U.S. ENVIRONMENTAL PROTECTION AGENCY
NATIONAL EUTROPHICATION SURVEY
WORKING PAPER SERIES
REPORT
ON
LAKE CHAMPLAIN
re YORK
AND
VERMONT
EPA REGIONS I AND II
WORKING PAPER No,
PACIFIC NORTHWEST ENVIRONMENTAL RESEARCH LABORATORY
An Associate Laboratory of the
NATIONAL ENVIRONMENTAL RESEARCH CENTER - CORVALLIS, OREGON
and
NATIONAL ENVIRONMENTAL RESEARCH CENTER - LAS VEGAS, NEVADA
-------
REPORT
ON
U\KE CHATPLAIN
NEW YORK
AND
VERMONT
EPA REGIONS I AND II
WORKING PAPER No,
WlTH THE COOPERATION OF THE
NEW YORK DEPARTMENT OF ENVIRONMENTAL CONSERVATION,,
THE VERMONT AGENCY OF ENVIRONMENTAL CONSERVATION,,
AND THE
NEW YORK AND VERMONT NATIONAL GUARDS
DECEMBER, 1974
-------
CONTENTS
• •
Foreword "• 1
List of New York Study Lakes iv
List of Vermont Study Lakes v
List of Appendices vi
List of Figures v11
List of Tables viii
Lake and Drainage Area Map x
Sections
I. Conclusions 1
II. Introduction 5
III. Lake and Drainage Basin Characteristics 7
IV. Lake Water Quality Summary 1°
V. Nutrient Loadings 34
VI. Literature Cited 63
-------
11
FOREWORD
The National Eutrophication Survey was initiated in 1972 in
response to an Administration commitment to investigate the nation-
wide threat of accelerated eutrophication to fresh water lakes and
reservoirs.
OBJECTIVES
The Survey was designed to develop, in conjunction with state
environmental agencies, information on nutrient sources, concentrations,
and impact on selected freshwater lakes as a basis for formulating
comprehensive and coordinated national, regional, and state management
practices relating to point-source discharge reduction and non-point
source pollution abatement in lake watersheds.
ANALYTIC APPROACH
The mathematical and statistical procedures selected for the
Survey's eutrophication analysis are based on related concepts that:
a. A generalized representation or model relating
sources, concentrations, and impacts can be constructed.
b. By applying measurements of relevant parameters
associated with lake degradation, the generalized model
can be transformed into an operational representation of
a lake, its drainage basin, and related nutrients.
c. With such a transformation, an assessment of the
potential for eutrophication control can be made.
LAKE ANALYSIS
In this report, the first stage of evaluation of lake and water-
shed data collected from the study lake and its drainage basin is
documented. The report is formatted to provide state environmental
agencies with specific information for basin planning [§303(e)], water
quality criteria/standards review [§303(c)], clean lakes [§314(a»b)L
and water quality monitoring [§106 and §305(b)] activities mandated
by the Federal Water Pollution Control Act Amendments of 1972.
-------
iii
Beyond the single lake analysis, broader based correlations
between nutrient concentrations (and loading) and trophic condi-
tion are being made to advance the rationale and data base for
refinement of nutrient water quality criteria for the Nation's
fresh water lakes. Likewise, multivariate evaluations for the
relationships between land use, nutrient export, and trophic
condition, by lake class or use, are being developed to assist
in the formulation of planning guidelines and policies by EPA
and to augment plans implementation by the states.
ACKNOWLEDGMENT
The staff of the National Eutrophication Survey (Office of
Research & Development, U. S. Environmental Protection Agency)
expresses sincere appreciation to the New York Department of
Environmental Conservation and the Vermont Agency of Environ-
mental Conservation for professional involvement and to the
New York and Vermont National Guards for conduct of the tributary
sampling phase of the Survey.
Henry L. Diamond, Commissioner of the New York Department of
Environmental Conservation and Martin L. Johnson, Secretary of
the Vermont Agency of Environmental Conservation and their respective
staff provided invaluable lake documentation and counsel during the
Survey.
Major General John C. Baker, the Adjutant General of New York
and Project Officer Lieutenant Colonel Fred Peters; Major General
Reginald M. Crum, the Adjutant General of Vermont, and Project
Officer Major Howard Buxton who directed the volunteer efforts of
the New York and Vermont National Guardsmen, are also gratefully
acknowledged for their assistance to the Survey.
-------
iv
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF NEW YORK
LAKE NAME
Allegheny Reservoir
Black
Canadalgua
Cannonsvilie
Carry Falls
Cassadaga
Cayuga
Champlain
Chautauqua
Conesus
Cross
Goodyear
Huntington
Keuka
Long
Lower St. Regis
Otter
Owasco
Raquette Pond
Round
Sacandaga Res.
Saratoga
Schroon
Seneca
Swan
Swinging Bridge Res.
COUNTY
Cattaraugas, NY; McLean,
Warren, PA
St. Lawrence
Ontario
Delaware
St. Lawrence
Chautauqua
Seneca, Tompkins
Clinton, Essex, NY; Addison,
Chittenden, Franklin, VT
Chautauqua
Livingston
Cayuga, Onondaga
Otsego
Sullivan
Ontario
Kami 1 ton
Franklin
Cayuga
Cayuga
Franklin
Saratoga
Fulton, Saratoga
Saratoga
Essex, Warren
Seneca, Schyler, Yates
Sullivan
Sullivan
-------
NATIONAL EUTROPHICATION SURVEY
STUDY LAKES
STATE OF VERMONT
LAKE NAME
Arrowhead Mountain Lake
Clyde Pond
Harriman Reservoir
Lake Champ!ain
Lake Lamoille
Lake Memphremagog
Waterbury Reservoir
COUNTY
Chittenden, Franklin
Orleans
Windham
Addison, Chittenden,
Franklin
Lamoille
Orleans
Washington, Lamoille
-------
vi
APPENDICES
No. . Page
A Lake Champlain Tributary Data Collected by the
National Eutrophication Survey. 64
B Flow Data for Lake Champlain Tributaries. 112
C Lake Champlain Data Collected by the National
Eutrophication Survey. 121
D Algal Assay Growth Curves and Chemistry for EPA
and Vermont-Beak Samples. 136
E Memo Regarding Preservation of Sub-Samples for
Nutrient Analysis. 186
F Municipal Sewage Treatment Plant and International
Paper Company Effluent Data. 189
-------
VII
FIGURES
No. Page
1 Map of Lake Champlain and Direct Drainage Area. x
2 Map of South Lake Champlain and Drainage Area. xi
3 Location of Vermont-Beak PAAP Sampling Stations. 26
-------
viH
TABLES
No.. Page
1 Summary of Lake Champ!ain Water Quality Data for
Stations 500101, 02, 03, and 04. 13
2 Summary of Lake Champlain Water Quality Data for
Stations 500105, 06, and 12. 16
3 Summary of Lake Champlain Water Quality Data for
Stations 500107, 09, and 10. 17
4 Summary of Lake Champlain Water Quality Data for
Station 500108. 19
5 Summary of Lake Champlain Water Quality Data for
Station 500111. 21
6 Summary of Lake Champlain Water Quality Data for
Station 500113. 22
7 Mean Summary of Lake Champlain Water Quality Data. 23
8 Algal Assay Response for the Samples Collected
from South Lake Champlain by Vermont and T. W. Beak
Consultants, Limited. 29
9 Algal Assay Response for the Samples Collected by
EPA from Lake Champlain. 33
10 Domestic Waste Discharges and Nutrient Loads to
Lake Champlain Basin Surface Waters from New York. 37
11 Domestic Waste Discharges and Nutrient Loads to
Lake Champlain Basin Surface Waters from Vermont. 39
12 Quantities of Nitrogen and Phosphorus Discharged
to Major Tributaries from Point Waste Sources. 42
13 Phosphorus Loading to Lake Champlain (Before New
York Phosphate Laundry Detergent Ban). 44
14 Comparison of Total Nutrient Discharged to Lake
Champlain by Each Sampled Tributary and Nutrient
Inputs to Each Tributary System from Point Waste
Sources. 47
-------
ix
15 Annual Phosphorus and Nitrogen Loadings from Eight
Lake Champ!ain Tributaries which Receive no
Significant Point Source Nutrient Loads. 49
16 Effects of Phosphate Laundry Detergent Ban on
Annual Phosphorus Loadings to Lake Champlain and
Phosphorus Contributions from Point Waste Sources. 51
17 Nitrogen Loadings to Lake Champlain. 52
18 Annual Total Phosphorus Loading to South Lake
Champlain (Before New York Phosphate Laundry
Detergent Ban). 54
19 Annual Phosphorus Loading to South Lake Champlain
by State (Before New York Phosphate Laundry
Detergent Ban). 55
20 Annual Phosphorus Loading to South Lake Champlain
by State (After New York Phosphate Laundry
Detergent Ban). 57
21 Effect of Effluent Phosphorus Reductions on Loading
Rates to Lake Champlain. 61
22 Effect of Effluent Phosphorus Reductions on Loading
Rates to South Lake Champlain. 62
-------
QUEBEC lYll^SISQUOl CO _
I NEW YORV CLINTON CO
Tnbijtary Sampling Site
X Lake Sampling Site
Drainage Basin Boundary
-------
SOUTH LAKE CHAMPLAIN
Tributary Sampling Site
Drainage Basin Boundary
-------
LAKE CHAMPLAIN
STORE! NO. 5001
I. CONCLUSIONS
A. Trophic Condition:
1. Lake Champlain exhibits a variety of trophic conditions rang-
ing from near oligotrophic in the deeper main lake areas to eu-
trophic in some of the bays and near-shore areas.
2. South Lake Champlain has characteristics commonly associated
with eutrophy, i.e., shallow and nutrient rich; however, primary
production in South Lake Champlain is apparently suppressed by
natural turbidity caused by non-biological materials.
3. While the main water body of Lake Champlain is currently in
an acceptable trophic condition, some of the embayments and the
South Lake Champlain have shown signs of accelerated eutrophication,
It is believed that the continued addition of unnecessarily high
quantities of phosphorus will shorten the useful life of the lake.
B. Limiting Nutrient:
1. The algal assay tests indicate that phosphorus is the nutrient
of major importance in controlling primary production in Lake
Champlain.
C. Nutrient Controllability:
1. The average yearly total phosphorus input from point and non-
point sources to Lake Champlain is estimated to be 1,318,650
pounds before the New York phosphate detergent ban.
-------
2. Of the total phosphorus input to Lake Champlain before the
New York phosphate detergent ban, New York point sources (muni-
cipal and industrial) accounted for 11% (140,270 pounds) of the
total annual input and Vermont point sources accounted for 19%
(253,100) of the total annual input.
3. After the New York phosphate detergent ban*, the total annual
phosphorus input to Lake Champlain is estimated to be 1,260,510
pounds.
4. Of the total phosphorus input to Lake Champlain after the New
York phosphate detergent ban*, New York point sources accounted
for 7% (82,230 pounds) of the total annual input and Vermont point
sources accounted for 20% (253,100 pounds) of the total input.
5. The total annual nitrogen input to Lake Champlain is 28,928,400
pounds.
6. Of the total annual nitrogen input, only a maximum of 9% is
contributed by New York and Vermont point sources.
7. The annual total phosphorus loading to South Lake Champlain
from all sources before the New York phosphate laundry detergent
ban was 197,350 pounds.
8. Of the total phosphorus input to South Lake Champlain before
the ban, New York point sources contributed 31% (60,390 Ibs) and
* The assumption was made that the New York phosphate laundry detergent
ban will decrease the annual phosphorus load from New York municipal
sewage treatment plants by 50%.
-------
New York diffuse sources contributed 27% (54,080 Ibs) of the total.
Vermont point sources contributed 7% (13,650 Ibs) and Vermont
diffuse sources contributed 35% (69,230 Ibs) of the total.
9. After the New York phosphate laundry detergent ban*, the
total phosphorus input to South Lake Champlain is estimated
to be 179,200 pounds per year.
10. Of the total phosphorus input to South Lake Champlain
after the New York ban, New York point sources contributed
24% (42,240 pounds) and New York diffuse sources 30% of the
total. Vermont point sources contributed 8% (13,650 pounds)
and Vermont diffuse sources 38% (69,230 pounds) of the total.
D. Phosphorus Reduction:
1. In that primary production in the waters of Lake Champlain
is stimulated by the addition of phosphorus, phosphorus inputs
from all sources should be minimized to reduce the eutrophica-
tion rate.
2. Prior to the New York phosphate detergent ban, the loading
rate to Lake Champlain was 0.53 grams total phosphorus/m lake
surface area/year.
3. If phosphorus inputs from New York and Vermont municipal
and industrial discharges were decreased by 80% or equivalent
reductions in phosphorus inputs from non-point sources were
The assumption was made that the New York phosphate laundry detergent
ban will decrease the annual phosphorus load from New York municipal
sewage treatment plants by 50%.
-------
attained, the loading rate to Lake Champlain would be reduced
to 0.40 grams/m2/year, or to 75% of the pre-ban loading rate.
4. According to the Vollenweider relationship, a loading rate
of 0.53 grams total phosphorus/m2/year is equivalent to a eu-
trophic condition for a lake with the morphometric character-
2
istics of Lake Champlain, whereas a loading rate of 0.40 g/m /
year corresponds to a mesotrophic loading rate.
-------
II. INTRODUCTION
The National Eutrophication Survey was established by EPA in late
1971 with the directive to investigate all significant lakes and reser-
voirs in the contiguous United State which receive effluents from muni-
cipal sewage treatment facilities. The stated objectives of the Survey
were to determine the extent of eutrophication in each water body and
to assess the total nutrient input to each water body, differentiating
between inputs from point-sources (primarily municipal) and diffuse
land runoff. The goal was to determine the controllability of nutrients
(particularly phosphorus), the impact of point source and non-point source
nutrients on each study lake and the expected benefit to each lake by
reducing the point-source nutrient inputs.
This report is concerned primarily with the trophic condition,
nutrient levels and nutrient loadings of the waters of Lake Champlain
and represents a preliminary assessment of the data gathered by the
Survey from June, 1972 through June, 1973. Lake Champlain is but one
of approximately 484 water bodies east of the Mississippi now being
studied by the Survey, albeit an important one due to its size and the
fact that it borders the States of New York and Vermont as well as the
Canadian Province of Quebec.
In this report "Lake Champlain" refers to the entire lake which is
defined as the portion extending from the southern tip of South Bay near
Whitehall, NY to the Richelieu River outlet. The total drainage area of
-------
the Lake Champlain basin is approximately 7,744 square miles not in-
cluding the Lake Champlain water surface area which is approximately
436 square miles. Lake Champlain can be described as long and narrow
with a maximum length of 109 miles and a maximum width of 11 miles.
The maximum depth of Lake Champlain is 400 feet and the mean depth is
64 feet. The mean hydraulic detention time is approximately 2.6 years.
In this report, "South Lake Champlain" refers to that portion of
Lake Champlain extending from the southern tip of South Bay near White-
hall, NY to the Crown Point Bridge. The total drainage area of South
Lake Champlain is 1,216 square miles not including the South Lake Cham-
plain water surface area which is 22 square miles. South Lake Champlain
is also long and narrow with a maximum length of 37 miles and a maximum
width of less than two miles. The maximum depth of South Lake Champlain
is 46 feet and the mean depth is 8 feet. The mean hydraulic detention
time is approximately 40 days.
Separate phosphorus loading estimates were prepared for Lake Champlain
and South Lake Champlain in this report. A nitrogen loading estimate
was prepared only for Lake Champlain in its entirety.
The map on page x indicates the approximate location of each sampling
site and delineates the U.S. portion of the Lake Champlain drainage area.
The map on page xi shows only South Lake Champlain and its drainage area.
-------
III. LAKE AND DRAINAGE BASIN CHARACTERISTICS
The morphometry and hydrology of Lake Champ!ain has been very thor-
oughly explained by Henson and Potash (1969); Potash, Simdberg, and
Henson (1969); and Hunt, Boardman, and Stein (1971). For details to
supplement the basic facts provided in this report, the reader is
referred to those sources.
A. Morphometry of Lake Champlain (including South Lake Champlain):
1. Surface area: 436.4 square miles
.1
1
2. Mean depth: 63.6 feet
3. Maximum depth: 400 feet
4. Volume: 9.12 x 1011 cubic feet1
5. Mean hydraulic detention time: 2.6 years'
B. Tributary and Outlet Data for Lake Champlain:
(See Appendix B for all flow data)
1. Sampled Tributaries -
Name and State
Missisquoi River, VT/Quebec
Stevens Brook, VT
Lamoille River, VT
Malletts Creek, VT
Winooski River, VT
LaPlatte River, VT
Otter Creek, VT
Drainage Area Mean Flow
at Sampling at Sampling
Point (sq.mi.) Point (cfs)
861.0
2.5
715.0
19.1
1,062.0
46.1
872.0
1,620
5
1,322
33
1,638
71
1,322
1 Hunt, Boardman, and Stein (1971).
2 Henson and Potash (1969).
-------
8
Name and State
Barge Canal - Poultney
River, NY/VT
Ticonderoga Creek, NY
Fivemile Creek, NY
Putman Creek, NY
McKenzie Brook, NY
Mill Brook, NY
Hoisington Brook, NY
Bouquet River, NY
Ausable River, NY
Little Ausable River, NY
Salmon River, NY
Saranac River, NY
Little Chazy River, NY
Great Chazy River, NY
Minor tributaries and
immediate drainage, NY/VT
Totals
2. Outlet -
Richelieu River
Drainage Area Mean Flow
at Sampling at Sampling
Point (sq mi) Point (cfs)
692.0
262.0
8.4
61.3
10.3
27.1
11.4
278.0
518.0
71.8
66.0
614.0
51.2
300.0
1,195.0
7,744.2
921
281
11
77
14
36
15
370
689
96
88
818
68
399
1,589
11 ,483
8,180 sq.mi. 11,052 cfs
1
1 Henson and Potash (1969).
-------
C. Morphometry of South Lake Champlain:
(See Appendix B for all flow data)
1. Surface area: 22.0 square miles
2. Mean depth: 8 feet
3. Maximum depth: 46 feet
9 1
4. Volume: 4.94 x 10 cubic feet
5. Mean hydraulic detention time: ~ 40 days
D. Tributary and Outlet Data for South Lake Champlain:
1. Sampled Tributaries -
Drainage Area Mean Flow
at Sampling at Sampling
Name and State Point (sg mi) Point (cfs)
Barge Canal - Poultney
River System, VT/NY 692.0 921
Ticonderoga Creek, NY 262.0 281
Fivemile Creek, NY 8.4 11
Putnam Creek, NY 61.3 77
Minor tributaries and
immdediate drainage, NY/VT 192.3 256
Totals 1,216.0 1,546
2. Outlet -
Crown Point 1.238 sq. mi. 1,441 cfs
E. Precipitation for Lake Champlain:
2
1. Year of sampling: 39.8 inches
3
2. Mean annual: 32.3 inches
1 Potash, Sundberg, and Henson (1969).
2 Records from Burlinton, VT weather station.
3 Henson and Potash (1969).
-------
10
IV. LAKE WATER QUALITY SUMMARY
EPA field staff sampled 13 stations in Lake Champlain during the
spring, summer, and fall seasons of 1972. Dates for each of the three
samplings were June 1 - 2, July 30 - August 2, and October 5-8. Ap-
proximate locations of the sampling sites are depicted on the maps, on
pages x and x1. Specific locations and depth characteristics of each
station from the southern to the northern end of Lake Champlain were as
follows. The complete set of lake data for each station is in Appendix
C of this report.
Station 500101: located in South Bay, one mile south of bridge;
maximum depth of 19 feet (Latitude 43°33'10"N, Longitude
73027'00"W).
Station 500102: located in the combined Delaware-Champlain Canal:
Poultney River channel, just east of confluence with South Bay
Portal; maximum depth of 20 feet (Latitude 43°34'55"N, Longitude
73°25I20"W).
Station 500103: located in mid-lake, due west of the marina on east
shore and south of Fort Ticonderoga; maximum depth of 22 feet
(Latitude 43°49'54"N, Longitude 73°23'U"W).
Station 500104: located in mid-lake, off Putts Point near Buoy 34;
maximum depth of 25 feet (Latitude 43°57'28"N, Longitude
73°24'25"W).
Station 500105: located near Port Henry, due north of point on
the west side of the lake; maximum depth of 21 feet (Latitude
44°03'10"N, Longitude 73°27'01"W).
Station 500106: located in North West Bay, near Westport; maximum
depth of 51 feet (Latitude 44°11'25"N, Longitude 73°25'51"W).
Station 500112: located at mouth of Farm Town Bay, midway between
Thompson Point and Long Point; maximum depth of 38 feet (Lat-
tude 44015'42"N, Longitude 73°17'38"W).
Station 500107: located approximately 2 miles due west of mouth
of W1noosk1 River; maximum depth of 120 feet (Latitude 44°3TOO"
Longitude 73019'00"W). • uu
-------
n
Station 500109: located approximately one mile due east of mouth
of the Ausable River; maximum depth of 116 feet (Latitude
44°33'17"N, Longitude 73°24'43"W).
Station 500108: located approximately one mile south of the south-
eastern tip of South Hero Island in the Malletts Bay area; maxi-
mum depth of 80 feet (Latitude 44°34I30"N, Longitude 73016'48"W).
Station 500110: located in the center of Cumberland Bay, near Bouy
No. 1; maximum depth of 24 feet (Latitude 44Q41'49"N, Longitude
73°26'10"W).
Station 500111: located in the northeast portion of Lake Champlain,
midway between Point Hill and Butler Island; maximum depth of
21 feet (Latitude 44°48I00"N, Longitude 73°12'30"W).
Station 500113: located in mid-lake, due west of Point au Per;
maximum depth of 25 feet (Latitude 44056'25"N, Longitude
73°20'13"W).
A. Physical and Chemical Characteristics:
To briefly summarize the grouping of stations according to
the morphometry of the lake, stations 500101, -02, -03, and -04
were located in South Lake Champlain (south of Crown Point);
stations 500105, -06, -12, -07, -09, -10, and -13 were located
in the main lake between Port Henry and Rouses Point; station
500108 was located in the Malletts Bay area; and station 500111
was located in the northeastern portion of Lake Champlain.
To simplify the presentation and discussion of the results
of lake sampling, data from stations which were related geographi-
cally or morphometrically are grouped. For each grouping, a sum-
mary table is provided which gives maximum, minimum, and mean
values of all observations at the grouped stations and mean values
for each sampling date.
-------
12
The mean parameter values presented in the tables are not
volume-weighted to account for differences in nutrient levels
occurring in the various layers of the lake during stratifica-
tion. Nevertheless, the mean values are useful as a general
guide to differences in water quality between areas.
Table 1 summarizes the combined data for stations 500101,
-02, -03, and -04, all of which were located in South Lake
Champlain.
Secchi disc transparencies in South Lake Champlain were low
during EPA visits in 1972 with a maximum depth of 52 inches in
Ticonderoga Bay, which may have been caused by the diluting effect
of the discharge through the Lake George outlet, and a minimum of
3 inches. Observations by the field staff indicate the turbidity
was caused primarily by suspended sediments although some surface
algae were also evident. Hensen and Potash (op. cit.) stated that
South Lake Champlain was characteristically turbid, apparently due
to natural shoreline erosion.
The chemical data indicated that nitrogen and phosphorus
were relatively abundant in waters of the South Lake and, parti-
cularly, that the contribution from the Delaware-Champlain Canal
and Poultney River system was rich in nutrients. The availability
of nutrients in South Lake was not matched by correspondingly high
chlorophyll a_ values during EPA samplings—probably due to the
high turbidity which prevented plankton blooms from developing;
-------
13
TABLE 1
SUMMARY OF LAKE CHAMPLAIN WATER QUALITY DATA
For EPA Stations 500101, 02, 03 and 04
(See Appendix C for complete data)
MEAN VALUES
1ST SAMPLE 2ND SAMPLE 3»D SAMPLE
TEMP (CENT)
PISS ...PXY.. (MG/U).
CNDCTVY....(.MCROMO.)
PH (STAND UNITS)....
TOT ALK (MG/L)
TOT P (MG/L)
DISS.P (MG/L) ...
N02*N03LJMGVU O..130__
.AMMONI A. .(MG/LL __..0..064 0. 109 JUJJ4
INORG..N._(MG/U 0.194. 0.283_ 0»27.7__
-.CJdURE HYL (UG/L) 2*2 ZJLQ L6. JLfi
6/ 1/72
17.7
..9.3
153.
7.5
SB..
0.020
0.011
0.130._
8/ 2/72
22.9
.7.1
194.
7.6
70.
0.040
.0.018
0.174
10/ ti/72
1^.3
^.4
.210.
7.8
71.
0.085
0.029
o.lea
-SF.CCHJ (INCHES) 34* 3 .ft,. Us.
MIN FOR MAX FOR MEAN FOR
TEMP (CENT)
JUSJLPXY (MG/L)
CNDCTVY (MCROMQ)
PH (STAND UNITS)
TOT ALK (MG/L)
TQ1 P (MG/L)
9.0
5.6
90.
6.B
26.
0.012
23.9
11.2
245.
8.1
91.
0.18B
18.6
8.5
188.
7.6
67.
0.050
_. PISS_F>. J.MG/U 0,006 .0.«.0.71 P..J320_
..N02*_N03__(MG/LJ O.OJJ) 0.4.4CL
(MG/L) _ JMILQ _ Qj^Zfi _ 0.098
. I NPRG_N_IMG/U ___ P.*.0 20. ____ P_«58Q _ fi_..256
._CHLB£HYL_JUG./LJ ^l.,_5 30, 2 1.0 t.L_ _
_S£CCHI (INCHES) i, S2j« 2i*
-------
14
however, during August and September of 1972, algal blooms were
observed by staff of the Vermont Department of Water Resources
and T. W. Beak Consultants, Limited. The algal genera Aphani-
zomenon and Melosira predominated on those occasions.
Station 500104, the deepest EPA station in the South Lake,
was stratified during the June, 1972 sampling; however, there
was no apparent oxygen depletion in the hypolimnion at that time.
During the August sampling at station 500104, stratification was
not as pronounced, indicating that the shallow depth of the South
Lake permits periodic mixing to occur throughout the summer.
In summary, the South Lake area can be characterized as gen-
erally having poorer water quality than other areas of the lake
as evidenced by high phosphorus concentrations and low Secchi disc
readings. South Lake Champlain has the characteristics of a
eutrophic water body although primary productivity is apparently
suppressed by the high turbidities which occur in that portion
of the lake. South Lake Champlain waters, which are relatively
high in phosphorus, could conceivably stimulate primary produc-
tion in the main lake as the waters mix and the turbidity-causing
materials settle. It is also possible, however, that the excessive
phosphorus is adsorbed to the silt and becomes unavaiable for algal
assimilation when the silt settles to the lake bed.
-------
15
Table 2 summarizes the data for stations 500105, -06, and -12.
Perhaps station 05 should not have been included in this group
as the water quality there reflects the South Lake Champlain
influence to a great extent because of proximity to Crown Point.
Generally speaking, water quality in Lake Champlain between Crown
Point and Thompson's Point was much better than in South Lake
Champlain. Secchi disc readings ranged from 27 - 144 inches, total
phosphorus concentrations did not exceed 0.032 ppm., and there was
no evidence of dissolved oxygen depletion in the hypolimnion.
One extremely high chlorophyll a^ value (67.7 ug/1) at station 05
probably resulted from the combination of South Lake Champlain
and Port Henry, NY nutrient contributions to the area.
In summary, the area of the lake between Crown Point and
Thompson's Point could best be classified as mesotrophic or
perhaps mildly eutrophic. Although chlorophyll a. values were
among the highest measured, there was no evidence of significant
dissolved oxygen depletion in the hypolimnion.
Summary data for station 500107, -09, and -10 are presented in
Table 3. These stations were all located in the main lake water
mass between Schuyler Island and Cumberland Head. Secchi disc
readings in this area were relatively high, ranging from 72 to 168
inches and averaging 122 inches. Total phosphorus concentrations
were low, averaging only 0.018 ppm in the area. Although the water
was thermally stratified at stations 500107 and 500109 during the
-------
16
TABLE 2
SUMMARY OF LAKE CHAMPLAIN WATER QUALITY DATA
For EPA Stations 500105, 06, and 12
(See Appendix C for complete data)
. .. _. ...MEAN
1ST SAMPLE 2ND SAMPLE 3PO SAMPLE
._.(>/ 1/72 8/ 2/72 10/ Q/72
TEMP (CENT) Q.fl 17.6 13.7
DISS. OX.Y. .(MG/L) .12,2.... ...9,3 9.8
. CNDCTVY (MCROMO) 126, ,..154. 1.53.
PH (STAND UNITS)., 7.9 _7.9 7.8
TOT ALK (MG/L) ...! 49. ...__ 51.... 43.
TOT. P.JMG/L) 0.016 0.021 0.017
DISS P (MG/L) .. __ O.OOR 0.011 _ 0.009
N02*N03 (MG/L) 0.1«7__ 0.135 0.12.3....
AMMONIA (MG/L) 0.033 0.059 0.028
INORG_N.(MG/L) 0.220 0.194 0.151.
_CHLRPHYL_.
_Qiss. P. IMG/LI
.N02*NQ3_.(M&/L>
-AMMONIA
-------
17
TABLE 3
SUMMARY OF LAKE CHAMPLAIN WATER QUALITY DATA
For EPA Stations 500107, 09, and 10
(See Appendix C for complete data)
. . . _.
TFMP (CENT)
DISS OXY (MG/L)
CNDCTVY. .(MCROMO)_..
Ph (STAND UNITS)
TOT ALK (MG/L)
TOT P (MG/L)
DISS P (MG/L)
Mfi?*M0.1 (Mf,/l )
1ST SAMPLE
6/ 2/72
11.0
11,6
135.
7.9
41. .
0.020
0.007
0.1.67
MFAN VALUES
2ND SAMPLE
7/30/72
16.6
9.0
136.
7.3
42.
0,020
0.011
., 0.154
3RD SAMPLE
10/ 8/72
13.5
9.9
141,
7.6
.42.
0,013
0.007
O.H6
AMMONIA _(MG/U 0.03.0 0 ..050 0_. 04jOL_
INORG_N .J.MG/L) 0. 197 0,204. 0, 186_
CHLRPHYL (UG/L) 16.4 9.jt2 6.6
SECCHI (INCHES) 90. 12.8.. 156.
MIN FOR MAX FOR MEAN FOR
ALL SAMPLES ALL SAHPLES ALL SAMPLES
6*0 22._1 14.6
DISS OXY (MG/L) 6.6 LR.4 9.7
CNDCTVY (MCROMO)
PH tSIAND UNIT5J
TOT ALK (MG/L)
TOT P (MG/L)
DISS P (MG/L)
N02+N03 (MG/L)
AMMON/TA 'Mfj/i )
INORG N (MG/L)
100.
6.8
29.
0.009
0.005
0.060
0.010
0.090
160.
B.3
48.
0.040
0.017
0.320
0.090
0.360
137.
7.5
42.
o.oia
O.Q09
0.154
0.043
0.198
CHLRPHYL (UG/L) 5.4 29.2 11, ]
SFCCHI (INCHES) lit 168. L2£j
-------
18
July sampling, there was no evidence of significant oxygen deple-
tion in the hypo limn ion. Chlorophyll ^values at stations 500107,
-09, and -10 averaged somewhat lower than the previous group of
stations further south and ranged from 5.4 to 29.2 micrograms/
liter with a mean of 11.1 micrograms/liter. Overall the area
would be classified as mesotrophic although signs of oligotrophy
were also evident.
Table 4 summarizes the data for station 08 in the Mallets
Bay area which was sampled only during July and October of 1972.
Secchi disc readings at this station were among the highest
observed in the entire lake with a maximum reading of 172 inches.
Total phosphorus concentrations were low, ranging from 0.007 ppm
to 0.021 ppm and averaging 0.012 ppm. Specific conductance was
also somewhat less at this location than other sites on the lake
with a mean of 106 micromhos. The lake was stratified in the
Malletts Bay area during both the July and October samplings,
and dissolved oxygen concentrations in the hypolimnion were
approximately 24% of saturation, which is symptomatic of a meso-
trophic condition. Settling of previous algal blooms could ac-
count for the high Secchi disc readings which were observed.
Potash, Sundberg, and Henson (op. cit.) classified the Malletts
Bay area as eutrophic and noted that hypolimnetic oxygen concen-
trations dropped as low as 0.1 mg/1 during the summer of 1967.
-------
TABLE 4
SUMMARY OF LAKE CHAMPLAIN WATER QUALITY DATA
For EPA Station 500108
(See Appendix C for complete data)
MEAN VALUES
TE^P (CENT)
DISS OXY (MG/L)
CNDCTVY .(MCROMO)
PH (STAND UNITS)
TOT ALK. (MG/L)
TOT P (MG/L)
DISS P (MG/L). ...
