&EFK
United States     Industrial Environmental Research EPA-600/7-80-106
Environmental Protection  Laboratory          May 1980
Agency        Research Triangle Park NC 27711




Physical and  Chemical


Characterization of Coal
         Interagency

         Energy/Environment

         R&D Program Report

-------
                  RESEARCH REPORTING SERIES


 Research reports of the Office of Research and Development, U.S. Environmental
 Protection  Agency, have been grouped into nine series. These nine broad cate-
 gories were established to facilitate further development and application of en-
 vironmental technology.  Elimination  of  traditional  grouping was consciously
 planned to foster technology transfer and a maximum interface in related fields.
 The nine series are:

     1. Environmental Health Effects Research

     2. Environmental Protection Technology

     3. Ecological Research

     4. Environmental Monitoring

     5. Socioeconomic Environmental  Studies

     6. Scientific and Technical Assessment Reports (STAR)

     7. Interagency Energy-Environment Research and Development

     8. "Special" Reports

     9. Miscellaneous Reports

 This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
 RESEARCH AND DEVELOPMENT series. Reports in this series result from the
 effort funded under the 17-agency  Federal Energy/Environment Research and
 Development Program. These studies relate to EPA's mission to protect the public
 health and welfare from adverse effects of pollutants associated with energy sys-
 tems. The goal of  the Program is to assure the rapid development of domestic
 energy supplies in  an environmentally-compatible manner by providing the  nec-
 essary environmental data and control technology. Investigations include analy-
 ses of the transport of energy-related  pollutants and their health and ecological
 effects; assessments of, and development of, control technologies for energy
 systems; and integrated assessments of a wide'range of energy-related environ-
 mental issues.
                        EPA REVIEW NOTICE
This report has been reviewed by the participating Federal Agencies, and approved
for  publication. Approval does not signify that the contents necessarily reflect
the  views and policies of the Government, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.

This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.

-------
                               EPA-600/7-80-106

                                         May 1980
  Physical  and  Chemical
Characterization  of Coal
                   by

     D.G. Hamblen, P.R. Solomon, and R.H. Hobbs

        United Technologies Research Center
         East Hartford, Connecticut 06108
            Contract No. 68-02-3116
          Program Element No. INE624
        EPA Project Officer: Frank E. Briden

     Industrial Environmental Research Laboratory
   Office of Environmental Engineering and Technology
         Research Triangle Park, NC 27711
                Prepared for

     U.S. ENVIRONMENTAL PROTECTION AGENCY
        Office of Research and Development
            Washington, DC 20460

-------
                                  DISCLAIMER
     This report has been reviewed by the Industrial and Environmental Research
Laboratory, U.S. Environmental Protection Agency, and approved for publication.
Approval does not signify that the contents necessarily reflect the views and
policies of the U.S. Environmental Protection Agency, nor does mention of trade
names or commercial products constitute endorsement or recommendation for use.
                                       ii

-------
                                   FOREWORD
     Under Contract 68-02-3116 sponsored by the Environmental Protection Agency,
the United Technologies Research Center (UTRC) is conducting a program to
develop several new automated coal analysis procedures employing a scanning
electron microprobe.  The program is directed at the growing need for more
accurate and lower cost coal characterization methods precipitated by environ-
mental considerations and increased emphasis on coal conversion.  The program
is divided into two main tasks.  Under Task I, the new techniques of sample
preparation, data aquisitions, and data analysis are developed.  In Task II,
the procedures developed in Task I are evaluated for speed, accuracy and
precision.
                                       ill

-------
                                   ABSTRACT
     The MASC  (Microprobe Analysis  of  in  Sulfur  Coal)  procedure,  which  uses  a
statistical analysis  of  the  spatial  distribution of  sulfur  and  iron  in  coal  to
determine  the  forms of sulfur  (organic, pyritic,  and  sulfatic)  has been
refined to account  for the effects  of mineral  particle size,  and  the  presence
of  iron oxides,  in  order to  obtain  better quantitative estimates  for  the
mineral sulfur  forms.  These refinements  include  grinding the coal fine enough
that the particle size effects are  eliminated, pressing the resulting powder
to  provide a uniform  smooth  pellet,  and adding the analysis of  additional
elements to allow the determination  of the  clay  constituents.   Using  the
procedures developed  in  this program it is  possible  to obtain measurements for
the sulfur forms and  total sulfur which are  reproducible to 0.1 wt. % and are
within 0.5 wt.  % of the ASTM measurements for  the  forms  and 0.25  wt.  %  for the
total sulfur.   In addition,  the pyrite stoichiometry  is  obtained  (x in  the
formula FeS , reproducible to  5%).   Also  obtained  from the  analysis is  the
           A
determination of the major inorganics  (Al,  Si, Ca, Mg,  K, Ti),  accurate and
reproducible to  5%  of the measurement or  0.2 wt.  %, whichever is  greater.

     Estimates  of the pyrite particle size  for two coals are  obtained from the
spatial distribution  of  iron and sulfur in  samples which were ground  to 40
mesh top size,  and  these results are compared with washability  studies  for two
coals.

     The time required for all of these measurements  is  less  than 15  minutes,
and the procedure uses only a  200 mg sample  of the coal.

     In addition, the use of a commercial elemental analysis  is evaluated for
use in the determination of nitrogen in coal, and  found  to  give results
accurate and reproducible to within  3% of the measurement.
                                        iv

-------
                 Physical and Chemical Characterization of Coal


                               TABLE OF CONTENTS


                                                                         Page

SUMMARY  .  .	   1

  I.  SULFUR FORMS 	   4

      A.  Introduction and Background  	   4
      B.  Experiment Procedures  	   4
      C.  Data Acquisition	   6
      D.  Data Reduction	   8
      E.  Discussion of Reproducibility  	  11
      F.  Discussion of Results	12

 II.  PYRITE PARTICLE SIZE ANALYSIS	19

      A.  Introduction	19
      B.  Theory	19
      C.  Results with Simulated Data	21
      D.  Results for Coals	27
      E.  Comparison with Washability Data   	35

III.  Task IV - TOTAL NITROGEN CONCENTRATION	38

 IV.  MAJOR INORGANICS 	  43

  V.  MASC RESULTS ON EPA SUPPLIED COALS	48

REFERENCES	59

APPENDIX A - CORRELATIONS AND EIGENVECTORS FOR CALIBRATION
             COALS    	60

APPENDIX B - CORRELATIONS AND EIGENVECTORS FOR WASHED COALS   	  78

APPENDIX C - RAW DATA FOR 330 AND 308 FLOAT COALS	96

APPENDIX D - CORRELATIONS AND EIGENVECTORS FOR EPA-SUPPLIED
             COALS    	145

APPENDIX E - DESCRIPTION OF  COMPUTER  PROGRAMS   	 153

-------
                                 LIST OF FIGURES



 Figure  No.



 1-1              Example  of  MASC  Plot   	    5


 1-2              Correlation of Sulfur Forms   	   14
                                                                         \

 1-3              Comparison  of MASC  for Total  Sulfur	15


 1-4              Comparison  of Organic Sulfur  Measurements   	   16


 1-5              Comparison  of Mineral Sulfur  Measurements   	   17


 U~l             Numerically Generated Distribution Compared  to  the
                 Coal Data	23


 II-2             Examples of Monte Carlo  Distributions Fitted  by
                 Particle Size Program	24


 II-3             Example of  Monte Carlo Distribution Fit by
                 Particle Size Program	26


 11-4             ISGS Coal Fitted by  Particle  Size Program	28


 11-5             ISGS Coal Analysis with  Photomicrographs   	30


 II-6             Fitted Pyrite Distribution from ISGS Coal	31


 II-7             PSOC 308 and 330 Pyrite  Particle Size
                 Analysis    	33


 II-8             PSOC 308 and 330 Coals Fitted for Pyrite Particle Size  .   34


 II-9             Washability  Study on  PSOC 330	36


 11-10            Washability  Study on  PSOC 308	37
                                 I

 IV-1             Comparison  of MASC and ASTM Ash	44


IV-2             PSOC 212 Coal with 10% Kaolin	45


IV-3            PSOC 212 Coal with 10% Illite	46


IV-4            PSOC 212 Coal with 10% Montmorillonite   	47

-------
                            LIST OF FIGURES (Cont'd)







Figure No.








 V-l            1632A Coal MASC Plot   	51





 V-2            1635 Coal MASC Plot    	52





 V-3            PHS 408 Coal MASC Plot   	53





 V-4            PHS 506 Coal MASC Plot   	54





 V-5            PHS 534 Coal MASC Plot   	55





 V-6            PHS 546 Coal MASC Plot   	56





 V-7            PHS 578 Coal MASC Plot   	57
                                        vii

-------
                                LIST OF TABLES


Table No..


  1-1           Reproducibility of Sulfur Forms for ISGS #72 Coal  ...   11

  1-2           Plot Symbols for Coals	   13

 II-l           Examples of MAPS Fit to Monte Carlo Data from
                Figure 11-2   	   25

 11-2           Average Particle Radius; Versus Average Particle
                Signal	   29

III-l           Elemental Analysis of ROSA Coal (Dry)	   40

III-2           Nitrogen Measurements ,	   41

III-3           Elemental Analysis of Model Compounds 	   42

  V-l           Sulfur Forms for EPA-Supplied Coals 	  49

  V-2           Mineral Mutler Analyses for EPS Supplied Coals  ....   50
                                       viii

-------
                                    SUMMARY
     Under Contract 68-02-3116 sponsored by the Environmental Protection
Agency, the United Technologies Research Center (UTRC) is conducting a program
to develop several new automated coal analysis procedures employing a scanning
electron microprobe.  The program is directed at the growing need for more
accurate and lower cost coal characterization methods precipitated by environ-
mental considerations and increased emphasis on coal conversion.  The program
is divided into two main tasks.  Under Task I, the new techniques of sample
preparation, data acquisitions, and data analysis are developed.  In Task II,
the procedures developed in Task I are evaluated for speed, accuracy and
precision.

     Limitations on the acceptable levels for S09 and NCL. emissions from
                                                £       X
power plants make the direct burning of 80 percent of our eastern and mid-
western coals (those most accessible to the majority of power plants) unlaw-
ful.  Future restrictions on other emissions from major and minor mineral
components may further restrict the use of coal.  The development and imple-
mentation of coal cleaning procedures requires extensive characterization of
feed coals and the products of the cleaning process, but many of the methods
for characterization are cumbersome and inaccurate.  New methods for the
analysis of sulfur forms and the determination of pyrite particle size distri-
bution are needed.  The ASTM sulfur forms analysis (Ref. 1) is time consuming
and costly.  In addition, recent studies using the Mossbauer technique have
shown up to 50 percent error in the pyrite determination in some coals (Ref.
2, 3).  The organic sulfur which is determined by difference suffers corre-
sponding errors. Development of coal analysis procedures which could improve
accuracy and cut cost and time would be highly desirable.  In addition, the
development of rapid and inexpensive methods to determine the size distribu-
tion of pyrite and other minerals would be valuable for predicting the effec-
tiveness of mechanical cleaning procedures (Ref. 4).

     Analysis of the organic sulfur concentration, S(0), in coal is difficult
because the organic material is intimately mixed with inorganic compounds
of sulfur.  The standard ASTM method (Ref. 1) which calls for the determina-
tion of S(0) by subtracting the sulfate and sulfide contribution from the
total sulfur is complicated, and often inaccurate.  The MASC (Microprobe
Analyis of Sulfur and Coal) method for the direct determination of S(0)
eliminates these deficiencies and is applicable to coal chars as well.  In
addition, the elemental  ratio X of iron sulfide compounds, FeSx, is also
obtained.  By including  other elements in the analysis, the MASC procedure

-------
also determines the major mineral concentrations as well.  Other advantages of
the method include:  the ability to use small samples, low cost, speed (a
complete analysis is currently being performed in approximately 10 minutes)
and the option of repeating results since the method is nondestructive.

     In brief, the method is based on the differences in the spatial distri-
bution of mineral sulfur (clustered distribution) and organic sulfur (relative-
ly uniform distribution).  The method uses a scanning electron microscope to
measure the spatial distributions of a number of elements of interest in
addition to iron and sulfur.  The x-ray intensities for a large number of
subsamples are measured.  Considering just the iron and sulfur intensities as
a first approximation if we plot these intensities in a scatter plot of iron
versus sulfur, it will be seen that the data lie along a line.  The intercept
of this line on the sulfur axis represents sulfur which has no iron, i.e.,
non-pyrite sulfur; and the line has a slope which is indicative of the stoichi-
ometry of the pyrite.  In addition, the average of the iron data represents
the amount of pyrite present.  In this study, we have measured the spatial
distributions for five elements (S, Fe, Si, Al, Ca) in most cases.  These
additional elements are needed to correct the first approximation results from
the iron and sulfur alone.

     By analyzing the correlations in these spatial distributions we extract
the following information:

     1.  Organic sulfur - within 0.5 wt. % of ASTM measurements, reproducible
         to 0.1%.

     2.  Pyrite sulfur - within 0.5 wt. % of ASTM, reproducible to 0.1%.

     3.  Pyrite stoichiometry - reproducible to + 5%.

     4.  Calcium sulfate - one sample was observed, accuracy not known.

     5.  Total sulfur - by adding the forms, a value within 0.25 weight
         percent of ASTM measurements, reproducible to 0.1%.

     6.  Major inorganics including Si, Al, Fe, Ca, K, Mg, and Ti - values
         for total major minerals were obtained by adding up these con-
         stituents which were within 2 wt. % of the total values obtained
         from low temperature a$hing.

     For those elements which occur in coal in only one form (i.e., most of the
mineral matter constituents, such as Al^Oj), a precision of 1% and an accuracy
of 5% of the measurement can be obtained.  These numbers are just those of a
typical quantitative analysis of a homogeneous sample using the microprobe.

-------
     The data used in the above measurements requires a sample of coal weighing
200 mg, and the actual data acquisition time is 10 minutes for 121 subsamples
on the coal sample.  To obtain information on additional elements requires an
additional 2 minutes per element.  The time required is due to computer
analysis of each subs ample spectrum and may be reduced by using a faster
computer.  These 121 subsamples provide enough measurements to determine the
correlations between the elements sufficiently well for the MASC analysis.

     The MAPS (Microprobe Analysis of Particle Sizes) method for particle size
determination has evolved from the MASC analysis. There is a great need for
obtaining the pyrite size distribution in order to optimize mechanical clean-
ing procedures.  There is obviously information about the size distribution
contained in the data.  The MAPS method extracts this information through a
fitting procedure to determine an average particle number density (number of
particles per unit volume of coal) and a distribution function for the par-
ticle sizes.  This information on particle sizes is found to be in good
agreement with data  from washability studies on two coals.

     In Section I, the MASC procedure for sulfur forms  is described, and the
results for 17 calibration coals are discussed.  Section II describes  the
particle size (MAPS) procedure and evaluates the results in terms of washabil-
ity.  Section III is an evaluation of the use of an elemental analyzer for
total nitrogen measurements.  Section IV details the application of MASC to
the major minerals,  and in Section V the results of these measurement  tech-
niques are applied to seven coals supplied by EPA.

-------
                              I.  SULFUR FORMS
\.  INTRODUCTION AND BACKGROUND

     The determination of the sulfur forms in coal using the electron micro-
probe is based on the correlation in the spatial distribution between the
various elements in coal.  The method was originally described by Solomon and
tfanzione (Ref. 5).  In the simplest case of a coal containing only organic
sulfur and pyrite sulfur (FeS2), with no other sources of iron or sulfur,
then the result of a measurement of those two elements over any small region
(subsample) in the coal will show a mixture of the organic sulfur and the
pyrite.  If it is assumed that the organic sulfur is uniformly distributed,
and that the pyrite is spatially distributed in small, discrete pieces, then
a series of subsamples will each have the same amount of organic sulfur plus
a varying amount of pyrite sulfur.  The iron measurement will show the same
variation in intensity as the pyrite sulfur, and if a plot is made of sulfur
vs iron for the various subsamples as in Figure 1-1, the data will fall on a
straight line whose slope determines the pyrite stoichiometry, and whose
intercept on the sulfur axis at zero iron represents the organic sulfur.  MASC
(Microprobe Analysis of Sulfur in Coal) is an automated technique for perform-
ing these analyses, with additional elements added for determining the clay
components and for correcting the iron measurement for the presence of iron-
bearing clay.  In addition, it is possible to distinguish between pyrite and
sulfate mineral sulfur, by observing the presence of a high correlation
between the sulfur and calcium.
B.  EXPERIMENT PROCEDURES

     The sulfur in coal analysis is performed on a Cameca scanning electron
microprobe with two wavelength-dispersive crystal spectrometers, a Tracer-
Northern TN2000 energy-dispersive spectrometer, and a Canberra stage and
column automation system, all operating under the control of a PDP 11/04
minicomputer.  The MASC compute^ program acquires the data for several ele-
ments at 121 different subsamples on a coal sample and stores the data on a
magnetic floppy disc for further analysis.

Sample Preparation

     The coal samples are prepared for microprobe analysis by grinding in a
tungsten carbide capsule to at least 100 mesh, and then pressing 200 mg

-------
                                                               FIG. 1-1
                      EXAMPLE OF MASC PLOT
0.123
                                                             79-10-115-5

-------
pellets  in a standard  13 mm diameter  pellet  press  at  20,000  psi.  This  provides
a reasonably smooth  surface for  the microprobe  to  analyze.   A  variety of
different grinding sizes were  tried during the  course of  this  program,  and  it
was  found that  the best results  were  obtained with coal so finely ground  that
the  high density particles (i.e.,  pyrite  and clay) were small  enough that
the  electron beam could penetrate  them  completely. This  eliminates particle
size effects from the microprobe analysis of sulfur forms.   This requires that
the  pyrite be ground to a top  size of one or two microns.  Since this is  at
the  limit of conventional dry  grinding  techniques, the samples were ground  for
an hour.

     The pressed pellets were  then mounted on standard microprobe mounts  with
silver Micropaint, and coated  with approximately 200  A of carbon in a
sputter  coating vacuum system.   The carbon provides a conductive coating  on
the  samples to eliminate charging under the  electron  beam in the microprobe.
No effort was made to determine  if this coating was necessary  for coal  sam-
ples.  Previous work at UTRC used a gold  coating on coal, but  the gold  M  X-ray
lines interfere with the sulfur  K  lines which are  used for analysis.  Several
experiments were performed to  verify  that the carbon  coating gave reproducible
and  consistent results compared  with  the  previous  measurements at this  lab.
C.  DATA ACQUISITION

     The computer program which controls the automated data acquisition has
two major phases:  an initialization phase and an acquisition  phase. During
the initialization phase, X-ray spectra to be used as references are acquired;
and the stage coordinates of the samples and the pyrite reference sample are
entered into the computer.  The reference spectra for the energy spectrometer
consist of the relevant portion of the full X-ray spectrum for each of the
elements of interest.  For example, for the sulfur standard, a spectrum is
taken on a polished pyrite flat for 30 seconds, i.e., long enough to acquire
a statistically accurate sulfur K X-ray line, and then the portion of the
spectrum containing the sulfur peak and about one peak-width of background on
either side is stored in the computer memory.  Similarly, the  iron peak from
the same spectrum is stored as the iron reference.  In addition to sulfur and
iron, reference peaks are stored for Al, Si, and Ca, from Al^Oo, SiO^j
and CaWO,  standards, respectively.  The pyrite, alumina, and silica stand-
ards were used because these were considered to be most similar to the forms
of these elements usually found Jin coal.  The calcium tungstate was the only
readily available Ca standard (it was already mounted in the microprobe).

     Although the wavelength spectrometers were not used extensively in this
program, they can be tuned up on a desired standard, and standard intensities
and background intensities entered into the computer.

-------
     Once this initial information is stored in the computer, the analysis
is started.  For each sample, the computer moves the stage to the sample,
asks the operator to check the focus, magnification, beam current, and other
parameters of the probe, and then the computer initiates an analysis of the
first subsample.  This consists of a full energy spectrum, the intensities of
both crystal spectrometers, the length of time of acquisition, and the inte-
grated absorbed sample current during that time.  Because the subsequent
reduction of this energy spectrum takes about five seconds, the acquisition
time is set to five seconds.  The stage is then moved to a different sub-
sample, and the acquisition cycle is repeated with the spectrum being stored
in a different part of the computer memory.  While this data  is being ac-
quired, the previous data  is being reduced by doing a least-squares fit of the
reference peaks to the unknown spectrum to determine the ratio of the unknown
to the reference peaks including background correction (i.e., the usual
k-ratios) using the Tracer-Northern program 'XML1.  This process repeats until
121 data subsamples have been analyzed, and then the stage moves to the next
sample and repeats the procedure.  The fitting procedure will calculate
k-ratios for all references which have been entered during the initialization,
up to a maximum of 20.

     Before every other sample, the  same  analysis  is performed for nine  sub-
samples on the pyrite flat to verify that the microprobe has  not drifted  in
energy calibration, beam current, etc.

     Thus, for every  sample,  there is stored on  floppy disc  a set of nine  or
more measurements (2  crystal  spectrometer intensities,  integrated beam cur-
rent, measurement time, and k-ratios for  Fe, S,  Al, Si, and  Ca plus any
additional elements)  at 121  subsamples plus the  same data  for nine  subsamples
on pyrite.

     The measurement  time  per subsample  is  subject  to several constraints:
we wish  to complete  the measurement  in as short  a  total time  as  possible
subject  to the  requirement of adequate statistics  for each  subsample point.
The  subsample-to-subsample variation in  the iron peak intensity,  for example,
is  typically  comparable to the average value of  the iron  intensity.  This
requires  that  the number of  counts in  the iron  peak should  be, say  10 or 20,
in  order  to observe  the subsample-to-subsample  variation with good  statistics.
For  a  1% pyrite  sample  under the  conditions used,  this  corresponds  to a  1/2  to
1 second sampling time.  Thus, in practice, the  acquisition  time  is limited  by
the  data  reduction  as mentioned  above.   The second important  point  here  is
that  the  average  intensities,  for the  coal  sample  as  a  whole, are determined
from the  full  set of 121 data points,  which represents  10 minutes of  acquisi-
tion  time, which  is  more  than sufficient.

                                         —Q
      The beam conditions used are 3  x  10 '  amps beam  current at  2000X magni-
fication for  the  finely ground samples used  for the sulfur  forms  measurements.
At  these currents,  the  crystal spectrometer gave essentially zero counts

-------
 (luring  five  seconds,  and so were not analyzed.  The same sample current was
 used  in the  particle  size measurements,  which employ 1000X for the 100 mesh
 samples and  2400X for the 40 mesh samples.   For some of the particle size
 data, beam currents of 2 x 10-7 amps were used, and the data from the crystal
 spectrometers  was used instead of the energy data.

 D.  DATA REDUCTION

      The basic  measurement considered here  is the measurement of the sulfur
 concentration  in  coal.   This is assumed,  as first approximation,  to be made
 up  of two parts:   uniformly distributed  organic sulfur, S(0), and spatially
 distributed  mineral sulfur,  S(M),  which  is  mainly pyrite and is correlated
 with  iron.   We  can then write that the total sulfur, S(T),  is given by

                   S(T)  = S(0) + S(M).  (weight % dry basis)

 If  we now assume  that  these two constituents generate X-rays with different
 efficiencies,  so  that

                                 S<0) - aks(Q)

      and

                                 S(M) = bkg(M)

 where the  k's  are  the  sulfur k-ratios for the two different sulfur forms,  we
 can solve  the  first equation as follows:
                            1 =  a
                                  k
                                   SCO)
                                   SCT)
kSCM)1
 S(T)J '
Ci-1)
If we now have a procedure  for  separating  the  mineral  and  organic  components
of k-ratios, we can use  this equation with the ASTM values for  total  sulfur  to
determine the values  for the efficiencies  a and  b.

     There are several possible ways of  analyzing the  data to determine the
relative amounts of the  two sulffur k-ratios.   In the event that a  plot  of the
sulfur data versus the iron data  shows a straight line with no  scatter,  the
intercept of that line is kg/Q\ and the  difference  between the  average  k  and
^SCO) *-s t*ie mineral ^SCM)*  ^or  some °f the very high pyrite coals,  this is
nearly the case, but  for most coals there  is considerable  scatter  on  such a
plot as seen in Figure 1-1.

     There are several ways of  fitting straight  lines  to data of this sort.
One of the most common is a conventional least squares regression  of  all but

-------
one of the variables  as  independent  variables  against  the  remaining  variable
as a dependent variable.  The  drawback  to  this procedure  is  that  it  treats  one
of the variables,  the dependent  variable,  as  special;  that is,  the procedure
assumes  that  all  the  variance  observed  in  the  measurements is  contained  in
this one variable,  and  that  the  remaining  variables  vary  only  because  they
determine different amounts  of the dependent variable.  At first, we attri-
buted most of the  scatter in the data to actual variations in  the organic
sulfur in the different macerals making up the coal, and  thus  felt justified
in doing the  least  squares regression.  Using  the  values  for the  organic and
mineral k-ratios  obtained in this way in Eq. 1-1 gave  values for  a and b which
consistently overestimated the organic  sulfur  and  underestimated  the mineral
sulfur as determined  by  the  ASTM methods,  although they gave fair agreement
with the total sulfur measurements.

     If  it is assumed that the data  for iron and sulfur are  normally distri-
buted, then a mean  and  standard  deviation  can  be calculated, and  an  ellipse
can be drawn about  the  data  representing a contour of  constant  deviation from
the mean (see Figure  1-1).   The  least-squares  regression  of  sulfur as  a
function of iron  is the  line labeled £  in  Figure 1-1,  and  it can  be  seen that
this line is the  line of least slope that  one  might  draw  by  eye through  the
data, and is the  line which  gives the largest  intercept and  thus  the least
mineral  component  for the k-ratios.  Thus,  it  is not too  surprising  that this
least squares regression overestimated  the organic sulfur.  The other  extreme
is the line labeled _b, which is  the  line going through the points of maximum
and minimum sulfur, and  is the line  calculated by  assuming that all  the
scatter  is in the  iron data.   It  could be  argued that  the  iron  data  has all
the scatter, since  there are random  amounts of iron  which  are  associated with
clay and not pyrite,  but we  expect that this effect  is included by including
the clay through  the  Al-Fe and Si-Fe correlations.   Thus  we  are led  to select
a line which is intermediate between a_ and _b.   At  first glance, the  line £
through the longest axis of  the  ellipse would  appear to represent the  line"  of
highest probability,  but unfortunately, this line  is not  independent of scale
changes in the two  axes.  This can be seen easily  by considering data  for
which the ellipse  is  very nearly  a circle.  By  changing the  scale of the
x-axis, one can convert this circle  into an ellipse with  its long axis par-
allel to either the Fe-axis  or the S-axis.  Unless there  is  a natural  set of
units for the axes, it  is difficult  to determine what  regression  line  to
choose.  In the absence of any such  well-defined axis units, we have chosen to
calculate the axis  of the ellipse for the  case  where the  data have equal
variances in all directions; i.e., the data are normalized by  the sample
standard deviations.

     Occasionally, a  coal will have  a very  low iron-sulfur correlation, and
this two dimensional  analysis  is  completely inappropriate.   The PHS  408 coal
supplied by the EPA as part  of this  program is  a case  in  point  and is discussed
in detail in section  V.  This  coal has mostly  a calcium-sulfur  correlation.
To deal with these situations,  an analysis of  the  correlations  of the other

-------
elements  is required.  A more  complex problem  is  that  presented by coals which
have  significant  correlations  between more  than a single  pair  of  elements.
The Scranton and  Upper Cliff coals  illustrate  this.  The  Scranton coal has
comparable correlations of 0.3 for  the Fe-S  and for  the Fe-Al.  The Upper
31iff coal has  significant correlations  for  both  the Fe-S and  the Fe-Si, and
in addition has possible nonzero correlations  for S-Si and Fe-Al.  In order to
landle coals of this sort, we  have  considered  the problem of doing the equiva-
lent  of the two dimensional regressions  in  two or more dimensions.

      If it is assumed that the various elements are  linearly related, that  is,
that  the  sulfur k-ratio is a linear function of all  the other  k-ratios, then
any of the regression lines discussed above  can be calculated  from the sample
means, the sample variances, and the correlations between the  measurements.
This  information  is easily computed from the data sets for all the elements
and is collected  in tables in  Appendix A.   The problem of finding the major
axis  of an ellipse is easily generalized to  the n-dimensional  case of finding
the axes  of an  n-dimensional ellipsoid,  and  turns out  to  be a  straight-forward
eigenvalue problem (Ref. 6).   The eigenvectors calculated for  these correla-
tion matrices are just the vectors  parallel  to the axes of the ellipsoid
through the means of the data,  and  the eigenvalues associated  with each
eigenvector represent the relative  amount of the  total variance which can be
explained by assuming that the data fall on  the line determined by the eigen-
vector.

     An examination of the eigenvectors  can  be informative:  the  components of
the eigenvectors  the relative  amounts of each  of  the elements  required to make
up the eigenvectors.  Usually,  one  of the two most likely eigenvectors will
have  large amounts of iron and sulfur, and  small  amounts  of the other three
elements,  indicating that iron sulfide is present  in the  coal.  In these
cases, the other  of the first  two eigenvectors will usually have  large compon-
ents of aluminum  and silicon,  indicating clay.  That is,  the analysis de-
scribes the coal  as being pyrite for one  vector and clay  for the  other.  This
is the case for the PSOC 308 coal,  for example.   Another  common situation is
for the first eigenvector to be made up  of equal  positive amounts of iron,
sulfur, silicon,  and aluminum,  indicating pyrite  plus clay; while the other
eigenvector has comparable amounts  of the elements, but the aluminum and
silicon are negative, indicating pyrite  minus  clay.  That is,  the analysis
describes the sample as having total mineral matter as the most likely vector,
with the difference between the two  forms of mineral matter being the next
most likely.   An  example of this case is  the Montana Lignite coal, labeled LIG
in Appendix A.

     For the sulfur in coal,  we are  interested in determining  the plane
surface which goes through the  two  largest dimensions of  the 5-dimensional
ellipsoid.  This  is equivalent  to stating that of the five dimensions measured,
three have little or nothing to do  with  the  sulfur, and we find the surface
which is orthogonal to these three  least  probable  eigenvectors.   This gives
                                      10

-------
three equations among the five variables, which can be solved to give an
expression for sulfur as a function of any two of the other four variables.
The computer program described in Appendix E is set up to choose the two
most significant variables to give the regression equations shown in the
tables in Appendix A.  Since pyrite is so common in coal, iron is included
if it has any significant weight in the  first two eigenvectors, even if it  is
not one of the most significant variables.  In the cases where iron is one  of
the variables, we then assume that the remaining variable determines a correc-
tion to the iron for the presence of clay, and an amount of iron due to clay
is calculated by extrapolating the clay  to zero, holding sulfur  fixed at  the
organic value.  The organic sulfur is calculated by extrapolating both the
mineral variables to zero.  Often the mineral and organic sulfur calculated in
this manner will be unreasonable in some respect (i.e., negative values), and
this is usually caused by including the  clay regression when  the correlation
with the clay is very small.  In these cases, the clay constituent  in the
regression is set equal  to its mean value.

