United States
Environmental Protection
Agency
                   Office of Radiation Programs
                   AW-459
                   Wash DC 20460
                     EPA 520/6-78-005
                     June 1978
Radiation
£ER&
Development and
Application of a
Risk Assessment Method
for Radioactive Waste
Management
Volume
Economic Analysis;
Description
and Implementation
of AMRAW-B Model

-------
                           EPA REVIEW NOTICE


     This report has been reviewed  by the  Office  of  Radiation Programs, U.S.
Environmental Protection Agency (EPA)  and  approved tor  publication. Approval
does not signify that the contents  necessarily  reflect  the views and policies
of the EPA.  Neither the United States nor the  EPA makes any warranty, expressec
or implied, or assumes any legal liability or responsibility of any information,
apparatus, product or process disclosed, or represents  that its use would not
infringe privately owned rights.

-------
                                       EPA 520/6-78-005
       DEVELOPMENT AND APPLICATION OF A RISK
ASSESSMENT METHOD FOR RADIOACTIVE WASTE MANAGEMENT
               Final Contract Report
     Principal Investigator:  Stanley E. Logan
          Bureau of Engineering Research
            The University of New Mexico
           Albuquerque, New Mexico 87131
   Volume IV;  AMRAW Computer Code Users'  Manual
                    S.  E. Logan


                     July 1978
                   Prepared for
       U.  S,  Environmental Protection Agency
            Under Contract No.  68-01-3256
                  Project Officer
                   Bruce J. Mann
         Office of Radiation Programs-LVF
                  P. O. Box 15027
              Las Vegas, Nevada 89114

-------
Page Intentionally Blank
   ii

-------
                                F01EW01D
    The 1PA Office of Radiation Programs carries out a national program
to evaluate human exposures to radioactivity, and to promote the
development of controls to protect the environment and public health
from such radioactivity.  An important part of this program consists of
the development of environmental protection criteria and standards for
radioactive waste management and disposal,

    To sustain this effort, studies have been supported by EPA to
develop methods to evaluate the environmental adequacy of proposed
waste management alternatives, and this report describes one of the
first attempts to develop a comprehensive assessment model.  It has
been funded at a very modest level.  Much interest has been expressed
in this work, and through publication, EPA is making it available to
those involved with the development and use of models as decision—
making tools.

    In order for models to be useful as tools for deci a ion-making
concerning radioactive waste management alternstivei , their
capabilities and limitations must be fully understood.  It should be
noted that assessment models in themselves will not identify optimum
waste management choices.  However, they can he uied to compare well
defined alternatives.  One of the necessary steps in any model
development and validation process is the comparison of results with
results obtained from the application of alternate models to test
cases. It is hoped that as other comprehensive assessment models become
available, comparison studies can be performed.

    The methodology described herein has been applied, for model
illustration purposes, to a reference repository in a bedded salt
formation located in the southwestern United States,  Any results
published in this report should not be interpreted as implying
conclusions concerning the suitability of the reference site or any
site-specific method/repository combination for the preparation and
disposal of radioactive waste.

    Comments on this analysis as well as any new information would be
welcomed; they may be sent to the Director, Technology Assessment
Division (AW-459) Office of Radiation Programs, U.S. Environmental
Protection Agency, Washington, D.C. 20460.
                                  ~H. D. Rowe, Ph.D.
                           Deputy Assistant Administrator
                           for Radiation Programs  (AW-4S9)
                                     111

-------
Page Intentionally Blank

-------
                               ABSTRACT
     A Radioactive Waste Management  Systems Model,  developed and imple-
mented by The University of New Mexico tinder contract with the U. S.
Environmental Protection Agency, is  presented.  The systems model and
associated  computer code called AHRAW  (assessment Method for Radioactive
Waste), has two parts.  The first part, AMRAW-A, consists of the Source
Term  (radioactive inventory versus time), the Release Model, and the
Environmental Model.  The Release Model considers various geologic and
man-caused events which are potential mechanisms for release of radio-
active material beyond the immediate environs of a  repository or other
location; the risk analysis mode      events distributed probabilistically
over time, and the consequence analysis mode uses discrete events occur-
ring at specified times.  The Environmental Model includes:  1) the trans-
port to and accumulations at various receptors in the biosphere,
2} pathways from these environmental concentrations, and 3) resulting
radiation dose to man.
         second part of the systems model, AMRMW-B, is the Economic Model
which calculates health effects corresponding to the various organ dose
rates  from AMRAW-A, collects these health effects in terms of economic
costs and attributes these costs to radionuclides,  decay groups, and
elements initially in the waste inventory.  Implementation, with calcu-
lated results,  of AMR&W for Terminal Storage in a Bedded Salt Reference
Repository are presented.  Preliminary demonstrations for the repository
operations phase of waste management and terminal storage in a shale
formation are described} possible applications to other radioactive and
nonradioactive hazardous materials are discussed.   AMR&W uniquely links
all steps together in a  continuous calculation sequence.
                                   v

-------
                         ACKNOWLEDGEMENTS

     Funding for this project was initially provided by the Energy/Environ-
ment Program, Office of Research and Development, and subsequent funding
by the Office of Radiation Programs, EPA.
     Persons at the EPA, other federal agencies,  national laboratories,
federal contractors, and foreign correspondents have provided helpful
suggestions during progress of the work or through review of draft reports.
These contributions are greatly appreciated though space does not permit
acknowledgement of each individual contribution.
     Assistance in planning the AMRAW users'  guide was by K.  E.  Patterson
and C. C.  Herrmann.  AMRAW-B information used for preparation of the  guide
was furnished by S. Ben-David and D. S. Brookshire;  auxiliary program
material was prepared by H. S. Hg.  Others at UNM who participated in the
project, including AMRAW programming, and other persons making direct
contributions are named in the Acknowledgements section of Volume I.
                                  vi

-------
                DEVELOPMENT AND APPLICATION
                OF A RISK ASSESSMENT .METHOD
             FOR RADIOACTIVE WASTE MANAGEMENT
                      VOLUME LISTING
VOLUME I

VOLUME II


VOLUME III


VOLUME IV
GENERIC DESCRIPTION OF AMRAW-A MODEL

IMPLEMENTATION FOR TERMINAL STORAGE IN
REFERENCE REPOSITORY AND OTHER APPLICATIONS

ECONOMIC ANALYSIS; DESCRIPTION AND IMPLEMENTAT
OF AMRAW-B MODEL

AMRAW COMPUTER CODE USERS' MANUAL
                             vii

-------
                           VOLUME IV

                         TABLE OF CONTENTS
                                                         PAGE
 Foreward	  1 n 1
 Abstract	    Y
 Acknowledgements	   Y!
 List of Volumes	  V11
 List of Figures	    x
 List of Tables	    x
 List of Abbreviations, Symbols
  and Nomenclature	  X11
 CHAPTER  1,    INTRODUCTION, ,,,,,.. ..... . ....... .......     1
 PART 1:   AMRAW-A USERS'  GUIDE
CHAPTER  2 ,     SUMMARY  ..... , , , ..... , ....... , , ........     5
     A-   PROGRAM SUMMARY ......,,,. ..... . ,  . , ..... ....     5
     B.   PURPOSE , ...... ...,,..,,. ....... ...... ......     6
     C,   METHOD  , . . . ...... . . , , ...... ..,,.,... ....... .     7
 CHAPTER  3,     INPUT/OUTPUT  DESCRIPTION, ..... , .......    11
     A.   CARD  INPUT  SPECIFICATIONS ..... , ......... , . , ,    12
     B,   OUTPUT  DESCRIPTION  ....... ..................    23
CHAPTER  4,     PROGRAM  OPTIONS  .................. , , . , ,  -27
CHAPTER  5,     ERROR  MESSAGES  , ......... ....,,,, ......    31
APPENDICES  FOR PART 1
     A.  BACKGROUND MATERIAL ............. ..... ......    33
     B.  SAMPLE RUN REQUEST ..... , . . . . .......... .....    34
     C.  SAMPLE CODING  FORM .,.,......, ........ , .....    35
     D,  JOB PROCESSING INSTRUCTIONS  , , ..............    41
     E.  OPERATING DECK SETUP . ............ , . ,  ...... ,    42
     F,  SAMPLE INPUT AND  OUTPUT ,.,.,.....,. ...... . ,    43
                              VJ-ll

-------
                TABLE OF CONTENTS (CONTINUED)
                                                        PAGE
     G,   PROGRAMMER's NOTES  ....I......,,...,.,,,,,,,    67
     H,           LISTING ,,,,,,,,,v,,,,,,,-.,,,,,,,,,.    70
     I,   FLOWCHART ... ....,,,,',,,,,,.,•-,•,.,,,,•,,,,,,,,    89
     J,   AUXILIARY PROGRAMS  ,.,,,,,..,..	,,,,,,,,,,,    91
 PART  2;  ANRAH-B USERS'  GUIDE
CHAPTER 6 •     SUMMARY  ,.,.,.,.,,,,..,,,,;.;,,:,,,,,,".,,. 109
     A,                    .,,,,,,,..,.,,, •,.-.,,',,,,•,,,-.,, 109
     B,   PURPOSE ,..,,,,,,,,,,,,,, v,,,,,..,,,	,,, 110
     C,   METHOD ,,,,	.,,,,.,,.,,,,,,,,.,,,,,,,,,... Ill
CHAPTER 7,     INPUT/OUTPUT DESCRIPTION,,,,,..,,,,,,,,,, 113
     A,   CARD INPUT SPECIFICATIONS  ..,.,,,,,.,,,,.,,. .^. 115
     B,   OUTPUT DESCRIPTION  ,,,,,.,,,......,,,,,	118
CHAPTER 8,     PROGRAM OPTIONS  ,;,,,,,,,,»,,,,,,,,,,..-,,, 121
CHAPTER 9,     ERROR MESSAGES  ...,,,,,.,,.......,,,,,,,, 123

APPENDICES   FOR  PART  2
     K,              MATERIAL  ,.,,...,,,,	V,,,,,..., 125
     L,   SAMPLE RUN          ,,,,,,,..,..,.,.,,.,,.,,,,. 127
     fi   SAMPLE CODI NG FORM  «,,	,	,,,	 129
     N.   JOB PROCESSING  INSTRUCTIONS  	,,,,,,,,,, 131
     0.   OPERATING DECK  SETUP  ,.,,,,,,,,-,,,,,,,,,,,,,,, 133
     P,   SAMPLE INPUT AND OUTPUT  ,,,,,,,,,,,,,,,,,,,,,» 135
     Q,   PROGRAMMER'S NOTES  ,,,,,.,,...,...,,,,,,,.,,.. 151
     R,   AMRAW-B LISTING  	,,,,,,,,,,.,,,,,	,,, 155
     o i   i LOWCHART i>iiiiiiiiii«iiitii
-------
                             VOLUME  IV


                          LIST OF FIGURES

FIGURE            -                                              PAGE

 1-1     Radioactive  waste management systems model	   2

 1-2     one branch of systems  model	   3


 I-1     AMR&W-A simplified flowchart	•."..  90

 J-l     SENDY simplified flowchart. ... ..	 — . —  97

 3-2     SE1DY operating deck setup	  98

 S-l     AMRAW-B simplified flowchart	.	  164


                          LIST OF TABLES

TABLE                                                           PAGE

 3-1     Directory of AMRAW-A Output Tables	   24

 4-1     Calculation  and'Output Options Controlled by SPRINT....   28


 C-l     Sample Coding Form for One Nuclide, One Zone,
         and One Organ,	   36

 F-l  ,   Input Data	  _ 45

 F-2     Output Data	   49

 H-l     Main Program	..........;......   71

 H-2     Subprograms	   84

 J-l     POLYEPA Program	   93 "

 J~2     SEWDY  Program	«.  101

 7-1     Arrangement  of AMBAW-A  Dose Rate Output?
         I«0eal  Dose Bate by Zone and Nonspecific Dose Rate .....   114

 7-2     Directory of AMRAW-B Output Tables	   119
 M-l     Saaiple  Coding Fom with First
         Cards of Each Type Illustrated	  130

-------
                    LIST  OF TABLES  (CONTINUED)

                                                                  PAGE


 P-l     Data File, AMB ......... ................................  136

 P-2     Data File , AMlE ........................................  137 -

 P-3     Data File, ECON48 .......................................  138

 P-4     Sample of AMRAW-A Output ...............................  139

 P-5     Sample of AMRAW-A Output ...............................  140

 P-6     Output Summary of Selected Input . . . . . ..................  142 '

 P-7     AMRAW-B Output Table 1-1;  Zonal and Total
         Damages for High Population Projection  .................  143

 P-8     AMRAW-B Output Table 1-2;  Zonal -and Total
         Damages for Low Population Projection  ..................  144

 P-9     AMRAW-B Output Tables 2-9  and 2-14; Annual
         Damage Rates by Nuclide ................................  145

 P-10     AMRAW-B Output Table 3;
         Discounted Present Values  ..............................  146

 P-ll     AMRAW-B Output Table 4-1;  High
         Population Scenario, Number
         of Deaths per Time Interval ............................  147

P-12     AMRAW-B Output Table 4-2;
         Low Population Scenario,
         Number of Deaths per Time  Interval  .....................  148

P-13     AMRAW-B Output Table 5-1;  Total
         Undiscounted Damages for Each
         Zone for Each Time Interval, High Population ...........  149

P-14     AMRAW-B Output Table 5-2;  Total
         Undiscounted Damages for Each Zone
         for Each Time Interval, Low Population  .................
 R-l     AMRAW-B Listing ........................................  156

 T-l     COMPRESS Listing ......................... ..............  166
                                   xi

-------
PART 1
A
                             VOLUME IV

                LIST  OF ABBREVIATIONS,
                        AND  NOMENCLATURE
AA1(JF, J)
ADJ
ADJ2(JP,JPA,-I2)

AL

AMRAW



AMRAW-A



AMRAW-B

ARBAW (IZ)

AREAG



AT

Al
A2
Fraction of inventory transferred to receptor JF if
a release via cutset J  (i.e., JJ) occurs

Fraction of inventory transferred from one environ-
mental receptor pool to another pool per unit time;
obtained from ADJ1 and &DJ2

MaKimum fraction of a quantity dispersed to receptor
JFA in Zone IZ which can be transferred to receptor
JF in the      gone,* paired with ADJ 2 for inter-
receptor adjustments over time following an initial
dispersion*

Transfer rate constant associated with ADJ1, y

Axial dispersivity coefficient, m

(Assessment Method for Radioactive Waste)  Assessment
Model and associated computer code

That portion of AMRAW which includes Source Terms,
Release Model, and Environmental Model

The economic part of AMRAW
                                 2
Surface area of water by zone, cm
                          2
Zone land surface area, cm ,  over which nuclide is
deposited

Transverse dispersivity coefficient, m

Transfer coefficient giving fraction of inventory
transferred from inventory to receptor JF and  due
to release mechanism under consideration;  obtained
from subroutine FAULT and is equal to AAi{CTP,J) ex-
cept for leaching

Time transfer coefficient accounting for radioactive
and environmental decay occurring between release and
population dose times? calculated within subroutine
TRINP with help of function CRATIO for ground water
transport calculations
                xii

-------
A2M1N
Truncation value  (to  0.0)  for A2  (accounts for decay
and transport processes)
B

BIOPAC  {K, JF, I)  Concentration or integrates concentration  in  food or
                   drink per  unit  receptor concentration, by  subpath I,
                   up  to MS = KSP(JP);  units  are  CpCi-y/g)/(pCi/cm2)
                   for terrestrial food,  {jiCi/g)/(vCi/cm3)  for aquatic
                   food, and  dimensionicss for drinking water
BULKD
Bulk solid density of aquifer, g/cm~
CINV

CFAI

CHECK


COMPRESS


CP(JF,J,K)



CRATIO


CRMIN
Transfer coefficient which transforms environmental
concentration in a receptor to corresponding dose
commitment rate to a specified organ; calculated in
subroutine TKMAN

Total number of canisters in inventory

Number of canisters exposed to leach incident

Flag for errors in data field; alphanumeric identi-
fication of checkpoint number  (ICHEK)

An auxiliary program for preparing an AMRAW-B input
file from AMRAW-& output

Function parameter:  size of step function, slope
of ramp function, exponential constant or set =1.0
for delta function; K is component factor

Subroutine in AMRAW-A for ground water transport
calculations

Cutoff value for CRATIO (ground water concentration)
D
DCi(K)

BEWE




BELTI,
Effective diffusivity for nuclide K leaching, cm /d

Time interval- over which environmental decay constant
is appliedi also, time increment for which inter-
receptor transfer is calculated

Time increment during release to environment period
                                  XI 0.1

-------
DECFSC

DEP



BEPGND

DEPWFR

DFMIN

DISPN (JF, IZ)
Effective radioactive decay  factor between two  times

Deposition concentration  for water and ground surface
 (Ci/cm2) due to  air deposition

Total deposition on land  surface of  zone

Total deposition on water surface of zone

Cutoff value for DECFAC  (decay  factor)

Area or volume over which, or in which, a  release  is
dispersed in each receptor JF in each zone IZ,  cm^
or cm^
DOSF&C(K,JF,MQDE,IH)  Dose commitment conversion factor for each organ
                      IH of N1HT total; each card has conversion factors
                      for specified nuclide and receptor/exposure mode
                      combination,  {mrem/y)/(yCi/cm3} ,  (mrem}/(pCi/cm2)
                      or mreffl/pCi, as appropriate
     (K)
Dissolution rate constant  for nuclide K  leaching, d
                                                                      ™- "I
EDC(K, I, IZ)
ELEM  (ID)


F
FS
FADtT
FUNCTION CRAT1Q
FUNCTION KLEACH
Environmental decay constants for nuclides K, recep-
tor JF  (represented here by  I) and Zones IZ; data
sequence on cards is EDC by  zone to MZ  zones for
first nuclide, repeated in turn for each subsequent
nuclide to KK nuclides; if ISECT = 4, this group of
cards is repeated in turn for JF = 2 and JF =  3

Symbol for each of ND chemical elements
Exposed area of solidified waste specimen  {canister
as fractured}, crn^

Subroutine in AMRAW-A which handles the Release Model
and provides transfer coefficients used to accumulate
releases to four preliminary input receptors

Determines concentration ratio in ground water at
discharge point compared to release point; this
ground water transport function is called by SUB-
ROUTINE TRINP

Calculates amount of nuclide leached into the ground
water preliminary environmental input receptor; the
function is called by SUBROUTINE FAULT when a leach
incident is involved
                                  xiv

-------
6

GNDDIS


GNDEP
Ground dispersion, related to ground water velocity
and aquifer dimensions

Non-accumulating matrix which retains integrated
deposition for current time increment for use in
calculating transfer to terrestrial food products
H
HT
Height of aquifer, m
ICHCK
IFDIVW
Flag for errors in data file—gives check point
number

Ground water time increment control; IFDIVW = 0 avoids
subdivision of time increments and IFDIVW > 0 causes
sub-division branch in subroutine TRINP to be executed
IFLAGE(JF,MODE,I)  Flag used in Environment-to-Man Pathways model
                   designating whether output is accumulated as "local
                   dose"  {IFLAGE = I) or "nonspecific dose"  {IFLAGE =
                   2).
IFLAG(JF,J,K)
IE

IN

IP

ISTART

ISTOP

ISECT
Probability function designation:  0 Constant
                                   1 Step function
                                   2 Ramp function
                                   3 Exponential
                                      function
                                   4 Delta function
K is component factor of cutset J releasing to
receptor JF

Output medium for error and data check point messages

Input medium, normally card reader

Output medium (line printer or tape)

Starting zone number

Ending zone number

Control flag for EDC data; ISECT => 1:  internal EDC
default values used for JF « 2 s 3 (= 2.30 x 1CT5),
type 36 cards ommited; ISECT = 2:  EDC default values
used for JF = 3, type 36 cards read for JF = 2;
                                  xv

-------
ITS



ITR


ITRS


ITHE


I2SUMY

ITSUMJ

iw



12

IZOHE(I)



IZONM
ISECT = 3:  EDC default values used for JF » 2, type
36 cards read for JF = 3; ISECT = 4:  type 36 cards
read for JF - 2, followed by cards for JF = 3

TIME subscript used for designation of time incre-
ment, At, within environmental time period of
interest

TIME subscript used for designation of time incre-
ments, At, within radionuclide release time period

TIME subscript for release start time; appears for
end of time increment when release calculations start

TIMB subscript for release end time; appears for end
of time increment when release calculations cease  (end)

TIME subscript for first table in Section  6 of output

Increment on time subscript for successive tables

Model branch or waste management phase (IW = 1 is
residuals treatment; = 2 is transportationj = 3 is
repository operations, and = 4 is terminal storage)

Subscript—geographic zone designation

Identification number for each zone to be tabulated
up to IZONM zones? note, IZONE(IO) designates non-
specific dose category

Number of aones to be tabulated
JP
JFA
JJ(JF, I)
Subscript--Environmental Receptor designation  (JF =
1 is air; = 2 is land surface; = 3 is surface water,-
=4 is ground water)

Environmental Receptor from which interreceptor trans™
fer is made to receptor JF

Cutset sequential identification number for cutset
I,  up to NJ
K
K
Subscript—radionuclide designation, or in probability
calculations K designates component factor of cutset J
releasing to receptor JF
                                  KVi

-------
KSUB
The nucli.de K level for subtotal line in tables  (as
for subtotal of fission products followed by actinides)
L

LPRINT
Counter
MAN1L(ITE,IH)



MAN1N(ITE,IH)



MAN2L(ITE,IH,IZ)
Average annual local dose to individual by nuclide,
organ, and zone, mrem/y

Average annual nonspecific dose to population by
nuclide and organ, man-rems/y

Average annual local dose to individual, total all
nuclides, total all receptors, by organ and zone,
mrem/y
MAN2IiF (ITE,IH,IZ, JF)  Average  annual  local  dose  to  individual,  total
                      all nuclides, by  receptor, organ,  and  zones,
                      mrem/y
MAN2N(ITE,IH)
Average annual nonspecific dose to individual, total
all nuclides, total all receptors, by organ, man-rem/y
MAN2NF(ITE,IH,JF)  Average annual  nonspecific  dose  to  individual,  total
                   all nuclides, for  receptor  JF =  1 to  4, by  organ,
                   man-rem/y
MC

MODE




MS



MT



MTADJ

MW

MZ

Ml

M10
Number of columns in output tables  (FOR POLYEPA)

A major grouping of environmental pathways under a
receptor; in general, MODE = 1 is external exposure
and MODE = 2 is internal

Number of time intervals corresponding to the reposi-
tory operations phase  (for POLYEPA}

Number of time reporting points  (each "time increment"
is between adjacent time reporting points)

Number of interpolated output time points (for POLYEPA)

Maximum number of operation modes

Number of geographic zones calculated

Counter

Counter

               xvii

-------
N
ND



NJ (JF)


NJJ(JP, 1)

NK

HPRIOT

NSP  (JF)




NUCNAM  (K)
Identification number of  case or  cases  submitted

Number of chemical elements  in  inventory

Number of body organs being  calculated

Number of cutsets  (release scenarios) for  each
receptor JF

Number of component factors  for cutset  I

Number of isotopes in inventory

Output table specification

Number of subpaths for each  receptor JF; the value
of NSP for each JP applies to both       1 and 2
for each receptor

Symbol name for nuclide K, double precision, up to
8 characters each
0
ORGNAM  (I)
Names of organs  (hody sites) for which dose rates
are calculated/ up to I = NIHT, double precision,
up to 8 characters each
POLTOATA

PQLYEPA




POLYDD

PORE

PROBE £JF,J,K)
Data file for assembling POLYEPA input data

An auxiliary program for preparing nuclide inventory
data matrix by curve-fitting source data to pre-
scribed times specified in AMRAW input

POLYEPA output data storage file

Aquifer porosity  (as decimal)

Initial probability of occurrence of component fac-
tor, y"-'-; K is component factor
R
RELOOT
Release fraction by each cut set for each nuclide,
to each Environmental Input Receptor
                                  xviii

-------
REMO¥(JFA,IZ)


RKD(K)

RKDMRX




BLEACH


RU(JF, ITR)




RlJMIN


R2{JF,XTE,IZ)


R2CON


R2MIN


E2TOT
                   Used in accounting nuclide reduction  in receptor
                   JFA due to interreceptor  transfer to  receptor JF

                   Distribution coefficient  K., by nuclide K, cip /g
                                             d

                   Cutoff value for RKD'(distribution coefficient K)
                   above which ground water  transport calculations may
                   be bypassed

                   Subprogram in       which handles leaching into
                   ground water

                   Release increment to each Preliminary Environment
                   Input Receptor from all release events by nuclide,
                   for different times, Curies

                   Truncation value  (to 0.0) for R1J (Curies released
                   to a given receptor}

                   Adjusted concentration per release increment by
                   receptor

                   Intermediate unit conversion value of R2 used in
                   accumulating R2TOT

                   Truncation value  (to 0.0} for R2 {component of
                   environmental concentration JR2TOT)

                                                                    2
                   Accumulated net total concentration in iiCi per cm
                   or cm  by zone and Inviromnent Input  Receptor, for
                   different times
SENDY




SPACT (K)

SUBROUTINE FAULT



SUBROUTINE TRINP
                   An auxiliary program for comparing results in tables
                   from AMRAW run with corresponding tables from
                   another run
                   Specific activity of nuclide K,
                   Determines release probability transfer coefficient;
                   also, by use of time dependent component factors, the
                   subroutine can modify the nuclide inventory at risk

                   Determines transport- to- en viroRment transfer coeffi-
                   cient, accounting for decay and other processes such
                   as delay in ground water transport

                   Determines environment- to-man transfer coefficient
                   for dose to man via all pathways from environmental
                   concentrations
                                  xix

-------
T
TFUEL

TIME  (I)

TIMEAD(l)


TITLE

TP(JF,J,K)
Total inventory in repository, metric tons

The time in years at each of MT time reporting points

Time in years at each of MT&DJ output time points
 (for POLYEPA)

Title of run or case  (1-10)

Time at which functional change in probability
commences, y; K is component factor
V

VOL1NT(JF,MQDE,I,IZ)  Consumption, exposure or food production rate,  as
                      appropriate, y/y, cm3/y, or  g/y
VS

vx
Volume of solidified waste specimen  (canister) , crrf

Ground water seepage velocity, m/d
X

X(K, IT)

KL(I)
XX (ID)
Mass of nuclide K at TIME  (If), grains

Distances from repository  to average discharge point
in each zone for I = 1 to  MZ zones; XL = 0.0 indi-
cates to code that contaminated plume does not dis-
charge in zone

Total inventory of each element at end of repository
operations, grains
Y

YW(I)
YY(I)
Effective width of plume  (width for concentration
0.1% of center line value) in each zone  (distance XL)
where discharge occurs, for I = 1 to MZ  zones, m;
input as 0.0 for each zone where no discharge occurs
(not used except in output display)

Distance from plume centerline where concentration
equals average across effective width YW, in each
zone (distance XL) where discharge occurs, for I =
1 to MZ zones; input as 0.0 for each zone where no
discharge occurs  (not used except in output display)

-------
z
ZAVG
        (IZ)

 PART 2
  Average quantity of imclide in Curies during release
  time increment

  Dispersion allocation factors by zone IZ for transport-
  to- environment receptor JF, Ci-y/cm3-Ci for JP = 1,
  Ci/Ci for JF = 2, 3; for JF » 4, ZONJALQ » 1.0 desig-
  nates effected ground water in zonei  0.0 designates
  none
                                             2
  Surface deposition factor by zone 12, Ci/cm -Ci
 AMB


 AMRAW


 AMRAW-A


 AMRAW-B

 AM1E


 COMPRESS


 DAMAGE
 DDP

 OLD


 DPY


 DT


 DT9
One of three AMRAff-B input files? provides economic
model control and conversion data

 (Assessment Method for Radioactive Waete) Assessment
Model and associated computer code

That portion of       which includes Source Term,
Release Model, and Environmental Model

The economic part of AMRAW

One of three AMH&W-B input filesj provides time values,
imclide names and masses at each time

An auxiliary program for preparing an AMRAW-B input file
from AMRAW-A input

An intermediate calculated value, damage per person (or
nonspecific category), $/y, during a given time incre-
ment, for a given zone and nuclide, summed for dose to
all organs

Implied value of dose, $/man-rem

An output parameter for Table 4, denoting deaths per
time interval

Incidence rate for health effects, cases per 10  man-
rem (dose to organs)

An output parameter for Table  1, denoting DTZ summed
over all zones

An output parameter for Table 1, denoting DTE summed
over all zones and the nonspecific category
                                  xxi

-------
DTZ
DYRH




DYRL

ECONxx



IH

IKK

IN

IP

IS



IT

ITS 3



IZ

K

MAN1

MAN1L



MAN IN



MZ

NG

NIHT

NK
An output parameter for Tables 1 and 2, denoting damage
rate  (given nuclide and time) by zone for Table 1, $/y,
and various summations for Table 2.  For the latter,
subscripts 1 through 5 represent, respectively;  local
damage summed over zones for high population, local
damage summed over zones for low population, nonspecific
damage, total of local and nonspecific damage for high
population, and total for low population

An  output  parameter  for Table  5, denoting discounted
damages per time interval, $,  for high population pro-
jection

Same  as DYRH except  for low  population projection

Dne of three AMRAW-B input files; provides  restructured
output matrix MAN1 of dose rates from AMRAW-A  (xx is case no.)

Organ identifier subscript

Subscript  identity of each of  K nuclides in group

Number which specifies computer input medium

Number which specifies computer output medium

Number which specifies an input medium with large storage
used  for file ECONxx

Time  subscript used  in matrices

Number which specifies printing option for  Table 2  (1 -
requests printing; 0 - suppresses printing)

Subscript  used for zone identification

Number of  nuclides in group

Refers to  large dose rate output matrix from AMRAW-A

Average annual local dose to individual by  nuclide, organ,
and zone,  mrem/y, comprising part of MAN1

Average annual nonspecific dose to population by nuclide
and organ, man-rem/y, comprising part of MAN1

Number of  geographic zones

Number of  nuclide decay groups

Number of  organs  (body sites)

Number of  nuclides
                                   xxi i

-------
NT




POPH

POPL

PV2



REG

EATS

SPV

BS




     (I)


TTD


TODH


TUDL


VOL

X
Number of times

Abbreviated'niaelids name, e.g., AM 242M

Input high population projection by zone

Input low population projection by zone

An output parameter for Table 3, denoting disconnected
present value of damages from a given nuclide over the
full tine range

Name of zone

Discount rate expressed as decimal; input in file

An output parameter for SS for all decay groups

An output parameter for Table 3f denoting sum of PV2 for
all nuelides in a given decay group, $; also, used for
marginal damages for a given decay group, ?/gm

Time in years for each subscripted value of TIME


An output parameter for Table 4, denoting sum of DLD
over all time increments

An output parameter for Table 5, denoting sum of DYRH
over all time increments

An output parameter for Table 5, denoting sum of DYKL
over all time increments

Cost of increased levels of risk} input in file AMB

Quantity of given nuclide in inventory at given time, grn
                                  XXI13.

-------
                             CHAPTER  1
     The Radioactive Waste Management Systems Model (Fig. 1-1} has sev-
eral parallel paths, each representing a phase in the waste management
sequence:  residuals treatment  {interim surface storage and solidifica-
tion at a reprocessing plant site), waste transport, repository operations,
and terminal storage.  If other phases become applicable, such as interim
surface storage away from a reprocessing plant site, interim storage as
spent fuel, reprocessing of waste form, and other transportation steps,
each of these simply becomes an additional parallel path in the model.
One branch (parallel path) of the systems model is shown in greater detail
in-Fig. 1-2.
     Implementation of the model is by the AMRAW computer code (Assess-
ment Method for Radioactive Waste Management).   The code runs calculations
separately for each branch of the model.  AMRAW is divided into two parts
which are run separately:  1) AMRAW-A  (see Figs. 1-1 and 1-2), described
in Vols. I and II, begins with the inventory at risk and calculates
population dose rates, and 2) AMKAW-B, described in Vol. Ill, uses the
calculated population dose rates, applies incidence rates of health effects
associated with radiation dose and calculates the economic costs of health
effects in the population.
     The model provides for technology assessment' of radioactive waste
management in two categories:  1} risk analysis, which considers the
probabilities of occurrence of various radiation release scenarios and
the consequence of such releases, and 2) consequence analysis, which
considers only the consequences of the various low-probability potential
release events assuming they do occur.  The methodology permits evalua-
tion of the various long-term waste disposal methods and management
options, for protection of public health and safety and protection of
resources.
     A user's guide for AMRAW-A is presented in Part 1 and for AMRAW-B
in Part 2 of this volume.

-------
REPROCESSING
PLANT
/
\
RESIDUALS
GENERATION

DAMAGE CHARGES
ASSESSED
RESIDUALS
RES I DO
TREATM
\
A!S
ENT
/
RELEASE
MODEL
\
/
ENVIRON,
MODEL
_S
/
ECONOMIC
MODEL
N
*^
X


WASTE
TRANSF
N
*
mi
/
RELEASE
MODEL
N
J
ENVIRON,
MODEL
\
/
ECONOMIC
MODEL
J \
Ss
X"


REPOSI
OPERA!
\
TORY
'IONS
/
RELEASE
WODEL
\
/
ENVIRON,
MODEL
\
/
ECONOMIC
MODEL
J \
\
/

TERMINAL
STORAGE
\
/
RELEASE
MODEL
N
/
ENVIRON,
MODEL
\
/
ECONOMIC
MODEL
/ \
/
                                                                          A

Figure 1-1 »   Radioactive waste management systems model.

-------
                     AT RISK
ACTIVITY TRANSFER(jCOEFFICIENT
                  ^^tosmiatm^*^




TRANSPORT TO ENVIRONMENT
A
ENVI RONMENT-TQ-MAN PATHWAYS


                                                w

ECONOMIC MODEL
HEALTH EFFECTS
i
DAMAGE CALCULATIONS



               DAMAGES
 Figure 1~2.  One branch of  systems model,

-------
                          PART 1
                   AHRAW-A USERS' GUIDE
CHAPTER 2,  SUMMARY
CHAPTER 3,  INPUT/OUTPUT DESCRIPTION
CHAPTER 4,  PROGRAM OPTIONS
CHAPTER 5.  ERROR MESSAGES

APPENDICES;  A THROUGH J

-------
                               CHAPTER  2

                               SUMMARY


A.   PROGRAM SUMMARY
Titles  AMRAW-Aj Assessment Method for Radioactive Waste {First Part),

Abstracts  AMRAW performs a sequence of calculations for an inventory
           of radioactive wastes, evaluating release quantities,  dis-
           persion to the environment, and pathways for dose to man.

Effective Date:  January, 1978.

Programmer:  S. E. Logan

Computer:  IBM 360/67

Language:  Fortran IV

Core Memory Requirement:   256 k bytes

Execution Time {CP sec) ;   < 1,300

Auxiliary Hardware Requirements5  Disk, Tape, Line Printer

-------
B.   PURPOSE
     AMRAW-A, the first part of the Radioactive Waste Management Systems
Model, calculates population dose rates from postulated releases of radio-
active material.  Population dose rates are divided into local dose rates
for populations within each of several geographic       and nonspecific
dose rates which are associated with largely exported agricultural pro-
ducts.  Sub-models consider in series (see Fig, 1-2):  the inventory at
risk  (Source Term) , postulated release scenarios in the Release Model,
dispersion from the locale of release to environmental receptors in each
geographic sone {Transport to Environment)  and the pathway analysis
(Environment-to-Man Pathways).

-------
 C,   METHOD
     The AMR&W code is written in Fortran IV  language.  The AMRAW-& part
 of the AMRAW computer code may be run  for one or more branches of the
 model, depending upon the number of sets of input data provided.  The
 discussion which follows is based upon the terminal storage branch, in
 that the frame of reference refers to  the inventory enplaeed in a reposi-
 tory.  However, the calculation flow of the model and code also applies
 to the other branches.
     The code is structured with sequences of "receptors" separated by
 transfer coefficients.  The receptors  represent the progress of releases,
 environmental concentrations, concentrations in" food and drink, radiation
 doses, health effects     associated economic damages.  The transfer
 coefficients are evaluated in subroutines using externally-determined
 input data.  The subroutines can be modified or replaced, providing a
 modular arrangement.  Factors for dispersion, biological accumulation,
 dose, etc., used in the transfer coefficients, are evaluated externally
 by various existing transport and dose codes.
     Bach branch of the model (Fig, 1-2) is entered with the      of each
 significant radionuclide in the inventory at risk.  This is converted
 to Curies in the inventory by an activity transfer coefficient (specific
 activity).  The Release Model evaluates the probability for release by
 each of numerous potential release mechanisms, and the fraction of the
 inventory released by each such occurrence, during each increment of
 time.  AMRAW may be run for any of several release scenarios:  1) proba-
bilistic distribution of events over time, 2) discrete event at specified
 time, 3)  several events each at mean time of first occurrence, 4} dynamic
 repository simulation, or 5)  combinations of these.  Subroutine FAULT
handles the Release Model and provides the transfer coefficients used to
 accumulate releases to four preliminary input receptors from all release
events considered.   This subroutine uses function RUS&CH when an event
 involves leaching into ground water.
     Releases as determined by the Release Model are not necessarily
directly to the environment.   This is particularly true for deep releases
to ground water.  The first portion of the Environmental Model is there-
fore the "Transport to Environment" section.  This adjusts each release

-------
increment, obtaining the contribution-to-concentrations in environmental
input receptors at various times following release,  These receptors
are:  air, ground surface/ surface water, and ground water.  The adjust-
ment provides for dispersion into each of the several geographical zones
comprising the study region, and then accounts for dispersion areas or
volumes in each zone.  The adjustment also accounts for decay from the
time of release to the time being evaluated, transfer between receptors
(such as deposition from air onto ground), retardation in ground water
flow, and other environmental removal or fixation processes.  Subroutine
TRINP handles transport from the preliminary input receptors, providing
transfer coefficients which account for physical and environmental decay
and ground water transport delays -  This subroutine uses function CRaTIO
for the ground water transport calculations.  Use of the transfer coeffi-
cients from TRINP by the main program leads to net environmental concen-
trations for input to pathway analysis.
     The last portion of the Environmental Model covers the pathways
from environmental input concentrations to radiation dose to the popu-
lation, with dose rate calculations for several organs of concern.  Sub-
routine TRMAN handles evaluation of transfer coefficients between
environmental concentrations and population dose rates for the various
pathways.   Pathways include immersion in air, inhalation, ingestion of
ground water and contaminated food and drink {from contaminated ground
surface and surface water), submersion in water, and direct surface
exposure.
     The present dimensioning of AMRAW-R is as follows:
     1)   Radionuclidesi   25,
     2)   Environmental receptors:  4, designated by programming as
         Air, Land Surface, Surface Water, and Ground Water.
     3}   Release Model events:   9 events or event combinations under
         each of the 4 environmental receptors.  Each may be input with
         up to 9 component factors.  Each of these factors may be flagged
         for type of function (constant, step, ramp, exponential, or
         delta)  and specified by three appropriate function parameters.
     4}   Environmental pathways:  2 main pathways (modes) are programmed

-------
         for each environmental receptor.  Dimensioning provides for up
         to 6 subpaths for each receptor  (each mode under a given recep-
         tor is divided into the same number of subpaths}.
     5)  Geographic zones:  8.
     6)  Human organs:  8,  Typically, one of these is total body, but
         there is no restriction.
     7)  Time increments;  50.
With this dimensioning, the code runs with 256 k bytes of core storage,
10 cylinders (1459 k bytes) of disc storage, and requires 21 minutes of
CPU time in the UNM IBM 360/67 computer.  The range of subscripts for
variables is specified by input data and may be any value within the
above dimensioning with the exception of environmental receptors which
are fixed within the code at four.  Dimensioning may be increased if
necessary, limited only by available core storage or other system require-
ments .
     Large output matrices for local and nonspecific dose rates are
written onto disc to conserve core space.  Complete output is then writ-
ten onto magnetic tape for retention but output may be diverted directly
to printer by job control statements if preferred.  Printed output is
subsequently obtained from the tape as needed.  If AMRAW-B is to be
coupled to AMRAW-A for a combined run, AMRAW-B may access the disc for
dose rate input data.  The operation demonstrated at UNM is separate
running of AMRAW-B.  For this purpose, the dose rate portion of the
AMRAW-A output is obtained from tape.

-------
Page Intentionally Blank
       10

-------
                              CHAPTER  3
                     INPUT/OUTPUT DESCRIPTION
     Input for &MR&W-A is by an 80 column card data deck.  There are 40
card types.  As implemented at DNM» the input deck is  read from two files
in disk storage (file  division made between card types 19  and  20), instead
of front a card reader.  No additional inputs are required. Card input
is described in the  following section.
     Output is described in Section 3.B.
                                   11

-------
A,   CARD INPUT SPECIFICATIONS
     1.  Data Deck Setup.  Descriptions and nuittoer required of each card
type are given in section 2 which fallows.  The sequence of the data
deck, beginning with the first or front card is listed below:

         Card Type           item
            1                NCASE
            2                TITLE
            3                ND» KK, MT, IW, 1TRS, ITHE, MZ, N1HT, HPR1NT,
                             IFD1VW
            4                RUMIN, A2MIN,                CRMI1,
            5                TIME
            6                ELEM
            7                TFOIL
            8                XX
            9                WJCNAM, X
           10
           11
           12                DCl
           13                DEC
           14                ADJ1, KD32
           15                DISPN
           16                ZON&LO
           17
           18
           19                RKD
           20                CHECK, ICHCK
           21                NSP
           22                VOLINT
           23                BIOFAC
           24                CHECK,
           25
           26                DOSPAC
           27                CHECK, ICHCK
           28                NJ              /m.         .       ,
                                             (There are 4 sets of card
           29                JJ, NJJ          types 28 - 31)

                                    12

-------
Card Type            Item
  30                 AA1
  31                 PROBE, IFIAG, TP, CP
  32
  33                 VX» PORE, At, AT, HT, BUEKD, FS, VS,
                     XL, YW, YY, CINV, CFAI
  34                 CHECK, ICHCK
  35                 ISECT
  36                 EDO (omitted if       = 1)
  37                 CHECK, ICHCK
  38                 IZOKM
  39                 IZONB
  40                 ITSUMY, ITSDMJ, KSUB
                   13

-------
      2.  Description o£n Card Input.  There     3 subscripts prominently-
Involved with input data:  K, JF, and TZ.  Subscript K designates the
radionuclide, presently dimensioned to handle up to 25 nuclides.  Sub-
script JF designates the 4 environmental receptor (shortened to "receptor"
in descriptions which follow):  JF = I is air, JF = 2 is land surface,
JF = 3 is surface water, and JF = 4 is ground water.  Subscript 12
designates geographic zones in the study region, presently dimensioned
to handle up to 8 zones.  Other subscripts are identified below as they
occur.
      The largest matrices of data are for X (card type 9), BIOPAC (card
type 23),            (card type 26),  The Release Model input (card
types 28 to 31)  can be as large as 400 cards if the full dimensioned
capability is used.  If SDC (card type 36) is read in instead of using
internal default values, it is also a large input matrix.  Because of
the large amount of input data required, there are 6 check points pro-
vided; if any check point test is not satisfied, an error statement is
output which identifies the block of data in which there are extra or
omitted cards, and the run is terminated.
      A list of each card type in input sequence, the necessary card
format in each instance, the number of each card type required (one
card unless stated otherwise),  the data items and their descriptions,
plus other explanatory notes are presented below.
Card
Type   Format and Item
 1.           (15)
         NCASE
 2.    FORMAT (10K8)
         TITLE
 3,           (1615)
         ND
         NK
         MT
         IW
             Description

 Number of cases submitted.
 3 cards
 Title of case, double precision, up to
 80 characters per card.
 Number of chemical elements in inventory,
 Number of isotopes in inventory.
 Number of time reporting points (each
"time increment" is between adjacent time
 reporting points),
 Model branch or waste management phase
 {IW = 1 is residuals treatment; IW = 2
 is transportation} IW = 3 is repository
                                  14

-------
Card
Type   Format and Item


         ITRS

         ITRE
         MZ
         HIHT
         NPRINT
         IFDIVW
                                    Desc^rigtion

                          operations and  IW = 4  is  terminal  storage)
                          TIME  subscript  for end of time  incre-
                          ment  when release calculations  start.
                          TIME  subscript  for end of time  incre-
                          ment  when release calculations  cease
                           (end).
                          Number of geographic zones calculated.
                          Number of body  organs  calculated.
                          Output table specification  (see Chap. 3).
                          Ground water time increment control;
                          IFDIVW = 0 avoids  subdivision  of  time
                          increments and  IFDIVW  > 0 causes sub-
                          division branch in subroutine TRINP
                          to be executed.
       FORMAT (8E10.2)
                  This card specifies truncation or cutoff values to
                  avoid overflow, underflow, or nonproductive calculations.
         R1JMIN                  Truncation value  (to 0.0) for RlJ
                                 (Curies released to a given receptor).
         A2MIH                   Truncation value  (to 0.0) for A2 (accounts
                                 for decay and transport processes).
         R2MIN                   Truncation value  (to 0.0} for R2 (com-
                                 ponent of environmental concentration
                                 R2TOT).
         RKDMAX                  Cutoff value for RKD (distribution
                                 coefficient K^} above which ground water
                                 transport calculations may be bypassed.
         CRMIN                   Cutoff value for CRATIO  (ground water
                                 concentration).
         DFMIH                   Cutoff value for DECFAC  (decay factor).
 6.
       FORMAT (8E10.2)
         TIME (I)
FORMAT  (20A4)
  ELEM  (ID)

FORMAT  (8E10.2)
  TFUEL
1 card for each 8 time points.
The time in years at each of MT time
reporting points:

1 card if ND <. 20.
Symbol for each of ND chemical elements.
                                 Total inventory in repository, metric
                                 tons.
 9.
       FORMAT (8E10.2)
         XX (ID)
FORMAT (A3, 2X, 7E10.2)
1 card for each 8 elements.
Total inventory of each element at end
of repository operations, grams.

Minimum of 1 card for each of HK
nuclides,- add one card for each nuclide
for each 7 time points beyond the first
7 points.
                                   15

-------
Card
       Format and Item                   Description

         NUCNAM  (K)              Symbol name for nuclide K, double pre-
                                 cision, up to 8 characters each,
         X(K, IT)                Mass of nuclide K at TIME  (IT), grams.

       FORMAT (IOX, 7S10.2)      Osed for all cards after the first for
                                 each nuclide (bypasses rereading NUCNAM).

10.    FORMAT (19A4, 12}
                    This card provides a check field to provide error
                    statement and terminate runs if incorrect number
                    of cards read to this stage.
         CHECK                   Alphanumeric identification of check-
                                 point no. 1, up to 76 columns.
         ICHCK                   01 in columns 77 and IB,

11.           (8110,2)           1 card for each 8 nuclides.
         SPACT (K)               Specific activity of nuclide K, ci/g.

12.    FORMAT (8E1Q.2)           1 card for each 8 nuclides.
         DCl(K)                   Effective diffusivity for nuclide K
                                 leaching, cm2/cl.

13.    FORMAT (BE10.2)           1 card for each 8 nuclides.
         DRC (K)                  Dissolution rate constant for nuclide
                                 K leaching, d  .

14,           (8E10.2)
                   4 cards for each zone (1 card for each of 4 recep-
                   tors in each zone),  These cards provide pairs of
                   adjustment parameters for inter-receptor adjustments
                   over time following an initial dispersion.
         ADJ1(JF,JFA,IZ)         Maximum fraction of a quantity dispersed
                                 to receptor JFA in zone IZ which can be
                                 transferred to receptor JF in the same
                                 zone.
         ADJ2(JF,JFA,IZ)         Transfer rate constant associated with
                  /,,             AMI, y-1.
         Read as: ( HADJI(JF,JFA,12), ADJ2(JF»JFA,IZ), JFA = 1, 4| ,

                    JF -I, 4], IZ = 1, MZ)|


15.    FORMAT (8E10.2)           4 cards {1 for each receptor)
         DISPN (JF, IZ)           Area or volume over which, or in which,
                                 a release is dispersed in each receptor
                                 JF in each zone IZ, cm  or em .

              as:  H DISPN(JF,IZ), IE = 1, MZ), JF - 1, 41

16.           (8E1Q.2)           4 cards (1 for each environmental
                                 receptor).
                                   16

-------
Card
Type   Format and Item               Description^

         ZONALO  (JF, IE)         Dispersion allocation factors by  zone
                                 IE  for transport-to-environment recep-
                                 tor JF,  Ci~y/cm3-Ci for JF  = 1, Ci/Ci
                                 for JP = 2,  3.  For JF =  4, 2QNALQ =
                                 1.0 designates  effected ground water in
                                 zone;  0.0 designates  none.

         Read as:   nZONAL0(JF,IZ),IZ = 1, MzJ,  JF = 1, 4

17.    FORMAT (8E1Q.23
         ZONDEP  (IZ)             Surface  deposition factor by zone IZ,
                                 Ci/cm^-Ci.

