-------
• « • J
'if! TO 10
« * • J-l
10 IF iCnEFr>nT.LT.O.O> I I » 1?
II (.».)•!
N «Q TO 105
UOEAl > COEFIN»U»E* (K)
UO TO 106
105 U«C«l • UPF»3
106 'JSE»2 » COF.FOUT»UPE» CD
•NA1 » COEF[M»4NA(K ) SANA? a COEFOUT • AN A
HC031 • COEFIN*WC03("') IHC032
CLI » COFFI»I»CL ix> set? .
CC31 » COEFlN«C03c<) NC033 » COEFOUT»C03 CL )
50*1 • COEFI^«SO*IK) ISO*? « COEFOUT»SO*«LI
FLNOI « ON031 - ON032
FLNH3 « OMHJl - ONM32 .
« UBEAl - UPFA2
« c»i - CA2
ANAl - ANA2
AMQI - AMG2
FUMC03 * HC031 - HC032
FLCL * CLI - CL2
FLC03 « C031 - C032
FLSO* " S0*l - S0»2
LSET1 « LSET2 * 0
SUBROUTINE PRNT
PRIMTI IPRINTI t IPPlNTjl P9NT
PPNT 3
C-— -THIS SUPROUTI»4E PRINTS CONTROL AND INPUT DATA PRNT
PPNT *
COM»«ON/APLE/TITL£(10) .SMQNTH.HM ,0. JPRIMT . JPRINT t INK t IPUNCH, I STOP t PRwT -,
IOPNAPI25) .MOR<<»
t TT«60> »FFRT (7) tOFFP.T(3) .NORQIN.NFERT INtNTEHPIN. °PNT
3ITOT.jTOT,IBTOT.Nr PRNT
.a2. A3.X P«NT .
COMUON/YYY/STAHT . [OTEi"ONTH. I .I.L
CCMuON/XXY/ICMfCK. ICOUNT .CONV.PK.Pirl .CROP PRNT
CCMMON/X»X/nF.LX.OELT«MS.kiT4PT, 80(25 ) .TEN(25 I .CnrCK(25 (.MQISIN
1125 I.CHH?Ol(2S ).MQt50UT(?5 I.AN03C2S ).A».TEni2!> I.CALI25 ).O.SPflPRNT g
1P.XTPACT .SUVN03. THOP. <*i .TO. I DAY ,u (25) .CH.CHl » I RERUN. ISwCM.CUMSUM.PRNT g
ISUMQUT.RF.OUCE PPNT in
_ PRNT
INTCGCP TITLF.SMONTM, START, o. TO. YEAR ......
299
-------
PONT
22
23
-----PO (MI
i r-o ro l
«•«•
no mt l-<> rruifH«»i
in?. |uu i«*r . i
, CR<1P.(.L,P« t"M t*»K I .OH.*
nurr
. t rr M . INK . i"»ss .
,IP«INTI,
e— —
S*IP PARF
POINT 103
POINT 104. (THO«( J) « J»l «TO)
109
00 10 J»l»'iT
BC*0 ««) (TT(I) t!»l.TOI
10 PPJNT ins. j, (TT ( I) . I«l »TQ»
8
P»6E
103
c— — PC:*T KATES ANALYSIS
107
C--— -PPJMT jooifiJTiON WAT^P ANALYSIS
PRINT 10*. (AIPBU) .I»ltO)
C. ---- PPINT IRPI6ATION 4pPLlCATION DATES
PP.INT 110.
-PRINT FERTILIZER APPLICATION DATES
PRINT 111* (IADOU) tl»lt
PRINT 112
j»i.7>
OC 2 I»UITOT
BEAD ««»)
( 3 I
FORE* * FFRT<») »CONV«.»<>66 $PCA m fEPT(5)»CONtf
FSO* « FFBTI6) »CONV SFC03 » FERT(7)«CONV
C ----- PPINT FPBTILIZEB APPLICATIONS
2 POINT H3.I .FE(»T< 1) «FNH*.FN03.FUREAtFCAiFSO*«FC03
PEKING Q
REWIND 10
PRINT 100
C- — -PRINT ORGANIC APPLICATION DATES
PRINT 1I». ( IORNAPI Jl .J»l .jTQTl
POINT 115
00 3 I«1»JTOT
READ <10l IOFERTU>»J«1«3»
FCfiN * OFE"T(3l«CONV
C-— -POINT ORGANIC APPLICATIONS
3 PRINT U3t I.OFERTil ) fOFf«T(2» .TORN
REMIND 10
C— .-PRINT COMPONENT MQWIZON DEPTHS
PRINT 106< IHOP2
33
34
35
36
37
41
42
43
44
45
49
50
51
52
53
54
64
65
66
73
74
75
76
77
78
79
80
81
A2
83
84
AS
PRNT 47
PRNT 88
PRNT 89
PRNT
PRNT
90
91
PRNT 92
PRNT 93
300
-------
PBfNT 103 PPNT 94
PBNT 9*
100 rrjwuAT I 1 «1//. )A» « 1 QAH// I PBNT 97
101 FOWw/t T 1 t(,j( •CONTOOL CAMO ^U^mW Y •/S 7 I • ( B AS I C PAflAMETFPSI•//35» PBNT 94
{•ST*aT|»i(; unsirn *•« |5*10**(TRACT ••.F5.lt/35x PUNT 99
|»ST»PTjMr. ftAV ••• (5. 10X»C*>OP •••I*/JSX PBNT 100
«*«n|l *rr,ttfnt Vf/f •••."S.I." (•*"• If , »CONVf »0l •• i* ^»rf « / J*1 • PPNT I"'
4»t|wr |MTF"V nif/Ni •• • (••• • I o i »r»«tf.* / ••«»•»,l/Jlx PMNT |0*
•• • !^ t t 0 « "T» AH •••f^/l'iX PBNT 10T
•«.»H.O////| PBNT IOH
l»IPPINT ••.!•}. 10x«IPEAOP »».I5/35X PBNT 110
•».I5.10X«ITEST »».I5/35X PRNT 111
-•.15/35* PBNT 112
. ... . «»,I5////) PBNT 11*
103 FCR"AT(lMD PRNT H'
104 FCRM4TI//1SX»*E?KLY TEupfRATuRE OATA»13X»HO^IZON OEPTHJCH)* PBNT H6
1/46X.6(3X.F6.1)) ' PHNT 11^
105 FCP»'4T(2CiX.I3.2X»TEMPERATUBEiDEG C)»»2x.6F9.1l PRNT 110
116 FORMAT(//IOt»COupONENT HORIZON OEPTHSICMI* . 6x.6l3XF6.il) PflNT 11'
107 FORM AT(1Ox»I°BIGATION «ATE° ANALYSIS(P°"l•/10X»NH4»7x«N03*7X»C4 «7PRNT 12"
IX'NA «7)i«Mf, •*X»HCQ3'»7X»CL *7X»C03»7x«SO**) PPNT 121
108 FCBMAT(3X»9F10.2//I PBNT 122
_ 1 'i 1
104 FORMATi//> PBNT iej
no FORMAT 9999 12^
115 FORMAT(//10X»ORGANIC-N APPL ICATIONS(UG)•/10X»OEPTH»5x•C/N»5X»OBN*)PRNT 13"
PBNT 131
SUBROUTINE CHK
SUBROUTINE CHK(Ll>L2>L3tj»EXNH3.EXCA.£XANA.EXAMGtOELN03«OELNH3.0ELCHK ^
10BGN.OELUBE4) CHK ^
CHK *
C THIS SUBROUTINE DETERMINES IF THE NITROGEN TRANSFORMATION ANO/OR CHK *
C. ION r«TEN(25 )»CHECK(25 )»*"OISIN CHK
1(25 )*CMM201(25 ).WOISOUT(25 )«AN03(2S ).AMH3(25 I.UREAI25 ).OBN CHK ||
2(25 ».CA(25 ).ANA(25 I.AMGI25 ).HC03(25 )«CL<25 ).C03<25 ).SO*(25 CHK J*
3UE5(25 ).C5<25 ).SA5(25 ).XX5(25 ).CASO<2'i )«AGSO«25 ).BNH4(25 ).CHK {^
4EC«2^ ).CNl(25 J.SA-TI25 I.RNI25 I.RCI25 ).T£M(25 ).CAL(25 I.O.SROCHK j
1P»XTRACT.SUMNO.T.TMOH(4) ,TO» lOAYiU (25) .CH.CH1. IRERUN CHK J
COMMON/XX2/A1.A2.A3.X . CHK '?
CHK J!
BEAU MOISIN. MOISOUT CHK }"
CMK Jo
DIMENSION XI7.25) . CHK «"
CHK |»
LI • L2 « L3 « 0 CHK I*
lF(ABS(fXNM3).LT.Al.ANO.*8S(EXCA).LT.AII1.2 CHK e*
1 IFIAPSIEXANA) .LT.Al.AND.A3SIEKAMG) .LT.41)3.2 CHK e_,
3 IFIARS(X(2.J) - 4Nn3(J)).LT.il)*.2 CHK c.
4 IF(*flS(X(5.J) - CA(j) I .LT.AD5.2 CHK ^
5 IF(ARSIXI6.J) - ANA(J)).LT.A1)6.2 CHK f~
t> IF UflSur <7, j) - -""•••• • T «•»••-•» *•** *•
301
-------
11
12
13
»4
16
ll » 1
\c (sP»P»«;.ro. 1 1 *0 TO 0007
IF IAPSIX < i • ;> • *M>3 1 „ M ,LT.A2! 1 1 •<»
IF I4MS < X (Z> Jl - ANH3 ( jl I ,LT.A2» l£.
IF < »R5 i x i4. ji - nnMjM.iT.42il3.-i
I* ( »«S< X «3« J« -
IF I4MM uiltMNI Jl I ,t»r.A J,Oi».AM«»«««OHOUTl Jl I .(§T . A J I 1 S t 1 6
LJ • I
Ml.jl • **03U> *«(<*• Jl • ANMJ(J)
X(3t.j) • O^F*U> IX(t.J) » 0«N(J>
115. J) » C»IJ) »X<6fj) « 4NA1JI
CHK
CH«C
?•*
CHIC
31
32
33
3*
».»• 436
CH< 37
CMK Id
CHK 40
CHK 41
CMK *2
CHK 43
CHK 44
SUBROUTINE SKIP
SL8ROUTINE
c—
c—
c-
c-
c-
19
74-28
.— PBOGPAM TO SKIP F»OM PRESENT LOGICAL FILE TO NEXT LOGICAL
— IUMT*LOGICAL UNIT
IF
120.10
20
ESO
SKIP
SKIP
SKIP
SKIP 40
SKIP 50
SKIP 60
10
20
30
SKIP 80
SKIP <»0
SKIP 100
SUBROUTINE BACK
SUBPOUTINE
c—
c
c—
c
c
c
10
74-2**
TO ^ACK f»0" PRESENT LOGIC»L FILE TO END OF PREVIOUS
- LOGICAL cILf HE.JUST BEFORE ENO-OF-FILE MARK)
- IUMT»LOGICAL UNIT
IF (EOF ( IIINIT) I 30i20
20 PACKSPftCE [UNIT
r,C TO 10
30 «4CKSP*CF IUNIT
END
BACK 10
BACK 20
BACK 30
BACK 40
SACK 41
BACK SO
BACK 60
BACK 40
BACK 90
SACK 100
BACK 110
BACK 120
BACK 130
BACK 140
302
-------
APPENDIX IV
WTQUAL1 MODEL
Program WTQUAL1 is a numerical model utilizing finite difference
techniques to predict transient, two-dimensional areal groundwater level
or piezometric head fluctuations, the coffesponding flows, and convective
transport of conservative ions. The program is capable of modeling either
confined or unconfined aquifers (but not both simultaneously) with or
without leaky conditions present and streams or lakes that are hydraul-
Ically connected to the aquifer. The hydrologic and geologic parameters
that define a particular study area are incorporated into the model and
each parameter may vary in both space and time. Variables considered
include water applied as irrigation; recharge due to precipitation, lakes,
ponds and recharge areas; withdrawals from the aquifer by pumps and
phreatophytes; and geologic parameters of permeability, storage coefficient
and bedrock, ground surface and initial water table elevations and source
of contaminants either as a slug source or continuous source. The source
1s considered to have initial concentration of 1.0 and values computed
are relative concentration (relative to 1.0). The purpose of this Appendix
1s to describe program WTQUAL1, the procedures required for its use and
the required data.
