United States
Environmental Protection
Agency
Office of Radiation Programs
AW-459
Wash DC 20460
EPA 520/6-78-005
June 1978
Radiation
£ER&
Development and
Application of a
Risk Assessment Method
for Radioactive Waste
Management
Volume
Economic Analysis;
Description
and Implementation
of AMRAW-B Model
-------
EPA REVIEW NOTICE
This report has been reviewed by the Office of Radiation Programs, U.S.
Environmental Protection Agency (EPA) and approved tor publication. Approval
does not signify that the contents necessarily reflect the views and policies
of the EPA. Neither the United States nor the EPA makes any warranty, expressec
or implied, or assumes any legal liability or responsibility of any information,
apparatus, product or process disclosed, or represents that its use would not
infringe privately owned rights.
-------
EPA 520/6-78-005
DEVELOPMENT AND APPLICATION OF A RISK
ASSESSMENT METHOD FOR RADIOACTIVE WASTE MANAGEMENT
Final Contract Report
Principal Investigator: Stanley E. Logan
Bureau of Engineering Research
The University of New Mexico
Albuquerque, New Mexico 87131
Volume IV; AMRAW Computer Code Users' Manual
S. E. Logan
July 1978
Prepared for
U. S, Environmental Protection Agency
Under Contract No. 68-01-3256
Project Officer
Bruce J. Mann
Office of Radiation Programs-LVF
P. O. Box 15027
Las Vegas, Nevada 89114
-------
Page Intentionally Blank
ii
-------
F01EW01D
The 1PA Office of Radiation Programs carries out a national program
to evaluate human exposures to radioactivity, and to promote the
development of controls to protect the environment and public health
from such radioactivity. An important part of this program consists of
the development of environmental protection criteria and standards for
radioactive waste management and disposal,
To sustain this effort, studies have been supported by EPA to
develop methods to evaluate the environmental adequacy of proposed
waste management alternatives, and this report describes one of the
first attempts to develop a comprehensive assessment model. It has
been funded at a very modest level. Much interest has been expressed
in this work, and through publication, EPA is making it available to
those involved with the development and use of models as decision—
making tools.
In order for models to be useful as tools for deci a ion-making
concerning radioactive waste management alternstivei , their
capabilities and limitations must be fully understood. It should be
noted that assessment models in themselves will not identify optimum
waste management choices. However, they can he uied to compare well
defined alternatives. One of the necessary steps in any model
development and validation process is the comparison of results with
results obtained from the application of alternate models to test
cases. It is hoped that as other comprehensive assessment models become
available, comparison studies can be performed.
The methodology described herein has been applied, for model
illustration purposes, to a reference repository in a bedded salt
formation located in the southwestern United States, Any results
published in this report should not be interpreted as implying
conclusions concerning the suitability of the reference site or any
site-specific method/repository combination for the preparation and
disposal of radioactive waste.
Comments on this analysis as well as any new information would be
welcomed; they may be sent to the Director, Technology Assessment
Division (AW-459) Office of Radiation Programs, U.S. Environmental
Protection Agency, Washington, D.C. 20460.
~H. D. Rowe, Ph.D.
Deputy Assistant Administrator
for Radiation Programs (AW-4S9)
111
-------
Page Intentionally Blank
-------
ABSTRACT
A Radioactive Waste Management Systems Model, developed and imple-
mented by The University of New Mexico tinder contract with the U. S.
Environmental Protection Agency, is presented. The systems model and
associated computer code called AHRAW (assessment Method for Radioactive
Waste), has two parts. The first part, AMRAW-A, consists of the Source
Term (radioactive inventory versus time), the Release Model, and the
Environmental Model. The Release Model considers various geologic and
man-caused events which are potential mechanisms for release of radio-
active material beyond the immediate environs of a repository or other
location; the risk analysis mode events distributed probabilistically
over time, and the consequence analysis mode uses discrete events occur-
ring at specified times. The Environmental Model includes: 1) the trans-
port to and accumulations at various receptors in the biosphere,
2} pathways from these environmental concentrations, and 3) resulting
radiation dose to man.
second part of the systems model, AMRMW-B, is the Economic Model
which calculates health effects corresponding to the various organ dose
rates from AMRAW-A, collects these health effects in terms of economic
costs and attributes these costs to radionuclides, decay groups, and
elements initially in the waste inventory. Implementation, with calcu-
lated results, of AMR&W for Terminal Storage in a Bedded Salt Reference
Repository are presented. Preliminary demonstrations for the repository
operations phase of waste management and terminal storage in a shale
formation are described} possible applications to other radioactive and
nonradioactive hazardous materials are discussed. AMR&W uniquely links
all steps together in a continuous calculation sequence.
v
-------
ACKNOWLEDGEMENTS
Funding for this project was initially provided by the Energy/Environ-
ment Program, Office of Research and Development, and subsequent funding
by the Office of Radiation Programs, EPA.
Persons at the EPA, other federal agencies, national laboratories,
federal contractors, and foreign correspondents have provided helpful
suggestions during progress of the work or through review of draft reports.
These contributions are greatly appreciated though space does not permit
acknowledgement of each individual contribution.
Assistance in planning the AMRAW users' guide was by K. E. Patterson
and C. C. Herrmann. AMRAW-B information used for preparation of the guide
was furnished by S. Ben-David and D. S. Brookshire; auxiliary program
material was prepared by H. S. Hg. Others at UNM who participated in the
project, including AMRAW programming, and other persons making direct
contributions are named in the Acknowledgements section of Volume I.
vi
-------
DEVELOPMENT AND APPLICATION
OF A RISK ASSESSMENT .METHOD
FOR RADIOACTIVE WASTE MANAGEMENT
VOLUME LISTING
VOLUME I
VOLUME II
VOLUME III
VOLUME IV
GENERIC DESCRIPTION OF AMRAW-A MODEL
IMPLEMENTATION FOR TERMINAL STORAGE IN
REFERENCE REPOSITORY AND OTHER APPLICATIONS
ECONOMIC ANALYSIS; DESCRIPTION AND IMPLEMENTAT
OF AMRAW-B MODEL
AMRAW COMPUTER CODE USERS' MANUAL
vii
-------
VOLUME IV
TABLE OF CONTENTS
PAGE
Foreward 1 n 1
Abstract Y
Acknowledgements Y!
List of Volumes V11
List of Figures x
List of Tables x
List of Abbreviations, Symbols
and Nomenclature X11
CHAPTER 1, INTRODUCTION, ,,,,,.. ..... . ....... ....... 1
PART 1: AMRAW-A USERS' GUIDE
CHAPTER 2 , SUMMARY ..... , , , ..... , ....... , , ........ 5
A- PROGRAM SUMMARY ......,,,. ..... . , . , ..... .... 5
B. PURPOSE , ...... ...,,..,,. ....... ...... ...... 6
C, METHOD , . . . ...... . . , , ...... ..,,.,... ....... . 7
CHAPTER 3, INPUT/OUTPUT DESCRIPTION, ..... , ....... 11
A. CARD INPUT SPECIFICATIONS ..... , ......... , . , , 12
B, OUTPUT DESCRIPTION ....... .................. 23
CHAPTER 4, PROGRAM OPTIONS .................. , , . , , -27
CHAPTER 5, ERROR MESSAGES , ......... ....,,,, ...... 31
APPENDICES FOR PART 1
A. BACKGROUND MATERIAL ............. ..... ...... 33
B. SAMPLE RUN REQUEST ..... , . . . . .......... ..... 34
C. SAMPLE CODING FORM .,.,......, ........ , ..... 35
D, JOB PROCESSING INSTRUCTIONS , , .............. 41
E. OPERATING DECK SETUP . ............ , . , ...... , 42
F, SAMPLE INPUT AND OUTPUT ,.,.,.....,. ...... . , 43
VJ-ll
-------
TABLE OF CONTENTS (CONTINUED)
PAGE
G, PROGRAMMER's NOTES ....I......,,...,.,,,,,,, 67
H, LISTING ,,,,,,,,,v,,,,,,,-.,,,,,,,,,. 70
I, FLOWCHART ... ....,,,,',,,,,,.,•-,•,.,,,,•,,,,,,,, 89
J, AUXILIARY PROGRAMS ,.,,,,,..,.. ,,,,,,,,,,, 91
PART 2; ANRAH-B USERS' GUIDE
CHAPTER 6 • SUMMARY ,.,.,.,.,,,,..,,,,;.;,,:,,,,,,".,,. 109
A, .,,,,,,,..,.,,, •,.-.,,',,,,•,,,-.,, 109
B, PURPOSE ,..,,,,,,,,,,,,,, v,,,,,..,,, ,,, 110
C, METHOD ,,,, .,,,,.,,.,,,,,,,,.,,,,,,,,,... Ill
CHAPTER 7, INPUT/OUTPUT DESCRIPTION,,,,,..,,,,,,,,,, 113
A, CARD INPUT SPECIFICATIONS ..,.,,,,,.,,,,.,,. .^. 115
B, OUTPUT DESCRIPTION ,,,,,.,,,......,,,,, 118
CHAPTER 8, PROGRAM OPTIONS ,;,,,,,,,,»,,,,,,,,,,..-,,, 121
CHAPTER 9, ERROR MESSAGES ...,,,,,.,,.......,,,,,,,, 123
APPENDICES FOR PART 2
K, MATERIAL ,.,,...,,,, V,,,,,..., 125
L, SAMPLE RUN ,,,,,,,..,..,.,.,,.,,.,,,,. 127
fi SAMPLE CODI NG FORM «,, , ,,, 129
N. JOB PROCESSING INSTRUCTIONS ,,,,,,,,,, 131
0. OPERATING DECK SETUP ,.,,,,,,,,-,,,,,,,,,,,,,,, 133
P, SAMPLE INPUT AND OUTPUT ,,,,,,,,,,,,,,,,,,,,,» 135
Q, PROGRAMMER'S NOTES ,,,,,.,,...,...,,,,,,,.,,.. 151
R, AMRAW-B LISTING ,,,,,,,,,,.,,,,, ,,, 155
o i i LOWCHART i>iiiiiiiiii«iiitii
-------
VOLUME IV
LIST OF FIGURES
FIGURE - PAGE
1-1 Radioactive waste management systems model 2
1-2 one branch of systems model 3
I-1 AMR&W-A simplified flowchart •.".. 90
J-l SENDY simplified flowchart. ... .. — . — 97
3-2 SE1DY operating deck setup 98
S-l AMRAW-B simplified flowchart . 164
LIST OF TABLES
TABLE PAGE
3-1 Directory of AMRAW-A Output Tables 24
4-1 Calculation and'Output Options Controlled by SPRINT.... 28
C-l Sample Coding Form for One Nuclide, One Zone,
and One Organ, 36
F-l , Input Data _ 45
F-2 Output Data 49
H-l Main Program ..........;...... 71
H-2 Subprograms 84
J-l POLYEPA Program 93 "
J~2 SEWDY Program «. 101
7-1 Arrangement of AMBAW-A Dose Rate Output?
I«0eal Dose Bate by Zone and Nonspecific Dose Rate ..... 114
7-2 Directory of AMRAW-B Output Tables 119
M-l Saaiple Coding Fom with First
Cards of Each Type Illustrated 130
-------
LIST OF TABLES (CONTINUED)
PAGE
P-l Data File, AMB ......... ................................ 136
P-2 Data File , AMlE ........................................ 137 -
P-3 Data File, ECON48 ....................................... 138
P-4 Sample of AMRAW-A Output ............................... 139
P-5 Sample of AMRAW-A Output ............................... 140
P-6 Output Summary of Selected Input . . . . . .................. 142 '
P-7 AMRAW-B Output Table 1-1; Zonal and Total
Damages for High Population Projection ................. 143
P-8 AMRAW-B Output Table 1-2; Zonal -and Total
Damages for Low Population Projection .................. 144
P-9 AMRAW-B Output Tables 2-9 and 2-14; Annual
Damage Rates by Nuclide ................................ 145
P-10 AMRAW-B Output Table 3;
Discounted Present Values .............................. 146
P-ll AMRAW-B Output Table 4-1; High
Population Scenario, Number
of Deaths per Time Interval ............................ 147
P-12 AMRAW-B Output Table 4-2;
Low Population Scenario,
Number of Deaths per Time Interval ..................... 148
P-13 AMRAW-B Output Table 5-1; Total
Undiscounted Damages for Each
Zone for Each Time Interval, High Population ........... 149
P-14 AMRAW-B Output Table 5-2; Total
Undiscounted Damages for Each Zone
for Each Time Interval, Low Population .................
R-l AMRAW-B Listing ........................................ 156
T-l COMPRESS Listing ......................... .............. 166
xi
-------
PART 1
A
VOLUME IV
LIST OF ABBREVIATIONS,
AND NOMENCLATURE
AA1(JF, J)
ADJ
ADJ2(JP,JPA,-I2)
AL
AMRAW
AMRAW-A
AMRAW-B
ARBAW (IZ)
AREAG
AT
Al
A2
Fraction of inventory transferred to receptor JF if
a release via cutset J (i.e., JJ) occurs
Fraction of inventory transferred from one environ-
mental receptor pool to another pool per unit time;
obtained from ADJ1 and &DJ2
MaKimum fraction of a quantity dispersed to receptor
JFA in Zone IZ which can be transferred to receptor
JF in the gone,* paired with ADJ 2 for inter-
receptor adjustments over time following an initial
dispersion*
Transfer rate constant associated with ADJ1, y
Axial dispersivity coefficient, m
(Assessment Method for Radioactive Waste) Assessment
Model and associated computer code
That portion of AMRAW which includes Source Terms,
Release Model, and Environmental Model
The economic part of AMRAW
2
Surface area of water by zone, cm
2
Zone land surface area, cm , over which nuclide is
deposited
Transverse dispersivity coefficient, m
Transfer coefficient giving fraction of inventory
transferred from inventory to receptor JF and due
to release mechanism under consideration; obtained
from subroutine FAULT and is equal to AAi{CTP,J) ex-
cept for leaching
Time transfer coefficient accounting for radioactive
and environmental decay occurring between release and
population dose times? calculated within subroutine
TRINP with help of function CRATIO for ground water
transport calculations
xii
-------
A2M1N
Truncation value (to 0.0) for A2 (accounts for decay
and transport processes)
B
BIOPAC {K, JF, I) Concentration or integrates concentration in food or
drink per unit receptor concentration, by subpath I,
up to MS = KSP(JP); units are CpCi-y/g)/(pCi/cm2)
for terrestrial food, {jiCi/g)/(vCi/cm3) for aquatic
food, and dimensionicss for drinking water
BULKD
Bulk solid density of aquifer, g/cm~
CINV
CFAI
CHECK
COMPRESS
CP(JF,J,K)
CRATIO
CRMIN
Transfer coefficient which transforms environmental
concentration in a receptor to corresponding dose
commitment rate to a specified organ; calculated in
subroutine TKMAN
Total number of canisters in inventory
Number of canisters exposed to leach incident
Flag for errors in data field; alphanumeric identi-
fication of checkpoint number (ICHEK)
An auxiliary program for preparing an AMRAW-B input
file from AMRAW-& output
Function parameter: size of step function, slope
of ramp function, exponential constant or set =1.0
for delta function; K is component factor
Subroutine in AMRAW-A for ground water transport
calculations
Cutoff value for CRATIO (ground water concentration)
D
DCi(K)
BEWE
BELTI,
Effective diffusivity for nuclide K leaching, cm /d
Time interval- over which environmental decay constant
is appliedi also, time increment for which inter-
receptor transfer is calculated
Time increment during release to environment period
XI 0.1
-------
DECFSC
DEP
BEPGND
DEPWFR
DFMIN
DISPN (JF, IZ)
Effective radioactive decay factor between two times
Deposition concentration for water and ground surface
(Ci/cm2) due to air deposition
Total deposition on land surface of zone
Total deposition on water surface of zone
Cutoff value for DECFAC (decay factor)
Area or volume over which, or in which, a release is
dispersed in each receptor JF in each zone IZ, cm^
or cm^
DOSF&C(K,JF,MQDE,IH) Dose commitment conversion factor for each organ
IH of N1HT total; each card has conversion factors
for specified nuclide and receptor/exposure mode
combination, {mrem/y)/(yCi/cm3} , (mrem}/(pCi/cm2)
or mreffl/pCi, as appropriate
(K)
Dissolution rate constant for nuclide K leaching, d
™- "I
EDC(K, I, IZ)
ELEM (ID)
F
FS
FADtT
FUNCTION CRAT1Q
FUNCTION KLEACH
Environmental decay constants for nuclides K, recep-
tor JF (represented here by I) and Zones IZ; data
sequence on cards is EDC by zone to MZ zones for
first nuclide, repeated in turn for each subsequent
nuclide to KK nuclides; if ISECT = 4, this group of
cards is repeated in turn for JF = 2 and JF = 3
Symbol for each of ND chemical elements
Exposed area of solidified waste specimen {canister
as fractured}, crn^
Subroutine in AMRAW-A which handles the Release Model
and provides transfer coefficients used to accumulate
releases to four preliminary input receptors
Determines concentration ratio in ground water at
discharge point compared to release point; this
ground water transport function is called by SUB-
ROUTINE TRINP
Calculates amount of nuclide leached into the ground
water preliminary environmental input receptor; the
function is called by SUBROUTINE FAULT when a leach
incident is involved
xiv
-------
6
GNDDIS
GNDEP
Ground dispersion, related to ground water velocity
and aquifer dimensions
Non-accumulating matrix which retains integrated
deposition for current time increment for use in
calculating transfer to terrestrial food products
H
HT
Height of aquifer, m
ICHCK
IFDIVW
Flag for errors in data file—gives check point
number
Ground water time increment control; IFDIVW = 0 avoids
subdivision of time increments and IFDIVW > 0 causes
sub-division branch in subroutine TRINP to be executed
IFLAGE(JF,MODE,I) Flag used in Environment-to-Man Pathways model
designating whether output is accumulated as "local
dose" {IFLAGE = I) or "nonspecific dose" {IFLAGE =
2).
IFLAG(JF,J,K)
IE
IN
IP
ISTART
ISTOP
ISECT
Probability function designation: 0 Constant
1 Step function
2 Ramp function
3 Exponential
function
4 Delta function
K is component factor of cutset J releasing to
receptor JF
Output medium for error and data check point messages
Input medium, normally card reader
Output medium (line printer or tape)
Starting zone number
Ending zone number
Control flag for EDC data; ISECT => 1: internal EDC
default values used for JF « 2 s 3 (= 2.30 x 1CT5),
type 36 cards ommited; ISECT = 2: EDC default values
used for JF = 3, type 36 cards read for JF = 2;
xv
-------
ITS
ITR
ITRS
ITHE
I2SUMY
ITSUMJ
iw
12
IZOHE(I)
IZONM
ISECT = 3: EDC default values used for JF » 2, type
36 cards read for JF = 3; ISECT = 4: type 36 cards
read for JF - 2, followed by cards for JF = 3
TIME subscript used for designation of time incre-
ment, At, within environmental time period of
interest
TIME subscript used for designation of time incre-
ments, At, within radionuclide release time period
TIME subscript for release start time; appears for
end of time increment when release calculations start
TIMB subscript for release end time; appears for end
of time increment when release calculations cease (end)
TIME subscript for first table in Section 6 of output
Increment on time subscript for successive tables
Model branch or waste management phase (IW = 1 is
residuals treatment; = 2 is transportationj = 3 is
repository operations, and = 4 is terminal storage)
Subscript—geographic zone designation
Identification number for each zone to be tabulated
up to IZONM zones? note, IZONE(IO) designates non-
specific dose category
Number of aones to be tabulated
JP
JFA
JJ(JF, I)
Subscript--Environmental Receptor designation (JF =
1 is air; = 2 is land surface; = 3 is surface water,-
=4 is ground water)
Environmental Receptor from which interreceptor trans™
fer is made to receptor JF
Cutset sequential identification number for cutset
I, up to NJ
K
K
Subscript—radionuclide designation, or in probability
calculations K designates component factor of cutset J
releasing to receptor JF
KVi
-------
KSUB
The nucli.de K level for subtotal line in tables (as
for subtotal of fission products followed by actinides)
L
LPRINT
Counter
MAN1L(ITE,IH)
MAN1N(ITE,IH)
MAN2L(ITE,IH,IZ)
Average annual local dose to individual by nuclide,
organ, and zone, mrem/y
Average annual nonspecific dose to population by
nuclide and organ, man-rems/y
Average annual local dose to individual, total all
nuclides, total all receptors, by organ and zone,
mrem/y
MAN2IiF (ITE,IH,IZ, JF) Average annual local dose to individual, total
all nuclides, by receptor, organ, and zones,
mrem/y
MAN2N(ITE,IH)
Average annual nonspecific dose to individual, total
all nuclides, total all receptors, by organ, man-rem/y
MAN2NF(ITE,IH,JF) Average annual nonspecific dose to individual, total
all nuclides, for receptor JF = 1 to 4, by organ,
man-rem/y
MC
MODE
MS
MT
MTADJ
MW
MZ
Ml
M10
Number of columns in output tables (FOR POLYEPA)
A major grouping of environmental pathways under a
receptor; in general, MODE = 1 is external exposure
and MODE = 2 is internal
Number of time intervals corresponding to the reposi-
tory operations phase (for POLYEPA}
Number of time reporting points (each "time increment"
is between adjacent time reporting points)
Number of interpolated output time points (for POLYEPA)
Maximum number of operation modes
Number of geographic zones calculated
Counter
Counter
xvii
-------
N
ND
NJ (JF)
NJJ(JP, 1)
NK
HPRIOT
NSP (JF)
NUCNAM (K)
Identification number of case or cases submitted
Number of chemical elements in inventory
Number of body organs being calculated
Number of cutsets (release scenarios) for each
receptor JF
Number of component factors for cutset I
Number of isotopes in inventory
Output table specification
Number of subpaths for each receptor JF; the value
of NSP for each JP applies to both 1 and 2
for each receptor
Symbol name for nuclide K, double precision, up to
8 characters each
0
ORGNAM (I)
Names of organs (hody sites) for which dose rates
are calculated/ up to I = NIHT, double precision,
up to 8 characters each
POLTOATA
PQLYEPA
POLYDD
PORE
PROBE £JF,J,K)
Data file for assembling POLYEPA input data
An auxiliary program for preparing nuclide inventory
data matrix by curve-fitting source data to pre-
scribed times specified in AMRAW input
POLYEPA output data storage file
Aquifer porosity (as decimal)
Initial probability of occurrence of component fac-
tor, y"-'-; K is component factor
R
RELOOT
Release fraction by each cut set for each nuclide,
to each Environmental Input Receptor
xviii
-------
REMO¥(JFA,IZ)
RKD(K)
RKDMRX
BLEACH
RU(JF, ITR)
RlJMIN
R2{JF,XTE,IZ)
R2CON
R2MIN
E2TOT
Used in accounting nuclide reduction in receptor
JFA due to interreceptor transfer to receptor JF
Distribution coefficient K., by nuclide K, cip /g
d
Cutoff value for RKD'(distribution coefficient K)
above which ground water transport calculations may
be bypassed
Subprogram in which handles leaching into
ground water
Release increment to each Preliminary Environment
Input Receptor from all release events by nuclide,
for different times, Curies
Truncation value (to 0.0) for R1J (Curies released
to a given receptor}
Adjusted concentration per release increment by
receptor
Intermediate unit conversion value of R2 used in
accumulating R2TOT
Truncation value (to 0.0} for R2 {component of
environmental concentration JR2TOT)
2
Accumulated net total concentration in iiCi per cm
or cm by zone and Inviromnent Input Receptor, for
different times
SENDY
SPACT (K)
SUBROUTINE FAULT
SUBROUTINE TRINP
An auxiliary program for comparing results in tables
from AMRAW run with corresponding tables from
another run
Specific activity of nuclide K,
Determines release probability transfer coefficient;
also, by use of time dependent component factors, the
subroutine can modify the nuclide inventory at risk
Determines transport- to- en viroRment transfer coeffi-
cient, accounting for decay and other processes such
as delay in ground water transport
Determines environment- to-man transfer coefficient
for dose to man via all pathways from environmental
concentrations
xix
-------
T
TFUEL
TIME (I)
TIMEAD(l)
TITLE
TP(JF,J,K)
Total inventory in repository, metric tons
The time in years at each of MT time reporting points
Time in years at each of MT&DJ output time points
(for POLYEPA)
Title of run or case (1-10)
Time at which functional change in probability
commences, y; K is component factor
V
VOL1NT(JF,MQDE,I,IZ) Consumption, exposure or food production rate, as
appropriate, y/y, cm3/y, or g/y
VS
vx
Volume of solidified waste specimen (canister) , crrf
Ground water seepage velocity, m/d
X
X(K, IT)
KL(I)
XX (ID)
Mass of nuclide K at TIME (If), grains
Distances from repository to average discharge point
in each zone for I = 1 to MZ zones; XL = 0.0 indi-
cates to code that contaminated plume does not dis-
charge in zone
Total inventory of each element at end of repository
operations, grains
Y
YW(I)
YY(I)
Effective width of plume (width for concentration
0.1% of center line value) in each zone (distance XL)
where discharge occurs, for I = 1 to MZ zones, m;
input as 0.0 for each zone where no discharge occurs
(not used except in output display)
Distance from plume centerline where concentration
equals average across effective width YW, in each
zone (distance XL) where discharge occurs, for I =
1 to MZ zones; input as 0.0 for each zone where no
discharge occurs (not used except in output display)
-------
z
ZAVG
(IZ)
PART 2
Average quantity of imclide in Curies during release
time increment
Dispersion allocation factors by zone IZ for transport-
to- environment receptor JF, Ci-y/cm3-Ci for JP = 1,
Ci/Ci for JF = 2, 3; for JF » 4, ZONJALQ » 1.0 desig-
nates effected ground water in zonei 0.0 designates
none
2
Surface deposition factor by zone 12, Ci/cm -Ci
AMB
AMRAW
AMRAW-A
AMRAW-B
AM1E
COMPRESS
DAMAGE
DDP
OLD
DPY
DT
DT9
One of three AMRAff-B input files? provides economic
model control and conversion data
(Assessment Method for Radioactive Waete) Assessment
Model and associated computer code
That portion of which includes Source Term,
Release Model, and Environmental Model
The economic part of AMRAW
One of three AMH&W-B input filesj provides time values,
imclide names and masses at each time
An auxiliary program for preparing an AMRAW-B input file
from AMRAW-A input
An intermediate calculated value, damage per person (or
nonspecific category), $/y, during a given time incre-
ment, for a given zone and nuclide, summed for dose to
all organs
Implied value of dose, $/man-rem
An output parameter for Table 4, denoting deaths per
time interval
Incidence rate for health effects, cases per 10 man-
rem (dose to organs)
An output parameter for Table 1, denoting DTZ summed
over all zones
An output parameter for Table 1, denoting DTE summed
over all zones and the nonspecific category
xxi
-------
DTZ
DYRH
DYRL
ECONxx
IH
IKK
IN
IP
IS
IT
ITS 3
IZ
K
MAN1
MAN1L
MAN IN
MZ
NG
NIHT
NK
An output parameter for Tables 1 and 2, denoting damage
rate (given nuclide and time) by zone for Table 1, $/y,
and various summations for Table 2. For the latter,
subscripts 1 through 5 represent, respectively; local
damage summed over zones for high population, local
damage summed over zones for low population, nonspecific
damage, total of local and nonspecific damage for high
population, and total for low population
An output parameter for Table 5, denoting discounted
damages per time interval, $, for high population pro-
jection
Same as DYRH except for low population projection
Dne of three AMRAW-B input files; provides restructured
output matrix MAN1 of dose rates from AMRAW-A (xx is case no.)
Organ identifier subscript
Subscript identity of each of K nuclides in group
Number which specifies computer input medium
Number which specifies computer output medium
Number which specifies an input medium with large storage
used for file ECONxx
Time subscript used in matrices
Number which specifies printing option for Table 2 (1 -
requests printing; 0 - suppresses printing)
Subscript used for zone identification
Number of nuclides in group
Refers to large dose rate output matrix from AMRAW-A
Average annual local dose to individual by nuclide, organ,
and zone, mrem/y, comprising part of MAN1
Average annual nonspecific dose to population by nuclide
and organ, man-rem/y, comprising part of MAN1
Number of geographic zones
Number of nuclide decay groups
Number of organs (body sites)
Number of nuclides
xxi i
-------
NT
POPH
POPL
PV2
REG
EATS
SPV
BS
(I)
TTD
TODH
TUDL
VOL
X
Number of times
Abbreviated'niaelids name, e.g., AM 242M
Input high population projection by zone
Input low population projection by zone
An output parameter for Table 3, denoting disconnected
present value of damages from a given nuclide over the
full tine range
Name of zone
Discount rate expressed as decimal; input in file
An output parameter for SS for all decay groups
An output parameter for Table 3f denoting sum of PV2 for
all nuelides in a given decay group, $; also, used for
marginal damages for a given decay group, ?/gm
Time in years for each subscripted value of TIME
An output parameter for Table 4, denoting sum of DLD
over all time increments
An output parameter for Table 5, denoting sum of DYRH
over all time increments
An output parameter for Table 5, denoting sum of DYKL
over all time increments
Cost of increased levels of risk} input in file AMB
Quantity of given nuclide in inventory at given time, grn
XXI13.
-------
CHAPTER 1
The Radioactive Waste Management Systems Model (Fig. 1-1} has sev-
eral parallel paths, each representing a phase in the waste management
sequence: residuals treatment {interim surface storage and solidifica-
tion at a reprocessing plant site), waste transport, repository operations,
and terminal storage. If other phases become applicable, such as interim
surface storage away from a reprocessing plant site, interim storage as
spent fuel, reprocessing of waste form, and other transportation steps,
each of these simply becomes an additional parallel path in the model.
One branch (parallel path) of the systems model is shown in greater detail
in-Fig. 1-2.
Implementation of the model is by the AMRAW computer code (Assess-
ment Method for Radioactive Waste Management). The code runs calculations
separately for each branch of the model. AMRAW is divided into two parts
which are run separately: 1) AMRAW-A (see Figs. 1-1 and 1-2), described
in Vols. I and II, begins with the inventory at risk and calculates
population dose rates, and 2) AMKAW-B, described in Vol. Ill, uses the
calculated population dose rates, applies incidence rates of health effects
associated with radiation dose and calculates the economic costs of health
effects in the population.
The model provides for technology assessment' of radioactive waste
management in two categories: 1} risk analysis, which considers the
probabilities of occurrence of various radiation release scenarios and
the consequence of such releases, and 2) consequence analysis, which
considers only the consequences of the various low-probability potential
release events assuming they do occur. The methodology permits evalua-
tion of the various long-term waste disposal methods and management
options, for protection of public health and safety and protection of
resources.
A user's guide for AMRAW-A is presented in Part 1 and for AMRAW-B
in Part 2 of this volume.
-------
REPROCESSING
PLANT
/
\
RESIDUALS
GENERATION
DAMAGE CHARGES
ASSESSED
RESIDUALS
RES I DO
TREATM
\
A!S
ENT
/
RELEASE
MODEL
\
/
ENVIRON,
MODEL
_S
/
ECONOMIC
MODEL
N
*^
X
WASTE
TRANSF
N
*
mi
/
RELEASE
MODEL
N
J
ENVIRON,
MODEL
\
/
ECONOMIC
MODEL
J \
Ss
X"
REPOSI
OPERA!
\
TORY
'IONS
/
RELEASE
WODEL
\
/
ENVIRON,
MODEL
\
/
ECONOMIC
MODEL
J \
\
/
TERMINAL
STORAGE
\
/
RELEASE
MODEL
N
/
ENVIRON,
MODEL
\
/
ECONOMIC
MODEL
/ \
/
A
Figure 1-1 » Radioactive waste management systems model.
-------
AT RISK
ACTIVITY TRANSFER(jCOEFFICIENT
^^tosmiatm^*^
TRANSPORT TO ENVIRONMENT
A
ENVI RONMENT-TQ-MAN PATHWAYS
w
ECONOMIC MODEL
HEALTH EFFECTS
i
DAMAGE CALCULATIONS
DAMAGES
Figure 1~2. One branch of systems model,
-------
PART 1
AHRAW-A USERS' GUIDE
CHAPTER 2, SUMMARY
CHAPTER 3, INPUT/OUTPUT DESCRIPTION
CHAPTER 4, PROGRAM OPTIONS
CHAPTER 5. ERROR MESSAGES
APPENDICES; A THROUGH J
-------
CHAPTER 2
SUMMARY
A. PROGRAM SUMMARY
Titles AMRAW-Aj Assessment Method for Radioactive Waste {First Part),
Abstracts AMRAW performs a sequence of calculations for an inventory
of radioactive wastes, evaluating release quantities, dis-
persion to the environment, and pathways for dose to man.
Effective Date: January, 1978.
Programmer: S. E. Logan
Computer: IBM 360/67
Language: Fortran IV
Core Memory Requirement: 256 k bytes
Execution Time {CP sec) ; < 1,300
Auxiliary Hardware Requirements5 Disk, Tape, Line Printer
-------
B. PURPOSE
AMRAW-A, the first part of the Radioactive Waste Management Systems
Model, calculates population dose rates from postulated releases of radio-
active material. Population dose rates are divided into local dose rates
for populations within each of several geographic and nonspecific
dose rates which are associated with largely exported agricultural pro-
ducts. Sub-models consider in series (see Fig, 1-2): the inventory at
risk (Source Term) , postulated release scenarios in the Release Model,
dispersion from the locale of release to environmental receptors in each
geographic sone {Transport to Environment) and the pathway analysis
(Environment-to-Man Pathways).
-------
C, METHOD
The AMR&W code is written in Fortran IV language. The AMRAW-& part
of the AMRAW computer code may be run for one or more branches of the
model, depending upon the number of sets of input data provided. The
discussion which follows is based upon the terminal storage branch, in
that the frame of reference refers to the inventory enplaeed in a reposi-
tory. However, the calculation flow of the model and code also applies
to the other branches.
The code is structured with sequences of "receptors" separated by
transfer coefficients. The receptors represent the progress of releases,
environmental concentrations, concentrations in" food and drink, radiation
doses, health effects associated economic damages. The transfer
coefficients are evaluated in subroutines using externally-determined
input data. The subroutines can be modified or replaced, providing a
modular arrangement. Factors for dispersion, biological accumulation,
dose, etc., used in the transfer coefficients, are evaluated externally
by various existing transport and dose codes.
Bach branch of the model (Fig, 1-2) is entered with the of each
significant radionuclide in the inventory at risk. This is converted
to Curies in the inventory by an activity transfer coefficient (specific
activity). The Release Model evaluates the probability for release by
each of numerous potential release mechanisms, and the fraction of the
inventory released by each such occurrence, during each increment of
time. AMRAW may be run for any of several release scenarios: 1) proba-
bilistic distribution of events over time, 2) discrete event at specified
time, 3) several events each at mean time of first occurrence, 4} dynamic
repository simulation, or 5) combinations of these. Subroutine FAULT
handles the Release Model and provides the transfer coefficients used to
accumulate releases to four preliminary input receptors from all release
events considered. This subroutine uses function RUS&CH when an event
involves leaching into ground water.
Releases as determined by the Release Model are not necessarily
directly to the environment. This is particularly true for deep releases
to ground water. The first portion of the Environmental Model is there-
fore the "Transport to Environment" section. This adjusts each release
-------
increment, obtaining the contribution-to-concentrations in environmental
input receptors at various times following release, These receptors
are: air, ground surface/ surface water, and ground water. The adjust-
ment provides for dispersion into each of the several geographical zones
comprising the study region, and then accounts for dispersion areas or
volumes in each zone. The adjustment also accounts for decay from the
time of release to the time being evaluated, transfer between receptors
(such as deposition from air onto ground), retardation in ground water
flow, and other environmental removal or fixation processes. Subroutine
TRINP handles transport from the preliminary input receptors, providing
transfer coefficients which account for physical and environmental decay
and ground water transport delays - This subroutine uses function CRaTIO
for the ground water transport calculations. Use of the transfer coeffi-
cients from TRINP by the main program leads to net environmental concen-
trations for input to pathway analysis.
The last portion of the Environmental Model covers the pathways
from environmental input concentrations to radiation dose to the popu-
lation, with dose rate calculations for several organs of concern. Sub-
routine TRMAN handles evaluation of transfer coefficients between
environmental concentrations and population dose rates for the various
pathways. Pathways include immersion in air, inhalation, ingestion of
ground water and contaminated food and drink {from contaminated ground
surface and surface water), submersion in water, and direct surface
exposure.
The present dimensioning of AMRAW-R is as follows:
1) Radionuclidesi 25,
2) Environmental receptors: 4, designated by programming as
Air, Land Surface, Surface Water, and Ground Water.
3} Release Model events: 9 events or event combinations under
each of the 4 environmental receptors. Each may be input with
up to 9 component factors. Each of these factors may be flagged
for type of function (constant, step, ramp, exponential, or
delta) and specified by three appropriate function parameters.
4} Environmental pathways: 2 main pathways (modes) are programmed
-------
for each environmental receptor. Dimensioning provides for up
to 6 subpaths for each receptor (each mode under a given recep-
tor is divided into the same number of subpaths}.
5) Geographic zones: 8.
6) Human organs: 8, Typically, one of these is total body, but
there is no restriction.
7) Time increments; 50.
With this dimensioning, the code runs with 256 k bytes of core storage,
10 cylinders (1459 k bytes) of disc storage, and requires 21 minutes of
CPU time in the UNM IBM 360/67 computer. The range of subscripts for
variables is specified by input data and may be any value within the
above dimensioning with the exception of environmental receptors which
are fixed within the code at four. Dimensioning may be increased if
necessary, limited only by available core storage or other system require-
ments .
Large output matrices for local and nonspecific dose rates are
written onto disc to conserve core space. Complete output is then writ-
ten onto magnetic tape for retention but output may be diverted directly
to printer by job control statements if preferred. Printed output is
subsequently obtained from the tape as needed. If AMRAW-B is to be
coupled to AMRAW-A for a combined run, AMRAW-B may access the disc for
dose rate input data. The operation demonstrated at UNM is separate
running of AMRAW-B. For this purpose, the dose rate portion of the
AMRAW-A output is obtained from tape.
-------
Page Intentionally Blank
10
-------
CHAPTER 3
INPUT/OUTPUT DESCRIPTION
Input for &MR&W-A is by an 80 column card data deck. There are 40
card types. As implemented at DNM» the input deck is read from two files
in disk storage (file division made between card types 19 and 20), instead
of front a card reader. No additional inputs are required. Card input
is described in the following section.
Output is described in Section 3.B.
11
-------
A, CARD INPUT SPECIFICATIONS
1. Data Deck Setup. Descriptions and nuittoer required of each card
type are given in section 2 which fallows. The sequence of the data
deck, beginning with the first or front card is listed below:
Card Type item
1 NCASE
2 TITLE
3 ND» KK, MT, IW, 1TRS, ITHE, MZ, N1HT, HPR1NT,
IFD1VW
4 RUMIN, A2MIN, CRMI1,
5 TIME
6 ELEM
7 TFOIL
8 XX
9 WJCNAM, X
10
11
12 DCl
13 DEC
14 ADJ1, KD32
15 DISPN
16 ZON&LO
17
18
19 RKD
20 CHECK, ICHCK
21 NSP
22 VOLINT
23 BIOFAC
24 CHECK,
25
26 DOSPAC
27 CHECK, ICHCK
28 NJ /m. . ,
(There are 4 sets of card
29 JJ, NJJ types 28 - 31)
12
-------
Card Type Item
30 AA1
31 PROBE, IFIAG, TP, CP
32
33 VX» PORE, At, AT, HT, BUEKD, FS, VS,
XL, YW, YY, CINV, CFAI
34 CHECK, ICHCK
35 ISECT
36 EDO (omitted if = 1)
37 CHECK, ICHCK
38 IZOKM
39 IZONB
40 ITSUMY, ITSDMJ, KSUB
13
-------
2. Description o£n Card Input. There 3 subscripts prominently-
Involved with input data: K, JF, and TZ. Subscript K designates the
radionuclide, presently dimensioned to handle up to 25 nuclides. Sub-
script JF designates the 4 environmental receptor (shortened to "receptor"
in descriptions which follow): JF = I is air, JF = 2 is land surface,
JF = 3 is surface water, and JF = 4 is ground water. Subscript 12
designates geographic zones in the study region, presently dimensioned
to handle up to 8 zones. Other subscripts are identified below as they
occur.
The largest matrices of data are for X (card type 9), BIOPAC (card
type 23), (card type 26), The Release Model input (card
types 28 to 31) can be as large as 400 cards if the full dimensioned
capability is used. If SDC (card type 36) is read in instead of using
internal default values, it is also a large input matrix. Because of
the large amount of input data required, there are 6 check points pro-
vided; if any check point test is not satisfied, an error statement is
output which identifies the block of data in which there are extra or
omitted cards, and the run is terminated.
A list of each card type in input sequence, the necessary card
format in each instance, the number of each card type required (one
card unless stated otherwise), the data items and their descriptions,
plus other explanatory notes are presented below.
Card
Type Format and Item
1. (15)
NCASE
2. FORMAT (10K8)
TITLE
3, (1615)
ND
NK
MT
IW
Description
Number of cases submitted.
3 cards
Title of case, double precision, up to
80 characters per card.
Number of chemical elements in inventory,
Number of isotopes in inventory.
Number of time reporting points (each
"time increment" is between adjacent time
reporting points),
Model branch or waste management phase
{IW = 1 is residuals treatment; IW = 2
is transportation} IW = 3 is repository
14
-------
Card
Type Format and Item
ITRS
ITRE
MZ
HIHT
NPRINT
IFDIVW
Desc^rigtion
operations and IW = 4 is terminal storage)
TIME subscript for end of time incre-
ment when release calculations start.
TIME subscript for end of time incre-
ment when release calculations cease
(end).
Number of geographic zones calculated.
Number of body organs calculated.
Output table specification (see Chap. 3).
Ground water time increment control;
IFDIVW = 0 avoids subdivision of time
increments and IFDIVW > 0 causes sub-
division branch in subroutine TRINP
to be executed.
FORMAT (8E10.2)
This card specifies truncation or cutoff values to
avoid overflow, underflow, or nonproductive calculations.
R1JMIN Truncation value (to 0.0) for RlJ
(Curies released to a given receptor).
A2MIH Truncation value (to 0.0) for A2 (accounts
for decay and transport processes).
R2MIN Truncation value (to 0.0} for R2 (com-
ponent of environmental concentration
R2TOT).
RKDMAX Cutoff value for RKD (distribution
coefficient K^} above which ground water
transport calculations may be bypassed.
CRMIN Cutoff value for CRATIO (ground water
concentration).
DFMIH Cutoff value for DECFAC (decay factor).
6.
FORMAT (8E10.2)
TIME (I)
FORMAT (20A4)
ELEM (ID)
FORMAT (8E10.2)
TFUEL
1 card for each 8 time points.
The time in years at each of MT time
reporting points:
1 card if ND <. 20.
Symbol for each of ND chemical elements.
Total inventory in repository, metric
tons.
9.
FORMAT (8E10.2)
XX (ID)
FORMAT (A3, 2X, 7E10.2)
1 card for each 8 elements.
Total inventory of each element at end
of repository operations, grams.
Minimum of 1 card for each of HK
nuclides,- add one card for each nuclide
for each 7 time points beyond the first
7 points.
15
-------
Card
Format and Item Description
NUCNAM (K) Symbol name for nuclide K, double pre-
cision, up to 8 characters each,
X(K, IT) Mass of nuclide K at TIME (IT), grams.
FORMAT (IOX, 7S10.2) Osed for all cards after the first for
each nuclide (bypasses rereading NUCNAM).
10. FORMAT (19A4, 12}
This card provides a check field to provide error
statement and terminate runs if incorrect number
of cards read to this stage.
CHECK Alphanumeric identification of check-
point no. 1, up to 76 columns.
ICHCK 01 in columns 77 and IB,
11. (8110,2) 1 card for each 8 nuclides.
SPACT (K) Specific activity of nuclide K, ci/g.
12. FORMAT (8E1Q.2) 1 card for each 8 nuclides.
DCl(K) Effective diffusivity for nuclide K
leaching, cm2/cl.
13. FORMAT (BE10.2) 1 card for each 8 nuclides.
DRC (K) Dissolution rate constant for nuclide
K leaching, d .
14, (8E10.2)
4 cards for each zone (1 card for each of 4 recep-
tors in each zone), These cards provide pairs of
adjustment parameters for inter-receptor adjustments
over time following an initial dispersion.
ADJ1(JF,JFA,IZ) Maximum fraction of a quantity dispersed
to receptor JFA in zone IZ which can be
transferred to receptor JF in the same
zone.
ADJ2(JF,JFA,IZ) Transfer rate constant associated with
/,, AMI, y-1.
Read as: ( HADJI(JF,JFA,12), ADJ2(JF»JFA,IZ), JFA = 1, 4| ,
JF -I, 4], IZ = 1, MZ)|
15. FORMAT (8E10.2) 4 cards {1 for each receptor)
DISPN (JF, IZ) Area or volume over which, or in which,
a release is dispersed in each receptor
JF in each zone IZ, cm or em .
as: H DISPN(JF,IZ), IE = 1, MZ), JF - 1, 41
16. (8E1Q.2) 4 cards (1 for each environmental
receptor).
16
-------
Card
Type Format and Item Description^
ZONALO (JF, IE) Dispersion allocation factors by zone
IE for transport-to-environment recep-
tor JF, Ci~y/cm3-Ci for JF = 1, Ci/Ci
for JP = 2, 3. For JF = 4, 2QNALQ =
1.0 designates effected ground water in
zone; 0.0 designates none.
Read as: nZONAL0(JF,IZ),IZ = 1, MzJ, JF = 1, 4
17. FORMAT (8E1Q.23
ZONDEP (IZ) Surface deposition factor by zone IZ,
Ci/cm^-Ci.
18, FORMAT (8E10.2)
ARS&W (IZ) Surface area of water by zone, cm .
Notes Corresponding AEEAG, land surface by zone, is set within
= (2, IZ).
