EPA-600/2-77-086
August 1977
Environmental Protection Technology Series
PERFORMANCE EVALUATION OF AN
EXISTING SEVEN CELL LAGOON SYSTEM
Municipal Environmental Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the ENVIRONMENTAL PROTECTION TECH-
NOLOGY series. This series describes research performed to develop and dem-
onstrate instrumentation, equipment, and methodology to repair or prevent en-
vironmental degradation from point and non-point sources of pollution. This work
provides the new or improved technology required for the control and treatment
of pollution sources to meet environmental quality standards.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/2-77-086
August 1977
PERFORMANCE EVALUATION OF AN EXISTING
SEVEN CELL LAGOON SYSTEM
by
James H. Reynolds, Ralph E. Swiss, Christine A. Macko,
and E. Joe Middlebrooks
Utah Water Research Laboratory
Utah State University
Logan, Utah 84322
Contract No. 68-03-2060
Project Officer
Ronald F. Lewis
Wastewater Research Laboratory
Municipal Environmental Research Laboratory
Cincinnati, Ohio 45268
MUNICIPAL ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268
-------
DISCLAIMER
This report has been reviewed by the Municipal Environmental Research
Laboratory, U.S. Environmental Protection Agency, and approved for publica-
tion. Approval does not signify that the contents necessarily reflect the
views and policies of the U.S. Environmental Protection Agency, nor does men-
tion of trade names or commercial products constitute endorsement or recommend-
ation for use.
ii
-------
FOREWORD
The Environmental Protection Agency was created because of increasing public
and government concern about the dangers of pollution to the health and
welfare of the American people. Noxious air, foul water, and spoiled land
are tragic testimony to the deterioration of our natural environment. The
complexity of that environment and the interplay between its components re-
quire a concentrated and integrated attack on the problem.
Research and development is that necessary first step in problem solution and
it involves defining the problem, measuring its impact, and searching for
solutions. The Municipal Environmental Research Laboratory develops new and
improved technology and systems for the prevention, treatment, and management
of wastewater and solid and hazardous waste pollutant discharges from munici-
pal and community sources, for the preservation and treatment of public drink-
ing water supplies, and to minimize the adverse economic, social, health, and
aesthetic effects of pollution. This publication is one of the products of
that research; a most vital communications link between the researcher and
the user community.
As part of these activities, this case history report was prepared to make
available to the sanitary engineering community a full year of operating and
measured performance data for a wastewater treatment lagoon system.
Francis T. Mayo, Director
Municipal Environmental Research
Laboratory
ill
-------
ABSTRACT
Wastewater stabilization lagoons have provided acceptable, low cost,
efficient wastewater treatment for nearly 5,000 communities in the United
States. However, with the implementation of the Water Pollution Control
Amendments of 1972 (PL 92-500) stringent secondary discharge standards have
been established. It is possible that waste stabilization lagoon systems may
not be capable of satisfying these new discharge requirements. At present,
very little data exist which adequately describe the yearly performance of
waste stabilization lagoon systems.
The general objective of this study was to determine the yearly perfor-
mance of a seven cell facultative waste stabilization lagoon system treating
domestic wastewater from a community with a population of 471 persons and to
compare this actual performance with existing federal discharge standards,
State of Utah discharge standards, criteria used to design the lagoon system
and to evaluate existing design equations.
Twenty-four hour composite samples of the raw sewage influent to the la-
goon system and the effluent from each pond in the system were collected twice
each week for approximately 13 months. In addition, these same samples were
collected for four 30 consecutive day periods (once each season) during the
same 13 month period. The samples were analyzed for biochemical oxygen demand
(BODc), soluble biochemical oxygen demand, suspended solids, volatile suspended
solids, chemical oxygen demand, soluble chemical oxygen demand, alkalinity,
ammonia-nitrogen, nitrite-nitrogen, nitrate-nitrogen, total Kjeldahl nitrogen,
total phosphorus, and total algal count by genera. Temperature, pH, and dis-
solved oxygen were measured in situ or on grab samples. Fecal coliform
bacteria, fecal streptococci bacteria, and total coliform bacteria were moni-
tored with grab samples. In addition, influent and effluent daily flowrates,
air temperature, wind, evaporation, and solar radiation were recorded.
The results indicate that the system did not exceed the federal biochemi-
cal oxygen demand requirement of 30.0 mg/1 at any time during the study. How-
ever, it failed to meet the 85 percent biochemical oxygen demand (8005) re-
moval requirement 4 of the 13 months studied. The system also satisfied the
State of Utah biochemical oxygen demand requirement of less than 10.0 mg/1 8
of the 13 months studied. The system was able to meet the federal suspended
solids requirement of less than 30.0 mg/1 10 of the 13 months studied. It
also satisfied the State of Utah suspended solids discharge requirement of
less than 10 mg/1 8 of the 13 months studied. However, it failed to meet the
federal 85 percent suspended solids removal requirement 5 of the 13 months
studied. The system never exceeded the federal or State of Utah fecal coli-
form bacteria discharge standard.
iv
-------
In general, the loading on the lagoon exceeded the criteria used to de-
sign the system. Application of the data to existing design equations indi-
cated that the equations were not adequate to predict overall performance.
This study was conducted in fulfillment of Environmental Protection
Agency Contract Number 68-03-2060.
-------
CONTENTS
DISCLAIMER ii
FOREWORD . . . iii
ABSTRACT iv
FIGURES ix
TABLES . . . . xi
LIST OF ABBREVIATIONS xv
ACKNOWLEDGMENTS xvi
1. INTRODUCTION 1
NATURE OF THE PROBLEM ........ 1
OBJECTIVES 1
General Objective . . . . . . . 1
Specific Objectives 2
Scope 2
2. CONCLUSIONS 3
3. RECOMMENDATIONS . . 7
4. LITERATURE REVIEW 8
GENERAL . . 8
EFFLUENT REQUIREMENTS 9
Federal 9
State of Utah 11
WASTEWATER STABILIZATION BASIN DESIGN METHODS . . . . . 13
Oswald Method 14
Gloyna Method 15
Marais Method 19
Thirumurthi Method . . . ... ... . . • 23
MODEL EVALUATION 28
PERFORMANCE EVALUATIONS . . 28
5. PROCEDURES 29
STUDY LOCATION 29
LAGOON SYSTEM 29
vil.
-------
CONTENTS (Continued)
SAMPLE COLLECTION AND ANALYSIS 31
METEOROLOGICAL DATA 35
HYDRAULIC DATA 35
DATA ANALYSES 36
6. RESULTS AND DISCUSSION 37
GENERAL 37
SEASONAL PERFORMANCE 37
General 37
Hydraulic Performance 37
Biochemical Oxygen Demand (6005) 40
Soluble Biochemical Oxygen Demand (SBOD5) 45
Suspended Solids (SS) 49
Volatile Suspended Solids (VSS) 51
Chemical Oxygen Demand (COD) .55
Soluble Chemical Oxygen Demand (SCOD) 57
Temperature, pH, and Dissolved Oxygen (DO) 59
Performance Summary 93
DESIGN MODEL EVALUATION 95
General 95
Gloyna Method 96
Marais Method 96
Thirumurthi Method 97
Design Model Evaluation Summary 98
7. REFERENCES 99
APPENDIX A: HYDRAULIC PERFORMANCE DATA FOR THE CORINNE WASTE
STABILIZATION LAGOON SYSTEM 103
APPENDIX B: CHEMICAL AND BIOLOGICAL PERFORMANCE DATA FROM THE
CORINNE WASTE' STABILIZATION LAGOON SYSTEM 112
APPENDIX C: ALGAL GENERA IDENTIFIED IN THE CORINNE WASTE
STABILIZATION LAGOON SYSTEM 143
APPENDIX D: BACTERIOLOGICAL PERFORMANCE OF EACH POND IN THE
CORINNE WASTE STABILIZATION LAGOON SYSTEM 159
APPENDIX E: CLIMATOLOGICAL INFORMATION COLLECTED DURING THE STUDY
OF THE CORINNE WASTE STABILIZATION LAGOON SYSTEM . . . .165
viii
-------
FIGURES
Number Page
1 Energy flows in Oxidation Pond Degradation Processes
(Marais, 1970) 1
2 Observed MPN/100 ml in a single facultative pond as a
function of time and temperature 16
3 St. Helena stabilization ponds (Oswald et al., 1970) .... 17
4 Detention as a function of temperature (Gloyna, 1975) .... 20
5 Design Formula Chart (Thirumurthi, 1974) 25
6 Flow Diagram of Corinne City Wastewater Lagoon System .... 30
7 Sampling station details 32
8 Station No. 1 Flowchart 33
9 Monthly average influent and effluent daily flowrate .... 38
10 Monthly average biochemical oxygen demand (BODj) performance
of the Corinne Waste Stabilization Lagoon System 41
11 Monthly average soluble biochemical oxygen demand (88005)
performance of the Corinne Waste Stabilization Lagoon
System 46
12 Monthly average suspended solids performance of each pond
in the Corinne Waste Stabilization Lagoon System 48
13 Monthly average volatile suspended solids performance of each
pond in the Corinne Waste Stabilization Lagoon System .... 53
14 Monthly average chemical oxygen removal performance of each
pond in the Corinne Waste Stabilization Lagoon System .... 54
15 Monthly average soluble chemical oxygen demand (SCOD) of each
pond in the Corinne Waste Stabilization Lagoon System .... 58
16 Monthly average alkalinity (as CaC03) concentration of the
raw sewage influent and the effluent from each pond in the
Corinne Waste Stabilization Lagoon System 60
ix
-------
FIGURES (Continued)
Number Page
17 Monthly average total phosphorus performance of each pond
in the Corinne Waste Stabilization Lagoon System 61
18 Monthly average ammonia-nitrogen (NH3~N) performance of
each pond in the Corinne Waste Stabilization Lagoon
System 62
19 Monthly average nitrite-nitrogen (NC>2-N) performance of each
pond in the Corinne Waste Stabilization Lagoon System .... 63
20 Monthly average nitrate-nitrogen (NC>3-N) performance of each
pond in the Corinne Waste Stabilization Lagoon System .... 74
21 Monthly average Total Kjeldahl nitrogen (TKN) performance of
each pond in the Corinne Waste Stabilization Lagoon System . . 76
22 Total algal concentration in the raw sewage influent and the
effluent from each pond in the Corinne Waste Stabilization
Lagoon System 78
23 Fecal coliform counts in Pond Numbers 1, 2, and 3 of the
Corinne Sewage Lagoon System, Corinne, Utah (January 23,
1975-January 30, 1976) ....... 82
24 Fecal coliform counts in the influent to the Corinne
Sewage Lagoon System, Corinne, Utah (January 23,
1975-January 30, 1976) . . . . . . • . . . . . . . .83
25 Incident solar radiation from January 1-December 31, 1975,
recorded at Utah State University, Logan, Utah ....... 84
26 Mean monthly fecal coliform bacteria concentrations of the
raw sewage influent and effluent from each pond in the
Corinne Waste Stabilization Lagoon System .... . . . . 86
27 Fecal streptococci counts in Pond Numbers 1, 2, and 3 of the
Corinne Sewage Lagoon System, Corinne, Utah (January 23,
1975-January 30, 1976) . . ... . . ... . . . . . 87
28 Fecal streptococci counts in the influent to the Corinne
Sewage Lagoon System, Corinne, Utah (January 23, 1975-
January 30, 1976) 88
29 Fecal streptococci counts in Pond Numbers 4, 5, 6, and 7
of the Corinne Sewage Lagoon System, Corinne, Utah
(January 23, 1975-January 30, 1976) .......... 89
-------
TABLES
Number Page
1 Capacities and detention time of the ponds . . . . . . . . 18
2 Performance of the St. Helena ponding system 18
3 Toxicity Correction Factors (Thirumurthi, 1974) . 27
4 Description of sampling stations for Corinne City Waste-
water Lagoon System . . . 34
5 Methods and media used for the bacteriological analyses . . . 36
6 Monthly average influent and effluent daily flowrate in
liters per day . ... . .. . . ... .... . . 39
7 Residence times 40
8 Monthly average biochemical oxygen demand performance (BOD5)
of the Corinne Waste Stabilization Lagoon System . ." ... 42
9 Statistical comparison t>f average monthly effluent biochemical
oxygen demand (8005) performance of each pond in the Corinne
Waste Stabilization Lagoon System . . . . . ... ... . 43
10 Treatment efficiency of Corinne Waste Stabilization Lagoon
System with respect to biochemical oxygen demand (BODg) ... . . 44
11 Average monthly organic loading rate on the primary cell
(Pond Number 1) of the Corinne Waste Stabilization
System . . . . . . . . . . . . . 45
12 Monthly average soluble biochemical oxygen demand
performance of the Corinne Waste 'Stabilization Lagoon
System . 47
13 Statistical comparison of the average yearly effluent soluble
biochemical oxygen demand (88005) performance of each pond in
the Corinne Waste Stabilization Lagoon System . ..... 49
14 Monthly average suspended solids performance of each pond in
the Corinne Waste Stabilization Lagoon System 49
xi
-------
TABLES (Continued)
Number Page
15 Statistical comparison of the average yearly effluent sus-
pended solids performance of each pond in the Corinne
Waste Stabilization Lagoon System 51
16 Treatment efficiency of the Corinne Waste Stabilization
Lagoon System with respect to suspended solids (SS) .... 51
17 Monthly average volatile suspended solids performance of
each pond in the Corinne Waste Stabilization Lagoon
System 52
18 Statistical comparison of the average yearly effluent
volatile suspended solids performance of each pond in
the Corinne Waste Stabilization Lagoon System 55
19 Monthly average chemical oxygen demand performance of each
pond in the Corinne Waste Stabilization Lagoon System .... 56
20 Statistical comparison of the average yearly effluent chemi-
cal oxygen demand (COD) performance of each pond in the
Corinne Waste Stabilization Lagoon System 56
21 Monthly average soluble chemical oxygen demand (SCOD)
performance of each pond in the Corinne Waste Stabi-
lization Lagoon System 57
22 Statistical comparison of the average yearly effluent
soluble chemical oxygen demand (SCOD) performance of
each pond in the Corinne Waste Stabilization Lagoon
System 64
23 Monthly average temperature of the influent and effluent
for each pond in the Corinne Waste Stabilization Lagoon
System 64
24 Statistical comparison of the yearly average temperature
of the raw sewage influent and the effluent from each
pond in the Corinne Waste Stabilization Lagoon System .... 64
25 Monthly average pH value for the raw sewage influent and
the effluent from each pond in the Corinne Waste Stabili-
zation Lagoon System 65
26 Statistical comparison of the average yearly pH value of the
raw sewage influent and the effluent from each pond in the
Corinne Waste Stabilization Lagoon System 66
xii
-------
TABLES (Continued)
Number Page
27 Monthly average dissolved oxygen concentration of the raw
sewage influent and the effluent for each pond in the
Corinne Waste Stabilization Lagoon System 66
28 Statistical comparison of the dissolved oxygen concentration
of the raw sewage influent and the effluent from each pond
in the Corinne Waste Stabilization Lagoon System 67
29 Monthly average alkalinity (as CaCOj) concentration of the
raw sewage influent and the effluent from each pond in
the Corinne Waste Stabilization Lagoon System ....... 68
30 Statistical comparison of the alkalinity (as CaCC^) concen-
tration in the raw sewage influent and the effluent from
each pond in the Corinne Waste Stabilization Lagoon System . . 69
31 Monthly average total phosphorus performance of each pond
in the Corinne Waste Stabilization Lagoon System 69
32 Statistical comparison of the average yearly effluent total
phosphorus performance of each pond in the Corinne Waste
Stabilization Lagoon System 70
33 Monthly average ammonia-nitrogen (NH3~N) performance of
each pond in the Corinne Waste Stabilization Lagoon
System 70
34 Yearly average ammonia-nitrogen (NH3~N) performance of each
pond in the Corinne Waste Stabilization Lagoon System .... 71
35 Monthly average nitrite-nitrogen (N02-N) performance of each
pond in the Corinne Waste Stabilization Lagoon System .... 72
36 Yearly average nitrite (NC^-N) performance of each pond in
the Corinne Waste Stabilization Lagoon System 72
37 Monthly average nitrate-nitrogen (NOg-N) performance of each
pond in the Corinne Waste Stabilization Lagoon System .... 73
38 Yearly average nitrate-nitrogen (N03-N) performance of each
pond in the Corinne Waste Stabilization Lagoon System .... 73
39 Monthly average Total Kjeldahl Nitrogen (TKN) performance of
each pond in the Corinne Waste Stabilization Lagoon System . . 75
xiii
-------
TABLES (Continued)
Number Page
40 Statistical comparison of the average yearly Total Kjeldahl
Nitrogen (TKN) performance of each pond in the Corinne Waste
Stabilization Lagoon System ... 77
41 Monthly average algal concentration in the raw sewage influent
and the effluent from each pond in the Corinne Waste Stabili-
zation Lagoon System . 79
42 Selected sampling periods and number of days of data (Corinne,
Utah Sewage Lagoon System) . . . . 90
43 Summary table of fecal coliform means at Corinne, Utah ... 90
44 Summary table of fecal streptococci means at Corinne, Utah . . 91
45 Rank means of the solar radiation during the selected periods . 91
46 Ranked fecal coliform means for the selected periods at
Corinne, Utah 92
47 Ranked fecal streptococci means for the selected periods at
Corinne, Utah 92
48 Performance summary and recommended numbers of ponds to
achieve stated effluent residuals for the Corinne
Waste Stabilization Lagoon System ... 94
49 Results obtained from applying Marais (1970) model 2 to the
Corinne Waste Stabilization Lagoon System . 98
xiv
-------
LIST OF ABBREVIATIONS
ac = acre
Alk = alkalinity as CaC03
BOD5 = five day biochemical oxygen demand
COD = chemical oxygen demand
DO = dissolved oxygen concentration
FC = fecal coliform bacteria,
gal = gallon
ha = hectare
kg = kilogram
1 = liter
mg = milligram
mg/1 = milligram per liter
NH3~N = ammonia-nitrogen
N02-N = nitrite-nitrogen
N03-N = nitrate-nitrogen
SCOD = soluble chemical oxygen demand
SBOD5 = soluble five day biochemical oxygen demand
TO = total Kjeldahl nitrogen
TP = total phosphorus
XV
-------
ACKNOWLEDGMENTS
The cooperation and assistance of the Mayor of Corinne, Utah, Mr. Donald
Miller, is greatly appreciated. Assistance in operating the samplers, lagoon
system, and flow records was provided by the maintenance personnel of Corinne
City, Utah.
The assistance of Hansen and Associates, Inc., Brigham City, Utah, in
evaluating the design of the system is greatly appreciated.
Total coliform bacteria analysis for this study was provided by the State
of Utah, Division of Health.
This work was performed under a U.S. Environmental Protection Agency
Contract Number 68-03-2060.
xvi
-------
SECTION 1
INTRODUCTION
NATURE OF THE PROBLEM
The terms lagoon, stabilization pond, oxidation pond, and waste stabiliza-
tion pond are often used interchangeably to define a shallow, man-made basin
designed for the natural biological treatment of wastewater. To avoid con-
fusion, the terms waste stabilization pond or waste stabilization lagoon will
be used in this report to include the above described facility and to define
any artificial impoundment designed specifically for the natural biological
treatment of wastewater.
Waste stabilization ponds have been employed for treatment of wastewater
for over 3000 years (Allum and Carl, 1970). Although the exact date of birth
of the modern waste stabilization pond has been lost in antiquity, the first
recorded construction of a waste stabilization pond system in the United
States was at San Antonio, Texas in 1901 (Davis, 1964). Today, over 5000 com-
munities in the United States utilize waste stabilization ponds for treatment
of wastewaters. However, reliable yearly lagoon performance data are general-
ly lacking.
The lack of long term lagoon performance data has been accentuated with
the implementation of the Federal Secondary Treatment Standards resulting from
the enactment of the Federal Water Pollution Control Amendments Act of 1972
(PL 92-500). The ability of a well designed waste stabilization pond system
to meet these stringent effluent discharge requirements has been seriously
questioned. Also, the criteria employed in the design of waste stabilization
ponds has not been adequately validated due to the lack of lagoon performance
data.
Therefore, it is imperative that the yearly performance of a well de-
signed and operated waste stabilization pond system be determined.
OBJECTIVES
General Objective
The general objective of this study was to develop and evaluate reliable
year-round performance data for a well designed and operated facultative mu-
nicipal wastewater stabilization lagoon system. The system was evaluated with
respect to the criteria employed during the design and construction of the
-------
facility, the Federal Water Pollution Control Amendments Act of 1972 (PL
92-500) and the Secondary Treatment Standards for the State of Utah.
Special Objectives
To accomplish the above general objective, the following specific objec-
tives were achieved with a small seven cell series facultative municipal waste
stabilization lagoon system:
1. Collect water quality samples at specified sample points for 13
consecutive months and for 30 consecutive days, four times during the 13 month
period on a quarterly basis.
2. Analyze the collected water quality samples for: dissolved oxygen,
pH, temperature, alkalinity, total biochemical oxygen demand (BOD5), soluble
biochemical oxygen demand, suspended solids, total coliform bacteria, fecal
coliform bacteria, fecal streptococci, and algal cell counts by genera.
3. Provide samples to the EPA Advance Waste Treatment Research Labora-
tory, Cincinnati, Ohio for analysis of total and soluble chemical oxygen de-
mand, total phosphorus, total Kjeldahl nitrogen (TKN), ammonia nitrogen,
nitrite nitrogen, and nitrate nitrogen.
4. Obtain climatological data (light intensity, air temperature, and
precipitation) for the lagoon site from the U.S. Weather Bureau.
5. Analyze and evaluate the performance of the lagoon system (i) with
respect to criteria employed in the system design, (ii) with respect to the
Water Pollution Control Amendments Act of 1972 (PL 92-500) and (iii) with re-
spect to effluent discharge standards established by the State of Utah.
6. Determine the optimum number of lagoon cells required in series to
achieve satisfactory wastewater treatment for the study system.
The results presented in this report were obtained from data collected
from a facultative municipal waste stabilization lagoon system located in the
intermountain area of the United States. Although the data obtained from this
study are representative of a well designed and operated lagoon system, extra-
polation of these results to other geographical areas and climatic conditions
should be performed with caution. :
Editorial Note
The definitions of secondary treatment for federal regulation of munici-
pal wastewater treatment plant effluents has been or is being modified. The
Federal Register Vol. 41, No.. 144, Monday, July 26, 1976, pp. 30786-30789, con-
tains amendments pertaining to effluent values for pH and deletion of fecal
coliform bacteria limitations from the definition of secondary treatment. The
Federal Register Vol. 41, No. 172, Thursday, September 2, 1976, contains pro-
posed changes in the suspended solids requirements for small municipal lagoon
systems serving as the sole process for secondary treatment of wastewaters.
-------
SECTION 2
CONCLUSIONS
Based on the results of 13 months of the performance of the Corinne
Waste Stabilization Lagoon System, Corinne, Utah, the following conclusions
can be made.
1. The yearly average daily hydraulic influent flowrate of 693,724 liters/day
(183,282 gallons/day) exceeded the design hydraulic flowrate by 2.62 times.
2. The actual hydraulic residence time in the system was 88.3 days. This was
49.1 percent less than the 180 day hydraulic residence time required by
the State of Utah.
3. The monthly influent flowrate to the system reached a maximum of 1,029,645
liters/day (272,033 gallons/day) in October and a minimum of 253,667
liters/day (67,019 gallons/day) in December due to high infiltration-
inflow into the Corinne City sewage collection system.
4. The organic strength of the raw influent sewage was less than a typical
domestic sewage. The monthly average influent biochemical oxygen demand
(BODs) concentration to the system ranged from 40.26 mg/1 to 139.93 mg/1
with a yearly mean concentration of 74.62 mg/1.
5. On a yearly basis the system was not organically overloaded. However, the
organic load did exceed the design organic load of 36.2 kg BODs/ha/day
(29.9 Ibs BOD^/acre/day) several times during the study. The average
monthly organic loading on the primary cell ranged from 15.1 kg BODs/ha/
day (13.4 Ibs BODs/acre/day) to 60.2 kg BOD5/ha/day (53.6 Ibs BOD5/acre/
day) with a yearly average of 33.6 kg BOD5/ha/day (29.9 Ibs BODs/acre/day).
6. The final effluent biochemical oxygen demand of the system never exceeded
the Federal Secondary Treatment Standards. The monthly average final
effluent biochemical oxygen demand (BODs) concentration ranged from 1.40
mg/1 in August to 26.55 mg/1 in April with a yearly average concentration
of 8.91 mg/1.
7. The ability of the system to satisfy the 85 percent biochemical oxygen
demand (BODs) removal requirement of the Federal Secondary Treatment
Standards appears to be more a function of the influent BODs concentration
rather than the effluent BOD^ concentration. The system failed to satisfy
the 85 percent biochemical oxygen demand (BODs) removal requirement of the
Federal Secondary Treatment Standards four of the 13 months studied.
-------
8. The final effluent biochemical oxygen demand (8005) concentration satis-
fied the State of Utah requirement of less than 10.0 mg/1, ten of the 13
months studied.
9. Statistical analysis indicated that no significant (95 percent level) bio-
chemical oxygen demand (BOD,.) removal occurred beyond the fifth pond in
the seven pond series.
10, Final effluent soluble biochemical oxygen demand (88005) concentrations
were extremely small with the monthly average range of 1.19 mg/1 to 4.69
mg/1.
11. Statistical analysis indicated that no significant (95 percent level)
reduction in soluble biochemical oxygen demand occurred beyond the fourth
pond in the seven pond series.
12. The raw sewage influent suspended solids concentration was less than that
expected for a typical domestic sewage. Monthly average raw sewage
influent suspended solids concentrations ranged from 39.12 mg/1 in August
to 119.76 mg/1 in January with a yearly average concentration of 71.3
mg/1.
13. The final effluent monthly average suspended solids concentration.of the
system satisfied the Federal Secondary Treatment Standards ten of the 13
months studied. The monthly average final effluent suspended solids con-
centration ranged from 2.53 mg/1 in September to 179.24 mg/1 in April with
a yearly average concentration of 33.69 mg/1.
14. The ability of the system to satisfy the 85 percent removal of suspended
solids requirement of the Federal Secondary Treatment Standards appears to
be more a function of the influent suspended solids concentration rather
than the effluent suspended solids concentration. The system exceeded
this requirement five of the 13 months studied.
15. The final effluent monthly average suspended solids concentration satis-
fied the State of Utah effluent suspended solids discharge requirement of
less than 10.0 mg/1 eight of the 13 months studied.
16. Statistical analysis indicated that no significant (95 percent level)
removal of suspended solids occurred beyond the fifth pond in the seven
pond series.
17. Volatile suspended solids performance of the system was similar to the
suspended solids performance. Final effluent monthly average volatile
suspended solids concentrations ranged from 1.01 mg/1 to 51.79 mg/1 with
a yearly average concentration of 12.45 mg/1.
18. Statistical analysis indicated that no significant (95 percent level)
removal of volatile suspended solids occurred beyond the fifth pond in
the seven pond series.
-------
19. Chemical oxygen demand (COD) performance of the system was similar to the
biochemical oxygen demand (BOD^) performance. Monthly average final
effluent concentrations ranged from 51.14 mg/1 in October to 97.81 mg/1
in April with a yearly average concentration of 67.19 mg/1.
20. Statistical analysis indicated that no significant (95 percent level)
chemical oxygen demand removal occurred beyond the sixth pond in the
seven pond series.
21. Soluble chemical oxygen demand performance was similar to the chemical
oxygen demand performance. Monthly average final effluent soluble chemi-
cal oxygen demand concentrations ranged from 36.0 mg/1 in April to 57.0
mg/1 in June with a yearly average concentration of 46.34 mg/1.
22. Statistical analysis indicated that no significant (95 percent level)
soluble chemical oxygen demand removal occurred beyond the first pond in
the seven pond series.
23. Measurements of temperature, pH, and dissolved oxygen are not representa-
tive of the actual system because they were obtained in situ or on grab
samples. However, based on the data collected the final effluent monthly
average pH value satisfied the Federal Secondary Treatment Standards two
of the 13 months studied. Monthly average pH values ranged from 8.32 to
10.13. The system also satisfied the State of Utah discharge pH standard
two of the 13 months studied.
24. The alkalinity of the system was relatively constant throughout the study.
Final effluent monthly average alkalinity concentrations ranged from
461.60 mg/1 as CaC03 to 632.50 mg/1 as CaCO3.
25. The lagdon system removed a substantial amount of total phosphorus from
the raw sewage. Monthly average final effluent total phosphorus concen-
trations ranged from 0.74 mg/1 in September to 3.09 mg/1 in January with
a yearly average concentration of 2.06 mg/1.
26. Statistical analysis indicated that significant (95 percent level) total
phosphorus removal continued through all seven ponds in the system.
27. The system was very effective in the removal or conversion of ammonia-
nitrogen (NH3-N). Final effluent monthly average ammonia-nitrogen con-
centrations ranged from 0.1 mg/1 to 1.2 mg/1 with a yearly average con-
centration of 0.25 mg/1. Essentially, most of the ammonia-nitrogen was
removed in the primary pond.
28. Very little nitrite-nitrogen (N02-N) was present in the system. Monthly
average final effluent N02-N concentrations ranged from 0.01 mg/1 to 0.09
mg/1 with a yearly average concentration of 0.02 mg/1.
29. Very little nitrate-nitrogen (N03-N) was present in the system. Monthly
average final effluent nitrate-nitrogen (N03-N) concentrations ranged from
0.01 mg/1 to 0.08 mg/1 with a yearly average concentration of 0.03 mg/1.
-------
30. Total Kjeldahl nitrogen (TKN) concentrations in the system were relatively
small. Final effluent monthly average TKN concentrations ranged from 1.40
mg/1 in November to 5.92 mg/1 in April with a yearly average concentration
of 2.95 mg/1.
31 . Statistical analysis indicated no significant (95 percent level) removal
of Total Kjeldahl nitrogen occurred beyond the sixth pond in the seven
pond series.
32. Blue-green algal genera predominated in the system. Total algal counts
indicated the peak algal bloom occurred during April and May. Very little
algae were found in the final effluent during June, July, and August even
though a substantial algal bloom occurred in the first three ponds of the
system.
33. The system was very efficient at removing fecal coliform bacteria even
though disinfection was not practiced. At no time did the final effluent
exceed the Federal Secondary Treatment Standards or the State of Utah dis-
charge requirement for fecal coliform bacteria. Although fecal coliform
bacteria removal continued throughout the system, the monthly average
effluent fecal coliform bacteria concentration of the fourth pond never
exceeded 200 colonies/100 ml.
34. Fecal streptococci bacteria removal was similar to the removal of fecal
coliform bacteria.
35. None of the design equations evaluated using the data collected from the
Corinne Waste Stabilization Lagoon System adequately described the system.
Editorial note: Throughout this report values given for BOD, COD, and SS
should be read as rounded whole numbers.
-------
SECTION 3
RECOMMENDATIONS
Based on the results of a 13 month study of a seven cell facultative la-
goon system, the following recommendations are proposed.
1. Operational procedures for wastewater lagoon systems should be devel-
oped to enable the lagoon system to meet federal and state discharge
requirements.
2. Current design criteria, design procedures, and design equations be
evaluated and that design methods and procedures be developed to
reflect various geographic and climatic conditions.
3. An intensive study of the biological mechanisms in wastewater lagoon
systems be undertaken.
4. Studies be initiated to clearly demonstrate the optimum number of
ponds required in series in a waste stabilization lagoon system to
satisfy existing discharge requirements.
-------
SECTION 4
LITERATURE REVIEW
GENERAL
Man has long used wastewater stabilization basin systems as a means of
treating his wastewaters. Forges et al. (1963, p. 1) defined such basin sys-
tems by referring to wastewater stabilization basins as *'basins, natural or
artificial, designed or used to treat organic waste by natural biological,
biochemical, and physical processes."
History does not record the initial usage of ponds for treating waste-
water. Reynolds (1971) refers to works by several authors who both traced and
speculated on the use of lagoon treatment as early as 800 B.C. Forges et al.
(1963) also suggested that ancient moats of medieval castles probably served
inadvertently as stabilization basins for all the waste which found its way
into the moat.
It was not until 1949 in Madock, N.D., (Barsom et al. 1970), that basins
were purposely designed and constructed in the United States for the treatment
of wastewater. This marked the beginning of an era which has seen the usage
of ponds for wastewater treatment multiply many fold (Vennes, 1970).
No matter what point in the history of lagoon treatment is investigated,
it is obvious that the objectives have always been the same, i.e., the dis-
posing of objectionable matter by an inexpensive, nonoffensive method. Vennes
(1970, p. 366) in addressing the Second International Symposium For Waste
Treatment Lagoons, more clearly defined the objectives of lagoon systems. He
stated, "It is axiomatic that the goals of waste treatment are concerned with
two processes; namely, 1) removal of (or greatly reduced) infectious agents,
and 2) transform utilizable inorganic and organic substrates into stable end
products.*' So it is today that each year brings an increase in the number
of lagoon systems being .employed to treat wastewater, as well as an increase
in the scientific knowledge available for use in the design, construction, and
operation of such systems.
Several treatment basin types have been established and documented in the
literature. These basins are as follows: anaerobic lagoons or those basins
providing an environment totally devoid of oxygen; aerobic lagoons or those
basins having oxygen throughout their environment; aerated lagoons or those
basins mechanically supplied with addition air; and facultative lagoons or
those basins combining both an oxygenated environment near the surface of the
lagoon and an oxygenless habitat in the lower areas of the basin. Although
these several types of basins are detailed by many authors, including Marais
8
-------
(1970), Oswald (1975), and McKinney (1975), this paper is primarily concerned
with those basins of the facultative type. Figure 1 from Marais (1970) indi-
cates the basic complex interactions of the bacterial and algal worlds which
combine to form the major components of a lagoon treatment process.
Wastewater entering a lagoon treatment system has a given load of
organic and inorganic materials which are to be stabilized through the treat-
ment process. A portion of this load will be soluble, in liquid form, and the
remaining part solid. Of the solid portion, the majority will settle to the
bottom of the basin thus becoming part of the bottom sludge eventually to be
treated by anaerobic fermentation (McKinney, 1975). In recent years investi-
gators have become more aware of the significant role played by the bottom
sludge in stabilizing the organic and inorganic wastes through the fermenta-
tion process (Marais, 1970). Although the anaerobic process will proceed only
under very specific environmental conditions it can account for up to 50 per-
cent of the treatment process (Marais, 1970).
In regions of the basin near the water surface, there exists a symbiotic
relationship between the algae and the bacteria present in the pond (McKinney,
1975). Figure 1 indicates the basic cycle of action which transpires as bac-
teria breaks down the organic and inorganic wastes found in the water thus
providing nutrients and carbon dioxide for algal growth. The algae, in return,
use sunlight energy and the materials provided by the bacteria to produce
oxygen and organic waste for use by the bacteria in a further continuation of
the stabilization process (Marais, 1970). In the final result, the organic
and inorganic'materials originally present in the wastewater undergo sufficient
change making them no longer objectionable or detrimental to the environment.
Concurrent with the stabilization process is a die-off of the infectious
agents present in the wastewater. Through the natural process of bacterial
mortality and predation, both the indicator bacteria and the accompanying in-
fectious agents are removed from the wastewater (Malone et al., 1969). Much
effort has been invested by many researchers during recent years in striving
to gain complete understanding of the die-off process. These authors indicate
a dependence of the die-off process on: pond water temperature, length of
detention in the pond, incident sunlight energy on the pond surface, and the
species of algae present in the pond (Franzmathes, 1970; Slanetz et al., 1970;
Little et al., 1970; Davis et al., 1972; Marais, 1974; Klock, 1971; and Macko,
1976).
EFFLUENT REQUIREMENTS
Federal
The Water Pollution Control Amendments Acts of 1972 (PL 92-500) charged
the Environmental Protection Agency with the responsbility of preserving the
water quality of the United States. To fulfill this responsiblity the En-
vironmental Protection Agency established effluent discharge standards for
secondary wastewater treatment plants. All wastewater stabilization lagoons
with either a continuous or intermittent discharge into a receiving stream are
subject to these regulations.
-------
INFLUENT BOD
BOD
RADIATION LOST IN
GAS
MORE ALGAE +
0 + WASTE
EFFLUENT BOD
ALGAE
SOLUBLE
BOD
DESTROYED
Figure 1. Energy flows in Oxidation Pond Degradation Processes (Marais, 1970).
-------
The effluent discharge requirements (U.S. Government, 1973) imposed on
wastewater stabilization ponds with respect to biochemical oxygen demand
suspended solids, fecal coliform bacteria and pH are listed below.
Biochemical Oxygen Demand (BOD_)--
1 . The arithmetic mean of the values for effluent samples collected in
a period of 30 consecutive days shall not exceed 30 milligrams per liter
(mg/1) .
2. The arithmetic mean of the values for effluent samples collected in
a period of seven consecutive days shall not exceed 45 milligrams per liter
(mg/1) .
3. The arithmetic mean of the values for effluent samples collected in
a period of 30 consecutive days shall not exceed 15 percent of the arithmetic
mean of the values for influent samples collected at approximately the same
times during the same period (i.e., 85 percent removal).
Suspended Solids --
1 . The arithmetic mean of the values for effluent samples collected in
a period of 30 consecutive days shall not exceed 30 milligrams per liter
(mg/1) .
2. The arithmetic mean of the values for effluent samples collected in
a period of seven consecutive days shall not exceed 45 milligrams per liter
(mg/1) .
3. The arithmetic mean of the values for effluent samples collected in
a period of 30 consecutive days shall not exceed 15 percent of the arithmetic
mean of the values for influent samples collected at approximately the same
times during the same period (i.e., 85 percent removal).
Fecal Coliform Bacteria- -
1 . The geometric mean of the value for effluent samples collected in a
period of 30 consecutive days shall not exceed 200 fecal coliform bacteria per
100 milliliters.
2. The geometric mean of the values for effluent samples collected in a
period of seven consecutive days shall not exceed 400 fecal coliform bacteria
per 100 milliliters.
PH--
The effluent values for pH shall remain within the limits of 6.0 to 9.0.
State of Utah
Sudweeks (1970) outlined the development of Utah's lagoon design stan-
dards. Until 1974, the following standards were applied to all systems
11
-------
designed for the treatment of wastewater. For all overflow lagoons with
chlorination, a minimum of 3 cells (basins) is required, 120 days of detention
during the winter, and an organic load to the primary cell of 44.83 kg of 6005
per hectare per day (40 Ib of BODs per acre). All overflow lagoons with non-
chlorinated effluents require a minimum of 6 cells, with a winter detention of
180 days, and loadings similar to those with chlorinated effluents. Maximum
allowable pollution loads for water released from either type of system are as
follows: 25 mg/1 600$ and a most probably number (MPN) coliform count of
5000 organisms/100 ml. These are referred to as class «'D" water standards.
In 1974 to comply with the requirements of PL 92-500, the Utah Water Pol-
lution Control Committee and the State of Utah Board of Health issued a set of
regulations governing the discharge of effluents from waste stabilization la-
goons (State of Utah, 1974). The standards based on two separate dates are
listed below.
After June 30, 1977, the quality of secondary wastewater discharges must
meet the following requirements.
1. The average effluent biochemical oxygen demand (6005) must not
exceed 25 mg/1 during any 30 day period.
2. The average effluent suspended solids concentration must not exceed
25 mg/1 during any 30 day period.
3. The effluent geometric mean total coliform bacteria must not exceed
2000 organisms per 100 milliliters during any 30 day period.
4. The effluent geometric mean fecal coliform bacteria must not exceed
200 organisms per 100 milliliters during any 30 day period.
5. The effluent values for pH shall remain within the limits of 6.5 to
9.0.
After June 30, 1980, the quality of secondary wastewater discharges must
meet the following requirements.
1. The average effluent biochemical oxygen demand (8005) must not
exceed 10 mg/1 during any 30 day period.
2. The average effluent suspended solids must not exceed 10 mg/1 during
any 30 day period.
3. The effluent geometric mean total coliform bacteria must not exceed
200 organisms per 100 milliliters during any 30 day period.
4. The effluent geometric mean fecal coliform bacteria must not exceed
20 organisms per 100 milliliters during any 30 day period.
5. The effluent values for pH shall remain within the limits of 6.5 to
9.0.
12
-------
WASTEWATER STABILIZATION BASIN DESIGN METHODS
The procedures employed for designing wastewater stabilization basins
have changed considerably since 1949 when the first specifically designed la-
goon was placed in operation (Barsom, 1970). Early methods were characterized
by rules of thumb, engineering intuition, and practical experience (Forges et
al., 1963; Sudweeks, 1970). Some of the early guidelines were reported by
Toman (1963) and Towne (1961). Loading rates of 16.8 to 56.0 kg BOD/hectare/
day (15 to 50 Ib BOD/acre/day), depths ranging from 15.24 cm (6 in.) to 1.83 m
(6 ft), and detention times of 20 to 180 days have been suggested as appropri-
ate design parameters (Canter et al., 1970). This wide range of design param-
eters is particularly evidenced in a review of the design standards used by
the various states (Canter et al., 1969, 1970). Only in recent years has
technology and research advanced sufficiently to provide other, more concrete,
grounds on which treatment basin design can be founded.
Some of the most notable contributions to the field of lagoon design dur-
ing the past few years have been those of Oswald (1975), Oswald et al. (1970),
Gloyna (1975), Marais (1970), and Thirumurthi (1974). Sastry and Mohanro
(1975,), in reviewing pond design experience in India, commented on the basic
approaches of the principal design methods. They reported as follows,
The approach proposed by Oswald equates BOD load to the
oxygenation capacity of algae which is a function of the
available solar radiation. Such an approach requires a
knowledge of the available solar radiation, the efficiency
of utilization of the radiation by the algae, the calorific
value of algae and the stochiometric relation between
synthesis of algal protoplasm and oxygen production.
In reference1to the approach expostulated by Gloyna (1975) the following com-
ment was given, "This approach emphasizes the effect of temperature on pond
volume for a given efficiency by relating the pond volume to a temperature
function based on Arrhenius relation" (Sastry and Mohanro, 1975). Finally,
the design equation proposed in. the Marais (1970) model combines the effect of
both aerobic and anaerobic decomposition as it relates to the first order
kinetic equation of BOD destruction.
Each approach has valid arguments to support the author's claims. How-
ever, as mentioned by Sastry and Mohanro (1975) some methods are more diffi-
cult to apply to specific field situations due to the complexity of information
and conditions involved.
Oswald's (1970) method requires specific knowledge of incident radient
energy and its rate of useful uptake by the algae. Gloyna's (1975) procedure
is more a sophisticated empirical design formula which is still subject to
certain rules of thumb and experience-generated estimates. Finally, the
Marais (1970) model is an exacting equation hampered by the difficulty of
evaluating the kinetic rate constants required for the equation (Sastry et al.,
1975).
13
-------
Thirumurthi (1974) reported on a basic design equation with two possible
modifications. Included with his basic design equation are procedures for
correcting the BOD removal rate constant, K, to standard conditions. This
method, similar to the Marias model (1974), is based on the first order
kinetics removal rate for BOD.
The following is a presentation of each design method with its accompany-
ing equations, assumptions and limitations.
Oswald Method
Oswald, Meron, and Zabat (1970) proposed a design method for waste stabi-
lization basin systems utilizing both anaerobic fermentation and algal growth
potential in calculating the ability of a basin to stabilize the BOD of a
wastewater.
If BOD removal is a primary objective of pond design,
it is essential to provide for carbon removal through methane
fermentation or to provide for conversion of carbonaceous
material to algae with subsequent provision for removal of
the algal cells. (Oswald et al., 1970)
Oswald provides the following formula for calculating that portion of the
BOD which will be stabilized by anaerobic fermentation:
L = 44.8 (T-15) (1)
where L is BOD converted in kg/ha/day (0.089 x L = Ib/acre/day) and T = aver-
age temperature of the pond supernatant (liquid) (°C) with a minimum tempera-
ture of 15°C for active fermentation.
If through vertical mixing one prevents the production of
methane in ponds, most of the decomposable carbonaceous materi-
al is converted to alkalinity and thus becomes available for
algal growth. For those unfamiliar with the concept, the pro-
pensity of a given water to support algal growth is termed by
us as Algal Growth Potential (AGP). Specifically AGP is de-
fined as the maximum quantity of algae, usually expressed in
mg/1 which can be grown in a given aliquot of waste or water
when no factor other than its nutrient content limits growth.
(Oswald et al., 1970)
The assimilation of carbonaceous AGP is affected by the depth of the
basin due to the absorption of light by the algae during the photosynthesis
process. In order for the AGP of a given wastewater (typically 300 to 400
mg/1; Oswald et al., 1970) to be obtained light must be eliminated as a limit-
ing factor. Basins should therefore be designed with depths that will provide
sufficient light energy for the entire algal culture. Oswald et al. (1970)
states that the penetration depth d of sunlight into an algal culture may be
predicted by the equation
14
-------
In SV - SV
in which SV is the visible light intensity at the surface, S^ is the visible
light energy intensity at depth d (usually taken as that lignt intensity at
which the photosynthetic rate of oxygen production is equal to the respiratory
rate of oxygen use) , Cc is the concentration of uniformly, dispersed algae
(assuming all algae to be of nearly the same size) , and « is an absorption co-
efficient. S is expressed in mg calories/cm^/min (in full sunlight SQ - 700
rag cal/cm^/min) , while Cc is usually expressed in mg/1 and d is expressed in
cm. A typical value of in these units is about 1.0 x 10"^ (mg/1 - cm)" .
Calculations using Equation 2 indicate pond depths of 14 cm, 5.55 cm and
2.75 cm (5.9 in., 2.2 in., and 1.1 in.) would be appropriate for incorporation
of the carbonaceous, nitrogenous, and phosphorus AGP respectively of a typical
domestic sewage in a continuously stirred reactor.
Oswald suggests the use of recirculation of algal cells as a method for
offsetting the severely shallow pond depths imposed by the calculations.
Oswald describes the survival of infectious agents as being a function of
detention time and mean pond temperature. Figure 2 indicates survival accord-
ing to detention times and pond temperatures.
Finally, Oswald refers to the multiple pond design currently used at St.
Helena, California. The systems consist of five ponds each designed for the
accomplishment of specific objectives (see Figure 3) .
In designing the St. Helena system attention was given to removal of
specific elements from the wastewater. Pond No. 1 is a deep (3.048 m, 10 ft)
facultative lagoon providing an environment that fosters anaerobic fermenta-
tion with a corresponding reduction in carbonaceous BOD. Maximum algal growth
is accomplished in Pond No. 2 through the use of a shallow depth (0.91 m, 3 ft)
with aeration and recycling of the cells. This provides for further nutrient
removal through assimilation into the algal biomass. Pond No. 3 has a deep de-
sign (2.44 m, 8 ft) to allow settling of the algal generated in Pond 2. The
final two ponds (4 and 5) are similar in depth to Pond 3 but with greater sur-
face area to provide additional settling and retention time. Table 1 indi-
cates the design characteristics of the ponds. Removal efficiencies of the
individual ponds are shown in Table 2. St. Helena provides a clear example of
effective pond design for successful treatment of domestic wastewater.
Gloyna Method
Gloyna (1975) presented a set of empirical equations for designing waste-
water stabilization basins. This approach, particularly effective for colder
climates, sets pond surface area as the critical factor. A minimal depth (one
meter) is used for the establishment of the surface" area relationship with
additional depth being possible for storage of sludge and cold weather reserve
capacity.
15
-------
140
120
100
£80
UJ
5
V- 60
40
20
10
15
20
MEAN POND TEMPERATURE, °C
Figure 2. Observed MPN/100 ml in a single facultative pond as a function of
time and temperature. Initial MPN 108/100 ml (Oswald et al. 1970)
16
-------
24 TO
NAPA RIVER
POND No. I
24" BYPASS TO
DITCH
24" INFLUENT
SEWER
16
CONTROL
BUILDING
O SAMPLING POINTS
vID
No.
POND
No. 3
Figure 3. St. Helena stabilization ponds (Oswald et al., 1970).
17
-------
Table 1. Capacities and detention time of the ponds.
Pond
Facultative
Aeration
Algae Sedimentation
Maturation I
Maturation II
Total
Area
(acres)
2.2
5.0
2.1
4.3
5.9
19.5
Liquid
Depth
(feet)
10
3
8
8
9
Volume
(ac-feet)
22.0
15.0
16.8
34.4
53.1
141.3
Detention
Time
(days)
17.1
11.7
13.1
26.8
41.3
110.0
Table 2. Performance of the St. Helena ponding system.
Characteristic
BOD
COD
Carbon (C)
Nitrogen (N)
Phosphate (P)
Sampling Points „
1
142.5
307.0
131.5
35.4
11.8
2
22.2
115.8
63.4
11.5
7.5
3
8.2
60.9
51.0
9.5
6.7
4
5.1
39.0
42.6
6.6
5.4
5
2.1
22.7
34.8
5.0
4.4
6
3.9
21.6
28.0
3.1
4.2
Removal
97.2
92.8
78.8
91.6
64.3
Values in mg/1
1. Influent
2. Facultative Pond Effl.
3. Aeration Pond Effl.
4. Algae Sedimentation Pond Effl.
5. 1st Maturation Pond Effl.
6. 2nd Maturation Pond Effl.
V = 3.5 x 10
(3)
where
V
Q
La
f
6
pond volume (m)
flow (liters/day)
ultimate influent BODU (mg/1) or COD
algal toxicity factor, f=1 for domestic sewage and many
industrial wastes
sulfide or other immediate chemical oxygen demand, f' = 1 for 804
equivalent ion concentration of less than 500 mg/1
temperature coefficient (1.085 recommended)
18
-------
The amount of liquid detention time provided by the above equations is
represented graphically in Figure 4. Additional detention time may be pro-
vided by increasing the pond depth.
Design examples and other additional information for evaluating the mag-
nitudes of design parameters can be found in Gloyna's (1975) work.
Marais Method
Marais (1970) in addressing the Second International Symposium on Lagoon
Treatment presented three models for following the dynamic behavior of oxida-
tion ponds. Each of the models, increasing in complexity, is a differential
equation developed to represent the BOD reduction process. The first of these
models, developed by Marais and Shaw (1964) is a model based on first order
kinetics for a continuously stirred reactor.
Marais (1970) lists the following assumptions for model 1:
(1) Complete and instantaneous mixing of influent with pond contents,
therefore effluent BOD equals pond BOD.
(2) Degradation is according to first order reaction with the degrada-
tion constant, K, independent of temperature and retention time.
(3) No pollution losses due to seepage.
(4) No settlement of influent BOD as sludge.
Using the following notation, model 1 is represented by Equation 4.
Pi - influent BODc (mg/1) or organism concentration/unit volume (ml)
P = pond or effluent BOD5 (mg/1) or organism concentration/unit
volume (ml)
Qi.Qe - influent and effluent flow per day respectively in some chosen
units of volume
V = volume of pond in same volume units as Qi and 0^
Ri,Re = influent and effluent retention times in days defined by V/Q±
and V/Qe respectively
K - first order degradation constant in logg, -day units (days'1)
Model 1--
dt - v v
(4)
Under equilibrium conditions (3^- - 0) with P±, Rif and Rg constant, the pond
effluent BOD or organism concentration may be expressed as
19
-------
200
100
70
50
10
>»
o
S 30
UJ
§
I-
2
O
UJ
t-
UJ
0
20
10
7
5
3
2
5 10 15 20 25 30
DESIGN TEMPERATURE (°C)
Figure 4. Detention as a function of temperature (Gloyna, 1975). Based on
Gloyna's Design procedure.
20
-------
r
e
If seepage and evaporation losses are neglected R = R. and Equation 5 reduces
to e i
Marais (1970) indicates that Model 1 has been used successfully in South
Africa for predicting the reduction of faecal bacterial pollution. Model 2 is
similar to Model 1 except for assumption (2) which is modified as follows:
(2) Degradation is a first order reaction with the reaction rate depen-
dent on temperature according to Arrhenius ' relationship.
Under steady conditions of influent flow BOD and temperature, Equation 4
applies and all its consequences, therefore
where
KT=KT
o
Equation 8 is Arrhenius' equation relating the value of K at temperature
T with Rji at temperature TQ.
Marais (1970) continues by suggesting values for 6 - 1.085, KTo =1.2, and
T0 = 35°C for Model 2. It is important to note that Models 1 and 2 do not
account for the action of anaerobic fermentation in the lagoon sludge.
Model 3 (Marais, 1970) was developed to incorporate the effects of the
sludge layer. This incorporation is possible by assuming the fermentation
process also follows the first order kinetic already applied to the other
portions of the BOD reduction reaction. The following assumptions apply to
Model 3.
(1) All BOD measurements are based on the ultimate first stage BOD with
a constant of 1.47 used for conversion of BOD5 to BODult for do-
mestic waste.
(2) A fraction, ip, of the influent ultimate*BOD, PU±, is dispersed
within the liquid of the pond, the remaining fraction, is, settles
as a sludge.
21
-------
(3) There is complete and instantaneous mixing in the pond, therefore
effluent BOD is equal to the pond BOD.
(4) The process reaction constant, K, for the pond liquid, and Ks for
the sludge layer are temperature dependent according to the follow
ing relationship:
with
0 = ec
(5) A fraction, sp, of the BOD lost from the sludge due to fermentation
enters the pond liquid volume; the remaining fraction, sg, leaves
the system as gas (see Figure 1) .
Three differential equations are used to describe the third model. They
represent the rate of change of sludge mass, the rate of gas evolution from
the sludge, and the rate of change of the pond BOD. Marais (1970) presented
the equations as follows:
Rate of change of sludge mass, St
dS
-r—= -K S. + i P . (TQ x 10 ) ........... (9)
dt stsui • \'/
where
Ks = temperature-dependent according to Equation 8
St = total mass of sludge BOD in Ib or kilogram
T = mass per unit volume of pond liquid (1 kgm/m3, 62.4
10 Ib/Imp gal),
Q = daily flow in M3, ft3, gal.
Rate of gas evolution from sludge
dV
CsKS
dt v g s t
where
Cy = volume of gas liberated per unit mass BOD destroyed.
Rate of change of BOD, PU, in the pond. Change of BOD in time, dt, re-
presents a reduction in degradation action in the pond and loss in effluent or
an increase due to influent fraction, i , and fermentation product
22
-------
dP r on i P . Q.
—H.O- K+Je p | P ui *
dt L vj 11 V
sKS ,
P s t 6
VT
If the influent BOD, flow rate and temperature remain constant, (sp + sg = 1)
then at equilibrium dSt/dt = 0 and dP/dt = 0. Therefore Equation 10 reduces
Furthermore if 0^ = Q± so that R! = Re = R, Equation 11 reduces to
P .
PU-FR+T (ip + sPV (13)
The use of Equation 13 is hindered by seasonal temperature fluctuations.
Although Marais (1970) furnishes values for some of the constants requir-
ed for the evaluation of Model 3, use of the model is still hampered by the
lack of information for evaluating ip, is, sp, and sg. He lists the following
suggested values: is = 0.4 to 0.6, sp - 0.4, sg « 0.6 and Cy = approximately
0.28 m3 (10 ft3) gas produced per pound sludge BOD stablized.
K = 0.002(1.35)"(2°"T) (14)
S
Future research will be valuable in providing data for the evaluation of
Marais' constants, thus making Model 3 more useful for pond design.
Thirumurthi Method
Thirumurthi et al. (1967) and Thirumurthi (1969, 1974) proposed the de-
signing of stabilization basins using the equations developed for non-ideal
mix chemical reactors. These equations, reported by Wehner and Wilhem (1958),
were derived to treat the case of a chemical reactor having neither plug flow
(no mixing) nor complete mixing, but a condition intermediate to the two.
Equation 15 is the complete equation with the Equations 17 and 18 being
modifications for specialized conditions.
C . l/2d
e _ 4 a e a5->
^"(l+a)2e1/M-(l-a)2ela/d < "
where,
a - (1 + 4 k t d)1/2 and d - -jj- - ^ (16)
L
in which
23
-------
d = diffusivity constant or dispersion number (dimensionless)
D = axial dispersion coefficient (sq ft per hr)
U = fluid velocity (ft per hr)
L = characteristic length of travel path of a typical particle in
the tank (ft)
Ce = effluent concentration
C± = influent concentration
k = first order reaction constant
t = mean residence or detention time.
Thirumurthi (1969) suggested that Equation 15 be used to design biologi-
cal wastewater treatment systems. He further indicated that the hydraulic
variations of short circuiting, mixing, entrance and exit device influence can
all be accounted for in the coefficient d. Values of zero and infinity being
used for d in the case of plug flow and completely mixed systems respectively.
Figure 5 was prepared by Thirumurthi (1974) to indicate the relationship
between BOD removal and the removal rate constant. The effect of detention
time and flow characteristics are also shown.
The temperature, influent waste qualities, nutrient deficiencies, organic
load and other biological factors can be accounted for in the value of k. The
hydraulic load, is represented by the value of the actual (mean) residence or
detention time, t.
For reactors of the plug flow type the equation
^=e-kt (17)
Ci
is appropriate. For reactors where complete mixing is assumed the equation
C ^
C7 = 1 + kt (18)
is used. This equation is sometimes used inappropriately for basin design by
assuming complete mixing in the basin, when not actually true.
The following conditions have been listed as definitions for Thirumurthi's
proposed method:
1. Standard BOD removal coefficient, Kg: A standard value of Ks has
been chosen that corresponds to an arbitrarily selected standard environment.
2. The standard environment consists of (a) pond temperature of 20°C,
(b) an organic load of 67.2 kg/day/ha (60 Ib/day/acre), (c) absence of indus-
trial toxic chemicals, (d) minimum (visible) solar energy at the rate of 100
langleys/day, and (e) absence of benthal load.
24
-------
u.
O
UJ
4 6 8 10 15 ZO 3O 40 5060
PERCENT BOD REMAINING
Figure 5. Design Formula Chart (Thirumurthi, 1974).
25
-------
3. Design coefficient, K, corresponds to the actual environment sur-
rounding the pond. Hence, the value of K will be used in Equation 15, 17, or
18 when a pond is being designed. When the actual environmental conditions
deviate from one or more of the five defined standard environmental conditions,
suitable correction factors must be incorporated.
K = KsCTeCoCTox
where
C = correction factor
Te = correction for temperature
o = correction for organic load
Tox = correction for industrial toxic chemicals
Temperature Correction--
cIe=eT-20 .................. (20)
where
T = average temperature of the pond contents in the critical or
coldest winter month (°C)
9 = 1.036
Organic Load Correction--
ISM]
where
L = organic load in kg/day/ha (proposed or intended value)
67.2 = standard organic load in kg/day/ha (60 Ib/day/acre)
Toxicity Correction--
In the absence of industrial waste, the factor Gjoc will equal unity.
Table 3 lists concentration levels for organic pollutants and corresponding
cToc • values«
In an attempt to calibrate the design procedure, Thirumurthi evaluated
data collected from three stabilization basin systems. The following assump-
tions were listed in connection with the calculations:
1. Plug-flow was assumed to exist in all the selected field ponds be-
cause tracer studies were not conducted by the authors. Also, assuming plug-
flow pattern as a first approximation caused less than 2 percent error in the
magnitude of K.
26
-------
Table 3. Toxicity Correction Factors (Thirumurthi, 1974)
N>
Organic Chemical
Methanoic acid
Ethanoic acid
Propanoic acid
Hexanoic acid
1-Butanol
Octanol
Malthane
25 percent DDT in 67 percent
xylene solvent and 8 percent
emulsifier
"Ortho"
29 percent Malathion
10 percent BHC
43 percent solvents
18 percent inert ingredients
Concentration of Organic
Chemical in the Pond
Influent (mg/1)
180
360
270
180
200
300
4,000
150
200
70
140
100
125
100
340
Suggested
Values of
CTOX
2.0
16.0
1.6
2.65
1.3
5.0
2.0
2.0
4.0
2.5
8.0
25
00»
2.5
00*
aComplete destruction of algal life.
-------
2. Toxic industrial wastes inhibitory to algal growth were assumed to
be absent or insignificant in all the ponds studied. The authors of the pre-
vious studies, from which the data was taken, did not make any specific state-
ments contrary to this assumption.
3. The influences of pond depth and benthal load have not been included
in this study because a critical review of their effects and correction fac-
tors to determine their relationship with pond performance is not yet avail-
able (Thirmurthi, 1974).
The average value of Ks reported for the three lagoon systems studied was
0.056/day, with a range from 0.042 to 0.071/day.
Finally Thirumurthi proposed that two critical light levels, A and B,
exist. When incident radiation falls below level A, 25 langleys/day, the con-
centration of oxygen in the effluent is affected. If incident radiation falls
below level B, 6 to 12 langleys/22.7 kg BOD (6 to 12 langleys/50 Ib BOD), the
BOD removal efficiency of. the pond will be affected.
MODEL EVALUATION
Each of the four methods presented in this section provides for designing
basins according to scientific methods. Although the equations proposed by
Gloyna (1975) are of an empirical nature they do reflect a compilation of
engineering knowledge and experience.
Oswald et al. (1970) design method is centered mainly on light energy and
its affect on algal growth. He does however provide Equation 1 for evaluating
the anaerobic fermentation process. The chemical reactor equations (15, 17,
18) applied by Thirumurthi (1974) provide a more accurate evaluation of the
liquid body reaction relating treatment to kinetic first order decay. This
approach is also emphasized by Marais (1970) who attempts to couple first
order kinetics in the liquid body with the fermentation reaction and all of
the transfers between the two. Marais' attempt to characterize the actions of
a real lagoon are therefore the most complete and correspondingly most diffi-
cult to evaluate due to the many environmental variables interacting in the
basin.
It should also be noted that Thirumurthi (1969, 1974) used a value of
1.036 for the temperature coefficient, 6. Thirumurthi (1974) provides experi-
mental data to support this figure which is less conservative than the value
1.085 used by Marais (1970) and by Gloyna (1975).
PERFORMANCE EVALUATIONS
Numerous partial evaluations of the performance of lagoon systems have
been reported and reviews and synopses of these studies are available in the
literature (U.S.PHS, 1960; Williford and Middlebrooks, 1967; McKinney, 1970;
and Jones et al., 1969). However, comprehensive evaluations were not avail-
able until the initiation of a series of studies by the U.S. Environmental
Protection Agency (USEPA). The information contained in this report is the
result of one phase of the USEPA study.
28
-------
SECTION 5
PROCEDURES
STUDY LOCATION
The study was conducted at the Corinne Waste Stabilization Lagoon System,
Corinne, Utah. The City of Corinne is located in Box Elder County in the
Northwestern portion of Utah, The community has a population of 471 persons
(1970 Census) and no major industry. It is predominantly a rural farming com-
munity with a few residents commuting to surrounding industries outside the
Corinne area. The only rural nonresidential structures in the community are
two churches, one elementary school, one restaurant, one cafe, a farm supply
and feed store, a farm storage warehouse and a service station.
The elevation of Corinne is approximately 1,372 meters (4,500 feet) above
mean sea level. The annual precipitation is approximately 35.56 centimeters
(14 inches) per year. Summer temperatures will reach as high as 38°C (100°F)
while winter temperatures drop to as low as -24°C (-10°F).
LAGOON SYSTEM
The Corinne City Wastewater Lagoon System was constructed during 1970 and
began discharging in the spring of 1971. A flow diagram of the system is shown
in Figure 6. The facility consists of seven facultative cells connected in
series. None of these cells are mechanically aerated and comminution is the
only pretreatment prior to the raw sewage entering the primary cell.
The system was designed according to State of Utah requirements for waste
stabilization pond design in 1970 (Sudweeks, 1970). The original design calcu-
lations were based on a design population of 700 people, a design flowrate of
265,000 liters/day (70,000 gal/day), assuming a raw sewage strength of 0.077
kg BOD./person/day (0.17 Ibs BODs/person/day) and a flowrate of 378.5 liters/
person/day (100 gal/person/day). The design organic load was 36.2 kg BOD5/ha/
day (32.2 Ibs BOD5/acre/day) with a winter theoretical total hydraulic deten-
tion time of 180 days. Thus, the total surface area of the system is approxi-
mately 3.86 ha (9.53 acres) with the primary pond having a surface area of
1.49 ha (3.69 acres), ponds 2 through 6 having a surface area of 0.41 ha (1.0
acre) each and pond number 7 having a surface area of 0.34 ha (0.84 acres).
The average depth of all the ponds is approximately 1.22 meters (4 ft).
The comminutor is located at a pump lift station located approximately
152.4 meters (500 feet) from the primary Igoon. Also located at the pump lift
station is the influent flow recorder. The influent flow meaning device is a
29
-------
EFFLUENT
©
SAMPLING
STATION
0.34 Hectares
(0.84 Acres)
ZI
0.405 Hectares
(1.00 Acres)
0.405 Hectares
(1.00 Acres)
n
0.405 Hectares
(1.00 Acres)
I
in
0.405 Hectares
(1.00 Acres)
0.405 Hectares
(1.00 Acres)
I
1.49 Hectares
(3.69 Acres)
Figure 6. Flow Diagram of Corinne City Wastewater Lagoon System.
-------
20.32 cm (8 inch) Palmer Bowlus Flume coupled to a Stevens Model 61-R contin-
uous flow recorder. The influent raw sewage flows through the flume into the
comminutor before entering the wet well for the pump station. From the pump
lift station the comminuted raw sewage flows through a 15.24 cm (6 inch) dia-
meter force main to the primary cell of the lagoon system. Wastewater enters
the bottom of each panel through an influent pipe constructed from a 20.32 cm
(8 inch) concrete pipe which is connected to a vertical 60.96 cm (24 inch)
corregated metal standpipe in the previous panel. The water depth of each
lagoon is fixed by the height of the vertical standpipe. No provision was
made for varying the lagoon depth.
The effluent flowrate from the final pond (final system effluent) was
monitored with a 45 degree V-notch weir coupled with a Stevens Model 61-R con-
tinuous flow recorder. A discussion of the actual hydraulic residence times
of each pond compared to the theoretical hydraulic residence time is presented
in the Results and Discussion Section.
SAMPLE COLLECTION AND ANALYSIS
The location of each sampling station is shown on Figure 6 and described
in Table 4. Automatic 24-hour composite samplers were located at Stations 2
through 7. A flow proportional 24-hour composite sampler was located at
Station Number 1 (raw sewage influent). All sampling equipment was housed in
sampling houses constructed of plywood and lined with foam insulation (see
Figure 7). These sampling houses were mounted over the effluent discharge
structure of each lagoon. The location of the raw influent sample station
(Station Number 1) is shown in Figure 8. Each sampling house was equipped
with a portable, propane operated refrigerator2 and a small heating element
constructed from the components of a water heater heating unit. Also mounted
in the house was a shelf for the. storage of a 96 amp hr battery used to drive
the automatic sampler.
Problems were experienced with the sampling houses and the equipment. Ex-
treme cold weather occasionally froze water in the intake tube even though the
sampling house was heated. This was particularly true when water leaked into
the insulated portion of the intake structure (see Figure 7).
Variations in the temperature of the air outside the sample houses also
affected the operation of the refrigerators causing them to freeze when the
external (ambient) air temperature dropped, or to run too warm if the ambient
air temperature was excessive. Due to the seasonal temperature fluctuations
continual adjustment of the refrigerators was required.
One additional problem was generated by the wildlife associated with the
pond system. Due to the configuration of the sampling houses setting on the
1Leupold and Stevens, Inc., Box 688, Beaverton.' Oregon.
2Instamatic model RV-4, Instamatic Corp., 2323 Middlebury St., Elkhart,
Indiana, 46514.
31
-------
.
.
SAMPLING STATION DETAILS
(Not to Scole)
Automatic Sampler
Control Unit
27cm I1/- ) O.D., 0.48 cm
Refrigerator
(propane operated)
91.4 cm (36 ) Wind Collar
Effluent Flow
Sampler Intake
Unit (see detail)
Effluent Pipe
60.9 cm (24") CMP
SAMPLER INTAKE DETAILS
(Not to Scole}
SAMPLE
HOUSE FLOOR
END CAP
TYGON TUBING
762 cm (3") ABS
COLLAR
»-7.62 cm (3") ABS PIPE
-2 54 cm(l") PVC PIPE
-INSULATING FOAM
•AIR SPACE
*6-l STOPPER
-GLASS TUBING
Note: cm x 0.3973 = Inches
Figure 7. Sampling station details.
