ,S3,SDl,SD3,ACN,GCN,Sm, SW3
COMMON /OCOH/ NAMN0C (36) , BORD,HHUCS, ANLAB (3 6) ,HB, SQSD, ACON (36, 20, RVAL
> 20),GCOW(36,20f20),LIPO,HOHH{36,11),NRRM(36,11),ORHODI(36,12,8), BVAL
> VD(36) ,VDCOEF(20,20) ,NOL,NOU,NRL,NRU
REAL*8 NAHNUC,WOBD
THIS SUBROUTINE ASSIGNS A VALUE TO THE PARASETER
R = THE FRACTION OF DEPOSITED ACTIVITY RETAINED OH CROPS (DIHENSIONRVAL
AS FOLLOWS. . RVAL
(1) IF THE* VALUES USED FOR S1 AND S3 ARE HOT NOCLIDE-SPECIFIC (NORMAL RVAL
IFLAG=0), THBF
H = S1 FOR VEGETABLES (NODE=1)
R = S3 FOR PASTURE (HODE=2)
IF VALUES FOB S1 AND S3 ARE HtJCLIDB-SPECIFIC, AND DEPOSITION 8ATESPVAL
ARE NOT SPECIFIED SEPARATELY FOR HET AND DRY DEPOSITION (SPECIAL RRVAL
IFLAG=1), THEN
H = SD1 ?OR VEGETABLES (MODE=1)
H = S03 FOB PASTOB2
-------
171
10
20
30
40
50
SUBROUTINE DOSMIC(NNTB,NUTB)
COMMON /OCOM/ NAMNDC(36) , WORD,NNUCS,ANLAH(36),RE,SQSD, ACON{36,
> 20),GCON(35,20,20),LIPO,NOHM(36,11),NRHH(36,11), ORHODI(36,12
> , VD(36) ,VDCOEF(20,20) , NOL, NOU, NRL, NBU
COHHON NOML(11) ,NR1L(11)
COMMON /PCOM/ REL(6,36) ,IDIST(20) ,NDHST
COMMON /FCOM/ FEQHL,INTPA (20,20)
REAL INTPA
DIMENSION DOSE(12),PTIJ(36,11) ,rOTJM(11,8) ,PTOJH(11,8) ,TOTJ(11)
> TIJ(36,11),PCT(8),WL(20,20)
REAL*8 NAMNUC,MODE(8) ,NAHES(11),WORD,PLAG(8)
REAL*8 NADRN
DATA NADRVRN-222 •/
DATA FLAG/' «,' ',» ',' ',« «.«*','*','*•/
DATA NAMES/'TOT.BODY','R MAR ','LUNGS ','ENDOST ','S WALL
> «LLI HALL',1 THYROID ','LIVER ','KIDNEYS '.'TESTES ',
> 'OVARIES '/
DATA SODE/'SUBM AIR*,'SURFACE ','SWIMMING','INHAL. ','INGEST.
> « VEGET.',' MEAT ',' BILK '/
INITIALIZE
IF (NTTB.EQ.O) GO TO »70
DO 20 J=1,11
DO 10 MD=1,8
TOTJM(J,MD) =0
CONTINUE
DO 30 J=1,11
TOTJ (J) =0
DO 50 1=1,36
DO 40 J=1,11
TIJ(I,J)=0
CONTINUE
DO 70 1=1,NNUCS
DO 60 J=1,11
ORH=ORHODI(I,J,1)
OBMODI(I,J,1) =ORMODI(I,J,2)
ORHODI(I, J,2) =ORMODI(I,J,3)
ORMODI(I,J,3)=ORHODI(I,J,5)
ORHODI(I,J,5)=ORHODI(I,J,1|
ORMODI(I,J,U)=ORH
CONTINOE
0
5
10
15
20
25
30
35
90
(15
50
55
60
65
70
60
70 CONTINUE
DO 100 I=1,NKUCS
IP (NAHNUC(H. HE. NADRN.OR.NOTB.EQ.O) GO TO 100
DO 90 MD=1,5
DO 80 J=1,12
ORMODI(I,J,MD)=0
80 CONTINUE
90 CONTINOE
GO TO 110
100 CONTINUE
110 CONTINUE
120 DO 150 J=1,11
DO 140 MD»1,8
DO 130 I=1,NUUCS
130 TOTJM (J,MD) =ORSODI (I, J,RD) »TOTJH (J,HD)
80
85
90
95
DOS a
DOSH
20,DOSH
,8) DOSM
DOSM
DOS!
DOSB
DOSM
DOSM
, DOSH
DOSH
DOSS
DOSM
DOSH
DOSH
',DOSH
DOSM
DOSH
', DOSM
DOSH
DOSH 100
DOSH 105
DOSH 110
DOSH 115
DOSH 120
DOSH 125
DOSH 130
DOSM 135
DOSH 140
DOSH 145
DOSH 150
DOSH 155
DOSM 160
DOSH 165
DOSH 170
DOSH 172
DOSH 173
DOSH 175
DOSH 177
DOSH 180
DOSH 185
DOSN 190
DOSH 195
DOSH 200
DOSH 205
DOS* 210
DOSH 215
DOSH 220
DOSH 225
DOSH 230
DOSH 235
DOSH 240
DOSH 245
DOSN 250
DOSH 255
DOSH 260
-------
172
140
150
DO
160
170
'1.E-40
180
190
DO
200
210
220
DO
230
240
250
260
COHTIHOE
COHTIHOE
170 J=1,11
DO 160 KD=1,8
IF (TOTJH(J,HD) .LT. 1.E-40) TOTJH{J,HD)
COHTIHUE
190 J-1,11
DO 180 MD=1,5
TOTJ(J)=TOTJH(J,HD)+TOTJ(J)
COHTIHOE
220 0»1,11
DO 200 HD*1,5
?TOJH(JfHD)«TOTJn(J,aD}/TOTJ{J)*100.
DO 210 HD-6,8
PTO JM(J, «D) -TCTJ8 (J ,5) /TOTJ (J) * 100 ,0*T01JM (J ,HD) /TOTJM(J,5)
COHTIHOE
300 J*1,11
BHITE(51,9000)HANES(J)
IF (IIPO.EQ.1) GO TO 230
HHITE(51,9001)
GO TO 240
HHITE(51,9002)
iBITE(51,9003)
DO 290 I»1,HHOCS
SOHA=0
DO 250 HD=1,5
SONA«ORHODI(I,J,:iD)+SU!1i
IF (SON&.L1.1.E-40) SOaA=1.E-40
DO 260 HD=1,5
PCT (119) = (OBKODI (I, J,HD) /SOH A) *100.
PTOT=OHMODI(IrJ,HD)/TOTJH(J,HD)*100.
DOSH 265
DOSH 270
DOSH 275
DOSH 280
DOSH 285
DOSH 290
DOSH 295
DOSH 300
DOSH 305
DOSH 310
DOSH 315
DOSH 320
DOSH 325
DOSfl 330
DOSS 335
DOSH 340
DOSH 345
DOSH 350
DOSH 355
DOSH 360
DOSH 365
DOSH 370
DOSH 375
DOSH 380
DOSH 385
DOSH 390
DOSH 395
DOSH 400
DOSH 405
DOSH 410
DOSH 415
DOS!"! 420
270
280
3
290
300
WBITE(51,9C05)BAMHUC(I},*ODE(HD),ORHODI(I,J, HD) ,PCT(ND) , PTOTDOSH 425
DO 270 HD=2,5 DOSB 430
PTOT=OBHODI(I,JrHD)/TOTJH(J,MD) *100. DOSH 435
HHITE(51,9004)HODE(flD),OBHODI(I,J,HD),PCT(MD),PTOT DOSH 440
DC 280 HD=6,8 DOSH 445
IP (OBMODI)«OBHODI(IrJ,l!D)/OR!ODI(I,J,5)*PCT(5) DOSH 165
PTOT«OBHODI(I,J,HD)/TOTJH(J,5)*100. DOSH 470
DO
WHITE(51,9006)
FLAG(HD),FTOT
COHTIHOE
COHTIMIJE
340 J*1,11
HQDE(HD),ORHODI(I,J,HD)rFL&G(HD),PCT(HD) , OOSH 475
DOSH 480
DOSH 485
DOSH 490
DOSM 495
310
320
330
340
HBITE(51f9007)HiHES(J) "OOSH 500
IF {IIPO.EQ.1) GO TO 310 DOSH 505
*BITE<51,9008) DOSH 510
GO TO 320 DOSH 515
BBITE(51,9009) DOSH 520
DO 330 HD*1,8 DOSH 525
IF (TOTJH(J,MD).I,E. 1.E-40) TOTJH(J,HD) =0. DOSH 530
WKITE(51.9010)HODE(HD) ,FLAG(HD) ,TOTJM(J,MD) ,Ft»G (HD) , DOSH 535
PTOJM(J,MD) DOSH 540
COHTIHOE DOSH 545
CONTINOE DOSH 550
-------
173
WRITS(51,9011) DOSH 555
IF (1IPO.EQ. 1) 60 TO 350 DOSH 560
WHITE (51,9012) DOSH 565
GO TO 360 DOSW 570
350 WHITE(51,9013) DOSH 575
360 DO 370 J=1,11 DOSH 580
370 WRITE(51,901
-------
174
IF(LIPO.EQ. 1) WRITE (51 r90«0) DOSH 826
WRITE (5 1,9019) DOSM 830
IF (LOHT.EQ.O) GO TO 520 DOSH 835
WRITE (51,9029) DOSM QUO
HBITE (51,9030) DOSM 845
WRITE (51,9003) DOSM 850
GC TO 530 DOSM 855
520 WHITE(51,9031) DOS?! 860
WRITE(51,9003) DOSK 865
530 CONTINUE DOSH 870
IP (LORT.EQ.O) GO TO 540 DOSH 875
WBITE(51,9032) ( ( (NO,IDIST (NB) ,«L (SO,NR) ) ,HR=TJBL,NBTJ) , UC=NOL,HOO) DOSM 880
GC TO 550 DOSH 885
540 WHITE(51,9033) (( (NO,NR,WL(NC,NB)),NR=HRL,NHU),NO=NOL,NOO) DOSH 890
550 CONTINUE DOSM 895
560 CONTINUE DOSH 900
IF (LIPO.EQ.1) GO TO 569 DOSM 905
WRITE (51,9034) DOSM 910
WRITE(51,9035) DOSH 915
WHITE(51,9036) DOSH 920
WHITE(51,9019) DOSM 925
WRITE (5 1,9037) ((NAMES(J) , HOHL(J) ,NHHL(J) ,HL(NCML(J) ,NBHI(J))J , J= DOSM 930
> 1,11) DOSH 935
569 IF(LIPO.EQ.I) WRITE(51,9039)CWL OOSH 939
570 CONTINUE DOSH 940
5BT08N DOSH 945
9000 FORKAT('1',T36,'PEBCEHT OF SAB,1 DOSE BY EACH PATHHAY1) DOSM 950
9001 FORH»T(«0«,T20,'MTCIIDB*,T35,'PATHWAY1,T52,•DOSE(BEMS)•, T70, DOSH 955
> 'PERCENT OF TOTAL*,T90,•PERCENT OF DOSE FROM ALL NOCLIDES'J DOSH 960
9002 FOBHAT(«0»,T20,1NDCLIDE«,T35,tPATHWATf,T50,«DOSE(MAN-BEMS) «, T70, DOSM 965
> 'PERCENT OF TOTAL",T90,'PERCENT OF DOSE FROH ALL NUCLIDES'J DOSH 970
9003 FCBHAT('O') DOSM 975
9004 FORMAT(« ',135,A8,T52,E10.4,T75,F6.2,T103,P6.2) DOSM 980
9005 FORHATC ',T20,A8,T35,A8,T52,E10.4,T75,F6.2,T103,F6.2) DOSM 985
9006 FOBMATC •,T35,A8,T52,E10.4,T74,I1,F6.2,T102,A1,F6.2) DOSM 990
9007 FORMAT ('0',T41, ' COHTBIBTITION OF EXPOSORE MODES TO ',A8,' DOSES') DOSM 995
9008 FCRHAT('0',T10,'EXPOSURE MODE",T57,•AHNUAL DOSE (REHS)',T99, DOSH1000
> 'PERCENT OF TOTAL DOSE') DOSM1005
9009 FORMAT ('0',T10,'EXPOSURE MODE',T55,•ASNOAL DOSE(HAN-BEMS)•,T99, DOSH1010
> 'PERCENT OF TOTAL DOSE') DOSH1015
9010 FORHAT('0',T12,A8,T58,A1,E10.4,T103,A1,F10.4) DOSM1020
9011 FCBMAT('1',T43,'TOTAL DOSE TO EACH OBGiN THROUGH ALL PATHWAYS') DOSM1025
9012 FCRHAT('0',T38,'ORGAN',T83,'DOSE(REMS)') DOSM1030
9013 FORKAT('0«,T38,'OBGiN',T81,'DOSE (MAN-BEMS)') DOSM1035
9014 POBHAT('0',I37,A8,T83,E10.4) OOSM1040
9015 FORHAT('1',T52,'CONTBIBUTORS TO ORGAN DOSES') DOSM1045
9016 FCBHAT('0',T80,'P1BCENT') DOSW1050
9017 FORMAT('0',T2,'KOCLIDE',1X,11A11) DOSH1055
9018 FOBHATC ' ,T2,A8, 11 F11. 4) DOSB1060
9019 FOBMATC ') DOSH1065
9020 FORMAT('1',T56,'ANNUAL DOSES (REMS)•) DOSH1070
9021 TORH1T('0»,T20,'NUCLIDE',T40,'ORGAN',T60,'DOSE',T100, DOSH1075
> 'MAXIMUM LOCATION') DOSH1080
9022 FOBHVTCO'.TlOn'COUJMN'jTm^ROU') DOSH1085
9023 FOBHAT('0',T21,A8,T39,A8,T58,E10.4,T103,I2,T113,I2) DOSM1090
9024 FOBHAT('1',T48,'ANNUAL POPULATION DOSES(HAK-REMS)') DOSH1095
9025 FCB»AT('Ot,T38,'BOClIDE',T62,'ORGAN',T85,'DOSE') DOSH1100
9026 FOBHAT('0«,T39,Ae,T61,A8,T83,E10.4) DOSM1105
-------
175
9027 FORMAT(M',T21r'WORKING LEVELS FOR BN-222 AND ITS SHORT-LIFE PROGEDOSH1110
>NY AT YABIOOS LOCATIONS IK THE ENVIRONMENT1) DOSM1115
9028 FORHAT(*
9029 FCEMATC
9030 FOBMATf
9031 FORMAT(•
9032 FOHHATC
9033 FORMAT(•
9031 FCBMAT('1
,T40,'AEEA'.TSe,'WORKING LBVEL'J
,T32,'WIND TOWARD1,TU7,'DISTANCE')
,TU7,« (HETEES)•)
rTaSr'COlUMK1 ,TU7f «ROW)
,T36,I2rTa7,I7,T87,E10.3)
,T35,I2,TU7,I2,T87/E10.3)
DOSH1120
DOSH1125
DOSM1130
DOSH1135
Dosnnns
,T32,•WCBKIBG LEVEL FOB RN-222 AND SHORT-LITE PROGEMY ATDOSM1150
> LOCATION OF MAXIMUM1) DOSH1155
9035 FOBBATC • ,T43, 'INDIVIDOAL DOSE FROM ALL PATHWAYS FOR EACH ORGAN1) DOSK1160
9036 FOBMAT(«0',T35,'ORGAH«,T56,'LOCATION OF BAXIBOM DOSE«rT91r DOSM1165
> «HORKISG LEVEL') DOS*I1170
9037 FORHJTC l,T3t,Aa,T63,I2,T71,I2,T93, E10. 3) DOSH1175
9038 FCRMATC ' ,T32,• (FRACTION OF EQUILIBRIUM ASSUMED FOB DORKING LEVELDOSM1180
> CALCtJLATIOHS=',F5.3,') ') DOSH1185
9039 FOHNAT{'0',T32,'COLLECTIVE HORKIBG LEVEL= »,E10.3) DOSM1190
9010 FORMAT(• ',T86,• (POPDLATION)•) DOSH1195
DOSH1200
-------
177
Appendix B
OUTPUT OF AN EXAMPLE CASE RUN OF THE AIRDOS-EPA CODE
The example case is for a hypothetical atmospheric release of four
radionuclides (226Ra, 210Po, 222Rn, and 3H) near ground level (1 m
elevation) from a circular area source 1000 m in diameter. The meteorology
and population distribution are representative of a western site in the
U.S.
A period of 100 years was assumed for the buildup of radionuclides
on ground surfaces resulting from aerial deposition. The buildup of two
pp£ pin Pin
of the daughters of Ra ( Pb and uPo) on ground surface is calculated
for this period.
The example run computes annual population doses (man-rem) within a
radius of 88514 m (55 miles). Population-weighted concentrations in air
and on ground surfaces, and population intake rates by ingestion and
inhalation within this radius are also computed for each radionuclide at
11 distances away from the source in each of 16 compass directions.
222
Working levels for Rn are computed for each of these environmental
locations.
Dose conversion factors for the external exposure modes used in the
example run are from D. C. Kocher (1979). The internal dose conversion
factors (inhalation and ingestion) are for 50-year dose commitments
(Killough et al., 1978).