19. (8E10.2J 1 for each 8 of NK nuclides.
RKD(K) Distribution coefficient Kjj, by maclide
K, cm3/g.
20. FORMAT (19A4, 12) This card provides the second data
check point.
CHECK Alphanumeric identification of check
point no. 2, up to 76 columns.
ICHCK 02 in columns 77 and 78.
The following card types 21 to 23, and 25 and 26 provide data for
the Environment~to-Man Pathways model (see Table 3-3 in Vol. I).
21. FORMAT (1615)
NSP (JF) Number of subpaths for each receptor
JF. The value of NSP for each JF applies
to both modes 1 and 2 for each receptor.
22. FORMAT (8E10.2) 4 cards (1 for each receptor) for each
zone.
VOIiIST(JF,MODE,I,I2) Consumption, exposure or food produc-
tion rate, as appropriate, y/y/ aar/.yt
or g/y.
Read as: HVOLINT(JF,MODE,I,IZ), 1=1, NsJ, MODE =1, 2J,
where I is subpath under JF, up to WS = NSP(JF).
23. FORMAT (8E10.2) 3 cards (1 each for receptors JF = 2,
3, 4) for each of NK nuclides.
17
-------
Card
Tyge Format and Item
BIQFAC (K, JF» I)
Description
Concentration or integrated concentra-
tion in food or drinK per unit receptor
concentration, by subpath I, up to MS =
NSP(JF). Units are (yCi-y/g)/{pCi/cm2)
for terrestrial food, (yCi/g)/{pCi/cin^}
for aquatic food, and dimensionless for
drinking water.
24.
Note: BIOFAC for JF = 1 (air) is set = 1.0 in code.
FORMAT (19&4, 12)
CHECK
ICHCK
This card provides the third data check
point.
Alphanumeric identification of check
point point no. 3, up to 76 characters.
03 in columns 77 and 78.
25,
FORMAT (IDAS)
ORGNAM (I)
26.
FORMAT {8E10.2}
DOSFAC {K, JF,MODE,IH)
Names of organs {body site^) for which
dose rates are calculated,Ijfup to I -
NIHT, double precision, up to 8 charac-
ters each.
8 cards for each of WK nuclides (2 for
each of 4 receptors JF; first of each
pair for 1 and second for 2).
Dose commitment conversion factor for
each organ IH of NIHT total. Each card
has conversion factors for specified
nuclide and receptor/exposure mode com-
bination, (mrem/y)/(pCi/cm3} » (mrein/
, or mrern/yCi, as appropriate.
27,
(19A4, 12)
CHECK
ICHCK
This card provides the fourth data check
point.
Alphanumeric identification of check
point no. 4, up to 76 characters.
04 in columns 77 and 78.
The following card types 28 to 31 provide data for the Release Model
scenarios {see Table 6-4, Vol. II) calculated by subroutine FAULT. As
presently dimensioned, each of 4 receptors JF may have up to 9 cutsets
{release scenarios) NJ, and each cutset may have up to 9 component fac-
tors NJJ, This portion of the data deck can have from 4 cards (trivial
case with zero release scenarios for each receptor) to 400 cards, as
follows:
4 sets of cards, 1 set for each receptor JF:
Card type 28 1 card (if NJ = 0» subsequent cards for this
JF are omitted ) .
1 set of cards for each of KJ cutsets (9 maximum):
18
-------
Card
Formula and Item
Description
Card type 29 1 card
Card type 30 I card
Card type 31 1 card for each of MJJ component factor
(9 maximum).
26, (1615)
NJ (JF)
29. (1615)
JJ(JFf 1}
NJJ(JF, I)
30. FORMAT (8E10.2)
AAKJF, J)
4 cards, sequence*! as stated above.
Number of cutsets (release scenarios)
for each receptor JF.
Number of cards as stated above.
Cutset sequential identification number
for cutset I, up to NJ.
Number of component factors for cutset I,
Number of cards as stated above.
Fraction of inventory tranferred, to
receptor JF if a release via cutset J
(i.e., jj) occurs.
31.
FORMAT (E10.2, HO, 2E10.2}
Number of cards as stated above. Subscripts on
this card are: K designates component factor (not
to be confused with nuclide K used elsewhere) of
cutset J (i.e. JJ) releasing to receptor JP.
PROBB{JF,J,K)
IFLftG(JF,J,K)
TP(JF,J,K)
CP(JF,J,K)
Initial probability of occurrence of
component factor, y~ .
Probability function designation:
0 Constant
1 Step function
2 function
3 Exponential function
4 Delta function.
Time at which functional change in
probability commences, y.
Function parameter: size of step func-
tion, slope of ramp function, exponential
constant, or set = 1.0 for delta func-
tion.
Note: For the constant function, TP and CP may have any value
(not used) but 0.0 is suggested to avoid confusion in
output display.
32, FORMAT (1615)
IFLAGE(JF,MODE,I)
4 cards (1 for each receptor)
Flag used in Environment-to-Man Pathways
model designating whether output is
accumulated as "local dose" (IFLRGE =
1} or "nonspecific: dose" (IFLAGE = 2) ,
(see Table 6-14, Vol. II). Values are
sequenced on card for each of NSP sub-
paths under MODE = 1, followed by each
of NSP stibpaths under MODE = 2.
19
-------
Card
Type
Format and Item
Description
The following series of 2 to 5 cards of type 33 provide data for
the leach subprogram RLEACH and the ground water transport subprogram
CRATIO,
33.
FORMAT (8E10.2)
VX
PORE
AL
AT
HT
BOLKD
PS
VS
XL(I)
YW{I)
YY(I)
CINV
CFAI
34. FORMAT U9A4, 12)
CHECK
ICHCK
2 cards for 1 or 2 zones, 3 cards for
3 or 4 zones, 4 cards for 5 or 7 zones,
and 5 cards for 8 zones.
Ground water seepage velocity, ai/d.
Aquifer porosity {as decimal).
Axial dispersivity coefficient, m.
Transverse dispersivity coefficient, m.
Height of aquifer, m.
Bulk solid density of aquifer, g/cm3.
Exposed area of solidified waste speci-
men {canister as fractured), cm.
Volume of solidified waste specimen
(canister), cm .
Distances from repository to average
discharge point in each Eone for I =
1 to M.Z zones. XL = 0.0 indicates to
code that contaminated plume does not
discharge in zone.
Effective width of plume (width for
concentration 0,1% of center line value)
in each zone (distance XL) where dis-
charge occurs, for I = 1 to MZ zones,
m. Input as 0.0 for each zone where
no discharge occurs (not used except
in output display).
Distance from plume centerline where
concentration equals average across
effective width YW, in each zone (dis-
tance XL) where discharge occurs, for
I — 1 to MZ zones. Input as 0.0 for each
zone where no discharge occurs (not used
except in output display).
Total number of canisters in inventory.
Number of canisters exposed to leach
incident.
This card provides the fifth data check
point,
Alphanumeric identification of check
point no, 5, up to 76 characters.
05 in columns 77 and 78.
The following type 35 card controls data for the environmental
decay constant EDC(K,JF,IZ), y"1, where subscripts denote nuclide,
receptor, and zone, respectively. IDC for JF = 1 6 4 is set by state-
ments in the code: EDC(K, 1, iz) = 50, providing for rapid deposition
20
-------
Card
Format and Item
Description
from air after dispersion, and EDC (K, 4, IZ) = 0.0, as EDC has no pre-
sent application to ground water calculations.
35. FORMAT £1615)
ISECT
36. FORMAT (8E10.2)
EDC(K, I, IZ)
37. FORMAT (19A4, IZ)
CHECK
ICHCK
Control flag for EDC data.
ISECT = 1: internal EDC default values
used for JF = 2 & 3 (= 2.30 x 10~5).
Type 36 cards omitted.
ISECT - 2: SDC default values used for
JF = 3j type 36 cards read for JF = 2.
ISSCT = 3; EDC default values used for
JF - 2; type 36 cards read for JF = 3.
ISECT = 4: type 36 cards read for JF =
2, followed by cards for JF = 3.
0 cards if ISECT = 1; MZ x HK/8 cards if
ISECT = 2 or 3; 2(MZ x HK)/8 cards if
ISECT = 4.
Environmental decay constants for nuc-
lides K, receptor JF (represented here
by I) and zones IZ. Data sequence on
cards is EDC by zone to MZ zones for
first nuclide, repeated in turn for each
subsequent nuclide to HK nudities. If
ISECT = 4, this group of cards is repeated
in turn for JF = 2 and JF = 3.
This card provides the sixth (and last}
data check point.
Alphanumeric identification of check
point no. 6, up to 76 characters.
06 in columns 77 and 78.
The following card types 38 to 40 control selection of output for
dose summary tables in Section 6 of output. Each such table is for a
specified time.
38.
39.
40.
FORMAT (1615)
IZONM
FORMAT (1615)
IZONE(I)
FORMAT (1615)
ITSUM*
ITSUMJ
Number of zones to be tabulated.
Identification number for each zone to
be tabulated, up to IZONM zones.
Note: IZONE(IO) designates nonspecific
dose category.
Time subscript for first table.
Increment on time subscript for suc-
cessive tables.
21
-------
Card
Format and Item
KSUB
Description
The nuelide K level for subtotal line
in tables (as for subtotal of fission
products followed by aatinides).
A sample coding form for 1 nuclide, 1 zone, and 1 organ is given
in appendix C. More complete sample input is given in Appendix P.
22
-------
B-, OUTPUT DESCRIPTION '
: AMR&W-& requires three output mediums: disk, tape file, and line
.printer.
1. Disk. Intermediate temporary storage of calculated values for
each nuclide is on disk. The disk storage capacity required is up to
1459 k bytes of information. Information stored on disk is transferred
to tape (or directly to line printer) at the end of each case.
2, gape File. The tape file is used to store selected run output
transferred from disk into several tabular configurations. The output
stored on tape may subsequently be used in part as input to AMRAW-B
(Economic Model}, used as input to auxiliary codes for further analysis,
or may be directed to a line printer for one or multiple printed copies.
If preferred, and if further computer processing of output is not planned,
output can be routed directly to the line printer instead of to tape.
3. Line Printer. The line printer must be capable of 132 chsrac-
,ters per line. The preferred mode of operation is to direct output
stored on the tape file to the line printer instead of routing output
directly to line printer. In addition to the major output, error state-
ments and data check point confirmations are output. Error and check
point statements are routed to the output medium specified by the vari-
able ^ IE (see Chapter 4) and should always be to the line printer.
4. Output Tables. Extensive output tabulations are produced by
AMRAW-A, as directed by the output control parameter (see card type 3,
and Chapter 4). These tables are divided into 6 sections, each set off
by a divider page for clarity. Table 3-1 is a directory of output tables.
The number of tables listed of each type is based upon 25 nuclides, 8
zones, and 8 organs, resulting in a total of 62? tables if all are
requested by NPR1NT. The number of tables is reduced appropriately for
fewer nuclides, zones, or organs. Sample output is given in AppendiK F.
23
-------
Table 3-1. Directory of AMBAW-A Output Tables
Description
SECTION 1. ..JData Input
1. Output listing of AMRAW input-
SECTIOK 2. Release to Environment
1. Helease Fractions by Each Cutset, RELOOT
2. Release Increments to Preliminary Environmental
Input Receptors, R1J, from All Release
Events , Ci
3. Concentrations at Environment Input Receptor,
R2TOT. Units i JP = 1 nCi-y/cro^, JF = 2
JF » 3 and 4
SECTION 3. Local__Dpse to__ In_dividual
1. Average Annual Local Dose to Individual,
mrem/y .
SECTIOM 4. nonspecific Pose to Population
1. Average Annual Nonspecific Dose to Population,
Number of Table Combinations
Nuelides
(20
25
25
25
25
25
Zones
pages)
8
8
Organs
(8 in each
table)
(S in each
table)
Environ .
Receptors
(4 in each
table)
Total
25
25
200
200
25
-------
Table 3-1. Directory of AMRAW Output Tables (continued)
Total
SECTION 5. Total Dose by Receptors
1. Average Annual Local Dose to individual,
' MAN2LF for JF « 1 to 4, MAN2L for Total,
rarem/y, Total for All Nuclides.
2. Average Annual nonspecific Dose to Population,
MAK2KF for JF = 1 to 4, MAN2K for Total,
raanrem/y, Total for All Nuclides.
SECTICM6. Dose SummaryTables
1. Average Annual Local Dose to Individual,
MAN1L, in Zone, mxeia/y.
2. Average Annual Nonspecific Dose to Population,
MAN1H, manrem/y •
Total Number of Tables
Hote;
a. All output tables, except Section 6 are for 50
time steps, 0 to ICr years.
b. Individual zones may be specified.
c. Section 6 may call for a table for each of all
times beginning with 100 y or skip some times?
5 tables result if call for every ninth time.
Huclides
[25 in each
table)
(25 in each
table)
Zones
8
up to 8
Up tO 8
Organs
8
8
[8 in each
table)
£8 in each
table)
Environ .
Receptors
(4 in each
table)
(4 in each
table)
°5
C5
64
S
40
40
627
-------
Page Intentionally Blank
26
-------
CHAPTER L\
The first class o£ program options is concerned with design of the
application. The number of nuclides/ zones, organs, times, release
scenarios, and environmental pathways may be varied within the range of
dimensioning. The reader is referred to Vol. I for full discussion of
these and other general input data options.
The input/output mediums are specified in statements in the main
program which assign values for the variables IN, IE, and IP appropriate
to the system being used (at ONM the values are 5, 6, and 2, respectively).
IP specifies the input medium, normally the card reader
II specifies the output medium for error and data check point
Kiessages; this should always fae set to the line printer
IP specifies the output medium for the code; this is normally
tape file but it may be set to the line printer if preferred.
Calculation and output options are controlled by NPKENT (see card
type 3, Chapter 3). This control variable has 3 digits, described in
Table 3-1, The complete calculation and output capability is executed
if NPRINT = 500. Options range down to setting the first digit to zero
(such as NPRINU = 000 or simply = 0) resulting in reading .in and outtputting
all data (in the Section 1 explanatory tabular arrangement) but perform-
ing no calculations. The latter is useful during setting up and check-
ing a large data file.
EDC (environmental decay constant) values are internally set for
the JP = 1 and 4 receptors. An option is provided for the values for!
JF = 2 and 3 receptors, controlled by ISECT (see card type 35 in Chapter
3) . If ISECT =* 1, internal EDC default values are used for both recep-
tors. If.EDC data is available for specific nuclides, receptors and
zones, this may be read in by setting ISECT = 2 to 4. If ISECT = 2,
EDC is read in for JF = 2; if ISECT = 3, EDC is read in for JF = 3; if
ISECT *> 4, EDC is read in for JF = 2 and 3,
27
-------
Table 4-1. Calculation and Output Options Controlled by SPRINT
= XYZ
Z controls organs calculated.
if Z = 0, all organs in input are calculated.
if 0 < Z <, NJHT, only 1 organ, the 2th organ, is calculated,
Z > NIHT is error.
Y controls zones calculated.
if Y = 0, all zones in input are calculated.
if 0 < Y £.MZr only 1 zone, the Y1* zone, is calculated,
_ . ¥ >.MZ. is error, . .
Description X =
1. Data Input
1. Release Model data
Other input data
SECTION 2. Release to Environment
1. RELOUT
2. RU
3. R2TOT
Section 3. Local Dose to Individual
1. MflHlL
Section 4, Nonspecific Dose to Population
1. MAN1N
Section 5 . Total Dose by Receptors
1. MfiH2LF, MAH2L; 2.
Section 6. Dose Summary Tables
1. MMJlLr 2. MAN3JN
b
0
X
X
1
X
X
2
X
X
3
X
X
X
4
X
E
X
E
X
X
X
5
X
X
X
X
X
X
X
X
X
6
X
X
X
X
X
7-9
X
X
X
X
X
X
£B
See Table 2-1 for further description.
For X = 0, reads in and then outputs all data} no calculations are made.
-------
Section 6 of the output consists of dose summary tables. Each table
is a summary for a specific zone (or nonspecific dose) at a specific time,
The option controlling the number of zones and times output in this
section is controlled by card types 38 to 40 (see Chapter 3}. IZONM
specifies the number of zones to be tabulated, IZONE Identifies the
number of each zone to be tabulated, ITSOMY specifies the time sub-
script for the first table and JTSOMJ specifies a time subscript incre-
ment for successive tables.
29
-------
Page Intentionally Blank
30
-------
CHAPTER 5
ERROR
There are several error message provisions in &MRSW-A. Each message,
its meaning, and corrective action required, is listed below.
Error Message:
Meaning:
Corrective Action:
(y) "
Data which follows error before check point x
is not in correct order,
Check for extra or missing cards and make sure
data is in correct order; sort as necessary.
Error Message:
Meaning:
"ERROR: ATTEMPTED REPOSITORY OPERATION WITHOUT
SUBSEQUENT ENVIRONMENT TIME INCREMENT"
Continued operating repository until end. of
time being studied with no subsequent time in
the environment left to study.
Corrective Action; Make ITRE < MT.
Error Message;
Meaning t
"ERROR: VALUE OP ZONE (x) OUTSIDE OF RANGE OF
MAXIMUM ZONE {y}"
Attempted use of nonexistent zone.
Corrective Action: Modify value of 2nd (middle) digit of control
parameter NPRINT such that it is <. MZ,
Error Message:
Meaning:
Corrective Action:
"ERROR: INVALID ORGAN NUMBER = '(x) MAXIMUM
NUMBER OF ORGANS = (y)"
Attempted to study nonexistent organ.
Modify right most digit of control parameter
NPRINT such that it is <_ NIHT.
31
-------
Page Intentionally Blank
32
-------
APPENDIX A
BACKGROUND MATERIAL
The basic structure of the AMRAW model and computer code was
developed at UNM between 1972 and 1974 as part of the S. Logan Ph.D.
dissertation: "A Technology Assessment Methodology Applied to High-
Level Radioactive Waste Management," The University of New Mexico, 1974.
Additional development proceeded with support from the Saudia labora-
tories University Research Program and from the Energy Resources Board
of the State of New Mexico. Completion of the model and code was done
EPA Contract So. 68-01-3256 beginning in August, 197S.
33
-------
APPENDIX B
SAMPLE RUN REQUEST
•AMRRW-A
Requested By?
Phone: Date:
Number of Seconds: ^_^ No. of Output Liness
Nurriber of Copies Requested:
Special Form? If so, form no.
Input Data On: Disk Disk Names
DSN:
Card t Tape __ Name_j_
Label: DSH:
OFFICE USE ONLY
Date Received:
Date Submitted:
Date Returned:
Initials:
34
-------
APPENDIX C
SAMPLE CODING FORM
Table C-l presents a sample coding form for AMB&W-A input data
illustrating proper formats for the following conditions.
1 nuclide; C-14
1 zone: Zone t
1 organ: Total Body
Model Branch: IW = 4, Terminal Storage (beginning at 30 y
reference time)
50 Times: Range from 0 to 10 y.
-Card types, described in Section 2,A.2., are indicated.
This example is for Zone 1 for the base case described in Part 1
••£)•£ Vol. II in which it is assumed there is no surface water and no dis-
:charge of ground water. If the example were for Zone 2, the value on card
•type 18 (AREAW) would change from 0.0 to 5.06E+11 and the first 3 values of
x'the second card of type 33 (XL, YW, and Y.Y) would change from 0.0 to
:i,QQE+Q4, 2.5SE+Q3, and 5.20E4-02, respectively.
•'•••' The Release Model data {card types 28 to 31) represent 10 cutsets:
/.3* for each of the first 3 environmental receptors, and 1 for the fourth
receptor.
It is assumed that EDC (Environmental Decay Constant) uses internal
..default values. Hence card type 35 a -value of 1 and card type 36
.' is omitted.
35
-------
Table C-l. Sample Coding Form for One Muclide, One Zone,
and One Organ
**lt* ffi
3D
3o
FORTRA^-STATEMENT
RA^-ST
_50
JHL
5S ?g. jy ?a?g
_a
..a.
_a
.3.
.%_
_5_
.5..
.5.
_5_
.5...
.5
5
:?
-6
q
q
s.
S.
b£±£^
^o^_d
6.J
1 C
04
JLB
^j
.&5J2dLQ3:
b3DtQ4
MkhZDrj^
t
b2Lfi±fiy:
.4.
utoa
0&D+04
2.-!7&to4
^_ojtc±oa
,0
1 D-i-04 • 4.OtDtQ'4
!n
3.73Dt.0.t
lit
feteQtt
13
-W
4ia
;ptm
D+;o4 i
1J£J
73Dt;Q4
lt,.;S4Dt04
!3&:D!+1Q4
1U
lLJDIE±fl3.
J_Bu^2&tm
_&
!ivciada
t
iiaodtoj
QQilj2
JL
3Lj22££S3
04Q
jQ2J3i01
. iQ«;q
o.
Q-_O
c
14 8
o..o
-------
w
-4
-------
Table c-1. {continued)
w
CD
30
-------
3L
OB
BO
ai
5!
33
30
SI
3!
33
3o
31
jJJS f
^fiL
f3 Qt
31
31
sa
st
1
W$
:«3?.S
T
t
a
el
i
i
3
!i
7o
. o
.0
>j
,o
."0
,0
3
1?
I
g
'3
1
l»
,5
t'O
Jf
s
1
.3
,0
,0
.'O
a
5
» i
.0
.0
•r
c
0
.at
O
„-'
0
•4
o
b
i**
0
^
(*!
3
0
u> ae » --^-w^
E'-ili
>
;J
i
i
i
*
:-
; .
2-
:•-
"•+
I
t 1
3
J0.5
•00
-00
I „
I £
oa
DO
13
a
-oa
ool
EL'-'iA
•
3
E-05
eVoo
Et'OO
i
1
r a
E.-oa
E+QO
it 5 t.
i
I
; I :
t
i
f
I
!
"
ii(;
* i
n
:
N
15
! o
I !
i
] '" i '
- ' O
0
a
\
D
0
'
h
| !Q
| j
! 1
50
:O
! a
" * » •
l
1 i 'C
•10,
0
i ' i
o.
o
f
0
o
U^>
o
O
! o.
0
r
h
b
]
Jo
.b
; < i
<0r:O
O.
Mi
o
E'*
Oft
i
'I
M
1 1
rv't^iju
Do
';
i ;_,_,__
H 2? ifl 3? 30
0
0
,h
.0
!0.'C
1
j
. R
i
b.p
W.o
j
o
I
Jo
_iGiJ3
;
;
O
O
! if
i
.0
. o
.s
i
1 o!.o
ftp'-
j
07
i
i
i
t
1
6«-
07
i
1
i
;
!
i
i
t s
t
1
i
\ •
i '
i
]
.
; i
;
i
i
i
.
|
!
"T""
k
•
j
I
(
i
i
\
!•
I
i
1
•|
I
;
f
i
;
\
I
LI1
!
f
f
i
j
;
1 i
M a m a
11
I
i 1
i i
. f
:v;-«8^;l
i
i
1
, i
i
I
•
i
i
i
i
i
' '• i ' =
i ; j • j
;
s
1
1
i
1
i T
• i ! '
7) » ?§ M » J« W »
-------
Table C-l. (concluded)
-------
APPENDIX D
JOB PROCESSING INSTRUCTIONS
1, Prepare jobcard for run using run request as follows:
Job name - 8 characters alphanumeric serial number.
Time parameter - number of seconds estimated.
Lines parameter - number of lines {in thousands} estimated.
Forms parameter - form number from request.
Copies parameter - number of copies requested.
2,- Input medium:
Card - keypunch as necessary and place in appropriate section of
'•: deck.
Disk - modify GO.SYSIK DD card to reflect parameters required by
•.:.;. system.
Tape - modify GO.SYSIH DD card to reflect parameters required by
;^:;: system.
::3> Submit job and note date submitted.
4- Return job to requester and note date returned.
41
-------
APPENDIX E
OPERATING DECK SETUP
JOB COWTBOL LANGUAGE CARDS
INPUT D&fA
JOB CONTROL LANGUAGE CARDS
AMRAW PROGRAM
JOB
JOB CAEID
42
-------
F
SAMPLE INPUT AND OUTPUT
Sample Input and output is presented for a "short run" using only
3 radionuclides: Sr-90, 1-129, and Pb-210. Other parameters are as
in at typical "fuel run": 4 environmental receptors, 10 release scenarios
(cutsets), 14 environmental pathways, 8 geographic sones, 8 human organs,
and 50 time increments.
1, Input Data. Input data is listed according to card input
specifications in Section 3.A. and the sample coding forms in Appendix
C.
2. •''• Output.. Output is separated by partition pages into 6 sections;
• (a) Seat-ion 1 ~ Data Input. This section, presented in full,
is a descriptive output of input data, in the following sequence:
"•; '• Definition of Environmental Inputs/Definition of Probability
' Inputs/Probability and Related Data,
Selected Residual Elements in Waste/Selected Radionuclides
in Waste.
Ground Water Parameters
EDC
DISPN/ZONALO/ZONDEP
Am AW/AD J i/ADJ 2
VOLINT
BIOFAC
DOSFAG
(b) Seat-ion 2 - Release to Environment. Sample output is
presented for one nuclide (1-129):
:;-':': • - Release Fractions by Bach Cutset
Release Increments to Preliminary Environment Input Receptors
: Concentrations at Environment Input Receptors {Zones 1 and
2 of 8 zones shown)
43
-------
(o) Section 3 - Loaal Doee to Individual, Sample output is
presented fox one nuclide (1-129) and one zone (Zone 1) of 8:
Average Annual Local Dose to Individual
(d) S&ation 4 - Nonspecific Dose to Population, Sample output
is presented for one nuclide (1-129);
Average Annual Nonspecific Dose to Population
(&) Section 5 - Total Dose by Receptors, This section presents
totals for all nuclidess
Average Annual tocal Dose to Individual. Sample output is
presented for 1 organ (Total Body) of 8 and 2 zones (1 and 2} of
8.
Average Annual Nonspecific Dose to Population. Sample out-
put is presented for 1 organ (Total Body),
(f) Seetion 8 - Dose Swrniafy Tobias. These tables summarise
dose rates by nuclide to each organ. Sample output is presented for 1
time (1000 y) and 1 zone:
Average Annual Local Dose to Individual, Zone 1
Average Annual Nonspecific Dose to Population
44
-------
s
01
IW -BASE .C.AS6'FOR.'Te-B.WIHAL' • STORAGE''
' '..'/: *t-L IMitfflWU, »ST I'C.
APR..6. 19?BOAT* FILE US6D;
03"- «3
i»ooE-ze
50"
S.SOE+01
4.00E+OZ
3.COE+43
l.COE+OS
9.COE+OS
sa x PO
l.«T£*09
J.26E+OB
5«-9Q I
J.R-90 2
SR-»0 3
•it-go 4
SH-90 S
5ft-SO 6
SR-90
SR-9Q
-1*9
-129
-1E9
7
a
-129 S
-J*9 6
;29 7
-189 8
P6-2SO 1
PO-2IO 2
PS-210 3
pB-aio
P8-210
P3-210
3.006*00
a so
1.00E-3S
i.ooe*oi
T'*OOE»O1
m
300 t
l.OQE-30
2.00E+OS
I.OQE+OC
3. OOS+OS
$.300+05
o.o
0.0
0.0
o.o
3.4EO + OZ
9.B4O+O4
3.S9O+06
3.900*07
7 =72S*0*
O.O
0.0
o.o
1.50E*C1
e. 00= * 01
7.00£*02
6.006+03
S.OOE+04
4.0OE+05
7.820*03
0.0
0.0
0.0
s.s^o+oa
E.O4D+04
S.61D+O4
2.120-07
70000-0*
S.75D-OJ
2.230+01
1.93D+02
3.08D»02
2.120-06
9.660-04
3.S80-O2
7.29D-OS
5,340+00
6.T2O*04
9.10O-06
1.26O-03
7.S5O-02
2.960*00
3.190+-Q1
19O+02
530*02
1=S9D»02
CHECK POINT NUMBER
1.63E-04 B.12E*ai
9.B2E-10 9.396-10
T.0ȣ*03
S.OOE+OS
2. 240 +07
8»9SO-2S
O.O
0.0
0.0
i.770+04
fi.040+04
3.040+04
S.MOi'O*
3.900-05
I.sou-en
I.390-01
6.060*00
3.630+01
2.590*02
1.550+02
ONE
i.ooe-io
a.SQE+01
3.0QE+OI
9.001*02 l.OOr+03
B.03E+04
7.00E+03
7.11O+07
«. 10O4-00
0.0
o.o
0.0
o.o
5.B40+04
5.&4D + 04
7. OOE»Q4
S.OOE«OO
4.220+07
1.91O+07
0.0
O.O
0.0
O.O
3.400+04
5.840*04
B.040*04
S.S3O+O*
S.8XO+O4
1.32D-04
1.94O-O3
2.200-01
6.400*01
2.74D«02
S.B«B*U4
9.830*04
i.asDtoo
3.250-04
2.35O-03
3, 20O-01
I.37O+01
l.S7l>+02
2.080*02
9.16O*Oi
4.99E+Q1
3.1JOE+02
2.00E+03
I.OOS+04
1.1SB+07
4.530-01
0.0
0.0
0.0
0.0
S.S4D+Q4
S.C4D+04
S.84D+04
5.B4D+04
5.300*04
4.510-04
3.6ZD-03
4.39O-01
1.79K+D1
1.63&+02
3.40O+O2
8.90E-OS 4.-9SE-03 2.7S5-03
0.0
0.0
0.0
0.0
o«a
o.o
o.o
0.0
o.o
o.e
o.o
o.o
o.o
0.0
0.0
0.0
4*B
0.0
a.o
O.O
0.0
0.0
l.OOE-09
o.a
0.0
0.0
a . oo£->o9
• aO
OoO
0.0
i . OQE-09
0.0
0.0
2.00E*Ot
0.0
0.0
o.o
2.09E+OJ,
O.O
0*0
o.o
Z.OOE+O1
0.0
o.o
o.o
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
o.o
o.o
o.o
0.0
0.0
0.0
0.0
o.o
0.0
2.0SE-OI
o.o
0.0
0.0
0.0
o.o
0.0
O.D
0.0
0.0
0.9
2.O9E+01
0.9
a.o
0.0
0.0
OOOQDOSQ
00000100
00000150
00000200
oooooaso
0.00003OO
OOOQ03SO
00000400
000004EO
OQOOOSOO
ooooosso
000 00 650
00000700
OOOOBTSO
ooooosoo
000 09 «oo
OQOOO
-------
APPENDIX P
1. Input Data (continued)
o.o
o.o
0.0
0.0
o.o
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0*0
0.8
0.0
0.9
o.o
0.0
&.Q9E»BQ
7.9oe*n
Q.O
1.O9EVOS
1.ESE-2O
1.29E-O1
SsO
o.o
4.04E— 13
0.0
o.o
o.o
0.0
o.o
o.o
0.0
o.o
o.o
o.o
0.0
o.o
o.o
0.0
0.0
o.o
s.o
0.0
o.o
o.o
0.0
0.0
• ioOOE»oo
1.01E«14
6o06E»l3
i>OOE*00
So 31 E- 23
4»41E-OS
2.1TE-03
1»OOE*OO
1 . 93E— 1 5
.0
.OOE-00
.0
.0
.0
.OOE-09
.0
.0
.0
.OOE-09
.0
.0
*0
.OOE-09
.0
.0
.0
. OQE-09
.0
.0
.0
.OOE 409
. 27E*1«
«l«e»la
.OOE*OO
*09£— S&
• 35E-Q2
.606-04
.0
94E— 1 6
Il4E*12
0.0
2.OOE*01
0.0
O.O
0.0
E.OOE+01
0.0
0.0
0.0
2. DOE* Of
o.o
o.o
0.0
a,ooE*os
9.9
0.0
0.0
Z.OOEtQl
0.0
0.0
o.o
1 . 08C400
*»77E*13
1»12E*13
l.OOE+QO
2.12E-2*
B.6SE-03
2. iee-05
o.o
• LOSE— 16
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
8.0
0.9
0.0
0.0
a.o
0.0
s.ooe-oi
o.o
0*0
l.OOE+00
1.E2E+14
3.06E+13
I .ODE *00
3.63E—24
3.S9E-02
9 .OOE-05
0.0
O.C
0.0
0.0
O.O
O.O
0.0
o.o
0.0
9.0
o.o
o.e
Oot
0.0
0.0
0.0
o.o .
0.0
o.o
2. ODE* 01
O.C
9.0
J.OOE*00
1.14E+14
a.eEE+13
I.OOE*00
3.03E-23
S.42E— 01
6.00E-0*
o.o
i 1 ~9F 1 £
a.eSE*ti
o.o
o.o
o.o
9.0
0.0
0.0
0.0
0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
a.ooE-oi
0.0
l.OOE+00
1.S7EM4
7. BSE* 13
I.OOE+00
3.1SE-24
4.18E-02
2.10E-04
0.0
1 SOE 16
7.86E+11
o.n
0.0
o.o
0.9
o.o
0.0
0*0
0.0
0.*
0.0
0.0
0.0
0.0
0.9
0.0
0.0
0.0
0.0
0.0
2.00E+01
0.0
l.OOEtOO
5.4CS+12
.806*14
.006*09
.12E-23
.46E-02
.44E-03
.OOEt-OO
yas | B
5.40EE+11
«.ooe-o!
o.o
0.9
0.0 .OOE+O3
CHECK POIKT HUMBSR TOO C2t
4 1
7.30E+O9
0.0 0.0 O.O 0.0
o.o o.o o.o o.o
0.0
6.30E*07
o.o
0.0
0.0
4.OOE-01
.ooe*oo
>OOE-01
,00 £-93
,0
>00£«OO
.ooe-oi
.OOE-03
>OOE*OO
.OOE-01
.OOE-O3
.0
o.o o.o
0.0 0.0
7.08E+07
7.30E+09
0.0 0*9
0.0 O.O
0.0
7.3OE40Q
O.O O.O
4.9 0*9
O.O
7.3OE+09
0.0 0.0
o.o o.o
c.o
0.0
0*0
o.o
o.o
o.o
0.0
0.0
0.0
0.0 1.1BEHO 0.0
4.00E+05 S.OOE*09 0.0
0.0
0.0
0.0 :
0.0
1 .11E+10 l.eiE+10 4.6TE+OB
4.60E+09 4.05E4-09 0.0
3.«SE«O9 7.60E*09 8.32E4-08 3.21E+09
0.0 0.0 3.ME*09 0.0
0.0
o.o
1.S8E+19
o.o
00002SOO
00902Q90
00002900
ooooasso
Q0003090
OOO0303O
00003100
00003150
00003 ZOO
00003230
00003300
00003330
00003400
00003430
00003500
00003S50
00003600
00003630
00003700
00003750
00003000
00003850
00003900
00003950
00004000
00004050
00004100
00004150
ooooo-aoo
00004250
OOQ04300
00004350
0000*400
0000*450
00004500
00004550
OOOO46QO.
OO004650
00004700
00004750
00004800
00006*50
90004909
00004950
00003000
00005050
00005100
000OSISO
00003230
00005250
90005300
OOOOS350
00003400
00005450
00005500
-------
'liOOE— Ot>
o.o •
1.00E»00
4.006-01
l.OOE-oi
o.o
I.OOE+00
4.00C-01
l.OOE-03
s.ese-oi
i.ooe+oo
.•'.o».o . ' . • '
o.o
7.3SFE+B9
0.0
o.o
ti.O
T.30B*B§
0.0
0.0
5.236-03
2.40E-OI
0.0
0.9
0.0
O.O
0.0
3.36E-03
S.12E-OI
a.4oe-os
8o26E-01 9»*SE~OJ
2.S9E-01
0.0
0. 0
o.o
o.o
o.o
o.o
1.846-02
0.00
9.86S-B2
0.00
.1.97.
• o.o
' -0*0 '
1.S2E+09 l.SOEtlO
S.626*09 3.27E*10 7.9BC+09 •
4.00 E.03 1.67E*tO 6.3JC+10 0.0
0.0
4.0OE-I-03
6*23E*09 1.4AC«>iO
0.0
s.ase-oi a.saE-83 i,7ie-03 6.62R-03
1*00^^1 Q 1*1 $€—01 3.97E—ill O.OO
1.1AE-01
«l*«$«««*9Ml*»»«*«« CHECK POINT NUMBER THREE 13}
TOT BOOVG1 TRACT 5ONAO5 LIVER I.UH6S HARBGM
O.O
1 078E-J03
0.0
0.0
0.0
c.o
0.0
4.Q3E+Q1
C.O
1.78E*03
0.0
1.69E*02
0.0
1.69EI-02
l.«BE*02
o.c
0.0
0.0
o.o
0.0
o.o
0.0
3.60«*OT
2.UE»00
0.0
T.22EOOO
I. 43 Eft 07
T.Z2E4-00
1.Z1E-MIT
2.atE*oo
7.576+02
2»eie*oo
£.EI1E»00
e,.eie»oo
0.0
0.0
0.0
o.o
o.o
0.0
4,856*07
0.0
BOftE tHYRQIO
0.0 0.
2.67K+0* 2,
O.O 0,
6,43E*-03 e.
0.0 0.
i. sat* OB
72e«o4
27E»00
0.0
o.o
o.o
9.02E-WJ8
3.27ECOO
l«g7E*0*
3.0QE»02
a. 10E«O£
V.70E4OO §.10E*OZ 4.702*03 O
1.21E»02 £.6-lE->02 1.S3E + 02 I
^
ooooaiso
ooooeaoo
-------
APPENDIX F
Input Data (concluded)
OD
6.OO6-03
i.^oe-ia
3
I 2
3^33 €-05
0.0
Z I
3.00K-O2
1.00E-&S
3 1
T.soe-oa
3
i a
3.33C-O9
t.OOEfrOO
1.00E<-00
O.O
2 2
S.OOE-02
3 2
7.60E-02
i.ooe+oo
0.0
o.o
o.e
a o.o
o o.o
2 1.606*06
O-O
O 0.0
0.0 .
0.0
0.0
1
1
a
0
s
9
0
0
e
0
o
c
ft
1
I
SOE-01
8ee*o«
5SE+03
20E
'•»G>
0.0
o.o
1.606*0*
0.0
o.o
0.0
o.e
o.o
o.o
o.o
0.9
2 2
1 2
O.OOE*01
0.0
0.0
0.0
0*0
o.o
I.S6E-07
0.0
o.a
o.o
o.o
0.0
o.o
C.O
0.0
2 £
2 a
«»00E«-00 3.0'
O.O 0,0
O.O O.O
C.O 0.0
1.
it
2.50E+02
90WESTS;i- CHECK POINT NtWElER FIVE
2.30E»00
0.0
0.0
2.22E+OS
0.0
0.0
0.0
7.30E+02
(SI
CHECK
HUHBER SIX
10
2
00006300
OOO 0« 390
OOOOS4OO
00000*50
000 OD 500
00000550
00008600
OOOOO630
OOOOST99
OO0007SO
ooooaaoo
ooooaaso
0000*990
QOOOQ9SO
0000-3000
0000905(3
ooooi joo
00009 ISO
OQQOS200
o oo 05 as o
00009300
00009350
00009400
O04094SO
00009500
OOOOOSSO
00009600
00009650
000007110
OOB39T50
00009SOO
000099(10
9O0099SO
OOO 10 000
aooiooao
oooiotao
00010130
00010300
U001O2SO
00010300
000 10 330
00010400
00010500
oooiosso
oootoeso
00010700
-------
2. output (a)
** DBFIMITIOX Of
JF OEF1NITION
INPUTS
AIR
CROUNO SURFACE
SURFACE OATEH
GROUND BATtR
** OEFIN[flqN Or PROBABILITY INPUTS
IFLAG OEFIMITIOM
0 PROBABILITY (PRQB> CONSTANT
1 STEP FUNCTION »T TIKE T t» CHANGES PRO8 BY AMOUNT CP
2 RAHP FUNCTION AT TP CHANGES P«O9 BY SLOPE CP
3 EXPONENTIAL FUNCTION AT TS* CHAMGES P«OB BY TJWE CONSTANT
* BELT* FUMCTlOMe AT tIME IP «5I-E*S£ TO ENVIRONMENT IS AAI
l PWBAB1LITV AND flELATED DATA
JF HJF J NJJ
AAl
PRO8
1FUAG
*»
MJ
1
1
I
2
X
2
3
3
3
4
3
3
3
3
3
3
3
3
3
I
I
2
3
1
S
3
1
2
3
1
1
a
i
2
I
1
3
2
2
4
5. COL- 02 1
7.SOE-02 S
6«OOE-03 i
3.33E-Q5
(
s. OOE— oa i
7.SOE-O2 1
3.33 e-os j
t
9, 006-02
7«50E-O2
o.o
.
i
1,096-13
!«49E- It
S.40E-12
UOQE 00
).0
l.OOE-13
i.ioE-ia
UODE 00
U(JOE 00
}»0
.OOE 00
. OQE DO
»ioe-it
.OtiE cJO
.OOE 00
.OOE DO
i .406- 07
o
9
0
0
2
0
0
o
o
2
0
0
0
0
a
o
o
o
CHECK POINT NUMBER FIVE
CHECK POINT NUMBER six
{51
o.o
0.0
o.o
o.o
l.ftOOOOE Oft
0.0
O.O
0.0
0.0
j.t.ooooe os
o.a
o.o
o.o
o.o
o.o
o.o
o.o
0.0
s
6
o.o
0.3
0.0
0.0
I.S600QE-P7
o.o
0.0
o.o
o.o
i.56UOSE-07
0.0
o.o
o.a
o.o
0.0
o.o
o.o
o.o
-------
APPENDIX F 2. Output (a) continued
** SELECTED RgSIMML. ELEMENTS IH MASTE
GBAM3 AT START OF TERMINAL STORAGE
FOR TOTAl. FUB, = 187000. METRIC TONS
r.li 1.26E OS
I to8Ar; 09
PO 9.C6E 0?
SELECTED HADJOKUCtlDES IN WASTE
GRAMS IN BASTE VERSUS TIKE IN YEARS
TIME
0.
S.
1C.
15.
SO.
25.
30.
40.
50.
60.
70.
BO.
90 =
too.
200.
304.
400.
£00.
6O«.
780.
•QO.
900.
1000.
2000,
3000.
4OOO.
60OO«
aooo.
7000.
8000.
90OO.
10000.
20000.
30000.
ftOOOQ.
SO 000.
60000.
70000.
80000.
40000.
laoooo.
200000.
30OOOO.
4 CO 000,
aOOOOO.
60000Q.
700000.
BOO 000.
900000.
i oooooo.