18,    FORMAT (8E10.2)
         ARS&W (IZ)              Surface  area of water by  zone, cm .

         Notes  Corresponding AEEAG, land surface by zone, is set  within
                     =        (2, IZ).

19.           (8E10.2J           1      for each 8 of  NK nuclides.
         RKD(K)                   Distribution coefficient  Kjj, by maclide
                                 K,  cm3/g.

20.    FORMAT (19A4, 12)         This card provides the second data
                                 check  point.
         CHECK                   Alphanumeric identification of check
                                 point  no.  2, up to 76 columns.
         ICHCK                   02  in  columns 77 and  78.


     The following card types 21 to  23, and 25 and 26  provide data for
the Environment~to-Man Pathways model (see Table 3-3 in Vol. I).

21.    FORMAT (1615)
         NSP (JF)                Number of subpaths for each receptor
                                 JF.  The value  of NSP for each JF applies
                                 to both  modes 1 and 2 for each receptor.

22.    FORMAT (8E10.2)           4 cards  (1 for  each receptor) for each
                                 zone.
         VOIiIST(JF,MODE,I,I2)    Consumption, exposure or  food produc-
                                 tion rate,  as appropriate, y/y/ aar/.yt
                                 or g/y.

         Read as: HVOLINT(JF,MODE,I,IZ),  1=1,  NsJ, MODE  =1, 2J,

                   where I is subpath under JF,  up to  WS = NSP(JF).

23.    FORMAT (8E10.2)           3 cards  (1 each for receptors JF  = 2,
                                 3,  4)  for each  of NK  nuclides.
                                   17

-------
Card
Tyge   Format and Item

         BIQFAC  (K, JF»  I)
                              Description

                          Concentration or integrated concentra-
                          tion in food or drinK per unit receptor
                          concentration, by subpath I,  up  to MS =
                          NSP(JF).  Units are  (yCi-y/g)/{pCi/cm2)
                          for terrestrial food,  (yCi/g)/{pCi/cin^}
                          for aquatic food, and dimensionless for
                          drinking water.
24.
  Note:  BIOFAC for JF = 1  (air) is set = 1.0 in code.

FORMAT (19&4, 12)

  CHECK

  ICHCK
This card provides the third data check
point.
Alphanumeric identification of check
point point no. 3, up to  76 characters.
03 in columns 77 and 78.
25,
FORMAT (IDAS)
  ORGNAM (I)
26.
FORMAT {8E10.2}
         DOSFAC {K, JF,MODE,IH)
Names of organs  {body site^) for which
dose rates are calculated,Ijfup to I -
NIHT, double precision, up to 8 charac-
ters each.

8 cards for each of WK nuclides (2 for
each of 4 receptors JF; first of each
pair for      1 and second for      2).
Dose commitment conversion factor for
each organ IH of NIHT total.  Each card
has conversion factors for specified
nuclide and receptor/exposure mode com-
bination, (mrem/y)/(pCi/cm3} » (mrein/
         , or mrern/yCi, as appropriate.
27,
       (19A4, 12)

  CHECK

  ICHCK
This card provides the fourth data check
point.
Alphanumeric identification of check
point no. 4, up to 76 characters.
04 in columns 77 and 78.
     The following card types 28 to 31 provide data  for  the Release Model
scenarios {see Table 6-4, Vol. II) calculated by subroutine FAULT.  As
presently dimensioned, each of 4 receptors JF may have up to 9 cutsets
{release scenarios) NJ, and each cutset may have up  to 9 component fac-
tors NJJ,  This portion of the data deck can have from 4 cards (trivial
case with zero release scenarios for each receptor)  to 400 cards, as
follows:
         4 sets of cards, 1 set for each receptor JF:
           Card type 28  1 card (if NJ = 0» subsequent cards for this
           JF are omitted ) .
           1 set of cards for each of KJ cutsets (9  maximum):
                                   18

-------
Card
       Formula and Item
                              Description
           Card type 29  1 card
           Card type 30  I card
           Card type 31  1 card for each of MJJ component factor
             (9 maximum).
26,           (1615)
         NJ (JF)
29.           (1615)
         JJ(JFf 1}

         NJJ(JF, I)

30.    FORMAT (8E10.2)
         AAKJF, J)
                          4 cards, sequence*! as stated above.
                          Number of cutsets (release scenarios)
                          for each receptor JF.

                          Number of cards as stated above.
                          Cutset sequential identification number
                          for cutset I, up to NJ.
                          Number of component factors for cutset I,

                          Number of cards as stated above.
                          Fraction of inventory tranferred, to
                          receptor JF if a release via cutset J
                          (i.e., jj) occurs.
31.
FORMAT (E10.2, HO, 2E10.2}
              Number of cards as stated above.  Subscripts on
              this card are:  K designates component factor  (not
              to be confused with nuclide K used elsewhere) of
              cutset J  (i.e. JJ) releasing to receptor JP.
         PROBB{JF,J,K)
         IFLftG(JF,J,K)
         TP(JF,J,K)

         CP(JF,J,K)
                          Initial probability of occurrence of
                          component factor, y~  .
                          Probability function designation:
                            0  Constant
                            1  Step function
                            2       function
                            3  Exponential function
                            4  Delta function.
                          Time at which functional change in
                          probability commences, y.
                          Function parameter:  size of step func-
                          tion, slope of ramp function, exponential
                          constant, or set = 1.0 for delta func-
                          tion.
         Note:  For the constant function, TP and CP may have any value
                (not used) but 0.0 is suggested to avoid confusion in
                output display.
32,  FORMAT (1615)
         IFLAGE(JF,MODE,I)
                          4 cards  (1 for each receptor)
                          Flag used in Environment-to-Man Pathways
                          model designating whether output is
                          accumulated as "local dose"  (IFLRGE =
                          1} or "nonspecific: dose" (IFLAGE = 2) ,
                          (see Table 6-14, Vol. II).  Values are
                          sequenced on card for each of NSP sub-
                          paths under MODE = 1, followed by each
                          of NSP stibpaths under MODE = 2.
                                   19

-------
Card
Type
Format and Item
    Description
     The following series of 2 to 5 cards of type 33 provide data for
the leach subprogram RLEACH and the ground water transport subprogram
CRATIO,
33.
FORMAT (8E10.2)


  VX
  PORE
  AL
  AT
  HT
  BOLKD
  PS

  VS

  XL(I)
         YW{I)
         YY(I)
         CINV
         CFAI
 34.   FORMAT U9A4, 12)

         CHECK

         ICHCK
2 cards for 1 or 2  zones, 3 cards for
3 or 4 zones, 4 cards for 5 or 7 zones,
and 5 cards for 8 zones.
Ground water seepage velocity, ai/d.
Aquifer porosity {as decimal).
Axial dispersivity  coefficient, m.
Transverse dispersivity coefficient, m.
Height of aquifer,  m.
Bulk solid density  of aquifer, g/cm3.
Exposed area of solidified waste speci-
men {canister as fractured),  cm.
Volume of solidified waste specimen
(canister), cm .
Distances from repository to  average
discharge point in  each Eone  for I =
1 to M.Z zones.  XL  = 0.0 indicates to
code that contaminated plume  does not
discharge in zone.
Effective width of  plume (width for
concentration 0,1%  of center  line value)
in each zone (distance XL) where dis-
charge occurs, for  I = 1 to MZ zones,
m.  Input as 0.0 for each zone where
no discharge occurs (not used except
in output display).
Distance from plume centerline where
concentration equals average  across
effective width YW, in each zone (dis-
tance XL) where discharge occurs, for
I — 1 to MZ zones.  Input as  0.0 for each
zone where no discharge occurs (not used
except in output display).
Total number of canisters in  inventory.
Number of canisters exposed to leach
incident.

This card provides  the fifth  data check
point,
Alphanumeric identification of check
point no, 5, up to  76 characters.
05 in columns 77 and 78.
       The following type 35 card controls data for the environmental
 decay constant EDC(K,JF,IZ), y"1,  where subscripts denote nuclide,
 receptor, and zone, respectively.   IDC for JF = 1 6 4 is set by state-
 ments in the code:   EDC(K,  1, iz)  = 50, providing for rapid deposition
                                   20

-------
Card
       Format and Item
                               Description
from air after dispersion, and EDC  (K, 4, IZ) = 0.0, as EDC has no pre-
sent application to ground water calculations.
35.    FORMAT  £1615)
         ISECT
36.    FORMAT  (8E10.2)
         EDC(K, I, IZ)
37.    FORMAT (19A4, IZ)

         CHECK

         ICHCK
                          Control  flag for  EDC  data.
                          ISECT  =  1:   internal  EDC  default values
                          used for JF  = 2 & 3  (=  2.30  x  10~5).
                          Type 36  cards omitted.
                          ISECT  -  2:   SDC default values used for
                          JF = 3j  type 36 cards read for JF = 2.
                          ISSCT  =  3;   EDC default values used for
                          JF - 2;  type 36 cards read for JF = 3.
                          ISECT  =  4:   type  36 cards read for JF =
                          2, followed  by cards  for  JF  =  3.

                          0 cards  if ISECT  = 1; MZ  x HK/8 cards if
                          ISECT  =  2 or 3; 2(MZ  x  HK)/8 cards if
                          ISECT  =  4.
                          Environmental decay constants  for nuc-
                          lides  K, receptor JF  (represented here
                          by I)  and zones IZ.   Data sequence on
                          cards  is EDC by zone  to MZ zones  for
                          first  nuclide, repeated in turn for each
                          subsequent nuclide to HK  nudities.  If
                          ISECT  =  4, this group of  cards is repeated
                          in turn  for  JF =  2 and  JF =  3.

                          This card provides the  sixth (and last}
                          data check point.
                          Alphanumeric identification  of check
                          point  no. 6,  up to 76 characters.
                          06 in  columns 77  and  78.
     The following card types 38 to 40 control selection of output for
dose summary tables in Section 6 of output.  Each such table is for a
specified time.
38.
39.
40.
FORMAT (1615)
  IZONM

FORMAT (1615)
  IZONE(I)
FORMAT (1615)
  ITSUM*
  ITSUMJ
                                 Number of zones to be tabulated.
                                 Identification number for each zone to
                                 be tabulated, up to IZONM zones.
                                 Note:  IZONE(IO) designates nonspecific
                                 dose category.
                                 Time subscript for first table.
                                 Increment on time subscript for suc-
                                 cessive tables.
                                   21

-------
Card
       Format and Item
         KSUB
    Description

The nuelide K level for subtotal line
in tables (as for subtotal of fission
products followed by aatinides).
     A sample coding form for 1 nuclide, 1 zone, and 1 organ is given
in appendix C.  More complete sample input is given in Appendix P.
                                   22

-------
 B-,   OUTPUT DESCRIPTION '
 :     AMR&W-& requires three output mediums:  disk, tape file, and line
 .printer.
      1.   Disk.  Intermediate temporary storage of calculated values for
 each nuclide is on disk.   The disk storage capacity required is up to
 1459 k bytes of information.  Information stored on disk is transferred
 to tape (or directly to line printer)  at the end of each case.
      2,   gape File.  The tape file is  used to store selected run output
 transferred from disk into several tabular configurations.   The output
 stored on tape may subsequently be used in part as input to AMRAW-B
 (Economic Model}, used as  input to auxiliary codes for further analysis,
 or may be directed to a line printer for one or multiple printed copies.
 If preferred, and if further computer  processing of output  is not planned,
 output can be routed directly to the line printer instead of to tape.
      3.   Line Printer.  The line printer must be capable of 132 chsrac-
,ters per line.  The preferred mode of  operation is to direct output
 stored on the tape file to the line printer instead of routing output
 directly to line printer.   In addition to the major output, error state-
 ments and data check point confirmations are output.  Error and check
 point statements are routed to the output medium specified  by the vari-
 able ^ IE (see Chapter 4)  and should always be     to the line printer.
      4.   Output Tables. Extensive output tabulations are produced by
 AMRAW-A, as directed by the output control parameter (see card type 3,
 and Chapter 4).  These tables are divided into 6 sections,  each set off
 by a divider page for clarity.  Table  3-1 is a directory of output tables.
 The number of tables listed of each type is based upon 25 nuclides, 8
 zones,  and 8 organs, resulting in a total of 62? tables if  all are
 requested by NPR1NT.  The  number of tables is reduced appropriately for
 fewer nuclides, zones, or  organs.  Sample output is given in AppendiK F.
                                    23

-------
                              Table 3-1.  Directory of AMBAW-A Output Tables
               Description


SECTION 1. ..JData Input

1.  Output listing of AMRAW input-

SECTIOK 2.  Release to Environment
1.  Helease Fractions by Each Cutset, RELOOT
2.  Release Increments to Preliminary Environmental
    Input Receptors, R1J, from All Release
    Events , Ci
3.  Concentrations at Environment Input Receptor,
    R2TOT.  Units i  JP = 1 nCi-y/cro^, JF = 2
    JF » 3 and 4
SECTION 3.  Local__Dpse to__ In_dividual

1.  Average Annual Local Dose to Individual,
    mrem/y .
SECTIOM 4.  nonspecific Pose to Population

1.  Average Annual Nonspecific Dose to Population,
Number of Table Combinations

Nuelides
(20
25

25
25
25

25


Zones
pages)



8
8




Organs





(8 in each
table)
(S in each
table)
Environ .
Receptors


(4 in each
table)





Total



25

25
200
200

25


-------
                         Table 3-1.   Directory of AMRAW Output Tables (continued)
                                                                                                Total
SECTION 5.  Total Dose by Receptors

1.  Average Annual Local Dose to individual,
   ' MAN2LF for JF « 1 to 4,  MAN2L for Total,
    rarem/y, Total for All Nuclides.

2.  Average Annual nonspecific Dose to Population,
    MAK2KF for JF = 1 to 4,  MAN2K for Total,
    raanrem/y, Total for All Nuclides.

SECTICM6.  Dose SummaryTables

1.  Average Annual Local Dose to Individual,
    MAN1L, in Zone, mxeia/y.

2.  Average Annual Nonspecific Dose to Population,
    MAN1H, manrem/y •
Total Number of Tables
Hote;
a.  All output tables, except Section 6 are for 50
    time steps, 0 to ICr years.
b.  Individual zones may be specified.
c.  Section 6 may call for a table for each of all
    times beginning with 100 y or skip some times?
    5 tables result if call for every ninth time.

Huclides


[25 in each
table)
(25 in each
table)


Zones
8

up to 8
Up tO 8


Organs
8
8
[8 in each
table)
£8 in each
table)

Environ .
Receptors
(4 in each
table)
(4 in each
table)
°5
C5



64
S
40
40
627

-------
Page Intentionally Blank
          26

-------
                              CHAPTER L\
     The first class o£ program options is concerned with design of the
application.  The number of nuclides/ zones, organs, times, release
scenarios, and environmental pathways may be varied within the range of
dimensioning.  The reader is referred to Vol. I for full discussion of
these and other general input data options.
     The input/output mediums are specified in statements in the main
program which assign values for the variables IN, IE, and IP appropriate
to the system being used (at ONM the values are 5, 6, and 2, respectively).

     IP  specifies the input medium, normally the card reader
     II  specifies the output medium for error and data check point
         Kiessages; this should always fae set to the line printer
     IP  specifies the output medium for the code; this is normally
         tape file but it may be set to the line printer if preferred.
     Calculation and output options are controlled by NPKENT (see card
type 3, Chapter 3).  This control variable has 3 digits, described in
Table 3-1,  The complete calculation and output capability is executed
if NPRINT = 500.  Options range down to setting the first digit to zero
(such as NPRINU = 000 or simply = 0) resulting in reading .in and outtputting
all data (in the Section 1 explanatory tabular arrangement) but perform-
ing no calculations.  The latter is useful during setting up and check-
ing a large data file.
     EDC (environmental decay constant) values are internally set for
the JP = 1 and 4 receptors.  An option is provided for the values for!
JF = 2 and 3 receptors, controlled by ISECT (see card type 35 in Chapter
3) .  If ISECT =* 1, internal EDC default values are used for both recep-
tors.  If.EDC data is available for specific nuclides, receptors and
zones,  this may be read in by setting ISECT = 2 to 4.  If ISECT = 2,
EDC is read in for JF = 2;  if ISECT = 3, EDC is read in for JF = 3; if
ISECT *> 4, EDC is read in for JF = 2 and 3,
                                   27

-------
                          Table  4-1.   Calculation and Output Options  Controlled by SPRINT
                   = XYZ
                 Z controls  organs  calculated.
                        if Z =  0, all organs  in input are calculated.
                        if 0 <  Z  <, NJHT,  only 1 organ,  the 2th organ,  is  calculated,
                          Z >  NIHT is error.
                 Y controls  zones calculated.
                        if Y =  0, all zones in input are calculated.
                        if 0 <  Y  £.MZr only 1 zone,  the Y1* zone,  is  calculated,
                      _   . ¥ >.MZ. is error,    .            .
Description X =
1. Data Input
1. Release Model data
Other input data
SECTION 2. Release to Environment
1. RELOUT
2. RU
3. R2TOT
Section 3. Local Dose to Individual
1. MflHlL
Section 4, Nonspecific Dose to Population
1. MAN1N
Section 5 . Total Dose by Receptors
1. MfiH2LF, MAH2L; 2.
Section 6. Dose Summary Tables
1. MMJlLr 2. MAN3JN
b
0

X
X












1

X



X









2

X




X








3

X



X
X








4

X



E
X

E

X

X

X
5

X
X

X
X
X

X

X

X

X
6

X






X

X

X

X
7-9

X



X


X

X

X

X
£B
           See Table 2-1 for further description.
           For X = 0,  reads in and then outputs all data} no calculations are made.

-------
     Section 6 of the output consists of dose summary tables.  Each table
is a summary for a specific zone (or nonspecific dose) at a specific time,
The option controlling the number of zones and times output in this
section is controlled by card types 38 to 40 (see Chapter 3}.  IZONM
specifies the number of zones to be tabulated,  IZONE Identifies the
     number of each zone to be tabulated, ITSOMY specifies the time sub-
script for the first table and JTSOMJ specifies a time subscript incre-
ment for successive tables.
                                   29

-------
Page Intentionally Blank
        30

-------
                              CHAPTER 5
                          ERROR
     There are several error message provisions in &MRSW-A.   Each message,
its meaning,  and corrective action required,  is listed below.
     Error Message:
     Meaning:

     Corrective Action:

                           (y) "
Data which follows error before check point x
is not in correct order,
Check for extra or missing cards and make sure
data is in correct order; sort as necessary.
     Error Message:

     Meaning:
"ERROR:  ATTEMPTED REPOSITORY OPERATION WITHOUT
SUBSEQUENT ENVIRONMENT TIME INCREMENT"
Continued operating repository until end. of
time being studied with no subsequent time in
the environment left to study.
     Corrective Action;   Make ITRE < MT.
     Error Message;
     Meaning t
"ERROR:  VALUE OP ZONE (x) OUTSIDE OF RANGE OF
MAXIMUM ZONE {y}"
Attempted use of nonexistent zone.
     Corrective Action:   Modify value of 2nd (middle)  digit of control
                         parameter NPRINT such that it is  <. MZ,
     Error Message:

     Meaning:
     Corrective  Action:
"ERROR:  INVALID ORGAN NUMBER = '(x) MAXIMUM
NUMBER OF ORGANS = (y)"
Attempted to study nonexistent organ.
Modify right most digit of control parameter
NPRINT such that it is <_ NIHT.
                                   31

-------
Page Intentionally Blank
       32

-------
                             APPENDIX A
                       BACKGROUND MATERIAL
     The basic structure of the AMRAW model and computer code was
developed at UNM between 1972 and 1974  as part of the S. Logan Ph.D.
dissertation:  "A Technology Assessment Methodology Applied to High-
Level Radioactive Waste Management,"  The University of New Mexico, 1974.
Additional development proceeded with support from the Saudia labora-
tories University Research Program and  from the Energy Resources Board
of the State of New Mexico.   Completion of the model and code was done
      EPA Contract So. 68-01-3256 beginning in August, 197S.
                                  33

-------
                        APPENDIX B
                   SAMPLE RUN REQUEST
                     •AMRRW-A
Requested By?
Phone:                           Date:
Number of Seconds: 	^_^  No.  of Output Liness




Nurriber of Copies Requested:




Special Form? 	  If so,  form no.	
Input Data On:  Disk	  Disk Names




                                    DSN:
Card 	t      Tape 	__      Name_j_




                   Label:            DSH:
                   OFFICE  USE  ONLY
Date Received:




Date Submitted:




Date Returned:
Initials:
                             34

-------
                              APPENDIX  C
                         SAMPLE CODING FORM
      Table C-l presents a sample coding form for AMB&W-A input data
 illustrating proper formats for the following conditions.
      1 nuclide;     C-14
      1 zone:        Zone t
      1 organ:       Total Body
      Model Branch:   IW = 4, Terminal Storage (beginning at 30 y
                     reference time)
      50 Times:      Range from 0 to 10  y.
-Card types,  described in Section 2,A.2., are indicated.
      This  example  is for Zone 1 for the base case described in Part 1
••£)•£ Vol.  II in which it is assumed there is no surface water and no dis-
:charge of  ground water.  If the example were for Zone 2, the value on card
•type 18 (AREAW) would change from 0.0 to 5.06E+11 and the  first 3 values of
x'the second card of type 33 (XL, YW,  and Y.Y)  would change from 0.0 to
 :i,QQE+Q4,  2.5SE+Q3, and 5.20E4-02, respectively.
 •'•••'    The Release Model data {card types 28 to 31)  represent 10 cutsets:
/.3* for each of the  first 3 environmental receptors, and 1 for the fourth
 receptor.
      It is assumed that EDC (Environmental Decay Constant)  uses internal
..default values. Hence card type 35     a -value  of 1 and card type 36
.' is omitted.
                                   35

-------
                  Table C-l.  Sample Coding Form for One Muclide, One Zone,

                            and One Organ
 **lt* ffi
                     3D
                                 3o
                                          FORTRA^-STATEMENT
                                             RA^-ST
                                             _50
                                                         JHL
                                                                                          5S ?g. jy ?a?g
_a
..a.
_a
.3.
.%_
_5_
.5..
.5.
_5_
.5...
.5
 5

:?
-6
 q
 q
 s.
 S.
        
   b£±£^
           ^o^_d
                         6.J
  1 C
                    04
      JLB
            ^j
  .&5J2dLQ3:
  b3DtQ4
                                     MkhZDrj^
t
b2Lfi±fiy:

                                                  .4.
  utoa
0&D+04
                                                             2.-!7&to4
                                       ^_ojtc±oa
                                                               ,0
1 D-i-04 • 4.OtDtQ'4
                                                    !n
                                                              3.73Dt.0.t
      lit
               feteQtt
                         13
                        -W
                          4ia
                 ;ptm
                               D+;o4 i
      1J£J
               73Dt;Q4
            lt,.;S4Dt04
                          !3&:D!+1Q4
                                                        1U
                                     lLJDIE±fl3.
           J_Bu^2&tm
 _&
             !ivciada
            t
                           iiaodtoj
               QQilj2
                       JL
                                           3Lj22££S3
            04Q
                                                                      jQ2J3i01
            . iQ«;q
                       o.
                      Q-_O
   c
      14 8
o..o

-------
w
-4

-------
                                            Table c-1.  {continued)
w
CD
     30

-------
3L
OB
BO
ai
5!
33
30
SI
3!
33
3o
31
jJJS f
^fiL
f3 Qt
31
31
sa
st
1























W$
:«3?.S


T
t
a

el
i
i
3
!i
7o
. o
.0
>j
,o
."0
,0
3
1?
I
g


'3
1
l»

,5
t'O
Jf
s
1
.3
,0
,0
.'O
a
5
» i
.0
.0
•r
c
0


.at
O


„-'
0
•4
o
b
i**

0
^
(*!


3
0
u> ae » --^-w^
E'-ili
>

;J
i
i
i
*
:-
; .
2-

:•-
"•+
I
t 1
3
J0.5
•00
-00
I „
I £
oa
DO
13
a
-oa
ool
EL'-'iA
•
3
E-05
eVoo
Et'OO
i
1
r a
E.-oa
E+QO
it 5 t.
i



















I
; I :
t





i










f





I

!











"





ii(;
* i


n
: 	
N
15
! o
I !
i
] '" i '
- ' O
0
a
\

D
0

'
h
| !Q

| j
! 1
50
:O
! a
" * » •
l
1 i 'C
•10,












0


i ' i
o.
o
f
0
o
U^>


o




O
! o.
0

r
h
b

]
Jo
.b



; < i


<0r:O
O.
Mi

o
E'*







Oft


i




'I

M






1 1















rv't^iju




Do

';
i ;_,_,__
H 2? ifl 3? 30






0



0
,h



.0
!0.'C
1


j











. R

i
b.p
W.o

j
o
I
Jo
_iGiJ3
;

;
O
O
! if
i

.0
. o
.s

i
1 o!.o


















ftp'-








j
























07
i


i
i





t











1






6«-


07

i
1
i



























;
!




















i


i






























































t s
t
1













i





\ •
i '









i












]


.





	 ; i








;














i




























i

i




.















|










!
"T""






k
























































•

















j
I
















(



i


i



























\


























!•








































I


i
1








































•| 	
I




;
f
i










;

















\


I
LI1




!









f




























f
i





j





;










1 i
M a m a


11




















I
i 1













i i
. f 	
:v;-«8^;l









i





i










1




, i








i


I




•
i


i
i























i










i





' '• i ' =
i ; j • j
;




s

1
1

i





1




i T
• i ! '
7) » ?§ M » J« W »

-------
Table C-l.  (concluded)

-------
                             APPENDIX D

                    JOB  PROCESSING  INSTRUCTIONS


 1,  Prepare  jobcard for run using run request as follows:
    Job name - 8 characters alphanumeric serial number.
    Time parameter - number of seconds estimated.
    Lines parameter - number of lines  {in thousands}  estimated.
    Forms parameter - form number from request.
    Copies parameter - number of copies requested.

 2,- Input medium:
    Card - keypunch as necessary and place in appropriate section of
    '•:       deck.
    Disk - modify GO.SYSIK DD card to reflect parameters required by
    •.:.;.     system.
    Tape - modify GO.SYSIH DD card to reflect parameters required by
    ;^:;:     system.

::3>  Submit job and note date submitted.

 4-  Return job to requester and note date returned.
                                  41

-------
      APPENDIX E
OPERATING  DECK SETUP
JOB COWTBOL LANGUAGE CARDS
 INPUT D&fA
 JOB CONTROL LANGUAGE CARDS
 AMRAW PROGRAM
 JOB
 JOB CAEID
             42

-------
                                         F
                       SAMPLE  INPUT AND OUTPUT
      Sample Input and output is presented for a "short run"  using only
 3 radionuclides:   Sr-90,  1-129, and Pb-210.   Other parameters  are as
 in at typical "fuel run":   4 environmental receptors,  10 release  scenarios
 (cutsets),  14 environmental pathways,  8 geographic sones,  8  human organs,
 and 50 time increments.
      1,  Input Data.   Input data is listed according to card input
 specifications in Section 3.A.  and the sample coding forms in  Appendix
 C.
      2. •''• Output..   Output  is separated by partition pages into  6  sections;
        •  (a)  Seat-ion 1 ~ Data  Input.   This  section,  presented in full,
 is a descriptive  output of input data, in the following sequence:
        "•; '•     Definition  of Environmental Inputs/Definition  of Probability
        '  Inputs/Probability and Related Data,
               Selected Residual Elements in  Waste/Selected Radionuclides
          in Waste.
               Ground  Water Parameters
               EDC
               DISPN/ZONALO/ZONDEP
               Am AW/AD J i/ADJ 2
               VOLINT
               BIOFAC
               DOSFAG
          (b)  Seat-ion 2 - Release to Environment.   Sample output is
 presented for one nuclide (1-129):
:;-':': • -          Release Fractions by Bach Cutset
               Release Increments to Preliminary Environment  Input Receptors
:               Concentrations at Environment  Input Receptors  {Zones 1  and
          2  of 8 zones shown)
                                    43

-------
         (o)  Section 3 - Loaal Doee to Individual,  Sample output is
presented fox one nuclide  (1-129) and one zone  (Zone 1) of 8:
              Average Annual Local Dose to Individual
         (d)  S&ation 4 - Nonspecific Dose to Population,  Sample output
is presented for one nuclide (1-129);
              Average Annual Nonspecific Dose to Population
         (&)  Section 5 - Total Dose by Receptors,  This section presents
totals for all nuclidess
              Average Annual tocal Dose to Individual.  Sample output is
         presented for 1 organ (Total Body)  of 8 and 2 zones (1 and 2} of
         8.
              Average Annual Nonspecific Dose to Population.  Sample out-
         put is presented for 1 organ (Total Body),
         (f)  Seetion 8 - Dose Swrniafy Tobias.  These tables summarise
dose rates by nuclide to each organ.  Sample output is presented for 1
time (1000 y) and  1  zone:
              Average Annual Local Dose to Individual, Zone 1
              Average Annual Nonspecific Dose to Population
                                    44

-------
                                                                          s
01
                                            IW -BASE .C.AS6'FOR.'Te-B.WIHAL' • STORAGE''
                                          ' '..'/: *t-L IMitfflWU, »ST I'C.
                                         APR..6. 19?BOAT* FILE US6D;
                       03"- «3
                      i»ooE-ze
                                 50"
S.SOE+01
4.00E+OZ
3.COE+43

l.COE+OS
9.COE+OS
sa   x  PO
l.«T£*09
J.26E+OB
 5«-9Q I
 J.R-90 2
 SR-»0 3
 •it-go 4
 SH-90 S
 5ft-SO 6
 SR-90
 SR-9Q
  -1*9
  -129
  -1E9
                             7
                             a
                       -129 S
                       -J*9 6
                         ;29 7
                       -189 8
                     P6-2SO 1
                     PO-2IO 2
                     PS-210 3
                     pB-aio
                     P8-210
                     P3-210
                                3.006*00
                       a   so
                     1.00E-3S
                     i.ooe*oi
                     T'*OOE»O1
                                                            m
                               300     t
                               l.OQE-30
2.00E+OS
I.OQE+OC
                                          3. OOS+OS
                                $.300+05
o.o
0.0
0.0
o.o
3.4EO + OZ
9.B4O+O4
3.S9O+06
3.900*07
7 =72S*0*

O.O
0.0
o.o
                     1.50E*C1
                     e. 00= * 01
                     7.00£*02
                     6.006+03
                     S.OOE+04
                     4.0OE+05
                                                    7.820*03
                                                    0.0
                                                    0.0
                                                    0.0
                                          s.s^o+oa
                                E.O4D+04
          S.61D+O4
          2.120-07
          70000-0*
           S.75D-OJ
           2.230+01
           1.93D+02
           3.08D»02
          2.120-06
          9.660-04
          3.S80-O2
          7.29D-OS
                                                    5,340+00
          6.T2O*04

          9.10O-06
          1.26O-03
          7.S5O-02
          2.960*00
          3.190+-Q1
                                            19O+02
                                            530*02
                                                     1=S9D»02
                                       CHECK POINT NUMBER
                                1.63E-04  B.12E*ai
                                9.B2E-10  9.396-10
                                                               T.0ȣ*03
                                                               S.OOE+OS
                                                               2. 240 +07
8»9SO-2S
O.O
0.0
0.0

i.770+04
fi.040+04
3.040+04
                                                               S.MOi'O*
3.900-05
I.sou-en
I.390-01
6.060*00
3.630+01
2.590*02
1.550+02
                                                           ONE
                                                                         i.ooe-io
                                                                         a.SQE+01
                                                                                    3.0QE+OI
                                                                         9.001*02   l.OOr+03
                                                                                    B.03E+04
                                                                                    7.00E+03
          7.11O+07

          «. 10O4-00
          0.0
          o.o
          0.0
          o.o

          5.B40+04
          5.&4D + 04
                               7. OOE»Q4
                               S.OOE«OO
4.220+07
1.91O+07

0.0
O.O
0.0
O.O

3.400+04
5.840*04
B.040*04
                                                    S.S3O+O*
                                                    S.8XO+O4
1.32D-04
1.94O-O3
2.200-01

6.400*01
2.74D«02
                                                    S.B«B*U4
                                                    9.830*04
                                                    i.asDtoo
          3.250-04
          2.35O-03
          3, 20O-01
          I.37O+01
          l.S7l>+02
          2.080*02
          9.16O*Oi
                                                    4.99E+Q1
                                                    3.1JOE+02
                                                    2.00E+03
                                                    I.OOS+04
1.1SB+07
4.530-01
0.0
0.0
0.0
0.0

S.S4D+Q4
S.C4D+04
S.84D+04
5.B4D+04
                                                                         5.300*04
4.510-04
3.6ZD-03
4.39O-01
1.79K+D1
1.63&+02
3.40O+O2
8.90E-OS 4.-9SE-03 2.7S5-03
0.0
0.0
0.0
0.0
o«a
o.o
o.o
0.0
o.o
o.e
o.o
o.o
o.o
0.0
0.0
0.0
4*B
0.0
a.o
O.O
0.0
0.0
l.OOE-09
o.a
0.0
0.0
a . oo£->o9
• aO
OoO
0.0
i . OQE-09
0.0
0.0
2.00E*Ot
0.0
0.0
o.o
2.09E+OJ,
O.O
0*0
o.o
Z.OOE+O1
0.0
o.o
o.o
0.0
O.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
o.o
o.o
o.o
0.0
0.0
0.0
0.0
o.o
0.0
2.0SE-OI
o.o
0.0
0.0
0.0
o.o
0.0
O.D
0.0
0.0
0.9
2.O9E+01
0.9
a.o
0.0
0.0
                                                                                                  OOOQDOSQ
                                                                                                  00000100
                                                                                                  00000150
                                                                                                  00000200
                                                                                                  oooooaso
                                                                                                  0.00003OO
                                                                                                  OOOQ03SO
                                                                                                  00000400
                                                                                                  000004EO
                                                                                                  OQOOOSOO
                                                                                                  ooooosso
                                                                                                  000 00 650
                                                                                                  00000700
                                                                                                  OOOOBTSO
                                                                                                  ooooosoo
                                                                                                  000 09 «oo
                                                                                                  OQOOO
-------
                         APPENDIX P
1.   Input Data  (continued)
o.o
o.o
0.0
0.0
o.o
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0.0
0.0
0.0
0*0
0.8
0.0
0.9
o.o
0.0
&.Q9E»BQ
7.9oe*n
Q.O
1.O9EVOS
1.ESE-2O
1.29E-O1
SsO
o.o
4.04E— 13
0.0
o.o
o.o
0.0
o.o
o.o
0.0
o.o
o.o
o.o
0.0
o.o
o.o
0.0
0.0
o.o
s.o
0.0
o.o
o.o
0.0
0.0
• ioOOE»oo
1.01E«14
6o06E»l3
i>OOE*00
So 31 E- 23
4»41E-OS
2.1TE-03
1»OOE*OO
1 . 93E— 1 5

.0
.OOE-00
.0
.0
.0
.OOE-09
.0
.0
.0
.OOE-09
.0
.0
*0
.OOE-09
.0
.0
.0
. OQE-09
.0
.0
.0
.OOE 409
. 27E*1«
«l«e»la
.OOE*OO
*09£— S&
• 35E-Q2
.606-04
.0
94E— 1 6
Il4E*12
0.0
2.OOE*01
0.0
O.O
0.0
E.OOE+01
0.0
0.0
0.0
2. DOE* Of
o.o
o.o
0.0
a,ooE*os
9.9
0.0
0.0
Z.OOEtQl
0.0
0.0
o.o
1 . 08C400
*»77E*13
1»12E*13
l.OOE+QO
2.12E-2*
B.6SE-03
2. iee-05
o.o
• LOSE— 16

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
8.0
0.9
0.0
0.0
a.o
0.0
s.ooe-oi
o.o
0*0
l.OOE+00
1.E2E+14
3.06E+13
I .ODE *00
3.63E—24
3.S9E-02
9 .OOE-05
0.0


O.C
0.0
0.0
O.O
O.O
0.0
o.o
0.0
9.0
o.o
o.e
Oot
0.0
0.0
0.0
o.o .
0.0
o.o
2. ODE* 01
O.C
9.0
J.OOE*00
1.14E+14
a.eEE+13
I.OOE*00
3.03E-23
S.42E— 01
6.00E-0*
o.o
i 1 ~9F 1 £
a.eSE*ti
o.o
o.o
o.o
9.0
0.0
0.0
0.0
0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
a.ooE-oi
0.0
l.OOE+00
1.S7EM4
7. BSE* 13
I.OOE+00
3.1SE-24
4.18E-02
2.10E-04
0.0
1 SOE 16
7.86E+11
o.n
0.0
o.o
0.9
o.o
0.0
0*0
0.0
0.*
0.0
0.0
0.0
0.0
0.9
0.0
0.0
0.0
0.0
0.0
2.00E+01
0.0
l.OOEtOO
5.4CS+12
.806*14
.006*09
.12E-23
.46E-02
.44E-03
.OOEt-OO
yas | B
5.40EE+11
«.ooe-o!
o.o
0.9
         0.0        .OOE+O3
                CHECK POIKT HUMBSR TOO C2t
           4    1
         7.30E+O9
         0.0       0.0       O.O       0.0
         o.o       o.o       o.o       o.o
         0.0
                                         6.30E*07
                                         o.o
                    0.0
                    0.0
4.OOE-01
.ooe*oo
>OOE-01
,00 £-93
,0
>00£«OO
.ooe-oi
.OOE-03

>OOE*OO
.OOE-01
.OOE-O3
.0
o.o       o.o
0.0       0.0
7.08E+07
7.30E+09
0.0       0*9
0.0       O.O
0.0
7.3OE40Q
O.O       O.O
4.9       0*9
O.O
7.3OE+09
0.0       0.0
o.o       o.o
c.o
                              0.0
                              0*0
                              o.o
                              o.o
                              o.o
                              0.0
                              0.0
                              0.0
                                       0.0       1.1BEHO  0.0
                                       4.00E+05  S.OOE*09  0.0
0.0
0.0
                               0.0 :
                               0.0
1 .11E+10  l.eiE+10  4.6TE+OB
          4.60E+09  4.05E4-09   0.0
3.«SE«O9  7.60E*09  8.32E4-08   3.21E+09
0.0       0.0       3.ME*09   0.0
                                        0.0
                                                   o.o
                               1.S8E+19
                               o.o
                                                            00002SOO
                                                            00902Q90
                                                            00002900
                                                            ooooasso
                                                            Q0003090
                                                            OOO0303O
                                                            00003100
                                                            00003150
                                                            00003 ZOO
                                                            00003230
                                                            00003300
                                                            00003330
                                                            00003400
                                                            00003430
                                                            00003500
                                                            00003S50
                                                            00003600
                                                            00003630
                                                            00003700
                                                            00003750
                                                            00003000
                                                            00003850
                                                            00003900
                                                            00003950
                                                            00004000
                                                            00004050
                                                            00004100
                                                            00004150
                                                            ooooo-aoo
                                                            00004250
                                                            OOQ04300
                                                            00004350
                                                            0000*400
                                                            0000*450
                                                            00004500
                                                            00004550
                                                            OOOO46QO.
                                                            OO004650
                                                            00004700
                                                            00004750
                                                            00004800
                                                            00006*50
                                                            90004909
                                                            00004950
                                                            00003000
                                                            00005050
                                                            00005100
                                                            000OSISO
                                                            00003230
                                                            00005250
                                                            90005300
                                                            OOOOS350
                                                            00003400
                                                            00005450
                                                            00005500

-------
'liOOE— Ot>
o.o •
1.00E»00
4.006-01
l.OOE-oi
o.o
I.OOE+00
4.00C-01
l.OOE-03
s.ese-oi
i.ooe+oo
.•'.o».o . ' . • '
o.o
7.3SFE+B9
0.0
o.o
ti.O
T.30B*B§
0.0
0.0
5.236-03
2.40E-OI
0.0


0.9
0.0


O.O
0.0
3.36E-03
S.12E-OI
  a.4oe-os
  8o26E-01   9»*SE~OJ
                       2.S9E-01
                                  0.0
                                  0. 0
                                  o.o
                                  o.o
                                  o.o
                                  o.o
                                  1.846-02
                                  0.00
                                  9.86S-B2
                                  0.00
 .1.97.
• o.o
                                                      ' -0*0 '
                                                                  1.S2E+09   l.SOEtlO
 S.626*09  3.27E*10   7.9BC+09  •
 4.00 E.03  1.67E*tO   6.3JC+10  0.0
                                                       0.0
                                            4.0OE-I-03
                      6*23E*09  1.4AC«>iO
                                0.0
  s.ase-oi   a.saE-83  i,7ie-03  6.62R-03
  1*00^^1 Q   1*1 $€—01  3.97E—ill  O.OO
  1.1AE-01
«l*«$«««*9Ml*»»«*«« CHECK POINT NUMBER THREE  13}
TOT BOOVG1  TRACT 5ONAO5   LIVER   I.UH6S  HARBGM
  O.O
  1 078E-J03
  0.0
  0.0
             0.0
             c.o
             0.0
             4.Q3E+Q1
                     C.O
                     1.78E*03
                     0.0
                     1.69E*02
                     0.0
                     1.69EI-02
                     l.«BE*02
o.c
0.0
0.0

o.o
0.0
o.o
0.0
3.60«*OT
2.UE»00
                                            0.0
  T.22EOOO
   I. 43 Eft 07
                       T.Z2E4-00
                       1.Z1E-MIT
                               2.atE*oo
                               7.576+02
                               2»eie*oo
                               £.EI1E»00
                               e,.eie»oo
0.0
0.0
0.0
o.o
o.o
0.0
4,856*07
                                            0.0
BOftE  tHYRQIO
  0.0        0.
  2.67K+0*   2,
  O.O        0,
  6,43E*-03   e.
  0.0        0.
                                                       i. sat* OB
                                                                   72e«o4
                                                                   27E»00
          0.0
          o.o
          o.o
          9.02E-WJ8
                                                       3.27ECOO
  l«g7E*0*
  3.0QE»02
  a. 10E«O£
           V.70E4OO  §.10E*OZ  4.702*03  O
           1.21E»02  £.6-lE->02  1.S3E + 02  I
           ^
                                                                     ooooaiso
                                                                     ooooeaoo

-------
                                             APPENDIX  F
                                                                               Input  Data  (concluded)
OD
6.OO6-03
i.^oe-ia
  3
  I    2
3^33 €-05
0.0
  Z    I
3.00K-O2
1.00E-&S
  3    1
T.soe-oa

  3
  i    a
3.33C-O9
t.OOEfrOO
1.00E<-00
O.O
  2    2
S.OOE-02
                        3    2
                      7.60E-02
                      i.ooe+oo
                      0.0
                      o.o
                      o.e
                                       a  o.o
                                       o  o.o
                                       2  1.606*06
                                          O-O
                                       O  0.0
                                                    0.0 .
                                                    0.0
                                                    0.0











1
1
a
0
s
9
0
0
e
0
o
c
ft
1
I
SOE-01
8ee*o«
5SE+03
20E
'•»G>
0.0
o.o
1.606*0*
0.0
o.o
0.0
o.e
o.o
o.o
o.o
0.9
2 2
1 2
O.OOE*01
0.0
0.0
0.0
0*0
o.o
I.S6E-07
0.0
o.a
o.o
o.o
0.0
o.o
C.O
0.0
2 £
2 a
«»00E«-00 3.0'
O.O 0,0
O.O O.O
C.O 0.0
          1.
          it

          2.50E+02
        90WESTS;i- CHECK POINT NtWElER FIVE
                                                                         2.30E»00
0.0
0.0
                                                                                             2.22E+OS
0.0
0.0
0.0
                                                                                             7.30E+02
                                                                (SI
                                       CHECK
                                                   HUHBER SIX
10
 2
                                                                                              00006300
                                                                                              OOO 0« 390
                                                                                              OOOOS4OO
                                                                                              00000*50
                                                                                              000 OD 500
                                                                                              00000550
                                                                                              00008600
                                                                                              OOOOO630
                                                                                              OOOOST99
                                                                                              OO0007SO
                                                                                              ooooaaoo
                                                                                              ooooaaso
                                                                                              0000*990
                                                                                              QOOOQ9SO
                                                                                              0000-3000
                                                                                              0000905(3
                                                                                              ooooi joo
                                                                                              00009 ISO
                                                                                              OQQOS200
                                                                                              o oo 05 as o
                                                                                              00009300
                                                                                              00009350
                                                                                              00009400
                                                                                              O04094SO
                                                                                              00009500
                                                                                              OOOOOSSO
                                                                                              00009600
                                                                                              00009650
                                                                                              000007110
                                                                                              OOB39T50
                                                                                              00009SOO
                                                                                              000099(10
                                                                                              9O0099SO
                                                                                              OOO 10 000
                                                                                              aooiooao
                                                                                              oooiotao
                                                                                              00010130
                                                                                              00010300
                                                                                              U001O2SO
                                                                                              00010300
                                                                                              000 10 330
                                                                                              00010400
                                                                                              00010500
                                                                                              oooiosso
                                                                                                                                oootoeso
                                                                                                                                00010700

-------
                                                                              2.   output  (a)
               ** DBFIMITIOX Of

                      JF    OEF1NITION
                                               INPUTS
                            AIR
                            CROUNO SURFACE
                            SURFACE OATEH
                            GROUND BATtR
** OEFIN[flqN  Or  PROBABILITY INPUTS

   IFLAG   OEFIMITIOM

     0     PROBABILITY (PRQB> CONSTANT
     1     STEP FUNCTION  »T TIKE T t» CHANGES PRO8  BY  AMOUNT CP
     2     RAHP FUNCTION  AT TP CHANGES P«O9 BY  SLOPE CP
     3     EXPONENTIAL FUNCTION AT TS* CHAMGES P«OB BY TJWE CONSTANT
     *     BELT*  FUMCTlOMe AT tIME IP «5I-E*S£ TO  ENVIRONMENT IS AAI
                l  PWBAB1LITV AND flELATED DATA
                JF       HJF    J       NJJ
                                                  AAl
                                                                PRO8
                                                                                1FUAG
*»
MJ
1
1
I
2

X
2
3


3
3

4



3
3
3
3

3
3
3


3
3

I



I
2
3
1

S
3
1


2
3

1



1
a
i
2

I
1
3


2
2

4



5. COL- 02 1
7.SOE-02 S
6«OOE-03 i
3.33E-Q5
(
s. OOE— oa i
7.SOE-O2 1
3.33 e-os j

t
9, 006-02
7«50E-O2

o.o
.

i
1,096-13
!«49E- It
S.40E-12
UOQE 00
).0
l.OOE-13
i.ioE-ia
UODE 00
U(JOE 00
}»0
.OOE 00
. OQE DO
»ioe-it
.OtiE cJO
.OOE 00
.OOE DO
i .406- 07
o
9
0
0
2
0
0
o
o
2
0
0
0
0
a
o
o
o
                                  CHECK POINT NUMBER FIVE
                                  CHECK POINT NUMBER six
                                                           {51
o.o
0.0
o.o
o.o
l.ftOOOOE Oft
0.0
O.O
0.0
0.0
j.t.ooooe os
o.a
o.o
o.o
o.o
o.o
o.o
o.o
0.0
  s
  6
                                      o.o
                                      0.3
                                      0.0
                                      0.0
                                      I.S600QE-P7
                                      o.o
                                      0.0
                                      o.o
                                      o.o
                                      i.56UOSE-07
                                      0.0
                                      o.o
                                      o.a
                                      o.o
                                      0.0
                                      o.o
                                      o.o
                                      o.o

-------
APPENDIX F         2.   Output (a)  continued
  ** SELECTED RgSIMML. ELEMENTS IH MASTE
        GBAM3 AT START OF TERMINAL STORAGE
  FOR TOTAl. FUB, =    187000. METRIC TONS

        r.li       1.26E OS
         I       to8Ar; 09
        PO       9.C6E 0?
     SELECTED HADJOKUCtlDES IN WASTE
                GRAMS  IN BASTE   VERSUS TIKE  IN YEARS
TIME
0.
S.
1C.
15.
SO.
25.
30.
40.
50.
60.
70.
BO.
90 =
too.
200.
304.
400.
£00.
6O«.
780.
•QO.
900.
1000.
2000,
3000.
4OOO.
60OO«
aooo.
7000.
8000.
90OO.
10000.
20000.
30000.
ftOOOQ.
SO 000.
60000.
70000.
80000.
40000.
laoooo.
200000.
30OOOO.
4 CO 000,
aOOOOO.
60000Q.
700000.
BOO 000.
900000.
i oooooo.
SR-90
B.30E
3»««E
LOSE
S.84E
4.22E
7. HE
e.aefi
4.91E
I.90E
3.09E
2.43E
I.9JE
1.46E
use
6.87E
7.72B
7.82E
7.05C
T.21B
6. IOC
4.Q3E-
3.6SE—
8.68E-
06
06
07
07
07
07
07
07
07
07
07
07
07
O7
OS
O4
03
02
01
00
01
02
03
I.62E-14
8.95E-
C. 0
0»0
o.e
o.o
0.0
0.0
o.o
o.o •
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
fl.O
o.o
0.0
0.0
o.o
0.0
o.o
0.0
zs

