-------
OTJTP3T OF MEDOS-EPH COHPIJTKl CODE
OPTIONS SE1ICTBD--
BiDIOBtJCtlDE COHCMTR4TIOHS IBE LISTED FOE DIBECTIO* MD OISTSHCE FBOH 7JCIUTT
B&DIOHOCLIDE CQUCEHTBATIOHS LISTED KBE STCTOB-HTEEHGED VAtDES
THE CALCallTIOHS IBE HIDE FOB A OSIFOF.l CIHC0L4E ABE1 SOOECE
SPBCI?IC PW8E BISE OSEO POH EACH »IB STiBILITI CliSS (HETEES)-
& 0.0 B 0.0 C 0.0 D 0.0 E 0.0 F 0.0 G 9.0
-------
Rsnoiotoexcu. uo runt TBFOBHTXOB SUPPLIED TO PROCMS
AIB TKBPBBATQBB (DB6 I) 294.0
ATEBAGB TEBTXCAL TBHPBUTHBK GBADXBBT OP THE JUB (DEC K/flBTBB)
XI S2ABXLXTY CLASS B 0.0728
X* StABXLXTT CLASS P 0.1090
XB STABILITY CLASS 8 0.1*55
HBHBT or no (BBTBBS) 2000
man or STACKS XB TBB PLABT i
SUCK
STACK BVtBBB -
1 2 3 • 5 «
BEI6R (9KTXB3) 1.0000
XPPL0BBT fBAOCny (HBTIBS/SBC) 0.0
BATB OP BBAT BBXSSXOB (CAL/SBCOBO) 0.0
OP ABBk SOVBCB (BBTBBS) 1000.0000
-------
BELB4SB HIT1S FOR BftDIOBUCLIDES
STACK SOCLIDE BZLIkSE RATE
(COEIES/TEAB)
1 Bi-226 0.100E-01
1 PB-210 0.0
1 PO-210 0.200E-01
1 HH-222 0.100E 01
1 H-3 0.100E 01
-------
HUGLIDE
PLIJHE DEPLETIOI ISC DEPOSITION P1RAHETBSS
DBPOSIT10H VELOCITTT
(BET ESS/5 EC)
G547IT1TI08&L
FULL VELOCITY
(HETBRS/SSC)
COEFFICIE5T
(I/SEC)
EFFECTIVE D1CAT COSSTAHT
IN PLUME
(PEB DAI)
Bi-226
PB-210
PO-210
BH-222
H-3
0.0
0.0
0.0
0.0
0.0
0.01000
0.01000
0.01000
0.0
0.0
0.«60E-05
O.U60E-05
O.W60E-05
0.0
0.0
0.119E-05
0.852E-0»
0.502E-02
0.181E 00
0. 15KE-03
oo
ro
-------
FHEQUBHCY OF ATHOSPHEBIC STABILITY CLASSES FOB EACH DIBECTIOB
SECTOR
FBACTIOH OF TIME IH EACH STABILITY CLASS
B C D E
1
2
3
a
5
e
7
8
9
10
11
12
13
14
15
16
0.0266
0.0173
0.0150
0.0120
0.0092
0.0218
0.0256
0.0089
0.0159
0.0155
0.0326
0.0427
0.0527
0.0444
0.0409
0.0308
0.1531
0.1026
0.0710
0.0420
0.0460
0.1033
0.1180
0.1101
0.0889
0.1335
0.1855
0.2116
0.2398
0.2267
0.2368
0.1856
0.1764
0.1137
0.0721
0.0442
0.0369
0.0614
0.0764
0.1003
0.1203
0.1613
0.1526
0.1474
0.1703
0.1727
0.2057
0.2092
0.2935
0.1939
0.1817
0.4096
0.5786
0.2902
0.1654
0. 1727
0.2928
0.2935
0.3277
0.3271
0.3032
0.3226
0.2873
0.3364
0.1167
0.1629
0.1754
0.1356
0.0867
0.1291
0.1370
0.2399
0.2153
0.1447
0.1003
0.0900
0.0823
0.0891
0.0897
0.1073
0.2337
0.4096
0.4848
0.3566
0.2426
0.3942
0.4776
0.3682
0.2667
0.2514
0.2013
0.1812
0.1517
0.1444
0.1397
0. 1 308
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
00
CJ
-------
FHBQOEHCIES OF BIHD DIBECTIOHS AHD 8ECIPHOCAL-AYEBAGED »IBD SPEEDS
BIND TOWARD
FREQUEHCr
ilHD SPEEDS FOB EACH STABILITY CLASS
(HETERS/SEC)
1
2
3
4
5
6
7
a
9
10
11
12
13
11
15
16
0.091
0.054
0.083
0.081
0.053
0.027
0.040
0.048
0.129
0.064
0.056
0.053
0.048
0.053
0.064
0.055
1.30 1
.26 1
.00 1
.10
.00
.98
.97
.31
. 19
.28
.29
.28
. 19
.27
.32
.22
.37
.24
.11
.02
.03
.08
.05
.19
. 14
.23
.23
.34
.40
.58
.43
1.64
2. «5 «
2.14 3
1.60 3
1.91 :
2. 18 f
1.61 :
1.92
2.11 :
2.43
2.49
2.29
2.52
2.48
2.89
2.80
2.9*
.00
.30
1.40
>.53
i.ll
.98
2.84
!. 16
.01
.15
.27
.56
.72
.51
1.96
1.99
3.27
3.14
3.08
3.23
3.37
3.27
3.31
3.64
3.81
3.55
3.50
3.30
3.21
3.26
3.28
3.33
.13
.26
.27
.23
. 11
.03
. 15
.27
.33
.31
.13
.11
. 10
. 14
.08
. 14
0.0
3.0
0.0
3.0
0.0
0.0
0.0
0.0
0.0
a.o
0.0
0.0
0.0
0.0
0.0
0.0
HIHD DIRECTIONS A8E HOflBERED COUHTEBCLOCKBISB STARTING AT 1 FOB DOE HORTH
-------
FREQUENCIES OF VINO DIRECTIONS MID TBOE-AVERASB WIND SPEEDS
HIHD TOiARD
FBBQOEHCT
BIRD SPEEDS FOB EACH STABILITY CLASS
(HETEBS/SBC)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
0.091
0.054
0.083
0.081
0.053
0.027
0.040
0.048
0.129
0.064
0.056
0.053
0.048
0.053
0.064
0.055
1.82 :
1.78
1.36
1.53
1.36
1.32
1.29
.83
.67
.80
.81
.79 :
.68 ;
.78 2
.84 :
.72 2
!.22
.96
.72
.52
.48
.64
.56
.83
.78
.84
.93
>.. to
!.20
'.46
!.37
!.52
3.59
3. 19
2.79
3.24
3.62
2.74
2.84
2.90
3.28
3.30
3.33
3.63
3.71
3.95
3.92
4.03
5.70
4.64
5.17
7.11
7.66
5.96
4.12
4.46
5.36
5.61
6.33
6.52
6.32
6.02
5.69
6.12
3.51
3.37
3.30
3.47
3.61
3.50
3.55
3.86
4.00
3.78
3.73
3.54
3.44
3.50
3.52
3.57
1.58
1.77
1.73
.73
.55
.50
.64
.78
.86
.83
.66
.57
.54
.60
.51
.61
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
9.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
IXKD DIBECTIOIS ABE IOHBEBED COOITEBCtOCKRISE STABTIIG AT 1 FOB DDE IOHTH
-------
BSTIHITBD RADIOIOCLIDE CO»CE»THATIOHS
A.REA
SIBD TOWARD
DISTABCE
(HBTEBS)
• TCLIOE
AIB COiCEHTBATIOl
(PCI/CC)
DBI DEPOSITION BATE
(PCI/SODAHE Cfl-SEC)
BET DEPOSITIOB BATB
-------
i
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
MVI
120T
1207
1207
1207
2414
2414
2414
2414
2414
4023
4023
4023
4023
4023
5632
5632
5632
5632
5632
7241
7241
7241
7241
7241
12068
12C68
12069
12068
12068
20113
20113
20113
20113
20113
32180
32180
32180
32180
32180
48270
48270
48270
48270
48270
64360
64360
64360
64360
64360
80450
80450
80450
80450
80450
1207
1207
1207
1207
1207
2414
2414
2414
2414
2414
4023
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
HI- 22 2
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BV-222
H-3
Bl-226
P8-210
PO-210
HI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
BA-22«
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
11-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
11-226
0.340B-09
0.0
0.5811-09
0.9541-07
0.9561-07
0.6662-10
0.0
0.133B-09
0.246E-07
0.247E-07
0.231B-10
0.0
0.4631-10
0.114B-07
0.115E-07
0.121E-10
0.0
0.2431-10
0.713B-08
0.7191-08
0.6992-11
0.0
0.1402-10
0.501E-08
0.507B-08
0.260E-11
0.0
0.520B-11
0.2568-08
0.26IE-OS
0.103B-11
0.0
0.205B-11
0.142B-08
0.146B-08
0.384B-12
0.0
0.7671-12
0.620B-09
0.862E-09
0.184E-12
0.0
0.367E-12
0.507Z-09
0.547E-OS
0.840B-13
0.0
0.168B-12
0.358E-09
0.396B-09
0.529E-13
0.0
0.106B-12
0.272B-09
0.308E-09
0.401E-09
0.0
0.803E-09
0.116E-06
0.116E-06
0.111E-09
0.0
0.222E-09
0.431E-07
0.433B-07
0.380E-10
0.340B-09
0.0
0.681E-09
0.0
0.0
0.6668-10
0.0
0.133E-09
0.0
0.0
0.231E-10
0.0
0.463E-10
0.0
0.0
0.121E-10
0.0
0.243E-10
0.0
0.0
0.699E-11
0.0
0.140E-10
0.0
0.0
0.260E-11
0.0
O.S20E-11
0.0
0.0
0.103E-11
0.0
0.205E-11
0.0
0.0
0.384E-12
0.0
0.767E-12
0.0
0.0
0.184E-12
0.0
0.367E-12
0.0
0.0
0.840Z-13
0.0
0.168E-12
0.0
0.0
0.529B-13
0.0
0.106E-12
0.0
0.0
0.401E-09
0.0
0.803E-09
0.0
0.0
0.111B-09
0.0
0.222E-09
0.0
0.0
0.380?-10
0.618E-11
0.0
0.1241-10
0.0
0.0
0.206E-11
0.0
0.413E-11
0.0
0.0
0.108E-11
0.0
0.217E-11
0.0
0.0
0.722E-12
0.0
0.144E-11
0.0
0.0
0.52 IB-12
0.0
0. 104E-11
0.0
0.0
0.280E-12
0.0
O.S59E-12
0.0
0.0
0.148E-12
0.0
0.2978-12
0.0
0.0
0.795B-13
0.0
0. 159E-12
0.0
0.0
0.461E-13
9.0
O.S23E-13
0.0
0.0
0.291E-13
0.0
0.582E-13
0.0
0.0
0.208E-13
0.0
0.415E-13
0.0
0.0
0.625B-11
0.0
0.125E-10
0.0
0.0
0.297E-11
0.0
0.594E-11
0.0
0.0
0.152E-11
0.3U7E-09
0.0
0.693E-09
0.0
0.0
0.697E-10
0.0
0.137E-09
0.0
0.0
0.242E-10
0.0
O.H8HE-10
0.0
0.0
0.129E-10
0.0
0.257E-10
0.0
0.0
0.751E-11
0.0
0. 150E-10
0.0
0.0
0.2B8E-11
0.0
0.576E-11
0.0
0.0
0.117B-11
0.0
0.235E-11
0.0
0.0
0.463E-12
0.0
0.926E-12
0.0
0.0
0.230E-12
0.0
0.460E-12
0.0
0.0
0.113E-12
0.0
0.226E-12
0.0
0.0
0.737E-13
0.0
O.H7E-12
0.0
0.0
0.498E-09
0.0
0.8!5E-09
0.0
0.0
0.114E-09
0.0
0.228E-09
0.0
0.0
0.396E-10
-------
J
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
40 i 3
4023
4023
4023
5632
5632
5632
5632
5632
7241
7241
7241
7241
7241
12068
12068
12068
12068
12068
20113
20113
20113
20113
20113
32180
32180
32180
32180
32180
48270
48270
48270
48270
48270
64360
64360
64360
64360
64360
80450
80450
80450
80450
80450
1207
1207
1207
1207
1207
2414
2414
2414
2414
2414
4023
4023
4023
4023
4023
5632
5632
5632
5632
5632
7241
7241
PB-210
PO-210
BI-222
H-3
BA-226
PB-210
PO-210
HI-222
H-3
BA-226
PB-210
PO-210
BH-222
H-3
Bi-226
PB-210
PO-210
BI-222
H-3
Bi-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
BH-222
H-3
RA-226
PB-210
PO-210
BI-222
H-3
BA-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
BI-222
H-3
BA-226
PB-210
PO-210
BI-222
H-3
BA-226
PB-210
PO-210
BI-222
H-3
BA-226
PB-210
PO-210
BI-222
H-3
BA-226
PB-210
0.0
0.761E-10
0.2018-07
0.202E-07
0.198E-10
0.0
0.397E-10
0.125E-07
0.127E-07
0.113E-10
0.0
0.226E-10
0.883E-08
0.893E-08
0.414E-11
0.0
0.828E-11
0.453E-08
0.462B-09
0.160B-11
0.0
0.320E-11
0.252E-08
0.260E-08
0.573B-12
0.0
0.115E-11
0.146E-08
0.153E-08
0.270E-12
0.0
0.540E-12
0.902E-09
0.972E-09
0.117B-12
0.0
0.235B-12
0.638E-09
0.705E-09
0.730E-13
0.0
0.146E-12
0.485E-09
0.549E-09
0.350E-09
0.0
0.700E-09
0.100E-06
0.100E-06
0.888E-10
0.0
0.178E-09
0.329E-07
0.330E-07
0.314E-10
0.0
0.628E-10
0.153E-07
0.154E-07
0.167E-10
0.0
0.335E-10
0.955B-08
0.963B-08
0.982E-11
0.0
0.0
0.761E-10
0.0
0.0
0.198E-10
0.0
0.397E-10
0.0
0.0
0.113E-10
0.0
0.226E-10
0.0
0.0
0.41UB-11
0.0
0.828E-11
0.0
0.0
0.160E-11
0.0
0.320E-11
0.0
0.0
0.573E-12
0.0
0. 115E-11
0.0
0.0
0.270E-12
0.0
0.540E-12
0.0
0.0
0.117E-12
0.0
0.235E-12
0.0
0.0
0.730E-13
0.0
0.116E-12
0.0
0.0
0.350E-09
0.0
0.700E-09
0.0
0.0
0.888E-10
0.0
0.178E-09
0.0
0.0
0.314E-10
0.0
0.628E-10
0.0
0.0
0. 167E-10
0.0
0.335E-10
0.0
0.0
0.982E-11
0.0
0.0
0.304E-11
0.0
0.0
0.998E-12
0.0
0.200E-11
0.0
0.0
0.708E-12
0.0
0.142E-11
0.0
0.0
0.371E-12
0.0
0.742E-12
0.0
0.0
0. 192E-12
0.0
0.384E-12
0.0
0.0
0.997E-13
0.0
0.199E-12
0.0
0.0
0.568E-13
0.0
0.1UE-12
0.0
0.0
0.347E-13
0.0
0.693E-13
0.0
0.0
0.24»E-13
0.0
0.487E-13
0.0
0.0
0.548E-11
0.0
0.110E-10
0.0
0.0
0.242E-11
0.0
0.483E-11
0.0
0.0
0.126E-11
0.0
0.252E-11
0.0
0.0
0.837E-12
0.0
0.167E-11
0.0
0.0
0.602E-12
0.0
0.0
0.791B-10
0.0
0.0
0.208E-10
0.0
0.417E-10
0.0
0.0
0.120E-10
0.0
0.2»OE-10
0.0
0.0
0. 451E-11
0.0
0.902E-11
0.0
0.0
0. 179E-11
0.0
0.358E-11
0.0
0.0
0.672E-12
0.0
0.134E-11
0.0
0.0
0.327E-12
0.0
0.65HE-12
0.0
0.0
0.152E-12
0.0
0.304E-12
0.0
0.0
0.974E-13
0.0
0.195E-12
0.0
0.0
0.355E-09
0.0
0.711E-09
0.0
0.0
0.913E-10
0.0
0.183E-09
0.0
0.0
0.327E-10
0.0
0.654E-10
0.0
0.0
0.176E-10
0.0
0.351E-10
0.0
0.0
0.134E-10
0.0
oo
CD
-------
4
4
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
S
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
J24i
7241
72*1
12068
12068
12068
12068
12068
20113
20113
20113
20113
20113
32180
32180
32180
32180
32180
«8270
48270
48270
48270
48270
64360
64360
64360
64360
64360
80450
80450
80450
80450
80450
1207
1207
1207
1207
1207
2414
2414
2414
2414
2414
4023
4023
4023
4023
4023
5632
5632
5632
5632
5632
7241
7241
7241
7241
7241
12068
12068
12068
12068
12068
20113
20113
20113
PO-210
HB-222
H-3
Rl-226
PB-210
PO-210
BH-222
H-3
Rl-226
PB-210
PO-210
BH-222
H-3
Rl-226
PB-210
PO-210
BH-222
H-3
Rl-226
PB-210
PO-210
RB-222
H-3
Bi-226
PB-210
PO-210
RB-222
H-3
Rl-226
PB-210
PO-210
RB-222
H-3
Bi-226
PB-210
PO-210
RB-222
H-3
RA-226
PB-210
PO-210
RB-222
H-3
BI-226
PB-210
PO-210
BB-222
H-3
Bi-226
PB-210
PO-210
BB-222
H-3
Bi-226
PB-210
PO-210
RB-222
H-3
Rl-226
PB-210
PO-210
RB-222
H-3
BI-226
PB-210
PO-210
O.IUbE-10
0.672E-OB
0.679E-08
0.378B-11
0.0
0.755E-11
0.344E-08
0.350E-08
0.152E-11
0.0
0.303E-11
0.190E-08
0.196E-08
0.594E-12
0.0
0.119E-11
0.110E-08
0.115E-08
0.289E-12
0.0
0.579E-12
0.676E-09
0.730E-09
0.142E-12
0.0
0.284E-12
0.477E-09
0.528E-09
0.918E-13
0.0
0.184E-12
0.362E-09
0.411E-09
0.217E-09
0.0
0.434B-09
0.630B-07
0.631E-07
0.466E-10
0.0
0.931E-10
0.169E-07
0.170E-07
0.169E-10
0.0
0.339E-10
0.785E-08
0.790E-08
0.918E-11
0.0
0.184E-10
0.489E-08
0.494E-08
0.557E-11
0.0
0.111E-10
0.344E-08
0.348E-08
0.223B-11
0.0
0.446E-11
0.17SB-08
0.178E-08
0.926E-12
0.0
0.185E-11
0.196E-10
0.0
0.0
0.378E-11
0.0
0.755E-11
0.0
0.0
0.152E-11
0.0
0.303E-11
0.0
0.0
0.594E-12
0.0
0.119E-11
0.0
0.0
0.289E-12
0.0
0.579E-12
0.0
0.0
0.142E-12
0.0
0.284E-12
0.0
0.0
0.918E-13
0.0
0.184E-12
0.0
0.0
0.217E-09
0.0
0.434E-09
0.0
0.0
0.466E-10
0.0
0.931E-10
0.0
0.0
0.169E-10
0.0
0.339E-10
0.0
0.0
0.918E-11
0.0
0.184E-10
0.0
0.0
0.557E-11
0.0
0-111E-10
0.0
0.0
0.223E-11
0.0
0.446E-11
0.0
0.0
0.926E-12
0.0
0. 185E-11
0.120E-11
0.0
0.0
0.323E-12
0.0
0.645E-12
0.0
0.0
0.171E-12
0.0
0.343E-12
0.0
0.0
0.922E-13
0.0
0.184E-12
0.0
0.0
0.541E-13
0.0
0.108E-12
0.0
0.0
0.3«4B-13
0.0
0.688E-13
0.0
0.0
0.2«9E-13
0.0
0.497E-13
0.0
0.0
0.367E-11
0.0
0.734E-11
0.0
0.0
0. 147E-11
0.0
0.293B-11
0.0
0.0
0.789E-12
0.0
0.158E-11
0.0
0.0
0.533E-12
0.0
0.107E-11
0.0
0.0
0.391E-12
0.0
0.783E-12
0.0
0.0
0.216E-12
0.0
0.432E-12
0.0
0.0
0.118E-12
0.0
0.236E-12
0. 2UBE-10
0.0
0.0
0.410E-11
0.0
0.820E-11
0.0
0.0
0.169E-11
0.0
0.338E-11
0.0
0.0
0.686E-12
0.0
0. 137E-11
0.0
0.0
0.3»3E-12
0.0
0.687E-12
0.0
0.0
0.176E-12
0.0
0.353E-12
0.0
0.0
0.117E-12
0.0
0.233E-12
0.0
0.0
0.221E-09
0.0
O.UK1E-09
0.0
0.0
0.480E-10
0.0
0.961E-10
0.0
0.0
0.177E-10
0.0
0.355E-10
0.0
0.0
0.972E-11
0.0
O.UttE-10
0.0
0.0
0.596E-11
0.0
0.119E-10
0.0
0.0
0.2V4E-11
0.0
0.489E-11
0.0
0.0
0.134E-M
0.0
0.209E-11
-------
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
20113
20113
32180
32180
32180
32180
32180
• 8270
• 8270
• 8270
48270
48270
6*360
64360
64360
64360
64360
80450
80450
80450
80450
80450
1207
1207
1207
1207
1207
2414
2414
2414
2414
2414
1023
4023
4023
4023
4023
5632
5632
5632
5632
5632
7241
7241
7241
7241
7241
12068
12068
12068
12068
12068
20113
20113
20113
20113
20113
32180
32180
32180
32180
32180
48270
48270
48270
48270
H-3
•1-226
PB-210
PO-210
SB-222
H-3
81-226
PB-210
PO-210
HH-222
H-3
B1-226
PB-210
PO-210
BI-222
H-3
Bft-226
PB-210
PO-210
EH-222
H-3
Bl-226
PB-210
PO-210
BH-222
H-3
Bl-226
PB-210
PO-210
BM-222
H-3
Bl-226
PB-210
PO-210
HI-222
H-3
Bl-226
PB-210
PO-210
Bit-222
H-3
Rl-226
PB-210
PO-210
RH-222
H-3
Bl-226
PB-210
PO-210
BH-222
H-3
RA-226
PB-210
PO-210
HI-222
H-3
Bl-226
PB-210
PO-210
BJ-222
H-3
Bl-226
PB-210
PO-210
SH-222
0.957E-09
0.990E-09
0.392E-12
0.0
0.784E-12
0.548B-09
0.579E-09
0.195E-12
0.0
0.390E-12
0.336E-09
0.365E-09
0.104B-12
0.0
0.209E-12
0.236E-09
0.263E-09
0.688E-13
0.0
0.138E-12
0.178E-09
0.205E-09
0.164E-09
0.0
0.329E-09
0.518E-07
0.519E-07
0.302B-10
0.0
0.603E-10
0.135E-07
0.136E-07
0.103E-10
0.0
0.206E-10
0.627E-08
0.631E-08
0.5368-11
0.0
0.107E-10
0.391E-08
0.395E-08
0.310E-11
0.0
0.619B-11
0.275E-08
0.278E-08
0.117E-11
0.0
0.233E-11
0.140E-08
0.143E-08
O.U68E-12
0.0
0.935E-12
0.776E-09
0.804E-09
0.1382-12
0.0
0.375E-12
0.447E-09
0.474E-09
0.915E-13
0.0
0.183E-12
0.275E-09
0.0
0.0
0.392E-12
0.0
0.784E-12
0.0
0.0
0.195E-12
0.0
0.390B-12
0.0
0.0
0.104E-12
0.0
0.209E-12
0.0
0.0
0.688E-13
0.0
0.138E-12
0.0
0.0
0.164E-09
0.0
0.329E-09
0.0
0.0
0.302E-10
0.0
0.603E-10
0.0
0.0
0.103E-10
0.0
0.206E-10
0.0
0.0
0.536E-11.
0.0
0.107E-10
0.0
0.0
0.310E-11
0.0
0.619E-11
0.0
0.0
0.117E-11
0.0
0.233E-11
0.0
0.0
0.468E-12
0.0
0.935E-12
0.0
0.0
0. 188E-12
0.0
0.375E-12
0.0
0.0
0.915E-13
0.0
0.183E-12
0.0
0.0
0.0
0.657E-13
0.0
0.131E-12
0.0
0.0
0.393E-13
0.0
0.787E-13
0.0
0.0
0.258B-13
0.0
0.515E-13
0.0
0.0
0. 189B-13
0.0
0.377E-13
0.0
0.0
0.293E-11
0.0
0.586E-11
0.0
0.0
0. 101E-11
0.0
0.202E-11
0.0
0.0
0.531E-12
0.0
0. 106E-11
0.0
0.0
0.3SSE-12
0.0
0.710E-12
0.0
0.0
0.257E-12
0.0
0.515E-12
0.0
0.0
0.140E-12
0.0
0.279B-12
0.0
0.0
0.747E-13
0.0
0.149E-12
0.0
0.0
0. 404E-13
0.0
0.807E-13
0.0
0.0
0.233E-13
0.0
0.466E-13
0.0
0.0
0.0
0.458E-12
0.0
0.915E-12
0.0
0.0
0.234E-12
0.0
0.468E-12
0.0
0.0
0. 130E-12
0.0
0.251E-12
0.0
0.0
0.877B-13
0.0
0.175E-12
0.0
0.0
0.167E-09
0.0
0.334E-09
0.0
0.0
0.312E-10
0.0
0.623E-10
0.0
0.0
0.108E-10
0.0
0.216E-10
0.0
0.0
0.572E-11
0.0
0.114F-10
0.0
0.0
0.335E-11
0.0
0.671E-11
0.0
0.0
0.130E-11
0.0
0.251E-11
0.0
0.0
0.5H2E-12
0.0
0.108E-11
0.0
0.0
0. 22BE-12
0.0
0.456E-12
0.0
0.0
0.115E-12
0.0
0.230B-12
0.0
•o
o
-------
b
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
4B270
64360
64360
64360
64360
64360
80450
80450
80450
80450
80450
1207
1207
1207
1207
1207
2414
2414
2414
2414
2414
4023
4023
4023
4023
4023
5632
5632
5632
5632
5632
7241
7241
7241
7241
7241
12068
12068
12068
12068
12068
20113
20113
20113
20113
20113
32180
32180
32180
32180
32180
48270
48270
48270
48270
• 8270
64360
64360
64360
64360
64360
80450
80450
80450
60450
80450
H-J
RA-226
PB-210
PO-210
RH-222
H-3
RA-226
PB-210
PO-210
RH-222
H-3
BA-226
PB-210
PO-210
RH-222
H-3
RH-226
PB-210
PO-210
RH-222
H-3
81-226
PB-210
PO-210
RH-222
H-3
Bl-226
PB-210
PO-210
HH-222
B- 3
H»-226