SR-90
B.30E
3»««E
LOSE
S.84E
4.22E
7. HE
e.aefi
4.91E
I.90E
3.09E
2.43E
I.9JE
1.46E
use
6.87E
7.72B
7.82E
7.05C
T.21B
6. IOC
4.Q3E-
3.6SE—
8.68E-
06
06
07
07
07
07
07
07
07
07
07
07
07
O7
OS
O4
03
02
01
00
01
02
03
I.62E-14
8.95E-
C. 0
0»0
o.e
o.o
0.0
0.0
o.o
o.o •
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
fl.O
o.o
0.0
0.0
o.o
0.0
o.o
0.0
zs
1-129
3.48C
2.B6E
T*96E
I.77E
3.40C
S.G4E
S>44E
6.B4E
S.S4C
5.S4E
E.84E
S.84E
s.a+e
S.I4E
5.84E
i*fl4E
B.84E
5.Q4E
S.04E
6.84£
G.i4E
E.B4E
5.B4E
S.B4E
5.S4E
S.04E
S.84E
5.S4E
6.84E
5.84E
5.B4E
S.B4E
8. 83E
5.83E
5.a3i;
2.33E
S.83E
E.82E
S.S2E
E.62E
s.aiE
E.80E
B.77E
S.74E
6.T2E
5.69E
8.C7E
i.sse
S.63ld
5.6IE
02
03
03
04
04
O4
04
04
04
04
O4
04
04
04
04
04
04
04
04
04
04
04
04
04
04
84
04
O4
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
O4
04
PB-210
2.12E-07
a,12E-O«
9.106-04
3,906-OS
1.32E-O4
3.2SE-04
*.Sie-04
7.0OE-O4
V,66e-l>*
1.26E-03
l.ESE-03
1.94E-03
2.3SE-03
2.B2E— O3
1.28E-02
3.C8E-02
7.85E-02
1.39E-0*
2.201-01
3.20E-O1
4*392-01
S.7SE-01
7.B9E— Oi
2.96E 00
6.O6E 00
9.696 HO
1.37E 01
1.70E 01
2.Z3E OI
2.69E 01
3.1SB 61
3.63E 01
8,406 01
1.27E 02
1.63(1 02
I.93E 02
S.I9E 02
S.4OE O2
S.S9E 02
S.74E 02
2. sec 02
3.40E 02
3.CSE 02
2.S3E 02
1.99S 02
I.SSE 02
1.1 9E 02
9.16E 01
7.07E 01
S.476 01
SPCC1FIC ACTIVITY
Ct/C t.4fg 01 1ȣ3E-Q4 0.12E Ol
50
-------
BAOIBNWCL1DE CC1 DATA DRC DATA RKD DATA
ER~«0 1.64E-OB Z.90E-02 S.OOE 01
1-139 -i.SEE-10 *.91E-03 0.0
PB-210 S.39E-10 2.756-03 4.00E 03
** GROUNII HATCH PARAMETERS
OROUNO MATS) SEEPAGE VELOCITY. VX* IN «ETEUS/aAlf •» ««OBE-03
POROSITY OF SOLID MEDIUM) POR1 = t.SOE-OI
BULK SOLID DENSITY. DULKD. IN CRAMS/CUBIC CM = 2.30E OO
DISPEHSIVItr COEFFICIENTS. IN 8E1EHS: AXIAL, W- =• S.OOt Ql TRANSVERSE. AT = 6-OOE OO
*ouit-~en VALUES, IN MEIEHSI HEIGHT, HT= suoot 01
DISTANCE FROM SOURCE TO e«E«6ENCE, XLCIZI EFFECTIVE BIDTH, VWdZt
ffj COHCENTRftTION AT TV * AVCRA6E CONCEMtSAT IOM IN VW
ZONE IZ= 1 IZ= 2 1Z» 3 12= 4 tZ» 5 IZ= 6 IZ=> 7 IZ= B
X4.UZ} 0«0 l.OQE 04 0.0 0.0 0.0 O.O Q.O 2.03E 04
YHtlZl O.O 8.S8E 03 O.D 0.0 O.O O.O 0*0 3.64L 03
YTII23 0,0 Si.20E 02 0.0 0.0 0.0 0.0 0.0 7.30E 02
EXPOSED AREA OF SOLiDIF1EO WASTE SPECIMEN* FSi> IN SQUARE CM = «.3St 04
VOLUME OP SOLIDIFIED BASTE SPECIMEN. VSt IN CUBIC CM - SUS26 05
TOTAL CANISTER INVENTORY. CINV c fi.2SE 04
ASSURED NtltSER OF CAMSTER FAILURES. CFAI 1 ?,.50t 03
-------
APPENDIX F
2. Output (a) continued
** CDC(K, J*=. JZl DATA, t Jf* 1.2,3 t*l» OEF*W_T VM.USS USED.
NONE
READ
12= 1
12* 2
Ml
SU-90
1-130
pa-aio
11- 3
SR-SD
1-129
PB-210
»Z* 3
SB-9O
1-129
PB-21O
1Z» 7
IN -90
PB-210
S.OOE
S.OOE
5. DOE
5.00E
S.OOE
S.OOE
S.OOE
S.OOE
5. 006
S.OOE
5. ODE
01
01
01
01
01
01
01
01
01
01
ot
8.306-05
Z.30E-05
E.30E-03
2.3QE-OS
2.30E-OS
2.30E-OS
2.30E-0S
2.30E-OS
2.30E-05
2.30E-OS
2.30E-OB
2.30E-OS
2. 3 OS -03
S.3OE-OS
Z.30E-05
2.30K-OS
2.30E-OS
1.30B-05
2.30E-OS
2. JOE-OS
o.o
0.0
o.o
0*0
0.0
o.o
0.0
o.o
o.o
0.0
o.o
o.o
iz» a
5-OOE 01
5.00- 01
S.OOE 01
S.OOE 01
s.ooe 01
5.00E 01
a.30E-05
2,soe-os
a.aoe-os
2.30E-OS
2.30E-&S
2.306-05
2.30E-03
S .30E-0 fi
K.aoe-os
2.306-05
2.3d£-OS
Z.306-US
0.0
0.0
0.0
0*0
o.o
o.o
S.OOE 01
s.oec 01
S.OOE 01
s.ooe ai
S.OOE 01
S.OOE 01
2.30E-OS
2.38E-OS
S.30E-05
2«30£-01
2.3OE-OS
2.30E-05
2.30E-OS
2.30E-O5
2.30E-OS
2.30E-OS
Z.30E-OS
2.30E-OS
0.0
o.o
0.0
o.o
o.o
o.o
-------
90 DISPW JF »121 OAT* , < JF»I ,2,3, * J
12* 1
1.006 OO 7.90E 11 0.0 l.OOc 00
11= 2
l.OOt 00 1.0 IE J4 S.06E 13 t.OOE OO
11- 3
l.OOE 00 2o27E 14 1.14E 14 1.006 00
12= *
t.OOE 00 4.77E 13 1.12E 13 l.OOE 00
IZ=" 8
t.OOE 00 1.22E 14 3.06E 13 l.OOE 00
l.OOii OO 1.14E 14 Z*e5E 13 l.OOE 00
II- T
l.OOE 00 1.5TE 14 7.B8E 13 t.OOE OO
li= a
I.JOE, oo S.««E 12 «..«oe i« i.oae oo
ZONA1.QIJF.1Z> DATA,
11* 1
I * 1*6-20 1.29E-O1 0,0 O.O
12= 2.
3.31E-23 4.41E-OI 2.17E-O3 l.OOE 00
IZ» 3
9.1SE-02 4.60E-O4 O.O
11= «
2.12E-24 B.fiSG-03 2.1BE-05 0.0
IZ' B
3.03E-2« 3.S9E-02 9.OOE~05 0.0
IZ= 6
3*D3£~23 2.
0,0
12* T
3.18C-2* 4.18E-02 '2.10E-Q4 0.0
12= S
3.12E-23 1.46E-02 1.44E-03 l.OOE OO
JONDEPUZ) DATA
12- I IZ» B IZ» 3 IZ= 4 12* 5 IZ= 6 IZ= 7 IZ= 8
4«04E-13 I.S3E-15 1.94E-16 l.OSE-16 1.T9E-16 1.17E-IS 1 .SOE-l(i 1.35E-IS
-------
APPENDIX P
2, Output (a) continued
»« AREABI1Z) DATA
1Z- 1 IZ* 2
o.o s.
** ADJH JT.JHA,
1Z* I
Jf* 1
Jfm 2
JF» 3
JF= 4
12= 2
•if* 1
JFat *
JF» 3
J^pSE ^
1Z- 3
JF» 1
JF- Z
JF» 3
JF» *
JF» i
JFS« 2
JF» 3
JF* 4
12" 8
JF* 1
JF-s 2
JF* 3
JF» 4
12* 6
JF» 1
JF» 2
JF=» 3
JFc 4
11* T
4FH» 1
4F» 2
JF» 3
JF* 4
12= S
JF* I
JF* 2
JF* 3
JF» 4
OAg. tl
IZt.ADJ
0.0
o.o
0.0
o.o
0,0
o.o
o.o
o.o
o.o
o.o
o.o
0.0
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
t.o
o.o
e.o
o.o
o.o
0.0
0.0
0.0
IZ* 3
1.14E It
IE< JF.J^A, 1
0.0
0.0
o.o
o.o
o.o
0.0
0.0
0.0
o.o
0.0
0.0
o.o
0,6
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
JJ.O
o.o
O.Q
0.0
0.0
o.o
o.o
0.0
O.Q
O.Q
0.0
IZ»"» 12= S
l«t£E 11 3.96E 11
Zl D*T*. I4f=*3i,2.3»
1 .OOE-09
O.O
0.0
o.o
1 .OQE-O9
O.O
O.Q
0.0
1.0DE-O9
O.O
0-0
0.0
1 .OOE-09
0.0
0.0
0.0
1 .OOE-09
0.0
0.0
o.o
I -ooc-O'i
0.0
0.0
o.o
I , OOE-09
o.o
o.o
0.0
1 .OOE-09
0.0
o.o
0.0
IZ= 6
z.esE 11
4)
2.00E 01
o.o
0.0
0.0
2.00E Ol
O.O
O.O
0.0
2.001: 01
o.o
0.0
0.0
2.00K 01
o.o
O.o
O.Q
Z.OOE 01
0.0
0.0
8,0
S.OOL Ot
0.0
9.0
0.0
Z.OOE 01
0.0
0.0
0.0
2. ODE 01
0.0
o.o
0.0
I2r» 7 IZe 8
7.8BE 11 S.40E
0.0
e.o
o.o
o.o
o.o
o.o
o.o
e.o
o«o
o.o
o.o
0.0
O.D
0.0
0.0
o.o
0.0
o.o
o.o
o.o
e.a
0.0
o.o
0.0
o.o
o.o
o.o
0.0
o.o
5.00E-01
0.0
0.0
II
0.0
0.0
0.0
0.0
0.0
o.o
0.0
o.o
o.o
o.o
o.o
0.0
0.0
o.o
o.o
o.o
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
o.o
o.o
0.0
o.o
9.0
;:.QI
o.o
o.o
01
0.0
o.o
o.a
0.0
0.0
0.0
2.MS-DJ
0.0
0.0
O.Q
0.0
0.0
o.a
0.0
0.0
0.O
o.o
o.o
o.o
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.a
0.0
8.00S-01
o.g
o.o
O.Q
o.o
o.o
o.o
o.o
2.OOC Ol
o.o
o.o
o.o
o.o
0.0
0.0
O. 0
0.0
o.o
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
o.o
o.o
o.o
0.0
0.0
0.0
P..OOE Ot
0.0
-------
2;,' -''Output:' (a)' cantinuect
** MM.INT1 JF.tttOE.NSPI OATA
IZ* 1
ut
JF
1
1
Z
E
3
3
4
4
12* 2
JF
I
1
Z
2.
3
3
*
4
HE 3
JF
1
1
Z
Z
3
3
4
4
12" 4 '
JF
1
1
2
Z
3
3
4
4
MODE
1
Z
I
Z
1
Z
i
2
MODE
1
2
J
2
1
Z
1
2
MODE
1
2
1
a
i
z
i
2
It DDE
1
2 •
t
2
1
Z
1
2
MSp»l THRU
1
t
4
4
4
4
1
1
NSPWI THRU
i
i
4
4
4
4
1
1
NSP«I THRU
i
i
4
4
4
4
1
1
»*SP»1 THRU
1
1
4
4
4
4
1
1
VOLINT
l.OOE 00
7.30E 00
+.OOE-O1
0.0
0,0
0.0
o.o
0*0
0.0
e. JOE; 07
o.o
0.0
0.0
0.0
0.0
a.o
0.0
0.0
0.0
0.0
VOL I NT
1 *Q0i£ OO
7.30E 09
4-.OOE—01
O.O
l.OOE-03
4.00E OS
4.SOE 03
T.oae OT
VOL INT
l.OOE 00
7.3 oe 09
4.00E-01
1.11E 10
1 . OO E-O3
E.ooe os
o.o
0.0
VOL INT
l.OOE 00
T.30E 09
4.00E-Ot
3.«5E 09
ioOoe-o3
o.o
0.0
OaO
o.o
I.19E 10
0.0
5.90E 09
o.o
1.B1E 10
o.o
4.60E O9
0.0
7.AOE 09
0.0
0.0
0.0
0.0
0.0
o.o
0.0
4.676 09
o.o
4.03E 09
0.0
B.32E OS
o.o
3.21E 09
o.o
0.0
0.0
o.o
0.0
4.0SE 09
o.o
o.o
o.o
3,2 1C 09
0.0
o.o
-------
APPENDIX F
2. Output (a) continued
Ln
II=t 5
JF
t
I
Z
2
3
3
4
4
IZ* ft
JF
I
I
2
2
3
3
4
4
IZ= 7
JF
1
1
a
2
3
3
&
4
I*a 8
JF
t
1
2
Z
3
3
4
4
MODE NSP-J THRU VOLIKT
1 1 1.0 QE 00
2 I 7.30G 09
1 4 4.00E-O1
2 4 2.SZE 11
1 4 1.0OE-Q3
a 4 0.0
1 1 0-0
2 1 0.0
MODE NSP=1 THRU VOL INT
i i i.ooe oo
Z 1 7.30E O9
1 4 4.00E-01
2 ' 4 t.97E 10
1 4 l.OQE-03
2 4 0*0
1 1 O.O
2 1 0.9
0.0
1.02E 1O
o.o
o.o
o.o
I.38E 1O
0.0
0.0
o.o
5.-»3E 09
O.O
1 .5 BE 1O
0.0
1.92E OS
O.O
l.SOE 10
0.0
l.SOE
D.O
O.O
o.o
l.SOE
0.0
0.0
10
10
MODE NSPJ=t THRU VCt I NT
t i i.ooe oo
2 1 7.3 OE 09
1 4 4.00E-O1
2
1
z
1
2
MODE KSP=l T
1
2
f
2
1
2
1
2
E.82E O9
l.OOE-03
4.00E OS
o.o
o.o
RU VOL I NT
I.OOE 00
T.30G 09
4.00E-O1
2.B4E O9
l.OQE-03
4.00E OS
2.OOE O4
4.BOE 07
o.o
3.27E 10
0.0
1.67E 10
0.0
O.O
o.o
9.60E as
a.o
r.eee 09
o.o
6.31E 10
0.0
6.E3E 09
O.O
3.46E 1O
0.0
6.31E
O.O
a.o
o.o
3.46E
O.O
o.o
10
10
-------
•2. -Output (a) continued
** •IOr«C(Kl^PiNSPJ DATA
fUOIDNUCLIDE
JF
1
£
3
5R-90
THRU
1
*
Ln
4F
1
a
3
*
«SP*t THRU
I
4
4
1
en
1*QG£ OO
S. 2 66-01
1.08E 00
i.iee oo
RAO1ONUCLJD£ = PB-KIO
Jf
1
2
3
4
NSP-t THHU
1
4
4-
1
BJI
i.ooe oo
5.26E-OI
l.OOE OO
1.1 £K -01
SIOFAC
i.oof: oo
B.26E-OI S.23K~«3 3.H«e-O3
1*OQE OO 2.40E-01
E.10E-01
9.48E-01 Z.S9S-01
I«16£ O9 3.B4B- 00
2.32E-03 1.71E-03
1.16E-01 3.971-O1
B.»*fi-02
0»B
5.02E-02
0.0
-------
F
2. Output (a) continued
#* OOSFACIK, JF.HOOE,IH> DATA
OR6*N - TOT BUOY
SR-9O
1-129
PB-2IO
IN * ot
SR-90
I-1J«
PB-210
HOOE*
0.0
H.55E
I.43E
TRACT
HDDS"
i.O
1.9SE
5.71E
1
O7
07
1
07
06
KGOEx-2
1.78E
4.19E
3.40E
KODE*2
3. see
5.34E
7.12E
03
SO
03
Ot
oo
oo
MCJOE=1
0.0
5.73E
2. 27E
MODE3!
a. a
1. IQE
9. 155
I
04
04
I
04
03
MODEs 2
1 »6S6
7.2BE
S.10E
MOO6=2
4.BSI
9.70E
9.7OE
O2
00
02
01
00
oo
MODE" I
0.0
2.01E 03
3. DOE 02
MODE-i "*ra
0.0
4.1BE 02
1.81E 02
HOO£'(
1.69E
7.E2E
S.10E
'3 MODe=i
4.6SE
9.70E
9.70E
j
08
oo •
OS.
9
01
00
00
MQOEs t
1.69S 02
7.Z2E 00
s.ioe oz
iwoe-i JFS
«. esg 01
^••"J^Ssi SO
5. 70S 00
«ooe=2
1.69E
T.2ZE
3. I BE
:* ww^i
4.6SE
S.70E
9.70G
02
00
02
I
01
OO
00
OR 6 AN
CONAOS
Ul
CO
UODFxl MOOE=2 MODE^l MDOO2 MOaC'l KOOE^Z HQI)E=1
SR-90
J-I2*
P8-21 0
0.0
1.31E
j.eit
OB
07
1.7«E
4.19E
3. 4 OS
»3
00
«
O.O
7.8BE
1.S2E
04
04
!*«$£
7.22E
S.10L
OS
00
02
0.0
2.74E
2o54E
03
02
1.69B
7.Z2E
5.IOE
02
00
02
1.69E
7.22E
S.10E
02
oo
02
»«ioe«2
1.69E
7.22E
S.10E
02
OB
O2
IN « UIVER
SR-90
PB— SI O
0.0
3.60C
7.87E
JF<
1
07
O6
«»
o.o
2.1 IE
3. JOE
2
00
04
«ooe»!
2.16C
i. tee
JF»
i
§4
O4
«z
o.o
2.81E
4.7OE
E
00
03
MCM5En -
O.O
t.5?E
J.53E
JF=3
I
02
02
fcffinjS'i*;
raUOC,^*
0.0
2. 01E
4.7OE
J
00
03
unnf^Ei
P*UU-CsICJ
0.0
2.S1E
».TO£
J|pJ
1
1
oo
O3
**
O.O
a.aiE
4. TOE
£
00
O3
-------
2. <3»tjmt (a)
ORCAN * LUNGS
SR-90
PB-21O
t-129
PB-2IO
JF=1
0.0
0.0
JP=3
Of
06
"=
OB
OT
MO1ȣ=J
9. TIE
4*456
&.4OE
2. 675
2.48E
3.30E
»
03
02
OS
1
04
00
OS
MQDgs
o.o
2. SIR
t.44E
0.0
9.aee
4,226
1
04
0*
t JF~2
04
04
HODL=2
O.O
0.0
0.0
8»43B 03
3.276 00
S.OOE 0*
HOOS= 1
O.O
1.02E
1 .'JOE
0.2
3.296
S.SW5
03
oa
j
03
oa
MUO£=2
0.0
O.O
O.O
F=3
8.43E 03
3.276 00
S.OOE 04
HUOE-1
0.0
0.0
0.0
R.43E 03
3.275 00
S.03£ 04
HQOE=2
O.O
O.O
0.0
£•4
MODE^'J
8.43E
3.27E
s.ooe
03
oo
04
U3
10
OR SAN
BONE
SR-9O
J-129
po-aio
ane*N * TM*«OIO
sn-so
I-J29
PB-2IO
MODE= 1
0.0
1,45£
2.4SE
MQDE=1
a. a
l.OIE
1.20E
JF=
OG
87
JFs
Q8
0?
= 1
MODE-
2.67E
2.48E
3.10E
it
MODE=
. 0.0
5.5SE
0*fl
2
94
oa
OS
2
OS
**ODE>=1
0.0
8.72E
3,96%
MOOK=1
o.o
6.o«e
1.91E
J
O4
04
J
04
04
pas 2
HQDE=2
B»*3H
3.27E
S.QuE
F«2
MQOE=2
O.O
5. 17E
O.O
O3
00
04
03
MODE*
O.O
3.06E
S.I6E
«OOE=
o.o
2.12E
2.S3E
JF=
1
03
OS
Jps
1
03
02
=3
HOOE=2
8.43E
3.27E
5»ODE
=3
MOOE=2
O.O
5.17E
0.0
03
00
04
O3
HOOE=l
O.43E
3.Z7E
S.OOE
MOOE=l
0.9
5.17E
0.0
JF=4
03
00
O4
JF=4
03
MOOE=s2
S«43£
3.Z7E
s.ooe
KODE=2
o.o
S.17E
9.0
03
oo
04
03
-------
APPENDIX F
2. Output (b)
RELEASE FRACTIONS BY EACH CUFSET, BELOO1
TIME
40,
40.
40.
40.
50.
50.
SO.
£0.
60.
60.
60.
60.
70*
70,
70.
7O.
SC,
SO.
ao.
so.
•so.
90.
90.
90.
100.
too.
100.
100.
200.
200.
200.
200.
3CO.
3 DO.
300.
30C.
40O.
400.
A 00.
400.
500.
600.
500.
BOO.
600.
600.
600.
600,
700.
700.
700.
700.
aoo.
eoo.
BOO.
eoo.
JF INITIAL RELEASE FRACTIONS
I
2
3
4
1
2
3
4
1
2
3
4
»
a
3
4
1
2
3
»
1
2
3
4
I
2
3
4
t
a
3
4
1
a
3
4
1
e
3
4
1
Z
3
4
I
Z
3
4
t
Z
3
4
i
Z
3
4
S.OOE-14
0.0
0.0
9,976-12
5.OOE-14
O.O
o.o
9.97E-I2
S.00E-14
O.O
o.o
9.976-12
S.OOE-S4
0.0
0.0
9.97E-I2
8.OOB-1*
0.0
0.0
9.97E-12
5.00E-14
0.0
0.0 ,
9.97E-12
S.OOE-14
O.O
0.0
9.9TE-12
S.OOI-13
0.0
o.o
9.0OE-10
s.ooe-13
0.0
0.0
«.oot-io
5.00E-13
0.0
o.e
9.00E-IO
S.OOE-I3
O.O
0.0
9.0OE-IO
5. COS- 13
0.0
0.0
S.COE- JO
S.OOE-I3
o.o
o.o
9.00£-li>
s.ooe-ia
o.o
o.e
9.00E-10
l.BOii-12
e.ooE-t4
5.GOE-14
i.eoe-is
S.OOE-14
6.00S-1*
1.80E-12
S.OOE-14
S»OOE-14
l.BOE-12
S.OOE-14
S.OOE-14
i.8OC-!2
B.OOE-14
e.ooE-14
l.BOE-12
S.OOE-14
g . OOE— I 4
1 . SOS" 12
li.OOE-i 4
B.OOE-J4
i.80E-it
5.00E-13
S.OOE-13
i . «OE- t \
s.ooe-13
5.0QE-I3
1.80E--H
5.00E-13
3»00£-13
1 . BOE- 1 1
S. 006-13
S.OOE-13
i.ao£-ii
S.OOE-13
s.ooe-i3
I *«oe-n
!ioOOE-13
5.00E-13
I . SOB- 11
55.00E-13
B.OOE-13
I .446-13
6 .07€-i2
6.0T6-12
1 .44E-13
6.O76-J2
6.O7E-12
1 .44E-I3
6.07E-12
6.07E-1I
1.44E-13
6.O76— 12
6.0TE-1Z
1 .44E-13
6.07E-12
S.07E-12
1 .44E-13
6.07E-12
6.S7E-12
1 .44C-13
6,872-12
6.07E-12
1.44E-12
6.07E-1I
S.07S-J1
1 .44E-1Z
G.07E-11
6.07E-H
t .44E-12
6.07E-U
6.O7E-H
1 .44E-12
6.O76-1I
6.07E-1 1
1.44E-12
6.07E-11
6.O7E-11
i, 446-18
6.07E-U
6.07E-11
l»44C-tZ
6.07E-11
* .OTE-1 1
This table continues through 1,000,000 years.
60
-------
APPENDIX F
2. Output, (b) continued
1-129
31
RELEAS1 INCKeNfiHTS TO PRELIMINARY ENVIRONMENT INPUT
RECEPTORS. RlJ, FROM ALL RELEASE EVENTS, IN CURIES
TIME
GROUND
SURFACE
SUBF4CE
0,
6,
10*
IS.
80.
25.
30.
40.
SO.
60.
7O»
no.
90.
100.
8OO.
300.
400.
500.
COO.
700.
aco.
900.
1000.
20 OO.
3000.
4000.
so oo.
6000.
7000.
GOOD.
9000.
10000.
20000.
30000.
40000*
60000.
60OOO.
70000*
aoooo*
90000*
100DOO*
£00000.
300000.
« 000 00.
EOOQOO.
OGCOOOo
700000,
BOOOOO .
900000,
1900000.
0.0
0.0
e.o
o.o
0.0
0*0
0.0
1.906-U
i.voe-ii
1. 9OS- 11
1 .SOS— li
i»9oe— 11
1.90E-U
1.9QE-II
l.SOE-tO
1.9QE-10
1 .SOE-10
1 .50H-10
1.90EI-ID
4.906-10
1.90E-10
1.90E-IO
i.soe-io.
1 .50E-09
1 .90E-O9
l.SOE-Ot
1 .906-09
I .90E-09
j. tee- 09
1.9OE-O9
I .90E-09
1 .90E-09
t .90S— 08
1 .896-08
i.eflii-oa
1.09E-09
1 .896—08
1.89B-OB
1 .89S-OB
i *e9e-aa
1.896— OS
1.B9S-Q7
1 .S8E-07
1.8TE-07
• 1 .866-07
i .aae-07
i .ass-07
1.80E-07
1 .83E-07
1.03E-07
O.O
o.o
o.o
0.0
0.0
o.o
0.0
B.83E-J1
S.B3E-U
S«83£— 1 J
5.83E-11
B.83E-H
5.63E-H
5.03!>H
S.83E-10
S.03F.-10
S.S3E-1O
5.83E-10
5.B3E-10
3»63C— 10
B.
-------
APPENDIX F
Output (b) continued
1-129
Zl
ffl
to
CONCENTRATIONS AT ENVIRONMENT
JF=2 MICROCURIES/SGUAHE CM* JF
ZONE* 1
TIME
0.
9*
io«
15.
20.
2E.
30.
40.
SO,
60o
70.
86 «
90.
1OO.
20O,
30O.
4OO.
soo*
600.
700.
SOB.
900.
1000.
2000.
3000.
4OOO*
EOOO.
6OOO.
7OOD.
aooo*
9000.
10500.
20000.
30000.
*QOOO.
SOO DO.
6000O.
70000.
00000,
90000.
10000O.
80OOOO.
300OOOo
500000.
scoooo*
eooooo.
70OOOO.
eooooc.
30DOOO,
lOOOOOD*
JF«=l
AIR
c.o
0*0
0.0
o.o
0.0
c.o
o.o
4.I1E-2S
1.83E-2B
7.5SE-25
9.26K-2S
I.10E-24
1.27E-2*
1.44E-24
3*166-23
4 .B7E-23
6.S6E-23
«,SBE-23
S.98E-23
1.17E-22
1 *34E-22
1.S1E-22
1 .«7E~22
3.376-21
S.02E-E1
6.62E-2I
B.19E-21
9 .72E-21
1.12E-ZO
i .27E-20
1.41E-20
1 ,S8E-20
3.0HE-19
4.16E-19
§»Q3E-19
S.71E-1W
e.asE-i*
e.aaE-19
7.0JSE-19
7.29E-19
7.50E-19
1.9ZE-17
l*fl9E~17
I.88E-17
1.87E-17
1.87E-17
1 .4UE-17
l.BSE-17
1.8SE-J7
I.B4E-IT
JF=2
GROUND
SURFACE
0.0
O.O
0.0
0*0
O.O
0*0
o.o
1.72E-17
3.44E-17
S.lttE-17
6.67E-I7
».S5£-17
1.03S-16
l.^OE-16
2.92E-16
4.63E-16
6.34E-16
y.ois-lt
9o75E— 16
I.14E-1S
I.316-1S
i.4ae-ia
1.6SE-1S
3.3SE-1S
4.99E-15
«.«OE-15
B»17e-lH
9.7OE-1S
i.ize-14
t *S7E-1 4
I.6IE-14
1.8S6-1*
3.8 US- 14
4.I&E-14
S.OZE-14
5.71E-14
6.2SC—14
fc.OQ£-J4
T.01E-14
7.Z9E-14
7.BOE-1*
.92E-1J
. B9C-. 3
.88E-13
.ere-ia
.BTC-13
.666-13
.ese-i3
.656-13
1.84E-13
INPUT RECEPTOR, «2
••~3 AND « MICROCURIi
JF=S
SURFACE
WATER
0,0
Q.O
0.0
0*0
O.O
0.0
0.9
o.o
Q.O
0.0
Q.O
O*0
0.0
O.O
0*0
0*0
Q.O
a.o
0.0
o.o
o.o
0.0
0.0
0,0
0.0
o.o
a.o
o.o
o.o
0.0
o.o
a.o
0*0
o.o
0.0
0.0
0.0
o.o
0.0
0.0
o.o
0.0
a.o
0.0
0.0
o.o
a.o
o.o
0*0
O.o
JF=4
C HOUND
WATER
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
O.Q
a.o
0.0
a.o
0.0
0.0
0.0
0.0
a.o
0*0
a.o
0.0
o.o
o.o
a. a
o.o
a.o
a. a
o.o
o.o
a.o
o.a
0.0
0.0
0,0
o.o
a.o
o.o
o.o
0*0
0.0
0*0
o.o
o.o
o.o
o.o
o.o
0,0
0.0
D.O
o.o
JF=I MICRCCURIEtfEAmS/CyBlC CH
JF-4
TIME
0*
3.
10.
IS.
20.
zs.
30,
40.
SO.
eo.
70.
ao.
90*
100,
20O.
300*
40O.
SOO.
609.
700.
UQO.
900.
1000.
2000,
3000.
4000*
SO 00.
6000.
7000.
SO 00.
9000.
10000.
J1CORO.
300 oa.
40OOO*
soo ao*
60O50.
70000,
BOO 00.
900 00 .
1QCO 00 *
200800.
3000 oo.
400004*
$000 oa .
60000O .
700000.
eoooao.
900000.
1000000.
AIR
6.0
0*0
a.o
0.0
a.o
o.a
a.o
3.92E-27
6.83E-27
9.74E-2T
1.27E-Z6
1.56E-26
1.8S6-2S
2.14E-26
5.0SE-8S
7.9SE-2S
1 .OSE-24
1.376-24
1.66E-24
1.95E-24
Z.24E-24
2.S3E-24
Z.81E-24
5«A8E-23
8.47E-23
1. 12E-22
l,38E-22
1.64E-ZS
l.SOE-22
2,1 SE— 22
2.39E-22
2.63E-S2
S.22E-21
7.05E-Z1
3.S1E-21
9,67E-2l
i.oae-zo
1.13E-20
1.19E-2Q
1 . 23E-2O
1.27E-2O
3. aae-ie
3. 21E-19
3.19E-19
3.18E-1S
3. 16E-19
3.15E-19
3.H4E-1S
3.13C-19
3.11C-19
SROUND
SURFACE
0.0
O.Q
0.0
O*0
O.O
0.0
0*0
2.91E-19
5.S2E-15
».73E-19
1 .t 6E-1S
1.46E-1B
1,75E-10
2.04E-18
4.9SE-IS
7,«se-iB
1.07E-17
1.36E-17
1.6SE-17
I.94E-17
2.236-1 7
2.S1E-17
Z.BOE-17
5.67E-17
3.4&E-I7
1.12E-16
i»38£-I6
1.64C-16
1.90E-16
2.1SE-16
2.39E-16
2.62E-16
S.22E-16
7.OSE-16
S.S1E-16
s.^yE-ie
.06E-1 8
•13E-1S
»19E— IE
.23E-1S
.27E-1S
3.26E-1S
3.21E-1S
3.19E-15
3.13E-13
3.16E— 15
3*ise-is
3,l*E~t5
3.13E-15
3.11E-1S
SURFACE
HATER
O.O
o.o
o.o
0.0
0.0
o.o
0*0
2.87E-21
5.73E-21
8.60E-S1
i.ise-zo
1.43E-20
1.72E-1O
2.01E-20
4.S7E— 20
7.73E-20
I.O6C-19
1.34E-19
1.63E-19
1.91E-19
2*19E-lfl
2.47E-1S
2.7SE-19
S.S9E-19
8.33E-IS
1.1 OG- i a
1.37E-1B
2.74E-18
1.46E-17
»*1«E-17
3.S1E-16
7.74E-I6
1.O3E-15
S.14E-15
a.4 DE-IS
1.10E-14
1.31E-14
1.47E-14
1»60E-14
4.7OE— 14
i. Tee- 14
S.5ZE-1S
4.74E-14
1.13E-14
5.IS&-I4
5.13E-14
S.11E-14
S.09E-13
5.07E-14
S*05E-14
-------
2, Output (c)
*0 AVERAGE ANNUAL LOCAL DOSE TO INDIVIDUAL. HANlti IN MILLIRENS/YEAR
ZOM* I,., NMO,IOE«« 1-129 K* 2
Ui
Tl»g
0*
5.
10.
IS.
20*
25.
30.
40.
SO.
60 «
70 «
BO«
90.
100*
too.
300.
400*
SOO,
»00«
TOO.
000.
*00«
10OQ.
2000.,
3000.
400O.
5000.
6000.
7008.
8000.
900O.
SO 000.
2004301.
3QOOO,
40000 «
30000 .
6OOOO.
70000.
8OOOO.
90000 .
100000 «
200000.
aoo ooo.
400DOQ.
aoooco.
600000.
700U 00 .
aeoooo.
scoooo.
I 000 000.
tOT BOOT
0.0
0,0
c.o
c.o
0.0
fl.O
c.o
3.*se-i3
T.90E-13
i.ise-12
i.seE-ta
I.97E-I2
a.37E-12
3.76E-12
6,? BE- 12
1.06E-11
1.46E-J1
i.aiE-ti
2.24E-1I
2.«3E-11
3.0JE-11
3.46E-I1
3.T9C-II
7.69E-lt
lolSE-lO
I.61E-10
I.87E-10
a.23E-IO
8.6TC-1V
2=91E-^10
3.23E-IO
3,S4£-JO
T.ofe-io
'J.SSE-10
1.15E-0-B
1. Si E-09
.43E-O9
,S3e-0»
ofrlE-OS
.47E-O9
.7ZE-09
,4 IE- 09
4.SSE-09
4.32E-09
4.30E-09
4.28E-09
*.2«iE-O9
4.Z5E-09
4.23E-0-5
4.22E-09
GI TRACT
0.0
o.o
0.0
0.0
0.0
0.0
0.0
8.34E-14
X.G6E-I3
2.48E-13
3.31C-13
4.131-13
4.96E-13
S.78E-I3
1.40E-12
B.8ZE-I2
3.04E-I2
3.86C-I2
4.69E-12
5»»9E-12
6.30E-12
7. HE- 12
7.9KE-12
1.&1E-11
2.40E-11
3.17E-11
3.92E-11
4.6SE-U
B,371-tl
6.0BE-1J
e.T6e-n
7.436-11
!.43t-lO
2oOOC-10
2.*IE-10
a.f4fi-io
3.00E-10
3.2OE-1O
3.37E-10
3.S9E-19
3.60E-10
S.B2E-10
S.09E-10
u.a4t-io
9.0QE-1Q
8.96E-10
B.9S6-10
8»H9E-LO
e.ast-io
a«82E-10
UONAOS
0.0
o.o
0.0
o.o
0.0
0.0
0.0
s.*ae-!3
1.09E-IZ
1.C3E-I2
3.176-ia
2.TI6-12
3.2SE-12
3.79E-12
»»21E-12
1.46E-It
2. 00=- 11
S.54E-11
3.0TE-41
3.61t-ll
4.1«E-11
4,6«e-n
5*21 e- i i
1.06H-10
».S7E-iO
2,08E-IO
2.60li~10
3.06E-10
3.536-10
3.99E-IO
4.4SE-10
«,S9E-!IJ
», 726-10
1.31G-09
1.5BE-09
I.80E-09
1.9TE-09
2. IIE-O9
a.21£-09
t*30E-09
2.3TG-09
6.0SE-O9
i.»8E-0$
5,9»5-Q9
B.91E-O9
5. 896-09
S.8«E«.fl9
S.34S-09
s.eae-os
5,BOg-09
LIVEN
0.0
O.O
o.o
0.0
D.O
0.0
a. a
I .49E-13
2.S8E-13
4.4TC-13
S.95E-13
7.446-13
B.S3E-13
1.04E-12
2.S3E-12
4.0SE-I2
5.49E-12
6.96E-12
S.44E-12
9.90E-12
1.14S-11
I, 296-11
I.43E-1!
2.906-11
4,326-11
SvTIE-11
7.07E-11
6.40E-11
9.64E-11
i.iac-ia
1. 226-10
1.34E-HO
2.ere-io
3.eo£-io
4.3SE-10
4.S4E-JO
5.11E-10
5. 782-1 0
0.07E-10
6.31E-SO
6.49E-10
.OSE-OS
,**E-0»
.636-09
.«gf;-09
.626-09
.6il-oi
.«oe-o9
.60E-09
•89E-O9
LUNCJS
0.0
0.0
0.0
0.0
0.0
0.0
0.0
3.34E-13
5«a»E-13
a.*se-J3
i.ioe-12
1.366-12
1.61E-X2
1.87E-I2
4.4ae-J2
4.S7E-12
S.5ZE-12
1.21E-11
1.4BS-li
1.71E-11
1.S6E-11
2. 2 IE-It
2.47E-H
4.S9E-H
7.44E-JI
9.B3E-H
1.22E-10
1.44E-10
1.67E-IO
i.asc-io
2.IOE-H)
2.31E-10
4.S91-10
6-SQE-1O
7.4SE-IO
a.soe-io
9.3IE-10
9. 946- 1C
1.046-09
i. 086-09
1.1EE-Q9
a.saE-as
Z.B2E-D9
2.806-ftS
2.79E-09
2.7ee->»9
Z.77B-OS
2. 76E-09
2.7SE-09
2.74B-O9
««RHOB
o.o
o.o
0.0
0.0
0.0
o.o
0.0
6.46E-I3
I.Z9E-12
1.Q4E-12
2.50E-12
3.232-12
3.B7E-I2
4.5I£-I2
t.lOE-11
1. 74E-11
2.3BE-U
3.02E-11
3.66E-11
-------
APPENDIK F
2. Output (d)
*» OVERAGE AhNUAL NONSPECIFIC DOSE TO POPULATION. MAN1N. IN «ANRewS/YE
3.2*E-06
3.29E-O6
3 ,3| 6-O6
9.896-OT
.48E-OS
.626-05
•62E-OS
,«ie-o5
.6ie-os
««I»E-05
1.3BE-05
1.S9E-OS
LUNGS
0*0
0.0
O.O
0.0
0*0
0.0
0.0
o.o
0.0
o.o
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0*0
0.0
0.0
0.0
0.0
o.o
o.o
o.o
0.0
0.0
c.o
0.0
o.o
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0*0
o.o
0*0
0.0
o.o
0*0
0.0
o.o
0*0
o.o
MARROH
0.0
o.o
o.o
0.0
0.0
0.0
0.0
5.2EE-I2
S.66E-12
«.4?fi-»2
7.0SE-12
7.62E-IZ
B.19E-1Z
8.75E-t2
I.SBE-li
a.a2£-u
a.aie-u
3, 3SE-.lt
3.9SE-11
4.3lE-tl
S.07E-11
S.62E-H
ft. 176-11
1.32E-10
1.93E-10
8.49C-10
3.O2E-10
3.11E-IO
7.16E-1Q
2.«4E-09
».93E-0«
i. sen- 08
1 . 036-O7
Z.S2E-07
I.77E-Q6
2. V6E-06
3.4AE-06
3.S7E-O*
3.77E-06
3.82E-O6
s.asE-os
i.ise-oa
1.73E-OS
.885-03
.oae-os
.are-os
.87E-OS
.86E-09
.8SE-OS
.8SE-05
BONE
o.o
0.0
0,0
0.0
o.o
o.o
0.0
S.22E-12
5.86E-12
6.47E-1Z
7.05E-12
7.62E-I2
i.l9E-12
S.7SE-12
1.58E-H
2<22E-lt
2.eiE-ii
3.39E-11
3.95E-11
4.BIE-I1
S.076-H
S.62E-11
S.I7E-H
I.33E-10
J1.93E-1O
2.49E-10
3.02E-10
3»BiE-lO
7.16E-10
2.64E-09
S.93E-O9
i. Bee-os
I. O 36-07
3.S 2E-07
I.77E-OS
2.96C-O6
3.4-6E-06
3.BTE-O6
3.77E-06
3.a?.E-os
3.BSE-06
i.ise-oe
J.73E-OS
loBBE-OS
UB8E-OS
1,876-05
1.87C-OS
i.ase-os
i.ass-as
1.65E-OS
THYHOID
0.0
O.O
0.0
0.0
O.O
a. a
o.o
fl.25E-09
9.27E-09
1.02E-OB
i.ne-oa
J-21E-OQ
1.2OE-08
1 .38E-08
2.90E-OB
3.SIE-08
4.45E-OS
S.36C-89
6.2Se-09
7,1*E-OB
B.OIE-OB
8.S9E-03
9.76E-OB
2.OSE-07
3.OSE-O7
3.93E-07
4.77E-O7
6.026-87
I.J3E-O6
4.I7E-OS
1.41E-OS
2.98E-OS
1.A3E-Q4
3.99E-04
2.8SE-tl3
4.69E-O3
S.47E-03
S.B1E-O3
S.96E-O3
6.04E-O3
6.O9E-03
1.82E-03
2.73E-O1
2.S8E-02
2.98E-02
2.96E-02
K.9SE-02
Z.94E-O2
2.93E-O2
^.9^E-08
-------
APPENDIX P
2. Output (e)
•* AVERAGE *»»WAL LOCAt. DO*E TO IMOIWIOOAL, *A*a_F (FOR JF=1 TO 4. MAN2I- FOR TOTAL, IN MILLIttEMSXYEAR
tOTM. FOH MJL MUCLIDES TOT BOOY
1 ZON£= 2
TIME
C»
5.
10.
19.
20.
23.
30.
«0o
Sfl«
60.
70,
• 0.
90.
JOO.
200.
300.
400.
500,
6OO»
TOO.
aoo.
900 o
1000.
2000.
3000.
4000 1
5000*
900O.
SOOOOo
acooo,,
30000.
40000,
soooo.
60000,
70000.
aoooo.
50000.
nooeo.
i co ooo a
3COOOO.
4CQOOO.
S 00000.
60OOOO.
700000.
aeoooo.
9COOOO.
1 OCOCOO.
JF*I
AIR
0.0
o.o
0.0
0.0
0.0
0.0
0.0
4.46E-04
$,WE— Q4
3.11E-O4
4.96E— O4
«»*2E— 04
4..7E-04
3.67E-04
3.79E-O4
4,sse-os
S.42E-06
6.91E-07
8.3OE-08
S.S2E-09
9«eiE-iO
2.38E-1O
2. 3e£~t«
1.22E-O9
*.f96-«»
1 .lOt -06
2:«o3E-oe
3. 256- 08
«.«ie-oa
8 .736-03
1,11E-07
3.S3E-07
'9.32E-07
i . sse~o&
2.14E-06
3 .736 -06
3«2S£~06
3. 726 -08
4.13E-O6
ft. 486-0*
1.2BS-O5
1,31 £-05
I <,13E-OS
9.14E-06
7.16E-06
S. 546-06
4.26E-06
3«2QE-06
2.SAE-06
JF=2
SRCMNO
SURFACE
0,0
0.0
o.o
0.0
0.0
0.0
o.o
3.SBE-1J
7.SOE-I1
lo 19E-12
i.eae-ia
i.sae-ia
2.3BE-J2
2.7BE-J2
6.S7E-12
a.isE-is
1.74E-J1
2.82E-11
3.S9E-I1
SaO2E-| I
6.B7E-S1
9.2SE-II
1.SIS-I8
5.S5E-1O
1.66E-09
*.J6E-09
T»88E-O1
1.2JE-00
2.44E-00
3o£2e-OS
4.2OE-08
I.44e-07
3.42E-OT
3.66E-07
7.89E-07
l.OOE-06
l,I«E-Q6
U36S-06
i.sie-oa
1.04E-M
4«70E-Oi
4.806-06
4.16E-06
3.3SE-06
2.62E-Q6
2.03E-06
1.56E-06
1.21E-06
9.32E-07
JI==3
SURFACE
WATER
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0,0
o.o
0.0
o.o
o.o
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
O.Q
0.0
0=0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o .
0.0
0.0
0=0
0.0
o.o
0,0
o.o
0,0
o.o
o.o
0.0
0.0
0.0
0.0
0*0
o.o
jr=4
GROUND
BATEH
0,0
0,0
0,0
0.0
0,0
0.0
0*0
0,0
0*9
0*0
o-u
o.o
o.o
0.0
0.0
0,0
0,0
0,0
o.o
0*0
0.0
o.o
o.o
a. a
0*9
0,0
0,0
0.0
0. 0
0,0
0.0
a.o
0.0
0.0
0.0
O.Q
0.0
o.o
0.9
0.0
0*9
o.o
0.0
0.0
Q»0
0.0
0.0
o.o
O.D
o.o
TOTAL
0.0
0.0
o.o
0.0
D.O
0*0
0,0
4*4&E~O4
4 . sfl e-a*
5, 11E-04
«,96E-t94
4 .. £2Ii-04
4.17E-04
3,67fc-O»
3.79E-04
4.55E-OS
S.42E-06
6.SIE-07
&.30E-00
6.S7E-09
1 . 03E-09
3.3DE-10
3.B9E-10
1 »i?E-O9
i . ME-O9
1 . S21-OB
2 , 7SE-OS
4.46E-OS
e.05E-oa
1.19E-07
l.SSE-07
S.37E-OT
1 »27E-Q6
2.11E-06
2.-94E-06
3.73E-06
4 . 44E-06
B.OiE— 00
s.we-o*
A. 12E-O6
l . fse-oa
l.7Bg-OS
I.«E-05
1 . 2SE-05
9.7SE-06
7.57E-06
S.B2E-O6
4.49C-06
3.47C-06
TIME
0.
5.
10.
IS.
20.
2S,
3O.
49.
se«
60.
70,
00.
90.
100.
200.
300.
400.
SOO.
600.
700,
aoo.
999.
1000.
20IVJ-
3 JOO.
4090 .
SOOQ.
600O.
7000 .
a ooo.
9000.
10000,
20000.
3OOOO.
aoooo.
50000.
eoaoo.
70000,
BOQOO.
90O40.
t 00030 .
aoooott.
300000.
4oaaoo«
500000.
600000.
700000,
SOOQOO •
9OOQOO.
toooaoo.