N02*N03 (MG/L) . ...
AMMONIA, (MG/L.)
_ INOR.G...N. (MG/L>_.
CHLRPHYL (UG/L)
SECCHI (INCHES)
TEMP (CENT)
OISS OXY (MG/U)
CNDCTVY (MCROMO}
PH (STAN.D UNITS)
TOT ALK (MG/L)
TOT P (MG/L)
1ST SAMPLE
7/30/72
17.3
.7.7
.102.
fi..9
3?,
._ 0.014
0. 010
... .0.?52
0.049
. 0.301
4.9
172.
MIN FOR
ALL SAMPLES
7.5
2.4
100.
6.4
27.
0.007
2ND SAMPLE
10/ 5/72
13.5
. . .7.8 ._ ... . .
114. ... .
7.2 . . . ._ _..
30.
... 0.009 . _ ...
0.006 .
.0.200
0.044 _.._
0.244
._ . . 5.5 . . „
._..168..._ ._. .. ...
MAX FOR MEAN FOR
ALL, .SAMPLES ALL_SAMPLES_
23.2 15.9
9.8 7.7
1?3. 106.
7.4 7.0
36. 31.
O.OP1 0.012
_J5ISS P (MG/L) .0.005 0...013 0.009
..N02tN03-
-------
20
Table 5 summarizes the data from station 500111 in the north-
east arm of Lake Champlain. Total phosphorus concentrations
averaged higher in this area than for all other Champlain sta-
tions except for those in South Lake. Secchi disc readings were
generally high with summer and spring values of 168 and 178 inches
respectively.
Station 500111 was shallow and was not stratified during the
1972 sampling dates. A significant difference between station
500111 and the other sampled areas of the lake was the low in-
organic nitrogen concentrations. Mean inorganic nitrogen values
were approximately 41% of the lowest mean observed in any of the
other areas. The overall classification in the Northeast area
of Lake Champlain is mesotrophic to mildly eutrophic.
Table 6 summarized data from station 13 located in the north-
west part of the main water mass of Lake Champlain. This station
was relatively shallow (25 feet) and was not stratified during
the sampling periods. Total phosphorus concentrations averaged
0.017 ppm and Secchi disc readings were consistently high, ranging
from 125 - 168 inches. This area of the lake would be classified
as mesotrophic.
Table 7 summarizes the significant mean data parameters for
Lake Champlain and assigns a trophic condition to each general
-------
21
TABLE 5
SUMMARY OF LAKE CHAMPLAIN WATER QUALITY DATA
for EPA Station 500111
(See Appendix C for complete data)
TEMP (CENT).
DISS OXY ..(MG/L)
CNDCTVY.(MCROMO)
PH (STAND UNITS)
TOT ALK (MG/L)
TOT P (MG/L)
DISS P(MG/L)
: N02tN03..(MG/L)..
AMMONIA.. (MG/L)
..CHLRPtilL_LUG/.U-
-S.EJ.CHI UNCHESJ_
1ST SAMPLE
6/ 2/72
14.4
11.0 .
130.
8.1
39.
0.028 .
0.010
..... .0.025
0.020
0.045.,
84.
MEAN VALUES
2ND SAMPLE
7/30/72
22.5
.7.2 . ,.
. 130. ..
7.7
. 3«.
0.030
0.021
0.023 ...
0.040
___ 0.063
11.2
178.
3RD SAMPLE
10/ 5/72
15.5
10.3
.. 131.
7.7
35.
0.042
0.034
0.043.
0.037
.. 0,080
168,
MliM FO'K MAX FOH Mfc.AN f-OR
ALL SAMPLES AL_U_SAMPLES AL_U_SAMPLES_
TEMP (CENT)
DISS OXY (MG/L)
14.0
.22.1.
5.. 2 1.U1.
9.5
CNDCTVY (MCROMO)
PH (STAND UNITS)
TOT ALK (MG/L)
TOT r1 { MG/L 5
OISS P (MG/L)
N02»N03 (MG/L)
AMMONIA (MG/L)
. JMQP.G N_iM.GZLJL
130.
7.5
35.
0.024
0.009
0.020
0.020
0«.040
132.
8.2
39.
/\ A *. -»
U • U-»J
0.035
0.050
0.040
0.090
131.
7.8
37.
0« ^ /.
• \* JT
0.023
0.031
0.034
0.065
-CHLRPJJIL—IU.G/LI 5.5 13 . 6 __ 10....L.
._S£CCH1_1LNQ1ESJ 8.4. 1.7.8,
-------
22
TABLE 6
SUMMARY OF LAKE CHAMPLAIN WATER QUALITY DATA
for EPA Station 500113
(See Appendix C for complete data)
ME AM VALUES
TEMP (CENT)
DISS OXY.. (MG/L)
CNDCTVY (MCROMO)
PH (STAND UNITS)
TOT ALK (MG/L)
TOT P
DISS P (MG/L)
N02*N03.J.MG/U
AMMON
INORG
SECCHI (INCHES)
1ST SAMPLE
h/ 2/72
12.9
'L)_ . ._ .11. 8_...
>MO> .._ . 130.
[TS) 8.2
.) 39.
0.015
_ 0.005
.1 O.UA.7
.J 0.060
.) . 0.207
'L> 10.1
IS) 125.
2.^0 SAMPLE
7/30/72
21.4
B.O
135.
7.4
42.
0.028
0.015
.0.053.
0,057..__
0.110
12.3
132.
3PD SAMPLE
10/ 5/72
14.8
10.5 .
146.
7.8
45.
0.009
0.006
J1..1PQ
0.053
0.153 „
2.4
168.
TEMP (CENT)
DISS OXY (MG/L)
CNDCTVY (MCPOMO)
PH (STAND UNITS)
TOT ALK (MG/L)
TOT P (MG/L)
DISS P (MG/L)
N02*N03 (MG/L)
AMMONIA (MG/L)
INORG N (MG/L)
12.4
7.8
130.
7.2
37.
0.006
0.004
0.040
0.050
0.100
21.8
12.0
146.
8.3
46.
0.042
0.019
0.150
0.070
0.220
15.9
10.3
137.
7.8
42.
0.017
0.009
0.100
0.057
0.157
CHLRPHYI (UG/L)
SECCHI (INCHES.)
JL2..3. 8_.J
168. 142.
-------
TABLE 7
MEAN SUMMARY OF LAKE CHAMPLAIN WATER QUALITY DATA
Stations 500101,
Parameter (Units)
Conductivity (micromhos)
Total P (mg/1)
Dissolved P (mg/1 )
Inorganic N (mg/1 )
Chlorophyll a_ (yg/1 )
Secchi disc (inches)
Overall Trophic
Condition
-02, -03, -04
(S. Lake Champlain)
188
0.050
0.020
0.256
10.1
28
Eutrophic
Stations 500105,
-06, -12
146
0.018
0.010
0.187
15.5
91
Mesotrophic to
mildly eutrophic
Stations 500107,
-09, -10
137
0.018
0.009
0.198
11.1
122
Mesotrophic
to oligotrophic
Station
500108
106
0.012
0.009
0.279
5.2 -
170
Mesotrophic
Station
500111
131
0.034
0.023
0.065
10.1
143
Mesotrophic
to mildly
eutrophic
Station
500113
137
0.017
0.009
0.157 w
8.3
142
Mesotrophic
to oligo-
trophic
-------
24
lake area. From an overall standpoint, Lake Champlain waters
cover a gamut of trophic conditions ranging from oligotrophic
in main lake areas to eutrophlc in some embayments and near-
shore areas. If one classification were assigned to the
entire lake, mesotrophy would be most appropriate.
-------
25
B. Limiting Nutrient Studies:
Two sets of algal assay samples were processed by the
National Eutrophication Survey. The first set of ten samples was
collected by staff members of the Vermont Agency of Environmental
Conservation and T. W. Beak Consultants on September 27 and Octo-
ber 3, 1972. These samples were all collected in South Lake
Champlain in the general area from two miles south of Chipmans
Point to three miles north of the International Paper Company
effluent diffuser (see Figure 3). Each sample was frozen and,
following the last collection, all of the samples were packed in
ice and sent air freight to Corvallis, Oregon on October 3,
arriving October 6, 1972.
The second set of algal assay samples., which involved all of
Lake Champlain, was collected by EPA during October 5-8, 1972.
Because of limitations on the number of assay samples which could
be processed from each of the lakes included in the Survey, only
three samples from Lake Champlain were assayed. Each of the
three EPA samples were depth-integrated and composited from mul-
tiple sampling sites on the lake as follows:
Assay Sample 72: contained equal portions of water from EPA
stations 500101, -02, -03, and -04 (all South Lake Champlain)
Assay Sample 78: contained equal portions of water from EPA
stations 5001C5, -06, -07, and -12.
-------
FIGURE 3
ro
STAT/O/VS
-------
27
Assay Sample 66: contained equal portions of water from EPA
stations 500108, -11, and -13.
EPA stations 500109 and -10 were not included in any of the
assay samples.
The algal assays were generally performed according to the
procedures outlined in the Algal Assay Procedure Bottle Test
published by EPA (1971). The test organism was the green alga,
Selenastrum capricornutum. The cultures were inoculated for
two weeks at 24°C with continuous shaking under 400 foot-candles
of lighting. Growth of the cultures was monitored by periodic
determination of cell numbers with electronic particle counters.
Cell numbers were converted to equivalent dry weight values using
a predetermined calibration curve.
The growth curves and chemical analyses of both the Vermont
and EPA algal assay samples appear in Appendix D.
The results of the Vermont samples from South Lake Champlain
will be discussed first. These results are summarized in Table
8 which (1) identifies the sample, (2) indicates the treatment
given to the sample, (3) lists available nutrient concentrations
at the time the growth period started, and (4) lists the algal
yield in terms of mg/1 dry cell weight at the conclusion of the
14 day incubation period. The results are presented in the gen-
eral order of sample site location from the southernmost sampling
site to the northernmost sampling site.
-------
28
There was laboratory error in the preservation of subsam-
ples taken for chemical analysis from the original Vermont sam-
ples (see Appendix E for Gakstatter Memo of February 1, 1973).
The preservation error could well have influenced the concentra-
tion values for orthophosphate and inorganic nitrogen given in
Table 8 although the assay response should not have been affected.
The samples, for which assay results are given in Table 8,
were autoclaved and filtered before spiking with nutrients or
inoculation with the test organism. Autoclaving served the func-
tion of resolubilizing the maximum amount of nutrients which were
bound in cellular material or detritus so that these nutrients
were available for growth during the assay. The filtration pro-
cedure which followed autoclaving was simply a method for removing
residual cellular and detrital material which would interfere
with the electronic particle counter method of monitoring growth
of the test organisms.
As indicated in Table 8, the results demonstrated that, with
only one exception, growth was limited by phosphorus in the sam-
ples collected from South Lake Champlain on September 27 and
October 3, 1972. The exception was the sample collected from
station 11 for which the assay indicated limitation by nitrogen.
While the samples collected from stations E and 189 B only re-
sponded to additions of phosphorus and nitrogen together, pro-
ductivity under such conditions could be limited by controlling
phosphorus.
-------
29
TABLE 8
Algal Assay Response for the Samples Collected
From South Lake Champlaln by Vermont and
T.W. Beak Consultants Limited
Part A: Autoclaved and filtered before nutrient spikes -
Spike
Control
10.0 N
0.06 P
0.06 P
Control
10.0 N
0.06 P
0.06 P
Control
10.0 N
0.06 P
0.06 P
Control
10.0 N
0.06 P
0.06 P
Control
10.0 N
0.06 P
0.06 P
Control
10.0 N
0.06 P
0.06 P
Control
10.0 N
0.06 P
0.06 P
Control
10.0 N
0.06 P
0.06 P
Control
10.0 N
0.06 P
0.06 P
Ortho P Inorganic N
Cone (mg/1) Cone (mq/1)
(Station SCVT)
0.001 0.038
+ 10.0 N
(Station CPB)
0.011 0.070
+ 10.0 N
(Station E)
0.039 0.119
+ 10.0 N
(Station C)
0.018 0.123
+ 10.0 N
(Station M)
0.009 0.092
+ 10.0 N
(Station IPC-1)
0.003 0.064
+ 10.0 N
(Station IPC-2)
0.044 0.726
+ 10.0 N
(Station Buoy 189B) •
0.020 0.294
+ 10.0 N
(Station Buoy 34)
0.018 0.234
+ 10.0 N
Maximum yield
(mq/1 -dry wt.)
0.2
0.2
0.7
16.6
8.0
6.5
24.7
29.2
1.3
1.6
1.9
14.7
0.2
0.2
1.4
26.4
2.1
13.3
1.8
46.0
0.2
0.2
1.1
25.2
0.2
0.3
0.6
25.1
4.8
5.3
5.1
36.2
0.4
0.4
1.6
29.1
-------
30
TABLE 8
(Page 2}
Part B: Filtered before nutrient spiked -
Spike
Control
10.0 N
0.06 P
0.06 P
Control
10.0 N
0.06 P
0.06 P H
Ortho Inorganic N
Cone (mq/1) Cone (mq/1)
(Station SCUT)
0.002 0.073
(Station CPB)
0.001 0.022
• 10.0 N
Maximum yield
(mg/l-dry wt.)
0.2
0 2
W • (•
0 3
V • tj
31.2
0.4
0.4
21 .2
22^4
Control
0.06 P
0.06 P + 10.0 N
Control
10.0 N
0.06 P
0.06 P + 10.0 N
Control
10.0 N
0.06 P
0.06 P + 10.0 N
Control
10.0 N
0.06 P
0.06 P + 10.0 N
Control
10.0 N
0.06 P
0.06 P + 10.0 N
Control
10.0 N
0.06 P
0.06 P + 10.0 N
Control
10.0 N
0.06 P
0.06 P + 10.0 N
Control
10.0 N
0.06 P
0.06 P + 10.0 N
(Station E)
Contaminated
No result
(Station C)
0.066 0.145
(Station M)
0.012 0.049
(Station Buoy 37)
0.009 0.019
(Station IPC-1)
0.002 0.047
(Station IPC-2)
0.010 0.775
(Station Buoy 189B)
0.012 0.287
(Station Buoy 34)
0.005 0.156
0.3
0.6
0.3
13.5
1.7
3.2
2.2
17.6
0.6
0.8
1.4
35.7
2.3
2.0
4.1
30.4
0.2
0.1
0.2
11.0
3.3
3.8
7.1
38.8
0.7
1.5
0.5
6.2
-------
31
The results of the three EPA composite algal assay samples
are summarized in Table 9. Each of the samples were autoclaved
and filtered prior to nutrient addition and inoculation with the
test organism.
As indicated by Table 9, the algal assay results for all
three of the EPA samples indicated that primary productivity
in the samples at the time of assay was limited by phosphorus.
Maximum yields were not increased above control values when only
nitrogen was added but yields were significantly increased above
control values by the addition of phosphorus alone.
In summary, samples collected by Vermont and EPA which were
assayed by the bottle test using the green alga, Selenastrum
capricornutum, indicated that phosphorus was the nutrient which
was limiting to primary productivity in both South Lake Champlain
and Lake Champlain in its entirety.
To a limited degree, the algal assay test gives a relative
comparison of potential productivity of different waters. This
information is provided by the autoclaved-filtered control which
permits growth of the test organism to the extent of nutrient
availability in the lake water.
In the algal assays of 206 lakes which the National Eutro-
phication Survey has conducted to date, the productivity range
of the controls was very large. The most oligotrophic water
bodies yielded less than 0.1 mg/1 dry cell weight after 14 days
-------
32
incubation while the richest water body yielded more than 248
mg/1 after the same growth period. Although the relationship
between assay yield and trophic state has not been clearly
defined, Miller (1974) has developed some tentative guidelines
from his study of 49 American lakes. Miller reported that (1)
control yields ranging from 0-0.1 mg/1 corresponded to low
productivity (oligotrophic) lakes, (2) control yields of 0.11 -
0.8 mg/1 corresponded to moderate productivity (mesotrophic)
lakes, (3) control yields of 0.81 - 6.0 corresponded to moder-
ately high productivity (eutrophic) lakes and (4) control yields
of 6.1 - 20 corresponded to high productivity (eutrophic) lakes.
The control yield values cited above represent lake conditions
where planktonic algae and not aquatic macrophytes dominate
primary production.
According to the above guidelines, the South Lake Champlain
and Lake Champlain assay samples represented primarily moderate
to moderately high productivity which corresponds to mesotrophic
or mildly eutrophic conditions.
-------
TABLE 9
Station Identification
and Concentrations of
Ortho-Phosphorus (OP)
and Inorganic Nitrogen
(IN) in Controls
ALGAL ASSAY RESPONSE FOR THE SAMPLES COLLECTED BY
EPA FROM LAKE CHAMPLAIN
Maximum Cell Yield (mg/1 dry cell wt.) of Selenastrum capricornutum
for Autoclaved-Filtered Samples After 14 Days Incubation for Each
of the Indicated Nutrient Additions
Control
0.06 ppm OP 10.0 ppm IN
0.06 ppm OP pi
10.0 ppm IN
us
Limiting Nutrient
Indicated by Assay
Sample #72 composite of
Stations 01, 02, 03, & 04 1.0
0.012 ppm OP
0.234 ppm IN
Sample #78 composite of
Stations 05, 06, 07, & 12 0.1
0.006 ppm OP
0.186 ppm IN
Sample #66 composite of
Station 08, 11, & 13 3.0
0.015 ppm OP
0.154 ppm IN
6.5
0.7
30.4
5.3
0.1
23.3
5.3
2.2
25.8
Phosphorus
Phosphorus
Phosphorus
-------
34
V. NUTRIENT LOADINGS
A. Introduction:
One of the objectives of the National Eutrophication Survey
was to estimate nutrient inputs to each studied lake and to
determine the relative percentage of the total input which
originated from point waste sources. To meet this objective for
Lake Champlain, a sampling program was initiated utilizing the
volunteer services of both the Vermont and New York National
Guard organizations.
National Guard sampling teams from both States collected
monthly samples from pre-selected stream sites, preserved the
samples with mercuric chloride, and shipped them to the Pacific
Northwest Environmental Research Laboratory in Con/all is, Oregon,
for the analysis of nitrogen and phosphorus constituents. Sam-
pling of Vermont streams was started in July, 1972, and New
York streams were started in November, 1972.
Nutrient concentrations used in loading calculations for New
York streams were based on monthly stream samples collected from
November, 1972 through July, 1973. For Vermont streams the sam-
pling period was July, 1972 through June, 1973.
Stream flow estimates, which are necessary to calculate total
nutrient loads delivered to a lake, were provided by the New York
and New England District Offices of the U.S. Geological Survey.
-------
35
U.S.G.S. also provided the majority of the data on the drainage
areas of various stream systems.
Phosphorus loadings were calculated for the entire Lake
Champlain water body, which includes the South Lake area, and
separately for only that portion of the lake designated as
South Lake Champlain.
B. Point Nutrient Sources:
1. Domestic -
Tables 10 and 11 list domestic waste sources in the Lake
Champlain watershed from the States of New York and Vermont
respectively. Also provided in the Tables are (1) the
population served by each system, (2) the type of treatment,
if any, (3) the estimated annual discharges of total phosphorus
and total nitrogen by each facility, (4) the name of the river
or stream which ultimately delivers the nutrients to Lake
Champlain, and (5) the approximate watercourse mileage of the
discharges from Lake Champlain. For each State, the discharges
are listed in the order of river basin from the northern to
southern end of the lake.
The raw waste loadings of phosphorus and nitrogen to each
facility were estimated on the basis of annual contributions
of 3.2 pounds total phosphorus per capita (Hetling and Carcich,
1972) and 9.4 pounds of total nitrogen per capita. For
-------
36
facilities providing either primary or primary plus secondary
treatment, the assumption was made that approximately 22% of
the total phosphorus (Bartsch, 1972) and 20% of the total
nitrogen was removed. Therefore, if the facility provided
any type of treatment, the discharge was estimated to con-
tribute 2.5 pounds of total phosphorus per capita per year
and 7.5 pounds of total nitrogen per capita per year. For
12 of the plants, nitrogen and phosphorus loads were esti-
mated on the basis of the analysis of composited effluent
samples. The sampled plants are noted in Tables 10 and 11.
Estimates of populations served in each community for
the State of New York were taken from the EPA STORET System
Municipal Waste Facilities Inventory and from State Inventory
Data provided by New York. Population estimates for Vermont
communities were obtained directly from staff of the Vermont
Agency of Environmental Conservation.
For both States, only those communities which were
partially or completely sewered and which had a direct
discharge of either treated or untreated wastes to surface
waters were considered.
A total New York population of 84,773 was served by
systems discharging directly to surface waters in the Lake
Champlain drainage basin (Table 10). On an annual basis
these discharges contributed 218,410 pounds of total
-------
TABLE 10
DOMESTIC WASTE DISCHARGES* AND NUTRIENT LOADS** TO LAKE CHAMPLAIN BASIN
SURFACE WATERS FROM NEW YORK
Municipality
Faci1i ty
Name
Rouses Point
Plattsburg Town
Westport
Port Henry
Champ!ain Village
Saranac Lake Village
Bloomingdale
Dannemora Prison
Morrisonville
Dannemora Village
Plattsburg***
Peru
Lake Placid
Ausable Forks
Keesville
Mori ah S.D. #1
Mori ah S.D. #2
Ticonderoga Village
Granville
Fort Ann
Cornstoek Prison
Whitehall
Totals
Population
Served
2,160
1,000
700
1,800
1,550
6,915
400
3,300
5,300
1,800
30,000
2,800
3,000
500
2,000
270
2,900
3,268
2,784
562
1,700
3,764
84,773
Treatment
Type
Primary
Primary
Secondary
Primary
Primary
Primary
None
Primary
None
Primary
Primary
Primary
Primary
None
Secondary
Primary
Primary
None
Primary
Primary
None
None
Total
Phosphorus
Discharged
Ibs/year*
55,400
2,500
1,750
4,500
3,880
17,290
1,280
8,250
16,960
4,500
86,770
7,000
7,500
1,600
5,000
680
7,250
10,460
6,960
1,400
5,440
12,040
Total
Nitrogen
Discharged
Ibs/year
16,200
7,500
5,250
13,500
11,620
51 ,860
3,760
24,750
49,820
13,500
375,370
21 ,000
22,500
4,700
15,000
2,020
21,750
30,720
20,880
4,220
15,980
35,380
Approximate Water
Receiving Course Mileage
Drainage from
Basin Lake
Lake Champlain di
Lake Champlain di
Lake Champlain di
Lake Champlain di
Great Chazy
Saranac River
Saranac River
Saranac River
Saranac River
Saranac River
Saranac River
Little Ausable
Ausable River
Ausable River
Ausable River
Mill Brook
Mill Brook
Ticonderoga Creek
Barge Canal
Barge Canal
Barge Canal
Barge Canal
Champlain
rect
rect
rect
rect
7
55
45
20
7
20
<1
5
39
18
6
4
2
2
19
13
13
2
CO
-J
218,410
767,280
* Loading values were estimated on basis of population served. Estimates for untreated waste are 3.2 Ibs total
P/capita/year and 9.4 Ibs total N/capita/year and for treated wastes 2.5 Ibs total P/capita/year and 7.5 Ibs
N/capita/year.
** All values given are prior to NY phosphate detergent ban.
*** Loadings determined by sampling old plant, NEW secondary treatment facility now in operation.
-------
38
phosphorus and 767,280 pounds of total nitrogen to the basin
prior to the New York ban on phosphate laundry detergents.
After the phosphate ban became effective (July 1, 1973), the
New York phosphorus load would theoretically have been re-
duced by 50% to approximately 109,000 pounds/year while the
nitrogen load would have been unaffected.
A total Vermont population of 164,738 was served by sys-
tems discharging directly to surface waters in the Lake
Champlain drainage basin (Table 11). Annually, these dis-
charges contributed an estimated 444,410 pounds of phos-
phorus and 1,465,930 pounds of nitrogen to the basin.
Table 12 summarizes domestic nutrient contributions to
Lake Champlain by river basin from both New York and Vermont.
Also tabulated separately in Table 12 are total pounds of
phosphorus discharged from point sources within approximately
25 river miles of Lake Champlain. The total point source
phosphorus loading in the basin from both states, prior to
the New York phosphate ban, was 662,820 pounds of which 409,650
pounds was discharged within 25 miles of the lake. The total
nitrogen loading in the basin from domestic sources in New
York and Vermont was 2,233,210 pounds per year.
2. Industrial Sources -
The only major industrial nutrient source known to be
discharging directly to Lake Champlain is the International
-------
TABLE 11
DOMESTIC WASTE DISCHARGES AND NUTRIENT LOADS* TO LAKE CHAMPLAIN BASIN
SURFACE WATERS FROM VERMONT
Municipality
Facility
Name
Alburg
Burlington (Main)**
Shelburne F.D. #1
South Burlington
(Bartletts)**
Troy
North Troy
Fairfield
Rich ford
Enosburg Falls
Sheldon
Swanton
St. Albans Corr.
Institute
St. Albans
Hardwick
Morrisville
Hyde Park
Cambridge
Johnson
Fairfax
Milton
Barre City
Northfield
East Barre
Berlin
Plainfield
Williams Town
Nontpelier
Stowe
Waterbury
Population
Served
480
21 ,500
1,328
1,000
36
232
182
1,497
1,400
280
2,630
45
9,000
1,540
2,148
550
220
1,200
132
778
10,575
3,300
4,430
1,500
949
510
8,860
1,760
2,800
Treatment
Type
Secondary
Secondary
Secondary
Primary
None
None
None
Secondary
None
None
Secondary
Primary
Secondary
None
None
None
None
Secondary
Secondary
None
Primary
Secondary
Primary
Secondary
Secondary
Secondary
Primary
None
Secondary
Total
Phosphorus
Discharged
IbsAyear
1,200
49,450
3,320
7,810
120
12,600 (1)
580
3,740
27,200 (2)
900
6,580
no
22,500
4,930
6,870
1,760
700
3,000
330
10,870 (3)
26,250
8,250
11,080
3,750
2,370
1,280
22,150
5,630
7,OCO
Total
Nitrogen
Discharged
Ibs/year
3,600
198,120
9,960
14,910
340
18,790
1,710
11,230
45,000
2,630
19,720
340
67,500
14,480
20,190
5,170
2,070
9,000
990
15,180
78,750
24,750
33,220
11,250
7,120
3.820
66,450
16,540
21 ,000
Receiving
Drainage
Basin
Lake Champlain
Lake Champlain
Lake Champlain
Lake Champlain
Missisquoi River
Missisquoi River
Missisquoi River
Missisquoi River
Missisquoi River
Missisquoi River
Missisquoi River
Stevens Brook
Stevens Brook
Lamoille River
Lamoille River
Lamoille River
Lamoille River
Lamoille River
Lamoille River
Lamoille River
Winooski River
Winooski River
Winooski River
Winooski River
Winooski River
Winooski River
Winooski River
Winooski River
Winooski River
Approximate Water
Course Mileage
from
Lake Champlain
direct
direct
direct
direct
54
51
40
36
27 to
12 ^
6
4
4
72
42
40
34
36
20
10
63
62
65
60
68
67
56
53
44
-------
Municipality
Facility
Name
Waterbury State Hosp.
Richmond
Will is ton
Essex Junction**
Essex Junction IBM**
Marshfield
Winooski
Essex Town
Burlington Riverside**
Colchester F.D. #1**
Burlington North End**
South Burlington Arpt.
Parkway**
Hinesburg
Shelburne F.D. #2**
Wallingford
West Rutland
Rutland City
Rutland Town
Proctor
Pittsford
Brandon
Brandon Training School
Middlebury**
Vergennes
Benson
Poultney
Population
Served
860
926
300
6,350
875
322
7,400
1,000
9,000
2,200
7,000
5,600
350
800
580
2,250
19,093
280
1,980
640
2,700
900
3,840
1,970
120
2,125
Treatment
Type
Primary
Secondary
None
Primary
Secondary
None
Secondary
Primary
Secondary
Secondary
Secondary
Primary
Secondary
Primary
None
Secondary
Primary
Primary
Primary
Secondary
Hone
Secondary
Primary
Primary
None
Secondary
TABLE 11
(Page 2)
Total
Phosphorus
Discharged
Ibs/year
2,150
2,320
960
12,570
2,010
1,030
18,500
2,500
4,430
2,050
21 ,500
15,450
3,820 (4)
2,380
1,860
5,62C
47 ,730
700
4,950
1,600
8,640
2,250
8,470
4,920
380
5,310
Total
Nitrogen
Discharged
Ibs/year
6,450
6,940
2,820
54,660
109,630
3,030
55,500
7,500
17,040
5,180
84,610
63,610
6,750
10,020
5,450
16,880
143,200
2.100
14,850
4,800
25,380
6,750
34,300
14.7CO
1,130
15,940
Receiving
Drainage
Basin
Winooski River
Winooski River
Winooski River
Winooski River
Winooski River
Winooski River
Winooski River
Winooski River
Winooski River
Winooski River
Winooski River
Winooski River
LaPlatte River
LaPlatte River
Otter Creek
Otter Creek
Otter Creek
Otthr Creek
Otter Creek
Otter Creek
Otter Creek
Otter Creek
Otter Creek
Otter Creek
Poultney River
Poultney River
Approximate Water
Course Mileage
from
Lake Champlain
44
30
23
17
17
15
11
11
11
11
9
10
10
4
82
72
72
72
64
60
51
51
25
7
18
16
-------
Municipality
Facility
Name
Castleton**
Fairhaven
West Pawlet
Population
Served
1,715
2,450
250
Treatment
Type
Secondary
Secondary
None
TABLE 11
(Page 3)
Total
Phosphorus
Discharged
Ibs/year
1,040
6,120
800
Total
Mi trogen
Discharged
Ibs/year
2,070
18,380
2,350
Receiving
Drainage
Basin
Poultney River
Poultney River
Barge Canal
Approximate
Course Mileage
from
Lake Champlain
14
11
24
Totals
164,738
444,410 1,465,930
(1) Includes 32.5 Ibs P/day from United Farmers and Kraft Cheese.
(2) Includes 62.3 Ibs TP/day from Yankee Milk (38) and Franklin Cheese (24.3)
(3) Includes 8,380 Ibs TP and 11,730 Ibs TN from creamery.
(4) Load includes creamery waste (8.1 Ibs/day - 2,947 Ibs/year).
* Loadings were estimated on the basis of population served except of those plants which were sampled
** Loadings based on sample data.
-------
TABLE 12
QUANTITIES OF NITROGEN AND PHOSPHORUS DISCHARGED
TO MAJOR TRIBUTARIES FROM POINT WASTE SOURCES
Tributary Name
Direct to Lake Champ!ain
Barge Canal - Poultney River System
Otter Creek
LaPlatte River
Winooski River
Lamoille River
Stevens Brook
Missisquoi River
Great Chazy River
Saranac River
Little Ausable River
Ausable River
Mill Brook
Ticonderoga Creek
Totals
Total Phosphorus*
Discharged from
Point Waste Sources
to Tributary System
IDS P/year
75,930
39,490
86,740
6,200
173,230
28,460
22,610
51,740
3,880
135,050
7,000
14,100
7,930
10,460
662,820
Total Phosphorus*
Discharged from
Point Waste Sources
Within 25 Miles of
Lake Champ!ain
Ibs P/year
75,930
39,490
13,390
6,200
81 ,000
11,200
22,610
7,480
3,880
116,480
7,000
6,600
7,930
10,460
409,650
Total Nitrogen
Discharged from
Point Waste Sources
to Tributary System
Ibs N/year
269,040
116,330
268,490
16,770
679,870
67,080
67,840
99,420
11,620
519,060
21,000
42,200
23,770
30,720
ro
2,233,210
*Prior to New York phosphate laundry detergent ban.
-------
43
Paper Company (IPC) facility near Ticonderoga, New York.
Flow data for the mill effluent and phosphorus concentra-
tions in the effluent for all of 1972 and January through
June of 1973 were supplied by the New York Department of
Environmental Conservation (see Appendix F). Based on these
data, the average annual loading to South Lake Champlain
from the mill effluent was 24,090 pounds of total phosphorus.
In discussions with staff members of the Vermont Agency of
Environmental Conservation it was indicated there was a ques-
tion concerning sample processing prior to phosphorus analysis--
specifically whether or not the samples were filtered prior
to analysis. If the mill effluent samples were filtered prior
to analysis, the phosphorus loading of 24,090 pounds/year
would be a low estimate and would represent total dissolved
phosphorus rather than total phosphorus.
No specific data were obtained for total nitrogen loadings
from the IPC facility; therefore, the loading figure of 386,900
pounds/year reported by T. W. Beak Consultants was used as
the estimated contribution from IPC.
