vxEPA
United States Industrial Environmental Research EPA-600/7-80-085c
Environmental Protection Laboratory April 1980
Agency Research Triangle Park NC 27711
Thirty-day Field Tests of
Industrial Boilers: Site 3 —
Pulverized-coal-fired Boiler
Interagency
Energy/Environment
R&D Program Report
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the INTERAGENCY ENERGY-ENVIRONMENT
RESEARCH AND DEVELOPMENT series. Reports in this series result from the
effort funded under the 17-agency Federal Energy/Environment Research and
Development Program. These studies relate to EPA's mission to protect the public
health and welfare from adverse effects of pollutants associated with energy sys-
tems. The goal of the Program is to assure the rapid development of domestic
energy supplies in an environmentally-compatible manner by providing the nec-
essary environmental data and control technology. Investigations include analy-
ses of the transport of energy-related pollutants and their health and ecological
effects; assessments of, and development of, control technologies for energy
systems; and integrated assessments of a wide range of energy-related environ-
mental issues.
EPA REVIEW NOTICE
This report has been reviewed by the participating Federal Agencies, and approved
for publication. Approval does not signify that the contents necessarily reflect
the views and policies of the Government, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/7-80-085c
April 1980
Thirty-day Field Tests of Industrial
Boilers: Site 3 — Pulverized-coal-fired Boiler
by
W.A Carter and H.J Buenmg
KVB, Inc.
P.O. Box 19518
Irvine, California 92714
Contract No 68-02-2645
Task No. 4
Program Element No EHE624
EPA Project Officer. Robert E. Hall
Industrial Environmental Research Laboratory
Office of Environmental Engineering and Technology
Research Triangle Park, NC 27711
Prepared for
U S ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
-------
ABSTRACT
This is a final report on a test program to evaluate the long-term
effectiveness of combustion modifications for lowering emissions from
industrial boilers. During previous programs short-term tests have been
performed on industrial boilers to determine the effect of combustion
modifications on air pollutant emissions such as NO , SO , CO, HC, and
A X
participate. The objective of this program was to determine whether the
combustion modification techniques which were effective for short-duration
tests are feasible for a longer period. This report presents the results
of a 30-day field test of a 76.2 MW (260,000 Ib steam/hr) output, pulverized-
coal-fired water tube boiler. The NO control technology employed on this
X
unit was staged combustion air and low excess air. The results indicate
that staged combustion air and low excess air can be effective techniques
for NO control. However, additional operational problems such as flame
X
stability can be encountered. The baseline NO measurement was 498 ng/J
(815 ppm @ 3% O_, dry) with the unit operating at approximately 70% of
capacity. At approximately the same load, low NO operation yielded an
A
NO emission level of 422 ng/J (691 ppm @ 3% O dry) for a reduction of
approximately 15%. The average NO emission level for 30 days, firing with
staged combustion air and low excess air at loads varying from 15 MW to 63
MW, was 340 ng/J (557 ppm @ 3% 0 , dry). Boiler efficiency showed an increase
of approximately 1% under low NO firing condition.
ii KVB11-6015-1224
-------
CONTENTS
SECTION
ABSTRACT "
1.0 SUMMARY 1
1.2 Results 2
1.3 Conclusions 5
2.0 INSTRUMENTATION AND PROCEDURES 6
2.1 Emissions Measurement Instrumentation 6
2.2 Boiler Description and Characteristics 17
3.0 TEST RESULTS 19
3.1 Continuous Monitor Certification Test 5 19
3.2 Pulverized Coal-Fired Boiler Tests 22
4.0 REFERENCES 46
APPENDICES:
A. EFFICIENCY MEASUREMENTS 49
B. DATA RECORDING FORMATS 56
C. CONTINUOUS MONITOR CERTIFICATION DATA SHEETS 74
D. CONTINUOUS MONITOR PERFORMANCE SPECIFICATIONS 93
E. TABULATION OF HOURLY EMISSIONS DATA 109
F. SUMMARY OF PREVIOUS TEST DATA 153
iii KVB11-6015-1224
-------
FIGURES
Section Page
1-1 NO emissions from Site 3 - Pulverized Coal-Fired-Boiler 4
2-1 Photograph of KVB Continuous Monitor far measuring 7
gaseous emissions.
2-2 Schematic of continuous monitor sampling and conditioning 10
system.
2-3 Hark III adsorbent sampling system. 14
2-4 Two-drum Stirling boiler for pulverized coal (Typ,) 17
2-5 Typical simple baghouse with mechanical shaking {Wheelabrator IS
Corporation, Mishawaka, Indiana).
3-1 Boiler efficiency vs. excess O_. Pulverized Coal-Fired- 36
Boiler, Site 3.
3-2 HO emissions from Site 3 - Pulverized Coal-Fired-Boiler 40
3-3 NO emissions from Site 3, a Pulverized Coal-Fired-Boiler 43
3-4 NO emissions from Site 3, a Pulverized Coal Fired Boiler. 44
3-5 Daily average NO emissions for Site 3 - Pulverized Coal-Fired- 45
Boiler.
3-6 Daily average 0_ measurements for Site 3 - Pulverized Coal- 46
Fired-Boiler.
iv KVB11-6015-1224
-------
TABLES
Section Page
1-1 Summary of 24-hour Averages of Stack Emissions from 3
a Pulverized-Coal-Fired Boiler
2-1 Analytical Instrumentation 8
3-1 Schedule of Certification Test Events 20
3-2 Instrument Specifications and Performance 21
3-3 Summary of Gaseous and Particulate Emissions at Site 3. 24
3-4 Participate Data Summary - Site 3 30
3-5 Summary of POM Analyses for Site 3 32
3-6 Summary of Coal and Ash Analysis from Site 3 34
3-7 Summary of Boiler Efficiency Calculations for Site 3 35
3-8 Format of Hourly Emissions Data for Site 3 37
3-9 Summary of 24-Hour Averages of Stack Emissions from a 38
Pulverized-Coal-Fired Boiler
3-10 NO Emission - Frequency Data Site 3 41
3-11 NO Emission - Frequency Data for Site 3 42
KVB11-6015-1224
-------
SECTION 1.0
SUMMARY
1.1 OBJECTIVE AND SCOPE
The objective of this field test was to determine whether combustion
modification techniques which brought about reduction of air pollutant emissions
during short-term tests are feasible for longer periods. In addition, boiler
performance and reliability were monitored. The combustion modifications have
previously been shown to be effective on industrial boilers (Refs. 1, 2, 3).
The program scope provides for 30-day field tests of a total of seven
industrial boilers with design capacities ranging from 14.65 to 73.25 MW thermal
output (50,000 to 250,000 Ib steam/hr). Fuels to be burned include natural
gas, light oil, residual oil, and coal. This final report is for a 76.2 MW
thermal output (260,000 Ib steam/hr) pulverized-coal-fired boiler using staged
combustion air (SCA) and low excess air (LEA) as the emission control technology.
During the test period, continuous monitor certification tests were
performed concurrently with low NOx testing. Emissions measured were particulate,
NO, O>2, CO, and 02. Boiler efficiency was calculated several times during the
program to determine the effect of combustion modification on boiler efficiency.
This is a final report on the 30-day test, documenting test equipment,
summarizing the test data, and discussing the data in relation to the control
technology employed for this type of boiler.
1.2 RESULTS
A pulverized-coal-fired boiler using SCA and LEA as the NOx control
technology was selected for this field test. A survey was made of previous
tests conducted on pulverized-coal-fired boilers with SCA as the NOx control
technology. It was desirable to select a boiler which had been tested pre-
viously in order to know its capability for low NOx operation and to minimize
setup time.
1 KVB11-6015-1224
-------
The boiler tested at Site 3 was selected on the basis that previous
testing had been performed by KVB and the unit had shown a capability of
operation under low NOx conditions. Selection of a unit in this category
was limited because the desired capacity is the lower and of the range for
pulverized-coal-fired boilers.
A survey and analysis of the population of industrial boilers is
presented in Reference 4. This study showed that pulverized-coal-fired
boilers account nationally for only 12% of the total of coal-fired industrial
boilers.
After permission to test was obtained, the continuous monitor was
shipped to the site and installed. The next task was to perform the
certification tasks outlined in Performance Specifications 2 and 3, 40 CFR60,
Appendix B. (See Appendix D, this report.)
Following the monitor certification, the 30-day field test was conducted.
The test was set up according to "Plan for Performing Source Evaluation Tests
in Support of J1SPS for Industrial Boilers." Emissions of HO, CO, CO2, and
02 were measured continuously. Particulate measurements were made in triplicate
at the start and conclusion of the test period. In addition, triplicate
particulate measurements were made with the boiler in the as-found (unmodified)
condition. Measurements of polycyclic organic matter were made in both the
low NOx and unmodified condition.
Results of the 30-day test are discussed in detail in Section 3.0.
t
Table 1-1 presents a summary of the 24-hour averages of the stack emissions.
The result of the statistical analysis of the data is illustrated in Figure
1-1 where the 24-hour averages for all boiler load conditions are plotted on
log-probability paper. These data indicate that the NO data are log-normally
distributed and the mean value is 340 ng/J with a geometric dispersion of 1.13.
KVB11-6015-1224
-------
TABLE 1-1. SUMMARY OF 24-HOUR AVERAGES OF STACK EMISSIONS
PROM A PULVERIZED-COAL-FIRED BOILER
DATE
?« HOUK
LUAD
TIME HhTH
••*••••*•••••••*••••*•
6/ 1/79
6/ 2/79
6/ 3/79
6/ 4/79
6/ 5/79
6/ 6/79
6/ 7/79
6/ 8/79
6/ 9/79
6/10/79
6/11/79
6/12/79
6/13/79
6/14/79
6/15/79
6/10/79
6/17/79
6/18/79
19/79
... 20/79
6/21/79
6/22/79
6/23/79
6/24/79
6/25/79
6/26/79
6/27/79
6/26/79
6/29/79
6/30/79
7/ 1/79
7/ 2/79
7/ 3/79
7/ 4/79
7/ 5/79
7/ 6/79
7/ 7/79
7/ 8/79
7/ 9/79
7/10/79
7/11/79
7/12/79
55.il
]9.A
14.4
34.7
19.7
22.6
29.4
30.3
19.9
16.4
16.6
30.5
23.3
36.6
|8.3
21.8
|9.a
2ol?
18.9
31.7
18.8
22.6
20.3
23.1
i8.e
?0.2
21.0
I9l2
17.6
18.9
37.2
19. B
20.7
22.3
19.1
17.7
18.4
37.6
45.6
33.0
DRY
0?
VULI
HEAS
•••*••«
6.6
6.3
9.0
8.5
9.5
6.1
6.)
8.1
8.4
8.0
8.5
8.8
9.0
6.5
9.2
9.1
8.6
8.8
8.9
9.0
8.8
8.6
8.
6.
9.
a.
8.
6.
6.5
8.8
8.8
8.5
.3
.6
.5
.4
.5
.7
8.4
9.0
7.8
6.0
OAT*
STACK CAS CONCENTRATION
C02
VULt
NtAS
CU
PPMV
MEAS
NO
PPMV
MEAS
CO
PPMV
JIU2
NO
PPMV
3X02
CO
NG/J
NO
NC/J
t* *••••••••••*•*•••«••«••••••*•«• t«««««***»»««t««i
II.
1 1 .
,
.
10.
IU.
10.
10.
IU.
10.
10.
10.
10.
10.5
10.2
IV. 2
10.3
10.3
10.0
10.0
10.7
10.5
10.6
10.2
10.2
10.3
10.3
10.5
10.4
10.2
9.9
10.3
10.6
- 10.3
10.3
10.3
10.2
9.9
10.3
9.9
11.2
10.6
28.
21.
16.
16.
20.
21.
31.
28.
27.
33.
3b.
0.
0.
49.
86.
0.
0.
0.
35.
33.
21.
35.
36.
34.
36.
37.
15.
25.
34.
30.
33.
33.
19.
35.
15.
21.
35.
47.
60.
92.
75.
84.
529.
455.
392.
389.
3C9.
366.
383.
410.
406.
396.
388.
408.
397.
444.
324.
364.
356.
357.
358.
361.
431.
450.
449.
395.
410.
427.
426.
473.
504.
438.
455.
436.
487.
424.
416.
365.
384.
351.
366.
453.
519.
407.
****** ft
IS.
30.
24.
26.
32.
30.
44.
40.
38.
48.
55.
0.
0.
71.
131.
0.
0.
0.
52.
50.
31.
51.
52.
SO.
54.
55.
22.
37.
48.
44.
18.
47.
28.
51.
21.
30.
50.
69.
115.
139.
102.
117.
*•«•*••«
662*
644.
586.
559.
4B5.
5|4.
544.
572.
561.
576.
561.
602.
599.
641 .
495.
551.
526.
530*
532-
544.
637.
656.
641.
577.
616.
639.
620*
686.
72*.
647.
673.
629.
694.
6| B.
599.
550.
556.
514.
526.
681.
70S.
566.
•••*•**
12.
11.
9.
9.
11.
11.
16.
14.
14.
IT.
20.
0.
0.
25.
47.
0.
0.
0.
19.
18.
11.
18.
18.
16.
19.
20.
8.
13.
17.
16.
17.
17.
10.
16.
7.
11.
18.
25.
41.
50.
37.
42.
369.
378.
345.
326.
2B5.
302.
320.
336.
341.
338.
329.
353.
352.
376.
291.
323.
309.
311.
312.
319.
37«.
385.
377.
339.
361.
375.
364.
403.
427.
• 380.
395.
369.
407. .
363.
352.
323.
326.
302.
309.
400.
416.
332.
KVB11-6015-1224
-------
800
700
600
500
400
5 300
§
200
100
I
I I
I
till
m
x = 340 ng/J
g = 1.13
Low NO Operation (SCA)
I
III III
0.01 0.05 0.1 0.2 0.5
5 10 20 30 40 50
Percent Less Than
60
70 80 90 95 98 99
99.99
Figure 1-1. NO Emissions from Site 3 - Pulverized Coal-Fired Boiler
10
to
-------
1.3 CONCLUSIONS
Based on the results of this 30-day field test, the following con-
clusions are presented.