JF=1
AIR
0.0
0.4
0,0
o.o
o.o
0.0
0.0
4.2SE-06
S. 83E-04
ft,60E-06
6.77E-0*
6.S5e-06
6. 07E-06
5.4SE-06
6. OSE-06
7.43E-07
8.93E-08
USE-OS
1.38E-09
1.49S-10
lofilE-11
3.96E-12
3.98E-12
a.aae-ii
a.oae-u
1,876-10
3.43E-10
S.SOE-IO
8.O8E^~10
1.12E-09
1.43E-O9
1 , 88E-Q9
6.6SB-09
i.see-ofl
Z.62E-00
3.6SE-OS
4.63E-01J
s.sjs-oa
4.30E-08
6.99E-OB
7.S9E-08
2. tee -07
2, 22E-Q7
i,92E-07
J.S5S-07
1.21E-07
9.39E-08
7*22E-OB
5.S6E-08
4.30E-OS
JF=2
CHOUHO
SURFACE
0.0
0.0
0.0^
0,0
0.0
o.o
0*«
S,ftffE-lS
1.34E-14
t.ote-14-
2.6SS-1*
3.36E-J4
4.03H-14
4*716-1*
i.iee-13
1.95E-13
2.948-13
4.27E-I3
fi.DBE-13
a.soe-13
I.16E-12
I.S6E-12
2.B5E-I2
9.41E-12
3, ISE-tl
T.O7E-J1
i.sae-io
2.036-10
3.00S— I 0
4.14E-10
S.4BS-10
6,956-10
2.4SE-O9
S.79E-09
9.59E-OS
1.34E-09
1.69E-D8
2.02E-08
a.sie-oa
e«s6i-oa
2.70E-08
T.97E-OB
S.14E-OB
7.04E-OB
S.67E-OS
4.44E~OB
3.44E-08
2.6SE-08
2,O4£-Oa
1.58E-OB
JP=3
SURFACE
WATER
0.0
o.o
0.0
0-0
0.0
D.O
0.0
1.62E-O4
2.SSE-04
3.03E-04
3.1SE-04
3.14E-04
2.94E-04
2.66E-04
3.Q4E-04-
3.76E-03
4.S3E-06
S.02E-07
7.&3E— 09
7.61E-03
8.726-10
2.84E-1O
3.ite-io
x.aoE-aa
6.S4E-09
i.sie-08
2.77E-08
4. 4SE-OS
6.S4E— Ofl
I » 2OE-O7
1.S5E-07
S.4IE-07
1.29E-06
a.iat-oii
2,9ee-oa
3. 78E— 06
4.SOE-06
5.14E-O6
S.78E-06
8.I9E-06
t,76E-05
I«81E~ 05
If 57E-OJ
1.27E-OS
9,966-06
7.74E-06
S.99E-.OS
4.6SC-06
3.62E-06
JF=*4
GROUND
WATCft
0.0
0.0
0.0
0.0
$.0
o.o
0.0
0.0
0.0
a.o
o.o
o.o
o.o
o.o
o.o
O.Q
0.0
0,0
0.0
0.0
0.0
o.o
9.0
o.o
5, 8OE— 31
5.O46-SO
1.26E-1S
3.46E-13
3 + 6 2E "^ 1 H
2.39E-11
a. il£-li
1.33E-1O
l.OTE-11
I.34E-1D
1.34E-JO
1.346-18
1.34E-IO
1.34E-10
1.34E-10
1.34E-10
1.34B-I*
1. 466-1 t
1.4SE-10
1.45E-10
1.44E-10
1.43E-IO
1.43E-10
1.42S-IO
1.4IE-10
1.41E-IO
TOTAL
0.0
0,0
0,0
o.o
o.o
0.0
o.o
I , 6&E-04
a. 60E— o*
3.10E-04
3.26E-04
3. 20E-J4
3. OOE-04
2.71E-04
3.10E-04
3.83E-OS
4.62E-OS
S.94E-07
7. 17E-08
7. 766-09
B.906-1O
2.89E-10
3.2SE-10
I.83E— Ofl
ft. 656-09
1.53E-08
2.82E-OF1
eAee^jTD
, *33H^ WO
9. 22E-00
i»23E-Of
1.S7E-07
S.BOE-07
1.3LE-OG
E. 1SE-06
3, 03E-06
3, 8»E-0«
4.SOE-06
S.23E-06
S, 8OE-O6
ft. 296-08
.7SE-OS
.S4E-OS
.60E-05
. 29E-OS
.OlE-QS
7.87E-06
6. oae-06
4.72E-06
3, 68E-06
-------
APPENDIX F 2. Output (f)
AV£«AGE AN1JAL LOCAt DOSE Tt, INDIVIDUAL, MftNlL. IN ZONE I, IN MILL! HEMS/YEAR
IOQQ. YEARS*
K WCHOE TOT aaov si JKACT 6ON»ps Liven LUNSS MARROW BONE
1 S«~«O 6.J6E-1? 1«STC~13 6.36E-I2 0.0 3.4TE-11 9.S4C-11 9»34E-it 0.0
2 1-IZ9 a.T^C-l! r.92t-12 5.2ie-ll 1.43E-J1 2.4TG-U 6.206-11 S.76E-11 l.oac-IO
SUM TOT*L 4.4ZC-II B.CSF-12 S.B4E*>11 I -*3E-J 1 S.93E-il 1.57E-10 1.53E-10 l.Oae-10
3 PB-210 3.1SE-IO 3.»1C.-1J 3.02E-10 «.i5E-09 *.JfcF-08 2.26C-OR a.HSE-Ofl T.OIE-JI
Sua TOTAU 3.1SE-1D 3.»lt:-ll 3.02E-JO 2.156-09 *.366-08 3.266-03 2.266-08 7»01E-11
TOTM, S.S'JC-IO 4.KIE-11 3.6QE-10 2.I6E-09 4.J66-08 2.?ee-oa 2.aTE-08 1.7UE-1O
•TIME SINCE START OF REPOSITORY OPERATIONS.
en
Se ANVUAU StaNSPECiPlC DOSE TO POPULATION, MANJN.
' 1000. WC*BSS
K NUcutoe TOT eoav GI TRACT OONAOS LIVES LUNGS MARROB OONE
J SR—>0 S.74E-II I.65E-11 S.746-1 I O.O O.O Z.S7E-09 a.flfE-§9 O.O
2 1-129 I.3ef-I0 l.aae-10 1.36E-10 S.JiE-ll O.O &.1TE-U 6.17E-I1 tl-2lO 6.*ae-09 1.2JF-10 6.»i»E-09 6.9BC-08 0.0 6.36E-O7 A.,3frE-07 0.0
^ i.^^,.^ __»_„, -nm, __<,»—. JJ.-TII -L-J -Illll '-1-lt.l •" " — -—•—•—•—-—--— —' ™»- J.—.-« .»>—.A. — — — -»•—.—.*• — «-•*•—. »,,—.—*. — —-••—.*"-•»- -W.—. «*—.™
SUJ TOtAL *.48E-39 1.J3E-IO 6.»ae-09 5.90C-08 O.P 6.J*E-07 6.3&E-07 0.0
TOTAL 6.6aE-3t 3.Z3E-1O 6,t.flE-09 5.9at-OS 0.0 6.39C-07 6.39E-OT 9.76E-03
»Ti«t siwte ST*«? OF RupasiTORV IJPCHATJDNS.
-------
6
PROGRAMMER'S NOTES
Variables
The variables used and their definitions are presented in the list
of nomenclature in the front pages of this volume.
Pile Structure
"Index" is an unformatted temporary file allocated to logical unit 1.
Index holds a maximum of 260 records, each 400 bytes in length. Index
is calculated for each nuclide and zone.
Subprogram Usage
SUBROUTINE FAULT - determines release probability transfer coefficient.
Also, by use of time dependent component factors,
the subroutine can modify the nuclide inventory
at risk.
FUSCTIQN RLEACH - calculates amount of nuclide leached into the
ground water preliminary environmental input
receptor. The function is called by SUBROUTINE
FAULT when a leach incident is involved.
SUBROUTINE TRINB - determines transport-to-environioent transfer coeffi-
cient, accounting for decay and other processes
such as delay in ground water transport.
FUNCTION CRATIO - determines concentration ratio in ground water at
discharge point compared to release point. This
ground water transport function is called by SUB-
SUBROUTINE TRMAN - determines environment-to-man transfer coefficient
for dose to man via all pathways from environ-
mental concentrations.
Diinens ion ing
Some exchanges of dimensioning can be used for special cases with-
out increasing storage requirements. For example, 9 Release Model
events, each with 9 component factors represent 81 storage combinations
67
-------
{= 9 x 9J . If release is described by an involved function represent-
ing dynamic repository simulation, AMRAW can be dimensioned by other
combinations such as one release event with up to 81 component factors
if needed. The number of geographic zones, presently dimensioned at B
is limited to 9 because of programming for the variable "NPRIMT" which
controls output options.
Multiple Cases
&MH&W-& has provisions for running sore than one cage, per submis-
sion. This can be: 1} more than one set of conditions for a waste
management phase such as terminal storage, or 2) more than one phase,
such as repository operations and terminal storage, A full set of
input data is read in for each case,
Modification for Running^pn__CDC iystem
written in IV, was developed with implementation
on an IBM 360 system. Some changes are necessary for operation on a
CDC system. The following programming features in AMR&W-A, used success-
fully on the IBM system, produce problems on a CDC 6400:
1. Three guadruply dimensioned arrays are used: DQSFAC, MW2UF,
and VQLJNT. AHSI Fortran permits up to 3 subscripts.
2. DO loop control indices are passed through common, e.g., IZ in
/BTRINP/, JF and IH in /BTRMftN/, etc.
3. "Computed GOTO" drops to the next statement when out of range
in FORTRAN G on the IBM, but causes a fatal error on the CDC.
4. Integers are declared as INTBGERS*2 and INTEGER*4 variables, not
necessary on the CDC, The use of INTEGER*4 in &MRRW is for
storing 8 characters per variable,- the CDC will store 10 charac-
ters when declared as INTEGER.
5. "Direct access" read and write, used in AMHftW do not exist
directly on the CDC.
EPA personnel at the Las Vegas, Nevada facility identified the above
problems, incorporated changes to respond to the problems, and have run
the modified version on a CDC 6400 computer. The changes, listed in
68
-------
correspondence with the problems, are as follows:
1. Change the 3 quadruply dimensioned arrays into triply dimensioned
arrays through the addition of new variables.
2. Change the way the control indices are passed through common,
3. Introduce an extra IF test before the computed GOTO to achieve
the same effect as in FORTRAN G.
4. Change and to
5. Replace the IBM direct access file writes and reads by calls to
subroutines which manage ACTUAL KEY files.
Also, to reduce the large memory requirements, put the arrays result-
ing from MAN2LF into blank common. The way blank common is allocated on
the available CDC 6400 system allows the LOADER to use the region which
will become blank common during the loading process.
69
-------
APPENDIX H
AMRAW-A LISTINS
1. Main Program
2, Sub-programs
FAOLT - Release Model
KLE&CH - Leach rate calculations
TRINP - Transport-to-Environment part of Environmental Model
CRATIO - Ground water transport calculations
TRMAN - Environment-to-Man part of Environmental Model
Discussion of changes needed for running on a CDC 6400 computer
instead of IBM is presented in Appendix G {Programmer's Notes).
70
-------
H
Main Program
s LEVEL as
MAIN
DATE a 78096
22/35/04
0001
oeoz
0003
0004
0005
0006
00 07
OQOS
0009
0010
0011
0012
0013
0014
0015
0016
001T
0018
0019
0020
0021
0022
0024
oo a 5
0026
002*
0028
0029
0030
0031
0092
0033
0034
0035
0036
003?
0038
0035
C
C
C
C
AMU AC: ASSESSMENT METHOD PQR RADIOACTIVE WASTE:
A COOE DEVELOPED BY UNIVERSITY OP NEW MEXICO UNO EH EPA CONTRACT
THIS LISTING IS AMRAW-A. CALCULATION THROUGH DOSE RATE.
PRINCIPLE INVESTIGATOR: SoE.LOGANi DECEMBER, 1977 o
IMPLICIT INTEGER*a U-N)
DOUBLE PRECISION NUCNA M(2 3 J ,Of?GNAJ4(B ) ,T ITLE < 1 0 « 3 ) „
*HEAD<4 »61 sHEAOi 141 • AIZ
REAL A«l4,9|»ApJlf *f 4*Bi,ADJ2f 4*4,0) *BIOFACC 2S»*»6|tCf»l4t9i4I
REAL OCl,DISPN{^p83 ,DRC,01)SFAC( gS,*,2» Sli EDCt £5«4t 8 I
REAL MANZUFCSO.St 8t*> .MAN2HSQ. fl.8i . HANENFt SO , fl .* J t MAN2NI SOvB)
REAL ELEM. MAN1N(50,8J ,PBO0B<««9 ,*J » B1J {4»50 J
REAL R2C4BSO!,a>,R2TQT ( 4,3 0,81 , REMOV<4 , 8 ),HKD( 25 )
REAL SPACT11T)lfc;£{SO)cTP{4o9,*U VOLINM 4, 2.6 . 8J t XiKXi JSI
REAL 40»«LO(4tSJsRELOUT{f I.XLtSJjVWISi.YViai
REAL ZONOEPOJ .GNDtP(50oS),4HEAb{e)
INI£GER*£ IFLAGC4«9»4) t 1FLAGE t *»2» 61
INTEGER»2 JJ(4«9) , NJl 4 J « N J J ( 4 . g ) ,NSPt 6 ) « I ZONE I 101
INTEa£R«4 NPRINT»CHECK<19),J^(9 ),VAR(SJ ,IN, IP, IE
DATA UAR/8 (F1Q« ,>«0«I< »»S»1P'» *9El»i "2.2>»/
DATA HEAP!/" NONE**1 JF=« *•»» JP» 3»»* JF* S63'/
OATA AI£/*IZ=»/
DATA 4N/'1E1« »«aEl»s«3El« »»*ei » »«5E1» »» 6g|* ,«TE1* .'8EI * ,»9El«/
OATA HEAD/* »,' DATA '.'INPUT '•• «f
2« REL'.'EASE TO • , "ENVIRONM • . *ENT •,
3» LOCA'.'L DQSE T»»«0 INOJVI »> 'DUAL «.
*« NONSPEC't'IFlC DOS'.'E TO POP ' i • ULATION ',
S" TOTA»a«L DOSS &**** HECEPT** • O«S *,
6» DD"«*SE SUMMA' i *RV TABLE'a'S «/
C CM MON/BF A ULT/ PSO8B,AAt»»P»CP»lFLAS
COMMON/BLEACH/ OCH25J »ORC(2Si t Xt 2S .80 ) ,F5» VS.SPACT (25) .CIMV
" CCMMOH/FDLEA/ CFA1.XR, DS.T IM. II
CCMMON/BTRINP/ ?2,Y3m I ZoIFOIVW
COMHON/CTRINP/ CRHIN.DFMIN
COMMON/ BTR MAN/ HI OF AC* VOLINT.QOSFACpNSP tIFL AGE. JFj IM*O6LT£
COMHON/BCRATO/ BKO*C(JNCI»T1MS» WX.PORE.ALs AT»H
1ITE»K,GNODIS,VY
COKMOH/FCRATO/DELTL
DEFINE FILE 1 ( Z60 .100 » U,l NDEK»
READ { I Ni BO 1 INCASE
DO 9999 KASE»1*NCASE
IP,802)KASE
READ IN OATA ANO INITIALIZE CASE 6«
THE TITLE MUST HAVE THREE LINES »«»*&i|«t«i $$«««««
REAOUN.B03 JTITLE
IF! IP. NS« IE > WRITE! IS» 9361 TITLE eNCASSi (HEADC It! J « 1=1*41
E»MZt NIHT«NPRINT»IFDIVW
IB.gO.a.AND.iTRe.SE-MTJCO TO 9698
SET ORGAN* ZONE. AND MPRIHT VALUES
lABS
-------
APPENDIX H
Main Program continued
FORTRAN
00*0
0041
0043
0043
0044
O04S
0046
0047
0048
004 S
0050
0051
0002
3653
OOS4
OOSS
0086
005?
0058
O059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
OO70
O07!
0072
0073
0074
0075
0076
0077
0076
0075
0080
coat
0082
0063
0064
OOSS
0086
0087
0088
COS 9
0090
IV S UEVEU
MAIN
DATE » 78096
aa/33/04
1F< IQKGS.EQ.O)
IFI lQRG$.EO»0>iaROS*l
JF( IQRGS«6T.NIHT>GO TO 99 ?T
NPRINT^NPRI NT/ 1 0
IABS t MOD J NPS1NT c 10 ) )
0.01 ISTART=1
JFtISTART«,GTf«MZ>Ga TO 9996
1FEKASE.3T.DGO TO S
9*Stil>**«iW*«>»»***«i* READ IN CUTOFF VALUES **>»***«»«! ft*® **agr*i8i9«.«e4i
REAO(IN.8061RIJMIN,ASMIH, S2MN,
READ( I N*fi06) ( TIME* I ) i } =i . HT)
RtAD ( I N,fl06 1 TFUEL
00 20 K=
UEAO(IN.
(XtK.If I , iT=i»7J
26 CONTINUE
READ { JN,B^S»ERR=9908, END=»9998J CHECK, 1CHCK
IF(ICHCK«NE.l JSO TO 9996
R E A D ( I N j B 0 C } ( SP A C 7 i K J » K=l i
,e06) (ORC(K) B
READ(IN,a06)« U AOJ1 ( JF,JFA,JZ) . ADJ2 { Jr , J,-= A , IZ ) . JFA= I, 4 ) t JF= 1 ,
flOe ) ( (ZONALQC JF ,1 Z.). li* I ,HZ) > JFaJ ,
20NOep(I2).IZ-l.MZ)
(AHEAW(IZ) .IZ=-1,I4Z j
IF! ICHCK.NE.2HGO TO 9996
REAOtlN.BQl KNSP1 JF».JF«t
DO 30 JZ«I ,MZ
DO 30 JP»i t4
30 REftO4IN.806JI{VCH,lNTtJF,MODE. In 12 J »
DO 40 K=l ,NK
DO 40 NS*1 « 6
40 BlOFAClKsl !>NSJ=1<.
oa so ;<»I,WK
DO BO JF*a»4
NS-NSP( JFI
BO KeAO(IN,B06)tBUlFAC(Kc JF, I) .1 = 1 0NSJ
. NS J,KOOE*l t£ I
IFlICHCK»NE.3»«a TO S998
»84e>CHECK, JCHCK
t BOiMORGNAtUI I tl*S.N!HT »
-------
APPENDIX H
!4ain Program continued
FORTRAN IV G LEVEL
MAIN
DATE » 78096
22/35/0*
$091
0092
0093
009*
0095
0097
0099
0099
0100
0101
0102
0103
0104
0109
0106
0107
0108
0109
0110
0111
0112
0113
0114
0116
0117
one
0119
os so
0121
0122
0123
0124'
0125
0126
0127
si m
0129
0130
0131
0132
0133
0*34
> • JF»1
Rfc'AOUN.B06H tUDQSFAC(K. Jf=, MODE. JH> . JH"1 ,NIHT i ,MOOE=1
*K=1,NK.}
S CONTINUE
REAOt IHt84S ,£.m*999Bt END»999B JCHECK, 1CHCK
IFUCHCK.Ne«*IGQ TO 9998
WRITEUe«ft*8JCHECK, ICHCK
C»*43 *»#*>»««»:»$ JJ| JF»J» SPECIFIES A PARTICULAR RELEASE EVENT CUTSET. **
C4**********>M<*****«! NJCJFJ »» OP RELEASE CUTSETS ASSOCIATED WITH JF
C*** ****** NJJ(JF,U as OF PROBABILITIES ASSOCIATED WITH iACH CUTSET
1000 ISECT=I
IS£C78
J=JJ( JF.ll
NJJJ=NJJ< JF ,1 J
READ! IN.806JAA1 ( Jf-o J)
DO 1020 K=1.NJJJ
REAOUN.BlOlPROBSf JF» J »K» » IFLAGdJF, J.KJ .T P{ JF. J ,K» , CP( JF, J, KJ
IF< K.EO.l JWRIT£( IP,8ll >JF,WJF,J,NJJJ= AAU JF=J) tPHUBG(JF, J,l >.
*IFI»ASlJF.J»il.TPI JF.Jsl J*CPtJFi Jsll
.J.KJ »JFLAG( JF, J«K>,TP( JF, J.K1
1020 CONTINUE
1030 CONTINUE
IFtKASE.GT.llGO TO 6
00 1060 JF*a»4
J=N5PC JFJ
1060 Rl;AD( IN.80J J f ( IFLAGEt JF»MCOE» I ) *t»l* J ) « HOOE=1 . 2 J
,MZ)
u »i~i » Hzi> i vv( IK 1*1
2CINW.CFAI
R E « D ( I N 5 B4 5 0 E R R-9 99 8 1 E N D= 9998 >ChECK,ICHC«
IF( JCHCK..NE.S) GO TO 9993
WRITEtIE»B481CHECKt ICHCK
READ EDC FLAG I =DEf-'AULT,2 = J F R[5AD,3=JF
READd N.80J 1ISECT
1«1SECT
OO 1130 K*l tNK
DO 1130 IZ»1.M2
il .IZl«50.0
Jfss3.t3 *®**
GO TOI 1 11B » 1120.1110,1 1301 .1
£D
GO
1130 CONTINUE
GO TOI 121 O.llflO si 16O» 114OI»I
DO StSO I»l«3
73
-------
H
Main Program continued
FORT RAH IV C LSVEL 21
MAIN
0135
6136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
01SI
0152
01 S3
0154
0155
0156
0157
01 se
0159
0160
0161
0162
0163
0164
oies
0166
0167
0168
0169
0170
0171
0172
0173
1174
0175
0176
0177
O178
0179
0180
0181
0182
DATE » TJJOT6
UNKI
22/15/0*
1150 REABeiNsB06H(EBCtl€»l« I2>* 12=1«MZI,
SO TO 1ZIO
1160 REACH IN.S06 H *
IZONH)
ItSUMY*INITIAL TtME* ITSUHJ»TIWE CHANGE, KSy»»K FOR SUBTOTAL **
1310
IF*NK.EQ.
6 CONTINUE
IF( NPRIMTaEQ.O.ORoNPHINT.eQ.SlGG TO 1500
GO TO 2000
SW********!*!?****************®*!**®******** OUTPOT SELECTED INPUT DATA
ISOO HH1TEUP»B13)TFUEL
bBITE(IP0ei4XELEM( ID) C^X< ID). I 0=1 tNDJ
DO 1SSO I>=i,LPRIMT
I Ft Ml e»GT. NKIM1 QsNft
DO 1S40 IT*lf«T
15*0 BRITEC IPtS17)TIMEUf J
HJ-M10+1
MlOaHlO+1
1O50 CONTINUE
00 1380
1560 ttRITE(iPe&20iNUCNAM(KI »DCt tK) «ORC{ tit »RKDJ K)
BRJTE( JP.8S9J VX,PORE,BU_KO»AL. AT5MT.IAIZ. I .1
CXL1I}*I*}«MZ}
,HZJ
»I*t»MZJ
WRITEtIP*E73) FS» V
00 1620 IZ=1.MZ.2
IF (IZ.EQ.S)HRIT£( IP.644*
WRITE! IP«828HZ«SZPl
DO 1620 K=l»NK
1620 KRITE( 1P«6231KUCNAMCK.> •< t EDCI K» JF» I J . JF*1 *4 It 1= IZ« I ZP1 J
HRITEtIPg8241
DO 1660 1 2=1. HZ • 2
!ZPl=IZ+l
1660 HRITEtIP«B2211ZiI2Pl»l IOISPNC JFtllt JF=I •«!« t»IZ,IZPl)
74
-------
APPENDIX K Main Program,continued
FORTRAN
0183
IV G LEVEL
I4A1N
OJ.BS
0186
0187
0168
0189
0190
0191
01SZ
0193
0195
01 9S
01 S7
0198
0199
0300
020!
0202
0203
0204
Q2G5
0206
Ot07
0108
0209
0210
0211
0212
0113
0214
0218
0216
OS17
0213
0219
0820
0211
0222
0283
0224
G22B
022 «
0217
oses
0229
0230
0233
023 S
BRITEl IP.349J
DO 1700 IZ=»l,tGs2
121*1 =*IZ*1
1760
DATE *> 70096
I ) ,JF*St 4} • 1^ I2t IZP1 }
22/3S/0*
WRITGI IPt.6301 ( AIZoS, 1 = 1, MZ)
WRITE? Xf>»880> J ZONDEPi I >» 1
JP,8QO)
IP.82B1
DO 17*0 IZB2.MZ
8HITEU
DO S7*0
1T40 CONTINUE
feJfiJTEt !P»326J
DO 1780 IZ*1»MZ
, JFA, JZ)» JFA=1
DO 1780 JF=1»»
NS«NSPI JF|
00 1780 MODE«1«2
1780 WHITB(IPaB30MF,MlS>6.NSf t V£H.JNTCJF.»ODE. I. 121 » l"l«NS>
aRITEJlP.831)
DO 16 JO K*lgNK
KRltei IP,832INUCNAMilCi
DO 182O JF=lc4
NS»NSPIJF»
1820
If I
1830 CONTINUE
DO 1370 IM=IORGS» IORGE
DO 1860 Ks} oNK
1860 ^RITE*«i««'»**«"S>*«'»»«i«'iS*«««««
IF( IB.E0.3JDT1ME=T1ME( ITHE»1 )-T IHE( 1TRE J
DO 2020 STaltMT
DO 2020 IH»1.NIHT
«At42N< IToIH)=Q»0
DO SOSO JF»»I«4
DO 2020 IZEJSTART, ISTQP
2020 «AW2LE IT* ZH.IZt«0«0
GNDDJS-1^0
C****** ********#© OKOTO STMT CONS1OIH EACH RAOIONUCLIOE
75
-------
APP1ND1X H Main Program continued
IV 6 LEVEL 21
MAIN
0233
0234
0235
0236
OZ3T
oaaa
0239
02*0
02*1
0242
0243
0244
0245
0246
0847
0246
0249
0250
0251
0252
02 S3
0255
0256
02S?
025B
0259
D260
0261
0262
0263
0264
0265
0206
0267
0268
0269
0270
0271
0272
0273
0274
0278
0276
027?
DO 2999 K-lsHX
IFCIW.EQ«3)BFAC«=U eO-
78096
ITREfttl/JtlKi ITftEJ JI/PTIHE
22/3S/Q4
00 20SO IT»t»MT
DO 2040 IM*J»N1HT
OO 20SO JF*li«
R1J( JF.IT)=0.
DO 20SO I2*ISTART» ISTOP
RSI JF»IT»IZ>=0.
R2TOTIJF«17iilZI»0.
£050
TO STMT 2SOO CALCULATE ENVIRONMENT Al. CONCENTRATIONS **
CALCULATE RELEASE OURIM3 EACH TIME INTERVAL »«»*««$« $«*«««
C**«f ******** « TO PRELIMINARY ENVIRONMENT INPUT RECEPTORS TO STNT 2»»0
IF(NPRINT«EQ»S)BRITE( I P. e471NUChAM( Ki 0K
DO a500 ITR=ITRS. ITR6
OELTL=TIME(ITRJ-TIMEi ITR-11
2AV6=t ( KR*K { Ks ITR-i J I*SPACT {K > J /£«Q
00 2I2O !•! *9
2120
DO 2160 JF=t*4
NJF=NJ(JF1
I FtNJP,SQ»OiSO TO 1160
OO 2140 I*1,NJP
J=JJ( JF*I »
NJJJ=NJJ(JF • I )
IFCCTR1 =GE»1. )GD TO 2140
!^**®^*****"!**** DETERMINE RELEASE FAULT PROS AND TRANSFER COCFF
CALL FAULT (TIME.PROBt Alt JFtJ.NJJJ, JTW.KpCONCI t
PRBDE{.=PROSWOEL TL
JFlPRBDEL.GT.l.OJ PRBDEL31.0
REL=ASS(REL>
CTRlsCTRl+REL
If I H£L«GT« 1 . JREL-1 •
RELDUTt I>«=REL
HI Jl JF i ITS » =RU C JF p ITS »+ZA VG*REL
2t4Q CONTINUE
«»**»«**********ft* TO STMT 2160 OUTPUT RELEASE FRACTIONS Bf CUTSET ***
VARt4l=JN( NJF)
LfNEP- LINEP+1
JF(LJNEP.GT<,60oANDoNPRINT.EQ.5 JtWITet IP,6SE ) ,
IF(l-INEP»OT,60)LINEP=l
IF(NPRINToEQo5)URlTE( I P»VAR)T 1 HE( ITRJ . JF» < RELOUK 1 1 «I = 1 «NJF )
2160 CONTINUE
STMT 2®$*$iit$$$«$!|@$$ist$$$$4ie CURING SUBSEQUENT TIME INTERVALS ««
OO 2499 1T1=>ITR»HT
OCLT2=TIMEI ITE-il-TIMEf ITRI
76
-------
H
Main Program continued
FORT RAM IV 6 LF.UEL. 2.1
MAIN
DATE
T8096
22/35/04
0279
0260
oset
0282
Q2S3
0284
0288
OZ86
02S7
0208
0289
0290
0292
0293
O294
0293
0896
0297
0298
0299
0300
0301
0302
0303
0304
030 S
0306
0307
0308
0309
0310
0311
031 a
0313
0314
031S
0310
03*7
0313
031«
0320
0321
0322
0323
0324
032 S
00 2210 l*=ISTA«T.ISTOf»
00 2810 JF«1»4
221 0 RgMcm JF.1ZI=0.
TO STMT 2220 DETERMINE TRANSFER COEFF TO ENVIRONMENT INPUT S*
DO 2390 XZ-ISTASTsIiTOP
DO 32 SO JF"J .4
DELT4»0»
XEM2*X6ME
TRL^EOCCK. JF^IZJ
SET TEMP08ARY VALUES FOR OEL.T4 ANO XEM2. ** .
ITRJGQ TO 2220
2220 CAL1. TRINPlOEI_T2«OEI.T3»DELT^«XR»XE»XE(«liXEM2.T«»,t0eCFAC««2*
«XL< 1Z) ,X(K, ITRE) «DFAC.
$ I TE * fTRE . IM « JPtRKDt flKD MAX » K}
IF(HU( Jf- . STRJ oLE.RlJMiMJPlJUF . ITR) = Oi,0
IF(,\2.LE.A2MINt A2=0.0
IF! JF.EO.ftiaO TO 2260
IFJ ITE.NE.ITRJSO TO 2270
GOTO t 2230, 22*0. 2E50 J ,JF
2230 R2*A2*lONAl.Ot JF. IZJ
DEP=R1 J< JF,
DEPGNO=DEP* AREAS
OEP BTR*PEf * AREAB 1 1 Z 1
GO TO 8280
2240 R2IJF*1TE» IZIaRIJI JFs ITB|*A8*ZONALPI JFn IZl+0£f*«NO
GO TO 2280
22SO R2S2tJF.I?Et 121=0.0
TO STMT S499 ADJUST ENVIRON RECEPTORI TRANSFER FROM OTHER RECEPTORS
00 £330 JF=lo4
OC 2330 JFA=lt4
IF{ JFA.EQ. JF=OR,ADJJ { JF.JrAo IZ1 .Hd.O,iGO TO 2330
OCi.TE=T WE CITE1 -T I Mg€ I TE- 1 1
AMD*ADJ2( JF . JFA. I2J*0 . SOD6LTE
1FS AMO.GT.lSo )GO TO 2300
GO TO 2310
230O ADJ»APJl(J
IF( Jf-»NE.S JGQ TO 2310
9***!**® FO1_LO»ING STATEMENT IS INTESHATeO- CONCCNTRAT ION FOR HESUSPENSfON
A04R2=AOJ*82I JFA. ITEt I Z )O (DEuTL/OI SPW{ JFAt> I Zt )
GO TO 2320
£310 AD4R2*ADJ*R2( JFA. ITEolZl
2320
77
-------
APPENDIX H
Main Program continued
FORTRAN IV G LEVEL. £1
MAIN
DATE = 78096
22/35/04
0326
0327
0326
0329
0330
0331
0332
0333
0334
033S
0336
0337
0326
0339
0340
0341
03*2
0344
03*5
03*6
0347
0346
0349
0390
0351
0352
0393
0354
035 S
03S6
03S7
0356
0359
0360
0361
0362
0363
0364
0365
0366
OJ67
O36S
0369
0370
0371
0372
0373
0374
037 S
£330
23*0
2350
2360
2370
23QO
2390
2499
2500
2700
IFtJF.EQ.l >GO TO £330
REMaV(JF'A»I2)=RE«OVlJFA.IZJ-»-AOJR2
CONTINUE
00 2390 JFslB«
IFIOISPNI JF.IZt.EQ.O. 1GG TO 2390
GO TO (2340D23SO«2360( 2370)sJF
R2CON=10.»*6*R2£ JF,ITE<1Z1
60 TO 2380
R2COHalO.**6*Rai JFi IT£ . 1Z 1/DISPNC JF. IZ)
IF{iTE»NE.ITR>GO TO 2360
GNDEP< ITEi, IZ>=R2CON
GO TO 2380
R2COht=SCUU<#6*R2(.JFBlTe»lZl/»lSPN( JFtlZl
GO TO 2380
DISPtt(JF»IZi=GNCIDIS
lFlGNDDIS=Ea.O. »R2CON=0.
IF(SNDOIS.EQ.O.)GQ TO 23QO
R2CQN=R2(JF elTE.IZJ/DlSPNf JF.I Z)
R2TOT(JF«ITE.I2»=H2TQTS JF • ITE, I 2J+R2CON
CONTINUE
DO 2499 JFKl.4
DO 2499 IZ=ISTART,ISTDP
R£(JF,ITEt IZJ=R2t JF « IT E> I Zl-REMOVC JF.iZl
IFtR2( JF.lTEg I21.LT.O. )R2 t JF. I TE» IZ)=0.
CONTINUE
«#«««S«««4«««««> TO STMT 2730 CAL.CUL.ATE EACH CATAGOHV OF MAN DOSE **
DO 2780 IZsISTAHT.lSTOP
DO 2700 IH^l.NIHT
DO 2700 ITE*i.MT
MANlLtlTEo IH)*0.0
DO 2730 ITE=ITRStHT
DELTE=TIMEI ITE) -T IMEt ITE-1 1
DO 2720 IH=IORGS, iORGE
DO 2720 JF«I04
4«»*»ii>««$««$«>»<:4:««## TRMAN, DETER MIKE TRANSFER COEFF TO HAN ODSE *<•
NSS=1
CALL TRMAN(K,ITE, IZ.NSSjCJ
MANILt lTE.IH>=HAN!LtITE.IHI+C*R2TOTtJP. ITE.IZt
MAN2LF( ITE>lHgIZ*JF)«MANSLF(ITEcIH>l£tJF) -»-C*R2TOT( JFt ITEtIZ) '
MAN2L( ITEeIHeI2)=MAN2L! ITE.IH, IZJ+C4R2TOT ( JF, I TE. IZ 1
CALL TRHAN(K» ITE. IZ«NSS»C)
.001 FACTOR TO STMTS 2720: CONVERTS M1LLIMANREM TO
IF! JFoNE.2)GO TO 2710
MAN2NFC ITE. (Hi JF J = «AN£NF1 ITEt I H . JF I *C«GKDEPUTE • IZ>«Oa 001
MAN2NI ITE« IHJaMAN2N( ITEtIH)4>C«CNOEP( ITE . 1 Z)fO. 001
MAN1N( ITE, im=MANlN-SO. 001
GO TO £720
2710 (CAN2NFI ITE , IH, JFJ = MAN2NFl ITE. IM > JF »*C«R2TOT ( JFt ITE. IZ> 40*001
MAN2N( ITE«IH)*=MAN2N< ITE. SH)*C*«2TOT( JF, ITE. IZJS0.001
MANlNtITEtIH)i=HANlNtITE)IH>^C«R2TaTtJFIITEgIZI$0.001
2720 CONTINUE
2730 CONTINUE
78
-------
H
Main Program continued
FORTHAN IV G LEVEL 31
MAIN
DATE * 78096
0376
0371
0378
S3? 9
03SO
0381
0362
0383
0364
0365
0386
0387
0368
C389
0390
0391
0392
0393
0394
039S
0396
0397
0398
0399
0400
0401
0*02
0403
0404
040 S
0406
0407
0408
0409
0410
0411
0412
0413
0414
041 S
0416
0417
04* a
0420
042)1
0422
iTg»iHi»ite*t»MTi«iH«ioiiss»ionsEi
X NDEX=I 0* ( K-l } * IZ
srra§ WRITE! I'INOEXI
JNOEX=10*(K-1 1+10
MRITEfl* INDEXJUMANlNt nSt 1H1 9 I TE=1 »MT) » IH= 10RGS, IQRGEJ
C «$«»«!# $tt«i*«i»«*d« TO STMT 2S70 OUTPUT ENVIRONMENT INPUT CONCENT RAT IONS **
[f:{NPRIMT.EQ.6)GD TO 2999
IF|N|>SlNT.eO«2>SO TO 2840
DO 2B20 IT=i,MI
£820 URITEt IP,838)TIME( IT}, (RUfJF, m.JFil.41
IF(NPRINT«ea«l»aR*NPRjtNT«&T*SlGO TO 2993
0O 2870 1Z=IS7ART,ISTOP.2
1F|1STQP*1,E.IST.ART}CO td 23SO
IT
»JF«lt4l jTlMBIITJ.
WRITE(IPi>e37INUCNAMi2»NUCNAM(KJ ,K
31 OO
4000
4100
SOOO
READ(J« INDEX H (MAN1H JTE. JH>,JT£=1 «MT) . IH= I ORGS « IORGEJ
BRITE< lP»8t fcMQRGNAM(Nli,N=IO«GS»JDHGE)
DO 3100 IT'ltMT
WRITEf IP»817)TIM6( ITJ « (WANlUtIT »IH}.1H=IORGS. IOHSE)
I SEC 1=4.
HfllTEl IP.B361TITLE, ISECT» (HEAD! I* I SECT J ,I«1 ««>
DO 4100 K*|(NK
WRITEUP»84 JJNUCNAMtK) 0K
I N£»ex»= 1 Oe I ft-1 1 + 1 fl
READ(1< INDEX) ((KAN1N( I T , I H ) o I T= 1 »MI J „ 1H= J C«GS« I CRGE )
HfUTE ( I P • S 1 6 ) { aRGNAMt N 1 . MB IQRG S , 1 ORGE i
OO 4100 IT=J»HT
04)
ISECT*3
SRI TEUP = 836)t 1 TLE, ISECTo (HEAD « I. JSEC7J . I
DO S200 IH^IOftGSp IOHGE
OO 9200 IZ»ISTART«ISTOP»Z
1F{ I STOP. t_E~ I START! GO TO 5110
79
-------
APPENDIX H
Main Program continued
FORTRAN IV S UlVfL 21
MAIN
DATE => 7809*
22/3S/0
0423
0424
Q425
0428
0429
0430
0431
3*32
0*33
0434
0436
0*3?
0436
0439
0440
0442
04*3
0444
0441
0446
04*7
0440
0449
8450
0451
0498
04S3
0434
04SS
O4SA
0457
0458
0469
C460
0461
04*2
0463
BR1TE(IP,900 JORGNAMliH)t I2.IZP1
DO SiOO ITai.MT
NflITE(If*»»01>TIME( IT) , 1MANSLFI IT,IH,IZ, JF 1* JF=J ,4),
J,MAN2L( ITc IH,1Z) *
2TJHEI nJ.JMAN2LFUT.IHelZPl.JF) ,JF=1C4) iMAN2LI IT» IH.IZP1 J
sioe CONTINUE
GO TO S200
8110 WRJTE( IPt002> OaGNAWUHJ.IX
BO siso IT=ISWT
WRITE* IPi.901 1TIMSHT1 » JMAN2LPC IT» IH-. 12s JFJs Jr=f| ,41,
JMANELl IT. !H»I2)
S120 CONTINUE
5200 CGMIMJS
DO 5400 IH= jaRGS, JORGE
CO S300 IT«t*MT
5300 CONTINUE
5400 CONTINUE
;$**§»*$*«# TO ST«T 6SOO OUTPUT DOSE SUMMARY TABLES
6000 S SECT^6
IFtI2ONH.Ea.OlGO TO 9999
WRITE! lPfeSfilTITLE. ISECTj tMEADt I* ISECTi .1=1 ,41
;*$U.$««i0ijiW***9«'*****«'***'Pei*«****« SET ZONE FOR TABLE
00 6500
tZ«10 MEANS NONSPECIFIC DOSE RATES
SET TIME FOR TABLE
DO 6500 ITR=irSUMVDMTt ITSUHJ
JF|IZ.NE«llOI»RITElII>t8S3»I2
B«IT£(lP,6SSJTIf!E( ITRJ 0 IORGNAMCNJ , N= 1ORGS » I QRGE J
INITIALIZE SUBTOTAL SETTING
rt£KQV=SUaTOTAL
C*»»* «**»****** $8 *«**««****# 41
6100 OO 6200
6800 REMOV(l
DO 6300
,MTI . IH=IOR!5S.10R6e}
BRITE TABLE ***«*» ***«#*«
WRITEl IP,eS6)K,NUCNAM{[iJ, ( HANI L ( IT R o IH) .1H=IORGS. IQflGE >
DO 6300 J=10RG5, JORGE
6300 REMOVU , I >=«eMOVt 1 g II *M«N1L£ i TA ol J
*«*d*«$»®isi®«iis*9«>«'*ia«'*e#*'('**o
-------
APPENDIX H
Main Program continued
FORTRAN IV 6 LEVEL 21-
MAIN
0464
0463
0460
846 T
0463
0469
0*70
0471
O472
0473
047S
0476
Q477
0*78
64 79
0460
04BI
0482
8483
0484
0«65
0486
0467
0488
0489
0490
0493
0494
049 S
0493
04S7
0498
C1S9
DATS * T8096
I=IOHGS, lORGEi
22/3S/04-
6500 IF( IZoEQ.10 )WRIT£(IP3
GO TO 9999
9tS8 WRITEtIE»86lJ
GO TO 9999
999* HRITEUe*842I!tSTART,MZ
GO TO 9999
9997 WRITE! IE, 8601 IORGS»MIHI
CO TO 9999
9998 URiTEtlE»84fillCHCK, CHECK
9999 CONTINUE
801 FORMAT! 16X51
802 FORMAT! '1CA5E NUMBER * »I3>
803 FORMAT UQA8J
805 FORMAT! M** DEFINITION OF ENVIRONMENTAL INPUTS • .TfiO . •** DEFINITION
I OF PROBABILITY INPUTS »//8X« *JF OffF I NITION" t T63» » IFLA6 OEFINI
2TION»/eK*« — ------- *»T63,«' ----- - ------- */9X,*l AIR'
3aTS5»*0 PROBABILITY IP«QBJ CONSTANT "/9X» * 2 SRQUND SURFACE*!
4T(5S,*1 STEP FUNCTION AT TIME TP CHANGES PROS BY AMOUNT CP'»
*/«9X«!3 SURFACE WATIR" »T6S«
I'Z RAMP FUNCTION AT TP CHANGES PROS BY SLOPE CP'/9Xf
2" 4 GROUND HATER' »T65»' 3 EXPONENTIAL FUNCTION AT TP CHANGES
3PROB ar TIME CONSTANT CP* / »T65, '* DELTA FUKCTION»«.
4» AT TIME TP REL1ASE tO ENVWONWNT IS AA1«///-B
#' ** PRO6AB1HTY AND HB.ATED OATA»/3Xi'JF NJF J ',
1 *HJJ ' AAl* *IOS« «PRQB»«i 1X« "IFLAG'elJXs 'TP'sleXi *CP*/r3X, « — •
2«AX> ' — - "' .7X*«— — ».?X»* --- "»iQX»* --- » «11X>*
346X,« — '/I
806 FORM AT I 8E 10. 2 J
807 FORMAT < 20 A4»
• 09 FORMAT f SOX ,7EJO.?.)
810 FORHAT(E10.£. 110.2L10.2 )
811 FORMAT l3X«I2»SX«I3»4Xt 12. SX* 13 t 2( 5Xi 1PE9=2) »9Xt 13,2{8X, 1PE12.5) 1
012 FORMAT (4«»iPE9.a«9x, 12 «2( ex.jpeis^sn
813 FORMATI"i** SELECTED RESIDUAL ELEMENTS IN WASTE >XT8.' GRAMS AT STAR
IT OF TERMINAL STORAGE'/* FOR TOTAL FUEL = " .F10 .0, « («TRIC TONS1/)
814 FORMAT«SX.A4i5X»lPE10a2l
8IS FORKATC'l** SELECTED RADIQNOCL1DES IN MASTE'/ISX, 'GRAMS IN »ASTE
I VERSUS TIME IN VEARS * 1
816 FORMAT (/6X««TI ME" «3X» 10 I
82t FORMAT ("1** EOCCK.JF.IZi DATA. <4F=1 ,2, 3§ 4i ' ,
1*» DEFAULT VALUES USgQo EXCEPT ING »» AS . • READ IN«»/1
«12 FORMAT!//* IZa* »I2»4SXt « IZ»* i I2/2Xe2l IP4glO=2 »+XH
823 FORMAT (2X«AB»2I JP4E12 0 2,«X >J
B24 FOR«AT«///»J*« DISPNt JF»I Z > OATA. UF»l »2»3»4) • />
825 FORMAT!///' *S AOJH JF „ JFA.IZ1 c. AOJ3I JF» JFAe 12 J BATUs C JFAa=I ,2, 3,41
826 FORMAT* 3«o
827
»I2»
e I2g7K » 4UPElO
-------
APPENDIX H
Main Program continued
FORTRAN IV G LEVEL 21
MAIN
DATE * 78096
22/35^0*
0500
0501
0502
O303
0504
930S
0506
•s
OS01
0506
OS OS
osso
0311
0312
OS13
0814
031S
0516
0517
0518
0519
0520
053S
0522
OSS 3
OS2*
OS25
0326
0527
FORMAT CIS* VDLtNT(JF.MOOE»NSPI 0*TA*/i
829 FORMAT t« 1 Z=« . I2^9K. • JF «00£ N5P=1 THRU* , 1OX, «VOUNT* 1
830 FCRMATISX, l2o6Xt!2,12Xilate<3X, IPEIO.,2) )
031 FQRMATt'l** 8IOFAC(K.JF»N5Pi DATA"/)
«32 FORMATl" RADIONUCLIOE= • iA8/BXt " JF NSpal THf?U» plOXj *aiOFAC» 1
833 FORMAT!4I** OOSFACIICtaFiiMaOEs 1H J O*TA»/J
B34 FORMAT!/* ORGAN • •«AS/T23.'JF«*!•«T81o"JF=2 ' «TT7»»JF=3*t
ITJi3(T27»10A6/)•///tT61»
S'SECTIONi eI3/.S(/lsT81o4*8si51/ ItSllX,i32t«*'l/iJ
837 FORMATI'IRAQIONyCLIOCJ 'jAflt* (K='»12,*1-X1XB2SI"-*I/» CONCENTRATE
SONS AT ENVIRONMENT INPUT RECEPTOR,, R2TOT UN1TSS JF»1 MICROCURI
2e®¥EfiftS/CUBIC CM»/' 4F"2 MICRQCUfttES/SOUARE C»» ^=*3 AND * MICROCU
3RIES/CU81C CMV/« ZONE-'. J2.T71 ."ZONE^1 .12s//
4ilt4X,*JF»I JF*t JF=3 4F«4'.lflXl/
82<6K5'TIME AIR GROUND SURFACE GRQUNO*»t7X}/
62O3X,'SURFACE HATER HATER'tlBXl)
936 FORMATIOPF10.0t1P4EJ0.2.1eX.OPFB«0«1P4E10.2)
839 FORMATC'itRADlONUCLIDE! *SA8»» IK= •, 12, » >»/lK.29< 8-* >X> REtEASE INC
IBEMENTS TO PRELIMINARV SNWIHONMeNT INPUT•/« REC1PTOHS« »1J» FROM A
2LL RELEASE EVENTS. IN CUR1ES«//1*X."JF« 1 JF=2 JF«3
3JF»;4»/SX»«TIMe AIR GROUND SURFACE «3ROUND»/'23Xa »SURFA
4CE HATER WATER">
840 FORMATI»1»* AVERAGE ANHUAL LOCAL DOSE TO INB1VIOUAL» MANtL» IN MIL
ILIREWSXYEAR*//8 2ONE*»*I1»«.«» NUCLIOg"«»A8»• K^'^13/1
FORMAT!*1«* AVERAGE ANNUAL NONSPECIFIC DOSE TO POPULATION. MANINi
2IN HANREHS/VEAR'//" NONSPECIFIC <,». NUCLIDE*' • A8t« K=',I3/)
FORMAT(lXtl32(«*«I/« ERRORS VALUE OF ZONE«»I5/« OUTSIBE OF RANGE
t OF MAXIMUM ZONt C»»12„»»«/JX. 13£<**'J^/>
B43 FOR3ATC5X,I2,12X»I2»&(3K.IPtlO.SJ>
844 FDRHATCt* )
04S FORMAT(19A*.12)
846 FORMAT«9tiKai32(***}/»//f5**'eRIIOR NEAR CHECK POINT ••
SI2/^ll!*lf*4<'/9< 1X» J38I •*» )/ll
8«T FORHATClRADIDNUCLfOE; '.Aa." (K» •. 12 »• > «/IX»3t t «-•>//• .RELEASE
^FRACTIONS ev EACH cuTSETt RELOUT«//« Tide'.Ti^.'jF" .T2o»
«*INITIAL RELEASE FRACTIONS*1
848 FORMAT11X91«A4»IS1
8*9 FORMAT«/////«.** ZONALOtJF.IE) OATA. (JF*I<2.3*4I*/1
aSO FORMAT(/////» ** ZONOEPdZI OAT A'////«4X»9( A3, IZ»SX» I
aSl FORMAT!'!«« AREAW(I2» DATA'////t*X»9(A3.12.SX))
OSO FafiMAT(2X»9(lPE1002)>
FORMATI*tTI«e«nTJ4««JF«.T20«33HINITIAL BELKASE FRACTIONS, CONT'Ol
8B3 FORHATt"»".T15«• AVERAGE ANNUAL LOCAL OOSE TO INQIVIEHI**
1*AL« MANJL, IN ZONE*«12«*« IN MIULIHfcMS/VEAR'„/XJ
S94 FORMAT(.
t'PULATION. MANINi IN MAhREMS/VEAR*«//»
8SS FORHAT€T3*«OPF9.O»« VEARS*»»/«J*»944»~»i./»« K NUCLlOE'.tXn
82
-------
APPENDIX H Main Program concluded
FORTRAM IV G LEVEL 21
WAIN
DATE = ?fl096
OS29
0330
QS31
0532
0533
0534
0535
0636
OB3?