PB-210
PO-210
BH-222
H-3
Bi-226
PB-210
PO-210
RI-222
H-3
81-226
PB-210
PO-210
HI-222
H-3
84-226
PB-210
PO-210
HI-222
H-3
84-226
PB-210
PO-210
RI-222
H-3
Bl-226
PB-210
PO-210
RI-222
H-3
81-226
PB-210
PO-210
RI-222
H-3
O.JOOB-U9
0.451E-13
0.0
0.902E-13
0.193E-09
0.217E-09
0.288E-13
0.0
0.577E-13
0.146E-09
0.169E-09
0.203E-09
0.0
0.406E-09
0.625E-07
0.626E-07
0.500E-10
0.0
0.100E-09
0.221E-07
0.222E-07
0.167E-10
0.0
0.334E-10
0.103E-07
0.103E-07
0.858E-11
0.0
0.172E-10
0.641E-08
0.647E-08
0.482E-11
0.0
0.964B-11
0.450E-08
0.456E-08
0.174E-11
0.0
0.348Z-11
0.231E-OB
0.235E-08
0.672E-12
0.0
0.134E-11
0.12BE-08
0.132E-08
0.251B-12
0.0
0.502E-12
0.739E-09
0.781E-09
0.121E-12
0.0
0.241E-12
0.457E-09
0.496E-09
0.563E-13
0.0
0.113E-12
0.322B-09
0.359E-09
0.354E-13
0.0
0.709E-13
0.244E-09
0.280E-09
U.O
0.451E-13
0.0
0.902E-13
0.0
0.0
0.288E-13
0.0
0.577E-13
0.0
0.0
0.203E-09
0.0
0.406E-09
0.0
0.0
0.500E-10
0.0
0.100E-09
0.0
0.0
0.167E-10
0.0
0.334E-10
0.0
0.0
0.858E-11
0.0
0.172E-10
0.0
0.0
0.482E-11
0.0
0.964B-11
0.0
0.0
0.174E-11
0.0
0.348E-11
0.0
0.0
0.672E-12
0.0
0.134E-11
0.0
0.0
0.251E-12
0.0
O.S02E-12
0.0
0.0
0.121B-12
0.0
0.241E-12
0.0
0.0
O.S63E-13
0.0
0.113E-12
0.0
0.0
0.354E-13
0.0
0.709B-13
0.0
0.0
U.O
0.1475-13
0.0
0.293E-13
0.0
0.0
0. 103E-13
0.0
0.207E-13
0.0
0.0
0.356E-11
0.0
0.713E-11
0.0
0.0
0.160E-11
0.0
0.320E-11
0.0
0.0
0.831E-12
0.0
0.166E-11
0.0
0.0
0. 550E-12
0.0
0. 110E-11
0.0
0.0
0.395E-12
0.0
0.791E-12
0.0
0.0
0.211E-12
0.0
5.423E-12
0.0
0.0
0.112E-12
0.0
0.223E-12
0.0
0.0
0.594E-13
0.0
0.119E-12
0.0
0.0
0.339E-13
0.0
0.677E-13
0.0
0.0
0.211E-13
0.0
0.421E-13
0.0
0.0
0.147E-13
0.0
0.294E-13
0.0
0.0
U.O
0.598E-13
0.0
0.120E-12
0.0
0.0
0.392E-13
0.0
0.733E-13
0.0
0.0
0.206E-09
0.0
0.413E-09
0.0
0.0
0.516E-10
0.0
0.103E-09
0.0
0.0
0.175E-10
0.0
0.351E-10
0.0
0.0
0.913E-11
0.0
0. 1B3E-10
0.0
0.0
0.521E-11
0.0
0. 104E-10
0.0
0.0
0.195E-11
0.0
0.390E-11
0.0
0.0
0.784E-12
0.0
0.157E-11
0.0
0.0
0.310E-12
0.0
0.621E-12
0.0
0.0
0. 155E-12
0.0
0.3D9E-12
0.0
0.0
0.774E-13
0.0
0. 155E-12
0.0
0.0
0.501E-13
0.0
0.100E-12
0.0
0.0
-------
B
a
8
8
8
8
8
8
8
8
8
8
8
a
8
8
8
8
8
8
8
8
8
8
8
8
8
8
a
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
1207
1207
1207
1207
1207
2*1*
2*14
2414
2414
2414
•023
«023
4023
•023
«023
5632
5632
5632
56 32
5632
7241
7241
7241
72*1
7241
12068
12068
12068
12068
12068
20113
20113
20113
20113
20113
32180
32180
32180
32180
32180
48270
48270
48270
48270
48270
64360
64360
64360
64360
64360
804SO
80450
80450
80450
80450
1207
1207
1207
1207
1207
2414
2414
2414
2414
2414
4023
Bl-226
»B-210
PO-210
BB-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
8-3
Rl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
BA-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
0.309E-09
0.0
0.619E-09
0.812B-07
0.813E-07
0.585E-10
0.0
0.117E-09
0.202E-07
0.203E-07
0.208E-10
0.0
0.415E-10
0.937B-08
0.943E-08
0.110E-10
0.0
0.221E-10
0.584E-08
0.589E-08
0.6488-11
0.0
0.130E-10
0.411B-08
0.415E-08
0.249E-11
0.0
0.498E-11
0.210E-08
0.214E-08
0.102E-11
0.0
0.204E-11
0.116E-08
0.120B-08
0.403E-12
0.0
0.806E-12
0.673B-09
0.706E-09
0.198E-12
0.0
0.395E-12
0.416E-09
0.448E-09
0.896E-13
0.0
0.179E-12
0.294E-09
0.324E-09
0.566E-13
0.0
0.113E-12
0.224E-09
0.252E-09
0.416E-09
0.0
0.831E-09
0.993E-07
0.995E-07
0.141E-09
0.0
0.282E-09
0.410E-07
0.411E-07
0.519E-10
0.309B-09
0.0
0.619E-09
0.0
0.0
0.585E-10
0.0
0.117E-09
0.0
0.0
0.208E-10
0.0
0.415E-10
0.0
0.0
0.110E-10
0.0
0.221E-10
0.0
0.0
0.648E-11
0.0
0. 130E-10
0.0
0.0
0.249B-11
0.0
0.498E-11
0.0
0.0
0.102E-11
0.0
0.204E-11
0.0
0.0
0.403E-12
0.0
0.806E-12
0.0
0.0
0.198E-12
0.0
0.395E-12
0.0
0.0
0.896E-13
0.0
0.179E-12
0.0
0.0
0.566E-13
0.0
0.113E-12
0.0
0.0
0.416E-09
0.0
0.831E-09
0.0
0.0
0.141E-09
0.0
0.282E-09
0.0
0.0
0.519E-10
0.565B-11
0.0
0.113E-10
0.0
0.0
0.183E-11
0.0
0.365B-11
0.0
0.0
0.966E-12
0.0
0.193E-11
0.0
0.0
0.645E-12
0.0
0.129E-11
0.0
0.0
0.467B-12
0.0
0.934E-12
0.0
0.0
0.251E-12
0.0
0.503E-12
0.0
0.0
0.133E-12
0.0
0.267E-12
0.0
0.0
0.711E-13
0.0
0.1K2B-12
0.0
0.0
0.410E-13
0.0
0.821E-13
0.0
0.0
0.254E-13
0.0
0.507E-13
0.0
0.0
0.180E-13
0.0
0.359E-13
0.0
0.0
0.809E-11
0.0
0.162E-10
0.0
0.0
0.480E-11
0.0
0.959E-11
0.0
0.0
0.260E-11
0.315E-09
0.0
0.630E-09
0.0
0.0
0.604E-10
0.0
0.121E-09
0.0
0.0
0.217E-10
0.0
0.435E-10
0.0
0.0
0.117E-10
0.0
0.234E-10
0.0
0.0
0.695E-11
0.0
0.139E-10
0.0
0.0
0.274E-11
0.0
0.5H9E-11
0.0
0.0
0.115B-11
0.0
0.231E-11
0.0
0.0
0.474E-12
0.0
0.9H6E-12
0.0
0.0
0.239E-12
0.0
0.477E-12
0.0
0.0
0.115E-12
0.0
0.230E-12
0.0
0.0
0.7»5E-13
0.0
0.1H9E-12
0.0
0.0
0.424E-09
0.0
0.847E-09
0.0
0.0
0.1H6E-09
0.0
0.291E-09
0.0
0.0
0.545B-10
•O
to
-------
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
402J
4023
4023
4023
5632
5632
5632
5632
5632
7241
7241
7241
7241
7241
12068
12068
12068
12068
12068
20113
20113
20113
20113
20113
32180
32180
32180
32180
32180
48270
48270
48270
48270
48270
64360
64360
64360
64360
64360
80450
80450
80450
80450
80450
1207
1207
1207
1207
1207
2414
2414
2414
2414
2414
4023
4023
4023
4023
4023
5632
56 32
5632
5632
5632
7241
7241
PB-210
PO-210
81-222
H-3
RA-226
PB-210
PO-210
BH-222
H-3
BK-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
BH-222
H-3
BA-226
Pfl-210
PO-210
BH-222
H-3
BI-226
PB-210
PO-210
RH-222
H-3
BA-226
PB-210
PO-210
81-222
H-3
BA-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
0.0
0.104E-09
0.189E-07
0.190E-07
0.282E-10
0.0
0.564E-10
0.117E-07
0.118E-07
0.170E-10
0.0
0.340E-10
0.823E-08
0.831E-08
0.678E-11
0.0
0.136E-10
0.418E-08
0.425E-08
0.28»E-11
0.0
0.568E-11
0.230E-08
0.237E-08
0.116E-11
0.0
0.233E-11
0.133E-08
0.139E-08
0.576E-12
0.0
0.115E-11
0.819E-09
0.876E-09
0.276E-12
0.0
0.553E-12
0.578E-09
0.632E-09
0.177E-12
0.0
0.354E-12
0.439E-09
0.192E-09
0.318E-09
0.0
0.636E-09
0.752E-07
0.754E-07
0.655E-10
0.0
0.13 IE-09
0.193E-07
0.194E-07
0.239E-10
0.0
O.U78B-10
0.889E-08
0.894E-08
0.128E-10
0.0
0.257E-10
0.551E-08
0.5S5E-08
0.770E-11
0.0
0.0
0.104E-09
0.0
0.0
0.282E-10
0.0
0.564E-10
0.0
0.0
0.170E-10
0.0
0.340E-10
0.0
0.0
0.678E-11
0.0
0.136E-10
0.0
0.0
0.28UE-11
0.0
0.568E-11
0.0
0.0
0.116E-11
0.0
0.233E-11
0.0
0.0
0.576E-12
0.0
0.115E-11
0.0
0.0
0.276E-12
0.0
0.553B-12
0.0
0.0
0.177E-12
0.0
0.354E-12
0.0
0.0
0.318E-09
0.0
0.636E-09
0.0
0.0
0.655E-10
0.0
0.131E-09
0.0
0.0
0.239E-10
0.0
0.478E-10
0.0
0.0
0.128E-10
0.0
0.257E-10
0.0
0.0
0.770E-11
0.0
0.0
0.520B-11
0.0
0.0
0.176E-11
0.0
0.351E-11
0.0
0.0
0.129E-11
0.0
0.258E-11
0.0
0.0
0.706E-12
0.0
0.141E-11
0.0
0.0
0.380E-12
0.0
0.760E-12
0.0
0.0
0.206E-12
0.0
0.413E-12
0.0
0.0
0.121E-12
0.0
0.241E-12
0.0
0.0
0.760E-13
0.0
0.152B-12
0.0
0.0
0.545E-13
0.0
0. 109E-12
0.0
0.0
0.68SE-11
0.0
0.137E-10
0.0
0.0
0.257E-11
0.0
0.513E-11
0.0
0.0
0. 141E-11
0.0
0.281E-11
0.0
0.0
0.956E-12
0.0
0.191E-11
0.0
0.0
0.706E-12
0.0
U.O
0.109E-09
0.0
0.0
0.299E-10
0.0
0.599E-10
0.0
0.0
0.183E-10
0.0
0.366E-10
0.0
0.0
0.748E-11
0.0
0. 150E-10
0.0
0.0
0.322E-11
0.0
0.6K4E-11
0.0
0.0
0.137E-11
0.0
0.27»E-11
0.0
0.0
0.697E-12
0.0
0.139E-11
0.0
0.0
0.352E-12
0.0
0.705E-12
0.0
0.0
0.231E-12
0.0
O.U63E-12
0.0
0.0
0.325E-09
0.0
0.650E-09
0.0
0.0
0.681E-10
0.0
0. 136P-09
0.0
0.0
0.253E-10
0.0
0.506E-10
0.0
0.0
0.138E-10
0.0
0.276E-10
0.0
0.0
0.8HOE-11
0.0
-o
CO
-------
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
7241
7241
7241
12068
12068
12068
12068
12068
20113
20113
20113
20113
20113
32180
32180
32180
32180
32180
48270
48270
«8270
48270
48270
64360
64360
64360
64360
64360
80450
80450
80450
80450
80450
1207
1207
1207
1207
1207
2414
2414
2414
2414
2414
4023
4023
4023
4023
4023
5632
5632
5632
5632
5632
7241
7241
7241
7241
7241
12068
12068
12068
12068
12068
20113
20113
20113
PO-210
HH-222
H-3
Bi-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
RH-222
H-3
HA-226
PB-210
PO-210
BH-222
H-3
Bi-226
PB-210
PO-210
BI-222
H-3
BI-226
PB-210
PO-210
HH-222
H-3
BI-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
RH-222
H-3
Rl-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
0.154E-10
0.385E-08
0.389E-08
0.301E-11
0.0
0.603E-11
0.195E-08
0.198E-08
0.125E-11
0.0
0.250E-11
0.107E-03
0.110E-08
0.510B-12
0.0
0.102E-11
0.616E-09
0.645E-09
0.252E-12
0.0
0.504E-12
0.380E-09
0.407E-09
0.126E-12
0.0
0.252E-12
0.268E-09
0.294E-09
0.814E-13
0.0
0.163E-12
0.203E-09
0.228E-09
0.214E-09
0.0
0.427E-09
0.518E-07
0.519B-07
0.512E-10
0.0
0.102E-09
0.155B-07
0.156E-07
0.186E-10
0.0
0.372E-10
0.708E-08
0.713E-08
0.999E-11
0.0
0.200E-10
0.437E-08
0.441E-08
0.603E-11
0.0
0.121E-10
0.305E-08
0.308E-08
0.238E-11
0.0
0.475E-11
0.153E-08
0.156E-08
0.100E-11
0.0
0.200E-11
0.154E-10
0.0
0.0
0.301E-11
0.0
0.603E-11
0.0
0.0
0.125E-11
0.0
0.250E-11
0.0
0.0
0.510E-12
0.0
0.102E-11
0.0
0.0
0.252E-12
0.0
0.504E-12
0.0
0.0
0.126E-12
0.0
0.252E-12
0.0
0.0
0.814E-13
0.0
0.163E-12
0.0
0.0
0.214E-09
0.0
0.427E-09
0.0
0.0
0.512E-10
0.0
0.102E-09
0.0
0.0
0.186E-10
0.0
0.372E-10
0.0
0.0
0.999E-11
0.0
0.200E-10
0.0
0.0
0.603E-11
0.0
0.121E-10
0.0
0.0
0.238E-11
0.0
0.475E-11
0.0
0.0
0.100E-11
0.0
0.200E-11
0.141E-11
0.0
0.0
0.391E-12
0.0
0.782E-12
0.0
0.0
0.213E-12
0.0
0.427E-12
0.0
0.0
0.118E-12
0.0
0.236E-12
0.0
0.0
0.697E-13
0.0
0.139E-12
0.0
0.0
0.452E-13
0.0
0.904E-13
0.0
0.0
0.326E-13
0.0
0.653E-13
0.0
0.0
0.547E-11
0.0
0. 109E-10
0.0
0.0
0.249E-11
0.0
O.H99E-11
0.0
0.0
0.139E-11
0.0
0.277E-11
0.0
0.0
0.951E-12
0.0
0.190E-11
0.0
0.0
0.709E-12
0.0
0.142E-11
0.0
0.0
0.398E-12
0.0
0.796E-12
0.0
0.0
0.220E-12
0.0
0.440E-12
0. 168E-10
0.0
0.0
0.3HOE-11
0.0
0.681E-11
0.0
0.0
0.0
0.292E-11
0.0
0.0
0.628E-12
0.0
0.126E-11
0.0
0.0
0.322E-12
0.0
0.6»3E-12
0.0
0.0
0.171E-12
0.0
0.342E-12
0.0
0.0
0.114E-12
0.0
0.228E-12
0.0
0.0
0.219E-09
0.0
0.438E-09
0.0
0.0
0.537E-10
0.0
0.107E-09
0.0
0.0
0.200E-10
0.0
0.400E-10
0.0
0.0
0. 109E-10
0.0
0.219E-10
0.0
0.0
0.674E-1 1
0.0
0.135E-10
0.0
0.0
0.277E-1 1
0.0
0.555E-11
0.0
0.0
0. 122E-11
0.0
0.2»4E-11
-------
n
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
20113
32180
32180
32180
32180
32180
48270
48270
48270
48270
48270
64360
64360
64360
64360
64360
80450
80450
80450
80450
80450
1207
1207
1207
1207
1207
2414
2414
2414
2414
2414
4023
4023
4023
4023
4023
5632
5632
5632
5632
5632
7241
7241
7241
7241
7241
12068
12068
12068
12068
12068
20113
20113
20113
20113
20113
32180
32180
32180
32180
32180
48270
•8270
48270
48270
H-3
Bl-226
PB-210
PO-210
HI- 222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
81-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
0.865B-09
0.429B-12
0.0
0.858B-12
0.480E-09
0.505B-09
0.215B-12
0.0
0.431E-12
0.294E-09
0.318E-09
0.115B-12
0.0
0.230E-12
0.207E-09
0.229B-09
0.754E-13
0.0
0.151E-12
0.157E-09
0.178B-09
0.181E-09
0.0
0.362B-09
0.445B-07
0.446E-07
0.448B-10
0.0
0.896B-10
0.1418-07
0.1418-07
0.163B-10
0.0
0.326E-10
0.641B-08
0,64SE-08
0.873E-11
0.0
0.175B-10
0.395B-08
0.399E-08
0.528B-11
0.0
0.106E-10
0.275B-08
0.279E-08
0.209E-11
0.0
0.419E-11
0.139E-08
0.141E-08
0.891E-12
0.0
0.178E-11
0.757E-09
0.783E-09
0.391E-12
0.0
0.781B-12
0.433E-09
0.457B-09
0.198B-12
0.0
0.396E-12
0.266E-09
0.0
0.0
0.429E-12
0.0
0.8S8E-12
0.0
0.0
0.215B-12
0.0
0.431E-12
0.0
0.0
0.115E-12
0.0
0.230E-12
0.0
0.0
0.754E-13
0.0
0.151E-12
0.0
0.0
0.181E-09
0.0
0.362E-09
0.0
0.0
0.448E-10
0.0
0.896E-10
0.0
0.0
0. 163E-10
0.0
0.326E-10
0.0
0.0
0.873B-11
0.0
0.175E-10
0.0
0.0
0.528E-11
0.0
0.106E-10
0.0
0.0
0.209E-11
0.0
0.419E-11
0.0
0.0
0.891E-12
0.0
0.178E-11
0.0
0.0
0.391E-12
0.0
0.781E-12
0.0
0.0
0.198E-12
0.0
0.396E-12
0.0
0.0
0.0
0.123E-12
0.0
0.247E-12
0.0
0.0
0.731E-13
0.0
0.146E-12
0.0
0.0
0.480E-13
0.0
0.960B-13
0.0
0.0
0.346E-13
0.0
0.693E-13
0.0
0.0
0.518E-11
0.0
0.104E-10
0.0
0.0
0.237E-11
0.0
0.»73B-11
0.0
0.0
0.132E-11
0.0
0.265E-11
0.0
0.0
0.911E-12
0.0
0.182E-11
0.0
0.0
0.682E-12
0.0
0.136E-11
0.0
0.0
0.385E-12
0.0
0.771E-12
0.0
0.0
0.215E-12
0.0
0.429E-12
0.0
0.0
0.121E-12
0.0
0.243B-12
0.0
0.0
0.724E-13
0.0
0.145E-12
0.0
u.u
0.0
0.552E-12
0.0
0.110E-11
0.0
0.0
0.288E-12
0.0
0.577E-12
0.0
0.0
0.163E-12
0.0
0.326E-12
0.0
0.0
0.110E-12
0.0
0.220E-12
0.0
0.0
0.186E-09
0.0
0.372E-09
0.0
0.0
0.472E-10
0.0
0.9»»E-10
0.0
0.0
0.176E-10
0.0
0.3S2E-10
0.0
0.0
0.964E-11
0.0
0.193E-10
0.0
0.0
0.597E-11
0.0
0. 119E-10
0.0
0.0
0.248E-11
0.0
0.496E-11
0.0
0.0
0.111B-11
0.0
0.22 IE-11
0.0
0.0
0.512B-12
0.0
0.102E-11
0.0
0.0
0.270E-12
0.0
0.5H1F-12
0.0
-------
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
46270
64360
64360
64360
64360
64360
80450
804SO
80450
80450
80450
1207
1207
1207
1207
1207
2414
24 U
2414
2414
2414
4023
4023
4023
4023
4023
5632
5632
5632
5632
5632
7241
7241
7241
7241
7241
12068
12068
12068
12068
12068
20113
20113
20113
20113
20113
32180
32180
32180
32180
32180
46270
48270
48270
48270
48270
64360
64360
64360
64360
64360
80450
80450
80450
80450
80450
H-3
Bl-226
PB-210
PO-210
H-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BB-222
H-3
HI- 22 6
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
0.288B-09
0.103B-12
0.0
0.2151-12
0.187Z-09
0.2082-09
0.713B-13
0.0
0.143E-12
0.141E-09
0.161B-09
0.1638-09
0.0
0.326B-09
0.390B-07
0.391B-07
0.382B-10
0.0
0.764E-10
0.113B-07
0.1138-07
0.1398-10
0.0
0.2798-10
0.5111-08
0.5148-08
0.747B-11
0.0
0.1498-10
0.314Z-08
0.3168-08
0.4548-11
0.0
0.9088-11
0.2188-08
0.2218-08
0.1818-11
0.0
0.3618-11
0.1098-08
0.11 IE-OS
0.7788-12
0.0
0.1568-11
0.5958-09
0.6158-09
0.3478-12
0.0
0.6938-12
0.3408-09
0.3598-09
0.177E-12
0.0
0.3548-12
0.2098-09
0.2268-09
0.9798-13
0.0
0.1968-12
0.1468-09
0.1638-09
0.6518-13
0.0
0.1308-12
0.1118-09
0.1278-09
0.0
0. 108B-12
0.0
0.215B-12
0.0
0.0
0.713B-13
0.0
0.143B-12
0.0
0.0
0.163E-09
0.0
0.3268-09
0.0
0.0
0.382B-10
0.0
0.7641-10
0.0
0.0
0.1398-10
0.0
0.279E-10
0.0
0.0
0.7478-11
0.0
0. 149B-10
0.0
0.0
0.454E-11
0.0
0.9088-11
0.0
0.0
0.1818-11
0.0
0.3618-11
0.0
0.0
0.7788-12
0.0
0.156E-11
0.0
0.0
0.347E-12
0.0
0.6938-12
0.0
0.0
0.177E-12
0.0
0.354E-12
0.0
0.0
0.9798-13
0.0
0.196E-12
0.0
0.0
0.6518-13
0.0
0.130E-12
0.0
0.0
0.0
0.480B-13
0.0
0.9608-13
0.0
0.0
0.3488-13
0.0
0.6968-13
0.0
0.0
0.4998-11
0.0
0.9988-11
0.0
0.0
0.2278-11
0.0
0.4538-11
0.0
0.0
0.128E-11
0.0
0.255E-11
0.0
0.0
0.882B-12
0.0
0.1768-11
0.0
0.0
0.6648-12
0.0
0.1338-11
0.0
0.0
0.3778-12
0.0
0.7538-12
0.0
0.0
0.211E-12
0.0
0.4218-12
0.0
0.0
0.120B-12
0.0
0.2398-12
0.0
0.0
0.7168-13
0.0
0. 1438-12
0.0
0.0
0.476B-13
0.0
0.953E-13
0.0
0.0
0.346B-13
0.0
0.692B-13
0.0
0.0
0.0
0.156B-12
0.0
0.3118-12
0.0
0.0
0.1068-12
0.0
0.212E-12
0.0
0.0
0. 168E-09
0.0
0.3368-09
0.0
0.0
0.4048-10
0.0
0. 808B-10
0.0
0.0
0.1528-10
0.0
0.304F-10
0.0
0.0
0.8368-11
0.0
0.1678-10
0.0
0.0
0.5218-11
0.0
0.1048-10
0.0
0.0
0.218E-11
0.0
0.437E-11
0.0
0.0
0.989E-12
0.0
0.1988-11
0.0
0.0
0.4S6E-12
0.0
0.932E-12
0.0
0.0
0.249E-12
0.0
0.4978-12
0.0
0.0
0.1»5E-12
0.0
0.2918-12
0.0
0.0
0.9978-13
0.0
0.1998-12
0.0
0.0
•o
o>
-------
•w
14
14
14
14
14
14
14
14
14
t4
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
15
15
15
15
15
IS
15
IS
15
15
15
VZtil
1207
1207
1207
1207
2414
2414
2414
2414
24 U
4023
4023
4023
4023
4023
5632
5632
5632
5632
5632
7241
7241
7241
7241
7241
12063
12068
12063
12068
12068
20113
20113
20113
20113
20113
32130
32180
32180
32180
32180
48270
48270
48270
48270
48270
64360
64360
64360
64360
64360
80450
804 SO
80450
80450
80450
1207
1207
1207
1207
1207
2414
2414
2414
2414
2414
4023
Ttk-2'2b
PB-210
PO-210
M-222
H-3
Rl-226
PB-210
PO-210
RI-222
H-3
Rl-226
PB-210
PO-210
BV-222
H-3
Bl-226
PB-210
PO-210
BV-222
H-3
Hl-226
PB-210
PO-210
M-222
8-3
U-226
PB-210
PO-210
BB-222
H-3
Rl-226
PB-210
PO-210
BI-222
H-3
il-226
PB-219
PO-210
•1-222
H-3
Bl-226
PB-210
PO-210
M-222
H-3
Bl-226
PB-210
PO-210
BI-222
H-3
Rl-226
PB-210
PO-210
BI-222
H-3
Bl-226
PB-210
TO-210
BI-222
H-3
•1-226
PB-210
PO-210
RI-222
H-3
Bl-226
Q.1/2E-09
0.0
O.J45E-09
0.399B-07
0.400B-07
0.420E-10
0.0
0.840E-10
0.117B-07
0.118E-07
0.155B-10
0.0
0.310B-10
0.5322-08
0.535E-08
0.839E-11
0.0
0.168E-10
0.327E-08