, APPENDIX A-I. PROCEDURE FOR ANALYSIS
Program WTQUAL1 consists of a main controlling program and several
subprograms. The main program's primary function is to control the
execution of subroutines for all time steps at which calculations are
desired. The basic sequence of events is shown in Figure 1. A detailed
flow chart and program listing is contained in the Appendices. The sub-
programs are designed for specific tasks, such as physical parameter
Input, solving a set of simultaneous equations, and mass balance
303
-------
(START)
\ INPUT/
\DATA /
IS NUMBER OF \
TIME STEPS )—YES
COMPLETE /
NO
CALCULATE
HYDROLOGIC
PARAMETERS
CALCULATE
HEADS
CALCULATE
FLOWS
CALCULATE
•%
'o
\ OUTPUT /
\RESULTS /
Figure 1. Basic sequence of computations.
304
-------
computations. A description of each subprogram is contained in A-VI.
Problem control parameters and certain variables are organized into
labeled common blocks by type of usage. All matrices are packed in blank
common so that variable dimensions can be utilized. Section A-IV contains
an alphabetical listing of the primary variables used by WTQUAL1.
The program is written in Fortran IV utilizing several CDC system
subprograms. These particular subprograms could be easily adapted to
other computer systems if desired. WTQUAL1 does not require changes
within the program for most problems analyzed. The exception to this is
1f the ET subprogram (evapotranspiration) is used. Function ET permits
calculation of phreatophyte use based upon the depth to water table.
The algorithm used would vary from one study area to another, therefore,
necessitating a change in Function ET.
The area to be studied is overlain with a grid system such as that
shown in Figure 2. The selection of the space dimensions (DX.DY) for the
grids is dependent upon the availability of geologic and hydrologic data,
and the desired accuracy and detail of analysis. The accuracy of the
solution is enhanced as values for DX and DY are decreased, providing
the availability of geologic and hydrologic data justifies the additional
computation time. The space dimensions are also dependent on the storage
capacity of the computer being used.
The grid system selected should be oriented to allow for easy boundary
approximation, provide for easy adaptation of hydrologic and geologic
data, and provide the necessary model accuracy. Space dimensions should
be small enough that the geologic and hydrologic conditions may be reason-
ably assumed uniform over the entire grid. In areas where detailed values
of water level or piezometric head is desired, smaller values of DX
305
-------
J-direction
direction
Aquifer Boundary
Grid (3,2) is identified as grid (NR+3) where numbering
1s done by columns.
Figure 2. Sketch of grid system.
306
-------
DY should be used. Grids located outside the boundary of the study area,
such as grid (1,NC) must be defined as impermeable grids. Hydraulically
connected lakes and rivers must be specified as constant head grids.
Boundary conditions due to geologic and hydrologic influences include
(1) Impermeable or no flow boundaries, (2) constant head or hydraulic
boundaries, and (3) underflow or gradient boundaries. Program WTQUAL1
uses an initial water level coding to distinguish the type of boundary.
H(I,J) is the initial water level or piezometric head in grid (I,J) and
the coding used is:
0 < H(I,J) < 10,000 - actual water level elevation.
10,000 <.H(I,J) < 20,000 - impermeable grid.
20,000 <. H(I,J) < 30,000 - underflow grid.
30,000 <. H(I,J) < 40,000 - constant head grid.
A buffer zone is used so that irregularities in flow boundary conditions
at the physical boundary are damped out. Buffer zones are automatically
set in the program at three grids.
The relative concentration-(C/C0) of the conservative ion is speci-
fied for each grid as an initial boundary value and is identified as C5.
The coding used for initial values is:
0 < CS < 1 - slug injection of concentration C/C .
— 'o
2 <_ CS <_ 3 - constant source of concentration for all time
(C/CQ-2).
The maximum size of time increment, DT, which will provide adequate
accuracy should be used to conserve computer time. The optimum DT may be
determined by performing short period analyses with varying DT values
for the selected grid dimensions. Smaller grid dimensions may require
shorter time increments. The number of rows (NR) should always be less
307
-------
than the number of columns (NC) to conserve computer time during the
solution of the set of simultaneous equations,
In addition to space and time dimensions, (DX.DY.DT), the following
average or representative parameters must be determined for each grid:
1. G - Ground surface or top of confined aquifer elevation (feet)
2. Z - Bedrock elevation (feet),
3. PHI - Specific yield or storage coefficient (dimensionless
fraction).
4. FK - Permeability (feet/day),
5. H - Initial water level or piezometric head elevation (feet).
6. CA - Part of grid irrigated (decimal).
7. PHR - Phreatophyte use (ac-ft/yr) or phreatophytes present -
use to be calculated (unconfined case only).
8. IWELL - Well number if grid represents a well (integer) - may
vary per year.
9. IPIT - Recharge pit or line if grid*represents a pit or line
(integer) - may vary per year.
For leaky confined aquifer conditions the following additional
parameters must also be determined for each grid:
1. HL - Unconfined water level elevation causing leakage (feet).
2. TL - Thickness of leaky layer (feet).
3. FKL - Vertical permeability of leaky layer (feet/day).
To complete the model, the following hydrologic parameters must be
determined for every year of analysis:
1. PPT r< Precipitation (inches/year) - assumed uniform over
the entire study area.
308
-------
2. CPT - Relative amount of precipitation that reaches ground-
water (decimal fraction).
3. YPT - Distribution of precipitation for each DT during one
year (decimal fraction).
4. APW - Applied water as irrigation (feet/year) - assumed uni-
form over study area.
5. CAW - Relative amount of applied water that reaches ground-
water (decimal fraction).
6. YAW - Distribution of applied water for each DT during one
year (decimal fraction).
7. NW - Number of wells in study area (integer) - may vary
per year.
8. RPUM - Amount each well pumps per year (ac-ft/yr).
9. CPM - Relative amount of water removed from groundwater due
to pumping for each well (decimal fraction).
10. YPM - Distribution of pumping for each well for each DT
during one year (decimal fraction).
11. NP - Number of recharge pits or lines in study area (integer)
may vary per year.
12. RCHR - Amount each pit or line recharges per year (feet).
13. YRC - Distribution of recharge for each-pit or line for
each DT during one year (decimal fraction).
APPENDIX A-II. DATA INPUT
Input is by computer cards as outlined below. Detailed coding forms
used for data input are contained in APPENDIX A-YIII. Note that zero is
distinguished from a blank in data input and that decimal override
be used for all non-integer values,
309
-------
Card 1: 8A10 Format.
TITLE - Title for the particular run.
Card 2: 6I5,3F10.1 Format,
NR = number of rows in the grid system (NR should be less than NC)
NC = number of columns in grid system.
NW = maximum number of wells used in analysis.
NP = maximum number of pits used in analysis.
ICFAQ - 1 for confined aquifer analysis, otherwise blank.
ILKAQ = 1 for leaky aquifer conditions, otherwise blank.
DT • time increment (days).
ST = total time of analysis (days) (integer multiple of DT).
FWTOP = desired interval of times for printed output (integer
multiple, of DT).
Card 3: 8F10.1 Format.
DLX = value of uniform DX (blank otherwise) - x dimension
(feet).
DLY = value of uniform-DY (blank otherwise) - y dimension
(feet).
FFK = value of uniform KF (blank otherwise) - permeability
(feet/day).
ZZ = value of uniform Z (blank otherwise) - bedrock ele-
vation (feet).
GG = value of uniform G (blank otherwise) - ground surface
or top of confined aquifer ele-
vation (feet).
PPHI = value of uniform PHI (blank otherwise) - specific yield
or storage coefficient (decimal).
310
-------
CCA = value of uniform CA (blank otherwise) - part of grid
irrigated (decimal).
PPHIC = value of uniform PHIC (blank otherwise) - confined aqui-
fer (blank for unconfined aquifer
(analysis) storage coefficient
(decimal).
Card 3A: 8F10.1 Format - if DLX is blank, otherwise omit.
DX J-l.NC'
Card 3B: 8F10.1 Format - if DLY is blank, otherwise omit.
DY 1=1,NR
Card 3C: 8F10.1 Format - if FFK is blank, otherwise omit.
FK I=1,NR*NC by columns (example, the permeability of grid (4,3)
for NR«11,NC>11 is the second entry on the fourth
card).
Card 3D: 8F10.1 Format - if ZZ is blank, otherwise omit.
Z I=1,NR*NC by columns (see card 3C)~.
Card 3E: 8F10.1 Format - if 6G is blank, otherwise omit.
G I=1,NR*NC by columns (see card 3C).
Card 3F: 8F10.1 Format - if PPHI is blank, otherwise omit.
PHI I=1,NR*NC by columns (see card 3C).
Card 3G: 8F10.1 Format - if CCA is blank, otherwise omit.
CA I=1,NR*NC by columns (see card 3C).
Card 3H: 8F10.1 Format - if PPHIC is blank, otherwise omit, (for confined
PHIC I=1,NR*NC by columns (see card 3C). aquifer only)
Card 33: 1F10.1 Format.
CSS = uniform value of relative concentration CS (blank otherwise)
311
-------
Card 33A: 8F10.1 Format - if CSS is blank, otherwise omit.
CS = initial value of relative concentration.
CS I=1,NR*NC by columns.
Note:If CS(I,J) is less than 1.0, then that grid is treated as a slug
Injection of contaminants. If a grid (I,J) is to be treated as
a source of constant relative concentration, add 2.0 to the
value of CS(I,J).
Card 4: 5F10.1 Format.
HW * horizontal H - constant value of initial water level or
piezometric head elevation (feet).
LBC = left boundary code (single value along left boundary).
RBC = right boundary code (single value along right boundary).
TBC = top boundary code (single value along top boundary).
BBC = bottom boundary code (single value along bottom boundary).
NoterCorner grids are not critical. Use 10,000.00 for impermeable
boundary, 20,000.00 for underflow boundary, and 30,000.00 for
constant head boundary,, to denote outer boundary conditions.
Card 4A: 8F10.1 Format - if HW is blank, otherwise omit.
H I=1,NR*NC by columns (coded H values for boundary conditions).
Card 44: 3F10.1 Format - only if ILKAQ=1 (leaky confined aquifer condition),
otherwise omit.
»
HHL = value of horizontal HL (otherwise blank) - water level
elevation causing leak (feet).
TTL = value of uniform TL (otherwise blank) - thickness of
leaky layer (feet).
FFKL = value of uniform FKL (otherwise blank) - vertical perme-
ability of leaky layer (feet/day).
312
-------
Card 44A: 8F10.1 Format - if HHL is blank, otherwise omit.
HL I=1,NR*NC by columns.
Card 44B: 8F10.1 Format - if TTL is blank, otherwise omit.
TL I=1,NR*NC by columns.
Card 44C: 8F10.1 Format - if FFKL is blank, otherwise omit,
FKL I=1,NR*NC by columns.
Card 5: 2F10.1 Format.
PPT = precipitation (inches/year).
CPT = coefficient of effective precipitation to groundwater
(decimal fraction).
Card 5A: 16F5.1 Format - if PPT is greater than zero, otherwise omit.
YPT = distribution of precipitation for each DT during a one
year period (decimal fraction).
Card 6: 2F10.1 Format.
APW = applied water as a result of surface irrigation (feet/year)
CAW = coefficient of deep percolation of applied water (decimal
fraction).
Card 6A: 16F5.1 Format - if APW is greater than zero, otherwise omit.
YAW = distribution of applied water for each DT during a one
year period (decimal fraction).
Card 7: 15 Format.
NGPU = number of grids with phreatophyte use (zero if none).
Blank indicates PHR array to be read in.
Card 7A: 2I5,1F10.1 Format - if NGPU is greater than zero, otherwise omit.
I = row number of grid.
J = column number of grid.
PHR = phreatophyte use in specified grid (I,J) (acre-feet/year).
313
-------
If PHR is any negative value, phreatophyte use is calcu-
lated from ET subprogram, (see listing),
Note:0ne card for each grid containing phreatophyte is needed.