663 «
0839
0540
0541
0342
OS43
OB4*
0S4S
0546
BS6 FO«MAT(?5U I
837 FQRMAT{lX<,9*{«-»» s/sSX.'SUS TOT ALS 88< IPE1 0,21, / slXi 941 «-* 1 1
aS8 FORMAT (7X.« TOTAL* ,2X,S i/0lK09«C«-« )»
i/«" *T1ME SINCE START CF REPGSITQHY OPERATIONS.**
859 FORMAT I /////„« ** SROUND WATER PARAMETERS" » ^// B3J<»
1««ROUNO WATER SlSPASa VELOCITY. VX» IN t*6TE«S/0AY = '«lf»E10.2. /"»
23X.»PaHOSITV CSr SOLID WEOIUMi PORE »• »JPEIO.2» /,3X,
3 » BULK SOLID DEN5ITV. BULK Us IN GRAMS/CUBIC CM w *» 1PSIO* 2j /* 3X«
4"DISPSRS1VITV COSFCICIEMS, IN KTERi: AXIAL, Al. *«BIPE10«Z.
42K» 'TRANSVERSE* AT *• • tPElO«2t//,3X,
S'AQUIFER VALUES, IN M6T6«S: HEIGHT, HT= « s 1PE10.2.
*/»3X» » DISTANCE FBOM SOURCE TO tMCRSENCE* XLCZZI'*
*« EFFECTIVE WIDTH. YB ( 1ZJ « ,/.3X .
*• CONCENTRATION AT YV « AVERAG6 OJNCENTHAT tON IN VW»,//S
370 FOflMATf 3X, 'XHIZJ ' . 2,'< , 9( 1 PE10, 2 J >
871 FORMAT «3X»8 VWJI2) * »2X» 9UP£iO«2 i>
872 FORMAT t3K.'VVtIZi«i,2X.9UPgl0.aJI
873 FOR»AT4/»3X,
6'EXPOSED AREA OF SOLIDIFIED WASTE SPECIMEN, FS. IN SQUARE CM =•»
*1PE10.2./.3M,
7'«OLU«E OF SOLIDIFIED HASTE SPECIMEN* VSo IN CUBIC CM =' ulPEi 0.2s/
8. 3X. 'TOTAL CANISTER INVENTORY. CINV «• , IPEI0.2( /S3X .
S'ASSUMEO NUMBER OP CANISTER FAILURiS. CFA1 =»,JPEIO.tl
860 PORMAT(iXtl3Si «*"J/» ERROR] INVALID ORGAN NUMBER =',I5cSX,
1'MAXIHUM NUMaeR DF ORGANS ** » I 2 ,/, IX, 132( •* • ) >
aCI FORKAT«tX»132C •#«»X» EHRORJ ATTEMPTCO REPOSITORY "OPERATION »»
S»HITHOUT SUBSEQUENT ENVIRONMENT TIME INCREMENT «./, IXt I JZt •*') J
862 FORMAT l« iRADlONUCLIOE : »,A8t" ( K=* » JZ »• t * /iX»Z9 {»-«)/• CONCENTRATI
IONS AT 6NVIBONHSMT INPUT RSCePTOR. R2TOT UN ITS J JF=I MICRO CUR I
2E*¥eARS/CUBlC C«"/» .JF=2 MICROCUHIES/SQUARE CM, JF=3 AND 4 MICRQCU
3RIES/CUBIC CM«//» ZQNE'a'' * 12.*//
5ICSX. "TIME AIR GROUND SURFACE GROUND" ,17X)/
61 <23X»« SURFACE WATER WATER* > 18X1 1
980 FORMAT I "i** AVERAGE ANNUAL LOCAL DOSE TO INDIVIDUAL! MAN2UF PUR JF
1 = 1 TO 4* MAN2L FOR TOTAL. IN HILLIHEMS/VEAR' „ //<,**„
2«TDTAL FDR ALL NUCL IDES' tT63. AS o// «
3' ZONE=' .IEiT7l.»2ONg='t IZ>//« 2( 13X«* JF»i JF=2 JF=3
4 JF**4« tl3X»t/f21«X,*T|ME AIR 6RaUND SURFACE GROUND
5 TOT AL» »3X> »/, 2 |22X» 'SURFACE WATER MATER", I 3X1 )
901 FORMAT(F9. 0.1P5EIO. 2, 1 X, \3PlF9oO =lP5L£10o 2t
»02 FOHJ(AT€»1*» AVERAGE ANNUAL LOCAL ODSE TO INOlVIOUALp MAM2LF FOR JF
|=i TO «. MAN2L FOR TOTAi.!. IN «lU-IREMS/[VeAR«8//B4K8
S'TOTAL FOR M.L NUCLIDES1 t T63,A8s//»
3s ZONE='» llt//*iO3Xe «JF=S JF«2 JF=3 JF=4«,
4- 13X)*/9l(4X(l>TtME AIR CROUND SURFACE GROUND •,
6 "TOTAL* .3X1 ,/0i<22X0 'SURFACE WATER WATER* • 1 3XJ I'
OSO FO«»AT«»J*« AVERAGE ANNUAL NONSPECIFIC DOSE TO POPULATION, MAM2NF
IFOR JFs=l TO 4u MAN2N FDR TOTALs IN NANREMS/YEAH* ,// ,4X «
2*TOTAL FOR ALL NUCL IDES8 oT63» AS ,// «16«8 "JF»l JF=2 JF=3« =
3" JF*>4*/.?Xt*TIME AIR GROUND SURFACE GROUNO"t
A* TOTAL * «/,2SX»« SURFACE WATER «tAT6R8 1
9E1 FORMATIF12.0.1P9S1Q.2I
STOP
END
83
-------
APPENDIX H
Subprograms
FORTRAN IV G LEVEL SI
FAULT
DATE = 78086
22/35/04
0001
0002
0093
0004
0005
OOOfi
0007
oooe
0009
00 10
0011
0012
0013
0014
001S
0016
0016
0019
O020
0021
00££
0023
0024
OOZE
0027
0028
0029
0030
0031
0032
0033
003*
0035
O036
0037
SUBROUTINE FAULT«TIME, PROB.A1 e JFs JtNJ JJ . I T« stt.CONCI )
IMPLICIT INTEGER* 2 fI-N»
COWMON/BFAULT/ PROBB t AA1 .TP.CP i IFLAG
COMMON/POLE A/ CFAI BXR c DELTIMt 1 1
COMMON/FCRATO/aELTL
DIMENSION PROHB(* , 9.*) c,AA 1 (4. 9 I *TI NE( SO > . TP t* .9 .41 , CPC 4.9.&J
WJJJa,SI OF (»«JB ASSOCIATED WITH EACH CUTSET.
oo 100 I*=I(NJJJ
CPfiOS°PROa8tJF. J. I )
IFCTIHEdTRJoLToTPt JF, J,I) >GO TO 50
PROS IS DELTA FUNCTION
Ii=IFLAG( JFs
GO TO(50(«0C30,20) o II
IF{DELTIMcEQdQo>eO TO 10
5C TO SO
10
GO TO SO
«$»»««$#»i^«$*»««««#i|'««&&«»«'ii$#««#'3ii9t#«$ PROB CHANGES EXPONENTIALLY &#
£0 CP«OB=CPROB+EXP(CPtJF, J»I)4DELTIM)
GO TO 50
!.**************************!!!*****^** PROB CHANGES BY RAMP FUNCTION. 4*
30 CPRQSeCPROB * CPt JF» J c I>«OELTI M
GO TO 50
PROB CHANGES BV STEP FUNCTION. **
PROB IS CONSTANT
50 PRO&=PROB«=CPRQ8
100 CONTINUE
40 CP«OB=CPROB+CP( JFt Jil>
IF(PNOB.EO.O.O)GO TO 139
IF< JF»EQ«4 JGQ TO 1S6
RETURN
15S CONCIBO.O
RETURN
186 AlnRLEACN(K.ITfteCONCItX2}iSiCFAlfrX2&36S.
. IFfXR.EQ.O.OlAl *0*0
IF RETURN
RETURN
END
84
-------
H
Sub-programs
FORTRAN IV G LEVEL 21
RLEACH
DATE a 78096
22/3S/0*
0001
0002
0003
0004
0009
0006
COOT
0009
0009
0010
0011
0012
0013
0014
001S
0016
OOJ7
0018
0019
0020
0021
0022
8023
0024
0025
0026
0087
002 S
0029
0030
0031
0032
0033
0634
FUNCTION RLEACH (K.ITR. CONG I. KB 1
IMPLICIT INTE5£R*2 CI-NJ
COMMON/ BLEACH/ DC1IE5J . CRC<25) n
CQMMQN/FDLEA/ CFAl ,XR, DELT1M» 1 1
CCMMON/FCftATOfDELTL
,FS j VS. SPACTtZS) ,CINV
IFtIl.EQ<,23 OTIME=>0£LT I
IPlDTIMEoGE.lOO.J JH= J 0
XA JM
CONCi=0<,
CQNC2=0«
STER=»SORT I DCH K t/3 = 1 41 6 1
DO 65 I«l » JM
IFCOTIME.6EalO.)6a TO 65
GO TO 79
65 CC3=*CCl/2»
CC5=DELTLD + ,5/DRC ( K )
CONCa=CONC Z +CC3 «CC*« CCS
75 RLEACHoCONCZ
IF(RL£ACH »ST. 3.8E+OT »BLEACH»3«2B*0?
SS CONTINUE
RETURN
END
85
-------
APPENDIX H
Sub-programs continued
FORTRAN IV G LEVEL 21
TRIMP
DATE a 7B096
22/33/04
0001
0002
0003
0004
0005
0006
0007
oooe
0009
0010
oon
0012
0013
0014
001S
0016
0017
C018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0026
0025
0030
0031
0032
0033
0034
0035
0036
0037
003 Q
0039
0040
0041
0042
00*3
OO44
0045
00*6
0047
0048
0049
0050
0051
0032
OOS3
0054
0055
SUBROUTINE TRINPt DELT2 ,DELT3,OELT4 ,XR,XEt XENlo XEME.TRLt
lDECFAC«A28XLiK£3eDFACs ITE. JTREr. IBn JF.HKOo WKDMAX ,Kt
IMPLICIT INTEGERS U~N>
DIMENSION RKD(25>
COMHON/BTR1NP/ Y2 t¥3, I Zt 1 FOI VW
COMMON/CTRINP/ CRMINjDFHIN
DECFAC*-*.
60 TOtli.li.1 .301, JF
1 IFIDELT4.,£Q.C.)GO TO 5
Ysl.
GO TO 62
S A2=a.
GO TO 70
30 IF(XLeLT*l«0! GO TO 66
IF(RKD(K)°GT>RKDMAXI GO TO 63
DELTI«sOELT2*365.
IF( lFDlV«oEO«0)GO TO 50
IF (DELTA.GE =5000.. AND o RKO
-------
H
Sub-programs continued
FORTRAN IV ft LEVEL SI
CftATIO
OATE = TQ096
82/3S/04
0001
0002
0003
0004
ooos
000$
0007
OOOB
0009
0010
0011
0012
0013
COl A
0015
0016
0017
0016
0019
0020
0021
0022
0023
0024
OO2S
0026
002T
0026
0029
0030
0031
0032
0033
0034
003 8
0036
0037
0038
0039
0040
OO4J
0042
FUNCTION CRATiaR£TU«N
SSAM=COHCI/HT
DRI=8ULKO*fiKD|Ki/POBE
RCMsiii > DRJ
JF( CELT IM»LE.O , JCRATI 0=0,
IF
-------
APPENDIX H
Sub-programs concluded
FORTRAN IV a LEVEL 21
TRMAN
DATE
78096
22/35/04
0001
0002
0003
0004
C005
0006
000?
0008
0009
0010
noil
0012
0013
001 S
0016
001 T
ooi e
001 9
0020
0021
0022
OOE3
0024
SUBROUTINE TRMANIK.ITE, IZ.NSSeC)
IMPLICIT INTEGSR*2 (i-Nl
DIMENSION 8IOFACI Z6«4«6)> VQL1NT<**2* 6»S >*{X)SPACf2S.4>2*e)
CQMMON/BTHMAN/ 8ICFAC . VCS_ JNT.OOSFAC »NSP « IFL, AiE0 JF, 1 H, DELTE
DO 20 MQD£=sl.2
CSUM^O.
IF(DOSFAC( K, JF5MOPe»lN) .EQ.O.JGO TO 20
***^************^***?* ***«*« SUM ALL SUSPATHtiAYS TO DOSE TO MAN. »*
DO 10 1«1»NS
ift IPLAOEI JP«HODE»II.NE«NSSIGO ro 10
JF
2 lF(MOOE«eO.l)GD TO 6
4 CSUM»=C5U«*FACT*VOl.INT€ .
GO TO 10
6 CSU M=C SUN*!1 ACT* VQLINTl4F,MOQEil,IZ*
10 CONTINUE
DETERMINE TRANSFER COEFFICIENT FOft DOSE TO HAN.
20 CONTINUE
RETURN
END
88
-------
APPENDIX I
FLOWCHART
Figure 1-1 shows a simplified flowchart for AHRAW-A. The chart
represents flow through the code for a specified waste management phase,
such as repository operations or terminal storage. The reader is
referred to Vol. I, Generic Description of AMRAW-&, for detailed des-
cription of each step through the model.
-------
Each
Nuclide, K
Output Selected
Input Data
Inventory of Each Nuclide
Versus Time
Activity Transfer Coefficient
SPACT
Activity of Each Nucltde
Versus Time
Each
Release
Tifflie, lift
RELEASE MODEL
Calculate Releases
for Each Time increment
Each
Enviran.
Time, )T£
TRANSPORT TO ENVIRONMENT
?n Each Zone
Calculate Environments! Concentrations
for Each Time !ncr«ment
Subsequent to Releases
ENVIRONMENT-TQ-MAN
PATHWAYS, Each Organ
Each
Time, ITE
Each Zone,
12
Calculate Dose to Man
Outpyt Environmental
Concentrations
Output Dose Rates
(Local and Nonspecific)
Figure 1-1. AMRAW-& simplified flowchart.
90
-------
APPENDIX J
AUXILIARY PROGRAMS
Auxiliary programs for use with AMRAW are described in this appendix.
1) COMPRESS - a program for preparing an input file from
AMRAW-A output.
2) PGLYEPA - a program for preparing inventory data matrix by
curve fitting source data to prescribed time specified in AMRMW
input.
3) SENDY - a program for comparing results in tables from AMPAW run
with corresponding tables from another run.
l' COMPRESS. All of the AMRAW-A output tables in Section 3 (Local
Oosa to Individual) and Section 4 (Nonspecific Dose to Population) com-
prise the major input to AMRAW-B (Economic Model). COMPRESS is an
auxiliary program, written in PL-1 and Fortran IV language, which finds
these tables in the full output stored on tape, strips off the headings
and left hand column of time, and outputs a continuous "compressed" file
in a form ready to be read by AMKAW-B. The program may be used separately
to produce AMRAW-B input files from AMRAW-A output, or it may be joined
to AMK&W-B to procsss data directly. Appendix T in Part 2- describes and
presents a listing of COMPRESS, including JCL, as run on the IBM 360/67
computer at UNM.
2. POLYEPA. The repository inventory matrix input to AMRAW consists
of quantities of each radionuelicte at each time specified for calculation,
over the total time range considered. However, source data are generally
available listed for time which do not match the intended calculation
times and also are usually not subdivided into sufficiently short time
increments. POLYEPA is a program written in CALL-OS FORTRAN which
uses a cubic spline curve-fitting technique for interpolation to adjust
quantities to the required times and furnish the required intermediate
values, PQL¥EP& reads in the name of NK isotopes K together with
inventories X(I, K) at various time points I. For each isotope, there
are a total of MT input tine points for in interpolating MTADJ output
91
-------
data points. The output results can be written either on the terminal
or stored in a data file "POLYDD" in the user's CALL-OS user library,
for subsequent use as a portion of the AMRAW input data file. Before
running POLYEPA, its input is assembled in a data file named "POLYDATA,"
stored in the user's CALL-OS user library.
Description^of Card Input. One card of each type is required except
as noted for card types 4 and 5.
Card
Format and Item
Free format
MT
MS
MTADJ
NK
MC
Free format
TIME (I)
Free format
TIMEAD (I)
Number
Number
to the
Number
points
Number
Number
Des cription
of input data time
of time intervals corresponding
repository operations phase.
of interpolated output time
of radioisotopes.
of columns in output tables.
Time in years at each of MT input time
points.
Time in years at each of MTADJ output
time points.
NK sets of card types 4 and 5 are required:
FORMAT (AS)
NUCKAM (K)
Free format
X (I, K)
Name of radioisotope (e.g., Sr-90, NB-93m,
or PU-239).
MT values of masses of isotope K at
time points I.
L_i_st_irig_. Table J-l is a listing of POLYEPA.
92
-------
Table j-l.
REAL*fl TIHE( 171 .TIMLGi 17 i ,TIMEAO( 551 »XS( 501 »U,SEVAL ,?
X(U,25!,XLG(I7»25J,BI1T,25),C( ITtZSl.DI 17«25) ,NUCN AM (251
INTEGER MTSAV(Z6) iHTA i MKiISAV.HT ,Hi i M?, HlOi MTAOJ
CALL OPENU,'OATAPOL¥*t 'INPUT'S
CALL OPEN(9»'DDPDLY'« 'OUTPUT' )
(TIHEd l,l=liNTI
) ,l»i»MTAOJ»
00 10 I=MS,MT
10 riMLGU»M)«DLOG10(TIMEU} J
00 50 K»l,MH
READ(l?*HXUtK»,I=l,MTJ
DO 20 I=HSiMT
tFU
-------
fable J-l. (continued)
il CONTINUE
90 CONTINUE
GO TO 1
4 WR!TE<6i
N10*MC
SI WR1 TE(6t92S> (NUCNAM(K) ,K-HlfMLOJ
00 S3 1»1»HT
53 HftITE(6,940}TIHEU>
IFCHIO.GE.NKJCO TO 55
M1Q=MIO+MC
IHMiO.GT.MK)M10*MK
CO TO 51
55 HRIT£I6»920>
65 WRITE{6,925I
00 67
67 HRlT£(
00 82 I»1,MTAOJ
U=DLOG10(TIHiADm t
DO 71 K=H1,H10
71
IF
-------
Table J-l. (concluded)
NMl » N-l
IF t N .LT. 3 } GO TO 50
OIl.KJ • XI2I - XIII
CI2.K1 - (Y(2,K) - YUilO}/DUtK)
DO 10 I = 2, NH1
DdtKt = Xd+U - XU>
BlItKI = 2«*<0(l-l»Kl i- OU.KU
Cd*l»K) = (Yd*ltKl - YU,K)}/DU.K|
CdtK) = Cl f-H,K) - Cd.KJ
10 CONTINU1
BU »K) = -Dd.K)
a*0(N-ltKI**2/(X{NHXtN-3) J
15 DO 20 I * 2, M
T = 0(I-l,K)/StI-l,KI
8U tKJ = B(I,KS - T*0{i-l,KJ
ClJtK) - C< I,K1 - T*CU-1,IO
20 CONTINUE
C(M,K) « C(N,K)/8(N,K)
DO 30 IB = 1, NMl
I = N-Ii
CdiSU = {€(!»«> - DUtK)*C(I+l,KH/811tKJ
30 CONTINUE
eiN.Kl 3 (Y(N»K1 - V(NMl,KI}/0{MHitKJ + D( NM lf K)*CC INM1, K| + a.*C(M»K)
00 *0 I =1, NHl
8(1, KI = (VII-H.K) - Yd ,K»/D(I,K> - Dtl ,K} *( Cl 1*1, K) * 2.*CHtK)l
DII.K) » ICtl^liK) - CU.Kn/Dd.K.)
CU»KI = 3.*C
-------
3* SENDY. This is an auxiliary program developed to help compare
results from different computer runs of AMRAW-A. It handles two cases
at a time. AMR&W-A stores output results on magnetic tape; S1HDY reads
corresponding matrices of two different cases from the tape. It can
compare results from two cases by finding the ratio of elements of the
two matrices, or calculate the normalized values in each matrix {e.g.,
metric tons of initial waste stored). There are provisions in SENDY
for users to modify the program to perform other mathematical manipu-
lations on the two matrices.
SENDY indentifies the particular matrix by the unique headings of
the matrix. It compares the matrix heading it reads on the tape with
that of the input heading read from a card. Once the matrix heading
on the tape matches that on the card, it reads and stores the entire
matrix in the core. Input to SEHDY consists of identification of magne-
tic tape volumes which store the two cases to be compared, headings
identifying the matrix in each of the cases to be compared, and commands
the comparison or normalizing operation to be performed.
AMRAW-A points out 9 variables in its output; 3 in section 2, one
in sections 3 and 4, and 4 in section 5. In order to simplify the
modification of SENDY to gait different users, the program is partitioned
into 7 parts| namely, JCLSENDY, SENDYGEN, SENDY3A, SENDY4A, SENDY5A,
and DDSENDY. A complete SENDY run consists of these 7 parts,
plus input cards with commands and headings (see Figures J^l and J-2) .
SEKDY first reads in commands (compare case n, with case n ) and
headings. Then it searches through the tape and locates the matrix
whose headings match the one desired. After reading from tape, storing
and printing out the matrix from each of the two eases, the arithmetical
calculation on the two matrices is performed. After these calculations,
the whole loop is repeated if requested (see Figure J-l).
DDSENDY is an integral part of SENDY consisting of the data set
definition statements and the statements STOP/END. The data set refer-
ence number in the DD statement is made to be identical with the case
number which was stored on the tape volume as addressed in the DD state-
ment.
96
-------
READ commands and matrix
heading from card
READ from magnetic tape
table headings
Print out the matrix
and perform arithmetical
manipulation of the two matrices
Print out results
Figure J-l. SENDY simplified flowchart,
97
-------
Head Ing
Command
Zone
Heading
Command
Heading
Command (e.g., compare case n, wi
th
DDSENDY (JCL)
SENDY5B
SENDY5A
SENDY4A
SENDY3A
SENDYGEN
V
JCLSENDY
Sensitivity Study
Figure J-2. SENDY operating deck setup,
98
-------
Pescription of Card Input. One card of each type is required.
Card
Format and Item
Pescription
FORMAT (1QA4, 12, 2A4, A3, 12, T79, 12) Commands
EXPLAN(I) Compare case n± with n^.
IP1
IP 2
IMATH
In column 41j first case number to
compare {n,).
In column 54; second case number to
compare (n 5.
Column 80, flags that control calcula-
tions options:
IMATH Operations
-i and n ,
1 Normalized for case HT
2 Normalized for case n
3 Normalized for case
4 Dummy (for modification) .
5 Dummy (for modification) ,
6 Dummy (for modification) .
7 Ratio; first case, n, , divided by
second case, n
2*
FORMAT (17&4, A2, T77, A2, II, Al) Heading
TITLE(I)
ISECT(3)
ISECT3
CODE
Store the heading of the desired matrix
from card} column 1 to column 70.
Section of output,- column 77, 78.
A code to aid in locating the matrix
on tape; column 79, for ISECT3
(integer 3, 4, or 5 for AMRAW-A output
section)»
Flag A or B in column 80.
ISECT(3), ISECT3, and CODE appear on
card as follows:
b33A
FORMAT (T6, IZ)
IZ
.Section AMRAW^A^ Item
3 Local Dose, MAN1L
4 Nonspecific Dose, MRM1N
5 Local Dose, MAN2L
5 Nonspecific Dose,
Zone heading
Additional taJale identifier where needed.
Zone number as appeared on the left
hand side of output pages: 1, 3, 5, or
7. Card required only for MAN2L from
AMRAW-& with present output format.
99
-------
Modification of SSMDY. Calculation options may be added. Replace
a CONTINUE statement by the mathematical routine desired. The matrix
of the first case read in is stored in the variable that begins with an
X in front of the original variable name. The second case is stored as
the original variable name. The original variable with a Y in front can
be used to store intermediate results. For example, SENDY4A deals with
the variable MRN1N. The matrix from the first case is stored in XMffNlM,
and from the second case as MAN1N. Variable YM&N1H is used to store
intermediate results.
Statement numbers in each section of SEHDY containing dummy "CON-
TINUE" statements and the corresponding IMRTH flag are as follows:
SENDY SECTION
4
5
6
3A
2431
2441
2451
4A
2535
2545
2555
5A
2632
2642
2652
5B
2732
2742
2752
Listing. Table J-2 presents the SENDY listing.
Sample Input. Sample input for a simple application of SEKDY for
comparison of nonspecific dose rates {AMRAW-A Section 3) from C-14.
is presented. The comparison requested is to divide each value in the
table from Case 55 by the corresponding value in the table from Case 48
(IMATH = 1) and output the resulting table of quotients. The input
required is as follows:
Column I 80
#.* SENSITIVITY ANAUfSlS S CCMPARE CASE 55 WITH CA=E 48* II ?
NONSPECIFIC »«• NUCLIDE= C-14 KB I %
100
-------
Table 3-2 (a). File
ICOQ
10(0
1020
1 OJO
1'040
t 050
1060
1070
1080
1090
1 100
it to
1120
1130
1 140
1 150
1 IbO
1 170
1180
t 190
1EQO
1210
1212
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
13BO
1390
1403
1410
1420
1425
1430
144iJ
1450
1460
1470
1400
1490
tsao
1510
1520
1S30
1532
1S3*
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
J 680
I6«0
1700
1710
1720
1730
1740
1 7bO
1760
1 770
17«0
1790
l aoo
1B10
REAL X(3S iXFUJ(4»50>»XR2TDT{4tse,Bl
REAL Yt3,4.50 t» YR 1 J < 4»SO } , YR2TOT ( 4»SO«Ij
REAL M3g4tS3).ftl J[ 4* 50) i R2TDT ( 4, SO , B )
REAL XMAN1L(50»81 . VMANILt 50, 8 > , MAN 11, C 50, B 1
SEAL TIMECSO) *-«Ju,Bj
REAL XHANlN(50f 8) «XAN2LF< 50 , 8, 4 ) , XMAN2L I SO = B 1 „.,..,,
CXMAN2N.MAN2U!($0.8i4>,ttAM2L.<5o.8t MSI,,,,,
EQUIVALENCE < X| 1 J ,XKl J| 1 » »XR2TOT( I » ,X«AN IL ( 1 1 tS?Ft 50»4 »« HAN2N 1 SO
CXAN2NF«lM»{XNIAN2HU«XHAN2NSUi ' ' U * XMA|1'1 N < f >• XAN2LF J I 1
EQUIVALENCE ( Y I 1 ) , Y?U J( 1 ) » YS2Tt>T( 1) . YMAN 1L t l t vu
CYAN2^'F(U If , (MAM2t(l J»MAN2N,VAR(5)tTITLCti7l»CHECK«33|.«prT., --<-IIJ,MW
C1P1»IP2,IPIF,HT»1P»IN»NJI41 * SECT ' 3 » sEXPLANt i S > . Iw
DATA VAR/^FiO*,' »0«1 't'S.lP'i'SEli. >2.2is «'a**IY»
DATA JN/'lEl's' ael" «*3El*i»4El*« «5El» »ftri«
DATA NJ/3,3,J,1/ Ofcl ' 7E1 ' » '8E1 ' , • 9E« , >r
DATA A«a»C/»ipa
R6ADUM.1 102) (TITLEUJ. I«l,ta},SECT{3 J.I SECT! rrn=
2 IY^IY+1 **•"•«•' J« S-ODE
IFtlY.EQ.E) IP1=IP2
GU TO J20«aO»33,4IJtSOJ»lSCeT3
20 F-EADI IP1, I103I
80 00 11 J=l,90a
RE AD ( IP 1, 1104) ( CHECK ( I), 1*16. IB)
WRITE CIP, It 04 H CHECK { 1 1,1*16,18}
IF (CHECK ( 16).EQ»3ECTt 1 ) .AND. CHECK { lyj.EO.ispf-i,^.
CSECTC3JJ 00 TO 20SO EC1 ' 2| " A^O.CNEC«{ 1 81 EO
tl CONTINUE ' »»«eu.
' WQITEtlP. tl05HTir_£t t)il»l»18)
IFUSeCT3.EQo2. AND. CDOEeEQoC t READ (IN. 1 1 OQ ) n.,.,..^
IFUSECT3.SO.S.AND.COOE.ea.A) fiEAOuf-Jliooj ffiSJJX
**' c^iuu/ titj MM V
GO TO 1
30 PgAOt IPl, 11061
GO TO 80
40 RgADI IP1* 11D7)
ao TO sa
SO REACH IPl . 1113)
GO TH 80
2050 ^EADCIBl, UOBi
3FtlSeCT3.Ca.Si.AHOaCOOEBEQ.AJ GO TO Pinn
JFCISECT3 .tU.2. AMD. CODE. EQ. B > G" TO linn
1F(ISECT3.E0.2.AND«COOE.EO.C) GO TO 23OO
IFaSECT3.EQ.3.AN00CtiDE.Ea.A) GU TO 24On
II'llSECT4«ea.4*A.MO.COOe.EQ.AI GO TO 2B§O
IFtISECT3.KQ.5.ANO.COOEaEO.AI 60 TO lion
IF(IseCT3»eOo!i« AND. CODE* EQ.BJ rr» Tn oSS°
1100 FORMAT! 10A4.I2,2A4»AJ.12.TT9,I2| Z70°
1101 FOAMAT(lHl*10A4it2.2A4tA3vl2)
I 102 FORMAT117A4,A2, T77, A2, J 1, Al)
1103 FOSMAT|4C2SS(^I ),27C/ ) >
1104 FQUMATt IX.Tfil ,2A4»Aa>
1 105 FDHMATClHIi «**> OUTPUT MATRIX OF 5».in»* , r^
CCK STATEMENT NUMBER 10.20 CR 30.5/1 ' CANNOT 8E FCu'JT .^x.
HOC FCJRHATC5U255t/(»,54(/J» X1 ^CU^a.'//« CHE
1107 t--<:FMATC95C255 ») Dse •'///) "tsrHIC TON1
}
•
*
2
^*******
101
-------
Table J-2 (b) . File 3A
1000
1010 C READ MATRIX HEADINGS FROM TAPE.
1020 2400 DO 2406 K-l»2
1030 REAB(IP1» 11 HMCHECi» 1 = 1.335
1040 2406 URITE(JPrllllXCHECK(I)»I=lf33>
1050 2410 READ(IPlrlllO){CHECKCI)»I=lf7)
1040 BO 2420 J=lf7
1070 IF.IPl
1100 DO 2407 K=1.3
1110 REAtHIPl?1110)(CHECKCI)p1=1»33>
1120 2407 «RITE«IP»4iiQHCHECKa) »I = 1»33>
1130 IFtIV,EG,2) GO TO 2440
1140 C OUTPUT THE MATRIX FROM FIRST CASE FOR COMPARISON.
1150 DO 2450 IT<=lrMT
1160 2450 REABdPl* 1242) TtM£< IT) » (XMWlLdT. IH> F IH=1 »MIH)
1170 REWIND IP1
11BO DO 2460 IT=lfMT
1190 2440 yRITE(IP»1242)TIWECIT>>(XMANiL(ITrlH)>IH=lfMIH)
1200 00 TO 2
1210 C OUTPUT MATRIX FROM SECOND CASE FOR COMPARISON.
1320 2440 BO 2470 IT=1»MT
1230 READ(If!»1242)TIMETIMEf (MAN1LUT* IH),1H=1»MIH)
1250 REWIND IP1
1260 GO TO (2411*2421,2411F2431,2441,2451»24il>fIMATH
1270 2411 IF GO TO 2421
1280 WRIT£aPflil2> TWASTEr (TITLEd > 11 = 1117) »IP1F
1290 DO 2412 IT=lrMT
1300 DO 2413 IH=lfMIH
1310 2413 YHANlL(lT»IH)=XHANlLaTt IH5/TWASTE
1320 2412 WRITE UP*1242) TIMECIT).»I=1T17)>IP2
1350 »0 2422 IT=1»HT
1340 DO 2423 IB=lfMIH
1370 2423 YMANlLCITf IH)=«ANlLaT»IH>/TUASTE
1380 2422 WRITECIP»1242> TlftE(IT),CYMANlLfITtIH5*IH=1fMIH)
1390 2431 CONTINUE
1400 2441 CONTINUE
1410 2451 CONTINUE
1420 C . CALCULATE THE RATIO OF TWO MATRIXES.
1430 2461 DO 2480 IT?=lrMT
1440 ' DO 2490 IH=lrHIH
1450 IF(MANlLdTrlH) .ME.0,0) GO TO 2490
1440 IF(XWAN1L
1490 2480 CONTINUE
1500 C PRINT THE RATIO HATRIX.
1510 MRITECIPfll09> !F>lF»IP2f (TITLEU )»1=1,17)
1520 DO 2491 IT=lfMT
1530 2491 WRITE(IP»1242) TIME.(MAN1L
15BO 1242 FDRMAT
-------
Table J-2 (c). File SENDY4A
1000
1010
IO80
1030
1040
1050
1060
1070
1083
5 090
1100
1 tltJ
1120
1 130
1140
1150
1 160
ll?O
1 1 BO
1 190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1300
1310
1320
1330
13*0
1350
1360
1370
1300
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
149O
1500
1510
1520
1530
1540
1SSO
1560
1570
1580
1590
1600
C****!
C
2500
2506
2530
as 10
c
2521
C
2S50
2551
C
2540
2560
251 5
251 7
2S16
1525
2527
2S26
2535
2S45
2555
C
zses
2580
2S70
C
2590
2520
1250
12SI
12S2
***** * **#* ^* ****** #«#«$4>fi<* *$* **ft#>ti**4A #«*«# *******
READ MATRIX HEADINGS FROM TAPEo
DO 2506 K=l.2
REA3C IP I, llll ) ( CHECK t U , I- I, 33)
KKITFJIP. 1111 J(CHeCK( Di-I^l |33J
REACH IP 1, 1 1 10 > t CHECK { I j. 1 = 1,33)
on 2510 I =i . i o
IF < CHECK? 1) .WE. TITLEf I)) GO TO 2520
CONTINUE
PRINT OUT HEADINGS
WRITE (IP. 12 50 M CHECK C I J, I =1. 10), I PI
DO 2S21 J=l,3
FEAUf IPt, 11 IQHCHECKt I) ,1=1,33)
WHITCIIP,1I10MCHECK(IUI*1«33)
IFIIV.EQ.8I «a TO 2540
OUTPUT THE MATRIX FROM FIRST CASE FOR COMPARISON
00 2550 IT=1,MT
R6AO« IP1, 1251 1 TIMEUT)»{XMANINUT« IHti I Hal, MIH)
REfcIND 1P1
DU 2551 IT=1.MT
WRITE (IP, 1251) TIM511T) ttXMANlNt IT,IHljIH=li,WlH)
SO TO 2
OUTPUT THE MATRIX FROM SECOND CASE FC-R COMPARISON
00 2563 1T = 1,MT
HEAO(1PJ»1251J TI ME( ITt • ( MAN IN (I T(1HJ>IH = 1,HIHJ
WRITE ( IP, 1251 1 T1M£(ITJ,(HAN1N(IT,IHJ,IH-1.HIH1
F EWlND IP1
GO TT <251S* 2525*2515, 253542545« 2555,2565) ,!*AtH
IFtlMATHwKE.I .ANOaIMATB8NC.3J CO TO 2525
WRITECJP.1H2) TwASTEi.(TITLe(I ), 1=1,181, IP IF
on 25ifc n = i«MT
Of! 2517 IH = I»M1H
VMANlNtIT,IH»=XHANlN( IT, I HI /T WASTE
WRITt IIP. 12S1 } TIM£{IT»,t VMANlNdT, IHI , I H-l . MI H J
IFilMAtH, NE,2.ANO.lMATH.Ne.3) GO TO 2335
*RITE(1P,1U2> TWASTE.IT! Tt-EC! ),I*t»18»,JP2
OU 2526 I T=1,MT
DO ZhZ7 JH=1, MIM
YMANINt IT »IH»=HAN lN(It, IHI/T WASTE
WRITtdP, 1251 I TIME(JTJ,lyMANlN(IT»IH)tIH=I,HlHJ
CONTINUE
CONTINUE
CONTINUE
CALCULATE THE SATIO OF TWO MATRIXES.
GO TO 2580
IFtXMANl^UT, IH>.EQ,0.0) XMAN IN (I T, IH ) =1 . 0
MANINt ITi IH)*-t »0
MAN IN C IT* IH)** XM Ah4 IN (I7»IH)/MAN1N( IToJH)
CONTINUE
PRINT THE FATIUO MATRIX.
WRITFtlPt 1109) JPlF,IP2o (TlTLEtU sI^l.lB) .
OO 2S.90 1 T=1»MT
WPITEUP, 1251 ) TIME{ITJ«f MANINt IT > IHJ. 1H=I » HIH)
GO TO 1
RBAOt 1P1, 1252 >
GO TO 2530
FORM AT C lX.tQA48T&2» "CASE* «I4J
FORMATtFJ 1.0, lP|OE»a»2»
F QRM A T ( 54 ( / ) J
103
-------
Table J-2 (&). File SENDY5A
1000
1030
1032
1034
1036
1040
1050
1060
1070
1030
1100
1110
t 120
1130
I 14O
USO
1 160
1 !70
1 190
'I 190
IZOO
}210
1220
1239
1240
12SO
1 260
1270
1280
1290
1300
1310
1320
1330
1340
13SO
1360
1370
1380
1390
1400
1410
1420
1430
1660
1670
16BO
1 690
1700
1710
1720
1730
1740
1760
1770
17SO
1790
iaoo
1 BIO
ieao
1830
lt'50
1 B70
1
1900
1520
1930
1940
1950
1960
1970
Z600 IFdYsEQ.l) REAO(IN»12bll 1ZA«IZU
DO 262? J=J,2
READJlPI.ltll KCHECKt I J, I = 1,33 I
WRITE tlP. II 11 J I CHECK d) i!=l«33J
READC 1P1. 11 iai(CHECtCd"JiI=1.33)
OO 2620 1=1,17
IF (CHECK! I )*N<5*TITLE(I1) GO TO 2640
CONTINUE
WRITE I IP, 1263HCHEC«I),I = 1 ,IB»*IP1
RKADdPI ,111011 CHECK d 1,1 =1.331
VlRITEdP, 1110)1 CHEC<( l)?.l-l»J3}
HEAOdPl , 1262) l£»I£Pt
JFdZ^NE.IZA) QO TO 2650
WRITEdP.1264} IZ.IZP1
PRINT HSAlHNuS*
DO 2663 J=l,4
READC IPI, 1113)(CHECK! I),I*1,33)
WRITE dP, 1110) ( CHECKd )•!=!• 33 >
IFdY»eo,2) GU 1'".] 2690
OUTPUT THE MATRIX FROM FIRST CASE FDR COMPARISON.
HO 2670 IT=1»MT
REAOdPl, 126$) TIME (IT). C XAN2LR I T , I Z, JF ) , JF = l , MJF J , XNAN2UdT, IZ),
CTIMCI IT»» {XAM2Lf=( IT, IZPI 5 JF ) t JF = 1 ,«JF >SXMAN2L( IT, IZPI }
REWIND IP1
01 2680 IT=l»MT
2680 WRITEdP, 1S65) Tl «C { I T J * { XAN2(-F( IT«1Z,JF),JF=l , MJF ) , XKAN2U dT » iZ J »
CTtME< ITt,
GO TH Z
C OUTPUT THE MATRIX FROM SECOND CASE Ft'P CCMPARI SON,
2690 00 2691 : T=1,MT
26 SI f.EAD(IPl, 12651 Tl MS 11 T i , t MAN2LF( IT, 12, JF), JF = 1 , M JF ) , MAM2L (IT, I Z H
CTl'«-( IT), (MANELFI JT,1 ZP! , JFJ , JF=1 ,MJF ),MAN2LCT, IZPI )
WRITtdP, 1E6S)ITIME(I Tl, (MAN2LFI IT.IZ.JF ) , JF = i , M JF ) , *AN2L d T , I Z ),
CTJMEI IT), (MAi^SLFJ IT,IZPli,JF}iiJF = l,MJF»»MAN?l,(IT,!ZP])0IT = I,MT)
REWIND IP1
GO' TO 12612,2622, 26 I 2,E632,£642, 2652,2662J, I PATH
2612 IF,:PJF
Ofl 2613 IT=t,MT
oo ae.i* JF=I,MJF
YANZLF JF ) = XftN2LFd T, i Z , JF ) XTSASIE
2614 YANZLFIIT.IZ^l.JF)=XAN2LF(IT,I2P1.JF1/TWASTE
262S
2630
• 2610
2620
2631
2660
2670
1450
1460
14-70
1480
1490
1500
1 51 a
1520
1 530
1540
1SSO
1560
1 570
isao
1590
160O
IblO
1620
1630
1640
F,IZPU=XMAN2M IT* riPl J/T&AS1E
2613 WRITE 11 ^* 126tr) Tl WE 11 T* » 1 YAN2i_rt I T , IZ, JF I « JF=1 ,MJFJ, YHAN2H IT, IZ),
CTIMEt IT ), (YAN2LF( IT»I ZPlp JFJ ,JF = l,MJF »,YMAfr2t< IT, IZPI )
2622 IF dMATH«NE«2«AHi>«IMATh»NE«3> 6f3 TP £632
WRIT^IIP. 11 12) TWASTErCTITLEd ),I = l»ie)sIP2
UO 2623 1T=l,MT
JF=I,MJF
YAM3LF( IT.IZ, JF) = MAN2LF( IT,1Z, JF t/'TWASTE
2624 YAN?LF( IT ,1 ZP1 » JF ) = MAN2tFdT, IZPltJFl/TWASTE
YMAN2LI IT .1 Z) =M AN2H I "i , i Z >/Tl» ASTE
2l>23 *RITEdP,1265) TIHetlT)ilYAN2LF(IT,I/,JFl.JF = l,MJF}, YMAM2L (IT, I Z) ,
CTIWEdT t, (YAN2LFJ IT. IZPI. JF), JF = 1 ,^1J^ ), YMAN2U IT, IZPI )
2632 CONTINUE
2642 CONTINUE
2652 COMTIHUE
C CALCULATE THE; RATIO OF TWO MATRIXES.
