c/EPA GROUND-WATER VULNERABILITY ASSESSMENT IN SUPPORT OF THE FIRST STAGE OF THE NATIONAL PESTICIDE SURVEY ------- GROUND-WATER VULNERABILITY ASSESSMENT IN SUPPORT OF THE FIRST STAGE OF THE NATIONAL PESTICIDE SURVEY by W. Joseph Alexander Susan K. Liddle Robert E. Mason and William B. Yeager Research Triangle Institute EPA Contract No. 68-01-6646 Work Assignment No. 22 RTI Project No. 255U-3362/3486 EPA Technical Monitor: Stuart Z. Cohen Office of Pesticide Programs U. S'. Environmental Protection 'Agency Washington, DC 20460 February 14, 1986 ------- CONTENTS Section Page Acknowledgments ii 1.0 Introduction and Qualifications 1 2.0 Conclusions 4 3.0 Methodology 8 3.1 Agricultural DRASTIC System 8 3.2 Training Program 9 3.3 Study Approaches and Sources of Information 10 3.3.1 Roy F. Weston Consultants 10 3.3.2 Woodward-Clyde Consultants 11 3.4 Form Processing and Data Base Construction 11 3.5 Quality Assurance Program 13 3.6 Data Base Evaluation 14 3.7 Adjustments to Data Base 15 4.0 Results 16 4.1 Classifications of Ground-Water Vulnerability 16 4.2 Comparison of Scores to Ground-Water Regions 17 4.3 Data Confidence and Variability 19 5.0 References ' 22 Appendices A. Training Manual for Using DRASTIC Hydrogeologic Factors in Conducting a National Ground-Water Vulnerability Assessment 8. Description of Quality Assurance Program and Related Data C. State and County Listing of Weighted and Total Scores for Originally Coded Data Base with Adjustments D. Listing of Adjusted VARSCORES in Ascending Order E. Description of Measurement Error Analysis F. Description and Results of Qualitative Check G. Description of Adjustments to Originally Coded Data Base FIGURES 1. Categories of Ground-Water Vulnerability; Conterminous United States 5 2. Categories of Ground-Water Vulnerability; Alaska and Hawaii . 6 3. Distribution of VARSCORES by Ground-Water Regions 18 ------- ACKNOWLEDGMENTS This project was jointly funded by the U.S. EPA Office of Pesticide Programs and the Office of Drinking Water under Contract No. 68-01-6646. This stage of the project required the input of many persons from various organizations over a short time, many of whom are acknowledged below. U.S. EPA: Dr. Stuart Z. Cohen, Technical Monitor, is acknowledged for his enthusiastic involvement in the project, interagency coordination, and arrangement of peer reviews. Roy F. Weston, Consultants: Mr. John B. Robertson, Project Manager, is acknowledged for assembling an effective team for coding counties in the Eastern United States and meeting the schedule requirements. Ms. Loren Lasky is also acknowledged for her leadership of the team, which included the following participants: Lisa Arters Robert Caprara Peter Ciotoli Mike Wierman Bill Miller Jody Roud Linda Shanley Woodward-Clyde Consultants: Mr. David Dean, Project Manager, is acknowledged for coordination of professionals from several western offices of Woodward-Clyde who met the scheduling requirements for coding counties in the Western United States. Mr. John Pelka is acknowledged for his coordination efforts, as are the following professionals: Jim Dederick Charles Franks Richard Kent Charles Lehotsky- Melitta Rorty National Water Well Association: Dr. Jay H. Lehr and Ms. Linda Aller are acknowledged for their participation in the training program, the qualitative check of six counties, and constructive suggestions. ------- U.S. Geological Survey: Dr. Jack M. Fischer is acknowledged for his participation in several peer reviews, along with other members of the Survey, and for directing the District Offices' participation in the qualitative check of six counties. Other Professionals: Mr. Ralph C. Heath and Mr. Harry E. LeGrand are acknowledged for their overview of various aspects of the project and participation in the qualitative check and quality assurance process, respectively. Research Triangle Institute: The late Dr. Douglas J. Drummond was instrumental in initiating this stage of the project through his coordination with U.S. EPA. Ms. Bonnie S. Barbee is acknowledged for management of the data editing process, assistance with project administration and report preparation. RTI's data processing staff is acknowledged for their efforts in keying and verifying the data. Ms. Kathleen B. Mohar is acknowledged for the report editing. Mr. Steven L. Winters and Mr. Richard W. Pratt are also acknowledged for their participation in the data reevaluation process. fii ------- 1.0 INTRODUCTION AND QUALIFICATIONS This report supports the National Pesticide Survey (NPS) being conducted jointly by the Environmental Protection Agency's Office of Pesticide Programs (OPP) and Office of Drinking Water (ODW). The primary objectives of the NPS sampling design are: 1. to characterize nationally, the distribution of pesticide residues in community system and rural household water wells, and 2. to assess the associations between the agricultural use of pesticides, the distribution of agricultural pesticide residues in well water, and hydrogeologic factors that influence ground-water contamination. Community system water wells and rural household water wells will be treated differently in the NPS sampling design. The community system water wells will be treated as a stratified, one or two-stage sample, while three stages of sampling are planned for the rural household well component. Stratification will be imposed on the first two stages of the rural household well component. The aspect of the sample stratification described in this report pertains to the first stage of the NPS sampling design. Other aspects of the first-stage sample stratification will include consideration of agricultural pesticide usage and possibly the size of community water well systems. Details of these other aspects will be incorporated as part of a later task of this stage of stratification and are not included in this report. The objective of the study reported herein was to classify all 3,144 counties of the United States into three categories of ground-water vulnerability (high, medium, or low). The purpose of the classification is to focus the NPS into areas of the country where pesticide contamination of well water is most likely to occur. From these results a samp-le of 100 to 200 counties will be selected for detailed classification at the subcounty level. ------- Counties were specified as the basis for classification units in this study. The use of county units will allow the ground-water vulnerability .data base to be merged with pesticide application and related data bases. The assignment of a single numerical score to a county allows a more reliable classification in some areas of the country than in others. The averaging effects necessary for a county-based hydrogeologic classification scheme did allow localized, highly vulnerable areas within some counties to be overshadowed by the predominance of surrounding lower vulnerability areas. Such averaging effects are necessary, however, in focusing the NPS to the more highly vulnerable counties. The DRASTIC classification system was selected for use on this project by EPA, following the consideration of several other classifi- cation systems. DRASTIC is an acronym for a numerical system capable of evaluating the vulnerability of aquifers to pollution beneath a particular land area. It is intended as a manag-ement tool for the allocation of resources and environmental protection decision making on a county basis. An application of a modified DRASTIC system was implemented by the Agency's three contractors (Research Triangle Institute, Roy F. Weston Consultants, and Woodward-Clyde Consultants) to meet the objectives of this ground-water vulnerability assessment. A county with an area of approximately 1,000 square miles could be reasonably well classified using the DRASTIC system as defined by the National Water Well Association (NWWA) and would require about 200 to 300 person-hours of effort. Variations in the amount of time required would depend on the complexity of the regional geology, the county size, and the availability of data. The use of such a scheme for the classification of all 3,144 United States counties would have required 300 to 450 person-years of effort, and was not considered necessary to achieve the objective of this study. The reader should contrast this with the fact that the level of effort applied to the original coding and quality assurance efforts for this stage of the NPS averaged only a few person-hours per county and thus required an application of a modified DRASTIC system. ------- Measurement errors were anticipated in this study and are known to exist within the data base constructed for the first stage of the NPS. These measurement errors and inconsistencies in the data base result from differences in opinion when generalizing hydrogeologic conditions over areas as large as counties. As a result, some counties could be considered as being misclassified between adjacent categories of vulnerability. Some misclassifications can be tolerated at this level of the sampling design, as long as they are not extensive. The likelihood of extensive misclassifications in the adjusted data base is considered to be minimal. Although a number of inconsistencies in the data base still exist, the subsequent stratification needs of the NPS are sti11 achieved. Peer reviews of the NPS were conducted by individuals within private organizations and State and Federal agencies. Many of the comments received from the peer reviews have been incorporated into this document. As with any study, the results of this data base compilation are anticipated to be controversial when taken out of the context of the study's true objectives. It should be noted that the weight of evidence presented in this report clearly shows that the proposed classification reflects county level differences in ground-water vulnerabiIty. The data may not, however, support uses other than those intended. Research Triangle Institute (RTI) managed Stage 1 of the project for EPA. The overall approach used to meet the objectives of the first stage included: t Development of a training program, using the services of the NWWA, for individuals involved in obtaining hydrogeologic data; • Data collection efforts by Woodward-Clyde Consultants for counties in the Western United States and Roy F. Weston Consultants for counties in the Eastern United States; • Design and implementation of a quality assurance program; and • Data base construction, evaluation, adjustment, and reporting. Conclusions are presented in Section 2.0 and a general description of the methodology used on the project is provided in Section 3.0. The primary results are presented in Section 4.0 and details of the methodology and results are provided in the Appendices. ------- 2.0 CONCLUSIONS The distribution of the county-weighted numerical scores (termed VARSCORES) derived for this stage of the National Pesticide Survey appears to coincide reasonably well with known hydrogeologic conditions in certain ground-water regions. As anticipated, the highest VARSCORES are generally found within the Southeast and Atlantic Coastal Plains where shallow ground-water depths and high recharge rates prevail (Figure 1). Lowest VARSCORES are generally found in the western ground-water regions where deeper ground-water depths and lower natural recharge rates are generally more common. Low VARSCORES were also derived for some sections of Alaska and high VARSCORES are associated with the islands of Hawaii (Figure 2). Several approaches can be used to establish categories of ground-water vulnerability. For this stage of the survey, selected vulnerability categories were based on a 10/60/30 percent distribution of the data base of VARSCORES for low, moderate, and high vulnerability, respectively. This approach results in a high vulnerability category when considering VARSCORES of greater than 143 and a moderate vulnerability category for VARSCORES greater than 102 (Figures 1 and 2). The-use of a relatively large percentage of the data base for the moderate vulnerability category minimizes the likelihood of counties being misclassified between the high and low vulnerability categories. As with the .selection of any vulnerability categories, some counties identified on'the upper and lower bounds of the moderate vulnerability range could be considered as high or low vulnerability, respectively. The likelihood of extensive misclassifications in the adjusted data base is considered to be minimal. Two subsamples of counties were selected and independently rescored as a part of the quality assurance process. The analysis of the subsample information suggests that the variable measurement error in determining county-level VARSCORES is appreciable, but not large enough to obscure actual differences in vulnerability among counties. ------- EXPLANATION BSD High vulnerability county based on VARSCORE .-• 143 Moderate vulnerability county-based on 102 • VARSCORE • 142 Low vulnerability county-based on VARSCORE < 101 Figure 1. Categories of ground-water vulnerability; conterminous United States. ------- Islands of Hawaii Election Districts of Alaska EXPLANATION High vulnerability area based on VARSCORE > 143 Moderate vulnerability area based on 102 - VARSCORE < 142 Low vulnerability area based on VARSCORE < 101 Figure 2. Categories of ground-water vulnerability; Alaska and Hawaii. ------- The qualitative check of the six counties, although not a direct part of the quality assurance process with respect to determining measurement error, indicated that the standard error in VARSCORES between nationally recognized hydrogeologists is similar to the standard error in scores for the same counties coded by the contractors. Computations of the coefficient of variation between multiple codings of a randomly selected 3 percent sample of the data base suggest that average variations in VARSCORES are probably less than 13 percent of a given mean VARSCORE value. The originally coded data base was adjusted to remove some of the major inconsistencies revealed by the quality assurance process and by subsequent reevaluations of selected factors used to derive the VARSCORES. The results of the data base, including adjustments, are reflected in Figures 1 and 2. Although some inconsistencies still exist in the data base, the improved data base can be used for the subsequent stratification needs of the National Pesticide Survey. The data may not, however, support uses other than those intended. ------- 3.0 METHODOLOGY The ground-water vulnerability assessment (Stage 1) was conducted between June and December 1985. The training program was held in June and the primary data collection efforts were performed in July, August, and September 1985. Data base construction and evaluation efforts were performed concurrent with data collection efforts. The quality assurance process was conducted in September and October 1985. A first draft report of the findings was submitted to EPA in November, and a reevaluation of selected DRASTIC factors was performed in December 1985. A second draft report of the findings was submitted for peer review in early January 1986. Pertinent comments from these reviews have been incorporated in this final report. The following subsections describe the Stage 1 methodology. 3.1 AGRICULTURAL DRASTIC SYSTEM Several authors have dealt with the problem of generalizing and categorizing ground-water resources across the United States (Meinzer, 1923; Ries and Watson, 1904: Fuller, 1905; Thomas, 1952; and Heath 1984). A number of empirical methods have also been developed to evaluate the environmental impacts of waste disposal practices. The National-Water Well Association (NWWA) reviewed the existing classifi- cation systems and determined that although there are a number of methods applicable to site-specific situations or to the evaluation of the pollution potential of existing sites, a planning tool was needed for the site-specific methods to be most efficiently employed. NWWA, under contract to EPA, recently developed a systematic approach to evaluating the potential for ground-water pollution (Aller et al., 1985). Their scheme is based on seven factors considered to be most significant in affecting the ground water pollution potential and employs the ground-water regions of Heath (1984). The seven factors were derived using a modified Delphi technique and form the acronym DRASTIC: 0 - Depth of water; R - Recharge (net); A - Aquifer media; S - Soil media; T - Topography (slope); I - Jmpact of vadose zone; and C - Conductivity (hydraulic) of the aquifer. 8 ------- A numerical scoring system (DRASTIC Index) was devised by NWWA based on the weights, ranges, and ratings of the seven DRASTIC factors. High scores were selected to represent areas where physical character- istics afforded little protection from ground-water pollution. An Agricultural DRASTIC Index was designed by NWWA for which the specific concern was the application of pesticides to the land surface. The Agricultural DRASTIC Index differs from the DRASTIC Index only in the assignment of different weights for the seven factors. The Agricul- tural DRASTIC Index places a higher weighting on topography (percent slope) and soil media than does the DRASTIC Index. Topography is important when considering the application of pesticides to the land surface because slope controls the likelihood that a pollutant will run off or remain on the land surface in one area long enough to infiltrate. The attenuating processes (filtration, biodegradation, sorption, or volatilization) that may be available in the upper few feet of the soil media can also influence the migration of pesticides. Although the DRASTIC system was designed by NWWA as a screening tool for county-size areas down to a resolution of approximately 100 acres, an application of a modified system was considered suitable for the county-level assessment needed to meet the first stage of stratifi- cation of the National Pesticide Survey. Recognizing the physical variation that exists in areas as large as counties, RTI designed a county data collection form that allowed each factor to be coded on a percentage basis (Appendix A; Figure 2). 3.2 TRAINING PROGRAM A training program was developed by RTI in conjunction with NWWA at the start of the Stage 1 effort. The purpose of the training program was to provide sufficient information to those professionals involved in the project so that consistency could be achieved in obtaining DRASTIC factors on a national scale. Separate training programs were held for Weston's personnel and for Woodward-Clyde's personnel in which they were provided a training manual and the following information: • An introduction and overall approach to be used on the project • A history of the DRASTIC system and definitions of the key hydrogeologic factors ------- • Step-by-step instructions for completing the county data forms along with a discussion of the level of effort that should be used • Suggestions for data sources • Instructions for classifying the seven DRASTIC factors, the sensitivity of the scoring process, and how to indicate the level of confidence in the data • Instructions for resolving questions and transmitting completed data forms. A portion of the training manual is included in Appendix A along with a listing of participants. Copies of the training manual were also distributed to individuals participating in the quality assurance program as part of the qualitative check described in Section 3.5. 3.3 STUDY APPROACHES AND SOURCES OF INFORMATION Each of RTI's subcontractors used a slightly different approach in completing the form coding task. The approaches differed primarily in the division of labor between coders at each firm. The study approaches and sources of information were openly discussed between both subcontractors. In addition to the procedures outlined in the training manual, it was agreed that emphasis should be given to significant shallow potable aqu-ifer systems, where present, and that areas of significant artificial recharge should be accounted for in the assignment of values for net recharge. 3.3.1 Roy F. Weston Consultants Roy F. Weston Consultants divided the seven hydrogeologic factors for each county among several coders so that a few coders ranked the factors dealing with geologic criteria (depth to water, aquifer media, impact of the vadose -zone media, and hydraulic conductivity), others ranked soils, and others ranked the topography and net recharge. The composite numerical score for each county coded by Weston may have, therefore, resulted from the combined efforts of at least three individuals. This division of labor was intended to promote consistency in the coding of specific hydrogeologic factors between counties. 10 ------- Hydrogeologic factors such as depth to water, aquifer media, soil media, and vadose zone media were ranked by Weston based on literature review and conversations with State and regional representatives (e.g., State Geological Surveys, U.S. Geological Survey, and Soil Conservation Service). Net recharge was ranked based on a formula derived by Weston to incorporate information on surface water baseflow, published recharge rates, precipitation, topography, and soil media. Topographic slope was determined using USGS 2° Topographic Maps (1:250,000) and a standardized slope estimation technique. Hydraulic conductivity estimates for each county were based on literature review, the contractor's knowledge of the aquifer media, and general ranges of hydraulic conductivity provided in Freeze and Cherry (1979). 3.3.2 Woodward-Clyde Consultants Woodward-Clyde Consultants assigned entire States to individual coders. Each coder was therefore responsible for ranking all seven hydrogeologic factors for every county within a State. Such an approach was used to promote overall consistency among the VARSCORES of all the counties within a State. Six of the seven DRASTIC factors (all but topography) were ranked by Woodward-Clyde based on literature review, discussions with State and regional representatives, and the applicable field experience of the coder. Topographic slope was estimated based on information from USGS 2" Topographic Maps and from individual State General Soils Maps. 3.4 FORM PROCESSING AND DATA BASE CONSTRUCTION The county data forms originally coded by the subcontractors were sent to RTI where they were initially counted, logged in by State and subcontractor, and compared with scheduling requirements. Status reports were issued regularly to the subcontractors indicating the number- of forms outstanding and requirements needed for completion of the forms. Sources of information used to complete the forms were indicated for the majority of the counties; however, the compilation of this information into a comprehensive bibliography was not considered feasible or necessary for this stage of the project. 11 ------- The forms were then edited by RTI for completeness, correctness, and legibility. The majority of the fields on the forms were found to be complete but occasional omissions were not uncommon for a given DRASTIC factor. The forms were examined for correctness with respect to the percentage allotted for a given factor (refer to Section 3.4 in Appendix A). It was a fairly common error of the coders for percentage distributions of DRASTIC factors to exceed 100 percent. Most of the 'j forms were considered legible, with the exception of a single coder. Editorial problems on the forms typically were discussed by telephone with the subcontractors and corrected directly on the original data form. Some forms were returned to the subcontractors to resolve editorial issues or inconsistencies. Following the editing process, the incoming forms were screened for reasonableness. Total numerical scores were compared with those of adjacent counties or States, and the individual DRASTIC factors were compared for reasonable agreement on a given form. General agreement between aquifer media, the impact of the vadose zone, and the hydraulic conductivity was found in many instances. Completed forms were occasionally reviewed for reasonableness with respect to known regional hydrogeologic conditions by independent -reviewers (Mr. Ralph C. Heath and Mr. Harry E. LeGrand). Where significantly different interpre- tations of DRASTIC factors could be derived, the original coder was contacted and the rationale for coding was discussed. For the most part, the original codings of the subcontractors remained unchanged in the originally coded data base. Are^as where interpretational differences were significant became apparent in the quality assurance program and were subsequently reevaluated and adjusted as described in Section 3.7. Upon completion of the editing and preliminary review process, the forms were batched and keyed to disk on RTI's VAX/VMS system. All fields on the forms were keyed and the forms were verified by the key operators. The keyed data were copied to tape for transport to EPA's National Computer Center (NCC) at Research Triangle Park. Data were read from tape into Statistical Analysis System (SAS) data sets. 12 ------- Numerical scores were calculated from the data set, including the following three scores differentiated in this report: TOTAL SCORE - An unweighted score corresponding to the summation of the highest percentage ratings for the seven DRASTIC factors. (Refer to Section 3 in Appendix A). WEIGHTED SCORE - A weighted score corresponding to the summation of all percentage ratings for the seven DRASTIC factors. The weighted score accounts for the variability that occurs in areas as large as counties. In counties with little variability, little difference exists between the total score and weighted score. VARSCORE - Represents the weighted score including (+ or -) the index of variability, where used. The index of variability and its intended usage, is defined in Section 3.6 of Appendix A. The VARSCORE, or the adjusted VARSCORE further defined in Section 3.7, is considered to be the most appropriate score for the purposes of this project in that it best accounts for intracounty variability. 3.5 QUALITY ASSURANCE PROGRAM Receding of selected counties was included as part of the ground- water vulnerability assessment to permit analysis of the variable measurement errors associated with the coding process. Seven percent of the counties within each of the nation's recognized ground-water regions were chosen by RTI for receding by the subcontractors. A subsample of 3 percent of these counties (3/7 of the 7 percent) was selected for coding by RTI. As a qualitative check, six counties with widely varying hydrogeologic conditions were also selected for coding by nationally recognized hydrogeologists. The selection of counties to be included in the quality assurance process was a six-step procedure. The first two steps involved refining the boundaries of the national ground-water regions and designating a region for each county. The third step involved the creation of a data base containing the Federal Information Processing Standards .(FIPS) code and designated ground-water region for each county. The fourth and fifth steps involved sorting the data set by ground-water region and randomly choosing the 7 and 3 percent samples. The final step involved the selection of a few counties to be coded as part of the qualitative check. The six steps are described in detail along with data related to the quality assurance program in Appendix B. 13 ------- 3.6 DATA BASE EVALUATION Data consistency and reasonableness were evaluated by RTI through- out the data base construction effort. Prior to computer entry, many of the total scores were compared with adjacent counties, and general trends across States and ground-water regions were reviewed. Following the completion of data entry for all of the county information from a given State, two types of computers-generated maps were produced for initial evaluation purposes. The first map displayed the VARSCORE for each county in a given State using a scale of 12 patterns to cover the entire range of scores for that State. The increments of this scale varied from State to State and were found to be useful in determining VARSCORE trends and unusual VARSCORE values within a State. The second map displayed the VARSCORE for each county in a given State using a uniform scale of patterns that was applied to all States. This scale used a 20-point increment ranging from a low midpoint score of 30 (the midpoint value of the 20-39 VARSCORE category) to a high midpoint score' of 250. This form of map was found to be useful when comparing scores and trends across State boundaries. Uniform-scale maps of the entire United States were produced several times during the course of the data base construction effort in order to compare VARSCORE trends on a regional scale and to check for missing data or unusual scores. Comparisons of the ranges of scores within and between ground-water regions were tabulated as part of the overall data base evaluation effort. In addition, several tabulations of county VARSCORES sorted in ascending order were produced. These maps and tabulations were of assistance in both the analyses of data base completeness and consistency and in the establishment of preliminary vulnerability categories. Preliminary maps of ground-water vulnerability were produced from the originally coded data base. Several areas on these preliminary maps stood out in obvious contrast to surrounding states and/or counties as a result of differences in opinion between coders on the ranking of individual Agricultural DRASTIC factors. It was also noted when evaluating the individual components of all receded county measurements that three factors (depth to water, net recharge, and impact of the vadose zone media) contributed to the greatest variation 14 ------- in the VARSCORES. It was, therefore, apparent that some of the areas of greatest contrast needed to be adjusted prior to any further refinement of the categories of ground-water vulnerability or use of the data base for stratifying the National Pesticide Survey sampling frame. 3.7 ADJUSTMENTS TO DATA BASE A reevaluation process was conducted by RTI in December 1985 with the following objectives: • to develop and evaluate computer-generated maps of the individual Agricultural DRASTIC factors on a regional scale in an attempt to further identify unusual areas or areas of greatest contrast; t to attempt to resolve, from a regional perspective, some of the areas of greatest contrast; • to adjust portions of the originally coded data base in an attempt to improve the general reliability of the data base. The adjustments made to the data base are further described in Section 4.3. The adjusted VARSCORES were used in -the final selection of ground-water vulnerability categories. 15 ------- 4.0 RESULTS The primary results of the total 3,144-county data base are the originally determined numerical scores listed by State and county in Appendix C. The different numerical scores previously defined in Section 3.4 are provided for each county in Appendix C and, when compared, give a relative indication of the variability that exists within a given county. Counties that have large variability in hydrogeologic conditions display a greater difference between the total score and weighted score. 4.1 CLASSIFICATION OF GROUND-WATER VULNERABILITY Several approaches can be used to establish categories of ground- water vulnerability. Once the data set has been sorted in order of VARSCORE values, any number of vulnerability limits may be selected. For this stage of the survey, the selected vulnerability categories were based on a 10/60/30 percent distribution of the data base of adjusted VARSCORES for low, moderate, and high vulnerability, respectively (Figures 1 and 2). The entire data set was sorted by ascending adjusted VARSGORES for the identification of the selected distribution (Appendix D). This approach results in a high vulner- ability category, when considering VARSCORES of greater than 143 and a low vulnerability category for1 VARSCORES of less Mian 101. Moderate vulnerability would therefore correspond to VARSCORE values between 102 and 142. This selected distribution, while not greatly different from other vulnerability categories considered, did offer-fewer contrasts in scores between adjacent political boundaries and appeared to be the most reasonable with respect to known hydrogeologic conditions of a number of different ground-water regions. The use of a relatively large percentage of the data base for the moderate vulnerability category (1,892 counties) also minimizes the likelihood of counties being misclassified between the high and low vulnerability categories. As with the selection of any vulnerability categories, some counties identified on the upper and lower bounds of the moderate vulnerability range could be considered as high or low vulnerability, respectively. 16 ------- Several other similar approaches toward establishing preliminary ground-water vulnerability categories were examined for this project. One of the first approaches was based on the distribution of originally coded county-level VARSCORES that fell between the first and third quartiles of the data set. For this approach a county exhibiting low vulnerability corresponded to a VARSCORE of less than or equal to 116 and high vulnerability corresponded to a VARSCORE of 148 or more. One assumption of such an approach is that it is desirable to classify 50 percent of the data (1572 counties) within the moderate category, and 25 percent (786 counties) each in the high and low categories. In another approach the entire data base was sorted by ascending VARSCORES and vulnerability limits were drawn such that 1,048 counties would fall within each category. In this case, counties with VARSCORE values less than 121 were assigned a low vulnerability, VARSCORE values between 121 and 141 were assigned a moderate vulnerability, and counties with VARSCORE values greater that 141 were assigned a high vulnerability. The results of this second approach did not appear to be importantly different than the previous approach, recognizing the nearness of the two moderate vulnerability categories. 4.2 COMPARISON OF SCORES TO GROUND-WATER REGIONS The distribution of adjusted VARSCORES by ground-water regions is arranged by the first and thjrd quartiles in Figure 3. As anticipated, the highest scores are associated with Region 11 (Southeast Coastal Plain), Region 12 (Hawaii), and portions of Region 10 (Atlantic and Gulf Coastal Plain). The lowest VARSCORES are associated with Region 13 (Alaska) largely as a result of the coder's assumption that the vast permafrost areas would significantly limit the degree of pesticide infiltration into the ground water. The VARSCORES for the remainder of the ground-water regions are narrowly banded in the first and third quartile range of about 110 to 140 (Figure 3). Some associations between VARSCORES and ground-water regions are apparent, such as the Piedmont/Coastal Plain contact in the eastern U.S., when the ground- water vulnerabilty map of the conterminous U.S. is evaluated (Figure 1). 17 ------- 50 r—• 1 I—*—I I 100 150 VARSCORE 200 GROUND WATER REGION 1 - Western Mountain Ranges 2 - Alluvial Basins 3 - Columbia Lava Plateau 4 - Colorado Plateau and Wyoming Basin 5 - High Plains 6 - Nonglaciated Central 7 - Glaciated Central 8 - Piedmont and Blue Ridge 9 - Northeast 10 - Atlantic and Gulf Coastal Plain 11 - Southeast Coastal Plain 12 - Hawaii 13 - Alaska 250 Explanation • | Indicates distribution of VARSCORES -j 2,»i -j,a by 1st through 3rd quamles based Ou.