^-00^2.1^
River Basin Water Quality safcatus
1S7S
EPA SG.A REO.10
-------
TABLE OF CONTENTS
SEP 14
FIGS.
PAGE
PROFILE OVERVIEW
Introduction to Report
Introduction to the Basin
Basin Map
Basin Graphs
Findings & Conclusions
-Ambient Profile Section
-Source Profile Section
-Cause & Effect Relationships Section
Profile Reference List
BASIN DESCRIPTION
Basin Description
Basin Map
Coeur d'Alene Sub-Basin Summary Sheet
Coeur d'Alene Sub-Basin Map
Coeur d'Alene Lake Sub-Basin Summary Sheet
Coeur d'Alene Lake Sub-Basin Map
Spokane River Sub-Basin Summary Sheet
Spokane River Sub-Basin Map
AMBIENT PROFILE
Ambient Profile Introduction and Findings&Concluslons
Graph Set No. 1 - Rose Lake Trends
Graph Set No. 2 - Spokane River Station Trends
Graph Set No. 3 - Chlorophyll A @ Long Lake
SOURCE PROFILE
Source Profile Introduction & Summary
Municipal Point Source Inventory Data Table
Industrial Point Source Inventory Data Table
van j
enue
9101
0-1
C-: t!ru 0-4
BD-1
BD-Z
BD-3
BD-4
Ions
AP-1 to AP-4
AP-5 to AP-11
AP-1 2
TABLE SP-1
TABLE SP-2
TABLE SP-3
1
2
4
5
8
8
9
10
14
17
18
19
20
21
22
23
24
25
28
33
41
41
44
45
-------
TABLE OF CONTENTS
FIGS PAGE
CAUSE & EFFECT RELATIONSHIPS
Basin Discussion and Findinqs&Conclusions
Coeur d'Alene Sub-Basin Section
Graph Set No. 1 - South Fork Coeur d'Alene
River river mile graphs
EPA- July, 1974
- EPA Livebox Study Graph
- Leakage & Loadings Graphs
Bunker Hi 11 /South Fork
Coeur d'Alene River
Coeur d'Alene Lake Sub-Basin Section
Overview
Supporting Lake Proper Data Presentation
Graph Set No. 2 - Coeur d'Alene River
at Rose Lake
Graph Set No. 3 - St. Joe River at
St. Maries
Graph Set No. 4 - Spokane River at
Post Falls
Graph Set No. 5 - Lake Mass Balance
Graphs
Lake Proper Data Presentation
Graph Set No. 6 - Coeur d'Alene Lake
Spokane River Sub-Basin Section
Graph Set No. 7 - Spokane River river
mile graphs
Graph Set No. 8 - Hangman Creek Station
Trends
Graph Set No. 9 - Little Spokane River
Station Trends
CE-1 to CE-12
CE-13
CE-14
CE-17
CE-18
CE-24
CE-31
CE-38
CE-44
CE-94
CE-109
CE-123
to CE-16
to CE-23
to CE-30
to CE-37
to CE-43
to CE-93
to CE-108
to CE-1 22
to CE-136
46
r>4
55
67
68
72
73
76
77
83
91
99
106
113
179
180
196
211
-------
PROFILE
-------
INTRODUCTION TO REPORT
Describing the water quality of the Spokane River Basin is a
somewhat unique task in that it actually involves three water systems
or sub-basins, as shown in Figure 0-1. The upper sub-basin includes
the Coeur d'Alene River and the St. Joe River. The middle sub-basin
encompasses Coeur d'Alene Lake and the lower covers the mainstem of
the Spokane River, including the Little Spokane River and Hangman Creek.
Accordingly, this report is organized by sub-basin and the individual
sections provide an in-depth analysis and summary of their respective
water qualities.
The objective of this part of the profile is to introduce the
report and the entire basin in the most concise and summarized format
possible. Included in it are a short discussion of the most important
water quality problems accompanied by three illustrating figures and a
listing of findings and conclusions.
-------
ABSTRAG o
OVERVIEW OF THE BASIN
Initial inspection of the data presented in this profile indicates
that hiahly variable flow conditions occur in the basin and have a
major influence upon the water quality in the Spokane River Basin.
Figure 0-2 illustrates high and low flow conditions and visually
provides a scale for comparison, indicating a 10 to 1 proportionate
relationship. In addition, each flow must be plotted on a log scale
due to the tremendous range each involves. These factors have a direct
impact on the other prominent water quality parameters.
Heavy metals loadings are a definite, definable oroblem in the
basin, especially in the Coeur d'Alene sub-basin. Zinc can be used
to illustrate the role heavy metals play and Figure 0-3 has been
included for this purpose. The heavy metals originate on the Southfork
of the Coeur d'Alene River where numerous mining operations are active,
the largest of which is the Bunker Hill Company. Treated and untreated
mine wastes, non-point source tailing pond leakages, and groundwater
inflows with high metals concentrations are the primary source that
must be considered in the resolution of this problem.
The net effect of these various sources is significant in quality
as well as quantity. The Coeur d'Alene River below the mining district
is generally toxic to salmonoid fishery during both low and high flow
periods. Coeur d'Alene Lake acts as a settling basin and removes a
portion of the loadings, as the zinc graph, Figure 0-3, indicates.
The waters of the St. Joe River in addition help dilute the metals'
concentrations as they travel through the lake. As a result of these
two factors, the waters leaving the lake and forming the Spokane
-------
River are not especially toxic to a salmonoid fishery, but may be high
enough to affect other aquatic biota.
Nutrient loadings originating from both municipal and industrial
point sources on the mains tern of the Spokane River as well as ground-
water inflow loadings have a signifi cant-on the river. The phosphorus
graph, Figur 0-4, has been included to illustrate nutrient characteristics
During high flow conditions, natural processes raise the 3 month median
phosphorus concentrations in the Coeur d'Alene River above the potential
algal bloom level while the Spokane STP's effluent, by far the largest
phosphorus point source in the basin, is diluted to a level below algal
bloom potential. The lake acts as a sink for phosphorus during high flow
due to the close relationship phosphorus has with the suspended solids
traveling downstream which settle out upon reaching the lake. The
phosphorus graph during the 3 month low flow period clearly indicates
the Spokane STP to be the primary source of phosphorus in the basin.
Concentrations abruptly exceed the potential algal bloom level by a
substantial margin below the STP outfall. Algal blooms downstream
of Spokane in Long Lake are present although the heavy metal concen-
trations act somewhat as a deterant to their potential level of growth.
Nightly algal respiration depresses Dissolved Oxygen concentrations
in Long Lake ; thereby, significantly reducing the quality of the Spokane
River.
1 R.A.Soltero, An Investigation of the Cause and Effect of Eutrophication
in Long Luke. Washington, Eastern Wash. State College, Deot. of Biology
Cheney, Wash. 99004 7/1/73 p. 76-77.
-------
COEUR D'ALENC RIVER
SUB-BASIN
SPOKANE RIVER SUB-BASIN
COEUR D'ALENE LAKE
SUB-BASIN
-------
SPOKANE RIVER BASIN
APR THRU JUN 1B74. ME.DIAN DATA
FIGURE 0-2
T
R
£
A
M
F
L.
O
W
X
N
C
F
9
r HIOH i
SFOKAflE RIVER
1 I { II
UI_U
LAKE
|
W t
coCu
[
;UN
t D A
Ul J
-UtE
XUN9
ST. .TOE JTtVEH
Ma Tr. r tstn
COEUB D 4-Era
1 f
I i r
RIVER
o North Fork
Coeur d'AJene
South Fork
Coeur d 'Alene
I I 1 1
eat 70 e0 SB
SEP THRU NOV LB74- M£DIAN DATA
LOW FLOW CONDITIONS
T
R
E
Al^QCGJ
"n .
« :
F
L
0
W
X
N
jfc .
LCK9-
c :
F ;
O^OKAKS RIVER
u
1 1 1 1 1 '
LAKE
con
ft D
1 1 1 1 1 1 1
LOfE
.
STJOBJIVEB
cmi^^m*Q
i -O
1 1
ronnt o uaS HIVER
-North Fork
Coeur d1 Alene
South Fork
0 Coeur d' Alene,
1 1 I 1 1 I f
.' J . 2. » n-» ent r>er\
era
MILC9 FROM MOUTH OF TM£ 9T»OKANG RIVER
-------
SPOKANE RIVER BASIN
APR THAU JUN LB74. MEDIAN DATA
T
O
T
X
H
Z
I*
U
9
MZOH 1
*
CracrU *>»leltr Ta SUaoralA Plihi
O^^j*ppuft uvn
^-^-^^
'Algalcidal'Conc."*' 80
'/
FUOU CONDITIONS
UKI
o>
1
us*
i
0091
*
i_
'
1 C A
1
h
i
70 80 SB 180 L10 120 U
a<
V
i
FIGURE 0-3
CDOn D A^DTC RIVE A
i i i
' . QNorth Fork Coeur d'Alene
Vi __i i 1
T
a
T
z
H
O
z
N
U
O
s
THRU NOV 187* M&DXAN DATA
LOW F(.OU CONOZTION3
South Fork
Coeur d'Alene
Mt-nlng
Activities
North Fork Coeur d'Alene
H 1 1 1 1 r-
70 ea aa ICHJ 110 120 100 140 120 400 170 ie0 ua
PROM MOUTH OF THS 9f>OK'ANC KtVCR
i I I < !
*»
I
S !
«H |
s*S a
rt »< f-l
11 I
-------
SPOKANE RIVER BASIN
THRU JTJM LBT+neoiAN DATA
MSQM FLOW CONDITIONS
FIGURE 0-4
oNorth Fork
Coeur d'Alene
JUAJSSS, £K9!L'£ 15= L.
aa no 120 ise 140 isa IEB.
THRU NOV 1,874. MCOtAN DATA
LOU FL.OU CONOXTION3
South Fork
Coeur d1Alene
Hining Activities
Uf>l Bleoa Potential Unl
I 1 1 1
IIH-H
Coeur d1Alene
oa Ba isa list isa isa i«0 Laa tea L70 ua IBB zetf
ntt.C.9 FROM nOUTM OF THC SPOKANE RIVER
i
I
-------
8
SUMMARY OF
FINDINGS AND CONCLUSIONS
The findings and conclusions in this profile are presented in
two different formats; a) they are listed in summarized form according
to their respective sections in this Overview Section, and, b) they
are explained in more specifics immediately prior to their respective
sections in the main body of the report. In both formats the findings
and conclusions are divided according to sub-basins.
AMBIENT PROFILE SECTION
Coeur d'Alene Sub-Basin
1. Total Phosphorus concentrations at Rose Lake on the mainstem
Coeur d'Alene River have been reduced since 1968 due to the
installation of municipal and industrial treatment facilities
on the South Fork Coeur d'Alene River.
2. Diminishing Zinc concentrations during low flow periods at
Rose Lake on the Mainstem Coeur d'Alene River are indicative
of reduced mine discharged pollutants.
Spokane Sub-Basin
1. Ammonia concentrations appear to be increasing at the station
below Long Lake.
2. Nitrate (N02+N03) concentrations fluctuate throughout the
trend period, but consistently exceed the level for potential
algal bloom at the station below Long Lake. They fall below
that level downstream at the Stateline station.
3. The station monitored below Long Lake indicates phosphorus
concentrations continue to increase while both it and the
Staeline monitoring station continue to exceed the level for
potential algal bloom.
4. Bacteria levels have been increasing significantly throughout
the sub-basin; however, we can expect a turnabout due to new
treatment facilities' installations upstream. Present levels
exceed Washington Water Quality Class A Standards.
5. The latest Long Lake Chlorophyll A data trends indicate that
the water quality is worsening, especially during the summer
to fall period with highly mesotrophic to eutrophic conditions
existing year round.
-------
SUMMARY OF
FINDINGS AND CONCLUSIONS
SOURCE PROFILE SECTION
SPOKANE RIVER BASIN
POINT SOURCE LOADINGS SUMMARY TABLE
% Municipal/Industrial Table
LB/D
Phosphorus 3400
Nitrate 6875
Suspended Solids 29,334
BOD 28,190
Combined Heavy Metals 3655
Sub-Basin Contribution Table
%Phos
%I %M
3T 66
16 84
34 66
18 82
100 0
%N03 %SS %BOD
Coeur d'Alene Sub-Basin 8.2 5.'5 9.7 30.8
Coeur d'Alene Lake Sub-Basin 1.3 .5 1.2
Spokane Sub- Basin 90.5 94 89.1 69.2
Major Municipal & Industrial Contributors Table
%Phos
MUNICIPAL - Spokane STP 48.9
INDUSTRIAL - Bunker Hill Co.
%N03 %SS %BOD
67.2 52.9 61.5
1
%CHM*
100
%CHM*
95.4
/- = negligible
/CHM = Combined Heavy Metals - Pb, Cd, Hg, Sb, Zn
-------
10
SUMMARY OF FINDINGS & CONCLUSIONS
CAUSE AND EFFECT SECTION
Coeur d'Alene River Sub-Basin
1. The problems in this sub-basin occur in the Southfork and
Mainstem Coeur d'Alene River. The Northfork Coeur d'Alene
River has very good water quality as it flows through the
Coeur d'Alene National Forest showing little degradation from
man related activities.
2. Heavy metals loadings from mining activities in the Southfork
Coeur d'Alene basin are the major cause of water quality
problems in the Coeur d'Alene Sub-basin.
a) The Bunker Hill Company is the major contributor of
heavy metals in the basin. They are directly
responsible for high levels of zinc, cadmium, lead,
and in addition iron, fluoride, and phosphorous.
b) It is apparent that the majority of zinc and cadmium
loadings originate from uncontrolled tailing pond
leakage and un permit ted discharges from the Bunker
Hill Company.
c) The highest levels of arsenic and antimony were
found downstream of the Sunshine Mining Company
operations on Big Creek.
d) Toxic levels for trout due to high metals concen-
trations extends from the Southfork Coeur d'Alene
River near Wallace downstream through the mainstem
and part of Lake Coeur d'Alene.
3. Phosphorous levels in the Southfork Coeur d'Alene River exceed
algal bloom potential level below the Bunker Hill Company discharges,
Coeur d'Alene Lake Sub-Basin
*Entering Lake - Coeur d'Alene River
1. Phosphorous concentrations entering Coeur d'Alene Lake (at Rose
Lake) appear to be directly proportional to flow, indicating
erosion as the major source.
2. Zinc concentrations entering Coeur d'Alene Lake (at Rose Lake)
appear to be inversely related to flow, indicating point sources,
groundwater, and/or tailing pond leakages as the major source.
-------
SUMMARY OF FINDINGS & CONCLUSIONS
CAUSE AND EFFECT SECTION
Coeur d'Alene Lake Sub-Basin (cont)
*Entering Lake - St. Joe River
3. There were no serious water quality in the St. Joe river at
the sampling site tested (near St. Maries). HurtC/er, there
were two discharges downstream of this station in the slack
water reach which may contribute some nutrient loadings to
the Lake.
*Lake Proper
4. During 1974, Coeur d'Alene Lake functioned as a sink for
phosphorous, zinc, lead, and cadmium; and as a source for nitrogen.
5. Detention times for inflowing waters from the Coeur d'Alene
River and the St. Joe River have been calculated to be within
the range of 40 to 120 days.
*Leaving Lake - Spokane River
6. Total phosphorous concentrations leaving Coeur d'Alene Lake
(at Post Falls) exceeded the 0.05 mg/1 concentration considered
minimum for algal blooms from February thru April of 1974
(high flow period).
7. Zinc concentrations leaving Coeur d'Alene Lake (at Post Falls)
exceeded levels considered toxic for a salmonoid fishery
(300 ug/1) for nearly half of 1974. All concentrations exceeded
the algacidal level (80 ug/1) throughout 1974.
Spokane River Sub-Basin (Oct. 1972 to Sept. 1973 Data)
Mainstem Spokane River
1. The Spokane STP, Hangman Creek, the Little Spokane River, and
groundwater inflows in the Spokane area have significant
impact on the water quality of the Spokane River.
2. Turbidity levels increase significantly due to the inflow of
Hangman Creek during the high flow period. The turbidity
decreased as it settled out in Long Lake.
3. Dissolved Oxygen concentrations violated Washington Water Quality
Class A standards below Long Lake during the low flow period
due to eutrophic conditions in the Lake and algal activity.
11
-------
SUMMARY OF FINDINGS & CONCLUSIONS 12
CAUSE AND EFFECT SECTION
4. Total phosphorous and dissolved ortho-phosphorous levels
exceeded the potential algal bloom concentration downstream
of the Spokane STP during both high and low flow periods.
The Spokane STP is the major source of phosphorous in the
Spokane River. In addition, Hangman Creek is a significant
source of total phosphorous during the high fluw runoff.
5. Nitrate concentrations exceed the potential level tor algal
blooms below Hangman Creek during high flow periods due to
non-point source loadings from runoff. During low flow
periods, nitrate concentrations exceed the potential level
for algal blooms from the area above Spokane downstream through
Long Lake due to groundwater inflows in the Spokane area.
6. Ammonia and kjeldahl nitrogen levels significantly increase
below the Spokane STP during both the high and low flow periods,
7. High zinc concentrations from the upper reaches of the Spokane
River were diluted by groundwater inflows and tributaries
to such an extent that by the time they reach Long Lake they
were below the general salmonoid fishery toxic level (300u.g/l)
during both high and low flow periods and below the algacidal
level (80 ug/lj during the low flow period.
8. Total Coliform counts exceeded Washington Class A Water Quality
Standards as they entered Washington and continued to exceed
standard levels downstream to Long Lake during both high and
low flow periods. The waters leaving Long Lake were within
standard levels.
Hangman Creek
9. Hangman Creek enters the Spokane River at river mile 74.2 and
is predominately influenced by seasonal runoff.
10. Highly variable flow is an important characteristic of the
stream as it ranges from 2 to 400 cfs and greatly influences
water quality. Turbidity is directly related to flow, ranging
from 0 to 1050 JTU. Non-point source runoff from agricultural
lands resulted in high concentrations of nitrate, ammonia,
phosphorous, and bacteria during high flow.
11. Nitrate concentrations exceeded the potential level for algal
blooms the entire year while phosphorous and dissolved ortho-
phosphorous concentrations exceeded it during moderate to
high flow periods only.
12. pH values exceeded the Washington Class A Standard the period
of April through July.
-------
SUMMARY OF FINDINGS & CONCLUSIONS
CAUSE AND EFFECT SECTION
Little Spokane River
13. The Little Spokane River enters the Spokane River at river
mile 56.3 and in contrast with Hangman Creek it is pre-
dominately influenced by groundwater inflow.
14. Between the mouth of the Little Spokane River and the city
of Wandermere, flow measurements Indicate that 200 to 250 cfs
of groundwater inflow are present,
15. Nitrate concentrations exceeded algal bloom potential level
the entire year and the major source appears to be groundwater
inflow.
16. Total phosphorous concentrations exceeded algal bloom potential
level during the high flow periods (Dec-March). Dissolved
ortho-phosphorous levels exceeded it for most of the year.
Phosphorous levels are directly related to river flow
indicating the contribution to be of non-point source origin.
17. Bacteria levels exceeded the Class A Standard throughout most
of the year with the highest levels occuring during the
high flow period of December through March.
13
-------
14
REFERENCES. CLASSIFICATIONS. AND WATER QUALITY INDICATORS
This section of the profile attempts to explain the various water
quality standards, interpretations, and classifications as they appear
throughout the data presentation. In June of 1973 the Department of
Ecology of the State of Washington released a document that related
every natural water system to a set of water quality criteria. These
Water Quality Standards and their respective river systems appear on
the following page. Following that are a number of additional water
quality indicator levels taken from referenced literature.
-------
Cl-«» *A Vit.ri
Ch**islla liver fro= tack Cree* to hcaavatera
C9«»tll tratere froa Iiwaeo to Cape Ylattery
Srjeialiipa "tfver and rrlbutarlM
Kwaa Pner aid trlbucarlei
Cravs ll.tr froa Cray* River Fall* to headvacere
Ebb liver and uIbatarles froa eouth Co beadvatera
Saielle "Uv.r frTO rieeell* rail* EO headvalare
QuMtl .v«r It {a Muth to M 3.0
0/jeeca 'Iver fro* PS 3.0 to hejdvatere
gullli^ri PUter
C.lu.1: *liir .'rax aggth to PJI 2 0
O.laaiit River free fc* 2.0 to heauvvtpra
Satiaa Slvar. «aa= fork. frc» tuuth to hiadwaterB
Satanp hlver, ciddlo for*, fro3 couth to headwatera
tfttof Zlvar. veat !orV. fron said- lo hiidutm
Salei.cl- HU«- via trliutirlci
Claae A Uit«re Claes *> la:ers
O-chJlle River froD ScannoB Creek to Knaukus ""' Gravs Harbor aast of latitude 121" S91 B. to lo-.gltude
Spoelil Cc'Jitlor - o"..solved oxygen shall exceed J 0 l2J'*J'tS" ». JCoKapolle) Special ConiUlen - dissolved
cs/1 or id saturation vilcfcever ! greater, froo June 1 _., ihln t»ceeil 5.0 eg/1 ar oO: Mtuiailoi, vblchevar
te Sepcuber 1}. For toe rcsuUadar af the year the die- u gr,lt,r.
aalved oiygen ball ocec Claia A criteria.
Chehalla liver froej Heua^kua liver te lack Creek
Chehalla Uver, eouth fork, froo aouth to headtateri.
Craya ba:bor west of lotgltuda 12J*S91 u
Navaukua River froo aouth te haadvatara
Vlllapa Bay (aavard a! line bearing 7(T crus thrOLgb
Kallboat Slough Light.
Ulllapn liver uiintrpu of line bearing 70* true through
Kailboal Slocgb tight. Syeelal Condition - total callfam
orjacla-aa anall net exceed nedlao values af 2<0 with lea*
this 201 of Maple enaa4.og 1.000 Hbaa aocUtad with
any fecal etiree.