2662 00 2-6%S IT = 1,MT
00 Zfa97 JF=i,MJF
!F{HAN2LF(IT,JZ»JFJ.NEoO.01 CO TD 26t
IFtXAN2LFdT.lZ,JF).EOaO»0} XAN2LFdT.IZ.JF)=l,0
MAM2LFdT , IZ, JF ) = -! «0
26 S MAN2LFI 1T.1Z, JF I = XAN2tF (I T, I Z , JF )/WlAf 2LF ( i T , IZ , JF )
!F(MAK2LFdT, ;ZP1 ,JF) .NE.0.0 > (iL> Tl 2696
IF(XAI-'2LFdT. IZPI ,JF)»EQ» 0,0) XA(J2LF( IT, IZ«=U , J F ) = 1 .0
MAM2LFI 1T,1ZP>1»JF(!=-1«C
269fi WIANZLFl 1T.IZP1 . JF t = XAN2LF( ITi I2P1 , JF )/"MAN2LFdT, IZPl.JF)
2657 CO«riMUE
1Feu>D.O> XMAN2LtITtlZPlJ=l«0
MAN2L
-------
Table J-2 (e). File SENDY5B
c***************#***#*******************aa***************************************
SKIP 1007 RECORDS Ai4D READ HEADINGS CF MATRIX FROM TAPE,
READlIPl,13703
(JO 2729 J=l,2
PEAUUPU mil (CHECK! i), 1 = 1,33)
»KIT£(IO,1111JICHECKtII,I=1,33»
READ{ IPl. lllOKCHECKf II •! »1 .33 I
M 2710 1*1*I?
IF (CHECKtl J.NE.TITLEU) > SO TO 2720
CONTINUE
PRINT HEADINGS.
WRITE{IP,1271)[CHECKCl>,I*i»18>,IPl
OO 2711 K=I,4
READ(IPl, II10 I{CHfCK(I),I=1,33>
WRITS (IPdllO) tCHECKif) s!*ti33J
lFUVo£0«2J GO Til 3740
OUTPUT THE MATRIX FROM FIRST CASE FOF COMPARISON.
00 2750 IT=J«HT
READ(IPl,1272! TIMEU T) e
REMIND IPl
on area IT=I»MT
wniTE(IP,1272 i TIME(IT)*CXAN2NFIIT,JF),JF = 1.MJFI*XMAN2N( IT}
GO TO 2
CUTPUT THE MATRIX FROM SECOND CASE FOR COMPAPISUN.
Of} 2770 IT=l.MT
SlTAOdPJ, 1Z72) TlMEUTI . i «ANSNF( I T, JF » , JF = 1 . ft JF ) .MAN2MST)
W<51 TEC IP, 1272) TIME(IT),/TWASTE
*KITE(I"»1272I TIME»Ii4ATM»Ne«31 Gb TO Z73R
WRITE UP. H 12 IT BASTE* ITITLEI !),I = 1,1&K1P2
OO 2723 1T=1,*T
OO 2724 JF=l,MJF
IT,JF)"MANaNFtIT,JF J/TWASTE
JT)=MAN2N£IT»/TWASTE
tfRJTEt IPt 1272J TIHEUTJ , ( YAN2NFI J T j JP ) , JF = k , MJF » i VMAN2NI i T )
CONTINUE
CONTINUE
CONTINUE
CALCULATE TH? RATIO OF TWO MATRIXES*
DO 2780 IT*1»MT
DO 2790 JF = UMJF
I F {MAN2MF {I T, JF I»NE*0*0> 50 TC3 2790
IF(XAN2NF(ITi JF JeEt)sO«C» XAN2NF 11 T» JF } si »0
M AN2NF{IT « JF)a-1a 0
MAN2NF{ IT«JF» = XAN2MF(IToJF1/MAN2MF1IT.JFJ
IF(4AN2N{ IT UHE.3.0) SO TO 279
IF{XMAN2HMT).Ea»0<,OJ XMAN2NI JT J = 1« 0
t . MJF I , MAN2N( I T )
1000
1010
102U
1022
1024
1026
1030
1QSO
1060
1070
I 030
1090
1100
1110
1120
1130
1 ISO
si&a
I 170
1180
1190
1200
1210
1220
1230
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
J380
1390
1400
1410
1420
1430
1440
1430
1*60
1*73
1480
1490
1900
1S10
1 520
IS30
1340
1150
1560
1570
1530
1S90
1630
1*10
1*20
1630
1 £ii(| 0
1650
C****'
C
2700
272S
2730
271 0
C
271 I
C
2750
2760
C
2740
2770
2712
271 4
271 J
2722
2724
2723
2T32
2742
2752
C
2762
279C
27S
2T80
C
2791
2720
1270
1271
1272
1273
MANZMf i T t =»CMANaNF( IT« JF I »
60 TO 1
PEAOdPl* 1273 I
SO Tt» 8730
FORMAT <7««255(/> }« 1021 /}»
FORMAT ( IX, 1 SA 4. 176, 'CASE' t 14)
FORMAT tPiz»o» ipseio»2»
FORMAT(55
105
-------
Table J-2 (f), Pile DDSENDY (i.e., JCL)
1000 99SO
1010 TNO
1020 /XSO.FT48F001 DO UNIT*!APc9»DSN=EPAJOB,VOL=SER=PEl7J7.
IOJO // LAOlLzt I ,SLJ •OCBstSeCFM = I=aA,LRECL=t33.BLK,SIZE=1330J i
1C*0 XX nISP«tOLO*PASS!
IOBO XXCn*FTB5FODl DO UtilT=TAPE9»OSN=EPAJ&a,WDt=SER=PeiT3?«
1090 X/ LADei-=l3,SL> ,OC(*=( FtICFM=FBA, LRCCL= 1 33( BI.K5 J jZE = l
1100 XX D3SP=tOL0,PASS!
1HO /XGO^SYSlM OD *
106
-------
PART 2
USIRS'
CHAPTER 6, SUMMARY
CHAPTER 7, INPUT/OUTPUT DESCRIPTION
CHAPTER 8, OPTIONS
CHAPTER 9, ERROR MESSAGES
APPENDICES: K THROUGH T
107
-------
Page Intentionally Blank
108
-------
CHAPTER 6
SUMMARY
A,
Title: AMRAW-Bj Assessment Method for Radioactive Waste (Second Part).
Abstract: &MR&W-8 performs a sequence of calculations for an inventory
of radioactive wastes, evaluating health effects and economic
costs resulting from dose to man calculated by AMRAff-A.
Effective Date: May, 1978.
Programmers The University of New Mexico staff.
Computer: IBM 360/67.
Language: Fortran IV.
Core Memory Requirement: 124 k bytes.
Execution Time (CP see)i 270.
Auxiliary Hardware Requirements: Disk, Tape, Line Printer.
109
-------
B,
AMR&W-B, the second part of the HacHoaeti've Waste Management Systems
Model, picks up the population close rates calculated in AMR&W-A and cal-
culates corresponding estimates of health effects and, economic costs of
these health effects (see Pig, 1-2). These calculations consider the
populations in each geographic zone, incidence rates of health effects
per unit of radiation dose to a given body organ, and costs based upon
the value of small changes in risk.
110
-------
C. METHOD
The AMRAW Code is written in Fortran IV language. The two parts of
the code are; 1) AMRRW-A which contains the Source Term, the Release
Model, and the Environmental Model, and 2} AMRAW-B which contains the
Economics Model. They are being run separately but may be joined if
desired. There is an advantage to running the first part independently
to determine sensitivity of environmental concentrations and dose rates
to variations in input. Similarly, there is an advantage to running the
economic model independently to study the response to varied economic
parameters.
The flow of AMRAW-B calculations is best described first using the
sequence indicated by Fig. 1-2; 1} determine rate of occurrence of health
effects, and 2) perform corresponding damage calculations in economic
units. An altered sequence of the actual calculations within AMRftW-B
is then described. The matrix of local dose rates from AMRAW-A, to
individuals in each 2»ne from each radionuclide to each body site (organ)
during each time increment, multiplied by the population of each zone and
then multiplied by the set of health effect incidence rates for each
body site, obtains the health effect incidence rates in each zone.
Similarly, nonspecific dose rates from AMRAW-A (dose to a nonspecific
population) multiplied by health effect incidence rates obtains health
effect incidence rates corresponding to nonspecific dose.. As actually
calculated within AMRAW-B, the input incidence rates of health effects,
deaths/10 man-rem, are first converted to $/man-rem by multiplying by
$260,000/10 (the value $260,000 is the present input for cost of in-
creased level of risk, VOL). Damage rates, §/y, in each zone (and the
nonspecific category), are calculated by multiplying together: dose
rates, populations, and $/man-rem. The damage rates, $/y, are accumu-
lated over nuclides and organs in each zone (and nonspecific) versus
time. Total damage rates are also accumulated over zones, organs, and
times for each naclide. Damages during each time increment, $, are then
obtained by multiplying rates by the length of each time increment and
accumulated over the total time range. Finally, the number of deaths
(health effects) during each time increment are obtained by dividing
the damages in dollars by $260,000. Results are obtained for both high
111
-------
and low population projections.
The present dimensioning of &MS&W-B is ae follows;
1) Badionuelides s 25.
2) Geographic Zones: 8 (the nonspecific category is treated as a
ninth zone in calculations).
3} Human Organs: 8; typically, one of these is total body.
4) Time Increments? 50.
AMR&W-B runs with 124 k bytes of core storage, 125 tracks (900 k
bytes) of disk storage for input data, 10 cylinders (200 tracks or 1440
bytes) of disk storage for intermediate storage, and requires 270 seconds
of CPU time in the UNM IBM 360/67 coinputer. Input data from the major
data matrices can be furnished from tape instead of from disk if preferred.
112
-------
CHAPTER 7
INPUT/OUTPUT DESCRIPTION
Input for AMRAW-8 is by an 80 column card data deck. There are 15
card types- As implemented at OHM, the input deck is read from 3 files
in disk and/or tape storage. No additional inputs are required. The 3
input data files are as follows:
1) AMB.' This file provides economic model control and conversion
data, including discount rate (zero presently used), cost
assigned to a death, the numbers of times, zones, radionuclides,
and organs involved, incidence rates of health effects by body
site or organ, high and low population projections by zone, and
designation of nuclide decay group.
2) AM1E. This file provides values of time at the end of each time
increment, names of each radionuclide, and the mass of each
radionuclide (in grams} in the repository inventory at each time.
3) ECONxx (xx is case number). This is the large output matrix,
MAN1, of dose rates from AMRAW-A, restructured for AMRAW-B
input.
Radionuclide mass versus time is used within AMRAW-B at this time only
for calculation of marginal damages ($/gram) by decay group, based upon
the accumulated inventory at the time repository-operations cease. The
full nuclide matrix provides for possible additions to AMRAW-B for allo-
cation of damages to elements in the waste. The dose rate matrix, MAN1,
from AMRAW-A is arranged as shown in Table 7-1. With the present dimen-
sioning used, the dose rates are presented in 225 separate tables (9 zones
x 25 nuclides). For input to AMRAW-B, this is processed through an aux-
iliary program, COMPRESS, to strip away headings and the time column,
producing a data file with 11,250 lines (from 225 tables x 50 lines
each). Each line has dose rate values for 8 organs resulting in 90,000
data items.
Card input is described in the following section. Output is des-
cribed in Section 7.B.
113
-------
Table 7-1. Arrangement of AMRAW-A Dose Rate Output:
Local Dose Rate by Zone and Nonspecific
Dose Rate
Zone 1
Nuclide 1
Time Increment 1: Organ 1, Organ 2, ... Organ 8.
2: Organ 1, Organ 2, ... Organ 8.
(repeat for other time increments)
50: Organ 1, Organ 2, ... Organ 8.
Nuclide 2
(repeat for other nuclides)
Nuclide 25
Zone 2
(repeat for other zones)
•
*
•
Zone 8
Nonspecific (handled as Zone 9) .
Local dose rates are mrem/y.
Organ refers to each body site for which dose rate is calculated.
c
Nonspecific dose rates are man-rem/y.
114
-------
A. CARD INPUT SPECIFICATIONS
1. Data Deck Setup. Descriptions and number required of each card
type are given in section 2 which follows. The sequence of the data deck,
beginning with the first or front card is listed belowj
File Card Type Itejns_
AMB 1 TXT1E
2 RATE
3 TOL
4 NT
5 MZ
6 NK
7
8 • SITE, DPY
9 POPH,
10 NG
11 K, IKK
AMIS 12 TIME
13 X
14 X
15
2« Description o£ Card Input. Input data is grouped into 3
sequentially read data files: AMB, AM1E, and ECONxx (where xx denotes
the case number from which this file is extracted},
The largest matrix of data is for MAK1 (card type 12}. This is the
dose rate output from AMRAW-A as selected and restructured by auxiliary
program COMPRESS for use as &MRAW-B input. As presently dimensioned,
this file can consist of as many as 11,250 cards. Because of its size,
this file is handled via tape and/or disk storage,
A list of each card type in input sequence, the necessary card for-
mat in each instance, the number of each card type required (one card
unless stated otherwise), the data items and their descriptions, plus
115
-------
other explanatory notes are presented below.
Card
Format and Items
Description
The following card types 1 through 11 comprise data file AMB, economic
model control arid conversion data.
1.
2.
3,
4.
6.
7.
8.
10,
11.
FORMAT (10A4)
TITLE
FORMAT U5X, FlO.O)
RATE
FORMAT (15X, FlO.O)
VOL
(20X, 15}
NT
FORMAT (20X, 15)
ME
FORMAT (20X, 15)
NK
FORMAT (20X, 15)
NIHT
FORMAT (5A4, F5.05
SITE
FORMAT (A4, IX, 2F10.0)
REG
POPH
FOPL
(3X, 2513)
NG
FORMAT (3X, 2513)
K
IKK(J)
Title of case, up to 40 characters.
Discount rate, expressed as decimal.
Cost of increased level of risk.
Number of times,
Nuntoer of geographic zones.
Number of nuclldes.
Number of organs (body sites) .
1 card for each of HIHT organs.
Name of organ {body site), up to
20 characters.
Health effect incidence rate, cases
per 10 man-rem.
1 card for each of.MZ zones.
Name of gone up to 4 characters
High population projection.
Low population projection.
Number of nuclide decay groups.
1 card for each of NG groups.
Number of nuclides in group.
Subscript identity of each of K
nuclides in group.
The following card types 12 through 14 comprise data file AMIS which
furnishes values of time to be calculated and the nuclide inventory
versus tine.
116
-------
Card
12.
Format and Items
POBMAT {1P8E10.2)
TIME(I)
Description
1 card for each 8 times of HT total.
Time in years for each subscripted
value of TIME.
One set of the following card types 10 and 11 is required for nuclide K
of NK total (e.g., for 25 nuclides and 50 time, 25 x 8 = 200 cards, are
required).
FQRMftT (AS, 2X, 7E1Q.2)
(K)
X(K, IT)
(10X, 7B1Q.2)
X(K, IT)
13, FQRMftT (AS, 2X, 7E10.2) 1 card in each nuclide set.
Abbreviated name of nuclide (e.g.,
SR 90 or AM 241M) .
inventory quantities for first 7
times IT.
14, (10X, 7B1Q.2) 1 card for each 7 times, 8 through
MT, in each nuclide group.
Inventory quantities for times 8
through NT. This card bypasses
rereading NUCNAM, which may be
placed on each card along with card
sequence number in the 10X field.
The following card type 15 comprises data file ECONxx (xx represents
the case number from which the file is extracted), This file is the
large matrix which is a portion of &MBAW-A outputr providing calculated
dose rates.
15,
FORMAT (1P8E10.2)
(IT, IH>
One set of cards for each Zone IZ
of MZ * 1 total (the last "zone"
is reserved for "nonspecific dose")
(maximum M2 + 1 is 9} within each
set is a subset of cards for each
nuclide K of NK total (25 maximum),
one card for each time 1 of NT total
(50 maximum), (e.g., for 9 zones,
including the nonspecific category,
25 nuclides, and 50 times, 9 x 25
K 50 = 11,250 cards, are required),
Dose rate to each organ IH of NIHT
total (8 maximum), at time IT (in
2one IE via nuclide K),
A sample coding form illustrating the first card of each type is
given in Appendix M. More complete sample input is given in Appendix P.
117
-------
B. OUTPUT DESCRIPTION
AHR&W-B requires two output mediums: disk and line printer.
1. Disjt. Intermediate temporary storage of calculated values for
each nuclide is on disk. Output can be to disk and/or line printer.
2. Line Printer. The line printer must be capable of 132 charac-
ters per line,
3. Output Tables. Output from AMRAW-B is the series of tables
listed in the directory in Table 7-2. Table 1 as numbered by AMRAW-B
provides average damage rates in each some, for nonspecific, anci the
total, versus time. Subtables are for high and low population projec-
tions, respectively. Table 2 is a series of tables, one for each time
increment giving average damage rates; total for zones, nonspecific,
and total by nuclide, for high and low population. Table 3 presents the
total discounted present value of damages over the entire time range for
each nuclide, subtotals for each decay group and the overall total, for
high and low populations. This table also includes marginal damages,
by decay group and total, based, upon in repository inventory at
the beginning of the terminal storage phase. Table 4 presents total
expected deaths per time interval in each zone, for nonspecific, and
the total, versus time. Similarly, Table 5 presents total in
dollars per time interval. Subtables of Tables 4 and 5 are for high
and low populations. Sample output is given in Appendix P.
118
-------
Table 7-2. Directory of AMRAW-B Output Tables
Table Ho.
i-1
1-1
a
3
4-1
t-2
5-1
s-a
Titln or Description
Output listing of selected W«*»-a input
anal and Total outages for High Population
redaction, S/y.
anal and Total iBa*g*a for ta» Population
reduction, $/f.
Osg tajals for each tina InMrval calculated;
stances by nuclite, S/y,
liaccunted present Values, $, and 5/f-
Httjh population Scenario; Nuabflr of Doatiis
Per URO Interval.
Low Population Scenario) Huabar of Deaths
Per Tims Interval.
Total Undiacounted Daiugee for Each Zono for
Each Tie* Interval-High *ojwl«tion» $.
Fot&l UTKiict'Guntnd Damgas for Each Sono for
each Tiea Intarv*l-L
-------
Page Intentionally Blank
120
-------
CHAPTER 8
PROGRAM OPTIONS
The major class of options is concerned with design of the appli-
cation. The number of nuclides, geographic zones, times, release sce-
narios, and environmental pathways may be varied in AMRAW-A within the
range of dimensioning and carry over into the AMRAW-B calculations.
There are no options built into AMR&W-B for alternate calculation
sequences. There is an option to print or suppress printing of output
Table 2. This table consists of 1 page for each time calculated (see
Table 2-2 for description). Setting ITB3 = 1 requests printing of out-
put Table 2; setting ITB3 = 0 suppresses printing. Write statements are
provided (before and after Format statement 3806} for outputting the
large HANI input matrix from file ECONxx. The write statements are
suppressed by labeling as comment statements. Removal of the "C" from
the two lines results in output.
The input/output mediums are specified in statements in the main
program which assign values for the variables IN, IP, and IS appropriate
to the system being used:
IN specifies an input medium, normally the card reader (at UHM,
this is 5).
IP specifies the output medium for the code; this is normally the
line printer but it may be set to disk or tape file if preferred,
along with appropriate JCL (at UNM, line printer is 6).
IS specifies an input medium with large storage, used for file
ECONxx, This can be disk or tape files; the value of IS can be
any allowable and free integer as supported by appropriate JCL
(at UNM, this may be 1, 3, or 4; 2 is used in AMRAW-B for sys-
tem disk storage of intermediate calculations).
121
-------
Page Intentionally Blank
122
-------
CHAPTER 9
ERROR
AMRAW-B in the present version does not generate error messages.
No such addition is planned at this point in time. If the computer code
fails in a run, it is suggested that the input data formats be checked.
Extensive comment statements have been placed in the program for assist-
ing the user to isolate any problems.
123
-------
Page Intentionally Blank
124
-------
K
BACKGROUND MATERIAL
The basic structure of the AMRAW model and computer code was
developed at UNM between 1972 and 1974 as part of the S. Logan Ph.D.
dissertation: "A Technology Assessment Methodology Applied to High-
Level Radioactive Waste Management," The University of New Mexico, 1974.
Additional development proceeded with support from the Sandia labora-
tories university Research Program and from the Energy Resources Board
of the State of New Mexico. Completion of the model and code was done
under EPA Contract No. 68-01-3256 beginning in August, 1975.
125
-------
Page Intentionally Blank
126
-------
APPENDIX L
SAMPLE RUN REQUEST
-&MRAW-B RUN REQUEST
Requested By:
Phone: Date:
Number of Seconds: Ho» of Quput Lines;
Nuntber of Copies Requested:
Special Form? If so, form no.
Input Data On: Disk Disk, Name:_
DSN;
Card Tape Tape Nantej_
Label: DSN:
OFFICE USE ONI.1
Gate Received;
Date Submitted:
Date Returned:
Initials:
127
-------
Page Intentionally Blank
128
-------
APPENDIX J1
SAMPLE CODING FORM
fable M-l presents a sample coding form for AMRAW-B input data
illustrating proper formats for each of the 15 card types. The data shown
is from the base case for terminal storage, reported elsewhere. Only
the first card of each card type is illustrated. Card types 1 through
11 comprise data file AMB, card types 12 through 14 comprise data file
AM1E and card type 15 represents the large dose rate output file from
AMR&W-A: ECONxx, For 9 zones, including one "zone" allocated to non-
specific dose rates, 25 nuclides, and 50 times, 11,250 cards of card type
15 are required. Because of the large size of the last file, it is
obtained from AMR&W-A and placed on tape or disk by machine processing,
File AM1E is obtained from an AMR&W-A input data file via machine pro-
cessing. Normally, only file AMB requires key punching or typing on a
terminal.
129
-------
Table M-l. Sample Coding Form with First cards of
Each Type Illustrated3
fd
>e
1
a
3
4
5
6
7
8
10
n
ia
B
W
6
t
Z
a
V
M
n
N
M
I
R
tf
3
^ ..- 51?
tow
ftTib
OL
T^
Z
K
IHT
QIA.L
EPO
b 1
01
o.o
C
c
a
1
a
p
-
•-
Cjolw.*wri
to SO m
- 50 PER
BODY
1 Q
EfOO
If 1
IH a
o.o
C&EM
101
25
_ 5,..Q
0,0
4.0
a
One
req
b
The
1
i
; .aeto.
AIM.)
•
pEtQQ
O.O
card
aired
varia
'';•/ (v '^ |tj " .
- NEW
; o.d
QDQi.0
50
8
as
- ; e
! IOJ
t .0
4_o,
each c
for: ei
, '- I ,
ble,' hi
L_ ....-._, ._..,.,]
60'OV
i '
• i t
oE±m
4£±Pl
HEtOH-
. o.o
)f tiyjp
id hi 'of
me -on
^C'Qt.F
!
j
i
*
- ; '
1
4
.5
.2
1 <
3
tl
i -
N
'0
• i I :
carid
FORIMt
ijaATEMfl1
*rC3
p.i '
! ! i
i j
! i
• !
: , !
, ; I
' i
, ! : '
i I !
• ! , •
i • .
OdEdtJD
KFtO
3
|
3
H
_D.O
7 and
ther
t
typed
n
i ' '
1 '• •
i
; 1
' ' i
: ; • |
I : j
i ' I
1 i 1
1
i ,
.
a
i 4
i l
' i
i
t'O
.0
,0
i
' 1 '
* "
10
is
ypeii
t I
2! h
t
' ; •.
; i ;
So to
|
1
1
1 j f !
i " •
1 1 ; ;
i
QE+Ojl
2EL03
aet
: O
04
-O
recru:
i
t
:~! ' !
is;
nb-
i !
; : : i
i ; j
•• ' i
'
•
i t
i ' /
> i ;
a. 5,
q.^
4/.0
.red?
; i ,
1 l ' •
: ^ rj
; ' ! i
; ! : ,
i : i "
; i i !
1 " ;
i •
1 . •
i M i
i I ;
! ! : i
' i
: • -
06'tOl
^ E't-03
: O.O
I
nore :t
i ; i
; 1 ' !
* i i ' i
." ' I 1
"i i i •;
1 , i !
, l
] . i. • .
j i '
; 3._0
: a.-i
' If. O
han 1
• '.
•
' - i ^
7IL
ill;
I
._, —J..-T-
i 1 i i
' : - '
' . , ' :
OE
7F
IB
tOi
+ OM :
•!* /'Tti^ii
o.o
card is
HSrflWl ^
! . : : 1 i ;
; , ' , ;
. 1 i ; ;
! ' ! i " i '
M-.OOE+OI
^OJiEtQM
«L, QiEtOH
: O.O
cr,eng rally
_. — . —~ — ^~. —
U)
O
-------
APPENDIX N
JOB PROCESSING INSTRUCTIONS
1. Prepare Jobcard for computer run using run request as follows:
Job name - 8 alphanumeric characters.
Time parameter - number of seconds estimated,
t
Lines parameter - number of lines (in thousands) estimated.
Forms parameter - form number from request.
Copies parameter - number of copies requested.
2. Input medium:
Card - keypunch as necessary and place in appropriate section of deck.
Disk - modify the data definition statement GO.FTOlFOOl DD card to
reflect parameters required by the system,
Tape - modify the data definition statement GO.FTO2F001 DD card to
reflect parameters required by the system.
3. Submit job and note date submitted.
4. Return job to requester and note date returned.
131
-------
Page Intentionally Blank
132
-------
APPENDIX 0
OPERATING DECK SETUP
JOB CONTROL LANGUAGE CARDS
INPUT DATA
JOB CONTROL LANGUAGE CARDS
AMRAW PROGRAM
JOB CONTROL LANGUAGE CARDS
JOB CARD
133
-------
Page Intentionally Blank
134
-------
APPENDIX P
SAMPLE INPUT AND OUTPUT
AMHAW-B^ Sample _ Ingut
Sample input data for the base case for terminal storage phase,
Case No, 48, are presented.
1. Table P-l. Data file AMB.
a
2. Table?-2. Data file AM1E.
The full file for 50 times and 25 nuclides is 207 lines long?
the beginning and end of the file is shown here.
3. Table P-3. Data file ECON48.
This is the file with designation of form ECONxx for Case No.
48. The full file for 50 times, 25 nuclicEes, and 8 zones is
11,250 lines long; the beginning and end of the file is shown
here, as obtained by processing AMRAW-&. output through the
auxiliary program, COMPRESS.
4. Tables P-4 and P-5. Sample of AMBAW-A output.
These tables are a sample of AMRAW-A output prior to processing
by COMPRESS to obtain the AMRAW-B input file illustrated in
Table P-3.
Table p-4. Average Annual Local Dose to Individual in Zone 1,
from Ra-226, in Millireras/Year.
Table P-5, Average Annual Nonspecific Dose to Population from
Ra-226, in Man-rems/Year.
aThe left hand line number column in these tables is computer-furnished
for these listings and is not part of the data files.
-135
-------
Table P-l. Data File AMB
123456789012345478,9012345678901234367890
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
41?0
4200
4210
4220
4230
4240
4250
4260
4270
4200
4290
4300
4310
4320
ECON48 - 50 PERIODS - NEW
RATE 0,0
VOL 260000,0
NT SO
MZ 8
NK 25
NIHT 8
TOTAL BODY C REMAIN*) 85
61 TRACT 34
GGNAD< GENETIC) 200
LIVER 0
LUNG 44
HARROW < LUKEMI A ) 32
7
THYROID 0
REPO 101 10.1.
EDDY
REDB
MI DO
WTEX
LEA
CHAV
RE 08
NG 1
(301
G02
(303
CO 4
605
G06
G07
G08
609
G10
Gil
1
2
5
6
3
1
V™
2
1
1
1
1
19
11
10
16
1
I?
4
6
7
8
9
17200
213000
784000
217000
245000
253000
155000
25
13 15
12 14
IS 23
3
5
6100
S3 6 00
224000
57900
"74000
67800
54900
20 21
17 22 24
BODY COEFF
136
-------
Table P-2. Data File
ioso
1060
1070
1080
1090
3.100
mo
1170
11 BO
1190
1200
1210
1220
1230
1240
1250
12(50
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1430
1.460
t-V
r^
.-:«70
2800
2B?0
2900
2910
2920
2930
2940
2950
2960
2970
29 BO
2990
3000
3010
3020
3030
3040
3030
3060
3070
3080
3090
3100
3110
3120
;ii30
3140
3150
3160
O.OOE+00
5.00E+01
4.00E+02
3.00E+03
2.QQE+04
1.00E4-OS
9.00E+05
C-14 1
C-14 2
014 3
C-14 4
C-14 5
C-14 6
C-14 7
C-14 8
BR-90 1
SR-90 Z
SR-fO 3
8R-90 4
SR-90 5
SR-70 6
SR-90 7
SR-90 B
Y-90 1
Y-90 2
Y-90 3
Y-90 4
Y-90 5
Y-90 6
Y-90 7
Y-90 8
ZR-93 1
ZR-93 2
ZR-93 3
ZR-93 4
ZR-93 5
ZR-93 6
_^--— *v
^~~^
AM-242M 3
AM-242M 4
AM-242M 5
AM-243M 6
AM-242W 7
AM-242M 8
AM-243 1
AM-243 2
AM-243 3
AM-243 4
AM-243 5
AM-243 6
AH-243 7
AH-243 8
CH-242 1
CM-242 2
CM-242 3
CM-242 4
CM-242 5
CM-242 6
CM-242 7
CM-242 8
CM-244 1
CM-244 2
CM-244 3
CH-244 4
CM-244 5
CM-244 6
CM-244 7
CM-244 8
5.00E+QO
6.00E+Q1
5.00E+02
4.00E+03
3.00E+04
2.00E+05
i.OOEWA
0.0
4,04»04
3.960+04
3,64Ci04
l,73»-t-04
B.62D+01
7.03D-12
0,0
S.30D+85
4.91D4-07
a.B7n-w5
3,*~S~^J
-*^^X~s^».
4.52DI-05
}, .780+04
4.14D-07
0,0
0,0
0.0
7,250+07
7,200+07
6,750+07
4,130+07
1,660+06
4.Q7D+01
1.91D+00
1 ,500+03
1:. 090*03
4,280+01
1,000-09
0.0
0,0
0,0
2.04D+07
1 ,470-106
5.140-06
0,0
0,0
0.0
0,0
137
-------
Table P-3. Data File ECOM4S
0.0
0.0
0.0
0.0
0 .0
O.Q
0.0
2, 401-12
3.41E-12
4.41E-12
S.40G-12
6.39E-12
7.3SE-I2
8.30E-12
i «a2F~"i i
Z.77E-11
3 , 7QE— 1 1
4. 6 IE- It
5.40E-11
6.34E-U
7.J7E-11
7 n QBE — 1 1
8.76E-1 I
1 » fiSC— 1 0
2 e 1 a E— 1 Q
2.SSE-JO
2.79E-10
2,93E*iO
S=99E-JO
3.00E-10
2.96E-10
2.fl8E-iO
3.S4E-10
1 ,4SE-10
5.0QE-11
L61E-11
S.03E-12
1 .S6E-12
4.9QC-13
1 . 56S- 13
5.Q6E-14-
3.16E-14
3.I6E-19
9.72E—25
2,08£~3i
S.16E-38
O.Q
0.0
0.0
• 0,0
r^ O.Q
o .0
0,0
0,0
0 .0
0.0
0.0
2. 15E— 02
1.49E-02
1 .04E-02
7.24E-03
5.03E-03
. 3.4SE— 03
2.34E-03
9.S6E-04
1 .94E-05
4.SSE-07
1 .34E-08
3.e8E-l 0
9.79E-12
2. 17E— 13
4.36E— IS
8 a 12E-17
1 .7BE-18
0.0
0 .0
0.0
0.0
O.Q
O.Q
0 .0
0.0
0 .0
0 «O
0.0
0«0
o.o
0.0
Q«0
0.0
OoO
0 .0
0.0
0 »0
O.Q
0.0
OaQ
OaQ
0.0
O .0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
3.03E-1 1
4.29F-U
5.S5E-11
6.80E-11
a.oss-ii
9»291-11
LOSE- 10
2.29E-IO
3.49E-10
4.66E-10
5.80E-10
6.9QE-IO
7.98E-10
S.03E-10
1 .OOE-09
i .1 oe-09
2..0BE-09
2.75E-09
3.21E-09
3.S1E-09
3.69E-09
3.76E-09
3.76E-C9
3»73E-OS
3.63E-09
4.46C-09
1 .83E-09
C.30E-10
2.03E-10
6.34E-1I
L97E-11
6.17E-12
1 *96E— 1 2
C.37E-13
3.98E-13
3.97E-18
1.22E-E3
2.62E-30
6.50E-37
0.0
0.0
0.0
0.0
0.6
C.O
C.Q
0.0
c.o
0.0
0.0
4,*s2E-03
3,13E-03
2.196-0-3
1 .53E-03
1 .06E-03
7.24E-04
4..92E-04
2.10E-04
4 ,08£-Q6
9.55E-08
e!l5E-l i
2.06E-12
4.S6E-14
9 . 1 5E- 1 t
1.T1E-17
3.74E-19
C.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.Q
0,0
0,0
0.0
0 ,0
0.0
0.0
0,0
0 »0
0.0
0,0
0 .0
0.0
0,0
0 .0
0.0
0.0
0*0
0.0
OP 0
0.0
0.0
0.0
B.OSE-13
l.tSE-12
1.48E-18
1.0 IE- 12
£, 1 4EM 1 S
2.47E-12
SuBOe— 12
6.10E-12
9.29E-12
1.24E-1 1
J O5'l^r±"" 1 1
1.84E-1J
2.12E-11
2.40E-11
2 « 67E— 1 1
2.93E-1
S.54E-1
7.30S-1
0.53E-1
9.35E-1
S.iOE-H
l.OOE-IO
I.01E-10
9.92 E— 1 1
9.66E-11
1.19E-10
4.87E-11
1.67E-J1
5.39E-12
1.69E-1?
5.24E-13
1.64E-13
S.21E-14
1 OT69E— 4 4
1.06E-14
l.OCE-19
J.25E-2S
6.96S-32
1.73E-3S
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.7SF-02
1.21E-02
i.4BE-03
S * 9 1 E — 0 3
4.085-03
2.60E-OJ
USOE-03
8 » 1 OH**D 4-
1. 585-05
3.69S-07
1 .08E-08
3 «, 1 5E- 1 0
IP? &£• — J 3
3.S4E-15
6.S9E-17
l,4SE-ia
o.o
0.0
0.0
0.0
0.0
0.0
c.o
0.0
0.0
0.0
0,0
0.0
c.o
oto
0.0
0«0
0.0
0.0
0.0
oto
0,0
0.0
0*0
0.0
0.0
0.0
0.0
0.0
0*0
o.o
0.0
0,0
0,0
OoO
0 ,0
o.o
0.0
0.0
0.0
0 ,0
0.0
0.0
0.0
0,0
0,0
0*0
0 ,0
0.0
0,0
0.0
0,0
0.0
0,0
0.0
0.0
0,0
0« 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0-0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0,0
_ -»-m
0.0
0.0
0.0
0.0
0,0
0,0
0.0
3, 355-O1
2.32E-01
1 ,t»3E-QJ
1 » i 4E;""""Cl 1
7.84C-02
S.37E-02
3.66E-02
1 .56E-OE
3.03E-04
7.09E-06
2«Q£jE-07
6.05E-09
1 .53E-10
3.38E-12
6.79E-14
1.27E-1S
2 « 7aB - 1 7
O.Q
0.0
0-0
0.0
0.0
0,0
0.0
0.0
0.0
O.Q
0.0
0,0
0,0
0.0
OoQ
0.0
0.0
0.0
0.0
0.0
0.0
0.0'
0.0
0,0
0.0
0.0
0,0
0,0
0,0
0.0
0.0
0.0
0,0
3.37E-10
4.775-10
6. 172-10
7.56E-10
e.ase-io
1.033-09
I, I7E-Q9
2,gS=-09
3.896-09
5. 155-09
6.46H-09
7.6CE-09
s.ae=-09
I.QOS-OB
1 . 12S-08
1 .23S-08
2.32E-08
3. DCS-OS
3.87E-08
3.91E-08
4. 103-08
4. 195-08
4. 2CH-08
4 . iss-oa
4.04E-OS
4 . 96 s — 08
2.04H-08
7. DIE- 09
2.2CS-09
7.0S=-iQ
2. 1S3-10
.6.865-1 1
2. i&e-n
7 . 06H— 12
4.425-12
4 .426-17
I « 3fc3 ^*22
-H « 9 i r — 2^
7. 233-36
0. 0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0. 0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.a
O.Q
0 .0
0,0
0.0
P.O
0.0
0,0
0.0
0,0
0.0
0.0
0.0
0.0
0,0
0,0
0.0
0.0
c.o
0.0
0. 0
0.0
0.0
0.0
0. 0
0,0
0.0
0.0
0,0
0, 0
0.0
0,0
0 ,0
0,0
0 .0
0.0
0.0
1.2SE-11
1 .82E-11
2.3SE-1 I
2.Q8E-H
3.40E-1 1
3.33E-1 I
4.46E-11
9.71E-J1
1 «4B£— 1 0
1 .97E-1 0
S.46E-10
2 . 9 H E— 1 0
3.3SE-10
3.82E-10
4 .25E-10
4 .&7E-10
8.82E-10
1 .16E-09
1 «36E-09
I ,*9E-09
1 .S6E-09
1 .59E-09
t .&OE-09
1 .58E-09
1 .54E-09
1 .89E-09
7.75E-10
2.67E-10
a«56E-l 1
2.68E-U
8,33fc-l2
2, 6 IE- 12
B«30fc-i3
2.69E-13
1 .68E-13
1 .6BE— 1U
5.10E-24
1 .11 £-30
2.75E-3?
0.0
0 nO
0.0
0,0
0 .0
0.0
0 .0
0 .0
0.0
o.o
0 .0
7.27E-01
5 ,Q3E-Ol
3.S3E-Q1
2 Q4CiE— 0 1
1 ,TOE— 3 1
1 .I6E-01
7.91E-02
3 .J7E-02
6.56E-04
1. .54S-05
4.51E-Q7
1 wJ 1 H"**0 B
3«3iE-lO
T *Ji2E;'~' i 2
1 .47E-J J
2,T4E-lSi
6.0 IE- 17
O.O
0 ,0
<3 .0
0 .0
0.0
0.0
0 .0
0.0
0.0
0.0
0.0
0.0
0*0
0,0
0.0
0 .0
0.0
0.0
0.0
0 .0
0.0
0,0
0,0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
o.c
0.0
0.0
1.28E-M
1 ,825-1 1
2.3SS-1 i
2 . B 8E- 1 t
3.40E-1 1
3.93S-1 1
4.46E-I I
9.71E-1 1
1 .48E-10
1 ,975-1 0
2.4&2-10
2.92E-10
3.38E-1 0
3.62E-10
4.2SE-10
H .67E-1 C
B.82E-10
1 .165-09
1 .36E-09
1.4 SE~"09
1.S6E-09
i .sse^-os
I .60=- 09
1.5 Gc — 0 9
t .54E-CS
1 .8-5E-09
7.752-iC
2.67E-10
8.5SE-1 1
2.68E-J 1
8. 3 35- 18
2.61S-12
8.30E-13
2.69S-1 3
1 .68E-13
I .66E-16
5.18E-24
1 . 11E-30
2.7EE-37
0.0
0.0
0.0
0,0
o.o
0.0
•0.0
0,0
0.0
0,0
0,0
7.27=-01
5.03E-01
3.53E-OJ
2,462-Oi
1 .70E-.OJ
1 .165-01
7.9 15-02
3.37E-02
6.562-04
i .545-05
4.51E-07
1 fl3lt":"c"00
3.31C- 0
7.3JE- £
1.47E- 3
2.7 4E- E
6 . 0 1 E- 7
0.0
0.0
0 .0
0.0
o.o
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0 .0
0.0
0.0
O.D
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0 .0
0 .0
0 ,0
0 .0
0.0
0.0
0,0
0 .0
0 .0
0.0
0,0
0.0
0 ,0
0 .0
0.0
0»0
0.0
0 .0
0 .0
0.0
0.0
0.0
0,0
o.o
0.0
0.0
0.0
0 .0
0.0
0.0
0 .0
0 .0
0 ,O
0 ,O
0.0
0.0
0 .0
0 .0
0,0
0 .0
0.0
0 .0
0 .0
0.0
0.0
"-Sn5^-»±-*
0.3
0.0
0 .0
0 .0
0,0
o.o
0 .0
0 .0
O.D
0 .0
0 ,O
0,0
0,0
0 ,0
0.0
0.0
0,3
o.a
o .0
0 .0
0 .3
0 .0
0 .I
0.0
J ,0
0,3
0.0
0 .0
0.0
0.0
o.a
0.0
o .0
0.0
0.0
0.0
0 .0
0,3
0 .0
0 .0
0.0
0 .0
O.D
0 .0
0 .0
o.o
0 .0
0 .0
0 .0
o.a
138
-------
Table P-4. Sample of &MRAW-A Output
**• AVERAGE ANNUAL LOCAL DOSE TO INDIVIDUAL MAN1L. IN MILL 1REMS/YEAR
E=: RA-226 KB 12
TIKE
0.
S.
10,
15.
20.
2S.
30.
40.
SO.
60.
70,
80 <
90 *
160*
200.
300.
400*
500.
600.
700*
800.
900.
1 000 «
20QO.
3000.
4COP .
5000.
6060*
7000.
SCOO.
9000.
10000.
20OOO.
30000.
4&060*
50000.
60000*
7DOO0.
acooo*
90QOO.
IOOQOO,
2QOOOO«
300000.
40COOO.
5OOOOO,
<.-OOOOO«
7GCOOO.
uccooo.
•90000O.
1 COOOOO.
TOT SOOy
G.O
0.0
c.o
0CTO
o.o
0.0
e.e
I.42E-13
2.43E-13
3.82E-13
S.60E-13
a, I2E-13
I.I2E-I2
1. S26-12
9.I5E-12
4. ioe-1 1
i«z0e~io
2.69E-10
5. I4E-1O
e. 76E-10
1.36E-09
2.03E-C9
2.87E-09
. 1.61E-OB
s. eee-oa
1.3TE-07
2. 52 E- 07
•4.Q4E-C7
5.94E-07
8.19E— 07
l.OSE-06
1.38E-06
4»85E-06
1»|SE-01
1.9IE-PS
2, 66E-OS
3.36E-OS
4. 0 1 E- 0 5
•»a59E-05
S.09E-05
5.83E-OS
I.S9E-0*
1.62E-04
1« 40E-04
1., 1 3E-0*
8.80E-O5
6»aoE— os
s.ase-os
•*.OSE~05
3. 13E-05
GI TRACT
0*0
0.0
0«0
0.0
o.o
0.0
c.o
6.24E- 16
1««2E-15
2. S3E-15
4.04E-J5
C.O4E-1S
B.63E-15
1. 19E-14
7. S9E-14
3«63E-13
1.07E-12
2, 43E-12
4.6SE-J2
7,976-12
I.2SE-11
1.86E-1I
2»63E-!t
1.48E-10
5o 42E-10
i«26E-09
2 « 326-09
3*?*E-OS
5,496-09
7.57E-09
9. 98E-09
I.27E-08
4»49£-t»a
I.06E-07
1.77E-07
2. -16E-07
3. ne-or
3.7IE-07
4.2SE-07
4.716-07
Sai2E-07
1 o*7E-06
1.50E-06
J.29E-Ofi
1. 04E-06
a, iSE-07
6.30E-07
4.86E-07
3.7SE-07
2.a9E-07
GONAOS
0.0 '
0.0
0.0
0.0
0.0
0.0
0»0
1.42E-13
2.4«E-13
3.83E-13
S.69E-13
B. 14E-13
1.13E-12
1.52E-12
9. 1 BE- 1 2
4.12E-11
1.20E-10
2.70E-10
S. ISE-tO
8.79E-10
1*38E~09
2.0*E-09
z.ase-os
1 .62E-OS
s.9oe-oe
Is 376-07
2.52E-0?
4.06E-07
5.96E-07
6.2IE-07
1,08E-06
1.38E-O&
4.B7E-06
1.1SE-OS
1.92E-05
2.67E-05
3.37E-05
4.03E-OS
4.60E-05
6. HE-OS
SeSSE-OS
1.59E-04
1.&2E-04
I.*OE-04
1.I3E-04
a.ase-os
6,02E-05
S.27E-O5
4.06E-OS
3. 14E-05
LIVER
OaO
O.O
0.0
O.O
0,0
0,0
0.0
S .72E-16
1 .37E-I5
a««9E-15
4 .02E-15
&.C5E-15
B. 676-15
1 .20E-I4
0.03E-14
3.70E-I3
1 elOE-ta
2.48E-12
*»76E-12
B, 15E-12
1 ,28£~il
1 .90C-1 1
2ȣi9E-ll
I .52E-10
S »S5E-1Q
I ,29E-09
2.38E-09
3«a3£-09
5«6ae-09
7.75E-09
1 <,02E-0«
1 .30E-08
* .60E-08
I «09E-Of
I .81 E-07
2.S2E-07
3.19E-07
3 o80E-O7
4.35E-07
4 •aae-of
S.24E-07
1 .SOE-06
1 »53E-06
1.33E-O6
1 .07E-D6
S.34E-07
6«^5E— O7
ft » 98 E-O 7
3a04£-07
2.S7E-O7
LUMCS
0.0
0.0
0.0
0.0
0*0
o.o
0.0
4.I3E-13
7.05E-13
i» lie- 1 2
1.6SE-12
2.35E-12
3.2SE-12
4.39E-12
2.6SE-11
1* 19E-10
3.46E-10
7.78E-10
t,*9E-O9
2.53E-09
3.98E-09
5.80E-09
8.31E-09
4.66E-08
i, TOE- 07
3.9SE-07
7.27E-0?