1. Staged combustion air is an effective NO control technology
for certain pulverized-coal-fired boilers. Hie low NO mode
(SCA) was maintained for 42 days with an average NO emission
rate of 340 ng/J. Boiler load varied from 14.4 to 63.0 MW
thermal input.
2. Boiler operation in the low NOx mode (SCA) required special
attention to the burners. With the upper two burners biased
for operating air rich, a problem with flame stability can
be encountered.
3. The continuous monitor system utilizing an extractive sampling
system provided accurate, reliable data for the 30-day test
period. Daily calibration of instruments is necessary as is
preventive maintenance on the sample system.
4. Operation of industrial boilers ususally is characterized by
large swings in load. Any effective control technology must be
capable of operation over large load changes. Staged combustion
air by biasing the mills is effective at the upper load range
but presents operational problems at low load.
KVB11-6015-1224
-------
SECTION 2.0
INSTRUMENTATION AND PROCEDURES
This section presents a description of the instrumentation used to
measure the gaseous and particulate emissions, the test procedures, and
techniques for certifying the continuous monitor and a description of the
boiler tested.
2.1 EMISSIONS MEASUREMENT INSTRUMENTATION
The emissions measurements were made using a continuous monitor
fabricated by KVB for this program. The analytical instrumentation and
sample handling equipment are contained in a cabinet 1.2 m wide x 0.76 m
deep x 183 m high (48"W x 30"D x 72"H). A photograph of the continuous
monitor is shown in Figure*2-1. Gaseous emission measurements were made
with the analytical instruments listed in Table 2-1.
Total particulate measurements were made using an EPA Method 5 sampling
train manufactured by Western Precipitation Division of Joy Manufacturing
Company. Samples for measurement of polycyclic organic matter (POM) were
obtained using an XAD-2 module supplied by Battelle Columbus Laboratories.
These modules were returned to Battelle for analysis following the test.
2.1.1 Gaseous Emissions
The continuous monitor is equipped with analytical instruments to
measure concentrations of NO, CO, C02/ and 02- The sample gas is delivered
to the analyzers at the proper condition and flow rate through the sampling
KVB11-6015-1224
-------
NOx
Two pen
Chart
Recorders
Figure 2-1. Photograph of KVB Continuous Monitor for measuring
gaseous emissions.
KVB11-6015-1224
-------
TABLE 2-1. ANALYTICAL INSTRUMENTATION
Emission Species
Manufacturer
Measurement
Method
Model No.
Nitrogen Oxides.
Oxygen
Carbon Dioxide
Carbon Monoxide
Opacity
Thermo Electron
Beckxnan Instrument
Horiba Instrument
Horiba Instrument
Dynatron
Chemiluminescent
Polarographic
NDIR
NDIR
Transmissometer
IDA
742
PIR-2000
PIR-2000
1100
KVB11-6015-1224
-------
and conditioning system shown schematically in Figure 2-2. A probe with a
0.7-micrometer sintered stainless steel filter was installed in the stack to
sample the flue gas. The following paragraphs describe the analytical in-
strumentation.
A. Nitrogen Oxides—
The oxides of nitrogen monitoring instrument used was a Thermo Elec-
tron chemiluminescent nitric oxide analyzer. The operational basis of the
instrument is the chemiluminescent reaction of NO and 0. to form NO in an
excited state. Light emission results when excited NO molecules revert to
their ground state. The resulting chemiluminescence is monitored through
an optical filter by a high sensitivity photomultiplier tube, the output of
which is electronically processed so it is linearly proportional to the NO
concentration.
Air for the ozonator is drawn from ambient through an air dryer
and a 10-micrometer filter element. Flow control for the instrument is accom-
plished by means of a small bellows pump mounted on the vent of the instru-
ment downstream of a separator which insures that no water collects in the
pump.
The basic analyzer is sensitive only to NO molecules. To measure
NOx (i.e., NO + NO.), the NO is first converted to NO. This is accomplished
by a converter which is included with the analyzer. The conversion occurs
as the gas passes through a thermally insulated, resistance heated, stain-
less steel coil, with the application of heat, NO molecules in the sample
gas are reduced to NO molecules, and the analyzer then reads NOx. NO. is
obtained by the difference in readings obtained with and without the con-
verter in operation.
Specifications
Accuracy: 1% of full scale
Span drift: ± 1% of full scale in 24 hours
Zero drift: t 1 ppm in 24 hours
KVB11-6015-1224
-------
1
1'robo
Filter D™P
Fla
Instrunen
°2
CO
HO
^^^ 1 ^- 1
V O
_0ut 7MO Sample
sk "^ Drier
(Refrigeration
Condenser)
Operating Calibration
t Range Gases
0-10% 5%/0.27%
0-1000 ppm 500 ppra/900 ppn
0-20% 10%/17.3»
0-2SO ppm 120. 5 ppn/234 ppn
Dump
~~£^~ Valve
-O 're88
^* Gauge
fort Relief
^•^v Valve
o,
o
K»
Ul
10
•u
ZeroNMSpan ZeroQUSpan zei
Span
=1 0-6 SCFH H 0-6 SCFH 1=1 0-6 SCFH|=IO-6 SCPH
Inlet
Air
Dryer
CO
r ^
Vent Vent Vent
Figure 2-2. Schematic of continuous monitor sampling and conditioning system.
NO
Vent
Vacuum
Pump
-------
Power requirements: 115 ± 10V, 60 Hz, 1000 watts
Response: 90% of F.S. in 1 sec (NOX mode); 0.7 sec (NO mode)
Output: 4-20 ma
Sensitivity: 0.5 ppm
Linearity: ± 1% of full scale
Vacuum detector operation
Range: 2.5, 10 25, 100, 250, 1000, 2500, 10,000 ppm F.S.
Only the NO concentration was measured during this program. Because
of the added complexity of heated sample lines and controllers necessary
for measuring N02 and the small percentage of tK>2 in the flue gas, based
on previous tests (References 1,2, and 3) EPA decided that only NO measurement
was necessary. Therefore, an unheated sample line was installed, and the
moisture was removed from the sample gas by a dropout flask and a refrigerated
condenser.
B. Carbon Monoxide and Carbon Dioxide—
Carbon monoxide (CO) and carbon dioxide (CO2) concentrations were
measured by Horiba Instruments PIR-2000 short-path-length nondispersive
infrared analyzers. These instruments measure the differential in infrared
energy absorbed from energy beams passed through a reference cell (containing
a gas selected to have minimal absorption of infrared energy in the wave
length absorbed by the gas component of interest) and a sample cell through
which the sample gas flows continuously. The differential absorption appears
as a reading on a scale of zero to 1009 and is then related to the concentration
of the species of interest by calibration curves supplied with theinstrument.
A linearizer was supplied with the CO analyzer to provide a linear output
over the range of interest. The operating ranges for the CO analyzer are
zero to 500, zero to 1000, and zero to 2000 ppm, and the ranges for the
CO2 analyzer are zero to 5, zero to 10, and zero to 20%.
Specifications
Accuracy: 1% of full scale
Repeatability: ± 0.5% of full scale
11
KVB11-6015-1224
-------
Zero drift: i 1% of full scale in 24 hours
Span drift: ± 1% of full scale in 24 hours
Response time: selectable - 90% of full scale in 0.5, 1.2, 3, or
5 seconds
Power requirements: 115 VAC t 10%, 60 Hz
Harm up time: 30 minutes
Output: 0-10 MV
C. Oxygen—
A Beckman Model 742 oxygen analyzer was used to continuously deter-
mine the oxygen content of the flue gas sample. The oxygen measuring element
contains a silver anode and gold cathode that are protected from the sample
by a thin membrane of Teflon. An aqueous KCL solution, retained in the
sensor by the membrane, serves as an electrolytic agent. As Teflon is
permeable to gases, oxygen will diffuse from the sample to the cathode in
the following oxidation-reduction reaction:
Cathode reaction: O + 2H 0 + 4e •* 40H
Anode reaction: 4Ag + 4C1 •»• 4AgCl + 4e
With an applied potential between the cathode and anode, oxygen will
be reduced at the cathode causing a current to flow. The magnitude of this
current is proportional to the partial pressure of oxygen present in the
sample. The instrument has operating ranges of zero to 1%, zero to 10%,
and zero to 25% oxygen.
Specifications
Accuracy: t 1% of full scale or ± 0.05% 02 which ever is greater
Sensor stability: 1 1% of full scale per 24 hours
Response time: 90% in 20 seconds
Output: 0-10 MV
Power requirement: 120 ± 10 VAC, 60 Hz
12 KVB11-6015-1224
-------
2.1.2 Particulate Emissions
Participate samples were taken from two ports on the side of the duct
located 90° from the gaseous emission sample port. The samples were taken
using a Joy Manufacturing Company portable effluent sampler. This system,
which meets the EPA design specifications for Test Method 5 (Determination
of Particulate Emissions from Stationary Sources, Federal Register, Volume
42, No. 160, page 41754, August 18, 1977) is used to perform both the in-
itial velocity traverse and the particulate sample collection. Dry particu-
lates are collected in a heated case that contains, first, a cyclone to separ-
ate particles larger than 5 micrometers and, second, a 100-mm glass-fiber filter
for retention of particles down to 0.3 micrometers. Condensible particulates
are collected in a train of four Greenburg-Smith impingers in a chilled
water bath.
2.1.3 Polycyclic Organic Matter (POM) Emissions
Particulate and gaseous samples for analysis of polycyclic organic
matter were taken at the sample port used for Method 5 particulate tests.
The sampling system is a modified Method 5 sampling train developed by
Battelle Columbus Laboratories. A combination of conventional filtration
with collection of organic vapors by means of a high surface area polymeric
adsorbent (XAD-2) proved highly efficient for collection of all but the more
volatile organic species. The modified sampling system consists of the
standard EPA train with the adsorbent sampler (Figure 2-3) located between
the filter and the impingers. With this system filterable particulate can
be determined from the filter catch and the probe wash according to Method 5,
whereas the organic materials present can be determined from the analysis of
the filterable particulate and the adsorbent sampler catch. The impingers
are only used to cool the stream and protect the dry-gas meter, and their
contents are discarded.
13 KVB11-6015-1224
-------
GLASS WATER
JACKET
8-MM GLASS
COOLING COIL
ADSORBENT
GLASS WOOL PLUG
RETAINING SPRING
28/12 BALL JOINT
FLOW DIRECTION
GLASS FRITTED
DISC
FRITTED STAINLESS STEEL DISC
15-MM SOLV-SEAL JOINT
Figure 2-3. Mark III adsorbent sampling system.
14
KVB11-6015-1224
-------
2.1.4 Opacity Measurement
Stack opacity was measured continuously in the stack with a trans-
mis someter permanently installed by the plant. In addition to the transmissometer
reading, a visual determination of opacity was made. The visual determination
of opacity was made by a qualified observer provided by EPA. The procedure,
Method 9-CFR60, Appendix A, was followed for all tests where particulate were
measured. Opacity measurements for each particulate test are tabulated in
Table 3-4.
2.1.5 Data Recording
The millivolt output from the gaseous analyzers was recorded on two
dual-channel strip chart recorders and a 20-channel digital data logger. The
following paragraphs describe the recorders.
A. Strip Chart Recorder—
The strip chart recorders were Linear Instruments Corp. Model 432
two-channel crossover recorders. The recorder specifications are as follows:
Input span: 1 mV to 100 VDC
Accuracy: ± 0.5% span
Temperature stability: lyV/°C
Response: 0.5 sec. over full 250 mm span
Zero: Right hand zero in standard. 100% zero suppression is standard
Power requirements: 115 VAC, 60 Hz, <20 watts
Weight: 11.4 kg (25 Ib)
15 KVB11-6015-1224
-------
B. Digital Data Logger—
The data logger used for recording analyzer output was a Monitor Labs
Model 9300 microprocessor-based data logger. The data logger has capability
for input of 20 channels of analog voltage, current, and temperature. The
data logger specifications are as follows:
Ranges: ± 30,000 mW, ± 300.00 mW, ± 3.0000 V, ± 12.000 V
Resolution: lyV on 30.000 mV range (1 part in 30,000 except on 12V
range; then 1 part in 12,000}
Accuracy: ± 0.02% reading ± 0.01%; Range ± 1 digit
Input impedance: 100 megohms
Temperature range: Operating, 0° to 50°C (32° to 122°F)
Storage, -20° to 65°C (-4° to 149°F)
Relative humidity: 0 - 95%, non-condensing
Main frame power: 115/230 V ± 10%, 60 Hz, less than 125 watts
Main frame dimensions: 18cm x 48.3cm x 56 cm (7" x 19" x 22")
Main frame weight: 18.2 kg (40 Ib)
16 KVB11-6015-1224
-------
2.2
BOILER DESCRIPTION AND CHARACTERISTICS
The boiler tested at Site 3 was manufactured by Erie City Company in
1963 and is installed in a small midwestern power station. It is a 76.2 MW
(260,000 Ib/hr steam) pulverized-coal-burning unit of the two-drum Stirling
type as shown in Figure 2-4. The unit is face-fired with four CE burners
arranged in two rows of two. Pulverized coal is supplied to the burners by
two CE Raymond Bowl mills.
GasOutM Air Intel
* *
Figure 2-4. Two-drum Stirling boiler
for pulverized coal (Typ.)
The unit also has the capability to fire natural gas. The boiler utilizes
either propane or natural gas for startup.
Incoming combustion air is preheated by a two-pass tubular-type air
heater. The flue gases pass through a pendant-type superheater before beginning
the final boiler pass. Superheated steam temperature is controlled at 910°F by
a coil-type attemperator. Fly ash is removed by a ten-compartment structural
baghouse similar to the type shown in Figure 2-5. Material collected in the
baghouse hoppers is periodically discharged at the bottom through a pneumatic
conveying system. Bottom ash from the boiler is mixed with water and piped
to a settling pond and eventually used for landfill.