Total number of cards equal NGPU.
Cord 7AA: 8F10.1 Format - if NGPU is blank, otherwise omit.
PHR I=1,NR*NC by columns (see card 3C).
Card 7B: 16F5.1 Format - only if PHR is greater than zero, otherwise omit.
YPR » distribution of phreatophyte use for each DT during a one
year period (decimal fraction).
Card 77: 15 Format - if miximum number of wells is greater than zero,
otherwise omit.
NW - number of wells.
Card 77A: 3I5.2F10.1 Format - if NW is greater than zero, otherwise omit.
IWNO = well number code (integer).
I = row number of grid with well.
J = column number of grid with well.
RPUM = amount each well pumps per year (acre-feet/year).
CPM = coefficient of groundwater removed by each well (decimal
fraction).
Card 77B: 16F5.1 Format - if NW is greater than zero,.otherwise omit.
YPM = distribution of pumping for each DT.during one year
(decimal fraction).
Note:Cards 77A and 77B are to be input as a set for each grid.
Total number of sets equal NW,
Card 777: 15 Format - if maximum number of pits is greater than zero,
otherwise omit.
NP = number of recharge pits or lines,
314
-------
Card 777A: 3I5,1F10,1 Format - if NP is greater than zero, otherwise omit.
IPNO = pit number code (integer),
I = row number of grid.
J = column number of grid.
RCHR = amount each pit recharges per year (feet/year),
Card 777B: 16F5.1 Format - if NP is greater than zero, otherwise omit.
YRC = distribution of pit recharge for each DT during one year
(decimal fraction).
Note:Cards 777A and 777B are to be input as a set for each grid.
Total number of sets equal NP.
Card 7777: 1F10.1 Format - for every year of analysis greater than one,
otherwise omit.
REPEAT = data input code for multiple year analysis. If blank,
repeat cards 5 through 777B, otherwise program uses
same data as previous year.
APPENDIX A-III. OUTPUT OF RESULTS
Output is in a tabular form. All input data are reproduced for veri-
fication. Calculated results are printed only at the desired time steps
which is controlled by FWTOP in card 2. The exception to this is if a
grid changes from confined to unconfined and vice versa or experiences
flooding or overdraft, a message is printed at the appropriate time
indicating such conditions. Following is a list of output results.
1. Amount of core required to run program.
2. Title of run.
3. Problem control parameters,
a. Number of rows,
315
-------
b. Number of columns,
c. Time increment,
d. Total time of analysis.
4. Input data.
a. Delta-X map, spacing in J-direction.
b. Delta-Y map, spacing in I-direction.
c. Surface elevation map or top of confined aquifer elevation map.
d. Bedrock elevation map.
e. Specific yield map (confined and/or unconfined).
f. Permeability map.
g. Coefficient for part of grid irrigated.
h. Yearly applied water.
1. Yearly distribution of applied water.
j. Matrix of phreatophyte use.
k. Yearly distribution of phreatophyte use.
1. Yearly precipitation.
m. Yearly distribution of precipitation.
n. Well number map - if wells present.
o. Well table - if wells present.
p. Recharge pit number map - if pits or lines are present.
q. Pit table - if pits or lines are present.
r. Initial water table or piezometric head elevation map.
s. Initial storage.
5. Results - only printed at desired time steps by using the input vari-
able FWTOP. The exception to this is if a grid changes from confined
to unconfined and vise versa or a grid is overdrawn or flooded, a
message 1s printed at the time step of occurrence,
316
-------
a. Matrix of phreatophyte use (acre-feet of water used/grid/DT) -
only if calculated from ET subprogram.
b. Matrix of Q (acre-feet/day) - net vertical withdrawal of water
from each grid. This includes precipitation, applied water,
pumping, recharge, phreatophyte use and leakage.
c. List of grids, if any, at time steps where the main aquifer
changes from confined to unconfined or unconfined to confined.
This results in negligible errors of the resulting water table
or piezometric head elevation.
Example: GRID 5 6 CONFINED TO UNCONFINED
d. List of overdrawn or flooded grids at all time steps of occur-
rence.
Example:
ROW COL NR.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
2
3
4
5
6
7
8
9
10
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
17
17
17
17
17
17
17
17
17
OVERDRAW
FT AC/ FT
162.73
160.72
159.33
158.20
157.25
156.36
155.43
154.45
153.31
151.92
149.94
145.87
136.86
119.12
83.43
12.19
12.19
12.18
12.18
12.18
12,18
12.18
12.17
12,16
12,11
0.00
0.00
0.00
0.00
- o.oo
0.00
0.00
0.00
0.01
0.01
0.01
0.03
0.03
0.04
0.05
0.01
0.01
0.02
0.03
0.04
0.06
0.08
0.14
0.22
0.42
FLOODED AREA OD. AREA FD
FT AC/ FT AC/ FT AC/ FT,
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 •
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
317
-------
ROW COL MR. OVERDRAW FLOODED AREA OD. AREA FD.
FT AC/FT FT AC/FT AC/FT AC/FT
TOTALS
11
12
13
14
15
17
17
17
17
17
11.98
11,62
10.58
7.87
2.05
0.69
1.07
1.82
1.81
0.70
7.3
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 6,1
0.00
The first four columns refer to the total area and the second two
columns refer to between stations or buffer zones. If overdraw
occurs, the piezometric head or water table elevation of the partic-
ular grid is set to the bedrock elevation and the program proceeds.
If flooding occurs, the piezometric head or water table elevation of
the particular grid is set to the ground surface elevation and the
program proceeds. Results will be in error if this message is
printed and should be checked.
e. Matrix of discharge (acre-feet/DT) between grids in the I-
direction. Flow down is positive and flow up is negative.
Discharge in the first row of the matrix is the flow between
grids in row #1 and #2,-and so on for the remainder of grids.
therefore, the last row is always zero.
f. Matrix of discharge (acre-feet/DT) between grids in the J-
dlrection. Flow right is positive and flow left is negative.
Discharge in the first column of the matrix is the flow between
grids in column #1 and #2, and so on for the remainder of grids.
The last column is, therefore, always zero.
g. Matrix of net flow (acre-feet/DT) from constant head grids.
The heading for this matrix is:
RIVER FLOW IN EACH GRID MINUS MEANS FLOW FROM AQUIFER (AC/FT/DT)
INCREMENT NUMBER 5
318
-------
h. Table of water balance computations (all entries in acre-feet/DT)
Example:
OUTPUT FOR SIMULATED TIME 6 - 9, AS AT THE
END OF'PERIOD 3 FOR CONFINED AQUIFER
APPLIED WATER (BETWEEN STATIONS -
TOTAL AREA) -974.97 -1282.89
INFLOW FROM RIVER (BETWEEN STATIONS -
TOTAL AREA) 0,00 0.00
BOUNDARY INFLOW (BETWEEN STATIONS -
TOTAL AREA) 138,18 88.48
TOTAL AREA STORAGE AND DECREASE IN
STORAGE 1332.68
BETWEEN STATIONS STORAGE AND DECREASE
OF STORAGE 62.42 637.08
STORAGE OF OVERLAP AREAS 1270.26
ILLEGALLY WITHDRAWN (BETWEEN STATIONS -
TOTAL AREA) 199.71 200.10
TOTALS (BETWEEN STATIONS - TOTAL AREA) 0.00 0.00
The first column is storage quantities for the total area,
area between stations or buffer zones and the overlap or
buffer zone area. The second column refers to the area
between stations or buffer zones and the third column refers
to the total area. Mass balance between stations (second
column totals) must always be satisfied otherwise results will
be in error. The only time that mass balance for the total
area (third column totals) is satisfied is when all boundaries
are impermeable.
i. Matrix of water table or piezometric head elevations (feet above
datum).
If data changes for a year of analysis, a message is printed
Indicating the year number and output 4g through 4q is printed.
j. Matrix of relative concentrations C/C
319
-------
APPENDIX A-IV. LIST OF IMPORTANT VARIABLES IN WTQUAL1
Symbol Description
APW Applied water ,as a result of surface irrigation (feet/year).
BBC Bottom boundary code.
CA Fraction of grid to which water is applied (decimal).
CAW Coefficient of deep percolation of applied water (decimal).
CCA Uniform fraction of each grid irrigated for all grids (decimal).
CCS Uniform value of relative concentration.
CMATRX Coefficient matrix.
CPM Coefficient of groundwater removed by pumping (decimal).
CRT Coefficient of effective precipitation to groundwater (decimal).
CR Right hand side matrix.
CS Relative value of concentration.
DLX Uniform X-dimension of all grids (feet).
DLY Uniform Y-dimension of all grids (feet).
DT Time increment (days).
DTWT Depth to water table from ground surface.
DX X-dimension of grid (feet).
DY Y-dimension of grid (feet).
ET Evapotranspiration (feet) - calculated from ET program.
FACFTA Amount flooded between buffer zone boundaries (acre-feet).
FACFTT Total amount flooded (acre-feet).
FFK Uniform permeability of all grids (feet/day).
FK Permeability (feet/day).
FKL Permeability of leaky layer (feet/day).
FVA Amount flooded between buffer zone boundaries (acre-feet).
FVT Total amount flooded (acre-feet).
FWTOP Desired time of output (multiple of DT).
320
-------
G Ground surface or top of confined aquifer elevation (feet).
GG Uniform ground surface or top of confined aquifer elevation
of all grids (feet),
H Initial water table elevation or piezometric head of aquifer
being modeled (feet),
HL Constant head value causing leaky aquifer (feet).
HP Water table elevation or piezometric head at previous time
level (feet).
HT Present water table elevation or piezometric-head (feet).
HW Uniform water table elevation or piezometric head (feet).
ICFAQ Equals 1 for confined aquifer analysis, otherwise blank.
ILFAQ Equals 1 for leaky aquifer analysis, otherwise blank.
INYR Number of time increments per year (360./DT).
LBC Left boundary code.
LCIE Right (J=NC-2) buffer zone.
LCIW Left (J=3) buffer zone.
LCJE Bottom (I=NR-2) buffer-zone.
LCJW Top (1=3) buffer zone.
NA Number of rows in reduced band matrix.
NB Number of columns in reduced band matrix.
NC Number of columns in model (integer).
NGPU Number of grids with phreatophyte use (integer).
NP Number of recharge pits or lines (integer).
NR Number of rows in model (integer).
NW Number of wells (integer).
OACFTA Overdraw between buffer zone boundaries (acre-feet).
OACFTT Total overdraw (acre-feet).
321
-------
OVA Overdraw between buffer zone boundaries (acre-feet).
OVT Total overdraw (acre-feet).
PHI Specific yield or storage coefficient (decimal).
PHIC Storage coefficient of confined aquifer (decimal),
PHR Phreatophyte use (acre-feet/year) or phreatophytes present -
use calculated in program ET.
PIT Recharge pit or line number code,
PPHI Uniform specific yield or storage coefficient of all grids
(decimal).
•PPHIC Uniform storage coefficient of confined aquifer for all grids
(decimal).
PPT Precipitation (inches/year).
Q Net value of hydrologic and artificial withdrawal per grid
(acre-feet/day).
RBC Right boundary code.
RCHR Amount each pit or line recharges per year (feet/year).
REPEAT Data input code for multiple year analysis (blank indicates to
read in data).
RPUM Amount each well pumps per year (acre-feet/year).
SQA Total Q per DT between stations (acre-feet).
SQBA Total inflow through buffer zone boundaries (acre-feet).
SQBT Total inflow through boundaries (acre-feet).
SQGGI Flow between grids in I-direction (acre-feet).
SQGGJ Flow between grids in J-direction (acre-feet).
SQR Inflow from constant head grids (acre-feet).
SQRA Inflow from constant head grids within buffer zone boundaries
(acre-feet),
322
-------
SQT Total Q per DT (acre-feet).
SQRT Total inflow from constant head grids (acre-feet).
ST Total time of analysis (days).
STA Between stations storage (acre-feet).
STATEM Decrease of storage between stations (acre-feet),
STOL Overlap area storage (acre-feet).
STT Total area storage (acre-feet).
STTTEM Total decrease of storage (acre-feet).
TBC Top boundary code.