1.17E-06
1.72E-06
2.376-06
3. 12E-06
3.98E-06
i»4oe-os
3.32E-OS
5.52E-OS
7.69E-OS
9.72E-OS
1. 16E-04
U33E-04
1.47E-O4
1.60E-O4
4.5QE-0*
4.68E-04
4.O4E-04
3.26E-04
2.54E-0*
1.9FE-0*
I.52E-04
1.17E-04
9.04E-05
MARROW
0.0
OoO
0,0
0,0
0.0
0,0
0.0
1.68E-12
2.87E-12
4.31E-ie
6.69E-12
9.S6E-I2
1 .326-11
J.78E-1I
i.oaE-io
4.82E-tO
1.4IE-09
3. 16E-09
6.0*E-09
J.03E-08
l.62E-Oa
2.39E-OB
3.38E-08
1.B9E-07
6.91E-07
1.606-06
2.961-06
4.75E-06
6.986-06
9.62E-06
1.27E-05
l.ftZE-05
S.70E-OS
1 = 35E-04
2.24E-04
3.13E-P4
3,«SE-0*
a. 7IE-04
5.39E-O4
5. 986-04
6.506-04
1 .86E-03
1 .90E-Q3
I.64E-Q3
1.32E-03
i,03E-03
T.99C-0*
&. ire- 04
•J.75E-04
3.67E-04
ODNE
0.0
0.0
0.0
0,0
o.o
o.o
0.0
I.68E-12
2«87E-I2
4.S1E-12
6»69E-I2
9.56E-I2
1.32E-H
I.78E-H
i.oee~io
4.8Z6-tO
1*4IE-09
3.16E-09
6.04C-09
1.03E-08
i.62e-08
2.39E-08
3.38E-08
1.89E-07
6.91E-07
1.60E-06
2«96E-06
4.7S£-06
6.986-0&
9.62E-O6
1.27E-OS
i,62E-05
5.706-05
I.3SE-04
2o24E-04
3.! 3E-Q4
3.9SE-04
4.7IE-04
S«39E-0*
S.98E-04
6.5OE-04
I.B6E-03
1*9 OE- 0 3
1.64E-Q3
1.32E-03
1.03R-03
T«99e-0-l
6.1 7E-O4
«»7SE-C4
3.67E-04
THYROID
0.0
0.0
0.0
o.o
o.o
o.o
Q«0
7.25E-16
t .75E-15
3.ire-i5
S. 1 2E- » 5
7.71E-J5
i .116-14
1.53E-14
1.03E-13
*.73E-13
1.43E-12
3.17E-12
«.oee-t2
t.0«£-ll
1 *64E-1 1
2.43E-1I
3.43E-11
1.94E-JO
7.09E-10
1 .6SE-O9
3.04E-OB
4.89E-09
7,ISE~O9
9»90£-09
t .31 E-08
1.67E-O8
S.876-08
I.39E-07
2.31E-07
3.22E-07
4.07E-07
4.86E-07
S.S6E-07
6.17E-07
6.70E-07
I -92E-0&
J.96E-06
I .S9E-06
1 .36E-06
J.O7E-06
8.24E-Q?
6.36E-O7
4.90E-07
30r9E-07
139
-------
Table P-5. Sample of AMRAW-A Output
** AVERAGE ANNUAL NONSPECIFIC DDEE TO POPULATION. MAMN. I fv fAMREM5/YEAH
NONSPECIFIC aec KUCLIDE= 8A-2Z6 K= 12
TINE
Oa
5.
lOe
' 15e
20,
25,
30e
40 ,
SOe
60 a
70e
60e
90 e
lOOe
200 e
300.
400e
500*
600e
700,
SCO.
QOOg
1 000 o
£000 «
3000C
4000a
5000*
6000*
7000.
BOOOe
9000,
10000.
20000.
30000,
400QOo
50000o
6OOOO.
7000Do
BOOOOa
90000,
J 00000,
£00000.
300000e
400000a
SOCOOOo
COOOOOa
700000,
BOOGOOe
500000s
COOOOO.
TCT CODY
OeO
CaO
CaO
CaO
0.0
Ce 0
CaO
t.4HE-10
le OOE-05
IB 47E-09
?e 09E-09
£e69E-09
3.B9E-09
Eol4E-OS
3e 03E-OB
1.32E-O7
2e77E-07
fco 3 5E- 0 7
1, E7E-06
?e66E-06
4.1SE-06
f.e 1 OE-Ot
Ee 53E-06
• E.02E-O5
I.S2E-04
*o 1 BE- 04
7. 63E-04
1o22E-03
1.78E-03
2, 44E-03
3a 20E-03
4.07E-03
US1E-02
2.57E-C2
£e 89E-02
6al6E-02
1.03E-01
la22E-01
1,39E-01
1B54E-01
1.67E-01
£.1 4E-O1
5eS7£-01
4e5*i£-01
3.67E-01
2e 87E-OJ
2e22E~Dl
lo71E-01
le 32E-01
1.02E-OI
GI TRACT
OoO
Oe O
OeO
OaO
OoO
OaO
0,0
1.35E-12
2e08E-12
3o 07E-12
4e33E-12
6g OIE-1H
8.09E-12
lo07E-l 1
6e30E-Jt
2.75E-10
7e85E-10
le 74E-09
3o27E-OQ
5e b4E-OS
B.63E-09
lo27E-06
la 7QE-08
leO*E-07
5n 79E-07
E.66E-07
lo59E-06
2f S3E-06
3»69E-06
5,07E-06
6a 66E-06
e«47E-06
3el4E-05
7.43E-05
Ie23£-04
le 70E-04
£«14E-04
2eS4E-04
2a B9E-04
3a21E-04
3e 4BE-04
1.07E-03
leiOE-03
9B47E-04
7.64E-04
6e96E-04
4a61E-04
3e5fcE-04
2e 74E-04
2.12E-04
GCNADS
OoO
OoO
OoO
OaO
0, 0
OeO
Oa 0
6.4BE-10
la OOE-09
la 475- 09
2a 09E-09
2o S9£-09
3.69E-09
5. 14E-09
3903E-08
le32E~07
3a 77E-07
B.35E-07
le 57E-06
20 66E-06
4.15E-06
6a 1 OE-06
0o E8E-06
Es02E-OS
le B3E-O4
4.18E-04
7D63E-04
1,22£-03
1.78E-03
2.44E-03
3e£OE-03
4o07E-03
1,51E-C2
3»57E-02
50B9E-02
6, 16E-02
1.03E-01
lo22E-01
Ie39£-01
1.54E-01
le 67E-01
5.14E-OJ
582TE-01
4a S5E-01
3.67E-01
2oB7E-01
So22Z-01
1.7JE-01
ie32H-OI
1.02E-01
LI VEfi
OaO
0. 0
OeO
OoO
0.0
OaO
Oe 0
la20E-13
> oB5E-13
2.73E-i3
3,67E-13
5e34E-*3
7 .I9E-13
9eSlE-13
5e60E-12
2*44E-11
6a«!3E-ll
1.54 E-l 0
2eSlE-10
4092E-10
7.d7E-10
leI3E-09
1 n59E-Oil
9a 2BE-09
3e37E-Od
7.73E-03
1 o41 E-07
2e25E-07
3.EJE-07
4e5I E-07
5 a 92 E-07
7e53E-07
2e79E-06
6.60E-O6
1 809E-05
leSlE-05
1 .90E-05
2e2GE-05
2a57E-05
2&B5E-O5
3a09E-05
9.SOE-05
9e7SE-05
3042E-C5
6e79E-05
5*306-05
4 .l'OE-05
3el6E-OS
2e44E-05
1 o 8Be~Q5
LUNGS
C«0
0.0
OaO
OeO
0. 0
OeO
OeO
OeO
Oe 0
0.0
OeO
OeO
0.0
OeO
OoO
OeO
OaO
0.0
OoO
OaO
0.0
Oa 0
OoO
OeO
Oo 0
0.0
OeO
OaO
0.0
OaO
O,0
OaO
OeO
o.o
OeO
OeO
O.O
OaO
OaO
OaO
0,0
O.O
OaO
OaO
OaO
OeO
0.0
0,0
OaO
0.0
MARPCto
OoO
0. 0
OB 0
•0,0
OgO
Or 0
OoO
7o 71E-09
lo!9E-C8
lo75E-OS
2e 49E-08
3t 43E- C6
4.63E-08
6-a 1 2E-OS
3» 60 E-07
le S7E-Ct
40 49E-06
9.S3E-06
J,57E-05
3c 17E-C5
4» S4E-O5
73 86E-CS
le 02E-04
5o S7E-04
2, 17E-03
4.97E-03
So CSE-C3
lo45E-C2
2a 11E-02
7a«OE-C2
3.81E-02
tBe4E-C2
lo80E-01
4.2SE-01
7o OtE-01
90 71E-OJ
le22E 00
1o4SE 00
1.6SE 00
]aH3E OO
I«S9E 00'
6.I2E OO
6o27E 00
5e12E 00
4e 37E 00
3e41£ CO
2.64E 00
2o C3E 00
loS7E 00
i*aiE oo
BONE
Oa 0
0.0
OaO
OoO
0.0
OoO
OaO
7e 71E-09
Ul 9S-OS
l.75!;-oa
2o4SE-OB
3D43E-OS
4.635-06
63* 2E-«a
3e60E-37
10S7E-06
4a49E-06
9.93E-06
la 37E-05
3917C-35
4. 94^-05
73^6~-03
1.02E-34
5o97E-04
2,17E-03
4.97E-O3
9o 08E-03
lo45E-02
2ol 1E-02
?e90E-02
3. B1E-02
4eB4E:-O2
te30E-01
4,25E-tll
7a01E-01
5o71E-01
lo32E OO
te45= OO
1.65E OO
leS3S 00
le99E Of)
6.12E 00
6e27E 00
5a42E 00
4e37E 00
3e41S 00
2.64E OO
2
-------
Sample Output
This section of Appendix P contains output for the full run base case
for terminal storage phase, Case No. 48, and is based on the total of
cancers and genetic effects.
1. Output Summary^ of Selected Input; Table P-6.
2> Annual Damage Rates , by Zone, Nonspecific and Total
a. Table P-7 (Output Table 1-1) . Zonal and Total Damages for
High Population Projection ($/y) ,
b. Table P-8 (Output Table 1-2) . Zonal and Total Damages for
Low Population Projection ($/y).
3. Annual Damage Ra tea , by Muclide, Total All t Zones., and Nonspecific
Table P -9. (Output Tables 2-9 (50 y) , 2-14 (100 y} },
The full output of this type is a table for all times calculated
after 30 y.
4. Discounted Present Values of Damage Costs by Kuclide, and Total,
Integrated Over 10 __ Years
Table P-10 {Output Table F-10) . Discounted Present Values ($} ,
Discount Rate = 0,00%.
5. H umber of Deaths per Time Interval
a. Table P-1I (Output Table 4-1) . High Population Scenario;
Number of Deaths per Time Interval (#/Ay) .
b. Table p-12 (Output Table 4-2) . Low Population Scenario:
Number of Deaths per Time Interval
6. Total Undis counted Damages per Time Interval, by Zone
a. Table P-13 (Output Table 5-1} . Total Undiscounted Damages
for Each Zone for Each Time Interval - High Population ($/Ay) .
b. Table P-14 (Output Table 5-2) , Total Undiscounted Damages
for Each 2one for Each Time Interval - Low Population ($/Ay) ,
141
-------
Appendix P
Table P-6. Output Summary of Selected Input
ECON43 - 50 PERIODS - NEW BODY COEFF.
DISCOUNT RATE = 0-00 I
COST OF INCREASED LEVEL OF RISK OF DEATH = $ 260000.
COST OF EXCESS RISK OF DEATH
SITE OR TYPE DEATH /MIL* NAN-REM $/MAN-REM
TOTAL BODY (REMAIN.) 85*0 22.1
SI TP4CT 34,0 8.3
&ONAO(GENETICI 200«0 52.0
LIVER 0-0 0,3
L'JNG 44.0 11.4
MARROWILUKEMIA) 32,0 8.3
H BONE 7,0 1«8
w THYROID 0«0 0.0
POPULATION PROJECTIONS
ZONE HIGH LOW
1
2
3
4
5
6
7
8
REPQ
EDDY
REDS
MID3
WTFX
LEA
CHAV
REG3
101.
17200,
213000*
784000.
217000*
245000.
253000.
155000=
101.
6100»
53600.
224000*
57900.
74000*
67800,
54900.
-------
AppendiK 1
Table P-7. AMRAW-B Output Table 1-1
TABLE I - t : 2ONAU AND TOTAL DAMAGES FOR HIGH POP. PROJ2CT10* CS/YRJ
TIME
0*
S*
10«
IS.
20 o
25.
30.
40.
SO.
60 *
TO.
00.
90 .
too .
200 .
300°
too.
500.
600o
700.
BOCU
900 »
1000 .
Sooo ,
3000.
«QOO»
5000..
6»oo»
7000.
8000.
9000 .
1OOOD*
20000.
30000*
40000.
50000.
eoooo.
70000.
BOOQO .
90000.
ICOOOD.
2OOOQO -
300000.
4O00000
SOQOOO.
6OO000.
70000O •
300000.
900000o
1 COOOOOu
REPO
0.0
0.0
0.0
0.0
0.0
O. 0
0.0
1. 611-01
I. 701-01
I . 69S- 0 I
1.62E-QI
1.52E~OI
1.43E-01
1.3SE-01
s.see-oi
1.7*6-0 1
1.B9E-01
2. 04 E- 01
2<.19E-OI
2.31E-QJ
2.40E-Q1
Z.4&E-01
2.5IE-01
3.95E-OI
4.22E-01
». 911-01
s.s4e-oi
6.07E-QI
6.5QE-0 t
6. aSE-OI
7. 13E-01
7.36E-01
1. t IE DO
8.5*2-01
6.546-01
S.34E-01
4.30E-01
3«7aE-Ot
3. i ae-at
2.66E-01
Z.2TE-01
4.47E-01
3.flOE-0 I
4.14E-OI
«,30E-01
4.34E-01
4.296-01
4.JQE-0 !
4.07E-01
3..92E-0 1
EDDY BEOS MIOO WTeX L*A CHAV RH39 TOT.10H2 NON-SPEC TTOTAL
0.0 0.0 0*0 Q.O 0.0 0.0 O.Q 0.0 0*0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.O 0.0
0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 O.O O.O
0.0 O.O 0.0 0*0 0.0 0.0 0,0 0.0 0.0 0.0
0.0 0.0 0,0 C.O 0.0 0.0 0,0 O.O 0.0 0-0
O.O O.O 0 « 0 0.0, 0*O 0*0 0.0 0.0 0.0 O.O
O.O 0.0 Os>0 Q*Q 0*0 O.O 0.0 0>0 0.0 8*0
2.42E 00 1.565 00 S.06£»0t 2.34E-01 1.932 00 2.282 00 3.9?E 00 .312 91 6. ODE 01 7.3QC 01
3.70E OO 2»3gE 00 &.62E-01 3.03E-01 I«*TS OO 3.4IR 00 4.82E DO .793 Oi 5.02*5 01 6.80S 01
4.33E 00 2.655 00 7.2SE-01 3.31E-OI Z0«E 00 3.91 = 08 4.T6C 80 .965 01 4.222 Ot C.172 OJ
a=52E 00 2. TIE 00 7.345-01 3.34E-01 2.70E 00 4.00E 00 4.37S 00 .955 01 3. SIS 01 S.46E 01
4.43E 00 2.60E 00 T.I5S-OI 3.2SE-01 2.635 00 3.83C 00 3.9IS 00 =86^ 01 2.912 01 4*7?£ 01
4»IBE 00 2.40E 00 6.S6C-OJ 3. 1 2c- 0 1 2.S»~ 00 3. S3; 00 3. 475 00 .721 01 Z.4(T3 Ol 4. 1 2S 01
3.S*E 00 2»t7£ 00 6.59E-01 2.99E-01 2.4ZE 00 3. 1 7E QO 3.10E 00 . 58C 01 1 . 96E Ot 3.S4E 01
4.S9E CO 2.*3E 00 1.04E 00 4.716-Dt 3. 78E 00 3.4IE OO 6..I1E 00 2~ZK 01 1.45" 01 3.683 01
1.955 00 «28E 00 9.46S-01 4.28K-01 3.43S O8 1.612 OO 3.57= 00 «3SE 01 2.40E 00 . 59E 01
1.B4E 00 .365 00 «0*E 00 4.71E-QI 3.7SS OO l.TOt 00 3.SIE 00 . 42E 01 1«1IF. 00 .53= 01
2.02E 00 -51G 00 «14E 00 5.14E-01 4.12E 00 I.B9C. 00 4.075 OO .55" 0! 9.O35-QI .64* Ot
2.1BE 00 «63H 00 «22E 00 5.52E-D1 4.43E 00 2.OSE 00 4.29" OO * 66E 01 B.25E-01 «74E 01
2.31E 00 . 7JE 00 .2>E OO S.84C-01 4.6BH 00 2. 1 6E 00 4.46e 00 a ?4E Ol 7. 64"- 01 . 62C OJ
2»3BE OO -79E 00 .34E OO 6.07E-01 4.87S 00 2.23" 00 4.SS5 00 .912 01 7.06T-OI .86" 01
2.42E 00 J.82E 00 .38E 00 6.2SE-01 5.O1E OO 2.27E 00 4,S6= 00 .84E*Ol 6.54E-QI .911 Ol
2.44E 00 J.84E 00 .4l£ 00 fc»3a£-01 5. I2E 00 2.29S 00 4.71E 00 .S7£ 01 6.O7S-01 * 93E 01
3.676 00 2.6oe 00 2.24E 00 I.OtE 00 fl. 092 OO 3,«4~ 00 8.2Ss 09 2.596 Ol 5.Q6E-O1 3o 05E 01
3.60E 00 2.80E 00 2.40E 00 UOBE 00 B.S6S OO 3.3T5 OO 8»53£ 00 3.08= 01 4.89S-OI 3. 1 3Z Ol
4.osE oo 3,iae oo 2. THE oo i.aee oo .OIE 01 s.ao1: oo i~6B~ oo 3.53- 01 5.392-01 3.59- 01
4.51S 00 3.55E OO 3.15E 00 1.42S OO .145 01 4.23«= OO .07E 01 3,95? 01 6.23E-OI 4.02E Ot
4.86E 00 3.86E 00 3.45E 00 1 . S6£ 00 • 2SS 01 4.STE 00 »16E 01 4.30C 01 7,a5E-OI 4.37E 01
S.I7E 00 4.10E 00 3,692 00 t.tTc 00 .34= Ol 4.B5-S 00 023i 01 4 = 5Bi 01 1.2S5 OO 4,701 01
5.40E 00 «.29E 00 3.89E 00 1.76E OO ,415 Ol 5. 05E 00 .28= 01 4.80H 01 3.76C OO 5.IQE Ol
S.6aE 00 4.43E 00 4.05E 00 1.8JE 00 .47E 01 5.19E 00 .33E 01 4. 9&1 01 I.I8Z 01 6«16E OJ
5.84S OO 4.5S3 00 4.18E 00 l.B9c 00 .52" 01 5.315 00 .36= 01 5-13E 01 2.44= Ol 7.S7E 01
8»4tE 00 6.&2E OO 6.27E 00 2.63E 00 2.a7E 01 7.67E 00 .22= 01 7. 78= 01 3.6IS 01 1 . \ 4E O2
6»68E 00 4.71S 00 4.84E 0!) 2.1-SE 00 .75^ 01 5.295 00 .692 01 5.90C 01 1.54^ 02 2.13Z 02
S.44F 00 3.32E 00 3.71E 00 Ub7E OO . 34E 01 3.50E OO .835 01 5.03= Oi 3«03E 02 3.54E 02
5.02E OO 2. 635 00 3.Q3E 03 1.37E 00 l.tOE 01 2.80= 00 .022 01 4.&o2 01 4.135 02 4.6OE 02
4.96E 00 2.29S 00 2.S5E 00 J.15^ 00 9. 251! OO 2.47H 00 .OlS 01 4«322 01 4 =7«S O2 5. 1 BE O2
5.04E 00 2oO8S 00 2.J5E OO 9.71E-OI 7. 79E 00 2.33f- 00 .915 Ol 3.95= 01 5.10C 02 5.505 02
S. IDE 00 l=94E 00 J.B03 OO 8. 1 *C-0 1 6. 53E OO 2.26E 00 .B02 01 3.67" 01 5.3QC O2 5.672 02
5.14E 00 lofl3S 00 I.51E 00 6.B4E-01 5. 48s! 00 2.22E OO .69= 01 3.40E 01 5.412 02 5.75C 02
S.18E 00 1.76E 00 1,2'JE 00 S.B3E-QI 4.67E 00 2.21E 00 *59E 01 3.155 01 5.47E 02 So73Z 02
6.84E 00 4. 322 OO 2.54E 00 1.15E 00 9.203 00 5.73" OO 950= 01 4.52= 01 2.33= 02 2.832 02
1.23E 01 4.I8E 00 2. 16E 00 9.7BE-01 7.82S 00 5.70K 00 4,331 OJ 7,6B= 01 1.33S OJ 1.39E 03
I.05E Ol 4=OIE 00 2".3oE 00 1 . 06E OO fl. 5JC 00 Sa34E 00 3.63E 01 6.B6S OJ 1.04C O3 ' I. I IE 03
6.556 00 3.692 OO 2.4SE 00 1.IOE 00 B. BT1 00 4.77E OO 2.8SS 01 5,66" Ol 7.573 02 B.16E 02
t»93E 00 3.3SE 00 2.4SE 00 1.1IE 00 8,121 00 4.215 00 2.311 01 5.051; 01 S.43S 02 S. 93E 02
5.72E 00 3.03E 00 2.44C 00 1.1OE 00 8.841 00 3.T2I 00 1 ,89= 01 4.42= 31 3.922 O2 4.373 02
1.06E 01 2..76E 00 2.39E 00 1.06E QO 6«63S 00 3.325 00 • 1.59Z 01 4.SOE 01 2.87" 02 3.32E 02
3.94E 02 2.53G 00 2.3tE OO I.05E OO 8»33E 00 H« 97F 00 I. 351 01 4.25" OZ 2.3SS O2 6,64£ 02
5.9SE 03 2.33E 00 2.23E 00 1.01E 00 B.095 00 2.70S 00 1.1B2 Oi 5.981 03 5^663 02 6.55Z O3
-------
Appendix P . Table P-8-. ' MRAW-B output Table 1-2
TASLE I - 2 : ZONAL AND TOT At DAMAGES FOR LQsf POP. PROJECTION 6£-01
7.93E-01
7.GOS-01
7.30E-01
.14E 00
.046 OO
.I4E 00
.251 00
.34E 00
,4|S 00
.472 00
,5l£ 00
,55*: 00
2.44E 00
2. fill 00
3 . O4"E 00
3.44E 00
3,77= 00
4 o 04 si 00
4«25fi 00
4.43E 00
4.SS5 00
6.B5E 00
5»2«S 00
4.05E 00
3.32S 00
2.79= 00
2,35= 00
1 . 97S 00 '
I.65E 00
1.4 IE OO
2. 78£ 00
2.36E 00
2*501 00
2.683 00
2«G9£ OO
2.676 OO
2.6tE 00
2.S3E 00
2.44Ii 00
CHAV
0.0
0.0
0.0
0,0
0.0
0.0
0.0
6. 1 OE-01
9.1 4S-01
1.055 00
J.076 00
1.03^ 00
9.4SE-OI
a. soc-oi
9.1 3S-0 I
4.31E-01
4* iss1^— o i
5.062-01
B.49C-0 1
S, 802-01
S.99S-01
6.Q9S-01
6. J 3H-3 1
9.23P-0 1
9* 02S-0 1
1.022 00
1.132 00
l.23n 00
1.30" 00
1.35E 00
1.395 DO
1.42Z 00
Z . 0 6^ 0 Q
1.42S 00
9. 595-01
7«*9K-Ol
S«»3~-0 t
6,256-01
6.95S-01
5.95E-01
S.93S-01
1»S4« 00
I.53S 00
t*43E 00
I.28S 00
1.13E 00
9.98C-0 I
B* 902-01
7.97E-0 I
7»23*^-0 1
R6SS TOT.SlNi
OoQ
0.0
O.O
0.9
0.0
0.0
0.0
t .41 =
1.712
1.69=
I.55Z
1 *38S
I «23Z
1 .103
2«16E
t.JOE
1 »3SS
1«4*S
I. 522
1.58E
1 .622
1.655
1 .67S
2*92H
3.02E
3.43E
3.30E
4.10s
4.34E
4,54?
4o69E
4.81E
7.38~
6.00E
6.54S
7.16E
7»l IE
6«?8E
6.37E
5.97E
5.6SE
5.31 5
U53E
1 .29E
» .02E
8.I9E
6.71E
S« 62E
4.79E
4.17H
00
00
00
00
00
00
oa
00
oo
00
oa
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
oo
oo
00
00
00
00
00
00
01
01
01
00
00
00
00
00
0.0
O.O
D«0
o.o
0. 0
0.0
4.235
5.71 =
6*212
6. IBS
S.87t
*-995
7.19*
4.34S
4.96 =
S.31 1
s.sae
S.772
5.905
5 . 90*
9. 60E
9a 9 1 "^
1.13*
l»27£
1*3BE
..47E
1 .54"
UdOS
1 »65E
2.515
l»91 =
I »€>5S
I.54S
| m 44^
1.3,35
1.2JS
lei 4£
t, O?'*
1 « 46 ^
2oS92
2,30 =
I.95S
U67-
1 . 4&\T
1 . 49^
1,50?
2»» 2~
oa
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
oa
Oi
01
01
ot
01
0 t
01
ot
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
02
03
NON-SPEC
0*0
0.0
O.O
0*0
0 .0
0.0
O.O
6..QOE 01
5.02E OJ
*.225 01
3. SIS 01
2.91E 01
2.40:: 01
l.«J6= Oi
t. 451 01
2.40E OO
l.HS 00
0,25S-O1
7.64E-O1
7 « 96£— Oi
6.54S-01
6,07z-0l
s.aeg-ot
4.89C-01
5.39I-OI
6.235-OJ
TofeS^-Ol
1 .235 00
3=79= 00
1. 1B~ 01
2.«*S 01
3.6I« 01
1.5*2 02
3, 03= O2
4*13" 02
*.7»S 02
s.ioe 02
5.302 02
5 . « I E 02
5.47C 02
2.38" 02
I , 32E 03
1.045 03
7, 572 02
5.432 02
3.92E 02
2.67E 02
2«38«; 02
5.662 02
TTDTAL
O.O
Q.O
O.O
0.0
D.O
O.O
O.O
6.42E
S. S9S
4.84S
4.136
3.50E
2.94E
2.46E
2. I7Z
6.742
S.66S
5.8S2
6.13E
6.35E
6. 48E
6o5SE
6.593
.OZE
*19S
.46E
»59S
1.926
2.731
4.09E
S*t t 2E
1.731
3.20S
4«28S
4.89S
5.Z31
S.431
5.525
5. S72
2.53^
t*34E
1.O7S
7.77E
5.60E
4. 07E
3. OZE
3.885
2.69S
01
01
ot
01
01
01
01
01
00
oa
00
00
00
oo
00
00
OI
01
Ol
ot
01
01
01
01
01
01
og
02
02
02
02"
02
02
02
02
03
03
02
02
02
02
02
OS
-------
Appendix P
Table P-9. Output Tables 2-9 and 2-14s AMR&W-B
Annual Damage Rates by Nuclide
TA8LE Z -
* TIME PSR200"
SOi
NtlCLSOE
c-t*
SR-«0
V-90
2R-93
NB-93M
TC-9S
1-129
CS-I35
CS-137
RA-225
RA-226
TM-229
TH-230
NP-237
NP-230
PU-23S
PU-239
PIM240
PU-241
AM-24!
AM~243
CW-342
CM-244
MI5H POP
3.8BE-07
9.095 00
S.396-0?
2.JJE-07
3.926-06
6.S9E-JO
7.7IE-07
6.32E-10
3.26E-03
3.76E-03
5.S2E-O2
4.S9E-Q3
8.27E-OS
6.34E-OZ
I.7BE-OI
3.336-03
6.20E 00
LOB POP
1.Z2E-07
2.866 OO
2.43E-O3
5.O6E-08
2.00E-IO
2.41E-07
2a tBE-Ol
2. OOP-JO
1.16E-08
3.84E-OS
3.IOC-07
3.13Z-06
1.06E-03
2.17E-01
1.24E-03
1.S1E-03
2.66E-01
S.67£-Og
1.09E-O3
00
NON-SfEC
3.46H-06
3.6)E 01
9.28E-06
2.30E-04
I.17E-09
fl.SEE-06
e«64E OO
2.04E-OS
3,761- 07
I.951-07
I.aoE-07
«.fl52-O9
8.052-04
1.06E-05
3.43E-02
3.131-03
3.3SE-04
e.saE-oi
a*o4l-oj
I.33E-03
00
rQT-MJGH
J.03E-06
4,ssE at
1.682-01
4.83E-06
TOT-LOB
2.34E-84
7,336 00
2.67E-09
4. 135-07
S.06E-O7
t. 15E-06
i.OSE-07
1.4SS-03
3.97E-03
6.24S-02
4.92E-03
t • 7fl£ 00
I.44E-O1
3.792-01
3.89E 01
] .14R-OI
i .43E-06
I .37E-O«
S.795-O6
e.a«E oo
2.24E-OS
3.8BS-07
S^OOE-07
4«I JE-08
I .OSS-OS
t.OBE-03
2.52E-OI
! .45E-03
t.231 01
i.85E-03
I.23E 00
i.oie-oi
2.6JE-0I
2.43E-03
S.10E OO
TABLE 2 - 14 i TIME PERIOD"
ICO.
NUCLIOE
C-14
SB-90
¥-90
ZR-9J
N8-9314
. l"tZ9
C1-I3S
CS-137
PB-2J 0
RA-22S
RA-226
TH-229
TH-230
NP-237
HP-239
PU-23B
PU-239
Pl>-240
PU-241
AM-2*I
AW-242M
CM-242
CM-24*
HIGH POP
I.I4E-06
7»28E 00
tuflOE-OZ
4.77E-07
7.58E-07
I.16E-OS
2.12E-S9
2.27E-0&
6.61E-01
6.00E-09
6.3BE-OS
7.3VE-06
7.07E-O7
2.I6E-OS
S.I4E-02
1.43E 00
I.24B-OI
I.25E-03
2»41E 00
1.5SE-01
S.36E-OS
LOW POP
3.4flE-0?
2.26E 00
2.0B6-02
I.49E-07
3.3SE-07
6.91E-0?
2. 03E-OI
i,ate-09
2. 3IE-07
3.7IE-03
4.67E-01
• •037-03
4.07E-04
7.72E-OI
726-01
2o06E CO
NON-SPEC
I . 11 E- OS
! . Z 7£ 01
5.99E-02
2»93E-05
7.34E-04
1.752-OS
I.81E-OS
4.64E 00
7.425-09
2.S2E-06
I.ooe-oe
4.44E-07
8.355-04
a.ioE-og
2»lSi-0»
4.21E-03
«. 261-01
TOT-HIGH
I.225-05
2 (. 0 Qs Ol
I.2SE-01
Z.05E-06
3.03E-05
7.45E-04
3.872-09
2.O4S-05
5.30E 00
1° OS2-06
T.84E-06
T.302-0?
3.0 OS-03
I.t 4E-02
I.4SE OO
t.266-02
2.4 6E-01
1.2 ?Z~O3
J.J4g 00
t.37S-Q3
S.«2c 00
TOT-LOW
I. I 4S-OS
i.soe 01
6.07E-02
7 .37E-04
2.43S-09
4.BS2 OO
9.ZBE-O9
1 .03H-O6
2.B5H-O6
2.S4E-07
3.^33-03
80 321-OS
it?«e oo
I.J5S-OI
3.795-OJ
1
i 1F. 0 O
145
-------
Appendix P
Table P-10. AMHAW-B Output Table 3
TABLE 3 S DISCOUNTED PRESENT VALUES
-------
appendix P
Table P-ll AMRAW-B Output Table 4-1
TABLE 4-1 : HIGH POPULATION SCENARIO
NUMBER OF DEATHS PER TIME INTERVAL*(•260000,I
TSME KEWJ
EDDV
REBD
Mtoa
BTC
LEA
CMAV
R5CB
TOT.iO,4«E NON-SPEC TTOTAL
0.
5.
10.
IS«
20.
<£5«
30.
^0 V
so.
60 »
TO *
eo.
90 a
100.
2OO,
400.
SOOo
6OO a
TOO.
800.
900«
lOOOo
2000.
3000.
eOOO*
5000.
60DO *
7OOO .
eooo.
9000 -
10000.
20OOO.
30000,
40000 .
50000.
60 OOO «
70000.
aoooo.
900OO.
looOQo.
?ooooo.
300OOO.
lOOOOOo
sooooo .
60COOO .
700000 .
eooooo.
900000 a
COOOOO o
At.
0.0
0.0
c.o
o.o
0.0
0.0
OeO
6. I9E-Q6
6.S5E-06
6. SI E- 06
6.23E-06
5. BSE- Ot>
5.49E-06
£.1 7E-06
7.&3E-05
7.2SE-OS
7.66E-OS
8. ft IE-OS
8,a7E-0S
9.22E-OS
9.4&C-OS
5. ftSE*- 05
IoS2E-03
1.62E-03
1.S9E-Q3
2.13K-O3
Z.34E-O3
2.SOE-03
2.63E-03
2, 74E-03
2.83E-03
4, 3? $£ — 02
3.29E-02
20 S2E— 02
2,066-02
l,73e-Q2
1.86E-02
1.2ZE-02
U02E-02
C.72E-OJ
1.72E-O1
1 o 46E-Q t
1.59£-01
I.66E-01
1,676-01
I.65E-Q1
1.6EE-01
I.56E-Q1
i.sie-oi
J«6S£ OO
0.0
0.0
0,0
GoO
0. 0
O.O
0. 0
9,326-05
1.42E-04
1.67E-04
\ a 74E* 04
l.TOE-04
I, 616-04
1 » 48E— 04
I.88E-03
7. oae-oa
7. 76E-04
9 . 40E—04
8, 67E-04
9, 16E-04
9. 316-04
9. 38E-04
1.41E-02
1.38E-02
1.56E-02
1.73E-Q2
1 , 87E— 02
t .99E-02
2.03E-02
2. 16E-02
2.2SE-02
3.23E-OI
2.57E-01
2.09E-D 1
I. 93E — 0 1
I.91E-01
1.94E-01
1.96E-OI
1.98E-01
1 •'S9E-01
2.63E OO
4.71E OO
4.O6E 00
3.29E 00
2.67E 00
2.20E 00
4.Q6E 00
1.52E 02
2.29E 03
2.47E 03
0.0
0.0
0.0
0*9
0.0
0.0
0.0
6. 066- 05
I.02E-04
1 e Q4g* 04
l.OOE-04
9*2 4E—OS
6.35E-OS
9.34E-04
5.24E-04
s.aoE-04
6.29E-04
6*€>4E»04
6, 87E"» 04
7.0UE-04
7. 07E-Q4
* O82—02
.08E-OZ
.22E-02
•37S-O2
* 46E—Q2
.53E-02
.65E-02
.70E-02
.75E-02
2.55E-O1
»B1E— 01
.2QE-OJ
» Q t S— 01
B«i 7VE*" 02
8«01 E-OE
T,«5E-02
7.03£-fl2
6.76E-02
1.66E 00
1.61E 00
1«54E 00
1.42= OO
1.29E 00
I. IT*: oo
1.065 00
9 « 74 P — 0 t
B.98H-01
1.2BE 01
0.0
Q.O
0^0
0.0
0.0
0 *O
0.0
J ,945-05
2«sse-os
Z »79E— OS
2.B2E-05
2 *75E— 05
2.C4E-OS
2.54E-OS
4.00|-0*
4 .01 E-04
*.37C-04
2. 12E-04
2.24E-04
2»34E— 04
Z.40E-04
2.45E-04
3,895-03
4.15E-03
4 * S 4 fc;— Q 3
5* 4 6 E*" 03
S. 99c— 03
6, * l£»03
6.76E-03
7 . 04E"*03
7.27E-03
1.09E-01
B»4 llt"-02
6* $ 3E— 02
5.27c-02
4.44E-02
3.74E-02
3. 13E-02
2.63E-02
2.246-02
4.4 JE-01
3.76E-Ot
4. 09E-01
4« 25H-01
4* HSE^O 1
4.24K-Q1
4» I5c-01
*.OZE-Ol
3.BSC-01
4.23E 00
0.0
0,0
0*0
0.0
0.0
0.0
0.0
7=44-5-05
9. 5 IS- OS
1 » 032— Oft
1. 04E-Q&
l.Oli-04
0.67^-05
9.29E-05
I. 455-03
i "15s7— »fi~^
i . ~3«i _— ^ U J
1, 59C—03
1 . 70E-03
3,BO£-O3
1.872-03
1.93E-03
I .97E-03
3.11=-02
3.33E-02
3.87^-02
4.3BE-02
4.80E-02
5. 15^—02
S.42E-Q2
5.64E-02
5.832-02
B.72S-OI
6.732-O1
S. 16E-01
4.22E-01
3.56E-01
3.00E-01
2.512-01
2, tli-Ol
1 -QOF.-Ol
3.54E 00
3.0IE 00
3.2BE 00
3.412 00
3.43P. 00
3.4QE 00
3.32E OO
3.22= 00
3,112 OO
3.39E 01
0.0 C
0.0 C
0,0 C
0-0 C
0.0 C
0,0 C
0.0 (
8. 76=- OS
1.315-04
1.50E-04
1 « S 4E—04
1.47E-04
1.3 65-0 4
1.22S-04
t.31=-03
S.IS^—O^
7I27K-04
7.99E-04
8. 33"— 04
8.S9S-04
8.74E-04
a . a o ~- o 4
1.32F.-02 .
1.30^-02
1 .46(r;-02
I * 6 3H — CJ 3
I.76F-02
1.862-02
1 »94"E~Q2
2.005-02
2,0*2-03
2.95F-01
2.032-01
1*3 8^ — O 1
1 * 08^1—0 i
9.51H-OS
8.96E-03
8. 6 92-0 2
8«S*=-02
8.51E-02
2,21" OO
2. 19= 00
2.05E 00
1.S42 00
1.62= 00
1.43" 00
1.28= 00
1. t 4" 00
1,042 00
J.615 Ol
.0
i.O
'.0
uo
1.0
Eg, 0
| £ |}
.S3H-04
•B55-B4
,835-04
.G3E-04
*SOE**04
. 3 J~«*O4
. I9E-04
.3SE-03
.41 "—03
.47E-03
•57C-03
,65E-03
»72±g*03
.762-03
.79E-03
.81 E-O3
3,1 7E— Q2 •
3.2BE-02
J. 723-02
1, 12E-03
». 462-02
».72E-02
^. 93H— 02
5.10E-O2
5.23E-03
B.S6E-01
6. 515-01
r.ioE-ot
7.77E-01
7.72S-01
7.37E-OJ
6,925-01
ff* 43E— 01
6. J3C-01
5.77" 00
1.66E 01
1.4DE 01
1 ml I? 01
a.89t oo
7«zen oo
6.102 00
S.20^ 00
4,532 00
B.63E Ot
0.0
O.O
0*0
0.0
0.0
0.0
0.0
5*O3"2— 0$
e» 87=— o*
7.53^-04
7.51E-04
7=. 151- 04
6.632-04
So o?*;— 04
B»395~03
51 Q— ^n •»
» a » . U J
S. 4 61^*^ 0 3
5. 95 2-03
6.JSE-03
6.TIE-03
6*94*:i»03
7.O9S-03
7, 19E-OJ
I.15E-01
1. 192-01
1.36E-OI
1.522-01
1 . 65n— 0 I
I .762-01
1 . S5^ta 01
i * 9 1 £*• 0 1
1.97S-OI
Z»99= 00
2.27^ 00
1.93E 00
t.795 00
1 ,66~ 00
1.S3E 00
1.4IE OO
I. Jl* 00
1 .23" 00
1.74^ 01
2.95^ OL
2.64= 01
2,23": 01
i . 9*p; o i
1.701 01
1.73C 0»
I.i4>= 02
2.302 03
2,632 03
0.0
O.O
t»*0
0.0
o.o
0. Q
0..0
2.311-03
t .53^-03
1 » 62Z* 03
t .3SE-O3
• l« 121-03
9 «22Z— 04
7 » SSE- O*
9^1*— rt&
*• ^ ijh. W**
4.26E-04
3.47C:»04
3 .J7S-O4
2.94S-04
2, 72"- 04
2 . 52^-04
2.341-01
2.25S-03
1 .S8E-03
2 o 07*- 03
2.40E-03
2,942-03
4 .81 i-03
I .4SE-OZ
4 .561-02
9.3B--02
1 . 39S OO
5.91* 00
. 1 »17E 01
I.S9S 01
1 .325 01
i ,9s; 01
2.04^ OJ
2»OOZ 01
2.1U5 01
9.16" Ol
5.07E 02
4.01P, 02
a. 91= 02
2.09^ 02
1.51E 02
J . 10E 02
9 . 1 65 0 1
2.132 02
2.211 03
0.0
O.O
0,0
0.0
0.0
0*0
0.0
2.B1E-03
2.62E-03
2.372-03
2.1OE-03
1.B35-03
1.59Z-03
1.36E-03
1.42E-02
61 t F— > n T
W 1 i. C.^* U J
5.89H-03
C. 301-03
6,7oe-03
7.00E-O3
7.ZIE-03
T.34E-Q3
7.42E-03
1.17E-01
1.21E-01
1,305-01
l,54=-0l
1. 682-31
l.BII-01
1 .99E-01
2, 37™~ 0 I
3, 9 1^— Ol
4.38E 00
a. i ez oo
1.3&E 01
1.77E 01
1.99£ Ol
2.I2E 01
2«18Z 01
2.2IE 01
2.22E 01
I.O9t! 02
5.37^ 02
4.27E 02
3.14E 02
2. 2 9E 02
I . 6 SI 02
1.28E 02
2,G5C 02
2.523 03
4.B6E 03
-------
Appendix P
Table P-12. AMRAW-B Output Table 4-2
l-»
l&
CD
TIMf
O*
Sa
10.
15.
20.
25.
30.
49 »
SO.
60.
TO.
80s
90.
100,
300,
300.
400.
5OO.
600.
700 «
800 «
909*
1 @OO 9
2QODa
3 000 „
4OOQ.
SOOOo1
6OOO™
7000.
BOOO s
9009.
10000s
20QO9«
30000.
«OOQQ<,
SOOOOo
60000=
7OOOO.
80000.
00000 .
SOOOOQ.
2OOOOOa
300000 »
40OOQO.
SOOOOQ*
6000OO«
700000.
800000 •
900000.