1-129
3.48C
2.B6E
T*96E
I.77E
3.40C
S.G4E
S>44E
6.B4E
S.S4C
5.S4E
E.84E
S.84E
s.a+e
S.I4E
5.84E
i*fl4E
B.84E
5.Q4E
S.04E
6.84£
G.i4E
E.B4E
5.B4E
S.B4E
5.S4E
S.04E
S.84E
5.S4E
6.84E
5.84E
5.B4E
S.B4E
8. 83E
5.83E
5.a3i;
2.33E
S.83E
E.82E
S.S2E
E.62E
s.aiE
E.80E
B.77E
S.74E
6.T2E
5.69E
8.C7E
i.sse
S.63ld
5.6IE
02
03
03
04
04
O4
04
04
04
04
O4
04
04
04
04
04
04
04
04
04
04
04
04
04
04
84
04
O4
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
O4
04
PB-210
2.12E-07
a,12E-O«
9.106-04
3,906-OS
1.32E-O4
3.2SE-04
*.Sie-04
7.0OE-O4
V,66e-l>*
1.26E-03
l.ESE-03
1.94E-03
2.3SE-03
2.B2E— O3
1.28E-02
3.C8E-02
7.85E-02
1.39E-0*
2.201-01
3.20E-O1
4*392-01
S.7SE-01
7.B9E— Oi
2.96E 00
6.O6E 00
9.696 HO
1.37E 01
1.70E 01
2.Z3E OI
2.69E 01
3.1SB 61
3.63E 01
8,406 01
1.27E 02
1.63(1 02
I.93E 02
S.I9E 02
S.4OE O2
S.S9E 02
S.74E 02
2. sec 02
3.40E 02
3.CSE 02
2.S3E 02
1.99S 02
I.SSE 02
1.1 9E 02
9.16E 01
7.07E 01
S.476 01
  SPCC1FIC ACTIVITY
        Ct/C  t.4fg  01  1ȣ3E-Q4  0.12E Ol
                      50

-------
                                   BAOIBNWCL1DE        CC1 DATA        DRC DATA       RKD DATA

                                         ER~«0          1.64E-OB        Z.90E-02       S.OOE 01
                                         1-139          -i.SEE-10        *.91E-03       0.0
                                        PB-210          S.39E-10        2.756-03       4.00E 03
                                   **  GROUNII HATCH PARAMETERS


                                     OROUNO MATS) SEEPAGE VELOCITY.  VX*  IN «ETEUS/aAlf •»  ««OBE-03
                                     POROSITY OF SOLID MEDIUM) POR1  =   t.SOE-OI
                                     BULK  SOLID DENSITY. DULKD.  IN CRAMS/CUBIC CM =  2.30E OO
                                     DISPEHSIVItr COEFFICIENTS.  IN 8E1EHS: AXIAL, W- =•  S.OOt  Ql   TRANSVERSE. AT =  6-OOE  OO

                                     *ouit-~en VALUES, IN MEIEHSI  HEIGHT,  HT=  suoot 01
                                     DISTANCE FROM SOURCE TO e«E«6ENCE,  XLCIZI EFFECTIVE BIDTH, VWdZt
ffj                                   COHCENTRftTION AT TV * AVCRA6E CONCEMtSAT IOM IN VW

                                       ZONE     IZ= 1     IZ= 2     1Z»  3     12= 4      tZ» 5      IZ= 6     IZ=> 7      IZ= B
                                     X4.UZ}    0«0       l.OQE 04  0.0        0.0        0.0       O.O       Q.O        2.03E 04
                                     YHtlZl    O.O       8.S8E 03  O.D        0.0        O.O       O.O       0*0        3.64L 03
                                     YTII23    0,0       Si.20E 02  0.0        0.0        0.0       0.0       0.0        7.30E 02

                                     EXPOSED AREA OF SOLiDIF1EO  WASTE SPECIMEN* FSi> IN  SQUARE  CM =  «.3St 04
                                     VOLUME OP SOLIDIFIED BASTE  SPECIMEN. VSt IN CUBIC  CM -  SUS26 05
                                     TOTAL CANISTER INVENTORY. CINV  c   fi.2SE 04
                                     ASSURED NtltSER OF CAMSTER  FAILURES. CFAI 1  ?,.50t 03

-------
                                                  APPENDIX F
2. Output  (a) continued
                        ** CDC(K, J*=. JZl DATA,  t Jf* 1.2,3 t*l» OEF*W_T VM.USS USED.
                                                                                      NONE
                                                                                            READ
                           12= 1
                                                                        12* 2
Ml
SU-90
1-130
pa-aio
11- 3
SR-SD
1-129
PB-210
»Z* 3
SB-9O
1-129
PB-21O
1Z» 7
IN -90
PB-210
S.OOE
S.OOE
5. DOE

5.00E
S.OOE

S.OOE
S.OOE
S.OOE

5. 006
S.OOE
5. ODE
01
01

01
01
01

01
01
01

01
01
ot
8.306-05
Z.30E-05

E.30E-03
2.3QE-OS

2.30E-OS
2.30E-OS
2.30E-0S

2.30E-OS
2.30E-05
2.30E-OS
2.30E-OB
2.30E-OS

2. 3 OS -03
S.3OE-OS

Z.30E-05
2.30K-OS
2.30E-OS

1.30B-05
2.30E-OS
2. JOE-OS
o.o
0.0
o.o

0*0
0.0
o.o

0.0
o.o
o.o

0.0
o.o
o.o
                                                                        iz» a
5-OOE 01
5.00- 01
S.OOE 01
S.OOE 01
s.ooe 01
5.00E 01
a.30E-05
2,soe-os
a.aoe-os
2.30E-OS
2.30E-&S
2.306-05
2.30E-03
S .30E-0 fi
K.aoe-os
2.306-05
2.3d£-OS
Z.306-US
0.0
0.0
0.0
0*0
o.o
o.o
S.OOE 01
s.oec 01
S.OOE 01
s.ooe ai
S.OOE 01
S.OOE 01
2.30E-OS
2.38E-OS
S.30E-05
2«30£-01
2.3OE-OS
2.30E-05
2.30E-OS
2.30E-O5
2.30E-OS
2.30E-OS
Z.30E-OS
2.30E-OS
0.0
o.o
0.0
o.o
o.o
o.o

-------

90 DISPW JF »121  OAT* , < JF»I ,2,3, * J
  12*  1
   1.006 OO   7.90E 11  0.0        l.OOc  00
     11= 2
l.OOt 00  1.0 IE  J4  S.06E 13  t.OOE  OO
  11- 3
   l.OOE  00   2o27E 14  1.14E 14   1.006 00
     12= *
t.OOE 00  4.77E 13  1.12E 13   l.OOE  00
  IZ=" 8
   t.OOE 00   1.22E 14  3.06E 13   l.OOE 00
                                                 l.OOii OO   1.14E 14  Z*e5E  13   l.OOE 00
  II- T
   l.OOE 00   1.5TE 14  7.B8E 13   t.OOE OO
      li=  a
I.JOE, oo  S.««E 12  «..«oe i«   i.oae  oo
   ZONA1.QIJF.1Z>  DATA,
  11* 1
   I * 1*6-20   1.29E-O1  0,0        O.O
     12= 2.
3.31E-23  4.41E-OI  2.17E-O3   l.OOE 00
  IZ» 3
             9.1SE-02  4.60E-O4   O.O
                                                       11=  «
                                                 2.12E-24   B.fiSG-03  2.1BE-05  0.0
  IZ' B
   3.03E-2«   3.S9E-02  9.OOE~05   0.0
      IZ= 6
3*D3£~23  2.
                                                                                 0,0
  12* T
   3.18C-2*  4.18E-02  '2.10E-Q4   0.0
      12= S
3.12E-23  1.46E-02  1.44E-03   l.OOE OO
   JONDEPUZ)  DATA
   12- I      IZ» B     IZ» 3      IZ= 4     12* 5      IZ= 6     IZ= 7      IZ= 8
   4«04E-13   I.S3E-15  1.94E-16   l.OSE-16  1.T9E-16   1.17E-IS  1 .SOE-l(i   1.35E-IS

-------
                       APPENDIX P
2,  Output  (a)  continued
»« AREABI1Z) DATA
1Z- 1 IZ* 2
o.o s.
** ADJH JT.JHA,
1Z* I
Jf* 1
Jfm 2
JF» 3
JF= 4
12= 2
•if* 1
JFat *
JF» 3
J^pSE ^
1Z- 3
JF» 1
JF- Z
JF» 3
JF» *
JF» i
JFS« 2
JF» 3
JF* 4
12" 8
JF* 1
JF-s 2
JF* 3
JF» 4
12* 6
JF» 1
JF» 2
JF=» 3
JFc 4
11* T
4FH» 1
4F» 2
JF» 3
JF* 4
12= S
JF* I
JF* 2
JF* 3
JF» 4
OAg. tl
IZt.ADJ

0.0
o.o
0.0
o.o

0,0
o.o
o.o
o.o

o.o
o.o
o.o
0.0
o.o
0.0
0.0
o.o

0.0
0.0
0.0
0.0

0.0
0.0
0.0
o.o

t.o
o.o
e.o
o.o

o.o
0.0
0.0
0.0
IZ* 3
1.14E It
IE< JF.J^A, 1

0.0
0.0
o.o
o.o

o.o
0.0
0.0
0.0

o.o
0.0
0.0
o.o
0,6
0.0
0.0
o.o

o.o
0.0
0.0
0.0

0.0
JJ.O
o.o
O.Q

0.0
0.0
o.o
o.o

0.0
O.Q
O.Q
0.0
IZ»"» 12= S
l«t£E 11 3.96E 11
Zl D*T*. I4f=*3i,2.3»

1 .OOE-09
O.O
0.0
o.o

1 .OQE-O9
O.O
O.Q
0.0

1.0DE-O9
O.O
0-0
0.0
1 .OOE-09
0.0
0.0
0.0

1 .OOE-09
0.0
0.0
o.o

I -ooc-O'i
0.0
0.0
o.o

I , OOE-09
o.o
o.o
0.0

1 .OOE-09
0.0
o.o
0.0
IZ= 6
z.esE 11
4)

2.00E 01
o.o
0.0
0.0

2.00E Ol
O.O
O.O
0.0

2.001: 01
o.o
0.0
0.0
2.00K 01
o.o
O.o
O.Q

Z.OOE 01
0.0
0.0
8,0

S.OOL Ot
0.0
9.0
0.0

Z.OOE 01
0.0
0.0
0.0

2. ODE 01
0.0
o.o
0.0
I2r» 7 IZe 8
7.8BE 11 S.40E


0.0
e.o
o.o
o.o

o.o
o.o
o.o
e.o

o«o
o.o
o.o
0.0
O.D
0.0
0.0
o.o

0.0
o.o
o.o
o.o

e.a
0.0
o.o
0.0

o.o
o.o
o.o
0.0

o.o
5.00E-01
0.0
0.0

II


0.0
0.0
0.0
0.0

0.0
o.o
0.0
o.o

o.o
o.o
o.o
0.0
0.0
o.o
o.o
o.o

0.0
0.0
0.0
o.o

o.o
0.0
0.0
0.0

o.o
o.o
0.0
o.o

9.0
;:.QI
o.o
o.o
                                                                     01
0.0
o.o
o.a
0.0
0.0
0.0
2.MS-DJ
0.0
0.0
O.Q
0.0
0.0
o.a
0.0
0.0
0.O
o.o
o.o
o.o
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.a
0.0
8.00S-01
o.g
o.o
O.Q
o.o
o.o
o.o
o.o
2.OOC Ol
o.o
o.o
o.o
o.o
0.0
0.0
O. 0
0.0
o.o
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
o.o
o.o
o.o
0.0
0.0
0.0
P..OOE Ot
0.0

-------
                                                                         2;,'  -''Output:' (a)' cantinuect
                                       ** MM.INT1 JF.tttOE.NSPI OATA
                                        IZ* 1
ut
JF
1
1
Z
E
3
3
4
4
12* 2
JF
I
1
Z
2.
3
3
*
4
HE 3
JF
1
1
Z
Z
3
3
4
4
12" 4 '
JF
1
1
2
Z
3
3
4
4
MODE
1
Z
I
Z
1
Z
i
2

MODE
1
2
J
2
1
Z
1
2

MODE
1
2
1
a
i
z
i
2

It DDE
1
2 •
t
2
1
Z
1
2
MSp»l THRU
1
t
4
4
4
4
1
1

NSPWI THRU
i
i
4
4
4
4
1
1

NSP«I THRU
i
i
4
4
4
4
1
1

»*SP»1 THRU
1
1
4
4
4
4
1
1
VOLINT
l.OOE 00
7.30E 00
+.OOE-O1
0.0
0,0
0.0
o.o
0*0




0.0
e. JOE; 07
o.o
0.0






0.0
0.0
0.0
a.o






0.0
0.0
0.0
0.0



VOL I NT
1 *Q0i£ OO
7.30E 09
4-.OOE—01
O.O
l.OOE-03
4.00E OS
4.SOE 03
T.oae OT

VOL INT
l.OOE 00
7.3 oe 09
4.00E-01
1.11E 10
1 . OO E-O3
E.ooe os
o.o
0.0

VOL INT
l.OOE 00
T.30E 09
4.00E-Ot
3.«5E 09
ioOoe-o3
o.o
0.0
OaO


o.o
I.19E 10
0.0
5.90E 09






o.o
1.B1E 10
o.o
4.60E O9






0.0
7.AOE 09
0.0
0.0




0.0
0.0
0.0
o.o






0.0
4.676 09
o.o
4.03E 09






0.0
B.32E OS
o.o
3.21E 09




o.o
0.0
0.0
o.o






0.0
4.0SE 09
o.o
o.o






o.o
3,2 1C 09
0.0
o.o



-------
                                           APPENDIX F
2.   Output (a) continued
Ln
II=t 5
JF
t
I
Z
2
3
3
4
4
IZ* ft
JF
I
I
2
2
3
3
4
4
IZ= 7
JF
1
1
a
2
3
3
&
4
I*a 8
JF
t
1
2
Z
3
3
4
4

MODE NSP-J THRU VOLIKT
1 1 1.0 QE 00
2 I 7.30G 09
1 4 4.00E-O1
2 4 2.SZE 11
1 4 1.0OE-Q3
a 4 0.0
1 1 0-0
2 1 0.0

MODE NSP=1 THRU VOL INT
i i i.ooe oo
Z 1 7.30E O9
1 4 4.00E-01
2 ' 4 t.97E 10
1 4 l.OQE-03
2 4 0*0
1 1 O.O
2 1 0.9





0.0
1.02E 1O
o.o
o.o






o.o
I.38E 1O
0.0
0.0







o.o
5.-»3E 09
O.O
1 .5 BE 1O






0.0
1.92E OS
O.O
l.SOE 10







0.0
l.SOE
D.O
O.O






o.o
l.SOE
0.0
0.0








10









10





MODE NSPJ=t THRU VCt I NT
t i i.ooe oo
2 1 7.3 OE 09
1 4 4.00E-O1
2
1
z
1
2

MODE KSP=l T
1
2
f
2
1
2
1
2
E.82E O9
l.OOE-03
4.00E OS
o.o
o.o

RU VOL I NT
I.OOE 00
T.30G 09
4.00E-O1
2.B4E O9
l.OQE-03
4.00E OS
2.OOE O4
4.BOE 07


o.o
3.27E 10
0.0
1.67E 10






0.0
O.O
o.o
9.60E as




a.o
r.eee 09
o.o
6.31E 10






0.0
6.E3E 09
O.O
3.46E 1O




0.0
6.31E
O.O
a.o






o.o
3.46E
O.O
o.o





10









10





-------
                                                                            •2.   -Output  (a) continued
                                         ** •IOr«C(Kl^PiNSPJ  DATA
fUOIDNUCLIDE
    JF
     1
     £
     3
                                                         5R-90
                                                          THRU
                                                            1
                                                            *
Ln
4F
1
a
3
*
«SP*t THRU
I
4
4
1
en
1*QG£ OO
S. 2 66-01
1.08E 00
i.iee oo
RAO1ONUCLJD£ = PB-KIO
Jf
1
2
3
4
NSP-t THHU
1
4
4-
1
BJI
i.ooe oo
5.26E-OI
l.OOE OO
1.1 £K -01
      SIOFAC
i.oof: oo
B.26E-OI     S.23K~«3     3.H«e-O3
1*OQE OO     2.40E-01
E.10E-01
                                     9.48E-01     Z.S9S-01
                                     I«16£ O9     3.B4B- 00
                                     2.32E-03     1.71E-03
                                     1.16E-01     3.971-O1
                                                                                                        B.»*fi-02
                                                                                                        0»B
                                                                                                        5.02E-02
                                                                                                        0.0

-------
                                                         F
2.  Output  (a)  continued
                   #* OOSFACIK, JF.HOOE,IH> DATA



                   OR6*N - TOT BUOY

SR-9O
1-129
PB-2IO
IN * ot

SR-90
I-1J«
PB-210
HOOE*
0.0
H.55E
I.43E
TRACT
HDDS"
i.O
1.9SE
5.71E
1

O7
07

1

07
06
KGOEx-2
1.78E
4.19E
3.40E

KODE*2
3. see
5.34E
7.12E

03
SO
03


Ot
oo
oo
MCJOE=1
0.0
5.73E
2. 27E

MODE3!
a. a
1. IQE
9. 155
I

04
04

I

04
03
MODEs 2
1 »6S6
7.2BE
S.10E

MOO6=2
4.BSI
9.70E
9.7OE

O2
00
02


01
00
oo
MODE" I
0.0
2.01E 03
3. DOE 02

MODE-i "*ra
0.0
4.1BE 02
1.81E 02
HOO£'(
1.69E
7.E2E
S.10E

'3 MODe=i
4.6SE
9.70E
9.70E
j
08
oo •
OS.

9
01
00
00
MQOEs t
1.69S 02
7.Z2E 00
s.ioe oz

iwoe-i JFS
«. esg 01
^••"J^Ssi SO
5. 70S 00
«ooe=2
1.69E
T.2ZE
3. I BE

:* ww^i
4.6SE
S.70E
9.70G
02
00
02

I
01
OO
00
                    OR 6 AN
                            CONAOS
Ul
CO
UODFxl MOOE=2 MODE^l MDOO2 MOaC'l KOOE^Z HQI)E=1
SR-90
J-I2*
P8-21 0
0.0
1.31E
j.eit

OB
07
1.7«E
4.19E
3. 4 OS
»3
00
«
O.O
7.8BE
1.S2E

04
04
!*«$£
7.22E
S.10L
OS
00
02
0.0
2.74E
2o54E

03
02
1.69B
7.Z2E
5.IOE
02
00
02
1.69E
7.22E
S.10E
02
oo
02
»«ioe«2
1.69E
7.22E
S.10E
02
OB
O2
IN « UIVER

SR-90

PB— SI O

0.0
3.60C
7.87E
JF<
1
07
O6
«»
o.o
2.1 IE
3. JOE

2
00
04

«ooe»!
2.16C
i. tee
JF»
i
§4
O4
«z
o.o
2.81E
4.7OE

E
00
03

MCM5En -
O.O
t.5?E
J.53E
JF=3
I
02
02
fcffinjS'i*;
raUOC,^*
0.0
2. 01E
4.7OE
J

00
03
unnf^Ei
P*UU-CsICJ
0.0
2.S1E
».TO£
J|pJ
1
1
oo
O3
**
O.O
a.aiE
4. TOE
£

00
O3

-------
                                                                            2.   <3»tjmt  (a)
ORCAN *   LUNGS



     SR-90


    PB-21O
                          t-129
                         PB-2IO
                                           JF=1
                                    0.0
                                    0.0
                                                                                             JP=3


Of
06
"=
OB
OT
MO1ȣ=J
9. TIE
4*456
&.4OE
2. 675
2.48E
3.30E
»
03
02
OS
1
04
00
OS
MQDgs
o.o
2. SIR
t.44E
0.0
9.aee
4,226
1

04
0*
t JF~2
04
04
HODL=2
O.O
0.0
0.0
8»43B 03
3.276 00
S.OOE 0*
HOOS= 1
O.O
1.02E
1 .'JOE
0.2
3.296
S.SW5


03
oa
j
03
oa
MUO£=2
0.0
O.O
O.O
F=3
8.43E 03
3.276 00
S.OOE 04
HUOE-1
0.0
0.0
0.0
R.43E 03
3.275 00
S.03£ 04
HQOE=2
O.O
O.O
0.0
£•4
MODE^'J
8.43E
3.27E
s.ooe




03
oo
04
U3
10
OR SAN
          BONE


SR-9O
J-129
po-aio
ane*N * TM*«OIO


sn-so
I-J29
PB-2IO

MODE= 1
0.0
1,45£
2.4SE


MQDE=1
a. a
l.OIE
1.20E
JF=


OG
87

JFs


Q8
0?
= 1
MODE-
2.67E
2.48E
3.10E

it
MODE=
. 0.0
5.5SE
0*fl

2
94
oa
OS


2

OS


**ODE>=1
0.0
8.72E
3,96%


MOOK=1
o.o
6.o«e
1.91E
J


O4
04

J


04
04
pas 2
HQDE=2
B»*3H
3.27E
S.QuE

F«2
MQOE=2
O.O
5. 17E
O.O


O3
00
04




03


MODE*
O.O
3.06E
S.I6E


«OOE=
o.o
2.12E
2.S3E
JF=
1

03
OS

Jps
1

03
02
=3
HOOE=2
8.43E
3.27E
5»ODE

=3
MOOE=2
O.O
5.17E
0.0


03
00
04




O3


HOOE=l
O.43E
3.Z7E
S.OOE


MOOE=l
0.9
5.17E
0.0
JF=4

03
00
O4

JF=4


03


MOOE=s2
S«43£
3.Z7E
s.ooe


KODE=2
o.o
S.17E
9.0


03
oo
04




03


-------
    APPENDIX F
2.  Output (b)
RELEASE FRACTIONS BY EACH CUFSET, BELOO1
TIME
40,
40.
40.
40.
50.
50.
SO.
£0.
60.
60.
60.
60.
70*
70,
70.
7O.
SC,
SO.
ao.
so.
•so.
90.
90.
90.
100.
too.
100.
100.
200.
200.
200.
200.
3CO.
3 DO.
300.
30C.
40O.
400.
A 00.
400.
500.
600.
500.
BOO.
600.
600.
600.
600,
700.
700.
700.
700.
aoo.
eoo.
BOO.
eoo.
JF INITIAL RELEASE FRACTIONS
I
2
3
4
1
2
3
4
1
2
3
4
»
a
3
4
1
2
3
»
1
2
3
4
I
2
3
4
t
a
3
4
1
a
3
4
1
e
3
4
1
Z
3
4
I
Z
3
4
t
Z
3
4
i
Z
3
4
S.OOE-14
0.0
0.0
9,976-12
5.OOE-14
O.O
o.o
9.97E-I2
S.00E-14
O.O
o.o
9.976-12
S.OOE-S4
0.0
0.0
9.97E-I2
8.OOB-1*
0.0
0.0
9.97E-12
5.00E-14
0.0
0.0 ,
9.97E-12
S.OOE-14
O.O
0.0
9.9TE-12
S.OOI-13
0.0
o.o
9.0OE-10
s.ooe-13
0.0
0.0
«.oot-io
5.00E-13
0.0
o.e
9.00E-IO
S.OOE-I3
O.O
0.0
9.0OE-IO
5. COS- 13
0.0
0.0
S.COE- JO
S.OOE-I3
o.o
o.o
9.00£-li>
s.ooe-ia
o.o
o.e
9.00E-10
l.BOii-12
e.ooE-t4
5.GOE-14

i.eoe-is
S.OOE-14
6.00S-1*

1.80E-12
S.OOE-14
S»OOE-14

l.BOE-12
S.OOE-14
S.OOE-14

i.8OC-!2
B.OOE-14
e.ooE-14

l.BOE-12
S.OOE-14
g . OOE— I 4

1 . SOS" 12
li.OOE-i 4
B.OOE-J4

i.80E-it
5.00E-13
S.OOE-13

i . «OE- t \
s.ooe-13
5.0QE-I3

1.80E--H
5.00E-13
3»00£-13

1 . BOE- 1 1
S. 006-13
S.OOE-13

i.ao£-ii
S.OOE-13
s.ooe-i3

I *«oe-n
!ioOOE-13
5.00E-13

I . SOB- 11
55.00E-13
B.OOE-13

I .446-13
6 .07€-i2
6.0T6-12

1 .44E-13
6.O76-J2
6.O7E-12

1 .44E-I3
6.07E-12
6.07E-1I

1.44E-13
6.O76— 12
6.0TE-1Z

1 .44E-13
6.07E-12
S.07E-12

1 .44E-13
6.07E-12
6.S7E-12

1 .44C-13
6,872-12
6.07E-12

1.44E-12
6.07E-1I
S.07S-J1

1 .44E-1Z
G.07E-11
6.07E-H

t .44E-12
6.07E-U
6.O7E-H

1 .44E-12
6.O76-1I
6.07E-1 1

1.44E-12
6.07E-11
6.O7E-11

i, 446-18
6.07E-U
6.07E-11

l»44C-tZ
6.07E-11
* .OTE-1 1

This table continues through 1,000,000 years.
                  60

-------
  APPENDIX  F
2.   Output,  (b)  continued
                 1-129
                           31
RELEAS1 INCKeNfiHTS TO PRELIMINARY ENVIRONMENT INPUT
RECEPTORS. RlJ, FROM ALL RELEASE EVENTS, IN CURIES
    TIME
                      GROUND
                      SURFACE
                                SUBF4CE
0,
6,
10*
IS.
80.
25.
30.
40.
SO.
60.
7O»
no.
90.
100.
8OO.
300.
400.
500.
COO.
700.
aco.
900.
1000.
20 OO.
3000.
4000.
so oo.
6000.
7000.
GOOD.
9000.
10000.
20000.
30000.
40000*
60000.
60OOO.
70000*
aoooo*
90000*
100DOO*
£00000.
300000.
« 000 00.
EOOQOO.
OGCOOOo
700000,
BOOOOO .
900000,
1900000.
0.0
0.0
e.o
o.o
0.0
0*0
0.0
1.906-U
i.voe-ii
1. 9OS- 11
1 .SOS— li
i»9oe— 11
1.90E-U
1.9QE-II
l.SOE-tO
1.9QE-10
1 .SOE-10
1 .50H-10
1.90EI-ID
4.906-10
1.90E-10
1.90E-IO
i.soe-io.
1 .50E-09
1 .90E-O9
l.SOE-Ot
1 .906-09
I .90E-09
j. tee- 09
1.9OE-O9
I .90E-09
1 .90E-09
t .90S— 08
1 .896-08
i.eflii-oa
1.09E-09
1 .896—08
1.89B-OB
1 .89S-OB
i *e9e-aa
1.896— OS
1.B9S-Q7
1 .S8E-07
1.8TE-07
• 1 .866-07
i .aae-07
i .ass-07
1.80E-07
1 .83E-07
1.03E-07
O.O
o.o
o.o
0.0
0.0
o.o
0.0
B.83E-J1
S.B3E-U
S«83£— 1 J
5.83E-11
B.83E-H
5.63E-H
5.03!>H
S.83E-10
S.03F.-10
S.S3E-1O
5.83E-10
5.B3E-10
3»63C— 10
B.
-------
                                             APPENDIX F
Output (b)  continued
                                  1-129
                                          Zl
ffl
to
CONCENTRATIONS AT ENVIRONMENT
JF=2 MICROCURIES/SGUAHE CM* JF
ZONE* 1

TIME

0.
9*
io«
15.
20.
2E.
30.
40.
SO,
60o
70.
86 «
90.
1OO.
20O,
30O.
4OO.
soo*
600.
700.
SOB.
900.
1000.
2000.
3000.
4OOO*
EOOO.
6OOO.
7OOD.
aooo*
9000.
10500.
20000.
30000.
*QOOO.
SOO DO.
6000O.
70000.
00000,
90000.
10000O.
80OOOO.
300OOOo
500000.
scoooo*
eooooo.
70OOOO.
eooooc.
30DOOO,
lOOOOOD*
JF«=l
AIR

c.o
0*0
0.0
o.o
0.0
c.o
o.o
4.I1E-2S
1.83E-2B
7.5SE-25
9.26K-2S
I.10E-24
1.27E-2*
1.44E-24
3*166-23
4 .B7E-23
6.S6E-23
«,SBE-23
S.98E-23
1.17E-22
1 *34E-22
1.S1E-22
1 .«7E~22
3.376-21
S.02E-E1
6.62E-2I
B.19E-21
9 .72E-21
1.12E-ZO
i .27E-20
1.41E-20
1 ,S8E-20
3.0HE-19
4.16E-19
§»Q3E-19
S.71E-1W
e.asE-i*
e.aaE-19
7.0JSE-19
7.29E-19
7.50E-19
1.9ZE-17
l*fl9E~17
I.88E-17
1.87E-17
1.87E-17
1 .4UE-17
l.BSE-17
1.8SE-J7
I.B4E-IT
JF=2
GROUND
SURFACE
0.0
O.O
0.0
0*0
O.O
0*0
o.o
1.72E-17
3.44E-17
S.lttE-17
6.67E-I7
».S5£-17
1.03S-16
l.^OE-16
2.92E-16
4.63E-16
6.34E-16
y.ois-lt
9o75E— 16
I.14E-1S
I.316-1S
i.4ae-ia
1.6SE-1S
3.3SE-1S
4.99E-15
«.«OE-15
B»17e-lH
9.7OE-1S
i.ize-14
t *S7E-1 4
I.6IE-14
1.8S6-1*
3.8 US- 14
4.I&E-14
S.OZE-14
5.71E-14
6.2SC—14
fc.OQ£-J4
T.01E-14
7.Z9E-14
7.BOE-1*
.92E-1J
. B9C-. 3
.88E-13
.ere-ia
.BTC-13
.666-13
.ese-i3
.656-13
1.84E-13
INPUT RECEPTOR, «2
••~3 AND « MICROCURIi
JF=S
SURFACE
WATER
0,0
Q.O
0.0
0*0
O.O
0.0
0.9
o.o
Q.O
0.0
Q.O
O*0
0.0
O.O
0*0
0*0
Q.O
a.o
0.0
o.o
o.o
0.0
0.0
0,0
0.0
o.o
a.o
o.o
o.o
0.0
o.o
a.o
0*0
o.o
0.0
0.0
0.0
o.o
0.0
0.0
o.o
0.0
a.o
0.0
0.0
o.o
a.o
o.o
0*0
O.o
JF=4
C HOUND
WATER
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
O.Q
a.o
0.0
a.o
0.0
0.0
0.0
0.0
a.o
0*0
a.o
0.0
o.o
o.o
a. a
o.o
a.o
a. a
o.o
o.o
a.o
o.a
0.0
0.0
0,0
o.o
a.o
o.o
o.o
0*0
0.0
0*0
o.o
o.o
o.o
o.o
o.o
0,0
0.0
D.O
o.o
                                                                          JF=I MICRCCURIEtfEAmS/CyBlC CH
                                                                                                                  JF-4
TIME

0*
3.
10.
IS.
20.
zs.
30,
40.
SO.
eo.
70.
ao.
90*
100,
20O.
300*
40O.
SOO.
609.
700.
UQO.
900.
1000.
2000,
3000.
4000*
SO 00.
6000.
7000.
SO 00.
9000.
10000.
J1CORO.
300 oa.
40OOO*
soo ao*
60O50.
70000,
BOO 00.
900 00 .
1QCO 00 *
200800.
3000 oo.
400004*
$000 oa .
60000O .
700000.
eoooao.
900000.
1000000.
AIR

6.0
0*0
a.o
0.0
a.o
o.a
a.o
3.92E-27
6.83E-27
9.74E-2T
1.27E-Z6
1.56E-26
1.8S6-2S
2.14E-26
5.0SE-8S
7.9SE-2S
1 .OSE-24
1.376-24
1.66E-24
1.95E-24
Z.24E-24
2.S3E-24
Z.81E-24
5«A8E-23
8.47E-23
1. 12E-22
l,38E-22
1.64E-ZS
l.SOE-22
2,1 SE— 22
2.39E-22
2.63E-S2
S.22E-21
7.05E-Z1
3.S1E-21
9,67E-2l
i.oae-zo
1.13E-20
1.19E-2Q
1 . 23E-2O
1.27E-2O
3. aae-ie
3. 21E-19
3.19E-19
3.18E-1S
3. 16E-19
3.15E-19
3.H4E-1S
3.13C-19
3.11C-19
SROUND
SURFACE
0.0
O.Q
0.0
O*0
O.O
0.0
0*0
2.91E-19
5.S2E-15
».73E-19
1 .t 6E-1S
1.46E-1B
1,75E-10
2.04E-18
4.9SE-IS
7,«se-iB
1.07E-17
1.36E-17
1.6SE-17
I.94E-17
2.236-1 7
2.S1E-17
Z.BOE-17
5.67E-17
3.4&E-I7
1.12E-16
i»38£-I6
1.64C-16
1.90E-16
2.1SE-16
2.39E-16
2.62E-16
S.22E-16
7.OSE-16
S.S1E-16
s.^yE-ie
.06E-1 8
•13E-1S
»19E— IE
.23E-1S
.27E-1S
3.26E-1S
3.21E-1S
3.19E-15
3.13E-13
3.16E— 15
3*ise-is
3,l*E~t5
3.13E-15
3.11E-1S
SURFACE
HATER
O.O
o.o
o.o
0.0
0.0
o.o
0*0
2.87E-21
5.73E-21
8.60E-S1
i.ise-zo
1.43E-20
1.72E-1O
2.01E-20
4.S7E— 20
7.73E-20
I.O6C-19
1.34E-19
1.63E-19
1.91E-19
2*19E-lfl
2.47E-1S
2.7SE-19
S.S9E-19
8.33E-IS
1.1 OG- i a
1.37E-1B
2.74E-18
1.46E-17
»*1«E-17
3.S1E-16
7.74E-I6
1.O3E-15
S.14E-15
a.4 DE-IS
1.10E-14
1.31E-14
1.47E-14
1»60E-14
4.7OE— 14
i. Tee- 14
S.5ZE-1S
4.74E-14
1.13E-14
5.IS&-I4
5.13E-14
S.11E-14
S.09E-13
5.07E-14
S*05E-14

-------

                                                                              2,  Output  (c)
                              *0 AVERAGE ANNUAL LOCAL DOSE TO  INDIVIDUAL. HANlti IN MILLIRENS/YEAR




                              ZOM* I,., NMO,IOE««   1-129 K*   2
Ui
Tl»g
0*
5.
10.
IS.
20*
25.
30.
40.
SO.
60 «
70 «
BO«
90.
100*
too.
300.
400*
SOO,
»00«
TOO.
000.
*00«
10OQ.
2000.,
3000.
400O.
5000.
6000.
7008.
8000.
900O.
SO 000.
2004301.
3QOOO,
40000 «
30000 .
6OOOO.
70000.
8OOOO.
90000 .
100000 «
200000.
aoo ooo.
400DOQ.
aoooco.
600000.
700U 00 .
aeoooo.
scoooo.
I 000 000.
tOT BOOT
0.0
0,0
c.o
c.o
0.0
fl.O
c.o
3.*se-i3
T.90E-13
i.ise-12
i.seE-ta
I.97E-I2
a.37E-12
3.76E-12
6,? BE- 12
1.06E-11
1.46E-J1
i.aiE-ti
2.24E-1I
2.«3E-11
3.0JE-11
3.46E-I1
3.T9C-II
7.69E-lt
lolSE-lO
I.61E-10
I.87E-10
a.23E-IO
8.6TC-1V
2=91E-^10
3.23E-IO
3,S4£-JO
T.ofe-io
'J.SSE-10
1.15E-0-B
1. Si E-09
.43E-O9
,S3e-0»
ofrlE-OS
.47E-O9
.7ZE-09
,4 IE- 09
4.SSE-09
4.32E-09
4.30E-09
4.28E-09
*.2«iE-O9
4.Z5E-09
4.23E-0-5
4.22E-09
GI TRACT
0.0
o.o
0.0
0.0
0.0
0.0
0.0
8.34E-14
X.G6E-I3
2.48E-13
3.31C-13
4.131-13
4.96E-13
S.78E-I3
1.40E-12
B.8ZE-I2
3.04E-I2
3.86C-I2
4.69E-12
5»»9E-12
6.30E-12
7. HE- 12
7.9KE-12
1.&1E-11
2.40E-11
3.17E-11
3.92E-11
4.6SE-U
B,371-tl
6.0BE-1J
e.T6e-n
7.436-11
!.43t-lO
2oOOC-10
2.*IE-10
a.f4fi-io
3.00E-10
3.2OE-1O
3.37E-10
3.S9E-19
3.60E-10
S.B2E-10
S.09E-10
u.a4t-io
9.0QE-1Q
8.96E-10
B.9S6-10
8»H9E-LO
e.ast-io
a«82E-10
UONAOS
0.0
o.o
0.0
o.o
0.0
0.0
0.0
s.*ae-!3
1.09E-IZ
1.C3E-I2
3.176-ia
2.TI6-12
3.2SE-12
3.79E-12
»»21E-12
1.46E-It
2. 00=- 11
S.54E-11
3.0TE-41
3.61t-ll
4.1«E-11
4,6«e-n
5*21 e- i i
1.06H-10
».S7E-iO
2,08E-IO
2.60li~10
3.06E-10
3.536-10
3.99E-IO
4.4SE-10
«,S9E-!IJ
», 726-10
1.31G-09
1.5BE-09
I.80E-09
1.9TE-09
2. IIE-O9
a.21£-09
t*30E-09
2.3TG-09
6.0SE-O9
i.»8E-0$
5,9»5-Q9
B.91E-O9
5. 896-09
S.8«E«.fl9
S.34S-09
s.eae-os
5,BOg-09
LIVEN
0.0
O.O
o.o
0.0
D.O
0.0
a. a
I .49E-13
2.S8E-13
4.4TC-13
S.95E-13
7.446-13
B.S3E-13
1.04E-12
2.S3E-12
4.0SE-I2
5.49E-12
6.96E-12
S.44E-12
9.90E-12
1.14S-11
I, 296-11
I.43E-1!
2.906-11
4,326-11
SvTIE-11
7.07E-11
6.40E-11
9.64E-11
i.iac-ia
1. 226-10
1.34E-HO
2.ere-io
3.eo£-io
4.3SE-10
4.S4E-JO
5.11E-10
5. 782-1 0
0.07E-10
6.31E-SO
6.49E-10
.OSE-OS
,**E-0»
.636-09
.«gf;-09
.626-09
.6il-oi
.«oe-o9
.60E-09
•89E-O9
LUNCJS
0.0
0.0
0.0
0.0
0.0
0.0
0.0
3.34E-13
5«a»E-13
a.*se-J3
i.ioe-12
1.366-12
1.61E-X2
1.87E-I2
4.4ae-J2
4.S7E-12
S.5ZE-12
1.21E-11
1.4BS-li
1.71E-11
1.S6E-11
2. 2 IE-It
2.47E-H
4.S9E-H
7.44E-JI
9.B3E-H
1.22E-10
1.44E-10
1.67E-IO
i.asc-io
2.IOE-H)
2.31E-10
4.S91-10
6-SQE-1O
7.4SE-IO
a.soe-io
9.3IE-10
9. 946- 1C
1.046-09
i. 086-09
1.1EE-Q9
a.saE-as
Z.B2E-D9
2.806-ftS
2.79E-09
2.7ee->»9
Z.77B-OS
2. 76E-09
2.7SE-09
2.74B-O9
««RHOB
o.o
o.o
0.0
0.0
0.0
o.o
0.0
6.46E-I3
I.Z9E-12
1.Q4E-12
2.50E-12
3.232-12
3.B7E-I2
4.5I£-I2
t.lOE-11
1. 74E-11
2.3BE-U
3.02E-11
3.66E-11

-------
                     APPENDIK  F
2.   Output  (d)
*» OVERAGE AhNUAL NONSPECIFIC DOSE TO POPULATION.  MAN1N. IN «ANRewS/YE
3.2*E-06
3.29E-O6
3 ,3| 6-O6
9.896-OT
.48E-OS
.626-05
•62E-OS
,«ie-o5
.6ie-os
««I»E-05
1.3BE-05
1.S9E-OS
LUNGS
0*0
0.0
O.O
0.0
0*0
0.0
0.0
o.o
0.0
o.o
o.o
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o
0*0
0.0
0.0
0.0
0.0
o.o
o.o
o.o
0.0
0.0
c.o
0.0
o.o
0.0
0.0
0.0
o.o
o.o
0.0
0.0
0*0
o.o
0*0
0.0
o.o
0*0
0.0
o.o
0*0
o.o
MARROH
0.0
o.o
o.o
0.0
0.0
0.0
0.0
5.2EE-I2
S.66E-12
«.4?fi-»2
7.0SE-12
7.62E-IZ
B.19E-1Z
8.75E-t2
I.SBE-li
a.a2£-u
a.aie-u
3, 3SE-.lt
3.9SE-11
4.3lE-tl
S.07E-11
S.62E-H
ft. 176-11
1.32E-10
1.93E-10
8.49C-10
3.O2E-10
3.11E-IO
7.16E-1Q
2.«4E-09
».93E-0«
i. sen- 08
1 . 036-O7
Z.S2E-07
I.77E-Q6
2. V6E-06
3.4AE-06
3.S7E-O*
3.77E-06
3.82E-O6
s.asE-os
i.ise-oa
1.73E-OS
.885-03
.oae-os
.are-os
.87E-OS
.86E-09
.8SE-OS
.8SE-05
BONE
o.o
0.0
0,0
0.0
o.o
o.o
0.0
S.22E-12
5.86E-12
6.47E-1Z
7.05E-12
7.62E-I2
i.l9E-12
S.7SE-12
1.58E-H
2<22E-lt
2.eiE-ii
3.39E-11
3.95E-11
4.BIE-I1
S.076-H
S.62E-11
S.I7E-H
I.33E-10
J1.93E-1O
2.49E-10
3.02E-10
3»BiE-lO
7.16E-10
2.64E-09
S.93E-O9
i. Bee-os
I. O 36-07
3.S 2E-07
I.77E-OS
2.96C-O6
3.4-6E-06
3.BTE-O6
3.77E-06
3.a?.E-os
3.BSE-06
i.ise-oe
J.73E-OS
loBBE-OS
UB8E-OS
1,876-05
1.87C-OS
i.ase-os
i.ass-as
1.65E-OS
THYHOID
0.0
O.O
0.0
0.0
O.O
a. a
o.o
fl.25E-09
9.27E-09
1.02E-OB
i.ne-oa
J-21E-OQ
1.2OE-08
1 .38E-08
2.90E-OB
3.SIE-08
4.45E-OS
S.36C-89
6.2Se-09
7,1*E-OB
B.OIE-OB
8.S9E-03
9.76E-OB
2.OSE-07
3.OSE-O7
3.93E-07
4.77E-O7
6.026-87
I.J3E-O6
4.I7E-OS
1.41E-OS
2.98E-OS
1.A3E-Q4
3.99E-04
2.8SE-tl3
4.69E-O3
S.47E-03
S.B1E-O3
S.96E-O3
6.04E-O3
6.O9E-03
1.82E-03
2.73E-O1
2.S8E-02
2.98E-02
2.96E-02
K.9SE-02
Z.94E-O2
2.93E-O2
^.9^E-08

-------
                                APPENDIX P
2.   Output (e)
•* AVERAGE *»»WAL LOCAt. DO*E TO  IMOIWIOOAL, *A*a_F (FOR  JF=1 TO 4.  MAN2I- FOR TOTAL, IN MILLIttEMSXYEAR




   tOTM. FOH MJL MUCLIDES                                 TOT BOOY




       1                                                        ZON£= 2

TIME

C»
5.
10.
19.
20.
23.
30.
«0o
Sfl«
60.
70,
• 0.
90.
JOO.
200.
300.
400.
500,
6OO»
TOO.
aoo.
900 o
1000.
2000.
3000.
4000 1
5000*


900O.
SOOOOo
acooo,,
30000.
40000,
soooo.
60000,
70000.
aoooo.
50000.
nooeo.
i co ooo a
3COOOO.
4CQOOO.
S 00000.
60OOOO.
700000.
aeoooo.
9COOOO.
1 OCOCOO.
JF*I
AIR

0.0
o.o
0.0
0.0
0.0
0.0
0.0
4.46E-04
$,WE— Q4
3.11E-O4
4.96E— O4
«»*2E— 04
4..7E-04
3.67E-04
3.79E-O4
4,sse-os
S.42E-06
6.91E-07
8.3OE-08
S.S2E-09
9«eiE-iO
2.38E-1O
2. 3e£~t«
1.22E-O9
*.f96-«»
1 .lOt -06
2:«o3E-oe
3. 256- 08
«.«ie-oa
8 .736-03
1,11E-07
3.S3E-07
'9.32E-07
i . sse~o&
2.14E-06
3 .736 -06
3«2S£~06
3. 726 -08
4.13E-O6
ft. 486-0*
1.2BS-O5
1,31 £-05
I <,13E-OS
9.14E-06
7.16E-06
S. 546-06
4.26E-06
3«2QE-06
2.SAE-06
JF=2
SRCMNO
SURFACE
0,0
0.0
o.o
0.0
0.0
0.0
o.o
3.SBE-1J
7.SOE-I1
lo 19E-12
i.eae-ia
i.sae-ia
2.3BE-J2
2.7BE-J2
6.S7E-12
a.isE-is
1.74E-J1
2.82E-11
3.S9E-I1
SaO2E-| I
6.B7E-S1
9.2SE-II
1.SIS-I8
5.S5E-1O
1.66E-09
*.J6E-09
T»88E-O1
1.2JE-00
2.44E-00
3o£2e-OS
4.2OE-08
I.44e-07
3.42E-OT
3.66E-07
7.89E-07
l.OOE-06
l,I«E-Q6
U36S-06
i.sie-oa
1.04E-M
4«70E-Oi
4.806-06
4.16E-06
3.3SE-06
2.62E-Q6
2.03E-06
1.56E-06
1.21E-06
9.32E-07
JI==3
SURFACE
WATER
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0,0
o.o
0.0
o.o
o.o
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
O.Q
0.0
0=0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
o.o .
0.0
0.0
0=0
0.0
o.o
0,0
o.o
0,0
o.o
o.o
0.0
0.0
0.0
0.0
0*0
o.o
jr=4
GROUND
BATEH
0,0
0,0
0,0
0.0
0,0
0.0
0*0
0,0
0*9
0*0
o-u
o.o
o.o
0.0
0.0
0,0
0,0
0,0
o.o
0*0
0.0
o.o
o.o
a. a
0*9
0,0
0,0
0.0
0. 0
0,0
0.0
a.o
0.0
0.0
0.0
O.Q
0.0
o.o
0.9
0.0
0*9
o.o
0.0
0.0
Q»0
0.0
0.0
o.o
O.D
o.o

TOTAL

0.0
0.0
o.o
0.0
D.O
0*0
0,0
4*4&E~O4
4 . sfl e-a*
5, 11E-04
«,96E-t94
4 .. £2Ii-04
4.17E-04
3,67fc-O»
3.79E-04
4.55E-OS
S.42E-06
6.SIE-07
&.30E-00
6.S7E-09
1 . 03E-09
3.3DE-10
3.B9E-10
1 »i?E-O9
i . ME-O9
1 . S21-OB
2 , 7SE-OS
4.46E-OS
e.05E-oa
1.19E-07
l.SSE-07
S.37E-OT
1 »27E-Q6
2.11E-06
2.-94E-06
3.73E-06
4 . 44E-06
B.OiE— 00
s.we-o*
A. 12E-O6
l . fse-oa
l.7Bg-OS
I.«E-05
1 . 2SE-05
9.7SE-06
7.57E-06
S.B2E-O6
4.49C-06
3.47C-06

TIME

0.
5.
10.
IS.
20.
2S,
3O.
49.
se«
60.
70,
00.
90.
100.
200.
300.
400.
SOO.
600.
700,
aoo.
999.
1000.
20IVJ-
3 JOO.
4090 .
SOOQ.
600O.
7000 .
a ooo.
9000.
10000,
20000.
3OOOO.
aoooo.
50000.
eoaoo.
70000,
BOQOO.
90O40.
t 00030 .
aoooott.
300000.
4oaaoo«
500000.
600000.
700000,
SOOQOO •
9OOQOO.
toooaoo.
JF=1
AIR

0.0
0.4
0,0
o.o
o.o
0.0
0.0
4.2SE-06
S. 83E-04
ft,60E-06
6.77E-0*
6.S5e-06
6. 07E-06
5.4SE-06
6. OSE-06
7.43E-07
8.93E-08
USE-OS
1.38E-09
1.49S-10
lofilE-11
3.96E-12
3.98E-12
a.aae-ii
a.oae-u
1,876-10
3.43E-10
S.SOE-IO
8.O8E^~10
1.12E-09
1.43E-O9
1 , 88E-Q9
6.6SB-09
i.see-ofl
Z.62E-00
3.6SE-OS
4.63E-01J
s.sjs-oa
4.30E-08
6.99E-OB
7.S9E-08
2. tee -07
2, 22E-Q7
i,92E-07
J.S5S-07
1.21E-07
9.39E-08
7*22E-OB
5.S6E-08
4.30E-OS
JF=2
CHOUHO
SURFACE
0.0
0.0
0.0^
0,0
0.0
o.o
0*«
S,ftffE-lS
1.34E-14
t.ote-14-
2.6SS-1*
3.36E-J4
4.03H-14
4*716-1*
i.iee-13
1.95E-13
2.948-13
4.27E-I3
fi.DBE-13
a.soe-13
I.16E-12
I.S6E-12
2.B5E-I2
9.41E-12
3, ISE-tl
T.O7E-J1
i.sae-io
2.036-10
3.00S— I 0
4.14E-10
S.4BS-10
6,956-10
2.4SE-O9
S.79E-09
9.59E-OS
1.34E-09
1.69E-D8
2.02E-08
a.sie-oa
e«s6i-oa
2.70E-08
T.97E-OB
S.14E-OB
7.04E-OB
S.67E-OS
4.44E~OB
3.44E-08
2.6SE-08
2,O4£-Oa
1.58E-OB
JP=3
SURFACE
WATER
0.0
o.o
0.0
0-0
0.0
D.O
0.0
1.62E-O4
2.SSE-04
3.03E-04
3.1SE-04
3.14E-04
2.94E-04
2.66E-04
3.Q4E-04-
3.76E-03
4.S3E-06
S.02E-07
7.&3E— 09
7.61E-03
8.726-10
2.84E-1O
3.ite-io
x.aoE-aa
6.S4E-09
i.sie-08
2.77E-08
4. 4SE-OS
6.S4E— Ofl

I » 2OE-O7
1.S5E-07
S.4IE-07
1.29E-06
a.iat-oii
2,9ee-oa
3. 78E— 06
4.SOE-06
5.14E-O6
S.78E-06
8.I9E-06
t,76E-05
I«81E~ 05
If 57E-OJ
1.27E-OS
9,966-06
7.74E-06
S.99E-.OS
4.6SC-06
3.62E-06
JF=*4
GROUND
WATCft
0.0
0.0
0.0
0.0
$.0
o.o
0.0
0.0
0.0
a.o
o.o
o.o
o.o
o.o
o.o
O.Q
0.0
0,0
0.0
0.0
0.0
o.o
9.0
o.o
5, 8OE— 31
5.O46-SO
1.26E-1S
3.46E-13
3 + 6 2E "^ 1 H
2.39E-11
a. il£-li
1.33E-1O
l.OTE-11
I.34E-1D
1.34E-JO
1.346-18
1.34E-IO
1.34E-10
1.34E-10
1.34E-10
1.34B-I*
1. 466-1 t
1.4SE-10
1.45E-10
1.44E-10
1.43E-IO
1.43E-10
1.42S-IO
1.4IE-10
1.41E-IO

TOTAL

0.0
0,0
0,0
o.o
o.o
0.0
o.o
I , 6&E-04
a. 60E— o*
3.10E-04
3.26E-04
3. 20E-J4
3. OOE-04
2.71E-04
3.10E-04
3.83E-OS
4.62E-OS
S.94E-07
7. 17E-08
7. 766-09
B.906-1O
2.89E-10
3.2SE-10
I.83E— Ofl
ft. 656-09
1.53E-08
2.82E-OF1
eAee^jTD
, *33H^ WO
9. 22E-00
i»23E-Of
1.S7E-07
S.BOE-07
1.3LE-OG
E. 1SE-06
3, 03E-06
3, 8»E-0«
4.SOE-06
S.23E-06
S, 8OE-O6
ft. 296-08
.7SE-OS
.S4E-OS
.60E-05
. 29E-OS
.OlE-QS
7.87E-06
6. oae-06
4.72E-06
3, 68E-06

-------
                                                             APPENDIX  F        2.    Output  (f)
                                               AV£«AGE  AN1JAL LOCAt DOSE  Tt, INDIVIDUAL,  MftNlL. IN ZONE  I,  IN  MILL! HEMS/YEAR
                                                                          IOQQ. YEARS*

                                  K   WCHOE   TOT  aaov   si JKACT    6ON»ps     Liven      LUNSS    MARROW      BONE

                                  1      S«~«O  6.J6E-1?   1«STC~13  6.36E-I2  0.0       3.4TE-11  9.S4C-11  9»34E-it  0.0
                                  2      1-IZ9  a.T^C-l!   r.92t-12  5.2ie-ll  1.43E-J1  2.4TG-U  6.206-11  S.76E-11  l.oac-IO

                                    SUM TOT*L  4.4ZC-II   B.CSF-12  S.B4E*>11  I -*3E-J 1  S.93E-il  1.57E-10   1.53E-10  l.Oae-10

                                  3     PB-210  3.1SE-IO   3.»1C.-1J  3.02E-10  «.i5E-09  *.JfcF-08  2.26C-OR   a.HSE-Ofl  T.OIE-JI

                                    Sua TOTAU  3.1SE-1D   3.»lt:-ll  3.02E-JO  2.156-09  *.366-08  3.266-03   2.266-08  7»01E-11

                                      TOTM,    S.S'JC-IO   4.KIE-11  3.6QE-10  2.I6E-09  4.J66-08  2.?ee-oa  2.aTE-08  1.7UE-1O

                                 •TIME SINCE START  OF  REPOSITORY OPERATIONS.
en

                                                      Se  ANVUAU StaNSPECiPlC DOSE TO POPULATION, MANJN.
                                                                          ' 1000. WC*BSS

                                   K  NUcutoe    TOT  eoav  GI TRACT    OONAOS     LIVES      LUNGS    MARROB      OONE

                                   J     SR—>0   S.74E-II  I.65E-11   S.746-1 I  O.O        O.O       Z.S7E-09   a.flfE-§9  O.O
                                   2     1-129   I.3ef-I0  l.aae-10   1.36E-10  S.JiE-ll   O.O       &.1TE-U   6.17E-I1  tl-2lO   6.*ae-09  1.2JF-10   6.»i»E-09  6.9BC-08   0.0       6.36E-O7   A.,3frE-07  0.0
                                                   ^  i.^^,.^ __»_„, -nm, __<,»—. JJ.-TII -L-J -Illll	'-1-lt.l	•"	" — -—•—•—•—-—--— —' ™»- J.—.-« .»>—.A. — — — -»•—.—.*• — «-•*•—. »,,—.—*. — —-••—.*"-•»- -W.—. «*—.™
                                     SUJ TOtAL   *.48E-39  1.J3E-IO   6.»ae-09  5.90C-08   O.P       6.J*E-07   6.3&E-07  0.0

                                       TOTAL     6.6aE-3t  3.Z3E-1O   6,t.flE-09  5.9at-OS   0.0       6.39C-07   6.39E-OT  9.76E-03

                                  »Ti«t siwte ST*«?  OF RupasiTORV IJPCHATJDNS.