17
KVB11-6015-1224
-------
auft
•MMIB
Figure 2-5. Typical simple baghouse with mechanical
shaking (Wheelabrator Corporation,
Mishawaka, Indiana).
The unit is a balanced draft type with both induced draft and forced draft
fans.
The following design data apply to Test Site 3:
Boiler rating:
Design pressure:
Design temperature:
Year built:
Furnace volume:
76.2 MW (260,000 Ib/hr) steam flow
6.3 MPa (900 psig)
761K (910°F)
1963
552 m3 (19500 ft3)
2 2
Furnace heating surface: 460 m (4950 ft )
18
KVB11-6015-1224
-------
SECTION 3.0
TEST RESULTS
This section summarizes the emission and efficiency data collected on
the pulverized-coal-fired boiler. This field test took place over a period of
44 days. The tests were conducted with a low-sulfur western coal as the fuel.
The results presented herein summarize the gaseous and particulate emissions
data, efficiency, and conclusions for the boiler operating on the low-NOx
condition for extended duration.
3.1 CONTINUOUS MONITOR CERTIFICATION TEST 5
The continuous monitor described in the previous section was used to
measure boiler gaseous emissions. Following shipment to the test site/ the
monitoring system was installed and certification tests performed in accordance
with Performance Specifications 2 (PS2) and 3 (PS3), 40 CFR 60 Specifications.
Appendix B (see Appendix D of this document) establishes minimum performance
specifications that the NO monitoring system must meet in terms of eight para-
meters: accuracy, calibration error, two- and 24-hour zero drifts, two- and
24-hour calibration drifts, response time, and operational period.
The continuous monitor system was installed, and the analyzers were
initially calibrated on Hay 30, 1979. A daily event schedule for the certi-
fication tests is presented in Table 3-1.
The performance of the continuous monitor is summarized in Table 3-2
where the measured values are compared with the specification values. Included
in this table is the performance of the CO analyzer, which is not covered by
the performance specification. The CO analyzer is used to monitor the combus-
tion conditions in the boiler since it is a very sensitive indicator of combus-
tion performance. Tables C-l through C-18, Appendix C, show the performance
of each of the analyzers for the certification tests.
19 KVB11-6015-1224
-------
TABLE 3-1. SCHEDULE OF CERTIFICATION TEST EVENTS
Date
6-4-79
6-5-79
6-5-79
6-5-79
6-5-79
6-5-79
6-5-79
6-5-79
6-6-79
6-6-79
6-6-79
6-6-79
6-6-79
6-6-79
6-6-79
6-7-79
6-7-79
6-7-79
6-7-79
6-7-79
6-7-79
6-7-79
6-8-79
6-8-79
6-8-79
6-8-79
6-8-79
6-8-79
6-8-79
6-8-79
6-8-79
6-8-79
6-9-79
6-10-79
6-11-79
6-12-79
7-10-79
7-10-79
7-10-79
7-10-79
7-10-79
7-10-79
7-10-79
7-10-79
7-10-79
TiM
1000
oaso
0850
1050
1250
1450
1650
laso
0850
0850
1050
1250
1450
1650
1850
0850
1050
1250
1450
1650
1850
1000
0850
0930
1030
1130
1230
1330
1430
1530
1630
1730
oaso
oaso
oaso
0850
0830
0930
1030
1130
1230
1330
1430
1530
1630
Event
Calibration error deteaaination
Initial 24-hour zero and apan reading.
Initial 2-hour sen and apan reading.
lat 2-hour zero and span drift point
2nd 2-hour zero and span drift point
3rd 2-hour sen and spaa drift point
4th 2-hour sera and span drift point
5th 2-hour sen and span drift point
6th 2-hour sen and span drift point
7th 2-hour zero and apan drift point
let 24-hour zero and calibration drift
point. Initial 2-hour zero and calibration
reading.
8th 2-hour zero and apan drift point
9th 2-hour zero and apan drift point
10th 2-hour sen and span drift point
llth 2-hour sen and apan drift point
12th 2-hour aero and apan drift point
2nd 24-hour sen and calibration drift
point i initial 2-hour zero and calibration
reading.
13th 2-hour sen and span drift point
14th 2-hour zero and span drift point
15th 2-hour zero and span drift point
16th 2-hour zero and span drift point
17th 2-hour sen and epan drift point
Instrunent response tin tests
3rd 24-hour sen and calibration drift
1st set of relative accuracy aanples taken
2nd set of relative accuracy aanples taken
3rd eat of relative accuracy samples taken
4th aet of relative accuracy staples taken
Stb set of relative accuracy samples taken
6th set of relative accuracy samples taken
7th set of relative accuracy samples taken
8th aet of relative accuracy saaples taken
9th set of relative accuracy aanples taken
4th 24-hour sen and calibration drift
point
5th 34-hour aero and calibration drift
point
6th 24-hour sen and calibration drift
point
7th and final 24-hour zero and calibration
drift point
lat set of relative accuracy samples taken
2nd aet of relative accuracy staples taken
3rd aet of relative accuracy esnplea taken
4th set of relative accuracy saaples taken
Sth aet of relative accuracy eanples taken
6th eat of relative accuracy samples taken
7th aet of relative accuracy saaples taken
8th aet of relative accuracy samples taken
9th aet of relative accuracy aanples taken
20
KVB11-6015-1224
-------
TABLE 3-2. INSTRUMENT SPECIFICATIONS AND PERFORMANCE
A.
B.
C.
D.
Parameter Specifications
Thermo Electron Series 10 NOx Analyzer
1. Accuracy f 20% of mean ref. value
2. Calibration error mid 5 5% cal gas value
high * 5% of cal gas value
3. Zero drift (2 hour) 2% of span
4. Zero drift (24 hour) 2% of span
5. Calibration drift (2 hour) 2% of span
6. Calibration drift (24 hour) 2.5% of span
7. Response time 15 minute maximum
8. Operational period 168, hour minimum
Horiba Instruments PIR 2000 C02 Analyzer
1. Zero drift (2 hour) S 0.4 pet C02
2. Zero drift (24 hour) 1 0.5 pet C02
3. Calibration drift (2 hour) S 0.4 pet C02
4. Calibration drift (24 hour) £ 0.5 pet CO2
5. Response time 10 minutes
6. Operational period 168 hour minimum
Beckman Instruments Model 742 0. Analyzer
1. Zero drift (2 hour) £ 0.4 pet O2
2. Zero drift (24 hour) 5 0.5 pet O2
3. Calibration drift (2 hour) 5 0.4 pet 02
4. Calibration drift (24 hour) S 0.5 pet 02
5. Response time 10 minutes
6. Operational period 168 hour minimum
Horiba Instruments PIR 2000 CO Analyzer
1. Calibration error mid £ 5% of cal gas value
high £ 5% of cal gas value
2. Zero drift (2 hour) 2% of span
3. Zero drift (24 hour) 2% of span
4. Calibration drift (2 hour) 2% of span
5. Calibration drift (24 hour) 2.5% of span
6. Response time 15 minute maximum
7. Operational period 168 hour minimum
Performance
17.70%
1.05%
0%
1.99%
1.79%
1.40%
0%
83 sec
720 hr
0%
0%
0.05%
0%
77 sec
720 hr
DNA*
DMA*
0.07%
0.16%
89 sec
720 hr
0)
10 01
-H
C t
(U 41
M IH
•P O
(0 (4-1
•H 4J
8*
Instrument has no zero adjustment.
21
KVB11-6015-1224
-------
Certified calibration gases were obtained from Scott Environmental
Technology, Inc. The calibration gases included 50% and 90% span gases for
the NO, C02, CO, and O analyzers and a zero gas (N ). In addition to the
certified analysis supplied by the vendor, sample flasks were taken for each
calibration gas and sent to an independent laboratory for analysis.
Relative accuracy tests for the NO analyzer were performed as outlined
in PS2 using EPA Reference Method 7 (phenoldisulfonic acid [PDS] colorimetric)
as the standard. Nine sets of three PDS flasks were collected at one-hour
intervals at the beginning and end of the 30-day test period. At the fifteenth
day, an abbreviated series of six flasks were taken. All sample flasks were
returned to an independent laboratory for analysis. The results of the rela-
tive accuracy determination are shown in Tables C-17 and C-18 for the beginning
and end of the 30-day test period. Both tests show that the NO instrument was
well within the accuracy requirements of PS2. The relative accuracy of the
Thermo Electron NO analyzer was % based on the first PDS test series and %
based on the final test series. The relative accuracy requirement set forth
in PS2 is £ 20% of mean reference value.
3.2 PULVERIZED COAL-FIRED BOILER TESTS
The continuous monitor was installed by KVB personnel on Hay 30, 1979,
outside the control room at Site 3, a pulverized-coal-fired boiler. A single
unheated 9.5 mm (3/8n) nylon sample line was strung from the duct downstream
of the baghouse to the continuous monitor. A single stainless steel probe
with a sintered stainless steel filter was installed in the sampling port.
Particulate samples were collected from two ports in the stack located 90 deg
apart.
The boiler was initially tested in the as-found condition on June 6,
1979. The boiler load for these tests was 49.2 MW thermal output (168,000
Ib stean/hz).
Boiler operation was then modified to incorporate staged combustion as
the control technology. Staged combustion was achieved by biasing the coal
pulverizing mills which feed the burners. The boiler has two rows of two
burners on the front face and two pulverizing mills. Each mill feeds one row
22 KVB11-6015-1224
-------
of burners. In order to effect staged combustion, the power to the mills was
biased so that the lower burners were fed more coal than the upper burners.
The total air flow was held constant, which produced a fuel-rich condition in
the lower zone with an air-rich zone above. With two burners biased to give
staged combustion, the maximum steam flow was approximately 200,000 Ib/hr.
3.2.1 Gaseous Emissions
A summary of the daily observations of gaseous emissions and comments
on boiler operating conditions is presented in Table 3-3. These data were
recorded hourly by a technician. Also included in Table 3-3 are the particulate
and efficiency measurements for the boiler. These data are used to verify
measurements recorded on the strip charts and the automatic data logger.
3.2.2 Particulate Emissions
The results of the particulate tests are presented in Table 3-4 for
low-NOx tests and baseline tests. Two of the tests (Nos. 3-3 and 3-4) were
also used for collecting samples for analysis of polycyclic organic matter
(POM) by modifying the Method 5 sampling train as described in paragraph
2.1.3. The average particulate loading for the unmodified operation (Tests
3, 4, 5, and 6) was 6.2 ng/J (0.0143 lb/10 Btu), while the average particu-
late loading in the modified or low-NOx mode was 6.3 ng/J (0.0147 lb/10 Btu).
These data show that there is no significant difference in particulate emission
between operation in the modified condition and operation in the normal mode.
The boilers at this facility had recently been outfitted with baghouse-
type particulate collection equipment, and the stack effluent was extremely
clear of any particulate matter. No visible emission was detected at any time
during the test period.
3.2.3 POM Emissions
Samples were collected for analysis of polycyclic organic matter using
a Method 5 sampling train with XAD-2, a POM absorber, inserted. Sample time
was extended to two hours to provide a large enough sample for Battelle to
analyze. Following the sampling period, the organic resin module was sealed
and returned to Battelle Columbus Laboratories for analysis. The sampling
probe and glassware were washed with a 50-50 mixture of methylene chloride and
methanol per Battelle instructions. The filter and wash were also sent to
Battelle following weighing.
23 KVB11-6015-1224
-------
TABLE 3-3. SUMMARY OF GASEOUS AND PARTICULATE EMISSIONS AT SITE 3
PULVERIZED COAL FIRED BOILER
i
h-1
t->
I
O
Tine
Oate
1979
6/1
6/2
6/3
6/4
6/5
6/6
Io«d Condition
High
Low
7 Mr. Average
High
Low
24 Hr. Average
High
Law
24 Hr. Average
High
Low
Average
24 Hr. Average
High
Low
Average
24 Hr. Average
High
Low
Average
II Hr. Average
Start
2100
20OO
17OO
2000
1300
oooo
1100
1200
0000
1000
0000
0900
0000
16OO
0000
0900
0000
16OO
0000
0900
0000
rintsh
2200
2100
2400
2100
1900
24DO
1200
2400
2400
1500
0700
1700
2400
1700
0200
1700
24OO
1900
1300
1700
240O
Cellar.
Kit
22
19
21
24
5
a
7
5
5
24
5
22
14
11
6
9
8
18
6
9
9
Honlnal Steaa
Load
K Ib/hr HWTH * °J * ^J
198
171
187
208
48
69
64
48
49
208
48
191
120
100
SO
76
68
162
56
83
78
S8.0
50.4
55.4
55.1
14.2
19.8
18.8
14.1
14.4
6O.O
14.1
55.4
34.7
28.7
14.4
22.0
19.7
47.4
16.2
23.9
22.6
C.I
6.4
6.6
6.1
7.6
8.3
9.1
7.9
9.0
8.S
10.1
8.3
e.i
8.7
9.2
8.9
9.5
7.2
8.2
8.1
8.1
11.3
11.2
11.3
0
13.3
11.0
0
0
0
0
0
o
0
10.4
O
10.3
10.3
10.8
10.4
10.3
10.4
HO*
, ng/J
379
3SS
389
424
339
378
351
310
34S
411
297
390
328
338
233
193
285
266
305
304
302
PI-
646
605
662
722
577
644
597
527
588
701
506
6«3
559
581
397
498
IBS
453
519
518
514
Stack
CO* Particulata Teaf.
ng/J
12
13
12
12
12
11
7
11
9
a
«
8
«
11
9
15
11
2
11
16
11
prai ng/J Ib/HHB *K T Bff.« Consent*
34 Ae Found
37
3S
35 SCA
32
30
19 SCA
31
24
22 SCA + LEA
18
22
26
32 SCA
26
41
32
6 SCA 4 LEA
30
44
10
• Corrected to 3* O}.