Hoqulan Uver free south te IM 9.
Vlebkab Uver froe aeutb la M 6.
Vlllkih Plnr !r*r wit fork u' lla'uih River to Irter-
aeeiiir of the river hlth aju:h boundary cf See 31B
P W..».:i..
Jli"t*t 71 it !u- l-tern.ct'on of tre river wi:h aouth
l..-=iry -'. 5..C 11.» e< . I.III to head.alora. Special
'. it'll." - no w.cin dl<:ljr;e Jill b» perslltad
nsii* »!-»»» etxtr.vi. «»m MI H.-ID nmn*
LSJ^J. K. lollo'lng cclterle iSell be rpplleabla »o the
varteei
at fairn In lio'Snte of viiklaatani
CLASS AA (Extraordinary)
let b.-n:l e*i*:.>:ti]:iliic. ..ater av«ilty of tMl clalt
hall markedly a^d u*l!ate,ly ckeced the rcqiiirca.enta far all
Ol iLfe'tcilally t'.l st»l.
IM Chaiaetirlislc »n. Oiiracterlitle »ie« ihall
ede. bill are firt llnltrd la the fol Irvine I
III kattr iu;|il Idi-rltlc. lidjitrlil, ef rlcult«ell.
Ill) M'.ftlllr hi-llit. etrrk » i-.rrlng.
Illll Csnccal recrcctran siA aeilhctic tn)eyrvnt Ipla*
l*;. Milne. HIM-?, ivir.Mna. >«llne. »4 b»tln«l.
Ilv| Ccncro! ^rk*t rccrcatl?n mid pevleatlon-
|«V Pith «£ tlelldih repref jetlen. reariaf, eid bar-
it.
Ill utrr ejisallty erlt. rla.
Ill Trial cal'rr-^ c->- nl»-i thai! eel exceed cdlav
*«l«r^«f fv^irrei1* k-leil rr 15 l-irlne «aterl «»llh leet the*
ttl ef =!'« e>ceaclated vlth any fecal
""lill Biclol.ed ei.t»i ihcll e.ce.d I.S aa/1 llreih
ttffl or f.O r;/l l-ici .« k^tert.
III!) mil Cii'ilird nit - the cancel tratlan af telal
dlncl cd eii~l ni~nii~evc~a^i:ci ef
f ta?;
lltmatlnn at any point
IIV Tfr-'-u.-e - vitcr Mrrrratgrce thill net cmcd
II* r. l!ic:n >.tc:l c: >»' r. (-i|li>c vaurl due In put to
rci:.r<9lc 10. s* r | t-c:e«ei rcicleine trt-« huun actlvltlaei
atr »*«ll »v?\ I's-'Tttmre licrrMtl. at aiy tl-a. eieecd
t - >/<;-:> Ifreil »j-.cr) or t * It/17-111 Ir.tlre >aterlt
for rurf«**B "tcr'o* 't" rrp-etrfin the pcmlitlve Increase end
r* tcrrcienii t'ic h«:er t7-^tra:ure dje to all cegeee conbln**!.
1,1 ri ixjll »c «itMn the rinoo ft I.I to I.I (fr«h
ilrrl ar >"0 to I.I (rirlno v.ttrl vlth an Indeced verlatla*
at I.ri thai t.l inlu.
«*" aaural
taoi!ila*i. ,
ivlll ^HJC. r«ci>t or twir alfacti. erelmalef UMM at
na-.arel aelfli. vim eCf»d the i««aea af ileiit. eoejl. taee*
,..V.ty ef thl. ,».-..
hall Beet or cuecd the rcoulrcocnta (or ell or nb>tantl*lly
ell OKI.
Ib) Characteristic aaes. Chaxaeterlitle veci ahell
laelirfe. but are not United to. the fallowln«i
(II >>«ter ivpply Ccereitlc. Indoitrlel. aarlnltarall. '
(II) klldllfe habitat, aueli vnt-rlnf.
(Ill) General teereotlen end aeaihctle enjeyacnt (ala*
leaIn.. hlkln«. fliMnv, iwlnelne. (kllnf and baatln«).
llvl Ce-aerce and navigation.
. («) rics and ihellfish tepeadvctlen, rearing and him it.
(Cl Hiter ejliillty Cllfrla
(11 Tenl ealifara a-n^nitnl Ihall not ceeeed red 1 in
value ef 11*0 llrc'n hfterl with lesi than lot af lanplea
liecfdlna l.COO vhcn associated vlth any fecal eourcoa or 70
(arlne vater) vlth lesa than 101 ef laatplet ucccdlng IJO
vhcn aisaclated with any fecal coulcei.
(Ill Dli-p|\rd oxygen shall caceed 1.0 caj/1 IfreM
vaterl ar I o rq/1 Inarine vaterl.
(Ill) Total tltiolted in - the concentration af total
dissolved aa* aliall pot vvceed 1101 af aaturatlon at any polnh
af saffplo eolleetlen.
(1*1 Tcnt.cri»'ure watee tr-froeratares ehall nat eeceed
IS* f. (freJTv'aicir or II* f. (narlne vacer) due In part la
easurable (0.1* P I Inctaasca resulllne fie* hunan aetlvltleai
er tliall £ucn ter.^etatuea lnee«.ascs. at any llee. eaeeed I
f>/IT-l<) Ifreth vaterl or t lO/IT-11) lurlne vtter). fer
puipo'ii hereof *f icpraienti the acnleilee Inerene and *T*
reprchcnli tie water teaperilnre due ta all eaetei conblncd.
() M e>iall be .Itnln'tnc rinee «f I.J -.oil Ifreih
water) or 7.0 la 1.1 Inarine water) with an Induced variation
at le:l than 0 II aiita.
(v|| Ttirbldtn ihall nat cicaed I JTO ever natural eon-
dltleii.
(vl|) Tovlc. rn^lai»-tlve, <*r d»lft*rjn«3 material
itratle»i aKaT"roe"^elow these of public heel^h alenlfi*
Class B (Good)
t*l I..IH.I,.. bli.i^^f rl.Lle. iicter eucll*.r af tKtt c^ava
ahall naet or ercted tt-e reculre-=ita far east tsel.
tb) Chuactet Irtlc u;?s c&czcelirlstlc «>? anall
'Include, tjl ate not lls'l-4 \a. the !?llt»l.-ei
11) Iniuitrlal tt.t c^ricultjr^l water :»plr.
fill ll.l.rt/ «n< tll<.:ire li.LII.lt.
(Ill) CMn*riil reercatlei and aeitfcetle tfi3a/e«at Iftie*
nlcllni. hlllnr,. II;!'.,,. and Lea:lli]l.
llv) Stock watcrlr.e.
(v| Co-\rc:re CM n^lfttloi.
(I) S*ici:ritli ier»'' = .ioi< aid rearlH7, and c?rc:*.acea
Icribi, eVI-i, etc I hir.^st
(e) iai?r ^talit, rri.crle.
(I) To" *! cali'^r^ «*rr3^i-re ehall nat tm*< p^dlt^
valuei cf \~Wi~\iwi~ fk"\Kti lut of aaiylee crceedlny ».««
when ass-ocleieO vith any leeil ao -.
(Ill Bl^>l>ef erjirn ISall erceed «.» e^^I (fr«U
vatee) tt S.o i/I^ir^tim vatcrl. er 101 aatetetlca. t-rl ar t il/r-JJ) (-
purpeiei hereof -f rcp;csc-ti uc prniiilv
cepr-sants the watcl Itfrcraiure £tt to all aitva cra^'ied
|v) pn thai) be "-Itnn me ran;e af I to !.}<:".>'
water) or > 0 to I.I Ir-iilne v.tcrl vl-ji an Incgiea wla*.'"3
^all ret exceed
1 tilt ea
eet.vltirei
nre waterli fw
I-create aid 'T*
af leal than e S jnlti
IvI) lurbldl
dltlens.
nTc* cay ceaie ante er chronic teailc eondltlani
to the aquatic biota, or which nay adversely affect any water
Mil] aesthetic value, akall net be InealredJ hy tha>
aveeanca ef afaraal* ee tnalr effecta, avclndleaj these ef
literal erlfln. wnlcnaYMied tVa Heats ef alfM. tawjll -
er la'la.
shall not evceed 10 JTQ ever netaral
(II) Tovlc. ^dlo-cflv*. er <-l*t-rlcBi r»*»*'v|
leeitfatloii'a'airbe'aelov f»». wiTeTTJIeni:. af!ee-.
public h:a>ln durlni the eacrelte ef e2iarac:eMi::c wur->>
?L.YJ!i^' " » '* sareale terlc ceootlina ta tie
«etei'"i51?"' "' "*'*" "*
"1'
«««t.rau
____ I."1' *"*'""* ?'.'*" »*11 « * red.e»d ky dliealvef.
"lad. flaanaf at iab-ei|«
-------
WATER QUALITY CRITERIA REFERENCE TABLE
PARAMETER
INDICATED MEASUREMENT
ENVIRONMENTAL IMPACT
REFERENCE
Anmonla N1trtogen(NH3-N)
.2 mg/1
Cadmlun
Chlorophyll-A
30 ug/1
3 ug/1
less than 3 mg/1 .
between 3 and 20 mg/1
more than 20 mg/1
Lead
Nitrate-Nitrogen
Phosphorus, Dissolved Ortho
Phosphorus, Total
Zinc. Total
30 ug/1
.3 mg/1
.01 mg/1
.05 mg/1
300 ug/1
Organic Pollution Level
Generally Toxic to Aquatic Life
Toxic to Salmonoid Eggs
Oligtrophic
Mesotrphic
Eutrophic
Generally Toxic to Aquatic Life
Algal Bloom Potential
Algal Bloom Potential
Algal Bloom Potential
Approximate Algacidal Concentration
for Selenastrum Capriconutum
Klein.L. River Pollution 1.. Chemical Analysis
Academic Press Inc., New York1959
Sawyer .C.N., Factors Involved in Disposal of
Sewage Effluents to Lakes. Sewage and Industrial
Wastes. Vol. 26 No. 3 pp.317-325 1954
EPA R3.73.033 Ecological Research Series.
Hater Quality Criteria 1972. U.S.Government
Printing Office, March 1973 p.180
Vollenweider, Dr.R.A., Water Management Re--
search-SclentiTic "Fundamentals of the Eutro-
fication of Lakes and Flowing Waters with
Particular Reference to Nitrogen and Phos-
phorus as Factors in Eutrophicatign . DAS/CSI/
68.27, Organisation For Economic Cooperation
And Development - Directorate For Scientific
Affairs, 1968 p.40
EPA R3.73.033 op.dt. p.181 .
Klein op.cit.
Sawyer op.cit.
Klein op.cit.
Sawyer op.cit.
Klein op.cit.
Sawyer op.cit.
Green, et.al National Eutrophicatlo'n Research ,
Program. Report To Region X On The -Results Of '
The Spokane River Algal Assays , Corvallis, Ore
1973.
-------
BASIN DESCRIPTION
-------
17
BASIN DESCRIPTION-SPOKANE RIVER BASIN
The Spokane River Basin encompasses an area of approximately
6,640 square miles and is located 1n northern Idaho and northeastern
Washington, Figure BD-1. The basin's roughly elliptical shape has
its main axis running southeast to northwest.
The basin's main stream, the Spokane River, Figure BD-2, is fed
by two major tributaries which discharge into and are buffered by
Coeur d'Alene Lake, Figure BD-3. These two streams, the Coeur d'Alene
River and the St.Joe River, Figure BD-4, discharge into the southern
portion of the lake and have proportionate flows of 1 to 1 to .5
respectively. Any further physical comparison of similar attributes
ends here however as their water qualities differ significantly. The
Coeur d'Alene River drainage basin consists of two sub-drainages; the
South Fork Coeur d'Alene River draining the mining district and the
North Fork Coeur d'Alene River traversing the Coeur d'Alene National
Forest. The waters of the St.Joe River are free of mine wastes but have
been affected to some extent by sewage disposal, logging, and farming
activities. The Spokane River is the only surface outlet of Coeur
d'Alene Lake.
The stretch of the Spokane River above Spokane, the St.Joe River,
andthe North Fork Coeur d'Alene River support excel 1 ant sport fisheries
and can be classified as having good water quality. In contrast the
Mainstern and South Fork Coeur d'Alene River and the Spokane River
below Spokane are subject to the serious effects of municipal and
industrial pollutants, including a reduced diversity of biota.
As early as 1885 wastes from the Coeur d'Alene mining district
have been transported by the waters of the South Fork and Mainstem
Coeur d'Alene River into Coeur d'Alene Lake. An extensive survey by
Ellis in 1932 showed the Coeur d'Alene River to be devoid of life from
the city of Wallace to its mouth and the delta to be deficient in
phytoplankton, fish, and bottom organisms.
The effect of increasing population and inadequate municipal sewage
treatment facilities can be seen in Coeur d'Alene Lake by the exten-
sive growth of blue-green algae and macrophytes, in shallower portions.
The Spokane River below Spokane also suffers from oppresive municipal
pollution; most notably from BOD, phosphorus, and suspended solids
loadings. In addition, natural groundwater contributes significant
nitrate loadings.
Maps of each of the three sub-basins will follow the summary sheets
outlining pertinant facts related to that sub-basin.
-------
mrccnw vaner
SPOKATE RIVER BASIN
-------
COEUR D'ALENE SUB-BASIN
The sub-basin encompasses the South Fork Coeur d'Alene River
from the city of Mull an to its mouth and the Mainstem to its con-
fluence with Coeur d'Alene Lake. The major emphasis is on the heavy
metal and phosphorus loadings from the Coeur d'Alene mining district
as they appear to be the major constituents causing water quality
degradation in the sub-basin. Groundwater leaching of old deposits
and tailing pond leakage contribute significantly to loadings of
heavy metals in the sub-basin.
Mainstream Mileage - RM 131.3 -
Flow-yearly meanMains tern Coeur d'Alene River @ Cataldo
High 15,000 - 20,000 cfs
Low 300 - 400 cfs
South Fork Coeur d'Alene @ Smelterville
High 2,000 - 4,000
Low 90 - 130 cfs
Waste Sources - Municipal = 14
Industrial 5
19
Largest City - Kellogg-3,800
-------
FIGURE BD-2
HAP OF THE COEUR D'ALENE BASIN
S H 0 S H
-------
21
COEUR D'ALENE LAKE SUB-BASIN
This sub-basin encompasses Coeur d'Alene Lake from the mouth of
the Coeur d'Alene River and the St.Joe River to its outlet near the
city of Coeur d'Alene. The threefold emphasis in this report includes:
a) General water quality conditions
b) Hydrodynamics of the lake in relation to detention times of
the waters of the Coeur d'Alene River and the St. Joe River.
c) Hydrodynamics of the lake in relation to the lake's role as a
buffer for certain water quality parameters between the
Coeur d'Alene sub-basin and the Spokane sub-basin.
Mainstream Mileage - RM 110 - 135
Lake Volume - 2.5 Million Acre-feet
Flow, yearly mean - Post Falls- 10,000 cfs
Waste Sources - Municipal - 3
Industrial- 1
Largest City - Coeur d'Alene - 16,200
-------
FIGURE BD-3
22
COEUR D'ALENE LAKE, IDAHO
I* !! fc.Uw lot. iwHoc. ftf*r.nc« Uvof.on »f 2121 (**t
«r* lo<»l» J at poinfi
I lak* bon*fn c«fififvr*li«n
f«thcm*l*« rfviinf Jvly «*»d
-------
23
SPOKANE RIVER SUB-BASIN
This sub-basin encompasses the Spokane River from the outlet of
Coeur d'Alene Lake to its mouth. Special attention is paid to mun-
icpal sewaqe, phosphorus, and related pollutants' loadings and their
effects on algal bloom occurences, especially below the city of
Spokane. Natural groundwater nitrate loadingsare also examined in
relation to the same problem.
Drainage Area - 3840 Sq.M.
Mainstream Mileage - RM 0-110
Flow-yearly mean - Post Falls- 10,100 cfs
Waste Sources - Municipal - 17
Industrial - 5
2T
Largest City - Spokane- 171,000
Projected Populations For The Entire Basin
1980 2000 2020
447,900 619,200 826,800
-------
FIGURE BD-4
MAP OF MAINSTFM SPOKANE RIVER AREA
SPOKANE RIVER
-------
AMBIENT PROFILE
"I
-------
AMBIENT PROFILE SECTION
CONTENTS
Graph Set 1 - Rose Lake Trends Figures AP-1 - AP-4
Graph Set 2 - Spokane River Station Trends Figures AP-5 - AP 11
Graph Set 3 - Chi-A Graph in Long Lake Figure AP-12
Flow is shown on each figure for the purpose of comparing the various
water quality parameters with flow in the basin.
-------
FINDINGS AND CONCLUSIONS
AMBIENT PROFILE SECTION
Coeur d'Alene River Sub-Basin
1. Total phosphorus concentrations have been reduced throughout
the year over the six year period from 1968 through 1974. The
change is due to a reduction in phosphorus discharged from the
Bunker Hill Company and collection and treatment of municipal
discharges in the South Fork Coeur d'Alene River area.
FIGURE AP-3, page 31.
2. Nitrate concentrations in the Coeur d'Alene River at Rose Lake
show little change between 1968 and 1974. The concentrations
are well below the .3 mg/1 algal bloom potential level through-
out the year.
FIGURE AP-2, page 30.
3. Zinc concentrations in the Coeur d'Alene River at Rose Lake
show a significant reduction during the low flow periods of
the year when comparing 1968 to 1974. The largest improve-
ment occurs during periods of low flow indicating the result
of reduced point source discharges from the upstream mining
industries.
FIGURE AP-4, page
Spokane River Sub-Basin
1. Ammonia concentrations have increased significantly at the
station below the Long Lake Dam since 1972. The Stateline
station shows a slight increasing trend.
FIGURE AP-8, page o'7-
2. Nitrate (N02+N03) has consistently maintained a high concen-
tration capable of sustaining algal blooms at the station
below Long Lake. The trends appear slightly increasing and
decreasing respectively at the Long Lake and Stateline stations.
FIGURE AP-7, page
3. Total phosphorus concentrations at the station below Long Lake
show a slightly increasing trend and have consistently
exceeded the 0.05 mg/1 level for algal bloom potential. Total
phosphorus levels at Stateline are presently showing a slight
decreasing trend with current concentrations ranging below
the algal bloom level .
FIGURE AP-9, page it.
1 Data from STORET WATER QUALITY DATA and EPA Discharge Monitoring
Reports
-------
FINDINGS AND CONCLUSIONS
AMBIENT PROFILE SECTION
Spokane River Sub-Basin (cont'd)
4. Bacteria levels at the Stateline station have been increasing
significantly. However, we can expect a turnabout due to the
instillation of new municipal treatment facilities upstream.
Present levels violate Washington Water Quality Class A
Standards.
FIGURE AP-11, page 4o
5. The Chl-A levels indicate that highly mesotrophic to eutrophic
conditions presently exist in Long Lake. The 1973 levels are
most severe but there is not enough data to establish a trend
at this time. As expected the greatest algal productivity
period occurs during the warmest summer or early fall periods.
FIGURE AP-12, page HZ.
-------
AMBIENT PROFILE
Graph Set 1
Figures AP-1 To AP-4
Coeur d'Alene River At Rose Lake
RM 153
28
-------
L
O
VI
29
FIGURE AP-1
t_AKC>- U909 DATA
MONTHLY AVtWAOt rLOU
3** FH» rw»APR J*£JUN JtZ AUQ Jl> Jr IS/
nONTHB
0
H
13
U
O
T
I
V
I
T
V
H
O
O
n
RO9C I_AKC-U3O9 DATA
tlONTHLV AVO CONOCNTRATION .-.-!««
CONDUCTIVITY
1174
±rdr
HOHTMO
-------
u
s
FIGURE AP-2"
LAKE- U9O9 DATA
MONTHLY AVtHAOt FLOW
ra
air oar
tlONTNB
MOBC UAKC-U909 DATA
MONTHLY AVO CONCENTRATION
MM.HOI NITHOOCN
U?4
JAM
MONTH*
-------
31
r
o
u
FIGURE AP-3
BOSl. l_AKt' USOS DATA
MONTHLY
IIM
JANTOS MM«/Jit rwrjutJLL /en !> otr NOW MD
RO9C LAKC.-U903 DATA
._.- Mil
r\oi acoio riuozi P>HOH
??
fcL_i_JL_LJL_i_$
p.en-
H74 A
TOTAL PHOSPHOROUS j
: /\ A/\
* \ / \/ \
\ A /' v \
\ \ / \ /
\ \ -'yv''" '
^^^fc-^^^1^ i
[ jJL 4. JL A^- 4^ST^T35 JrST 3S ^>
nOHTHB
-------
FIGURE AP-4
o
w
mac LAKO inraa DATA
MONTHLY AVLflAOC FLOU
WM
H 1 1 h
JLM JU. ALB
ab» aerr i3^ MD
nONTNB
KOac LAKC-IIBM DATA
4_ nONTHLV AVO OOHOCNTRATIOH
ZtHO
r
i
H
O
(
All*
MAY JVM JU.
~cir
MONTH*
-------
33
AMBIENT PROFILE
Graph Set 2
Figures AP-5 Tp AP-11
1 - Station # 12433000 Spokane River blw Long Lake Dam RM 33.3
2 - Station # 150114 Spokane River 0 Statellne RM 101.»
3 - Station # 12419000 Spokane River nr Post Falls RM 99.0
Note: Stations 2&3 combined represent water entering Spokane River.
Graph Explanation
The two year running average technique used In this section
is a graphical representation of long term ambient data designed
to smooth out seasonal irregularities in the data. The technique
has no statistical significance; however, it does show long term
trends in the data.
Data from 1966 to 1974 was reduced to consecutive monthly
medians. Then the monthly medians for two years, January 1966 to
December 1967, were averaged and the point was plotted at December
1967. Next, the time plot was advanced 3 months and the monthly
medians for that corresponding two year period, April 1966 to
March 1968, were averaged and theft point was plotted at March 1968.