-------
U)
U)
EFFLUENT PUMPED
TO TREATMENT
BASIN
PUMPING
STATION
(Wet Well)
SAMPLING
STATION
=*!
COMMUNUTION
FLOW METERING
MANHOLE 20.32cm
8" PALMER BOLUS
FLUME w/CONTINUOUS
FLOW RECORDER
INFLUENT
FROM
CORINNE
Note: cm x 0.3974 = Inches
Figure 8. Station No. 1 Flowchart.
-------
Table 4. Description of sampling stations for Corinne City Wastewater Lagoon
System.
Sampling
Station Station Description
Number
1 Raw wastewater influent to system; pump lift station (a totalizer flow meter
is located at this point)
2 Effluent from Cell I
3 Effluent from Cell II
4 Effluent from Cell III
5 Effluent from Cell IV
6 Effluent from Cell V
7 Effluent from Cell VI
8 Effluent from Cell VII and also final effluent from the Lagoon System (a
totalizer flow meter is located at this point)
effluent structure, a sheltered enclosure was formed with only two small open-
ings to the outside. These were easily plugged by the muskrats. In the pro-
cess of filling the holes with vegetation sufficient material often fell into
the effluent stream which caused plugging of the effluent piping.
Three different automatic, composite samples were employed during this
study; two from the Quality Control Equipment Company (QCE)J and one from the
Instrument Specialties Company (ISCO).2 Due to continual mechanical diffi-
culties the QCE model CVE was replaced with a QCE model CVE-II, a later version
of the model CVE. Finally all of the QCE units were replaced with ISCO model
1580 samplers which performed well throughout the remainder of the study.
Sampling began January 23, 1975 and continued until January 31, 1976.
Samples were collected every third day on a rotating schedule except for a 30
day period each season when samples were collected daily for 30 consecutive
days. All samples were collected between 5:00 AM and 10:00 AM. Dissolved
oxygen,3 temperature, and pH^ were measured in situ. During the fall of 1976
when a grab sample was transported in an ice bath to the Utah Water Research
Laboratory (UWKL), Logan, Utah and pH was measured in the laboratory5 rather
than in situ. At the Utah Water Research Laboratory, the composite samples
were analyzed for BOD^, soluble BOD5, alkalinity, suspended solids, and vola-
tile suspended solids. In addition, preserved composite samples were sent to
the EPA Robert A. Raft Laboratory in Cincinnati, Ohio for the following analy-
ses: total and soluble COD, NH3-N, N02-N, N03-N, total phosphate, and TKN.
Grab samples were substituted for the composite samples when the automatic
composite samplers failed to function properly. This occurred on less than 10
1Quality Control Equipment Co., P.O. Box 2706, Des Moines, Iowa 50315.
^Instrument Specialties Co., P.O. Box 5347, Lincoln, Nebraska 68505.
3Yellow Springs Instrument Co., Model 54, Yellow Springs, Ohio.
^E. H. Sargent and Company, portable pH meter, Denver, Colorado.
5Beckman Instruments Inc., Zeromatic II, Fullerton, California.
34
-------
percent of samples. During the 30 day consecutive sample periods NH3-N,
N02~N, NC>3-N, and total conforms were only analyzed every third day.
Samples were sent to the EPA Robert A. Taft Laboratory by air parcel post
and were preserved using the following techniques:
1. Total COD Collect 1 liter. These three tests were run on the 1
Total P liter sample shipped. Add sulfuric acid to preserve
TKN sample. Method 200 B, page 368, Standard Methods.
2. NH3-N Collect 1 liter. These three test were run on the 1 liter
N02-N shipped. Add 1 ml chloroform to the liter for preserva-
N03-N tion of the sample.
All chemical analyses performed at the UWKL and by the EPA laboratory followed
the methods and procedures described in Methods for Chemical Analysis of Water
and Wastewater (EPA, 1974). Algal genera counts were performed using a
Sedgwich-Rafter cell counter according to Standard Methods (APHA, 1971).
In addition to the composite samples, two grab samples for fecal bacteria
analysis were collected at each station. One set was shipped on ice to the
Utah State Health Department Laboratory in Salt Lake City to be analyzed for
total and fecal coliform bacteria by the MPN technique. The remaining set of
bacteria samples were analyzed at the UWRL for fecal coliforms and fecal
streptococci using the membrane filter technique. All analyses were performed
according to the methods described in Standard Methods (1971). The methods
and media used are tabulated in Table 5.
All samples were transported from the study site to the Water Quality Lab-
oratory, Utah Water Research Laboratory, Utah State University, Logan, Utah.
Transportation required approximately 45 minutes, all samples were transported
in their collection containers and shielded from sunlight. The pH, hydraulic,
and bacterial samples were iced during transportation.
METEOROLOGICAL DATA
Precipitation, wind speed, temperature (maximum, average, minimum), pan
evaporation and solar radiation (total incident radiation) was collected at
weather stations near Corinne and published in Climatological Data (NOAA, 1975,
1976). All information except that relating to evaporation and solar radiation
was obtained from the Corinne reporting station located 1.6 kilometers (1 mile)
from the treatment facility. Evaporation data were furnished by the Bear River
Refuge reporting station located 16 kilometers (10 miles) from the study site.
Solar radiation data were obtained from the solar radiation station, located at
Utah State University in Logan, Utah, 32 kilometers (20 miles) from the Corinne
site.
HYDRAULIC DATA
Flow rates and total volumes of wastewater entering and leaving the la-
goon system were recorded at Stations Number 1 and Number 8. Flow patterns
35
-------
Table 5. Methods and media used for the bacteriological analyses.
Fecal coiiforms
Fecal streptococci
Total coiiforms
Method
Standard Methods (APHA, 1971)
Section 408 B
Standard Methods (APHA, 1971)
Section 409 B
Standard Methods (APHA, 1971)
Section 408 A
Media
(Manufacturer)
m-FC broth
(BBL11365)
KF agar
(Difco 0496-01)
m-Endo broth
(Dif co 0749-01)
Die-off/Lagoon Study
Die-off and Lagoon Study
Die-off and Lagoon Study
Die-off Study Only
and detention times were determined by injecting rhodamine B dye into the in-
fluent of each pond and monitoring the effluent of each pond for dye concen-
tration.
Dye samples were analyzed on a Turner model 111 fluorometer using a
568 nm primary filter and a 590 nm secondary filter. The meter was calibrated
according to procedures outlined by Buttes (1969). Dye dispersion curves were
plotted using the temperature-corrected readings. These curves were analyzed
using the techniques provided by Marske and Boyle (1973).
DATA ANALYSES
All computerized data manipulations, including statistical calculations
were performed on the Burrows 6300 computer located at Utah State University,
Logan, Utah. Programs for all operations were written by members of the study
team. Statistical calculations were performed according to methods provided
by Sakal and Rohlf (1969).
Turner Fluorometer, Model 111, by G. K. Turner Associates, Palo Alto,
California.
36
-------
SECTION 6
RESULTS AND DISCUSSION
GENERAL
The Results and Discussion Section is divided into two subsections. The
Performance subsection evaluates the system performance with respect to the
seasonal variation of each parameter, the ability of the system to satisfy the
Water Pollution Control Amendments of 1972 discharge requirements, the State
of Utah discharge requirements and the criteria with which the system was de-
signed. Parameters are presented in terms of monthly averages in an attempt
to illustrate long term variations. The Model Evaluation subsection evaluates
the applicability of two accepted lagoon design models to the Corinne City
Sewage Lagoon System.
A complete set of all data collected for the study is presented in the
Appendix.
SEASONAL PERFORMANCE
General
All of the ponds are designated by pond number. The data for a given
pond represent the quality of the effluent water from that particular pond.
Pond Number 7 is the final pond in the system, its effluent is therefore the
effluent for the entire system and is generally designated as "Effluent"
rather than "Pond 7.*' "Influent" represents the incoming raw sewage waste-
water from the City of Corinne.
Hydraulic Performance
The average monthly influent and effluent daily flowrates are recorded in
Table 6 and shown graphically in Figure 9. A complete listing of the data is
in Appendix A, Table A-1. The average monthly daily flowrate varied from
1,029,645 liter/day (272,033 gal/day) in October to 253,667 liters/day (67,019
gal/day) in December. The yearly average influent daily flowrate was 693,724
liters/day (183,282 gal/day). This represents a per capita hydraulic load to
the system of 1472.9 liter/person/day (389.1 gal/person/day). The yearly
average daily flowrate exceeds the hydraulic design flowrate by 2.62 times.
It is clearly evident that the sewage collection system has a significant
load due to infiltration and inflow. The groundwater table in the Corinne area
is relatively shallow. The influent flow data suggest that a significant a-
raount of groundwater is entering the system. The groundwater pool is supplied
37
-------
00
INFLUENT
A—-AEFFLUENT
Figure 9. Monthly average influent and effluent daily flowrate.
-------
Table 6. Monthly average influent and effluent daily flowrate in liters per
day.
Month
January 1975
February
March
April
May
June
July
August
September
October
November
December
January 1976
Average
Influent
I/day
408,947
799,695
929,051
782,083
638,222
665,630
876,413
957,753
862,348
1,029,645
489,139
253,667
325,817
693,724
Effluent
I/day
51,729
196,305
740,698
503,394
335,014
455,173
296,612
265,310
296,490
294,954
530,831
225,192
176,703
336,031
liters x 3.785 = gallons
by excess irrigation water applied to adjacent agricultural lands. The in-
fluent flow pattern illustrated in Figure 9 indicates the peak inflow to the
system occurs during the spring thaw period (i.e., February to May) and also
during the peak summer irrigation period (i.e., July to September). Because
of the ''lag time" of flow in the groundwater system, the inflow to the
sewer system continues through the fall into October. During the winter months
(i.e., November to February) the influent flow is at a minimum because little
or no runoff occurs nor is irrigation practiced on the adjacent agricultural
land.
Based on the influent flowrate, the theoretical detention of the lagoon
system should be approximately 2.6 times less than the 180 day retention time
required by the State of Utah (Sudweeks, 1970). However, due to evaporation
loss, the calculated theoretical hydraulic residence time is 146.3 days (see
Table 7) which is only 33.7 days less or 18.7 percent than required by the
State of Utah. There is no hydraulic residence time requirement connected
with PL 92-500.
Dye studies were conducted on each lagoon to determine the actual hydrau-
lic residence time in the system. The results are recorded in Table 7 and
illustrated for each pond in Appendix A, Figures A-1 to A-7. The actual total
hydraulic residence time for the system was found to be 88.3 days which is
49.1 percent of the 180 day requirement of the State of Utah. These dye
studies were from December 1975 to July 1976 and thus represent the condition
existing at that time. It is highly likely that the actual hydraulic resi-
dence times change throughout the year. However,"this change would not alter
these results significantly.
39
-------
Table 7. Residence times.
Pond No.
1
2
3
4
5
6
7
Dye Study Date
12-8-75/1-30-76
5-10-76/6-23-76
6-23-76/7-31-76
5-10-76/6-23-76
6-23-76/7-31-76
5-10-76/6-23-76
6-23-76/7-31-76
Theoretical
Residence Time
77.2 days
9.1 days
9.7 days
10.4 days
11. 3 days
12.2 days
16.4 days
Actual
Residence Time
35.1 days
8.5 days
6.7 days
8.1 days
9.0 days
8.8 days
12.1 days
Dye
Dispersion
Chart
Figure No.
A-l
A-2
A-3
A-4
A-5
A-6
A-7
Note: Theoretical residence times calculated from flows for the same periods during the year 1975. Correction was made for evapo-
ration effect on flows in the latter ponds.
Correction was added to each pond for evaporation.
The average monthly effluent daily flowrates varied from 740,698 liters/
day (195,693 gal/day) during March to 51,729 liters/day (13,667 gal/day) dur-
ing January 1975. The yearly average monthly flowrate was 336,031 liters/day
(88,780 gal/day) which was only 48.4 percent of the yearly average monthly
influent flowrate. The low flowrate in January 1975 was due to the clogging
of the lagoon system effluent pipe. The effluent pipe was clogged with debris
from approximately January 15, 1975 to February 27, 1975. During this period
a substantial amount of water had been backed up in the system. When the de-
bris was removed, the stored water was released. Thus, the release of this
stored water coupled within an increase in influent flow to the system caused
the peak effluent flowrate to occur during March 1975. Again, the effluent
pipe became plugged with debris between November 10, 1975 and November 19,
1975. Water was again stored in the system and it is believed that the peak
effluent flowrate recorded for November 1975 was the result of releasing this
stored water.
In summary, the hydraulic load to the lagoon system exceeded the design
hydraulic flowrate by 2.62 times. This excessive hydraulic loading is most
likely due to groundwater infiltration from agricultural irrigation and storm-
water inflow into the sewage collection system. The effluent flowrates were
affected by two separate periods when the effluent pipe from the lagoon system
was plugged with debris. However, the yearly average effluejit flowrate from
the system is only 48.4 percent of the yearly average influent to the system.
Biochemical Oxygen Demand (BODg)
The monthly average biochemical oxygen demand (BOD5) performance for the
lagoon system is reported in Table 8 and illustrated in Figure 10 for each
pond in the system. A complete listing of the BOD5 data is in Appendix B,
Table B-1.
The influent monthly average BOD5 ranged from a maximum of 139.93 mg/1 to
a minimum of 40.26 mg/1, with a mean of 74.62 mg/1. During the winter period,
40
-------
(121 54!
100 |-
95 -
90 -
•(106.77)
• (139 93)
WASTE STABILIZATION BASIN SYSTEM
CORINNE . UTAH
JAN.('751 FEB MAR APR MAY JUNE JULY AUG SEPT OCT NOV DEC JAN ('76)
TIME (Months)
Figure 10. Monthly average biochemical oxygen demand (8005) performance of the
Corinne Waste Stabilization Lagoon System.
41
-------
Table 8. Monthly average biochemical oxygen demand performance (BOD5> of the
Corinne Waste Stabilization Lagoon System.
TOT*!. BOOC5)
MONTHLY AVERAGES
INFLUENT
POND 1
POND 2
POND 5
EFFLUENT
JHN-75
FCB
NAR.
APR.
NAY
JUKE
jutr
AUS.
S€P.
0«T.
NOV.
DEC.
JAN-76
121.5*
106.77
58.12
4l.lt
41.52
51.12
40.2*
I*. 21
92.4e
»7.1*
S4.*5
»8.*2
139.93
Z7.ZS
!8.09
57.3]
13.**
12.82
S0.22
?».40
34.23
14. »»
33.5*
I0.4«
19.00
18.12
22.52
2J.53
35.lt
52.80
28.04
19.41
i».o7
25.59
35.17
34.20
24.40
Ik. 69
10.59
19.48
29.07
J3.72
31.19
25.27
10.49
15.21
24.43
30.60
34. IS
27.74
17.01
21.55
l.7>
22-so
30. 21
14.97
25.25
10.10
5.15
4.35
15.56
25.77
27.76
17.62
24.11
9.23
19.88
33.98
15.55
25.09
11.85
4.26
2.52
2.39
5.8]
15.82
14.34
19.86
4.79
13.88
3S.87
32.31
20.97
.23
.27
.34
.11
.41
.47
7.04
14.29
*.29
6.89
24.27
26.5]
19.00
7.91
3.75
1.98
1.40
1.89
1.12
5.39
7.51
when the influent flowrate was low, 2.5 x 10 I/day (0.067 mgd), the BOD con-
centration of the influent was high (121 mg/1). The coming of spring, ice
thaw, spring rains, snow runoff and finally summer irrigation provided a signi-
ficant increase in influent flow rate, 9.5 x 105 I/day (0.25 mgd). The summer
period was then characterized by a diluted influent 6005. This trend of
summer dilution and winter concentration of the influent flow was evidenced in
many of the parameters.
Spring thaw was accompanied by hydraulic mixing in all of the ponds. This
period, February to May, was characterized by rising influent flows with a
corresponding dilution of the influent BOD5, a resuspension of winter-settled
organic materials by the overturning pond water, and an increase in pond temp-
erature causing a rise in the metabolic rate of the entire pond ecosystem. The
monthly average effluent BOD5 concentration of Pond Number 1 was much higher
(57.3 mg/1) than was the monthly average effluent BOD5 concentration of the
other ponds (see Figure 10). The other six ponds had average monthly effluent
BOD^ concentrations ranging from 26.5 mg/1 (Pond Number 7) to 35.5 mg/1 (Pond
Number 5). Summer temperatures and the uptake of spring-mixing-generated
organics supported an increase in treatment efficiency resulting in a marked
drop in the BOD^ concentrations of all the pond effluents except the effluent
from Pond Number 1. Late summer and the end of the irrigation season caused
the influent to become more concentrated. Following this concentrating was an
increase in the BODc level of the effluents from all of the ponds except Pond
Numbers 6 and 7. Effluent BOD5 concentration from all the ponds continued to
rise throughout the fall until the colder weather caused the ponds to destrati-
fy and mix again. This fall overturn increased the effluent BODc rise which
was then followed by a sharp decline in effluent 6005 concentrations (see
Figure 10).
Statistical analysis of the data indicated that the effluent 8005 concen-
trations from Pond Numbers 5, 6, and 7 were statistically alike (see Table 9).
This would indicate that no significant difference in BOD5 treatment is
achieved by Pond Numbers 6 and 7 over that accomplished by Pond Number 5. How-
ever, the actual yearly mean concentration for Pond Number 7 was 8.91 mg/1, a
42
-------
Table 9. Statistical comparison of average monthly effluent biochemical oxy-
gen demand (8005) performance of each pond in the Corinne Waste
Stabilization Lagoon System.
Statistical Data
Total BODS (mg/1)
Mean
Standard Deviation
Coeff. of Var.
T Qwfo^ £ nnftn
T
-------
Table 10. Treatment efficiency of Corinne Waste Stabilization Lagoon System
with respect to biochemical oxygen demand (BOD5).
Month
January 1975
February
March
April
May
June
July
August
September
October
Novembe^
December
January 1976
Monthly Average
Influent
(mg/1)
121.54
106.77
58.12
48.86
61.52
51.82
40.26
38.21
92.48
87.16
84.65
88.42
139.93
BODS
Effluent
(mg/1)
4.29
6.89
24.27
25.53
19.00
7.91
3.75
1.98
1.40
1.89
3.12
5.39
7.51
Treatment
Efficiency
(%)
96.4
93.5
58.2
47.7
69.1
84.7
90.7
94.8
92.4
97.8
96.3
93.9
94.6
The organic loading on the primary cell (Pond Number 1) of the system is
shown in Table 11. The organic load ranged from 15.1 kg BOD,-/ha/day (13.4 Ibs
BOD5/acre/day) to 60.2 kg BOD5/ha/day (53.6 Ibs BOD5/acre/day). The yearly
average organic load to the primary cell was 33.6 kg BOD5/ha/day (29.9 Ibs
BOD5/acre/day). The system was designed for an organic load of 36.2 kg BOD5/
ha/day (32.2 Ibs BOD^/acre/day). On a yearly basis the system was not organi-
cally loaded beyond the design capacity. However, during three of the 13
months studied, the organic loading rate did exceed the design capacity. Each
of these three months (February, September, October) were during periods of
the year when the lagoon system should have been less able to assimilate the
overload. However, during each of these months the final effluent BOD5 con-
centrations were less then 10 mg/1. Thus, it appears that the 36.2 kg
BOD5/ha/day (32.2 Ibs BODt,/acre/day) used to design the system was at least
adequate and may be somewhat conservative.
In summary, the BOD^ influent to the Corinne system was effectively re-
duced to levels acceptable to the federal standard (i.ei 30 mg/1), and to the
state standard (10 mg/1) the majority of the time. Effluent BOD5 levels were
subject to mixing conditions both in spring and fall causing all pond efflu-
ents except Pond Number 7 effluent to reach unacceptable levels. Winter efflu-
ent BOD_ concentrations were acceptable with respect to the federal and state
44
-------
Table 11. Average monthly organic loading rate on the primary cell (Pond
Number 1) of the Corinne Waste Stabilization System.
Month Average Organic Loading
(kg/ha/day)
January 1975 33.4
February 57 3
March 35 2
A?ril 25^6
May 26.3
June 23 1
July 23^6
August 24.6
September 53 5
October 60.2
November 27.8
December 15 1
January 1976 30^6
Yearly Average 33,5
kg/ha/day x 0.89 = Ibs/acre/day
standards. These concentrations were also lower than effluent BOD5 concentra-
tions during other portions of the year. Finally, statistical analysis showed
little improvement in BOD5 removal beyond that attained by Pond Number 5.
Soluble Biochemical Oxygen Demand (SBOD5)
The monthly average effluent Soluble Biochemical Oxygen Demand (SBOD5)
conentrations for each of the ponds in the system are reported in Table 12
and shown graphically in Figure 11. A complete listing of the individual
data points is in Appendix B, Table B-2. The monthly average effluent SBOD5
for the entire system (Pond Number 7) varied from 1.19 mg/1 to 4.69 mg/1
with a yearly average value of 2.86 mg/1. This is 46.0 percent less than the
final effluent total BOD5 (see Table 10). However, both values are less
than 10 mg/1 and therefore any difference between them is relatively insigni-
ficant.
The seasonal variation in effluent SBOD5 concentration is similar for
each of the seven ponds.. The greatest variations occurred in the effluent
from Pond Number 1.
45
-------
(5405)
50
;
Z 25
O
5
a
o
Z 20
O
u
I!
l«
SOLUABLE BOD5
WASTE STABILIZATION BASIN SYSTEM
CORINNE, UTAH
A
JANI'75) FEB MAR APR MA^ JUNE JULY AUO SEPT. OCT. NOV. DEC. JAN.('761
TIME (Months)
Figure 11. Monthly average soluble biochemical oxygen demand (SBOD^) per-
formance of the Corinne Waste Stabilization Lagoon System.
46
-------
Table 12. Monthly average soluble biochemical oxygen demand (SBOD5) perfor-
mance of the Corinne Waste Stabilization Lagoon System.
SOLIM9LE tOK5> CNt/L>
HONTHLT AVERAGES
HONTH
JAN- 75
FEB
NAR.
APR.
NAY
JUNE
JULY
AUG.
SEP.
OCT.
NOV.
DEC.
JAN-76
INFLUENT
40.17
26.00
It'll
15.24
o!*0
10. «5
25.17
21. «»
23. »l
20. «7
50.1*
PONO 1 PONO 2 POND 3
4.2* 4.*3
4.75 4.55
10.3*
5.03
5.23
4.*6
4.64
III IS
5.25
5.67
.77
.71
.50
.52
.62
.14
.15
.1*
.01
.50
.29
.22
.25
.54
.64
.27
.43
.16
.35
.61
.76
.66
.44
.06
POND 4 POND 5
2.34 2.73
6.00 3.75
6. It 4.51
5.01 4.61
3.76
6.23
2.*6
2.6*
4.15
4.04
4.03
2.61
.62
.*•
• 92
.9%
.91
.00
.10
.12
4.11 .67
PONO 6
2.»>
4.50
5.47
4.75
3.66
5.6*
3.24
1.60
1.73
2.20
2.62
2.69
3.1*
EFFLUENT
2.36
3.25
4.69
4.U
1.44
4.60
2.05
1.45
1.19
1.4*
l.*6
2.*>4
3.26
All of the pond effluents showed variations in SBOD. concentrations simi-
lar to those variations in Pond Number 1 being somewhat more pronounced than
those of the other ponds (see Figure 12). A maximum separation of 6 mg/1 was
experienced between all of the pond effluent SBOD5 concentrations during
January 1976, and a minimum separation of 2 mg/1 was found during most of the
spring and early summer period. A slight general rise in pond effluent SBOD5
concentration occurred during the spring period from February to May, 1975,
with another rise occurring in June, 1975, followed by a decrease in the
effluent SBOD5 concentrations of Pond Numbers 5, 6, and 7. The other ponds
remained basically unchanged.
The sharp spring and fall effluent BOD5 peaks (see Figure 10) with little
corresponding increase in effluent SBOD5 concentration (see Figure 11), indi-
cated that the majority of the material causing these peaks is of an insoluble
nature. The spring peak can be partially attributed to settled organics
brought into circulation by the spring overturn. The fall period was charac-
terized by heavy plant growth in all of the ponds which may have provided addi-
tional insoluble BOD5.
Statistical analysis of the effluent SBOD5 concentrations for each pond
(Table 13) indicated no significant change in SBOD5 removal beyond Pond Number
4. However, all of the ponds provided significant reductions in the SBOD5
levels. By comparison with the BOD5 treatment levels achieved in the Corinne
system, it can be seen that the SBOD5 treatment efficiency is far more effec-
tive and less subject to upset.
There are no federal or state discharge standards for SBODj nor was the
system design based on any SBOD5 criteria.
In summary, removal of SBOD5 was not accomplished beyond Pond Number 4.
In general, SBOD5 concentrations are low (less than 10 mg/1) throughout the
entire lagoon system.
47
-------
200 r-
190 -
ISO -
SUSPENDED SOLIDS (mg/l)
WASTE STABILIZATION BASIN SYSTEM
CORINNE, UTAH
JAN.('75) FEB MAR APR MAY JUNE JULY AUG SEPT OCT NOV
TIME (Months)
Figure 12.
Monthly average suspended solids performance of each pond in the
Corinne Waste Stabilization Lagoon System.
48
-------
Table 13. Statistical comparison of the average yearly effluent soluble bio-
chemical oxygen demand (SBOD5) performance of each pond in the
Corinne Waste Stabilization Lagoon System.
Statistical Data
Soluble BUL>S img/u
Mean
Standard Deviation
Coeff. of Vat.
T COO1!! — \ ftftflfl
LSR(3) = 1.0000
LSR(4) = 2.0000
LSR(5) = 2.0000
LSR(6) = 2.0000
LSR(7) = 2.0000
LSR(8) = 2.0000
Influent
21.3579
15.8719
0.7431
Pondl
5.5173
2.6827
0.4862
Pond 2
4.5540
1.6391
0.3599
Pond 3
4.7327
1.5558
0.3287
Pond 4
4.0287
1.6261
0.4036
PondS
3.4426
1.4847
0.4313
Pond 6
3.4035
1.9637
0.5770
Effluent
2.8178
1.4563
0.5168
aMeans not underlined by a common line are significantly different.
Suspended Solids (SS)
The monthly average suspended solids concentration for the raw sewage
influent and the effluent for each pond in the system is reported in Table 14
and illustrated in Figure 12. A complete listing of the individual suspended
solids data is shown in Appendix B, Tables B-3.
The monthly average raw sewage influent suspended solids (SS) concentra-
tion ranged from 39.12 mg/1 in August to 119.76 mg/1 in January 1976 with a
yearly average of 71.3 mg/1. The raw sewage influent suspended solids concen-
tration was closely related to the raw sewage influent flowrate (see Figure 9).
As the raw sewage influent flowrate increased the influent raw sewage sus-
pended solids concentration tended to decrease. This relationship supports
Table 14. Monthly average suspended solids performance of each pond in the
Corinne Waste Stabilization Lagoon System.
SUSPENDED SOLIDS
MONTH INFLUENT
72. a2
75. »»
»s.7»
n. or
*!.«»
42. 5t
1».12
44.70
10».»7
"'it
*S.O»
MONTHLY AVfflAGES
res
MM.
*p*.
MIT
JUNE
JULT
AUG.
SEP.
OCT.
NO*.
DEC.
J»N-76
raw i
46.10
61.2«
55.25
61.96
74.12
55.11
*4.74
81.7*
»5.3»
85.24
*».i7
rt.rt
i*.to
POND
49.76
53.22
*0.6»
72.17
50.0*
40.lt
ro.tr
20.52
20.61
POND 1
14.21
S4.49
»7«66
t7.tr
65,53
15.JO
26.14
51.55
74.16
t«.*0
5J.»5
J5.1J
22.51
1,1.21
5A.1I
IO&.75
ra.it
11.71
5.99
5.25
26. M
J9.22
26.65
POND 5
t.ri
JO.? 5
61.66
1I«.17
64.0J
2*. 1 7
7.6k
5.67
21.00
M.67
W.6»
POND 6
11.11
?0.5J
101.51
152.03
45.01
12.10
5.46
1.47
4.*«
>.2»
14.t2
ix.ao
2«.tO
12.51
71.6*
17V.24
64. »«
.16
.92
.46
.51
• *1
.26
.02
16.07
49
-------
the notion that the raw sewage influent was significantly affected by infiltra-
tion and inflow. In general, the raw sewage influent suspended solids concen-
tration was less than expected for a typical domestic sewage.
The final effluent monthly average suspended solids concentration (Pond
Number 7) varied from 2.53 mg/1 in September to 179.24 mg/1 in April with a
yearly average concentration of 33.69 mg/1. The yearly average final effluent
suspended solids concentration (i.e. 30.2 mg/1) is somewhat misleading in that
during eight of the 13 months studied the monthly average final effluent sus-
pended solids concentration never exceeded 10 mg/1 and in fact, during only
three of the 13 months studied did the monthly average final effluent suspend-
ed solids concentration exceed 30 mg/1 (see Figure 12 and Table 14).
The peak monthly average final effluent suspended solids concentration
(179.24 mg/1 in April) occurred during the spring overturn. The effluent sus-
pended solids concentration for all of the ponds in the system increased signi-
ficantly during this period. Although the same phenomenon occurred during the
fall overturn period (November), the increase in effluent suspended solids con-
centration was not as dramatic as it was during the spring overturn. The in-
fluence of the fall overturn was found in the effluent suspended solids con-
centrations measured by Pond Numbers 1, 2, 3, and 4. The effluent from Pond
Number 1 had the highest fall concentration (95.38 mg/1). A sharp decline was
seen in the effluent from Pond Numbers 1 through 4 at the onset of cold weather.
The suspended solids concentrations plotted in Figure 12 correspond very closely
to the effluent BOD5 concentrations plotted in Figure 10.
A statistical comparison of the average monthly effluent suspended solids
concentration for each pond in the system is presented in Table 15. The anal-
ysis indicated that there was no significant difference (95 percent level) in
the effluent suspended solids concentration from Pond Numbers 4, 5, 6, and 7.
Thus, statistically, no additional suspended solids removal occurred beyond
Pond Number 4. However, inspection of Figure 12 clearly illustrates that Pond
Numbers 5, 6, and 7 did provide meaningful suspended solids removal during
September, October, November, and December. Thus, it appears that the addi-
tional ponds did provide a measure of protection during the fall overturn
period.
The suspended solids performance of the system with respect to both
federal (PL 92-500) and State of Utah requirements is illustrated in Figure 12
and reported in Table 16. The final effluent suspended solids concentration
was 30.2 mg/1 which is slightly in violation of the federal standard of 30.0
mg/1. However, the federal standard is based on the monthly average effluent
suspended solids concentration and as reported earlier during only three of
the 13 months studied was the monthly average effluent suspended solids con-
centration greater than 30.0 mg/1. Table 16 indicates the suspended solids
removal efficiency of the system. The yearly average suspended solids removal
efficiency was only 51.47 percent. However, the system failed to remove 85
percent of the raw sewage influent suspended solids concentration during only
five of the 13 months studied. The system satisfied the State of Utah's efflu-
ent suspended solids standard of 10 mg/1 during eight of the 13 months studied.
During the summer months (June to September) of peak algal activity, the final
effluent suspended solids concentration averaged 3.3 mg/1. This indicates
50
-------
Table 15. Statistical comparison of the average yearly effluent suspended
solids performance of each pond in the Corinne Waste Stabilization
Lagoon System.
Statistical Data
Suspended Solids (mg/1)
Influent
Pond 1
Pond 2
Pond 3
Pond 4
Pond 5
Pond 6
Effluent
Mean
Standard Deviation
Coeff. of Var.
LSR(2) - 9.0000
LSR<3) = 11.0000
LSR(4) = 12.0000
LSR(5) = 13.0000
LSR(6) = 14.0000
LSR(7) = 14.0000
LSR(8) = 15.0000
69.4248 65.4995 59.4109 52.1510 41.4703 36.4861 36.0178 33.6936
72.4173 24.3590 30.5959 25.9275 33.0734 46.1415 65.7585 58.8579
1.0431 0.3719 0.5150 0.4972 0.7975 1.2646 1.8257 1.7469
aMeans not underlined by a common line are significantly different
Table 16. Treatment efficiency of the Corinne Waste Stabilization Lagoon
System with respect to suspended solids (SS).
Monthly Average SS
Treatment
Month
January 1975
February
March
April
May
June
July
August
September
October
November
December
January 1976
Influent
(mg/1)
91.53
72.82
75.99
55.79
73.07
61.89
42.58
39.12
44.70
106.97
78.21
65.06
119.76
Effluent
(mg/1)
9.13
12.53
73.69
179.24
64.93
9.36
3.92
3.46
2.53
3.51
5.26
9.02
16.07
Efficiency
90.0
82.7
3.0
-221.3
11.1
84.8
90.8
91.2
94.3
96.7
93.3
86.1
86.6
that algae were not a problem in satisfying discharge requirements during the
summer months for this particular system.
Volatile Suspended Solids (VSS)
The monthly average effluent volatile suspended solids (VSS) concentra-
tion from each pond in the system is reported in Table 17 and shown graphically
51
-------
Table 17. Monthly average volatile suspended solids performance of each pond
in the Corinne Waste Stabilization Lagoon System.
VOLATILE SUSPENDED SOLIDS
NOMIH
JAN-75
FCI
NA*.
APR.
NAY
JUNE
JULY
AUG.
SEP.
OCT.
N€V.
ote.
JAN-76
INFLUENT
72.72
46.95
11.95
12.75
46.56
40.30
29.92
26.51
12.00
77.67
62.11
50.00
77.56
MONTHLY
POND 1
40.00
47^06
51.65
61.42
41.00
51.09
71.69
60.64
rt.it
57.01
21.76
15.16
AVERACES
POND 2
25.40
44.12
44.65
57.04
55.77
34.56
12.11
59.27
82.15
75.22
52.15
21.52
17.07
PONO 1
26.61
44.14
44.90
62.16
47.08
7.12
17.95
44.14
60.06
61.66
47.51
22.66
17.06
PONO 4
9.9!
40.05
43.99
67.44
51.39
8.64
3.60
3.00
21.97
33.99
17.55
26.51
20.17
PONO 5
6.11
26.21
42.26
70.00
64.01
.16
.11
.10
.02
.71
16.02
17.72
21.15
PONO 6
6 31
15.13
36.29
57.90
18.76
3.68
2.48
.68
.52
.53
.25
.34
16.50
EFFLUENT
3.00
6.41
26.69
51.79
32.49
5.16
1.86
1.57
1.01
2.13
2.42
4.21
9.94
in Figure 13.
Table B-4.
A complete listing of the data is presented in Appendix B,
A comparison of Figures 12 and 13 shows the relationship between the sus-
pended solids and volatile suspended solids levels, the VSS yearly concentra-
tions averages ranged from 54.55 mg/1 to 12.45 mg/1 for the various ponds.
Although SS and VSS show peaks during identical periods of the year, the vola-
tile portion of the SS is higher during the fall overturn period than during
the spring overturn. This indicates a higher proportion of inorganic SS
material present during the early periods of the year, particularly during
spring overturn. This increase in proportion seems to be attenuated as the
water moves through the system. Though no exact explanation was determined
for the recorded change in SS and VSS levels, one possible answer would be
that proposed by Porcella et al. (1970). During the early spring when sun-
light penetrates the lower depths of the lagoon, it is .possible for algal
growth to occur on the bottom of shallow lagoons (i.e. depth less than 1 m).
This algal photosynthesis produces gases which eventually cause the algal mat
to rise to the surface of the lagoon, increasing the SS on the surface. The
SS concentration is therefore composed of suspended algal cells from the bottom
materials transported to the surface by the rising algal mats. The bottom
algal mats which rose to the surface generally contain a high portion of in-
organic matter. Thus, this inorganic portion of the bottom materials may ac-
count for the unexplained rise in the nonvolatile portion of the spring SS
peaks.
Statistical analysis of effluent VSS concentrations from Pond Numbers 5,
6, and 7 were found to be of the same population (see Table 18). This indi-
cates that no statistically significant additional treatment in VSS removal is
attained by the ponds beyond Pond Number 5.
In summary, Figure 14 shows the wide variation of the VSS levels during
the year. All of the ponds follow patterns similar to those of the SS, the
peaks in both the SS and VSS curves being generated by the turbulence of spring
and fall mixing together with the high algal growth experienced during portions
of the year. Effective volatile suspended solids removal is not achieved
52
-------
100
•••
10
B
86
'5
65
50
O
2 "5
kl
40
I!
10
VOLATILE SUSPENDED SOLIDS (mg/l)
WASTE STABILIZATION BASIN SYSTEM
CORINNE. UTAH
m.. a ^ —'
l_^__ .^ j-w.-S'^ _». •
' i -t"""
JAN('75) FEB MAR APR MAY JUNE JULY AUG. SEPT OCT. NOV DEC JAN.C76)
TIME (Month*)
Figure 13. Monthly average volatile suspended solids performance of each pond
in the Corinne Waste Stabilization Lagoon System.
53
-------
200
190
180
170
16'
151
140
^ 130
D
|
Z 120
O
<
* 110
o
Z 100
u
9i
80
,'M
60
50
10
WASTE STABILIZATION BASIN SYSTEM
CORINNE, UTAH
/./.'.'
*'/'/ X
11 $r r--"
//// /
'#/ \\\
//// \\^ /
// A\ '
r \\ \ ' -^>
// V. \ *. x^
/
_L
__
JAN.('75) FEB MAR APR MAY JUNE JULY AUG SEPT OCT NOV DEC JAN('76)
TIME (Months)
Figure 14. Monthly average chemical oxygen removal performance of each pond
in the Corinne Waste Stabilization Lagoon System.
54
-------
Table 18. Statistical comparison of the average yearly effluent volatile sus-
pended solids performance of each pond in the Corinne Waste Stabi-
lization Lagoon System.
Volatile Suspended Statistical Data
Solids (tng/1)
Mean
Standard Deviation
Coeff.ofVar.
LSRO^ = & nnftft
LSR(3) = 7.0000
LSR(4) = 8.0000
LSR(5) = 8.0000
LSR(6) = 9.0000
LSR(7) = 9.0000
LSR(8) = 9.0000
Influent
47.8767
47.5587
0.9934
Pondl
54.5525
21.9741
0.4028
Pond 2
48.7520
29.0996
0.5969
Pond 3
41.6772
22.2124
0.5330
Pond 4
30.7698
24.5824
0.7989
Pond 5
22.3416
25.2576
1.1305
Pond 6
16.5446
22.8209
1.3794
Effluent
12.4470
19.2855
1.5494
aMeans not underlined by a common line are significantly different
beyond Pond Number 5. Currently, no state or federal discharge standard has
been established for effluent volatile suspended solids performance.
Chemical Oxygen Demand (COD)
The monthly average effluent chemical oxygen demand (COD) concentration
for each pond is presented in Table 19 and illustrated in Figure 14. A com-
plete listing of the data is found in Appendix B, Table B-5.
Pond effluent COD concentrations varied throughout the year. Pond Number
1 reached the highest effluent monthly average concentration of 178.00 mg/1 in
August 1975, while Pond Number 6 had the lowest effluent monthly average con-
centration of 42.56 mg/1 in January 1975. Yearly mean effluent concentrations
indicated a continual decline in COD as the wastewater passed through the sys-
tem. Beginning with a mean concentration of 121.52 mg/1 for the influent, a
55.3 percent reduction in COD was achieved throughout the system, the final
effluent COD concentration being 67.19 mg/1.
Each pond experienced an increase in effluent COD concentration during the
spring period following a pattern related to that of the 8005 shown in Figure
10. Following spring overturn all pond effluent COD concentrations declined
reaching a low value in June. Pond Numbers 1,2, and 3 increased rapidly to a
peak effluent concentration in September with values higher than those achieved
during the spring period with effluent monthly average concentrations ranging
from 131.8 mg/1 to 150.8 mg/1. The fall rise in the effluent COD concentration
of Pond Number 4 lagged two months behind the rise measured in the effluent of
the first three ponds. Although Pond Numbers 5,6, and 7 experienced a slight
rise in effluent COD concentrations during July,"they continued to hold to con-
centrations in the range of 45 mg/1 to 70 mg/1 throughout the remainder of the
year. With the onset of winter and ice conditions, low effluent COD values
were observed for all of the ponds with concentrations ranging from 50 mg/1 to
80 mg/1.
55
-------
Table 19. Monthly average chemical oxygen demand performance of each pond in
the Corlnne Waste Stabilization Lagoon System.
cue CMG/D
FXON CPA L»8 MONTHLY AVCIUSCS
MONTH
JAN-75
fE8
MAR.
APR.
NAT
JUKE
JULT
AUG.
SEP.
OCT.
NO*.
DEC.
JAN-/6
INFLUENT
134.13
i34.6i
121.60
108.76
10*.53
77.70
74.*r
77.05
127.10
176.00
131.7]
189.44
173.20
POND 1
It 4.64
124.96
126.20
10 7.81
117.47
91.90
110.92
1*3.89
HO.80
1*6.55
II 3.SO
19.00
61.00
POND 2
(0.33
116.58
1U. 80
101.48
109.11
86.30
111.00
113.47
148.40
133.93
102.50
87.11
52.00
PONO 3
92.67
120.6!
121.70
122.48
101.74
59.70
92.57
119.68
111.80
126.78
101.6*
90.67
53.70
PONO 4
49.67
117.11
123.51)
128.19
108.54
60.20
61.10
59.11
70.00
99.11
104.36
89.22
64.40
POND 5
51.78
108.00
108.10
121.05
94.00
61.70
67.81
51.84
48.00
«0.39
73.68
70.22
77.70
POND 6
42.56
96.18
105.30
106.10
82.79
51.00
67.62
57.21
48.89
5T.39
56.8?
62.56
67.00
62.89
75.54
97.80
97.81
M.68
49.83
65.38
61.47
51.90
51.44
51.14
5J.56
67.00
The results of the statistical analysis to determine if a significant
increase in,COD removal is accomplished as wastewater passes through the sys-
tem is reported in Table 20. The analysis indicated that there was no signi-
ficant difference (95 percent level) in COD concentrations in (i) the influent
and Pond Number 1 effluent; (ii) Pond Number 2 effluent and Pond Number 3
effluent; (iii) Pond Number 5 effluent and Pond Number 6 effluent; and (iv)
Pond Number 6 effluent and Pond Number 7 effluent. Therefore, statistically,
all of the ponds provided some measure of COD removal except Pond Number 7.
Thus, Pond Number 7 could be eliminated from the system without a significant
increase in the final effluent chemical oxygen demand concentration.
The overall reduction in the COD concentrations in the Corinne system was
55.3 percent for the entire study. COD showed the effects of spring and fall
overturns with the final two ponds in the series producing treatment of a
similar nature. Currently, there is no federal or state discharge requirement
for chemical oxygen demand.
Table 20. Statistical comparison of the average yearly effluent chemical
oxygen demand (COD) performance of each pond in the Corinne Waste
Stabilization Lagoon System.
COD (mg/l)
From EPA Lab Statistical Data
Influent
Pondl
Pond 2
Pond 3
Pond 4
PondS
Pond 6
Effluent
Mean
Standard Deviation
Coeff.ofVar.
LSR(2) = 9.0000
LSR(3) = 11.0000
LSR(4) = 12.0000
LSR(5) = 13.0000
LSR(6) = 14.0000
LSR(7) = 14.0000
LSR(8) = 15.0000
121.5198 120.5990 110.1733 106.5594 91.7624 80.5198 72.1337 67.1881
88.0774 44.8428 40.1108 37.1831 37.6875 35.0579 29.4118 25.9980
0.7248 0.3718 0.3641 0.3489 0.4107 0.4354 0.4077 0.3869
aMeans not underlined by a common line are significantly different
56
-------
Soluble Chemical Oxygen Demand (SCOP)
The monthly average effluent soluble chemical oxygen demand (SCOD) con-
centrations for each pond in the system are reported in Table 21 and illus-
trated in Figure 15. A complete listing of the data is presented in Appendix
B, Table B-6.
Influent dilution of the soluble chemical oxygen demand (SCOD) can be seen
in Figure 15 as the influent SCOD varied from 70.60 mg/1 in the winter to 35.00
mg/1 in the summer. Though SCOD levels were reduced by treatment in the pond
system, the maximum reduction occurred in Pond Number 2 rather than Pond Number
7. Yearly average effluent SCOD concentrations were 48.21 mg/1, 42.33 mg/1,
and 46.34 mg/1 for the influent, Pond Number 2 and Pond Number 7, respectively.
The effluent SCOD concentrations of each pond increased during the early
spring, just prior to the spring overturn, and throughout most of the summer.
This indicates increases in soluble organic compounds during these times of
the year. Such increases can be attributed to the biological activity in the
ponds and the output of soluble organics by the metabolic activity of the
microorganisms in the system.
The spring rise in the SCOD concentration of the effluent from each pond
occurs earlier in the year (February 1975) than does the peak for most param-
eters (April 1975). The exceptions are alkalinity and ammonia nitrogen (NH-j-N)
which also peaked early in the spring. This combination of early spring peak-
ing followed by a decline in concentrations during the period when all of the
other parameters are peaking may be explained as follows.
During the winter period biological activity becomes altered due to low
temperatures and reduced sunlight conditions. This combination generates a
low xygen condition in the lagoon water, particularly in the lower depths of
the lagoons. A slow buildup of nutrients which are not assimilated into any
microorganisms occurs. This nutrient bank supports spring growth which occurs
Table 21. Monthly average soluble chemical oxygen demand (SCOD) performance
of each pond in the Corinne Waste Stabilization Lagoon System.
coo mem CPA LAB MONTHLY AVERAGES
MONTH INFLUCMT MHO t PONO Z PONO I POND 4 POND 5 POHB 6 EFFlUENt
JAN-7S tl.lt 4Z.OO 41. ZZ 43.44 10.ZZ IS.tr 30.00 47.89
FCB 58.Z5 45.58 It.I* 52.83 SI.79 37.0* 58.88 50.5*
NAd. 42.10 38.60 42.»0 42.00 40.ZO IZ.SO 38.80 44.10
*P*. 41.86 35.Zf 13.14 32.71 13.71 38.42 34.81 36.00
NAT 3».7» 18.2* 36.8» 5».lt 11.58 37.47 31.68 36.26
JUNE 17.00 45.ZO 45.ZO 55.20 54.70 St.70 51.70 4S.SO
JULY 35.00 44.»1 46.01 52.57 51.86 56.05 57.71 57.00
AUG. 36.26 !>.21 44.8* 47.37 49.53 50.47 4».74 51.01
SEP. 48.ZO I4.JO 40.40 44.ZO 49.00 46.10 46.80 4Z.OO
OCT. 49.67 J8.8» 38.13 46.56 52.56 50.8* SO.39 46.56
NOV. 55.64 41.91 40.73 42.84 48.82 47.41 47.73 46.86
DEC. 63.78 46.64 44.33 45.11 45.78 46.67 52.11 48.44
JAN-7* 7.0.60 68.80 42.20 41.90 41.33 41.80 43.311 44.40
57
-------
100
15
90
85
TS
6!
BO
I 55
f
50
2 45
o
.: i
40
55
30
IS
10
SOLUABLE CHEMICAL OXYGEN DEMAND (SCOP, mg/l)
WASTE STABILIZATION BASIN SYSTEM
CORINNE, UTAH
J L
_,
JAN.C75) FEB. MAR. APR MAY JUNE JULY AUG SEPT OCT NOV DEC JAN ('761
TIME (Months)
Figure 15. Monthly average soluble chemical oxygen demand (SCOD) of each pond
in the Corinne Waste Stabilization Lagoon System.
58
-------
at the first increase in light and temperature levels (i.e. March). Warmer
temperatures, reduced density differentials and wind energy all assist in
causing hydraulic mixing (overturn) which provides nutrient material to the
microorganisms throughout the aquatic zone. The strong uptake of soluble
nutrients coupled with increased growth of the microorganisms causes a reduc-
tion in the available nutrients in solution. This reduction is shown in
Figures 15, 16, 17, 18, and 19 which show the variation of SCOD, alkalinity,
total phosphorus, ammonia nitrogen, and total Kjeldahl nitrogen with time.
The results of the statistical analysis to determine the effectiveness of
each pond in removing soluble chemical oxygen demand (SCOD) is reported in
Table 22.
The statistical evaluation of the ponds effectiveness in reducing SCOD
indicates the strong relationship between Pond Numbers 3 through 7. This cou-
pled with the low yearly mean of Pond Number 2 suggests the most effective
treatment is provided by the first two ponds, and that the remaining five
ponds did not provide additional SCOD removal. Currently, there is no federal
or state discharge requirement for soluble chemical oxygen demand (SCOD).
Temperature. pH. and Dissolved Oxygen (DO)
General--
Temperature, pH, and the Dissolved Oxygen (DO) concentration in the efflu-
ent of each pond were either measured in situ or on an effluent grab sample
(see Section 5: Procedures). Previous reports (Reynolds, 1971; Williford and
Middlebrooks, 1967; and McKinney, 1970) clearly indicate that these three
parameters are subject to a significant diurnal variation. Therefore, the
measurement of these parameters in this study are subject to error. However,
it is felt that analysis and discussion of the data is superior to a total
disregard of the information.
Temperature--
The average monthly effluent temperature for each pond in the system is
reported in Table 23, and a complete listing of the data appears in Appendix B,
Table B-7. Surface water temperatures are directly related to the amount of
radiant energy incident on the water surface and to the temperature of the
surrounding air. Therefore,.the highest temperatures in the liquid were mea-
sured during the summer months and the lowest during the winter periods. Temp-
eratures at the surface ranged from 0.77°C at Pond Number 2 during February
1975 to 23.37°C for Pond Number 5 in July 1975. Statistical differences in
temperatures were not found and the mean temperatures varied between 9.56 C
and 9.37°C. The influent waters were slightly warmer with a mean temperature
of 11.29°C.
The results of a statistical comparison of the effluent mean yearly
temperature from each pond of the system is reported in Table 24. Statisti-
cally the effluent temperatures of each pond were similar. However the efflu-
ent temperatures from each pond were significantly different from the raw sew-
age influent. Thus, the pond temperature does not change significantly through
the lagoon system.
59
-------
700 -
E
Z
o
LL>
u
O
o
ALKALINITY (mg/l os
WASTE STABILIZATION BASIN SYSTEM
CORINNE. UTAH
400
JAN.('75) FEB. MAR. APR. MAY JUNE JULY
TIME (Montht)
AUG SEPT. OCT. NOV DEC. JAN. ('761
Figure 16. Monthly average alkalinity (as CaC03) concentration of the raw
sewage influent and the effluent from each pond in the Corinne
Waste Stabilization Lagoon System.
60
-------
<
ir
Z 3
UJ
U
Z
o
U
TOTAL PHOSPHORUS (mg/l)
WASTE STABILIZATION BASIN SYSTEM
CORINNE. UTAH
JAN.('75) FEB. MAR. APR MAY JUNE JULY AUG SEPT OCT NOV DEC JAN ('76)
TIME (Months)
Figure 17. Monthly average total phosphorus performance of each pond in the
Corinne Waste Stabilization Lagoon System.
61
-------
(13 0)
(11.5) (15.3)
UJ
u
o
u
WASTE STABILIZATION BASIN SYSTEM
CORINNE, UTAH
-A
/ A
I
/ '
;;
i i r
JAN. ('751 FEB MAR APR MAY JUNE JULY AUG SEPT OCT. NOV. DEC. JAN ('76)
TIME (Montht)
Figure 18. Monthly average ammonia-nitrogen (NH^-N) performance of each pond
in the Corinne Waste Stabilization Lagoon System.
-------
0.45
0.40
0.35
0.30
E
£
111
0
o
u
0.25
0.20
015
0.10
005
WASTE STABILIZATION BASIN SYSTEM
CORINNE. UTAH
1 /
\ /
\ ; / / ' • \ '
\v//\^
-L - 1 - 1 - 1
1
J L
JAN.( 75) FEB. MAR. APR. MAY JUNE JULY AUG SEPT OCT NOV DEC JAN.C76)
TIME (Months)
Figure 19. Monthly average nitrite-nitrogen (NC^-N) performance of each pond
in the Corinne Waste Stabilization Lagoon System.
63
-------
Table 22. Statistical comparison of the average yearly effluent soluble
chemical oxygen demand (SCOD) performance of each pond in the
Corinne Waste Stabilization Lagoon System.
Soluble COD (mg/1)
From EPA Lab Statistical Data
Influent
Pondl
Pond 2
Pond 3
Pond 4
Pond 5
Pond 6
Effluent
Mean
Standard Deviation
Coeff . of Var.
T ci>i")*\ — o fifinn
LSR(3) = 3.0000
LSR(4) = 3.0000
LSR(5) = 4.0000
LSR(6) = 4.0000
LSR(7) = 4.0000
LSR(8) = 4.0000
48.2079 41.2624 42.3317 45.1139 46.1683 46.8911 47.0297 46.3416
24.1250 10.9001 10.2099 11.8499 13.5522 15.3207 14.2200 12.8666
0.5004 0.2642 0.2412 0.2627 0.2935 0.3267 0.3024 0.2776
Table 23. Monthly average temperature of the influent and effluent for each
pond in the Corinne Waste Stabilization Lagoon System.
TEMPERATURE (OEtKCeS
MONTH
Jin- 75
FEB
HAft.
»M.
MAT
JUNE
JULT
AUG.
SEP.
OCT.
NOV.
OEC.
JAN-76
CENTIGRADE)
INFLUENT
9.57
s.25
8.53
9.5*
10.75
11.89
15.30
15.78
16.28
12.85
10.41
9.00
6.17
MONTHLY
POND t
1.90
1.20
5. 12
8.56
11.6'
17.75
2Z.20
i».28
15.98
8.48
3.25
2.JZ
1.41
AVERAGES
roue z
1.17
0.77
4.71
7.94
ii. ez
17.81
22.84
19.75
16. ir
8.59
2.93
2.26
1.11
PONO 1
1.31
0.78
4.31
8.01
11.87
16.41
32.99
19.75
15.95
S.i*
2.«1
2.27
t.19
POND 4
1.44
0.92
4.24
7.99
11.69
16.17
21.21
20.24
16.26
S.U
J.OO
1.J6
1.05
rONO 5
i.ao
0.84
4.21
8.14
11.17
16.32
21.37
19.68
15.74
8.11
J.90
1.37
1.06
POND 6
1.91
1.15
1.87
7.91
11.7(1
17.81
22.97
19.52
15.17
8.29
3.32
1.77
1.22
EFFLUENT
2.12
1.43
4.53
7.93
11. 44
17.90
23.03
19.6?
14.92
8.14
3.30
1.67
1-51
Table 24. Statistical comparison of the yearly average temperature of the
raw sewage influent and the effluent from each pond in the Corinne
Waste Stabilization Lagoon System.
Temperature
(Degrees Centigrade)
Statistical Data
Influent
Pondl
Pond 2
Pond 3
Pond 4
Pond 5
Pond 6
Effluent
Mean
Standard Deviation
Coeff. of Var.
LSR(2) = 1.0000
LSR(3) = 1.0000
LSR(4) = 1.0000
LSR(5) = 2.0000
LSR(6) = 2.0000
LSR(7) = 2.0000
LSR(8) = 2.0000
11.2896 9.5554 9.4624 9.3683
3.7492 7.5728 7.9048 7.9839
0.3321 0.7925 0.8354 0.8522
9.4381 9.3723 9.4252 9.4827
8.0718 8.0439 7.7756 7.7128
0.8552 0.8583 0.8250 0.8134
aMeans not underlined by a common line are significantly different.
64
-------
pH—
The average monthly pH value for the raw sewage influent and the effluent
from each pond in the system is reported in Table 25, and a complete listing
of the data is in Appendix B, Table B-8. The pH values were nearly the same
for all of the ponds. The pH varied from 7.70 to 9.33 and the influent pH
yearly value averaged 8.41. On a yearly basis there was a general rise in the
pH value as the wastewater passed through the Corinne system, beginning at 8.41
for the influent and exiting at 9.36. Algal metabolism coupled with the alka-
linity of the water were primarily responsible for the variations in the pH
values in the system. The algae continually remove carbon dioxide (CO?) from
the aqueous environment causing a shift in the carbonate equilibrium and an
increase in the pH value.
The results of the statistical analysis comparing the average monthly pH
value of the raw sewage influent and the effluent from each lagoon in the
system is reported in Table 26. The statistical analysis indicated a signifi-
cant difference (95 percent level) in the values for each pond in the system.
The system failed to satisfy the federal and state effluent pH standard
(range 6.5 to 9.0) 10 out of the 13 months studied. Final monthly average
effluent pH values ranged from 8.99 to 10.13. Since these samples were taken
early in the morning (6:00 a.m. to 10:00 a.m.) it is highly possible that the
final effluent pH values were actually greater later in the day, than those
reported in this study.
Dissolved Oxygen (DO)--
The average monthly raw sewage dissolved oxygen concentration (DO) for
each pond in the system is reported in Table 27 and a complete listing of the
data is presented in Appendix B, Table B-9.
Table 25. Monthly average pH value for the raw sewage influent and the effluent from each pond in the Corinne Waste Stabilization
Lagoon System.
Monthly Averages
Influent
Pondl
Pond 2
Pond 3
Pond 4
Pond 5
Pond 6
Effluent
JAN-75
FEE
MAR
APR
MAY
JUNE
JULY
AUG
SEP
OCX
NOV
DEC
JAN-76
8.54
8.03
8.31
8.73
8.52
8.40
8,26
8.50
8.44
8.98
8.45
8.50
8.41
8.27
8.50
7.75
9.19
9.46
9.48
9.40
9.48
9.42
9.44
9.60
9.41
8.96
9.43
9.19
8.99
9.37
9.66
9.65
9.06
9.70
9.54
9.55
9.72
9.62
9.21
9.34
9.17
9.09
9.52
9.71
9.45
9.42
9.56
9.57
9.56
9.76
9.71
9.32
9.47
9.23
8.17
9.51
9.75
9.38
9.32
9.56
9.58
9,51
9.67
9.65
9.41
9.29
9.21
8.40
9.57
9.70
9.29
9.39
9.69
9.77
9.63
9.56
9.66
9.40
9.19
9.12
9.21
9.50
9.62
9.24
9.55
9.87
10.00
9.76
9.55
9.52
9.39
8.99
9.10
9.15
9.40
9.46
9.25
9.42
9.86
10.13
10.02
9.66
9.42
9.33
65
-------
Table 26. Statistical comparison of the average yearly pH value of the raw
sewage influent and the effluent from each pond in the Corinne
Waste Stabilization Lagoon System.
PH
Statistical Data
Influent
Pondl
Pond 2
Pond 3
Pond 4
Pond 5
Pond 6
Effluent
Mean
Standard Deviation
Coeff. ofVar.
LSR(2) = 0.0000
LSR(3) = 0.0000
LSR(4) = 0.0000
LSR(5) = 0.0000
LSR(6) = 0.0000
LSR(7) = 0.0000
LSR(8) = 0.0000
7.9836 8.8340 9.0907 9.1579 9.1045 9.2190 9.2751 9.2959
1.9513 2.0526 1.8734 1.7597 1.8720 1.6364 1.5119 1.3704
0.2444 0.2324 0.2061 0.1922 0.2056 0.1775 0.1630 0.1474
Table 27. Monthly average dissolved oxygen concentration of the raw sewage
influent and the effluent for each pond in the Corinne Waste
Stabilization Lagoon System.
DISSOLVED OITCEN CHS/LI
NORTH INFLUENT
JAN'7« .»»
FE8 .1*
HAR. .48
APR. .n
NAV .45
JUNE .«
JULT .17
•US. .20
SEP. .»!
OCT. .11
NOV. .89
DEC. .61
jAN-rt -tr
HONTHLT AVERAtES
P8NO 1
2.12
5.02
8.81
is.ro
16.59
14.IS
8.01
8.72
4.41
10. IT
14.06
13.44
0.48
PONO i
2.82
5.06
9.28
It.42
16.46
12. *4
5.1?
t.58
4.01
8.10
11.85
14.5*
1.44
POND 3
5.54
7.43
10.51
14.83
10. 77
o.»s
2.22
4.12
Lit
6.2*
11.74
1H.62
4.08
PONO 4
$.54
».47
10. «6
12.40
8.7»
0.90
Z.T1
4.96
I. 12
6.01
9.46
PONO 5
0.76
1.17
12.45
12.88
8.60
2.15
.84
.«8
.99
.21
.65
16.01
1.13
PONO 6
0.86
1.74
11.JZ
12.06
8.29
2.75
8.Z«
8.17
7.55
7.45
t.rr
11.86
4.97
EFFLUENT
1.42
3.98
11.17
10.30
7.57
3.15
».S!
6.5?
5.54
7.65
10.06
9.50
1.66
Dissolved oxygen levels generally decreased as the wastewater passed
through the Corinne wastewater treatment system. From an influent concentra-
tion of 3.02 mg/1, DO concentrations increased to 10.22 in Pond Number 1 and
then declined to 7.38 mg/1 in the final effluent. Monthly means as low as
0.48 mg/1 and as high as 18.62 mg/1 were recorded at various times of the year.
Samples were collected during the early hours of the morning, not long
after sunrise; therefore, it is likely that higher DO levels were actually
reached later in the day. This would also be true of the surface water temp-
eratures discussed earlier. Such trends were reported by Williford and Middle-
brooks (1967) in a study of two small lagoons which included diurnal variations,
The results of the statistical analysis comparing the yearly average of
dissolved oxygen concentrations of the raw sewage influent and the effluent
66
-------
from each pond in the system is reported in Table 28. The results indicated
no significant increase (95 percent level) in dissolved oxygen concentrations
between Pond Number 3 to Number 7. However, because of the nature of sampling,
this should not be interpreted as meaning that Pond Number 3 to Number 7 do not
affect the dissolved oxygen concentration.
In general, temperature, pH, and DO levels fluctuated throughout the year
as would be expected. Since diurnal and depth profiles were not performed for
these three parameters no further discussion will be presented, and the reader
is referred to the article by Williford and Middlebrooks (1967).
Alkalinity (as CaC03)--
The mean monthly alkalinity (as CaCX^) of the raw sewage influent and the
effluent from each pond in the system is reported in Table 29 and illustrated
in Figure 16. A complete listing of the data is contained in Appendix B,
Table B-10.
Alkalinity is an indication of the buffering capacity of a given water.
Alkalinity is expressed in various forms, but usually as calcium carbonate
(Ca003). The mean concentration of alkalinity in the Corinne system ranged on
a monthly average from 552.56 mg/1 to 579.24 mg/1, Pond Number 1 being the low-
est and Pond Number 6 being the highest. Water entered the system with a mean
alkalinity of 560.02 mg/1. Calculations utilizing these figures reveal the
reduction in alkalinity of Pond Number 1 to be 1.4 percent. The mean final
effluent alkalinity of 569.27 mg/1 (Pond Number 7) is 1.7 percent higher than
the alkalinity in the raw sewage influent.
The influent alkalinity reached a high mean monthly concentration of 618.7
mg/1 in March and a low mean monthly concentration of 439.89 mg/1 in October.
All of the ponds followed the same general pattern with a high point occurring
Table 28. Statistical comparison of the dissolved oxygen concentration of the
raw sewage influent and the effluent from each pond in the Corinne
Waste Stabilization Lagoon System.
Statistical Data
uissorvea oxygen img/i
Mean
Standard Deviation
Coeff.ofVar.
LSR(2) - 1.0000
LSR(3) = 1.0000
LSR(4) = 1.0000
LSR(5) - 1.0000
LSR(6) = 1.0000
LSR(7) = 1.0000
LSR(8) = 1.0000
1)
Influent
3.0230
1.3203
0.4368
Pondl
10.2174
7.1237
0.6972
Pond 2
9.3891
6.6076
0.7038
Pond 3
7.8405
6.0622
0.7732
Pond 4
7.6872
5.2739
0.6861
Pond 5
7.0857
4.9639
0.7005
Pond 6
7.5447
4.1608
0.5515
Effluent
7.3766
3.7261
0.5051
aMeans not underlined by a common line are significantly different.
67
-------
Table 29. Monthly average alkalinity (as CaC03) concentration of the raw sew-
age influent and the effluent from each pond in the Corinne Waste
Stabilization Lagoon System,
ALKALINITY
-------
Table 30. Statistical comparison of the alkalinity (as CaCC^) concentration
in the raw sewage influent and the effluent from each pond in the
Corinne Waste Stabilization Lagoon System.
Statistical Data
Alkalinity (mg/1)
Influent
Pond 1
Pond 2
Pond 3
Pond 4
Pond 5
Pond 6
Effluent
Mean
Standard Deviation
Coeff. ofVar.
LiK(2) — ZU.UUUU
LSR(3) = 24.0000
LSR(4) = 27.0000
LSR(5) = 28.0000
LSR(6) = 30.0000
LSR(7) = 31.0000
LSR(8) = 32.0000
560.0248 552.5644 552.8663 553.5990 553.1287 559.9376 579.2426 569.2673
97.2875 97.2829 91.5938 105.3176 104.3860 121.3604 101.6226 119.7335
0.1737 0.1761 0.1657 0.1902 0.1887 0.2167 0.1754 0.2103
aMeans not underlined by a common line are significantly different.
Table 31. Monthly average total phosphorus performance of each pond in the
Corinne Waste Stabilization Lagoon System.
TOTAL PHOSPHORUS CNC/LI
HOHTH
FROM CPA LAS NOIIIHI.V AVERAGES
INFLUENT
POND I
POND Z
POND 3
POND 6
EFFLUENT
JAN-75
FEi
MAR.
APR.
MAT
JUNE
JOLT
AUG.
SEP.
OCT.
NOV.
occ.
JAN-76
5.46
4.40
z.06
3. 42
4.14
2.78
Z.*6
1.97
4.60
5.59
4.82
4.69
5.00
3.04
2.07
2.03
2.1*
2.J6
Z.65
Z.6Z-
3.11
3.61
4.11
4.52
.72
.59
.10
.95
.rf
.00
Io9
.10
.00
.11
.72
.35
3.39
1.21
3.01
2.62
2.30
1.70
1.77
1.86
Z.65
2.05
l.<7
3.59
3.00
2.65
2.63
1.77
1.36
z!»
2.91
3.41
1.96
1.Z4
1.05
3.02
2.43
Z.70
2.04
1.Z4
1.14
1.9Z
Z.49
3.22
3.66
Z.71
1.15
z.oa
2.57
2.69
olos
1.00
1.61
2.17
1.03
2.01
2.09
Z.08
2.90
2.52
2.61
1.90
0.76
0.74
1.10
2.84
1.09
caused a continual reduction in the total phosphorus concentrations. During
the fall overturn period the total phosphorus concentrations reach their low-
est level at 0.74 mg/1 for Pond Number 7.
Heavy macrophyte growth was found in all of the ponds, except Pond Number
1, during the late summer and fall periods. The vegetation occupied all
regions of the lagoon water, providing support for a heavy surface algal mat,
and serving as a possible phosphorus sink. Cold nights, especially those in
the fall, would cause the mat to sink down into the pond. The macrophyte
material would then be subject to decomposition, becoming a phosphorus source.
The results of the statistical analysis to compare the removal of total
phosphorus for each pond in the system is reported in Table 32. The results
indicate a significant (95 percent level) in reduction of total concentration
69
-------
Table 32. Statistical comparison of the average yearly effluent total phos-
phorus performance of each pond in the Corinne Waste Stabilization
Lagoon System.
Total Phosphorus (mg/1)
From EPA Lab Statistical Data
Influent
Pondl
Pond 2
Pond 3
Pond 4
Pond 5
Pond 6
Effluent
Mean
Standard Deviation
Coeff. of Vai.
LSR(2) = 0.0000
LSR(3) = 0.0000
LSR(4) = 0.0000
LSR(5) = 0.0000
LSR(6) = 0.0000
LSR(7) = 0.0000
LSR(8) = 0.0000
3.9886 3.3777 2.9629 2.8337 2.6406 2.4757 2.2277 2.0569
1.9473 1.1456 1.0829 1.0056 1.0178 0.9370 0.9299 0.8957
0.4882 0.3392 0.3655 0.3549 0.3854 0.3785 0.4174 0.4355
as the wastewater passes through the system. The influent raw sewage yearly
average total phosphorus concentration was 3.99 mg/1 while the final effluent
total phosphorus concentration was 2.06 mg/1.