"SCA - Staged Conbuatlon Air
LEA - Lev Excess Air
to
10
-------
TABLE 3-3. (continued)
Tine
10
U1
-------
TABLE 3-3. (continued)
(0
o
H
in
M
Data
1979
6/13
6/14
6/15
6/16
6/17
6/18
6/19
6/20
Load Condition
High
UM
Average
24 Hr. Average
High
UM
Average
Partlc. Teat 3-4
24 Hr. Average
High
UM
Average
24 Hr. Average
Spot Reading
24 Hr. Average
Spot Reading
24 Hr. Average
High
UM
Average
24 Hr. Average
High
UM
Average
24 Hr. Average
High
UM
Average
24 Hr. Average
Ti
Start
0800
1SOO
oeoo
OOOO
11OO
uoo
oaoo
1300
OOOO
uoo
oaoo
oeoo
oaoo
1200
OOOO
1200
OOOO
laoo
1200
oaoo
OOOO
0900
1100
oaoo
OOOO
0900
10OO
oeoo
OOOO
Nominal Steui
ad Load
Flniah
1400
--
ISOO
2400
1600
1200
1600
1600
2400
1100
~
ISOO
2400
~
2400
—
2400
—
1500
ISOO
240O
—
1100
ISOO
240O
"
ISOO
ISOO
2400
Gcncr.
KU
11.5
9.0
11.2
9.3
24.0
7.0
15.6
24.0
IS.}
7. B
7.0
7.6
7.2
7.2
a. 6
7.8
7.7
11.2
7.0
a.e
8.6
11. 5
7.0
a.e
8.2
1O.O
7.S
7.9
7.S
K Ib/hr KHTH 1 O,
94
76
92
ao
215
58
ISO
215
132
66
60
65
62
60
74
68
66
1OO
60
77
74
100
60
77
71
79
65
68
65
27.5
21.3
27.0
21.4
63.0
17.0
46.3
63.0
38.7
19.3
17.6
19.0
18.2
17.6
21.7
19.9
19.3
29.3
17.6
22.6
21.7
29.3
17.6
22.6
20.8
23.1
19.0
19.9
19.0
a. 7
a. 6
8.7
9.0
8.5
8.6
8.4
a. 2
a. 4
9.1
9.2
9.1
9.2
9.4
9.0
8.9
8.8
9.1
9.1
a. 9
8.8
8.9
9.0
9.2
9.0
8.6
8.8
8.8
9.0
%co2
10.8
10.9
10.8
10.6
10.8
10.4
10.7
10.8
10.7
10.5
10.0
10.3
10.2
9.9
10.3
10.1
10.3
10.2
10.1
10.2
10.3
10.1
9.9
9.7
9.9
10.0
10.1
10.1
10.1
NO* CO*
ng/J
395
381
393
371
495
284
393
495
393
31O
266
3O2
304
330
334
337
321
357
331
338
322
350
332
329
343
335
337
336
328
pfXD ng/J ppn
646
624
643
607
810
464
644
810
643
507
436
495
497
S40
546
551 — ~
526
584
542
554
527
573 ~ —
543
539 — ~
561
549 24 65
551 18 48
550 20 S3
538 9 2
Stack
Partlculate Temp.
ng/J Ib/HMB *K
426
427
426
461
425
441
7.82 .01 BO 461
436
432
435
436
433
433
433
433
427
433
432
430
420
434
• Corrected to M O}.
•P Eff.% ComentB
308 SCA •» LEA
310
308
371
305
334
371 83.85 Baseline, Meth. S Teat. POM
326 Baseline
318
324
325 SCA
320 SCA
320 SCA » LEA
320
320
310 SCA » LEA
320
31 a
315 CO InstriBant back in aervice
322 SCA + LEA
321
(continued)
-------
TABLE 3-3. (continued)
to
-J
X
U
M
-6015-1224
Date
1979 Load Condition
6/21 High
Low
Average
24 Hr. Average
6/22 Steady Load
24 Hr. Average
6/23 Spot Reading
24 Hr. Average
6/24 Spot Reading
24 Hr. Average
6/25 High
Low
Average
24 Hr. Average
6/26 High
Low
Average
24 Hr. Average
6/27 High
Low
Average
24 Hr. Average
6/28 High
Low
Average
24 Hr. Average
6/29 High
Low
Average
24 Hr. Average
• Corrected to 3\ O .
Ti
Start
1400
1200
0800
OOOO
oaoo
OOOO
1300
OOOO
13OO
OOOO
1500
oaoo
0800
OOOO
1OOO
120O
0800
OOOO
1200
1500
0800
OOOO
10OO
1SOO
0800
OOOO
1300
0700
0700
OOOO
Nominal
Steam
Stack
no Load
Finish
1500
—
1500
2400
150O
2400
—
2400
—
2400
1700
"
17OO
2400
1100
1600
1600
240O
130O
160O
1600
2400
—
—
16OO
2400
—
..
15OO
240O
Gcncr.
KM
17.0
8.0
12.2
12. S
7.5
7.4
11.7
8.9
e.o
e.o
11.1
a.s
10. S
9.2
9.9
7.0
8.2
7.4
10.2
8.1
9.1
8.0
10. 8
7. a
9.2
8.4
13.2
6.6
9.9
7.9
K lb/hr
149
70
102
108
65
64
100
77
70
69
94
70
88
79
83
60
70
64
87
68
77
69
90
70
77
72
114
54
84
68
HHTH
43.7
20.5
29.9
31.6
19. 0
18. B
29.1
22.6
20.5
20.2
27.5
20.5
25.8
23.1
24.3
17.6
20.5
18.8
25.5
19.9
22.6
20.2
26.4
20.5
22.6
21.1
33.4
15. B
24.6
19.9
t02
7.8
8.4
8.6
8.8
8.7
8.6
8.2
8.4
8.5
8.7
8.9
9.1
9.0
8.9
9.0
8.4
8.7
a. a
a. 6
a.s
a. 6
8.6
8.2
8.2
8.3
a. 6
e.i
a. 7
a.s
8.5
%coa
11.4
10.7
10.7
10.7
10. S
10.5
10.6
10.7
10.7
10.7
10.5
10.2
10.6
10.4
10.5
10.7
10.6
10.4
12.4
14.2
12.1
12.7
10.9
10. 8
10.7
10.5
11.0
10.1
10.6
10.4
NO*
ng/J
459
295
368
389
400
399
406
390
340
349
34O
141
317
146
396
37O
382
385
394
395
192
174
404
180
371
419
458
521
444
446
ppo
7S1
483
602
637
655
653
665
638
557
571
557
558
519
566
648
606
625
631
645
647
642
613
661
622
611
6B6
749
BS3
726
7 JO
CO* Paniculate Temp.
ng/J
<1
5
1
12
14
16
21
17
7
16
6
11
11
19
48
16
27
19
16
14
16
IS
11
IS
IS
14
4
14
12
IB
ppo ng/J
<1
11
9
31
37
44
61
46
20
43
IS
88
36
SO
129
44
72
SO
41
17
42
19
34
4O
40
37
10
92
33
48
Ib/KHB •*.
455
416
424
420
427
436
425
427
426
426
427
425
426
410
427
426
412
429
446
410
4 IS
•F Bff.% Content!
360 SCA + LEA
125
130
297 LEA
110 SCA + LEA
125 SCA + LEA
105 SCA + LEA
110
307
108 SCA + LEA
107
105
3O7 Data logger out 1200-140O SCA+LEA
115
109
307 SCA + LEA
119
312
344 SCA * LEA
314
324
(continued)
-------
TABLE 3-3. (continued)
to
CO
w
§
M
V
01
O
M
Ul
H
to
^ «
Date
1979 Load Condition
6/1O Spot Reading
24 Hr. Average
7/1 Spot Reading
24 Nr. Average
7/2 High
Low
Averaoe
24 Hr. Average
7/1 High
Low
Average
24 Hr. Average
7/4 Spot Reading
24 Hr. Average
7/5 High
Lou
Average
24 Hr. Average
7/6 High
Low
Average
24 Hr. Average
7/7 Spot Reading
24 Hr. Average
7/6 Spot Reading
24 Hr. Average
• Corrected to 11 O}.
Ti
Start
IOOO
OOOO
0800
OOOO
0900
1600
0800
1300
I SCO
1100
0800
OOOO
1100
0000
11 OO
1200
O900
0900
1200
0800
08OO
OOOO
1100
OOOO
1100
OOOO
Nominal Steam
me Load
Finish
—
2400
—
0800
IOOO
—
16OO
2400
--
~
1500
2400
—
1800
~
--
1600
2400
—
~
1500
2400
—
2400
—
1700
Cencc.
MM
7.8
7.7
6.2
7.0
8.1
7.8
B.I
7.5
24.9
B.2
1S.1
14.7
8.6
7.9
11.8
8.7
9.8
8.2
12.1
7.7
10.2
8.8
8.3
7.5
6.7
7.0
K Ib/hr HHTH » °j » C02
66
66
50
6O
70
66
68
65
221
69
116
127
71
68
101
76
86
71
100
67
88
76
74
65
SO
60
19.1
19.3
14.7
17.6
20.5
19.1
19.9
19.0
65.1
20.2
19.8
17.2
21.4
19.9
29.6
22.1
25.2
20.8
29.1
19.6
25.8
22.1
21.7
19.0
14.7
17.6
B. 7
a. a
9.2
9.2
a.s
a. i
a. 4
8.4
e.o
a. 4
8.4
8.1
a.s
a. 6
9.1
8.7
a. 3
e.i
8.1
a. a
a.s
a. 4
e.s
a.s
9.0
8.9
10.6
10.1
9.8
9.6
10. S
10.7
10. S
10.6
11.0
10.6
10.7
10.6
10. S
10.2
9.8
10.2
10.5
10.4
10.6
10.7
10.5
10.4
10.1
10.2
9.6
10.0
HO*
ng/J
417
195
198
197
191
164
175
165
521
181
421
421
175
171
469
159
170
146
132
318
128
115
152
117
117
145
ppm
682
646
651
649
640
595
613
S9B
853
623
689
690
613
611
768
saa
60S
566
544
521
517
549
576
552
552
565
Stack
CO* Part im late Temp.
ng/J
7
16
8
19
2
B
6
11
4
1
6
10
5
IB
3
B
7
7
7
7
197
11
17
19
27
32
ppm ng/J
19
44
22
52
6
22
17
29
10
B
16
27
13
48
9
21
IB
19
19
IB
21
29
47
50
72
87
Ib/MMB •«
425
425
422
421
422
461
425
440
418
445
429
430
427
422
425
422
421
•r Bff.% Content*
105
105
301
298
100
370
105
111
291
141
112
114
110
301
105
101
299
BCA + LEA
EC* + LEA
Data logger out 0900-24OO
No data taken
Data logger out 0000-1300 SCA + LCA
No data taken
SCA * LEA
SCA + LEA
Data logger out 1900-24OO
Ho data taken
SCA + LEA
Data logger out 0000-O800
SCA * LEA
SCA + LEA
SCA 4LEA
Data logger out 17OO-2400
(continued)
-------
TABLE 3-3. (continued)
Tin
to
1
O
Ul
to
to
*».
Date
1979 Load Condition
7/9 High
Low
Average
24 Hr. Average
7/10 High
Low
Average
Partic. Test 3-5
Partic. Test 1-6
24 Hr. Average
7/11 High
Low
Average
Partic. Test 3-7
Partic. Test 1-8
24 Hr. Average
7/12 High
Low
Average
Partic. Test 3-9
24 Hr. Average
• Corrected to 3% O .
Start
0900
1300
0900
OBOO
1600
080O
OBOO
1100
1600
oooo
1600
1300
09OO
1OOO
15OO
OBOO
OBOO
120O
OBOO
1000
0000
Finish
—
1600
1600
2400
1900
~
1900
1400
1900
2100
~
1800
1300
1800
2400
—
—
13OO
1300
1300
Gencr.
MM
9.8
7.1
7.6
7.3
21.1
7.7
18.1
19.6
21.1
14.8
21.1
19.0
20.0
19.1
20.8
18.1
19.4
19. 0
19.2
19.1
13.1
Nominal steam
Load
K Ib/hr HWTH » O2
71
59
62
61
189
67
163
173
189
128
186
166
176
167
1B5
156
164
168
168
170
111
21.4
17.1
18.2
18.5
SS.4
19.6
47.8
50.7
SS.4
17.5
S4.5
48.6
51.6
48.9
54.2
45. 1
48.1
49.2
49.2
49.8
13.1
8.1
8.5
B.S
8.5
8.1
8.6
8.4
8.2
8.1
9.0
7.7
7.8
7.7
7.8
7.B
7.8
7.2
7.7
7.6
7.7
8.0
.CO,
10.7
10.5
10.5
10.5
10.7
10.5
10.7
10.8
IO.7
9.9
11.2
11.5
11.4
11.6
11.2
11.2
11.6
11.1
11.1
11. t
10.7
NO*
ng/J
140
115
127
117
504
160
472
494
504
415
475
380
414
IBS
458
428
110
17S
165
17O
348
Stl
CO* Paniculate Ten
ppa ng/J
557
516
5)6
519
825
589
773
809
825
679
777
622
677
630
749
701
540
614
598
606
569
13
41
36
59
38
35
39
31
38
52
38
36
36
36
36
39
34
36
35
35
43
ppm ng/J
89
111
96
115
101
93
106
90 6.41
101 4.27
119
101
97
96
97 2.51
97 3.20
104
91
96
94
95 1. 24
116
Ib/MMB *K
429
425
426
464
426
454
.O149 457
.0099 464
459
454
455
.0059 454
.O074 459
441
454
452
.0075 454
ick
!£^
•F Eff.l Conente
112 SCA + LEA
3O6 Data logger out OOOO-070O
308
175
308 Baseline
358 Unit 17 down 21OO-2400
163 84.88
175 84.47 Baseline, Meth. 5 Test
Baseline, Meth. S Teat
367
358 SCA » LEA
360 Unit 17 down 0000-0800
357 85.65
366 65.14 Low KO^ condition, Meth. S Test
Low HOX condition, Meth. S Test
138 SCA + LEA
358
354
158 85.34
Low HO^ condition , Meth. 5 Test
-------
TABLE 3-4. PARTICIPATE DATA SUMMARY - SITE 3,
PULVERIZED COAL FIRED BOILER
ui
o
Test
No.