TL Thickness of leaky layer (feet).
WELL Well number code.
YAW Distribution of applied water for each DT of one year (decimal).
YPM Distribution of pumping for each DT of one year (decimal).
YPR Distribution of phreatophyte use for each DT of one year (decimal)
YPT Distribution of precipitation for each DT of one year (decimal).
YRC Distribution of pit recharge for each DT of one year (decimal).
Z Bedrock elevation (feet).
ZZ Uniform bedrock elevation of all grids (feet).
323
-------
APPENDIX A-V. FLOW CHARTS
(START)
READ
NR, NC, NW, NP
ICFAQ, ILKAQ
,DT, ST, FWTOJV
CALCULATE FIRST
WORD ADDRESS FOR
ARRAYS TO BE PACKED
IN BLANK COMMON
CALCULATE LAST
WORD ADDRESS
PRINT
TOTAL AMOUNT
vOF CORE USED/
SET BUFFER
ZONE BOUNDARIES
PRINT
vTITLE/
t
PRINT"7
NR, NC. DT, ST/
324
-------
IS ILKAQ
LESS THAN
OR EQUAL
TO ZERO
SUBROUTINE READPH
Reads and Writes
Physical Data
Describing System
and Concentration
SUBROUTINE MATROP
Organizes Data into
Suitable Form for
Printing and Prints
SUBROUTINE READH
Reads in Initial
Water Level or
Piezometric Head
Elevation
SUBROUTINE LEKAQF
Reads and Writes
Leaky Aquifer
Parameters
SUBROUTINE MATROP
Organizes Data i«to
Suitable Form for
Printing and Printf.
SUBROUTINE STORAG
Computes Increase
or Decrease in
Storage
LOOPYL=ST/DT
INDX = 1
325
-------
fcropV—
NO
/
4
V
' 1=1 \
Is I.LE. \
LOOPUL /—YES-]
1=1+1 /
1 '•
c
r
IDT=DT
J1=1DT*(I-1)
J2=IDT*1
FI=I, TI=JI, T2=J2
SUBROUTINE QFIX
Reads and Writes
Hydrologic Param-
eters and Computes
Hydrologic and
Artificial Inputs
for Each Grid
SUBROUTINE MATSOL
Sets up Coef-
ficients Matrix
and Right Hand
Side Vector
Matrix
FUNCTION ET
Computes the
Phreatophyte Use
Using Water Table
Elevations
SUBROUTINE MATROP
Organizes Data into
Suitable Form for
Printing 5 Prints
FUNCTION PARAM :
Computes Coefficients
For Finite Difference,
Equations ;
SUBROUTINE NSCONT
Checks for Known
Grid Values, Such as
Boundaries, and
Transfers them to
Right Side Vector
Matrix
SUBROUTINE BSOLVE
Solves Banded Matrix!
Set Up in MATSOL
by Gauss Elimination
326
-------
CALL
BJUST
SUBROUTINE BJUST
Adjusts Under Flow
Grids Water Level
or Piezometric Head
Elevation .
CALL
ODFLOD
SUBROUTINE ODFLOD
Checks for Flooded
or Overdrawn Grids
and Writes Results
if Any
•YES-
INDX=INDX+1
STTTEM=STT
STATEM=STA
CALL
STORAG
SUBROUTINE STORAG
Computes Increase
or Decrease in
Storage _
©
327
-------
SUBROUTINE BYFLOW
Computes and Writes
Flows for Each Grid,
Thru Boundaries and
from Constant Head
Grids. Computes
Relative Concentra-
tion Based on Mass
Balance
^ rAKAM p
FUNCTION
PARAM
Computes Coefficients
for Finite Difference ,
Equations :
CALL
MATROP
SUBROUTINE MATROP
Organizes Data into
Suitable Form for
Printing § Prints
1
CALL
BALCOP
SUBROUTINE BALCOP
Writes Out Balance
Computations for
a Time Increment
Set
HP = HT
328
-------
APPENDIX A-VI. DESCRIPTION OF SUBPROGRAMS
Subroutine READPH
This subroutine reads and writes the physical data describing the
study area. The following variables are read and printed: DX, DY, FK, Z,
CS, G, PHI, and PHIC. CA is also read but printed later. Coded values
of CS are printed. Only one data card is required if all variables are
uniform for each grid, otherwise each parameter that is variable must be
read in matrix form. Variables DX and DY require only NC and NR values
respectively.
Called From: Main Program
Subprograms Used: MATROP
Important Variables: DX DY FK Z G PHI PHIC CA CS
Subroutine READH
This subroutine reads the initial coded water level or piezometric
head elevations. H is decoded and set equal to HT and HP. One data card
1s required if the initial water level is horizontal, otherwise the entire
H-matrix must be read.
Called From: Main Program
Subprograms Used: None
Important Variables: H HT HP
Subroutine LEKAQF
This subroutine reads and writes the leaky aquifer parameters. The
following variables are read and printed: HL, TL, and FKL. One data card
1s required if these variables are uniform, otherwise each matrix that is
variable must be read.
Called From: Main Program
Subprograms Used: MATROP
Important Variables: HL TL FKL
329
-------
Subroutine CSET
This subroutine initializes the relative concentration throughout
the aquifer.
Called From: Main Program
Subprograms Used: None
Important Variables: CO CT H G CS
Subroutine STORAG
This subroutine computes the initial storage and increase or decrease
of storage. Total area and between station (between buffer zone boundaries),
'storage is calculated. Also storage of overlap areas is computed.
Called From: Main Program
Subroutines Used: None
Important Variables: STA STT STOL H HT Z
Subroutine QFIX
This subroutine reads and writes the hydrologic parameters. The
hydrologic and artificial inputs are then calculated for each grid. A
value of zero on the input card Indicates a particular parameter is not
used (see listing). The exception to this is the number of grids with
phyratophyte use, NGPU. If NGPU is blank, the entire PHR matrix must be
read, otherwise the number of grids specified is read. NGPU equal to
zero indicates no phreatophyte use. -
Coding PHR less than one indicates that phreatophyte use should be
calculated every time increment from the previous time step water level
elevation. The ET subprogram is used for this.
The factors considered in QFIX are (1) precipitation, (2) applied
water as irrigation, (3) phreatophyte use, (4) wells, (5) recharge areas
or lines, and (6) leaky aquifer conditions.
330
-------
Called From: Main Program
Subprograms Used: ET
Important Variables: PPT CPT YPT APW CAW YAW NGPU PHR YPR WELL
RPUM YPM PIT RCHR YRC Q SQT SQA REPEAT CPM
Function ET
This subprogram computes the phreatophyte use for each grid using
the water level elevations from the previous time step. If the depth
of water table DTWT is negative, an error message is printed. It is
anticipated this program, if used, will change with each study area.
Called From: QFIX
Subprograms Used: None
Important Variables: ET DTWT
Subroutine MATSOL
This subroutine sets up the coefficient matrix, CMATRX, and the
right hand side vector matrix, CR. CMATRX is a reduced matrix containing
only the band of known values in the left side of the difference equations
and is written vertically rather than diagonally. Its dimensions are
(NR-2)*(NC-2) by 2*NR-3. The coefficients are computed using Function
PARAM and checked for adjacent boundary values of H in subroutine NSCONT.
MATSOL treats known grid values of H. BSOLVE is used to solve the matrix
equation set up.
Called From: Main Program
Subprograms Used: PARAM NSCONT BSOLVE
Important Variables: CMATRX CR
Function PARAM
This subprogram computes the coefficients in the left side of the
finite difference equation. For confined aquifer analysis, saturated
331
-------
thickness is compared to aquifer thickness and the smallest of the two
is used to calculate the coefficient.
Called From: MATSOL BYFLOW
Subprograms Used: None
Important Variables: PARAM
Subroutine NSCONT
This subroutine transfers the coefficients, in CMATRX, multiplied by
their respective H-value, to the right hand side vector matrix in case
of adjacent head or known boundary conditions. It also- sets coefficients
equal to zero in case of adjacent impermeable grids.
Called From: MATSOL
Subprograms Used: None
Important Variables: None
Subroutine BSOLVE
This subroutine solves the matrix equation set up in MATSOL by Gauss
Elimination. BSOLVE is designed specifically for a diagonal matrix that
results from analysis of groundwater systems.
Called From: MATSOL
Subprograms Used: None
Important Variables: None
Subroutine BJUST
This subroutine adjusts the underflow boundary water level elevations.
Gradients are calculated three grids in from the exterior boundary grids
and the gradients are projected back to the exterior boundary grids to
obtain new water level elevations, This calculation is performed at
even time steps. At odd time steps the water level elevations are held
constant and the exterior boundary grids are treated as constant head
grids.
332
-------
Called From: Main Program
Subprograms Used: None
Important Variables: H HT
Subroutine ODFLOD
This subroutine checks for overdrawn or flooded grids. If either
should occur, a message is printed indicating such. For confined aquifer
analysis the flooded grid computations are bypassed. Total flooded and
overdraw amounts are computed for the total area and between stations.
Called From: Main Program
Subprograms Used: None
Important Variables: OACFTT=OVT OACFTA=OVA FACFTT=FVT FACFTA=FVA
Subroutine BYFLOW
This subroutine computes flows for each grid. Total flow through
model boundaries and buffer zone boundaries is calculated as well as flow
Into the system from constant head grids. The flow equation used is
developed from the finite difference equations and uses particular values
of the CMATRX. These values are" transferred from MATSOL except for
boundary values which are calculated in BYFLOW using Function PARAM.
Flow is not allowed to or from an impermeable grid and between any two
adjacent underflow grids. I-direction and J-direction flows are printed
and flows from constant head grids are interpreted atid printed as flow
from river grids. Relative concentration calculations are made using
the flow between grids.
Called From: Main Program
Subprograms Used: PARAM MATROP
Important Variables: SQGGI SQGGJ SQBT SQBA SQR SQRT SQRA CS
333
-------
Subroutine BALCOP
This subroutine writes the balance computations at the desired time
steps specified by FWTOP. Mass balance for the entire area cannot always
be obtained, due to accounting procedures used to compute mass flow at
exterior boundary grids. However, for between stations, which refers to
the area between the buffer zone boundaries, mass balance must always be
satisfied except for the case when a confined grid becomes unconfined.
This error should be small and is indicated by the "TOTALS" in the mass
balance output being different than zero, to reduce this error, decrease
the value of AT. For confined aquifer analysis, a message is printed
indicating if a grid becomes unconfined.
Called From: Main Program
Subprograms Used: None
Important Variables: SQA SQT SQRA SQRT SQBA SQBT STT STTTEM STA
STATEM STOL OVA OVT
Subroutine MATROP
This subroutine organizes data or results into a suitable form for
printing and then prints.
Called From: READPH LEKAQF QFIX BYFLOW
Subprograms Used: None
Important Variables: NR=NOROW NC=NOCOL
334
-------
APPENDIX A-VII. PROGRAM LISTING
PROGRAM WTOUAL 1
..,V,-i1 WTOUAL.1 i:f.f.iI,-.iir:....T.|i;-.-,,T-,f^1.T<'.-:.'J-...
r • 3J
0 ,-cr.-;M u c.i'-iu /.MT; IC.,L .•;.* HMWL'.-MC x-.fi.uE-.C-- «•< v«ou'O u'.
C K-1TC*. Lr-VcL. f, ;
c
r
c
C scr.
I -ES:."?S j?",:,,"::^,^;.?^^:^1^^. gj
K.IS s;-fs;M!K'/?ss.srs3;^«s:l'» ;i; ;s f «ff Sj.
C PFi' -'-C F" ^FCSIItfE .JSL . NK.CT.7 A»3 JU..GI.7 . iv
c
c
C U'-JhsTOf Itl nurr1: ; 22C
c. LC,JC«ooTTOM t:» turrEj. /ONC !3,3
C FOR rxPuI^TJOr. OF VAP.KBU3 «'0 S'JdWOTWfS, SEE SUMOUIINES. «6 '
C 2ft.
C COMT30L VAPIi.TL •
C NfjEtiuHyf.p or
C NC=M).1'T:i< PF .
C N^ SIICULO 4L-M3 « LESS THltl 0». £ IUAL TO NC .