This process was continued at 3 month Increments until December 1974.
Total coliform values represent geometric means as dictated by
convention.
-------
FIGURE AP-5
T
ft
C
A
H
r
L
o
u
o
r
1*1U-0».1 lt«UlJ«l»00 I.I.I.D.I. >4-M-«l »-»
>4Ul»101.l lutir U01II tKt >4»»
70 71
VCAM
N
D
U
O
A
T
9
O
n
i
o
R
O
M
M
O
1WU-OJ1.) IUUa»U«IMO« «.«.«.0.1. 14-M-4II «^«
3IU1*»1O1.I ItAtian-lSOll* M|4 141021
t.f 4t»Uo»-U41VOOO
71 7* 73
-------
35
FIGURE AP-6
T
n
f
o
V
o
f
.
1WU-10I.I t»tl» 1'OIH »< MUM
ucitooo
umtum
I
I. «..».«. M-M-tl "0-"
70 71
VCArt
13-T
D
X
9
o
L
B
O
11'
O
X
V IB
O
o
o
1-
IMU-011.1 IUIU>rl»IIOOO .«..».». l«^4-«l »«
IMlvlOl.t tullwrlJOIH *n4 M101I .
>«il«-OM 0
-------
FIGURE AP-7
C
A
n
L
o
w
o
r
I«n>-*».l «utc«-lJ4i)ooe
>«ll»101.« il.ilo. 190114 >M I410M
t.O IUU«. 1241*000
I.I.I.D.I. 14 It « «0-M
VCAN
T
c ..=
H
O
N
O 0.S
9
S
L
[ uvn KAJI*
.i'lt*U0»-U41MOO *
l«-ui.l ii-.ti~.ivjn. uwd molt
AI.OAI. rx.non FOTCNTIAL.
or a
H h
I .. I
-------
1LB09- -
T
«
R
A
n
o
V
o
F
FIGURE AP-8
,10-101.1 l»tl» UOI14 4M I11UI
-OM.O IUU*. U41MOO
.->.>. H-I4-4I «-«
'37
71 7*
YCAM
O
M
I
N
M
3
M 0.10- .
1).! IUtl«-U«l)0.*
14 «4 MUM . .
II 1 1 " I ' ~ I
-------
3U
FIGURE AP-J
T
It
t
A
M
r
u
o
w
t
o
r
1IU1>-01>.) it.lloimiooo «.I.I.D.I. 14-M-01 "3-r«
tMl«-101.l lUtl* 150114 «4 M10II
or es
7H 71
VCAM
-I-TI
I irvt ulra
T
O D.EB- -
A
L 0.07-
0.BB-
0.00
X
L 0.0B'
0.01- -
JIU1*-101.« l
I tt.i II II »1 «j-t«
ALOAL BLOOM rCB-rMTIAJ.
I I _ I
7H 71
VCAN
73 »*
-------
311
FIGURE AP-10
)}.> ttMtlcM»114)IOOO
J IU1*-101.I tutlB U01U M4 141011
. 14-»4~0l *V-n
luiaa- -
3
T
A
n
o
u
o
r
71 7» 79 7*
VKAN
c
I
o
B
T
H
o
>4
o
3
n
o
0.02- -
0.01-
+ - ' ' , ' vn *
t-T 1
73 7*
-------
FIGURE AP-11
T
R ^mjpM.
B
i
i
D
.I.I.D.I. 34-14-01 «B-M
]_«11*-10I.I iml» "0114 «n< MI011
*.« n.tlo«-l)4»000
',','»'>'
70 71
VCAM
ft
H
-------
AMBIENT PROFILE
Graph Set 3
Chlorophyl A At Long Lake Dam
Data obtained from R.A.Soltero
41
-------
0
H
L
O
R
O
P
H
Y
L
L
Z
N
M
O
FIGURE AP-12
SPOKANE RIVER BASIN
SPOKANE RIVER / LONG LAKE
4 ... 1974 MONTHLY AVERAGES
3 1973
2 1972
JUN
NCV
CEO
-------
SOURCE PROFILE
-------
SOURCE PROF ILE
This section of the profile provides a compilation of all
existing point source discharge data for the municipal and induslria
effluents in the Spokane River Basin. The sourcos listed repre-
sent the significant contributors in the basin. Effluent deila
found in the tables originated in the Discharge Monitoring
Reports files, from population equivalent calculations, or oilier
filed reports. In addition to the actual loading figures, percent
relative loading contributions from municipal and industrial
discharges have been included.
TABLE SP-1
POINT SOUTU HAS III SIMMY TABLE
COCK! D'AUNE BASIN
Municipal
Induitrlal
TOTAL
COEu* O'ALCNE IAK
Municipal
Industrial
TOTAL
SPOKANE BASIN
Municipal
Industrial
TOTAL
PMOS % t HO) t t
Ib/d Hun Ind Ib/d Hun Ind
268.1 II
9.8 1
3TTT-
».6
X »
mr-
1999.3 68
1 12) 96
Toiii.i
SUB-BASIN COMIB.IBUIIOI BC5
312.6 8.3
2
sirr
17
22 2
9383.9 93.9
1080.3 98
6«fJ.i
N03
SS ( %
Ib/d Hun Ind
2218.9 kl.9
627.4 ».»
384J.3
22
324 3
as
171 II. 8 18.9
9029.6 90.3
26141.6
SS
POO % t '.MM* 1 (
ll)/d Hun Ind Ib/d Hun Ind
8682 37.3
-
SEW
19
94 1
n
14342.2 62.9
9093.2 99
19419.4
BOO
-
-
.
-
-
"
-
3634 6 100
J6M.6
CMM-
COtu* D'ALCNE BAStN 8.2 9.9 9.T 30. a 100
tUUB D'ALlnt LAKl 1.3 .9 I.Z
SPOWIE B«SI« 90.9 94.0 M.I 64.7
O* CoftliHKl Hwy Nitilt - It. Cd. Hg. Sb. In
-------
««*«
COCUI O'ALEKE BASIN
South For* CMur d'Aiane
Plneliiirtt
Sveltervllle
Kellogg
Nardner
Elliabetft Park
Elk Creek
Osoum
Silvertoi
Hoed lend Park
Mullen
St. Je« River
St. Marias
Avery
St. ItarlM
Evlda .
Santa
COEUR D'ALENE LAIC BASIf
Catur d'Alana Lake
Plunor
orlav
Karrloon
Nadlcal Lake
Eeitern State Heipltai
Lakeland VI 1 lag*
Medical Lake
Spirit Uka
SPOKANE RIVER BASIN
Main Sten Spokane Rlvar
Ball Tarraca
Spokana
Veradale
HlllMOd
Industrial Park
Pott Fall!
RatftdruB
CDaur
-------
45
TABLE SP-3
DISOWkjER
r/iaji^ p'4itwr H^lp)
SF Corur d'Atena River
Bunker Hill CIA
ConMlioatad Silver
Stir MDrning M
Lucky Friday
Bunker Hill Tailing*
Pona Luk«ge»
Silver Klnq Craek
Bunhar Hill Zinc Pit.
Bunker Hill Pinp St».
Ottlar Bunker Htll
Big Cra«k
Sunshine Hlna
Crescent Nina
.Lakf Creek,
American Smelt.lRof.
|alp*«iil In rr»»h
Day Mine*
Canyon Creek
Star ttornlnj NlnelMII i
TOTAL Bl/KER HILL
DOCUR C'M FMT LAKE BA6IH
Ep*Mr fl'f IP"* JiRNe
PBtlaten
JlgJog Rlvar
Pot larch
Oi..Ml.k..St.P.,Pac.«
S^OMNC RIVTR BASIN
filnsrwi ioakana River
Soft vitar Co.
Inland Caplr*
Uliar
Spokana Industrial
Ml 1 (yard
RIVER
MILt
3.4
13.1
24.6
25.6
1.7
I.D
.2
.»
1.0
2.9
7.3
'j.~
42.9
74
82.6
86
n
»7.»
rio*
W6T
4.5
2.05
.12
.55
1.9
-
.9*
.13
.3
.14
4.8
7.3
4.3
M
.3
5.S
18.2
.3
.5»
fHOS t t
i»/d 1 B
I.I
.5 - -
.3 - -
2 - . -
.
3.7
.
_
.3 -
.04 -
.a -
.1 -
- 30
4.e»
16 3. 1 I.I
1.0
1.0
1095 93.7 32.:
27 1.0 -
-
SrCKMf RIVER BASIN
INDUSTRIAL KIMT SOURCE INVtMTOM
SS f I
it/a | 9
300 3.0 1.0
40.5
26.6
145 1.3 .4
.
a»
. .
. .
27 -
14 -
16.2
28.3
300* 3.0 1.0
324 . 3.2 I.I
i
86 _-
C950 87. 7 30.5
'". '
13.8 » *
03 I 1
lfc/0 l B
_
-
.
....
» a. a.
.
.
-
aa> . a> V
_ _
-
22 2.0 .4
.2 -
.2 -
1070 97 13. t
6.5 ...
3.6 - -
300 (I
ID/d 1 B
-
-
.
.
. . .
'
.
-
~ « .
_
-
54 I.I .4
_ V
1368 30.3 7.3
3500 60 16.:
24 -
i .2
Cm* I
ib/d 1
106 2.9
2
2.3
1.0
1400 38.2
167 3.0
-
IBM if.3
150 4.1
" '
1.4
6.4
3.3
34U 93.«
.
-
-
-
-
Cottlnaxl HMVV Holali . Pb, Cd, Hj, St. Zn
. Nogllglbla
e PIui Mm Fran Unreported Oltchapgat
-------
CAUSE & EFFECT
RELATIONSHIPS
-------
INTRODUCTION
CAUSE AND EFFECT RELATIONSHIPS
Water pollution problems occur throughout the basin due to mun-
icipal, industrial, and agricultural wastes. These problems include
toxic metals, algal blooms, dissolved oxygen depressions, bacterial
contamination, and turbidity.
Coeur d'Alene The heavy metals and phosphorus loadings that
Sub-basin originate on the South Fork Coeur d'Alene River
appear to be the major constituents causing
water quality degradation in the basin. It seems
groundwater leaching of old tailings deposits
and tailing pond leakages contribute significantly
to loadings of heavy metals in the basin.
Coeur d'Alene LakerThe nutrient requirements necessary for a high
Sub-basin eutrophic condition in Coeur d'Alene Lake are
present. However, heavy metals toxicity appears
to suppress the algal bloom growth in some areas
of the lake.
Spokane River :It was found that toxic levels of zinc occur in
Sub-basin the Spokane River as a result of high zinc con-
centrations in Coeur d'Alene Lake. Excessive total
coliform concentrations were found to occur period-
ically due to the city of Spokane discharging untreated
sewage through storm overflows and discharging
inadequately disinfected primary treated effluent.
Low dissolved oxygen concentrations were found at
various times in some reaches of the Spokane River
and particularly in Long Lake ( and Downstream )
during the summer monthes. Phosphorus concentrations
from the Spokane STP and industrial wastes above
Stateline, in conjunction with nitrate concentrations
from groundwater inflow, are believed to be the
major causes bf excessive algal growths in Long Lake.
-------
CAUSE AND EFFECT RELATIONSHIPS
Coeur d'Alene River Sub-basin
Graph Set 1 - July 1974 EPA Survey South Fork Coeur d'Alene River
Figure CE-1 to CE-13
- Bunker Hill Study
Figure CE-14 to CE-16
Coeur d'Alene Lake Sub-basin
Graph Set 2 - Coeur d'Alene River At Rose Lake
Figure CE-17 to CE-23
Graph Set 3 - St.Joe River At St.Maries
Figure CE-24 to CE-30
Graph Set 4 - Spokane River At Post Falls
Figure CE-31 to CE-37
Graph Set 5 - Coeur d'Alene Lake Mass Balance
Figure CE-38 to CE-43
Graph Set 6 - Coeur d'Alene Lake
Figure CE-44 to CE-93
Spokane River Sub-basin
Graph Set 7 - Spokane River rtver-mile trends
Figure CE-94 to CE-107
Graph Set 8 - Hangman Creek at Mouth at Sookane Profile
Figure CE-108 to CE-122
Graph Set 9 - Little Spokane River, Two Stations' Profiles
Figure CE-123 to CE-136
-------
FINDINGS & CONCLUSIONS
CAUSE & EFFECT RELATIONSHIPS
Coeur d'Alene River Sub- Basin Section
1. The problems in this sub-basin occur in the Southfork and
Mainstem Coeur d'Alene River. The Northfork Coeur d'Alene
River has very good water quality as it flows through the
Coeur d'Alene National Forest showing little degradation
from man related activities.
2. The number one problem in Coeur d'Alene sub-basin is heavy
metals loadings. The high concentrations of Lead, Cadmium,
Arsenic, Mercury, Antimony and Zinc can be directly attributed
to the mining activities on the South Fork of the Coeur d'
Alene River. FIG CE4 to CE8, pages 53 to b-z. show the
significant increases of these metals in the South Fork of
the Coeur d'Alene.
3. The Bunker Hill Company was determined to be the largest
contributor of heavy metals loadings in the entire Spokane
River Basin. 1 They are directly responsible for high
levels of Zinc, Cadmium, Lead, and in addition, Iron, Fluoride,
and Phosphorous. FIG CE4, CE5, CE6, CE9, CE3, and CE10 show
major increases in these water quality parameters immediately
downstream of the Bunker Hill Company operations.
4. It was determined that the majority of heavy metals loadings
for Zinc and Cadmium originated from uncontrolled inflows
attributable to the Bunker Hill Company. These include
seepage inflows from the Bunker Hill CIA Pond to the South
Fork Coeur d'Alene River unpermitted discharges, violations
of permitted discharges, and unidentified inflows to Silver
King Creek.
Pages $6 to 5^including Table CE14 and FIG CE16.
5. The highest levels of Arsenifc and Antimony were found down-
stream of Big Creek (river mUle 11),) where the Sunshine
Mining operation is located.
FIG CE7 and rFP, pages £>' and 62, .
6. Zinc concentrations exceed both the concentrations generally
toxic for a salmonold fishery (300 ug/1) and the algacidal
level (80 ug/1) throughout the vast majority of the South
Fork's waters (FIG CE4 page 56, mile 18 to 0). Cadmium and
Lead also exceed EPA's hazard levels for their respective
parameters for an aquatic environment in much the same way.
FIG C-5 and C-6 page 5't
-------
FINDINGS & CONCLUSIONS
CAUSE & EFFECT RELATIONSHIPS
Coeur d'Alene River Sub-Basin Section (cont)
4
7. Phosphorous levels exceed the level for potential algal
bloom below the Bunker Hill Company operations at
river mile 6 (FIG CE10 page 6V ). However it should
be noted that the Zinc levels in this same reach are
much greater than the listed algacidal level (see 5 above).
8. The waters of the South Fork of the Coeur d'Alene River
below Wallace and mains tern of the Coeur d'Alene River
below the confluence with the South Fork are acutely
toxic to Rainbow Trout. This acute toxicity is carried
into Coeur d'Alene Lake. The toxicity is believed to
be due to the high concentrations of heavy metals
throughout the study area which are far in excess of
literature values known to be toxic to Rainbow Trout.2
FIG C-13 page
Coeur d'Alene Lake Sub-Basin Section
*Entering-Coeur d'Alene River
1
Phosphorous concentrations entering Coeur d'Alene Lake
(at Rose Lake) appeared to be directly proportional to
flow, indicating erosion of old deposited tailings was
the reason for these levels. FiQ.cfE ?? , iv^t en
2. Zinc levels entering Coeur d'Alene Lake (Rose Lake Station)
appeared to be inversely related to the magnitude of
flow, indicating that point sources, groundwater, or
tailing pond leakage were the main source. FI&.CE- a 3 ,?*&&&«'-
*Enterinq-St. Joe River
3. There were no serious water quality problems in the
St. Joe River at the sample site tested. However,
there were two discharges downstream of the station
which enter the slack water reach of the St. Joe River
and these may contribute some nutrient loadings to
Coeur d'Alene Lake. pt---..;;o. TWL cr- ,i
*Leaving Spokane River
4. The Post Falls water quality station is important in that
it functions as an interstate station between Idaho and
Washington , and reflects the water quality of Coeur d'Alene
Lake as wel 1 .
Environmental Protection Agency, Region X, Seattle, Wash.,
Ronald Kreizenbeck, "Livebox Study 1974"
-------
FINDINGS & CONCLUSIONS
CAUSE & EFFECT RELATIONSHIPS
Coeur d'Alene Lake Sub-Basin Section (cont)
*Leaving Spokane River (cont)
5. Total Phosphorous concentrations leaving Coeur d'Alene
Lake (Post Falls Station) exceeded the 0.05 mg/1
concentration considered minimum for algal blooms
from February through April of 1974. FIG., cE-3f» r*&»- =l7
6. Zinc concentrations in the Spokane River below Coeur d'Alene
Lake (Post Falls) exceeded toxic levels for a salmonoid
fishery (300 ug/1) for nearly half of 1974. All
concentrations exceeded the Algacidal level (80 ug/1)
throughout 1974. na cEr-37 p/x&e <^e>
*Lake Proper
7. During 1974 Coeur d'Alene Lake functioned as a sink for
Phosphorous, Zinc, Lead, and Cadmium and as source for
nitrogen.
8. Detention time for inflowing waters from the Coeur d'Alene
River and the St. Joe River has been calculated to
fall within the range of 40 to 120 days.
Spokane River Sub-Basin Subsection (Based on Data From 10/72-9/73)
Mains tern
1. Two tributaries* a major point source, and groundwater
inflow have significant impacts on the already polluted
waters of the Spokane River. Specifically, these sources
include the Little Spokane River, (river mile *&* )
Hangman Creek (river mile T->* ), the Spokane STP
(river mile 67.2. ), and the groundwater inflows in the
Spokane area (river mile 70 to 90).
2. turbidity concentrations experienced a significant in-
crease at river mile 70 as a result of Hangman Creek
during high flow. The turbidity decreased as it settled
out in Long Lake between river miles 33 to 55.
FIG CE98 page l&b.
3. Dissolved Oxygen concentrations violated Washington
Water Quality Class A standards below Long Lake during
the low flow period (FIG CE100 page IS7) due to
eutrophic conditions in the Lake and algal activity.
It is unclear whether these violations are the result of
man-made or natural causes. Possible W.Q. standard
re clarification of their segment may be necessary.
-------
FINDINGS & CONCLUSIONS 51
CAUSE & EFFECT RELATIONSHIPS
Mainstem (cont)
4. Total Phosphorous and Dissolved Ortho-Phosphorous
levels exceeded the potential algal bloom concentration
downstream of the Spokane STP during both high and
low flow periods. It appears that the Spokane STP is
the major source of Phosphorous in the Spokane River.
In addition, Hangman Creek is a significant source of
total Phosphorous during the high flow runoff.
FIG CE101.CE102, pages t^J^t
5. Nitrate (N02+N03) concentrations exceed the potential
level for algal blooms (.3 mg/1 ) below Hangman Creek
during high flow periods (Dec.-Feb) due to non-point
source loadings from runoff. During low flow periods,
(July thru Sept) Nitrate concentrations exceed the
potential level for algal blooms from the area above
Spokane downstream through Long Lake due to groundwater
inflows from river miles 70 to 90 in the Sookane area.
During the Dec. to Feb. high flow period, the effects of
these groundwater inflows are minimized.
FIG CE103 page I9O.
6. Ammonia and Kjeldahl Nitrogen levels significantly
increase below the Spokane STP (river mile *'* )
during both the high and low flow periods.
FIG CE104, C-105 page
7. High Zinc concentrations from the upper reaches of the
Spokane River were diluted by groundwater inflows
between river miles 70 to 90 and the Little Spokane River
at mile 55 to such an extent that by the time they
reach Long Lake they were below the general salmonoid
fishery toxic level during both high and low flow
periods and below the algacidal level during low flow
(July to Sept).
FIG CE97 page
8. Total Col i form counts exceeded Washington Class A Water
Quality Standards as they entered Washington at river
mile 98 and continued to exceed standard levels down-
stream to Long Lake, approximately river mile 40 during
both high and low flow periods. The waters leaving
Long Lake were within standard levels (river mile 33).
FIG CE107 page /?/.
-------
FINDINGS & CONCLUSIONS r
«J
CAUSE & EFFECT RELATIONSHIPS
Hangman Creek
1. Hangfnan Creek enters the Spokane River at river mile
74. 2* predominately influenced by seasonal runoff.
2. Highly variable flow is an important characteristic
of the stream as it ranges from 2 to 400- cfs and
greatly influences water quality .
FIG CE-109 page/97
3. Turbidity is directly related to flow, ranging from
levels near 1000 JTU during high flow (Dec-Mar).
FIG CE311 page /.
4. Non-point source runoff from agricultural lands resulted
in high concentrations of Nitrate, Ammonia, Phosphorous,
and bacteria during high flow (Dec-Mar).
FIG CE117,to CE-121 , pages .205 to
5. Nitrate concentrations exceeded the potential level for
algal blooms (.3 mg/1) the entire year while Phosphorous
and Dissolved Ortho-Phosphorous concentrations exceeded
it during moderate to high flow periods only (Dec-June).
FIG CEll7,CEn9,CEl20, pages -2<25, 3.o*f,2C*.
6. pH values exceeded the Washington Class A Standard of
8.5 during the period of October and April through July.
FIG CE114, page 2.OZ -
7. The measured Dissolved Oxygen concentration met the
Washington Class A Water Quality Standard the entire year.
However, it is suspected that depressions may occur
di urn ally due to algal activity.
FIG CE.-113, page 30 1-
Little Spokane River
1. The Little Spokane River enters 'the Spokane River at
river mile 56.3 and in contrast with Hangman Creek it
is predominately influenced by groundwater inflow.
2. Between the mouth of the Little Spokane R'iver and the
city of Wandermere flow measurements indicate 200 to
250 cfs of groundwater inflow are present.