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
Date
1979
6/7
6/8
6/12
6/14
7/10
7/10
7/11
7/11
7/12
Load
MW
49.2
48.6
48.0
63.0
50.7
55.4
48.9
54.2
49.8
103 Ib/hr
168
166
164
215
173
189
167
185
170
22
7.4
7.8
7.4
8.2
8.2
8.3
7.8
7.8
7.7
Particulate
ng/J
12.77
8.43
7.75
7.82
6.41
4.27
2.53
3.20
3.24
lb/106Btu
0.0297
0.0196
0.01BO
0.0180
0.0149
0 . OO99
0.0059
0.0074
0.0075
Opacity
0
0
0
O
0
0
0
0
0
Test Description
Low NOx
Low NOx
Low NOx-POM
Baseline-POM
Baseline
Baseline
Low NOx
Low NOx
Low NOx
sample
sample
s
Ul
ro
N)
-------
These samples were analyzed by capillary-El GC-MS utilizing a 30M
SE-52 column with hydrogen as a carrier gas. All data were collected by
single ion monitoring (SIM) to improve selectivity and sensitivity.
The results of the analyses are presented in yg per total sample. The
quantitative detection limit was 0.5 yg; thus samples with FOH's present at
levels lower than this are reported as < 0.5 yg (the standard deviation at
lower levels was prohibitively high for accurate quantitation). Samples
reporting POM values of ND (none detected) are at a level of less than 0.1
yg (the approximate qualitative detection limit). The standard deviation on
points around 0.5 yg averaged around ± 20%; at levels around 5 yg it averaged
around ± 15%; and at levels above 12 yg the standard deviation averaged around
± 10%.
The results of the Battelle analyses are presented in Table 3-5 for
the low-NOx and baseline operating conditions. The POM analyses for the low-
NOx condition are presented in the first six columns for the XAD-2 module, the
filter and probe wash, and total. The corresponding data for the unmodified
condition are shown in the last six columns.
The total POM showed only a very small difference (about 3.5%) between
the two conditions. The low-NOx condition resulted in a 40% lower phenanthrene
measurement but showed a corresponding increase in benzofluoranthenes and
perylene.
3.2.4 Boiler Efficiency
Boiler efficiency calculations were made for as-found and low-NOx
operating conditions. The ASME Abbreviated Efficiency Test Method was used
to determine the boiler efficiency. This test method is described in Appendix
A.
Coal, fly ash, and bottom ash samples were collected during the test
series. The coal and ash samples were submitted to an independent laboratory
for ultimate and heating value analyses. Fly ash and bottom ash samples were
analyzed for carbon content and heating value. The fly ash with the highest
carbon content did not ignite in the colorimeter; therefore, the determination
31 KWB11-6015-1224
-------
TABLE 3-5. SUMMARY OF POM ANALYSES FOR SITE 3, PULVERIZED COAL FIRED BOILER
PAH
Phenan throne
Anthracene
Methyl Anthracenes/Phenanthrenes
Fluoranthene
Pyrene
Methyl Pyrene/Fluoranthene
Benzo ( c) phenanthrene
Bens (a) anthracene
Chrysene
Methyl Chryeenes
Dime thy Ibenzanthracenes
Benzofluoranthenea
Benz(e)pyrene
Benz(a)pyrene
Pexylene
Indeno-pyrene
Benzo (ghil perylene
3-Methylcholanthrene
Dibenzanthracenee
Dibenzpyrenea
Co rone ne
TOTAL
NJ
0\
o
M
in
-------
of the heat of combustion was not attempted on the remaining fly ash sample
with the lower carbon content. The results of the coal, fly ash, and bottom
ash analyses are tabulated in Table 3-6. Tabulated chronologically, the data
indicate that the ash content of the coal changed from 14.95% to 7.36% during
the test series.
Table 3-7 lists a summary of the boiler efficiencies. The data in
this table show that during low-NOx operation with low excess air, an effi-
ciency increase of about 1% was achieved, with the primary contribution due
to dry gas losses.
Figure 3-1 shows unit efficiency as a function of excess oxygen for
the boiler. This figure clearly illustrates the effect of low-NOx operation
on boiler efficiency.
3.2.5 Data Reduction
The gaseous emissions data measured by the analyzers were recorded on
both strip chart recorders and an automatic data logger. A log of all appro-
priate control room data was also kept. Daily steam flow charts were also
collected from the operators.
A tabulation of hourly averages was compiled for the entire test period.
Each hourly average consists of approximately 900 measurements from each analyzer.
After the data were compiled, they were spot checked and edited to detect obvious
errors and anomalies. The data were then keypunched on cards for input to the
computer. Table 3-8 is an example of the listing of hourly averages. The entire
listing of hourly averages is presented in Appendix E.
After data editing was completed, 24-hour averages were calculated.
For an average to be valid, at least 75 percent of the hourly points in that
interval had to be valid. Table 3-9 shows a summary of the 24-hour averages
for the 30-day test at Site 3.
A statistical summary was prepared to determine the following para-
meters for the 24-hour averages: mean, standard deviation, maximum, minimum,
range, and average deviation. These parameters were calculated assuming the
data were normally distributed. When the data were plotted on normal proba-
bility paper it was apparent that the data were not normally distributed.
33 KVB11-6015-1224
-------
TABLE 3-6. SUMMARY OF GOAL AND ASH ANALYSIS
PHOM SITE 3
Test
Test 3-5
3-1 3-6
3-2 3-7
3-3 3-8
Coal 3-4 3-9
Ultimate Analysis:
Moisture, percent 5.6 10.67
Carbon, percent 57.40 59.55
Hydrogen, percent 4.31 4.15
Nitrogen, percent 1.25 1.03
Sulfur, percent 0.73 0.30
Ash, percent 14.95 7.36
Oxygen, percent 15.76 16.94
(by difference)
Heat of Combustion:
Gross Btu/lb 10,160 10,910
Net Btu/lb 9,760 10,520
Ash
Fly Ash:
Carbon, percent 1.76 1.72
Bottom Ash:
Carbon, percent 11.72 11.72
Gross Btu/lb 1,800 1,800
Net Btu/lb 1,750 1,750
34 KVB11-6015-1224
-------
TABLE 3-7. SUMMARY OF BOILER EFFICIENCY CALCULATIONS FOR SITE 3
PULVERIZED COAL FIRED BOILER
Test Number
Date
Test Load
1O3 Ib/hr
Generator MW
Percent of Capacity
Stack O-i percent
Stack CO, ppm
Stack Temperature (°K/°F)
Ambient Temperature (°K/°F)
Boiler Heat Losses
Dry Gas
Moisture in Fuel
Moisture from HZ
Combustibles
Radiation
Total Losses
Boiler Efficiency, percent
3-1
6-7-79
168
19.0
65
7.4
42
449/349
294/70
7.57
0.65
4.47
1.06
0.55
14.30
85.70
3-2
6-8-79
166
19.0
64
7.8
60
447/345
294/70
8.57
0.65
4.50
1.06
0.55
15.33
84.67
3-3
6-12-79
164
19.0
63
7.4
446/344
294/70
8.18
0.65
4.50
1.06
0.55
14.94
85.06
3-4
6-14-79
215
24.0
83
8.2
461/371
294/70
9.39
0.67
4.63
1.06
0.40
16.15
83.85
3-5
7-10-79
173
19.6
67
8.2
90
457/363
294/70
8.85
1.16
4.06
0.49
0.55
15.12
84.88
3-6
7-10-79
189
21.3
73
8.3
101
464/375
294/70
9.30
1.17
4. OB
0.49
0.50
15.53
84.47
3-7
7-11-79
167
19.1
64
7.8
97
454/357
294/70
8.11
1.16
4.05
0.49
0.55
14.35
85.65
3-8
7-11-79
185
20.8
71
7.8
97
459/366
294/70
8.64
1.16
4.07
0.49
0.50
14.86
85.14
3-9
7-12-79
170
19.1
65
7.7
95
454/358
294/70
8.41
1.16
4.05
0.49
0.55
14.66
85.34
ffl
o
to
to
-------
o
M
V
H*
ro
to
86
85
-------
TABLE 3-8. FORMAT OF HOURLY EMISSIONS DATA FOR
SITE 3, PULVERIZED COAL FIRED BOILER
••«••••«••»•.••••««•.•••«••«»«••••.•*•..*«•>.•••*•**•**>••»•••••*••*••••••*•**•>•*»•*
•• MOUNLT D*T» ••
G43 CONCENTRATION ••
• •
•«
•• DATE
••••••••••••I
•• ft/ 2/79
•• ft/ 2/79
•• ft/ 2/79
*• */ 2/79
•• ft/ 2/79
•• ft/ 2/79
•• ft/ 2/79
•• ft/ 2/79
•• ft/ 2/79
*• ft/ 2/79
•• ft/ 2/79
•• »/ 2/79
•• ft/ 2/79
•• ft/ 2/79
•• ft/ 2/79
«• ft/ 2/79
*« b/ 2/79
•• ft/ 2/79
*• ft/ 2/79
•• */ 2/79
•• ft/ 2/79
*« ft/ 2/79
•• ft/ 2/79
•• ft/ 2/79
••••••••t«»i
rim
ft ft ft ft •) ft
100
200
300
•00
500
600
700
800
900
1000
1100
1200
1300
1100
1500
IbOO
1700
1800
1900
2000
2100
2200
2300
2400
»*•*•••
C
1.0*0 VI
MUTM Mf
ftftft ftft ft •• ft1
S«.B 1
17.6
15.2
15.2
IS. 8
isla
16.4
16.4
IS. 8
is.e
20.2
|5*2
|4.4
la.l
14.6
14.1
14.1
36,9
55.1
35.2
14. 1
|fl.|
•*.•••••*
12
)Lt
.»S
1 ft ft ft 1
'.4
.5
tt
.5
.6
.6
.2
.9
.1
.2
.4
.5
.1
.2
.0
.1
.6
.4
.0
.«
.1
.5
.2
.4
• •••
C02
VULS
«c*s
ft ft ft ft t ft I
II. 0
9.9
9.9
.0
.0
• 0
.0
.0
.0
• 0
.0
.0
• 0
tsii
.0
.0
.0
.0
.0
.0
• 0
• 0
.0
•*••«••<
en
PPHV
HE* 5
fl A Aft A ft (
19.
18.
17.
15.
IS.
13.
13.
12.
13.
16.
IS.
22.
23.
24.
19.
25.
27.
27.
28.
28.
29.
28.
29.
25.
!••••••
*0
PPHV
NE4S
1 ft ft ft ft ft ft ft
SOI.
•28.
• 17.
• 18.
• U.
• 15.
• 16.
• 13.
• 30.
•'3.
•So.
• 45.
•55.
•6|.
• 65.
••ft.
• 53.
• 55.
•58.
910.
597.
534.
•53.
• 37.
!*•••••«
CO
PPHV
3>U2
ft ft ftft ft ft'
25.
27.
26.
23.
24.
21.
19.
18.
20.
24.
24.
35.
35.
35.
16.
34.
36,
36.
36.
35.
35.
35.
38.
33.
••«••<
NO
PPNV
3>02
i A A A A A A 1
1 V •» • • W •
665.
618.
650.
6*6.
655.
ft58.
636.
616.
652.
678.
707.
ft99.
690.
649.
39fl.
624.
bOO.
603.
590.
630.
722.
664.
Svj.
579.
••••*••
CO
NC/J
' ft ftft • ft «1 1
1
.
.
,
.
.
.
.
.
,
IS.
12.
12.
6.
12.
13.
1J.
13.
13.
12.
13.
14.
12.
»••••••
NQ
NC/J
1 ft ft ft ft • ft 1
3«0.
363.
381.
385.
385.
386.
373.
3* 1 .
383.
398.
• IS.
an.
• 05.
381.
234.
366.
352.
35*.
3«6.
370.
• 24.
3«0.
347.
340.
!••••••
• •
• •
"•
1 ftft 9
• •
• •
• •
• •
• *
• •
• •
• •
• •
• •
• •
• t
• •
«•
*•
«•
• •
• •
• •
• •
• •
• •
••
»•••
37
KVB11-6015-1224
-------
TABLE 3-9. SUMMARY OF 24-HOUR AVERAGES OF STACK EMISSIONS
FROM A PULVERIZED-COAL-FIRED BOILER (SITE 3)
?4 MCJUk
DATA
(JRY STACK CAS CONCENTRATION
DATE
6/ 1/79
6/ 2/79
6/ 3/79
6/ 4/79
6/ 5/79
6/ 6/79
6/ 7/79
6/ 6/79
6/ 9/79
6/10/79
6/11/79
6/12/79
6/13/79
6/14/79
6/15/79
6/16/79
6/17/79
6/18/79
6/19/79
6/20/79
6/21/79
6/22/79
6/23/79
6/24/79
6/25/79
6/26/79
6/27/79
6/26/79
6/29/79
6/30/79
7/ 1/79
7/ 2/79
7/ 3/79
7/ 4/79
7/ 5/79
7/ 6/79
7/ 7/79
7/ 6/79
7/ 9/79
7/10/79
7/11/79
7/12/79
••••••«*«•
LUAD
TIME NMH
55.4
19.B
14.4
34.7
19.7
22.6
29.4
30.3
19.9
16.4
16.6
30.5
23.3
36.6
18.3
21.8
|9.4
21.7
20.7
16.9
31.7
|6.6
22.6
20.3
23.1
|8.6
?0.2
21.0
|9.8
|9.2
|7.6
18.9
37.2
|9.8
20.7
22.3
19.1
17.7
16.4
37.6
45.6
33.0
•*•«••*•«**•*
0?
VULX
HfAS
6.6
6.3
9.0
6.5
9.5
8.1
6.3
6.1
6.4
6.6
6.5
6.8
9.0
6.5
9.2
9.1
6.6
6.6
6.9
9.0
6.6
6.6
6.