C »a=H4XI.-!U.-l f.U''.i-ER C- 'J£LL'> Jtfl
0 MPrHAXIMI/.l NU1UC.R. OF •'LC'n?,'JE PU> _Tll-D,.T..r ,,.,.„ 320
C ICFtQ-1 F:j? C3N-INCH iOJIF-'I S-.SLYSI3. OTHiR'yist 3L-h< «B
C IL«0-.l FJ5 Lt;4
JOC*NK»NC ' . 59^
T.FK-1 . 6M
JPHI=ID',<1 • 61i
JCA*fc«ICCH 6*1
1M = 7«IOC»: (.70
JHT-1'IX'l , ' 05i
jM«'si»I?CU (,.};
io«:3*ncu .. ;,-;
:»i • 7i!
l u;
. 73i
ir.3
-------
I-H.MS-M I'.* !'.*•• i* 1 'C *10
ir*L=i U< iu •'/•'. 'I!",'; '''I
ura,i» ?*• ::i-»K' 0'icci I L<•:
lftM»:,-vin J*'«
It PIJMS T, *<•"••;>( *'••
TMuHssl *fcC«.-i"*!'•''-' '*•*'
,E!.J14:.I..»HfM«» IYP»."r!WlN.>'I«t^».irii»-«EMl *'«
e''J'"'"M'"*''JI 99;
lHA*LCCf ICtin.'X'U 1DOC
CSLL COS-. UK: i "20
CO 13C LI*ltIfUC3
CIL1 IsUNPEf
ico CONTIKU-:
c io>o
I 1HJ
ic-e M"
LCJW'3 1060
IP.ITE «6,21fl TITLE »"*
IF IILKAC.Lc.3) 60 TO 113 11"
WHITE U,25i» Hi3
60 TO 13; Ji?l
lid IF (KF40.L-:. ci GO TO i?: 113^
W TC 13C ' if.;;
tz: W..ITE c6,2&:i . u..%
133 KKITE CStl'K) NR,NC,BT,5T lir.-
C • in;
CALL p.fto^H er'»,i«c,ct:?<» .c (iPHD ,: tCt IPKD) 1«:
C
1*C CALL STC'iG llt(?,MC,C(lHI |!7« IHT ), C «I Z» tC IIOXI ,C (I3Y ),C(IPHI) ,(
lCtl"HIC» _ . 12SO
C»LL CS£r 131C
• FI«I . ' 1380
• IMC
HO 3
c u:.
CALL QFU inr;t'ic,c(nx».c( i?»<,;tic;.> .:.-« I7> ..:t»Ht i .i.ct:: i«.?:
l I.IJK.'.C.C i ;pt"*i ,r iirft LLI .c <:-n;i) ,c dri'T) ,n (lYAwi ,r.i
3 tlIC>,C <:*>!.3TK.>) )
c
l x> tcd'jvi ,r.iK;I ,c,ciio 1333
i TJ.cii'-mcti t3<«o
C ISGi
STTT-HrSTr
CALL ST09J.O
-------
t. i '>''
POM-ITU Ifcl!
IF i (r r • n i.'[-. (t C'.f *F V*TT>I i oo TO i'JJ u>C6
i-, u
C . '."'•(•
,M«.L "/FLO'* t .:v, • i:..i., j i,.: «;; •• >, ; i: u ,•• i r «ri.: 11, i, .i; j* i .r i: i» :-.;.',
i i.«. u ;T.'.I i n, <. v .M M .; i: :•). ".c ;••••-•.r '<),:.<; •.) ,i «i i), ;i I.HM ,i •; i-mu
in):
c 1/1:
H.'ITC «ti,l«J> fi 1/10
CALL MU •<•>••• <>;•<,.MI.CIIHTM iJ?i
C IJ'J'j
• 1 A
1 So "C i - * * ' *"
00 Iti L=1.X . 175C
00 165 K-t.'W l/bv
itc ccMirue !?">«
rro? i»i«.'
c i*2r-
tT AdCVt UiTJH>»
t90 ro=irtAT ii5H-^c« nin;i.r;ofi*T'ti2iH COLUIN ijlfcNSior.si^.'iiM TIM ii5c
1C INC«£."i:'4T20 'JY -j'i.2, = '< OA/3.27H IOI4L TIC£ OF £t;«LV'• ij> G9.2.5 U
8H nevsi • H'M
U8.
230 FO^AI (IH ,///, 3cn FIELO Lifir-Tn = ,0231
Z?C FOT1AI CJH-,!,B<, 22HL£- AWTFEP 4UALYSISI .1930
1955
£NO
SUBROUTINE REAOPH
;NE REAOFH (N(
C
c
c
3
C
c
c
c
c
c
C '
c
c
c
c
c
c
c
c
c
c
1
J
c
5
115
c
c
IHIS iU'.'KO'JTIKt R^ADS AMD WHITES TH£ PHYSICAL 04TA. DESCRIBING
THE SISTER.
FK*PErM£AElLlT » (Fftf/OAYJ
'*HI = riFF'r CT I V * POrtiTSJrY • —
ZXOEU*^CCK EUCVATiCN C^£^TI
r,»Gfou:O sui-cicc FL-JI/ATIOM, cs T3P OF CCMFIKEO AQUIFE-' (
f.-^t • , t. .... » >- .-•- ,o . ,*„»
C'^'IC"' /3LTtJT>I!^""A'),[L
9°
«iP
ilP
«p
HP
QP
JY KP
np
.{P
tfp
yp
s«'
fp
ro
JP
4"
;p
Ri-
i(P
HP
HP
HP
'P
ftP
2:
JC
••C
SO
60
73
di
9J
too
114
12 C
llj
IOC
i50
164
t'l
is:
Hu
20«
216
ZtQ
23S
^'iC
2'<0
Z7C
510
343
J35
i: j
J2C
3K
i«i.
?%3
jre
jij
330
<«C i
<.!•;
W2C.
337
-------
I-'." '" U,J» if. X
13 TO f.J
no --.in lOt'i^di loxttijii j=tfNci
09 me I**,**
no itc j-i ,NC
ifcc 'j*ti,j) = o< (i ,j>
tSJ COUTIhUE
IF (Qir.L £.:..} I 1,3 10 170
00 Irt J-l.MC
no i%u i«i ,;,y
ICO fJfCI.JI --OI.Y
co ro ma
170 «t*o (t, 1.1. '.i (ovii.ii. i n.-ai
13 MC J--.VIC
,n
RP U30
t<»C COI.TIf.U3
216 •'.H
If IFFK.Lf.l.O) GO TO
on 2JC j-i.?.^
00 2~r :
-------
CALL >'ATi-Ot- tf.w. NC.FHil
TF 4ICi'»O.L.-.:. C> 00 TO <«SO
CAUL HAf-OP IM.I.C.PHICI
'.x.
A-X IUP,3°'.CII1G -iCHO^S IN J-OIEECTION
-t .lif, SPftCrHC DCKS IS I-OIKiCTION
»
N M-P (FE£T «riOV
51? FO'L'UT o
-- j.:ic j;t:_ ir* .-HP (FttT/oayi
C= OF C.irif i:i£-l AC'JIF'.K ELi
f.f
P.P
/: JvOO .< 1
CO T? U;>0,17C
NT iiiJi -"i i .j»
CC TO 20J
HI iiiJ»"i -icc:o.
CO 10 2Cw
HT«IiJI-"M,JI-iOOC3.
ci n t'ju
HT(I,JlrH( [, J)-.UCCO.
Hn(iiJI = M II. .M
»ir lit j> »n (It Ji
.
-------
C . . HH 55J
J20 FOVIAT ieFll.il • ' AH »<•,(,
C RH 5/0
SUBROUTINE LEKAOF
LA U
C LA 3C
c rt'THic< )L cf OF Lfix» L/w-.f: (>"V-,TI " ie 60
CUM fg
LA SO
IS» LA SO
LA 13 i
00 110 1 = 1, 'if. % U 11C
00 lit! J = t,:iG LA 12)
rtlUiJI'J.g L1 jj-,
TLd.JMJ.C Li ua
FXLII.JMC.O tt 156
r.£/0 <5,2tC) HML, f TL.FFirOLITI»E C^MTI,TF.$ f'<; IN^ ?i;Ai'E OR DCCRfASi IM jTOR-Cc. ST VJ
C STT = T'IAL'\s-I *F' ST 3j
C STJUiCVf«L«I% JRfA IIC-'Ai£ (AFI |j *J
s sr .*,
O'.nenSKN KIN; ,HCI , ».MNP,HCI, ZI :j*, fie i, c»lf.P,N:», i)M'l?,nj», -;<.j ^r -ij
,, ' ' " '••''' • it»>-s-t'.CI . S| jj.
ST UC
ST 123
>-Jvr sr ui
KC1>HC-1 ' 51
IK t,» .HCl , • sl
1 If Kr2,-J?.« . -
IF »<»;,L ».r.r,ucio. t •••) ro uo 3*
IF Ut.F
-------
Ir li*TK,U.Lr..i,«,LI) 'iJ TO 110 ST f»j
STPs I (•'.(>; i LI- I (-KiLH* j(K,L I I lfirC(«D«G(KtL»*$t I <,L > ) «J< «<. L >"' ST {1.9
X YdC,L)/'.3t.ftJ. . 2T Z3L
GO TO 1?0 ST 26'
110 SIPMMI C<,UI-/(v,LII-U««,t)'jrU.L»»S«K,L)/t «s^
IF iL.r.T.LCh ) co rn ua *t .,ft
IF C1.LT.LC.MJ GU 10 131 ST 31?
if «.cr.LCJc> GO ro iii ... ,t.'
St/UMAtiTF „ — 3
t.io c "*
»• • $T
ST ,u
EWO ST U3
..'.... sr j*c
SUBROUTINE: CSET
ZVltKOVllt!* CSeT I"P ,f C.CO.CT.H.IJ.C-n
01 «f N£ ICt. C.IKViNOJ . CTIfi't-JC) .Mf'io ,'
OJ m jsi.::c
30 t3C fslt.'i!?
CMI,J)'O.C
IF tCSU ,Jl .CT.2.C» GO T3 11
COd.JI -CC([, J)
GO TO 130
ic tr,«i,j)=cs(i,ji-z.o
ice cc'irifuit
KtlUKN
£«»
"SUBROUTINE QFIX
pT, OF ic
OF 20
C OF IS
C . OF <,fl
C THIS SU9ROUTtHE COMPUTES f(-:C I°I T JT IOU TO G^OONJWITE^ IDtCIHlLI OF 7(1
C YPTsOISMiaunON CF PStCIPt T^TIOM FO^ EACH OT OF CNE V£i^. OF :
C APHsAF?LICn rl-T£R iS 1 ?i'iULT OF SUfFiC? I?.t;i31 TIC't (F-riT/YtSR) OF 102
C CAHsCCiF. Of CE?P 0-r^coLiTtos OF a»PLI-:0 MAfcx (OCCIMiLI OF ItC
C YAHsOIS'FMUTlON CF APPLltJ HATE'* FCK EACH OT OF Cf*£ Y£AR OF 122
C UieCI.-IALI Qf 130
c N6Po»».u«. THIS MiY a£ OF l5C
C CALCULA'^O FP;C^ rrt£ £T S:;8P»..')G'?i.1 •!/ COOIUS ?tlr? VALUES Qc l%ii
C . LESS THAN ZFKC. OF 17 C
C Y"R*OISTS'.t5UTION' CF PHRtATOPMYfE U?E *0i». EACH OT OF OM£ Y£A.» OF HC
C- - CCtCI*ALI ~ QF Wj
C. v HELL»WCUL HUrtfE'i CCO^ . Of iOC
C «PUf'--'irn;:ir .-.ACH WELL P-J^OJ °ER YEAR CAF/Y«A^) • or jic
C CPH'COtF. OF GRC1UM">t«eTe f ^ilOVE'l .IV PJ-fPINO IDHCI^iL) OF Z2J
C »PM=OI57C.I5UTICN CF auMP(.-& PCS tACH 3T OF C.'Ji TEiK. «OfiC I!1AL > QF 33*
C PITsC;CHA-£3 OT (AF» » OF 29C
C 30»*T3TAi. n Ptft Or PiT«rf.;< STATION'S I.'.F) gr 33;
C »;0EM*OArA INFUt CO.)!; F0< 'fllLTI'ti ft.^ AfULfSIS IF 313
c "IF ^^';
nn OF no
3). HCHr<(i;^). t-tCK.^CI. TL (.•;'{. \CI i r,5C
»«?ic> OF jr;
C - OF Jflt
Lc:r:.ii:m.LCj?.tLOJii.F'tTG9 OF 39i
-jrij'KMisrjKi, jjf»l OF !.<»:
itc no izt
-------
HULL -C .1
PCTU, (.)-}. 3
lid COCTlNUi
oo I.K lu
TPTUI--3.1
m CO-0,fl
IK COtJTII.u'J
Ff r*Mt < t, ji-r. GO TO ISO
• «SAO (5, -.1C) t Y-u«) ,< = i , I
15C CONTI.MJi
ft tO ISiH1) .V.PU
IF OI&PU.EU.JI r.O.TO 1/0
OJ 1'iC Af-stt'^.-'U
stsAO «5,«'n) J,K,P
03 rc isc
170 IF CSIC.'tll.Q .MfilMJI .ST. 0.0 I 3J TO
1« -.0 t-90 «=ltN*
03 130 LU-li'lC
IF IP»^«KiLL) iLT.J.]) r.o TO Z10
IF {PH^KK.LO.&T.C.C I 03 TO Z6J
190 CONTINUE
ZtO IF rtH.lf.OI GO TO ZIC
na
00
C3MTIHUE
00 2<»C J=l ,'IH
I5,30C) !'.VNC,<,L,i?
