&EFK
United States Industrial Environmental Research EPA-600/7-80-106
Environmental Protection Laboratory May 1980
Agency Research Triangle Park NC 27711
Physical and Chemical
Characterization of Coal
Interagency
Energy/Environment
R&D Program Report
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH AND DEVELOPMENT series. Reports in this series result from the
effort funded under the 17-agency Federal Energy/Environment Research and
Development Program. These studies relate to EPA's mission to protect the public
health and welfare from adverse effects of pollutants associated with energy sys-
tems. The goal of the Program is to assure the rapid development of domestic
energy supplies in an environmentally-compatible manner by providing the nec-
essary environmental data and control technology. Investigations include analy-
ses of the transport of energy-related pollutants and their health and ecological
effects; assessments of, and development of, control technologies for energy
systems; and integrated assessments of a wide'range of energy-related environ-
mental issues.
EPA REVIEW NOTICE
This report has been reviewed by the participating Federal Agencies, and approved
for publication. Approval does not signify that the contents necessarily reflect
the views and policies of the Government, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/7-80-106
May 1980
Physical and Chemical
Characterization of Coal
by
D.G. Hamblen, P.R. Solomon, and R.H. Hobbs
United Technologies Research Center
East Hartford, Connecticut 06108
Contract No. 68-02-3116
Program Element No. INE624
EPA Project Officer: Frank E. Briden
Industrial Environmental Research Laboratory
Office of Environmental Engineering and Technology
Research Triangle Park, NC 27711
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
-------
DISCLAIMER
This report has been reviewed by the Industrial and Environmental Research
Laboratory, U.S. Environmental Protection Agency, and approved for publication.
Approval does not signify that the contents necessarily reflect the views and
policies of the U.S. Environmental Protection Agency, nor does mention of trade
names or commercial products constitute endorsement or recommendation for use.
ii
-------
FOREWORD
Under Contract 68-02-3116 sponsored by the Environmental Protection Agency,
the United Technologies Research Center (UTRC) is conducting a program to
develop several new automated coal analysis procedures employing a scanning
electron microprobe. The program is directed at the growing need for more
accurate and lower cost coal characterization methods precipitated by environ-
mental considerations and increased emphasis on coal conversion. The program
is divided into two main tasks. Under Task I, the new techniques of sample
preparation, data aquisitions, and data analysis are developed. In Task II,
the procedures developed in Task I are evaluated for speed, accuracy and
precision.
ill
-------
ABSTRACT
The MASC (Microprobe Analysis of in Sulfur Coal) procedure, which uses a
statistical analysis of the spatial distribution of sulfur and iron in coal to
determine the forms of sulfur (organic, pyritic, and sulfatic) has been
refined to account for the effects of mineral particle size, and the presence
of iron oxides, in order to obtain better quantitative estimates for the
mineral sulfur forms. These refinements include grinding the coal fine enough
that the particle size effects are eliminated, pressing the resulting powder
to provide a uniform smooth pellet, and adding the analysis of additional
elements to allow the determination of the clay constituents. Using the
procedures developed in this program it is possible to obtain measurements for
the sulfur forms and total sulfur which are reproducible to 0.1 wt. % and are
within 0.5 wt. % of the ASTM measurements for the forms and 0.25 wt. % for the
total sulfur. In addition, the pyrite stoichiometry is obtained (x in the
formula FeS , reproducible to 5%). Also obtained from the analysis is the
A
determination of the major inorganics (Al, Si, Ca, Mg, K, Ti), accurate and
reproducible to 5% of the measurement or 0.2 wt. %, whichever is greater.
Estimates of the pyrite particle size for two coals are obtained from the
spatial distribution of iron and sulfur in samples which were ground to 40
mesh top size, and these results are compared with washability studies for two
coals.
The time required for all of these measurements is less than 15 minutes,
and the procedure uses only a 200 mg sample of the coal.
In addition, the use of a commercial elemental analysis is evaluated for
use in the determination of nitrogen in coal, and found to give results
accurate and reproducible to within 3% of the measurement.
iv
-------
Physical and Chemical Characterization of Coal
TABLE OF CONTENTS
Page
SUMMARY . . 1
I. SULFUR FORMS 4
A. Introduction and Background 4
B. Experiment Procedures 4
C. Data Acquisition 6
D. Data Reduction 8
E. Discussion of Reproducibility 11
F. Discussion of Results 12
II. PYRITE PARTICLE SIZE ANALYSIS 19
A. Introduction 19
B. Theory 19
C. Results with Simulated Data 21
D. Results for Coals 27
E. Comparison with Washability Data 35
III. Task IV - TOTAL NITROGEN CONCENTRATION 38
IV. MAJOR INORGANICS 43
V. MASC RESULTS ON EPA SUPPLIED COALS 48
REFERENCES 59
APPENDIX A - CORRELATIONS AND EIGENVECTORS FOR CALIBRATION
COALS 60
APPENDIX B - CORRELATIONS AND EIGENVECTORS FOR WASHED COALS 78
APPENDIX C - RAW DATA FOR 330 AND 308 FLOAT COALS 96
APPENDIX D - CORRELATIONS AND EIGENVECTORS FOR EPA-SUPPLIED
COALS 145
APPENDIX E - DESCRIPTION OF COMPUTER PROGRAMS 153
-------
LIST OF FIGURES
Figure No.
1-1 Example of MASC Plot 5
1-2 Correlation of Sulfur Forms 14
\
1-3 Comparison of MASC for Total Sulfur 15
1-4 Comparison of Organic Sulfur Measurements 16
1-5 Comparison of Mineral Sulfur Measurements 17
U~l Numerically Generated Distribution Compared to the
Coal Data 23
II-2 Examples of Monte Carlo Distributions Fitted by
Particle Size Program 24
II-3 Example of Monte Carlo Distribution Fit by
Particle Size Program 26
11-4 ISGS Coal Fitted by Particle Size Program 28
11-5 ISGS Coal Analysis with Photomicrographs 30
II-6 Fitted Pyrite Distribution from ISGS Coal 31
II-7 PSOC 308 and 330 Pyrite Particle Size
Analysis 33
II-8 PSOC 308 and 330 Coals Fitted for Pyrite Particle Size . 34
II-9 Washability Study on PSOC 330 36
11-10 Washability Study on PSOC 308 37
I
IV-1 Comparison of MASC and ASTM Ash 44
IV-2 PSOC 212 Coal with 10% Kaolin 45
IV-3 PSOC 212 Coal with 10% Illite 46
IV-4 PSOC 212 Coal with 10% Montmorillonite 47
-------
LIST OF FIGURES (Cont'd)
Figure No.
V-l 1632A Coal MASC Plot 51
V-2 1635 Coal MASC Plot 52
V-3 PHS 408 Coal MASC Plot 53
V-4 PHS 506 Coal MASC Plot 54
V-5 PHS 534 Coal MASC Plot 55
V-6 PHS 546 Coal MASC Plot 56
V-7 PHS 578 Coal MASC Plot 57
vii
-------
LIST OF TABLES
Table No..
1-1 Reproducibility of Sulfur Forms for ISGS #72 Coal ... 11
1-2 Plot Symbols for Coals 13
II-l Examples of MAPS Fit to Monte Carlo Data from
Figure 11-2 25
11-2 Average Particle Radius; Versus Average Particle
Signal 29
III-l Elemental Analysis of ROSA Coal (Dry) 40
III-2 Nitrogen Measurements , 41
III-3 Elemental Analysis of Model Compounds 42
V-l Sulfur Forms for EPA-Supplied Coals 49
V-2 Mineral Mutler Analyses for EPS Supplied Coals .... 50
viii
-------
SUMMARY
Under Contract 68-02-3116 sponsored by the Environmental Protection
Agency, the United Technologies Research Center (UTRC) is conducting a program
to develop several new automated coal analysis procedures employing a scanning
electron microprobe. The program is directed at the growing need for more
accurate and lower cost coal characterization methods precipitated by environ-
mental considerations and increased emphasis on coal conversion. The program
is divided into two main tasks. Under Task I, the new techniques of sample
preparation, data acquisitions, and data analysis are developed. In Task II,
the procedures developed in Task I are evaluated for speed, accuracy and
precision.
Limitations on the acceptable levels for S09 and NCL. emissions from
£ X
power plants make the direct burning of 80 percent of our eastern and mid-
western coals (those most accessible to the majority of power plants) unlaw-
ful. Future restrictions on other emissions from major and minor mineral
components may further restrict the use of coal. The development and imple-
mentation of coal cleaning procedures requires extensive characterization of
feed coals and the products of the cleaning process, but many of the methods
for characterization are cumbersome and inaccurate. New methods for the
analysis of sulfur forms and the determination of pyrite particle size distri-
bution are needed. The ASTM sulfur forms analysis (Ref. 1) is time consuming
and costly. In addition, recent studies using the Mossbauer technique have
shown up to 50 percent error in the pyrite determination in some coals (Ref.
2, 3). The organic sulfur which is determined by difference suffers corre-
sponding errors. Development of coal analysis procedures which could improve
accuracy and cut cost and time would be highly desirable. In addition, the
development of rapid and inexpensive methods to determine the size distribu-
tion of pyrite and other minerals would be valuable for predicting the effec-
tiveness of mechanical cleaning procedures (Ref. 4).
Analysis of the organic sulfur concentration, S(0), in coal is difficult
because the organic material is intimately mixed with inorganic compounds
of sulfur. The standard ASTM method (Ref. 1) which calls for the determina-
tion of S(0) by subtracting the sulfate and sulfide contribution from the
total sulfur is complicated, and often inaccurate. The MASC (Microprobe
Analyis of Sulfur and Coal) method for the direct determination of S(0)
eliminates these deficiencies and is applicable to coal chars as well. In
addition, the elemental ratio X of iron sulfide compounds, FeSx, is also
obtained. By including other elements in the analysis, the MASC procedure
-------
also determines the major mineral concentrations as well. Other advantages of
the method include: the ability to use small samples, low cost, speed (a
complete analysis is currently being performed in approximately 10 minutes)
and the option of repeating results since the method is nondestructive.
In brief, the method is based on the differences in the spatial distri-
bution of mineral sulfur (clustered distribution) and organic sulfur (relative-
ly uniform distribution). The method uses a scanning electron microscope to
measure the spatial distributions of a number of elements of interest in
addition to iron and sulfur. The x-ray intensities for a large number of
subsamples are measured. Considering just the iron and sulfur intensities as
a first approximation if we plot these intensities in a scatter plot of iron
versus sulfur, it will be seen that the data lie along a line. The intercept
of this line on the sulfur axis represents sulfur which has no iron, i.e.,
non-pyrite sulfur; and the line has a slope which is indicative of the stoichi-
ometry of the pyrite. In addition, the average of the iron data represents
the amount of pyrite present. In this study, we have measured the spatial
distributions for five elements (S, Fe, Si, Al, Ca) in most cases. These
additional elements are needed to correct the first approximation results from
the iron and sulfur alone.
By analyzing the correlations in these spatial distributions we extract
the following information:
1. Organic sulfur - within 0.5 wt. % of ASTM measurements, reproducible
to 0.1%.
2. Pyrite sulfur - within 0.5 wt. % of ASTM, reproducible to 0.1%.
3. Pyrite stoichiometry - reproducible to + 5%.
4. Calcium sulfate - one sample was observed, accuracy not known.
5. Total sulfur - by adding the forms, a value within 0.25 weight
percent of ASTM measurements, reproducible to 0.1%.
6. Major inorganics including Si, Al, Fe, Ca, K, Mg, and Ti - values
for total major minerals were obtained by adding up these con-
stituents which were within 2 wt. % of the total values obtained
from low temperature a$hing.
For those elements which occur in coal in only one form (i.e., most of the
mineral matter constituents, such as Al^Oj), a precision of 1% and an accuracy
of 5% of the measurement can be obtained. These numbers are just those of a
typical quantitative analysis of a homogeneous sample using the microprobe.
-------
The data used in the above measurements requires a sample of coal weighing
200 mg, and the actual data acquisition time is 10 minutes for 121 subsamples
on the coal sample. To obtain information on additional elements requires an
additional 2 minutes per element. The time required is due to computer
analysis of each subs ample spectrum and may be reduced by using a faster
computer. These 121 subsamples provide enough measurements to determine the
correlations between the elements sufficiently well for the MASC analysis.
The MAPS (Microprobe Analysis of Particle Sizes) method for particle size
determination has evolved from the MASC analysis. There is a great need for
obtaining the pyrite size distribution in order to optimize mechanical clean-
ing procedures. There is obviously information about the size distribution
contained in the data. The MAPS method extracts this information through a
fitting procedure to determine an average particle number density (number of
particles per unit volume of coal) and a distribution function for the par-
ticle sizes. This information on particle sizes is found to be in good
agreement with data from washability studies on two coals.
In Section I, the MASC procedure for sulfur forms is described, and the
results for 17 calibration coals are discussed. Section II describes the
particle size (MAPS) procedure and evaluates the results in terms of washabil-
ity. Section III is an evaluation of the use of an elemental analyzer for
total nitrogen measurements. Section IV details the application of MASC to
the major minerals, and in Section V the results of these measurement tech-
niques are applied to seven coals supplied by EPA.
-------
I. SULFUR FORMS
\. INTRODUCTION AND BACKGROUND
The determination of the sulfur forms in coal using the electron micro-
probe is based on the correlation in the spatial distribution between the
various elements in coal. The method was originally described by Solomon and
tfanzione (Ref. 5). In the simplest case of a coal containing only organic
sulfur and pyrite sulfur (FeS2), with no other sources of iron or sulfur,
then the result of a measurement of those two elements over any small region
(subsample) in the coal will show a mixture of the organic sulfur and the
pyrite. If it is assumed that the organic sulfur is uniformly distributed,
and that the pyrite is spatially distributed in small, discrete pieces, then
a series of subsamples will each have the same amount of organic sulfur plus
a varying amount of pyrite sulfur. The iron measurement will show the same
variation in intensity as the pyrite sulfur, and if a plot is made of sulfur
vs iron for the various subsamples as in Figure 1-1, the data will fall on a
straight line whose slope determines the pyrite stoichiometry, and whose
intercept on the sulfur axis at zero iron represents the organic sulfur. MASC
(Microprobe Analysis of Sulfur in Coal) is an automated technique for perform-
ing these analyses, with additional elements added for determining the clay
components and for correcting the iron measurement for the presence of iron-
bearing clay. In addition, it is possible to distinguish between pyrite and
sulfate mineral sulfur, by observing the presence of a high correlation
between the sulfur and calcium.
B. EXPERIMENT PROCEDURES
The sulfur in coal analysis is performed on a Cameca scanning electron
microprobe with two wavelength-dispersive crystal spectrometers, a Tracer-
Northern TN2000 energy-dispersive spectrometer, and a Canberra stage and
column automation system, all operating under the control of a PDP 11/04
minicomputer. The MASC compute^ program acquires the data for several ele-
ments at 121 different subsamples on a coal sample and stores the data on a
magnetic floppy disc for further analysis.
Sample Preparation
The coal samples are prepared for microprobe analysis by grinding in a
tungsten carbide capsule to at least 100 mesh, and then pressing 200 mg
-------
FIG. 1-1
EXAMPLE OF MASC PLOT
0.123
79-10-115-5
-------
pellets in a standard 13 mm diameter pellet press at 20,000 psi. This provides
a reasonably smooth surface for the microprobe to analyze. A variety of
different grinding sizes were tried during the course of this program, and it
was found that the best results were obtained with coal so finely ground that
the high density particles (i.e., pyrite and clay) were small enough that
the electron beam could penetrate them completely. This eliminates particle
size effects from the microprobe analysis of sulfur forms. This requires that
the pyrite be ground to a top size of one or two microns. Since this is at
the limit of conventional dry grinding techniques, the samples were ground for
an hour.
The pressed pellets were then mounted on standard microprobe mounts with
silver Micropaint, and coated with approximately 200 A of carbon in a
sputter coating vacuum system. The carbon provides a conductive coating on
the samples to eliminate charging under the electron beam in the microprobe.
No effort was made to determine if this coating was necessary for coal sam-
ples. Previous work at UTRC used a gold coating on coal, but the gold M X-ray
lines interfere with the sulfur K lines which are used for analysis. Several
experiments were performed to verify that the carbon coating gave reproducible
and consistent results compared with the previous measurements at this lab.
C. DATA ACQUISITION
The computer program which controls the automated data acquisition has
two major phases: an initialization phase and an acquisition phase. During
the initialization phase, X-ray spectra to be used as references are acquired;
and the stage coordinates of the samples and the pyrite reference sample are
entered into the computer. The reference spectra for the energy spectrometer
consist of the relevant portion of the full X-ray spectrum for each of the
elements of interest. For example, for the sulfur standard, a spectrum is
taken on a polished pyrite flat for 30 seconds, i.e., long enough to acquire
a statistically accurate sulfur K X-ray line, and then the portion of the
spectrum containing the sulfur peak and about one peak-width of background on
either side is stored in the computer memory. Similarly, the iron peak from
the same spectrum is stored as the iron reference. In addition to sulfur and
iron, reference peaks are stored for Al, Si, and Ca, from Al^Oo, SiO^j
and CaWO, standards, respectively. The pyrite, alumina, and silica stand-
ards were used because these were considered to be most similar to the forms
of these elements usually found Jin coal. The calcium tungstate was the only
readily available Ca standard (it was already mounted in the microprobe).
Although the wavelength spectrometers were not used extensively in this
program, they can be tuned up on a desired standard, and standard intensities
and background intensities entered into the computer.
-------
Once this initial information is stored in the computer, the analysis
is started. For each sample, the computer moves the stage to the sample,
asks the operator to check the focus, magnification, beam current, and other
parameters of the probe, and then the computer initiates an analysis of the
first subsample. This consists of a full energy spectrum, the intensities of
both crystal spectrometers, the length of time of acquisition, and the inte-
grated absorbed sample current during that time. Because the subsequent
reduction of this energy spectrum takes about five seconds, the acquisition
time is set to five seconds. The stage is then moved to a different sub-
sample, and the acquisition cycle is repeated with the spectrum being stored
in a different part of the computer memory. While this data is being ac-
quired, the previous data is being reduced by doing a least-squares fit of the
reference peaks to the unknown spectrum to determine the ratio of the unknown
to the reference peaks including background correction (i.e., the usual
k-ratios) using the Tracer-Northern program 'XML1. This process repeats until
121 data subsamples have been analyzed, and then the stage moves to the next
sample and repeats the procedure. The fitting procedure will calculate
k-ratios for all references which have been entered during the initialization,
up to a maximum of 20.
Before every other sample, the same analysis is performed for nine sub-
samples on the pyrite flat to verify that the microprobe has not drifted in
energy calibration, beam current, etc.
Thus, for every sample, there is stored on floppy disc a set of nine or
more measurements (2 crystal spectrometer intensities, integrated beam cur-
rent, measurement time, and k-ratios for Fe, S, Al, Si, and Ca plus any
additional elements) at 121 subsamples plus the same data for nine subsamples
on pyrite.
The measurement time per subsample is subject to several constraints:
we wish to complete the measurement in as short a total time as possible
subject to the requirement of adequate statistics for each subsample point.
The subsample-to-subsample variation in the iron peak intensity, for example,
is typically comparable to the average value of the iron intensity. This
requires that the number of counts in the iron peak should be, say 10 or 20,
in order to observe the subsample-to-subsample variation with good statistics.
For a 1% pyrite sample under the conditions used, this corresponds to a 1/2 to
1 second sampling time. Thus, in practice, the acquisition time is limited by
the data reduction as mentioned above. The second important point here is
that the average intensities, for the coal sample as a whole, are determined
from the full set of 121 data points, which represents 10 minutes of acquisi-
tion time, which is more than sufficient.
Q
The beam conditions used are 3 x 10 ' amps beam current at 2000X magni-
fication for the finely ground samples used for the sulfur forms measurements.
At these currents, the crystal spectrometer gave essentially zero counts
-------
(luring five seconds, and so were not analyzed. The same sample current was
used in the particle size measurements, which employ 1000X for the 100 mesh
samples and 2400X for the 40 mesh samples. For some of the particle size
data, beam currents of 2 x 10-7 amps were used, and the data from the crystal
spectrometers was used instead of the energy data.
D. DATA REDUCTION
The basic measurement considered here is the measurement of the sulfur
concentration in coal. This is assumed, as first approximation, to be made
up of two parts: uniformly distributed organic sulfur, S(0), and spatially
distributed mineral sulfur, S(M), which is mainly pyrite and is correlated
with iron. We can then write that the total sulfur, S(T), is given by
S(T) = S(0) + S(M). (weight % dry basis)
If we now assume that these two constituents generate X-rays with different
efficiencies, so that
S<0) - aks(Q)
and
S(M) = bkg(M)
where the k's are the sulfur k-ratios for the two different sulfur forms, we
can solve the first equation as follows:
1 = a
k
SCO)
SCT)
kSCM)1
S(T)J '
Ci-1)
If we now have a procedure for separating the mineral and organic components
of k-ratios, we can use this equation with the ASTM values for total sulfur to
determine the values for the efficiencies a and b.
There are several possible ways of analyzing the data to determine the
relative amounts of the two sulffur k-ratios. In the event that a plot of the
sulfur data versus the iron data shows a straight line with no scatter, the
intercept of that line is kg/Q\ and the difference between the average k and
^SCO) *-s t*ie mineral ^SCM)* ^or some °f the very high pyrite coals, this is
nearly the case, but for most coals there is considerable scatter on such a
plot as seen in Figure 1-1.
There are several ways of fitting straight lines to data of this sort.
One of the most common is a conventional least squares regression of all but
-------
one of the variables as independent variables against the remaining variable
as a dependent variable. The drawback to this procedure is that it treats one
of the variables, the dependent variable, as special; that is, the procedure
assumes that all the variance observed in the measurements is contained in
this one variable, and that the remaining variables vary only because they
determine different amounts of the dependent variable. At first, we attri-
buted most of the scatter in the data to actual variations in the organic
sulfur in the different macerals making up the coal, and thus felt justified
in doing the least squares regression. Using the values for the organic and
mineral k-ratios obtained in this way in Eq. 1-1 gave values for a and b which
consistently overestimated the organic sulfur and underestimated the mineral
sulfur as determined by the ASTM methods, although they gave fair agreement
with the total sulfur measurements.
If it is assumed that the data for iron and sulfur are normally distri-
buted, then a mean and standard deviation can be calculated, and an ellipse
can be drawn about the data representing a contour of constant deviation from
the mean (see Figure 1-1). The least-squares regression of sulfur as a
function of iron is the line labeled £ in Figure 1-1, and it can be seen that
this line is the line of least slope that one might draw by eye through the
data, and is the line which gives the largest intercept and thus the least
mineral component for the k-ratios. Thus, it is not too surprising that this
least squares regression overestimated the organic sulfur. The other extreme
is the line labeled _b, which is the line going through the points of maximum
and minimum sulfur, and is the line calculated by assuming that all the
scatter is in the iron data. It could be argued that the iron data has all
the scatter, since there are random amounts of iron which are associated with
clay and not pyrite, but we expect that this effect is included by including
the clay through the Al-Fe and Si-Fe correlations. Thus we are led to select
a line which is intermediate between a_ and _b. At first glance, the line £
through the longest axis of the ellipse would appear to represent the line" of
highest probability, but unfortunately, this line is not independent of scale
changes in the two axes. This can be seen easily by considering data for
which the ellipse is very nearly a circle. By changing the scale of the
x-axis, one can convert this circle into an ellipse with its long axis par-
allel to either the Fe-axis or the S-axis. Unless there is a natural set of
units for the axes, it is difficult to determine what regression line to
choose. In the absence of any such well-defined axis units, we have chosen to
calculate the axis of the ellipse for the case where the data have equal
variances in all directions; i.e., the data are normalized by the sample
standard deviations.
Occasionally, a coal will have a very low iron-sulfur correlation, and
this two dimensional analysis is completely inappropriate. The PHS 408 coal
supplied by the EPA as part of this program is a case in point and is discussed
in detail in section V. This coal has mostly a calcium-sulfur correlation.
To deal with these situations, an analysis of the correlations of the other
-------
elements is required. A more complex problem is that presented by coals which
have significant correlations between more than a single pair of elements.
The Scranton and Upper Cliff coals illustrate this. The Scranton coal has
comparable correlations of 0.3 for the Fe-S and for the Fe-Al. The Upper
31iff coal has significant correlations for both the Fe-S and the Fe-Si, and
in addition has possible nonzero correlations for S-Si and Fe-Al. In order to
landle coals of this sort, we have considered the problem of doing the equiva-
lent of the two dimensional regressions in two or more dimensions.
If it is assumed that the various elements are linearly related, that is,
that the sulfur k-ratio is a linear function of all the other k-ratios, then
any of the regression lines discussed above can be calculated from the sample
means, the sample variances, and the correlations between the measurements.
This information is easily computed from the data sets for all the elements
and is collected in tables in Appendix A. The problem of finding the major
axis of an ellipse is easily generalized to the n-dimensional case of finding
the axes of an n-dimensional ellipsoid, and turns out to be a straight-forward
eigenvalue problem (Ref. 6). The eigenvectors calculated for these correla-
tion matrices are just the vectors parallel to the axes of the ellipsoid
through the means of the data, and the eigenvalues associated with each
eigenvector represent the relative amount of the total variance which can be
explained by assuming that the data fall on the line determined by the eigen-
vector.
An examination of the eigenvectors can be informative: the components of
the eigenvectors the relative amounts of each of the elements required to make
up the eigenvectors. Usually, one of the two most likely eigenvectors will
have large amounts of iron and sulfur, and small amounts of the other three
elements, indicating that iron sulfide is present in the coal. In these
cases, the other of the first two eigenvectors will usually have large compon-
ents of aluminum and silicon, indicating clay. That is, the analysis de-
scribes the coal as being pyrite for one vector and clay for the other. This
is the case for the PSOC 308 coal, for example. Another common situation is
for the first eigenvector to be made up of equal positive amounts of iron,
sulfur, silicon, and aluminum, indicating pyrite plus clay; while the other
eigenvector has comparable amounts of the elements, but the aluminum and
silicon are negative, indicating pyrite minus clay. That is, the analysis
describes the sample as having total mineral matter as the most likely vector,
with the difference between the two forms of mineral matter being the next
most likely. An example of this case is the Montana Lignite coal, labeled LIG
in Appendix A.
For the sulfur in coal, we are interested in determining the plane
surface which goes through the two largest dimensions of the 5-dimensional
ellipsoid. This is equivalent to stating that of the five dimensions measured,
three have little or nothing to do with the sulfur, and we find the surface
which is orthogonal to these three least probable eigenvectors. This gives
10
-------
three equations among the five variables, which can be solved to give an
expression for sulfur as a function of any two of the other four variables.
The computer program described in Appendix E is set up to choose the two
most significant variables to give the regression equations shown in the
tables in Appendix A. Since pyrite is so common in coal, iron is included
if it has any significant weight in the first two eigenvectors, even if it is
not one of the most significant variables. In the cases where iron is one of
the variables, we then assume that the remaining variable determines a correc-
tion to the iron for the presence of clay, and an amount of iron due to clay
is calculated by extrapolating the clay to zero, holding sulfur fixed at the
organic value. The organic sulfur is calculated by extrapolating both the
mineral variables to zero. Often the mineral and organic sulfur calculated in
this manner will be unreasonable in some respect (i.e., negative values), and
this is usually caused by including the clay regression when the correlation
with the clay is very small. In these cases, the clay constituent in the
regression is set equal to its mean value.
The point to doing the regressions in this manner is that it distinguishes
the cases where a simple two dimensional Fe-S analysis is not appropriate. In
the cases where a simple two-dimensional analysis is sufficient, this five-di-
mensional analysis gives the same answers; but when the coal has mostly
CaSO^, for example, the Fe-S analysis misses completely, whereas the five-
dimensional analysis rejects the Fe completely as in the PHS 408 coal, or
modifies it as for the Scranton coal, and the Upper Cliff coal.
E. DISCUSSION OF REPRODUCIBILITY
A series of measurements were performed on one coal, the ISGS coal, to
determine the reproducibility of the technique, and the results showed that
the sulfur forms are reproducible to about 0.1 percent in sulfur k-ratios, as
shown in Table 1-1.
TABLE 1-1
REPRODUCIBILITY OF SULFUR FORMS FOR ISGS #72 COAL
(average of 10 measurements)
Organic sulfur k-ratio 3.86 +_ 0.09
Mineral sulfur k-ratio 0.55 +^ 0.11
x in FeSx (k-ratios) 0.945 +_ 0.05
We have not summarized the data on the slope of the sulfur-iron regression
in this report because most of the coals considered have either had a slope of
11
-------
nearly 1.0 in the k-ratio plots (or 2.0 in the weight percent basis) indicat-
ing near stoichiometry in the pyrite, or else they have had a small enough
amount of pyritic sulfur that the regression is not meaningful. However, this
slope information can be very useful in considering the behavior of treated
coals and chars where the stoichiometry of the pyrite is modified. In addi-
tion to the reproducibility of these sulfur forms k-ratios, the correlations
for these data sets were reproducible at the +_ 0.1 level. Unfortunately,
these data were acquired before we had stabilized our procedures, and the data
are for 100 mesh coals, which makes the conversion to weight percent unrelia-
ble for these data.