Ammonia-Nitrogen (NH3-N)--
The average monthly and yearly ammonia-nitrogen (NH^-N) performance of
the system is reported in Table 33 and Table 34, respectively. The average
monthly ammonia-nitrogen (NH3-N) performance is illustrated in Figure 18. A
complete listing of the data appears in Appendix B, Table B-12.
Table 33. Monthly average ammonia-nitrogen (NH^-N) performance of each pond
in the Corinne Waste Stabilization Lagoon System.
NH3-N (mg/1)
Run
JAN(75) -
FEE
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
JAN(76)
From EPA Lab Monthly Averages
Influent
13.0
8.0
6.8
6.4
6.7
3.9
3.4
4.4
9.9
7.7
9.7
11.5
15.3
Pondl
4.6
4.5
3.0
0.6
0.3
0.4
0.2
0.2
0.1
0.7
0.9
3.0
6.6
Pond 2
2.5
3.1
3.0
0.8
0.1
0.3
0.1
0.2
0.1
0.2
0.2
1.3
4.1
Pond 3
1.4
1.7
2.7
0.6
0.4
1.6
0.4
0.1
0.1
0.3
0.2
0.5
2.8
Pond 4
0.9
0.6
2.3
0.6
0.6
1.9
0.6
0.1
0.1
0.5
0.5
0.3
1.9
Pond 5
1.1
0.4
0.7
0.3
0.5
1.7
0.7
0.1
0.1
0.3
0.7
0.3
1.2
Pond 6
0.4
0.1
0.7
0.4
0.1
1.3
0.3
0.1
0.1
0.2
0.2
0.1
0.3
Effluent
0.2
0.1
0.4
0.2
0.1
1.2
0.2
0.1
0.1
0.3
0.2
0.1
0.1
70
-------
Table 34. Yearly average ammonia-nitrogen (Nl^-N) performance of each pond
in the Corinne Waste Stabilization Lagoon System.
NH3-N (mg/1)
Mean
Influent
8.18
Pondl
1.93
Pond 2
1.23
Pond 3
0.98
Pond 4
0.84
PondS
0.62
Pond 6
0.33
Effluent
0.25
During the entire year NH--N concentrations remained very low for the
whole Corinne system, ranging from 1.93 mg/1 in the Pond Number 1 effluent to
0.25 mg/1 in the Pond Number 7 effluent. The yearly mean influent concentra-
tion was 8.18 mg/1. The influent NH-j-N variation shown in Figure 18 was in-
fluenced by dilution during the irrigation season. The mass of incoming NI^-N
remained relatively constant and varied with the degree of dilution of the raw
wastewater.
Except for the winter period, November to March, 1975, the levels of NHo-N
were very low throughout the system with the exception of a small peak in the
month of June 1975. This pattern shows the influence on NH3-N by the micro-
organisms of the system during the season of high biological activity which
occurred, March through October, 1975. Overturns in April and September, 1975,
apparently had little influence on the NH3-N concentrations.
The June 1975 peak, reached 1.9 mg/1 in the effluent of Pond Number 4 and
is possibly due to the increased biological activity at the lower depths of
the lagoon. With the spring temperature increase reaching the lower depths,
decomposition activities would increase and cause a general rise in Nl^-N
levels prior to stratification. Upon stratification NH3~N in the lower levels
of the lagoons would be trapped by the density differential and be restricted
to the hypolimnion until fall overturn. Destratification accompanying fall
overturn would release trapped NH^-N to mix with the entire pond water mass
and generate a rise in NH3-N levels. However, all Nt^-N released into the sys-
tem would be assimilated by microorganisms in the lagoon. Therefore, no in-
crease in NH3-N concentration would occur. Winter conditions would result in
a reduction in activity which would then be followed by a rise in the NH3~N
levels. A pattern of change similar to the one discussed here can be found
in Figure 18 which represents the monthly averages for NI^-N measured in the
Corinne Lagoon System.
The NH3*N concentrations are characterized by the influence of influent
dilution and the lack of influence from the overturn periods. Most influential
would appear to be the levels of biological activity in the system, with the
biological activity being dependent on NH3~N as a primary nutrient source.
Nitrite Nitrogen (N02-N)--
Nitrite nitrogen (N02'N) is a form of inorganic nitrogen both generated
and reduced by the action of various bacteria. Due to this action the presence
of N02«N can be thought of not only as a nitrogen intermediate but also as an
indicator of bacterial activity, or the lack of such activity.
71
-------
Mean monthly concentrations of NC^-N found in the Corinne system are pre-
sented in Table 35 and Figure 19. Mean yearly effluent concentrations for each
pond in the system are shown in Table 36. The precision of the automatic
analysis equipment utilized at the Environmental Protection Agency Laboratory
was limited to 0.1 ppm (0.1 ing/1). Therefore, concentrations below 0.1 mg/1
were recorded as 0.1 mg/1 (less than 0.1 mg/1). All mean monthly concen-
trations and statistical calculations for the NC^-N data were estimated using
0.01 mg/1 for all values recorded as 0.1 mg/1. A complete listing of the
data is found in Appendix B, Table B-13.
Yearly effluent mean concentrations of NC^-N ranged from 0.05 mg/1 to
0.02 mg/1 for Pond Numbers 1 and 2, respectively, with a raw sewage influent
concentration of 0.21 mg/1. The majority of the variations in the pond efflu-
ents N02'N concentrations occurred below the level of sensitivity of the analy-
sis; therefore, little significance can be attached to the variations.
Influent NO£-N concentrations varied widely and the variation was, at
least in part, influenced by dilution during the irrigation system. The low
levels of NO£-N observed during the fall period along with the low effluent
Table 35. Monthly average nitrite-nitrogen (N02-N) performance of each pond
in the Corinne Waste Stabilization Lagoon System.
NOj-N (mg/1)
Run
JAN(75)
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCX
NOV
DEC
JAN(76)
From EPA Lab Monthly Averages
Influent
0.14
0.36
0.28
0.22
0.16
0.34
0.20
0.32
0.08
0.04
0.04
0.22
0.27
Pondl
0.01
0.12
0.17
0.05
0.01
0.08
0.01
0.01
0.06
0.01
0.01
0.08
0.02
Pond 2
0.01
0.06
0.10
0.04
0.01
0.02
0.01
0.01
0.04
0.02
0.01
0.05
0.12
Pond 3
0.01
0.03
0.13
0.01
0.06
0.07
0.04
0.02
0.03
0.02
0.01
0.05
0.06
Pond 4
0.01
0.02
0.07
0.01
0.02
0.11
0.13
0.01
0.06
0.02
0.01
0.03
0.06
Pond 5
0.05
0.01
0.04
0.01
0.01
0.07
0.05
0.01
0.06
0.02
0.04
0.09
0.12
Pond 6
0.01
0.01
0.03
0.01
0.01
0.05
0.03
0.01
0.04
0.01
0.01
0.01
0.08
Effluent
0.07
0.01
0.04
0.01
0.02
0.01
0.02
0.01
0.07
0.01
0.01
0.01
0.02
Table 36. Yearly average nitrite (N02-N) performance of each pond in the
Corinne Waste Stabilization Lagoon System.
NO2-N (mg/1) Influent Pond 1
Mean
0.21
0.05
Pond 2
0.04
Pond 3
0.04
Pond 4
0.04
Pond 5
0.04
Pond 6
0.02
Effluent
0.02
72
-------
concentrations of NO^-N and high NH-j-N effluent concentrations for the same
period indicate that all of the free inorganic nitrogen is in the ammonia-
nitrogen form.
Further studies using analytical techniques of higher sensitivity are
needed in order to determine the variation of NC^-N concentrations in the
Corinne system.
Nitrate Nitrogen (N03-N)--
The mean monthly NC^-N concentrations for the effluent from each pond in
the system are presented in Table 37 and the yearly average pond effluent NC^-
concentrations are reported in Table 38 and Figure 20 shows the variation in
N03-N concentration with time for all ponds. A complete listing of the
nitrate-nitrogen data is found in Appendix B, Table B-14. As was mentioned in
the discussion on nitrite nitrogen, limited discussion of the NC^-N data is
possible due to the nature of the analytical technique employed.
There is evidence of an increase in NC^-N concentration at only one point
in the year; the spring overturn period. The peak concentration was 4.5 mg/1.
Table 37. Monthly average nitrate-nitrogen (NC^-N) performance of each pond
in the Corinne Waste Stabilization Lagoon System.
NO3-N (mg/1)
Run
JAN(75)
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
JAN(76)
Monthly Averages
Influent
0.2
1.49
2.80
4.50
2.41
1.94
0.70
0.40
0.80
0.15
0.21
0.41
0.40
Pondl
0.01
0.08
0.60
0.65
0.03
0.10
0.05
0.02
0.02
0.02
0.08
0.01
0.01
Pond 2
0.01
0.06
0.34
0.34
0.01
0.01
0.05
0.02
0.02
0.02
0.01
0.01
0.01
Pond 3
0.01
0.02
0.20
0.10
0.03
0.08
0.06
0.02
0.06
0.01
0.01
0.05
0.05
Pond 4
0.01
0.02
0.12
0.01
0.01
0.01
0.07
0.02
0.03
0.01
0.01
0.01
0.05
Pond 5
0.01
0.02
0.12
0.01
0.01
0.02
0.06
0.02
0.03
0.02
0.01
0.01
0.01
Pond 6
0.01
0.02
0.06
0.01
0.01
0.01
0.06
0.03
0.04
0.02
0.01
0.01
0.01
Effluent
0.08
0.03
0.05
0.01
0.01
0.01
0.02
0.01
0.06
0.02
0.01
0.01
0.01
Table 38. Yearly average nitrate-nitrogen (N03-N) performance of each pond in
the Corinne Waste Stabilization Lagoon System.
N03-N (mg/1) Influent
Mean
1.04
Pond 1
0.13
Pond 2
0.07
Pond 3
0.05
Pond 4
0.03
Pond 5
0.03
Pond 6
0.02
Effluent
0.03
73
-------
(1.49) (2.80) (4.50) (2.41) (1.94)
I.Oi-
0.9 -
N03-N
WASTE STABILIZATION BASIN SYSTEM
CORINNE, UTAH
JAN.('75) FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC JAN. ('76)
TIME (Month*)
Figure 20. Monthly average nitrate-nitrogen (NC^-N) performance of each pond
in the Corinne Waste Stabilization Lagoon System.
74
-------
A possible explanation for the increase in the NC^-N concentration is the
addition of snowmelt and runoff from spring rains which would contain rela-
tively high concentrations of N03-N. Feedlot and agricultural land runoff
would contain adequate NC>3-N to account for the increase observed. This influx
of nutrient from outside sources would continue throughout the year and be
especially strong during the irrigation season. However, during that same
period heavy biological activity in the pond system would assimilate most of
the incoming nutrient. All of the pond effluents have very low concentrations
of N03-N throughout the majority of the year, indicating the possibility of
nitrogen limitation in the Corinne system.
Total Kjeldahl Nitrogen (TKN) —
The Kjeldahl method is used to determine the organic nitrogen concentra-
tion and NH3-N concentration. Total Kjeldahl nitrogen - ammonia nitrogen =
organic nitrogen. Monthly mean TKN concentrations for the raw sewage influent
and the effluent from each pond are summarized in Table 39 and Figure 21 shows
the variation in TKN concentrations with time for the Corinne system. A com-
plete listing of the data is shown in Appendix B, Table B-15.
Figure 21 shows the influence of both spring and fall overturn on the TKN
concentration of effluent from each pond. Similarities between the TKN varia-
tion and the variation in total phosphorus concentration can be seen by com-
paring Figures 17 and 21. During the spring overturn the effluent TKN concen-
trations from each pond increased with the input of nutrients from the bottom
areas of the lagoons. The general spring peak occurred in March 1975 and
reached a monthly average concentration of 11.97 mg/1 for the effluent from
Pond Number 2. The TKN concentration peak occurred one month prior to the main
spring peak reached in April 1975 by the majority of the parameters. Following
the March 1975 peak, TKN levels declined as nitrogen compounds were utilized
to support biological growth. The availability of additional organic nitrogen
was shown during the fall period by staggered increases in the TKN concentra-
tions beginning with the effluent from Pond Number 1 in August 1975 and con-
tinuing through to Pond Number 5 in November 1975. These increases were not
as significant as those observed in the spring period, but they did reach a
Table 39. Monthly average Total Kjeldahl Nitrogen (TKN) performance of each
pond in the Corinne Waste Stabilization Lagoon System.
TUN CNG/L>
FROM EPA LAB MONTHLY AVERAGES
MONTH
JAM-?*
FEB
MA*.
AP«.
MAT
JUNE
JULY
AUG.
SEP.
OCT.
««».
DEC.
JA«-/t
INfLUCNI
tO HO I
It. II 14.04 8.87 7.1*
IS. SO 15.25 12.17 10. Si
1Z.2* ll.» 11.97 U.SI
1Z.19
U.SI
10. IS
r.is
».ts
13.77
14.18
17. J2
ZZ.77
.70
.45
.70
.to
.ts
.07
.IZ
.48
.01
.11
.as
.94
.56
.09
.6!
.15
*B2
.01
.87
,87
.57 7.18
•92 t.75
.94 5.72 4.47
2J.97 ll.M 7.80 7.0!
1.56
8.4*
10.60 1
9.26
5.71
5.09
z.ao
z.za
1.01
- S.6Z
6.46
4.74
7.41
.48
.74
.58
.55
.**
.81
.87
.as
.47
.48
.97
.81
.99
POND *
Z.10
4.«7
7.95
7.25
4.ZJ
I.It
Z.50
1.7*
I.4Z
1.5*
1.91
EFFtUtKT
1. 10
s.n
5.92
I. 97
J.60
Z.J7
i.7z
no
1.44
1.40
1.9«
1.77
75
-------
22
20
— 14
Z
o
10
o
u
TOTAL KJEIDAHL NITROGEN (TKM-mg/l)
WASTE STABILIZATION BASIN SYSTEM
CORINNE, UTAH
JAN. ('75) FEB. MAR APR. MAY JUNE JULY AUG SEPT OCT. NOV. DEC JAN. ('76)
TIME (Month!)
Figure 21. Monthly average Total Kjeldahl nitrogen (TKN) performance of each
pond in the Corinne Waste Stabilization Lagoon System.
76
-------
maximum concentration of 8.65 mg/1 for the effluent from Pond Number 1 during
August 1975. The effluents from Pond Numbers 6 and 7 showed no significant
changes in TKN concentrations during the fall overturn.
Ice cover and low light levels predominated from December 1975 onward into
the winter and caused a decrease in biological activity. With the utilization
of the organic nitrogens reduced, a corresponding buildup followed until the
following spring and the return of higher levels of biological activity.
Yearly means for TKN ranged from 14.07 mg/1 in the raw sewage influent to
2.95 mg/1 in the final effluent. The most significant reduction in TKN occur-
red in Pond Number 1 where the yearly effluent mean concentration was reduced
to 9.43 mg/1, a reduction of 33 percent. Statistically each pond provides im-
provement over the previous pond except for the change between Pond Number 6
and the final effluent at Pond Number 7. The reduction in TKN between those
two ponds is less than 1.0 mg/1 (see Table 40).
In summary, changes in TKN concentrations as the wastewater flows through
the Corinne system shows nutrient usage throughout the yearly cycle. Winter
accumulation is followed by spring release and heavy summer assimilation by
the microorganisms. The pattern of concentration is very similar to that shown
for total phosphorus in Figure 17.
Algae--
Samples from the wastewater stabilization lagoons were examined for algal
content, both type and quantity, on a regular basis. Figure 22 graphically
refers to the total algal concentration (#/ml) found in the system. Table 41
contains the monthly averages from which Figure 22 was prepared. A complete
listing of the algae by genera identified in the system is found in Appendix C,
Table C-1.
Table 40. Statistical comparison of the average yearly Total Kjeldahl Nitro-
gen (TKN) performance of each pond in the Corinne Waste Stabiliza-
tion Lagoon System.
From EPA Lab Statistical Data
i iv« Ullg/ U
Mean
Standard Deviation
Coeff.jofVar.
LSR(2) = 1.0000
LSR(3) = 1.0000
LSR(4) = 1.0000
LSR(5) = 1.0000
LSR(6) = 1.0000
LSR(7) = 1.0000
LSR(8) = 1.0000
Influent
14.0698
7.5890
0.5394
Pondl
9.4297
3.9628
0.4203
Pond 2
7.7772
3.0476
0.3919
Pond 3
7.0153
2.8312
0.4036
Pond 4
5.8807
3.1564
0.5367
PondS
4.7386
3.3449
0.7059
Pond 6
3.5767
2.3660
0.6615
Effluent
2.9495
1.9929
0.6757
Means not underlined by a common line are significantly different.
77
-------
Z 4
O
O
u
TOTAL ALGAL CONCENTRATION (»/ml)
WASTE STABILIZATION BASIN SYSTEM
CORINNE. UTAH
INFLUENT
POND * I
" *2
" 03
" *5
EFFLUENT
JAN.('75) FEB. MAR. APR. MAY JUNE JULY AUG. SEPT. OCT. NOV. DEC JAN ('76,
TIME (Months)
Figure 22. Total algal concentration in the raw sewage influent and the efflu-
ent from each pond in the Corinne Waste Stabilization Lagoon System.
78
-------
Table 41. Monthly average algal concentration in the raw sewage influent and
the effluent from each pond in the Corinne Waste Stabilization La-
goon System.
Jan (75)
Feb
Mai
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan (76)
Influent
5,981
29,435
2,644
4,880
8,121
5,703
44,580
41,447
28,848
38,446
1,176
1,999
1,698
Pondl
84,455
68,561
69,926
387,222
761,424
598,192
974,904
2,026,738
2,839,864
2,181,970
316,800
65,460
55,533
Pond 2
43,212
47,783
86,137
613,774
375,151
356,220
690,606
1,291,640
3,165,489
2,482,890
396,573
98,392
70,560
Pond 3
44,323
41,408
93,358
514,328
3,713,165
33,664
35,419
1,119,552
3,056,620
1,151,030
239,120
103,880
82,973
Pond 4
20,320
31,998
88,478
530,376
1,045,650
1,491
13,813
15,783
398,477
706,090
82,320
70,168
63,373
Pond 5
6,299
25,771
85,994
563,666
980,850
6,409
4,728
12,147
22,432
29,241
18,038
35,533
39,200
Pond 6
5,537
22,031
59,315
418,264
464,014
3,346
1,746
13,144
751
465
11,054
48,098
30,053
Effluent
3,251
14,795
63,438
603,005
299,423
3,244
1,781
14,817
375
230
6,919
25,911
14,373
Mean
16,535 802,388 747,571 776,205 236,025 140,792
82,909
80,889
Total Algal Concentrations in #/ml.
As shown in Figure 22 the concentration of algae in the influent generally
remained lower than in any of the ponds. For most of the year influent algae
levels were from 1,000 to 10,000 organisms/ml. The most consistently dominant
species in the influent algal flora for the year 1975 were blue-greens with
Oscillatoria and Microcvstis being the major forms present. Microcvstis was
found in greater numbers two out of three times when blue-greens dominated and
is characteristically found in eutrophic hard water lakes.
Spring thaw, February to May, resulted in rising influent flows and
corresponding dilution in algal concentrations of the influent. By mid-July
however, algal concentrations in the influent peaked at about 45,000 counts/ml
and many green algae could be found in high numbers with Scenedesmus being most
frequently encountered. During the year algal concentrations in the ponds
ranged up to three orders of magnitude higher than those of the influent.
In all of the ponds low winter counts, ranging from 5,000 to 100,000
counts/ml, were dominated by the green algae Phacotus^ with Scenedesmus and the
blue-green algae Oscillatoria and Microcvstis also being encountered in high
numbers. These four species generally represented over 75 percent of the total
population.
A strong surge of algal growth followed the low winter period with
Scenedesmus being the dominant form. Growth was steady and equal throughout
all of the ponds until May 1975 when pond algal concentration diversified.
Dominant algal form in all ponds in early May was Scenedesmus. By late May,
however, blue-green algae were dominant in all but Pond Numbers 1 and 2.
Rapid growth in Pond Numbers 1, 3, 4, and 5 occurred in May with decreased
growth in Pond Numbers 2, 6, and the effluent. All but Pond Number 2 decreased
to a low point in June 1975 with Scenedesmus, the dominant algae in Pond
79
-------
Numbers 1, 2, and 3, Microcystis dominant in Pond Numbers 4 and 5, and a
yellow-brown alga Cryptomonas being dominant in Pond Number 6 and the effluent.
All ponds except Pond Number 6 showed an increase in algal concentration
from July to October with green algae, especially Scenedesmus as the dominant
alga. Late summer and the end of irrigation season caused the influent to
become more concentrated. Following this concentrating and accompanying fall
turnover, algal counts peaked, ranging from 3,000,000 counts/ml in September
for Pond Number 2 to 30,000 counts/ml in October for Pond Number 5. This was
also accompanied by increase in the BOD5 levels of all the ponds except Pond
Number 6 and effluent. During this same period Pond Number 6 and effluent
dropped to a low of 500 counts/ml with Microcvstis1 and Cryptomonas being the
most common algae encountered.
By December 1975 and the onset of winter conditions, all ponds returned
to approximately the same levels as those recorded for the previous winter.
The dominant algae were Scenedesmus and Chlamvdomonas as opposed to Phacotus
of the previous year.
Pond Number 5 showed little rise in algal concentration during the fall
period. Pond Numbers 6 and 7 fell in concentration at this time. A possible
explanation for these actions is the effect of aquatic plant growth during the
period in question. Heavy growth of aquatic plants occurred in these three
ponds during the period from June 1975 to late November 1975. As the plants
reached the surface of the lagoon large mats of algae and other material
collected to form a light barrier. Under these conditions the growth of algae
and other microorganisms was severely impaired and may account for the actions
of the algae in Pond Numbers 5, 6, and 7 during the late summer and fall
period.
Tolypothrix was the only blue-green alga present with nitrogen-fixing
capability. This presence was limited to the influent during September, 1975,
and Pond Numbers 2 and 3 during October, 1975. Analysis of the concurrent
nitrogen data did not result in an overall significant correlation between
increasing N03-N concentrations and the increasing Tolypothrix population.
However, in the influent only during the month of September, 1975, there was
a visible increase in NO^-N in the presence of Tolypothrix growth, when com-
pared with the N03-N levels of the surrounding months.
As with the Tolypothrix data above, it appeared that the blooms of some of
the dominant algal genera originated in the influent or primary ponds. These
blooms may have served as inoculum for the subsequent blooms in the secondary
ponds.
The number of algae per milliliter in each pond when tested in a ran-
domized block design which was blocked on the basis of time yielded an F value
of 1.000175 with 7/7 degrees of freedom. This displayed that there was not a
significant difference in total number of algae per ml in any of the ponds.
But this did not take into account the difference in algal genera or phyla
present which could result in a different phytoplanktonic impact on each pond.
80
-------
Fecal Coliform--
The results of 12 months of monitoring the fecal coliform die-off in the
waste stabilization lagoon system located in Corinne, Utah are shown in Figure
23 for the primary, secondary and tertiary cells. Comparable influent counts
are shown in Figure 24. A complete listing of the data is recorded in
Appendix D, Table D-1.
Incident solar radiation, recorded at the Utah State University weather
station, approximately 48 km (30 mi.) away, is shown in Figure 25 (see Appendix
E, Table E-1). Although the USU weather station is in the adjacent valley, it
is the closest station recording solar radiation to the Corinne system. Some
error in the application of these data to the Corinne system might occur. How-
ever, general trends should be similar.
In general, the fecal coliform number in each of the 3 lagoons plotted
stayed within two log scales throughout the year. The most noticeable excep-
tions occurred in January and February under ice cover when the numbers in-
creased by one order of magnitude in each pond. In June, the numbers decreased
by one log scale. These effects were most noticeable in the secondary and
tertiary ponds." These ponds received relatively stable flows compared to the
primary pond which was subject to large variations in flow and influent fecal
coliform concentrations.
The daily and weekly fluctuations which occurred in the ponds throughout
the year followed the same pattern for all 3 ponds.
Comparison of the solar data with the fecal coliform numbers in the lagoons
shows that, in June, solar radiation was at a maximum when the fecal coliform
count was at a minimum. Conversely, in January and February, the solar radia-
tion was at a minimum when the 'counts were at a maximum. Also, in January and
February, the lagoons were iced over and anaerobic at times (Appendix E, Table
E-1).
Temperature data (Appendix E, Table E-1) for the lagoons indicated that
spring overturn started in early March. By March 12, overturn ended and the
waters warmed. However, about March 25, pond temperatures fell again and
another overturn period occurred with the pond water warming to greater than
4°C by April 5.
The two overturn periods were reflected in the fecal coliform counts dur-
ing March. During the first overturn period in early March, fecal coliform
counts increased. The period between overturns showed decreased numbers of
fecal coliforms with the count increasing during the second overturn period
and dropping again afterwards. Increased counts during overturn could be the
result of the circulation of organisms which had settled or due to the short
exposure times of the circulating organisms to solar radiation. Increased
nutrient concentrations during overturn could also decrease die-off by provid-
ing substrates for these organisms. The effects of fall overturn are not
readily apparent in the fecal coliform data.
81
-------
oo
Wf W/
POND 2
POND 3
' A •'',
\/v> r ,
V !},%' !fl/
ilif fii1/
JUNE JULY ' AUGUST
1975
DECEMBER ! JANUflR*
i 1976
Figure 23. Fecal coliform counts in Pond Numbers 1, 2, and 3 of the Corinne Sewage Lagoon System,
Corinne, Utah (January 23, 1975-January 30, 1976).
-------
00
I '
i
en
5 *
JANUARY
1 FEBRUARY '
MARCH
1 AW»L 1
MAY
' JUNE
1 JULY
1975
1 AUGUST
1 SEPTEMBER
OCTOBEB
1 NOVEMBER ' DECEMBER
JANUARY
1976
Figure 24. Fecal coliform counts in the influent to the Corinne Sewage Lagoon System, Corinne, Utah
(January 23,1975-January 30, 1976).
-------
SOLAR RADIATION
00
aoo-
roo-
600-
500-
400-
500-
200-
IOO-
JUNE JULV
1975
SEPTEMBER ' OCTOBER
Figure 25. Incident solar radiation from January 1-December 31, 1975, recorded at Utah State University,
Logan, Utah.
1 Langley = 1 gram calorie/cm2.
-------
Throughout the year, a period of high or low solar radiation occurred
which was reflected in the fecal coliform numbers in the lagoons. Most daily
fluctuations in radiation are not discernible in the lagoon fecal coliform
data.
A sharp increase in solar radiation was recorded from May 13-15 and a
corresponding decrease in fecal coliform numbers occurred on sample day May 16.
June 16-21 showed a decrease in incident solar radiation which was reflected in
increased fecal coliform numbers for sampling days June 18 and 21. Both cases
appear to have a lag period between the change in radiation and the appearance
of the effect in the bacteria data. However, since daily fecal coliform
sampling did not occur, it is not possible to conclude that a lag phase is
present. The lag could be due to the flow in the system.
The mean monthly fecal coliform bacteria concentration for the raw sewage
influent and the effluent from each pond in the system is illustrated in Figure
26. At no time during the 13 month study period did the final effluent fecal
coliform concentration exceed the federal effluent fecal coliform standard of
200 colonies/100 ml, or the State of Utah effluent fecal coliform standard of
20 colonies/100 ml. As Figure 26 indicates both the federal and State of Utah
effluent discharge requirements for fecal coliform were satisfied after the
wastewater had passed through the third pond in the system. The coliform
removal in the Corinne system is due solely to natural forces since disinfec-
tion of the effluent is not practical.
Fecal Streptococci Reduction--
Fecal streptococci counts on the primary, secondary and tertiary ponds
are presented in Figure 27. Data for the influent (Figure 28) and Pond Numbers
4, 5, 6, and 7 (Figure 29) are also included. A complete listing of the data
is presented in Appendix D, Table D-2. While few fecal coliforms remain after
the third pond, fecal streptococci remained in significant numbers throughout
the 7 cell system. This result is in direct conflict with Neuhold et al.
(1971) who found few organisms remaining past the secondary pond.
Fecal streptococci die-off trends throughout the year paralleled the fecal
coliform trends for the first 3 lagoons. However, the die-off from one cell to
the next was not as great and frequently increases in numbers occurred. In-
creased numbers were observed in January and February during the decreased
solar radiation-anaerobic period for the fecal streptococci also. In June, the
increase in solar radiation showed a corresponding decrease in fecal strepto-
cocci.
The fecal streptococci numbers in Pond Numbers 4, 5, 6, and 7 appeared
more erratic. The numbers of fecal streptococci frequently increased instead
of decreased as the flow proceeded through the system. However, in June, a
marked decrease in numbers occurred. Low radiation and anaerobic conditions
in January and early February coincided with increased numbers in these cells
also. A large increase in fecal streptococci in-the last 4 cells occurred in
early April. This increase corresponded to spring overturn as shown by the
temperature data for these ponds.
85
-------
io r
E
8 6
g
"5
o
o>
o
O
-------
00
i B
JASUARY '
MARCH I * APRIL
JUNE ' JULY ' AUGUST
1975
SEPTEMBER ' OCTOBER
JANUARY
1976
Figure 27. Fecal streptococci counts in Pond Numbers 1, 2, and 3 of the Corinne Sewage Lagoon System,
Corinne, Utah (January 23, 1975-January 30, 1976).
-------
00 -I
OP*
JANUARY ' FEBRUARY ' MARCH
JUNE ' JULY
1975
JANUARY
1976
Figure 28. Fecal streptococci counts in the influent to the Corinne Sewage Lagoon System, Corinne, Utah
(January 23, 1975-January 30, 1976).
-------
00
JUNE ' JUU
1975
Figure 29. Fecal streptococci counts in Pond Numbers 4, 5, 6, and 7 of the Corinne Sewage Lagoon System,
Corinne, Utah (January 23, 1975-January 30, 1976).
-------
Currently no federal or State of Utah effluent discharge standard for
fecal streptococci bacteria exists for wastewater lagoons.
Statistical Implications of Fecal Coliform
and Fecal Streptococci--
Fecal coliform, fecal streptococci, and solar radiation data for each
period of 30 consecutive days of sampling (one period each season) and for the
month of June were analyzed statistically (Table 42). Fecal coliform and fecal
streptococci means for each cell in the waste stabilization lagoon system dur-
ing each period were determined (Tables A3 and 44). These means along with the
solar radiation means were ranked and appear in Tables 45, 46, and 47.
Analysis for significant differences at the 95 percent level indicates the
lowest levels of both fecal coliforms and fecal streptococci organisms in Pond
Numbers 1, 2, and 3 occurred in June when solar radiation was significantly
Table 42. Selected sampling periods and number of days of data (Corinne,
Utah Sewage Lagoon System).
Period
No. Days No. Days
Dates of Radia- of Bacteria
tion Data Data
p,
P2
P3
P4
PS
Jan. 23 -Feb. 22
April 20 - May 13
July 15 -Aug. 14
Oct. 20 - Nov. 20
June 3 - June 30
31
30
31
32
30
31
30
31
32
10
Table 43. Summary table of fecal coliform means at Corinne, Utah.
Factor S — Sampling Stations
Factor SSSSSSSS
Period
Influent
P! 5.375
P2 5.546
P3 5.611
P4 6.016
P5 5.579
Pond 1
3.992
3.522
3.713
4.068
3.305
Pond 2
2.887
2.256
2.162
2.776
1.538
Pond 3
1.972
1.062
1.185
1.209
-0.292
Pond 4
0.649
0.700
0.027
0.299
•0.374
Pond 5
-0.143
0.928
0.356
-0.070
-0.232
Pond 6
-0.758
0.380
-0.504
-0.475
-0.652
Effluent
-0.425
-0.434
-0.322
-0.092
-0.900
Mean of Iog10 fecal coliforms/100 ml.
90
-------
Table 44. Summary table of fecal streptococci means at Corinne, Utah.
Factor
p
Period
P,
p
P3
P4
PS
Factor S — Sampling Stations
Si
Influent
5.319
5.332
5.464
5.937
5.025
S,
Pond 1
4.128
3.212
3.307
3.824
2.904
S3
Pond 2
3.328
1.933
1.945
2.692
1.632
S4
Pond 3
2.894
1.472
1.903
2.729
1.074
ss
Pond 4
2.499
1.467
1.692
2.725
0.512
S6
PondS
2.497
1.790
2.132
2.125
0.141
S7
Pond 6
2.575
1.948
1.900
2.224
0.831
S8
Effluent
1.649
2.034
1.724
1.703
0.481
aMean of Iogi0 fecal streptococci/100 ml.
Table 45. Rank means of the solar radiation during the selected periods,
Factor P — Period
PI
Mean solar
radiation, 204. 231. 415. 633. 643.
Langleys
Means not covered by a common line are significantly
different.
91
-------
Table 46. Blanked fecal coliform means3 for the
selected periods at Corinne, Utah.
VO
NJ
Influent
Pond 1
Pond 2
Pond 3
Pond 4
PondS
Pond 6
Effluent
P«S,
5.375
PSS2
3.305
PsSa
1.538
P5S4
-0.292
PSSS
-0.374
PSS6
-0.232
P.S7
-0.758
PSS8
-0.900
P2Sj
5.546
P2S2
3.522
P3S3
2.162
P2S4
1.062
P3S5
0.027
P,S6
-0.143
PSS7
-0.652
P.S8
-0.425
PSS!
5.580
P3S2
3.713
P2S3
2.256
P3S4
1.185
P4S5
0.299
P4S6
-0.070
P3S7
-0.504
P3S8
-0.322
P3S,
5.611
PlS2
' 3.992
P4S3
2.776
P4S4
1.209
PtS5
0.649
P3S6
0.356
P4S7
-0.475
P4S8
-0.092
P4S,
6.016
P4S2
4.068
PiS3
2.887
P,S4
1.972
P2S5
0.700
P2S6
0.928
P2S7
0.380
P2S8
0.434
aMean of log|0 fecal coliforms/100 ml.
Means not covered by a common line are significantly
different.
Table 47. Ranked fecal streptococci meansa for
the selected periods at Corinne, Utah.
Influent
Pond 1
Pond 2
Pond 3
Pond 4
PondS
Pond 6
Effluent
P5S!
5.025
P5S2
2.904
PSS3
1.632
P5S4
1.074
P5S5
0.512
PSS6
0.141
P5S7
0.831
PSS8
0.481
PiS,
5.319
P2S2
3.212
P2S3
1.933
P2S4
1.472
P2S5
1.467
P2S6
1.790
P3S7
1.900
PiS8
1.649
P2S,
5.332
P3S.
3.307
P3S3
1.945
P3S4
1.903
P3S5
1.692
P4S6
2.125
P2S7
1.948
P4S8
1.703
P3S,
5.464
P4S2
3.824
P4S3
2.692
P4S4
2.729
P,SS
2.499
P3S6
2.132
P4S7
2.224
P3S8
1.724
P4S,
5.937
PiS2
4.128
P,S3
3.328
PiS4
2.894
P4SS
2.725
P,S6
2.497
P,S7
2.575
P2S8
2.034
Mean of Iog10 fecal streptococci/100 ml.
Means not covered by a common line are significantly
different.
-------
greater than during other periods except the July-August period. For fecal
coliforms, the levels were significantly different from other periods of the
year in Pond Numbers 2 and 3. Fecal streptococci reduction was greatest during
this period but the levels are not significantly different from the spring or
mid-summer period in Pond Numbers 2 and 3.
Effects of solar radiation on die-off in the sewage lagoon system were
inconclusive. The die-off appears consistent throughout the year with minor
fluctuations occurring in June and January-February. The decrease in fecal
bacteria in June appears to be related to radiation, but the January-February
increase occurs at a time of low solar radiation and anaerobic conditions pro-
duced by this low solar radiation. Dissolved oxygen has been investigated by
Hanes et al. (1964), as a die-off cause, but the results were somewhat in-
conclusive. The actual lack of oxygen might not be the cause of the large in-
crease in fecal bacteria numbers. The anaerobic conditions are produced by
decreased solar radiation penetration to the lagoons due to ice and snow
cover. These conditions result in lack of treatment of the sewage (i.e., lack
of BOD removal). This general lack of treatment could be reflected in the
high bacteria numbers.
One factor which points to a strong influence from solar radiation on
fecal bacteria die-off in the lagoons is the uniform pattern of daily fluctua-
tions which occur in all lagoons at the same time. This suggests an external
die-off cause. Chemical data on the lagoons show variations among cells.
Algal species also vary among cells. Solar radiation is the one factor which
is the same for the entire system and would account for the same fluctuation
pattern in all ponds.
Fecal coliform die-off in the 7 cell Corinne system (Figures 23 and 24)
appears to be a function of detention time or cell number. The large primary
cell reduces the fecal coliforms by two orders of magnitude. Each of the small-
er succeeding cells reduce the count by one order of magnitude. The last 3
cells showed very few fecal coliforms consistently throughout the year (aver-
age < 20 colonies/100 ml).
Marais (1974) demonstrated that, for reduction of fecal bacteria, a series
of ponds is of intermediate efficiency with the efficiency increasing as the
number of ponds per total detention time is increased.
He also gave a simple rule to follow for design based on fecal bacteria
reduction. For 90 percent reduction-one pond; 99 percent-2 ponds; 99.9
percent-3 ponds; and so on. Marais design rule applies to the Corinne system
except for the primary pond where the reduction is 99 percent.
Performance Summary
General--
All of the parameters examined for the Corinne system were reduced in con-
centration by the lagoon system, with the exception of alkalinity, temperature,
pH, dissolved oxygen, and total algal concentration. The reduction of the pH,
temperature, and dissolved oxygen was not a concern. Reduction percentages for
93
-------
all of the other parameters are listed in Table 48. Also included is a record-
ing of the statistically suggested most effective pond number and the cor-
responding percent reduction in concentration.
On a yearly basis the Corinne waste stabilization system provided 88 per-
cent removal of the incoming BOD5, 51 percent removal of the suspended solids
and 99.99 percent removal of the fecal coliforms. Yearly performance values
for the other parameters studied are listed in Table 48.
Table 48 also contains the statistical recommended number of ponds in
series for effective treatment at the 95 percent confidence level. It can
easily be recognized that the maximum number of effective ponds depends on the
parameter in question. Though five ponds would be sufficient for effective
BOD
-------
reduced by assimilation into micro and macroorganisms. Most of the summer
period was characterized by low levels for all of the parameters, particularly
the nutrients. Fall produced a second hydraulic mixing (fall overturn), pro-
viding additional nutrient material for assimilation by the organisms; trigger-
ing a surge of growth in the fall. Lower temperatures and light levels served
to curtail the fall peak and forced an alteration of activity to a winter
state. Ice formation on the surface of the lagoons in November and December,
1975, sealed the lagoons until spring thaw and the beginning of another yearly
cycle.
Satisfying Federal and State of
Utah Discharge Standards--
The biochemical oxygen demand (BOD5) concentration of the final effluent
from the Corinne Waste Stabilization Lagoon System never exceeded the federal
standard of a 30 day arithmetic mean concentration of less than 30.0 mg/1, or
the 7 day arithmetic mean concentration of less than 45.0 mg/1. The monthly
average final effluent BOD5 ranged from 1.40 mg/1 to 26.53 mg/1. However, it
did not satisfy the requirement for 85 percent BOD5 removal 4 of the 13 months
studied. The system satisfied the State of Utah BODs final effluent standard
of less than 10 mg/1 10 of the 13 months studied.
The suspended solids concentration of the final effluent from the system
exceeded the federal standard of a 30 day arithmetic mean concentration of less
than 30.0 mg/1 3 of the 13 months studied. The federal standard requiring a
final effluent 7 day suspended solids concentration of less than 45.0 mg/1 was
consistently exceeded during the spring overturn (i.e. March, April, May).
However, after the spring overturn period, the 7 days studied was not exceeded.
The system satisfied the 85 percent removal requirement of the federal
standard 8 of the 13 months studied. In addition, it satisfied the State of
Utah 30 day average effluent suspended solids requirement of less than 10.0
mg/1 8 of the 13 months studied.
The system never exceeded the federal effluent discharge fecal coliform
bacteria standard of less than 200 colonies/100 ml during the entire study, nor
did it exceed the same effluent standard for the State of Utah even though dis-
infection was never practiced. In addition, the system never exceeded the
State of Utah's total coliform bacteria studied of 2000 colonies/100 ml during
the entire study (see Appendix D, Table D-3).
The system failed to satisfy both the federal and State of Utah effluent
pH requirement (range 6.5 to 9.0) 10 of the 13 months studied. Since pH
values were measured in situ or on grab samples collected in the early morning
(6:00 a.m. to 10:00 a.m.), it is highly possible that final pH values were
actually greater than those measured (i.e. monthly average 8.99 to 10.13).
DESIGN MODEL EVALUATION
General
Of the four major design methods reported in the literature section and
discussed earlier, three were evaluated for effectiveness with the Corinne
95
-------
system data. Oswald's method was not evaluated due to the lack of sufficient
data needed to use the design equations. The conditions of the individual
model evaluation are listed with each model. In all cases certain limitations
are placed on the evaluation by the assumptions that were necessary to fit the
Corinne data to the model stipulations.
Gloyna Method
As detailed in the literature section, the Gloyna method employs Equation
3 to calculate the required volume of a pond system. Verification of Equation
3 was attempted using representative data from the Corinne system.
V = 3.5 x 10"5 Q La [6(35"T)] f f (3)
To calculate a pond volume, V, the following conditions were employed:
Q = flow (liters/day) - 4.08 x 105 I/day (January 1975 - influent
flow rate)
La =f COD = 134.33 mg/1 (January 1975 • influent monthly average)
f = algal toxicity factor = 1
f = sulfide factor = 1
9 = temperature coefficient = 1.085
T = mean cold weather temperature = 1.5°C (Pond Number 1 surface
water temperature, January 1975)
Using the above conditions, Equation 3 yields a surface area of 4.52 hectares
(11.17 acres) with a pond depth of 1 meter (3.3 feet). Pond Number 1 has a
surface area of 1.49 hectares (ha) (3.69 acres), and the entire Corinne system
has a surface area of 3.86 ha (9.52 acres). Gloyna (1975) suggested that in
addition to the 1 meter depth an additional 0.5 meters should be added for all
systems subject to wide variations in seasonal conditions. One and one-half
meters is equivalent to 4.92 ft, or a depth of 0.28 m (0.92 ft) greater than
the depth used at the Corinne system.
The Gloyna method shows that approximately 17 percent more area and 20
percent more volume should have been used in the design of the system located
at Corinne, Utah. However, considering the variation in experimental design
and conditions used to develop the design equation (Gloyna method), the
difference is relatively small.
Marais Method
Three models proposed by Marais for the design of wastewater stabilization
basin systems are discussed in the literature section. No attempt will be made
to evaluate Marais' third model due to its complexity and the lack of specific
data for the model.
Model 1 is based on the first order decay reaction and is shown below as
Equation 6.
Fj
P K R± + 1 (6)
96
-------
From the primary pond of the Corinne system the following data were selected
for application to model 1 .
Pi = influent BOD5 mg/1 = 114.18 mg/1
R^ = retention time in days =35.1 days
K = 2 (Marais, 1970)
The Corinne data were selected and averaged for the period December 1975-
January 1976 (see Table 8). This was the coldest period, and therefore the
critical conditions for design. Actual residence times were also available
for this time period for Pond Number 1 (see Table 7).
Ignoring temperature effects and using the above values, an effluent
quality of 1.6 mg/1 BOD5 was predicted by Equation 6. This does not agree with
the observed value of 18.81 mg/1, and the most obvious reason was the low
temperature of the liquid in the Corinne system during the period selected for
evaluation. Model 2 presented by Marais has a temperature correction factor
and is shown in Equations 7 and 8.
(7)
where
K^ e'(T°"T) ................ (8)
•o
with
KT = 1.2
T0° = 35°C
6 = 1 . 085
Table 49 contains the results generated by evaluating model 2 with data
from all of the seven cells of the Corinne system. Data for the calculations
were taken from Tables 7 and 9.
With the exception of Pond Number 1 , model 2 consistently predicted BOD5
levels lower than those actually encountered in the system. The difference
between the predicted and measured values would be less if a mean temperature
were used in the calculations rather than the surface water temperature. Mean
temperatures for the Corinne system were not measured. The predicted values
are approximately 40 percent of the measured levels from the system. In order
to produce a more accurate evaluation of model 2, complete temperature data
need to be compiled.
Thirumurthi Method
Thirumurthi proposed three equations for modeling the performance waste-
water stabilization basins. Of the three, Equation 17 will be evaluated.
Equations 15 and 18 will not be evaluated due to insufficient data. For
chemical reactors of a plug flow type, the equation
97
-------
Table 49. Results obtained from applying Marais (1970) model 2 to the Corinne
Waste Stabilization Lagoon System.
Pond
1
2
3
4
5
6
7
R
(days)
35.1
8.5
6.7
8.1
9.0
8.8
12.1
(mg/1)
114.81
31.52
18.07
17.88
5.15
18.47
4.27
T
°C
1.20
14.82
22.99
13.93
23.37
14.80
23.03
p
(mg/1)
30.7
10.62
4.50
6.52
0.00
6.09
0.66
Pa
(mg/1)
18.81
23.71
15.21
17.68
4.26
14.60
3.75
R = Residence Time, Pj = Influent BOD, Pa
T = Temperature.
Effluent BOD actual, Pm = Effluent BOD model,
-Kt
(17)
is appropriate. Although the individual ponds of the Corinne system do not
function as plug flow reactors, the system when viewed as a whole does ap-
proach plug flow characteristics.
The total theoretical residence time for the Corinne system is 61.6 days
at a flow of 7.57 x 10^ I/day (2.0 x 10^ gal/day), neglecting seepage and
evaporation. Equation 19 provides correction factors for the constant K as
follows:
K = K Cm C T
s Te
ox
where
cTe
6
T
L
K
9(T-20)
1.036 (Thirumurthi, 1974)
temperature = 9.5°C
1 -
(19)
(20)
(21)
organic load in kg/ha/day = 146.33 (74.62 mg/1)
0.056 day'1 (Thirumurthi, 1974)
toxicity factor =1.0 (Thirumurthi, 1974)
Equations 17, 19, 20, and 21 yield a ratio of Ce/C± equal to 0.58 which
indicates a 42 percent reduction in the BOD5 after passing through the entire
Corinne system. The actual reduction in BOD5 was 88 percent for the study
year.
Design Model Evaluation Summary
Of the three model systems evaluated (Gloyna, Marais, and Thirumurthi),
only model 2 by Marais (1970) and Thirumurthi's (1974) Equation 17 provides
results which are similar to the actual data collected. This suggests the
inappropriateness of the given models for this study area and climatic condi-
tion. However further study and data collection could facilitate the modifi-
cation of these and other models making them applicable to this region.
98
-------
SECTION 7
REFERENCES
Alum, M. 0., and C. E. Carl. 1970. The role of ponds in wastewater treatment.
In: R. E. McKinney (ed.). Second International Symposium for Waste
Treatment Lagoons, June 23-25, Kansas City, Missouri. 404 p.
APHA, AWWA, WPCF. 11971. Standard methods for the examination of water and
wastewater. 13th ed. American Public Health Assoc. 1015 Eighteenth Str.,
N.W., Washington, B.C. 20036. 874 p.
Barsom, G. M., and D. W. Ryckman. 1970. Evaluation of lagoon performance in
light of 1967 Water Quality Act. Second International Symposium for Waste
Treatment Lagoons, June 23-25, 1970, Kansas City, Missouri.
Buttes, Thomas, A. 1969. Fluorometer calibration curves and nomographs.
Journal of Sanitary Engineering Division, Proceedings, ASCE Proc. Paper
6728, 95(SA4):705-714.
Canter, L. W., and A. J. Englande, Jr. 1970. States' design criteria for
waste stabilization ponds. Journal of the Water Pollution Control Feder-
ation, 42(10):1840-1847.
Canter, L. W., A. J. Englande, Jr., and A. F. Mauldin. 1969. Loading rates on
waste stabilization ponds. Journal of the Sanitary Engineering Division,
ASCE, Proc. Paper 6975, 95(SA6):1117-1129.
Cowan, P. A., and D. B. Porcella. 1975. Water quality analysis laboratory
procedures syllabus. Utah Water Research Laboratory, Utah State Univer-
sity, Logan, Utah. 87 p.
Davis, E. M., and E. F. Gloyna. 1972. Bacterial dieoff in ponds. Journal of
the Sanitary Engineering Division Proceedings, ASCE, Proc. Paper 8714,
98(SA1):59-69.
Davis, N. E. 1964. Oxidation ponds. In: W. S. Mahle (ed.), Texas Water and
Sewage Works Association Manual for Sewage Plant Operators, Lancaster
Press Inc., Lancaster, Pa. 751 p.
Franzmathes, J. R. 1970. Bacteria and lagoons. Water and Sewage Works, March,
pp. 90-92.
Gloyna, E. F. 1975. Facultative waste stabilization pond design. Paper pre-
sented before the conference *'Ponds as a Wastewater Treatment Alterna-
tive," University of Texas, Austin. July 23-25, Austin, Texas.
99
-------
Hames, N. B., W. B. Sarles, and G. A. Rohlich. 1964. Dissolved oxygen and
survival of coliform organisms and enterococci. Jour. AWWA, 56:441-446.
Jones, N. B., N. Dixon, R. Clark, J. H. Reynolds, and G. H. Larson. 1969.
Wastewater stabilization ponds: engineering aspects. College of Engi-
neering, Utah State University, Logan, Utah.
Klock, J. W. 1971. Survival of coliform bacteria in wastewater treatment
lagoons. Journal of the Water Pollution Control Federation, 43(10):2071-
2083.
Little, J. A., B. J. Carrol, and R. E. Gentry. 1970. Bacterial removal in
oxidation ponds. Second International Symposium for Waste Treatment
Lagoons, June 23-25, Kansas City, Missouri.
Macko, C. A. 1976. The effects of solar radiation on fecal bacteria die-off.
Unpublished M.S. thesis, Utah State University, Logan, Utah.
Malone, J. R/, and T. L. Bailey. 1969. Oxidation ponds remove bacteria.
Water and Sewage Works, April, pp. 136-140.
Marais, G. v. R. 1970. Dynamic behavior of oxidation ponds. Second Inter-
national Symposium for Waste Treatment Lagoons, June 23-25, Kansas City,
Missouri.
Marais, G. v. R. 1974. Faecal bacterial kinetics in stabilization ponds.
Journal of the Environmental Engineering Division, ASCE, Proc. Paper
10323, 100(EE1):119-139.
Marais, G. v. R., and V. A. Shaw. 1964. A rational theory for the design of
sewage stabilization ponds in Central and South Africa, Trans. S. Afr.
Instn. Civ. Engrs., 3. (Original not seen; abstracted in Marais, 1970.)
Marske, Donald M., and Jerry D. Boyle. 1973. Chlorine contact chamber
design/a field evaluation. Water and Sewage Works, p. 70-77.
McKinney, R. E., editor. 1970. Second International Symposium for Waste
Treatment Lagoons. University of Kansas, Lawrence, Kansas.
McKinney, R. E. 1975. Functional characteristics unique to ponds. Paper pre-
sented before the conference "Ponds as a Wastewater Treatment Alterna-
tive,*' University of Texas, Austin, July 23-25, Austin., Texas.
National Water Commission. 1973. Water policies for the future. U.S. Govern-
ment Printing Office, Washington, D. C., Stock No. 5248-00006, 579 p.
Neuhold, J. M., F. J. Post, N. B. Jones, and G. Z. Watters. 1971. The study
of physical, chemical, and biological nature of water quality under Utah
conditions. OWRR Project A-003-Utah, Utah State University, Logan, Utah.
100
-------
NOAA, National Oceanic and Atmospheric Administration. 1975, 1976. Climato-
logical data, Utah. Environmental Data Service, Asheville, N. C.,
Vol. 77, No. 1-12; Vol. 78, No. 1.
Oswald, W. J. 1975. Experiences with new pond designs in California. Paper
presented before the conference "Ponds as a Wastewater Treatment
Alternative," University of Texas, Austin, July 23-25, Austin, Texas.
Oswald, W. J., A. Meron, and M. D. Zabat. 1970. Designing ponds to meet water
quality criteria. Second International Symposium for Waste Treatment
Lagoons, June 23-25, Kansas City, Missouri.
Porcella, D. B., J. S. Kumagai, and E. J. Middlebrooks. 1970. Biological
effects on sediment-water nutrient interchange. Sanitary Engineering
Division, ASCE 96(SA4):911-926.
Porges, R., and K. M. Mackenthun. 1963. Waste stabilization ponds: use,
function, and biota. Biotechnology and Bioengineering 5(4):255-273.
Reynolds, J. H. 1971. The effects of selected baffle configurations on the
operation and performance of model waste stabilization basins. Un-
published M.S. thesis, Utah State University Library, Logan, Utah. 121 p.
Sastry, C. A., and G. J. Mohanrao. 1975. Waste stabilization pond design and
experience in India. Paper presented before the conference ''Ponds as a
Wastewater Treatment Alternative,'* University of Texas, Austin, July 23-
25, Austin, Texas.
Sawyer, C. N., and P. L. McCarty. 1967. Chemistry for sanitary engineers.
McGraw-Hill Book Company, Inc., New York. 518 p.
Slanetz, L. W., C. H. Bartley, T. G. Metcalf, and R. Nesman. 1970. Survival
of enteric bacteria and viruses in municipal sewage lagoons. Second
International Symposium for Waste Treatment Lagoons, June 23-25, Kansas
City, Missouri.
Sokal, R. R., and F. J. Rohlf. 1969. Biometry. W. H. Freeman and Co., San
Francisco, California. 776 p.
State of Utah. 1974. Order in the matter of extending the date for compliance
with water quality standards of establishing interim effluent standards
for waste discharges. Utah Water Pollution Control Committee and State
of Utah Board of Health, June 4, 1974, Salt Lake City, Utah. 3 p.
Sudweeks, C. L. 1970. Development of lagoon design standards in Utah. Second
International Symposium for Waste Treatment Lagoons, June 23-25, Kansas
City, Missouri.
Thirumurthi, D. 1969. Design principles of waste stabilization ponds. Jour-
nal of the Sanitary Engineering Division, ASCE, Proc. Paper 6515, 95(SA2):
311-330.
101
-------
Thirumurthi, D. 1974. Design criteria for waste stabilization ponds. Journal
of the Water Pollution Control Federation 46(9):2094-2106.
Thirumurthi, D. , and 0. I. Nashashibi. 1967. A new approach for designing
waste stabilization ponds. Water and Sewage Works, pp. 208-217.
Toman, G. J. 1963. How to design sewage lagoons. Actual Specifying Engineer-
ing, May, pp. 72-74.
Towne, W. W. 1961. Design, operation and maintenance of stabilization ponds.
Paper presented at the ''ASCE Convention, Sanitary Engineering Division
Program,*' Phoenix, Arizona, April 10-11. 14 p.
U.S. Government. 1973. Federal secondary treatment standards. Federal
Register, August 17, 1973. U.S. Government Printing Office, Washington,
D.C.
U.S. Public Health Service. 1960. Proceedings of symposium on waste stabili-
zation lagoons. Region VI, Kansas City, Missouri.
Vennes, J. W. 1970. State of the art-oxidation ponds. Second International
Symposium for Waste Treatment Lagoons, June 23-25, Kansas City, Missouri.
Williford, H. K., and E. J. Middlebrooks. 1967. Performance of field-scale
facultative wastewater treatment lagoons. Journal of the Water Pollution
Control Federation, 43(12):2008-2019.
102
-------
APPENDIX A
HYDRAULIC PERFORMANCE DATA FOR THE
CORINNE WASTE STABILIZATION LAGOON SYSTEM
103
-------
Table A-l. Influent and effluent daily
tion Lagoon System.
flow for the Corinne Waste Stabiliza-
HTORAULIC OUT*
HTORJUUC D«l»
J*ILT FLDK (G»L/0«r>
MO D» *R
j 21 75
i zt 75
1 Z5 75
1 2* 75
l Z7 75
zs 75
Z» 75
3D
75
11
12
Z 1! 75
2 14 75
Z 15 75
16 75
17 75
18 75
19
20
21
75
75
75
75
27 75
28 75
1 75
6 75
9 75
12 75
15 75
18 75
21 75
Z* 75
28 75
11 75
76
75
?
5
t 75
11 75
1* 75
15 75
16 75
17 75
18 75
l« 75
ZS 75
21 75
Z2 75
Z! 75
Z* 75
25 75
26 75
27 75
28 75
Z9 75
SI 75
1 75
2 75
!! 75
» 75
75
75
75
75
75
75
It 75
12 75
1! 75
16 75
19 75
2Z 75
25 75
28 75
11 75
S 75
6 75
9 75
12 75
15 75
18 75
21 75
2* 75
27 75
!» 75
I 75
6 75
9 75
12 75
15 75
75
7 It
7 17 75
7 II 75
INFLUENT
9*000
90600
153100
97100
197200
112100
106000
109200
192(00
100290
115800
1UOOO
110000
100*0)
1J«»00
106*00
106tOO
131609
5*5*00
165200
281*00
I7»»00
116000
12*210
131000
217000
250000
237609
Z3V200
119000
K21ZO
190800
mzoo
203667
2555)3
II71I3
2t8933
210553
11*067
IMMO
IZZSOO
1*6667
172000
222000
t»«513
170167
153667
1S9200
115100
izeroo
316800
2*6600
196*00
ZZZOOO
270000
1M50I
251 00 S
226100
116700
112700
276000
206800
226100
173000
201*00
179200
165000
219600
161500
199500
1(7000
196000
176000
17*100
190900
1*600
151000
111*00
117867
1*7*00
79800
ZOBSOO
210111
23II67
31*100
3159 JJ
276867
600
»5911
140267
118067
1*0613
151831
99667
*I511
8111
12I10D
275700
217ZOO
191200
217600
EF^LUCNT
7900
7500
7500
10200
8*00
7200
41200
5000
25000
11700
9500
stoo
22100
11900
16600
16000
1*800
26000
18*00
1ZOOO
6600
11800
6800
7400
7000
6*00
7600
9000
»ZOO
6000
Z9913J
156900
! 36500
Z95311
179000
Z66267
21*467
11*467
99600
128800
202125
106600
11*667
19*300
15*531
9511}
66167
67*00
67700
116000
159700
165600
16*600
179200
117200
107000
12*600
127000
1*2700
1*5*00
162*00
1*1100
15*600
99300
101500
89600
71080
99500
(02100
*1IOO
no too
ItllOO
121900
107700
87100
58300
64400
16100
60500
70667
40067
44ZOO
108267
1 11 (00
121*00
161*67
1*167
1*6567
195167
192167
75067
57267
17100
80900
119 167
55167
99831
86200
57100
18*00
!IIO»
JURY rLOII
0
r
7
7
9
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9
«
0
0
1
1
1
1
1
1
1
1
1
1
1
1
I
1
t
1
1
1
1
1
1
1
2
2
Z
2
2
2
Z
Z
Z
D«
1 *
20
21
2?
21
Z*
25
26
27
28
29
39
11
1
J
5
*
5
6
7
8
9
19
II
17
1!
1*
17
20
23
21
29
1
t
7
10
1!
16
If
22
25
28
1
*
7
19
1!
It
29
21
22
2»
2*
Z5
26
27
28
J9
10
11
1
2
10
11
j J
1 j
It
IS
It
17
11
19
20
Z!
26
2
5
0
11
It
17
20
ZJ
11
I
6
9
IZ
15
11
21
Zt
27
10
1 R
75
75
75
75
75.
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
rs
75
75
75
75
7$
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
rs
75
75
75
75
75
75
75
75
75
75
75
75
75
75
li
75
75
75
7S
75
75
75
75
71
75
75
75
75
75
75
75
75
7$
75
75
76
76
76
76
76
76
76
76
76
76
INFLUENT
230490
337200
115900
302500
247000
187000
290500
250300
31*700
109500
265*00
216600
167200
2*6600
240000
301500
32*000
2*8000
206600
174>000
2*2400
2*6500
162000
Z96000
211600
20(100
267413
20633}
214(00
2t6((7
20*533
2274*7
217111
226911
282400
211137
2IZI67
197667
21? 167
195133
196167
209331
176667
227131
125(13
75543
7558!
100
356500
3*9000
1*6000
327000
1*0000
126500
36Z500
251500
131000
15*500
3*5000
It* 000
272100
345700
112000
122000
117009
121100
11*900
12*500
126000
122500
110500
11*000
102000
99500
107100
-. 11Z900
98900
110000
102009.
91500
96111
95750
(6500
10*167
128167
96500
99311
8167
6667
0
71667
75111
67(67
6*111
69667
67667
71900
68500
62813
2226 3)
Ef PLUENF
49400
77000
61600
73900
74000
54500
57400
6(800
98600
96000
1 16500
11(000
101700
56ZOO
51600
82000
82000
93000
78900
16200
3(400
45100
93200
93600
95200
(4000
59313
8(1.13
7(600
(3667
71067
43000
7(667
(9800
93700
94500
17667
((000
561S3
79911
(6*00
(8111
6(500
72*13
109667
10908}
1090(1
9((25
(9ZOO
5(600
5ZZOO
21500
10500
8090
27000
49200
1 1*800
141000
131509
1 10000
123500
108090
100500
90500
74500
40600
53*00
77000
6*000
27500
21000
19000
16000
1(000
17500
20190
19Z90
12(000
1*0000
(731!
41667
91917
833
(9500
12*3!
25067
161(00
50131
71667
50600
50(11
4(167
79000
4711!
42233
40100
t*667
16131
**!33
1(000
1 gal/day =
.003785 ra3/d
104
-------
20-
Ul
DYE DISPERSION CURVE - POND I
Storted 12-8-75
Cg=35.l Days
TIME (Days)
Figure A-l. Effluent dye concentration versus time curve for Pond Number 1 in the Corinne Waste Stabiliza-
tion Lagoon System.
-------
20-
I5H
o»
0
8
10-
DYE DISPERSION CURVE-POND 2
Started 5-10-76
1
14 16 18 20
TIME (Days)
T
30
T
40
Figure A-2. Effluent dye concentration versus time curve for Pond Number 2 in the Corinne Waste Stabiliza-
tion Lagoon System.
-------
20-
15-
O
o
o
10-
5-
DYE DISPERSION CURVE-POND 3
Started 6-23-76
Cg = 6.7 Days
I i
4 6
8
10 12 14 16 18 20
TIME (Days)
i
30
40
Figure A-3. Effluent dye concentration versus time curve for Pond Number 3 in the Corinne Waste Stabiliza-
tion Lagoon System.
-------
25-
20-
o>
O
z
O
0
15-
O
oo
5-
DYE DISPERSION CURVE-POND 4
Started 5-10-76
Cg = 8.l Days
T I
2 46 8 10 12 14 16 18 20
TIME (Days)
30
40
Figure A-4.
Effluent dye concentration versus time curve for Pond Number 4 in the Corinne Waste Stabiliza-
tion Lagoon System.
-------
z
o
o
10-
DYE DISPERSION CURVE - POND 5
Started 6-23-76
Cg = 9.0 Days
8 10
12
14 16
T
18
20
30
40
TIME (Days)
Figure A-5.
Effluent dye concentration versus time curve for Pond Number 5 in the Corinne Waste Stabiliza-
tion Lagoon System. '
-------
25-
20-
DYE DISPERSION CURVE-POND 6
Started 5-10-76
15-
o»
d
o
o
10-
5-
I
6
T
8
10
12
ill.
14 16 18 20
r
30
I
40
TIME (Days)
Figure A-6. Effluent dye concentration versus time curve for Pond Number 6 in the Corinne Waste Stabiliza-
tion Lagoon System.
-------
1
d
8
20-
15-
10-
5-
DYE DISPERSION CURVE - POND 7
Started 6-23-76
246
10 12
T
14
T 1 r
16 18 20
TIME (Days)
r
30
T
40
Figure A-7. Effluent dye concentration versus time curve for Pond Number 7 in the Corinne Waste Stabiliza-
tion Lagoon System.
-------
APPENDIX B
CHEMICAL AND BIOLOGICAL PERFORMANCE DATA FROM THE
CORRINE WASTE STABILIZATION LAGOON SYSTEM
112
-------
Table B-l. Biochemical oxygen demand (BODg) performance of the
Stabilization Lagoon System.
Corinne Waste
DIAL 800(5) txG/L)
5
0
2
2
2
2
2
2
2
Z
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
r
7
. NO
04
Z'
25
26
2'
2*
29
31
11
1
2
t
4
5
b
7
9
9
10
11
If
13
|k
15
16
17
19
19
20
21
22
21"
29
I
6
9
U
15
18
Zl
24
11
J
5
8
It
14
15
IK
17
18
19
20
Zt
2»
2 H
24
25
Zb
27
28
2«
19
t
2
10
11
1?
13
16
19
22
25
26
31
J
&
9
1?
IS
18
Zl
Z4
zr
30
n
6
9
12
I*
16
17
18
• IKPIC. H~l
to
75
r\
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
7)
79
75
75
NO 0*I>. » » POOH 0»F». t> " DOCK.. C • BODb
INfLUtNt
90. 4
«0. 6
9«.5
ee.s
200.7
(2.1
20!. S
95.9
173.6
4*7. S
150.6
90.5
193.2
114.0
76.5
367.1
169.8
1/7.5
92.9
33.1
42.9
• 5.6
66.6
33.1
35.4
36.0
69. «
20.9
.18.6
26.1
43.9
105.1
39.6
44. Z
54.0
22.5
22. b
106.7
49.7
41.9
39.4
175.8
24.4
47.8
25.2
86.9
57.7
46.6
58.5
42.9
50.0
88.6
30.5
35.6
36.6
38.9
40.4
37.8
31.2
24.9
31.9
129.5
43.9
4t.I
59.8
36.1
65.3
68.0
62.2
40.1
23.0
29.0
36.0
55.3
46.8
41.2
50.5
59. J
97.5
85.1
1*0.2
112. 1
J9.5
19.5
41.8
tS.4
68.1
36.1
68.6
19.6
28.1
89.3
61.1
24.4
7.S
75.5
7.9
16.1
25.2
31. J
If. 7
cox DI
2b.O
21.9
33.8
2k. 7
37.2
NS
35.8
34.8
33.9
49.0
5!. 2
47.1
28.4
2). I
32.9
lOb.t
39.5
3*. 2
32.7
35.3
St. 6
32.1
2b.6
25.9
42.9
35.1
49.2
31.4
28.6
22.6
28.2
36.5
11.0
31.9
44.8
47.0
101.6
190.4
It. 5
3b.4
27.4
25.6
29.5
24.1
21.0
24.;
25.8
41.6
35.2
51.9
ir.i
4k.S
31.0
31.3
36.1
16.8
42. Z
36.9
14. r
21.0
24.9
27.5
29.6
J9. 7
39.2
38.4
12.9
37. S
2S.9
12.4
3k. 3
31.6
22.1
42. Z
61. r
35.4
Ib.ft
19.6
12. r
26.6
29. 7
12.2
11.0
It. 2
2i.5
It. 9
41.2
44.6
19.0
19.9
21.6
59.3
19.2
U.7
9.5
14.6
13.5
2».0
25.4
29.9
16.4
POND?