-------
                                        6

                         PROGRAMMER'S NOTES
Variables

    The variables used and their definitions are presented in the list

of nomenclature  in the front pages of this volume.


        Pile Structure
     "Index" is an unformatted temporary file allocated to logical unit 1.

 Index holds a maximum of 260 records, each 400 bytes in length.  Index
 is  calculated for each nuclide and zone.


 Subprogram Usage

     SUBROUTINE FAULT - determines release probability transfer coefficient.
                       Also, by use of time dependent component factors,
                       the subroutine can modify the nuclide inventory
                       at risk.
    FUSCTIQN RLEACH  - calculates amount of nuclide leached into the
                       ground water preliminary environmental input
                       receptor.  The function is called by SUBROUTINE
                       FAULT when a leach incident is involved.


    SUBROUTINE TRINB - determines transport-to-environioent transfer coeffi-
                       cient, accounting for decay and other processes
                       such as delay in ground water transport.


    FUNCTION CRATIO  - determines concentration ratio in ground water at
                       discharge point compared to release point.  This
                       ground water transport function is called by SUB-



    SUBROUTINE TRMAN - determines environment-to-man transfer coefficient
                       for dose to man via all pathways from environ-
                       mental concentrations.

Diinens ion ing

     Some exchanges of dimensioning can be used for special cases with-

out increasing storage requirements.   For example, 9 Release Model

events, each with 9 component factors represent 81 storage combinations
                                  67

-------
 {= 9 x 9J .   If release is described by an involved function represent-
 ing dynamic repository simulation,  AMRAW can be dimensioned by  other
 combinations such as one release event with up to 81 component  factors
 if needed.   The number of geographic zones, presently dimensioned at  B
 is limited to 9 because of programming for the variable "NPRIMT"  which
 controls output options.

 Multiple Cases
      &MH&W-& has provisions for running sore than one cage,  per submis-
 sion.   This can be:   1}  more than one set of conditions for a waste
 management  phase such as terminal storage,  or 2)  more than  one  phase,
 such as repository operations and terminal storage,   A full set of
 input data  is read in for each case,

 Modification	for Running^pn__CDC iystem
            written in         IV, was developed with implementation
on an IBM 360 system.  Some changes are necessary for operation on a
CDC system.   The following programming  features in AMR&W-A,  used  success-
fully on the  IBM system, produce problems on a CDC 6400:
     1.  Three guadruply dimensioned arrays are used:  DQSFAC, MW2UF,
         and VQLJNT.   AHSI Fortran permits up to  3 subscripts.
     2.  DO loop control indices are passed through common,  e.g.,  IZ in
         /BTRINP/, JF and IH in /BTRMftN/, etc.
     3.  "Computed GOTO" drops to the next statement when out of range
         in FORTRAN G on the IBM, but causes a fatal error on the CDC.
     4.  Integers are declared as INTBGERS*2 and  INTEGER*4 variables,  not
         necessary on the CDC,  The use of INTEGER*4 in &MRRW is for
         storing 8 characters per variable,- the CDC will store 10 charac-
         ters when declared as INTEGER.
     5.  "Direct access" read and write, used in AMHftW do not exist
         directly on the CDC.
     EPA personnel at the Las Vegas, Nevada facility identified the above
problems, incorporated changes to respond to the problems, and have run
the modified version on a CDC 6400 computer.  The changes, listed in
                                  68

-------
correspondence with the problems, are as follows:
     1.  Change the 3 quadruply dimensioned arrays into triply dimensioned
         arrays through the addition of new variables.
     2.  Change the way the control indices are passed through common,
     3.  Introduce an extra IF test before the computed GOTO to achieve
         the same effect as in FORTRAN G.
     4.  Change            and           to
     5.  Replace the IBM direct access file writes and reads by calls to
         subroutines which manage ACTUAL KEY files.
     Also, to reduce the large memory requirements, put the arrays result-
ing from MAN2LF into blank common.  The way blank  common is allocated on
the available CDC 6400 system allows the LOADER to use the region which
will become blank common during the loading process.
                                    69

-------
                            APPENDIX  H

                          AMRAW-A LISTINS


 1.  Main Program


 2,  Sub-programs
     FAOLT  - Release Model
     KLE&CH - Leach rate  calculations
     TRINP  - Transport-to-Environment part of Environmental Model
     CRATIO - Ground water transport calculations
     TRMAN  - Environment-to-Man part of Environmental Model
     Discussion of changes needed for running on a CDC 6400 computer
instead of IBM is presented in Appendix G {Programmer's Notes).
                                  70

-------
                                           H
                               Main Program
           s LEVEL  as
                      MAIN
                                                            DATE a 78096
                                                                                  22/35/04
0001
oeoz

0003
0004
0005
0006
00 07
OQOS
0009
0010
0011
0012
0013
0014
0015
0016
001T
0018
0019
0020
0021
0022
0024
oo a 5

0026
002*
0028
0029
0030
0031
0092
0033
0034
0035
0036
003?

0038
0035
             C
             C
             C
             C
AMU AC:  ASSESSMENT METHOD PQR RADIOACTIVE WASTE:
A COOE  DEVELOPED BY UNIVERSITY OP NEW MEXICO UNO EH  EPA CONTRACT
THIS LISTING IS AMRAW-A. CALCULATION THROUGH DOSE RATE.
PRINCIPLE  INVESTIGATOR:  SoE.LOGANi  DECEMBER, 1977 o
 IMPLICIT  INTEGER*a U-N)
 DOUBLE PRECISION NUCNA M(2 3 J ,Of?GNAJ4(B ) ,T ITLE < 1 0 « 3 ) „
*HEAD<4 »61 sHEAOi 141 • AIZ
 REAL A«l4,9|»ApJlf *f 4*Bi,ADJ2f 4*4,0) *BIOFACC 2S»*»6|tCf»l4t9i4I
 REAL OCl,DISPN{^p83 ,DRC,01)SFAC( gS,*,2» Sli EDCt £5«4t 8 I
 REAL MANZUFCSO.St 8t*> .MAN2HSQ. fl.8i . HANENFt SO , fl .* J t MAN2NI SOvB)
 REAL ELEM. MAN1N(50,8J ,PBO0B<««9 ,*J » B1J {4»50 J
 REAL R2C4BSO!,a>,R2TQT ( 4,3 0,81 , REMOV<4 , 8 ),HKD( 25 )
 REAL SPACT11T)lfc;£{SO)cTP{4o9,*U VOLINM 4, 2.6 . 8J t XiKXi JSI
 REAL 40»«LO(4tSJsRELOUT{f I.XLtSJjVWISi.YViai
 REAL ZONOEPOJ .GNDtP(50oS),4HEAb{e)
 INI£GER*£  IFLAGC4«9»4) t 1FLAGE t *»2» 61
 INTEGER»2  JJ(4«9) , NJl 4 J « N J J ( 4 . g ) ,NSPt 6 ) « I ZONE I 101
 INTEa£R«4  NPRINT»CHECK<19),J^(9 ),VAR(SJ ,IN, IP, IE
 DATA UAR/8 (F1Q« ,>«0«I< »»S»1P'» *9El»i "2.2>»/
 DATA HEAP!/" NONE**1  JF=« *•»» JP»  3»»*  JF* S63'/
 OATA AI£/*IZ=»/
 DATA 4N/'1E1« »«aEl»s«3El« »»*ei » »«5E1» »» 6g|* ,«TE1* .'8EI * ,»9El«/
 OATA HEAD/*        »,'    DATA '.'INPUT   '••         «f
2«      REL'.'EASE TO  • , "ENVIRONM • . *ENT       •,
3»    LOCA'.'L DQSE T»»«0 INOJVI »> 'DUAL     «.
*« NONSPEC't'IFlC DOS'.'E TO POP ' i • ULATION  ',
S"    TOTA»a«L DOSS &**** HECEPT** • O«S      *,
6»       DD"«*SE SUMMA' i *RV TABLE'a'S        «/
 C CM MON/BF A ULT/ PSO8B,AAt»»P»CP»lFLAS
 COMMON/BLEACH/ OCH25J »ORC(2Si t Xt 2S .80 ) ,F5» VS.SPACT (25) .CIMV
" CCMMOH/FDLEA/ CFA1.XR, DS.T IM. II
 CCMMON/BTRINP/ ?2,Y3m I ZoIFOIVW
 COMHON/CTRINP/ CRHIN.DFMIN
 COMMON/ BTR MAN/ HI OF AC* VOLINT.QOSFACpNSP tIFL AGE. JFj IM*O6LT£
 COMHON/BCRATO/ BKO*C(JNCI»T1MS» WX.PORE.ALs AT»H
1ITE»K,GNODIS,VY
 COKMOH/FCRATO/DELTL
 DEFINE FILE 1 ( Z60 .100 » U,l NDEK»
 READ { I Ni BO 1 INCASE
 DO 9999 KASE»1*NCASE
        IP,802)KASE
                                   READ IN OATA ANO INITIALIZE  CASE 6«
                      THE TITLE MUST  HAVE THREE LINES »«»*&i|«t«i $$«««««
 REAOUN.B03 JTITLE
 IF! IP. NS« IE > WRITE! IS» 9361 TITLE eNCASSi (HEADC It! J « 1=1*41
                                    E»MZt NIHT«NPRINT»IFDIVW
     IB.gO.a.AND.iTRe.SE-MTJCO TO 9698
                      SET ORGAN*  ZONE. AND MPRIHT  VALUES
        lABS 
-------
                    APPENDIX  H
                               Main Program continued
FORTRAN

 00*0
 0041
 0043
 0043
 0044
 O04S
 0046
 0047
 0048
 004 S
 0050

 0051
 0002
 3653
 OOS4
 OOSS
 0086
 005?
 0058
 O059
 0060
 0061
 0062
 0063
 0064
 0065
 0066

 0067
 0068
 0069
 OO70
 O07!
 0072
 0073
 0074
 0075
 0076
 0077
 0076
 0075
 0080
 coat
 0082
 0063
 0064
 OOSS
 0086
 0087
 0088
 COS 9
 0090
IV S UEVEU
                                 MAIN
                                             DATE » 78096
                                                                    aa/33/04
            1F< IQKGS.EQ.O)
            IFI lQRG$.EO»0>iaROS*l
            JF( IQRGS«6T.NIHT>GO TO 99 ?T
            NPRINT^NPRI NT/ 1 0
                    IABS t MOD J NPS1NT c 10 ) )
                        0.01 ISTART=1
            JFtISTART«,GTf«MZ>Ga TO  9996
            1FEKASE.3T.DGO TO S
            9*Stil>**«iW*«>»»***«i* READ IN CUTOFF VALUES **>»***«»«! ft*® **agr*i8i9«.«e4i
            REAO(IN.8061RIJMIN,ASMIH, S2MN,
            READ( I N*fi06) ( TIME* I ) i } =i . HT)
            RtAD ( I N,fl06 1 TFUEL
    00 20 K=
    UEAO(IN.
                                    (XtK.If I , iT=i»7J
         26  CONTINUE
            READ { JN,B^S»ERR=9908, END=»9998J CHECK, 1CHCK
            IF(ICHCK«NE.l JSO TO 9996
            R E A D ( I N j B 0 C } ( SP A C 7 i K J » K=l i
                   ,e06) (ORC(K) B
            READ(IN,a06)« U AOJ1 ( JF,JFA,JZ) . ADJ2 { Jr , J,-= A , IZ ) . JFA= I, 4 ) t JF= 1 ,
                    flOe ) ( (ZONALQC JF ,1 Z.). li* I ,HZ) > JFaJ ,
                          20NOep(I2).IZ-l.MZ)
                         (AHEAW(IZ) .IZ=-1,I4Z j
            IF! ICHCK.NE.2HGO  TO 9996
            REAOtlN.BQl KNSP1 JF».JF«t
            DO 30 JZ«I ,MZ
            DO 30 JP»i t4
30 REftO4IN.806JI{VCH,lNTtJF,MODE. In 12 J »
   DO 40 K=l ,NK
   DO 40 NS*1 « 6
40 BlOFAClKsl !>NSJ=1<.
   oa so ;<»I,WK
   DO BO JF*a»4
   NS-NSP( JFI
BO KeAO(IN,B06)tBUlFAC(Kc JF, I) .1 = 1 0NSJ
                                                    . NS J,KOOE*l t£ I
           IFlICHCK»NE.3»«a TO S998
                    »84e>CHECK, JCHCK
                   t BOiMORGNAtUI I tl*S.N!HT »

-------
                             APPENDIX H
                                   !4ain  Program continued
FORTRAN  IV  G  LEVEL
                                         MAIN
                                               DATE » 78096
                                                                                  22/35/0*
 $091

 0092
 0093
 009*
 0095
 0097
 0099
 0099
 0100
 0101
 0102
 0103
 0104
 0109
 0106
 0107
 0108
 0109
 0110

 0111

 0112
 0113
 0114
 0116
 0117
 one
 0119
 os so
 0121

 0122
 0123
 0124'
 0125
 0126
 0127
 si m
 0129
 0130
 0131
 0132
 0133
 0*34
 > • JF»1
       Rfc'AOUN.B06H tUDQSFAC(K. Jf=, MODE. JH> . JH"1 ,NIHT i ,MOOE=1
     *K=1,NK.}
    S  CONTINUE
       REAOt IHt84S ,£.m*999Bt END»999B JCHECK, 1CHCK
       IFUCHCK.Ne«*IGQ TO 9998
       WRITEUe«ft*8JCHECK, ICHCK
C»*43 *»#*>»««»:»$ JJ| JF»J»  SPECIFIES A PARTICULAR RELEASE EVENT  CUTSET. **
C4**********>M<*****«! NJCJFJ  »» OP RELEASE  CUTSETS ASSOCIATED WITH JF
C*** ****** NJJ(JF,U as OF PROBABILITIES ASSOCIATED WITH  iACH  CUTSET
 1000  ISECT=I
                           IS£C78 
      J=JJ( JF.ll
      NJJJ=NJJ< JF ,1 J
      READ! IN.806JAA1 ( Jf-o J)
      DO 1020 K=1.NJJJ
      REAOUN.BlOlPROBSf JF» J »K» » IFLAGdJF, J.KJ .T P{ JF. J ,K» , CP( JF, J, KJ
      IF< K.EO.l JWRIT£( IP,8ll >JF,WJF,J,NJJJ= AAU JF=J) tPHUBG(JF, J,l >.
     *IFI»ASlJF.J»il.TPI JF.Jsl J*CPtJFi Jsll
                                        .J.KJ »JFLAG( JF, J«K>,TP( JF, J.K1
 1020 CONTINUE
 1030 CONTINUE
      IFtKASE.GT.llGO TO 6
      00 1060 JF*a»4
      J=N5PC JFJ
 1060 Rl;AD( IN.80J J f ( IFLAGEt JF»MCOE» I ) *t»l* J ) « HOOE=1 . 2 J
                                                                          ,MZ)
           u »i~i » Hzi> i vv( IK 1*1
     2CINW.CFAI
       R E « D ( I N 5 B4 5 0 E R R-9 99 8 1 E N D= 9998 >ChECK,ICHC«
       IF( JCHCK..NE.S)  GO  TO 9993
       WRITEtIE»B481CHECKt ICHCK
           READ EDC FLAG  I =DEf-'AULT,2 = J F R[5AD,3=JF
       READd N.80J 1ISECT
       1«1SECT
       OO 1130 K*l tNK
       DO 1130 IZ»1.M2
            il .IZl«50.0
Jfss3.t3 *®**
      GO  TOI 1 11B » 1120.1110,1 1301 .1
      £D
      GO
 1130 CONTINUE
      GO  TOI 121 O.llflO si 16O» 114OI»I
      DO  StSO I»l«3
                                               73

-------
                                          H
                                     Main Program continued
FORT RAH  IV C LSVEL  21
                                          MAIN
 0135
 6136
 0137
 0138
 0139
 0140
 0141
 0142

 0143

 0144
 0145
 0146
 0147
 0148
 0149

 0150
 01SI
 0152
 01 S3
 0154
 0155
 0156
 0157
 01 se
 0159
 0160
 0161
 0162
 0163
 0164
 oies
 0166
 0167
 0168
 0169
 0170
 0171
 0172
 0173
 1174
 0175
 0176
 0177
 O178
 0179
 0180
 0181
 0182
                                              DATE » TJJOT6

                                             UNKI
                                                                    22/15/0*
1150 REABeiNsB06H(EBCtl€»l« I2>* 12=1«MZI,
     SO TO 1ZIO
1160 REACH IN.S06 H *
                                 IZONH)
    ItSUMY*INITIAL TtME*  ITSUHJ»TIWE CHANGE, KSy»»K  FOR SUBTOTAL **
1310
      IF*NK.EQ.
   6  CONTINUE
      IF( NPRIMTaEQ.O.ORoNPHINT.eQ.SlGG TO 1500
      GO  TO 2000
SW********!*!?****************®*!**®******** OUTPOT SELECTED INPUT DATA
ISOO  HH1TEUP»B13)TFUEL
      bBITE(IP0ei4XELEM( ID) C^X< ID). I 0=1 tNDJ
     DO  1SSO I>=i,LPRIMT
     I Ft Ml e»GT. NKIM1 QsNft
     DO  1S40 IT*lf«T
15*0 BRITEC IPtS17)TIMEUf J
      HJ-M10+1
      MlOaHlO+1
1O50  CONTINUE
     00  1380
1560 ttRITE(iPe&20iNUCNAM(KI »DCt tK) «ORC{ tit »RKDJ K)
     BRJTE( JP.8S9J VX,PORE,BU_KO»AL. AT5MT.IAIZ. I .1
                    CXL1I}*I*}«MZ}
                                                        ,HZJ
                    »I*t»MZJ
     WRITEtIP*E73) FS» V
     00  1620 IZ=1.MZ.2
      IF  (IZ.EQ.S)HRIT£( IP.644*
      WRITE! IP«828HZ«SZPl
      DO  1620 K=l»NK
1620 KRITE( 1P«6231KUCNAMCK.> •< t EDCI K» JF» I J . JF*1 *4 It 1= IZ« I ZP1 J
     HRITEtIPg8241
     DO  1660 1 2=1. HZ • 2
     !ZPl=IZ+l
1660 HRITEtIP«B2211ZiI2Pl»l IOISPNC JFtllt JF=I •«!« t»IZ,IZPl)
                                                74

-------
                           APPENDIX K     Main Program,continued
FORTRAN

 0183
        IV G LEVEL
                                        I4A1N
OJ.BS
0186
0187
0168
0189
0190
0191
01SZ
0193
0195
01 9S
01 S7
0198
0199
0300
020!
0202
0203
0204
Q2G5
0206
Ot07
0108
0209
0210
0211
0212
0113
0214
0218
0216
OS17

0213
0219
0820

0211
0222
0283
0224
G22B
022 «
0217
oses
0229
0230
0233
023 S
                   BRITEl IP.349J
                   DO  1700  IZ=»l,tGs2
                   121*1 =*IZ*1
1760
                                                            DATE *> 70096
                                                       I ) ,JF*St 4} • 1^ I2t IZP1 }
                                                                                  22/3S/0*
                    WRITGI IPt.6301 ( AIZoS, 1 = 1, MZ)
                    WRITE? Xf>»880> J ZONDEPi I >» 1
                           JP,8QO)
                           IP.82B1
                    DO 17*0  IZB2.MZ
                    8HITEU
                    DO S7*0
               1T40 CONTINUE
                    feJfiJTEt !P»326J
                    DO 1780 IZ*1»MZ
                                                              , JFA, JZ)» JFA=1
                    DO 1780  JF=1»»
                    NS«NSPI JF|
                    00 1780  MODE«1«2
               1780 WHITB(IPaB30MF,MlS>6.NSf t V£H.JNTCJF.»ODE. I. 121 » l"l«NS>
                    aRITEJlP.831)
                    DO 16 JO  K*lgNK
                    KRltei IP,832INUCNAMilCi
                    DO 182O  JF=lc4
                    NS»NSPIJF»
               1820
                    If I
               1830 CONTINUE
                    DO 1370  IM=IORGS» IORGE
                    DO 1860  Ks} oNK
               1860 ^RITE*«i««'»**«"S>*«'»»«i«'iS*«««««
                    IF( IB.E0.3JDT1ME=T1ME( ITHE»1 )-T IHE( 1TRE J
                    DO  2020 STaltMT
                    DO  2020 IH»1.NIHT
                    «At42N< IToIH)=Q»0
                    DO  SOSO JF»»I«4
                    DO 2020  IZEJSTART, ISTQP
               2020 «AW2LE IT* ZH.IZt«0«0
                    GNDDJS-1^0
              C****** ********#© OKOTO STMT       CONS1OIH EACH RAOIONUCLIOE
                                            75

-------
                        APP1ND1X H     Main Program continued
        IV 6 LEVEL  21
                                        MAIN
0233
0234
0235
0236
OZ3T
oaaa
0239
02*0
02*1
0242
0243
0244
0245
0246
0847
0246
0249
0250
0251
0252
02 S3
0255
0256
02S?
025B
0259

D260
0261
0262
0263
0264
0265
0206
0267
0268
0269

0270
0271
0272
0273
0274
0278
0276
027?
      DO  2999 K-lsHX
      IFCIW.EQ«3)BFAC«=U eO-
                                                                   78096
                                  ITREfttl/JtlKi ITftEJ JI/PTIHE
                                                                                  22/3S/Q4
      00  20SO IT»t»MT
      DO  2040 IM*J»N1HT
      OO  20SO JF*li«
      R1J( JF.IT)=0.
      DO  20SO I2*ISTART» ISTOP
      RSI JF»IT»IZ>=0.
      R2TOTIJF«17iilZI»0.
              £050
                TO STMT 2SOO  CALCULATE ENVIRONMENT Al. CONCENTRATIONS **
             CALCULATE RELEASE OURIM3 EACH TIME INTERVAL »«»*««$« $«*«««
C**«f ******** « TO PRELIMINARY ENVIRONMENT INPUT RECEPTORS  TO  STNT 2»»0
       IF(NPRINT«EQ»S)BRITE( I P. e471NUChAM( Ki 0K
       DO  a500  ITR=ITRS. ITR6
       OELTL=TIME(ITRJ-TIMEi ITR-11
      2AV6=t ( KR*K { Ks ITR-i J I*SPACT {K > J /£«Q
      00  2I2O !•! *9
 2120
      DO  2160  JF=t*4
      NJF=NJ(JF1
      I FtNJP,SQ»OiSO TO 1160
      OO  2140  I*1,NJP
      J=JJ( JF*I »
      NJJJ=NJJ(JF • I )
      IFCCTR1 =GE»1. )GD TO 2140
     !^**®^*****"!**** DETERMINE RELEASE FAULT  PROS AND TRANSFER COCFF
      CALL FAULT (TIME.PROBt Alt JFtJ.NJJJ, JTW.KpCONCI t
      PRBDE{.=PROSWOEL TL
      JFlPRBDEL.GT.l.OJ PRBDEL31.0
      REL=ASS(REL>
      CTRlsCTRl+REL
      If I H£L«GT« 1 . JREL-1 •
      RELDUTt I>«=REL
      HI Jl JF i ITS » =RU C JF p ITS »+ZA VG*REL
 2t4Q CONTINUE
 «»**»«**********ft* TO STMT  2160 OUTPUT RELEASE FRACTIONS Bf  CUTSET ***
      VARt4l=JN( NJF)
      LfNEP- LINEP+1
      JF(LJNEP.GT<,60oANDoNPRINT.EQ.5 JtWITet IP,6SE )  ,
      IF(l-INEP»OT,60)LINEP=l
      IF(NPRINToEQo5)URlTE( I P»VAR)T 1 HE( ITRJ . JF» < RELOUK 1 1 «I = 1 «NJF )
 2160 CONTINUE
           STMT 2®$*$iit$$$«$!|@$$ist$$$$4ie CURING  SUBSEQUENT  TIME  INTERVALS ««
      OO 2499  1T1=>ITR»HT
      OCLT2=TIMEI ITE-il-TIMEf ITRI
                                          76

-------
                                        H
                                Main Program continued
FORT RAM  IV 6 LF.UEL.   2.1
                                          MAIN
                                                             DATE
                                                                    T8096
                                                                                    22/35/04
 0279
 0260
 oset

 0282
 Q2S3
 0284
 0288

 OZ86
 02S7
 0208
 0289
 0290
 0292
 0293
 O294
 0293
 0896
 0297
 0298
 0299
 0300
 0301
 0302
 0303
 0304
 030 S
 0306
 0307
 0308
 0309
 0310
 0311

 031 a
 0313
 0314
 031S
 0310
 03*7
 0313
 031«
 0320
 0321

 0322
 0323
 0324
 032 S
      00 2210 l*=ISTA«T.ISTOf»
      00 2810 JF«1»4
221 0  RgMcm JF.1ZI=0.
            TO STMT  2220 DETERMINE TRANSFER COEFF TO ENVIRONMENT  INPUT S*
      DO 2390 XZ-ISTASTsIiTOP
      DO 32 SO JF"J .4
      DELT4»0»
      XEM2*X6ME
      TRL^EOCCK. JF^IZJ
                              SET  TEMP08ARY VALUES FOR OEL.T4 ANO  XEM2. ** .
                            ITRJGQ  TO  2220
2220  CAL1. TRINPlOEI_T2«OEI.T3»DELT^«XR»XE»XE(«liXEM2.T«»,t0eCFAC««2*
    «XL< 1Z) ,X(K, ITRE) «DFAC.
    $ I TE * fTRE . IM « JPtRKDt flKD MAX » K}
      IF(HU( Jf- . STRJ oLE.RlJMiMJPlJUF . ITR) = Oi,0
      IF(,\2.LE.A2MINt A2=0.0
      IF! JF.EO.ftiaO TO  2260
      IFJ ITE.NE.ITRJSO  TO 2270
      GOTO t 2230, 22*0. 2E50 J ,JF
2230  R2*A2*lONAl.Ot JF. IZJ
      DEP=R1 J< JF,
      DEPGNO=DEP* AREAS
      OEP BTR*PEf * AREAB 1 1 Z 1
      GO TO 8280
2240  R2IJF*1TE» IZIaRIJI JFs ITB|*A8*ZONALPI JFn IZl+0£f*«NO
      GO TO 2280
22SO  R2S2tJF.I?Et 121=0.0
      TO STMT S499 ADJUST ENVIRON RECEPTORI TRANSFER FROM OTHER RECEPTORS
      00 £330 JF=lo4
      OC 2330 JFA=lt4
      IF{ JFA.EQ. JF=OR,ADJJ { JF.JrAo IZ1 .Hd.O,iGO TO  2330
      OCi.TE=T WE CITE1 -T I Mg€ I TE- 1 1
      AMD*ADJ2( JF . JFA. I2J*0 . SOD6LTE
      1FS AMO.GT.lSo )GO TO 2300
      GO  TO 2310
230O  ADJ»APJl(J
      IF( Jf-»NE.S JGQ TO 2310
9***!**® FO1_LO»ING STATEMENT IS  INTESHATeO- CONCCNTRAT ION FOR HESUSPENSfON
      A04R2=AOJ*82I JFA. ITEt I Z )O (DEuTL/OI SPW{ JFAt> I Zt )
      GO  TO 2320
£310  AD4R2*ADJ*R2( JFA. ITEolZl
2320
                                               77

-------
                               APPENDIX H
                                  Main Program continued
FORTRAN  IV G LEVEL.  £1
                                          MAIN
                                                             DATE = 78096
                                                                                   22/35/04
 0326
 0327
 0326
 0329
 0330
 0331
 0332
 0333
 0334
 033S
 0336
 0337
 0326
 0339
 0340
 0341
 03*2
 0344
 03*5
 03*6
 0347
 0346
 0349
 0390

 0351
 0352
 0393
 0354
 035 S
 03S6
 03S7
 0356

 0359
 0360
 0361
 0362
 0363
 0364
 0365

 0366
 OJ67
 O36S
 0369
 0370
 0371
 0372
 0373
 0374
 037 S
£330



23*0

2350



2360

2370
23QO
2390
2499
2500
2700
      IFtJF.EQ.l >GO TO  £330
      REMaV(JF'A»I2)=RE«OVlJFA.IZJ-»-AOJR2
      CONTINUE
      00  2390 JFslB«
      IFIOISPNI JF.IZt.EQ.O. 1GG TO 2390
      GO  TO (2340D23SO«2360( 2370)sJF
      R2CON=10.»*6*R2£ JF,ITE<1Z1
      60  TO 2380
      R2COHalO.**6*Rai JFi IT£ . 1Z 1/DISPNC JF. IZ)
      IF{iTE»NE.ITR>GO  TO  2360
      GNDEP< ITEi, IZ>=R2CON
      GO  TO 2380
      R2COht=SCUU<#6*R2(.JFBlTe»lZl/»lSPN( JFtlZl
      GO  TO 2380
      DISPtt(JF»IZi=GNCIDIS
      lFlGNDDIS=Ea.O. »R2CON=0.
      IF(SNDOIS.EQ.O.)GQ TO  23QO
      R2CQN=R2(JF elTE.IZJ/DlSPNf JF.I Z)
      R2TOT(JF«ITE.I2»=H2TQTS JF • ITE, I 2J+R2CON
      CONTINUE
      DO  2499 JFKl.4
      DO  2499 IZ=ISTART,ISTDP
      R£(JF,ITEt IZJ=R2t JF « IT E> I Zl-REMOVC JF.iZl
      IFtR2( JF.lTEg I21.LT.O. )R2 t JF. I TE» IZ)=0.
      CONTINUE
      «#«««S«««4«««««> TO STMT 2730 CAL.CUL.ATE EACH CATAGOHV OF MAN DOSE **
      DO  2780 IZsISTAHT.lSTOP
      DO  2700 IH^l.NIHT
      DO  2700 ITE*i.MT
      MANlLtlTEo IH)*0.0
      DO  2730 ITE=ITRStHT
      DELTE=TIMEI ITE) -T IMEt ITE-1 1
      DO  2720 IH=IORGS, iORGE
      DO  2720 JF«I04
      4«»*»ii>««$««$«>»<:4:««## TRMAN, DETER MIKE  TRANSFER COEFF TO HAN ODSE *<•
      NSS=1
      CALL  TRMAN(K,ITE, IZ.NSSjCJ
      MANILt lTE.IH>=HAN!LtITE.IHI+C*R2TOTtJP. ITE.IZt
      MAN2LF( ITE>lHgIZ*JF)«MANSLF(ITEcIH>l£tJF) -»-C*R2TOT( JFt ITEtIZ) '
      MAN2L( ITEeIHeI2)=MAN2L! ITE.IH, IZJ+C4R2TOT ( JF, I TE. IZ 1
     CALL TRHAN(K» ITE. IZ«NSS»C)
               .001 FACTOR TO STMTS 2720:  CONVERTS M1LLIMANREM TO
     IF! JFoNE.2)GO TO  2710
     MAN2NFC ITE. (Hi JF J = «AN£NF1 ITEt I H . JF I *C«GKDEPUTE • IZ>«Oa 001
     MAN2NI ITE« IHJaMAN2N( ITEtIH)4>C«CNOEP( ITE . 1 Z)fO. 001
     MAN1N( ITE, im=MANlN-SO. 001
     GO  TO  £720
2710 (CAN2NFI ITE , IH, JFJ = MAN2NFl ITE. IM > JF »*C«R2TOT ( JFt ITE. IZ> 40*001
     MAN2N( ITE«IH)*=MAN2N< ITE. SH)*C*«2TOT( JF, ITE. IZJS0.001
     MANlNtITEtIH)i=HANlNtITE)IH>^C«R2TaTtJFIITEgIZI$0.001
2720 CONTINUE
2730 CONTINUE
                                                 78

-------
                                  H
                              Main Program continued
FORTHAN  IV  G  LEVEL  31
                                         MAIN
                                               DATE *  78096
 0376
 0371
 0378
 S3? 9

 03SO
 0381
 0362
 0383
 0364
 0365
 0386
 0387
 0368
 C389
 0390

 0391
 0392
 0393
 0394
 039S
 0396
 0397
 0398
 0399
 0400
 0401
 0*02
 0403
 0404
 040 S
 0406
 0407
 0408
 0409
 0410
 0411
 0412
 0413
 0414
 041 S
 0416
 0417
 04* a
 0420
 042)1
 0422
                             iTg»iHi»ite*t»MTi«iH«ioiiss»ionsEi
       X NDEX=I 0* ( K-l } * IZ
 srra§  WRITE! I'INOEXI
       JNOEX=10*(K-1 1+10
       MRITEfl* INDEXJUMANlNt nSt 1H1 9 I TE=1 »MT) » IH= 10RGS, IQRGEJ
C «$«»«!# $tt«i*«i»«*d« TO STMT 2S70 OUTPUT  ENVIRONMENT  INPUT  CONCENT RAT IONS **
       [f:{NPRIMT.EQ.6)GD  TO 2999
       IF|N|>SlNT.eO«2>SO  TO 2840
       DO 2B20 IT=i,MI
 £820  URITEt IP,838)TIME( IT}, (RUfJF, m.JFil.41
       IF(NPRINT«ea«l»aR*NPRjtNT«&T*SlGO TO 2993
       0O 2870 1Z=IS7ART,ISTOP.2
       1F|1STQP*1,E.IST.ART}CO td 23SO
                                         IT
                                               »JF«lt4l jTlMBIITJ.
       WRITE(IPi>e37INUCNAMi2»NUCNAM(KJ ,K
31 OO
4000
4100
SOOO
       READ(J« INDEX H (MAN1H JTE. JH>,JT£=1 «MT) . IH= I ORGS « IORGEJ
       BRITE< lP»8t fcMQRGNAM(Nli,N=IO«GS»JDHGE)
       DO 3100 IT'ltMT
       WRITEf IP»817)TIM6( ITJ « (WANlUtIT »IH}.1H=IORGS. IOHSE)
       I SEC 1=4.
       HfllTEl IP.B361TITLE, ISECT» (HEAD! I* I SECT J ,I«1 ««>
       DO 4100 K*|(NK
       WRITEUP»84 JJNUCNAMtK) 0K
       I N£»ex»= 1 Oe I ft-1 1 + 1 fl
       READ(1< INDEX) ((KAN1N( I T , I H ) o I T= 1 »MI J „ 1H= J C«GS« I CRGE )
       HfUTE ( I P • S 1 6 ) { aRGNAMt N 1 . MB IQRG S , 1 ORGE i
       OO 4100 IT=J»HT
                                                    04)
       ISECT*3
       SRI TEUP = 836)t 1 TLE, ISECTo (HEAD « I. JSEC7J . I
       DO  S200 IH^IOftGSp IOHGE
       OO  9200 IZ»ISTART«ISTOP»Z
       1F{ I STOP. t_E~ I START!  GO TO 5110
                                            79

-------
                           APPENDIX  H
                                Main Program continued
FORTRAN  IV S UlVfL  21
                                         MAIN
                                                             DATE => 7809*
                                                                      22/3S/0
 0423
 0424
 Q425
 0428
 0429
 0430

 0431
 3*32
 0*33
 0434
 0436
 0*3?
 0436

 0439
 0440
 0442
 04*3
 0444
 0441
 0446
 04*7

 0440
 0449

 8450
 0451
 0498
 04S3
 0434

 04SS
 O4SA
 0457

 0458
 0469
 C460
 0461
 04*2

 0463
       BR1TE(IP,900 JORGNAMliH)t I2.IZP1
       DO SiOO ITai.MT
       NflITE(If*»»01>TIME( IT) , 1MANSLFI IT,IH,IZ, JF 1* JF=J ,4),
      J,MAN2L( ITc IH,1Z) *
      2TJHEI nJ.JMAN2LFUT.IHelZPl.JF) ,JF=1C4) iMAN2LI IT» IH.IZP1 J
 sioe  CONTINUE
       GO TO  S200
 8110  WRJTE( IPt002> OaGNAWUHJ.IX
       BO siso IT=ISWT
       WRITE* IPi.901 1TIMSHT1 » JMAN2LPC IT» IH-. 12s JFJs Jr=f| ,41,
      JMANELl IT. !H»I2)
 S120  CONTINUE
 5200  CGMIMJS
       DO 5400 IH= jaRGS, JORGE
                    CO S300  IT«t*MT
 5300 CONTINUE
 5400 CONTINUE
;$**§»*$*«# TO ST«T 6SOO OUTPUT DOSE SUMMARY TABLES
 6000 S SECT^6
      IFtI2ONH.Ea.OlGO TO 9999
      WRITE! lPfeSfilTITLE. ISECTj tMEADt I* ISECTi .1=1 ,41
;*$U.$««i0ijiW***9«'*****«'***'Pei*«****« SET  ZONE FOR TABLE
      00  6500
                           tZ«10 MEANS NONSPECIFIC DOSE  RATES
                                           SET TIME FOR TABLE
      DO  6500 ITR=irSUMVDMTt ITSUHJ
      JF|IZ.NE«llOI»RITElII>t8S3»I2
       B«IT£(lP,6SSJTIf!E( ITRJ 0 IORGNAMCNJ , N= 1ORGS » I QRGE J
                                INITIALIZE  SUBTOTAL SETTING
rt£KQV=SUaTOTAL
C*»»* «**»****** $8 *«**««****# 41
 6100 OO  6200
 6800 REMOV(l
      DO  6300
                                           ,MTI . IH=IOR!5S.10R6e}
                                         BRITE TABLE ***«*» ***«#*«
       WRITEl IP,eS6)K,NUCNAM{[iJ, ( HANI L ( IT R o IH) .1H=IORGS. IQflGE >
       DO  6300 J=10RG5, JORGE
 6300  REMOVU , I >=«eMOVt 1 g II *M«N1L£ i TA ol J
 *«*d*«$»®isi®«iis*9«>«'*ia«'*e#*'('**o
-------
                              APPENDIX  H
                                  Main Program continued
FORTRAN  IV  6 LEVEL  21-
                                         MAIN
 0464
 0463
 0460
 846 T
 0463
 0469
 0*70
 0471
 O472
 0473
 047S
 0476
 Q477
 0*78
 64 79
 0460
 04BI
 0482
 8483
 0484
 0«65

 0486
 0467

 0488
 0489
 0490
 0493

 0494
 049 S
 0493
 04S7

 0498
 C1S9
                                              DATS * T8096
                                                              I=IOHGS, lORGEi
                                                                    22/3S/04-
6500 IF( IZoEQ.10 )WRIT£(IP3
     GO  TO 9999
9tS8 WRITEtIE»86lJ
     GO  TO 9999
999* HRITEUe*842I!tSTART,MZ
     GO  TO 9999
9997 WRITE! IE, 8601 IORGS»MIHI
     CO  TO 9999
9998 URiTEtlE»84fillCHCK, CHECK
9999 CONTINUE
 801 FORMAT! 16X51
 802 FORMAT! '1CA5E NUMBER  * »I3>
 803 FORMAT UQA8J
 805 FORMAT! M** DEFINITION OF ENVIRONMENTAL INPUTS • .TfiO . •**  DEFINITION
    I OF PROBABILITY INPUTS »//8X« *JF    OffF I NITION" t T63» » IFLA6    OEFINI
    2TION»/eK*« —    ------- *»T63,«' -----    - ------- */9X,*l     AIR'
    3aTS5»*0      PROBABILITY IP«QBJ CONSTANT "/9X» * 2    SRQUND SURFACE*!
    4T(5S,*1     STEP FUNCTION AT TIME TP  CHANGES PROS BY  AMOUNT  CP'»
    */«9X«!3     SURFACE WATIR" »T6S«
    I'Z     RAMP FUNCTION  AT TP CHANGES PROS BY SLOPE CP'/9Xf
    2" 4     GROUND HATER' »T65»' 3     EXPONENTIAL FUNCTION  AT TP CHANGES
    3PROB ar  TIME CONSTANT  CP* / »T65, '*     DELTA FUKCTION»«.
    4» AT TIME TP REL1ASE  tO ENVWONWNT  IS  AA1«///-B
    #' ** PRO6AB1HTY AND  HB.ATED OATA»/3Xi'JF      NJF    J        ',
    1  *HJJ '      AAl* *IOS« «PRQB»«i 1X« "IFLAG'elJXs 'TP'sleXi *CP*/r3X, « — •
    2«AX> ' — -    "' .7X*«— — ».?X»* --- "»iQX»* --- » «11X>*
    346X,« — '/I
 806 FORM AT I 8E 10. 2 J
 807 FORMAT < 20 A4»
 • 09 FORMAT f SOX ,7EJO.?.)
 810 FORHAT(E10.£. 110.2L10.2 )
 811 FORMAT l3X«I2»SX«I3»4Xt 12. SX* 13 t 2( 5Xi 1PE9=2) »9Xt 13,2{8X, 1PE12.5) 1
 012 FORMAT (4«»iPE9.a«9x, 12 «2( ex.jpeis^sn
 813 FORMATI"i** SELECTED  RESIDUAL ELEMENTS  IN WASTE >XT8.' GRAMS  AT STAR
    IT  OF  TERMINAL STORAGE'/*  FOR TOTAL FUEL  = " .F10 .0, « («TRIC TONS1/)
 814 FORMAT«SX.A4i5X»lPE10a2l
 8IS FORKATC'l** SELECTED  RADIQNOCL1DES  IN MASTE'/ISX, 'GRAMS  IN  »ASTE
    I VERSUS  TIME IN VEARS * 1
 816 FORMAT (/6X««TI ME" «3X» 10 I
 82t FORMAT ("1** EOCCK.JF.IZi  DATA. <4F=1 ,2, 3§ 4i ' ,
    1*»  DEFAULT VALUES USgQo EXCEPT ING »» AS . • READ IN«»/1
 «12 FORMAT!//*   IZa* »I2»4SXt « IZ»* i I2/2Xe2l IP4glO=2 »+XH
 823 FORMAT (2X«AB»2I JP4E12 0 2,«X >J
 B24 FOR«AT«///»J*« DISPNt JF»I Z > OATA. UF»l »2»3»4) • />
 825 FORMAT!///' *S AOJH JF „ JFA.IZ1 c. AOJ3I JF» JFAe 12 J BATUs C JFAa=I ,2, 3,41
826 FORMAT* 3«o
827
»I2»
e I2g7K » 4UPElO
-------
                           APPENDIX H
                              Main  Program continued
FORTRAN IV  G LEVEL  21
                                         MAIN
                                             DATE * 78096
                                                                                  22/35^0*
 0500
 0501
 0502
 O303
 0504
 930S
 0506
  •s
 OS01
 0506
 OS OS
 osso
 0311
 0312

 OS13

 0814

 031S
 0516
 0517
 0518

 0519
 0520
 053S
 0522
 OSS 3
 OS2*
 OS25
 0326

 0527
    FORMAT CIS* VDLtNT(JF.MOOE»NSPI 0*TA*/i
829 FORMAT t«   1 Z=« . I2^9K. • JF     «00£      N5P=1 THRU* , 1OX, «VOUNT* 1
830 FCRMATISX, l2o6Xt!2,12Xilate<3X, IPEIO.,2) )
031 FQRMATt'l** 8IOFAC(K.JF»N5Pi DATA"/)
«32 FORMATl"  RADIONUCLIOE= • iA8/BXt " JF      NSpal THf?U» plOXj *aiOFAC» 1
833 FORMAT!4I** OOSFACIICtaFiiMaOEs 1H J O*TA»/J
B34 FORMAT!/*  ORGAN •  •«AS/T23.'JF«*!•«T81o"JF=2 ' «TT7»»JF=3*t
   ITJi3(T27»10A6/)•///tT61»
   S'SECTIONi eI3/.S(/lsT81o4*8si51/ ItSllX,i32t«*'l/iJ
837 FORMATI'IRAQIONyCLIOCJ  'jAflt* (K='»12,*1-X1XB2SI"-*I/» CONCENTRATE
   SONS  AT ENVIRONMENT INPUT RECEPTOR,, R2TOT      UN1TSS JF»1 MICROCURI
   2e®¥EfiftS/CUBIC CM»/' 4F"2 MICRQCUfttES/SOUARE C»» ^=*3 AND *  MICROCU
   3RIES/CU81C CMV/«  ZONE-'. J2.T71 ."ZONE^1 .12s//
   4ilt4X,*JF»I      JF*t       JF=3       4F«4'.lflXl/
   82<6K5'TIME     AIR      GROUND    SURFACE    GRQUNO*»t7X}/
   62O3X,'SURFACE   HATER      HATER'tlBXl)
936 FORMATIOPF10.0t1P4EJ0.2.1eX.OPFB«0«1P4E10.2)
839 FORMATC'itRADlONUCLIDE!  *SA8»» IK= •, 12, » >»/lK.29< 8-* >X> REtEASE INC
   IBEMENTS TO PRELIMINARV  SNWIHONMeNT INPUT•/« REC1PTOHS« »1J»  FROM A
   2LL RELEASE EVENTS.  IN CUR1ES«//1*X."JF« 1       JF=2      JF«3
   3JF»;4»/SX»«TIMe      AIR       GROUND     SURFACE   «3ROUND»/'23Xa »SURFA
   4CE   HATER     WATER">
840 FORMATI»1»* AVERAGE ANHUAL LOCAL DOSE  TO  INB1VIOUAL» MANtL»  IN MIL
   ILIREWSXYEAR*//8 2ONE*»*I1»«.«» NUCLIOg"«»A8»•  K^'^13/1
    FORMAT!*1«* AVERAGE ANNUAL NONSPECIFIC DOSE TO POPULATION.  MANINi
   2IN HANREHS/VEAR'//" NONSPECIFIC <,». NUCLIDE*' • A8t«   K=',I3/)
    FORMAT(lXtl32(«*«I/«  ERRORS  VALUE OF  ZONE«»I5/«  OUTSIBE  OF RANGE
   t OF  MAXIMUM ZONt C»»12„»»«/JX. 13£<**'J^/>
B43 FOR3ATC5X,I2,12X»I2»&(3K.IPtlO.SJ>
844 FDRHATCt* )
04S FORMAT(19A*.12)
846 FORMAT«9tiKai32(***}/»//f5**'eRIIOR NEAR CHECK POINT ••
   SI2/^ll!*lf*4<'/9< 1X» J38I •*» )/ll
8«T FORHATClRADIDNUCLfOE;  '.Aa." (K» •. 12 »• > «/IX»3t t «-•>//• .RELEASE
   ^FRACTIONS  ev EACH  cuTSETt  RELOUT«//« Tide'.Ti^.'jF" .T2o»
   «*INITIAL RELEASE FRACTIONS*1
848 FORMAT11X91«A4»IS1
8*9 FORMAT«/////«.** ZONALOtJF.IE) OATA.  (JF*I<2.3*4I*/1
aSO FORMAT(/////» ** ZONOEPdZI OAT A'////«4X»9( A3, IZ»SX» I
aSl FORMAT!'!«« AREAW(I2» DATA'////t*X»9(A3.12.SX))
OSO FafiMAT(2X»9(lPE1002)>
    FORMATI*tTI«e«nTJ4««JF«.T20«33HINITIAL  BELKASE FRACTIONS, CONT'Ol
8B3 FORHATt"»".T15«•   AVERAGE  ANNUAL LOCAL  OOSE TO INQIVIEHI**
   1*AL«  MANJL, IN ZONE*«12«*« IN MIULIHfcMS/VEAR'„/XJ
S94 FORMAT(.
   t'PULATION. MANINi  IN  MAhREMS/VEAR*«//»
8SS FORHAT€T3*«OPF9.O»« VEARS*»»/«J*»944»~»i./»«   K  NUCLlOE'.tXn
                                             82

-------
                            APPENDIX H    Main Program concluded
FORTRAM  IV G LEVEL  21
                                          WAIN
                                                             DATE = ?fl096
 OS29
 0330
 QS31

 0532
 0533
 0534
 0535
 0636
 OB3?