0.330E-08
0.513E-11
0.0
0.103E-10
0.228E-08
0.230E-08
0.206E-11
0.0
0.412B-11
0.114E-08
0.116E-03
0.884E-12
0.0
0.1778-11
0.620E-09
0.639B-09
0.390B-I2
0.0
0.781B-12
0.354B-09
0.372E-09
0.199E-12
0.0
0.397B-12
0.217B-09
0.234E-09
0.109E-12
0.0
0.217B-12
0.152B-09
0.168E-09
0.722B-13
0.0
0.144Z-12
0.1I5E-09
0.131E-09
0.187E-09
0.0
0.373B-M
0.4291-07
0.429B-07
O.S11E-10
0.0
0.102E-09
0.146B-07
0.147B-07
0.1888-10
U.1/2E-OV
0.0
0.345B-09
0.0
0.0
0.420E-10
0.0
0.840E-10
0.0
0.0
0.155E-10
0.0
0.310E-10
0.0
0.0
0.839E-11
0.0
0.168E-10
0.0
0.0
0.513E-11
0.0
0.103B-10
0.0
0.0
0.206E-11
0.0
0.412B-11
0.0
0.0
0.8SOE-12
0.0
0.177B-11
0.0
0.0
0.390E-12
0.0
0.781B-12
0.0
0.0
0.199E-12
0.0
0.397E-12
0.0
0.0
0.109B-12
0.0
0.217E-12
0.0
0.0
0.722E-13
0.0
0.144E-12
0.0
0.0
0. 187B-09
0.0
0.373B-09
0.0
0.0
0.511E-10
0.0
0.1022-09
0.0
0.0
0. 1888-10
U.b30E-11
0.0
0.1061-10
0.0
0.0
0.231E-11
0.0
0.462E-11
0.0
0.0
0.130E-11
0.0
0.260B-11
0.0
0.0
0.900E-12
0.0
0. 180E-11
0.0
0.0
0.677B-12
0.0
0.135E-11
0.0
0.0
0. 389E-12
0.0
0.769E-12
0.0
0.0
0.215B-12
0.0
0.430E-12
0.0
0.0
0.123E-12
0.0
0.245B-12
0.0
0.0
0.740E-13
0.0
0.148E-12
0.0
0.0
0.495E-13
0.0
0.990B-13
0.0
0.0
0.363E-13
0.0
0.725E-13
0.0
0.0
O.S69E-11
0.0
0.114E-10
0.0
0.0
0.295E-11
0.0
O.S90B-11
0.0
0.0
0. 166E-11
U.1VBE-U9
0.0
0.355E-09
0.0
0.0
0.443E-10
0.0
0.886E-10
0.0
0.0
0.168E-10
0.0
0.337E-10
0.0
0.0
0.929E-11
0.0
0.186E-10
0.0
0.0
0.581E-11
0.0
0.116E-10
0.0
0.0
0.2
-------
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
IS
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
1023
4023
4023
4023
5632
5632
5632
5632
5632
7241
7241
72*1
7211
7241
12068
12066
12068
12068
12068
20113
20113
20113
20113
20113
32180
32180
32180
32180
32180
48270
48270
•8270
48270
48270
64360
64360
64360
64360
64360
80450
80450
80450
80450
80450
1207
1207
1207
1207
1207
2414
2414
2414
2414
2414
4023
4023
4023
4023
4023
5632
5632
5632
5632
5632
7241
7241
PB-210
PO-210
BH-222
H-3
Bi-226
PB-210
PO-210
Hi-222
H-3
BI-226
PB-210
PO-210
RH-222
H-3
Rl-226
PB-210
PO-210
BH-222
H-3
Rl-226
PB-210
PO-210
BH-222
H-3
Bft-226
PB-210
PO-210
BH-222
H-3
RA-226
PB-210
PO-210
B1T-222
H-3
Hl-226
PB-210
PO-210
BH-222
H-3
Bi-226
PB-210
PO-210
BH-222
H-3
BI-226
PB-210
PO-210
HB-222
H-3
BI-226
PB-210
PO-210
H5-222
H-3
81-226
PB-210
PO-210
BH-222
H-3
BA-226
PB-210
PO-210
BH-222
a-3
Rl-226
PB-210
0.0
0.377B-10
0.662E-08
0.666E-08
0.101K-10
0.0
0.203E-10
0.4061-08
0.410E-OS
0.620E-11
0.0
0.124B-10
0.282E-08
0.2865-08
0.2488-11
0.0
0.4968-11
0.141B-08
0.144B-OB
0.106B-11
0.0
0.213E-11
0.7662-09
0.791E-09
0.472B-12
0.0
0.9458-12
0.436E-09
0.460E-09
0.239E-12
0.0
0.478E-12
0.267E-09
0.289E-09
0.130E-12
0.0
0.261E-12
0.1872-09
0.208E-09
0.861B-13
0.0
0.1728-12
0.141E-09
0.161B-09
0.219E-09
0.0
0.437B-09
0.525E-07
0.5261-07
0.426E-10
0.0
0.852E-10
0.114E-07
0.114E-07
0.159E-10
0.0
0.319B-10
0.517E-08
0.520E-08
0.969E-11
0.0
0.174E-10
0.318E-08
0.320B-08
0.536Z-11
0.0
0.0
0.377E-10
0.0
0.0
0.101E-10
0.0
0.203E-10
0.0
0.0
0.620E-11
0.0
0. 124E-10
0.0
0.0
0.248E-11
0.0
O.U96E-11
0.0
0.0
0.106E-11
0.0
0.213E-11
0.0
0.0
0.472E-12
0.0
0.945E-12
0.0
0.0
0.239E-12
0.0
0.478E-12
0.0
0.0
0.130B-12
0.0
0.261E-12
0.0
0.0
0.861B-13
0.0
0. 172E-12
0.0
0.0
0.219E-09
0.0
0.437E-09
0.0
0.0
0.4261-10
0.0
0.852E-10
0.0
0.0
0.159B-10
0.0
0.319B-10
0.0
0.0
0.869B-11
0.0
0.174B-10
0.0
0.0
0.536S-11
0.0
0.0
0.333E-11
0.0
0.0
0.115E-11
0.0
0.230E-11
0.0
0.0
0.865E-12
0.0
0.173E-11
0.0
0.0
-0. 491E-12
0.0
0.982E-12
0.0
0.0
0.275E-12
0.0
0. 549B-12
0.0
0.0
0.156E-12
0.0
0.312E-12
0.0
0.0
0.937E-13
0.0
0.1C7B-12
0.0
0.0
0.625B-13
0.0
0.125E-12
0.0
0.0
0.456E-13
0.0
0.912E-13
0.0
0.0
0.599B-11
0.0
0. 120E-10
0.0
0.0
0.221B-11
0.0
0.443E-11
0.0
0.0
0.125E-11
0.0
0.250E-11
0.0
0.0
0.863E-12
0.0
0.173B-11
0.0
0.0
0.649B-12
0.0
0.0
0.410B-10
0.0
0.0
0.113E-10
0.0
0.226E-10
0.0
0.0
0.707E-11
0.0
0.1K1I-10
0.0
0.0
0.297E-11
0.0
0.594E-11
0.0
0.0
0.134E-11
0.0
0.268E-11
0.0
0.0
0.628E-12
0.0
0. 126E-11
0.0
0.0
0.333E-12
0.0
0.666E-12
0.0
0.0
0.193E-12
0.0
0.386E-12
0.0
0.0
0.132E-12
0.0
0.263E-12
0.0
0.0
0.225E-09
0.0
0.4H9E-09
0.0
0.0
0.448E-10
0.0
0.896E-10
0.0
0.0
0.1T2E-10
0.0
0.3l»4E-10
0.0
0.0
0.955E-11
0.0
0.191E-10
0.0
0.0
0.601E-11
0.0
-------
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
1241
•mi
7241
12068
12068
12068
12068
12068
20113
20113
20113
20113
20113
32180
32180
32180
32180
32180
48270
48270
16270
•8270
•8270
6*360
ۥ360
64360
64360
64360
80450
804 SO
80450
80450
80450
PO-210
Bl-222
H-3
Bk-226
PB-210
TO-210
BH-222
H-3
fit-226
PB-210
PO-210
RM-222
H-3
H4-226
PB-210
PO-210
M-222
H-3
M-226
PB-210
PO-210
•1-222
H-3
BA-226
PB-210
PO-210
Bf-222
H-3
U-226
PB-210
PO-210
BI-222
•-3
0.107E-10
0.221K-08
0.224E-08
0.218B-11
0.0
0.435B-11
0.111E-08
0.113E-08
0.940B-12
0.0
0.188E-11
0.601E-09
0.620E-09
0.416B-12
0.0
0.831E-12
0.343B-09
0.360E-09
0.211B-12
0.0
0.421E-12
0.210B-09
Q.226E-09
0.1131-12
0.0
0.2271-12
0.147B-09
0.163E-09
0.7511-13
0.0
0.150B-12
0.1111-09
0.126B-OT
0.107B-10
0.0
0.0
0.218E-11
0.0
0.435B-11
0.0
0.0
0.940E-12
0.0
0.188E-11
0.0
0.0
0.4168-12
0.0
0.831E-12
0.0
0.0
0.2118-12
0.0
0.421B-12
0.0
0.0
0.113B-12
0.0
0.227E-12
0.0
0.0
0.751E-13
0.0
0.1508-12
0.0
0.0
0.130B-11
0.0
0.0
D.368E-12
0.0
0.137E-12
0.0
0.0
0.206E-12
0.0
0.413E-12
0.0
0.0
0. 118E-12
0.0
0.2361-12
0.0
0.0
0.713E-13
0.0
0.143B-12
0.0
0.0
0.478E-13
0.0
0.9561-13
0.0
0.0
0.352B-13
0.0
0.7048-13
0.0
0.0
0. 120E-10
0.0
0.0
0.254E-11
0.0
0.509E-11
0.0
0.0
0.115E-11
0.0
0.229E-11
0.0
0.0
0.533E-12
0.0
0.137E-11
0.0
0.0
0.2821-12
0.0
0.564E-12
0.0
0.0
0. 161E-12
0.0
0.323E-12
0.0
0.0
0.1101-12
0.0
0.2211-12
0.0
0.0
-------
GBOOHD-LETEL CHI/Q TILDES FOE 81-226 IT TiHIOOS DIST1HCES IB E»CH COHP1SS DIRBCTIOH
DIST1ICE
(HBTEBS)
1207
2414
«023
5632
7241
12068
20113
32180
48270
64360
80450
CHI/Q TOWiBD INDICATED DIBECTIOB
(SEC/COBIC HETEH)
•
0.921E-06
0.272E-06
0.977E-07
0.522B-07
0.312E-07
0.122B-07
0.509B-08
0.214B-08
0.106E-08
0.550E-09
0. 3578-09
HBW
0. 107E-05
0.210E-06
0.730E-07
0.383B-07
0.220B-07
0.82 IB- 08
0.323B-08
0. 121B-08
0. 579E-09
0.265B-09
0.167E-09
• 8
0.127E-05
0.349E-06
0.120E-06
0.625E-07
0.356E-07
0.131E-07
0.50UE-08
0.181E-08
0.852E-09
0.370E-09
0.230E-09
WBW
0.110E-05
0.280E-06
0.991E-07
0.527B-07
0.310E-07
0.119E-07
0.478E-08
0.187E-08
0.912E-09
0.448E-09
0.289E-09
R
0.684E-06
0.147B-06
0.534E-07
0.290E-07
0.176E-07
0.703E-08
0.292E-08
0.124E-08
0.615E-09
0.330E-09
0.217E-09
RSB
0.518E-06
0.951E-07
0.324K-07
0.169E-07
0.976E-08
0.367E-08
0. 147E-08
0.592E-09
0.289E-09
0.142E-09
0.909E-10
SW
0.640E-06
0.158E-06
0.527E-07
0.271E-07
0. 152E-07
0.548E-08
0.212B-08
0.792E-09
0.381E-09
0.178E-09
0.112E-09
SSW
0.976E-06
0.185E-06
0.655E-07
0.348E-07
0.204E-&7
0.786E-08
0.322E-08
0.127E-08
0.623E-09
0.283E-09
0.178E-09
SSE
SB
BSE
FBE
RE
BHE
1207
2414
4023
S632
7241
12068
20113
32180
48270
64360
80450
0.131E-05
0.444B-06
0.164B-06
0.889B-07
0.536B-07
0.214E-07
0.896E-08
0.367B-08
0.182E-08
0.872E-09
0.558E-09
0. 100E-05
0.207E-06
0.753B-07
0.405E-07
0.243B-07
0.950B-08
0.394E-08
0.161E-08
0.794B-09
0.398E-09
0.257B-09
0.674E-06
0.161E-06
0.587E-07
0.315E-07
0.190B-07
0.749E-08
0.315E-08
0.13SE-08
0.679E-09
0.362B-09
0.238E-09
0.570E-06
0. 141E-06
0.513B-07
0.275E-07
0.167E-07
0.660E-08
0.281E-08
0.123E-08
0.624E-09
0.340E-09
0.22 SB- 09
0.515E-06
0.120E-06
0.439E-07
0.236E-07
0.143E-07
0.570E-08
0.245E-08
0.109E-08
0.558E-09
0.309E-09
0.205E-09
0.544E-06
0.132E-06
0.490E-07
0.265E-07
0.162B-07
0.649E-08
0.279E-08
0.123E-08
0.626E-09
0.343E-09
0.228E-09
0.544E-06
0. 132E-06
0.490E-07
0.265B-07
0.162E-07
0.649E-08
0.279E-08
0.123E-08
0.626E-09
0.343E-09
0.228E-09
0.689E-06
0.134E-06
0. 5038-07
0.274E-07
0.169E-07
0.686E-08
0.296E-08
0.131B-08
0.664B-09
0.3S8E-09
0.237E-09
-------
C90QVQ-LIV11. CHI/Q TILDES TOR PB-210 KT V1R10US OISTHCES I» SICK COMJ.SS DIHBCT10B
DISTIBCE CHI/Q TOVLBD UDIC1TED DIRBC1ICH
(HETBES) (SIC/COB 1C HETER)
B ••• li 8RV i »SB SB SSB
1207 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2414 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0
4023 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5632 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0
7241 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12068 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0
20113 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
32180 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
48270 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
64360 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
80450 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 SSB SB ESS K *« » »E
1207 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2«14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4023 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5632 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7241 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12068 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20113 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
32180 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
48270 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
64360 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
80450 0.0 O.Q o.O 0.0 0.0 0.0 0.0 0.0
-------
GHOOID-LBTW, CHI/Q YALUBS FOB PO-210 AT TARIOOS DISTANCES IB EACH COflPASS DIHECTIOH
DXSTAVCE
(HETERS)
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
CHI/Q TOVABD IHDICATED DIRBCTIOH
(SEC/COBIC HETEH)
I
0.921E-06
0.272E-06
0.977E-07
0.522B-07
0.312E-07
0.122E-07
0.509E-08
0.214E-08
0.106E-08
O.S53E-09
0.357E-09
BUS
0. 107E-05
0.210E-06
0.730E-07
0.383E-07
0.220E-07
0.821E-08
0.323B-08
0.121E-08
0.579E-09
0.265B-09
0.167E-09
HV
0.127E-05
0.349E-06
0. 1208-06
0.625E-07
0.356E-07
0.131E-07
O.S04E-08
0.181B-08
0.852E-09
0.370E-09
0.230E-09
VI 8
0.110E-05
0.280E-06
0.99 IE- 07
0.527E-07
0.310B-07
0.119E-07
0.478E-08
0.187E-08
0.912E-09
0.408E-09
0.289E-09
V
0.684E-06
0.147E-06
0.534E-07
0.290E-07
0.176E-07
0.703E-08
0.292E-08
0.124E-08
0.615E-09
0.330E-09
0.217E-09
WS»
0.518E-06
0.951E-07
0.324E-07
0. 169E-07
0.976E-08
0.367E-08
0. 147B-08
0.592B-09
0.289E-09
0.142E-09
0.909E-10
SB
0.640E-06
0.158E-06
0.527E-07
0.271E-07
0.152E-07
0.548E-08
0.212E-08
0.792E-09
0.38 IE- 09
0.178E-09
0.112E-09
SSW
0.976E-06
0.185E-06
0.655E-07
0.348E-07
0.204E-07
0.786E-OB
0.322E-08
0.127B-08
0.623E-09
0.283E-09
0.178E-09
SSE
SB
ESE
ERE
HUB
to
s
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
804SO
0.131B-05
0.444E-06
0.164E-06
0.889B-07
0.536B-07
0.214E-07
0.896E-08
0.367E-08
0.182E-08
0.872E-09
0.558E-09
0. 100E-05
0.207E-06
0.753E-07
0.405E-07
0.243E-07
0. 950E-08
0.39HE-08
0. 161E-08
0.79HE-09
0.398E-09
0. 257E-09
0.674B-06
0.161E-06
0.587B-07
0.315E-07
0.190E-07
0.7H9E-08
0.315E-08
0.135E-08
0.679E-09
0.362E-09
0.238E-09
0.570E-06
0.141E-06
0.513E-07
0.275E-07
0.167B-07
0.660E-08
0.281E-08
0.123B-08
0.624E-09
0.340E-09
0.225E-09
0.515E-06
0. 120E-06
0.439B-07
0.236E-07
0.143E-07
0.570E-08
0.245E-08
0. 109E-08
0.558E-09
0.309E-09
0.205E-09
0.544E-06
0. 132E-06
0.490E-07
0.265E-07
0. 162E-07
0.6U9E-08
0. 279E-08
0.123E-08
0.626E-09
0.343E-09
0.228E-09
0.544E-06
0.132E-06
0.490E-07
0.265E-07
0.162E-07
0.6H9E-08
0.279E-08
0.123E-08
0.626E-09
0.343E-09
0.228E-09
0.689E-06
0.134E-06
0.503E-07
0.274E-07
0.169E-07
0.686E-08
0.296E-08
0. 131E-08
0.660B-09
0.358E-09
0.237E-09
-------
OBOOBD-LB7E1. CHX/Q VALUES FOB BB-222 AT VARIOUS DIS«»CBS IH BACH COMPASS DIRBCTIOH
DXSTA1CB
(BE1B5S)
1207
2414
4023
5632
7241
12068
20113
32180
46270
64360
80450
CHI/Q TOBARD IIDICATED DIBECTIOH
(SBC/CUBIC HBTEB)
•
0.242E-05
0.917E-06
0.421E-06
0.261E-06
0.183E-06
0.923E-07
0.506B-07
0.290E-07
0.178B-07
0.125B-07
0. 9478-08
IBB
0.301E-OS
0.777B-06
0.360E-06
0.225B-06
0. 158E-06
0. 308E-07
0.448B-07
0. 2S9E-07
0.160B-07
0. 113E-07
0.858B-08
RB
0.364E-05
0.136E-05
0.633E-06
0.396E-06
0.279B-06
0. 1438-06
0.794E-07
0.460E-07
0.285B-07
0.201E-07
0.153E-07
BHB
0.315E-05
0.104E-OS
0.482E-06
0.301E-06
0.212E-06
0.108E-06
0.599E-07
0.346E-07
0.213B-07
0.150B-07
0.114B-07
B
0.199E-05
0.534E-06
0.248E-06
0. 154E-06
0.108E-06
0.551E-07
0.302E-07
0.173E-07
0.106E-07
0.743B-08
O.S62E-OS
BSB
0.163E-05
0. 426E-06
0.198B-06
0.123B-06
0.866E-07
0.443E-07
0.245E-07
0. 141E-07
0.867B-08
0.610E-09
0.46 IE-OS
SB
0.197B-05
0.697E-06
0.324E-06
0.202E-06
0.142E-06
0.727E-07
0.403E-07
0.233E-07
0. 144E-07
0.102B-07
0.769E-08
SS8
0.256E-05
0.638E-06
0.296E-06
0.18HE-06
0.129E-06
0.662E-07
0.367B-07
0.212E-07
0.131B-07
0.928E-08
0.70SE-08
SSE
SB
BSB
EBB
BE
BBE
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
0.313B-05
0.129B-05
0.596B-06
0.370B-06
0.260B-06
0.132E-06
0.726B-07
0.418B-07
0.258E-07
0.182B-07
0.1391-07
0.237E-05
0.610E-06
0.280E-06
0. 174E-06
0. 122B-06
0.615E-07
0.338B-07
0. 194E-07
0.120B-07
0.845E-08
0.6418-08
0.163B-05
0.489B-06
0.223E-06
0.138E-06
0.961B-07
0.484E-07
0.264B-07
0.1518-07
0.929E-08
0.653E-08
0.494B-08
0. 140B-05
0.443E-06
0. 2021-06
0.125E-06
0.869B-07
0.437B-07
0.239E-07
0.13 78-07
0.83 88-08
0.588E-08
0. 4448-08
0.123B-05
0.355E-06
0.161E-06
0.989E-07
0.688E-07
0.344E-07
0.188E-07
0.107E-07
0.6S8E-08
0.4618-08
0.349E-08
0. 126E-05
0.370B-06
0.168E-06
0.103E-06
0.718E-07
0.359E-07
0. 195E-07
0.112E-07
0.683E-08
0.479B-08
0.362E-08
0. 126E-05
0.370E-06
0.168E-06
0.103B-06
0.718E-07
0.359B-07
0.1958-07
0.112B-07
0.683E-08
0.479E-08
0.362E-08
0.166E-05
0.359E-06
0.163E-06
0. 100E-06
0.697E-07
0.349E-07
0.190E-07
0.108E-07
0.66 28-08
0.464E-08
0.351E-08
-------
G800BD-LBYBI. CHI/Q TU.VES FOB H-3
AT V1BXOOS DXSTIBCBS IB B1CH COHP1SS DXRECTXOI
DXSTIBCE
(BBTBtS)
1207
2*1*
4023
5632
7241
12068
20113
32180
•8270
6*3(0
80450
CHI/Q TOBABD IHDICiTED DIRECTION
(SEC/COBXC HBTER)
•
0.242B-05
0.921E-06
0.424B-06
0.263B-06
0.185B-06
0.942B-07
0.523B-07
0.306B-07
0.193B-07
0.140B-07
0.108B-07
•n
0.301B-05
0.7 BOB- 06
0.363B-06
0.227B-06
0. 160S-06
0.823B-07
0. 462B-07
0.272B-07
0. 172B-07
0.125B-07
0.9728-08
•w
0.365B-05
0.1378-05
0.637E-06
0.399B-06
0.282B-06
0.1*68-06
0.819B-07
0.4838-07
0.307B-07
0.222B-07
0.173B-07
II V
0.316B-05
0. 1042-05
0.48 SB- 06
0.304B-06
0.214B-06
0.1 101-06
0.618B-07
0.363E-07
0.230E-07
0.166B-07
0.130E-07
V
0.199E-05
0.536B-06
0.249B-06
0.1568-06
0.110E-06
0.5621-07
0.312E-07
0.183B-07
0.115E-07
0.830E-08
0.645B-08
VSW
0. 164E-05
0.428B-06
0. 199B-06
0.125K-06
0.878B-07
0.452B-07
0. 254B-07
0. 149B-07
0.947B-08
0.686B-08
0.534B-08
sw
0. 197B-05
0.699B-06
0.326B-06
0.204E-06
0.144B-06
0.742B-07
0.418B-07
0.246B-07
0.156B-07
0.113B-07
0.883B-08
SSW
0.256B-05
0.640B-06
0.297B-06
0.186B-06
0.131E-06
0.674B-07
0.378B-07
0.223B-07
0.141E-07
0.102B-07
0.796E-OB
SSB
SB
BSB
•IE
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
0.314E-05
0.130B-05
0.599B-06
0.373B-06
0.262B-06
0.134B-06
0.747B-07
0.437B-07
0. 2768-07
0.199B-07
0.155E-07
0.238B-05
0.612B-06
0.282E-06
0. 175B-06
0. 123B-06
0.626B-07
0.348B-07
0. 204B-07
0. 128B-07
0.927B-08
0.720B-08
0.1648-05
0.491B-06
0.225B-06
0.1398-06
0.972B-07
0.493B-07
0.273E-07
0.159E-07
0.100B-07
0.723E-08
0.561B-08
0.141E-05
0.445B-06
0.203B-06
0.126B-06
0.879B-07
0.446B-07
0.247E-07
0.144E-07
0.908B-08
0.655E-08
0.509E-08
0.123B-05
0.357E-06
0.162B-06
0.998B-07
0.696E-07
0.351B-07
0.194B-07
0.113E-07
0.7138-08
0. SUE- 08
0.399B-08
0. 1268-05
0.371B-06
0. 1698-06
0.104B-06
0.725S-07
0.366E-07
0.202E-07
0.117E-07
0.737B-08
0.5318-08
0.412E-08
0.126E-05
0.371B-06
0.169B-06
0.104B-06
0.7258-07
0.366E-07
0.202B-07
0.117E-07
0. 7378-08
0.531E-08
0.412B-08
0.166B-05
0.361B-06
0.164B-06
0.1018-06
0.705B-07
0.355B-07
0.1968-07
0.1148-07
0.713B-08
0.513B-08
0.398B-08
-------
omois SRLBCTBD FOB oosn urn XITUB cn.cm.mois
C1LCOU1IOBS MB UDB FOB THB POtOUTlOB.
TABUS 701 BICB •OCIIOB LISTIBG BOSKS BT OBG1B ftlD P»TH«I » IkCH BITIROMBITH. LOCkTIOV IRE OHITTBD.