6.
9.
a.
a.
a.
8.5
8.6
8.6
8.5
6.3
6.6
6.5
8.4
8.5
6.7
8.4
9.0
7.6
6.0
*•••***«
C02
VULX
HI AS
ft ft ft ft ft '
11.3
11.0
.0
.0
10.3
III. 4
10.6
10.5
1U.1
10.0
10.3
10.4
10.6
10.5
10.2
10.2
10.3
10.3
10.0
10.0
10.7
10. 5
10.6
10.2
10.2
10.3
10.3
10.5
10.4
10.2
9.
10.
10.
10.
10.
10.3
10.2
9.9
10.3
9.9
11.2
10.6
cu
PPMV
HEAS
1 ft ft ft ft ft t
26.
21.
16.
16.
20.
21.
31.
28.
27.
33.
36.
0.
0.
49.
66.
0.
0.
0.
35.
33.
21.
35.
36.
34.
36.
37.
IS.
25.
34.
30.
33.
33.
19.
35.
IS.
21.
35.
47.
60.
92.
75.
84.
••««***»«*•«
NO
PPMV
HEAS
ftft ft ft ft ft 4
529.
455.
392.
369.
3C9.
366.
363.
410.
406.
396.
3«6.
406.
397.
444.
324.
364.
356.
357.
358.
361.
431.
450.
449.
395.
410.
427.
426.
473.
504.
438.
455.
436.
487.
424.'
416.
365.
364.
351.
366.
453.
519.
407.
***«•**
CU
PPMV
3«U2
ft ft ft ft ft ft •
35.
30.
24.
26.
32.
30.
44.
40.
38.
46.
55.
0.
0.
71.
131.
0.
0.
0.
52.
SO.
31.
51.
52.
SO.
54.
55.
22.
37.
48.
44.
46.
47.
28.
51.
21.
30.
50.
69.
115.
139.
102.
117.
NO
PPHV
3X02
• ftftft* ft ftl
662.
644.
588.
559.
465.
5|4.
544.
572.
set.
576.
S6|.
602*
599.
64|.
495.
551.
526.
530.
532.
544.
637.
656.
641.
577.
616.
639.
620*
686.
72P.
647.
673.
629.
694.
6|8.
599.
550.
556.
5ia.
526.
681.
708.
566.
CO
NC/J
• ft ft ft ft ft fti
12.
11.
9.
9.
11.
11.
16.
14.
14.
17.
20.
0.
0.
25.
47.
0.
0.
0.
19.
18.
11.
16.
16.
16.
20.
8.
13.
17.
16.
17.
17.
10.
16.
7.
11.
18.
25.
41.
50.
37.
42.
NO
NC/J
Iftft ft ft *•
369.
376.
328 1
285.
302.
320.
336.
341.
336.
329.
353.
352.
• 376.
3?3l
309.
311.
312.
319.
374.
365.
377.
339.
361.
375.
364.
403.
427.
360.
395.
369.
407.
363.
352.
323.
326.
302.
309.
400.
ale.
332.
«•*•««««•«•*••«»•«»»««««•»«•
38
KVB11-6015-1224
-------
Further analysis indicated that the data were log-normally distributed. The
graph shown in Figure 3-2 illustrates the performance of the pulverized-coal-
fired boiler based on the 24-hour averages for all data. The mean NO emission
rate is 340 ng/J with a geometric dispersion of 1.13. The data presented in
this figure represent 42 24-hour averages. A frequency chart of the hourly
averages is presented as Table 3-10. These data were then used to prepare
the graph shown as Figure 3-2. The data were subsequently divided into two
load ranges to determine the effect boiler load has on the distribution.
Table 3-11 presents a frequency distribution of NO emissions for boiler
load less than 20 MW thermal output and for greater than 20 MW. The data for
less than 20 MW are plotted in Figure 3-3. This curve shows the mean value
is 340 ng/J with a dispersion of 1.13. The data for greater than 20 MW are
presented in Figure 3-4 where the mean value is 350 ng/J with a dispersion
of 1.10. These data show that 99% of the data are less than 430 ng/J for
boiler loads greater than 20 MW and 460 ng/J for loads less than 20 MW.
The 24-hour average NO emissions data were plotted as a function of
time from the start of testing. These data are presented in Figure 3-5.
Solid symbols indicate steam loads greater than 20 MW thermal output and
open symbols indicate steam loads less than 20 MW. This figure illustrates
the variation in NO emissions measurements for this unit. Figure 3-6 shows
the daily average excess 0 as a function of time from the start of testing.
As this illustrates the excess 0- did not vary greatly over the test period.
These measurements were made in the stack downstream of the baghouse. A
measurement of stack gas 0 was made at the boiler outlet for comparison
purposes. The excess O measured at the boiler outlet was 4.2% compared
with. 8.5% 0 after the baghouse.
39 KVB 11-6015-1224
-------
800
700
600
500
^400
B>
c 300
O
B
200
100
x = 340 ng/J
g = 1.13
All load conditions
I I
I I
I I I I I
I
I I I
I I I
0.01 0.05 0.1 0.2 0.5
5 10 20 30 40 50
Percent Less Than
60 70 80 90 95 98 99
99.99
Figure 3-2. NO Emissions from Site 3 - Pulverized Coal-Fired Boiler
er>
o
in
10
to
-------
TABLE 3-10. NO EMISSION - FREQUENCY DATA
SITE 3 - PULVERIZED COAL-FIRED BOILER
Call
280-295
296-310
311-325
326-340
341-355
356-370
371-385
386-400
401-415
416-430
x = 340 ng/J
g.d = 1.13
Frequency
2
4
6
7
5
4
7
3
2
2
Cum. Frequency
2
6
12
19
24
28
35
38
40
42
Plot
Percent
5
14
28
44
56
65
81
88
93
98
41
KVB11-6015-1224
-------
TABLE 3-11. NO EMISSION-FREQUENCY DATA FOR
SITE 3 - PULVERIZED-COAL-FIRED BOILER
Cell
285-294
295-304
305-314
315-324
325-334
335-344
345-354
355-364
365-374
375-384
385-394
395-404
405-414
415-424
425-434
Frequency
2
1
2
1
2
2
1
1
1
3
1
1
0
0
1
Load
<20 MW
Cum. Frequency
2
3
5
6
8
10
11
12
13
16
17
18
-
-
19
Percent
Plot
10
15
25
30
40
50
55
60
65
80
85
90
-
-
95
Load
>2Q MW
Cell
301-310
311-320
321-330
331-340
341-350
351-360
361-370
371-380
381-390
391-400
401-410
411-420
Frequency
1
3
3
3
0
3
2
3
1
1
2
1
Cum. Frequency
1
4
7
10
10
13
15
18
19
20
22
23
Percent
Plot
4
17
29
42
42
54
62
75
79
83
92
96
42
KVB11-6015-1224
-------
Ul
i
cr>
o
M
I/I
10
ro
1000
900
800
700
600
500
400
300
200
^3
£
O
2
100
9
8
7
6
5
4
-r i I I
i i i i i i r
i r
IT
T i
i i i i iii
i i i i i
x = 340 ng/J
g = 1.13
I I
I
.01.05.1 .2 .5 1 2
5 10 20 30 40 50 60 70 80
PERCENT LESS THAN
90 95 98 99 99.8 99.9 99.99
Figure 3-3. NO Emissions from Site 3, a Pulverized Coal Fired Boiler
Boiler Load <20 MW
-------
S
10
KJ
1000
900
800
700
600
500
400
300
200
100
9
G
7
6
5
4
_n i i i i i I ii i i i i i i
i i
i i
i i _
i i i i i i i i i
x = 350 ng/J
g = 1.10
I I I I I I I II II
I I
.01J05.1.2 .512
10 20 30 40 50 60 70 80
PERCENT LESS THAN
90 95 98 99 99.8 99.9 99.99
Figure 3-4. NO Emissions from Site 3, a Pulverized Coal Fired Boiler
Boiler Load >20 MW
-------
500
400
350
CP
§
300
250
LOAD:
O <20 MW
£ £20 MW
NO = 340 ng/J
in
to
at
r-
i
o
en
r-
tn
O
fN
01
t^
in
01
en
r-4
i
eft
in
r-
r-
o
in
•H
to
10
20
30
40
Days
Figure 3-5.
Daily average NO emissions for Site 3 - Pulverized coal fired boiler
-------
DP
I
12.0
11.0
10.0
9.0
8.0
7.0
6.0
Ln
I
M
to
NJ
*>.
en
i^
in
10
crv
i
o
01
in
ID
ffl
1^
O
fN
i
m
(N
8.77%
cr>
o
n
01
r-
m
r-
o
r--
J_
a\
i
in
r--
10
20
30
40
Figure 3-6.
Daily average O measurements for Site 3.
Pulverized coal fired boiler.
-------
Qnission factors for the pulverized-coal-fired boiler were calculated
using the procedure set forth in 40 CFR 60, Subpart D. The NO emission factor
(dry basis) was calculated using the following equation:
E — C F *•*""
d d 20.9 - % 0
2d
where
E = pollutant emission rate, ng/J (Ib/million Btu)
C, = NO concentration, ng/scm (Ib/scf)
d _7
F = stoichiometric conversion factor, 2.63 x 10 dscm/J
(9,780 dscf/million Btu), for bituminous coal
02, '= oxygen concentration, percent by volume, dry
The conversion of measured No values (ppmV) to ng/scm is made by multiplying
by 1.912 x 10 . To convert from ppm to Ib/scf, multiply by 1.19 x 10 .
NO emissions are measured as NO and the NO emission rates reported
X •»
herein are calculated based on the molecular weight of N0_.
47 KVB11-6015-1224
-------
SECTION 4.0
REFERENCES
1. Maloney, K. L. et al.f "Systems Evaluation of the Use of Low-Sulfur
Western Coal in Existing Small and Intermediate-Sized Boilers," EPA
Contract No. 68-02-1863, EPA 600/7-78-153a.
2. Cato, G. A. et al., "Field Testing: Application of Combustion Modi-
fications .to Control Pollutant Emissions from Industrial Boilers -
Phase I," EPA 650/2-74-078a, NTIS No. PB 238 920, June 1975.
3. Cato, G. A. et al., "Field Testing: Application of Combustion Modi-
fications to Control Pollutant Emissions from Industrial Boilers -
Phase II, "EPA 600-2-76-086a, NTIS No. PB 253 500, April 1976.
4. Devitt, T. et al., "Population and Characterization of Industrial/
Commercial Boilers in the U.S.," EPA-600/7-79-178a, August 1979.
48 KVB11-6015-1224
-------
APPENDIX A
EFFICIENCY MEASUREMENTS
49 KVB11-6015-122 4
-------
EFFICIENCY
Unit efficiencies for boilers are calculated and reported .according
to the ASME Power Test Codes for Steam Generation Units, PTC 4.1-1965. These
codes present instructions for two acceptable methods of determining thermal
efficiency. One method is the direct measurement of input and output and
requires the accurate measurement of the quantity and high-heating value of
the fuel/ heat credits, and the heat absorbed by the working fluids. The
second method involves the direct measurements of heat losses and is re-
ferred to as the heat loss method. This method requires the determination
of losses, heat credits, and ultimate analysis and high-heat value of the
fuel. Some of the major heat losses include losses due to heat in dry flue
gas, losses due to fuel moisture content, losses due to combustible material
in refuse and flue gas, and radiation losses. Heat credits are defined as
those amounts added to the process in forms other than the chemical heat
in the fuel "as fired." These include quantities such as sensible heat in
the fuel, heat in the combustion air, and heat from power conversion in a
pulverizer or fan. The relationships between input, output, credits, and
losses for a steam generator are illustrated in Figure A-l.
KVB's experience has shown the heat-loss efficiency determination
method to be the most reliable when working with industrial boilers. Ac.-
curate fuel input measurements are rarely possible on industrial boilers due
to the lack of adequate instrumentation, thus making the input-output method
undesirable. The accuracy of the efficiency based on the heat loss method
is determined primarily by the accuracy of the flue gas temperature measure-
ment immediately following the last heat removal station, the stack gas
excess 0_ level, the fuel analysis, the ambient temperature, and proper
identification of the combustion device external surfaces (for radiation
losses). Determination of the radiation and other associated losses may
appear to be a rather imposing calculation, but in practice it can be ac-
complished by utilizing standard efficiency calculation procedures. Inac-
curacies in determining efficiency occasionally occur even with the heat
50 KVB11-6015-1224
-------
HEAT IN FUEL (H,) (CHEMICAL)
INPUT
ENVELOPE
MEAT IN ENTERING AIR
HEAT IN ATCMIIINC STEAX
SENSIBLE HEAT IN FUEL
PULVERIZER OB CRUSHER POWER
BOILER CIRCULATING Pu«P POWER
B.
PRIMARY AIR FAN POWER
RECIUCULATINC GAS FAN POWER
B.A
HEAT SUPPLIED BY MOISTURE
IK ENTERING AIR
MEAT IN COOL INC WATER
f CREDITS IB;
BOUNDARY
MEAT IN PRIMARY STEAM
MEAT IN DESUPERHEATER WATER AND CIRCULATING PUMP INJECTION WATER
I MEAT IN FEEDWATER
HEAT IN SLOWDOWN AND CIRCULATING PUMP LEAK-OFF WATER
HEAT IN STEAM FOR MISCELLANEOUS USES
• HEAT IN REHEAT STEAM OUT
> HEAT IN DESUPERHEATER WATER
I HEAT IN REHEAT STEAM IN
LOSSES (L)
UNBURNED CARBON IN REFUSE
HE AT IN DRY CAS
MOISTURE IN FUEL
MOISTURE FROM BURNING HYDROGEN
MOISTURE IN AIR
HEAT IN ATOMIZING STEAM
CD
CARBON MONOXIDE
UNBURNED HYDROGEN
UNBURNED HYDROCARBONS
RADIATION AND CONVECTION
RADIATION TO ASH PIT. SENSIBLf HEAT IN
SLA3t LATENT MEAT OF FUSION OF SLAG
SENSIBLE HEAT IN FLUE DUST
L.-- HEAT IN PULVERIZER REJECTS
L.