«uii s on revisions 10 the originally coded data set The point (2nd quartile) represents the average VARSCORE for the ground water region Figure 3. Distribution of VARSCORES by Ground-Water Regions 18 ------- 4.3 DATA CONFIDENCE AND VARIABILITY The relative confidence of the coder in the data used in determining the original VARSCORE was keyed into the data base. In reviewing the distribution of all data confidence listings, the following percentages were determined for the respective.data confidence levels: High data confidence - 17 percent of the counties Medium data confidence - 80 percent of the counties Low data confidence - 3 percent of the counties The high data confidence category was intended for counties where there was good coverage of published or unpublished data and the professional coding the form felt fairly confident about the scores cited. Personal experience in the county or the conveyed experience of another profes- sional knowledgeable of the conditions in the county, were also criteria for a high data confidence rating. Low data confidence was only intended for those remote counties where little if any hydrogeo- logic information was available and the coder had no experience in the general area of the county. These results indicate that, for the majority of the counties, the individual coding the form felt reasonably confident about the general hydrogeologic conditions known at the county level. The ability of another professional to reproduce numerical scores for a given county, however, is a greater -concern when assessing the validity of such a subjective data base. The 3,144 counties were stratified by Heath regions. The sample of 223 counties described in Appendix B is referred to as the large sample and the sample of 96 counties as the small sample. Both samples were allocated proportionally to the strata. Sample counties were selected from within strata with equal probability and with replace- ment. The small sample is an equal probability, with replacement subsample of the large sample. Due to the contractural constraints of the first stage of the NFS, all counties in the large sample were receded in only one week. An argument exists, therefore, that a valid measurement error assessment is not provided by the large sample since the level of effort was not comparable to that expended during the original coding process. The small sample, however, suffers less from scheduling problems. 19 ------- Estimates of the measurement error for the small sample, while sizeable, do not compromise the numerical scores derived for the purpose of the first stage stratification effort. A detailed descrip- tion of the measurement error analysis is provided in Appendix E. One modification that might have improved the reproducibility of the numerical score assigned to a given county would have been the clear designation of the aquifer(s) being considered in the scoring. For example, a shallow aquifer system may have been considered an important source of ground water in one portion of a county (perhaps where a significant glacial drift aquifer was present) and a deeper consolidated rock aquifer important in other areas of the county (perhaps where the drift was thin, less permeable, or absent). Although these variations might sometimes be inferred from the aquifer media and depth to water percentage differences noted on the coding forms, the coding format, as implemented, did not lend itself well to incorporating this kind of variability into the analysis. A more exact means of distinguishing the areal percentage of a county that corresponded to each aquifer being considered would have been beneficial to this analysis. As discussed in Section 3.5, six counties were selected for separate coding by several nationally recognized hydrogeologists. This coding effort was included in the study only to display qualitatively the range of variability that might be expected among experts. As such, it is not a statistically valid sample representing the total data base. A detailed discussion of this qualitative check, along with- results, is provided in Appendix F. Computations of the coefficient of variation between multiple codings of small samples of the data base were performed to gain an estimate of the average variations in VARSCORES attributable to individual opinion. The-coefficient of variation for a given county is defined as the standard deviation divided by the mean, times 100. For the 6 qualitative check counties, estimates of the coefficient of variation values ranged from 9 to 21 percent. The average coefficient of variation for these 6 counties, with 6 observations per county, would be 13 percent (Appendix F, Table F-2). Computation of the 20 ------- coefficient of variation for the small sample (96 counties coded by the 3 contractors) yielded values ranging from 1 to 26 percent. An average value for this sample of 96 counties with 3 observations per county would be 12 percent. It should be noted that measurement error and coefficient of variation estimates have been calculated only for the originally coded data base. These estimates do not reflect later adjustments made to the data base to improve its general reliability. It is anticipated that these adjustments, described in detail in Appendix G, should substantially reduce the measurement error associated with the originally coded data base. 21 ------- 5.0 REFERENCES Aller, L., T. Bennett, J. H. Lehr and R. J. Petty, 1985. DRASTIC: A Standardized System For Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. U.S. Environmental Protection Agency, 385p. Freeze, R. A. and J. Cherry, 1979. Groundwater, Prentice-Hall, 604p. Fuller, M. L., 1905. Underground Waters of the Eastern United States,'*' U.S. Geologial Survey Water-Supply Paper 114. Heath, R. C., 1984. Ground-Water Regions of the United States. U.S. Geological Survey Water Supply Paper 2242, 78p. Meinzer, 0. E., 1923. The Occurrence of Ground Water in the United States, U.S. Geological Survey Water-Supply Paper 489. Raisz, E., 1957. Landforms Map of the United States. Ries, H., and T. L. Watson, 1914. Engineering Geology, John Wiley and Sons, Inc., New York. Thomas, H. E., 1952. Ground-Water Regions of the United States -- Their Storage Facilities and the Physical and Economic Foundation of Natural Resources, U.S. 83rd Congress, House Interior and Insular Affairs Committee, Volume 3. 22 ------- APPENDIX-A TRAINING MANUAL FOR USING DRASTIC HYDROGEOLOGIC FACTORS IN CONDUCTING A NATIONAL GROUND-WATER VULNERABILITY ASSESSMENT ------- TRAINING PROGRAM PARTICIPATION Roy F. Weston Consultants The Weston training program was held in Washington, DC, on June 24, 1985, and was attended by: Weston: Jack Robertson Lisa Arters Robert Caprara Peter Ciotoli Loren Laski Mike Wierman Bill Miller EPA: Stuart Cohen Ron Hoffer George DeBuchananne Jay Lehr Linda Aller Geraghty & Miller: Bill Doucette NWWA: RTI: Joe Alexander Bob Mason Woodward-Clyde Consultants: The Woodward-Clyde training program was held in San Francisco, CA, on June 27, 1985, and was attended by: Woodward-Clyde: David Dean Jim Dederick Charles Franks Richard Kent Charles Lehotsky John Pelka Melitta Rorty NWWA: Linda Aller RTI: Joe Alexander A-1 ------- SECTION 1 INTRODUCTION 1.1 Background The Office of Pesticide Programs (OPP) and the Office of Drinking Water (ODW) are jointly designing a statistical, stratified national survey of pesticides in ground water. The goals of the survey are to characterize the occurrence of selected pesticides in ground water; to determine the relatfoqship between the uses of pesticides, pesticide characteristics, and ffeld conditions to ground and drinking water con- tamination; and to estimate human exposure to these chemicals via drinking water contaminated by normal pesticide usage. One way the United States will be stratified will be to rank the ground-water vul- nerability of all counties into categories of high, medium, and low based on specific hydrogeologic factors (Stage 1). Subsequent stages of the survey will involve selection of county segments (Stage 2) and selection of potable wells for ground-water sampling and analysis (Stage 3). 1.2 Overall Approach Research Triangle Institute (RTI) will manage the first stage of the project for EP.A. A significant portion of this first stage is being performed by Woodward-Clyde Consultants and Weston Consultants for data collection efforts in the western and eastern United States, respectively. Seven key hydrogeologic factors, and a system for ranking them with respect to ground-water pollution potential by pesti- cides, have recently been developed by the National Water Well Associa- tion (NWWA). These factors are referred to as DRASTIC by NWWA and will serve as the basis for data collection in this work assignment. The ranking and weighting system developed by NWWA for the DRASTIC factors will be used to determine the relative vulnerability of. each county to ground-water contamination by pesticides used in agricultural practice. The data assembled in this effort may also be useful in other related studies. 1.3 Purpose of Training Program Brief training programs are scheduled in two locations for repre- sentatives of Woodward-Clyde and Weston. The purpose of this training program 'is to provide sufficient information to those individuals involved in the first stage so that consistency can be achieved in obtaining DRASTIC factors on a national scale. A number of hydrogeo- logists will be using their judgement and experience to complete the information for selected counties, or relying on information obtained from other professionals knowledgeable of the hydrogeologic conditions of a particular area. It is the intent of this training program to provide the professionals in your firm with: A-2 ------- 0 An introduction and overall approach to be used on the project 0 A history of the DRASTIC system and definitions of the key hydrogeologic factors 0 Step-by-step instructions for completing the county data forms along with a discussion of the level of effort that should be used. 0 Suggestions for data sources 0 Instructions for determining the DRASTIC score, the sensitivity of the scoring process, and how to indicate the level of confi- dence in the data 0 Instructions for resolving questions and transmitting completed data forms 0 Guidance in completing data forms for several selected counties during the training program. A-3 ------- SECTION 2 BACKGROUND INFORMATION Two references (Heath 19841; and Aller et al. 19852) serve as the framework for this work effort and applicable portions of each have been incorporated in this training program with the permission of the authors. 2.1 Ground-Water Regions A current basis for grouping aquifers by their water-bearing char- acteristics within certain geographic areas is contained in Heath (1984). The ground-water regions that will be used for the purposes of this project (modified from Heath 1984) include: Region 1 Western Mountain Ranges 2 Alluvial Basins 3 Columbia Lava Plateau 4 Colorado Plateau and Wyoming Basin 5 High Plains 6 Nonglaciated Central 7 Glaciated Central 8 Piedmont and Blue Ridge 9 Northeast and Superior Uplands 10 Atlantic and Gulf Coastal Plain 11 Southeast Coastal Plain 12 Hawai1 13 Alaska ^•Heath, R. C. 1984. Ground-Water Regions of the United States. U.S. Geological Survey Water Supply Paper 2242. 78 pp. 2Aller, L. T. Bennett, J. H. Lehr, and R. J. Petty. 1985. DRASTIC: A Standarized System for Evaluating Ground Water Pollution Potential Using Hydrgeologic Settings. U.S. Environmental Protection Agency. 384 pp. A-4 ------- General information on the hydrogeologic conditions of each of these regions has been summarized in the Appendix. In addition, these ground-water regions have been generalized on a more detailed county map of the United States (scale 1:17,000,000) that will be provided along with this manual. 2.2 Hydrogeologic Settings Within the framework of the ground-water regions, NWWA has devel- oped the concept of hydrogeologic settings, defined as mappable units with common hydrogeologic characteristics and common vulnerability to contamination by pollutants. Approximately 86 hydrogeologic settings have been identified within the ground-water regions of the United States. Brief descriptions of each of these settings, along with a schematic block drawing, are provided in the Appendix (from Aller et al, 1985). 2.3 Agricultural DRASTIC A history of the DRASTIC system will be provided by NWWA as a part of this training program. Seven key hydrogeologic factors are consid- ered to control .ground water pollution potential. They include the following and form the acronym DRASTIC: D - Depth of water R - Recharge (net) A - Aquifer media S - Soil Tiedia T - Topography (slope) I - Impact of vadose zone C -. Conductivity (hydraulic) of the aquifer A numerical ranking system to assess relative ground-water pollution potential has been devised by NWWA considering weights, ranges, and ratings of the DRASTIC factors. An Agricultural DRASTIC system has been designed, and is appropriate for the purposes of this work assign- ment, where the specific concern is the application of pesticides to the land surface. A typical numerical ranking system for Agricultural DRASTIC factors has been incorporated as a constant in the data forms that will be used in this work assignment. Additional background information on the ranking system will be provided during the training program; it is therefore not considered necessary to describe the ranking system further in this manual. A-5 ------- 2.4 Depth to Water For the purposes of this manual, depth to water refers either to the depth to the water surface in an unconfined aquifer, or to the top of the aquifer where the aquifer is confined. In most cases the upper- most aquifer should be selected as it is most susceptible to contamina- tion by pesticides and may serve as a source of recharge to underlying aquifers. Depth to water does not include saturated zones that have insufficient permeability to yield significant quantities of water to be considered an aquifer. The depth to water is important primarily because it determines the thickness of material through which a contaminant must travel before reaching the aquifer, and it may help to determine the amount of time during which contact with the surrounding media is maintained. The depth to water is also important because it provides the maximum opportunity for oxidation by atmospheric oxygen. In general, there is a greater chance for attenuation to occur as the depth to water increases because deeper water levels infer longer travel times. The ranges in depth to water as defined in the DRASTIC system have been determined based on presumed depths where the potential for pollution changes. 2.5 Net Recharge The primary source of qround water is precipitation, which infil- trates through the surface of the ground and percolates to the water table. Net' recharge indicates the amount of water per unit area of land that penetrates the ground surface and reaches the water table. This recharge water is thus available to transport a contaminant verti- cally to the water table where it can then migrate within the aquifer. In addition, the quantity of water available for dispersion and dilu- tion in the vadose zone and in the saturated zone is controlled by this parameter. In areas where the aquifer is unconfined, recharge to the. aquifer usually occurs more readily and the pollution potential is generally greater than in areas with confined aquifers. Confined aquifers are partially protected from contaminants intro- duced at the surface by layers of low permeability media that retard water movement to the confined aquifer. In some parts of some confined aquifers, head distribution is such that movement of water is through the confining bed from the confined aquifer into the unconfined aquifer. In this situation, there is little opportunity for local contamination of the confined aquifer. The principal recharge area for the confined aquifer is often many miles away. Many confined aquifers are not truly confined and are partially recharged by the migration of water through the confining layers. The more water that leaks through, the greater the potential for recharge to carry pollution into the aquifer. Recharge water, then, is a principal vehicle for leaching and transporting solid or liquid contaminants to the water table. There- fore, the greater the recharge, the greater the potential for pollu- tion. A-6 ------- One additional factor that must be considered is augmentation of natural recharge through artificial recharge or by irrigation. When a range for net recharge is assigned, these additional sources of water must be considered. 2.6 Aquifer Media Aquifer media refers to the consolidated or unconsolidated medium that will yield sufficient quantities of water for use. Water is held by aquifers in the pore spaces of granular and clastic rock and in the fractures and solution openings of nonclastic and nongranular rock. Rocks that yield water from pore spaces have primary porosity; rocks that have water held in solution openings or fractures created after the rock was formed have secondary porosity. The aquifer medium exerts the major control over the route and path length that a contaminant must follow. In general, the larger the grain size and the more frac- tures or openings within the aquifer, the higher the permeability and the lower the attenuation capacity; consequently, the greater the pol- lution potential. For purposes of this manual, aquifer media have been designated by descriptive names. Each medium is listed below in order of increasing pollution potential. A description of each .medium follows the name and standard abbreviation that is used on the data form: 1. Massive Shale (SH). Thick-bedded shales and Gladstone or clays that typically yield only small quanitities of water from frac- tures and have a low pollution potential. Pollution potential is influenced by the degree of fracturing. 2. Metamprphic/Igneous (META/IGN). Consolidated bedrock of meta- morphic or iqneous origin that contains little or no primary porosity and yields water only from fractures within the rock. Typical yields" are low and the relative pollution potential is a function of the degree of fracturing. 3. Weathered (WTHD) Metamorphic/Igneous. Unconsolidated material, commonlytermedregolithor saprolite, that is derived by weathering of the underlying consolidated bedrock and contains primary porosity. The pollution potential is largely influ- enced by the amount of clay material present: the higher the clay content, the lower the pollution potential. 4. Bedded Sandstone (SS), Limestone (IS), and Shale (SH). Tvpi- cally thin-bedded sequences of sedimentary rocks that contain primary porosity. The controlling factor in determining pollu- tion potential is the degree of fracturing. A-7 ------- 5. Massive Sandstone (SS). Consolidated sandstone bedrock that contains both primary and secondary porosity and is typified by thicker deposits than those of the bedded sandstone, limestone, and shale sequences. Pollution potential is largely controlled by the degree of fracturing and the primary porosity of the sandstone. 6. Massive Limestone (LS). Consolidated limestone or dolomite bedrock that is characterized by thicker deposits than bedded sandstone, limestone, and shale sequences. Pollution potential is largely affected by the degree of- fracturing and the amount of solution of the limestone. 7. Sand and Gravel (SA & GVL). Unconsolidated mixtures of sand- to gravel-sized particles that contain varying amounts of fine materials. Sands and/or gravels that have only small amounts of fine material are termed "clean." In general, the cleaner and more coarse-grained the aquifer media, the greater the pollution potential. 8. Basalt. Consolidated extrusive igneous bedrock that contains beddinq planes, fractures, and vesicular porosity. The term is used herein in a generic sense, even though it is actually a type of rock. Pollution potential is influenced by the amount of interconnected openings that are present in the lava flow materials. 9. Karst Limestone (LS). Consolidated limestone bedrock that has been dissolved to the point where larqe, open, interconnected cavities and fractures are present. This is a special case of massive limestone. 2.7 Soil Media Soil media refers to that uppermost portion of the vadose zone characterized by significant biological activity. For purposes of this manual, soil is commonly considered the upper weathered zone of the Earth that averages 3 feet or less. Soil has a significant impact on the amount of recharge that can infiltrate into the ground and hence on the ability of a contaminant to move vertically into the vadose zone. Moreover, where the soil zone is fairly thick, the attenuation processes of filtration, biodegradation, sorption, and volatilization. may be quite significant. Thus, for certain on-land surface practices, such as agricultural applications of pesticides, soil can be a primary influence on pollution potential. In general, the pollution potential of a soil is largely affected by the type of clay present, the shrink/swell potential of that clay and the grain size of the soil. In general, the less the clay shrinks and swells and the smaller the grain size, the less the pollution- potential. The quantity of organic material present in the soil may also be an important factor. Descriptions of soil media in order of decreasing pollution potential follows with the names and standard abbreviations that are used on the data forms: A-8 ------- 1. Nonshrinkinq Clay (CL). Illitic or kaolinitic clays that do not contract with the removal of water and therefore do not form vertical secondary permeability, thus increasing the pol- lution potential. 2. Clay (CL) Loam. A soil textural classification characterized by 15 to 55 percent silt, 27 to 40 percent clay, and 20 to 45 percent sand (Figure 1). Because of the high amounts of clay and restrictive permeabilities, it has a low pollution poten- tial. 3. Si Ity (SI) Loam. A soil texture classification characterized by 50 to 85 percent silt, 12 to 27 percent clay, and 0 to 50 percent sand (Figure 1). The pollution potential is still low, but higher than a clay loam because of typically lower percent- ages of clay. 4. Loam. A soil textural classification characterized by 25 to 50 percent silt, 7 to 27 percent clay, and 0 to 50 percent sand (Figure 1). The pollution potential is still low, but higher than a si Ity loam because of lower percentages of clay and silt. 5. Sandy (SA) Loam. A soil textural classification characterized by 0 to 50 percent silt,' 0 to 20 percent clay, and 15 to 50 percent sand (Figure 1). The pollution potential is greater than a loam due to the higher percentage of sand. 6. Shrinking- Clay. Characterized by montmorillonitic clays or smectities that have an expanding lattice that swells and contracts with alternating wetting and drying. Although the cracks formed up on drying swell as the clay hydrates, the ability of pollutants to move rapidly upon intitial wetting is documented. This medium, can have a seemingly high pollution potential based on the secondary vertical permeability created by the cracking of the media upon drying even though it is usually of low permeability. 7. Sand (SA). A size-based delineation of angular or round parti- cles ranging from 1/16 mm to 2 mm. Sands that are free of silts or clays have a high pollution potential. 8. Gravel (GVL). A particle-based size classification typified by particles larger than 2 mm and commonly a mixture of sand, silt, clay, and gravel with a preponderance of large-sized particles. Permeability is rapid and pollution potential is high. 9. Thin or Absent. If a soil layer is not present or if the layer is so thin as to be considered ineffective, the pollution potential is very high. 4-9 ------- Si Slht (O£ff1 )5S?r5593M55555k 9«i% IA^QIII *ywTy **/yy- "//ft T*rinrYVTTr rr'r •• i1 i"r T\ TT T ¥Vi*i*i*i\\A/tj*7 percent sand {From Soil Conservation Service, 1951 as reported in Aller et al 1935) Figure 1. Soil t.extural classification chart. A-10 ------- 2.8 Topography As used here, "topography" refers to the slope and slope variabil- ity of the land surface. Basically, topography helps control the like- lihood that a pollutant will run off or remain on the surface in one area long enough to infiltrate. This is particularly important in activities such as the application of pesticides where the effect of the contaminant tends to be cumulative. Therefore, the greater the chance of infiltration, the higher the pollution potential associated with the slope. Topography influences soil development and therefore has an effect on attenuation. Topography is also significant from the standpoint that the gradient and direction of flow can often be inferred for water table conditions from the general slope of the land. Typically, steeper slopes signify higher ground-water velocity. The ranges of percent slope have assumed that 0 to 2 percent slope provides the greatest opportunity for a pollutant to infiltrate because neither the pollutant nor much precipitation exits in the area as run- off. Conversely, 18+ percent slope affords a high runoff capacity and therefore a lesser probabi'lity of infiltration with subsequent lower pollution potential. However, steep slopes are more conducive to rapid erosion and contamination of surface water. 2.9 Impact of Vadose Zone The vadose zone is defined as the unsatuated zone above the water table. For purposes of this document, this rigid definition can be applied to all water table aquifers. However, when evaluating a confined aquifer, the "impact" of the vadose zone is expanded to include both the vadose zone and any saturated zones that overlie the aquifer. The significantly restrictive zone above the aquifer that forms the confining layer is used as the type of media having the most significant impact. The type of vadose zone media determines the attenuation charac- teristics of the material below the typical soil horizon and above the water table. Biodegradation, neutralization, mechanical filtration, chemical reaction, volatilization, and dispersion are all processes that may occur within the vadose zone with a general lessening of bio- degradation and volatilization with depth. The media also control the path length and routing, thus affecting the time available for attenua- tion and the quantity of material encountered. Routing is strongly influenced by any fracturing present. The materials at the top of the vadose zone also exert an influence on soil development. A-11 ------- Vadose zone media have been designated by descriptive names. Each medium, listed in order of increasing pollution potential, is described below; the standard abbreviation used on the data forms is included: 1. Silt/Clay (SI/CL). A deposit of silt and clay-sized particles that serve as a barrier to retard movement of liquids. The high clay content provides a low pollution potential. Shrinking clays and higher silt concentrations increase the pollution potential. 2. Shale (SH). A consolidated thick-bedded clay rock th-at may be fractured. Pollution potential is low but increases with the degree of fracturing. 3. Limestone (LS). Consolidated massive limestone or dolomite that typically contains fewer bedding planes than bedded l--;.estone, sandstone, and shale sequences (see "e" below). Pollution potential is influenced by the degree of fracturing, with a low density of fracturing allowing less chance for pollutant migration. 4. Sandstone (SS). A consolidated sand rock that contains both primary and secondary porosity and is typified by thicker bedding than compared to bedded limestone, sandstone, and shale sequences (see "e" below). Pollution potential is largely controlled by the degree of fracturing and the primary porosity of the sandstone. 5. Bedded Limestone (LS). Sandstone (SS), and Shale (SH). Typically thin-bedded sequences of sedimentary rocks that contain primary porosity, but where the controlling factor in determining pollution potential is the degree of fracturing. 6. Sand and Gravel with Significant Silt and Clay (SA & GVL w/ SI & CL).Unconsolidated mixtures of sand and gravel that contain an appreciable amount of fine material affecting pollution potential by having a high concentration of clay or by reducing the permeability of the deposit. These deposits are commonly referred to as "dirty" and have a lower pollution potential than "clean" sands and gravels. In general, finer-grained "dirtier" sands have a lower pollution than coarser-grained "dirtier" gravels. 7. Metamorphic/Igneous (META/IGN). Consolidated rock of metamor- phic or igneous origin that contain no significant primary porosity and permit movement of liquids through fractures. The relative pollution potential is a function of the degree of fracturing. ------- 8. Sand and Gravel (SA & GVL). Unconsolidated mixtures of sand to gravel-sized particles that contain only small amounts of fine materials. The range in rating reflects principally a grain size distribution where poorly sorted small-grained deposits have a lower pollution potential and well-sorted, large-grained deposits have a higher pollution potential. 9. Basalt. Consolidated extrusive igneous bedrock that-contains bedding planes, fractures, and vesicular porosity. This is a special case of Metamorphic/Igneous. The term is used herein in a generic sense, even though it is actually a type of rock. Pollution potential is influenced by the number and amount of interconnected openings present in the lava flow materials. Pollution potential is typically high because there is little chance for attenuation once a pollutant enters the fracture system. 10. Karst Limestone (LS). Consolidated limestone bedrock that has beendissolvedtothe point where large open interconnected cavities and fractures are present. This is a special case of limestone where pollution potential is high based on the amount of open area in the rock. 2.10 Hydraulic Conductivity Hydraulic conductivity refers to the ability of the aquifer mate- rials to transmit water or pollutants, under a given hydraulic gradi- ent. Hydraulic conductivity is controlled by the amount and intercon- nection of void spaces within the aquifer that may. occur as a conse- quence of intergranular porosity, fracturing, or bedding planes. For purposes of this manual, hydraulic conductivity is divided into ranges where high hydraulic conductivities are associated with higher pollu- tion potential. This is because the pollutant has the potential for moving quickly away from the point in the aquifer where it is intro- duced. Ranges of hydraulic conductivity, along with conversion factors, are provided in Table 1. A-13 ------- Table 1. Ranges of Hydraulic Conductivity and Conversion Factors1' Range of Values of Hydraulic Conductivity and Permeability u _ I 1 1 1 Rocks Un consolidated k k K K K deposits __ (darcy) (cm2) (cm/s) (m/s) {gal/day/ 5 "5 i - /I Sjj i« "3-0 gSl i C _ •— » 0 ? 'J ^ tj o u: Ul "1 h. y 1-* O o a c P o 1 ' J o o _ • £-0-0 _j C t i c 1 I £ A V) p ™ ( ^. rio5 rio~3 rio2 T a X C. J 5 a en C a r _ t 3 *• 3 •) 5 j j en a CO — | i c •a o JJ S 0 O ^ ai 3 a> ^ u "a. *" i III1 — ' E ~ ^ > - a >• 3 "oi5 at c I -IO4 -IO3 -IO2 -10 -1 -to-1 -io-2 -ID'3 -to-4 -ID'5 -1C"6 -io-7 -ID"8 -io-4 -io-5 -io-6 -io-7 -ID'8 -io-9 -10"° - IO"1 - 1Q-'2 - IO"13 -io-14 -io-15 -io-6 -10 -1 -10" -tO'2 -io-3 -io-4 -io-5 -10"6 -ID'7 HO'6 -ID'9 - 10"° -IO"1 -1 .IO6 -10" HO'2 -io-3 -io-4 -io-5 -io-6 -1C'7 -io-8 -ID'9 -10"° -io-11 - 10"2 -IO"3 -IO5 -IO4 -IO3 -IO2 • 10 . 1 Bi • 10" -10'2 IV -10"3 I\J -io-4 _g -10 -to-6 ,-7 Conversion Factors for Permeability and Hydraulic Conductivity Units cm2 ft2 darcy m/s ft/s cm2 1 9.29 x IO2 9.87 x 10-* 1.02 x 10-' 3.11 x 10-* U.S gal/day/ftJ5.42 x 10'10 Permeability. *• ft2 1.08 x 10-3 1 1.06 x 10-'i l.lOx 10-* 3.35 x 10-' 5.83 x 10-13 Hydraulic conductivity. K darcy 1.01 x 10" 9.42 x 10' ° 1 1.04 X I0> 3.15 x 10* 5.49 x 10"2 m/s 9.80 x IO2 9.11 x 10* 966 x 10-« 1 3.05 x I0-i 4.72 x ID'7 ft/s U S. gal/day/ft' 3 22 x 103 2.99 x 10< 3.17 x 10-' 3.28 1 1.55 x 10-« 1.85 x 10» 1.71 x 10i2 1.82 x Ifli 2.12 x 10* 6.46 x 10' 1 •To obtain k m ft2, multiply k in cmz by 1.08 x 10~3. 1} From Freeze, R. Allan and John A. Cherry, 1979, Groundwater. Prentice Hall, Inc. A-14 ------- SECTION 3 INSTRUCTIONS FOR COMPLETING DATA FORMS 3.1 Introduction The information that will be compiled in this survey will be use- ful for future studies and you are encouraged to maintain notes and reference materials during the course of this project. RTI has devel- oped a form that should be convenient for compiling the necessary information for each county in this survey (Figure 2). Once the data are assembled for the county, the form itself should not require more than 15 minutes to complete. For convenience, the basic header infor- mation (FIPS Coding, State, and county name) has been prelabeled for each form. The form has been designed to indicate estimated percent- ages of each hydroqeoloqical factor with respect to the total land area of the county as a means of indicating the variable conditions in land areas of this size. Step-by-step instructions for completing each por- tion of the form are provided in the following sections. 3.2 Ground-Water Region It is anticipated that many counties in the United States will be located in only one ground-water region. Space for as many as four ground- water regions are provided on the forms. Spaces for the esti- mated percentage of the county occupied by the corresponding ground- water regions are also provided. Example 1 A county is located entirely within the Piedmont and Blue Ridge ground-water region (Region 8). The form should be completed as: GROUND WATER REGION 08 ESTIMATED % OF COUNTY 99 Note that only two digits are built into the percent column of the data form and that 99 percent will be regarded as 100 percent. A-15 ------- FTPS CODING STATE COUNTY s333=a33ss3B33ssssB: GROUND-WATER REGION GA GB GC GD HYDROGEOLOGIC SETTING _^ HA HB HC HD HE HF :3=333=3S3333S=3333=3333333SS3 AGRICULTURAL RANGES IN WEIGHTED 'i DRASTIC FACTORS RATINGS ' BB3sas3333333SB33S333: ESTIMATED 7. OF COUNTY ESTIMATED 7. OF COUNTY 33333B3333 ESTIMATED 7. OF COUNTY I / RANGES IN DRASTIC FACTORS :=33BB3a33B3B3BS3B8333 =?: AGRICULTURAL ESTIMATED WEIGHTED 7. OF RATINGS COUNTY SB===33BB3B=B=========S33=BBB: DEPTH TO WATER (FT) 0-5 5-10 10 15 30 50 75 - 15 - 30 - 50 - 75 -100 NET 100 + :3333B3B3 = 3BB3: RECHARGE (IN) 0-2 2-4 4-7 7 -10 10 + 50 45 40 35 25 15 10 5 AQUIFER MEDIA SH (MASSIVE) META/IGN META/IGN (WTHD) SS, LS, SH (TN BED) SS (MASSIVE) LS (MASSIVE) SA £ GVL BASALT LS (KARST) SOIL MEDIA THIN OR ABSENT GVL SA CL (SHRINKING) LOAM (SA) LOAM LOAM (SI) LOAM (CL) CL CNONSHRINKING) 4 12 24 32 36 6 9 12 18 18 18 24 27 30 50 50 45 35 30 25 20 15 5 DA DB DC DD DE np Ur DG DH 3 = 333 RA RB RC RD RE 3333 = AA AB AC AD AE AF AG AH AI 33333 SA SB SC SD SE SF SG SH SI TOPOGRAPHY (3 SLOPE) 0-2 30 2-6 27 6-12 15 12-18 9 18+ 3 IMPACT OF VADOSE ZONE MEDIA SI/CL 4 SH 12" LS 24 SS 24 LS, SS. SH (BEDDED) 24 SA £ GVL WXSI £ CL 2* META/IGN 16 SA £ GVL 32 BASALT 36 LS (KARST) «*0 333333333333333333333333333333S3SS3 HYDRAULIC CONDUCTIVITY (GPDXS2 FT) 1 - 100 2 . 100 - 300 4 300 - 700 8 700 - 1000 12 1000 - 2000 16 2000+ 20 S333333333333333S333333333333333333 AGRICULTURAL DRASTIC SCORE ======================= ============ INDEX VARIABILITY + - =53333333333333333S=333333=333SB3=3 DATA CONFIDENCE _ (3 = HIGH 2 = MEDIUM. 1 = LOW) 3=333333S33====3=====S3=B========33 BY FIRM DATE 85 =================================== DATA SOURCES OR COMMENTS ON BACK TA TB TC TD TE IA IB 1C ID IE IF IG IH II IJ BBSS CA CB CC CD CE CF 3=3 = 3SSS 3333 333 S 33=3 Figure 20 Data Collection Form A-16 ------- Example 2 A county adjacent to that in Example 1 is primarily within Region 8, but also within the Atlantic and Gulf Coastal Plain (Region 10). In evaluating geologic maps of the county it is estimated that aporoxi- mately 75 percent of the county is in Region 8 and the remainder of the county is in Region 10. The form should be completed as: GROUND-WATER REGION 08 ESTIMATED % OF COUNTY 75 In the unlikely case where more than four ground-water regions are encountered within a large county, it would not be necessary to indi- cate the ground-water region that occupies the lowest percentage of the county. 