C. Annual Total Phosphorus Loadings to Lake Champlain:
Table 13 lists the annual phosphorus input to Lake Champlain
by major sources which includes (1) tributaries sampled by the
-------
44
TABLE 13
PHOSPHORUS LOADING TO LAKE CHAMPLAIN
(Before New York Phosphate Laundry Detergent Ban)
I. Inputs
Source Ibs P/year % of total
A. Sampled Tributaries -
Missisquoi River 138,800 10.5
Stevens Brook 23,730 1.8
Lamoille River 72,650 5.5
Malletts Creek 2,750 0.2
Winooski River 209,640 15.9
LaPlatte River 17,780 1.3
Otter Creek 187,800 14.2
Barge Canal - Poultney River 135,970 10.3
Ticonderoga Creek 13,830 1.0
Fivemile Creek 1,340 0.1
Putnam Creek 3,370 0.3
McKenzie Brook 580 <0.1
Mill Brook 4,570 0.3
Hoi sington Brook 1,090 0.1
Bouquet River 32,070 2.4
Ausable River 32,730 2.5
Little Ausable River 11,860 0.9
Salmon River 3,450 0.3
Saranac River 130,190 9.9
Little Chazy River 8,980 0.7
Great Chazy River 35,640 2.7
Tributary sub-total (1,068,820) (81.0)
B. Minor tributaries and
immediate drainage 126,670 9.6
C. Municipal STP's direct to
lake (8) 75,930 5.8
D. Industries direct to lake (1) 24,090 1.8
E. Direct precipitation3 23.140 1.8
Totals 1,318,650 100.0
2. Output4
Richelieu River 652,720
3. Net Annual P Accumulation 665,930 Ibs.
T.Tributary load includes point sources.
2. Drainage area of 1,195 sq. mi. and average load of 106 Ibs.
Total P/sq. mi./year.
3. Used value determined by RPI for Lake George (52.6 Ibs Total P/
sq. mi./year), Aulenbach (1972).
4. Mean total phosphorus concentration of EPA station 500171 used for
calculation. Average Richelieu River discharge of 11,052 cfs from
Henson and Potash (1969).
-------
45
National Eutrophication Survey—accounting for 6,549 square miles
of the total Champlain land drainage of 7,744 square miles, (2)
unsampled minor tributaries and immediate drainage to Lake Champlain
which includes the remaining 1,195 square miles of Lake Champlain
drainage, (3) eight municipal sewage effluents which discharge
directly to Lake Champlain, (4) one industrial discharge directly
to Lake Champlain, and (5) phosphorus contributed directly to the
lake in precipitation.
The data in Table 13 indicate that 81.0% of the total phos-
phorus load to Lake Champlain is input via the sampled tributary
streams. The total phosphorus load carried by the sampled tribu-
taries includes not only phosphorus from land runoff but also
that discharged from municipalities in treated and untreated
wastewater. The problem is to determine the percentage of total
phosphorus load in the sampled tributary streams which originate
from the point waste sources.
Because of the magnitude of the Champlain drainage basin,
and the fact that multiple waste sources are located on some
of the streams, it is not feasible to calculate specifically
the percentage of total phosphorus originating from each of
the point waste sources. It is, however, possible to make some
reasonable estimates of the significance of point source input
to Lake Champlain.
-------
46
Table 14 summarizes the phosphorus and nitrogen loads
discharged to Lake Champlain by each sampled tributary and also
shows the total point source nutrient discharges to each tributary
system. If the assumption were made that all phosphorus discharged
from point sources to tributaries in the Lake Champlain Basin
reached the lake, then 55% of the total tributary load and 52%
of the total phosphorus load to Lake Champlain could be attributable
to point sources (domestic and industrial). This would be the
extreme case since it is unlikely that all of the phosphorus dis-
charged from facilities located up to 82 river miles from Lake
Champlain would ever reach the lake. Impoundments such as
Arrowhead Lake and Lake Lamoille on the Lamoille River and Water-
bury Reservoir in the Winooski basin would permanently trap a
portion of the phosphorus load carried by the stream. Some of
the remaining phosphorus would be assimilated by periphyton and
macrophytic plants in the stream or adsorbed to particulate mat-
ter in the stream bed, although it can be argued that eventually
the phosphorus would move downstream and reach Lake Champlain.
Point waste sources discharging within 25 miles of Lake Cham-
plain account for 63% (433,740 Ibs) of the total phosphorus orig-
inating from point sources in the entire drainage basin. If it
is assumed that only 50% (293,400 Ibs/year) of all the point
source phosphorus discharged to sampled tributaries reached the
-------
TABLE H
COMPARISON OF TOTAL NUTRIENTS DISCHARGED TO LAKE CHAMPLAIN BY EACH
SAMPLED TRIBUTARY AND NUTRIENTS INPUT TO EACH TRIBUTARY SYSTEM FROM POINT WASTE SOURCES
Tributary System
Missisquoi River
Stevens Brook
Lamoille River
Malletts Creek
Winooski River
LaPlatte River
Otter Creek
Barge Canal - Poultney River
Ticonderoga Creek
Fivemile Creek
Putnam Creek
McKenzie Brook
Mill Brook
Hoisington Brook
Bouquet River
Ausable River
Little Ausable River
Salmon River
Saranac River
Little Chazy River
Great Chazy River
Totals
Ibs Total P/year
Delivered to
Lake Including
Point Sources
138,800
23,730
72,650
2,750
209,640
17,780
187,800
135,970
13,830
1,340
3,370
580
4,570
1,090
32,070
32,730
11,860
3,450
130,190
8,980
35,640
1,068,820
Ibs Total P/year
Discharged by
Point Sources
in Basin
51,740
22,610
28,460
0
173,230
6,200
86,740
39,490
10,460
0
7.
0
0
,930
0
0
14,100
7,000
0
135,050
0
3,880
586,890
Ibs Total N/year
Delivered to
Lake Including
Point Sources
4,053,600
79,020
2,097,840
61,900
3,599,770
127,400
3,316,300
2,273,700
312,680
27,030
163,170
22,160
79,920
28,990
611,930
1,696,380
206,830
175,950
1,901,280
189,560
772,400
21,797,810
Ibs Total N/year
Discharged by
Point Sources
in Basin
99,420
67,840
67,080
0
679,870
16,770
268,490
116,330 *
30,720
0
0
0
23,770
0
0
42,200
21,000
0
519,060
0
11,620
1,964,170
-------
48
lake, then point sources (municipal and industrial) would ac-
count for approximately 27% of the tributary load and 30% of
the total phosphorus load to Lake Champlain.
Taking a different approach to estimate the percentage of
total phosphorus loading due to point sources, Table 15 presents
the average nutrient contribution from eight tributary systems
which receive little or no point source nutrient input. The mean
total phosphorus contribution for the eight tributary systems is
106 pounds total phosphorus/square mile/year. Multiplying this
factor by the drainage area of sampled tributaries (6,549
square miles) results in an estimated non-point loading of
694,190 pounds P/year with the remaining loading of 374,630
pounds attributable to point source discharges to the tributaries.
By this estimate, 35% of the tributary phosphorus load originates
from point sources and, including direct municipal and industrial
discharge to the lake, 36% of the total loading to Lake Champlain
originates from point sources. This method agrees well with
the results obtained by assuming that 50% of all point source
nutrients discharged to tributaries actually reach the lake.
In summary, using the conservative estimate, approximately 30$
of the total phosphorus load to Lake Champlain can be attributed
to New York and Vermont point waste sources. This estimate was
based on conditions through June, 1973, prior to a New York ban
on phosphate laundry detergents.
-------
TABLE 15
ANNUAL PHOSPHORUS AND NITROGEN LOADINGS FROM EIGHT LAKE
CHAMPLAIN TRIBUTARIES WHICH RECEIVE NO SIGNIFICANT POINT SOURCE
NUTRIENT LOADS
Tributary Name
Malletts Creek
Fivemile Creek
Putnam Creek
McKenzie Brook
Hoisington Brook
Bouquet River
Salmon River
Little Chazy River
Drainage Area
(sq mi)
19.1
8.4
61.3
10.3
11.4
278.0
66.0
51.2
Total Ibs
P/yr
2,750
1,345
3,369
580
1,090
32,070
3,450
8,980
Ibs P/
sq mi/yr
144
160
55
56
96
115
52
175
Total Ibs
N/yr
61 ,900
27,032
163,170
22,160
28,990
611,930
175,950
189,560
Ibs N/
sq mi/yr
3,241
3,218
2,662
2,151
2,542
2,201
2,666
3,702
Mean Nutrient Loads
106 Ibs P/miVyr
2,798 Ibs N/mi2/yr
-------
50
Effect of Phosphate Detergent Ban
Phosphates in detergents account for approximately 50% of the
total phosphorus load in domestic wastewater. In New York, a
statewide ban on the sale of phosphate laundry detergents became
effective July 1, 1973. Assuming that New York residents in the
Champ!ain drainage basin purchase and use the non-phosphate
detergents, a 50% decrease in wastewater phosphorus loads would
be expected. The ban, therefore, if effective, would decrease
the phosphorus load to Lake Champlain and the percentages of the
total load attributed to point sources as indicated in Table 16.
Assuming again that 50% of all point source phosphorus dis-
charged to tributaries reaches Lake Champlain, following the
New York ban the total phosphorus load to the lake would decrease
to 1,260,510 pounds per year, of which 30% would be from point
sources (municipal plus industrial).
If the State of Vermont also initiates a phosphate ban, the
total phosphorus load to Lake Champlain would decrease to 1,133,960
pounds per year, of which 18% would originate from point sources
(municipal plus industrial).
D. Annual Total Nitrogen Loadings to Lake Champlain:
Table 17 lists the annual total nitrogen input to Lake
Champlain by major sources including (1) tributaries sampled
by the National Eutrophication Survey which account for 6,549
square miles of the total Champlain land drainage of 7,744 square
-------
TABLE 16
EFFECTS OF PHOSPHATE LAUNDRY DETERGENT BAN ON ANNUAL PHOSPHORUS LOADINGS
TO LAKE.CHAMPLAIN AND PHOSPHORUS CONTRIBUTIONS FROM POINT WASTE SOURCES
No Ban on
Phosphates
NY Ban on
Phosphates
NY and VT
Ban on Phosphates
Total
Annual Phosphorus*
Loading
Ibs Total P
1,318,650
1,260,510
1,133,960
Annual Phosphorus*
Loading Attributable
to All Point Sources
Ibs Total P
(% of Total Load)
393,460 (30%)
335,320 (27%)
208,770 (18%)
Annual Phosphorus*
Loading Attributable
to NY Point Sources
Ibs Total P
(% of Total Load)
140,270 (11%)
82,230 ( 7%)
82,230 ( 7%)
Annual Phosphorus*
Loading Attributable
to VT Point Sources
Ibs Total P
(% of Total Load)
253,100 (19%)
253,100 (20%)
126,550 (11%)
* Assuming that 50% of all phosphorus discharged to tributaries by
point sources reaches Lake Champlain.
-------
52
TABLE 17
NITROGEN LOADING TO LAKE CHAMPLAIN
1. Inputs
Source
A. Sampled Tributaries
Missisquoi River
Stevens Brook
Lamoille River
Malletts Creek
Winooski River
LaPlatte River
Otter Creek
Barge Canal - Poultney River
Ticonderoga Creek
Fivemile Creek
Putman Creek
McKenzie Brook
Mill Brook
Hoisington Brook
Bouquet River
Ausable River
Little Ausable River
Salmon River
Saranac River
Little Chazy River
Great Chazy River
Tributary sub-total
B. Minor tributaries and
immediate drainage
C. Municipal STP's direct to
lake (8)
D. Industries direct to lake (1)
E. Direct precipitation
Totals
2. Outputs
4
Richelieu River
3. Net Annual Nitrogen Accumulation
Ibs N/year % of total
4,053,600
79,020
2,097,840
61 ,900
3,599,770
127,400
3,316,300
2,273,700
312,680
27,030
163,170
22,160
79,920
28,990
611,930
1,696,380
206,830
175,950
1,901,280
189,560
772,400
14.0
0.3
7.3
0.2
12.4
0.4
11.5
7.9
1.1
0.1
0.6
0.1
0.3
0.1
2.1
5.9
0.7
0.6
6.6
0.7
2.3
(21,797,810)
3,343,610
21,692,026
7,236,374 Ibs.
(75.2)
11.7
269,040
386,900
3,131,040
28,928,400
1.0
1.3
10.8
100.0
T.Tributary load includes point sources.
2. Drainage area of 1,195 sq. mi. and average load of 2,798 Ibs total
nitrogen/sq mi/yr.
3. Used value determined by RPI for Lake George (7,100 Ibs TN/ sq mi/
yr), Aulenbach (1972).
4. Used mean total nitrogen concentration of EPA station 500171 and
average Richelieu River discharge of 11,052 cfs from Henson and
Potash (1969).
-------
53
miles, (2) unsampled minor tributaries and immediate drainage
which includes the remaining 1,195 square miles of Champlain
drainage, (3) eight municipal sewage discharges which are
direct to the lake, (4) one industrial discharge direct to the
lake, and (5) nitrogen contributed directly to the lake in
precipitation.
The estimated total annual nitrogen loading to Lake Champlain
from all major sources is 28,928,400 pounds. Of the total, 75%
is input through the sampled tributary streams.
If it is assumed that all nitrogen discharged by point sources
reaches Lake Champlain, only about 9% of the total nitrogen input
can be attributed to these sources. The remaining 91% of the
input results from land runoff and precipitation. Point source
nitrogen control from the standpoint of eutrophication would be
pointless.
E. South Lake Champlain Phosphorus Loading:
Total phosphorus loadings to South Lake Champlain are presented
in Table 18. South Lake tributaries which were sampled by the
National Eutrophication Survey included 1,024 square miles or
approximately 84% of the entire South Lake drainage area of
1,216 square miles.
The total annual phosphorus input to South Lake
prior to the New York ban on phosphate laundry detergents was
-------
54
TABLE 18
ANNUAL TOTAL PHOSPHORUS LOADING TO SOUTH LAKE CHAMPLAIN
(Before New York Phosphate Laundry Detergent Ban)
1. Inputs
Ibs P/year % of total
f i
A. Sampled Tributary Load, Excluding Point Sources (D.A.)
Poultney River-Barge Canal (692) 96,480 48.9
Ticonderoga Creek (262) 5,170 2.6
Fivemile Creek (8.4) 1,340 0.7
Putnam Creek (61.3) 3,370 1.7
a. Sub-total 106,360 53.9
B. Minor tributaries &
immediate drainage (DA)
Crown Point Bridgeito
East Creek (30.6V 4,220 2.1
East Creek (32.3)1 4,460 2.3
East Creek to~Poultney
River (22.IT 2,320 1.2
Barge Canal ..to Ticonderoga
Creek (93) 4,000 2.0
Putnam Creek to Crown
Point (14.3T 790 0.4
b. Sub-total 15,790 8.0
C. Municipal Wastes
NY - Fort Ann 1,400 0.7
- Comstock Prison 5,440 2.8
- Granville 6,960 3.5
- Whitehall 12,040 6.1
- Ticonderoga 10,460 5.3
VT - West Pawlet 800 0.4
- Benson 380 0.2
- Castleton 1,040 0.5
- Fairhaven 6,120 3.1
- Poultney 5,310 2.7
c. Sub-total 49,950 25.3
D. Industrial Wastes
International Paper Co.
E. Direct precipitation
Totals
2. Output7
Crown Point Bridge 123.690
3. Net Annual Phosphorus Accumulation 73,660 Ibs.
1 Used factor of 138 Ibs P/sq mile/year.
2 Used factor of 105 Ibs/sq mile/year.
3 Used factor of 43 Ibs/sq mile/year.
4 Used factor of 55 Ibs/sq mile/year.
5 Used IPC Mill effluent and NY San. 45 data.
6 Used same factors as determined for Lake George by RPI Fresh-Water
Institute.
7 Used mean phosphorus concentration for EPA Station 500104 and
estimated mean flow of 1,441 cfs (Henson).
-------
55
estimated to be 197,350 pounds. Of the total, 62% originates
from diffuse sources, whereas 38% originates from municipal and
industrial point sources which are subject to control. Since
all domestic waste discharges are located within 25 miles of the
lake, the assumption was made that 100% of the discharged phos-
phorus eventually reached South Lake Champlain.
Table 19 presents the annual phosphorus loading to South Lake
Champlain, by State, prior to the New York ban on phosphate
laundry detergents. New York diffuse sources accounted for 27%
of the total input and Vermont diffuse sources about 35%. Point
waste sources from New York and Vermont accounted for 31% and 7%
of the total input, respectively. For all sources, New York con-
tributed 58% of the total and Vermont 42% of the total annual
phosphorus input. The International Paper Company, prior to the
New York ban, contributed 12% of the total phosphorus to South
Lake Champlain.
Table 20 summarizes the phosphorus contributions, by State,
after the New York phosphate laundry detergent ban (assuming the
ban is 100% effective). Under this condition, the total load
to South lake would be reduced to 179,200 pounds/year with all
New York sources contributing 54% of the total load and all
Vermont sources contributing 46%. With the New York phosphate
ban in effect, the International Paper Company contribution
would be 13% of the total phosphorus load.
-------
56
TABLE 19
ANNUAL PHOSPHORUS LOADING TO SOUTH LAKE CHAMPLAIN BY STATE
(Before New York Phosphate Laundry Detergent Ban)
Source Ibs P/year % of total
New York Diffuse Sources 54,080 27
liew York Point Sources* 60,390 31
Vermont Diffuse Sources 69,230 35
Vermont Point Sources 13,650 7
Totals 197,350 100
* Prior to the New York phosphate detergent ban, the International Paper
Company phosphorus contribution of 24,090 Ibs/year was 12% of the
total input.
-------
57
TABLE 20
ANNUAL PHOSPHORUS LOADING TO SOUTH LAKE CHAMPLAIN BY STATE
(After New York Phosphate Laundry Detergent Ban)
Source Ibs P/year % of total
New York Diffuse Sources 54,080 30
New York Point Sources* 42,240 24
Vermont Diffuse Sources 69,230 38
Vermont Point Sources 13.650 8
Totals 179,200 100
*"~FoTlowing the New York Phosphate detergent ban, the International Paper
Company phosphorus contribution of 24,090 Ibs/year was 13% of the
total.
-------
58
As an approximate check on the reasonability of the South Lake
phosphorus loading from diffuse sources, the average phosphorus
loading from eight control tributaries (not receiving major
point source discharges) to Lake Champlain was 106 pounds P/
square mile/year (see Table 15).
This factor, multiplied by the total South Lake Champlain
drainage area of 1,216 square miles, totals 128,900 Ibs P/year;
this is in very good agreement with the diffuse source load in
Table 18 of 123,310 Ibs P/year.
F. Relationship Between Nutrient Loading and Trophic Condition:
Based on phosphorus and nitrogen loadings which have been
reported in the literature for several European and American
lakes of known trophic condition, Vollenweider (1973) estab-
lished a graphical relationship between annual surface phos-
phorus loadings, trophic conditions, mean depths, and retention
time of lakes. While the validity of the Vollenweider numbers
has not been completely established, these numbers are the best
presently available and can be used as an additional guideline
to relate existing nutrient loadings to ideal loading rates
and trophic condition.
Table 21 presents phosphorus loading rates to Lake Champlain
for point source phosphorus effluent reductions ranging from
the condition prior to the New York ban on phosphate laundry
-------
59
detergents to a situation where all effluent phosphorus from
Vermont and Mew York is reduced by 90% through treatment. Prior
to the New York ban on phosphorus laundry detergents, the esti-
2
mated loading rate to Lake Champlain was 0.53 grams/m lake
surface/year which, following the NY ban, would have been re-
2
duced to 0.51 grams/m /year. If Vermont also imposed a ban on
phosphate detergents and the International Paper Company plant
reduced phosphorus discharges by 50%, the loading to Lake Cham-
2
plain would be 0.45 g/m /year or approximately 85% of the loading
prior to the New York ban. If both states reduced all effluent
phosphorus by 80% or by 90% the loadings would be 0.40 and 0.39
g/m /year respectively.
The loading data cited in Table 21 are all calculated with
the assumption that 50% of the total phosphorus discharged to
streams in the Champlain basin eventually reaches the lake.
That assumption is not unrealistic because 62% of all tribu-
tary point source phosphorus is discharged with 25 miles of
Lake Champlain.
According to Vollenweider's relationship between phosphorus
loading, mean depth, detention time and hydraulic residence time,
2
a loading of 0.51 g/m /year corresponds to the so-called "dan-
gerous" loading level which is the cut off between a eutrophic
-------
60
and mesotrophic condition. If the loading were reduced to 0.40
2
g/m /year according to Vollenweider, Lake Champlain would be
well within the mesotrophic zone of the loading relationship.
Loading relationships for South Lake Champlain for various
conditions of effluent phosphorus reductions are presented in
Table 22. South Lake Champlain phosphorus loading rates are
about three times higher than for all of Lake Champlain. Prior
to the New York ban on phosphate laundry detergents, the loading
2
rate was 1.57 g/m /year which would be expected to decrease to
P
1.43 g/m /year following the New York ban. If Vermont imposed
a similar ban and the International Paper Company reduced its
phosphorus discharge by 50% the phosphorus loading rate would
be 1.28 g/m /year. An 80% reduction by all point source dis-
charges to South Lake Champlain or its tributaries would re-
duce the loading to 1.10 g/m2/year while a 90% effluent phos-
2
phorus reduction would result in a loading of 1.04 g/m /year.
According to the Vollenweider relationship, the "dangerous"
2
phosphorus loading level for South Lake Champlain is 0.85 g/m /
year. This level could not be met even if all effluent phos-
phorus were removed from the South Lake Champlain drainage
basin.
-------
TABLE 21
EFFECT OF EFFLUENT PHOSPHORUS REDUCTION ON LOADING RATE TO
LAKE CHAMPLAIN
Effluent Phosphorus
Reduction
Condition prior to NY
Phosphate Detergent
Ban (0%)
Annual Total Phosphorus*
Load from Point Waste
Sources (Ibs)
393,460
Condition after NY
Phosphate Detergent
Ban (50% NY, 0% VT) 335,320
50% (equivalent to P
Detergent ban in NY and
VT, 50% removal from IPCo.) 196,720
80% (both states) 78,690
90% (both states) 39,347
Annual Total Phosphorus*
Load Including all
Sources (Ibs)
1,318,650
1,260,510
1,121,920
1,003,890
964,550
Annual Total Phosphorus*
Load from Point Waste
Sources (g/m )
0.53
0.51
0.45
0.40
0.39
* Assumption in all cases that 50% of point source phosphorus discharged to tributaries actually reaches
Lake Champlain.
-------
TABLE 22
EFFECT OF EFFLUENT PHOSPHORUS REDUCTION ON LOADING RATE TO
SOUTH LAKE CHAMPLAIN
Effluent Phosphorus
Reduction
Condition prior to NY
phosphate detergent
ban (0%)
Condition after NY
phosphate detergent
ban (50% NY, 0% VT)
50% (equivalent to
phosphate detergent
ban in NY and VT plus
50% reduction by IPCo.)
80% (both states)
90% (both states)
Annual Total Phosphorus
Load from Point Sources
73,540
55,890
36,670
14,710
7,350
Annual Total Phosphorus Annual Total Phosphorus
Load from All Sources Loading Rate from All Sources
197,350
179,700
160,680
138,520
131,160
1.57
1.43
1.28
1.10
1.04
-------
63
VI. LITERATURE CITED
Aulenbach, D. B. and N. L. Clesceri, 1972. Sources and Sinks
of Nitrogen and Phosphorus: Water Quality Management of
Lake George (NY). FWI report 72-32 published by Rensselaer
Polytechnic Institute, 25 p.
Bartsch, A. F., 1972. Role of Phosphorus in Eutrophication. EPA
Ecological Research Series No. EPA-R3-72-001.
Environmental Protection Agency, National Eutrophication Research
Program. 1971 a. Algal Assay Procedure: Bottle Test.
Henson, E. B. and M. Potash, 1969. Lake Champlain in Relation
to Regional Water Supply. Proc. 12th Conf. Great Lakes Res.
1969: 441-448.
Henson, E. B. and M. Potash, 1970. Limnology of Lake Champlain:
1965-1970. A completion report submitted to the Office of
Water Resources Research, U.S. Department of the Interior.
Hetling, L. J. and I. G. Carcich, 1972. Phosphorus in Wastewater.
New York State Dept. of Env. Cons. Tech. Paper No. 22.
Hunt, A. $., C. C. Boardman, and D. E. Stein, 1971. The Volume of
Lake Champlain. Issue number 3 of Champlain Research Reports,
Lake Champlain Studies Center, University of Vermont, Burlington,
VT.
Miller, W. E., T. E. Maloney, and J. C. Green, 1974. Algal Pro-
ductivity in 49 Lake Waters as Determined by Algal Assays. Water
Research. 8:667-679.
Potash, M., Sundberg, S. E. and E. B. Henson, 1969. Characteri-
zation of Water Masses of Lake Champlain. Verh. Internat. Verein.
Limnol. 17.: 140-147.
Vollenweider, R- A, 1973. Input-output models. MS, Canada Centre
for Inland Lakes, Burlington, Ontario.
-------
64
APPENDIX A
LAKE CHAMPLAIN TRIBUTARY DATA
COLLECTED BY THE
NATIONAL EUTROPHICATION SURVEY
-------
STORE! RETRIEVAL DATE 74/1P/27
SO'.-m LSS00171
AS 00 00.0 073 21 00.0
KICHtLIEU MIVFR
SO 15/r^OUSr'S POINT
US-? BRIDGE EAST OF HOUSES POINT
llEPALtS 211120*
A 0000 FEET DEPTH
DATE
FROM OP
TO DAY
TIME DEPTH
FEET
7?/07/15
7?/10/15
7?/l 1/04
7?/l?/04
73/01/06
73/02/03
71/03/03
73/04/07
73/?»4/l«5
73/OS/O*
73/C5/1?
73/07/08
13 30
15 15
10 35
07 45
11 50
15 15
10 00
16 00
11 15
11 ?0
00630
NO?
-------
STORET RET^TfVAL OftTE 7<*/l?/?7
DATE
TO
7P/07/15
TIME DEPTH
or
7?/09/?3
7?/10/15
7?/l1/04
7P/12/04
73/01/06
7.^/03/03
73/04/07
7^/07/0°
09 55
1? 10
09 po
15 00
10 55
09 10
15 45
14 30
09 00
15 10
10 15
10 4S
44 Sft 10.0 073 07 <«0.0
MISSISOUOI *Iv/fc-H
i>0 f.S/EAST ALrtt'HG
H^OC. AT SWANTON
11EPALFS
00630
24 NO 3
TOTAL
MS/L
0.115
0 . 1 8 ?
C. 144
0 . ?HO
0.210
0.490
T'.SjO
6,b'50
0.31'j
0.370
O.P71
0. 1^0
fi«2i»0
00625
TOT KJEL
N
MR/L
0.400
0.3?5
1.650
0.600
0. R60
0.400
0.420
1.600
0.7 SO
0 .^3i)
" 4.000
0.600
0.840
' 1.050
00610
NH3-N
TOTAL
•*G/L
0.048
0.048
0.132
0.052
0.016
0.02P
0.110
0.430
0.100
2.400
0.058
0.025
0.140
00671
pHos-nis
OPT HO
MG/L P
0.014
0.0??
0.013
0.014
0.039
0.010
0.010
0.026
0.011
0.010
0.006
0.014
o.no7
0.020
OOfob^
PHOS-TOT
MG/L P
C.034
0.0 36
0.040
O.OfR
0.072
0.020
0.025
Q.UH5
O.U^4
o.03=;
0.030
o.o ret
0.040
0.040
2111204
0000 FEET
DEPTH
-------
STO«*ET
DATE 74/l?/?7
SC016? LS50016?
44 54 00.C 073 06 4Q.O
rtlSSISQUOI RIVE*
50 7.S/HIGH6ATE CEN
I/LAKE CHAMPLAIM
US / bPDG SE OF b*ANTO.M
11EPALES 2111204
4 0000 FEET
DEPTH
DATE
FrtOM
TO
7?/t)7/15
72/OS/l?
7?/09/?3
7P/10/15
77/11/0*
72/1 ?/04
73/0?/03
-M/33/03
73/04/07
71/04/15
Jl/O^/O*)
73/05/1?
73/07/03
00630 00625
TIME DEPTH NO?&N03 TOT KJEL
OF N-TOTAL N
OAY FEET
O9
10
10
08
14
10
11
14
09
15
10
10
15
50
00
30
.30
15
00
00
on
00
00
30
Mf,/L
0
0
0
0
0
0
0
0
0
0
0
0
0
.095
.210
.01 OX
.09*
.?99
.3«C
.5?0
.550
."40
.?no
.?90
.?00
.?40
MG/L
0.500
0.96S
0.230
0.950
0.260
0.370
0.9*5
0.700
0.920
0.720
0.7.?0
1.400
0.440
00610 00671 00665
NH3-N PMOS-DIS PHOS-TOT
TOTAL ORTHO
MG/L
0.
0.
0.
0.
0.
0.
0.
u.
0^
0.
0.
0.
0.
046
056
00«
075
058
018
1^5
250
140
071
044
042
052
MH/L
0.
0.
0.
0.
0.
0.
0.
C.
0.
0.
0.
0.
0.
P
017
019
005K
022
010
014
022
OOH
069
010
012
007
015
MG/L P
0
0
0
0
0
0
0
0
0
0
0
0
1}
.035
.040
.034
.068
.036
.019
.110
.025
.200
.030
.035
.040
.040
K VALUE *NOWN TO RE
LESS THAN INDICATED
-------
STOOFT RETRIEVAL DATc 74/l?/:>7
DATE
TO
72/07/1S
72/09/10
72/10/15
72/ ll/OO
72/1 2/07
73/03/21
73/04/07
7.3/04/?]
73/05/06
73/05/23
73/06/2R
OCb30 00625
TI*'F DF°TH MO?*.M03 TOT KJEL
OF N-70TAL N
OAY FEET
13
09
13
11
0 3
IS
11
10
10
14
19
30
IS
30 •
00
45
00
•^0
30
30
MG/L
0
0
0
0
c
i.i
0
0
u
0
0
.?33
.?47
.?00
,?7a
.3v'j
.a^O
.3S7
.198
.230
.210
. 1?6
MG/L
0
0
0
0
0
0
1
1
0
0
0
•
•
•
•
•
*
*
•
•
•
.
500
600
500
960
SCO
300
OSO
760
350
660
500
00610 00671
NH3-N PHOS-OIS
TOTAL OPTHO
MG/L
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
024
087
094
080
033
042
059
022
OHP
240
MG/L P
0
0
0
0
0
0
0
0
0
0
0
.0«6
.115
.032
.042
.021
.on?
.014
.007
.075
.031
.017
500163
44 20 00.0 07?
t-USSISOUOI
SO IS/
I/LAKE.
HWY 100
11F.PALES
L5500163
00.0
FAS! OF T^OY
2111?04
0000 FEET
DEPTH
00665
MG/L
0.124
0.180
0.160
0.0 S3
0.0?5
0.0t5
0.020
0.09S
0.065
0.045
00
-------
STORET RETRIEVAL DATE 74/i?/?7
DATE TIMF OE°TH
FROM OF
TO DAY FEET
72/07/15 10 50
11 00
14 ?5
10 05
73/02/03 10 15
73/03/03
13 ?5
03 CO
14 ?0
73/05/14
73/07/01 09 30
S00r.il
44 NN03
OTAL
IG/L
0.53?
O.?0?
0.330
0.169
C.540
o.mu
0.490
0.7HO
0.315
0.610
0.?S?
O.f.30
0.340
OC625
TOT KJEL
N
HG/L
0.550
O.SOO
0.450
O.AOO
0.580
0.3?0
1.050
o.:no
0.5?0
P.100
1.100
1.050
1.050
00HOS-T01
MO/L P
o.o-n
U.?70
O.C-^4
0.072
0.115
0.07?
0 . ? 1 0
0 . a 35
0.035
0 . 1 90
O.?50
0 . 1 95
0.10U
SO f.S/ST
T/LAKF O
bT ALHANb
2111204
0000 FFET
DEPTH
v£>
-------
STORET RETRIEVAL DATE 74/l?/?7
44 SI 00.0 073 07
LSSOOIB?
50 7.S/ST
;£ CHAMPLAlN
RO HKIOCiE
11EPALFS
0000 FEET DEPTH
DATE
FPOM
TO
7?/07/l=;
7P/OS/1?
7P/TV23
7P/10/15
7?/l 1/04
7?/12/04
73/3?/01
71/01/01
7-»/0<./07
7V04/19
7^/05/0^)
73/05/14
71/07/OS
00630 006PS
TIMF OEDTH NO?%N03 TOT KJEL
OF M-TOTAL N
DAY FEET
10
11
12
09
09
13
08
14
10
30
15
30
S5
10
on
10
00
?o
MG/L
0.