Bnvxsoiagnu. ooKratBtTiois AID IIT&KS tuts BT iui FOR EACH IOCLIDB IBB PRIITBD Km WRZTTEB
DOSB SUBBUY TtBLBS >BB PRI1TBD
VORKXB6 tCTELS UB CILCOI.HBD FOB BB-222 ZF XT IS IB THB SOURCB TBRH
-------
1BE*
coinai
BOB
SDH HIST OP XHZJ. StraBOOlOriG EUR
80. SBiT iJISitS tO. SILK CJTTJ.B
FOOD CHOPS BITER JEM
(SQOABB HBTERS)
POPOI.ILTIOII
1
1
1
1
1
1
1
1
1
1
1
1
t
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
1
2
3
4
5
6
7
8
9
10
11
12
13
1«
15
16
17
18
19
20
t
2
3
n
5
6
7
8
9
10
11
12
13
U
15
16
17
18
19
20
1
2
3
4
5
6
7
8
9
10000
10000
TOOOO
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
13000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
toooo
10000
10000
10000
10000
10000
10300
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
0. 100E 21
0. 100E 21
0.1 OOE 21
0. 100E 21
0. 100E 21
0.1001 21
0. 100E 21
0.1 OOE 21
0.1003 21
0. 100B 21
0.100E 21
0.100E 21
0.100E 21
0. 100B 21
0. 100E 21
0. 100E 21
0. 100E 21
0. 100E 21
0. 100E 21
0.1 OOE 21
0. 1002 21
0. 100B 21
0. 100E 21
0. tOOE 21
0. 100E 21
0. 100E 21
0. 100E 21
0.100E 21
0.100E 21
0.1 OOE 21
0. 100E 21
C.100E 21
0. lOftE 21
0.100E 21
0.100E 21
0.100E 21
0.100E 21
0.1001 21
0.1003 21
0.1QOE 21
0. 100E 21
0.100B 21
0.1 OOE 21
0.1001 21
0. 100E 21
0. 100E 21
0.100E 21
0. 100E 21
0.100E 21
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.0
0.0
0.0
0.0
0.0
38.0
0.0
0.0
5.0
306.0
2330.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
197.0
91.0
110.0
197.0
181.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0-0
0.0
0.0
0.0
0.0
0.0
0.0
6*3.0
-------
J
3
3
3
3
3
3
3
3
3
3
5
5
5
5
S
S
5
5
5
5
5
S
5
6
6
6
6
6
10
11
U
13
14
15
16
17
18
19
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
1
2
3
«
S
6
7
8
9
10
11
12
13
14
IS
10000
10000
10000
10000
10000
10009
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
0.100E 21
0. 100E 21
O.IOOE 21
0. 100E 21
O.IOOE 21
0.100E 21
0.100E 21
0.100E 21
0.100E 21
0. 100E 21
O.IOOE 21
0.100E 21
0. 100B 21
0.100E 21
0. 100E 21
0. 100E 21
0. 100S 21
0. 100E 21
O.IOOE 21
0.100B 21
O.IOOE 21
O.IOOE 21
O.IOOE 21
0.100S 21
0.100E 21
0.100E 21
0.100B 21
0. 100E 21
O.IOOE 21
O.IOOE 21
0.1 OOE 21
0.1 OOE 21
0.100E 21
O.IOOE 21
0. 100B 21
0.100E 21
0.1 OOE 21
O.IOOE 21
O.IOOE 21
O.IOOE 21
O.IOOE 21
0.100C 21
0.100B 21
0. 100E 21
O.IOOE 21
0.100E 21
O.IOOE 21
0.100E 21
O.IOOE 21
0.100E 21
O.IOOE 21
0.1001 21
0. 100E 21
0. 100E 21
O.IOOE 21
O.IOOE 21
0.100E 21
0. 100B 21
0.100E 21
0. 100B 21
0.100E 21
0.100E 21
0. 100B 21
0.100B 21
0.100E 21
0.100B 21
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
«ba. o
365.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
102.0
135.0
338.0
2954.0
1381.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
97.0
197.0
0.0
79.0
69.0
4185.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
191.0
0.0
0.0
0.0
0.0
0.0
168.0
181.0
5578.0
5226.0
0.0
0.0
0.0
0.0
-------
6
€
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8
a
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10
16
17
18
19
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
1
2
3
4
S
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
1
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
0. 100B 21
0.100B 21
0. 100B 21
0.1002 21
0. 1008 21
0.1001 21
o. looe 21
0. 100E 21
0. 100B 21
0.1 ODE 21
0. 109B 21
0.100B 21
0.1 ODE 21
0. 109B 21
0.100B 21
0. 100B 21
0. 109B 21
0. 100E 21
0.1 OOB 21
0.100B 21
0. 109B 21
0. 109B 21
0.100! 21
0. 100B 21
0.100B 21
0.100E 21
0.109E 21
0. 100B 21
0.100E 21
0.1 OOB 21
0.1 ODE 21
0.100E 21
0.100E 21
0.1 OOB 21
0.100B 21
0.100E 21
0.100B 21
0. 109B 21
0.100E 21
0.109E 21
0. 100B 21
0.100B 21
0.100B 21
0.1 ODE 21
0.100E 21
0.1 ODE 21
0. 100E 21
0.100E 21
0.109E 21
0.109E 21
0. 109E 21
0. 100E 21
0. 100E 21
0. 100B 21
0.100E 21
0. 100E 21
0.109B 21
0.1 OOE 21
0.100E 21
0. 109E 21
0.109E 21
0. 109B 21
0.100E 21
0. 100E 21
0.100E 21
0.1 OOE 21
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
303.0
179.0
466.0
92.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
327.0
S80.0
280.0
206.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1931.0
0.0
22S.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-------
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
I
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
1
2
3
*
5
6
7
8
9
10
11
12
13
1«
15
16
17
18
19
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
1
2
3
«
5
6
7
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
0. IUOC *1
0.100! 21
0.1 OOE 21
0. 100B 21
0.100E 21
0. 100E 21
0.10 OB 21
0.1 OOE 21
0. 100E 21
0.100E 21
0.100E 21
0.100E 21
0.1 OOE 21
0.100E 21
0.100E 21
0. 100B 21
0. 100E 21
0. 100B 21
0. 100E 21
0.100B 21
0. 100E 21
0.100E 21
0.100E 21
0.100E 21
0.100E 21
0.100E 21
0.100E 21
0. 100B 21
0.100E 21
0. 100E 21
0. 100E 21
0. 100E 21
0.100E 21
0. 100E 21
0.100B 21
0. 100E 21
0.100B 21
0. 100E 21
0. 100E 21
0.100E 21
0. 100E 21
0. 100B 21
0.100E 21
0. 100B 21
0. 100B 21
0.100E 21
0.1 OOE 21
0.100B 21
0.100E 21
0. 100E 21
0. 100E 21
0.100S 21
0.100E 21
0.100E 21
0.100E 21
0. 100E 21
0. 100E 21
0. 100E 21
0. 100E 21
0. 100E 21
0. 100E 21
0. 100B 21
0.100E 21
0.1008 21
0. 100E 21
0.1001 21
U
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
U. U
0.0
0.0
0.0
1196.0
0.0
772.0
365.0
268.0
353.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
995.0
164.0
0.0
411.0
295.0
7.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
426.0
0.0
4B3.0
193.0
328.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
71.0
-------
1J
13
13
13
13
13
13
13
13
13
13
13
13
1«
14
1*
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
14
IS
15
15
15
15
15
15
15
15
IS
15
15
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
16
16
16
16
16
8
9
10
11
12
13
14
15
16
17
18
19
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
1
2
3
4
5
6
7
8
9
10
11
12
13
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
0. 100B 21
0. 100B 21
0. 100B 21
0. 100E 21
0. 100E 21
0.100E 21
0. 100E 21
0.100E 21
0. 100B 21
0. 100E 21
0. 100E 21
0.100E 21
0. 100E 21
0.100E 21
0. 100B 21
0.100E 21
0. 100B 21
0. 100B 21
0.100B 21
0.100B 21
0.100B 21
0.100E 21
0.100E 21
0. 100B 21
0.100B 21
0.100B 21
0. 100B 21
0.100B 21
0. 100B 21
0.100B 21
0. 100B 21
0. 100B 21
0.100E 21
0.100B 21
0. 100B 21
0.100B 21
0. 100B 21
0. 100B 21
0.100E 21
0.100B 21
0. 100B 21
0. 100B 21
0. 100E 21
0.100B 21
0.100B 21
0. 100B 21
0. 100B 21
0.100E 21
0. 100E 21
0. 100E 21
0. 100B 21
0.100E 21
0. 100E 21
0.100E 21
0.100E 21
0. 100E 21
0.100E 21
0. 100E 21
0. 100E 21
0. 100B 21
0. 100E 21
0. 100E 21
0. 100E 21
0. 100E 21
0. 100E 21
0.100B 21
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.0
58.0
39.0
755.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
105.0
91.0
909.0
2232.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
80.0
194.0
1197.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
146.0
0.0
0.0
0.0
0.0
67.0
259.0
6053.0
0.0
0.0
to
O
-------
16
16
16
16
16
16
16
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
18
IB
18
18
IB
1B
13
IB
18
18
18
18
18
18
18
18
18
18
18
18
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
H
15
16
17
18
19
20
1
2
3
a
5
6
7
8
9
10
11
12
13
1»
15
16
17
18
19
20
1
2
3
r
5
6
7
8
9
10
11
12
13
It
15
16
17
18
19
20
1
2
3
«
5
6
7
8
9
10
11
12
13
1«
15
16
17
18
19
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
0.100B 21
0.100B 21
0.100E 21
0.100B 21
0.100B 21
0.100B 21
0.100E 21
0.100E 21
0.100E 21
0.100E 21
0. 100B 21
0. 100B 21
0. 100E 21
0. 100E 21
0. 100E 21
0. 100B 21
0. 100E 21
0. 100E 21
0.100E 21
0.100E 21
0. 100E 21
0.100E 21
0. 100E 21
0.100E 21
0. 100E 21
0.100E 21
0.100E 21
0.100E 21
0. 100E 21
0. 100E 21
0.100E 21
0.1005" 21
0. 100B 21
0. 100E 21
0. 100B 21
0.100E 21
0. 100E 21
0.1 OOE 21
0. 100B 21
0.100E 21
0.100E 21
0. 100B 21
0.100E 21
0.1 OOE 21
0.100E 21
0.100B 21
0. 100E 21
0.100E 21
0.100B 21
0.100E 21
0.100E 21
0.100E 21
0.100* 21
0.100B 21
0.100B 21
0.100B 21
0.100B 21
0.100B 21
0.100B 21
0.1002 21
0.100B 21
0.1001 21
0.1001 21
0.100B 21
0.100B 21
0. 100B 21
0
0
0
0
0
0
0
0
0
0
0
0
0
o
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-------
19 20 10000 10000 0.100E 21 0 0.0
20 1 10000 10000 0.100E 21 0 0.0
20 2 10000 10000 0,100E 21 0 0.0
20 3 10000 10000 0.100B 21 0 0.0
20 « 10000 10000 0.1QOB 21 0 0.0
20 S 10000 10000 0.1008 21 0 0.0
20 * 10000 10000 0.100B 21 0 0.0
20 7 10000 10000 0.1002 21 0 0.0
20 8 10000 10000 0.100E 21 0 0.0
20 9 10000 10000 0.100E 21 0 0.0
20 10 10000 10000 0.100E 21 0 0.0
20 11 10000 10000 0.100E 21 0 0.0
20 12 10000 10000 0.100E 21 0 0.0
20 13 10000 10000 0.100E 21 0 0.0
20 1* 10000 10000 0. 100E 21 0 0.0
20 15 10000 10000 0.100E 21 0 0.0
20 16 10000 10000 0. 100E 21 0 0.0
20 17 10000 10000 0.100E 21 0 0.0
20 18 10000 10000 0.100E 21 0 0.0
20 19 10900 10000 0.1 OOE 21 0 0.0
20 20 10000 10000 0.100E 21 0 0.0
POB BKEB 4B11S—0= HOIB OB BIKIHIL 1BD 1' HI JOB BMEB IBBJ PBESEIT
-------
LIST OF XflPOT TILDES FOB RADIOBOCLIDE-IIDEPEHDEHT VARIABLES
IOHBBH 0? HOCLIDBS COHSIDBRBD 5
TIHE DELAY—IIGESTIOS OP PASTURE GBASS BT AIIHALS (BB) 0.0
TINE DELAY—XBGESTIOB 07 SIOBED FEED BY AIIHALS (BB) 0.2160E OH
TIRE DELAY--IHGESTIOI OF LEiPI VEGETABLES BT HAS (HH) 0.3360E 03
TIHE DELAY--II6ESTIOI OF PBODOCE BT HAI (HR) 0.3360E 03
EEHOTiL BUTE COISTAIT FOB PHYSICAL LOSS BT BEATHEBIIG (PEB HOOR) 0.2100E-02
PEBIOD OF EXPOSURE DOHIS6 GBOVIBG SBASOI—PASTOBB GBASS (HB) 0.7200E 03
PERIOD OF EXPOSURE DOBIVG GROBIBG SEASOB—CBOPS OB LB1PT TEGETABLBS (HR) 0.14HOE 04
AGBICOLTOBAL PRODUCTIVITY BI OUT ABBA (GBA55-COH-HILK-HAI PATHWAY (KG/SQ. BETEB)} 0.2800E 00
AGRICULTURAL PHODOCTIVITI BT OUT ABE A (PRODUCE 08 LEAPT TEG IHGESTED BT HAI (KG/SQ. HETBBI) 0.7160E 00
FBACTIOI OF TEAS ANHALS GBAZE 01 PASTOBB 0.4000E 00
FBACTIOI OF DAILT FEED THAT IS PASTURE GRASS BHER ARIHAL GBAZSS OH PASTOHE 0.4300E 00
COISQHPTIOB BATE OF COBTAHIMATBD FEED OB FORAGE BT Al AIIHAL II KG/DAT (DBT WEIGHT) 0.1560B 02
TEAMS POST TIHE PBOH AIIBAL FEED-HILK-ail (OAT) 0.2000B 01
BATE OF II6ESTIOB OF PBODDCE BT IUI (KG/TR) 0.1T60E 03
8ATB OF IVGESTIOI OF HILK BT HA» (LITBBS/TB) 0.1120E 03
BATE OF IIGESTIOB OF MEAT BT SAI (KG/YB) 0.9UOOE 02
PATE OF IIGBSTIOB OT LEAPT TEOETABLES BT BAH (KG/TR) 0. 1800E 02
ATERAOE TIHE PBOH SLAOSBTE8 OF HUT ABIRAL TO COISOHPTIOI (DAT) 0.2000E 02
FBACTIOI OF PBODOCE XIGESTBD GBOVI If GARDE! OF IITZBEST 0.1000E 01
FBACtZOI OF LEAFT TB6BTABLES GBOWI ZB GARDE! OF IITEBEST 0.1000E 01
PEBIOD OF LOIS-TBBB BOILDOP FOB ACTITITT XI SOIL (TEARS) 0.1000E 03
BPFBCTITB SORPACB OEISITT OF SOIL (KG/SQ. fl, DBT HEIGHT) (ASSORES 15 C.I PLOB LATER) 0.21SOE 03
TEGtTABLE IIGESTI01 RATIO-IRHEDIATE SOBBOOIDHS AREA/TOTAL »ITHI» ABBA O.SOOOE 00
BEAT IISBSTIOi BATIO-II1HBDIATB SOBBOOBDIHG AREA/TOTAL IITBII ABBA 0.5000B 00
HXLK IIGESTIOI RATIO-IHHEDIATE SDRROOBOIBG ABBA/TOTAL VITHXI ABBA 0.5000B 00
HTMHOB FRACTIOIS OF FOOD TTFES PROH OOTSIDE ABBA LISTED BELOW ARE ACTUAL FIXED TALDBS
HIBIHOH FBACTIOB TEGBTABLBS IIGESTBD PROH OOTSIDE ABBA 0. 2000E 00
HXIXBOH PBACTIOI HEAT IIGESTBD FROH OUTSIDE AREA 0.2000E 00
HIIIHOH FRACTIOH HXLK IBGESTBD PROH 08TSIDB AREA 0.2000E 00
-------
XBHALATIOM BATB OF flAI (CUBIC CEBTIHStEBS/HH) 0.9I67K 06
BUILDUP TIBE FOB RIDIOSOCLIDES DEPOSITED OK GBOOHD AID SATEB (DATS) 0.3650S OS
DItOTIOI FACTOB FOB WATEB FOB SVIHDIilS (CB) 0.1S24E 03
FH1CTIOB OF TIHB SPBBT SWIHBIBG 0. 1000E-C1
BOSCLE BUSS OF MIH1L iT SLAUGHTER (KG) 0.2900E 03
FE1CTIOH OF 1IIB1L HEfiD SLiaGHTEBED PEB DXT 0.3B10E-02
BII.K PBODOCTIOI OF COH (tITESS/DAT) 0.1100E 02
FALLOUT IBTERCBPTIOY FBACTIOB-TB6BTABLBS 0.2000E 00
FALLOOT IBTBBCBPTIOI FBtCTIOX-PtSTUVE O.S700E 00
FBACTIOI OF BADIOACTITITT BBTAIBED OR tBAFT TESBTABLES I»D PEODOCE AFTEB B1SSIIG 0.1000E 01
-------
COMPUTED TILDES rott THE IB EH
TOTAL POPULATION
TOTAL IUHBER OP HEIT AKIHALS
TOTAL HflHBBR OF BILK C1TTLE
TOTAL AREA OF TBGETABLB FOOD CROPS (SQUARE HETERS)
TOTAL HEAT COISOHPTIOB (KG PER TEAR)
TOTAL HEAT PRODOCTIOW (KG PER TEAR)
TOTAL HILK COBSCTHPTIOH (LITERS/TEAR)
TOTAL HZLK PRODUCTION (LITERS/TEAR)
TOTAL TEGBTABLE FOOD COISOHPTZOI (K6 PER TEAR)
TOTAL TECBT ABLE FOOD PRODUCED (KG PER TEAR)
53103.0
1760000
1760000
0.1760B 23
0.4992E 07
0.489SE 09
0.5918E 07
0.7066E 10
0.1030E 08
0.1260E 23
u
-------
ORGAN
LIST OF HtPOT DATA FOR HUCLIDE SA-226
BADIOACTIYE OEC1T COHSTAHT (PER DAT)
EH7IBOBHEHTAL DECAT COHS1AHT—SUHFACE (PEB DAY1
EITIBOBHEHTAL DECAY COBSTAHT—BATES (PEB DAT)
AVISAGE FHACTIOH OP IKIHIL'S DAIIT IHTAKE OP BITCLIDE WHICH APPEARS IH I»CH t OP HI1K {DAYS/LI
FH1CTIOH OF AHIHAL'S DAILY IHTAKE OF NOCIIDJ WHICH APPSABS IB EACH KG OF FLESH {DAYS/KG)
COMCEVTBATI01 FACTOB FOB UPTAKE OF SOCLIDB PBOH SOU FOR PASTOEE AKD FOBAGB
(IH PCI/KG DHt aEIGHT PEB PCI/KG DBI SOIL)
COHCEHTBATIOH FACTOB FOB UPTAKE OF SUCLIDE FHOM SOIL BI EDIBLE PABTS OP CROPS
(IH PCI/KG WET HEIGHT PEB PCI/KS DBT SOIL)
SI UPTAKE FBACTIOH (IHH1LATIOH)
SI OPTAKE PBACTIOH (IHGESTIOR)
PABTICLE SIZE (IUCBORS)
SOLOBILITI CLASS
IRHALATIOV IHGBSTIOH
(BEHS/niCBOCORIE) (HE3S/HICROCORIE)
DOSE CONVERSION FACTOBS
SOBHERSIOH IH AIR
(REBS-CDBIC CN/
NICHOCORTE-HB)
SURFACE BIPOSORE
(BEHS-SQOABE CH/
IIICBOCnBIE-RB)
0.1190E-05
0.0
0.0
0.5900E-03
0.3000E-02
0.9700E-01
0.6200E-01
0.2000E 00
0.2000E 00
0.1000E 01
SUBMERSION IN S5TEE
(REHS-COBIC Clt/
HICROCDEIE-BB)
TOT. BOOT
S BULL
LLI VAIL
1QHSS
KIDBBTS
LITEB
OT ABIES
I! NAB
EMDOST
3BSTES
TBTBOIO
0.901E 01
0.270B-02
0.179E 00
0.557E 02
0.662E 00
0.662E 00
0.664E 00
0.192E 01
0.990E 01
0.664E 00
0.6641 00
0.726E 01
0.437E-02
0.333B 00
O.S15E-04
0.590E 00
0.590E 00
O.S92E 00
0.171E 01
0.882E 01
0.591E 00
0.591E 00
0.»36B 01
0. 28»E 01
0.239E 01
0. 385E 01
0. 315B 01
0.333E 01
0.229E 01
0.626E 01
0.726E 01
0.532E 01
0. »35E 01
0. 10DE-02
O.S5UE-03
0.88HE-03
0.725E-03
0.764E-03
0.526E-03
0.114E-02
0.167E-02
0.122E-02
0.100E-02
0.936E-02
0.610E-02
0.512E-02
0.825E-02
0.676E-02
0.713E-02
O.M91E-02
0.13»E-01
0. 156E-01
0.114E-01
0.934E-02
-------
LIST OF IHPOr DATA FOB SOCLIDB PB-210
RADXOACTXYB DBCftY CONSTABT (PEB DAY) 0.8520B-OH
EHTIHO¥HEBtAL DECAT COBSTAVT—SOBFACE (PER DAT) 0.0
EBTIBOBHEBT»L QIC*I COHSTABT—1ATBB (PES DAT) 0.0
LVE81GE FBICTIOH OF AVXKU.1 S DAXLT IBTAKE OF HOCLIDE KHICH &PPE1BS IH EACH L OP HILK (DATS/L) 0.9903E-04
F8ACTIOH or IIIHAL'S D»ILT I«T»KE OF RDCLIDE WHICH IPPEAHS IH EACH KG OF FLESH (DIIS/KG) 0.9100E-03
COVCEVTR1TIOI FkCTOB FOB OPT1KE OF BOCIIDB FBOH SOIL FOB PXSTORE ADD FOHiGE 0.1100E 00
-------
ORGAN
LIST OF IBPUT DATA POR HUCLIDE PO-210
RADIOACT!TE DECAY COHSTABT (PEB DAY)
E8YIROHHEBTAL DECAY COHSTABT--SORFACE (PER DAI)
ENVIROBHEHTAL DECAY COHSTABT—WATER (PEB DAI)
AVERAGE FBACTIOH OF ANIHAL'S DAILY IHTAKE OF HOCLIDE WHICH APPEARS IH EACH L OF HILK (DAIS/L)
FBACTIOH OF AHIHAL'S DAILI UTAKE OF HUCLIDE HHICH APPEARS IB EACH KG OF FLESH (DAIS/KG)
COBCEBTRATIOB FACTOR FOB UPTAKE OF NUCLIDB FROH SOIL FOR PASTURE AID FORAGE
(IH PCI/KG DRT HEIGHT PEB PCI/KG DRT SOIL)
COBCBBTBATIOH FACTOR FOB UPTAKE OF BUCLIDE FROH SOIL BI EDIBLE PARTS OF CBOPS
(IH PCI/KG WET WEIGHT PER PCI/KG DBT SOIL)
GI UPTAKE PHACTIOH (IHHALATIOH)
GI UPTAKE FBACTIOH (IHGESTIOB)
PABTICLE SIZE (HICROBS)
SOLOBILITT CLASS
COBCEHTBATIOHS OH GROOHD AND BATEH IHCLODE COHTRIBUTIOHS BESaLTIHG FBOB
DECAT OF THE FOtLOWIHG PAREHT BOCLIDES AFTER DEPOSITIOH—
HOCLIDE
HA-226
INHALATION IHGESTIOB
(REMS/NICROCORIE) (RBNS/HICBOCDRIE)
BTJILDOP FACTOR
0.124E 03
DOSE CONVERSIOB FACTORS
SUBMERSION IN AIR
(RESS-CDBIC CM/
BICPOCUHIE-HB)
SURFACE EXPOSURE
(BEHS-SQDARE CH/
HICROCORIE-HR)
0.5020E-02
0.0
0.0
0.1200E-03
0.4000E-02
O.H200E-02
0.2600E-03
0.1000E 00
0.1000E 00
0.1000E 01
KO
09
SUBHERSION IN WATER
(REBS-CUBIC CM/
HICROCUBIE-HR)
TOT. BODI
S WALL
LLI WALL
LUNGS
KIDNEYS
LITER
OVABIES
R HAD
ERDOST
TESTES
THYBOID
0.1S6E 01
0. 2228-02
O.B79E-01
0. 458E 02
0.1U4E 02
0.2U8E 01
0.803E 00
0. 855E 00
0. 374E 00
0.803E 00
0.803E 00
O.S62E 00
0.454E-02
0. 179E 00
0.113E-07
0.932E 01
0.161E 01
0.521E 00
0.554E 00
0.242E 00
0.521E 00
0.521E 00
0.525E-02
O.H70E-02
0.351E-02
O.U9UE-02
O.U85E-02
0.4H9E-02
0.272E-02
0.556E-02
0.63UE-02
0.513E-02
0.H02E-02
0.102E-05
0.9UE-06
0.684E-06
0.962E-06
0.9KHE-06
0.874E-06
0.529E-06
0.108E-05
0.123E-05
0.998E-06
0.783E-06
0.113E-04
0.101E-0«
0.757E-05
0.107E-04
0.105E-01
0.968E-05
0.586E-05
0.120E-04
0.137E-01
0.111E-04
0.867E-05
-------
LIST OP IBPOt DATA FOR HOCLIDE BB-222
RAOIOACTITB DBCAT COBSTART (PER DAT) 0.1810E 00
ERVIROVHBVTAL DECAI COHSTAJT--SOBFACE (PEB DAI) 0.0
EBVIBORHBBTAL OBCAT COHSTAHT—WATEB (PEB DAI) 0.0
AVERAGE FRACTIOR OF ABIRAL'S DAILI IBTAKE OF BUCLIDE WHICH APPEABS IB EACH L OP HILK (DATS/I.) 0.0