3.3 Hydrogeologic Setting Spaces for coding as many as six.'hydrogeologic settings (and cor- responding percentages of the county) are provided on the data form. Information about each hydrogeologic setting is provided in the Appen- dix. It will be necessary to indicate the ground-water region code with the hydrogeologic setting as shown in the following examples. Example 3 A county is located entirely within the Western Mountain Ranges ground-water region (Region 1). Upon viewing more detailed information about the county it is determined that the county can be subdivided by predominantly Western Mountain Slopes (lAb West; Appendix 1) and some Western Alluvial Mountain Valleys (IBb West; Appendix 1). The form should be completed as: HYDROGEOLOGIC SETTING 1 Ab ESTIMATED % OF COUNTY 90 -Tib" ~TU~ A-17- ------- Example 4 A county is located in two ground-water regions (based on Example 2) and four hydrogeologic settings are present as shown by the follow- ing schematic drawing: 8D lOAb Referring to the hydrogeologic settings in the Appendix (Sections 8 and 10), the form should be completed as: HYDROGEOLOGIC SETTING 8 D ~ST TO Ab TO" BE ESTIMATED % OF COUNTY 65 10 20 5 A-l:* ------- It is important to note that in this example, the sum of the percent associated with the hydrogeologic settings of one ground-water region should equate to the percent of the ground-water region previously reported for the county as shown below: GROUND-WATER REGION 08 ESTIMATED % OF COUNTY 75 10 25 HYDROGEOLOGIC SETTING 8 D 65 8 E 10 TO" AB" ~20" TO"Bb~ T 3.4 Agricultural DRASTIC Factors Each of the seven DRASTIC factors on the form are arranged under the following three headings: AGRICULTURAL ESTIMATED RANGES IN WEIGHTED ' % OF DRASTIC FACTORS RATINGS COUNTY Descriptions of DRASTIC factors were previously defined in Section 2. Each DRASTIC factor has been divided into significant ranges. The ranges of the factors are presented in Examples 5 through 11 later in this section. The corresponding agricultural weighted rating is a numerical constant that will be used in determining the DRASTIC score. The corresponding percent of county allows the hydrogeologist to show the variation of conditions that exists in the particular county. The following instructions apply to each of the DRASTIC factors: 1. Select the one range or description of DRASTIC factors that best represents the largest area of the county. 2. Circle only one corresponding agricultural weighted rating 3. Enter the corresponding estimated percentage that applies to the largest county area. 4. Enter the remaining percentages of the county that apply to other factors. It is not necessary for the percent of the county to add up to 100 percent (80 to 90 percent is accept- able). A-I9 ------- These instructions are best explained by examples provided in the fol- lowing subsections. For convenience, each example is assumed to be in the same ground-water region. 3.4.1 Depth to Water The county is located in the Piedmont and Blue Ridge ground-water region, a thick regolith hydrogeologic setting (Region 8; Appendix 8) An unconfined aquifer is the primary source of drinking water supply. The depth to the water table in most of the county is in the range of 15 to 30 feet below land surface. A few major streams are present in the county and the depth to the water table near the streams ranges from 5 to 15 feet, depending on the prjoximity to the streams. In the actual floodplain of the stream, the water table is less than 5 feet below land surface (although this reoresenr,s a very small area of the total county). The form would be complef-:d as follows: Example 5 RANGES IN DRASTIC FACTORS DEPTH TO WATER (FT) 0-5 5-10 10-15 15-30 30-50 50-75 75-100 100+ AGRICULTURAL WEIGHTED RATINGS 50 45 15 10- 5 ESTIMATED % OF COUNTY 05 ~05~ 05 "85" In this example the agricultural weighted rating of 35 would be used in determining the DRASTIC score (explained in Section 3.5) since it represents the majority of the area in the county. ------- 3.4.2 Net Recharge The same county is known to have approximately 50 inches of rain- fall annually. Approximately 30 inches are known to be lost to evapo- transpiration. After evaluating other important considerations that influence net recharge (such as type of surficial soils, vegatative cover, slopes, and runoff) it is determined that approximately 5 inches are available for recharge to the unconfined aquifer. The rainfall and recharge is fairly evenly distributed throughout the county, within the ranges indicated in the example shown below. The form would be completed as follows: Example 6 RANGES IN DRASTIC FACTORS NET RECHARGE (IN) 0-2 2-4 4-7 7-10 10+ AGRICULTURAL WEIGHTED RATINGS 4 12 32 36 ESTIMATED % OF COUNTY "99 3.4.3 Aquifer Media The county is known to have an aquifer composed predominantly of weathered metamorphic and igneous rocks. The alluvium near some of the major streams may also supply ground water,/'although this would repre- sent a small percentage of the county area. The form would be com- pleted as follows: Example 7 AGRICULTURAL ESTIMATED RANGES IN WEIGHTED % OF DRASTIC FACTORS RATINGS COUNTY AQUIFER MEDIA SH (MASSIVE) 6 META/IGN 9 META/IGN (WTHD) (g) 90 SS, LS, SH, (TN BED) IS SS (MASSIVE) 18 LS (MASSIVE) 18 SA & GVL 24 ~0? BASALT 27 LS (KARST) 30 Note that in this example it is not necessary to account for the entire percentage of the county. A-21 ------- 3.4.4 Soil Media The shallow soils in most of the county are derived from the in- place weathering of the igneous and metamorphic rocks. These residual soils are classified as silty loams or clayey loams, depending on loca- tion. Sand and gravel are known to be present in small quantities as alluvial deposits near the major streams. The form would be completed as follows: Example 8 RANGES IN DRASTIC FACTORS SOIL MEDIA THIN/ABSENT GVL SA CL (SHRINKING) LOAM (SA) LOAM LOAM (SI) LOAM (CL) CL (NONSHRINKING) AGRICULTURAL WEIGHTED RATINGS 50 50 45 35 30 25 5 ESTIMATED % OF COUNTY ~OT 03 ~50 JET It should be noted that in this example there is little differentiation between the percent of silty and clayey loams in the county. It is necessary however, to show only one soil type as predominant (Refer to numbers 2 and 3 in the instructions, in Section 3.4). It is also important to note in this example that the difference in the agricul- tural weighted ratings between these two soil types is not significant (5 points) relative to the total' range of this factor (5 to 50 points). A-?2 ------- 3.4.5 Topography The percent slope of most of the county is in the range of 6 to 12 percent. The slope decreases to less than 6 percent in the valley of the major streams. The form would be completed as follows: Example 9 RANGES IN DRASTIC FACTORS TOPOGRAPHY (% SLOPE) 0-2 2-6 6-12 12-18 18+ AGRICULTURAL WEIGHTED RATINGS 30 27 COb 9 3 ESTIMATED % OF COUNTY 05 ~05" "90 3.4.6 Impact of Vadose Zone The-predominant impact the vadose zone in most of the county is that of silt or clay-sized particles. The weathered profile of the underlying metamorphic and igneous rocks is irregular and in some areas is in'cluded within the vadose zone. The form would be completed as follows: Example 10 AGRICULTURAL RANGES IN WEIGHTED DRASTIC FACTORS RATINGS IMPACT OF VADOSE ZONE MEDIA SI/CL SH LS ss LS, SS, SH (BEDDED) SA & GVL W/SI & CL META/IGN SA & GVL BASALT LS (KARST) © 12 24 24 24 24 16 32 36 40 ESTIMATED % OF COUNTY 75 JQT ------- 3.4.7 Hydraulic Conductivity The hydraulic conductivity within the fractured metamorphic/ igneous rocks in the county is low, typically less than 50 gpd/ft2. The form would be completed as follows: Example 11 RANGES IN DRASTIC FACTORS AGRICULTURAL WEIGHTED RATINGS HYDRAULIC CONDUCTIVITY (GPD/FT2) 1-100 © 100-300 4 300-700 8 700-1,000 12 1,000-2,000 16 2,000+ 20 ESTIMATED % OF CnJNTY 99 3.5 Agricultural DRASTIC Score The Total Agricultural DRASTIC score is determined by simply adding the seven circled agricultural weighted ratings. In the previous examples (5' through 11) the total score would be: [D = 35] + [R = 24] + [A = 12] + [S = 20] + [T = 15] + [I = 4] + [C = 2] = AGRICULTURAL DRASTIC SCORE 112 The total score, or a percentage-weighted score, will be used to set vulnerability limits when the study is near completion. Recognizing the range of total scores that is possible (29 to 256), the total score in the above example (112) would likely end up being considered as moderate vulnerability. The usefulness of the total score at this point in the survey will be for the hydrogeologist coding the forms when evaluating adjacent counties for overall reasonableness and to be able to account for differences in total scores. A -24 ------- 3.6 Index Variability The Agricultural DRASTIC score that was determined in Section 3.5 is based on typical values that do not account for heterogeneities such as degree of fracturing in the aquifer media or the vadose zone. A term referred to as "index variability" can be used to indicate they hydrogeologist's opinion on the variability that might be associated with the previously determined score. It is anticipated that the aquifer media and the impact of the vadose zone are the primary DRASTIC factors where index variability may apply. Table 3 has been designed to show specific values that could be considered by RTI later in the study for addition or subtraction to the score for the aquifer media (Table 3, Part I) or the impact of the vadose zone (Table 3, Part II). The space provided on the form for the index variability should be coded as a 2-digit, oositive or negative value, as shown in the following example. Example 12 The aquifer media of the county was coded as massive shale, con- tributing a typical value of 6 to the total Agricultural DRASTIC score (Refer to the agricultural weighted rating for shale in Figure 2). The shale is highly fractured in the county, however, and the hydrogeologist feels that a higher DRASTIC score should be recognized. Referring to Table 3 (Part I), three specific values could be selected for massive shale (3, 6, or 9). In the case of massive shale that is highly fractured, a value of 9 would be more appropriate for the score,. increasing the reported Agricultural DRASTIC score by 3 points. The increase would be noted on the form as: Index Variability +3_ Similarly, the typical value that would have been coded for the impact of the vadose zone is 12 (Refer to the agricultural weighted rating for shale in Figure 2). If the variability was also considered significant for the impact of the vadose zone media (Table 3, Part II), an additional +8 could be combined with the increased variability of the aquifer media (+3) for a total reported Index Variability of +11. It is possible for the index variability of one factor to be a positive value (an increase in the total score) and another factor to be a negative value (a decrease in the total score). Only one value (an absolute number) should be coded for index variability. It is important to account for each component used to derive the index variability on the back of the data form, along with other notes or comments described in Section 3.9. If it is felt that other DRASTIC factors could have contributed to a different Agricultural DRASTIC score (such as soil type), arbitrary values can be factored into the index variability as long as they are noted on the back of the form. Using Example 12, the back of the form could be noted as follows: Index Variability: +3 Aquifer media media highly fractured +8 Vadose zone also fractured +TT A-25- ------- Table 3. Values for Index Variability Part I Aquifer Media Values Massive Shale Metamorphic/Igneous Weathered Metamorphic/Igneous Thin Bedded Sandstone, Limestone, Shale Sequences Massive Sandstone Massive Limestone Sand and Gravel Basalt Karst Limestone 3, 6, 9 6, 9, 12, 15 9, 12, 15 15, 18, 21, 24, 27 12, 15, 18, 21, 24, 27 12, 15, L3-, 21, 24, 27 18, 21, 24, 27 6, 9, 12, 15, 18, " 21, 24, 27, 30 27, 30 Part II Impact of Vadose Zone Media Values Silt/Clay Shale Limestone Sandstone Bedded Limestone, Sandstone, Shale Sand and Gravel with significant Silt and Clay Metamorphic/Igneous Sand and Gravel Basalt Karst Limestone 4, 8 8, 12, 16, 20 8, 12, 16, 20, 24, 28 16, 20, 24, 28, 32 16, 20, 24, 28, 32 16, 20, 24, 28, 32 8, 12, 16, 20, 24, 28, 32 24, 28, 32, 36 8, 12, 16, 20, 24, 28, 32, 36, 40 32, 36., 40 ------- 3.7 Data Confidence This section of the form is intended to be used to show the rela- tive confidence in the available data used in determining the Agricul- tural DRASTIC score. The low confidence category is only intended for those remote counties, where little, if any, geologic mapping has been performed and/or little is known about the subsurface conditions. In these cases where-little published information is available and experi- enced professionals in the region know little about the county's hydro- geology, then a number 1 should be entered in the blank as follows: DATA CONFIDENCE 3 = HIGH 2 = MEDIUM 1 = LOW 1 At the other extreme, high data confidence (3) would be indicated for a county where there was a good coverage of data (published and/or unpub- lished) and the hydrogeologist coding the form felt fairly confident of the range of DRASTIC factors indicated because of his or her personal experience in the county, or the conveyed experience of another profes- sional knowledgeable of the conditions in the county. 3.8 Identification This section of the her initials, and the abbreviation for the firm prelabeled for each form. form allows the hydrogeologist to place his/ date that the form was completed. Th,e (WES = Weston, WWC = Woodward-Clyde) has been The intent of the identification section is to allow a means of resolving potential additional -information during the project. questions or requesting 3.9 Data Sources or Comments This section of the form provides a blank that can be checked if data sources or comments are indicated on the back of the form. The computerized data base will not include the comments on the back, only an indication that there were (or were not) comments. You are encour- aged to list primary data sources on the back of the form (printed using a black ballpoint pen) such as: Contact with a specific professional about area hydrogeologic conditions (persons' name, affiliation, and phone number) Published county report (author, date, and title, using abbrevia- tions). A -2 7 ------- Other pertinent comments are also encouraged on the back of the form such as: An indication of unusual geologic factors that should be recog- nized when considering the vulnerability of the county. A sketch map showing the approximate boundary between ground- water regions or major hydrogeologic settings that should be recognized. When sources of data apply to specific hydrogeologic factors on the form you are encouraged to use the DRASTIC acronyms for conven- ience, as shown in the following example: Example 13 (Back of form) D - Geology and Ground-Water Resources of this county, 1985, State Publication No. 1 R - Plates 2 and 13 - Water Atlas, Geraghty et al. 1975 A - Communication with R.C. Heath, retired USGS, (919) 856-4510 (7/1/85) S - SCS of this county T - 1:250,000 quad sheet of this area, 1985 1 'I VPersonal experience with studies in this county. C -J 3.10 Resolving Questions It is anticipated that a number of questions will arise after this training program and during the course of completing the county data forms. All questions should be initially directed to your firm's project manager. The project manager should also provide guidance to the hydrogeologists with respect to sources of data, ^including contacts in specific areas knowledgeable about local hydrogeologic conditions. Unresolved questions should be communicated from your firm's project manager to RTI's project leader. 3.11 Transmlttal of Completed Forms When the data form has been completed, including any comments on the back of the form, a copy of the form should be filed by the hydro- geologist for future reference. The original of the form should be transmitted to your firm's project manager who will review the forms for completeness and reasonableness prior to transmitting them to RTI. Schedules for form transmittals have already been established with your firm as part of this work assignment. A-2'3 ------- 3.12 Sources of DATA The primary source of information appropriate for this stage of the survey should be based on the experience and judgement of the hydrogeologists coding the forms, or from other professionals knowl- edgeable of the hydrogeologic "conditions of a particular area. You are encouraged to contact experienced professionals, such as employees of the US Geological Survey, for their opinion of hydrogeologic conditions in specific counties or larger areas. The level of effort defined for this survey will not allow for a detailed review of published data, and professional judgement in completing this data form is therefore essen- tial. General sources of hydrogeologic information familiar to the hydrogeologist are available for the DRASTIC factors, as indicated in Table 2. In addition to these sources, the following specific sources of data should also be considered for use in the level of effort required for this stage of the project: Recharge: Geraghty, Miller, van der Leeden, and Troise, 1973, Water Atlas of the United States. Plate 2 (Distribution of Precipitation - Average Annual) and Plate 13 (Poten- tial Evapotranspiration - Average Annual) Soil media: State Soil Association maps Topography: 1:250,000 scale USGS Quadrangle maps ------- Table 2. General Sources of Hydrogeologic Data Source U S Geological Survey Stale Geological Surveys Slate Department ol Natural/Water Resources U S Department ol Agriculture- Soil Conservation Service Stale Department ol Environmental Protection Clean Water Act "208" and other Regional Planning Authorities County and Regional Water Supply Agencies and Companies (private water suppliers) Private Consulting Firms (hydrogeologic. engineering) Related Industry Studies (mining, well drilling. quarrying, etc ) Professional Associations (Geological Society ol America. National Water Well Association. American Geophysical Union) Local Colleges and Universities (Departments ol Geology. Earth Sciences. Civil Engineering Other Federal/Slate Agencies (Army Corps ol Engineers. National Oceanic and Atmospheric Administration) Depth to Water Table X X X X X X X X X X X Nel Recharge X X X X X X X X X Aquifer Media X X X X X X X X X X X Sod Media X Topography X X Impact ol the VadoM Zone X X X X X X X X X X X Hydraulic Conductivity ol the Aquller X X X X X X X X X ------- I^BJB^&nBr Him IGITALLY ------- APPENDIX-B DESCRIPTION OF QUALITY ASSURANCE PROGRAM AND RELATED DATA ------- APPENDIX-B QUALITY ASSURANCE PROGRAM The selection of counties to be included in the quality assurance process was a six-step procedure, as described below. Step 1 - Revisions to Ground-Water Regions-Map The first step of the quality assurance process was to revise the Nation's ground-water regions reported by Heath (1984) to provide reasonable delineations of the regions at the county level. Discussions with Mr. Heath revealed that a primary source of informa- tion concerning the boundary locations shown on his map was the land- form map created by Raisz (1957). In order to extend Heath's (1984) physiography-based map to include more recently defined geologic and lithologic considerations, the boundaries were compared to structural and lithologic boundaries shown on Bayer's (1983) map. Consideration of major lithologic and structural trends was heavily weighted in construction of the modified ground-water regional boundaries. Step 2 - Designating Ground-Water Regions Since the selection of quality assurance counties was dependent on the percentages of counties within each ground-water region, the total number of counties in each region was counted using the modified ground-water regions map from Step 1. Each county was designated to a ground-water region corresponding to the largest areal percentage of the region that occurs in that county. For example, Fairfield County, Utah, was considered to be approximately 65 percent in Region 4 and 35 percent in Region 2, based on the revised boundaries. Therefore, Fairfield County was assigned to Region 4 for the purposes of the quality assurance process. In some instances, the region containing the greatest percentage of a county was difficult to ascertain. For example, Big Horn and Washakie Counties, Wyoming, both appear to be roughly 50 percent in Region 1 and 50 percent in Region 6. In this case, Big Horn County was assigned to Region 1 and Washakie County to Region 6. B-l ------- Step 3 - County Selection Data Base The information obtained in Step 2 was assembled into a data base containing the FIPS code and the ground-water region designation for each county. A computer-generated map of ground-water regions was produced from the data base and checked against the map produced in Step 1 for accuracy. Once constructed, the data set was sorted by ground-water region and the total number of counties in each Region was counted. The total sample of quality assurance counties was allocated in proportion to the counts. Step 4 - Selection of Quality Assurance Counties for Subcontractors A program was devised to select 7 percent of the counties from each ground-water region using the random number generator within the Statistical Analysis System (SAS) package. The counties were randomly chosen based on achieving a 7 percent selection goal from each ground-water region. This selection was made without consideration of the location of the county with respect to the Mississippi River (the previously determined dividing line between East Coast and West Coast subcontractors). Because of the random selection process, some States were not represented in the quality assurance process. A total of 223 counties were selected for the subcontractors; 115 counties in the East and 108 counties in the West. This data set is referred to as the large sample in this report. Counties originally coded by the West Coast contractor (Woodward- Clyde Consultants) were recoded by the East Coast contractor (Roy F. Weston Consultants) and vice versa. Reassignments at the level of individual coders was not a feature of. the design. A total variable measurement error component (over both contractors and all coders) was estimated upon completion of the data base. Step 5 - Selection of Quality Assurance Counties for RTI The same basic procedures used in the selection of quality assurance counties for the subcontractors were applied to the selection of RTI-coded quality assurance counties. These counties were a randomly chosen subsample of the 7 percent sample, based on achieving a 3 percent selection goal from the ground-water regions (a total of 96 counties). That is, the subcontractor-coded quality assurance B-2 ------- selection (Step 4) was based on the entire data base of all county units in the United States. The data base used for RTI's 3 percent selection was comprised of the counties selected from Step 4. Thus, the set of counties selected for RTI's coding is a subsample of those counties selected in Step 4 and is referred to as the small sample. Step 6 - Selection of Counties for Qualitative Check Following a suggestion of the U.S. Geological Survey, and at the request of the EPA project monitor, a sixth step was added to the quality assurance process to include additional coding of counties by several nationally recognized hydrogeologists. The same counties were also coded by the three EPA contractors. While such a coding effort is not a part of the measurement error assessment described above, it displays qualitatively the range of variability that might be expected among the set of experts. Six counties were chosen for this qualitative check and represent a small subsample of the 96 counties selected in Step 5. They were selected primarily to ensure that a maximum number of ground-water regions would be represented as described in detail in Appendix F. General Quality Assurance Procedures The forms used for the 223 counties selected for receding as a part of the subcontractors' quality assurance process were color-coded yellow to ensure that they would not be merged inadvertently with the white original forms. The blank forms used were otherwise identical to those used for the original coding effort. It should be noted that the subcontactors could not put the same level of effort into the quality assurance process as into the original coding effort due to time and contractural constraints. The subcontractors' quality assurance coding took place over a 1-week period. Therefore, the level of confidence in the results of the larger sample is not a,s great as that for the originally coded data base, as further described in Appendix E. B-3 ------- The coding of the Weston's quality assurance counties was accomplished by the same team that coded the original forms; Woodward-Clyde's quality assurance coding was accomplished by two individuals. The two Woodward-Clyde coders made use of the pertinent references that had been collected by Weston for the original coding effort. Weston independently assembled the necessary references to complete the coding of their quality assurance counties. The general study approaches described in Sections 3.3.1 and 3.3.2 were also used for the quality assurance process. A somewhat different study approach was taken for the 96-county RTI quality assurance check (color-coded blue). As a preliminary step toward assembling information sources, a comprehensive review of the publication lists for geologic and water resources agencies within the 35 States represented by the 96 selected counties was undertaken and appropriate State and county publications were obtained. In some areas where little published data were available, knowledgeable professionals in the area were contacted for tneir opinions on hydrogeologic conditions. One individual was assigned the task of consistently ranking the topographic slope of all 96 counties, based on' a standardized' slope estimation technique and information obtained from USGS 2° Topographic Maps. A consultant to RTI, Mr. Harry E. LeGrand, was asked to determine independently the Agricultural DRASTIC scores of 26 counties of the RTI data set. Separate independent rankings of all 96 counties were made by at least two other RTI hydrogeologists. Finally, the separate codings of each of the 96 counties were jointly compared and composited by the hydrogeologists establishing a consensus-opinion. RTI's coding effort took place over a 1-month period. B-4 ------- STATE AND COUNTY LISTING OF VARSCORES FOR RECODED COUNTY MEASUREMENTS B-5 ------- EXPLANATION Numerical scores calculated from the data set are differentiated as follows: TOTAL SCORE - An unweighted score corresponding to the summation of the highest percentage ratings for the seven DRASTIC factors. (Refer to Section 3 in Appendix A). WEIGHTED SCORE - A weighted score corresponding to the summation of all percentage ratings for the seven DRASTIC factors. The weighted score accounts for the variability that occurs in areas as large as counties. In counties with little variability, little difference exists between the total score and weighted score. VARSCORE - Represents the weighted score including ( + or -) the index of variability, where used. The index of variability and its intended usage, is defined in Section 3.6 of Appendix A. The VARSCORE is considered to be the most appropriate score for the purposes of this project in that it best accounts for intracounty variability. The values shown in this listing to/Appendix B are VARSCORES. Denotes counties not selected for coding by RTI. Denotes subcontractor responsible for original coding of the county. B-6 ------- STATE=ALABAMA COUNTY BUTLER COOSA COVINGTON MADISON MARENGO MOBILE PERRY MESTON WOODWARD CLYDE 153 131 174 162 157 170 138 138 124 149 123 136 141 135 RTI 154 124 173 150 158 STATE=ALASKA COUNTY BETHEL BRISTOL BAY DIVISION UESTON WOODWARD CLYDE 150 146 123 1 16 RTI 1 12 STATE=ARKANSAS COUNTY INDEPENDENCE JOHNSON NEWTON PIKE WESTON WOODWARD CLYDE 122 107 1 19 1 24 127 123 90 130 RTI 138 STATE=CALIFORNIA COUNTY LOS ANGELES MERCED SUTTER WESTON MOODWARD CLYDE 10-8 126 162 1 16 149 157 RTI 167 STATE=COLORADO COUNTY ALAMOSA LINCOLN MINERAL PHILLIPS YUMA WESTON MOODIJARD CLYDE 122 99 98 98 127 164 1 17 140 127 126 RTI 104 1 19 1 14 B-7 ------- STATE CONNECTICUT COUNTY HARTFORD MESTON WOODWARD CLYDE 145 130 RTI STATE=FLORIDA COUNTY MANATEE MESTON WOODWARD CLYDE 222 177 RTI 192 STATE=GEORGIA COUNTY BAKER 3ARTOW 3ERRIEN 3P.ANTLEY HARALSON MARION PIKE SEMINOLE TALBOT TALIAFERRO WHYNE WILKES WILKINSON MESTON WOODWARD CLYDE 195 175 185 196 160 177 141 192 146 132 203 137 171 170 125 163 169 120 156 122 171 132 124 170 123 157 RTI 1 16 153 159 155 179 STATE=IDAHO COUNTY CLARK STATE=ILLINOIS COUNTY BOND CARROLL EDWARDS LIVINGSTON PUTNAM WASHINGTON WESTON WOODWARD CLYDE 109 106 MESTON WOODWARD CLYDE 127 125 131 129 129 133 1 19 1 12 120 1 18 1 16 1 19 RTI RTI 159 155 164 B-8 ------- STATE=INDIANA COUNTY ADAMS GIBSON GREENE MARSHALL PAP.KE SWITZERLAND STATE=IOMA COUNTY BREMER BUENA VISTA CLAY CLINTON JACKSON JEFFERSON MADISOH MUSCATINE PAGE UE3STER WORTH STATE=KANSAS COUNTY BARBER COMANCHE ELK MIAMI MORRIS OSAGE RUSH STATE=KENTUCKY COUNTY BALLARD CARTER CUMBERLAND GARRARD GRAVES HANCOCK KNOTT MARION METCALFE MUHLENBERG SCOTT WESTON WOODWARD CLYDE 127 151 127 147 133 130 WESTON WOODWARD 145 138 144 146 145 125 120 148 136 133 153 WESTON WOODWARD 32 32 17 21 29 23 22 WESTON WOODWARD 134 130 172 148 134 147 136 178 187 155 153 147 131 124 158 142 129 CLYDE 126 109 1 1 1 123 134 107 100 122 103 96 126 CLYDE 150 149 130 1 12- 124 1 14 131 CLYDE 133 96 98 107 129 1 17 94 104 109 1 17 104 RTI 135 149 120 RTI 143 1 17 1 15 1 17 RTI 125 1 1 1 138 130 RTI 131 122 136 155 B-9 ------- STATE=LOUISIANA COUNTY ASCENSION BIENVILLE CONCORDIA IBERVILLE ST CHARLES ST JAMES ST TAMMANY MESTON MOODMARD CLYDE 170 149 170 149 169 166 177 167 160 162 149 133 93 147 RTI 144 163 152 163 STATE=MAINE COUNTY PENOBSCOT WESTON WOODWARD CLYDE 153 130 RTI 172 STATE=MARYLAND COUNTY BALTIMORE WESTON WOODWARD CLYDE 136 116 RTI STATE=MASSACHUSETTS COUNTY BARNSTABLE DUKES WESTON WOODWARD CLYDE 202 203 170 172 RTI STATE=MICHIGAN COUNTY ANTRIM JACKSON LAKE LUCE OSCODA SAGINAW SCHOOLCRAFT WESTON WOODWARD CLYDE 129 153 178 162 167 122 168 156 125 154 14 1 136 132 147 RTI 133 127 B-10 ------- STATE=MINNZSOTA COUNTY HOUSTON LINCOLN MC LEOD PIPESTONE WINONA WESTON MOODMARD CLYDE 164 145 146 138 164 143 1 13 126 106 148 RTI 96 134 STATE MISSISSIPPI COUNTY WESTON WOODWARD CLYDE RTI ATTALA FRANKLIN HOLMES LAUDERDALE YALOBUSHA 130 147 129 123 122 130 1 37 123 123 130 143 STATE=MISSOURI COUNTY WESTON WOODWARD CLYDE RTI CLINTON DAVIESS DENT MILLER NEWTON REYNOLDS SCHUYLER STONE WARREN WAYNE 121 123 101 140 102 94 125 91 138 1 12 33 90 1 17 1 1 1 104 95 80 9-2 93 106 141 140 1 12 139 131 STATE=MONTANA COUNTY DEER LODGE FALLON GALLATIN GRANITE PRAIRIE RICHLAND TETON WESTON WOODWARD CLYDE 106 97 82 89 1 1 1 1 18 123 130 1 13 143 125 1 30 134 1 15 RTI 120 1 18 89 1 18 1 15 B-ll ------- STATE=NEBRASKA COUNTY FRONTIER KEARNEY KEYA PAHA LOGAN THAYER THOMAS WESTON MOODMARD CLYDE 124 157 150 169 138 187 103 1 19 134 123 104 144 RTI 108 138 STATE=NEVADA COUNTY HUMBOLDT WESTON WOODWARD CLYDE 115 129 RTI 121 STATE=NEU JERSEY COUNTY ESSEX OCEAN WESTON WOODWARD CLYDE 142 203 122 152 RTI STATE=NEW MEXICO COUNTY EDDY MORA WESTON WOODWARD CLYDE 121 1 15 124 1 18 RTI STATE=NEU YORK COUNTY LIVINGSTON WESTON WOODWARD CLYDE 132 127 RTI STATE=NORTH CAROLINA COUNTY CABARRUS CARTERET DAVIDSON FORSYTH UNION WILKES YADKIN WESTON WOODWARD CLYDE 32 93 31 29 35 45 30 109 144 107 103 105 96 104 RTI 127 195 1 17 127 B-12 ------- STATE=NORTH DAKOTA COUNTY OLIVER SLOPE MESTON WOODWARD CLYDE 135 140 133 145 RTI 126 120 S.TATE = OHIO COUNTY GEAUGA MORGAN NOBLE PERRY ROSS VAN UIERT MESTON WOODWARD CLYDE 122 137 1 15 137 127 121 24 26 28 12 19 13 RTI 122 143 STATE=OKLAHOMA COUNTY ATOKA BRYAN CADDO COAL LATIMER MC INTOSH NOWATA WESTON WOODWARD CLYDE 135 149 120 109 105 1 17 99 131 1 13 135 120 1 18 136 146 RTI 148 106 103 STATE=OREGON COUNTY GRANT LINN MORROW WESTON WOODWARD CLYDE 96 127 97 89 140 1 13 RTI 125 STATE=PENNSYLVANIA COUNTY MONROE PERRY UNION VENANGO WESTMORELAND WESTON WOODWARD CLYDE 144 124 137 136 147 1 10 1 1 1 106 1 16 103 RTI 145 138 146 B-13 ------- STATE=RHODE ISLAND COUNTY KENT MESTON WOODWARD CLYDE 186 163 RTI STATE=SOUTH DAKOTA COUNTY MC PHERSON WESTON WOODWARD CLYDE 137 106 RTI STATE=TENNESSEE COUNTY BENTOH CUMBERLAND MC NAIRY WESTON WOODWARD CLYDE 142 149 152 131 1 10 134 RTI STATE=TEXAS COUNTY CASS GRAY HOUSTON LAVACA LIBERTY PALO PINTO REEVES RUSK SAN AUGUSTINE SWISHER TRAVIS WESTON WOODWARD CLYDE 158 10-4 154 156 160 124 130 148 155 1 15 155 1 18 123 127 125 127 1 17 133 133 140 121 123 RTI 132 133 151 STATE=UTAH COUNTY DAGGETT GARFIELD IRON PIUTE SUMMIT WASATCH WAYNE WESTON WOODWARD CLYDE 100 1 10 104 93 102 102 109 93 103 1 17 94 95 10 1 106 RTI 100 86 98 102 8-14 ------- STATE=VERMONT COUNTY CRAIGHEAD LAMOILLE ORLEANS RUTLAND WINDSOR STATE=VIRGINIA COUNTY ALEXANDRIA CITY BRISTOL CITY CAROLINE CHARLES CITY .GLOUCESTER KING WILLIAM nATHEUS NORTHAMPTON PAGE SHENANDOAH TAZEUELL WASHINGTON WISE STATE=WASHINGTON- COUNTY BENTON CLALLAM MASON WESTON WOODWARD CLYDE . 149 135 131 133 WESTON WOODWARD 148 163 164 175 181 173 189 187 155 129 127 125 130 WESTON WOODWARD 108 121 151 133 1 1 1 1 14 105 109 CLYDE 131 1 14 130 138 133 137 154 162 1 13 1 10 102 106 100 CLYDE 141 109 1 14 RTI 143 138 RTI 197 160 189 181 176 161 159 131 139 RTI 1 1 1 STATE=WEST VIRGINIA COUNTY HARBOUR BERKELEY HARDY TUCKER UESTON WOODWARD CLYDE 1 19 150 133 126 120 1 13 1 18 RTI 149 B-15 ------- STATE=WISCONSIX COUNTY MESTON WOODWARD CLYDE RTI BARRON 157 121 IRON 159 140 165 MANITOWOC 132 112 HARATHON 161 130 MARINETTE 157 144 167 SAWYER 158 139 SHEBOYGAN 133 111 TREMPEALEAU 92 124 STATE=WYOMING COUNTY WESTON WOODWARD CLYDE RTI NIOBRARA 108 105 108 TETON 164 120 B-16 ------- REFERENCES Bayer, K. C., 1983. Generalized Structural, Lithologic. and Physiographic Privinces in the Fold and Thrust Belts of the United States, U.S. Geological Survey, Scale 1:2,500,000. Heath, R.C., 1984. Ground-Water Regions of the United States. U.S. Geological Survey Water Supply Paper Z242, 78p. Raisz, E., 1957. Landforms Map of the United States. B-17. ------- APPENDIX-C STATE AND COUNTY LISTING OF WEIGHTED AND TOTAL SCORES FOR ORIGINALLY CODED DATA BASE WITH ADJUSTMENTS ------- EXPLANATION Numerical scores calculated from the data set are differentiated as follows: TOTAL SCORE - An unweighted score corresponding to the summation of the highest percentage ratings for the seven DRASTIC factors. (Refer to Section 3 in Appendix A). WEIGHTED SCORE - A weighted score corresponding to the summation ot al I percentage ratings for the seven DRASTIC factors. The weighted score accounts for the variability that occurs in areas as large as counties. In counties with little variability, little difference exists between the total score and weighted score. VARSCORE - Represents the weighted score including (+ or -) the index of variability, where used. The index of variability anc its intended usage, is defined in Section 3.6 of Appendix A. ADJUSTED VARSCORE - Represents adjustments to the originally coded VARSCORE resulting from RTI's reevaluation of specific .DRASTIC factors (. denotes no adjustment made to the originally coded VARSCORE). The VARSCORE, or adjusted VARSCORE, is considered to be the most appropriate score for the purposes of this project in that it best accounts for intracounty variability. C-l ------- STATE=AK COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ALEUTIAN ISLANDS . 75 122 135 ANCHORAGE . 110 138 150 ANGOON . 71 96 106 BARROW . 86 116 126 BETHEL . 123 143 124 BRISTOL BAY BOROCTGH . 119 144 150 BRISTOL BAY DIVISION . 116 126 128 CORDOVA-MC CARTHY . 105 120 112 FAIRBANKS . 120 120 111 HAINES . 78 98 106 JUNEAU . 93 108 95 KENAI-COOK INLET . 97 112 95 KETCHIKAN . 81 101 112 KOBUK . 87 112 106 KODIAK . 107 107 75 KUSKOKWIM . 99 109 101 MATANUSKA-SUSITNA . 116 121 110 NOME . 110 110 98 OUTER KETCHIKAN . 70 90 89 PRINCE OF WALES . 