 663 «

 0839
 0540
 0541
 0342
 OS43
 OB4*
 0S4S
 0546
BS6 FO«MAT(?5U I
837 FQRMAT{lX<,9*{«-»» s/sSX.'SUS TOT ALS 88< IPE1 0,21, / slXi 941 «-* 1 1
aS8 FORMAT (7X.« TOTAL* ,2X,S i/0lK09«C«-« )»
   i/«"   *T1ME SINCE  START CF REPGSITQHY OPERATIONS.**
859 FORMAT I /////„« **  SROUND WATER PARAMETERS" » ^// B3J<»
   1««ROUNO  WATER SlSPASa VELOCITY. VX»  IN t*6TE«S/0AY = '«lf»E10.2. /"»
   23X.»PaHOSITV CSr SOLID WEOIUMi PORE »• »JPEIO.2» /,3X,
   3 » BULK SOLID DEN5ITV.  BULK Us IN GRAMS/CUBIC  CM w *» 1PSIO* 2j /* 3X«
   4"DISPSRS1VITV COSFCICIEMS, IN KTERi: AXIAL, Al. *«BIPE10«Z.
   42K» 'TRANSVERSE* AT *• • tPElO«2t//,3X,
   S'AQUIFER VALUES,  IN M6T6«S: HEIGHT,  HT= « s 1PE10.2.
   */»3X» » DISTANCE FBOM SOURCE TO tMCRSENCE* XLCZZI'*
   *« EFFECTIVE WIDTH. YB ( 1ZJ « ,/.3X .
   *• CONCENTRATION AT  YV  « AVERAG6 OJNCENTHAT tON IN VW»,//S
370 FOflMATf 3X, 'XHIZJ ' . 2,'< , 9( 1 PE10, 2 J >
871 FORMAT «3X»8 VWJI2) * »2X» 9UP£iO«2 i>
872 FORMAT t3K.'VVtIZi«i,2X.9UPgl0.aJI
873 FOR»AT4/»3X,
   6'EXPOSED AREA OF  SOLIDIFIED WASTE  SPECIMEN, FS.  IN SQUARE CM =•»
   *1PE10.2./.3M,
   7'«OLU«E  OF SOLIDIFIED  HASTE SPECIMEN*  VSo IN CUBIC CM =' ulPEi 0.2s/
   8. 3X. 'TOTAL CANISTER  INVENTORY.  CINV «• , IPEI0.2( /S3X .
   S'ASSUMEO NUMBER OP  CANISTER FAILURiS.  CFA1 =»,JPEIO.tl
860 PORMAT(iXtl3Si «*"J/» ERROR]  INVALID ORGAN NUMBER  =',I5cSX,
   1'MAXIHUM NUMaeR DF  ORGANS ** » I 2 ,/, IX, 132( •* • ) >
aCI FORKAT«tX»132C •#«»X» EHRORJ  ATTEMPTCO REPOSITORY  "OPERATION »»
   S»HITHOUT SUBSEQUENT  ENVIRONMENT TIME INCREMENT «./, IXt I JZt •*') J
862 FORMAT l« iRADlONUCLIOE :  »,A8t" ( K=* » JZ »• t * /iX»Z9 {»-«)/• CONCENTRATI
   IONS  AT  6NVIBONHSMT  INPUT RSCePTOR.  R2TOT     UN ITS J JF=I MICRO CUR I
   2E*¥eARS/CUBlC C«"/»  .JF=2 MICROCUHIES/SQUARE CM,  JF=3  AND 4 MICRQCU
   3RIES/CUBIC CM«//» ZQNE'a'' * 12.*//
   5ICSX. "TIME     AIR       GROUND     SURFACE   GROUND" ,17X)/
   61 <23X»« SURFACE    WATER     WATER* > 18X1 1
980 FORMAT I "i** AVERAGE ANNUAL LOCAL  DOSE TO INDIVIDUAL! MAN2UF PUR JF
   1 = 1  TO 4* MAN2L FOR  TOTAL. IN HILLIHEMS/VEAR' „ //<,**„
   2«TDTAL  FDR ALL NUCL IDES' tT63. AS o// «
   3'   ZONE=' .IEiT7l.»2ONg='t IZ>//« 2( 13X«* JF»i       JF=2      JF=3
   4  JF**4« tl3X»t/f21«X,*T|ME     AIR       6RaUND     SURFACE   GROUND
   5    TOT AL» »3X> »/, 2 |22X» 'SURFACE    WATER     MATER", I 3X1 )
901 FORMAT(F9. 0.1P5EIO. 2, 1 X, \3PlF9oO =lP5L£10o 2t
»02 FOHJ(AT€»1*» AVERAGE ANNUAL LOCAL  ODSE TO INOlVIOUALp MAM2LF FOR JF
   |=i  TO «. MAN2L FOR  TOTAi.!. IN «lU-IREMS/[VeAR«8//B4K8
   S'TOTAL  FOR M.L NUCLIDES1 t T63,A8s//»
   3s   ZONE='» llt//*iO3Xe «JF=S       JF«2      JF=3       JF=4«,
   4-  13X)*/9l(4X(l>TtME     AIR       CROUND    SURFACE   GROUND     •,
   6  "TOTAL* .3X1 ,/0i<22X0 'SURFACE    WATER     WATER* • 1 3XJ I'
OSO FO«»AT«»J*« AVERAGE ANNUAL NONSPECIFIC DOSE TO  POPULATION, MAM2NF
   IFOR JFs=l TO 4u MAN2N FDR TOTALs IN NANREMS/YEAH* ,// ,4X «
   2*TOTAL  FOR ALL NUCL IDES8 oT63» AS ,// «16«8 "JF»l       JF=2      JF=3« =
   3"       JF*>4*/.?Xt*TIME     AIR       GROUND    SURFACE   GROUNO"t
   A*     TOTAL * «/,2SX»« SURFACE   WATER      «tAT6R8 1
9E1 FORMATIF12.0.1P9S1Q.2I
    STOP
    END
                                             83

-------
                         APPENDIX H
                                            Subprograms
FORTRAN  IV G LEVEL  SI
                                         FAULT
                                                            DATE = 78086
                                                                                   22/35/04
0001
0002
0093
0004
0005
OOOfi
0007
oooe

0009
00 10
0011
0012
0013
0014

001S
0016
0016

0019
O020

0021
00££

0023

0024
OOZE
0027
0028
0029
0030
0031
0032
0033
003*
0035
O036
0037
                    SUBROUTINE FAULT«TIME, PROB.A1 e JFs JtNJ JJ . I T« stt.CONCI )
                    IMPLICIT INTEGER* 2  fI-N»
                    COWMON/BFAULT/ PROBB t AA1 .TP.CP i IFLAG
                    COMMON/POLE A/ CFAI BXR c DELTIMt 1 1
                    COMMON/FCRATO/aELTL
                    DIMENSION PROHB(* , 9.*) c,AA 1 (4. 9 I *TI NE( SO > . TP t* .9 .41 , CPC 4.9.&J
                                         WJJJa,SI  OF (»«JB ASSOCIATED WITH EACH CUTSET.
                    oo 100  I*=I(NJJJ
                    CPfiOS°PROa8tJF. J. I )
                    IFCTIHEdTRJoLToTPt JF, J,I) >GO TO 50
                                                       PROS IS  DELTA FUNCTION
                    Ii=IFLAG( JFs
                    GO TO(50(«0C30,20) o II
                    IF{DELTIMcEQdQo>eO TO  10
                    5C TO SO
                10
                   GO  TO SO
                «$»»««$#»i^«$*»««««#i|'««&&«»«'ii$#««#'3ii9t#«$  PROB CHANGES EXPONENTIALLY &#
                £0 CP«OB=CPROB+EXP(CPtJF, J»I)4DELTIM)
                   GO  TO 50
               !.**************************!!!*****^** PROB CHANGES BY RAMP FUNCTION. 4*
                30 CPRQSeCPROB * CPt JF» J c I>«OELTI M
                   GO  TO 50
                                                      PROB CHANGES BV STEP FUNCTION. **

                                                             PROB IS CONSTANT
                50 PRO&=PROB«=CPRQ8
               100 CONTINUE
                 40 CP«OB=CPROB+CP( JFt Jil>
                    IF(PNOB.EO.O.O)GO TO 139
                    IF< JF»EQ«4 JGQ TO 1S6
                    RETURN
                15S CONCIBO.O
                    RETURN
                186 AlnRLEACN(K.ITfteCONCItX2}iSiCFAlfrX2&36S.
                .    IFfXR.EQ.O.OlAl *0*0
                    IF RETURN
                    RETURN
                    END
                                            84

-------
                                        H
                              Sub-programs
FORTRAN IV G  LEVEL  21
                                         RLEACH
                                                            DATE a 78096
                                                                                  22/3S/0*
 0001
 0002
 0003
 0004
 0009
 0006
 COOT
 0009
 0009
 0010
 0011
 0012
 0013
 0014
 001S
 0016
 OOJ7
 0018
 0019
 0020
 0021
 0022
 8023
 0024
 0025
 0026
 0087
 002 S
 0029
 0030
 0031
 0032
 0033
 0634
FUNCTION  RLEACH (K.ITR. CONG I. KB 1
IMPLICIT  INTE5£R*2 CI-NJ
COMMON/ BLEACH/ DC1IE5J . CRC<25) n
CQMMQN/FDLEA/ CFAl ,XR, DELT1M» 1 1
CCMMON/FCftATOfDELTL
                                             ,FS j VS. SPACTtZS) ,CINV
    IFtIl.EQ<,23  OTIME=>0£LT I
    IPlDTIMEoGE.lOO.J JH= J 0
                      XA JM
    CONCi=0<,
    CQNC2=0«
    STER=»SORT I DCH K t/3 = 1 41 6 1
    DO 65  I«l » JM
    IFCOTIME.6EalO.)6a TO 65
    GO TO 79
 65 CC3=*CCl/2»
    CC5=DELTLD + ,5/DRC ( K )
    CONCa=CONC Z +CC3 «CC*« CCS
75  RLEACHoCONCZ
    IF(RL£ACH »ST. 3.8E+OT »BLEACH»3«2B*0?
SS  CONTINUE
    RETURN
    END
                                            85

-------
                        APPENDIX H
                            Sub-programs continued
FORTRAN  IV  G LEVEL  21
                                         TRIMP
                                                            DATE a 7B096
                                                                                  22/33/04
 0001

 0002
 0003
 0004
 0005
 0006
 0007
 oooe
 0009
 0010
 oon
 0012
 0013
 0014
 001S
 0016
 0017
 C018
 0019
 0020
 0021
 0022
 0023
 0024
 0025
 0026
 0027
 0026
 0025
 0030
 0031
 0032
 0033
 0034
 0035
 0036
 0037
 003 Q
 0039
 0040
 0041
 0042
 00*3
 OO44
 0045
 00*6
 0047
 0048
 0049
 0050
 0051
 0032
 OOS3
 0054
 0055
     SUBROUTINE  TRINPt DELT2 ,DELT3,OELT4 ,XR,XEt XENlo XEME.TRLt
    lDECFAC«A28XLiK£3eDFACs ITE. JTREr. IBn JF.HKOo WKDMAX ,Kt
     IMPLICIT  INTEGERS U~N>
     DIMENSION RKD(25>
     COMHON/BTR1NP/ Y2 t¥3, I Zt 1 FOI VW
     COMMON/CTRINP/ CRMINjDFHIN
     DECFAC*-*.
     60 TOtli.li.1 .301, JF
   1 IFIDELT4.,£Q.C.)GO TO 5
     Ysl.
     GO TO 62
   S A2=a.
     GO TO 70
  30 IF(XLeLT*l«0!  GO TO 66
     IF(RKD(K)°GT>RKDMAXI GO TO 63
     DELTI«sOELT2*365.
     IF( lFDlV«oEO«0)GO TO 50
     IF (DELTA.GE =5000.. AND o RKO
-------
                                    H
                            Sub-programs continued
FORTRAN  IV  ft LEVEL  SI
                         CftATIO
OATE = TQ096
                                                                                  82/3S/04
 0001
 0002
 0003
 0004

 ooos
 000$
 0007
 OOOB
 0009
 0010
 0011
 0012
 0013
 COl A
 0015
 0016
 0017
 0016
 0019
 0020
 0021
 0022
 0023
 0024
 OO2S
 0026
 002T
 0026
 0029
 0030
 0031
 0032
 0033
 0034
 003 8
 0036
 0037
 0038
 0039
 0040
 OO4J
 0042
    FUNCTION CRATiaR£TU«N
    SSAM=COHCI/HT
    DRI=8ULKO*fiKD|Ki/POBE
    RCMsiii  >  DRJ
    JF( CELT IM»LE.O , JCRATI 0=0,
    IF
-------
                           APPENDIX H
                             Sub-programs concluded
FORTRAN IV  a  LEVEL  21
                                         TRMAN
                                                            DATE
                                                                   78096
                                                                                  22/35/04
 0001
 0002
 0003
 0004
 C005
 0006
 000?
 0008
 0009
 0010

 noil
 0012
 0013
 001 S
 0016
 001 T
 ooi e
 001 9
 0020

 0021
 0022
 OOE3
 0024
   SUBROUTINE  TRMANIK.ITE, IZ.NSSeC)
   IMPLICIT  INTEGSR*2 (i-Nl
   DIMENSION 8IOFACI Z6«4«6)> VQL1NT<**2* 6»S >*{X)SPACf2S.4>2*e)
   CQMMON/BTHMAN/ 8ICFAC . VCS_ JNT.OOSFAC »NSP « IFL, AiE0 JF, 1 H, DELTE
   DO 20 MQD£=sl.2
   CSUM^O.
   IF(DOSFAC( K, JF5MOPe»lN) .EQ.O.JGO TO 20
  ***^************^***?* ***«*« SUM  ALL SUSPATHtiAYS TO  DOSE  TO MAN. »*
   DO 10 1«1»NS
   ift IPLAOEI JP«HODE»II.NE«NSSIGO  ro 10
                   JF
 2 lF(MOOE«eO.l)GD TO 6
 4 CSUM»=C5U«*FACT*VOl.INT€ .
   GO TO  10
 6 CSU M=C SUN*!1 ACT* VQLINTl4F,MOQEil,IZ*
10 CONTINUE
                    DETERMINE TRANSFER COEFFICIENT FOft  DOSE  TO  HAN.
20 CONTINUE
   RETURN
   END
                                            88

-------
                            APPENDIX  I
                             FLOWCHART
     Figure 1-1 shows  a  simplified flowchart for AHRAW-A.  The chart
represents flow through  the  code for a specified waste management phase,
such as repository  operations or terminal storage.  The reader is
referred to Vol.  I, Generic  Description of AMRAW-&, for detailed des-
cription of each step  through the model.

-------
   Each
  Nuclide, K
                         Output Selected
                           Input Data
                        Inventory of Each  Nuclide
                              Versus Time
                      Activity Transfer  Coefficient
                                  SPACT
                        Activity of Each Nucltde
                               Versus Time
            Each
           Release
           Tifflie, lift
      RELEASE MODEL
   Calculate Releases
 for Each Time increment
            Each
          Enviran.
          Time, )T£
TRANSPORT TO ENVIRONMENT
      ?n Each Zone
                  Calculate Environments! Concentrations
                         for Each Time  !ncr«ment
                         Subsequent to  Releases
                           ENVIRONMENT-TQ-MAN
                          PATHWAYS,  Each Organ
                 Each
              Time,  ITE
             Each Zone,
                12
                          Calculate Dose to Man
                          Outpyt Environmental
                             Concentrations
                            Output Dose Rates
                          (Local  and Nonspecific)
Figure  1-1.    AMRAW-&  simplified  flowchart.
                                    90

-------
                             APPENDIX J
                        AUXILIARY PROGRAMS
     Auxiliary programs for use with AMRAW are described in this appendix.
     1)  COMPRESS - a program for preparing an         input file from
         AMRAW-A output.
     2)  PGLYEPA - a program for preparing inventory data matrix by
         curve fitting source data to prescribed time specified in AMRMW
         input.
     3)  SENDY - a program for comparing results in tables from AMPAW run
         with corresponding tables from another run.
     l'  COMPRESS.  All of the AMRAW-A output tables in Section 3 (Local
Oosa to Individual) and Section 4 (Nonspecific Dose to Population)  com-
prise the major input to AMRAW-B (Economic Model).   COMPRESS is an
auxiliary program, written in PL-1 and Fortran IV language, which finds
these tables in the full output stored on tape, strips off the headings
and left hand column of time, and outputs a continuous "compressed" file
in a form ready to be read by AMKAW-B.  The program may be used separately
to produce AMRAW-B input files from AMRAW-A output, or it may be joined
to AMK&W-B to procsss data directly.  Appendix T in Part 2- describes and
presents a listing of COMPRESS, including JCL, as run on the IBM 360/67
computer at UNM.
     2.  POLYEPA.  The repository inventory matrix input to AMRAW consists
of quantities of each radionuelicte at each time specified for calculation,
over the total time range considered.  However, source data are generally
available listed for time which do not match the intended calculation
times and also are usually not subdivided into sufficiently short time
increments.   POLYEPA is a program written in CALL-OS FORTRAN which
uses a cubic spline curve-fitting technique for interpolation to adjust
quantities to the required times and furnish the required intermediate
values,   PQL¥EP& reads in the name of NK isotopes  K together with
inventories X(I, K) at various time points I.  For each isotope, there
are a total of MT input tine points for     in interpolating MTADJ output
                                    91

-------
data points.   The output results can be written either on the terminal
or stored in a data file "POLYDD"  in the user's CALL-OS user library,
for subsequent use as a portion of the AMRAW input data file.  Before
running POLYEPA, its input is assembled in a data file named "POLYDATA,"
stored in the user's CALL-OS user library.

     Description^of Card Input.  One card of each type is required except
as noted for card types 4 and 5.
     Card
             Format and Item

              Free format
                 MT
                 MS

                 MTADJ

                 NK
                 MC

              Free format
                 TIME (I)
              Free format
                 TIMEAD (I)
Number
Number
to the
Number
points
Number
Number
       Des cription
of input data time
of time intervals corresponding
repository operations phase.
of interpolated output time

of radioisotopes.
of columns in output tables.
Time in years at each of MT input time
points.
Time in years at each of MTADJ output
time points.
              NK sets of card types 4 and 5 are required:
              FORMAT (AS)
                 NUCKAM (K)
              Free format
                 X (I,  K)
Name of radioisotope  (e.g., Sr-90, NB-93m,
or PU-239).
MT values of masses of isotope K at
time points I.
              L_i_st_irig_.   Table J-l is a listing of POLYEPA.
                                     92

-------
                    Table  j-l.
   REAL*fl TIHE( 171 .TIMLGi 17 i ,TIMEAO( 551 »XS( 501 »U,SEVAL ,?
   X(U,25!,XLG(I7»25J,BI1T,25),C( ITtZSl.DI 17«25) ,NUCN AM (251
   INTEGER MTSAV(Z6) iHTA i MKiISAV.HT ,Hi i M?, HlOi MTAOJ
   CALL OPENU,'OATAPOL¥*t 'INPUT'S
   CALL OPEN(9»'DDPDLY'« 'OUTPUT' )
            (TIHEd l,l=liNTI
                     ) ,l»i»MTAOJ»
      00 10 I=MS,MT
10    riMLGU»M)«DLOG10(TIMEU} J
   00 50 K»l,MH
   READ(l?*HXUtK»,I=l,MTJ
      DO 20 I=HSiMT
      tFU
-------
                        fable J-l.  (continued)
   il CONTINUE
   90 CONTINUE
      GO TO 1
    4 WR!TE<6i
      N10*MC
   SI WR1 TE(6t92S> (NUCNAM(K) ,K-HlfMLOJ
      00 S3 1»1»HT
   53 HftITE(6,940}TIHEU>
      IFCHIO.GE.NKJCO TO 55
      M1Q=MIO+MC
      IHMiO.GT.MK)M10*MK
      CO TO 51
   55 HRIT£I6»920>
   65 WRITE{6,925I
      00 67
   67 HRlT£(
      00 82 I»1,MTAOJ
      U=DLOG10(TIHiADm t
         DO 71 K=H1,H10
   71
         IF
-------
                         Table J-l.   (concluded)
      NMl » N-l
      IF t  N .LT. 3 }  GO TO 50
      OIl.KJ • XI2I - XIII
      CI2.K1 - (Y(2,K) - YUilO}/DUtK)
      DO 10 I = 2,  NH1
         DdtKt = Xd+U - XU>
         BlItKI = 2«*<0(l-l»Kl i- OU.KU
         Cd*l»K) = (Yd*ltKl - YU,K)}/DU.K|
         CdtK) = Cl f-H,K)  - Cd.KJ
   10 CONTINU1
      BU »K) = -Dd.K)
      a*0(N-ltKI**2/(X{NHXtN-3) J
   15 DO 20 I * 2,  M
         T  = 0(I-l,K)/StI-l,KI
         8U tKJ = B(I,KS - T*0{i-l,KJ
         ClJtK) - C< I,K1 - T*CU-1,IO
   20 CONTINUE
      C(M,K) « C(N,K)/8(N,K)
      DO 30 IB = 1, NMl
         I  = N-Ii
         CdiSU = {€(!»«>  - DUtK)*C(I+l,KH/811tKJ
   30 CONTINUE
      eiN.Kl 3 (Y(N»K1 - V(NMl,KI}/0{MHitKJ  + D( NM lf K)*CC INM1, K| + a.*C(M»K)
      00 *0 I =1,  NHl
         8(1, KI = (VII-H.K) - Yd ,K»/D(I,K> - Dtl ,K} *( Cl 1*1, K) * 2.*CHtK)l
         DII.K) » ICtl^liK) - CU.Kn/Dd.K.)
         CU»KI = 3.*C
-------
     3*  SENDY.  This is an auxiliary program developed to help compare
results from different computer runs of AMRAW-A.  It handles two cases
at a time.  AMR&W-A stores output results on magnetic tape; S1HDY reads
corresponding matrices of two different cases from the tape.  It can
compare results from two cases by finding the ratio of elements of the
two matrices, or calculate the normalized values in each matrix {e.g.,
metric tons of initial waste stored).  There are provisions in SENDY
for users to modify the program to perform other mathematical manipu-
lations on the two matrices.
     SENDY indentifies the particular matrix by the unique headings of
the matrix.  It compares the matrix heading it reads on the tape with
that of the input heading read from a card.  Once the matrix heading
on the tape matches that on the card, it reads and stores the entire
matrix in the core.  Input to SEHDY consists of identification of magne-
tic tape volumes which store the two cases to be compared, headings
identifying the matrix in each of the cases to be compared, and commands
the comparison or normalizing operation to be performed.
     AMRAW-A points out 9 variables in its output;  3 in section 2, one
in sections 3 and 4, and 4 in section 5.  In order to simplify the
modification of SENDY to gait different users, the program is partitioned
into 7 parts| namely, JCLSENDY, SENDYGEN, SENDY3A, SENDY4A, SENDY5A,
        and DDSENDY.  A complete SENDY run consists of these 7 parts,
plus input cards with commands and headings (see Figures J^l and J-2) .
     SEKDY first reads in commands (compare case n, with case n ) and
headings.  Then it searches through the tape and locates the matrix
whose headings match the one desired.  After reading from tape, storing
and printing out the matrix from each of the two eases, the arithmetical
calculation on the two matrices is performed.  After these calculations,
the whole loop is repeated if requested  (see  Figure  J-l).
     DDSENDY is an integral part of SENDY consisting of the data set
definition statements and the statements STOP/END.  The data set refer-
ence number in the DD statement is made to be identical with the case
number which was stored on the tape volume as addressed in the DD state-
ment.
                                   96

-------
             READ commands and matrix

                heading  from card
             READ from magnetic tape

                 table headings
               Print  out  the matrix
            and perform arithmetical
         manipulation of  the two matrices

                 Print out results
Figure J-l.   SENDY simplified  flowchart,
                        97

-------
     Head Ing
     Command
     Zone
     Heading
     Command
     Heading
Command (e.g., compare case n, wi
                                     th
     DDSENDY (JCL)
     SENDY5B
     SENDY5A
     SENDY4A
     SENDY3A
     SENDYGEN
V
     JCLSENDY
                            Sensitivity  Study
       Figure J-2.  SENDY operating deck  setup,
                                 98

-------
     Pescription of Card Input.  One card of each type is required.
Card
        Format and Item
    Pescription
          FORMAT (1QA4, 12, 2A4, A3, 12, T79, 12) Commands
             EXPLAN(I)            Compare case n± with n^.
             IP1

             IP 2

             IMATH
In column 41j first case number to
compare {n,).
In column 54; second case number to
compare (n 5.

Column 80, flags that control calcula-
tions options:

IMATH Operations
                       -i and n ,
                                  1 Normalized for case HT
                                  2 Normalized for case n
                                  3 Normalized for case
                                  4 Dummy  (for modification) .
                                  5 Dummy  (for modification) ,
                                  6 Dummy  (for modification) .
                                  7 Ratio;  first case, n, ,  divided by
                                    second case, n
                                                  2*

          FORMAT  (17&4, A2, T77, A2, II, Al) Heading
             TITLE(I)

             ISECT(3)
             ISECT3
             CODE
Store the heading of the desired matrix
from card} column 1 to column 70.
Section of output,- column 77, 78.
A code to aid in locating the matrix
on tape;  column 79, for ISECT3
(integer 3, 4, or 5 for AMRAW-A output
section)»
Flag A or B in column 80.
ISECT(3), ISECT3, and CODE appear on
card as follows:
                                                                     b33A
          FORMAT  (T6, IZ)
             IZ
.Section  AMRAW^A^ Item

   3     Local Dose, MAN1L
   4     Nonspecific Dose, MRM1N
   5     Local Dose, MAN2L
   5     Nonspecific Dose,
Zone heading
Additional taJale identifier where needed.
Zone number as appeared on the left
hand side of output pages:  1, 3, 5, or
7.  Card required only for MAN2L from
AMRAW-& with present output format.
                                   99

-------
         Modification of SSMDY.  Calculation options may be added.  Replace
    a CONTINUE  statement by the mathematical routine desired.  The matrix
    of the first case read in is stored in the variable that begins with an
    X in front of the original variable name.  The second case is stored as
    the original variable name.  The original variable with a Y in front can
    be used to store intermediate results.  For example, SENDY4A deals with
    the variable MRN1N.  The matrix from the first case is stored in XMffNlM,
    and from  the second case as MAN1N.  Variable YM&N1H is used to store
    intermediate results.
         Statement  numbers in each section of SEHDY containing dummy "CON-
    TINUE" statements and the corresponding IMRTH flag are as follows:

                                  SENDY SECTION

4
5
6
3A
2431
2441
2451
4A
2535
2545
2555
5A
2632
2642
2652
5B
2732
2742
2752
         Listing.  Table J-2 presents the SENDY listing.
         Sample Input.  Sample input for a simple application of SEKDY for
    comparison of nonspecific dose rates {AMRAW-A Section 3) from C-14.
    is presented.  The comparison requested is to divide each value in the
    table  from Case 55 by the corresponding value in the table from Case 48
     (IMATH =  1) and output the resulting table of quotients.  The input
    required  is as follows:
                                                                    Column I 80
 #.*  SENSITIVITY ANAUfSlS S CCMPARE  CASE  55  WITH CA=E 48* II     ?
NONSPECIFIC »«• NUCLIDE=    C-14  KB   I                      %
                                         100

-------
Table 3-2 (a).  File
ICOQ
10(0
1020
1 OJO
1'040
t 050
1060
1070
1080
1090
1 100
it to
1120
1130
1 140
1 150
1 IbO
1 170
1180
t 190
1EQO
1210
1212
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
13BO
1390
1403
1410
1420
1425
1430
144iJ
1450
1460
1470
1400

1490
tsao
1510
1520
1S30
1532
1S3*
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
J 680
I6«0
1700
1710
1720
1730
1740
1 7bO
1760
1 770
17«0
1790
l aoo
1B10
REAL X(3S iXFUJ(4»50>»XR2TDT{4tse,Bl
REAL Yt3,4.50 t» YR 1 J < 4»SO } , YR2TOT ( 4»SO«Ij
REAL M3g4tS3).ftl J[ 4* 50) i R2TDT ( 4, SO , B )
REAL XMAN1L(50»81 . VMANILt 50, 8 > , MAN 11, C 50, B 1
SEAL TIMECSO) *-«Ju,Bj
REAL XHANlN(50f 8) «XAN2LF< 50 , 8, 4 ) , XMAN2L I SO = B 1 „.,..,,
CXMAN2N.MAN2U!($0.8i4>,ttAM2L.<5o.8t MSI,,,,,
EQUIVALENCE < X| 1 J ,XKl J| 1 » »XR2TOT( I » ,X«AN IL ( 1 1 tS?Ft 50»4 »« HAN2N 1 SO
CXAN2NF«lM»{XNIAN2HU«XHAN2NSUi ' ' U * XMA|1'1 N < f >• XAN2LF J I 1
EQUIVALENCE ( Y I 1 ) , Y?U J( 1 ) » YS2Tt>T( 1) . YMAN 1L t l t vu
CYAN2^'F(U If , (MAM2t(l J»MAN2N,VAR(5)tTITLCti7l»CHECK«33|.«prT., --<-IIJ,MW
C1P1»IP2,IPIF,HT»1P»IN»NJI41 * SECT ' 3 » sEXPLANt i S > . Iw
DATA VAR/^FiO*,' »0«1 't'S.lP'i'SEli. >2.2is «'a**IY»
DATA JN/'lEl's' ael" «*3El*i»4El*« «5El» »ftri«
DATA NJ/3,3,J,1/ Ofcl ' 7E1 ' » '8E1 ' , • 9E« , >r
DATA A«a»C/»ipa
R6ADUM.1 102) (TITLEUJ. I«l,ta},SECT{3 J.I SECT! rrn=
2 IY^IY+1 **•"•«•' J« S-ODE
IFtlY.EQ.E) IP1=IP2
GU TO J20«aO»33,4IJtSOJ»lSCeT3
20 F-EADI IP1, I103I
80 00 11 J=l,90a
RE AD ( IP 1, 1104) ( CHECK ( I), 1*16. IB)
WRITE CIP, It 04 H CHECK { 1 1,1*16,18}
IF (CHECK ( 16).EQ»3ECTt 1 ) .AND. CHECK { lyj.EO.ispf-i,^.
CSECTC3JJ 00 TO 20SO EC1 ' 2| " A^O.CNEC«{ 1 81 EO
tl CONTINUE ' »»«eu.
' WQITEtlP. tl05HTir_£t t)il»l»18)
IFUSeCT3.EQo2. AND. CDOEeEQoC t READ (IN. 1 1 OQ ) n.,.,..^
IFUSECT3.SO.S.AND.COOE.ea.A) fiEAOuf-Jliooj ffiSJJX
**' c^iuu/ titj MM V
GO TO 1
30 PgAOt IPl, 11061
GO TO 80
40 RgADI IP1* 11D7)
ao TO sa
SO REACH IPl . 1113)
GO TH 80
2050 ^EADCIBl, UOBi
3FtlSeCT3.Ca.Si.AHOaCOOEBEQ.AJ GO TO Pinn
JFCISECT3 .tU.2. AMD. CODE. EQ. B > G" TO linn
1F(ISECT3.E0.2.AND«COOE.EO.C) GO TO 23OO
IFaSECT3.EQ.3.AN00CtiDE.Ea.A) GU TO 24On
II'llSECT4«ea.4*A.MO.COOe.EQ.AI GO TO 2B§O
IFtISECT3.KQ.5.ANO.COOEaEO.AI 60 TO lion
IF(IseCT3»eOo!i« AND. CODE* EQ.BJ rr» Tn oSS°
1100 FORMAT! 10A4.I2,2A4»AJ.12.TT9,I2| Z70°
1101 FOAMAT(lHl*10A4it2.2A4tA3vl2)
I 102 FORMAT117A4,A2, T77, A2, J 1, Al)
1103 FOSMAT|4C2SS(^I ),27C/ ) >
1104 FQUMATt IX.Tfil ,2A4»Aa>
1 105 FDHMATClHIi «**> OUTPUT MATRIX OF 5».in»* , r^
CCK STATEMENT NUMBER 10.20 CR 30.5/1 ' CANNOT 8E FCu'JT .^x.
HOC FCJRHATC5U255t/(»,54(/J» X1 ^CU^a.'//« CHE
1107 t--<:FMATC95C255 ») Dse •'///) "tsrHIC TON1








}
•
*
2













^*******









































            101

-------
                   Table J-2 (b) .   File       3A
1000
1010 C     READ MATRIX HEADINGS FROM TAPE.
1020  2400 DO 2406 K-l»2
1030       REAB(IP1» 11 HMCHECi» 1 = 1.335
1040  2406 URITE(JPrllllXCHECK(I)»I=lf33>
1050  2410 READ(IPlrlllO){CHECKCI)»I=lf7)
1040       BO 2420 J=lf7
1070       IF.IPl
1100       DO 2407 K=1.3
1110       REAtHIPl?1110)(CHECKCI)p1=1»33>
1120  2407 «RITE«IP»4iiQHCHECKa) »I = 1»33>
1130       IFtIV,EG,2) GO TO 2440
1140 C     OUTPUT THE MATRIX FROM FIRST CASE FOR COMPARISON.
1150       DO 2450 IT<=lrMT
1160  2450 REABdPl* 1242) TtM£< IT) » (XMWlLdT. IH> F IH=1 »MIH)
1170       REWIND IP1
11BO       DO 2460 IT=lfMT
1190  2440 yRITE(IP»1242)TIWECIT>>(XMANiL(ITrlH)>IH=lfMIH)
1200       00 TO 2
1210 C     OUTPUT MATRIX FROM SECOND CASE FOR COMPARISON.
1320  2440 BO 2470 IT=1»MT
1230       READ(If!»1242)TIMETIMEf (MAN1LUT* IH),1H=1»MIH)
1250       REWIND IP1
1260       GO TO (2411*2421,2411F2431,2441,2451»24il>fIMATH
1270  2411 IF GO TO 2421
1280       WRIT£aPflil2> TWASTEr (TITLEd > 11 = 1117) »IP1F
1290       DO 2412 IT=lrMT
1300       DO 2413 IH=lfMIH
1310  2413 YHANlL(lT»IH)=XHANlLaTt IH5/TWASTE
1320  2412 WRITE UP*1242) TIMECIT).»I=1T17)>IP2
1350       »0 2422 IT=1»HT
1340       DO 2423 IB=lfMIH
1370  2423 YMANlLCITf IH)=«ANlLaT»IH>/TUASTE
1380  2422 WRITECIP»1242> TlftE(IT),CYMANlLfITtIH5*IH=1fMIH)
1390  2431 CONTINUE
1400  2441 CONTINUE
1410  2451 CONTINUE
1420 C    . CALCULATE THE RATIO OF TWO MATRIXES.
1430  2461 DO 2480 IT?=lrMT
1440      ' DO 2490 IH=lrHIH
1450       IF(MANlLdTrlH) .ME.0,0) GO TO 2490
1440       IF(XWAN1L
1490  2480 CONTINUE
1500 C     PRINT THE RATIO HATRIX.
1510       MRITECIPfll09> !F>lF»IP2f (TITLEU )»1=1,17)
1520       DO 2491 IT=lfMT
1530  2491 WRITE(IP»1242) TIME.(MAN1L
15BO  1242 FDRMAT
-------
Table J-2 (c).   File SENDY4A
1000
1010
IO80
1030
1040
1050
1060
1070
1083
5 090
1100
1 tltJ
1120
1 130
1140
1150
1 160
ll?O
1 1 BO
1 190
1200
1210
1220
1230
1240
1250
1260
1270
1280

1300
1310
1320
1330
13*0
1350
1360
1370
1300
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
149O
1500
1510
1520
1530
1540
1SSO
1560
1570
1580
1590
1600
C****!
C
2500

2506
2530


as 10
c



2521

C

2S50


2551

C
2540

2560


251 5



251 7
2S16
1525



2527
2S26
2535
2S45
2555
C
zses




2580
2S70
C


2590

2520

1250
12SI
12S2
***** * **#* ^* ****** #«#«$4>fi<* *$* **ft#>ti**4A #«*«# *******
READ MATRIX HEADINGS FROM TAPEo
DO 2506 K=l.2
REA3C IP I, llll ) ( CHECK t U , I- I, 33)
KKITFJIP. 1111 J(CHeCK( Di-I^l |33J
REACH IP 1, 1 1 10 > t CHECK { I j. 1 = 1,33)
on 2510 I =i . i o
IF < CHECK? 1) .WE. TITLEf I)) GO TO 2520
CONTINUE
PRINT OUT HEADINGS
WRITE (IP. 12 50 M CHECK C I J, I =1. 10), I PI
DO 2S21 J=l,3
FEAUf IPt, 11 IQHCHECKt I) ,1=1,33)
WHITCIIP,1I10MCHECK(IUI*1«33)
IFIIV.EQ.8I «a TO 2540
OUTPUT THE MATRIX FROM FIRST CASE FOR COMPARISON
00 2550 IT=1,MT
R6AO« IP1, 1251 1 TIMEUT)»{XMANINUT« IHti I Hal, MIH)
REfcIND 1P1
DU 2551 IT=1.MT
WRITE (IP, 1251) TIM511T) ttXMANlNt IT,IHljIH=li,WlH)
SO TO 2
OUTPUT THE MATRIX FROM SECOND CASE FC-R COMPARISON
00 2563 1T = 1,MT
HEAO(1PJ»1251J TI ME( ITt • ( MAN IN (I T(1HJ>IH = 1,HIHJ
WRITE ( IP, 1251 1 T1M£(ITJ,(HAN1N(IT,IHJ,IH-1.HIH1
F EWlND IP1
GO TT <251S* 2525*2515, 253542545« 2555,2565) ,!*AtH
IFtlMATHwKE.I .ANOaIMATB8NC.3J CO TO 2525
WRITECJP.1H2) TwASTEi.(TITLe(I ), 1=1,181, IP IF
on 25ifc n = i«MT
Of! 2517 IH = I»M1H
VMANlNtIT,IH»=XHANlN( IT, I HI /T WASTE
WRITt IIP. 12S1 } TIM£{IT»,t VMANlNdT, IHI , I H-l . MI H J
IFilMAtH, NE,2.ANO.lMATH.Ne.3) GO TO 2335
*RITE(1P,1U2> TWASTE.IT! Tt-EC! ),I*t»18»,JP2
OU 2526 I T=1,MT
DO ZhZ7 JH=1, MIM
YMANINt IT »IH»=HAN lN(It, IHI/T WASTE
WRITtdP, 1251 I TIME(JTJ,lyMANlN(IT»IH)tIH=I,HlHJ
CONTINUE
CONTINUE
CONTINUE
CALCULATE THE SATIO OF TWO MATRIXES.
 GO TO 2580
IFtXMANl^UT, IH>.EQ,0.0) XMAN IN (I T, IH ) =1 . 0
MANINt ITi IH)*-t »0
MAN IN C IT* IH)** XM Ah4 IN (I7»IH)/MAN1N( IToJH)
CONTINUE
PRINT THE FATIUO MATRIX.
WRITFtlPt 1109) JPlF,IP2o (TlTLEtU sI^l.lB) .
OO 2S.90 1 T=1»MT
WPITEUP, 1251 ) TIME{ITJ«f MANINt IT > IHJ. 1H=I » HIH)
GO TO 1
RBAOt 1P1, 1252 >
GO TO 2530
FORM AT C lX.tQA48T&2» "CASE* «I4J
FORMATtFJ 1.0, lP|OE»a»2»
F QRM A T ( 54 ( / ) J
                103

-------
                           Table  J-2 (&).   File SENDY5A
1000
1030
1032
1034
1036
1040
1050
1060
1070
1030
1100
1110
t 120
1130
I 14O
USO
1 160
1 !70
1 190
'I 190
IZOO
}210
1220
1239
1240
12SO
1 260
1270
1280
1290
1300
1310
1320
1330
1340
13SO
1360
1370
1380
1390
1400
1410
1420
1430
1660
1670
16BO
1 690
1700
1710
1720
1730
1740

1760
1770
17SO
1790
iaoo
1 BIO
ieao
1830
lt'50
1 B70
1
1900
1520
1930
1940
1950
1960
1970
 Z600 IFdYsEQ.l)  REAO(IN»12bll  1ZA«IZU
       DO  262? J=J,2
       READJlPI.ltll KCHECKt I J, I = 1,33 I
       WRITE tlP. II 11 J I CHECK d) i!=l«33J
       READC 1P1. 11 iai(CHECtCd"JiI=1.33)
       OO  2620 1=1,17
       IF (CHECK! I )*N<5*TITLE(I1)  GO TO 2640
       CONTINUE
       WRITE I IP, 1263HCHEC«I),I = 1 ,IB»*IP1
       RKADdPI ,111011 CHECK d 1,1 =1.331
       VlRITEdP, 1110)1 CHEC<( l)?.l-l»J3}
       HEAOdPl , 1262) l£»I£Pt
       JFdZ^NE.IZA) QO  TO 2650
       WRITEdP.1264} IZ.IZP1
       PRINT HSAlHNuS*
       DO  2663 J=l,4
       READC IPI, 1113)(CHECK! I),I*1,33)
       WRITE dP, 1110) ( CHECKd )•!=!• 33 >
       IFdY»eo,2)  GU 1'".]  2690
       OUTPUT  THE  MATRIX  FROM FIRST  CASE FDR COMPARISON.
       HO  2670 IT=1»MT
       REAOdPl, 126$) TIME (IT). C XAN2LR I T , I Z, JF ) , JF = l , MJF J , XNAN2UdT, IZ),
      CTIMCI IT»» {XAM2Lf=( IT, IZPI 5 JF ) t JF = 1 ,«JF >SXMAN2L( IT, IZPI }
       REWIND  IP1
       01  2680 IT=l»MT
 2680 WRITEdP, 1S65) Tl «C { I T J * { XAN2(-F( IT«1Z,JF),JF=l , MJF ) , XKAN2U dT » iZ J »
      CTtME< ITt, 
       GO  TH Z
C      OUTPUT  THE  MATRIX  FROM  SECOND CASE Ft'P  CCMPARI SON,
 2690 00  2691 : T=1,MT
 26 SI f.EAD(IPl, 12651 Tl MS 11 T i , t MAN2LF( IT, 12, JF), JF = 1 , M JF ) , MAM2L (IT, I Z H
      CTl'«-( IT), (MANELFI JT,1 ZP! , JFJ , JF=1 ,MJF ),MAN2LCT, IZPI )
       WRITtdP, 1E6S)ITIME(I Tl, (MAN2LFI IT.IZ.JF ) , JF = i , M JF ) , *AN2L d T , I Z ),
      CTJMEI IT), (MAi^SLFJ IT,IZPli,JF}iiJF = l,MJF»»MAN?l,(IT,!ZP])0IT = I,MT)
       REWIND  IP1
       GO'  TO 12612,2622, 26 I 2,E632,£642, 2652,2662J, I PATH
 2612 IF,:PJF
       Ofl  2613 IT=t,MT
       oo  ae.i* JF=I,MJF
       YANZLF JF ) = XftN2LFd T, i Z , JF ) XTSASIE
 2614 YANZLFIIT.IZ^l.JF)=XAN2LF(IT,I2P1.JF1/TWASTE
       262S
       2630
       • 2610