     The point to doing  the regressions  in this manner is that it distinguishes
the cases where a simple two dimensional Fe-S analysis is not appropriate.   In
the cases where a simple two-dimensional analysis is  sufficient, this five-di-
mensional analysis gives the same answers; but when the  coal  has mostly
CaSO^, for example, the  Fe-S analysis misses completely, whereas the  five-
dimensional analysis rejects the Fe completely as in  the PHS  408 coal, or
modifies it as for the Scranton  coal, and the Upper Cliff coal.
E.  DISCUSSION OF  REPRODUCIBILITY

     A  series of measurements  were  performed on one  coal,  the ISGS coal,  to
determine  the reproducibility  of  the  technique,  and  the results showed that
the sulfur forms are  reproducible  to  about  0.1  percent  in  sulfur k-ratios,  as
shown in Table 1-1.
                                    TABLE 1-1

             REPRODUCIBILITY  OF SULFUR FORMS FOR ISGS #72 COAL
                          (average of 10 measurements)

                 Organic sulfur k-ratio          3.86  +_  0.09
                 Mineral sulfur k-ratio          0.55  +^  0.11
                 x in FeSx (k-ratios)            0.945 +_  0.05

      We have not summarized  the data on the slope of the sulfur-iron regression
 in this report  because most  of the coals considered have either had a slope of
                                        11

-------
nearly 1.0 in the k-ratio plots (or 2.0 in the weight percent basis) indicat-
ing near stoichiometry in the pyrite, or else they have had a small enough
amount of pyritic sulfur that the regression is not meaningful.  However, this
slope information can be very useful in considering the behavior of treated
coals and chars where the stoichiometry of the pyrite is modified.  In addi-
tion to the reproducibility of these sulfur forms k-ratios, the correlations
for these data sets were reproducible at the +_ 0.1 level.  Unfortunately,
these data were acquired before we had stabilized our procedures, and the data
are for 100 mesh coals, which makes the conversion to weight percent unrelia-
ble for these data.
F.  DISCUSSION OF RESULTS

     The calibration constants a and b in Eq. 1-1 were determined using a set
of seven Pennsylvania State Coal Bank coals and a coal from the US Geologic
Survey, ISGS #72, which was used in a round-robin interlaboratory compari-
son.  These eight coals are well characterized as to sulfur forms, and yield
values for a and b of 0.63 and 1.12, respectively (Figure 1-2).  The plot
symbols used are summarized in Table 1-2.

     Using these empirically determined calibration constants, the sulfur
forms measurements from MASC are compared with the standard ASTM techniques
for total sulfur (Figure 1-3), organic sulfur (Figure 1-4) and mineral sulfur
(Figure 1-5) for the above eight coals plus nine additional coals whose
sulfur forms had been measured by a commercial laboratory.  Except for the two
coals plotted as 1 and 3, the agreement between the ASTM method and the MASC
method is within about one-half weight percent sulfur.  The ASTM methods for
sulfur forms (Ref. 1) use a dilute HC1 extraction to remove sulfate sulfur,
which is then measured by precipitation of the sulfate as BaSO^ using
Bad-.  The sulfate-free coal is then treated with dilute HNO.J to remove
the pyrite, which is then determined by measuring the iron, since some of the
organic sulfur is removed by the nitric acid wash.  Organic sulfur is deter-
mined by difference of the pyrite and sulfate from the total sulfur.  The
total sulfur is determined by one of three methods (Ref. 1).  These total
sulfur measurements appear to be quite reliable in practice, so that the
agreement between the ASTM and the MASC total sulfur is the most meaningful
comparison.  The accuracy of the ASTM sulfur forms, however, has been the
subject of considerable controversy, suggesting that the scatter in Figures
1-4 and 1-5 could be in either !the ASTM or the MASC measurements.  The agree-
ment for the total sulfur indicates that the MASC forms is the better one.
The agreement for the total sulfur is remarkable since the ASTM method is a
direct measurement for total sulfur whereas the MASC method uses the sum of
the forms.
                                        12

-------
                 TABLE 1-2





           PLOT SYMBOLS FOR COAL
Plot Symbol	Coal




     A               PSOC 103





     8               ISGS #72





     G               PSOC 170





     J               PSOC 212





     M               PSOC 268





     T               PSOC 308





     V               PSOC 330




     4               MONTANA LIGNITE





     9               BuMik  40659





     E                Scranton, ND





      1                Buelah, ND





      5                Montana Savage





      7                Upper Cliff, AL





      3               Rosa, AL




      F               Black Creek, AL





      6               TRW #2 (WV)





      2               Utah
                       13

-------
                                          CORRELATION OF SULFUR FORMS
1C
I
O
       C/)
       <

       O
       i-
       QC

       CE
       CO
       CD
       cc
       O
                                                 0.8                  1.2
                                          MINERAL SULFUR K-RATIO/TOTAL SULFUR ASTM
1.6
2.0
P
rb

-------
                                      COMPARISON OF MASC FOR TOTAL SULFUR
          6.0
£
i

o
u
                                1.2
  2.4                 3.6

TOTAL SULFUR ASTM WEIGHT %
                                                                                                              6.0
P


to

-------
                             COMPARISON OF ORGANIC SULFUR MEASUREMENTS
         3.0
(D
I
O
01
                            0.6
   1.2                1.8

ORGANIC SULFUR ASTM WEIGHT %
                                                                              2.4
T]

O

-------
                                COMPARISON OF MINERAL SULFUR MEASUREMENTS
o
I
       I
       (D
       ty  3.0
       QC
       CO
       tr
                             1.0
   2.0                 3.0

MINERAL SULFUR ASTM WEIGHT
                                                                                   4.0
5.0
                                                                                                               cn

-------
     The two coals which do not agree are clearly high  in pyrite according to
the MASC data.  The No. 1 coal, Beulah, North Dakota, showed a very high
correlation between the iron and sulfur, with a slope that  indicates pyrite.
The No. 3 coal, Rosa, also had a very high  iron content, but it has a  slope
between iron and sulfur that would be more  indicative of FeS rather than
FeS2-  In both cases, the samples are clearly not as low in mineral sulfur
as the commercial laboratory measurements would indicate.
                                      18

-------
                        II.  PYRITE PARTICLE  SIZE ANALYSIS

A.  INTRODUCTION
     The MAPS (Microprobe Analysis of Particle Size) method  for  particle
size determination has evolved  from the MASC analysis.  There  is  a great  need
for obtaining the pyrite size distribution  in order  to  optimize mechanical
cleaning procedure and it is toward this use that  the current  pyrite  particle
size analysis is targeted.  It  was also believed that a knowledge of  the
sulfide particle size distribution would be necessary to  correct  sulfide
concentration from the MASC analysis.  However, it has  been  found both  easier
and more accurate to grind the  coal very finely prior to  the MASC analysis,
thereby exposing all the pyrite as small particles whose  x-ray signal  is
proportional to volume.

     In this section, the basic theory of the MAPS method will be outlined.
A series of studies will be presented to show that the  method  is  capable  of
extracting the desired parameters from the  noisy data sets.  Limits will
be discussed on the amount and  type of data needed for  the analysis.  And
finally, the analysis of several coal samples will be presented  and the
results related to washability  data developed for  these coals.

B-  THEORY

     There is pyrite particle size information contained  in  the MASC analysis
data but extracting a size distribution is difficult because of  several
factors. First,  a subsample at  one scan position of  the scanning electron
microprobe can encompass several pyrite particles resulting  in an x-ray signal
intensity that represents the sum of the signals from the individual particles.
The signals received are for elemental iron or sulfur and can have varying
amounts of other iron or sulfur containing compounds such as iron oxide or
organic sulfur containing compounds mixed into them,  Variability in pyrite
stoichiometry as well as fluctuations in each of these  other possible compounds
contribute to the noise in the  data.  Counting noise is always present  in the
detection of the x-ray signals.  The penetration depth, 5, of the electron
beam and the absorption of the  emerging x-rays are such that for small par-
ticles (d£fi) the x-ray intensity is proportional to  the volume of the
Particle while for large particles (d»5) the intensity is proportional to the
cross-sectional  area of the particle.  The coal has a rough surface and the
Pyrite particles are not all on the surface so that  ones  at greater depths see
a weaker electron beam and contribute a small signal.
                                     19

-------
     All of the preceding effects have been considered in the study and proced-
ures have been devised for dealing with them.

     Considering a distribution of pyrite particle sizes f(r), it  is possible
to relate the signal, s, from an individual particle to its radius, r, depth
D in the coal matrix, and the efficiency of the detection process, rj, by
the following approximate relations
             S —
                        _D/A
                       e    ]
[n
f
      i)
                   1 < r  <  6
                   2 ~   ~
                                                                            (II-l.
                                         -       r
We have assumed that the density of pyrite particles  is sufficiently low that
the possible shadowing of one particle by another may be ignored.  From these
relations it is possible to consider a distribution, <£(s) of signals from
individual particles.  The efficiency and depth  factors in square brackets  in
Eq. II-l are taken into account in an overall normalization efficiency as the
data in each data set is normalized to pure pyrite signals extrapolated to
zero density.

     Assuming the distribution <|>(s) to have a mean  p and variance a  the dis-
tribution of signals i//(S,n) expected from a single subsample can be constructed.
For a scan which contains pyrite particles randomly drawn from the distribution
for  n » 1

and where
                                       _ (S-nn)'
                                              (11-2
      n
      E
      1=1
                                                       (n-3
Since the number of particles in the subsample should be distributed according
to Poisson statistics, we expect the measured signal distribution to take the
form
                                       20

-------
                            00
                   I//CS)  •   £  N  (n,n)   MS.n)                       (II-4)
                            nmo

where
                   N  (n,n)  =  nne"n
                                n!

and n  is the average  number of  particles per  subsample.   The MAPS  sizing
procedure consists of least squares  fitting the  distribution   (s))  to a mean radius of  the particle size distribution,  Eq.  II-l is used.
The normalization of  the data already  includes the terms  in square brackets in
Eq. II-I as well as a factor  of the  area of the  scan  subsample.

     The MAPS fits are accomplished  by taking the MASC data, SirQn and Sgulfur
from a large number of subsamples, N,  and forming a distribution by arranging
both S^r   and S       in  from  10 to 30  bins.  The least  squares fitting
procedure would be expected to  be more sensitive to M»  CT,  n for a  distribu-
tion with a large number of sample bins.   However,  the number  of subsamples in
the data set, N, sets a  stringent limit  on the number of  bins  that can ac-
tually be utilized and conversely the  need for sufficient  detail in the dis-
tribution sets a lower limit  on the  number of bins  that  can be used and there-
by a limit on the number of subsamples needed for a good  particle  size deter-
mination.  Poisson counting statistics for the binning procedure itself im-
Plies  that to retain  10% accuracy near the peak  of the distribution,  the bin
nearest the peak needs about  100 data  points.  To spread  the distribution
over 10 bins then requires  N=300 to  400  subsamples  for a  reasonable MAPS fit.
*n the coal sample fits presented later,  N ~ 950 subsamples are spread over
a total of 20 bins including  the tails of the distribution.

c-   RESULTS WITH SIMULATED DATA

     To examine the accuracy  with which  the parameters u,  cr and n  can be
extracted from a data set  and to help develop the technique in using the MAPS
fitting procedure, a  Monte  Carlo simulation of the  scanning electron micro-
Probe data acquisition procedure was developed.   The  simulated data is then
analyzed by the MAPS  fitting  procedure.   The simulation  produces data for an
assumed distribution  with  a selected /j,  a and n  by generating  a random
number for the number of particles to  appear in  a simulated subsample chosen
with Poisson statistics with  mean n  and  then chooses  signal strengths at
random from the distribution  (s) with the appropriate  fj. and or.  These indi-
vidual particle signals are summed as  in Eq. II-3.  To this SMonte Carlo
                                       21

-------
additional signal is added to represent other compounds (e.g., iron oxide or
organic sulfur) and additional random noise is added to simulate the variabi-
lity in these quantities and counting noise in the x-ray detection procedure.
This variation could represent an actual concentration variation or it could
be due to a variation in the amount of coal actually contained in a given
subsample due to surface roughness effects.  Also, examination of real data
sets shows many with a non-zero minimum for the iron signal which is attri-
buted to the presence of finely dispersed clay particles.  Since the clay
particle sizes are typically an order of magnitude smaller than the pyrite
particles, it appears in the data set as a constant background.

     After these additions, the data is normalized by an overall factor.  No
such points are selected to produce a single data set.  An example of such a
data set is presented in Figure II-l along with a real data sample from PSOC
308 coal.  This simulated data set was generated by using parameters from a
MAPS analysis of the coal data set and shows that the Monte Carlo simulation
of the MASC data aquisition program can produce realistic data.

     Many data sets were produced by the simulation by varying the basic param-
eters or by generating a series of different data sets (different random
numbers) all with the same parameters.  Each data simulation was fitted with
the least squares MAPS procedure and the best fit parameters were compared to
the input parameters in the simulation.  Three examples are shown in Figures
II-2(a), (b) and (c).  In each figure, the upper histogram represents the
simulated data distribution function  4> (%onte Carlo^ ^or i-ron while the
lower histogram is for sulfur.  The dashed lines through the histogram distri-
butions are the best fit of 
-------
                                                                 FIG. 11-1
NUMERICALLY GENERATED DISTRIBUTION COMPARED TO COAL DATA
                DC
                u
                CO
                              IRON
                  a) PSOC 308 COAL
                             IRON
                 b) SYNTHESIZED DATA SET WITH ± 25%

                   VARIATION IN S(0)
                                                            79-03-32-1

-------
      EXAMPLES OF MONTE CARLO DISTRIBUTIONS
           FITTED BY PARTICLE SIZE PROGRAM
  (a)   j
                        tmi i LJ ir*
                           RSO • 8.89(11
                           GflrtW- 8.88211
                           •   • "4.652
                                    3MMCM
                                              GENERATED WITH
                                                  a = 0.004
                                                  o = 0.002
                                                  n = 5
 (b)   i.
            W!
            •1
                          RSO  • 8.
                          GflttW- 8.8053*
                          •   • 5.313
                     NORMRLI2ED flfitfl  1
                                                 a = 0.010
                                                 a = 0.004
                                                 n = 5
(c)
                         RSQ  • 8.8832?
                         CfWMft- 8.88311
                         •   • 9.885
                                                5 = 0.003
                                                a = 0.003
                                                TT = 10
                            24

-------
                                    TABLE II-1





           EXAMPLES  OF MAPS FITS TO MONTE CARLO DATA FROM FIGURE  I1-2





Data        f Input    V Best  Fit   g Input    p Best Fit   n Input   n Best Fit








Figure II-2





(a)           .0040       .0042       .0020       .0021         5         4.7







(b)           .0100       .0091       .0040       .0040         5         5.3








(c)            .0030       .0033       .0030       .0030        10         9.0










I1,  °  are in  arbitrary units

-------
EXAMPLE OF MONTE CARLO DISTRIBUTION FIT
         BY PARTICLE SIZE PROGRAM
                 GENERATED WITH

                    a = 0.010
                    o = 0.005
                    ~ = 1
       e ooooat j;       |RON

        a) SULFUR VS. IRON PLOT
              01
        * OOCXVE c:
                          RSQ • 0.ee996

                             * 0.985
     b) IRON AND SULFUR DISTRIBUTION FITTED
                      26

-------
 the  limits 5 £ n  15.   In  practice,  other  considerations  tend  to  push
 the  scan magnification ($ 1/subsample  size)  to  high  values.   Measurements
 are  therefore made  at  the lower  limits for n and  for the validity of the
 aPproximation of  I  (fr^s)  by  >p(s).

 D-   RESULTS FOR COALS

     As a test of pyrite  particle  sizing  procedure,  an extensive  data set
 run  on the microprobe  on  ISGS #72  coal was used.   Figure II-4 shows  the
 results of two fits of ISGS  coal by the MAPS sizing  procedure.   This data  set
 contains approximately 1000  subsample  data points  to reduce the  statistical
 sampling error.   In the fitting procedure, the  iron  data (upper  histogram) and
 sulfur data (lower histogram), which are  taken  independently,  are treated  so
 that the iron data may be fitted and the  fit related by  the best  fit slope and
 1ntercept from the MASC procedure  to the  sulfur data.  Similarly  the sulfur
 data may be fitted alone  and related by the  slope  and intercept  to the  iron
 data.  The data for iron  and sulfur may both be used in  the fit,  thereby
 doubling the effective number of data  points contributing  to  the  data distri-
 bution for ₯(S).  In Figure  II-4(a)  the iron alone was used for  the  dashed
 fitted curve yielding  \i = .00372,  a =  .00296, and  n  = 2.0.  If the sulfur
 d«ta alone is used (Figure II-4(b))  the results are  almost  identical:   p =
 •00385, a = .00306, n  = 2.3.  The  iron fit in (a)  and the  sulfur  only fit
 ln (b), each show slightly better  fits  near  the peak of  their  respective
 distributions.  For this  data set,  the  scan  subsample size  is  lOOp by lOOy for
 a magnification 1000X.  The  penetration depth in the pyrite at the accelerating
 voltage used is & = 1.8 p.  Using Table II-2  prepared using Eq's  II-l for this
 voltage,  we find r = 2.7p for this  ISGS coal  data.

     A series of 55 photomicrographs were made at  the same time  the  data was
 being taken on this ISGS  cool.  The 55  data  points were  identified in the full
 J-000 point  data set and are shown enclosed by squares in the  standard sulfur
Versus iron plot shown in Figure II-5(a).   The pictures  represent  a  good
 sampling  of the full data set; so much  so that a MAPS fit of  the  55  point data
 Set yields  best fit parameters almost  identical to the results shown  in Figure
 **~4.  with so little data, both the iron and sulfur data were fit together to
 lraprove the statistics.  The histograms from these data  together with the best
    are shown in Figure II-5(b).   Samples of these photographs are included as
       II-6.   These are taken using Fe x-rays, each  dot on the photograph
rePresenting an emitted Fe x-ray.  The  three pictures at the bottom of Figure
 *I~6 include very large areas with high Fe concentration which we  call pyrite
r°cks.   These rocks appear far out  in  the high pyrite tail of most data sets
atld are separated in the particle size  fitting procedure as these  rocks form a
Separate  size distribution.  The upper  six photographs are representative of
the data  included in the  fit.  They show a finely divided Fe background and a
       of  pyrite particles of varying sizes  (similar photographs  taken with S
                                        27

-------
ISGS COAL FITTED BY PARTICLE SIZE PROGRAM
                -ai
                       IRON-PYRITES IN COflL
                               1009 POINTS U PICTl* •
                               RSQ  - 0.083T2
                               GflMMfl- 0.80296
                               .    - 1.967
                                  iwtn    er-«

            a) ONLY IRON DISTRIBUTION FIT
                        mun-r 1*1 ic.0 11 tUH.
            e.eoeeee-ei
           -j.eoeeee-ei
                                    POINTS u PICTUR i
                                RSO  • 8.60385
                                GflMMfl" 0.08386
                                .    • 2.266
             b) ONLY SULFUR  DISTRIBUTION FIT
                               23

-------
                       TABLE  I1-2




AVERAGE PARTICLE RADIUS VERSUS AVERAGE PARTICLE  SIGNAL







              For Penetration Depth  6 = 1.8
n
(Microns)
.2
.4
.6
.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
5.0
6.0
S = M x subsample area
= p x (10 /Magnification)
.03
.27
.91
2.2
4.1
6.1
8.1
10.2
12.2
16.7
22.2
28.5
35.7
43.9
52.9
62.9
73.7
85.5
98.0
112.0
193.0
297.0
                           29

-------
ISGS COAL ANALYSIS WITH PHOTOMICROGRAPHS
            0ee POINTS u PICTIJR
             FESX-  ».98E»     _  // f-]
           a) SULFUR VS. IRON PLOT WITH
             POINTS WHERE PICTURES WERE
             TAKEN INDICATED
                -ei
                       IRON-PYRITES IN COflL
                             55 POINTS U PICTURES •
                             RSQ  • 8.08383
                             Gflttlfi- 0.80283
                             *   - 2.905
                -ei
                         NORMRLIKO flKR
                                     -Pnerk.
            b) PARTICLE SIZE FIT OF POINTS
               IN PICTURES
                         30

-------
                                                            FIG. 11-6
FITTED PYRITE DISTRIBUTION FROM ISGS COAL
          'ROCKS" DISCARDED BEFORE FIT
                                                         79 06-136-1
                   31

-------
x-rays confirm that for this coal these are indeed pyrite particles).
The background Fe may come from highly dispersed fine pyrite particles or
other Fe compounds and is sometimes subtracted from the data.  The sum of the
areas of all the remaining particles in one frame represent the data used in
the computer particle size fitting procedure.  From the MAPS fit of the data
sets as shown in Figures II-4 and 5, we found average particle radii of 2.7y
or 5.4y diameters. This represents a very good fit of the full distribution in
both Fe and S and is also in excellent agreement with the photographic sample.
As a comparison, in Figure II-6, the bottom middle picture of the six contains
two nearby pyrite particles with diameters of 5y and 8y.

     Two other samples of coal analyzed by the MAPS procedure are PSOC 308 and
PSOC 330 coals.  The sulfur versus iron plots for the N=950 subsample data
sets are shown in Figures II-7(a) and (c).  The ellipses shown in the figures
represent the 2.0 standard deviation ellipses for a bivariate normal distri-
bution with means determined by the data and a correlation coefficient of 0.76
for the 308 and .98 for the 330 coal.  The lines represents the semi-major
axes of the ellipses.

     The data points near or outside of the ellipses in Figure II-7 represent
subsamples containing pyrite "rocks" as shown at the bottom of Figure II-6.
The rocks are not well represented by the distribution functions *y(S) and form
a small but very long tail for the data distributions.  Figures II-7(b) and
(d) show the data subsamples in the sulfur versus iron plot that are elimin-
ated by the 2.0 standard deviation pyrite rock cut.  For the 308 data set they
represent 48 out of 968 subsamples or just 5%.  However these large rocks
contain 23% of the iron signal and when the volume effect is taken into
account-possibly 50% of the total pyrite volume in the coal.  Similarly, for
the 330 coal, they represent 6% of the data points, and 30% of the iron
signal.  These large rocks seem to represent a very uniform distribution up
toward the limit imposed by the subsample size - a diameter of about 40y -
rather than the tail of say a log-normal distribution.  Further, for washabil-
ity criteria, the large rocks represent an easily removed background.  There-
fore to simplify the particle size fitting procedure by limiting the number of
bins that must be processed in the analysis, a cut is made in the data throw-
ing away all data samples outside this 2.00 ellipse.  The data thus discarded
are shown in Figure II-7(b) and (d).

     The raw data for PSOC 330 coal also contained a considerable gap on the
low side of the iron distribution, presumably from lightly dispersed iron in
clay particles.  This gap represented 11% of the mean value of the iron signal
S~iron'  This iron background has been substracted from each iron value
and the resulting data is shown in Figures II-8(c) and (d).  This results in
moving the iron histogram in Figure II-8(d) over to the S£rQn = 0 axis and no
bins on the left have been lost in this renormalization process.  The abrupt
                                       32

-------
                 PSOC 308 AND 330 PYRITE PARTICLE SIZE ANALYSIS
                                                                                FIG. 11-7
  a)
                   308
U.
,j
 j
CO
                 IRON
                                      ALL DATA
                                               C)
                                                                330
                                             a
                                             D
                                             LL

                                             D
                                                    00001 • 00
                                                          1.839

                                                    3P PflSS 48 fiPf« 1
                                                               IRON
  b)
I

g
    1 '«*>OE..oe
      *»
                 IRON
                                REJECTED AFTER 2(7 CUT

                                                d)
                                                I  OOOOE-00

                                                  l?P PflSf MP flPf.fl 1
                                            cc
                                                b nr
                                                              IRON
                                                                              79_11_6_3
                                         33

-------
           PSOC 308 AND 330 COALS FITTED FOR PYRITE PARTICLE SIZE
I!
 )
 I
V)
     VOPOOOt-Pl
                 IRON
                      70% Pft^';. H0
                  NOB«MLl?Eb
                                DATA USED FOR FIT

                                            c)
                 330
LI
 '
u
                                 PARTICLE SIZE FIT

                                            d)
                                                   PI
                                                           IRON
                                                                         !  '
                                        34

-------
cutoff of this and many other coal distributions on the low iron side represent
good evidence for the dispersed iron.  The apparent presence of iron in clay
for PSOC 330 and none in PSOC 308 is also borne out by the multivariate
Analyses including elements abundant in clay particles such as Si and Al and
is discussed further in other sections.  No abrupt gap is observed in the PSOC
308 coal (Figures II-8a, b).

     The data after the dispersed iron subtraction and the pyrite rock cutoff
was binned in 30 bins along the iron signal axis and the resulting distribution
fitted by the MAPS procedure.  The MAPS fit for the PSOC 308 coal yields a =
°.0054, u - .0075, n = 6.3 (Figures II-8b).  The fit for the 330 coal re-
sulted in a = .0086, U = .0108, and n = 2.2.  These data were taken with a
magnification of 2400X or a subsample size of 42w x 42u.  This yields an
average radius of 1.5H for the 308 and 1.9  for the 330.

E'  COMPARISON WITH WASHABILITY DATA

     There are clearly differences in the particle size distribution between
PSOC 308 and PSOC 330.  The differences in the distribution of rocks is
evident in Figure II-7.  PSOC 330 has a much higher number of large pyrite
rocks.  PSOC 308 has fewer high sulfur-high iron particles and some of those
aPPear not to be pyrite as evidenced by their non-pyrite sulfur-iron stoichi-
°n»etry.  The distribution of small pyrite particles is also different as
evidenced in Figure II-8.  PSOC 330 has a wider distribution of sulfur and
lron intensities which is indicative of a higher concentration of larger
Particles.  This indication is confirmed with the particle size analysis which
shows the average particle radius for PSOC 330 to be 1.3 times that for PSOC
 08.  This gives an average pyrite particle weight for PSOC 330 which is more
than twice that for PSOC 308.

     A washability study was performed on these two coals to determine whether
    predicted differences in particle size distribution was apparent in their
ease of cleaning.  Samples of the 40 mesh coal were ground to pass 100, 200
and 325 mesh and subjected to centrifuging in 1.4 and 1.6 specific gravity
fluid.  The results are shown in Figures II-9 and 10.  Figure II-9 for PSOC
 30 shows substantial scatter in the data but indicates excellent cleaning
characteristics for particle sizes of 100 mesh and below.  In view of the high
c°ncentration of very large pyrite particles in this coal, the scatter in the
 ata seems to be a sampling problem.  Figure 11-10 for PSOC 308 shows a dif-
fefent cleaning behavior.  There is a much more gradual fall off of pyrite
°oncentration with decreased particle size and incomplete cleaning even at 325
       These data are consistent with the particle size distribution results
    suggest the desirability of further work on these techniques to allow
             prediction of the washability potential of a coal.
                                        35

-------
                                                WASHABILITY STUDY ON PSOC 330
                            3.0
                            2.5
                            2.0
u:
                      DC
                      03
                      cc
                      UJ
                      z
                            1.5
                            1.0
                            0.5
     
-------
                                                WASHABILITY STUDY ON PSOC 308
                       3.0
  f
                       2.5
                       2.0
                        1.5
                  CO




                  CL
                  LU

                  Z
                       1.0
                       0.5
u>
I
I
U1

to
0
                                                                                             •   RAW SAMPLE


                                                                                             A   1.4 FLOAT S(M)


                                                                                             O   1.6 FLOAT S(M)
                                                                                                           t
_L
J_
                     AS RECEIVED
                   40 MESH
                100 MESH


              PARTICLE SIZE
                 200 MESH
                                                                                                       325 MESH
O

-------
                 III.  TASK IV - TOTAL NITROGEN CONCENTRATION
     There is a need for improving the nitrogen concentration measurements in
coal.  The standard ASTM method (Ref. ]) which uses a Kjeldahl digestion is of
questionable accuracy for tightly bound nitrogen compounds found in coal.  The
method is also time consuming.  The purpose of TASK IV was to evaluate an al-
ternative procedure for nitrogen analysis.

     Elemental analyses of nitrogen in coal were performed with a Perkin-Elmer
Model 240 element analyzer.  The Model 240 performs an automated Pregl-Dumas
analysis on approximately 2 mg samples.  These samples are taken from a  larger
sample which has been finely ground to insure that the small samples are repre-
sentative.  The automated analysis takes 15 minutes per sample to perform and
yields the ash weight as well as the carbon, hydrogen, and nitrogen weights.
The Model 240 is connected to a PDF 11 computer as is the weighing balance so
that the recording of results and data reduction are all automatic.  Access to
the balance and the Model 240 is through a dry box so that the samples are
always maintained within a dry environment.  Table III-l illustrates the typi-
cal reproducibility of measurements.  Reproducibility from one run to the
next is typically + 3% for nitrogen and hydrogen +_ 1% for carbon, and _+_  5% for
ash and missing.

     To evaluate the accuracy of the PE 240, coal samples whose nitrogen
concentrations had been determined by standard ASTM methods were measured.
The results for nine coals are summarized in Table III-2.  Seven of the  coals
were supplied by The Energy and Environmental Research Corporation as part
of EPA's Fundamental Combustion Research program, one coal comes from the
Pennsylvania State University coal bank and one (ISGS #72) was supplied  as
part of a round robin test by the US Geological survey.  The agreement between
the PE 240 results and results determined by ASTM methods is typically +_ 10%.
The question is, which results are mor^ accurate?  The most carefully handled
and measured sample is the ISGS coal.  'But even here, the ASTM nitrogen  value
ranges from 1.01% to 1.39%.  The reproducibility of ASTM nitrogen determina-
tions on two other coals, Rosa and PSOC 170 also shows substantial variation.