95 95 89 SEMARD . 87 97 106 SITKA . 93 108 100 SKAGWAY-YAKUTAT . 78 108 92 SOUTHEAST FAIRBANKS . 109 109 92 UPPER YUKON . 85 115 118 VALDEZ-CHITINA-WHITT . 101 116 106 WADE HAHPTON . 132 132 127 WP.ANGELL-PETERSBURG . 94 109 100 YUKON-KOYUKUK . 99 114 112 C-2 ------- STATE=AL COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE AUTAUGA . 145 149 144 BALDWIN 176 173 177 182 BARBOUR . 153 157 171 BIBB . 142 146 144 BLOUNT . 150 156 152 BULLOCK . 141 145 171 BUTLER . 153 157 159 CALHOUN . 154 148 155 CHAMBERS . 126 126 126 CHEROKEE . 160 154 155 CHILTON . 136 140 147 CHOCTAW . V42 146 147 CLARKE . 136 140 136 CLAY . 126 126 126 CLEBURNE . 124 124 126 COFFEE . 172 176 182 COLBERT . 174 168 163 CONECUH . 170 174 182 COOSA . 131 131 133 COVINGTON . 174 178 182 CRENSHAW . 163 167 171 CULLMAN . 146 152 15-2 DALE : 179 183 186 DALLAS . 155 155 175 DE KALB . 148 154 155 ELMORE . 150 154 159 ESCAMBIA . 164 168 182 ETOWAH . 163 157 162 FAYE7TE . 153 157 164 FRANKLIN . 166 170 163 GENEVA . 162 169 167 GREENE . 157 157 169 HALE . 141 145 159 HENRY . 173 177 182 HOUSTON . 160 167 167 JACKSON . 152 152 158 JEFFERSON . 149 155 152 LAMAR . 144 148 144 LAUDERDALE . 164 158 155 LAURENCE . 158 152 156 LEE . 131 131 121 LIMESTONE . 162 156 153 C-3 ------- STATE=AL COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE LOMNDES . 132 132 107 MACON . 131 135 1t|7 MADISON . 162 156 158 MARENGO . 157 161 167 MARION . 1i*9 153 144 MARSHALL . 149 155 155 MOBILE 174 170 174 182 MONROE . 158 162 159 MONTGOMERY . 130 130 112 MORGAN . 160 160 165 PERRY . 138 142 159 PICKSNS . 146 150 144 PIKE . 174 178 182 RANDOLPH . 125 125 126 RUSSELL . 124 128 147 ST GLAIR . 158 152 163 SHELBY . 141 147 151 SUMTER . 123 123 112 TALLADEGA . 149 143 155 TALLAPOOSA . 128 128 130 TUSCALOOSA . 137 141 136 WALKER . 149 155 152 WASHINGTON . 168 172 167 WILCOX . 134 138 144 WINSTON . 150 156 152 C-4 ------- STATE=AR COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ARKANSAS . 124 124 139 ASHLEY . 136 136, 124 BAXTER . 94 94 76 BENTON . 97 97 103 BOONE . 86 86 76 BRADLEY . 133 133 124 CALHOUN . 138 138 129 CARROLL . 89 89 76 CHICOT 149 129 129 114 CLARK . 135 135 149 CLAY . 146 146 154 CLEBURNE . 98 98 89 CLEVELAND . 150 150 154 COLUMBIA . 150 150 159 CONWAY . 126 126 119 CRAIGHEAD . 151 151 164 CRAWFORD . 109 109 94' CRITTENDEN 150 132 132 124 CROSS . 123 123 129 DALLAS . 155 155 159 DESHA 154 136 136 133 DREW . 140 140 139 FAULKNER . 124 124 119 FRANKLIN . Ill 111 109 FULTON . 126 126 133 GARLAND . 129 129 123 GRANT . 151 151 159 GREENE . 148 148 149 HEMPSTEAD . 143 143 159 HOT SPRING . 135 135 145 HOWARD . 133 133 143 INDEPENDENCE . 122 122 129 IZARD . 119 119 123 JACKSON . 141 141 145 JEFFERSON . . 139 139 153 JOHNSON . 107 107 109 LAFAYETTE . 132 132 129 LAWRENCE . 140 140 145 LEE 159 133 133 149 LINCOLN . 142 142 153 LITTLE RIVER . 133 133 129 LOGAN . 113 113 109 C-5 ------- STATE=AR COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE LONOKE . 132 132 128 MADISON . 96 96 77 MARION . 103 103 88 MILLER . 133 133 139 MISSISSIPPI 163 148 148 164 MONROE . 142 142 149 MONTGOMERY ': 132 132 138 NEVADA . 151 151 159 NEWTON . 90 90 91 OUACHITA . 157 157 159 PERRY . 117 117 111 PHILLIPS 157 141 141 154 PIKE . 130 130 139 POINSETT . 127 127 129 POLK . 127 127 117 POPE . 94 94 91 PRAIRIE . 130 130 133 PULASKI . 135 135 128 RANDOLPH . 132 132 123 ST FRANCIS . 132 132 149 SALINE . 131 131 123 SCOTT . 111 111 119 SEARCY . 107 107 103 SEBASTIAN . 113 113 109 SEVIER . 143 143 153 SHARP . 119 119 108 STONE . 114 114 118 UNION . 147 147 159 VAN BUREN . 97 97 83 WASHINGTON . 87 87 63 WHITE . 126 126 T*9 WOODRUFF . 146 146 154 YELL . 125 125 VI9 C-6 ------- STATE=AZ COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE APACHE 94 113 109 121 COCHISE 93 108 108 141 COCONINO V03 118 118 133 GIIA 89 104 104 95 GRAHAM 95 110 110 138 GREENLEE 107 89 124 139 MARICOPA 100 115 115 141 MOHAVS 106 121 121 136 NAVAJO 96 111 111 121 PIMA 91 106 106 121 FINAL 99 114 114 106 SANTA CRUZ 92 107 107 115 YAVAPAI 96 111 111 101 YUHA 97 112 112 106 C-7 ------- STATE=CA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ALAMEDA . 122 122 132 ALPINE . 89 89 69 AMADOR . 88 83 54 BUTTE 135 126 126 129 CALAVERAS . 97 97 54 COLUSA 150 139 139 169 CONTRA COSTA . 123 123 147 DEL NORTE . 107 107 77 EL DORADO . 95 95 86 FRESNO 114 103 103 111 GLENN 145 133 133 139 HUMBOLDT . 103 103 71 IMPERIAL 124 145 145 140 INYO 111 121 121 124 KERN 124 118 118 133 KINGS 159 135 135 143 LAKE . 110 110 88 LASSEN . 99 113 94 LOS ANGELES . 116 116 125 MADERA 116 109 109 84 MARIN . 117 117 92 MARIPOSA . 97 97 69 MENDOCINO . 106 106 71 MERCED 172 149 149 146 MODOC . 112 126 125 MONO . 133 133 102 MONTEREY . 102 102 87 NAPA . 113 113 99 NEVADA . 107 107 86 ORANGE . 110 110 135 PLACER . 97 97 71 PLUMAS . 112 112 69 RIVERSIDE 112 122 122 J42 SACRAMENTO 180 155 155 172 SAN BENITO . 109 109 73 SAN BERNARDINO 122 132 132 137 SAN DIEGO 97. 107 107 75 SAN FRANCISCO . 134 134 135 SAN JOA2UIN 173 147 147 164 SAN LUIS OBISPO . 109 109 99 SAN MATEO . 116 116 73 SANTA BARBARA . 109 109 92 C-8 ------- STATE=CA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE SANTA CLARA . 125 125 81 SANTA CRUZ . 115 115 77 SHASTA 100 92 106 97 SIERRA . 92 92 69 SISKIYOU . 112 112 69 SOLANO 174 150 150 177 SONOMA . 116 116 101 STANISLAUS 138 126 126 151 SUTTER 179 157 157 172 TEHAflA 121 110 124 138 TRINITY . 92 92 86 TULARE 112 107 107 77 TUOLUP1NE . 94 94 69 VENTURA . 110 110 92 YOLO 172 148 148 172 YUBA 117 105 105 99 C-9 ------- STATE=CO COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADAMS . 137 137 128 ALAMOSA 136 164 164 178 ARAPAHOE . 133 133 133 ARCHULETA . 117 117 101 BACA . 114 114 107 BENT 120 144" 144 140 BOULDER . 112 112 77 CHAFFEE . 113 113 98 ,CHEYENNE . 111 111 104 {CLEAR CREEK . 96 96 83 'CONEJOS 138 164 164 156 COSTILLA . 126 126 93 cr.OWLEY 107 131 131 124 CUSTER . 122 122 113 DELTA . 115 115 101 DENVER . 147 147 133 DOLORES . 101 101 91 DOUGLAS . 115 115 91 EAGLE . 132 132 121 ELBERT 121 148 148 158 EL PASO . 135 135 135 FREMONT . V11 111 77 GARFIZLD . 122 122 81 GILPIN . 107 107 83 GRAND 11t 136 136 131 GUNNISON . 140 140 122 HINSDALE . 139 139 126 HUERFANO . 106 106 81 JACKSON . 115 115 105 JEFFERSON . 128 128 97 KIOUA . 132 132 134 KIT CARSON . 110 110 110 LAKE . 110 110 ,83 LA PLATA . 111 111 91 LARIMER . 113 113 103 LAS ANIMAS . 116 116 100 LINCOLN . 117 117 104 LOGAN . 137 137 144 MESA . 116 116 105 MINERAL . 140 140 126 MOF7AT . 114 114 105 MONTEZUMA 98 118 118 91 C-10 ------- STATE=CO COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE MONTROSE . 115 115 105 MORGAN . 147 147 158 OTERO . 143. 143 130 OURAY . 124 124 91 PARK . 119 119 77 PHILLIPS . 127 127 118 PITKIN . 113 113 91 PROWERS . 136 136 149 PUEBLO . 126 126 105 RIO BLANCO . 108 108 91 RIO GRANDE . 152 152 166 ROUTT . 120 120 91 SAGUACHE 137 164 164 166 SAN JUAN . 126 126 106 SAN MIGUEL . 119 119 115 SEDGWICK . 143 143 140 SUMMIT . 116 116 92 TELLER . 105 105 83 WASHINGTON . 129 129 110 WELD . 141 141 135 YUMA . 126 126 140 C-ll ------- STATE=CT COUNTY FAIRFIELD HARTFORD LITCHFTELD MIDDLESEX NEW HAVEN MEU LONDON TOLLAKD WINDHAM ADJUSTED VARSCORE VARSCORE 143 145 141 140 150 145 152 157 WEIGHTED 45 47 43 42 52 47 54 59 TOTAL SCORE 156 146 136 136 15.6 156 164 164 C-12 ------- STATE=DC COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE DISTRICT OF COLUMBIA 119 125 116 C-13 ------- STATE=DE COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE KENT . 178 189 193 NEU CASTLE . 160 159 149 SUSSEX . 178 189 193 C-14 ------- STATE=FL COUMTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ALACHUA . 199 199 199 BAKER . 213 213 213 BAY . 213 213 213 BRADFORD . 132 182 181 BREVARD . 212 212 217 BROUARD . 245 245 252 CALHOUN . 176 176 164 CHARLOTTE . 207 207 209 CITRUS . 222 222 227 CLAY . 186 186 181 COLLIER . 240 240 252 COLUMBIA . 217 217 213 DADE . 245 245 252 DE SOTO . 222 222 221 DIXIE . 213 213 219 DUVAL . 213 213 213 ESCAMBIA . 183 183 182 FLAGLER . 219 219 221 FRANKLIN . 212 212 213 GADSDEN . 189 189 187 GILCHRIST . 226 226 222 GLADES . 215 215 217 GULF . 209 209 213 HAMILTON . 229 229 239 HARDEE . 222 222 221 HENDRY . 221 221 221 HERNANDO . 224 224 235 HIGHLANDS . 207 207 209 HILLSBOROUGH . 231 231 235 HOLMES . 176 176 174 INDIAN RIVER . 198 198 209 JACKSON . 177 177 174 JEFFERSON . 184 184 182 LAFAYETTE . 215 215 2'13 LAKE . 229 229 .234 LEE . 217 217 213 LEON . 203 203 199 LEVY . 212 212 209 LIBERTY . 200 200 209 MADISON . 206 206 199 MANATEE . 222 222 221 MARION . 227 227 239 C-15 ------- STATE=FL COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE MARTIN . 219 219 221 MONROE . 184 181 174 NASSAU . 196 196 201 OKALOOSA . 220 220 226 OKEECHOBEE . 219 219 217 ORANGE . 210 210 209 OSCEOLA . 218 218 217 PALM BEACH . 216 216 206 PASCO' . 216 216 217 PINELLAS . 235 235 239 POLK . 212 212 204 PUTNAM . 213 213 217 ST JOHNS . 221 221 221 ST LUCIE . 219 219 221 SANTA ROSA . 206 206 199 SARASOTA . 217 217 213 SEMINOLE . 231 231 234 SUMTER . 234 234 231 SUUANNEE . 235 235 239 TAYLOR . 217 217 213 UNION . 185 185 181 VOLUSIA . 212 212 217 WAKULLA . 212 212 213 WALTON . 216 216 222 WASHINGTON . 204 204 194 C-16 ------- STATE=GA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE APPLING . 179 185 187 ATKINSON . 191 193 187 BACON . 190 196 -187 BAKER . 195 201 210 BALDWIN . 161 166 166 BANKS . 142 142 141 BARROW . 128 131 124 BARTOW . 175 175 181 BEN HILL . 176 182 182 BERRIEN . 185 187 187 BIBB . 151 157 166 BLECKLEY . 177 179 182 BRANTLEY . 196 204 209 BROOKS . 166 168 174 BRYAN . 194 200 215 BULLOCH . 181 183 182 BURKE . 147 153 147 BUTTS . 130 130 129 CALHOUN . 165 171 167 CAMDEN . 188 198- 215 CANDLER . 178 180 182 CARROLL . 152 152 141 CATOOSA . 159 162 172 CHARLTON . 171 173 154 CHATHAM . 180 182 187 CHATTAHOOCHEE . 162 164 174 CKATTOOGA . 171 171 174 CHEROKEE . 149 142 134 CLARKE . 141 141 137 CLAY . 161 167 156 CLAYTON . 135 138 135 CLINCH . 182 178 181 COBB . 156 157 J61 COFFEE . 172 174 174 COL2UITT . 181 183 182 COLUMBIA . 131 131 127 COOK . 192 194 186 COUETA . 142 145 135 CRAWFORD . 148 144 144 CRISP . 181 183 182 DADE . 154 154 151 DAMSON . 136 140 152 C-17 ------- STATE=GA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE DECATUR . 179 185 167 DE KALB . 140 140 137 DODGE . 175 177 182 DOOLY . 178 180 182 DOUGHERTY . 159 165 159 DOUGLAS . 135 135 129 EARLY . 178 180 182 ECHOLS . 202 210 213 EFFINGHAM . 189 203 207 EL3ERT . 128 128 129 EMANUEL . 180 182 182 EVANS . 196 206 219 FANNIN . 128 124 124 FAYETTE . 141 144 135 FLOYD . 156 159 157 FORSYTH . 151 155 159 FRANKLIN . 128 131 132 FULTON . 145 145 137 GILMER . 120 116 112 GLASCOCK . 131 131 127 GLYNN . 131 187 -172 GORDON . 158 164 171 GRADY . 165 167 174 GREENE . 140 140 137 GMIXNETT . 140 140 137 HA3ERSHAM . 143 144 161 HALL . 141 142 154 HANCOCK . 138 138 129 HARALSON . 160 161 161 HARRIS . 138 138 134 HART . 126 126 126 HEARD . 147 147 141 HENRY . 125 128 127 HOUSTON . 124 130 139 IRMIN . 179 181 182 JACKSON . 127 130 132 JASPER . 138 138 137 JEFF DAVIS . 182 188 187 JEFFERSON . 165 167 174 JENKINS . 178 180 187 JOHNSON . 160 166 159 JONES . 132 132 126 C-18 ------- STATE=GA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE LAMAR . 140 140 137 LANIER . 183 197 207 LAURENS . 168 170 174 LEE . 184 186 187 LIBERTY . 190 196 187 LINCOLN . 137 137 137 LONG . 191 201 215 LOWNDES . 194 196 186 LUMPKIN . 144 145 158 MC DUFFIE . 150 150 149 MC INTOSH . 183 185 187 MACON . 140 146 147 MADISON . 121 124 127 MARION . 177 181 189 MERIWETHER . 147 147 137 MILLER . 195 197 186 MITCHELL . 183 189 182 MONROE . 142 142 137 MONTGOMERY . 179 181 182 MORGAN . 136 136 137 MURRAY . 143 149 167 NEWTON . 133 133 129 OCONEE . 139 139 137 OGLETHORPE . 135 135 137 PAULDING . 152 156 159 PEACH . 137 143 147 PICKENS . 125 121 124 PIERCE . 184 190 187 PIKE . 141 141 137 POLK . 177 177 181 PULASKI . 173 175 182 PUTNAM . 141 141 137 SUITMAN - . 143 154 156 RABUN . 136 129 138 RANDOLPH . 159 165 156 RICHMOND . 163 165 174 ROCKDALE . 143 146 139 SCHLEY . 139 139 126 SCREVEN . 175 177 187 SEMINOLE . 192 194 186 SPALDING . 134 137 135 STEPHENS . 136 136. 138 C-19 ------- STATE=GA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE STEWART . 149 155 156 SUMTER . 150 152 149 TALBOT . 146 146 134 TALIAFERRO . 132 132 137 TATTNALL . 196 198 182 TAYLOR . 170 166 138 TELFAIR . 183 185 182 TERRELL . 179 185 187 THOMAS . 158 164 159 TIFT . 182 184 182 TOOM3S . 173 175 182 TOWNS . 133 126 126 TREUTLEN . 161 167 174 TROUP . 145 148 139 TURNER . 178 180 182 TWIGGS . 165 171 173 UNION . 124 120 124 UPSON . 140 140 137 WALKER . 171 171 177 WALTON . 145 145 137 WARE . 155 157 142 WARREN . 150 150 149 WASHINGTON . 165 167 174 WAYNE . 203 203 193 WEBSTER . 182 192 210 WHEELER . 176 178 182 WHITE . 144 145 158 WHITFIELD . 177 177 181 WILCOX ' . 177 179 182 WILKES . 137 137 137 WILKINSON . 171 181 202 WORTH . 181 183 .182 nUSCOGEE . 158 158 153 C-20 ------- STATE=HA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE HAWAII . 179 179 183 HONOLULU . 173 173 157 KAUAI . 170 170 177 MAUI . 170 170 177 C-21 ------- STATE=IA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADAIR 129 100 100 109 ADAMS 130 104 104 109 ALLAMAKEE . 125 125 150 APPANOOSE 131 103 103 116 AUDUBON 127 100 100 109 BENTON 134 115 115 106 BLACK HAWK . 121 121 116 BOONE 140 113 113 128 BREMER . 126| 126 116 BUCHANAN . 124 124 121 BUENA VISTA . 109 109 118 BUTLER . 126 126 121 CALHOUN 139 111 111 128 CARROLL 131 105 105 111 CASS 130 99 99 103 CEDAR 137 118 118 '116 CERRO GORDO . 131 131 134 CHEROKEE . 102 102 111 CHICKASAW . 117 117 114 CLARKE 130 102 102 121 CLAY . 111 111 118 CLAY.TON . 126 126 150 CLINTON . 128 128 129 CRAWFORD 130 104 104 1 1'4 DALLAS 140 116 116 128 DAVIS 117 105 105 116 DECATUR 130 103 103 121 DELAWARE . 132 132 167 DES MOINES 121 108 108 93 DICKINSON . 113 113 128 DUBUQUE . 132 132 162 EMMET . 112 112 128 FAYETTE . 135 135 T70 FLOYD . 134 134 170 FRANKLIN . 106 106 98 FREMONT . 115 115 114 GREENE 136 110 110 124 GRUNDY 133 93 93 85 GUTHRIE 132 106 106 121 HAMILTON 138 100 100 98 HANCOCK . 106 106 114 HARDIN 137 100 100 98 C-22 ------- STATE=IA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE HARRISON . 118 118 114 HENRY 120 100 100 93 HOWARD . 121 121 114 HUMBOLDT . 98 98 98 IDA 131 103 103 116 IOWA 133 110 110 116 JACKSON . 134 134 162 JASPER 137 111 111 115 JEFFERSON 119 107 107 119 JOHNSON 136 119 119 111 JONES 136 126 126 126 KEOKUK 119 102 102 90 KOSSUTH . 111 111 128 LEE 119 113 113 119 LINN 137 123 123 131 LOUISA 129 131 131 1-57 LUCAS 130 102 102 121 LYON . 104 104 110 MADISON 128 100 100 111 MAHASKA 120 110 110 116 MARION 129 103 103 116 MARSHALL 136 107 107 115 MILLS . 107 107 114 MITCHELL . 132 132 160 MONONA . 136 136 153 MONROE 130 102 102 116 MONTGOMERY 130 105 105 109 MUSCATINE 128 122 122 109 0 BRIEN . 107 107 118 OSCEOLA . 111 111 118 PAGE 129 103 103 109 PALO ALTO . 112 112 128 PLYMOUTH . 108 108 111 POCAHONTAS . 108 108 118 POLK 138 117 117 128 POTTAWATTAMIE . 108 108 114 POWESHIEK 132 90 90 83 RINGGOLD 130 102 102 121 SAC 135 110 110 118 SCOTT 129 126 126 114 SHELBY 132 105 105 114 SIOUX . 110 110 111 C-23 ------- STATE=IA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE STORY 140 112 112 128 TAMA 135 111 111 111 TAYLOR 129 100 100 109 UNION 126 98 98 111 VAN BUREN 1 19 108 108 119 UAPELLO 120 109 109 116 UARREN 128 102 102 111 WASHINGTON 118 100 100 93 WAYNE 130 102 102 121 WE3STER 138 96 96 98 WINNEBAGO . 104 i04 114 WINNESHIEK . 134 134 162 WOODBURY . 118 118 116 WORTH . 126 126 134 WRIGHT . 97 97 98 C-24 ------- STATE=ID COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADA . 147 147 162 ADAMS . 103 103 109 BANNOCK . 108 108 126 BEAR LAKE . 124 124 125 BENEWAH . 89 89 76 BINGHAM . 135 135 147 BLAINE . 127 127 139 BOISE . 86 86 69 BONNER . 103 103 36 BONNEVILLE . 120 120 126 BOUNDARY . 89 89 61 3UTTE . 131 131 135 CAMAS . 112 112 92 CANYON . 141 141 152 CARIBOU . 113 113 126 CASSIA . 115 115 108 CLARK . 106 106 104 CLEARUATER . '98 98 82 CUSTER . 93 93 92 ELMORE . 96 96 69 FRANKLIN . 103 103 114 FREMONT . 110 110 116 GEM . 112 112 104 GOODING . 139 139 137 IDAHO . 39 89 71 JEFFERSON . 137 137 142 JEROME . 139 ir9 147 KOOTENAI . 113 113 126 LATAH . 77 98 105 LEMHI . 101 101 69 LEWIS . 98 107 91 LINCOLN . 154 154 177 MADISON . 117 117 334 MINIDOKA . 152 152 150 NEZ PERCE . 81 90 73 ONEIDA . 109 109 116 OWYHEE . 87 87 81 PAYETTE . 119 119 108 POWER . 118 118 100 SHOS-HONE . 84 84 61 TETON . 124 124 136 TWIN FALLS . 87 87 77 C-25 ------- STATE=ID COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE VALLEY . 93 93 71 WASHINGTON . 128 128 123 C-26 ------- STATE=IL COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADA*MS 107 131 137 132 ALEXANDER 148 183 183 132 BOND 85 127 133 132 BOONE 123 142 148 144 BROUN 101 125 131 132 BUREAU 121 124 130 124 CALHOUN 108 119 125 109 CARROLL 121 125 131 132 CASS 109 133 139 132 CHAMPAIGN 128 136 142 132 CHRISTIAN 87 130 136 132 CLARK 107 134 140 132 CLAY 86 128 134 132 CLINTON 107 133 139 132 COLES 101 127 133 132 COOK 119 149 155 144 CRAWFORD 122 150 156 144 CUMBERLAND 36 132 138 132 DE KALB 136 135 141 144 DE WITT 129 131 137 132 DOUGLAS 127 126 132 132 DU PAGE 104 130 136 132 EDGAR 94 129 135 132 EDWARDS 111 131 137 132 EFFINGHAM 86 130 136 132 FAYETTE 107 133 139 132 FORD 123 127 133 127 FRANKLIN 90 134 140 132 .FULTON 96 121 127 124 GALLATIN 144 153 159 144 GREENE 101 131 137 132 GRUNDY 105 132 138 132 HAMILTON 105 145 151 ,144 HANCOCK 105 129 135 132 HARDIN 157 185 185 191 HENDERSON 121 147 153 144 HENRY 80 126 132 132 IR02UOIS 144 146 152 144 JACKSON 140 147 153 144 JASPER 38 136 142 132 JEFFERSON 88 132 138 132 JERSEY 105 133 139 132 C-27 ------- STATE=IL COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE JO DAVIESS 119 125 131 129 JOHNSON 146 144 150 148 KANE 133 135 141 132 KANKAKEE 122 153 159 154 KENDALL 103 127 133 132 KNOX 77 121 127 121 LAKE 131 129 135 132 LA SALLE 85 122 128 124 LAWRENCE 124 150 155 144 LEE 130 142 143 144 LIVINGSTON 113 129 135 132 LOGAN 129 131 137 1;2 MC DONOUGH 80 122 128 132 MC HENRY 140 140 146 144 MC LEAN 126 125 131 132 MACON 128 129 135 132 MACOUPIN 82 124 130 132 MADISON 106 133 139 132 MARION 86 130 136 132 .MARSHALL 120 123 129 124 MASON 154 143 149 132 MASSAC 158 174 180 182 MENARD 117 133 139 132 MERCER 105 131 137 132 MONROE 120 130 136 132 MONTGOMERY 85 127 133 132 MORGAN 108 130 136 132 MOULTRIE 104 128 134 132 OGLE 91 136 136 126 PEORIA 97 121 127 124 PERRY 86 132 138 132 PIATT 129 127 133 132 PIKE 120 133 139 132 POPE 146 156 156 143 PULASKI 157 175 181 182 PUTNAM 124 129 135 124 RANDOLPH 98 125 131 121 RICHLAND 87 128 134' 132 ROCK ISLAND 103 128 134 129 ST CLAIR 105 135 141 132 SALINE 108 147 153 144 SANGAMON 86 128 134 132 C-28 ------- STATE=IL COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE SCHUYLER 991 125 131 121 SCOTT 108 136 142 132 SHELBY 87 133 139 132 STARK 79 123 129 124 STEPHENSOH 91 133 133 126 TAZEMELL 134 132 138 132 UNION 144 160 160 143 VERMILION 114 133 139 132 UABASH 110 134 140 132 UARREN 84 126 132 132 WASHINGTON 107 133 139 132 WAYNE 87 129 135 132 WHITE 124 150 156 144 WHITESIDE 107 134 140 132 WILL 102 134 140 132 WILLIAMSON 107 146 152 144 WINNEBAGO 125 152 152 138 WOODFORD 122 122 128- 124 C-29 ------- STATE=IN COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADAMS 110 127 133 132 ALLEN 110 127 133 144 BARTHOLOMEW 150 158 155 151 BENTON 132 136 139 139 BLACKFORD 109 126 132 132 BOONE 144 147 150 151 BROWN 122 141 144 144 CARROLL 130 135 138 139 CASS 138 151 154 151 CLARK 120 143 146 151 CLAY 125 144 147 151 CLINTON 143 147 150 151 CRAWFORD 108 136 139 136 DAVIESS 143 155 158 151 DEARBORN 106 147 150 156 DECATUR 128 143 151 151 DE KALB 109 127 133 132 DELAWARE 132 141 147 144 DUBOIS 120 127 130 136 ELKHART . 148 151 149 FAYE7TE . 152 155 156 FLOYD 130 149 152 159 FOUNTAIN . 138 141 1.39 FRANKLIN 109 130 "133 136 FULTON . 152 155 156 GIBSON 144 151 154 151 GRANT 121 138 144 144 GREENE 119 127 130 124 HAMILTON . 148 151 151 HANCOCK 144 148 151 151 HARRISON . 155 155 157 HENDRICKS 130 134 137 139 HENRY 144 148 151 151 HOWARD 135 146 149 151 HUNTINGTON 106 123 129 132 JACKSON 117 146 149 151 JASPER 152 168 176 186 JAY 122 138 144 144 JEFFERSON 104 144 147 151 JENNINGS 107 148 151 151 JOHNSON . 147 150 151 KNOX 144 155 158 151 C-30 ------- STATE=IN COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE KOSCIUSKO . 155 152 165 LAGRANGE . 153 150 149 LAKE 136 145 151 132 LA PORTE 141 157 154 153 LAWRENCE . 143 143 146 MADISON . 147 150 151 MARION . 135 138 139 MARSHALL . 147 150 144 MARTIN . 123 126 124 MIAMI 107 126 132 132 MONROE . 140 140 134 MONTGOMERY 129 133 136 139 MORGAN 146 151 154 151 NEWTON 140 156 164 164 NOBLE . 145 142 148 OHIO 87 127 130 124 ORANGE 108 129 132 136 OWEN 123 132 135 136 PARKE 127 133 136 139 PERRY 127 135 138 136 PIKE 140 148 151 151 PORTER 137 141 149 144 POSEY 144 T52 155 151 PULASKI 166 173 181 186 PUTNAM 123 130 133 139 RANDOLPH 135 145 148 151 RIPLEY 105 145 148 151 RUSH 144 148 151 151 ST JOSEPH . 148 159 169 SCOTT 130 149 152 151 SHELBY . 151 154 151 SPENCER 137 146 149 148 STARKE 156 177 185 186 STEUBEN . 145 151 144 SULLIVAN 141 151 154 151 SWITZERLAND 89 130 133 136 TIPPECANOE . 134 137 139 TIPTON 144 148 151 151 UNION . 133 136 139 VANDERBURGH 140 148 151 151 VERMILLION 126 135 138 139 VIGO 142 151 154 151 C-31 ------- STATE=IN COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE UABASH 121 137 143 144 WARREN . 129 132 139 WARRICK 139 146 149 151 WASHINGTON . 145 145 149 WAYNE . 139 142 139 WELLS 121 13.8 144 144 WHITE 141 153 161 175 WHITLEY . 134 140 144 C-32 ------- STATE=KA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ALLEN . 127 127 133 ANDERSON . 111 111 123 ATCHISON . 92 92 98 BARBER 125 150 150 143 BARTON . 145 145 143 BOURBON . 108 108 114 BROWN . 108 108 111 BUTLER . 122 122 118 CHASE . 123 123 118 CHAUTAU2UA . 115 115 118 CHEROKEE . 113 113 103 CHEYENNE 119 130 130 123 CLARK 134 148 148 153 CLAY . 124 124 118 CLOUD . 125 125 128 COFFEY . 132 132 128 COMANCHE 134 149 149 138 COWLEY . 135 135 128 CRAWFORD . 108 108 103 DECATUR 118 129 129 123 DICKINSON . 120 120 118 DONIPHAN . 109 109 104 DOUGLAS . 125 125 128 EDWARDS . 155 155 153 ELK . 130 130 128 ELLIS 120 140 140 143 ELLSWORTH. . 113 113 103 FINNEY . 133 133 123 FORD 119 129 129 123 FRANKLIN . 130 130 133 GEARY . 132 132 128 GOVS 128 141 141 143 GRAHAM 118 129 129 )28 GRANT 116 127 127 123 GRAY 114 114 114 109 GREELEY 111 122 122 123 GREENWOOD . 133 133 128 HAMILTON 121 135 135 133 HARPER 132 133 133 123 HARVEY . 131 131 103 HASKELL 113 112 112 111 HODGEMAN . 130 130 129 C-33 ------- STATE=KA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE JACKSON . 114 114 118 JEFFERSON . Ill 111 ''108 JEWELL . 90 90 83 JOHNSON . 97 97 103 KEARNY 122 125 125 115 KINGMAN . ISO 150 158 KIOWA 122 133 133 123 LABETTE . 134 134 133 LANE . 132 132 133 LEAVENWORTH . 106 106 105 LINCOLN . 117 117 128 LINN . 105 105 101 LOGAN 120 129 129 120 LYON . 109 109 108 MC PHERSON . 122 122 114 MARION . 121 121 118 MARSHALL . 124 124 128 MEADE 122 132 132 123 MIAMI . 112 112 125 MITCHELL . 119 119 103 MONTGOMERY . 123 123 133 MORRIS . 124 124 118 MORTON 124 135 135 123 NEMAHA . 100 100 94 NEOSHO . 122 122 128 NESS . 129 129 129 NORTON 115 126 126 123 OSAGE . 114 114 118 OS30RNE 119 132 132 133 OTTAWA . Ill 111 103 PAWNEE . 141 141 143 PHILLIPS 123 138 138 143 POTTAWATOMIE . 121 121 J25 PRATT 134 145 145 133 RAWLINS 115 126 126 123 RENO . 155 155 174 REPUBLIC . 86 86 78 RICE . 136 136 139 RILEY . 128 128 128 ROOKS 125 139 139 143 RUSH . 131 131 129 RUSSELL 119 140 140 143 C-34 ------- STATE=KA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE SALINE . 133 .133 128 SCOTT 108 116 116 115 SEDGUICK . 123 123 114 SEUARD 120 131 131 123 SHAWNEE . 115 115 128 SHERIDAN 117 128 128 123 SHERMAN 115 126 126 123 SMITH 119 133 133 143 STAFFORD 138 149 149 153 STANTON 112 123 123 123 STEVENS 124 135 135 123 SUMNER . 126 126 108 THOMAS 112 123 123 123 TREGO 121 135 135 143 UA3AUNSEE . 114 114 118 WALLACE 118 131 131 123 WASHINGTON . 115 115 118 WICHITA 114 125 125 123 WILSON . 133 133 138 WOODSON . 130 130 133 WYANDOTTE . 107 107 100 C-35 ------- STATE=KY COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADAIR . 185 185 139 ALLEN . 188 188 189 ANDERSON . 156 163 158 BALLARD 142 134 133 131 BARREN . 187 187 189 BATH . 141 148 163 BELL . 158 156 159 BOONE . 147 154 163 BOURBON . 156 163 163 BOYD . 127 131 128 BOYLE . 158 165 163 BRACKEN . 141 148 147 BREATHITT . 139 140 138 BRECKINRIDGE . 156 154 156 3ULLITT . 140 147 183 BUTLER . 154 152 156 CALDWELL . 160 162 159 GALLOWAY 141 133 132 131 CAMPBELL . 146 153 158 CARLISLE 14-3 135 134 131 CARROLL ' . 135 142 155 CARTER . 130 134 128 CASEY . 182 182 186 CHRISTIAN . 173 171 159 CLARK . 153 160 163 CLAY . 140 144 133 /CLINTON . 178 178 189 CRITTENDEN . 154 153 135 CUMBERLAND . 172 172 f86 DAVIESS . 146 142 141 EDMONSON . 158 159 152 ELLIOTT . 133 134 128 ESTILL . 135 136 V40 FAYETTE . 155 162 163 FLEMING . 146 153 163 FLOYD . 131 135 133 FRANKLIN . 152 159 163 FULTON . 134 133 131 GALLATIN . 145 152 155 GARRARD . 148 155 158 GRANT . 151 158 160 GRAVES 142 134 133 131 C-36 ------- STATE=KY COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE GRAYSON . 159 157 156 GREEN . 182 182 189 GREENUP . 128 132 128 HANCOCK . 147 148 152 HARDIN . 182 180 189 HARLAN . 141 142 140 HARRISON . 150 157 163 HART . 172 172 186 HENDERSON . 142 138 145 HENRY . 152 159 158 HICKMAN 143 135 134 131 HOPKINS . 152 150 159 JACKSON . 133 137 140 JEFFERSON . 143 150 163 JESSAMINE . 155 162 163 JOHNSON . 140 141 138 KENTON . 148 155 158 KNOTT . 136 140 133 KNOX . 132 133 128 LARUE . 180 180 189 LAUREL . 147 151 155 LAWRENCE . 137 138 138 LEE . 130 134 128 LESLIE . 137 141 138 LETCHER . 141 142 138 LEWIS . 146 150 140 LINCOLN . 156 163 163 LIVINGSTON . 150 149 131 LOGAN . 175 175 189 LYON . 174 174 189 MC CRACKEN 145 137 136 131 MC CREARY ' . 148 152 150 MC LEAN . 153 149 145 MADISON . 147 154 158 MAGOFFIN . 135 136 128 MARION . 178 178 189 MARSHALL 142 134 133 131 MARTIN . 149 153 150 MASON . 151 158 163 MEADE . 178 178 189 MENIFEE . 130 134 128 MERCER . 167 174 173 C-37 ------- STATE=KY COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE METCALFE . 187 187 189 MONROE . 185 185 189 MONTGOMERY . 147 154 163 MORGAN . 131 132 128 MUHLENBERG . 155 153 159 NELSON . 160 167 185 NICHOLAS . 152 159 158 OHIO . 157 155 156 OLDHAM . 160 167 175 OWEN . 137 144 147 OUSLEY . 138 139 138 PENDLETON . 142 149 155 PERRY . 136 140 138 PIKE . 147 151 150 POWELL . 134 135 140 PULASKI . 177 177 189 ROBERTSON . 148 155 155 ROCKCASTLE . 150 151 143 ROWAN . 123 .127 120 RUSSELL . 185 185 189 SCOTT . 153 160 163 SHELBY . 166 173 175 SIMPSON . 189 189 189 SPENCER . 164 171 175 TAYLOR . 183 183 189 TODD . 170 171 155 TRIGG . 172 172 189 TRIMBLE . 146 153 155 UNION . 137 136 131 WARREN . 178 178 186 WASHINGTON . 165 172 175 WAYNE . 171 171 174' WEBSTER . 147 143 T41 WHITLEY . 147 151 155 WOLFE . 136 137 128 WOODFORD . 155 162 163 C-38 ------- STATE=LA COUNTY ADJUSTED VARSCORE UEIGHTED TOTAL VARSCORE SCORE ACADIA 127 163 163 168. ALLEN 130 172 172 193 ASCENSION 113 167 167 200 ASSUMPTION 111 73 100 71 AVOYELLES . 171 171 195 BEAUREGARD 133 168 163 183 BIENVILLE 151 160 160 180 BOSSIER 153 165 165 192 CADDO 142 172 182 205 CALCASIEU 128 173 173 183 CALDWELL 153 147 147 179 CAMERON 104 88 115 96 CATAHOULA . 175 175 180 CLAIRBORNE 158 155 155 159 CONCORDIA . 162 162 189 DE SOTO 142 148 148 150 EAST BATON ROUGE . 156 156 160 EAST CARROLL . 193 193 204 EAST FELICIANA 125 151 151 164 EVANGELINE 129 166 166 163 FRANKLIN . 173 173 186 GRANT 163 165 165 167 IBERIA 103 105 151 162 I3ERVILLE . 149 149 181 JACKSON 153 147 147 162 JEFFERSON 130 100 127 S6 JEFFERSON DAVIS 129 166 166 168 LAFAYETTE 130 173 173 187 LAFOURCHE 107 49 76 56 LA SALLE 157 152 152 173 LINCOLN 149 138 138 150 LIVINGSTON 125 163 163 208 MADISON . 179 179 1,99 MOREHOUSE . 164 164 196 NATCHITOCHES 147 158 158 192 ORLEANS 108 85 112 56 OUACHITA 158 163 163 180 PL'ASUEMINES 106 48 75 56 POINTS COUPEE . 178 173 200 RAPIDES 128 172 172. 209 RED RIVER 145 165 165 171 RICHLAND . 161 161 182 C-39 ------- STATE=LA COUNTY SABINE ST BERNARD ST CHARLES ST HELENA ST JAMES ST JOHN THE BAPTIST ST LANDRY ST MARTIN ST MARY ST TAMMANY TANGIPAHOA TENSAS TERREBONNE UNION VERMILION VERNON WASHINGTON U'EBSTER UEST BATON ROUGE WEST CARROLL UEST FELICIANA UINN ADJUSTED VARSCORE 147 106 109 129 103 1 13 179 138 1 12 1 17 131 103 154 102 132 156 172 123 148 VARSCORE 48 133 169 93 182 169 178 125 147 174 168 45 152 1 13 148 171 167 16 1 167 159 142 WEIGHTED 148 75 133 169 139 158 169 178 125 147 174 168 72 152 140 148 171 167 16 1 167 159 142 TOTAL SCORE 150 96 101 139 147 164 169 195 1 1 1 165 195 204 56 173 1 14 174 208 184 165 190 164 145 C-40 ------- STATE=MA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE BARNSTABLE . 202 195 221 BERKSHIRE . 140 151 149 BRISTOL . 169 183 177 DUKES . 203 196 210 ESSEX . 192 181 177 FRANKLIN . 149 163 156 HAMPDEN . 147 161 161 HAMPSHIRE . 159 173 178 MIDDLESEX . 155 169 169 NANTUCKET . 209 202 205 NORFOLK . 165 179 177 PLYMOUTH . 204 197 205 SUFFOLK . 174 188 189 WORCESTER . 165 179 174 C-41 ------- STATE=MD COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ALLEGANY . 126 120 114 ANNE ARUNDEL . 175 186 184 BALTIMORE . 136 136 124 CALVERT . 170 184 185 CAROLINE . 186 200 193 CARROLL . 130 127 126 CECIL . 142 148 150 CHARLES . 157 171 178 DORCHESTER . 182 196 198 FREDERICK . 118 115 116 GARRETT . 136 140 138 HARFORD . 123 123 114 HOWARD . 125 125 124 KENT . 161 163 163 MONTGOMERY . 129 126 126 PRINCE GEORGES . 159 173 180 QUEEN ANNES . 172 174 173 ST MARYS . 165 179 175 SOMERSET . 179 193 188 TALBOT . 178 192 193 WASHINGTON . 137 137 156 WICOMICO .. 185 199 198 WORCESTER . 184 198 198 BALTIMORE CITY . 144 152 '137 C-42 ------- STATE=ME COUNTY ADJUSTED VARSCORE WEIGHTED -TOTAL VARSCORE SCORE ANDROSCOGGIN . 150 152 154 AROOSTOOK . 132 134 132 CUMBERLAND . 151 153 154 FRANKLIN . 147 149 139 HANCOCK . 158 160 159 KENNE3EC . 147 149 151 KNOX . 144 146 139 LINCOLN . 146 148 151 OXFORD . 163 165 159 PENOBSCOT . 153 155 144 PISCATA2UIS . 144 146 154 SAGADAHOC . 144 146 151 SOMERSET . 149 151 154 WALDO . 148 150 151 WASHINGTON . 158 160 162 YORK . 159 161 162 C-43 ------- STATE=MI COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORC SCORE ALCONA . 139 145 124 ALGER . 143 149 149 AILEGAN . 163 166 134 ALPENA . 132 138 129 ANTRIM . 129 135 124 ARENAC . 140 143 154 BARAGA . 110 110 109 BARRY . 128 134 119 BAY . 124 127 126 BENZIE . 144 150 174 BERRIEN . 162 168 182 BRANCH . 158 164 147 CALHOUN . 157 163 162 CASS . 143 149 154 CHARLEVOIX . 123 129 126 CHEBOYGAN . 134 137 131 CHIPPEMA . 158 158 159 CLARE . 147 153 152 CLINTON . 138 144 154 CRAWFORD . 161 167 182 DELTA . 153 159 167 DICKINSON- . 115 115 119 EATON . 125 131 124 EMMET . 123 129 121 GENESEE . 123 129 124 GLADUIN . 136 139 154 GOGEBIC . 97 103 94 GRAND TRAVERSE . 162 165 193 GRATIOT . 138 144 132 HILLSDALE . 127 133 119 HOUGHTOM . 126 126 131 HURON . 123 126 126 INGHAM . 132 138 124 IONIA . 143 149 147 IOSCO . 149 155 152 IRON . 102 108 94 ISABELLA . 135 141 144 JACKSON . 153 159 147 KALAMAZOO . 143 149 154 KALKASKA . 176 173 208 KENT . 138 144 174 KEWEENAW . 122 122 153 C-44 ------- STATE=MI COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE LAKE . 178 175 208 LAPEER . 127 133 124 LEELANAU . 130 136 109 LENAWEE . 106 112 97 LIVINGSTON . 135 141 124 LUCE . 162 162 184 MACKINAC . 154 160 172 MACOMB . 127 130 126 MANISTEE . 167 164 188 MAR2UETTE . 101 107 104 MASON . 157 163 182 MECOSTA . 159 165 147 MENOMINEE . 143 149 137 MIDLAND . 139 142 139 MISSAUKEE . 133 139 119 MONROE . 137 140 139 MONTCALM . 156 162 152 MONTMORENCY . 146 152 147 MUSKEGON . 170 173 184 NEWAYGO . 170 173 208 OAKLAND . 147 153 147 OCEANA . 164 170 179 OGEMAW . 144 150 147 ONTONAGON . 106 112 129 OSCEOLA . 131 137 144 OSCODA . 167 164 183 OTSEGO . 153 159 147 OTTAWA . 148 151 161 PRES2UE ISLE . 151 157 137 ROSCOMMON . 153 158 175 SAGINAW . 122 125 126 ST GLAIR . 121 124 126 ST JOSEPH . 163 169 182 SANILAC . 124 130 124 SCHOOLCRAFT . 168 168 184 SHIAWASSEE . 132 138 132 TUSCOLA . 129 132 126 VAN 3UREN . 144 150 139 WASHTENAW . 138 144 152 WAYNE . 127 130 131 WEXFORD . 157 163 147 C-45 ------- STATE=MN COUNTY AITKIN ANOKA BECKER BELTRAMI BENTON BIG STONE BLUE EARTH BROUN CARLTON CARVER CASS CHIPPEWA CHISAGO CLAY CLEARWATER COOK COTTONMOOD CROW UING DAKOTA DODGE DOUGLAS FARIBAULT FILLMORE FREE30RN GOODHUE GRANT HENNEPIN HOUSTON HUBBARD ISANTI ITASCA JACKSON KANABEC KANDIYOHI KITTSON KOOCHICHING LAC 2UI PARLE LAKE LAKE OF THE WOODS LE SUEUR LINCOLN LYON ADJUSTED VARSCORE VARSCORE 128 170 156 120 141 132 1 13 122 111 129 160 123 164 1 15 109 131 1 19 166 133 139 133 1 15 152 122 150 1 13 122 143 167 170 131 122 143 133 1 19 109 1 18 134 129 1 17 1 13 1 19 WEIGHTED 128 170 156 120 141 170 1 13 122 141 129 160 123 164 1 15 109 131 1 19 166 138 131 133 1 15 152 122 150 1 13 122 143 167 170 -131 122 144 138 1 19 109 1 18 134 129 1 17 1 13 1 19 TOTAL SCORE 130 187 164 108 135 164 108 122 145 139 191 1 12 187 108 108 146 1 12 191 1 19 1 16 1 12 108 177 1 16 177 102 1 19 174 191 137 133 132 1,45 134 1 19 108 122 146 138 1 14 122 122 C-46 ------- STATE=MN COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE MC LEOD . 126 126 119 MAHNOMEN . 108 108 108 MARSHALL . 116 116 123 MARTIN . 122 122 112 MEEKER . 143 143 134 MILLE LACS . 141 137 145 MORRISON . 149 149 135 MOWER . 145 137 131 MURRAY . 121 121 122 NICOLLET . 120 120 124 NOBLES . 147 147 144 NORMAN . 113 113 108 OLMSTED . 155 155 177 OTTER TAIL . 159 159 179 PENNINGTON . 110 110 108 PINE . 140 136 140 PIPESTONE . 106 106 98 POLK . 110 110 108 POPE . 132 132 122 RAMSEY . 122 122 119 RED LAKE . 113 113 108 REDWOOD . 122 122 122 RENVILLE . 121 121 112 RICE . 114 114 104 ROCK . 98 98 104 ROSEAU . 118 118 104 ST LOUIS . 140 140 155 SCOTT . 117 117 104 SHERBURNE . 187 187 187 SIBLEY . 119 119 114 STEARNS . 161 161 187 STEELE . 139 131 1-16 STEVENS . 127 127 122 SWIFT . 127 127 T22 TODD ; 149 149 139 TRAVERSE . 102 110 98 WABASHA . 152 152 177 WADENA . 184 184 196 WASECA . 106 106 88 WASHINGTON . 122 122 119 WATONWAN . 122 122 104 WILKIN . 111 111 98 C-47 ------- STATE=HN COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE WINONA . 148 148 174 WRIGHT . 134 134 139 YELLOW MEDICINE . 121 121 122 C-48 ------- STATE=MO COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADAIR 102 77 77 68 ANDREW . 103 103 75 ATCHISON . 95 95 75 AUDRAIN . 69 69 68 BARRY . 80 80 77 BARTON . 101 101 98 BATES . 98 98 86 BENTON . 100 100 98 BOLLINGER . 103 103 108 BOONE . 125 125 136 BUCHANAN . 101 101 95 BUTLER . 138 138 158 CALDWELL 111 88 88 78 CALLAUAY .- 89 89 78 CAMDEN . 95 95 101 GIRARDEAU . 133 133 130 CARROLL . 97 97 83 CARTER . 87 87 83 CASS . 90 90 98 CEDAR . 95 95 98 CHARITON . 97 97 83 CHRISTIAN . 113 113 123 CLARK . 91 91 83 CLAY . 102 102 83 CLINTON 113 83 83 78 COLE . 95 95 95 COOPER . 99 99 98 CRAWFORD . 98 98 95 DADE '. 92 92 95 DALLAS . 103 108 98 DAVIESS 106 90 90 75 DE KALB 108 86 86 78 DENT . 117 117 126 DOUGLAS . 10U 10U '83 DUNKLIN . 156 156 168 FRANKLIN . 89 89 83 GASCONADE . 89 89 83 GENTRY 114 100 100 78 GREENE . 122 122 126 GRUNDY 108 91 91 78 HARRISON 112 95 95 78 HENRY . 105 105 86 -C-49 ------- STATE=MO COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE HICKORY . Ill 111 98 HOLT . 105 105 78 HOWARD . 91+ 91^ 80 HOUELL . 115 115 123 IRON . 80 80 88 JACKSON . 100 100 83 JASPER . 109 109 100 JEFFERSON . 94 9 <4 83 JOHNSON . 92 92 98 KNOX 97 75 75 68 LACLEDE . 93 93 95 LAFAYETTE . 91 91 88 LAWRENCE . 95 95 95 LEWIS . 91 91 83 LINCOLN . 119 119 137 LINN 112 90 90 83 LIVINGSTON 114 109 109 83 MC DONALD . 100 100 82 MACON 102 77 77 68 MADISON . 78 78 88 MARIES . 89 89 88 MARION . 93 93 83 MERCER 110 95 95 78 MILLER . 111 111 85 MISSISSIPPI 182 159 159 158 MOHITEAU . 92 92 95 MONROE 96 73 73 63 MONTGOMERY . 87 87 78 MORGAN . 100 100 98 NEW MADRID 179 156 156 158 NEWTON . 104 104 88 NODAWAY 108 87 87 75 OREGON . 95 95 95 OSAGE . 92 92 83 OZARK . 93 93 77 PEMISCOT 171 148 148 153 PERRY . 127 127 145 PETTIS . 90 90 98 PHELPS . 112 112 100 P-IKE . 88 88 78 PLATTE . 103 103 98 POLK . 127 127 98 C-50 ------- STATE=HO COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE PULASKI . 102 102 88 PUTNAM 107 87 87 78 RALLS . 85 85 68 RANDOLPH 101 76 76 68 RAY . 