F. DISCUSSION OF RESULTS
The calibration constants a and b in Eq. 1-1 were determined using a set
of seven Pennsylvania State Coal Bank coals and a coal from the US Geologic
Survey, ISGS #72, which was used in a round-robin interlaboratory compari-
son. These eight coals are well characterized as to sulfur forms, and yield
values for a and b of 0.63 and 1.12, respectively (Figure 1-2). The plot
symbols used are summarized in Table 1-2.
Using these empirically determined calibration constants, the sulfur
forms measurements from MASC are compared with the standard ASTM techniques
for total sulfur (Figure 1-3), organic sulfur (Figure 1-4) and mineral sulfur
(Figure 1-5) for the above eight coals plus nine additional coals whose
sulfur forms had been measured by a commercial laboratory. Except for the two
coals plotted as 1 and 3, the agreement between the ASTM method and the MASC
method is within about one-half weight percent sulfur. The ASTM methods for
sulfur forms (Ref. 1) use a dilute HC1 extraction to remove sulfate sulfur,
which is then measured by precipitation of the sulfate as BaSO^ using
Bad-. The sulfate-free coal is then treated with dilute HNO.J to remove
the pyrite, which is then determined by measuring the iron, since some of the
organic sulfur is removed by the nitric acid wash. Organic sulfur is deter-
mined by difference of the pyrite and sulfate from the total sulfur. The
total sulfur is determined by one of three methods (Ref. 1). These total
sulfur measurements appear to be quite reliable in practice, so that the
agreement between the ASTM and the MASC total sulfur is the most meaningful
comparison. The accuracy of the ASTM sulfur forms, however, has been the
subject of considerable controversy, suggesting that the scatter in Figures
1-4 and 1-5 could be in either !the ASTM or the MASC measurements. The agree-
ment for the total sulfur indicates that the MASC forms is the better one.
The agreement for the total sulfur is remarkable since the ASTM method is a
direct measurement for total sulfur whereas the MASC method uses the sum of
the forms.
12
-------
TABLE 1-2
PLOT SYMBOLS FOR COAL
Plot Symbol Coal
A PSOC 103
8 ISGS #72
G PSOC 170
J PSOC 212
M PSOC 268
T PSOC 308
V PSOC 330
4 MONTANA LIGNITE
9 BuMik 40659
E Scranton, ND
1 Buelah, ND
5 Montana Savage
7 Upper Cliff, AL
3 Rosa, AL
F Black Creek, AL
6 TRW #2 (WV)
2 Utah
13
-------
CORRELATION OF SULFUR FORMS
1C
I
O
C/)
<
O
i-
QC
CE
CO
CD
cc
O
0.8 1.2
MINERAL SULFUR K-RATIO/TOTAL SULFUR ASTM
1.6
2.0
P
rb
-------
COMPARISON OF MASC FOR TOTAL SULFUR
6.0
£
i
o
u
1.2
2.4 3.6
TOTAL SULFUR ASTM WEIGHT %
6.0
P
to
-------
COMPARISON OF ORGANIC SULFUR MEASUREMENTS
3.0
(D
I
O
01
0.6
1.2 1.8
ORGANIC SULFUR ASTM WEIGHT %
2.4
T]
O
-------
COMPARISON OF MINERAL SULFUR MEASUREMENTS
o
I
I
(D
ty 3.0
QC
CO
tr
1.0
2.0 3.0
MINERAL SULFUR ASTM WEIGHT
4.0
5.0
cn
-------
The two coals which do not agree are clearly high in pyrite according to
the MASC data. The No. 1 coal, Beulah, North Dakota, showed a very high
correlation between the iron and sulfur, with a slope that indicates pyrite.
The No. 3 coal, Rosa, also had a very high iron content, but it has a slope
between iron and sulfur that would be more indicative of FeS rather than
FeS2- In both cases, the samples are clearly not as low in mineral sulfur
as the commercial laboratory measurements would indicate.
18
-------
II. PYRITE PARTICLE SIZE ANALYSIS
A. INTRODUCTION
The MAPS (Microprobe Analysis of Particle Size) method for particle
size determination has evolved from the MASC analysis. There is a great need
for obtaining the pyrite size distribution in order to optimize mechanical
cleaning procedure and it is toward this use that the current pyrite particle
size analysis is targeted. It was also believed that a knowledge of the
sulfide particle size distribution would be necessary to correct sulfide
concentration from the MASC analysis. However, it has been found both easier
and more accurate to grind the coal very finely prior to the MASC analysis,
thereby exposing all the pyrite as small particles whose x-ray signal is
proportional to volume.
In this section, the basic theory of the MAPS method will be outlined.
A series of studies will be presented to show that the method is capable of
extracting the desired parameters from the noisy data sets. Limits will
be discussed on the amount and type of data needed for the analysis. And
finally, the analysis of several coal samples will be presented and the
results related to washability data developed for these coals.
B- THEORY
There is pyrite particle size information contained in the MASC analysis
data but extracting a size distribution is difficult because of several
factors. First, a subsample at one scan position of the scanning electron
microprobe can encompass several pyrite particles resulting in an x-ray signal
intensity that represents the sum of the signals from the individual particles.
The signals received are for elemental iron or sulfur and can have varying
amounts of other iron or sulfur containing compounds such as iron oxide or
organic sulfur containing compounds mixed into them, Variability in pyrite
stoichiometry as well as fluctuations in each of these other possible compounds
contribute to the noise in the data. Counting noise is always present in the
detection of the x-ray signals. The penetration depth, 5, of the electron
beam and the absorption of the emerging x-rays are such that for small par-
ticles (d£fi) the x-ray intensity is proportional to the volume of the
Particle while for large particles (d»5) the intensity is proportional to the
cross-sectional area of the particle. The coal has a rough surface and the
Pyrite particles are not all on the surface so that ones at greater depths see
a weaker electron beam and contribute a small signal.
19
-------
All of the preceding effects have been considered in the study and proced-
ures have been devised for dealing with them.
Considering a distribution of pyrite particle sizes f(r), it is possible
to relate the signal, s, from an individual particle to its radius, r, depth
D in the coal matrix, and the efficiency of the detection process, rj, by
the following approximate relations
S
_D/A
e ]
[n
f
i)
1 < r < 6
2 ~ ~
(II-l.
- r
We have assumed that the density of pyrite particles is sufficiently low that
the possible shadowing of one particle by another may be ignored. From these
relations it is possible to consider a distribution, <£(s) of signals from
individual particles. The efficiency and depth factors in square brackets in
Eq. II-l are taken into account in an overall normalization efficiency as the
data in each data set is normalized to pure pyrite signals extrapolated to
zero density.
Assuming the distribution <|>(s) to have a mean p and variance a the dis-
tribution of signals i//(S,n) expected from a single subsample can be constructed.
For a scan which contains pyrite particles randomly drawn from the distribution
for n » 1
and where
_ (S-nn)'
(11-2
n
E
1=1
(n-3
Since the number of particles in the subsample should be distributed according
to Poisson statistics, we expect the measured signal distribution to take the
form
20
-------
00
I//CS) £ N (n,n) MS.n) (II-4)
nmo
where
N (n,n) = nne"n
n!
and n is the average number of particles per subsample. The MAPS sizing
procedure consists of least squares fitting the distribution (s)) to a mean radius of the particle size distribution, Eq. II-l is used.
The normalization of the data already includes the terms in square brackets in
Eq. II-I as well as a factor of the area of the scan subsample.
The MAPS fits are accomplished by taking the MASC data, SirQn and Sgulfur
from a large number of subsamples, N, and forming a distribution by arranging
both S^r and S in from 10 to 30 bins. The least squares fitting
procedure would be expected to be more sensitive to M» CT, n for a distribu-
tion with a large number of sample bins. However, the number of subsamples in
the data set, N, sets a stringent limit on the number of bins that can ac-
tually be utilized and conversely the need for sufficient detail in the dis-
tribution sets a lower limit on the number of bins that can be used and there-
by a limit on the number of subsamples needed for a good particle size deter-
mination. Poisson counting statistics for the binning procedure itself im-
Plies that to retain 10% accuracy near the peak of the distribution, the bin
nearest the peak needs about 100 data points. To spread the distribution
over 10 bins then requires N=300 to 400 subsamples for a reasonable MAPS fit.
*n the coal sample fits presented later, N ~ 950 subsamples are spread over
a total of 20 bins including the tails of the distribution.
c- RESULTS WITH SIMULATED DATA
To examine the accuracy with which the parameters u, cr and n can be
extracted from a data set and to help develop the technique in using the MAPS
fitting procedure, a Monte Carlo simulation of the scanning electron micro-
Probe data acquisition procedure was developed. The simulated data is then
analyzed by the MAPS fitting procedure. The simulation produces data for an
assumed distribution with a selected /j, a and n by generating a random
number for the number of particles to appear in a simulated subsample chosen
with Poisson statistics with mean n and then chooses signal strengths at
random from the distribution (s) with the appropriate fj. and or. These indi-
vidual particle signals are summed as in Eq. II-3. To this SMonte Carlo
21
-------
additional signal is added to represent other compounds (e.g., iron oxide or
organic sulfur) and additional random noise is added to simulate the variabi-
lity in these quantities and counting noise in the x-ray detection procedure.
This variation could represent an actual concentration variation or it could
be due to a variation in the amount of coal actually contained in a given
subsample due to surface roughness effects. Also, examination of real data
sets shows many with a non-zero minimum for the iron signal which is attri-
buted to the presence of finely dispersed clay particles. Since the clay
particle sizes are typically an order of magnitude smaller than the pyrite
particles, it appears in the data set as a constant background.
After these additions, the data is normalized by an overall factor. No
such points are selected to produce a single data set. An example of such a
data set is presented in Figure II-l along with a real data sample from PSOC
308 coal. This simulated data set was generated by using parameters from a
MAPS analysis of the coal data set and shows that the Monte Carlo simulation
of the MASC data aquisition program can produce realistic data.
Many data sets were produced by the simulation by varying the basic param-
eters or by generating a series of different data sets (different random
numbers) all with the same parameters. Each data simulation was fitted with
the least squares MAPS procedure and the best fit parameters were compared to
the input parameters in the simulation. Three examples are shown in Figures
II-2(a), (b) and (c). In each figure, the upper histogram represents the
simulated data distribution function 4> (%onte Carlo^ ^or i-ron while the
lower histogram is for sulfur. The dashed lines through the histogram distri-
butions are the best fit of / (S) and can be seen to be quite good. These
data sets were generated with a least N=1000 subsamples each and are therefore
fitted with more bins than are used when fewer data points are available.
Table II-l lists the input and best fit parameters for each of these data
sets. The agreement is excellent and shows that the system works even for many
unusual distributions. The one shown in Figure II-3 was generated with only
one particle (n=l) of a fixed size (CT«/H) per subsample. The occaional
subsamples with n=2,3 produce individual peaks in the data signal distri-
bution i// (SDATA). By varying the form of the underlying distribution
function $ (s), different distributions of radii may be tried such as normal
or lognormal. However, as long as the distribution is described by a mean, y,
and variance, a2, and as long as n»l, i//(s) as given by II-2 applies and
the MAPS procedure works reasonably well. In actual practice, the requirement
for n»l seems to be satisfied for n of 2 or 3. There is also an
upper limit on n £ 15. If n grows beyond this, there is too little
difference between i// (S) and a gaussian distribution (Poisson distribution
N(n, n) goes over to a gaussian distribution in the limit of large n)
and the fitting procedure is unable to pick out a good best fit. This means
that the scan subsample size should be chosen in such a way as to fall within
22
-------
FIG. 11-1
NUMERICALLY GENERATED DISTRIBUTION COMPARED TO COAL DATA
DC
u
CO
IRON
a) PSOC 308 COAL
IRON
b) SYNTHESIZED DATA SET WITH ± 25%
VARIATION IN S(0)
79-03-32-1
-------
EXAMPLES OF MONTE CARLO DISTRIBUTIONS
FITTED BY PARTICLE SIZE PROGRAM
(a) j
tmi i LJ ir*
RSO 8.89(11
GflrtW- 8.88211
"4.652
3MMCM
GENERATED WITH
a = 0.004
o = 0.002
n = 5
(b) i.
W!
1
RSO 8.
GflttW- 8.8053*
5.313
NORMRLI2ED flfitfl 1
a = 0.010
a = 0.004
n = 5
(c)
RSQ 8.8832?
CfWMft- 8.88311
9.885
5 = 0.003
a = 0.003
TT = 10
24
-------
TABLE II-1
EXAMPLES OF MAPS FITS TO MONTE CARLO DATA FROM FIGURE I1-2
Data f Input V Best Fit g Input p Best Fit n Input n Best Fit
Figure II-2
(a) .0040 .0042 .0020 .0021 5 4.7
(b) .0100 .0091 .0040 .0040 5 5.3
(c) .0030 .0033 .0030 .0030 10 9.0
I1, ° are in arbitrary units
-------
EXAMPLE OF MONTE CARLO DISTRIBUTION FIT
BY PARTICLE SIZE PROGRAM
GENERATED WITH
a = 0.010
o = 0.005
~ = 1
e ooooat j; |RON
a) SULFUR VS. IRON PLOT
01
* OOCXVE c:
RSQ 0.ee996
* 0.985
b) IRON AND SULFUR DISTRIBUTION FITTED
26
-------
the limits 5 £ n 15. In practice, other considerations tend to push
the scan magnification ($ 1/subsample size) to high values. Measurements
are therefore made at the lower limits for n and for the validity of the
aPproximation of I (fr^s) by >p(s).
D- RESULTS FOR COALS
As a test of pyrite particle sizing procedure, an extensive data set
run on the microprobe on ISGS #72 coal was used. Figure II-4 shows the
results of two fits of ISGS coal by the MAPS sizing procedure. This data set
contains approximately 1000 subsample data points to reduce the statistical
sampling error. In the fitting procedure, the iron data (upper histogram) and
sulfur data (lower histogram), which are taken independently, are treated so
that the iron data may be fitted and the fit related by the best fit slope and
1ntercept from the MASC procedure to the sulfur data. Similarly the sulfur
data may be fitted alone and related by the slope and intercept to the iron
data. The data for iron and sulfur may both be used in the fit, thereby
doubling the effective number of data points contributing to the data distri-
bution for ₯(S). In Figure II-4(a) the iron alone was used for the dashed
fitted curve yielding \i = .00372, a = .00296, and n = 2.0. If the sulfur
d«ta alone is used (Figure II-4(b)) the results are almost identical: p =
00385, a = .00306, n = 2.3. The iron fit in (a) and the sulfur only fit
ln (b), each show slightly better fits near the peak of their respective
distributions. For this data set, the scan subsample size is lOOp by lOOy for
a magnification 1000X. The penetration depth in the pyrite at the accelerating
voltage used is & = 1.8 p. Using Table II-2 prepared using Eq's II-l for this
voltage, we find r = 2.7p for this ISGS coal data.
A series of 55 photomicrographs were made at the same time the data was
being taken on this ISGS cool. The 55 data points were identified in the full
J-000 point data set and are shown enclosed by squares in the standard sulfur
Versus iron plot shown in Figure II-5(a). The pictures represent a good
sampling of the full data set; so much so that a MAPS fit of the 55 point data
Set yields best fit parameters almost identical to the results shown in Figure
**~4. with so little data, both the iron and sulfur data were fit together to
lraprove the statistics. The histograms from these data together with the best
are shown in Figure II-5(b). Samples of these photographs are included as
II-6. These are taken using Fe x-rays, each dot on the photograph
rePresenting an emitted Fe x-ray. The three pictures at the bottom of Figure
*I~6 include very large areas with high Fe concentration which we call pyrite
r°cks. These rocks appear far out in the high pyrite tail of most data sets
atld are separated in the particle size fitting procedure as these rocks form a
Separate size distribution. The upper six photographs are representative of
the data included in the fit. They show a finely divided Fe background and a
of pyrite particles of varying sizes (similar photographs taken with S
27
-------
ISGS COAL FITTED BY PARTICLE SIZE PROGRAM
-ai
IRON-PYRITES IN COflL
1009 POINTS U PICTl*
RSQ - 0.083T2
GflMMfl- 0.80296
. - 1.967
iwtn er-«
a) ONLY IRON DISTRIBUTION FIT
mun-r 1*1 ic.0 11 tUH.
e.eoeeee-ei
-j.eoeeee-ei
POINTS u PICTUR i
RSO 8.60385
GflMMfl" 0.08386
. 2.266
b) ONLY SULFUR DISTRIBUTION FIT
23
-------
TABLE I1-2
AVERAGE PARTICLE RADIUS VERSUS AVERAGE PARTICLE SIGNAL
For Penetration Depth 6 = 1.8
n
(Microns)
.2
.4
.6
.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
5.0
6.0
S = M x subsample area
= p x (10 /Magnification)
.03
.27
.91
2.2
4.1
6.1
8.1
10.2
12.2
16.7
22.2
28.5
35.7
43.9
52.9
62.9
73.7
85.5
98.0
112.0
193.0
297.0
29
-------
ISGS COAL ANALYSIS WITH PHOTOMICROGRAPHS
0ee POINTS u PICTIJR
FESX- ».98E» _ // f-]
a) SULFUR VS. IRON PLOT WITH
POINTS WHERE PICTURES WERE
TAKEN INDICATED
-ei
IRON-PYRITES IN COflL
55 POINTS U PICTURES
RSQ 8.08383
Gflttlfi- 0.80283
* - 2.905
-ei
NORMRLIKO flKR
-Pnerk.
b) PARTICLE SIZE FIT OF POINTS
IN PICTURES
30
-------
FIG. 11-6
FITTED PYRITE DISTRIBUTION FROM ISGS COAL
'ROCKS" DISCARDED BEFORE FIT
79 06-136-1
31
-------
x-rays confirm that for this coal these are indeed pyrite particles).
The background Fe may come from highly dispersed fine pyrite particles or
other Fe compounds and is sometimes subtracted from the data. The sum of the
areas of all the remaining particles in one frame represent the data used in
the computer particle size fitting procedure. From the MAPS fit of the data
sets as shown in Figures II-4 and 5, we found average particle radii of 2.7y
or 5.4y diameters. This represents a very good fit of the full distribution in
both Fe and S and is also in excellent agreement with the photographic sample.
As a comparison, in Figure II-6, the bottom middle picture of the six contains
two nearby pyrite particles with diameters of 5y and 8y.
Two other samples of coal analyzed by the MAPS procedure are PSOC 308 and
PSOC 330 coals. The sulfur versus iron plots for the N=950 subsample data
sets are shown in Figures II-7(a) and (c). The ellipses shown in the figures
represent the 2.0 standard deviation ellipses for a bivariate normal distri-
bution with means determined by the data and a correlation coefficient of 0.76
for the 308 and .98 for the 330 coal. The lines represents the semi-major
axes of the ellipses.
The data points near or outside of the ellipses in Figure II-7 represent
subsamples containing pyrite "rocks" as shown at the bottom of Figure II-6.
The rocks are not well represented by the distribution functions *y(S) and form
a small but very long tail for the data distributions. Figures II-7(b) and
(d) show the data subsamples in the sulfur versus iron plot that are elimin-
ated by the 2.0 standard deviation pyrite rock cut. For the 308 data set they
represent 48 out of 968 subsamples or just 5%. However these large rocks
contain 23% of the iron signal and when the volume effect is taken into
account-possibly 50% of the total pyrite volume in the coal. Similarly, for
the 330 coal, they represent 6% of the data points, and 30% of the iron
signal. These large rocks seem to represent a very uniform distribution up
toward the limit imposed by the subsample size - a diameter of about 40y -
rather than the tail of say a log-normal distribution. Further, for washabil-
ity criteria, the large rocks represent an easily removed background. There-
fore to simplify the particle size fitting procedure by limiting the number of
bins that must be processed in the analysis, a cut is made in the data throw-
ing away all data samples outside this 2.00 ellipse. The data thus discarded
are shown in Figure II-7(b) and (d).
The raw data for PSOC 330 coal also contained a considerable gap on the
low side of the iron distribution, presumably from lightly dispersed iron in
clay particles. This gap represented 11% of the mean value of the iron signal
S~iron' This iron background has been substracted from each iron value
and the resulting data is shown in Figures II-8(c) and (d). This results in
moving the iron histogram in Figure II-8(d) over to the S£rQn = 0 axis and no
bins on the left have been lost in this renormalization process. The abrupt
32
-------
PSOC 308 AND 330 PYRITE PARTICLE SIZE ANALYSIS
FIG. 11-7
a)
308
U.
,j
j
CO
IRON
ALL DATA
C)
330
a
D
LL
D
00001 00
1.839
3P PflSS 48 fiPf« 1
IRON
b)
I
g
1 '«*>OE..oe
*»
IRON
REJECTED AFTER 2(7 CUT
d)
I OOOOE-00
l?P PflSf MP flPf.fl 1
cc
b nr
IRON
79_11_6_3
33
-------
PSOC 308 AND 330 COALS FITTED FOR PYRITE PARTICLE SIZE
I!
)
I
V)
VOPOOOt-Pl
IRON
70% Pft^';. H0
NOB«MLl?Eb
DATA USED FOR FIT
c)
330
LI
'
u
PARTICLE SIZE FIT
d)
PI
IRON
! '
34
-------
cutoff of this and many other coal distributions on the low iron side represent
good evidence for the dispersed iron. The apparent presence of iron in clay
for PSOC 330 and none in PSOC 308 is also borne out by the multivariate
Analyses including elements abundant in clay particles such as Si and Al and
is discussed further in other sections. No abrupt gap is observed in the PSOC
308 coal (Figures II-8a, b).
The data after the dispersed iron subtraction and the pyrite rock cutoff
was binned in 30 bins along the iron signal axis and the resulting distribution
fitted by the MAPS procedure. The MAPS fit for the PSOC 308 coal yields a =
°.0054, u - .0075, n = 6.3 (Figures II-8b). The fit for the 330 coal re-
sulted in a = .0086, U = .0108, and n = 2.2. These data were taken with a
magnification of 2400X or a subsample size of 42w x 42u. This yields an
average radius of 1.5H for the 308 and 1.9 for the 330.
E' COMPARISON WITH WASHABILITY DATA
There are clearly differences in the particle size distribution between
PSOC 308 and PSOC 330. The differences in the distribution of rocks is
evident in Figure II-7. PSOC 330 has a much higher number of large pyrite
rocks. PSOC 308 has fewer high sulfur-high iron particles and some of those
aPPear not to be pyrite as evidenced by their non-pyrite sulfur-iron stoichi-
°n»etry. The distribution of small pyrite particles is also different as
evidenced in Figure II-8. PSOC 330 has a wider distribution of sulfur and
lron intensities which is indicative of a higher concentration of larger
Particles. This indication is confirmed with the particle size analysis which
shows the average particle radius for PSOC 330 to be 1.3 times that for PSOC
08. This gives an average pyrite particle weight for PSOC 330 which is more
than twice that for PSOC 308.
A washability study was performed on these two coals to determine whether
predicted differences in particle size distribution was apparent in their
ease of cleaning. Samples of the 40 mesh coal were ground to pass 100, 200
and 325 mesh and subjected to centrifuging in 1.4 and 1.6 specific gravity
fluid. The results are shown in Figures II-9 and 10. Figure II-9 for PSOC
30 shows substantial scatter in the data but indicates excellent cleaning
characteristics for particle sizes of 100 mesh and below. In view of the high
c°ncentration of very large pyrite particles in this coal, the scatter in the
ata seems to be a sampling problem. Figure 11-10 for PSOC 308 shows a dif-
fefent cleaning behavior. There is a much more gradual fall off of pyrite
°oncentration with decreased particle size and incomplete cleaning even at 325
These data are consistent with the particle size distribution results
suggest the desirability of further work on these techniques to allow
prediction of the washability potential of a coal.
35
-------
WASHABILITY STUDY ON PSOC 330
3.0
2.5
2.0
u:
DC
03
cc
UJ
z
1.5
1.0
0.5
-------
WASHABILITY STUDY ON PSOC 308
3.0
f
2.5
2.0
1.5
CO
CL
LU
Z
1.0
0.5
u>
I
I
U1
to
0
RAW SAMPLE
A 1.4 FLOAT S(M)
O 1.6 FLOAT S(M)
t
_L
J_
AS RECEIVED
40 MESH
100 MESH
PARTICLE SIZE
200 MESH
325 MESH
O
-------
III. TASK IV - TOTAL NITROGEN CONCENTRATION
There is a need for improving the nitrogen concentration measurements in
coal. The standard ASTM method (Ref. ]) which uses a Kjeldahl digestion is of
questionable accuracy for tightly bound nitrogen compounds found in coal. The
method is also time consuming. The purpose of TASK IV was to evaluate an al-
ternative procedure for nitrogen analysis.
Elemental analyses of nitrogen in coal were performed with a Perkin-Elmer
Model 240 element analyzer. The Model 240 performs an automated Pregl-Dumas
analysis on approximately 2 mg samples. These samples are taken from a larger
sample which has been finely ground to insure that the small samples are repre-
sentative. The automated analysis takes 15 minutes per sample to perform and
yields the ash weight as well as the carbon, hydrogen, and nitrogen weights.
The Model 240 is connected to a PDF 11 computer as is the weighing balance so
that the recording of results and data reduction are all automatic. Access to
the balance and the Model 240 is through a dry box so that the samples are
always maintained within a dry environment. Table III-l illustrates the typi-
cal reproducibility of measurements. Reproducibility from one run to the
next is typically + 3% for nitrogen and hydrogen +_ 1% for carbon, and _+_ 5% for
ash and missing.
To evaluate the accuracy of the PE 240, coal samples whose nitrogen
concentrations had been determined by standard ASTM methods were measured.
The results for nine coals are summarized in Table III-2. Seven of the coals
were supplied by The Energy and Environmental Research Corporation as part
of EPA's Fundamental Combustion Research program, one coal comes from the
Pennsylvania State University coal bank and one (ISGS #72) was supplied as
part of a round robin test by the US Geological survey. The agreement between
the PE 240 results and results determined by ASTM methods is typically +_ 10%.
The question is, which results are mor^ accurate? The most carefully handled
and measured sample is the ISGS coal. 'But even here, the ASTM nitrogen value
ranges from 1.01% to 1.39%. The reproducibility of ASTM nitrogen determina-
tions on two other coals, Rosa and PSOC 170 also shows substantial variation.
To obtain an independent check on the PE 240 accuracy, 3 model compounds
were measured. The compounds were chosen to represent the kind of nitrogen
structures expected in coal. The results for the three compounds are listed
in Table III-3. The variation between the PE 240 value and the theoretical
value is within + 1%.
38
-------
In summary, it appears that the PE 240 gives accurate and reproducible
results for the kind of nitrogen compounds found in coal and probably for
coals themselves. The accuracy of the Kjeldahl digestion is in question and
needs further study.
39
-------
TABLE III-l ELEMENTAL ANALYSIS OF ROSA COAL (DRY)
SAMPLE AND ASH MT HEIGHT * ,_.^
SAMPLE WEIGHT ASH UT NITROGEN CARBON HYDROGEN ASM MISSING
SON'
Fresh
Sample
AU
234
235
236
237
238
239
8.8858888
232= ROS-S
233= ROS-S
ROS-S
ROS-S
ROS-S
ROS-S
ROS-S
ROS-S
2.269
1.856
2.582
2.421
2.486
2.124
2.865
2.988
8 243
9.195
9.259
8.248
8.242
8.248
8.212
8.293
8 DRY AUER 2 318 8.241
1.49
1.58
1.55
1.55
1.61
1.53
1.63
1.53
1.56
76.89
76.67
76 15
75.51
76.58
75 39
76 58
75.22
76.81
4.29
4.24
4 29
4.16
4.46
4.28
4.48
4.28
4.29
18.75
18.51
18.35
9.91
18 86
11.39
18.27
18.88
18.48
7.38
7.81
7.66
8.86
7.29
7.58
7.28
8.99
7.74
-------
TABLE III-2
NITROGEN MEASUREMENTS
AVG.
ULTIMATE
ROSA
ALABAMA
1.51
1.55
1.58
1.52
1.54
1.74 EER #1
1.53 EER #2
BLACK CREEK
ALABAMA
1.87
1.91
1.88
1.89
1.79 EER
UPPER CLIFF
ALABAMA
1.57
1.54
1.58
1.56
1.46 EER
TRW #2
1.42
1.33
1.39
1.38
1.35 EER
UTAH
1.49
1.54
1.51
1.62
1.54
1.41 EER #1
1.42 EER #2
ACRIDINE
7.77
7.82
7.82
7.80
7.82 THEO
AVG.