     To obtain an independent check on the PE 240 accuracy, 3 model compounds
were measured.  The compounds were chosen to represent the kind of nitrogen
structures expected in coal.  The results for the three compounds are listed
in Table III-3.  The variation between the PE 240 value and the theoretical
value is within + 1%.
                                      38

-------
     In summary, it appears that the PE 240 gives accurate and reproducible
results for the kind of nitrogen compounds found in coal and probably  for
coals themselves.  The accuracy of the Kjeldahl digestion is in question and
needs further study.
                                     39

-------
                        TABLE III-l  ELEMENTAL ANALYSIS OF ROSA COAL (DRY)
                           SAMPLE AND ASH MT  HEIGHT *                         ,_.^
                  SAMPLE     WEIGHT ASH UT    NITROGEN CARBON HYDROGEN  ASM  MISSING
         SON'
Fresh

Sample
         AU
234
235
236
237
238
239
       8.8858888
232= ROS-S
233= ROS-S
     ROS-S
     ROS-S
     ROS-S
     ROS-S
                 ROS-S
                 ROS-S
2.269
1.856
2.582
2.421
2.486
2.124
2.865
2.988
8 243
9.195
9.259
8.248
8.242
8.248
8.212
8.293
  8  DRY AUER    2 318  8.241
1.49
1.58
1.55
1.55
1.61
1.53
1.63
1.53
1.56
76.89
76.67
76 15
75.51
76.58
75 39
76 58
75.22
76.81
4.29
4.24
4 29
4.16
4.46
4.28
4.48
4.28
4.29
18.75
18.51
18.35
9.91
18 86
11.39
18.27
18.88
18.48
7.38
7.81
7.66
8.86
7.29
7.58
7.28
8.99
7.74

-------
      TABLE  III-2
NITROGEN MEASUREMENTS






AVG.
ULTIMATE

ROSA
ALABAMA
1.51
1.55
1.58
1.52
1.54
1.74 EER #1
1.53 EER #2
BLACK CREEK
ALABAMA
1.87
1.91
1.88

1.89
1.79 EER

UPPER CLIFF
ALABAMA
1.57
1.54
1.58

1.56
1.46 EER


TRW #2
1.42
1.33
1.39

1.38
1.35 EER


UTAH
1.49
1.54
1.51
1.62
1.54
1.41 EER #1
1.42 EER #2

ACRIDINE
7.77
7.82
7.82

7.80
7.82 THEO












AVG.
ULTIMATE




PSOC 170
1.36
1.41
1.42
1.40
1.41
1.48
1.31
1.43
1.43
1.41
.13 PSU #1
1.30 PSU #2
1.44 HAZEN

BEULAH
N. DAKOTA
1.00
.97
.87
.89
.86
.85
.90


.91
1.10 EER



SAVAGE
MONTANA
1.04
.97
.96
.99
.95
.96



.98
1.13 EER



OCTAHYDRO-
ACRIDINE ISGS CARBAZOLE
7.48 1.25 8.20
7.27 1.25 8.35
1.25 8.20






7-38 1.25 8.25
7.49 THEO 1.24 ILL.GS 8.38 THEO
l.Oi DOE-PETC
1.39 BROKEN HILL
AUSTRALIA

-------
                    TABLE 111-3   ELEMENTAL ANALYSIS OF  MODEL COMPOUNDS
                          SAMPLE AND ASH NT
                 SAMPLE     WEIGHT ASH  UT
                                      HEIGHT 
-------
                             IV.  MAJOR INORGANICS
     The MASC data which was acquired to determine the sulfur forms can also
be used to estimate the total amount of inorganics in coal.  In order to do
^is,  it is necessary to assume that the inorganic clays are in the form of
oxides or carbonates.  In particular, it is assumed that the aluminum is
Present as A1203, the silicon as Si02, the calcium as calcite (CaCO-j)
a°d the non-pyrite iron as Fe20-j.  The reference standards for aluminum
and silicon were chosen to be A^Oo and Si02 so that no corrections for
a°sorption would be necessary to calculate a weight percent of each of these
constituents.  Thus we predict that the total mineral matter on a dry basis
WlH be given by

     MM(dry) • (kfll + kgi + 0.285 * kCa + 0.7 * kFe) * 1.38 + Pyrite

where the 0.285 factor for the Ca is the calculated ZAP correction from MAGIC
(&ef.  7) for caC03 relative to a standard of CaWO^, and the 0.7 is the
 actor for Fe203 relative to a pyrite standard, and the 1.38 is the roughness
 actor found to be appropriate for the sulfur data.  A plot of mineral matter
 °und using this relation is shown in Fig. VI-1 for comparison with mineral
matter determined by Low Temperature Ashing or by calculating from the ash
 nalysis.  As can be seen from the figure, the agreement is within 2 percent
 °r most coals, indicating that the assumptions used in generating the above
 elation are reasonable.

     It may be possible to estimate the types of clay in the coal from the data
Slnce the major clays have definite ratios of alumina to silica which is
aPparent in the MASC data.  A plot of the aluminum versus silicon k-ratios for
a sample which was 'salted1  with kaolin is shown in Fig. V-2.  Similar plots
 °r coal salted with montmorillonite and illite are shown in Figs. IV-3,4.
 r°n> the slope of the regression between the aluminum and the silicon, we
 "°uld be able to distinguish between kaolin and the other two clays.  The
 8reement,  however, between estimates of kaolin and the other clays using this
Pr°cedure,  and measurements of these constituents using IR spectrometry in
     lab is very poor.  This MASC procedure for estimating clay components
      more analytical work to determine if there is a regression which does
     reasonable results for clays.
                                      43

-------
                                        COMPARISON OF MASC AND ASTM ASH
         30.0
(D
I
O
I
         24.0
    X
    o
    o
    I
    in
                              6.0
12.0                180

   ASH ASTM WEIGHT %
24.0
                                                                                                          30.0

-------
                                                                          FIG. IV-2
                      PSOC 212 COAL WITH 10% KAOLIN
0.146
                               SILICON INTENSITY
                      3205 DAT                              KAOLIN
                                                                      0.146
                                                                     79-10- 115 24
                                    45

-------
0.224
•
                      PSOC 212 COAL WITH 10% ILLITE
  0.000
          SILICON INTENSITY
3206 DAT                         ILLITE
0.224
                                   46

-------
                                                                        FIG. IV-4
               PSOC 212 COAL WITH 10% MONTMORILLONITE
0.268
§


".
-'

s
 .
-J
-'
   o.ooo
                               SILICON INTENSITY


                3207 DAT                          MONTMORILLONITE
                                                                     79-10-115-22
                                     47

-------
                    V.   MASC RESULTS ON EPA SUPPLIED COALS
     The results of MASC measurements on the seven coals supplied by the EPA
are summarized in Table V-l, V-2, and Appendix D.  There are several interes
ing features of these coals which are discussed below.  In particular, some
these coals showed less correlation between the iron and the sulfur k-ratio
than most of the coals used for calibration, and one of them showed a high
correlation between the sulfur and the calcium.

     Table V-2 shows each  of  the mineral constituents of these  coals  and  con
tains data on  titanium, magnesium, and potassium, which are not  discussed l
Section  IV.  These data were  obtained and  reduced in  the same manner  as
described  in Section IV.   These  elements are assumed  to be  present  in  coal
the  forms TiC^, MgO, and K^O  and were measured  relative to  standards  of
Ti,  Mg  and KC1, respectively.  This  gives  a relation  for the  total  mineral
matter  of

mm (wt.  %  dry)  =  pyrite  +1.38 (kA1  + kgi  + 0.285 kCa
                         +  0.67 kFe  (clay)  + 1.79 kTi  +  2.5  kMg  + 0.48 kK)

where  the  numerical  factors inside  the  parentheses  are  the  ZAF  corrections
 for the assumed mineral  relative to the reference standard actually used, a
 the 1.38 is the roughness  factor discussed in Section IV.

      Figures V-l through V-7 are the MASC plots for the seven coals with    ^
 projection of the regression line from the multielement analysis onto the
 S plane shown for all but  the 1635 coal,  for which there was no correlation-
 In addition, where the analysis selected  a reasonable clay-pyrite  split, t"1
 line is shown on the plot  as a vertical line parallel to the sulfur axis.

 PHS 506,534,546,578,1632A  These coals all appeared  to be "conventional"
 pyritic coals.  We accepted  the split between  iron bearing clay and  pyrit6
 two of  them (PHS 534 and  578) since the correlations were  reasonable  and
 consistent, and  the resulting split was reasonable.  The  1632A showed high
 correlations  between  the  iron and  the  clay constituents; so  high  that  the
 regression  indicated  that  all  the  iron was clay.   Because  the  pyrite  corre
 tion was  also  quite high,  we  rejected  the clay in  favor of  a pyrite  interp
 tat ion  for  the  iron.  A reasonable  fraction of the  iron  in this sample  sno
 probably be attributed  to clay  (perhaps  20%).
                                       48

-------
                                  TABLE V-l
                  SULFUR FORMS FOR EPA-SUPPLIED COALS  (wt% dry)
                   S(0)
                MASC    ASTM
    S(M)
MASC     ASTM
1632A
1635
PHS 408
PHS 506
pHS 534
PHS 546
PHS S7fl
•J /a
0.4
0.4
0.5
0.4
0.6
1.2
2.8
_
—
0.33
0.65
0.4
1.5
2.5
1.0
0.0
0.5*
1.4
2.5
1.9
2.1
x in FeS3
  MASC
                                                                     1.8
                                                        0.34  Sulfate
                                                        0.11  Pyrite   1.1**
                                                        1.0
                                                        3.2
                                                        1.7
                                                        3.3
                      1.9
                      2.1
                      2.2
                      2.0
   This
       c°al was mostly sulfate
**
     in
                                         49

-------
                                                 TABLE V-2
                          MINERAL MATTER ANALYSES  FOR EPA-SUPPLIED  COALS  (wt.%  dry)
Coal
                                         CaO*
                                  Ti0
MgO
K90
Total
	 Z 	 &— -»—
MASC HTA MASC HTA
1632A
1635
S 408
14.6
1.7
6.8
7.2
0.6
2.5
MASC
0.2
0.5
0.3
HTA MASC HTA
0.
0.
0.
3
0
0
MASC HTA
0.0
0.0
0.3
MASC HTA
0.
0.
0.
6
0
1
	 ^ — _> —
MASC HTA
1.25 -
0.4
1.2
MASC
24.2
3.2
11.2
HTA
-
-
10.5
PHS 506    6.3    5.1  4.4    4.4   0.4    0.4  0.0    0.2   0.3   0.3   0.3   0.2    1.8   1.8   13.5  12.8




PHS 534   12.4   10.0  7.6    6.6   0.1    0.1  0.0    0.2   0.0   0.2   0.9   0.8    3.4   4.6   24.4  22.9




PHS 546   12.7    9.6  6.5    5.0   0.1    0.1  0.3    0.3   0.0   0.1   0.5   0.4    2.4   2.7   22.5  18.6




PHS 578    8.8    8.3  4.0    4.1   0.5    0.7  0.0    0.2   0.0   0.2   0.3   0.4    3.0   4.9   16.6  19.6
                 * CaO for MASC calculated from .56*CaCO  (MASC)
Fe00  for MASC calculated from 1.25* S (M)
  2 "\
                                                                   + Fe90  (MASC)

-------
1632A COAL MASC PLOT
                                 FIG. V-1
*   **/   .
                                0.840
3235. DfiT
                               ,
                       FG 2600X
                               79-10-115-14
         51

-------
                      1635 COAL MASC PLOT
0.013
S
U
L
F
U
R
N
T
T
V
                        +

                        +
 0.
00
                  3236.DAT
                                   1635 FG 2900X
                              52

-------
                                                                             FIG. V-3
                            PHS 408 COAL MASC PLOT
S
u
L

U
R

I
N
T
E
N
S
I
T
V
  o.ooo
              Ca ASSOCIATED WITH CLAY
                                 CALCIUM INTENSITY

                          3237 DAT                  PHS 408 FG 2000X
                                                                          79_10-115-16
                                       53

-------
                              FIG.
           PHS 506 COAL MASC PLOT
0.0
   •VST
         3238.DAT
                             0.047
536 FG 2000*
                54

-------
                                                               FIG. V-5
                      PHS 534 COAL MASC PLOT
3.2 3
S
u
L
P
U
R

I
N
T
E
N
i-s
•i
I
T
V
          Fe ASSOCIATED WITH CLAY
       'IRON  INTENSITY
3239.DAT
                                                            6.213
                                                534 FG 2080X
                                                             7g_10-115-18
                                   55

-------
                                                          FIG.
                     PHS 546 COAL MASC PLOT
0.0 3
                  3246.OAT
PHS 546  FG 2000X
                                                       0.078
                                56

-------
                                                                  FIG. V-7
                       PHS 578 COAL MASC PLOT
0.099
S
u
L
R
U
I
N
T
E
N
S
I
T
V
 8.
-ORGANIC SULFUR k-RATIO
-Fe ASSOCIATED WITH CLAY
                         INtENSlTY
          3241.DAT
                                                              0-099
                                                 578 FG  2000X
                                                              79-10-115-20
                                  57

-------
PHS 408  This is the only coal we have yet studied that had a clearly
significant correlation between the sulfur and the calcium, and as such we
have no reliable calibration for converting this data to weight percent.
organic sulfur is calculated as usual.  For the calcium sulfur, we assumed
that it was present in the form of CaSO^, scaled up  the k-ratio by the  1.38
"roughness" factor, and then used MAGIC to convert the k-ratio  to weight
percent.  We have chosen  to accept the split  between sulfate  and  clay  calci
determined by the regression because  although the  correlations  are smalli
are  consistent, and the result  is plausible.   In  addition,  the  final weight
percents  of  the constituents are not  much changed  by rejecting  the clay fit-
The  stoichiometry of  the  calcium sulfate  is  estimated to  be CaS,  ^Ox  using
the  slope of  the S-Ca regression, using MAGIC to  correct  the  slope.

1635  None  of  the correlations  for  this  coal  were  considered significant;  3°
the  five  elements were treated  independently  as minerals  plus organic sulfu
                                        58

-------
                                   REFERENCES


    1976 Annual  Book of ASTM Standards, Part 26 - Gaseous Fuels, Coal and
    Coke.   Philadelphia, PA.
r\
     acobs,  I.  s. ,  L.  M. Levinson,  and H.  R. Hart, Jr.:  Workshop on Mineral
    Matter  in  Coal,  Urbana,  Illinois,  March 22-24, 1978.
•j
    Montano, p.  A.,  and P.  E.  Russell:  Workshop on Mineral Matter in Coal,
    urbana,  Illinois,  March  22-24,  1978.

    McCartney, j. T. ,  H. J.  O'Donnell, and S.  Ergun:  US Bureau of Mines.   RI
         (1969).
    Solomon, p.  R. t  and  A.  V.  Manzione:   A New Method for Sulfur Concentration
    Measurements  in  Coal and Char.   Fuel  56,  393,  1977.

    orrison, Donald F.:  Multivariate Statistical Methods.   2nd ed., McGraw-
    HlU Book Company, 1976.

    olby, J. W.:  Proc.  Sixth Nat.  Conf.  on  Electron Probe Analysis.   1971.
                                     59

-------
                   APPENDIX A
CORRELATIONS AND EIGEVECTORS FOR CALIBRATION COALS
                         60

-------
 103 FG 2000X
FE
S
SI
AL
Cft
     MEAN
         SIGMA
       3251.DAT

CORRELATIONS

FE      S       SI
                                                AL
              CA
0.1865  9.1764  1.8000  0.0643 -0.1631 -0.S428 -0.0339
1.1367  0.1934  8.0643  1.0000  0.0118-0.0681  0.1177
2.1250  0.5187 -0.1631  0.0118  1.0000  0,3962 -0.0411
1.3990  0.2334 -0.0428 -0.0681  0.3962  1.0000 -0.0644
0.7088  0.5820 -0.8339  0.1177 -0.0411 -0.0644  1.0000
EIGENVECTORS

  VALUE
   1.4643
   1.1053
   1.0050
   0.8515
   0.5739
              FE
             8 . 3029
            -0.1706
            -0 . 8062
             0.4192
            -0.2314
                  S
                 0.1615
                 0 . 6667
                 0 . 4236
                 0 . 5673
                 0.1679
          SI
        -0 . 6649
         0.2198
        -0.1205
        -0 . 0497
        -0.7021
  AL
-0.6421
 0.0397
-0.2933
 0.2756
 0.6513
  CA
 0.1667
 0.6905
 0.2649
 0.6512
-0.0341
    REGRESSIONS
S  =  0.9098

ORGANIC S-
           0.3209CA + -0.0003SI

           0.910  MINERAL S*      0.227

-------
 170 FG 2000X
      MEAN
    SIGMA
FE
S
SI
AL
CA
1 . 1590
3 . 8829
2.2316
1 . 4943
1 . 9890
0.7125
0.6519
0 . 6349
0 . 2563
0 . 8485
         3252.DAT

   CORRELATIONS

   FE      S       SI

 1.0000  0.3285  0.0435
 0.8235  1.0000  0.1154
 0.0435  0.1154  1.0000
 0.0165  0.0059  0.4119
•0.0320 -0.0712 -0.0509
                 AL
              CA
                                               0.0165 -0.9320
                                               0.0059 -0.0712
                                               0.4119 -0.0509
                                               1.0000  0.0714
                                               0.0714  1.0000
 EIGENUECTORS
   UALUE
    1.8572
    1.3962
    1.0089
    0.5715
    0.1662
  FE
 0.6849
-0.1493
 0.1074
 0.0908
-0.6991
  S
 0.6940
-0.1181
 0.0459
•0.0321
 0.7080
  SI
 0.1800
 0.6759
-0.1718
-0.6886
-0.0838
 AL
0.0973
0.7081
0.0924
0.6916
0.0481
  CA
-0.0858
 0.0741
 0.9738
-0.1956
 0.0244
    REGRESSIONS
S  =  2.6425+  0.9211FE +  0.1156AL
FE< CLAY) *  0.0000  FE< PYRT > =  1.1590
ORGANIC S»
    2.642  MINERAL S«
                 1.240

-------
212 FG 2080X
    MEAN
                3253.DAT

         CORRELATIONS
SIGMA    FE
S
SI
AL
CA
FE
S
SI
AL
CA
0 . 2725
1.1911
8 . 9670
0 . 7329
0 . 4744
0
0
0
0
0
.3269
.2136
.2327
.2230
.4172
1
0
0
0
0
.0000
.0226
0.
1,
.1710 -0.
.0097 -0.
.1740 -0.
0226 0 .
9000 -0.
0845 1 .
0785 0 .
9959 0 .
1710
0045
0000
6558
1631
0 . 0097
-9 . 0785
0 . 6558
1 . 0000
-0 . 0009
0
-0
0
-0
1
.1740
.0959
.1631
.0009
.0000
EIGENUECTORS
UALUE
1
1
1
0
0
.7193
.1521
.0292
.7920
.3074
FE
0.
0.
0.
0.
0.
2238
6120
3798
6447
1246
S

-0 . 0972
-0.1521

0 , 9059

-0 . 3727

0 . 0835

SI
0 . 6908
-0.1087
0.1003
-0 . 0593
-0 . 7053
AL
0
-0
-0
0
@
.6432
.3553
.0512
.0135
,6763
CA
0.
0.
-0.
-0.
0.
2229
6814
1496
6646
1479
    REGRESSIONS
S  =  1.2787 4- -0.1828FE + -0.0515AL
FE
-------
 330 FG 2000X
                         3254.DAT
  FE
  S
  SI
  AL
  CA
MEAN

 2.1891
 2.7932
 1.4215
 1.0293
 0.3792
                SIGMA
          CORRELATIONS

          FE      S
SI
AL
CA
0.8412  1.0000  0.8798 -9.0713  0.0141  0.8387
0.7875  0.8798  1.0090 -0.1199 -0.8363 -0.0362
0.2234-0.0713-0.1199  1.0000  0.5453  0.0718
0.1999  0.0141 -0.0363  0.5453  1.0000  0.0523
0.3525  0.0387 -0.0362  0.0718  0.0523  1.0000
 EIGENVECTORS
UALUE
1.9162
1 . 5303
0 . 9885
0 . 4493
3.1156
FE
0 . 6708
0 . 2276
0 . 0226
-0.0381
-0 . 7045
S
0 . 6829
0.1722
-0 . 0492
-0.0461
0 . 7068
SI
-0 . 2393
0 . 6537
-0 . 0954
-0.7113
0.0188
AL
-0.1607
0 . 6822
-0,1355
0 . 6998
0 . 0253
CA
-0 . 8266
0.1606
0 . 9847
0 . 0259
0 . 0567
    REGRESSIONS
S  =  1.0793 +  0.9349FE + -0.3184AL
FE(CLAY) =  0.3506  FE(PYRT) *  1.8385
ORGANIC S=
          1.879  MINERAL S-
                        1.719

-------
           268 FG 2QQQX
               MEAN
SIGMA
FE
S
SI
AL
CA
0 . 9269
1 . 8528
5.1845
3 . 3307
0 . 6307
0 . 3478
0 . 3650
0 . 5657
0.3186
0 . 4352
                3255.DAT

         CORRELATIONS
   FE

 1.0830
 0.4453
 0.1107  0.9725
-0.0333 -0.0451
•0.1415  0.0270
SI
AL
CA
                                        0.4453  0.1107 -0.0333 -0.1415
                                        1.0000  0.0725 -0.0451  0.0270
                                                1.0000  0.5873  0.1064
                                                0.5873  1.0000  0.0462
                                                0.1064  0.0462  1.0000
Ui
          EIGENVECTORS
UALUE
1.6166
1.4661
1 . 0026
8.5271
0 . 3876
FE
0.1850
0 . 6843
-0 . 0654
-0 . 6705
0 . 2090
S
0.1739
0.6516
0 . 2958
0 . 6764
-0 . 0249
SI
0 . 6998
-0.0816
-0 . 0552
-0.1031
-0 . 7000
AL
0 . 6539
-0 . 2358
-0.1932
0.1680
0.6718
CA
0.1349
-0.2120
0.9318
-0 . 2325
0.1203
              REGRESSIONS
          S  =  0.9371 +  0.9989FE + -0.0020SI
          FE =  8.0101  FE *  0.9168
          ORGANIC 8=
 0,937  MINERAL S=
                  0.916

-------
 308 FG 2900X
FE
S
SI
AL
CA
MEAN

 2.6031
 4.5912
 2.6495
  :.0897
                SIGMA
                             3256 . DAT

                       CORRELATIONS
                       FE
          SI
          AL
CA
               1.6598  1.0000
               1.7268  0.9528  	
               0.5889 -0.0629 -0.0434
                      -0.0496 -
0.9528 -9.0629 -0.0496 -0.1531
1.0000 -0.0434 -0.0092 -0.1229
        1.0000  0.6768
                0.0933
0.'6768  1.0000 -0.1117
        .        .        .        .        .        .        .
       0.4557  0.4188-0.1531-0.1229  0.0933-0.1117  1.0000
 EIGENUECTORS
   UALUE
    2.0113
    1.6601
    0.9891
    0.2942
             FE
            0.6791
            0.1408
            0.1284
          -0.0348
   0.0454   -0.7080
S
0.6716
0.1649
0.1578
0 . 0486
0 . 7032
SI
-0.1827
0 . 6782
0.1714
-0 . 6904
0 . 0247
AL
-0.1412
0 . 6969
-0.1127
0.6921
-0.0512
CA
-0.1857
-0 . 0854
0 . 9574
0.2017
-0.0314
    REGRESSIONS
S  =  1.5803 +  1.0364FE +  0.1498AL
FE
-------
 40659 FC 2000X
 FE
 S
 SI
 AL
 CA
                         3257.DAT

                   CORRELATIONS
     MEAN
         SIGMA    FE
S
SI
AL
CA
4.0692  1.1840  1.0090  0.8764-8.1104-0.0308  0.0196
6.1172  8.9732  0.8764  1.8000-0.1182-0.0828  0.0568
8.9316  1.0943 -0.1104 -0.1182  1.0000  0.5744 -0.0423
4.9426  6.4670 -0.0308 -9.0828  0.5744  1.8000 -0.0644
0.8440  8.4383  0.0196  8.0568 -0.8423 -8.0644  1.0080
EIGENVECTORS
UALUE
1.9621
1 . 5027
8 . 9982
8 . 4242
8.1207
FE
0 . 6345
0.3138
-0 . 8448
8.8281
-0 . 7047
S
8 . 6452
0 . 2832
-0.8861
-8 . 8786
8 . 7852
SI
-8.3175
8.6281
8.1869
-8 . 7885
-8 . 8365
AL
-8 . 2789
0 . 6545
8.8615
8 . 7883
8 . 8636
CA
8.8831
-8.8918
8.9914
8 . 8333
-0 . 8269
    REGRESSIONS
 S  =  3.8091 +  0.8792FE + -8.8950AL
 FE *  9.5341  FECPYRT) =  3.5351
 ORGANIC S=
           3.889   MINERAL 8-
       3.188

-------
          LIG FG 2808X
               MEAN
SIGMA
FE
S
SI
AL
CA
0.3317
1 . 0067
3.1685
2 . 2769
9.1987
0 . 2656
9 . 2637
0.9881
0 . 3000
0 . 8759
               3258.DAT

         CORRELATIONS
FE
S
SI
                                 1.6800  0.3890  Q.0985
                                 0.3890  1.0000 -0.0277
                                 0.0985 -0.0277  1.0000
                                 0.0734  0.1885  0.4538
AL
CA
                               0.0734  0.1162
                               0.1885 -0.0322
                               0.4538 -0.0577
                               1.0000  0.0011
                                0.1162 -0.0322 -0.0577  0.0011  1.0000
oo
          EIGENUECTORS
UALUE
1 . 5946
1 . 2798
1 . 0077
0 . 6853
0 . 4325
FE
0 . 4569
-0 . 5227
0 . 0347
-0 . 6053
0 . 3877
S
0 . 4586
-0 . 4983
-0 . 3277
0 . 4488
-0 . 4823
SI
0 . 4948
0 . 5204
0.1298
-0.4168
-0 . 5426
AL
0 . 5794
0 . 3702
0 . 0930
0.4716
0 . 5442
CA
0.0175
-0 . 2656
0 . 9305
0.1915
-0.1630
              REGRESSIONS
          S   =  0.6644 +  0.9704FE +  0.0065SI
          FE
-------
           ISGS UF 2000X
               MEAN
SIGMA
FE
S
SI
AL
CA
1
4
2
16
3
.5858
.8781
.2751
.9510
.4532
1
1
0
3
18
.0852
.0296
.5867
.0325
.3997
       3098.GAT

CORRELATIONS

FE      S       SI
AL
CA
                                1.0300
                                0.9134
                                0.0607 -0.0224
                                0.1612  0.1434
               0.9134  0.0697  0.1612 -0.0555
               1.0000 -0.0224  0.1434 -0.0292
                       1.0000  0.5686 -0.0221
                       0.5686  1.0000 -0.0431
                               -0.0555 -0.0292 -0,0221 -0.0431  1.0000
VO
          EIGENUECTQRS
UALUE
1 . 9995
1 . 5827
8 . 9942
0 . 4222
8.0815
FE
0 . 6575
-0.2416
0 . 0270
-0 . 1305
-0.7011
S
0 . 6444
-0 . 2904
0.0501
0 . 0032
0 . 7056
SI
0 . 2097
0 . 6867
0 . 0548
-0 . 6880
0 . 0902
AL
0.3210
0.6199
0 . 0372
0.7137
-0 . 0439
CA
-0 . 0738
-0 . 0398
0 . 9962
0.0146
-0.0198
              REGRESSIONS
          S  =  3.6503+  0.9511FE + -0.1233SI
          FE< CLAY > »  0.2949  FEC PYRT) «  1.2999
          ORGANIC S=
 3.650  MINERAL S»
               1,228

-------
 SCRANTQN FG 2000X
               3242.DAT

         CORRELATIONS
     MEAN
SIGMA    FE
S
OT
Ol
AL
CA
FE 0 . 7937 0 . 3265
S 2.3954 0.2915
SI 1.3793 1.2893
AL 0 . 8228 0 . 7093
CA 9 . 3264 0 . 8369
EIGENUECTORS
UALUE
1 . 4205
1 . 2248
0 . 9934
0.8534
0 . 5079
FE
0 . 6863
-0.0143
0.2914
0.2458
-0.6192
1 0000 0.2909 -0.6363 0.3087 0.0331
0 2999 1.0000 -0.1601 -0.0569 -0.0798
-0 . 0363 -0 . 1 60 1 1.0000 0 . 0526 -0 . 0990
0.3007 -0.0509 0.0526 1.0000 -0.1446
0.0331 -0.0798 -8.0990 -0.1446 1.0000
S
0 . 5090
-0 . 4074
-0 . 4389
0 . 3535
0 . 5073
SI
-0.1554
0.6192
0.0156
0 . 7665
0.1253
AL
0 . 4670
0 . 5068
0 . 3340
-0 . 3982
0 . 5049
CA
-0.1665
-0 . 4523
0.7814
0.2618
0 . 2975
    REGRESSIONS
S  =  1.6726+  1.1287FE + -0.3197AL
FE =  0.2330  FE *  0.5607
ORGANIC S=
1.673  MINERAL S«
      0.633

-------
 BEULAH FG 2000X
     MEAN
SIGMA
       3243.DAT

CORRELATIONS

FE      S       SI
AL
FE
S
SI
AL
CA
2.
2.
0.
0.
5.
5031
7246
9061
4865
7597
0.
0.
0.
0.
0.
6210
5853
4677
2081
7755
1
0
-0
-0
0
.0000
.7201
.0885
.0731
.0002
0.
1.
0.
-0.
0.
7201
0003
3374
0609
0483
                                     -0.0885 -0.0731
                                      0.0374 -0.0609
                                      1.0000  0.4147
                                      0.4147  1.0000
   CA

 0.0002
 0.0483
 0.0236
-0.0209
 1.0000
EIGENUECTORS
UALUE
1 . 7490
1 . 3936
1 . 0022
0 . 5907
0 . 2646
FE
0 . 6872
0.1447
-0 . 0746
0.1422
-0 . 6935
S
0 . 6728
0.2319
-0 . 0034
-0 . 0929
0 . 6964
SI
-0.1649
0 . 6933
0.0361
-0.6816
-0.1623
AL
-0.2143
0 . 6659
-0 .- 0720
0 . 7065
0 . 0792
CA
0 . 0444
0 . 0347
0 . 9939
0 . 0S63
-0.0381
    REGRESSIONS
S  =  0.2044+  0.9507FE -f  0.1551SI
FE =  0.0000  FE *  2.5031
ORGANIC S-
 0.204  MINERAL 8-
               2.520

-------
          MONT SAUAGE FG 2808X
           FE
           S
           SI
           AL
           CA
               MEAN
0.1283
0.7837
9.6129
         SIGMA
                        3244.DAT