28.1
Ni
24.4
29.5
27.6
18. »
39.5
19.9
24.5
11. 6
28.2
34.0
22. a
29.b
33.4
45.6
26.9
13.9
26.7
26.9
21.3
67.7
23.1
24.8
26.4
11.7
22.6
22.6
25.5
20.7
21.2
14.6
21.7
16.4
41.5
46.8
47.5
40.3
11.7
29.1
27. 7
24.6
21.8
25. 9
20.3
21.2
27.6
40.9
16.0
42.1
15.1
16.9
10.2
11.5
49.4
16.4
19.6
11.9
14.6
26.1
21.5
36.4
28.0
35.0
16.9
19.6
21.9
29. »
39.6
32.5
24.2
29.3
36.7
43.6
46.1
10.6
29.5
7.5
14.9
16.4
21.1
16.9
11.6
11.1
20.4
19.1
12.7
14. f
29. S
16.4
26.0
Z4.7
17.2
U.4
6.1
6.2
6.1
17.1
17.1
2S.1
26.3
PON03
24.7
21.3
17.7
23.2
25.2
NS
19.9
24.1
20.3
21.7
26.7
29.0
20.9
25.3
10.6
58.1
16.4
14.5
29.6
25.1
26.7
31.2
ZS.5
15.0
29.7
20.9
27.6
16.2
25.2
30.5
14.2
11.2
39.1
24. J
41.1
10.6
45.9
42.2
32.4
29.1
27.6
26.1
33.5
25.7
26.9
28.7
34.1
44.6
33.0
17.7
11.6
29.6
30.3
45.0
IS. 2
14.1
16.2
II. 5
29.5
25.7
II. 2
31.3
11.2
17.4
39.1
16.1
10.6
J7.0
36.1
12.4
22.2
11.2
25.4
10.1
31.0
12.4
26.1
ir.i
16.3
9.7
9.7
7.9
S.t
6.6
14.4
10.0
6.8
6.4
9.9
13.2
12.7
12,0
t.r
15.3
18.2
6.4
5.2
11. «
10.2
II. S
15.3
POND*
US
NS
14.9
15.2
13.7
>14.3
NS
15.6
19.7
21.2
27.4*
25.7*
27.0
26.14
16.7
34. U
30.3
31.2
29.6
35.2
23. «
25.3
21.2
21.3
34.9
24.7
27.5
27.5
24.2
26.0
33.8
35.2
26.9
36.0
37.2
30.2
37.0
45.2
35.0
142.4
28.5
28.3
24.9
Z7.8
31.5
30.2
36.6
33.7
29.3
39.2
3'.1
34.1
11.1
33.0
37.*
28.S
19.2
39.1
19.5
11.6
12.9
42.0
40.0
16.0
19.6
39.0
31.7
14.9
12.6 .
14.1
23. 1
15.3
26.6
3Z.7
!2.«
29.5
31.0
11.9
10.4
.1
.2
.5
.0
Z .6
.6
.» "
.9
.6
1 .7
.6
1 .3
.»
.»
.1
.9
.7
.4
.6
.1
4.9
3.7
POND
9.
S.
N
9.
S.
10.
11.
12.
12.
13.
>13.
>U.
17.
20.
24.
28.1
29.
U.
18.
24.
17.
22.
27.
24.
25.
21.
22.
23.
16.
19.
23.
33.
10.
22.
15.
34.
44.
42.
41.
37.
31.
35.
35.
32.
26.
34.
34.
41.
39.
36.
45.
40.
37.
33.
37.
26.
37.
29.
35.
31.
41.
34.
42.
29.
34.
37.
35.
35.
25.
36.
32.
22.
43.
30.
31.
32.
29.
9.
• 10.
10.
*
*
*
•
•
1 .
2 .
•
•
•
12.
12.
IS.
N
Z.
*
•
*
.
•
•
5 PON06
b 5.S
b NS
S 7.0
0 7.3
2 9.0
» 5.5
7 8.8
>9.5
>9.0
>8.9
>8.6
>6.6
7.1
15.2*
19.2
27. tH
19.4
16.9
22.1
15.3
11.6
22.2
15.9
20.8
18.6
14.6
15.1
13.9
13.1
12.4
13.0
37.2
22.5
17.5
32.6
16.5
71.3
39.0
36.6
33.7
29.5
36.0
28.0
43.3
25.1
31.2
31.1
37.4
29.9
16.1
J6.S
14.6
31.2
10.4
11.0
17.4
35.7
26.1
10.7
29.9
28.9
28.8
31.0
10.4
26.1
11.6
10. 0
27.4
26.0
26.6
14.}
23.9
«.l
21.6
17.8
21.9
20.6
16.6
16. Z
19.2
15.2
11.8
5.4
6.2
6.0
9.6
9.7
8.4
10.2
6.6
13.3
6.7
7.4
5.1
4.S
7.2
9.1
4.1
6.2
4.7
7.0
EFFLUENT
4.6
5.1
3.6
3.9
4.7
6.6
4.9
NS
9.0
6.0*
>6.2
6.1
4.7
9.9
S.t
6.1
7.1
6.
7.
6.
6.
7.
7.0
6.7
7.4
6.5
7.6
6.1
S.4
5.1
7.7
15.9
16.9
19.7
21.1
16.0
22.9
20.1
21.6
36. Z
29.1
27.5
27.9
25.7
24.4
25. t
21.9
21.5
19.6
27.7
22. k
27.2
Z0.4
II. 4
36.6
15.0
33.1
23.4
38.6
23.5
22.4
21. i
24.7
Z6.1
29.1
26.6
17.7
25.9
21. 1
11. t
11.1
18.S
21.6
24.1
19.1
17.6
19.2
14.6
19.0
18.9
19.S
12.7
7.0
9.6
16. Z
9.1
9.5
7.7
6.6
10. 1
6.9
9.1
4.1
4.6
.1
.1
.9
.Z
.4
.9
.9
113
-------
Table B-l. (Continued).
OTJL SOJ<5> 1NG/L)
S
a
7
7
7
7
T
7
T
T
r
0
0
a
9
9
0
a
9
0
9
o
0
0
D
a
9
0
0
I
1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
t
1
1
1
>
i
1
:
« HO
n«
i»
20
21
2?
2 S
24
25
Zi
2'
28
29
30
.1!
1
*
10
U
12
11
14
17
Z»
ZJ
26
29
1
4
7
ID
I!
16
1'
22
25
29
1
4
7
14
i!
16
Zf)
21
22
?1
?4
25
Zi
27
28
?9
10
il
I
2
>
4
5
&
7
8
9
10
11
1*
13
U
IS
16
17
18
11
20
ZJ
26
2
5
t
11
14
-tr
20
21
5 f
I
t
*
12
15
It
21
2*
27
31
1AHPIE. »D
19
75
75
7^
7S
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
7?
75
75
75
75
75
75
75
75
75
75
75
75
75
r?
75
75
75
75
75
75
75
75
75
75
7S
ff
75
75
75
75
75
75
75
75
75
75
75
75
7»
75
75
75
75
75
75
75
7}
75
75
73
75
75
75
75
75
73
75
7!
75
75
75
73
75
rs
76
7k
76
7t
76
f*
'6
76
76
7*
no a»i«, * > POOD B4T*.
INfLUENT
30,$
31.:
33.9
27.8
35. J
29. S
J5.S
101.5
112.4
60.1
47.6
33.0
61,6
50.9
35.7
37,1
33,7
60,6
49.9
24.6
15.5
«.«
11. I
16. t
14 . IB
4 3.7
39.6
43.2
52.*
.'J.?
40.1
17.1
3*. 2
72.6
12.5
69. i
76.%
36.9
79.5
3.37.4
77.6
104.2
12.7
53.6
36.5
70 J. 5
164.9
113.9
104.5
53.1
5?Il
62. 7
63,6
T4.»
1*. J
54.0
33.3
79,5
41. »
82.0
139.0
63.1
94.9
J3.2
58*0
62.2
99,|
61.8
64.2
73.5
103%
106.7
ro. r
113.0
126,1
1*1.1
114.9
136.9
100.1
123.1
91.8
68.1
33.4
11. »C
90.0
1J0»2
13*. 5
(I.I
143.1
96.4
153.4
41.8
163.4
117.5
127.1
1Z*.9
dJMOt
29.7
10.9
41.1
29.1
19. i
25.*
92.2
34 »2
S2.0
35.1
25 .0
3J. 9
2k .0
36.2
34.4
Zt .2
3«.f
46.0
SI .8
If .8
11.6
St. 9
34.7
13.6
10.68
26.4
Jt,4
15.4
17.3
J6.F
15.7
11.6
JS.Z
14 .F
18 .6
4tf .7
40. 8
IS .9
26.*
51.0
H.I
61.3
27.4
16.6
41.5
31.1
J9.J
42.1
If .4
41.0
35.2
11.1
28.3
11.3
51.0
36.6
27.6
10. 1
11.2
27.2
Z6.»
II. 3
63.0
J».I
11.3
12.4
24.7
11 .0
31. t
39 .5
It .4
22.*
21,1
27. »
ZZ.i
24.4
26. 5
29.1
It.*
33.*
31.1
26.9
17.4
22.*
il.l
27.7
20.9
21.9
1S.4C
19.0
19,7
4.7
39.1
>}6.4
!f.»
15 .2
If .0
17. t
21.4
22.0
21. 0
PQHSZ
21.1
19.0
SO. 5
18.7
19.0
16.5
20.2
?0.J
98.1
16.'
14.8
J4.Z
19 •/
24.7
29,9
JZ-1
SO. 6
50.6
u.r
28.7
«.'
£5. 9
20. J
I*. I
I9.ee
17.3
27,9
31.4
S0»t
24.7
)4.i
0.0
30.3
JO.l
29*3
J9.0
44.3
41.1
11. 1
39.5
3.0*5
35.*
34.5
35.0
41.7
44.9
38.9
41.4
37.8
41.4
39.9
3J.O
26.6
42.1
J1.9
33.1
27. »
10.*
12. 7
il. r
30.2
2».F
11.2
16.1
44.4
2f .1
26,3
28.7
26.1
21.!
23.1
25.5
24.7
20.1
21.0
22.6
29.6
27. C
23.1
21.6
24.4
16.6
29,1
17.6
16.1
17.6
19.2
ir.o
13.0C
19.1
2J.9
IB. I
23.1
25.4
12. S
16.*
16*4
II. 1
22. 7
19.4
11.8
POMOI
8.F
12.7
II. f
11.1
14.9
11.9
1 9.»
Z2.6
25.5
22.1
25.2
19.6
17.*
27.1
26.9
24.6
Z?.l
11.1
10.8
15.0
32.5
19.0
33.8
26.5
1J.88
17.7
24.1
22.7
17.2
18.2
17.3
27.9
26. J
24.2
32*6
27,9
29.1
15.6
35.1
31.4
2«.6
31.7
34.*
30.6
Jl.Z
30.1
33.1
41.4
40.0
50.5
19.6
36.1
S2.»
16. Z
11.6
12.4
35.1
21.4
31. 0
23.5
30.8
29.8
20.0
JJ.5
42.«
27.5
34. J
27.3
26. »
29.6
1UZ
10.2
2*. 2
27.3
24.6
22.0
26.2
10,6
21.9
20.2
24.2
11.2
24.5
It.O
21.1
21.8
14.7
11.1
I1.2C
17.8
17.7
11.3
11. 1
21.2
19.4
IS.*
ie.5
18,5
19.7
24.5
36,!
POUCH
2.4
9.9
4.4
4.5
I.*
1.4
6.9
6.1
7.2
7.1
S.I
5.0
S.Q
5.8
5.4
9.2
6.0
3.4
6.7
5.4}
4.*
6.0
4.1
6.1
3.28
I.I
1.5
J.O
I.I
1.3
2.7
4.5
2.7
2.4
5.6
10.4
19.2
16.6
20.6
Z9.S
26.1
25.3
21.*
29.5
27.0
22.5
23.6
33.0
31.7
J3.0
22.3
24.T
20.7
24. r
23.1
22.1
25.4
Z3.3
Z*.*
ZO.l
JO.*
JJ.9
40.2
JJ.J
28.8
36.0
28.6
22.7
11.4
31,*
26. 3
Z5.9
11.6
23.5
Z5.3
20.1
2U2
14.0
23. 3
24.4
JO- 6
16.3
24.2
14.4
19.7
17*7
21.0
21.1
14. ZC
18.9
19,*
Z4.7
17. J
29.4
(7.1
27.*
14.1
12.4
24.1
59.0
14. »
PONDS
6.4
2.7
j. 9
J. Z
6.0
4.0
3.5
4.1
6.2
J.7
2.0
Z, 7
2.0
3.0
2.3
I.Z
2.1
1.2
3.6
1.1
4.9
2.6
3.2
3.0
2.S8
2.
2.
1.
1.
1.
1.
2.0
l.t
1.4
t.4
2.1
>7. 3
4. F
3.3
2.9
1.1
S.I
6.2
3.2
4.1
6.9
6.7
9.1
3.*
9,0
5.*
S.3
4.2
S.I
4.0
S.I
1.1
6.1
6.0
1.1
». F
11.1
10.6
II. 1
14.1
It. 3
26.4
10.2
11.2
18.5
12.2
22.1
23.4
24.4
14! 5
16.2
14. «
12. 1
12.1
12. »
13.0
24. 9
13.4
16.1
18.3
14.1
16.3
*.7C
12. E
13i.l
16. 7
ir.i
11. f
24.4
26.2
17.0
20,6
19.7
19.4
19.7
POND6 crriucNi
4
4
5
2
2
2
2
|
S
.6 Z
.5 6
.0 4
.9 ?
.1 3
.6 ?
.7 »
,7 6
.6 4
2-9 3
1
I
i
;
2
2
2
2
2
Z
Z
j
I
«
2.
Z
1
3
I
1
Z
Z
1
.7 1
*Z I
.4 2
.6 I
.6 2
.4 2
.9 Z
.3 2
.8 2
.1 I
.9 1
.* 1
.0 2
.» 2
08 1.
,1 1
.2 1
.0 2
.6
.2
.1
.1
.2
1.4
4
J
Z
5
6
Z
2
Z
Z
Z
Z
2
i
Z
4
.6
.0
.0
.2
.<
.3
.
,
«
. 1.
1
1.
1.
.0 1
J.O 1.
2
2
.8 I.
.* t.
8.S 1.
S
I
4
4
2
Z
Z
J
J
i
S
4
4
4
S
S
5
S
*
3
*
r
6
.' Z<
1
.7
.5
7
.4
.8
7
0
it
4
4
.0
.4
T
4
6
I
t
4
Z
0
1
0
I
4
7
3
3
8
S
2
7
7
9
*
1
9
I
.2 Ul
.6 1.
.« 1.
.3 2
.4 1
.1 1
.2 2
.3 2
.5 2.
.7 2
.6 3
,Z 2.
.2 2
.* 2.
.1 2.
.7 2
,Z I.
.3 1.
.9 I.
.3 3.
.1 3.
.3 2.
.1 t.
.« 2.
.7 1.
.1 4.
,t 4.
7
7
t
7
*
7
*
Z
«
0
*
1
1
2
3
5
3
4
3
4
7
0
0
0
5
. 1 4.4
.3 3.
.9 6.
.9 S.
5
9
8
.1 3.0
.9 6.
4
9.1 6.6
5.
1
J
1
1*
C 6.4
.0 6.
.8 6.
0 7.
i 6.
C
Z
Z
0
ij.r r.
u
11
10
u
11
t*
16
S 7.
.6 14.
7 6.
1 7.
.7 9.
,t >u.
0 1.
114
-------
Table B-2. Soluble biochemical oxygen demand (SBOD^) performance of the
Corinne Waste Stabilization Lagoon System.
SOLIU91E BOD(5> I MG/L )
Its > NO i»«PLE. NO « NO OUT*, * - POOR DAT*, 8 • BOD*, C - BOD6
no 0*
YR
23 75
24 75
25 75
26 75
2T 75
Z« 75
29 75
39 75
It 75
1 75
2 75
1 75
75
75
75
75
75
75
2 10 75
Z It 75
2 1? 75
2 13 75
2 It 75
2 15 75
2 16 75
2 17 75
2 18 75
Z 19 75
Z Z» 75
2 Jt 75
2 22 75
2 27 75
2 2S 75
' 75
t 73
9 75
12 75
H 75
18 75
21 75
24 75
28 75
»l 75
* 75
S 75
a 75
11 75
It 75
15 75
16 75
17 75
18 75
19 75
20 75
21 75
22 75
21 75
2t 75
25 75
21 75
27 73
21 75
2» f5
30 75
1 75
2 75
73
75
75
75
75
75
7S
10 75
11 75
12 73
II 73
16 73
1* 75
22 75
23 75
28 75
31 73
75
75
rs
s
t
*
12 73
13 73
18 73
21 73
24 73
27 73
30 FS
i rs
t rs
9 75
12 rs
is rs
r it 75
7 17 75
r 11 rs
INFLVCNT
43.8
44.6
14. »
38.6
2«.2
35.2
39.0
19. t
57.4
45.6
It. 2
29.1
ra. o»
44.0
66.0
126. r
26.3
14.0
13.2
15. S
12.5
t.l
23.8
10.5
14.2
15.4
l».l
12.5
12.1
11. t
14.1
12.1
18.1
10.9
12.4
12.1
54.1
20.1
ia.o
12.5
20.4
11.1
11.7
11.0
e.o
34.8
28.0
22.0
1*.2
24. S
21. S
23.4
t.7
12.5
11. t
9.6
IS. 2
i.a
10.5
10.0
11.3
12.1
12*2
12.1
9.8
12.1
13.2
14.0
13.2
8.0
10.3
10.0
10.3
10. 1
9.5
13.3
13. F
21. Z
2*. 8
4».0
30.0
11.4
6.9
14. 6
10.7
33.7
19.0
i.r
21.9
7.3
11. (
35.8
t.l
14.9
3.0
10.1
3.1
t.7
*.3
4.6
O.t
P3NDI
5.0
5.9
3.
5.
7.
N
t.
.
> .t
.r
.1
.«
.9
.t
4.6
15.0*
(.4
b.e
5.8
r.2
7.0
S.I
1.5
4.0
l.T
^.T
t.7
4.0
2.3
3.0
3.2
3.5
5.6
4.4
5.
5.
I.
29.
13.
7.
13.
7.
7.
r.
t.
t.2
5.2
r.9
t.9
1.3
».s
1.1
t.n
5.1
6.1
r.2
t.t
1.9
t.7
4.6
3.0
t.5
4.1
1.7
5.»
t.5
4.7
4.4
t.4
4.0
5.1
t.t
1.0
t.l
8.7
t.9
4.7
2.8
9.0
t.t
.0
.4
.2
.t
.1
.0
.1
.t
.4
.3
.0
.7
.8
.t
.t
.4
.r
.t
.0
t.t
4.1
PONOZ
5.2
NS
4.6
4.5
6.0
5.4
5.4
5.2
7.2
5.7
7.7
2.4
4.1
t.l
t.l
U.4»
6.7
t.2
5.3
5.0
5.2
5.4
5.1
3.0
3.t
5.2
4.7
4.*
3.2
3.2
4.3
3.8
3.3
2.1
4.5
t.t
7.1
.5
.«
.*
.7
.1
.»
.8
.8
.0
.3
t.7
7.1
9.3
7.1
7.7
t.2
4.f
t.9
4.9
t.l
S.3
4.«
4.3
3.9
3.4
3.
4.
t.
t.
t.
z.
t.
3.
3.
4.
t.
S.I
t.t
s.s
t.t
z.r
t.»
4.7
3.S
3.S
2.5
3.3
4.9
s.r
s.t
t.t
r.o
S.t
3.9
2.7
2.t
2.7
2.3
3.1
4.3
4.2
3.7
1.4
S.O
POND3 PON
6.5
t.l
4.4 3
4.5 3
5.0 J
NS 4
4.0
4.0 3
4.7 3
4.5 4
4.0 3
2.9 4
4.1
2.3
3.6
5.6 9
8.1
5.1
5.7
4.6
4.2
4.8
4.1 3
4.4 3
5.S
4.4
4.0
4.1
2.8
2.7
3.3 4
2.? 4
3.8 3
2.6 2
4.4 4
4.7 4
5.9 r
10.3 10
7.2 3
7.t t
t.t 1
6.2 t
7.9 <
lO.t 1
4.7 t
4.2 4
r.z 4
6.6 ]
6.1 4
9.4 «
9.S <
6.7 1
S.3 1
4.7 4
4.* «
5.0 4
s.« •
3.7 !
4.3
4.1
4.1 <
3.3
4.0
4.3
3.4
s.r
3.1
3.9
3.4
4.1
4.1
4.4
3.3
4.9
3.2
3.1
3.9
t.S
s.r
4.4
S.O
4.7
S.4
S.3
5.7
S.S
6.7
6.2
6.9
7.1
7.9
I.Z
4.7
1.2
S.S
3.0
1.S
4.1
4.1
3.3
S.O
04 PONDS
NS 3.3
US 2.7
.1 NS
.7 1.1
• 0 1.2
.3 0.6
NS 3.6
.7 3.1
.1 4.8
.5 4.3
.8 4.7
.1 2.8
.2 4.6
.0 1.9
.6 1.7
>4 ».»•
.2 J.I
.2 5.2
.6 S.I
.9 3.8
.1 1.5
.0 5.9
.1 2.2
.3 2.4
.2 3.0
.1 4.4
.2 1.9
.1 J. Z
.1 3.3
.0 3.8
.0 5.1
.0 4.2
.t 4. t
.< 2.6
.r 2.7
.1 3. S
.0 >lt.l
.t t.S
.9 r.o
.1 S.I
.S t.O
.t S.f
.2 S.I
.r r.t
.2 t.7
.1 4.1
.r t.o
.r 3.1
.t 3.8
.S 1.0
.t 7.2
.9 t.S
.2 5.9
.1 4.9
.* 3.*
.1 2-9
.0 3.t
.t 2.t
1.4 2.4
.r 2.1
.2 3.9
.6 3.1
.r 4.3
.9 3.S
1.4 3.S
.1 4.2
.t 3.*
.t 3.S
.3 3.3
.4 3.1
.7 3.1
.2 3.3
.7 1.7
.3 3.1
.0 3.2
.4 4.3
.1 I.
.2 2.
.1 t.
.3 3.
.1 3.
.4 4.
.1 3.
.9 4.
.4 S.
.4 S.I
.0' I.Z
.S S.I
.3 t.O
.4 5.1
r.i 1.1
r.O *.4
I.I 4.4
(.« 1.7
t.t 2.9
1.0 4.1
E.t 2.2
1.2 4.0
E.3 I.S
Z.9 2.1
t.7 t.2
POHCI6
3.8
NS
1.0
3.2
3. a
2.9
.3
.0
.4
.6
.1
4.4
2.6
3.4
4.3
20.7
4.9
2.4
5.3
4.2
5.3
4.5
5.4
1.3
3.5
3.6
3.0
3.2
2.1
1.
I.
t.
1.
2.
4.
3.
4.
t.
t.
1.
t.
S.
4.
1.3
7.7
.7
.3
.8
.0
.1
.1
.8
4.1
4.4
4.1
.9
.2
.5
.6
.2
.3
.1
.0
.5
.1
.t
3.7
3.4
Z.9
3.5
3.6
3.1
3.7
3.S
4.1
4.1
1.6
3.2
3.0
3.S
4.3
4.0
3.1
l.t
3.3
4.7
S.S
.9
.t
.0
.t
.t
.4
4.0
4.9
4.7
4.4
i.r
3.4
3.4
4.0
EFfLUENT
2.0
2.5
2.2
2.0
4.7
2.S
1.1
NS
2.0
2.8
1.9
1.1
2.0
1.9
1.7
7.1
6.4
1.4
1.6
2.1
t.l
t.O
2.5
2.«
1.1
1.
Z.
2.
1.
2.
Z.
5.
t.
2.
3.
r.
>to.
t.
s.
s.
s.
4.
1.
t.
t.
4.
1.
S.
4.
r.
6.
4.4
3.3
3.9
4.9
2.1
4.4
Z.9
3.3
3.3
.0
.2
.1
.3
.7
.5
.9
.r
2.5
3.4
3.1
3.5
3.6
3.3
3.0
3.9
1.0
1.1
4.3
4.1
4.1
3.7
2. »
4.0
3.1
Z.t
3.6
t.t
S.3
4.7
5.2
S.t
3.2
3.1
3.3
4.0
2.6
i.r
2.9
2.4
I.S
115
-------
Table B-2. (Continued).
90D(J> (HC/1 )
NS » NO ilNPlE. NO • NO 0*r», « . POOB JUT*, s - 8004. c » BOO*
»«
NO 01
7 20 75
r zi rs
7 Z? 75
7 Z3 75
7 Z4 75
r zs rs
7 Z6 rs
7 Z7 75
7 za rs
r z» 75
7 30 75
7 31
« I
rs
75
rs
10
10
4 75
5 75
6 rs
7 rs
a rs
» rs
10 rs
u rs
12 75
is rs
14 rs
17 »5
z» rs
it rs
26 rs
z« rs
i rs
4 rs
7 75
10 rs
ii rs
rs
rs
22 75
z) rs
Zl
16
rs
rs
rs
rs
rs
rs
75
rs
rs
rs
rs
rs
rs
rs
rj
to 29 r:
10 29 rj
10 10 rs
10 ii rs
11 i
11 z
11 !
11 4
11 S
11
11
10 10
10 Ii
10 20
10 21
10 22
10 ZI
10 24
10 25
10 26
ii »
u i«
11 11
11 12
11 IS
a it
u is
11 u
u ir
11 11
II
75
rs
rs
rs
75
6 75
7 rs
9 rs
» rs
rs
rs
rs
rs
rs
75
75
75
75
11 20 7!
u 2>
12
12
rs
26 75
2 75
75
5
12 9 73
12 It 75
12 14 rs
12 17 75
12 Z4 75
12 Zl 75
12 II 75
5 76
6 76
» 76
12 76
15 76
ie r6
21 76
76
zr rs
30
INFLUENT
4.4
(,.!
6.1
5.4
10.4
9.4
12,9
».r
is.9
9.9
9.4
10.6
19.6
19.1
11.3
9.r
t.g
t.9
21. Z
r.s
11.9
r.*
9.0
t.l
11.4$
6.9
4.0
10. r
16. r
It. 2
16.4
11.4
21. 9
19.2
1.4
21.4
31.3
25.6
IS. 4
41. t
27.6
SO. 6
15. »
10.5
11.9
2*. 9
10. »
40. «
35.2
2i.a
22.0
21.3
27. S
2».»
zr.o
1B.1
15.4
12.0
ia.2
12. 6
U.I
zi.e
1».3
24.0
16.5
ir.a
ir.s
15.2
19.2
21.1
20.2
19.0
}4.2
22. »
20.1
10. 1
34.4
20.1
29.2
20.6
44.9
49. *
31.0
11.1
26. e
17. j
24.5
23. S
12. «C
eo. »
60.9
ti. r
2».9
17.0
ii. r
50.3
42.2
53.1
42. (
99.5
St.!
POX01
3.J
J.3
5.4
.S
.9
.1
.6
.0
.2
.)
.4
.6
.6
.4
.4
.2
5.3
S.t
5.6
4.«
».»
j.r
4.r
1.5
k.78
4.4
1.0
5.4
5.1
2.9
4.4
4./
!.«
k.»
}.*
1.4
6.4
t.7
5.*
4.5
1.7
6.4
3.*
J.t
4.2
.)
.»
.«
.«
.
t.
t.
S.
6.
4. 1
4.1
4.6
).«
6.7
4.0
t.r
4.r
i.r
4.0
4.r
5.9
(.6
4.*
5.0
5.6
4.9
6.)
5.6
5.S
*.»
5.S
4.1
1.2
6.0
r.2
5.6
I.I
1.7
4.6
I.I
6.6
6.1
i.Z
1.2C
r.»
1.2
9.4
B.
1].
1.
>.
i.
7.
9.
U.
9. .
PONOJ
2.9
2.9
I.S
z.r
2.2
J. 9
4.1
ND
t.l
1.8
J.«
5.8
S.4
6.2
6.7
4.1
4.r
«.o
«.5
4. a
s.z
4.3
4.Z
4.5
3.ea
?.»
4.1
4.9
4.4
3.0
z.r
J.9
J.J
J.4
$.4
1.2
NO
6.S
6.7
i.a
j.«
i.
4.
1.
I.
1.
S.
4.
S.
s.
4.7
9.9
I.I
.0
.6
.9
.4
.6
.2
.T
.»
3.7
J.7
J.»
4.)
4.0
i.r
3.4
3.4
S.I
4.0
4.r
S.2
2.1
1.3
.2
.2
.4
.»
.4
.»
.1
3.7
4.4
3.3
.1
.9
.5
1 1C
.7
.
4.
J.
1.
4.
4.
4.
6.
1.
s.r
6.4
POND 3
1.2
4.4
3.2
1.6
3.S
1.9
6.0
no
6.7
r. o
6.1
6.6
4.0
t.2
6.0
1.7
t.7
5. I
i.r
4.6
4.1
3.2
4.4
s.r
4.0B
3.0
4.1
4.]
1.0
3.7
6.2
1.0
2.1
4.1
4.1
4.7
4.0
4.«
5.7
5.9
4.6
6.1
I.*
b.O
5.1
1.6
I. a
5.2
S.3
(.0
6.5
4.4
J.6
S.t
4.1
4.1
4.r
5.1
4.1
3.5
4,5
4.«
1.9
4.4
s.r
5.4
5.0
4.6
4.5
4.9
4.2
S.O
4.5
S.4
4.5
4.r
J.J
4.7
4.9
4.6
4.a
4.0
3.7
3.9
2.9
3.7
4.4
3.9
5.0C
4.4
4.1
S.O
4.5
5.6
1.9
4. a
S.O
3.1
1.9
4.4
6.4
POND*
2.6
1.9
I.I
z.r
1.9
J.J
i.l
NO
4.0
5.5
2.9
J.J
2.6
J.I
1.0
3.0
3.7
2.9
3.-9
3.1
3.0
2.9
2.7
1.0
2.36
2.4
2.4
2.1
2.0
2.1
1.9
I.i
2.0
Z.I
2.5
S.t
I.t
4.(
7.6
3.1
4.1
S.4
5.6
6.1
5.2
4. a
4.1
5.1
7.7
S.
5.
4.
J.
4.
1.
4.
I.
2.
5.
1.
4.
4.
4.2
4.3
4.3
4.
4.
4.
1.
4.
4.
4.4
2.
4.
1.
4.
4.
4.
1.1
1.1
4.4
1.5
4.6
1.4
1.0
2.7
1.5
3.5
4.M
1.4
<3.6
4.6
I.I
(.3
4.1
4.1
J.6
4.0
1.6
i.r
1.9
PON05
2.9
2.5
3.9
2.1
3.5
2.2
3.6
NO
s.r
3.1
1.6
2.0
1.1
2.7
2. 3
i.r
2.1
2.1
3.0
2.6
2.2
1.6
2.8
2.4
LSI
2.0
2.4
1.4
1.1
1.0
1*0
1.4
0.9
1.1
1.1
1.0
2. a
1.7
1.0
1.1
2. a
4.4
3.6
.7
.6
.2
.0
.1
.a
.9
.1
2.
I.
J.
2.
2.
2.
I.
2.
1.0
1.9
2.0
J.4
4.2
I.I
3.5
s.r
7.9
3.4
3.9
J.I
I.S
1.2
2.9
1.0
3.5
1.0
1*3
5.0
1.1
2.)
4.2
S.O
3.0
1.1
3.4
1.1
3.6C
J.O
1.5
3.6
3.9
4.0
9. r
3.6
1.4
!.«
1.9
1.7
I.I
PON06
3.0
3.5
i.Z
2.9
2.5
1.6
2.5
5.4
z. a
1.8
1.6
2.6
2.2
2.7
1.9
0.9
2.1
t.9
2.3
2.2
2.4
1.4
2.0
1.4
1.18
1.6
Z.I
.0
.f
.0
.1
.1
.0
.1
.4
2.9
l. a
2.0
2.0
1.6
I.I
2.2
1.9
2.1
l,»
2.2
I.r
2.5
2.5
2.6
».S
J.O
2.4
3.0
3.5
2.4
J.J
2.9
2.0
1.6
2-4
1.2
2.6
Z.I
1.0
e.«
2.0
3.1
2.0
3.1
NO
Z.I
Z.4
1.2
1.9
2.4
3.2
2.i
2.2
1.2
3. 1
2.7
S.2
1.4
1.0
2.5
1.4
1.2
4.2C
z. a
2.7
2.8
4.1
1.0
t.t
I.I
3.2
1.0
I.I
1.8
2.5
CFFiUENI
1.4
3.1
3.5
2.2
i.a
1.4
S.
z.
3.
2.
?.
2.
1.
2.
Z.
I.
2.
2.
2.
2.2
i.a
1.8
ND
1-.2
o.ra
2.7
0.*
0.9
.7
.9
, 3
.6
.7
.s
0.
1.
1.
1.
1.
1.
2.
1,
1.
1.
j^
1^
.4
.7
.7
.5
.6
.4
.4
.6
.5
.6
.4
,r
.5
.6
2.
2.
1.
2.
2.
1.
2.
2.
2.
1.
Z.
I.
I.
2.
2.
2.
Z.
2.
Z.
2.
Z.
1.
2.
2.
1.3C
1.1
3.6
I.I
1.0
2.9
2.5
I.I
Z.S
2.7
6.5
5.1
2.8
116
-------
Table B-3. Suspended solids performance of the
Lagoon System.
Corinne Waste Stabilization
SOLIDS
I
I
:
!
!
I
I
I
2
I
i
2
i
!
'.
'.
T
r
7
7
r
r
r
D4
23
24
ZS
Z6
£7
ZB
29
]q
11
1
1
J
4
5
6
T
|
9
1 1
M
I?
11
16
15
1 6
ir
18
19
20
21
fZ
Z7
28
1
i
9
12
15
11
21
24
Z«
It
2
$
8
11
14
15
16
ir
18
19
29
21
^^
ZI
24
25
Z7
Z»
29
10
1
Z
10
11
17
13
16
^f
Z?
25
21
II
j
6
9
12
IS
18
21
24
27
10)
!
&
*
12
IS
16
17
11
TB
75
rs
75
75
75
rs
rs
rs
75
75
75
75
75
75
rs
75
rs
75
75
75
75
7!
75
75
75
73
75
75
73
rs
rs
75
75
75
75
75
75
75
75
75
75
73
75
75
75
75
75
75
73
75
75
75
rs
75
rs
73
73
75
rs
rs
rs
rs
75
73
75
75
75
75
75
75
rs
rs
rs
75
73
rs
rs
rs
rs
rs
75
75
75
75
75
71
75
75
73
73
rs
rs
75
rs
rs
73
rs
rs
rs
rs
lUCMf
DO
4.4.0
120.0
101. 0
231.9
24. r
• 0.0
117.6
17.6
57. S
10. 6
115.9
54. 6
133.0
74.0
ue.4
IZ7.9
92.0
110.0
Z7.1
47. Z
51. 1
195.9
41.7
36.1
II. S
107.6
56.7
32.5
14.3
45.3
65.0
22.0
74.6
74.0
35.7
11.9
144.2
49.3
40.5
25.1
251.4
52.5
29.1
Z2.2
49.4
17. 1
45.0
60.2
19.0
77.5
144.0
36.3
34.3
24.7
36.0
34.1
37.0
4s!z
43.5
230.0
51.4
34.7
74.6
37.5
52.3
67.7
60.1
27.0
21.9
13.5
71.1
63.0
M.t
53.6
110.1
114.0
116.0
37.6
46.5
32.9
63.3
39.2
11.3
16.1
lt.0
103.0
132.0
10.4
20.1
22.9
1.6
32.0
34. r
29. S
P9H01
45.6
54.6
52.0
45.3
46.0
MS
55.0
6Z.O
54.4
51.0
67.0
73.0
67.8
68.0
74.9
tl.O
47.3
55.7
61.2
61.9
55.7
49.0
60.0
4*.t
ro.o
n'.t
77.0
56 .0
31.1
32.7
61.0
16.0
74.4
76.2
59.1
19.0
12.6
2». I
31.7
17.0
39.0
43.7
53.5
61.0
66. r
5>.0
7».2
81.0
12. r
65.9
11.5
76.4
55.3
90.9
79.3
82.0
64.4
66.4
67.6
11. 0
97.2
67.9
rt.o
11.3
90.6
77. t
16.3
96.0
102.1
107.0
65.9
66.3
46.5
66.3
53.5
62.0
55.9
36.4
10.7
37.4
42.2
72.2
58.0
37.3
77.5
79.5
73.3
36.4
35.5
33.1
59.9
58.0
6). 3
POK02
39.}
US
42. »
33. 5
32. S
20.7
28.6
JO. 0
21. S
27.3
44.0
50.0
50.6
67.3
11.6
30.7
37.1
43.7
32.8
37.7
37.0
74.5
10.0
43.7
41.2
si. r
57.1
31.0
61.0
44.2
46.1
63.0
S7.3
74.0
67.0
103.1
71.7
37.9
40.0
14.1
34.7
31.0
31.0
37.2
42.7
47.6
4*. 6
241.1
60.3
71.7
71.9
71.4
62.2
92.9
92.3
76.*
71.1
92.0
71.6
13.0
720
12.5
101.0
90.0
10.*
90.7
11.3
16.7
11.2
•olr
15.7
104.*
79. f
62.1
17.1
II. 7
33.0
51.1
14.0
46.7
16.2
71.1
17.4
34.2
29.0
51.3
43.2
36.7
65.0
91.1
31.3
27.2
23.7
19.6
23.7
21.3
41.4
37.3
POM 3
45.2
42.3
45.1
39.0
40.0
US
30.0
36.0
30.3
45. I
39.7
St.l
40.6
46.0
66.2
65.1
71.2
51.6
S4.6
44.1
53.2
11.1
47.0
14.9
41.7
44.0
50.0
51.6
54.0
62.7
105.0
61.1
47.3
64.7
64.0
59.0
61.7
47.Z
30.0
11.3
45.0
64.7
71.0
SO.O
71.4
•0.0
10.0
101.2
104.0
100.0
105.7
103.6
10.6
73.6
16.4
•1.4
84.7
92.9
100.0
106.0
97.0
15.1
11.0
67.0
too.o
71.3
12.6
100.0
101.1
(2.7
74.S
95.6
71*0
61.3
61.7
71.0
66.3
41.0
17.3
19.1
12.6
11.3
10.1
11.3
10.6
24.1
16.9
1.1
11.3
5.5
20.6
11.1
10.9
17.7
96. 5
13. •
10. Z
12.7
16.3
15.0
10.1
PON04
NS
NS
ZZ.O
22.0
17.6
18.4
«S
Z6.0
24.7
!9.S
41.0
61.6
45.4
56.3
55.2
70.7
41.9
50.1
42.0
21.5
41.2
19.4
45.5
49.3
44.0
41.6
36.0
39.5
56.3
15.9
55.6
60.0
52.3
57.0
S2.0
56.1
70.0
61.7
51.2
46.0
55. fl
72.0
51. 1
30.4
98.*
106.7
129.3
130.7
116.9
IZO.O
114.0
139.4
96.8
116.3
100.1
93.1
100.9
107.9
93.1
10S.6
10*. 3
70.7
101.9
100.0
111.1
86.1
12.4
96.1
100.7
110.5
56.4
111.0
1*.
10.
• 2.
• I.
73.
67.
49.
9.
22.
34.
1.
44.
12.
11.!
9:7
7.
7.
7.
12.
7.
10.
5.
7.
1.
4.
1.
11.
12.
11.
PONDS
4.1
1.7
NS
9.7
11. 0
6.7
8.0
16.2
11.1
20.1
21.7
16.4
NO
28.5
31. 1
1S.1
39.1
29.2
27.5
27.0
10.0
30.0
21.1
29. 7
33.0
27.3
24.1
33.6
32.7
20.3
35.6
50.0
40.)
35.6
7.0
63.4
36.1
73. 9
56.0
63.0
101.1
101.1
90.0
93.0
205.3
231.3
290.*
112.9
114.4
166.0
110.0
176.2
1Z1.4
94.1
114.0
91.3
10 J.I
91.4
9 J.I
•99.0
121.1
90.9
79.1
92.*
107.0
90.0
101. 1
111.6
73.1
14.2
93.*
•1.4
14.7
»5. I
13.1
30.6
71.2
29. 0
21.4
0.6
».«•
10.4
16.*
14.*
11.5
3*. 5
61.1
0.4
14.7
4.3
14.1
29. 0
39.0
3.3
3.0
to. r
15.2
2.2
16.6
10.9
7.*
PDHD6
10.1
NS
12.3
10.7
11.0
10.5
15.3
26.4
16.7
19.6
23. 1
20.0
9.6
13.4
26.0
11.0
27.5
17.0
2S.1
16.0
13.7
11.9
20.1
21.*
15.3
11.4
17.1
20.6
11.5
14.3
19.7
41.3
32.2
31.1
ZI.O
27.3
11.5
46.6
41.0
41.2
51.3
262.9
416.0
471.4
194.1
290.0
217.5
191.1
117.2
144.4
III. I
HO
114.1
104.0
94.*
133.0
11.2
16.4
iro.o
92.2
104.0
77.9
104.0
57.0
101.0
• 7.0
11.3
77.5
75.7
13.7
10.3
96.7
61.5
17.2
71.4
64.9
65.9
56.1
41.1
25.0
22.4
2Z.O
16.1
14.7
7.3
10.0
11.6
19.6
9.3
11.4
22.1
1.1
11.9
7.9
5.4
9.1
4.0
3.1
12.1
4.1
1.4
cmuENf
.7
.6
.Z
I .!
.8
.S
.5
NS
6.1
11.1
11.0
U.I
1.7
14.1
9.5
9.2
10.4
10.2
14.0
21.1
17.0
8.0
12.4
12.1
12. 7
1 3.1
10.1
10.2
9.1
1.2
10.6
23,1
24.3
250.0
19.6
21.2
20.1
21.2
12.3
51.3
32.0
94.0
166.7
191.1
192.1
217.5
235.6
242.5
201.1
225.0
217.6
116.2
217.0
151.*
173.1
22 5. S
172.1
166.7
122.9
132.0
160.5
122.6
103.1
102.3
127.3
90.0
71.3
*S.l
72.5
71.2
64.0
84.2
6t. r
77.3
60.5
41.6
52.4
46.3
41.7
34.0
44.1
34.3
16.1
11.6
11. t
19.5
11.1
7.7
6.6
10.1
5.0
4.6
2.9
1.4
5.1
4.4
1.4
2.9
5.9
3.1
4.0
117
-------
Table B-3. (Continued).
SUSPEHOEJ SOLIDS
KS » MO iAHPlE. NO • NO DAT!
00 D«
7 1»
7 It
1 ZI
7 Z4
25
26
27
28
Z9
39
31
I
2
J
4
3
6
7
8
9
10
11
12
1!
14
17
29
23
26
29
1
4
r
19
1!
16
19
2?
2!
28
0 1
9 4
9 r
0 10
9 U
g u
0 21
9 21
1 22
0 23
1 24
9 25
9 26
9 27
9 28
9 Z9
> 3t
9 31
1 1
1 2
1 3
L 4
t 5
t 6
1 7
1 8
1 9
L 10
1 It
L t2
L 13
L 14
L 13
L 16
17
L 18
19
20
23
26
j
5
a
it
14
.»'
29
23
31
3
6
*
12
15
IB
21
24
27
10
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
73
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
73
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
76
76
76
76
76
76
76
76
76
76
INFLUENT
32.7
29.1
63.5
30.7
32.7
33.5
1.9.1
124.0
>1.7
62.0
102.9
30.0
St.*
36.7
3Z.7
tl.6
27.6
ND
21.7
34. «
33.6
39.1
SO.t
56.5
tt.l
50.5
NO
53.4
74.6
to. 4
57.6
48.0
23.1
81.2
11.3
42.0
53.7
57.8
65.5
NO
62. 0
51.0
30.0
57.0
27.3
272.9
321.3
t»3.5
52.6
52. 0
39.6
89.9
72.4
77.9
59.7
94.1
7».0
39.1
45.9
29.6
23.7
»6.7
79.1
207. 1
64.7
35.4
14.7
40.0
62.1
74.1
66.1
60.5
32.3
53.1
37.4
72.2
54.7
49.7
330.0
133.7
127.6
65.0
131.6
73.0
46.1
85.2
52.9
43.5
39.2
17.1
76.*
46.1
61.4
10*. 0
120.0
60.6
8.6
70.3
52.6
33.9
616.1
PONDl
77.3
56. 4
130. 9
6b.7
87.)
71.1
67.9
6V. 1
79.2
54.7
8».o
62.0
91.0
102.5
122.7
91.0
93.0
93.5
99.2
9J.O
78.0
73.0
61.5
48.3
71.0
73.0
61.0
61.3
95.4
109.9
9t.O
97.0
1JO.O
114.0
110.0
112.5
91.9
91.8
66.2
65.9
91.0
110.5
17.0
104.9
109.0
105.7
78. «
12.2
77.2
U.O
71.9
19.1
8«.l
91.2
84.1
71.6
84.4
77.5
71. 5
k».S
82. t
68.9
70.3
73.3
61.1
95.1
60.3
64.*
63.6
III. 8
74.3
56.9
52.6
52.5
47.6
67.4
S6.0
61.0
51.5
57. •
65.6
55.2
13.2
31.2
32.2
19.7
29. >
29.4
22. 1
24.5
11. t
2>.l
13. 1
26.5
23.2
16.2
9.2
11.4
13.0
11.2
22.9
PON02
41.3
37.7
35.0
40.0
62.5
54.4
47.9
SO. 7
47.1
36.0
60.2
63.0
53.3
68.9
90.0
93.0
79.0
113.0
124. 0
77.1
48.9
54.5
30.5
31.6
40.4
42.1
46.3
70.2
75.6
94.1
19.7
70.0
91.0
101.0
121.0
105.7
105.7
117.7
59.7
107.6
82.0
104.0
97.5
95.3
112.0
105.8
88.0
10.6
79.1
10.0
79.3
81.1
82.1
75.9
83.1
71.5
45.5
71.5
76.0
7».6
72.5
78.8
75.8
70.9
89.0
61.9
63. «
62.6
63.2
57.0
56.5
62.5
48.1
39.2
52.2
46.0
46.5
50.0
50.0
43.6
38.0
44.8
47.6
27.9
31.5
29.6
29.8
27.0
24.9
20.5
17.*
24.3
29.1
40.0
27.5
15.7
17.1
14.2
19.0
10.2
9.2
POND!
29.5
15.0
13.1
21.7
23.6
50.5
22.2
33.2
32.8
32.1
27.8
NO
55.0
52.7
63.3
66.7
57.5
64.0
58.0
71.5
30.7
54.9
48.9
33.9
.15.0
34.0
43.9
47.7
40.2
48.0
48.8
39.7
47.0
60.0
69.9
12.0
11.0
15.0
89.0
69.2
72.5
86.0
88.3
77.6
60.0
S6.9
55.5
64.7
57.3
75.2
66.2
64.4
113.0
81.8
63.3
69.0
47.5
60.2
63.4
41.1
65.}
58.3
51.5
58.5
69.0
64.0
54.4
54.7
58.7
53.5
52.3
56.0
50.9
48.4
57.6
47.7
47.6
58.3
51.0
43.1
46.0
37.2
21.1
31.7
33.1
28.6
27.4
2». 2
2».6
24.6
ND
20.0
21.4
24.4
25.3
13.9
13.7
21.4
21.4
32.2
31.6
POND*
7.0
3.1
2.3
4.9
5.0
5.0
4.5
1.1
7.0
3.6
4.4
2.3
7.1
.2
.3
• 6
.9
.8
.8
.2
.0
.2
.5
3.8
.3
.3
.9
.2
.6
3.1
3.2
4.4
6.7
3.9
14.5
18.4
35.3
43.3
20.7
37.6
35.5
51.4
42.3
44.4
39.6
43.0
40.9
36.4
45.6
40.4
38.9
40.4
34.2
42.5
27.8
38.1
34.*
32.7
40.3
43.3
38.7
47.8
58.8
51.4
44.1
43.*
37.4
40.7
42.5
43.4
41.8
48.0
59.5
42. 1
40-6
47.5
51. »
41.3
37.4
39.7
45.7
39.6
45.*
49.1
31.7
31.0
37.8
15.6
26.2
27.2
21.1
37.7
19.7
38.9
19.0
54.8
14.0
15.9
21.1
26.5
tl.9
PONDS
16.0
3.
2.
2.
26.
11.
2.
4.
2.
4.
4.
2.
5.
3.
5.
5.
6.4
5.4
5.4
16.7
23.0
6.1
7.1
3.6
3.6
2.8
1.8
2.1
4.3
0.4
1.8
3.1
2.1
3.5
2.4
3.*
5.1
11.4
5.0
4.0
5.8
3.2
9.9
9.0
7.5
a. i
3.9
11.4
9.4
18.4
9.6
11. 5
5.6
9.4
5.9
6.3
3.9
9.7
13.2
12.6
11.5
14.2
16.1
22.1
15.9
21.8
31.4
30.4
27.2
19.6
22.2
32.5
26.2
28.4
26.6
24.2
30.0
23.2
18.9
19.7
18.7
22.*
17.9
16.6
21.7
24.0
21.1
21.0
20.5
21.3
11.1
11.1
20.1
23.1
SI. '4
61.3
26.1
14.6
21.3
21.6
28; 0
POND6 CFFLUC
7.2 4.4
1.7 9.5
5.3 3.6
4.6 4.5
2.5 4.
4.5 2.
2.2 8.
5.2 2.
3.3 2.
12.9 3.
3.1 2.Z
2.1 0.5
.7 1.9
.1 4.2
.8 5.4
.9 3.1
.2 3.6
.2 1.0
.8 3.1
.7 15.3
.3 Z.4
.6 t.l
.6 1.5
8.7 0.7
1.1 1.2
0.1 1.6
1.0 2.9
3.8 5.1
3.5 4.5
0.9 5.1
3.0 1.9
1.6 2.0
1.8 1.9
4.0 Z.5
ND 1.9
4.8 3.0
4.0 1.2
16.0 4.7
6.2 1.
2.8 0.
3.6 1.
4.4 2.
4.0 12.
1.3 3.
6.3 3.
9.7 3.
i.y o.
2.7 7.
6.0 4.
3.9 2.
6.6 2.
5.
23.
It.
13.
12.
16.
19.
11.
a.
tol
14.
U.
12.
17.
13.
19.
18.
19.
17.
21.
13.
20.
20.
IS.
21.
23.
16.
21.
13.
13.
14.
9.
10.
15.
13.
14.
9.
It.
15.
13.
32.
21.
17.
23.
6.
13.
25.
33.
19.
1.
3.
2.
2.
1.
2.
2.
4.
4.
3.
3.
3.
4.
19.
6.
2.
3.
1.
3.
3.
.
.1
.1
.4
.5
.4
*
7.
5.
5.
6.
9.
10.
7.
7.
9.
10.
8.
6.
10.
11.
8.
7.
10.
26.
7.
11.
17.
44.
13.
118
-------
Table B-4. Volatile suspended solids performance of
zation Lagoon System.
the Corinne Waste Stabili-
VOLAItLE SUSPENDED SOLIDS
kS > NO iUHPLE. 1.0 - NO DAI*
OK TR
Z* 75
24 75
25 75
26 75
27 75
28 75
Z*
39
75
31
I
2
it
4
5
6
7
8
4 5
4 8
4 II
4
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Z
2 16 73
2 17 75
2
2
Z 20 75
Z 21 79
Z ZZ 79
Z 27 75
2 2» 75
1 3 75
I 6 75
I 9 75
1 12 75
3 15 79
1 18 75
1 21 75
3 Zt 75
I ZB 75
1 31 75
Z
10
It
12 75
13 75
14 75
75
16 75
1* 75
75
75
75
75
H 75
4 15 75
4 16 75
4 17 75
4 18 75
4 19 75
4 20 75
4 Zl 75
4 22 75
4 ZJ 75
4 Z* 75
4 Z5 73
4 Zi 75
4 Z7 75
4 28 75
4 Z9 75
30
It
11
75
75
75
75
75
75
75
75
75
75
75
75
4
5
3
5
5
5
5
5
5
5
5
9
3 12 73
9 13 75
5 16 75
3 1* 73
5 ZZ 75
5 25 75
9 21 75
5 31 73
6 I 75
6 6 75
6 » 75
4 12 75
6 13 75
6 II 75
6 Zl 73
6 24 75
6 tr 75
6 30 75
J 75
6 75
9 75
12 75
H 73
16
75
7 If 75
7 18 75
INFLUENT
ND
43.3
101.0
75.0
166.0
24.7
70.0
102.6
71.9
50.6
61.3
101.2
15.4
106.0
53.0
«6.Z
94.1
70.1
66.8
13.0
40.9
24.1
74.3
22.5
23.3
21.5
45.5
39.3
23.0
10.4
4Z.7
46.6
16.7
45.9
6Z.O
32.1
6.1
• O.I
37.9
33.6
17.0
NO
22.1
18.6
12. Z
56.6
3Z.4
11.5
NO
NO
49.0
73.3
Z4.0
26.9
24.0
Z1.6
24.0
ia.t
ZI.O
23.0
150.0
11.9
25. 1
41. Z
Z9.0
16.0
50.1
31.5
24.7
16.5
22.5
2Z.I
45.5
39.0
31.0
36!*
75.0
74.0
163.1
101. •
35.4
4Z.5
33.0
22.0
50. V
31.1
16.7
10.5
17.0
48.0
77.0
7.1
5.6
19.5
6.6
7.0
23.0
26.3
1*.3
POND1
42.9
49.2
49.0
36.5
42.7
NS
46*4
59.0
43.3
59.0
47.3
59.0
&9.0
51.0
5*.;
61.0
47.1
61.1
6>. Z
il.b
49.7
44.9
49.9
45.4
61. •
56.*
50.0
66.0
59.9
44.1
5».9
67.0
54 .«
94.9
61.9
70.0
36.1
31.5
34.0
10.4
26.1
ND
37.0
25.0
31.0
34.5
59.0
63.0
ND
ND
64.7
16.0
71.6
5S.3
97.6
71.7
74. Z
95.3
71.1
69. Z
61.6
47 la
61.9
71.0
79.2
66.1
66.9
60.5
89.1
45.2
67.5
79.*
IZ.4
101.0
56.5
11.7
13.0
41.9
41.5
59.5
49.1
26.4
61.2
21.7
14.6
18.6
51.*
91.0
31.4
9*. 3
67.1
99.1
3k. 2
Z9.4
27.6
39. Z
42.7
43.8
96.3
46.6
PON02
36.7
NS
40.5
30.0
29.8
17.0
Za.z
21.7
24.7
27.3
3Z.7
41.9
40.0
98.0
75.7
46.7
30.9
40.3
Z8.Z
36.1
30.3
38.4
29.0
41.1
18.8
43.3
31.*
41.0
57.3
41.7
91. »
56.0
90.0
61.0
60.0
103.1
61.8
34.7
32.3
10.1
11.1
ND
22.0
27.4
10.1
38.*
Z6l!l
NO
ND
ND
59.2
65.*
55.6
84.7
to.z
14.3
64.7
82.0
33.7
46.0
30.3
38.0
«4.2
84.8
77.0
61.7
74.4
65.4
67.4
71.2
4».l
74.0
75.7
81.3
64.9
4«.l
II. 0
11. Z
10.0
11.1
6.7
25.1
18.1
Z4.7
11.4
1Z.4
24.5
43.6
I*. 2
49.8
S5.1
42.*
2».Z
Z0.5
1Z.4
11. 1
11.1
11.6
14.*
28.0
PON03
«9. Z
19.9
15.4
29.5
13.0
NS
22.5
26.5
23. 5
14.0
26.9
47.1
14.1
15.3
57.7
48.1
57.6
46.4
47.5
48.1
46.7
33.1
36.3
26.5
41.3
38.7
49.2
53.6
50.0
49.1
36. Z
34.3
45.*
56.0
37.0
30.0
63.7
40.3
41.0
38.1
39.0
NO
63.7
40.0
14.1
31.4
70.0
77.8
NO
ND
61.0
83.*
69.4
71.1
81.*
66.1
4*. 2
41. Z
67.5
73.3
47.0
47.4
71.0
61.0
76.0
65.0
66.7
10.1
77.8
76.0
61.5
71.1
52.0
46.0
32.1
55.4
34.5
14.5
7.7
6.6
5.6
4.1
1.6
7.1
16.6
14. I
6.1
I.I
6.7
1.0
7.1
1.7
3.1
10.6
45. Z
6.7
5.2
12.5
9.3
.10.0
7.2
POND4
MS
NS
12. Z
14.2
13.6
13.2
NS
18.4
17.8
34.2
32.0
44.5
35.4
14.7
42.4
56.7
12.6
41.8
19.6
15.2
12.6
40.7
46.6
18.4
44.3
43.5
44.4
47. Z
46.8
5Z.2
46.1
47.0
52.0
37.6
68.0
60.3
47.3
II.O
44.0
NO
4S.I
42.4
31.2
72.*
IZ.t
71.7
NO
ND
72.0
• S.»
81.0
71.6
91.9
70.4
•3.6
• I.I
17.5
• 1.1
70.*
34.2
6».Z
70.0
73.0
76.7
72.3
78.0
69.1
14.0
42.3
61.0
66. t
65.*
61.*
56.0
4*.7
40.0
19.*
4.7
7.
24.
0.
15.
7.
9.
6.
4.
1.*
4.0
5.0
9.*
4.4
Z.
1.
6>
2.
0.
5.
4.
4.
POND 5
3.9
8.1
NS
5.0
4.0
3.3
4.0
9.0
tO. 9
U.I
ZO. 1
17.6
NO
28.0
Z7.8
1Z.9
10.0
16.2
Z4.5
25.1
ZI.O
30.0
Z1.9
29.7
15.7
24.6
IZ.t
29.5
23.0
28.5
10.2
41.4
40.1
1Z.6
3.0
4Z.3
4*. Z
68. Z
41.0
56.0
63.9
NO
69.0
56.0
80.7
*a.i
128.6
97.1
NO
NO
72.0
78.6
76.6
64.*
•2.9
7Z.O
78.0
67.*
72. Z
71.0
13.1
63.1
94.5
61. Z
71.0
1*.*
60.0
76.0
56.7
57.*
61.4
33. «
57.*
63.1
68. Z
17.1
54.5
13.3
10.7
3.4
5.3
3.6
6.0
4.1
10.0
Z4.9
1.6
7.1
l.Z
4.Z
3.6
16.7
1.6
1.4
*.*
8.6
1.1
7.0
3.3
4.6
POND6
5.*
NS
4.8
4.3
10.7
4.0
7.3
10.0
9.8
14.3
17.5
16.0
0.0
*.4
16.8
10.1
ZZ.O
ND
22. Z
13.1
7.0
15.5
13.1
14.8
14.3
14.8
13.1
14.0
14.5
13.0
12. 7
33.5
12.2
10.0
20.5
ZI.O
37.0
39.4
40.7
43.2
46.7
ND
100.1)
62.1
42.9
92.0
70.0
77.6
NO
ND
41.1
ND
61.7
57.1
64.6
65.7
66.7
69.1
141.0
56.1
60.0
30.5
52. 0
13.0
68.0
39.0
45.3
45.7
3*. I
46.*
4*.0
31.0
43.1
51.8
46.1
11.3
11.7
II. »
12.1
17.0
15.6
10.1
2.7
4.1
1*4
1.4
3.6
3.1
2.*
1.1
1.0
Z.7
4.1
1.0
1.0
5.2
2.1
O.I
4.*
1.3
1.0
BFFLUENT
3.2
4.4
3.8
2.5
5.0
1.3
2.3
NS
4.5
4.2
6.9
6.0
1.8
6.8
2.2
6.0
1.1
1.3
e.z
*.»
8.2
2.2
6.1
6.2
5.6
5.2
3.4
9.7
3.0
1.6
6.2
19.1
18.3
26.3
19.6
11.1
18.8
22.*
27.2
41.7
43.0
ND
56.1
56.2
59.0
75.0
71.1
73.0
NO
ND
17.6
62.1
75.9
59.8
63.5
105.*
69.6
15.2
50.0
26.0
65.4
41.*
12.*
47.7
51.0
14.0
29.0
36.6
19.1
40.9
ZI.O
34.6
31.3
17.1
42.1
Z6.4
23. Z
26.6
35.1
39.3
34.9
25.1
6.*
9.9
15^4
4.2
4.1
2.5
7.5
1.1
Z.I
0.4
.0
.1
.*
.*
.7
«*
0.9
0.6
119
-------
Table B-4. (Continued).
VOLATILE SUSPENDED SOLIDS (NG/L)
MS * NO i«»PLC. NO * "0 OUT*
)
0
0
a
0
o«
19
21
21
22
21
24
23
26
27
2»
29
30
31
1
Z
*
4
3
6
7
14
11
11
13
14
17
20
23
26
z»
1
4
7
11
IS
16
1»
2?
25
29
1
4
7
10
rR
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
73
73
75
75
75
10 13 75
10 16 75
10 2» 75
10 21 75
10 2! 73
10 23 73
10 24 75
10 25 75
10 26 75
10 27
10 28
10 29
10 3D
10 31
1
11
11
11
11
11
11
11
11
11
11 ti-
ll 12
11 10 75
75
75
11 II 75
11 14 75
13 75
75
17 75
19 75
75
11
11 . 16
11
11
11 19
11 20 75
11 2> 75
11 26 75
12 2 75
12 3 75
12 » 75
12 11 75
12 14' 75
12 17 75
12 20 73
12 21 73
12 31 73
3 76
6 76
9 76
12 76
15 76
l» 76
21 76
24 76
27 76
30 76
I Hf LUC NT
39.1
21. J
46.5
20.3
31.4
24.7
z7.3
100.0
56.0
37.5
52.2
26.1
51. >
31.7
32.7
28.4
20. 0
NO
15.7
27.2
32. *
32.9
32.*
44.0
30.0
• I)
NO
42.6
61.5
2k. 9
47.7
36.0
16.0
66.7
NO
30.0
43.0
43.3
36.5
•0
41.5
40.1
ZZ.i
40.9
22.0
227. 1
214. t
143.2
45.1
41.6
11. i
59.7
59.0
61.1
44.5
»s.o
4J.5
26.6
36.7
24. •
ir.i
12.1
69.4
162.2
61. 5
24.6
14.7
26.1
42. 6
69.2
58.9
4J.7
22.7
3».9
NO
4«.l
48.8
44.6
294.0
117.8
96.2
64.0
»2.4
55.0
46.1
31.1
S».5
J6.5
28.6
37.1
56.5
58. b
37.5
74.0
79.0
56. 0
1.2
56.5
48.0
31.3
306.3
PON 01
(6.3
53.3
99.3
51.6
74. a
46.3
63.0
51.8
56.3
41.1
S9.o
62.0
76.0
68.1
6k.O
71.0
19.0
89.4
73.6
19.0
76.0
6k. 0
62.3
ND
71.0
69.0
61.0
84.4
85.4
97.0
79.0
89.0
ir.o
191.0
97.0
»0.6
72. t
67.1
5k. J
65.9
64.0
87. f
66.0
93.2
66.0
61.1
73.7
16.1
38.6
10.3
62.1
69.7
69.8
70.4
74.1
61.9
79.6
68.0
71.0
61.4
6*. 9
62.1
61.5
60.0
69.9
16.1
69.3
49.]
57.2
63.2
62.4
66.2
30.3
49.9
43.6
56.4
41.0
59.0
32.0
33.2
J9.Z
43.6
12.7
29.7
NO
36.5
26.3
28.2
23.1
21.4
16.1
11.1
22.9
17.3
21.]
14. t
7.2
1.)
12.6
).»
19.4
PON02
31.7
32.3
29.3
37.3
40.*
33.6
43.6
37.9
24.3
34.0
22. 1
58.0
31.4
60.4
67.0
83.0
71.0
103.0
84.0
50.4
40.4
47.9
27.8
ND
36.6
42.1
47.6
61.9
74.4
61.2
82.5
65.0
66.7
92.0
96.0
86.4
100.0
78.5
46.6
63.3
76.0
66.0
90.0
79.7
90.0
76.3
86.0
70.1
65.1
70.7
71.0
70.5
77.2
74.4
75.6
66.9
65.0
74.5
71.0
73.9
62.7
70.3
69.4
70.9
79.8
60.1
59.8
57.4
57.6
51.3
46.7
52.5
44.8
I*. 4
46.5
44.6
61.0
41.6
19.5
40.0
J4.«
35.2
3S.6
19.7
26.0
25.2
26.4
23.0
21.6
16.7
15.5
20.0
25.7
31.7
25.3
13.9
14.]
9.0
15.4
9.4
5.2
rows
25.2
12.9
13.1
20.0
15.2
24.0
17. »
24.4
23.9
27.5
21.1
NO
45.0
42.5
59.7
36.1
56.7
43.0
43.0
52.3
46.4
45.1
43.9
33.9
31.0
30.0
37.6
43.1
35.6
40.1
43.9
32. a
42.0
5t. a
32.2
61.0
73.0
32.0
34.9
64.6
72.5
69.6
71.2
66.4
33.0
36.9
53.1
63.1
51.1
69.4
57.2
61.5
91.6
66.4
55.6
67.1
61.3
60.2
61.0
43.1
64.2
30.5
41.8
51.0
6). 5
57.5
49.6
4». 6
48.6
49.0
63.0
52.0
41.6
36.7
5Z.4
43.1
19. 4
5».)
49.3
41.0
44.1
23.6
18.4
2«.l
31.6
27.2
25.4
23.4
24.6
21. 4
ND
17.0
ND
18. <
21.6
12.6
12.9
17.4
19.0
25.5
31.6
POND4
4.
0.
2.
3.
2.
4.
2.2
4.9
4.9
1.6
3.6
2.1
«.6
1.2
6.1
2.8
3.9
4.1
4.8
.7
.2
.8
.9
.8
2.1
2.4
3. a
2.0
2.6
2.8
1.3
2.7
4.1
1.1
9.
11.
30.
39.
10.
37.
33.
39.
37.
41.
37.
33.
32.
33.
33.
40.
11.
31.
31.
40.
tr.
33.
34.
0.
36.
39.
34.
40.
50.
46.
39.
36.
37.
40.
42.
33.
37.
32.
42.
30.
36.
31.
36.
30.
27.
31.
41.
34.
36.
43.
N
26.
32.
34.
16.
23.
19.
32.
II
30.
14.
41.
14.
11.
20.
20.
16.
POND 5
9.6
1.6
0.9
1.3
20.6
7.9
1.3
1.4
1.4
9.7
1.7
0.1
2.0
2.1
2.2
2.0
3.6
ND
0.8
11.0
15.0
3.5
3.6
2.1
3.0
2.0
1.1
1.0
1.1
O.I
0.
2.
1.
2.
1.
1.
2.
4.
2.
3.
2.
0.
.1
.1
.1
.;
•
10.
2.
11.
6.
3.
3.
5.
3.
2.
3.
3.
9.
8.
11.
11.
9.
14.
14.
1*.
20.
17.
19.
14.
13.
23.
11.
22.
11.
17.
20.
12.
9.
13.
11.
17.
21.
13.
20.
16.
16.
1».
14.
13.
17.
22.
11.
18.
30.
36.
16.
22.
20.
) 22.
6 22.
PON06 CFflUCNT
4.3 3.3
0.3 2.6
3.0 3.1
3.1 2.0
0.7 2.1
1.6 0.1
0.1 5.3
].9 0.5
1. 1.6
7. 0.6
1. 2.2
1. 0.3
2. I.'
2. 1.6
0. 1.6
2. 0.5
2. 1.5
1. 0.3
1. ND
1. 11.1
1. 0.9
1. 0.5
0. NO
3. ND
1. 1.0
ND 0.3
1.0 1.3
3.0 3.3
1.3 2.2
0.7 3.0
1.3 0.]
1.1 0.1
1.6 NO
2.4 0.9
NO 3.1
3.3 0.6
0.9 2.4
10.8 2.4
1.6 NO
NO NO
3.0 0.7
1.4 NO
3.9 6.6
1.5 0.2
1.] 2.3
3.6 1.0
NO NO
NO 6.6
4.4 2.4
3.2 1.]
ND 1.7
2.4 1.
15.0 1.
5.9 2.
4.6 2.
4.0 0.
1.4 2.
6.0 2.
3.0 2.
0. 2.
2. 0.
2. 0.
4. 2.
3. 0.
3. 11.2
6. 2.5
4. 1.7
1.5 1.9
7.4 1.3
6.4 2.1
.7 2.4
.7 2.6
.6 .5
.8 .0
.6 .4
5.2 .5
5.7 .1
10.5 .4
6.5 .9
1*6 2.3
3.7 3.4
7.4 1.7
10.0 4.0
3.0 3.6
6.5 3.7
10.0 3.0
1.4 4.6
11.7 3.5
5.6 4.7
1.3 5.4
9.6 3.4
9.5 4.9
24.4 4.5
17.2 3.9
14.1 5.5
16.9 15.3
NO 6.2
12. a 1.4
21.7 15.5
29.4 29.6
9 19.0 10.6
120
-------
Table B-5. Chemical oxygen demand (COD)
Stabilization Lagoon System.
performance of the Corinne Waste
00
s •
0
2
2
2
2
2
2
2
2
2
7
7
7
T
7
7
7
7
(KG/LI
NO
01
g^
24
26
27
28
Z»
30
11
10
11
12
II
14
15
16
17
18
t*
20
21
22
27
it
1
9
12
15
in
21
24
28
2
5
8.