96 96 83 REYNOLDS . 95 95 111 RIPLEY . 118 118 113 ST CHARLES . 120 120 103 ST CLAIR . 93 93 98 ST FRANCOIS . 101 101 97 ST LOUIS . 145 145 138 STE GENEVIEVE . 108 108 103 SALINE . 104 104 83 SCHUYLER 105 80 80 68 SCOTLAND 111 90 90 83 SCOTT . 146 146 158 SHANNON . 92 92 82 SHELBY 98 76 76 68 STODDARD . 152 152 158 STONE . 92 92 '77 SULLIVAN 105 84 84 78 TANEY . 87 87 77 TEXAS . 118 108 77 VERNON . 95 95 98 WARREN . 93 93 75 WASHINGTON . 100 100 95 WAYNE . 106 106 38 WEBSTER . 127 117 98 WORTH 107 91 91 78 WRIGHT . 123 115 88 ST LOUIS CITY . 161 161 158 C-51 ------- STATE = I1S COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADAMS . 135 131 128 ALCORN . 117 120 120 AMITE . 144 144 136 ATTALA . 130 138 158 BENTON . 125 125 136 BOLIVAR 151 148 151 160 CALHOUN . 97 97 88 CARROLL . 114 122 136 CHICKASAU . 108 108 91 CHOCTAU . 110 110 98 CLAI30RNE . 133 129 128 CLARKE . 146 154 169 CLAY . 100 100 91 COAHOMA 149 145 148 145 COPIAH . 151 159 158 COVIHGTON . 156 164 169 DE SOTO . 124 120 119 FORREST . 157 165 169 FRANKLIN . 147 155 158 GEORGE 166 157 165 169 GREENE . 147 155 161 GRENADA . 118 126 136 HANCOCK 152 149 152 155 HARRISON 163 156 164 169 HINDS . 113 121 116 HOLMES . 129 125 119 HUMPHREYS 146 131 134 133 ISSA2UENA 145 130 133 133 ITAUAMBA . 143 151 146 JACKSON 150 145 153 161 JASPER . 130 138 148 JEFFERSON . 143 139 128 JEFFERSON DAVIS . 157 165 166 JONES . 145 153 161 KEMPER . 111 111 98 LAFAYETTE . 121 129 136 LAMAR . 155 163 169 LAUDERDALE . 128 128 98 LAURENCE . 147 155 161 LEAKE . 135 143 158 LEE . 118 118 99 LEFLORE 150 147 150 145 C-52 ------- STATE=MS COUNTS ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE LINCOLN . 147 155 158 LOWNDES . 133 141 151 MADISON . 110 1J8 136 MARION . 149 157 161 MARSHALL . 127 135 136 MONROE . 133 141 148 MONTGOMERY . 138 146 158 NESHOBA . 139 147 166 NEWTON . 135 143 158 NOXUBEE . 105 105 106 OKTIBBEHA . 91 91 91 PANOLA . 130 126 119 PEARL RIVER . 149 157 161 PERRY . 155 163 169 PIKE . 147 155 161 PONTOTOC . 105 105 88 PRENT1SS . 154 162 166 2UITMAN 150 147 150 145 RANKIN . 117 117 91 SCOTT . 112 112 94 SHARKEY 148 145 148 145 SIMPSON . 142 150 151 SMITH . 138 146 161 STONE 167 158 166 169 SUNFLOWER 149 146 149 145 TALLAHATCHIE 144 129 132 133 TATE . 125 121 119 TIPPAH . 110 110 106 TISHOMINGO . 142 150 146 TUNICA 144 129 132 128 UNION . 123 123 118 WALTHALL . 153 166 169 WARREN . 120 116 T,16 WASHINGTON 144 129 132 133 WAYNE . 142 150 161 WEBSTER . 104 104 98 WILKINSON . 139 147 161 WINSTON . 105 105 98 YALOBUSHA . 122 130 136 YAZOO . 127 123 119 C-53 ------- STATE=MT COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE BEAVERHEAD 112 131 131 120 BIG HORN . 124 124 108 BLAINE . 114 114 88 BROADWATER . 145 145 112 CARBON . 126 126 108 CARTER . 103 103 83 CASCADE . 118 113 96 CHOUTEAU . 114 114 90 CUSTER . 131 131 105 DANIELS . 130 130 111 DAWSON . 135 135 111 DEER LODGE . 130 130 97 FALLON . 113 113 87 FERGUS . 107 107 76 FLATHEAD 128 130 130 94 GALLATIN . 143 143 124 GARFIELD . 121 121 102 GLACIER . 122 122 96 GOLDEN VALLEY . 125 125 96 GRANITE . 125 125 106 HILL . 116 116 96 JEFFERSON . 129 129 77 JUDITH BASIN . 113 113 84 LAKE 132 133 133 106 LEWIS AND CLARK . 121 121 106 LIBERTY -. 112 112 96 LINCOLN 134 136 136 130 MC CONE . 120 120 94 MADISON . 131 131 97 MEAGHER . 127 127 114 MINERAL . 124 124 106 MISSOULA . 133 133 106 MUSSELSHELL . 127 127 1,02 PARK . 138 138 106 PETROLEUM . 112 112 97 PHILLIPS . 112 112 108 PONDERA . 117 117 108 POWDER RIVER . 124 124 107 POWELL . 140 140 127 PRAIRIE . 130 130 109 RAVALLI . 139 139 97 RICHLAND . 134 134 113 C-54 ------- STATE=MT COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ROOSEVELT . 129 129 114 ROSEBUD . 124 124 108 SANDERS 134 135 135 114 SHERIDAN . 131 131 113 SILVER BOW . 134 134 97 STILLWATER . 122 122 108 SWEET GRASS . 130 130 96 TETON . 115 115 96 TOOLS . 118 118 96 TREASURE . 112 112 84 VALLEY . 112 112 108 WHEATLAND . 122 122 108 WI3AUX . 131 131 104 YELLOWSTONE . 116 116 96 YELLOWSTONE NATIONAL 124 146 146 135 C-55 ------- STATE=NC COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ALAMANCE . 129 135 134 ALEXANDER . 140 146 148 ALLEGHANY . 146 143 138 ANSON . 137 143 144 ASHE 136 150 147 143 AVERY 144 158 155 155 BEAUFORT . 138 184 186 BERTIE . 187 183 186 BLADEN . 203 199 194 BRUNSWICK . 202 202 209 BUNCOMBE 146 160 157 150 BURKE . 136 142 136 CABARRUS . 132 138 139 CALDWELL . 135 141 130 CAMDEN . 191 187 186 CARTERET . 193 189 186 CASWELL . 130 136 139 CATAWBA . 129 135 144 CHATHAM . 118 124 126 CHEROKEE 143 157 154' 150 CHOWAN . 205 201 194 CLAY 147 161 158 155 CLEVELAND . 130 136 T44 COLUMBUS . 189 185 186 CRAVEN . 190 186 186 CUMBERLAND . 197 193 189 CURRITUCK , . 204 200 194 DARE . 175 185 176 DAVIDSON . 131 137 139 DAVIE . 132 138 139 DUPLIN . 202 198 209 DURHAM . 120 126 126 EDGECOMBE . 185 181 .181 FORSYTH . 129 135 144 FRANKLIN . 132 138 147 GASTON . 132 138 139 GATES . 192 188 186 GRAHAM 142 156 153 150 GRANVILLE . 130 136 134 GREENE . 185 181 181 GUILFORD . 132 138 144 HALIFAX . 182 178 181 C-56 ------- STATE=NC COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE HARNETT . 186 182 186 HAYWOOD 147 161 158 155 HENDERSON 149 163 160 161. HERTFORD . 185 181 186 HOKE . 196 192 189 HYDE . 173 183 176 IREDELL . 129 135 144 JACKSON 144 158 155 155 JOHNSTON . 183 179 186 JONES . 192 186 184 LEE . 149 155 134 LENOIR . 199 195 184 LINCOLN . 131 137 144 MC DOWELL 142 152 149 155 MACON 145 159 156 155 MADISON 159 173 170 170 MARTIN . 178 174 171 MECKLENBURG . 131 137 144 MITCHELL 145 159 156 155 MONTGOMERY . 135 141 134 MOORE . 165 168 196 NASH . 170 166 179 NEW HANOVER . 202 202 209 NORTHAMPTON . 184 180 181 ONSLOW . 217 211 219 ORANGE . 129 135 134 PAMLICO . 192 188 186 PASQUOTANK . 187 183 186 PENDER . 198 198 209 PER2UIMANS . 189 185 186 PERSON . 129 135 134 PITT . 187 183 181 POLK " . 126 132 ,124 RANDOLPH . 128 134 139 RICHMOND . 187 190 196 ROBESON . 185 181 181 ROCKINGHAM . 128 134 144 ROWAN . 133 139 139 RUTHERFORD . 129 135 136 SAMPSON . 197 200 199 SCOTLAND . 186 182 181 STANLY . 131 137 144 C-57 ------- STATE=NC COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE STOKES . 122 128 132 SURRY . 120 126 121 SUAIN 144 158 155 155 TRANSYLVAKIA 149 163 160 155 TYRRELL . 186 182 186 UNION . 135 mi 148 VANCE . 132 138 144 WAKE . 136 142 144 WARREN . 132 138 144 WASHINGTON . 186 182 186 WATAUGA 145 159 156 155 WAYNE . 198 194 189 WILKES . 145 142 143 WILSON . 189 135 181 YADKIN . 130 136 144 YANCEY 144 158 155 155 C-58 ------- STATE=ND COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADAMS 123 147 147 150 BARNES 127 110 110 96 BENSON 128 113 113 111 BILLINGS 119 144 144 145 30TTINEAU 124 14-1 141 121 BOWMAN 120 146 146 147 BURKE 109 136 136 117 3URLEIGH 121 120 120 117 CASS 127 110 110 76 CAVALIER 123 125 125 36 DICKEY 127 110 110 91 DIVIDE 126 143 143 127 DUNN 109 141 141 125 EDDY' 131 117 117 104 EMMONS 102 133 133 135 FOSTER 135 120 120 114 GOLDEN VALLEY 117 132 132 135 GRAND FORKS 136 121 121 96 GRANT 112 150 150 127 GRIGGS 146 131 131 128 HETTINGER 119 149 149 147 KIDDER 134 140 140 166 LA MOURE 129 114 114 91 LOGAN 118 123 123 111 MC HENRY 128 149 149 138 MC INTOSH 117 122 122 114 MC KENZIE 106 134 134 145 MC- LEAN 1 13 143 143 117 MERCER 105 1.36 136 117 MORTON 123 148 148 133 MOUNTRAIL 108 137 137 117 NELSON 128 113 113 96 OLIVER 102 133 133 .125 PEMBINA 124 121 121 114 PIERCE 113 125 125 140 RAMSEY 135 120 120 86 RANSOM 131 115 115 91 RENVILLE 110 148 148 130 RICHLAND 149 134 134 125 ROLETTE 121 123 123 125 SARGENT 134 117 117 91 SHERIDAN 148 148 127 C-59 ------- STATE=ND COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE SIOUX 101 139 139 123 SLOPE 126 145 145 135 STARK 118 151 151 147 STEELE 136 120 120 96 STUTSMAN 120 114 114 103 TOUNER 122 108 108 104 TRAILL 118 113 113 96 WALSH 122 114 114 86 WARD 112 144 144 117 WELLS 112 115 115 111 WILLIAMS 125 142 142 115 C-60 ------- STATE=NE COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADAMS . 117 117 129 ANTELOPE . 122 122 129 ARTHUR . 134 134 123 BANNER . 109 109 119 BLAINE . 137 137 141 300NE . 119 119 119 BOX BUTTE . 112 112 109 BOYD . 122 122 118 BROUN . 143 143 127 BUFFALO . 119 119 129 3URT . 122 122 131 BUTLER . 119 119 124 CASS . 114 114 98 CEDAR . 123 123 137 CHASE . 128 128 109 CHERRY . 153 153 144 CHEYENNE . 107 107 114 CLAY . 107 107 109 COLFAX . 113 113 117 CUMING . 110 110 117 CUSTER . 110 110 109 DAKOTA . 121 121 133 DAUES . 101 101 119 DAMSON . 111 111 109 DEUEL . 108 108 109 DIXON . 114 114 119 DODGE . 113 113 117 DOUGLAS . 123 123 128 DUNDY . 127 127 131 FILLMORE . 111 111 119 FRANKLIN . 114 1.14 114 FRONTIER . 103 103 109 FURNAS . 105 105 309 GAGE . 106 106 93 GARDEN . 122 122 134 GARFIELD . 143 143 151 GOSPER . 108 108 109 GRANT . 131 131 113 GREELEY . 118 118 109 HALL . 132 132 139 HAMILTON . 117 117 119 HARLAN . 105 105 109 C-61 ------- STATE=NE COUNTY ADJUSTED VARSCORE VARSCORE WEIGHTED TOTAL SCORE HAYES HITCHCOCK HOLT HOOKER HOWARD JEFFERSON JOHNSON KEARNEY KEITH KEYA PAHA KIMBALL KHOX LANCASTER LINCOLN LOGAN LOUP MC PHERSON MADISON MERRICK nORRILL NANCE NEMAHA NUCKOLLS OTOE PAWNEE PERKINS PHELPS PIERCE PLATTE POLK RED WILLOW RICHARDSON ROCK SALINE SARPY SAUNDERS SCOTTS BLUFF SEWARD SHERIDAN SHERMAN SIOUX STANTON 1 10 129 127 102 1 10 1 19 1 19 134 107 128 1 16 132 123 129 132 108 135 1 19 20 17 09 1 1 09 109 120 1 18 127 1 1 1 104 1 17 146 1 1 1 123 124 1 13 1 12 123 120 108 1 1 1 1 10 104 144 129 127 102 1 10 1 19 1 19 134 107 128 1 16 132 123 129 132 108 135 1 19 120 1 17 109 1 1 1 109 109 120 1 18 127 1 1 1 104 1 17 146 1 1 1 123 124 1 13 1 12 123 120 108 1 1 1 109 109 139 1 13 1 19 88 93 129 134 154 1 14 123 98 134 134 131 123 109 129 1 19" 1 14 1 13 1 19 98 93 109 1 19 129 129 1 14 109 1 13 >27 1 14 1 18 128 1 19 1 14 144 1 19 1 19 1 17 C-62 ------- STATE=ME COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE THAYER . 104 104 94 THOMAS . 144 144 123 THURSTON . 120 120 131 VALLEY . 113 113 109 WASHINGTON . 116 116 116 WAYNE . 108 108 117 WEBSTER . 116 116 129 WHEELER . 143 143 151 YORK . 111 111 119 C-63 ------- STATE=NH COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE BELKNAP . 157 159 152 CARROLL . 154 156 138 CHESHIRE . 153 155 144 COOS . 144 146 138 GRAFTON . 149 151 138 HILLSBOROUGH . 169 171 164 MERRIMACK . 163 165 152 ROCKIXGHAM . 169 171 167 STRAFFORD . 170 172 164 SULLIVAN . 149 151 144 C-64 ------- STATS=NJ COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ATLANTIC . 206 206 216 BERGEN . 141 147 144 BURLINGTON . 189 189 215 CAMDEN . 176 176 196 CAPE MAY . 190 194 -194 CUMBERLAND . 190 194 189 ESSEX . 142 148 149 GLOUCESTER . 178 178 195 HUDSON . 142 148 144 HUNTERDON . 155 149 130 MERCER . 136 136 139 MIDDLESEX . 147 147 154 MONMOUTH . 135 135 99 MORRIS . 148 154 156 OCEAN . 203 203 216 PASSAIC . 128 134 132 SALEM . 151 151 167 SOMERSET . 121 115 111 SUSSEX . 148 154 156 UNION . 125 131 137 UARREN . 158 164 159 C-65 ------- STATE=NM COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE BERNALILLO . 130 130 116 CATRON 123 140 140 121 CHAVES . 127 127 111 COLFAX . 113 113 110 CURRY . 130 130 118 DE BACA . 115 115 111 DONA ANA 131 143 143 130 EDDY . 124 124 136 GRANT 128 140 140 141 GUADALUPE . 107 107 81 HARDING . 118 118 116 HIDALGO 119 132 132 125 LEA . 129 129 122 LINCOLN . 113 113 86 LOS ALAMOS . 138 138 121 LUNA 120 133 133 120 MC KINLEY . 109 109 110 MORA . 118 118 100 OTERO . 126 126 116 2UAY . 121 121 107 RIO ARRIBA . 107 107 86 ROOSEVELT . 130 130 125 SANDOVAL . 119 119 116 SAN JUAN . 117 117 -130 SAN MIGUEL . 99 99 110 SANTA FE . 119 119 111 SIERRA 123 133 133 130 SOCORRO 121 130 130 116 TAOS . 121 121 107 TORRANCE . 113 113 111 UNION . 115 115 101 VALENCIA . 123 123 131 C-66 ------- STATE=NV COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE CHURCHILL 117 139 139 161- CLARK 121 127 127 145 DOUGLAS . 117 117 108 ELKO 112 12S 125 87 ESMERALDA 122 139 139 97 EUREKA 120 139 139 161 HUMBOLDT . 129 129 141 LANDER 117 138 138 141 LINCOLN 119 126 126 125 LYON . 133 133 117 MINERAL 117 132 132 114 NYE 120 136 136 131 ORMSBY . 110 110 69 PERSHING 119 136 136 137 STOREY . 90 104 107 WASHOE . 113 127 107 WHITE PINE 121 138 138 141 CARSON CITY CITY . 168 168 160 C-&7 ------- STATE=NY COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ALBANY . 133 139 134 ALLEGANY . 132 138 134 BRONX . 123 129 124 BROOME . 131 137 134 CATTATAUGUS . 135 141 134 CAYUGA . 145 151 154 CHAUTAU2UA . 139 145 136 CHEMUNG . 132 138 129 CHENANGO . 134 140 134 CLINTON . 143 149 152 COLUMBIA . 138 144 129 CORTLAND . 142 148 146 DELAWARE . 130 136 134 DUTCHESS . 139 145 134 ERIE . 146 152 157 ESSEX . 109 115 86 FRANKLIN . 147 143 140 FULTON . 131 137 129 GENESEE . "153 159 157 GREENE . 114 120 116 HAMILTON . 130 130 137 HERKIMER . 146 142 130 JEFFERSON . 153 159 147 KINGS . 171 164 158 LEWIS . 162 168 176 LIVINGSTON . 132 133 122 MADISON . 136 14/2 134 MONROE . 157 163 161 MONTGOMERY . 147 143 142 NASSAU . 200 193 187 NEW YORk . 111 117 112 NIAGARA . 147 153 147 ONEIDA . 156 162 154 ONONDAGA . 137 143 1*46 ONTARIO . 145 151 157 ORANGE . 131 137 136 ORLEANS . 154 160 161 OSWEGO . 158 164 156 OTSEGO . 132 138 134 PUTNAM . 141 137 117 QUEENS . 177 170 162 RENSSELAER . 132 138 134 C-68 ------- STATE=NY COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE RICHMOND . 111 117 112 ROCKLAND . 149 155 158 ST LAWRENCE . 146 142 140 SARATOGA . 131 137 129 SCHENECTADY . 155 161 154 SCHOHARIE . 129 135 123 SCHUYLER . 130 136 136 SENECA . 148 154 157 STEUBEN . 131 137 129 SUFFOLK . 197 190 187 SULLIVAN . 131 137 134 TIOGA . 131 137 134 TOHPKINS . 130 136 134 ULSTER . l"28 134 129 WARREN . 117 113 92 WASHINGTON . 114 110 117 WAYNE . 157 163 161 WESTCHESTER . 125 131 129 WYOMING . 152 158 154 YATES . 142 148 142 C-69 ------- STATE=OH COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADAMS . 122 122 133 ALLEN 104 125 131 132 ASHLAND . 121 127 122 ASHTA3ULA . 114 114 109 ATHENS . 142 142 138 AUGLAIZE 104 121 127 127 BELMONT . 121 121 133 BROUN . 110 110 109 BUTLER . 130 130 126 CARROLL . 125 121 106 CHAMPAIGN 139 147 153 149 CLARK 140 148 154 149 CLERMONT . 108 108 109 CLINTON 117 125 131 132 COLUMBIANA . 148 148 158 COSHOCTON . 132 128 118 CRAWFORD . 122 128 127 CUYAHOGA . 116 122 122 DARKE 125 142 148 149 DEFIANCE . Ill 117 114 DELAWARE . 113 119 119 ERIE . 1.25 131 132 FAIRFIELD . 119 125 122 FAYETTE 106 123 129 129 FRANKLIN . 126 132 129 FULTON . 128 134 142 GALLIA . 123 123 126 GEAUGA . 122 122 121 GREENE 139 146 152 144 GUERNSEY . 107 107 105 HAMILTON . 120 120 106 HANCOCK 103 124 130 132 HARDIN 99 120 126 -132 HARRISON . 101 101 93 HENRY . 122 128 122 HIGHLAND . 118 118 121 HOCKING . 130 130 126 HOLMES . 132 128 118 HURON . 118 124 122 JACKSON . 143 143 150 JEFFERSON . 119 119 121 KNOX . 142 148 144 C-70 ------- STATE=OH COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE LAKE . 126 126 131 LAWRENCE . 124 124 126 LICKING . 129 135 122 LOGAN 103 120 126 127 LORAIN" . 119 125 122 LUCAS . 124 130 122 MADISON 106 123 129 129 MAHONING . 126 126 116 MARION 96 117 123 124 MEDINA . 117 123 122 MEIGS . 150 150 150 MERCER 104 121 127 127 MIAMI 136 144 150 149 MONROE . 129 129 133 MONTGOMERY . 145 151 149 MORGAN . 137 137 136 MORROW i 116 122 119 MUSKINGUM . 122 118 118 NOBLE . 115 115 121 OTTAWA 99 121 127 122 PAULDING 86 109 115 114 PERRY . 137 133 141 PICKAWAY . 134 140 129 PIKE . 132 132 118 PORTAGE . 128 134 122 PRE3LE 135 142 148 149 PUTNAM 89 111 117 114 RICHLAND . 140 ' 146 134 ROSS . 127 127 118 SANDUSKY 97 120 126 122 SCIOTO . 126 126 112 SENECA 104 125 131 132 SHELBY 104 121 127 127 STARK . 143 149 .144 SUMMIT . 123 129 129 TRUMBULL . 120 120 126 TUSCARAWAS . 129 125. 118 UNION 96 113 119 119 VAN 'JERT 100 121 127 132 VINTON . 139 139 150 WARREN . 114 114 114 WASHINGTON . 128 128 133 C-71 ------- STATE=OH COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE WAYNE . 139 145 144 WILLIAMS . 112 118 119 WOOD 89 111 117 114 WYANDOT 103 124 130 127 C-72 ------- STATE=OK COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADAIR . 113 113 105 ALFALFA . 144 144 154 ATOKA . 131 131 143 BEAVER . 141 141 152 BECKHAM . 135 135 149 BLAINE . 133 133 143 BRYAN . 113 113 123 CADDO . 135 135 145 CANADIAN . 129 129 128 CARTER . 131 131 133 CHEROKEE . 113 113 121 CHOCTAW . 128 128 158 ClilARRON . 130 130 152 CLEVELAND . 113 113 128 COAL . 120 120 104 COMANCHE . 125 125 138 COTTON . 140 140 138 CRAIG . 133 133 148 CREEK . 124 124 143 CUSTER . 118 118 113 DELAWARE . 114 114 111 DEWEY . 136 136 138 ELLIS . 160 160 176 GARFIELD . 135 135 133 GARVIN . 118 118 104 GRADY . 130 130 133 GRANT . 139 139 128 GREER . 140 140 149 HARMON . 127 127 94 HARPER . 138 138 133 HASKELL . 116 116 104 HUGHES . 126 126 135 JACKSON . 123 123 124 JEFFERSON . 132 132 128 JOHNSTON . 123 123 143 KAY . 132 132 128 KINGFISHER . 142 142 158 KIOWA . 120 120 109 LATIMER . 118 118 107 LE FLOP.E . 141 141 133 LINCOLN . 127 127 148 LOGAN . 138 138 143 C-73 ------- STATE=OK COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE LOVE . 154 154 163 MC CLAIN . 116 116 104 MC CURTAIN . 140 140 148 MC INTOSH . 136 136 138 MAJOR . 151 151 154 MARSHALL . 108 108 94 MAYES . 134 134 133 MURRAY . 124 124 138 MUSKOGEE . 128 128 128 NOBLE . 129 129 133 NOWATA . 146 146 153 OKFUSKEE . 146 146 158 OKLAHOMA . 132 132 143 OKMULGEE . 139 139 133 OSAGE . 131 131 138 OTTAWA . 117 117 103 PAWNEE . 120 120 113 PAYNE . 130 130 123 PITTSBURG . 110 110 104 PONTOTOC . 121 121 108 PO-TTAWATOMIE . 110 110 116 PUSHMATAHA . 131 131 131 ROGER MILLS . 134 134 146 ROGERS . 135 135 128 SEMINOLE . 126 126 140 SEQUOYAH . 128 128 128 STEPHENS . 133 133 143 TEXAS . 125 125 122 TILLMAN . 136 136 139 TULSA . 136 136 133 WAGONER . 137 137 133 WASHINGTON . 143 143 143 WASHITA . 135 135 1,33 WOODS . 142 142 128 WOODWARD . 145 145 153 C-74 ------- STATE=OR COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE BAKER . 99 99 54 BENTON . 134 134 139 CLACKAMAS . 126 126 114 CLATSOP . 133 133 109 COLUMBIA . 115 130 102 COOS . 91 91 76 CROOK . 98 98 69 CURRY . 89 89 81 DESCHUTES . 95 101 99 DOUGLAS . 104 104 84 GILLIAM . 111 111 91 GRANT . 89 95 82 HARNEY . 112 112 104 HOOD RIVER . 118 108 101 JACKSON . 107 107 77 JEFFERSON . 95 95 59 JOSEPHINE . 84 84 64 KLAMATH . 107 100 81 LAKE . 109 123 126 LANE . 127 127 95 LINCOLN . 122 122 109 LINN . 140 140 149 MALHEUR . 103 103 75 MARION . 129 129 140 MORROW . 113 113 91 MULTNOMAH . 135 135 149 POLK . 122 122 111 SHERMAN . 102 102 92 TILLAMOOK. . 89 128 122 UMATILLA . 111 111 67 UNION . 102 102 82 WALLOWA . 97 97 70 WASCO . 110 110 '79 WASHINGTON . 108 114 85 WHEELER . 90 99 89 YAMHILL . 116 116 122 C-75 ------- STATE=PA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADAMS . 132 129 138 ALLEGHENY . 118 112 118 ARMSTRONG . 130 124 103 BEAVER . 106 103 81 BEDFORD . 126 130 108 BERKS . 137 131 108 BLAIR . 121 118 92 BRADFORD . 156 164 166 BUCKS . 142 142 138 BUTLER . 120 116 106 CAMBRIA . 114 111 98 CAMERON . 126 130 122 CARSON . 125 122 105 CENTRE . 141 141 154 CHESTER . 119 116 102 CLARION . 127 131 122 CLEARFIELD . 132 136 128 CLINTON . 134 138 128 COLUMBIA . 147 151 14-6 CRAUFORD . 174 170 166 CUMBERLAN-D . 146 153 178 DAUPHIN . 141 138 116 DELAUARE . 134 131 122 ELK . 141 145 151 ERIE . 145 141 131 FAYETTE . 145 149 151 FOREST . 146 150 148 FRANKLIN . 142 149 190 FULTON . 114 111 100 GREENE . 136 140 138 HUNTINGDON . 120 114 95 INDIANA . 153 157 163 JEFFERSON . 139 143 1,48 JUNIATA . 128 125 124 LACKAUANNA . 162 170 171 LANCASTER . 155 152 143 LAURENCE . 129 125 118 LEBANON . 151 145 125 LEHIGH . 148 155 180 LUZERNE . 146 154 158 LYCOMIMG . 141 149 146 MC KEAN . 136 140 132 C-76 ------- STATE=PA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE MERCER . 140 136 130 MIFFLIN . 117 111 111+ MONROE . 144 152 163 MONTGOMERY . 142 142 138 MONT.OUR . 150 158 161 NORTHAMPTON . 146 146 138 NORTHUMBERLAND . 149 146 138 PERRY . 124 118 128 PHILADELPHIA . 123 120 102 PIKE . 154 162 163 POTTER . 132 140 132 SCHUYLKILL . 127 121 130 SNYDER . 134 131 130 SOMERSET . 141 149 163 SULLIVAN . 147 155 163 SUSQUEHANNA . 149 157 158 TIOGA . 136 144 143 UNION . 137 134 120 VENAHGO . 136 144 136 WARREN . 139 147 145 WASHINGTON . 138 146 143 WAYNE . 154 162 163 WESTMORELAND . 147 155 163 WYOMING . 149 157 166 YORK . 134 131 140 C-77 ------- STATE=RI COUMTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE BRISTOL . 164 166 147 KENT . 186 179 192 NEWPORT . 112 144 139 PROVIDENCE . 166 180 177 WASHINGTON . 183 176 182 C-78 ------- STATE=SC COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ABBEVILLE . 142 148 148 AIKEN . 185 188 184 ALLENDALE . 193 194 194 ANDERSON . 142 148 148 3AMBERG . 198 194 189 3ARNWELL . 192 195 196 BEAUFORT . 152 163 149 BERKELEY . 186 182 186 CALHOUN . 192 188 201 CHARLESTON . 157 165 149 CHEROKEE . 120 126 124 CHESTER . 138 144 136 CHESTERFIELD . 173 176 188 CLARENDON . 197 193 189 COLLETON . 186 132 186 DARLINGTON . 194 190 189 DILLON . 195 191 189 DORCHESTER . 186 182 186 EDGEFIELD . 128 134 124 FAIRFIELD . 140 146 148 FLORENCE . 196 192 189 GEORGETOWN . 183 179 186 GREENVILLE . 147 153 148 GREENWOOD . 135 141 144 HAMPTON . 203 203 213 HORRY . 207 203 198 JASPER . 185 181 181 KERSHAW . 178 181 199 LANCASTER . 136 142 134 LAURENS . 142 148 148 LEE . 196 192 189 LEXINGTON . 167 170 176 MC CORMICK . 131 137 144 MARION . 195 191 189 MARLBORO . 194 190 189 NEWBERRY . 141 147 148 OCONEE . 141 147 130 OP.ANGEBURG . 196 192 189 PICKENS . 134 140 136 RICHLAND . 169 172 188 SALUDA . 105 111 106 SPARTANBURG . 141 147 148 C-79 ------- STATE=SC COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE SUHTER . 197 193 189 UNION . 129 135 132 WILLIAMSBURG . 196 192 19t YORK . 131 137 132 C-80 ------- STATE=SD COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE AURORA . 96 96 90 BEADLE . 118 118 124 BENNETT . 116 116 109 BON HOHUE . 96 96 90 BROOKINGS . 134 134 175 BROUN . 115 115 114 3RULE . 82 82 85 BUFFALO . 97 97 97 BUTTE . 98 98 91 CAMPBELL . 130 130 156 CHARLES MIX . 95 95 82 CLARK . 99 99 101 CLAY . 118 118 142 CODINGTON . 110 110 94 CORSON . 102 102 93 CUSTER . 108 108 112 DAVISON . 114 114 110 DAY . 105 105 106 DEUEL . 103 103 101 DEUEY . 99 99 91 DOUGLAS . 96 96 82 EDMUNDS . 96 96 90 FALL RIVER . 104 104 93 FAULK . 92 92 90 GRANT . 101 101 77 GREGORY . 105 105 91 HAAKON . 93 93 91 HAMLIN . 112 112 104 HAND . 112 112 134 HANSON . 97 97 88 HARDING . 109 109 111 HUGHES . 90 90 .87 HUTCHINSON . 98 98 .90 HYDE . 105 105 90 JACKSON . 107 107 91 JERAULD . 101 101 87 JONES . 97 97 91 KINGSBURY . 92 92 90 LAKE . 99 99 87 LAURENCE . 115 115 114 LINCOLN . 98 98 104 LYMAN . 96 96 91 C-81 ------- STATE=SD COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE MC COOK . 90 90 88 MC PHERSON . 106 106 90 MARSHALL . 105 105 101 MEADE . 101 101 91 MELLETTE . 99 99 91 MINER . 117 117 134 MINNEHAHA . 99 99 75 MOODY . 100 100 77 PENNINGTON . 107 107 100 PERKINS . 103 103 101 POTTER . 92 92 82 ROBERTS . 98 98 94 SAMBORN . 120 120 124 SHANNON . 122 122 126 SPINK . 93 93 80 STANLEY . 99 99 91 SULLY . 92 92 85 TODD . 114 114 126 TRIPP . 104 104 91 TURNER . 100 100 80 UNION . 117 117 139 UALWORTH . 100 10.0 97 UASHABAUGH . 106 106 94 YANKTON . 123 123 152 ZIEBACH . 95 95 91 C-82 ------- STATE=TN COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ANDERSON . 145 139 138 BEDFORD 173 185 189 199 BENTON 132 142 141 148 BLEDSOE 140 148 145 150 BLOUNT . 144 138 128 BRADLEY . 133 127 132 CAMPBELL 134 143 140 148 CANNON 146 158 162 186 CARROLL 141 149 148 149 CARTER . 141 135 131 CHEATHAM 121 133 139 126 CHESTER 140 148 147 156 CLAI30RNE . 133 127 114 CLAY 125 137 143 131 COCKE . 121 118 106 COFFEE 129 141 147 141 CROCKETT 142 150 149 149 CUMBERLAND 137 149 146 142 DAVIDSON . 179 183 207 DECATUR 128 139 138 133 DE KALB 144 154 158 182 DICKSON 110 122 128 126 DYER . 145 144 141 FAYETTE 141 149 148 149 FEXTRESS 131 141 141 148 FRANKLIN 122 134 140 141 GIBSON 140 148 147 149 GILES 154 166 170 186 GRAINGER . 129 123 125 GREENE . 131 128 132 GRUNDY -137 149 146 140 HAMBLEN . 137 137 140 HAMILTON . 135 129 T32 HANCOCK . 127 121 119 HARDEMAN 136 144 143 134 HARDIN 136 147 146 138 HAWKINS . 139 133 127 HAYWOOD 142 150 149 149 HENDERSON 140 148 147 146 HENRY 140 148 147 146 HICKMAN 122 134 140 120 HOUSTON 111 123 129 126 C-83 ------- STATE=TN COUNTY HUMPHREYS JACKSON JEFFERSON JOHNSON KNOX LAKE LAUDERDALE LAURENCE LEWIS LINCOLN LOUDON MC MINN MC HAIRY MACON MADISON MARION MARSHALL MAURY MEIGS MONROE MONTGOMERY MOORE MORGAN OBION OVERTON PERRY PICKET7 POLK PUTNAM RHEA ROANE ROBERTSON RUTHERFORD SCOTT SESUATCHIE SEVIER SHELBY SMITH STEWART SULLIVAN SUMNER TIPTON ADJUSTED VARSCORE 120 145 121 1 17 149 1 15 138 139 178 165 19 63 37 31 21 19 129 1 19 183 136 135 1 16 148 VARSCORE 132 157 135 132 141 147 147 129 129 161 131 130 152 127 146 151 190 177 145 143 131 175 149 148 143 133 131 148 141 152 140 131 195 148 147 122 151 190 128 131 160 148 WEIGHTED 138 161 135 129 135 143 146 135 135 165 125 124 151 133 145 143 194 181 139 140 137 179 146 147 143 139 137 145 141 146 134 137 199 145 ' 144 1 19 150 194 134 125 166 147 TOTAL SCORE 126 186 128 126 140 145 149 144 130 176 132 130 146 126 149 146 187 192 137 134 141 136 142 149 152 130 138 140 120 140 133 138 202 146 142 112 153 186 126 120 138 149 C-84 ------- STATE=TN COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE TROUSDALE 183 195 199 20.4 UNICOI . 132 129 126 UNION . 130 121 120 VAN '3UREN 139 151 148 154 WARREN 119. 131 137 120 WASHINGTON . 150 144 145 WAYNE 119 131 137 136 WEAKLEY 137 145 144 146 WHITE 122 134 140 138 WILLIAMSON 151 163 167 192 WILSON 181 193 197 199 C-85 ------- STATE=TX COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ANDERSON 126 120 120 118 ANDREWS . 153 153 159 ANGELINA 132 124 121 123 ARANSAS 129 128 128 113 ARCHER . 112 112 108 ARMSTRONG . 130 110 98 ATASCOSA 125 115 115 113 AUSTIN 131 131 131 103 BAILEY . 133 133 150 BANDERA . 100 100 95 BASTROP 128 126 126 113 BAYLOR . 158 158 161 3ES 119 110 110 108 3ELL . 133 133 113 3EXAR 131 130 130 138 BLANCO . 123 123 98 30RDEN . 135 135 132 30S2UE . 118 118 123 BOWIE 158 154 134 115 BRAZORIA 119 111 111 93 BRAZOS 132 130 130 103 BREWSTER . 96 96 71 BRISCOE . 128 108 96 BROOKS 151 155 155 164 BROUN . 111 111 113 3URLESON 111 139 139 115 3URNET . 115 115 103 CALDWELL 126 123 123 113 CALHOUN 125 114 114 103 CALLAHAN . 131 131 133 CAMERON 130 1-2 8 128 129 CAMP 153 148 128 108 CARSON . 117 117 1.28 CASS 121 118 118 108 CASTRO . 120 120 124 CHAMBERS 132 131 131 110 CHEROKEE 134 130 130 148 CHILDRESS . 114 114 123 CLAY . 100 100 89 COCHRAN . 139 139 141 COKE . 114 114 103 COLEMAN . 122 122 110 C-86 ------- STATE=TX COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE COLLIN . 112 112 108 COLLINGSUORTH . 108 108 133 COLORADO 139 137 137 108 COMAL . 132 132 113 COMANCHE . 113 113 103 CONCHO . 120 120 98 COOKE . 133 113 103 CORYELL . 118 118 128 COTTLE . 143 137 118 CRANE . 123 123 113 CROCKETT . 110 110 108 CROSBY . 119 119 126 CULBERSON . 103 103 93 DALLAM . 35 105 93 DALLAS . 113 113 103 DAMSON . 150 150 171 DEAF SMITH . 121 121 124 DELTA . 116 116 108 DENTON . 119 119 118 DE MITT 134 133 133 115 DICKENS . 105 105 121 DIMMIT 117 111 111 103 DONLEY . 130 120 111 DUVAL 117 1.11 111 102 EASTLAND . 138 138 133 ECTOR . 126 126 119 EDWARDS . 112 112 103 ELLIS . 129 129 108 EL PASO . 135 135 137 ERATH . 116 116 109 FALLS 125 12.3 123 118 FANNIN . 118 118 103 FAYETTE 131 129 129 -113 FISHER . 132 132 134 FLOYD . 119 119 113 FOARD . 133 127 128 FORT 3EN.D 124 114 114 103 FRANKLIN . 133 108 98 FREESTONE 138 132 132 136 FRIO 133 136 136 116 GAINES . 140 140 151 GALVESTON 128 122 122 107 C-87 ------- STATE=TX COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE GARZA . 135 135 143 GILLSSPIE . 115 115 105 GLASSCOCK . 117 117 130 GOLIAD 120 112 112 108 GONZALES 129 125 125 113 GRAY . 123 123 119 GRAYSON . 1<48 128 108 GREGG 131 130 130 136 GRIMES 127 122 122 108 GUADALUPE 126 122 122 108 HALE . 114 114 114 HALL . 112 112 108 HAMILTON . 127 127 136 HANSFORD . 98 108 95 HARDEMAN . 110 110 123 HARDIN 122 116 116 110 HARRIS . 121 111 111 91 HARRISON 134 134 134 145 HARTLEY . 90 105 98 HASKELL . 160 160 160 HAYS . 132 132 110 HEMPHILL . 132 132 129 HENDERSON 137 138 138 141 HIDALGO 135 130 130 120 HILL . 128 . .128 124 HOCKLEY . 127 127 136 HOOD . 131 131 138 HOPKINS . 125 115 101 HOUSTON 129 127 127 121 HOWARD . 135 125 115 HUDSPETH . 105 105 105 HUNT . 122 122 108 HUTCHINSON . 143 123 fl6 IRION . 126 126 10.8 JACK . 119 119 118 JACKSON 118 109 109 101 JASPER 124 118 118 110 JEFF DAVIS . 91 91 65 JEFFERSON 132 131 131 110 JIM HOGG 135 134 134 150 JIM WELLS 120 112 112 110 JOHNSON . 126 126 108 C-88 ------- STATE=TX COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE JONES . 146 m6 160 KARNES 117 115 115 115 KAUFMAN . 125 125 118 KENDALL . 125 125 110 KENEDY 144 148 148 159 KENT . 133 133 163 KERR . 122 122 100 KIMBLE . 107 107 98 KING . 127 121 108 KINNEY . 125 125 108 KLZBERG 125 116 116 91 KNOX . 166 166 168 LAMAR . 125 125 108 LAMB . 125 125 129 LAMPASAS . 120 120 113 LA SALLE 129 124 124 103 LAVACA 128 125 125 108 LEE 124 119 119 113 LEON 134 133 133 143 LIBERTY 133 127 127 93 LIMESTONE 131 128 128 126 LIPSCOMB . 89 109 98 LIVE OAK 128 121 121 98 LLANO . 101 101 86 LOVING . 124 124 115 LUBBOCK . 128 128 132 LYNN . 145 145 164 MC CULLOCH . 101 101 81 MC LENNAN . 136 136 137 MC MULLEN 114 112 112 98 MADISON 120 112 112 108 MARION 116 109 109 108 MARTIN . 122 122 '125 MASON . 100 100 73 MATAGORDA 132 125 125 101 MAVERICK 133 130 130 123 MEDINA 131 132 132 115 MENARD . 115 115 98 MIDLAND . 128 128 132 MILAM 139 139 139 115 MILLS . 117 117 113 MITCHELL . 122 122 124 C-89 ------- STATE=TX COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE MOKTAGUE . 126 126 133 MONTGOMERY 119 116 116 110 MOORE . 128 128 1 1V MORRIS 158 143 123 101 MOTLEY . 105 105 100 NACOGDOCHES 135 130 130 143 NAVARRO 125 124 121 133 NEUTON 124 118 118 110 NOLAN . 132 132 139 NUECES 127 118 118 93 OCHILTREE . 88 108 96 OLDHAM . 113 113 131 ORANGE 121 116 116 105 PALO PINTO . 117 117 108 PANOLA 155 156 156 164 PARKER . 115 115 108 PARKER . 118 118 124 PECOS . 107 107 93 POLK 139 139 139 133 POTTER . 123 123 112 PRESIDIO . 102 102 78 RAINS . 116 116 113 RANDALL . 113 113 129 REAGAN . 113 113 108 REAL . 114 114 108 RED RIVER . 133 133 123 REEVES . 133 133 149 REFUGIO 130 122 122 101 ROBERTS . 124 94 69 ROBERTSON 141 140 140 135 ROCKUALL . 130 130 118 RUNNELS . 116 116 110 RUSK 134 133 133 123 SABINE 144 144 144 141 SAN AUGUSTINE 140 140 140 121 SAN JACINTO 121 112 112 115 SAN PATRICIO 126 118 118 88 SAN SABA . 115 115 109 SCHLEICHER . 108 108 98 SCURRY . 122 122 121 SHACKELFORD . 115 115 103 SHELBY 145 143 143 156 C-90 ------- STATE=TX COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE SHERMAN . 81 101 100 SMITH 121 119 119 113 SOMERVELL . 132 132 125 STARR 125 120 120 98 STEPHENS . 108 -108 98 STERLING . 120 120 108 STONEWALL . 117 117 102 SUTTON . 109 109 103 SWISHER . 121 121 129 TARRANT . 119 119 113 TAYLOR . 139 139 130 TERRELL . 101 101 105 TERRY . 136 136 142 THROCKMORTON . 135 135 128 TITUS 138 '126 106 96 TOM GREEN . 127 127 119 TRAVIS . 123 123 110 TRINITY 119 115 115 121 TYLER 141 137 137 167 UPSHUR 122 Tl7 117 120 UPTON . 114 114 114 UVALDE . 122 122 113 VAL VERDE . 118 118 103 VAN ZANDT 124 122 122 118 VICTORIA 134 131 131 113 WALKER 123 115 115 108 WALLER 120 110 110 98 WARD . 129 129 134 WASHINGTON 126 124 124 108 WEBB 123 119 119 103 WHARTON 130 130 130 103 WHEELER . 149 149 141 WICHITA ' . 150 150 139 WILBARGER . 152 152 145 WILLACY 122 113 113 98 WILLIAMSON . 140 140 124 WILSON 131 126 126 113 WINKLER . 113 113 113 WISE . 123 123 118 WOOD 122 120 120 123 YOAKUM . 131 131 134 YOUNG . 106 106 103 C-91 ------- STATE=TX COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ZAPATA 136 133 133 110 ZAVALA 130 126 126 113 C-92 ------- STATE=UT COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE BEAVER 94 104 104 78 BOX ELDER 92 102 102 101 CACHE . 107 107 87 CARBON . 98 98 57 DAGGETT . 93 93 92 DAVIS . 135 135 157 DUCHESNE . 102 102 86 EMERY . 107 107 86 GARFIELD . 103 103 106 GRAND . 96 96 82 IRON 107 117 117 109 JUAB 92 102 102 74 KANE . 101 101 106 MILLARD 100 110 110 84 MORGAN . 93 93 86 PIUTE 84 94 94 64 RICH . 107 107 98 SALT LAKE . 134 134 157 SAN JUAN . 114 114 106 SANPETE . 107 107 87 SEVIER . 98 98 59 SUMMIT . 95 95 86 TOOELE 101 111 111 105 UINTAH . 89 89 71 UTAH . 125 125 102 UASATCH . 101 101 86 WASHINGTON 94 104 104 89 WAYNE . 106 106 86 WEBER . 123 123 90 C-93 ------- STATE=VA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ACCOMACK . 185 185 189 AL3EMARLE 147 127 124 125 ALLEGHANY 133 113 111 100 AMELIA 133 125 131 131 AMHERST 130 110 116 107 APPOMATTOX 132 124 130 131 ARLINGTOK . 131 137 126 AUGUSTA 154 134 134 134 BATH 126 106 108 100 BEDFORD 132 124 130 131 BLAND 144 124 122 100 BOTETOURT 149 129 129 128 BRUNSWICK 132 124 130 131 BUCHANAN . 130 127 125 BUCKINGHAM 131 123 129 131 CAMPBELL 130 122 128 131 CAROLINE . 164 167 176 CARROLL 1.46 126 123 125 CHARLES CITY . 175 178 179 CHARLOTTE 132 124 130 131 CHESTERFIELD 149 141 135 131 CLARKE 178 170 170 179 CRAIG 135 115 113 100 CULPEPER 128 120 126 131 CUMBERLAND . 124 130 131 DICKZNSON . 130 127 125 DINWIDDIE 143 138-' 144 131 ESSEX . 167 170 168 FAIRFAX 137 129 135 131 FAU2UIER 131 123 129 131 FLOYD 148 128 125 125 FLUVANNA 134 126 132 131 FRANKLIN 129 109 115 107 FREDERICK 144 124 122 106 GILES 148 128 126 106 GLOUCESTER . 181 184 184 GOOCHLAND . 126 132 131 GRAYSON 147 127 124 125 GREENE 152 144 141 137 GREENSVILLE . 157 160 179 HALIFAX 128 120 126 131 HANOVER 157 152 155 168 C-94 ------- STATE=VA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE HENRICO . 161 164 171 HENRY 126 118 124 119 HIGHLAND 137 117 115 100 ISLE OF WIGHT . 179 182 184 JAMES CITY . 172 175 176- KING AND 2UEEN . 175 178 184 KING GEORGE . 174 177 181 KING UILLIAM . 173 176 179 LANCASTER . 181 184 184 LEE 146 138 136 112 LOUDOUN 141 133 139 141 LOUISA 133 125 131 131 LUNENBERG 133 125 131 131 MADISON 138 130 136 119 MATHEUS . 189 189 189 MECKLENBURG 130 122 128 131 MIDDLESEX . 180 183 184 MONTGOMERY 146 126 126 128 NELSON 144 124 121 125 NEW KENT . 186 186 186 NORTHAMPTON . 187 187 189 NORTHUMBERLAND . 180 183 181 NOTTOUAY 133 125 131 131 ORANGE 131 123 129 131 PAGE 163 155 155 158 PATRICK 133 125 131 119 PITTSYLVANIA 127 119 125 131 POWHATAN 135 127 133 131 PRINCE EDWARD 132 124 130 131 PRINCE GEORGE . 174 177 179 PRINCE WILLIAM 130 111 111 108 PULASKI 145 125 125 134 RAPPAHANNOCK 137 129 135 131 RICHMOND 177 176 179 181 ROANOKE 146 126 123 119 ROCKBRIDGE 163 143 143 152 ROCKINGHAM 154 134 134 128 RUSSELL 152 132 129 112 SCOTT 140 120 118 95 SHENANDOAH 149 129 127 106 SMYTH 141 121 119 95 SOUTHAMPTON 173 176 179 C-95 ------- STATE=VA COUNTY SPOTSYLVANIA STAFFORD SURRY SUSSEX TAZEUELL UARREX WASHINGTON WESTMORELAND WISE WYTHE YORK ALEXANDRIA CITY BEDFORD CITY BRISTOL CITY BUSNA VISTA CITY CHARLOTTESVILLS CITY CHESAPEAKE CITY CLIFTON FORGE CITY COLONIAL HEIGHTS GIT COVINGTON CITY DANVILLE CITY EMPORIA CITY FAIRFAX CITY FALLS CHURCH CITY FF.ANXLIN CITY FREDERICKS3URG CITY GALAX CITY HAMPTON CITY HARRISON3URG CITY HOPEWELL CITY LEXINGTON CITY LYNCHBURG CITY MANASSAS MANASSAS PARK MARTINSVILLE CITY NEWPORT NEWS CITY NORFOLK CITY NORTON CITY PETERSBURG CITY P02UDSON PORTSMOUTH CITY RADFORD CITY ADJUSTED VARSCORE 136 147 163 145 146 VARSCORE 128 137 177 170 127 155 125 176 130 126 183 148 1 10 163 161 1 1 1 130 106 137 123 1 10 162 108 108 167 137 139 178 162 162 163 107 106 106 1 10 171 175 130 161 175 175 162 WEIGHTED 134 143 180 173 124 152 125 179 127 126 186 151 1 16 163 161 1 17 180 104 140 121 1 16 165 1 14 1 14 170 140 136 173 162 165 163 1 13 106 106 1 16 174 175 128 164 175 175 162 TOTAL SCORE 131 136 179 179 112 137 128 184 125 134 184 156 122 167 167 122 189 106 159 121 122 171 1 19 1 19. 176 156 140 181 167 171 167 1 19 tl 1 1 1 1 122 176 181 133 171 181 181 167 C-96 ------- STATE=VA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE RICHMOND CITY . 121 127 122 ROANOKE CITY . 151 148 140 SALEM CITY . 138 135 110 SOUTH BOSTON CITY . 105 111 117 STAUNTON CITY . 161 161 167 SUFFOLK CITY . 180 180 189 VIRGINIA BEACH CITY . 177 177 189 MAYNES30RO CITY . 162 162 167 UILLIAMSBURG CITY . 167 170 176 WINCHESTER CITY . 162 162 167 C-97 ------- STATE=VT COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADDISON . 111 1<43 147 BENNINGTON . 137 139 122 CALEDONIA . 119 151 144 CHITTENDEN . 