,CPM(J»
15.M3)
IF IVP' I .0-:. 5.3) 50 TO
oo ZJS <»i,ir.r*
Ztfl CONTINUE
ZSC IF (SF.Lf.iTI GO TO 293
fi£« I!
00 ZftC <*!.
03 Z« 1=1,
ZftO CONTIHUr.
S.??1)) IPHC.Kt L.RSHP(J)
15. -«.1C • l»SCIl°'li)1i».<(•:.J.G> 50 r(
oo zu <--i. tf.r-? (
2 ,<
K <£,-•'..'> Pf'T
W'Ift, (
C/.LL «A
1.. J> C.O TCI JC
fl.9,!lCi 'Xf LLI
j=t.
295 'I1 IT- (6,fv--,OI J.-JPU-H J) . IVifJ.O ,Kzl,I'
3CC I' «:;i'.i.1:. 3) r.o t) Jiu
If ITt «^,-5J3l
C'.LL t".4fi"ip ti,.j,f::,pn.)
5U
IF
OF
OF BZt
OF 51J
OF 51,1
OF 530
si:
OF
Of
OF
OF •,)•)
GF TlC
QF 60
OF 77-]
OF 7*0
OF 71J
OF ajj
OF 410
QF »2Q
QF 810
OF ft'. Q
OF 454
QF 863
OF 870
QP C
OF 1470
OF 134C
OF US)
QF UOJ
QF ItlJ
OF xizu
'JF
QF
OF 1153
GF 1166
OF 1171,
QF H«:
OF mj
OF 12CC
OF
3F
OF
OF
IF
OF
I MO
342
-------
sir i* (l.i.£. vi r.r TO 320
3 H'-iti t *,
f.LL liftt;':? (!N,'i;fH»
U.hJCI SK.iiTCl.fSTT
10
I2U KTslLTU
;r UCr.LF.lM*'
K.T«ICT-rit.<-l
Kt»0 IS,"./:! rtKftT
IF |?EPf.*T.'tE.O. J» HO TO 321
• c.'.lul
CO TO 110
J33 P^nT=
. F;*I
S(! 4=0.0
.
IF IMK.U.CT. :.£<.) CO TO V.3
IF |»-T«<,L).GT.ZCK,Ln '0 10
A»C.a
IF JKCT.GT.il) fiO TO 3ltO
K9ITC I6,5i:i I
H = 3.3
CCfiTINUF
CTCHT*!.
C3 1C ^1
CONTINUE
jJ=W£LUKtLI
IF (JJ.LE.U CO TO <«1U .
0»'Ort=S.PU-1 oo TO v.3
IF IK.LT.LCJKI GO T) <|V)
IF «<.r.T.LCJi£> uO TO ^!.J
BOTO
IF C£TCf-T.L£.C.» C-C TO <.53
«,oc K-
%7iJ FOCMAT (•*r10.1l
I..1C FO^HJt tl'TS.H
l/'!5.7>" 1C .It
52- F'.;t-At (ini.5/<.
««j Forur !i,it,«.j<,«r.i^Ki.
^r r.v..i;.i (ii-t M: mo>A«Ai.
555 FI'MAT (l'»l,30t, .'JH'tA
1C I
FOR
run
OF U»C
OF
OF
OF
OF I MC
OF IJ'K
,JF ivj:j
ii,c()
OF
OF
OF
OF
OF 1510
OF 152C
OF isic
OF 15"»C
OF 1550
OF I56i
OF 157)
qp 15,C
QF
Cf 16;J
QF 163C
op i6i»(,
"
QF
Q(. I6.j.,
OF 171',
QF 1720
OF 17.I&
OF 177C
OF 17s;
flr
OF
OF
OF 18JZ
OF 1*30
OF 1^1^0
OF ift^c
OF IJ55
^
QF 199:
«»0 OF «CC
OF 1120
Of 195C
cr
Qr l!)f>c
or j^/j
OF
Z052
QF ,
OF j
QF 7
CF ^
OF 213C
OF 2113
OF 2123
OF
OF
343
-------
•.••:•-.i;ui « OF
. 56C F37M1J :*,6Cii"*f°,ix nr "HKc Fif'MA'i (:•<:.///iJ/x. ci>itt'.i\Lf f;'.rci''iT«riCNa,e'i;.3»5x, IHINCMCJ/ OF >uj
iv,7A*> • - of 2)(>o
•i*. 1QHMELL TA>1LEI OF 2J50
,r,-x. 4MH-L!. no..''<,iio ,//,5x, ifitkaTt UC-FT/Y-:A») or 216C
ll,*)X.F:C.i.,l / ,5x, K-'-i.'! >T"I A.TIr.'J. JX.liF/.tl I 'IF
67J rc^H-tT (t^i./////,5>', iuH».tniii-:".c fiii.xi»iOi»owiNCcri.i , o=LV«. t t'S uc
20(MU»OU.I.JCJI.> i C^.Tr 41 tP,!'.! . C'ttf'l. i(!.0-Oll.-
-------
™ "" MC 1T"1
C«Mllll=0.3 KS 38J •
IF IMU.JI .r.c.ict :c.c» ca TO 151 ««s iJ>!
J4*l "S -.OC
40*1 M* *ii
c lEfiui MS die
C ' 'IS V«3
li. J-l) iUtL<(ItJI irtUM Ji, J-ll ,r.rLt IIiJJ .G( J'. i J r«5 ViJ
HS H7j
C ' HS I.9J
C • TOPIRI MS .viilji t KLX< t-:»ji ,j;.< t:i.ii iCti-iiji ,'> 'i*. 3j;
2 (IiJM . 1i 53;
C IS 51.3
C BCITO'KO 1S 550
C >IS SSJ
CMATK*cir.rc> =p*f ^vir "s s?"i
C HS 63fi
I»H iF<(It Jltf TC J3> J«ll trtTtlt Jl »Z I lit "IS £''«!
ILK U, Jl iBCLT (JO,J»1I ,li£Lf .GC,J)> MS 661
9111JI = C~*4'-'X CJT ,IOt IS 670
HS 64 Z
hSCOHT (^( Jt,J-l l,'*T(Ji,J-11 ,'IT(I.JI.7.IJ1,J-U ,i(I, JI.C^iT 15 age
kM> US 7 .MfC n, J) ,HTCI .Jl i2J)l/OEi.ri MS ^7C
-IHT (I,JI •STC3EF«0-i.Xll , J)»0£i.r«I . J It /0:LT—J 11. J > • 'IS 6S^
HS 903
CO TC :<>C . HS 91C
HS 920
HS 930
1*5 CONTINUE MS 4<»3
BEMIN3 7 US 05*
tMITE (71 C'lAT^X.CK . "S 96C
CSLt CSCLtfi (CXATiiX,I!>,IR.C«l MS 97J
MTrJ . «S
-------
CST ,N"i) K ».ii d , ji -Pci:; i; , ji I'Oc.t U .Ji'OS "1 i:i«
i LYII.J>/>;:I.T us t^ac
£ lf-,?'.5l I ,J • MS 1211
co T: 2i~. is :?j
100 l9VQ>r'.ii »<*>iici itJi-o'icitji Moau 1 1 ji • x -0
PO ^<«C J=2,»Ct • «S 1!53
00 223 I = :.f.Rl MS tJfitl
NTsMTU . • US U7:
Hri:.,ji=cv(! MS 13*5
MFCI.JI -C'-fC.!l ... »t3 1 J95
??0 CO'irifJUE « 11.3;
23! 3u'ru>?h • ItS tdlj
c MS mso
?*0 F3?M4T CH .li.HXi «.HMIO,»I3,SX, :>lf(IMCONr IhiO TO CG;6c
FUNCTION PARAM
FUtiCTiOrl P«=i'>l',iri,ira,A;i,4G2l PR ". 13
J PR ZO
c THIS suuPsooRiri co.ipurcs THE coEFFicunn USEO IN MAT-JOL AND PP HO
c " ofFiou. :T ii APFL:cii:L; TO CAS,:S OF MRIVIL- nx, CY. F<, PR 53
C ArO SATU^Tt.0 THICKNESS. . PR 60
C PR 73
COM.tON /9LK1/ OT|SI,ICF40,ILKAO,LCIE.LCIM,LCJC»t:jW,FKTOP " PR 80
c PR 90
IF ucF&a.L£.('i r,n ro uc • PR uo
03 10 120 PP J4, j
110 Sf TMCKO'liXl (iHTl, AHT?)-A1i NC 1C
C UC 20
C UC JO
c THIS suapouri'ie niN$f£RS Ttie cotrricicNrs, MULTIPLICO JY THEIR NC CC TC 1 U ' NC ISC
12C IK" (IHT:<-Z>t|.l£. 1.0.4i-!O.Hr 1.0T...r:.MTi'l) OT TO l'«3 . UC 170
13! CP*5 = C.J HC Hi
C . • HC VK
l«tfl Ktruiill • - NC 2)0
C »:C 210
CNO . HC i2fl
346
-------
SUBROUTINE BSOLVE
C . w» 1 t
C ns iv>
C THIS i'tH?OIJTU? SELVES MIE rt»TkIX, 3ET U? IK CftTSCL, :JY GiUSS «S *)
c rtisxwrioM. „ ...