0.
e.
c.
0.
0,
0.
0.
c.
0.
c.
0.
0.
073
9?0
*SO
311
?^0
8 JO
ft'O
H10
07^
3?i)
174
370
080
MG/L
3.
1.
7.
4.
?.
2.
4.
0.
G .
P.
'3.
1.
7.
750
150
000
450
-------
DATE 74/l?/?7
5001<*1 LSS00141
<*4 3f> 30.0 073 12 1S.O
SO 7.b/FF tTt-iAN ALL
I/LAK.E CHA^PLMN
K^ilO ON H'«r US 2
2111^04
0000 FEET DEPTH
FPOM
TO
7P/07/15
7P/PR/1?
7P/IO/04
7P/10/15
7?/l 1/04
7?/l?/0?
73/01/13
73/0?/lO
73/03/10
73/04/07
73/04/21
73/05/1?
73/06/03
OF
DAY 1
1? 30
13 30
0«> 30
10 45
10 40
1? 30
13 30
10 30
11 00
1 1 35
Ofl 15
09 50
10 05
DEPTH
FEET
C0630
MO?JvM03
N-TOTAL
MG/L
0.147
0.234
0.132
O.P10
O.?40
0.350
0.460
0.430
0.530
C.323
0.360
0.240
O.P10
00625
TOT KJEL
N
MG/L
0.270
0.590
0.350
0.500
0.460
0.610
0.440
1.260
0.500
0.660
0.300
O.P70
1.000
00610
NH3-N
TOTAL
MG/L
0.044
0.060
0.079
0.086
0.044
0.024
0.044
0.096
0.120
0.200
0.046
0.012
0.570
00671
PHOS-OIS
ORTHO
MG/L P
0.011
0.011
0.009
0.005K
0.005K
O.OOSK
0.014
0.011
0.0?'
0.009
0.008
0.005K
0.005K
OCt-65
PHOb- TOT
MG/L P
0.0??
0.026
0.019
0.014
0.023
0.037
0.025
0.155
0.070
0.030
0.030
0.030
0.02S
K VALUE KNOWN! TO 9E
LESS THAN INDICATED
-------
STORET RETRIEVAL DATE 74/1?/27
DATE TIME DEPTH
FROM OF
TO DAY FEET
7?/07/15
77/03/1?
7?/10/04
7P/KV15
7?/ll/04
73/01/13
73/0 3/10
73/03/10
73/04/07
73/04/15
73/04/21
73/CS/l?
73/06/03
1? 45
1* 00
08 00
10 30
10 40
13 35
14 15
11 15
09 CO
07 30
13 30
07 00
09 05
10 00
500121 LSS00121
4<* 33 30.0 073 09 30.0
M/VLLtTTS CKPEK
bO 7.5/FF FTHAN ALL
T/LAKF. CHAMPLAIN
US 7 AMU «T 2 bROG
11EPALES 2111204
* 0000 FEET
DEPTH
'063U
r^N03
'OTAL
IG/L
0.3?7
O.P40
0.273
o.??.o
f>.299
0.350
0.5?0
0.4^0
0.3^0
0.1 «9
C.?t>0
O.?.?0
0.092
0.100
00625
TOT KJEL
N
MC7/L
0.650
0.630
0.500
1.150
0.4'0
0.770
3.7tfO
1.310
0.440
0.365
' O."*0
0. T?0
0.4QO
l.UOO
00610
NH3-N
TOTAL
MG/L
0.019
0.052
0.056
0.0 H4
0.044
0.036
0.176
o.o«e
0.084
0.044
0.024
0.176
0.008
0.450
00671
PHOS-DIS
OPTHO
MG/L P
0.027
O.Olfi
0.016
0.006
0.009
0.007
0.013
0.01?
0.011
0.012
0.008
0.01?
0.005K
0.009
006*5
PHOS-TOT
MG/L P
0.061
0.04ft
0.037
0.044
0.040
0.030
0.042
0.060
0.040
0.025
0.035
0.040
0.035
tSJ
K VALUE KNOWN TO BE
LESS THAN INDICATED
-------
STORET 9ET9IEVAL
7i/l?/?7
50ul.11 LSS00131
44 29 00.0 073 12 00.0
DATE
FPOM
TO
7?/d<*/l?
7?/09/10
72/10/14
7?/12/03
73/01/0*
7T/0?/03
73/03/03
7^/04/07
73/04/?!
73/05/05
73/05/13
73/07/08
TIMF DEPTH
OP
DAY FEET
08 55
10 30
09 30
10 30
13 00
10 30
10 00
10 00
11 00
00630
NO?S.N03
N-TOTAL
MG/L
0.390
0.393
C.4?0
O.?«0
0.360
o.*»?o
C.470
0.550
0.360
0.390
0.357
O.?50
0.5?0
00625
TOT KJEL
N
MG/L
0.480
0.650
0.750
0.440
0.370
0.340
0.^90
0.340
0.350
0.300
2.100
0.390
00610
NH3-N
TOTAL
MG/L
O.P31
0.220
0.200
0.150
0.054
0.052
0.076
0.340
0.036
0.056
0.060
0.930
0.057
00671
Prios-nis
0«THO
MG/L P
0.064
0.056
0.054
0.040
0.033
0.018
0.02H
0.025
0.012
0.014
0.017
0.011
0.013
bO 1S/H
I/LAKE CHAM^I
nJ()G ON US 7
IIE^ALES
4
0066S
HHOS-TOT
MG/L P
0.120
0.115
0.110
0.046
0.042
0.035
0.060
0.050
0.045
0.040
0.050
0.050
0.075
2111204
0000 FEET DEPTH
-------
STOPET RETRIEVAL DATE 74/1?/??
^0013? LSS00132
*<* ?9 00.0 073 09 30.0
50 IS/HlMLINfifON
I/LAKE CHAMPLMN
H*fK, OvErf WINOOSKI G0*(i
11EPALES 21
4 0000 FEET DEPTH
DATE
FROM
TO
7P/08/1?
7?/6°/10
73/01/06
73/02/03
73/03/03
73/04/07
73/05/05
73/05/13
73/07/01
00630
TIMF DEPTH NO?\N03
OF N-TOTAL
DAY FEET MG/L
09
10
10
1 1
A 1
10
11
13
10
09
18
11
40
45
30
TO
-IV
00
30
15
30
00
00
40
J
(I
0
"
0
0
0
<•}
n
0
t)
0
0
.350
.350
.410
• c rlv
.350
.430
.440
.560
.360
.3*0
.370
.240
.320
00625
TOT KJEL
N
MG/L
0.440
0.550
0.900
0 •
0.
1.
0.
0.
1.
0.
0.
0.
1.
",_U
420
260
4RO
400
000
3JO
350
360
080
00610 00671 00665
NH3-N PHOS-DIS PHOb-TOT
TOTAL ORTHO
MG/L MG/L P MG/L P
0
0
0
3
0
0
0
0
0
0
0
0
0
.150
.096
.150
• 1 ** 7
.060
.060
.092
.100
.300
.03R
.060
.052
.230
0.026
0.015
0.07P
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
040
017
021
033
0?5
Oil
012
016
009
021
O.OHO
0.05H
U . 1 30
0.090
0.04ft
0.070
0.065
0.095
0.035
0.040
0.045
O.OKO
-------
STOPET RETRIEVAL DATE 74/12/27
S00133 LSS00133
44 23 00.0 07? 56 00.0
HINOOSKI HIVE*
SO 15/CAMELS HUMP
I/LAKE CHAMPLAIN
HrfoG AT JONEStflLLE
11EPALES 2111204
4 0000 FEET
DEPTH
DATE
FROM
TO
72/97/15
7?/D«/l?
72/09/1*
7?/ 10/1 4
77/11/04
72/12/03
73/02/04
71/04/2?
73/35/05
73/05/?*
73/0
-------
STORET RETRIEVAL DATE 74/1P/27
DATE
FRO'*
TO
7?/07/15
7P/08/12
7P/09/16
7?/10/14
7?/l 1/04
7?/l ?/03
73/01/06
73/02/04
73/01/03
73/04/0«
7.1/04/2?
73/05/24
73/06/10
TIME; i
OF
DAY 1
10 30
11 15
1? 00
09 15
15 00
14 00
11 00
11 01
1? 00
1? 00
1? 00
14 30
500134 LSS00134
44 19 30.0 072 45 00.0
WINOOSKI SWEW
50 15/MONTPELIEK
I/LAKE C^AMPLAIN
SMITHS ftK'Jfa SE OF rtATERBURY
11EKALES 2111204
4 0000 FEET DEPTH
'0630
(\N03
•QTAL
10/L
0.?57
0.330
0.60C
0.430
O.?40
0.37-^
0.400
0.3^
-------
STORE! RETRIEVAL DATE
OATE
TPOM
TO
OEDTH
or
DAY FEET
7?/07/15
7?/0«/l?
7P/09/1Q
7?/10/l4
7?/ll/05
7?/1?/0?
73/01/0'-
73/03/03
73/04/07
73/04/?l
73/OS/05
73/05/13
73/06/10
10
oa
10
08
09
10
09
00
11
17
08
?5
35
10
30
30
30
30
CO
00
00
00
0013S LS500135
31 10.0 073 lt> 30.0
50 15/PLATrSBUPfV NY
I/LAIVE CHAMPLAIN
r<»"")~> 3f 127
11EPALES 2111204
4 0000 FEET
DFPTH
(0633
'SN03
OTAL
iG/L
0.209
C.393
0.3?0
C.470
0.310
0.34J
0.440
0.543
0.370
0.3*0
0.360
O.?40
0.3?0
00625
TOT KJEL
M
MG/L
0.750
0.310
0.500
1 . 30G
1.050
0.
-------
STORET RETRIEVAL DATE
5001J6 LSS00116
^"+ ?5 30.0 07J 01 00.0
KIN005KI -
-------
STORET 3ETRIFVAL
F 74/l?/27
5)0151 LSS001S1
44 ?3 00.0 C73 13 JO.O
LA PLATTE «IVE-f
50 IS/^U^LINGTUN
T/LAKt CHAMPLAIN
*T 7 rtf/nr,
IIF^ALRS 3111204
4 0000 FEET
DEPTH
DATE TIME DEPTH
FOOM OF
TO DAY FEET
7P/07/1S
7P/10/14
7?/l1/05
71/01/06
73/02/01
71/04/07
73/04/??
73/05/06
71/05/11
73/07/OH
14
11
11
14
15
09
11
11
10
00
CO
15
10
1? 45
11 30
09 10
10 10
09 30
10*30
'*.M03
OTAL
'.S/L
o . o :^4
0.0.1?
C.0pf>
0.03J
O.PI3
U.300
O.'SO
0.47o
0.1HU
0.016
0.01.1K
0.010K
0.066.
00^25
TOT KJEL
N
•-4G/L
1.000
0.540
O.HOC
1.000
O.PHO
0.7(10
l.?00
1 . 3SO
0.5SO
0.610
0.500
0.690
0.400
00610
NH1-N
TOTAL
MG/L
O.C78
0.039
0.06*)
0.07S
0.050
O.i>06
0.044
0.?73
0.037
0.0 14
0.024
0.037
0.037
00671
PHOS-OIS
OPTHO
MG/L P
0.10S
0.061
0.074
0.014
0,0^5
0.04?
0.04<«
0 . 1 70
0.040
0.071
0.03H
0.03-4
0.067
OOhbS
PHOS-TOT
MG/L P
0.180
o.o -^
0.1 '0
0.078
0.130
d . 0 a 1
0.^50
O.?50
0.0«0
0.1 ?0
0.030
O.OWO
O.llU
K VALUE KNOWN TO BE
LESS THAN INDICATED
-------
ST09ET RETRIEVAL DATE 74/l2/?7
DATE TIME DEPTH NO?&N03
FROM OF
TO DAY FEET
72/03/1?
7?/0
-------
STQRFT RETRIEVAL tMTE 74/|?/?7
7?/09/10
7?/l!Vl4
7?/ll/Ou
73/03/10
73/94/0*
7.V04/??
S001H? LS50018?
43 48 30.0 073 0-) 1)0.0
(JTIT*
SO
Sf ri«r 73 HWIOGt 2.7 MILES W OF BRANDON
11FPALES 2111204
4 0000 FtET DEPTH
D«TE
FROM OF
TO DAY
TIME DEPTH
FEET
7P/07/1S
73/05/16
73/06/02
15 40
1? 30
11 no
16 00
14 50
13 50
10 00
14 30
10 30
C0630
NO?fiN03
N-TOTAL
MG/L
0.1 98
0.'93
0.330
0.550
0.2HO
0.399
0.510
O.?90
0 . 3<»0
0.3/0
O.?60
0.2SO
00625
TOT KJEL
N
MG/L
1.500
0.690
0.500
l.OSO
0.600
0.500
0.4?0
0.370
0.620
0.390
0.400
0.4BO
00610
NH3-N
TOTAL
MG/L
0.06.3
0.071
C.115
0.062
0.077
0.023
0.044
0.072
0.073
0.093
0.060
0.078
00671
PMOS-DIS
GrfTHO
MG/L P
0.0 3H
0.044
0.046
0.006
0.039
0.020
0.015
0.021
0.02P
0.030
0.023
0.021
0066^
PHOS-TOT
MG/L P
0.071
0.075
0.09?
O.OFM
0.110
0.0«2
0.0*0
0.050
0.055
0.045
0.050
00
-------
STORE! RETRIEVAL DATE 74/12/?7
TO
DAY FEET
7?/07/l«5 14 00
7?/Ofl/l? 11 00
7?/C9/10 10 00
7?/10/14 14 30
7=>/ll/04
7P/12/09 1? 30
73/03/10 11 00
73/C4/OB 10 00
73/04/;?? 10 15
73/05/05 13 35
73/D5/16
500192 LSS00192
A3 34 00.0 0/3 23 30.o
POULTNEY rflv/Erf
SO IS/WHITEHALL
I/LIKE CHAMPLAIN
ON EAST BAY ROAD N OF WHITEHALL
^111204
0000 FEET DEPTH
00630
NO?f.N03
M-fOTftL
MG/L
O.P17
0.310
0.167
G .5t^0
0.170
0.303
u.310
C.?00
0. 1^0
0.15*.
0.15*
00625
TOT KJ£L
N
MCi/L
0.600
0.750
0.500
0.550
0.630
0.630
0.560
0.3*0
0.400
0.500
0.3*0
00610
NH3-N
TOTAL
MG/L
0.033
0.064
0.087
0.078
0.092
0.028
0.066
0.02«
0.033
0.029
0.016
00671
PHOS-DIS
OPTHO
MG/L P
0.030
0.031
0.030
0.025
0.02fl
0.02?
0.02«
0.01H
0.015
0.015
0.018
00665
PHOS-TOT
MG/L *
0.056
0.056
O.OftO
0.064
0.0 34
0.069
0.118
0.070
0.040
0.050
0.050
00
tSJ
-------
STORE! 3FTOIFVAL OfiTE 74/i?/27
"=00191 LS500191
43 30 30.0 073 11 00.0
POULTNEY RIVE*
SO 7.5/POULTNtY
I/LAKE CNAMPLAIN
SF rtT 140 1ETWEEN F.PUULTNEY^ MIODLETONSP
11FVALES 2111204
4 0000 FEET DEPTH
DATF
FROM
TO
77/07/15
7o/nq/ 1 p
7?/09/10
72/10/14
7P/11/04
7?/l?/00
73/CI/lu
73/P?/l*i
73/03/10
73/04/2?
73/05/05
73/06/OP
TIMF DEpTH
OF
DAY FEET
11 00
09 30
14 00
11 55
10 40
11 ?0
13 00
11 00
13 15
11 30
00630
M-TOTAL
MG/L
l,. 41?
0 .4** 7
U.430
ij . ?SO
0.370
0.440
0.57U
U.470
0.378
0.310
0.150
0.0 -»4
0.154
0 . 3?0
00625
TOT KJEL
N
MG/L
0.400
3.160
0.200
0.400
0.230
0.1BO
0.270
0.10 OK
O.??0
"0.370
0.170
0.270
"0.730
00610
NH3-N
TOTAL
MG/L
0.027
0.031
0.04H
0.075
0.025
0.011
0.025
0.3bO
O.OOB
0.050
0.016
0.039
0.014
0.530
00671
PnOS-OIS
ORTHO
MG/L P
0.010
0.012
0.008
0.005K
0.006
0.010
O.OOSK
0.005K
0.006
O.OOSK
0.005K
0.005K
0066^
PMOb-TOT
MG/L P
0.014
0.011
0.017
0.01S
0.012
0.018
0.045
0.005K
0.020
0.010
0.010
U.OO:>K
0.005K
0.010
00
K VALUE KNOWN TO BE
LESS THAN INDICATED
-------
STORET RETRIEVAL HATE 74/12/27
10
S001A1
43 37 00.0 073
CASTLh'TON WIVF
SO 7.5/POULTNty
T/LAKE
US 4 «HOG
LSbOOlAl
11EPALES
E OF CASTLFTON
211120*
0000 FEET
OE^TH
- OATF
FROM
TO
72/OP/12
7?/10/l4
7?/l 1/0"
73/01/1*
73/02/16
71/01/10
71/04/??
71/05/05
73/05/16
73/06/02
TIMF DEPTH
OF
DAY FEET
09
09
11
11
10
11
11
1 1
11
12
09
10
00
10
00
45
50
00
15
45
10
00630
N-TOTAL
Mfi/L
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
2?0
435
235
169
460
14?
120
310
310
200
131
00625
TOT KJEL
N
MG/L
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
260
450
?50
360
?00
170
?30
140
460
lf>0
285
00610
NH3-N
TOTAL
MG/L
0
0
0
0
0
0
0
0
0
0
0
0
0
.024
.315
.069
.026
.005K
.026
.170
.015
.025
.013
.028
.011
.046
00671
PHOS-OIS
ORTHO
MG/L P
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
Oil
006
005K
OOSK
OOSK
OOSK
OOSK
OOSK
OOSK
OOSK
OOSK
OOSK
OOSK
00665
PHOS-TOT
MG/L P
0.013
O.OOP
0.007
0.013
C.010
0.01U
0.005K
0,015
O.OOSK
0.0 10
0.010
0.01S
0.010
00
(< VALUE KNOWN TO BE
LESS THAN INDICATED
-------
STORET RETRIEVAL DATE 74/l?/27
=.0014?
43 36 30.0 073 1? 30.0
OSTLETON t*IvPi-t
SO 7.5/^OULTNFY
T/LAKK CH&M->LAINi
riFLO .n TO H-WG S OF CASTLETON CONNER
0000 FEET DEPTH
DATE TIME DEPTH NO'&,M03
FROM OF M-TOTAL
TO DAY FEET MG/L
11 10
09 «0
09 15
72/10/14 13 00
II ?5
10 ?0
11 00
\7 ?5
7.1/03/10
7VO'*/?P 10
73/05/OS 13
? 09
30
00
0.322
0.199
0.320
0.200
0.49Q
0.510
O.??0
0.220
0.357
3.3-50
0.260
O.?00
00625
TOT KJEL
N
MG/L
0.500
0.800
0.150
0.280
0.460
0.120
O.IOOK
0.170
0.630
0.1*0
0.400
0.480
0.250
09610
NM3-N
TOTAL
MG/L
0.02?
0.035
O.P33
0.056
0.031
0.005K
0.011
0.040
0.016
0.078
0.005K
0.080
0.018
0.026
00671
PHOS-OIS
OtfTHO
MG/L P
0.013
n.oii
0.0 05K
.0.011
0.005K
0.005K
0.005K
0.005K
0.005K
0.006
0.005K
0.005K
0.005K
0.006
00665
PUDS-TOT
MG/L ^
0.018
0.011
O.OOB
0.015
0.016
0.013
0.010
0.005K
0.020
0.010
0.007
0.005K
0.010
0.010
oo
Ul
K VALUE KNOWN TO BE
LESS THAN INDICATED
-------
STOPET RETRIEVAL DATE 74/12/27
5001A3 LSS001A3
43 35 30.0 073 17 00. U
CASTLETON
T/LAKE CHAM^LAIN
KT aw HWOG W OF FAH HAVEN
HEfALES 2111204
4 0000 FEET
DATE
FROM
TO
7P/07/15
7?/OVl?
7?/09/10
73/10/1'*
T>/\->/
71/0 I/ 1«»
73/02/16
73/OV11
73/04/OH
71/05/05
73/05/16
7VO*/02
00630
TIMF DEPTH N02(s.N03
OF N-TOT^L
DAY FEET MG/L
1?
12
09
15
12
1?
1?
13
11
10
14
10
?0
00
?0
30
50
00
00
15
30
45
00
?0
0.
0.
0.
9.
J.
0.
0.
0.
0.
0.
0.
0.
0.
143
310
353
169
130
230
273
210
170
340
300
13?
13*
00625
TOT KJEL
N
MG/L
1.880
0.520
0.900
0.
0.
0.
0.
0.
0.
0.
0.
1.
1.
1.
300
390
330
520
H40
2^0
2?0
395
000
3^0
ObO
00610 00671 00665
NH3-N PHOS-DIS PHOS-TOT
TOTAL ORTHO
MG/L MG/L p MG/L ^
0.049
0.088
0.220
0.
0.
0.
9.
0.
0.
0.
0.
C.
0.
0.
120
046
Oil
120
260
069
029
041
189
072
470
0.026
0.052
0.026
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
025
015
007
04B
022
010
012
006
060
012
015
0.06«
0.036
0. 1 76
0.046
0.050
0.02H
0.075
0.030
O.OSO
0 . 0 ? S
0.050
0.1*5
0.050
DEPTH
oo
-------
STORET RETRIEVAL DATE 74/11/26
3609A1 LS3609A1
43 34 00.0 073 24 30.0
DELAWAPE/CHAMPLAIN CANAL
36 15 WHITEHALL
I/LAKE CHAMPLAIN
ALONG BANK OF KD OFF ST HWY2?
11EPALES 2111204
4 0000 FEET
DEPTH
DATE
FROM
TO
7P/11/04
7P/12/07
73/01/04
73/02/13
73/04/07
73/04/23
73/05/07
73/05/24
73/06/03
73/07/10
73/08/1H
73/09/11
73/10/10
00630 00625
TIME DEPTH NO?*,N03 TOT KJEL
OF N-TOTAL N
DAY FEET MG/L MG/L
10
15
14
09
09
09
11
10
\f>
11
16
09
11
00
15
02
30
?0
15
00
30
15
30
45
30
15
0
0
0
0
0
0
0
0
0
0
0
0
0
.460
.690
.800
.630
.490
.500
.350
.450
.336
.620
.340
.270
.280
0.450
0.
0.
0.
0.
0.
0.
1.
1.
0.
0.
0.
0.
780
460
375
140
460
980
200
320
540
400
660
970
00610 00671 00665
NH3-N PHOS-DIS PHOS-TOT
TOTAL ORTHO
MG/L MG/L P MG/L P
0.066
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
042
042
066
065
022
042
058
068
069
027
132
071
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
022
030
015
018
016
014
016
020
017
032
0?1
052
016
0.096
0.160
0.04R
0.040
0.070
0.050
0.060
0.080
0.045
0.070
0.070
0.080
0.085
00
-J
-------
STORET RETRIEVAL DATE 74/11/26
3A09C2 LS3609C2
43 28 00.0 073 26 00.0
BARGE CANAL
36 7.5 FORT ANN
T/LAKE CHAMPLAIN
BrtOG 1 MI N OF GREAT MEADOtfINT BELO STP
11EPALES 2111204
* 0000 FEET DEPTH
DATE
FROM
TO
72/11/04
72/12/07
73/01/0*
73/03/08
73/04/07
73/04/23
73/05/07
73/05/24
73/06/08
73/07/10
73/OB/18
73/09/11
73/10/10
TIME DEPTH
OF
DAY FEET
09
16
11
09
09
11
11
14
16
18
10
11
00
05
30
45
55
90
35
30
45
45
30
25
45
00630
N02»s.N03
N-TOTAL
MG/L
0.400
0.630
0.630
0.570
0.420
0.310
0.300
0.360
0.252
0.480
0.273
0.280
0.273
00625
TOT KJEL
N
MG/L
0.750
0.440
1.000
1.130
0.710
0.540
0.700
2.640
0.940
0.720
0.840
0.900
0.520
00610
NH3-N
TOTAL
MG/L
0
0
0
0
0
0
0
0
0
0
0
0
0
•
•
•
•
•
•
•
•
•
•
•
•
*
115
040
058
250
076
029
015
063
042
017
060
052
OS6
00671
PHOS-OIS
ORTHO
MG/L P
0
0
0
0
0
0
0
0
0
0
0
0
0
.026
.021
.024
.081
.020
.015
.016
.023
.015
.018
.016
.017
.011
00665
PHOS-TOT
MG/L P
0
0
o
o
0
0
o
0
0
o
o
o
0
.147
.072
.069
.220
.075
.080
• 080
.085
.065
• 1 10
.075
.075
.070
00
00
-------
STOPET RETRIEVAL DATE 74/ll/'6
3-S09C1
43 27 00.0 073 27 00.0
BAWGE CANAL
36 7.5 FOPT ANN
T/LAKE CHAMPLAIN
US «* 8ROG ABOV GHT MEAOOtfS INST STP
11EPALES 2111204
4 0000 FEET DEPTH
DATE
FROM
TO
7P/11/04
7P/12/07
73/01/04
73/03/08
73/04/07
73/04/23
73/05/07
73/05/24
73/06/08
73/07/10
73/OB/18
73/09/11
73/10/10
00630 00625
TIME DEPTH NO?&N03 TOT KJEL
OF '4-TOTAL N
DAY FEET
OH
15
14
1?
10
08
10
11
{u
US
18
10
1?
45
S5
40
00
15
<*5
15
Ib
30
30
15
05
05
MG/L
0
0
0
0
0
U
0
0
0
0
0
0
0
.156
.056
.160
.176
.034
• 19H
.320
.294
.231
.530
.270
.340
.273
MG/L
0.
540
0.200
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
175
4?0
270
560
H20
900
500
720
180
360
4?0
00610 00671 00665
NH3-N. PHOS-DIS PHOS-TOT
TOTAL ORTHO
Mf~,/L
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
n.
097
012
036
024
036
027
02«
032
Oil
02*
071
024
?80
MG/L P
0
0
0
0
0
0
0
0
.009
• OObK
.006
.010
.006
.007
.013
.019
0.011
0
i)
0
0
.018
.011
.031
.008
MG/L P
0.060
0.015
0.019
0.055
0.025
0.050
0.067
0.070
0.050
0.095
0.060
0.040
0.060
oo
vD
,/ .u-I*-" -
-------
STORET RETRIEVAL DATE 74/11/26
361961 LS3603R1
43 34 30.0 073 26 00.0
SOUTH BAY
36 15 WHITEHALL
I/LAKE CHAMPLAIN
ST H«Y 22 BPDG BELO WHITEHALL
11EPALES 3111204
4 0000 FEET DEPTH
DATE
FPOM
TO
72/11/04
7P/12/07
73/01/04
73/03/08
7.1/04/07
73/04/23
73/05/07
73/05/24
73/06/08
73/07/10
73/08/ls
73/09/11
73/10/10
00630 00625
TIMF DFPTH N02&N03 TOT KJEL
OF N-TOTAL N
DAY FEET
09
15
13
11
09
09
10
10
15
11
16
09
11
30
25
30
30
00
30
30
45
55
50
20
15
25
MG/L
0
0
0
0
0
0
0
0
0
0
0
0
0
.169
.330
.126
.210
.115
.147
.126
.220
.138
.160
.018
,0?0
.092
MG/L
0.
0.
0.
0.
0.
0.
0.
1.
0.
0.
0.
0.
0.
350
530
215
200
300
310
630
470
540
480
290
soo
420
00610 00671 00665
NH3-N PHOS-OIS PHOS-TOT
TOTAL OPTHO
MG/L
0.
0.
0.
0.
0.
0.
0,
0.
0.
0.
0.
0.
0.
063
080
027
026
038
010
033
052
025
040
Oil
028
044
MG/L
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
p
005K
015
006
010
010
Oil
013
017
016
013
OOfi
013
OOP
MG/L P
0.048
0.052
0.012
0.020
0.035
0.045
0.050
0.055
0.035
0.040
0.045
0.055
0.045
vD
O
ii !\NO*'N TO •?»-- LESS
-------
STORET RETRIEVAL DATE
3609F? LS3609F2
«*3 51 00.0 073 25 00.0
TICONDEROGA C^EEK
36 15 riCONDEPOGA
T/LAKE CHAMPLAIN
ST HWY 347 BRDG bELO TICONDEROGA STP
11EPALES 2111204
4 0000 FEET DEPTH
DATE
FROM
TO
7P/11/04
7?/ 12/01
73/01/06
73/01/28
73/02/24
73/04/07
73/04/2?
73/05/06
73/05/27
73/06/10
73/07/09
73/Ofi/O?
73/08/31
73/09/2<»
00630
TIME DEPTH NOP&N03
OF N-TOTAL
DAY FEET MG/L
14 15 0.036
0.034
0.04?
0.520
0.021
0.04R
0.025
0.054
0.054
0.056
0.094
C.075
0.13?
0.04*
00625
TOT KJEL
N
MG/L
0.350
0.180
0.200
0.210
0.350
1.9«0
1.7flO
0.560
1.390
2.100
0.480
1.050
1.6*0
1.000
00610
NH3-N
TOTAL
MG/L
0.072
0.035
0.009
0.031
0.029
0.091
0.035
0.042
0.039
0.031
0.030
0.410
0.273
0.490
00671
PHOS-DIS
ORTHO
MG/L P
0.016
O.OOfl
0.007
O.OOR
0.007
0*007
0.005K
0.015
0.010
0.005K
0.005K
0.048
0.058
0.052
00665
PHOS-TOT
MG/L P
0.066
0.016
0.020
0.020
0.010
0.030
0.010
0.050
0.017
0.015
0.015
0.070
0.240
O.OPO
V *• LUF <' .0'••':' T '~>
TH ,>! 1'iOTC:
-------
STORET RETRIEVAL DATE 74/11/26
3609F1 LS3609F1
43 51 00.0 073 25 30.0
TICONOtPOGA CPEEK
36 15 TICONDEROGA
T/LAKE CHAMPLOIN
B*OG ABOVE TICONOEROGA STP
11EPALES 2111204
4 0000 FEET
DEPTH
DATE TIME DEPTH
FROM OF
TO DAY FEET
72/11/04 15 00
72/12/03
73/01/06
73/01/28
73/02/24
73/04/07
73/04/22
73/05/06
73/05/27
73/06/10
73/07/09
73/08/02
73/0«/3l
73/09/29
00630 00625
W&N03 TOT KJEL
N-TOTAL N
MG/L
0.032
0.037
0.044
1.220
0.021
0.0*6
3.027
0.040
0.056
0.010K
0.050
0.039
0.0?>?
MG/L
0.200
0.160
0.180
0.120
O.?00
0.660
1.000
0.960
0.230
0.690
0.365
0.720
1.260
0.9«0
00610
NH1-N
TOTAL
MG/L
0.039
0.010
0.005*
0.09P
0.02P
0.034
0.036
0.04?
0.024
0.019
n.ose
0.036
0.083
0.110
00671
PHOS-OIS
OPTHO
MG/L P
0.005K
0.005K
0.005K
0.006
0.007
0.005K
0.006
0.010
0.005K
0.006
0.012
0.014
0.018
00665
PHOS-TOT
MG/L P
0.017
0.014
0.00ft
0.010
** • V 1. W
0.007
0.030
0.005K
0.035
0.015
0.015
0.020
0.015
0.035
IS)
< -10
TO
-------
STO*ET
OATF. 7<*/U/>6
LS3609D1
43 54 00.0 073 2** 30.0
FlVtMlLE CRtFK
36 Ib TICONOEROGA
T/LAKE CHAMPLAIN
yrtlDG .5 MI N OF TICONDEROGA AIRPORT
HEPALFS 2111204
4 0000 FEET OF.PTH
DATE
FROM
TO
7P/11/04
72/12/02
73/01/Ob
73/0<»/07
73/0«»/2?
73/05/06
73/05/27
73/06/10
73/07/0^
73/0 ft/0 2
73/C*/3l
73/09/Z9
00630
TIME DEPTH N028.N03
OF N-TOTAL
DAY FEET MG/L
1A 35 0.390
O.P47
G.3<+0
0.740
0.126
0.140
0.060
0.060
0.100
0.19H
0.600
0.180
006?=;
TOT KJEL
M
MG/L
0.750
0.260
1.3PO
3.200
P. 330
1.680
0.210
0.560
0.460
l.?60
1.S90
1.800
00610
NH3-N
TOTAL
MG/L
0.09?