ULTIMATE
PSOC 170
1.36
1.41
1.42
1.40
1.41
1.48
1.31
1.43
1.43
1.41
.13 PSU #1
1.30 PSU #2
1.44 HAZEN
BEULAH
N. DAKOTA
1.00
.97
.87
.89
.86
.85
.90
.91
1.10 EER
SAVAGE
MONTANA
1.04
.97
.96
.99
.95
.96
.98
1.13 EER
OCTAHYDRO-
ACRIDINE ISGS CARBAZOLE
7.48 1.25 8.20
7.27 1.25 8.35
1.25 8.20
7-38 1.25 8.25
7.49 THEO 1.24 ILL.GS 8.38 THEO
l.Oi DOE-PETC
1.39 BROKEN HILL
AUSTRALIA
-------
TABLE 111-3 ELEMENTAL ANALYSIS OF MODEL COMPOUNDS
SAMPLE AND ASH NT
SAMPLE WEIGHT ASH UT
HEIGHT
-------
IV. MAJOR INORGANICS
The MASC data which was acquired to determine the sulfur forms can also
be used to estimate the total amount of inorganics in coal. In order to do
^is, it is necessary to assume that the inorganic clays are in the form of
oxides or carbonates. In particular, it is assumed that the aluminum is
Present as A1203, the silicon as Si02, the calcium as calcite (CaCO-j)
a°d the non-pyrite iron as Fe20-j. The reference standards for aluminum
and silicon were chosen to be A^Oo and Si02 so that no corrections for
a°sorption would be necessary to calculate a weight percent of each of these
constituents. Thus we predict that the total mineral matter on a dry basis
WlH be given by
MM(dry) (kfll + kgi + 0.285 * kCa + 0.7 * kFe) * 1.38 + Pyrite
where the 0.285 factor for the Ca is the calculated ZAP correction from MAGIC
(&ef. 7) for caC03 relative to a standard of CaWO^, and the 0.7 is the
actor for Fe203 relative to a pyrite standard, and the 1.38 is the roughness
actor found to be appropriate for the sulfur data. A plot of mineral matter
°und using this relation is shown in Fig. VI-1 for comparison with mineral
matter determined by Low Temperature Ashing or by calculating from the ash
nalysis. As can be seen from the figure, the agreement is within 2 percent
°r most coals, indicating that the assumptions used in generating the above
elation are reasonable.
It may be possible to estimate the types of clay in the coal from the data
Slnce the major clays have definite ratios of alumina to silica which is
aPparent in the MASC data. A plot of the aluminum versus silicon k-ratios for
a sample which was 'salted1 with kaolin is shown in Fig. V-2. Similar plots
°r coal salted with montmorillonite and illite are shown in Figs. IV-3,4.
r°n> the slope of the regression between the aluminum and the silicon, we
"°uld be able to distinguish between kaolin and the other two clays. The
8reement, however, between estimates of kaolin and the other clays using this
Pr°cedure, and measurements of these constituents using IR spectrometry in
lab is very poor. This MASC procedure for estimating clay components
more analytical work to determine if there is a regression which does
reasonable results for clays.
43
-------
COMPARISON OF MASC AND ASTM ASH
30.0
(D
I
O
I
24.0
X
o
o
I
in
6.0
12.0 180
ASH ASTM WEIGHT %
24.0
30.0
-------
FIG. IV-2
PSOC 212 COAL WITH 10% KAOLIN
0.146
SILICON INTENSITY
3205 DAT KAOLIN
0.146
79-10- 115 24
45
-------
0.224
PSOC 212 COAL WITH 10% ILLITE
0.000
SILICON INTENSITY
3206 DAT ILLITE
0.224
46
-------
FIG. IV-4
PSOC 212 COAL WITH 10% MONTMORILLONITE
0.268
§
".
-'
s
.
-J
-'
o.ooo
SILICON INTENSITY
3207 DAT MONTMORILLONITE
79-10-115-22
47
-------
V. MASC RESULTS ON EPA SUPPLIED COALS
The results of MASC measurements on the seven coals supplied by the EPA
are summarized in Table V-l, V-2, and Appendix D. There are several interes
ing features of these coals which are discussed below. In particular, some
these coals showed less correlation between the iron and the sulfur k-ratio
than most of the coals used for calibration, and one of them showed a high
correlation between the sulfur and the calcium.
Table V-2 shows each of the mineral constituents of these coals and con
tains data on titanium, magnesium, and potassium, which are not discussed l
Section IV. These data were obtained and reduced in the same manner as
described in Section IV. These elements are assumed to be present in coal
the forms TiC^, MgO, and K^O and were measured relative to standards of
Ti, Mg and KC1, respectively. This gives a relation for the total mineral
matter of
mm (wt. % dry) = pyrite +1.38 (kA1 + kgi + 0.285 kCa
+ 0.67 kFe (clay) + 1.79 kTi + 2.5 kMg + 0.48 kK)
where the numerical factors inside the parentheses are the ZAF corrections
for the assumed mineral relative to the reference standard actually used, a
the 1.38 is the roughness factor discussed in Section IV.
Figures V-l through V-7 are the MASC plots for the seven coals with ^
projection of the regression line from the multielement analysis onto the
S plane shown for all but the 1635 coal, for which there was no correlation-
In addition, where the analysis selected a reasonable clay-pyrite split, t"1
line is shown on the plot as a vertical line parallel to the sulfur axis.
PHS 506,534,546,578,1632A These coals all appeared to be "conventional"
pyritic coals. We accepted the split between iron bearing clay and pyrit6
two of them (PHS 534 and 578) since the correlations were reasonable and
consistent, and the resulting split was reasonable. The 1632A showed high
correlations between the iron and the clay constituents; so high that the
regression indicated that all the iron was clay. Because the pyrite corre
tion was also quite high, we rejected the clay in favor of a pyrite interp
tat ion for the iron. A reasonable fraction of the iron in this sample sno
probably be attributed to clay (perhaps 20%).
48
-------
TABLE V-l
SULFUR FORMS FOR EPA-SUPPLIED COALS (wt% dry)
S(0)
MASC ASTM
S(M)
MASC ASTM
1632A
1635
PHS 408
PHS 506
pHS 534
PHS 546
PHS S7fl
J /a
0.4
0.4
0.5
0.4
0.6
1.2
2.8
_
0.33
0.65
0.4
1.5
2.5
1.0
0.0
0.5*
1.4
2.5
1.9
2.1
x in FeS3
MASC
1.8
0.34 Sulfate
0.11 Pyrite 1.1**
1.0
3.2
1.7
3.3
1.9
2.1
2.2
2.0
This
c°al was mostly sulfate
**
in
49
-------
TABLE V-2
MINERAL MATTER ANALYSES FOR EPA-SUPPLIED COALS (wt.% dry)
Coal
CaO*
Ti0
MgO
K90
Total
Z & -»
MASC HTA MASC HTA
1632A
1635
S 408
14.6
1.7
6.8
7.2
0.6
2.5
MASC
0.2
0.5
0.3
HTA MASC HTA
0.
0.
0.
3
0
0
MASC HTA
0.0
0.0
0.3
MASC HTA
0.
0.
0.
6
0
1
^ _>
MASC HTA
1.25 -
0.4
1.2
MASC
24.2
3.2
11.2
HTA
-
-
10.5
PHS 506 6.3 5.1 4.4 4.4 0.4 0.4 0.0 0.2 0.3 0.3 0.3 0.2 1.8 1.8 13.5 12.8
PHS 534 12.4 10.0 7.6 6.6 0.1 0.1 0.0 0.2 0.0 0.2 0.9 0.8 3.4 4.6 24.4 22.9
PHS 546 12.7 9.6 6.5 5.0 0.1 0.1 0.3 0.3 0.0 0.1 0.5 0.4 2.4 2.7 22.5 18.6
PHS 578 8.8 8.3 4.0 4.1 0.5 0.7 0.0 0.2 0.0 0.2 0.3 0.4 3.0 4.9 16.6 19.6
* CaO for MASC calculated from .56*CaCO (MASC)
Fe00 for MASC calculated from 1.25* S (M)
2 "\
+ Fe90 (MASC)
-------
1632A COAL MASC PLOT
FIG. V-1
* **/ .
0.840
3235. DfiT
,
FG 2600X
79-10-115-14
51
-------
1635 COAL MASC PLOT
0.013
S
U
L
F
U
R
N
T
T
V
+
+
0.
00
3236.DAT
1635 FG 2900X
52
-------
FIG. V-3
PHS 408 COAL MASC PLOT
S
u
L
U
R
I
N
T
E
N
S
I
T
V
o.ooo
Ca ASSOCIATED WITH CLAY
CALCIUM INTENSITY
3237 DAT PHS 408 FG 2000X
79_10-115-16
53
-------
FIG.
PHS 506 COAL MASC PLOT
0.0
VST
3238.DAT
0.047
536 FG 2000*
54
-------
FIG. V-5
PHS 534 COAL MASC PLOT
3.2 3
S
u
L
P
U
R
I
N
T
E
N
i-s
i
I
T
V
Fe ASSOCIATED WITH CLAY
'IRON INTENSITY
3239.DAT
6.213
534 FG 2080X
7g_10-115-18
55
-------
FIG.
PHS 546 COAL MASC PLOT
0.0 3
3246.OAT
PHS 546 FG 2000X
0.078
56
-------
FIG. V-7
PHS 578 COAL MASC PLOT
0.099
S
u
L
R
U
I
N
T
E
N
S
I
T
V
8.
-ORGANIC SULFUR k-RATIO
-Fe ASSOCIATED WITH CLAY
INtENSlTY
3241.DAT
0-099
578 FG 2000X
79-10-115-20
57
-------
PHS 408 This is the only coal we have yet studied that had a clearly
significant correlation between the sulfur and the calcium, and as such we
have no reliable calibration for converting this data to weight percent.
organic sulfur is calculated as usual. For the calcium sulfur, we assumed
that it was present in the form of CaSO^, scaled up the k-ratio by the 1.38
"roughness" factor, and then used MAGIC to convert the k-ratio to weight
percent. We have chosen to accept the split between sulfate and clay calci
determined by the regression because although the correlations are smalli
are consistent, and the result is plausible. In addition, the final weight
percents of the constituents are not much changed by rejecting the clay fit-
The stoichiometry of the calcium sulfate is estimated to be CaS, ^Ox using
the slope of the S-Ca regression, using MAGIC to correct the slope.
1635 None of the correlations for this coal were considered significant; 3°
the five elements were treated independently as minerals plus organic sulfu
58
-------
REFERENCES
1976 Annual Book of ASTM Standards, Part 26 - Gaseous Fuels, Coal and
Coke. Philadelphia, PA.
r\
acobs, I. s. , L. M. Levinson, and H. R. Hart, Jr.: Workshop on Mineral
Matter in Coal, Urbana, Illinois, March 22-24, 1978.
j
Montano, p. A., and P. E. Russell: Workshop on Mineral Matter in Coal,
urbana, Illinois, March 22-24, 1978.
McCartney, j. T. , H. J. O'Donnell, and S. Ergun: US Bureau of Mines. RI
(1969).
Solomon, p. R. t and A. V. Manzione: A New Method for Sulfur Concentration
Measurements in Coal and Char. Fuel 56, 393, 1977.
orrison, Donald F.: Multivariate Statistical Methods. 2nd ed., McGraw-
HlU Book Company, 1976.
olby, J. W.: Proc. Sixth Nat. Conf. on Electron Probe Analysis. 1971.
59
-------
APPENDIX A
CORRELATIONS AND EIGEVECTORS FOR CALIBRATION COALS
60
-------
103 FG 2000X
FE
S
SI
AL
Cft
MEAN
SIGMA
3251.DAT
CORRELATIONS
FE S SI
AL
CA
0.1865 9.1764 1.8000 0.0643 -0.1631 -0.S428 -0.0339
1.1367 0.1934 8.0643 1.0000 0.0118-0.0681 0.1177
2.1250 0.5187 -0.1631 0.0118 1.0000 0,3962 -0.0411
1.3990 0.2334 -0.0428 -0.0681 0.3962 1.0000 -0.0644
0.7088 0.5820 -0.8339 0.1177 -0.0411 -0.0644 1.0000
EIGENVECTORS
VALUE
1.4643
1.1053
1.0050
0.8515
0.5739
FE
8 . 3029
-0.1706
-0 . 8062
0.4192
-0.2314
S
0.1615
0 . 6667
0 . 4236
0 . 5673
0.1679
SI
-0 . 6649
0.2198
-0.1205
-0 . 0497
-0.7021
AL
-0.6421
0.0397
-0.2933
0.2756
0.6513
CA
0.1667
0.6905
0.2649
0.6512
-0.0341
REGRESSIONS
S = 0.9098
ORGANIC S-
0.3209CA + -0.0003SI
0.910 MINERAL S* 0.227
-------
170 FG 2000X
MEAN
SIGMA
FE
S
SI
AL
CA
1 . 1590
3 . 8829
2.2316
1 . 4943
1 . 9890
0.7125
0.6519
0 . 6349
0 . 2563
0 . 8485
3252.DAT
CORRELATIONS
FE S SI
1.0000 0.3285 0.0435
0.8235 1.0000 0.1154
0.0435 0.1154 1.0000
0.0165 0.0059 0.4119
0.0320 -0.0712 -0.0509
AL
CA
0.0165 -0.9320
0.0059 -0.0712
0.4119 -0.0509
1.0000 0.0714
0.0714 1.0000
EIGENUECTORS
UALUE
1.8572
1.3962
1.0089
0.5715
0.1662
FE
0.6849
-0.1493
0.1074
0.0908
-0.6991
S
0.6940
-0.1181
0.0459
0.0321
0.7080
SI
0.1800
0.6759
-0.1718
-0.6886
-0.0838
AL
0.0973
0.7081
0.0924
0.6916
0.0481
CA
-0.0858
0.0741
0.9738
-0.1956
0.0244
REGRESSIONS
S = 2.6425+ 0.9211FE + 0.1156AL
FE< CLAY) * 0.0000 FE< PYRT > = 1.1590
ORGANIC S»
2.642 MINERAL S«
1.240
-------
212 FG 2080X
MEAN
3253.DAT
CORRELATIONS
SIGMA FE
S
SI
AL
CA
FE
S
SI
AL
CA
0 . 2725
1.1911
8 . 9670
0 . 7329
0 . 4744
0
0
0
0
0
.3269
.2136
.2327
.2230
.4172
1
0
0
0
0
.0000
.0226
0.
1,
.1710 -0.
.0097 -0.
.1740 -0.
0226 0 .
9000 -0.
0845 1 .
0785 0 .
9959 0 .
1710
0045
0000
6558
1631
0 . 0097
-9 . 0785
0 . 6558
1 . 0000
-0 . 0009
0
-0
0
-0
1
.1740
.0959
.1631
.0009
.0000
EIGENUECTORS
UALUE
1
1
1
0
0
.7193
.1521
.0292
.7920
.3074
FE
0.
0.
0.
0.
0.
2238
6120
3798
6447
1246
S
-0 . 0972
-0.1521
0 , 9059
-0 . 3727
0 . 0835
SI
0 . 6908
-0.1087
0.1003
-0 . 0593
-0 . 7053
AL
0
-0
-0
0
@
.6432
.3553
.0512
.0135
,6763
CA
0.
0.
-0.
-0.
0.
2229
6814
1496
6646
1479
REGRESSIONS
S = 1.2787 4- -0.1828FE + -0.0515AL
FE
-------
330 FG 2000X
3254.DAT
FE
S
SI
AL
CA
MEAN
2.1891
2.7932
1.4215
1.0293
0.3792
SIGMA
CORRELATIONS
FE S
SI
AL
CA
0.8412 1.0000 0.8798 -9.0713 0.0141 0.8387
0.7875 0.8798 1.0090 -0.1199 -0.8363 -0.0362
0.2234-0.0713-0.1199 1.0000 0.5453 0.0718
0.1999 0.0141 -0.0363 0.5453 1.0000 0.0523
0.3525 0.0387 -0.0362 0.0718 0.0523 1.0000
EIGENVECTORS
UALUE
1.9162
1 . 5303
0 . 9885
0 . 4493
3.1156
FE
0 . 6708
0 . 2276
0 . 0226
-0.0381
-0 . 7045
S
0 . 6829
0.1722
-0 . 0492
-0.0461
0 . 7068
SI
-0 . 2393
0 . 6537
-0 . 0954
-0.7113
0.0188
AL
-0.1607
0 . 6822
-0,1355
0 . 6998
0 . 0253
CA
-0 . 8266
0.1606
0 . 9847
0 . 0259
0 . 0567
REGRESSIONS
S = 1.0793 + 0.9349FE + -0.3184AL
FE(CLAY) = 0.3506 FE(PYRT) * 1.8385
ORGANIC S=
1.879 MINERAL S-
1.719
-------
268 FG 2QQQX
MEAN
SIGMA
FE
S
SI
AL
CA
0 . 9269
1 . 8528
5.1845
3 . 3307
0 . 6307
0 . 3478
0 . 3650
0 . 5657
0.3186
0 . 4352
3255.DAT
CORRELATIONS
FE
1.0830
0.4453
0.1107 0.9725
-0.0333 -0.0451
0.1415 0.0270
SI
AL
CA
0.4453 0.1107 -0.0333 -0.1415
1.0000 0.0725 -0.0451 0.0270
1.0000 0.5873 0.1064
0.5873 1.0000 0.0462
0.1064 0.0462 1.0000
Ui
EIGENVECTORS
UALUE
1.6166
1.4661
1 . 0026
8.5271
0 . 3876
FE
0.1850
0 . 6843
-0 . 0654
-0 . 6705
0 . 2090
S
0.1739
0.6516
0 . 2958
0 . 6764
-0 . 0249
SI
0 . 6998
-0.0816
-0 . 0552
-0.1031
-0 . 7000
AL
0 . 6539
-0 . 2358
-0.1932
0.1680
0.6718
CA
0.1349
-0.2120
0.9318
-0 . 2325
0.1203
REGRESSIONS
S = 0.9371 + 0.9989FE + -0.0020SI
FE = 8.0101 FE * 0.9168
ORGANIC 8=
0,937 MINERAL S=
0.916
-------
308 FG 2900X
FE
S
SI
AL
CA
MEAN
2.6031
4.5912
2.6495
:.0897
SIGMA
3256 . DAT
CORRELATIONS
FE
SI
AL
CA
1.6598 1.0000
1.7268 0.9528
0.5889 -0.0629 -0.0434
-0.0496 -
0.9528 -9.0629 -0.0496 -0.1531
1.0000 -0.0434 -0.0092 -0.1229
1.0000 0.6768
0.0933
0.'6768 1.0000 -0.1117
. . . . . . .
0.4557 0.4188-0.1531-0.1229 0.0933-0.1117 1.0000
EIGENUECTORS
UALUE
2.0113
1.6601
0.9891
0.2942
FE
0.6791
0.1408
0.1284
-0.0348
0.0454 -0.7080
S
0.6716
0.1649
0.1578
0 . 0486
0 . 7032
SI
-0.1827
0 . 6782
0.1714
-0 . 6904
0 . 0247
AL
-0.1412
0 . 6969
-0.1127
0.6921
-0.0512
CA
-0.1857
-0 . 0854
0 . 9574
0.2017
-0.0314
REGRESSIONS
S = 1.5803 + 1.0364FE + 0.1498AL
FE
-------
40659 FC 2000X
FE
S
SI
AL
CA
3257.DAT
CORRELATIONS
MEAN
SIGMA FE
S
SI
AL
CA
4.0692 1.1840 1.0090 0.8764-8.1104-0.0308 0.0196
6.1172 8.9732 0.8764 1.8000-0.1182-0.0828 0.0568
8.9316 1.0943 -0.1104 -0.1182 1.0000 0.5744 -0.0423
4.9426 6.4670 -0.0308 -9.0828 0.5744 1.8000 -0.0644
0.8440 8.4383 0.0196 8.0568 -0.8423 -8.0644 1.0080
EIGENVECTORS
UALUE
1.9621
1 . 5027
8 . 9982
8 . 4242
8.1207
FE
0 . 6345
0.3138
-0 . 8448
8.8281
-0 . 7047
S
8 . 6452
0 . 2832
-0.8861
-8 . 8786
8 . 7852
SI
-8.3175
8.6281
8.1869
-8 . 7885
-8 . 8365
AL
-8 . 2789
0 . 6545
8.8615
8 . 7883
8 . 8636
CA
8.8831
-8.8918
8.9914
8 . 8333
-0 . 8269
REGRESSIONS
S = 3.8091 + 0.8792FE + -8.8950AL
FE * 9.5341 FECPYRT) = 3.5351
ORGANIC S=
3.889 MINERAL 8-
3.188
-------
LIG FG 2808X
MEAN
SIGMA
FE
S
SI
AL
CA
0.3317
1 . 0067
3.1685
2 . 2769
9.1987
0 . 2656
9 . 2637
0.9881
0 . 3000
0 . 8759
3258.DAT
CORRELATIONS
FE
S
SI
1.6800 0.3890 Q.0985
0.3890 1.0000 -0.0277
0.0985 -0.0277 1.0000
0.0734 0.1885 0.4538
AL
CA
0.0734 0.1162
0.1885 -0.0322
0.4538 -0.0577
1.0000 0.0011
0.1162 -0.0322 -0.0577 0.0011 1.0000
oo
EIGENUECTORS
UALUE
1 . 5946
1 . 2798
1 . 0077
0 . 6853
0 . 4325
FE
0 . 4569
-0 . 5227
0 . 0347
-0 . 6053
0 . 3877
S
0 . 4586
-0 . 4983
-0 . 3277
0 . 4488
-0 . 4823
SI
0 . 4948
0 . 5204
0.1298
-0.4168
-0 . 5426
AL
0 . 5794
0 . 3702
0 . 0930
0.4716
0 . 5442
CA
0.0175
-0 . 2656
0 . 9305
0.1915
-0.1630
REGRESSIONS
S = 0.6644 + 0.9704FE + 0.0065SI
FE
-------
ISGS UF 2000X
MEAN
SIGMA
FE
S
SI
AL
CA
1
4
2
16
3
.5858
.8781
.2751
.9510
.4532
1
1
0
3
18
.0852
.0296
.5867
.0325
.3997
3098.GAT
CORRELATIONS
FE S SI
AL
CA
1.0300
0.9134
0.0607 -0.0224
0.1612 0.1434
0.9134 0.0697 0.1612 -0.0555
1.0000 -0.0224 0.1434 -0.0292
1.0000 0.5686 -0.0221
0.5686 1.0000 -0.0431
-0.0555 -0.0292 -0,0221 -0.0431 1.0000
VO
EIGENUECTQRS
UALUE
1 . 9995
1 . 5827
8 . 9942
0 . 4222
8.0815
FE
0 . 6575
-0.2416
0 . 0270
-0 . 1305
-0.7011
S
0 . 6444
-0 . 2904
0.0501
0 . 0032
0 . 7056
SI
0 . 2097
0 . 6867
0 . 0548
-0 . 6880
0 . 0902
AL
0.3210
0.6199
0 . 0372
0.7137
-0 . 0439
CA
-0 . 0738
-0 . 0398
0 . 9962
0.0146
-0.0198
REGRESSIONS
S = 3.6503+ 0.9511FE + -0.1233SI
FE< CLAY > » 0.2949 FEC PYRT) « 1.2999
ORGANIC S=
3.650 MINERAL S»
1,228
-------
SCRANTQN FG 2000X
3242.DAT
CORRELATIONS
MEAN
SIGMA FE
S
OT
Ol
AL
CA
FE 0 . 7937 0 . 3265
S 2.3954 0.2915
SI 1.3793 1.2893
AL 0 . 8228 0 . 7093
CA 9 . 3264 0 . 8369
EIGENUECTORS
UALUE
1 . 4205
1 . 2248
0 . 9934
0.8534
0 . 5079
FE
0 . 6863
-0.0143
0.2914
0.2458
-0.6192
1 0000 0.2909 -0.6363 0.3087 0.0331
0 2999 1.0000 -0.1601 -0.0569 -0.0798
-0 . 0363 -0 . 1 60 1 1.0000 0 . 0526 -0 . 0990
0.3007 -0.0509 0.0526 1.0000 -0.1446
0.0331 -0.0798 -8.0990 -0.1446 1.0000
S
0 . 5090
-0 . 4074
-0 . 4389
0 . 3535
0 . 5073
SI
-0.1554
0.6192
0.0156
0 . 7665
0.1253
AL
0 . 4670
0 . 5068
0 . 3340
-0 . 3982
0 . 5049
CA
-0.1665
-0 . 4523
0.7814
0.2618
0 . 2975
REGRESSIONS
S = 1.6726+ 1.1287FE + -0.3197AL
FE = 0.2330 FE * 0.5607
ORGANIC S=
1.673 MINERAL S«
0.633
-------
BEULAH FG 2000X
MEAN
SIGMA
3243.DAT
CORRELATIONS
FE S SI
AL
FE
S
SI
AL
CA
2.
2.
0.
0.
5.
5031
7246
9061
4865
7597
0.
0.
0.
0.
0.
6210
5853
4677
2081
7755
1
0
-0
-0
0
.0000
.7201
.0885
.0731
.0002
0.
1.
0.
-0.
0.