11
t*
15
tt
17
18
20
21
22
23
24
25
2t
27
21
29
30
t
2
IS
11
12
13
16
1*
22
25
21
31
3
6
12
15
11
21
24
27
10
3
6
*
12
15
16
17
JAMPIC. NO
m
n
75
75
75
75
7i
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
rs
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
7$
75
75
75
75
75
FROH CO L«i
> NO DATA
INFLUENT
133.
1*2.
115.
177.'
NS
130.
NS
160.
2*2.
NS
250.
203.
241.
216.
171.
236.
152.
135.
t*.
15.
to*.
153.
1031
It.
91.
80.
83.
to.
too.
110.
106.
190.
116.
13*.
66.
NO
*t«
131.
123.
271.
84.
03.
NO
2*6.
156.
106.
164.
104.
110.
174.
66.
65.
78.
*».
128.
58.
SS.
34.
3*.
130.
OS.
67.
s*I
50.
47.
10*!
77.
101.
10*.
122.
*2.
12*.
168.
14*.
214.
154.
«ol
73.
94,
94.
60.
58.
31.
SO.
137.
120.
84.
17.
47.
20.
42.
65.
58.
65.
P01D1
138.
114.
58.
78.
131.
US
132.
130.
159.
132.
178.
142.
152.
139.
13*.
137.
157.
*3.
82.
80.
97.
105.
122.
115.
145.
l*i.
110.
109.
91.
93.
111.
1*2.
1*9.
144.
179.
138.
123.
177.
lit.
112.
103.
92.
83.
62.
• 0
1(8.
101.
15k.
124.
• 2.
IK.
111.
121.
125.
111.
1*7.
l*2l
*t.
01.
72.
III.
121.
115.
135.
157.
it.
ii.
7*.
113.
134.
142.
14*.
112.
19 1.
its.
lit.
120.
111.
98.
103.
14.
8*.
73.
73.
93.
US.
111.
71.
ior.
112.
93.
77.
12.
tt.
tl.
too.
104.
109.
133.
POND:
105.
NS
92.
40.
96.
17.
• 6.
19.
111.
126.
14*.
123.
121.
148.
156.
121.
126.
too.
78.
75.
88.
127.
120.
113.
113.
116.
105.
97.
123.
91.
11*.
130.
118.
132.
13*.
177.
140.
85.
11*.
172.
112.
110.
9*.
37.
NO
107.
117.
137.
12*.
127.
84.
120.
106.
111.
107.
180.
*4.
62.
105.
77.
**.
131.
12*.
110.
146.
161.
110.
51.
92.
116.
141.
151.
ISO.
12S.
IS*.
132.
tos.
71.
71.
as.
76.
8^!
tos.
ii.
58.
ri.
77.
104.
a*.
102.
110.
7*.
61.
54.
57.
51.
83.
61.
151-
121
PONDS
10*.
91.
95.
17.
104.
NS
103.
107.
111.
133.
146.
120.
Hi.
134.
147.
12*.
160.
11*.
111.
<*.
124.
107.
116.
101.
115.
126.
95.
7*.
107.
US.
154.
130.
110.
123.
IIS.
12*.
13*.
210.
10*.
93.
111.
141.
10*.
NO
136.
137.
110.
152.
154.
1*2.
113.
It*.
104.
12*.
113.
122.
111.
»*.
126.
113.
1*6.
140.
ISO.
I2t.
113.
to*.
tor.
101.
133.
130.
163.
117.
116.
I OS.
120.
102.
67.
6t!
12.
I*.
S*.
57.
55.
to.
60.
59.
65.
62.
60.
61.
58.
54.
71.
S3.
tt'.
62.
62.
to.
POND*
NS
NS
77.
80.
73.
NS
NS
95.
122.
1*9.
117.
157.
lit.
136.
133.
156.
lit.
109.
»*.
106.
120.
122.
133.
126.
143.
13*.
105.
51.
no.
10*.
NO
12*.
111.
11*.
120.
116.
10*.
110.
146.
11*.
127.
122.
127.
107.
NO
137.
14*.
ISO.
150.
156.
140.
144.
123.
147.
122.
127.
126.
12*.
123.
11*.
96.
13*.
14*.
14*.
144.
152.
' 108.
106.
98.
140.
15*.
165.
141.
120.
ISO.
130.
121.
1*.
64.
70.
26.
41.
57.
71.
60.
5*.
60.
to.
it.
it.
51.
54.
S*.
54.
57.
48.
4*.
57.
51.
51.
67.
POMD5
NO
to.
NS
10.
NS
67.
tt.
tl.
ior.
120.
NO
112.
107.
128.
10*.
136.
129.
96.
95.
80.
108.
127.
12*.
156.
126.
107.
98.
98.
93.
15.
123.
129.
122.
113.
t.
6*.
9i«
132.
11*.
131.
118.
143.
134.
121.
NO
ISt.
160.
217.
144.
153.
140.
13t.
*6.
124.
108.
tosl
too.
95.
111.
102.
143.
11*.
130.
124.
111.
15.
6*.
68.
101.
114.
142.
121.
117.
111.
120.
too.
98.
64.
77.
26.
16.
58.
60.
55.
64.
10.
- 5*.
64.
51.
51.
60.
70.
54.
50.
61.
5*.
59.
59.
55.
70.
PON06
60.
NS
62.
61.
NS
67.
NS
NS
133.
123.
127.
*3.
8*.
13.
117.
107.
117.
93.
93.
96.
91.
114.
90.
120.
95.
82.
90.
48.
79.
76.
81.
99.
104.
lot.
17.
11.
ii.
90.
98.
124.
130.
133.
130.
141.
NO
134.
121.
155.
lit.
127.
127.
130.
lOt.
109.
*6.
110.
05.
IS.
117.
71.
07.
»*.
102.
III.
103.
115.
64.
51.
3*.
77.
11*.
111.
11*.
86.
131.
79!
71.
73.
51.
36.
61.
45.
42.
50.
57.
58.
56.
46.
57.
45.
52.
67.
tf.
55.
53.
65.
31.
57.
73.
CFFLUCN!
67.
66.
64.
It.
5*.
87.
55.
NS
82.
**.
132.
*2.
a*.
71.
*1.
• 1.
70.
79.
70.
70.
78.
82.
64.
13.
55.
t9.
30.
31.
*2«
45.
61.
103.
110.
107.
90.
7*.
51.
to.
121.
11*.
103.
113.
133.
127.
NO
1*5.
115.
13*.
120.
120.
109.
91.
91.
120.
93.
102.
8*.
104.
86.
45.
61.
a*.
102.
87.
too.
13.
38.
40.
61.
01.
104.
76.
86.
84.
61.
83.
81.
111.
60.
43.
51.
St.
46.
45.
55.
54.
S3.
SO.
44.
48.
47.
55.
46.
52.
50.
66.
52.
56.
70.
-------
Table B-5. (Continued).
oc
5
0
7
r
7
7
7
7
7
7
7
7
?
7
7
0
0
8
0
0
9
0
9
9
9
0
o
9
0
0
a
e
0
i
i
t
i
i
t
i
i
t
i
i
i
i
t
i
t
i
i
i
i
i
i
?
Z
Z
2
!
I
I
I
'.
If
m NC
Dt
19
29
21
2S
J>
2t
25
26
27
2)
21
30
11
1
t
3
*
10
11
1?
u
It
17
20
23
26
2»
1
t
7
10
U
16
19
22
2!
211
1
t
7
10
11
16
20
21
22
23
Z*
23
26
27
21
2»
JO
It
1
2
I
t
i
6
7
t
»
X10
11
12
13
It
15
It
17
ta
1*
29
23
26
2
5
3
11
It
17
20
21
»
]
6
»
12
If
11
21
24
27
10
G/L)
SAMPLE' N
>R
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
73
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
rs
75
75
75
75
rs
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
76
76
76
76
76
76
76
76
76
76
FROM I
0 « NO OUT*
INFLUENT
79.
67.
55.
75.
75.
76.
72.
127.
132.
80.
131.
9*.
110.
119.
19.
71.
61.
«1.
51.
55.
85.
78.
88.
NO
75.
81.
115.
86.
>J.
89.
»1.
St.
73.
118.
11.
• 4.
NO
100.
iza.
50*.
98.
110.
14.
tli.
66.
495.
«00.
787.
151.
80.
61.
121.
t»2.
II*.
176.
1*3.
107.
78.
102.
87.
47.
56.
116.
2*5.
116.
78.
50.
78.
116.
116.
86.
120.
66.
60.
112.
126.
197.
It*.
210.
217.
231.
1*1.
256.
186.
216.
17*.
2*3.
117.
101.
156.
227.
22*.
216.
256.
217.
176.
11.
202.
202.
161.
NO
PA L43
P0101
l»r.
us.
J*5.
l*t.
163.
172.
its.
176.
167.
155.
US.
119.
151.
m.
ut.
121.
151.
lit.
It2.
1*5.
155.
I5S.
It9.
NO
156.
115.
2tO.
172.
111.
1!9.
291.
176.
21 1.
222.
113.
173.
no
Itl.
161.
1*7.
19.
172.
91.
199.
167.
1(7.
141.
It 9.
129.
• 1.
92.
197.
1*2.
122.
146.
Itl.
116.
117.
119.
116.
192.
111.
117.
116.
116.
129.
*t.
lit.
199.
117.
17.
99.
12.
76.
121.
191.
117.
15t.
111.
1*5.
119.
97.
5).
197.
10*.
191.
195.
92.
71.
91.
74.
76.
1*6.
106.
96.
71.
II.
27.
It.
2*.
10
PDN02
122.
121.
126.
It).
1*6.
130.
66.
1*6.
137.
12t.
156.
15t.
11).
15t.
159.
166.
1*7.
162.
124.
115.
92.
89.
96.
NO
106.
116.
115.
15).
17*.
176.
187.
15).
183.
217.
191.
167.
NO
1*3.
157.
12).
101.
175.
121.
111.
167.
1)5.
159.
167.
151.
80.
112.
107.
152.
NO
1*6.
156.
II*.
1*6.
14).
11).
102.
116.
116.
126.
150.
111.
86.
10*.
96.
86.
77.
71.
78.
77.
112.
121.
115.
121.
98.
121.
65.
97.
102.
90.
91.
11.
105.
1*.
71.
66.
11.
a*.
77.
102.
7*.
• 5.
2*.
11.
14.
*.
NO
POND3
ei.
76.
79.
105.
106.
119.
6*.
1*6.
116.
117.
1*5.
1J7.
115.
117.
127.
126.
112.
111.
117.
12).
101.
151.
150.
NO
9).
)9.
117.
12).
1*).
121.
1*9.
155.
159.
159.
It).
161.
NO
11).
156.
16*.
93.
1*9.
111.
150.
1*0.
144.
111.
124.
115.
95.
91.
91.
1*5.
117.
150.
12*.
116.
112.
112.
121.
92.
116.
97.
136.
126.
97.
II.
110.
106.
96.
70.
79.
76.
79.
126.
126.
NO
152.
121.
121.
105.
»».
75.
111.
127.
)7.
110.
79.
70.
11.
76.
15.
76.
116.
*•.
61.
23.
14.
14.
43.
NO
POND*
63.
61.
56.
66.
6).
66.
67.
11.
6).
70.
76.
71.
74.
62.
65.
53.
55.
57.
54.
57.
74.
55.
74.
NO
61.
72.
67.
54.
71.
6*.
65.
SI.
65.
51.
61.
70.
NO
14.
107.
92.
54.
117.
4*.
111.
114.
124.
85.
**.
104.
82.
56.
11).
**.
102.
101.
10*.
*0.
*4.
102.
107.
104.
10*.
105.
107.
102.
101.
IIS.
102.
10*.
102.
111.
101.
118.
102.;
17.
a*.
115.
101.
98.
92.
107.
»t.
10*.
77.
84.
60.
117.
104.
ft.
82.
74.
95.
67.
101.
75.
121.
11.
12.
14.
126.
NO
POND 5
7*.
65.
63.
75.
71.
66.
92.
76.
69.
70.
81.
76.
78.
6*.
59.
57.
98.
51.
4*.
55.
74.
72.
75.
NO
60.
72.
61.
56.
60.
67.
61.
SB.
47.
SO.
51.
52.
NO
56.
52.
52.
54.
64.
52.
68.
51.
61.
48.
64.
34.
3*.
64.
71.
66.
60.
55.
71.
52.
58.
62.
67.
67.
70.
6*.
6*.
70.
15.
101.
66.
26.
7*.
76.
1*.
90.
(I.
75.
77.
MO
75.
70.
75.
72.
Tf.
99.
71,
75.
64.
71.
69.
56.
62.
72.
r*.
61.
71.
125.
15*.
76.
21.
61.
*1.
NO
PQN06
71.
6*.
69.
68.
66.
65.
114.
71.
67.
71.
65.
69.
72.
59.
60.
57.
50.
55.
52.
60.
56.
5*.
70.
NO
61.
67.
75.
58.
61.
72.
58.
56.
52.
51.
31.
57.
NO
55.
56.
37.
50.
57.
14.
56.
47.
3*.
48.
46.
61.
47.
S*.
120.
71.
60.
55.
61.
56.
31.
53.
55.
54.
3*.
55.
51.
58.
51.
51.
54.
62.
59.
60.
61.
62.
63.
31.
47.
43.
3*.
33.
64.
32.
60.
*6.
61.
61.
35.
35.
70.
30.
31.
64.
67.
71.
61.
70.
72.
69.
65.
71.
111.
NO
EFFLUENT
75.
11.
6*.
61.
67.
69.
81.
68.
70.
72.
78.
64.
72.
62.
59.
60.
50.
50.
51.
71.
55.
62.
67.
NO
71.
71.
122.
59.
61.
69.
70.
5*.
6).
52.
5*.
65.
NO
5*.
56.
5*.
51.
58.
52.
53.
*9.
51.
2*.
33.
32.
52.
*).
3).
5*.
5).
31.
37.
*).
31.
55.
55.
36.
53.
5*.
34.
64.
NO
54.
51.
53.
36.
51.
55.
51.
35.
44.
40.
41.
3).
54.
34.
54.
39.
54.
66.
56.
45.
41.
50.
41.
5*.
59.
52.
52.
54.
51.
15.
61.
63.
111.
121.
NO
122
-------
Table B-6. Soluble chemical oxygen demand (SCOD) performance of the Corinne
Waste Stabilization Lagoon System.
SOIUH1LE COD (N&/1) FROM El>« L»3
MS ' 10 jAHPLE. NO • NO OtTI
HO D« »«
IS 75
24 75
25 75
26 75
27 75
2" 75
29 75
30 75
i\ 75
1
75
75
75
5 75
i 75
7 75
» 75
» 75
10 75
11 75
1? 75
13 75
14 75
75
29
1
6
»
2 It 75
2 17 75
2 II 75
2 19 75
2 20 75
2 21 75
2 22 75
75
75
75
75
75
12 75
15 75
II 75
21 75
24 75
Zl 75
31 75
2 75
5 75
8 75
It 75
14 75
15 75
16 75
1' 75
18 75
19 75
20 75
21 75
22 75
ZS 75
24 75
25 75
26 75
27 75
Zl 75
29 71
30 71
1 71
2 71
3 71
4 75
1 71
6 71
7 75
6 71
9 71
10 71
II 71
12 71
U 71
16 75
19 71
22 75
Zi 75
29 75
75
71
71
71
12 75
1» 71
16 71
21 75
24 75
27 71
30 75
3 71
6 75
9 71
12 75
7 II 71
7 16 71
7 17 75
7 16 75
II
3
6
*
INFLUENT
ae.
77.
54.
74.
NS
67.
NS
73.
143.
NS
76.
NO
178.
63.
91.
70.
64.
67.
51.
47.
50.
44.
50.
76.
"37.
44.
56.
47.
S3.
11.
52.
16.
45.
49.
92.
46.
ND
52.
41.
46.
39.
37.
43.
ND
103.
64.
12.
61.
52.
41.
32.
17.
15.
41.
|4.
37.
34.
39.
45.
33.
36.
34.
33.
37.
44.
41.
32.
36.
46.
36.
34.
34.'
39.
36.
56.
51.
47.
51.
37.
26.
36.
29.
55.
37.
35.
34.
21.
26.
15.
11.
11.
11.
29.
10.
10.
26.
2*.
27.
PDNOl
48 .
43.
59.
43.
49.
NS
42.
43.
51.
53.
SO.
NO
15.
53.
47.
10.
46.
46.
47.
10.
SI.
44.
42.
39.
42.
31.
10.
11.
45.
43.
52.
40.
43.
19.
17.
37.
44.
49.
31.
39.
33.
33.
39.
42.
HO
58.
31.
41*
45.
53.
34.
17.
27.
16.
11.
SO*
11.
46.
32.
33.
37.
11.
30*
11.
30.
12.
32.
35.
35.
35.
39.
34.
37.
17.
31.
36.
37.
38.
46.
66.
44.
63.
91.
54.
51.
SI.
50.
46.
51.
31.
37.
35.
11.
11.
16.
16.
40.
44.
39.
39.
43.
POND2
51.
NS
48.
46.
46.
45.
46.
51.
54.
50.
16.
57.
11.
14.
It.
18.
17.
48.
11.
51.
50.
46.
51.
45.
47.
42.
62.
48.
46.
52.
66.
49.
43.
43.
48.
42.
49.
52.
41.
40.
11.
49.
32.
17.
NO
55.
26.
11.
18.
45.
3lt
29.
37.
11.
12.
11.
14.
33.
34.
32.
32.
31.
32.
30.
31.
21.
37.
32.
39.
38.
36.
35.
14.
16.
35.
36.
36.
45.
41.
41.
41.
49.
44.
49.
49.
50.
51.
47.
40.
40.
15.
14.
40.
41.
41.
46.
41.
41.
51.
PONDS
54.
46.
46.
46.
51.
NS
45.
41.
13.
61.
63.
61.
59.
56.
19.
66.
to.
12.
54.
12.
53.
11.
11.
16.
49.
47.
61.
12.
18.
16.
NO
44.
41.
91.
41.
14.
13.
49.
42.
41.
32.
43.
34.
43.
NO
13.
16.
31.
17.
41.
42.
14.
12.
34.
11.
16.
17.
NO
11.
14.
14.
10.
29.
16.
13.
29.
12.
18.
It.
19.
16.
60.
36.
19.
It.
19.
11.
19.
46*
44.
46.
45.
56.
52.
4*.
57.
54.
57.
59.
16.
12.
55.
59.
49.
49.
45.
46.
50.
40.
46.
51.
PON04
NS
NS
52.
49.
51.
NS
NS
54.
66.
62.
56.
65.
62*
63.
56.
55.
59.
54.
54.
17.
59.
57.
53.
46.
53.
44.
63.
62.
59.
54.
NO
52.
44.
52.
42.
32.
30.
49.
39.
35.
46.
4t.
36.
38.
NO
66.
30.
34.
35.
43.
16.
30.
21.
40.
32.
35.
11.
30.
30.
16.
14.
12.
10.
31.
32.
29.
16.
34.
39.
15.
36.
18.
16.
45.
16.
34.
13.
13.
45.
46.
42.
61.
55.
54.
49.
57.
54.
56.
57.
56.
53.
53.
56.
54.
50.
SO.
46.
52.
46.
42.
92.
POND 5
ND
50.
NS
52.
NS
51.
52.
59.
57.
61.
ND
65.
56.
66.
56.
45.
62.
62.
61.
55.
16.
59.
59.
13.
13.
47.
70.
71.
64.
66.
70.
56.
52.
ND
7.
39.
36.
42.
46.
41.
36.
44.
33.
46.
NO
126.
31.
17.
34.
10.
39.
30.
14.
36.
12.
33.
34.
35.
30.
44.
33.
33.
31.
39.
29.
36.
34.
36.
43.
36.
18.
ND
35.
42.
34.
42.
31.
37.
46.
41.
33.
45.
50.
50.
51.
56.
' 54.
56.
57.
47.
It.
52.
54.
53.
56.
57.
51.
56.
50.
50.
60.
PONDS
19.
NS
14.
48.
NS
SO.
NS
NS
59.
63.
62.
61.
NO
68.
18.
66.
72.
62.
IB.
61.
69.
62.
57.
58.
11.
49.
66.
46.
70.
69.
59.
64.
56.
NO
47.
34.
41.
37.
55.
49.
44.
46.
35.
51.
NO
66.
15.
IS.
36.
45.
36.
30.
31.
14.
SO.
12.
31.
30.
30.
40.
33.
31.
32.
37.
30.
36.
36.
32.
31.
38.
36.
36.
39.
41.
34.
31.
19.
31.
36.
19.
16.
38.
48.
46.
46.
51.
52.
54.
54.
12.
54.
51.
55.
55.
St.
55.
55.
55.
52.
54.
61.
EFFLUENT
57.
46.
59.
48.
47.
SO.
55.
NS
69.
61.
61.
51.
19.
11.
54.
13.
56.
11.
51.
19.
54.
10.
49.
40.
31.
37.
43.
40.
46.
31.
53.
52.
60.
U.
47.
45.
46.
46.
41.
39.
38.
40.
48.
41.
NO
68.
31.
32.
33.
17.
18.
10.
11.
34.
36.
32.
39.
39.
33.
40.
31.
31.
30.
35.
29.
38.
31.
31.
32.
34.
39.
38.
37.
38.
15.
It.
41.
17.
36.
19.
16.
18.
42.
44.
44.
46.
50.
48.
52.
52.
49.
50.
so.
51.
49.
51.
51.
SI.
54.
54.
59.
123
-------
Table B-6. (Continued).
SOLIH9LC COO (HG/O TDOU CP» LH
US • NO JUHPIE. NO • NO C»I«
HQ D* TR
7 H 75
r 25 75
7 21 75
7 22 75
T 2! 75
r 24 75
7 25-75
7 26
7 2t
7 t»
75
75
75
29 75
ID 75
Jl
10
11
9 Zt
10 I
10 t
10
12 75
11 75
It 75
17 75
20 , 75
21 73
2t 73
1 75
4 73
r 75
IH 75
II 75
It 75
19 75
2J 75
25 75
75
75
75
75
10 19 75
75
75
10 20 75
10 21 75
10 22 75
10 25 75
75
25 75
2% 75
75
75
10 29 75
10 10
10 II
1
10 1!
ID
10 24
10
19
19 27
10
75
11
It
11
11
11
11
II
11
11
11
11' 11
It 1?
11 1!
11 1*
11 15
11 It
11 17
II 19
II 1*
75
2 73
I 75
4 73
5 75
t 73
r 75
« 75
» 73
19 75
75
75
75
73
rs
75
75
75
11 20 75
II 2! 75
11 26 75
2
5
12
12
12
75
75
1 75
It 75
12 14 75
12 IT 73
12 20 73
12 2! 75
12 II 75
1 76
t 7t
9 It
12 7t
13 7»
II
21
24
76
7»
tt
17 7*
ID 7t
INFLUEKt
It.
51.
12.
41.
45.
It.
43.
44.
17.
J4.
40.
41.
41.
15.
It.
17.
14.
I*.
4!.
St.
42.
Zt.
4$.
HO
34.
19.
42.
St.
41.
47,
45.
It.
4».
4Z.
24.
64.
NO
60.
61.
IS.
55.
4J.
17.
50.
29.
6*.
41.
i*.
St.
51.
49.
5*.
St.
ft.
41.
43.
4t.
I*.
41.
St.
41.
41.
52.
11.
47.
MO
64.
4T.
51.
59.
50.
46.
St.
44.
51.
70.
79.
55-
t5.
t*.
72.
91.
10.
S*.
65.
65.
SI.
62.
1*.
ft.
101.
12$.
»Z.
S*.
NO
at.
it.
io».
101.
1 «».
ND
POD 01
tt.
»t.
42.
42.
3».
40.
ti .
rt.
54.
51.
t>.
tr.
5b.
44.
52.
42.
NO
44.
44,
41.
It.
42.
4!.
NO
II.
49.
41.
50.
44.
45.
It.
50.
40.
4».
Si.
42.
NO
41.
19.
11.
45.
If.
It.
«.
12.
15.
12.
i2.
II.
O.
tt.
45.
41.
«».
49.
41.
It.
41.
41.
II.
30.
I».
It.
St.
41.
42.
41.
49.
44.
49.
14.
31.
37.
II.
St.
54.
4i.
41.
41.
S9.
41.
SI.
44.
47.
4*.
41.
41.
St.
45.
4t.
41.
St.
55.
39.
St.
41.
52.
M.
55.
15.
NO
PON 02
t7.
50.
tt.
47.
4t.
47.
49.
41.
61.
4t.
49.
49.
55.
47.
57.
44.
47.
4).
47.
41.
44.
47.
49.
no
51.
47.
SO.
44.
41.
49.
41.
49.
44.
45.
44.
49.
NO
41.
43.
47.
47.
44.
19.
41.
It.
17.
14.
14.
40.
45.
45.
44.
41.
DO
41.
41.
41.
46.
43.
49.
33.
41.
It.
42.
41.
39.
47.
41.
41.
42.
13.
31.
14.
J2.
44.
J9.
54.
4*.
42.
49.
35.
44.
42.
49.
45.
42.
47.
42.
44.
42.
46.
64.
41.
41.
44.
45.
41.
45.
52.
41.
NO
POND]
5t.
56.
53.
52.
56.
52.
57.
52.
6Z.
55.
54.
56.
57.
41.
41.
44.
50.
4>.
49.
41.
44.
41.
54.
MO
50.
52.
57.
51.
51.
55.
52.
St.
49.
46.
50.
51.
NO
46.
42.
52.
SI.
51.
41.
4t.
45.
tt.
42.
]9.
41.
52.
SO.
41,
SO.
47.
49.
49.
41.
46.
SO.
45.
39.
46.
41.
46.
46.
41.
SO.
41.
41.
43.
It.
It.
to.
40.
49.
St.
NO
44.
45.
St.
44.
SO.
47.
SI.
43.
43.
44.
41.
43.
41.
49.
45.
41.
41.
41.
42.
49.
4S.
SI.
41.
NO
PONOt
51.
41.
41.
43.
52.
47.
55.
St.
to.
54.
33.
59.
47.
32.
49.
50.
St.
51.
51.
SI.
42.
49.
35.
no
$1.
56.
51.
52.
51.
St.
St.
54.
32.
S3.
5t>
54.
NO
54.
39.
33.
S4.
39.
51.
51.
53.
32.
50.
*S.
52.
t2.
SI.
5*.
50.
33.
4*.
50.
49.
52.
to.
51.
49.
51.
49.
50.
51.
43.
St.
32.
41.
47.
41.
J9.
42.
t«.
34.
53.
52.
51.
47.
5S.
47.
SO.
59.
43.
52.
40.
41.
41.
42.
41.
47.
4t.
41.
42.
tt.
47.
41.
43.
49.
49.
NO
PONDS
59.
to.
57.
46.
55.
54.
55.
tt.
65.
51.
St.
59.
54.
51.
49.
56.
32.
41.
51.
41.
51.
57.
St.
MO
SI.
37.
31.
S3.
64.
33.
41.
55.
S3.
43.
47.
33.
NO
50.
32.
31.
31.
37.
SO.
32.
SI.
S3.
46.
49.
52.
55.
57.
31.
39.
50.
30.
31.
39.
41.
49.
50.
43.
50.
41.
52.
49.
49.
49.
31.
54.
49.
42.
41.
46.
42.
St.
«4.
NO
32.
47.
31.
31.
31.
49.
31.
30.
43.
4t.
44.
46.
44.
47.
4».
44.
43.
4t.
42.
31.
43.
50.
41.
NO
POND6
59.
5».
64.
54.
53.
51.
67.
62.
61.
St.
to.
5>.
60.
59.
49.
47.
49.
51.
S3.
St.
51.
51.
to.
NO
51.
59.
51.
32.
51.
55.
52.
56.
St.
61.
SO.
57.
NO
59.
52.
52.
54.
54.
44.
57.
49.
31.
31.
4*.
49.
54.
54.
St.
30.
51.
49.
50.
41.
46.
49.
41.
40.
47.
42.
41.
41.
47.
41.
41.
49.
41.
3».
41.
44.
39.
to.
tt.
51.
51.
31.
51.
45.
47.
53.
34.
S*.
43.
47.
39.
Si-
tt.
34.
41.
45.
33.
41.
47.
51.
49.
93.
31.
NO
trnutKi
55.
60.
55.
57.
57.
50.
61.
64.
67.
62.
to.
tl.
39.
tl.
52.
41.
41.
59.
St.
52.
St.
70.
36.
WO
St.
54.
52.
50.
41.
57.
S3.
S3.
$5.
51.
32.
31.
NO
NO
54.
32.
32.
32.
41.
52.
41.
47.
49.
41.
47.
52.
52.
S3.
NO
51.
SO.
St.
45.
49.
SO.
49.
4t.
41.
46.
59.
41.
NO
51.
47.
41.
41.
49.
41.
41.
40.
St.
62.
34.
95.
49.
52.
30.
51.
41.
49.
44.
46.
S«.
St.
tt.
41.
34.
47.
47.
42.
44.
St.
30.
31.
37.
53.
NO
124
-------
Table B-7. Temperature of the influent and effluent of each pond in the
Corinne Waste Stabilization Lagoon System.
IC»P£»«rj«t (DCGRCfS CENTIGRADE)
kS « 10 JA1PI.E. HO • HO OATI
0
1
1
1
1
L
.
2
Z
I
2
2
2
2
2
2
7
2
2
2
2
2
2
2
2
2
7
7
7
7
7
7
7
7
DA
21
24
Z?
26
Zf
21
29
39
31
t
J
10
11
It
11
16
|5
16
17
19
19
20
21
22
Z7
29
5
6
9
if
15
19
J\
24
29
31
2
5
A
11
14
16
17
l»
1 9
21
21
Z2
21
24
Z5
26
27
zn
29
30
1
9
i
4
5
6
7
9
9
10
11
i;
i 5
u
19
22
25
21
31
I
6
9
it
15
1*
21
26
27
30
1
6
f
It
15
li
17
19
rH
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
UENt P0»0l PON02 PON03 POHD6 PON05 POND6 efFlUCM
.0 Z.5
.5 1.5
.» 1.5
.1 U
.» 2.
.5 1.
9.2 t.
9,9 Z.
9.9 Z.
9.» I.
9.1 1.
0.0 0.
0. I.
0. 0.
1. 1.
9. 1.
9. 1.2
9. 2.1
.2 1.9
.1 2.1
.7 2.2
.1 t.l
.1 2.0
t.O 1.2
t.l 0.0
7.0 1.1
7.1 O.I
.0 0.9
.9 0.0
.0 0.1
.2 0.7
.9 0.9
.5 1.0
.2 3.9
.1 b. 1
.2 7.0
.t 5.5
'.t r'.t
.0 r.i
.0 t.O
.5 0.7
.0 3.5
.0 t.O
.1 7.0
.0 5.1
.7 7.1
.0 9>5
B«, 1 l.t
.4 6.4 7.4 .2 7.0
.5 7.
r.
9.
to.
11.
tl.
Ill
7.
1.
t.
6.
9!
11.
11.
11.
'9 r!
.2 I.
1.1 «.
10.1 10.
10.5 10.
11.0 11.
13.0 U.
12.5 12.
19.0 10.
11.0 17.
11.2 10.
11.0 10.
14.1 It.
17.1 17.
17.0 10.
W W
If .5 17.
11.* 1*.
tl.l 20.
17.1 It.
lt.4 16.
11.0 II.
17.0 It.
19.5 I*.
22.0 2f.
15.0 21.
24.5 25.
24.3 25.
21.4 2*.
22.5 21.
22.0 21.
21.5 22.
1. >* '•«
7. .0 1.0
9. .2 9.
10. >i
11. 11.
11. 11.
1. 9.
11. 11.
1. 7.
0. 1.
t. t.
6.6 7.
I.I
1.
10.
12.
It.
0.
0.
1.
10.
11.
11.
11.
12.
17.
17.
11.
11.
14.
17.
17.
II
17.
I*.
11.
It.
It.
1*.
17.
19.
it.
25.
25.
29.
21.
21.
22.
22.
7.
9.
10.
11.
11.
1.
1.
1.
1.
9.
U.
11.
11.
12.
17.
17.
10.
11.
11.
17.
It.
20.
17.
II.
to.
It.
It.
II.
15.
11.
22.
24.
25.
25.
21.
21.
22.
22.
0.
10.
It.
1.
10.
1.
I.
6.
7.
1.
1.
9.1
10.3
tl.O
0.9
9.0
9.0
0.
9.
10.
11.
U.
12.
17.
It.
11.
10.
11.
17.
If.
19.
17.
1*.
»»•
If.
17.
11.
17.
17.
21.
26.
2 it
21.
21.
22.
21.
125
-------
Table B-7. (Continued).
NO i*HPlE. ND
HO
7
7
r
7
7
7
7
1
7
J
7
7
T
8
a
a
a
e
t
t
t
a
8
9
e
8
9
9
a
9
a
a
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
19
10
ID
10
10
10
10
10
10
10
10
11
11
It
11
11
11
11
11
It
it
11
11
11
11
11
tl
11
11
11
11
11
11
12
12
12
12
12
42
12
12
12
I
1
1
D*
1»
21
2t
2?
23
24
25
26
Z1
It
29
30
31
1
?
1
4
1
6
7
n
9
10
11
J?
11
14
17
Z1
2!
26
29
1
*
7
10
1!
16
19
22
25
Zt
1
6
7
10
11
16
20
21
2?
21
24
25
26
27
28
29
39
31
I
t
s
4
5
6
7
a
9
10
11
12
13
14
15
16
17
18
19
20
2!
2«
2
5
8
It
14
17
20
21
31
!
6
9
1?
15
la
21
24
27
31)
11
r->
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
f5
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
7S
75
75
75
75
75
75
75
75
75
/5
75
?!
75
ft
76
76
76
76
76
76
76
76
ft
INFLUCN1
14.0
14.0
15. g
15.5
14.5
17.0
15.9
17. a
16.2
17.0
17.0
16.2
15.0
15.5
16.1
14,9
15.2
16.0
16.0
14.9
U.5
16.9
U.O
16.0
15. e
16.0
16.0
15.9
16.0
17.0
16.0
16.2
16.5
16.0
u. a
U.5
17.0
17.0
16.0
16.0
17.0
U.O
15.6
17.0
U.D
U.O
U.O
13.0
15.0
15.0
U.O
14.0
NO
13.0
14.0
ND
13.5
13.0
14.0
U.O
14.0
7.0
13.5
12.5
11.4
13. *
ND
13.5
11.0
13.5
12.5
11.2
10.5
10.5
ND
10. 0
10.5
10.2
12.0
U.O
10.5
10.0
11.0
11.0
10.0
a.o
5.0
7.0
9.2
11. «
t.O
7.0
1.0
7.5
9.0
ND
ND
1.3
1.0
1.3
7.6
pavoi
22. 0
22.0
21.5
20.5
20.2
26.0
20. fi
24.0
23.0
23.8
22.5
29.11
U.O
19.0
16. t
IB. 2
19.0
29.0
21.0
19. 6
U.O
21.0
19*5
20.5
I). 6
21.5
2D.O
1) • 7
11.5
19.5
19.0
17.0
17.4
16.5
15.5
17.5
17.5
U.5
15.0
14.0
14.5
13.4
11.5
14.1
14.0
12.0
10.2
10.5
10. i)
10.5
10.0
7.5
S.9
6.0
5.S
• n
5.0
4.5
b.O
5.5
6.0
6.4
6. a
6.0
5.5
6.1
10
«B
4.1
6.9
4.0
I.O
2.5
2.5
1.2
3.0
3.0
1.1
2.0
-O.I
1.0
1.0
2.4
3.0
S.I
2.0
•1.0
1.0
3.0
3.9
2.5
2.0
2.0
2.0
2.5
10
DO
2.0
1.2
1.6
0.1
POND;
25. 0
?2.S
22.0
21.8
21. B
25.5
23.0
25.0
J3.7
24.5
2J.O
20.9
19.1
20.0
20.0
19.?
19.9
20.0
21.5
20.2
18. .
21.2
20.0
21. 0
20.4
21.0
20.5
20.1
11. «
19.5
17.0
17.2
11.0
17.0
U.O
19.0
17.5
U.O
15.1
16.0
U.I
13.0
13.0
14.8
U.O
11.0
10. 0
10.5
10.0
10.0
10.0
7.0
6.0
6.0
6.1
4.5
5.0
4.5
S.8
5.5
6.0
6.5
5.5
5.6
5.1
5.5
NO
HO
4.2
4.6
1.5
z.o
2.9
Z.O
1.2
2.5
2.5
1.0
1.0
-0.2
1.0
1.0
2.0
3.0
2.5
1.9
1.0
1.0
3.1
3.2
2.6
2.0
2.0
1.1
2.5
ND
DO
1.0
0.7
1.0
0.1
PON03
22.5
23.5
22.5
21.5
22.3
24.5
22.5
25.0
24.1
25.0
24.0
21.0
19.2
19.0
19.9
19.0
20.0
20. J
21.0
29.5
IB. 5
21.6
20.0
21.4
20.5
21.0
21.0
20.2
11.0
19,3
17.0
17.0
17,5
17.0
16.1
19.0
17.5
18.0
14.4
13.0
14.0
13.0
13.0
14.5
14.0
11.0
9.5
10.0
10.0
10.0
10.0
6,5
5.0
4.5
6.0
4.5
4.5
4.5
5.6
6.0
5.4
6.5
5.3
5.7
5.1
6.0
ND
NO
4.1
4.5
3.0
2.0
2.5
2.5
1.0
4.0
2.5
0.5
0.1
-0.3
1.2
0.0
2.2
3.0
3.7
1.9
O.t
1.0
2.9
3.1
2.0
2.4
2.0
i. a
2.6
ND
ND
1.5
0.6
1.2
1.0
PON04
22.5
23.0
24.0
22.5
22.1
24.5
23,0
25.0
24.1
25.0
24.0
21.6
20.0
19.9
20.0
19. 8
^0.2
21.0
22.0
20. 6
IB. 9
21.0
21.0
21.5
21.5
21.0
21.0
21.2
20.0
11.0
17.0
11.6
17.3
16.6
14.5
17.5
IS. 5
15.0
13.0
U.O
13.0
13.0
15. fl
11.5
11.0
9.5
10.0
10.5
10.1
10.0
4.5
5.5
5.0
6.0
4.5
4.0
4.0
5.1
5.5
5.0
6.0
t.O
5.8
5.0
5.1
ND
4.1
4.5
1.1
1.0
2.0
2.S
1.2
3.0
3.0
0.5
0.1
-0.4
0.1)
0.9
3.0
2.6
2.0
1.0
0.0
1.2
2.S
t.S
1.2
2.4
1.0
2.6
NO
NO
1.2
0.1
1.1
0.7
POH05
22.9
24.0
23.5
23.0
22.5
26. a
22.0
24.7
25.0
25.0
24.0
21.!
19.0
19.0
20.0
19.5
20.2
20.8
21.9
20.2
It. 5
21.0
20.0
21.0
20.5
20.6
20.0
20.2
11.0
20.0
17. t
16.5
17.0
16.4
15.2
19.5
17. g
U.O
15.0
13.0
U.5
12.8
13.0
14.0
13.5
11.0
9.5
9.9
10.0
10.3
10.0
7.0
5.5
5.0
6.0
4.5
2.5
3.5
5.2
5.5
6.4
6.0
5.0
5.6
5.4
3.6
NO
6.0
6.3
4.1
3.0
1.0
0.2
1.5
1.0
2.0
I.O
0.7
0.5
>0.4
(.5
NO
2.0
2.0
0.0
0.0
0.0
jlo
1.5
1.1
2.0
1.1
2.1
DO
NO
0.5
0.5
l.t
0.6
POH06
25. 0
23.0
23.0
21.5
21.0
2J.5
22.0
24.0
24.0
24.5
24.0
21.0
20.1
19.0
19.5
18.5
19.2
20.2
21.0
19.3
16.9
20.6
19.0
20.0
19. i
20.4
20.0
20.0
18.6
19.0
17.2
16.1
16.4
16.0
14.9
19.1
17.0
17.0
14.5
13.0
13.0
12.5
12. a
13.4
13.0
10.9
10.0
9.1
10.0
10.0
10.0
7.0
6.0
5.5
7.0
4.5
4.0
4.0
5.5
6.5
5.5
6.0
6.0
5.5
5.2
5.5
ND
4.3
5.1
3.6
2.3
1.5
2.5
2.0
3.0
3.0
1.0
1.5
-0.4
2.7
1.0
1.0
3.0
2.9
-1.0
-1.0
0.5
3.0
3.0
2.5
2.0
2.0
2.0
3.0
HO
NO
1.0
0.8
1.0
0.4
crriucNT
22.0
22.5
21.0
22.5
22.0
24.5
22.0
24.0
23.5
24.0
24.9
22.0
21). 9
19.5
20.0
19.0
20.0
20.2
21.0
19.8
19.0
21.0
20.0
20.5
20.2
20.4
20.2
20.0
19.0
19.0
17.0
17.0
16. «
16.0
14.0
17.9
16.1
17.0
14.0
13.0
12.5
12.0
12.0
13. a
13.0
11.5
10.0
9.2
9.1
9.5
10.0
7.0
6.0
5.0
6.0
6.5
1.0
5.0
6.0
6.0
5.5
6.0
6.0
5.2
5.0
5.2
ND
5.5
4.1
5.0
3.5
2.5
2.9
2~.4
2.5
3.0
2.0
1.5
0.0
3.0
9.0
1.0
2.0
2.1
1.1
•1.0
0.0
3.0
2.1
3.0
1.0
2.0
3.0
4.0
NO
NO
1.0
0.4
1.2
0.5
126
-------
Table B-8. The pH value for the raw sewage influent and the effluent from
each pond in the Corinne Waste Stabilization Lagoon System.
»S • NO i«MPlE. NO • NO D»T«. * • CONPOSITE SUMPLE. 8 « IN LAB «N«LYSIS
»0 D« 1H
I 2! 75
1 24 75
2! 75
2$ 75
27 75
28 75
29 75
30 75
31
I
2
I
II
75
75
75
3 75
» 75
5 75
6 75
7 75
2 8 75.
2 9 75
2 10 75
2 11 75
2 12 75
Z 13 75
2 14 75
2 IS 75
Z 16 75
2 17 75
2 18 75
2 19 75
2 20 75
2 21 75
2 22 75
2 27 75
2 28 75
J 75
S 75
» 75
12 75
15 75
It 75
21 75
2t 75
Zt 75
11 75
? 75
5 75
75
75
75
75
It 75
17 75
18 75
19 75
20 75
21 75
22 75
21 75
24 75
25 7!
26 71
27 75
28 75
29 75
10 75
1 75
75
75
75
75
75
75
75
75
10 75
It 71
12 75
13 7!
16 7!
19 75
22 75
25 75
31 75
21 7!
5 75
t 7!
9 71
12 7!
15 7!
It 7!
21 75
2t 71
27 /5
10 71
1 7!
t 71
7!
12 75
15 75
U
75
75
INFLUENI
1.10
1.45
9.07
6. 10
t.io
«.72
1.50
e.95
1.91
7.10
9.05
1.20
(.30
1.20
9.16
t.40
e.70
».»o
«.10
e.i5
9.10
(.10
e.7o
1.10
«,05
(.21
1.30
t.4S
1.30
t.oo
7.55
«.J2
(.10
t.to
t.4t
t.io
(.31
7.90
t.40
«.4t
1.20
1.90
6.19
>.75
1.69
t.to
1.55
t.to
t.71
9.00
1.19
t.to
t.u
1.79
t.55
1.10
t.70
t.to
t.to
t.Sl
t.«9
• .50
t.t2
1.19
7.91
1.40
1.41
1.69
t.25
• •59
t.5»
t .41
1.49
• •40
•«to
• •20
• •42
• *tl
9.1
1.40
t«02
• •70
• .15
• •49
9.11
9.31
7. (01
• .It
NO
• •JO
I.U
• ••5
1.29
t.25
(.091
t.72»
7.901
7.908
roioi
9.15
9.16
10.01
t.93
9.40
9.25
9.20
9.10
t.9»
t.75
t.ts
t.25
8.99
9. 20
9.14
1.90
9.09
9.15
9.10
1.70
8.55
9.09
9.11
9.30
8. JO
9.20
9.05
9.14
t.to
7.iO
t.10
1.70
9.21
9.05
t.75
t.te
1.54
t.70
1.35
7.11
1.51
1.50
«.7|
9.00
9.20
9.20
1.21
9. 20
9.29
»• 35
9. 12
9.19
t.4«
9.1*
9.29
9.30
9.29
1.40
9.40
9. 12
9.2*
9.45
9.57
9.19
9.1}
9.49
9.31
». 32
t. 30
9. IS
9.52
9.72
9.31
9. 46
9.51
l.ll
9.41
9. 10
U.l
9.13
9.71
9.70
9.10
9.20
9.47
9. It
9. 1 II
9.60
HO
9.10
9.45
9.49
9.51
9. }9t
9.10*
9.171
9.11*
PONB2
9.15
9.60
10.15
9.04
9.55
9.16
9.55
9.10
9.11
9.19
1.90
1.10
10.91
1.70
R.95
9.20
1.65
9.20
1.91
9.10.
9.15
9.01
9.15
9.20
9.11
9.40
• •90
9.35
9.29
9.11
9.20
9.20
9.M
9.11
t.94
9.00
9.05
9.10
t.99
9.01
9.00
1.71
8.19
1.11
1.71
9,02
9.20
9.31
9.34
9.21
9.41
9.40
9.49
9.50
9.40
9,51
9.41
9.42
9.45
9.61
9.60
9.51
9.11
9.41
9.*0
9.16
9.79
9.41
9.51
9.69
9.57
9.17
9,69
9.71
9. It
9. iO
9.61
9.10
9.42
9. IS
9.41
10.}
9.60
9.70
9.71
9.14
9. 17
9.72
9.10
9.111
9.7!
KO
9.61
9.60
9.19
9.60
9. 1»
9.421
9.521
9.491
PON03
9.55
9.18
9.79
1.91
9.20
9.10
9.45
9.25
9.32
9.42
1.05
9.06
9.60
9.20
9.01
9.20
9.14
1.90
1.19
9.00
9.11
9.05
. 9.12
9.10
9.19
9.40
9.05
9.10
9.25
9.41
9.15
9.10
9.21
9.15
9.17
9.10
9.12
9.21
9.10
•.90
9.01
9.00
1.16
9.04
1.91
9.20
9.21
9.11
9.11
9.41
9.66
9.70
9.69
9.19
9.59
9.60
9.65
9.11
9.1*
9.71
9.69
9.69
9.62
9.10
».69
9.90
9.14
9.65
9.69
9.65
9.IS
9.77
9.11
9.90
9.10
9.12
9.71
9.10
9.10
9.61
9.49
9.1
9.11
9.42
9.40
9.60
9.49
9.64
9.12
9.119
9.51
NO
t.*S
9.41
9.40
9.40
9.301
9.421
9.411
9.410
POND4
9.70
9. 40
10.11
9.17
9.62
9.55
9.25
9.10
9.29
9.46
1.02
9.11
9.90
9.20
9.21
9.11
9.17
9.10
9.35
9.20
9.10
9.10
9.12
9.14
9.50
9.40
9.10
9.40
9.25
9.11
9.40
9.10
9.10
9.29
9.41
9.20
9.12
1.90
1.05
9.01
0.91
• .•9
9.09
9.20
9.10
9.26
9. It
9. 51
9.47
9.51
9.11
9.65
9.61
9.60
9.61
9.71
9.61
9.10
9.71
9.71
9.77
9.62
9.76
9.70
9.17
9.19
9.69
9.70
9.61
9.10
9.66
9.12
f.ll
9.11
9.59
«.72
9.H
9.15
9.45
9.70
IO.S
9. It
9.40
9.40
9.21
9.12
(.61
9.67
9.201
9.45
NO
9.19
9. It
9.1»
9.29
9.010
9.216
9.290
9.290
POND 5
9.70
9.45
9.76
9.06
9.35
9.12
9.05
B.94
9.20
9.25
t.90
t.90
9.70
9.23
9.20
9.20
9.01
1.17
9.21
9.25
9.20
9.00
9.22
9.25
9.40
9.40
9.20
9.32
9.20
9.32
9.25
9.11
9.21
9.60
9.31
9.10
9.45
9.21
9.20
9.41
9.15
9.11
9.20
9.20
9.22
9.29
9.«5
9.52
9.50
9.61
9.49
9.70
9.10
9.60
9.70
9.72
9.61
9.61
9.71
9.72
9.79
9.67
9.11
9.69
9.11
9.95
9.55
9.6t
9.59
9.65
9.10
9.69
9.90
9.72
9.60
9.70
9.75
9.71
9.60
9.52
9.9
9.18
9.40
9.10
9.19
9.22
9.49
9.47
9.011
9.11
NO
9.10
».«6
9.19
9.19
9.050
9.11*
9.271
9.271
POND*
9.12
9.20
9.62
t.97
9.51
9.33
9.00
6.90
9.10
9.19
1.90
8.91
9.19
9.10
9.05
9.01
9.11
t.79
9.10
9.15
9.05
9.05
9.27
9.20
9.26
9.11
1.91
9.14
9.12
9.16
9.21
9.22
9.21
9.11
9.17
9.24
9.20
9.17
9.10
1.90
9.05
9.10
9.21
9.19
9.00
9.11
9.29
9.21
9.12
9.33
9.53
9.51
9.59
9.60
9.59
9,65
9.67
9.10
9.71
9.76
9.72
9.69
9.50
9.11
9.69
9.11
9.79
9.11
9.51
9.69
9.68
9.51
9.66
9.69
9.62
9.52
9.57
9.69
9.41
9.61
9. II
9.9
9.10
9.50
9.44
9.25
9.21
9.20
9.21
t.97t
9.21
HI)
9.01
9.22
9.20
9.29
9.211
9.40>
9.451
9.410
tfFLUENT
9.11
1.95
9.21
9.02
1.99
1.70
t.90
t.t»
9.10
9.01
1.95
9.04
9.09
9.01
9.10
1.99
9.02
9.11
9.07
9.17
9.10
9.10
9.20
9.00
9.10
9.11
9.15
9.11
9.1!
9.10
9.30
9.10
9.14
9.12
9.29
9.01
9.10
9.20
9.10
9.03
9.22
9.15
9.29
9.00
9.10
9.1!
9.29
9.26
9.21
9.31
9.31
9.40
9.49
9.47
9.49
9.41
9.41
9.41
9.12
9.19
9.15
9.14
9.12
9.19
9.11
9.12
9.62
9.29
9.40
9.15
9.41
9.17
9.41
9.SO
9.40
9.)!
9.47
9.60
9.4!
9.40
9.00
9.9
9.41
9.30
9.42
9.30
9.29
9.29
9.30
9.010
9.20
NO
9.09
9.2!
9.1
9.07
9.21
9.138
9.2U
9.170
9.400
127
-------
Table B-8. (Continued).
. on ,«n
»» f"
11 75
2D 75
21 75
2? 75
24 75
25 75
?6 75
27 75
11 75
29 75
10 7'»
11 75
1 75
7 75
75
75
75
75
75
75
10 75
11 75
If 75
11 75
14 75
1' 75
20 75
21 75
26 75
24 75
1 75
4 75
' 75
19 75
11 75
It 7!
It 75
22 75
25 75
28
10 I
10 6
10
19
11
11
11
11
11
11
11
11
II
II
II
II If
t I 1J
1 1 16
11 15
11 It
11 ir
11 18
I
12 II
12 14
12 ir
12 21
It 21
12 Jt
75
75
75
75
10 19 75
10 11 75
19 It 75
19 24 75
19 21
10 27
10 21
10 24
10 25
19 26
10 2'
10 28
10 21
19 31
31
1
75
75
75
75
75
75
75
75
75
75
75
75
r. 75
1 75
4 75
! 75
t 75
7 75
75
75
9
1» 75
11 75
75
75
75
75
75
/•5
19 75
t 1
11 29 75
II 21 75
11 ZS 75
12
12
12
75
?5
75
75
75
75
75
75
76
76
it rt
26 ft
27 76
31 H
J, « . (
•lucnr
7.638
7.948
7. 948
7.856
7.958
a. 44
8.98
8.19
a. 90
e.40
8.26
0. 99
8.59
9. J9
• .39
9.05
8.59
a. to
8.34
9.19
t.22
7.45
t. 708
7. 788
7.878
8.20
• 0
NO
8.82
8.12
a. 10
• .45
7.80
a, 48
8.T8
7.9*
8.58
8.49
8.58
8.40
8.ao
8.65
8.61
• . 45
a. 40
8.29
a. ai
8.54
8.42
«D
8.t4
8.27
NO
NO
a. ii
7.42
NO
8.01
r.ta
8.10
6.22
8.49.
6.14
a. 69
6.45
8.20
a. to
8.55
t. 45
8.55
a. 42
8.48
8.49
a. to
8.52
8.54
6.55
• "«
• «4P
41.42
a.ti
a. 46 •
a.ti
a. to
a. ii
a. 11
a.jr
a. it
*. if
8.47
8.21
a. 11
*. 39
a. ia
a.sa
a.ta •
*.»j
inFiitre
fO«Ol
1.609
9. 5 88
9. 388
9.J7S
9.219
9.41
9.81
9. JO
9.70
9.69
9. 10
'.19
9. IB
9. 19
1.40
9.78
9.4!
9. 45
9.61
9.65
9.19
•0
9.& 18
9.148
1. 118
1.49
9.69
N9
9.29
9. JO
9.50
9.49
9.50
9,44
9, It
9.28
9.10
9.44
9.46
). 19
9. 60
9.49
9.65
9.54
9. tO
9.56
8.8)
9.45
9.4)
9. •«
9.49
9.10
NO
NO
9.40
t.It
NO
9. I]
9.49
NO
9.54
9.51
9.58
9.12
9.ro
9.59
9.49
t.rt
>.73
9.70
9.tl
9.65
9.72
».70
9.62
9.60
9.M
9.63
9.60
9.50
1.45
9.J6
9.42
9.45
9.59
9. 50
>.4J
9.42
9.17
• lit
I.Ot
1.01
1.90
8.11
a. 98
1.99
J. 92
8~»3
itnnc. i
?0«02
fl!>
9.629
9.608
9.558
9.509
9. 59
9.5t
9.51
9.62
9.49
9.45
9. 26
9,11
9.41
9.45
9.91
9.51
9.5!
9.55
9.7»
t. 12
NO
9.698
9.568
9.568
t. to
9.51
m
9.45
9,41
9.45
9.65
9.45
9.65
t.18
9.5«
9.48
t.5t
t. 55
9.45
t.tt
9.55
9.70
t. 68
t.to
9.73
8.88
9.50
9.70
t.to
t.to
9.45
NO
NO
t.H
t.tt
M
t.It
t.tt
NO
t.It
t.to
4.62
9.42
t.tl
t»r2
9.55
t.tr
t.to
9.68
t.to
ilrs
9.85
1.80
9.80
t.tl
t.tl
t.rt
t.rt
t.tt
t.tl
t.IO
t.it
t.tr
9.88
t.tt
t.tt
9.51
9.30
9.49
t.It
9.29
9.12
t.or
t.OI
9.18
9.17
t.ll
> IN l«9 41
POKOJ
.188
.458
.408
.418
.418
9.45
9.51
9.59
9.49
9.49
9.15
9.22
9.16
9.42
9.60
9.81
9.45
9.61
9.50
9.Z9
9.19
NO
9.728
».688
9.668
9.65
t.It
9.61
9.63
9.ro
9.89
9.50
9.69
9.6J
J.63
9.55
t.tl
9.69
9.60
9.44
9.59
9.80
9.70
9.70
t.to
8.75
t.IO
9.65
t.to
t.tl
NO
NO
9.40
t.tl
NO
9.55
9.50
NO
9.64
9.41
9.68
9.4J
9.86
9.70
9.67
9.84
1.80
t.rt
9.95
t.ro
t .ri
9.89
t.tl
9.80
9.78
9.94
9.80
l.»5
t.ro
t.n
9.56
I.It
i.rt
9.67
10.91
t.ra
t.rt
t.ti
9,41
9.41
9.65
4.40
9.27
9.29
9.12
9.21
9.27
t.Sl
9.25
KITS IS
ON04
.279
.179
.128
.JIB
.218
t.Jl
9.45
9.48
9.48
9.59
9.S9
'. 32
9.35
9.U
t.J5
9.61
9.40
t.60
9.46
».2t
t.IO
HO
9.718
J.748
9.728
».70
9.60
NO
9.69
9.45
4.59
t.tt
9.45
t.ro
9.46
t.60
t.65
t.tl
4.69
t.to
4.45
9.50
9.70
9.68
t.tl
9.65
t.er
9.50
9.61
t.to
t.60
9.49
NO
NO
t.H
t.68
NO
t.41
t.to
NO
9.54
4.52
9.58
4.16
t.ra
4.65
t.6t
t.rt
1.60
i.ro
i.tt
1.61
, 1.65
< t.rr
t.rr
t.tt
t.tr
t.n
t.ti
t.r?
i.ir
l.M
t.IO
f.56
t.ro
9.81
9.50
t.It
9.82
t.rz
t.Jl
t.ir
9.50
1.52
1.49
t.It
1.44
9.12
1.15
t.It
t.32
POHD5
.108
.469
.661
.508
.508
9.65
9.60
9.57
9.59
9.60
9.50
9.61
9,50
9.14
9.45
9.49
9.50
9.65
9.40
9.10
9.46
N9
9.971
9.911
9.478
10.94
9.15
NO
9.85
10.90
9.69
9.75
9.61
9.80
9.t2
9»r5
9.89
9.85
9.89
9.89
9.60
9.65
9.90
9»rs
t.to
1,75
8.15
9.10
t.tt
9.89
t.IO
9.72
NO
9.95
9.13
t.to
NO
t.tl
t.tl
NO
t.IO
1.4!
t.ia
1.21
9.71
9.56
9.47
9.61
9.82
l.tl
i.rt
1.61
1.12
t.tt
t.t)
1.57
1.52
9*53
9.56
t.tl
t.It
9.42
t.IO
1.61
i.rj
1.10
9.86
9.75
i.ro
t.tt
t.it
i.it
t.tr
1.12
9.10
1.44
t.It
1.18
t.It
I.SO
POHD6
9.508
9.648
9.598
9.738
9.818
.90
.70
.71
.77
.90
.70
.41
.60
.61
.58
.60
.61
.80
.70
.76
.40
•0
10.198
10.198
19.998
10.10
10.10
DO
10.11
10.05
1.90
10.10
10.00
9.90
t.tt
10.01
10.05
10,10
10.11
10.10
10.10
1.93
10.10
1.90
10.00
1
1
.90
.08
.70
.70
.90
.90
.72
.80
. 80
.68
.at
.74
.to
.50
NO
.60
.49
.55
.11
.rj
.53
.60
.68
.66
.51
.70
.40
.50
.68
.56
.5)
.51
.60,
.55
.55
.42
.42
.10
.11
.51
.57
.78
.61
.to
.50
.41
.68
.46
.65
.1*
.28
.45
.34
.11
.It
.37
crrLUE
9.408
1.588
1.418
1.58B
t.Wi
.65
.49
.28
.40
.80
.80
.15
.55
.60
.50
.45
.50
.70
.60
.17
.71
9.9
10.158
10. oie
10.208
10.25
10.25
NO
10.18
10.15
10.00
19.10
10.25
10.05
to. 11
10.18
10.29
10.29
10.15
10.20
9.80
10.15
10.20
19.15
10.20
19.29
9.21
9.10
10.00
10.20
10.10
9.15
10.00
19.15
9.65
10.95
».65
.85
.80
NO
.75
.69
.65
.48
.81
.47
.84
.80
.58
.67
.80
.53
.61
.67
.46
.62
.81
.56
.70
.61
.t2
.51
.10
.1!
.41
.10
.to
.50
.67
.21
.21
.17
.11
.15
.21
.18
.17
.11
.11
.14
.14
128
-------
Table B-9. The dissolved oxygen concentration
the effluent from each pond in the
Lagoon System.
OlSiOlVCJ OXYGEN <*G/l>
NS • NO i»HPl£. NO * NO DIM
of the raw sewage influent and
Corinne Waste Stabilization
J 0>
I 23
24
21
1 26
1 2'
1 24
1 29
1 J1
1 31
f I
! •>.
t 1
> 4
? 1
t 6
! 1
! t
I 1
t 10
? 11
! 1?
! U
2 14
f 11
2 16
Z 17
2 1»
Z 19
2 21
Z 21
2 22
2 27
2 2»
5
6
9
12
15
18
21
24
21
31
9
5
8
11
14
11
U
17
11
19
21
21
2?
2 3
24
21
26
2'
2»
29
39
1
9
\
4
1
6
7
8
9
It
II
1!
13
16
19
22
25
26
11
?
6
9
It.
11
11
Zl
24
27
34
3
6
9
1?
11
16
I'
IR
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
.7'
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
73
75
73
75
73
73
73
73
73
75
75
73
75
73
75
75
73
75
75
75
75
75
75
75
75
7 18 75
NFIUCNT
4. JO
3.21
1.54
4.25
1.70
5.5?
4.35
J.JO
i.fo
3.24
j.95
7.65
3.35
3.«7
2.15
3.61
4.35
5.12
5.90
4.55
6.15
5.20
4.9)
(.55
1.70
5.70
4.90
4.79
3.50
5.90
4.10
4. 36
4.40
5.15
S.14
4.46
4.72
4.52
5.63
3.65
4.82
4.30
4.39
4.95
3.86
i. 97
$.39
1. 01
2.73
3.07
4.14
4.87
5. 60
3. 42
4.58
3.63
4.42
2.91
3.64
4.11
3.67
4.24
1.40
4.3J
2.69
3.54
3.98
Z.»6
4.00
3. as
3. 29
2.63
J.75
2.61
2. tO
3.14
2.32
2.5J
3.90
6.17
3.11
4.11
4.32
4.21
4.09
3.00
5 .05
2.90
4.1Z
2.56
1.29
1.9Z
2.24
3.98
1.66
3.34
2.22
2.09
2. 17
1.05
POHOl
2.20
9. 50
0.50
J.B5
4.70
S-85
2.72
1. 12
1.52
2.01
1.20
1.23
1.60
1.20
0.58
1.85
2.20
0.64
1.75
4. 23
5.05
7.10
5.70
9.81
4.50
5.65
14.20
10.80
It. 40
12.60
17.60
17.50
It. 01
Z3.67
17.69
13. 36
0.00
0.00
0.00
0.10
7.49
7.62
1. 43
9. 79
14. 16
20.02
25.57
16. U
14.05
14. 95
19.30
19.30
22.71
22.03
19.09
11.81
14.60
12.55
11.33
14.31
11.71
16.64
21.06
26.62
27.23
15.91
16.38
16.41
17.32
16.12
1.61
11.82
17.92
29.40
10.75
16.91
21.23
3.02
7. 53
10.68
16.69
26.77
1.14
11.82
1.01
17. 49
18.19
6.91
13.62
20.26
22.16
23.81
20. 04
16.07
7.81
0.62
1.7!
0.00
3.62
7.99
PON02
4.79
1.83
1.61
1.95
2.15
4.65
2.70
2.95
3.10
1.78
1.55
1.10
0.59
1.81
1.20
0.40
1.10
1.85
1.62
2.05
5.16
6.10
5.75
5.06
6.80
3.70
6.55
9.40
10.20
9.75
14.20
10.40
13.10
19.20
18.78
20.98
15.07
0.08
0.00
0.00
0.90
8.81
>.«]
10.08
11.31
11.84
19.11
24.94
15.94
11.16
12.36
25.59
17.91
19.37
19.70
16.13
17.49
16.35
11.66
12.75
16.22
11. 75
15.28
21.58
25.22
28.19
24.27
11.90
15.19
15.49
I*. 96
16.78
19.29
17.44
2S.56
10.64
14.14
17.38
7.59
5.77
6.05
9.61
24.02
12.08
11.39
0.85
14.04
17.75
1.41
9.40
18.01
20.10
21.39
7.47
10.77
0.76
0.62
1.94
0.00
2.6!
4.06
PONDJ
6.35
5.41
2.79
5.95
4.70
9.70
5.65
4.30
4.95
4.95
3.75
3.92
4.55
3.18
1.70
1.15
2.01
1.40
4.01
6.05
7.40
8.15
9.20
8.60
9.60
6.50
6.90
16.20
12.60
12.60
17.50
12.20
12.00
JO. 17
21.10
20.41
15.05
4.14
0.05
0.52
3.96
9.95
9.33
10.37
10.19
14.21
15.91
20.12
12.35
11.55
15.19
14.94
17.80
19.53
20.61
15.56
15.63
15.17
10.68
11.20
13.47
12.S1
14.21
20.2*
21.07
25.15
16.06
6.17
11.11
12.76
13.65
11.04
11.13
11.38
16.99
6.12
10.09
7.67
3.12
1.20
4.*!
1.05
0.91
0.71
0.65
0.80
0.46
0.99
1.00
0.91
0.58
1.03
0.69
0.65
0.48
0.29
0.72
3.73
1.14
1.21
0.83
POND;
5.10
4.40
5.20
6.20
4.95
9.40
7.60
5.20
1.80
4.71
4.65
6.10
4.65
2.90
3.10
4.36
2.20
6.30
5.60
9.65
10.60
10.40
10.79
10.90
13.50
8.70
6.15
19. 6»
16.60
22.29
17.40
12.55
11.60
17.75
22.39
20.39
15.05
7.91
0.25
0.81
4.19
10.06
9.57
10. Zl
9.69
- 12.31
11.18
14.76
10.11
9.39
9.81
12.26
13.88
16.34
17.67
U.53
11.21
12.19
9.76
6.92
11.27
10.65
11.62
17.10
16.25
17.41
14.19
7.03
9.25
9.00
9.16
7.72
15.77
9.94
14.64
6.69
6.79
1.70
2.1!
3.30
4.67
1.90
2.38
0.97
0.70
0.72
0.55
0.83
0.7]
0.90
0.53
2.25
0.65
2.14
1.2!
1.22
0.*$
0.62
0.85
1.01
Z.46
POM05
1.40
0.45
1. 10
0.65
0.31
1.20
0.59
0.40
0.56
0.50
0.75
1.90
0.60
0.17
1.55
0.60
0.59
2.05
0.54
1.60
1.76
3.40
5.19
3.56
2.91
1.40
2.85
4.20
6.50
5.60
6.20
9.11
9.75
19.60
18.88
22.69
13.96
12.92
2.65
7.68
1.37
12.95
11.60
11.56
10.61
10.27
11.66
IS. 09
11.55
10.67
13.69
12.85
14.21
17.99
16.82
13.94
15. JJ
11.56
10.42
9.76
11.62
10.90
12.22
15.77
14.21
15.16
12.0!
7.18
6.47
6.70
6.33
6.14
10.62
9.02
14.75
7.16
10.01
10.44
1.62
4.49
5.39
3.81
1.20
1.12
0.90
0.93
'0.62
1.S4
1.7!
1.6!
4.16
5.9!
4.90
1.69
2.31
0.91
0.90
1.57
2.37
4.9!
S.20
P0N06
1.60
0.70
0.62
1.05
0.60
1.70
0.61
0.40
0.45
0.72
1.10
2.20
4.21
1.16
0.70
1.35
2.30
2.90
3.70
2.05
2.10
4.70
4.70
6.10
5.52
1.15
4.20
4.60
5.35
5.60
8.95
6.10
7.25
11.60
11.65
11.69
12.94
13.67
5.76
2.59
5.69
9.39
7.47
7.31
7.52
6.81
9.11
12.50
9.67
10.12
16.10
16.14
17.66
15.12
18.27
14.64
15.11
14.31
11.22
10.20
10.42
9.23
10.47
12.10
12.58
12.17
10.40
6.22
6.17
6.81
7.01
6.87
8.72
8.27
12.15
6.19
9.02
9.64
6.49
8.11
7.99
8.22
4.11
2.06
3.06
2.10
1.66
3.6!