       2620
       2631
       2660
       2670
1450
1460
14-70
1480
1490
1500

1 51 a
1520
1 530
1540
1SSO
1560
1 570
isao
1590
160O
IblO
1620
1630
1640
                       F,IZPU=XMAN2M IT* riPl J/T&AS1E
       2613 WRITE 11 ^* 126tr) Tl WE 11 T* » 1 YAN2i_rt I T , IZ, JF I « JF=1 ,MJFJ, YHAN2H IT, IZ),
            CTIMEt IT ), (YAN2LF( IT»I ZPlp JFJ ,JF = l,MJF »,YMAfr2t< IT, IZPI )
       2622 IF dMATH«NE«2«AHi>«IMATh»NE«3>  6f3  TP £632
             WRIT^IIP. 11 12) TWASTErCTITLEd ),I = l»ie)sIP2
             UO 2623 1T=l,MT
                      JF=I,MJF
             YAM3LF( IT.IZ, JF) = MAN2LF( IT,1Z, JF t/'TWASTE
       2624 YAN?LF( IT ,1 ZP1 » JF ) = MAN2tFdT, IZPltJFl/TWASTE
             YMAN2LI IT .1 Z) =M AN2H I "i , i Z >/Tl» ASTE
       2l>23 *RITEdP,1265) TIHetlT)ilYAN2LF(IT,I/,JFl.JF = l,MJF}, YMAM2L (IT, I Z) ,
            CTIWEdT t, (YAN2LFJ IT. IZPI. JF), JF = 1 ,^1J^ ), YMAN2U IT, IZPI )
       2632 CONTINUE
       2642 CONTINUE
       2652 COMTIHUE
      C      CALCULATE THE;  RATIO OF TWO MATRIXES.
       2662 00 2-6%S IT = 1,MT
             00 Zfa97 JF=i,MJF
             !F{HAN2LF(IT,JZ»JFJ.NEoO.01  CO TD  26t
             IFtXAN2LFdT.lZ,JF).EOaO»0}  XAN2LFdT.IZ.JF)=l,0
             MAM2LFdT , IZ, JF ) = -! «0
        26 S MAN2LFI 1T.1Z, JF I = XAN2tF (I T, I Z , JF )/WlAf 2LF ( i T , IZ , JF )
             !F(MAK2LFdT, ;ZP1 ,JF) .NE.0.0 > (iL>  Tl 2696
             IF(XAI-'2LFdT. IZPI ,JF)»EQ» 0,0) XA(J2LF( IT, IZ«=U , J F ) = 1 .0
             MAM2LFI 1T,1ZP>1»JF(!=-1«C
       269fi WIANZLFl 1T.IZP1 . JF t = XAN2LF( ITi I2P1 , JF )/"MAN2LFdT, IZPl.JF)
       2657 CO«riMUE
             1Feu>D.O>  XMAN2LtITtlZPlJ=l«0
             MAN2L
-------
                     Table J-2 (e).   File SENDY5B
c***************#***#*******************aa***************************************
       SKIP 1007 RECORDS Ai4D READ HEADINGS CF MATRIX FROM TAPE,
       READlIPl,13703
       (JO 2729 J=l,2
       PEAUUPU mil (CHECK! i), 1 = 1,33)
       »KIT£(IO,1111JICHECKtII,I=1,33»
       READ{ IPl. lllOKCHECKf II •! »1 .33 I
       M 2710 1*1*I?
       IF (CHECKtl J.NE.TITLEU) > SO  TO  2720
       CONTINUE
       PRINT  HEADINGS.
       WRITE{IP,1271)[CHECKCl>,I*i»18>,IPl
       OO 2711 K=I,4
       READ(IPl, II10 I{CHfCK(I),I=1,33>
       WRITS (IPdllO) tCHECKif) s!*ti33J
       lFUVo£0«2J  GO  Til 3740
       OUTPUT THE  MATRIX FROM FIRST  CASE  FOF  COMPARISON.
       00 2750 IT=J«HT
       READ(IPl,1272!  TIMEU T) e
       REMIND IPl
       on area IT=I»MT
       wniTE(IP,1272 i  TIME(IT)*CXAN2NFIIT,JF),JF = 1.MJFI*XMAN2N( IT}
       GO TO  2
       CUTPUT THE  MATRIX FROM SECOND CASE FOR COMPAPISUN.
       Of} 2770 IT=l.MT
       SlTAOdPJ, 1Z72)  TlMEUTI . i «ANSNF( I T, JF » , JF = 1 . ft JF ) .MAN2MST)
       W<51 TEC IP, 1272)  TIME(IT),/TWASTE
       *KITE(I"»1272I  TIME»Ii4ATM»Ne«31  Gb  TO Z73R
       WRITE UP. H 12 IT BASTE* ITITLEI !),I = 1,1&K1P2
       OO 2723 1T=1,*T
       OO 2724 JF=l,MJF
              IT,JF)"MANaNFtIT,JF J/TWASTE
              JT)=MAN2N£IT»/TWASTE
       tfRJTEt IPt 1272J  TIHEUTJ , ( YAN2NFI J T j JP ) , JF = k , MJF » i VMAN2NI i T )
       CONTINUE
       CONTINUE
       CONTINUE
       CALCULATE TH? RATIO  OF TWO MATRIXES*
       DO 2780 IT*1»MT
       DO 2790 JF = UMJF
       I F {MAN2MF {I T, JF I»NE*0*0> 50 TC3  2790
       IF(XAN2NF(ITi JF JeEt)sO«C» XAN2NF 11 T» JF } si »0

       M AN2NF{IT « JF)a-1a 0
       MAN2NF{ IT«JF» = XAN2MF(IToJF1/MAN2MF1IT.JFJ
       IF(4AN2N{ IT UHE.3.0)  SO TO 279
       IF{XMAN2HMT).Ea»0<,OJ XMAN2NI JT J = 1« 0
t . MJF I , MAN2N( I T )
1000
1010
102U
1022
1024
1026
1030
1QSO
1060
1070
I 030
1090
1100
1110
1120
1130
1 ISO
si&a
I 170
1180
1190
1200
1210
1220
1230
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
J380
1390
1400
1410
1420
1430
1440
1430
1*60
1*73
1480
1490
1900
1S10
1 520
IS30
1340
1150
1560
1570
1530
1S90
1630
1*10
1*20
1630
1 £ii(| 0
1650
C****'
C
2700


272S
2730

271 0
C



271 I

C
2750


2760

C
2740

2770

2712



271 4

271 J
2722



2724

2723
2T32
2742
2752
C
2762




279C



27S
2T80
C


2791

2720

1270
1271
1272
1273
      MANZMf i T t =»CMANaNF( IT« JF I »
      60  TO  1
      PEAOdPl* 1273 I
      SO  Tt»  8730
      FORMAT <7««255(/> }« 1021 /}»
      FORMAT ( IX, 1 SA 4. 176, 'CASE' t 14)
      FORMAT tPiz»o» ipseio»2»
      FORMAT(55
                                      105

-------
       Table J-2  (f),   Pile DDSENDY  (i.e., JCL)
1000  99SO
1010       TNO
1020 /XSO.FT48F001  DO UNIT*!APc9»DSN=EPAJOB,VOL=SER=PEl7J7.
IOJO // LAOlLzt I ,SLJ •OCBstSeCFM = I=aA,LRECL=t33.BLK,SIZE=1330J i
1C*0 XX nISP«tOLO*PASS!
IOBO XXCn*FTB5FODl  DO UtilT=TAPE9»OSN=EPAJ&a,WDt=SER=PeiT3?«
1090 X/ LADei-=l3,SL> ,OC(*=( FtICFM=FBA, LRCCL= 1 33( BI.K5 J jZE = l
1100 XX D3SP=tOL0,PASS!
1HO /XGO^SYSlM  OD  *
                          106

-------
                          PART 2
                           USIRS'
CHAPTER 6,  SUMMARY
CHAPTER 7,  INPUT/OUTPUT DESCRIPTION
CHAPTER 8,          OPTIONS
CHAPTER 9,  ERROR MESSAGES
APPENDICES:  K THROUGH T
                              107

-------
Page Intentionally Blank
         108

-------
                              CHAPTER  6

                               SUMMARY


A,
Title:  AMRAW-Bj Assessment Method for Radioactive Waste  (Second Part).

Abstract:  &MR&W-8 performs a sequence of calculations  for an  inventory
           of radioactive wastes, evaluating health effects and economic
           costs resulting from dose to man calculated  by  AMRAff-A.

Effective Date:  May, 1978.

Programmers  The University of New Mexico  staff.

Computer:  IBM 360/67.

Language:  Fortran IV.

Core Memory Requirement:  124 k bytes.

Execution Time (CP see)i  270.

Auxiliary Hardware Requirements:   Disk, Tape, Line Printer.
                                  109

-------
B,
     AMR&W-B, the second part of the HacHoaeti've Waste Management Systems
Model, picks up the population close rates calculated in AMR&W-A and cal-
culates corresponding estimates of health effects and, economic costs of
these health effects (see Pig, 1-2).  These calculations consider the
populations in each geographic zone, incidence rates of health effects
per unit of radiation dose to a given body organ, and costs based upon
the value of small changes in risk.
                                   110

-------
C.   METHOD
     The AMRAW Code is written in Fortran IV language.  The two parts of
the code are;  1) AMRRW-A which contains the Source Term, the Release
Model, and the Environmental Model, and 2} AMRAW-B which contains the
Economics Model.  They are being run separately but may be joined if
desired.  There is an advantage to running the first part independently
to determine sensitivity of environmental concentrations and dose rates
to variations in input.  Similarly, there is an advantage to running the
economic model independently to study the response to varied economic
parameters.
     The flow of AMRAW-B calculations is best described first using the
sequence indicated by Fig. 1-2;  1} determine rate of occurrence of health
effects, and 2) perform corresponding damage calculations in economic
units.  An altered sequence of the actual calculations within AMRftW-B
is then described.  The matrix of local dose rates from AMRAW-A, to
individuals in each 2»ne from each radionuclide to each body site (organ)
during each time increment, multiplied by the population of each zone and
then multiplied by the set of health effect incidence rates for each
body site, obtains the health effect incidence rates in each zone.
Similarly, nonspecific dose rates from AMRAW-A (dose to a nonspecific
population) multiplied by health effect incidence rates obtains health
effect incidence rates corresponding to nonspecific dose..  As actually
calculated within AMRAW-B, the input incidence rates of health effects,
deaths/10  man-rem, are first converted to $/man-rem by multiplying by
$260,000/10  (the value $260,000 is the present input for cost of in-
creased level of risk, VOL).  Damage rates, §/y, in each zone (and the
nonspecific category), are calculated by multiplying together:  dose
rates, populations, and $/man-rem.  The damage rates, $/y, are accumu-
lated over nuclides and organs in each zone (and nonspecific) versus
time.   Total damage rates are also accumulated over zones, organs, and
times for each naclide.  Damages during each time increment, $, are then
obtained by multiplying rates by the length of each time increment and
accumulated over the total time range.  Finally, the number of deaths
(health effects) during each time increment are obtained by dividing
the damages in dollars by $260,000.  Results are obtained for both high
                                   111

-------
and low population projections.
     The present dimensioning of &MS&W-B is ae follows;
     1)  Badionuelides s  25.
     2)  Geographic Zones:  8  (the nonspecific category is treated as a
         ninth zone in calculations).
     3}  Human Organs:  8; typically, one of these is total body.
     4)  Time Increments?  50.
     AMR&W-B runs with 124 k bytes of core storage, 125 tracks  (900 k
bytes) of disk storage for input data, 10 cylinders  (200 tracks or 1440
bytes) of disk storage for intermediate storage, and requires 270 seconds
of CPU time in the UNM IBM 360/67 coinputer.  Input data from the major
data matrices can be furnished from tape instead of from disk if preferred.
                                    112

-------
                              CHAPTER  7
                     INPUT/OUTPUT DESCRIPTION
     Input for AMRAW-8 is by an 80 column card data deck.  There are 15
card types-  As implemented at OHM, the input deck is read from 3 files
in disk and/or tape storage.  No additional inputs are required.  The 3
input data files are as follows:
     1)  AMB.'  This file provides economic model control and conversion
         data, including discount rate (zero presently used), cost
         assigned to a death, the numbers of times, zones, radionuclides,
         and organs involved, incidence rates of health effects by body
         site or organ, high and low population projections by zone, and
         designation of nuclide decay group.
     2)  AM1E.  This file provides values of time at the end of each time
         increment, names of each radionuclide, and the mass of each
         radionuclide  (in grams} in the repository inventory at each time.
     3)  ECONxx (xx is case number).  This is the large output matrix,
         MAN1, of dose rates from AMRAW-A, restructured for AMRAW-B
         input.
Radionuclide mass versus time is used within AMRAW-B at this time only
for calculation of marginal damages ($/gram) by decay group, based upon
the accumulated inventory at the time repository-operations cease.  The
full nuclide matrix provides for possible additions to AMRAW-B for allo-
cation of damages to elements in the waste.  The dose rate matrix, MAN1,
from AMRAW-A is arranged as shown in Table 7-1.  With the present dimen-
sioning used, the dose rates are presented in 225 separate tables (9 zones
x 25 nuclides).  For input to AMRAW-B, this is processed through an aux-
iliary program, COMPRESS, to strip away headings and the time column,
producing a data file with 11,250 lines (from 225 tables x 50 lines
each).   Each line has dose rate values for 8 organs resulting in 90,000
data items.
     Card input is described in the following section.  Output is des-
cribed in Section 7.B.
                                   113

-------
       Table  7-1. Arrangement of AMRAW-A Dose Rate Output:
                   Local Dose Rate by Zone and Nonspecific
                   Dose Rate
 Zone 1
      Nuclide 1
           Time Increment 1:  Organ 1, Organ 2, ... Organ 8.
                          2:  Organ 1, Organ 2, ... Organ 8.
                          (repeat for other time increments)
                         50:  Organ 1, Organ 2, ... Organ 8.
      Nuclide 2
           (repeat for other nuclides)
      Nuclide 25


 Zone 2

      (repeat for other zones)

      •
      *
      •
Zone 8
Nonspecific (handled as Zone 9) .
 Local dose rates are mrem/y.

 Organ refers to each body site for which dose rate is calculated.
c
 Nonspecific dose rates are man-rem/y.
                                 114

-------
A.   CARD  INPUT SPECIFICATIONS
     1.  Data Deck Setup.   Descriptions and number required of each card
type are given in section  2 which  follows.  The sequence of the data deck,
beginning with the first or front  card is  listed belowj

             File              Card Type       Itejns_
             AMB                   1           TXT1E
                                   2           RATE
                                   3           TOL
                                   4           NT
                                   5           MZ
                                   6           NK
                                   7
                                   8          • SITE, DPY
                                   9                 POPH,
                                   10           NG
                                   11           K, IKK
             AMIS                  12           TIME
                                   13                   X
                                   14           X
                                   15
     2«  Description o£	Card Input.  Input data is grouped into 3
sequentially read data files:  AMB, AM1E, and ECONxx  (where xx denotes
the case number from which this file is extracted},
     The largest matrix of data is for MAK1  (card type 12}.  This is the
dose rate output from AMRAW-A as selected and restructured by auxiliary
program COMPRESS for use as &MRAW-B input.  As presently dimensioned,
this file can consist  of as many as 11,250 cards.  Because of its size,
this file is handled via tape and/or disk storage,
     A list of each card type in input sequence, the necessary card for-
mat in each instance, the number of each card type required (one card
unless stated otherwise), the data items and their descriptions, plus
                                  115

-------
other explanatory notes are presented below.
Card
           Format and Items
                               Description
The following card types 1 through 11 comprise data file AMB, economic
model control arid conversion data.
 1.
 2.
 3,
 4.
 6.
 7.
 8.
10,
11.
FORMAT  (10A4)
  TITLE

FORMAT  U5X, FlO.O)
  RATE

FORMAT  (15X, FlO.O)
  VOL

        (20X, 15}
  NT

FORMAT  (20X, 15)
  ME

FORMAT  (20X, 15)
  NK

FORMAT  (20X, 15)
  NIHT

FORMAT  (5A4, F5.05
  SITE
FORMAT (A4, IX, 2F10.0)
  REG
  POPH
  FOPL

       (3X, 2513)
  NG

FORMAT (3X, 2513)
  K
  IKK(J)
Title of case, up to 40 characters.


Discount rate, expressed as decimal.


Cost of increased level of risk.


Number of times,


Nuntoer of geographic zones.


Number of nuclldes.


Number of organs (body sites) .

1 card for each of HIHT organs.
Name of organ {body site), up  to
20 characters.
Health effect incidence rate,  cases
per 10  man-rem.

1 card for each of.MZ zones.
Name of gone up to 4 characters
High population projection.
Low population projection.


Number of nuclide decay groups.

1 card for each of NG groups.
Number of nuclides in group.
Subscript identity of each of  K
nuclides in group.
The following card types 12 through 14 comprise data file AMIS which
furnishes values of time to be calculated and the nuclide inventory
versus tine.
                                   116

-------
Card
12.
           Format and Items

           POBMAT {1P8E10.2)
             TIME(I)
     Description

1 card for each 8 times of HT total.
Time in years for each subscripted
value of TIME.
One set of the following card  types  10  and 11  is  required for nuclide K

of NK total (e.g., for 25 nuclides and  50  time, 25  x 8 =  200 cards,  are

required).
           FQRMftT (AS, 2X,  7E1Q.2)
                    (K)

             X(K, IT)
                  (10X, 7B1Q.2)

             X(K, IT)
13,        FQRMftT (AS, 2X, 7E10.2)     1  card  in each nuclide set.
                                       Abbreviated name of nuclide  (e.g.,
                                       SR 90 or AM 241M) .
                                       inventory quantities  for  first  7
                                       times IT.

14,               (10X, 7B1Q.2)        1  card  for each 7 times,  8 through
                                       MT, in  each nuclide group.
                                       Inventory quantities  for  times  8
                                       through NT.  This card bypasses
                                       rereading NUCNAM, which may be
                                       placed  on each card along with  card
                                       sequence number in the 10X field.

The following card type 15 comprises data file ECONxx  (xx represents

the case number from which the file is extracted),  This file is the

large matrix which is a portion of &MBAW-A outputr providing calculated

dose rates.
15,
           FORMAT (1P8E10.2)
                  (IT, IH>
One set of cards for each Zone IZ
of MZ * 1 total (the last "zone"
is reserved for "nonspecific dose")
(maximum M2 + 1 is 9} within each
set is a subset of cards for each
nuclide K of NK total (25 maximum),
one card for each time 1 of NT total
(50 maximum), (e.g., for 9 zones,
including the nonspecific category,
25 nuclides, and 50 times, 9 x 25
K 50 = 11,250 cards, are required),
Dose rate to each organ IH of NIHT
total (8 maximum), at time IT (in
2one IE via nuclide K),
     A sample coding form illustrating the  first  card of each  type  is
given in Appendix M.  More complete sample  input  is given  in Appendix P.
                                   117

-------
B.   OUTPUT DESCRIPTION
     AHR&W-B requires two output mediums:  disk and line printer.
     1.  Disjt.  Intermediate temporary storage of calculated values for
each nuclide is on disk.  Output can be to disk and/or line printer.
     2.  Line Printer.  The line printer must be capable of 132 charac-
ters per line,
     3.  Output Tables.  Output from AMRAW-B is the series of tables
listed in the directory in Table 7-2.  Table 1 as numbered by AMRAW-B
provides average damage rates in each some, for nonspecific, anci the
total, versus time.  Subtables are for high and low population projec-
tions, respectively.  Table 2 is a series of tables, one for each time
increment giving average damage rates;  total for zones, nonspecific,
and total by nuclide, for high and low population.  Table 3 presents the
total discounted present value of damages over the entire time range for
each nuclide, subtotals for each decay group and the overall total, for
high and low populations.  This table also includes marginal damages,
by decay group and total, based, upon        in repository inventory at
the beginning of the terminal storage phase.  Table 4 presents total
expected deaths per time interval in each zone, for nonspecific, and
the total, versus time.  Similarly, Table 5 presents total         in
dollars per time interval.  Subtables of Tables 4 and 5 are for high
and low populations.  Sample output is given in Appendix P.
                                  118

-------
                    Table 7-2.  Directory of  AMRAW-B Output  Tables
Table Ho.

i-1

1-1

a



3
4-1

t-2

5-1

s-a

Titln or Description
Output listing of selected W«*»-a input
anal and Total outages for High Population
redaction, S/y.
anal and Total iBa*g*a for ta» Population
reduction, $/f.
Osg tajals for each tina InMrval calculated;
stances by nuclite, S/y,


liaccunted present Values, $, and 5/f-
Httjh population Scenario; Nuabflr of Doatiis
Per URO Interval.
Low Population Scenario) Huabar of Deaths
Per Tims Interval.
Total Undiacounted Daiugee for Each Zono for
Each Tie* Interval-High *ojwl«tion» $.
Fot&l UTKiict'Guntnd Damgas for Each Sono for
each Tiea Intarv*l-L
-------
Page Intentionally Blank
  120

-------
                             CHAPTER 8
                           PROGRAM OPTIONS
     The major class of options is concerned with design of the appli-
cation.  The number of nuclides, geographic zones, times, release sce-
narios, and environmental pathways may be varied in AMRAW-A within the
range of dimensioning and carry over into the AMRAW-B calculations.
     There are no options built into AMR&W-B for alternate calculation
sequences.  There is an option to print or suppress printing of output
Table 2.  This table consists of 1 page for each time calculated (see
Table 2-2 for description).  Setting ITB3 = 1 requests printing of out-
put Table 2; setting ITB3 = 0 suppresses printing.  Write statements are
provided (before and after Format statement 3806} for outputting the
large HANI input matrix from file ECONxx.  The write statements are
suppressed by labeling as comment statements.  Removal of the "C" from
the two lines results in output.
     The input/output mediums are specified in statements in the main
program which assign values for the variables IN, IP, and IS appropriate
to the system being used:
     IN  specifies an input medium, normally the card reader (at UHM,
         this is 5).
     IP  specifies the output medium for the code; this is normally the
         line printer but it may be set to disk or tape file if preferred,
         along with appropriate JCL (at UNM, line printer is 6).
     IS  specifies an input medium with large storage, used for file
         ECONxx,  This can be disk or tape files; the value of IS can be
         any allowable and free integer as supported by appropriate JCL
         (at UNM, this may be 1, 3, or 4; 2 is used in AMRAW-B for sys-
         tem disk storage of intermediate calculations).
                                   121

-------
Page Intentionally Blank
    122

-------
                              CHAPTER 9
                          ERROR
     AMRAW-B in the present version does  not generate error messages.
No such addition is planned at this point in time.  If the computer code
fails in a run, it is suggested that the  input data formats be checked.
Extensive comment statements have  been placed in the program for assist-
ing the user to isolate any problems.
                                  123

-------
Page Intentionally Blank
 124

-------
                                        K
                       BACKGROUND MATERIAL
     The basic structure of the AMRAW model  and computer code was
developed at UNM between 1972 and 1974 as  part  of  the S. Logan Ph.D.
dissertation:  "A Technology Assessment Methodology Applied to High-
Level Radioactive Waste Management,"  The University of New Mexico, 1974.
Additional development proceeded with support from the Sandia labora-
tories university Research Program and from  the Energy Resources Board
of the State of New Mexico.   Completion of the  model and code was done
under EPA Contract No.  68-01-3256 beginning  in  August, 1975.
                                  125

-------
Page Intentionally Blank
126

-------
                        APPENDIX L
                    SAMPLE RUN  REQUEST
                     -&MRAW-B RUN REQUEST
 Requested By:
Phone:                           Date:
Number of Seconds:	  Ho» of Quput Lines;




Nuntber of Copies Requested:




Special Form?        	  If so, form no.
Input Data On:  Disk	  Disk, Name:_




                                    DSN;
Card	  Tape 	  Tape Nantej_




                   Label:            DSN:
                   OFFICE  USE  ONI.1
Gate Received;




Date Submitted:




Date Returned:
Initials:
                             127

-------
Page Intentionally Blank
    128

-------
                            APPENDIX  J1
                        SAMPLE CODING  FORM
     fable M-l presents a sample coding form for AMRAW-B  input data
illustrating proper formats for each of the 15  card types.  The data  shown
is from the base case for terminal storage, reported elsewhere.  Only
the first card of each card type is illustrated.   Card types  1 through
11 comprise data file AMB, card types 12 through 14 comprise  data  file
AM1E and card type 15 represents the large dose rate output file from
AMR&W-A:  ECONxx,  For 9 zones, including one "zone" allocated to  non-
specific dose rates, 25 nuclides,  and 50 times, 11,250 cards  of card  type
15 are required.  Because of the large size of  the last file, it is
obtained from AMR&W-A and placed on tape or disk by machine processing,
File AM1E is obtained from an AMR&W-A input data file via machine  pro-
cessing.  Normally, only file AMB requires key  punching or typing  on  a
terminal.
                                 129

-------
                                       Table M-l.  Sample Coding Form with First cards of
                                                   Each Type Illustrated3
fd
>e
1
a
3
4
5
6
7
8
10
n
ia
B
W
6
t
Z
a
V
M
n
N
M
I
R
tf
3












^ ..- 51?
tow
ftTib
OL
T^
Z
K
IHT
QIA.L
EPO
b 1
01
o.o
C
c










a








1
a
p
-



•-





Cjolw.*wri
to 	 SO m
- 50 PER






BODY


1 Q
EfOO
If 1
IH a
o.o















C&EM
101

25
_ 5,..Q
0,0
4.0


a
One
req
b
The



1
i
	 ; 	 .aeto.




AIM.)
•


pEtQQ


O.O


card
aired

varia


'';•/ (v '^ |tj " .
- NEW
; o.d
QDQi.0
50
8
as
- ; e

! IOJ


t .0

4_o,



each c
for: ei
, '- I ,
ble,' hi


L_ 	 ....-._, ._..,.,]
60'OV





i '
• i t



oE±m
4£±Pl
HEtOH-
. o.o


)f tiyjp
id hi 'of

me -on






^C'Qt.F





!
j
i


*



- ; '









1

4

.5
.2




1 <

3
tl
i -
N
'0
• i I :
carid



FORIMt
ijaATEMfl1
*rC3
p.i '
! ! i

i j
! i
• !

: , !

, ; I
' i
, ! : '
i I !
• ! , •
i • .
OdEdtJD
KFtO
3



|
3
H
_D.O




7 and
ther
t

typed



n
i ' '
1 '• •


i
; 1
' ' i
: ; • |
I : j
i ' I
1 i 1
1
i ,
.
a

i 4
i l
' i
i
t'O
.0
,0
i
' 1 '
* "
10
is
ypeii
t I
2! h

t

' ; •.
; i ;
So to


|

1



1
1 j f !
i " •
1 1 ; ;
i

QE+Ojl
2EL03
aet
: O
04
-O


recru:
i
t
:~! ' !
is;
nb-
i !


; : : i
i ; j
•• ' i

'
•
i t
i ' /
> i ;


a. 5,
q.^
4/.0



.red?
; i ,
1 l ' •
: ^ rj



; ' ! i
; ! : ,
i : i "
; i i !
1 " ;
i •
1 . •
i M i
i I ;
! ! : i
' i
: • -
06'tOl
^ E't-03

: O.O

I
nore :t
i ; i
; 1 ' !
* i i ' i



." ' I 1
	 "i 	 i 	 i 	 •; 	
1 , i !
, l


] . i. • .

j i '


; 3._0
: a.-i
' If. O



han 1
• '.
•
' - i ^



7IL
ill;

I
._, —J..-T-
i 1 i i




' : - '
' . , ' :


OE
7F
IB
tOi
+ OM :
•!* /'Tti^ii
o.o


card is







HSrflWl ^


! . : : 1 i ;



; , ' , ;
. 1 i ; ;
! ' ! i " i '


M-.OOE+OI
^OJiEtQM
«L, QiEtOH
: O.O


cr,eng rally





_. 	 — . 	 —~ — ^~. —
U)
O

-------
                            APPENDIX N
                   JOB  PROCESSING  INSTRUCTIONS
 1. Prepare Jobcard for computer run using run request as follows:
    Job name - 8 alphanumeric  characters.
    Time parameter - number of seconds estimated,
                         t
    Lines parameter - number of lines  (in thousands) estimated.
    Forms parameter - form number from request.
    Copies parameter - number  of copies requested.
2.  Input medium:
    Card - keypunch as necessary and place in appropriate section of deck.
    Disk - modify the data definition statement GO.FTOlFOOl DD card to
    reflect parameters required by the system,
    Tape - modify the data definition statement GO.FTO2F001 DD card to
    reflect parameters required by the system.
3.  Submit job and note date submitted.
4.  Return job to requester and note date returned.
                                 131

-------
Page Intentionally Blank
      132

-------
      APPENDIX  0
OPERATING  DECK SETUP
JOB CONTROL LANGUAGE CARDS
 INPUT DATA
 JOB CONTROL LANGUAGE CARDS
 AMRAW PROGRAM
 JOB CONTROL LANGUAGE CARDS
 JOB CARD
             133

-------
Page Intentionally Blank
   134

-------
                             APPENDIX  P
                      SAMPLE INPUT AND OUTPUT
AMHAW-B^ Sample _ Ingut
     Sample input data for the base case for terminal storage phase,
Case No, 48, are presented.
     1.  Table P-l.  Data file AMB.
                                    a
     2.  Table?-2.  Data file AM1E.
         The full file for 50 times and 25 nuclides is 207 lines  long?
         the beginning and end of the file is shown here.
     3.  Table P-3.  Data file ECON48.
         This is the file with designation of form ECONxx  for Case No.
         48.  The full file for 50 times,  25 nuclicEes, and 8 zones is
         11,250 lines long; the beginning and end of the file is  shown
         here, as obtained by processing AMRAW-&. output through the
         auxiliary program, COMPRESS.
     4.  Tables P-4 and P-5.  Sample of AMBAW-A output.
         These tables are a sample of AMRAW-A output prior to processing
         by COMPRESS to obtain the AMRAW-B input file illustrated in
         Table P-3.
         Table p-4.  Average Annual Local Dose to Individual in Zone 1,
         from Ra-226, in Millireras/Year.
         Table P-5,  Average Annual Nonspecific Dose to Population from
         Ra-226, in Man-rems/Year.
aThe left hand line number column in these tables is  computer-furnished
 for these listings and is not part of the data files.
                                  -135

-------
   Table P-l.  Data File AMB
123456789012345478,9012345678901234367890
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150
4160
4170
4180
41?0
4200
4210
4220
4230
4240
4250
4260
4270
4200
4290
4300
4310
4320
ECON48 - 50 PERIODS - NEW
RATE 0,0
VOL 260000,0
NT SO
MZ 8
NK 25
NIHT 8
TOTAL BODY C REMAIN*) 85
61 TRACT 34
GGNAD< GENETIC) 200
LIVER 0
LUNG 44
HARROW < LUKEMI A ) 32
7
THYROID 0
REPO 101 10.1.
EDDY
REDB
MI DO
WTEX
LEA
CHAV
RE 08
NG 1
(301
G02
(303
CO 4
605
G06
G07
G08
609
G10
Gil







1
2
5
6
3
1
V™
2
1
1
1
1








19
11
10
16
1
I?
4
6
7
8
9
17200
213000
784000
217000
245000
253000
155000

25
13 15
12 14
IS 23

3
5




6100
S3 6 00
224000
57900
"74000
67800
54900


20 21
17 22 24








                           BODY COEFF
               136

-------
Table P-2.  Data File
ioso
1060
1070
1080
1090
3.100
mo
1170
11 BO
1190
1200
1210
1220
1230
1240
1250
12(50
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1430
1.460
t-V
r^
.-:«70
2800
2B?0
2900
2910
2920
2930
2940
2950
2960
2970
29 BO
2990
3000
3010
3020
3030
3040
3030
3060
3070
3080
3090
3100
3110
3120
;ii30
3140
3150
3160
O.OOE+00
5.00E+01
4.00E+02
3.00E+03
2.QQE+04
1.00E4-OS
9.00E+05
C-14 1
C-14 2
014 3
C-14 4
C-14 5
C-14 6
C-14 7
C-14 8
BR-90 1
SR-90 Z
SR-fO 3
8R-90 4
SR-90 5
SR-70 6
SR-90 7
SR-90 B
Y-90 1
Y-90 2
Y-90 3
Y-90 4
Y-90 5
Y-90 6
Y-90 7
Y-90 8
ZR-93 1
ZR-93 2
ZR-93 3
ZR-93 4
ZR-93 5
ZR-93 6
_^--— *v
^~~^
AM-242M 3
AM-242M 4
AM-242M 5
AM-243M 6
AM-242W 7
AM-242M 8
AM-243 1
AM-243 2
AM-243 3
AM-243 4
AM-243 5
AM-243 6
AH-243 7
AH-243 8
CH-242 1
CM-242 2
CM-242 3
CM-242 4
CM-242 5
CM-242 6
CM-242 7
CM-242 8
CM-244 1
CM-244 2
CM-244 3
CH-244 4
CM-244 5
CM-244 6
CM-244 7
CM-244 8
5.00E+QO
6.00E+Q1
5.00E+02
4.00E+03
3.00E+04
2.00E+05
i.OOEWA
0.0
4,04»04
3.960+04
3,64Ci04
l,73»-t-04
B.62D+01
7.03D-12
0,0
S.30D+85
4.91D4-07
a.B7n-w5
3,*~S~^J
-*^^X~s^».
4.52DI-05
}, .780+04
4.14D-07
0,0
0,0
0.0

7,250+07
7,200+07
6,750+07
4,130+07
1,660+06
4.Q7D+01
1.91D+00

1 ,500+03
1:. 090*03
4,280+01
1,000-09
0.0
0,0
0,0

2.04D+07
1 ,470-106
5.140-06
0,0
0,0
0.0
0,0

               137

-------
Table P-3.  Data File ECOM4S
0.0
0.0
0.0
0.0
0 .0
O.Q
0.0
2, 401-12
3.41E-12
4.41E-12
S.40G-12
6.39E-12
7.3SE-I2
8.30E-12
i «a2F~"i i
Z.77E-11
3 , 7QE— 1 1
4. 6 IE- It
5.40E-11
6.34E-U
7.J7E-11
7 n QBE — 1 1
8.76E-1 I
1 » fiSC— 1 0
2 e 1 a E— 1 Q
2.SSE-JO
2.79E-10
2,93E*iO
S=99E-JO
3.00E-10
2.96E-10
2.fl8E-iO
3.S4E-10
1 ,4SE-10
5.0QE-11
L61E-11
S.03E-12
1 .S6E-12
4.9QC-13
1 . 56S- 13
5.Q6E-14-
3.16E-14
3.I6E-19
9.72E—25
2,08£~3i
S.16E-38
O.Q
0.0
0.0
• 0,0

r^ O.Q
o .0
0,0
0,0
0 .0
0.0
0.0
2. 15E— 02
1.49E-02
1 .04E-02
7.24E-03
5.03E-03
. 3.4SE— 03
2.34E-03
9.S6E-04
1 .94E-05
4.SSE-07
1 .34E-08
3.e8E-l 0
9.79E-12
2. 17E— 13
4.36E— IS
8 a 12E-17
1 .7BE-18
0.0
0 .0
0.0
0.0
O.Q
O.Q
0 .0
0.0
0 .0
0 «O
0.0
0«0
o.o
0.0
Q«0
0.0
OoO
0 .0
0.0
0 »0
O.Q
0.0
OaQ
OaQ
0.0
O .0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
3.03E-1 1
4.29F-U
5.S5E-11
6.80E-11
a.oss-ii
9»291-11
LOSE- 10
2.29E-IO
3.49E-10
4.66E-10
5.80E-10
6.9QE-IO
7.98E-10
S.03E-10
1 .OOE-09
i .1 oe-09
2..0BE-09
2.75E-09
3.21E-09
3.S1E-09
3.69E-09
3.76E-09
3.76E-C9
3»73E-OS
3.63E-09
4.46C-09
1 .83E-09
C.30E-10
2.03E-10
6.34E-1I
L97E-11
6.17E-12
1 *96E— 1 2
C.37E-13
3.98E-13
3.97E-18
1.22E-E3
2.62E-30
6.50E-37
0.0
0.0
0.0
0.0

0.6
C.O
C.Q
0.0
c.o
0.0
0.0
4,*s2E-03
3,13E-03
2.196-0-3
1 .53E-03
1 .06E-03
7.24E-04
4..92E-04
2.10E-04
4 ,08£-Q6
9.55E-08

e!l5E-l i
2.06E-12
4.S6E-14
9 . 1 5E- 1 t
1.T1E-17
3.74E-19
C.O
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
O.Q
0,0
0,0
0.0
0 ,0
0.0
0.0
0,0
0 »0
0.0
0,0
0 .0
0.0
0,0
0 .0
0.0
0.0
0*0
0.0
OP 0
0.0
0.0
0.0
B.OSE-13
l.tSE-12
1.48E-18
1.0 IE- 12
£, 1 4EM 1 S
2.47E-12
SuBOe— 12
6.10E-12
9.29E-12
1.24E-1 1
J O5'l^r±"" 1 1
1.84E-1J
2.12E-11
2.40E-11
2 « 67E— 1 1
2.93E-1
S.54E-1
7.30S-1
0.53E-1
9.35E-1
S.iOE-H
l.OOE-IO
I.01E-10
9.92 E— 1 1
9.66E-11
1.19E-10
4.87E-11
1.67E-J1
5.39E-12
1.69E-1?
5.24E-13
1.64E-13
S.21E-14
1 OT69E— 4 4
1.06E-14
l.OCE-19
J.25E-2S
6.96S-32
1.73E-3S
0.0
0.0
0,0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.7SF-02
1.21E-02
i.4BE-03
S * 9 1 E — 0 3
4.085-03
2.60E-OJ
USOE-03
8 » 1 OH**D 4-
1. 585-05
3.69S-07
1 .08E-08
3 «, 1 5E- 1 0

IP? &£• — J 3
3.S4E-15
6.S9E-17
l,4SE-ia
o.o
0.0
0.0
0.0
0.0
0.0
c.o
0.0
0.0
0.0
0,0
0.0
c.o

oto
0.0
0«0
0.0
0.0
0.0

oto
0,0
0.0
0*0
0.0
0.0
0.0
0.0
0.0
0*0
o.o
0.0
0,0
0,0
OoO
0 ,0
o.o
0.0
0.0
0.0
0 ,0
0.0
0.0
0.0
0,0
0,0
0*0
0 ,0
0.0
0,0
0.0
0,0
0.0
0,0
0.0
0.0
0,0
0« 0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0-0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0,0
_ -»-m
0.0
0.0
0.0
0.0
0,0
0,0
0.0
3, 355-O1
2.32E-01
1 ,t»3E-QJ
1 » i 4E;""""Cl 1
7.84C-02
S.37E-02
3.66E-02
1 .56E-OE
3.03E-04
7.09E-06
2«Q£jE-07
6.05E-09
1 .53E-10
3.38E-12
6.79E-14
1.27E-1S
2 « 7aB - 1 7
O.Q
0.0
0-0
0.0
0.0
0,0
0.0
0.0
0.0
O.Q
0.0
0,0
0,0
0.0
OoQ
0.0
0.0
0.0
0.0
0.0
0.0
0.0'
0.0
0,0
0.0
0.0
0,0
0,0
0,0
0.0
0.0
0.0
0,0
3.37E-10
4.775-10
6. 172-10
7.56E-10
e.ase-io
1.033-09
I, I7E-Q9
2,gS=-09
3.896-09
5. 155-09
6.46H-09
7.6CE-09
s.ae=-09
I.QOS-OB
1 . 12S-08
1 .23S-08
2.32E-08
3. DCS-OS
3.87E-08
3.91E-08
4. 103-08
4. 195-08
4. 2CH-08
4 . iss-oa
4.04E-OS
4 . 96 s — 08
2.04H-08
7. DIE- 09
2.2CS-09
7.0S=-iQ
2. 1S3-10
.6.865-1 1
2. i&e-n
7 . 06H— 12
4.425-12
4 .426-17
I « 3fc3 ^*22
-H « 9 i r — 2^
7. 233-36
0. 0
0.0
0.0
0.0

0.0
0.0
0.0
0. 0
0.0
0. 0
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
o.a
O.Q
0 .0
0,0
0.0
P.O
0.0
0,0
0.0
0,0
0.0
0.0
0.0
0.0
0,0
0,0
0.0
0.0
c.o
0.0
0. 0
0.0
0.0
0.0
0. 0
0,0
0.0
0.0
0,0
0, 0
0.0
0,0
0 ,0
0,0
0 .0
0.0
0.0
1.2SE-11
1 .82E-11
2.3SE-1 I
2.Q8E-H
3.40E-1 1
3.33E-1 I
4.46E-11
9.71E-J1
1 «4B£— 1 0
1 .97E-1 0
S.46E-10
2 . 9 H E— 1 0
3.3SE-10
3.82E-10
4 .25E-10
4 .&7E-10
8.82E-10
1 .16E-09
1 «36E-09
I ,*9E-09
1 .S6E-09
1 .59E-09
t .&OE-09
1 .58E-09
1 .54E-09
1 .89E-09
7.75E-10
2.67E-10
a«56E-l 1
2.68E-U
8,33fc-l2
2, 6 IE- 12
B«30fc-i3
2.69E-13
1 .68E-13
1 .6BE— 1U
5.10E-24
1 .11 £-30
2.75E-3?
0.0
0 nO
0.0
0,0

0 .0
0.0
0 .0
0 .0
0.0
o.o
0 .0
7.27E-01
5 ,Q3E-Ol
3.S3E-Q1
2 Q4CiE— 0 1
1 ,TOE— 3 1
1 .I6E-01
7.91E-02
3 .J7E-02
6.56E-04
1. .54S-05
4.51E-Q7
1 wJ 1 H"**0 B
3«3iE-lO
T *Ji2E;'~' i 2
1 .47E-J J
2,T4E-lSi
6.0 IE- 17
O.O
0 ,0
<3 .0
0 .0
0.0
0.0
0 .0
0.0
0.0
0.0
0.0
0.0
0*0
0,0
0.0
0 .0
0.0
0.0
0.0
0 .0
0.0
0,0
0,0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
o.c
0.0
0.0
1.28E-M
1 ,825-1 1
2.3SS-1 i
2 . B 8E- 1 t
3.40E-1 1
3.93S-1 1
4.46E-I I
9.71E-1 1
1 .48E-10
1 ,975-1 0
2.4&2-10
2.92E-10
3.38E-1 0
3.62E-10
4.2SE-10
H .67E-1 C
B.82E-10
1 .165-09
1 .36E-09
1.4 SE~"09
1.S6E-09
i .sse^-os
I .60=- 09
1.5 Gc — 0 9
t .54E-CS
1 .8-5E-09
7.752-iC
2.67E-10
8.5SE-1 1
2.68E-J 1
8. 3 35- 18
2.61S-12
8.30E-13
2.69S-1 3
1 .68E-13
I .66E-16
5.18E-24
1 . 11E-30
2.7EE-37
0.0
0.0
0.0
0,0

o.o
0.0
•0.0
0,0
0.0
0,0
0,0
7.27=-01
5.03E-01
3.53E-OJ
2,462-Oi
1 .70E-.OJ
1 .165-01
7.9 15-02
3.37E-02
6.562-04
i .545-05
4.51E-07
1 fl3lt":"c"00
3.31C- 0
7.3JE- £
1.47E- 3
2.7 4E- E
6 . 0 1 E- 7
0.0
0.0
0 .0
0.0
o.o
0.0
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0 .0
0.0
0.0
O.D
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0,0
0.0
0.0
0 .0
0 .0
0 ,0
0 .0
0.0
0.0
0,0
0 .0
0 .0
0.0
0,0
0.0
0 ,0
0 .0
0.0
0»0
0.0
0 .0
0 .0
0.0
0.0
0.0
0,0
o.o
0.0
0.0
0.0
0 .0
0.0
0.0
0 .0
0 .0
0 ,O
0 ,O
0.0
0.0
0 .0
0 .0
0,0
0 .0
0.0
0 .0
0 .0
0.0
0.0
"-Sn5^-»±-*

0.3
0.0
0 .0
0 .0
0,0
o.o
0 .0
0 .0
O.D
0 .0
0 ,O
0,0
0,0
0 ,0
0.0
0.0
0,3
o.a
o .0
0 .0
0 .3
0 .0
0 .I
0.0
J ,0
0,3
0.0
0 .0
0.0
0.0
o.a
0.0
o .0
0.0
0.0
0.0
0 .0
0,3
0 .0
0 .0
0.0
0 .0
O.D
0 .0
0 .0
o.o
0 .0
0 .0
0 .0
o.a
             138

-------
              Table P-4.  Sample of &MRAW-A Output








**• AVERAGE ANNUAL LOCAL DOSE TO INDIVIDUAL  MAN1L. IN MILL 1REMS/YEAR




                E=:  RA-226  KB 12
TIKE
0.
S.
10,
15.
20.
2S.
30.
40.
SO.
60.
70,
80 <
90 *
160*
200.
300.
400*
500.
600.
700*
800.
900.
1 000 «
20QO.
3000.
4COP .
5000.
6060*
7000.
SCOO.
9000.
10000.
20OOO.
30000.
4&060*
50000.
60000*
7DOO0.
acooo*
90QOO.
IOOQOO,
2QOOOO«
300000.
40COOO.
5OOOOO,
<.-OOOOO«
7GCOOO.
uccooo.
•90000O.
1 COOOOO.
TOT SOOy
G.O
0.0
c.o
0CTO
o.o
0.0
e.e
I.42E-13
2.43E-13
3.82E-13
S.60E-13
a, I2E-13
I.I2E-I2
1. S26-12
9.I5E-12
4. ioe-1 1
i«z0e~io
2.69E-10
5. I4E-1O
e. 76E-10
1.36E-09
2.03E-C9
2.87E-09
. 1.61E-OB
s. eee-oa
1.3TE-07
2. 52 E- 07
•4.Q4E-C7
5.94E-07
8.19E— 07
l.OSE-06
1.38E-06
4»85E-06
1»|SE-01
1.9IE-PS
2, 66E-OS
3.36E-OS
4. 0 1 E- 0 5
•»a59E-05
S.09E-05
5.83E-OS
I.S9E-0*
1.62E-04
1« 40E-04
1., 1 3E-0*
8.80E-O5
6»aoE— os
s.ase-os
•*.OSE~05
3. 13E-05
GI TRACT
0*0
0.0
0«0
0.0
o.o
0.0
c.o
6.24E- 16
1««2E-15
2. S3E-15
4.04E-J5
C.O4E-1S
B.63E-15
1. 19E-14
7. S9E-14
3«63E-13
1.07E-12
2, 43E-12
4.6SE-J2
7,976-12
I.2SE-11
1.86E-1I
2»63E-!t
1.48E-10
5o 42E-10
i«26E-09
2 « 326-09
3*?*E-OS
5,496-09
7.57E-09
9. 98E-09
I.27E-08
4»49£-t»a
I.06E-07
1.77E-07
2. -16E-07
3. ne-or
3.7IE-07
4.2SE-07
4.716-07
Sai2E-07
1 o*7E-06
1.50E-06
J.29E-Ofi
1. 04E-06
a, iSE-07
6.30E-07
4.86E-07
3.7SE-07
2.a9E-07
GONAOS
0.0 '
0.0
0.0
0.0
0.0
0.0
0»0
1.42E-13
2.4«E-13
3.83E-13
S.69E-13
B. 14E-13
1.13E-12
1.52E-12
9. 1 BE- 1 2
4.12E-11
1.20E-10
2.70E-10
S. ISE-tO
8.79E-10
1*38E~09
2.0*E-09
z.ase-os
1 .62E-OS
s.9oe-oe
Is 376-07
2.52E-0?
4.06E-07
5.96E-07
6.2IE-07
1,08E-06
1.38E-O&
4.B7E-06
1.1SE-OS
1.92E-05
2.67E-05
3.37E-05
4.03E-OS
4.60E-05
6. HE-OS
SeSSE-OS
1.59E-04
1.&2E-04
I.*OE-04
1.I3E-04
a.ase-os
6,02E-05
S.27E-O5
4.06E-OS
3. 14E-05
LIVER
OaO
O.O
0.0
O.O
0,0
0,0
0.0
S .72E-16
1 .37E-I5
a««9E-15
4 .02E-15
&.C5E-15
B. 676-15
1 .20E-I4
0.03E-14
3.70E-I3
1 elOE-ta
2.48E-12
*»76E-12
B, 15E-12
1 ,28£~il
1 .90C-1 1
2ȣi9E-ll
I .52E-10
S »S5E-1Q
I ,29E-09
2.38E-09
3«a3£-09
5«6ae-09
7.75E-09
1 <,02E-0«
1 .30E-08
* .60E-08
I «09E-Of
I .81 E-07
2.S2E-07
3.19E-07
3 o80E-O7
4.35E-07
4 •aae-of
S.24E-07
1 .SOE-06
1 »53E-06
1.33E-O6
1 .07E-D6
S.34E-07
6«^5E— O7
ft » 98 E-O 7
3a04£-07
2.S7E-O7
LUMCS
0.0
0.0
0.0
0.0
0*0
o.o
0.0
4.I3E-13
7.05E-13
i» lie- 1 2
1.6SE-12
2.35E-12
3.2SE-12
4.39E-12
2.6SE-11
1* 19E-10
3.46E-10
7.78E-10
t,*9E-O9
2.53E-09
3.98E-09
5.80E-09
8.31E-09
4.66E-08
i, TOE- 07
3.9SE-07
7.27E-0?
1.17E-06
1.72E-06
2.376-06
3. 12E-06
3.98E-06
i»4oe-os
3.32E-OS
5.52E-OS
7.69E-OS
9.72E-OS
1. 16E-04
U33E-04
1.47E-O4
1.60E-O4
4.5QE-0*
4.68E-04
4.O4E-04
3.26E-04
2.54E-0*
1.9FE-0*
I.52E-04
1.17E-04
9.04E-05
MARROW
0.0
OoO
0,0
0,0
0.0
0,0
0.0
1.68E-12
2.87E-12
4.31E-ie
6.69E-12
9.S6E-I2
1 .326-11
J.78E-1I
i.oaE-io
4.82E-tO
1.4IE-09
3. 16E-09
6.0*E-09
J.03E-08
l.62E-Oa
2.39E-OB
3.38E-08
1.B9E-07
6.91E-07
1.606-06
2.961-06
4.75E-06
6.986-06
9.62E-06
1.27E-05
l.ftZE-05
S.70E-OS
1 = 35E-04
2.24E-04
3.13E-P4
3,«SE-0*
a. 7IE-04
5.39E-O4
5. 986-04
6.506-04
1 .86E-03
1 .90E-Q3
I.64E-Q3
1.32E-03
i,03E-03
T.99C-0*
&. ire- 04
•J.75E-04
3.67E-04
ODNE
0.0
0.0
0.0
0,0
o.o
o.o
0.0
I.68E-12
2«87E-I2
4.S1E-12
6»69E-I2
9.56E-I2
1.32E-H
I.78E-H
i.oee~io
4.8Z6-tO
1*4IE-09
3.16E-09
6.04C-09
1.03E-08
i.62e-08
2.39E-08
3.38E-08
1.89E-07
6.91E-07
1.60E-06
2«96E-06
4.7S£-06
6.986-0&
9.62E-O6
1.27E-OS
i,62E-05
5.706-05
I.3SE-04
2o24E-04
3.! 3E-Q4
3.9SE-04
4.7IE-04
S«39E-0*
S.98E-04
6.5OE-04
I.B6E-03
1*9 OE- 0 3
1.64E-Q3
1.32E-03
1.03R-03
T«99e-0-l
6.1 7E-O4
«»7SE-C4
3.67E-04
THYROID
0.0
0.0
0.0
o.o
o.o
o.o
Q«0
7.25E-16
t .75E-15
3.ire-i5
S. 1 2E- » 5
7.71E-J5
i .116-14
1.53E-14
1.03E-13
*.73E-13
1.43E-12
3.17E-12
«.oee-t2
t.0«£-ll
1 *64E-1 1
2.43E-1I
3.43E-11
1.94E-JO
7.09E-10
1 .6SE-O9
3.04E-OB
4.89E-09
7,ISE~O9
9»90£-09
t .31 E-08
1.67E-O8
S.876-08
I.39E-07
2.31E-07
3.22E-07
4.07E-07
4.86E-07
S.S6E-07
6.17E-07
6.70E-07
I -92E-0&
J.96E-06
I .S9E-06
1 .36E-06
J.O7E-06
8.24E-Q?
6.36E-O7
4.90E-07
30r9E-07
                                        139