7201
0003
3374
0609
0483
-0.0885 -0.0731
0.0374 -0.0609
1.0000 0.4147
0.4147 1.0000
CA
0.0002
0.0483
0.0236
-0.0209
1.0000
EIGENUECTORS
UALUE
1 . 7490
1 . 3936
1 . 0022
0 . 5907
0 . 2646
FE
0 . 6872
0.1447
-0 . 0746
0.1422
-0 . 6935
S
0 . 6728
0.2319
-0 . 0034
-0 . 0929
0 . 6964
SI
-0.1649
0 . 6933
0.0361
-0.6816
-0.1623
AL
-0.2143
0 . 6659
-0 .- 0720
0 . 7065
0 . 0792
CA
0 . 0444
0 . 0347
0 . 9939
0 . 0S63
-0.0381
REGRESSIONS
S = 0.2044+ 0.9507FE -f 0.1551SI
FE = 0.0000 FE * 2.5031
ORGANIC S-
0.204 MINERAL 8-
2.520
-------
MONT SAUAGE FG 2808X
FE
S
SI
AL
CA
MEAN
0.1283
0.7837
9.6129
SIGMA
3244.DAT
CORRELATIONS
FE S
SI
AL
CA
0,1238 -0.1218
0.0641 0.0641
0.4854 -0.0009
0'5053 012092 0."1238 0.0641 0.4854 1.0000 0.1697
0.1525 1,8000 0.1173 0.0292
0.1798 0.1173 1.0000-0.1001
0.2387 0.0292 -0.1001 1.0000
9.8343 0.9503-5:1218 0:0641-0.0009 0.1697 1.0000
10
EIGENUECTORS
UALUE
TT ritMWh»
1 5268
A ^»rt*» ar*^
1 1442
1 0994
« * *ur*f mf 1
0 . 7726
0 . 4570
FE
0.1634
0 . 7427
-0.1672
-0.6106
-0.1471
S
0.0210
0 . 5583
0 . 5998
0.5551
-0.1415
SI
0.6581
-0.1343
-0 . 2758
0 . 2433
-0 . 6434
AL
0.7091
0 . 0299
0 . 0788
0.0362
0.6991
CA
0.1921
-0.3432
0 . 7283
-0 . 5092
-0 . 2358
REGRESSIONS
S = 0.7321 + 0.8931FE + -0.1246AL
FE = 0.0705 FE = 0.8578
ORGANIC 3»
0.732 MINERAL 8-
0.852
-------
UPPER CLIFF FG 28088
3245.DAT
FE
S
SI
AL
CA
mm
1.0930
1.5137
3.7549
2.4710
8.4624
SIGMA
CORRELATIONS
FE S
0.3358 1.0900 0,4576
0.2644 0.4576 1.0000
0.4423 0.3037 0.1183
0.2893 0.1102 0.0621
0.4302 -0.0493 -0.1000
SI
0.3087
0.1183
1.0000
0.4122
0.0309
AL
CA
0.1102 -0.0493
0.0621 -9.1000
0.4122 0.0309
1.0000 0.0523
0.0523 1.0000
EIGENUECTQRS
-s]
10
UALUE
1.7510
1.2212
0 . 9357
8 . 6246
0 . 4675
FE
0 . 5692
-0 . 3069
0 . 2402
0 . 3443
-0 . 6368
S
9.4712
-0.4891
0.2433
-0.5915
0.4776
SI
9.5317
0.3869
0.1671
9.5278
0.5110
AL
0.4189
0.5424
0.2895
-0.5908
0.3227
CA
-0.0496
0.4719
0.8783
-0.0495
0.0328
REGRESSIONS
S = 1.3075 + 0.8266FE + -0.2812AL
FE « 0.8486 FE * 0.2494
ORGANIC S=
1.308 MINERAL 3»
0.206
-------
ROSA FG 2000K
FE
S
SI
AL
CA
MEAN
4.6559
3.7536
2.9054
1.1911
9.2978
SIGMA
3246.DAT
CORRELATIONS
FE S
SI
AL
CA
2.2331 1.0008 0.6845 -0.0197 -0,8532 -0.0387
1.4855 0.6845 1.0000 -0.0735 -0.0866 0.0922
2.2528-0.0197-0.0735 1.8000 0.5901 0.0398
0.3171 -0.0582 -0.0866 0.5901 1.0000 -0.0404
0.3170-0.0387 0.8922 0.0398-0.0404 1.0000
EIGENMECTORS
UALUE
1 . 7675
1.5112
1.0148
0 . 4083
0 . 2982
FE
0.5719
0.4129
-0.1333
-0.1229
-0 . 6852
S
0.5981
0 . 3765
0 . 0492
0.1494
0 . 6897
SI
-0 . 3832
0 . 5965
0 . 0600
-0 . 6862
0.1510
AL
-0 . 4078
0 . 5749
-0.0633
0 . 6984
-0.1069
CA
0 . 0446
0 . 0377
0 . 9860
0 . 0625
-0.1431
REGRESSIONS
S « 0.7672 + 0.6675FE + -0.0417SI
FE(CLAY) = 0.1817 FE
-------
Ul
BLK CREEK FG 2080X 3247.DAT
CORRELATIONS
MEAN SIGMA FE S SI AL CA
FE
S
SI
AL
CA
EIGENVECTORS
0.2954
1.1142
1 . 5357
1 . 1756
0.3471
0 . 2038
0.2418
0.2810
0 . 2437
0 . 3538
1 . 0000
0.1807
0 . 0537
0 . 0607
0.0831
0.1807
1 . 0000
0.1269
6 , 0647
0.1452
0.0537
0.1269
1.0000
0 . 7579
0.1075
0 . 0607
0 . 0647
0 . 7579
1 . 0000
0.0613
0.0831
0.1452
0.1075
0.0613
1 . 0000
UALUE
1 . 8280
1 . 2099
0.9189
0 . 8049
0 . 2383
FE
0.1599
0.5674
-0 . 5837
-0 . 5579
-0 . 0233
S
0 . 2232
0 . 5987
-0 . 0876
0 . 7621
0 . 0576
SI
0.6731
-0,2061
-0 . 0047
0.0179
-0.7100
AL
0 . 6595
-0 . 2623
-0 . 0577
-0 . 0466
8 . 7006
CA
0.1914
0 . 4565
0 . 8052
-0 . 3247
0 . 0354
REGRESSIONS
S a 0.6458 + 1.2925FE + 0.0736AL
FE = 0.0000 FE(PYRT) - 0.2954
ORGANIC S=' 0.646 MINERAL 5= 0.468
-------
TRW FG 2000X
FE
S
SI
AL
MEAN
3248.DAT
CORRELATIONS
SIGMA
FE
r-
O
0 . 3744
1 . 3592
3 . 4360
0 . 2228
0 . 2283
0 . 5957
1 . 0090
0.2231
0 . 0597
0.2231
1 . 0000
0,0010
2.4947 0.3857 -0.0939 -0.0685
SI
AL
CA
0.0597 -0.9939 -0.1327
0.0010 -0.0685 0.0128
1.8000 0.6519 0.0617
0.6519 1.0000 -0.0118
CA 0>354 0^4520 -0!l327 0.'0128 0.0617-0.0118 1.0000
EIGENUECTQRS
UALUE
1.6611
1.2548
1.0177
0.7440
0.3224
FE
-0.0845
0.7160
-0.0375
-0.6696
0.1744
S
-0.0992
0.6044
0.4698
0.6356
0.8115
SI
0.6938
0,1728
0.0577
-0.0861
-0.6915
AL
0.7051
0.0296
-0.0787
0.1275
0.6924
CA
0.0672
-0.3021
0.8765
-0.3522
0.1090
REGRESSIONS
S = 1.0832 + 0.8746FE + -0.0150SI
FE = 0.0588 FE = 0.3156
ORGANIC S=
1.083 MINERAL 8=
0.276
-------
UTAH FG 2000X
FE
S
SI
AL
CA
MEAN
0.2836
1.0420
3.3745
1.8197
1.0055
SIGMA
0.2041
0.2006
2.0787
0.3999
0.5104
3243. DfiT
CORRELATIONS
FE
1.0900
0.1410
0.0216
0.1410
1.0008
0.0016
0.0937 -0.0430
SI
AL
CA
0.8216 0.8937 -0.0304
0.0016 -0.0430 -0.0490
1.0000 0,6934 -0.0653
0.6934 1.0000 -0.0462
-0.0304 -0.0490 -0.0653 -0.0462 1.0000
EIGENVECTORS
UALUE
1.7123
1 . 1546
0 . 9788
0 . 8543
0 . 3000
FE
0.1160
0 . 6437
0 . 3333
-0 . 6735
-0.0861
S
-0 . 0099
0 . 6985
0 . 0972
8 . 7062
0.0611
SI
0 . 6953
-0 . 0782
0 . 0209
0.1448
-0 . 6993
AL
0.7001
-0 . 0669
0 . 0768
0 . 0043
0 . 7068
CA
-0.1134
-0 . 2950
0 . 9344
0.1632
-0,0180
REGRESSIONS
S = 0.9192 + 1.0470FE + -0.0957AL
FE = 0.1663 FE = 0.1173
ORGANIC 8=
0.919 MINERAL S-
0.123
-------
APPENDIX B
CORRELATIONS AND EIGENVECTORS FOR WASHED COALS
78
-------
--J
VO
3@& 1.4FL GRD
MEAN
SIGMA
3172.DAT
CORRELATIONS
FE S
SI
AL
CA
FE
c-
SI
AL
CA
2.0963
3.9520
2.7599
1 . 8256
0 . 5631
3
0
0
0
0
. 7889
.5765
.3521
.2713
.4379
1
0
0
6
0
.8600
.7028
.0951
. 8669
.9916
0
1
0
0
0
.7020 0.
0008 8 .
. 1943 1 .
. 6233 0 .
.0012 Q.
9951
1843
6000
3418
9827
0.0669
0 . 8233
0.3418
1 . 0000
0.1249
0
0
0
0
1
.0916
.0012
.0827
.1249
.0000
EIGEHUECTORS
UAi
1
i
9
8
0
-UE FE
.7715
.3315
. 9531
. 6532
. 2997
0.
-ft.
0.
0.
-0.
6577
2487
9563
0787
7844
S
0 . 6438
-9 . 2385
-0 . 0644
0 . 0829
0.7816
S!
0.2838
8 . 5778
-0.3210
-9.6934
-8 . 0422
AL
8
0
-0
0
9
.2258
.6440
.1761
. 7977
.6485
CA
0.
0.
Q.
-0.
0.
1461
3170
9266
1103
0861
REGRESSIONS
= 2.5316 + 0.8171FE + -0.1682AL
FECCLAY) = 0.3579 FE » 1.7390
3
ORGANIC S*
2.531 MINERAL S«
1.421
-------
368 FL FG 188 1.4SG
3204 DAT
FE
S
SI
AL
CA
MEAN
2.7110
4 . 5309
2 . 5894
2.3991
0 . 5453
SIGMA
CORRELATIONS
FE
S
SI
0.4918 1.0Q00 0.6379 -0.0192
0.4848 0.6379 1.0060 -9.1407
0 3436 -0.0192 -0.1407 1.0009
0.2529 -0.0287 -0.1170 0.4254
AL
CA
-0.0287 -0.0336
"0.1170 0.0101
0,4254 0.0807
1.0000 0.0392
0'4508 -9.0336 0.0101 0.0807 0.0392 1.0000
EIGENVECTORS
co
o
VALUE
1 . 7229
1 . 3649
0 . 9893
0 . 5742
8 . 3437
FE
0.5916
0 . 4850
-0 . 8653
-8.8641
-0.6911
S
0.6419
0.2862
0.0426
0.0567
0.7879
SI
-0.3463
0.6049
~0.0785
-0.7007
0.1394
AL
-0.3352
0,5997
-0.1726
0.7056
0.0154
CA
-0.0754
0.1688
0.9788
0.0614
-0.0637
REGRESSIONS
S = 2 6844 + 8.9629FE + -0.2564SI
FE a 0.6896 FECPYRT? = 2.0214
ORGANIC S=
2.684 MINERAL S=
1.946
-------
388 FL FG 200 1. 4SC
MEAN
FE
S
SI
flL
Cft
8 . 9633
3.6213
2 . 8248
1 . 8265
3 . 5857
3JGMA
3305.DrtT
CORRELATIONS
FE S SI
CA
0.2446 i . mm 0.1279 0.2383 0.0693 -0.1424
0.2529 0.1279 1.6000 0.0607 6.1812 -0,1235
0.2483 8.2388 0.9607 1.0006 9.3968-0.0501
0.2761 0.9693 8.1812 0.3968 1.0000 -0.1326
8.5857 8.4239 -0.1424 -0.1285 -0.0501 -0.1326 1.0000
OS
EIGENVECTORS
UALUE
1 , 6408
1 . 0379
8.9313
8.8612
S . 528?
FE
0 . 4868
0.2161
-0 . 7585
0 . 3694
-0.3417
S
0*3532
0 . 4722
0.481?
8.6146
0 . 2863
SI
0.3515
-0.4914
-0 1548
-0 . 0380
9 , 6550
fiL
0.5515
-9 . 3272
0.4107
-0.1782
-0 . 6232
CA
-0.3185
-0.6179
0 . 0085
8 . 7024
-0.152?
REGRESSIONS
S * 3.0447
ORGANIC S*
0.1390SI -I- -0.5207CA
3.021 MINERAL S«
0.000
-------
308 FL FG 325 1.4SG
3206.DAT
MEAN
FE 1.2914
S 2.3650
SI 2.6927
*L 8.6737
CA 0.4558
SIGMA
0.3117
8.2368
Q.3172
0.4042
8.3793
CORRELATIONS
FE S
SI
1.0000 0.0129 0.0615
0.9129 1.0000 0.0684
0.0615 6.0684 1.0000
0.0448 0.0105 0.3922
0.1353 -9.0447 -0.0392
AL
CA
0.0443 0.1353
0.0105 -0.0447
G.3922 -0.0392
1.0000 -0.1561
-0.1561 1.0000
EIGENVECTORS
oo
UALUE
1 . 4487
1.1374
3 . 9970
0 . 8335
& . 5834
FE
0 . 0756
0 . 7309
9 . 0958
-9.6688
-0 . 0595
S
0.1462
-0 . 0492
0 . 9768
0 . 0923
0.1166
SI
0 . 6533
0.1868
-0.0415
0 . 3383
-0 . 5539
AL
0.6815
0 . 0248
-0.1865
0.0145
0.7071
CA
-0 . 2859
0,6541
-0.0146
0 6595
0 . 2352
REGRESSIONS
= 2.1772 + 0.2397FE + -0.2671CA
FE » 8.5079 FE(PYRT) * 9.7335
S
QRGAH1C S=
2.177 MINERAL S=
8.188
-------
30S 1.6FL GRD
FE
S
SI
RL
MEAN
SIGMA
3174.DAT
CORRELATIONS
FE S
SI
AL
CA
2 . 2638
4.1046
3.1400
2.1742
0 . 5653
0
0
0
0
0
.7841
. 639.9
.4646
.3314
.4313
1
-0
.0000
.7344
.1122
. 9233
.0531
8
1
0
0
0
. 7344
. 0880
.1840
. 1959
,0128
0.
0.
1.
0.
-0.
1122
1840
0080
5708
0769
0
0
0
1
0
. 8233
. 1059
.5708
.0000
.0050
-0 . 0531
0.8123
-0 . 0769
0 . 0050
1.0000
co
EIGENUECTORS
UALUE
i . 9229
1 . 4462
1.9644
8.4184
3.2080
FE
8 . 5837
-9 . 40S6
-9 . 0272
8.0444
-0 . 6998
S
0.S148
-©.3361
8.0661
0 . 9420
9 . 7092
SI
0 . 4062
0 . 5696
-0.8189
-0.7133
-0 . 0383
AL
0 . 3362
0 . 6269
0.1173
0.6914
-0 . 0463
CA
-0.0571
-0 . 0522
0 . 9983
-0 . 0971
-0 . 0613
REGRESSIONS
S = 1.6878 -I- 0.9001FE 4- 0.2112AL
FE = 0.8000 FE * 2.2633
ORGANIC S=
1.608 MINERAL S*
2.497
-------
338 FL FG 100 1.6SG
FE
S
SI
AL
CA
MEAN
. 2534
1
3.1966
1.4769
4 3827
0.5271
SIGMA
3207.DAT
CORRELATIONS
FE S
0.3032 1.8000 8.3768
0.3122 8.3768 1.8960
0.2458 3.0039 -0.0909
8.3493 -0.1160 -0.0111
SI
AL
CA
0.0039 -0.1160 0.0211
-8.0909 -0.9111 0.0853
1.9000 0.3774 0.0891
0.3774 2.8000 -0.0536
0.4024 0.0211 0.0853 0.0891 -0.9536
00
-p-
EIGENVECTORS
UALUE
1 4874
1 . 2895
1 . S037
0.7181
0J5913
FE
-9.5134
9 . 4482
-8 . 2050
-0.5231
0 . 4689
c;
-0.'5095
0 . 4684
-0.1319
6 . 5368
-0.4711
SI
0'. 4657
0 . 5457
0 . 8634
Q.4710
0 . 5094
AL
0 . 5033
0 . 4673
-0 . 249S
0 . 4530
8 . 5062
CA
-0.0816
8.2521
0 . 9350
0.1145
0.2061
REGRESSIONS
S = 1.8482 * 1.0459FE + 0.0316SI
FE< CLAY> * 0 - 0000 FE « 1.2534
ORGANIC S=
1.840 MINERAL 8«
1.356
-------
308 FL FG 325 1. 6SG
FE
S
SI
AL
MEAN
3.1759
SIGMA
3208.DAT
CORRELATIONS
FE
S
SI
AL
CA
0.8926 6.0443 -0.8261 -0.1567
1.8000 -9.1950 -0.0884 -0.0486
0.1050 1.0000 0.5421 -0.0329
8.4809 -0.9261 -0 0884 9.5421 1.0090 -0.2156
i . 1696
2 . 4763
2 . 6338
0 . 3000
6 . 2335
0.3715
1 . 0033
9 . 0926
9.0449
CA 3.4397 0.4129 -6.1567 -6.0436 -0.0329 -0.2156 1.0000
00
Oi
EIGENVECTORS
UALUE
1.6197
1 . 2827
Q . 8999
0 . 3634
0.4143
FE
0.0618
8 . 6423
-0 . 3423
8 . 6658
8.1527
8
-0.1769
Q . 5066
0 . 8430
-0 . 0362
-0.0128
SI
8 . 6483
-0.1226
0.2135
0.317Q
-0 . 6470
AL
9 6852
-0 . 0350
0.1711
-0.1016
0 . 6998
CA
-0 . 2743
-0 . 5609
0.3121
0 . 6668
0.2610
REGRESSIONS
S « 3.3924 + 0.7285FE + -0.1927AL
FE * 2.4271 FE * -1.2575
ORGANIC S=
2.476 MINERAL S*
0.000
-------
330 UF 2009X
FE
S
SI
MEAN
SIGMA
3270 . DAT
CORRELATIONS
FE
1.3107
1.9136
1.2200
0 . 8732
0 . 3249
0 . 7623
8 . 7289
0 . 2367
0 . 2480
0 . 3422
1 . 8003
0.8718
0 . 0424
0.1046
0 0777
SI
AL
CA
0.8718 G.0424 0.1046 0.0777
1.0000 0.0223 0.0956 0.0559
0.0223 1.0060 0.5944 -0.1070
0 0956 0.5944 1.0000 -0.1232
0.0559 -0.1070 -0.1232 1.0000
00
EIGENVECTORS
URLUE
1.9285
i . 5992
Q . 9426
8.4821
9.1276
FE
0.6621
-8 . 2295
-8 . 8772
-0 . 0465
-0 . 7077
S
0 . 6579
-0 . 2375
-0.1096
-0 . 0223
0 . 7959
SI
3 . 2220
9.6451
0.2135
-8 . 6990
0.0212
AL
0 . 2802
8 . 6227
0.1663
0.7127
-0.0041
CA
0 . 0323
-0.2951
0 . 9542
0 . 0299
0.0198
REGRESSIONS
S = 0.6951 + 0.9554FE + -0.0338AL
FE s 0.0354 FE = 1.2753
ORGANIC S=
0.695 MINERAL
1.218
-------
330FL FG1. 440 2K
MEAN
SIGMA
FE
S
SI
AL
CA
8.2286
0 . 8832
e.3163
3 . 8828
9 . 2823
8.1703
6.1707
6 . 2268
0 . 2852
0.3128
3263.DAT
CORRELATIONS
FE S
SI
AL
CA
1.0000 -0.1057 9.0080
0.1057 1.0000 -0.1486
0.0080-6.1486 1.0000
9.0434 0 9588 0.2927 1.0000 -0.1892
0.1857 -0.0484 -0.0196 -0.1892 1.0000
00434 0.1057
0.9588 -0.8484
0.2927 -8.0196
CD
EIGENUECTORS
UALUE
1.3602
1 . 2386
% . 9469
0.8817
8.6026
FE
-0.0141
-0 . 5470
0 . 7296
-0.3419
0 . 2266
S
0 . 0963
0.6180
0 . 560?
0 . 4263
0 . 3358
SI
-0.6168
-0 . 2858
-8 . 2238
0 . 3986
0 . 5793
AL
-0 . 6846
0 . 0930
0.3108
0.1169
-0 . 6422
CA
0.3761
-0.4781
0 . 0837
0.7315
-0 . 2965
REGRESSIONS
S * -i.9523
ORGANIC S=
0.8365AL + -1.2851SI
0.000 MINERAL 8*
0.889
-------
330 1.4FL GRD
3173. OAT
FE
S
SI
AL
CA
MEAN
CORRELATIONS
SIGMA
FE
S
SI
AL
CA
1 . 290?
1.8081
1 . 2273
0 . 7294
0 . 3808
0
0
8
0
e
.9400
.8069
.2572
.2196
.3898
1.
0.
0.
-8.
0.
0000
8431
1283
0109
1534
0
1
0
-0
0
.8431
0PI00
!l031
.0056
.9045
0.
0,
1.
0
0.
1203
1031
0000
5280
0681
-e
-0
0
1
0
.0109
.0056
.5280
. 9000
.0519
0.1534
0 . 0045
0.0681
0.0519
1 . 0000
CO
CO
EIGENVECTORS
UALUE
1.9029
1 . 5030
0 . 9889
6.4619
3.1435
FE
0 . 6730
-0 . 208?
9 . 9880
9 . 9376
-0 . 7086
8
8 . 6584
-0 . 2245
-0.1654
0 . 8843
0 . 6940
81
8^2639
0 . 6458
-0 . 0957
-0.7104
8.0219
RL
0.1505
0 . 693S
-0 . 0935
0 . 6976
-0 . 6254
CA
0.1462
0 . 0933
0.9771
0.0112
0.1231
REGRESSIONS
S = 8.7911 + 0.8450FE + -0.101QAL
FE< CLAY > * 0.0872 FE< PYRT > * 1.2035
ORGANIC S-
0.791 MINERAL S=
1.017
-------
338FL FG1.4 100 2K
MEAN
SIGMA
3264,DAT
CORRELATIONS
FE
SI
FE
S
S!
AL
CA
0 . 4899
1.0894
8.4681
3 . 7904
Q.3291
0 . 3996
0.3144
0.2614
0 . 3375
0 . 3005
0.7610
0 . 0926
0 . 0762
-0.0413
0.7610 6.0926
1.0000 -0.0923
~0 0023 1.0000
0.2125 0.3483
AL
0.0762
9.2125
9.3483
1.9000
8.0252 0.1662 -0.0497
CA
-0.0413
0.0252
0.1662
-0.0497
1.0000
00
VO
EIGENVECTORS
UALUE
i . S422
1 . 3862
1 . 9258
8 , S268
0.1989
FE
0 . 503
-0 . 2482
0 . 0986
-0 . 2644
-0.6602
S
9.6651
-0 . 2238
0.0943
0.1635
© . 6867
SI
0.1990
0 . 7082
0.0148
-0 . 6495
0.1919
AL
9.3084
0.5383
-0 . 4465
0 . 6099
-0.2095
CA
9.0091
0.3121
0 . 8842
-0 .' 1 085
REGRESSIONS
S * 0.6608 + 0.7964FE + 0.0474SI
FEfCLAY) - 0.8000 FE
-------
336FL FG1.4 209 2K
re
S
SI
SL
CA
MEAN
3265.DAT
CORRELATIONS
SIGMA
FE
S
8.5056 0.3204 1.9000 6.4967
1.0736 0.2665 0.4967 1.0000
0 4733 0 2462 -0.0630 -9.1264
5.8490 9.3631 0.1376 6.0950
S 3124 0.3498 -0.0332 0.0453
SI
-0.0630
-0.1264
1.0008
0.3655
0.1057
AL
0.1376
0.G950
0.3655
1.0000
-0.1316
CA
-0.0382
0.0453
0.1057
-0.1316
EIGENVECTORS
VALUE
1 . 5504
1 . 3672
1 . 0592
0 . 5443
0 . 4796
FE
0.6858
-0.9412
0.0312
-O . 4800
-0 . 5446
S
0.6750
-0.1322
0.1557
0 . 2220
0 . 6733
SI
-0 . 0797
0.7167
0 . 2579
-0 . 5453
0 . 3403
AL
0.2512
0.6817
-0.1702
0 . 6049
-0.2781
CA
-0 . 8674
-0 . 0508
0 . 9377
0 . 2389
-0.2378
REGRESSIONS
S = 1.2043 + 0.8588FE + -0.0966AL
FE = 8.6578 FECPYRT; = -0.1522
ORGANIC S=
1.074 MINERAL S«
0.000
-------
33&FL FG1.4 325 £K
3268.DAT
CORRELATIONS
MEAN
SIGMA FE
S
FE
S
SI
AL
CA
0.
<
4
I .
4.
8.
4498
8011
0522
8589
2905
0
0
0
0
6
.2116
2180
.3026
.4236
.3211
1
0
0
-e
0
.0000
.1419
,0233
.0165
.0934
9
1
0
0
0
.1419
.0000
.0945
.0168
.0151
SI
AL
6.0283 -0.9165
0.0945 0.9160
1.0D00 0.2934
0.2934 1.9000
CA
0.0934
0.0151
1987
1498
0
0
1.0000
EIGENVECTORS
UALUE
1.4617
1.1290
6 . 9274
0 . 7930
0 . 6839
FE
8 . 1835
0 . 6962
-0 . 4039
-0.5615
-0 . 0565
8
0.2174
8 . 6262
0 . 5995
9 . 3950
0.2125
SI
0.6153
-0.1345
0 . 2090
-9 . 0409
-0 . 7470
AL
0 . 5502
-0 . 3240
0.2156
-0.4369
0 . 5958
CA
0 . 4376
-0 . 0059
-0 . 6223
0 . 5798
0.1969
REGRESSIONS
S = 0.3831 + 0.9333FE « 0.0408AL
FE « 0.0000 FECPYRT) = 0.4498
ORGANIC S=
0.383 MINERAL 8*
0,618
-------
330FL FG1.6 48 2K
3266.DAT
CORRELATIONS
MEAN
SIGMA
FE
S
SI
AL
CA
FE
s
**f
SI
» *»
AL
4MM
CA
8.2486
0 9505
8 4875
4 2645
0 . 3332
0
0
0
0
0
.2130
1952
.2792
3756
.3246
1
0
0
0
. 0000
.0427
.1496
.1067
.9058
0
i
Q
0
0
. 0427 0 .
.0000 -0.
. 0646 1 .
.1733 0.
. 8356 0 .
1496
0646
0000
3789
0557
0 1967
0.1733
0 . 3789
1 . 0000
0.1460
3
0
0
0
1
.0053
.0356
.8557
.1460
.0000
EIGENUECTDRS
» if
1
1.
0.
0!
H-
,'_*C.
5879
0603
9917
mf ^r * i
$29
% « Aw «v
5472
F
0.
-0.
-9.
-0.
0.
E
3313
2308
5781
7042
0328
8
0.1952
0 . 8038
SI AL
-0 . 4204
0.1325
-0 . 3485
0.5913
-0.4156
0 . 8874
0 . 2685
-0 . 6308
0
0
8
0
0
.6552
.1121
.0530
. 3079
.6787
CA
9.
0.
0 .
-0.
-0.
2707
3395
6918
5654
1149
REGRESSIONS
S = -2.2669 + -1.0423SI + 0.Q541AL
ORGANIC S= 0.000 MINERAL S* 0.951
-------
330 l.GFL GRD
MEAN
SIGMA
FE
S
SI
AL
1.4887
i.9397
1 . 3753
6 . 8538
8 . 5783
8.5418
0.2581
8 . 2489
3175. DftT
CORRELATIONS
FE
S
SI
1.0809 0.8431 0.0194
0.8431 1.0000 -0,6128
0.8184 -0.0128 1.8900
8.0472 6.0069 0.6482
AL
0.6472
0.0069
0.6402
1.0008
CA S.3658 0.3389 -8.0964 -0.1264 -0.8744 -8!1134
CA
-0.0964
-0.1264
-8.0744
-0.1134
1.0000
VO
EIGENVECTORS
'ALUE
1 . 8830
1.6531
3. 3581
8 . 3587
0.1551
FE
8 . 6767
-8.1588
8.1411
8 . 8225
-8 . 7846
8
0 . 6745
-8.1849
-8 '. 0437
8.7071
SI
9.1355
0 . 6886
0.1523
-8 . 7835
-0.8152
AL
8.1658
0 . 6774
8.1003
8 . 7879
8 . 8492
CA
-8.2331
-Q.1359
8 . 9684
8 . 8383
8 . 8387
REGRESS.! ONS
S = 0.6611 + 8.9556FE + -8.8808AL
FE = 8.0721 FEC PYRT> » 1.3286
ORGANIC S-
8.661 MINERAL S<
1.278
-------
330FL FG1.6 100 2K
FE
S
SI
AL
CA
3269.DAT
CORRELATIONS
IEAN SIGMA
6 . 4586
9 . 9866
8.1047
8.6631
8.3581
0
0
0
0
0
.2678
.2497
. 1353
,4783
.3683
1
9
9
0
-0
FE
. 0060
. 3728
.1787
.0937
,1489
0.
1.
~0
0.
-0.
S
3728
0000
0241
1813
1440
0
-8
1
0
0
SI
.1787
.0241
. 0068
.2680
.0395
0
0
9
1
0
AL
. 0937
.1813
.2680
,0000
.0758
CA
-0.1489
-0.1440
0 . 0895
0 . 0758
1 . 0000
>£>
EIGENVECTORS
UALUE
1 5633
1 . 2689
8.8551
0.7912
8 5215
FE
0.6002
-0.1795
-Q.I 480
-0.5160
-9 . 5652
c-
0J5660
-6 . 2908
0 . 4937
-0 . 03D5
0.5919
SI
0 . 3320
0 . 5704
-0 . 5889
-0.1329
0.4471
AL
0.4137
9.4728
0 . 2750
0 . 6324
-0 . 3602
CA
-9.1949
0 . 5782
0 . 5584
-0.5615
-0 . 0243
REGRESSIONS
S = 0.5653 + 0.9728FE + -0.2320SI
FECCLAY) = 0.0250 FE
-------
336FL FG1.6 325 2K
FE
S
31
AL
CA
MEAN
326?. DAT
CORRELATIONS
SIGMA
FE
1.0060 6.1582
8.1582 1.6000
0.0294 -0.8573
0.0724 -9.9266
0.3397 6.3936 -0.0526 0.0661
8 . 5964
1 . 1268
8 . 3784
7 . 9339
6.2913
0 . 2296
8 . 2628
0 . 4480
SI
0.0294
-0.0573
1.0000
0.3364
-0.2014
AL
9.9724
-0.8266
0.3364
1.9000
-0,9790
CA
-0.0526
0.0661
-0.2014
-0.0790
1.0000
VO
EIGENVECTORS
VALUE
1 . 4534
1 . 1623
0.9376
6.3127
0.6346
FE
8.1410
0 . 6973
-0.2419
-0 . 6482
-9.1236
S
-0.1369
0 . 7076
0.1097
0 . 6846
0.0381
SI
0.6551
-8 . 0388
0.1584
8.1790
-0.7157
AL
0.5911
0.0826
0 . 4959
-0 . 0867
0 . 6247
CA
-0 . 4295
^ > MMT ^m
8.0691
» *f*f
0 8114
-0 . 2678
-0.2841
REGRESSIONS
S * 0.7941 + 0.7821FE + -0.3612S1
FE - 0.1711 FECPVRT) 0.4253
ORGANIC S-
0.794 MINERAL S=
0.333
-------
APPENDIX C
RAW DATA FOR PSOC 308 AND PSOC 330 COALS
96
-------
PASS 40 AREA 1
H AMPS
TIME
FE
SI
A I...
CA
6
2
5
1
6
3
4
1
6
4
2
3 .
.1.
2
3
5
5
5
2
4
5
1
7
3
1
1
4
A
i
*..
?
6
0
2,
&
3
?
4
2
4
2
5
6
6
2
0
2
3
9
0
3 AC
36:1.
362
361
360
360
36:1.