1 OQOOOOe
TOTAL
«PO
O.O
0,0
0.0
0.0
9.0
0.0
OaO
6. J9C-06
6.SSE-06
C.5JE-OB
6,236-06
S, BSE -06
S. 496— 06
5. I7E-06
7.&3E-OS
6.67E-05
7.25E-05
T.66E-OS
8.416-05
6.B7E-OS
9.22E-QS
•5.46E-OS
9.65E-05
I.52E-Q3
I.62E-03
1&89E— O3
2.I3C-03
2.34E-03
2»50E-03
2.63E-03
2.74E-03
3.S3E-03
4.25E-02
3.29E— 02
1.S2E-OZ
2.06E-02
.73E-02
.46E-02
.22E-02
•02E-02
.72E-03
.72E-01
.46E-01
.59E-01
.66E-01
.«7E-OI
.6SE-01
.62E-01
.S6E-Q1
.51E-QI
.ess oo
sow
0,0
0.0
o.o
o.o
0.0
0.0
o.o
3.30E-D5
5.0SE-OS
S.tll-05
6. 17E-O5
6.OSE-OS
S.TOI-05
5.23E-OS
6.67E-04
2.66E-04
2.516-04
2. 756-0*
2. 9QE— 04
3.I5E-04
3.2SC-04
3.30I-04
3. 32E-0*
5, 01C-03
4.90S-03
5.53E-03
6. J56-03
6.63E-03
7.05E-03
7.37E-03
7.67E-03
7.97E-03
UlSE-01
9. 12E-02
7.42E-O2
6« iSE-02
fee 79E— 02
6.871-02
6.96E-Q2
7.0IE-02
7.06E-02
9.33E-01
1.67E 00
I.44E 00
1.17E 00
9.46S-01
7. 906-01
!.««E OO
5.386 01
B.12E 02
S,7SE 02
TABLE * - 2 : LOW POPULATION SCENAfil 0
NUMBER OF DEATHS PER TIME INTERVAL* ( S2600OO.J
RE 80 MIOO tffi LEA CMIV REOB TDT.2ONE MON-SPEC TTOTAL
O.O 0.0 0.0 . 0.3 0.0 0.0 OaO O.O O.O
O.O
0.0
0.0
0.0
OoO
0.0
1.53S-05
2.25E-OS
2.S7E-OS
2.62E-OS
2.52E-OS
2.32E-05
2. lO^1" OS
2.355-04
1.24E-04
I e32«L— 04
. 46E—0 4
.sae-04
.G7E-04
.732-04
•76S-0*
•78E-04
2.7IE-03
2^TI ^"-QS
3. 08E-03
3.44E-03
3.73E-03
3.96E-03
4. 152-03
4.2VE-03
4.40E-03
6.41E-02
*»S6E-02
3.21E-O2
2.85E— OS
2.21E-02
2» 02^— 02
1.87E-02
1.77E-02
t. 705-02
4.18E-01
4.052-01
3.0QE-01
3.57E-01
3.24E-01
2.94E-01
2.68E-OJ
2.4SE-OI
2.26E-OI
3.22E 00
OoO
0.0
OoO
0.0
0*0
0.0
5 «56E—06
7-27S-06
7 .96E-06
8.07E-06
7.66E-08
7a54E— OS
7 «25E— 06
1 « 1 4 E"**0 4
1 .04E-04
1.15E-04
1 .25C-04
1 .34E-04
1 .42E-04
1 .49E-04
I.S2E-0*
1 eSSE-04
2.46E-OJ
2.63E-03
3.QSE-03
3.46E-03
3.79E-03
4 . QsE-03
4.288-03
4.45E-03
4.6OE-03
6 «99E~02
S,31E-fl2
4 » 08 E— 02
3 .33 £-02
2.81E-02
2. 36 !> 02
t . 98^—02
1 .66E-02
1 .42E-02
2.80E-04
2.38^-01
Z.59E-01
2.69E-OI
2.71E-01
2.6BS-01
2.63E-01
2.54E-QI
2.43E-OI
2«68E 00
0,0
0.0
0.0
0.0
0.0
0.0
2.41E-06
3. HE-06
3.39E-O6
3.431-06
3.33E-06
3.20E-06
3.07E-O6
4.S3E-Q5
4.39E-05
4eB4£— OS
5.27E-OS
5.67E-05
S.99E-05
6.23E-OS
6.411-05
6.S5E-05
1*111-03
I.29E— 03
1.46E-03
1.60E-03
1.71E-03
i.eoe-03
i.aee-oa
1.94E-03
2.90E-02
2c24G— O2
I.7g2-0a
1.41E-02
i. ies-02
9.97C-03
8.35E-03
7.02E-Q3
5.98E-03
iToos-oi
1 c 09E— Q 1
1.13E-QI
U14E-01
1. 136-01
t.HE-Ol
1.07E-01
1.03E-01
U13E 00
0.0
0.0
0.0
0*0
0.0
0.0
2.25E-OS
2.87E-OS
3. 12S-OS
3»t4~-O5
3.05E-OS
2.52E-05
2.B13-05
4.39E-04
3. 99E— 04
4.39E-04
4.79E-04
5. 152-04
S«44E-O4
S.66E-04
5.825-04
S.SSS-04
9. »flE— 03
.DIE-02
-17E-02
* 3 2S™1 02
-45E-02
.5SE-02
I?oi-02
.76E-02
2. 635-01
2.03E-01
. S6S- 01
.285-01
« 072-01
9.0SE-O2
7.SBE-02
6.36S-02
S.43E-02
I«07E 00
9. 093" Ot
9a 9 1 E— Ol
t.Q3e 00
I . 0«E OO
I.03E 00
1.00= OO
9.74E-01
9.39E-01
Io033 01
0.0
0.0
OoO
0.0
OoO
0.0
2.355-05
3.5IE-OS
4»O3'r-"OS
*»12Z-OS
3» 9"5SS^05
3.64Z-05
3. 273-05
3.51E-Q4
J.66E-04
l!95i-04
2.1 iE-04
2.23S-0*
2.30^-04
2«34e-04
2.36S-04
3.S5S-03
3.47E-03
4136^-03
4.TIE-03
5. OP ^—03
5.21E-03
S.33S-03
So48-*03
7.91*-OZ
S.45S-02
3»^ 9T**02
2.BBE-02
2.55K-02
2.40H-02
2.33E-02
2.295-02
2.28E-02
5la7E-01
5 » S 0^— 0 \
4.92P-01
4.34E-OI
3.84E-01
3«42^— Q 1
3.Q7E-01
2.7BE-OI
4.331! 00
0.0
OoO
0.0
0.0
0.0
o.o
S.41E-05
6.S7E-05
6.491-05
Se9&e— OS
S.32S-Oi
4.72S-05
4.22E-05
8032E-04
5«20E— 04
5.552-04
5.B4E-04
6oZ8D"»O*
6.3SC-0*
6.41I-O*
.121-02
. 1 6S-02
.32C-02
.S8S—O2
.67C-02
«7SE~-02
«8t£— 02
.BSS-O2
3»03E— 01
2=316-01
2.521-01
2*751-61
2,743-01
2 4 &1 l*-~0i
Z.4SE-QI
2.305-01
2.17E-OI
2.04E 00
5.90E 00
4-95S OO
3.92S 00
3=151 00
2.58E OO
2.16S 00
i.845 00
1 oGOE 00
3.06E OS
0« 3
OoO
0.0
o.o
o.o
0.0
1.63S-04
2.196-04
2. 39 =-04
2.38H-04
2.09S-04
1.92E-04
2«, 765-03
1.675-03
J. 755-03
1.91E-03
2. 04 "-03
2.1SE-03
2.2ZR-03
2.2TS-OJ
2. 30E-03
3.69S-02
4l36?-02
4.BBE-02
51565*^—02
5.93E-02
6.ISF-Q2
&« 33S*Q2
9.65E-01
6e34§* 0 1
S.94S-01
5T12E-OI
4t38S-01
4. HE-OS
5.62E 00
9.9SE 00
8. B3S 00
7, SIS 00
6.44E 00
5.61* 00
5.752 00
5o77E 01
a. 152 02
9.20E 02
OoO
O .0
O.O
O.O
0 .0
0*0
1 «93l-03
1.62E-03
1 « 35S- 03
I .12E-03
9.22P.-0*
7.55S-0*
S.SSE-03
9. 23=- 04
3 * 47£— 04
3.17E-O*
2.94E-04
a • 7zs- 04
2.S2E-04
2 « 25?- 03
1 .B9E-03
2.07Z-03
2.«>0~-03
Z. 945-03
4.«tE-Q3
«» 56^-02
^ .383—02
1 *39S 00
5*9ie CO
1 • 1 7S 0 1
l«59E 01
i.ez~ 01
1 o96E Ot
2«04E 01
3. OS"? 01
2.102 01
9.16S 01
5*07E 02
4 <• 0 12 82
2<4I£ 02
2. Of5; 02
i.Sli 02
t.103 02
9.16~ 01
2,185 02
2.2IE 03
O.O
0.0
o.o
o.o
o.o
o.o
2*I5E— O3
1.861-03
1.595-83
1* 13E-03
9.46E-04
9.34S-03
2!»BE-03
2.Z5E-03
Z.36E-03
2*4»E-03
2.52E-O3
Z, 532- 03
4 o OOE— 02
4.57E-02
5.125-02
5.605-02
&» t ~3**m 02
7.38E-02
I.07E-01
1. 57E-01
2.35S tO
6«&5£ 00
i«23E 01
t.&SS Ot
s,sas ot
2.01E 01
2.09^ Qi
2.12C 01
2.14E 01
9.T2E 01
S. 17E 02
4*1 OS 02
2,99fi Ot
2.15S 02
1.S7S 02
1.16E 02
1.49E 02
l»03E 03
3«13£ 03
-------
Appendix P,
Table P-13. AMRAW-B Output Table 5-1
^
TABLE
TIME
Qa
So
10.
IS.
20 o
25 .
30.
sot
feo .
70.
80 B
90 o
too.
200.
300.
400o
soo.
$000
700.
SOO *
900,
tooo.
2Q0Q*
aoooe
4000,
5000=.
6000 =
7000 .
sooo a
9000.
10000.
2OOOQ.
30000 a
4000O.
50000.
60000 .
70000.
aoooo .
90000 .
100000.
200000.
300000.
400/ooQ .
5OQOOG.
600OOO .
700000,
SOOOOO*
900000.
1 DOG 000.
TOTAL
5-1
0*0
0*0
0.0
0.0
o.o
Q.O
I.61E
1. 70E
I.69E
1.62C
1.526
1«43E
I.35E
1.98E
1.74E
1.S9E
2«04£
2* 1 9E
2.3IE
2.40E
2,466
2.51E
3.9SE
4.22E
4*9 IE
So 54E
6. 07E
6.50E
6.A3E
7. 13E
7.36E
l.l IE
8.S4E
6.S4E
E.34E
4.SOE
3.7BE
3.I6E
2.66E
S.STC
4.47E
3.SOE
4. 14E
4.30E
4.25E
«.20E
4.07E
3.92E
4.29E
: TOTAL UNOISCOUNTEO DAMAGES FOR EACH ZONE FOR EACH TJ MS INTERVAL - HISM POPULATION
EOOV «DQ MIDO 6TTE USA CHAV R~G8 TQT.ZON5 MOM-SfEC TTOTAL
0«° °«0 0.0 0.0 0.0 0.0 Q»9 0*0 0.0 O.O
0«0 0.0 O.O O.O 0»0 0.0 0.0 0.0 0.0 0»0
0*0 O.O 0.0 0.0 0.0 0.0 0.0 Of 0 0.0 0.0
Q«Q 0.0 O.O 0.0 0.0 0,0 Q.O 0.0 O.O O.O
0*0 Q«Q 0.0 0.0 0« 0 0.0 0*0 0.0 0.0 OoO
O*O O,O 0.0 O.Q 0,0 O.O 0.0 0.0 9*0 O.O
OoO 0.0 0.0 O.O 0*0 0*0 0.0 O.O 0.0 0.0
00 2.42E 01 1,382 01 5.06E 00 £.34E 00 1.935 01 2«28H Qt 3«97E 01 .316 02 6.0OS 02 7.30E O2
00
00
00
00
DO
00
01
01
01
ot
0!
01
01
01
01
02
02
02
02
02
02
02
02
02
04
03
O3
03
03
03
03
03
03
O4
04
O4
04
04
04
04
04
05
3. TOE
4. 33E
4.52E
4.43E
4. I BE
3-84E
4.89E
I.95E
1.645
2.0EE
Z.19E
2, 3 IE
2.38S
2. 42E
2.44E
3.67E
3.60E
4.05E
4.51E
4 * 66E
6.17E
5. 40E
S.62E
S.84E
B. 4l£
6.6BE
S.44E
5. Q2E
4 fc 93£
5.04E
5 * 1 0£
5.1 4E
5. I BE
S*23E
1.05C
8.55E
S* 72E
1 • Q6E
3.94E
5.9SE
01
01
01
01
01
01
02
02
02
02
02
02
02
O2
02
03
03
03
03
03
03
03
03
03
04
Oft
04
04
04
04
04
04
04
OS
06
06
05
OS
OS
06
0?
OS
oa
2. 32E
2.6SE
2»71E
2.60E
2.40S
2.17E
2.435
1.2SE
.36£
*51E
063E
,73E
9 79S
«82E
.GIVE
3. BOE
2.8OE
3. teg
3.55E
3 a 86*1
4.1 Oe
4.29E
4.43E
4 o55E
6.62S
4.71E
3.32E'
2.63E
3* 29?
2.08E
1.94E
1.83E
1. 76E
4.32E
4. IB£
4. DIE
3.69S
3.355
3. 03!i
2.76E
2.5JE
2.33 =
3.33E
01
Ot
01
01
01
01
02
02
02
oa
02
02
02
oa
02
03
03
03
03
03
03
03
O3
03
04
04
04
04
Q3.
04
04
04
O4
OS
OS
05
05
OS
05
OS
05
05
o o 62 If OS
7o2S5 00
7.34S 00
7.15E 00
&,&&£ 00
6.S9E 00
J»0»E 02
9.46E Ql
.04E 02
* I4e 03
<>22E 02
•29E 02
e34S 02
,3a* oa
>41E O2
3.24E 03
2.40E 03
2.782 03
3.156 03
3.4SE 01
3,695 O3
3.89E 03
4.OSE 03
4.18E 03
6.27E 04
4 . 64^£ 04
3.7IE 04
3 * 033 04
2.55S 04
2il5E 04
1 .8OE O4
I.SJE 04
I -29E 0
-------
Appendix P.
fable B-14, Output fable 5-2
TIME
3 - 2 S TOTAL UNOJSCOUWEO DAMAGES fOR EACH ZONE FOR EACH TIWZ SNTSflSVAL -
PfPO EOSV BiBD - MlOO. OTE tEA CHAW RES8
LCW POPULATION
TOT»ZtWi NOH-SPSC f TOTAL
m
o
0,
s.
10.
I 5 %
20,
ZS.
30.
40.
50.
£0.
70.
80.
90.
ICO*
200.
300*
400.
soo.
goo.
TOO.
800.
900.
S 000.
2000.
3000*
4000*
SOfiO.
6POQ.
7000.
8 OOO.
9 OOO.
10000.
ZOOOO o
30000 *
sooool
SOQOO.
70000.
aooooo
too ooo.
zooooo*
3000OO.
400000.
SQDOOO.
600000 .
700000.
800000 *
9OOOOO.
1 000000«
TOTAL
0=0 0.0
0. 0 0.0
0.0 OoO
O.O 0.9
0*O 0*0
o, a o.o
0* 0 O*0
«I»1E 00 6.59E 00
.701 OO .31E Ol
. 69E 00 .S4E Ol
.fiZE 00 . 6D€ at
eSge 00 «57E 01
. 4iE OO «*8E 01
,3SE OO ,3frE 01
.9BE 01 .74E 02
«7ftE 01 6.9IE 01
«89£ 01 6.532 Oi
2.046 01 7.16E 01
2.19E 01 7.7SE 01
Z.31E 01 6, ISc Ol
2.40E 01 B.44E 01
2.46E 01 8.5BE 01
2.5IE 01 8*64E 01
3.95C 02 .JOE 03
4.22E 02 ,2fiE 03
4,916 O2 *44g 03
5. S»E 02 . 6OE 03
6.07E 02 *72E O3
«.50E 02 .BJE 03
6.8SE O2 . 92E 03
7.13E 02 *99E 03
7.36E 02 .OTE 03
t.l IE 04 *96E 04
8.S4E O3 «37E 0«
6.S4E 03 .93E 04
5.34E OJ «78E 04
4.50E 03 .77E 04
3.78E 03 .79E 04
3» ieE 03 . ete 04
2.66E 03 .82E 04
2.27E 03 .B4E 04
4.*7E O4 2.43E OS
3.BOE 04 4.35E 05
4.14E 04 3.74E 05
4.30E 04 3.0JE 05
4.J4E 04 2.46E OS
4,?9E 04 2.03E 05
6.20E Q4 3. ?»E 95
4.07E 0* 1«*OE O7
3.92E 04 2. HE 08
4.29E OS Z.Z7E 08
0.0 0.0
0.0 0.0
0«0 02&E 01
. I 4E 01
*2t>- 01
.37E 01
.47E 01
*S6E Ol
.6ZE Ol
.67E 01
.TOE Ot
Z.70E 02
2.BB£ 02
3.36E 0£
3, ?9£ 02
4.15£ 02
4.4SE OZ
4.69E 02
4.8SE 02
5. 04E 02
7.54E 03
S.83E 03
4.46E 03
3.6SE 03
3.0SE 03
2.59E 03
2. 17E 03
1.83E 03
1.5SE 03
3, 06E 04
2«6IE 04
2.64E 04
2.9SE 04
2.97E 04
2t94E 04
2.8 BE 04
2. 79S 04
2.69E 0*
2. 94E OS
0*0 O.Q O«0 0.0 OoO O»O
0*0 0.0 OoO O. C 0,0 O.O
O.O 0.0 O.O 0.0 0.0 O.O
0-0 0.0 O.O 0.0 O.O O.O
O.O OoO O.O 0.0 DvQ OeO
o.o o.o o«t> o.o o.e o.o
O.O 0*0 0.0 O.O 0.0 O.O
S»a4E 00 &.10E 00 .4 IE Ol 4=23= Ol &.OQE OP, 6.«2£ 02
7.47H 00 9.1 *A 00 .71S 01 3.713 01 S.OZE OZ S.S9E 02
8. HE OO 1.05H 01 «69S 01 6.Z1B 01 4.22E 02 4.84E 02
&.16E 00 I..07E 01 .55E 01 6.19E 0! 3.S1Z O2 4.t3E OZ
7.S3E 00 1.033 01 .3BE 01 S.87£ Ot 2.91E 02 3.SOE 02
7.605 OO 9.455 00 .23= Ol S.*4C Ol a.4O~ O2 2. 94E O2
7.30*5 00 8.80= OO .101 01 4.991 Ol 1,96" O2 2»*12 O2
.142 02 9.13H 0» 2«I6E 02 7.19S 02 I »W? O3 2.I7E O3
. 04E 02 4.31E 01 .JOE 02 4.34*: 02 2.40= 02 6.74E OZ
.14E 02 4.SSE 01 033= 02 4»56S OZ 1.11E 02 5.66E OZ
-2SC OZ 5.06S 01 «44g 02 4- S6E 02 9.03C 01 5»36E 02
.34E 02 5.49E 01 «S2S OZ 5.31? 02 B-.ZSE OI 6.132 02
.AiE 02 s.aos 01 .sas 02 s.sae 02 7»s*E 01 &.JSE 02
,4?f OS S.99E 01 «S2s 02 S. 77C 02 T.OSF Ol 6.48E Ot
.515 02 6.09? 01 1»65£ 02 5.901 02 6.S4E Ol 6*5S£ O2
.555 OZ 6.133 01 1.67S 02 S, 93S OZ 6.O7E fli 6,595 OZ
2.44E 03 9.23" 02 2. 925 03 9. 60S 03 5.86~ OZ 1.02E 0«
2.C1E 03 9.02~ 02 3.O2E O3; 9.91E 03 4589E O2 I.O4E O«
3.04= 03 1.025 03 3.43E 03 . 1 3~ 04 5=392 02 1.19E O4
3.44E 03 1.131 03 3«80E 03 .27"! 04 6.232 02 1.33E O4
3. 775 03 1.23E 03 4»10E O3 .38S-O4 7.6SS OZ t*4«E O*
4.0*e m l«30= 03 *,34E 03 ,475 O4 1.23T 03 J.S9S O*
4.25E 03 1.351 03 405ftE 03 .342 04 3. 783 O3 t.925 0%
«*43E OJ 1.393 03 4.69E O3 .60£ 04 ..IB? Oft 2.73E 04
4.58E 03 1»425 03 4.81S 03 «65H O4 2.44* O4 4.O9E 0%
6=BS^ 04 2»063 04 7.S8E 04 .Sit OS 3.61E OS 6.12S 05
5.29E 04 1.425 34 6.0QE 0* »9l£ OS 1.54S OS 1«73E 06
ft.051; O4 9*59* 03 6«54S O* « 65~ 05 3«03S O6 3.20E O6
3.32E 0* 7.43E 03 7.161 04 «S4» OS U.13S O6 *«20E 08
2.79E 04 fi.635 03 7. HE 04 .44E 05 4 = 74S 06 *«i§£ 06
2.35H O4 6. 25? 03 6.73~ 04 c33I OS 5»IO:i 06 5. 23E 06
1.97E 04 6.0SE 03 6.37?! 04 .235 05 S.30S 06 S.43£ O6
1.65E 04 5.95S 03 S.97E 04 . 14F 05 5.415 O6 5. 52S O6
5U414 04 5.93E 03 5.6SE 04 «07E 05 5,472 06 S«SrE 06
Z.?8E OS 1.542 05 S.3IC 05 .461 Ofr 2.3BS 07 2,S3E 07
2.36= OS I.S31 03 1.53E 06 .39" Ofi I .322 O8 1,34= 08
Z.5S5 OS 1.43S OB 1 .29S 06 .30S 06 t.0*£ O8 l»O7E 08
2.68E 05 U28S OS 1. 025 06 .93*! 06 7 . 57E O7 7. 77E 07
2.69E OS 1.135 OS 8»t9E OS .67* 06 S.4J2 O7 5.603 07
2.fi7S 05 5.9BE 04 6.71H 05 .46E 06 3.92S 07 4. 07£ 07
2.61E 05 8. 90S 04 5.626 05 .49E 06 2.B72 07 3.02E 07
2.53G OS 7.9TS 04 4.T9E OS ,50^ 07 2.382 O7 3.B8E 07
2.4*2 OS 7.S3E 84 4.17E OS 2,125 00 5.66S 0? 2.69E OS
2.67E O6 I«i25 06 ?.95S 06 2.412 08 5*73= 08 8.ISS OS
-------
Q
PRO&RAMHER'S NOTES
Variables
The variables used and their definitions are presented in the list
of nomenclature in the front pages of this volume.
"IndexM_ File Structure
"Index" is an unformatted temporary file allocated to logical unit
2, Index holds a maximum of 260 records, each 400 bytes in length.
Index is calculated for each nuclide and zone.
Number of Zones
The number of geographic zones, designated by the variable MZ, in
the initial demonstration is 8, Nonspecific doses and corresponding
damages are treated in the calculations as though they are for an addi-
tional zone {MZP1 = MZ + 1, or 9 for the demonstration). While input
provides for a number of zones other than 8, and the ranges of calcu-
lation loops correspond, there are some program changes required for
MZ 7* 8, to provide consistent table formats. For example, in FORMATS
850, 918, and 957, the multiplier of the repeated group {A4, 6X) must be
changed from 8 to a new and different value of MZ. Follow-on work can
make modifications to automatically accommodate a range of MZ values,
but the user is cautioned that these improvements have not yet been
made.
Output of Table 2
Table 2 is output (providing the flag is set to 1) for all
values of time after an initial sequence of times which are bypassed,
"IF" statements in lines 1820 and 1900 (numbered on the right sidle in
Appendix R listing) bypass calculations and output for time subscripts
through 7 (i.e., through 30 y or subscript 6 in the demonstration). If
a different bypass control is desired, the 2 "IF" statements must be
modified. It may be desirable in the future to use an input variable
151
-------
for this purpose. This could be the variable NRO suggested in the next
paragraph.
Basis £or_ Table 3
Table 3 includes columns of marginal present value costs for decay
groups. The values are obtained by dividing the sum of present values
5
of damage for each nuclide in a decay group, S, by the total mass of
nuclides, g, comprising the decay group at a specified time. Presently,
the specified time for which mass values, X, are obtained (see input
data file AM1E) in the beginning of the terminal storage phase, or a
reference time of 30 y {time subscript 7). In a new application, the
"7" in lines 2630 arid 2S7Q should be replaced by the integer corresponding
to the appropriate time subscript. Line 2290 also uses this time, desig-
nated NYHQ (number of years of repository operations)j this is set equal
to 30 in line 402. It may be desirable in the future to use an input
variable (e.g., NRO) for the time subscript representing the end of
repository operations. This subscript variable could then be used instead
of 7 in lines 2630 and 2670, and line 402 could be changed to N¥RO =
TIME(MHO).
Discount ._Rate_
The discount rate, RATE, is read in as a decimal number in F format.
When a zero discount value, 0.0, is read in, it is changed to RATE =
.00001 (line 720) for use as a routing flag which bypasses discounting
calculations. For output as a percentage, PRATE = RATE x 100 (line 722)
is used. When a write statement outputs PRATE, F5.2 format is used which
ignores the 1 for the converted zero discount and writes it as 0,00, If
a non-zero discount value is used, RATE remains as read in (as low as
0.01%, or RATE = .0001), the discounting calculations are executed, and
the proper percentage rate is output as PRATE.
Pose RateMultiplier
Calculations within AMRAW-B are done in terms of man-rein of dose.
AMRAW-A output is in units of milli-rem for local dose and man-rein
for nonspecific dose. A multiplier, fHO, is used as a conversion factor
and is assigned values of ,001 and 1.0 for local dose and nonspecific
dose, respectively (see lines 1000 and 1020).
152
-------
Population
Population projections (high and low) are used for local dose cal-
culations in each zone. Nonspecific dose is based upon a total agricul-
tural production implying a nonspecific population. Calculation of
for nonspecific dose in line 1980 provides for adjustment by includ-
ing POPH(9} and PGPL{9), high and low "populations" for the nonspecific
category as designated by subscript 9. These are set equal to 1.0 (see
lines 730 and 740) at present.
Input Fil_e _ Conta ining 1
MASIL and M&N1N from .RMRAW-A are processed to M&Nl in file ECOMxx
for input to AMRAW-B. This can be via disk or tape file. The user is
cautioned that JCL for use of COMPRESS must specify disk or tape to be
consistent with the input device specification provided for by the user
in AMRAW-B.
Modification for Running on Other Systems
AMRAW, written in FORTRAN IV, was developed with implementation on
an IBM 360 system. Some changes may be necessary for operation of AMRAW-B
on a CDC or other system. However, some of the conditions which require
changes in AMBAW-A such as quadruply dimensioned arrays (see Appendix G
in Part 1} do not exist in AMRAW-B, which should simplify conversion.
153
-------
Page Intentionally Blank
154
-------
APPENDIX R
AMRAW-B LISTING
The AMRAW-B code consists of a main program only? there are no sub-
programs. The code has 394 lines including comment statements.
155
-------
Appendix R. AMRAW-B Program Listing
c**»
c***
c***
e***
c***
c***
ASSBSSH2NT MSTHCa FOR RADIOACTIVE WASTE.
A CODE DEVELOPED BY UNIVERSITY OF NEW MEXICO
UNDER EPA CONTRACT »6S-OJ-3aS&
THIS LISTING IS AMRAtf-B. THE ECONOMIC MQOEL»MAY 1978.
IMPLICIT INTEGEH&2 Cl-PO
OCU8LE PRECISION NUCNAMC2SHHEAD
OOUOLG PRECISION NUC2(25)
CATA HEftD/ • PV5/ OH . ' /
REAl. MAmi 5Ot8}»DDPt6I «DP¥{8J ,T 1MECSOI tLAKBOAta I
REAL POPL|9).POPH(9J,Oi!lM*GE{SO) sPVNt7s25) .TOTKHI25J
REAI. TDTKtl25I,Xt25»SO»*OTZt91 , SPV17I.TTOI 1 lUTKDtSOj 1 11
RBftL DTHCS0.25} •DTUOO.ZSI vDYRL (50 . I I J . DVRH 1 50 , H ) » OLD ( 1 1 1
DIMENSION !Kt25|8ISUi J.PV2J ?62Si»SS( ?• 11 )»TUDHI1U «TUOLfll»
01 MEWS I ON IPUAGHC8tgTITLE( 10) tSITE(8»Si *REG(81» 1KK42SJ
CATA
INTEGEP*"* INDEX, POSC2J . IMiIPtIS
CATA POS/«HIGH«»S LOW1/
DEFINE PILE 2<26o,«oot
CALL FSPIS
IS=1
HEAD # OF TIME PERIODS.01SCDUNT RATEt RISK OF OEATHfSJ, ***
DOSS BY BODY SITS. POPULATION PROJICTIONILOW&HISHJ FROM AM9
PRINT INPUT DATA
C***
fiE«0«IN»651JTITUE
651 FDPMATUOA41
DC 1640 l«ItNJHT
16*0 fiEAO(!»
DO 1650 I*>loMZ
1650 !9g£CHl*
1651 FORMAT!SA4*PS.01
1652 FCRMAT(A4«1X«2F10»0)
6SZ FORMATf/^/SX*
DO 660' |Kl«NG
READ! JN»653 IK, (IKKIJ)
161 I »=K
oo
J=l
665
660
00000160
000001TO
00000180
0000019O
00000200
00000210
00000220
00000230
OOOOOS40
00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320
00000330
00000340
00000350
00000360
QUOO0370
00000380
00000390
0000040O
00000402
00000410
00000420
OOOOS430
00000440
0000045O
00000400
00000470
000004BO
00000490
OOOODS30
00900510
00000520
OOOOO533
000005*0
OOOOOS50
OOOOOS60
00000570
OOOOOS80
00000590
OOOOOeOO
00000610
000006EO
OOOOOfcJO
00000640
OOOOOt'JO
OD00066Q
00000670
156
-------
Appendix R. Table R-l continued
653 FCRMAT(3X»2SI3J
DC 2807 1»1tNIHT
2807 DDP{IlzDPY(1)*.26
IMRATE.EQ.O.}RATE=O.00001
PRATE=RATE*100.
PGPL<9)*1.
WPITE{IP.2806)PRATE,VOL
2806 FCRMAT(/5Xt-DISCOUNT RATE =*«F5e2»- JC/SX.'COST OF INCREASED
*.'LEVEL OF RISK OF DEATH « S',FS.Q//33X,
*'CCST OF EXCESS RISK OF DEATH*/7Xi*SITE OR TYPE'tflXs
* "DEATH /MIL. HAN-REM'«4Xs"S/MAN-REM"/I
DO 2601 I=1.NIHT
HRITE{IP.2607)(S!7E(I,J),J»lt5JsDPY(I)jDOP(I)
FORMAT(5X,5A4.1S «2F16.1)
WRITS*tP«260B)
260S FCRMATt//7X."POPULATION PROJECT IONS"/5X,« ZONE *«SX>
S'HIGH'iSX* 'LOW /)
DC 2602 1=1tHZ
2602 SPITE(IP.2609)I,REGUIsFOPHtl),POPL(I}
2609 FORMAKSX, I 1, 1X,A4.2F10.0 )
C**# BEAD TIME INTERVALS AND fJUCLIDE INVENTORY FROM AH IE *«#
360 1
2607
i IT1ME(I)ol*:
DC 650 K=l,NK
REAO(S960e)MJCNAM(f<) a { K(K, IT), :
6SO REAO(5t309)(K(KtlT)«IT=6«NTJ
READ HANI (AMRAW-A OUTPUT) FROM ECDNXX »**
CALCULATE DAMAGES ANO STORE ON DISK ***
THC=.OOI
DC 900 IZ=l»MZPt
IF( rZ.E0.9)THO=I.O
DO 900 K=l »NK
c***
c***
c***
3806
' .'IZa'all*1 K=*»I2//1
DO 901 IT=1 .NT
DAMAGE! ITJcO.O
RE AD ( IS g 806) (MA Ml 1 ITp IH). IH=1,N1HT)
tsRITE( IP»806I J MAN KIT « IH> i IH="1 iiNIHT)
CCNTINUE
DO 902 IT=1«NT
DO 902 IHat ,NiHT
CHECK IF TOTAL 30DY DOSE RATE IS TO BE USED
C***
IF(IFLAGHtIH).NEeIH)IHT=t
902 DAM AGE ( IT t = DAMAGE( IT)* HANK {To IHT}*DDP( IH >*,
1€»P<-LAMBDA(IHT1STIMEIITt)*THO
OO000630
00000690
00000700
00000710
00000720
00000722
00000730
00000740
00000750
00000760
00000770
000007SO
OOO0079O
oooooeoo
00000810
"OOOOOB20
00000630
00000840
00000850
00000860
00000370
OOOOOS80
OOOOOB90
00000900
00000910
00000920
OOO00930
00000940
00000950
00000960
00000970
OOO50980
OO 000990
OOOOI000
00001OtO
00001020
00001030
OOQOI040
00001050
00001060
00001070
OOOD1O30
OOOOt 090
OOOOI100
ooooi110
OOOOI120
00001130
OOOOI140
00001 ISO
OOOOU60
OOOOI170
OOOOlISO
OOOOI190
157
-------
Appendix R. Table R-l continued
900
c*»*
DAMAGE{ ITJ t IT=1 »NTI
CALCULATE AND PRINT TABLES ON ZONAL AM) TOTAL DAMAGfiS
CHIGH'6- LQ» POPULATICN PROJECTION -- S/tEAR J
TABLE - I
WRITE*IP»8601
***
***
WKiTEf IP»850JNTABl,EtPDSCl »,i,M2
1 1«DT9
WPITEtIP»8SllTIME( IT5.IOT2UZI
»OT» DTZI 9»«DT9
906 CONTINUE
C***
9 DAMAGES BY NUCLIDE flNO BV TIME PERIOD
#0*
OOOO1200
00001210
00001Z20
00001230
:OQ001240
OQOOI25O
OO001260
00001270
00001200
00001290
O0001300
00001310
08001320
00001330
00001340
000013SO
0000136(9
000Ot370
00001330
00001390
00001400
00001410
00001420
00001430
00001440
00001450
00001460
00001470
00001430
00001490
00001500
00001910
00001520
00001S30
00001S40
00001SSO
00001560
00031570
00001SBO
00001590
0000J600
000Ol610
00001620
00001630
00001640
00001650
ooooieao
00001670
00001600
00001690
00001700
00001710
50001720
158
-------
Appendix R. Table R-l continued
€#«
SET ITi3 TO t TO PR I Ms TO 0 TO SUPPRESS PRINT. *»*
TABLE - &
DC 920 1T=ItNT
DO 920 K=1»NK
OTL( IT«KI = 0
920 01H!IT,KI=0
OC 907 IT=l0NT
IF
B1AO(2»INOEXJ(DAMAGSJITEJ »ITi=|,NT>
DTZC3J«=OTZI3)tD*«AGE* I TJ*iPOPL 19I*POPHI9) 5/2.
l»*OTZ(3|
DTH(IT,K1*DTZ(4 »
01LIIt,Kl=OTZ(S)
IFlITB3.EQ,i»WRITEeiP.8S4)NUCNAM(Kj«tOTZ{ I) il = » ,SJ
CCKT1NUS
907 CCNTlNtC
C#**
C*** C1SCOUNT6D PRESENT VALUE FOR HIGH & LOU POPULATION BY MUCLID6 *
C***
2222 FCPMATl«I = »5Ki»TS6l,g 3 : OISCOUMTCO PRfiSeNT VALUES < * S8/
« J6X, *OISCOUNT RATE =»,FS»2»« »VX
*14X»»HISH fOPULAT10N«e9X«'LOW POPULATION'/
I'NUCLlSg '«2I3X»«DISCOUNTEO«»4S,'PV S/€M')/1
DO
DC 911 K*l
911
DO 913 KKl.NK
DC 913 !T=2.NT
IFUI .EQ«t JTD=OTHf ITtKI
IFl f I.EO«2>TD=DTH IT»K»
21-TIMEIIT-ll
22-TIMEt1T>
IF
-------
Appendix R. fable R-l continued
IFCRATE«1 .GT.lSalGQ TO 913
IFCBATe*Z2»GT«15»J50 TO 913
PVNd »Kl=PVNI l»Kl*TB*{ O/RATEJ* (EXPtRATi
10 FV2(
IFIRATE.NE.O.OOOOX JGO TC 913
91* PVNCX»K»*PVNf i»K!*TD*f Za-Zl)
913 CCNT1NUE
DO 10 K*1.NK
ID'IKIK)
ID)
SStl»J}»0
DC 20 K=LJ.t2
ESt to JJ«=SS(l»J)*PU2< l.KI
L2*0
OO 1001 J=*1»NG
DO 20 4=1 «NG
IO=IGt4>
20
DO 1002 K=LltL2
1002 P\f2tMI.K)«PV2tltKJ
1001 SS
PV2( 1 ,K
OO 40 J=l »N6
IO-IG( J)
LI =1.2+ 1
SStl.Jl^O
OO 40 K=L1 «L2
40 SS( 1 .JJ^SSt IP JI*PWNf 2eKt
00002260
00002270
00002290
00002290
;QQO02300
00002310
00002320
00002330
000023*0
00002350
00002360
000023TO
00002330
OQ002390
00002*00
00002410
09002430
00002440
00002*50
0000246O
OQ0024TO
OOO024BO
00002490
00002500
00002510
OOOOS520
00002530
00002540
OO00255D
OOOO2S60
00002570
00002580
OOOOZ59Q
00002600
00002610
OOO02C2O
00002630
03002640
00002650
00002660
00002fi70
00002680
O0002690
S0002FOO
00002710
00002730
O0002730
00002740
00002750
OOO0276O
Q00027TO
00002?80
160
-------
Appendix R. Table R-l continued
DC 1003
1Q04
1003
2935
912
00 1004 K=LIaL2
PV2(Ml»K)*PV2ClilO
SS(MltJ}«SStMll«,J>/SSS i
SPVf il»0
DC 2935 K=l oNK
SPVI11*SPV( l)+PVN<2tKJ
SPVIMllsSPVIMlI l/SPVil I
J=l >NG
00
00 1013 K«l
1013 JtPITEUf
8855 FORMATCIiX»AB«lXt 1PE12«1§ 12X»iPE12*2J 1
1014 SPITS! IP.19S7HSSIL.41 »L=2s51
C***
C*** 9 OF DEATHS PER TIME INTERVAL FOR HIGH t LOW POPULATION
C*** TABLE - 4
C***
DC 933 I=l»2
PL=0
IF!l.eCUIJWRITEtlPi919lliPOS{ 1)
***
00 969 IR»1>11
OLD EQ« U)GO TO 9S9
Pt=TlMEIIT J-TIMEI1T-1>
939 CCNTINUE
931 T»"0f ITpIRJ=DLD< IBJ
932
i JOLDdfiS j iR=lolli
DO 93S IR»t«ll
DC 955 IT=I
955 ttD(IRJi
934
00002790
OOOOZflOO
OOOO2S10
00002820
00092830
00002840
00002950
eoooaeeo
000026TO
00002830
OOOOZ890
00002900
00002910
00002920
-00002930
00003940
00002950
00002960
00002970
OQOO29SQ
00002990
00003000
00003010
00003020
00003030
00003040
00003050
00003060
00003070
00003030
O0003O90
00003100
00003110
00003120
00003130
00003140
00003150
00003160
OOOQ3170
00003180
00003190
00003200
00003210
00003220
OOO03230
00003240
00003250
060Q3S60
OOOO3270
OQO032SQ
00603290
00003300
00003310
161
-------
Appendix R. Table R-l continued
933 CCMTINUE
C***
C*»* TOTAL UNO1SCDUNTED DAMAGES FOR EACH 2ONE t FOR EACH TIME
C*«* INTERVAL — FOR HIGH & LOW POPULATION
C*** TABLE - S
C***
DC 1600 IR = l,,n
#*»
**>*
DC 1600 IT«2»NT
PL«TlM£tITI-TIMEl IT-1 J
BYRHtlT.IRl^BYRHt 1T,IR>*PL
TL»H{IR}=TUDHCIR>«JYRHtIT»IR»
DYRL,{IT8*RI=»DYRMIT«IR>9PL
1600 TLDL(IR)«TUCM-lia)*DYRL(lTtIR)
WRITE<1P.937IKI.POS(1 ),
DO 1601 IT*1»NT
160 1 BFlTECIP»8SimME{ ITI » IDYRHdT'e IfU »IR*1
IRI .I^«=ltU >
1602
806
1806
18O7
1 J I
DO 1602 If=l.NT
WRITEdP.851 >TIHE{ JT) 5 (DYRLdT, 1RJ ,IR«| Bl 1J
WKITE{IP,9681CTUOH IRJ .IRsl.U)
STOP
FCfSMAT(lP8E10.2)
FCFMATC15X»FlO»OI
B09
850
f CRMATlABt2X»T610«2}
FCRMATIIOX.7E10.2J
FCRMATlTfi«20X, 'TABLE t - ' » 1 1 » • : '»
AND TOTAL CAMAOES FOR *»A4.« POP. PROJECTION »fTOT.IONE',a»i*NON-Sf:'eCt«
»TTOTAL»>
853 FCRHATC2«*5NUCLIOE' »SXf 'HIGH POP', *X, "LOW POP «»SX» 'NON-SPEC «
*t.4J<»< TOT-HIGH' »+Xt • TOT-LOB U
854 FCRMAT11X,A6.1X,1P5E12«S)
iS7 FCHMATI «1* «*B,» POPULATION SCENARIO - DISCOUNTED PftSSEMT «.
**VALUB («!"/•/' NUCLID6 INTEREST RATES-' .F6.3/ J
OSS FCfiMAT< UX.o AB.1X, 1P7E1 2.2) )
BS6 FCPMATC2OK, 151
860 FORMAT! «!<}
661 FCPMAT(iOX,e« TABLE 2 - *«I2i* J '.'TIME PERIOD^ ' ,F 11 .0//>
918 FCPMATI33S* 'NUMBER OF CEATMS PER TIME I NT EP.VAL » t»' . FT. 0, « ) *
ax,« TIMi' «SX«8tA», 6X1 t »TOT»2QNE" »iXt' NON-SPEC' t
'TTOTAL'/J
9SO FORMAT! t 8KB *0«' « 1 OX. ' 1 *• 1 10». '2X« .10Xi»3X«i IOX. '*S« ,IOX,
919 FCPHATf '!« ,T3?» 'TABLE 4 - '*ll»"
967 FORMAT { I X.'TOTAt « » I X»1P7E12=2J
POPyLATION
00003320
00003330
60003340
O0003350
:00003360
00003370
OOOO33OO
00003390
00003*00
OO00341O
1*67 FClMATIIXj" SUi TOT • * 1 JU1P7E12. 21
968 FCPMATf IX. ' TOTAL* »SX» 1 PI1 E1O.E J
957 FCBMAT{« 1» ,6X«'TA8LE 5 - »,H»* : >8»tOTAL UNOISCOUNTeO DAMAGES •
*» 'FOR EACH 20NE'i.lX«'FCR EACH T 1HE INTERVAL -'
*«tXiA4*lX* •POPUI.ATIO«>//t6X.' T IME**ZX*
*fi(A4»6K). •TDToZDNE" o2K t 'NON-SPEC1 ,
92Kt 'TTOTAL'/")
END
00003430
00003110
00003450
00003460
00003470
O0093«Q
00003490
00003509
00003SIO
00003S2O
00003530
00003540
000035SO
00003S60
0000357O
06003SBO
90003S90
00003600
00003610
00003620
00003630
OOOQ3640
OOOO3690
OOOO3li&0
00003670
00003630
00003690
00003700
00003710
00003720
OOO 03730
oo a 03 7*0
000037SO
00003T60
00003770
000037BO
00003790
O0003800
000 33 BIO
00003620
OOQ03B30
00003840
00003850
00003B60
00003870
00003830
00803890
O0003900
00003910
00003920
162
-------
APPENDIX S
FLOWCHART
Figure S-i shows a simplified flowchart for AMBAW-B, The chart
represents flow through the code for a specified waste management phase,
such as repository operations or terminal storage. The reader is referred
to Volume III, which describes AMRAW-B, for detailed descriptions of
each step.
163
-------
Read Input Data
File AMB
Convert Health Effect Incidence Rates
to $/man-ren)
Read irtput Data
File AM1£, ECONxx
Each lone
Each Hue]Ids
Calculate Damage, $/y, per Person
and Nonspecific, at Each Time,
Summed Over AlI Organs
Calculate Damage, S/y» Each Zone
at Each Time
CaIcylate Oamage, $/y. High and
Low Population, Each Nyclicte,
Summed Over Zones
Calculate Discounted Present Value, $,
High and Low Population, Each Nuclide,
and Marginal Damages,
High Population
Low Population
Calculate Deaths per Time interval,
Each Zone, Each Ttrne
High Population
Low Population,
Caleu lite Total Undis counted Damages
per Tine Interval, $, lach Zone,
Inch Time
Output Selected
Input Data
and $/man-rem
The term "Each Zone11 also Indicates the sums of all zones, nonspecific,
and total of zones and nonspecific.
Marginal damages are based upon Inventory of each decay chain at
beginning of e.g. terminal storage.
Figure S-i. AMRAW-B simplified flowchart.
164
-------
T
AUXILIARY PROGRAM
An auxiliary program COMPRESS, Is used to process dose rate output
from AMRAW-A for as input to AMRAW-B vim the file ECONxx. All of the
AMBAW-A output tables in Section 3 (Local Doss to Individual) and Section
4 (Nonspecific to Population) comprise the major input to AMRAW-B
(Economic Model). CQMPHSSS, written in PL-1 and Fortran IV language,
finds these tables in the full output stored on tape, strips off the
headings and left hand column of time, and outputs a continuous "conpressed"
file in a form ready to be read by AMRAW-B. appendix F includes samples
of AMRAWf-A output and the COMPRESS output file.
The CQMPBESS output file consists of the calculated value of dose
rates (each line is for sequence of organs calculated for a specific time),
for each nuclide in the first geographic zone, followed by the same se-
quence in each of the other zones in turn and finally, by the nonspecific
category. The program may be used separately to produce AMRAW-B input
files ECONxx from AJ4R&W-A output {aoc identifies the case number)» or "it
be joined to AMRAW-B to process data directly. Table T-l is a list-
ing of COMPRESS, including JCL, as run on the IBM360/67 computer at OTfiL
The first execution step employs PL-1 and the second step employs Fortran
IV. It is necessary to specify, in the JCL cards, the name of the tape
and label number storing the AMRAW-A output (see line 390), and the name
and label for the output file tape or the DSN for the output disk if used
instead of tape (see lines 125 and 690).
165
-------
Table T-l. Listing of COMPHESS
!00 //A JOB (BAB411iLGKf500,30ft'HENRY NG'
110 // REQ10N=256K
120 /#iETUP 9NLHNtil9pBD5 3314
121 //DELETE EXEC PBHsIEHf'ROQM
122 //SYSPRINT BB SYSOUT=A
123 //SCT PD UNIT=2314rUaL=SER=BD3,BIKP=SHR
124 //SYSIN Mi *
125 SCRATCH DSNAME=ECON35fUOL=2314=BB5
126 /#
130 //SQUEEZ EXEC LPLlFCGfCPARM='STfNESTtNtlL'rP2=DUMMY
140 //PLl.SYSIN »D *
150 /* FIND EXTRANEOUS MATERIAL AND DELETE IT */
160 EXCESS} PRQC OPTIONS*MAIN)f
170 DDL CRUNCH FILE RECORD OUTPUT!
180 DCL EXTRA FILE RECORD INPUT*
190 HCL DATA CHARU33) UARYINSf
200 DCL SUSSTR BU1LT1N?
210 ON ENDFILE
230 OPEN FILE INTO (DATA)J
260 IF SUBSTR(HATAf61f10)3»'SECTION 3' THEN QO TO ABftlHI
270 PUT SKIP LISTCHATftJS
280 /* FIND 'TIME' IN OUTPUT */
290 TIHERJ REAH FILE INTO 3='TIHE' THE^^ GO TO TIMERS
310 DD IN=1 TO 50?
320 READ FILECEXTRA> INTO (IiATA)*
330 MRITE FILECCRUMCH) FROM
340 ENDS
3SO 60 TD TIHERS
360 FINISH! CLOSE FILE(CRUNCH)f
370 CLOSE F1LE(EXTRA)S
380 END EXCESS?
390 //GO.EXTRA DD UNIT=TAFE9»VOL=SER=HN1619«DSN=EPAJOBfLABEL=(5»SL3r
400 // DISP=
410 //GO.CRUNCH DD UNIT=SYSU.DSN=«SGUEEZE,DISP = (NE!«I»FASS> r
420 // DCl=(RECFH=FBfLRgCL=133pBLKSIZE=AASO)?SPACE=?CYL»{ltl)»RLSE)
430 //REVAMP EXEC LFORTBCB»LPARH='SI2E=a2SK'
440 //FORT,SYSIN DD *
4SO DIMENSION RBATA<50>e>
460 DO 10 IZ=1»9
470 DO 10 NUC=lf2S
480 ' DO 10 IT=1»30
490 REAIKlrlOO)
495 WRITE<2r200) fIORBN = l»8J
497 10 CONTINUE
500 100 FORMAT(11X»1PSE10,2J
510 200 FORMAT(lPaE10.2)
A50 ENOFILE 2
651 REWIND 2
<460 STOP
670 END
680 //GO.FT01F001 DD UNIT=SYSU,DSN=SSSQUE£Z£fDISP=
-------
|