PBACTIOR OF ABIHAL'S DAILY IRAKE OF HUCLIDE WHICH APPEABS IB EACH KG OF FLESH (DATS/KG) 0.0
COHCEITBATIOB FACTOR FOB UPTAKE OF HOCLIDB FBOH SOIL FOB PASTOBE ABO FOBAGE 0.0
(IB PCI/KG DHI WEIGHT PER PCI/K6 DRI SOIL)
COBCEITRATXOI FACTOR FOR UPTAKE OF IUCLIDE FROH SOIL BI EDIBLE PAETS OF CHOPS 0.0
(II PCI/KG WET WEIGHT PER PCI/KG DRT SOIL)
GI UPTAKE FHACTIOH (IRHALATIOR) 0.0
61 UPTAKE FHACTIOB (IIGBSTIOH) 0.0
PARTICLE SIZE (HICBOIS) 0.1000E 01
SOLUBILITY CLASS *
ORG1B IBHALATIOI IIGBSTIOI
(REHS/BICROCURXE) (REHS/HICROCURIE)
DOSE COB?EBSIOB FACTORS
SOBRBRSIOI IB AIR
(RBBS-COBIC CD/
8ICBOCOBIE-HH)
SURFACE EXPOSURE
(REDS-SQUARE CN/
HICROCORIE-HR)
SUBHEBSIOB IB WATER
(REDS-CUBIC CD/
niCHOCUBIE-HR)
TOT. BOOT
S WALL
LLI WILL
LOVOS
KIDIBTS
LITER
OTARIES
R HAR
EIDOST
TESTBS
TBTROID
0.229B-04
0.488E-06
0.1*11-07
0.140E-02
O.S03E-04
0.413E-05
0.825E-06
0.991E-05
0.33*1-04
0.818E-06
0.837E-06
0.«59I-02
0. 148E-01
0.686E 00
0.115E-03
0.144B-01
0.190E-02
0.540E-02
0.*73B-02
0.131B-01
0.677B-03
0.214E-03
0. 244E 00
0.242E 00
0. 178E 00
0.228E 00
0.212E 00
0.211E 00
0.908E-01
0.283B 00
0.311E 00
0. 274B 00
0. 202E 00
O.S02E-04
0.497E-04
0.366E-01
0.469E-04
0.437E-04
0.434B-04
0. 187B-0*
0.582E-04
0.639E-04
O.S63E-04
0.41SE-04
0.521E-03
0.516E-03
0.380E-03
0.487E-03
0.453E-03
0.451B-03
0.194E-03
0.604E-03
0.664E-03
O.S8SE-03
0.431B-03
-------
LIST OP HP0T DiTA FOB HTCtlDE H-3
BADIO ACUTE DECAY COISTABT (PEB DAT)
EimoBBEBTAL DECAY COHSTIHT--sas?iCE (PEB OAT)
EITXBOIHEITAL DECAY COBSTABT—BITES (PEB DAT)
DOSS COITEBSIOI FACTOR FOB FOOD IBGESTIOB (BEH-CC/PCI-TEAR)
DOSE COBTEHSIOH FACTOB FOB 1ATEB IHGESTION (REH-CC/PCI-TEAE)
DOSE COSTEESIOS FACTOBS
ORSIB
IIBALATIOI IHGBSTION
(BEHS/HICBOCTRIE) (BEflS/BICaOCOBIE)
SOBMEBSI3H IB ilB
{BEBS-OJBIC CH/
aicaocnaiE-HB)
SDBFiCE EIPOSOBE
(BEBS-SQUiBE C«/
HICBOCIIBII-HB)
0.15«OB-03
0.0
0.0
0.6180E 01
0.5700E-01
SOBMEBSION IN WMEB
(BEHS-COBIC CS/
RICBOCaBIE-HS)
TOT. BOOT
S Sill
L1I BALL
10HGS
KIDIETS
LIVEH
OTKRIES
B HAB
EVDOST
TESTES
THTBOID
0.125B-03
0.125B-03
0.133E-03
0. 125E-03
0. 129E-03
0.1241-03
0.124E-03
0. 1218-03
0.985E-01
0.12SE-03
0.120B-03
0.830E-OM
0.108E-03
0.143X-03
0.836B-04
0.8S6E-0*
0.828E-OI)
0.829E-OH
0.826E-04
0.656E-04
0.830E-04
0.828E-04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
to
to
o
-------
POPnimOH-iBIGHTBD COBCBHTR1TIOHS
POPTHWIOH IBTMCES POH Bi-226
HBEl
DIRECTIOH
DIST&ICB
(HETERS)
MB COBCEITBkTIOH GRODID COHCEItBJLTIOH IHCBSTIOH IHTUKE
(H1S-COHIBS/CUBIC HETBR) (BiB-CDHISS/SQOlFE HETEH) {HMt-PCI/IEiE)
IHBM.4TION ISTAKE
(dllll-PCI/TEAR)
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
5
5
5
5
5
5
5
5
5
5
5
1201
2*10
4023
5632
7241
12068
20113
32180
08270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
804SO
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
00450
0,0
0.0
0.0
0.0
0.0
0.147B-15
0.0
0.0
0. 169B-17
0.533B-16
0.264E-15
0.0
0.0
0.0
0.0
0.0
0.0
0.202E-15
0.349E-16
0.753E-16
0.165B-16
0.958E-17
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.174B-15
0.101E-15
0.267E-16
0.0
0.0
0.0
0.0
0.0
0.0
0.155E-15
0.801Z-16
0.978E-16
0.420B-15
0.448E-15
0.0
0.0
0.0
0.0
0.0
0.216E-15
0.182E-15
0.0
0.154E-16
0.721E-17
0.288E-15
0.0
0.0
0.0
0.0
0.0
O.S23E-08
0.0
0.0
0.686E-10
0.231E-06
0.118E-07
0.0
0.0
0.0
0.0
0.0
0.0
0.713E-08
0.130E-08
0.291E-08
0.687E-09
0.412E-09
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.649E-08
0.403E-08
0.110E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.531E-08
0.286E-08
0.358E-08
0.161E-07
0.176B-07
0.0
0.0
0.0
0.0
0.0
0.732E-08
0.635E-08
0.0
0.571E-09
0.277B-09
0.«13E-07
0.0
0.0
0.0
0.0
0.0
0.168E Oil
0.0
0.0
0.199E 03
0.121E 05
0.919E 05
0.0
0.0
0.0
0.0
0.0
0.0
0.800E 04
0.362B 04
0.162E 05
0.776E 04
0.712B 04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.255E 05
0.338E 05
0.144E 05
0.0
0.0
0.0
0.0
0.0
0.0
0.420E 04
0.5U1E 94
0.134E 05
0.117E 06
0.192E 06
0.0
0.0
0.0
0.0
0.0
0.408E 04
0.797E 0»
0.0
0.312E 04
0.272E 94
0.165E 06
0.0
0.0
0.0
0.0
0.0
0.118E 01
0.0
0.0
0. 135E-01
0.428E 00
0.212B 01
0.0
0.0
0.0
0.0
0.0
0.0
0.162E 01
0.280E 00
0.605E 00
0.133E 00
0.769E-01
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.noE 01
0.809E 00
0.214E 00
0.0
0.0
0.0
0.0
0.0
0.0
0.12ftB 01
0.643E 00
0.785E 00
0.337E 01
0.360E 01
0.0
0.0
0.0
0.0
0.0
0.174E 01
0.1U7E 01
0.0
0.121? 00
0.579E-OJ
0.231B 01
-------
b
6
6
6
6
6
6
6
e
6
6
7
7
7
7
7
7
7
7
7
7
7
8
8
8
B
8
8
a
8
3
8
8
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
ir
11
11
11
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80 «50
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2*14
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
321SO
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
0.0
0.576B-14
0.0
0.0
0.0
0.0
0.0
0.315E-16
0.166B-16
0.252E-15
0.151E-15
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.761B-16
0.216E-16
0.262E-16
0.326E-17
0.0
0.0
0.0
0.0
0.0
0.0
0.334E-15
0.234E-15
0.553E-16
0.185B-16
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.225E-14
0.0
0.622E-16
0.0
0.0
0.0
0.0
0.0
0.0
0.360E-14
0.0
0.394B-15
0.919E-16
0.338E-16
0.288E-16
0.0
0.0
0.0
0.0
0.0
0.236E-14
0.164E-15
0.0
0.8B5E-16
0.339B-16
0.528E-18
0.0
0.184E-06
0.0
0.0
0.0
0.0
0.0
0.118E-08
0.641E-09
0.103E-07
0.632E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.290E-08
0.854E-09
0.111B-08
0.142Z-09
0.0
0.0
0.0
0.0
0.0
0.0
0. 117E-07
0.848E-08
0.206E-08
0.731E-09
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.817E-07
0.0
0.245E-08
0.0
0.0
0.0
0.0
0.0
0.0
0. 1262-06
0.0
0. 150B-07
0.362E-08
0.142E-08
0.124Z-08
0.0
0.0
0.0
0.0
0.0
0.852f-07
0.617E-08
0.0
0.366Z-06
0. 148E-08
0.238E-10
05
04
OS
04
0.0
0.142E 05
0.0
0.0
0.0
0.0
0.0
0.664E 04
0.713E 04
0.219E 06
0.205E 06
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 120B
0.706E
0.183E 05
0.362E 04
0.0
0.0
0.0
0.0
0.0
0.0
0.133E 05
0.231E 05
0. 111E
0.811E
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.788E OS
0.0
0.892E 04
0.0
0.0
0.0
0.0
0.0
0.0
0.516E 05
0.0
0.309B 05
0.145E 05
0.106E 05
0.139E 05
0.0
0.0
0.0
0.0
0.0
0.422E 05
0.667E 04
0.0
0.163E 05
0.116E 05
0.276E 03
0.0
0.463E 02
0.0
0.0
0.0
0.0
0.0
0.2S3E 00
0. 133E 00
0.202E 01
0.121E 01
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.611E 00
0.174E 00
0.211E 00
0.262E-01
0.0
0.0
0.0
0.0
0.0
0.0
0.2S8E 01
0. 138E 01
O.M44E 00
0. USE 00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.181E 02
0.0
O.SOOE 00
0.0
0.0
0.0
0.0
0.0
0.0
0.289E 02
0.0
0.316E 01
0.738E 00
0.271E 00
0.231E 00
0.0
0.0
0.0
0.0
0.0
0. 190E 02
0. 132E 01
0.0
0.711E 00
0.272E 00
0.424E-02
to
K9
-------
V2
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
16
16
16
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
60450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
241«
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
0.0
0.0
0.0
0.0
0.0
0.0
0.380E-1S
0.0
0.956E-16
0.208E-16
0.234E-16
0.0
0.0
0.0
0.0
0.0
0.0
0.552E-16
0.0
0.103E-16
0.382E-17
0.491E-16
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.410B-16
0.181E-16
0.988E-16
0.161E-15
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.191E-16
0.253E-16
0.103E-15
0.0
0.0
0.0
0.127E-14
0.0
0.0
0.0
0.0
0.1411-16
0.294E-16
0.454E-15
0.0
0.0
0.0
0.0
0.0
0.0
0.145E-07
0.0
0.403E-08
0.928E-09
0.107E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.217E-08
0.0
0.145E-09
0.175E-09
0.232E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.166E-08
0.765E-09
0.444E-08
0.747E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.822E-09
0.115E-08
0.486E-08
0.0
0.0
0.0
0.430E-07
0.0
0.0
0.0
0.0
0.583B-09
0. 129E-08
0.206E-07
0.0
0.0
0.0
0.0
0.0
0.0
0.173E 05
0.0
0.191E 05
0.761E 04
0.129E 05
0.0
0.0
0.0
0.0
0.0
0.0
0.287E 04
0.0
0.229E 04
0.154E 04
0.297E 05
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.418E 04
0.360E 04
0.359E 05
0.879E 05
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.317E 04
0.766E 04
0.472E 05
0.0
0.0
0.0
0.731E 04
0.0
0.0
0.0
0.0
0.265B 04
0.102E OS
0.238E 06
0.0
0.0
0.0
0.0
0.0
0.0
0.305E 01
0.0
0.768E 00
0.167E 00
0.188E 00
0.0
0.0
0.0
0.0
0.0
0.0
O.U44E 00
0.0
0.825E-01
0.306E-01
0.395E 00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.329E 00
0.145E 00
0.793E 00
0.129E 01
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.154E 00
0.203E 00
0.827E 00
0.0
0.0
0.0
0.102E 02
0.0
0.0
0.0
0.0
0.113E 00
0.236F 00
0.365E 01
to
ro
u
DIHECTIOJS
IBB BOHBEBBD CODBTEBCLOCKVISB STMTIIS IT 1 FOB DOE BOHTB
-------
POPULkTXOB-WEIGHTED COBCBITBJLTXOIS MD POPOLATXOI IITMCBS FOB PB-210
VXBECTXO*
DXSTABCE
(BETE IS)
»IB COBCBITUTIOB GBOOID COICEHTH1TIOI IHGBSTIOH IHT&KE
(BIH-COBIBS/COBIC HBTEB) (8AB-COBIES/SQlJiBE BETEB) (BAH-PCI/IEAB)
I»H»L»TIO» ISTftKE
(HAS-PCI/TEAR)
1
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
5
5
5
5
5
5
5
5
5
5
5
1207
2414
4023
5632
7241
12068
20113
32180
48270
6*360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.363B-08
0.0
0.0
0.476E-10
0.161E-08
0.821E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.495E-08
0.9021-09
0.202E-08
0.477E-09
0.286E-09
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.450E-08
0.279E-08
0.761B-09
0.0
0.0
0.0
0.0
0.0
0.0
0.369E-08
0.198E-08
0.249E-08
0.112E-07
0.122E-07
0.0
0.0
0.0
0.0
0.0
0.508E-08
0.440E-08
0.0
0.396E-09
0.192E-09
0.786E-08
0.0
0.0
0.0
0.0
0.0
0.545E 02
0.0
0.0
0.643E 01
0.391E 03
0.297E 04
0.0
0.0
0.0
0.0
0.0
0.0
0.259E 03
0.117E 03
0.524E 03
0.251E 03
0.230E 03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.824E 03
0. 109E 04
0.465E 03
0.0
0.0
0.0
0.0
0.0
0.0
0.136E 03
0.175E 03
0.433E 03
0.377E 04
0.622E 04
0.0
0.0
0.0
0.0
0.0
0.132E 03
0.258E 03
0.0
0.101E 03
0.879E 02
0.533E 04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-------
b
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
1/01
2414
«023
5632
72«1
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
u.u
0.127S-06
0.0
0.0
0.0
0.0
0.0
0.820E-09
0.445E-09
0.714E-08
0.438E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.201E-08
0.593E-09
0.772E-09
0.988E-10
0.0
0.0
0.0
0.0
0.0
0.0
0.808E-08
0.589E-08
0. 1V3E-08
0.507E-09
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.567E-07
0.0
0.170E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.872E-07
0.0
0. 104E-07
0.251B-08
0.983E-09
0.862E-09
0.0
0.0
0.0
0.0
0.0
0.591E-07
0.428E-08
0.0
0.25UE-08
0.103E-08
0.165E-10
U.U
0.4611 03
0.0
0.0
0.0
0.0
0.0
0.215E 03
0.231E 03
0.710E 04
0.664E 04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.388E 03
0.228E 03
0.593E 03
0.117E 03
0.»
0.0
0.0
0.0
0.0
0.0
0.429E 03
0.747E 03
0.358E 03
0.262E 03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.255E 04
0.0
0.289E 03
0.0
0.0
0.0
0.0
0.0
0.0
0.167E 04
0.0
0.998E 03
0.46 BE 03
0.342E 03
0.450E 03
0.0
0.0
0.0
0.0
0.0
0. 136E
0.216E
0.0
0.526E 03
0.376E 03
0.892E 01
OH
03
U.U
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-------
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
13
14
14
14
1«
14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
16
16
16
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
60450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.101E-07
0.0
0.2801-06
0.644B-09
0.7458-09
0.0
0.0
0.0
0.0
0.0
0.0
0.150E-08
0.0
0.309E-09
0.1211-09
0.161E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.115E-08
0.531E-09
0.308K-08
0.519E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.570E-09
0.801E-09
0.338E-08
0.0
0.0
0.0
0.299E-07
0.0
0.0
0.0
0.0
0.405B-09
0.894B-09
0.143E-07
03
0.0
0.0
0.0
0.0
0.0
0.0
0.558E 03
0.0
0.618E
0.246Z 03
0.418E 03
0.0
0.0
0.0
0.0
0.0
0.0
0.927E 02
0.0
0.742E 02
0.497E 02
0.961E 03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 135E 03
0.116E 03
0.116E 04
0. 284B 04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.103E 03
0.248E 03
0.153E 0«
0.0
0.0
0.0
0.237E 03
0.0
0.0
0.0
0.0
0.858E 02
0.330E 03
0.771E 04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
DIRECTIONS IRE •TTHBEBBD COOBTEECLOCICHISE ST1HTIHG IT 1 FOR DOB HORTH
-------
POPOHT10H-WBIGHTBD COICEHTHiTIOSS HD POPOLiTIOB IHTMCBS FOB PO-210
DIBECTIOB
DISTiHCB
(HETEBS)
klU COBCEHTBATI01 SEODBD COBCEHTEUTIOH IVGBSTIOI IHTMCE
(HMI-CTJHIES/COBIC BHEB) (SH-CTOIBS/SQOMB HETB8) (W«-PCI/TE»R)
IHHULITIOH IHTJKE
(1UI-PCI/TBHR)
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
5
5
5
5
5
5
5
5
5
5
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32130
48270
64360
80450
1207
2414
»023
9632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
0.0
0.0
0.0
0.0
0.0
0.294B-15
0.0
0.0
0.337B-17
0.107B-15
0.527B-15
0.0
0.0
0.0
0.0
0.0
0.0
0.404B-15
0.698E-T6
0.151B-15
0.331E-16
0.192B-16
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.348E-15
0.2011-15
0.5331-16
0.0
0.0
0.0
0.0
0.0
0.0
0.309B-15
0.160B-15
0.196E-15
0.839E-15
0.8961-15
0.0
0.0
0.0
0.0
0.0
0.432E-15
0.365B-15
0.0
0.308B-16
0.14IZ-16
0.57SB-15
0.0
0.0
0.0
0.0
0.0
0.368B-08
0.0
0.0
0.482E-10
0.163E-08
0-831E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.501E-08
0.91«B-09
0. 2041-08
0.483B-09
0.289B-09
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.456E-08
0.283B-08
0.771E-09
0.0
0.0
0.0
0.0
0.0
0,0
0.3738-08
0.201B-08
0.252E-08
0.113B-07
0.123B-07
0.0
0.0
0.0
0.0
0.0
0.514E-08
0.446E-08
0.0
0.401E-09
0.195E-09
0.796B-08
0.0
0.0
0.0
0.0
0.0
0. 119E 04
0.0
0.0
0. 1«3B 03
0.872E 04
0.6622 05
0.0
0.0
0.0
0.0
0.0
0.0
0.57*B 0«
0.26 IB 04
0.117B 05
0.559B 04
0.513B 04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.184E OS
0.244B 05
0.104B OS
0.0
0.0
0.0
0.0
0.0
0.0
0.301E 04
0.389E 04
0.965B 04
0.840E 05
0.139B 06
0.0
0.0
0.0
0.0
0.0
0.291E 04
0.572E 04
0.0
0.225E 04
0.196B 04
0.119B 06
0.0
0.0
0.0
0.0
0.0
0.236B 01
0.0
0.0
0.271E-01
0.857B 00
0.424B 01
0.0
0.0
0.0
0.0
0.0
0.0
0.32«E 01
0.561E 00
0.121B 01
0.266E 00
0.154B 00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.279E 01
0.162E 01
0.426B 00
0.0
0.0
0.0
0.0
0.0
0.0
0.249B 91
0. I29E 01
0. 1S7B 01
0.674E 01
0.719E 01
0.0
0.0
0.0
0.0
0.0
0.3«7E 01
0.293E 01
0.0
0.2H7E 00
0. 116E 00
D.4S3E 01
-------
b
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
1207
2*1*
4023
5632
72«1
T2068
20113
32180
48270
6*360
80450
1207
2414
0023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
0.0
0.115B-13
0.0
0.0
0.0
0.0
0.0
0.630B-16
0.331B-16
0.503E-15
0.301B-15
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.152E-15
0.432E-16
0.525E-16
0.652E-17
0.0
0.0
0.0
0.0
0.0
0.0
0.668E-15
0.467B-15
0.111E-1S
0.369B-16
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.450E-14
0.0
0.124E-15
0.0
0.0
0.0
0.0
0.0
0.0
0.721B-14
0.0
0.787E-15
0.18*2-15
0.676E-16
0.575B-16
0.0
0.0
0.0
0.0
0.0
0.473E-14
0.328E-15
0.0
0.177B-15
0.678E-16
0.106E-17
0.0
0.129B-06
0.0
0.0
0.0
0.0
0.0
0.831E-09
0.451E-09
0.723E-08
0.444E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.204E-08
0.600E-09
0.782E-09
0. 100E-09
0.0
0.0
0.0
0.0
0.0
0.0
0.819E-08
0.596E-08
0.145E-08
0.514B-09
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.574E-07
0.0
0.172E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.883E-07
0.0
0. 105E-07
0.254E-08
0.995E-09
0.873E-09
0.0
0.0
0.0
0.0
0.0
0.598E-07
0.434E-08
0.0
0.257E-08
0.104E-08
0. 167B-10
0.0
0.951B 04
0.0
0.0
0.0
0.0
0.0
0.478B 04
0.514E 04
0.158E 06
0.148E 06
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.864E 04
O.S09E 04
0.132B 05
0.261E 04
0.0
0.0
0.0
0.0
0.0
0.0
0.952E 04
0.166E 05
0.797E 04
0.585E 04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 565B 05
0.0
0.643E 04
0.0
0.0
0.0
0.0
0.0
0.0
0.367E 05
0.0
0.222E 05
0.104E 05
0.762E 04
0.100E 05
0.0
0.0
0.0
0.0
0.0
0.301E 05
0.478E 04
0.0
0.117E 05
0.839E 04
0.199E 03
0.0
0.925E 02
0.0
0.0
0.0
0.0
0.0
0.506E 00
0.266E 00
0.404E 01
0.242E 01
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.122E 01
0.3H7E 00
0.421E 00
0.524E-01
0.0
0.0
0.0
0.0
0.0
0.0
0.536E 01
0.375E 01
0.888E 00
0.297E 00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.361E 02
0.0
0.999E 00
0.0
0.0
0.0
0.0
0.0
0.0
0.579E 02
0.0
0.632E 01
0.118E 01
0.543E 00
0.462E 00
0.0
0.0
0.0
0.0
0.0
0.380E 02
0.263E 01
0.0
0.142E 01
0.5H4E 00
0.848E-02
-------
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
13
14
1*
14
1«
14
14
14
14
14
14
14
15
IS
15
15
15
15
15
15
15
15
15
16
16
IS
16
16
16
16
16
16
16
16
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12066
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
0.0
0.0
0.0
0.0
0.0
0.0
0.759E-15
0.0
0.191E-15
0.416E-16
0.468E-16
0.0
0.0
0.0
0.0
0.0
0.0
0.110Z-15
0.0
0.205E-16
0.763E-17
0.983E-16