3.05
1.67
2.76
2.12
5.16
5.47
7.25
3.61
6.06
8.17
6.85
5.05
6.38
CFFLUCNI
1.10
1.40
0.91
0.10
0.50
1.80
0.65
5.40
0.50
0.75
0.62
0.71
1.10
1.20
0.85
2.70
4.35
2.65
2.96
2.75
4.90
4.85
4.90
7.06
7.20
2.80
6.60
6.85
6.10
6.90
7.20
4.00
5.40
14.60
15.07
15.62
6.80
7.29
6.44
11.13
11.94
12.51
6.32
7.9*
7.64
7,91
9.35
11.44
9.93
10.60
11.72
11.11
14.44
IS. 07
14.64
12.20
11.39
11.15
«.62
7.57
7.79
7.31
7.48
8.91
10.71
9.64
7.67
5.67
5.51
5.00
5.16
S.62
6.96
6.64
11.62
5.52
6.70
9.60
6.04
7.60
6.65
11.62
S.12
1.26
0.6S
1.11
2.12
1.64
1.17
2.27
2.96
5.77
7.90
6.16
6.14
3.87
6.9!
8.21
3.91
6.97
10.60
129
-------
Table B-9. (Continued).
DISSOLVE:;) cmr,EN 5
11.64
12.90
15.31
15.76
14. tt
16.17
16,23
17.54
13.56
14.67
13.10
15.35
13.03
11.47
MO
7.09
l.tt
1.73
0.12
0.55
».17
0.24
1.36
0.25
PC TO It
1.36
3.26
0.96
0.92
1.31
6.24
5.76
4.66
5.48
3.11
1.70
0.46
0.39
5.12
8.46
11.47
7.09
6.14
4.26
J.I*
2.66
5.06
6.18
?.?Q
0.50
0.61
4.11
1.79
1.84
3.61
3.07
0.69
0.61
3.54
2.15
J.J6
1.41
2.31
0.33
2.3*
2.76
2.03
.5.47
4.66
2.40
4.66
3.36
6.12
6.45
6.01
4.71
4.91
C.67
6.76
6.60
6.09
9.57
ND
13.50
10.77
10.90
12.67
12.90
11.96
13.16
12. »7
12.32
9.05
9.67
9.9J
6.44
10.93
11.24
12.77
12.71
13.66
12.26
10.06
11.59
11.72
12.01
14.24
15.77
16.64
20.76
23.40
21.16
19.16
15.14
16.81
It. 06
HO
6.46
6.17
7.63
4.18
4.17
3.21
2.71
1.11
2.69
PON04
6.12
6.31
2.74
0.71
0.66
J.71
4.74
3.02
6.40
5.51
3.62
5.5!
1.46
2.19
5.40
6.51
6.32
7.93
7.»»
6.91
5.12
6.08
7.62
i.09
4.05
3. J6
0.28
2.64
0.46
2.84
S.6S
4.76
5.45
6.64
5.05
2.28
5.09
ND
0.00
2.00
4.21
2.52
i.63
5.61
0.84
5.J7
2. 26
t.61
6.76
9.15
4.26
S.26
4.30
5.24
6.27
6.25
6.72
6.29
10.14
6.69
8.54
10.28
11.12
10.72
It. IT
11.67
9.41
7.01
6.18
7.16
6.90
11.13
6.67
9.54
14.06
10.13
9.57
6.39
9.31
10.15
9.51
11.17
10.67
12.20
17.47
20. f!
17.57
20.23
20.45
21.73
16.39
WO
9.82
12.62
13.66
6.66
8. 42
4.71
J.O*
2.. 47
4.31
PONDS
8.65
12.26
7.96
ND
5.71
1.93
12.91
I. 64
L2.12
10.65
7.6)
3.47
3.47
7.9S
9.79
12.58
12.62
13.10
11.6?
11.26
11.94
10.56
10.22
tO. 36
9.40
8.10
g.oe
5.Z!
1.57
2.55
3.56
6.00
5.34
6.06
7.51
6.97
6.11
5.66
3.61
4.06
;.«4
6.45
5.95
6.52
4.69
5.36
1.42
4.79
4.46
4.37
4.13
2.77
5.11
4.30
Z.49
6.45
5.96
6.21
9. 52
7.63
7.29
6.27
8.69
9.02
t.»6
6.52
1.49
5.00
5.24
4.64
4.16
4.63
5.22
5.61
5.96
5.»6
2.62
4.47
6.50
7.71
8.18
9.19
12.54
12.09
14,12
17.13
15.32
16.61
20.56
20.47
15.04
ND
9.B*
3.7*
S.i»
4.17
4.1*
1.17
0.13
0.10
0.07
POND6
9.41
9.70
7.14
ND
9.42
12.37
9.58
13.41
13.77
13.10
12.64
6.51
5.67
6.16
9.26
10.87
10.29
10.20
11. IB
10.49
10.50
9.00
11.49
8.65
6.95
6.61
6.23
3.98
9.62
2.5!
t.!i
t.49
4.51
5.08
4.27
11.86
«.60
7.52
8. 5<
7.66
6.16
9.41
6.42
8.53
7.00
4.21
6.05
4.23
6.20
6.44
9.52
7.94
6.16
7.53
6.53
7.15
7.80
6.14
9.50
6.48
6.49
6.»3
9.11
8.62
6.81
8.66
9.22
7.23
6.44
(.81
3.97
t.40
7.0!
7.35
7.26
7.66
7.16
7.36
7.49
8.53
8.18
6.18
9.11
10.50
11.05
12.16
12.79
14.66
16.45
20.17
17.47
NO
7.27
4.T7
7.01
5.00
6.11
4.45
2.72
t.20
t.9Z
tfflUEUT
12.64
5.40
11.09
9.81
7.95
12.01
11.62
11.66
15.79
13.70
12.31
9.36
7.05
12.16
7.57
7.67
6.4«
9.20
12.05
11.05
11.42
12.10
10.49
9.1J
9.46
6.92
6.82
7.22
4.48
3.51
6.15
3.82
4.7}
5.91
4.47
4.65
1.16
4.2!
4.96
5.71
6.1]
11.13
7.23
7.10
5.47
5.43
7.66
5.66
6.10
6.66
8.73
6.40
».S6
9.04
6.6*
9.62
6.76
9.87
NO
9.43
9.59
9.96
10.87
10.68
10.94
10.47
11.44
*.!7
9.48
9.7J
6.62
9.06
9.73
9.90
11.14
10.17
10.25
9.65
».95
10.06
9.95
10.10
6.5*
6.18
10.05
9.4!
10.16
10. IS
9.78
10.11
6.4!
NO
2.65
1.90
4.!»
2,06
l.Il
0.74
0.59
0.71
1.66
130
-------
Table B-10. Alkalinity (as CaC03> concentration of the raw sewage influent
and the effluent from each pond in the Corinne Waste Stabiliza-
tion Lagoon System.
*LK4LtNIT> CH6/L)
MS - tO SAMPLE* ID * NO DM*
HO 0» TR
2J 75
26 tS
IT 75
28 '5
2» 75
39 75
31 75
75
75
75
75
75
75
75
1« 75
It 75
12 75
2 U 75
2 14 75
2 15 75
2 16 75
2 17 75
2 10 75
2 1* 75
Z 20 75
2 21 75
2 22
2 Z7
75
75
28
1
6
9
75
75
75
75
1 12 75
3 15 75
3 It 75
I 21 75
3 24 75
t 28 75
75
75
75
75
75
4 2
4 5
4 *
4 11
4 I* 75
4 15 75
4 16 75
4 17 75
4 U 75
4 1* 75
4 20 75
4 21 75
4 22 75
4 21 75
4 24 75
4 25 75
4 26 75
4 27 75
4 2S 75
4 2* 75
4 39 75
I
2
J
75
75
75
75
75
75
75
75
75
5 10 75
5 11 75
5 12 75
5 13 75
S 16 75
S 1* 75
S 22 75
5 25 75
3 29 75
S 11 75
J 75
6 75
*
6
6
6
6 12 75
6 15 75
6 18 75
6 21 75
6 24 75
6 27 75
6 30 75
7 3
7 6
75
75
75
7 12 75
7 15 75
7 16 75
10
75
75
INFLUENT
511.
514.
507.
475.
539.
343.
530.
537.
583.
557.
537.
517.
524.
517.
529.
529.
324.
475.
47*.
469.
552.
5*1.
5*4.
541.
592.
(09.
(13.
(35.
(23.
373.
39*.
3d!
(10.
561.
(32.
636.
632.
602.
634.
640.
612.
620.
626.
622.
637.
602.
626.
616.
5*6.
30*.
4*4.
601.
607.
612.
(13.
622.
372.
6C7.
3*3.
617.
5*1.
62*.
603.
616.
3*3.
370.
5*«.
56*.
5*7.
5(3.
3(4.
5(8.
623.
3*2.
606.
517.
604.
574.
354.
• 520.
355.
537.
60*.
601.
567.
604.
434.
5«(.
55*.
5*6.
3)3.
312.
604.
461.
601.
607.
53).
5*».
60*.
617.
POMD1
555 .
5(3.
559.
559.
565.
9.
5S7.
536.
745.
693.
5(1.
525.
539.
541.
551 .
54 S •
611.
538*
521.
334.
594.
533.
4(*.
525.
302.
514.
314.
313.
529.
503.
4)9.
523.
540.
513.
310.
4*4.
588.
513.
520.
553.
5(4.
352.
574.
348.
551.
371.
57(.
567.
58*.
S82.
373.
M3.
345.
349.
336.
Ut.
346.
344.
331.
307.
547.
330.
536.
534.
33*.
505.
33*.
507.
533.
530.
540.
510.
522.
537.
520.
542.
531.
560.
352.
560.
56).
560.
567.
556.
373.
36*.
570.
5)1.
609.
567.
373.
5(8.
553.
371.
3(2.
399.
620.
613.
617.
692.
609.
POND2
561.
0.
567.
5(2.
535.
54(.
532.
357.
too.
556.
570.
566.
554.
570.
499.
559.
562.
545.
5(7.
555.
572.
519.
363.
340.
S3*.
541.
552.
543.
530.
321.
326.
324.
525.
31*.
4*1.
454.
4*1.
4*2.
4*3.
320.
499.
524.
512.
530.
520.
57*.
562.
676.
565.
550.
54*.
549.
506.
541.
320.
529.
316.
S3*.
312.
473.
31).
323.
31*.
SIS.
50*.
3*4.
300.
411.
sto.
41*.
301.
300.
50*.
321.
4)4.
331.
SOS.
S3*.
376.
341.
32*.
6*4.
367.
3*1.
342.
317.
3*2.
56*.
57*.
3*4.
603.
560.
3*3.
351.
563.
59*.
606.
5*7.
617.
5**.
601.
PON01
575.
587.
595.
577.
570.
0.
57*.
5(2.
591.
9(4.
(09.
5(5.
579.
374.
5(1.
5(2.
576.
529.
5*7.
572.
516.
366.
371.
571.
370.
326.
555.
S3*.
343.
32*.
326.
310.
32*.
SO*.
4*1.
41*.
421.
4(0.
474.
313.
323.
49*.
41*.
SOS.
4**.
346.
338.
342.
32*.
331.
333.
337.
321.
49*.
324.
31*.
52*.
31*.
304.
46*.
47*.
4*3.
41*.
4(6.
4*3.
4*5.
3*7.
467.
4*7.
4*4.
4*1.
4*1.
3*4.
902.
4*0.
4*3.
300.
524.
34*.
54*.
534.
346.
367.
366.
3*4.
5)9.
31*.
6*4.
604.
3*1.
577.
5**.
604.
5*3.
591.
5*0.
sot.
571.
5*6.
567.
3*0.
PON04
0.
0.
5*1.
600.
613.
3*0.
0.
5*3.
609.
609.
tts.
604. '
392.
617.
(46.
59*.
5*7.
590.
5*9.
57*.
604.
57 (.
579.
392.
559.
57(.
563.
553.
361.
531.
S2(.
339.
550.
531.
4)4.
425.
424.
442.
4k 1.
4S7.
51*.
4*1.
506.
SOS.
4*7.
340.
347.
520.
542.
527.
34*.
311.
4*3.
4)6.
4)3.
50*.
312.
3*4.
4*1.
46*.
47*.
4*0.
471.
462.
4(1.
4(5.
454.
4(6.
447.
46*.
4(0.
472.
17*.
4*6.
4*6.
4*3.
41*.
3*1.
SIS.
320.
31*.
52*.
330.
S6S.
3*1.
599.
607.
601.
623.
3*0.
3*0.
3*1.
624.
624.
620.
6*1.
3*6.
363.
5*0.
5*9.
577.
POND 5
613.
620.
0.
626.
600.
627.
643.
599.
634.
*79.
63*.
632.
636.
652.
550.
621.
635.
(10.
673.
614.
624.
625.
590.
605.
615.
520.
591.
514.
5(0.
562.
565.
550.
356.
532.
((.
370.
421.
430.
447.
431.
463.
444.
479.
402.
53*.
330.
363.
340.
333.
533.
341.
321.
406.
312.
307.
Sit.
313.
3*4.
4*4.
474.
4*2.
476.
4*2.
4*4.
47*.
463.
427.
4»7.
447.
463.
4*3.
4*4.
4(2.
4((.
423.
4*2.
717.
4*5.
302.
310.
316.
321.
541.
550.
366.
5(1.
360.
614.
618.
607.
607.
609.
62*.
621.
*37.
634.
617.
622.
Ml.
443.
417.
PONDS
662.
0.
637.
617.
641.
665.
626.
665.
639.
910.
(70.
665.
54*.
6*7.
660.
660.
650.
61*.
669.
636.
655.
642.
571.
633.
62*.
61*.
634.
609.
(33.
(12.
443.
5*1.
565.
53*.
49*.
421.
411.
42*.
431.
361.
44*.
4(7.
559.
594.
574.
550.
594.
529.
520.
516.
524.
312.
473.
494.
3*1.
304.
304.
4*3.
466.
466.
474.
476.
401.
437.
4*2.
441.
473.
47*.
411.
463.
411.
4(6.
4*3.
4*4.
4«*.
477.
463.
4*1.
5*5.
504.
510.
532.
52*.
549.
5(2.
570.
5*3.
604.
60*.
605.
609.
642.
637.
64(.
63*.
64*.
630.
66*.
654.
616.
EFFLUENT
(75.
6(5.
672.
6(2.
670.
639.
652.
0.
704.
6(9.
6*1.
6*5.
6*0.
69(*
676.
6(1.
6(2.
661.
670.
535.
356.
546.
501.
4(7.
3*1.
412.
371.
160.
SOS.
430.
407.
61*.
611.
334.
312.
454.
433.
441.
421.
443.
45*.
437.
4(0.
48*.
460.
312.
473.
506.
526.
4>*.
517.
513.
50(.
412.
504.
506.
520.
307.
4*4.
474.
302.
300.
501.
SO*.
4*6.
441.
473.
472.
451.
460.
4*3.
472.
406.
4*6.
41*.
4*7.
476.
4*4.
4**.
SOI.
4*4.
51*.
510.
510.
532.
330.
551.
572.
56*.
57*.
5*1.
601.
61*.
617.
630.
651.
652.
651.
672.
663.
66*.
131
-------
Table B-10. (Continued).
• IKtllNIM (HG/L)
hS
HO
7
7
7
J
7
T
7
7
7
7
T
7
7
t
9
»
t
a
a
9
i
a
g
a
a
a
a
a
a
a
a
9
i
9
9
9
9
9
9
»
9
9
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
12
12
12
12
12
It
12
12
12
« ID
D>
19
ZO
21
2?
2!
Z*
21
26
Z7
21
29
11
51
1
2
1
4
5
6
7
a
«
19
11
1?
I?
14
ir
20
2J
26
2»
1
4
7
10
u
it
n
22
25
28
1
4
7
10
11
16
20
21
22
2!
2*
25
26
27
2*
29
30
31
1
2
10
a
12
13
H
If
16
17
ia
19
20
ZJ
26
t
5
8
11
It
If
211
23
It
I
6
»
12
15
18
21
2t
Z7
10
jIHPLE, NO
(«
75
7?
75
?5
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
/5
75
75
7*
75
75
75
75
75
75
75
75
75
75
75
75
75
7i
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
7S
75
75
75
75
75
75
7S
75
75
7J
75
75
75
7*
76
76
7t
76
76
76
76
76
76
INFLUENT
590.
577.
562.
572.
57 a.
591.
600.
606.
56a.
610.
595.
611.
580.
579.
59}.
577.
562.
NO
606.
592.
589.
590.
539.
541.
620.
501.
61*.
575.
6*7.
597.
593.
599.
tit.
622.
569.
602.
607.
570.
5*1.
550.
555.
615.
602.
57».
5«1.
NO
see.
557.
535.
593.
NO
5*5.
552.
516.
521.
NO
515.
NO
5«6.
571.
56t.
573.
540.
5*9.
569.
555.
5*1.
590.
5*4.
572.
5*5.
51*.
501.
572.
570.
5*9.
529.
565.
5*2.
563.
533.
556.
527.
61t.
553.
568.
559.
565.
511.
577.
572.
573.
516.
525.
5*9.
561.
512.
532.
583.
»59.
5*3.
POM 01
629.
602.
609.
591.
612.
598.
620.
10
627.
607.
624.
629.
616.
617.
632.
629.
621.
MO
599.
597.
6Z9.
629.
621.
605.
601.
609.
62).
611.
596.
619.
629.
644.
6t2.
637.
659.
629.
62i.
610.
653.
tit.
621.
613.
t2».
612.
619.
59t.
588.
600.
589.
566.
515.
553.
555.
556.
538.
54 1.
52*.
519.
532.
534.
S36.
538.
520.
53t.
535.
539.
5«t.
545.
531.
65i.
540.
546.
536.
556.
5*3.
5St.
5*6.
541.
526.
5*2.
53*.
5*9.
525.
495.
522.
523.
519.
NO
556.
DO
550.
5*7.
55*.
5*!.
5*6.
563.
569.
377.
601.
581.
592.
PON02
608.
616.
61*.
6tt.
619.
607.
620.
636.
620.
624.
639.
6*6.
606.
633.
651.
632.
6*1.
NO
610.
601.
5*5.
591.
601.
595.
612.
607.
617.
NO
6*2.
6*6.
6*7.
6»I.
659.
658.
641.
i»a.
615.
621.
638.
626.
619.
631.
6»7.
656.
638.
635.
612.
611.
606.
620.
572.
592.
587.
568.
563.
567.
549.
5*9.
553.
552.
553.
559.
5*1.
536.
5*3.
5*1.
551.
575.
546.
5*9.
526.
5*4.
554.
53*.
55*.
554.
547.
555.
53*.
547.
526.
5*1.
5*1.
5*2.
511.
539.
523.
519.
546.
535.
5*6.
5*0.
5*3.
NO
5*1.
554.
552.
569.
57*.
5*4.
584.
PONDS
583.
573.
5«0.
575.
586.
583.
595.
610.
607.
626.
609.
631.
6*1.
51*. •
616.
618.
622.
NO
620.
622.
621.
621. .
621.
617.
626.
613.
626.
650.
656.
6*6.
658.
672.
668.
671.
677.
654.
6*9.
650.
647.
631.
6*6.
6*2.
689.
616.
655.
639.
611.
603.
602.
601.
572.
581.
587.
596.
57?.
161.
HO
55*.
559.
562.
566.
562.
560.
550.
56*.
5*6.
561.
595.
SSO.
546.
5*4.
5*6.
NO
i*».
539.
SS*.
550.
5*1.
5*2.
546.
515.
5*3.
563.
53*.
535.
531.
55*.
535.
56*.
532.
531.
55*.
544.
542.
570.
HD
5t6.
561.
591.
58*.
587.
PONO*
542.
561.
593.
582.
585.
575.
573.
59*.
58*.
611.
603.
60*.
588.
511.
596.
595.
582.
NO
593.
60*.
613.
616.
615.
61*.
611.
621.
619.
6*0.
631.
6*9.
652.
665.
661.
662.
671.
661.
661.
655.
672.
6*6.
660.
650.
651.
665.
657.
65*.
629.
626.
601.
609.
51*.
603.
610.
601.
519.
575.
511.
573.
571.
617.
510.
577.
5*2.
570.
512.
570.
511.
63*.
NO
571.
566.
561.
563.
567.
566.
toi.
561.
56*.
566.
576.
553.
55*.
603.
520.
5*3.
118.
»91.
5*6.
531.
5*6.
555.
519.
517.
5*2.
5*6.
550.
550.
557.
582.
510.
511.
PONDS
625.
617.
619.
609.
613.
606.
592.
601.
610.
609.
609.
607.
600.
590.
605.
593.
613.
NO
585.
592.
597.
592.
511.
58*.
595.
583.
600.
633.
626.
6*2.
6*»
659.
657.
650.
676.
659.
66*.
665.
66*.
656.
66*.
651.
61).
rot.
660.
663.
63t.
630.
63*.
648.
66*.
620.
626.
619.
NO
615.
604.
592.
5*9.
5*9.
600.
515.
593.
576.
5*1.
599.
599.
607.
517.
590.
410.
606.
57*.
606.
595.
605.
5*1.
5*2.
592.
60*.
511.
579.
577.
571.
544.
561.
53*.
537.
5*5.
557.
566.
NO
5*9.
511.
519.
557.
ND
571.
513.
57*.
5*2.
PON06
660.
645.
659.
649.
638.
643.
641.
631.
619.
641.
649.
636.
610.
597.
615.
606.
609.
HO
598.
594.
607.
604.
6«3.
583.
601.
587.
601.
606.
601.
610.
626.
637.
650.
646.
676.
651.
676.
672.
664.
657.
661.
675.
703.
671.
692.
67*.
671.
653.
635.
6*0.
62*.
63*.
636.
637.
62*.
617.
5*4.
615.
610.
601.
60*.
607.
607.
594.
609.
613.
NO
616.
6«2.
601.
60*.
615.
620.
617.
613.
617.
60*.
616.
602.
626.
615.
605.
561.
5*5.
579.
570.
567.
533.
575.
600.
569.
56*.
557.
551.
557.
571.
566.
516.
590.
511.
601.
ErnucNT
676.
655.
665.
670.
671.
645.
649.
670.
670.
666.
676.
670.
668.
640.
6*2.
NO
658.
NO
618.
627.
632.
620.
586.
605.
594.
604.
607.
617.
600.
606.
597.
614.
609.
635.
629.
631.
649.
641.
612.
639.
647.
633.
686.
652.
667.
685.
659.
656.
659.
NO
629.
640.
651.
640.
642.
630.
615.
626.
62*.
635.
626-
615.
605.
623.
624.
613.
617.
620.
606.
62*.
612.
622.
623.
621.
610.
627.
618.
574.
61*.
632.
611.
620.
613.
606.
5*4.
591.
515.
57*.
590.
5*2.
650.
624.
5*5.
575.
57*.
511.
5*3.
NO
60*.
605.
6*3.
132
-------
Table B-ll.
Total phosphorus performance
Lagoon System.
of the Corinne Waste Stabilization
10T41 PHOSPHORUS (KG/LI FROM tP» L»l
kS • NO i»NPL£. NO > MO 0»T»
NO 01 >*
2J 73
24 75
2! 75
2t 75
2' 75
28 75
Z» 75
S» 75
11 75
1
75
75
75
75
75
75
75
75
8 75
» 75
2 10 75
2 11 75
2 1? 75
2 11 75
2 14 75
2 13 75
2 It 73
2 17 75
2 18 75
2 19 73
2 2» 75
2 21 75
2 tt 7S
2 27 75
t 29 75
1 75
t 73
9 75
12 75
11 75
ta 75
21 75
24 75
28 75
31 75
Z 75
5 75
I 75
11 75
14 75
15 75
It 73
18 75
19 73
20 73
21 73
22 73
ZJ 73
24 73
25 75
26 75
27 73
21 75
2* 75
30 75
1 75
1 73
73
75
73
75
73
73
It 73
11 75
1» 73
13 73
19 75
22 73
23 73
za /3
73
73
73
t 73
12 73
15 75
18 73
21 73
24 75
27 73
30 75
31
75
75
75
7 12 75
7 15 75
7 It 75
7 17 75
INFLUENT CONDI POND2 POND] PON04
7.1 5.2 4.
2 3.8 NS
6.6 5.3 NS 3.8 NS
i. a 5.2 4.
7.! i.J 4.
NS J.I 4.
7. a 11 4.
1 1.8 1.1
3 3.9 3.5
0 3.7 3.3
1 NS NS
NS 5.* 4.2 3.8 NS
t.Z 5.) 4.1 3.8 1.1
7.3 5.4 4.
NS 5.5 4.
5.5 4.
7.9 5.4 4.
t.l .9 4.
4.9 .5 4.
6.5 .4 4.
5. a .4 4.
6.2 .5 4.
7. .3 4.
7. .6 4.
4. .4 4.
1. .3 4.
2. .3 4.
2. .1 4.
i. .7 4.
2. .7 4.
2. 4.8
5.3 5.
4.2 4.
1 1.9 1.4
2 .0 3.6
2 .0 3.6
1 .1 1.5
.1 I.a
.1 1.8
.0 1.7
.2 3.7
.1 3.8
.4 1.7
.1 1.8
.2 1.6
.9 3.7
.2 3.7
7 .1 3.7
3 .2 3.7
7 .2 3.8
7 4.2 .7
9 4.5 .0
3 4.1 .6
3.2 4. .4 4.0 .6
3.8 4. .6 4.4 .6
1.0 4.
5 4.4 .7
3.3 4. 4.5 4.4 NO
4.4 4. 4
4.0 4. 4
4.5 4. 4
4.1 4.2 4
2.2 1.9 1
Z.Z 3. 1
NO 4. 2
4.1 3. 1
1.7 4. 4
3.0 I. 0
2.7 I. 1
1.9 1. 1
2.5 2. 1
NO N
t.Z 3. 1
2.7 I. 1
1.4 I. 1
.7 Z.
.6 Z.
.4 1. Z
.0 3.4
.t 1.2
.6 2.
.1 Z.
.0 Z.
.8 2.
2.9 2. 2
3.7 2. 3
1.2 1. 3
1.4 1. 1
4.1 3. 3
4.0 3.
3.1 3.
3.2 2.
3.6 3.
4.2 2.
4.0 1.
3.7 1*
4.2 1.
1.0 3.
3.1 Z.
2.7 .2
3.8 * 1
4.4 .0 i
4.5 .9 1
3.z • a J
4.6 .4 Z
5*5 • 2 t
3.7 • * 2
4*) • 9 3
1.6 2.2 2
1.1 2.5 2
2.1 2.7 2
1.9 2.7 Z
2.1 2.6 >
3.7 2.7 2
2.0 2.7 Z
Z.7 *•> *
1.4 2.5 Z
1.9 2.0 2
4.5 1.6 1
3.1 U2 1
4.3 .1
4.4 .Z
4.1 .Z
4.2 .1
1.3 .3
3.3 3.4
3.6 3.3
3.8 1.6
4.1 4.0
4.2 4.2
3.3 3.4
3.4 1.4
1.4 1.4
MD NO
3.7 4.0
3.6 1.7
1.1 1.6
1.1 3.5
.1 3.1 !•»
.2 !•! 3.5
.4 3.4 1.2
.2 1.3 3.4
.0 2.9 1.1
1 9 *I« »•«
.0 2.8 Z.
.8 2.9 Z.
.t 3.0 3.
.0 I.I !•
.0 Z.9
.0 3.0 .0
.0 Z.9 .9
.0 Z.8 .9
.9 Z.8 .8
.8 Z. .»
.0 Z. .0
.0 Z. 1.0
.0 Z. Z.9
.9 Z. Z.9
.a z. z.a
.0 Z. Z.8
.9 Z. Z.
.8 Z. Z.
.8 Z. Z.
.8 Z. Z.
.3 Z. Z.
. Z. Z.
. Z. 2.
Z.2 1.
Z.Z Z.
Z.7 Z.
. Z.5 I.
Z.5 Z.
. Z.I Z.
Z.3 Z.
. Z.4 Z.
Z.4 Z.
. Z.4 Z.
. Z.4 Z.
. Z.S Z.
Z.3 Z.
1.6 1.3 0.» Z.Z Z.
0.6 1.2 0. Z.Z Z.
2.2 1.6 1
0.7 i.a i
. 1.3 Z.
. 1.6 1.
1.7 2.2 t. I'* »•
2.6 2.8 I. t.4 1.7
3.4 2.9 Z. I.S I.*
POND3 PON06 EFFLUENT
NO 2
2.9
NS 2
3.0 2
NS
.0 Z
.0
.9
.0 2
.0 2
.0 2
.0 2
.1 2
.1 2
.1 2
.4 2
.3 2
.3 3
.3 2
.2 2
.2 2
2
1. 2
3. 2
3. 2
.5 2.3
NS 2.4
.6 2.2
.7 2.3
NS 2.1
.6 2.2
NS 2.3
NS NS
.7 2.1
.7 2.4
.7 2.4
.6 2.3
.7 2.1
.6 2.4
.5 2.
.9 2.
.7 2.
.0 2.
.' 2.
.7 2.
.8 2.
.7 2.
.7 2.
.4 1.
.9 1.
3. 3.0 1.
1.0 2.7 1.
3.1 2
1.0
3.2
3.2
.2
.a
.8
.7
.3
.1
.2
.4
.6 1.
.7 1.
.a i.
.7 I.
.0 1.
.3 2.
.4 I.
.4 1.
.5 1.
.0 Z.
.0 2.
.1 Z.
.4 .0 3.
.7
.4
.0 i
.4 J.
.5 I.
.8 <•
.1 2.8 Z.
.2 Z.9 Z.
NO NO NO
1.9
1.
I.
I.
I.
1.
I.
.4
.0
.1
.0
.8
z.a
I.O
1.0
Z.9
Z.9
z.
z.
z.
\
1.
Z.9
2*
2*
2*
;
.8
.8
»• ***
.t 1.4
.5 1.3
.2 3.3
.1 1.1
.3 .2
.3 .2
.2 .3
.0 .0
.0 .9
.0 .»
.7 .8
.6 .7
.7 .0
.8 .8
.8 .9
.8 .1
.7 .9
.7 .8
.7 .
.7 Z.
.8 Z.
.8 Z.
.8 Z.
.8 Z.
.7 Z.
.8 Z.
.8 2.
.9 2.
.7 Z.
.8 Z.
.6 Z.
.2 Z.4 Z.
.7 Z.3 Z.
Z. 2.0 N
Z.
S.I Z.
Z. 1.7 t.
Z* Z.4 Z.
Z.
z.
z.
1.
z.
z.
t.
z.
.
• •
• t
•6
.6
.4
• 1
.1
.Z
i.i z.
.6 Z.
.4 Z.
.7 Z.
.8 Z.
.7 Z.
.8 Z.
.7 Z.
.8 Z.
.9 Z.
4 V *"
.6 Z.
.5 Z.
.1 Z.
.1 Z.
.0 Z.
1.9 Z.
133
-------
Table B-ll. (Continued).
TOTAL PHOSPHORUS (MG/L) FROM CPU L«i
US > NO SAMPLE. NO > NO 0 AT«
no D* tn
7 18 75
7 19 75
7 29 75
21
75
75
23 75
24 75
25 75
26 75
27 75
7 28 75
7 29 75
7 30 75
31 75
1
J
10
10
10
12
12
12
75
75
! 75
4 75
5 75
6 75
7 75
8 75
9 75
19 75
11 75
1? 75
1! 75
14 75
17 75
29 75
2J 75
26 75
29 75
I 75
4 75
7 75
19 75
II 75
16 75
19 75
22 75
25 75
28 75
1 75
4 75
r 75
75
75
75
10 19
10 13
10 16
10 29 75
10
10
10 23
10
10 25 75
10 26 75
75
75
22 75
75
75
10 27
10 28
75
75
10 29
10 19 75
10 31 75
11 1 75
11
11
11
11
11
11
11
11
11 19
11 11
11
11
75
75
75
75
6 75
' 75
8 75
75
75
75
75
II 75
11 14 75
11 15 75
11 16 75
11 17
II IS
11 19
11 29
11 23
11 26
?
5
8
12 11
12 14
12 17
12 29
12 23
12 31
J
6
9
It 76
15 76
18 76
21
24
27
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
76
76
76
76
76
76
INFLUENT POUOl PON02 POND} POND* PONDS POND6 6FFLUCMT
3.4 2. 2.0 1.6 1.
2.7 2. 2.0
2.8 2. 1.7
2.2 2. 1.8
2.4 2. 1.6
3.2 2. 1.8
2.9 2. 2.0
3.3 2. 1.2
3.4 2. 1.8
2.2 2. 1.9
2.Z I. 1.7
2.5 2. 1.9
2.9 3. 2.6
3.0 3. 2.9
2.4 4.0 3.0 .
2.7 3. 2.7
3.5 2. 2.7 .
2.8 2. 2.5 .
5.8 2. 2.7
2.4 2. 2.2
2.8 2. 1.6 .
},} 2. !•'
2.9 2. 1.4
3.1 1. 1.2
r 2.3 2.0 2.4
7 1.6 2.2 2.0 2.4
7 1.
I 2.1 1.9 2.2
B 1.8 2.0 1.5 1.9
6 1.
r 1.9 1.4 1.8
6 1.6 l.B 1.3 .7
8
r i.a 1.2 .7
7 .9 1.8 2.0 .8
7 .6 1.7 1.0 .4
a
r 1.7 t.o .4
7 .5 1.5 0.8 .2
8 .6 1.7 1.0 .3
7 .5 1.6 0.9 .1
7 .
5 1.7 1.0 .1
9 .6
6 .5
8
3
9 .3
2 .7
1 .6
8 .3
0 .7
7
3
4 .2
NO N NO NO «
2.5 2. 1.5 1.
3.8 2. 1.7 1.
3.6 2. 1.
1.6 3. 2.
2.2 3. 2.
1.9 3.3 2.
2.3 3.0 2.
1.0 1.2 2.
1.5 2.i 2.
1.1 3.2 2.
1.1 3.0 2.
2.9 3.2 2.
ND HO N
2.4 2.1 1.
6.9 3.1 2.
10.8 2.7 2.
4.5 2.9 2.
4.5 3.4 2.
2.7 2.5 2.
.2 .3 2.
.2 .5 1.
.9 .9 2.
.7 .2 I.
.9 .0 2.
.7 3.1 2.
.7 3.2 2.
.0 3.2 I.
.1 3.4 3.
.8 3.1 2.
.5 3.4 1.
.4 3.0 2.
.6 3.1 2.
.7 3.0 2.
.2 3.3 3.
.1 3.2 2.
.4 2.9 2.
.5 3.* 3.
.8 3.2 2.
3.7 3.0 2.
r.o 3.2 2.
3. 2.» 2.
3. 3.2 2.
t
b. 3.5 3.
4. 3.2 2.
1
r. 3.9 I.
1.
2.
2.
2.
2.
1.
1.
2.
2.
2.
«
1.
1.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
1.
f.
t.
*..
2.
2.
2.
3.
2.
2.
2.
2.
2.
3.
D
.2
.
.
!
i
.5
.
.
>
S
.6
.
.
.
!
k
I
1.7
.7 1.1 .2
5 1.0 .1
.4 0.8 .
3 0.8 0.
7 1.2 1.
6 1.1 1.
2 0.6 0.
6 1.1 0.
0 0.7 0.
6 0.6 0.
«0 NO N
.9 0.7 0.
0 0.8 0.
2 1.0 0.
3 1.1 0.
4 1.0 0.
3 1.0 0.
4 1.2 0.
2 0.6 0.
3 1.1 0.
6 1.4 1.
4 1.3 t.
1.3 0.7 0.8 0.
N
1 NO NO N
1.5 0.9 1.0 0.
1.
1.
1.
2.
2.
2.
2.
2.
2*
i.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.7 2.
.2 1.
l.O 4.7 3.5 .1 3.
7.4 4.1 .7 .4 3.
.5 3.6 .1 .1 I.
1.3 0.9 0.
1.2 1.1 0.
1.3 1.1 0.
1.7 .3 .2
2.
2.
1.
1,
1.
1,
1.
2
2
2.
1.
2.
1.
1.
1.
2.
2.
2.
2.
2.
2.
2
2.
2.
2.
2.
2
.5 .1
.5 .2
.2 .4
.2 .1
.5 .2
.2 .0
.7 .4
.7 .4
.6 .5
.8 .6
.7 .4
.9 .6
.6 .3
.6 .2
• 6 »
.6 0.
.9 1.
.6 1.
2.3 1.
2.0 1.
1.6 1.
2.0 1.
l.t 1.
2.0 N
2.2 1.
2.0 1.
2.5 2-
2.6 2.6 2.
1.1 2.7 2.
1.0 2. 2.
.0 4.0 .6 .1 3.1 2.7 2. 2.
.5 .2 .5 .5 I.!
3.3 2. 1.
.2 .« .2 .1 3.1 2.8 2. 2.
.5 .3 .6 .8 2.7 2.4 2. 1.
.4 .4 .0 NO 2.7 NO 2. 1.
.6 .6 .1 S.O 3.0 2.8 2. 2.
.0 . .3 1.1 1.1
2.8 2. 2.
.0 J. .J 1.2 1.1 2.8 2. 1.
.2 3. 2.9 2.9 2.S
2.7 2.4 2.
.8 3. 1.1 3.0 : 2.9 2.7 2.5 2.
.1 3. 1.3 I.I 1.3 3.0 2.6 2.
.0 I. 3.2 l.t 2.9 2.8 2.7 2.
7.0 4. 4.0 I. 7 3.7 3.4 3.2 2.
4.9 4.2 3.7 .5 3.4 3.1 2.9 2.
3
.8 4.1 3. .8 3.4
3.2 3.2 3.
4.6 4.1 3. .4 1.5 3.4 3.2 2.
]
5
.5 4.5 4. .7 1.9
.4 4.3 I. .7 1.5
3.1 1.1 2.
3.2 1.1 1.
6.6 4.4 4. .1 3.7 3.6 3.1 3.4
4
.1 4.6 4. 4. 4.0
3.7 3.4 3.3
7.3 4.9 4. 4. 1.9 3.6 3.5 3.2
t
4
4
.1 5.1 4. 4. 4.2
.8 4.9 4. 4. 4.1
.0 S.O 4. 4. 6.4
2.6 5.1 1. 1. 1.4
J.9 1.6 .2
4.2 3.7 .3
4.2 3.6 .4
4.0 3.8 .4
4.5 5.1 4. 4. 4.1 4.1 4.0 .5
• . 7 5.0 4. 4. 4.6 4.4 4.1 .6
4
.9 5.5 1. 4. 4.* 4.1 4.2 .6
134
-------
Table B-12.
Ammonia-nitrogen (NH3-N) performance of the Corinne Waste Stabili-
zation Lagoon System.
HHJ-1 (KG/11 FRO* EP« LAB
kS • NO >AHI»LE. ND • NO D«T»
D« TR
23 75
24 75
25 75
26 75
^•^ 75
28 75
2» 75
30 75
Jl 75
1 75
Z 75
J 75
t 75
5 75
S 75
r 75
8 75
9 75
75
2
2
2
2
2
2
2
2
2 II 75
2 12 75
2 11 75
2 It 75
2 IS 75
2 16 75
2 17 75
2 18 75
2 19 75
2 20 75
2 21 75
2 22 75
2 27 75
2 26 7S
3 3 75
3 6 7S
3 9 75
3 12 75
3 IS 75
3 18 75
3 21
3 24
75
75
29 75
Jl 75
75
75
75
4 11 7S
4 it rs
4 15 75
4 16 7S
4 ir rs
4 18 75
t 19 75
4 20 75
t 21 rs
t 22 rs
t 23 rs
t 2t rs
t 25 rs
t 2t rs
t 27 rs
t 28 rs
t 29 rs
4 30 rs
1
75
2 rs
rs
rs
rs
rs
75
rs
5 10 rs
s 11 rs
12
I! 75
5 it rs
5 1» 75
5 22 7S
5 25 75
i 28 75
5 Jl /S
6 S
6 6
t *
75
75
t 15 75
6 18 73
I 21 /S
t Zt 75
* 27 rs
t JO 75
7 3
7 «
r «
rs
rs
r 12 rs
r is rs
r 16 rs
r ir rs
r to rs
INFLUENT P3NO
U.I MO
it. a NO
13.3 NO
11.2 t.J
NS ND
11. 9 NO
MS t.r
11.8 NO
13.7 ND
NS HO
13.3 ND
11.8 t.r
14.2 NO
13.0 ND
13.1 s.;
It. 3 NO
13.5 NO
11.5 s.;
8.3 DO
t.J 5.3
t.t NO
t.3 NC
6.8 t.t
.r ND
.2 NC
.6 J.I
.S NC
.6 NC
.1 3.«
.6 ND
.t NC
.» 2.7
.2 10
.3 2.;
.0 1.9
2.9 l.C
6.0 1.0
12. r >.7
6.2 3.C
r.i 3.1
7.3 t. i
S.S t.J
3.1 4.1
3.8 4.4
NO NC
9.3 2.«
.3 l.<
.0 0.2
.t III
.t NC
• t D.3
.2 HI
.1 »l
t.O O.J
5.9 It
tj.l «
.r o.1
.6
».t 0.
r.t i.
3.5 0.
3.5 0*
5. 8.
1. l>
t. t.
t. <•
2. >•
2. >•
t. 8.
t. <>
J. <•
3. <•
0. <•
t. 0.
0. <•
2. <>
2.3 N
t.3 *
3.6 0.
1 PON02
NO
NO
ND
2.5
ND
NO
2.5
ND
ND
NO
ND
2.8
NO
NO
3.2
NO
NO
J.Z
NO
3.0
NO
NO
5.4
ND
NO
3.2
ND
ND
3.0
NO
ND
2.9
NO
2.8
2.0
1.3
.3
.1
.t
.6
.9
t.3
t.8
t.r
NO
3.0
2.3
0.2
NO
NO
0.7
NO
NO
0.2
NO
•0
1 0.2
m
) ND
0.1
) NO
) ND
0.1
) NO
) NO
) 0.0
) NO
> - ND
i 0.1
) NO
9 ND
1 0.0
1 ND
I NO
1 9.0
> NO
) ND
i 0.1
0.1
0.6
0.1
0.0
0.2
0.2
0.6
O.J
0.2
O.I
0.6
o.s
0.2
<.l
«.l
«.I
<.l
0.1
<. 1
«.t
) NO
) ND
1 0.1
PON03
NO
ND
ND
1.3
NO
NO
1.5
NO
ND
NO
ND
1.7
NO
NO
1.9
NO
ND
1.7
NO
1.4
NO
ND
1.7
ND
ND
1.6
HO
NO
1.5
NO
NO
2.0
NO
2.8
2.0
t.I
0.
2.
3.
3.
I.
3.
t.
t.t
NO
2.6
1.6
0.0
HO
NO
0.1
NO
NO
0.1
M
NO
0.2
NO
NO
0.1
NO
NO
0.2
NO
NO
0.0
NO
ND
O.I
NO
NO
0.0
NO
ND
0.0
NO
NO
O.I
O.I
t.O
1.1
0.0
l.t
I.I
Z.I
1.0
1.1
1.6
.S
.6
.1
.2
.1
.2
.t
.r
,T
<.i
NO
NO
O.I
POND4
NO
NO
ND
0.9
NO
ND
NS
ND
NO
ND
ND
1.1
NO
ND
0.9
NO
ND
0.6
ND
O.S
ND
ND
O.I
NO
NO
0.2
ND
ND
<-l
NO
NO
0.9
NO
2.6
2.0
1.2
0.3
0.9
2.5
2.8
3.3
3.2
t.O
6.0
NO
2.0
1.8
O.S
NO
NO
O.I
ND
NO
0.1
NO
NO
0.2
NO
ND
0.0
NO
NO
0.1
NO
NO
0.0
NO
NO
0.1
ND
ND
0.0
NO
NO
0.0
NO
ND
O.I
o.r
i.t
i.t
1.6
l.S
1.9
Z.I
2.
2.
1.
2.
2.
1.
1.
l.S
l.S
l.t
1.0
o.t
o.s
NO
ND
0.6
PONDS PONE
NO Nt
ND NC
NO NC
0.8 0.4
NO NC
ND NC
i.s M:
NO NC
ND NC
NO NC
ND NC
1.1 0.4
NO NC
NO NC
0.9 0.'
ND NC
ND Nt
O.S «.
ND NC
0.2 <-
NO Nt
NO NI
O.I <.
ND Nt
ND NC
0.1 <.
ND Nt
ND N[
<.l <.
NO N[
ND NI
0.1 0.
NO NC
I.I 0.(
0.6 O.I
1.0 O.I
o.i o.:
0.2 O.i
0. 0.1
0. 0.'
0. 0.)
0. O.I
1.1
.0 1.4
NO NC
.1 1.'
.0 1.)
.0 0.3
NO NI
NO NI
O.I 0.<
ND Nt
ND NI
0.1 0.
NO N(
NO NI
O.Z 0.
NO N
NO N
0.0 0.
ND NI
ND N
0.1 0.
NO N
NO N
0.0 0.
ND N
ND N
0.1 0.
ND N
ND N
0.0 0.
NO N
NO N
0.0 0.
•0 N
NO N
0.0 0.
0.2 0.
0.8 0.
0.* 0.
l.t 0.
1.1 0.
l.t 0.
1.6 0.
ur o.
2.1 1.
1.8 1.
1.9 1.
2.6 2.
1.6 1.
1.2 U
o.r t.
.1 1.
.t 0.
.1 0.
.8 «.
.t 0.
ND N
NO N
0.3 0.
6 BFFIUCNT
0.1
0.1
0.2
0.2
0.2
0.4
O.t
NS
0.2
0.3
0.2
<.l
0.2
O.t
0.3
0.3
0.3
<.l
0.3
<.l
<.l
<.l
<.l
<.l
<.l
<.l
0.2
O.I
<.l
<.l
NO
<.l
«.l
O.t
0.5
0.6
0.6
0.7
O.t
0.0
0.0
0.0
0.1
0.2
NO
O.t
0.6
0.0
0.1
0.2
0.0
0.2
0.1
0.2
0.2
O.t
I O.I
) 0.2
) 0.1
) 0.0
) 0.1
) 0.0
I 0.1
> 0.1
1 0.1
9 0.0
9 0.1
9 0.1
1 O.I
9 0.2
t .3
D .1
9 .1
9 .1
1 .0
9 .2
> .1
.0
0.1
NO
0.0
0.0
o.t
0.6
0.6
0.7
1.0
0.9
.2
.r
.7
.3
.0
.
0.
0.
0.
0.
9 NO
9 ND
1 0.2
135
-------
Table B-12. (Continued).
NH1-1 (HC/L>
Hi ' HD itHPlC. N
xo o< rs
719 75
7 21 75
7 21 75
7 22 75
7 23 75
7 24 75
7 25 75
7 26 75
7 zr rs
7 2J1 75
7 29 75
t JO 75
7 31 75
t 75
2 75
J 75
4 75
5 75
6 71
7 75
8 /S
4 75
10 75
12 75
11 75
14 7i
17 75
13 75
IS 75
21 75
29 75
'1 75
4 75
7 75
10 75
1! 75
16 75
19 75
22 75
25 75
28 75
10 1 75
10 4 75
10 7 75
10 ID 75
10 U 75
14 IS 75
10 20 73
10 21 75
10 If 75
10 23 75
10 24 75
10 25 75
10 26 75
10 27 75
10 28 75
10 Z9 75
10 30 75
10 31 75
It 1 75
U t 75
11 75
11 75
11 75
U 75
U 73
11 75
U 75
II ID 75
11 11 75
11 12 75
11 13 75
It 14 75
11 15 75
11 16 75
11 1' 75
11 18 75
11 19 75
11 20 75
tl 23 75
11 26 75
12 2 75
It 5 75
12 8 75
1Z 11 75
12 14 75
12 17 75
1? ZO 75
12 83 75
12 31 75
5 /*
6 76
9 76
12 7*
15 76
la 76
21 76
24 76
tr 76
30 76
fROH I
a • «o DAT*
INFLUCHr
Z.9
3.0
2.3
2.4
1.7
4. 3
4.2
5.T
1.8
3.1
3.5
Z.»
4.1
5.7
4.7
3.9
2.7
3.9
t.l
4.3
4.0
3.2
ND
2.9
4.2
4.7
1.9
*.t
5.3
5.3
4.9
t.l
1)9
10.7
NO
7.4
9.6
26.0
t.r
5.3
4.6
4.7
5.3
12.2
9.1
10.7
11.7
til
J.7
11. »
9.2
5*4
6.1
7.1
6.4
7.6
7.5
8.9
10.7
9.4
t .5
10.1
9.0
10.7
9.9
(.7
9 ,
10 .
14.
11.
12.
3,
14.
12.
13.
15.
12.
11.
14.
10.
9.3
5.4
It.O
Z5.6
14.6
11.9
16.6
12.3
1.4
14.6
14.9
18.5
•0
PI Hi
POUDl
ND
• 0
0.1
ND
HD
0.2
NO
«. t
ND
ND
».*
DO
• 0
9.1
no
to
a.i
no
NO
9.9
»D
• D
ND
NO
0.1
0. 1
0.2
0.3
9.1
0.2
O.I
0.1
0.1
10
0.1
0.4
O.I
oil
O.I
0. 1
I.*
0.1
1.5
NO
NO
0.8
ND
DO
1.5
NO
ND
J.7
NO
NO
0.2
Nl
9.6
ND
«D
9.4
0.5
0.9
1. 0
t.o
1.4
t.l
Z.4
2.4
2.7
Z.7
2.9
2.9
J.Z
1.5
4.0
4.8
4.6
S. ]
6.0
t.t
7.1
7.2
1.3
NO
mull!
NO
NO
ND
NO
c.l
DO
ND
NO
ND
0.4
NO
NO
O.t
NO
ND
NO
ICO
0.6
ND
NO
*D
ND
NO
* ,
0.)
0.1
<'}
0.2
0.1
NO
0.1
O.I
0.2
O.t
0.
0.
0«
0.
0.
0.
NO
NO
0.3
NO
NO
0.1
NO
NO
0.3
NO
NO
9.1
NO
NO
9.2
• 0
HO
0.2
0.4
O.Z
0.1
o.z
o.z
0.*
o.r
0.7
0.9
t.o
1.4
t.l
1.6
1.7
2.4
2.6
2.7
3.1
3.7
4.2
4.6
4.8
5.2
6.0
NO
POND 3
ND
ND
0.2
ND
NO
HO
HD
NO
NO
NO
MO
0.1
NO
MO
NO
ND
ND
NO
NO
NO
NO
€ *J
J.'l
0.3
0.1
<•!
<.l
oil
0.1
NO
0.2
c.l
0.2
0.1
<.l
0.1
0.1
0.4
0.4
0.4
ND
NO
NO
no
0.6
NO
ND
o.r
NO
NO
0.1
ND
ND
O.Z
NO
NO
0.3
O.I
0.1
O.I
o.z
0.2
0.1
0.
0.
0.
0.
0.
0.
0.
0.
1.3
i.6
1.9
Z.I
Z.J
2.7
I.I
1.5
3.8
t.l
ND
PON04
ND
HD
0.3
ND
NO
t.l
NO
NO
0*1
NO
ND
0.1
ND
NO
O.t
ND
10
«0
NO
kD
NO
HO
ND
ND
**
ol?
0.3
0.1
o!t
0.1
0.1
0.1
ND
0.2
0.1
0.2
0.1
0.1
0.4
0.5
0.7
ND
ND
4.4
NO
ND
0.9
ND
no
1.1
NO
NO
0.6
NO
NO
0.4
NO
NO
0.3
0.4
0.6
6.?
: o.t
0.7
o.'»
o.'z
O.I
O.'l
0.1
O.I
0.9
1.1
I.I
1.2
1.*
Z.Z
Z.I
2.6
3.2
ND
PONDS
NO
NO
9.3
NO
NO
ND
ND
ND
NO
NO
NO
0.1
»9
ND
NO
NO
MD
ND
NO
ND
ND
<»l
0*1
0.5
0.1
0.1
oil
«.l
NO
0.1
olz
0.1
0.2
0.1
0.1
c.l
0.4
0.1
0.6
NO
NO
0.5
NO
NO
0.3
NO
0.6
NO
NO
0.3
ND
ND
0.5
NO
NO
O.I
0.4
O.t
0.7
0.6
1.0
O.I
0.9
0.7
0.4
0.2
O.Z
-------
Table B-13.
Nitrite-nitrogen (N02~N) performance of
Waste Stabilization Lagoon System.
each pond in the Corinne
NOZ-N MG/LI
hS • HO iAHPLCl NO
ritaii EPA i«9
1 OA
1 2!
I Z»
1 25
I ZS
1 Z'
1 2«
t 29
1 ID
1 11
2 1
Z !
t J
2 t
t »
Z t
2 r
t »
t '
2 14
Z 11
2 12
Z U
2 U
Z 15
2 IS
2 IT
2 l»
2 It
2 Z3
2 21
Z ZZ
2 27
21
1
k
«
12
11
11
21
24
2B
11
2
5
t
It
It
If
It
tr
18
IV
2»
HI
22
23
24
21
2t
2f
28
2»
JO
t
2
I
4
5
S
T
1
9
10
It
It
U
1«
If
22
21
28
11
I
6
«
12
11
19
21
2t
tt
10
1
t
»
If.
1)
IS
tr
to
r«
fi
n
n
75
n
r*
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
rs
75
75
rs
75
75
75
75
75
75
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
75
rs
rs
rs
r»
r$
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
rs
INfLU
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(
0
0
o
0
0
(
0
0
(
(
e
0
(
i
i
(
•
(
.
4
i
i
i
i
i
i
<
i
i
i
{
CNT
. 2
.1
.1
.1
NS
.2
NS
.1
NS
.1
.2
.5
.1
.2
.2
.2
.1
.4
.4
.4
.4
.4
.5
.5
.5
.t
.r
.5
.2
.4
.4
.2
.4
.5
,1
,4
N
9
.
.
a I
.4
.1
.3
.4
.1
•
.t
.2
I.
).
1.
'*
i
".3
2
* .
*
4 '
*c
*
**
9
^2
• I
•
.0
*
m
•
,^
*
'* |
i« I
i j
>• 1
9.2
>.«
>.l
».*
PONDI
ND
ND
NO
0.1
NO
NO
0.1
ID
NO
ND
ND
0.1
NO
NO
c. I
NO
ND
ID
0.1
ND
10
0.1
NO
NO
0.2
ND
NO
0.2
NO
NO
0.2
ND
0.2
0.2
0.2
0.2
0.7
0.1
c.l
0.1
c. 1
c.l
c. 1
10
0.2
c. 1
c. 1
no
NO
c.l
10
10
NO
NO
c. 1
ND
10
c. I
ND
NO
0.2
ND
NO
c.l
ID
NO
C. 1
10
NO
c. 1
ID
NO
c. 1
no
NO
c.l
c. 1
c* 1
c. 1
c.l
c. 1
c. 1
9. 1
0. 1
0.2
0.1
0. 1
0.1
c. 1
c. 1
" ,
c. I
c.l
• 0
NO
c.l
PON02
ND
NO
ND
0.1
NO
NO
0.1
NO
ND
NO
NO
O.I
ND
NO
c.l
NO
NO
c.l
NO
c.l
ND
NO
c.l
NO
ND
0.1
NO
NO
O.I
NO
NO
0.1
NO
0.1
O.I
0.2
0.2
0.2
0.2
c.l
c.l
<• 1
NO
O.I
c.l
c.l
ND
ND
NO
NO
NO
NO
0.1
NO
NO
NO
NO
0.1
NO
NO
NO
NO
c.t
NO
NO
NO
NO
NO
NO
c.l
<•!
c.l
c. t
c.l
c.l
g .
cii
^ 1
4 1
c.t
c.l
c t
f 1
c.l
c 1
c.l
NO
NO
PONOJ
NO
ND
ND
0.1
ND
ND
0.1
NO
NO
ND
NO
0.1
ND
NO
c.l
ND
ND
c.l
NO
c.l
NO
NO
c.l
ND
ND
c.l
ND
ND
c.l
NO
NO
0.1
NO
0.1
O.t
0.1
0.1
0.2
0.1
o.s
0.1
c.l
c.l
ND
c.l
c.l
c.t
ND
NO
NO
NO
NO
NO
c.l
NO
NO
c.l
NO
NO
NO
ND
ND
NO
c.l
M>
ND
c.l
M
NO
ND
NO
c.t
0.1
0^2
0^2
0.4
c.l
0.1
0.1
c.l
c.l
c.t
c.l
c.l
c.l
0.2
NO
NO
0.1
PON04
NO
NO
NO
0.1
NO
NO
NS
NO
NO
NO
NO
c.l
NO
NO
c.l
NO
ND
c.l
NO
c.l
NO
NO
c.l
ND
NO
c.l
NO
NO
c.t
NO
NO
0.1
NO
0.1
0.1
0.1
0.1
O.I
0.1
0.1
c.l
c.t
c.l
NO
c.l
c.l
c.l
NO
ND
NO
NO
ND
NO
NO
NO
NO
NO
NO
NO
c.l
NO
NO
c.l
NO
NO
c.l
NO
NO
NO
NO
c.l
c.l
c.l
c.l
O.t
c.l
c.l
c.l
c.t
0.1
0.2
O.t
c.l
0.1
0.1
0.2
c.l
c.l
0.2
c.l
NO
ND
0.1
PONDS
NO
NO
ND
c.l
NO
ND
O.t
NO
ND
ND
NO
c.l
NO
NO
c.l
NO
ND
c.l
NO
c. 1
NO
NO
C.l
NO
ND
c.l
NO
NO
c.l
ND
ND
c.l
ND
c.l
O.I
O.I
c.l
c.l
O.I
c.l
c.l
c.l
c.l
NO
c.l
c.l
C.l
NO
NO
NO
NO
NO
NO
NO
NO
c.l
NO
NO
NO
NO
NO
ND
c.l
ND
NO
c.l
ND
NO
C.I
N»
NO
c.l
c.l
.1
.1
.1
.1
.1
.1
.1
O.t
0.1
0.1
c.l
.0.1
0.1
0.2
c.l
c.l
0.2
c.t
c.l
N»
ND
0.1
PONDb
NO
NO
ND
c.l
ND
ND
NS
ND
ND
ND
ND
c.l
ND
ND
c.l
ND
ND
c.l
NO
c.l
ND
ND
c.l
NO
ND
c.l
ND
NO
c.t
NO
ND
c.l
ND
c.l
c.l
0.1
0.1
c.l
c.l
c.l
c.l
c.l
c.l
c.l
HO
c.l
c.l
c.l
ND
ND
NO
ND
c.l
NO
NO
c.l
ND
ND
c.t
NO
NO
c. 1
NO
NO
C.I
NO
• NO
c.l
NO
NO
c.l
ND
NO
c.l
ND
NO
c.t
c.l
c.l
c.l
c.t
c.t
c.t
c.t
c.l
O.I
0.1
c.l
c.l
O.I
c.l
O.t
c.l
c.l
0.1
c.l
c.l
NO
ND
c.l
CFFLUEN1
c.l
c.l
0.1
c.l
0.1
O.I
O.I
N5
O.t
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
C.I
c.l
c.l
c.l
c.l
C.I
c.l
c.l
c.t
c.l
c.t
c.l
c.t
c.l
c.l
c.t
C.I
c.l
O.I
0.1
0.1
c.l
c.t
c.l
c.l
c.l
c.l
NO
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
C.I
c.t
c.l
c.l
c.l
c.l
c.l
c.t
c.l
c.l
ND
c.l
0.2
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.t
c.l
c.t
c.t
c.t
c.l
c.l
c.l
NO
NO
c.l
137
-------
Table B-13. (Continued).
02-N
S * NO
a ot
r t»
7 20
7 21
7 It
t 2J
7 2*
r 25
7 26
7 27
2»
2'
19
11
1
2
4
«
6
T
9
19
11
12
13
14
17
29
2!
26
29
1
4
r
19
U
16
2?
25
2S
0 1
0 4
0 7
0 10
0 1!
0 16
0 29
0 21
0 22
0 2!
0 24
0 25
0 26
0 27
a 2»
0 2*
0 50
0 11
I
1
I
1
1
1
I
1
1
1 19
t 11
1 12
1 1'
1 14
1 15
1 It
1 17
1 It
1 1*
1 20
1 21
1 26
2 2
2 5
2 t
2 11
2 14
2 IT
2 20
2 21
2 31
3
*
12
15
10
21
24
2T
30
(rtG/L)
inline.
YR
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
ti
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
/5
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
ti
75
76
76
76
76
76
76
76
76
76
FROH
ND * NO 0»T»
INFLUCNt
0.2
0.2
0.2
<• 1
0.2
0.1
c. 1
0.4
0.4
0.1
0.5
0.4
(1.4
0.1
0.5
0.6
*• 1
0.1
0.1
c.l
O.I
0.1
ND
O.I
0.4
O.I
0.4
0.1
O.I
O.I
0.1
0.2
<• 1
c. 1
c.l
ND
0.2
c.l
0.2
0.1
<• 1
c. 1
c» 1
<.l
c. 1
<» 1
c. 1
c. 1
c.t
c. 1
<.I
*.I
«.l
O.I
<*l
0*2
«.l
** 1
0.2
«.i
<* i
<•!
1
*• 1
<* 1
*» i
ND
NO
** 1
«0
ND
*» I
NO
NO
<» 1
ND
ND
0.1
ND
ND
c. 1
ND
NO
c. 1
<. I
c. 1
C. 1
C. 1
C. 1
<. 1
c. 1
c. I
c. 1
<. 1
c. 1
0.2
0.2
0.2
9.1
0.1
0.2
0.2
0.2
c. 1
c. 1
O.I
c. 1
c. 1
to
PON02
NO
NO
c.l
ND
NO
< . 1
ND
NO
c • 1
NO
NO
C. 1
ND
ND
< . I
NO
NO
* • 1
ND
NO
c. 1
NO
NO
NO
NO
ND
C. 1
<. 1
c. 1
* » 1
<. 1
* . It
*• 1
«. 1
< . 1
<. 1
NO
0.1
<• 1
0.1
0.1
<• 1
<• 1
<• 1
<*1
* • i
<• t
^.t
NO
ND
** i
ND
NO
*• 1
NO
NO
<• 1
NO
ND
*. 1
NO
NO
<«!
NO
NO
<*1
c. 1
c.l
c.l
C.I
c.l
c«l
c.l
c. 1
c.l
c.l
c.l
O.I
0.1
0.1
0.1
0.1
0.2
0.2
0.2
0.2
c. t
0.1
c. t
c. 1
NO
POND)
NO
NO
0.2
ND
NO
<•!
NO
NO
c.l
NO
ND
c.l
ND
ND
c.l
ND
ND
*«l
HO
NO
0.1
ND
NO
MO
NO
NO
<*1
<*1
<»1
c*l
<•!
<»1
<•!
<*1
<•!
<«t
NO
l.»V
<»l
0.1
O.I
*»t
*.l
<•!
<*1
*•!
<»1
<-l
NO
NO
**1
NO
ND
N»
c.l
ND
ND
0.1
ND
NO
<*t
NO
NO
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c«l
c«l
c.l
0.2
0.1
0.1
c.l
c.l
c.l
0.2
0.1
0.1
c.l
0.1
c.l
c.l
NO
PON04
NO
NO
0.3
NO
ND
0.4
ND
NO
c.l
ND
NO
c.l
ND
NO
c.l
NO
ND
< »1
NO
NO
<»1
ND
ND
ND
ND
NO
<*1
<*i
•T.I
<•!
<*1
*.l
<*1
<•!
<•!
<•!
ND
0*2
<.l
o.z
0.1
<*1
<•!
<.l
<«1
<.l
<•!
<•!
NO
ND
<•!
ND
NO
^•1
NO
NO
c.l
NO
ND
O.I
NO
ND
c.l
NO
N8
c.l
c.l
C.I
c.t
C.I
c.l
c.l
c.l
c.l
c.l
C.l
c.l
0*1
0.1
c.l
c.l
c.l
0.1
0.1
0.1
0.1
c.l
0.1
c.l
c.l
ND
POND5
HO
NO
c.l
NO
ND
0.1
ND
ND
c.l
ND
ND
<*1
ND
ND
c.l
ND
ND
<•!
ND
ND
c.l
ND
NO
NO
NO
ND
c.l
.1
.1
.1
.1
.1
.1
.1
.1
.1
ND
.2
.1
.2
0.1
c.l
c.l
c.l
c.l
c.l
c.l
c.l
NO
ND
<»i
ND
ND
<*1
ND
NO
c.l
NO
ND
0.1
NO
ND
c.l
ND
ND
c.l
c.l
c.l
0.2
O.I
c.l
C.I
c.l
c.i
C.I
c.l
c.l
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
O.Z
c.l
c.l
c.l
c.l
NO
POND6 erFLUCNT
ND <•!
NO 0.2
c.l c.
NO c.
ND c.
0.1 c.
NO c.
NO c.
c.l c.
ND c.
NO c.
c.l c.
ND c.
ND c.
c.l c.
ND c.
ND c.
<» 1 <•
NO <-
NO <•
<• 1 <•
ND <•
NO <*
ND N
NO <•
NO «.
<•
<«
<*
<•
<»
*.
<*
<•
<•
<•
N
0*
<•
C.
0.
*•
*.
**
*•
**
*•
<•
<•
*•
*•
*•
<•
<•
<•
«.
0.
0*
N
0.
<•
0*
0.
*•
*•
**
*•
**
*•
c*
NO c.
NO c.
c. 1 <•
ND c.
ND c.
*. 1 * .
NO <•
ND <•
«.l <•
NO <*
NO «.
<. 1 <•
NO <.
NO «.
<• 1 *»
NO <-
ND <.
<.l N
*•
^«
<• 1 <•
*•
f.
<« 1 <•
<•
<•
<• 1 <•
<•
*»
*. 1 <•
<•
*»
<•
4.
<•
<*
<»
<•
<«
<•
<«
<•
<•
<«
0.
0.
«.
0.
«.
0.
*.
<•
<•
<•
<•
*•
<.
<«
<•
<•
«•
<•
**
<•
<*
<•
0.
<•
<•
<•
*•
<•
NO NO
138
-------
Table B-14.
Nitrate-nitrogen (NC^-N) performance of
zation Lagoon System.
the Corinne Waste Stabili-
03-N
S
0
Z
Z
Z
Z
Z
2
Z
Z
2
Z
2
2
Z
Z
2
2
2
2
Z
2
Z
Z
Z
2
7
7
7
t
7
- NO
0*
21
Zt
?5
Zt
Z7
Zt
JO
31
1
9
J
4
5
t
7
»
9
11
It
1?
II
It
15
It
| 7
IS
if
20
21
2?
2 r
29
3
t
?
1?
15
19
Zl
2t
29
It
2
5
9
11
It
15
It
17
19
It
20
21
ZZ
ZJ
Zt
£5
Zt
27
21
2»
30
1
*
10
It
12
13
It
It
Z?
z«
tt
It
J
6
•
IZ
15
11
21
Zt
10
5
t
1
It
15
It
IF
11
(KG/LI
j»HPlE, ND
rn
75
75
75
75
75
"
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
73
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
M
75
75
75
75
73
7S
73
73
73
75
73
75
75
75
75
75
75
73
75
75
75
FRQH EP» LAB
NO 0*I»
INFLUENT
e.«
O.t
0.1
0.1
NS
0.4
NS
0.1
0.5
NS
O.I
0.2
1.1
0.1
0.4
0.3
0.1
0.1
1.7
Z.S
3.1
1.7
2.5>
2.7
Z.7
2.4
2.4
I. 9
Z.J
2.Z
l.Z
l.Z
1.0
0.?