O.OOR
0.081
0.069
0.015
0.044
O.OOR
0.010
0.07?
0.01?
0.180
0.510
00671
PHOS-OIS
OPT HO
MG/L P
0.039
o.oie
O.OP7
0.06?
0.00«
0.013
0.005K
0.006
0.006
0.022
0.078
0.017
00665
PHOS-TOT
MG/L P
0.115
0.044
0.05H
0.210
0.020
0.055
0.015
0.015
O.Olb
0.035
0.31b
0.050
U*: <"..>)•'! FO -£•;
TH ,!•> I-JOIC«T-..;
-------
STORET RETRIEVAL DATE 74/1l/?6
3*09E1 LS3609E1
43 57 30.0 073 26 00.0
PUTNAM CREEK
36 15 TICONOEROGA
T/LAKE CHAMPLAIN
ST HWY 9N RROG
IIE^ALES 2111204
4 0000 FEET DEPTH
DATE TIME
PROM OF
TO DAY
72/11/04
7?/ 12/0 3
7.1/04/07
73/04/2?
73/05/06
73/06/10
73/07/09
73/08/0?
73/08/31
73/09/29
00630
DEPTH N02&N03
N-TOTAL
FEET MG/L
0.064
O.OH8
0.054
0.065
0.060
0.063
0.200
0.16B
0.353
0.132
00625
TOT KJEL
N
MG/L
O.P.50
0.130
1.S05
0.420
2.300
1.500
0.420
1.570
1.200
2.730
00610
NH3-N
TOTAL
MG/L
0.050
0.012
0.120
0.025
0.054
0.029
0.05*
3.640
0.300
0.400
00671
PHOS-OIS
ORTriO
MG/L P
0.005K
0.006
0.007
0.005K
0.005K
0.005K
0.01P
0.005K
0.014
0.010
00665
PHOS-TOT
MG/L P
0.009
0.011
0.030
0.010
0.0?5
0.015
0.050
0.010
0.090
0.035
K V^LUc K-^0"1'.1 TO
-------
STORET WETRIEVAL DATE 74/u/?.<>
LS3603G1
44 0? 00.0 073 ?8 00.0
MCKENZIE H^OOK
36 15 POST rlF.NrfY
T/LAKE CHAMPLAIN
WATERFALL AT SF HWY 9N BWOG
11EPALES 2111204
4 0000 FEET
OE^TH
DATE
FROM
TO
7P/U/04
7?/l?/03
73/01/06
73/01/8«
71/0^/07
73/04/2?
73/05/Oft
73/05/2ft
73/Oh/10
73/07/0^
73/0«/0?
73/08/31
73/0^/2^
00630
TIME DEPTH NO?*N03
OF N-TOTAL
DAY FEET MG/L
15 18 0.062
0.320
0.280
0.605
0.11S
0.11^
0.075
0.044
0.058
0.099
O.PHO
0.29*
O.lMO
006?5
TOT KJFL
N
MR/L
0.360
0.310
0.270
0.250
0.920
O.B90
0.580
1.500
0.420
0.960
1.260
1.500
00610
NH3-N
TOTAL
MG/L
0.027
0.015
0.005K
0.052
0.066
0.046
0.026
0.033
O.OPfi
0.042
0.490
0.0«»
C.076
00671
PHOS-DIS
OPTHO
MG/L P
0.005K
0.016
0.006
0.012
0.007
0.005K
0.005K
0.006
0.005K
0.005K
0.020
0.020
0.014
00665
PHOS-TOT
MG/L P
0.011
0.016
0.010
0.01?
0.045
0.010
0.02B
0.020
0.045
0.015
0.020
0.153
0.090
to
en
-------
STORET RETRIEVAL DATE 74/11/26
3609H1 LS3609H1
44 03 00.0 073 27 30.0
MILL HROOK
36 15 PORT HENRY
T/LAKE CHAMPLAIN
FROM BANK NEAR PT HENRY 9ELO MORI AH STP
11EPALES 2111204
4 0000 FEET DEPTH
DATE TIME DEPTH
FROM OF
TO DAY FEET
72/11/04 15 30
7P/12/03
73/01/06
73/C1/28
73/02/24
73/04/07
73/04/2?
73/05/06
73/05/27
73/06/10
73/07/09
73/08/0?
73/08/31
73/09/29
00630
N02&N03
N-TOTAL
MG/L
0.370
0.310
0.336
0.600
0.023
0.110
C.160
0.160
0.050
0.060
0.200
0.520
0.580
0.640
00625
TOT KJEL
N
MG/L
0.850
0.400
0.340
0.350
0.580
0.720
1.320
0.200
?.5?0
1.600
0.630
1.380
2.100
0.7?0
00610
NH3-N
TOTAL
MG/L
0.054
0.062
0.046
0.105
0.025
0.027
0.048
0.020
0.058
0.029
0.046
0.084
0.170
0.084
00671
PHOS-DIS
ORTHO
MG/L P
0.069
0.037
0.038
0.027
0.006
0.009
0.019
0.014
0.007
0.007
0.016
0.046
0.044
0.040
00665
PHOS-TOT
MG/L P
0.105
0.072
0.073
0.065
0.010
0.080
0.070
0.115
0.020
0.020
0.050
0.330
0.850
-------
STORET RETRIEVAL DATE 74/H/?6
3609H? LS3609H2
<»4 03 00.0 073 33 00.0
MILL rtROOK
36 IS ELIZABETHTOWN
T/LAKE CHAMPLAIM
bSOG a MI Srf OF M(mflH CENTER
11EPALES 2111204
4 0000 FEET DEPTH
DATE TIHF. DEPTH
FROM OF
TO DAY FEET
7P/11/04 16 00
7?/12/03
73/01/0*
7.V04/07
73/04/2?
73/05/06
73/05/27
73/06/10
73/07/09
73/08/0?
73/08/31
73/09/29
00630
N02&N03
N-TOTAL
M(i/L
0.056
0.074
0.066
0.036
0.036
0.042
0.048
0.056
0.097
0.110
0.170
0.072
00625
TOT KJEL
IM
MR/L
0.870
0.290
0.190
1.540
0.680
1.760
P.600
1.900
0.5BO
2.500
0.840
0.100K
00610
NH3-N
TOTAL
MG/L
0.086
0.024
0.005K
0.108
0.015
0.044
0.058
0.017
0.063
1.580
0.126
0.042
00671
PHOS-OIS
ORTHO
MG/L P
0.005K
0.006
0.005K
0.005K
0.005K
0.005K
0.006
0.005K
0.006
0.009
0.008
0.005K
00665
PHOS-TOT
MG/L P
0.007
0.010
0.006
0.030
0.025
0.020
0.020
0.015
0.015
0.010
0.045
0.010
E *"-j'T*»i TO
-------
STORE! RETRIEVAL DATE 74/11/26
3609L1 LS3609L1
44 11 00.0 073 ?6 00.0
HOISINGTOM SROOK
36 15 PORT HFNRY
T/LAKE CHAMPLAIN
5T HWY 9N BRDG NtAH WESTPORT
11EPALES 2111204
4 0000 FEET
DEPTH
DATE TIME DEPTH
FROM OF
TO DAY FEET
72/11/06 11 00
72/13/03
73/01/06
73/04/2?
73/05/06
73/05/27
73/06/10
73/07/09
73/08/02
73/08/31
73/09/29
00630
N02&N03
N-TOTAL
MG/L
0.420
0.240
0.340
0.039
0.210
U.046
0.058
0.097
0.378
0.336
0.330
00625
TOT KJEL
N
MG/L
0.885
0.330
0.310
0.960
0.230
1.300
1.540
0.5BO
1.320
0.850
1.900
00610
NH3-N
TOTAL
MG/L
0.105
0.062
O.OOP
0.038
0.015
0.034
0.018
0.105
0.058
0.058
O.P80
00671
PHOS-DIS
ORTHO
MG/L P
0.039
0.01*
0.013
0.005K
0.009
0.005K
0.005K
0.005K
0.016
0.013
0.013
00665
PHOS-TOT
MG/L P
0.110
0.037
0.034
0.005K
0.035
0.020
0.020
0.020
0.030
0.095
0.035
K ViLUE KNOWM TO HE
LESS THiN
-------
STORET RETRIEVAL OATE 74/11/26
LS3609M1
44 22 00.0 073 23 00.0
HOQUET RIVER
36 15 WILLSHORO
T/LAKE CHAMPLAIN
ST Hwr 2? BPOG
11EPALES 2111204
4 0000 FEET
DEPTH
OATE
FROM
TO
72/11/04
7P/12/0?
73/01/06
73/02/13
73/03/04
73/04/01
73/04/15
73/05/07
73/05/1P
73/06/10
73/07/14
73/OB/19
73/09/09
73/10/13
00630 00625
TIME DEPTH N02&N03 TOT KJEL
OF N-TOTAL N
DAY FEET
15
14
15
08
08
09
09
08
10
10
11
00
00
00
00
30
?0
1ft
15
30
30
15
MG/L
0,
0,
0,
c,
0,
0.
0,
0,
0,
0,
0,
0,
0,
0,
.104
.320
.176
,360
.280
.132
.115
.115
,160
,0?4
,110
,066
,075
,031
MG/L
0.
0.
0.
1.
1.
0.
0.
0.
1.
0.
200
190
200
260
050
240
190
460
200
500
1.600
0.
0.
0.
100K
420
2?0
00610 00671 00665
NH3-N PriOS-DIS PHOS-TOT
TOTAL ORTHO
MG/L
C.042
0.012
0.012
0.198
0.086
0.005K
0.012
0.029
0.120
0.008
0.034
0.019
0.06^
0.029
MG/L P
0.
P.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
005K
005K
005K
083
015
005K
005K
005K
005K
005K
005K
006
0.010
0.
005K
MG/L P
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.100
.015
.015
.145
.030
.022
.025
.015
.080
.005K
.010
.025
.027
.015
vD
vD
TH.1N
TO
-------
STORE! RETRIEVAL DATE 74/11/26
3609M1 LS3609N1
44 33 30.0 073 27 00.0
AUSABLE RIVER
36 is PLATTSBURG
T/LAKE CHAMPLAIN
US HWY 9 8RDG 8ELO KEESEVILLE STP
11EPALES 2111204
4 0000 FEET DEPTH
DATE
FROM
TO
7P/11/Q5
7?/ 12/01
72/12/30
73/02/28
73/03/03
73/03/29
73/04/16
73/04/27
73/05/15
73/05/30
7.1/07/0 1
73/07/29
73/08/30
73/10/04
00630
TIME DEPTH N02&N03
OF
DAY FEET
10 00
13 30
16 45
12 00
14 00
11 45
06 45
15 00
15 00
16 00
18 40
N- TOTAL
MG/L
0.380
0.150
0.320
1.340
0.430
0.390
0.378
0.500
0.470
0.130
0.176
0.115
0.065
0.154
00625
TOT KJEL
N
MG/L
0.440
0.310
0.360
1.570
1.000
1.325
0.190
0.520
1.980
0.690
1.100
0.500
0.230
C.500
00610
NH3-N
TOTAL
MG/L
0.050
0.014
0.034
0.400
0.066
0.052
0.022
0.029
0.835
0.027
0.231
0.110
0.100
0.096
00671
PriOS-DIS
ORTHQ
MG/L P
0.005K
0.006
0.016
0.005K
0.007
0.005K
0.005K
0.005K
0.005K
0.005K
n.oio
O.OOA
O.OOfl
0.011
00665
PHOS-TOT
MG/L P
0.021
0.016
0.016
0.065
0.010
0.015
0.010
0.015
0.015
0.010
0.075
0.015
0.020
0.025
o
o
LFSS TH,N
TO -}r
-------
STORET RETRIEVAL DATE 74/U/26
3M)9N2 LS3609N2
44 30 30.0 073 29 00.0
AUSAHLE "IVEP
36 15 PLATTSriURG
T/LAKE CHAMPLAIN
5T HWY 22 BRDG ABOVE KEESEVILLF STP
11EPALES 2111204
4 0000 FEET DEPTH
DATE
FROM
TO
7P/11/05
72/12/02
73/01/06
73/02/03
73/04/07
73/04/17
73/05/05
73/05/19
73/06/01
73/06/30
73/03/05
73/09/08
73/10/04
TIME DEPTH
OF
DAY FEET
11 30
13 00
16 00
00630
NOPR.N03
N-TOTAL
MG/L
0.382
0.350
0.420
0.850
0.310
0.4SO
0.310
0.300
0.110
0.154
0.027
0.126
0.380
00625
TOT KJEL
N
MG/L
0.270
0.370
0.260
0.630
0.460
0.190
1.500
1.890
0.330
0.480
0.460
0.630
00610
NH3-N
TOTAL
MG/L
0.038
0.021
0.005K
0.110
0.016
0.027
0.032
0.048
0.024
0.13P
O.OR8
0.078
C.126
00671
PHOS-OIS
OPTHO
MG/L P
0.005
0.006
0.005K
0.031
0.005K
O.OG5K
0.005K
0.005K
0.005K
0.006
0.005K
0.005K
0.013
00665
PHOS-TOT
MG/L P
0.016
0.016
0.01C
0.085
0.020
0.010
0.01S
0.030
0.010
0.020
0.015
0.015
0.080
K VfiL'JF K"l<>:\' TO
LESS THIN !'•> jlCi-
-------
STORET RETRIEVAL DATE 74/11/26
3609P1 LS3609P1
44 34 30.0 073 27 00.0
LITTLE AU5A8LE RIVER
36 15 PLATTSBURG
T/LAKE CHAMPLAIN
US H*r 9 BPOG BELO PERU STP
HEPALES 2111204
4 0000 FEET
DEPTH
DATE
FROM
TO
72/11/05
7?/ 12/01
72/12/30
73/02/38
73/03/29
73/04/16
73/04/27
73/05/15
73/05/30
73/07/01
73/07/29
73/08/30
73/10/06
TIME DEPTH
OF
DAY FEET
1?
10
13
16
14
14
11
06
14
14
15
18
15
30
00
30
30
30
20
30
30
30
30
30
00610
N02&N03
N-TOTAL
MG/L
0.1 90
0.200
0.300
0.350
0.130
0.160
0.110
0.120
0.068
0.210
0.280
0.300
0.340
00625
TOT KJFL
N
MG/L
0.3RO
0.460
0.610
0.630
0.540
0.700
2.000
1.150
1.260
1.050
0.920
0.690
1.625
00610
NH3-N
TOTAL
MG/L
0.090
0.028
0.105
0.210
0.044
0.054
0.490
0.399
0.069
0.088
0.210
0.220
0.231
00671
PHOS-niS
ORTHO
MG/L P
0.05?
0.022
0.009
0.065
0.01R
0.016
0.034
0.032
0.020
0.034
0.035
0.050
0.019
00665
PHOS-TOT
MG/L P
0.081
0.04=1
0.028
0.095
0.030
0.030
0.055
0.050
0.045
0.130
0.075
0.105
0.080
o
ro
-------
STORE! RETRIEVAL DATE 74/11/26
3609P2 LS3609P2
44 34 30.0 073 31 30.0
LITTLE AUSAHLE RIVER
36 IS OANNEMORA
T/LAKE CHAM.PLAIN
DAM BELO ST HWY 22 BRDG ABOV PERU STP
11EPALFS 2111204
4 0000 FEET DEPTH
00630 00625
DATE TIME DEPTH N02&N03 TOT KJFL
FROM OF N-TOTAL N
TO DAY FEET
72/11/05 11 25
72/12/02 11 00
73/01/06
73/02/01
73/03/03
73/04/07
73/04/17 12 30
73/05/05 15 00
73/05/19
73/06/01
73/06/30
73/08/05
71/09/08
73/10/04
MG/L
0.089
0.126
0.126
1.040
0.231
0.014
O.Ol^
0.042
C.105
0.019
0.910
0.021
0.115
0.176
MG/L
0.270
0.340
0.340
1.050
0.290
0.380
1.890
1.050
2.300
0.500
1.600
0.500
0.720
0.350
00610 00671 00665
NH3-N PHOS-OIS PHOS-TOT
TOTAL OPTHO
MG/L
0.040
0.013
0.005K
0.072
0.060
0.008
0.064
0.020
0.052
0.018
0 . 1 76
0.05?!
0.050
0.015
MG/L P
0.008
0.005K
0.005K
0.026
0.008
O.OC5K
0.005K
0.006
0.015
0.011
0.038
9.014
0.011
0.008
MG/L P
0.018
0.014
0.012
0.140
0.015
O.OPO
0.025
0.025
0.060
0.050
0.185
0.035
0.030
0.015
o
OJ
K VMLUE K-iO'»,«J TO -r
-------
STDRET RETRIEVAL DATE
3S09G1 LS3609Q1
44 37 30.0 073 27 00.0
SALMON RIVER
36 is PLATTSBURG
T/LAKE CHAMPLAIN
US HWY 9 BROG 2 M E OF SOUTH PLATTS3URG
11EPALES 2111204
4 0000 FEET DEPTH
DATE
FROK
TO
72/11/05
72/12/01
72/12/30
73/02/2H
71/03/29
7.1/04/16
73/04/28
73/05/15
73/05/30
73/07/01
73/07/29
73/08/30
73/10/04
TIME DEPTH
OF
DAY FffET
12
11
12
16
15
13
11
06
14
14
15
18
30
00
30
15
00
30
05
15
00
00
00
15
00630
N02&N03
N-TOTAL
MG/L
C
0
0
0
0
0
0
0
0
0
0
0
0
.230
.28?
.198
.390
.210
.150
.160
.084
.199
.180
.240
.340
00625
TOT KJEL
N
MG/L
0.270
0.380
0.680
0.100K
0.440
1.000
1.380
1.050
0.920
1.350
1.100
0.520
1.300
00610
NH3-N
TOTAL
MG/L
C
0
0
3
0
0
0
0
0
0
0
0
0
.036
.011
.052
.050
.029
.036
.071
.315
.108
.044
.300
.176
.060
00671
PHOS-niS
ORTHO
MG/L P
0.005K
0.005K
0.013
0.006
0.005K
0.005K
0.006
0.006
0.005K
0.019
0.011
0.010
0.024
00665
PHOS-TOT
MG/L P
0
0
0
0
0
0
0
0
0
0
0
0
0
.013
.015
.023
.015
.015
.015
.015
.020
.025
.220
.035
.025
.075
K VfiLUt K.-IOWN TO
LFSS TH-N
-------
STORE! RETRIEVAL DATE 74/11/36
3609*1 LS3609R1
44 42 00.0 073 27 00.0
SARANAC RIVER
36 15 PLATTSBURG
T/LAKE CHAMPLAIN
US HWY 9 8HOG BELO PLATTSBUHG STP
11EPALES 2111204
* 0000 FEET DEPTH
DATE
FROM
TO
72/11/05
72/12/01
72/13/30
73/02/28
73/03/29
73/04/16
73/05/01
73/05/15
73/05/30
73/07/01
73/07/29
73/08/30
73/10/05
00630
TIME DEPTH M02&N03
OF
DAY FEF.T
12 45
11 30
12 00
16 00
13 00
10 50
11 00
06 00
13 30
13 30
14 30
18 00
N-TOTAL
MG/L
0.110
0.231
0.270
0.320
C.294
0.280
0.130
0.138
0.090
0.1 54
0.110
0.147
3. 088
00625
TOT KJEL
N
MG/l
0,350
0.560
0.520
0.260
0.780
0.630
1.750
1.290
0.370
1.150
0.460
1.260
0.920
00610
NH3-N
TOTAL
MG/L
0.048
0.046
0.033
0.044
0.044
0.033
0.390
0.078
0.040
0.034
0.036
0.390
0.210
00671
PHOS-01S
ORTHO
MG/L P
0.008
0.011
0.008
0.012
0.007
0.007
0.005K
0.007
0.005K
0.017
0.014
0.022
0.017
00665
PHOS-TOT
MG/L P
0.027
0.034
0.025
0.025
0.030
0.020
0.025
0.020
0.025
0.165
0.030
0.060
0.045
o
Ul
-------
STORET RETRIEVAL DATE 74/11/26
3609*2 LS3609P2
44 39 30.0 073 44 00.0
SA»ANAC RIVF.R
36 15 OANEMORA
T/LAKE CHAMPLMN
B*DG ON rfO CONN ST HWY365-HARDSCRABLE RO
11EPALES 2111204
4 0000 FEET DEPTH
00630 00625
DATE TIME DEPTH N02S.N03 TOT KJFL
FROM OF N-TOTAL N
TO DAY FEET MG/L MG/L
72/1 I/OS 10 30
72/12/0? 09 00
73/01/06
73/OP/03
71/03/03
73/04/07
73/04/17 09 00
73/05/05 10 30
73/05/19
73/06/01
73/06/30
73/08/05
73/09/00
73/1 0/05
0.093
0.210
0.240
1.400
0.290
0.154
0.120
0.094
0.069
0.061
0.120
0.054
0.091
0.350
0.340
0.330
0.320
0.285
0.360
0.360
0.400
0.480
0.410
0.560
0.760
0.850
00610 00671 00665
NH3-N PHOS-DIS PHOS-TOT
TOTAL OPTHO
MG/L MG/L P MG/L P
0.044
0.031
0.038
0.076
0.044
0.006
0.026
0.105
0.031
0.033
C.160
0.115
3.140
?.?00
0.005K
0.005K
0.006
0.005K
0.00ft
0.005K
0.005K
0.005K
0.005K
0.005K
0.014
0.005K
0.005K
0.014
0.013
0.016
0.016
0.015
0.030
0.020
0.015
0.025
0.025
0.020
0.030
0.020
0.020
0.065
K VALUt" KNO"*'-) TO Hi
LtSS TH.'M I'MOIC/-TEO
-------
STORET SETRIFVAL OATE 74/11/26
3609R3 L53609W3
44 33 30.0 073 41 10.0
36 IS OANEMORA
T/LAKE CHAMPLAIN
5T HtfY 228 8ROG ABOVE PLATTSBURG STP
11E°ALES 2111204
4 0000 FEET DEPTH
DATE
FROM
TO
72/11/05
7P/12/02
73/01/06
73/02/03
73/03/03
73/04/07
73/04/17
73/05/05
73/05/19
71/06/01
73/06/30
73/08/05
73/09/08
73/10/05
00630
TIME DEPTH NO?&N03
OF
DAY FEET
11 00
10 30
11 30
12 00
N-TOTAL
MG/L
0.110
0.230
0.252
1.020
0.310
0.166
0.126
0.115
0.110
0.084
0.150
0.063
0.120
0.350
00625
TOT KJEL
N
MG/L
0.3?0
0.3BO
0.390
0.400
0.340
0.730
0.400
2.520
2.200
0.360
0.580
0,720
0.660
00610
NH3-N
TOTAL
MG/L
0.110
0.029
0*042
0.029
0.054
0.017
0.072
0.075
0.084
0.023
0.132
0.132
0.066
0.180
00671
PHOS-OIS
OPTHO
MG/L »
0.006
0.007
0.007
0.012
0.008
0.005K
0.005K
0.005K
0.013
0.008
0.013
0.022
0.010
0.044
00665
PhOS-TOT
MG/L *>
0.021
0.018
0.018
0.030
0.020
0.025
0.020
0.025
0.045
0.035
0.040
0.045
0.030
0.085
o
-J
Less rn,.v
-------
STORET RETRIEVAL DATE 74/n/?
-------
STORET RETRIEVAL DATE 74/11/26
3
-------
STORET RETRIEVAL DATE 74/11/26
360901 LS3609U1
44 56 00.0 073 24 30.0
GREAT CHAZY PIVER
36 15 ROUSES POINT
T/LAKE CHAMPLAIN
ST HWY 98 8RDG BELO CHAMPLAIN STP
11EPALES 3111204
4 0000 FEET DEPTH
00630
DATE TIME DEPTH N02&N03
FROM OF M- TOTAL
TO DAY FEET
72/1 I/OS 14 30
72/12/0? 10 15
72/12/30 11 00
73/02/28 11 30
71/03/29 15 10
73/04/16 13 30
73/04/27 15 00
73/05/15 10 15
73/05/30 05 15
73/07/01 12 30
73/07/29 12 30
73/08/30 13 30
73/10/04 17 15
MG/L
0.320
0.350
0.378
0.470
0.260
0.260
0.126
0.126
0.077
0.085
0.310
0.176
0.154
00625
TOT KJEL
N
MG/L
0.560
0.540
0.460
0.440
0.660
0.915
2.400
l.?60
O.R60
0.660
0.650
0.7?5
1.700
00610
NH3-N
TOTAL
MG/L
0.069
0.035
0.054
0.072
0.043
0.064
0.270
0.210
0.210
0.082
0.079
0.390
0.180
00671
PHOS-OIS
ORTHO
MG/L P
0.040
0.014
0.022
0.014
0.011
0.012
0.015
0.019
0.009
0.032
0.035
0.060
0.032
00665
PHOS-TOT
MG/L P
0.086
0.037
0.03?
0.025
0.025
0.025
0.030
0.030
0.030
0.095
0.065
0.100
0.060
-------
STOPET RETRIEVAL DATE 74/11/26
3f,09U2 LS3609U2
44 58 30.0 073 ?7 30.0
GREAT CHAZY RIVER
36 15 ROUSFS POINT
T/LAKE CHAMPLAIN
BRDG .5 MI W OF CHAMPLAIN A80V 5TP
11FPALES 2111204
4 0000 FEET DEPTH
DATE
F90M
TO
72/1 1/05
72/12/02
72/12/30
73/02/28
73/03/29
73/04/16
73/04/27
7V05/15
73/05/30
73/07/01
73/07/29
73/OB/30
73/10/04
00630 00625
TIME DEPTH N02&N03 TOT KJEL
OF N-TOTAL N
DAY FEET
15
10
11
11
15
1?
15
09
05
1?
1?
13
17
00
30
00
00
00
30
30
00
00
00
00
00
00
MG/L
0
0
0
C
0
0
0
0
0
0
0
0
0
.2*0
.340
.370
.430
.210
,2W
.130
.120
.06R
.115
.105
.105
.230
MG/L
0.
0.
1.
0.
0.
0.
1.
1.
1.
0.
0.
1.
460
350
760
310
310
380
050
320
600
RPO
520
050
00610 00671 00665
NH3-N PHOS-OIS PHOS-TOT
TOTAL ORTHO
MG/L
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
052
016
320
038
029
028
147
160
260
420
180
?52
261
MG/L
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
P
015
006
006
007
006
007
006
008
006
016
014
022
020
MG/L P
0.040
0.019
0.010
0.015
0.020
0.020
0.020
0.020
0.025
0.045
0.030
0.035
0.080
-------
112
APPENDIX B
FLOW DATA FOR
LAKE CHAMPLAIN TRIBUTARIES
-------
FOR
LIKE. CODE 3.<>0<»
LAKE
TOTAL IIRAtNAGE AREA OF LAKE 8277.00
SUP-DRAINAGE
TRIBUTARY AREA
JAN
FEP
MAR
APH
MAY
NORMALIZED FLOWS
JON JUL AUG
SEP
OCT
NOV
DEC
MEAN
3609A1
3609H1
3609F1
3609G1
3609HI
3609L1
3609M1
3609N1
3609P1
360931
3609R1
3609S1
3609T1
360 9U1
3609ZZ
692.00
43.60
?6?.00
10.30
27.10
11.40
278.00
SIB. 00
71.80
66.00
614.00
9.92
51.20
300.00
1483.00
71*.. 00
45.00
259.00
10.60
27.90
11.60
387.00
534.00
74.00
68.10
633.00
10.20
52. HO
309.30
1530.00
7S3.00
49.30
3?4.00
11.70
30.70
12.90
314.00
586.00
81.20
74.70
695.00
11. ?0
57.90
339.00
1660.00
1210.00
76.50
374.00
18.10
47.50
20.00
4P8.00
908.00
126.00
116.00
1080.00
17.40
89.80
526.00
2600.00
2230.00
140.00
606.00
33.10
87.20
36.70
895.00
1670.00
231.00
212.00
1960.00
31.90
165.00
965.00
4770.00
1470.00
92.90
4Sfl.OO
,??.oo
57.80
24.30
593.00
1100.00
153.00
141.00
1310.00
21.10
109.00
639.00
3160.00
929.00
58.50
327.00
13.30
36.40
15.30
373.00
695.00
96.40
88.60
824.00
13.30
68.70
403.00
1990.00
621.00
39.20
1RO.OO
9.25
24.30
10.20
250.00
465.00
64.50
59.30
551.00
8.91
46.00
269.00
1330.00
498.00
31.40
149.00
7.41
19.50
8.20
200.00
373.00
51.60
47.50
442.00
7.14
36.80
216.00
1070.00
519.00
32.70
136.00
7.72
20.30
8.55
208.00
386.00
53.80
49.50
460.00
7.44
38.40
225.00
1110.00
625.00
39.40
161.00
9.30
24.50
10.30
251.00
468.00
64.80
59.60
554.00
8.95
46.20
271.00
1340.00
730.00
46.00
176.00
10.90
28.60
12.00
293.00
546.00
75.70
69.60
647.00
10.50
54.00
316.00
1560.00
730.00
46.00
202.00
10.90
28.60
12.00
293.00
546.00
75.70
69.60
648.00
10.50
54.00
316.00
1560.00
920.75
58.02
281.16
13.72
36.08
15.17
370.09
689.29
95.56
87.88
817.94
13.20
68.16
399.15
1973.23
NOTE «*» NO OUTLET GAGE IN THE U.S.
MEAN MONTHLY FLOWS AND DAILY FLOWS
TRIBUTARY MONTH YEAR MEAN FLOW DAY
360901
11
12
1
?
3
4
5
6
7
8
9
10
72
72
73
73
73
73
73
73
73
73
73
73
FLOW OAY
FLOW OAY
997.00
1060.00
1100.00
1030.00
??30.00
2510.00
1POO.OO
1850.00
853.00
553.00
7<»2.00
711.00
4
7
4
13
8
7
7
8
10
18
11
10
895.00
1380.00
1290.00
860.00
1950.00
2960.00 23
1310.00 24
1480.00
804.00
590.00
610.00
778.00
2250.00
2770.00
FLOW
-------
TRIBUTARY FLO* INFORMATION FOR NEW YORK
11/26/74
LAKE CODE 3ft09
LAKf CHAMPLAIN
MEAN MONTHLY FLOWS AND iJAILY FLOWS
TRIBUTARY MONTH YEAR MEAN FLOW HAY
3609B1
3609F1
360961
3809H1
11
12
1
?
3
it
5
f>
7
8
9
10
11
1?
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
.1
4
<>
6
7
8
9
10
72
72
73
73
73
73
73
73
73
73
73
73
72
72
73
73
73
73
73
73
73
73
73
73
7?
72
73
73
73
73
73
73
73
73
73
73
72
72
73
73
71
73
73
73
73
73
73
73
FLO* DAY
FLOW DAY
FLOW
62. «0
66.80
69.20
65.00
141.00
158.00
113.00
117.00
53.90
34.90
49.90
44.60
661.00
749.00
571.00
708.00
796.00
0.0
0.0
459.00
203.00
43.30
37.20
35.60
14.90
15.80
16.30
15.40
33.40
37.30
26.90
27.50
12.70
8.23
11. PO
10.60
39.10
41. SO
42.90
40.50
87.70
98.30
70.60
72.60
33.40
21.60
31.00
H7.90
4
7
4
13
8
7
7
8
10
18
11
10
4
3
6
24
7
27
10
9
2
4
3
6
8
7
6
10
9
2
4
3
6
24
7
6
10
9
2
56.40
86.80
81.00
54.20
123.00
186.00 23
82.50 24
93.20
60.60
37.10
38.40
49.00
155.00
904.00
608.00 28
814.00
1030.00 22
1060.00
764.00
174.00
49.00 31
13.30
13.10
16.50 28
18.00
29.80 22
10.60 26
7.85
2.3B
1.97 31
29.50
29.20
36.80 28
24.00
133.00 22
48.50 27
42.50
26.20
23.50 31
142.00
174.00
547.00
917.00
41.00
7.40
16.80
18.70
1.00
38.80
75.50
75.50
6.60
-------
FLO*
FOR WJ*
COOt
CHWW.MM
MEAN MONTHLY FLOWS AND OMLY FLO*S
TRIBUTARY HONTH YEAR
FLOW nay
FLOW DAY
FLOW DAY
FLOW
3609Ll
3609M1
3609M1
3609P1
11
12
1
?
-\
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
R
9
10
11
12
1
2
3
4
s
*,
7
8
9
10
7?
73
73
73
73
73
73
73
73
73
73
73
72
72
73
73
73
73
73
73
73
73
73
73
72
72
73
73
73
73
73
73
73
73
73
73
72
7?