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.820B-16
0.361E-16
0.198E-15
0.322E-15
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.383E-16
0.506B-16
0.206E-1S
0.0
0.0
0.0
0.254E-14
0.0
0.0
0.0
0.0
0.282E-16
0.588E-16
0.909E-15
0.0
0.0
0.0
0.0
0.0
0.0
0.102E-07
0.0
0.283E-08
0.652E-09
0.755B-09
0.0
0.0
0.0
0.0
0.0
0.0
0.152B-08
0.0
0.313E-09
0.123E-09
0.163E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.117E-08
0.538E-09
0.312B-08
0.525E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.577B-09
0.811E-09
0.342E-08
0.0
0.0
0.0
0.302E-07
0.0
0.0
0.0
0.0
0.410B-09
0.906B-09
0.145B-07
0.0
0.0
0.0
0.0
0.0
0.0
0.12 HE 05
0.0
0.138E 05
0.549E 04
0.931E 04
0.0
0.0
0.0
0.0
0.0
0.0
0. 206E 04
0.0
0.165E 00
0.111E 04
0.214E 05
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.30 IE 04
0.259B 04
0.258E 05
0.634E 05
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.228E 04
0.552E 04
0.340B 05
0.0
0.0
0.0
0.509E 04
0.0
0.0
0.0
0.0
0.191B 04
0.736B 04
0.172B 06
0.0
0.0
0.0
0.0
0.0
0.0
0.610E 01
0.0
0.154E 01
0.334E 00
0.376E 00
0.0
0.0
0.0
0.0
0.0
0.0
0.887E 00
0.0
0.165E 00
0.613E-01
0.7B9E 00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.658E 00
0.290E 00
0.159B 01
0.259E 01
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.307E 00
0.106E 00
0.165E 01
0.0
0.0
0.0
0.204E 02
0.0
0.0
0.0
0.0
0.227E 00
0.472E 00
0.730E 01
OIBECTIOIS IBB •DflBERED COOITEHCLOCKilSE STUTXBS IT 1 FOB DOB BORTH
-------
ABC1
DIBBCTXOH
DISTAKCB
(HETEBS)
POPOLATIOI-IEIGHtBD COWCEITRiTIOBS 1RD POPOIMIOH IHTiKES FOB BS-222
MB COMCBHTRATIOH GBOOHD COICEITERTIOH INGESTIOH IHTAKE
(HIH-COBIES/CTJBIC HBTEB) (Hil-CUHIES/SQOlBE HETEB) (H1B-PCI/YB1B)
IHHKLHTI3H INTAKE
(HW-PCI/TE1B)
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
5
5
5
5
5
5
5
5
5
5
5
1207
2014
4023
5632
7201
12068
20113
32180
48270
64360
804SO
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
0.0
0.0
0.0
0.0
0.0
0.111E-12
0.0
0.0
0.283E-14
0.122E-12
0.700E-12
0.0
0.0
0.0
0.0
0.0
0.0
0.280E-12
0.747E-13
0.208E-12
0.706B-13
0.493E-13
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.S80B-12
0.547E-12
0.177E-12
0.0
0.0
0.0
0.0
0.0
0.0
0.194E-12
0.148E-12
0.229E-12
0.141B-11
0.177E-11
0.0
0.0
0.0
0.0
0.0
0.169E-12
0.189E-12
0.0
0.265E-13
0.163E-13
0.745E-12
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.893E 03
0.0
0.0
0.227E 02
0.976F 03
0.562E 04
0.0
0.0
0.0
0.0
0.0
0.0
0.225E 04
0.600E 03
0.167E OK
0.567E 03
0.396E 03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.466E 0«
0.439E 0«
0.142B 04
0.0
0.0
0.0
0.0
0.0
0.0
0.1S6E 04
0.119E 04
0.1S4E 04
0. 113B 05
0. 142E 05
0.0
0.0
0.0
0.0
0.0
0.136B 04
0.151E 04
0.0
0.213E 03
0.1311! 03
0.598E 04
to
CJ
o
-------
b
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
V401
2M4
4023
5632
72*1
12068
20113
32180
48270
6*360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
S632
7241
12068
20113
32180
4S270
64360
80450
1207
2414
4023
SC32
7241
12068
20113
32180
48270
64360
804SO
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
0.0
0.258B-11
0.0
0.0
0.0
0.0
0.0
0.7511-13
0.498E-13
0.108B-11
0.764B-12
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.224B-12
0.817B-13
0.1SOB-12
0.224B-13
0.0
0.0
0.0
0.0
0.0
0.0
0.380B-12
0.390B-12
0.117B-12
0.6061-13
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.256B-11
0.0
0.130B-12
0.0
0.0
0.0
0.0
0.0
0.0
0.233B-11
0.0
0.476B-12
0.139B-12
0.718E-13
0.718E-13
0.0
0.0
0.0
0.0
0.0
0.153B-11
0.137B-12
0.0
0.121E-12
0.611B-13
0.110B-14
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.20TE 05
0.0
0.0
0.0
0.0
0.0
0.603B 03
O.WOE 03
0.866E 0«
0.614B 0«
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1SOB 0«
0.656E 03
0.120B 04
0.180E 03
0.0
0.0
0.0
0.0
0.0
0.0
0.305B 04
0.313B 0«
0.936E 03
0.487B 03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.206B OS
0.0
0.104E 04
0.0
0.0
0.0
0.0
0.0
0.0
0.187E OS
0.0
0.3B2E 0*
0.111B 04
0.57715 03
0.577B 03
0.0
0.0
0.0
0.0
0.0
0.123E OS
0. 110E 04
0.0
0.972E 03
0.490B 03
0.880E 01
-------
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
IS
15
16
16
16
16
16
16
16
16
16
16
16
1207
24t4
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
«023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
72H1
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
0.0
0.0
0.0
0.0
0.0
0.0
0.323E-12
0.0
0.128E-12
0.360E-13
0.462E-13
0.0
0.0
0.0
0.0
0.0
0.0
0.423E-13
0.0
0.121E-13
0.571E-14
0.834E-13
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.371E-13
0.197E-13
0.138E-12
0.2S6E-12
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.213E-13
0.362B-13
0.169E-12
0.0
0.0
0.0
0.464E-12
0.0
0.0
0.0
0.0
0.141E-13
0.381E-13
0.673E-12
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.259E 04
0.0
0.103E 04
0.2B9E 03
0.371E 03
0.0
0.0
0.0
0.0
0.0
0.0
0.3UOE 03
0.0
0.971E 02
0.458B 02
0.67 OB 03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.298E 03
0.158E 03
0.111E 04
0.206E 04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.171E 03
0.291E 03
0.135E 04
0.0
0.0
0.0
0.373E 04
0.0
0.0
0.0
0.0
0.113E 03
0.306E 03
0.5»1E 04
to
u>
to
DISECTIOHS IRE ItJHBERBD COOHTEHCLOCKBISE ST1BIIHG »T 1 FOB DDE HOETH
-------
mil
DISTANCE
(HBTEBS)
POPtJLAtlOll-BEIGHTED COVCBBTBATXOBS MID POPOLATIO* UPTAKES FOR H-3
AIR COVCEBTIATXOB GBOOID COBCEHTRATIOB ISGBSTI3B IBUKE
(HAH-COSIES/COBIC HEIEB) (HAH-CURIES/SQ0ARE HETEB) (HAH-PCI/YEAR)
IHHALATIOH INTAKE
(HAN-PCt/TEAB)
1
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
5
5
5
5
5
5
5
5
5
5
5
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
B04SO
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
0.0
0.0
0.0
0.0
0.0
0.113E-12
0.0
0.0
0.306B-14
0.135B-12
0.801E-12
0.0
0.0
0.0
0.0
0.0
0.0
0.288B-12
0.785E-13
0.224E-12
0.7802-13
0.558B-13
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.625E-12
0.605E-12
0.200E-12
0.0
0.0
0.0
0.0
0.0
0.0
0.200B-12
0.156E-12
0.247E-12
0.156E-11
0.201B-11
0.0
0.0
0.0
0.0
0.0
0.173B-12
0.195E-12
0.0
0.288E-13
0.182«-13
0.8S6B-12
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.147E 05
0.0
0.0
0. 158B 04
0.953E 05
0.719B 06
0.0
0.0
0.0
0.0
0.0
0.0
0.672B 05
0.295E 05
0.129B 06
0.611B 05
0.557B 05
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.210E 06
0.274E 06
0.115E 06
0.0
0.0
0.0
0.0
0.0
0.0
0.363E OS
0.448E 05
0.108E 06
0.927E 06
0.152E 07
0.0
0.0
0.0
0.0
0.0
0.340E OS
0.645E 05
0.0
0.244E 05
o.zm os
0.127B 07
0.0
0.0
0.0
0.0
0.0
0.911E 03
0.0
0.0
0.216E 02
0.109E OH
0.6K3E 04
0.0
0.0
0.0
0.0
0.0
0.0
0.232E 0«
0.630E 03
0.180E OK
0.626E 03
0.448E 03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.S02E OK
0.486E 04
0.161E 04
0.0
0.0
0.0
0.0
0.0
0.0
0.161E 04
0.125E 01
0.198E 04
0.125E 05
0. 161E OS
0.0
0.0
0.0
0.0
0.0
0. 139E 04
0. 157E 0«
0.0
0.23 IE 03
0. 146E 03
0.68TE 04
-------
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
8
a
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
1201
2414
4023
5632
7241
12068
20113
32180
48270
64360
804SO
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
(4360
80*50
0.0
0.259E-11
0.0
0.0
0.0
0.0
0.0
0.796E-13
0.543B-13
0.121E-11
0.885E-12
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.237E-12
0.888E-13
0.168E-12
0.258E-13
0.0
0.0
0.0
0.0
0.0
0.0
0.392E-12
0.409E-12
0.125E-12
0.668E-13
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.263E-11
0.0
0.1421-12
0.0
0.0
0.0
0.0
0.0
0.0
0.237E-11
0.0
0.498E-12
0.149B-12
0.788B-13
0.806E-13
0.0
0.0
0.0
0.0
0.0
0.155B-11
0.142E-12
0.0
0.131E-12
0.676E-13
O.I25B-14
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.132E 06
0.0
0.0
0.0
0.0
0.0
0.525E 05
0.556E 05
0.170E 07
0.159E 07
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.974E 05
0.560B 05
0.144E 06
0.282E 05
0.0
0.0
0.0
0.0
0.0
0.0
0.109E 06
0.185B 06
0.873B 05
0.635E 05
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.655E 06
0.0
0.713E 05
0.0
0.0
0.0
0.0
0.0
0.0
0.426E 06
0.0
0.245E 06
0.113E 06
0.823E 05
0.108E 06
0.0
0.0
0.0
0.0
0.0
0.342B 06
0.531E 05
0.0
0.127E 06
0.901B 05
0.213B 04
0.0
0.208E 05
0.0
0.0
0.0
0.0
0.0
0.639E 03
0.436B 03
0.974E OK
0.710E 04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.190E 04
0.713E 03
0.135E 04
0.207E 03
0.0
0.0
0.0
0.0
0.0
0.0
0.315E 04
0.329B 04
0. 101E 04
0.536E 03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.215E 05
0.0
0.114E 04
0.0
0.0
0.0
.0
.0
.0
,191E 05
.0
0.400E 04
0.119E 04
0.633E 03
0.647E 03
0.0
0.0
0.0
0.0
0.0
0.125E 05
0.114E 04
0.0
0.105E 04
0.543B 03
0.100B 02
-------
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
13
1«
14
14
in
14
14
14
14
14
15
15
15
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
16
16
16
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
U.o
0.0
0.0
0.0
0.0
0.0
0.333E-12
0.0
0.139E-12
0.401E-13
0.529E-13
0.0
0.0
0.0
0.0
0.0
0.0
0.437B-13
0.0
0.131E-13
0.636E-14
0.956E-13
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.391B-13
0.213E-13
0.153E-12
0.292E-12
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.231E-13
0.404E-13
0.193B-12
0.0
0.0
0.0
0.468E-12
0.0
0.0
0.0
0.0
0.151E-13
0.421E-13
0.763E-12
U.O
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
U.O
0.0
0.0
0.0
0.0
0.0
0.137E 06
0.0
0. 1«8E 06
0.588E OS
0.995E OS
0.0
0.0
0.0
0.0
0.0
0.0
0.225E 05
0.0
0.177B 05
0.118E 05
0.228E 06
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.325E 05
0.278E 05
0.276E 06
0.67 SB 06
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.246B 05
O.S91B 05
0.363B 06
0.0
0.0
0.0
0.572B 05
0.0
0.0
0.0
0.0
0.204B 05
0.786B 05
0.183B 07
U.U
0.0
0.0
0.0
0.0
0.0
0.2S8E 0«
0.0
0.112E 04
0.322E 03
0.425E 03
0.0
0.0
0.0
0.0
0.0
0.0
0.351E 03
0.0
0.105E 03
O.S1 IE 02
0.767B 03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.31 HE 03
0.171E 03
0.123B 0«
0.23HE 04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.186E 03
0.324E 03
0.155E 04
0.0
0.0
0.0
0.376E Oft
0.0
0.0
0.0
0.0
0. 122E 03
0.338E 03
0.613E 04
DZBECTIOIS ARE VOIIBERBO COOITEICLOCKBXSE SIMTII8 »T 1 POt DOE IOHTH
-------
TOCLIDE
Bft-226
PEBCZSt OF TOT.BOOT DOSS BT EACH PiTHBiY
PMHB1T DOSB(HAB-BBHS) PEHCEBT OF TOMl
SOBH MB
SOBPACB
SBIIHIIG
w-2io
IB6BST.
TB6BT.
HBit
BILK
SOBR KB
SOBPACB
S1IHHIIG
PO-210
IB6B3T.
TB6BT.
HB4T
BILK
SOBH KB
SOBPACB
HI-222
H-3
XIBkL.
XIGBS1.
TB6BT.
BBIT
BILK
SOBB kIB
SOBPACB
SBJBfllBO
IBHkl.
IBGBST.
TBGBT.
HEAT
BILK
SOBB ftXB
SOBP4CB
SBIHHIVG
XIBU.
XB8BSX.
TB6BT.
HBIT
BILK
0.8401B-09
0.68962-03
0.4223B-06
0. 1590B-02
0.1535B 02
0.1»1« 02
0.9797B 00
0.2296B 00
0.0
0.«167B-03
0.6256B-07
0.0
0.SOI IB 00
0.411SB 00
0.7929B-01
0.1029B-01
0.2022B-11
0.»935B-06
0.35*7E-09
0.5S06B-03
0.65*98 00
0.7366B 00
0.1138B 00
O.MS3B-02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2575B-0*
0.1M2B-02
0.72738-03
0.266»E-03
O.M64B-03
0.00
0.00
0.00
0.01
99.99
* 92.11
• 6.38
• 1.50
0.0
a. oa
0.00
0.0
99.92
* 82.05
* 15.81
* 2.05
0.00
0.00
0.00
0.06
99.9*
• 86.11
* 13.30
• 0.52
0.0
0.0
0.0
0.0
0.0
* 0.0
• 0.0
* 0.0
0.0
0.0
0.0
1.75
98.25
* 19.56
* 18.16
* 30.42
PEBCBHT OF DOSS PBOH ILL ROCLID2S
99.76
62.31
87.03
73.40
91.87
* 84.63
* 5.87
* 1.37
0.0
37.65
12.89
0.0
3.00
* 2.46
* 0.47
* 0.06
0.24
0.04
0.07
25.42
5.12
• 4.41
* 0.6ft
* 0.03
0.0
0.0
0.0
0.0
0.0
• 0.0
* 0.0
* 0.0
0.0
0.0
0.0
1.19
0.01
• 0.00
* 0.00
* 0.00
-------
mCLZDB
BA-226
pnctn or • au DOSB vt BACK PATBWAY
PATBffAT DOSB(HAB-RBRS) PBBCEBT OP TOTAL
PB-210
PO-210
XB-222
1-3
SOB1 »IB
SOBPACB
SVZBBZB8
ZBBAL.
ZICBST.
TBCBT.
•BAT
BILK
SOBB AZB
SOBPACB
SVZBBZBS
ZBBAL.
ZB8BST.
VB8BT.
•BIT
•UK
SOBB AH
SVBPACB
SBXBBXBO
ZBBAL.
TBSBST.
VBCBT.
•BAT
BXtR
SOBB AZB
SOBPAC1
SWZBBZM
ZBBAl.
ZB8BST.
fBOBT.
•BAT
nti
SBBB AZB
SOIPACB
StlBBZBa
ZBBAL.
ZBOBST.
TBOBT.
•BAT
•UK
0.1206B-08
0.989SB-03
0.6062K-06
0.3388B-03
0.3«15B 01
0.3330B 01
0.2308B 00
0.54088-01
0.0
0.6561B-03
0.9851B-07
0.0
0.9707B-01
O.T972B-01
0.1536B-01
0.199IB-02
0.21 OB-11
0.522»B-06
0.3797B-09
0.3018B-03
0.0»27B 00
0.7261B 00
0.1122B 00
0.«390B-02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2SS4B-0*
0.1M2S-02
0.7273B-03
0.2«6«B-03
0.«»6«B-03
0.00
0.03
0.00
0.01
99.96
• 92.09
• 6.38
• 1.50
0.0
0.67
0.00
0.0
99.33
* 81.57
* 15.72
• 2.0«
0.00
0.00
0.00
0.04
99.96
* 86.13
* 13.31
• 0.52
0.0
0.0
0.0
0.0
0.0
• 0.0
• 0.0
0.0
0.0
0.0
0.0
98.26
• 49.57
• 18.16
• 30.43
PBBCBBT OP DOSE PBOB ALL BOCIIDBS
99.82
60.12
85.97
50.86
79.3»
* 73.09
* 5.07
* 1.19
0.0
39.85
13.97
0.0
2.13
* 1.75
• 0.3*
• 0.04
0.18
0.03
0.05
*5.30
18.50
• 15.94
* 2.46
* 0.10
0.0
0.0
0.0
0.0
0.0
• 0.0
• 0.0
• 0.0
0.0
0.0
0.0
3.83
0.03
• 0.02
• 0.01
• 0.01
-------
B1I GLIDE
BA-226
PEBCKIT OP LOBGS DOSE BY EACB PATHBAY
PATBBAY DOSB
-------
IBCLIDE
Bl-226
PEBCEST OP EBDOST DOSE BT EACH PATHWAY
PATHWAY DOSB(HAH-BBHS) PEBCEHT 07 TOTAL
PB-210
PO-210
BI-222
H-3
SOBS AI8
SURFACE
SHXHflHG
IIHAL.
II6EST.
TSGET.
HEAT
BILK
50BH AIH
SUBFACE
SBIHHZHG
IIHAL.
II6EST.
TBGET.
HBAT
BILK
SOBB AIR
SOBFACE
SWZHHXIG
ZBHAL.
IBGBST.
TEGET.
BEAT
BILK
SOBB All
SOBFACB
SVZBBZWG
ZIBAt.
IBGBST.
TBGBT.
BUT
BILK
SOBB 1IB
SOBFACB
SWZBBZBO
IIBAL.
ZB0B3T.
TEGBT.
HBAT
BZLK
01
00
0.1397E-08
0.1147B-02
0.7022E-06
0.1747E-02
0.1864B 02
0.1717E 02
0.1190E
0.2789B
0.0
0.8706E-03
0.1307E-06
0.0
0.6590E 00
0.5412B 00
0.1043B 00
0.1354B-01
0.2441E-11
O.S9S9E-06
0.4331E-09
0.1320E-03
0.3681B 00
0.3172E 00
O.V901B-01
0.1917B-02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.20291-0*
0.1M2B-02
0.7273B-03
0.2664B-03
0.««6«-03
0.00
0.01
0.00
0.01
99.98
* 92.11
* 6.38
* 1.50
0.0
0.13
0.00
0.0
99.87
* 82.01
* 15.80
* 2.05
0.00
0.00
0.00
0.00
99.96
* 86.13
• 13.31
* 0.52
0.0
0.0
0.0
0.0
0.0
* 0.0
* 0.0
* 0.0
0.0
0.0
0.0
1.39
98.61
* 49.75
* 18.22
* 30.54
PEHCEHT OF DOSE FROM Alt HOCLIDBS
99.83
56.82
84.26
91.98
94.77
* 87.30
* 6.05
* 1.42
0.0
43.15
15.69
0.0
3.35
* 2.75
* 0.53
* 0.07
0.17
0.03
0.05
6.95
1.87
* 1.61
* 0.25
* 0.01
0.0
0.0
0.0
0.0
0.0
* 0.0
* 0.0
* 0.0
0.0
0.0
0.0
1.07
0.01
* 0.00
* 0.00
* 0.00
-------
•a GLIDE
Rl-226
PBBCBIT Of S IftLL DOSE BI EACH PATHSAT
PATHWAY DOSE (HAH-HE US) PEBCEBT OF TOTAL
PB-210
PO-210
BB-222
B-3
SOBS II H
SOBFACB
SBIHHIIG
IIGEST.
TEGET.
MBIT
BILK
SOBH 1IB
SURFACE
SDIHHIHS
IRBAL.
IBGBST.
TEGET.
BHT
HILK
snaa ira
SOHFACE
SilBHIHG
IBBAL.
IB6EST.
VEGBT.
HEAT
BILK
SOBH «IB
SURFACE
S«IBHI»G
ZBBkL.
IIGBSI.
TBGET.
SEAT
MILK
SOBB SIR
SOHPACE
SBIBBIBS
IBHAL.
IIGEST.
TBGBT.
HB1T
HILK
O.S477E-09
0.4495E-03
0.2753K-06
0.4765E-06
0.9237E-02
0.8509E-02
O.S697B-03
0.1382E-03
0.0
0.2309B-03
0.3»67E-07
0.0
0.1292B-01
0.1061E-0*
0.2044E-05
0.265*B-06
0. 1808E-11
0.t«1*E-06
0.3208E-09
0.7836E-06
D.6906E-02
O.S950B-02
0.9194B-03
0.3597E-04
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.25751-04
0.1442E-02
0.72738-03
0.2664B-03
0.4464B-03
*
*
*
*
*
*
*
*
*
*
*
*
0.00
4.64
0.00
0.00
95.35
87.84
6.09
1.43
0.0
94.69
0.01
0.0
5.30
4.35
0.84
0.11
0.00
0.01
0.00
0.01
99.98
86.15
13.31
0.52
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.75
98.25
* 18.16
* 30.42
PEBCEIT OF DOSE FlOfl ILL HOCLIDES
99.67
66.03
88.72
1.76
52.49
* 48.35
* 3.35
* 0.79
0.0
33.91
11.17
0.0
0.07
* 0.06
* 0.01
* 0.00
0.33
0.06
0.10
2.90
39.2*
* 33.81
* 5.22
* 0.20
0.0
0.0
0.0
0.0
0.0
* 0.0
* 0.0
* 0.0
0.0
0.0
0.0
95.33
8.19
* ».13
* 1.51
* 2.54
-------
HOCLIDE
HA-226
PESCEHT OF LLI • IU. DOSE BI EACH PiTHHIT
PATHWAY DOSE(BAS-BESS) PEBCIIT OF TOTAL
PB-210
PO-210
BH-222
H-3
SOBB AIH
SURFACE
IBHAL.
IBGBST.
TEGET.
SEAT
HILK
SUBH 1IH
SORPACE
SHIHHIBG
IBBAL.
IBCEST.
TEGET.
BEAT
BILK
STJBB AIR
SURFACE
SVIHHIIG
If HAL.
IKGEST.
TB6ET.
HEAT
HZLK
SOBB All
30RPACE
SflHHIIG
IWOBSf.
TBOBT.
BEAT
BItK
SOBB 1IH
SOSFACB
3IIHHIB6
I1BAL.
XI0SST.
TECBT.
BEAT
Bit It
O.H593E-09
0.3770E-03
0.2309E-06
0.3159B-09
0.7039E 00
0.6484E 00
0.4a94E-01
0.1053E-01
0.0
0. 1311E-03
0.1973B-07
0.0
0.13B8E-02
0. 11IJOB-02
0.2196E-03
0.2B51B-04
0. 1353B-11
0.3303S-06
0.2401S-09
0.3102B-04
0.2723X 00
0.2346E 00
0.3625E-01
0.1416E-02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2739B-04
0.1*421-02
0.7273B-03
0.2664B-03
0.4464B-03
0.00
0.05
0.00
0.00
99.94
* 92.07
* 6.38
* 1.SO
0.0
8.65
0.00
0.0
91.35
* 75.02
* 14.45
* 1.88
0.00
0.00
0.00
0.01
99.99
* 86.16
» 13.31
* 0.52
0.0
0.0
0.0
0.0
0.0
* 0.0
* 0.0
• 0.0
0.0
0.0
0.0
1.86
96.14
* 49.51
* 10.14
* 30.39
PEBCEST OF DOSB PROH ALL HUCLIDES
99.71
74.11
92.04
35.10
71.90
* 66.23
* 4.59
* 1.08
0.0
25.83
7.86
0.0
0.14
* 0.12
* 0.02
* 0.00
0.29
0.06
0.10
34.47
27.81
* 23.96
* 3.70
* 0.14
0.0
0.0
0.0
0.0
0.0
* 0.0
* 0.0
* 0.0
0.0
0.0
0.0
30.44
0.15
* 0.07
* 0.03
* 0.05
-------
BUCLIDB
B4-226
PBBCBIT OF THTROID DOSB BT E1CH P1THMY
PMHilY DOSB(BiB-HBBS) PBRCBIT OF TOTit
PB-210
PO-210
mt-222
H-3
SDBH IIR
SOBPACE
SIIBHUG
IIH1L.