                  CORRELATIONS

                  FE      S
                          SI
AL
CA
                                        0,1238 -0.1218
                                        0.0641  0.0641
                                        0.4854 -0.0009
0'5053  012092  0."1238  0.0641  0.4854  1.0000  0.1697
0.1525  1,8000  0.1173  0.0292
0.1798  0.1173  1.0000-0.1001
0.2387  0.0292 -0.1001  1.0000
9.8343  0.9503-5:1218  0:0641-0.0009  0.1697  1.0000
10
          EIGENUECTORS
UALUE
TT ritMWh»
1 5268
A • ^»rt*» ar*^
1 1442
1 0994
« * *ur*f mf 1
0 . 7726
0 . 4570
FE
0.1634
0 . 7427
-0.1672
-0.6106
-0.1471
S
0.0210
0 . 5583
0 . 5998
0.5551
-0.1415
SI
0.6581
-0.1343
-0 . 2758
0 . 2433
-0 . 6434
AL
0.7091
0 . 0299
0 . 0788
0.0362
0.6991
CA
0.1921
-0.3432
0 . 7283
-0 . 5092
-0 . 2358
              REGRESSIONS
          S   =   0.7321 +  0.8931FE + -0.1246AL
          FE =  0.0705  FE =  0.8578
          ORGANIC  3»
          0.732  MINERAL 8-
                                 0.852

-------
            UPPER CLIFF FG 28088
                          3245.DAT
           FE
           S
           SI
           AL
           CA
mm

 1.0930
 1.5137
 3.7549
 2.4710
 8.4624
                          SIGMA
           CORRELATIONS

           FE      S
0.3358  1.0900  0,4576
0.2644  0.4576  1.0000
0.4423  0.3037  0.1183
0.2893  0.1102  0.0621
0.4302 -0.0493 -0.1000
  SI

0.3087
0.1183
1.0000
0.4122
0.0309
  AL
CA
0.1102 -0.0493
0.0621 -9.1000
0.4122  0.0309
1.0000  0.0523
0.0523  1.0000
          EIGENUECTQRS
-s]
10
UALUE
1.7510
1.2212
0 . 9357
8 . 6246
0 . 4675
FE
0 . 5692
-0 . 3069
0 . 2402
0 . 3443
-0 . 6368
                   S
                  9.4712
                 -0.4891
                  0.2433
                 -0.5915
                  0.4776
                    SI
                   9.5317
                   0.3869
                   •0.1671
                   9.5278
                   0.5110
      AL
     0.4189
     0.5424
     •0.2895
     -0.5908
     •0.3227
        CA
      -0.0496
       0.4719
       0.8783
      -0.0495
       0.0328
              REGRESSIONS
           S  =   1.3075 +  0.8266FE + -0.2812AL
           FE «  0.8486  FE *  0.2494
           ORGANIC S=
           1.308  MINERAL 3»
                         0.206

-------
 ROSA FG 2000K
  FE
  S
  SI
  AL
  CA
MEAN

 4.6559
 3.7536
 2.9054
 1.1911
 9.2978
                SIGMA
                3246.DAT

          CORRELATIONS

          FE      S
SI
AL
CA
2.2331  1.0008  0.6845 -0.0197 -0,8532 -0.0387
1.4855  0.6845  1.0000 -0.0735 -0.0866  0.0922
2.2528-0.0197-0.0735  1.8000  0.5901  0.0398
0.3171 -0.0582 -0.0866  0.5901  1.0000 -0.0404
0.3170-0.0387  0.8922  0.0398-0.0404  1.0000
 EIGENMECTORS
UALUE
1 . 7675
1.5112
1.0148
0 . 4083
0 . 2982
FE
0.5719
0.4129
-0.1333
-0.1229
-0 . 6852
S
0.5981
0 . 3765
0 . 0492
0.1494
0 . 6897
SI
-0 . 3832
0 . 5965
0 . 0600
-0 . 6862
0.1510
AL
-0 . 4078
0 . 5749
-0.0633
0 . 6984
-0.1069
CA
0 . 0446
0 . 0377
0 . 9860
0 . 0625
-0.1431
    REGRESSIONS
S  «  0.7672 +  0.6675FE + -0.0417SI
FE(CLAY) =  0.1817  FE
-------
Ul
           BLK CREEK FG 2080X            3247.DAT

                                  CORRELATIONS

               MEAN      SIGMA    FE      S       SI      AL      CA

           FE
           S
           SI
           AL
           CA


          EIGENVECTORS
0.2954
1.1142
1 . 5357
1 . 1756
0.3471
0 . 2038
0.2418
0.2810
0 . 2437
0 . 3538
1 . 0000
0.1807
0 . 0537
0 . 0607
0.0831
0.1807
1 . 0000
0.1269
6 , 0647
0.1452
0.0537
0.1269
1.0000
0 . 7579
0.1075
0 . 0607
0 . 0647
0 . 7579
1 . 0000
0.0613
0.0831
0.1452
0.1075
0.0613
1 . 0000
UALUE
1 . 8280
1 . 2099
0.9189
0 . 8049
0 . 2383
FE
0.1599
0.5674
-0 . 5837
-0 . 5579
-0 . 0233
S
0 . 2232
0 . 5987
-0 . 0876
0 . 7621
0 . 0576
SI
0.6731
-0,2061
-0 . 0047
0.0179
-0.7100
AL
0 . 6595
-0 . 2623
-0 . 0577
-0 . 0466
8 . 7006
CA
0.1914
0 . 4565
0 . 8052
-0 . 3247
0 . 0354
              REGRESSIONS
          S  a  0.6458 +  1.2925FE +  0.0736AL
          FE =  0.0000  FE(PYRT) -  0.2954

          ORGANIC S='     0.646  MINERAL 5=      0.468

-------
TRW FG 2000X
 FE
 S
 SI
 AL
     MEAN
                        3248.DAT

                  CORRELATIONS
         SIGMA
  FE
 r-
 O
0 . 3744
1 . 3592
3 . 4360
0 . 2228
0 . 2283
0 . 5957
1 . 0090
0.2231
0 . 0597
0.2231
1 . 0000
0,0010
2.4947  0.3857 -0.0939 -0.0685
SI
AL
CA
                0.0597 -0.9939 -0.1327
                0.0010 -0.0685  0.0128
                1.8000  0.6519  0.0617
                0.6519  1.0000 -0.0118
 CA   0>354  0^4520 -0!l327  0.'0128  0.0617-0.0118   1.0000
EIGENUECTQRS
  UALUE
   1.6611
   1.2548
   1.0177
   0.7440
   0.3224
        FE
      -0.0845
       0.7160
      -0.0375
      -0.6696
       0.1744
  S
-0.0992
 0.6044
 0.4698
 0.6356
 0.8115
  SI
 0.6938
 0,1728
 0.0577
-0.0861
-0.6915
    AL
   0.7051
   0.0296
  -0.0787
   0.1275
   0.6924
      CA
     0.0672
    -0.3021
     0.8765
    -0.3522
     0.1090
    REGRESSIONS
S  =  1.0832 +  0.8746FE + -0.0150SI
FE =  0.0588  FE =  0.3156
ORGANIC S=
          1.083  MINERAL 8=
                0.276

-------
 UTAH FG 2000X
 FE
 S
 SI
 AL
 CA
MEAN

 0.2836
 1.0420
 3.3745
 1.8197
 1.0055
 SIGMA

0.2041
0.2006
2.0787
0.3999
0.5104
                          3243. DfiT

                   CORRELATIONS
   FE

 1.0900
 0.1410
 0.0216
0.1410
1.0008
0.0016
 0.0937 -0.0430
                                        SI
                  AL
                  CA
0.8216  0.8937 -0.0304
0.0016 -0.0430 -0.0490
1.0000  0,6934 -0.0653
0.6934  1.0000 -0.0462
-0.0304 -0.0490 -0.0653 -0.0462  1.0000
EIGENVECTORS
UALUE
1.7123
1 . 1546
0 . 9788
0 . 8543
0 . 3000
FE
0.1160
0 . 6437
0 . 3333
-0 . 6735
-0.0861
S
-0 . 0099
0 . 6985
0 . 0972
8 . 7062
0.0611
SI
0 . 6953
-0 . 0782
0 . 0209
0.1448
-0 . 6993
AL
0.7001
-0 . 0669
0 . 0768
0 . 0043
0 . 7068
CA
-0.1134
-0 . 2950
0 . 9344
0.1632
-0,0180
    REGRESSIONS
S  =  0.9192 +  1.0470FE + -0.0957AL
FE =  0.1663  FE =  0.1173
ORGANIC 8=
           0.919  MINERAL S-
                         0.123

-------
                 APPENDIX B
CORRELATIONS AND EIGENVECTORS  FOR WASHED COALS
                          78

-------
--J
VO
           3@& 1.4FL GRD
               MEAN
               SIGMA
       3172.DAT

CORRELATIONS

FE      S
SI
AL
CA
FE
c-
SI
AL
CA
2.0963
3.9520
2.7599
1 . 8256
0 . 5631
3
0
0
0
0
. 7889
.5765
.3521
.2713
.4379
1
0
0
6
0
.8600
.7028
.0951
. 8669
.9916
0
1
0
0
0
.7020 0.
0008 8 .
. 1943 1 .
. 6233 0 .
.0012 Q.
9951
1843
6000
3418
9827
0.0669
0 . 8233
0.3418
1 . 0000
0.1249
0
0
0
0
1
.0916
.0012
.0827
.1249
.0000
EIGEHUECTORS
UAi
1
i
9
8
0
-UE FE
.7715
.3315
. 9531
. 6532
. 2997
0.
-ft.
0.
0.
-0.
6577
2487
9563
0787
7844

S
0 . 6438


-9 . 2385
-0 . 0644


0 . 0829
0.7816


S!
0.2838
8 . 5778
-0.3210
-9.6934
-8 . 0422
AL
8
0
-0
0
9
.2258
.6440
.1761
. 7977
.6485
CA
0.
0.
Q.
-0.
0.
1461
3170
9266
1103
0861
              REGRESSIONS
   =  2.5316 +  0.8171FE + -0.1682AL
FECCLAY) =  0.3579  FE »  1.7390
          3
          ORGANIC S*
                2.531  MINERAL S«
               1.421

-------
          368 FL FG 188 1.4SG
                        3204 DAT
           FE
           S
           SI
           AL
           CA
               MEAN
2.7110
4 . 5309
2 . 5894
2.3991
0 . 5453
         SIGMA
          CORRELATIONS

          FE
S
SI
0.4918  1.0Q00  0.6379 -0.0192
0.4848  0.6379  1.0060 -9.1407
0 3436 -0.0192 -0.1407  1.0009
0.2529 -0.0287 -0.1170  0.4254
AL
CA
             -0.0287 -0.0336
             "0.1170  0.0101
              0,4254  0.0807
              1.0000  0.0392
0'4508 -9.0336  0.0101  0.0807  0.0392  1.0000
          EIGENVECTORS
co
o
VALUE
1 . 7229
1 . 3649
0 . 9893
0 . 5742
8 . 3437
FE
0.5916
0 . 4850
-0 . 8653
-8.8641
-0.6911
                  S
                 0.6419
                 0.2862
                 0.0426
                 0.0567
                 0.7879
                    SI
                  -0.3463
                   0.6049
                  ~0.0785
                  -0.7007
                   0.1394
           AL
         -0.3352
          0,5997
         -0.1726
          0.7056
          0.0154
              CA
            -0.0754
            0.1688
            0.9788
            0.0614
            -0.0637
             REGRESSIONS
         S  =  2 6844 +  8.9629FE + -0.2564SI
         FE a  0.6896  FECPYRT? =  2.0214
         ORGANIC S=
         2.684  MINERAL S=
                        1.946

-------
           388 FL  FG 200 1. 4SC
               MEAN
FE
S
SI
flL
Cft
8 . 9633
3.6213
2 . 8248
1 . 8265
3 . 5857
              3JGMA
              3305.DrtT

        CORRELATIONS

        FE       S        SI
CA
                        0.2446  i . mm  0.1279  0.2383  0.0693 -0.1424
                        0.2529  0.1279  1.6000  0.0607  6.1812 -0,1235
                        0.2483  8.2388  0.9607  1.0006  9.3968-0.0501
                        0.2761  0.9693  8.1812  0.3968  1.0000 -0.1326
                8.5857  8.4239 -0.1424 -0.1285 -0.0501 -0.1326  1.0000
OS
          EIGENVECTORS
UALUE
1 , 6408
1 . 0379
8.9313
8.8612
S . 528?
FE
0 . 4868
0.2161
-0 . 7585
0 . 3694
-0.3417
S
0*3532
0 . 4722
0.481?
8.6146
0 . 2863
SI
0.3515
-0.4914
-0 1548
-0 . 0380
9 , 6550
fiL
0.5515
-9 . 3272
0.4107
-0.1782
-0 . 6232
CA
-0.3185
-0.6179
0 . 0085
8 . 7024
-0.152?
              REGRESSIONS
           S   *   3.0447
ORGANIC S*
0.1390SI -I- -0.5207CA

3.021  MINERAL S«
                                                  0.000

-------
           308 FL FG 325 1.4SG
                                3206.DAT
    MEAN

FE   1.2914
S    2.3650
SI   2.6927
*L   8.6737
CA   0.4558
                          SIGMA
                         0.3117
                         8.2368
                         Q.3172
                         0.4042
                         8.3793
                         CORRELATIONS

                         FE      S
  SI
                       1.0000  0.0129  0.0615
                       0.9129  1.0000  0.0684
                       0.0615  6.0684  1.0000
                       0.0448  0.0105  0.3922
                       0.1353 -9.0447 -0.0392
AL
CA
        0.0443  0.1353
        0.0105 -0.0447
        G.3922 -0.0392
        1.0000 -0.1561
       -0.1561  1.0000
          EIGENVECTORS
oo
UALUE
1 . 4487
1.1374
3 . 9970
0 . 8335
& . 5834
FE
0 . 0756
0 . 7309
9 . 0958
-9.6688
-0 . 0595
S
0.1462
-0 . 0492
0 . 9768
0 . 0923
0.1166
SI
0 . 6533
0.1868
-0.0415
0 . 3383
-0 . 5539
AL
0.6815
0 . 0248
-0.1865
0.0145
0.7071
CA
-0 . 2859
0,6541
-0.0146
0 6595
0 . 2352
             REGRESSIONS
            =  2.1772 +  0.2397FE + -0.2671CA
         FE »  8.5079  FE(PYRT) *  9.7335
S
          QRGAH1C S=
                2.177  MINERAL S=
8.188

-------
          30S 1.6FL GRD
          FE
          S
          SI
          RL
              MEAN
SIGMA
       3174.DAT

CORRELATIONS

FE      S
SI
AL
CA
2 . 2638
4.1046
3.1400
2.1742
0 . 5653
0
0
0
0
0
.7841
. 639.9
.4646
.3314
.4313
1
-0
.0000
.7344
.1122
. 9233
.0531
8
1
0
0
0
. 7344
. 0880
.1840
. 1959
,0128
0.
0.
1.
0.
-0.
1122
1840
0080
5708
0769
0
0
0
1
0
. 8233
. 1059
.5708
.0000
.0050
-0 . 0531
0.8123
-0 . 0769
0 . 0050
1.0000
co
         EIGENUECTORS
UALUE
i . 9229
1 . 4462
1.9644
8.4184
3.2080
FE
8 . 5837
-9 . 40S6
-9 . 0272
8.0444
-0 . 6998
S
0.S148
-©.3361
8.0661
0 . 9420
9 . 7092
SI
0 . 4062
0 . 5696
-0.8189
-0.7133
-0 . 0383
AL
0 . 3362
0 . 6269
0.1173
0.6914
-0 . 0463
CA
-0.0571
-0 . 0522
0 . 9983
-0 . 0971
-0 . 0613
              REGRESSIONS
          S  =  1.6878 -I-  0.9001FE 4-  0.2112AL
          FE =  0.8000  FE *  2.2633
          ORGANIC S=
  1.608   MINERAL  S*
                2.497

-------
         338 FL FG 100 1.6SG
          FE
          S
          SI
          AL
          CA
              MEAN
. 2534
1
3.1966
1.4769
4 3827
0.5271
         SIGMA
      3207.DAT

CORRELATIONS

FE      S
0.3032  1.8000  8.3768
0.3122  8.3768  1.8960
0.2458  3.0039 -0.0909
8.3493 -0.1160 -0.0111
                          SI
           AL
                                                 CA
 0.0039 -0.1160  0.0211
-8.0909 -0.9111  0.0853
 1.9000  0.3774  0.0891
 0.3774  2.8000 -0.0536
0.4024  0.0211  0.0853  0.0891 -0.9536
00
-p-
         EIGENVECTORS
UALUE
1 4874
1 . 2895
1 . S037
0.7181
0J5913
FE
-9.5134
9 . 4482
-8 . 2050
-0.5231
0 . 4689
c;
-0.'5095
0 . 4684
-0.1319
6 . 5368
-0.4711
SI
0'. 4657
0 . 5457
0 . 8634
Q.4710
•0 . 5094
AL
0 . 5033
0 . 4673
-0 . 249S
0 . 4530
8 . 5062
CA
-0.0816
8.2521
0 . 9350
0.1145
0.2061
             REGRESSIONS
         S  =  1.8482 *  1.0459FE +  0.0316SI
         FE< CLAY> *  0 - 0000  FE «   1.2534
         ORGANIC S=
          1.840  MINERAL 8«
                         1.356

-------
          308 FL FG 325 1. 6SG
          FE
          S
          SI
          AL
              MEAN
3.1759
         SIGMA
                        3208.DAT

                  CORRELATIONS
          FE
S
SI
AL
CA
                0.8926  6.0443 -0.8261 -0.1567
                1.8000 -9.1950 -0.0884 -0.0486
               •0.1050  1.0000  0.5421 -0.0329
8.4809 -0.9261 -0 0884  9.5421  1.0090 -0.2156
i . 1696
2 . 4763
2 . 6338
0 . 3000
6 . 2335
0.3715
1 . 0033
9 . 0926
9.0449
          CA   3.4397  0.4129 -6.1567 -6.0436 -0.0329 -0.2156   1.0000
00
Oi
          EIGENVECTORS
UALUE
1.6197
1 . 2827
Q . 8999
0 . 3634
0.4143
FE
0.0618
8 . 6423
-0 . 3423
8 . 6658
8.1527
8
-0.1769
Q . 5066
0 . 8430
-0 . 0362
-0.0128
SI
8 . 6483
-0.1226
0.2135
0.317Q
-0 . 6470
AL
9 6852
-0 . 0350
0.1711
-0.1016
0 . 6998
CA
-0 . 2743
-0 . 5609
0.3121
0 . 6668
0.2610
             REGRESSIONS
          S  «  3.3924 +  0.7285FE + -0.1927AL
          FE *  2.4271  FE * -1.2575
         ORGANIC S=
          2.476  MINERAL S*
                         0.000

-------
         330 UF 2009X
          FE
          S
          SI
              MEAN
SIGMA
               3270 . DAT

         CORRELATIONS
FE
1.3107
1.9136
1.2200
0 . 8732
0 . 3249
0 . 7623
8 . 7289
0 . 2367
0 . 2480
0 . 3422
1 . 8003
0.8718
0 . 0424
0.1046
0 0777
SI
AL
CA
               0.8718  G.0424  0.1046  0.0777
               1.0000  0.0223  0.0956  0.0559
               0.0223  1.0060  0.5944 -0.1070
               0 0956  0.5944  1.0000 -0.1232
               0.0559 -0.1070 -0.1232  1.0000
00
          EIGENVECTORS
URLUE
1.9285
i . 5992
Q . 9426
8.4821
9.1276
FE
0.6621
-8 . 2295
-8 . 8772
-0 . 0465
-0 . 7077
S
0 . 6579
-0 . 2375
-0.1096
-0 . 0223
0 . 7959
SI
3 . 2220
9.6451
0.2135
-8 . 6990
0.0212
AL
0 . 2802
8 . 6227
0.1663
0.7127
-0.0041
CA
0 . 0323
-0.2951
0 . 9542
0 . 0299
0.0198
             REGRESSIONS
          S  =  0.6951 +  0.9554FE + -0.0338AL
          FE s  0.0354  FE =  1.2753
         ORGANIC S=
 0.695  MINERAL
               1.218

-------
           330FL FG1. 440 2K
               MEAN
               SIGMA
FE
S
SI
AL
CA
8.2286
0 . 8832
e.3163
3 . 8828
9 . 2823
8.1703
6.1707
6 . 2268
0 . 2852
0.3128
      3263.DAT

CORRELATIONS

FE      S
SI
AL
CA
                                1.0000 -0.1057  9.0080
                               •0.1057  1.0000 -0.1486
                                0.0080-6.1486  1.0000
                                9.0434  0 9588  0.2927  1.0000 -0.1892
                                0.1857 -0.0484 -0.0196 -0.1892  1.0000
                                              00434  0.1057
                                              0.9588 -0.8484
                                              0.2927 -8.0196
CD
          EIGENUECTORS
UALUE
1.3602
1 . 2386
% . 9469
0.8817
8.6026
FE
-0.0141
-0 . 5470
0 . 7296
-0.3419
0 . 2266
S
0 . 0963
0.6180
0 . 560?
0 . 4263
0 . 3358
SI
-0.6168
-0 . 2858
-8 . 2238
0 . 3986
0 . 5793
AL
-0 . 6846
0 . 0930
0.3108
0.1169
-0 . 6422
CA
0.3761
-0.4781
0 . 0837
0.7315
-0 . 2965
              REGRESSIONS
S  * -i.9523

ORGANIC S=
                          0.8365AL  +  -1.2851SI

                          0.000  MINERAL 8*
               0.889

-------
         330 1.4FL GRD
               3173. OAT
          FE
          S
          SI
          AL
          CA
              MEAN
                                 CORRELATIONS
SIGMA
FE
S
SI
AL
CA
1 . 290?
1.8081
1 . 2273
0 . 7294
0 . 3808
0
0
8
0
e
.9400
.8069
.2572
.2196
.3898
1.
0.
0.
-8.
0.
0000
8431
1283
0109
1534
0
1
0
-0
0
.8431
0PI00
!l031
.0056
.9045
0.
0,
1.
0
0.
1203
1031
0000
5280
0681
-e
-0
0
1
0
.0109
.0056
.5280
. 9000
.0519
0.1534
0 . 0045
0.0681
0.0519
1 . 0000
CO
CO
         EIGENVECTORS
UALUE
1.9029
1 . 5030
0 . 9889
6.4619
3.1435
FE
0 . 6730
-0 . 208?
9 . 9880
9 . 9376
-0 . 7086
8
8 . 6584
-0 . 2245
-0.1654
0 . 8843
0 . 6940
81
8^2639
0 . 6458
-0 . 0957
-0.7104
8.0219
RL
0.1505
0 . 693S
-0 . 0935
0 . 6976
-0 . 6254
CA
0.1462
0 . 0933
0.9771
0.0112
0.1231
             REGRESSIONS
         S  =  8.7911 +  0.8450FE + -0.101QAL
         FE< CLAY > *  0.0872  FE< PYRT > *  1.2035
         ORGANIC S-
 0.791  MINERAL S=
       1.017

-------
         338FL FG1.4  100 2K
              MEAN
SIGMA
               3264,DAT

         CORRELATIONS
FE
SI
FE
S
S!
AL
CA
0 . 4899
1.0894
8.4681
3 . 7904
Q.3291
0 . 3996
0.3144
0.2614
0 . 3375
0 . 3005
0.7610
0 . 0926
0 . 0762
-0.0413
                                       0.7610  6.0926
                                       1.0000 -0.0923
                                      ~0 0023  1.0000
                                       0.2125  0.3483
  AL

0.0762
9.2125
9.3483
1.9000
                                       8.0252  0.1662 -0.0497
   CA

-0.0413
 0.0252
 0.1662
-0.0497
 1.0000
00
VO
         EIGENVECTORS
UALUE
i . S422
1 . 3862
1 . 9258
8 , S268
0.1989
FE
0 . €503
-0 . 2482
0 . 0986
-0 . 2644
-0.6602
S
9.6651
-0 . 2238
0.0943
0.1635
© . 6867
SI
0.1990
0 . 7082
0.0148
-0 . 6495
0.1919
AL
9.3084
0.5383
-0 . 4465
0 . 6099
-0.2095
CA
9.0091
0.3121
0 . 8842
-0 .' 1 085
             REGRESSIONS
         S  *  0.6608 +  0.7964FE +  0.0474SI
         FEfCLAY) -  0.8000  FE
-------
336FL FG1.4 209 2K
 re
 S
 SI
 SL
 CA
     MEAN
                        3265.DAT

                  CORRELATIONS
         SIGMA
FE
S
8.5056  0.3204  1.9000  6.4967
1.0736  0.2665  0.4967  1.0000
0 4733  0 2462 -0.0630 -9.1264
5.8490  9.3631  0.1376  6.0950
S 3124  0.3498 -0.0332  0.0453
SI
             -0.0630
             -0.1264
              1.0008
              0.3655
              0.1057
  AL

0.1376
0.G950
0.3655
1.0000
-0.1316
   CA

-0.0382
 0.0453
 0.1057
-0.1316
EIGENVECTORS
VALUE
1 . 5504
1 . 3672
1 . 0592
0 . 5443
0 . 4796
FE
0.6858
-0.9412
0.0312
-O . 4800
-0 . 5446
S
0.6750
-0.1322
0.1557
0 . 2220
0 . 6733
SI
-0 . 0797
0.7167
0 . 2579
-0 . 5453
0 . 3403
AL
0.2512
0.6817
-0.1702
0 . 6049
-0.2781
CA
-0 . 8674
-0 . 0508
0 . 9377
0 . 2389
-0.2378
    REGRESSIONS
S  =  1.2043 +  0.8588FE + -0.0966AL
FE =  8.6578  FECPYRT; = -0.1522
ORGANIC S=
          1.074  MINERAL S«
               0.000

-------
 33&FL FG1.4 325 £K
               3268.DAT

         CORRELATIONS
     MEAN
SIGMA    FE
S
FE
S
SI
AL
CA
0.
<
4
I .
4.
8.
4498
8011
0522
8589
2905
0
0
0
0
6
.2116
2180
.3026
.4236
.3211
1
0
0
-e
0
.0000
.1419
,0233
.0165
.0934
9
1
0
0
0
.1419
.0000
.0945
.0168
.0151
SI
AL
                                      6.0283 -0.9165
                                      0.0945  0.9160
                                      1.0D00  0.2934
                                      0.2934  1.9000
  CA

0.0934
0.0151
  1987
  1498
                                       0
                                       0
                                                       1.0000
EIGENVECTORS
UALUE
1.4617
1.1290
6 . 9274
0 . 7930
0 . 6839
FE
8 . 1835
0 . 6962
-0 . 4039
-0.5615
-0 . 0565
8
0.2174
8 . 6262
0 . 5995
9 . 3950
0.2125
SI
0.6153
-0.1345
0 . 2090
-9 . 0409
-0 . 7470
AL
0 . 5502
-0 . 3240
0.2156
-0.4369
0 . 5958
CA
0 . 4376
-0 . 0059
-0 . 6223
0 . 5798
0.1969
    REGRESSIONS
S  =  0.3831 +  0.9333FE «•  0.0408AL
FE «  0.0000  FECPYRT) =  0.4498
ORGANIC S=
0.383  MINERAL 8*
      0,618

-------
330FL FG1.6 48 2K
               3266.DAT
                        CORRELATIONS
     MEAN
SIGMA
FE
S
SI
AL
CA
FE
s
**f
SI
» *»
AL
• 4MM
CA
8.2486
0 9505
8 4875
4 2645
0 . 3332
0
0
0
0
0
.2130
1952
.2792
3756
.3246
1
0
0
0
. 0000
.0427
.1496 •
.1067
.9058
0
i
•Q
0
0
. 0427 0 .
.0000 -0.
. 0646 1 .
.1733 0.
. 8356 0 .
1496
0646
0000
3789
0557
0 1967
0.1733
0 . 3789
1 . 0000
0.1460
3
0
0
0
1
.0053
.0356
.8557
.1460
.0000
EIGENUECTDRS
» if
1
1.
0.