73
73
73
73
73
73
73
73
73
73
16.40
17.40
18.10
17.00
36.90
41.40
89.70
30.50
14.00
9.10
13.00
11.70
400.00
425.00
441.00
414.00
901.00
1010.00
724.00
744.00
344.00
222.00
317.00
2R6.00
746.00
793.00
821.00
772.00
1680.00
755.00
1340.00
1390.00
639.00
414.00
592.00
533.00
103.90
110.00
114.00
107.00
333.00
260.00
1B7.00
192.00
na.bo
57.30
82.10
73.70
f>
3
6
7
6
10
9
2
4
2
6
13
4
1
7
10
14
19
9
13
5
1
28
3
16
15
1
30
4
5
1
28
29
16
15
1
30
4
14.00
13.60
17.20
40.80 22
17.60 27
IS. 80
8.00
7.80 31
720.00
725.00
898.00
694.00
656.00
760.00 15
555.00 19
537.00
385.00
36.00
34.60
440.00
334.00
404.00 30
250.00
290.00 29
875.00 27
560.00 30
1700.00
73.00
340.00
30.30
36.70 30
22.30
69.50
76.50 27
48.00 30
145. 00
1.65
20.00
24.60
24.60
1.66
675.00
764.00
313.00
800.00
760.00
970.00
28.40
65.50
77.00
-------
TRIBUTARY FLOW INFORMATION FOR NEW YORK
LAKE CODE 3609
11/26/74
LAKE CHAMPLAIN
MEAN MONTHLY FLOWS AND DAILY FLOWS
TRIBUTARY MONTH YEAR MEAN FLOW DAY
360901
360991
360951
3A09T1
FLOW DAY
FLOW DAY
FLOW
11
1?
1
?
3
4
5
6
7
8
9
10
11
1?
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
a
9
10
11
12
1
?
3
4
5
6
7
8
9
10
72
72
73
73
73
73
73
73
73
73
73
73
72
72
73
73
73
73
73
73
73
73
73
73
72
72
73
73
73
73
73
73
73
73
73
73
72
72
73
73
73
73
73
73
73
73
73
73
95.10
101.00
105.00
98.50
214.00
239.00
172.00
177.00
81. SO
52.70
75.50
67.80
884.00
941.00
97.40
916.00
990.00
2230.00
1600.00
1640.00
757.00
491.00
702.00
630.00
14.30
15.20
15.70
14.80
32.10
36.00
25.AO
26.50
12.20
7.93
11.40
10.20
73.flO
78.40
81.20
76.30
166.00
186.00
133.00
137.00
63. *0
40.90
58.60
52.60
5
1
28
29
16
IS
1
30
4
5
1
28
29
16
1
1
30
5
5
2
6
3
3
7
5
1
5
a
5
5
2
28
29
16
1
1
4
34.40
41.80 30 32.30
25.40
100.00
109.00 28 94.00
69.00 30 125.00
238.00
5.90
38.00
765.00
927.00 30 716.00
565.00
1520.00
1650.00
1370.00 15 1130.00 30
2540.00
188.00
919.00
9.60
10.00
12.40
15.80
8.20
34.40 17 21.00
13.80 19 33.80
26.70 30 17.50
6.80
4.30
10.70
40.50
42.20 30 38.00
30.00
129.00
140.00
113.00 15 89.00 30
238.00
31.40
1280.00
135.00
-------
TRIBUTARY FLOW INFOPMATION F0»
YOPK
11/26/74
CODE
LAKE CHAM-»LAIM
MEAN MONTHLY FLOWS AND OAILY FLOWS
TRIBUTARY
3609J1
3609Z7
ONTH
11
1?
1
p
3
4
5
6
7
q
9
10
11
1?
1
3
4
c;
f,
7
R
9
10
YEAH
7?
7?
73
73
73
73
73
73
73
73
73
73
7?
72
73
73
73
73
73
73
73
73
73
73
MEAN FLOW
432.00
459.00
475.00
447.00
971.00
1090.00
781.00
804.00
370.00
P40.00
343.00
308.00
2130.00
2270.00
2350.00
2?1Q.OO
4800. 00
53«0.00
3860.00
3970.00
1830.00
1190.00
1690.00
15PO.OO
OAY
5
?
28
29
16
IS
1
4
5
?
4
13
4
16
7
10
1
5
11
4
FLOW
217.00
224.00
160.00
550.00
595.00
400.00
1370.00
145.00
1850.00
1920.00
2760.00
1M40.00
1750.00
3980.00
P800.00
2630.00
6150.00
1640.00
1310.00
1670.00
DAY
30
27
30
29
27
19
30
FLOW
203.00
520.00
670.00
3680.00
3510.00
4P30.00
454.00
FLOW
30
3100.00
-------
T»l'JUTA'(.! 43.ii(l
urv.'jo ti'i-.to
1I»-M.O'J 1571.UO
311.00 313.00
I''. 10
106?. 10
71S.03
?61.00
.»•'•<
i.L I /F 0
JOL
^1 .?•>
?7S1.|)0
J.™ 1.M7
luwo.oo niu.on
?.oo
OCT
3.54
MOV
4.9?
DtC
3.99
MEAN
4.72
?'•.'» 0
^II. !l-l
"^'.•'1
?oi*
44S
50
on
OO
.is-vt.oo
911. 1C
<>IO.OO
116?. CJ
ll^S.PO
I'l.OO
S99.00 557.00
DO
13*5.00
1070.00 1110.00 1140.00 1560.00 1560.00 1973.23
14.*'J 16.40 ?4.40 33.60 27.10 33.14
599.00 913.00 1497.00 1296.00 1637.78
633.00 915.00 1258.00 1015.00 1239.71
26.00 40.50 65.00 56.20 71.07
6«4.00 1214.00 168H.OO 1369.00 1619.9.1
618.00 720.00 1090.00 1125.00 1321.69
120.00 144.00 248.00 300.00 319.77
SS6.00
527.00
80.90
MOTF ••» MO OUTICT fi/iiF IN Tit U.S.
MFAN MOMTMLlf FLOWS «NO IJAILV FLOWS
500141
500 \7.7
MONTH
9
10
11
1
4
5
6
7
11
3
4
5
6
7
7?
T>
1?.
7'
7?
7>
71
73
73
73
71
71
71
7?
7'
7 »
73
73
71
7?
73
7J
MEflN FLOW
6.06
2.09
5.6|
6.5?
14^90
1 1 . 30
10. 40
5.7J
'1.10.00
?350.00
'••10.00
4-UiO.OO
5310.«0
3860.U5
1970.00
l«30.vO
15
12
10
15
4
It
h
5
4
13
4
16
7
10
1
FLO* DAY
2.02
3.16
1.77
4.0?
a.47
6.51
3.SI
1?.10
6.40
3.20
19?O.OG
?760.00
1*40.00
17SH.ro
19-«0.00
2HOO.OU
19
14
29
37
19
FLOK OAY
FLOW
15.RO
9.50
36*0.00
1510.00
4830.00 30
3100.00
tilSO.OP
-------
FOH
12/Z7/7U
row soni
Mf'NTHL/
5001?!
5001 IS
500141
500151
AND .)AtL»
FLO*
FLO* ll»Y
FLO*
7
q
9
10
11
1?
1
•f
3
4
s
f>
7
a
q
10
11
\>
\
y
1
A
S
*
7
a
a
10
11
1?
1
?
3
&
S
ft
7
Q
9
10
11
1?
1
?
3
6
S
«,
7
7»
7?
r*
7^
7?
7?
n
f3
73
73
73
71
7?
7>
7?
7'
7?
1Z
T*
73
73
7.3
73
73
7'->
7?
7'
T>
7?
7'
73
73
73
73
73
7J
7?
TZ
7?
7?
7,>
7?
73
73
73
73
7 }
73
73
l«.(l/
17. 1"
1U.4Q
'^>.JJ
•40. 71
'5. SO
43.70
J?.hC
.•*^.3»
01.40
7'. 70
70.70
1S3Q.CO
717.09
^"SB.CiO
S'y^.nn
?1SS..13
'I'O^.OU
?063.uO
lA^o.ao
3^6.00
SO 4ft. Oil
4?ft4.(.(>
43«*,00
l?7*-.u!)
nil. 1)0
J^l.UO
•"o.OO
. !S??.liO
1330. tO
l*3"i. 00
i??a.uo
3?'n.^n
34-|<5.i,-0
'7?l.i.n
."bH^."!)
of .«c)
31.10
II. SO
^•S.BO
"?.f-0
••7.111
^q.sa
*.3.(;0
1*0 .1=0
"o.ro
i*"..':!)
1VO.JO
149. ( 0
IS
1?
<4
6
•>
li
ii>
lu
7
1?
3
IS
1?
1C
14
S
2
*
3
?
5
10
IS
l«f
4
4
2
13
10
lu
7
1?
J
IS
1?
U
14
5
1
A
3
3
7
'j
f<
IX.IH
1M.40
l.<.(.»')
^^.7L
4J.O"
31.SO
b?.3C
«»>.10 15 44.30 21
*O.HO
ft*.. 10
s??.oo
«• 3*1.00
?»7.nn
M7.00
*<«•••. 09
l/co.uo
1443.03
I'JfiO.O'J
S1?f>.00 ?1 3P7Z.OO
J<>?1.00 13 J*76.00
??»>i.OO
67-J.UJ
hf 7.00
SCO. 00 IS 78IS.OO
luOO.OO
1000.00
IhOM.O'J
llHb.OO
I'J'-'j.Ort
1S-*6.0') 21 ?^P9.00
JU/?*.iJ(l
^4«1.0'l
2?. 70
<*7.70
12.40
H.IO
41.?.)
7n.*n
h4.Su
l?0.09
^•n.l )
?S7.0'' ?? 177.00
M7.03 l.< 1<-H.OO
l.il.O'l
79.80
-------
)W i/t
12/27/74
L«
71
73
71
M
7.3
7:1
7.H
7?
7.?
7»
7?
7?
72
73
73
7 1
73
71
73
7?
7?
72
7'
7?
7?
7?
73
71
73
71
7V
73
UMl Y Fl.OrtS
.•' 0
.( 0
.('I
1V9T.CO
10'»0.00
'170.DO
. ,ii»
IS/5.00
3"».00
lul.OO
yoo.oo
980.00
6?*.TO
1040.00
lAY
I1-
4
ft
i
7
6
IT
10
$
2
3
7
li
1?
10
9
18
10
H
H UK* HAY
^ "7.0'J
*vl~.0
-------
121
APPENDIX C
LAKE CHAMPLAIN DATA
COLLECTED BY THE
NATIONAL EUTROPHICATION SURVEY
-------
STORET RETRIEVAL DATE 74/11/26
360901
43 33 00.0 073 27 00.0
CHAMPLAIM LAKE
36 NEW YORK
11EPALES
5
00010
DATE TIME DEPTH WATER
FROM OF TEMP
TO DAY FEET CENT
72/06/01 11 SO 0000 19.6
11 50 0016 16.5
72/03/02 15 30 0000
15 30 0004 33.9
15 30 0015 23.fi
7P/10/03 09 30 0000
09 30 0004 14.2
00300
00
MG/L
8.6
ft.6
8.2
7.7
9.4
00077 00094
TKANSP CNOUCTVY
SECCHI FIELD
INCHES MICROMHO
15
32
13
90
120
150
150
185
175
00400
PH
SU
7.
7.
10
40
7.90
7.90
7.80
7.75
31
26
52
52
52
72
65
2111202
0019 FEET
DEPTH
00410 00630
T ALK N02&N03
CAC03 N-TOTAL
MG/L MG/L
0.030
0.060
0.090
0.080
0.090
0.080
0.080
00610
NH3-N
TOTAL
MG/L
0.060
0.090
0.070
0.070
0.070
0.120
0.070
00665
PHOS-TOT
MG/L P
0.020
0.021
0.020
0.021
0.026
0.033
0.032
00666
PHOS-DIS
MG/L P
0.007
0.008
0.007
0.008
0.007
0.012
0.009
32217
DATE TIME DEPTH CHLRPHYL
FROM OF A
TO DAY FEET UG/L
72/06/01 11 50 0000 1.5J
72/08/02 15 30 0000 6.4J
72/10/03 09 30 0000 \f>.7J
J VALUfc KNO«N TO *E IN ERROR
-------
360902
43 35 00.0 073 35 00.0
CHAMPLAIN LAKE
36 NEW YOHK
oooio
DATE TIME DEPTH *ATFR
FROM OF TEMP
TO DAY FFET CFNT
7?/06/01 12 35 0000 ?0.6
12 35 0017 ?0.4
72/08/02 15 10 0000
15 10 0004 ?1.9
15 10 0015 21.9
7?/10/Ofl 09 50 0000
09 50 0004 13.P
09 *0 0009 13.0
00300
DO
Mf,/L
7.8
7.4
7.7
7.7
9.8
9.6
00077
TrtA^SP
SECCHI
INCHFS
36
24
3
00094
CMDUCTVY
F1FLD
MICROMHO
2?0
210
220
2?0
220
1«0
160
180
11EPALES
5
00400
PH
SU
7.10
7.20
7.70
7.70
7.60
7.60
7.60
7.60
00410
T ALK
CAC03
MG/L
91
91
78
79
79
5ft
54
53
2111202
0020
00630
N02&N03
N-TOTAL
MG/L
0.360
0.360
0.410
0.420
0.420
0.^20
0.430
0.440
FEET DEPTH
00610
MH3-N
TOTAL
MG/L
0.090
0.090
0.090
0.100
0.100
0.130
0.150
0.140
00665
PHOS-TOT
MG/L P
0.034
0.035
0.060
0.060
0.061
0.188
0.159
0.164
00666
PHOS-DIS
MG/L P
0.021
0.024
0.028
0.026
0.026
0.065
0.068
0.071
DATE TIME DEPTH
FROM OF
TO OAY FEET
7?/0«>/01 1? 35 0030
7?/0*/0,» 15 10 0000
7P/10/OH 09 SO 0000
3??17
a
UO/L
9.3J
3.6J
7. «J
KNOyri TO
-------
STORE! RETRIEVAL DATE 74/11/26
360903
43 50 00.0 073 23 00.0
CHAMPLAIN LAKE
36 NEW YORK
00010
DATE TIME DEPTH WATER
FROM OF TEMP
TO DAY FEET CENT
72/06/01 13 05 0000 19.4
13 05 0010 18.5
13 OS 0019 15.6
7?/08/02 14 35 0000
14 35 0004 23.8
14 35 0015 23.7
14 35 0020 23.4
72/10/08 10 15 0000
10 15 0004 14.9
10 15 0011 14.9
00300
DO
MG/L
11.2
11.0
10.1
6.8
7.3
6.4
9.6
9.6
00077
TRANSP
SECCHI
INCHES
48
52
18
00094
CNDUCTVY
FIELD
MICROMHO
160
140
180
190
200
200
220
220
215
11EPALES
5
00400
PH
SU
7.90
7.80
7.20
6.80
7.70
7.50
8. 1C
8.15
B.15
00410
T ALK
CAC03
MG/L
65
56
56
69
80
78
79
87
85
85
2111202
0022
00630
N02S.N03
N-TOTAL
MG/L
0.020
- 0.010K
0.100
0.120
0.120
0.120
0.130
0.020
0.030
0.050
FEET DEPTH
00610
NH3-N
TOTAL
MG/L
0.040
0.010
0.090
0.090
0.120
0.110
0.220
0.040
0.050
0.060
00665
PHOS-TOT
MG/L P
0.014
0.012
0.020
0.040
0.032
0.033
0.058
0.049
0.058
0.049
00666
PHOS-DIS
MG/L P
0.008
0.006
0.012
0.015
0.017
0*017
0.031
0.015
0.014
0.017
32217
DATE TIME DEPTH CHLRPHYL
FROM OF A
TO DAY FEET (JG/L
72/06/01 13 05 0000 9.4J
72/03/02 14 35 0000 10.OJ
72/10/03 10 15 0000 30.2J
K VALUE KNO*N TO RE LESS
THAN INDICATED
J VflLUF KNOfcN TO -4E IN
-------
510RET
OME
3S0904
43 57 00.0 073 25 00.0
CHAMPLAIN LAKE
3ft NEW YOKK
C0010
DATE TIME DEPTH WATE*
FROM OF TEMP
TO DAY FEET CENT
72/06/01 13 45 0000 19.4
13 45 0010 17.7
13 45 0024 9.0
72/08/02 14 00 0000
14 00 0004 ?3.1
14 00 0015 ?2.5
14 CO 0020 20.6
72/10/08 10 40 0000
10 40 0004 15.0
10 40 0015 14.9
10 40 0035 14.9
11EPALES
00300
DO
MG/L
9.9
9.2
11.0
7.5
6.3
5.^
8.9
9.0
8.9
00077
T-*ANSP
SECCHI
INCHES
36
42
11
00094
OJOUCTVY
FIELD
MICROMHO
150
150
110
200
200
200
180
245
240
235
240
5
00400
HH
su
8.10
7.70
7.40
7.70
7.70
7.60
7.40
7.75
7.75
7.80
7.75
00410
T ALK
CAC03
MG/L
57
57
51
70
70
70
65
72
73
72
72
2111202
0025
00630
NO?tvNU3
N-TOTAL
MG/L
0.050
0.070
0.240
0.100
0.100
0.100
0.140
0.100
0.110
0.090
0.100
FEET DEPTH
00610
NH3-N
TOTAL
MG/L
0.030
0.060
0.080
0.090
0.090
0.150
0.150
0.170
0.160
0.140
0.140
00665
PHOS-TOT
MG/L P
0.017
0.013
0.018
0.038
0.032
0.036
0.040
0.073
0.077
0.070
0.074
00666
PHOS-OIS
MG/L P
0.008
0.009
0.012
0.015
0.017
0.016
0.017
0.020
0.022
0.020
0.019
DATE TIME DEPTH CHL&PHYL
FROM OF A
TO DAY FEET UG/L
72/06/01 13 45 0000 8.BJ
7?/Oa/0? 14 00 0000 ?.7J
72/10/0* 10 40 0000 9.riJ
- K'v|O«* TO -K I^J
-------
STORET RETRIEVAL DATE 74/11/26
360905
44 03 00.0 073 27 00.0
CHAMPLAIN LAKE
36 NEW YORK
DATE
FROM
TO
72/06/01
72/08/02
72/10/08
00010
TIME DEPTH WATER
OF TEMP
DAY FEET
14
14
14
12
12
12
12
11
11
11
20
20
20
35
35
35
35
10
10
10
0000
0008
0017
0000
0004
0010
0017
0000
0004
0015
CENT
7
5
5
22
2?
22
13
13
.0
.8
.1
.6
.3
.0
.8
.6
00100
DO
MG/L
11.
12.
1?.
8.
e.
8.
9.
9.
R
0
o
8
9
1
6
4
00077 00094
TRANSP CNDUCTVY
SECCHI FIELD
INCHES MICROMHO
27
84
60
100
100
100
170
160
160
160
160
155
155
11EPALES
5
00400
PH
SU
7.30
7.30
7.30
8.10
8.10
8.00
8.00
7. 75
7.70
7.70
00410
T ALK
CAC03
MG/L
52
50
40
56
57
56
57
49
50
50
211
0021
00630
N02S.N03
N-TOTAL
MG/L
0.240
0.290
0.310
0.050
0.070
0.080
0.070
0.130
0.120
0.130
1202
FEET DEPTH
00610
NH3-N
TOTAL
MG/L
0.060
0.010
0.070
0.050
0.060
0.080
0.060
0.040
0.030
0.030
00665
PHOS-TOT
MG/L P
0.016
0.013
0.024
0.024
0.022
0.022
0.013
0.020
0.022
0.020
00666
PHOS-DIS
MG/L P
0.012
0.005
0.013
0.010
0.009
0.012
0.010
0.009
0.011
0.009
32217
DATE TIME DEPTH CHLRPHYL
FROM OF A
TO DAY FEET UG/L
72/06/01 14 20 0000 1.2J
72/08/02 12 35 0000 67.7J
7P/10/08 11 10 0000 8.5J
J VALUt
-------
T»/l\/2b
360906
44 11 00.0 073 26 00.0
CHAMPLAIN LAKE
36 NEW YORK
00010
OATE TIME DEPTH HATER
FROM OF TEMP
TO DAY FEET CENT
72/06/01 16 25 0000 14.2
16 25 0009 14.0
16 25 0020 10.0
72/07/30 10 55 0000
10 55 0004 21.7
10 55 0015 20.«
10 55 0030 12.2
10 ^5 0041 9.?
10 55 0051 d.3
72/10/08 11 30 0000
11 30 0004 14.3
11 30 0015 14.?
11 30 0034 14.1
11EPALES
00300
DO
MG/L
13« I
IP Q
1 1~- • *
11 Q
i i • ~
Q A
~ * "
Q«6
Q I*
^ • •*
in i
1 1' • *
in T
i '* • .'
1 O i*.
IV*"*
10.0
00077
TRONSP
SECCHI
INCHES
72
120
I t- VS
126
00094
CNOUCTVY
F {FLO
MICSOMHO
120 .
110
150
ISO
150
150
150
145
150
145
155
5
00400
PH
SU
8.60
8.5C
7.60
ft. 30
8.00
7.40
7.20
7.40
B.OD
e.io
8.05
7.85
00410
T ALK
CAC03
MG/L
51
49
51
51
50
50
46
47
46
73
22
23
23
2111202
0038
00630
N026NO3
N-TOTAL
MG/L
0.050
0.-060
0.1HO
0.060
0.060
0.090
0.280
0.300
0.300
0.080
0.010
0.080
0.090
FEET DEPTH
00610
NH3-N
TOTAL
MG/L
0.010
0.050
0.060
0.060
0.050
0.060
0.060
0.040
0.050
0.030
0.020
0.020
0.040
00665
PHOS-TOT
MG/L P
0.013
0.015
0.012
0.013
0.015
0.017
0.012
0.015
0.017
0.016
0.016
0.018
0.016
00666
PHOS-DIS
MG/L P
0.006
0.008
0.008
0.010
0.008
0.010
0.009
0.012
0.014
0.009
0.009
0.008
0.008
3?217
OATE TIME DEPTH CHLRPHYL
FHOW OF »
TO DAY FEET UG/l
72/06/01 16 25 0000 ?0.7j
7P/07/30 10 55 0000 12.9J
72/10/08 11 30 0000 12.9J
J V*LUt KNOH/i-i TO IF I i
-------
STORET RETRIEVAL DATE 74/11/26
360907
44 31 00.0 073 16 00.0
LAKE CHAMPLAIN
36 NEW YORK
DATE
FROM
TO
72/06/02
72/07/30
7?/10/OR
00010
TIME DEPTH WATER
OF TEMP
OAr FEET
10 10
10 47
10 47
10 47
12 SO
12 50
12 SO
12 SO
12 SO
12 50
12 SO
14 30
14 30
14 30
14 30
14 30
14 30
13 05
13 OS
13 05
0000
0000
0005
0015
0000
0004
0015
0030
0060
0090
0120
0000
0004
0015
0050
0075
0117
0000
0004
0015
CENT
11.5
11.4
10.1
8.5
22.3
21.4
20.3
14.4
7.2
6.0
?2.7
21.2
15.2
8.4
6.5
13.3
13.3
00300 00077 00094
DO TRANSP CNOUCTVY
SECCHI FIELD
MG/L INCHES MICROMHO
12.3
12.4
9.6
9.4
fl.4
8.6
11.0
11.0
10.0
9.8
8.4
10.2
11.2
9.9
10.2
96 160
84 140
140
140
144 140.
140
140
120
145
145
150
144 140
140
130
145
145
150
144 140
140
140
HEP ALES 2111202
5 0020 FEET DEPTH
00400 00410 00630 00610 00665 00666
PH T ALK N028.N03 NH3-N PHOS-TOT PHOS-DIS
CAC03 N-TOTAL TOTAL
SU MG/L
8.30
8.00
8.20
8.00
8.10
8.10
7.50
7.10
7.00
6.90
6.90
8.30
8.30
7.90
7.10
7.00
7.00
7.70
7.75
7.75
47
45
45
44
46
46
44
38
48
47
48
46
46
43
48
47
47
43
45
43
MG/L
0.150
0.190
0.180
0.190
0.060
0.060
0.080
0.200
0.230
0.310
0.320
o.oao
0.080
0.120
0.220
0.300
0.310
0.160
0.160
0.160
MG/L
0.060
0.030
0.020
0.030
0.050
0.030
0.040
0.090
0.040
0.040
0.040
0.060
0.050
0.050
0.060
0.040
0.040
0.040
0.030
" 0.020
MG/L P
0.024
0.012
0.010
0.012
0.013
0.015
0.017
0.032
0.015
0.019
0.020
0.013
0.015
0.015
0.013
0.018
0.022
0.018
0.01?
0.012
MG/L P
0.008
0.006
0.005
0.006
0.005
0.009
0.009
0.014
0.009
0.016
0.016
0.011
0.009
0.010
0.009
0.015
0.017
0.009
0.007
0.006
33217
DATE TIME DEPTH CHLBPHYL
FROM OF 8
TO DAY FEET UG/L
72/06/0? 10 10 0000 ?9.2J
10 47 0000 12.4J
7?/07/30 12 SO 0000 9.9J
14 30 0000 10.7J
7?/10/Of> 13 05 0000 S.9J
J VftLUe *NOWN TO
It tRROR
-------
STORET
7<»/l\/2t»
36090ft
44 37 00.0 073 16 00.0
LAKE CHAMPLAIN
36013 NE* YORK
00010
GATE TIME DEPTH */AT£Q
* FfiOM or TEMP
TO DAY FEET CENT
7P/07/30 09 40 0000
03 40 0004 ?3.?
09 40 0015 ?2.«
09 40 0024 ??.3
09 40 0034 ?1.6
09 40 0044 13.H
00 40 0054 9.5
09 40 0064 7.S
7P/10/05 15 30 0000
15 30 0004 15.1
15 30 0015 15.3
15 10 0040 15.1
15 30 0080 8.3
11EPALES
00300
DO
8.6
7.6
fl.4
8.U
7.P
7.4
6.6
9.8
9^.1
00077
TRANSP
SECCHI
INCHES
172
166
00094
CNOUCTVY
FIFLD
MICfOMHO
100
100
100
100
105
105
105
100
112
108
120
105
5
00400
PH
SU
7.30
7.20
7. 20
7.10
6.80
6.80
6.60
6.60
7.35
7.35
7.30
7.38
6.43
00410
T ALK
CAC03
MG/L
34
34
36
34
33
30
29
28
32
27
31
31
2111202
0068
00630
N02SN03
N-TOTAL
MG/L
0.170
0.170
0.180
0.190
0.190
0.3^0
0.380
0.400
0.150
0.150
0.150
0.160
0.390
FEET DEPTH
00610
NH3-N
TOTAL
MG/L
0.050
0.040
0.060
0.060
0.070
0.040
0.030
0.040
0.040
0.040
0.040
0.050
0.050
00665
PHOS-TOT
MG/L P
0.010
0.013
0.015
0.016
0.021
0.011
0.013
0.017
0.008
O.OOA
0.008
0.007
0.012
00666
PHOS-OIS
MG/L P
0.007
0.009
0.009
0.010
0.012
0.010
0.010
0.013
0.006
0.005
0.006
0.005
0.009
32217
DATE TIME DEPTH CHLRPHYL
F»OM OF A
TO DAY FEtT UG/L
7P/07/30 09 40 0000 4.9J
7?/10/Oc> 15 30 0000 5.5J
KNOVN TO
I'-l
-------
STORET RETRIEVAL DATE 74/11/26
360909
44 33 00.0 073 £5 00.0
LAKE CHAMPLAIN
36 NEW YORK
00010
DATE TIME DEPTH WATER
FROM OF TEMP
TO DAY FEET CENT
72/06/02 10 30 0000 11.A
72/07/30 11 30 0000
11 30 0004 21.4
11 30 0015 '1.1
11 30 0025 18.9
11 30 0045 12.9
11 30 0060 11.3
72/10/05 17 00 0000
17 00 0004 13.8
17 00 0015 13.7
17 00 0050 13.5
17 00 0085 13.0
17 00 0116 12.0
11EPALES
00300
DO
MG/L
11.8
9.2
9.0
7.2
8.0
8.8
10.0
9.5
10.0
9.6
9.2
00077
TRANSP
SECCH1
INCHES
84
151
156
00094
CNOUCTVY
FIELD
MICROMHO
140
130
130
100
140
140
145
140
142
142
142
142
143
5
00400
PH
su
8.20
7.60
7.60
7.00
6.90
6.80
6.80
7.40
7.50
7.45
7.40
7.30
7.20
00410
T ALK
CACO3
MG/L
42
40
39
36
29
43
42
43
42
43
43
42
43
2111202
0065
00630
N02&N03
N-TOTAL
MG/L
0.160
0.080
0.070
0.080
0.120
0.250
0.270
0.150
0.150
0.150
0.150
0.170
0.200
FEET DEPTH
00610
NH3-N
TOTAL
MG/L
0.060
0.060
0.060
0.060
0.060
0.030
0.030
0.040
0.040
0.040
0.050
0.050
0.050
00665
PHOS-TOT
MG/L P
0.030
0.019
0.015
0.017
0.020
0.013
0.014
0.009
0.012
0.010
0.010
0.010
0.014
00666
PHOS-DIS
MG/L P
0.008
0.009
0.009
0.010
0.010
0.010
0.011
0.006
0.005
0.006
0.006
0.006
0.008
3P217
DATE TIME DEPTH CHLHPHYL
FROM OF A
TO DAY FEET UG/L
72/06/0? 10 30 0000 12.*J
77/07/30 11 30 0000 7.9J
7P/10/05 17 00 0000 5.4J
J VALUE KNOWN TO B£ IN ERROR
-------
360910
44 42 00.0 073 26 00.0
L»KF CHAMPLAIN
36 NEW YORK
OATE TIME DEPTH
FROM OF
TO DAY FEET
72/06/0? 11 00 0000
11 00 0010
11 00 00?4
7?/07/30 09 00 0000
09 00 0004
09 00 0015
09 00 0080
72/10/05 16 30 0000
16 30 0004
16 30 0015
00010
WATEP
CENT
00100
DO
11.7
11.5
11.4
22.0
?1.4
20.7
14.3
14.3
10.9
11.0
7.8
6.6
10.5
10.4
HEPALtS
00077
TRAMSP
SECCHI
INCHES
96
72
16*
00094
CNOUCTVY
FIFL3
MICROMHO
120
120
1?0
125
120
130
130
141
141
140
5
00400
PH
SU
7.50
7.60
7.60
7.00
6.90
7.10
6.80
7.75
7.78
7.75
00410
T ALK
CAC03
MG/L
36
34
36
3fl
39
38
38
40
41
40
2111202
0022
00630
N02«kN03
N-TOTAL
MG/L
0.160
0.160
0.150
0.070
0.070
0.070
0.090
0.100
0.100
0.100
FEET DEPTH
00610
NH3-N
TOTAL
MG/L
0.010
0.020
0.010K
0.050
0.050
0.050
0.070
0.040
0.040
0.040
00665
PriOS-TOT
M&/L P
0.026
0.021
0.027
0.040
0.037
0.027
0.026
0.013
0.015
0.016
00666
PHOS-DIS
MG/L P
0.009
0.009
0.007
0.015
0.014
0.013
0.012
0.007
0.008
0.006
OATE TIME DEPTH
FHOM OF
TO DAY FEET
7?/06/02 11 00 0000
72/07/30 09 00 0000
72/10/05 16 30 0000
UG/L
11. 1J
«.5J
5.6J
1-* KNOrfN TO
TH!;N INDICATED
LESS
TO fi<-. H €RHO-<
-------
STORET RETRIEVAL DATE 74/11/26
360911
44 46 30.0 073 10 00.0
LAKE CHAMPLAIN
36 NEW YORK
00010
DATE TIME DEPTH WATER
FROM OF TEMP
TO DAY FEET CENT
72/06/02 11 40 0000 14.9
11 40 0015 14.0
72/07/30 OB 30 0000
08 30 0004 ?2.7
09 30 0017 ?2.3
72/10/05 14 30 0000
14 30 0004 15.5
14 30 0014 15.5
00300
DO
MG/L
11.0
11.1
9.2
5.2
10.3
10.2
00077
TRANSP
SECCHI
INCHES
84
178
168
00094
CNDUCTVY
FIELD
MICROMHO
130
130
130
130
130
130
132
132
11EPALES
4
00400
PH
SU
a. 20
fl.10
7.70
7.70
7.60
7.55
7.80
7.70
00410
T ALK
CAC03
MG/L
38
39
38
38
38
36
35
35
2111202
0021
00630
N02&N03
N-TOTAL
MG/L
0.030
0.020
0.020
0.020
0.030
0.040
0.040
0.050
FEET DEPTH
00610
NH3-N
TOTAL
MG/L
0.020
0.020
0.040
0.040
0.040
0.030
0.040
0.040
00665
PHOS-TOT
MG/L P
0.032
0.024
0.029
0.032
0.030
0.042
0.041
0.043
00666
PHOS-DIS
MG/L P
0.012
0.009
0.020
0.023
0.021
0.035
0.034
0.034
32217
DATE TIME DEPTH CHLRPHYL
FROM OF A
TO DAY FEET UG/L
72/06/02 11 M) 0000 13.6J
72/07/30 08 30 0000 11.2J
72/10/05 14 30 0000 5.5J
KNOWN TO rtF IN F
-------
S10RE.1 KE1R1E.VM.