3 6 :l.
361
1093
1130
1 1 1 4
1121
1128
1133
1138
1109
1135
1142
1121
1098
1090
1153
1079
1086
1139
1123
1142
1056
1107
1064
1148
1099
1077
1116
1114
1124
1137
1159
1081
1130
1076
1091
1116
1:1.33
1.1.06
1154
1133
1133
4
15
8
2
8
a
5
12
3
355
334
63
286
364
417
367
450
373
323
323
362
354
368
392
340
388
351
316
265
394
'> '.-> /.
£. A.. O
358
282
327
315
365
341
338
407
321
332
273
299
371
389
379
320
354
3 1 9
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRIT'E
9953
9278
9843
9794
9659
9957
10253
9632
9258
1'iATA
411
526
534
490
170
137
666
278
609
544
176
690
2007
272
657
720
562
536
469
2236
368
2813
912
999
900
667
778
467
1087
118
601
2526
1943
1940
539
438
474
362
175
985
9712
10387
9389
9990
10068
10120
10412
9843
9579
697
1052
464
720
605
557
1.065
883
1123
865
458
1042
2177
511
835
828
714
843
729
1650
613
2647
1101
1179
1047
702
934
8.1.0
1731
491
857
2471
2219
2117
695
841
807
634
394
1268
0
0
109
0
0
0
0
33
51
') O '?
A» / A"
821
10046
1332
182
379
411
167
801
449
263
658
483
263
357
709
241
441
819
376
759
3761
223
569
827
818
539
393
520
299
460
727
53
704
892
f\ O '-'
£a*J
445
344
157
432
0
0
194
58
0
75
1 /N
.10
189
327
163
604
10457
.1.264
.1.78
342
239
4'')
»'
538
204
183
560
293
240
239
560
103
326
628
344
565
3895
191
488
434
375
534
225
317
212
356
575
0
404
525
':> o1";
f^. A,. W
345
216
0
292
0
/«\ f\ j>
t i /l
fit, A» T
59
"y !
/.L
107
148
158
276
105
163
123
70
A
o
243
149
0
59
156
0
73
347
403
0
244
0
334
0
189
197
180
164
378
0
284
0
0
0
1.1.9
0
287
303
66
0
163
151
97
-------
H
7
2
1
5
3
3
5
3
3
3
3
5
6
^
'5
9
5
1
3
4
6
2
3
K"
O
*..
3
K:*
3
2
ji
4
7
3
5
4
S
2
5
4
*!.
3
A
:l
^)
AMPS
1088
1135
1 1 1 8
1151
1096
1098
1134
1090
1091
1125
1127
1150
1131
1157
1112
.1.138
1 127
1091
1121
1.1.48
1158
1133
1090
1137
1134
1 ! /X 1'"
.!. .1. 0 D
1108
1095
1142
I.i f\ f\
L22
1123
1130
1136
1142
. 1152
1129
1096
1109
1122
1.i tin jti
.Lb2
1137
1 i '?':>
U ! An A*.
1143
,i ,i ]« ,i
i 1 b 1
.1.091
1128
1094
1138
1128
1126
1130
U
273
397
374
444
196
324
320
330
309
443
318
345
304
338
3.1.0
302
341
241
305
3:1.1
351
326
323
301
304
370
265
298
354
337
343
395
370
374
343
311
327
312
340
326
347
328
326
306
288
304
322
283
339
358
328
TIME
300 .
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
3001
300
300
300
300 '
300
300
300
300
300
300
300
300
FE
1543
330
422
271
1994
455
634
447
1432
186
435
207
405
488
866
329
345
6464
1598
1098
737
536
530
1241
451
499
117.5
V 758
309
435
837
375
606
204
882
1493
1449,
1464
876
837
403
665
202
497
2687
560
812
309
1185
934
852
S
1298
737
682
3 1 3
1747
653
744
725
.1.376
490
7.1.4
530
903
1011
1071
809
8:1.9
5511
2105
1159
934
954
815
1526
892
837
1409
1185
489
570
1096
490
867
1011
1333
1542
1557
1947
1231
1106
773
1193
792
707
2735
807
777
510
1278
1474
1443
SI
2097
363
358
234
4868
347
1 1 3
295
746
257
. 795
377
" 413
450
300
496
172
337
1027
1393
447
577
426
770
437
327
453
929
4.1.1
280
1212
315
492
713
849
911
539
554
384
338
728
563
500
290
846
320
175
3.1.3
451
268
374
AL
1256
282
'>':>':>
fit* A« At*
148
3026
112
9
79
786
153
573
272
352
239
253
264
118
1 4 1
754
946
287
413
401
614
255
233
259
572
305
137
637
1 1 1
425
461
543
573
374
374
223
309
358
335
207
118
306
198
193
2 1 2
325
93
207
CA
223
77
88
220
48
0
399
291
0
0
0
0
94
0
134
0
0
232
49.
288
100
0
52
124
20
0
43
114
0
0
0
170
0
0
196
182
0
125
77
0
18
39
0
68
217
348
0
263
98
-------
1
5
3
1
IS'
b
7
3
j
6
3
3
:l.
S
.
XL,
A
4
Kr
0
5
Tr
6
c:;
A
4
IU;
>J
")
..
1147
1122
1120
1145
1091
1136
1073
1092
1114
1120
1138
1131
1116
1140
1126
1109
1109
1125
1145
1 1 1 1
1.086
1147
1137
1122
1111
1087
1132
1143
1135
1139
361
292
3:1.9
341
267
343
243
382
420
314
290
285
293
363
330
351
313
296
235
4:1.2
324
372
373
239
456
399
298
281
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
769
1132
2788
790
2937
890
373(3
640
299
1219
183
770
70:1.
996
537
1523
369
358
645
1000
640
3.1.3
530
321
479
4528
492
687
652
796
1.1.03
1775
3375
1064
2937
1223
3734
1209
970
1560
578
1222
935
1145
1308
1893
651
510
1145
1447
887
568
633
578
731
4256
9.1.3
1045
979
1166
687
610
534
490
794
812
527
565
368
532
250
444
855
781
1258
468
349
850
1006
218
3154
325
389
242
326
13.83
220
516
924
362
475
356
209
362
622
583
269
276
168
307
217
330
702
469
854
210
247
273
559
162
1707
310
167
89
168
780
177
263
464
260
242
88
45
0
250
201
0
0
33
33
4?
193
368
79
30
240
108
6
133
102
0
9/ii
2
15
29
194
82
:L57
80
99
-------
330
PASS
H
6
4
1
">
*«
5
4
2
b
5
2
I
1
4
1
4
1
4
3
4
3
">
">
5
8
6
':>
2
'>
A'..
14
4
.1.
:>
5
32
A
4
1
7
4
3
3
">
':>
;>
4
1
:i.
4
1
40 AREA
AMPS
365
366
368
366
366
368
366
366
367
1094
:l. :i :!. 8
' 'i.092
1086
:i.:i.2:i.
1106
1101
1090
1125
10B4
1108
1127
1 1 :!. 7
1143
1123
1132
1059
.1.103
1119
11 01
1136
1092
1137
1099
.1.137
1126
1:1.05
1139
1040
1062
1125
1128
1126
1135
1085
1057
1065
.1.106
1051
1099
2
V
3
7
17
>
A>.
10
6
7
15
6
356
396
394
380
359
335
373
340
346
277
245
295
340
368
343
350
337
269
342
345
336
323
411
245
316
391
3 1 7
392
220
268
277
320
291
317
392
322
279
418
185
374
'I ME
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
FE
PYRITE
10130
9615
9767
10348
10015
9656
9412
9684
9615
DATA
720
286
566
930
554
430
256
2543
1 0 1 3
415
869
800
159
213
1678
786
257
1979
647
208
426
1106
267
5356
368
353
903
555
4202
4684
1279
2484
382
6.1.9
491
1288
3066
r" *'\ *!
Wrf-7
3583
549
S
10291
10:1.07
9547
10467
1031.9
9684
10:1.17
10047
9921
1:1.66
530
8:1.0
1328
1240
744
690
3020
1472
806
1317
1005
661
495
2101
966
636
2044
938
707
811
1475
432
4737
603
660
918
648
4566
4469
1730
3008
922
887
473
1614
2391
859
2717
747
SI
94
0
15
0
145
0
8
123
0
1074
223
392
235
328
352
224
501
1125
2163
2131
628
396
1490
521
447
469
487
607
265
189
192
192
1545
1827
391
1246
292
324
402
407
452
1076
S67
412
623
613
109
1493
316
A I...
56
37
391
12
0
217
70
195
394
723
115
333
188
142
160
214
413
618
12 41
1456
313
') '> -i
A.. %.. .1.
291
286
346
154
474
486
180
30
160
189
956
1617
259
943
60
248
318
';> '> *7
A.. *.. /
235
946
41:1.
317
501
296
0
1327
215
GA
33
0
0
24
0
0
311
0
0
98
18
0
47
162
0
18
0
105
0
274
354
108
1.47
173
0
74
424
47
.1.00
151
21
0
106
418
21.0
0
232
0
338
19
343
54
0
.167
122
34
68
144
192
100
-------
H
7
3
3
7
3
3
1
3
S
2.
0
3
1
3
1
1
4
6
8
1
3
4
a
3
3
1
2
a
AMPS
1116
1121
1103
1.1.44
1116
1:1.12
1101
1093
1119
1130
1043
1101
1117
1132
1098
1102
1115
1119
1123
1110
1128
1125
1116
1119
1111
1072
1057
1103
1118
1103
1093
1098
112?
1145
1136
1130
1131
1123
1118
1123
1126
1107
1087
U35
108.1
1071
1106
1111
V
375
359
381
261
313
378
347
350
349
346
344
410
384
256
444
435
487
351
291
324
281
296
328
393
354
409
361
437
276
198
330
311
355
315
273
359
413
454
426
390
358
244
371
335
362
355
246
230
381
311
I ME
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
FE
341
424
275
386
1875
600
549
480
295
851
731
346
282
974
272
440
139
228
896
550
450
10 71-
501
330
687
470
830
462
2487
6462
977
538
875
438
1256
268
256
347
1086
151
764
646
384
598
1886
2605
299
2975
3370
350
557
S
836
713
717
703
2348
870
1054
1010
507
1276
997
74:1.
581
1 1 S'?
,1, .1. W A..
416
712
340
474
1133
964
679
1406
1017
610
910
897
948
596
2649
4732
1097
884
1344
966
1571
544
511
492
1106
311
856
1548
681
1230
1925
2561
352
3284
3660
601
804
SI
264
228
530
2470
1580
637
476
341
750
759
642
342
336
1875
125
371
197
230
538
483
333
746
324
468
343
341
541
448
416
785
1884
338
594
2197
1827
289
176
97
259
154
602
666
385
491
393
301
283
770
337
386
261
AL
185
252
398
1577
1337
484
350
267
668
353
347
267
172
1700
74
'*> o *x
A'.. A.. %.?
66
100
362
403
130
6fy '!*
A.. A-
<'J A
o4
332
145
157
333
281
,»j ) .">
' /
A.. / *-
698
485
262
468
1878
1524
334
126
143
233
160
393
592
261
345
342
166
167
582
186
202
30
CA
70
198
123
208
120
69
2:1.4
60
127
188
214
0
261
0
'>
A.>
49
288
2
278
56
55
8
0
0
0
248
399
133
106
118
0
0
417
133
0
0
0
26
54
138
202
309
0
0
386
0
91
161
0
0
218
101
-------
9
3
'>
*..
3
4
;>
3
3
9
>
*"..
3
0
'o
!;
I.J
')
AM
7
.1.
6
5
';>
2
3
3
'>
.1.1
1
>
':>
*..
4
4
1
1106
1081
1:1.29
:i.il:;>
losn
1 1 in
:l. 1 1 i
:! 1 :l. 6
1 'I > 1
:l. j. ::. 3
1 :!. 4 :l.
:l. :l. 2 1
1 1 '! 6
1071
1112
1035
1 1 1 1
1128
1108
1108
1 1 1 8
1053
1107
1100
1123
1 1 1 4
1155
1107
1093
1098
372
373
363
315
318
3 1 9
327
380
369
3 1 1
383
3 1 0
324
423
283
186
335
361
251
495
376
307
384
361
332
262
394
365
334
376
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
138
508
1088
579
1440
830
509
165
7KJ-JJ
/ %./ w
1366
432
1771
1 1 1 7
142
949
8477
543
193
904
399
977
2150
1584
488
593
692
412
2749
197
1227
551
809
1649
1147
1518
1 /:>04
.1. A,, \S T
968
410
1 1 O'X
J* .1. \S\.t
1791
595
2106
1 T71
.1. \.f / .1,
294
1200
8479
1070
703
1048
543
1071
1422
1579
893
1143
1427
535
2827
590
1368
276
167
249
653
582
74O
/ ? V
247
230
A "y *'">
*? / %..*
539
403
515
7 R 'X
/ W \t)
100
1264
588
368
127
363
236
202
1689
186
261
690
389
148
526
587
930
255
92
226
539
455
is: 1:5 -j;
>../ \J w
155
134
..,,.,
\lf A~ \.J
409
101
476
4A1
"T W -L
108
577
305
290
114
214
157
214
1254
60
139
336
4 1 7
53
354
367
679
171
8
210
6
92
565
107
23
65
339
0
93
189
0
0
1003
0
0
357
170
?90
0
178
436
409
239
187
182
148
0
102
-------
3
TIME
SI
A I...
CA
6
4
1
2
5
4
2
5
5
3
5
4 .
% ''
0
3
.1.
4
0
0
3
4
2
3
2 1
5
B
5
4
2
7
4
*'"
2
"j
<;.
s
1
3
9
5
4
6
6
3
8
365
366
368
366
366
368
366
366
367
13.61
1 i. 4 7
1183
.1. ,|. ,7[j
1170
1174
1151
1170
1158
1179
1188
1166
1146
1163
1142
1152
1150
1123
1163
1149
1142
1100
1132
1108
1 1 1 4
1108
1132
1149
1082
1121
1115
1149
1132
1127
1138
1150
1.140
1159
1139
1107
3
7
17
10
6
7
15
6
280
265
385
394
334
440
332
394
330
330
321
382
224
290
336
399
353
325
375
366
327
400
312
380
336
428
3 1 9
290
176
314
389
398
279
324
308
363
323
312
360
293
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRIT'E
10130
9615
9767
10348
1001.5
9656
941.2
9684
9615
DATA
931
1083
256
248
427
248
3203
1258
7 1 3
529
470
638
828
2365
1434
1539
904
451.4
847
635
826
440
1.003
708
516
380
734
751
7444
990
477
258
3422
670
693
625
589
548
514
1863
10291
1.01.07
9547
10467
1031.9
9684
1.01.1.7
1.0047
9921
1391
1.392
521
1"' / I"1
b 6 b
802
609
2924
1.324
925
952
1144
1.1.93
1.164
2663
1868
1650
1382
4600
1180
1070
757
831
1388
1.109
1162
710
823
1610
7500
1667
651
421
4051
1161
979
1061
865
661
876
1844
94
0
1.5
0
145
0
8
123
0
540
1332
357
406
259
849
410
954
553
486
390
3329
575
427
536
543
683
606
576
359
230
813
1032
458
747
451
8.1.9
1367
564
1238
272
846
728
1005
417
695
79.1.
385
1720
56
37
391
1.2
0
21.7
70
195
394
278
993
198
i 9
.1. /
226
1 1 1
527
2 1 7
570
338
347
253
2 9 2 9
558
237
268
278
355
345
405
308
1 -1 1!"
1 .1. b
555
849
298
301
350
r" i
b .1. 1
985
364
628
114
466
520
566
190
385
538
2 2 3
1267
33
0
0
24
0
0
3 1 1
0
0
322
140
1.96
1 7 3
147
0
48
195
660
34
104
231
361
0
347
*( *l
.1.1
*y .") /*\
329
300
374
1598
108
284
253
*.'.', \J A*..
673
134
0
121
8
44
124
317
309
65
60
489
103
-------
H
Ail PS
TIME
FE
S
SI
A I...
CA
3
1
4
4
7
J.V
4
:!.
3
'>
A..
3
4
3
:!.
'"\
3
:!.
">'
,s
3
3
3
'";
A"..
r"
b
4
:l
'")
A,.
6
5
:l.
3
0
'>
An
0
3
1
1
3
*')
A..
5
4
'*)
1.2
5
*")
Ji
1
3
4
4
2
'>
A«
8
1:1.34
1 :l. 1 9
1 :l. 3 4
1127
1098
1 1 "*?
1 1 3 1
.1. J.50
1:1.28
1 1 3 1
1145
1085
1095
1124
"t ( 1*" !"
.1.1 bb
1.1.43
1086
1 1 2 1
1 1 1 1
1 1 1 4
1126
1124
1107
1121
1099
1158
1132
1156
1118
1109
1130
1089
1109
1126
1098
1104
1078
1139
1122
1102
1123
1148
1097
1130
1124
1139
1121
1 1 1 1
1098
1146
1080
325
350
340
403
286
330
309
392
316
364
352
389
390
329
363
353
220
264
384
360
325
305
307
305
300
337
300
347
268
278
340
389
32(3
235
'') IK* J
.-.; ..> 6
273
338
376
320
335
398
358
306
366
369
324
351
340
299
3 1 2
312
300
300
300
300
300
100
\.f \f \S
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
485
610
895
4.93
755
A |::; '>
*t <.) A'..
780
206
419
66.1.
376
774
993
1212
988
1054
4515
2204
1450
857
288
1104
676
228
705
351
191
758
878
870
908
533
295
526
494
531
1077
430
1224
891
943
441
749
587
570
1226
339
575
684
1825
1107
1065
777
1189
709
1136
"'t / "₯
/6o
975
584
780
875
438
930
1054
1565
1311
1209
4022
2431
1635
1171
603
1246
1046
698
786
450
580
1055
1247
1192
1104
712
736
768
857
1060
1222
985
1703
1040
134.1.
797
1151
815
750
1559
604
851
883
2446
1362
266
300
377
254
822
**V J ft
/69
486
132
424
380
265
376
307
785
475
620
1049
152
422
205
351
765
238
3 1 0
39
208
1400
582
1260
376
403
177
434
508
419
889
248
273
4 1 3
584
273
239
480
366
191
729
4.1.8
236
987
764
927
183
155
296
99
604
I*" t'\ "V
b23
264
1 1 0
269
175
147
89
134
623
337
369
799
128
324
167
235
462
1 2 2
234
59
.132
649
263
769
283
284
126
263
301
293
367
:!. 1 9
1 1 5
303
467
159
163
357
187
174
562
158
p':>
\,t A«
532
458
689
0
94
0
159
191
Q'7
7 /
0
138
40
16
: 185
142
0
:l.64
266
64
0
0
14
17
19:1.
0
162
38
0
70
279
155
145
118
0
218
0
» J v> '
52
514
287
129
si
230
147
282
'>'?
**« A"
283
183
94
0
290
163
14
65
104
-------
7
9
6
3
1
4
8
i
i.
6
S
'
*'..
6
..-..
A
V
"y
0
"y
3
?
f
"X
o
4
4
7
1143
1136
1115
1137
'U)95
1152
. 1120
: 1 1 o
.1.138
1.:i ,38
' ' 0 6
1078
:i 142
1 1 1 7
1147
1147
1 1 1 3
1 .1. ,4 7
1107
.1.116
1.096
1136
11 10
1127
1.109
.1.117
1141
1136
1129
1147
421
265
244
385
398
419
362
297
358
354
30.1.
3 1 7
281
359
367
397
300
375
435
287
352
380
324
342
347
336
390
355
305
318
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
677
206.1
1444
1056
631
226
396
2714
411
2331
2860
701
248
1436
431
571
1131
476
259
1841
293
633
147
1147
600
391
843
750
674
589
1262
2236
1884
1481
900
437
971
3102
-534
2408
2959
934
549
.1.937
876
689
1403
8 1 7
658
1763
535
864
436
1520
995
657
941
883
959
1005
337
575
1861
333
359
233
312
666
254
458
452
405
882
4 1 7
618
261
474
302
90
1326
186
178
287
321
319
587
434
479
1602
476
246
462
1586
244
136
75
195
589
98
302
327
279
689
349
423
134
308
203
0
646
70
50
236
135
217
361
293
481
923
246
0
92
142
341
49
235
0
184
151
345
20
139
59
73
123
0
1 72
143
26
148
0
83
189
307
157
203
170
228
320
0
105
-------
330 PASS 40 AREA 4
H AMPS
TIME
AL
CA
4
9
7
4
4
&
7
2
4
7
7
3
-3
Ail
';j
7
7
5
Ei
4
3
2
1
2
4
5
ti
4
6
2
1
3
4
9
5
^
S
6
'2
2
O
5
2
i
;j
3
6
5
1
3
360
360
Li 6 2
36 :l
3M
362
,V!>!.
3.-iO
ii-S
:i.o S3
:l. 1 1 3
i. :f 4 :i
1 :i 1 S
1146
1112
1142
1164
1180
1130
1. 1 BO
1159
1 118
1113
i:L54
1103
1110
1153
1108
1162
1155
J161
1141
1140
1134
11 SO
1151
1093
1092
11 OS
1122
1078
1129
1121
1129
1 153
1147
1126
1148
1164
4
&
11
a
3
&
A
10
9
267
323
398
3 3 3
337
392
41S
403
346
?9?
317
396
277
304
377
381
33V
521
288
315
352
373
420
332
39 2
179
156
235
383
198
373
288
334
303
347
417
372
321
374
422
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYKITE
10204
9WB
9361
9703
9983
9528
9916
1014^
9339
HAT A
72 7 Si
1240
3413
4052
623
364
253
453
632
1279
402
466
634
607
951
604
220
201
1624
BAG
715
602
331
2733
2809
665
692
753
993
1800
680
4500
768
1404
1270
907
408
1362
075
809
10419
10333
9209
9977
10477
10100
992(3
10311
9744
6843
1 3 3. 7
682
4303
1027
907
695
729
930
1684
769
942
957
859
1352
805
504
329
2028
1068
1238
1079
713
3052
2857
663
741
796
1157
1230
1063
5439
1070
1640
1623
1264
1078
1675
1366
1265
0
38
0
0
0
13
0
27
0
B5Q
401
3 1 6
3t)9
232
439
352
413
3S7
673
379
359
979
347
2(34
279
65
221
3091
1970
414
264
277
313
445
8467
9072
4742
946
5411
402
226
638
692
427
368
1096
1181
879
310
72
0
147
0
0
24
0
HO
271
62B
38!j
:>72
234
194
257
206
418
190
438
187
207
630
167
99
236
53
117
2213
1444
163
214
190
285
240
6517
7568
3741
345
297 S
232
94
SI 9
333
409
339
346
942
247
24 8
14S
0
14
79
0
0
2 1 &
0
0
HVJ7
S
IS
1 62
4
76
158
320
211
178
228
59
398
111
133
.123
72
34
191
136
0
221
308
0
15
7
17
187
0
S3 A
0
0
IS
0
276
168
0
244
144
57
106
-------
H AMPS V TIME FE 3 SI A I... CA
\t
A
2
6
3
5
4
3
4
3
,)
'"J
")
3
7
y
6
j»
4
'')
'>
"y
»3
';)
'X
o
/,
O
1
.!.
4
t
")
i.
4
7
4
T
A
T
o
*.,
7
4
r
,"?
*.)
2
*»
4
T
»::;
w
2
I
^
4
2
2
3
*'J
6
6
6
7
'!.:!. 4:).
1109
11 21
.1.100
.1.0 as
:i 089
1151
1107
!:'4:l.
!..:! 6
1 '!. 1 :l.
1102
1110
112?
1155
1134
1132
1115
1149
1134
1118
1074
1153
1127
1118
1118
1122
1093
1104
1105
1072
1133
1120
U4 1
1179
1114
1 1 1 :l.
1133
1099
1153
1092
1142
1170
1153
1077
11.17
1126
1.129
1102
1030
105:1
317
78
172
275
272
305
299
400
3 .1. 9
* '> -i
\.t A.. .1.
292
360
337
321
441
476
406
361
395
382
357
329
444
481
332
376
281
295
420
452
302
413
361
416
407
324
358
464
349
351
294
383
422
395
378
322
358
263
356
156
220
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
890
746
610
5864
4 1 1 7
1 4 .1. 3
.1.864
139.1
515
9.1.4
716
624
522
751
290
555
1227
822
274
287
2938
718
226
324
480
611
878
764
561
629
725
315
1261
477
0 er *;>
A.i W A..
295
330
607
521
367
786
938
133
472
704
528
362
2087
420
11726
9339
1160
523
514
5507
4036
1527
2209
1459
1069
1046
1249
885
.1.039
1034
558
684
1194
1192
794
733
3037
1144
518
698
815
926
1683
1127
798
799
1 1 88
828
1598
584
392
1078
735
778
838
693
958
1006
374
673
1035
876
919
2628
698
9805
7:1.78
826
9876
9380
601
1458
1047
670
764
863
474
498
475
645
6 1 9
225
234
479
446
197
485
641
287
505
386
389
4 1 9
1108
773
402
258
783
208
734
455
287
1345
.16.1.4
871
379
753
883
488
470
683
164
576
252
572
257
256
349
647
8425
7345
397
1089
729
570
479
657
301
251
257
442
544
129
1 1 7
337
358
175
347
375
2:1.1
300
239
232
249
914
491
'> "i- ';)
A*. W A..
115
607
150
303
258
145
.1. 1 .1. 3
962
421
325
522
649
257
237
443
59
337
34
<»: ( 9
\.) .1. A*..
223
218
244
181
93
207
325
293
0
0
0
615
15
"X ">
*..'*..
0
307
286
175
232
167
0
0
0
66
67
85
35
0
1 .1. 6
109
37
80
365
0
95
53
0
2 1 2
0
0
8 1 2
0
35
141
112
0
0
0
0
120
0
0
42
187
107
-------
6
3
3
5
3
3
2
:!.
4
3
7
2
7
5
:5
A*..
3
3
8
1
2
6
2
0
4
2
'!.'.
5
9
4
.1.070
1097
1120
1 1 5 1
1156
1157
1109
1106
1136
1140
1074
1105
1128
1 1 1 0
1114
1133
.1. 1 1 3
1136
1035
9.1.6
1 1 1 1
1162
1157
1127
1.1.21
1040
1 1 1 5
1147
1035
1119
256
341
376
307
343
358
270
'> '> g
%.. A.. /
304
354
2 1 8
274
220
331
386
377
384
369
1 3 1
47
3.1.1
340
345
297
336
470
352
407
148
303
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
3299
2414
953
380
782
262
1959
950
472
661
7617
5085
1428
390
685
664
1389
544
5980
21552
3867
461
619
1794
311
390
569
239
12191
1816
3163
2836
1211
530
1007
500
2184
1422
739
955
6600
5184
1811
870
783
804
1536
1 1 4 1
5510
18204
4177
681
952
1923
373
650
1240
734
1 1 4 .1. 7
1872
1096
362
623
1757
821
625
567
666
986
938
401
842
2742
638
404
316
627
4 1 9
3456
115
385
489
1342
651
207
439
540
1040
542
332
678
270
406
605
524
318
282
426
516
524
261
604
1840
312
302
3 1 9
361
309
3026
25
332
1043
543
1 4 1
264
339
771
376
233
34
418
408
292
77
0
102
19
156
249
87
0
269
195
181
358
319
0
278
565
186
282
133
0
6
0
232
85
0
148
108
-------
TIME
FE
SI
AL
CA
4
9
7
4
4
6
7
2
4
1
1
8
4
4
8
3
'>
-------
H
AMPS
TIME:
FE
si
A I...
CA
:l.
5
3
3
7
'")
*..
4
'">
'')
A*..
:l.
5
'_')
:i.
3
4
5
4
4
3
1
'!>
3
3
'')
*..
3
3
5
';>
'[)
2
4
'7
3
3
3
5
1
4
4
".>
.1.
4
3
3
4
4
4
4
9
3
2
:l.:l.23
1128
1123
1120
1113
11 3 6
1 1 1 5
1136
1109
1140
1:1.43
1140
1102
1161
:!. .1. 1 7
1093
1.101
1 :l. 4 1
1126
1140
1100
1126
1125
11155
1120
1143
1132
1134
1123
1169
1182
1095
1105
111S
1150
1107
1146
1118
1:1.27
1141
1096
1107
1122
1 1 4 1
1108
l :l. :l. 8
1 1 2 1
1098
1108
1103
1107
309
307
318
232
307
294
230
353
295
2 A3
248
232
354
431
323
286
310
382
344
330
284
298
275
335
298
304
367
392
268
391
363
448
347
28:1.
416
333
353
281
322
331
335
271
34.1.
358
277
374
299
346
278
264
325
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
3QO
300
300
300
300
300
300
769
259
1172
1239
211.5
1.067
41.41
1.025
1.053
1195
3.1.50
2773
776
,., ,., ..