0!
H-
,'_*C.
5879
0603
9917
mf ^r * i
$
-------
          330 l.GFL GRD
               MEAN
SIGMA
FE
S
SI
AL
1.4887
i.9397
1 . 3753
6 . 8538
8 . 5783
8.5418
0.2581
8 . 2489
               3175. DftT

         CORRELATIONS
FE
S
SI
                                1.0809   0.8431   0.0194
                                0.8431   1.0000  -0,6128
                                0.8184  -0.0128   1.8900
                                8.0472   6.0069   0.6482
  AL

0.6472
0.0069
0.6402
1.0008
           CA    S.3658   0.3389  -8.0964  -0.1264 -0.8744 -8!1134
   CA

-0.0964
-0.1264
-8.0744
-0.1134
 1.0000
VO
          EIGENVECTORS
'ALUE
1 . 8830
1.6531
3. 3581
8 . 3587
0.1551
FE
8 . 6767
-8.1588
8.1411
8 . 8225
-8 . 7846
8
0 . 6745
-8.1849
-8 '. 0437
8.7071
SI
9.1355
0 . 6886
0.1523
-8 . 7835
-0.8152
AL
8.1658
0 . 6774
8.1003
8 . 7879
8 . 8492
CA
-8.2331
-Q.1359
8 . 9684
8 . 8383
8 . 8387
             REGRESS.! ONS
         S  =  0.6611 +  8.9556FE + -8.8808AL
         FE =  8.0721  FEC PYRT> »  1.3286
         ORGANIC S-
 8.661  MINERAL  S<
               1.278

-------
         330FL FG1.6  100 2K
          FE
          S
          SI
          AL
          CA
              3269.DAT

        CORRELATIONS
IEAN SIGMA
6 . 4586
9 . 9866
8.1047
8.6631
8.3581
0
0
0
0
0
.2678
.2497
. 1353
,4783
.3683
1
9
9
0
-0
FE
. 0060
. 3728
.1787
.0937
,1489

0.
1.
~0
0.
-0.
S
3728
0000
0241
1813
1440

0
-8
1
0
0
SI
.1787
.0241
. 0068
.2680
.0395

0
0
9
1
0
AL
. 0937
.1813
.2680
,0000
.0758
CA
-0.1489
-0.1440
0 . 0895
0 . 0758
1 . 0000
>£>
         EIGENVECTORS
UALUE
1 5633
1 . 2689
8.8551
0.7912
8 5215
FE
0.6002
-0.1795
-Q.I 480
-0.5160
-9 . 5652
c-
0J5660
-6 . 2908
0 . 4937
-0 . 03D5
0.5919
SI
0 . 3320
0 . 5704
-0 . 5889
-0.1329
0.4471
AL
0.4137
9.4728
0 . 2750
0 . 6324
-0 . 3602
CA
-9.1949
0 . 5782
0 . 5584
-0.5615
-0 . 0243
             REGRESSIONS
         S  =  0.5653 +  0.9728FE + -0.2320SI
         FECCLAY) =  0.0250  FE
-------
          336FL FG1.6 325 2K
           FE
           S
           31
           AL
           CA
               MEAN
               326?. DAT

         CORRELATIONS
SIGMA
                  FE
                1.0060  6.1582
                8.1582  1.6000
                0.0294 -0.8573
                0.0724 -9.9266
0.3397  6.3936 -0.0526  0.0661
8 . 5964
1 . 1268
8 . 3784
7 . 9339
6.2913
0 . 2296
8 . 2628
0 . 4480
SI
                       0.0294
                      -0.0573
                       1.0000
                       0.3364
                      -0.2014
   AL

 9.9724
-0.8266
 0.3364
 1.9000
-0,9790
   CA

-0.0526
 0.0661
-0.2014
-0.0790
 1.0000
VO
          EIGENVECTORS
VALUE
1 . 4534
1 . 1623
0.9376
6.3127
0.6346
FE
8.1410
0 . 6973
-0.2419
-0 . 6482
-9.1236
S
-0.1369
0 . 7076
0.1097
0 . 6846
0.0381
SI
0.6551
-8 . 0388
0.1584
8.1790
-0.7157
AL
0.5911
0.0826
0 . 4959
-0 . 0867
0 . 6247
CA
-0 . 4295
™^ > • •MMT ^m
8.0691
•» • •• *f*f •
0 8114
-0 . 2678
-0.2841
              REGRESSIONS
          S   *  0.7941 +  0.7821FE + -0.3612S1
          FE -  0.1711  FECPVRT) •  0.4253
         ORGANIC S-
 0.794  MINERAL S=
                                0.333

-------
              APPENDIX  C
RAW DATA FOR PSOC 308 AND PSOC 330 COALS
                     96

-------
PASS 40 AREA 1
   H   AMPS
TIME
FE
                        SI
                      A I...
                                       CA

6
2
5
1
6
3
4
1
6

4
2
3 .
.1.
2
3
5
5
5
2
4
5
1
7
3
1
1
4
A
i
*..
?
6
0
2,
&
3
?
4
2
4
2
5
6
6
2
0
2
3
9
0

3 AC
36:1.
• 362
361
360
360
36:1.
3 6 :l.
361

1093
1130
1 1 1 4
1121
1128
1133
1138
1109
1135
1142
1121
1098
1090
1153
1079
1086
1139
1123
1142
1056
1107
1064
1148
1099
1077
1116
1114
1124
1137
1159
1081
1130
1076
1091
1116
1:1.33
1.1.06
1154
1133
1133

4
15
8
2
8
a
5
12
3

355
334
63
286
364
417
367
450
373
323
323
362
354
368
392
340
388
351
316
265
394
'•> '.-> /.
£. A.. O
358
282
327
315
365
341
338
407
321
332
273
299
371
389
379
320
354
3 1 9

300
300
300
300
300
300
300
300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRIT'E
9953
9278
9843
9794
9659
9957
10253
9632
9258
1'iATA
411
526
534
490
170
137
666
278
609
544
176
690
2007
272
657
720
562
536
469
2236
368
2813
912
999
900
667
778
467
1087
118
601
2526
1943
1940
539
438
474
362
175
985

9712
10387
9389
9990
10068
10120
10412
9843
9579

697
1052
464
720
605
557
1.065
883
1123
865
458
1042
2177
511
835
828
714
843
729
1650
613
2647
1101
1179
1047
702
934
8.1.0
1731
491
857
2471
2219
2117
695
841
807
634
394
1268

•0
0
109
0
0
0
0
33
51

'•) O '?
A» / A"
821
10046
1332
182
379
411
167
801
449
263
658
483
263
357
709
241
441
819
376
759
3761
223
569
827
818
539
393
520
299
460
727
53
704
892
f\ O '-'
£a*J
445
344
157
432

0
0
194
58
0
75
•1 /N
.10
189
327

163
604
10457
.1.264
.1.78
342
239
4'')
»•'
538
204
183
560
293
240
239
560
103
326
628
344
565
3895
191
488
434
375
534
225
317
212
356
575
0
404
525
':> o1";
f^. A,. W
345
216
0
292

0
/«\ f\ j>
t i /l
fit, A» T
59
"y •!
/.L
107
148

158
276
105
163
123
70
A
o
243
149
0
59
156
0
73
347
403
0
244
0
334
0
189
197
180
164
378
0
284
0
0
0
1.1.9
0
287
303
66
0
163
151
              97

-------
H
7
2
1
5
3
3
5
3
3
3
3
5
6
^
'5
9
5
1
3
4
6
2
3
K"
O
*..
3
K:*

3
2
ji
4
7
3
5
4
S
2
5
4
*!.
3
A
:l
^)
AMPS
1088
1135
1 1 1 8
1151
1096
1098
1134
1090
1091
1125
1127
1150
1131
1157
1112
.1.138
1 127
1091
1121
1.1.48
1158
1133
1090
1137
1134
•1 •! /X 1'"
.!. .1. 0 D
1108
1095
1142
I.i f\ f\
L22
1123
1130
1136
1142
. 1152
1129
1096
1109
1122
1.i tin jti
.Lb2
1137
1 i '?':>
•U •!• An A*.
1143
,i ,i ]•«• ,i
i 1 b 1
.1.091
1128
1094
1138
1128
1126
1130
U
273
397
374
444
196
324
320
330
309
443
318
345
304
338
3.1.0
302
341
241
305
3:1.1
351
326
323
301
304
370
265
298
354
337
343
395
370
374
343
311
327
312
340
326
347
328
326
306
288
304
322
283
339
358
328
TIME
300 .
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
3001
300
300
300
300 '
300
300
300
300
300
300
300
300
FE
1543
330
422
271
1994
455
634
447
1432
186
435
207
405
488
866
329
345
6464
1598
1098
737
536
530
1241
451
499
117.5
V 758
309
435
837
375
606
204
882
1493
1449,
1464
876
837
403
665
202
497
2687
560
812
309
1185
934
852
S
1298
737
682
3 1 3
1747
653
744
725
.1.376
490
7.1.4
530
903
1011
1071
809
8:1.9
5511
2105
1159
934
954
815
1526
892
837
1409
1185
489
570
1096
490
867
1011
1333
1542
1557
1947
1231
1106
773
1193
792
707
2735
807
777
510
1278
1474
1443
SI
2097
363
358
234
4868
347
1 1 3
295
746
257
. 795
377
" 413
450
300
496
172
337
1027
1393
447
577
426
770
437
327
453
929
4.1.1
280
1212
315
492
713
849
911
539
554
384
338
728
563
500
290
846
320
175
3.1.3
451
268
374
AL
1256
282
'•>':>':>
fit* A« At*
148
3026
112
9
79
786
153
573
272
352
239
253
264
118
1 4 1
754
946
287
413
401
614
255
233
259
572
305
137
637
1 1 1
425
461
543
573
374
374
223
309
358
335
207
118
306
198
193
2 1 2
325
93
207
CA
223
77
88
220
48
0
399
291
0
0
0
0
94
0
134
0
0
232
49.
288
100
0
52
124
20
0
43
114
0
0
0
170
0
0
196
182
0
125
77
0
18
39
0
68
217
348
0
263

98

-------
1
5
3
1
IS'
b
7
3
j
6
3
3
:l.

S
.

XL,
A
4
Kr
0

5
Tr
6
c:;
A
4
IU;
>J
")
••..
1147
1122
1120
1145
1091
1136
1073
1092
1114
1120
1138
1131
1116
1140
1126
1109
1109
1125
1145
1 1 1 1
•1.086
1147
1137
1122
1111
1087
1132
1143
1135
1139
361
292
3:1.9
341
267
343
243

382

420
314
290
285
293
363
330
351
313
296
235
4:1.2
324
372
373
239
456
399
298
281
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
769
1132
2788
790
2937
890
373(3
640
299
1219
183
770
70:1.
996
537
1523
369
358
645
1000
640
3.1.3
530
321
479
4528
492
687
652
796
1.1.03
1775
3375
1064
2937
1223
3734
1209
970
1560
578
1222
935
1145
1308
1893
651
510
1145
1447
887
568
633
578
731
4256
9.1.3
1045
979
1166
687
610
534
490
794
812
527
565
368
532
250
444
855
781
1258
468
349
850
1006
218
3154
325
389
242
326
13.83
220
516
924
362
475
356
209
362
622
583
269
276
168
307
217
330
702
469
854
210
247
273
559
162
1707
310
167
89
168
780
177
263
464
260
242
88
45
0
250
201
0
0
33
33
4?
193
368
79
30
240
108
6
133
102
0
9/ii
2
15
29
194
82

:L57
80
99

-------
330
PASS
H
6
4
1
•">
*•«
5
4
2
b
5
2
I
1
4
1
4
1
4
3
4
3
•">
•">
5
8
6
':>
2
'•>
A'..
14
4
.1.
:>
5
32
A
4
1
7
4
3
3
•">
':>
••;>
4
1
:i.
4
1
40 AREA
AMPS
365
366
368
366
366
368
366
366
367
1094
:l. :i :!. 8
' 'i.092
1086
:i.:i.2:i.
1106
1101
1090
1125
10B4
1108
1127
1 1 :!. 7
1143
1123
1132
1059
.1.103
1119
11 01
1136
1092
1137
1099
.1.137
1126
1:1.05
1139
1040
1062
1125
1128
1126
1135
1085
1057
1065
.1.106
1051
1099
2
V
3
7
17
•••>
A>.
10
6
7
15
6
356
396
394
380
359
335
373
340
346
277
245
295
340
368
343
350
337
269
342
345
336
323
411
245
316
391
3 1 7
392
220
268
277
320
291
317
392
322
279
418
185
374
'I ME

300
300
300
300
300
300
300
300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
FE
PYRITE
10130
9615
9767
10348
10015
9656
9412
9684
9615
DATA
720
286
566
930
554
430
256
2543
1 0 1 3
415
869
800
159
213
1678
786
257
1979
647
208
426
1106
267
5356
368
353
903
555
4202
4684
1279
2484
382
6.1.9
491
1288
3066
r" *'\ *••!
Wrf-7
3583
549
S

10291
10:1.07
9547
10467
1031.9
9684
10:1.17
10047
9921

1:1.66
530
8:1.0
1328
1240
744
690
3020
1472
806
1317
1005
661
495
2101
966
636
2044
938
707
811
1475
432
4737
603
660
918
648
4566
4469
1730
3008
922
887
473
1614
2391
859
2717
747
SI

94
0
15
0
145
0
8
123
0

1074
223
392
235
328
352
224
501
1125
2163
2131
628
396
1490
521
447
469
487
607
265
189
192
192
1545
1827
391
1246
292
324
402
407
452
1076
S67
412
623
613
109
1493
316
                                                         A I...
                                                         56
                                                         37
                                                        391
                                                         12
                                                          0
                                                        217
                                                         70
                                                        195
                                                        394

                                                        723
                                                        115
                                                        333
                                                        188
                                                        142
                                                        160
                                                        214
                                                        413
                                                        618
                                                       12 41
                                                       1456
                                                        313
                                                        '•) '•> -i
                                                        A.. •%.. .1.
                                                        291
                                                        286
                                                        346
                                                        154
                                                        474
                                                        486
                                                        180
                                                         30
                                                        160
                                                        189
                                                        956
                                                       1617
                                                        259
                                                        943
                                                         60
                                                        248
                                                        318
                                                        ';> '•> *7
                                                        A.. *.. /
                                                        235
                                                        946
                                                        41:1.
                                                        317
                                                        501
                                                        296
                                                          0
                                                       1327
                                                        215
                                                                 GA
 33
  0
  0
 24
  0
  0
311
  0
  0

 98
 18
  0
 47
162
  0
 18
  0
105
  0
274
354
108
1.47
173
  0
 74
424
 47
.1.00
151
 21
  0
•106
418
21.0
  0
232
  0
338
 19
343
 54
  0
.167
122
 34
 68
144
192
                                        100

-------
H

7
3
3
7
3
3
1
3
S
2.
0
3
1
3
1
1
4
6
8
1
3
4
a
3
3
1
2
a
    AMPS

    1116
    1121
    1103
    1.1.44
    •1116
    1:1.12
    1101
    1093
    1119
    1130
    1043
    1101
    1117
    1132
    1098
    1102
    1115
    1119
    1123
    1110
    1128
    1125
    1116
    1119
    1111
    1072
    1057
    1103
    1118
    1103
    1093
    1098
    112?
    1145
    1136
    1130
    1131
    1123
    1118
    1123
    1126
    1107
    1087
    U35
    108.1
    1071
    1106
    1111
 V

375
359
381
261
313
378
347
350
349
346
344
410
384
256
444
435
487
351
291
324
281
296
328
393
354
409
361
437
276
198
330
311
355
315
273
359
413
454
426
390
358
244
371
335
362
355
246
230
381
311
I ME
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
FE
341
424
275
386
1875
600
549
480
295
851
731
346
282
974
272
440
139
228
896
550
450
10 71-
501
330
687
470
830
462
2487
6462
977
538
875
438
1256
268
256
347
1086
151
764
646
384
598
1886
2605
299
2975
3370
350
557
S
836
713
717
703
2348
870
1054
1010
507
1276
997
74:1.
581
•1 1 S'?
,1, .1. W A..
416
712
340
474
1133
964
679
1406
1017
610
910
897
948
596
2649
4732
1097
884
1344
966
1571
544
511
492
1106
311
856
1548
681
1230
1925
2561
352
3284
3660
601
804
SI
264
228
530
2470
1580
637
476
341
750
759
642
342
336
1875
125
371
197
230
538
483
333
746
324
468
343
341
541
448
416
785
1884
338
594
2197
1827
289
176
97
259
154
602
666
385
491
393
301
283
770
337
386
261
AL
185
252
398
1577
1337
484
350
267
668
353
347
267
172
1700
74
'*> o *x
A'.. A.. %.?
66
100
362
403
130
6fy '!*
A.. A-
<'J A
o4
332
145
157
333
281
,»j •••) .">
•' / •
A.. / *-
698
485
262
468
1878
1524
334
126
143
233
160
393
592
261
345
342
166
167
582
186
202
30
 CA

 70
198
123
208
120
 69
2:1.4
 60
127
188
214
  0
261
  0
  '•>
  A.>
 49
288
  2
278
 56
 55
  8
  0
  0
  0
248
399
133
106
118
  0
  0
417
133
  0
  0
  0
 26
 54
138
202
309
  0
  0
386
  0
 91
161
  0
  0
218
                               101

-------
9
3
'•>
*..
3
4
••;>
3
3
9

•••>
*"..
3
0
'o
!•;•
I.J
'•)
AM
7
.1.
6
5
';>
2
3
3
'•>
.1.1
1
•••>
':>
*..
4
4
1
1106
1081
1:1.29
:i.il:;>
losn
1 1 in
:l. 1 1 i
:! 1 :l. 6
1 'I ••> 1

:l. j. ::. 3
1 :!. 4 :l.
:l. :l. 2 1
1 1 '! 6
1071
1112
1035
1 1 1 1
1128
1108
1108
1 1 1 8
1053
1107
1100
1123
1 1 1 4
1155
1107
1093
1098
372
373
363
315
318
3 1 9
327
380
369

3 1 1
383
3 1 0
324
423
283
186
335
361
251
495
376
307
384
361
332
262
394
365
334
376
300
300
300
300
300
300
300
300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
138
508
1088
579
1440
830
509
165
•7KJ-JJ
/ %./ w
1366
432
1771
1 1 1 7
142
949
8477
543
193
904
399
977
2150
1584
488
593
692
412
2749
197
1227
551
809
1649
1147
1518
1 /:>04
.1. A,, \S T
968
410
1 1 O'X
J* .1. \S\.t
1791
595
2106
1 T71
.1. \.f / .1,
294
1200
8479
1070
703
1048
543
1071
1422
1579
893
1143
1427
535
2827
590
1368
276
167
249
653
582
74O
/ ? V
247
230
A "y *'•">
*? / %..*
539
403
515
7 R 'X
/ W \t)
100
1264
588
368
127
363
236
202
1689
186
261
690
389
148
526
587
930
255
92
226
539
455
is: 1:5 -j;
>../ \J w
155
134
..,,.,„
\lf A~ \.J
409
101
476
4A1
"T W -L
108
577
305
290
114
214
157
214
1254
60
139
336
4 1 7
53
354
367
679
171
8
210
6
92
565
107
23
65

339
0
93
189
0
0
1003
0
0
357
170
?90
0
178
436
409
239
187
182
148
0
102

-------
3
         TIME
                                  SI
A I...
CA

6
4
1
2
5
4
2
5
5

3
5
4 .

% •''
0
3
.1.
4
0
0
3
4
2
3
2 1
5
B
5
4
2
7
4
*'"
2
"j
<;.
s
1
3
9
5
4
6
6
3
8

365
366
368
366
366
368
366
366
367

13.61
1 i. 4 7
1183

.1. ,|. ,7[j
1170
1174
1151
1170
1158
1179
1188
1166
1146
1163
1142
1152
1150
1123
1163
1149
1142
1100
1132
1108
1 1 1 4
1108
1132
1149
1082
1121
1115
1149
1132
1127
1138
1150
1.140
1159
1139
1107

3
7
17

10
6
7
15
6

280
265
385

394
334
440
332
394
330
330
321
382
224
290
336
399
353
325
375
366
327
400
312
380
336
428
3 1 9
290
176
314
389
398
279
324
308
363
323
312
360
293

300
300
300
300
300
300
300
300
300

300
300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRIT'E
10130
9615
9767
10348
• 1001.5
9656
941.2
9684
9615
DATA
931
1083
256

248
427
248
3203
1258
7 1 3
529
470
638
828
2365
1434
1539
904
451.4
847
635
826
440
1.003
708
516
380
734
751
7444
990
477
258
3422
670
693
625
589
548
514
1863

10291
1.01.07
9547
10467
1031.9
9684
1.01.1.7
1.0047
9921

1391
1.392
521
1"' / I"1
b 6 b
802
609
2924
1.324
925
952
1144
1.1.93
1.164
2663
1868
1650
1382
4600
1180
1070
757
831
1388
1.109
1162
710
823
1610
7500
1667
651
421
4051
1161
979
1061
865
661
876
1844

94
0
1.5
0
145
0
8
123
0

540
1332
357


406
259
849
410
954
553
486
390
3329
575
427
536
543
683
606
576
359
230
813
1032
458
747
451
8.1.9
1367
564
1238
272
846
728
1005
417
695
79.1.
385
1720

56
37
391
1.2
0
21.7
70
195
394

278
993
198
•i 9
.1. /
226
1 1 1
527
2 1 7
570
338
347
253
2 9 2 9
558
237
268
278
355
345
405
308
•1 -1 1!"
1 .1. b
555
849
298
301
350
r" i
b .1. 1
985
364
628
114
466
520
566
190
385
538
2 2 3
1267

33
0
0
24
0
0
3 1 1
0
0

322
140
1.96
1 7 3

147
0
48
195
660
34
104
231
361
0


347
*( *l
.1.1
•*y .") /*\
329
300
374
1598
108
284
253
*.'.', \J A*..
673
134
0
121
8
44
124
317
309
65
60
489
                      103

-------
H
Ail PS
TIME
                               FE
                                   S
                          SI
                                                      A I...
CA
3
1
4
4
7
J.V

4
:!.
3
'•>
A..
3
4
3
:!.
'"\

3
:!.
">'
,s
3
3
3
'";
A"..
r"
b
4
:l
'")
A,.
6
5
:l.
3
0
'•>
An
0
3
1
1
3
•*')
A..
5
4
'*)
1.2
5
•*")
Ji—
1
3
4
4
2
'•>
A«
8
1:1.34
1 :l. 1 9
1 :l. 3 4
1127
1098
1 1 "*?

1 1 3 1
.1. J.50
1:1.28
1 1 3 1
1145
1085
1095
1124
"t •( 1*" !"•
.1.1 bb
1.1.43
1086
1 1 2 1
1 1 1 1
1 1 1 4
1126
1124
1107
1121
1099
1158
1132
1156
1118
1109
1130
1089
1109
1126
1098
1104
1078
1139
1122
1102
1123
1148
1097
1130
1124
1139
1121
1 1 1 1
1098
1146
1080
325
350
340
403
286
330

309
392
316
364
352
389
390
329
363
353
220
264
384
360
325
305
307
305
300
337
300
347
268
278
340
389
32(3
235
'') IK* J
.-.; •..> 6
273
338
376
320
335
398
358
306
366
369
324
351
340
299
3 1 2
312
300
300
300
300
300
100
\.f \f \S
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
485
610
895
4.93
755
A |::; '•>
*t <.) A'..
780
206
419
66.1.
376
774
993
1212
988
1054
4515
2204
1450
857
288
1104
676
228
705
351
191
758
878
870
908
533
295
526
494
531
1077
430
1224
891
943
441
749
587
570
1226
339
575
684
1825
1107
1065
777
1189
709
1136
"'t / "₯
/6o
975
584
780
875
438
930
1054
1565
1311
1209
4022
2431
1635
1171
603
1246
1046
698
786
450
580
1055
1247
1192
1104
712
736
768
857
1060
1222
985
1703
1040
134.1.
797
1151
815
750
1559
604
851
883
2446
1362
266
300
377
254
822
**V J ft
/69
486
132
424
380
265
376
307
785
475
620
1049
152
422
205
351
765
238
3 1 0
39
208
1400
582
1260
376
403
177
434
508
419
889
248
273
4 1 3
584
273
239
480
366
191
729
4.1.8
236
987
764
927
183
155
296
99
604
I*" t'\ "V
b23
264
1 1 0
269
175
147
89
134
623
337
369
799
128
324
167
235
462
1 2 2
234
59
.132
649
263
769
283
284
126
263
301
293
367
:!. 1 9
1 1 5
303
467
159
163
357
187
174
562
158
p':>
\,t A«
532
458
689
0
94
0
159
191
Q'7
7 /
0
138
40
16
: 185
142
0
:l.64
266
64
0
0
14
17
19:1.
0
162
38
0
70
279
155
145
118
0
218
0
» J v> •'••
52
514
287
129
si
230
147
282
'•>'?
**« A"
283
183
94
0
290
163
14
65
                                     104

-------
7

9
6
3
1


4
8
i
•i.
6
S
'
*'..
6 •
..-..
A
V
"y
0
"y
3
?
f

"X
o
4
4
7

1143
1136
1115
1137
'U)95
1152
. 1120
: 1 1 o
.1.138
1.:i ,38
•'• '• 0 6
1078
:i 142
1 1 1 7
1147
1147
1 1 1 3

1 .1. ,4 7
1107
.1.116
1.096
1136
11 10
1127
1.109
.1.117
1141
1136
1129
1147
421
265
244
385
398
419
362
297
358
354
30.1.
3 1 7
281
359
367
397
300

375
435
287
352
380
324
342
347
336
390
355
305
318
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
677
206.1
1444
1056
631
226
396
2714
411
2331
2860
701
248
1436
431
571
1131

476
259
1841
293
633
147
1147
600
391
843
750
674
589
1262
2236
1884
1481
900
437
971
3102
-534
2408
2959
934
549
.1.937
876
689
1403

8 1 7
658
1763
535
864
436
1520
995
657
941
883
959
1005
337
575
1861
333
359
233
312
666
254
458
452
405
882
4 1 7
618
261
474

302
90
1326
186
178
287
321
319
587
434
479
1602
476
246
462
1586
244
136
75
195
589
98
302
327
279
689
349
423
134
308

203
0
646
70
50
236
135
217
361
293
481
923
246
0
92
142
341
49
235
0
184
151
345
20
139
59
73
123
0
1 72

143
26
148
0
83
189
307
157
203
170
228
320
0
105

-------
330 PASS 40 AREA 4
       H   AMPS
TIME
AL
CA

4
9
7
4
4
&
7
2
4

7
7
3
-3
Ail
';j
7
7
5
Ei
4
3
2
1
2
4
5
ti
4
6
2
1
3
4
9
5
^
S
6
'2
2
O
5
2
i
;j
3
6
5
1
3

360
360
Li 6 2
36 :l
3M
362
,V!>!.
3.-iO
••ii-S

:i.o S3
:l. 1 1 3
• i. :f 4 :i
1 :i 1 S
1146
1112
1142
1164
1180
1130
1. 1 BO
1159
1 118
1113
i:L54
1103
1110
1153
1108
1162
1155
J161
1141
1140
1134
11 SO
1151
1093
1092
11 OS
1122
1078
1129
1121
1129
1 153
1147
1126
1148
1164

4
&
11
a
3
&
A
10
9

267
323
398
3 3 3
337
392
41S
403
346
?9?
317
396
277
304
377
381
33V
521
288
315
352
373
420
332
39 2
179
156
235
383
198
373
288
334
303
347
417
372
321
374
422

300
300
300
300
300
300
300
300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYKITE
10204
9WB
9361
9703
9983
9528
9916
1014^
9339
HAT A
72 7 Si
1240
3413
4052
623
364
253
453
632
1279
402
466
634
607
951
604
220
201
1624
BAG
715
602
331
2733
2809
665
692
753
993
1800
680
4500
768
1404
1270
907
408
1362
075
809

10419
10333
9209
9977
10477
10100
992(3
10311
9744

6843
1 3 3. 7
682
4303
1027
907
695
729
930
1684
769
942
957
859
1352
805
504
329
2028
1068
1238
1079
713
3052
2857
663
741
796
1157
1230
1063
5439
1070
1640
1623
1264
1078
1675
1366
1265

0
38
0
0
0
13
0
27
0

B5Q
401
3 1 6
3t)9
232
439
352
413
3S7
673
379
359
979
347
2(34
279
65
221
3091
1970
414
264
277
313
445
8467
9072
4742
946
5411
402
226
638
692
427
368
1096
1181
879
310

72
0
147
0
0
24
0
HO
271

62B
38!j
:>72
234
194
257
206
418
190
438
187
207
630
167
99
236
53
117
2213
1444
163
214
190
285
240
6517
7568
3741
345
297 S
232
94
SI 9
333
409
339
346
942
247
24 8

14S
0
14
79
0
0
2 1 &
0
0

•HVJ7
S
IS
1 62
4
76
158
320
211
178
228
59
398
111
133
.123
72
34
191
136
0
221
308
0
15
7
17
187
0
S3 A
0
0
IS
0
276
168
0
244
144
57
                                     106

-------
H   AMPS      V    TIME      FE      3      SI     A I...      CA
\t
A
2
6
3
5
4
3
4
3
,)
'"J
")

3
7

y
6
j»
4
'')
'•>
"y
»3

';)
'X
o
/,
O
1
.!.
4
t
")
i.
4
7
4
T
A
T
o
*.,
7
4
r
,"•?
*.)
2
*•»
4
T
»::;
w
2
I
•^
4
2
2
3
*'J
6
6
6
7
'!.:!. 4:).
1109
11 21
.1.100
• .1.0 as
:i 089
1151
1107
!:'4:l.
!..:! 6
1 '!. 1 :l.
1102
1110
112?
1155
1134
1132
1115
1149
1134
1118
1074
1153
1127
1118
1118
1122
1093
1104
1105
1072
1133
1120
U4 1
1179
1114
1 1 1 :l.
1133
1099
1153
1092
1142
1170
1153
1077
11.17
1126
1.129
1102
1030
105:1
317
78
172
275
272
305
299
400
3 .1. 9
•* '> -i
\.t A.. .1.
292
360
337
321
441
476
406
361
395
382
357
329
444
481
332
376
281
295
420
452
302
413
361
416
407
324
358
464
349
351
294
383
422
395
378
322
358
263
356
156
220
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
890
746
610
5864
4 1 1 7
1 4 .1. 3
.1.864
139.1
515
9.1.4
716
624
522
751
290
555
1227
822
274
287
2938
718
226
324
480
611
878
764
561
629
725
315
1261
477
0 er *;>
A.i W A..
295
330
607
521
367
786
938
133
472
704
528
362
2087
420
11726
9339
1160
523
514
5507
4036
1527
2209
1459
1069
1046
1249
885
.1.039
1034
558
684
1194
1192
794
733
3037
1144
518
698
815
926
1683
1127
798
799
1 1 88
828
1598
584
392
1078
735
778
838
693
958
1006
374
673
1035
876
919
2628
698
9805
7:1.78
826
9876
9380
601
1458
1047
670
764
863
474
498
475
645
6 1 9
225
234
479
446
197
485
641
287
505
386
389
4 1 9
1108
773
402
258
783
208
734
455
287
1345
.16.1.4
871
379
753
883
488
470
683
164
576
252
572
257
256
349
647
8425
7345
397
1089
729
570
479
657
301
251
257
442
544
129
1 1 7
337
358
175
347
375
2:1.1
300
239
232
249
914
491
'•> "i- ';)
A*. W A..
115
607
150
303
258
145
.1. 1 .1. 3
962
421
325
522
649
257
237
443
59
337
34
<»: •( 9
\.) .1. A*..
223
218
244
181
93
207
325
293
0
0
0
615
15
"X •">
*..'*•..
0
307
286
175
232
167
0
0
0
66
67
85
35
0
1 .1. 6
109
37
80
365
0
95
53
0
2 1 2
0
0
8 1 2
0
35
141
112
0
0
0
0
120
0
0
42
187
                              107

-------
6
3
3
5
3
3
2
:!.
4
3
7
2
7
5
:5
A*..
3
3
8
1
2
6
2
0
4
2
'!.'.
5
9
4
.1.070
1097
1120
1 1 5 1
1156
1157
1109
1106
1136
1140
1074
1105
1128
1 1 1 0
1114
1133
.1. 1 1 3
1136
1035
9.1.6
1 1 1 1
1162
1157
1127
1.1.21
1040
1 1 1 5
1147
1035
1119
256
341
376
307
343
358
270
'•> '•> g
•%.. A.. /
304
354
2 1 8
274
220
331
386
377
384
369
1 3 1
47
3.1.1
340
345
297
336
470
352
407
148
303
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
3299
2414
953
380
782
262
1959
950
472
661
7617
5085
1428
390
685
664
1389
544
5980
21552
3867
461
619
1794
311
390
569
239
12191
1816
3163
2836
1211
530
1007
500
2184
1422
739
955
6600
5184
1811
870
783
804
1536
1 1 4 1
5510
18204
4177
681
952
1923
373
650
1240
734
1 1 4 .1. 7
1872
1096
362
623
1757
821
625
567
666
986
938
401
842
2742
638
404
316
627
4 1 9
3456
115
385
489
1342
651
207
439
540
1040
542
332
678
270
406
605
524
318
282
426
516
524
261
604
1840
312
302
3 1 9
361
309
3026
25

332
1043
543
1 4 1
264
339
771
376
233
34
418
408
292
77
0
102
19
156
249
87
0
269
195
181
358
319
0
278
565
186
282
133
0
6
0
232
85
0
148
108