152 154 144 ESSEX . 154 156 144 FRANKLIN . 150 152 144 GRAND ISLE . 152 154 149 LAMOILLE . 149 151 144 ORANGE . 134 136 132 ORLEANS . 135 137 122 RUTLAND . 131 133 116 WASHINGTON . 146 148 144 WINDHAM . 147 149 144 WINDSOR . 133 135 126 C-98 ------- STATE=WA COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADAnS . 142 142 147 ASOTIN . 87 108 97 BENTON . 141 141 134 CHELAN . 92 92 71 CLALLAM . 109 109 116 CLARK . 133 133 175 COLUMBIA . 90 111 117 COULITZ . 93 93 83 DOUGLAS . 143 143 148 FERRY . 99 99 81 FRANKLIN . 135 135 132 GARFIELD . 81 102 97 GRANT . 141 141 138 GRAYS HARBOR . 109 109 116 ISLAND . 127 127 132 JEFFERSON . 109 109 92 KIHG . 112 112 130 KITSAP . 151 151 166 KITTITAS . 100 121 107 KLICKITAT . 104 125 123 LE'-JIS . 109 109 73 LINCOLN . 112 121 99 MASON . 114 114 132 OKANOGAN . 101 101 83 PACIFIC . 111 111 107 PEND OREILLE . 111 111 134 PIERCE . 139 139 154 SAN JUAN . 1 1'4 114 123 SKAGIT . 93 93 73 SKAMANIA . 87 87 77 SNOHOMISH . 102 102 82 SPOKANE . 139 139 133 STEVENS . 101 101 '88 THURSTON . 141 141 166 WAHKIAKUH . 110 110 114 WALLA WALLA . 124 124 138 MHATCOM . 92 92 88 WHITMAN . 123 123 138 YAKIMA . 120 120 117 C-99 ------- STATE=UI COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ADAMS . 179 183 187 ASHLAND '. 153 149 151 3ARROX . 157 153 141 BAYFISLD . mi 141 129 BROUN . 132 132 124 BUFFALO . 9O 86 76 BURNETT . 183 191 204 CALUMET . 130 130 124 CHIPPEWA . 154 150 151 CLARK . 129 125 129 COLUMBIA . 131 127 124 CRAWFORD . 36 82 76 DAKS . 113 109 114 DODGE . 139 -135 136 DOOR . 120 123 123 DOUGLAS . 160 156 141 DUNN . 110 106 106 EAU CLAIRE . 116 112 111 FLORENCE . 152 160 159 FOND DU LAC . 123 119 114 FOREST . 150 158 159 GRANT . 82 78 76 GREEN . 87 83 76 GREEN LAKE . 137 133 136 IOUA . 82 78 76 IRON . 159 167 179 JACKSON . 96 92 91 JEFFERSON . 139 135 136 JUNEAU . 162 162 184 KENOSHA . 134 130 129 KEUAUNEE . 136 132 124 LA CROSSE . 39 35 76 LAFAYETTE . 83 79 76 LANGLADE . 158 166 179 LINCOLN . 162 170 174 MANITOWOC . 132 128 124 MARATHON . 161 161 161 MARINETTE . 157 165 179 MAR2UETTE - . 159 163 179 MENOMINEE . 163 171 179 MILWAUKEE . 123 119 114 MONROE . 104 100 86 C-99A ------- STATE=WI COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE OCONTO . 159 155 151 ONEIDA . 184 192 202 OUTAGAMIE . 139 139 129 OZAUKEE . 109 105 106 PEPIN . 111 107 108 PIERCE . 99 95 96 POLK . 156 164 159 PORTAGE . 168 172 179 PRICE . 155 151 146 RACINE . 145 141 136 RICHLAND . 81 77 76 ROCK . 141 137 136 RUSK . 154 150 141 ST CROIX . 114 122 127 SAUK . 89 85 76 SAUYER . 158 154 151 SHAUANO . 150 158 179 SHE30YGAN . 133 129 124 TAYLOR . 162 158 146 TREMPEALZAU . 92 88 88 VEP.XON . 80 76 76 VILAS . 179 187 187 UALUORTH . 122 126 126 UASHBURN . 169 177 179 WASHINGTON . 125 121 126 UAUKESHA . 129 137 154 WAUPACA . 149 157 179 UAUSHARA . 160 164 179 UIXNE3AGO . 135 135 129 MOOD . 158 158 166 C-100 ------- STATE=WV COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE 3ARBOUR . 119 115 106 BERKELEY . 150 140 112 BOONE . 92 88 80 BRAXTON . 108 104 92 BROOKE . 88 84 80 CABELL . 96 92 80 CALHOUN . 101 97 92 CLAY . 112 108 105 DODDRIDGE . 100 96 92 FAYETTE . 117 113 106 GILMER . 102 98 92 GRANT . 126 116 100 GREENBRIER . 158 162 168 HAMPSHIRE . 128 118 108 HANCOCK . 110 106 98 HARDY . 133 123 117 HARRISON . -113 109 106 JACKSON . 95 91 77 JEFFERSON . 153 147 147 KANAUHA . 120 116 105 LEWIS . 113 109 106 LINCOLN . 103 99 85 LOGAH . 89 85 74 MC DOWELL . 93 89 85 MARION . 114 110 100 MARSHALL . 92 88 80 MASON . 107 103 98 MERGER . 117 113 106 MINERAL . 130 120 117 MINGO . 88 84 80 MONONGALIA . 119 115 120 MONROE . 169 173 193 MORGAN . 134 124 ,V1 3 NICHOLAS . 119 115 .106 OHIO . 115 111 92 PENDLETON . 135 125 107 PLEASANTS . 119 115 98 POCAHONTAS . 143 147 162 PRESTON . 139 129 108 PUTNAM . 106 102 92 RALEIGH . 119 115 105 RANDOLPH . 145 135 102 C-101 ------- STATE=WV COUNTY ADJUSTED VARSCORE . WEIGHTED TOTAL VARSCORE SCORE RITCHIE . 122 118 106 ROANE . 101 97 92 SUMMERS . 107 103 91 TAYLOR . 119 115 108 TUCKER . 141 131 102 TYLER' . 96 92 80 UPSHUR . 120 116 106 WAYNE . 98 94 85 WEBSTER . 106 102 92 WETZEL . 101 97 80 WIRT . 110 106 92 WOOD . 108 104 97 WYOMING . 98 94 85 C-102' ------- STATE=WY COUNTY ADJUSTED VARSCORE WEIGHTED TOTAL VARSCORE SCORE ALBANY . 99 99 96 BIG HORN . 103 103 81 CAMPBELL . 99 99 38 CARSON . 113 118 130 CONVERSE . 108 108 93 CROOK . 103 103 83 FREMONT . 111 111 81 GOSHEN . 117 117 111 HOT SPRINGS . 109 109 81 JOHNSON . 101 101 83 LAP.AMIE . 112 112 101 LINCOLN . 110 110 91 NATP.ONA . 100 100 105 NIOBRAP.A . 105 105 93 PARK . 124 124 107 PLAITS . 117 117 117 SHERIDAN . 95 95 76 SUBLETTE . 104 104 96 SUEETWATER . 110 110 110 TETON . 120 120 107 UINTA . 113 113 98 WASHAKIE . 100 100 105 WESTON . 98 98 93 C-103 ------- APPENDIX-D LISTING OF ADJUSTED VARSCORES IN ASCENDING ORDER ------- EXPLANATION Numerical scores calculated from the data set are differentiated as follows: TOTAL SCORE - An unweighted score corresponding to the summation of the highest percentage ratings for the seven DRASTIC factors. (Refer to Section 3 in Appendix A). WEIGHTED SCORE - A weighted score corresponding to the summation of all percentage ratings for the seven DRASTIC factors. The weighted score accounts for the variability that occurs in areas as large as counties. In counties with little variability, little difference exists between the total score and weighted score. VARSCORE - Represents the weighted score including (+ or -) the index of variability, where used. The index of variability and its intended usage, is defined in Section 3.6 of Appendix A. The VARSCORE, or the adjusted VARSCORE further defined in Section 3.7 is considered to be the most appropriate score for the purposes of this project in that it best accounts for .intracounty variability. The values shown in this listing to Appendix D include adjusted VARSCORES, when adjusted, or originally coded VARSCORES if no adjust- ments were needed. D-l ------- OBS STATE COUNTY VARSCORE 1 MO AUDRAIN 69 2 AK OUTER KETCHIKAN 70 3 AK ANGOON 71 1 AK ALEUTIAN ISLANDS 75 5 ID LATAH 77 6 IL KNOX 77 7 AK HAINES 78 8 AK SKAGUAY-YAKUTAT 78 9 MO MADISON 78 10 IL STARK 79 11 IL HENRY 80 12 IL MC DONOUGH 80 13 MO BARRY 80 11 MO IRON 80 15 WI VERNON 80 16 AK KETCHIKAN 81 17 ID NEZ PERCE 81 18 TX SHERnAN 81 19 WA GARFIELD 81 20 UI RICHLAND 81 21 IL HACOUPIN 82 22 SD BRULE 82 23 UI GRANT 82 21 UI IOUA 82 25 UI LAFAYETTE 83 26 ID SHOSHONE 81 27 IL UARREN 84 28 OR JOSEPHINE 81 29 UT PIUTE 81 30 AK UPPER YUKON 85 31 IL BOND 85 32 IL LA SALLE 85 33 IL nONTGOMERY 85 31 MO RALLS 85 35 TX DALLAtt 85 36 AK BARROU 86 37 AR BOONE 86 38 ID BOISE 86 39 IL CLAY 86 10 IL CUnBERLAND 86 11 IL EFFINGHAn 86 42 IL ttARION 86 13 IL PERRY 86 11 IL SANGAnON 86 15 KA REPUBLIC 86 16 OH PAULDING 86 17 UI CRAUFORD 86 18 AK KOBUK 87 19 AK SEUARD 87 50 AR UASHINGTON 87 51 ID OUYHEE 87 52 ID TUIN FALLS 87 53 IL CHRISTIAN 87 51 IL RICHLAND 87 D-2 ------- OBS STATE COUNTY VARSCORE 55 IL SHELBY 87 56 IL WAYNE 87 57 IN OHIO 87 58 MO CARTER 87 59 MO MONTGOMERY 87 60 MO TANEY 87 61 UA ASOTIN 87 62 UA SKAMANIA 87 63 MI GREEN 87 64 CA AMADOR 88 65 IL JASPER 88 66 IL JEFFERSON 88 67 MO PIKE 88 68 TX OCHILTREE 88 69 MV BROOKE 88 70 MV MINGO 88 71 AZ GILA 89 72 AR CARROLL 89 73 CA ALPINE 89 71 ID BENEMAH 89 75 ID BOUNDARY 89 76 ID IDAHO 89 77 IN SWITZERLAND 89 78 MO CALLAUAY 89 79 MO FRANKLIN 89 80 MO GASCONADE 89 81 MO MARIES 89 82 OH PUTNAM 89 83 OH MOOD 89 81 OR CURRY 89 85 OR GRANT 89 86 OR TILLAMOOK 89 87 TX LIPSCOMB 89 88 UT UINTAH 89 89 MV LOGAN 89 90 MI LA CROSSE 89 91 MI SAUK 89 92 AR NEWTON 90 93 IL FRANKLIN 90 91 KA JEMELL 90 95 MO CASS 90 96 MO PETTIS 90 97 NV STOREY 90 98 OR MHEELER 90 99 SD HUGHES 90 100 SD MC COOK 90 101 TX HARTLEY 90 102 MA COLUMBIA 90 103 MI BUFFALO 90 104 AZ PIMA 91 105 IL OGLE 91 106 IL STEPHENSON 91 107 MS OKTIBBEHA 91 108 MO CLARK 91 D-3 ------- OBS STATE COUNTY VARSCORE 109 MO LAFAYETTE 91 110 MO LEWIS 91 111 OR COOS 91 112 TX JEFF DAVIS 91 113 AZ SANTA CRUZ 92 114 CA SIERRA 92 115 CA TRINITY 92 116 KA ATCHISON 92 117 HO DADE 92 118 no JOHNSON 92 119 no nONITEAU 92 120 no OSAGE 92 121 HO SHANNON 92 122 HO STONE 92 123 SD FAULK 92 124 SD KINGSBURY 92 125 SD POTTER 92 126 SD SULLY 92 127 UT BOX ELDER 92 128 UT JUAB 92 129 MA CHELAN 92 130 UA WHATCOn 92 131 MV BOONE 92 132 UV HARSHALL 92 133 WI TREHPEALEAU 92 134 AK JUNEAU 93 135 AK SITKA 93 136 AZ COCHISE 93 137 ID CUSTER 93 138 ID V-ALLEY 93 139 HO LACLEDE 93 140 HO HARION 93 141 HO OZARK 93 142 HO ST CLAIR 93 143 HO WARREN 93 144 SD HAAKON 93 145 SD SPINK 93 146 UT DAGGETT 93 147 UT HORGAN 93 148 WA COWLITZ 93 149 WA SKAGIT 93 150 WV HC DOWELL 93 151 AK WRANGELL-PETERSBURG 94 152 AZ APACHE 94 153 AR BAXTER 94 154 AR POPE 94 155 CA TUOLUHNE 94 156 IL EDGAR 94 157 HO HOWARD 94 158 HO JEFFERSON 94 159 UT BEAVER 94 160 UT WASHINGTON 94 161 AK PRINCE OF WALES 95 162 AZ GRAHAH 95 D-4 ------- OBS STATE COUNTY VARSCORE 163 CA EL DORADO 95 164 MO ATCHISON 95 165 MO CAMDEN 95 166 MO CEDAR 95 167 MO COLE 95 168 MO LAMREKCE 95 169 MO OREGON 95 170 MO REYNOLDS 95 171 MO VERNON 95 172 OR DESCHUTES 95 173 OR JEFFERSON 95 174 SD CHARLES MIX 95 175 SD ZIEBACH 95 176 UT SUMMIT 95 177 MV JACKSON 95 178 UY SHERIDAN 95 179 AZ NAVAJO 96 180 AZ YAVAPAI 96 181 AR MADISON 96 182 CO CLEAR CREEK 96 183 ID ELMORE 96 184 IL FULTON 96 185 MO MONROE 96 186 MO RAY 96 187 OH MARION 96 188 OH UNION 96 189 SD AURORA 96 190 SD BON HOMME 96 191 SD DOUGLAS 96 192 SD EDMUNDS 96 193 SD LYMAN 96 194 TX BREMSTER 96 195 UT GRAND 96 196 MV CABELL 96 197 MV TYLER 96 198 MI JACKSON 96 199 AK KENAI-COOK INLET 97 200 AZ YUMA 97 201 AR BENTON 97 202 AR VAN BUREN 97 203 CA CALAVERAS 97 204 CA MARIPOSA 97 205 CA PLACER 97 206 CA SAN DIEGO 97 207 IL PEORIA 97 208 IA MRIGHT 97 209 KA JOHNSON 97 210 MI GOGEBIC 97 211 MS CALHOUN 97 212 MO CARROLL 97 213 MO CHARITON 97 214 MO KNOX 97 215 OH SANDUSKY 97 21.6 OR UALLOMA 97 D-5 ------- OBS STATE COUNTY VARSCORE 217 SD BUFFALO 97 218 SD HANSON 97 219 SD JONES 97 220 AR CLEBURNE 98 221 CO MONTEZUMA 98 222 ID CLEARUATER 98 223 ID LEWIS 98 224 IL RANDOLPH 98 225 IA HUMBOLDT 98 226 MN ROCK 98 227 MO BATES 98 228 HO CRAWFORD 98 229 MO SHELBY 98 230 OR CROOK 98 231 SD BUTTE 98 232 SD HUTCHINSON 98 233 SD LINCOLN 98 234 SD ROBERTS 98 235 TX HANSFORD 98 236 UT CARBON 98 237 UT SEVIER 98 238 WV WAYNE 98 239 MV WYOMING 98 240 UY UESTON 98 241 AK KUSKOKWIM 99 242 AK YUKON-KOYUKUK 99 243 AZ FINAL 99 244 CA LASSEN 99 245 IL SCHUYLER 99 246 MO COOPER . 99 247 NM SAN MIGUEL 99 248 OH HARDIN 99 249 OH OTTAWA 99 250 OR BAKER 99 251 SD CLARK 99 252 SD DEWEY 99 253 SD LAKE 99 254 SD MELLETTE 99 255 SD MINNEHAHA 99 256 SD STANLEY 99 257 WA FERRY 99 258 WI PIERCE 99 259 WY ALBANY 99 260 WY CAMPBELL 99 261 AZ MARICOPA 100 262 CA SHASTA 100 263 KA NEMAHA 100 264 MS CLAY 100 265 MO BENTON 100 266 MO JACKSON 100 267 MO MC DONALD 100 268 MO MORGAN 100 269 MO WASHINGTON 100 270 OH VAN WERT 100 D-6 ------- OBS STATE COUNTY VARSCORE 271 SD MOODY 100 272 SD TURNER 100 273 SD UALUORTH 100 274 TX BANDERA 100 275 TX CLAY 100 276 TX MASON 100 277 UT MILLARD 100 278 WA KITTITAS 100 279 UV DODDRIDGE 100 280 MY NATRONA 100 281 MY MASHAKIE 100 282 AK VALDEZ-CHITINA-MHITT 101 283 CO DOLORES 101 284 ID LEMHI 101 285 IL BROUN 101 286 IL COLES 101 287 IL GREENE 101 288 MI MAR2UETTE 101 289 MO BARTON 101 290 MO BUCHANAN 101 291 MO RANDOLPH 101 292 MO ST FRANCOIS 101 293 NE DAMES 101 294 OH HARRISON 101 295 SD GRANT 101 296 SD JERAULD 101 297 SD MEADE 101 298 TX LLAHO 101 299 TX MC CULLOCH 101 300 TX TERRELL 101 301 UT KANE 101 302 UT TOOELE 101 303 UT MASATCH 101 304 MA OKANOGAN 101 305 MA STEVENS 101 306 MV CALHOUN 101 307 MV ROANE 101 308 MV METZEL 101 309 MY JOHNSON 101 310 CA MONTEREY 102 311 IL MILL 102 312 IA CHEROKEE 102 313 LA VERMILION 102 314 MI IRON 102 315 MN TRAVERSE 102 316 MO ADAIR 102 317 MO CLAY 102 318 MO MACON 102 319 MO PULASKI 102 320 NE JEFFERSON 102 321 ND EMMONS 102 322 ND OLIVER 102 323 OR SHERMAN 102 324 OR UNION 102 D-7 ------- OBS STATE COUMTY VARSCORE 325 SD 'CORSON 102 326 TX PRESIDIO 102 327 UT DUCHESKE 102 328 UA SNOHOMISH 102 329 WV GILMER 102 330 AZ COCONIKO 103 331 AR MARION 103 332 CA HUMBOLDT 103 333 ID ADAMS 103 334 ID BONNER 103 335 ID FRANKLIN 103 336 IL KENDALL 103 337 IL ROCK ISLAND 103 338 LA IBERIA 103 339 LA ST JAMES 103 340 LA TERREBONNE 103 341 MO ANDREW 103 342 MO BOLLINGER 103 343 MO PLATTE 103 344 MT CARTER 103 345 NE FRONTIER 103 346 OH HANCOCK 103 347 OH LOGAN 103 348 OH WYANDOT 103 349 OR MALHEUR 103 350 SD DEUEL 103 351 SD PERKINS 103 352 TX CULBERSON 103 353 UT GARFIELD 103 354 WV LINCOLN 103 355 WY BIG HORN 103 356 WY CROOK 103 357 IL DU PAGE 104 358 IL MOULTRIE 104 359 IN JEFFERSON 104 360 IA LYON 104 361 IA UINNEBAGO 104 362 LA CAMERON 104 363 MS WEBSTER 104 364 MO DOUGLAS 104 365 MO NEWTON 104 366 MO SALINE 104 367 NE HITCHCOCK 104 368 NE RED WILLOW 104 369 NE THAYER 104 370 ND SIOUX 104 371 OH ALLEN 104 372 OH AUGLAIZE 104 373 OH MERCER 104 374 OH SENECA 104 375 OH SHELBY 104 376 OR DOUGLAS 104 377 SD FALL RIVER 104 378 SD TRIPP 104 D-8 ------- OBS STATE COUNTY VARSCORE 379 UA KLICKITAT 104 380 UI MONROE 104 381 MY SUBLETTE 104 382 AK CORDOVA-nC CARTHY 105 383 CO TELLER 105 384 IL GRUNDY 105 385 IL HAMILTON 105 386 IL HANCOCK 105. 387 IL JERSEY 105 388 IL MERCER 105 389 IL ST CLAIR 105 390 IN RIPLEY 105 391 KA LINN 105 392 MS NOXUBEE 105 393 MS PONTOTOC 105 394 MS WINSTON 105 395 MO HENRY 105 396 MO HOLT 105 397 MO SCHUYLER 105 398 MO SULLIVAN 105 399 NE FURNAS 105 400 NE HARLAN 105 401 ND ' MERCER 105 402 SC SALUOA 105 403 SD DAY 105 404 SD GREGORY 105 405 SD HYDE 105 406 SD MARSHALL 105 407 TX DICKENS 105 408 TX HUDSPETH 105 409 TX MOTLEY 105 410 VA SOUTH BOSTON CITY 105 411 UY NIOBRARA 105 412 AZ MOHAVE 106 413 CA MENDOCINO 106 414 CO HUERFANO 106 415 ID CLARK 106 416 IL MADISON 106 417 IN DEARBORN 106 418 IN HUNTINGTON 106 419 IA FRANKLIN 106 420 IA HANCOCK 106 421 KA LEAVENUORTH 106 422 LA PLA2UEMINES 106 423 LA ST BERNARD 106 424 MI LENAUEE 106 425 MI ONTONAGON 106 426 MN PIPESTONE 106 427 MN UASECA 106 428 MO DAVIESS 106 429 MO WAYNE 106 430 NE GAGE 106 431 ND MC KENZIE 106 432 OH FAYETTE 106 D-9 ------- OBS STATE COUNTY VARSCORE 433 OH MADISON 106 431 PA BEAVER 106 435 SD MC PHERSON 106 436 SO WASHABAUGH 106 437 TX YOUNG 106 438 UT WAYNE 106 439 VA CLIFTON FORGE CITY 106 440 VA MANASSAS 106 441 VA MANASSAS PARK 106 442 MV PUTNAM 106 443 UV WEBSTER 106 444 AK KODIAK 107 445 AZ GREENLEE 107 446 AR JOHNSON 107 447 AR SEARCY 107 448 CA DEL NORTE 107 449 CA NEVADA 107 450 CO CROWLEY 107 451 CO GILPIN 107 452 IL ADAMS 107 453 IL CLARK 107 454 IL CLINTON 107 455 IL FAYETTE 107 456 IL WASHINGTON 107 457 IL WHITESIDE 107 458 IL WILLIAMSON 107 459 IN JENNINGS 107 460 IN MIAMI 107 461 IA MILLS 107 462 IA 0 BRIEN 107 463 KA WYANDOTTE 107 464 LA LAFOURCHE 107 465 MO PUTNAM 107 466 MO WORTH 107 467 MT FERGUS 107 468 NE CHEYENNE 107 469 NE CLAY 107 470 NE KIMBALL 107 471 NM GUADALUPE 107 472 NM RIO ARRIBA 107 473 OH GUERNSEY 107 474 OR JACKSON 107 "475 OR KLAMATH 107 476 SD JACKSON 107 477 SD PENNINGTON 107 478 TX KIMBLE 107 479 TX PECOS 107 480 UT CACHE 107 481 UT EMERY 107 482 UT IRON 107 483 UT RICH 107 484 UT SANPETE 107 485 VA LYNCHBURG CITY 107 486 WV MASON 107 D-10 ------- OBS STATE COUNTY VARSCORE 487 UV SUMMERS 107 488 CO RIO BLANCO 108 489 ID BANNOCK 108 490 IL CALHOUN 108 491 IL MORGAN 108 492 IL SALINE 108 493 IL SCOTT 108 494 IN CRAWFORD 108 495 IN ORANGE 108 496 IA PLYMOUTH 108 497 IA POCAHONTAS 108 498 IA POTTAUATTAMIE 108 499 KA BOURBON 108 500 KA BROUN 108 501 KA CRAWFORD 108 502 KA SCOTT 108 503 LA ORLEANS 108 504 MN MAHNOMEN 108 505 MS CHICKASAW 108 506 MO DALLAS 108 507 MO DE KALB 108 508 MO GRUNDY 108 509 MO NODAWAY 108 0 MO STE GENEVIEVE 108 1 NE DEUEL 108 2 NE GOSPER 108 3 NE MADISON 108 4 NE SIOUX 108 5 NE WAYNE 108 6 ND MOUNTRAIL 108 7 OH CLERMONT 108 8 OK MARSHALL 108 9 OR WASHINGTON 108 520 SD CUSTER 108 521 TX COLLINGSWORTH 108 522 TX SCHLEICHER 108 523 TX STEPHENS 108 524 VA FAIRFAX CITY 108 525 VA FALLS CHURCH CITY 108 526 WV BRAXTON 108 527 WV WOOD 108 528 WY CONVERSE 108 529 AK SOUTHEAST FAIRBANKS 109 530 AR CRAWFORD 109 531 CA SAN BENITO 109 532 CA SAN LUIS OBISPO 109 533 CA SANTA BARBARA 109 534 ID ONEIDA 109 535 IL CASS 109 536 IN BLACKFORD 109 537 IN DE KALB 109 538 IN FRANKLIN 109 539 IA BUENA VISTA 109 540 KA DONIPHAN 109 D-ll ------- OBS STATE COUNTY VARSCORE 541 KA LYON 109 542 LA ST CHARLES 109 543 UN CLEARWATER 109 544 MN KOOCHICHING 109 545 MO JASPER 109 546 NE BANNER 109 547 NE NUCKOLLS 109 548 NE PAWNEE 109 549 NE PERKINS 109 550 NM MC KINLEY 109 551 NY ESSEX 109 552 ND BURKE 109 553 ND DUNN 109 554 OR LAKE 109 555 SD HARDING 109 556 TX SUTTON 109 557 MA CLALLAM 109 558 MA GRAYS HARBOR 109 559 MA JEFFERSON 109 560 MA LEWIS 109 561 HI OZAUKEE 109 562 MY HOT SPRINGS 109 563 AK ANCHORAGE 110 564 AK NOME 110 565 CA LAKE 110 566 CA ORANGE 110 567 CA VENTURA 110 568 CO KIT CARSON 110 569 CO LAKE 110 570 ID FREMONT 110 571 IL MABASH 110 572 IN ADAMS 110 573 IN ALLEN 110 574 IA SIOUX 1 TO 575 MI- BARAGA 1 10 576 MN PENNINGTON 110 577 MN POLK 110 578 MS CHOCTAM 110 579 MS MADISON 110 580 MS TIPPAH 110 581 MO MERCER 110 582 NE- CUMING 1 10 583 NE CUSTER 1 10 584 NE HAYES 1 10 585 NE JOHNSON 1 10 586 NV ORHSBY 1 10 587 ND RENVILLE 1 10 588 OH BROMN 1 10 589 OK PITTSBURG 110 590 OK POTTAMATOMIE 110 591 OR MASCO 110 592 SD CODINGTON 110 593 TN DICKSON 110 594 TX CROCKETT 110 0-12 ------- OBS STATE COUNTY VARSCORE 595 TX HARDEMAN 1 10 596 VA BEDFORD CITY 110 597 VA DANVILLE CITY 110 598 VA MARTINSVILLE CITY 110 599 MA WAHKIAKUM 110 600 WV HANCOCK 110 601 WV MIRT 110 602 UI DUNN 110 603 MY LINCOLN 110 604 WY SMEETWATER 110 605 AR FRANKLIN 111 606 AR SCOTT 111 607 CA INYO 111 608 CO CHEYENNE 111 609 CO FREMONT 111 610 CO GRAND 111 6 t 1 CO LA PLATA 1 1 1 612 IL EDWARDS 111 613 IA CLAY 1 1 1 614 IA KOSSUTH 1 1 1 615 IA OSCEOLA 111 616 KA ANDERSON 111 617 KA GREELEY 111 618 KA JEFFERSON 111 619 KA OTTAWA 111 620 LA ASSUMPTION 111 621 MN WILKIN 11 1 622 MS KEMPER 111 623 MO CALDWELL 111 624 MO HICKORY 111 625 MO MILLER 111 626 MO SCOTLAND 1 1 1 627 NE DAWSON 1 1 1 628 NE FILLMORE 111 629 NE OTOE 111 630 NE POLK 111 631 NE SALINE 111 632 NE STANTON 111 633 NE YORK 1 11 634 NY NEW YORK 1 1 1 635 NY RICHMOND 1 1 1 636 OH DEFIANCE 111 637 OR GILLIAM 111 638 OR UMATILLA 111 639 TN HOUSTON 111 640 TX BROWN 111 641 VA CHARLOTTESVILLE CITY 111 642 WA PACIFIC 111 643 WA PEND OREILLE 111 644 WI PEPIN 111 645 WY FREMONT 1 1 1 646 CA MODOC 112 647 CA PLUMAS 112 648 CA RIVERSIDE 112 D-13 ------- OBS STATE COUNTY VARSCORE 649 CA SISKIYOU 112 650 CA TULARE 112 651 CO BOULDER 112 652 ID CAMAS 112 653 ID GEM 112 651 IA EMMET 112 655 IA PALO ALTO 112 656 KA MIAMI 112 657 KA STANTON 112 658 KA THOMAS 112 659 LA ST MARY 112 660 MS SCOTT 112 661 MO HARRISON 112 662 MO LINN 112 663 MO PHELPS 112 664 MT BEAVERHEAD 112 665 MT LIBERTY 112 666 MT PETROLEUM 112 667 MT PHILLIPS 112 668 MT TREASURE 112 669 MT VALLEY 112 670 NE BOX BUTTE 112 671 NE SEMARD 112 672 NV ELKO 112 673 ND GRANT 112 674 ND WARD 112 675 ND WELLS 112 676 OH WILLIAMS 112 677 OR HARNEY 112 678 SD HAMLIN 112' 679 SD HAND 112 680 TX ARCHER 112 681 TX COLLIN 112 682 TX EDWARDS 112 683 TX HALL 112 684 WA KING 1 12 685 WA LINCOLN 1 12 686 WV CLAY 112 687 WY LARAMIE 112 688 AR LO-GAN 113 689 AR SEBASTIAN 113 690 CA NAPA 113 691 CO CHAFFEE 113 692 CO LARIMER 113 693 CO PITKIN 113 694 ID CARIBOU 113 695 ID KOOTENAI 113 696 IL LIVINGSTON 113 697 IA DICKINSON 113 698 KA CHEROKEE 113 699 KA ELLSWORTH 113 700 KA HASKELL 113 701 LA ASCENSION 113 702 LA ST JOHN THE BAPTIST 1.13 D-14 ------- OBS STATE COUNTY VARSCORE 1 13 1 13 1 13 1 13 1 13 1 13 1 13 703 704 705 706 707 708 709 710 71 1 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 •740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 MN MN MN MN MN MS MO MO MT MT NE NE NE NE NV NM NM NM ND ND OH OK OK OK OK OR TX TX TX TX TX TX MV MV WI MY AR CA CO CO IL KA KA KA KA KA MN MS MO MO MT MT NE NE BLUE EARTH GRANT LINCOLN NORMAN RED LAKE HINDS CHRISTIAN CLINTON FALLON JUDITH BASIN COLFAX DODGE SCOTTS BLUFF VALLEY UASHOE COLFAX LINCOLN TORRANCE MC LEAN PIERCE DELAUARE ADAIR BRYAN CHEROKEE CLEVELAND MORROW COMANCHE DALLAS OLDHAM RANDALL REAGAN MINKLER HARRISON LEWIS DANE UINTA STONE FRESNO BACA MOFFAT VERMILION GRAY JACKSON OSAGE UABAUNSEE WICHITA RICE CARROLL GENTRY LIVINGSTON BLAINE CHOUTEAU CASS DIXON 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 14 1 14 1 14 1 14 1 14 1 14 1 14 1 14 1 14 1 14 1 14 1 14 1 14 1 14 1 14 1 14 1 14 114 D-15 ------- OBS STATE COUNTY VARSCORE 757 NE FRANKLIN 114 758 NY GREENE 114 759 NY WASHINGTON 114 760 OH ASHTABULA 114 761 OH WARREN 114 762 OK DELAWARE 114 763 PA CAMBRIA 114 764 PA FULTON 114 765 SD DAVISON 114 766 SD TODD 114 767 TX CHILDRESS 114 768 TX COKE 114 769 TX HALE 114 770 TX MC MULLEN 1 14 771 TX REAL 114 772 TX UPTON 114 773 UT SAN JUAN 114 774 WA MASON 114 775 WA SAN JUAN 114 776 WV MARION 114 777 WI ST CROIX 114 778 CA SANTA CRUZ 115 779 CO DELTA 115 780 CO DOUGLAS 115 781 CO JACKSON 115 782 CO MONTROSE 115 783 ID CASSIA 115 784 IA FREMONT 115 785 KA CHAUTAU2UA 115 786 KA NORTON 115 787 KA RAWLINS 115 788 KA SHAWNEE 115 789 KA SHERMAN 115 790 KA WASHINGTON 115 791 MI DICKINSON 115 792 MN CLAY 115 793 MN FARIBAUL-T 115 794 MO HOWELL 115 795 MT TETON 115 796 NM DE BACA 115 797 NM UNION 115 798 OH NOBLE 115 799 OR COLUMBIA 115 800 SD BROWN 115 801 SD LAWRENCE 115 802 TN MACON 115 803 TX BURNET 115 804 TX GILLESPIE 115 805 TX MENARD 115 806 TX PARKER 115 807 TX SAN SABA 115 808 TX SHACKELFORD 115 809 WV OHIO 115 810 AK BRISTOL BAY DIVISION 116 D-15 ------- OBS STATE COUNTY VARSCORE 811 AK MATANUSKA-SUSITNA 116 812 CA LOS ANGELES 116 813 CA MADERA 1 16 814 CA SAN MATED 1 16 815 CA SONOMA 1 16 816 CO LAS ANIMAS 1 16 817 CO MESA 1 16 818 .po SUMMIT 1 16 819 KA GRANT 116 820 MN MARSHALL 116 821 MT HILL 116 822 MT YELLOWSTONE 116 823 NE LANCASTER 1 16 824 NE WASHINGTON 116 825 NE WEBSTER 1 16 826 OH CUYAHOGA 1 16 827 OH MORROW 116 828 OK HASKELL 1 16 829 OK MC CLAIM 1 16 830 OR YAMHILL 1 16 831 SD BENNETT 116 832 TN STEWART 1 16 833 TX DELTA 1 16 834 TX ERATH 1 16 835 TX MARION 1 16 836 TX RAINS 1 16 837 TX RUNNELS 116 838 WI EAU CLAIRE 1 16 839 AR PERRY 117 840- CA- MARIN 1 17 841 CA YUBA 117 842 CO ARCHULETA 117 843 CO LINCOLN 1 17 844 ID MADISON 1 17 845 IL MEN-ARD 117 846 IN JACKSON 1 17 847 IA CHICKASAW 117 848 IA DAVIS 117 849 KA LINCOLN 1 17 850 KA SHERIDAN 117 851 LA ST TAMMANY 117 852 MN LE SUEUR 1 17 853 MN SCOTT 1 17 854 MS ALCORN 1 17 855 MS RANKIN 1 17 856 MO DENT 117 857 MT PONDERA 1 17 858 NE ADAMS 1 17 859 NE HAMILTON 117 860 NE NEMAHA 117 861 NE RICHARDSON 117 862 NV CHURCHILL 117 863 NV DOUGLAS 1 17 864 NV LANDER T 17 ------- OBS STATE COUNTY VARSCORE 865 NV MINERAL 117 866 NM SAN JUAN 117 867 NY WARREN 117 868 ND GOLDEN VALLEY 117 869 ND MC INTOSH 117 870 OH CLINTON 117 871 OH MEDINA 117 872 OK OTTAWA 117 873 PA MIFFLIN 117 874 SD MINER 117 875 SD UNION 117 876 TN LEWIS 117 877 TX CARSON 117 878 TX DIMMIT 117 879 TX DUVAL 117 880 TX GLASSCOCK 117 881 TX KARNES ' 117 882 TX MILLS 117 883 TX PALO PINTO 117 884 TX STONEWALL 117 885 WV FAYETTE 117 886 WV MERCER 117 887 WY GOSHEN 117 888 WY PLATTE 117 889 ID POWER 118 890 IA HARRISON 118 891 IA WASHINGTON 118 892 IA WOODBURY 118 893 KA DECATUR 118 894 KA GRAHAM 118 895 KA WALLACE 118 896 MD FREDERICK 118 897 MN LAC 2UI PARLE 118 898 MN ROSEAU 118 899 MS GRENADA 118 900 MS LEE 118 901 MO RIPLEY 1 902 MO TEXAS 1 903 MT CASCADE 1 904 MT TOOLE 1 8 905 NE GREELEY 1 8 906 NE PIERCE 118 907 NM HARDING 118 908 NM MORA 118 909 NC CHATHAM 118 910 ND LOGAN 118 911 ND STARK 118 912 ND TRAILL 118 913 OH HIGHLAND 118 914 OH HURON 118 915 OK* CUSTER 118 916 OK GARVIN 118 917 OK LATIMER 118 913 OR HOOD RIVER 118 D-18 ------- OBS STATE COUNTY VARSCORE 919 PA ALLEGHENY 118 920 SO BEADLE 118 921 SD CLAY 118 922 TX BOSBUE 1 18 923 TX CORYELL 118 924 TX FANNIN 1 18 925 TX JACKSON 1 18 926 TX FARMER 118 927 TX VAL VERDE 1 18 928 MY CARBON 118 929 AK BRISTOL BAY BOROUGH 119 930 AR IZARD 119 931 AR SHARP 119 932 CO PARK 119 933 CO SAN MIGUEL 119 934 DC DISTRICT OF COLUMBIA 119 935 ID PAYETTE 1 19 936 IL. COOK 119 937 IL JO DAVIESS 119 938 IN GREENE 119 939 IA JEFFERSON 119 940 IA KEOKUK 119 941 IA LEE 119 942 IA VAN BUREN 1 19 943 KA CHEYENNE 1 19 944 KA FORD 119 945 KA MITCHELL 119 946 KA OSBORNE 119 947 KA RUSSELL 1 19 948 KA SMITH 1 19 949 MN COTTONUOOD 119 •950 MN KITTSON 1 19 951 MN LYON 119 952 MN SIBLEY 119 953 MO LINCOLN 119 954 NE BOONE 119 955 NE BUFFALO 119 956 NE BUTLER 119 957 NE KEARNEY 119 958 NE KEITH 119 959 NE MORRILL 119 960 NV LINCOLN 119 961 NV PERSHING 119 962 NM HIDALGO 119 963 NM SANDOVAL 119 964 NM SANTA FE 119 965 ND BILLINGS 119 966 ND HETTINGER 119 967 OH FAIRFIELD 1 19 968 OH JEFFERSON 119 969 OH LORAIN 119 970 PA CHESTER 119 971 TN MONTGOMERY 119 972 TN PICKETT 119 D-19 ------- OBS STATE COUNTY VARSCORE 973 TN ROBERTSON 119 974 TN WARREN 119 975 TN WAYNE 119 976 TX BEE 119 977 TX BRAZORIA 119 978 TX CROSBY 1 19 979 TX DENTON 119 980 TX FLOYD 1 19 981 TX JACK 119 982 TX MONTGOMERY 119 983 TX TARRANT 1 19 984 TX TRINITY 119 985 WV BARBOUR 1 19 98ii WV MONONGALIA 119 n37 WV NICHOLAS 119 988 WV PLEASANTS 119 989 WV RALEIGH 119 990 WV TAYLOR 119 991 AK FAIRBANKS 120 992 CO BENT 120 993 CO ROUTT 120 994 GA GILMER 120 995 ID BONNEVILLE 120 996 IL MARSHALL 120 997 IL MONROE 120 998 IL PIKE 120 999 IN CLARK 120 1000 IN DUBOIS 120 1001 IA HENRY 120 1002 IA MAHASKA 120 1003 IA WAPELLO 120 1004 KA DICKINSON 120 1005 KA ELLIS 120 1006 KA LOGAN 120 1007 KA SEWARD 120 1008 MN BELTRAMI 120 1009 MN NICOLLET 120 1010 MS UARREN 120 1011 MO ST CHARLES 120 1012 MT MC CONE 120 1013 NE NANCE 120 1014 NE PHELPS 120 1015 NE SHERMAN 120 1016 NE THURSTON 120 1017 NV EUREKA 120 1018 NV NYE 120 1019 NM LUNA 120 1020 NC DURHAM 120 1021 NC SURRY 120 1022 ND BOWMAN 120 1023 ND STUTSMAN 120 1024 OH HAMILTON 120 1025 OH TRUMBULL 120 1026 OK COAL 120 D-20 ------- OBS STATE COUNTY VARSCORE 1027 OK KIOUA 120 1028 OK PAWNEE 120 1029 PA BUTLER 120 1030 PA HUNTINGDON 120 1031 SC CHEROKEE 120 1032 SD SANBORN 120 1033 TN HUMPHREYS 120 1031 TX CASTRO 120 1035 TX CONCHO 120 1036 TX GOLIAO 120 1037 TX JIM WELLS 120 1038 TX LAMPASAS 120 1039 TX MADISON 120 1040 TX STERLING 120 1041 TX WALLER 120 1042 WA YAKIMA 120 1043 WV KANAWHA 120 1044 WV UPSHUR 120 1045 WI DOOR 120 1046 WY TETON 120 1047 CA TEHAMA 121 1048 CO ELBERT 121 1049 GA MADISON 121 1050 IL BUREAU 121 1051 IL CARROLL 121 1052 IL HENDERSON- 121 1053 IN GRANT 121 1054 IN WABASH 121 105? IN WELLS 121 1056 IA BLACK HAWK 121 1057 IA DES MOINES 121 1058 IA HOWARD 121 1059 KA HAMILTON 121 1060 KA MARION 121 1061 KA POTTAWATOMIE 121 1062 KA TREGO 121 1063 MI ST CLAIR 121 1064 MN MURRAY 121 1065 MN RENVILLE 121 1066 MN YELLOW MEDICINE 121 1067 MS LAFAYETTE 121 1068 MT GARFIELD 121 1069 MT LEWIS AND CLARK 121 1070 NE DAKOTA 121 1071 NV CLARK 121 1072 NV WHITE PINE 121 1073 NJ SOMERSET 121 1074 NM QUAY 121 1075 NM SOCORRO 121 1076 NM TAOS 121 1077 ND BURLEIGH 121 1078 ND ROLETTE 121 1079 OH ASHLAND 121 1080 OH BELMONT 121 D-21 ------- DBS STATE COUNTY VARSCORE 1081 OK PONTOTOC 121 1082 PA BLAIR 121 1083 TN CHEATHAM 121 1081 TN COCKE 121 1085 TN LAWRENCE 121 1086 TN PERRY 121 1087 TX CASS 121 1088 TX DEAF SMITH 121 1089 TX HARRIS 121 1090 TX ORANGE 121 1091 TX SAN JACINTO 121 1092 TX SMITH 121 1093 TX SUISHER 121 109" VA RICHMOND CITY 121 1095 AP. INDEPENDENCE 122 1096 CA ALAMEDA 122 1097 CA SAN BERNARDINO 122 1098 CO CUSTER 122 1099 CO GARFIELD 122 1100 IL CRAWFORD 122 1101 IL KANKAKEE 122 1102 IL WOODFORD 122 1103 IN BROWN 122 1104 IN JAY 122- 1105 KA BUTLER 122 1106 KA KEARNY 122 1 107 KA KIOWA 122 1108 KA MC PHERSON 122 1109 KA MEADE 122 1110 KA NEOSHO 122 1111 MI KEWEENAW 122 1112 MI SAGINAW 12.2 1113 MN BROWN 122 1114 MN FREEBORN 122 1115 MN HENNEPIN 122 1116 MN JACKSON 122 1117 MN MARTIN 122 1118 MN RAMSEY 122 1119 MN REDWOOD 122 1120 MN WASHINGTON 122 1121 MN WATONWAN 122 1122 MS YALOBUSHA 122 1123 MO GREENE 122 1124 MT GLACIER 122 1125 MT STILLWATER 122 1126 MT WHEATLAND 122 1127 NE ANTELOPE 122 1128 NE BOYD 122 1129 NE BURT 122 1130 NE GARDEN 122 1131 NV ESMERALDA 122 1132 NC STOKES 122 1133 ND TOWNER 122 1134 ND WALSH 122 D-22 ------- OBS STATE COUNTY VARSCORE 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 .122 122 122 123 123 123 123 123 123 .123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 123 D-23 1 135 1 36 1 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 1 155 1 156 1 157 1 158 1 159 1 160 1161 1 162 1 163 1 64 1 65 1 66 1 67 1 68 1169, 1 170 1 171 1 172 1 173 1 174 1 175 1 176 1 177 1 178 1 179 1 180 1 181 1 182 1 183 1 184 1 185 1 186 1 187 1 188 OH OH OH OH OH OR OR SO TN TN TN TN TX TX TX TX TX TX TX TX TX TX TX UV MI AL AK AR CA IL IL IN IN IN KA KA KA KA KY LA MD MI MI MI MI MN MS MO NE NE NE NE NE NM ADAMS CRAWFORD GEAUGA HENRY MUSKINGUM LINCOLN POLK SHANNON FRANKLIN HICKMAN SEVIER WHITE COLEMAN HARDIN HUNT KERR MARTIN MITCHELL SCURRY UPSHUR UVALDE UILLACY WOOD RITCHIE WALWORTH SUMTER BETHEL CROSS CONTRA COSTA BOONE FORD MARTIN OWEN PUTNAM CHASE MONTGOMERY PHILLIPS SEDGWICK ROWAN WEST FELICIANA HARFORD CHARLEVOIX EMMET GENESEE HURON CHIPPEWA UNION WRIGHT CEDAR DOUGLAS LOGAN SARPY SHERIDAN CATRON ------- OBS STATE COUNTY VARSCORE 1189 NM SIERRA 123 1190 NM VALENCIA 123 1191 NY BRONX 123 1192 ND ADAMS 123 1193 ND CAVALIER 123 1194 ND MORTON 123 1195 OH GALLIA 123 1196 OH SUMMIT 123 1197 OK JACKSON 123 1198 OK JOHNSTON 123 1199 PA PHILADELPHIA 123 1200 SD YANKTON 123 1201 TX BLANCO 123 1202 TX CRANE 123 1203 TX GRfl/ 123 1204 TX POTTER 123 1205 TX TRAVIS 123 1206 TX WALKER 123 1207 TX WEBB 123 1208 TX WISE 123 1209 UT WEBER 123 1210 -VA COVINGTON CITY 123 1211 WA WHITMAN 123 1212 WI FOND DU LAC 123 1213 WI MILWAUKEE 123 1214 -AL CLEBURNE 124 1215 AL RUSSELL 124 1216 AR ARKANSAS 124 1217 AR FAULKNER 124 1218 CA IMPERIAL 124 1219 CA KERN 124 1220 CO OURAY 124 1221 GA HOUSTON 124 1222 GA UNION 124 1223 ID BEAR LAKE 124 1224 ID TETON 124 1225 IL LAWRENCE 124 1226 IL PUTNAM 124 1227 IL WHITE 124 1228 IA BUCHANAN 124 1229 KA CLAY 124 1230 KA MARSHALL 124 1231 KA MORRIS 124 1232 KA MORTON 124 1233 KA STEVENS 124 1234 MI BAY 124 1235 MI SANILAC 124 1236 MS DE SOTO 124 1237 MT BIG HORN 124 1238 MT MINERAL 124 1239 MT POWDER RIVER 124 1240 MT ROSEBUD 124 1241 MT YELLOWSTONE NATIONAL 124 1242 NE SAUNDERS 124 D-24- ------- OBS STATE COUNTY VARSCORE 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 D-25 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 NM NO ND OH OH OK OK PA TX TX TX TX TX TX TX VA UA UY AL AR CA GA GA IL IN IA KA KA KA KA LA LA MD MI MS MS MO MT MT NJ NY ND OH OH OH OK OK PA TN TX TX TX TX TX EDDY BOTTINEAU PEMBINA LAURENCE LUCAS CREEK MURRAY PERRY FORT BEND JASPER LEE LOVING NEWTON ROBERTS VAN ZANDT CUMBERLAND WALLA WALLA PARK RANDOLPH YELL SANTA CLARA HENRY PICKENS UINNEBAGO CLAY ALLAMAKEE BARBER CLOUD DOUGLAS ROOKS EAST FELICIANA LIVINGSTON HOWARD EATON BENTON TATE BOONE GOLDEN VALLEY GRANITE UNION WESTCHESTER WILLIAMS CARROLL DARKE ERIE COMANCHE TEXAS CARBON CLAY ATASCOSA CALHOUN FALLS HOPKINS KAUFMAN ------- OBS STATE COUKTY VARSCORE 125 125 125 125 125 125 125 125 125 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 D-26 1297 1298 1299 1300 130 1 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1 320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 TX TX TX TX TX TX TX UT MI AL AL AR AR AR CO CO CO CO GA IL IN IA IA IA IA IA KA no MI MN MT NM MC NO ND OH OH OH OH OK OK OR PA PA TX TX TX TX TX TX TX TX TX VA KENDALL KINNEY KLEBERG LAMAR LAMB NAVARRO STARR UTAH WASHINGTON CHAMBERS CLAY CONUAY FULTON WHITE COSTILLA PUEBLO SAN JUAN YUMA HART MC LEAN VERMILLION •BREMER BUTLER CLAYTON UNION WORTH SUMNER ALLEGANY HOUGHTON MC LEOD CARBON OTERO POLK DIVIDE- SLOPE FRANKLIN LAKE MAHONING SCIOTO HUGHES SEMINOLE CLACKAMAS BEDFORD CAMERON ANDERSON CALDUELL ECTOR GUADALUPE IRION JOHNSON MONTAGUE SAN PATRICIO WASHINGTON BATH ------- OBS STATE COUNTY VARSCORE 126 126 126 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 128 128 128 128 D-27 1351 1352 1353 1354 1355 356 357 358 359 360 36 1 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 139 1 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 VA VA WV AR AR CO GA ID IL IN IN IA KA KY LA MI MI MI MI MN MN MS MS MO MO MO MT MT NE NE NE NM ND ND ND OH OK OK OR PA PA TN TX TX TX TX TX TX VA UA AL CO GA GA GOOCHLAND HENRY GRANT POINSETT POLK PHILLIPS JACKSON BLAINE DOUGLAS PARKE PERRY AUDUBON ALLEN BOYD ACADIA HILLSDALE LAPEER MACOMB WAYNE STEVENS SWIFT MARSHALL YAZOO PERRY POLK WEBSTER MEAGHER MUSSELSHELL DUNDY HOWARD PLATTE CHAVES BARNES CASS DICKEY ROSS HARMON LINCOLN LANE CLARION SCHUYLKILL HANCOCK GRIMES HAMILTON HOCKLEY KING NUECES TOM GREEN PITTSYLVANIA ISLAND TALLAPOOSA JEFFERSON BARROW ELBERT ------- OBS STATE COUNTY VARSCORE 1<405 1406 1407 1408 1,409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 142 1 1422 1423 1424 1425 1426 1427 1428 1429 1430. 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 GA GA ID IL IL IN IA IA IA IA KA KA KY LA LA MI MN MS nT NE NE NJ NM NY NC NC ND ND ND OH OH OH OK OK OK PA SC TN TX TX TX TX TX TX TX TX TX VA VA WV AR CO IL IL FANNIN FRANKLIN WASHINGTON CHAMPAIGN MACON DECATUR CLINTON MADISON MUSCATINE WARREN GOVE RILEY GREENUP CALCASIEU RAPIDES BARRY AITKIN LAUDERDALE FLATHEAD CHASE KNOX PASSAIC GRANT ULSTER RANDOLPH ROCKINGHAM BENSON MC HENRY NELSON FULTON PORTAGE WASHINGTON CHOCTAW MUSKOGEE SE2UOYAH JUNIATA EDGEFIELD DECATUR BASTROP BRISCOE GALVESTON HILL LAVACA LIVE OAK LUBBOCK MIDLAND MOORE CULPEPER HALIFAX HAMPSHIRE GARLAND WASHINGTON DE WITT LOGAN 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 129 129. 