7<*/\\/?fc
361912
44 15 00.0 073 17 00.0
LAKE CHAMPLAIN
36 NEW YORK
00010
DATE
FROM
TO
72/06/02
72/07/30
7?/10/Oft
TIME DEPTH *
OF
DAY FEET
14
14
14
09
09
09
09
09
11
11
11
11
00
PO
00
15
15
15
15
15
55
55
55
55
0000
0010
0027
0000
0004
0015
0027
0034
0000
0004
0015
00?6
fATEP
TEMP
CENT
12.
11.
ft.
??.
?',
15.
11.
13.
13.
12.
,7
,4
,4
,*
,7
,?
,5
,9
.5
.4
00300
no
MfVL
7 00094
T^ANSP CNDUCTVr
SECCHI FIELD
INCHES MICPOMHO
I?.4
1?.0
9.6
9.6
Q. >
fl.fl
10.0
9.7
9.?
100
84
144
160
160
160
150
ISO
150
150
155
150
155
155
ME^ALES 2111202
5
00400
PH
su
H.30
8.10
7.70
8.30
6.40
7.40
7.40
7.70
7.70
7.65
7.50
00410
T ALK
CAC03
MG/L
48
52
49
52
51
46
49
44
46
43
48
46
0038
00630
N02&N03
N-TOTAL
MG/L
0.160
0.170
0.220
0.060
0.050
0.190
0.100
0.270
0.140
0.150
0.150
0.200
FEET DEPTH
00610
NH3-N
TOTAL
MG/L
0.010
0.010
0,020
0.080
0.060
0.060
0.060
0.050
0.030
0.030
0.020
0.020
00665
PHOS-TOT
MG/L P
0.021
0.011
0.020
0.032
0.031
0.02B
0.032
0.015
0.012
0.013
0.015
0.016
00666
PHOS-OIS
MG/L P
0.011
0.006
0.007
0.017
0.014
0.012
0.012
0.012
0.008
0.007
0.007
0.010
DATE TIME DEPTH CHL^PHYL
FkO^ OF a
TO DAY FEET INVL
72/06/0? 14 00 0000 l.BJ
72/07/30 09 15 0000 6.7J
7?/10/OK 11 55 0000 7.'J
J VALU«-_ K.MO'.-'N TO -\f
-------
STORET RETRIEVAL DATE 74/11/26
360913
44 56 00.0 073 20 30.0
LAKE CH4MPLAIN
36019 NEW YOHK
00010
DATE TIME DEPTH WATER
FROM OF TEMP
TO DAY FEET CENT
72/06/02 15 IS 0000 13.5
15 !5 0010 12.8
15 15 0025 12.4
72/07/30 08 30 0000
OS 00 0004 5>i.«
08 00 0015 21.1
72/10/OS 16 05 0000
1ft 05 0004 14.fl
16 05 0015 14.7
00300
DO
MG/L
11.6
12.0
11. A
7.8
8.2
K>.4
10.6
00077
TRANSP
SECCHI
INCHES
125
132
1 hP
00094
CNOUCTVY
FIELD
MICPOMHO
130
130
130
135
130
140
146
146
145
11EPALES
5
00400
PH
SU
8.20
8.30
8.10
7.6C
7.40
7.20
7.80
7.85
7.80
00410
T ALK
CAC03
MG/L
41
37
38
42
43
42
44
44
46
211
0017
00630
N02S.N03
N-TOTAL
MG/L
0.140
0,150
0.150
0.050
0.040
0.070
0.100
0.100
0.100
1202
FEET DEPTH
00610
NH3-N
TOTAL
MG/L
0.050
0.060
0.070
0.050
0.060
0.060
0.050
0.050
0.060
00665
PHOS-TOT
MG/L P
0.017
0.017
0.012
0.020
0.042
0.022
0.006
0.011
0.010
00666
PHOS-DIS
MG/L P
0.007
0.005
0.004
0.013
0.019
0.012
0.004
0.007
0.007
DATE TIME DEPTH CHL$e>HYL
FROM OF A
TO DAY FFFT UG/L
72/06/0? 15 15 0000 10.U
72/07/30 08 00 0000 12.1J
7P/10/OS 16 0^ 0000 ?.4J
J V4LUL KNOwhJ TO "F I'.
-------
RE.1R1RIM.
360914
44 3B 00.0 073 15 00.0
LAKE CHAMPLAIN
36013 NEW YORK
00010
DATE TIME DEPTH WATER
FROM OF TEMP
TO DAY FEET CFNT
7P/07/30 09 10 0000
09 10 0004 ?2.4
11EPALES
5
00300 00077 00094 00400
no T*ANSP CNDUCTVY PH
SECCHI FIELD
MG/l INCHES MICROMHO SU
7? 100 7.20
ft.O 100 7.00
31
30
2111202
0006 FEET DEPTH
00*10 00630
T ALK NOP5.N03
CAC03 N-TOTAL
MG/L MG/L
0.180
0.180
00610
NH3-N
TOTAL
MG/L
0.060
0.050
00665
PHOS-TOT
MG/L P
0.018
0.016
00666
PHOS-DIS
MG/L P
0.012
0.011
DATE TIME DEPTH CHLKPHYL
FROM OF A
TO DAY FEET UO/L
7?/07/30 09 10 0000
4.9J
j VAL'JF.
TO
I"
-------
136
APPENDIX D
ALGAL ASSAY GROWTH CURVES AND CHEMISTRY
FOR
EPA AND VERMONT-BEAK SAMPLES
-------
137
pIS IKON DG/L
TOT MAfsjCi UG/L
^KaCl SI MG/L
•.•IT. nr ^M/L
"1C.' :JIC MG/I
SUMMARY FOP LAKE CHAMPLAIN
LAKE CODF 5001
SAMPLE # 72
crnnucr
IJH
'H KL INJTY
HCU } AI_I<
A MM ON J A
1,1 1 r «• n H
N T T - « r r
S-»l. KjF.L
K.FL'vI T
^0-> + K'03
TOT HH^S
Dis ^HOS
OWT u^, ^
mr Mi^o
r^LciuM
MfJ;'.jSlil"<
SOi) lO'M
r^i. O'-'Ti'jh"
SiJi.t- aTP
Tor f^O'-j
UMMO
Md/L
MO/L
MG/L
MG/l.
M Ci / L
^0/L
MG/L
MG/L
MG/L
MG/L
MO/I.
MG/L
MG/L
;.<(-/ 1
MG/|.
MG/L
f^G/l...
Uo/L
RAtl
H50001
5001-72K
A 126.000
8.300
47,000
47.000
.050
.017
.OS1
1.050
.630
.104
A .079
.022
.017
A 56.000
SI. 000
4.^.00
T3. HOO
8.000
36.000
470.000
AUTOCLAVED
7150101
5001-72A
A 184.000
7.500
52.000
5?. 000
.064
.024
.150
.350
.170
.011
.012
6^.000
17.700
6.000
6.300
V.OOO
25.000
20.000
12.000
40.000
20.000
1.150
11.000
"LSULT
-------
138
X CONTROL
-f 10.0 N
f .006 P
-+.012 P
DAY!
2'
-------
139
X CONTROL
.024 P
t .06 P
10.0 N + .06 P
DAYS
-------
A I
140
CncMIST^V SUMMARY FOP LAKt CHAMPLAIN
LAKE CODE 5001
SAMPLE # 78
KAW AUTOCLAV
71b0002 715010
COiMO
FJM
ALKL
t-'CO'i
AM; 10
IMTH
Ml T-v
SOL
KJh'L
i'JG-1*
TOT
MIS
np r
TUT
CALC
uiCl
INTY
ALK
•^ I A
TTF
•ATK
KJtL
wIT
1^03
PHOS
PHOS
uS H
«-1 fl P l )
i'JM
LJMHf)
Mii/L
MG/L
MG/L
MG/L
MG/L
MG/L
'^G/L
MG/L
MG/L
MG/L
MG/L
^G/L
MG/L
•'/:•••. IS TDM Mft/[_
sou[
rn.u
sut.r
TOT
til**
TOT
01 ~>
'"fcAC
nic
'.I I
'JiM
-» iDf
aTK
IH'JfM
1 ^OM
'.1 AMG
M6M,
r si
TIC
tic
MG/L
MG/L
MC-/L
UG/L
UG/L
UG/L
UG/L
MG/L
MG/L
MI,/L
bOO
ue.
H.
41.
41.
A .
A
A
1.
•
.
.
•
•36.
16.
4.
b.
H.
?.? •
«0.
<»o.
•
6.
•1-/HW
ouu
(106
oos
OUO
700
900
?00
000
0 0 0
00 (.1
000
170
000
soo
10«.
7.
26.
26.
.
•
.
A
.
.
.
3b.
9.
3.
4.
6.
16.
< 40.
< 20.
A
4.
1-7
000
100
000
000
06^
001
110
?90
117
009
006
000
300
400
000
000
000
000
000
2SO
000
-------
.
2 .
JO1'
I
@,,.
10
10
141
>T CONTROL
-f 10.0 N
t -006 P
-*• .012 P
DAYS
-------
142
_J
\
(D
o:
Q
DfW
-------
143
,.( .,^L "-.Say CH^>1ibT*Y SUMMARY FOtf LAKE CHAMPLAIN
LAKH CODE 5001
SAMPLE # 66
AUTOCLAVEO
rrv-i
p-i
fvt.i*
t-c )
A MM
r<- J F
'-,' I F
SOL
*jr:
NO''5
TOT
0 I s
(V [
T-'H
'" A L
M A ' i
s •: i i j
("ML
^Ul
TOT
1 IS
TOT
nis
-P A
oil":
OK:
OUCT
L T IN T Y
^ AL«
0,^1 A
•-1 1 I F
l':iTK
K JfL
L'MIT
+ -J03
rrl'jS
r-HOS
AS 'J
(Hrt^l.)
C 1 ui-,
i iSl'J.^.
f.iv.
MH'TOi-
K a I £
I »|
v, A N f,
MA Nd
Of SI
nr
u 1 o
UMHO
M(?/L
MG/L
MT-/L
MG/L
MfVL
Mf^/L
MG/L
M(VL
MG/L
i^G/L
P''O/L
Mo/L.
MS/L
f-Hj/L
MA/L
MG/L
Mf,/L
UG/L
itG/L
UG/L
UG/L
MO/L
M
-------
10
2 _
n
.
ii
iiJ
»JIOJ ±
X CONTROL
-f 10.0 N
f .006 P
.012 P
IP
DAYS
-------
145
ID
JO
X CONTROL
+ .024 P
f .06 P
->10.0 N + .06 P
-i
,
DAYS
-------
146
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station SCVT
Autoclaved - Filtered
179.
20.
2*4.
4.
6.3
51.
SI.
.7
.bQ<+
.F3*
.007
.001
la.
73.
51.
19.
5.2
5.
1.7
1.2
25.
?.
17.
19.
3.
10.
1*.
3.
UMHO
MG/L
MG/L
MG/L
MG/L
HC/L
MG/L
MG/L
MG/L
MC./L
MG/L
MC/L
MC/L
MG/L
MG/L
MC-/L
MC/L
MC/L
MG/L
UG/L
UG/L
UG/L
UC/L
Uf/L
UG/L
UC/L
UG/L
CCNCUCT
OIS IN C
T OISS C
0 OSG C
FH
ALKLINTY
HC03 ALK
KJELNIT
NITRITE
A^MCNIA
DIS PHOS
CRT AS P
SULFATf
TOT HARD
CA HARD
CALCIUH
*A3NSIU"
S03IUM
PCTASIUW
REACT si
ciseoRCN
CISCOSLT
OISCOPFR
CIS IRON
DIS MANG
CISMQLYB
CIS ZINC
OIS MERC
X
X
X
X
X
53
-------
147
X CONTROL
-I- 10.0 N
f 0.06 P
-»10.0 N + 0.06 P
DAYS
-------
148
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station SCVT
Filtered Only
2<+7.
21.
25.
<*.
7.8
92.
92.
.6
. uU2
• uOT)
.G09
. Ibk
.005
.C02
23.
125.
56.
32.
fc.3
k. 8
1.**
.cq
25.
2.
7.
<+9.
7.
10.
7.
1.
UMHO
MG/L
MG/L
MG/L
MG/L
MG/L
MC/L
MG/L
MG/L
MG/L
MG/L
MC/L
MC/L
MG/L
MG/L
MH XL
MG/L
MG/L
MGXL
MG/L
MG/L
UG/L
UG/L
UC/L
UG/L
UG/L
UG/L
UG/L
UC/L
CCNOUCT
CIS IN C
T OISS C
C ORG C
Fh
ALKLINTY
HC03 ALK
KJELNIT
NITRITE
NITRATE
AMMCNIA
N02fN03
CIS PHCS
ORT AS P
SLLFATE
TCT HAPG
CA HARD
CALCIUM
KAGNSIUM
SCOIUM
PCTASIU^
REACT SI
CISGORCN
CISCOOLT
CISCOFFR
DIS I*PN
CIS MANG
CISMOLY9
OIS ZINC
CIS MERC
X
Y.
X
X
X
X
-------
149
V CONTROL
4- 10.0 N
0.06 P
10.0 N + 0.06 P
-------
150
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station CPB
Autoclaved - Filtered
236.
29.
33.
**.
6.5
36.
86.
. i*
.001
.004
• C65
.005
.015
.Cll
13.
109.
76.
32.
5.8
<4. 3
1.5
. 9U
25.
2.
18.
52.
3.
U.
1<4.
1.
UMHC CCNCUCT
MC/L CIS IN C
MG/L T DISS C
MG/L D OPG C
PI-
MG/L ALKLINTY
MG/L HCJ3 ALK
MG/L KJELNIT
MG/L NITRITE
MG/L NITPATE
MG/L flMMCNIA
MC/L KC2*N03
MG/L CIS PHCS
MG/L CRT AS P
MG/L SULPATE
MG/L TOT HA*r)
MC/L CA HA*D
MG/L CALCIUM
MG/L PflGNSILK
MG/L SCDIUM
MG/L PCTASIU*
MG/L REACT SI
UG/L CISSORON
UG/L DISCOqLT
UC/L CISCOPPR
UG/L CIS IRCN
UG/L CIS M4NG
UG/L CIS^OLYB
UG/L CIS ZINC
UG/L CIS ME«C
X
X
X
X
53
-------
151
IQ
X CONTROL
-f 10.0 N
f 0.06 P
-vlO.O N + 0.06 P
DAYS
—i—
t<
—I
24
-------
152
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station CPB
Filtered Only
2<+7.
21.
25.
ft.
7.9
92.
92.
.2
.001
.009
.013
.009
.006
.Ul
17.
113.
<»2.
33.
6.2
4.6
1.5
.C5
2&.
2.
11.
52.
2.
10.
9.
1.5
UHHO
MG/L
MG/L
MC/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
Mf,/L
MC/L
MG/L
MG/L
MG/L
Mf/L
MG/L
UG/L
UC/L
UG/L
UG/L
UG/L
UC/L
UG/L
UG/L
CONDUCT
DIS IN C
T OISS C
C ORG C
FH
ALKLINTY
HC03 ALK
KJELNIT
NITRITE
NITRATE
AMMONIA
NC2fN03
DIS PHOS
CRT AS F
SULFflTE
TOT HARD
CA HARD
CALCIUK
MAGNSIUH
SCOIUM
FOTASIUH
REACT si
DISBORCN
CISCOBLT
DISCOPFR
CIS IP.CN
DIS MANG
C13^0LY9
DIS ZINC
DIS MFPC
X
X
X
X
X
-------
153
ID*"
10
X CONTROL
-f 10.0 N
f 0.06 P
_»10.0 N + 0.06 P
DAYS
20
-------
754
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station E
Autoclaved - Filtered
197.
36.
<+l.
5.
6.
62.
62.
.2
.005
.G3<4
.085
.C3t
.Q<»
.039
16.
78.
68.
23.
<».3
6.1
1.2
1.32
26.
2.
10.
**9.
5.
10.
19.
1.
UMHO CONDUCT
MG/L CIS IN C
HG/L T DISS C
MG/L C ORG C
PH
MG/L ALKLlNTY
MG/L HC03 ALK
MG/L KJtLNIT
MG/L NITRITE
MG/L MTRATE
MG/L AMMCNIA
MC/L NC2+N03
MG/L CIS PHOS
MG/L CRT AS P
MG/L SULFATfc
MG/L 1CT HARD
MG/L CA HARD
MG/L CALCIUP
MG/L MAGNSIUM
MG/L SOOIUM
MG/L FOTASIUM
MG/L REACT SI
UC-/L CIS^ORCN
UG/L CISCOGLT
UG/L DISCOPPR
UG/L CIS IRON
UG/L CIS MANG
UG/L DISMOLYB
UG/L OIS ZINC
UG/L OIS MERC
X
X
X
X
X
X
53
-------
155
X CONTROL
•f 10.0 N
f 0.06 P
-HO.O N + 0.06 P
12
DAYS
-------
156
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station E
Filtered Only
A
A
A
<
<
<
*lk*.
19.'
5.
7.7
66.
66.
.<+
.C05
.023
» G<+6
.028
.016
.007
13.
71.
61.
2^ .
<*.3
6.1
1.
.97
25.
2.
5.
99.
1.
10.
8.
1.5
UMHO CCNOUCT
MG/L CIS IN C
MG/L T 3ISS C
MG/L D ORG C
FH
MC/L ALKLINTY
MG/L HC03 ALK
MG/L KJELNIT
MG/L NITRITE
MG/L NITRATE
MG/L APMCNIA
MG/L NC2+N03
MG/L CIS PHOS
MG/L CRT AS P
MG/L SULFATL
MG/L TOT HARD
MG/L CA HARD
MG/L GALCIU^
MG/L HAGNSIUM
MG/L SCOIUM
MG/L FOTASIUM
MG/L REACT SI
UC/L CIS^ORCN
UG/L CISC09LT
UG/L CISCOPFR
UG/L CIS IR.CN
UG/L CIS MANG
UG/L QISMOLY8
UG/L CIS Zlh'C
UG/L CIS MERC
X
X
X
X
X
-------
157
10 1 •
X CONTROL
+ 10.0 N
f 0.06 P
-*10.0 N + 0.06 P
DAYS
16
-------
158
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station C
Autoclaved - Filtered
173.
13.
17.
<*.
7.«»
59.
55.
.2
. C06
.052
.G9<*
.051
.03*
.C66
15.
72.
52.
21.
3.8
5.7
1.
1.5
d5.
2.
6.
111.
1.
ID.
8.
3.
UMHO
MG/L
MG/L
MC/L
MC/L
MG/L
MG/L
MC/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MC/L
MG/L
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
CONDUCT
DIS IN C
T OISS C
G ORG C
FH
ALKLINTY
HC01 ALK
KJELNIT
NITRITE
NITRATE
AMMCNIfl
N02+N03
CIS PHCS
CRT AS P
Sl'LFATE
TOT HARD
CA HARD
CALCIUM
PAGNSIU^
SCOIJM
FOTASIUM
REACT SI
DISBORGN
OISCO-3LT
CISCOPFR
DIS IRON
CIS MANG
DISMOLYB
DIS ZINC
cis MERC
X
X
X
X
X
X
-------
159
ID* •
ia
X CONTROL
-f 10.0 N
f 0.06 P
—HO.O N + 0.06 P
4
8
DAYS
16
20
. i
-------
160
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station C
Filtered Only
175.
25.
33.
4.
6.
53.
53.
.2
.006
.056
.067
.G56
.015
*G13
15,
84.
52.
22.
3.4
6.2
1.1
1.63
25.
2.
5.
IS.
1.
10.
3.
1.
UMHO CCNDUCT
MG/L DIS IN C
MG/L T OISS C
MG/L D ORG C
FH
MG/L fiLKLINTY
MG/L HC03 ALK
MG/L KJHLNIT
MG/L NITRITE
MG/L NITRATE
MG/L AMCNIA
MG/L N02*N03
MG/L DIS PHOS
MG/L CRT AS P
MG/L SULFATE
MC/L TCT HARD
MG/L CA HARD
MG/L CALCIUM
MG/L KAGNSIUM
MG/L SODIUM
MG/L FCTASIUM
MG/L REACT SI
UG/L CISQORON
UG/L OISC09LT
UG/L OISCOPF*
UG/L DIS IRON
UG/L OIS MANG
UG/L DISMOLY3
UG/L DIS ZINC
UG/L OIS MERC
X
X
X
X
X
X
53
-------
161
ID
X CONTROL
-f- 10.0 N
f 0.06 P
->10.0 N + 0.06 P
DAYS
-------
162
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station M
Autoclaved - Filtered
18<<*
21.
25.
(*.
6.3
56.
56.
.<*
.oa<*
.C18
.U76
.G18
.01
.C09
19.
71.
56.
21*
5.
i».E
!•«*
.95
25.
2.
7.
22.
3.
10.
8.
1.
UMHO CONDUCT
MG/L CIS IN C
MG/L T OISS C
MG/L C ORT, C
FH
MC/L ALKLINTY
HC/L HC03 ALK
MC/L KJELNIT
MG/L NITRITE
MG/L MTRATt
MG/L AMMCNIA
MG/L N02+N03
MG/L CIS PHCS
MG/L ORT AS P
MG/L SULFATE
MG/L TOT HARD
MG/L CA HARD
MC/L CALCIUH
MG/L MAGNSIUH
MG/L SOOIUM
MG/L FCTASIUH
MG/L REACT SI
UG/L OISQORCN
UG/L CISC08LT
UC/L CISCOPFR
UG/L CIS IRON
UC/L CIS MAKG
UG/L DISMOLY8
UG/L DIS ZINC
UG/L DIS MERC
X
X
X
X
X
X
58
-------
163
10*"
.
X CONTROL
-f- 10.0 N
f 0.06 P
-+10.0 N + 0.06 P
DAYS
-------
164
VERMONT - BEAK ALSAL ASSAY CHEMISTRY
Station M
Filtered Only
A
A
A
A
A
A
<
<
A
A
A
<
A
222.
18.
22.
*+•
7.7
31.
11.
.2
.003
.014
,035
• 01<+
.017
.012
17.
92.
75.
30.
5.*+
5 .
1.
10.
a.
2.
U^HO CCNOUCT
MG/L CIS IN C
MG/L T OISS C
MG/L D ORG C
PH
MG/L ALKLINTY
MG/L HC03 ALK
MG/L KJELNIT
MG/L NITRITE
MG/L NITRATE
MG/L AMMONIA
MG/L NC2+N03
MG/L DIS PHCS
MG/L CRT AS P
MG/L SLLFATE
MC/L TCT HARD
MG/L CA HARD
MG/L CALCIUM
MC/L MAGNSIU*
MG/L HAGNSIUM
MG/L MAGNSIUM
MG/L SC'JIUM
MG/L SODIUM
MG/L SODIUM
MG/L FOTASIUM
MG/L FOTASIUM
MG/L FCTASIUM
MG/L REACT SI
UG/L CISGORCN
UG/L CISBOR.CN
UG/L C1SCOHLT
UG/L DISCOPFR
UG/L DIS IRON
UG/L DIS MANG
UG/L DISPOLYB
UG/L DIS ZINC
UG/L DIS MERC
X
X
X
X
X
X
3
3
3
3
3
3
3
3
58
-------
165
10
X CONTROL
-f 10.0 N
f 0.06 P
-+10.0 N + 0.06 P
•24
-------
166
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station Buoy 37
Autoclaved - Filtered
zse.
20.
2<*.
**.
7.7
32.
82.
.3
.C02
.Lll
.016
.003
.COS
.009
16.
98.
61.
32.
e.
6.2
1.7
1.C5
25.
2.
7.
52.
2.
1C.
6.
2.
UHHO CONDUCT
MG/L CIS IN C
MG/L T OISS C
MG/L D (HG C
FH
MG/L ALKLINTY
MG/L HC03 ALK
MG/L KJELNIT
MG/L MTfilTE
MG/L NITRATE
MG/L A K M C N I A
MG/L N02«-N03
MG/L CIS PHCS
MG/L ORT AS P
MG/L SULFATE
MC/L TOT HARD
MG/L Cfl hflP.n
MG/L CALCIUM
MG/L M/SGNSIUf
MG/L SUDIUM
MG/L FCTASIU^
MG/L RFACT SI
UG/L DlSeORCN
UG/L CISC08LT
UG/L CISCOPFR
UG/L CIS IRON
UG/L DIS MANG
UG/L CISMOLY9
UG/L DIS ZINC
UG/L CIS MERC
X
X
X
X
X
X
53
-------
167
X CONTROL
-f- 10.0 N
f 0.06 P
10.0 N + 0.06 P
DAYS
i<
-------
168
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station Bouy 37
Filtered Only
31.
37.
b.
6.
50.
50.
.3
.coe
.CIS
.056
A .003
.006
.CD3
19.
67.
52.
19.
5.Z
5.9
1.6
A .5<+
< 25.
2.
6.
21.
3.
< 10.
10.
1.
MG/L
MG/L
MC/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MC/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
CONDUCT
CIS IN C
T QISS C
C OSG C
FH
ALKLINTY
HC03 ALK
KJELNIT
MTRITE
NITSATE
AMMCNIA
NC2+N03
CIS PHCS
CPT AS P
SULFATF.
TOT HARD
CA HA«D
CALCIUM
I^AGNSIUI^
SCOIUM
FOTASIUM
PEACT si
DIS90RCN
CISCOBLT
DISCOPPR
CIS IRCN
CIS MAKG
DISMOLY9
DIS ZINC
CIS MERC
X
X
X
X
X
X
58
-------
169
•
X CONTROL
-h 10.0 N
f 0.06 P
-fclO.O N + 0.06 P
DAYS
i<
20
-------
170
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station IP1 (intake)
Autoclaved - Filtered
200.
<+*«•
48.
^t
•5.8
55.
c,5.
.£+
• i.03
. G7tt
.105
!cli
,002
19.
7b.
60.
2£.
5.2
fc.l
!.*»
.7**
25.
2.
B.
T 7
*"«;!
10.
6.
3.5
UMHO
MG/L
MG/L
MC/L
MG/L
MG/L
MC/L
MC/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
ML/L
MC/L
MG/L
MC/L
MG/L
MG/L
UG/L
U&/L
'JG/L
UC/L
UG/L
UC/L
UG/L
UC/L
CONDUCT
CIS IN C
T DISS C
D 05G C
PH
f-LKLlNTY
HC03 ALK
KjcLNIT
NITRITE
MTKATE
AMMONIA
DIS PHCS
CfcT AS P
SULFATC
TCT HARD
CA HARD
CALCIUM
MAGNSIUM
SC01UM
PCTASIUM
PtACT SI
DIS30RCN
CISC08LT
C1SCOPFK
CIS IRON
CIS MANG
OISMOLY8
CIS ZINC
OIS MERC
X
X
X
X
X
X
58
-------
171
X CONTROL
-f- 10.0 N
f 0.06 P
—HO.O N + 0.06 P
DAYS
i •
-------
172
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station IP! (intake)
Filtered Only
19<4.
12.
17.
5.
7.7
58.
59.
,3
.002
.026
*021
.C26
.G0<*
.CG2
19.
76.
57.
23.
5.
5.<*
1.1
.12
25.
2.
5.
30.
<4.
10.
*.
1.
UMHO CONDUCT
MG/L DIS IN C
MG/L T OISS C
MG/L 0 ORG C
FH
MG/L ALKLINTY
MG/L HC03 ALK
MG/L KJELNIT
MG/L MTKITE
MG/L NITRATE
MG/L AMHCNIA
MG/L K024-NO?
MG/L CIS PHOS
MG/L CRT AS P
MG/L SULFATE
MG/L TOT HARD
MG/L CA HARD
MG/L CALCIUM
MG/L PAGNSIUM
MG/L SCDIUM
MG/L FOTASIUM
MG/L REACT SI
UG/L CISejRON
UG/L DISCOSLT
UG/L OISCOPPR
UG/L CIS IRON
UG/L CIS HANG
UG/L DISNOLYD
UG/L OIS ZINC
UG/L DIS MERC
X
X
X
X
X
X
-------
173
10
X CONTROL
-f 10.0 N
f 0.06 P
10.0 N + 0.06 P
B
DAYS
. .
-------
174
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station IP2 (effluent)
Autoclaved - Filtered
630.
< 1.
17.
17.
6.9
6.
6.
2.5
. 004
.CJ5
.72
A .006
.(•62
• C*» 4
l»+2.
120.
90.
<+2.
3.<+
7C.
2.7
.3
-------
175
10
X CONTROL
-f 10.0 N
f 0.06 P
_>10.0 N + 0.06 P
B
-------
176
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station IP2 (effluent)
Filtered Only
A
A
A
A
A
I A
<
<
A
A
A
<
A
599.
2.
16.
1<*.
6.4
3.
3.
2.4
.C02
.005
.77
.005
.021
.Cl
106.
99.
90.
40.
3.
3.
3.
70.
70.
71.
Z.Z
2. ^
2.45
.19
2b.
25.
2.
9.
114.
245.
10.
23.
INSUF. SAMPL
UMHO CONDUCT
MG/L CIS IN C
MG/L T OISS C
MG/L D ORG C
Fh
MG/L ALKLINTY
MG/L HC03 ALK
MG/L KJ£LNIT
MC-/L NITRITE
MG/L NITRATE
MG/L AfMCNIA
Mt/L NC2fN03
MG/L CIS PHCS
MG/L CRT AS P
MG/L SULFATE
MC/L TCT HARD
MC/L CA HARD
MG/L CALCIU*
MG/L MAGNSIUM
MG/L WAGNSILf'
MG/L PAGNSIUM
MG/L SOOIUM
MG/L SCOIUM
MC/L SCDIUM
MG/L PCTASIUH
MC/L FOTASIUM
MG/L FCTASIUM
MC/L RFACT SI
UG/L CIS60RON
UG/L DISeORON
UG/L CI3COBLT
UG/L CISCOPFR
UG/L DIS IRON
UG/L CIS MANG
UG/L nis^OLYg
UG/L DIS ZINC
MG/L CIS MERC
X
X
X
X
X
X
3
3
3
3
3
3
i
!
3 53;
3 58;
t
I
-------
177
X CONTROL
-f 10.0 N
f 0.06 P
~*10.0 N + 0.06 P
DAYS
-------
178
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station 189B
Autoclaved - Filtered
289.
22.
26.
6.
6.5
66.
66.
.5
• C06
.089
.21
.C8<+
.022
.C2
29.
91.
79.
• 32.
4.6
15.
1.8
.kk
25.
3.
7.
17.
<+.
10.
12.
.5
UPHO
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MG/L
MC/L
MG/L
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
UG/L
CONDUCT
DIS IN C
T OJSS C
C ORG C
FH
ALKLINTY
HC03 ALK
KJELNIT
NITRITE
NITRATE
AMMCNIA
N02+NO?
CIS PHOS
CRT AS P
SULFATE
TOT HARD
CA HARD
CALCIUM
MAGNSIUM
SCOIUM
FOTASIUM
REACT SI
DISBORON
CISCOBLT
OISCOPPR
CIS IRON
DIS MAKG
DISMOLYB
DIS ZINC
DIS MERC
X
X
X
X
X
X
u
-------
179
10
IQ
X CONTROL
-f 10.0 N
f 0.06 P
-vlO.O N + 0.06 P
DAYS
20
-------
180
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station 189B
Filtered Only
23
-------
181
X CONTROL
-f 10.0 N
f 0.06 P
->10.0 N + 0.06 P
|Q
A
a
DAYS
J6
20 2
-------
182
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station Buoy 34
Autoclaved -Filtered
2U7.
25.
30.
5.
6.
-------
183
"
X CONTROL
•4- 10.0 N
f 0.06 P
-klO.O N + 0.06 P
DAYS
-------
184
VERMONT - BEAK ALGAL ASSAY CHEMISTRY
Station Bouy 34
Filtered Only
257.
19.
23.
7.2
76.
76.
.5
• GfB
.087
• udi
.C75
.009
.COS
27.
99.
78.
3D.
5.9
5.9
5.9
9.5
9. lj
9.5
1.5
1.5
1.5
.36
25.
25.
2.
9.
37.
9.
1C.
17.
5.