-------
TIME
FE
                        SI
AL
                             CA

4
9
7
4
4
6
7
2
4

1
1
8
4
4
8
3
'•>

-------
H
AMPS
TIME:
                              FE
                                         si
                                 A I...
CA
:l.
5
3
3
7
'")
*..
4
'">
'')
A*..
:l.
5
'_')
:i.
3
4
5
4
4
3
1
'!>
3
3
'')
*..
3
3
5
';>
'[)
2
4
'7
3
3
3
5
1
4
4
".>
.1.
4
3
3
4
4
4
4
9
3
2
:l.:l.23
1128
1123
1120
1113
11 3 6
1 1 1 5
1136
1109
1140
1:1.43
1140
1102
•1161
:!. .1. 1 7
1093
1.101
1 :l. 4 1
1126
1140
1100
1126
1125
11155
1120
1143
1132
1134
1123
1169
1182
1095
1105
111S
1150
1107
1146
1118
1:1.27
1141
1096
1107
1122
1 1 4 1
1108
l :l. :l. 8
1 1 2 1
1098
1108
1103
1107
309
307
318
232
307
294
230
353
295
2 A3
248
232
354
431
323
286
310
382
344
330
284
298
275
335
298
304
367
392
268 •
391
363
448
347
28:1.
416
333
353
281
322
331
335
271
34.1.
358
277
374
299
346
278
264
325
300
300
• 300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
3QO
300
300
300
300
300
300
769
259
1172
1239
211.5
1.067
41.41
1.025
1.053
1195
3.1.50
2773
776
,., ,., ..„
A'.. A.. O
1.753
1.002
458
1.67
309
812
2687
2044
1.31.2
502
966
886
5:1.2
718
1.038
344
237
147
617
1.920
190
779
409
1.539
265
5:1.2
163
3380
530
71.0
740
37
1.31.4
81.9
2853
2652
651
985
495
1398
1566
2436
1.704
5262
1354
1646
1315
3404
2812
1130
307
251.9
1056
980
701
577
1.152
2996
231.9
1.558
870
1.1593
1.320
655
880
1.624
732
435
506
750
2331
530
1156
763
2054
71.4
952
648
3964
942
1.1.34
1.206
469
1496
1157
3616
3054
761.
927
355
555
1.366
373
385
909
505
686
738
984
1539
793
134
524
455
448
4 1. 1
'? y '?
441
385
1699
51.0
468
526
600
149
344
744
232
115
51
1106
560
156
814
294
191
377
501
330
858
376
296
539
263
436
531.
532
703
305
662
202
3 1. 4
728
225
1. 9 1
598
444
493
392
788
1.083
378
33
253
1.55
401.
375
145
245
265
636
320
246
443
333
101
187
487
54
45
64
517
370
92
670
86
173
148
278
207
692
199
164
362
91
323
384
358
319
202
0
21.2
2:1.8
171
84
74
312
55
0
0
189
187
144
195
0
140
38
44
115
58
92
305
1.98
1.3
70
159
149
78
152
99
66
47
':>
A"
48
ISO
276
106
21.<>
1.56
0
176
1.23
372
34
1.60
0
0
195
0
oQ'L
188
                                     110

-------
7

K'
U

.1
"y
A
cr
U
O
••'
';>

4
4
T
I."'
u
x.
c:;
ij
4
T
")
*'_
4
T
")
*^,
7
4
^
4
?
1
•I.
':>
*..
<::•
%J
2
4
T
1:128
l :l 1 1
1.146
.1087
1115
1102
• 1127
1110
1021
•U28
"122
i :' .!. o
1089
1.137
1082
1123
1124
1155
1123
1136
1135
1138
• 1144
1:173
1136
1106
1109
1099
1122
1112
333
29 6
328
282
350
296
330
249
177
296
301
350
406
379
38.1
328
290
336
272
367
391
379
350
419
364
291
312
249
371
347
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
64
.1.043
970
1005
.1.656
3325
520
3704
12556
688
1140
284
485
282
61.9
806
1333
415
1.001
799
301
1125
2279
221
193
570
1368
3842
945
539
399
1.1.84
1207
1270
1855
3447
810
4209
11637
1339
1584
666
694
6 1. 1
867
1.1.99
1681
71.9
1.38.1.
1302
686
1492
2927
427
399
796
1940
4525
1283
906
226
890
578
2901
235
477
281
957
11.89
537
560
345
292
696
1.33
431
667
376
1087
280
297
429
206
130
848
947
708
668
378
697
148
308
331.
1785
146
360
173
797
1.066
400
362
1.67
313
158
99
221.
444
285
648
160
241
235
218
55
606
738
481
571
293
•">-'JO
*:.*:. /
21
308
238
69
169
52
224
0
257
0
54
1.2
108
74
25
0
0
53
275
0
170
0
31
290
0
.1.7
232
0
0
185
111

-------
330 F'rt'3S 40 AREA 6
        H   AMPS
TIME:
FE

4
-•)
*n
9
6
4
6
6
4
'j
•*!!

5
7
1.
4
J
TJ
2
6
3
3
<1
A.
3
3
/I
7
••>
Hni
7
4
7
4
4
0
4
3
5
4
2
'-)
A
4
2
2
0
2
'2
I
3
4
0
A

".' !:i 4
:-J!i!iS
.356
3^3
3:5-1
ir,7
J'.Ml
-;:v4
;.'.'...• 6

:l. :Li')0
1 1 ;>R
.! :!. '3V
1 !,$•:>
1137
11^7
1141
1083
A 134
1116
.1.101
1126
114?
1134
.1109
1143
1148
11.;? s
1341
1132
1119
1127
S17F;
112?
1128
use
1139
1130
1124
1146
1149
1155
1145
1110
1100
1 1 15
1133
1137
1096
1109

5
6
9
5
!i!i
11
7
7
7

322
305
313!
314
'3 IS
333
343
209
321
258
262
300
344
266
40V
334
3^2
334'
308
343
3B2
372
425
278
253
384
305
330
368
451
427
434
435
409
3EJ4
370
3AA
362
289
306

300
300
300
300
300
300
300
300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
F'YRITE
9727
10403
9443
9739
9B2?
90^6
9672
9519
9775
DATA
171U
2298
1788
1136
303
875
739
3?69
260
1625
57H
755
854
346
2U3
Aliiil
555
657
141'4
625
485
1534
319
2340
2129
732
1041
323
262
10G
103
163
311
166
•nJ -nJ I-I'M
573
384
287
943
2351

9943
10133
9412
9412
10213
95BO
9633
V760
9633

22Jt!
1918
1679
1357
1010
1242
1093
2945
665
1908
1014
860
929
503
601
971
780
1092
1909
991
B2?
1364
628
tu tJ bJ*T
'•JI2S'-P
964
1 152
632
761
428
461
459
506
355
942
1126
785
448
1203
2322

0
0
0
0
37
0
10
:l 04
0

600
614
SS>LS
16/
448
840
6&0
973
293
4^1
980
1598
1/0
1 293
251
S48
603
3 A 9
686
649
3f33
412
99
1013
1CI1V
1597
370
T "I ")
*ij kj? *jj
127
141
206
370
"t'li
^f^, ^
129
270
676
482
312
208
eoo

0
0
343
73
42
1 03
1.39
L 1 5
310

4/7
406
405
SI
42V
' 452
33S
625
198
S-jB
636
499
139
039
15:1.
107
439
264
334
249
1S1
':>?:!':>
iVii L i1 An
V
604
.1.189
981
269
164
125
B9
61
241
224
101
0
449
301
205
268
594

120
17
0
0
33
190
0
0
0

289
J>9
P-I- -r
0
IS?
(i
0
0
215
'M
228
337
58
0
255
51
465
21:i
1 1 ii)
131
189
90
40
2B3
I OB
491
IS
55
3:1.3
180
132
1S4
369
106
228
0
0
314
132
231
74
                                          112

-------
H   AN PS
TIME
FE
SI
1
2
4
4
3
2
7
3
1
2
3
4
6
A
'i
A^
3
I
4
1
5
6
2
2
3
6
1
4
3
7
2
2
2
3
6
6
3
4
6
2
5
5
9
4
5
4
2
4
4
5
4
1
1136
1136
1143
1113
1085
1125
1155
1136
1137
1121
1153
1133
1129
"1.075
1.3.21
1070
1127
1157
1150
1102
1150
U2I3
1109
1137
1150
1140
1145
1128
1147
1155
1148
1132
1132
1144
IOS'6
1180
1184
1167
1191
11 B6
1188
1153
1146
3,137
1133
1134
in?
1140
1107
1129
1132
365
360
350
333
296
335
458
353
315
310
299
247
349
260
331
342
324
445
360
220
360
J +L 
-------
3
:l.
'"/
/
7
3
3
4
:l.
:i.
3
';>
:l,
•";>
3
2
6
3
,"f
6
'')
A..
3
4
4
3
'•>
A',.
4
r11
b
'"}
/

1130
1152
1144
1177
:!. 1.29
1 1.81
1 1.89
1 1.65
:l. i.86
:i. !. 7 6
1 L63
!. 1.80
1 1.09
1064
1076
1075
1100
.1065
1070
1064
1060
1083
.1.042
1032
1063
1068
l i i o
:!. 098
.1.100
1 1 1 1
326
337
443
383
295
403
434
366
415
385 .
4:1.5
415
357
370
333
378
385
2A':v
A.. \,t •>,)
364
316
262
354
264
169
310
300
436
320
358
402
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
'X <"i f\
••> V V
300
300
300
300
300
300
300
300
300
300
300
300
701
465
280
321
1019
206
120
1575
204
357
465
186
422
192
2520
516
422
f •) ..y ....
9/7
760
789
1362
1208
2916
1201
620
831
120
1006
559
358
850
558
519
612
955
562
449
2027
733
852
769
609
608
433
3033
589
627

.Li 21
1220
954
214:1.
1628
2988
859
927
1398
449
989
769
648
2761
1.1.91
430
299
460
187
235
441
354
272
292
525
1080
,". ,.j,;,
W An A.,
224
410
234

2566
286
872
916
501
772
5669
862
495
140
525
6 1 9
126
1520
8 1 4
253
236
257
0
156
276
293
1 1 5
123
466
399
':> i::; |::;
Att W W
o
253
88

1277
184
565
420
340
372
2932
472
3 1 9
9
340
393
0
497
88
125
0
82
0
0
251
.1.29
101
73
0
52
0
353
0
0
/•* '') •!
' i I
ff.. *•• •''
154
0
36
144
0
42
0
57
0
208
0
0
114

-------
s
H
4
2
9
6
4
6
6
4
2
8
2
4
0
3
3
1
1
4
6
1
3
!;;•
o
*'»
4
0
6
3
7
3
*>
>c.
*}
*:
3
5
1
.1.
2
K'
u
3
4
3
"»
*.
4
0
1
3
2
4
1
40 AREA 7
AMPS
354
355
356
355
354
357
354
354
356
1152
1133
' 1.1.01
1179
1112
1150
1169
1158
1120
1147
1150
1133
1126
1135
1156
1136
1131
1145
1126
1143
1128
1144
1119
1136
1197
1160
1133
1159
1132
1132
1146
1163
1191
1184
1190
1192
1182
1141
1094
1113

V
5
6
9
5
5
11
7
7
7
358
354
249
359
394
289
334
384
326
365
347
452
392
297
320
336
316
339
395
391
344
325
391
376
502
374
340
413
369
336
312
297
422
451
40.8
316
303
34?
432
361
TIME
 300
 300
 300
 300
 300
 300
 300
 300
 300

 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
 300
    FE

PYRITE
  9727
 10403
  9443
  9739
  9827
  9058
  9672
  9519
  9775
DATA
   859
   915
  .1.369
   555
   356
   .537
   396
   355
  1139
   615
  1107
   936
   902
  1411
   427
   589
   533
   637
   456
   415
  1104
   509
   665
   656
   253
   220
  1764
   448
   701
   943
   770
   585
   403
   700
   269
   500
   153
  2842
  1395
   810
 9943
10133
 9412
 9412
10213
 9580
 9633
 9760
 9653

  976
 1232
 1157
  924
  519
  960
  779
  634
 1624
 1089
 1624
 1137
 1300
 1825
  801
 1039
  935
  897
  689
  768
 1233
  809
  932
  819
  239
  567
 1647
  508
 1123
 1099
 1344
 1038
  673
 1103
  593
  717
  798
 3247
 1462
  872
                       SI
   0
   0
   0
   0
  37
   0
  10
 104
   0

 520
 687
3369
 334
 203
 462
 166
 162
 645
 710
1027
 481
 585
 729
 770
 546
 343
 483
 451
 322
 324
1288
 963
 345
 120
 605
 641
 267
 617
 509
 464
2356
 274
 111
 310
 577
 703
 267
 485
 390
                         AL
   0
   0
 343
  73
  42
 103
 139
 115
 310

 312
 388
1910
 248
  64
 355
   9
 103
 241
 423
 739
 395
 463
 528
 540
 297
 161
 256
 240
 227
  98
 630
 988
 242
  93
 271
 359
 151
 106
 379
 415
1630
 120
  97

 250
 489
 223
 265
 254
                                     CA
 17
  0
  0
 '33
190
  0
  0
  0

347
 94
185
  0
  0
276
236
 36
255
  0
113
 30
186
118
246
123
 95
  0
166
295
100
  0
  0
 66
  0
 60
  0
  3
 54
 51
447
 13
  0
  4
185
209
234
  0
 50
 48
            115

-------
H
3
0
7
6
4
3
2
5
2
'•>
16
4
2
4

4
2
6
0
3
3.
5
2
4
3
5
5
2
3
3
5
3
5
4
7
4
4
2
3
2
4
3
1
2
4
2
5
5
4
5
i
Au
3
AMPS
114!
1 1 :L i
11 3 A
iC7B
1157
1 1 5 1
1170
1 :t :t f i
1111.
1 .1 7'Ji
1091
1 1 56
.f. 119
' TP 52

1180
1117
1127
1141
1131
1123
1125
1148
1119
1 096
1022
1 1 1 2
1142
1 15i3
1136
1128
1096
JO&O
1 1 4 1
1117
1132
1146
1133
1126
1119
1149
1115
1144
1119
114S
1171
1154
1163
1,138
1 1 56
1151
1128
V
462
320
272
236
403
329
393
23?
187
399
302
437
449
,.jj , .„,
•..f .|. f
397
233
321
409
3E10
365
292
314
295
249
123
317
410
420
366
368
243
373
351
307
289
344
314
384
346
377
361
405
453
444
430
447
422
388
426
450
497
TIME
300
300
300
300
300
300
300
300
300
300
300
300
300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
FE
206
U35
1045
5 B 10
307
140B
2381
9721
366
195
7331
371
430
i "* isj A
1*1 -ill1 -mf hJ
330
635
1643
410
322
470
1389
1202
840
6372
16843
2408
1034
398
1614
3698
7958
131.7
21?7
1356
511
677
520
1458
1421
152
444
399
503
3S1
:195
336
516
61
413
564
508
S
464
1038
1104
3626
728
1142
3133
904B
1013
372
1310
6R7
639
1 M">
.t, O 7 „•„
793
1656
1342
800
980
875
1941
1445
1091
4947
l 4896
3072
1587
BOG
1733
3933
7545
1353
2049
1826
9 !3Ei
736
838
1770
1542
611
744
B30
914
747
447
747
646
454
833
847
747
81
365
469
2376
463
337
458
302
V43
4073
222
428
320
324
'">"J''>
*:. O r_
420
2152
292
199
274
783
843
486
906
470
911
605
393
333
213
492
597
121A
293
1347
613
865
519
324
387
386
350
289
247
513
10V
373
929
340
374
347
448
AL
136
2£i3
1660
47fj
204
276
293
760
4131
193
222
147
161
•i i::; j.
i -J 0
404
1972
195
33
141
436
490
231
316
337
459
415
303
22£t
213
394
444
777
194
1084
108
260
328
265
311
253
193
'126
:ao
325
108
240
319
235
262
267
207
CA
32
283
330
356
0
270
IS
62
144
160
0
278
If?
1 |_;- A
.:. ....14
0
153
131
200
0
294
46
44
0
81
0
0
118
244
114
0
3
281
0
48*
336
6V
354
2
Iti
13
1649
197
265
221
157
324
124
0
38
0
2?3
116

-------
3
3
4
5
3
2
4
2
6
3
3
3
8
1
2
6
1
3
2
6
1
4
1
2
S
4
2
7
2
1133
1137
1129
1 1 :l. 2
1141
1052
•106:1.
1143
1106
1106
1163
1139
1129
1175
1139
1104
1106
1170
1128
1102
1.1. 4 7'
1123
1134
1117
1130
1138
1160
1154
1162
388
378
401

406
247
207
392
283 ,
328
374
340
307
457
385
129
356
462
546
373
398
282
553
355
362
416
413
353
360
398
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
326
359
506
648
348
1308
926
418
619
1127
635
346
1.152
163
1.048
17032
1247
21.8
210
319
419
543
240
1051
1467
1365
325
798
587
442
706
766
778
864
590
1273
921
597
923
1.232
1.083
759
1.684
521
1340
14943
1761
548
508
692
696
648
420
1417
1876
1513
753
1.1.62
945
779
751
315
279
376
41.7
31.73
6487
265
494
491
487
406
:1657
256
392
32
560
214
129
759
577
496
66
780
680
495
253
545
429
291.
31.9
285
134
1.24
182
3137
5937
113
36.1.
293
34:1
283
1263
152
97
412
•1 X\ "'t
.1. 0 /
84
449
407
477
98
423
506
396
. 221
519
278
105
157
j /
16

304
273
335
128
100
484
54
403
15
**\ / /\
260
62
238
79
1
364
159
37
0
0
.14
138
127
*'"
117

-------
330
PASS 40 A RE;: A s
I-!
AMPS
V
TIME
FE
S
SI
AL
PYRITE
3
1'*
6
5
4
3
:l.
3
7
363
363
364
. 363
362
364
363
362
363
7
6
7
8
7
9
9
8
9
300
300
300
300
300
300
300
300
300
9881
9679
9697
9455
10009
9698
10:1.03
10135
9425
9929
10268
9515
10125'
10426
9849
10445
10162
9775
0
12
131
0
0
0
64
28
65
0
39
445
0
0
225
0
134
212
DATA
7
A
6
6
6
7
7
5
6
6
4
4
3
4
4
5
5
3
0
9
4
7
1
IT
D
7
3
4
3
5
4
o
Ati
3
8
6
4
2
S
8
7
5
1128
I. :l. 1 6
1133
1148
108S
1143
1 1 1 :l.
1042
1026
1085
1130
1 1 4 1
1133
1 1 1 8
1 1 1 1
1159
1122
1156
1:1.08
1128
1143
1141
1109
1148
1129
1165
1172
1146
1146
1130
1151
1142
1128
1136
1105
1157
1180
1164
1147
1152
257
168
292
329
216
230
379
230
126
300
274
383
286
354
476
337
209
376 '
333
260
290
362
262
312
328
313
384
359
312
265
375
414
409
350
362
353
383
396
303
302
300
300
300
300
300
300
•300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
2094
979
697
915
6935
2310
2468
8969
13631
4326
2892
310
941
3323
225
386
6155
230
.402
2413
742
820
1332
589
2936
835
878
1132
976
2936
270
358
694
472
482
378
533
337
2158
334
2536
1433
1223
1101
6243
2085
2562
7577
12535
4404
2373
770
2011
3374
45:1
698
6114
618
646
2900
1107
981
1543
855
3003
984
1029
1635
1537
3043
462
427
1022
1048
796
758
738
626
2343
809
1027
658
537
681
371
515
314
892
344
900
421
592
429
568
167
284
694
361
261
800
1217
1490
972
350
565
643
145
652
1870
1964
253
1 4 1
308
866
290
266
515
270
1247
1224
537
492
335
397
301
322
202
334
229
610
2 2 3
477
400
306
32
181
579
1 1 1
186
630
955
1040
601
316
588
567
77
216
1296
1678
154
24
183
347
190
,-,/;>
A.. *»
178
245
979
766
                                                                 CA
                                                                  0
                                                                248
                                                                256
                                                                  0
                                                                159
                                                                 37
                                                                  0
                                                                  0
                                                                  0

                                                                 48
                                                                  0
                                                                 74
                                                                  0
                                                                  0
                                                                  0
                                                                  0
                                                                 271
                                                                  0
                                                                 166
                                                                  23
                                                                  10
                                                                   0
                                                                 187
                                                                   0
                                                                  .40
                                                                 178
                                                                 240
                                                                   0
                                                                 204
                                                                 174
                                                                 411
                                                                   0
                                                                  63
                                                                 182
                                                                 113
                                                                  IS
                                                                 221
                                                                 1.48
                                                                   0
                                                                   0
                                                                 122
                                                                   0
                                                                 340
                                                                   0
                                                                   0
                                                                  24-4
                                                                  "28
                                                                   $6
                                                                  102
                                       118

-------
TIME
FE
                        SI
                      AL
                                      CA
5
5
4
2
11
2
4
1
2
9
2
2
1
4 '
7
.1
c-
6
4
1
er
3
4
0
3
3
2
3
8
3
1
3
8
5
4
3
4
3
1
3

•,,/ \f AM
1 79
454
339
305
514
607
142
281
648
184
511
606
428
263
1200
370
212
308
781
A
4
172
200
o •( >»;
A*.. .1 sJ
1 1
f'\ A A
*-M4
187
401
539
207
97
146
316
280
356
370
284
250
301
382
194
81
138
560
319
202
243
308
294
658
569
110
319
181
335
424
518
.1.03
232
'"1 f "1
28
169
r" t*\
59
164
306
0
'*1 X
26
53
93

-------
3
4
5
:i.
6
6
'!>
4
8
1
1
5
5
5
6
4
3
4
3
4
7
:!.
1
3
3
:!.
?
4
4
3
1 1 34
1146
1159
1138
11.20
1129
• 1.037
1.037
1032
1140
1108
1079
1137
1.152
1119
'1102
1079
1126
1122
1066
1112
1 1 1 9
1129
1 1 1 6
1118
1 125
1139
1141
1056
1080
427
351
420
430
316
319
242
274
194
371
449
455
375
443
370
309
397
374
379
362
295
260
337
355
319
278
392
321
345
373
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
318
362
789
249
1765
1232
1290
1321
1932
821
665
897
583
175
728
1814
560
527
308
308
. 1618
759
508
640
717
909
697
6 1 0
828
874
514
846
1028
370
2028
1716
•1562
1935
2206
1299
844
978
1078
512
943
2021
769
525
636
523
1944
977
700
729
1566
1064
931
1026
1185
1148
150
529
465
215
722
518
482
703
1127
570
488
323
360
358
434
4 1 1
292
431
195
251
237
468
237
342
1151
1820
379
5:1.5
750
382
71
381
265
129
394
182
403
339
835
387
460
•••>•*•':>
A.. W A..
266
348
219
287
ry ,•) ~i
A.. A.. /
297
135
104
178
355
162
216
822
839
159
521
526
'•> is; '•)
.V*. W A»
151
0
33
0
92
359
213
148
0
344
155
0
34
97
100
12
0
0
216
249
0
100
4
25
298
264
63
138
171
238
120

-------
TIME
FE
                  S
               SI
                                AL-

5
10
12
10
5
9
5
5
9

3
2
3 -
5
6
7
5
10
A
3
2
7
3
5
2
.1
3
3
6
7
7
S
3
4
2
2
9
4
4
7
a
s
2
2
1
3
6
4
7
U

360
360
360
, 360
361
361
360
•561
3139

:l. :l 34
1:182
1133
1160
1176
1117
•| -| ox
••• •!• A., W
1181
1164
1168
1138
1:1.94
1193
1220
1:1.88
116(3
1168
1177
1126
1195
1124
.1.144
1205
1204
1118
1102
1059
1109
1091
1038
1075
1142
1137
1101
1114
1132
1157
1154
1043
996

4
3
8
3
5
3
2
:l.
3

:i
6
3
4
8
3
2
4
3
4
2
3
5
5
'•>
A...
•••>
A»
4
7
3
7
':>
y
t>
4
5
3
6
1
6
4
4
3
4
4
'*)
AM
3
':>
A»
2
1
3

300
300
300
300
300
300
300
300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
9941
10008
9744
10238
9728
9630
9631
947.1.
9619
DATA
A.1 Ill''
1098
435
771
431
1415
822
787
632
401
368
683
396
378
495
258
928
514
580
809
310
541
556
292
337
224
441
769
684
266
1227
494
230
210
252
109
129
29
181
1658
971

10039
9837
10163
10203
10445
10080
9979
8940
10059

1815
1136
1594
.1.333
1942
1215
1372
1105
764
1244
1044
844
822
850
668
1431
1.160
975
121(3
1194
1612
1210
1162
1114
986
760
1357
1068
1100
1223
1219
998
1018
1179
1046
966
793
1069
1877
1430

33
0
0
0
0
0
0
0
0

955
400
675
1629
1287
2603
784
824
1401
263
391
360
382
389
112
263
723
471
477
297
1113
542
320
442
489
258
702
637
. 750
1089
219
234
71
179
43
58
1.07
182
966
2949

1
0
0
17
0
30
0
250
0

717
285
i 	 y (••,
b,iy
835
062
2189
506
821
1650
327
410
239
242
310
100
190
528
359
319
197
1110
377
265
306
247
183
306
347
342
566
116
275
0
123
55
3
84
116
596
1468

0
..« >.j
/y
•1 ft V
.IKS a
"y i::'
/ \.l


,i ,i .**
.1. 1 0

2.1.7
•1 £') '1
1 8 1
OIK;
/>J
261
'*) ''S f\
J, A W
157
496
106
172
0
394
0
251
82
0
39
0
51
44
0
213
160
73
31
160
0
236
'•» i '."»
A*., ••• AH
187
487
173
74
324
49
192
144
264
4S7
106
107
          121

-------
H
                   TIME
                                           SI
AL
S3
6
4
8
1
5
8
4
6
4
6
9
5
3
,j
4
3
[}
6
7
5
9
3
6
4
7
6
3
2
^
5
7
6
5
3
2
6
•~J?
5
1
8
0
6
4
4
5
10
3
6
3
6
1085
1064
1045
1 1 4 1
•1117
1062
1 105
.f.OVY;
1 0 i; £•
.LU,
0
p
3
3
1
3
3
1
4
2
5
1
*•>
^_
2
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300 •
300
300
300
300
318
425
72H
307
1063
595
35 B
1267
1064
643
669
598
802
676
198
275
2194
&?B
409
3SS
649
1573
1 05 1
1418
A63
1144
613
703
319
367
463
548
1771
1539
849
385
453
1608
868
378
881
929
944
637
389
839
467
1260
2122
1316
423
1051
1252
1301
1154
1695
1196
1509
1491
938
1643
1602
1355
1443
1209
928
988
2210
1434
1249
1444
1524
1884
1315
1192
1129
1663
1338
1322
1090
736
1154
1292
1977
2059
17113
1550
1631
2706
1237
1422
3066
1761
1360
1168
1104
1272
1675
1904
1566
1456
1056
497
670
H25
1270
1002
525
491
1773
1031
1154
1518
944
509
274
101
290
582
1761
1390
1 4 1 8
1O99
623
622
63b
563
:L270
966
140
194
223
243
483
757
2176
929
748
1553
1025
7 .1. 7
743
1083
1846
1736
687
226
407
394
652
517
622
392
397
4/4
742
9^9
"702
370
344
1036
520
1080
1 23 1
5?6
313
i>o;.>
78
211
399
1180
1207
11?0
623
374
293
491
340
9S8
873
77
235
126
220
341
426
1 524
5151
510
934
1511
42:1.
521
1680
1557
1118
385
93
127
176
565
244
508
26Q
398
289
623
131
0
137
198
;7o
67
0
206
0
480
2 2 "7
83
65
395
62
245
Q
2US
o
387
419
50
56
0
230
381
o
I/
27$)
161
283
0
o
313
102
239
120
161
102
29
119
189
••• *r/ f
236
113
153
183
351
0
0
                           122

-------
8
3
10
9
9
4
5
2
7
5
3
1
3
3
5
4 '
4
6
3
1
4
9
2
3
8
4
5
8
6
3
1119
1080
1.079 .
1065
1 040
1081
104(1
1125
1069
ins
loss
lose
1093
1033
1039
1134
1134
1133
1149
1149
1143
in?
1114
1114
1144
1117
1082
1088
1094
1103
7
5
4
5
3
2
1
3
1
2
4
14
4
2
5
4
;3
1
4
3
2
(fi
2
3
4
1
5
£
3
5
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
400
679
1418
1290
2298
1473
4872
536
910
1399
13/1
3480
2439
2295
1783
526
289
721
364
315
412
531
471
727
304
328
503
1263
1893
1264
1230
10A3
1486
1667
2295
1918
4692
1324
1220
1924
1863
3106
2819
2231
1681
1044
726
983
719
83A
iOB2
1027
1104
1165
837
811
1406
1801
2379
1596
413
293
929
594
1129
914
646
667
801
650
1350
133
416
701
1301
439
OOft
til til \f
E? AU^Ui
771
298
736
489
434
575
132
145
903
451
411
3£J3
364
168
6BS
404
897
6B7
706
509
501
568
969
23
328
565
90S
220
192
349
334
277
684
433
391
347
110
90
434
224
331
238
133
271
256
216
194
299
a
182
119
0
116
30
57
122
269
194
137
123
0
0
60
142
232
46
111
155
0
0
162
1S4
123

-------
308 PASS 40 AREA 2
       H   AMPS      V
TIME
FE
                                           S
81
AL-

4
6
:L1
15
4
8
10
5
3

4
7
5
8
"")
A..
7
6
6
5
8
9
8
7
8
8
'*)
X..
4
8
4
4
10
6
10
3
7
7
8
1
4
3
5
'?
2
13
5
6
4
5
4
9

364
363
363
. 363
363
363
364
364
363

1 1 1 5
1125
' 1115
11 3 6
1154
1137
1125
1119
:I.136
1:1.24
11:1.0
1146
1173
1115
1140
1133
111 3
1 1 43
1 1 1 1
1129
1125
1091
1097
1 1 1 0
1066
1.132
1105
1128
1135
1140
1121
1120
.1073
1104
1168
1144
1126
1115
1179
1124

•••>
A»
5
'•>

AV.
3'
5
2
6
4
0
1
2
2
2
8
5
'•>
A»
6
7
4
9
.6
1
3
3
7
1

300
300
300
300
300
300
300
300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
9610
9823
9778
10030
9403
10045
9995
8706
9755
DATA
2422
1081
2455
359
1121
420
1820
1250
698
654
589
845
326
2116
346
1000
13:1.8
1275
741
1379
1004
3011
2015
542
6773
2569
1278
242
370
665
2087
616
,3001
481
266
572
914
1274
364
701