3.4
3.6
1.9
2.7
1.9
Z.3
4.1
S.I
5.2
ND
3.4
3.1
2.*
1.4
2.2
1.6
0.5
2.6
Z.I
1.6
2.4
2.5
1.7
2.2
1.7
0.4
I.I
3.0
2^7
l.Z
o.a
1.9
Z.I
2.1
i.a
1.7
1.0
0.5
0.7
1.2
4.1
O.t
0.1
1.0
i.a
3.5
Z.I
olt
l.Z
Z. V
3.0
Z.i
0.1
0.6
2.4
2.2
2.9
4.1
2.2
1.2
0.4
0.2
PON 01
HQ
ND
VD
O.I
NO
ND
O.I
HO
NO
ND
NO
0.1
ND
HO
<.l
NO
ID
4. 1
ND
NO
ND
0.2
NO
NO
0.3
NO
NO
0.5
NO
NO
3.5
HO
0.6
0.7
0.7
0.7
O.I
4. 1
O.I
0.6
1.2
0.9
1.1
ND
1.1
1.1
1.0
HO
NO
o.a
NO
NO
(.1
NB
NO
0.}
ND
NO
NO
ND
0.4
ND
NO
0.2
NO
NO
4. 1
NO
NO
<• 1
NO
10
«•. §
ND
NO
<• 1
4. 1
4*1
4. 1
4. 1
4. 1
0.1
0.1
0.1
0.1
0.1
O.Z
0.3
4. 1
c.l
4. 1
c. |
<. 1
'.1
4. 1
<. 1
NO
NO
0.1
PONOZ
NO
NO
NO
0.1
ND
ND
0.1
ND
NO
NO
NO
0.1
NO
NO
c.l
ND
ND
<«!
NO
NO
NO
c.l
NO '
NO
0.1
NO
NO
0.1
ND
NO
O.Z
NO
0.4
0.4
0.4
0.4
0.5
c. 1
O.I
O.Z
0.3
0.3
0.4
NO
O.J
0.5
0.6
NO
ND
O.I
ND
NO
c.l
NO
NO
0.4
NO
NO
O.I
NO
NO
O.Z
NO
NO
c.l
NO
NO
c.l
ND
NO
c.l
NO
NO
C.I
NO
NO
c.l
c.l
c.l
c.l
. 1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
. 1
.1
.1
.1
.1
4.1
NO
NO
O.I
PONOJ
NO
NO
MD
O.I
ND
ND
0.1
ND
NO
ND
NO
0.1
NO
NO
4.1
NO
ND
c.l
ND
ND
NO
c.l
ND
NO
<.l
ND
ND
•c.l
NO
ND
c.l
ND
O.Z
o.s
0.3
O.I
O.I
c.l
0.1
0.1
O.J
0.1
O.I
NO
O.J
O.Z
0.2
NO
NO
0.2
NO
NO
c.l
NO
NO
c.l
NO
ND
<.l
NO
ND
c.l
NO
NO
<.l
NO
ND
4*1
NO
NO
4.|
MO
NO
4. t
NO
NO
<. 1
c.l
c.l
4.1
c.l
O.I
.S
.1
.1
• 1
.1
.1
.1
.1
0.1
c.l
c.l
c.t
0.1
«.l
«.l
NO
NO
0.1
POND4
ND
NO
ND
O.I
NO
NO
NS
NO
NO
NO
NO
0.1
NO
NO
4.1
ND
NO
4.1
NO
NO
NO
c.l
NO
NO
4.1
ND
NO
4.1
NO
ND
c.l
NO
0.1
O.Z
0.2
0.2
O.Z
4.1
4.1
O.I
0.2
4.1
4.1
NO
4*1
4.1
4.1
ND
NO
c.l
NO
NO
4.1
NO
NO
4.1
NO
ND
4.1
NO
NO
4.1
NO
NO
4.1
NO
NO
4.1
NO
NO
4.1
NO
NO
4.1
NO
NO
4.1
4.1
4.1
4.1
4.1
4.1
4.1
4.1
4.1
4.1
4.1
4.1
4.1
4.1
4.1
4.1
4.1
4*1
O.Z
4.1
4.1
NO
PON05 PONOt EFFLUENT
ND N
ND N
0 «.l
0 0.1
ND NO 0.
O.I O.I 4.
ND NO 0.
ND N
0 0.
0.1 NS 0.
ND NO N
ND NO <.
NO NO c.
NO N
0 4.
0.1 0.1 0.
NO N
ND N
<•! <•
0 0.
0 <.
t 4.
ND NO <.
NO N
<•! <•
0 0.
1 <•
ND ND 0.
NO NO 0.
ND ND <.
4.1 C.
ND N
1 4.
0 4.
NO NO 0.
4.1 C.
NO N
1 4.
0 4.
ND NO c.
4.1 C.
1 4.
ND NO 4.
NO NO 4.
4.1 C.
1 4.
ND NO <.
0.1 0
0.1 0
0.2 0
0.1 0
O.t 0
0.2 c
4.1 C
0.1 4
0.1 0.
4.1 4.
4.1 C.
4.
c.
0.
0.
0.
c.
4.
c.
0.
c.
4.
NO N N
4.1 4.
4.1 4.
4.1 4.
NO N
c.
4.
«,
D 4.
NO NO 4.
4.1 4.
1 c.
NO NO 4.
NO ND c.
c.l c.
NO N
1 4.
0 4.
NO NO 4.
4.1 C.
NO N
NO N
4.1 C.
NO N
1 c.
0 4.
D 4.
1 4.
0 4.
NO NO 4.
4.| 4.
1 4.
NO NO 4.
NO NO c.
4.1 4.
NO N
1 4.
0 4.
NO NO 4.
4.1 4.
1 4.
ND NO «.
NO ND 4.
4.1 4.
NO N
I 4.
0 4,
ND NO 4.
4.1 4.
1 «.
NO NO 4.
NB NO 4.
4.1 4.
4.1 C.
4.1 C.
4.1 4
41 C
4 t 4
41 4
4 1 4
41 4
4 t 4
4 t 4
41 4
41 4
41 4
01 4
41 4
< 1 4
41 4
01 0
41 4
4.1 4.
4.
».
N
<.
4.
<.
C.
C.
c.
«.
4.
c.
t.
4.
4.
4.
4.
4.
0.
<.
1 4.
NO ND NO
W « NO NO
O.t
0.1 0.
1 O.I
139
-------
Table B-14. (Continued).
03-N (HG/L)
S . NO itNPlE. ND
0 01 »"
7 1» 75
7 ZO 75
7 Zl 75
7 2> 75
7 2! 75
7 21 75
7 25. 75
7
r
r
7
7
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
t
0
0
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Z
2
!
I
I
I
I
I
'.
26
27
2«
29
SO
II
1
2
5
t
^
6
r
e
9
11
11
12
U
It
17
fo
J
26
2»
1
t
7
19
U
16
19
2Z
25
Zl
1
t
7
10
11
1 6
29
21
22
21
Zt
25
26
27
27
ID
II
1
10
11
1Z
11
It
15
16
17
11
l»
20
21
26
2
5
n
11
It
17
20
23
11
3
6
9
12
15
It
21
2t
27
10
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
f5
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
76
76
76
76
76
76
76
76
76
76
FROM tP» L«8
• NO D*TI
INFLUENT P1ND1 PON02
0.4 ID ND
0.2 NO ND
0.2 <.l c.|
O.t NO NO
c.l ND ND
0.2 <.l c.l
0.1 NO NO
< . 1
0.9
0.7
0.2
O.S
0.3
O.S
0.3
0.2
0.3
c.l
1.1
0.1
0.1
0.3
0.2
ND
0.5
0.1
0.2
1.1
1.1
l.t
0.7
..1
0.5
c.l
c.l
c.l
ND
c.l
c.l
c.l
0.1
c.l
0.2
c.l
c.l
c.l
c.l
C.I
c. 1
c.l
c.l
c. 1
O.I
c.l
c. 1
0.2
c.t
O.t
0.2
O.I
0.3
0.1
c.l
0.2
0.3
0.)
O.I
O.Z
0.5
O.t
O.t
0.5^
O.t
O.t
0.1
c.l
c. t
O.t
0.2
0.2
O.I
O.Z
c.t
c.l
O.I
0.1
1.0
0.1
0.7
1.2
O.S
c.l
c.t
c.l
0.7
1.0
1.2
0.2
O.I
c.l
NO
ID ND
c.l c.l
ND ND
ND ND
<• 1 c.l
NO NO
ND ND
c.t c.l
i| D ND
ND NO
<• t c.t
NO ND
10 ND
O.t O.t
NO NO
NO NO
10 NO
ID NO
ID NO
c.
C.
C.
c.
c.
c.
c.
<•
c.
c.
1
c.
c.
c.
0.
c.
c.
c.
<•
c.
c.l
c.l
c.l
c.l
c.l
c. 1
c.l
c. 1
c.l
c.l
ND
c. 1
c. 1
c. 1
0.1
c.l
c.l
c.l
c.l
c.l
c.l c.l
c.l c.l
10 ND
10 NO
c.l c.l
NO NO
NO NO
C.l C.I
10 NO
10 NO
<*! c. 1
ID MO
NO NO
t. t O.I
10 NO
10 NO
c.l c.l
10 ND
10 NO
c.l c.i
10 NO
NO NO
0.2 c.l
0.1 c.l
c.l c.l
0.1 c.l
0.
0.
c(
c.
c.
c.
c.
c.
c.
0.
0.
0.
0.
c.
c.
c.
c. 1
C.l
C. I
.1
.1
.1
.1
.1
.1
.1
.1
.1
0.1
c. 1
c.l
c.l
c.l c.i
c.l c.l
c.l <• 1
c.l c.i
NO ND
PONDJ
NO
NO
NO
10
NO
ND
c.l
NO
NO
<•!
NO
ND
c.t
NO
NO
*.l
ND
ND
O.t
ND
ND
NO
ND
NO
c.l
C.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
NO
0.2
c.l
0.2
0.1
c.l
c.l
c.l
c.l
c.l
c.l
c.l
ND
NO
c.l
NO
ND
c.l
NO
NO
c.l
NO
MO
c.l
NO
ND
c.l
NO
NO
c.l
W
NO
c.l
<.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
O.t
O.I
O.t
O.t
O.I
O.I
O.t
O.t
c.l
c.l
c.l
c.t
c.l
NO
PONDt
NO
NO
c.t
NO
NO
c.l
NO
NO
c.l
NO
ND
c.l
NO
NO
c.l
NO
NO
c.l
ND
ND
0.1
NO
ND
ND
ND
NO
<.l
c.l
< .
<.
c.
c.
c.
c.
<•
c.
N
1.
c.
0.
0.
c.
.
.1
.1
.1
.1
.1
ND
NO
c.l
NO
• 0
c.l
•0
NO
c.l
NO
NO
c.l
NO
ND
c.l
NO
DO
<.l
NO
NO
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
O.I
c.l
c.l
c.l
c.l
0.1
0.1
0.1
0.1
0.1
0.1
c.t
c.l
c.l
c.l
NO
POND 5
ND
ND
NO
ND
c.l
ND
ND
c.l
NO
ND
ND
ND
NO
NO
ND
ND
0.1
ND
ND
NO
ND
NO
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
c.l
NO
t.r
c.l
0.1
0.1
c.l
c.l
c.l
c.l
c.l
c.l
c.l
NO
ND
c.l
NO
NO
c.l
NO
• NO
«.l
NO
ND
O.I
NO
ND
c.l
ND
ND
c.l
ND
NO
c.l
0.1
c.l
C.l
C.l
c.l
c.l
C.l
c.l
c.l
c.l
c.l
c.l
c.l
c.t
c.l
c.l
c.l
c.l
NO
POND6
NO
NO
ND
ND
NO
ND
NO
NO
<.l
NO
NO
ND
NO
c.l
NO
ND
0.1
NO
NO
NO
NO
NO
ND
ND
ND
NO
NO
NO
NO
NO
O.I
NO
NO
ND
ND
c.l
ND
NO
EFFIUCH
<.l
<.l
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
NO
c.l
c.l
<,
0.
0.1
NO
0.1
o'.i
0.1
<.t
c.l
0.1
c.l
c.l
ell
c.l
c.l
0.1
c.t
NO
<.l
c.l
c.l
c.l
ND
140
-------
Table B-15.
Total Kjeldahl Nitrogen (TKN) performance of
Stabilization Lagoon System.
the Corinne Waste
IKN CMt/l)
NS - NO i««»lt. NO
HO
Z
Z
Z
2
2
Z
2
Z
Z
i
2
Z
Z
Z
Z
2
Z
Z
2
Z
Z
Z
2
3
3
3
04
2J
Z t
Z5
26
zr
2*
21
11
11
1
?
J
t
5
6
7
I
9
1 3
11
IZ
1!
It
15
If,
11
19
20
Zl
22
Z7
Zl
S
t
*
J 7
15
19
21
2t
Zl
31
2
5
.8
11
It
15
16
|F
18
19
23
Zl
zz
ZI
24
25
Zt
Z7
28
Z9
30
1
t
s
4
5
6
F
9
9
10
11
12
1!
It
It
Zt
Zt
29
11
5
t
9
IZ
15
11
Zt
Zt
27
»»
3
t
9
12
15
It
17
11
tR
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
/3
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
7*
75
75
75
71
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
FRON CP« LIJ
NO 0.!
11. t 7- •••
8.3 7. 7.8
9. 7. .3
9.4
9.1
8.4
8.4
l.t
9.2
8.9
9.4
8.0
(.9
7.1
7.6
6.4
IZ. ID. .8 1.8
10. 7. .4
10. '• -7
IZ. 7. .8
6.»
5.6
t.O
10. 7. .Z 6-0
8. 7. .Z
e.t 7. .2
8.1 7. .2
IZ.Z »• ••
11. 1 It. .7
IZ.Z 7. .0
IZ.Z 3.
27.5 3. Z.
Zt.t 7. J.
19.4 7. 4.
1*.* 7. .
17.1 t. .9
8.1 4. .t
9.9 5.9 .3
10.5 4.S .4
15.2 t.7 .2
10.0 7.7 .9
5.2 t.t .1
9.5 9.1 .9
4.5 I.Z .6
9.Z t.t .t
lt.0 7.1 .9
9.5 t.) .8
6.5 3.5 Z.I
J.3 3.1 2.*
9.1 t.O 2.9
Z.I t.t 3.0
5.1 5.5 4.0
t.l 7.1 4.5
8.5 7.9 5.8
8.4 7.1 5.3
5.5
1.7
S.J
.1
.4
.8
.7
.5
.0
.4
.7
4.1
4.0
3.1
4.7
t.O
5.1
4.8
5.3
5.7
4.4
t.9
4.2
t.5
5.1
3.9
3.3
3.3
3.1
1.3
3.1
POND* FON05
NS NO
NS t.t
7.5 NS
6.1 5.0
5.8 NS
NS 5.8
NS 5.Z
t.l 5.t
6.3 5.5
7.5 5.8
8.7 5.9
10.5 0.1
t.t t.t
9.t 7.5
8.9 t.O
10.4 7.8
1.9 I.Z
IZ.Z IZ.t
8.4 t.t
8.7 6.3
7.9 5.9
7.9 7.0
1.
7.
6 .
8 •
8 •
1.
1.
8.
N
9 .
9.
10.
10.
10.
10.
13.
10.
9.
It.
9.
10.
10.
ti
11.
IZ.
11.
11.
t.
10.
5.
9.
t.
9.
7.
t.
9.
10.
10.
*.
11.
8.
a.
7.0
6.7
7.Z
s.z
t.7
t.l
t.9
6.7
7.Z
7.5
8.3
7.5
l.t
7.0
8.1
1Z.O
9.»
10.1
10. 0
10.3
9.4
to. i
NO
9.6
10. t
17.7
tt.O
t.O
8.9
t.t
10. t
1.0
.1
.4
.«
.1
.3
.Z
.4
.8
t.
.2 6.
.9 7.
.7 t.
.3 t.
.3 5.6
4.9
5. 4.7
7. 5.6
t. 5.5
7. t.t
t. t.O
5. 5.7
5. 4.7
3. t.O
4. 2.
3. 2.
J. Z.
3. I.
1. 3.
t.t 4.
t.9 Z.3
t.O 5.5
I.Z 6.7
5.1 4.8
5.2 5.2
t.7 5.2
l.t 5,0
4.9 t.7
4.7 4.4
4.4 4.1
4.2 4.2
l.t 4.1
l.t 3.9
2.5 2.9
1.0 2.9
2.8 2.8
2.7 Z.5
PON06
3.2
NS
t.O
1.6
NS
t.O
NS
NS
t.l
5.0
t.9
5.1
3.5
t.t
5.2
5.5
5.9
9.7
5.4
4.6
t.t
5.1
t.l
4.8
4.3
4.1
4.1
1.3
2.5
.5
.9
.}
.Z
.4
.7
.3
.3
.9
.9
10.
8.
9.
10.
N
9.
9.
10.
9.
8.
8.
8.
7.7
7.5
7.1
8.4
7.1
.5
.2
.5
.t
.4
.1
.1
.8
t.O
3.1
4.7
4.1
4.6
4.0
i.3
4.4
5.1
t.t
4.6
4.9
3.1
1.7
2.
2.
2.
Z.
2.
2.
I.
4.
4.
3.
4.
4.
4.
4.
4.2
3.5
1.
2.
2.
2.
1.
t.
EFFLUENT
2.0
Z.
3.
Z.
Z.
3.
t.
N
1.
I.
Z.
Z.
Z.
Z.
Z.
Z.
3.
tt.
Z.
Z.
Z.
Z.
Z.
2.
Z.
1.
1.
0.
t.
Z.
2.
t.
t.
t.
5.
5.
t.
t.
5.
5.
6.
5.
3.
8.
NO
1.6
.Z
.t
.4
.1
.5
.9
.5
.4
.t
.2
.t
.8
4.0
7.1
5.2
5.3
4.3
4.7
4.9
5.5
4.2
3.9
5.t
4.2
l.t
3.0
3.7
4.9
J.6
4.1
4.2
3.0
4.3
3.9
3.8
2.7
2.4
2.9
1.2
3.6
3.8
3.2
1.7
4.1
4.1
4.0
3.4
3.2
J.t
4.0
Z.7
2.3
2.8
2.4
l.t
141
-------
Table B-15. (Continued).
KN
S
0
7
7
7
7
7
7
7
7
7
7
7
7
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
!
2
2
5
I
I
2
!
. NO
at
i*
20
21
22
21
24
25
26
27
28
29
19
11
1
2
S
9
19
11
12
1!
14
17
29
21
26
29
1
4
7
10
1!
16
19
22
25
28
1
4
7
19
11
16
29
21
22
25
24
25
26
27
28
29
19
31
I
2
to
11
12
11
14
15
16
17
18
19
29
21
26
2
5
8
11
14
17
20
21
31
1
6
•
12
15
18
21
24
27
10
itHPLEt NO
-------
APPENDIX C
ALGAL GENERA IDENTIFIED IN THE CORINNE
WASTE STABILIZATION LAGOON SYSTEM
143
-------
Table C-l. Algal count by genera identified in the Corinne Waste Stabilization Lagoon System.
»LG»L
PER ML. •• CCRIfct'E. UT»H NG-156
US = NO i'MPLE
DATE l/>3/75
GEISHA
OSCILLATJUU
I.LOECAPS4
dlCSOCmiS
SCEKcDCSMUS I
ANKISTROOiSMUS-1'
PHACOTUS
PLANKTJSPHAEftH
CHL»Hr34MOMi
I8KCHLL140NIS
CKL1SELLA
NAVICUL4
tUGLENOns
TOTAL COllNT. ALL urNEhA
OAT£ 1/'V75
GENrrtA
OSCILLATJRH
&L&ECAPSA
HiC'ocrsns
SCENEOFSMiiS 1
PKACJTUS
PLANKTDSPHAEfcU
CHL*HTD«10MS
CNLOSELLA
LUGLENJIOS
TOTAL COUNT. ALL jr«E*A
UATE if «/T5
GENtftA
U5CILHTORM
rtlCRQCrSTIS
SCENiOESIUS i
r*H«C3Tut
PLANKTOSPHAtRI A
CNL««r3A*QN«i
CMLOKELLA
NAVICUH
LUGLENOTJj
TOTAL COUNT. ALL i",>iE»A
OAT; i/n/75
•JENEfrA
OSCILLATJ3IA
iiceacmis
$CENEOE»*U» I
PHACCTUS ...
PLANHTQIPHAtM*
CNLAMYOAtONAS
tUGLtNJI JS
TOTAL cauNT. ALL JrNEf>A
DATc 2/l'/75
GENEVA
USCILLATJRII
-•••oncmis
HO = NO DAI A
RUN 1
INFLUENT
4572
0
2223
14t>l
1080
G
3
0
0
3
1
3
9534
RUN 7
INFLUENT
9*0
3
1«36
0
0
j
0
0
0
2629
fUN 14
INFLUENT
b>9
3^64
76
0
0
3
0
0
0
40 J 9
HUN ti
INFLUENT
4u6
11-.3
1.3?
0
0
481
0
2464
RON to
INFLUENT
5*7
1J72
PQNOl
4128
0
3620
U0*7
0
42926
0
953
0636
953
0
2985
74295
PJNOl
889
254
3937
22733
61960
0
1935
9
3937
94615
PJNOl
3175
34»9
13287
S2324
0
1524
0
0
762
71501
PJNOl
5588
1042
4572
U446
0
j'>3ft
1Z70
31750
PJNOl
445
4>53
INFLUENT
4572
0
2223
14t>l
IOBO
G
3
0
0
3
1
a
9534
PONDl
4128
0
1629
U0»7
0
42926
0
953
0636
953
0
2985
74Z95
PONOZ
9315
0
6541
16356
0
9996
0
6223
2985
69*
0
4763
56706
POND 3
5398
0
3429
11U3
64
22098
53J4
1778
0
953
191
9716
60071
PON04
3556
445
2350
4128
64
11621
0
127
0
127
0
5525
27940
PONDS
2146
432
610
1207
89
749
0
38
0
0
0
419
5690
PON06
1524
3
361
165
0
762
o
140
0
305
25
671
3975
EFFLUENT
1308
0
533
0
0
305
0
102
0
229
0
546
3023
INFLUENT
9*0
3
1«36
0
0
j
0
0
0
2629
PJNOl
889
254
3937
22733
61960
0
1935
9
3937
94615
POND2
381
0
889
12954
13081
0
0
0
2413
29718
POND3
2032
0
1016
4445
17653
0
3048
a
361
28575
POND4
1334
191
1080
445
6668
1143
762
0
1080
12700
PONDS
669
0
673
546
3404
0
394
64
1168
6969
POND 6
483
51
3010
267
1511
0
165
51
1562
7 ICO
EFFLUENT
1232
9
470
0
254
0
1*1
229
1105
3460
INFLUENT
b>9
3^64
76
0
0
3
0
0
0
4039
HUN ti
INFLUENT
4u6
11-.3
1.3?
0
0
481
0
2464
RON 2b
INFLUENT
5*7
1J72
PJNOl
3175
34»9
13287
S2324
0
1524
0
0
762
71501
PJNOl
5588
1042
4572
U446
0
j'>3ft
1Z70
3l7iO
PJNOl
445
4>53
PON02
4191
6996
27432
65024
0
1143
0
0
819
114775
"ON02
3332
3556
5342
35052
0
1778
1778
51 308
PON02
1016
635
PON03
381
1995
3175
62992
C
1778
0
0
1905
72136
PON03
254
1778
3302
2794
0
5083
254
13462
PON03
1524
1143
POH04
3556
1461
4509
37592
0
699
C
0
1397
49213
PON04
3429
2540
4953
6985
0
1397
381
19685
PON04
445
381
PONDS
1003
521
2146
15138
2121
724
64
0
914
22631
PON05
4626
2159
1143
4699
19b5
1524
2032
18288
PON05
2731
254
PON06
50*
1435
64
11461
SCO
521
0
76
1715
1659*
PON06
1778
1143
254
1397
8e9
1270
254
6*05
PON06
1613
330
EFFLUENT
191
368
q
1105
1410
470
0
38
76
3657
EFFLUENT
55»
152
0
1232
1295
2451
330
6020
EFFLUENT
800
767
-------
Table C-l. Continued.
iCENcOLSlUS I
PHACOTU1
CNL««T JM3MS.
CHLORELL4
N»VICOL*
LUGLENOTJS
TOT»l COUNT. ALL ar
0*f£ 2/iV75
uSCULATJ/75
JSCHLATJRH
11C«iiCr>TIi
iCCNFOfiMUS I
r'HACOTUS
CHL»ir J«10NtS
LUCLENU'JS
TCIAL COUNT. ALL
DAT; 3/lJ/7S
JSCILLATjait
XICHiCIiMS
sCEMiOtS'lilS I
INFLUENT
914
105*
114
0
127
ft?
0
13
i)
1
0
2311
UN 37
INFLUL1T
1245
826
25
47J
S9
139
38
0
5
2741
PJItDl
2591
914
5904
3023
117856
2261
0
0
0
0
1626
133274
P3NOI
4001
1118
1588
3937
45530
2540
0
0
1969
7J739
PONDJ
2870
869
15316
1702
73965
1753
0
0
0
0
6248
1)2743
PON02
3132
12256
5144
5017
47171
889
0
0
1461
75416
PON03
4S21
4902
67<}6
9754
16051
SOS
9
110
0
0
1471
44247
PQND3
1493
6033
15748
3874
69596
1905
445
0
1969
103061
PON04
1905
412
49U2
6971
15718
1778
0
0
0
51
660
51537
PON04
1270
10185
13411
13618
85750
1930
76
0
2007
128448
PONDS
1194
1930
1651
737
14605
330
0
76
0
102
940
21565
PONDS
3866
5466
6096
7722
56083
1194
178
0
2235
82880
-UGLLNOTOS
TOTAl CiJU.\T. »'.L J
39
INFLUENT
940
it
521
J
38
0
3
9
2375
POND1
1112
10398
8255
11875
2096
3048
445
0
884
47316
PQN02
5906
12827
16955
8119
3429
181
0
0
191
48006
PON01
4951
10541
29020
10922
4001
699
191
0
254
60579
POND4
4318
10986
15304
6096
5779
2096
64
0
1197
4603d
PON05
1429
12129
16701
2667
I4S44
1905
254
0
3620
75248
POND6
10135
2464
2057
11502
7518
181
26
0
0
0
635
34798
PON06
5017
3429
6147
3023
19827
2845
64
0
4674
65024
EFFLUENT
7493
16CO
3023
9SSO
S664
635
0
51
102
0
1092
29210
EFFLUENT
6121
2*51
3429
3861
2629
597
51
5341
1638
25819
P01U6
40«9
6248
16942
135D9
19995
1905
152
4S3
5064
81467
LFFLCENT
2768
1994
11265
1791
7226
SCO
953
37592
1588
65976
-------
Table C-l. Continued.
DATE
3/24/75
RUM 41
SENCfiA
USCILLATQRIA
iCENLDESIUS I
PtANlUCi'HA'CMA
PHACCTU*
HEPTSHO'COH
SGF.N£DLS*US II
NAVICUL*
STE'NANIimCUS
CUGLENOIOS
TOTAL COUNT. ALL
DATE 4/
NT
7
5
0
u
0
li
0
3
3
0
0
3
2
PJND1
3747
10033
5461
0
5842
1080
1397
0
0
0
0
318
27877
POND2
12573
31052
42736
1397
21654
3112
2350
1016
2159
318
0
0
118364
PON03
7176
18415
103632
2731
12129
4826
1969
8128
6096
445
0
0
165545
POND4
4509
16955
82677
2223
14669
1778
3366
1016
508
191
0
0
127889
PONDS
8001
13843
50356
699
2858
79756
4001
2032
254
127
0
2159
164084
POND6
4699
2413
18542
203
12344
12522
2337
0
3
76
1600
1295
56032
EFFLUENT
3797
1067
468b
0
2197
5791
724
0
0
0
112141
2350
132747
-V75
«IC°OC*5TIS
PHACQTUJ
PE3I4iT'»'JM
EUGLENUtJS
TOTAL COim. »LL -i
OA^t 4/
USCKL4TJRI4
LUENT
2J1 -9
2S61
a
0
»99
3
J
3
3
0
0
~J
** 99
P3N01
2646
l?052
21654
0
11774
3234
0
3
£842
36554
0
90
.5354
PON02
4998
19894
39786
98
8036
147.0
8S2
1764
2254
53*48
0
0
116332
POKD3
3724
13818
85456
1666
9468
1960
980
3136
1862
47236
0
196
169442
PON04
3234
11074
145824
686
12446
3234
490
10*76
2450
59192
0
882
25u488
PON05
4802
23716
134848
1470
6566
39298
1078
6272
1274
83«a6
0
1960
335270
PON06
6664
9114
92512
1176
4606
40670
3430
0
2450
81536
3136
4214
2495C8
EFFLUENT
9212
11956
40768
0
509b
12433
882
0
0
208740
1568
6566
297626
PHICOIUi
CHUMfOAMONAi
iCEKEOE^US II
NAVICULt
PECIASHJM
EUGLENOtiS
TOTAL COUNT, ALL icNE*A
INFLUENT
H\J 3
24 ia
0
J
2/4
3
0
3
0
0
0
J
4526
P3NU1
9376
3°80
45472
2940
7448
3724
5684
O
2J1SB
23*904
0
vl
SI/316
•ONQZ
1372
11956
95649
392
6272
2156
iS6e
784
1)428
1M 304
0
0
2*9*80
PONQ3
15680
38220
214816
980
3526
7056
1372
1568
10780
19070S
0
a
484708
PON04
12740
20188
244608
784
17444
21168
1960
5488
3332
84672
0
1372
413756
PONDS
6469
17052
341824
196
2156
14308
980
1568
1960
144256
0
784
531552
PON06
4900
148*6
253624
196
45i/8
52V2
3332
11/6
2156
106624
3136
6861)
4067UO
EFFLltNT
3336
153E6
142312
0
4602
4018
294
0
98
210112
1568
2646
732550
HUN
GENtRA
USCILLATJRIA
NIC'DCrSTIS
I
PMACOTUS
N»VICUL«
STEPHANTOISCUS
EUGLENCTJS
tNT
24
07
a
0
92
0
o
3
57
k\t
PJN01
0
0
175616
0
233064
18816
6272
12544
213248
I)
PON02
627.2
6272
3'0048
3
432768
25088
12544
31360
451584
0
POND3
0
18816
3C1056
6272
0
15680
1R816
15680
145C40
0
PON04
0
31360
420224
0
0
6272
0
18816
163072
0
PON05
0
65856
297920
0
75264
59584
40768
3136
31360
0
PON06
0
62/2
338668
0
62/2
37632
0
3136
131712
0
EFFLUENT
0
439C4
126576
0
15680
6272
3136
0
134848
U
-------
Table C-l. Continued.
TOTAL COUNT, ALC urNEIiA
OUt 4/j«/75
&S4S6C
1315936
521360
639744
523888
523712
332462
PUN 5«
OSCILLATJRIA
*IC»OCYSTIS
»CE«DE*«US I
PLANKTOSPHAtmA
KIRCHNE7IELLA
PHACUTUS
CHL«MD»13N»S
iCENEDfSrfUS II
NAVTCUL*
SIEPHAM13ISCUS
£UGL£NOI3S
TOTAL CUUSt. *lt J
1/75
OSCILLATOR!*
HIC"CCTSIIS
AHIU:>Tmj£$'»US»r
SCENEOES1US I
KIFCrtNEtlELLA
PNACuIOi
l,ML«1TO»10N»i
»C£Nc.)£-»»Ji II
lAVICULt
EUGlENjm
TOTAL COUNT, ALL
DATE s/
JSCILLATJRIA
»oi vox
ACTI.IAINA3TVUM
ANMSTRIDEStuS,*
SCENEDESHUJ I
RlltCrtll'itLLA
PMCdTOi
t^US II
NAVICUL*
STEPHAMDIiCUS
UCCriTIS
iUGLCNOtQS
TOTAt CJliNT. ALL J
uCNCnA
INFLUENT
1JCO
2303
0
3
176
0
0
0
0
3
.}
0
3175
RUN 65
INFLUENT
2117
1646
0
t
V
0
0
314
J
C
1176
i)
13132
RUN 72
INFLUlNT
2901
j
3
3254
0
J
id
0
d
j
274
J
j
153
3
j
6660
R'JN '0
INFLULtT
JU6
3
162
2352
i
PONDl
2940
5480
176403
1372
1604
0
Hit
7446
0
2548
239512
2352
457660
POND I
a?72
4
3
410616
137984
0
31360
6272
0
12544
62720
6272
»74240
PQNOl
3
0
0
0
0
4436
13S4160
393432
»ioe
18416
23520
0
14112
263424
3
23520
2116800
FGND1
7A40
0
M03
441*8
9
•ON02
254*
8820
363640
588
3136
2940
6076
3332
0
960
313600
588
733248
PON02
0
2352
0
618496
171696
0
21166
2352
0
4704
12320
»4i)8
11121*6
PON02
4734
0
0
9408
0
9436
0
103486
4704
9408
32928
0
0
1034*8
0
14112
291648
PON02
6664
0
5096
12544
9
PONDS
4900
19992
509600
1960
6468
5466
15680
1566
7056
3332
301056
4706
881604
PON03
0
4704
2352
1430016
176400
0
14112
2352
2352
4734
115248
2352
1754592
PON03
3136
3136
0
6272
0
0
401406
166206
3136
9408
0
0
0
6*992
0
6272
667968
PON03
14112
0
1176
2744
1566
PON04
7356
3*20
627200
2352
3332
0
12544
0
1568
9408
147392
2744
817516
PON04
6272
31360
6Z72
1292332
116032
0
9408
6Z7Z
0
18816
153664
0
1640128
PON04
3136
3136
0
43904
0
3139
3010560
141120
3136
9408
6272
6Z72
12544
50176
0
1Z544
3305344
P0104
15680
0
2352
10976
0
PONDS
6076
1764
608364
6466
4960
0
18620
5292
3136
6272
232064
9«0
693956
PON05
0
21952
0
3612672
»4t/3
0
627Z
0
0
94b8
34496
1568
3695776
PONDS
6272
0
0
12544
G
3139
926256
12544
3136
3136
9406
9408
12544
15660
0
6272
1^22336
PONDS
32144
0
0
7056
0
PONU6
6272
25068
326144
1764
54C8
0
6076
5666
0
6036
108192
392
493136
POND6
6Z72
25068
0
1304576
0
3136
0
3136
0
15680
12544
0
1370432
PONU6
12544
0
0
31360
3
0
24147Z
47U4
764
764
7640
0
16464
3920
3
764
320656
PON06
52526
0
3136
13326
1566
EFFLUENT
14896
17352
539392
0
9212
764
49bO
2156
0
4116
451584
5Z92
1049384
EFFLUENT
3136
53312
0
382592
34496
0
0
9406
0
3136
21952
3136
511166
EFFLUENT
2352
784
1566
294CO
764
0
1223G4
0
3
3920
3136
2352
3136
1568
16464
0
187768
EFFLUENT
8232
1176
Z352
7056
392
-------
Table C-l. Continued.
-Cs
00
AHKISTRODES1US.C
jCENEOESXUa I
CtCLOTELLA
PLANM JSPHAER14
KlRCHNE'UELLA
PHACOTUS
SCENEOES1US It
NAVtCUL*
STE^HAHOOISCUS
CUGUNOIOS
TOTAL .COUNT. At I
DATE 5/2V75
GEh'RA
OSCILLATOR!*
CHLCRoaurfm
AKKISTfiUUESNUS.*
CtCLDTELLA
RHCDOHQIAS
PIUCOTU-;
CHLQRELLA
CHLANTOlKONtS
iCENEOESHUS It
KAVICUL*
iTEPMANIOlSCUS
QOCfSTiS
EUGLENOtOS
IOT4L COUNT. ALL
DATE 5/2V75
uENEIU
OSCILLATOR*
CHLOROeurRTS
ACTINAIHtSTRUN
ANKISTRBOESIUS'
»CE«£DE?HUS I
PHUCOTUS
CHLORELH
CHLAHtUAIOHAi
SCENEDES«U5 I!
NArrcut.4
4TEPHANOOISCUS
EUGLENOIOi
CHAFAC1UH
TDIU. COUNT. ALL
OAfE 6/ V7S
0
23128
39Z
10976
9
0
764
0
27*4
4704
3136
7B4
7095Z
1176
275960
0
18424
W2
392
392
784
8624
5096
3
3136
3339B4
1568
200744
0
13328
o
784
784
. 0
18816
0
21952
54B8
Z6499Z
4704
1066Z4
0
0
0
0
392
0
1803Z
6Z72
1568
0
176792
7»4
2289*0
0
0
0
4764
23iZ
0
1411?
10192
0
3136
3J47b«
0
139552
0
0
0
1960
2352
0
7056
5880
0
392
176403
INFLULNT
5410
784
41SS
J
0
3
0
0
3
a
0
a
a
a
0
a
0
0
10349
POtlOi
5488
9408
2352
0
0
205840
0
95648
784
7C4
1568
784
0
1568
2352
3920
23504
5488
554364
PQND2
1586
940«
6272
7B4
0
135632
0
8624
1568
784
3
0
784
1568
3*20
39ZO
0
704
17565Z
PON03
941
B62
3528
0
1098
5645
0
235
157
0
114
392
0
470
233
0
J
7S
13955
POM04
470
0
0
0
3136
8155
470
627
0
0
1882
0
0
157
314
0
a
0
15Z08
PONDS
549
470
4155
0
1332
1254
70
0
0
0
78
0
0
0
156
0
0
0
0472
POND*
67424
6272
25060
0
3136
40760
0
0
0
0
4704
0
0
0
6272
12544
0
4704
1709H
EFFLUENT
37632
7840
32926
1566
7840
277536
0
0
1568
0
6J72
3136
0
3136
3136
17249
0
1568
4014C8
INFLUENT
1646
157
let. 5
0
0
0
0
!>
J
j
7 *
0
J
0
0
0
0
0
0
3684
f iNDl
3136
0
4704
1568
784
595156
0
0
1568
784
1J976
0
15«6
784
0
6*28*
2352
J
0
467666
PON02
SZ72
4704
55200
784
3*20
112096
0
0
1568
0
5488
0
7356
4704
0
39200
3136
0
0
225008
POND 3
549
0
3016
9
110
118
0
0
39
0
39
0
0
0
549
0
0
784
0
4426
PON04
96
0
1137
0
176
941
116
20
0
0
0
20
20
0
0
0
0
0
C
2530
PON05
0
0
745
0
78
255
90
0
0
0
0
0
59
39
0
0
0
0
0
1274
PON06
03320
0
14BV6
i)
704
704
0
0
1560
7840
14112
0
0
0
0
0
0
0
a
123304
EFFLUENT
159936
0
13326
784
2352
30576
0
0
1566
5488
3920
0
764
764
0
0
0
0
1568
221872
RUN
CENEPA
PJN01
PON05
P0.104
PONDS
POMD6
EFFLUENT
-------
Table C-l. Continued.
USCILLATORIA
CNLOMOailTRVS
MICOQCTSriS
ACTINAINASTRUH
ANKI$TK10ES>*20
PON01
784
0
3136
0
0
871808
0
0
0
784
784
0
784
0
0
0
880432
7840
0
4704
0
3116
122104
0
0
784
764
4704
3136
3136
1561
764
0
784
153664
POND2
0
784
4704
0
3136
232272
0
0
0
3136
1566
1568
0
0
0
0
39
0
0
217207
PON02
0
0
1568
784
1568
1091520
784
0
0
1568
3136
0
1568
0
0
0
1014496
20
39
549
0
255
549
137
0
0
20
59
0
0
20
20
196
0
1664
PON01
0
0
627
0
1098
157
118
118
0
118
196
0
0
0
0
0
0
0
0
2432
POND 3
0
0
90 Z
0
157
126224
235
0
39
0
0
9
118
0
54*
0
128224
0
0
647
0
20
0
59
0
0
20
39
0
tie
o
o
157
0
1060
PON04
20
0
608
20
98
78
137
20
0
39
0
0
98
0
0
20
137
59
0
1334
PON04
39
39
1098
0
118
157
118
529
0
78
0
0
118
0
0
0
229*
39
}
2979
0
78
1215
0
0
0
79
0
0
78
941
0
0
0
5408
PONDS
314
0
8938
0
0
1568
0
0
0
0
0
941
1411
0
0
79
0
0
1568
14819
PONDS
78
78
2901
0
0
392
118
SS3
0
0
0
0
470
0
0
0
4390
274
39
0
78
8iJ
78
392
0
78
274
0
0
470
0
0
0
4662
PON06
0
0
353
0
78
1529
196
1498
J
392
0
78
78
0
0
0
3802
39
0
6C8
0
76
473
20
39
0
20
20
59
0
20
0
0
0
1373
POND6
0
0
588
0
0
235
0
0
0
0
0
0
157
0
314
0
1137
0
314
2745
CFFLIENT
39
0
196
0
0
510
0
0
0
0
C
C
3377
0
745
0
1098
0
39
5704
EFFLUENT
20
0
706
0
78
0
0
1960
0
235
0
0
3V
0
392
157
3744
-------
Table C-l. Continued.
DATE 6/2A//5
GENERA
OSCILLAT3R1A
CNLOROaUTRVS
NICROCTSTIS
AttTINAlNASTRUM
RUN 91
SCtSEOESHUS I
CtCLOTELLA
SILENASTHUM
PNACOTUS
CHL3RELLA
CHLANtDAXQNAS
FRANCE U
SCENEDES1US II
NAUtCULA
PIQIASTtJM
CHYPTOHlNAS
£ONPHON?lU
TOTAL COUNT. ALL JrNEfA
DATE II V75
GENEM
OSCILLATJfflA
CNLOR09'JT*TS
HlCROCYSTlS
ACTINAINASTPUH
AHKISTRlOESMUS.r
iCENEOESIUS t
CICLOTELLA
INFLUENT
4
0
11760
0
0
0
0
0
9
0
0
a
0
0
0
9
o
9
11760
RUN »4
PJND1
0
3136
3136
784
784
746368
2352
0
0
3920
0
£352
6272
6272
0
1568
2352
0
779295
PONOZ
0
0
1568
0
0
928256
784
1568
1568
3920
5488
0
3116
627-2
3
0
0
0
952560
PON03
98
0
98
0
216
1529
39
0
0
118
39
0
0
0
0
0
0
0
2137
POND4
137
0
153
0
20
20
98
0
0
20
0
0
0
59
314
20
235
0
1276
PONDS
0
0
176
0
0
0
0
0
0
20
0
0
0
20
0
20
725
59
1020
PON 06
0
0
235
0
0
314
0
0
0
0
9
0
9
0
0
137
1411
78
2175
EFFLUENT
0
0
431
0
0
118
0
0
0
39
0
0
0
20
0
255
1235
59
2157
PHACOTUS
CHLCHELLA
CHLAHY3AMONAS
SCENEOESH'JS II
MVICULA
STEPHANODISCUS
C*YPIO«11AS
HEUBARIA
TOTAL COUNT* ALL irN£hA
DATE 7/IV75
CEHExA
OSCILLATJiUA
INFLUENT
2979
g
862
0
J
0
0
0
3
39
0
0
0
3
0
0
c
0
3883
UN 9 a
PJND1
13976
0
3136
0
784
443920
0
0
784
3488
3
7840
12544
78*
1568
9
0
0
53/824
PON02
13328
0
2352
784
0
236944
0
0
784
2352
0
6272
8624
U
1568
0
3
1568
324576
PONDS
20
0
196
59
9
186
255
0
10
49
0
0
29
0
59
29
0
0
89?
POND4
0
39
235
0
0
157
118
39
0
0
0
0
39
0
9486
1176
0
0
11271
PONDS
0
0
274
0
0
0
78
118
0
0
0
0
0
0
9957
745
0
0
11172
PONDS
0
0
1058
0
0
78
39
3
9
20
0
0
29
0
1/6
372
0
0
1763
ACTINA1-4AS1KUK
ANKISTKOOESHUS
aCENEOESIUS I
CTCLOItLuA
SELENASTRUM
PNACQTUS
CHLQHElLA
CHLtMYO*NCN»i
iCENiOEStUS il
MAVICUL4
PBDIAST^JM
EFFLUENT
0
0
235
il
0
118
39
0
0
20
20
0
0
0
196
568
510
0
1706
INFLUENT
2352
1
-------
Table C-l. Continued.
tUGLENOIDS
GEMINELLA
CRVPIOMONAS
CHLOrtOG 1tU«
UNKNOHN FILAME.4T
TOTAL COUNT* ALL icNI»»
DATE 7/i»/7«
GENEVA
OSCILL*TQRI«
H1CROCVSTIS
SCEN£D£**US I
CVCLOTCLLA
FHACOTU5
CHLtWELLA
CNLAMYOMON4S
SCEKEDESHJS II
NAVICUL4
OOCY&TIS
iCHROEDCitlA
6IKINELLA
GONPHONtillA
SPIRULm
UhKNOriN FILANExT
C1S-ARIUH
TOTAL COUNT. ALL
DATE 7/JV75
GENERA
OSCILLATO»I»
HlC'OCfSTIS
SCEftEDESNUS I
CTCLOTCLLA
CNLSWELLA
PHACOTUS
SCENEOtSHUS II
NAVICULA
lUGLENOnS
SCHROEDEi»lA
CRTPTOH1NAS
tLOEOTHCCE
CYH9ELL*
UhKftOMN f ILANENT
COSMARI'J*
CHROOC3CCUS
LAGFRHET4IA
TOTAL COU*T, ALL £?NCftA
DAT£ «
QENCRA
bSCILLATORI*
NIC«OCrSTIS
ACTINAI1AST1UM
aOENEOESitUS I
CfCLOTELLA
0
1S68
3
7140
0
7840
0
C5S4B
RUN 145
INFLUENT
2744
17444
0
1)2
0
0
0
0
3
J
0
0
S«8
9
0
0
0
9
21168
RUN Hi
INFLUENT
47b4
53)6
0
0
0
3
0
0
0
0
9
0
0
0
0
3
57624
0
67424
RUN 124
INFLUENT
3214
519
0
0
39
3136
784
0
2352
0
47)40
0
827904
PGN01
169344
131712
0
•2*928
0
3136
0
9406
25088
97216
0
0
0
9
0
9
9
0
1056832
PON01
25088
61992
1254409
9
0
9
25068
40768
12544
0
0
5J176
0
1477956
PON01
68992
84672
0
116B944
0
0
0
0
1566
' 0
9408
0
250096
POND?
156800
114846
627-2
479808
0
192
0
6272
6272
72128
0
0
0
0
4
0
0
0
662792
PON02
37612
9408
1099792
0
0
1136
25988
18816
9408
3136
9
0
296976
1566
1324960
PON02
99964
12544
0
1128960
1566
0
34
20
0
0
0
0
2019
POND 3
6664
23128
1960
22344
764
0
29792
0
5096
9016
1176
764
0
1176
0
0
0
0
138768
POMD1
0
9
9
9
9
PON03
7526*
6*288
9
1028608
3136
0
0
0
941
2352
0
5802
13484
PON04
0
2156
392
3920
0
4704
0
0
0
0
784
0
470*
5466
9
9
9
22549
PON04
39
118
1803
196
196
76
76
0
9
116
745
4399
9
9
9
9
9
78
9
7957
POND*
29
27*
39
2*79
157
0
78
0
588
78
0
196
5096
PONDS
39
392
0
0
20
0
0
0
0
0
9
39
0
192
59
0
921
0
1862
PON05
29
216
39
59
0
69
0
29
10
9
206
29
39
9
10
0
10
9
0
785
PON05
39
2999
0
9
157
0
68
0
372
69
a
o
973
0
2979
0
764
J
u
0
3959
POHC6
49
3b3
9
0
69
0
0
0
0
0
0
9
10
104
0
20
0
0
80S
EFFLUENT
20
99
0
39
0
0
0
0
0
0
0
98
0
9C2
20
0
0
20
1197
PON06
0
989
19
19
0
0
9
255
0
0
255
9
0
137
0
17*4
0
0
0
3449
EFFLUENT
10
78
49
2»
0
1C
0
49
0
0
39
0
0
0
0
0
0
0
0
264
PON 06
9
2S5
0
1098
39
EFFLUENT
0
13128
0
78
0
-------
Table C-l. Continued.
Ln
Ni
SILENASTRU*
PMACOTUS
CHLOftCLLA
CHLAXYDMONAS
SCENEOESHUS I
NAVICULA
PEDIftSTtUri
uOCYiTIS
LUGLENOtOS
SCHROEDERIA
CRYPTOH1NAS
GLOtOTHECE
UOHPHONEllA
CYMBELL*
CNLOROG NtU-4
SPIDULI1*
UNKNOMH FIUMEtT
COSMAR1UM
TOTAL COUNT. ALL irNE»'A
OATC a/l?/75
GEN£RA
OSCILLATJUU
HICR3CYSTIS
SCEHEDESIUS I
CtCLUTELLA
PNACOTUS
CHLORCLLA
CHLIMY3Art3N*S
MAVICUH
STEPHANHOISCUS
OOCYST.IS
EUGLENOIDS
SCHROEOEHIA
GtMlNELLA
GLCEOTHECE
CVM6CI.LI
TOTAL COUNT. ALL iTIiESA
DATE 8/^V75
3ENFK*
OSCILL4TURI4
5CEKEDESHUS I
CYCUTtLLA —
SELENASTRUN
PMACOTUS
CHLORELLA
CHL*NYOt<40NAS
SCENEOtSMJS II
NAVICULA
sTEPMANlOlSCUS
tUGLENOIDS
bChlNELLA
CHY'TO'ONAS
0
0
0
0
0
J
9
0
0
0
0
0
0
0
0
9
0
9
3763
RUN 1Z7
INFLUENT
Z410
0
1862
0
0
9
J
0
0
J
0
•f
1
i
9
0
0
0
6664
RUN 130
INFLUENT
Z156
823
0
9
0
0
3
0
3
0
j
0
0
39
0
3136
25068
0
0
3136
0
6272
18816
0
0
0
0
0
0
0
0
0
I
3136
831040
0
6272
3136
15680
0
2195Z
0
UoOOO
1ZS44
6272
0
0
0
0
0
0
1284.192
POND1
112896
153664
?207744
0
0
9408
0
25988
18316
4J768
3136
25988
0
0
0
0
0
3156
6Z7.2
12544
14112
0
0
3116
4704
0
4TQ4
0
0
0
0
0
0
1262624
PON02
32928
28 22 4
0
Z9Z240
0
0
1568
7840
0
4704
0
0
6272
0
0
0
0
1
0
0
363776
PONOZ
47040
12857.6
1905120
g
0
0
3136
0
?1952
18816
3136
3136
0
940AO
1568
1568
3136
1568
Z8224
3136
6272
0
0
6272
0
0
3136
0
0
1568
0
0
0
1226176
PON03
50960
14896
0
431984
0
0
3136
7056
1568
7840
0
0
1568
0
0
0
0
784
0
12544
532336
PON03
4704
65856
973160
0
0
0
4708
9408
6272
0
9
10976
0
134848
0
59
0
39Z
0
78
o
157
0
0
19
235
5Z9
0
0
0
0
137
0
POND*
0
114
0
1*7
29
10
20
0
29
20
10
0
0
0
0
49
88
147
0
0
863
POND*
1176
216
3822
19
ZO
0
59
ZO
157
ZO
0
0
zo
196
0
ZO
0
78
0
0
274
133
78
0
59
157
274
176
0
0
0
1078
0
5370
PONDS
10
461
0
0
69
0
29
10
0
157
0
0
20
0
0
Z94
0
29
ZO
0
1099
PON05
137
745
0
76
0
59
39
59
0
Z55
0
ZO
0
353
0
0
59
78
0
0
39Z
0
0
20
0
59
0
0
0
0
0
0
20
ZOZO
0
78
0
0
0
2430
0
941
78
0
0
0
157
78
0
78
0
78
17324
PON 06
20
206
0
17»
0
39
0
29
0
39
0
0
0
0
0
78
0
0
0
0
578
EFFLUENT
10
20
0
0
0
0
39
0
0
49
0
0
0
10
9
69
0
0
0
0
197
PON 06
0
0
0
0
0
0
0
0
0
0
9
0
0
0
3
EFFLUENT
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-------
Table C-l. Continued.
CO
LMLGROG
HBRI$HO»EDIA
LAGERHEtll*
TOTAL COUNT. ALL
DATE
GENES*
OSCULATQRIA
MtCROCTttlS
SCENEOES^US I
SILENASTKUH
PMACGTU*
CHLANVUMONAS
&CENEDESKUS II
STEPHANIJDISCUS
EUGIENOIOS
btHlNELLA
CRYPTONONAS
liOKPMONF-dA
CHLQROG NIUH
PALPELLt
HgfitSN00EOU
TOTAL COUNT, ALL arNE*A
DATE 9/ »/75
li EN ERA
USCILLATORIA
HICROCTSTIS
ANKISTR-JOESHUS.*
3C£N£OES-tUS I
CVCLQTELLA
itLENASTRUN
CHLCRELL*
SCENEOES4U& II
NAVICULA
ANPHOIU
GEHINELLA
GLCEUTHrCE
(lOCPHONEHI*
CTKBELL*
CHLCFiOG MIUH
SPIRULIS4
HICSUSP1RA
PAL«ELL«
TOTAL COUNT, ALL irNE*A
OATC 9/i'/75
liENCRA
OSCILLATORIA
iCENEDLSHUS I
SBLENASTKSJM
PH»COTU>
CHLQrltLLA
3
0
0
0
3018
RUN 112
INFLUENT
3528
16*64
1176
0
0
0
1568
1960
0
0
0
0
0
0
0
130536
0
155Z3Z
RUN 135
INFLUENT
0
14888
3
0
0
0
0
0
0
1176
3
0
0
3
1963
0
3
3
0
.1
3567Z
0
73696
«
-------
Table C-l. Continued.
CML»NTO»HON«S
SCENEOESHUS II
NAVICULA
tUGLENOIDS
SCHROEO'CHU
GlNlNELLA
CIYPTOMQNAS
bONPHONEHlA
CYNBELL*
IOLYPOTHR1X
CMLC*OG -MUM
CISKARIUH
PALNELLA
HIRI&HQOEOI*
TOTAL COUNT. ALL litNER*
DATE 9/1S/75
GENEKA
OSCILLATOR!*
HICIQCYSTIS
ANKISTRIOESIUS.r
SCENEOtSMUS 1
PMACOTUS
CHLOHELLA
SCENEOESNUS M
MAVICUL*
EUGLENOIilS
AHPHQRA
GINlNELL*
CYHBELL*
IOLYPO.TMKIX
CNlOflOG tIU1
COSNARIUrt
PALNELL4
NIRTSHO'COM
TOTAL COUNT. ALL lilNERA
DATE 9/4?/75
uENEKA
OSCILLAT3RU
NICROCYSTIS
ACTINAINASTKUH
ANKISTR90ES*US»r
SCENEOEtlUS I
PNACOTUS
CNLORELL*
CMLAHYOA10NAS
sCENEOESHUS II
NAVICULA
STEPHANOOI&CUS
EOGLENOtJS
SCHDOEOt^IA
GEHINELLA
CRYPTOXONAS
GLOEOTHECE
CYHSELL*
TOLYPOTHRIX
0
0
0
0
0
0
0
760
0
0
780
0
J
466
0
2633
RUN 139
INFLUENT
J
1658
0
0
0
0
3
0
3
0
0
3
0
99
0
5948
0
3
0
0
7704
RUN 141
[NFLUENT
4312
23523
J
0
0
b
0
0
a
0
0
0
0
0
0
0
J
3526
0
12*80
3120
12*60
3120
611520
0
18720
0
0
0
0
0
0
0
2346240
FONDl
14040
16720
0
236*960
0
0
7800
18720
1560
1560
1560
0
293280
0
u
0
3120
fi
12480
2340b
2761200
PONDi
0
9360U
0
3120
2477230
0
0
111720
1*720
0 -
3120
0
0
37*40
mo
6240
0
0
3920
29*00
0
76*0
3920
799680
0
27**0
0
0
0
1960
0
5880
0
17522*0
POH02
11760
50960
0
15*9360
5880
0
3920
11760
1960
0
0
0
713**0
0
23190*0
PON02
1960S
133280
0
3920
3920000
0
3920
15680
31360
78*0
0
0
3920
172*80
3920
11760
0
0
1960
11760
0
I960
0
693760
0
27**0
1960
0
0
0
0
0
9600
25652*0
PON03
11760
60760
0
19*4320
0
3920
76*0
11760
1960
0
0
0
3512320
0
0
0
3920
0
0
50960
5609520
PON03
23524
62720
0
0
1693440
3920
11760
0
35260
0
0
3920
0
423360
3920
3920
0
0
0
0
0
0
0
148960
0
3920
0
0
0
0
0
0
0
5956*0
PONO*
0
5*600
0
3650*0
1560
3120
0
0
0
0
0
0
402480
0
0
0
0
0
0
6240
833040
POND*
11760
0
3920
3920
415520
0
0
0
0
0
0
0
0
IZ1S20
0
3920
0
0
0
0
1S7
0
39
235
157
0
0
39
0
0
39
0
0
2508
PONDS
0
5292
196
321**
0
0
0
392
586
0
392
0
43904
0
0
0
0
196
196
0
63300
PONDS
353
39
0
0
706
0
0
0
0
0
0
0
0
1137
157
0
39
0
0
0
if
0
0
0
96
0
0
0
0
0
0
0
0
529
PON06
76
39
0
0
76
0
0
0
0
IS
a
o
o
o
176
0
0
0
39
0
0
0
0
39
1S7
0
0
78
0
0
0
0
0
430
POND6
0
529
0
0
0
0
0
a
137.
0
0
0
10
2Z5
29
0
0
10
10
9
959
EFFLUENT
0
79
0
0
0
0
0
0
9»
0
0
20
59
0
0
0
0
0
20
0
277
EFFLUENT
20
59
0
0
0
t,
0
20
0
78
0
0
0
0
39
0
0
0
-------
Table C-l. Continued.
Ui
Ui
SPIRULI1A
PAL"ELLA
CHRCOCOCCUS
HCRISHOPCOIA
LAGERHEHU
TOTAL COUNT. ALL (irNEP»
OATC 1V/IV75
GENERA
OSCILLAT3R1A
HICROCYSTIS
SCCNEOESHUS I
CHLANYOA10NA&
SCENEOES1US 11
MAVICULA
tUGL£NUl9S
SCHROEDEKIA
(ifMTNCLlA
CHYPTOMTNAS
(iLCEQTH^CE
TOLYPOTHRIX
CNLQROG NIU1
TOTAL COUNT. ALL J^NCM
OATi lu/16/75
GENtR*
OSCILLATOR!*
fllCROCYSTIS
sCENEOESIUS I
CHLAHYOWONAS
SCENEOES1US II
NAVICULA
STEPHAN1DISCUS
tUGLENOIDS
SCHROEDC31A
GENINELLA
CRYPTOH1NAS
OLOEOTnECE
TOLYPOTH4IX
CHLOMOG NiUt
PALfELLA
CHSCOCOCCUS
TOTAL COUNT. ALL I^COA
DATS 10/4V75
GENERA
OSCILLATURIA
HI fOC YST IS
iCENtOESIUS I
PNACOTUS
CMLA>1YO*«ONA&
4CENEOES1U& II
NAVtCULA
tUGLLNOIJS
JCHRQEOFRIA
GIPINELLA
CRYPTOIT-'IAS
uLOEQTH?C£
CHLOAOG Xi(J1
EPITMElI.
PAL«ELLA
0
0
0
0
0
11)63
RUN 147
INFLUENT
9rt 16
J*H*8
3
3
3
0
0
1}
9
196
0
0
0
44100
RUN 149
INFLUENT
10584
45080
0
0
0
0
0
J
0
0
0
0
0
0
0
0
55664
ft UN 151
INFLUENT
392
11312
0
0
0
0
0
0
0
a
0
588
J
0
25872
0
6240
0
a
0
2671840
PON01
1960
107800
2156000
J880
7640
1960
1920
0
125440
7640
0
0
6t)760
2479400
PON01
1920
14S96C
21*5290
7840
7640
7840
0
15660
0
156800
11760
0
0
88200
0
9
2644040
PQND1
29400
62320
21J9040
7840
9800
15680
1920
3920
0
111600
1920
37240
27440
0
0
0
7840
0
15660
1920
4155120
POND 2
0
58800
2448040
11760
11760
5680
0
0
119160
5880
0
19600
88200
2799080
PONB2
0
60360
2912160
15680
17640
0
1920
13720
0
174449
3920
0
49000
117600
0
23520
1411960
POND2
0
76440
2195200
0
11760
0
0
17640
1960
82120
11760
0
25460
C
0
0
0
0
56600
0
2124560
PON01
196CO
52920
1085640
7840
7640
0
9600
0
74480
11720
7640
9600
29400
1119080
PON01
11760
76440
1520960
1920
7640
39ZO
0
5660
0
90160
5660
1920
11720
21560
1920
15689
1765560
PON01
0
111120
1920800
7640
5680
0
1960
0
1920
11720
1960
17640
49000
0
4840
0
0
0
0
0
560560
POND4
11720
74480
660520
0
156SO
1920
0
7640
19200
3920
0
0
15680
614960
POND*
17640
117600
629060
0
11360
0
0
0
11720
49000
1920
0
0
0
0
0
1062120
PON04
0
11720
636960
0
0
0
0
0
0
31320
11760
0
0
3920
0
0
0
0
0
0
2431
PON05
0
4704
I096«
960
764
196
0
1960
0
764
0
0
0
40376
PONDS
0
7644
40176
586
1566
192
0
0
1136
0
960
0
0
980
0
0
55664
PONDS
0
•)
20
0
0
0
0
0
0
0
0
0
0
0
0
20
0
IS
0
0
547
PON 06
76
78
19
0
0
0
0
0
19
0
0
0
0
235
PONU6
118
20
59
0
0
0
0
0
3
20
0
0
0
0
3
0
217
POND6
0
431
0
0
59
0
0
0
0
39
216
0
0
20
0
0
19
0
0
0
255
EFFLUENT
0
0
78
0
0
59
0
0
0
78
0
0
0
215
EFFLUENT
C
C
78
0
0
39
0
0
-------
Table C-l. Continued.
LTI
ON
HIRISMO'LOI*
TOTAL COUNT* ALL
DATE io/3"/75
OSCILLATJtIA
hICROCYSTIS
CHL«HYO*MON»S
iCENEDESIUi II
NMICUL4
CRYPTOM1NAS
GLOEOTMCCE
CPITHEttA
NITZSCHI4
TOTAL COUNT. ALL urNERA
DAT£ ll/ V75 '
GENERA
H1CROCYSTIS
ANKISTRQOESNUS.r
SCENEDtSIUS I
CMLAMTOAMONAS
SCEHEOESHUS II
HAVlCUL*
EUGLENQUS
GCHINELLA
CIVPTONINAS
EPITHEKIA
NITZSCrtTA
TOTAL COUNT. ALL -i^NEM
.DATE ll/i»/7S
GEN?RA
HICROCYSTIS
0
40184
RUN 160
INFLUENT
392
0
0
0
17444
0
0
0
It
0
0
17816
RUN 166
INFLUENT
192
0
a
196
0
0
0
146
3
0
0
764
0
2934120
PONOI
0
I960
1960
640920
1920
7840
0
11720
0
0
0
67J3ZO
PdNDl
a
0
2996SO
i860
0
0
0
0
isao
0
I960
313400
15680
30182*0
PQND2
0
0
1960
65*640
1960
3920
0
78*0
1960
0
0
672200
PON02
0
0
397880
5880
0
0
0
0
78*0
0
0
411600
0
2259880
POND3
0
I960
0
55*680
0
0
0
1960
0
0
0
558600
POND1
0
0
217160
1960
0
0
1960
0
11760
0
C
2528*0
0
701680
PONO*
0
1960
9
219520
1920
0
0
78*0
0
0
0
225*00
POND*
0
0
119560
9800
7840
1960
1960
0
15680
0
0
156800
0
196
PONDS
0
39
111
14622
274
215
20
5147
0
0
59
20729
PON05
0
196
16464
5096
784
0
192
0
5096
196
196
28420
0
7*5
POND6
0
0
0
666
0
0
0
0
0
0
0
666
PON06
0
0
314
98
0
19
3
0
1666
0
0
2117
0
196
EFFLUENT
0
20
0
0
20
J
118
117
0
20
0
115
EFFLUENT
118
0
0
0
0
0
3
0
0
0
0
196
RUN in
SCENEOESHUS I
NAVICUL4
GIHINELLA
CRYPTO*1NAS
NITZSCMIA
TOTAL COUNT. ALL arNEfcA
DATE 11/1V75
GCNCKA
HICROCYSTIS
ANKlSTRQOESHVIS.f
SCENEOES1US I
INFLUENT
RUN
S88
0
192
192
0
196
196
0
Uo4
ieo
P3N01
0
0
162609
5880
0
0
y*jo
0
378260
<>OND2
0
1960
352800
3920
1960
0
11720
0
174360
PONO 3
1960
3
168560
9800
0
0
17640
1920
201880
POND4
0
0
1960
0
C
0
21560
0
23520
PONDS
0
0
7840
1176
196
0
1960
0
11172
PON06
19
59
412
29
0
0
2215
0
2745
EFFLUENT
0
0
0
0
19
20
6863
0
6919
NAVICUL*
CRTPTOH-JNAS
NITZSCHIA
TOTAL COUNT. ALL
DATE 12/ */75
CENTRA
HICPOCTSTIS
INT
2
j
0
'6
0
2
0
0
PJN01
0
c
246960
1960
C
96J&
U
254720
PON02
0
0
392030
1960
0
9800
0
431769
PON01
I960
1960
241040
3920
0
11760
U
262640
POND4
0
1960
54880
0
0
9800
0
66640
PONDS
0
196
11S84
9«0
0
1568
196
14524
PON06
0
0
215
39
0
28028
0
28302
EFFLUENT
9
0
78
20
20
13524
0
13642
SCENCOESIUS i
RUN 144
INFLUENT
PON01
0
0
14600
POND2
0
0
15Z880
POND!
0
0
117600
POND4
0
0
76400
PONDS
0
196
29792
POND6
0
0
26460
EFFLUENT
0
0
0
-------
Table C-l. Continued.
CRYPIOHHAS
TO 1*1 COUNT. ALL
DATE IZ/ »/75
GENERA
SCENEOESXUS I
CMLAMYDAKaNAS
NAVICULA
TfiAfHELQlONAj
NITZSCHIA
TOTAL COUNT. ALL i*NEM
DATE tZ/14/75
1V6
0
3
3V2
RUN 186
INFLUENT
0
784
0
1568
0
0
2352
RUN Ida
U
39'JO
4806
33300
PQNDl
7840
0
7840
0
0
£4200
5880
0
11760
170520
POND2
74489
1960
0
7840
0
0
J428C
6
0
3920
PON03
70560
1460
0
5880
0
0
78400
0
1960
9800
90160
PON04
6)760
5880
0
15680
0
I960
84280
3136
784
8820
42728
PONDS
0
5880
0
1960
3920
0
11760
I960
3»2
9803
38612
PONU6
0
39 ZO
0
15661
0
0
196UO
39
0
98
196
EFFLUENT
15680
5880
1960
39200
0
0
62720
01
SEN Eh A
ANMSTROJESMUJ.f
SCENEDES1US 1
CHL»«TOMON«S
NAVtCUL*
CHYPTOHINAS
NITZSCHIA
TOTAL COUNT, ALL
DATE 12/iV7S
GENERA
HlC
NAVICULt
LRYPTOM1NAS
NITZSCHIA
TOTAL COUNT. ALL j'NE
OATt 12/31/75
GENERA
NICOQCYSTIS
&CENEOES1US I
CHL««YO«*ONAS
NAVICULA
CEHINCLLA
INFLUENT
}
1*6
HUN 191
.HITZSCHIA
TOTAL COUNT. ALL yrNE*A
DATE I/
GENERA
HICOOCYSTI&
SCEMEOES4US I
CKLAMY0440NAS
SCENEDES1US II
NAVICUL4
IRACHEL-HONAS
TOTAL CJUNT, ALL j^NE* A
DATE l/l?/76
3ENEM
•UCSOCYUIi
INFLUENT
o
re*
0
a
176*
RUN 196
INFLUcttT
980
PJH01
0
54800
9800
0
11720
0
£2320
INFLUENT
RUN
196
0
J
tto
1*3
23S2
0
3724
1*2
INFLUENT
RUN
76 J
3»2
0
196
s* a
3
2156
19S
PON01
1920
0
4900U
15680
0
7840
a
7*440
P3N01
3920
3920
0
0
0
0
47040
PON01
I960
7840
39200
0
3920
7840
5880
PONOZ
0
68600
7840
I960
9800
0
88200
PON02
3920
54880
5880
0
0
3920
0
60760
PON02
0
23920
23520
0
0
PJN01
0
7840
74480
PONOZ
0
POND3
0
80360
3923
3920
5880
1960
96040
POND2
0
0
60760
11760
3920
9800
1960
88200
PON03
1960
0
94080
7840
0
19600
0
1Z3480
POND 3
3920
47040
Z7440
I960
0
19600
a
99960
PON03
0
0
13720
15680
0
31369
1*60
62720
PON03
0
POND4
1960
47040
7840
0
3*20
39ZO
64680
PON04
0
1960
431ZO
5880
C
3920
0
54880
POND 4
I960
27*40
13720
0
0
11760
1960
56840
POND4
0
7840
41160
0
0
27440
i860
82320
PON 04
1960
PON05
0
254*0
5860
1960
7840
0
41163
PONDS
0
0
17640
9800
3920
9800
1960
43120
PON05
0
15680
9800
3920
0
9800
0
39200
PONDS
0
7840
19660
0
1960
15680
3920
49000
PONDS
1960
PON 06
0
37Z40
137ZO
3920
5860
3920
646KO
PUN 06
I960
196JO
11760
0
0
IStfcO
0
49000
PON 06
i
5860
27440
0
0
19603
1960
5*860
PON06
1960
EFFLUENT
0
78*0
3920
0
setti
0
176*0
PON06
0
1960
274*0
21560
0
13720
39*0
68600
EFFLUENT
0
0
13720
7840
0
7840
0
294CO
EFFLUENT
0
7B4U
392u
I960
0
588U
0
19600
EFFLUENT
1963
0
11760
0
0
5B8K
b
196C3
EFFLUENT
0
-------
Table C-l. Continued.