• '
oo m i-i.L* - - .2! .?.c
irui.M.M « ":
DO 120 t--=l.IK . 'I "i
00 JK J^.M "
-
00 19C 1 = 1, t'l «
WXM
00 «1B
IF
13C CONTlNJi
• IF u.p:v.',r..ti oo TO 150
03 XnC J--t,,l
SUBROUTINE B JUST
OII,JI • 21 .,«
00 .17(1 J*Z,« • "
IF IUP.LT.M URalR+1 •' 5 *^
I9C iOMTIMUS . f* J«
v(Ni=vtM/o(n, ii _ . . • r* 7*7
Jfts2 ' ' **w*>
CO 216 1*1, 1 H ' *f J'J
l*N-I ' ™* *'3
00 289 J=2,J« - ff i?^
KM=L»J ' . I! ??i
23C Vll>sVfLl-na,J) »7(«-i> 21 I.i
IF
-------
Htti,i?>!"tt;,ifi»n:TP 9J "J
itc if 51 '•O TO t'O "J J&9
I.F I ill i, NC I < L T. i ."C ? 1. 2 > T.O TO tf»(J *JJ •""
— HJ 'Qfl
HTlii.N.^lyHTiIlffilill^SAXi *•*«
!%0 CC'ITIhuC ^J *lfl
c «J 1,35
RETURN 8J WC
e 3J «,",5
EMS 8J H50
SUBROUTINE OOFLOD
5U3 FO1? OVE?0 > ZIN'i,MCl| CtN'i,^;), SC:i*»UC), OXCNS OF 100
^ I,NCI, oru, ^uu.R,.iC) op ^^
COMMON /8LK1/ OT,ST,ICFiO,IUKAQ,LOt;.UCIH.UCje,l.CJ«,F1'ITCP OF 1JO
'COfHON /3LKa/ StA,STCu,^TT,SnS,S:lT,3a^i,SO-3fi,sqiCF.TA*C.C • *" 1"
Stf01.0*0.a . •' - 2r S?S
SVCLF*0.0 OF ZiC
KCT'C . OF 2ZC
00 HC J*l,MC ' OF 2JO
00 18C 1*1, Hi* _ - OF 2*0
IF CK;,J» .GE.HCCC.C) CO TO ISO Of 250
IF mtt.ji.<;e.z(i.j)> oa 10 in ' <>F ?*«
OOFtsZCl,JI-l'T tl,j> OF 27C
rr.Tsa.i* ' OF 2^0
SS=SU,J) OF JOC
IF IICF40.LE.GI GO TO Hi) OF Jll
SS'SCII.JI OF 320
IF tt-TU. J» .LS.GI1.J) ) SSsSa.JI OF JJ3
. it «H(i, n .r,c.2ico;.5) GO TO 1*3 or jsc
SVCliOfUCFT . Or 36C
1?C MTU .Jl =ZtI,Jl • ' 'OF 37C
f.O TO li'i ' OF JSC
uj JP i:ceiD.r,T.?) co TO 133 OF 19;
I* IHTCI.J) .LE.MI. J» I GJ TO 140 0" «iCO
OOrTsC.C CF <»JC
svoco-a.J CF m,c
IF (fi; ,j).r,T.2occ;.o oj TO luo . . OF «,so
SVOLF-^iCFI OF 1,63
i;o TO i?i • ' OF i»7ii
!<.; HI < i,j»-;, (i,,)) OF <»3t'
,3VCtf*0.1 ' OF VJO
IfO OACf t f-Q^CP TT I'JVOLO ' OF. 5tlU
FlCF1tsFACrTT»'Vll.r OF !10
i^ ij.i.r.ici»i ».'J TIJ iii or 52C
IF U.M.lClr:) OCT) X(0 OF 5,«fl
if ii.it.LCxn r-c TO i*.i OF $*u
IF ll.r'l .LCJi I C-9 '0 1«,3 • OF 551
" " ' .or 5*.;
348 :
-------
Hi If IKCT.r.T.OI CO TO 171
H9ITC I6.2CO)
t>3 :i«ir- I*., 2^3) I, J.OOKT, J-UCFT.FrTtFiCFT
.-ra.r.j.it.o.riCKTr. ro.s.ii r,o TO tio
N*IT<- «6,2i:> O'CFTTiFACf TTtQSO TAtFACFTA
t'••
Of *•"
OF •>?'!
3p **C
OF «i»j
0* 45Jj
M,2X,.11HF LOO OF 7iC
OF 71C
f .(iur:Frx» OF 72;
OF 75C
SUBROUTINE BYFLOVV
C
C
C
C
c
c
C
C
C
C
C
C
c
C
C
C
C
C
C
'C
C
c
c
C
C
C
T"IS
r.»IO«.
THOUGH
; ,CC,CI.°'t;iPHIC.CS>
r FIO/; .JJl'Ur/HJScJ.
60 T3 1/3
9F
3^
IF
3F
BF
dF
IF
3F
3F
BF
OF
OF
OF
9F
OF
BF
JF
tr
IF
3F
3F
OF
8F
BF
PF
-JF
-»t-'
9F
3F
iiF
3F
HF
f.F
-IF
rf?
BF
JF
f»F
OF
1M
60 TO 171
SQOGKI.J): ].
. J)«(HF(I,J) -
•OT/'»J'!60.
30
to
5u
«j
73
s:
9d
100
IK
120
1JC
160
19C
20C
i'16
2Z5
23'.
2n3
£50
280
201
3JO
11)
aea
3S3
3<*i
J51
J6C
J7C
J^iC
H:
«.0d
<»r>'i
i,6i
Vlj
500
511
szi
53;
5<<0
55C
563
I7C
59;
OF 6JC
349
-------
i /:
if ii.'i-. i j GU re isu
If IKK. En. >.l Go 1C 105
acr.i «t. j)
SUM OF t-FLOU
CO TO 193
1AJ tf (I.tit.N'll f.O TO
IF i«.f.n,<>) GO TO
SU»1 OF I-F
TIHUUGM
c
c
c
IES
IF It.Nr.N!) GO FC Jt C
IF I J.LT.!.Cr-l» GC T'J 210
IF I J.r.T.v.CIr:) GC TO ti'1 .
IF IKK.EU.I.I r,c ic «?ie
T H»i--s^r.:i(i,ji
fu»! CF i-FLf!H rue JUGN 9UFF-t», ZONE 9 C'JM
GO TO 210
285 IF CI.'I£.NSI GO TC 210
IF IJ.UT.LCISI GO 10 dl3
IF .IJ.GT.LCIr.1 GO TO ZU
IF KV.E;.-.) GD TO 210
c
c
c
SOH OF I-^LOH TMf«OUC-H SUFFER ZO'lc HOIIHOA^IES
i ir;n£
<»!R,f.:,SOr,GI)
211) CONTINUE
CALL r-
0-3 «.3 LCCP CO'"UT£S FLOUS n THE J-OI«tCCTION.
DO 320 l:l.Nf>
0* 32C J=l.NCl
CO TO
CO TO
CO TO
GO TO
: »/icccc.» »i
tt »7!»,r3C,3i.C» t
GO TO 360
soco m ».i>:PAr«AM{Fici; ,j*:i ,F
(I, JI.OXII, j»n ,CX(t, j» ,jv (I,
23P
2 ".0
250
GO TC 2H!
265 Srj&GJ « (HF Ui J) -HF 11, J»l» »[>?/'« 356B ,
CO TO 2d3
270 SOG1J(I,J)=0.0
, 2*3 IF ( J.'lE.ll GO TO iO
IF (kK.Fu.'4| GO TO 330
c
c
c
c
c
c
SU!* OF J-
THfCUCH 'JCUH34-'. If5
CO TO J01
IF IJ.:J£.:JI:D GO TO 3CJ
IF
SUM OF J-rLOW PV.CUC.h uOLimAKIES
i^ u. iF..i.'.t »'.j fc nc
IF u.Lf.tcj.n co n 3^•<
IF U.r,T.L.:jC) GC T>) J3:
IF (KK.ru.iti no TO J20
S«H OF
i* TMft'JUOH
?0'/li
C<3 TC J2i
310 IF |J,'I=:.L?.I GO TO JJO
•XF II.LT.I.CJ4I CO TO 3ZJ
•OF 6'.1
IF 60,
8F b/C
OF 610
OF i>9i
OF ?CG
OF 710
OF 72:
0
rtF 160
BF »70
BF 44]
SF 8)0
OF 930
BF 32-3
BF -9JO
BF 950
»F 970
aF Mi
ec uic
R-% • ive
BF 1010
OF ijti£
3F 135C
BF 1370
BF 108d
BF 159C
3F 11JC
OF i:ic
9F 1120
'IF 1130
dF ll-JC
OF H6i
BF 1170
3F
8F
BF 1Z3Q
BF
3F
UF
8F
OF 1250.
3F 1240
•JF tZ75
OF
HF
•IF
IF uii
•IF I U5
JF lli»1
•IF 1 !f,0
OF IJ7C
HF 1JJC
IF 1 IK
OF f.00
OF J!.JJ
9F
BF
BF
350
-------
.- »....-• !•• i '•<• • •> •'-' ,jf.
IF (<".. rl'l.'. I 'iO TC -J^i • jj.
SCO !F(
CT I
o:c IF isoGijc .j-t).ot. i-.i-i ••-• >" ••"«
cTfi,jj=crii,j)*-i-:<-.ii,ji|-'-j:i.J-i»»»sQOGjii,J-i
CHIiJt=i>"J" * J'IG'»J(I »J>
Cfl TO 560
55C CTCI.J»=CSIIi
56C COHTIliUE
C VJM Of J-FLO-J T.IP3ur.H WF» /ONt 10'n'jA»:< S jj J«»
C ( . luuu or 13'!l'^»u***i*** •* •»» -• _ . 7i»t
50PL*£n«U,J) QF 175i
C BF i760
C TOTAL UFLOvl F3CH CCNSTiNT rll&O GftlOS 9f t/,.
C . ...... 5F 1780
J55 CTlTII.Ut gf
C ,^r ' ' "F
C TOT4L IfFUOH Ti^Cof.H &OUKO-44IE5 . HF
SOBT=5Q3J4»3r.£lIA OF IH,,J
;r isessT.i.!:.?.oi GO it J6l aF l(,5l,
V'.IT£ i£,«.<>:i ITIME •!,- 154tl
CALL HAT.'iOP IIRiNC ,SC«<) (|r il7;
C . 6F
C , -OF
309 Stl?JiC«0 . . • $f
00 37C J-1OIH >LCIE , sip
saoGic.'i.-n -j.c • OF iiit
S.l&CI I'iS. .1)-C . 0 (if 193:;
37? CONTINUE 'OF U^l
M JrtC lsLC,J'!i(.CJ£ ' fjf iw.
SOC.fi JII .L'll =C .u gp ; j^(,
* ' • _ii . . • l*r I s» j
00 310 i-LC.IKiLCJE . t,,: ^^
UO J9C .J--LCiM,LCIF . or ^j.ji,
sor.ii.Ji-o.o . nr' iii:
351
-------
C TOTAL ICFLw* F-C.I'. CCl.STillT f--IUi WITHIN 'OFF-:"? ZOI.f. PCUr.
C
MC CGtlTII.UE
C TOTAL IfcFLCil THOUGH tVJFFrR ZCTIE 30UHOA3IES
DO .ru j-i.-ir.
1.3 :n/ :-I,NK
codtJi -cr d,ji
397 COHIIMH
fciu
«,»3
IAOUIFER
(!'(;, KX,
OISCMi'ilE IN I-OlKtCTICN eA>FT/U7>
ISCHSP'ie IN J-'J t-'SCTION CA>FT/OT>
HF
JF Z11C
V 212J
3F 2110
OF ^ll.5
6F i'i-;.J
nr
1:1 ;i':i« Gem MI-US M-:tf.» CLC.< F?.OM .o
tK-i-'i/nUi/ti" .'.?<•
tMO
3F
THIS SUSfOUTI.-Jr: W.MTti OUT Tin: OAL4llCi COMPUTATIONS FCR lACH
TIME inco.iiiE.'iT. ALL UNIT; ATE ;;l AC-FT PSR TIM*
SUBROUTINE BALCOP
SUBROUTINE 3ALCOP J Jl, J2 11,3TTTE*,STATErt»
C
C
c
e
c
c
c
c
c
c
c
c
c
c
/3LK2/ STA,3TOL,STT,;>:ia,S'JTtS-}f;A,S1BA,5«HT.S1iJT,OVA,OVT
J1.J2.I
3'JA.SCT . • "
SORi.SCRT
SOA.SOT - Jpr»LltO WAT^P, 0£TH£t».
SU»*iSO>T - INFLOW F
-------
SUBROUTINE MATROP '
SUHKJUI '.s.e. MAK'CH (M^iJH.NOCJLi'll *f 1C
C ** ft
C MF »0
c rnii suvi'wTpic G-t,.:M.!-s turA o* ^u'utr; TMO Q suiti-iLE FORM
-------
IBM
APPENDIX A-VIII. DATA CODING FORMS
1/4 FORTRAN Coding Form
GX2B-7327-6 U/M 050*
Printed in U.SA.
*.-OG.«
"C='"™'t' n. K. Stmada
i
s.