A'.. A.. O
1.753
1.002
458
1.67
309
812
2687
2044
1.31.2
502
966
886
5:1.2
718
1.038
344
237
147
617
1.920
190
779
409
1.539
265
5:1.2
163
3380
530
71.0
740
37
1.31.4
81.9
2853
2652
651
985
495
1398
1566
2436
1.704
5262
1354
1646
1315
3404
2812
1130
307
251.9
1056
980
701
577
1.152
2996
231.9
1.558
870
1.1593
1.320
655
880
1.624
732
435
506
750
2331
530
1156
763
2054
71.4
952
648
3964
942
1.1.34
1.206
469
1496
1157
3616
3054
761.
927
355
555
1.366
373
385
909
505
686
738
984
1539
793
134
524
455
448
4 1. 1
'? y '?
441
385
1699
51.0
468
526
600
149
344
744
232
115
51
1106
560
156
814
294
191
377
501
330
858
376
296
539
263
436
531.
532
703
305
662
202
3 1. 4
728
225
1. 9 1
598
444
493
392
788
1.083
378
33
253
1.55
401.
375
145
245
265
636
320
246
443
333
101
187
487
54
45
64
517
370
92
670
86
173
148
278
207
692
199
164
362
91
323
384
358
319
202
0
21.2
2:1.8
171
84
74
312
55
0
0
189
187
144
195
0
140
38
44
115
58
92
305
1.98
1.3
70
159
149
78
152
99
66
47
':>
A"
48
ISO
276
106
21.<>
1.56
0
176
1.23
372
34
1.60
0
0
195
0
oQ'L
188
110
-------
7
K'
U
.1
"y
A
cr
U
O
'
';>
4
4
T
I."'
u
x.
c:;
ij
4
T
")
*'_
4
T
")
*^,
7
4
^
4
?
1
I.
':>
*..
<::
%J
2
4
T
1:128
l :l 1 1
1.146
.1087
1115
1102
1127
1110
1021
U28
"122
i :' .!. o
1089
1.137
1082
1123
1124
1155
1123
1136
1135
1138
1144
1:173
1136
1106
1109
1099
1122
1112
333
29 6
328
282
350
296
330
249
177
296
301
350
406
379
38.1
328
290
336
272
367
391
379
350
419
364
291
312
249
371
347
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
64
.1.043
970
1005
.1.656
3325
520
3704
12556
688
1140
284
485
282
61.9
806
1333
415
1.001
799
301
1125
2279
221
193
570
1368
3842
945
539
399
1.1.84
1207
1270
1855
3447
810
4209
11637
1339
1584
666
694
6 1. 1
867
1.1.99
1681
71.9
1.38.1.
1302
686
1492
2927
427
399
796
1940
4525
1283
906
226
890
578
2901
235
477
281
957
11.89
537
560
345
292
696
1.33
431
667
376
1087
280
297
429
206
130
848
947
708
668
378
697
148
308
331.
1785
146
360
173
797
1.066
400
362
1.67
313
158
99
221.
444
285
648
160
241
235
218
55
606
738
481
571
293
">-'JO
*:.*:. /
21
308
238
69
169
52
224
0
257
0
54
1.2
108
74
25
0
0
53
275
0
170
0
31
290
0
.1.7
232
0
0
185
111
-------
330 F'rt'3S 40 AREA 6
H AMPS
TIME:
FE
4
-)
*n
9
6
4
6
6
4
'j
*!!
5
7
1.
4
J
TJ
2
6
3
3
<1
A.
3
3
/I
7
>
Hni
7
4
7
4
4
0
4
3
5
4
2
'-)
A
4
2
2
0
2
'2
I
3
4
0
A
".' !:i 4
:-J!i!iS
.356
3^3
3:5-1
ir,7
J'.Ml
-;:v4
;.'.'... 6
:l. :Li')0
1 1 ;>R
.! :!. '3V
1 !,$:>
1137
11^7
1141
1083
A 134
1116
.1.101
1126
114?
1134
.1109
1143
1148
11.;? s
1341
1132
1119
1127
S17F;
112?
1128
use
1139
1130
1124
1146
1149
1155
1145
1110
1100
1 1 15
1133
1137
1096
1109
5
6
9
5
!i!i
11
7
7
7
322
305
313!
314
'3 IS
333
343
209
321
258
262
300
344
266
40V
334
3^2
334'
308
343
3B2
372
425
278
253
384
305
330
368
451
427
434
435
409
3EJ4
370
3AA
362
289
306
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
F'YRITE
9727
10403
9443
9739
9B2?
90^6
9672
9519
9775
DATA
171U
2298
1788
1136
303
875
739
3?69
260
1625
57H
755
854
346
2U3
Aliiil
555
657
141'4
625
485
1534
319
2340
2129
732
1041
323
262
10G
103
163
311
166
nJ -nJ I-I'M
573
384
287
943
2351
9943
10133
9412
9412
10213
95BO
9633
V760
9633
22Jt!
1918
1679
1357
1010
1242
1093
2945
665
1908
1014
860
929
503
601
971
780
1092
1909
991
B2?
1364
628
tu tJ bJ*T
'JI2S'-P
964
1 152
632
761
428
461
459
506
355
942
1126
785
448
1203
2322
0
0
0
0
37
0
10
:l 04
0
600
614
SS>LS
16/
448
840
6&0
973
293
4^1
980
1598
1/0
1 293
251
S48
603
3 A 9
686
649
3f33
412
99
1013
1CI1V
1597
370
T "I ")
*ij kj? *jj
127
141
206
370
"t'li
^f^, ^
129
270
676
482
312
208
eoo
0
0
343
73
42
1 03
1.39
L 1 5
310
4/7
406
405
SI
42V
' 452
33S
625
198
S-jB
636
499
139
039
15:1.
107
439
264
334
249
1S1
':>?:!':>
iVii L i1 An
V
604
.1.189
981
269
164
125
B9
61
241
224
101
0
449
301
205
268
594
120
17
0
0
33
190
0
0
0
289
J>9
P-I- -r
0
IS?
(i
0
0
215
'M
228
337
58
0
255
51
465
21:i
1 1 ii)
131
189
90
40
2B3
I OB
491
IS
55
3:1.3
180
132
1S4
369
106
228
0
0
314
132
231
74
112
-------
H AN PS
TIME
FE
SI
1
2
4
4
3
2
7
3
1
2
3
4
6
A
'i
A^
3
I
4
1
5
6
2
2
3
6
1
4
3
7
2
2
2
3
6
6
3
4
6
2
5
5
9
4
5
4
2
4
4
5
4
1
1136
1136
1143
1113
1085
1125
1155
1136
1137
1121
1153
1133
1129
"1.075
1.3.21
1070
1127
1157
1150
1102
1150
U2I3
1109
1137
1150
1140
1145
1128
1147
1155
1148
1132
1132
1144
IOS'6
1180
1184
1167
1191
11 B6
1188
1153
1146
3,137
1133
1134
in?
1140
1107
1129
1132
365
360
350
333
296
335
458
353
315
310
299
247
349
260
331
342
324
445
360
220
360
J +L
-------
3
:l.
'"/
/
7
3
3
4
:l.
:i.
3
';>
:l,
";>
3
2
6
3
,"f
6
'')
A..
3
4
4
3
'>
A',.
4
r11
b
'"}
/
1130
1152
1144
1177
:!. 1.29
1 1.81
1 1.89
1 1.65
:l. i.86
:i. !. 7 6
1 L63
!. 1.80
1 1.09
1064
1076
1075
1100
.1065
1070
1064
1060
1083
.1.042
1032
1063
1068
l i i o
:!. 098
.1.100
1 1 1 1
326
337
443
383
295
403
434
366
415
385 .
4:1.5
415
357
370
333
378
385
2A':v
A.. \,t >,)
364
316
262
354
264
169
310
300
436
320
358
402
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
'X <"i f\
> V V
300
300
300
300
300
300
300
300
300
300
300
300
701
465
280
321
1019
206
120
1575
204
357
465
186
422
192
2520
516
422
f ) ..y ....
9/7
760
789
1362
1208
2916
1201
620
831
120
1006
559
358
850
558
519
612
955
562
449
2027
733
852
769
609
608
433
3033
589
627
.Li 21
1220
954
214:1.
1628
2988
859
927
1398
449
989
769
648
2761
1.1.91
430
299
460
187
235
441
354
272
292
525
1080
,". ,.j,;,
W An A.,
224
410
234
2566
286
872
916
501
772
5669
862
495
140
525
6 1 9
126
1520
8 1 4
253
236
257
0
156
276
293
1 1 5
123
466
399
':> i::; |::;
Att W W
o
253
88
1277
184
565
420
340
372
2932
472
3 1 9
9
340
393
0
497
88
125
0
82
0
0
251
.1.29
101
73
0
52
0
353
0
0
/* '') !
' i I
ff.. * ''
154
0
36
144
0
42
0
57
0
208
0
0
114
-------
s
H
4
2
9
6
4
6
6
4
2
8
2
4
0
3
3
1
1
4
6
1
3
!;;
o
*'»
4
0
6
3
7
3
*>
>c.
*}
*:
3
5
1
.1.
2
K'
u
3
4
3
"»
*.
4
0
1
3
2
4
1
40 AREA 7
AMPS
354
355
356
355
354
357
354
354
356
1152
1133
' 1.1.01
1179
1112
1150
1169
1158
1120
1147
1150
1133
1126
1135
1156
1136
1131
1145
1126
1143
1128
1144
1119
1136
1197
1160
1133
1159
1132
1132
1146
1163
1191
1184
1190
1192
1182
1141
1094
1113
V
5
6
9
5
5
11
7
7
7
358
354
249
359
394
289
334
384
326
365
347
452
392
297
320
336
316
339
395
391
344
325
391
376
502
374
340
413
369
336
312
297
422
451
40.8
316
303
34?
432
361
TIME
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
FE
PYRITE
9727
10403
9443
9739
9827
9058
9672
9519
9775
DATA
859
915
.1.369
555
356
.537
396
355
1139
615
1107
936
902
1411
427
589
533
637
456
415
1104
509
665
656
253
220
1764
448
701
943
770
585
403
700
269
500
153
2842
1395
810
9943
10133
9412
9412
10213
9580
9633
9760
9653
976
1232
1157
924
519
960
779
634
1624
1089
1624
1137
1300
1825
801
1039
935
897
689
768
1233
809
932
819
239
567
1647
508
1123
1099
1344
1038
673
1103
593
717
798
3247
1462
872
SI
0
0
0
0
37
0
10
104
0
520
687
3369
334
203
462
166
162
645
710
1027
481
585
729
770
546
343
483
451
322
324
1288
963
345
120
605
641
267
617
509
464
2356
274
111
310
577
703
267
485
390
AL
0
0
343
73
42
103
139
115
310
312
388
1910
248
64
355
9
103
241
423
739
395
463
528
540
297
161
256
240
227
98
630
988
242
93
271
359
151
106
379
415
1630
120
97
250
489
223
265
254
CA
17
0
0
'33
190
0
0
0
347
94
185
0
0
276
236
36
255
0
113
30
186
118
246
123
95
0
166
295
100
0
0
66
0
60
0
3
54
51
447
13
0
4
185
209
234
0
50
48
115
-------
H
3
0
7
6
4
3
2
5
2
'>
16
4
2
4
4
2
6
0
3
3.
5
2
4
3
5
5
2
3
3
5
3
5
4
7
4
4
2
3
2
4
3
1
2
4
2
5
5
4
5
i
Au
3
AMPS
114!
1 1 :L i
11 3 A
iC7B
1157
1 1 5 1
1170
1 :t :t f i
1111.
1 .1 7'Ji
1091
1 1 56
.f. 119
' TP 52
1180
1117
1127
1141
1131
1123
1125
1148
1119
1 096
1022
1 1 1 2
1142
1 15i3
1136
1128
1096
JO&O
1 1 4 1
1117
1132
1146
1133
1126
1119
1149
1115
1144
1119
114S
1171
1154
1163
1,138
1 1 56
1151
1128
V
462
320
272
236
403
329
393
23?
187
399
302
437
449
,.jj , .,
..f .|. f
397
233
321
409
3E10
365
292
314
295
249
123
317
410
420
366
368
243
373
351
307
289
344
314
384
346
377
361
405
453
444
430
447
422
388
426
450
497
TIME
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
FE
206
U35
1045
5 B 10
307
140B
2381
9721
366
195
7331
371
430
i "* isj A
1*1 -ill1 -mf hJ
330
635
1643
410
322
470
1389
1202
840
6372
16843
2408
1034
398
1614
3698
7958
131.7
21?7
1356
511
677
520
1458
1421
152
444
399
503
3S1
:195
336
516
61
413
564
508
S
464
1038
1104
3626
728
1142
3133
904B
1013
372
1310
6R7
639
1 M">
.t, O 7
793
1656
1342
800
980
875
1941
1445
1091
4947
l 4896
3072
1587
BOG
1733
3933
7545
1353
2049
1826
9 !3Ei
736
838
1770
1542
611
744
B30
914
747
447
747
646
454
833
847
747
81
365
469
2376
463
337
458
302
V43
4073
222
428
320
324
'">"J''>
*:. O r_
420
2152
292
199
274
783
843
486
906
470
911
605
393
333
213
492
597
121A
293
1347
613
865
519
324
387
386
350
289
247
513
10V
373
929
340
374
347
448
AL
136
2£i3
1660
47fj
204
276
293
760
4131
193
222
147
161
i i::; j.
i -J 0
404
1972
195
33
141
436
490
231
316
337
459
415
303
22£t
213
394
444
777
194
1084
108
260
328
265
311
253
193
'126
:ao
325
108
240
319
235
262
267
207
CA
32
283
330
356
0
270
IS
62
144
160
0
278
If?
1 |_;- A
.:. ....14
0
153
131
200
0
294
46
44
0
81
0
0
118
244
114
0
3
281
0
48*
336
6V
354
2
Iti
13
1649
197
265
221
157
324
124
0
38
0
2?3
116
-------
3
3
4
5
3
2
4
2
6
3
3
3
8
1
2
6
1
3
2
6
1
4
1
2
S
4
2
7
2
1133
1137
1129
1 1 :l. 2
1141
1052
106:1.
1143
1106
1106
1163
1139
1129
1175
1139
1104
1106
1170
1128
1102
1.1. 4 7'
1123
1134
1117
1130
1138
1160
1154
1162
388
378
401
406
247
207
392
283 ,
328
374
340
307
457
385
129
356
462
546
373
398
282
553
355
362
416
413
353
360
398
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
326
359
506
648
348
1308
926
418
619
1127
635
346
1.152
163
1.048
17032
1247
21.8
210
319
419
543
240
1051
1467
1365
325
798
587
442
706
766
778
864
590
1273
921
597
923
1.232
1.083
759
1.684
521
1340
14943
1761
548
508
692
696
648
420
1417
1876
1513
753
1.1.62
945
779
751
315
279
376
41.7
31.73
6487
265
494
491
487
406
:1657
256
392
32
560
214
129
759
577
496
66
780
680
495
253
545
429
291.
31.9
285
134
1.24
182
3137
5937
113
36.1.
293
34:1
283
1263
152
97
412
1 X\ "'t
.1. 0 /
84
449
407
477
98
423
506
396
. 221
519
278
105
157
j /
16
304
273
335
128
100
484
54
403
15
**\ / /\
260
62
238
79
1
364
159
37
0
0
.14
138
127
*'"
117
-------
330
PASS 40 A RE;: A s
I-!
AMPS
V
TIME
FE
S
SI
AL
PYRITE
3
1'*
6
5
4
3
:l.
3
7
363
363
364
. 363
362
364
363
362
363
7
6
7
8
7
9
9
8
9
300
300
300
300
300
300
300
300
300
9881
9679
9697
9455
10009
9698
10:1.03
10135
9425
9929
10268
9515
10125'
10426
9849
10445
10162
9775
0
12
131
0
0
0
64
28
65
0
39
445
0
0
225
0
134
212
DATA
7
A
6
6
6
7
7
5
6
6
4
4
3
4
4
5
5
3
0
9
4
7
1
IT
D
7
3
4
3
5
4
o
Ati
3
8
6
4
2
S
8
7
5
1128
I. :l. 1 6
1133
1148
108S
1143
1 1 1 :l.
1042
1026
1085
1130
1 1 4 1
1133
1 1 1 8
1 1 1 1
1159
1122
1156
1:1.08
1128
1143
1141
1109
1148
1129
1165
1172
1146
1146
1130
1151
1142
1128
1136
1105
1157
1180
1164
1147
1152
257
168
292
329
216
230
379
230
126
300
274
383
286
354
476
337
209
376 '
333
260
290
362
262
312
328
313
384
359
312
265
375
414
409
350
362
353
383
396
303
302
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
2094
979
697
915
6935
2310
2468
8969
13631
4326
2892
310
941
3323
225
386
6155
230
.402
2413
742
820
1332
589
2936
835
878
1132
976
2936
270
358
694
472
482
378
533
337
2158
334
2536
1433
1223
1101
6243
2085
2562
7577
12535
4404
2373
770
2011
3374
45:1
698
6114
618
646
2900
1107
981
1543
855
3003
984
1029
1635
1537
3043
462
427
1022
1048
796
758
738
626
2343
809
1027
658
537
681
371
515
314
892
344
900
421
592
429
568
167
284
694
361
261
800
1217
1490
972
350
565
643
145
652
1870
1964
253
1 4 1
308
866
290
266
515
270
1247
1224
537
492
335
397
301
322
202
334
229
610
2 2 3
477
400
306
32
181
579
1 1 1
186
630
955
1040
601
316
588
567
77
216
1296
1678
154
24
183
347
190
,-,/;>
A.. *»
178
245
979
766
CA
0
248
256
0
159
37
0
0
0
48
0
74
0
0
0
0
271
0
166
23
10
0
187
0
.40
178
240
0
204
174
411
0
63
182
113
IS
221
1.48
0
0
122
0
340
0
0
24-4
"28
$6
102
118
-------
TIME
FE
SI
AL
CA
5
5
4
2
11
2
4
1
2
9
2
2
1
4 '
7
.1
c-
6
4
1
er
3
4
0
3
3
2
3
8
3
1
3
8
5
4
3
4
3
1
3
,,/ \f AM
1 79
454
339
305
514
607
142
281
648
184
511
606
428
263
1200
370
212
308
781
A
4
172
200
o ( >»;
A*.. .1 sJ
1 1
f'\ A A
*-M4
187
401
539
207
97
146
316
280
356
370
284
250
301
382
194
81
138
560
319
202
243
308
294
658
569
110
319
181
335
424
518
.1.03
232
'"1 f "1
28
169
r" t*\
59
164
306
0
'*1 X
26
53
93
-------
3
4
5
:i.
6
6
'!>
4
8
1
1
5
5
5
6
4
3
4
3
4
7
:!.
1
3
3
:!.
?
4
4
3
1 1 34
1146
1159
1138
11.20
1129
1.037
1.037
1032
1140
1108
1079
1137
1.152
1119
'1102
1079
1126
1122
1066
1112
1 1 1 9
1129
1 1 1 6
1118
1 125
1139
1141
1056
1080
427
351
420
430
316
319
242
274
194
371
449
455
375
443
370
309
397
374
379
362
295
260
337
355
319
278
392
321
345
373
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
318
362
789
249
1765
1232
1290
1321
1932
821
665
897
583
175
728
1814
560
527
308
308
. 1618
759
508
640
717
909
697
6 1 0
828
874
514
846
1028
370
2028
1716
1562
1935
2206
1299
844
978
1078
512
943
2021
769
525
636
523
1944
977
700
729
1566
1064
931
1026
1185
1148
150
529
465
215
722
518
482
703
1127
570
488
323
360
358
434
4 1 1
292
431
195
251
237
468
237
342
1151
1820
379
5:1.5
750
382
71
381
265
129
394
182
403
339
835
387
460
>*':>
A.. W A..
266
348
219
287
ry ,) ~i
A.. A.. /
297
135
104
178
355
162
216
822
839
159
521
526
'> is; ')
.V*. W A»
151
0
33
0
92
359
213
148
0
344
155
0
34
97
100
12
0
0
216
249
0
100
4
25
298
264
63
138
171
238
120
-------
TIME
FE
S
SI
AL-
5
10
12
10
5
9
5
5
9
3
2
3 -
5
6
7
5
10
A
3
2
7
3
5
2
.1
3
3
6
7
7
S
3
4
2
2
9
4
4
7
a
s
2
2
1
3
6
4
7
U
360
360
360
, 360
361
361
360
561
3139
:l. :l 34
1:182
1133
1160
1176
1117
| -| ox
! A., W
1181
1164
1168
1138
1:1.94
1193
1220
1:1.88
116(3
1168
1177
1126
1195
1124
.1.144
1205
1204
1118
1102
1059
1109
1091
1038
1075
1142
1137
1101
1114
1132
1157
1154
1043
996
4
3
8
3
5
3
2
:l.
3
:i
6
3
4
8
3
2
4
3
4
2
3
5
5
'>
A...
>
A»
4
7
3
7
':>
y
t>
4
5
3
6
1
6
4
4
3
4
4
'*)
AM
3
':>
A»
2
1
3
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
9941
10008
9744
10238
9728
9630
9631
947.1.
9619
DATA
A.1 Ill''
1098
435
771
431
1415
822
787
632
401
368
683
396
378
495
258
928
514
580
809
310
541
556
292
337
224
441
769
684
266
1227
494
230
210
252
109
129
29
181
1658
971
10039
9837
10163
10203
10445
10080
9979
8940
10059
1815
1136
1594
.1.333
1942
1215
1372
1105
764
1244
1044
844
822
850
668
1431
1.160
975
121(3
1194
1612
1210
1162
1114
986
760
1357
1068
1100
1223
1219
998
1018
1179
1046
966
793
1069
1877
1430
33
0
0
0
0
0
0
0
0
955
400
675
1629
1287
2603
784
824
1401
263
391
360
382
389
112
263
723
471
477
297
1113
542
320
442
489
258
702
637
. 750
1089
219
234
71
179
43
58
1.07
182
966
2949
1
0
0
17
0
30
0
250
0
717
285
i y (,
b,iy
835
062
2189
506
821
1650
327
410
239
242
310
100
190
528
359
319
197
1110
377
265
306
247
183
306
347
342
566
116
275
0
123
55
3
84
116
596
1468
0
..« >.j
/y
1 ft V
.IKS a
"y i::'
/ \.l
,i ,i .**
.1. 1 0
2.1.7
1 £') '1
1 8 1
OIK;
/>J
261
'*) ''S f\
J, A W
157
496
106
172
0
394
0
251
82
0
39
0
51
44
0
213
160
73
31
160
0
236
'» i '."»
A*., AH
187
487
173
74
324
49
192
144
264
4S7
106
107
121
-------
H
TIME
SI
AL
S3
6
4
8
1
5
8
4
6
4
6
9
5
3
,j
4
3
[}
6
7
5
9
3
6
4
7
6
3
2
^
5
7
6
5
3
2
6
~J?
5
1
8
0
6
4
4
5
10
3
6
3
6
1085
1064
1045
1 1 4 1
1117
1062
1 105
.f.OVY;
1 0 i; £
.LU,
0
p
3
3
1
3
3
1
4
2
5
1
*>
^_
2
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
318
425
72H
307
1063
595
35 B
1267
1064
643
669
598
802
676
198
275
2194
&?B
409
3SS
649
1573
1 05 1
1418
A63
1144
613
703
319
367
463
548
1771
1539
849
385
453
1608
868
378
881
929
944
637
389
839
467
1260
2122
1316
423
1051
1252
1301
1154
1695
1196
1509
1491
938
1643
1602
1355
1443
1209
928
988
2210
1434
1249
1444
1524
1884
1315
1192
1129
1663
1338
1322
1090
736
1154
1292
1977
2059
17113
1550
1631
2706
1237
1422
3066
1761
1360
1168
1104
1272
1675
1904
1566
1456
1056
497
670
H25
1270
1002
525
491
1773
1031
1154
1518
944
509
274
101
290
582
1761
1390
1 4 1 8
1O99
623
622
63b
563
:L270
966
140
194
223
243
483
757
2176
929
748
1553
1025
7 .1. 7
743
1083
1846
1736
687
226
407
394
652
517
622
392
397
4/4
742
9^9
"702
370
344
1036
520
1080
1 23 1
5?6
313
i>o;.>
78
211
399
1180
1207
11?0
623
374
293
491
340
9S8
873
77
235
126
220
341
426
1 524
5151
510
934
1511
42:1.
521
1680
1557
1118
385
93
127
176
565
244
508
26Q
398
289
623
131
0
137
198
;7o
67
0
206
0
480
2 2 "7
83
65
395
62
245
Q
2US
o
387
419
50
56
0
230
381
o
I/
27$)
161
283
0
o
313
102
239
120
161
102
29
119
189
*r/ f
236
113
153
183
351
0
0
122
-------
8
3
10
9
9
4
5
2
7
5
3
1
3
3
5
4 '
4
6
3
1
4
9
2
3
8
4
5
8
6
3
1119
1080
1.079 .
1065
1 040
1081
104(1
1125
1069
ins
loss
lose
1093
1033
1039
1134
1134
1133
1149
1149
1143
in?
1114
1114
1144
1117
1082
1088
1094
1103
7
5
4
5
3
2
1
3
1
2
4
14
4
2
5
4
;3
1
4
3
2
(fi
2
3
4
1
5
£
3
5
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
400
679
1418
1290
2298
1473
4872
536
910
1399
13/1
3480
2439
2295
1783
526
289
721
364
315
412
531
471
727
304
328
503
1263
1893
1264
1230
10A3
1486
1667
2295
1918
4692
1324
1220
1924
1863
3106
2819
2231
1681
1044
726
983
719
83A
iOB2
1027
1104
1165
837
811
1406
1801
2379
1596
413
293
929
594
1129
914
646
667
801
650
1350
133
416
701
1301
439
OOft
til til \f
E? AU^Ui
771
298
736
489
434
575
132
145
903
451
411
3£J3
364
168
6BS
404
897
6B7
706
509
501
568
969
23
328
565
90S
220
192
349
334
277
684
433
391
347
110
90
434
224
331
238
133
271
256
216
194
299
a
182
119
0
116
30
57
122
269
194
137
123
0
0
60
142
232
46
111
155
0
0
162
1S4
123
-------
308 PASS 40 AREA 2
H AMPS V
TIME
FE
S
81
AL-
4
6
:L1
15
4
8
10
5
3
4
7
5
8
"")
A..
7
6
6
5
8
9
8
7
8
8
'*)
X..
4
8
4
4
10
6
10
3
7
7
8
1
4
3
5
'?
2
13
5
6
4
5
4
9
364
363
363
. 363
363
363
364
364
363
1 1 1 5
1125
' 1115
11 3 6
1154
1137
1125
1119
:I.136
1:1.24
11:1.0
1146
1173
1115
1140
1133
111 3
1 1 43
1 1 1 1
1129
1125
1091
1097
1 1 1 0
1066
1.132
1105
1128
1135
1140
1121
1120
.1073
1104
1168
1144
1126
1115
1179
1124
>
A»
5
'>
AV.
3'
5
2
6
4
0
1
2
2
2
8
5
'>
A»
6
7
4
9
.6
1
3
3
7
1
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
9610
9823
9778
10030
9403
10045
9995
8706
9755
DATA
2422
1081
2455
359
1121
420
1820
1250
698
654
589
845
326
2116
346
1000
13:1.8
1275
741
1379
1004
3011
2015
542
6773
2569
1278
242
370
665
2087
616
,3001
481
266
572
914
1274
364
701
9978
10074
9922
10091
10388
10187
9897
9278
10057
3005
4243
2523
867
1931
1733
1571 ,
1559
1252
1342
1209
1351
786
1965
1269
936
1416
2203
1582
2238
2153
4126
7860
1904
6493
3609
2113
1813
.1. V.J A*« vD
1628
21 IS
1577
2166
1893
80S
1078
1782
2310
862
1182
0
0
0
64
74
32
41
0
0
1865
79
464
623
429
439
400
868
403
172
620
1010
2438
1445
34S
580
1021
41
696
831
490
458
254
2492
644
993
554
6S6
6 1 2
457
558
286
473
3183
172
2 2 8
582
256
140
168
0
96
0
0
146
0
0
5 1
0
951
1699
409
503
407
2 1 8
51
538
195
201
459
614
2201
1369
273
309
1019
114
547
745
476
671
3915
1325
543
1047
501
618
445
231
330
318
632
3368
76
255
271
234
126
.119
205
0
157
84
222
0
108
27%
0
0
341
295
140
64
49
0
297
105
131
'>'> 7
^*i. /
106
0
193
220
803
219
2
107
92
377
407
34
0
73
368
247
354
1'2
237
4S9
0
193
266
0
197
246
264
500
267
124
-------
AMP'S
TIME
FE
S
SI
A I...
CA
2
6
2
4
4
7
1
6
9
9
4
0
>'j
3
7
4
3
6
4
2
1
6
4
6
2
9
3
2
1
3
2
7
6
3
3
4
6
':>
c
4
1
6
4
3
14
9
3
4
7
2
2
4
1.175
1 :i. :l 2
1 1 :l. 4
1 1 1 0
. 1061
:l. :i, 3 :l.