HEAT IN COOLING WATER
SOOT BLOWING
OUTPUT » INPUT - LOSSES
DEFINITION: EFFICIENCY (PERCENT) = ^ (ft) = ^^f • ">° s
HEAT BALANCE- H, + B = OUTPUT + L OR t) (ft) B 1 _ _k_
• L H|*BJ
Figure A-l. Heat balance of steam generator.
100
« '00
51
KVB11-6015-1224
-------
loss method primarily because of out-of-calibration unit instrumentation
such as the stack gas exit temperature. However, this problem has been re-
solved by KVB test engineers through the use of portable instrumentation
and separate temperature readings.
The abbreviated efficiency test procedure which considers only the
major losses and the chemical heat in the fuel as input will be followed.
Tables A-l and A-2 are the ASME Test Forms for Abbreviated Efficiency Tests
on steam generators which exemplify the type of forms to be used for re-
cording the necessary data and performing the required calculations.
KVB has developed a program for the HP-67 calculator which will pro-
vide the heat loss efficiency from the stack data. Figure A-2 shows the HP-
67 keyed calculation sheet for calculating efficiency by the ASME Heat Loss
Method.
52 KVB11-6015-1224
-------
SUMMARY SHEET
TABLE A-l
A.SME TEST FORM
FOR ABBREVIATED EFFICIENCY TEST
PTC 4.1.0-(1964-
O»NER OF PLANT'
TEST CONDUCTED BY
BOILER MAKE (L TYPE
TEST NO.
LOCATION
OBJECTIVE OF TEST
BOILER NO
HATED CAPACITY
DATE
DURATION
STOKER TYPE & SIZE
PULVERIZER. TYPE* SIZE
FUEL ICED MINE
PRESSURES & TEMPERATURES
COUNTY
BURNER. TYPE &
SIZE
STATE SIZE AS FIRED
FUEL DATA
1
2
3
4
s
6
7
8
9
10
11
12
13
u
STEAM PRESSURE IN BOILER DRUM
STEAM PRESSURE AT S. H. OUTLET
STEAM PRESSURE AT A. H. INLET
STEAM PRESSURE AT A. H OUTLET
STEAM TEMPERATURE AT S H. OUTLET
STEAM TEMPERATURE AT R H INLET
STEAM TEMPERATURE AT R H. OUTLET
WATER TEMP. ENTERING [ECON HBOILER)
STEAM QUALITY-. MOISTURE OR P.P M
AIR TEMP. AROUND BOILER (AMBIENT)
TEMP *|R FOR COMBUSTION
fThtt ii R*for*ne« Ttmptrerurv) t
TEMPERATURE OF FUEL
CAS TEMP LEAVING (BeilfO (Ecen.) (An Kn.)
CAS TEMP. ENTERING AH (II cendihoni to bt
ptio
pna
p».o
P»io ..
F
F
F
F
F
F
F
F
F
UNIT QUANTITIES
IS
16
17
IB
19
jc
21
22
23
24
25
ENTHALPY OF SAT. LIQUID (TOTAL HE ATI
ENTHALPY OF (SATURATED) (SUPERHEATED)
STM
ENTHALPY OF SAT. FEED TO (BOILER)
(ECON.)
ENTHALPY OF REHEATED STEAM R.H. INLET
ENTHALPY OF REHEATED STEAM R. H.
OUTLET
HEAT ABS/LBOF STEAM (ITEM 16- ITEM 17)
HEAT AfiS/LB R.H. STEAM (ITEM 19-ITEM IN
DRY REFUSE (ASH PIT * FLY ASH) PER LB
AS FIRED FUEL
Bfy PER LB IN REFUSE (WEIGHTED AVERAGE)
CARBON BURNED PER LB AS FIRED FUEL
DRY GAS PER LB AS FIRED FUEL BURNED
Stu/lb
Biu/lb
Btu/lb
Bfu/lb
3iu/lb
Biu Ib
Biu/lb
Ib/lb
Btu/lb
Ib/lb
Ib/lb
HOURLY QUANTITIES
26
27
28
29
30
31
ACTUAL WATER EVAPORATED
REHEAT STEAM FLOW
RATE OF FUEL FIRING (AS FIRED .1)
TOTAL MBiT IMPUT (Item 28 * Item 41)
1000
HEAT OUTPUT IN BLOW.BOWN WATER
ZeT*L (liem 26.li.-i 20)»(lt.« 27.lt**. 21)»lt»m 30
OUTPUT 1000
fb'ht
Ib/hr
Ib/hr
kB/hr
kB/hr
kB/hr
FLUE CAS ANAL. (BOILERHECON) (AIR HTR) OUTLET
32
33
34
35
36
CO,
0,
CO
N, (BY DIFFERENCE)
EXCESS AIR
% VOL
* VOL
ft VOL
ft VOL
%
COAL AS FIRED
PROX. ANALYSIS
J7
38
'39
40
MOISTURE
VOL MATTER
FIXED CARBON
ASH
TOTAL
41
43
Buipif Ib AS FIRED
ASH SOFT TEMP.'
ASTM METHOD
%«t
COAL OR OIL AS FIRED
ULTIMATE ANALYSIS
43
44
45
46
47
40
37
CARBON
HYDROGEN
OXYGEN
NITROGEN
SULPHUR
ASH
MOISTURE
TOTAL
COAL PULVERIZATION
48
49
SO
64
GRINDABIL1TY
INDEX*
FINENESS ftTHRU
SOM-
FINENESS A THRU
ZOOM*
INPUT.OUTPUT
EFFICIENCY OF UNIT ft
51
52
53
44
41
OIL
FLASH
POINT F*
Sp. Gravity Drj.APr
VISCOSITY AT SSU1
BURNER SSF
TOTAL
ft -i
Btu ptr
HYDROGEN
Ib
CAS
54
55
S6
57
SB
59
60
61
CO
CM. METHANE
C,H, ACETYLENE
C,H. ETHYLENE
C,H. ETHANE
H,S
CO,
H,
HYDROGEN
TOTAL
62
63
41
TOTAL
?. .t
HYDROGEN
T.VOL
DENSITY 68 F
ATM PRESS.
Btu PER CU FT
BM PER LB
ITEM 31
• 100
ITEM 29
HEAT LOSS EFFICIENCY
65
66
67
68
69
70
71
72
HEAT LOSS DUE TO DRY GAS
HEAT LOSS DUE TO MOISTURE IN FUEL
HEAT LOSS DUE TO H,0 FROM COMB OFH,
HE AT LOSS DUE TO COMBUST. IN REFUSE
HEAT LOSS DUE TO RADIATION
UNMEASURED LOSSES
TOTAL
Biu/lb
A.F. FUEL
EFFICIENCY a (100 -lira 71)
'Net Required foi Efficiency Testing
• ftef A.
FUEL
t Fer Pemt of Mea>uiiment Si* Par. 7.2.8. 1-PTC 4.1.1964
53
KVB11-6015-1224
-------
CALCULATION SHEET
TABLE A-2
ASME TEST FORM
FOR ABBREVIATED EFFICIENCY TEST
PTC 4.Vb 0964)
September, 1965
OWNER OF PLANT TEST NO. BOILER NO. DATE
30
24
25
36
65
66
67
68
"
70
71
72
" ITEM 15 ITEM 17
1000
H impractical to weigh refuse, this
item cpn be estimated as follows
X ASH IN AS FIRED COAL „„„. ,e ^-
100 - ft COMB. IN REFUSE SAMPLE p(j REFUSE
ITEM 43 ITEM 22 ITEM 23 SHOULD BE
CARBON BURNED „ SEPARATEL
PER LB AS FIRED = - : • COMPUTAT1
FUEL 10° L J
DRY CAS PER LB 11 CO, « >0, * 7(N, « CO)
BURNED" wco, « co> . »
ITEM 32 ITEM 33 (ITEM 35 ITEM 34 1 ITEM 24
11 x ««x * 7\ « /„
/ITEM 32 ITEM 34 \ |_
3 « 1 ...* J
3 v /
kB/hr
LUE DUST & ASH
DIFFER MATERIALLY
IBLE CONTENT. THEY
ESTIMATED
Y. SEE SECTION 7.
DNS.
ITEM 47
*
267 J
CO ITEM 34
EXCESS °> - -r- ITEMH - -
.2682N, -(n _ CO i ITEM 34
^ , .2682 (ITEM 35) - (ITEM 33 - )
Z 2
HEAT LOSS EFFICIENCY
HEAT LOSS DUE LB DRY CAS ITEM 25 (ITEM 13) -(ITEM 11)
TO DRY GAS a PER LB AS xC * (»l.9 - 'a.r) = xO.24 s
FIRED FUEL ' u«,t
HEAT LOSS DUE TO . LB H,0 PER LB ( ,ENTHAL pv np VAPOR AT 1 PSIA & T CAS LVC)
MOISTURE IN FUEL "AS FIRED pUEL » I (ENTHALPY OF »• ««
- (ENTHALPY OF LIQUID AT T AIB)J • I . . . .'. .. "[(ENTHALPY OF VAPOR
100
AT 1 PSIA & T ITEM 13) -(ENTHALPY OF LIQUID AT T ITEM 11)] -
HEAT LOSS DUE TO H,0 FROM COMB. OF H, « »H, x [(ENTHALPY OF VAPOR AT 1 PSIA & T CAS
LVC] - (ENTHALPY OF LIQUID AT T AIR)]
« » x ITE* " x [(ENTHALPY OF VAPOR AT 1 PSIA & T ITEM 13) - (ENTHALPY OF LIQUID AT
100 T ITEM11)]e
HEAT LOSS DUE TO ITEM 22 ITEM 23
COMBUSTIBLE IN REFUSE = * -
HEAT LOSS DUE TO TOTAL BTU RADIATION LOSS PER HR
RADIATION* LB AS FIRED FUEL - ITEM «
UNMEASURED LOSSES "
TOTAL
EFFICIENCY a (100 - ITEM 71)
Btu/lb
AS FIRED
FUEL
LOSS x
HHv"
100 =
11 x 100 =
41
** x 100 «
41
~iT
68
4?
** x 100 -
41
_!£. x 100 •
41
LOSS
R
-
1 For rigorem 4*i«rmi«oiion of •»€••» eir »•• Appvndu 9.2 - PTC 4.1-1964
• If IDIICI art net imgiurad. ui« ABMA Standard Radiation Lait Chart, Fig. B. PTC 4.1-1*64
•• UnrMaiu»d loa»at llttad in PTC 4.1 but Ml tabular** obava mar by pravidad fat by aaaianmg a •mtually
ad upon valiM tor Itam 70.
54
KVB11-6015-1224
-------
FIGURE A-2
HP-67 KEYED CALCULATIOII SHEPT
ASME ABBREVIATED EFFICIENCY CALCULATION - HEAT LOSS METHOD
Test No.
Date
Location
Unit No.
Fuel
(Turn Calculator Off and Then On. Load Program Card.I
A. FROM FUEL ANALYSIS:
wt. » in as-fired fuel: C », Moisture \, H
Al: (STO 0)
High heating value of fuel as-fired
ASi(STO 4)
A2:(STO 1)
Btu/lb
%. 5
A):(STO 2) A4:(STO 3)
B. FROM FLUE CAS ANALYSIS:
Volume % in flue gas of: 0.
B1:(STO S)
». CO,
%. CO
C. FROM REFUSE (FLY ASH AND ASH PIT) ANALYSIS:
Cl. Fraction of dry refuse in fuel
B2:(STO 6) B3i(STO 7)
_lbs dry refuse/lb as-fired fuel
(STO 8)
C2. Heating value of dry refuse (weighted average) Btu/lb dry refuse
C3. Wt. % of combustibles in refuse
(STO 9)
(f P \ SHSTO 4)(f P J S)
(STO A)
(STO B)
D. MEASURED TEMPERATURES
01. Cat temp, leaving boiler, econ. or air heater
D2. Comb, air temp.
E. FROM STEAM TABLES:
El. Enthalpy: hy>(g) at tenp. 01 c 1 psia
E3. Enthalpy: N 0(1) at conb. air temp.
(STO D)
F. FROM AKtA STANDARD RADIATION LOSS CHART (UNLESS MEASURED) I
Btu/lb
(STO C)
Btu/lb
Fl. Heat loss due to radiation
(STO E)
6. FROM tttIT SPECIFICATIONS (if available, otherwise enter 0):
_» of gross heat input
Cl. Unmeasured losses
» of gross heat input
(f P \ SMSTO 0)(f P $ S)
10° (2B1 • "'
1. Excess Air % 5^551100.
2. (Optional) Pounds dry gas per pound of fuel •
(A)
Bl * 4B2
3(B2 • B3)
TOO ^ \*1
Cl X C2
100 14500
/ C3
v ~ wo
3A4
800
(R/S)
* of Cross
_lbs dry gas/lb as-:
fuel
(Optional)
3.
4.
S.
6.
7.
8.
Heat Losses
Due to dry u.i - 2< x *f-a * ID1
Due to noisture in fuel - A2 K '
A
Due to HjO fron combustion of H.
Due to combustibles in refuse •
Total Losses • Sum of calculated
Efficiency • 100 - Total Losses
- D2)
El - E2)
S
9 x A3 (El - E2)
AS
100 x Cl x C2
AS
losses •» Fl * Cl
Heat Input
(B)
(C)
(D)
(E)
(f •)
(f b)
Btu/lb as-fired fui
(R/S)
(R/S)
(R/S)
(R/S)
(R/S)
•Calculated as percent of gross heat input x AS +
100
55
KVB11-6015-1224
KVB 6015-21 (Rev 1)
11/7/78
-------
APPENDIX B
DATA RECORDING FORMATS
56 KVB11-6015-1224
-------
DOCUMENTATION OF RESULTS
Field Measurements
During testing, two sets of measurements are recorded: 1) control
room data which indicate the operating condition of the device and 2) emis-
sions data that are the readouts of the individual analyzers.