SCtNEDESIUS I
CHLANYDAMONtS
NAVlCULt
CRTPKHONAS
T*»CHEL1HON»S
SPIRULI1A
TOTAL COUNT. ALL GENE**
DATE \fi\.tTf>
GEN CD A
HlCPQcrsm
ANKISTPOOESMUS.C
SCE«DES1US I
CHLmOMQNIS
NA»ICULA
TRACMEL^HONAS
NI72SCHIA
TOTAL COUNT, ALL u^MCRA
0
0
m
o
196
0
0
1372
RUN 199
INFLUENT
0
0
560
0
588
0
0
1960
I960
137ZO
5880
0
13720
3920
1960
41160
PQND1
1960
1960
19600
9800
0
17640
J880
1960
id 800
0
215ZO
5880
0
35*80
0
6Z7ZO
PON02
I9ZO
0
Z3320
11760
0
15680
9630
0
'4*80
1960
31360
15680
3920
19600
5880
0
78400
PON03
0
0
431ZO
17640
39ZO
25460
156AO
1960
107690
0
15660
9800
1960
9800
3920
0
43120
PON04
1960
1960
Z5480
17640
1960
7840
7840
0
64680
0
7840
7840
1960
7840
1960
0
29400
PONDS
3920
0
11760
5880
0
9800
7840
0
39200
0
39ZO
5880
a
5800
39ZO
0
21560
PON06
1960
0
1960
5880
0
3920
ft
0
13723
C
0
7840
\i
5880
0
0
13720
EFFLUENT
1960
0
0
3920
0
3920
0
0
9800
00
-------
APPENDIX D
BACTERIOLOGICAL PERFORMANCE OF EACH POND IN THE
CORINNE WASTE STABILIZATION LAGOON SYSTEM
159
-------
Table D-l. Fecal coliform bacterial performance of each pond in the Corinne
Waste Stabilization Lagoon System. Note: 9.6E5 = 9.6 x 105
FEC*L COUFOPMS [COLONIES/lOO HL)
>|S ' NO
HO 01
31
I
4
t
4
t
t
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
6
6
6
6
k
75
7}
75
ft
75
75
3 75
4 75
5 75
6 75
7 7S
? 75
9 75
11 75
II 75
1? 75
iJ 75
14 75
1' 75
16 75
l» 75
ie, 75
1' 75
20 75
21 75
Z? 75
27 75
2 2" 75
T. 7!
t 75
9 75
I? 75
15
31
2
S
11
75
18 75
21 75
24 75
28 75
75
75
75
75
75
75
H 75
1ft 75
17 75
18 75
19 75
20 75
Zl 75
Z2 75
ZJ 75
Z4 75
ft 75
2fr 75
Zr 75
Z» 75
Z* 75
39 75
75
75
75
75
75
75
75
75
75
75
n
11
1? 75
1! 7S
l& 75
19 75
2? 75
Z8 75
31 75
S 75
6 75
9 75
IZ 75
15 fS
t IB 75
t 21 11
t Zt 75
6 27 75
6
7
r
7
7
75
S 75
S 75
• /5
1! 7S
15 75
It 75
IF 75
18 75
INFLUENT
9.6E5
k.SEt
J.7ES
1. 9E*
Z. IE5
4.0E5
5.BE5
2. 9ES
1. 1 E5
J.QEt
2.5E5
s" a ES
5. 9E5
3. 1E5
7.0E5
5.9E5
2. 5E5
3, 1E5
2.0E5
2. 3E5
1.4E5
1* tEt
t. 5E5
7.6E5
B. tEt
O.OEO
4.BE4
1.7E5
1.9C4
Z.6E5
Z.3E5
2.0E5
UIE5
1. 1E5
6. OEt
1.5E5
3. 9E5
Z. 3E5
t.5Et
U715
Z.5E5
sl9E5
J.015
B.4C5
B. 9E5
5.IE5
a.aEt.
UBEt
S.OEt
Z.9E5
ll«E5
5.7E5
2. OE5
B.t E5
3. 5E5
3. 5E5
2. OE5
1. 5E5
^* P
t* E5
* P _
1.ZE5
Z.tCt
5. 7E5
Z. A£5
1 fc£4
1. 3E5
1. lEt
2. OC5
Z.SES
3* 9E5
1.BC5
t.9E5
Z.JE5
B.1E5
sIoE!
A*JIFt
S. t£5
2. 3Ci
2.0£t
3.4E5
2.015
POIDl
a.'Ei
USE4
1.7 £4
l.!E*
l.iEk
L.kEt
U7£t '
2.3C4
l.'Ct
t. » E 3
2. }E4
2.3E4
S.5E4
3. OEt
t.SEt
3.3Ct
5.?Et
l.'Et
l.lEt
1. !Et
1.1 Et
5. IEJ
0.)EO
3.1E3
B.9EZ
6.JE3
t.'EJ
LIE!
9.SES
1.1E4
3.»EJ
2.JE3
UiEt
I.iEk
l.IEk
1 - 1 F&
t.lEJ
5.ZE3
4. IEJ
4.1EJ
4.1 EJ
3.4E5
5.JEJ
7.ZE3
t. t£3
t.JEJ
2.SEJ
5.1E3
3. IES
e.vci
2.IE3
2.1 El
Z.HI
Z. 9E3
t. )E»
3. SEI
USES
2, IEJ
UtEZ
r. SE3
9.) El
T.IEJ
1.7E3
1.IE3
5.IE3
5.SE3
2.1 E3
t!?£Z
l.7£l
6.!C2
1.5EI
Z.lEJ
4. 5 £3
2.3E4
5.IC3
2.4 £J
PDN02
3.2EZ
Z.1EZ
Z. 1EZ
Z.3EZ
2.5E2
3.2E2
>*9EJ
6.SE2
7.6E2
fc.7E2
9.4E2
7.2E2
9.0E2
1. Jf!
J.ZtJ
Z.StJ
Z.ZEJ
3*t£S
4.2E3
2.1ES
2.4E3
U9E3
3. »E3
1.9E3
6.QC1
O.OEO
U7E3
UZEJ
U5EJ
U1E3
», 2E2
?!iE!
USE!
3.ZE2
j'. 7E3
4.ZE3
5.5EJ
O.OEO
2.5E!
3. IE!
UZE3
I.OE3
2.6EZ
UOEZ
z.ze?
Z.BEZ
S.tEZ
I.IEZ
Z.tEZ
Z.SEZ
I.IEZ
J. tE2
UtEZ
1.BE2
U5E2
t.OE2
3.1EZ
6.0E2
3.7EZ
Z.l£2
1.3E2
3.ZE1
5.6E2
l.tEZ
UOEZ
1.1EZ
3*7EZ
I.4EZ
7.2E1
t.tEI
I.SE2
t.OEl
r.oEo
5.0E1
i.ttz
4.2E1
3.4E1
l.OEl
5.0E2
l.OEl
3.0E2
3.2EI
t.OEO
o.oeo
4.JC2
Z.tEl
2.5E1
4.9E1
5.8EL
2.tEl
Z.OEt
4. OEt
1.4EJ
6.3EZ
1.3E?
B.8E1
POMOJ
1.4E1
U3E1
1.7E1
J.JE1
1.5E1
Z.IE1
Z.tEl
t.9El
I.5E1
6.5E1
I.IEZ
l.tEZ
l.JEZ
1.0E2
1. 1C?
Z.BEZ
3.0EZ
t.9EZ
Z.7EZ
6.ZE2
7.7C2
3.9E2
4.5EZ
UJE2
Z.tEZ
5.0Ef
Z.«E2
O.OEO
r.zEi
l.OEZ
3.0EZ
3.7EZ
3.tC2
6.5EZ
J.ZEZ
Z.9E?
t.OEl
C.6EI
5,ȣZ
f.OEZ
1.ZE3
1.BE3
B.OEZ
7.BE2
t.tEZ
USEZ
Z.6E1
B.OEO
Z.ZE1
3.0E1
1.8E1
Z.OE1
t.OEl
1.BE1
t.OEO
1.2E1
t.OEO
l.OEl
B.OEO
Z.tEl
z.oei
3.6EI
t.ZEl
t.OEO
1. {El
Z.OEO
9.0EO
l.ZEl
t.OEO
B.OEO
l.ZEl
Z.DEI
U9E1
t.OEO
T.OEO
r.oEo
I.IE1
l.ZEl
B.OEO
l.tEl
t.OEO
l.E-
UE-
l.E-
UE-
l.E-
Z.OEO
l.E-l
a.oeo
Z.5£l
l.E-l
J.OEO
UE-l
S.OEO
l.OEO
l.OEO
UE-1
UE-1
l.ZEl
9.0EO
t.OEO
POHDt
l.E-l
l.E-l
UOEO
l.OEO
UE-I
UE-l
3.0EO
l.OEO
UOEO
l.E-l
j.oeo
UE-l
l.OEl
a.oEo
i.OEO
1.4E1
U7E1
Z.6E1
2.7E1
t.OEl
S.ZEl
t.BEl
1.3CZ
UOEZ
5.2E1
Z.tEZ
1.8E1
O.OEO
l.OEl
t.OEO
u act
9.3E1
l.JEZ
3.6EZ
Z.2E2
3.8E1
l.OEl
Z.OEO
6.2E1
7.S.EI
7.6E1
3.2E2
2.0E2
Z.3E2
U1EZ
B.OEO
l.ZEl
S.OEO
a. oto
l.OEl
UOEO
7.0EO
1.7E1
5.0CO
S.OEO
t.OEO
3.0EO
S.OEO
Z.OEO
7.0EO
Z.OEO
7.0EO
r.OEo
t.CEO
t.OEO
UE-1
Z.OEO
Z.OEO
t.OEO
1.7E1
S.OEO
3.3E1
I.4EI
l.ZEl
2.3E1
1.4E1
S.OEO
5.0EO
l.OEl
Z.OEO
2.0CO
l.E-l
l.E-l
l.OEO
l.E-l
l.E-l
l.E-l
l.E-l
UOEO
J.OEO
Z.OEO
UE-1
3.0EO
Z.OEO
UOEO
UtEl
UE-
UOEO
t.OEO
UOEO
S.OEO
PON95
l.E-l
UE-I
UE-1
3.0EO
l.JtO
UOEO
1.1EO
UOEO
l.E-l
UE-1
UE-I
Z.OEO
Z.OEO
3.0CO
5.0EO
J.OEO
l.OEO
Z.OEO
t.OEO
t.OEO
Z.OEO
S.OEO
l.OEl
Z.OEO
l.E-l
l.E-l
UE-1
O.OEO
UE-1
UE-l
l.E-l
Z.OEI
Z.OEI
Z.OEL
t.ZEl
2.0E1
t.OEO
UE-1
UE-1
UE-1
B.OEO
U9E1
UtEl
l.tEl
U3E1
t.OEO
l.ZEl
t.OEO
l.bEl
1.7E1
UbEl
UZE1
7.0CO
t.OEO
l.OEO
UtEl
7.0EO
t.OEO
t.SEl
Z.ZEt
5.0EO
t.OEO
B.OEO
S.OEO
l.ZEl
5.0EO
9.0EO
l.OEl
t.oto
9.0EO
B.OEO
l.tEl
t.OCO
I.3E1
7.0EO
3.BEI
G.OE 0
t.OEO
J.OEO
l.E-l
t.OEO
9. OtO
l.OEO
l.ZEl
UOEO
UE-l
Z.OEO
l.E-l
UE-l
Z.OEO
UDEO
l.OEO
UE-l
UOEO
t.OEO
3.0EO
UE-1
Z.SE1
9. IE]
3.9E1
t.BEl
i-ONOb
UE-1
UE-J
UE-1
UE-l
UE-1
UE-1
UE-l
UE-l
UE-1
UE-1
Z.OEO
UE-1
UE-1
UOEO
Z.OEO
l.E-l
l.E-l
l.E-l
l.E-l
t.OEO
2.0EO
l.E-l
UE-I
l.E-l
UE-1
UE-1
UE-l
O.OEO
UE-1
l.E-l
l.E-l
t.OEO
1.BE1
t.OEO
l.OEl
Z.OEO
UE-1
l.E-l
l.E-l
Z.OEO
t.E-1
Z.OEO
U1EI
1.1E1
UOEO
t.OEO
1.9E3
l.E-l
l.OEl
Z.OEO
a.oEo
2.0EO
l.E-l
l.E-l
l.OEO
l.E-l
UOEO
UZE1
j.oeo
7.0EO
UZE1
(• 7E 1
7.0EO
Z.OEO
UOEO
UE-1
UOEO
U1E1
U3E1
1.0£0
4.9E1
5.t£l
J.OCO
l.OCl
UE-1
3,OEO
S.OEO
l.E-l
l.OEO
l.E-l
1.1EL
9.0EO
l.E-l
S.OEO
l.E-l
l.OEO
l.E-l
UE-l
UE-1
l.E-l
UOEO
UE-1
UE-1
S.OEO
UE-
I.OEO
l.E-l
l.E-l
Z.OEO
Z.OEO
T.OEO
EFFLUENT
Z.OCO
UE-1
l.E-l
UE-l
UE-1
Z.OEO
UE-l
J.OEO
Z.OEO
Z.OEO
J.OEO
UE-l
l.E-l
l.E-l
UE-1
UOEO
l.E-l
1-E-l
UE-l
l.E-l
l.E-l
UE-1
l.E-l
Z.OEO
Z.OEO
l.OEl
UE-1
O.OEO
l.E-l
Z.OEO
t.OEO
Z.OEO
l.E-l
Z.OEO
l.E-l
t.OEO
UE-l
L.E-l
ue-i
ut-i
l.E-l
2.0(0
l.t-l
l.E-l
l.t-l
l.OEO
Z.OEO
l.E-l
U7E1
J.OEO
l.OEO
J.OEO
Z.OEO
l.OEO
J.OEO
J.OCO
t.OEO
l.OEl
UJE1
7.0EO
Z.OEO
t.OEO
Z.OEO
UOEO
UE-1
UE-1
UE-1
9.0EO
B.OEO
7.0EO
U0£l
U9C1
t.OEO
l.E-l
', 1.5E1
3.0E1
a.oco
t.OEl
Z.JEl
S.OEO
S.OEO
t.OEO
uoeo
l.E-l
l.E-l
UE-1
l.t-l
l.E-l
ue-i
UE-l
l.E-l
UE-I
UOEO
l.E-l
S.OEO
UE-1
f.OCO
l.OEO
UE-1
l.ZEl
1.1E1
160
-------
Table D-l. (Continued).
(ECAl COLIFOms
US > 10 >>MI>IE. ND * NO 0*1*
DO 01
1
7
10
11 II
II
II II
It 14
II 19
11 1%
ri
75
79
79
20
21
2? 75
25 75
24 75
J5 75
26 75
27 75
2« 75
2» 75
M 75
31 75
/5
75
75
75
75
t
75
75
7
10
11
75
75
75
75
14 75
17 75
20 75
J! 75
26 75
2' 75
75
75
75
75
75
11 75
19 75
22 75
25 75
28 79
10 I
10 6
10 '
10 11
10
10 U
10 24
10 21
10 22
10 2]
10 24
10 29
10 26
2' 75
75
75
75
75
75
75
I! 75
75
75
75
75
75
75
75
75
10
10 21
10 2»
10 J»
10 11
I 1 I
It 2
11 J
1 I 4
1 1 5
II (
I 1 1
II «
II »
11 10
75
1? 79
75
75
75
75
It 17
11 l«
I I H
11 21
II 2]
II 2f
12 2
12 5
12 )
1 2 11
12 14
12 17
12 20
12 21
12 II
1 1
1 t
75
79
75
75
79
75
75
75
75
75
75
75
75
75
75
76
76
» 76
I? 7t
15 76
19 76
21 76
24 76
27 71
19 76
INFLUENI
4.7E5
7.8E4
4.2E5
5.4E5
2.1E5
6.7E5
3.8E5
I.OE6
».6E4
2.7tt
J.&C5
2.4E5
3.0E5
J.2E5
2.0E5
I.5E5
2.4E6
S.2E5
5.*E5
5. 4 El
4.tE5
J.OE5
6.7E4
3.7E6
7.tt5
5. !£S
«.*E5
4.ZE5
7.8ES
3. 1E5
J.IE5
1.0E6
4.0ES
6.5E5
L4E5
a. set
5.1E6
1.1E*
9.2CS
J.8E6
1.3E6
I.]E6
L7E6
8.4E5
S.1E5
1.9ft
6.0ES
I.1E6
1* 3C4-
1.2E6
I.8E6
2.6E6
S.U5
l.tEt
1.JE5
1.7E9
1.1E5
List
I.JEl
7.1EI
2. »Et
I.5E6
2.2EI
LIE*
l.OEl
S.5E5
8.4E5
4..7E5
l.2Et
4.BE5
1.5Et
6.5E5
2.1ES
5.«E9
7.4EJ
S.«E5
l.9Et
2.6E6
s.m
1.3E6
».rE5
I.IE6
UIE6
9.1ES
z.2£6
I. ilk
9.0ES
l.OEt
4.0E5
4.«£S
J.*E*
1.7E6
U3E6
».*E5
4.SES
J.1E5
9.4E4
1.2E5
*.7Et
5.ZE5
2.ACS
PDK01
7. 7 £z
g.?C2
1.1E4
HE*
I.IE4
z.rEJ
1.1E3
9.?E!
J.IEJ
2.1 El
1.JE4
1.JE4
HE*
6. IE;
5.9E3
1,!E3
J. 5EJ
2.VE3
J.VE!
J. »E»
9.2E3
t.IEl
J.ifJ
3.!EJ
l.iEt
I. IE*
5.?C1
1.1 C4
«.«ES
r.iEi
8.JE3
LIE*
1.IE*
J.SEk
J.!£*
1.9E4
J.U*
Z.5E*
1.1C4
5.J£5
».»£J
2.SE]
l.k£»
3.3E»
Z.tE*
Z.tEt
J. IE*
2-»E»
5*9 E3
l.!Et
l.»E*
Z.IE*
j.rE4
?.»£•
I.JE*
l.)E»
t.lll
2. IE*
2.IE«
2. it*
!.!£»
HE*
l.IEt
9.) El
t.lEI
9. SE3
6.JE3
4.1 El
2. IE!
«.tE3
1.5E4
1.1 E4
I.2E4
t.tEI
1.4EI
6. ! El
e.ȣJ
I.SE4
1.2E4
1.2E4
!.!£!
r.itj
r.ui
l.SEJ
Z.IE4
4.8EJ
2.IE4
l.ZEI
1.IC2
Z.ftJ
6.8EZ
1.5E3
S.!E?
4.JEJ
«.(E)
USE*
J.?E4
1.5 £4
4.JE4
4.IE4
Z.TE4
PON02
4.BE1
6.0CO
I. Oil
1.0E2
2.612
2. Sit
4.0E1
1.6E1
5. Otl
J.2EJ
5.0E2
r.t£2
9.9EZ
5.6E2
2.SE2
3.2E1
6. OEl
1.5E2
Z.OEJ
R.OE2
J.9EJ
1.9E2
«.»El
1.1EJ
9.4E2
3.2E2
Z.4C2
6.iE?
r.6EZ
4.0E3
4.2EZ
5.5E?
1.3E1
1.4E5
1.5E1
1.1E1
».ZE2
1.2EI
9.4E2
2.7EZ
I.1E2
uec?
9.9EZ
1.3E3
1.1E3
2.3E1
3.9EJ
2. IE!
9.9E2
t.9E2
4.TE2
6.5EZ
T.ltt
I. itS
LIE]
».1E2
LIE]
l.»EJ
2.0E]
2.ZEJ
LIE]
I.6E2
9.6E2
7.4E2
5.4E2
4.2E2
2.SE2
2.IEZ
1.9E2
2.7E2
t.tE2
4.fE2
2. JE2
3.tE2
2.7EZ
2.*EZ
2.tE2
5.iE2
4.»E2
l.»EZ
2.SE2
1.1E2
LIE]
I.OE2
7.ZEZ
4.2E2
1.6E3
4.1C2
J.3E1
2.«E2
L6EJ
f.2El
».Jll
2.«E2
J.»«
J.OE2
J.9E2
L6C)
2.4EJ
*. on
2.2CI
POND]
5.0ED
b.OEO
I. act
1.2E1
fc.OEO
J.OEO
4.0EO
J-OEd
1.SE1
2.IE1
7.6E1
L5E2
1.1E2
I.BE2
9.9E1
7.2E1
O.OEO
7.4E1
T.2E1
3.9E1
3.8E1
1.2E1
1.2E1
l.OEl
].2E1
1.9E1
1.2E1
3.4E1
4. OEl
l.OEl
1.8E1
2. OEl
2.6E1
5. OEl
t.tEl
t.»EI
4.4E1
4.2E1
6.4E1
3.9EI
3.4E1
l.OEt
I.4E1
1.4E1
O.OEO
1.JE2
1.1E2
1.4E2
5.6E 1
2.4E1
1-iEl
2.4E1
I.tEl
5.6E1
1.4E2
«.OE1
1.0C2
1.0E2
1.5E2
1.3EZ
«.4E1
I.tEl
S.2E1
4.0EO
1.6C1
1.6E4
4.0EO
l.OEO
9.0EO
4.0EO
1-bEl
1.2E1
1.2E1
t.OEO
R.OEO
4.0EO
LE-»
l.E-1
I.ZC1
HE1
l.E-t
2.4EI
I.2E1
».0£0
4.0CO
2.8E1
LIE 2
3.ZE1
4.0EO
r.2Ei
2.9Et
1.8EI
L4E1
6.0EO
t.ttl
3. OEl
8.0EO
4.4E1
2.9E2
4.4E2
4.1E2
PON04
J.OEO
1.4C1
i.oto
?.OEO
3. OEl
I.E-l
t.E-1
2.0EO
(.UCt
].OEO
l.OEO
t.OEO
1.6E1
l.OEt
2.9E1
l.E-1
l.E-l
l.OEO
l.E-1
2.0EO
l.E-1
2.0EO
!.£-!
l.E-1
l.E-1
t.E-1
4.0EO
l.E-1
l.E-l
l.E-1
l.E-1
l.OEO
l.E-1
4.0EO
l.OEO
l.E-1
«.«EO
l.E-l
l.E-1
l.OEO
l.OEO
1.6E1
l.E-l
l.E-1
t. OEO
2.2EI
2. OEl
4.0EO
4.0EO
L£-l
l.E-t
l.E-1
9.0EO
4.0EO
4.0EO
2.0EO
t.OEO
1.6E1
1.2E1
l.ttl
1.2E1
8.0EO
i.e-i
2.0EO
2.0EO
2.0EO
4.0EO
2.0EO
l.E-1
4.0EO
l.E-1
t.OEO
2.0EO
4.0EO
2.0EO
t.OEO
4.0EO
t.OEO
4.0EO
l.E-l
2.0CO
l.E-l
2-OEO
2.0EO
t.C-l
l.E-l
4-OED
l.E-l
I.C-t
l.E-l
l.E-l
2.0EO
l.E-l
l.E-l
2.0CO
2.0EO
l.E-l
2.0E9
4.0EO
2.1E1
4. OEl
PON05
2.IE1
L'E2
I.1E2
a.oEo
4.0EO
l.OEO
2.0EO
2.0EO
t.E-1
2.0EO
2.0E»
l.OEO
l.E-1
S.QEO
1.1E1
l.OEO
l.OEO
l.OEO
l.E-l
2.0EO
2.0EO
l.E-1
2.9EO
2.0EO
l.E-l
l.E-1
l.E-l
2.9EO
l.E-l
l.E-1
l.OEO
l.E-l
l.E-1
l.E-1
l.E-l
4.0EO
Z.OEO
l.E-l
l.OEO
2.0EO
l.OEO
2.0EO
l.OEO
l.OEO
r.tEi
l.E-l
l.OEO
4.9EO
1.5EO
1.9EO
l.OEO
3.0EO
4.0CO
6.JEI
L2E1
l.E-1
J.OEO
2.0EO
2.0EO
t.E-1
l.E-l
l.OEO
2.0EO
l.E-l
l.OEO
l.OEO
l.OEO
l.E-1
2-»EO
l.OEO
l.E-1
t.OEO
l.E-1
l.E-1
l.E-1
l.OEO
2.0EO
1.1C1
3.0EO
l.E-1
l.E-1
l.E-1
1. -I
1. -I
1. -1
1. -1
1. -1
1. -1
,»• "I
1. -1
1. -1
i.rEZ
l.E-1
.E-l
.E-l
.E-l
.E-l
.E-l
.OEO
.oto
POH06
J.OEO
l.E-1
l.E-1
l.E-1
l.E-1
l.OEO
t.OEO
l.E-t
t.oro
i. oto
l.E-l
l.E-1
l.E-1
2. OEO
2. OEO
l.E-1
2. OEO
l.E-l
l.E-l
l.E-1
l.E-1
l.E-1
UE-1
l.E-l
l.E-l
l.E-1
l.E-l
4. OEO
6.0EO
4. OEO
5. OEO
2. OEO
2. OEO
l.OEO
l.E-l
l.E-1
l.E-1
l.E-1
J.5EI
Z. OEO
l.OEO
l.E-1
l.E-l
LE-l
l.E-1
l.E-1
LE-l
LE-l
l.E-1
l.OEO
LE-l
l.OEO
l.E-1
l.E-l
S.OEO
2. OEO
4. OEO
l.E-l
t.OEO
l.E-l
LOCO
l.OEO
l.OEO
l.OEO
l.E-l
l.E-l
Z-OEO
l.E-1.
l.E-l
LE-l
l.E-1
l.E-l
l.OEO
l.OEO
l.E-l
l.E-1
LE-l
l.E-1
9. OEO
LE-l
LE-l
LE-l
l.E->
l.E-1
l.OEO
LE-l
l.E-1
LE-l
l.E-1
LE-l
9. OEO
I.EM
l.E-1
I.tEO
l.E-1
l.E-1
l.E-1
l.E-l
l.E-1
l.OEO
EFFLUENT
1.7E1
2. OEO
LE-l
l.OEO
l.OEO
LE-l
LE-l
l.OEO
l.OEO
I.tEl
l.E-1
l.E-l
l.E-1
l.OEO
l.E-1
l.t-1
t.ttl
2. OEO
l.E-l
2. OEO
l.E-1
LE-l
l.E-1
LE-l
l.E-1
l.E-1
l.E-l
LE-l
LE-l
l.E-1
l.E-l
LE-l
l.E-1
l.E-1
LE-l
l.E-1
l.E-1
l.E-1
LE-l
l.E-1
2. OEO
t.E-1
LE-l
LE-l
LE-l
LE-l
i.r-i
l.E-l
l.E-1
5. OEO
l.E-1
l.OEO
l.OEO
l.OES
l.E-1
4. OEO
l.E-1
2. OEO
t.OEO
3. OEO
LE-l
2. OEO
l.OEO
l.OEO
l.OEO
2.0CO
2. OEO
5. OtO
l.OEO
l.E-l
l.OEO
LE-l
l.E-t
LE-l
4.0EO
6. OtO
S.OEO
l.OEO
l.E-1
2. OtO
LE-l
l.E-1
l.E-1
l.E-1
LE-l
i.oeo
l.OEO
LE-l
l.OEO
l.E-1
LE-l
LE-l
t.E-1
l.OEO
l.E-1
l.OEO
l.OEO
l.E-l
l.E-1
l.E-l
l.OEO
161
-------
Table D-2.
Fecal streptococci bacterial performance of each pon in the Corinne
Waste Stabilization Lagoon System. Note: 3.8E5 = 3.8 x 105.
FeC4L STREPTOCOCCI 1COLOHIES/100 ML)
US > NO S*HPLE» NO * NO 0»T»
0
i
i
z
2
2
2
Z
2
2
2
Z
2
3
3
r
7
7
7
0«
Z5
Z»
t
3
t
«
1?
H
1)
eo
21
27
3
t,
*
12
H
ia
zt
24
2S
3t
?
5
t
It
14
If
16
17
21
23
Zt
27
2»
I
i
s
8
I?
It
1»
2?
2*
28
31
\
«
1
12
11
18
21
24
Z7
;•
t
»
i?
»i
75
75
75
/5
75
75
75
71
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
'A
75
75
75
INFLUENT
I.BE5
1.2E&
J.6ES
1.9E5
1.2ES
LIES
I. IE*
UaES
i.ets
7.oet
2.7ES
2.U5
5.JE5
UiES
S.4E4
1.6CS
5. jet
t.Ut
J.1E5
S.4E5
I.OE5
5.1E4
l.»ES
s.tet
1.5E5
l.Oes
1.6E5
I. SCI
6.JES
S.SES
7.4E5
8.6E5
I.JE5
2.0E5
t.7E5
1.ZE5
2.SE4
2. ret
».OEt
e.tES
l.Oes
I.»e5
5.tet
2. 1CS
i.7es
2.ret
t. 1C4
0.1C4
a.tE4
5. 5 £5
t.OEt
3.»El
a.7E4
1.0C5
Z.SES
Z. 3E5
t.lEt
a.ae4
I.OES
3.»Et
P0» 01
a.rEi
l.»E4
2-iEt
i.rEt
2.tE;
I.SEt
4. iEt
2. 'El
l.OU
1.SE4
2.9 El
5.5EI
roe;
1.5E*
2-lEt
1.3(4
8.5E!
t.!Ci
2. ret
t.sct
1.3E*
r.tei
t.)E!
J.iEJ
1-ktJ
l.kCJ
USES
1.4C5
2.tC]
1.IE5
1.1ES
i.re3
3.JE5
2.IC!
2.>CS
Z.IEJ
uiei
1.JE3
r.oiz
1.JE3
2.JE2
i.iet
I.3E3
i.tei
r.iei
2.1C2
1.1E3
1.1E2
l.SEJ
4.JE2
«.!C2
2.JE3
».JE2
8.SEZ
5.JEZ
4.IE2
J.TE2
I.2E2
2.»E2
1.JE3
PON 02
2.»E2
r.tE2
I.OEJ
1.2E5
2.2ES
3.1E3
r.ui
9.SEI
?.2C>
2.5E3
t.«E]
2.te>
2.0C5
2.«EI
5.0E3
I.OEJ
t.5E2
3.0ES
J.3EJ
S.rE!
l.tCI
I.3C3
r.2C2
j.tez
1.2E2
1.1C2
J.6E1
S.tCl
r.2Ci
1.5EZ
t.OEl
«.»£!
r.zci
t.OEZ
2.2EI
r.2Ei
2.IE2
2.2C1
7.tCI
3.6E1
1.2E1
1.2E1
1.2E2
f.OEl
a.lEl
i.aei
1.1E2
I.4E1
».2E1
I.ZCI
t.rei
1.1E2
1.0C2
t.OEl
2.0C1
1.IC2
1.2C2
t.tEl
J.tEl
2.2C1
PONO!
9.2E1
9.5E2
t.OCZ
5.5C2
9.9E2
7.6E2
O.OEO
c.aei
6.5E3
B.2EJ
i.iet
t.tC2
1.2EJ
I.1CJ
r.tEZ
?.«E2
S.tEl
5.1E2
5.2E2
6.«2
a.iE2
4.JE2
J.rEz
t.rC2
1.6E2
I. Iti
4.1EI
t.tEl
5.6C1
a.aei
z.aei
3.2C1
o.oei
2.aei
1.6E1
6.0EO
1.ZEI
3.0E1
t.OEl
8.0EO
l.E-1
a.oeo
1.1E1
i. oca
l.OCO
i.oeo
a.oeo
3-OEO
r.oeo
2.0EO
i.oeo
t.rei
z.tet
t.OEl
2-OE1
1.4E2
2.UZ
t.tEZ
l.tEZ
3.8E1
PDNDt
6.0EO
t.ZiZ
7.9E2
t.8E2
7.2E2
J.1E2
O.OEO
6.2EI
3.4E3
9.0E2
5-2E2
4.1E2
S.tEZ
t.rez
2.1EZ
2.2E2
r.tei
t.tez
1.2E2
3.1E2
5.0E2
Z.SE2
O.OEO
i.aez
I.OE2
3.SE2
2.5E2
3.2E2
I.1EZ
3.1E2
J.tEl
l.&El
t.oeo
z.tci
a.oEo
Z.tEl
Z.OEI
I.E-l
Z.OEI
1.6E2
B.OEO
Z.tEl
2.ZEI
l.aEI
t.oeo
Z.OEO
I.E-l
l.OCO
r.tci
l.E-l
1.2E1
1.5E1
I.IEI
I.OEO
t.oet
3.0EO
J.OEO
i.iei
I.OEI
i.sei
PONDS
2. set
O.OEO
6.9EJ
S.tEZ
6.3E2
3.2E2
0.9EO
I.IEt
7.tE3
».2E3
2.IE3
USE 3
J. 3E2
r.tez
l.tE2
1.3E2
t.ZEl
t.tEl
J.2E1
t.aEi
J.5E2
2.1E2
O.OEO
5.0E2
8.0E3
J.JEJ
l.tEJ
t.IEZ
t.&EZ
2.2E2
1.2E1
l.«E2
1.0E2
2.tEl
I.1EZ
2.tEl
t.OEO
t.teo
1.2E1
J.8E1
t.OEO
i.aei
t.OEO
2.0EO
7.0EO
S.OEO
Z.OEO
t.OEO
I.OEO
Z.OEO
2.0EO
J.OEO
t.OEO
l.E-l
l.E-1
t.OEO
Z.OCO
l.JEO
Z.tEl
7.0EO i
PONOfc
t.SEZ
t.OEO
.7C3
.IE;
.«E;
.OEJ
.oco
.2E4
.OE3
.6E!
.tE2
.sei
.6E2
.riz
.1E2
.6EI
.OEl
.OE1
.5C?
.OEl
. JEJ
.«ez
.OE3
.3E3
.ZE3
.2E3
.4E2
.3EZ
.tC2
.tet
.ZEI
.aEl
.ZCl
.OEl
.OEl
.aei
.IE2
.aei
.2EZ
.tfl
.ZEI
.4C1
.SEI
.OEl
.set
.oeo
.7E1
.7E1
.oei
-»E1
.E-l
-oei
.Til
.oeo
.oeo
.OEO
.ZEI
.OEO
.OEO
.OEO
EFFLUENT
1.0-1
O.OEO
2.0E!
J.tE2
1.4E2
1.6E1
O.OCO
t.ots
2.4EZ
a. OEI
i.iez
t.iez
t.«E2
3.SE2
i.iez
1.2C2
r. act
r.tei
2.0C1
s.tet
I.BC2
1.4E2
Z.4E2
t.lEZ
S.ZEZ
Z.7E2
1.1EJ
».3E2
1.8E2
J.2E2
1.8E2
l.tEZ
I.OEJ
1.0C2
t.oei
a. OEO
Z.tEl
r.zei
3.»ei
3.2E1
S.tEl
I.OEt
S.tEl
3. OEI
1.2C1
I.OEO
J.9E1
l.E-1
9.tCl
I.OEO
?.oeo
i.oeo
i.e-i
z. oeo
2.»C1
i.oeo
i.OEO
t.oeo
a.oeo
t.oeo
162
-------
Table D-2. (Continued).
FECAL STREPTOCOCCI (COLONIES/100
MS > NO )*NPLE> *t> * NO D«r«
NO 0*
7 15
7 IK
1Z
12
rR
75
75
21 75
Zt 75
Z7 75
39 75
Z 75
5 75
8 75
1? 75
17 75
20 75
Z3
2t
75
75
2» 75
75
75
75
I
t
7
10 75
U 75
It 75
1» 75
ZZ 75
25 75
21 75
I 75
t 75
75
75
75
10 It 75
10 20 75
10 23 75
10 24 75
10 29 75
I
t
10
10
10
10 14
10 13
U
11
11 *
11 19
II 13
II It
1 1
11
11 2t
12 ?
75
75
75
75
75
75
75
2S 75
75
75
5 75
8 75
12 It 75
12 It 75
75
75
IZ 17
12 20
12 II
1 »
1 i
1 »
1 12
75
ft
Ik
7t
7t
INFLUENT
S.ttt
3.7Et
Z.1E5
Z.5E5
2.9E5
«.0£t
l.lEt
l.ZEt
J.5E5
I. »Et
7.»E5
I.US
*.tE5
t. 3ES
J.7ES
Z.OES
t.lES
2.7C5
».t£5
5.7E5
J.2E5
7.tcs
J.IE*
2.8E5
2.JES
l.tEt
4.5E5
5.tE5
i.tEt
J.lEi
2.7EI
Z.Ut
t.8Et
i.tEt
I.OE5
6.7E5
J.iES
*.IE5
6.6E5
1.2E5
5.2E5
I.5E6
t.SES
1. »E5
I.tEt
5.tES
1.7EI
t.JE5
3.9E5
l.ZEt
1.0E5
1.1E5
l.»Et
9.tE5
5.SE5
9. 2E5
P0101
1.2 £3
l.JEJ
5.2E3
1.5EZ
».»EZ
S.7ES
Z.'EI
l.ZEJ
t.FES
l.lEt
I.IE*
6.ZES
».IE!
».3EJ
J.ȣJ
r.tES
l.5£»
2. IE*
2.9Ct
2.5E*
I. IE*
S.ZE5
*.IEJ
5.>EJ
k.JEJ
O.JEO
l.!E»
Z.|E»
l.»C4
$.»E*
Ult*
Z.SEJ
1.5C*
2.!E*
Z.IE*
r.)EJ
LIE]
4.1E1
3.JEJ
t.iCI
t.lE]
J.iEJ
2.1E3
*.ȣ3
!.}£«
2.»EI
6. r E J
5.) £5
i.ret
l.i£3
t.sez
1.SC3
J.iEJ
9. SEZ
?.)£!
l.-'E*
PDN02
5.8E1
Z.&EI
3.6EI
1.1E1
r.OEt
Z.OEZ
l.«E2
Z. IEZ
l.»EZ
I./EZ
t.»EJ
r.ici
6.0E3
S.fEI
I. IE*
6./E!
I.OEJ
I.4E2
I.2E3
«.>C)
r.4EZ
*.6CZ
Z.5EZ
z.rcz
r.tct
t.6C2
».4EZ
*.»EZ
r.icz
1.4CI
l.«C)
r.lCZ
J.»EZ
».«z
4. tC)
1.U3
J.tCZ
Z.9CZ
Z.lfZ
1.5E2
Z.7E2
J.OE2
i.m
\.m
6.2E2
Z.2CZ
Z.«EZ
S.1E2
z.«Ei
1.0E2
1.1C2
z.ocz
e.*ti
2.8E2
UtEZ
5.0C2
POND]
Z.K1
3.»El
5.2EI
Z.1E1
».»E1
1.1EZ
1.0E2
t.fCZ
O.OEO
i. let
3.ZE2
Z.1EI
l.IEJ
Z.2E2
t.ZEJ
I.UZ
J.»E2
3.3EZ
3.1E2
O.OEO
I.IE2
1.2C2
1.1E2
1.3EZ
I.CE2
9.5E2
5.5EZ
r.tEz
i.»i
f.4E2
5.6EZ
6.K2
».*EZ
5.«EZ
Z.9E3
1.JE3
5.0EJ
Z.OEZ
2.«E2
S.OE2
*.6EJ
J.2CZ
U6E2
2.1E2
t.rei
z.ecz
1.0E2
8.4E1
t.tlt
I.1EZ
K.OEI
3.ZE1
I.ZEt
1.6CZ
t.OEl
4.8E1
POND*
t.rti
5.0EO
J.3E1
r.fcEl
2.IE2
«.«E1
6.9EI
l.*Et
1.2EZ
*.»E1
*.»E1
3.ZE1
J.2EI
3.ZE1
5.«E1
5.ZEI
«.6E1
2.0EI
9.4EI
O.OEO
9.4E1
6.0E1
"..SCI
2.ZE1
Z.2EI
O.OEO
O.OEO
5.«E2
r.iE2
2.2EJ
t.OEJ
4.0E2
«.2E2
r.Kz
Z.6E1
1.1EI
t.«E2
Z.*£2
2.0E2
3.1E2
6.IE2
4.4EZ
I.2E2
t.OEl
1.2EZ
5.3E?
».6El
Z.tEt
S.tE?
HEJ
T.OEI
?.*£!
t.OCO
1.2E1
1.2E1
I.OCO
POND5
Z.tEl
t.rEi
T.tC.1
«.»£!
1.K2
1.8E2
Z.1EZ
I.OEZ
I.K2
4.0E2
I.«C2
2.1E2
}.2E2
J.TE2
1.8E2
2.0E2
I.OEZ
1.5E2
S.ZE2
O.OEO
l.»E2
S.2EI
2.SE1
J.»E1
l.kEl
1.SE2
1.IE2
1.1E2
1.2C2
t.TEZ
2.6EZ
t.«E2
t.OEl
5.1E2
2.4E2
2.IE2
«.«£!
J.itl
2.0E2
4.5E1
I.TE2
1.2E2
2.iCZ
2.0E1
6.6EZ
«.«E2
I.2E1
S.2E1
1.6E2
Z.OEZ
I.OEI
S.2EI
*.ato
O.OEO
1.ZE1
Z.OEt
PONDt
1.5E1
2.1E1
2.2E1
J. 3E1
Z.fEZ
1.2C2
1.8E2
2.2EZ
2.0CZ
1.112
B.SE2
2.6E2
2.2C2
1.SC2
2.0E2
2.IEZ
3.8E2
1.SE2
Z.6EZ
l.«E2
».8E1
>.«E1
5.SE1
8.0C1
3.8E1
1.1E2
1.IE2
1.1E2
2.IE2
1.2EZ
1.ZE2
Z.«E1
2.0EI
3.2E2
3.0E2
1.TE2
6.»El
».»E2
7.2E2
3.4EZ
I.IEZ
2.ZE2
I.IEZ
t.*EZ
1.3C2
Z.tEZ
t.oei
t.OCO
i.iez
i.oei
t.E-t
t.OEO
t.E-l
l.E-1
1.2E1
1.9EZ
EFFLUENT
9.0CO
Z.ZEl
1.ZE1
6.0EO
3.3EI
S.ZC1
r.OEl
2.SE2
S.OE2
'.ZE2
1.KE2
I.SE2
3.5EJ
2.ZE2
1.8E2
3.4EZ
t.IEZ
2.0E2
*.tEl
Z.3E2
S.ZEt
t.tEl
i.OEl
t.8El
t.OEl
r.2El
t.tEl
t.OEt
I.tEt
4>8EI
t.OEl
Z.ZEl
Z. OEl
Z.tEl
1.4EZ
3.ZE1
6. OEl
Z.tEl
7.6EI
8.8E1
1.ZE2
1.0E2
t.OEl
f.ZEl
(.tEl
l.tEZ
I.2EI
3.ZE1
3.ZE2
t.OEl
t.OEO
t.OEO
I.OEl
i.aEi
2.0EO
1.6EI
163
-------
Table D-3. Total coliform bacterial performance for each pond in the Corinne
Waste Stabilization Lagoon System.
TOTAL COLlrOimS (NPN/lOO NO OAT» tHOtt >.M
US • NO SUKPlt. ND • NO OAT*
NO 04 fR
z i rs
» rs
28 rs
2r rs
3 rs
t rs
18 rs
12 rs
24 rs
it rs
2 rs
8 rs
14 rs
zi rs
zi rs
zt rs
s rs
8 rs
iz rs
i* rs
zz
rs
zs rs
i rs
» rs
12 rs
•is rs
z* rs
is rs
»
is rs
if rs
zi rs
it rs
5 rs
it rs
t» rs
23 rs
i» rs
it rs
n rs
r rs
rs
iz
tz it
to
10
28 rs
8 rs
rs
iz ir rs
iz z$ rs
t re
12 rs
is r«
zt rt
zr r*
mrLucNT
>zj»«ooo
>ZJOCOOO
>Z]»00000
>z»oe»o
*100»0
rsoeo*
Z»M««»
us
ZI«00»t
tJOCO»
»I«00«*
IZOMO«»
2S00008
»J»009»
2300
NS
418000)
>25000««
43*0008
>Z4MOO»
230*0000
230»0«00
11(0009
4180009
Z 180000
2100000
ZIOOOOO
2180000
VIOOO*
>2IOOOOO
4300000
25000000
tJOOOO
NO
210000000
4184000
4I900«8
230000000
>2IOOOOO
>23000000
*3»0<00
» 190000
> 190009
2300000
»300»0
* 3000000
» 300000
43000000
230*000*
*I>0000
>Z30000
*3000«8
M«01
238808
»30908
rsooo
43100
43*0*
ISOiO*
43090*
2190*
•30990
4 300 5 00
Z JOS 00
»3*00
23108
43000
13*8
NS
»300
>23>00
NS
>249»»
fS>49
»3»00
f3}00
45390
23100
f3IOO
rsoo
4300
23010*
*3!00
43900
230800
230800
43*00
*3>00
23100
NB
<2310*
2101 0*
430*00
430900
f3)00
2101*0
NO
>23*0
rsoo
2110*
410*
*3>00
21*100
» SOI 00
>230»**
PON02
tiooo
»SOO
21000
21000
NS
4300*
<23t*
23000
23*00
*3«00
• 3000
4300
4300
»JO
4300
>300
»SM
2100
»30
2300
4300
430
ZSOO
• 300
2100
2100
4100
2100
*IO
2300
rso
ISO
4100
2300
f300»
23*«0
4300
150*0
43*0
2300
144*0
43*0
43*0
NO
4100
158*0
43*0
14(0
210*
NO
NO
>230000
PON03
(30
»300
430*
»JOO
»J80
15009
4JOOO
2SOO
3*000
21000
43000
2300
4300
»so
ISO
2100
NS
<2i
210
tJO
430
M
43
230
230
23
41
«3
IS
210
210
*!
210
»IO
1SOO
<21
ISO
2100
210
410
4100
2300
23*0
»so
23*
43*
410
21*0
21*0
410
410
43*0
POND4
430
2100
'10
2300
9300
4300
MS
>30
4300*
23*000
rsoo
*30
410
430
*10
*}
flO
1500
430
tio
NS
»
4
210
43
»1
ISO
21
21
ZI
>2300
<21
230
>2300
210
>23000
23
21
*1
150
NO
2 no
27
230
•NO
230
• 3
»I
41*
NO
NO
41*
PONOS
41*
*30
43*
*3«
1500
ISO*
11*0
4300
4100
1500
43*
4300
»30
430
ISO
>2IOt
43
15*00
410
*IO
21
21
»
4)
NS
4
21
rs
23
210
rs
210
rs
4100
rso
040
210
rs
>2100
4300
4300
230
23
rs
43
>2400
»3
»10
2100
430
45(0
150
PON04
2300
4)0
959
2300
410*
4100
43«0
4300
43000
23000
<2IO
210
*30
430
rs
120
ISO
2*0
230
»Jfl
NS
rs
Z3
210
Z3
210
4]
tio
<)0
rs
2U*
tio
»!0
>2400
43
»1
<3
Z3
21
4]
21
41
*
21
«IO
>ZIOO
»J
»10
zoo
>2300
910
4!
41
Z10
rs
rs
ZI
410
ISO
*!
4
ISO
110
»I
ND
43
164
-------
APPENDIX E
CLIMATOLOGICAL INFORMATION COLLECTED DURING THE STUDY OF
THE CORINNE WASTE STABILIZATION LAGOON SYSTEM
165
-------
Table E-l. Climatological data for the Corinne Waste Stabilization Lagoon
System.
HEATHER J»I*
TEMP (OEiHEES FAHRENHEIT). PRECIP AND U AP (INCHES).
I, I NO CHlLES/C»r> SADtATION (1.ANfiLEYS/OAf >. T-TRACE
»IR TE^PEflAtURE
0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Dt
1
J
19
a
i?
11
14
16
17
19
20
21
22
25
24
21
26
27
28
29
10
11
1
2
1
4
5
6
7
a
4
10
11
12
11
14
15
16
t r
18
19
21
21
2?
2!
24
25
26
27
28
1
2
1
4
5
6
r
a
9
10
u
I?
1!
14
15
16
17
11
19
24
21
22
25
26
25
26
27
28
29
ID
It
1
2
1
4
5
6
7
8
9
rR
75
75
75
75
75
75
75
75
75
75
75
75
75
7S
p5
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
7*
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
75
7S
79
79
75
75
75
79
79
75
7S
75
75
75
75
75
75
75
75
75
75
75
75
75
75
H»X
21
26
50
31
52
37
35
56
30
27
2!
18
25
26
29
32
17
41
15
38
34
29
31
18
47
44
32
28
22
25
29
40
41
42
38
J5
30
42
65
41
41
43
43
45
43
41
13
32
35
37
37
25
27
34
19
17
43
43
49
52
55
53
51
54
54
51
57
51
45
47
47
49
52
49
46
41
55
65
60
4*
52
42
47
46
17
29
30
J7
47
45
45
51
5J
59
51
40
41
48
HIN
3
12
1
13
17
27
25
25
12
•
2
19
15
27
6
9
20
5
10
26
34
11
12
15
5
7
15
16
23
10
27
16
5
21
28
31
12
29
31
35
31
29
20
21
18
21
22
9
5
11
11
15
IS
29
12
10
32
29
26
27
18
18
19
11
12
10
27
29
12
26
11
18
12
45
17
14
It
25
11
It
21
14
12
14
27
12
24
22
12
IS
36
12
28
27
28
CRECIP
T
T
.55
.03
.90
.04
.08
.02
.01
.10
.08
.02
T
.18
.18
.06
.15
T
T
.2!
.07
r
.42
.08
I
.05
.61
.OS
.12
.10
.01
f
.SO
.02
.06
1.08
.47
t
.01
T
T
.11
.11
I
P«* TEMPERATURE
HAX NIN
I)
106
til
59
120
111
121
10»
n
SOL AD
RAOUTION
I»Z.l
179.8
162.8
101.9
15*.2
106.5
177.8
40.5
131.7
111.3
254.6
188.5
198.5
257.1
157 .3
141.0
208.4
1*1.4
245.1
218.0
211.7
262.0
241.4
32.0
150. 2
7i.s
2)0.»
131.1
223.1
Z61.]
164.6
111.7
272.«
152.5
191.4
156.2
1S1.6
76.1
192.1
27.9
122.7
376.0
134.9
65.1
177.9
3)0.1
111.9
375.1
117.2
192.1
253.4
403.3
305.9
434.5
447.4
444.1
435.5
1»9.8
16).6
311.1
3*5.0
410.5
294.4
117.5
169.6
209.6
I»S.7
217.6
216.1
551.5
417.2
292.7
316.4
505.«
86.1
««5.4
112 .«
175.8
211.3
237. •
31.7
340.4
164.6
16.1
177.t
116.2
604.4
556.9
590.6
320.2
414.)
591.6
IIS.5
148.5
4)1.1
184.6
120.6
III.)
118.2
°C = 0.555
(°F -32)
1 inch = 25 mm
1 mile = 1.609 km
1 Langley = 1 gram
calorie/cm2
166
-------
Table E-l.
Continued.
MC*rN?R Jtlt
ttltr tDEiillEES MHRENHEIT). PPECIP UNO £<»P CINCHES*.
klND tMlLES/tHI. RADIATION (L*NGtCf S/Dir >. T»tR«CE
1I» TEHPtRHTURr
HO 94 in H»X KIN >>RtCI? EV4P KIND
ID 75 55 12 60
It '5 56 II 128
\i 75 59 it no
n
it
I1!
* K
* 17
5
82
15
83
70
64
61
67
6»
11
«3
it
7*
76
82
«2
If
10
n
t6
92
89
»*
95
97
»7
96
96
It
17
tl
It
tt
•0
8«
28
33
59
35
31
87
3t
J9
It
4t
16
11
12
31
32
30
30
30
32
34
4J
32
2»
11
36
to
38
41
47
to
38
tl
49
48
51
t?
35
32
33
37
to
46
21
30
36
4Z
39
39
tt
»6
tt
52
42
tt
51
52
tl
43
tt
42
49
52
55
51
57
53
45
45
42
51
te
51
61
45
tl
45
tr
50
50
59
51
62
58
60
61
62
6*
67
61
62
65
65
61
61
60
5»
T
T
.31
.76
.12
.01
T
.3!
.««
.05
.11
.04
.10
.02
.45
.05
.03
.32
.12
.02
.37
.12
.13
.03
.03
.as
.13
.02
.10
.11
T
.tt
.30
r
.22
.it
r
t
T
.17
.16
.2t
.09
.05
.10
.01
.11
.25
.16
.35
.29
.05
.11
.04
.07
. 19
.18
.29
.28
.21
.18
.31
.31
.37
.30
.30
.05
.12
.It
.16
.18
.29
.22
.20
.23
.24
.31
.11
.31
.tt
.21
.23
.26
.26
.42
.14
.27
.42
.13
.28
.3t
.32
.35
.27
.39
.It
.13
.06
.26
.25
.25
.3*
.29
.It
.28
.11
.10
.1*
.31
.30
.26
.26
.34
.36
.33
.tl
.30
.31
.tl
.16
.27
.31
.36
.tt
.26
67
112
US
136
50
70
87
52
44
41
142
47
69
94
80
29
45
36
19
39
22
32
57
67
35
6*
100
107
75
71
1Z3
111
33
tl
66
77
13
J»
32
31
54
58
It
to
tl
76
60
71
tt
14
34
tt
31
t7
57
65
7ft
tt
50
tr
36
76
S»2
35
19
19
17
19
4.k
12
29
It
20
21
12
27
16
21
25
21
28
22
72
tt
23
PAN ICHPERtlURE
X«X HIN
75
69
68
56
56
tr
54
6t
71
70
71
71
56
55
52
66
72
78
10
71
71
13
15
II
15
68
77
70
63
64
67
71
72
7!
72
72
79
80
81
65
16
7t
TT
65
67
66
63
M
tl
r»
8*
65
It
66
85
74
ri
61
rt
rs
61
86
86
78
82
6*
90
93
96
91
93
94
95
fl
*•
too
101
100
101
»*
VI
102
91
90
36
to
38
36
)t
36
37
38
tl
tt
tl
II
37
37
39
tl
tl
tl
54
41
46
53
57
55
56
53
to
35
16
tl
tr
ts
31
ts
SO
t6
tt
SI
57
59
60
55
51
55
6«
to
52
SO
48
tt
sr
61
60
61
sr
52
48
tr
tv
56
sr
51
57
tl
50
SI
5t
60
tl
to
t!
67
ts
tl
ro
72
71
r*
70
ro
ri
ti
ti
tt
ti
ti
R«D[«nt)N
49t.9
631.5
645.8
616.6
299.5
254.5
338.9
73.1
366.7
3J6.7
399.9
6>9.9
416.8
253,5
612.5
94.5
462.6
142.6
t28.2
24U3
524.2
748.3
624.2
673.5
301.2
536.6
226.8
173.9
341.9
585.t
717.3
658.6
265.1
736.1
741.0
736.9
577.8
665.1
688.6
255. 5
162. t
S26.I
190.8
178.S
540.2
795. 6
172.1
54B.5
696.Z
768.3
758.1
702.5
718.6
157.7
tlt.i
722.5
750.1
rta.«
566.1
766.3
521.1
721.2
760.2
591.5
662.1
751.8
666.2
610.8
145.8
115.1
459.3
tot.i
442.9
rsi.i
tio.s
659.1
Itt.l
791.1
771.1
762.0
754.2
761.1
776.1
749.2
S10.I
731.3
721.1
729.t
752.7
726.1
tS6.r
682.9
t!6.8
604.6
706.S
692.1
722.7
518.8
562.9
167
-------
Table E-l.
Continued.
*E*THE« J«T4
IEHP (OEuREES CmREINEU). PKECIP »MO E»«P (INCHES).
WIND <«ItE$/C«Y. R«OI «UO» IL«MGLETS/D»r>. T-TRACC
«IR IEHPERATURE
DO D* TR "4X "IN
7 ID 75 88 62
It 75
9 7$
21 75
23 75
23 75
24 75
25 /5
26 75
tt 75
29 75
2« 75
30 75
Jl 75
t 75
75
75
75
75
75
75
75
10 75
11 75
12 75
11 75
It 75
15 75
16 75
17 75
18 75
19 75
20 75
21 75
22 75
23 75
2t 75
25 75
26 75
27 75
21 75
2» 75
Jl 75
31 75
1 75
2 75
J 75
6 75
5 75
S 75
7 75
8 75
9 75
It) 75
11 75
12 /5
11 75
It 75
15 75
16 75
17 75
ia 75
19 75
20 75
21 75
22 75
2! 75
26 75
25 75
26 75
27 75
28 75
29 75
10 75
10 1 75
10 2 75
10 75
10 75
10 75
10 75
10 75
10 75
10 75
10 10 75
10 11 75
10 12 75
10 1* 75
10 16 75
10 15 75
10 16 75
10 17 75
10 18 75
10 1* 75
10 20 75
10 21 75
10 22 75
10 21 75
10 26 75
92
9?
93
91
92
95
95
97
78
95
91
79
80
85
91
94
97
97
92
92
92
91
ae
ai
85
85
80
90
89
67
at
76
79
85
79
79
89
aa
83
82
at
aa
88
75
83
63
67
86
88
67
66
62
85
81
82
82
8!
81
79
74
75
78
75
80
81
81
62 -
76
75
78
76
76
Tt
79
79
tt
61
01
74
54
64
72
63
50
51
37
59
64
66
71
69
70
71
62
43
41
58
61
61
62
55
57
54
57
56
64
65
58
47
48
46
46
51
53
56
69
49
5 J
58
57
to
55
56
55
51
52
55
52
55
50
56
36
50
39
48
55
53
45
45
51
46
39
41
47
43
41
41
44
tt
59
52
57
48
49
47
52
46
It
It
It
It
40
It
»
It
40
40
34
39
40
36
36
34
44
39
46
36
30
29
36
37
38
IS
36
tt
30
30
32
33
31
3!
30
26
16
PRCCtP EV«P
.19
• 33
.31
.34
.14
.36
. 34
.65
. 18
.40
.32 .39
.05 .23
.29 .27
.30
.27
.28
.29
.2t
.29
.50
.27
.31
.30
.31
.28
.27
.26
r .29
.29
.30
.30
r .33
.21
I .20
.17
.31
.33
.22
.24
1 .27
.11
.28
.25
.26
.26
.2a
.20
.27
.23
.2!
.21
.20
.19
.16 -17
.20
.25
.21
.21
.16
.22
.26
.26
.19
.17
.19
.13
.16
.15
.16
.14
.20
.1!
. . 16
.16
.14
.0!
.26
.17
.16
.14
.45 .21
.33 .10
.16
.01 .10
.37 .03
.88
.05 .06
.10
.06
.07
.0*
.06
.09
.06
.24 .13
.02 .11
KIND
Jl
6
5
20
29
12
29
21
9
26
45
47
52
28
10
8
12
a
11
55
a
13
a
12
24
11
17
27
9
17
13
36
29
23
27
32
42
11
11
16
61
i»
1
9
16
41
5
29
11
7
5
4
3
9
29
66
12
16
5
12
It
35
23
15
15
6
3
t
4
3
16
S
9
16
7
4
6
20
11
13
71
37
8
14
40
20
56
to
49
til
11
PUN TCNPCR4TUDC
MIX HIM
94
97
96
96
96
96
97
9>
97
100
96
at
65
87
91
94
95
94
95
97
95
94
93
94
92
90
91
91
90
91
91
92
7a
88
85
87
84
84
90
90
88
84
87
86
90
83
82
85
84
86
8*
tt
86
88
90
81
64
65
65
65
63
76
75
74
73
76
78
78
79
78
77
75
75
75
75
7»
7»
75
r$
72
73
78
64
61
57
60
63
67
»4
64
64
62
62
60
66
6t
ro
65
65
61
67
56
70
70
69
t>2
5J
55
60
62
62
68
69
62
60
62
67
67
65
62
65
62
63
63
62
60
56
58
60
52
55
51
5t
63
57
5J
56
51
60
48
55
55
55
58
58
58
62
55
60
56
60
60
60
60
58
46
45
50
47
50
52
52
53
54
48
50
50
SO
51
52
52
51
SO
50
37
40
46
43
41
41
64
45
45
45
45
45
41
36
SOL M
RIOUIION
709.7
537.6
704.9
699.2
616.5
711.5
733.9
708.8
704.4
688.4
686.5
122.9
591.3
655.5
711.5
711.5
737.J
703.6
573.6
677.6
700.2
697.4
669.6
653.3
513.8
477.0
606.6
644.5
546.6
547.0
640.9
655.1
422.5
453.0
449.4
619.7
559.7
644.2
645.4
629.9
456.8
615.5
615.4
632.0
611.7
554.5
612.7
606.1
607.7
612.8
602.4
594.0
580.6
555.7
191.2
561.6
529.0
521.2
541.5
541.7
459.1
358.1
527.2
524.7
503.6
507.6
521.7
Sit.6
501.7
486.6
470.1
467.2
486.2
477.1
473.5
476.8
467.3
tV.S
426.0
445.1
362.S
92.6
362.6
406.1
275.7
145.2
63.6
122.6
265.4
373.8
380.8
3*7.3
365.7
346.9
174.7
367.1
40.4
163.3
290.0
168
-------
Table E-l, Continued.
IENP (OCuRCCS F*HS£1H[IT), PDtCIP 1X0 C«*P (INCHES).
hINO RADIAHON . T-fRACt
AIR rCIPCDATUftC
HO OA rn
10 25 '5
10 z* 75
10 2' '5
10 it '5
10 29 rs
10 19 75
10 11 75
1 1 75
it 75
11 75
1 1 75
1 t 75
1 1 rs
11 75
I 1 75
1 1 rs
11 1» 75
n 11 75
11 i? 75
11 1' 7i
it n 75
11 15 75
11 16 75
11 1' 75
11 11 75
11 i* 75
11 ZO 75
n n 75
> 1 2* 75
it 2* 75
11 24 75
11 25 75
11 21 75
11 2' 75
11 21 75
11 2» 75
11 31 75
12 1 75
12 ? 75
12 1 75
12 4 75
12 5 75
12 6 75
12 7 75
12 8 75
12 » 75
12 10 75
12 11 75
12 l» 75
12 11 75
12 It 75
12 15 75
12 16 7)
12 17 75
2 19 75
2 1» 75
2 2» 75
2 21 7i
2 22 75
2 2] 75
2 2* 7S
2 25 75
2 26 75
I IT 75
2 28 75
2 2» 75
2 30 75
2 31 75
7ft
7«
76
F6
n
76
7t
76
» 76
10 76
11 76
12 76
1? 76
It 76
15 76
16 76
1' 76
ID 76
l» 76
zn 76
21 76
2? 76
21 76
2* 76
25 76
26 76
27 76
2H 76
2* 76
5l> 76
II 76
»«x
42
56
1,9
5k
6]
63
5*
55
57
(2
6J
61
61
5J
«7
45
*«
42
44
50
51
5f
5»
47
96
40
II
J7
5»
59
44
44
31
34
35
26
30
42
4>
4]
4!
45
52
45
47
49
4t
42
41
12
ze
12
40
31
If
J7
30
2«
27
2»
32
37
37
17
!i
31
31
30
23
20
26
20
3!
33
2»
ie
38
3>
26
18
!2
35
38
45
3*
41
58
II
31
30
25
I!
14
IJ
40
46
44
44
44
H|N
ia
3!
30
23
25
30
34
2«
24
26
26
21
25
37
30
17
26
1<
17
18
16
21
27
ID
26
21
18
20
16
23
32
24
12
25
26
15
7
27
26
20
1*
30
Ji
25
30
26
27
24
31
24
11
18
22
18
18
15
13
20
18
24
27
11
2f
30
15
If
1>
5
1!
t
It
18
24
11
10
25
2*
IS
2
20
5
12
22
33
19
17
19
13
10
4
8
19
16
7
14
27
18
20
21
.96
.08
.09
.07
.02
.13
.1!
.67
.06
.01
.08
.41
.13
.07
.15
.25
.42
.12
.04
.01
HIND
41
60
38
3
10
4
74
PAN TCNPCIUTURC SOLAR
«AX HlN RADIATION
137. »
60.1
87.0
167.9
363. T
214.0
280.1
328.9
118. 5
281.6
112.2
311.5*
JOUO
59.9
263.4
2*8.9
67.9
121.1
301.9
307.7
249.6
1»0.0
2>7.3
153.4
106.9
255.6
151.9
174.5
245.7
64.8
49.2
276.7
56.1
86.9
29.6
131.3
134.8
71.1
245.6
239.6
236.1
68.8
123. 2
164.1
64.0
215.1
205.8
182.9
27.0
107.1
230.2
188.9
167.9
Z32.9
232.8
231.2
228.2
152.3
294.2
107.7
57.5 _
76.4
126.&
109.2
127.2
101.6
102.8
228.5
.12
169
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-600/2-77-086
2.
3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE
PERFORMANCE EVALUATION OF AN EXISTING SEVEN CELL
LAGOON SYSTEM
5. REPORT DATE
August 1977 (Issuing Date)_
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
James H. Reynolds, Ralph E. Swiss
Christine A. Macko, and E. Joe Middlebrooks
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Utah Water Research Laboratory
Utah State University
Logan, Utah 84322
10. PROGRAM ELEMENT NO.
1BC611
11. CONTRACT/GRANT NO.
68-03-2060
12. SPONSORING AGENCY NAME AND ADDRESS
Municipal Environmental Research Laboratory--Cin.,OH
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268
13. TYPE OF REPORT AND PERIOD COVERED
Final. 1974-1976
14. SPONSORING AGENCY CODE
EPA/600/14
15. SUPPLEMENTARY NOTES
Project Officer - Ronald F. Lewis (513) 684-7644
16. ABSTRACT
The general objective of this study was to determine the yearly performance of a
seven cell facultative wastewater lagoon system and to compare this performance with
existing state and federal discharge standards and with the criteria used to design
the lagoon system and to evaluate existing design equations.
Twenty-four hour composite samples or grab samples for certain analyses were
collected for four 30 consecutive day periods (once each season) and twice a week in
the periods between for 13 months and tested for chemical and physical parameters.
Samples were taken from the influent at the end of each cell, and from the final
effluent.
The data of tests for total and soluble BOD5, COD, suspended solids, nitrogen
forms, total phosphorus, total algal count by genera, fecal coliform bacteria, fecal
streptococci bacteria and total coliform bacteria, influent and effluent daily flow
rates, air temperature, wind, evaporation, and solar radiation are reported with a
discussion of the results in relation to the discharge standards and design of lagoon
systems.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Waste Treatment
*Lagoons (ponds)
*Performance evaluation
*Design criteria
Chemical analysis
Physical tests
13B
18. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (ThisReport)
Hnrl a s«;i f i ed
21. NO. OF PAGES
186
20. SECURITY CLASS (Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
*U.S. GOVERNMENT PRINTING OFFICE: 1977-757-056/6484
170
------- |