FIG CE123,
-------
FINDINGS & CONCLUSIONS 53
CAUSE & EFFECT RELATIONSHIPS
Little Spokane River (cont)
3. Nitrate concentrations exceeded algal bloom potential
level the entire year and the major source appears to
be groundwater inflow.
FIG Cel 30, page -2>9.
4. Ammonia Nitrogen concentrations exceeded the .2 mg/1 .
level indicating organic pollution during high flow
in Feb-Mar.
FIG CE131, page 23.0
5. Total Phosphorous concentrations exceeded algal bloom
potential level during the high flow periods (Dec-
March). Dissolved Ortho-Phosphorous levels exceeded
it for most of the year. Phosphorous levels are
directly related to river flow indicating the contribution
to be of non-point source origin.
FIG CE133, page 2Z2..
6. The measured Dissolved Oxygen concentration met the
Washington Class A Water Quality Standard the entire
year. However, it is suspected that depressions may
occur diurnally due to algal activity.
FIG CC129, page
Bacteria levels exceeded the Washington Class A Standard
throughout most of the year with the highest levels
occuring during the high flow period of December through
March indicating contributions from non-point source
origins.
FIG CE135, page
-------
54
GRAPH SET 1
Coeur d'Alene River Sub-basin
This first set of graphs presents the data collected during the July 1974
EPA survey on the South Fork Coeur d'Alene River. Below the graphs are
the significant inflows located appropriately along the river mile axis.
The consistency of the trends throughout the range of parameters included
indicates the Bunker Hill Company is the major contributor of heavy metals
loadings and the South Fork as being a definite water quality problem area,
N E R
-------
55
FIGURE CE-"1
QUALITY -PROFILE
OTULY 1S74. EPA 3URVEV
THB-f-
9
T
F
£
A
M
F
L
O
W
z
N
C
F
9
1
1
3
(fill
1 1 1 1 I
a a 12 is IB
(III
III!
21 a*. Z7 at
SOUTjyFPRKi CO EUR D A.LENE RIVER
JJ
U
O
6
0
a
2
!
i
*
£
*«
*l
** 1
a
X
W « '
CO .^
3 o *" **
I* U * ^
if ! O
^ J4 M
-------
FIGURE CE-2
QUALITY PROFILE
JULY 1374. EPA SURVEY
ZS0-r
O
O
N
D
U
C
T
I
v
I
All data points are an
average of from l» to 6
camples taken during a
3 day sampling period.
12
15
18
21.
24-
x
«
SOUTWFORK COUER
Jl
S'
to u
B tl
ALE.NE. RXVELR
I! ""
s
6
s
«4
Oi
l> tl
> M
2 S
CO M
to
rl
A
a 5
»-4 to '
^
e
u
- 3
ii
e
£
jo
M
S
3
-------
FIGURE CE-3
57
0.ee»-r
WATER QUALITY PROFILE ORAPH
JULY LSV* EPA SURVEY
AU i«ta points are an
average of from fc to 6
cample* taken during a
3 day apliBf period.
1
- -- 1
3
I "
' 1
B
I
1
a
|
1
12
|
IS
1 1
1 1
18 21
1 -~\
I 1
24- 27
-> ,
a
SOUTHFORK COUER D ALENE RIVER
«
£)
i>
a
rt
h
ti
2
fa
^ i
* 1
V L» *-*
^i ^
H 3 *4
w n n
I I !
I
| fll
G 3 «
« c $
1 -«
3 Kb
H { 5
d 1 2
:
3
t
a v
W C
fc
h 10 »J S
u q ^ 5
-------
FIGURE CE-4
fjft
WATER QUALITY PROFILE GRAPH
OTULV 1S74. EPA SURVEY
T
o
T
A
L
Z
I
N
D
U
r
321213" ~
Z2JZSZJ- -
data points are an
average of froa b to 6
eample» taken during a
3 day saspllAg period.
3^0_ug/l_Toxiclt^ to^almonoid Trout^ __ __\_ ________
Level
'~l 1 1 T T-~
i
w
8 8 12 IS 18 21 24.
5OUTHFORK CODER D ALENE RIVER
27
3D
a
x
§
CO «
"a
£
(Q
10
IB 0
-------
FIGURE CE-5
WATER QUALITV PROFILE
JULY 1874. EPA
T
o
T
A
L
C
:A
D
M
I
U
M
L
d*ta pointi are an
average of from I to 6
samples taken during a
3 dar Baapllng period.
°
Aquaticife
B B 12 13 18 21 24-
SOUTHFORK COUER D ALENE RIVER
8
?U
. M
to
m
s
a
i I!
a
|
M
a
-------
FIGURE CE-6
60
QUALITY PROFILE GRAPH
JULY 1874. Ft-A SURVEY
T
o
T
A
L
L
c
A
D
U
(a
S
L
130- -
S3- -
All data point* ara an
arerage of trtm k to
BBplei taken during a
3 dar aa^pliag period.
1 1 1 . 1 . - 4. - - . 1 .
1 1 1 .. -*l
18
24.
SOUTHFORK COUER D ALENE RIVER
J
I ji
3 Jl
3 a i
II
.4
1 31
0 hi.
8 rti
«4 «4 S>
BI ion
1
3
1 i!
: 1 1
Sunlhlne Mine- BI- rvri-v _>_,'
§
8
-------
FIGURE CE-7
61
WATER QUALITY -PROFILE GRAPH
JULY 1S74. EPA SURVEY
T
O
T
A
L
A
P
S
E
N
I
C
All data polati are an
average of from k to 6
aaoplai token daring a
3 «»y laapllJic period.
e- -
3
B
a
« t
^^7"
i -+-
3 1.8
e-
i
H :
21
1
1
Z*-
1
zt
-O 1
30
=
=i
in B
I I
SOUTHFORK COUER D ALENE. RIVER
ii
i i
-------
FIGURE CE-~8
UATER QUALITY PROFILE GRAPH
JULY 1974- EPA SURVEY
sa-r-
T
O
T
A
L
A
N
T
I
M
O
N
V
U
o
AU data pointi are an
average el Iraa I to £
temples taken during
3 Hay luqiUlil period.
8 3 12 13 18 21 "Sf
SOUTHFORK COUER D ALENE RIVER
i
n
i
a I
-------
FIGURE CE>9
63
WATER QUALITV PROFILE ORAPH
JULY IS7* EPA SURVEV
T
o
T
A
L
I
R
o
N
u
I
1X420- -
izco- -
409- -
All data polati are an
average or from li to 6
copies taken during a
3 lay sampling period.
J O
+
+
i
s
+
s
21-
27
SOUTHFORK. COUER D AL.ENC RIVER
i al
i
8
a
s
s.
8
3
\
-------
FIGURE CE-10.
WATER QUALITY PROFILE
JULY LS74- EPA SURVEY
0.1.2-r
data point! are an
average of from b to 6
camplea taken during a
3 day sampling period.
ALGAL BLOOM POTENTIAL
SOUTHF-ORK COUER D ALENE RIVER
44
II
U
to
u I
fli
C W
a&
fcfc
II
«
MM
1
i I
3 1
»«
U O
13
a
u
«0
m
a
2
S
a
a
9
M
-------
FIGURE CE-li
0. IZ.-T
WATER QUALITY PROFILE GRAPH
JULY 1974. EPA SURVEY
Ali data pointI are em
average of from I* to 6
camples taken during a
3 dAjr sampling period.
i i i i i i i i i i
1 1 I 1 1 1 r 1 1 1
3 B a LZ L5 LS 2L 24- 27 3C
SOUTHFORK COUER T> ALENE RIVER
ij
«^
1 !* '
*i
' U d U
; A 3a
u
a
10
3 =
a
a
a
H
3
§
I
9
-------
FIGURE CE-12
WATER QUALITY PROFILE GRAPH
JULY 1074- EPA SURVEY
0.12-T-
0.10--
A
M
H
O
N
I
A
N
H
3
0.03- -
0.0S- -
n
Q. 0.04-
All data poiata are aa
average of traa k to 6
eooplea taken during a
3 day oeaipling period.
1
1 1
1 1 (..
. i r i i
S 8 12 IS
SOLJTWFORK COUER
18 2L 24.
ALENE RIVER
27
s
co m
s
a S
e
£
w^
&
&
1
a
S
«
a
rl
A
i
n
-------
RAINBOW TROUT 72 HOUR
PERCENT SURVIVAL
IK. COEUR D'ALENE
S.PCOEUR D'ALENE
50% 48X
or.
too
BUNKER SUNSHINE GALENA LUCKY FRIDAY
HILL MINE MINE MINE
EM Llnbox Study Graph
FIGURE CE-13
-------
LEAKAGES AND OTHER INFLOWS TO THE SOUTH FORK COEUR D'ALENE RIVER
IN THE BUNKER HILL AREA
In the last three years, several EPA-Idaho water quality surveys
have Identified two uncontrolled areas of major heavy metals pollution
In the South Fork Coeur d'Alene River near the mining operations of the
Bunker Hill Company (river Mile 4.9 to 6.9). The first is a severe
pollution problem attributable to leakage or seepage inflows from the
Bunker Hill CIA Pond and Slag Pile. Ttje second is the occurence of
unidentified Inflows, unpermitted discharges, and violations of permitted
discharges to Silver King Creek, a tributary of the South Fork Coeur
d'Alene River.
The relative loadings and percent contributions for all sources
of zinc, cadmium, and lead are summarized in Table CE-14, page 69,
for the South Fork Coeur d'Alene River (based on the October 1974
EPA survey). It is evident from the data that the major loading
contributions of zinc and cadmium come from presently uncontrolled
sources in the area of the Bunker Hill Company. These sources account
for 66% of the zinc (3250 ///D) and 74% of the cadmium (34 #/D) for
the entire South Fork basin. Seepage inflows entering the South Fork
Coeur d'Alene River from the Bunker Hill CIA Pond account for approximately
28% of the zinc (1350 ///D) and 7% of the cadmium (3 ///D).
The location and effect of the seepage inflows for conductivity
(associated with heavy metals) and zinc are graphically depicted on
Figures CE-15 and CE-16, pages 70 and 71, (based on a March 1975
EPA survey).
-------
FIGURE CE-14
69
LOADINGS AND PERCENT CONTRIBUTIONS
SOUTHFORK OOEUR D'ALENE RIVER
OCTOBER 1974 EPA SURVEY
SOURCE TOTAL ZINC TOTAL CADMIUM TOTAL LEAD
fl/Day * fl/Day % 0/Day 2
All other sources
including headwaters
and other Industries 1590 32% 10 22% 80 67Z
Bunker Hill CIA
Main Effluent 60 1% 2 42 5 42
Seepage Inflows from
the Bunker Hill CIA
Pond and Slag pile 1350 282 3 72 15 132
SILVER KING CREEK
Bunker Hill #004 Eff.
(in permit violation) 300 62 19 412 4 32
Bunker Hill Zinc Fit.
Creek 800 162 10 222 3 22
Unidentified inflows
to Silver King Creek 800 162 2 42 13 112
TOTAL BASIN LOADING 4900 1002 46 1002 120 100%
-------
FIGURE CE-15
BUNKER HILL CIA POND SEEPAGE INFLOWS
SOUTHFORK COEUR D ALENE RIVER
MARCH 1975 EPA SURVEY
CONDUCTIVITY IN UMHO/CM
70
TKAnetr
FACILITIES
a
ifrSACE
o
N
D
U
C
T
I
V
I
I
N
U
M
M
O
/
C
M
Z.4O-
2213*
1BC3-
1Q2S-
WTO
1
»*« 4
EAST EXD
HAM HASTE POND :
: WEST FHO * «*>^>>-*^ ^
; PHOS »UWT KESEPVOIR | .-SLAS »lt£^| A
^^^Tk^/^J
\n'
)LJ
\_.. j
VISIIU SEEPAGE AREAS
I 13 14 II -9 '9 " '19
i
a
8
M
I
2
M
^
* :^ SOUTHFORK ttEUR D At£li£ RlVft" L " "
i
KT INOtlASF
DUE TO KMU.lt I
SILVER UicC CJtUX-
SOUTH BANK (QA POKD SIDE)
AVERAGE ACROSS UVEt
NORTH IAHK
I 1 I I I I I I 1 I 1 1 I 11 1 Jg' J.
.a a.4. a.z 8.0 s.a s.e s.*- =-e
a.a
a. a 8.0
R IVER
s.a
xi_e
-------
FIGURE CE-16
BUNKER HILL CIA POND SEEPAGE INFLOWS
SOUTHFORK COEUR ALENE RIVER
MARCH 1975 EPA SURVEY
TOTAL ZIfIC IN U6/L
71
TttATKHT
FACILITIES
z
N
C
Z
N
U
Q
L.
>i ^ V1SIBU SKFASC
\ 1° « « M M
Q J igrrufcm ci£g5j
KfT INCKASC
OUC TO BUNtt* I
SILVER KIKE CRitCS
I J I
I 1
NET INCICMC DUE
TO SCPKE IH FIOUS
SOUTH IANK (CIA TOW S!K|
AVEMCE AOIOSJ UttR
NORTH IMK
1 I I I I I
I I I I I I I I III ,1
a.a
e.e
e.-«- e.z e.0 a.a s.a
R I VG.R M Z l_E
4..0
-------
72
COEUR D'ALENE LAKE SUB-BASIN SECTION
-------
COEUR D 'ALENE LAKE SUB-BASIN
(TABLE OF CONTENTS)
- OVERVIEW
- GRAPH SET NO. 2
COEUR D 'ALENE RIVFR AT ROSE LAKE (Time Plots)
Parameters; Flow, Temperature, Conductivity. Dissolved Oxygen,
Total Nitrogen, Total Phosphorus, Total Zinc
- GRAPH SET NO. 3
ST. JOE RIVER AT ST. MARIES (Time Plots)
Parameters; Same as Graph set No. 2
- GRAPH SET NO. 4
SPOKANE RIVER AT POST FALLS (Time Plots)
Parameters; Same as graph set No. 2
- GRAPH SET NO. 5
COEUR D 'ALENE LAKE MASS BALANCE (Time Plots)
Parameters; Total Nitrogen. Total Phosphorus, Total Cadmium, Total
Lead, Total Zinc
- GRAPH SET NO. 6
COEUR D 'ALENE LAKE
I. Introduction
II. Discussion
III. Data Presentation
A. Vertical Profiles and Time Plots
Parameters; Temperature, Dissolved Oxygen, pH, Conductivity
and metals, Total Phosphorus, Chlorophyll a_, Secchi disc.
Total Zinc
- Station 153384
153386
153391
153395
153397
B. Substandard Water Quality Conditions
C: Lake Mile Plots
- Temperature
- Dissolved Oxygen
- pH
- Conductivity
D. Sediment Data
E. Detention Time Calculations
-------
7t
*
COEUR D1 ALENE LAKE SUB-BASIN OVERVIEW
Graph sets 2, 3, and 4 show the water quality conditions for the
Coeur d'Alene River at Rose Lake, the St. Joe River at St. Maries.
and the Spokane River at Post Falls respectively.
In one sense they are supporting data for the following series of
graphs concerning Coeur d'Alene Lake: the mass balance graphs (Set
No.5) and the vertical profiles, time plots, and lake mile graphs
(Set No.6). In addition, they allow the reader to analyze individual
seasonal variations, problem areas, and the general status of each of
their locations, as they best represent their net effect on the entire
basin.
The location of river stations defined in graph set 2, 3, and 4
are shown on the map in Figure C-17.
-------
WASHINGTON I IDAHO
KOOJENAI
EN'EWAH
J.JOE STATION o MILES 20
H-1, i11 i1 i 1
0 KM 32
FIGURE CE-17
-------
GRAPH SET NO. 2
COEUR O'ALENE RIVER AT ROSE LAKE
-------
FIGURE CE-18
HOSC. LAKC U303 PATA
MONTHLY AVCNAOC FLOW
7V
o
v
c
F
now
JAM
H 1 \
APR mr J»JN ju.
MONTHS 107*
SEP OCT
NOV EEC
K09C UAKE.-Ua09 DATA
riONTMLV AVO TEMPtRATURS.
T
C.
M
f
f.
It
A
T
u
It
t
o
t
N
T
1X.0- -
.0-
H 1 1 1 1 1 1 \
-\ 1 1
JAN FED MAR APR tV-Y JV-N JUU AUQ OET OOT HOV VCD
-------
FIGURE CE-19
ROSE LAKC- U909 DATA
MONTHLY AVC8AQE FLOW
r
L
o
u
c
F
JAN
AVR mV AM JXJL. VLB
MONTHS 1B7*
OCT NCV EEC
100.0- -
0
o
N
D
U
O
I
v
I
T
V
s -.»
N
O
9 40.0
20.0-
KO9K UAKC-US09 DATA
MONTHLV AVO CONCCNTRATI ON
CONDUCTIVITY
FHS MAR APH
ju. ALO oo-
H 1
NCV DKO
-------
FIGURE CE-20
R09C LAKC- U909 DATA
MONTHLY AVCRAOe: FLOW
\.
o
u
c
F
9
FLOOD
JAN FEB MMt APR
H 1 1 1 1-I 1 1
MAY JUN -rtJU AUO
nONTH9 187*
CCT NCV ceo
ta.0-r
12.0- -
L
V
C.
D
O
X
V
o
n
a
s
L
e.o
9.0-
RO9C LAKE-U309 DATA
MONTHLY AVQ CONCENTRATION
DISSOLVED OXVOCN
IDAHO Ua 9TD
JAN
H 1±
MAY JLH JU.
oar
-------
r
\.
o
w
c
f
a
m
= ROOD
FIGURE CE-21
LAKC- U909 DATA
MONTHLY AVERAGE
=
MONTH* 107*
KO*E LAKC-USQ9 DATA
MONTHLY AVO CONCENTRATION
TOTAL NITROOCN
JAN
-------
FIGURE CE-22
K09C LAKC- 0303 DATA
MONTHLY AVERAGE FLOW
o
w
o
f
ROOD
=
JAN FTEB MAH APR
JLM JUU .
1Q7<-
DEC
KO9C. LAKLE-U303 DATA
MONTHLY AVa CONCENTRATION
TOTAL PHOSPHOROUS
JAW FED
JUJ JU. /I.O 9CP (XT NCV DCO
-------
FIGURE CE-23
K09C LAKE- LIS03 DATA
MONTHLY AVEKA»«
r
t.
o
w
o
r
aooo
v
MONTHS 1874-
z
X
N
O
u
o
ROSE LAKC-uaaa DATA
nONTHLV AVO CONCENTRATION
ZXNO
;!TlAonoU^Mtri«iy Uiliftl loiurnlr»ll«
A)xictd4l Concfntrttlon ~\n t<4/l
ou.
oar
NO/ ceo
-------
83
GRAPH SET NO. 3
ST. JOE RIVER AT ST. MARIE.S
-------
FIGURE CE-Z4
ST.JOES AT 9T.rw*RZE9-USQ9 DATA
MONTHLY AVERAGE FLOW
F
L.
O
u
c
F
3
{-I 1 1 1 1 1 1 1 1 1 1
<3b
JAN FED MAR APR MAY JUN JUL AUO
GCT NOV DBC
MONTHS 1074.
-------
FIGURE CE-25
ST.JOES R AT ST.MARIES-USQ9 DATA
MONTHLY AVQ TEMPERATURE
T
E
n
p
"E
R
A
T
U
R
E
C
E
N
T
JAN . FED MAR
APR MAY JLN JUL
MONTHS 1874.
CD
Oi
-------
FIGURE CE-26
C
o
N
D
U
O
T
Z
V
z
T
V
M
Z
C
R
O
M
H
O
s
X
L
70- -
40- -
ST.JOES R AT ST.MARXES-USQS DATA
MONTHLY AVO CONCENTRATION
CONDUCTZVZTV
ii^
JAN FED MAR APR MAY JVJN JUL ALO
1 1 1 hH 1
OCT NOV DEC
CO
cr
MONTHS
1674.
-------
IS-i-
FIGURE CE-27
ST.JOES R AT ST.MARIES-USOS DATA
MONTMLV AVQ CONCENTRATION
DISSOLVED OXYGEN
D
Z
s
9
O
L
V
E
D
O
X
Y
e
£
N
M
O
S
L
12- -
IDAHO UQ 9TD
\ 1 1 1 1 1 1 1 1 1 1 1
JAN FEB MAR
APR M*Y JUN JUL
MONTH3 1O74-
OCT NOV DEC
CD
-------
0.10-r
FIGURE CE-28
9T.TOEL9 R AT ST.MARXES-U3Q3 t)XTA
MONTHLV AVQ CONCENTRATION
TOTAL NITROGEN
T
O
T
A
L
N
I
T
R
O
O
E
N
Q
S
L
0.08- -
JAN FEB n*R
MAY JUN ou. AUB
MONTHS 1874.
OCT NOV DEC
,00
00
-------
T
O
T
A
L
P
H
O
3
P
H
O
R
O
u
M
O
X
0.
0.01- -
FIGURE CE-29
ST.JOES R AT ST.MARXE3-U3Q3 DATA
MONTHLY AVG CONCENTRATION
TOTAL PHOSPHOROUS
JAN
1 - 1 - 1 - 1 H 4
MAR APR mY JLN JUL AUO
MONTHS 1874.
I -H
OCT MOV DEC
CD
-------
FIGURE CE-30
ST.TOES R *T 3T.MARIES
MONTHt-Y AVERAGE CONCENTRATION
ZINC
Z
I
N
C
u
Q
10. .
TAN FED
MAR APR MAY TUN JUL AU3
MONTHS 1874-
CCT NOV DEC
-------
GRAPH SET NO. 4
SPOKANE RIVER.AT POST .FALLS
-------
FIGURE CE-31
POST FALLfe^USO^ DATA
MONTHLY AVERAGE FLOW
F
L
O
W
c
F
TAN FEB MAR APR MAY JUN JUL AUO
OCT NOS/ CEC
MONTHS 1874.