129 129 D-28 ------- OBS STATE COUNTY VARSCORE 1459 IL PIATT 129 1460 IN MONTGOMERY 129 1461 IN WARREN 129 1462 IA ADAIR 129 1463 IA LOUISA 129 1464 IA MARION 129 1465 IA PAGE 129 1466 IA SCOTT 129 1467 IA TAYLOR 129 1468 KA NESS 129 1469 LA EVANGELINE 129 1470 LA JEFFERSON DAVIS 129 1471 LA ST HELENA 129 1472 MD MONTGOMERY 129 1473 MI ANTRIM 129 1474 MI TUSCOLA 129 1475 MN CARVER 129 1476 MN LAKE OF THE MOODS 129 1477 MS HOLMES 129 1478 MT JEFFERSON 129 1479 MT ROOSEVELT 129 1480 NE HOOKER 129 1481 NE LOUP 129 1482 NV HUMBOLDT 129 1483 NM LEA 129 1484 NY SCHOHARIE 129 1485 NC ALAMANCE 129 1486 NC CATAUBA 129 1487 NC FORSYTH 129 1488 NC IREDELL 129 1489 NC ORANGE 129 1490 NC PERSON 129 1491 NC RUTHERFORD 129 1492 ND LA MOURE 129 1493 OH LICKING 129 1494 OH MONROE 129 1495 OH TUSCARAUAS 129 1496 OK CANADIAN 129 1497 OK NOBLE 129 1498 OR MARION 129 1499 PA LAWRENCE 129 1500 SC UNION 129 1501 TN COFFEE 129 1502 TN GRAINGER 129 1503 TN PUTNAM 129 1504 TX ARANSAS 129 1505 TX ELLIS 129 1506 TX GONZALES 129 1507 TX HOUSTON 129 1508 TX LA SALLE 129 1509 TX WARD 129 1510 VA FRANKLIN 129 1511 MI CLARK 129 1512 MI MAUKESHA 129 D-29 ------- OBS STATE COUNTY VARSCORE 1513 AL MONTGOMERY 130 1514 AR PIKE 130 1515 AR PRAIRIE 130 1516 GA BUTTS 130 1517 IL LEE 130 1518 IN CARROLL 130 1519 IN FLOYD 130 1520 IN HENDRICKS 130 1521 IN SCOTT 130 1522 IA ADAMS 130 1523 IA CASS 130 1524 IA CLARKE 130 1525 IA CRAWFORD 130 1526 IA DECATUR 130 1527 IA LUCAS 130 1528 IA MONROE 130 1529 IA MONTGOMERY 130 1530 IA RINGGOLD 130 1531 IA UAYNE 130 1532 KA ELK 130 1533 KA FRANKLIN 130 1534 KA HODGEMAN 130 1535 KA WOODSON 130 1536 KY CARTER 130 1537 KY LEE 130 1538 KY MENIFEE 130 1539 LA ALLEN 130 1540 LA JEFFERSON 130 1541 LA LAFAYETTE 130 1542 MD CARROLL 130 .1543 MI LEELANAU 130 1544 MS ATTALA 130 1545 MS JASPER 130 1546 MS PANOLA 130 1547 MT DANIELS 130 1548 MT DEER LODGE 130 1549 MT PRAIRIE 130 1550 MT SWE-ET GRASS 130 1551 NM BERNALILLO 130 1552 NM CURRY 130 1553 NM ROOSEVELT 130 1554 NY DELAWARE 130 1555 NY HAMILTON 130 1556 NY SCHUYLER 130 1557 NY TOMPKINS 130 1558 NC CASMELL 130 1559 NC CLEVELAND 130 1560 NC GRANVILLE 130 1561 NC YADKIN 130 1562 OH BUTLER 130 1563 OH HOCKING 130 1564 OK CIMARRON 130 1565 OK GRADY 130 1566 OK PAYNE 130 0-30 ------- OBS STATE COUNTY VARSCORE 1567 PA ARMSTRONG 130 1568 SD CAMPBELL 130 1569 TN MC MINN 130 1570 TN UNION 130 1571 TX ARMSTRONG 130 1572 TX CAMERON 130 1573 TX DONLEY 130 1574 TX REFUGIO 130 1575 TX ROCKWALL 130 1576 TX MHARTON 130 1577 TX ZAVALA 130 1578 VA AMHERST 130 1579 VA BUCHANAN 130 1580 VA CAMPBELL 130 1581 VA DICKENSON 130 1582 VA MECKLENBURG 130 1583 VA PRINCE WILLIAM 130 1584 VA WISE 130 1585 VA NORTON CITY 130 1586 WV MINERAL 130 1587 WI CALUMET 130 1588 AL COOSA 131 1589 AL LEE 131 1590 AL MACON 131 1591 AR SALINE 131 1592 GA COLUMBIA 131 1593 GA GLASCOCK 131 1594 ID BUTTE 131 1595 IL LAKE 131 1596 IA APPANOOSE 131 1597 IA CARROLL 131 1598 IA CERRO GORDO 131 1599 IA IDA 131 1600 KA HARVEY 131 1601 KA RUSH 131 1602 KY FLOYD 131 1603 KY MORGAN 131 1604 LA TANGIPAHOA 131 1605 MI OSCEOLA 131 1606 MN COOK 131 1607 MN ITASCA 131 1608 MT CUSTER 131 1609 MT MADISON 131 1610 MT SHERIDAN 131 1611 MT WIBAUX 131 1612 NE GRANT 131 1613 NM DONA ANA 131 1614 NY BROOME 131 1615 NY FULTON 131 1616 NY ORANGE 131 1617 NY SARATOGA 131 1618 NY STEUBEN 131 1619 NY SULLIVAN 131 1620 NY TIOGA 131. D-31 ------- OBS STATE COUNTY VARSCORE 1621 NC DAVIDSON 131 1622 NC LINCOLN 131 1623 NC MECKLENBURG 131 1624 NC STANLY 131 1625 ND EDDY 131 1626 ND RANSOM 131 1627 OK ATOKA 131 1628 OK CARTER 131 1629 OK OSAGE 131 1630 OK PUSHMATAHA 131 1631 SC FIG CORMICK 131 1632 SC YORK 131 1633 TN FENTRESS 131 1634 TN GREENE 131 1635 TN IOUDON 131 1636 TN OVERTON 131 1637 TN SULLIVAN 131 1638 TX AUSTIN 131 1639 TX BEXAR 131 1640 TX CALLAHAN 131 1641 TX FAYETTE 131 1642 TX GREGG 131 1643 TX HOOD 131 1644 TX LIMESTONE 131 1645 TX MEDINA 131 1646 TX WILSON 131 1647 TX YOAKUM 131 1648 VT RUTLAND 131 1649 VA 'ARLINGTON 131 1650 VA BUCKINGHAM 131 1651 VA FAU2UIER 131 1652 VA ORANGE 131 1653 MI COLUMBIA 131 1654 AL LOUNDES 132 1655 AK UADE HAMPTON 132 1656 AR LAFAYETTE 132 1657 AR LONOKE 132 1658 AR MONTGOMERY 132 1659 AR RANDOLPH 132 1660 AR ST FRANCIS 132 1661 CO EAGLE 132 1662 CO KIOUA 132 1663 GA JONES 132 1664 GA TALIAFERRO 132 1665 IN BENTON 132 1666 IN DELAWARE 132 1667 IA DELAWARE 132 1668 IA DUBU2UE 132 1669 IA GUTHRIE 132 1670 IA MITCHELL 132 1671 IA POMESHIEK 132 1672 IA SHELBY 132 1673 KA COFFEY 132 1674 KA GEARY 132 D-32 ------- OBS STATE COUNTY VARSCORE 1675 KA HARPER 132 1676 KA LANE 132 1677 KY KNOX 132 1.678 LA WASHINGTON 132 1679 ME AROOSTOOK 132 1680 MI ALPENA 132 1681 MI INGHAM 132 1682 MI SHIAUASSEE 132 1683 MN POPE 132 1684 MT LAKE 132 1685 NE HALL 132 1686 NE LINCOLN 132 1687 NE MC PHERSON 132 1688 NY ALLEGANY 132 1689 NY CHEMUNG 132 1690 NY LIVINGSTON 132 1691 NY OTSEGO 132 1692 NY RENSSELAER 132 1693 NC CABARRUS 132 1694 NC DAVIE 132 1695 NC FRANKLIN 132 1696 NC GASTON 132 1697 NC GUILFORD 132 1698 NC VANCE 132 1699-NC WARREN 132 1700 OH COSHOCTON 132 1701 OH HOLMES 132 1702 OH PIKE 132 1703 OK JEFFERSON £32 1704 OK KAY 132 1705 OK OKLAHOMA 132 1706 PA ADAMS 132 1707 PA CLEARFIELD 132 1708 PA POTTER 132 1709 TN BENTON 132 1710 TN JOHNSON 132 1711 TN UNICOI 132 1712 TX ANGELINA 132 1713 TX BRAZOS 132 1714 TX CHAMBERS 132 1715 TX COMAL 132 1716 TX FISHER 132 1717 TX HAYS 132 1718 TX HEMPHILL 132 1719 TX JEFFERSON 132 1720 TX MATAGORDA 132 1721 TX NOLAN 132 1722 TX SOMERVELL 132 1723 VA APPOMATTOX 132 1724 VA BEDFORD 132 1725 VA BRUNSWICK 132 1726 VA CHARLOTTE 132 1727 VA PRINCE EDWARD 132 1728 WI BROWN 132 D-33 ------- OBS STATE COUNTY VARSCORE 132 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 D-34 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 WI AR AR AR AR CA CO GA GA IL IN IA IA KA KA KA KA KY KY LA MI MN ns MS MS MO MT NV NY NC OK OK OK OR TN TN TX TX TX TX TX TX TX TX TX TX TX VT VA VA VA VA VA VA MANITOMOC BRADLEY HOWARD LITTLE RIVER MILLER MONO ARAPAHOE NEWTON TOWNS KANE UNION GRUNDY IOWA FINNEY GREENWOOD SALINE WILSON ELLIOTT JACKSON BEAUREGARD MISSAUKEE DOUGLAS CLAIBORNE LOWNDES MONROE GIRARDEAU MISSOULA LYON ALBANY ROWAN BLAINE CRAIG STEPHENS CLATSOP BRADLEY CLAIBORNE BAILEY BELL COOKE FOARD FRANKLIN FRIO KENT LIBERTY MAVERICK RED RIVER REEVES WINDSOR ALLEGHANY AMELIA LOUISA LUNENBERG NOTTOWAY PATRICK ------- OBS STATE COUNTY VARSCORE 1783 MA CLARK 133 1784 WV HARDY 133 1785 MI SHEBOYGAN 133 1786 AL MILCOX 134 1787 CA SAN FRANCISCO 134 1788 GA SPALDING 134 1789' IL TAZEUELL 134 1790 IN TIPPECANOE 134 1791 IN WHITLEY 134 1792 IA BENTON 134 1793 IA FLOYD 134 1794 IA JACKSON 134 1795 IA MINNESHIEK 134 1796 KA CLARK 134 1797 KA COMANCHE 134 1798 KA LABETTE 134 1799 KA PRATT 134 1800 KY FULTON 134 1801 KY POWELL 134 1802 MI CHEBOYGAN 134 1803 MN LAKE 134 1804 MN WRIGHT 134 1805 m LINCOLN 134 1806 MT RICHLAND 134 1807 FIT SANDERS 134 1808 MT SILVER BOW 134 1809 NE ARTHUR 134 1810 NE KEYA PAHA 134 1811 NY CHENANGO 134 1812 ND KIDDER 134 1813 ND SARGENT 134 1814 OH PICKAWAY 134 1815 OK HAYES 134 1816 OK ROGER MILLS 134 1817 OR BENTON 134 1818 PA CLINTON 134 1819 PA DELAWARE 134 1820 PA SNYDER 134 1821 PA YORK 134 1822 SC PICKENS 134 1823 SD BROOKINGS 134 1824 TN CAMPBELL 134 1825 TX CHEROKEE 134 1826 TX DE WITT 134 1827 TX HARRISON 134 1828 TX LEON 134 1829 TX RUSK 134 1830 TX VICTORIA 134 1831 UT SALT LAKE 134 1832 VT ORANGE 134 1833 VA FLUVANNA 134 1834 WV MORGAN 134 1835 WI KENOSHA 134 1836 AR CLARK 135 D-35 ------- OBS STATE COUNTY VARSCORE 1837 AR HOT SPRING 135 1838 AR PULASKI 135 1839 CA BUTTE 135 18140 CO EL PASO 135 1841 GA CLAYTON 135 1842 GA DOUGLAS 135 1843 GA OGLETHORPE 135 1844 ID BINGHAH 135 1845 IN HOWARD 135 1846 IN MARION 135 1847 IN RANDOLPH 135 1848 IA FAYETTE 135 1849 IA SAC 135 1850 IA TAMA 135 1851 KA COWLEY 135 1852 KY CARROLL 135 1853 KY ESTILL 135 1854 KY MAGOFFIN 135 1855 MI ISABELLA 135 1856 MI LIVINGSTON 135 1857 MS ADAMS 135 1858 MS LEAKE 135 1859 MS NEWTON 135 1860 MT DAWSON 135 1861 NE MERRICK 135 1862 NJ MONMOUTH 135' 1863 NY CATTATAUGUS 135 1864 NC CALDWELL 135 1865 NC MONTGOMERY 135 1866 NC UNION 135 1867 ND FOSTER 135 1868 ND RAMSEY 135 1869 OH PREBLE 135 1870 OK BECKHAM 135 1871 OK CADDO 135 1872 OK GARFIELD 135 .1873 OK ROGERS 135 1874 OK MASHITA 135 1875 OR MULTNOMAH 135 1876 SC GREENWOOD 135 1877 TN HAMILTON 135 1878 TN JEFFERSON 135 1879 TN SE2UATCHIE 135 1880 TX BORDEN 135 1881 TX EL PASO 135 1882 TX GARZA 135 1883 TX HIDALGO 135 1884 TX HOWARD 135 1885 TX JIM HOGG 135 1886 TX NACOGDOCHES 135 1887 TX THROCKMORTON 135 1888 UT DAVIS 135 1889 VT ORLEANS 135 1890 VA CRAIG 135 D-36 ------- OBS STATE COUNTY VARSCORE 135 135 135 135 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 .136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 137 137 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 190 1 1902 1903 1904 1905 1906 1907 1908 1909 1910 19 1 1 19 12 1913 1914 1915 19 16 19 17 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 19.32 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 VA MA WV UI AL AL AR CO CO GA GA GA GA IL IN IA IA IA IA IA KA KY KY KY MD MD MI NJ NY NC NC NC ND NO OH OK OK OK OK PA PA PA PA SC TN TN TN TX TX TX VA UI AL CO POUHATAN FRANKLIN PENDLETON UINNEBAGO CHILTON CLARKE ASHLEY ALAMOSA PROUERS DAUSON MORGAN RABUN STEPHENS DE KALB LAKE GREENE JOHNSON JONES MARSHALL MONONA RICE KNOTT PERRY WOLFE BALTIMORE GARRETT GLADUIN MERCER MADISON ASHE BURKE MAKE GRAND FORKS STEELE MIAMI DEUEY MC INTOSH TILLMAN TULSA GREENE MC KEAN TIOGA VENANGO LANCASTER HARDEMAN HARDIN SCOTT MC LENNAN TERRY ZAPATA SPOTSYLVANIA KEUAUNEE TUSCALOOSA ADAMS D-37 ------- OBS STATE COUNTY VARSCORE 1945 CO LOGAN 137 1946 CO SAGUACHE 137 1947 GA LINCOLN 137 1948 GA PEACH 137 1949 GA WILKES 137 1950 ID JEFFERSON 137 1951 IN PORTER 137 1952 IN SPENCER 137 1953 IA CEDAR 137 1954 IA HARDIN 137 1955 IA JASPER 137 1956 IA LINN 137 1957 KY LAURENCE 137 1958 KY LESLIE 137 1959 KY OWEN 137 1960 KY UNION 137 1961 MD WASHINGTON 137 1962 MI MONROE 137 1963 NE BLAINE 137 1964 NY ONONDAGA 137 1965 NC ANSON 137 1966 OH MORGAN 137 1967 OH PERRY 137 1968 OK WAGONER 137 1969 PA BERKS 137 1970. PA UNION' 137 1971 TN CUMBERLAND 137 1972 TN GRUNDY 137 1973 TN HAMBLEN 137 1974 TN MORGAN 137 1975 TN WEAKLEY 137 1976 TX HENDERSON 137 1977 VT BENNINGTON 137 1978 VA FAIRFAX 137 1979 VA HIGHLAND 137 1980 VA RAPPAHANNOCK 137 1981 VA STAFFORD 137 1982 VA COLONIAL HEIGHTS CIT -137 1983 VA FREDERICKSBURG CITY 137 1984 WI GREEN LAKE 137 1985 AL PERRY 138 1986 AR CALHOUN 138 1987 CA STANISLAUS 138 1988 CO CONEJOS 138 1989 GA HANCOCK 138 1990 GA HARRIS 138 1991 GA JASPER 138 1992 IN CASS 138 1993 IN FOUNTAIN 138 1994 IA HAMILTON 138 1995 IA POLK 138 1996 IA WEBSTER 138 1997 KA STAFFORD 138 1998 KY OWSLEY 138 D-38 ------- OBS STATE COUNTY VARSCORE 1999 2000 2001 2002 2003 2004 2005 2006 2007 2003 2009 2010 201 1 2012 2013 20 14 2015 20 16 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 LA ni MI MI MI MX MN MS MS MO MT NM NY OK OK PA SC TN TX TX TX VA VA AR CO GA GA ID ID IN IN IA KY MI MI MN MN MS MS MT NY NY OH OH OH OH OK OK PA PA TN TN TN TX ST MARTIN CLINTON GRATIOT KENT WASHTENAW DAKOTA. KANDIYOHI MONTGOMERY SMITH BUTLER PARK LOS ALAMOS COLUMBIA HARPER LOGAN WASHINGTON CHESTER MADISON EASTLAND FREESTONE TITUS MADISON SALEM CITY JEFFERSON" HINSDALE OCONEE SCHLEY GOODING JEROME MARRICK WAYNE CALHOUN B'REATHITT ALCONA MIDLAND DODGE STEELE NESHOBA UILKINSON RAVALLI CHAUTAU2UA DUTCHESS CHAMPAIGN GREENE VINTON WAYNE GRANT OKMULGEE JEFFERSON WARREN HAWKINS MARION' VAN BUREN COCHRAN 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 138 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 D-39 ------- OBS STATE COUNTY VARSCORE 2053 2054 2055 2056 2057 2058 2059 2060 206 1 2062 2063 2064 2065 2066 2067 2068 2069 2070 207 1 2072 2073 2071 2075 2076 2077 2078 2079 2080 208 1 2082 2083 2084 2085 2086 2087 2088 2089 2090 209 1 2092 2093 2094 2095 2096 2097 2098 2099 2100 210 1 2102 2103 2104 2105 210.6 TX TX TX TX VA WA UA MV MI MI UI AR AR CO CO CT GA GA GA GA GA GA IL IL IN IN IN IN IA IA IA KY KY KY MA MI MN MN FIT NC OH OH OK OK OK OR PA sc TN TN TN TN TN TN COLORADO MILAn POLK TAYLOR GALAX CITY PIERCE SPOKANE PRESTON DODGE JEFFERSON OUTAGAMIE DREU LAURENCE GUNNISON MINERAL MIDDLESEX DE KALB GREENE GMINNETT LAMAR MACON UPSON JACKSON MC HENRY MONROE NEUTON PIKE VANDERBURGH BOONE DALLAS STORY BULLITT CLAY JOHNSON BERKSHIRE ARENAC PINE ST LOUIS POWELL ALEXANDER CLARK RICHLAND COTTON GREER MC CURTAIN LINN MERCER FAIRFIELD BLEDSOE CHESTER GIBSON HENDERSON HENRY ROANE 139 139 139 139 '139 139 139 139 139 139 139 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140" 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 D-40 ------- OBS STATE COUNTY VARSCORE 140 140 140 140 141 141 141 141 141 141 141 141 141 141 141 141 141 141 14 1 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 D-41 2107 2108 2109 21 10 2111 2112 21 13 2114 2115 2116 2 17 2 18 2 19 2 20 2 21 2 122 2 123 2 124 2125 2 26 2 27 2 28 2 29 2 30 2131 2132 2 133 2134 2 135 2 1 36 2 137 2138 2139 2140 2 41 2 42 2 43 2 44 2 45 2 46 2 47 2 48 2 49 '2 50 2151 2152 2153 2154 2155 2156 2157 2 158 2159 2160 TX TX TX VA AL AL AL AR CO CT GA GA GA GA GA ID IN IN IN KA KY KY KY KY KY UN MN MN NJ NY OK OK PA PA PA PA PA SC SC SC TN TN TN TN TX TX TX VT VA VA UA MA UA WV GAINES SAN AUGUSTINE WILLIAMSON SCOTT BULLOCK HALE SHELBY JACKSON WELD LITCHFIELD CLARKE FAYETTE HALL PIKE PUTNAM CANYON LA PORTE SULLIVAN WHITE PAWNEE BATH BRACKEN CALLOWAY HARLAN LETCHER BENTON CARLTON MILLE LACS BERGEN PUTNAM BEAVER LE FLORE, CENTRE DAUPHIN ELK LYCOMING SOMERSET NEWBERRY OCONEE SPARTANBURG CARROLL CARTER FAYETTE KNOX BURLESON ROBERTSON TYLER ADDISON LOUDOUN SMYTH BENTON. GRANT THURSTON TUCKER ------- OBS STATE COUNTY VARSCORE 141 141 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 142 143 143 143 143 143 143 143 143 143 143 143 143 143 D-42 2161 2162 2163 2164 2 165 2 166 2 167 2 168 2169 2170 2 171 2172 2 173 2174 2 175 2176 2177 2178 2179 2180 2181 2182 2183' 2184 2185 2186 2187 2138 2189 2190 2191 2192 2 193 2 194 2195 2 196 2197 2198 2199 2200 220 1 2202 2203 2204 2205 2206 2207 2208 2209 2210 22 1 1 22 12 2213 2214 MI UI AL AL AR AR GA GA GA IN KY KY KY KY KY LA LA MD MS MS MS NJ NJ NY NY NC NC OH OH OK OK PA PA PA RI SC SC SC TN TN UA AR AR CO CO CT GA GA GA IN IN IN KY KY BAYFIELD ROCK BIBB CHOCTAM LINCOLN MONROE BANKS COMETA MONROE VIGO BALLARD GRAVES HENDERSON MARSHALL PENDLETON CADDO DE SOTO CECIL SIMPSON TISHOMINGO WAYNE ESSEX HUDSON CORTLAND YATES GRAHAM • MC DOMELL ATHENS KNOX KINGFISHER UOODS BUCKS FRANKLIN MONTGOMERY NEWPORT ABBEVILLE ANDERSON . LAURENS CROCKETT HAYWOOD ADAMS HEMPSTEAD SEVIER OTERO SEDGUICK FAIRFIELD HABERSHAM MURRAY ROCKDALE CLINTON DAVIESS LAWRENCE CARLISLE HICKMAN ------- OBS STATE COUNTY VARSCORE 2215 KY JEFFERSON 143 2216 MI ALGER 143 2217 MI CASS 143 2218 MI IOHIA 143 2219 MI KALAMAZOO 143 2220 MI MENOMINEE 143 2221 MN HOUSTON 143 2222 MN MEEKER 143 2223 MS ITAMAMBA 143 2224 MS JEFFERSON 143 2225 MT GALLATIN 143 2226 NE BROUN 143 2227 NE GARFIELD 143 2228 NE WHEELER 143 2229 NY CLINTON 143 2230 NC CHEROKEE 143 2231 OH JACKSON 143 2232 OH STARK 143 2233 OK WASHINGTON 143 2234 TN MONROE 143 2235 TX COTTLE 143 2236 TX HUTCHINSON 143 2237 VA DINMIDDIE 143 2238 WA DOUGLAS 143 2239 WV POCAHONTAS 143 2240 AL LAMAR 144 2241 GA LUMPKIN 144 2242 GA WHITE 144 2243 IL GALLATIN 144 2244 IL IROQUOIS 144 2245 IL UNION 144 2246 IN 'BOONE 144 2247 IN GIBSON 144 22'48 IN HANCOCK 144 2249 IN HENRY 144 2250 IN KNOX 144 2251 IN POSEY 144 2252 IN RUSH 144 2253 IN TIPTON 144 2254 ME KNOX 144 2255 ME PISCATABUIS 144 2256 ME SAGADAHOC 144 2257 MD BALTIMORE CITY 144 2258 MI BENZIE 144 2259 MI OGEMAM 144 2260 MI VAN BUREN 144 2261 MS AMITE 144 2262 MS TALLAHATCHIE 144 2263 MS TUNICA 144 2264 MS WASHINGTON 144 2265 NE HOLT 144 2266 NE THOMAS 144 2267 NH COOS 144 2268 NC AVERY 144 D-43 ------- OBS STATE COUNTY VARSCORE 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 229 1 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 231 1 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 NC NC NC OK PA TN TN TN TX TX VA VA VA AL CA CT CT GA GA GA IN IN IN KA KY KY LA MN MS MS MO MT NY NY NC NC NC NC OH OK PA PA TN TN TN TN TX TX VA VA UV MI AL AL JACKSON SUAIN YANCEY ALFALFA MONROE BLOUNT DE KALB MC NAIRY KENEDY SABINE BLAND FREDERICK NELSON AUTAUGA GLENN HARTFORD NEW LONDON FULTON TROUP WALTON NOBLE STEUBEN WASHINGTON BARTON GALLATIN MC CRACKEN RED.RIVER MOWER ISSA2UENA JONES ST LOUIS •BROADWATER CAYUGA ONTARIO MACON MITCHELL WATAUGA WILKES MONTGOMERY WOODWARD ERIE FAYETTE ANDERSON DYER JACKSON MEIGS LYNN SHELBY PULASKI WASHINGTON RANDOLPH RACINE CULLMAN PICKENS 144 144 144 144 144 144 144 144 144 144 144 144 144 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 145 146 146 D-44 ------- OBS STATE COUNTY VARSCORE 2323 AR CLAY 146 2324 AR WOODRUFF 146 2325 GA TALBOT 146 2326 XL JOHNSON 146 2327 IL POPE 146 2328 IN MORGAN 146 2329 KY CAMPBELL 146 2330 KY DAVIESS 146 2331 KY FLEMING 146 2332 KY LEWIS 146 2333 KY TRIMBLE 146 2334 ME LINCOLN 146 2335 MI MONTMORENCY 146 2336 MS CLARKE 146 2337 MS HUMPHREYS 146 2338 MO SCOTT 146 2339 NE ROCK 146 2340 NY ERIE 146 2341 NY HERKIMER 146 2342 NY ST LAWRENCE 146 2343 NC ALLEGHANY 146 2344 NC BUNCOMBE 146 2345 ND GRIGGS 146 2346 OK NOWATA 146 2347 OK OKFUSKEE 146 2348 PA CUMBERLAND 146 2349 PA FOREST 146 2350 PA LUZERNE 146 2351. PA NORTHAMPTON 146 2352 TN CANNON 146 2353 TX JONES 146 2354 VT WASHINGTON 146 2355 VA CARROLL 146 2356 VA LEE 146 2357 VA MONTGOMERY 146 2358 VA ROANOKE 146 2359 VA WYTHE 146 2360 AR UNION 147 2361 CO DENVER 147 2362 CO MORGAN 147 2363 GA BURKE 147 2364 GA HEARD 147 2365 GA MERIWETHER 147 2366 ID ADA 147 2367 IN JOHNSON 147 2368 IN MADISON 147 2369 IN MARSHALL 147 2370 KY BOONE 147 2371 KY HANCOCK 147 2372 KY LAUREL 147 2373 KY MADISON 147 2374 KY MONTGOMERY 147 2375 KY PIKE 147 2376 -KY WEBSTER 147 D-45 ------- OBS STATE COUNTY VARSCORE 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 239 1 2392 2393 2394 2395 2396 2397 2398 2399 2400 240 1 2402 2403 2404 2405 2406 2407 2408 2409 2410 241 1 2412 2413 2414 2415 2416 2417 2418 2419 2420 242 1 2422 2423 2424 2425 2426 2427 2428 2429 2430 KY LA LA ME ME MA MI MI MN MS MS MS MS MS NJ NY NY NY NC NC PA PA PA SC TN TN 'VT VA VA VA AL AR GA GA IL IN IN IN KY KY KY KY LA LA ME MI MN MN MS NJ NJ NY ND OH MHITLEY NATCHITOCHES SABINE FRANKLIN KENNEBEC HAMPDEN CLARE OAKLAND NOBLES FRANKLIN GREENE LAURENCE LINCOLN PIKE MIDDLESEX FRANKLIN MONTGOMERY NIAGARA CLAY HAYUOOD COLUMBIA SULLIVAN WESTMORELAND GREENVILLE LAKE LAUDERDALE UINDHAM ALBEMARLE- GRAYSON TAZEWELL DE KALB GREENE CRAWFORD QUITMAN ALEXANDER ELKHART HAMILTON ST JOSEPH GARRARD KENTON MC CREARY ROBERTSON VERNON WINN WALDO OTTAWA KANABEC WINONA SHARKEY MORRIS SUSSEX SENECA SHERIDAN COLUMBIANA 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147. 147 147 147 147 147 148 148 148 148 148 148 148 148 148 148 148 148 148 148 148 148 148 148 148 148 148 148 148 148 D-46 ------- OBS STATE COUNTY VARSCORE 2131 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 .2452 2453 2454 2455 2456 2457 2458 2459 2460 246 1 2462 2463 2464 2465 2466 2467 2468 2469 2470 247 1 -2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 PA TH TN TN TN TX VA VA VA AL AL AL AL AL AR GA GA KY LA LA ME MA MI MN MN MS MS MS MS NH NH NY NC NC NC ND PA PA PA TN TX VT VT VA VA VA WI AL AL AL AR AR AR CA LEHIGH OBION POLK SUMNER TIPTON GRAYSON FLOYD GILES ALEXANDRIA CITY JEFFERSON MARION MARSHALL TALLADEGA WALKER CHICOT CHEROKEE STEWART MARTIN IBERVILLE LINCOLN SOMERSET FRANKLIN IOSCO MORRISON TODD COAHOMA MARION PEARL RIVER SUNFLOWER GRAFTON SULLIVAN ROCKLAND HENDERSON LEE TRANSYLVANIA RICHLAND NORTHUMBERLAND SUS2UEHANNA WYOMING LINCOLN WHEELER CALEDONIA LAMOILLE BOTETOURT CHESTERFIELD SHENANDOAH WAUPACA BLOUNT ELMORE WINSTON CLEVELAND COLUMBIA CRITTENDEN COLUSA 148 148 148 148 148 148 148 148 148 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 149 150 150 150 150 150 150 150 D-47 ------- OBS STATE COUNTY VARSCORE 2185 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 250 1 2502 2503 2504 2505 2506 2507 2 5-0' 8 2509 2510 251 1 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2518 CT GA GA GA IN KA KY KY KY ME MN CIS MS ns OH PA TN TX TX VT WV UI MI AR AR AR GA GA IN KY KY LA ME MI ns ns NJ OK PA TN TN TX VA UA AL CO CT GA GA ID IN IN IN KY NEW HAVEN MC DUFFIE SUMTER WARREN BARTHOLOMEW KINGMAN HARRISON LIVINGSTON ROCKCASTLE ANDROSCOGGIN GOODHUE JACKSON LEFLORE 2UITMAN MEIGS MONTOUR WASHINGTON DAMSON WICHITA FRANKLIN BERKELEY FOREST SHAWANO CRAIGHEAD GRANT NEVADA BIBB FORSYTH SHELBY GRANT MASON BIENVILLE CUMBERLAND PRES2UE ISLE BOLIVAR COPIAH SALEM MAJOR LEBANON SHELBY WILLIAMSON BROOKS ROANOKE CITY KITSAP JACKSON RIO GRANDE TOLLAND CARROLL PAULDING MINIDOKA FAYETTE FULTON JASPER FRANKLIN 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 151 152 152 152 152 152 152 152 152 152 152 D-48 ------- OBS STATE COUNTY VARSCORE 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 257 1 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 KY KY KY MN MN MS no NY SC TN TX VT VT VA VA UI AL AL AL IN KY. KY KY LA LA LA ME MI MI MI MI NE NH NY NY PA TX TX WV UI AL AR GA ID IL KY KY LA MI MS NH NY OK PA HENRY HOPKINS NICHOLAS FILLMORE UABASHA HANCOCK STODDARD. WYOMING BEAUFORT RHEA UILBARGER CHITTENDEN GRAND ISLE GREENE RUSSELL FLORENCE BARBOUR BUTLER FAYETTE LAGRANGE CLARK MC LEAN SCOTT BOSSIER CALDUELL JACKSON PENOBSCOT DELTA JACKSON OTSEGO ROSCOMMON CHERRY CHESHIRE GENESEE JEFFERSON INDIANA ANDREWS CAMP JEFFERSON ASHLAND CALHOUN DESHA DADE LINCOLN MASON BUTLER CRITTENDEN UNION MACKINAC PRENTISS CARROLL ORLEANS LOVE PIKE" D-49 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 154 15-4 154 154 154 154 154 154 154 154 154 154 154 154 ------- OBS STATE COUNTY VARSCORE 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 26 10 26 1 1 26 12 26 13 26 14 26 15 2616 2617 26 18 26 19 2620 ,2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 PA TN VT VA VA WI MI AL AR GA IN IN KA KA KY KY KY KY MA MN MS MS NJ NY PA TX UI GA GA IN KY KY KY KY LA LA MI MN MS MO NY PA UI AL AL AR AR CT IL IL KY LA MD MI WAYNE GILES ESSEX AUGUSTA ROCKINGHAM CHIPPEMA RUSK DALLAS DALLAS MARE HARRISON KOSCIUSKO EDWARDS RENO FAYETTE JESSAMINE MUHLENBERG UOODFORD MIDDLESEX OLMSTED LAMAR PERRY HUNTERDON SCHENECTADY LANCASTER PANOLA PRICE COBB FLOYD STARKE ANDERSON BOURBON BRECKINRIDGE LINCOLN EAST BATON ROUGE WEBSTER MONTCALM BECKER COVINGTON DUNKLIN ONEIDA BRADFORD POLK GREENE MARENGO OUACHITA PHILLIPS WINDHAM HARDIN PULASKI OHIO LA SALLE CHARLES CALHOUN 154 154 154 154 154 '154 154 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 155 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 157 157 157 157 157 157 157 157 157 157 157 D-50 ------- OBS STATE COUNTY VARSCORE 2647 2643 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 266 1 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691! 2692 2693 2694 2695 2696 2697 2698 2699 2700 MI MI MS MS NH NY NY SC VA VA MI WI AL AL AL GA GA GA IL KY KY KY LA LA ME ME MI MI MS NJ NY TX TX TX UV MI HI MI AR CA GA GA GA KY ME MD MA MI MN NC MI MI MI AL MASON HEXFORD FORREST JEFFERSON DAVIS BELKNAP MONROE MAYNE CHARLESTON GREENSVILLE HANOVER BARRON MARINETTE LAMRENCE MONROE ST CLAIR GORDON THOMAS MUSCOGEE MASSAC BELL BOYLE EDMONSON CLAIRBORNE OUACHITA HANCOCK MASHINGTON BRANCH CHIPPEMA HALTHALL MARREN OSMEGO BAYLOR BOMIE MORRIS GREENBRIER LANGLADE SAMYER MOOD LEE KINGS CATOOSA DOUGHERTY RANDOLPH GRAYSON YORK PRINCE GEORGES HAMPSHIRE MECOSTA OTTER TAIL MADISON IRON MAR2UETTE OCONTO CHEROKEE 157 157 157 157 157 157 157 157 157 157 157 157 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 158 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 160 D-51 ------- OBS STATE COUNTY VARSCORE 2701 2702 2703 2704 2705 2706 2707 2708 2709 27 10 27 1 1 2712 2713 27 14 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 AL AL DE GA GA KY KY KY MN OK TX UI UI GA GA LA MD MI MN MO VA VA VA VA UI AL AL AL GA? /- LA MI MI MI NY PA VA VA VA VA VA VA UI UI UI AL AL AR GA LA ME MI MI MS NH HOUSTON MORGAN NEW CASTLE HARALSON JOHNSON CALOUELL NELSON OLDHAM CASS ELLIS HASKELL DOUGLAS UAUSHARA CLAY TREUTLEN RICHLAND KENT CRAUFORD STEARNS ST LOUIS CITY HENRICO BUENA VISTA CITY PETERSBURG CITY STAUNTON CITY MARATHON GENEVA LIMESTONE MADISON CHATTAHOOCHEE CONCORDIA BERRIEN GRAND TRAVERSE LUCE LEUIS LACKAUANNA EMPORIA CITY HARRISONBURG CITY HOPEUELL CITY RADFORD CITY UAYNESBORO CITY UINCHESTER CITY JUNEAU LINCOLN TAYLOR CRENSHAU ETOUAH MISSISSIPPI RICHMOND GRANT OXFORD ALLEGAN ST JOSEPH HARRISON MERRIMACK 160 160 160 160 160 160 160 160 160 160 160 160 160 161 161 161 16 16 16 16 16 16 16 161 161 162 162 .162 162 162 162 162 162 162 162 162 162 -162 162 162 162 162 162 162 163 163 163 163 163 163 163 163 163 163 D-52 ------- OBS STATE COUNTY VARSCORE 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 277 1 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 TN VA VA VA VA VA MI AL AL GA KY LA MI MN RI VA GA GA GA GA GA KY MD MA HA NC TN AL GA IN KY MN MS RI TX KY LA MI MI MN MS SC VA VA VA AL GA LA MI NV Ml MA NH NH MOORE PAGE ROCKBRIDGE UARREN BRISTOL CITY LEXINGTON CITY MENOMINEE ESCAMBIA LAUDERDALE BALDWIN SPENCER MOREHOUSE OCEANA CHISAGO BRISTOL CAROLINE CALHOUN GRADY JEFFERSON TMIGGS WASHINGTON WASHINGTON ST MARYS NORFOLK WORCESTER MOORE MAURY FRANKLIN BROOKS PULASKI SHELBY CROW WING GEORGE PROVIDENCE KNOX MERCER WEST CARROLL MANISTEE OSCODA HUBBARD STONE LEXINGTON ESSEX FRANKLIN CITY WILLIAMSBURG CITY WASHINGTON LAURENS TENSAS SCHOOLCRAFT CARSON CITY CITY PORTAGE BRISTOL HILLSBOROUGH ROCKINGHAM 163 163 163 163 163 163 163 164 164 164 164 164 164 164 164 164 165 165 165 165 165 165 165 165 165 165 165 166 166 166 166 166 166 166 166 167 167 167 167 167 167 167 167 167 167 168 168 168 168 168 168 169 169 169 D-53 ------- OBS STATE COUNTY VARSCORE 2809 2810 281 1 2812 28 3 28 4 28 5 28 6 28 7 28 8 28 9 2820 2821 2822 2823 2821 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 286 1 2862 SC WV MI AL GA HA HA KY MD MI MI MN MN NH NC VA GA GA GA GA KY LA MO NY VA AL CA CA GA KY KY KY LA MD VA AL CA GA GA HA KY LA NC SC TN VA VA AL AL AL AL CA KY MA RICHLAND MONROE UASHBURN CONECUH TAYLOR KAUAI MAUI TODD CALVERT MUSKEGON NEUAYGO ANOKA ISANTI STRAFFORD NASH SUSSEX CHARLTON CHATTOOGA WALKER WILKINSON WAYNE AVOYELLES PEMISCOT KINGS NEWPORT NEWS CITY COFFEE MERCED YOLO COFFEE CUMBERLAND HART TRIGG WEST BATON ROUGE QUEEN ANNES JAMES CITY HENRY SAN JOA2UIN PULASKI TOOMBS HONOLULU CHRISTIAN FRANKLIN HYDE CHESTERFIELD BEDFORD KING WILLIAM SOUTHAMPTON COLBERT COVINGTON MOBILE PIKE SOLANO LYON SUFFOLK D-54 169 169 169 170 170 170 170 170 170 170 170 170 170 170 170 170 171 171 171 171 171 171 171 171 171 172 172 172 172 172 172 172 172 172 172 173 173 173 173 173 173 173 173 173 173 173 173 174 174 174 174 174 174 174 ------- OBS STATE COUNTY VARSCORE 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2830 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 289 1 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 291 1 2912 2913 2914 2915 2916 PA VA VA GA GA GA KY LA MD NC VA VA VA VA VA AL FL FL GA GA MI NJ VA FL GA GA GA GA GA KY NY VA VA VA DE DE GA GA GA GA GA KY KY KY KY LA MD MI NJ NC SC TN VA VA CRAWFORD KING GEORGE PRINCE GEORGE BARTOU DODGE SCREVEN LOGAN CATAHOULA ANNE ARUNDEL DARE CHARLES CITY KING AND QUEEN NORFOLK CITY POBUDSON PORTSMOUTH CITY BALDUIN CALHOUN HOLMES BEN HILL WHEELER KALKASKA CAMDEN WESTMORELAND JACKSON BLECKLEY MARION POLK WHITFIELD UILCOX PULASKI QUEENS RICHMOND SURRY VIRGINIA BEACH CITY KENT SUSSEX CANDLER DOOLY EARLY JENKINS TURNER CLINTON MARION MEADE MARREN POINTE COUPEE TALBOT LAKE GLOUCESTER MARTIN KERSHAU MARSHA.LL CLARKE HAMPTON CITY 174 174 174 175 175 175 175 175 175 175 175 175 175 175 175 176 176 176 176 176 176 176 176 177 177 177 177 177 177 177 177 177 177 177' 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 178 D-55 ------- OBS STATE COUNTY VARSCORE 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 296 1 2962 2963 2964 2965 2966 2967 2968 2969 2970 AL CA GA GA GA GA GA HA LA LA MD MO TN VA WI MI CA GA GA KY VA VA VA VA GA GA GA GA GA TN VA VA FL GA GA GA GA KY KY KY MD MM MO NC FL GA GA GA GA KY NC RI SC TN DALE SUTTER APPLING DECATUR IRMIN MONTGOMERY TERRELL HAWAII MADISON ST LANDRY SOMERSET NEW MADRID DAVIDSON ISLE OF WIGHT ADAMS VILAS SACRAMENTO CHATHAM EMANUEL LARUE MIDDLESEX NORTHUMBERLAND CHESAPEAKE CITY SUFFOLK CITY BULLOCH COL2UITT CRISP GLYNN WORTH WILSON GLOUCESTER LANCASTER BRADFORD CLINCH JEFF DAVIS TIFT WEBSTER CASEY GREEN HARDIN DORCHESTER BIG STONE MISSISSIPPI HALIFAX ESCAMBIA LANIER MC INTOSH MITCHELL TELFAIR TAYLOR JOHNSTON WASHINGTON GEORGETOWN RUTHERFORD 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 179 180 180 180 180 180 180 180 180 181 181 181 181 181 181 181 181 182 182 182 182 182 182 182 182 182 182 182 182 183 183 183 183 183 183 183 183 183 183 D-56 ------- OBS STATE COUNTY VARSCORE 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 30 1 1 30 12 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 TN VA MI FL FL GA GA MD MN NC WI FL GA KY KY KY MD KG NC NC NC SC SC VA FL MD NC NC NC NC RI SC SC SC VA KY KY MN NC NC NC NC VA GA KY NC FL GA KY NJ NC NC NC VA TROUSDALE YORK BURNETT JEFFERSON MONROE LEE PIERCE WORCESTER UADENA NORTHAMPTON ONEIDA UNION BERRIEN ADAIR MONROE RUSSELL WICOMICO EDGECOMBE GREENE HERTFORD ROBESON AIKEN JASPER ACCOMACK CLAY CAROLINE HARNETT SCOTLAND TYRRELL WASHINGTON KENT BERKELEY COLLETON DORCHESTER NEU KENT BARREN METCALFE SHERBURNE BERTIE PASBUOTANK PITT RICHMOND NORTHAMPTON CAMDEN ALLEN BEAUFORT GADSDEN EFFINGHAM SIMPSON BURLINGTON COLUMBUS PER2UIMANS WILSON MATHEWS 183 183 183 184 184 184 184 184 184 184 184 185 185 185 185 185 185 185 185 185 185 185 185 185 186 186 186 186 186 186 186 186 186 186 186 187 187 187 187 187 187 187 187 188 188 188 189 189 189 189 189 189 189 189 D-57 ------- OBS STATE COUNTY VARSCORE 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3033 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 GA GA NJ NJ NC TN GA GA NC GA GA MA NC NC NC SC SC LA NC GA GA SC SC GA GA. SC SC FL GA GA GA NC SC SC SC SC NY NC NC SC SC FL NC NC SC SC FL NC FL NY GA MA NC NC BACON LIBERTY CAPE MAY CUMBERLAND CRAVEN SMITH ATKINSON LONG CAMDEN COOK SEMINOLE ESSEX GATES JONES PAMLICO BARNUELL CALHOUN EAST CARROLL CARTERET BRYAN LOUHDES DARLINGTON MARLBORO BAKER MILLER DILLON MARION NASSAU BRANTLEY EVANS TATTNALL HOKE FLORENCE LEE ORANGEBURG WILLIANSBURG SUFFOLK CUMBERLAND SAMPSON CLARENDON SUMTER INDIAN RIVER PENDER WAYNE ALLENDALE BAMBERG ALACHUA LENOIR LIBERTY NASSAU ECHOLS BARNSTABLE BRUNSWICK DUPLIN 190 190 190 190 190 190 191 191 191 192 192 192 192 192 192 192 192 193 193 194 194 194 194 195 195 195 195 196 196 196 196 196 196 196 196 196 197 197 197 197 197 198 198 198 198 198 199 199 200 200 202 202 202 202 D-58 ------- OBS STATE COUNTY VARSCORE 3079 3080 3081 3082 3083 30814 3085 3086 3087' 3088 3089 3090 309 1 3092 3093 3094 3095 3096 3097 3098 30-99 3100 310 1 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 31 13 3114 31 15 3116 31 17 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 NC FL GA MA NJ NC SC FL MA NC NC FL FL NJ FL FL SC FL MA FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL FL NC FL FL FL FL FL FL FL FL FL FL FL FL FL NEW HANOVER LEON WAYNE DUKES OCEAN BLADEN HAMPTON WASHINGTON PLYMOUTH CURRITUCK CHOUAN MADISON SANTA ROSA ATLANTIC CHARLOTTE HIGHLANDS HORR"Y GULF NANTUCKET ORANGE BREVARD FRANKLIN LEVY POLK VOLUSIA WAKULLA BAKER BAY DIXIE DUVAL PUTNAM GLADES LAFAYETTE PALM BEACH PASCO WALTON COLUMBIA LEE SARASOTA TAYLOR ONSLOW OSCEOLA FLAGLER MARTIN OKEECHOBEE ST LUCIE OKALOOSA HENDRY ST JOHNS CITRUS DE SOTO HARDEE MANATEE HERNANDO 202 203 203 203 203 203 203 204 204 204 205 206 206 206 207 207 207 209 209 210 212 21.2 212 212 212 2 12 213 213 213 2 13 213 215 215 216 2 16 216 2 17 2 17 217 217 217 218 219 219 2 19 219 220 221 221 222 222 222 222 224 D-59 ------- OBS STATE COUNTY VARSCORE 3133 FL GILCHRIST 226 3134 FL MARION 227 3135 FL HAMILTON 229 3136 FL LAKE 229 3137 FL HILLSBOROUGH 231 3138 FL SEMINOLE 231 3139 FL SUMTER 234 3140 FL PINELLAS 235 3141 FL SUWANNEE 235 3142 FL COLLIER 240 3143 FL BROUARD 245 3144 FL DADE 245 D-60 ------- APPENOIX-E DESCRIPTION OF MEASUREMENT ERROR ANALYSIS ------- APPENDIX-E The 3,144 counties were stratified by Heath regions. The sample of 223 counties described in detail in Appendix-B is referred to as the large sample and the sample of 96 counties as the small sample. Both samples were allocated proportionally to the strata. Sample counties were selected from within strata with equal probability and with replacement. The small sample is an equal probability, with replacement subsample of the large sample. The distribution of the two samples are shown in Table E-l. Note that Hawaii is omitted from the large sample and Hawaii, Alaska and the Colorado Plateau and Wyonihg Basin Region are omitted from the small sample. Thus, the inference: that can be drawn from each sample are somewhat different, neither being fully national. The average VARSCORE computed from the large sample is 132.4 plus or minus 1.92. That from the small sample is 137.4 plus or minus 3.67 (The VARSCORE computed for the 3,144 data base was 134.1 plus or minus 1.0). The plus and minus quantities are twice the standard error of the estimates. The sampling variances for each sample receive a contribution from, (a) the county to county differences in VARSCORES, and, (b) some uncertainty associated with determining the scores for each county. An assessment of the separate components is complicated by correlations that arise due to a. single individual scoring several counties. The sampling design does not allow the correlations to be quantitated. Consequently, the results are presented for a range of values of the correlations. County to county differences are maximized relative to the measurement" error if the correlations are small or zero. Negative correlations are unlikely and are not considered. Because different contractors determined the two scores for a county, the correlations between the pairs of scores are taken as zero. E-l ------- TABLE E-l. Distribution of Quality Assurance Samples By Ground Water Regions TOTAL GROUND WATER COUNTIES IN REGION THE REGION 1 2 3 4 5 6 7 8 9 10 11 12 13 Western Mountain Ranges Alluvial Basins Columbia Lava Plateau Colorado Plateau and Wyoming Basin High Plains Nonglaciated Central Glaciated Central Piedmont and Blue Ridge Northeast and Superior Uplands Atlantic and Gulf Coastal Plain Southeast Coastal Plain Hawaii Alaska TOTAL 129 119 65 29 124 895 746 215 161 519 109 4 29 3144 SAMPLE LARGE SAMPLE 10 9 5 2 9 63 52 16 12 35b 7 0 2 222 SIZE SMALL SAMPLE 4 3 2 0^ 4 27 23 7 5 16 3 0 Q3 94 a Sample size regarded as 0 because only 1 county coded. b Craighead County, Arkansas was recoded but not included in error calculations because of an incorrect FIPS code. E-2 ------- The large sample results are considered first. The measurement error variance is denoted by V£ , and the county to county differences in VARSCORES are denoted by Vp. Using the extreme values of the unknown correlation (zero and one) leads to the estimates, 0:806 < VP < 32.911, Vy <_ 0.106. The large sample result suggests that ground-water vulnerability strata constructed using VARSCORES will likely reflect the variability of the scoring procedure more than actual county differences. A substantially different interpretation can be qiven :he result, however, if the schedule associated with the recod-og of the large sample is considered. All counties in the large sample were receded in only 1 week. An argument exists, therefore, that a valid measurement error assessment is not provided by the large sample because sufficient time was not available to accurately apply the numerical coding. The small sample suffers less from possible scheduling problems and, indeed, the results from the small sample estimate a smaller measurement error component. Comparable results for the small .sample are that, 1.222 < V. < 22.327, VU 1 2.140. Alaska and the Colorado Plateau and Wyoming Basin Region, both highly variable Heath regions, were not included in the small sample. The results, therefore, are not unequivocable. Table E-2 shows the results obtained for values of the correlation of 0.0, 0.025, 0.05 and 0.10, The results indicate that, if the correlations are less than about 0.025, the VARSCORES in the small sample are determined more by real county differences than by measurement error. Because the troublesome correlations cannot be estimated from the data at hand, the measurement error assessment is less definitive than might be desired. However, the distribution of counties classified as E-3 ------- TABLE E-2. Measurement Error Variances and County VARSCORE Differences For a Range of Correlations VARSOCRE VALUE OF MEASUREMENT DIFFERENCES CORRELATION ERROR VARIANCE AMONG COUNTIES 0.0 1.222 2.140 0.025 1.749 1.612 0.05 2.277 1.084 0.10 3.332 0.029 E-4 ------- vulnerable based on their VARSCORES generally agrees with other assessments of the areas in question. Counties are, of course, quite variable with respect to hydrogeologic characteristics, making any attempt to classify whole counties sensitive to measurement error issues. The scoring procedure used in this assessment, although inexact at the county level, nonetheless provides useful information for stratifying the first stage area frame for the National Pesticide Survey. E-5 ------- APPENDIX-F DESCRIPTION'AND RESULTS OF QUALITATIVE CHECK ------- APPENDIX-F As discussed in Section 3.5, the six counties selected for separate coding by several nationally recognized hydrogeologists were not included as part of the quality assurance program. This coding effort was included in the study only to display qualitatively the range of variability that might be expected among a set of experts in •i the field of hydrogeology. As such, it is not a statistical sample of the total data base. The six counties were selected primarily to ensure that a maximum number of ground-water regions and diverse hydrogeologic settings would be represented. A brief description of the hydrogeologic settings of the six counties follows: Summit County, Utah This county lies within the ground-water regions of the Western Mountain Ranges and the Colorado Plateau and Wyoming Basin. Summit County is largely mountainous and is characterized by alpine glacial topography and pre-Cambrian geology, erosional and structurally controlled alluvial valleys, and large upland areas underlain by consolidated and fractured sedimentary rocks. Manatee County, Florida This county lies entirely within the Southeast Coastal Plain ground- water region. Manatee-county is characteristic of the Gulf coastal lowland and is topographically controlled by a series of Pleistocene- age marine terraces, underlain by a thick sequence of limestone and dolomite and overlain by sands, clays and marls with interbedded limestone. Merced County, California This county straddles the-Alluvial Basins and Western