-------
                     Table P-5.  Sample  of AMRAW-A Output
** AVERAGE  ANNUAL NONSPECIFIC DDEE  TO  POPULATION. MAMN. I fv fAMREM5/YEAH




NONSPECIFIC aec KUCLIDE=  8A-2Z6 K= 12
TINE
Oa
5.
lOe
' 15e
20,
25,
30e
40 ,
SOe
60 a
70e
60e
90 e
lOOe
200 e
300.
400e
500*
600e
700,
SCO.
QOOg
1 000 o
£000 «
3000C
4000a
5000*
6000*
7000.
BOOOe
9000,
10000.
20000.
30000,
400QOo
50000o
6OOOO.
7000Do
BOOOOa
90000,
J 00000,
£00000.
300000e
400000a
SOCOOOo
COOOOOa
700000,
BOOGOOe
500000s
COOOOO.
TCT CODY
OeO
CaO
CaO
CaO
0.0
Ce 0
CaO
t.4HE-10
le OOE-05
IB 47E-09
?e 09E-09
£e69E-09
3.B9E-09
Eol4E-OS
3e 03E-OB
1.32E-O7
2e77E-07
fco 3 5E- 0 7
1, E7E-06
?e66E-06
4.1SE-06
f.e 1 OE-Ot
Ee 53E-06
• E.02E-O5
I.S2E-04
*o 1 BE- 04
7. 63E-04
1o22E-03
1.78E-03
2, 44E-03
3a 20E-03
4.07E-03
US1E-02
2.57E-C2
£e 89E-02
6al6E-02
1.03E-01
la22E-01
1,39E-01
1B54E-01
1.67E-01
£.1 4E-O1
5eS7£-01
4e5*i£-01
3.67E-01
2e 87E-OJ
2e22E~Dl
lo71E-01
le 32E-01
1.02E-OI
GI TRACT
OoO
Oe O
OeO
OaO
OoO
OaO
0,0
1.35E-12
2e08E-12
3o 07E-12
4e33E-12
6g OIE-1H
8.09E-12
lo07E-l 1
6e30E-Jt
2.75E-10
7e85E-10
le 74E-09
3o27E-OQ
5e b4E-OS
B.63E-09
lo27E-06
la 7QE-08
leO*E-07
5n 79E-07
E.66E-07
lo59E-06
2f S3E-06
3»69E-06
5,07E-06
6a 66E-06
e«47E-06
3el4E-05
7.43E-05
Ie23£-04
le 70E-04
£«14E-04
2eS4E-04
2a B9E-04
3a21E-04
3e 4BE-04
1.07E-03
leiOE-03
9B47E-04
7.64E-04
6e96E-04
4a61E-04
3e5fcE-04
2e 74E-04
2.12E-04
GCNADS
OoO
OoO
OoO
OaO
0, 0
OeO
Oa 0
6.4BE-10
la OOE-09
la 475- 09
2a 09E-09
2o S9£-09
3.69E-09
5. 14E-09
3903E-08
le32E~07
3a 77E-07
B.35E-07
le 57E-06
20 66E-06
4.15E-06
6a 1 OE-06
0o E8E-06
Es02E-OS
le B3E-O4
4.18E-04
7D63E-04
1,22£-03
1.78E-03
2.44E-03
3e£OE-03
4o07E-03
1,51E-C2
3»57E-02
50B9E-02
6, 16E-02
1.03E-01
lo22E-01
Ie39£-01
1.54E-01
le 67E-01
5.14E-OJ
582TE-01
4a S5E-01
3.67E-01
2oB7E-01
So22Z-01
1.7JE-01
ie32H-OI
1.02E-01
LI VEfi
OaO
0. 0
OeO
OoO
0.0
OaO
Oe 0
la20E-13
> oB5E-13
2.73E-i3
3,67E-13
5e34E-*3
7 .I9E-13
9eSlE-13
5e60E-12
2*44E-11
6a«!3E-ll
1.54 E-l 0
2eSlE-10
4092E-10
7.d7E-10
leI3E-09
1 n59E-Oil
9a 2BE-09
3e37E-Od
7.73E-03
1 o41 E-07
2e25E-07
3.EJE-07
4e5I E-07
5 a 92 E-07
7e53E-07
2e79E-06
6.60E-O6
1 809E-05
leSlE-05
1 .90E-05
2e2GE-05
2a57E-05
2&B5E-O5
3a09E-05
9.SOE-05
9e7SE-05
3042E-C5
6e79E-05
5*306-05
4 .l'OE-05
3el6E-OS
2e44E-05
1 o 8Be~Q5
LUNGS
C«0
0.0
OaO
OeO
0. 0
OeO
OeO
OeO
Oe 0
0.0
OeO
OeO
0.0
OeO
OoO
OeO
OaO
0.0
OoO
OaO
0.0
Oa 0
OoO
OeO
Oo 0
0.0
OeO
OaO
0.0
OaO
O,0
OaO
OeO
o.o
OeO
OeO
O.O
OaO
OaO
OaO
0,0
O.O
OaO
OaO
OaO
OeO
0.0
0,0
OaO
0.0
MARPCto
OoO
0. 0
OB 0
•0,0
OgO
Or 0
OoO
7o 71E-09
lo!9E-C8
lo75E-OS
2e 49E-08
3t 43E- C6
4.63E-08
6-a 1 2E-OS
3» 60 E-07
le S7E-Ct
40 49E-06
9.S3E-06
J,57E-05
3c 17E-C5
4» S4E-O5
73 86E-CS
le 02E-04
5o S7E-04
2, 17E-03
4.97E-03
So CSE-C3
lo45E-C2
2a 11E-02
7a«OE-C2
3.81E-02
tBe4E-C2
lo80E-01
4.2SE-01
7o OtE-01
90 71E-OJ
le22E 00
1o4SE 00
1.6SE 00
]aH3E OO
I«S9E 00'
6.I2E OO
6o27E 00
5e12E 00
4e 37E 00
3e41£ CO
2.64E 00
2o C3E 00
loS7E 00
i*aiE oo
BONE
Oa 0
0.0
OaO
OoO
0.0
OoO
OaO
7e 71E-09
Ul 9S-OS
l.75!;-oa
2o4SE-OB
3D43E-OS
4.635-06
63* 2E-«a
3e60E-37
10S7E-06
4a49E-06
9.93E-06
la 37E-05
3917C-35
4. 94^-05
73^6~-03
1.02E-34
5o97E-04
2,17E-03
4.97E-O3
9o 08E-03
lo45E-02
2ol 1E-02
?e90E-02
3. B1E-02
4eB4E:-O2
te30E-01
4,25E-tll
7a01E-01
5o71E-01
lo32E OO
te45= OO
1.65E OO
leS3S 00
le99E Of)
6.12E 00
6e27E 00
5a42E 00
4e37E 00
3e41S 00
2.64E OO
2
-------
        Sample Output
     This section of Appendix P  contains output for the full run base case
for terminal storage phase, Case No.  48, and is based on the total of
cancers and genetic effects.
     1.  Output Summary^ of Selected Input;   Table P-6.
     2>  Annual Damage Rates ,  by Zone,  Nonspecific and Total
         a.  Table P-7 (Output Table  1-1) .   Zonal and Total Damages for
             High Population Projection ($/y) ,
         b.  Table P-8 (Output Table  1-2) .   Zonal and Total Damages for
             Low Population Projection  ($/y).
     3.  Annual Damage Ra tea ,  by Muclide,  Total All t Zones.,  and Nonspecific
         Table P -9.  (Output Tables 2-9 (50  y) ,  2-14  (100 y}  },
         The full output of this type is a table for  all times calculated
         after 30 y.
     4.  Discounted Present Values of Damage Costs by Kuclide, and Total,
         Integrated Over 10 __ Years
         Table P-10 {Output Table F-10) .  Discounted Present Values ($} ,
         Discount Rate = 0,00%.
     5.  H umber of Deaths per Time Interval
         a.  Table P-1I (Output Table 4-1) .   High Population Scenario;
             Number of Deaths  per Time  Interval (#/Ay) .
         b.  Table p-12 (Output Table 4-2) .   Low Population Scenario:
             Number of Deaths  per Time  Interval
     6.  Total Undis counted Damages per Time Interval,  by Zone
         a.   Table P-13 (Output Table 5-1} .   Total Undiscounted Damages
             for Each Zone for Each Time Interval - High Population ($/Ay) .
         b.   Table P-14 (Output Table 5-2) ,   Total Undiscounted Damages
             for Each 2one for Each Time Interval - Low Population ($/Ay) ,
                                 141

-------
                                             Appendix P

                                  Table P-6.  Output Summary of Selected Input


                        ECON43 -  50  PERIODS - NEW BODY COEFF.

                        DISCOUNT  RATE =  0-00 I
                        COST OF INCREASED LEVEL OF RISK  OF DEATH =  $ 260000.

                                                     COST OF  EXCESS  RISK OF DEATH
                          SITE OR TYPE         DEATH /MIL* NAN-REM    $/MAN-REM

                        TOTAL BODY  (REMAIN.)             85*0             22.1
                        SI TP4CT                          34,0              8.3
                        &ONAO(GENETICI                    200«0             52.0
                        LIVER                              0-0              0,3
                        L'JNG                              44.0             11.4
                        MARROWILUKEMIA)                   32,0              8.3
H                       BONE                               7,0              1«8
w                       THYROID                            0«0              0.0


                          POPULATION PROJECTIONS
                         ZONE       HIGH       LOW
1
2
3
4
5
6
7
8
REPQ
EDDY
REDS
MID3
WTFX
LEA
CHAV
REG3
101.
17200,
213000*
784000.
217000*
245000.
253000.
155000=
101.
6100»
53600.
224000*
57900.
74000*
67800,
54900.

-------
                          AppendiK   1
         Table P-7.  AMRAW-B Output Table 1-1
TABLE I  -  t  : 2ONAU AND TOTAL DAMAGES FOR HIGH POP. PROJ2CT10* CS/YRJ
TIME
0*
S*
10«
IS.
20 o
25.
30.
40.
SO.
60 *
TO.
00.
90 .
too .
200 .
300°
too.
500.
600o
700.
BOCU
900 »
1000 .
Sooo ,
3000.
«QOO»
5000..
6»oo»
7000.
8000.
9000 .
1OOOD*
20000.
30000*
40000.
50000.
eoooo.
70000.
BOOQO .
90000.
ICOOOD.
2OOOQO -
300000.
4O00000
SOQOOO.
6OO000.
70000O •
300000.
900000o
1 COOOOOu
REPO
0.0
0.0
0.0
0.0
0.0
O. 0
0.0
1. 611-01
I. 701-01
I . 69S- 0 I
1.62E-QI
1.52E~OI
1.43E-01
1.3SE-01
s.see-oi
1.7*6-0 1
1.B9E-01
2. 04 E- 01
2<.19E-OI
2.31E-QJ
2.40E-Q1
Z.4&E-01
2.5IE-01
3.95E-OI
4.22E-01
». 911-01
s.s4e-oi
6.07E-QI
6.5QE-0 t
6. aSE-OI
7. 13E-01
7.36E-01
1. t IE DO
8.5*2-01
6.546-01
S.34E-01
4.30E-01
3«7aE-Ot
3. i ae-at
2.66E-01
Z.2TE-01
4.47E-01
3.flOE-0 I
4.14E-OI
«,30E-01
4.34E-01
4.296-01
4.JQE-0 !
4.07E-01
3..92E-0 1
EDDY BEOS MIOO WTeX L*A CHAV RH39 TOT.10H2 NON-SPEC TTOTAL
0.0 0.0 0*0 Q.O 0.0 0.0 O.Q 0.0 0*0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 O.O 0.0
0.0 0-0 0.0 0.0 0.0 0.0 0.0 0.0 O.O O.O
0.0 O.O 0.0 0*0 0.0 0.0 0,0 0.0 0.0 0.0
0.0 0.0 0,0 C.O 0.0 0.0 0,0 O.O 0.0 0-0
O.O O.O 0 « 0 0.0, 0*O 0*0 0.0 0.0 0.0 O.O
O.O 0.0 Os>0 Q*Q 0*0 O.O 0.0 0>0 0.0 8*0
2.42E 00 1.565 00 S.06£»0t 2.34E-01 1.932 00 2.282 00 3.9?E 00 .312 91 6. ODE 01 7.3QC 01
3.70E OO 2»3gE 00 &.62E-01 3.03E-01 I«*TS OO 3.4IR 00 4.82E DO .793 Oi 5.02*5 01 6.80S 01
4.33E 00 2.655 00 7.2SE-01 3.31E-OI Z0«E 00 3.91 = 08 4.T6C 80 .965 01 4.222 Ot C.172 OJ
a=52E 00 2. TIE 00 7.345-01 3.34E-01 2.70E 00 4.00E 00 4.37S 00 .955 01 3. SIS 01 S.46E 01
4.43E 00 2.60E 00 T.I5S-OI 3.2SE-01 2.635 00 3.83C 00 3.9IS 00 =86^ 01 2.912 01 4*7?£ 01
4»IBE 00 2.40E 00 6.S6C-OJ 3. 1 2c- 0 1 2.S»~ 00 3. S3; 00 3. 475 00 .721 01 Z.4(T3 Ol 4. 1 2S 01
3.S*E 00 2»t7£ 00 6.59E-01 2.99E-01 2.4ZE 00 3. 1 7E QO 3.10E 00 . 58C 01 1 . 96E Ot 3.S4E 01
4.S9E CO 2.*3E 00 1.04E 00 4.716-Dt 3. 78E 00 3.4IE OO 6..I1E 00 2~ZK 01 1.45" 01 3.683 01
1.955 00 «28E 00 9.46S-01 4.28K-01 3.43S O8 1.612 OO 3.57= 00 «3SE 01 2.40E 00 . 59E 01
1.B4E 00 .365 00 «0*E 00 4.71E-QI 3.7SS OO l.TOt 00 3.SIE 00 . 42E 01 1«1IF. 00 .53= 01
2.02E 00 -51G 00 «14E 00 5.14E-01 4.12E 00 I.B9C. 00 4.075 OO .55" 0! 9.O35-QI .64* Ot
2.1BE 00 «63H 00 «22E 00 5.52E-D1 4.43E 00 2.OSE 00 4.29" OO * 66E 01 B.25E-01 «74E 01
2.31E 00 . 7JE 00 .2>E OO S.84C-01 4.6BH 00 2. 1 6E 00 4.46e 00 a ?4E Ol 7. 64"- 01 . 62C OJ
2»3BE OO -79E 00 .34E OO 6.07E-01 4.87S 00 2.23" 00 4.SS5 00 .912 01 7.06T-OI .86" 01
2.42E 00 J.82E 00 .38E 00 6.2SE-01 5.O1E OO 2.27E 00 4,S6= 00 .84E*Ol 6.54E-QI .911 Ol
2.44E 00 J.84E 00 .4l£ 00 fc»3a£-01 5. I2E 00 2.29S 00 4.71E 00 .S7£ 01 6.O7S-01 * 93E 01
3.676 00 2.6oe 00 2.24E 00 I.OtE 00 fl. 092 OO 3,«4~ 00 8.2Ss 09 2.596 Ol 5.Q6E-O1 3o 05E 01
3.60E 00 2.80E 00 2.40E 00 UOBE 00 B.S6S OO 3.3T5 OO 8»53£ 00 3.08= 01 4.89S-OI 3. 1 3Z Ol
4.osE oo 3,iae oo 2. THE oo i.aee oo .OIE 01 s.ao1: oo i~6B~ oo 3.53- 01 5.392-01 3.59- 01
4.51S 00 3.55E OO 3.15E 00 1.42S OO .145 01 4.23«= OO .07E 01 3,95? 01 6.23E-OI 4.02E Ot
4.86E 00 3.86E 00 3.45E 00 1 . S6£ 00 • 2SS 01 4.STE 00 »16E 01 4.30C 01 7,a5E-OI 4.37E 01
S.I7E 00 4.10E 00 3,692 00 t.tTc 00 .34= Ol 4.B5-S 00 023i 01 4 = 5Bi 01 1.2S5 OO 4,701 01
5.40E 00 «.29E 00 3.89E 00 1.76E OO ,415 Ol 5. 05E 00 .28= 01 4.80H 01 3.76C OO 5.IQE Ol
S.6aE 00 4.43E 00 4.05E 00 1.8JE 00 .47E 01 5.19E 00 .33E 01 4. 9&1 01 I.I8Z 01 6«16E OJ
5.84S OO 4.5S3 00 4.18E 00 l.B9c 00 .52" 01 5.315 00 .36= 01 5-13E 01 2.44= Ol 7.S7E 01
8»4tE 00 6.&2E OO 6.27E 00 2.63E 00 2.a7E 01 7.67E 00 .22= 01 7. 78= 01 3.6IS 01 1 . \ 4E O2
6»68E 00 4.71S 00 4.84E 0!) 2.1-SE 00 .75^ 01 5.295 00 .692 01 5.90C 01 1.54^ 02 2.13Z 02
S.44F 00 3.32E 00 3.71E 00 Ub7E OO . 34E 01 3.50E OO .835 01 5.03= Oi 3«03E 02 3.54E 02
5.02E OO 2. 635 00 3.Q3E 03 1.37E 00 l.tOE 01 2.80= 00 .022 01 4.&o2 01 4.135 02 4.6OE 02
4.96E 00 2.29S 00 2.S5E 00 J.15^ 00 9. 251! OO 2.47H 00 .OlS 01 4«322 01 4 =7«S O2 5. 1 BE O2
5.04E 00 2oO8S 00 2.J5E OO 9.71E-OI 7. 79E 00 2.33f- 00 .915 Ol 3.95= 01 5.10C 02 5.505 02
S. IDE 00 l=94E 00 J.B03 OO 8. 1 *C-0 1 6. 53E OO 2.26E 00 .B02 01 3.67" 01 5.3QC O2 5.672 02
5.14E 00 lofl3S 00 I.51E 00 6.B4E-01 5. 48s! 00 2.22E OO .69= 01 3.40E 01 5.412 02 5.75C 02
S.18E 00 1.76E 00 1,2'JE 00 S.B3E-QI 4.67E 00 2.21E 00 *59E 01 3.155 01 5.47E 02 So73Z 02
6.84E 00 4. 322 OO 2.54E 00 1.15E 00 9.203 00 5.73" OO 950= 01 4.52= 01 2.33= 02 2.832 02
1.23E 01 4.I8E 00 2. 16E 00 9.7BE-01 7.82S 00 5.70K 00 4,331 OJ 7,6B= 01 1.33S OJ 1.39E 03
I.05E Ol 4=OIE 00 2".3oE 00 1 . 06E OO fl. 5JC 00 Sa34E 00 3.63E 01 6.B6S OJ 1.04C O3 ' I. I IE 03
6.556 00 3.692 OO 2.4SE 00 1.IOE 00 B. BT1 00 4.77E OO 2.8SS 01 5,66" Ol 7.573 02 B.16E 02
t»93E 00 3.3SE 00 2.4SE 00 1.1IE 00 8,121 00 4.215 00 2.311 01 5.051; 01 S.43S 02 S. 93E 02
5.72E 00 3.03E 00 2.44C 00 1.1OE 00 8.841 00 3.T2I 00 1 ,89= 01 4.42= 31 3.922 O2 4.373 02
1.06E 01 2..76E 00 2.39E 00 1.06E QO 6«63S 00 3.325 00 • 1.59Z 01 4.SOE 01 2.87" 02 3.32E 02
3.94E 02 2.53G 00 2.3tE OO I.05E OO 8»33E 00 H« 97F 00 I. 351 01 4.25" OZ 2.3SS O2 6,64£ 02
5.9SE 03 2.33E 00 2.23E 00 1.01E 00 B.095 00 2.70S 00 1.1B2 Oi 5.981 03 5^663 02 6.55Z O3

-------
                                                   Appendix P .  Table P-8-. '  MRAW-B output Table 1-2
                                TASLE I  - 2  :  ZONAL  AND TOT At DAMAGES FOR  LQsf POP. PROJECTION 6£-01
7.93E-01
7.GOS-01
7.30E-01
.14E 00
.046 OO
.I4E 00
.251 00
.34E 00
,4|S 00
.472 00
,5l£ 00
,55*: 00
2.44E 00
2. fill 00
3 . O4"E 00
3.44E 00
3,77= 00
4 o 04 si 00
4«25fi 00
4.43E 00
4.SS5 00
6.B5E 00
5»2«S 00
4.05E 00
3.32S 00
2.79= 00
2,35= 00
1 . 97S 00 '
I.65E 00
1.4 IE OO
2. 78£ 00
2.36E 00
2*501 00
2.683 00
2«G9£ OO
2.676 OO
2.6tE 00
2.S3E 00
2.44Ii 00
CHAV
0.0
0.0
0.0
0,0
0.0
0.0
0.0
6. 1 OE-01
9.1 4S-01
1.055 00
J.076 00
1.03^ 00
9.4SE-OI
a. soc-oi
9.1 3S-0 I
4.31E-01
4* iss1^— o i
5.062-01
B.49C-0 1
S, 802-01
S.99S-01
6.Q9S-01
6. J 3H-3 1
9.23P-0 1
9* 02S-0 1
1.022 00
1.132 00
l.23n 00
1.30" 00
1.35E 00
1.395 DO
1.42Z 00
Z . 0 6^ 0 Q
1.42S 00
9. 595-01
7«*9K-Ol
S«»3~-0 t
6,256-01
6.95S-01
5.95E-01
S.93S-01
1»S4« 00
I.53S 00
t*43E 00
I.28S 00
1.13E 00
9.98C-0 I
B* 902-01
7.97E-0 I
7»23*^-0 1
R6SS TOT.SlNi
OoQ
0.0
O.O
0.9
0.0
0.0
0.0
t .41 =
1.712
1.69=
I.55Z
1 *38S
I «23Z
1 .103
2«16E
t.JOE
1 »3SS
1«4*S
I. 522
1.58E
1 .622
1.655
1 .67S
2*92H
3.02E
3.43E
3.30E
4.10s
4.34E
4,54?
4o69E
4.81E
7.38~
6.00E
6.54S
7.16E
7»l IE
6«?8E
6.37E
5.97E
5.6SE
5.31 5
U53E
1 .29E
» .02E
8.I9E
6.71E
S« 62E
4.79E
4.17H







00
00
00
00
00
00
oa
00
oo
00
oa
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
oo
oo
00
00
00
00
00
00
01
01
01
00
00
00
00
00
0.0
O.O
D«0

o.o
0. 0
0.0
4.235
5.71 =
6*212
6. IBS
S.87t

*-995
7.19*
4.34S

4.96 =
S.31 1
s.sae
S.772
5.905
5 . 90*
9. 60E
9a 9 1 "^
1.13*
l»27£
1*3BE
..47E
1 .54"
UdOS
1 »65E
2.515
l»91 =
I »€>5S
I.54S
| m 44^
1.3,35
1.2JS
lei 4£
t, O?'*
1 « 46 ^
2oS92
2,30 =
I.95S
U67-
1 . 4&\T
1 . 49^
1,50?
2»» 2~







oa
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
oa
Oi
01
01
ot
01
0 t
01
ot
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
02
03
NON-SPEC
0*0
0.0
O.O
0*0
0 .0
0.0
O.O
6..QOE 01
5.02E OJ
*.225 01
3. SIS 01
2.91E 01
2.40:: 01
l.«J6= Oi
t. 451 01
2.40E OO
l.HS 00

0,25S-O1
7.64E-O1
7 « 96£— Oi
6.54S-01
6,07z-0l
s.aeg-ot
4.89C-01
5.39I-OI
6.235-OJ
TofeS^-Ol
1 .235 00
3=79= 00
1. 1B~ 01
2.«*S 01
3.6I« 01
1.5*2 02
3, 03= O2
4*13" 02
*.7»S 02
s.ioe 02
5.302 02
5 . « I E 02
5.47C 02
2.38" 02
I , 32E 03
1.045 03
7, 572 02
5.432 02
3.92E 02
2.67E 02
2«38«; 02
5.662 02
TTDTAL
O.O
Q.O
O.O
0.0
D.O
O.O
O.O
6.42E
S. S9S
4.84S
4.136
3.50E
2.94E
2.46E
2. I7Z
6.742
S.66S
5.8S2
6.13E
6.35E
6. 48E
6o5SE
6.593
.OZE

*19S

.46E
»59S
1.926
2.731
4.09E
S*t t 2E
1.731
3.20S
4«28S
4.89S
5.Z31
S.431
5.525
5. S72
2.53^
t*34E
1.O7S
7.77E
5.60E
4. 07E
3. OZE
3.885
2.69S








01
01
ot
01
01
01
01
01
00
oa
00
00
00
oo
00
00
OI
01
Ol
ot
01
01
01
01
01
01
og
02
02
02
02"
02
02
02
02
03
03
02
02
02
02
02
OS

-------
                        Appendix  P


        Table  P-9.   Output Tables 2-9  and 2-14s  AMR&W-B
                      Annual Damage Rates by Nuclide
          TA8LE Z -
                      * TIME PSR200"
                                             SOi
 NtlCLSOE
    c-t*
   SR-«0
    V-90
   2R-93
  NB-93M
   TC-9S
   1-129
  CS-I35
  CS-137
  RA-225
  RA-226
  TM-229
  TH-230
  NP-237
  NP-230
  PU-23S
  PU-239
  PIM240
  PU-241
  AM-24!
 AM~243
 CW-342
 CM-244
            MI5H POP
            3.8BE-07
            9.095 00
 S.396-0?
 2.JJE-07
 3.926-06
 6.S9E-JO
 7.7IE-07
            6.32E-10
            3.26E-03
 3.76E-03
 5.S2E-O2
 4.S9E-Q3
 8.27E-OS
 6.34E-OZ
 I.7BE-OI
 3.336-03
 6.20E 00
 LOB POP
 1.Z2E-07
 2.866 OO
 2.43E-O3
 5.O6E-08
 2.00E-IO
 2.41E-07
 2a tBE-Ol
 2. OOP-JO
 1.16E-08
 3.84E-OS
 3.IOC-07
 3.13Z-06
                         1.06E-03
                         2.17E-01
                         1.24E-03
                         1.S1E-03
                         2.66E-01
                          S.67£-Og
                          1.09E-O3
                                00
                          NON-SfEC
                          3.46H-06
                          3.6)E 01
9.28E-06
2.30E-04
I.17E-09
fl.SEE-06
e«64E  OO
2.04E-OS
3,761- 07
I.951-07
I.aoE-07
«.fl52-O9
8.052-04
1.06E-05
3.43E-02
             3.131-03
             3.3SE-04
             e.saE-oi

             a*o4l-oj
             I.33E-03
                   00
             rQT-MJGH
             J.03E-06
             4,ssE at
             1.682-01
             4.83E-06
                                                              TOT-LOB
                                                  2.34E-84
                                      7,336  00
                                      2.67E-09
                                      4. 135-07
                                      S.06E-O7
                                      t. 15E-06
                                      i.OSE-07
                                      1.4SS-03
             3.97E-03
             6.24S-02
             4.92E-03
             t • 7fl£ 00
             I.44E-O1
             3.792-01
                                                               3.89E 01
                                                               ] .14R-OI
                                                               i .43E-06
I .37E-O«
S.795-O6
e.a«E  oo
2.24E-OS
3.8BS-07

S^OOE-07
4«I JE-08
I .OSS-OS
t.OBE-03
2.52E-OI
! .45E-03
                                                  t.231 01
i.85E-03
I.23E  00
i.oie-oi
2.6JE-0I
2.43E-03
S.10E  OO
        TABLE 2 -  14  i  TIME PERIOD"
                                            ICO.
 NUCLIOE
    C-14
   SB-90
    ¥-90
   ZR-9J
  N8-9314

.   l"tZ9
  C1-I3S
  CS-137
  PB-2J 0
  RA-22S
  RA-226
  TH-229
  TH-230
  NP-237
  HP-239
  PU-23B
  PU-239
  Pl>-240
  PU-241
  AM-2*I
AW-242M
CM-242
CM-24*
            HIGH POP
            I.I4E-06
            7»28E 00
            tuflOE-OZ
            4.77E-07
            7.58E-07
            I.16E-OS
            2.12E-S9
            2.27E-0&
            6.61E-01
            6.00E-09
6.3BE-OS
7.3VE-06
7.07E-O7
2.I6E-OS
S.I4E-02
1.43E  00
I.24B-OI
I.25E-03
2»41E 00
1.5SE-01
S.36E-OS
             LOW POP
             3.4flE-0?
             2.26E 00
             2.0B6-02
             I.49E-07
             3.3SE-07
             6.91E-0?
             2. 03E-OI
             i,ate-09
                        2. 3IE-07
                        3.7IE-03
                        4.67E-01
                        • •037-03
4.07E-04
7.72E-OI
                          726-01
            2o06E  CO
             NON-SPEC
             I . 11 E- OS
             ! . Z 7£  01
             5.99E-02
             2»93E-05
             7.34E-04
             1.752-OS
             I.81E-OS
             4.64E  00
             7.425-09
             2.S2E-06
             I.ooe-oe
             4.44E-07
                                     8.355-04
                                     a.ioE-og
             2»lSi-0»
             4.21E-03
                                     «. 261-01
             TOT-HIGH
             I.225-05
             2 (. 0 Qs Ol
             I.2SE-01
             Z.05E-06
             3.03E-05
             7.45E-04
             3.872-09
             2.O4S-05
             5.30E 00
             1° OS2-06
             T.84E-06
             T.302-0?
             3.0 OS-03
             I.t 4E-02
             I.4SE OO
             t.266-02
             2.4 6E-01
             1.2 ?Z~O3
             J.J4g 00
                                                   t.37S-Q3
                                                   S.«2c 00
TOT-LOW
I. I 4S-OS
i.soe  01
6.07E-02
7 .37E-04
2.43S-09

4.BS2  OO
9.ZBE-O9
                                                               1 .03H-O6
                                                               2.B5H-O6
                                                               2.S4E-07
                                      3.^33-03
80 321-OS

it?«e  oo
I.J5S-OI
3.795-OJ
                                                                1
                                                                 i 1F. 0 O
                                    145

-------
                          Appendix P


                  Table P-10.  AMHAW-B Output Table 3
      TABLE 3  S  DISCOUNTED  PRESENT  VALUES 
-------
                                            appendix P


                                  Table P-ll  AMRAW-B Output Table 4-1
                             TABLE 4-1  :  HIGH POPULATION  SCENARIO
                          NUMBER OF DEATHS  PER  TIME  INTERVAL*(•260000,I
TSME  KEWJ
                EDDV
                          REBD
                                    Mtoa
                                              BTC
                                                       LEA
                                                                CMAV
                                                                          R5CB
                                                                                    TOT.iO,4«E  NON-SPEC  TTOTAL
0.
5.
10.
IS«
20.
<£5«
30.
^0 V
so.
60 »
TO *
eo.
90 a
100.
2OO,
400.
SOOo
6OO a
TOO.
800.
900«
lOOOo
2000.
3000.
eOOO*
5000.
60DO *
7OOO .
eooo.
9000 -
10000.
20OOO.
30000,
40000 .
50000.
60 OOO «
70000.
aoooo.
900OO.
looOQo.
?ooooo.
300OOO.
lOOOOOo
sooooo .
60COOO .
700000 .
eooooo.
900000 a
COOOOO o
At.
0.0
0.0
c.o
o.o
0.0
0.0
OeO
6. I9E-Q6
6.S5E-06
6. SI E- 06
6.23E-06
5. BSE- Ot>
5.49E-06
£.1 7E-06
7.&3E-05
7.2SE-OS
7.66E-OS
8. ft IE-OS
8,a7E-0S
9.22E-OS
9.4&C-OS
5. ftSE*- 05
IoS2E-03
1.62E-03
1.S9E-Q3
2.13K-O3
Z.34E-O3
2.SOE-03
2.63E-03
2, 74E-03
2.83E-03
4, 3? $£ — 02
3.29E-02
20 S2E— 02
2,066-02
l,73e-Q2
1.86E-02
1.2ZE-02
U02E-02
C.72E-OJ
1.72E-O1
1 o 46E-Q t
1.59£-01
I.66E-01
1,676-01
I.65E-Q1
1.6EE-01
I.56E-Q1
i.sie-oi
J«6S£ OO
0.0
0.0
0,0
GoO
0. 0
O.O
0. 0
9,326-05
1.42E-04
1.67E-04
\ a 74E* 04
l.TOE-04
I, 616-04
1 » 48E— 04
I.88E-03
7. oae-oa
7. 76E-04
9 . 40E—04
8, 67E-04
9, 16E-04
9. 316-04
9. 38E-04
1.41E-02
1.38E-02
1.56E-02
1.73E-Q2
1 , 87E— 02
t .99E-02
2.03E-02
2. 16E-02
2.2SE-02
3.23E-OI
2.57E-01
2.09E-D 1
I. 93E — 0 1
I.91E-01
1.94E-01
1.96E-OI
1.98E-01
1 •'S9E-01
2.63E OO
4.71E OO
4.O6E 00
3.29E 00
2.67E 00
2.20E 00
4.Q6E 00
1.52E 02
2.29E 03
2.47E 03
0.0
0.0
0.0
0*9
0.0
0.0
0.0
6. 066- 05

I.02E-04
1 e Q4g* 04
l.OOE-04
9*2 4E—OS
6.35E-OS
9.34E-04
5.24E-04
s.aoE-04
6.29E-04
6*€>4E»04
6, 87E"» 04
7.0UE-04
7. 07E-Q4
* O82—02
.08E-OZ
.22E-02
•37S-O2
* 46E—Q2
.53E-02
.65E-02
.70E-02
.75E-02
2.55E-O1
»B1E— 01
.2QE-OJ
» Q t S— 01
B«i 7VE*" 02
8«01 E-OE
T,«5E-02
7.03£-fl2
6.76E-02
1.66E 00
1.61E 00
1«54E 00
1.42= OO
1.29E 00
I. IT*: oo
1.065 00
9 « 74 P — 0 t
B.98H-01
1.2BE 01
0.0
Q.O
0^0
0.0
0.0
0 *O
0.0
J ,945-05
2«sse-os
Z »79E— OS
2.B2E-05
2 *75E— 05
2.C4E-OS
2.54E-OS
4.00|-0*
4 .01 E-04
*.37C-04
2. 12E-04
2.24E-04
2»34E— 04
Z.40E-04
2.45E-04
3,895-03
4.15E-03
4 * S 4 fc;— Q 3
5* 4 6 E*" 03
S. 99c— 03
6, * l£»03
6.76E-03
7 . 04E"*03
7.27E-03
1.09E-01
B»4 llt"-02
6* $ 3E— 02
5.27c-02
4.44E-02
3.74E-02
3. 13E-02
2.63E-02
2.246-02
4.4 JE-01
3.76E-Ot
4. 09E-01
4« 25H-01
4* HSE^O 1
4.24K-Q1
4» I5c-01
*.OZE-Ol
3.BSC-01
4.23E 00
0.0
0,0
0*0
0.0
0.0
0.0
0.0
7=44-5-05
9. 5 IS- OS
1 » 032— Oft
1. 04E-Q&
l.Oli-04
0.67^-05
9.29E-05
I. 455-03
i "15s7— »fi~^
i . ~3«i _— ^ U J
1, 59C—03
1 . 70E-03
3,BO£-O3
1.872-03
1.93E-03
I .97E-03
3.11=-02
3.33E-02
3.87^-02
4.3BE-02
4.80E-02
5. 15^—02
S.42E-Q2
5.64E-02
5.832-02
B.72S-OI
6.732-O1
S. 16E-01
4.22E-01
3.56E-01
3.00E-01
2.512-01
2, tli-Ol
1 -QOF.-Ol
3.54E 00
3.0IE 00
3.2BE 00
3.412 00
3.43P. 00
3.4QE 00
3.32E OO
3.22= 00
3,112 OO
3.39E 01
0.0 C
0.0 C
0,0 C
0-0 C
0.0 C
0,0 C
0.0 (
8. 76=- OS
1.315-04
1.50E-04
1 « S 4E—04
1.47E-04
1.3 65-0 4
1.22S-04
t.31=-03
S.IS^—O^

7I27K-04
7.99E-04
8. 33"— 04
8.S9S-04
8.74E-04
a . a o ~- o 4
1.32F.-02 .
1.30^-02
1 .46(r;-02
I * 6 3H — CJ 3
I.76F-02
1.862-02
1 »94"E~Q2
2.005-02
2,0*2-03
2.95F-01
2.032-01
1*3 8^ — O 1
1 * 08^1—0 i
9.51H-OS
8.96E-03
8. 6 92-0 2
8«S*=-02
8.51E-02
2,21" OO
2. 19= 00
2.05E 00
1.S42 00
1.62= 00
1.43" 00
1.28= 00
1. t 4" 00
1,042 00
J.615 Ol
.0
i.O
'.0
uo
1.0
Eg, 0
| £ |}
.S3H-04
•B55-B4
,835-04
.G3E-04
*SOE**04
. 3 J~«*O4
. I9E-04
.3SE-03
.41 "—03
.47E-03
•57C-03
,65E-03
»72±g*03
.762-03
.79E-03
.81 E-O3
3,1 7E— Q2 •
3.2BE-02
J. 723-02
1, 12E-03
». 462-02
».72E-02
^. 93H— 02
5.10E-O2
5.23E-03
B.S6E-01
6. 515-01
r.ioE-ot
7.77E-01
7.72S-01
7.37E-OJ
6,925-01
ff* 43E— 01
6. J3C-01
5.77" 00
1.66E 01
1.4DE 01
1 ml I? 01
a.89t oo
7«zen oo
6.102 00
S.20^ 00
4,532 00
B.63E Ot
0.0
O.O
0*0
0.0
0.0
0.0
0.0
5*O3"2— 0$
e» 87=— o*
7.53^-04
7.51E-04
7=. 151- 04
6.632-04
So o?*;— 04
B»395~03
51 Q— ^n •»
» a » . U J
S. 4 61^*^ 0 3
5. 95 2-03
6.JSE-03
6.TIE-03
6*94*:i»03
7.O9S-03
7, 19E-OJ
I.15E-01
1. 192-01
1.36E-OI
1.522-01
1 . 65n— 0 I
I .762-01
1 . S5^ta 01
i * 9 1 £*• 0 1
1.97S-OI
Z»99= 00
2.27^ 00
1.93E 00
t.795 00
1 ,66~ 00
1.S3E 00
1.4IE OO
I. Jl* 00
1 .23" 00
1.74^ 01
2.95^ OL
2.64= 01
2,23": 01
i . 9*p; o i
1.701 01
1.73C 0»
I.i4>= 02
2.302 03
2,632 03
0.0
O.O
t»*0
0.0
o.o
0. Q
0..0
2.311-03
t .53^-03
1 » 62Z* 03
t .3SE-O3
• l« 121-03
9 «22Z— 04
7 » SSE- O*
9^1*— rt&
*• ^ ijh. W**
4.26E-04
3.47C:»04
3 .J7S-O4
2.94S-04
2, 72"- 04
2 . 52^-04
2.341-01
2.25S-03
1 .S8E-03
2 o 07*- 03
2.40E-03
2,942-03
4 .81 i-03
I .4SE-OZ
4 .561-02
9.3B--02
1 . 39S OO
5.91* 00
. 1 »17E 01
I.S9S 01
1 .325 01
i ,9s; 01
2.04^ OJ
2»OOZ 01
2.1U5 01
9.16" Ol
5.07E 02
4.01P, 02
a. 91= 02
2.09^ 02
1.51E 02
J . 10E 02
9 . 1 65 0 1
2.132 02
2.211 03
0.0
O.O
0,0
0.0
0.0
0*0
0.0
2.B1E-03
2.62E-03
2.372-03
2.1OE-03
1.B35-03
1.59Z-03
1.36E-03
1.42E-02
61 t F— > n T
W 1 i. C.^* U J
5.89H-03
C. 301-03
6,7oe-03
7.00E-O3
7.ZIE-03
T.34E-Q3
7.42E-03
1.17E-01
1.21E-01
1,305-01
l,54=-0l
1. 682-31
l.BII-01
1 .99E-01
2, 37™~ 0 I
3, 9 1^— Ol
4.38E 00
a. i ez oo
1.3&E 01
1.77E 01
1.99£ Ol
2.I2E 01
2«18Z 01
2.2IE 01
2.22E 01
I.O9t! 02
5.37^ 02
4.27E 02
3.14E 02
2. 2 9E 02
I . 6 SI 02
1.28E 02
2,G5C 02
2.523 03
4.B6E 03

-------
                                                     Appendix P
                                            Table P-12.  AMRAW-B Output Table  4-2
l-»
l&
CD
TIMf
O*
Sa
10.
15.
20.
25.
30.
49 »
SO.
60.
TO.
80s
90.
100,
300,
300.
400.
5OO.
600.
700 «
800 «
909*
1 @OO 9
2QODa
3 000 „
4OOQ.
SOOOo1
6OOO™
7000.
BOOO s
9009.
10000s
20QO9«
30000.
«OOQQ<,
SOOOOo
60000=
7OOOO.
80000.
00000 .
SOOOOQ.
2OOOOOa
300000 »
40OOQO.
SOOOOQ*
6000OO«
700000.
800000 •
900000.
1 OQOOOOe
TOTAL
«PO
O.O
0,0
0.0
0.0
9.0
0.0
OaO
6. J9C-06
6.SSE-06
C.5JE-OB
6,236-06
S, BSE -06
S. 496— 06
5. I7E-06
7.&3E-OS
6.67E-05
7.25E-05
T.66E-OS
8.416-05
6.B7E-OS
9.22E-QS
•5.46E-OS
9.65E-05
I.52E-Q3
I.62E-03
1&89E— O3
2.I3C-03
2.34E-03
2»50E-03
2.63E-03
2.74E-03
3.S3E-03
4.25E-02
3.29E— 02
1.S2E-OZ
2.06E-02
.73E-02
.46E-02
.22E-02
•02E-02
.72E-03
.72E-01
.46E-01
.59E-01
.66E-01
.«7E-OI
.6SE-01
.62E-01
.S6E-Q1
.51E-QI
.ess oo
sow
0,0
0.0
o.o
o.o
0.0
0.0
o.o
3.30E-D5
5.0SE-OS
S.tll-05
6. 17E-O5
6.OSE-OS
S.TOI-05
5.23E-OS
6.67E-04
2.66E-04
2.516-04
2. 756-0*
2. 9QE— 04
3.I5E-04
3.2SC-04
3.30I-04
3. 32E-0*
5, 01C-03
4.90S-03
5.53E-03
6. J56-03
6.63E-03
7.05E-03
7.37E-03
7.67E-03
7.97E-03
UlSE-01
9. 12E-02
7.42E-O2
6« iSE-02
fee 79E— 02
6.871-02
6.96E-Q2
7.0IE-02
7.06E-02
9.33E-01
1.67E 00
I.44E 00
1.17E 00
9.46S-01
7. 906-01
!.««E OO
5.386 01
B.12E 02
S,7SE 02
TABLE * - 2 : LOW POPULATION SCENAfil 0
NUMBER OF DEATHS PER TIME INTERVAL* ( S2600OO.J
RE 80 MIOO tffi LEA CMIV REOB TDT.2ONE MON-SPEC TTOTAL
O.O 0.0 0.0 . 0.3 0.0 0.0 OaO O.O O.O
O.O
0.0
0.0
0.0
OoO
0.0
1.53S-05
2.25E-OS
2.S7E-OS
2.62E-OS
2.52E-OS
2.32E-05
2. lO^1" OS
2.355-04
1.24E-04
I e32«L— 04
. 46E—0 4
.sae-04
.G7E-04
.732-04
•76S-0*
•78E-04
2.7IE-03
2^TI ^"-QS
3. 08E-03
3.44E-03
3.73E-03
3.96E-03
4. 152-03
4.2VE-03
4.40E-03
6.41E-02
*»S6E-02
3.21E-O2
2.85E— OS
2.21E-02
2» 02^— 02
1.87E-02
1.77E-02
t. 705-02
4.18E-01
4.052-01
3.0QE-01
3.57E-01
3.24E-01
2.94E-01
2.68E-OJ
2.4SE-OI
2.26E-OI
3.22E 00
OoO
0.0
OoO
0.0
0*0
0.0
5 «56E—06
7-27S-06
7 .96E-06
8.07E-06
7.66E-08
7a54E— OS
7 «25E— 06
1 « 1 4 E"**0 4
1 .04E-04
1.15E-04
1 .25C-04
1 .34E-04
1 .42E-04
1 .49E-04
I.S2E-0*
1 eSSE-04
2.46E-OJ
2.63E-03
3.QSE-03
3.46E-03
3.79E-03
4 . QsE-03
4.288-03
4.45E-03
4.6OE-03
6 «99E~02
S,31E-fl2
4 » 08 E— 02
3 .33 £-02
2.81E-02
2. 36 !> 02
t . 98^—02
1 .66E-02
1 .42E-02
2.80E-04
2.38^-01
Z.59E-01
2.69E-OI
2.71E-01
2.6BS-01
2.63E-01
2.54E-QI
2.43E-OI
2«68E 00
0,0
0.0
0.0
0.0
0.0
0.0
2.41E-06
3. HE-06
3.39E-O6
3.431-06
3.33E-06
3.20E-06
3.07E-O6
4.S3E-Q5
4.39E-05
4eB4£— OS
5.27E-OS
5.67E-05
S.99E-05
6.23E-OS
6.411-05
6.S5E-05