10
-------
FIGURE CE-32-
F09T FAL-L3-U9Q3 DATA
MONTHLY AVERAGE TEMPERATURE,
T
£
riis.
p
c
E
\IIII I I.I I I I I 1
JAN FED MAR APR MAV JUN JUL AUO
MONTHS 2.874-
OCT NOV DEC
ID
CO
-------
O
N
D
U
c
T
Z
V
z
T
Y
n
z
c
R
O
M
H
O
3
FIGURE CE-33
POST FALLS-U908 DATA
MONTHLY AVO CONCENTRATION
CONDUCTZVZTY
\ 1 1 1
JAN FEB
\-hI I II-I
APR MAY JUN JUL AUO SOP OCT NOV DEC
MONTHS 1874.
CO
-------
D
Z
L8.BEB0- -
O
L
V
E
D12-
O
X
Y
Q
N
8*CBd3'
M
FIGURE CE-34
F03T FALL3-U9Q9 DATA
MONTHLY AVQ CONCENTRATION
DISSOLVED OXYGEN
IDAHO WQ STAHDAOT
1 1 1 1I 1 1 1 1 1
TAN FEB MAR APR MAY JUN JTJL AU3
DOT NOV DEC
nONTHS
1874-
CO
C.'.
-------
0.13-r
FIGURE CE-35
POST FAL.La-U9Q9 DATA
MONTHLY AVO CONCENTRATION
TOTAL NITROGEN
T
O
T
A
N
Z
T
R
O
O
E
N
M
O
0.12- -
JAN FES MAR APR MKV JUN JUL ALO
nONTHS 1874.
OCT MOV DEO
CO-
-------
0.10-r
T
Q
T
A
L
P
H
O
9
P
H
O
R
O
U
n
0.03-
0.09--
0.02- -
FIGURE CE-36
POST FAI-L-9-U909 DATA
MONTHLY AVQ CONCENTRATION
TOTAL PHO9PNOROU9
Algal, Bloon Potential LBTO!
H 1H 1 1 h
TAN FEB MAR APR
JUN JUL
OCT NOV DED
MONTHS 1874.
03
-------
z
N
c
u
o
FIGURE CE-37
POSTr FAH-S-U3Q9 DATA
MONTHLY AVQ CONCENTRATION
ZZNC
Balaonoid Fisnbiy Lethal
SOOug/l
AlgifilftoL Gone. 80
JAN FEB
1 1 1 1 1 1 1 1 1 1 1
APR tVSV JLI4 JUL AU3
MONTHS .1874-
SET9 OCT MOV CEO
,-co
ico
-------
99
GRAPH SET NO. 5
COEUR D'ALENE LAKE MASS BALANCE
Figs. C-38 to C-42 graphically present mass balance calculations
for Coeur d'Alene Lake. This set of graphs Indicates the lakes role as
a source or a sink for various parameters throughout the year. It
allows the reader to observe possible relationships between Individual
parameters and flows.
Loadings for the major inflows, the Coeur d'Alene and St. Joe
Rivers, were compilated and defined as the lake Inflow with Post Falls
loadings in the Spokane River representing the lake outflow loadings.
The net difference for each parameter was graphed for each month of
1974 on the upper half of each figure. The lower half of each figure
represents incoming and dishcarging flows for the lake.
Table C-43, at the end of Graph Set. No. 5, numerically summarizes
these mass balance calculations.
-------
CE-38
2.5 ML
Ib/m
12 000
6 000
tMy loading
" na« oharjga In loading
Rose
and Po*C Falto
. . "-r--.Lr.ri.--r
--'
varag* monthly flow
1874
- - Into Ik Rosa U«ka a
8t.Joa
~~ out of Me Pose Fall*
-------
-,-:-;:;. , :;.;.
FIGURE CE-39
0 000
200 000
150 ooo -
100 000 -
50 000
Ib/m 0
-50 000
-100 000
-150 000
- - *
: : I-
11
v«rag« monthly loading
boewa«n1 ROM Lie--;
-|;-.:BI» jo*'*»nd!
I
?
»
i
i
30 000
2k 000
18 000
cfs
12 000
6 000
v«raos monthly flow
1674
- - Into Ik Ro«« L«k«
out of Be* Post Fall*
ri*n«
H^»M»»»
»
-------
FIGURE CE-40
.900 000
XO 000
WO OOC
100 OOC
»00 OOC
-200 eoc
-400 OOC
-.100 ..IOC
30 000 .1
-
2U 000
16 000
eft
12 300
6 TOO
nth*
1 net n h n g a In loading
)' Roe* LJc- .
ndPo.tF.lli
i .
..-Into
107O-
Ik-
Be.
of ik
*.
-------
FIGURE CE-41
30 000 ,,
2l» 000
18 000
efa
12 000
6 XO
. 600 000'
1 200 000-
900 000
600 000
300 000
Ib/n o
-300 000
-6)0 000
-910 000
varaga rimrrcniy IOBOITIB
^"navcihanga In loading
| . . bvcweon ROM Uk- .
Be Joo and PMC Pall*
/X
. / \ x\
^Sfc *** \--- ^n "^" ' ' ^ \
' ' ' \
i
I
v*rag« manehity flow
1B7A .
-ln«o Ik-Ro»» U«k» G
St. Jo. .
out of tk - Pa»e P«ll«
. r
-------
CE-42
30 000
2l» 000
18 000
ctm
12 000
6 ooo
loading
> nafe chango In loarfIng _
. b«tnwaen'Roca Uk-!:
. B» Uo« and Post Falls
1B74
- into Ik ROM u«k«
Bt.Jo*
ou« oflk- Potec I
-------
FIGURE CE-43
LAKE COEUR D 'ALENE MASS BALANCE SUMMARY *
MONTH
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
TOTAL NITROGEN
(+) 160.000
(+) 1.500,000
(-} IGQ.,000
C+T str.ooo
(+) 570,000
(+) 100,000
(-) 300.000
(-) 50.000
(+) 20,000
(+) 50,000
(-) 70.000
(-) 100,000
TOTAL PHOSPHORUS
(+) 25,000
(+) 60.000
(+) 12,000
(+) 117.000
(-) 83,000
(-) 110.000
(-) 7.000
(-) 6.000
(4) 3,000
(+) 2,000
I-) 10.000
(-) 25,000
TOTAL CADMIUM
t
(+) 160.000
(+) 80,000
(-) 50,000
(+) 18.000
(-) 240.000
(+) 70.000
() 35,000
(-) 20,000
(+} 5,000
(*) 10,000
(-) 10,000
(-) 60,000
TOTAL LEAD TOTAL ZINC
(+) 130,000. (*)
(-) 280,000 ()
(-) 160.000 (4)
(+) 900.000 (+)
(t) 430,000 ()
(-} 200.QOO (-)
(-) 240.000 (-)
(-) 220.000 (-)
(-) 120,000 (i)
(-) 120,000 (+)
(4) 360.000 (+)
(-) 510,000 (-)
220.000
80,000
60,000
230.000
440,000
560,000
20.000
100,000
20,000
30,000'
30.000'
20.000
NET (4)1,800,000 (-)22,000 (-) 72,000 (-) 30,000 (-) 470.000
* (+) Indicates sfturce (-) Indicates sink !
all data In Ibs/nonth !
-------
106
GRAPH SET NO. 6
COEUR D 'ALENE LAKE
-------
107
I. INTRODUCTION
Water Quality observations of Lake Coeur d 'Alene are presented in
the following graphs along two major lines of investigation;
(1) Examination of the water quality in relation to the State
of Idaho Water Quality Standards.
(2) The functioning and the effect on the lake as an intermediate
stage between the inflowing waters of the Coeur d 'Alene and St. Joe
Rivers, and the outflowing water which forms the Sobkane River.
The majority of lake data-under evaluation is a result of monthly
sampling for the period 74/04/25 thru 75/01/16. In addition, an intensive
survey was conducted by EPA for the period 74/07/09 thru 74/07/11. It
was during this period only that metals and nutrient data were collected
at depth.
A more extensive evaluation of Lake Coeur d 'Alene in the form of
a separate report is anticipated in the near future.
-------
103
II. DISCUSSION
-------
109
The vertical profile and lake mile plots indicate three different
stages occuring in the water column with respect to temperature
throughout most of the lake. These are; (1) July data depicts a
situation where formation of a thermocline is in progress, (2) September
data depicts a pronounced establishment of the thermocline, (3) and
January data depicts Isothermal conditions prevailing.
The Coeur d'Alene and St. Joe Rivers seem to mix with the lake
at variable depths depending on the respective temperatures of the
input and lake waters. Detention time of the inflowing waters and
flushing period of the lake itself is heavily dependent upon these
variable stages of temperature distribution throughout the lake.
Dissolved oxygen concentrations show a response to temperature
variations in the lake. During the period when a thermocline is firmly
established the most significant decrease in dissolved oxygen with
depth occurs and is exhibited through vertical profile and lake mile plots.
The occurrence of this dissolved oxygen sag, in an area commonly
referred to as the hypolimnion, is a result of two factors. In addition
to being cut off from circulation with upper waters and not receiving
oxygen from the atmosphere during stratification, algal decomposition
at depth exerts a Biological Oxygen Demand on these waters.
Influence from algal decomposition at depth is also indicated
through substandard pH values exhibited at most depths. Specifically, the
74/09/30 pH lake mile plot shows substandard values for all stations
at the 66 foot level and, with the exception of station 153397, the
same is true at the 33 foot level.
Correlations between heavy metals and conductivity are apparent in
the July vertical profiles. During this period, a decrease in surface
-------
ion and heavy metals concentrations occurs concurrently with a 11U
increase for the same at depth as the north end of the lake is app-
roached. This is indicative of an increased rate of heavy metals
settling out as the Coeur d'Alene River's waters travels north.
According to detention time calculations, input waters residing
in the lake during July would have entered during high flow conditions
with the majority of heavy metal loadings existing in a dissolved
state. Thus, greater time and travel distance through the lake would
be required for sediment deposition to occur. This is supported by
sediment data showing increased metals concentrations occuring as the
northern end of the lake is approached.
The September vertical profiles and lake mile plots depict a
decrease in conductivity throughout the water column towards the north
end of Lake Coeur d'Alene. Assuming, through detention time calculations,
that the river water inflow under consideration in this situation
entered the lake during low flow conditions, the majority of heavy
metal loadings would be associated with settleable solids and thus
reach the lake bottom near the point of input. The September conductivity
vertical profile for station 153386 depicts a situation such as
this occuring.
January conductivity values show a generally constant ion
concentration throughout the lake at depth. This would seem reasonable
assuming that due to significantly colder input water an even mixing
within the lake would eventually occur in a northern direction.
Secchi disc readings respond to the flow cycles of the Coeur d'Alene
and St. Joe Rivers. Turbidity throughout the lake generally increases
during periods of high flow (with corresponding decreases in secchi disc
values).
-------
Ill
Surface values for total Phosphorous also seem cyclic with
lower concentrations occuring during the summer months due to increasing
primary production. In addition, total Zinc concentrations in the
surface waters range from approximately 100-300 ug/1, which exceeds
the Algalcidal concentration of 80 ug/1 throughout most of the year.
Data indicates this to be a widespread occurrence, with the majority
of Lake Coeur d'Alene being involved.
-------
112
III. DATA PRESENTATION
Figure C-44 shows station locations which
correspond to station graphs which follow
-------
INYIRONKCMUL PROIECIIOH 1CCNCT
DEPTH SOUNDINGS
IN
COEUR D'ALEHE LAKE. IDAHO
I
3
fl) AR J.pik. ... u l»t» k*Uw Ul. -«.«. !<»« .l...ii.« .r 111! !!
-------
114
STATION 153384
-------
M
1 r*.. 11 rr."; I r^t 111 »;I.t.. j-i. * ri^i. U,,.
« U ! I....j......... I.. *.I.... I
: : irf r
2f
ull
n r:
i* -i i
~^ ,^r'r
. ^»wXw.BI
* ^ . **
§ .1.
l-ifiiii!
FIGURE CE-45
74/07/09
LAKE COUER D'ALENE STATION NO.153384
(single sample values)
74/09/30
A Designates sample value from St, Joe River at St. Maries
/ \ fmm approximately same time period as vertical plots.
74/07/11 - 13.0
Indicates lake bottom
74/08/21 - 17.5
in
t»H
"M
la
*
**_' ±" K
rrj^ii^l^ 1 iri I* *T"^
74/12/17
74/12/13 - 1.0 K-
-------
FIGURE CE-46
?iipli!ij;
'JiiSiiL:! iiiiiiiiiiliia
.T .." » ..."*. 1'_ "~j"*_ * " *"'' * f-»
In
'
'.
in
g-
1!
74/07/09
.AKE COUER D'ALENE STATION NO.153384
'single sample values)
ilssloved Oxygen Standard (6.0 mg/1)-
Indicates lake bottom
74/09/30
rJTTTTTn
::::!:":::
:.~\:':':.
^ ' : ;
"-T ' , * ' .4
k" _TT ' ' '
'-.: m
iii-ii-ii
:t::lil;-
:r::jlT!.:
:f~:::
~T--~-
~IM
:r:_n:
:?T-
r:-.:j::r:
Mrr
ir.i
H§
-:-=(-:s
Is!
eif!:
: :--... .'_.. ;:.
.rrr W^JT.:::::
iSiL-Z^J::::
fffiH1
': ~:l"Tr:r' : T^T.
Vif.^T
::::":;
frrmt
r«
» ... . .
!M
il:;:::
»» .* c i
. 4
!«
:i;-.._:
ii'.V4i.V^: ::L:lii:.:l:I::.-:-;
iii ::.::.!»!::: ti^ ::.!::;
ijpjnn
:.jr:.':;;;;;-:
I J I ill '. . '.
PI
:r:-
:i;i!:;-;ii
;-;;::;H[:;H|!f
r:::::::-::".--".
« . . . . . . ......
::r^;":::-::::.
i'.^;:::;J:^.:^:.
.* ... .... . ..,
i:;:.'. ..: : : . . :..
|TTt3:*:r:;!J'H:V"
.r7n;:n:**
*~rr:::.T::rr*
'Ifci;
;:.lhL.ji;:':r:
» r» «.».». - ....... . . .
74/12/17
-------
'.'. i ' 1 '. ' t'
».»
rn
fi:
ij!!
<*»
in-
rrJ
FIGURE CE-
KTi3}:
.......?. .; .-.,.. , - * .i...» - - J
: . . i, .. ^-.j. ...... .:.., !.«. -i... . .. _
. ....... . ... .. . . ....... - ..
« . * -v *!_ i *! «ti« N - .» »-«.»»ii »«^*»-.«I» * r
!.:i '-.:-!-.*i-:V i:-:!.: .!.:!!:; - !.::.
; .-.-. _;;.. ;_: .-. j_ ;:: .. _:.:;_._
-. t
_: M
jigr-iliiiir
-«-»-"*" -I- I -*- --.'- ............. . 11 .*.*».. I
... ... I- ........ . I .._ , . . I .... ......... .1
'.*.* iv.*ri^t^zzn^lrrn.u."Ji;.ti»z-*ji*r .*;. .jy.;rr .*
74/07/09 74/09/30
XE COUER D 'ALENE STATION NO.153384
ingle sample values)
I Standard Range (6.50 - 9.00)-r
\ Designates sample value on St. Joe River at St. Maries
Afrom approximately same time period as vertical plots.
74/07/11 - 6.80
74/08/21 -6.80
74/12/17
74/12/13 - 6.80
-------
V.::!::;;V»;;;!::!'£;::I:::4-:
^1"..::::: £==H=rr
J 1" 1*
::i:
_... _
...». i.
..-.t:
~rrf
n
in,
rrd
tru.;
FIGURE CE-46
::-.:..::::::i.::::.:.: :::.::..::::;:.:.:::::::::
;_..^^.::^i;.:;::i::(-y.^i;;:: i;._i:i;;L.-^u;_.:
i "
gyyi;
7:1
=--:n
t....
-' M
....I....:.... I ..
MiUH^SM
...,,.... .*.! **«
....... ^....... ». .*
- i....... i....*...
r:tin;:ilrr*m; lt"tcixr
l~tJ!; *--'"--'"-t-IV* *'*!_!
; ::.-:»:-.:::--Tlr-r: "M .!: ::: i::::: :-:
;....::.:.:;::.:=:j::::::^.:: «:::.:j:: .1:: :::::r:.:
,.-... - . .1
Jr.". '.!.!;.'! ii . i ' ;',.;.:.' ... : ;. . "..r;rs
nn~"i*"r~ii""H"""* ! --* «-..... . ....«.....?
|i;-:itnif^f-b-ri:>T:S:rl?:":i:»:.":" \:''-'^ ""J'.:'?y
74/07/09 74/09/30
AKE COUER D 'ALENE STATION NO.153384
single sample values)
H Standard Range (6.50 - 9.00)-r
A Designates sample value on St. Joe River at St. Maries
_Afrom approximately same time period as vertical plots.
74/07/11 - 6.80
Ind1eat.P«
74/08/21 -6.80
74/12/17
74/12/13 - 6.80
-------
JHTTB
m
t§L SRTfti^i^W^rh-tf'M :.:-f : '.a-
^iTii .ttf.oi-- . -o.bt11;--O-" -J--0.04 -
* '"'' , . -
.
ifj
-i-"
30.
c
r-
H |0
*mr
,~
1HZ
| --*%'
^FH:
Itt'r
TT^: T
;^zz A
L
r
H
.-_.». - - - --'*,
-'--' -..- j ;j;^-j;^j; ^fi~t ...__.... T -
O
R
U
n
o
USKft OOCUR D 'AUCNC HEAR DUUt rOXHT
tlCAH VAUUta 74./B4. - 7*/l*
DEPTH RANOt - B> - 3 FCET
STATION 153384
74/07/09
(single sample values)
Indicates lake bottom
h-H
rwr AM ou. AJO
TATZOH 133984.
afip oir »o/ oio jvL rta
-------
120
FIGURE CE-50
UAKft COCUR D ALCMt *CAM OUUC FOXNT
91 HOLE, 9AMFLC. VAL.UC9 7+X0+ - »« *0S
1C.0
o
H
L
O
fl
e
t.
i.
u
e
I I I. If
APR mr JLH ' ju.
-------
121
STATION 153386
-------
FISL 'CE-52
:::«.:
* t
. « *
i .. i ......
* * ' '
.....i
m.u 2ii|; . ~--4 lit si? i J .si
i i' :^|-.».-
'.:.::. j .::i .
74/07/10
LAKE COEUR D'ALENE STATION NO.153386
(single sample values)
Dissolved Oxygen Standard (6.0 mg/1)
1> Indicates lake bottom
74/09/30
75/01/16
to
Cw
-------
Fl £ CE-51
:-T~>i:r::::r:i:::;::'yr::;» -r:Hr -r-: r:
r-r:- '~-'"S' .:::*:: !' :
i --»» . ^^**«« > »i ** - »«i ». * > . t ..>». i
L-/T.:v' :S
74/07/09
LAKE COEUR D'ALENE STATION NO. 153386
(single sample values)
/\ Designates sample value on'Coeur d 'Alene River at Rose Lake
from approximately same, time period as vertical plots -
75/01/16
74/07/11 « 15.25
74/08/20 - 16.50
75/01/22 - 1.50
Indicates lake bottom
CO
-------
:rtl:r I
» » I
*»**« I
Lil
t
H:h H
I !
I* . t
.,.%
***
> * - - - . » ««
t I i .
*. . «- j . . |..*.*
........ I . , I... (..
* . * »
l^i'.i :.:-irT:::* I ""K*-*
...... *.
> * . I « . . *
*
."r I: '
r -
..:.M .=:! ' iti]: i;;' r'; .:
.. . .. I.. . -.1- . ...^.J *. »M 1 ..
' . V .I"-.. ;
" i* ' ." t.:. *.. .1 :
..«. >-«»* ... ...I ...» « ..1 !
. . .. i . .. t
. . . t .. -I .
- |..»... X ..,...'...
* « :: i. t: *
.-.. § .... ..'
. ! ... . .... ....... . «..^MA ....2...M . j
*:. **.*i'i i *.-
.1* . . *.' '..'.I
III . I . « ."I
-
.::. -.
r- -I
-.. f . ..*..!'.!:. .
" . . .«.
.:.., ..::"i" ,::-: ii*r.:pn!'" !"r|::*"r:.l
|:T:.-l:. :::.''.': :' .!.;; M'J ./i: !
]".!'.". j :.!::'.!.': 'd|l«';i". ! !'-::j
74/07/10
FI £ CE-53
hr --
itaJrr
t:;:;::::
t-
. M
.. .^ ;.:::.:;:: :* :L/\V;.:>;:: ::i::..:|:'.::!:;H
"£ppijj* /.
»l*«i '" *' r !*
"t »! I
*A
..... ... .. * y.(.-..
.... »..!.-* . | / -\'*
> *. .....
*" * / *«*)» «»»*. *! «... I
.«.«._. / + ... . . . . . If-'** -I
.. ! .t */| . * * {' !* . i
I* i / I I I I
.... i*. I m I t * -I. * I « * I
"r~: :* : /.I :.?. . .." .' .?::.. * . r. '
.""! :".:' /'\ :":|'""i':'"! ""H" !.::*"
l . { | .:;. {;*>
.1;:- : ;:,- :;;p,:v
>..!.»«<* I. . . . ...-.
.1 1*1
.. .... I .... I .:-. .. ;.'.:.
:.-J '.;.:! i
... * t | . I *
« « ! * ***» I *« 1 ** . i
' ::i ::-. ..'« .::;!. £ ' '':
...» * . ...» .« * I .*>. I. i
' \ . . !*:!/ :*.. .-: !:r'V. i:- '
r*"Tr*v*!*"i':T*rT*: "r, *4"1** r.*"
i. .. . . i.., -
* i « > * * * «.
*» »«.«*» * i. *.. *>«
*** i » i* * *- **
.I. -
I ' I* " ' |
- -
^^9 ' * * t
^^ * , V t I
..... *...« ......