9978
10074
9922
10091
10388
10187
9897
9278
10057

3005
4243
2523
867
1931
1733
1571 ,
1559
1252
1342
1209
1351
786
1965
1269
936
1416
2203
1582
2238
2153
4126
7860
1904
6493
3609
2113
1813
.1. V.J A*« vD
1628
21 IS
1577
2166
1893
80S
1078
1782
2310
862
1182

0
0
0
64
74
32
41
0
0

1865
79
464
623
429
439
400
868
403
172
620
1010
2438
1445
34S
580
1021
41
696
831
490
458
254
2492
644
993
554
6S6
6 1 2
457
558
286
473
3183
172
2 2 8
582
256
140
168

0
96
0
0
146
0
0
5 1
0

951
1699
409
503
407
2 1 8
51
538
195
201
459
614
2201
1369
273
309
1019
114
547
745
476
671
3915
1325
543
1047
501
618
445
231
330
318
632
3368
76
255
271
234
126
.119

205
0
157
84
222
0
108
27%
0

0
341
295
140
64
49
0
297
105
131
'•>'•> 7
^*i. /
106
0
193
220
803
219
2
107
92
377
407
34
0
73
368
247
354
1'2
237
4S9
0
193
266
0
197
246
264
500
267
                                     124

-------
AMP'S
TIME
FE
S
                                          SI
                                  A I...
                                CA
2
6
2
4
4
7
1
6
9
9
4
0
>'j
3 •
7
4
3
6
4
2
1
6
4
6
2
9
3
2
1
3
2
7
6
3
3
4
6
':>
•c
4
1
6
4
3
14
9
3
4
7
2
2
4
1.175
1 :i. :l 2
1 1 :l. 4
1 1 1 0
. 1061
:l. :i, 3 :l.
1127
1.124
:U28
1099
1147
1172
1147
• .1.1 3 5
1157
1133
1 1 1 3
1106
1108
1155
1168
1109
1108
1127
1159
1100
1126
1154
1138
1122
1096
1136
987
1074
1138
1101
1141
1159
1156
1168
1211
1043
1033
1046
1095
1178
1189
1099
11 52
1169
1077
10
A
5
1
»•'
3
4
4
1
5
3
4
5
'!>
Af»
4
6
1
6
8
1
\.f
4
7
3
1
6
'•>
A.I
0
3
4
8
4
4
7
1
1 1
3
'*)
A«
3
6
3
1
4
1
2
4
5
0
6
5
5
5
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
137
1843
677
625
878
377
590
352
481
1612
384
226
397
309
386
828
397
651
383
361
336
1803
413
227
178
2420
776
685
232
200
643
965
13641
1256
408
1373
415
762
411
792
438
760
6037
6743
2042
286
433
418
458
198
1343
1810
2365
1942
1447
1575
1676
1257
949
1597
2286
885
775
1057
841
1057
840
.1.076
1412
1232
943
949
1997
1135
1272
1231
2284
1429
2006
1223
1130
1142
1571
11406
1996
1135
1546
758
1344
690
717
903
1003
3838
4339
1955
1176
1398
1134
1390
933
1033
712
669
294
707
821
509
327
21 A
177
357
44
95
151
415
318
330
720
663
386
191
179
746
922
66
143
616
1091
139
1 4 1
244
641
209
1551
1179
452
408
487
558
620
564
746
298
524
725
356
218
128
595
463
328
6532
483
498
358
260
607
266
240
177
173
218
157
76
172
436
247
235
332
424
226
173
302
478
688
70
83
461
642
281
90
191
155
198
1328
703
370
280
320
494
306
338
565
221
557
606
205
129
110
079
AM / *«
356
260
2695
0
385
185
27
173
0
325
203
464
0
1 9
'"j O "f
v,;<:KS
233
•1 *"J
.1. /
184
213
177
45
196
207
•i "*f
.1. /
3rj*
b
943
24
•"1 KT '[
JDI
218
0
233
297
212
A •*»
4>5
292
0
96
.1.028
45
43
180
275
235
18
0
0
1
390
260
284
295
0
0
811
                           125

-------
7
3
3
5
6
4
3
1
2
2
8
5
2
10
A
':>
*••
7
5
7
6
8
5
A
3
S
A
8
8
6
6
1084
1118
1:1.22
1114
1183
1149
1124
1231
1229
1228
11 OS
1 1 6 :!.
1126
11 2 5
1142
'1142
1161
1094
1128
1146
1077
1101
1127
1:103
1119
1146
1073
1127
1:1.18
1170
3
6
2
2
0
1
2
4
8
6
3
1
2
A
0
3
3
4
2
4
3
3
8
'')
Ai*
2
4
4
2
0
'•>
AH
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
1789
444
501
990
494
606
312
327
260
372
537
697
748
2473
761
547
254
770
1138
1128
1997
481
356
669
1756
1181
3494
3816
958
512
1747
811
817
1386
1170
1387
790
435
408
843
1158
1.1.37
1632
3405
1603
740
628
1127
827
1502
2008
1575
1113
1228
1606
1923
2980
3832
1648
1045
2556
495
271
393
182
390
334
1569
794
562
1073
572
569
475
615
101
81
4021
6645
1886
4794
1839
652
476
117
234
496
1383
1409
576
1177
193
174
260
16?
560
260
1390
790
428
799
501
306
403
508
93
78
2439
2729
1489
4335
929
428
371
42
87
414
992
1265
494
'i/a
200
117
0
318"*
71
126
0
24
0
0
248
120
107
217
32
••vt f.
3/6
106
423
... f*\
389
221
35
.iw "₯ «l
331
830
—t y\
120
55
... |"*
9b
..«• Jk "'}
,54/
••V "'I
33 i
126

-------
3
         TIME
FE
                                  SI
                       AL-

4
6
U
IS
4
8
10
5
3
S
5
5
3
5
6
6
6
2
8
5
6
2
1
3
4
3
6
1
5
7
4
7
6
5
8
0
7
3
3
3
4
S
1
4

364
363
363
, 363
363
363 '
364
364
;i63
1179
1087
' 1.109
1.105
1.131
1046
1019
1059
1043
1088
1104
1117
1116
1129
1103
1110
1064
1029
1082
1125
1060
1058
1096
1076
1099
1059
1099
1094
1061
1084
1103
1105
1098
1086
1063
1073
1130
1093
1049
1052

2
S
2
7
1
3
1
1
:l.
4
O
A1..
3
5
4
3
5
6
4
1
0
5
4
5
3
4
3
2
1
4
1
3
4
5
3
3
1
4
7
4
0
3
3
.1
4
2
5
6
0

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
9610
9823
9778
10030
9403
10045
9995
8706
9755
DATA
463
593
554
239
107
1340
3748
1433
3157
864
1370
544
822
571
366
1088
532
612
424
241
438
735
865
468
595
676
415
399
635
498
423
532
252
286
2077
668
284
•7':>ls;
/ A.. *«>
1282
1664

9978
10074
9922
10091
10388
10187
9897
9278
10057
1379
1526
1101
1009
1108
.1.539
2876
1700
3060
1442
1587
(309
1261
1130
858
1165
1046
827
903
1144
1292
1561
1524
947
1229
1209
1086
837
991
956
743
922
851
951
2106
932
766
1055
1831
2450

0
0
64
74
"V ""t
32
41


313
521
350
138
1 74
746
2143
1111
2142
1549
709
494
497
376
227
491
453
388
838
126
454
1323
1634
1703
1396
797
681
1285
743
982
420
313
188
117
698
1432
146
387
403
287

96
0
146
0
'"•'< 1
W *li
o
\/
245
307
407
66
157
725
1678
897
1293
1299
534
488
453
249
160
467
496
296
646
16
353
950
1441
1485
1296
470
707
1454
720
1077
490
220
136
154
529
1343
0
304
283
162
'•>/y~
0
157
84
222
o
108
275
0

25
0
102
134
232
219
374
293
196
142
284
395
205
123
306
261
0
118
0
75
234
142
0
283
3
135
13
0
0
525
0
75
319
76
245
55
0
                        127

-------
H
AMPS
TIME
FE
                                            SI
                                               A I...
CA
7
••_•>
4
6
5
3
6
A
'3
3
3
S
3
8
3
5
4
3
7
5
3
'•>
AH
A
5
5
4
10
4
3
1
6
4
6
5
3
1
4
8
5
1
2
5
5
6
4
4
2
6
7
5
i>
*••
1095
1.094
1.096
1.074
1.084
1.062
1.097
I.:!. 2 3
1. 130
i.130
1.118
1.113
1.067
• 1.035
1.049
1.043
1104
1 1 1 7
1088
1089
1041
1103
1140
1090
1075
1088
1109
10S8
1106
1131
1147
1139
1065
1106
1063
.1.098
1112
1093
1094
1097
1064
1090
1115,
1067
1142
1116
1116
1100
1090
1083
1095
3
5
1
••;>
4
0
0
4
1
?
1
7
1
3
1
1
3
5
5
2
3
':»
AII
3
S
3
4
6
1
3 •
7
5
5
2
3
1
3
0
5
1
4
'•>
*..
4
*,.
6
4
6
2
3
'•»
AH
4
2
300
300
300,
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300 '
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300 •
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
833
691
2098
92.8
1244
1185
1 1 78
834
1134
890
114
378
550
848
1069
457
441
137
528
77
301
668
969
945
647
1538
476
784
298
290
208
247
2693
1481
334
353
225
536
252
446
509
632
398
-583
158
295
577
989
778
856
1210
1546
1591
2386
1485
1889
1454
1616
1200
1512
1313
1073
1215
1103
1207
1968
1542
1342
960
1521
1616
1273
1356
.1262
1538
1581
2433
1508
1125
1050
1309
1194
1230
2357
1771
1227
1708
1318
1337
1030
1.1.86
1198
1191
1139
1234
1170
1593
1307
1514
1525
1390
1527
856
628
313
471
540
423
310
276
1 '!>''>
.1. A.. A..
179
179
101
388
1041
355
239
276
336
442
783
461
434
530
407
476
1348
959
531
269
486
407
1 1 5
400
838
628
384
451
219
792
1205
493
448
2 1 3
674
218
202
430
371
630
465
2 3 5
637
474
361
325
396
418
237
94
97
238
173
72
257
948
307
234
104
281
334
673
212
397
416
325
321
.1.043
695
462
290
261
246
105
338
355
589
380
354
122
742
1064
471
345
127
1035
221
189
263
266
556
303
145
2.36
349
228
279
149
457
238
68
168
0
221
149
198
224
332
166
60
366
192
326
312
11
29
409
0
v'?l
A'., **• •*
343
53
222
149
0
184
266
0
0
147
499
197
162
76
139
257
0
288
38
172
0
333
60
23
92
                                  128

-------
2
6
3
2
8
3
5
9
4
">
x.
3
6
S
5
6
6
4
6
3
2
4
3
7
1
4
3
8
3
10
S
1140
1142
1 .1.32
1103
1084
1075
.1117
1124
1085
1103
.1.089
1095
1094
1070
1123
' 1086
1137
1095
1093
1113
1117
1090
1133
1122
1041
1113
1045
1094
1100
1107
3
0
4
5
3
3
2
2
0
7
3
3
5
2
3
0
1
'•>
A«
7
3
!•'
j»
1
3
1
3
5
2
9
!•'
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
236
322.
402
573
1096
704
492
413
791
451
565
1118
581
1686
525
945
156
760
534
544
527
434
285
948
1718
368
1524
1899
1719
649
1239
970
1137
1172
1230
1352
1456
1260
1616
1095
941
1550
11.67
1976
1162
1600
1519
1552
818
1055
886
1062
1268
1998 .
2027
1187
1795
2554
2128
1128
179
362
369
331
257
436
192
938
1984
339
298
• 282
307
70
136
323
493
418
495
'•> ':> ':>
A.. A.. A..
553
483
401
258
565
481
2056
262
238
293
2:1.5
437
345
163
158
446
*•*' !"• y
3b6
494
1849
85
253
277
329
38
73
285
316
242
398
140
396
523
446
175
406
434
752
163
298
239
74
0
304
"V '"J
7 /
18
257
56
358
363
335
23
217
72
37
220
0
0
126
244
162
189
379
96
43
0
60
59
66
.1.99
129

-------
308 PASS 40 AREA 4
       H   AMPS
TIME

1.1
4
4
H
12
H
1.4
9
7

4
6
5
4
4
2
4
3
6
12
2
8
5
4
4
3
5
5
4
4
6
4
8
11
3
1
2
4
7
9
A
4
5
4
11
3
4
9
6
12

360
360
360
360
360
;
1134
1069
1084
1073
1093
1097
10S6
1042
1072
1104
1108
1103
1018
1031
1075
111*
1119
1109
1066
1076
1108
10813
1040
1122
1025
1059
1076
1112
1097
1057

2
3
7
3
5
1
1
2
'i
A-

9
s
3
6
2
0
5
5
4
3
3
3
3
2
2
3
2
3 '
0
7
5
7
2
4
^
*u
4
1
5
1
2
2
'•)
*^
4
3
5
6
4
5
4
5

300
300
300
300
300
300
300
300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
9676
10128
10049
10012
10264
10274
9932
9397
10Q43
DflTfl
385
495
SOS
268
6Q9
US
270
528
1713
1203
310
679
424
981
311
842
877
A 2B
351
800
244
346
3430
4378
74B
345
651
365
1417
831
434
734
1.081
463
9057
4458
1507
523
256
3746

9883
10141
9821
10161
10205
9931
9710
9111
10222

1220
1150
1058
1026
1007
689
tie 4
944
1454
1741
9BB
1267
1003
1123
1 022
1391
1531
1024
775
1131
734
858
2946
4650
1181
700
1045
772
1507
1605
1076
1174
1674
1391
8914
5018
1684
811
1006
3927

0
0
0
58
16
10
0
66
0

1147
870
37 If.
345
412
173
294
1?5
887
1050
414
428
349
305
... n o
l_1 _y _!_'
617
401
476
97
2915
641
333
729
1088
366
230
361
848
374
806
737
946
750
279
115
301
2754
893
692
303

15
0
0
0
sa
0
0
284
O

966
684
200
2'32
382
155
ISA
35
824
609
407
335
272
292
167
317
338
620
130
242
373
237
446
795
329
320
342
100
294
672
548
402
419
213
0
21
2368
919
561
206

112
0
249
38
196
0
0
177
233

39
274
330
478
250
246
5V
0
150
18
69
390
478
428
240
257
77
52
127
361
270
807
22
1036
243
220
90
75
87
0
49
178
391
42
0
73
215
240
71
372
                                       130

-------
H
TIME
FE
                        SI
                                                  AL
                                      CA
3
A
S
7
6
S
10
2
8
3
2
S
8
1
3
7
6
S
10
10
A
2
10
6
10
7
4
7
5
4
2
4
11
3
S
S
8
5
4
8
8
2
S
2
4
(*••
Cl
4
4
8
9
7
1056
1095
1083
1074
i:i.i5
109 A
1,1,2:1.
1074
.1.0 93
1098
10G9
1072
1096
•10? 4
1120
1097
1116
1129
1102
1 1 1 :l.
1 1 1 1
1116
1113
1093
1072
1071
1097
1045
1033
11:1.6
1125
1130
111.2
1101
1:1.23
1122
1120
1 1 1 2
1075
1114
1085
1101
10813
1113
1134
1128
1 1 1 1
1065
1061
1.1.09
1064
3
A*.t
4
2
4
4
2
0
3
2
1
3
4
3
1
4
'•>
AM
3
'•>
A..
2
9
A«
2
2
1
4
6
6
4
3
5
1!"
9
4
1
6
4
3
3
3
9
2
5
2
3
7
4>
'?
3
3
2
1
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
378
868
965
1245
400
62
373
1187
1316
830
492
408
1612
847
250
5210
1029
271
3.044
1452
840
680
1357
2279
983
1421
258
3626
4J.7
481
450
1153
1015
1526
1266
982
1172
918
556
1586
781
197
341
159
268
192
232
1203
2512
2167
2606
1206
1189
1304
1425
877
811
904
1726
1595
1194
1296
1108
1869
1598
1071
5018
1865
1214
1808
1913
1480
1355
1658
2502
1464
1419
977
3808
1101
1066
979
1661
1401
1982
1748
1490
I860
1823
1685
1941
1427
820
745
797
735
834
804
1307
2156
2650
2972
493
703
457
802
143
311
681
620
1676
395
452
585
2325
2038
2263
362
483
701
1833
551
649
989
1181
879
633
389
334
649
878
434
387
295
790
495
623
S79
681
668
828
384
533
201
817
491
459
i::; is; •!
i.J >..' .L
619
529
198
1 1 4
1320
586
,.j .., .,,
A.I W W
360
497
61
.1.73
632
538
1476
306
450
("• •*₯ A
(j o 4
1638
1264
1938
358
367
386
1560
48.1.
i:;- f\ r\
l.V .'.. CJ
984
718
696
495
218
184
584
5:1.9
391
307
233
9:19
309
469
404
593
481
562
437
436
208
670
235
345
396
493
374
59
177
1093
124
265
•1 rf'i A
,1.84
378
0
365
432
:L26
201
'•} <:t '••>
A'.. W A..
358
457
64
171
362
197
391
586
OIK; 7
A'.. W /
632
293
952
430
98
106
';>!::•';>
f!., x»J A->
317
34
320
150
0
406
182
469
377
50
177
13
0
121
123
305
85
82
0
72
291
147
244
                                131

-------
6
6
4
4
3
2
8
:!. i
7
6
5
4
5
7
2
1
2
3
6
5
6
5
7
5
0
7
8
3
4
1
1098
1125
1.061
1117
1068
1124
1051
1069
1095
1 1 1 4
1046
1075
1110
1129
1125
'1095
1055
1131
1100
1086
1098
1079
1063
1096
1103
1076
1050
1121
1063
1076
'>
Ai>
?
3
3 .
1
A
6
'•>
A..
7
0
2
3
2
2
1
3
4
3
0
1
2
1
3
6
3
3
5
4
4
1
300
300
300
300
300
300 '
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
646
817
232
297
510
48
1201
1262
636
202
69
466
714
375
205
1106
925
202
604
677
1388
1628
'530
460
375
794
1018
195
812
133
1163
1000
673
645
841
829
1495
1865
1370
828
937
945
963
696
642
1190
1644
1142
995
1232
1598
1889
665
516
917
1983
1350
1004
1558
831
254
210
151
240
388
302
539
663
320
380
275
660
391
264
591
822
468
216
964
939
1344
834
2296
2390
299
1736
340
268
268
235
275
156
126
90
263
117
358
480
252
384
245
271
253
193
697
792
339
134
716
641
104:1.
473
1875
1590
267
1241
324
137
163
170
181
448
125
141
0
46
0
0
255
239
220
21
285
0
21<>
135
142
134
254
380
77
0
120
135
387
291
195
4S4
0
157
132

-------
^88  40  AREA
   "   AMPS
TIME
FE
S
                                             SI
AL
CA

1 .1.
A
4


l*ii
5
9
f
'

3
2
£
w
7
K-


9

5
A
4
4
A
4


2
5
•1 xv
.10
14
1

•1
J,
4
4

1 XV
10

6
1 x\
.1.0

4
6
*
4
3
"y
3

7
C."
O

360
360
360
' 360
360
3o9
360
.:;• ::; 1
358

1.085
. 1121

•>• 1 3 6
1107
1138
1 1 1 3
1048
1093
1139
1151
1088
1.1.39
1143
1095
1103
1086
1006
.1.077
1095
1116
.1088
1089
1123
1089
1095
1106
1101
.1.096
1107
1124
1120
•1.058
1102
1135
1095
1048
1072
1096
1100
1092

2
3
7
3
5
1
1
2
All

3
AII

3
6
1
5
*"«
3
' 0
1
2
5
3
6
2
5
4
1
0
6
1
2
2
3
7
2
5
5
1
2
3
1
1
1
6
5
3
5
2
9

300
300
300
300
300
300
300
300
300

300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
9676
10128
10049
10012
10264
10276
9932
9397
10045
DATA
743
325

367
351
438
925
602
692
498
2.1.9
380
1922
418
597
903
1652
5636
888
2401
1043
327
862
398
1102
590
1254
1785
2249
994
752
474
1023
1488
380
488
547
924
808
572
1364

9883
10141
9821
10161
10205
9931
9710
9111
10222

1625
1249

1273
1442
1704
1472
938
1030
1148
1110
1081
2934
1139
1433
1596
1827
4479
1000
2607
1324
.1.288
1752
1153
1434
1434
1575
1824
2505
1444
1225
1069
1180
1257
953
1069
1094
1403
1154
1120
1783

0
0
0
58
16
10
0
66
0

684
1375

598
555
1847
3937
3540
738
589
631
741
462
491
488
469
855
1588
6953
6759
6093
2234
756
1098
8.1.4
1919
4722
7456
4385
7309
1956
3642
5689
2333
850
792
3808
6524
6653
2163
39.1.4

15
0
0
0
58
0
0
284
0

47.1.
520

424
459
1406
3274
3283
524
439
317
661
348
383
383
480
634
1316
5991
5515
4381
.1.74.1.
520
306
591
.1.479
4007
6395
3084
5686
1554
3068
4873
1713
617
521
3200
5935
5630
.1.670
3381

112
0
249
38
196
0
0
177
233

369
262

104
.1.3
192
416
128
288
455
90
150
439
23 1
234
219
371
0
198
383
334
365
314
271
180
200
21
0
198
57
0
166
340
66
80
369
426
390
648
277
387
                             133

-------
H
AMPS
TIME
FrE
S
SI
AL
3
6
6
5
5
4
8
8
10
6
6
8
IS"
7
:l.
2
5
6
4
9
9
9
3
10
7
8
10
9
4
8
9
8
6
11
5
3
5
3
3
0
0
5
4
9
4
6
8
3
8
4
3
1085
1104
1085
1136
1087
1 1 1. 0
1125
1 1 1 3
1 1 1 2
10? 3
1103
1093
1057
•1059
1073
1112
1110
1127
1064
1028
1084
1096
1078
1074
1096
1097
1080
1088
1094
1097
1087
1087
1109
1096
1033
1101
1075
1103
1057
1062
1107
1128
1067
1116
1087
. 1112
1078
1082
1062
1074
1075
3
'•>
A>.
10
6
4
4
4
3
5
5
3
5
4
4
2
1
6
0
y
2
5
5
3
1
'•>
*»
3
2
6
o •
'•>
fC,.
1
1
7
4
5
2
2
0
3
2
0
6
6
4
6
4
3
1
2
1
3
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
1087
1053
1280
615
832
746
665
977
874
2377
677
1390
753
1456
974
448
362
691
771
1288
1066
637
962
899
794
936
999
1358
1086
1230
654
1634
928
808
587
602
1035
546
203
185
698
278
1045
738
667
965
461
2174
751
2195
1003
1278
1508
1678
1147
1541
1273
1305
1528
1458
1869
1011
1771
1381
1965
1328
1354
1130
1344
1499
1631
1619
939
1278
1320
1328
1303
1347
1337
1595
1701
1277
1956
1163
1265
.1471
1120
1600
1405
794
830
1407
1158
1416
1302
1246
1520
1212
2607
1115
2532
1595
5187
7493
5185
3209
3058
3015
6000
5551
7487
6529
6419
7455
5970
7425
2639
377
429
1320
'JO") ft
Ait AM J&t W
5542
6497
8271
6073
6952
6944
8299
7628
6005
7708
7884
5118
4367
6371
6983
1825
2429
865
356
137
259
197
236
2182
5438
7463
4578
5670
4739
5299
5026
3608
4411
6220
4701
2613
2098
2464
5297
4864
6088
5320
5281
6394
4840
6179
2160
287
309
1108
1607
4640
6128
7423
3887
6173
5663
6844
6780
4783
6466
6815
4765
3497
5556
5680
1584
1226
517
224
104
211
167
116
1856
4450
6592
3982
5015
3936
5051
4291
2(346
73
0
0
88
20
330
0
1 1 1
0
0
171
480
0
310
349
25il
229
579
348
332
353
354
0
424
299
0
0
292
0
114
1308"
818
73
187
0
'•>
-------
&
2
4
7
7
10
3
S
4
7
3
7
4
2
13
A
4
4
10
7
9
7
2
4
A
7
6
S
7
7
1066
1073
10S9
10S3
1. 1 1. 7
107V
•1.120
1.061
1073
::.:i. 3V
i ::. sv
noi
,U :L B
1136
1116
• 1082
1074
1091
1097
1094
1073
1070
nos
1079
1076
1089
1125
1112
1112
1112
4
0
3
2
4
5
3
5
3
7
6
5
1
1
2
6
A
6
2
3
1
a
5
5
5
3
4
3
4
1
*-
300
300
300
300
300
300
300
. 300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
2677
1385
1153
637
935
3818
242
3015
713
713
416
499
303
587
375
758
912
595
1209
1349
1098
894
1034
946
1179
512
340
282
1081
762
3234
1637
1338
1307
1400
5013
921
2223
1363
929
1032
613
710
974
315
1076
1007
1202
1831
1654
1597
1712
1630
1525
1601
822
1017
1165
1221
1140
3474
7158
8381
1481
197
1614
266
43
766
323
241
^RlSi
*^.Ohi>
433
393
323
6702
6375
5467
5031
6443
6192
5850
2991
961
1498
471
502
518
419
389
2852
5220
6826
1157
63
328
205
74

-------
308 PASS 40 AREA 6
       H   AMPS
TIME
FE
S
SI
AL-

5
5
10
7
16
1
3
3
5

6
4
5
3
4
?
5
, 3
4
1
6
4
o
A..
2
5
8
7
3
7
1
:).o
4
3
3
7
4
1 '
6
4
3
5
6
4
5
6
0
11
a
s
8

366
365
366
366
366
366
366
367,
365

1080
1102
' :!. 1 1 6
1087
1133
1107
1150
1096
1096
1106
1071
1054
1074
1 1 1 1
1095
1103
1127
1113
1025
1124
1079
1082
1071
1105
1077
1119
1137
.1.102
1110
1103
1124
1152
1090
1047
1070
1078
1 :l 1 1
1108
1124
1131

6
3
3
3
5
o
An
2
':>
A..
5

'•>
AM
0
3
:i.
2
2
4
2
3
5
5
3
4
2
6
6
2
1 '
4
5
3
6
3
7
4
2
0
3
7
5
5
3
5
11
3
4
2
2
5
3

300
300
300
300
300
300
300
300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
10096
9649
9775
10021
10201
10202
10055
9647
9725
DATA
1748
2780
625
474
622
421
640
1981
1096
871
990
2783
1217
801
1204
1162
1264
792
2337
635
3.1.3
755
1087
.1.174
670
1760
719
1312
1816
1079
744
723
1033
1465
1092
509
815
1420
1291
1183

10023
10333
10010
10459
10236
1029.8
10156
9412
10316

1956
2443
1288
1251
1295
1443
1584
2147
1715
1576
1434
2182
1342
1437
1564
1326
1544
1308
1935
1063
1235
1376
1479
1242
1066
1917
1160
1948
1653
1590
1072
1162
1370
1809
1559
985
1327
1447
1507
1421

0
0
45
0
30
6
0
0
0

3781
6472
2497
404
278
853
321
343
718
508
600
897
765
526
610
553
673
430
274
163
347
825
2365
1214
900
806
362
579
593
628
401
605
361
543
1375
797
567
828
370
368

0
0
95
33
14
0
12
24
0

2113
4624
1630
313
311
715
322
313
626
526
480
713
596
390
472
137
308
240
203
86
337
443
1787
810
884
547
383
704
290
293
226
627
383
373
1076
459
449
641
195
341

0
154
0
286
0
260
0
0
0

758
222
"67
86
265
109
449
0
0
428
385
0
156
0
102
494
486
0
152
233
. 0
0
278
576
45
276
37
547
37
358
0
114
323
0
72
312
216
169
322
322
                                      136

-------
H   AMPS
TIME
FE
S
                                          SI
                               AL
                             CA
4
7
3
5
4
3
4
3
4
4
3
6
2
7
2
6
6
7
5
5
8
8
1
5
3
5
7
6
2
4
4
7
8
7
10
4
3
3
6
8
3
5
5
6
6
6
3
7
9
.... ,;>..y
•!• .1. A., w
1107
1134
1073
1045
1137
a 33
1150
:i. :!. 4 1
1140
1142
1147
. 1128
1117
1050
1069
1068
1097
1135
1123
1 1 1 1
1142
1105
1136
1141
1101
1 ISO
1045
1125
1148
1125
1110
1126
1131
1133
1.1.03
1033
1106
1102
1126
1051
1122
1102
1139
1135
1087
1088
1071
1051
1101
1103
1
4
y
4
4
5
2
1
IS*
D
i
4
4
7
1
3
3
0
6
9
3
2
4
5
3
2
1
1
3
1
5
3
6
2
6
6
3
4
4
5
4
5
4
4
5
3
1
j£.
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
1028
1125
417
260
932
690
1008
1572
1084
1022
637
570
1128
1322
3360
1691
778
1922
.1.064
354
417
497
1523
749
1175
841
1350
3095
2013
1055
757
336
649
771
681
869
963
463
217
512
1248
1008
3382
1805
1191
2850
3492
4953
1491
358
2584
1372
1558
1014
736
1056
1201
1745
1795
1420
1497
1329
1235
1383
1540
3042
2032
1107
1779
1659
1180
1143
1163
1538
1432
1763
1346
1836
2924
2270
1644
1303
1102
1195
1198
1621
1633
1758
1315
1508
1842
1971
1986
2203
1755
1483
2730
4361
4412
1876
968
2932
359
672
287
162
1285
1118
375
931
754
566
721
526
743
793
1418
3510
1747
1415
907
370
519
348
820
692
886
306
699
2129
1693
487
482
412
226
531
748
763
838
397
124
200
2096
2178
1681
1663
739
504
376
1583
1099
1176
423
205
737
304
62
1 1 1 1
1016
282
631
555
477
454
369
525
604
968
2215
1187
940
695
402
406
264
821
662
746
213
475
1728
1556
302
391
336
242
495
659
484
501
330
86
189
770
1492
1286
1200
637
406
271
1446
553
832
349
95
157
•"\ >l <•!
*• J. J.
30
96
0
421
0
''*« t'\ f'l
288
133
48
r" J\. /
b06
160
26
362
229
94
35
308
242
0
136
286
168
459
103
'*i ''1 A
.* .* A*
A« A-i *
0
47
383
90
348
251
12
87
318
692
447
400
365
75
112
0
173
0
0
204
195
0
383
                             137