IIGBST.
TBGR.
HE1T
BILK
SOBS ilB
SURFACE
SBIBBIIG
IIBAl.
IIGBST.
TBGBT.
BEAT
BILK
SOBS AIR
SORFACB
SUBBING
IIBAL.
IIGBST.
VBGKT.
BBiT
BILK
SOBH III
SQIPkCB
SIINBIIG
IIHIL.
IICBST.
TBGBT.
BBiT
BILK
SOBS ftll
SOIPICB
SIZBBZB6
IIBKL.
IIOBST.
»B6BT.
HE»T
BILK
0.83818-09
0.6879B-03
0.«213B-06
0.1172B-03
0.1249E 01
0.1151B 01
0.7976E-01
0.1B69E-01
0.0
0.«OSOE-03
0.60818-07
0.0
0.2071B-02
0.1701E-02
0.3278B-03
0.4255B-04
0.1S*8B-11
0.3780B-06
0.27*71-09
0.2834B-03
0.7925B 00
0.6829B 00
0.105SB 00
0.4128B-02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.255«B-0«
0.1»«2B-02
0.7273B-03
0.2664B-03
0.««6M-03
0.00
0.06
0.00
0.01
99.94
* 92.06
* 6.38
* 1.50
0.0
16.35
0.00
0.0
83.64
* 68.69
* 13.24
* 1.72
0.00
0.00
0.00
0.04
99.96
* 86.13
* 13.31
* 0.52
0.0
0.0
0.0
0.0
0.0
* 0.0
* 0.0
* 0.0
0.0
0.0
0.0
1.74
98.26
• 49.57
* 18.16
» 30.43
PEBCEIT OF DOSB PBOB ALL ROCLIDBS
99.82
62.92
87.34
27.50
61.08
* 56.27
* 3.90
* 0.91
0.0
37.04
12.61
0.0
0.10
* 0.08
* 0.02
• 0.00
0.18
0.03
0.06
66.51
38.75
• 33.39
* 5.16
* 0.20
0.9
0.0
0.0
0.0
0.0
• 0.0
• 0.0
* 0.0
0.0
0.0
0.0
5.99
0.07
* 0.04
• 0.01
* 0.02
-------
BOCLIDB
Bi-226
PBBCEBT OP LIVBB DOSE BT EiCH F&THVAT
P&IHB1I DOS!
-------
HJCLIDE
BA-226
PBSCBBT OF KIDIBYS DOSB BT EACH PATHWAY
PATHWAY DOSB(HAI-RBHS) PERCEIT OF TOTW.
PEHCEBT OF DOSE FROB ALL HOCLIDBS
PB-210
PO-210
BB-222
H-3
SOBB AIB
SOEF1CE
S8IHBXVG
IIBAL.
IBGBST.
TEGBT.
HE1T
HILK
SOBH AIR
SORFACE
StURHllG
IHHAL.
IBGEST.
VBGET,
HEAT
HILK
SOBH AIB
SORFACE
SVIRHIBG
IHHAL.
IBGBST.
TB6BT.
HBAT
HILK
SOBH AIB
SORFACB
SHIHHIBG
IBHAt.
IBGBST.
TBGBT,
HEAT
HILK
SOBB AIB
SURFACE
SVIHHIBG
IBHAL.
IHGBST.
TBGBT.
HEAT
HILK
0.6070B-09
0.49B2E-03
0.3Q51B-06
0.1168E-03
0.1247B 01
0.1149E 01
0.7962E-01
0.1866B-01
0.0
0.2402E-03
0.3607E-07
0.0
0.2071E 00
0.1701B 00
0.3278E-01
0.»255E-02
0.1867B-11
0.4S59E-06
0.3313B-09
0.5083B-02
0.14 18E 02
0.1222B 02
0.1887E 01
0.7385E-01
0.0
0.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2657E-04
0.1»»2E-02
0.7273E-03
0.266VE-03
O.M64E-03
0.00
0.0«
0.00
0.01
99.95
* 92.07
* 6.38
* 1.50
0.0
0.12
0.00
0.0
99.88
* 82.03
* 15.81
* 2.05
0.00
0.00
0.00
0.0«
99.96
* 86.13
* 13.31
* 0.52
0.0
0.0
0.0
0.0
0.0
* 0.0
* 0.0
* 0.0
0.0
0.0
0.0
1.81
98.19
* 19.5«
* 18.15
* 30.41
*
*
*
*
*
*
*
*
*
*
*
*
4
*
*
99.69
67.43
89.34
2.24
7.98
7.35
9.51
0.12
0.0
32.51
10.56
0.0
1.33
1.09
9.21
0.03
0.31
0.06
0.10
97.26
90.69
78.14
12.07
0.47
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.51
9.01
0.90
9.90
0.00
-------
B3CLIDE
BA-226
PEBCEHT OF TESTES DOSE BY EACH PATH*AT
PATHSAT DOSB(flll-BEHS) PESCEIT OF TOTAL
PB-210
PO-210
RV-222
H-3
SOBB AIB
SUBFACE
SWIHHIIG
IHHAL.
IIGBST.
7EGET.
HEAT
HILK
SBBH 1IH
StlRFfcCB
StlflBIIC
IBHAL.
IBGEST.
7BGHT.
DRAT
HItS
SOBS AIB
SORFACB
SBIHHI1S
IHHAL.
ISGBST.
fEGET.
BBAT
HILK
SOBB AIB
SVBFtCB
SVZIIBIIG
IIBAt.
IIGIST.
TE6ET.
BEAT
BILK
SOBS KZB
SOBPACE
SVIBBIVG
IIH1L.
IIGE3T.
TEGET.
BBAT
HZ1K
0.102SE-08
0.9»13E-03
0.5153E-06
0.1172E-03
0.12»9E 01
0.1151E 01
0.7976B-01
0.1869B-01
0.0
0.3708E-03
0.556BE-07
0.0
0.2071B-02
0.1701E-02
0.3278B-03
0.4255B-04
0.1975B-11
0.»822E-06
0.3505B-09
0.283W-03
0.7925B 00
0.6829B 00
0.10SSE 00
O.M28E-02
0.9
0.0
0.0
0.0
0.0
0.0
0.0
0.9
0.0
0.0
0.0
0.257SB-0*
0.1««2E-02
0.7273B-03
0.266»B-03
0.4«6«B-03
0.00
0.07
0.00
0.01
99.92
* 92.05
* 6.38
* 1.49
0.0
15.18
0.00
0.0
84.82
* 69.65
* 13.42
* 1.74
0.00
0.00
0.00
0.04
99.96
* 86.13
* 13.31
« 0.52
0.0
0.0
0.0
0.0
0.0
* 0.0
* 0.0
* 0.0
0.0
0.0
0.0
1.75
98.25
* 49.56
* 18.16
* 30.42
PEBCEBT OF DOSE PROH ALL 10CLIOES
99.81
69.38
90.19
27.48
61.08
» 56.27
* 3.90
* 0.91
0.0
30.58
9.75
0.0
0.10
* 0.08
* 0.02
* 0.00
0.19
0.04
0.06
66.48
38.75
* 33.39
* 5.16
* 0.20
0.0
0.0
0.0
0.0
0.0
* 0.0
* 0.0
* 0.0
0.0
0.0
0.0
6.04
0.07
* 0.04
* 0.01
* 0.02
-------
OTCLIDB
Jtt-226
PMCEBT OF OffcBIES DOSE BT E»CH PATBV1Y
PMHfM OCSB(B»W-BBBS> PZBCMT 0? TOTM.
PB-210
PO-210
8H-222
H-3
SOBS tia
SUHFiCB
SBIHBHC
IHH1L.
ISGIST.
V2GBT.
HBfcT
BILK
SOBM 4IH
SOBftCB
SBIHHIBG
IBH1L.
IBGBST.
TEGBT.
HZkT
niLK
SOBH lit
S1ISHIBG
IBHit.
IBGEST.
TB6BT.
HEAT
BILK
SOBH UR
SORFKCE
SVXHHXVS
IIH1L.
IBGBST.
VBGET.
MBit
BILK
STJBB 1IB
SDBfACE
SVtitBIBG
IVBAL.
IBGEST.
TBSBT.
NEAT
MILK
0.4402B-09
0.3613E-03
0.2213B-06
0.m2B-03
0.12S1B 01
0.1153S 01
0.7989B-01
0.16728-01
0.0
0.2192B-03
0.3292B-07
0.0
0.2071E-02
0.1701B-02
0.3278B-03
0.«2SSE-0«
0. 10a7E-11
0.25568-06
0.1858E-09
0.2B34B-03
0.7925B 00
0.6829E 00
0.10S5B 00
O.K128B-02
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2554B-04
0.14428-02
0.7273B-03
0.2664B-03
0.4464B-03
0.00
0.03
0.00
0.01
99.96
* 92.08
* 6.38
* 1.50
0.0
9.57
0.00
0.0
90.43
* 74.26
» 14.31
* 1.86
0.00
0.00
0.00
0.04
99.96
* 86.13
• 13.31
* 0.52
0.0
0.0
0.0
0.0
0.0
* 0.0
* 0.0
* 0.0
0.0
0.0
0.0
1.74
98.26
* 49.57
* 16.16
* 30.43
PIBCEKT Of DOSE FBOK U.L KHCtlDES
99.76
62.21
86.99
27.50
61.12
* 56.30
* 3.90
* 0.91
0.0
37.75
12.94
0.0
0.10
* 0.08
« 0.02
* 0.00
0.24
0.04
0.07
66.51
38.71
* 33.35
» 5.15
* 0.20
0.0
0.0
0.0
0.0
0.0
* 0.0
* 0.0
* 0.0
0.0
0.0
0.0
5.99
0.07
* 0.04
* 0.01
* 0.02
-------
EXPOSOBE BOOK
SOBH AIB
SOBPACE
SVXBBXIG
XIBAL.
XWGEST.
YBGET.
HEAT
BILK
SXPOSOBB BODE
SDBB AIB
SOBPACB
SVIHBZie
IIHAL.
XVGEST.
TBCBT.
BEIT
HUE
EXPOSDBB BODE
SOBH AXB
SOBPACB
SWZBSIIO
IIHlt.
IIGEST.
TE6ST.
BEIT
BZ1K
COHtBIBOTIOl OF EXPOSUBE NODES TO TOT.BOOT DOSES
IMUiL DOSE(HAS-REHS)
0.8421B-09
0. 1107E-02
0.«8S2E-06
0.2166E-02
0. 1670E 02
*0.1529E 02
•0.1173E 01
*0.2««8E 00
COVTBZBOTIO* OP EXPOSUBE BODES TO B BIB DOSES
IIRUIL DOSE(BtV-BEBS)
0.1208B-08
0.1646E-02
0.7051E-06
0.6662E-03
0.*556B 01
•0.4136B 01
•0.3586B 00
•0.6091B-01
COITBIBOTIOI OP BXPOSOBE BODES TO 10VGS DOSES
AIIOIL DOSB(Hkl->BBS)
0.7425B-09
0.8804E-03
0.«135E-06
0.2602B-01
0.1554E-02
• 0.8308E-03
•0.27HOE-03
•O.M81B-03
PEHCEBT OF TOt»L DOSE
0.0000
0.0066
0.0000
0.0130
99.9801
* 91.K937
* 7.0218
* 1.4651
PEBCEIT OP TOTAL DOSE
0.0000
0.0361
0.0000
0.0146
99.9492
* 90.7460
* 7.8670
* 1.3362
PBBCBIT OP TOTAL DOSE
0.0000
3.0940
0.0015
91.4422
5.462*
* 2.9195
* 0.9629
* 1.5748
-------
EIPOSOBE MODE
SOBH AIR
SURFACE
SVIHHIHG
IHHAL.
IHSE5T.
VEGBT.
HEAT
BILK
EXPOSURE BODE
SOBH ilH
SURFACE
SHIHHIHG
IHHAL.
IHGEST.
VBGBT.
HEAT
BILK
EXPOSURE HODE
SOBH AIB
SURFACE
SWIHHIHG
IHHAL.
IHGEST.
TEGBT.
HEAT
BILK
COHTBIBUTIOH OF EXPOSURE PODES TO EWDOST DOSES
ARKOAL DOSE(HAN-REdS)
0.1399E-08
0.2018E-02
0.8333E-06
0. 18993-02
0.1967B 02
*0.1803E 02
•0.13IUB 01
*0.2948E 00
COHTBIBOTIOB DF EXPOSOBE BODES TO S WAIL DOSES
AHHUAL DOSE(BAH-BEBS)
0.5H95E-09
0.6809E-03
0.3103E-06
0.2701E-0«
0.1760E-01
*0. 1520E-01
*0.1778E-02
*0.6209E-03
COHTBIBOTIOB 3F EXPOSURE MODES TO LLI HALL DOSES
1HUOAL DOSE(HAH-BEHS)
0.4606E-09
0.5087E-03
0.2S08B-06
0.9001B-OU
0.9790E 00
*0.8849E 00
*0.8167E-01
*0.12«2B-01
PEHCEHT OF TOTAL DOSE
0.0000
0.0103
0.0000
0.0097
99.9801
* 91.6523
* 6.8297
* 1.4983
PEHCEHT OF TOTAL DOSE
0.0000
3.7193
0.0017
0.1 »75
96.1314
* 83.0211
* 9.7107
* 3.3916
PERCEHT OF TOTAL DOSE
0.0000
0.0519
0.0000
0.0092
99.9388
* 90.3329
* 8.3376
* 1.2682
-------
EXPOSOBB NODE
SOBB AIB
SOBPACB
swinniHG
IRBAL.
IR6BST.
TBGBT.
BBAT
BILK
BXPOSVBB HOPE
S«TB» til
SOTPACB
IBHJU.
ZI6EST.
YB6ET.
HUT
•III
BXPO3OBB JtODB
SflBH III
snrraci
SVXRBZV8
ZIBIL.
ZI6EST.
TBCBT.
HUT
BZIK
COBTHIBOTIOH 3P MPOSOBE BODES TO THIBOID DOSES
AIIDAL DOSE(HAH-BEBS)
0.8397E-09
0.1093B-02
0.4324B-06
O.K261B-03
0.2045B 01
•0.1836B 01
•0.1SS9B 00
•0.233 IB-01
COBTKZBOTZOB OP EXPOSURE BOOBS TO LITEH DOSBS
AIIOAi. DOSB(»A«-BEHS)
O.M19B-09
0.7*271-93
0.35«7B-06
0.10188-02
0.3796B 01
•0.334 IB 01
•0.421SK 00
•0.3388B-01
COBTIZBDTZOI OF BPOSOIB BODES TO KI DIETS DOSBS
AIBOAI DOSB(IUB-IBBS)
O.C088B-09
0.73B9B-03
0.3415B-0*
0.5226B-02
0.1563B 02
•0.1354B 02
•0.2000B 01
•0.9721B-01
PEBCBRT OF TOTAL DOSE
0.0000
0.0539
0.0000
0.0208
99.9258
• 89.7065
• 9.0806
* 1.1387
PEBCBRT OP TOTAL DOSE
0.0000
0.0196
0.0000
0.0268
99.9536
• 87.9624
• 11.0990
• 0.8922
PEBCBRT OP TOTAL DOSE
0.0000
0.0047
0.0000
0.0334
99.9619
* 86.5506
• 12.7895
• 0.6216
-------
EIPOS0BE BODE
SOBH ME
SURFACE
SHIHIUSG
IHHAL.
IIGEST.
TBGBT.
HEAT
BILK
EXPOSURE BODE
SDBH ilB
SURFACE
SHIBHIHG
IBHAl.
IIGEST.
TE6ET.
HEAT
BILK
COSTHIBOTIOI OP EXPOSURE BODES TO TESTES DOSES
MIOAL DOSE(HAS-HBHS)
0.1027E-08
0.1213B-02
0.5713E-06
0.4264E-03
0.2045E 01
*0.1836B 01
*0.1SS9E 00
*0.2331E-01
COHTBIBOTIOI OP EXPOSURE BODES TO OVARIES DOSES
AHHOAL DOSE(HAH-REBS)
0.4412E-09
0. 5807B-03
0.254 HE-06
0.42618-03
0.2047E 01
»0.1838E 01
*0. 1860E 00
*0.2334E-01
PEBCEHT OP TOTAL DOSE
0.0000
0.0592
0.0000
0.0208
99.9199
* 89.7012
* 9.0800
* 1.1386
PERCEBT OF TOTAL DOSE
0.0000
0.0284
0.0000
0.0208
99.9508
* 89.7314
* 9.0801
* 1.1393
N3
O)
O
-------
TOT1L DOSE TO BftCH OEG1B THEOOSH ILL PITHVATS
OHG1IT DOSE (IUH-BEaS)
TOT.BODT 0.16711 02
R H»R 0.4558E 01
L01GS 0.2846B-01
BIDOST 0.1968E 02
S WILL 0.1631E-01
LLI WILL 0.9796E 00
THTIOID 0.20«7B 01
LITER 0.3798Z 01
KZDIETS 0.1564E 02
IBSIBS 0.20»7B 01
OTAIIES 0.20*88 01
-------
COHTBIBOTOBS TO OBGA1 DOSES
PEBCEHT
I OCT.IDE TOT. BODY B HAB IOIGS BHDOST S »»LL HI WALL THIBOID LITER KIDIETS IESTES DTARIES
B 1-226
PE-210
P 0-210
fill- 222
H-3
91.8693
3.0019
5.1202
0.0
0.0088
79.3290
2.1441
18.4947
0.0
0.0322
37.0638
0.9700
56.8097
0.0
5.1564
94.7674
3.3538
1.8715
0.0
0.0074
52.9205
1.3320
37.7318
0.0
8.0157
71.8967
0.1551
27.7983
0.0
0.1500
61.0738
0.1210
38.7335
0.0
0.0717
32.8553
2.5978
64.5082
0.0
0.0386
7.9786
1.3261
90.6859
0.0
0.0094
61.0778
0.1193
38.7313
0.0
0.0717
61.1133
0. 1118
38.7033
0.0
0.0716
-------
HOCLIDE
BA-226
Bi-226
BA-226
B 1-226
BA-226
81-226
BA-226
BA-226
BA-226
BA-226
BA-226
PB-210
PB-210
PB-210
PB-210
PB-210
PB-210
PB-210
PB-210
PB-210
PB-210
PB-210
PO-210
PO-210
PO-210
PO-210
PO-210
PO-210
PO-210
PO-210
AHSOAL POPOLAHOH DOSES (HAB-BERS)
OBGAH
TOT. BOOT
B BAB
L0HBS
El DOST
S WALL
LLI BALL
TBTROID
LITEB
KIDBETS
TESTES
OTABXES
TOT.BODI
B BAB
LOHGS
EHDOST
5 WALL
LLI WALL
TBTBOID
LZTEB
KIDIBIS
TESTES
OTABZES
TOT. BODY
B HAH
LOHGS
EHDOST
S WALL
LLI WALL
TBYBOID
LZTEB
DOSE
0.1S3SE 02
0.3616E 01
0. 1055E-01
0. 186SE 02
0.96B7E-02
0.7043B 00
0.1250B 01
0. 1248B 01
0. 1248E 01
0.1250E 01
0.1252E 01
0.5015E 00
0.9773B-01
0.2760E-03
0.6599E 00
0.2438E-03
0. 1519E-02
0.2476B-02
0.9866E-01
0. 207«B 00
0.2««2E-02
0.2291E-02
0.8554E 00
0.8430E 00
0. 1617E-01
0.3682E 00
0.6907E-02
0.2723E 00
0.7928E 00
0.2450E 01
to
a
-------
PO-210
PO-210
PO-210
81-222
BI-222
BI-222
BI-222
BI-222
BI-222
BI-222
BI-222
BI-222
BI-222
11-222
H-3
H-3
H-3
H-3
H-3
H-3
H-3
H-3
H-3
H-3
H-3
KZOIBTS
TESTBS
OTABIES
TOT. BODY
B HIB
UJBGS
EIDOST
S I ILL
LLI WILL
THYROID
LIVES
KID IBIS
TESTES
OVARIES
TOT. BODY
B HkR
LOIGS
BIDOST
S WALL
LLI WILL
THYROID
LITEB
KI DIETS
TESTBS
OVIRIES
0. 1418E 02
0.7928E 00
0.7928E 00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 1467B-02
0. U67B-02
0.1467E-02
0. 14628-02
0. 1467E-02
0. 1469E-02
0. 1467E-02
0. 1467E-02
0. 1468E-02
0. 1467E-02
0. 1467E-02
-------
BOBKIHG LEVELS FOB Bll-222 ABO ITS SHOBT-LIFE PBOGEHT IT VIEIOnS LOC1TIOFS IH THE EHVIFCHHEJTT
(FB1CTIOB OF EQaiLIBBHIH iSSBHED FOB WOBKIHG IF.7EL CALOJL1TIOES=0.7005
»BE»
»I»D TOB1BD
DISTANCE
(HB7SBS)
fOBKIHG LEVEL
(PO?tJL»TIOH)
1207
2U14
4023
5632
1
1
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
S
5
5
5
5
S
5
S
12068
20113
321SO
48270
£4360
80*50
1207
2414
«0 23
5632
7201
12066
20113
32180
43270
64360
60450
1207
2414
4023
5632
7241
1206S
20113
321 BO
18270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80150
1207
2414
4023
^(.32
7241
12063
20113
32180
0.0
0.0
0.0
0.0
0.0
0.779E-06
0.0
0.0
0.19BE-07
0.851E-06
0.490E-05
0.0
0.0
0.0
0.0
0.0
0.0
0.196E-05
0.523E-06
0.146E-05
0.494E-06
0.345B-06
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.U06E-05
0. 383E-05
0.124E-05
0.0
0.0
0.0
0.0
0.0
o.o
0.136E-05
0.104E-05
0. 160E-05
0.986E-05
0.124F-04
0.0
0.0
0.0
0.0
0.0
0.119E-05
0.132E-05
0.0
-------
7
7
7
7
7
7
7
7
7
7
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
18270
64360
80450
1207
2414
4021
5632
7241
12068
20113
32180
48270
64369
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
0. 186E-06
0.114E-06
0.5228-05
0.0
0.181K-04
0.0
0.0
0.0
0.0
0.0
0.5251-06
0.348E-06
0.755B-05
0.535E-05
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.157E-05
0.572E-06
0.195E-OS
0.1578-06
0.0
0.0
0.0
0.0
0.0
0.0
0.266C-OS
0.273«-05
0.8165-06
0.424*-06
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1798-04
0.0
0.911B-06
0.0
0.0
0.0
0.0
0.0
0.0
0.163E-04
0.0
0.333E-05
0.971B-06
0.503E-06
0.503E-06
0.0
0.0
0.0
0.0
0.0
0.107E-04
0.962E-06
0.0
-------
??
S
c
e
11
11
11
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
14
14
15
15
15
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
16
16
16
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
804SO
1207
2414
4023
5632
7241
12068
20113
32180
48270
64360
80450
0.847E-06
0.427E-06
0.767E-08
0.0
0.0
0.0
0.0
0.0
0.0
0.226E-05
0.0
0.898E-06
0. 252E-06
0.324E-06
0.0
0.0
0.0
0.0
0.0
0.0
0.296E-06
0.0
0.847E-07
0.399E-07
0.584E-06
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.260E-06
0. 138E-06
0.967E-06
0. 179E-05
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 149E-06
0.254E-06
0.118E-05
0.0
0.0
0.0
0.325E-05
0.0
0.0
0.0
0.0
0.984E-07
0.267E-06
0.471E-05
COLLECTIVE WOBKIHG IEVEL- 0.168E-03
------- |