: I
I
i
:
"'!
I
I
I
rjj::«.
ir»!;?j?
74/09/30
LAKE COEUR D'ALEKE STATION N0.153386
(single sample values)
pH Standard Range (6.50 -. 9.00)
A Designates sample value on Coeurd 'Alene River at Rose Lake
from approximately same time period as vertical plots.
74/07/11 -6.60
74/08/20 v 6.70
;:!:
i. >»
«»
» t *
> «..
!<>
^.«!
" '
»* ***» I **4M .*jj*p^piC*l* !*> >{*>*»
* § » * i . . i i .. i ...
.... i. .. i* . i . ... . . | ,t
.'"i.- !!_?_'" I ' ; J ."
*":" ':* T~V::*
.,«« .
I****** *
* !
.! I ....
.1 .
I .« . ! .
> *** I . *
*** §»* *-.».» «
... .1 ... . . ,!
». . . . ~. .
* !* - « |.
! I
tt*t|M
. . . . - ...... *>.*.
1* t i* t
. .1. * i ...
i*. I !
I* .1 ...... I. *
I« -. . » 1 . .
* * *
;r:r:.rj\T i"
- *. ........ *........ ,|. M. »...
« * i * ...
. . I, *i*^*** * *
*.* «...
.* .. . .. , .
1:*: ":**:.' I * *" .! 7** »'
> *!* ...,«. .
......... I . * .. .. .
-r^'rr .^.* r*:* r**-:» «.
. . . .1 . :,
. . * *
""
... .-_-.-..._...«»..«....... ( . .^ ^.j
..' . ..! i 1
* I
!* - .*
... .. ... |
. t I* ... I.. «
*»..! I « I. I. ... ,
«*|-«t-| !*
' * *«.. ..!».. C .
'' -' I
: I- .i
-» .*
75/01/16
75/01/22 6.00
ro
-------
'.::.
CL:
i.
=fc::: :s
.. .^ .
. . . . . . *
"S*i."l»IT I "I1
...... t
* * § *
~:;,=: :r«
.:.:::... I .:.
- -*
.... T. . j_ ». >» «*
*;"t!*".;.|* 'IT. . i" ! **i*i
!' .! :
! *j *.
»I* >* * > !
. . i
.* *!* * .. "*..%
* * p,;,;i*.; i.. ?*, " *"i.**.
I !
. . .....| .... . i. . . |. . .1 . ... .1 ... i
. . « i " -J?*' J -T---I i*' « j
*" T,-"";", "~,. j. t*-1-.-! .. ' "*7*i" ^T**. . . ." ** I ""TTJ
>** \ >>»
.
.*.... .« .^ . ... I .
- * ......
* > .
T. ..' «.^." .|
.. ..|....i ...I
- « » i «* * « t
t. V ». I *
FICWF CE-54
i »»* tit « i....
* ! *! **»«*"
* i*. !
*it -<.»
. . i * * ^ * * * *.
" '
. i..... ..4.. , _...^.
*'* ''
«*..'.*! I /K. .! !)'...!!'
*
74/07/10
LAKE COEUR D'ALENE STATION NO.T53386
(single sample values)
Dissolved Oxygen Standard (6.0 mg/1)
Indicates lake bottom
74/09/30
l^^M
* « I
VI «*
*!*» i
» » IMM*.* v * j
'!»» * . I
.!: . . / . . .
t« -«MMi % * «v .
' I'* tj . ** ."J" ;i
. !*«(
| * I »
-.» I «
I - - -
* ... ,|
;!.; V ; *
. .
i « .. * * *
-------
FlfauRE CE-55
1^^T»^TTf^x^T*^ni^l^nf^^^^^^*1^^^T'"*l" * *»»'
... . I.xii I.ill II..1.1..!<* ! (I ..... .
;.::::.:. ..:.::.! ..:i:::.|::::!..::|.:->L :.|::..}.ti
ir !tr;!"::^oi .1 I. - I « I
"PJI 1L:""::": \ ' ':i:' ".s\",
u.\:;!.'! ' illiijli:" 'J'^'.'l.
. .
i v; .-: .1; I
74/07/10
74/09/30
LAKE COEUR D'ALENE STATION NO.153386
(single sample values)
Total MetaU S,(Cd-Pb-Zn-Sb-Hg) (ug/1)
A Designates sample value cr/i Coeur d 'Alene River at Rose Lake
from approximately same time period as vertical plots.
U=r-:
r:i::::-
i -«».p»..«... '«
!.." I 'I *!" I"'!";';'" I »II ."1. *?"'" """"*""*
75/01/16
74/07/U 120
74/08/20 127
75/01/22 - 102
ro
Indicates .lake bottom
-------
- CE-56
^
,*-..
r-:
JO
-h-:
0.
±Krr:
-r:ij
iiSJUi
VoiAL hidiVhORuY a/1
IpfAL
-
H
i
ill!
..-i
ir
Ll
r-iij-tir
. ,..4.......
Wi
=s :::::: ::qzz::n
-
4-
-.lz-.-^rL
».
Q
/
L
L t _ ^
^p7p_.'- : *T.* T. r^rrrLT:: r*'
.*.... »
* I
II* .»« 4 .'.Sfc
STATION 153386
74/07/10
(single sample values)
->Indicates lake bottom
oocun o -ALENC HEAR QAsaeit rr AHO oeu.
nCAM VAUUC9 7-WB* - 73/»l
BCPTM RANOK 0 - a-rtirr
1 1
tm IVY ji
!M ju. /ua BCP ocr KV oo XM« n
PTATSOH I 333 a
-------
120
FIGURE CE-57
OOCUH D *AICMC HEAR OA99K* rr AND o«J. BAY
9INOLC SAMPLE VAL.UC9 7«X0* - 79S01
U.C
e
H
L
o
n
o
r
H
V
L
L
X
b
nor AM JU. /co SB
STATION isaaaa
cor tcv een
COCUR D 'At-CNC NEAR OA39Efi FT ANO DCUI. BAV
SAnfLK VACUC9 74X04. - 79X01
9
£
e
o
M
t
o
I
9
e
T
N
f
N
O
H
ft
STATION issaee
-------
acGJ-r
T
O
T
A
L
Z
I
N
C
u
O
400-
12BJ--
FIGURE Ct-58
LAKE, COEUR D 'ALENE NEAR QA9SCR FT AND BELL. DAY
DATE RANGE « 74.^04- - 74.^08
MEAN SURFACE SAMPLE VALUES
80 UG/L ALGAICIDAL CONCENTRATION
\I1IpIIIIII
JVSN FEB MAR APR MAY JXJN JTJL AUO SEP COT NOS/ DEO
STATION L3338B
-------
130
STATION 153391
-------
FIGURE CE-59
nr?:: i
't,fv'.-Uii":;--H,t "'"aiiiL'nr:!
iJ1*** I-A * --! I »- t - mm*m
""^ »«»* »- IjF t-l*«^._(._*.....
T-« * < y^ L-...
^11 Hi;^'Ai «.it!rt" -*.Tiii*ii;I;"T»t i
,.:;;_.i::;:!;;,!!..!.!:...
iiAii* I '"''' "
i*^.*« i*^... «>.»..>*.«..
~-::": i r :Ifl: P, Hi:: l~:
: ;:.:;!:::::;. I
-:.|i..,| .....i..>|....K...
*i^£3HpT#|
MtM'li<-<'i-'41L'-1"1'
^:;ii:^H^TtnJ>:P^i
....I !! '
"''("i ;!
. . i i !' I . ..
i:;
illli!
'4*1 !.>* M* '?.' »."«!il
. . * . >. j*« I . - .
I **»*It*
,....,. I *. .- . . 1 ........
*«* J ««*l*v* !*.« »
... ^« .........
* I .. I
i ! |« *** -
I. I. . . - ....
.;..: ;::.-:.:..:. \.
... .... .. .
: _ I ! * * -I » '
-* - ^
,
;. . :! .: ...]. .: i
...i... ...i . . i . .(
* «.« « | »*«« |W**»« « . « . «,'
K.-ly;!;::::; L .; i :j.;:: j
.:.{ .:;
I*
74/07/09
74/09/30
75/01/16
LAKE COEUR D'ALENE STATION NO.153391
(single sample values)
Indicates lake bottom
CO
-------
:|::!:i::.:
fli;H
:!-.::.::
I" '! ,
:LM
aSgl
L.::| sr.r:
. .. > 1 V « . *
(* * - - '
i*.I*.«»...
"."IT. TT-"l"T:i"
.I.. " 1.
I-":: ::::.:-.-rru:-.(T^-:.:x
" * "
FIGURE CE-60
"PJi
;.:.::,,
J-lLil^J
:*. :.r::? ..:.. .1:7:1.1!!. T '.'". i
.'J."*r. ::;. ;.;;.*,.. 'j':: '. . '
I ... > 1 1 «» MM I . ! *..'. . 1
j,,;',,,* ' '.; ;. J .'"."M
"
,,;',,,* '.; ;.
TTr*7""~~T,"r . ."""' -".;
74/07/09
LAKE COEUR D'ALENE STATION N0.153391
(single sample values)
Dissolved Oxygen Standard (6.0 mg/1) _
Indicates lake bottom
74/09/30
i!iim;
n-iH:
* «!«
.«i*...
i i «.
M*|
Ui I :::>
;.7t
.-r-i".-
..:i-iid..i!:^
;^:.£].^-3.
S!&li::£
,...i. . |. ....
*»« . * .M *'».
. i... . ,. ..:
... . . * ...|....l... «...
.. *.. |. *»«.
i , *!».»***j..l ..
I
-------
CE-61
4<*
Jlii
i::il!j'2;-:^!'r-i|
lli^SVrlfflisJ^J
«**i*^*«*«^ **+
74/07/09
LAKE COEUR D'ALENE STATION NO. 153391
(single sample values)
pH Standard Range (6.50 - 9.00) «
> Indicates* lake bottom
74/09/30
!!i
.gag,
lui;;::i
Sn«
i *
:i-n-
t&&
r;'.i .'
4,'Ul.".
mv."
:»::
:T::
:u|w!!
r:r.l:t:i
|1 "L:i;*
i-iiiliuliHUiilillip-illl
7"|'~rT:nr:;i;:-:;.:::|;
:...!.: .:..i:v:r. ::.::.:.
;r:l:;[[;~;;;:teii^
ii
."JHItliUrHT::!::::'\ xi.-'JIii:!!^:-;:!.!.
.u;::::!::;::::::: :;::j:\ rl'l:;;::;,;^"^.!;
. :: " ::"--~:i:::!i;: I':'::H:Ii::": -|
..,.. . t
> .1
**!
-:r-vl
..,....,
"'vTi
:i^--l
- * "
'* . I
75/01/16
CO
CO
-------
FIGURE CE-62
a^
l^i :::;
3nt7vl
iltn:t-*-'1
;;Ii|s!!;n!;.i!:;iIT:::i!!!:i!n:n»!|!»!i:!im::!!!j|ii
~^^!l^mJ.ivJ^^;|:!H|Hi:|H;.rhih
r'-«rtr »,> ;:[' 'n,t ::; »,> ! M,rfrlji.^
:;i:tr
- I ..
^=L:;:
^rrr..
:»:.
;;SinSlfeiS:fc|!i^OH-jj:^!i
::::L- ^^Ik-li^ii-:^-^
..* <: -:::".:i:; '.! .: r
f :!::>:!. |!
i-
* *
:r:u:::i:;..:::::
ruh-i r^.:i-..:
;c::i
rar:
-.rr.r-
::n::::ii;:.i::::
::Ui^jiii::Ui.:
i.:''.i:i|i:Til!"*: !':l,i-J'
::::lii;.
n:|u::i:;:. lui
:^:s
r. \ n *T ;;
..i... ... . « * i....
.....H. .**...* »| . * ..i...-
...::::::.:.- /::i-:-l-::r":-.:!r-.
.::r
' "_:-i: : 1_ :Ji_~ii-:i
ii-Uhy
:i=;i:i=l iiriilnl
,-..... .. ...... i
""i1***. (*u*f
I. - ~ . - ..«».*
n
...*.*........-. * . i
« »!» *|.*.t *« *!
_ ..T^_ * lw«v * « > |. -- . . _J
**(.I ....... «
' I .III I .1 »
. -1.i I* I .»*' «^. 1! 41.'. [1^-.! U. 1. 11^.1. ! "
^.-i.. l^j:.»":..r^t;^'.:::_!'.; :: :
ri-.TI".^""!:^...: :;~;::: ,r~:::V:
.lil'li' I :.T* Ji::i|i".:'M:i!uir . l::ltll ' '.'i'v; I -iii
:::-:: |"..:::]T::r::::::';;:::":| ":i:1"::i::"
;..:.:I::::. ...:;;.-;i::^.:;.|-:;-' .;i:;: }
>
stir!-:'1
ililMi!
Sin!
« >«
111
74/07/09
LAKE COEUR D'ALENE STATION NO.153391
(single sample values)
Total Metals £(Cd-Pb-Zn-Sb-Hg)
> Indicates lake bottom
74/09/30
Ml
Hji
jii
|.ii«.ii|i«"'l'«. > I""'!'!''!!1''!'''!!'
::i. <:ti In: u: : : :::::!::!;:::::!
..i.ii, i.i. ....I... i, in.i*.|.i»i|]|>ii
'iililTrl ':"»a*"".7i!^'rr^'-M
jiii|:!i:t::'«»t* ' ''1*i* ::l:;'»«)r::;:-ii)»
v5!1:7:!^
^ut:
*»
.;tl.*«
-,.
»,» .;.;;
*** I
::-::j..::
^i, ' i-' ' ,; y
75/01/16
Co
-------
CE-63
I . . 4
....... i.....**i 'j.'iirr~
....:..,.,...... ~f*..... -.».«
. ...-. !..-.-«| ..»,«!.I. ...»-.
. --...1----.-_--j;:;:;7^;;^::"
--1
III"".""
-*"" 100
s -
/
L
r:r_wo,
rrrr _^ i -.
.....-. rr........ .>-... - ;--; - it.:": zj^^-'.rj."~
^-^-*|7rTr~?':7~*:rii:*' '.v: i:
:^-:" STATION 153391 "^'i
.-../..- 74/07/09 :35.-.-*-
LL«^'*- (single sample values) ;'vr;V
4--> Indicates lake bottom
OOtUR V *ALtN6 Off MALT BOUHO BAY
MAN VAL.UC9 7WB4. - 73X»l
DOFTM RAHOC - a - a rctr
fc-d J
«r oer KV BCD
3TATXOH 133381
CO
CJI
-------
136
FIGURE CE-64 \
LAKE COEUR o ALENC OFF MAXX POUND OAV
9INOI.C SATIFLC VALUES 7*X09 - 79X01
o
M
u
o
II
o
F
N
r
I.
L
u
»
L
STATION 199301
UAKC OCCUR O 'At-CNC OfF
9IHOUC SAMFUt VAL.UC9
ROUND DAV
- 79X01
a
e
D
c
r
T
M
I
I*
O
M
C
h! 1 1 1
mv AM ju_
STATION
SEP OCT
199301
f^
-------
5C0-T-
T
O
T
A
L
Z
I
N
C
U
Q
X
L
400.
2S0- -
FIGURE CE-6_5.
LAKE CO EUR D "ALEPE OFF HALF ROUND DAY
DATE RANGE « 74./8J4- - 74-/0S
MEAN SURFACE SAMPLE VALUES
80 ug/1 ALGALCIDAL CONCENTRATION
H 1 1 1 » 1 1 1 I-^H 1 1
JTAN FEB tVSR APR MAY JTJN JUL ALO SEP OCT NOV DEC
STATION LS3d8L
CO
-------
138
STATION 153395
-------
~Ks!:si;:sttU3:u.-
:;: I :;r!r:::;::::
r.!f
'"" I ""*
"b"}r~ :":!;::: i:::!i!::
74/07/09
LAKE COEUR D'ALENE STATION N0.15339S
(single sample values)
Indicates lake bottom
74/09/20
: :_.4.t :',,.:i.i..:,:: M i.t.MiU
»!tri:-;t
-I
1 ....!« !. .«. t* .*.]. t .*.'« ..j
\ ""T-*"«5*t.rir!*?.'*"t?j*?*"!"**"«
%! - * *.» i
',r;;;:? |:;;j:;;::p: ;: \!'*.!i:*;!.'"i.T::*" ii'I"* :*
.*-^."-u*lri.:i::|.;LJ". j.:i^:;illii.:Lii:. .):/.;.i::j
* -» ** i * * I ...* »*«.t|* . . . . .
** *;j^j- * I «. '.. ......... . ,
«*i.**. .*..i.«,«.. ..iri .*
. . I... -
- !: - .:.:
:::.'::. :::..:. .!
:":Tr.~"~r.
:: \. .:
: r::r. : « I
iSirl::; -.I
~n!rj:i;^"|
*ii «-I
!U*i ' .;..*...
75/01/16
CO
CO
-------
FIGURE CE-67
. .|....|« »%..
;n^si"si.!ft
I'."'... .i. I:. _;.
._.-.).... I....,
.. ..^ ..i...ri
^rHB
....^._. ^i
~ " *
«.*. *!. ..
*v»l- -I. . .^.....!.... k~.*
It* ! ' * ' . .- ......
.M|*I »! * ki . * .. .J.r;
* I'l i* i'lti t*r!t*tz .it* "i
(..».>...... ..,
* I *!* I CM It «
. ! .....M . | . * . *._
nrr rr rrr"- -. :::
- -. i 1
::::" ^i: h i^i:!:!
^*TTI*''.'^ ** "^?*i"'r^1 ***'**
" * * "" " "
.1.
" " t "
ii-i:
LIT-
»
:;'./'. . :
( |
. t:...: ;
** I 1 * *
:.;:.: !-..!.:.. :.u-:.U:.<;^;,
^.~.
:::!
i!:":
\\v\-\\i
74/07/09
LAKE COEUR D'ALENE STATION NO.153395
(single sample values)
Dissolved Oxygen Standard '(6.0 mg/1)
Indicates lake bottom'
74/09/30
II;
Ltl
!S
III!
tut
I
fr.rrT:--
:£;:;
fck
**4t«
::-!::::
llMiii rliihli
. X:JL
. I::-1
..li:;:::.: I H IK-
i . . . ,. 1.... . .
M i I ' 1 ' * I
.-..,. »!....| ... .. . ..
m,
mi
HIFK;
.:i:.:
,;:!;.!
* i *
I.
*
t!!!
.*! . .. i *.:!::::
i . *. *.
» I * % .
* I - . i *> .
« *! ( * HM
'::. ::. lia.!;...
. -
- - . . . i *
^*» . I .-
1 . .
* > ......
| . .. . .
> . - . .
-i " I " * ""
I:;'1!?!"'/ K':i- '
iujl. :^.l::^.^i!H I!:
: ..:; ! ;. :.-(. ".. . :.
...
n
75/01/16
h
H'
C
-------
Fit CE-68
riilraim/ii!
;^:;j;:;^i'j;::f--j
^r^jiilvi
. > ,... *..,«-. *
I- ^ ;.:; " .;.;"-::!i:-:|- I j: j:
* I"-.-1 .Inn:-:-:":" ijiU: ni^irl^M-i
'- .--:: '''i:i ' '.-' i .-'-v
i . : :.' ::!:..:
EiM:
:.j:./;;ii'i;;:;ii;-.i: '::.!::- ..t.. .«:;:ii
uLiliillklldLilitliiiii'.i'.'iJJ-.L-jii^jl
74/07/09
LAKE COEUR D'ALENE STATION NQ.15339S
(single sample values)
pH Standard Range (6.50 - '9.00) L
r> Indicates lake bottom
74/09/30
rlr!:1'-
M.
!U': i'V :«!: V
r-i^:iJiif^?i:!"i*i:i;!:;:';r:i";:;-: .
_:-_it::-;L. Jr: i:iJi.'.-.:::;i:J.:..;;. _j
75/01/16
-------
FIGL-. CE-69
M-
l»
rwfc-JiLVVfeS '.'::::!»::
.~.i'.': : H:: ITWI-WJU iiu^u-iMW ji»rtt'. Jj-iv. j ~ ~ nt H
Ifp'^^ttitlMiiii^tl'i'iljji'.iiij.llirl'iiipiiliiliSIS'S!
74/07/09
LAKE COEUR D'ALEHE STATION NO.153395
(single sample values)
Total Metals S(Cd-Pb-Zn-Sb-Hg) (ug/1)
Indicates lake bottoin
74/09/30
^«« *»
i- ! 1
75/01/16
ro
-------
FIGURE CE-70
.*...., *
>*- IO.
TMl
lltS
'- rv
;"*:<*;
323
-rrti
!=±
r^;4=±z£ j £i ":r^-£!r:r=
.Tzr.:....-!-, T-r: |^=4=-=]-l:;=:.j=p::
111 i _ Ti h" ~ , I
rq;-^
titr:
-1 V S-
T
o
T
A
L
r
H
0
9
T
H
O
R
₯
» I
I.
OOCUK D ALtNt KORTH OF CONO OAV
VALUES 7*xe* - Tnxai
RAH0K - a - a rccr
- ..*. .-f T?^' STATION 153395
74/07/09
^^W f^
nv
TATZOM
(slngle supple values)
CO
-------
FIGURE CE-71
LAKE DO EUR D *ALCNC NORTH Of KOMO BAY
9ZKOLC SAnFlC VALUES 7*X04. - 79X01
9Cr.TM. RAHOft -0-9 PUT
e
M
t.
o
R
e
p
N
r
L
U
U
a
JU. /UB
STATION 199989
LAKC OOEUR D 'AlKNC NORTH OT KOHQ OAV
VAI.UC9
OAN I=BB
a
e
e
o
M
I
D
I
a
o
D
t
r
T
N
I
N
e
N
ft
9
ISO-
L I ' J. .L i » .1.. I I. I
MAY AM JU.
STATION
OCT
1939D9
-------
STATION 153397
-------
146
STATION 153397
-------
FIGURE CE-72
'
f ». . . I .* .1.....