1127
1.124
:U28
1099
1147
1172
1147
.1.1 3 5
1157
1133
1 1 1 3
1106
1108
1155
1168
1109
1108
1127
1159
1100
1126
1154
1138
1122
1096
1136
987
1074
1138
1101
1141
1159
1156
1168
1211
1043
1033
1046
1095
1178
1189
1099
11 52
1169
1077
10
A
5
1
»'
3
4
4
1
5
3
4
5
'!>
Af»
4
6
1
6
8
1
\.f
4
7
3
1
6
'>
A.I
0
3
4
8
4
4
7
1
1 1
3
'*)
A«
3
6
3
1
4
1
2
4
5
0
6
5
5
5
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
137
1843
677
625
878
377
590
352
481
1612
384
226
397
309
386
828
397
651
383
361
336
1803
413
227
178
2420
776
685
232
200
643
965
13641
1256
408
1373
415
762
411
792
438
760
6037
6743
2042
286
433
418
458
198
1343
1810
2365
1942
1447
1575
1676
1257
949
1597
2286
885
775
1057
841
1057
840
.1.076
1412
1232
943
949
1997
1135
1272
1231
2284
1429
2006
1223
1130
1142
1571
11406
1996
1135
1546
758
1344
690
717
903
1003
3838
4339
1955
1176
1398
1134
1390
933
1033
712
669
294
707
821
509
327
21 A
177
357
44
95
151
415
318
330
720
663
386
191
179
746
922
66
143
616
1091
139
1 4 1
244
641
209
1551
1179
452
408
487
558
620
564
746
298
524
725
356
218
128
595
463
328
6532
483
498
358
260
607
266
240
177
173
218
157
76
172
436
247
235
332
424
226
173
302
478
688
70
83
461
642
281
90
191
155
198
1328
703
370
280
320
494
306
338
565
221
557
606
205
129
110
079
AM / *«
356
260
2695
0
385
185
27
173
0
325
203
464
0
1 9
'"j O "f
v,;<:KS
233
1 *"J
.1. /
184
213
177
45
196
207
i "*f
.1. /
3rj*
b
943
24
"1 KT '[
JDI
218
0
233
297
212
A *»
4>5
292
0
96
.1.028
45
43
180
275
235
18
0
0
1
390
260
284
295
0
0
811
125
-------
7
3
3
5
6
4
3
1
2
2
8
5
2
10
A
':>
*
7
5
7
6
8
5
A
3
S
A
8
8
6
6
1084
1118
1:1.22
1114
1183
1149
1124
1231
1229
1228
11 OS
1 1 6 :!.
1126
11 2 5
1142
'1142
1161
1094
1128
1146
1077
1101
1127
1:103
1119
1146
1073
1127
1:1.18
1170
3
6
2
2
0
1
2
4
8
6
3
1
2
A
0
3
3
4
2
4
3
3
8
'')
Ai*
2
4
4
2
0
'>
AH
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
1789
444
501
990
494
606
312
327
260
372
537
697
748
2473
761
547
254
770
1138
1128
1997
481
356
669
1756
1181
3494
3816
958
512
1747
811
817
1386
1170
1387
790
435
408
843
1158
1.1.37
1632
3405
1603
740
628
1127
827
1502
2008
1575
1113
1228
1606
1923
2980
3832
1648
1045
2556
495
271
393
182
390
334
1569
794
562
1073
572
569
475
615
101
81
4021
6645
1886
4794
1839
652
476
117
234
496
1383
1409
576
1177
193
174
260
16?
560
260
1390
790
428
799
501
306
403
508
93
78
2439
2729
1489
4335
929
428
371
42
87
414
992
1265
494
'i/a
200
117
0
318"*
71
126
0
24
0
0
248
120
107
217
32
vt f.
3/6
106
423
... f*\
389
221
35
.iw "₯ «l
331
830
t y\
120
55
... |"*
9b
..« Jk "'}
,54/
V "'I
33 i
126
-------
3
TIME
FE
SI
AL-
4
6
U
IS
4
8
10
5
3
S
5
5
3
5
6
6
6
2
8
5
6
2
1
3
4
3
6
1
5
7
4
7
6
5
8
0
7
3
3
3
4
S
1
4
364
363
363
, 363
363
363 '
364
364
;i63
1179
1087
' 1.109
1.105
1.131
1046
1019
1059
1043
1088
1104
1117
1116
1129
1103
1110
1064
1029
1082
1125
1060
1058
1096
1076
1099
1059
1099
1094
1061
1084
1103
1105
1098
1086
1063
1073
1130
1093
1049
1052
2
S
2
7
1
3
1
1
:l.
4
O
A1..
3
5
4
3
5
6
4
1
0
5
4
5
3
4
3
2
1
4
1
3
4
5
3
3
1
4
7
4
0
3
3
.1
4
2
5
6
0
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
9610
9823
9778
10030
9403
10045
9995
8706
9755
DATA
463
593
554
239
107
1340
3748
1433
3157
864
1370
544
822
571
366
1088
532
612
424
241
438
735
865
468
595
676
415
399
635
498
423
532
252
286
2077
668
284
7':>ls;
/ A.. *«>
1282
1664
9978
10074
9922
10091
10388
10187
9897
9278
10057
1379
1526
1101
1009
1108
.1.539
2876
1700
3060
1442
1587
(309
1261
1130
858
1165
1046
827
903
1144
1292
1561
1524
947
1229
1209
1086
837
991
956
743
922
851
951
2106
932
766
1055
1831
2450
0
0
64
74
"V ""t
32
41
313
521
350
138
1 74
746
2143
1111
2142
1549
709
494
497
376
227
491
453
388
838
126
454
1323
1634
1703
1396
797
681
1285
743
982
420
313
188
117
698
1432
146
387
403
287
96
0
146
0
'"'< 1
W *li
o
\/
245
307
407
66
157
725
1678
897
1293
1299
534
488
453
249
160
467
496
296
646
16
353
950
1441
1485
1296
470
707
1454
720
1077
490
220
136
154
529
1343
0
304
283
162
'>/y~
0
157
84
222
o
108
275
0
25
0
102
134
232
219
374
293
196
142
284
395
205
123
306
261
0
118
0
75
234
142
0
283
3
135
13
0
0
525
0
75
319
76
245
55
0
127
-------
H
AMPS
TIME
FE
SI
A I...
CA
7
_>
4
6
5
3
6
A
'3
3
3
S
3
8
3
5
4
3
7
5
3
'>
AH
A
5
5
4
10
4
3
1
6
4
6
5
3
1
4
8
5
1
2
5
5
6
4
4
2
6
7
5
i>
*
1095
1.094
1.096
1.074
1.084
1.062
1.097
I.:!. 2 3
1. 130
i.130
1.118
1.113
1.067
1.035
1.049
1.043
1104
1 1 1 7
1088
1089
1041
1103
1140
1090
1075
1088
1109
10S8
1106
1131
1147
1139
1065
1106
1063
.1.098
1112
1093
1094
1097
1064
1090
1115,
1067
1142
1116
1116
1100
1090
1083
1095
3
5
1
;>
4
0
0
4
1
?
1
7
1
3
1
1
3
5
5
2
3
':»
AII
3
S
3
4
6
1
3
7
5
5
2
3
1
3
0
5
1
4
'>
*..
4
*,.
6
4
6
2
3
'»
AH
4
2
300
300
300,
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300 '
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
833
691
2098
92.8
1244
1185
1 1 78
834
1134
890
114
378
550
848
1069
457
441
137
528
77
301
668
969
945
647
1538
476
784
298
290
208
247
2693
1481
334
353
225
536
252
446
509
632
398
-583
158
295
577
989
778
856
1210
1546
1591
2386
1485
1889
1454
1616
1200
1512
1313
1073
1215
1103
1207
1968
1542
1342
960
1521
1616
1273
1356
.1262
1538
1581
2433
1508
1125
1050
1309
1194
1230
2357
1771
1227
1708
1318
1337
1030
1.1.86
1198
1191
1139
1234
1170
1593
1307
1514
1525
1390
1527
856
628
313
471
540
423
310
276
1 '!>''>
.1. A.. A..
179
179
101
388
1041
355
239
276
336
442
783
461
434
530
407
476
1348
959
531
269
486
407
1 1 5
400
838
628
384
451
219
792
1205
493
448
2 1 3
674
218
202
430
371
630
465
2 3 5
637
474
361
325
396
418
237
94
97
238
173
72
257
948
307
234
104
281
334
673
212
397
416
325
321
.1.043
695
462
290
261
246
105
338
355
589
380
354
122
742
1064
471
345
127
1035
221
189
263
266
556
303
145
2.36
349
228
279
149
457
238
68
168
0
221
149
198
224
332
166
60
366
192
326
312
11
29
409
0
v'?l
A'., ** *
343
53
222
149
0
184
266
0
0
147
499
197
162
76
139
257
0
288
38
172
0
333
60
23
92
128
-------
2
6
3
2
8
3
5
9
4
">
x.
3
6
S
5
6
6
4
6
3
2
4
3
7
1
4
3
8
3
10
S
1140
1142
1 .1.32
1103
1084
1075
.1117
1124
1085
1103
.1.089
1095
1094
1070
1123
' 1086
1137
1095
1093
1113
1117
1090
1133
1122
1041
1113
1045
1094
1100
1107
3
0
4
5
3
3
2
2
0
7
3
3
5
2
3
0
1
'>
A«
7
3
!'
j»
1
3
1
3
5
2
9
!'
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
236
322.
402
573
1096
704
492
413
791
451
565
1118
581
1686
525
945
156
760
534
544
527
434
285
948
1718
368
1524
1899
1719
649
1239
970
1137
1172
1230
1352
1456
1260
1616
1095
941
1550
11.67
1976
1162
1600
1519
1552
818
1055
886
1062
1268
1998 .
2027
1187
1795
2554
2128
1128
179
362
369
331
257
436
192
938
1984
339
298
282
307
70
136
323
493
418
495
'> ':> ':>
A.. A.. A..
553
483
401
258
565
481
2056
262
238
293
2:1.5
437
345
163
158
446
**' !" y
3b6
494
1849
85
253
277
329
38
73
285
316
242
398
140
396
523
446
175
406
434
752
163
298
239
74
0
304
"V '"J
7 /
18
257
56
358
363
335
23
217
72
37
220
0
0
126
244
162
189
379
96
43
0
60
59
66
.1.99
129
-------
308 PASS 40 AREA 4
H AMPS
TIME
1.1
4
4
H
12
H
1.4
9
7
4
6
5
4
4
2
4
3
6
12
2
8
5
4
4
3
5
5
4
4
6
4
8
11
3
1
2
4
7
9
A
4
5
4
11
3
4
9
6
12
360
360
360
360
360
;
1134
1069
1084
1073
1093
1097
10S6
1042
1072
1104
1108
1103
1018
1031
1075
111*
1119
1109
1066
1076
1108
10813
1040
1122
1025
1059
1076
1112
1097
1057
2
3
7
3
5
1
1
2
'i
A-
9
s
3
6
2
0
5
5
4
3
3
3
3
2
2
3
2
3 '
0
7
5
7
2
4
^
*u
4
1
5
1
2
2
')
*^
4
3
5
6
4
5
4
5
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
9676
10128
10049
10012
10264
10274
9932
9397
10Q43
DflTfl
385
495
SOS
268
6Q9
US
270
528
1713
1203
310
679
424
981
311
842
877
A 2B
351
800
244
346
3430
4378
74B
345
651
365
1417
831
434
734
1.081
463
9057
4458
1507
523
256
3746
9883
10141
9821
10161
10205
9931
9710
9111
10222
1220
1150
1058
1026
1007
689
tie 4
944
1454
1741
9BB
1267
1003
1123
1 022
1391
1531
1024
775
1131
734
858
2946
4650
1181
700
1045
772
1507
1605
1076
1174
1674
1391
8914
5018
1684
811
1006
3927
0
0
0
58
16
10
0
66
0
1147
870
37 If.
345
412
173
294
1?5
887
1050
414
428
349
305
... n o
l_1 _y _!_'
617
401
476
97
2915
641
333
729
1088
366
230
361
848
374
806
737
946
750
279
115
301
2754
893
692
303
15
0
0
0
sa
0
0
284
O
966
684
200
2'32
382
155
ISA
35
824
609
407
335
272
292
167
317
338
620
130
242
373
237
446
795
329
320
342
100
294
672
548
402
419
213
0
21
2368
919
561
206
112
0
249
38
196
0
0
177
233
39
274
330
478
250
246
5V
0
150
18
69
390
478
428
240
257
77
52
127
361
270
807
22
1036
243
220
90
75
87
0
49
178
391
42
0
73
215
240
71
372
130
-------
H
TIME
FE
SI
AL
CA
3
A
S
7
6
S
10
2
8
3
2
S
8
1
3
7
6
S
10
10
A
2
10
6
10
7
4
7
5
4
2
4
11
3
S
S
8
5
4
8
8
2
S
2
4
(*
Cl
4
4
8
9
7
1056
1095
1083
1074
i:i.i5
109 A
1,1,2:1.
1074
.1.0 93
1098
10G9
1072
1096
10? 4
1120
1097
1116
1129
1102
1 1 1 :l.
1 1 1 1
1116
1113
1093
1072
1071
1097
1045
1033
11:1.6
1125
1130
111.2
1101
1:1.23
1122
1120
1 1 1 2
1075
1114
1085
1101
10813
1113
1134
1128
1 1 1 1
1065
1061
1.1.09
1064
3
A*.t
4
2
4
4
2
0
3
2
1
3
4
3
1
4
'>
AM
3
'>
A..
2
9
A«
2
2
1
4
6
6
4
3
5
1!"
9
4
1
6
4
3
3
3
9
2
5
2
3
7
4>
'?
3
3
2
1
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
378
868
965
1245
400
62
373
1187
1316
830
492
408
1612
847
250
5210
1029
271
3.044
1452
840
680
1357
2279
983
1421
258
3626
4J.7
481
450
1153
1015
1526
1266
982
1172
918
556
1586
781
197
341
159
268
192
232
1203
2512
2167
2606
1206
1189
1304
1425
877
811
904
1726
1595
1194
1296
1108
1869
1598
1071
5018
1865
1214
1808
1913
1480
1355
1658
2502
1464
1419
977
3808
1101
1066
979
1661
1401
1982
1748
1490
I860
1823
1685
1941
1427
820
745
797
735
834
804
1307
2156
2650
2972
493
703
457
802
143
311
681
620
1676
395
452
585
2325
2038
2263
362
483
701
1833
551
649
989
1181
879
633
389
334
649
878
434
387
295
790
495
623
S79
681
668
828
384
533
201
817
491
459
i::; is; !
i.J >..' .L
619
529
198
1 1 4
1320
586
,.j .., .,,
A.I W W
360
497
61
.1.73
632
538
1476
306
450
(" *₯ A
(j o 4
1638
1264
1938
358
367
386
1560
48.1.
i:;- f\ r\
l.V .'.. CJ
984
718
696
495
218
184
584
5:1.9
391
307
233
9:19
309
469
404
593
481
562
437
436
208
670
235
345
396
493
374
59
177
1093
124
265
1 rf'i A
,1.84
378
0
365
432
:L26
201
'} <:t '>
A'.. W A..
358
457
64
171
362
197
391
586
OIK; 7
A'.. W /
632
293
952
430
98
106
';>!::';>
f!., x»J A->
317
34
320
150
0
406
182
469
377
50
177
13
0
121
123
305
85
82
0
72
291
147
244
131
-------
6
6
4
4
3
2
8
:!. i
7
6
5
4
5
7
2
1
2
3
6
5
6
5
7
5
0
7
8
3
4
1
1098
1125
1.061
1117
1068
1124
1051
1069
1095
1 1 1 4
1046
1075
1110
1129
1125
'1095
1055
1131
1100
1086
1098
1079
1063
1096
1103
1076
1050
1121
1063
1076
'>
Ai>
?
3
3 .
1
A
6
'>
A..
7
0
2
3
2
2
1
3
4
3
0
1
2
1
3
6
3
3
5
4
4
1
300
300
300
300
300
300 '
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
646
817
232
297
510
48
1201
1262
636
202
69
466
714
375
205
1106
925
202
604
677
1388
1628
'530
460
375
794
1018
195
812
133
1163
1000
673
645
841
829
1495
1865
1370
828
937
945
963
696
642
1190
1644
1142
995
1232
1598
1889
665
516
917
1983
1350
1004
1558
831
254
210
151
240
388
302
539
663
320
380
275
660
391
264
591
822
468
216
964
939
1344
834
2296
2390
299
1736
340
268
268
235
275
156
126
90
263
117
358
480
252
384
245
271
253
193
697
792
339
134
716
641
104:1.
473
1875
1590
267
1241
324
137
163
170
181
448
125
141
0
46
0
0
255
239
220
21
285
0
21<>
135
142
134
254
380
77
0
120
135
387
291
195
4S4
0
157
132
-------
^88 40 AREA
" AMPS
TIME
FE
S
SI
AL
CA
1 .1.
A
4
l*ii
5
9
f
'
3
2
£
w
7
K-
9
5
A
4
4
A
4
2
5
1 xv
.10
14
1
1
J,
4
4
1 XV
10
6
1 x\
.1.0
4
6
*
4
3
"y
3
7
C."
O
360
360
360
' 360
360
3o9
360
.:; ::; 1
358
1.085
. 1121
> 1 3 6
1107
1138
1 1 1 3
1048
1093
1139
1151
1088
1.1.39
1143
1095
1103
1086
1006
.1.077
1095
1116
.1088
1089
1123
1089
1095
1106
1101
.1.096
1107
1124
1120
1.058
1102
1135
1095
1048
1072
1096
1100
1092
2
3
7
3
5
1
1
2
All
3
AII
3
6
1
5
*"«
3
' 0
1
2
5
3
6
2
5
4
1
0
6
1
2
2
3
7
2
5
5
1
2
3
1
1
1
6
5
3
5
2
9
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
9676
10128
10049
10012
10264
10276
9932
9397
10045
DATA
743
325
367
351
438
925
602
692
498
2.1.9
380
1922
418
597
903
1652
5636
888
2401
1043
327
862
398
1102
590
1254
1785
2249
994
752
474
1023
1488
380
488
547
924
808
572
1364
9883
10141
9821
10161
10205
9931
9710
9111
10222
1625
1249
1273
1442
1704
1472
938
1030
1148
1110
1081
2934
1139
1433
1596
1827
4479
1000
2607
1324
.1.288
1752
1153
1434
1434
1575
1824
2505
1444
1225
1069
1180
1257
953
1069
1094
1403
1154
1120
1783
0
0
0
58
16
10
0
66
0
684
1375
598
555
1847
3937
3540
738
589
631
741
462
491
488
469
855
1588
6953
6759
6093
2234
756
1098
8.1.4
1919
4722
7456
4385
7309
1956
3642
5689
2333
850
792
3808
6524
6653
2163
39.1.4
15
0
0
0
58
0
0
284
0
47.1.
520
424
459
1406
3274
3283
524
439
317
661
348
383
383
480
634
1316
5991
5515
4381
.1.74.1.
520
306
591
.1.479
4007
6395
3084
5686
1554
3068
4873
1713
617
521
3200
5935
5630
.1.670
3381
112
0
249
38
196
0
0
177
233
369
262
104
.1.3
192
416
128
288
455
90
150
439
23 1
234
219
371
0
198
383
334
365
314
271
180
200
21
0
198
57
0
166
340
66
80
369
426
390
648
277
387
133
-------
H
AMPS
TIME
FrE
S
SI
AL
3
6
6
5
5
4
8
8
10
6
6
8
IS"
7
:l.
2
5
6
4
9
9
9
3
10
7
8
10
9
4
8
9
8
6
11
5
3
5
3
3
0
0
5
4
9
4
6
8
3
8
4
3
1085
1104
1085
1136
1087
1 1 1. 0
1125
1 1 1 3
1 1 1 2
10? 3
1103
1093
1057
1059
1073
1112
1110
1127
1064
1028
1084
1096
1078
1074
1096
1097
1080
1088
1094
1097
1087
1087
1109
1096
1033
1101
1075
1103
1057
1062
1107
1128
1067
1116
1087
. 1112
1078
1082
1062
1074
1075
3
'>
A>.
10
6
4
4
4
3
5
5
3
5
4
4
2
1
6
0
y
2
5
5
3
1
'>
*»
3
2
6
o
'>
fC,.
1
1
7
4
5
2
2
0
3
2
0
6
6
4
6
4
3
1
2
1
3
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
1087
1053
1280
615
832
746
665
977
874
2377
677
1390
753
1456
974
448
362
691
771
1288
1066
637
962
899
794
936
999
1358
1086
1230
654
1634
928
808
587
602
1035
546
203
185
698
278
1045
738
667
965
461
2174
751
2195
1003
1278
1508
1678
1147
1541
1273
1305
1528
1458
1869
1011
1771
1381
1965
1328
1354
1130
1344
1499
1631
1619
939
1278
1320
1328
1303
1347
1337
1595
1701
1277
1956
1163
1265
.1471
1120
1600
1405
794
830
1407
1158
1416
1302
1246
1520
1212
2607
1115
2532
1595
5187
7493
5185
3209
3058
3015
6000
5551
7487
6529
6419
7455
5970
7425
2639
377
429
1320
'JO") ft
Ait AM J&t W
5542
6497
8271
6073
6952
6944
8299
7628
6005
7708
7884
5118
4367
6371
6983
1825
2429
865
356
137
259
197
236
2182
5438
7463
4578
5670
4739
5299
5026
3608
4411
6220
4701
2613
2098
2464
5297
4864
6088
5320
5281
6394
4840
6179
2160
287
309
1108
1607
4640
6128
7423
3887
6173
5663
6844
6780
4783
6466
6815
4765
3497
5556
5680
1584
1226
517
224
104
211
167
116
1856
4450
6592
3982
5015
3936
5051
4291
2(346
73
0
0
88
20
330
0
1 1 1
0
0
171
480
0
310
349
25il
229
579
348
332
353
354
0
424
299
0
0
292
0
114
1308"
818
73
187
0
'>?
A~ ' *-
267
346
213
444
39
417
0
688
0
108
610
300
157
156
28
134
-------
&
2
4
7
7
10
3
S
4
7
3
7
4
2
13
A
4
4
10
7
9
7
2
4
A
7
6
S
7
7
1066
1073
10S9
10S3
1. 1 1. 7
107V
1.120
1.061
1073
::.:i. 3V
i ::. sv
noi
,U :L B
1136
1116
1082
1074
1091
1097
1094
1073
1070
nos
1079
1076
1089
1125
1112
1112
1112
4
0
3
2
4
5
3
5
3
7
6
5
1
1
2
6
A
6
2
3
1
a
5
5
5
3
4
3
4
1
*-
300
300
300
300
300
300
300
. 300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
2677
1385
1153
637
935
3818
242
3015
713
713
416
499
303
587
375
758
912
595
1209
1349
1098
894
1034
946
1179
512
340
282
1081
762
3234
1637
1338
1307
1400
5013
921
2223
1363
929
1032
613
710
974
315
1076
1007
1202
1831
1654
1597
1712
1630
1525
1601
822
1017
1165
1221
1140
3474
7158
8381
1481
197
1614
266
43
766
323
241
^RlSi
*^.Ohi>
433
393
323
6702
6375
5467
5031
6443
6192
5850
2991
961
1498
471
502
518
419
389
2852
5220
6826
1157
63
328
205
74
6B
2B2
113
147
307
218
137
5949
5824
4664
4207
5529
4976
4929
2530
937
1136
242
419
497
189
220
112
124
0
91
126
0
342
4SO
300
305
158
179
1S1
0
279
259
0
0
274
267
547
3254
211
0
209
0
ISA
342
357
269
135
-------
308 PASS 40 AREA 6
H AMPS
TIME
FE
S
SI
AL-
5
5
10
7
16
1
3
3
5
6
4
5
3
4
?
5
, 3
4
1
6
4
o
A..
2
5
8
7
3
7
1
:).o
4
3
3
7
4
1 '
6
4
3
5
6
4
5
6
0
11
a
s
8
366
365
366
366
366
366
366
367,
365
1080
1102
' :!. 1 1 6
1087
1133
1107
1150
1096
1096
1106
1071
1054
1074
1 1 1 1
1095
1103
1127
1113
1025
1124
1079
1082
1071
1105
1077
1119
1137
.1.102
1110
1103
1124
1152
1090
1047
1070
1078
1 :l 1 1
1108
1124
1131
6
3
3
3
5
o
An
2
':>
A..
5
'>
AM
0
3
:i.
2
2
4
2
3
5
5
3
4
2
6
6
2
1 '
4
5
3
6
3
7
4
2
0
3
7
5
5
3
5
11
3
4
2
2
5
3
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
10096
9649
9775
10021
10201
10202
10055
9647
9725
DATA
1748
2780
625
474
622
421
640
1981
1096
871
990
2783
1217
801
1204
1162
1264
792
2337
635
3.1.3
755
1087
.1.174
670
1760
719
1312
1816
1079
744
723
1033
1465
1092
509
815
1420
1291
1183
10023
10333
10010
10459
10236
1029.8
10156
9412
10316
1956
2443
1288
1251
1295
1443
1584
2147
1715
1576
1434
2182
1342
1437
1564
1326
1544
1308
1935
1063
1235
1376
1479
1242
1066
1917
1160
1948
1653
1590
1072
1162
1370
1809
1559
985
1327
1447
1507
1421
0
0
45
0
30
6
0
0
0
3781
6472
2497
404
278
853
321
343
718
508
600
897
765
526
610
553
673
430
274
163
347
825
2365
1214
900
806
362
579
593
628
401
605
361
543
1375
797
567
828
370
368
0
0
95
33
14
0
12
24
0
2113
4624
1630
313
311
715
322
313
626
526
480
713
596
390
472
137
308
240
203
86
337
443
1787
810
884
547
383
704
290
293
226
627
383
373
1076
459
449
641
195
341
0
154
0
286
0
260
0
0
0
758
222
"67
86
265
109
449
0
0
428
385
0
156
0
102
494
486
0
152
233
. 0
0
278
576
45
276
37
547
37
358
0
114
323
0
72
312
216
169
322
322
136
-------
H AMPS
TIME
FE
S
SI
AL
CA
4
7
3
5
4
3
4
3
4
4
3
6
2
7
2
6
6
7
5
5
8
8
1
5
3
5
7
6
2
4
4
7
8
7
10
4
3
3
6
8
3
5
5
6
6
6
3
7
9
.... ,;>..y
! .1. A., w
1107
1134
1073
1045
1137
a 33
1150
:i. :!. 4 1
1140
1142
1147
. 1128
1117
1050
1069
1068
1097
1135
1123
1 1 1 1
1142
1105
1136
1141
1101
1 ISO
1045
1125
1148
1125
1110
1126
1131
1133
1.1.03
1033
1106
1102
1126
1051
1122
1102
1139
1135
1087
1088
1071
1051
1101
1103
1
4
y
4
4
5
2
1
IS*
D
i
4
4
7
1
3
3
0
6
9
3
2
4
5
3
2
1
1
3
1
5
3
6
2
6
6
3
4
4
5
4
5
4
4
5
3
1
j£.
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
1028
1125
417
260
932
690
1008
1572
1084
1022
637
570
1128
1322
3360
1691
778
1922
.1.064
354
417
497
1523
749
1175
841
1350
3095
2013
1055
757
336
649
771
681
869
963
463
217
512
1248
1008
3382
1805
1191
2850
3492
4953
1491
358
2584
1372
1558
1014
736
1056
1201
1745
1795
1420
1497
1329
1235
1383
1540
3042
2032
1107
1779
1659
1180
1143
1163
1538
1432
1763
1346
1836
2924
2270
1644
1303
1102
1195
1198
1621
1633
1758
1315
1508
1842
1971
1986
2203
1755
1483
2730
4361
4412
1876
968
2932
359
672
287
162
1285
1118
375
931
754
566
721
526
743
793
1418
3510
1747
1415
907
370
519
348
820
692
886
306
699
2129
1693
487
482
412
226
531
748
763
838
397
124
200
2096
2178
1681
1663
739
504
376
1583
1099
1176
423
205
737
304
62
1 1 1 1
1016
282
631
555
477
454
369
525
604
968
2215
1187
940
695
402
406
264
821
662
746
213
475
1728
1556
302
391
336
242
495
659
484
501
330
86
189
770
1492
1286
1200
637
406
271
1446
553
832
349
95
157
"\ >l <!
* J. J.
30
96
0
421
0
''*« t'\ f'l
288
133
48
r" J\. /
b06
160
26
362
229
94
35
308
242
0
136
286
168
459
103
'*i ''1 A
.* .* A*
A« A-i *
0
47
383
90
348
251
12
87
318
692
447
400
365
75
112
0
173
0
0
204
195
0
383
137
-------
7
6
7
7
3
2
3
6
0
2
5
i*
4
0
8
6
7
6
6
2
9
'*>
Ati
8
7
I"1
b
3
1
4
4
8
1104
1053
1067
1071
1 1 1 4
1 1 1 4
10152
1135
1 103
1 .1. .1. 8
1145
1060
1 1 2 1
1086
1087
1062
1056
1085
1137
1142
1136
1050
1129
1024
1 1 2 1
1108
1098
1084
1134
1095
6
4
1
2
4
9
1
0
4
4
5
'*>
A..