UMHO CONDUCT
MG/L as IN c
MG/L T QISS C
FH
MG/L ALKLINTY
MC/L HC03 ALK
MG/L KJELNIT
MG/L NITRITE
MG/L NITRATE
MG/L AM-HONIA
MG/L NC2+N03
MG/L CIS PHOS
MG/L CRT AS F
MG/L SULFATF
MG/L TCT HARD
MG/L CA HARD
MC/L CALCIUM
MG/L NAGNSIUM
MG/L MAGNSIUH
MG/L MAGNSIUM
MG/L SCDIUM
MG/L SODIUM
MC/L SCOIUM
MG/L FCTASIUN
MG/L FCfASIUM
MG/L FCTASIUM
MG/L RtACT SI
UG/L DISGORON
UG/L DIS90RCN
UG/L OI3COBLT
UC/L CISCOPFR
UG/L CIS IRCN
UG/L CIS MANG
UG/L C1SHOLY9
UC/L CIS ZINC
UG/L OIS MERC
X
X
X
X
X
X
3
2
3
3
3
3
3 58
3 58
-------
185
X CONTROL
-f- 10.0 N
f 0.06 P
-+10.0 N + 0.06 P
B
12
DAYS
-------
186
APPENDIX E
MEMO REGARDING PRESERVATION OF SUB-SAMPLES
FOR NUTRIENT ANALYSIS
-------
OPTIONAL mNM NO. W
H \V IM COITION
CM ppMii (« cm) »i-n.«
UNITED STATES GOVERNMENT
Memorandum
The Record
187
DATE: February 1, 1973
n-»o>- : Jac!: •'• Sakstattar
Chief, National Eutrophication Survey Program
-UBJECT: Lake Champlain Algal Assay Samples Collected by Vermont
This memo refers only to those ten samples collected from Lake
Champlain by Vermont (and T. W. Beak Consultants) September 27, 1972
and October 3, 1972. After collection the samples wera frozen and
sent air freight to Corvallis, Oregon arriving on October 6, 1972.
Upon receipt the samples were placed in a refrigerator. On October
12 processing of the samples began, i.e. they were split into equal
portions and each portion was--either filtered (0.45 micron pore
size) or autoclaved and then filtered. This is the point at which
the improper amount of mercuric chloride preservative was added.
The question will probably arise as to why we bothered to pre-
serve the samples anyway after they had been in a relatively un-
preserved state (except for cooling which certainly retards
biological activity and is an accepted preservative method for
short periods) from October 6 to October 12. The reply to the question
is that CLS (Consolidated Laboratory Services) provides analytical
services to the entire laboratory on a first come - first serve basis.
Samples submitted for analysis are not refrigerated by CLS and since
there is no guarantee that the analytical work will be done immediately,
it is standard procedure to preserve the samples with mercuric
chloride (40 mg/1).
After the fiIteration or autoclaving-fiIteration, aliquots were
taken from each portion of each sample to be preserved with mercuric
chloride and sent to CLS for analysis. My algal assay staff inadvertently
picked up the wrong container of mercuric chloride to do the preserving.
The net result was that instead of preserving at a concentration of
40 mg/1 mercuric chloride, each aliquot contained only 0.04 mg/1 mercuric
chloride which was insufficient to prevent biological activity. The
improperly preserved samples were sent to CLS on October 12 and analyses
did not begin until October 25.
Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan
-------
188
- 2 -
The question has also been raised as to why analyses were not
done on the raw samples before autoclaving-f literati on or filteration.
At the time these samoles were received, my staff indicated that thsra
was not enough sample volume to get an analysis for each raw sample,
as well as after each treatment. Faced with the choice of either
analyzing before or after the autoclaving-f literati on or filteration •
process, they chose to analyze after the treatments but before the
samples were set up for the algal assay so that the chemistry in
the water just prior to the assay would be known.
'Jack H. Gakstatter
cc: Allyn Hemenway, Region I
-------
189
APPENDIX F
MUNICIPAL SEWAGE TREATMENT PLANT
and
INTERNATIONAL PAPER CO. EFFLUENT DATA
-------
190
Phosphate Concentrations and Flow Rates
for the
International Paper Company Mill Effluent During 1972-73
Data Provided by the New York Department of Environmental Conservation
Total pounds
Effluent Flow Phosphate Cone. Phosphorus discharged
(mg/1 as POd) dally (as P) _.
1.7 67.9
1.8 75.3
2.3 100.8
2.4 99.5
1.07 48.5
1.34 69.0
1.3 69.0
0.78 44.4
2.3 107.7
1.8 78.9
0.8 35.6
0.4 16.1
0.6 25.2
0,6 20.7
2.0 72.6
1.6 66.4
2.0 97.1
1.7 95.0
Average discharge equals 66 IDS P/day or 24,090 Ibs P/year
Month & Year
Jan 1972
Feb 1972
Mar 1972
Apr 1972
May 1972
June 1972
July 1972
Aug 1972
Sep 1972
Oct 1972
Nov 1972
Dec 1972
Jan 1973
Feb 1973
Mar 1973
Apr 1973
May 1973
June 1973
(mgd)
14.8
15.3
16.1
15.3
17.1
18.8
19.7
21.3
17.2
16.3
16.4
14.8
15.1
12.4
13,4
15.3
17.9
20.7
-------
DATE
FROM
TO
73/01/0^
CP-
73/01/09
73/02/06
CPU)-
73/02/06
73/03/02
CP-
73/03/02
73/04/10
CP(T>-
73/04/10
73/05/07
CP(T)-
73/05/07
73/05/08
73/06/07
CP ( T ) -
73/06/07
73/07/05
CP(T)-
73/07/05
73/08/06
CP-
73/08/06
73/09/07
CP(T)-
73/09/07
73/10/01
CP-
73/11/02
73/12/05
CP(T>-
73/12/05
TIMF OFpT
OF
DAY FEET
11
15
09
IS
11
16
11
13
11
15
11
16
11
15
11
14
08
14
10
14
09
13
11
15
00
00
45
15
00
00
00
00!
00
00
00
00
00
30
00
30
00
00
30
45
00
00
30
30
00630
N-TOT4L
M13/L
0
0
0
, . 1
6
i
0
0
0
0
0
14
0
.630
.700
.260
.200
.470
.200
.640
.480
.140
.105
.110
.400
.060
00625
TOT KJEL
N
MG/L
•
24
??
31
13
i - • ..
24
7
15
16
17
15
25
3
15
.000
.000
.000
.300
.000
.300
.000
.000
.000
.700
.100
.500
.000
360952 Pr*360952 P027000
44 42 00.0 073 27 00.0
PLATTSBURG (CITY OF)
36013 7.5 PLATT53UPG
0/LAKE CHAMPLAIN
LAKE CHAMPLAIN
11EPALES 2141204
4 0000 FEET DEPTH
00610 00671 00665 50051 50053
NH3-N PHOS-DIS PHOS-TOT FLO* CONDUIT
TOTAL ORTHO RATE FLOK-MGO
MG/L MG/L P MG/L P INST MGO MONTHLY
3.400
2.700
2.500
l.f-AO
2.R50
3.500
1.320
0.150 2.600
6.700
7.650
3.300
6.200
7.050
6.700
7.100
6.700
6.300
1.900 1.400 2.100 7.100 7.120
3.700 3.160 7.400 6.350 6.600
0.630 0.750 1.750
0.520 1.590 3.800 6.560
1.470 3.200 5.100 6.200
1.600 3.200 5.950 5.130
4.250 5.000
11.600 3.150 5.900 6.000 5.000
0.?/7 0.740 Z.650 12.000 1^.000
-------
STORET RETRIEVAL DATE 74/11/27
00630
DATE TIME DEPTH N02&N03
FROM OF N-TOTAL
TO DAY FEET MG/L
74/01/03 11 00
CPJTI-
74/01/03 16 00
360952 PR3609S2 P027000
44 42 00.0 073 27 00.0
PLATTSBURG (CITY OF)
36013 7.5 PLATTSBURG
0/LAKE CHAMPLAIN
LAKE CHAMPLAIN
11EPALES 2141204
4 0000 FEET DEPTH
00625
TOT KJEL
N
MG/L
00610
NH3-N
TOTAL
MG/L
00671
PHOS-D1S
OPTHO
MG/L P
00665
PHOS-TOT
MG/L P
50051
FLOW
RATE
INST MGD
50053
CONDUIT
FLOW-MOD
MONTHLY
0.480
15.500
0.750
0.800
1.500 16.000 16.000
-------
S001S1 P*S001S1
44 29 00.0 073 13 JO.O
rtUHLINhTON MAIN
'irt 7.S
P021500
LAKE
CHAMh»LAIN
11EPALES 21
4 000
DATE
oc63a
TIME DEPTH NO'*.N03
FROV OF M-TOTAL
TO
7?/],/?q
CP < T > -
7?/l 1/P.9
7?/12/?o
CP(T)-
7?/1 2/29
73/01/31
C°(T)-
73/01/31
73/03/02
CP(T>-
73/03/0?
73/JM/30
r.° tT) -
73/03/30
73/04/30,
CP(T)- y
73/04/30
73/06/04.
CD (T) -
73/06/04
73/T7/0?
CP IT) -
73/07/0?
73/07/31
CP (T) -
73/07/31
73/3H/-T1
C° ( T ) -
73/-5a'31
73/01/30
fP(T)-
73/09/30
73/10/31
Cp (T) -
73/10/31
OftV FFFT MG/L
0«
16
08
16
0**
15
OH
16
OB
16
0-i
16
09
16
OK
16
OB
16
C8
16
OR
16
Ofl
16
00
0.760
00
00
0.490
00
00
0.8HO
00
00
0.760
00
00
3.300
00
00
0.590
00
00
1 »2Cf>
00
00
O.H30
00
00
0.170
03
00
00
00
3.400
00
ftO
0.?3D
00
00625
TOT KJEL
M
MG/L
21.000
26.000
??.ooo
27.000
21.000
24. GOO
17.000
14.00C
17.600
15.000
13.500
00610
NH3-N
TOTAL
MG/L
1.470
4.000
5.600
8.350
3.300
3.900
1.260
1.000
3.200
2. POO
3.300
00671
PhOS-DIS
OSTHO
wr,/L P
?.ooo
3.BOO
2.600
3.500
3.500
3.100
1.700
l.ftSO
1.380
2.020
4.100
3.400
00665
PHOS-TOT
Mfl/L P
2.650
R.475
4.300
7.200
7. bOO
8. 250
2.800
4.»!>00
2. "00
£.«00
4.200
50051
FLOW
WATt
INST MGD
3.010
3.200
3.000
3.000
3.000
3.0CO
3.500
3.000
3.000
2.990
?.rt6D
3.490
50053
CON'JU I T
FLOrf-MUf)
MONTHLr
3.000
3.000
3.450
3.000
3.<*00
3.000
3.000
3.000
3.000
3.150
3.100
3.310
0000 FEET DEPTH
-------
STORE! RETRIEVAL DATE 74/13/27
S001S4 AS5001S4
44 27 30.0 073 13 JO.O
SOUTH HUtLINGTON BA«HLFTS BAY *0
SO 7.5 BUMLIN&TON
P000900
LAKE CriAMPLAIN
11EPALFS
0000 FEET DEPTH
DATE
FROM
TO
72/11/2B
CP-
73/02/21
73/C3/23
CP -
73/06/25
73/08/24
C»(T)-
73/08/24
73/10/11
C**(T)-
73/10/11
73/10/29
CP(T)-
73/10/29
73/12/03
C-
OOS30
TIME DEPTH N02"W03
OF ^-TOTAL
DAY FEET MG/L
09 00
2.270
16 00
09 00 .
6.300
16 00
08
12
08
14
08
16
08
16
08
16
Oft
15
08
16
OR
16
OR
16
OB
00
00
00
00
00
no
00
00
00
00
00
00
00
00
00
00
00
00
00
5.
0.
6.
6.
4.
12.
7.
11.
11.
9.
560
320
800 '
500
900
000
630
200
200
800
00625
TOT KJEL
N
HG/L
1.200
?.180
1
.700
3.400
0
1
11
0
0
1
0
0
.600
.100
.300
.950
.390
.850
.700
.500
00610 00671 00665 50051 500S3
NH3-N PHOS-OIS PHOS-TOT FLOW CONDUIT
TOTAL 0«THO KATE FLO«(-MG[)
MG/L MG/L P MG/L P INST MOD MONTHLY
0.090 4.287 0.450 0.450
0.078 6.300 6.700 0.4UO 0.450
0.140
0.330
0.042
0.125
0.145
0.057
0.006
0.110
0*082
0.058
3.300
7.560
3.700
5.600
1.800
4.000
7.100
7.000
5.100
3.500
7.700
3.750
5.900
2.000
4.000
5. BOO
7.200
7.200
5.200
0.600
0.490
0.624
0.520
0.740
0.550
0.410
0.4QO
0.400
0.4MO
0.550
0.520
0.600
0.600
0.600
0.600
0.500
0.500
0.410
0.450
73/12/03 16 00
-------
P005350
44 ?v 00.0 073 Oh 30.0
ESSEA JCT
•JO 15 %IMLINGTON
T/LAKE OAMKLMN
DATE
FPOM
TO
7?/l!/24
CPx,/?ti
73/0 '•/ 2«>
C°(T) -
73/06/29
73/07/27
CP (T) -
73/07/27
73/f,*/3l
CPfTJ- ,
73/t«/31
73/09/2P
£O ( T ) -
73/09/2*
73/10/29
CP.JT)- .
00630 00625
TIME DEPTH NO'S.N03 TOT KJEL
OF N-TOT*L N
OAY FEET MG/L MG/L
n
16
n
16
10
is
11
15
10
is
10
15
11
IS
10
15
10
IS
11
IS
10
14
10
•r "
00
00
00
00
00
00
00
00
00
00
oc
00
00
oo
00
00
00
00
on
00
00
00
00
w
0.250 43
0.630 41
1.590 37
0.620 36
1.402 30
1.200 2fi
1.470 23
0.620 22
r» • 6 3 o ^3
33
0.400 26
0.310 34
.000
.000
.000
.000
.500
.500
.COO
.000
.100
.600
.000
.000
00610 00671
NH3-N PHOS-OIS
TOTAL ORTHO
MG/L MR/L P
2
10
11
14
3
9
8
8
8
14
.
14
.700
.500
.650
.400
.700
.950
.350
.600
.400
.700
.000
1.160
3.900
3.950
6.100
4.100
3.950
3.200
3.100
1.400
3.6?0
3.990
4.400
llfc^ALES 21
<* 000
'00665 50051 50051
PHOS-TOT FLOW CONUUIT
9ATE FLOrf-MGD
HG/L P INSF MOD MONTHLY
4.000
4.500
7.400
10.500
8.000
7.500
6.200
6.000
6.000
*
ft. 400
7.350
6.900
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
350
360
372
550
650
650
650
930
750
750
750
750
0.500
0.400
0.424
0.513
0.6SO
0.650
0.650
0.923
0.300
0.750
0.750
0.7SO
0000 FEET DEPTH
in
00
-------
STORET RETRIEVAL DATE 74/12/27
"
OATE TIME DEPTH
FROM OF
TO DAY FEET
72/12/05 00 00
CP-
73/02/14 0* 00
73/03/06 08 00
CP(T>-
73/03/07 08 00
73/04/10 08 00
CP(T)-
73/r»A/H 03 00
7V05/15 0« 00
cpm-
73/05/16 0« 00
73/06/12 08 00
CP(T>-
73/06/13 08 00
73/07/17 12 00
CP(T)-
73/07/18 12 00
73/OH/l* Ofl 00
CD(T) -
73/08/15 08 00
73/09/1 R 08 00
CP(TJ-
73/09/19 OB 00
73/10/16 00 00
CP(TJ-"'
00630
N024.N03
N-TOTAL
MG/L
19.000
18.700
0.800
19.200
17.200
21.800
20.400
14.000
1>.400
9.900
23.000
17.800
00625
TOT KJEL
MG/L
29.400
24.000
35.700
31.100
28.000
31.000
37.800
28.700
23.500
26.500
19.020
26.000
5001T1 AS5001T1 P004000
44 24 00.0 073 06 00.0
ESSEX JCT IHM
50 15 rtUPLlNGTON
T/LAKE CHAMPLAIN
WlNOOSKl WIVFrt
.HP-PALES 2141204
4 0000 FEET DEPTH
00610 00671 00665 50051 50053
NH3-N PHOS-OIS PHOS-TOT FLO* CONOUIT
TOTAL ORTrtO *ATe FLO*-MGO
MG/L MG/L P MG/L P INST MOO MONTHLY
2H.OOO 0.198 0.242
9.900 0.120
28.500
0.911
25.000 0.058
0.730
23.700 0.022 0.250 0.484 0.699
6.100 3.900 7.900 0.622 0.670
31.020 0.115 0.172 1.040 0.680
22.500 0.140 0.400 0.938 0.947
0.190 0.825 0.763
34.400 0.040 0.170 0.808 0.874
0.868
20.650 0.230 0.382 1.000 0.981
0.095 0.950 0.900
73/10/16 24 00
0.170 0.190 0.610 0.933
5.500 0.140 0.600 0.833 G.M4
xD
-------
STQBFT HETSIEVAL OAF*! 74/1?/?7
00^30
DATE TIMF. DEPTH NO?r.N03
TPQM OF N-TOTflL
TO DAY FEET
73/11/27 08 00
}« 00
19.200
S001T1 ASS001T1
44 29 00.0 073 06 00.0
tSSEX JCT IHM
SO 1
T/LAKE CHAMPLAIN
P004000
11FPALES
00625
TOT KJFL
n
00610
TOTAL
Mr,/L
00671
PHOS-OIS
OPTHO
MG/L P
00^5
PHOS-TOT
MG/L P
50051
FLU*
rfATE
INST MOD
2141204
0000 FEET
500b3
CONDUIT
FLOn-MGO
MONTHLY
DEPTH
0.709
0.814
0.535
-------
STOPET RETRIEVAL OATF 74/12/27
5001S3 AS5001S3
44 29 30.0 073 11 00.0
P009000
bO 7.b 4UKLING70N
T/LAKE CHAMPLAIN
wlNOOSKl «IVER
11EPALES 2141204
4 0000 FEET DEPTH
DATE
FBOM
TO
72/11/29
CPfT)-
7?/ 12/29
73/02/01
73/0?/?1
73/03/P9
73/05/01
cpm-
73/05/01
73/05/29
CP(T)-
73/05/2Q
71/r-*
-------
STORE! RETRIEVAL DATE 74/l?/27
OATE TIME DEPTH
TO DAY FEET
7?/l?/01 09 00
CP(T)-
7?/l?/01 18 00
73/01/0=: 08 on
CP(T>-
73/01/05 l« 00
73/0?/05 0* 00
73/02/05 18 00
73/03/05 08 00
CP(T>-
73/C1/05 18 00
73/04/01 08 00
7T04/01 18 00
73/05/06 08 00
73/05/06 18 00
73/0A/0 3 08 00
73/06/03 18 00
71/07/04 0« 00
CPCT)-
73/07/04 18 00
73/OH/04 08 00
73/08/04 1ft 00
CP{T)-
73/09/01 lrt 00
73/39/30 08 00
73/09/30 18 00
73/11/01 08 00
00630
N02&N03
M-TOTAL
MG/L
0.960
5.100
0.140
0.185
0.070
0.230
'0.135
0.210
0.100
0.190
0.210
0.230
006?5
TOT KJEL
M
11.000
2.100
15.400
11.000
9.500
6.100
3.500
5.100
5.800
3.300
10.000
20.000
S001S6 AS5001S6
<»4 32 30.0 'J7? 09 00.0
COLCHESTER
50 1-2SOOOO LK CHAM
P002000
11EPALES
4
2141204
oooo FEET DEPTH
00610 00671 00665 5005J 500^3
NH3-N PriOS-OIS PhOS-TOT FLO* CONDUIT
TOTAL OHTHO HATE FLOW-MGD
r16/L MG/L P MG/L P INST MGO MONTHLr
2.900
8.200
1.050
73/11/01 18 00
4.000
7.100
2.475 3.250 0.162 0.15H
0.120 3.150 3.600 0.1?3 0.138
7.700 4.400 5.300 0.210 0.166
2.350 2.350 0.192 0.1«5
5.400 2.700 2.900
2.700 2.800 2.^00
0.230 0.490
0.240 2.660
3.100
ft. 000
3.900
9.60!)
0.172 0.158
0.200
0.2t>0 2.H40 3.400 0.197
0.217
0.211
0.1*9
2.700 2.^00 0.153 0.169
0.218 0.196
0.195
0.163 0.174
0.221
0.197
vO
-------
STO«»ET RETRIEVAL DATE 74/13/87
00630
DATE TIME DEDTH N02S.N03
FROM OF N-TOTAL
TO DAY FEET MG/L
74/01/12 08 00
CP-
ie oo
00625
TOT KJEL
N
MG/L
0.040
00610
NH3-N
TOTAL
MG/L
O.?00
5001S6 AS5001S6 P002000
44 32 30.0 072 09 00.0
COLCHESTEW
50 l-2bOOOO LK CHAM
T/LAK€ CHAMPLAIN
•UNOOSKI RIVF.H
11EPALES 2141204
* 0000 FEET DEPTH
00671
PHOS-DIS
OPTHQ
MG/L P
2.400
00665
PHOS-TOT
MG/L P
3.725
50051
FLOW
RATE
1NST MGD
0.166
50053
CONDUIT
FLOH-MGD
MONTHLY
0.181
O
O
-------
STORET RETRIEVAL DATE 74/12/27
5001S2 ^SOOIS? P007000
44 31 30.0 073 16 00.0
HUKLINGTON NOtfTH END
50 7.5 RUPLINGTON
T/LAKE. CHAMPLAIN
WINOOSKI HlVfTH
HEMALES 2141204
u 0000 FEET DEPTH
OATE"
FROM
TO
CP(T)-
72/12/01
7?/ 1 ?/?9
73/0?/27
73/03/30
CD
73/0 */ 30
73/0^/23
f»o ( T \ Jr
00630
TIME OEPTH IMOPMM03
OF N-TOT/SL
DAY FEET MC,/L
04 00
C.4?0
15 00
08 00
0.410
15
09
08
15
08
15
10
15
11
OR
00
00
00
00
00
00
30
00
00
00
00
0
1
1
0
n
.430
.580
.580
.000
.200
-ft^n
00625
TOT KJEL
N
MO/L
26.000
30.000
24.000
24.000
19.800
?1.000
5.HOO
13.000
1.100
?q.7nn
00610 00671 00665 500S1 50053
NH3-N PHOS-OIS PHOS-TOT FLOW CONOUIT
TOTAL ORTHO HATE FLOw-MGO
MG/L MP/L P MG/L P INST MOD MONTHLY
16.000 4.675 1.100 1.050
ll.ftOO 4.300 9.350 1.100 1.130
10.800
8.100
4.400
6.300
0.820
5.300
1 1.600
4.100
3.942
2.000
2.?00
0.530
1.800
•4.900
6.600
y.eoo
3.000
3.300
1.050
3.750
5.770
H.400
1.
1.
1.
2.
1.
1.
1.
1.
170
500
150
000
900
500
158
200
1.330
1.200
1.200
1.700
1.700
1.500
1.200
1.300
CO
o
16 00
-------
STORE! RETRIEVAL DATE 74/1?/27
5001U3 PH5U01U3 P005600
*4 20 30.0 073 09 30.0
SOUTH HUHLINGTON AIHPCWT PKWY
SO 7.S HUP|_INC,rON
T/LAKti CHAMPL4IN
WINOOSKI 4IVF.-*
11EPALES 2141204
4 0000 FEET DEPTH
04TE
FROM
TO
73/01/10
CP-
73/01/10
73/02/07
73/0?/07
73/03/OR
CP(T)-
73/03/08
73/04/08
CP ( T ) -
73/04/08
73/05/0?
C° (T) -
73/05/02
73/06/07
CP(T>-
73/06/07
73/07/02
C° ( T ) -
73/07/0?
73/08/07
CP(T)-
73/08/07
73/09/05
CP ( T > -
73/09/05
73/10/03
CPCT>-
73/10/03
73/11/05
CP(T)-
73/11/05
73/12/06
CPCT)-
73/12/06
00630 00625
TIME DEPTH N02S.N03 TOT KJEL
OF N- TOTAL N
DAY FEET MG/L MG/L
Oft 00
O.OlOn 33.300
16 00
08 00
0.620 28.000
16 00
08
16
OB
16
08
16
08
16
08
16
Oft
16
09
16
08
16
06
16
OB
16
00
00
00
00
00
00
00
00
CO
00
00
00
00
00
00
00
00
00
00
00
0
1
0
0
0
0
0
0
0
0
.750
.470
.575
.740
.780
.070
.132
.050
.040
.520
26.000
20.500
33.600
23.600
16.000
25.000
34.500
30.000
31.000
26.000
00610 00671 0066S 50051 50053
NH3-N PHOS-OIS PHOS-TOT FLOW CONDUIT
TOTAL ORTHO HATE FLO.-MGO
MG/L MG/L P MG/L P INST MGD MONTHLY
28.700 6.800 6.8?0 0.680 0.700
10.400 4.100 7.800 0.730 0.750
10.000
5.700
12.000
6.550
3.920
6.200
15.200
15.000
16.000
m
9.300
3.400
2.300
4.000
3.100
2. 520
5.200
5.500
5.200
3.780
6.000
4.400
7.600
6.350
5.250
8.100
a. 200
8.200
6.400
0.
1.
0.
1.
1.
0.
0.
0.
0.
0.
760
060
750
000
300
850
780
750
650
700
0.680
0.820
0.850
0.900
0.900
0.750
0.800
O.flOO
0.600
0.650
-------
STORET RETRIEVAL DATE 74/12/27
00630
DATE TIMF DEPTH N02*N03
FROM OF N-TOTftL
TO DAY FEET MG/L
76/01/07 Oft 00
C°(T)-
76/01/07 16 00
S001U3 PWS001U3 P005600
44 29 30.0 073 09 30.0
SOUTH BURLINGTON A IMPORT PKWY
50 7.5
T/LAKE CHAMPLAIN
2141204
0000 FEET DEPTH
11EPALES
4
00625
TOT KJEL
N
MG/L
00610
NH3-N
TOTAL
MG/L
00671
PHOS-DIS
OPTHO
MG/L P
0066S
MHOS-TOT
MG/L P
50051
FLOW
HATE
INST MGO
SOOS3
CONDUIT
FLOW-MOO
MONTHLY
0.680
H.600
2.400
1.560
2.400
0.850
0.900
-------
STORET RETRIEVAL DATE 74/12/27
DATE
r»OM
TO
7?/ll/30
CP-
7V01/0?
73/01/31
CP(T>-
73/01/31
73/03/05
CP-
73/03/05
73/0^/33
CP(T)-
73/0^/23
73/06/30
7^/07/OS
73/09/30
73/10/23
73/1?/??
74/01/03
00630
TIME DEPTH NOP&N03
OP N-TOTAL
DAY FEET MG/L
08 00
16 00
C« 00
1ft 00
OS 00
16 00
07 00
15 30
OB 00
16 00
1^ 00
13 00
11 00
09 30
I?- 00
13 30
1.630
1.520
0.670
0.980
0.93-0
4.200
3.780
0.260
0.390
1.320
1.400
5001T8
44 ?3 00.0 073 13 30.0
SHEL«uaiv»E FIRE OIST «2
bO 7.5 BUHLI
I/LAKE CHAMPLAlN
LA PLATTE KIVER
P000600
11EPALES
4
00625
TOT KJEL
N
MG/L
24.000
1ft. 000
24.000
18.900
17.000
5.000
42.000
43.000
22.000
20.000
2141204
0000 FEET
00610 00671 00665 50051 500b3
NH3-N PHOS-OIS PHOS-TOT FLO* CONDUIT
TOTAL OPTHO HATE FLOW-MGO
MG/L MG/L P MG/L P INST MGD MONTHLY
0.044
0.076
6.000
0.710
5.600
3.700
3.000
16.300
17.000
1.260
0.410
2.400
2.325
2.ROO
4.300
4.586
1.600
1.600
4.760
4.700
2.600
2.ROO
4.300
6.575
4.600
8.000
*.BOC
3.000
2.900
7.900
7.500
7.000
0.130
0.140
0.120
0.130
0.130
0.130
0.120
0.130
0.130
0.140
0.150
0.120
0.120
0.130
0.140
0.130
0.130
0.130
0.130
0.120
0.140
0.1 HO
DEPTH
-------
RETR1FVM-
T»/\?/>1
SQO\TS
<»4 01 00.0 07"* 10 30.0
P003*00
SO 1/250000 LK CHAM
T/LAKE CHAMPLMN
UEPALES
21*1204
0000 FEET DEPTH
DATE
FPOM
TO
7P/11/21
7?/l?/l«
CP-
7?/l?/19
73/01/26
CP(T)-
73/C1/26
71/H2/27
C» < T ) -
77/02/27
73/03/77
73/03/27
73/04/26
73/04/?6
73/05/24
73/05/24
73/06/25
CP(T>-
71/06/25
73/0 7/1R
CP(T>-
73/07/13
73/03/24
73/6 8/?4
73/09/2?
73/C9/2?
73/10/24
CP(T)-
73/10/24
73/11/06
rp t T ) -
00630
TIME DEpTH NO^W03
OF N- TOTAL
DAY FEET MG/L
07
16
09
16
07
17
07
17
07
16
07
17
07
17
07
16
Oft
16
07
17
06
16
07
00
00
00
00
00
00
00
00
00
30
00
on
00
00
00
00
30
30
00
00
30
30
00
0
0
0
0
0
0
1
0
0
0
0
0
0
.660
.760
.940
.410
.630
.337
.?00
.240
.140
.089
.100
.070
.130
00625
TOT KJEL
N
MG/L
5.500
15.700
15.700
23.000
20.000
25.200
14.700
29.000
?6.000
22.000
29.000
4?. COO
33.090
00610 00671 00665 50051 50051
NH3-N PHOS-01S PHOi-TOT FLOW CONUUIT
TOTAL 0*THO **?E FLO«-MbO
MG/L MG/L P MG/L P INST MGQ MONTHLV
0.236
1.900
3.700
7.700
1.900
6.400
0.300
3.700
1.900
7.100
la.ooo
Irt.jOOO
15.000
0.870
1.7«7
2.000
3.200
2.100
3.300
2.000
2.500
3.300
3.320
1.200
5.500
4.200
1.200
3.450
4.300
S.siOO
5.100
7.900
4.700
5.500
5.600
5.500
7.200
9.500
7.500
0
1
0
0
0
1
0
0
0
0
0
0
.4H7
.040
.525
.968
.539
.160
.414
.475
.305
.439
.400
.409
0.500
O.bOO
0.500
0.500
0.500
0.500
0.500
0.500
0.400
0.500
0.500
0.500
73/11/06 16 30
-------
7*/|?/?7
+1 v 30.0 or; u 10.0
C*Stu TUN
SO f.
0000
pooms
OF.PTM
DATE TI*«F DEPTH H
OC630
K»?K«*03
006PS
TOT KJEt
rPO* 3*" N-TOTAL N
TO DAY FEET
??/!?/! 3 11 00
7?/l?/l1 15 00
7VH/?<» OB 00
CPtTI-
71/Cl/?« IS 09
71/9?/?l" CA 00
CP-
73/C*MO IS 00
Tl/C7/?6 04 00
Co t T ) -
T3/d7/?6 15 00
T1/0*/?7 06 00
CP«T»-
71/C'/>7 IS 00
7V')''/?<* OH 00
71/C9/>6 15 00
7VIO/?* Ofl 00
7i/io/;>;» i«« oo
Tl/ll/?" 0^ 00
71/1 l/?3 15 00
K VALUE
HG/L
I.P10
9.B3C
1.900
O.S75
6.AOC
1S.?00
10.600
e.<>bd
o.lto
o.?s?
0.093
KNOWN TO
«G/L
3.700
P.100
*.500
?.?00
0.600
0.100K
4.600
1?.600
13.700
4.600
?3.COO
BE LESS
00610 00671 00665
N*O-ft PnOS-015 PMOS-TOT
TOTAL OPTHO
MG/L MG/L p »"»/L •* I
P.OOO 4.*10 S.OOO
P. 179 5.4ftft 5.515
1.155 7.400 7.600
1.790 S.OOO S.OOO
0.1?5 4.600 4.900
0.37S 5.400 S.HOO
0.064
1.760 4.SSO 6.975
7.300
?4.000 l.?60 ?.300
0.115 3.500 3.*»OJ
1?.000 5.700 6.900
SOOSI S>0*>)
Fn>* CONiXMT
k*ATt FLO^-HOO
[NST MGO HONTnLY
0.16? 0.160
0.110 0.135
0.136 0.130
0.124 0.135
0.099 0.1?6
0.09? 0.096
O.OR4 0.07H
0.075 O.OH3
0.013 0.074
0.103 0.100
0.10? 0.097
0.09ft O.CMS
THAN INDICATED
------- |