! * *« «»-''
.-
i.. .. i.. .7T.... i .. . .. U i. ..T....
i.. .:....! ... I... .|..... | -i
:io.
;:,jl.M
:-.:n:.
U^ii::.
...11.
i^
"III:::
ir-Sili; :::;i-:;i
.:I:l:K:
! » I
hjtltr:
I *!*
...-11- ........
«**4iMB - *
i I
.il-jiL
.:.i: ,:!:i*
... 11 «*. <. »>.
> i > .
*!« l^r*»««**.!' *.
!:!-|i!ii
'!!
74/07/09
LAKE COEUR D'ALENE StATION NO.153397
(single sample values)
-~> Indicates lake bottom
74/09/10
1
I
it::
urjii::
-~
..fll....!.).!!'..'!*.......*!
n**ll' ll'tiM'l' I" »! .'*|«..
..I I . / .. UJ .1HJ_ .. 1. |.»««
....... f M........1 , ..
_ ' !» «! *
......../, I I . . . - .
..... f l*|it*««*B ...!..**. .1.*
\
-:::_L.I;I
i.. .. ~t
. . .
It"**J?^Vir*\ * I* "'!* I .. ..1? mm\\
I ». 1 I > ! .'
. i . > |. * «j . \ i - I -
75/01/16
-------
FIGURE CE-73
-Lu
:!::
1
:«uilr:ii^.i:. f:..u ,u^::l:.^ -:.i-J-. .i:-j -
: : j.- :-.:rV.I :!:.::.::!::. :.:. :::!
.. . -. . I *! ».! ... * . «] * *-
;... . .. | J-»_*il ".. * -. -* * .« I .
..». ...... . ... ^ . .ft . . I . I. -
. «.*. -« ». *» I *.. 1 I I
. ,11 f»»* ii i » **! *! > ..
.: :r:::!r-. i : i:::i:;.-.!::-.-
:^r.-_-TT:;rr.u-:l-:;.V:T]::: i:;::!:;:::/;
~^i^~~K:::|::h£V^;|::"!:
::-"-hr:h-:!:: /l-'::'.!:::. i-::-'
15:
.... !. .«**!* <
.. ...» '
., .
... .1.. . ...;....!. .^i
"1.1.1*.I'.! .t!I.'|T!'.*^!
; :rH - i I -rfnH:' I *i :n
""ji: .i".;!.:. |.::'i
T^r-i^-.^r-rJ-'-rT
;;:! j , ;J : ^
. i:!;;j;:;:?.;;'i::Iii
.. . « *« ..1
i:
n
]r':
'\':
. *
*-
r: .
.^.rUi: / ...:;::.:; ...t .;.;;..-, ;.: :"|
: .' i.. I I .. ;:.! . :;: i :.: . r. . .'
::'. .1.: /: :: J:.;-. . !..: : j
17V;
""r-Hi:: l/ifiiilinir^t5'-!'.'!!1 ;! Trliii-
-iiirrij:: /j.ril! :.;J::;-i:r;:ii:r ;«:::.: ,:ri:!i::"i
74/07/09
LAKE COEUR D'ALENE STATION NO.153397
(single sample values)
Dissolved Oxygen Standard* (6.0 mg/1) __ .
* 74/07/09 vertical*plot subject to D.O. Standard
1n top 33 feet of water column only, due to the
presence of thermocllne.
74/09/10
Indicates lake bottom
-------
CE-74.
:;!i:!-J
r£:H
:r;-;!':!: '!; !'*;|^!;::;r
ffi::«.
.1........ i;«.;i;-..I ,...:;;(:..
!^'«M:-::H*JH:i-H!r!: i»
«.» .:|..nj»:.ll:;i.r ::i;;:tV.
lli*i I
!!!::
:i!lii
r^KJl;
:--!;-
nirHF^Tr.'!:' I .:HT:::
liii:;:;!i:i!l"."i;il!:ji::::
*:?:::: M» ?-J IS"
:::;:::!:;:::;..:::: .i.
:::i!:'T::'^r:rH-rr±-
:::..M
......
i-
1> HI'
T '
t
'::!/:;
...u. ...:: ...;::!...... ..: L...I. .;::
t
;
':: ! !
:--;--;i
iJij'iil^ ;:!*!i;i I :: r * -;!1 ' : ;: *«{;!
74/07/09
KE COEUR D'ALENE STATION NO.153397
ingle sample values)
Standard Range (6.50 - 9'.00) '
v> Indicates lake bottom
74/09/10
r. :;:.
m:
«:!:.
^T . .
« ..
t
_ M
«-
.. .-It.
^.il;-.-^::-:::::!7:"!'--!^.7: -.:-1::-'- ~1"
::iu:::i::::5:::; :.: I .::::::i::::| ..;:::.!:.
....... ....!_..-..... I ..
'"fit"!:': *::trjr::r-l
V-1
i
-.i
i
; .. : ..':. :i ::.: ! i: .".
. ;,.::: :::i.::. : ;
i i. **.,.! . 1
--!* t
75/01/16
CO
-------
FIGURE CE-75
nrr
1.. »
.nf
.....
-l l-.l" I ..».»-
I I «» I I I ^t
^ I ,..,.. I....
. .-.rsV::. j. j :r.:j;:;:
""""T V'srrlr'nTrS
. i » <. «..(
: .fc-u- I\;::.:I-..IL-:.:
. ........ j I I » i-
* b*»* 11 »» I ». -
< ,. . V^. .- »* *l* '***'
:ji^;;.^=:t4'..^rxJ-::vJ=:^u::. -ii .1
'---J--''' '' t-----'
. . . I . . . > . . X- . i . <
. »! I t * 1* ! « . . . . -X 1
;u.!->.:i ».... : ..
rnr.y'Vi: :^L:"~::
.z:i*z»*4"! ..^«*«-
.^l*i**'^j'!*;;jit.*'
. * i rr*v.77r:T"}'-''.'. IT. :z
a:_"'4.':::l :'/MM ;kgS
'".::; ::1-5-:i:-,.". JT
.» .1.1.!'.,I.
^i'.::-j
;r;
'.:!
i. .1. .. n.i
M|.M. *!
I * |.. I . . . * i
l.l.r...ii.».l
.In
<'|-
.»... i
i-*.l»-.*|** I
.......>!.*.. I
*.»!'
.....!
.. .i.;. i
i.."jc: J.
:r.:f: .1
.t .:.. i
; .:.
.,..
»*l *
iliife-
Hi:':.
j...,.
^. j _
r:u::-
*r;:
:\r.
.«.[... ..
. .- . .*- «. !- ^
**! .«. ... ...
.:r:h:r!;y:H::
. . I . . i -». »..}-«. | »« .
»ii»r* »! «!». |i i »! * *« i
linns: :^L:i::-p::yaL:
:;:':::: ::::::: h:R:t::
i::.:u':
iili^LiH1
art
>*. |...... ..,..*(...
.. M4 ! I «.* . |, .,,.
>**! «<»! *
A -. I ' " "*" I «! ^««|.**. . . . I
.* *' ..»...-.« ...
[..« .. .... .!. *. »..| ., .
<*« !-.**«.*.. .t i i * * * i.'"*i". Mir^i,"* ',
* I»( 11 . I«t* » .
r.::i.
i:r::
i:::j: i
!:!'.<
..«! .... ......f....i..« i... * ::...*'
«..«.".. .-^ . . ..J . . Mf I* * J.« -}. .|..*»*« .
.: """.**fiiMJ*!t:ii.!*rs. !':" I*:: i'
.:. i»*u. ..:*. ':*:::: . * *. I * "".
. ,«.»^..«_«..M|....j...: . i... .1. ..i:...
. ...»«|. .*i ...i «i
. »».:>» i *.i. .......
«( .! .1. ... .M |«..li ...
.(! I ...I. i.l
I ..... I I ....
A...I.. *lM...I.«.t|.«...lw.
1:1,1' . .:i:ir.:- ::.;!:::.
!l« I '..I..;.! "'
.. ..i.* * .
««.:!'
.:!
UJ-
... i ..,
:juu::
:; »::
i :.:
»».f».t
,.,ip... :i;:i.ij:
111 |l«1t t ili i i*«lt
»!'.i* Mtll*
ii-ifi: I i ':
iiiillJjJUIiU.
74/07/09
LAKE COEUR D'ALENE'STATION-NO.153397
(single sample values)
Total Metals £(Cd-Pb-Zn-5b-Hg) (ug/1)
> Indicates'lake bottom
74/09/10
Ml II
l'"'i
r
.Si
* I ! 1 1 *« ! > B|iI|l*|I*11IVi«ll«t
.
**"' '*»'" '*»* v»::«M !».*
ir.r. .
t.-
. .,,.._
. i< .*. .
« - I -....>
'*!! l"*'i"
litti i»..* i*...
Ji * i * 11 * 11 «
J«»«M*t*If
** I | * *
.1... 1,1* .» I.
tn'itlt'i'*rr*r *****B"***''^;*"*'I
*»irtt- rt.*!* !
!**
*!-. - . **
trtlj* ***""'*j:\*'"t" ; *( !
vi j1*"'* * * i'** "
\ .*
i * " »t
i . <. * * [. *«. !." j'. "~ I *"
::::.:!::..: :!.:: ::::. : S
! |
. ...... i . . .. . ,
' ' *l !* i * i .. .
- - ! I**. | .* I. . . .
. ......: i . J.. .;
..I ...I... ...I. . , l.« . ..
. _''_"J_''_ '! i
.. .{{ ..... "prrT"." *" !
ij:j|:::ijiuTii:|:i;:|;:ii|:::i!:i:l /hliiii
iilliii!, I *;_*,_;_** ':' ' *i*_'* *' ' **_LL' 1 *-j ;
75/01/16
cn
-------
CT.
STATION 153397
74/07/09
(single sample values)
'Indicates, lake bottom
M -J
WM * |
:._--"J
~zir^:'.1
FIGURE CE-7£,
UAK& OCCUR O *AUKNC OPf SAHOERS OBAON
nCAit VALUES 74/04. - 73/ei
BCPTM RANOC 0*8 rtCT
AP« rv.v J^M ju. /Jo » eer M
KV
Ji JL 1
9TATXON 1993*7
-------
152
FIGURE CE-77
COCUR D *ALJUIC OFF BANOCR
DZNOLC SAtTTUC VALUES T4^0» -
PCTTN «A«0c - 0 - a FCCT
OCAOH
e
N
L
O
R
O
r
H
V
L
L
X
k
rwr JLM JO. MJa SET oar
STATION X933S7
LAKE COCUR p *Ai.eNC OFF SANOCBS OEAOH
JTAH
c
e
e
ta
s
o
z
9
C
f
H
I
H
O
M
FR IVkV JUN JUL AUO SCP OCT tOt CCO
*m
rwv AJN JUL AUO
STATION
OCT
133307
-------
SCOT-
T
Q
T
A
L
Z
I
N
C-
U
8
X
L
403--
320- -
220- -
CE-78
LAKE COEUR D 'ALENE OFF SANDERS BEACH
DATE RANGE » 74-X04. - 74-/0S
MEAN SURFACE SAMPLE VALUES
80 U6/L ALGALCIDAL CONCENTRATION
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - HH - 1 - 1
JAN FEB
APR MAY JUN JUL AU3 SO9 OCT NOV DEC
STATION 133387
Ol
CO
-------
154
B. SUBSTANDARD WATER QUALITY CONDITIONS
-------
B. SUMMARY OF SUBSTANDARD WATER QUALITY CONDITIONS I/
The standards of water quality under consideration, as established by the Idaho Board of
Environmental and Community Services Include;
Dissolved Oxygen; Greater than 6,0 mg/1 or 90% saturation.
Hydrogen Ion Concentration (pH); Inside a range of 6.5 - 9.0.
STATION
153384
153386
153391
153395
153397
DATE
74/09/30
74/09/30
74/12/17.
74/07/10
74/09/30
74/09/30
74/09/30
74/09/30
75/01/16
74/09/10
CONDITION
pfU6.5 at depths ^20'
D.O. /6.0 at depths * 28'
ptU6.5 at all depths
ptU6.5 -at all depths
D.046.0 at depths £45'
ptU6.5 at depths>21'
p>U6.5 at depths ^35'
ptU6.5 at depths* 33'
pH£6.5 at depths > 33'
pH^6.5 at depths^ 27'
I/ List depticts only those presented in
vertical profile graphs
2/ Percent figure considers all samoles taken
Percent substandard condition 2/
Dissolved Oxygen
1/37 » 2.7%
3/50 »6.0%
0/61 - O.OX
0/52 - 0.0*
0/52 » O.OX
DH
13/43 «* 30.2%
19/60 » 31.6%
23/68 - 33.8%
19/58 < 32.7%
8/60 » 13.3%
'
^*
en
^ Bta.
-------
156
C. LAKE MILE PLOTS
Temperature, Dissolved Oxygen, pH, and Conductivity values are
graphed In this section by lake mile and are represenatlve for three
periods of temperature distribution within the lake;
- July - Thermocllne forming
- September - Thermocllne established
- January - Isothermal conditions
-------
157
TEMPERATURE
-------
20.0-T-
T
C
n
p
E
R
A
T
U
R
E
C
E.
N
T
IB.0- -
8.0--
FIGURE CE-79
LAKE OOEUR D 'ALENE 74./07/0S
1«3 FT 2«IQ FT 3«33 FT 4.«*8B FT
VALUES
A03.0)
4..0-
I
113
1
120
1
125
f
\ I
1 1
120 135
.. Designates sample value on Coeur d 'Alene River LAKE
A at Rose Lake OP St. Joe River at St. Maries from ^
Z1 approxlaatel/ sam time period as Lake pile plot.
MXJL&S
COEUR D 'ALENE
RIVER
74/07/11
ST. OOE
RIVER
74/07/11
en
cc
-------
FIGURE CE-80
15.0-
n
T
E
R
A
T
U
R
E
O
E.
N
T
12.0--
8.0--
LAKE COEUR D 'ALENE 74-/03/30
1«»3 FT 2=33 FT 3=»eB FT
SINGLE SAMPLE VALUES
A06.5)
A 07.5)
A
A
1 ]
113 120 IZ3
Designates sample value on Coeur d 'Alene River t A
-------
FIGURE -81
T
E
n
p
E
R
A
T
U
R
E.
C
E
N
T
2SJ.0-T-
1B.0- -
LAKE COEUR D 'ALENE 73/01/18
103 FT 2033 FT 3«BB FT
SINQLE SAMPLE VALUES
12.0--
8.0--
A
A
1 1 1
1 1
115 120
Designates sample value on Goeur d 'Alene River , Alttf
at Rose Uke or St. Joe River at St. Marlei froii *-/NISfc
approximately same tiro period as Lake (file plot.
I
1
123
MILES
0.5) A
--
139
COEUR D 'ALENE
RIVER
75/01/22
»A
1
n
133
ST. JOE
RIVER
74/12/13
-------
161
DISSOLVED OXYGEN
-------
13.0-r
FIGURE 82^-
LAKE..COEUR D *ALENE 74^07/03
FT 3«33 FT 4-«BB FT
SINGLE SAMPLE VALUES
D
Z
S
s
o
L
V
E.
D
O
X
V
G
c
N
12.0-
S.0-
6.0-
M
G
3.0--
1
115
| I
120 125
LAKE MILES
A
I
120
COEUR D 'ALENE
DTUrB
A
I
135
ST. JOE
RIVER
05
to
-------
D
I
S
5
O
L
V
E
D
O
X
Y
G
E
N
n
Q
15.0-r
12.0-
8.0-
6.0
3.0--
FIGUKl -83
LAKE COEUR D 'AUENE 7*/09/30
1«3 FT 2«33 FT 3«BB FT
SINQUE 3AHPLE VALUES
Idaho Water Quality Standards
A
A
I
1
115 120
LAKE
1
125
MILES
1
139
COEUR D 'ALENE
RIVER
I
1
133
ST. JOE
RIVER
05
CO
-------
p
I
s
s
o
L
V
c
v
G
£
N
n
Q
13.0-r
12.0--
9.0- -
3.0- -
r U CE-84
LAKE COEUR D 'ALENE 73X01/18
1«3 FT 2*>33 FT 3«BB FT
SINGLE, SAMPLE VALUES
A
1
IIS
1
120
|
125
. 1 1
120 ias
O5
-------
165
HYDROGEN ION CONCENTRATION (pH)
-------
FIGURE Lt-85
LAKE'-COEUR D 'ALENE 7*/07/09
l«3 FT e«lQ FT 3«33 FT 4-e8B FT
SINGLE SAMPLE VALUES
8.20-
7.03--
.6)
S.CCJ-
A
A
A
I
t I
I I
113 120
Designates sample value on Coeur d 'Alene River LAKE
at Rose Lake or St. Joe River at St. Maries frou
approxlaately sara tine period as Lake pile plot.
I
123
MILES
1
L33
COEUR 0 'ALENE
RIVER
74/07/11
1
135
ST. JOE
RIVER
74/07/11
CD
C5
-------
10* CO
T
8.20
FIGURE CE-86,
LAKE CO EUR ID *ALENE 74./0S/30
1«3 FT Z«33 FT 3»QQ FT
SINGLE: SAMPLE VALUES
,__ T^j^t^n tya,tflr puality ^jiapjards _ _ _ ^ _ . _ ^ _ _ _ --,..-,-,,,
Jdana. Mater Quality Standards ,- T , , , T t ,
.8)
4-. 20
1
113
r
\ \
\ \
120 123
I f \
I 1
1 1
120 133
A Designates sw»ple value on Coeur d 'Alene River
t Rose Lake or St. Joe River at St. Maries from
approximately same time period as Lake HHe Plot.
LAKE MILES
COEUR D 'ALENE
RIVER
74/08/20
ST. JOE
RIVER
74/08/21
-------
S
U
10.ECJ-T-
S.EJZJ-
8.00--
7.EX3--
Q.ECJ--
S.C0--
FIGURE (£-87'
LAKE CO EUR D -ALENE 73/01/18
IBS FT Z«>33 FT 3**BB FT
SINGLE SAMPLE VALUES
A(6.8)
Idaho Water Quality Standards
A (6.0)
A
A
1 1
113 120
A Designates sample value on Coeur d 'Alene River LAKE
r \ at Rose Lake or St. Joe River at St. Maries from
A approximately same time period as Lake Mile plot.
I
1
123
MILES
i
i
1
1
130
COEUR D 'ALENE
RIVER
75/01/22
V
V
1
1
133
ST. JOE
RIVER
74/12/13
CO
-------
169
CONDUCTIVITY
-------
c
o
N
D
U
C
T
Z
V
I
T
Y
M
Z
C
R
O
M
H
0
7S-1-
60--
FIGURLCE-88*
LAKE CO EUR D 'ALENE 74-/07/09
3 FT a«16 FT 3«GB FT +-100-FT
SINGLE SAMPLE VALUES A
45--
325-
A 08)
15-
A
|
Des Ignites simple vilue
it Rose Like or St. Joe
pproxlmitely sime tine
I
1
113
on Coeur d 'Alene River
River it St. Mtrles from
period » Like pile plot.
1
1
120
LAKE
I
1
123
MZLE3
/
i
1
130
COEUR D 'ALENE
RIVER
74/07/11
A
1
1
133
ST. OOE
RIVER
74/07/11
-------
C
O
N
D
U
c
T
Z
V
I
T
Y
fl
Z
C
R
Q
n
H
o
4S--
ts--
FIGURE CE-89
LAKE COEUR D 'ALENE 74-/09X30
l«3 FT 2«33 FT 3=89 FT
SZNQLE SAMPLE VALUES A
1
-. .^___
IIS
A Designates sample value on Coeur d 'Alene River
/\ at Rose Lake or St. Joe River at St. Maries froa
L i ipproxlBitely same tine period ts lake Hlle &bt.
1
I
120
LAKE
|
1
125
MZLES
/
i l\
]
1
1
"1
135
COEUR D 'ALENE ST.' JOE
RIVER RIVER
74/0:/vQ 1AJHB/9
-------
o
o
N
D
U
c
T
I
V
I
T
Y
M
I
C
R
O
M
H
O
73-T-
4S--
321--
15--
FIGURE CE-90
CO EUR D 'ALENE 73/0X/1B
t»3 FT C«33 FT 3«B9 FT
SINGLE SAMPLE VALUES
A 002)
A 06)
A
A
1 I
115 120
Designates sample value on Coeur d 'Alene Mver , . -
t Rose Lake or St. Joe River it St. Maries froa L-A*&
approxloatelr same time period as Lake Mile plot.
I
1
123
MILES
»
I
1
L32J
COEUR D 'ALENE
RIVER
75/01/22
I
1
133
ST. JOE
RIVER
75/01/16
to
-------
173
D. SEDIMENT DATA
-------
FIGURE CE-91
MILES 4
I I II
Cougar Bay
i i
0 KM 6
Carlin Bay
Coeur d Alene River
2D
Cottonwood Bay
LAKE SEDIMENT 5AMPI ING LOCATIONS
Round Lake
Chatcolet Lake
St. Joe
River
174
!i«oact of Combined Metallic and Organic Pollution 1n
-------
.FIGURE CE-92
LAKE SEDIMENT METALS CONCENTRATIONS
(1971 - 1972)
Station Concentration mq/kq
~~CO FE MGSBZN~
2D 61 100,000 435 93 1125
3D 68 75,100 660 120 3400
4D 49 5050
indicates no data available
SOURCE; Biological Impact of Combined Metal He and Organic Pollution in
the CoeuFd'Alene-Spoicane River Drainage System. William H. Funk, Fred W.
, and Royston Filby, Principal Investigators. June 30, 1973.
-------
176
E. DETENTION TIME CALCULATIONS
-------
177
E. DETENTION TIME CALCULATIONS
Approximate calculations were performed to determine the
detention time for inflowing water from the Coeur d 'Alene and
St. Joe Rivers.