3
3
5
0
7
1
2
7
1
8
3
4
1
6
A'I.
4
1
*'»
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
2220
6502
3864
1426
479
375
1747
906
253
180
79
561
597
1811
4323
485
1390
5229
845
312
226
285
950
2253
234
267
809
670
264
402
3314
4001
2909
1331
1145
547
2253
1878
1329
1523
1665
1443
1641
2234
2300
1534
2539
5631
1355
855
634
814
1367
2003
1307
1131
1161
1502
999
1394
610
727
761
669
512
316
2430
382
307
251
155
1262
1357
629
383
238
753
1000
1132
188
758
221
167
717
138
204
284
308
157
187
514
478
594
453
252
145
2261
298
303
306
49
982
376
545
170
108
511
1017
847
166
538
1 1 7
130
196
181
88
159
1 2 1
57
91
60
11
245
415
0
282
228
396
418
417
389
318
164
259
284
467
132
0
268
172
127
S3
47
314
397
307
97
301
147
524
138
-------
PASS 40 AREA 7
H AMPS
TIME
FE
SI
AL
CA
5
5
10
7
16
1
3
3
5
j>
6
'>
*...
7
9
3
3
6
4
7
6
S
9
2
:l.
7
11
5
5
5
IT"
,j
3
0
1
6
8
9
7
3
4
5
4
4
S
4
5
3
4
7
5
366
'XXj'-i
s..' w s.J
366
366
366
366
A66
' ' I"'
.6 o U
1087
1129
1083
1097
1092
1141
1087
1067
1066
1102
1135
1101
1118
1125
1170
1078
1105
1093
1114
1076
1134
1100
1082
1104
1125
1125
1073
3.086
1136
1131
1110
1124
1134
1071
1113
1119
1134
1106
1-078
1141
6
3
3
3
5
2
'>
*..
2
5
5
5
3
3
6
S
0
3
4
6
4
7
7
**>
A«
3
6
3
2
';)
1
3
5
4
3
3
0
5
1
9
2
1
1
7
6
. p
6
8
4
1
3
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
10096
9649
97713
10021
10201
10202
10055
9647
9725
DATA
597
65:1.
490
1227
3794
351
434
406
802
739
490
522
440
693
378
605
3380
1295
535
3062
1195
325
433
463
682
333
1017
1033
1353
2239
481
507
451
651
619
484
185
659
1148
1285
10023
10333
10010
10459
10236
10298
10156
94:1.2
10316
822
886
907
1350
4329
955
1324
1037
1541
1712
1562
1095
1237
1478
1524
1.480
3410
2062
781
2624
1827
732
1218
1032
1236
854
1374
1567
1779
2137
1514
1232
1027
1345
1397
906
1245
1514
2658
1642
0
0
45
0
30
6
0
0
0
254
425
340
911
178
28:1.
124
250
897
1075
316
691
135
647
850
826
258
327
501
553
443
428
352
288
568
279
911
2104
553
390
6.1.0
855
1359
1676
245
304
2472
693
851
218
0
0
9i::-
ll;
33
14
0
12
24
"> -i "/
*.. .1. /
190
267
272
322
261
123
253
618
942
185
401
0
433
511
568
370
269
448
315
321
280
299
175
406
232
726
1724
359
382
463
480
939
1564
172
279
1321
493
1261
181
154
Q
286
0
260
0
0
o
\f
':xy/
A.. S/ /
1.97
132
1.87
254
135
360
373
282
386
269
189
153
70
0
273
162
350
334
0
116
202
475
362
391
0
243
15
217
0
98
241
80
199
124
108
160
33
89
83
139
-------
H
AMPS
TIME
FE
SI
AL
CA
'!>
5
6
7
5
5
5
8
:l.4
A
5
7
A
4
3
3
5
6
4
7
6
3
5
',')
AM
5
10
A
5
5
7
7
P
7
0
5
4
2
5
4
A
3
3
4
4
0
5
7
4
2
7
5
1 1 :l 4
1020
1129
1151
1092
1050
1076
1049
1.058
1.079
1.114
1. 1 1 9
1.149
' 1.122
1 1 1 9
1071
1127
109 6
1100
1109
1140
1117
1103
1108
1081
1121
1122
1090
1105
1091
1096
1068
1085
1126
1 1 1 1
1126
1075
1085
1100
1092
1132
1120
1112
1086
1070
1095
1099
1103
1142
1139
1167
2
1
1
6
8
5
5
6
3
0
4
5
2
4
4
4
2
3
1
0
4
1
2
3
4
5
5
1
'>
Al,
5
7
3
2
3
3
3
3
5
4
4
2
6
12
3
:l.
5
1
3
2
6
2
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
1531
742
'651
1023
768
3104
1920
928
1739
383
280
1759
310
716
205
461
1094
452
704
469
576
394
581
363
1146
902
978
2304
1673
4268
3213
1279
664
683
538
909
417
584
265
1057
632
511
785
675
967
1678
1164
683
0
1386
194
2189
1317
1063
1572
1289
2445
1800
1379
2522
1398
1373
5213
1207
1297
617
1062
1647
1372
1151
1544
1680
1267
2054
1326
1649
1557
1203
2857
2611
3734
4112
1767
1569
1519
1330
1283
846
1336
834
1734
1674
1022
1501
1635
2454
3701
1718
1562
1201
2103
1233
741
2253
' 839
761
360
476
962
847
2154
966
379
287
356
1675
120
305
540
235
614
373
393
143
482
581
398
378
1042
478
168
978
585
471
783
416
349
176
280
268
179
361
412
488
266
326
607
734
308
208
190
290
165
587
1547
670
625
315
369
942
765
1720
873
262
2163
314
782
25
225
511
200
400
350
440
182
333
407
271
413
280
331
91
679
1 2 '1 2
336
453
94
308
119
173
307
138
334
347
312
264
287
1186
1913
249
145
194
292
*"90
184
153
212
778
97
139
219
254
367
352
0
425
0
6
141
162
55
209
209
48
163
108
1750
527
194
244
0
320
109
1427
156
0
87
96
793
320
224
172
115
83
270
103
407
70
398
0
124
0
60
273
124
140
-------
6
8
2
4
8
4
6
8
6
8
5
4
3
b
4
3
9
7
3
4
9
2
")
A..
6
3
5
'!>
3
7
2
1071
1084
1148
1101
1074
1098
108S
1108
1091
:!.:!. 06
1047
1127
1 1 1 1
1084
1094
' 1076
1122
1148
1133
1079
1109
1141
1066
1116
1142
1062
1072
1114
1122
11 54
10
2
1
6
4
6
4
4
3
3
4
5
3
'">
A..
1
5
3
4
4
3
4
5
P
'*)
2
2
0
4
0
7
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
2937
1408-
770
1503
877
1016
660
1438
765
2265
2414
1353
423
1313
984
3004
1015
356
1977
2258
1456
436
1666
1160
531
867
276
458
1554
2416
3760
3163
2175
2673
1820
1327
1573
.1 I;;- *) "y
.1. UA-.!/
1492
2146
2810
1712
880
1270
1525
2892
1956
1340
2249
2535
1843
1324
2393
1921
1513
1437
903
849
1668
262:1
372
916
387
985
694
975
458
465
1364
726
969
498
198
649
1925
797
157
435
455
853
374
322
418
157
421
4834
592
383
2:1.86
890
248
825
591
1379
635
830
366
171
1027
550
819
357
137
414
1336
558
144
358
360
804
412
217
532
129
277
4107
524
181
1794
810
167
116
248
405
244
0
275
151
559
0
410
366
180
109
216
117
134
236
352
0
388
106
237
0
0
278
190
504
204
40
141
-------
,308 PASS 40 AREA 8
H AMPS
TIME
FE
S
SI
A I...
CA
8
4
6
.1.0
4
7
4
8
6
y
8
:t.
6
4
4
7
6
13
6
4
:l.
6
3
5
7
5
4
11
8
4
8
4
5
4
3
6
4
4
4
6
2
5
5
7
?
7
S
7
2
359
358
359
359
358
359
360
360
358
1066
1:1.39
1138
1087
1097
1116
1078
1103
1094
1104
1121
1123
1093
1147
1148
1095
1107
.1068
1137
1081
l:L45
1134
1166
1063
1086
1091
1106
1097
1091
1127
1132
1088
1108
1130
1114
1144
1117
1130
1117
1173
9
3
4
3
9
3
6
6
1
4
2
1 1
3
3
'!>
3
3
3
?
?
4
3
6
'"J
6
4
3 '
2
3
>
Ait
6
7
;>
7
1
12
3.
'>
*«
1
5
o
<*>
5
7
4
'>
A..
4
2
6
8
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
PYRITE
9375
9746
10362
99 IS
9524
9820
8977
9205
9788
DATA
476
269
351
710
319
'506
684
318
769
394
259
345
170
336
0
350
354
750
360
400
251
152
221
465
588
556
311
367
376
324
443
95
116
678
1323
140
701
290
176
132
10501
10604
10080
10344
9648
9974
9730
9278
10053
1053
1217
990
1147
1013
1270
1441
1306
1582
1150
919
1086
921
1097
' 859
999
1008
1282
1150
1171
963
927
.1.120
927
1332
1234
1311
1114
1077
920
1210
876
708
1260
1519
848
1191
1115
1350
1069
0
0
12
0
0
142
0
0
72
7 1 7
382
123
742
1365
2036
1387
270
686
458
248
266
115
158
209
335
233
3070
2237
779
234
125
313
153
245
236
339
2345
2308
255
330
108
196
209
446
204
97
186
'181
1177
0
0
0
0
0
68
0
123
0
714
2 1 0
0
301
1 1 1 8
1826
1353
218
545
309
146
182
167
104
162
2.80
159
1878
1789
539
56
135
168
61
148
166
336
1785
1877
293
y y 2
81
208
154
177
75
83
118
234
1129
0
297
27
0
76
0
103
193
43
6
162
0
42
74
0
140
48
240
i ';>^>
144
303
262
202
262
374
224
150
0
201
34
127
296
33
224
0
278
417
308
240
'71 1
A*> J« '"
145
679
0
231
426
302
311
0
122
142
-------
H AMPS
TIME
SI
AL
5
4
4
3
6
5
0
6
8
6
4
7
4
6
2
5
4
6
4
3
4
3
4
4
9
4
3
7
5
5
5
5
8
4
3
6
1
S
8
4
4
4
10
8
9
9
3
4
4
6
5
1114
109S
1067
1090
1121
1090
1112
1018
1096
.1.090
1120
1115
1123
1124
1157
1089
1098
1160
1101
111 3
1088
1125
1121
1080
1086
1103
111 3
1030
1077
1134
1075
1131
1092
1065
1131
1124
1142
1078
1099
1092
1144
1 1 1 0
1025
1104
1094
1 1 1 6
1093
1095
1121
1027
1095
3
4
4
4
1
5
0
4
2
3
3
3
4
6
4
3
3
5
4
4-
3
0
9
3
2
5
4
4
3
2
6
3
2
2
5
5
2
6
'2
2
2
3
7
6
3
4
3
3
6
5
4
300
300
300.
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
218
471
744
536
640
241
41
355
330
833
97
194
535
1196-
573
1321
387
223
335
355
278
368
268
787
353
119
662
1184
353
109
.323
1252
1023
819
27
159
292
580
684
905
304
522
16948
1850
1405
548
83
455
303
225
340
1224
1448
971
1121
1052
601
442
625
1039
1244
1031
943
1294
1818
998
1354
1287
836
831
850
1104
1006
1003
1336
875
645
893
1714
1236
1380
1345
1678
1713
1286
978
922
831
1214
1115
1694
982
1077
1862
1251
1561
1440
1212
1508
1167
1134
1383
458
620
663
178
426
131
286
232
579
486
558
1000
389
S77
45
580
373
238
236
511
288
111
416
1363
359
269
237
727
154
231
516
166
268
329
366
277
153
977
2019
637
414
238
1203
855
346
184
99
148
141
210
321
314
456
. 431
176
167
1 1 1
75
83
458
442
503
837
378
430
157
257
295
87
212
414
205
187
415
1009
404
259
198
543
113
85
378
143
201
150
165
265
171
667
1805
426
305
260
879
489
114
120
|»« /\
DO
124
201
110
241
337
264
118
36
223
125
336
292
263
297
89
316
120
491
47
110
352
100
209
248
367
323
426
240
46
0
122
200
0
36
192
325
357
0
226
385
234
464
367
87
192
309
199
292
67
363
148
75
97
616
143
-------
STOP
6
5
5
8
20
4
5
6
6
4
5
o
A..
3
4
7
1
'!>
A..
5
8
2
4
6
7
4
5
6
4
7
1
3
1109
1086
1120
1118
1080
1079
.1.099
1 1 1 5
11 OS
1082
1 1 1 0
1130
1066
1103
1089
1074
1078
1052
1065
1 1 1 8
1090
.1. 1 3 1
1180
1163
1 1 66
1102
1082
1069
1108
1113
3
5
1
3
3
5
1
4
6
0
5
3
:l.
3
9
'>
An
6
3
1
1
4
3
2
3
4
3
3
2
4
3
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
1149
1145 .
501
3968
'10927
3501
1109
1140
397
834
1264
640
388
1136
882
656
746
563
668
398
1244
1039
300
188
277
380
3170
1378
725
800
1852
1277
1317
1128
2105
1329
1334
1120
922
1549
1560
990
1030
1562
1092
1062
1 OS1"!
.1. A« *,} \J
1222
1270
1092
2041
1554
1285
995
1047
797
3342
2685
1285
1166
372
468 .
321
467
329
1416
2843
2921
1314
561
2270
1874
1666
868
1638
439
846
277
1557
359
1481
370
409
259
72
244
975
2174
3423
2920
296
246
2 2 2
388
232
1159
2083
2325
869
395
1890
1643
1554
640
1 1 1 5
321
321
55
1565
331
1192
253
251
182
73
254
11 32
2557
2606
2623
77
330
138
175
484
217
44
141
315
286
0
133
0
194
113
248
304
290
254
163
48
179
275
460
281
0
94
1710
0
123
144
-------
APPENDIX D
CORRELATIONS AND EIGEVECTORS FOR EPA- SUPPLIED COALS
145
-------
1632A FG 2080X
3235.DAT
CORRELATIONS
MEAN SIGMA
FE 1 . 9293 8 . 4023
S 1 . 5898 0 . 3365
$T 18.3755 1.3600
AL 4 . 9257 8 . 4769
CA 1 . 3249 8 . 5945
EIGENUECTORS
U£Lf IE FE
*f l» turn '»** «« * **'
i *>»" . .»* **t y*'*". "1 "T*
~7CTl,jS^ -yj C y 1 j
f * 1 "» * ?fj t Su'Lai tli *,«^
1 ' 224^ -0 . 3838
1 8119 -8.0279
0 6065 8.8435
0 .' 3975 -0 . 7203
FE
1 . 0008
0 . 5605
0.2181
0 . 2280
-0 . 0498
:"'
0J5042
~0 . 5447
0.1292
-0.85:19
0 . 6555
3
0 . 5605 0 .
1 . 8000 0 .
0.8411 1.
0 . 8489 0 .
0.6224 -0.
SI
0.4215
0 . 5389
-0.1670
-0 . 7928
8 . 1 088
SI AL
LH
2131 8.2288 -Q.0498
0411 0.0489 8.0224
0880 0.3841 -8.8224
3841 1.8800 8.8675
8224 8 . 0675 1 . 8000
AL
8 . 4268
8 . 5526
0 . 8537
0 . 6928
8.1752
CA
-0 . 0084
0.1253
0 . 9756
-0.1503
-0 . 8998
REGRESSIONS
S = 2.0229 + 9.9045FE + -0.2771AL
FE = 1.5098 FECPYRT> = -8.4797
ORGANIC 3=
1.589 MINERAL S=
0.000
-------
1635 FG 2000X
FE
S
SI
AL
CA
MEAN
9.4094
0.6606
1.5514
3236.DAT
CORRELATIONS
SIGMA
FE
S
SI
AL
CA
0.2272 1.8000 0.0178-0.0277 g.014| g-g£gf
0.1737 0.0178 1.00Q0 -0.0726 -g.g37g 0.0057
* ^-r 0.9734 -0.0277 -0.0726 1.0000 0.0012 &.0g§3
0'5342 01971 00149-0.0370 0.0012 1.0000 0.1260
34723 0.6153 0.0766 0.0057 0.0063 0.1260 1.0000
EIGENUECTORS
UALUE
V~L»Vfc»
1 . 1552
1 0893
0 9709
9ff ^f t ^^^f
0 . 9334
0 . 8511
FE
0.3885
0.3350
-0.7805
-0 . 1993
-0 . 2966
S
-0 . 0753
0 . 6645
0.1612
0.6871
-0 . 2338
SI
-0.0016
-0 . 6436
-0 . 3678
0 . 6429
-0.1930
AL
0.6115
-0 . 1749
0 . 4780
-0.0804
-0 . 6005
CA
0.6852
0 . 0377
0 . 0328
0.2617
0 . 6779
REGRESSIONS
S = 1.0583 + -0.0317CA + -0.185481
ORGANIC S= 0.661 MINERAL S= 0.000
-------
PHS 408 FG 2000X
3237.DAT
FE
S
SI
AL
CA
MEAN
0.6712
1.5243
4.7923
1.6665
SIGMA
CORRELATIONS
FE S
SI
AL
3 .'3401 1.0729 0.0302 0.5610 0.0812
CA
0 2935 1.0000 -0.0432 -0.0023 0.8600 0.0302
0'2964 -0.0432 1.0000 0.0392-9.0417 0.5610
1.'2726 -0.0023 0.9302 1.0060
0.3026 0.0600 -0.0417 0.5267
9.5267 0.0812
1.0000 0.0223
0.0228 1.0000
H
J>
00
EIGENUECTORS
UALUE
1 . 5978
1.5017
1 . 0039
0.4661
0.4314
FE
0 . 0260
0.0S51
0 . 9S89
-0 . 0376
-0 . 0809
S
0 . 5557
-0 . 4408
-0.0351
-0.0100
-0 . 7040
SI
0 . 4396
0 , 5452
-0.1190
-0 . 7035
0.0216
AL
0 . 3744
0 , 6023
-0 . 0972
0.6991
-0.0912
CA
0 . 5976
-0 . 3722
0.0818
0 . 0926
0 . 6994
REGRESSIONS
S = 0.7856 + -0.1110AL + 0.2765CA
ORGANIC S= 0.786 MINERAL 8-
0.739
-------
PHS 506 FG 2000X
MEAN
SIGMA
3238.DAT
CORRELATIONS
FE S
SI
AL
CA
FE 1 3164 0 5878 1.8000 0.6880 -0.0301 -0.0626 0.1237
S 1.9644 0.5540 0.6880 1.0000 0.0111 0-0811 0.1246
SI 4.1851 0.3815-0.0301 0.0111 1-0000 0.4660 -0-1274
AL 30753 03193-0.0626 8.0811 0.4660 1.0000-0.0106
CA 15401 Si 6117 0.1237 0.1246-0.1274-0.0106 1.0000
EIGENUECTORS
UALUE
1.7336
1 . 4880
0 . 9556
0 . 5298
0 . 2937
FE
0.6851
0 . 0395
-0.1907
-0.1391
-0 . 6880
S
0 . 6784
0.1476
-0.1342
0.1560
0 . 6897
SI
-0 . 0879
0 . 6952
-0 . 0049
-0 . 7068
0 . 0966
AL
-0 . 0429
0 . 6865
0 . 2484
0 . 6509
-0 . 2037
CA
0 . 2467
-0 . 1487
0 . 9402
-0.1816
0.0132
REGRESSIONS
S = -0.2305 + 0.9520FE + 0.2250SI
FET.CLAY) = 0.0000 FE(PYRT) = 1.3164
ORGANIC S=
0.800 MINERAL 8=
1.964
-------
PHS 534 FG 2000K
3239.DAT
CORRELATIONS
MEAN
SIGMA
FE
S
SI
AL
CA
FE
S
SI
AL
CA
2.3614
3.1607
3 . 6834
5 . 4745
0 . 6820
1.6575 1.0080 0.9683 0.0938 0,1196 -0.0723
1.7882 0.9683 1.0000 0.0676 0.0958 -0.0523
1.0559 0.0938 0.0676 1.0000 0.6537 0.2111
0.6211 0.1196 0.0958 0.6537 1.0000 0.2423
0 . 4368 -0 . 0723 -0 . 0523 0.2111 0 . 2423 1 , 0000
Oi
o
EIGENUECTORS
UALUE
2 . 0606
1.7142
0 . 8495
0 . 3448
0 . 0309
FE
0 . 6289
-0 . 3096
0 . 0769
-0.0151
-0 . 7088
S
0.6215
-0.3214
0.1162
-0.0139
0 . 7048
SI
0.3163
0 . 5634
-0.3113
-0 . 6967
0.0156
AL
0 . 3372
0 . 5603
-0 . 2445
0.7158
0.0127
CA
0 . 0665
0.4115
0.9077
-0 . 0430
-0.0214
REGRESSIONS
S - 0.9491 -I- 1.0785FE + -0.0612AL
FE = 0.3107 FECPYRT) = 2.0507
ORGANIC S=
0.949 MINERAL S=
2.212
-------
PHS 546 FG 2000X
FE
S
SI
AL
MEAN
SIGMA
3246.DAT
CORRELATIONS
FE S
SI
AL
CA
1,5530 0.7185 1.0800 0.8753 0.0018 0.0553-0.1117
3.6031 0.7851 0.8753 1.0090-0.1050 0.0296-0.1411
8.8520 1.0551 0.0018-0.1050 1.0000 0.2627 0.1305
4.8227 0.3774 0.0553 0.0296 0.2627 1.0000 0.1283
CA 0.6327 0.4594-0.1117-0.1411 0.1305 0.1283 1.0080
Ul
EIGENVECTORS
UALUE
1 . 9208
1 . 3469
0 . 8829
0.7313
0.1180
FE
0 . 6836
0.1439
0 . 0922
-0.1115
-0 . 7008
S
0.6931
@ . 0660
0.1167
-0.0192
0 . 7080
SI
-0.1051
0 . 6246
-0 . 3626
-0 . 6782
0 . 0860
AL
0 . 0050
0 . 6504
-0 . 2343
0 . 7225
-0 . 0073
CA
-0 . 2033
0.4023
0.8896
-0.0721
0.0129
REGRESSIONS
S = 3.1161 + 1.1089FE + -0.2561AL
FE< CLAY ) * 1.1138 FE< P YRT > «* 0.4392
ORGANIC S=
3.116 MINERAL S-
0.487
-------
PHS 578 FG 2000X
FE
S
SI
MEAN
2.2319
6.3396
6.3561
SIGMA
3241.DAT
CORRELATIONS
FE
S
SI
AL
CA
0.8378 1.0900 0.8667 -0.1013 -0,0751 -0.1215
0.8477 0.8667 1.0000 -0.1565 -9.1159 -0.1610
1.0952 -0.1013 -0.1565 1.0060 0.2484 -0.0364
AL 3!0251 0^2940 -0.'0751 -0.'1159 0^2484 1.0000-0.1615
CA 2.4743 1.0061 -0.1215 -0.1610 -0.0364 -0.1615 1.0000
Ln
EIGENUECTORS
UALUE
1 . 9650
1 . 2974
0 . 8922
0.7158
0.1297
FE
0 . 6645
0.1178
0 . 2339
-0.0601
-0 . 6974
S
0.6781
0 . 0864
0.1491
-0.0344
0.7136
SI
-0.2152
0 . 5278
0 . 6084
0 . 5508
0 . 0400
AL
-0.1615
0 . 6583
0.0341
-0 . 7338
0.0313
CA
-0.1617
-0.5167
8 . 7428
-0.3916
0.8421
REGRESSIONS
S = 4.4801 + 1.0207FE + -0.1384AL
FECCLAY) = 0.4101 FECPYRT) = 1.8218
ORGANIC 8=
4.480 MINERAL S=
1.859
-------
APPENDIX E
DESCRIPTION OF COMPUTER PROGRAMS
The computer programs for the MASC analysis and MAPS analysis are
variations of a single program and will be discussed in this appendix.
source listing for the programs will be available from the authors upon
request.
The program can be divided into three logical units: (1) input-output
and normalization, (2) stoichiometric analysis and multivariate analysis,
and (3) particle size fitting.
The first section of the program accepts the data which was encoded
°n mass storage files by the scanning electron microprobe control programs.
The data for each element analyzed by the microprobe can be normalized in a
variety of ways. The data is normalized to unit microprobe current. The
first nine points of each data set are taken on a pure pyrite sample and
the average of these points is used to reduce the iron and sulfur data to
^-ratios. A correction for the effectiveness of the pyrite standard signal
relative to a zero density pyrite standard is either applied to the raw data
°r alternatively to the output of the programs. Plots of sulfur versus iron
'or other combinations of elements) are generated. The main program has
provisions for several different kinds of cuts to the data set. Backgrounds
°f several kinds (dark currents, dispersed distributions, etc) may be subtrac-
ted from each element, particularly iron and sulfur. An ellipse respresent-
lr»g any given concentration (standard deviation) is computed from the data
means and correlation for the bivariate distribution of sulfur and iron and
the ellipse is plotted on the data set. For the purposes of the MAPS parti-
cle size analysis fits, data points representing large pyrite rocks, lying
°utside of a 2.0 or 3.0 standard deviation ellipse are discarded. This also
eliminates points which are extraneous glitches in the data as sometimes
occur. The results of the correlation analysis (elemental means and standard
deviations, bivariate and multivariate correlation coefficients, pyrite
stoichiometry, and organic sulfur content), are recorded in tabular form on
mass storage for later analysis and review.
The correlation phase of the programs takes the normalized data vectors
prepared in section one and computes means, standard deviations, bivariate
correlations, etc. A multivariate components analysis (Ref. 1) is applied to
Multielement data sets to separate the pyrite, clay and organic contributions
153
-------
to the various elements by calculating the eigenvalues and eigenvectors of t
correlation matrix.
The third major subdivision of the program implements the MAPS particle
size analysis. The data vector for iron and sulfur are binned in a given
number of bins and the resulting histogram data distributions plotted. The
least square fitting subroutine is called with either the iron, sulfur or
and sulfur data distributions as input. In the present analysis, each data
bin is weighted equally but there is provision in the program for different
weights for each point. A generalized least squares fitting procedure yields
multiparameter fits of a functional form, here V (S) as given in Eq. II-^i to
the data base. The residual from the fit is computed and the results plotted
along with the data histograms.
154
-------
TECHNICAL REPORT DATA
(Please read Inunctions on the reverse before completing)
NO.
.
EPA-600/7-80-106
2.
3. RECIPIENT'S ACCESSION NO.
4- TITLE AND SUBTITLE
Physical and Chemical Characterization of Coal
6. REPORT DATE
May 1980
6. PERFORMING ORGANIZATION CODE
. AUTHOR(S)
D. G. Hamblen, P. R. Solomon, and R. H. Hobbs
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
United Technologies Research Center
East Hartford, Connecticut 06108
10. PROGRAM ELEMENT NO.
TJSTE624
11. CONTRACT/GRANT NO.
68-02-3116
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT ANC
Final; 5/78-1/80
NO PERIOD COVERED
14. SPONSORING AGENCY CODE
EPA/600/13
15. SUPPLEMENTARY NOTES IERL_RTP project officer is Frank E. Brlden, Mail Drop 62,
919/541-2557.
e. ABSTRACT
rep0rj. describes an automated scanning electron microprobe method
of analyzing sulfur forms and mineral matter in coal. The microprobe is used to
measure the spatial distribution of a number of elements (including Fe, S, Si, Al,
Ca, and K) on a scale where individual grains can be observed. These data are then
analyzed to extract the following information: organic sulfur concentration; mineral
sulfur concentration; total sulfur concentration; major mineral concentrations,
including A12O3, SiO2, K2O, and CaCO3; and stoichiometry of iron sulfide, FeSx.
The procedure is fully automated: all of the above information is obtained on a 200 mg
coal sample in less than 15 minutes. Sulfur forms and total sulfur were reproducible
to within 0. 1 wt %. In addition, estimates of the pyrite particle size for two coals
were obtained from the spatial distribution of the Fe and S data, and these estimates
are compared with the results of a washability study. A commercial elemental ana-
lyzer, evaluated for use in determining nitrogen in coal, gave results that were
reproducible and accurate to within 3%.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COS AT I Field/Group
Pollution
oal
Properties
Analyzing
Automatic Control
canning
Electron Probes
Sulfur
Minerals
Stoichiometry
Nitrogen
Pyrite
Pollution Control
Stationary Sources
Scanning Electron Mi-
croprobe
Characterization
13B
08G 07B
14G
14B 07D
3. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (ThisReport)
Unclassified
21. NO. OF PAGES
163
20. SECURITY CLASS (Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
155
------- |