;-•
l; Vil»
N R
I 5
D
F 1 0
D
•
D
f
,
Z
G
P H
C
P H
Z
L
,
X
y
K
z
G
I
A
I
N C
I 5
X
1
•
C
N W
I 5
D
F 10
0
0
• F
I
G
P H
; C
; PH
N P
I 5
L Y ' '• ••
. 1
X
l
y '
• ; •
K ' '
Z
G
' ' l
I ' . :
A
1
1C
14 17 It n »
1C FAQ
I 5
1 - ' F
F 1 0
-/-*• (
• •
-f-*- (
-+-* (
-f-* i
• ,
-f-» - (
j
-f-* ' (
I .. (
71 a a it a
Mn Junp 1976
SSSS-.
G*49HIC
PUNCH
FORTRAN STATEMENT
11 KA
I
Q
5
FK : .
. 1
MR* N
C
NR* N
C
1
NR* N
NR* M
C
C
NR* N
C
| ;
NR* N
N R * M
c
C
H R * N C
» n a v x
; Til
1 8 A 1
i ,
: D
. i F 1
, . •• '
: : i Z
: :F10
* t 1
)' *'( Fl
1 ' 1
);* ('Fl
! i ' '
) * ( Fl
\
)''* ( Fl
• ;
)'* ('Fl
' j :
) * t'Fl
) * ( F 1
) !* ( F 1
L E '
0 '
; I
T
0. 2
Z ! : 1
.1 '
; : !
o. i );
• j
0.1)-
; i
0. 1 );
. i
0.1 ) i
; i
0. l )
.' i i !
0. 1 )
0. 1 )
0.1)
,
:
F
s
1
• i
, i i IG
' F 1
0
! ; '.
' ' !
' ! i
| I
; j j
READ
READ'
RE A D
READ
RE A D
i
R E'A'D
I '
1 - '
; i •
T ': ' ':
0 .2 '
= ! l !
G1' : ' i
. 1'
• i . ;
i '
• ( 1 !
i ] ! ;
I N: !BY
1 ; ;
IN' BY
. ! i
IN BY
; . !
i N; 'BY
IN :B Y
: • j '
IN! !B'Y
'. ! ;
! i
|
!
•
i
t
1 F
1 F
u
i
i i • :
i
! P
Fl
p
0
1
; i ; •
!
1
1
i .
! •
i
C;OL U
: ! . •
COL
n
i i •
C OL
D
' i ' ;
',
;
r;ni
i
C OL
i
. i
n
'u
i
51 a S3 S4 55
i ?
: : !
T 0
0
H1
T
p
2
'. \
: \
. 1
1 • ^N
i i :_
• •' ' /
M
H
N
N
S
s
I
\
j ' j
M
N
S
: • 'T
M
M
M
56
N
N
n
17
^
<;
\
\
J,
. ' ••
• ' ;
i '
• i
: 1
i 1
i i
F 1
t
1
C
1 o
: i i
1 i :
; I
0 HI
I N;
1
1
T
r
•: i ;
! 1 ;
; l i •
t i
.
i
—
i ;
a a i
•4 49
MCI O>
CA1O IUCI1O nvvjii-
' ; "
: ; ; f
c
! i
A '
! :
t
1
. ' !
' >
; ,
: ' . i ! !
1 • ' • !
A
'IF
'R n
5 P F
3
1 .
i . ,
'
!
41
4> M M W 71 71
(OlNflflCATlON
P P H I C
F 1 0. 1
l
1 •• i ; ; ,
p I F IF n
i
n ?« TJ '4 ?* ?i T* ac
-------
GX28-7327-8U/M050*
IBM 2'4
33
33A
4
4A
44
44A
44B
44C
5
FORTRAN Codlnt Turn
«-:•:•«
tcfwvFt D. K. Sunada
.™«r
•34:
c
F 1
c
F l
H
H
T
F
P
F 1
?
<;
D
n
M
H
n
i
i
K
P
n
i > K
1
1
L
1
L
T
. 1
{ UN I
C
l
F 1
T
F 1
H
T
F
C
F 1
11 K .6 '» X
r 0 R M
S
B C
0 . 1
A
TL
0.1
L
L
K L
P T
0 . 1
A L U E
-/-* (
U
R
F 1
i
/v (
1 U
F F
F 1
/ * (
• '
:'•<-' (
• . • :
I .. (
i I F N
• • 1
0 F
wn June 1976
PUNCHING
NS1RUC1ION*
CU4WC
fUHCM
FORTRAN STATEMENT
R
NR * N
SE C
C
0
BC '
0. 1
NR * N
C
SE C 0
KL
0 . 1
NR * N C
i
NR * N C
: i
N R * N C
ONE,
EL AT I
: . ; .
) * ( Fl
DE Q V
1 ;
! ; i T
i : .
r* ( FI
D E D V
! 1
{0 M IT
) * ('Fl
; • j
) * ( Fl
) * ( Fl
BLANK
,
i ; i •
VE CO
0 . 1)
A L U E S
B C: ' '
0.1
i
0 .:1 )
A L U E S
•
U N L E
0.11
1 • i
0.1)
•'•'.'
0 .1 )
CARD
M C E N T
READ
1 , !
: ' ; B
' F 1
• • : '
R EA D!
i ! i
S S L E
: , i
R EA D;
. i
R EA D
' ' i i
R EA 0
: '' . ,'
! i l 1
AT 10
N
BY
i '• '
B C ' :
0 .
1
j .
IN
B Y
\ i !
A K
Y A
i i
I N
B Y
1
IN
I N
B Y
BY
i ,
: i i
:
i
j i
'
0
T
C 0 L
II
i
• .
!
C 0 L U
. * i
Q U I F E
,
CO
I
. ' i
r. o
1
r n
1
i t ^
!
'• . i
j i
H_
E R W I
M
N
1 i i
1
i j |
! ;
•1 N; i
; t : :
R
CON
•: '•
: '
M.
N
i i :
M
N :
M
N; -)
i
: i
:
SE B L
0 M I'
I H
T
CA
t
1
0 M I
I N' ;
T
C A
' ' ! '
D I T
I 0
•
0 M I
I N
T
r A
• •
i
A N K
Printed in U.S A.
C A.R
F
RD1
SPEC
3 3
!
I F
R D
SPEC
4
1
N S
D E S I
I F
RD
SPEC
4 4
'°— -°"
n
I FI E D
IF I E D
RE D
IF I E D
-------
IBM
3/4
FORTRAN bdtaf Fm
GX2S-73274 U/MOSO"
Printed in U.S.A.
5A
6
6A
7
7A
7AA
78
« JSMM
«oc.«w« D. K. Sunada |O»K June 1976
nJNCHIMG
*
",r;r
YP T
A
F 1
YAW
HGP U
I 5
•
J
I S
D
F 1
YPR
|
P
0
ft
0
U
. 1
YAM
K
I S
\
t
H GPU
R
- 1
YPR
C
F 1
YAW
P
F 1
P
Fl
YPR
:
i
_^
AW
0. 1
-y-».
{ZERO
HR 1
0.1
' :' i
i
i
1
- :.
HR
o. r -
._/»•
. - . :
I N YR *
{IF N
I N YR *
1 •
IF :N
•
FOR
, j
I , (
: 1 ' ;
• i ' !
I N YR *
f t
(F5 . 1
ON E .
(F 5.1
OM E -.'
- . ! ;
, , •; .
' t
• ' i
: ' ; i
\\ G P U
I ' -
• ,
' ! ! '
NR * N C
! 1 1
' , ! 1
{ F5 . 1
', '. • '.
• 1 i
j ;
fORTRAN STATEMENT
{
i
, i
B L A
NK
! !
i ! •
f
: • : '
BL:AN K
i ' ! '
i ' '
|
•
I'll
i • ! 1
. GTVO
i '
1
j ;
)'*'{
f ,
1 1
i ;
V •
;•
. . .
Fl
•
;
f
: i !
i j
!
0 MIT
CAR
0
OH IT
i i
IN D
I
i : '•
: • •• •
i : '•.
• ' 1
; 1 i
. o i.
; . J
' 1
0 Jl )
' ! :
1 * !
ONLY
i '.ij>
'' '• \'
""<
IF P P
t
I F: A P
C'AT E s
: ; i :
i • ! l
: i ' !
• ! ; "I
t i ' i
• i ' 1
O-TH'E'R
i i :
i , i
. ! : I
READ
• i i !
,iii
N E ED E
;. i i !
-\ i i i
OWMC
IUNCH
T .;L'E'.
• ; • :
1 i i '
' •
. : .
w
. • L E .
: i !
E N T'l
i : ' '
• : i
! ! !
1 t ! i
• i ! i
w iis!E'
l : J !
, j !
i i :
I
N BiY
; i ;
: ! ! i
D JI'F)
i i i ;•
Mh
• ! ! 1
0. 0
i ' '.
1 i ; !
' ' i i
0.
0
• ; : ;
RE: P
H
• • ' '
• ! i !
1 j i
.
I
1 — ' —
3 MIT
1 t
: : ,
! ! i
^CO!LU
T
i
1 I
< \
P H R:.
r,
i : I'i
i ; 1
!
' 1
; « i
j
t
i !!
i ' i
; ' i
R'
M
A
T
1 * i •
i
i
1 •
i
i i
i !
i 1 i
i , ,
\
M'N
i
i
j I
l
i i :
T'
i
0
n
,
i ' ! •
i
I
: ' i
!
R
J
T X'
1
•
— ! —
T
I
; i ;
i 1
i j
',
!
1
I
' ; i '
i : ! '
; 1
F
OR1
N
1
f
' : i
i '! . 1
' ! ' "
i :
'
MCI Of
CAC3 UtCIftO KUMKf
'' l '. '
->,-.'•.
i i ; ; ' •
I.I
0
BE RE
J '• :
1 ' '. ' •
: . ; I '
i
i i
i I ':
i i J ! ] ,
' i , i
i ; i • ' -
1
GP U '
-BL A
.
: - . :
•
IO£N1JFiCAflON
1
AD IN;''
• .
l;|.
. • • : i . j
-' i . ' • ,
. •
. '..-',.
NK
<*>
U1
0>
-------
TRiyr 4/4 FORTRAN Coding Turn
»CO'«M
«CG'«VMH D. K. sunada h" June 1976 1
fUNOONG
msnucnoM
CHAfWC
fUNCM
OX28-7327-«U/M050"
Printed in US A
CJUQ ELECTRO Mj***t<*
?
r.i.*. •
).''{!
• ' i
T
i . 1 :
i ' ;
1 ;
i '
R'E AjT E
' :
l
r , '
i ' '
1 ;
1
) ! Ul
i :
T
: , [
C A
! i
R n
! :
F BL A
R U B U T
. ! : i
;
I ,
R 'T HA
• : i '
' ' r (
- B LA
? I BUT
i : '
• 1 i
•
S 5 1
. ; . ;
1 : .
i
.
N K AS
ION A
! i
: ; •
i • i
i :
n; ;z E R
' • i ;
! '
. . I
N K A S
I 0,N A
'i:l
• i '
H R 0 UG
! i i |
; . '
SUM E'S
S P RE
:
i
1 ' i
O'.i ;OT
; ; i ;
1 i i i
. ; . i
1 ; 1
S U MEi
S PR E
' : i !
t "•
H' :7!77
: ' 1 i
: i • .
: •
< '•• . '.
• ;
!
S AM E
V I 0
US
: 1
1
HE RW.I
; ! ; '•
: ', • :
, '
i ' . '
S A
VI 0
H E
US
! ' '
! ! i •
• •
B F
1
O'R
!
•
• : j .
; . • ;
i •
i ,
D I
' LI C
1 Fl t
i
Si-
L L
i
1 i i
1 ! •
! ! ,
S E
0 M
•• 1 ' ;
1 ! : :
i 1
I :
! i
D I S!-
p:iT'
i ! i t
t :
i 1 .
N EX T
1 ;
i :
l '
I
1 ' !
, N
N
C
1 i
: i ! i
i ;T ! i
' ^ ' ;
1 : ! i
•
•
i
N
t
C
i
YEAR
j ! '. •
1 •
i ! : i i •
OT NEED
W * 0 IN
A R D
' • •
! ,
•;;•!!
i i : i ,
: • ' . -
i • ! !
!
0 T NEED
W = 0 IN
A R D'
OF ANA
WCUiNCt
1
E D IF
CONTROL
• •
' • • ' i '
! i : '
• '
ED IF
CO NT R 0 L
LYSIS
77
77A
77B
777
777
7771
777
-------