1*111-03
I.29E— 03
1.46E-03
1.60E-03
1.71E-03
i.eoe-03
i.aee-oa
1.94E-03
2.90E-02
2c24G— O2
I.7g2-0a
1.41E-02
i. ies-02
9.97C-03
8.35E-03
7.02E-Q3
5.98E-03

iToos-oi
1 c 09E— Q 1
1.13E-QI
U14E-01
1. 136-01
t.HE-Ol
1.07E-01
1.03E-01
U13E 00
0.0
0.0
0.0
0*0
0.0
0.0
2.25E-OS
2.87E-OS
3. 12S-OS
3»t4~-O5
3.05E-OS
2.52E-05
2.B13-05
4.39E-04
3. 99E— 04
4.39E-04
4.79E-04
5. 152-04
S«44E-O4
S.66E-04
5.825-04
S.SSS-04
9. »flE— 03
.DIE-02
-17E-02
* 3 2S™1 02
-45E-02
.5SE-02

I?oi-02
.76E-02
2. 635-01
2.03E-01
. S6S- 01
.285-01
« 072-01
9.0SE-O2
7.SBE-02
6.36S-02
S.43E-02
I«07E 00
9. 093" Ot
9a 9 1 E— Ol
t.Q3e 00
I . 0«E OO
I.03E 00
1.00= OO
9.74E-01
9.39E-01
Io033 01
0.0
0.0
OoO
0.0
OoO
0.0
2.355-05
3.5IE-OS
4»O3'r-"OS
*»12Z-OS
3» 9"5SS^05
3.64Z-05
3. 273-05
3.51E-Q4
J.66E-04

l!95i-04
2.1 iE-04
2.23S-0*
2.30^-04
2«34e-04
2.36S-04
3.S5S-03
3.47E-03

4136^-03
4.TIE-03
5. OP ^—03
5.21E-03
S.33S-03
So48-*03
7.91*-OZ
S.45S-02
3»^ 9T**02
2.BBE-02
2.55K-02
2.40H-02
2.33E-02
2.295-02
2.28E-02

5la7E-01
5 » S 0^— 0 \
4.92P-01
4.34E-OI
3.84E-01
3«42^— Q 1
3.Q7E-01
2.7BE-OI
4.331! 00
0.0
OoO
0.0
0.0
0.0
o.o
S.41E-05
6.S7E-05
6.491-05
Se9&e— OS
S.32S-Oi
4.72S-05
4.22E-05
8032E-04

5«20E— 04
5.552-04
5.B4E-04

6oZ8D"»O*
6.3SC-0*
6.41I-O*
.121-02
. 1 6S-02
.32C-02

.S8S—O2
.67C-02
«7SE~-02
«8t£— 02
.BSS-O2
3»03E— 01
2=316-01
2.521-01
2*751-61
2,743-01
2 4 &1 l*-~0i
Z.4SE-QI
2.305-01
2.17E-OI
2.04E 00
5.90E 00
4-95S OO
3.92S 00
3=151 00
2.58E OO
2.16S 00
i.845 00
1 oGOE 00
3.06E OS
0« 3
OoO
0.0
o.o
o.o
0.0
1.63S-04
2.196-04
2. 39 =-04
2.38H-04

2.09S-04
1.92E-04
2«, 765-03
1.675-03
J. 755-03
1.91E-03
2. 04 "-03
2.1SE-03
2.2ZR-03
2.2TS-OJ
2. 30E-03
3.69S-02

4l36?-02
4.BBE-02

51565*^—02
5.93E-02
6.ISF-Q2
&« 33S*Q2
9.65E-01

6e34§* 0 1
S.94S-01

5T12E-OI

4t38S-01
4. HE-OS
5.62E 00
9.9SE 00
8. B3S 00
7, SIS 00
6.44E 00
5.61* 00
5.752 00
5o77E 01
a. 152 02
9.20E 02
OoO
O .0
O.O
O.O
0 .0
0*0

1 «93l-03
1.62E-03
1 « 35S- 03
I .12E-03
9.22P.-0*
7.55S-0*
S.SSE-03
9. 23=- 04

3 * 47£— 04
3.17E-O*
2.94E-04
a • 7zs- 04
2.S2E-04

2 « 25?- 03
1 .B9E-03
2.07Z-03
2.«>0~-03
Z. 945-03
4.«tE-Q3

«» 56^-02
^ .383—02
1 *39S 00
5*9ie CO
1 • 1 7S 0 1
l«59E 01
i.ez~ 01
1 o96E Ot
2«04E 01
3. OS"? 01
2.102 01
9.16S 01
5*07E 02
4 <• 0 12 82
2<4I£ 02
2. Of5; 02
i.Sli 02
t.103 02
9.16~ 01
2,185 02
2.2IE 03
O.O
0.0
o.o
o.o
o.o
o.o

2*I5E— O3
1.861-03
1.595-83

1* 13E-03
9.46E-04
9.34S-03

2!»BE-03
2.Z5E-03
Z.36E-03

2*4»E-03
2.52E-O3
Z, 532- 03

4 o OOE— 02
4.57E-02
5.125-02
5.605-02
&» t ~3**m 02
7.38E-02
I.07E-01
1. 57E-01
2.35S tO
6«&5£ 00
i«23E 01
t.&SS Ot
s,sas ot
2.01E 01
2.09^ Qi
2.12C 01
2.14E 01
9.T2E 01
S. 17E 02
4*1 OS 02
2,99fi Ot
2.15S 02
1.S7S 02
1.16E 02
1.49E 02
l»03E 03
3«13£ 03

-------
                                                    Appendix P,
                                           Table P-13.  AMRAW-B Output Table 5-1
^
TABLE
TIME
Qa
So
10.
IS.
20 o
25 .
30.
sot
feo .
70.
80 B
90 o
too.
200.
300.
400o
soo.
$000
700.
SOO *
900,
tooo.
2Q0Q*
aoooe
4000,
5000=.
6000 =
7000 .
sooo a
9000.
10000.
2OOOQ.
30000 a
4000O.
50000.
60000 .
70000.
aoooo .
90000 .
100000.
200000.
300000.
400/ooQ .
5OQOOG.
600OOO .
700000,
SOOOOO*
900000.
1 DOG 000.
TOTAL
5-1
0*0
0*0
0.0
0.0
o.o
Q.O
I.61E
1. 70E
I.69E
1.62C
1.526
1«43E
I.35E
1.98E
1.74E
1.S9E
2«04£
2* 1 9E
2.3IE
2.40E
2,466
2.51E
3.9SE
4.22E
4*9 IE
So 54E
6. 07E
6.50E
6.A3E
7. 13E
7.36E
l.l IE
8.S4E
6.S4E
E.34E
4.SOE
3.7BE
3.I6E
2.66E
S.STC
4.47E
3.SOE
4. 14E
4.30E

4.25E
«.20E
4.07E
3.92E
4.29E
: TOTAL UNOISCOUNTEO DAMAGES FOR EACH ZONE FOR EACH TJ MS INTERVAL - HISM POPULATION
EOOV «DQ MIDO 6TTE USA CHAV R~G8 TQT.ZON5 MOM-SfEC TTOTAL
0«° °«0 0.0 0.0 0.0 0.0 Q»9 0*0 0.0 O.O
0«0 0.0 O.O O.O 0»0 0.0 0.0 0.0 0.0 0»0
0*0 O.O 0.0 0.0 0.0 0.0 0.0 Of 0 0.0 0.0
Q«Q 0.0 O.O 0.0 0.0 0,0 Q.O 0.0 O.O O.O
0*0 Q«Q 0.0 0.0 0« 0 0.0 0*0 0.0 0.0 OoO
O*O O,O 0.0 O.Q 0,0 O.O 0.0 0.0 9*0 O.O
OoO 0.0 0.0 O.O 0*0 0*0 0.0 O.O 0.0 0.0
00 2.42E 01 1,382 01 5.06E 00 £.34E 00 1.935 01 2«28H Qt 3«97E 01 .316 02 6.0OS 02 7.30E O2
00
00
00
00
DO
00
01
01
01
ot
0!
01
01
01
01
02
02
02
02
02
02
02
02
02
04
03
O3
03
03
03
03
03
03
O4
04

O4
04
04
04
04
04
05
3. TOE
4. 33E
4.52E
4.43E
4. I BE
3-84E
4.89E
I.95E
1.645
2.0EE
Z.19E
2, 3 IE
2.38S
2. 42E
2.44E
3.67E
3.60E
4.05E
4.51E
4 * 66E
6.17E
5. 40E
S.62E
S.84E
B. 4l£
6.6BE
S.44E
5. Q2E
4 fc 93£
5.04E
5 * 1 0£
5.1 4E
5. I BE

S*23E
1.05C
8.55E

S* 72E
1 • Q6E
3.94E
5.9SE

01
01
01
01
01
01
02
02
02
02
02
02
02
O2
02
03
03
03
03
03
03
03
03
03
04
Oft
04
04
04
04
04
04
04
OS
06
06
05
OS
OS
06
0?
OS
oa
2. 32E
2.6SE
2»71E
2.60E
2.40S
2.17E
2.435
1.2SE
.36£
*51E
063E
,73E
9 79S
«82E
.GIVE
3. BOE
2.8OE
3. teg
3.55E
3 a 86*1
4.1 Oe
4.29E
4.43E
4 o55E
6.62S
4.71E
3.32E'
2.63E
3* 29?
2.08E
1.94E
1.83E
1. 76E
4.32E
4. IB£
4. DIE
3.69S
3.355
3. 03!i
2.76E
2.5JE
2.33 =
3.33E
01
Ot
01
01
01
01
02
02
02
oa
02
02
02
oa
02
03
03
03
03
03
03
03
O3
03
04
04
04
04
Q3.
04
04
04
O4
OS
OS
05
05
OS
05
OS
05
05

o o 62 If OS
7o2S5 00
7.34S 00
7.15E 00
&,&&£ 00
6.S9E 00
J»0»E 02
9.46E Ql
.04E 02
* I4e 03
<>22E 02
•29E 02
e34S 02
,3a* oa
>41E O2
3.24E 03
2.40E 03
2.782 03
3.156 03
3.4SE 01
3,695 O3
3.89E 03
4.OSE 03
4.18E 03
6.27E 04
4 . 64^£ 04
3.7IE 04
3 * 033 04
2.55S 04
2il5E 04
1 .8OE O4
I.SJE 04
I -29E 0
-------
                                                         Appendix P.
                                                 fable B-14,           Output fable  5-2
            TIME
3 - 2 S  TOTAL UNOJSCOUWEO DAMAGES  fOR  EACH  ZONE  FOR  EACH TIWZ  SNTSflSVAL -
PfPO      EOSV      BiBD  -    MlOO.       OTE       tEA       CHAW      RES8
LCW POPULATION
    TOT»ZtWi  NOH-SPSC  f TOTAL
m
o
0,
s.
10.
I 5 %
20,
ZS.
30.
40.
50.
£0.
70.
80.
90.
ICO*
200.
300*
400.
soo.
goo.
TOO.
800.
900.
S 000.
2000.
3000*
4000*
SOfiO.
6POQ.
7000.
8 OOO.
9 OOO.
10000.
ZOOOO o
30000 *

sooool
SOQOO.
70000.
aooooo

too ooo.
zooooo*
3000OO.
400000.
SQDOOO.
600000 .
700000.
800000 *
9OOOOO.
1 000000«
TOTAL
0=0 0.0
0. 0 0.0
0.0 OoO
O.O 0.9
0*O 0*0
o, a o.o
0* 0 O*0
«I»1E 00 6.59E 00
.701 OO .31E Ol
. 69E 00 .S4E Ol
.fiZE 00 . 6D€ at
eSge 00 «57E 01
. 4iE OO «*8E 01
,3SE OO ,3frE 01
.9BE 01 .74E 02
«7ftE 01 6.9IE 01
«89£ 01 6.532 Oi
2.046 01 7.16E 01
2.19E 01 7.7SE 01
Z.31E 01 6, ISc Ol
2.40E 01 B.44E 01
2.46E 01 8.5BE 01
2.5IE 01 8*64E 01
3.95C 02 .JOE 03
4.22E 02 ,2fiE 03
4,916 O2 *44g 03
5. S»E 02 . 6OE 03
6.07E 02 *72E O3
«.50E 02 .BJE 03
6.8SE O2 . 92E 03
7.13E 02 *99E 03
7.36E 02 .OTE 03
t.l IE 04 *96E 04
8.S4E O3 «37E 0«
6.S4E 03 .93E 04
5.34E OJ «78E 04
4.50E 03 .77E 04
3.78E 03 .79E 04
3» ieE 03 . ete 04
2.66E 03 .82E 04
2.27E 03 .B4E 04
4.*7E O4 2.43E OS
3.BOE 04 4.35E 05
4.14E 04 3.74E 05
4.30E 04 3.0JE 05
4.J4E 04 2.46E OS
4,?9E 04 2.03E 05
6.20E Q4 3. ?»E 95
4.07E 0* 1«*OE O7
3.92E 04 2. HE 08
4.29E OS Z.Z7E 08
0.0 0.0
0.0 0.0
0«0 02&E 01
. I 4E 01
*2t>- 01
.37E 01
.47E 01
*S6E Ol
.6ZE Ol
.67E 01
.TOE Ot
Z.70E 02
2.BB£ 02
3.36E 0£
3, ?9£ 02
4.15£ 02
4.4SE OZ
4.69E 02
4.8SE 02
5. 04E 02
7.54E 03
S.83E 03
4.46E 03
3.6SE 03
3.0SE 03
2.59E 03
2. 17E 03
1.83E 03
1.5SE 03
3, 06E 04
2«6IE 04
2.64E 04
2.9SE 04
2.97E 04
2t94E 04
2.8 BE 04
2. 79S 04
2.69E 0*
2. 94E OS
0*0 O.Q O«0 0.0 OoO O»O
0*0 0.0 OoO O. C 0,0 O.O
O.O 0.0 O.O 0.0 0.0 O.O
0-0 0.0 O.O 0.0 O.O O.O
O.O OoO O.O 0.0 DvQ OeO
o.o o.o o«t> o.o o.e o.o
O.O 0*0 0.0 O.O 0.0 O.O
S»a4E 00 &.10E 00 .4 IE Ol 4=23= Ol &.OQE OP, 6.«2£ 02
7.47H 00 9.1 *A 00 .71S 01 3.713 01 S.OZE OZ S.S9E 02
8. HE OO 1.05H 01 «69S 01 6.Z1B 01 4.22E 02 4.84E 02
&.16E 00 I..07E 01 .55E 01 6.19E 0! 3.S1Z O2 4.t3E OZ
7.S3E 00 1.033 01 .3BE 01 S.87£ Ot 2.91E 02 3.SOE 02
7.605 OO 9.455 00 .23= Ol S.*4C Ol a.4O~ O2 2. 94E O2
7.30*5 00 8.80= OO .101 01 4.991 Ol 1,96" O2 2»*12 O2
.142 02 9.13H 0» 2«I6E 02 7.19S 02 I »W? O3 2.I7E O3
. 04E 02 4.31E 01 .JOE 02 4.34*: 02 2.40= 02 6.74E OZ
.14E 02 4.SSE 01 033= 02 4»56S OZ 1.11E 02 5.66E OZ
-2SC OZ 5.06S 01 «44g 02 4- S6E 02 9.03C 01 5»36E 02
.34E 02 5.49E 01 «S2S OZ 5.31? 02 B-.ZSE OI 6.132 02
.AiE 02 s.aos 01 .sas 02 s.sae 02 7»s*E 01 &.JSE 02
,4?f OS S.99E 01 «S2s 02 S. 77C 02 T.OSF Ol 6.48E Ot
.515 02 6.09? 01 1»65£ 02 5.901 02 6.S4E Ol 6*5S£ O2
.555 OZ 6.133 01 1.67S 02 S, 93S OZ 6.O7E fli 6,595 OZ
2.44E 03 9.23" 02 2. 925 03 9. 60S 03 5.86~ OZ 1.02E 0«
2.C1E 03 9.02~ 02 3.O2E O3; 9.91E 03 4589E O2 I.O4E O«
3.04= 03 1.025 03 3.43E 03 . 1 3~ 04 5=392 02 1.19E O4
3.44E 03 1.131 03 3«80E 03 .27"! 04 6.232 02 1.33E O4
3. 775 03 1.23E 03 4»10E O3 .38S-O4 7.6SS OZ t*4«E O*
4.0*e m l«30= 03 *,34E 03 ,475 O4 1.23T 03 J.S9S O*
4.25E 03 1.351 03 405ftE 03 .342 04 3. 783 O3 t.925 0%
«*43E OJ 1.393 03 4.69E O3 .60£ 04 ..IB? Oft 2.73E 04
4.58E 03 1»425 03 4.81S 03 «65H O4 2.44* O4 4.O9E 0%
6=BS^ 04 2»063 04 7.S8E 04 .Sit OS 3.61E OS 6.12S 05
5.29E 04 1.425 34 6.0QE 0* »9l£ OS 1.54S OS 1«73E 06
ft.051; O4 9*59* 03 6«54S O* « 65~ 05 3«03S O6 3.20E O6
3.32E 0* 7.43E 03 7.161 04 «S4» OS U.13S O6 *«20E 08
2.79E 04 fi.635 03 7. HE 04 .44E 05 4 = 74S 06 *«i§£ 06
2.35H O4 6. 25? 03 6.73~ 04 c33I OS 5»IO:i 06 5. 23E 06
1.97E 04 6.0SE 03 6.37?! 04 .235 05 S.30S 06 S.43£ O6
1.65E 04 5.95S 03 S.97E 04 . 14F 05 5.415 O6 5. 52S O6
5U414 04 5.93E 03 5.6SE 04 «07E 05 5,472 06 S«SrE 06
Z.?8E OS 1.542 05 S.3IC 05 .461 Ofr 2.3BS 07 2,S3E 07
2.36= OS I.S31 03 1.53E 06 .39" Ofi I .322 O8 1,34= 08
Z.5S5 OS 1.43S OB 1 .29S 06 .30S 06 t.0*£ O8 l»O7E 08
2.68E 05 U28S OS 1. 025 06 .93*! 06 7 . 57E O7 7. 77E 07
2.69E OS 1.135 OS 8»t9E OS .67* 06 S.4J2 O7 5.603 07
2.fi7S 05 5.9BE 04 6.71H 05 .46E 06 3.92S 07 4. 07£ 07
2.61E 05 8. 90S 04 5.626 05 .49E 06 2.B72 07 3.02E 07
2.53G OS 7.9TS 04 4.T9E OS ,50^ 07 2.382 O7 3.B8E 07
2.4*2 OS 7.S3E 84 4.17E OS 2,125 00 5.66S 0? 2.69E OS
2.67E O6 I«i25 06 ?.95S 06 2.412 08 5*73= 08 8.ISS OS

-------
                                        Q

                         PRO&RAMHER'S NOTES
Variables
     The variables used  and  their definitions are presented in the list
of nomenclature in the front pages of  this volume.
"IndexM_ File Structure
     "Index" is an unformatted  temporary  file allocated to logical unit
2,  Index holds a maximum of 260  records, each 400 bytes in length.
Index  is calculated  for  each nuclide and  zone.
Number of Zones
     The number of geographic zones,  designated by the variable MZ, in
the initial demonstration is 8,  Nonspecific doses and corresponding
damages are treated  in the calculations as though they are for an addi-
tional zone {MZP1 =  MZ + 1, or 9 for the demonstration).  While input
provides for a number of zones other than 8, and the ranges of calcu-
lation loops correspond, there are some program changes required for
MZ 7* 8, to provide consistent table formats.  For example, in FORMATS
850, 918, and 957, the multiplier of the repeated group {A4, 6X) must be
changed from 8 to a  new and different value of MZ.  Follow-on work can
make modifications to automatically accommodate a range of MZ values,
but the user is cautioned that these improvements have not yet been
made.
Output of Table 2
     Table 2 is output (providing the flag      is set to 1)  for all
values of time after an initial sequence of times which are bypassed,
"IF" statements in lines 1820 and 1900 (numbered on the right sidle in
Appendix R listing) bypass calculations and output for time subscripts
through 7 (i.e., through 30 y or subscript 6 in the demonstration).   If
a different bypass control is desired, the 2 "IF" statements must be
modified.  It may be desirable in the future to use an input variable
                                   151

-------
for this purpose.  This could be the variable NRO suggested in the next
paragraph.

Basis £or_ Table 3
    Table 3 includes columns of marginal present value costs for decay
groups.  The values are obtained by dividing the sum of present values
   5
of damage for each nuclide in a decay group, S, by the total mass of
nuclides, g, comprising the decay group at a specified time.  Presently,
the specified time for which mass values, X, are obtained  (see input
data file AM1E) in the beginning of the terminal storage phase, or a
reference time of 30 y {time subscript 7).  In a new application, the
"7" in lines 2630 arid 2S7Q should be replaced by the integer corresponding
to the appropriate time subscript.  Line 2290 also uses this time, desig-
nated NYHQ  (number of years of repository operations)j this is set equal
to 30 in line 402.  It may be desirable in the future to use an input
variable (e.g., NRO) for the time subscript representing the end of
repository operations.  This subscript variable could then be used instead
of 7 in lines 2630 and 2670, and line 402 could be changed to N¥RO =
TIME(MHO).
Discount ._Rate_
     The discount rate, RATE, is read in as a decimal number in F format.
When a zero discount value, 0.0, is read in, it is changed to RATE =
.00001 (line 720) for use as a routing flag which bypasses discounting
calculations.  For output as a percentage, PRATE = RATE x 100  (line 722)
is used.  When a write statement outputs PRATE, F5.2 format is used which
ignores the 1 for the converted zero discount and writes it as 0,00,  If
a non-zero discount value is used, RATE remains as read in  (as low as
0.01%, or RATE =  .0001), the discounting calculations are executed, and
the proper percentage rate is output as PRATE.
 Pose RateMultiplier
     Calculations within AMRAW-B are done in terms of man-rein of dose.
 AMRAW-A output is in units of milli-rem for  local dose  and man-rein
 for nonspecific dose.  A multiplier, fHO, is used as a conversion factor
 and is assigned values of ,001 and 1.0 for local dose and nonspecific
 dose, respectively (see lines 1000 and 1020).
                                  152

-------
Population
    Population projections (high and low) are used for local dose cal-
culations in each zone.  Nonspecific dose is based upon a total agricul-
tural production implying a nonspecific population.  Calculation of
       for nonspecific dose in line 1980 provides for adjustment by includ-
ing  POPH(9} and PGPL{9), high and low "populations" for the nonspecific
category as designated by subscript 9.  These are set equal to 1.0 (see
lines 730 and 740) at present.
Input Fil_e _ Conta ining	   1
     MASIL and M&N1N from .RMRAW-A are processed to M&Nl in file ECOMxx
for input to AMRAW-B.  This can be via disk or tape file.  The user is
cautioned that JCL for use of COMPRESS must specify disk or tape to be
consistent with the input device specification provided for by the user
in AMRAW-B.
Modification for Running on Other Systems
     AMRAW, written in FORTRAN IV, was developed with implementation on
an IBM 360 system.  Some changes may be  necessary for operation of AMRAW-B
on a CDC or other system.  However, some of the conditions which require
changes in AMBAW-A such as quadruply dimensioned arrays  (see Appendix G
in Part 1} do not exist in AMRAW-B, which should simplify conversion.
                                 153

-------
Page Intentionally Blank
     154

-------
                            APPENDIX  R
                          AMRAW-B  LISTING
     The AMRAW-B  code consists of a main program only? there are no sub-
programs.  The  code has 394 lines including comment statements.
                                155

-------
                        Appendix R.   AMRAW-B Program Listing
c**»
c***
c***
e***
c***
c***
               ASSBSSH2NT MSTHCa  FOR RADIOACTIVE  WASTE.
       A  CODE DEVELOPED BY UNIVERSITY OF NEW MEXICO
       UNDER EPA CONTRACT »6S-OJ-3aS&
       THIS LISTING IS AMRAtf-B. THE ECONOMIC MQOEL»MAY 1978.

       IMPLICIT INTEGEH&2 Cl-PO
       OCU8LE PRECISION NUCNAMC2SHHEAD
       OOUOLG PRECISION NUC2(25)
       CATA HEftD/ • PV5/ OH . ' /
       REAl. MAmi 5Ot8}»DDPt6I «DP¥{8J ,T 1MECSOI tLAKBOAta I
       REAL POPL|9).POPH(9J,Oi!lM*GE{SO) sPVNt7s25) .TOTKHI25J
       REAI. TDTKtl25I,Xt25»SO»*OTZt91 , SPV17I.TTOI 1 lUTKDtSOj 1 11
       RBftL DTHCS0.25} •DTUOO.ZSI vDYRL (50 . I I J . DVRH 1 50 , H ) » OLD ( 1 1 1
       DIMENSION !Kt25|8ISUi J.PV2J ?62Si»SS( ?• 11 )»TUDHI1U «TUOLfll»
       01 MEWS I ON IPUAGHC8tgTITLE( 10) tSITE(8»Si *REG(81» 1KK42SJ
      CATA
      INTEGEP*"*  INDEX, POSC2J . IMiIPtIS
      CATA POS/«HIGH«»S LOW1/
      DEFINE  PILE 2<26o,«oot
      CALL FSPIS
      IS=1
         HEAD  #  OF TIME PERIODS.01SCDUNT RATEt RISK  OF  OEATHfSJ,  ***
         DOSS  BY BODY SITS. POPULATION PROJICTIONILOW&HISHJ FROM AM9
         PRINT INPUT DATA
C***
      fiE«0«IN»651JTITUE
  651 FDPMATUOA41
      DC  1640  l«ItNJHT
 16*0 fiEAO(!»
      DO  1650  I*>loMZ
 1650 !9g£CHl*
 1651 FORMAT!SA4*PS.01
 1652 FCRMAT(A4«1X«2F10»0)
  6SZ FORMATf/^/SX*
      DO 660' |Kl«NG
      READ! JN»653 IK, (IKKIJ)
      161 I »=K
      oo
                             J=l
  665
  660
00000160
000001TO
00000180
0000019O
00000200
00000210
00000220
00000230
OOOOOS40
00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320
00000330
00000340
00000350
00000360
QUOO0370
00000380
00000390
0000040O
00000402
00000410
00000420
OOOOS430
00000440
0000045O
00000400
00000470
000004BO
00000490
OOOODS30
00900510
00000520
OOOOO533
000005*0
OOOOOS50
OOOOOS60
00000570
OOOOOS80
00000590
OOOOOeOO
00000610
000006EO
OOOOOfcJO
00000640
OOOOOt'JO
OD00066Q
00000670
                                        156

-------
                     Appendix R.   Table R-l  continued
  653  FCRMAT(3X»2SI3J
      DC  2807 1»1tNIHT
 2807 DDP{IlzDPY(1)*.26
      IMRATE.EQ.O.}RATE=O.00001
      PRATE=RATE*100.
      PGPL<9)*1.
      WPITE{IP.2806)PRATE,VOL
 2806 FCRMAT(/5Xt-DISCOUNT  RATE =*«F5e2»- JC/SX.'COST OF INCREASED
     *.'LEVEL  OF  RISK OF DEATH « S',FS.Q//33X,
     *'CCST  OF EXCESS RISK  OF  DEATH*/7Xi*SITE OR  TYPE'tflXs
     *  "DEATH  /MIL. HAN-REM'«4Xs"S/MAN-REM"/I
        DO  2601 I=1.NIHT
        HRITE{IP.2607)(S!7E(I,J),J»lt5JsDPY(I)jDOP(I)
        FORMAT(5X,5A4.1S «2F16.1)
        WRITS*tP«260B)
 260S FCRMATt//7X."POPULATION  PROJECT IONS"/5X,« ZONE  *«SX>
     S'HIGH'iSX* 'LOW /)
      DC 2602  1=1tHZ
 2602 SPITE(IP.2609)I,REGUIsFOPHtl),POPL(I}
 2609 FORMAKSX, I 1, 1X,A4.2F10.0 )

C**#    BEAD TIME INTERVALS  AND fJUCLIDE  INVENTORY FROM AH IE  *«#
 360 1
 2607
                  i IT1ME(I)ol*:
      DC  650 K=l,NK
      REAO(S960e)MJCNAM(f<) a { K(K, IT), :
  6SO REAO(5t309)(K(KtlT)«IT=6«NTJ
        READ  HANI (AMRAW-A  OUTPUT)  FROM ECDNXX    »**
        CALCULATE DAMAGES ANO STORE ON DISK   ***

      THC=.OOI
      DC  900  IZ=l»MZPt
      IF( rZ.E0.9)THO=I.O
      DO  900  K=l »NK
c***
c***
c***
 3806
                ' .'IZa'all*1    K=*»I2//1
      DO  901  IT=1 .NT
      DAMAGE! ITJcO.O
      RE AD ( IS g 806) (MA Ml 1 ITp IH). IH=1,N1HT)
      tsRITE( IP»806I J MAN KIT « IH> i IH="1 iiNIHT)
      CCNTINUE
      DO  902  IT=1«NT
      DO  902  IHat ,NiHT
        CHECK  IF TOTAL 30DY  DOSE RATE IS TO  BE  USED
C***
       IF(IFLAGHtIH).NEeIH)IHT=t
  902  DAM AGE ( IT t = DAMAGE( IT)* HANK {To IHT}*DDP( IH >*,
      1€»P<-LAMBDA(IHT1STIMEIITt)*THO
 OO000630
 00000690
 00000700
 00000710
 00000720
 00000722
 00000730
 00000740
 00000750
 00000760
 00000770
 000007SO
 OOO0079O
 oooooeoo
 00000810
"OOOOOB20
 00000630
 00000840
 00000850
 00000860
 00000370
 OOOOOS80
 OOOOOB90
 00000900
 00000910
 00000920
 OOO00930
 00000940
 00000950
 00000960
 00000970
 OOO50980
 OO 000990
 OOOOI000
 00001OtO
 00001020
 00001030
 OOQOI040
 00001050
 00001060
 00001070
 OOOD1O30
 OOOOt 090
 OOOOI100
 ooooi110
 OOOOI120
 00001130
 OOOOI140
 00001 ISO
 OOOOU60
 OOOOI170
 OOOOlISO
 OOOOI190
                                       157

-------
                          Appendix  R.  Table R-l continued
  900
c*»*
                      DAMAGE{ ITJ t IT=1 »NTI
      CALCULATE AND PRINT  TABLES  ON ZONAL AM) TOTAL DAMAGfiS
      CHIGH'6- LQ» POPULATICN  PROJECTION -- S/tEAR  J
      TABLE - I

    WRITE*IP»8601
                                                                   ***
                                                                   ***
       WKiTEf IP»850JNTABl,EtPDSCl »,i,M2
              1 1«DT9
    WPITEtIP»8SllTIME( IT5.IOT2UZI
                                                »OT» DTZI 9»«DT9
  906 CONTINUE
C***
         9  DAMAGES BY NUCLIDE  flNO BV TIME PERIOD
                                                      #0*
 OOOO1200
 00001210
 00001Z20
 00001230
:OQ001240
 OQOOI25O
 OO001260
 00001270
 00001200
 00001290
 O0001300
 00001310
 08001320
 00001330
 00001340
 000013SO
 0000136(9
 000Ot370
 00001330
 00001390
 00001400
 00001410
 00001420
 00001430
 00001440
 00001450
 00001460
 00001470
 00001430
 00001490
 00001500
 00001910
 00001520
 00001S30
 00001S40
 00001SSO
 00001560
 00031570
 00001SBO
 00001590
 0000J600
 000Ol610
 00001620
 00001630
 00001640
 00001650
 ooooieao
 00001670
 00001600
 00001690
 00001700
 00001710
 50001720
                                         158

-------
                     Appendix R.  Table  R-l continued
€#«
          SET ITi3 TO t TO PR I Ms TO 0 TO SUPPRESS  PRINT. *»*
          TABLE - &
      DC  920  1T=ItNT
      DO  920  K=1»NK
      OTL( IT«KI = 0
  920 01H!IT,KI=0
      OC  907  IT=l0NT
      IF
      B1AO(2»INOEXJ(DAMAGSJITEJ »ITi=|,NT>
      DTZC3J«=OTZI3)tD*«AGE* I TJ*iPOPL 19I*POPHI9) 5/2.
                  l»*OTZ(3|
      DTH(IT,K1*DTZ(4 »
      01LIIt,Kl=OTZ(S)
      IFlITB3.EQ,i»WRITEeiP.8S4)NUCNAM(Kj«tOTZ{ I) il = » ,SJ
      CCKT1NUS
  907 CCNTlNtC
C#**
C***    C1SCOUNT6D PRESENT VALUE  FOR HIGH & LOU POPULATION BY MUCLID6 *

C***

 2222 FCPMATl«I = »5Ki»TS6l,g 3  :  OISCOUMTCO PRfiSeNT  VALUES  < * S8/
     «  J6X, *OISCOUNT RATE =»,FS»2»«  »VX
     *14X»»HISH  fOPULAT10N«e9X«'LOW  POPULATION'/
         I'NUCLlSg '«2I3X»«DISCOUNTEO«»4S,'PV S/€M')/1
      DO
      DC 911  K*l
  911
      DO 913  KKl.NK
      DC 913  !T=2.NT
      IFUI .EQ«t JTD=OTHf ITtKI
      IFl f I.EO«2>TD=DTH IT»K»
      21-TIMEIIT-ll
      22-TIMEt1T>
      IF
-------
                      Appendix R.   fable  R-l  continued
     IFCRATE«1 .GT.lSalGQ TO 913
     IFCBATe*Z2»GT«15»J50 TO 913
     PVNd »Kl=PVNI l»Kl*TB*{ O/RATEJ* (EXPtRATi
  10  FV2(
     IFIRATE.NE.O.OOOOX JGO TC  913
 91* PVNCX»K»*PVNf i»K!*TD*f Za-Zl)
 913 CCNT1NUE
      DO  10  K*1.NK
      ID'IKIK)
                      ID)
        SStl»J}»0
        DC  20  K=LJ.t2
        ESt to JJ«=SS(l»J)*PU2< l.KI
      L2*0
      OO 1001  J=*1»NG
      DO 20  4=1 «NG
      IO=IGt4>
  20
     DO 1002 K=LltL2
1002 P\f2tMI.K)«PV2tltKJ
1001 SS
      PV2( 1 ,K
      OO 40  J=l »N6
      IO-IG( J)
      LI =1.2+ 1
      SStl.Jl^O
      OO 40 K=L1 «L2
  40  SS( 1 .JJ^SSt IP JI*PWNf 2eKt
                                                                            00002260
                                                                            00002270
                                                                            00002290
                                                                            00002290
                                                                           ;QQO02300
                                                                            00002310
                                                                            00002320
                                                                            00002330
                                                                            000023*0
                                                                            00002350
                                                                            00002360
                                                                            000023TO
                                                                            00002330
                                                                            OQ002390
                                                                            00002*00
                                                                            00002410
09002430
00002440
00002*50
0000246O
OQ0024TO
OOO024BO
00002490
00002500
00002510
OOOOS520
00002530
00002540
OO00255D
OOOO2S60
00002570
00002580
OOOOZ59Q
00002600
00002610
OOO02C2O
00002630
03002640
00002650
00002660
00002fi70
00002680
O0002690
S0002FOO
00002710
00002730
O0002730
00002740
00002750
OOO0276O
Q00027TO
00002?80
                                   160

-------
                      Appendix R.   Table R-l continued
     DC 1003
1Q04
1003
2935
 912
      00 1004  K=LIaL2
      PV2(Ml»K)*PV2ClilO
      SS(MltJ}«SStMll«,J>/SSS i
      SPVf il»0
      DC 2935  K=l oNK
      SPVI11*SPV( l)+PVN<2tKJ
      SPVIMllsSPVIMlI l/SPVil I
              J=l >NG
     00
      00  1013  K«l
 1013 JtPITEUf
 8855 FORMATCIiX»AB«lXt 1PE12«1§ 12X»iPE12*2J 1
 1014 SPITS! IP.19S7HSSIL.41 »L=2s51

C***
C***    9 OF DEATHS PER TIME  INTERVAL  FOR HIGH t LOW POPULATION
C***    TABLE  - 4
C***
      DC 933 I=l»2
      PL=0
      IF!l.eCUIJWRITEtlPi919lliPOS{ 1)
                                                                    ***
     00 969  IR»1>11
     OLD EQ« U)GO  TO 9S9
     Pt=TlMEIIT J-TIMEI1T-1>
 939 CCNTINUE

 931 T»"0f ITpIRJ=DLD< IBJ
 932
                           i JOLDdfiS j iR=lolli
     DO 93S  IR»t«ll
     DC 955  IT=I
 955 ttD(IRJi
 934
 00002790
 OOOOZflOO
 OOOO2S10
 00002820
 00092830
 00002840
 00002950
 eoooaeeo
 000026TO
 00002830
 OOOOZ890
 00002900
 00002910
 00002920
-00002930
 00003940
 00002950
 00002960
 00002970
 OQOO29SQ
 00002990
 00003000
 00003010
 00003020
 00003030
 00003040
 00003050
 00003060
 00003070
 00003030
 O0003O90
 00003100
 00003110
 00003120
 00003130
 00003140
 00003150
 00003160
 OOOQ3170
 00003180
 00003190
 00003200
 00003210
 00003220
 OOO03230
 00003240
 00003250
 060Q3S60
 OOOO3270
 OQO032SQ
 00603290
 00003300
 00003310
                                       161

-------
                     Appendix R.   Table R-l continued
  933 CCMTINUE
C***
C*»*    TOTAL  UNO1SCDUNTED  DAMAGES FOR EACH  2ONE t FOR EACH  TIME
C*«*    INTERVAL  —  FOR HIGH & LOW POPULATION
C***    TABLE  - S
C***

      DC  1600  IR = l,,n
                                                                     #*»
                                                                     **>*
     DC  1600  IT«2»NT
     PL«TlM£tITI-TIMEl IT-1 J
     BYRHtlT.IRl^BYRHt 1T,IR>*PL
     TL»H{IR}=TUDHCIR>«JYRHtIT»IR»
     DYRL,{IT8*RI=»DYRMIT«IR>9PL
1600 TLDL(IR)«TUCM-lia)*DYRL(lTtIR)
     WRITE<1P.937IKI.POS(1 ),
     DO  1601  IT*1»NT
160 1 BFlTECIP»8SimME{ ITI » IDYRHdT'e IfU »IR*1
                          IRI .I^«=ltU >
1602
 806
1806
18O7
                                                1 J I
     DO  1602  If=l.NT
     WRITEdP.851 >TIHE{ JT) 5 (DYRLdT, 1RJ ,IR«| Bl 1J
     WKITE{IP,9681CTUOH IRJ .IRsl.U)
     STOP
     FCfSMAT(lP8E10.2)
     FCFMATC15X»FlO»OI
 B09
 850
     f CRMATlABt2X»T610«2}
     FCRMATIIOX.7E10.2J
     FCRMATlTfi«20X, 'TABLE  t  -  ' » 1 1 » • : '»
             AND  TOTAL CAMAOES  FOR  *»A4.« POP.  PROJECTION »fTOT.IONE',a»i*NON-Sf:'eCt«
        »TTOTAL»>
 853 FCRHATC2«*5NUCLIOE' »SXf 'HIGH POP', *X, "LOW  POP «»SX» 'NON-SPEC «
    *t.4J<»< TOT-HIGH' »+Xt • TOT-LOB U
 854 FCRMAT11X,A6.1X,1P5E12«S)
 iS7 FCHMATI «1* «*B,» POPULATION SCENARIO - DISCOUNTED PftSSEMT  «.
    **VALUB  («!"/•/'  NUCLID6   INTEREST RATES-' .F6.3/ J
 OSS FCfiMAT< UX.o AB.1X, 1P7E1 2.2) )
 BS6 FCPMATC2OK, 151
 860 FORMAT! «!<}
 661 FCPMAT(iOX,e« TABLE 2 -  *«I2i* J  '.'TIME  PERIOD^ ' ,F 11 .0//>
 918 FCPMATI33S* 'NUMBER  OF  CEATMS PER TIME I NT EP.VAL » t»' . FT. 0, « ) *
        ax,« TIMi' «SX«8tA», 6X1 t »TOT»2QNE" »iXt' NON-SPEC' t
        'TTOTAL'/J
 9SO FORMAT! t 8KB *0«' « 1 OX. ' 1 *• 1 10». '2X« .10Xi»3X«i IOX. '*S« ,IOX,
 919 FCPHATf '!« ,T3?» 'TABLE  4  -  '*ll»"
 967 FORMAT { I X.'TOTAt   « » I X»1P7E12=2J
                                                  POPyLATION
                                                                           00003320
                                                                           00003330
                                                                           60003340
                                                                           O0003350
                                                                           :00003360
                                                                           00003370
                                                                           OOOO33OO
                                                                           00003390
                                                                           00003*00
                                                                           OO00341O
1*67 FClMATIIXj"  SUi TOT • * 1 JU1P7E12. 21
 968 FCPMATf IX. ' TOTAL* »SX» 1 PI1 E1O.E J
 957 FCBMAT{« 1» ,6X«'TA8LE 5 -  »,H»* : >8»tOTAL UNOISCOUNTeO  DAMAGES •
    *» 'FOR EACH  20NE'i.lX«'FCR  EACH T 1HE INTERVAL -'
    *«tXiA4*lX* •POPUI.ATIO«>//t6X.'  T IME**ZX*
    *fi(A4»6K). •TDToZDNE" o2K t 'NON-SPEC1 ,
    92Kt 'TTOTAL'/")
     END
                                                                             00003430
                                                                             00003110
                                                                             00003450
                                                                             00003460
                                                                             00003470
                                                                             O0093«Q
                                                                             00003490
                                                                             00003509
                                                                             00003SIO
                                                                             00003S2O
                                                                             00003530
                                                                             00003540
                                                                             000035SO
                                                                             00003S60
                                                                             0000357O
                                                                             06003SBO
                                                                             90003S90
                                                                             00003600
                                                                             00003610
                                                                             00003620
                                                                             00003630
                                                                             OOOQ3640
                                                                             OOOO3690
                                                                             OOOO3li&0
                                                                             00003670
                                                                             00003630
                                                                             00003690
                                                                             00003700
                                                                             00003710
                                                                             00003720
                                                                             OOO 03730
                                                                             oo a 03 7*0
                                                                             000037SO
                                                                             00003T60
                                                                             00003770
                                                                             000037BO
                                                                             00003790
                                                                             O0003800
                                                                             000 33 BIO
                                                                             00003620
                                                                             OOQ03B30
                                                                             00003840
                                                                             00003850
                                                                             00003B60
                                                                             00003870
                                                                             00003830
                                                                             00803890
                                                                             O0003900
                                                                             00003910
                                                                             00003920
                                           162

-------
                            APPENDIX S
                              FLOWCHART
     Figure S-i shows a simplified flowchart for AMBAW-B,  The chart
represents flow through the code  for  a  specified waste management phase,
such as repository operations  or  terminal  storage.  The reader is referred
to Volume III,  which describes AMRAW-B, for detailed descriptions of
each step.
                                163

-------
                                    Read Input Data
                                       File AMB
                          Convert Health Effect  Incidence Rates
                                     to $/man-ren)
                                    Read irtput Data
                                  File AM1£,  ECONxx
             Each lone
             Each Hue]Ids
  Calculate Damage, $/y, per Person
   and Nonspecific, at Each Time,
       Summed Over AlI Organs
                            Calculate Damage, S/y» Each Zone
                                     at Each Time
                            CaIcylate Oamage, $/y. High and
                             Low Population, Each Nyclicte,
                                   Summed Over Zones
                         Calculate Discounted Present Value,  $,
                         High and Low Population, Each Nuclide,
                              and Marginal  Damages,
         High  Population
          Low  Population
 Calculate Deaths per Time interval,
       Each  Zone, Each Ttrne
         High Population
          Low Population,
Caleu lite Total Undis counted Damages
  per Tine Interval, $, lach Zone,
            Inch Time
                                                                  Output Selected
                                                                    Input Data
                                                                  and $/man-rem
The  term  "Each  Zone11 also  Indicates  the sums of  all  zones,  nonspecific,
and  total  of zones and nonspecific.

Marginal  damages are based upon  Inventory  of each decay chain at
beginning of e.g. terminal  storage.
               Figure  S-i.   AMRAW-B  simplified flowchart.
                                        164

-------
                                        T
                         AUXILIARY  PROGRAM
     An auxiliary program COMPRESS, Is used to process dose rate output
from AMRAW-A for     as input to AMRAW-B vim the file ECONxx.  All of the
AMBAW-A output tables in Section 3 (Local Doss to Individual) and Section
4  (Nonspecific      to Population)  comprise the major input to AMRAW-B
(Economic Model).  CQMPHSSS, written in PL-1 and Fortran IV language,
finds these tables in the full output stored on tape, strips off the
headings and left hand column of time, and outputs a continuous "conpressed"
file in a form ready to be read by AMRAW-B.  appendix F includes samples
of AMRAWf-A output and the COMPRESS output file.
     The CQMPBESS output file consists of the calculated value of dose
rates (each line is for sequence of organs calculated for a specific time),
for each nuclide in the first geographic zone, followed by the same se-
quence in each of the other zones in turn and finally, by the nonspecific
category.  The program may be used separately to produce AMRAW-B input
files ECONxx from AJ4R&W-A output {aoc identifies the case number)»  or "it
    be joined to AMRAW-B to process data directly.  Table T-l is a list-
ing of COMPRESS, including JCL, as run on the IBM360/67 computer at OTfiL
The first execution step employs PL-1 and the second step employs  Fortran
IV.  It is necessary to specify, in the JCL cards, the name of the tape
and label number storing the AMRAW-A output (see line 390), and the name
and label for the output file tape or the DSN for the output disk if used
instead of tape (see lines 125 and 690).
                                   165

-------
                  Table T-l.  Listing  of COMPHESS
 !00 //A         JOB  (BAB411iLGKf500,30ft'HENRY NG'
 110 // REQ10N=256K
 120 /#iETUP        9NLHNtil9pBD5  3314
 121 //DELETE   EXEC  PBHsIEHf'ROQM
 122 //SYSPRINT   BB  SYSOUT=A
 123 //SCT        PD  UNIT=2314rUaL=SER=BD3,BIKP=SHR
 124 //SYSIN      Mi  *
 125        SCRATCH DSNAME=ECON35fUOL=2314=BB5
 126 /#
 130 //SQUEEZ EXEC LPLlFCGfCPARM='STfNESTtNtlL'rP2=DUMMY
 140 //PLl.SYSIN »D *
 150  /*   FIND EXTRANEOUS MATERIAL AND DELETE IT */
 160  EXCESS} PRQC OPTIONS*MAIN)f
 170  DDL CRUNCH FILE RECORD OUTPUT!
 180  DCL EXTRA FILE  RECORD INPUT*
 190  HCL DATA CHARU33) UARYINSf
 200  DCL SUSSTR BU1LT1N?
 210  ON ENDFILE 
 230             OPEN FILE INTO (DATA)J
 260             IF SUBSTR(HATAf61f10)3»'SECTION  3' THEN QO TO ABftlHI
 270  PUT SKIP LISTCHATftJS
 280  /* FIND 'TIME'  IN OUTPUT */
 290      TIHERJ REAH FILE INTO 3='TIHE' THE^^ GO TO TIMERS
 310             DD IN=1 TO 50?
 320                READ FILECEXTRA> INTO (IiATA)*
 330                MRITE FILECCRUMCH) FROM 
 340             ENDS
 3SO             60 TD TIHERS
 360     FINISH! CLOSE FILE(CRUNCH)f
 370             CLOSE F1LE(EXTRA)S
 380  END EXCESS?
 390 //GO.EXTRA DD UNIT=TAFE9»VOL=SER=HN1619«DSN=EPAJOBfLABEL=(5»SL3r
 400 // DISP=
 410 //GO.CRUNCH DD UNIT=SYSU.DSN=«SGUEEZE,DISP = (NE!«I»FASS> r
 420 // DCl=(RECFH=FBfLRgCL=133pBLKSIZE=AASO)?SPACE=?CYL»{ltl)»RLSE)
 430 //REVAMP EXEC LFORTBCB»LPARH='SI2E=a2SK'
 440 //FORT,SYSIN DD  *
 4SO       DIMENSION  RBATA<50>e>
 460       DO 10 IZ=1»9
 470       DO 10 NUC=lf2S
 480     '  DO 10 IT=1»30
 490       REAIKlrlOO) 
 495       WRITE<2r200) fIORBN = l»8J
 497    10 CONTINUE
 500   100 FORMAT(11X»1PSE10,2J
 510   200 FORMAT(lPaE10.2)
 A50       ENOFILE 2
 651       REWIND 2
 <460       STOP
 670       END
 680 //GO.FT01F001 DD UNIT=SYSU,DSN=SSSQUE£Z£fDISP=
-------