-------
7
6
7
7
3
2
3
6
0
2
5
i*
4
0
8
6
7
6
6
2
9
'*>
Ati
8
7
I"1
b
3
1
4
4
8
1104
1053
1067
1071
1 1 1 4
1 1 1 4
10152
1135
1 103
1 .1. .1. 8
1145
1060
1 1 2 1
1086
1087
1062
1056
1085
1137
1142
1136
1050
1129
1024
1 1 2 1
1108
1098
1084
1134
1095
6
4
1
2
4
9
1
0
4
4
5
'*>
A..
3
3
5
0
7
1
2
7
1
8
3
4
1
6
A'I.
4
1
*'»
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
2220
6502
3864
1426
479
375
1747
906
253
180
79
561
597
1811
4323
485
1390
5229
845
312
226
285
950
2253
234
267
809
670
264
402
3314
4001
2909
1331
1145
547
2253
1878
1329
1523
1665
1443
1641
2234
2300
1534
2539
5631
1355
855
634
814
1367
2003
1307
1131
1161
1502
999
1394
610
727
761
669
512
316
2430
382
307
251
155
1262
1357
629
383
238
753
1000
1132
188
758
221
167
717
138
204
284
308
157
187
514
478
594
453
252
145
2261
298
303
306
49
982
376
545
170
108
511
1017
847
166
538
1 1 7
130
196
181
88
159
1 2 1
57
91
60
11
245
415
0
282
228
396
418
417
389
318
164
259
284
467
132
0
268
172
127
S3
47
314
397
307
97
301
147
524
138

-------
PASS 40 AREA 7
   H   AMPS
TIME
FE
                       SI
                     AL
                                     CA

5
5
10
7
16
1
3
3
5

j>
6
'•>
*...
7
9
3
3
6
4
7
6
S
9
2
:l.
7
11
5
5
5
IT"
,j
3
0
1
6
8
9
7
3
4
5
4
4
S
4
5
3
4
7
5

366
'XXj'-i
s..' w s.J
366
• 366
366
366
A66
' ' I"'
.6 o U

1087
1129
1083
1097
1092
1141
1087
1067
1066
1102
1135
1101
1118
1125
1170
1078
1105
1093
1114
1076
1134
1100
1082
1104
1125
1125
1073
3.086
1136
1131
1110
1124
1134
1071
1113
1119
1134
1106
1-078
1141

6
3
3
3
5 •
2
'•>
*..
2
5

5
5
3
3
6
S
0
3
4
6
4
7
7
**>
A«
3
6
3
2
';)
1
3
5
4
3
3
0
5
1
9
2
1
1
7
6
. p
6
8
4
1
3

300
300
300
300
300
300
300
300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
10096
9649
97713
10021
10201
10202
10055
9647
9725
DATA
597
65:1.
490
1227
3794
351
434
406
802
739
490
522
440
693
378
605
3380
1295
535
3062
1195
325
433
463
682
333
1017
1033
1353
2239
481
507
451
651
619
484
185
659
1148
1285

10023
10333
10010
10459
10236
10298
10156
94:1.2
10316

822
886
907
1350
4329
955
1324
1037
1541
1712
1562
1095
1237
1478
1524
1.480
3410
2062
781
2624
1827
732
1218
1032
1236
854
1374
1567
1779
2137
1514
1232
1027
1345
1397
906
1245
1514
2658
1642

0
0
45
0
30
6
0
0
0

254
425
340
911
178
28:1.
124
250
897
1075
316
691
135
647
850
826
258
327
501
553
443
428
352
288
568
279
911
2104
553
390
6.1.0
855
1359
1676
245
304
2472
693
851
218

0
0
9i::-
ll;
33
14
0
12
24

•"> -i "/
*•.. .1. /
190
267
272
322
261
123
253
618
942
185
401
0
433
511
568
370
269
448
315
321
280
299
175
406
232
726
1724
359
382
463
480
939
1564
172
279
1321
493
1261
181

154
Q
286
0
260
0
0
o
\f
':xy/
A.. S/ /
1.97
132
1.87
254
135
360
373
282
386
269
189
153
70
0
273
162
350
334
0
116
202
475
362
391
0
243
15
217
0
98
241
80
199
124
108
160
33
89
83
                                 139

-------
H
AMPS
TIME
FE
                                          SI
                                             AL
CA
'!>
5
6
7
5
5
5
8
:l.4
A
5
7
A
4
3
3
5
6
4
7
6
3
5
',')
AM
5
10
A
5
5
7
7
P
7
0
5
4
2
5
4
A
3
3
4
4
0
5
7
4
2
7
5
1 1 :l 4
1020
1129
1151
1092
1050
1076
1049
1.058
1.079
1.114
1. 1 1 9
1.149
' 1.122
1 1 1 9
1071
1127
109 6
1100
1109
1140
1117
1103
1108
1081
1121
1122
1090
1105
1091
1096
1068
1085
1126
1 1 1 1
1126
1075
1085
1100
1092
1132
1120
1112
1086
1070
1095
1099
1103
1142
1139
1167
2
1
1
6
8
5
5
6
3
0
4
5
2
4
4
4
2
3
1
0
4
1
2
3
4
5
5
1
'•>
Al,
5
7
3
2
3
3
3
3
5
4
4
2
6
12
3
:l.
5
1
3
2
6
2
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
1531
742
'651
1023
768
3104
1920
928
1739
383
280
1759
310
716
205
461
1094
452
704
469
576
394
581
363
1146
902
978
2304
1673
4268
3213
1279
664
683
538
909
417
584
265
1057
632
511
785
675
967
1678
1164
683
0
1386
194
2189
1317
1063
1572
1289
2445
1800
1379
2522
1398
1373
5213
1207
1297
617
1062
1647
1372
1151
1544
1680
1267
2054
1326
1649
1557
1203
2857
2611
3734
4112
1767
1569
1519
1330
1283
846
1336
834
1734
1674
1022
1501
1635
2454
3701
1718
1562
1201
2103
1233
741
2253
' 839
761
360
476
962
847
2154
966
379
287
356
1675
120
305
540
235
614
373
393
143
482
581
398
378
1042
478
168
978
585
471
783
416
349
176
280
268
179
361
412
488
266
326
607
734
308
208
190
290
165
587
1547
670
625
315
369
942
765
1720
873
262
2163
314
782
25
225
511
200
400
350
440
182
333
407
271
•413
280
331
91
679
1 2 '1 2
336
453
94
308
119
173
307
138
334
347
312
264
287
1186
1913
249
145
194
292
*"90
184
153
212
778
97
139
219
254
367
352
0
425
0
6
141
162
55
209
209
48
163
108
1750
527
194
244
0
320
109
1427
156
0
87
96
793
320
224
172
115
83
270
103
407
70
398
0
124
0
60
273
124
                              140

-------
6
8
2
4
8
4
6
8
6
8
5
4
3
b
4
3
9
7
3
4
9
2
")
A..
6
3
5
'!>
3
7
2
1071
1084
1148
1101
1074
1098
108S
1108
1091
:!.:!. 06
1047
1127
1 1 1 1
1084
1094
' 1076
1122
1148
1133
1079
1109
1141
1066
1116
1142
1062
1072
1114
1122
11 54
10
2
1
6
4
6
4
4
3
3
4
5
3
'">
A..
1
5
3
4
4
3
4
5
P
'*)
2
2
0
4
0
7
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
2937
1408-
770
1503
877
1016
660
1438
765
2265
2414
1353
423
1313
984
3004
1015
356
1977
2258
1456
436
1666
1160
531
867
276
458
1554
2416
3760
3163
2175
2673
1820
1327
1573
.1 I;;- *•) "y
.1. UA-.!/
1492
2146
2810
1712
880
1270
1525
2892
1956
1340
2249
2535
1843
1324
2393
1921
1513
1437
903
849
1668
262:1
372
916
387
985
694
975
458
465
1364
726
969
498
198
649
1925
797
157
435
455
853
374
322
418
157
421
4834
592
383
2:1.86
890
248
825
591
1379
635
830
366
171
1027
550
819
357
137
414
1336
558
144
358
360
804
412
217
532
129
277
4107
524
181
1794
810
167
116
248
405
244
0
275
151
559
0
410
366
180
109
216
117
134
236
352
0
388
106
237
0
0
278
190
504
204
40
141

-------
,308 PASS  40 AREA 8
        H    AMPS
TIME
FE
S
SI
A I...
CA

8
4
6
.1.0
4
7
4
8
6

y
8
:t.
6
4
4
7
6
13
6
4
:l.
6
3
5
7
5
4
11
8
4
8
4
5
4
3
6
4
4
4
6
2
5
5
7
?
7
S
7
2

359
358
359
359
358
359
360
360
358

1066
1:1.39
1138
1087
1097
1116
1078
1103
1094
1104
1121
1123
1093
1147
1148
1095
1107
.1068
1137
1081
l:L45
1134
1166
1063
1086
1091
1106
1097
1091
1127
1132
1088
1108
1130
1114
1144
1117
1130
1117
1173

9
3
4
3
9
3
6
6
1

4
2
1 1
3
3
'!>
3
3
3
?
?
4
3
6
'"J
6
4
3 '
2
3
•••>
Ait
6
7
;>
7
1
12
3.
'•>
*«
1
5
o
<*•>
5
7
4
'•>
A..
4
2
6
8

300
300
300
300
300
300
300
300
300

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
9375
9746
10362
99 IS
9524
9820
8977
9205
9788
DATA
476
269
351
710
319
'506
684
318
769
394
259
345
170
336
0
350
354
750
360
400
251
152
221
465
588
556
311
367
376
324
443
95
116
678
1323
140
701
290
176
132

10501
10604
10080
10344
9648
9974
9730
9278
10053

1053
1217
990
1147
1013
1270
1441
1306
1582
1150
919
1086
921
1097
' 859
999
1008
1282
1150
1171
963
927
.1.120
927
1332
1234
1311
1114
1077
920
1210
876
708
1260
1519
848
1191
1115
1350
1069

0
0
12
0
0
142
0
0
72

7 1 7
382
123
742
1365
2036
1387
270
686
458
248
266
115
158
209
335
233
3070
2237
779
234
125
313
153
245
236
339
2345
2308
255
330
108
196
209
446
204
97
186
'181
1177

0
0
0
0
0
68
0
123
0

714
2 1 0
0
301
1 1 1 8
1826
1353
218
545
309
146
182
167
104
162
2.80
159
1878
1789
539
56
135
168
61
148
166
336
1785
1877
293
y y 2
81
208
154
177
75
83
118
234
1129

0
297
27
0
76
0
103
193
43

6
162
0
42
74
0
140
48
240
•i ';>^>
144
303
262
202
262
374
224
150
0
201
34
127
296
33
224
0
278
417
308
240
'71 1
A*> J« '"
145
679
0
231
426
302
311
0
122
                                         142

-------
H   AMPS
TIME
SI
AL
5
4
4
3
6
5
0
6
8
6
4
7
4
6
2
5
4
6
4
3
4
3
4
4
9
4
3
7
5
5
5
5
8
4
3
6
1
S
•8
4
4
4
10
8
9
9
3
4
4
6
5
1114
109S
1067
1090
1121
1090
1112
1018
1096
.1.090
1120
1115
1123
1124
1157
1089
1098
1160
1101
111 3
1088
1125
1121
1080
1086
1103
111 3
1030
1077
1134
1075
1131
1092
1065
1131
1124
1142
1078
1099
1092
1144
1 1 1 0
1025
1104
1094
1 1 1 6
1093
1095
1121
1027
1095
3
4
4
4
1
5
0
4
2
3
3
3
4
6
4
3
3
5
4
4-
3
0
9
3
2
5
4
4
3
2
6
3
2
2
5
5
2
6
'2
2
2
3
7
6
3
4
3
3
6
5
4
300
300
300.
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
218
471
744
536
640
241
41
355
330
833
97
194
535
1196-
573
1321
387
223
335
355
278
368
268
787
353
119
662
1184
353
109
.323
1252
1023
819
27
159
292
580
684
905
304
522
16948
1850
1405
548
83
455
303
225
340
1224
1448
971
1121
1052
601
442
625
1039
1244
1031
943
1294
1818
998
1354
1287
836
831
850
1104
1006
1003
1336
875
645
893
1714
1236
1380
1345
1678
1713
1286
978
922
831
1214
1115
1694
982
1077
1862
1251
1561
1440
1212
1508
1167
1134
1383
458
620
663
178
426
131
286
232
579
486
558
1000
389
S77
45
580
373
238
236
511
288
111
416
1363
359
269
237
727
154
231
516
166
268
329
366
277
153
977
2019
637
414
238
1203
855
346
184
99
148
141
210
321
314
456
. 431
176
167
1 1 1
75
83
458
442
503
837
378
430
157
257
295
87
212
414
205
187
415
1009
404
259
198
543
113
85
378
143
201
150
165
265
171
667
1805
426
305
260
879
489
114
120
|»« /\
DO
124
201
110
241
337
264
118
36
•223
125
336
292
263
297
89
316
120
491
47
110
352
100
209
248
367
323
426
240
46
0
122
200
0
36
192
325
357
0
226
385
234
464
367
87
192
309
199
292
67
363
148
75
97
616
                              143

-------
STOP
6
5
5
8
20
4
5
6
6
4
5
o
A..
3
4
7
1
'!>
A..
5
8
2
4
6
7
4
5
6
4
7
1
3
1109
1086
1120
1118
1080
1079
.1.099
1 1 1 5
11 OS
1082
1 1 1 0
1130
1066
1103
1089
•1074
1078
1052
1065
1 1 1 8
1090
.1. 1 3 1
1180
1163
1 1 66
1102
1082
1069
1108
1113
3
5
1
3
3
5
1
4
6
0
5
3
:l.
3
9
'•>
An
6
3
1
1
4
3
2
3
4
3
3
2
4
3
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
1149
1145 .
501
3968
'10927
3501
1109
1140
397
834
1264
640
388
1136
882
656
746
563
668
398
1244
1039
300
188
277
380
3170
1378
725
800
1852
1277
1317
1128
2105
1329
1334
1120
922
1549
1560
990
1030
1562
1092
1062
1 OS1"!
.1. A« •*,} \J
1222
1270
1092
2041
1554
1285
995
1047
797
3342
2685
1285
1166
372
468 .
321
467
329
1416
2843
2921
1314
561
2270
1874
1666
868
1638
439
846
277
1557
359
1481
370
409
259
72
244
975
2174
3423
2920
296
246
2 2 2
388
232
1159
2083
2325
869
395
1890
1643
1554
640
1 1 1 5
321
321
55
1565
331
1192
253
251
182
73
254
11 32
2557
2606
2623
77
330
138
175
484
217
44
141
315
286
0
133
0
194
113
248
304
290
254
163
48
179
275
460
281
0
94
1710
0
123
                                        144

-------
                   APPENDIX D
CORRELATIONS AND EIGEVECTORS FOR EPA- SUPPLIED COALS
                       145

-------
 1632A FG 2080X
               3235.DAT

         CORRELATIONS
MEAN SIGMA
FE 1 . 9293 8 . 4023
S 1 . 5898 0 . 3365
$T 18.3755 1.3600
AL 4 . 9257 8 . 4769
CA 1 . 3249 8 . 5945
EIGENUECTORS
U£Lf IE FE
*f l» turn '»** ««• * **'
i *>•»"• .— .»* **t y*'*". "1 "T*
~7CTl,jS^ -yj C y 1 j
f * 1 "» * ?fj t Su'Lai tli *,«^
1 ' 224^ -0 . 3838
1 8119 -8.0279
0 6065 8.8435
0 .' 3975 -0 . 7203
FE
1 . 0008
0 . 5605
0.2181
0 . 2280
-0 . 0498

:"'
0J5042
~0 . 5447
0.1292
-0.85:19
0 . 6555
3
0 . 5605 0 .
1 . 8000 0 .
0.8411 1.
0 . 8489 0 .
0.6224 -0.

SI
0.4215
0 . 5389
-0.1670
-0 . 7928
8 . 1 088
SI AL
LH
2131 8.2288 -Q.0498
0411 0.0489 8.0224
0880 0.3841 -8.8224
3841 1.8800 8.8675
8224 8 . 0675 1 . 8000

AL
8 . 4268
8 . 5526
0 . 8537
0 . 6928
8.1752

CA
-0 . 0084
0.1253
0 . 9756
-0.1503
-0 . 8998
    REGRESSIONS
S  =  2.0229 +  9.9045FE + -0.2771AL
FE =  1.5098  FECPYRT> = -8.4797
ORGANIC 3=
1.589  MINERAL S=
0.000

-------
1635 FG 2000X
 FE
 S
 SI
 AL
 CA
     MEAN
9.4094
0.6606
1.5514
                        3236.DAT

                  CORRELATIONS
         SIGMA
                  FE
S
SI
AL
                                                        CA
        0.2272  1.8000  0.0178-0.0277  g.014|  g-g£gf
        0.1737  0.0178  1.00Q0 -0.0726 -g.g37g  0.0057
* ^-r  0.9734 -0.0277 -0.0726  1.0000  0.0012  &.0g§3
0'5342  01971  00149-0.0370  0.0012  1.0000  0.1260
34723  0.6153  0.0766  0.0057  0.0063  0.1260  1.0000
 EIGENUECTORS
UALUE
V~L»Vfc»
1 . 1552
1 0893
0 9709
9ff • ^f t ^^^f
0 . 9334
0 . 8511
FE
0.3885
0.3350
-0.7805
-0 . 1993
-0 . 2966
S
-0 . 0753
0 . 6645
0.1612
0.6871
-0 . 2338
SI
-0.0016
-0 . 6436
-0 . 3678
0 . 6429
-0.1930
AL
0.6115
-0 . 1749
0 . 4780
-0.0804
-0 . 6005
CA
0.6852
0 . 0377
0 . 0328
0.2617
0 . 6779
      REGRESSIONS


  S  =  1.0583 + -0.0317CA + -0.185481

  ORGANIC S=      0.661  MINERAL S=      0.000

-------
          PHS 408 FG 2000X
                         3237.DAT
           FE
           S
           SI
           AL
           CA
MEAN

 0.6712
 1.5243
 4.7923
 1.6665
                         SIGMA
          CORRELATIONS

          FE      S
SI
AL
 3 .'3401  1.0729  0.0302  0.5610  0.0812
CA
0 2935  1.0000 -0.0432 -0.0023  0.8600  0.0302
0'2964 -0.0432  1.0000  0.0392-9.0417  0.5610
1.'2726 -0.0023  0.9302  1.0060
0.3026  0.0600 -0.0417  0.5267
      9.5267  0.0812
      1.0000  0.0223
      0.0228  1.0000
H
J>
00
          EIGENUECTORS
UALUE
1 . 5978
1.5017
1 . 0039
0.4661
0.4314
FE
0 . 0260
0.0S51
0 . 9S89
-0 . 0376
-0 . 0809
S
0 . 5557
-0 . 4408
-0.0351
-0.0100
-0 . 7040
SI
0 . 4396
0 , 5452
-0.1190
-0 . 7035
0.0216
AL
0 . 3744
0 , 6023
-0 . 0972
0.6991
-0.0912
CA
0 . 5976
-0 . 3722
0.0818
0 . 0926
0 . 6994
              REGRESSIONS
          S  =  0.7856 + -0.1110AL +  0.2765CA

          ORGANIC  S=       0.786  MINERAL 8-
                                  0.739

-------
PHS 506 FG 2000X
     MEAN
SIGMA
      3238.DAT

CORRELATIONS

FE      S
SI
AL
CA
 FE   1 3164  0 5878  1.8000  0.6880 -0.0301 -0.0626  0.1237
 S    1.9644  0.5540  0.6880  1.0000  0.0111  0-0811  0.1246
 SI   4.1851  0.3815-0.0301  0.0111  1-0000  0.4660 -0-1274
 AL   30753  03193-0.0626  8.0811  0.4660  1.0000-0.0106
 CA   15401  Si 6117  0.1237  0.1246-0.1274-0.0106  1.0000
EIGENUECTORS
UALUE
1.7336
1 . 4880
0 . 9556
0 . 5298
0 . 2937
FE
0.6851
0 . 0395
-0.1907
-0.1391
-0 . 6880
S
0 . 6784
0.1476
-0.1342
0.1560
0 . 6897
SI
-0 . 0879
0 . 6952
-0 . 0049
-0 . 7068
0 . 0966
AL
-0 . 0429
0 . 6865
0 . 2484
0 . 6509
-0 . 2037
CA
0 . 2467
-0 . 1487
0 . 9402
-0.1816
0.0132
     REGRESSIONS
 S  = -0.2305 +  0.9520FE +  0.2250SI
 FET.CLAY) =  0.0000  FE(PYRT) =  1.3164
 ORGANIC S=
  0.800  MINERAL 8=
1.964

-------
          PHS 534 FG 2000K
               3239.DAT

         CORRELATIONS
               MEAN
SIGMA
FE
S
SI
AL
CA
FE
S
SI
AL
CA
2.3614
3.1607
3 . 6834
5 . 4745
0 . 6820
1.6575 1.0080 0.9683 0.0938 0,1196 -0.0723
1.7882 0.9683 1.0000 0.0676 0.0958 -0.0523
1.0559 0.0938 0.0676 1.0000 0.6537 0.2111
0.6211 0.1196 0.0958 0.6537 1.0000 0.2423
0 . 4368 -0 . 0723 -0 . 0523 0.2111 0 . 2423 1 , 0000
Oi
o
          EIGENUECTORS
UALUE
2 . 0606
1.7142
0 . 8495
0 . 3448
0 . 0309
FE
0 . 6289
-0 . 3096
0 . 0769
-0.0151
-0 . 7088
S
0.6215
-0.3214
0.1162
-0.0139
0 . 7048
SI
0.3163
0 . 5634
-0.3113
-0 . 6967
0.0156
AL
0 . 3372
0 . 5603
-0 . 2445
0.7158
0.0127
CA
0 . 0665
0.4115
0.9077
-0 . 0430
-0.0214
             REGRESSIONS
          S  -  0.9491 -I-   1.0785FE  +  -0.0612AL
          FE =  0.3107  FECPYRT)  =   2.0507
          ORGANIC  S=
0.949  MINERAL S=
              2.212

-------
          PHS 546 FG 2000X
          FE
          S
          SI
          AL
              MEAN
         SIGMA
      3246.DAT

CORRELATIONS

FE      S
SI
AL
CA
1,5530  0.7185  1.0800  0.8753  0.0018  0.0553-0.1117
3.6031  0.7851  0.8753  1.0090-0.1050  0.0296-0.1411
8.8520  1.0551  0.0018-0.1050  1.0000  0.2627  0.1305
4.8227  0.3774  0.0553  0.0296  0.2627  1.0000  0.1283
           CA   0.6327  0.4594-0.1117-0.1411   0.1305  0.1283  1.0080
Ul
          EIGENVECTORS
UALUE
1 . 9208
1 . 3469
0 . 8829
0.7313
0.1180
FE
0 . 6836
0.1439
0 . 0922
-0.1115
-0 . 7008
S
0.6931
@ . 0660
0.1167
-0.0192
0 . 7080
SI
-0.1051
0 . 6246
-0 . 3626
-0 . 6782
0 . 0860
AL
0 . 0050
0 . 6504
-0 . 2343
0 . 7225
-0 . 0073
CA
-0 . 2033
0.4023
0.8896
-0.0721
0.0129
              REGRESSIONS
          S  =  3.1161 +  1.1089FE + -0.2561AL
          FE< CLAY ) *   1.1138  FE< P YRT > «*  0.4392
          ORGANIC S=
           3.116  MINERAL S-
                0.487

-------
          PHS 578 FG 2000X
           FE
           S
           SI
MEAN

 2.2319
 6.3396
 6.3561
                         SIGMA
                         3241.DAT

                   CORRELATIONS
          FE
S
SI
AL
CA
0.8378  1.0900  0.8667 -0.1013 -0,0751 -0.1215
0.8477  0.8667  1.0000 -0.1565 -9.1159 -0.1610
1.0952 -0.1013 -0.1565  1.0060  0.2484 -0.0364
           AL   3!0251   0^2940 -0.'0751  -0.'1159   0^2484   1.0000-0.1615
           CA   2.4743   1.0061 -0.1215  -0.1610  -0.0364  -0.1615  1.0000
Ln
          EIGENUECTORS
UALUE
1 . 9650
1 . 2974
0 . 8922
0.7158
0.1297
FE
0 . 6645
0.1178
0 . 2339
-0.0601
-0 . 6974
S
0.6781
0 . 0864
0.1491
-0.0344
0.7136
SI
-0.2152
0 . 5278
0 . 6084
0 . 5508
0 . 0400
AL
-0.1615
0 . 6583
0.0341
-0 . 7338
0.0313
CA
-0.1617
-0.5167
8 . 7428
-0.3916
0.8421
             REGRESSIONS
         S  =  4.4801 +  1.0207FE + -0.1384AL
         FECCLAY) =  0.4101  FECPYRT) =  1.8218
         ORGANIC 8=
          4.480  MINERAL S=
                        1.859

-------
                                    APPENDIX E

                         DESCRIPTION OF COMPUTER PROGRAMS
       The computer programs for the MASC analysis and MAPS analysis are
  variations of a single program and will be discussed in this appendix.
    source listing for the programs will be available from the authors upon
  request.

       The program can be divided into three logical units:   (1)  input-output
  and  normalization,  (2) stoichiometric analysis and multivariate analysis,
  and  (3)  particle size fitting.

       The first  section of the program accepts the data  which was encoded
  °n mass  storage  files by  the  scanning electron microprobe  control programs.
  The  data for  each element analyzed  by the  microprobe can be  normalized in  a
  variety  of ways.  The data is normalized  to  unit  microprobe  current.   The
  first nine points of each data  set  are  taken on a pure  pyrite sample  and
  the  average of these  points is  used  to  reduce the iron  and sulfur data  to
  ^-ratios.  A  correction for the effectiveness of  the pyrite  standard  signal
  relative  to a zero density pyrite standard is either applied to  the raw  data
 °r alternatively to  the output of the programs.   Plots  of sulfur  versus  iron
  'or other combinations of  elements)  are generated.  The main program has
 provisions for several different kinds of cuts  to the data set.    Backgrounds
 °f several kinds (dark currents, dispersed distributions, etc) may be subtrac-
 ted  from each element, particularly  iron and  sulfur.  An ellipse  respresent-
 lr»g  any  given concentration (standard deviation) is computed from the data
 means and correlation for the  bivariate distribution of sulfur and iron and
 the  ellipse is plotted on the  data set.   For  the purposes of the MAPS parti-
 cle  size  analysis fits, data points representing large pyrite rocks,  lying
 °utside  of a  2.0 or  3.0 standard deviation ellipse are discarded.  This also
 eliminates points which are extraneous glitches in the data as sometimes
 occur.  The results  of the correlation analysis (elemental  means and  standard
 deviations, bivariate and  multivariate correlation coefficients,  pyrite
 stoichiometry, and organic sulfur  content), are recorded in tabular form on
 mass  storage  for  later analysis  and  review.

      The  correlation  phase of  the  programs  takes the normalized  data  vectors
 prepared  in section one  and computes  means, standard deviations,  bivariate
 correlations,   etc.  A multivariate components  analysis (Ref.  1)  is applied  to
Multielement data sets  to  separate the pyrite,  clay  and  organic  contributions
                                     153

-------
to the various elements by calculating the eigenvalues and eigenvectors of t
correlation matrix.

     The third major subdivision of the program implements the MAPS particle
size analysis.  The data vector for iron and sulfur are binned in a given
number of bins and the resulting histogram data distributions plotted.  The
least square  fitting subroutine is called with either the  iron,  sulfur  or
and sulfur data distributions as input.  In the present analysis, each  data
bin is weighted equally but there is provision in  the program for different
weights  for each point.  A generalized  least squares  fitting procedure  yields
multiparameter fits of a  functional form, here V  (S)  as given in Eq.  II-^i  to
the data base.  The residual  from the  fit is computed and  the results plotted
along with the data histograms.
                                       154

-------
                                TECHNICAL REPORT DATA
                          (Please read Inunctions on the reverse before completing)
        NO.
         .
 EPA-600/7-80-106
                           2.
                                                      3. RECIPIENT'S ACCESSION NO.
 4- TITLE AND SUBTITLE
 Physical and Chemical Characterization of Coal
                                  6. REPORT DATE
                                   May 1980
                                                      6. PERFORMING ORGANIZATION CODE
 . AUTHOR(S)
 D. G. Hamblen,  P. R. Solomon, and R. H. Hobbs
                                                      8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
United Technologies Research Center
East Hartford,  Connecticut 06108
                                                      10. PROGRAM ELEMENT NO.
                                  TJSTE624
                                  11. CONTRACT/GRANT NO.
                                                      68-02-3116
 12. SPONSORING AGENCY NAME AND ADDRESS
 EPA, Office of Research and Development
 Industrial Environmental Research Laboratory
 Research Triangle Park, NC 27711
                                  13. TYPE OF REPORT ANC
                                  Final; 5/78-1/80
                                                                    NO PERIOD COVERED
                                  14. SPONSORING AGENCY CODE
                                    EPA/600/13
15. SUPPLEMENTARY NOTES IERL_RTP project officer is Frank E. Brlden, Mail Drop 62,
919/541-2557.
 e. ABSTRACT
               rep0rj. describes an automated scanning electron microprobe method
of analyzing sulfur forms and mineral matter in coal. The microprobe is used to
measure the spatial distribution of a number of elements (including Fe, S, Si, Al,
Ca, and K) on a scale where individual grains can be observed. These data are then
analyzed to extract the following information: organic sulfur concentration; mineral
sulfur concentration; total sulfur concentration; major mineral concentrations,
including A12O3, SiO2, K2O, and CaCO3; and stoichiometry of iron sulfide, FeSx.
The procedure is fully automated:  all of the above information is obtained on a 200 mg
coal sample in less than 15 minutes. Sulfur forms and total sulfur  were reproducible
to within 0. 1 wt %.  In addition,  estimates of the pyrite particle size for two coals
were obtained from the spatial  distribution of the Fe  and S data,  and these estimates
are compared with the results of a washability study. A commercial elemental ana-
lyzer, evaluated for use in determining nitrogen in coal, gave results that were
reproducible and accurate to within 3%.
                             KEY WORDS AND DOCUMENT ANALYSIS
                DESCRIPTORS
                                          b.lDENTIFIERS/OPEN ENDED TERMS
                                              c.  COS AT I Field/Group
Pollution
  oal
 Properties
 Analyzing
Automatic Control
 canning
Electron Probes
Sulfur
Minerals
Stoichiometry
Nitrogen
Pyrite
Pollution Control
Stationary Sources
Scanning Electron Mi-
 croprobe
Characterization
13B
08G      07B
14G
14B      07D
 3. DISTRIBUTION STATEMENT
 Release to Public
                      19. SECURITY CLASS (ThisReport)
                      Unclassified
                        21. NO. OF PAGES
                             163
                      20. SECURITY CLASS (Thispage)
                      Unclassified
                                                                   22. PRICE
EPA Form 2220-1 (9-73)
                                        155

-------