Four periods of the year were considered with the major variables
Involved being river incut flow variation, temoerature relationships
between Input and the lake itself, and the temoerature distribution
throughout the lake.
| PERIOD
1
2
3
4
DATE
May 1
July 1
Sept 1
Jan 1
VOLUME DISPLACED
2.486 X 106 acre ft.
0.504 X 106 acre ft.
0.252 X 106 acre ft.
2.486 X 106 acre ft.
DETENTION TIME j
40.5 days
125.4 days
95.8 days
91.0 days
Graphs of flow versus time are also included in section (E)
for the readers benefit, with thfe Coeur d 'Alene River at Rose
Uke and the St. Joe River at St. Maries under consideration.
-------
170
FIGURE CE~93
ar. J-ot mvui AT »r. HAH its
u.a.e'.B. DATA ' HCAN VALUCB
OATC KAKOC
L
O
W
O
f
rvui AFR nr\r JIM
Tine
L.
8
O
f
coetiti o -Ai-ene. itxvm AT nose
U.0.0.9. DATA flCAM VALUC3
KAHOK
JL .L JL J. JL J. Ju TXIFS
Ttnc.
-------
SPOKANE RIVER SUB-BASIN SECTION
GRAPH SET 7 - Spokane River river mile graphs Figs. CE-94 to CE-108
GRAPH SET 8 - Hangman Creek Station Trends F1gs. SE-109'to CE-122
GRAPH SET 9 - Little Spokane River Station Trends Figs. CE-123 to CE-136
-------
180
GRAPH SET NO. 7
SPOKANE RIVER SUB-BASIN
Graph Set No. 7 Illustrates the water quality throughout the
Spokane River during a high and low flow condition. These figures
allow the reader to Identify variability, problem areas along the
river, and relate the river's water quality status to the two flow
conditions. Below the graphs are significant inflows located
appropriately along the river axis.
MAP OF SPOKANE AREA
-------
CE-94
SPOKANE RIVER
1 72XifiX0l TO 73X02X28
2 . 73X07X01 TO 73X08X30
9
T
R
e.
A
M
F
U
o
U
o
F
RXVKR HZl.fi
s
I
i
-------
.FK £. CE-95
SPOKANE RIVER
V 72X12/01 TO 73X08X31.
a 73X07/01 TO 79X08X31
o
N
P
U
c
T
V
A
T
e
a
G
n
z
o
R
O
II
H
O
±£
t
RXVCR
CO
-------
IGURE CE-96
SPOKANE RIVER
w
A
T
E
R
T
e
M
P
O
E
N
T
18-
IB- -
14
12-4-
10. .
8- -
a- -
HQ-PS 24-54-01
I 72X16X01 TO 73X02X31
2 73X07X01 TO 73X08X91
WQ-HPS
40
24-56-03
70
RXV£R> MILE
56
!i8
1
-------
i
FK 1 CE-97
RIVER
7&xie/t*l TO 73x0axee*
~ 73X07X01 TO 73X08X31
z
t
H
O
T
O
T
U
O
3 §
It, jit
F* «
I i
&eajnonoTaTiBnerles Lethal* Cono.Level
Algacidal Cono. 80 ug/1
RXVEH MXLE
I
iHd
Ug *
CD
If-
-------
IGURE CE-98
SPOKANE RIVER
t 7exi«/0l TO 79/02X31
2 73X07X01 TO 73X08X31
T
U
R
O
Z
O
T
V
s
K
3
tt
T
U
RZVeR'MXLK
Su.
M«l
el
-------
T
O
T
A
L
H
A
R
D
N
E.
9
8
M
O
X
L
70. .
40--
10..
\URE CE-99 ]
SPOKANE RIVER
, i 7exiat/0i TO Tdxtfexat
2 73X07X01 TO 73X08X31
70
RXVCR
I
< . I>^ I >
VI.J
* »
H
I
ii!
oo
-------
IGURE CE_-100
SPOKANE RIVER
i 7exie/0& TO 7sx0ex3i
73X07/01 TO 73X08X31
D
O
H
O
S
3
B 40 99 ea 70 a
9 BO U
RXVCR 1ltl.fi
'
i
«
S
t 1
&
hi
t
, i
4
3 * is ;§ g
£ si MU 5 &
y 3 u2 J| uS
i
!
g i
i
8
§ i ii ! it 1
GO
-------
FIGURE CE-101
SPOKANE RIVER
i -
2 -
7CXI&X01 TO 73X02X31
73X07X01 TO 73X08X3t
T
O
T
A
L.
P
H
O
8
M
O
X
L
RXVGR'MXLB
I
* i s
i
cc
cr:
-------
D
t
3
O
R
T
H
P
H
O
a
0.u
0.12-
IB-
0.08- -
n
o 0<
0.02. .
FIGURE CE-102
SPOKANE RIVER
1 7eXl&/0l TO
2 73/137/01 TO
AUOAL BLOOM LEVEL
40
70
RIVER T1ZLE
i
, k I :t ' ^ .
2 i
i
&:
ii
-------
0.70-p
0.60-
1 FIGURE CE-103
SPOKANE RIVER
1 7a/12X01 TO 73X0ZX31
- 73X07X01 TO 73X08X31
H
O
Z.
+
N
O
3
T
O
T
A
L.
O
x
L
1 1 1
30 40 90
60 70 BB 03 U
RIVER tlXLE
i
» 4
i
> 4
s
u
|
S
W_
i | 1
H i I
t
k <
t 4
i§ ill
w p O Ki
> 4
i
i i
CO
O
-------
e.co-r
1.00-
T
O
T
1C
T
C
L
N
X
T
R
O
O
C
N
M
Q
1.2B
1.00
0.60-
0.60.
0.40
0.20'
:IGUR£ CE-104
SPOKANE RIVER
i 7e/iex0i TO 73/0e/si
2 73/07/01 TO 73/08X31
1
30
1
40
1
S0
1
00
1
70
I
60
| 1
as 100
RXVER'MXLft
|
Su.
CO
-------
FIGURE CE-105
SPOKANE RIVER
X
g'«g-|0n-ps
0.ea--
S »
o
N
X 0.30+
A
N °'afll+
N
3
0.40+
N
n
e
s
u
0.20.
0.10--
TO 73XCBX31
73X07X01 TO 73X08X31
Organic Pollution Level
0 60 70
i
RIVER YlXLE
1
t
i
i
CO
re
-------
FIGURE CE-1Q6
SPOKANE RIVER
I 7^/12/01 TO 73/02/31
& ~ 73/B7/01 TO 73/08/31
T
O
T
O
R
0
O
A
R
B
O
N
o
X
L
S3 40 90 $8 71
3 i i J
RIVER NILE
i
a
l 4
i
I
8
I
2 1 IS
<
t ^
,^
i a c
g 1 Sg 8* E..
<
k
p
1
HJ wS < 5 uiz S
- i gg If ii i
- » -* «i 2 2ft Si ,
CO
CO
-------
i
T
O
T
A
L
C-
a
L
I
F
O
R
M
X
I
0
0
n
L
HQ-PS.
:FIGURE CE-IO?
7eXieX"91 TO 73X02X3 1
73X07/0 L TO 73X08X31
' Wash._Clas3
Water Qual
<
1 1 1 1 1 1 1 1
3040S0e07080e0U
RIVI
k i
1
V
!
ti
\
m
£
s
*.
1R MILE
.
) S II
' | Ss
\. '
> t
>4
i§i
3s **
t
t
§
i tf
i i i: Ei il i
CO
-------
UO-Pg
F
E,
C
A
L
C
O
L
t
F
O
R
ri
x
i
0
0
M
U
FIGURE CE-108
SPOKANE RIVER
t --'7&XI2X01 TO 73/0BX31
2 73X07X01 TO 73X08X31
t
UO-WPS 9A_*£_r
38
40
70
100
i
i
RIVER MILE
a
r
Sa
B
i
g
31 g*
If if
CO
tr;
-------
GRAPH SET NO. 8
Graph Set No. 8 and 9 examine the water quality conditions
1n Hangman Creek and the Little Spokane River respectively as
these are the major tributaries to the mainstem of the Spokane River.
These are indicative of the variability in trends, problem areas,
and the general status of their waters.
19
-------
:FIGURE CE-109
SPOKANE RIVER BASIN
DATE RANGE*. 7&XL0/0L TO 73/08X30
1HANQMAN OR. AT MOUTH AT 9POKANB
T
R
&
A
M
S00 OF9
Hangnail Creak
UQ-NPS
24-57-04
90 OF3
F
L
O
U
c
F
APR MAY JUN JLJL AUQ SEP
CCT NOV DEO
CD
-------
FIGURE CE-110
SPOKANE RIVER BASIN
DATE RANGE" 72/10/01 TO 73/08/30
1--HANGMAN OR AT MOUTM AT SPOKANE,
U
A
T
£
R
M
P
D
e
Q
Uangnan Creek
WQ-NPS
24-57-04
MOV DGD JAN FED MAR APR MKV JUN JTJL ALD
MONTH
-------
T
U
R
D
Z
D
Z
T
Y
K
9
N
,FIGURE C
SPOKANE RIVER BASIN
DATE RANGE* 72/10/01 TO 73X08X90
IHANGMAN OR AT MOUTH AT SPOKANE
Hangman Creak
VQ-NFS
24-57-04'
T
U
JAN FED TOR APR ttNY JUN JVJL AUB
oar NOV
CO
-------
160- -
T
O
T
A
L
H
A
R
D
H
E
140--
n
Q
40- -
.FIGURE CE-112
SPOKANE RIVER BASIN
DATE RANQE« 72X10/01 TO 73/08X30
1HANGMAN OR AT MOUTH AT SPOKANE
Hangnan Creek
VQ-NTS
24-57-04*
i i I. i i i
i-. i
NOV DEC JAN FEB. MAR APR MAY AJN JUL
MONTH
-------
D
Z
9
9
O
L
V
E
D
O
X
Y
Q
£
N
Hi- -
13--
12--
II- -
10--
n
o
7- -
iFIGURE CE-113,
SPOKANE RIVER BASIN
DATE RANQE« 72/10/01 TO 73/08/30
1HANQMAN OR AT MOUTH AT SPOKANE
CLASS A 9TANDARD
--
OCT NOV DEC JAN FEB MAR APR MNV JUN JUL AU9
MONTH
-------
10-p
FIGURE CE-114
SPOKANE RIVER BASIN
DATE RANQE« 72/10/01 TO 73/08/30
1-HANGMAN OR AT MOUTH AT SPOKANE
p
H
7..
CLASS A STANDARD
Hangman Creek
VQ-NPS
24-57-04'
I _.!_!_ II I' I
II. I 1
OCT NOV. DEC JAN FED MAR APR MAY JUN JUL ALO
MONTH
CO
O
-------
o
o
N
D
U
C
T
V
Y
A
T
2
3-
C
tl
z
c
R
O
II
H
O
4S0- f
400- K,
250- r
200
130--
120. -
FIGURE CE-115
SPOKANE RJVER BASIN
DATE RANGED 72/10X01 TO 73/08/9?
t HANGMAN CR AT MOUTH AT SPOKANE
Hangman Creek
VQ-NPS
24-S7-W
DOT NOV DEC JAN FEB MAR APR MAY JIM JUL AUB
MONTH
ro
O
CO
-------
FIGURE CE-116
T
O
T
A
L
O
R
Q
O
A
R
B
O
N
SPOKANE RIVER BASIN
DATE RANOE.R 76/10/01 TO 73/00/90
1--HANQMAN CR AT MOUTH AT SPOKANE
Haagtnaq Creek
VQ-NPS
24-57-04
n
Q
X
L
DOT NOV BED JAN FED MAR APR
to
-------
FIGURE CE-117
T
O
T
A
L
N
O
2
+
N
O
3
n
Q
X
L
L.
1.00- h
0.S0- -
SPOKANE RIVER BASIN
DATS RANGE" 7B^10X01 TO 73X08X30
1-tHANQMAN CR AT MOUTH AT SPOKANE
Hangnaa Creek
VQ-NPS
24-57-04'
ALGAL BLOOM POTENTIAL
^iiiiiiiiiI-H
OCT NOV CEB
JAN FED MAR APR MAY JUN JUL
MONTH
to
-------
FIGURE
A
M
M
O
N
Z
A
N
H
3
N
M
Q
S
L
0.US- -
SPOKANE RIVER BASIN
DATE: RANQO 72/10/01 TO 73/00/30
1--HANGMAN OR AT MOUTH AT SPOKANE
Hangman Creek
VQ-NPS
24-57-04'
WATER SUPPLY
OCT MOV DEC JAN FED MAR APR MAY JUN JUL
MONTH
to
O
CT
-------
FIGURE CE-U9
SPOKANE RIVER BASIN
DATE RANGE* 72/10/01 TO 73/08/30
IHANGMAN OR AT MOUTH AT SPOKANE
T
O
T
A
L
Hangman Credt
VQ-NPS
24-57-04'
H
O
n
Q
L.
P
APR WAY 3U* JUL
0.1--
OCT NOV
-------
V
i
o
R
T
H
O
P
H
O
FIGURE CE-120
SPOKANE RIVER BASIN
DATE RANQEe 72X10/01 TO 73/08X30
iHANGMAN OR AT MOUTH AT SPOKANE
Hangnail Creek
WQ-NPS
24-57-04*
M
Q
X
L
LQAL BLOOM POTENTIAL
COT NOV DBC JAN FED MAR APR MAY JUN JU. ALB
MONTH
0.0Z- -
ro
g
-------
T
O<
T
A
L.
C
o
L
Z
F
O
R
PI
L
0
0
n
L
FIGURE CE-121
SPOKANE MVER BASIN
DATE RANGED 72/1.0/01 TO 73/08X30
X..-HANQMAN OR AT MOUTH AT SPOKANE
Hangnaa Crack
WQ-NPS
24-57-04*
- - * ^K^B^h. ^ & -. ^^I^B^K » i^K i^K^M. » - .»._ ^^ K ^ ^« A * A " - I
NOV DBD JTAN FEB MAR APR tW JUN JU. /JLJO
MONTH
ro
o
CO
L-
-------
FIGURE CE-122-
SPOKANE RIVER BASIN
DATE RANQ&R 7e/10/01 TO 73X08/30
lHANQMAN OR AT MOUTH AT SPOKANE
O
A
L
O
O
u.
z
F
O
R
M
L
0
0
n
L
Hangman Creek
VQ-NPS '
24-57-OV
imiiiiimiiiiiiiiiiiiiii
GOT MOV DGD JAN FED TOR APR MAY JUN JVJU AUD
Baeomaentea EPA
iiifiiiiiiniiiiiimuuin
Criteria Level
ro
I L J
-------
211
GRAPH SET NO. 9
LITTLE SPOKANE RIVER
-------
FIGURE CE-123,
SPOKANE RWER BASIN
PATS RANGE* 72S10/01 TO 73X08/30
1LITTLE SPOKANE. R. NR. MOUTH
LITTLE, SPOKANE R AB WANDERMERE
T
R
E
A
ri
Little Spokane. *lv«
WQ-NPS 2A-r55-02
F
L
O
u
O
F
OCT NOV DEC JAN FED tV« APR MAY JUN JUL AU9
to
h-*
ro
-------
FIGURE CE-124
SPOKANE Rlv/ER BASIN
DATE RANGE" 7a/10/0I TO 73/03/30
1LITTLE SPOKANE RIVER NEAR MOUTH RM \.|
LITTLE, SPOKANE: R ABV WANDERMERE RM \\.s
w
A
T
E
R
T
E
M
F
D
E
Q
Little Spokane Rivet
WQ-NPS 24,55-02
JAN FEB MAR APR MAY JUN JTJL- AUO
MONTH
OCT MOV
to
h-«
CO
-------
T
U
R
0
Z
D
I
T
V
K
3
N
1GURE CE-125,
SPOKANE R1>/ER BASIN
DATE RANGE* 72/10/01 TO 73/08/30
I LITTLE SPOKANE RIVER NEAR MOUTH RM 1.|
e LITTLE SPOKANE R ABV WANDERMERE RA\ n.
Little Spokane River
WQ-NPS 2*-r35-02
T
U
OC7T NCV DED JAN FE»
APR MAY JUN JUL AUO
MONTH
-------
FIGURE 1
c
o
N
D
U
C
T
V
Y
A
T
e
s
c
M
Z
C
R
O
M
H
O
4S0-T
403-
320- -
100- -
SPOKANE RIVEfc BASIN
PATE RANGE* 72/10/01 TO 73/09/90
I LITTLE SPOKANE RXVER NEAR MOUTH
2 LITTLE SPOKANE R ABV WANDERMERE
LIttU Spekaaa River
WQ-NPS 24-r55-02
^iiiiiiii\\i
OCT NOV ESG JAN
APR
MONTH
JUN JVJL
to
h-
01
-------
FIGURE CE-127
T
O
T
A
L
H
A
R
D
N
E
100-
140--
M
Q
40- -
SPOKANE RIVER, BASIN
DATE RANGE" 72XL0/'0L TO 73X08X30
t LITTLE SPOKANE RIVER NEAR MOUTH R/A
2LITTLE SPOKANE R ABV WANDERMERE
Little Spokane River
WQ-NPS 24-rSS-02
OCT NOV DSD
JAN FES MAR APR
MONTH
JUN JUL AUQ
-------
FIGURE CE-128
10-1-
SPOKANE RIVER BASIN
DATE. RANGE** 7BX10X01 TO 73X08X30
ILITTLE SPOKANE RIVER NEAR MOUTH ft* |.|
2LITTLE SPOKANE R ABV WANDERMERE RAA 11.
LltCla Spokana River
WQ-HPS 2
CLASS A STANDARD
P
H
7- -
CLASS A STANDARD
OCT NOV DSD JAN PEB MAR APR MAY JLN JUL ALO ~~
-------
P
x
9
9
Q
L
V
c
D
O
X
Y
Q
E
N
13-
14.-
13-
12-
11-
X0--
FIGURE CE-129
SPOKANE R1\/ER BASIN
DATE RANGE" 72X10X01 TO 73X08X30
1 LITTLE SPOKANE RIVER NEAR MOUTH RAA 1.1
ZLITTLE SPOKANE R ABV UANDERMERC
Little Spokane River
HQ-NPS 24-rS5-02
n
Q
8-
7- -
CLASS A STANDARD
OCT NOV DEC JAN FED MAR APR HAY JLJN JUL AUQ
3-1ONTH
-------
FIGURE CE-130i
T
O
T
A
L
N
O
2
+
N
O
3
M
O
X
L
1.40-T-
1.20. .
1.00- -
0.60- -
0.E0- -
0.40- -
0.20--
SFOKANE RIVER BASIN
DATE RANGED 72/10/01 TO 73/08/30
I -LITTLE SPOKANE RIVER NEAR MOUTH
2 LITTUE SPOKANE R ABV WANDERMERE p,fA
Little Spokane River
WQ-NPS 24T55-02
l.|
ALOAL BLOOM POTENTIAL
--
OCT NOV DEC TAN FOB MAR APR
MONTH
JTJN JUL AUB
to
-------
FIGURE CE-131
0.60-T-
0.70-;-
SPOKANE RIx/ER BASIN
DATE RANGE" 72/10/01 TO 73X08/30
ILITTLE SPOKANE RIVER NEAR MOUTH
2LITTLE 5FOKANE R ABV WANDERMERE
Little Spokane River
UQ-NPS 24T55-02
PMVV.5
MAX_ ^MMM.ENpep^'OR J£UBL£O.
WATER SUPPLY
olUition
GOT MOV DEC JAN FEB MAR APR MAY JUN JUL AUO
-------
T
O
T
A
L
P
H
O
0.L--
M
Q
X
FIGURE CE-132.
SPOKANE RWER BASIN
DATE RANGE" 7e/10/0I TO 73X08X90
1LITTLE SPOKANE RIVER NEAR MOUTH JVA \.\
ZLITTLE SPOKANE R ABV WANDERMERE F?M U;5
Little Spokane River
ftQ-NPS 2A-r55-02
II. II
OCT NOV DEC JAN FED MAR APR MAY JLN JTJL ALQ
MONTH
-------
D
Z
3
O
R
T
H
O
P
H
O
9
M
Q
L
P
FIGURE CE-133
SPOKANE R1>/ER BASIN
DATE RANQE« 72/10/01 TO 73/08X30
1LITTLE SPOKANE RIVER NEAR MOUTH R/M.I
2--LXTTLE SPOKANE R ABV WANDERMERE
Little Spokane River
WQ-NPS 24-r55-02
ALGAL BLOOM
OCT MOV DEC JAN FES MAR APR MAY JUM JTJL AUQ
! ro
f to
-------
CE-134/
T
O
T
A
L
O
R
Q
O
A
R
B
O
N
SPOKANE RIVER BASIN
DATE RANQE« 72/10/0I TO 73/08/30
1LITTLE SPOKANE RIVER NEAR MOUTH fVA \\
LITTLE SPOKANE R ABV WANDERMERE fVA US-
Little Spokane River
WQ-NPS 24fS5-02
ri
Q
07T MOV
MAR APR MAY JTJN JU.
MONTM
-------
FIGURE CE-f35
SPOKANE RlN/ER BASIN
DATE RANGE* 72/10/01 TO 73X08/30
ILITTLE SPOKANE RIVER NEAR MOUTH
LZTTLE SPOKANE R ABV UANDERMERE
Little Spokane River
WQ-NPS 24*55-02
ftMII.5
APR mv JUN JUL
OCT NOV X3EC TAN
CO
; ro
-------
FIGURE CE-136
SPOKANE RIVER BASIN
DATE RANGE* 72X1 0X0 L TO 73X08X30
L LITTLE: SPOKANE; RIVER NEAR MOUTH
a LITTLE SPOKANE R ABV WANDERMERE
LiCtle Spokane Rlvar
UQ-NPS 24-rS5-02
c
A
L
O
O
L
I
F
O
R
M
X
1
0
0
M
L
\\S
ODT NOV DBD TAN FED
APR MAY JUN JU. ALD
MONTH
to
re
------- |