Mountain Ranges ground-water regions. Merced County consists predominantly of low alluvial plains, and coalescing alluvial fans of low relief in the southwest, with significant dissection of upland topography as well as river terrace and flood plain development in the northeast. F-l ------- Barber County, Kansas This county lies within the Non-Glaciated Central and the High Plains ground-water regions. Barber County is characterized by low relief, thin soil cover, sparse alluvium less than 40 feet thick, and is underlain by low-permeability shales and fine-grained sandstones. Caroline County, Virginia This county falls within the Atlantic and Gulf Coastal Plain and the Piedmont and Blue Ridge ground-water regions. Caroline County has a predominantly coastal plain topography of moderately low relief and is underlain by gently, dipping unconsolidated and semi-consolidated sand, silt and clay interbeds; in the extreme northwest, the county is characterized by a thick regolith underlain by fractured bedrock of sedimentary, igneous, and metamorphic origin. Daviess County, Missouri This county lies entirely within the Glaciated Central ground-water region. Daviess County is generally characterized by dissected till plains, frequently underlain by bedded sedimentary rocks, or, less commonly,-glacial outwash. The coding approaches used by the three groups of hydrogeological experts varied in both the amount of time devoted to each county and the level of research necessary to complete each form. Those forms coded by the U.S. Geological Survey were distributed to appropriate experts within six District Offices for the following respective counties: Summit County Salt Lake City, Utah Manatee County Tampa, Florida Merced County Sacramento, California Barber County Lawrence, Kansas Caroline County Richmond, Virginia Daviess County Rolla, Missouri The coding of all the counties by the U.S. Geological Survey hydroge- ologists took place during the month of September 1985. Those forms coded by Dr. Jay Lehr of the National Water Well Association were completed over a 4-day period in early October 1985. Many of the rankings made by Dr. Lehr were based on his personal experience with a given area. Mr. Ralph Heath had constraints on the amount of time he could devote to the coding exercise. Consequently, nearly all of his rankings are based on general experience in a given location and from regional reports. F-2 ------- Each of the coders had specific comments and recommendations concerning the use of the numerical scheme for a county-level ranking effort. The representative of the USGS Salt Lake City District Office found it inappropriate to come up with one overall Agricultural DRASTIC score to cover a county as large as Summit County, Utah (1,800 square miles). Dr. Lehr found it an interesting challenge to assemble all the information necessary to enable county-wide generalizations of •? hydrogeologic conditions. Mr. Heath had some comments questioning the usefulness of such factors as impact of vadose zone media and hydraulic conductivity in the overall DRASTIC system and felt that assigning index variability values to scores that were based on county-level generalizations was not meaningful. The experts' ranges of numerical scores for a given county (Table F-l) varied from a low spread of VARSCORES of 19 points (Manatee County, Florida) to a larger spread of 58 points (Daviess County, Missouri). The standard errors (standard deviation divided by the mean) associated with different scores coded by the experts ranged from 5.8 for Manatee, County Florida to 16.9 for Daviess County, Missouri. In general, the standard errors in numerical scores between experts are similar to those for the same counties coded by the EPA contractors (Table F-l). Estimates of the coefficient~of variation of the scores for the 6 qualitative check counties coded by the 3 experts and the 3 contractors are presented in Table F-2. The coefficient of variation for a given county is defined as the standard deviation divided by the mean, times 100. The estimates of the coefficient of variation values ranged from 9 to 21 percent for the 6 qualitative check counties. The average coefficient of variation for the qualitative check counties, with 6 observations per county, was 13 percent of the mean for those 6 counties. F-3 ------- Table F-l. SUMMARY OF QUALITATIVE CHECK DRASTIC FACTOR Barber, KA Carol Ine, VA Da v less, MO Manatee, FL Merced, CA Summit, UT EXPERTS Weighted Components of Agricultural DRASTIC Scores USGS LEHR HEATH 125 1240 151 166 178 148 93 151 128 211 207 226 158 129 145 136 102 85 Standard Mean Error 133 8.8 164 8.7 124 16.9 215 5.8 144 8.4 108 15.0 CONTRACTORS Weighted Components of Agricultural' DRASTIC Scores WES WCC RTI 128 150 128 167 130 158 125 90 140 222 177 192 129 149 170 102 95 99 Standard Mean Error 135 7.3 152 II. 1 118 14.8 197 13.2 149 11.8 98 2.0 COMPOSITE Standard Mean Error 134 5.2 158 6.9 121 10.1 206 7.6 147 6.6 103 7.1 ------- Table F-2. STATISTICAL EVALUATION CONCERNING THE MULTIPLE CODING OF THE QUALITATIVE CHECK COUNTIES County Barber, KA Caroline, VA Daviess, MO Manatee, FL Merced, CA Summit, UT Mean VARSCORE 134 158 121 206 147 103 Standard Deviation 13 17 25 19 16 17 Coefficient of Variation % 9 11 21 9 n 17 F-5 ------- A comparison of the components of the numerical scores for each of the six qualitative check counties is also included in this Appendix (Tables F-3 to F-8). The county with the highest standard error associated with scores generated by the experts is Daviess County, Missouri. Most of the scoring variability in this county is attributable to differences in opinion on the vadose zone media (standard error of 11.5), net recharge (standard error of 9.7), and depth to water (standard error of 8.0). Standard errors for the other hydrogeologic factors in the county were significantly lower (Table F-3). The standard error associated with scores coded by the experts for Summit County, Utah was the second highest. Most of the scoring variability in this county (Table F-4) is attributable to differences in opinion on net recharge (standard error of 4.3), soil media (standard error of 3.5) and aquifer media (standard error of 3.4) The standard errors for the other hydrogeological factors in the county were significantly lower. The standard errors in VARSCORE values coded by the experts for Barber County, Kansas, Caroline County, Virginia, and Merced County, California were similar at 8.8, 8.7 and 8.4, respectively. The majority of the scoring variability in Barber County, Kansas (Table F-5) is due to differences in opinion on vadose zone media (standard error of 5.3), soil media (standard error of 5.3) and depth to water (standard error of 4.7). The standard errors for the other hydrogeologic factors in the county ranged from 0.4 to 2.7. The major factors contributing to standard error in VARSCORE determinations by the experts in Caroline County Virginia were net recharge, aquifer media, and vadose zone media, all with a standard error of 3.2 (Table F-6). The variablity associated with the scores for Merced County, California pertains to the way the coders accounted for artificial recharge. The standard error associated with net recharge in the county is 9.7, while the range in standard errors for the other hydrogeologic factors is from 0.4 to 5.4 (Table F-7). The standard errors for the seven factors contributing to the VARSCORE determinations for Manatee County, Florida are presented in Table F-8. F-6 ------- Table F-3. RESULTS OF QUALITATIVE CHECK: Davless County, Missouri DRASTIC FACTOR Depth to Water Net Recharge Aqul far Media Soil Media Topography Impact of Vadose Conductivity Weighted Score EXPERTS Weighted Components of Agricultural DRASTIC Scores USGS LEHR HEATH 25.5 27.0 40.0 4.8 24.0 12.0 19.8 21.6 18.0 18.8 21.8 19.0 17.4 23.7 27.0 4.0 24.0 4.0 2.5 8.8 8.0 93 151 128 Standard Mean Error 30.8 4.6 13.6 5.6 19.8 1.0 19.9 1.0 22.7 2.8 10.7 6.7 6.4 2.0 124 16.9 CONTRACTORS Weighted Components of Agricultural DRASTIC Scores WES WCC RTI 35.8 9.5 28.3 12.0 4.0 4.0 24.0 19.2 22.8 18.8 19.0 28.0 27.9 23.0 27.3 4.0 12.0 26.4 2.9 3.2 3.1 125 90 140 Standard Mean Error 24.5 7.8 6.7 2.7 22.0 1.4 21.9 3.0 26.1 1.5 14.1 6.6 3.1 O.I 118 14.8 COMPOSITE Standard Mean Error 27.7 4.3 10. 1 3.2 20.9 0.9 20.9 1.5 24.4 1.6 12.4 4.3 4.8 1.2 121 10. 1 ------- Table F-4. RESULTS OF QUALITATIVE CHECK:' Summit County, Utah DRASTIC FACTOR Depth to Water Net Recharge Aquifer Media Soil Media Topography Impact of Vadosc Conductivity Weighted Score EXPERTS Weighted Components of Agricultural DRASTIC Scores USGS LEHR HEATH 10.5 12.5 6.0 19.0 II. 0 4.0 20.6 12.8 9.0 44.8 33.3 35.3 12.3 10.2 13.8 23.4 18.0 15.2 5.4 3.7 2.0 136 102 85 Standard Mean Error 9.7 1.9 11.3 4.3 14.1 3.4 37.8 3.5 12.1 1.0 18.9 2.4 3.7 1.0 108 15.0 CONTRACTORS Agricultural DRASTIC Scores WES WCC RTI 15.5 8.0 6.0 8.4 4'. 8 7.6 13.8 19.8 15.6 29.3 27.5 36.3 13.2 8.1 9.0 19.2 20.8 20.4 2.2 6.0 3.6 102 95 99 Standard Mean Error 9.8 2.9 6.9 I.I 16.4 1.8 31.0 2.7 10. 1 1.6 20.1 0.5 3.9 I.I 98 2.0 COMPOSITE Standard Mean Error 9.8 1.6 9.1 2.2 15.3 1.8 34.4 2.5 II. 1 1.0 19.5 I.I 3.8 0.7 103 7.1 00 ------- Table F-5. RESULTS OF QUALITATIVE CHECK. Barber County, Kansas DRASTIC FACTOR Depth to Water Net Recharge Aquifer Media Soil Media Topography Impact of Vadose Conductivity Weighted Score EXPERTS Weighted Components of Agricultural DRASTIC Scores USGS LEHR HEATH 20.4 15.0 31.0 4.0 4.0 12.0 20.5 19.5 19.2 28.8 32.0 46.0 20.9 25.4 29.4 24.0 24.0 8.0 6.6 4.1 5.6 125 124 151 Standard Mean Error 22.1 4.7 6.7 2.7 19.7 0.4 35.6 5.3 25.2 2.5 18.7 5.3 5.4 0.7 133 8.8 CONTRACTORS Weighted Components of Agricultural DRASTIC Scores WES WCC RTI 16.5 34.6 31.0 25.6 4.0 7.6 19.8 24.0 13.8 28.0 19.3 24.3 27.0 29.1 21.3 8.0 24.0 24.8 3.0 15.2 5.6 128 150 128 Standard Mean Error 27.2 5.4 12.4 6.7 19.2 3.0 23.9 2.5 25.8 2.3 18.9 5.5 7.9 3.7 135 7.3 COMPOSITE Standard Mean Error 24.7 3.4 9.5 3.5 19.5 1.3 29.7 3.7 25.5 1.5 18.8 3.4 6.7 1.8 134 5.2 I UD ------- Table F-6. RESULTS OF QUALITATIVE CHECK: Caroline County, Virginia DRASTIC FACTOR Depth to Water Net Recharge Aquifer Media Soil Media Topography Impact of Vadosc Conductivity * Weighted Score EXPERTS Weighted Components of Agricultural DRASTIC Scores USGS LEHR HEATH 30.3 39.2 36.0 27.6 36.0 25.6 19.0 22.8 12.0 33.7 32.8 34.0 29.7 22.2 27.6 19.6 18.8 9.6 6.5 5.8 3.2 166 178 148 Standard Mean Error 35.2 2.6 29.7 3.2 17.9 3.2 33.5 0.4 26.5 2.2 16.0 3.2 5.2 1.0 164 8.7 CONTRACTORS Weighted Components of Agricultural DRASTIC Scores WES WCC RTI 33.5 8.5 37.5 28.4 16.0 30.4 24.0 21.6 21.6 29.3 20.5 23.5 27.2 28.2 21.7 21.0 24.0 16.0 3.7 II. 0 7.6 167 130 158 Standard Mean Error 26.5 9.1 24.9 4.5 22.4 0.8 24.4 2.6 25.7 2.0 20.3 2.3 7.4 2.1 152 -ll.l COMPOSITE Standard Mean Error 30.8 4.6 27.3 2.7 20.2 1.8 29.0 2.3 26.1 1.4 18.2 2.0 6.3 1.2 158 6.9 ------- Table F-7. RESULTS OF QUALITATIVE CHECK: Merced County, CalIfornla DRASTIC FACTOR Depth to Water Net Recharge Aquifer Media Soil Media Topography Impact of Vadosc Conductivity Weighted Score EXPERTS Weighted Components of Agricultural DRASTIC Scores USGS LEHR HEATH 15.5 6.0 24.8 36.0 11.2 4.0 24.0 22.6 23.1 30.0 34.3 33.0 24.5 18.6 27.8 24.0 23.6 22.2 4.2 12.7 10.5 158 129 145 Standard Mean Error 15.4 5.4 17.1 9.7 23.2 0.4 32.4 1.3 23.6 2.7 23-. 3 0.5 9.1 2.5 144 8.4 CONTRACTORS Weighted Components of Agricultural DRASTIC Scores WES WCC RTI 18.1 35.7 41.3 9.6 9.2 34.4 21.0 23.1 19.7 25.0 25.8 27.8 20.7 24.0 22.9 27.2 18.4 19.6 7.0 12.6 4.2 129 149 170 Standard Mean Error 31.7 7.0 17.7 8.3 21.3 1.0 26.2 0.8 22.5 1.0 21.7 2.8 7.9 2.5 149 11.8 COMPOSITE Standard Mean Error 23.6 5.4 17.4 5.7 22.3 0.7 29.3 1.6 23.1 1.3 22.5 1.3 8.5 1.6 147 6.6 ------- Table F-8. RESULTS OF QUALITATIVE CHECK: Manatee County, Florida DRASTIC FACTOR Depth to Water Net Recharge Aquifer Media Soil Media Topography Impact of Vadose Conductivity Weighted Score EXPERTS Weighted Components of Agricultural DRASTIC Scores US6S LEHR HEATH 48.0 43.0 44.5 32.8 36.0 36.0 24.0 24.0 30.0 43.7 42.0 37.6 30.0 28.2 30.0 30.4 24.0 32.0 2.0 9.9 16.0 211 207 226 Standard Mean Error 45.2 1.5 34.9 I.I 26.0 2.0 41.1 1.8 29.4 0.6 28.8 2.4 9.3 4.1 215 5.8 CONTRACTORS Weighted Components of Agricultural DRASTIC Scores WES WCC RTI 50.0 6.5 49.0 36.0 24.8 26.4 24.3 28.2 21.6 45.0 43.0 36.0 30.0 29.8 30.0 31.6 33.6 26.4 4.6 II. 0 2.3 222 177 192 Standard Mean . Error 35.2 14.3 29.1 3.5 24.7 1.9 41.3 2.7 29.9 0.0 30.5 2.1 6.0 2.6 197 13.2 COMPOSITE Standard Mean Error 40.2 6.8 32.0 2.1 25.4 1.3 41.2 1.5 29.7 0.3 29.7 1.5 7.6 2.3 206 7.6 I I—• ro ------- APPENDIX G DESCRIPTION OF ADJUSTMENTS TO ORIGINALLY CODED DATA BASE ------- APPENDIX-G INTRODUCTION Several preliminary maps of ground-water vulnerability were produced from the originally coded data base. A number of areas on these preliminary maps stood out in obvious contrast to surrounding states and/or counties as a result of- differences in opinion between coders on the ranking of individual DRASTIC factors. It was apparent that some of the areas of greatest contrast needed to be resolved prior to any further refinement of the categories of ground-water vulner- ability or use of the data base for stratifying the National Pesticide Survey sampling frame. A reevaluation process was. conducted by RTI in December 1985 with the following objectives: 0 to develop and evaluate computer-generated maps of the individual DRASTIC factors on a regional scale in an attempt to further identify unusual areas or areas of greatest contrast; • to attempt to briefly resolve, from a regional perspective, some of the areas of greatest contrast; • to revise portions of the originally coded 'data base in an attempt to improve the general reliability of the data base; • to assess different categories of ground-water vulnerability and evaluate how they compare with regionally known hydrogeo- logic conditions; and • to determine the most appropriate category of ground-water vulnerability to serve the needs of the National Pesticide Survey. Three categories were selected for each DRASTIC factor for sorting the originally coded data base and constructing computer-generated maps. A single weighted rating was selected for each particular category to reflect the predominant condition coded for each county. These weighted ratings were grouped into three categories for convenience in making regional comparisons and, therefore, were not always true reflections of the actual county conditions, particularly in counties with highly variable conditions. 6-1 ------- A review of the individual plots of the originally coded DRASTIC factors revealed several sources of the regional contrasts and inconsistencies that were observed on the working plots of different ground-water vulnerability categories. The greatest contrasts are briefly described by geographical areas in the following subsections. Specific adjustments that were made to the originally coded data base are provided in the following sections along with the descriptions for each geographical area. These adjustments are also listed as adjusted VARSCORES in Appendices A and C. The most notable changes to the originally coded data base included the depth to water, net recharge, and aquifer media factors. Relatively few revisions were made for hydraulic conductivity, and no changes were made in the original data base for soil media (one of the more difficult factors to reevaluate in a short time frame) or topography (regarded as one of the most reliable factors for the scale of this project). Sources of information used to make the adjustments are also indicated and primarily included contacts with hydrologists within district offices of the U.S.G.S.; the National Water Summary recently published (1984) by the U.S.G.S.; overviews of the regional inconsistencies by Mr. Ralph C. Heath and Mr. Harry E. LeGrand; and personal knowledge or experience about hydrogeologic conditions in certain regions. Great Lakes - Midwestern States The depth to water map indicated a contrast in the originally coded data base concerning ground-water depths east of the Mississippi River (Illinois, Indiana, and Ohio) versus west of the Mississippi River (Iowa and Missouri). A related contrast was also apparent in the coding of aquifer media in Iowa, Missouri, and Illinois. Gross aquifer characteristics in this region (Heath, 1984; U.S.G.S., 1984) suggest that the actual ground-water vulnerability differences due to these factors is probably not as great as originally coded. It appeared that the contrasts more reflected the differences of opinion between coders with regard to the importance of shallow aquifer systems within the glacial drift in these areas than actual hydrogeologic differences. G-2 ------- To address this issue, representatives of the U.S.G.S. and several state agencies were contacted with questions concerning the extent, thickness, water-bearing characteristics, and potential use of sand and gravel lenses within the glacial drift in this region (Missouri Geological Survey, 1985; Illinois Geological Survey, 1985; U.S. Geological Survey, 1985 a and b). In addition, several national, regional and state references were employed to gain a better •; understanding of the bedrock aquifer conditions (Knight, 1962; Burger et al., 1971; U.S.G.S., 1984; Todd, 1983; Coble, 1971; Twenter and Coble, 1965; Piskin and Bergstrom, 1975; Eagon, 1973; Wayne, 1958). The revisions made to the data base were as follows: Missouri • revised depth to water percentages in all counties within the glacial drift area of northern Missouri to reflect relatively shallow unconfined aquifers commonly used for farm supply. • revised depth to water, aquifer media, and impact of the yadose zone media percentages in several counties along the Mississippi and Missouri Rivers to reflect shallow ground-water occurrence in alluvial aquifers. t revised net recharge in extreme southeastern counties to agree with recharge revisions to the Mississippi embayment. Iowa • revised depth to water in several counties in southern and south- eastern Iowa to reflect shallow unconfined aquifers in the glacial drift and along the Mississippi R4ver. Illinois, Indiana, Western Ohio • revised the depth to water, aquifer media and impact of vadose zone in all counties within the glacial drift areas to reflect relatively shallow unconfined aquifers commonly used for farm supply. • revised depth to water, aquifer media and impact of vadose zone media in all counties with sigificant ground-water supplies in relatively deep bedrock aquifers. • revised depth to water, aquifer media and impact of vadose zone media in counties near rivers or major streams to reflect shallow ground-water occurrence in alluvial aquifers. 6-3 ------- Southwestern United States One of the originally coded ground-water vulnerability maps depicted the southwestern United States (Nevada, Arizona, New Mexico, southeastern California, and parts of Utah and Colorado) as moderately vulnerable. Counties in this region fall largely within the Colorado Plateau or Alluvial Basins ground-water province where permeable aquifers exist at substantial depths. A review of the original coding for depth to water and aquifer media in Arizona, western Utah, Nevada, and southeastern California revealed that no significant revisions to the DRASTIC factors were required to bring the scores more into agreement with known hydrogeologic conditions in the area. Most of the area was coded as haying permeable aquifers at depths greater than 100 feet. While such a description is true, it may not adequately portray the degree of protection provided by substantially deeper water tables. For this reason, it was felt that some revision to the VARSCORES were necessary. Other contrasts that became apparent during the review of the original coding of this area concerned the aquifer media and hydraulic conductivity in seven counties in New Mexico and one county in Arizona, and the depth to water in eight Colorado counties. Revisions to these counties were based predominantly on a review of published reports (U.S.G.S., 1984) and on assumptions made in the original coding of the surrounding counties. A final revision to this region involved the net recharge values in portions of 16 counties in the Central Valley of California to reflect artificial ground-water recharge in the area (Heath, 1985; U.S.G.S., 1984). One apparent inconsistency in the data base concerns the absence of consideration given to artificial recharge in additional areas of the Southwest. The counties in this area of the United States tend to be large in areal extent with only small, localized pockets of agricultural development. In some of these localized areas, irrigation and artificial recharge practices are extensively used. The exact percentage of any given county to which artificial recharge considerations are pertinent does not appear to be well documented. In most cases, however, the estimated percentage of the county to which artificial recharge considerations might be applied 6-4 ------- is generally less than about 40 percent. In many counties, such consideration would not cause a sufficient change in VARSCORE to cause a misclassification of the vulnerability category. While some counties in this area might be misclassified by as much as one category of vulnerability, (e.g. Yuma, Arizona), no counties appear to be misclas- sif ied by two categories on the basis of lower net recharge values. For this reason, in combination with the lack of exact information •t concerning the degree of artificial recharge in the area, additional revisions to the data base for artificial recharge in the Southwest were considered unnecessary. The adjustments made to the southwestern United States were: Arizona • subtracted 15 points under the Index Variability category for all counties in order to account for the extremely deep water-table conditions. t revised the aquifer media and hydraulic conductivity for Green lee County to reflect 60 percent of the county dominated by basin-fill aquifers, 30 percent of the county covered by igneous and metamorphic rocks, and 10 percent of the county covered by fractured basalt. Nevada t modified the depth to water slightly to emphasize the deeper aquifers in the 11 counties that fall within the Alluvial Basins ground-water province. • subtracted 10 points under the Ind'ex Variability category for the 11 Alluvial Basins counties in order to account for deeper water- table conditions. California • subtracted 10 points under the Index Variability category for five counties in the Alluvial Basins province and along the Nevada border. This revision was to account for deeper water-table conditions in this area. • modified the depth to water slightly in Imperial County to emphasize the deeper aquifer system. • revised the net recharge (to 10 or more inches per year) for portions of 11 counties in the Central Valley area to account for artificial recharge. New Mexico • revised the aquifer media and hydraulic conductivity in five counties to reflect a greater percentage of the county dominated by basin-fill aquifers, and a lesser percentage of the county covered by fratured basalt aquifers. G-5 ------- New Mexico (continued) • revised the aquifer media and hydraulic conductivities for Catron and Grant counties to reflect a greater percentage of the counties dominated by igneous and metamorphic rocks and a lesser percentage of the counties covered by fractured basalt and basin-fill aquifers. Colorado • modified the depth to water to reflect deeper conditions in eight counties that appeared unusually shallow in the original depth to water map. Midwestern States The map of hydraulic conductivity depicted unusually high values for western Kansas, in contrast with the lower values sho in Nebraska and the more moderate values in Colorado, Oklahoma, and Texas. The dominant aquifer in this area is the Hi-gh Plains aquifer system, a series of unconfined, unconsolidated clay, sand, silt and gravel deposits of Cenozoic age (U.S.6.S., 1984). A reevaluation of the original coding of western Kansas yielded some questions concerning the aquifer media and the associated hydraulic conductivity in the counties that border the outcrop area of the High Plains aquifer in central Kansas. The aquifer media in many of these counties was originally coded as sand and gravel, but should coincide with the outcrop area of Cretaceous-aged bedded shales, sandstones and limestones (U.S.G.S., 1984). The hydraulic conductivity contrast was resolved based on discussions with representatives of the Kansas District Office of the U.S.G.S. (U.S.G.S., 1985c). The revisions made to the hydraulic conductivity values in the High Plains aquifer in Kansas were in general agreement with those values coded for the same aquifer in Colorado, Nebraska, Oklahoma, and Texas. The questions concerning the aquifer media and conductivity for counties bordering the High Plains aquifer outcrop area were resolved based on two published reports (U.S.G.S., 1984; Fader and Stullken, 1978). The revisions made to Kansas were: • corrected aquifer media and hydraulic conductivity for 14 counties in central Kansas to reflect varying percentages of bedded sedimentary units and alluvial deposits along thre outcrop fringe of the High Plains aquifer. G-6 ------- Kansas (continued) • revised hydraulic conductivity ranges for 33 counties in western Kansas to reflect typical values for the High Plains aquifer. Hydraulic conductivity values in this aquifer range from 100 to 300 gallons per day per square foot (gpd/sq. ft.) in northwestern Kansas to as much as 381 gpd/sq. ft. in some parts of southwestern Kansas. Eastern States Review of the originally coded net recharge map revealed a contrast along the Tennessee-Kentucky border, and along the North Carolina-Virginia border. While some change in recharge rates over such a broad area would be reasonable, such a sharp boundary along state lines was suspect. Published recharge values for this area report roughly 8 inches per year (in/yr) in central and western Virginia, 8 to 16 in/yr in the Piedmont and Blue Ritlge Region of North Carolina, roughly 5 in/yr in southern Kentucky, a maximum of 8 in/yr western Tennessee, and 2 in/yr in Ohio (U.S.G.S., 1984). Based on these values, revisions made to this area were: Tennessee • revised the recharge rates in central and western Tennessee, excluding the counties that border the Mississippi River. Virginia 0 revised the recharge rates to 7 to 10 in/yr for counties-within the Valley and Ridge, Blue Ridge, and Piedmont Provinces. Kentucky • revised the recharge rates to 7 to 10 in/yr for eight counties within the Atlantic and Gulf Coastal Plain Province. North Carolina t revised the depth to water to reflect deeper conditions" in the counties of the Blue Ridge that appeared unusually shallow for mountaineous conditions. North Central and Western States The net recharge map indicated unusually high amounts of ground- water recharge in parts of western North Dakota and southwestern and southern Montana, relative to the surrounding states. Revisions the counties were based predominantly on review of published reports (U.S.G.S., 1984) and on assumptions made in the original coding of the surrounding counties. The revisions made to North Dakota and Montana were: 6-7 ------- North Dakota • modified net recharge in western North Dakota for counties containing the Fort Union and Hell Creek - Fox Hills aquifer systems. • revised recharge for eastern North Dakota to correspond to the Great Plains (Dakota) aquifer system. • changed depth to water to reflect deeper conditions in counties without substantial unconsolidated alluvial aquifers. Montana • modified net recharge to reflect more arid conditions uniformly across the state. • corrected depth to water to reflect slightly deeper conditions in extreme northwestern counties. South-Central States The Mississippi embayment represents the predominant feature of the Gulf Coastal Plain, and includes all of Louisiana and Mississippi and portions of Texas, Arkansas, Alabama, western Tennessee, south- eastern Missouri, and southwestern Kentucky. The embayment is compose of unconsolidated sands, gravels, silt and clay transported by stream from the adjoining uplands. The sediments attain their greatest thickness along the seaward edge and the axis of embayment. The older formations crop out along the inner margin'of the embayment in a series of bands that roughly parallel the coast and axis of the embayment. Although a number of complexly interbedded aquifer systems exist with the embayment, they generally have similar hydrogeologic character- istics where continuous. A number of contrasts were apparent in the originally coded data base within the south central states. The depth to water was regarded as deeper than that of the Atlantic Coastal Plain. Notable contrasts in net recharge were apparent in Louisiana as compared with adjoining areas of Texas and Arkansas. The aquifer media was coded as bedded sedimentary deposits (mostly massive shale) for most of the coastal areas of Texas and Louisiana. High values of hydraulic conductivity in south central Louisiana were also in contrast with adjoining areas. One explanation for some of these contrasts was the deliberate coding of the lowest ratings for some of the DRASTIC factors, re&ognizing the limited potable use of certain shallow aquifers in the coastal areas as a result of brackish ground-water conditions. 6-8 ------- To address these issues, representatives of the U.S.G.S. were contacted (U.S.G.S., 1985 d, e, and f) and regional and State references were used to gain a better understanding of the shallow ground-water potential in the embayment (U.S.G.S., 1984). The revisions made to the data base regarding these contrasts are as follows: Louisiana • revised depth to water, aquifer media, and impact of vadose zone media in the immediate coastal parishes to reflect deep unconsolidated aquifers. Subtracted 10 points under the Index Variability category to account for predominantly brackish ground water conditions. • revised depth to water in several parishes where alluvial aquifer predominate. • revised depth to water, -net recharge, and aquifer irfedia in 12 parishes where the Cockfield/Sparta aquifer systems predominate. • revised depth to water, net recharge, and aquifer media in 23 parishes where the Chicot or deeper aquifer systems predominate. • revised depth to water and net recharge in several counties where the Wilcox/Carrizo aquifer systems predominate. Texas » revised aquifer media and impact of the vadose zone media for approximately 100 coastal counties to reflect unconsolidated aquifers. Arkansas • revised depth to water and net recharge in 7 southeastern counties that parallel the Mississippi River to reflect relatively shallow ground-water occurrence in alluvial aquifers. Mississippi t revi-sed net recharge in 11 northwestern counties to be consi-stency with alluvial aquifers. • revised depth to water in 5 southeastern counties for consistency with coastal conditions. Alabama • revised depth to water in several southwestern counties for consistency with coastal conditions. Missouri • revised net recharge in extreme southeastern counties to be consistent with alluvial aquifers. Kentucky t revised net recharge rates for 8 southwestern counties within the Mississippi embayment. G-9 ------- New England States The originally coded depth to water map for this region displayed an unusual boundary between shallow ground-water conditions in Vermont, New Hampshire, and Maine, and somewhat deeper ground-water conditions in New York and Massachusetts. These boundaries are a reflection of the proximity of several ground-water and geologic provinces that occur in this region, and display some of the error associated with averaging geologic conditions over a county-sized area. Ground-water conditions in central and southwestern Vermont are characteristic of those in the New England Province where thick, coarse-grained glacial outwash deposits occupy former valleys, and thin, silty glacial till deposits overlie fractured metamorphic bedrock (Wright, 1974; U.S.G.S., 1984; Todd, 1983). While the outwash deposits are small in area! extent covering only 10 to 25 percent of a county area, they are the dominant water-supply aquifers of the province. Given the productive nature of these outwash aquifers, it was felt by the original coders and subsequently by RTI that they should be ranked as highly vulnerable. The adjacent Hudson-Champlain Valley Province extends as a thin band between the New England and Adirondack Provinces in northwestern Vermont and into eastern New York. The productive aquifers in this province occur as valley-fill deposits surrounded by thin, clayey till over sandstones, quartzites, and carbonates. Immediately to the west lies the Adirondack Province, a circular uplift of crystalline granitic and gneissic rocks with some alluvium and glacial outwash present in the valleys. Most counties within this area straddle at least one of these provicial boundaries. Thus the effect of any one rock-aquifer unit is minimized when averaged over an entire county area. A review of the hydrogeologic conditions across the region yielded depth to water rankings very similar to those originally coded for the counties in the area. For this reason, it was decided that no significant revisions to the data base were necessary for this area. G-10 ------- REFERENCES Burger, A. M., J. L. Forsyth, R. S. Nicoll, and W. J. Wayne, 1971. Geologic Map of the 1" x 2° Muncie Quadrangle, Indiana and Ohio-- Showing Bedrock and Unconsolidated Deposits, Indiana Department of Natural Resources. Coble, R. W., 1971. The Water Resources of Southeast Iowa, Iowa Geological Survey Water Atlas Number 4, 101 p. •t Eagon, Herbert B., Jr., 1971. Report of Ground-Water Investigations: Ground-Water Levels in the Vicinity of Van Wert, Van Wert County, Ohio. Ohio Department of Natural Resources Division of Geological Survey. Fader, S. W. and L. E. Stullken, 1978. Geohydrology of the Great Bend Prairie, South-Central Kansas, Irrigation Series 4, Kansas Geological Survey, 19 p. Heath, R. C., 1985. Personal Communication, December 11, 1985. Illinois Geological Survey, 1985. Telephone Conversation with Bill Dickson, Illinois State Geological Survey, December 16, 1985. Knight, Robert D., 1962. Groundwater Areas of Missouri, Missouri Geological Survey and Water Resources. Missouri Geological Survey and Water Resources, 1985. Telephone Conversation with Don Miller, Head of the Ground Water Section, December 10, 1985. Piskin, K. and R. E. Bergstrom, 1975. Glacial Drift in Illinois: Thickness and Character. Illinois State Geological Survey Circular 490, 35 p. Todd, K. K., 1983. Ground-Water Resources of the United States, Premier Press, Berkeley, CA, 749 p. Twenter, F. R. and R. W. Coble, 1965. The Water Story in Central Iowa, Iowa Geological Survey Water Atlas Number 1, 89 p. U.S. Geological Survey, 1984. National Water Summary, Water-Supply Paper 2275. U.S. Geological Survey, 1985a. Telephone Conversation with Leo Emit, Missouri District Office, December 10, 1985. U.S. Geological Survey, 1985b. Telephone Conversation with Marvin Sherril, Illinois District Office, December 16, 1985. U.S. Geological Survey, 1985c. Telephone Conversation with Lloyd Stullken, Kansas District Office, Garden City, Kansas, December 19, 1985. 6-11 ------- REFERENCES (Continued) U.S. Geological Survey, 1985d. Teleohone Conversation with Angel Martin, Louisiana District Office, December 18, 1985. U.S. Geological Survey, 1985e. Telephone Conversation with Hayes Grubb, 1985e. Texas District Office, December 19, 1985. U.S. Geological Survey, 1985f.- Telephone Conversation with Dan Ackerman, Arkansas District Office, December 20, 1985. Wayne, W. J., 1958. Glacial Geology of Indiana, Atlas of Mineral Resources of Indiana, Map No. 10, Indiana Geological Survey. Wright, F. M., Ill, 1974. Geology for Environmental Planning in the Johnson-Hardwick Region, Vermont, Environmental Geology No. 4, Vermont Geological Survey, 59 p. G-12 ------- |