The concentration of nitric oxide (NO), carbon dioxide (CO ), carbon
monoxide (CO), and oxygen (0 ) are measured and recorded. The concentration
of these species are measured and displayed continuously by analyzers and
strip chart recorders mounted in a console. The strip chart recordings are
retained for future reference. Opacity, particulate loading, and POM concen-
tration are measured at the sampling port and the measurements recorded on
data sheets.
A number of data sheets have been developed for use in field measure-
ments. These data sheets are listed below together with their purpose.
An example of each sheet follows.
Figure No. Title Purpose
B-l Thirty-Day Field Test Data Sheets Record control room data
B-2 Gaseous Emissions Data Record Gaseous Emissions
Analyzer data
B-3 Nozzle Size, QQ, and AH Calculations Calculate nozzle size,
flow rate, and AH for
Method 5 Test
B-4 Response Time for Continuous Continuous monitor certi-
Instruments fication
B-5 Zero and Calibration Drift (24 hr) Continuous monitor certi-
fication
B-6 Zero and Calibration Drift (2 hr) Continuous monitor certi-
fication
B-7 Accuracy Determination (NOx) Continuous monitor certi-
fication
B-8 Calibration Error Determination Continuous monitor certi-
fication
57 KVB11-6015-1224
-------
Figure No.
Title
Purpose
B-9
B-10
B-ll
B-12
B-13
B-14
Analysis of Calibration Gas Mixture Continuous monitor certi-
fication
Particulate Calculation Sheet
Stack Data
Particulate Emission Caculations
Velocity Traverse
Liquid or Solid Fuel Calculation
Calculate weight of solid
particulate catch
Record volumes, tempera-
tures, pressures of Method
5 control unit.
Calculate particulate em-
mision factors
Record temperature and
velocity profile of stack
Calculate stoichiometric
properties of fuel
58
KVB11-6015-1224
-------
Figure B-l.
KVB, Inc.
THIRTY DAY FIELD TEST DATA SHEET
Site
Fuel
Test No.
Date
Time
Load
Test Description
Windbox, in. HJD
Furnace, in. H_O
Overfire air, in. H^O
Boiler exit, in. H^O
Economizer exit, in. HnO
ID fan inlet, in. H..O
Steam flow, Jcpph
Time/
Integrated steam flow k Ibs
Air flow indie.
Superheater outlet temp. °F
Flue gas temp,
economizer inlet, °F
Flue gas temp,
economizer outlet, °F
Temp F.W. economizer
outlet, °F
Feed Water Control, %
Temp F.W. heater, °F
F.W. economizer inlet, °F
Steam pressure, psig
Fuel feed
Overfire air damper
F.D. fan
F.D. fan damper
I.D. fan
I.D. fan damper
-
59
(continued)
Data Sheet 6017-26
12/12/78
KVB11-6015-1224
-------
Figure B-l. (Continued)
THIRTY DAY FIELD TEST DATA SHEET
Page 2
Test No.
Smoke Indicator Chart
Rotary speed
Spill plate setting
Grate speed
Over fire air damper,
% open
Fuel flow, Time/lbs
Flame observations
Bed thickness
General furnace
appearance
Clinkers
Ambient air temp, °F
£ F.D. fan inlet terno.
Comments:
60
Data Sheet 6017-26
12/12/78
KVB11-6015-1224
-------
Figure B-2.
KVB, INC.
GASEOUS EMISSIONS DATA
Date_
Engr.
Low NO Control Method_
X —
Unit No.
Fuel
Unit Type
Location
Capacity
Burner Type
1. Test No.
2. Time
3. Load
4. Process Rate
5. Flue Dian. or
Size, ft
6. Probe Position
7. Oxygen (%)
8. N0y (hot)
read/3% 0, (ppm)
9. NO (hot)
read/3% O., (ppm)
10. NO (hot)
read/3% O (ppm)
11. Carbon Dioxide
(%)
12. Carbon Monoxide
(ppm) uncor/cor
13. Opacity
14. Atraos. Temp.
CF/DC)
15. Dew Point Temp.
(•F/°C)
16. Atntos. Pressure
(in. Hg)
17. Relative
Humidity (%)
*
61
Data Sheet
6015-23
9/29/78
KVB11-6015-1224
-------
Figure B-3.
HP-67 Keyed Calculation Sheet
NOZZLE SIZE, 0^ and AH CALCULATIONS
T*St No.
Unit Ho.
Crew: Enor.
DATA
Comtants
Pi tot Factor. FB
Orifice Factor. J
Orifice Dian. . 0 (in.)
Ideal Meter Flow? Q (ACFM)
n
NOTE: TO RECALCULATE IDEAL
RESTORE DATA IN REGISTERS 4
STACK AND RE-ENTER » H 0, %
Date
Fuel
Key
(STO 1)
(STO 2)
(STO 3)
(STO 4)
NOZZLE SIZE,
THRU B. CLEAR
0 . and % CO
Location
Sunplino Method
Techs.
Actual Conditions
Meter Temperature. Tm(*F)
Baron. Press., PBar (in. Hg)
Static Press. Dlff.. APB (iwg)
Nozzle Temp.. Tn CD
Stack Vel. Press., AR (iwg)
Caseous Stack Composition
t HjO (%)
« O? dry (%)
% COj dry (%)
Key
(STO 5)
(STO 6}
(STO 7)
(STO B)
(STO 9)
ENTER
ENTER
IDEAL HOZZLE CALCULATION
(A) Ideal Nozzle Size, DB(J(JMI) inches
METER FLOW RATE AMD ORIFICE PRESS. DIFT. CALCULATIONS
Actual Nozzle Size, Dn(Actual, inches
(C) Actual Meter flow Rate, °a(Aetlial) Krn (on meter>
(RCL 7) Orifice Press. Diff.. AH to obtain C^(Xctual, iw?
NOTE: To Determine (b, and AH for Other Actual Nozzle Size, Key in Dn(AetuaU. Press C for 0 . then RCL 7
for AH. •_
For one Dn(Actual) wltn Changing Stack Velocity Pressure (Ap) and Nozzle Temperature (Tn>
(It is net necessary to restore data in registers 4-6 for these calculations)
Ap (ENTER) Tn (E) On «*/S) AH'
(iwg) CD (ACFM) (iwg)
EQUATIONS
(2) 11. • iia (* 'ftoo IC") * ^ " V
<1». of «t«l l| vo . 1IS92 »§ /(«p «„ • 4»0)l/»§ 11.
« * **»' »•* *•„
lit
- (% 1,0/100) )(TB • 4M) »BIS2M7S iVo^ IT^ • 4MI - TM »d D B
""•' W
«TB • 44e> n - « 1,0/iM) ua.t r^ « irj
•T. » 4*0) (ll.t » « «H ,1 •••!•• «0 • »B
(9)-.-
62 KVB11-6015-1224
KVB 601S-2S (Rev. 1)
12/13/78
-------
Figure B-4.
KVB
Engineer
MONITOR PERFORMANCE TEST DATA SHEET
RESPONSE TIME FOR CONTINUOUS INSTRUMENTS
Date of Test
Span Gas Concentration
Analyzer Span Setting
1
Upscale 2
3
Average
1
Downscale 2
3
Average
System average response tine
ppm
PPm
seconds
seconds
seconds
upscale response seconds
seconds
seconds
seconds
downscale response seconds.
(slower time) *> seconds.
% deviation from slower Paver age upscale minus average downscalel
system average response 1
slower time J * auu* to '
Data Sheet 6017-35
,, 40CPR60/App. B
7/1/77
KVB11-6015-1224
-------
Figure B-5.
KVB
Engineer^
MONITOR PERFORMANCE TEST DATA SHEET
ZERO AND CALIBRATION DRIFT (24-HOUR)
Date Zero Span Calibration
and Zero Drift Reading Drift
Time Reading (AZero) (After Zero Adjustment) (ASpan)
Zero Drift « [Mean Zero Drift* + C.I. (Zero)
T [Instrument Span] x 100 •* .
Calibration Drift • [Mean Span Drift* + C.I. (Span)
* [Instrument Span] x 100 = .
•Absolute Value
Data Sheet 6017-34
40CFR60/App. B
7/1/77
64 KVB11-6015-1224
-------
o
(->
in
ro
10
Data
Set
No.
10
11
12
13
14
15
MONITOR PERFORMANCE TEST DATA SHEET
ZERO AND CALIBRATION DRIFT (2 HOUR)
Engineer
Time
Begin End
Date
Zero
Reading
Zero
Drift
(AZero)
Span
Reading
Span
Drift
(ASpan)
Calibration
Drift
(Span-Zero)
Zero Drift » (Mean Zero Drift*
Calibration Drift = (Mean Span Drift*
'Absolute Value.
+ CI (Zero)
T (Span) x 100 =
+ CI (Span)
T [Span] x 100 =
H-
vQ
3
W
00
Data Sheet 6017-33
40CFR60/App. B
7/1/77
-------
MONITOR PERFORMANCE TEST DATA SHEET
ACCURACY DETERMINATION (NO )
Engineer
Test
No.
L
2
3
4
5
6
7
e
9
Date
and
Time
Reference Method Samples
NO
X
Sample 1
(ppm)
NO
X
Sample 2
(ppm)
H0x
Sample 3
(ppm)
NO Sample
A
Average
(ppm)
Mean reference method
test value (NO )
95% Confidence intervals = + ppm
Accurai
• Expli
. _ Mean of the differences + 95%
X
(N0x)
confidence interval _ .„..
Mean reference method value *""
lin and report method used to determine integrated averages
Analyzer 1-Hour
Average (ppm) *
N0x
Difference
(ppm)
NO
X
Mean of
the differences
% (NO )
A
w
CD
Data Sheet 6017-32
40CFRr,0/App. H
7/1/77
-------
Figure B-8.
KVB
Engineer
MONITOR PERFORMANCE TEST DATA SHEET
CALIBRATION ERROR DETERMINATION
Calibration Gas Mixture Data
Mid (50%) ppm High (90%) ppm
Calibration Gas Measurement System ^
Run # Concentration, ppm Reading, ppm Differences, ppm
10
11
12
13
14
15
Mid High
Mean difference
Confidence interval
Mean Difference + C.I. ...
Calibration error = Average Calibration Gas Concentration * 10°
^Calibration gas concentration - measurement system reading
Absolute value
67 7/1/77
Data Sheet 6017-31
40CFR60/App. B
KVB11-6015-1224
-------
Figure B-9.
KVB
Engineer_
MONITOR PERFORMANCE TEST DATA SHEET
ANALYSIS OF CALIBRATION GAS MIXTURES
Date: Reference Method Used:
Mid-Range Calibration Gas Mixture
Sample 1 ppm
Sample 2 ppm
Sample 3 ppm
Average ppm
High-Range (span) Calibration Gas Mixture
Sample 1 ppm
Sample 2 ppm
Sample 3 ppm
Average ppm
Data Sheet 6017-30
68 40CFR60/App. B
7/1/77
KVB11-6015-1224
-------
Figure B-10.
PARTXCULATE CALCULATION SHEET
Test Crew
Test No.
Box No.
Date
Location
Sample Probe Position,
Test Description
Dry Gas Meter Vol. (ft )
Final
Initial
Total
Impinger Water Vol (ml)
1 2 3 S. Gel Total
Final
Initial
A Vol
Beaker No.
Date
weighed
Tare 1
wt. 2
3
4
5
6
Avq
Bottle No.
Impinger
Content (Water)
Rinse (ml)
Date Weighed
or 250 Bake
Final 1
Wt. 250 2
3
4
5
6
Avg
Residue wt
Final 250™Tare
Date Weighed
or 650 Bake
Final 1
Wt. 650 2
3
4
5
6
Avg
Residue Wt
Final 65 O* Tare
Probe
(Acetone)
Probe
(water)
Cyclone
(Acetone)
Flask
(Dry)
Filter
No.
Blank
No.
Comments:
Data Sheet 6002-3
69
KVB11-6015-1224
-------
Figure B-ll.
Location
K V B. INC.
STACK DATA
Unit No.
Test No,
Engr.
Fuel
Load
Sample Box No,
Kt/hr or MBtu/hr
Meter Box No.
Filter No.
Probe No,
Filter Heater Setting
Probe Heater Setting
Stack Moisture
Ambient Temperature
Nozzle Diameter
Atmospheric Pressure
Weather
oF
in.
in.Hg
I
tiiam.
Stack Gas Pressure, Ps iwg
Abs. Stack Press., AP=P +407=
Stack Gas Sp. Gravity, Gs n.d
Stack Area, As ft2
I
iwga
__Probe Length
Remarks
Final Meter:
Initial Meter:
Time
Total
Avg.
Vm
Meter
Volume
Beading
(CF)
Vacuum
Gage
Reading
(iwg)
AP
Pitot
Tube
Pressur
(iwg)
B
Orfice
Pressure
; Diff
(°F)
Stack
Temp.
(°F)
°F
°F
+• 460
Impinger
Temperature
Out
<°F)
In •
(°F)
Filter
Box
Temp.
<°F)
Meter
Temp.
(°F)
Tsa
70
KVB11-6015-1224
60-13
11/20/75
-------
Figure B-12.
Test No. Datc_
tiit No. Fuel
HP-67 KEYED CALCULATION SHEET*
PARTICULATE EMISSION CALCULATIONS
Location
Engr.
Sampling Train and Method
Pitot Factor, Fs '83
Barometric Pressure, P
Tot. Liquid Collected, VJ
Velocity Head, AP
bar (STO 0)
ml Total Particulate, M_
M5TO 1)
_iwg Stack Temp., Ts
n. Hg
m gm
(STO 2)
°F stack Area, As
ft'
ISTO J) (STO 4) (BTU 5)
Sample Volume, Vm ft Stack Press., Psg iwg Excess 0 , XO % t
(STO 6)
Orifice Press. Diff., H
Sample Time, 6_
(STO B)
ISTO
man Nozzle Dia., Dn
(STO 7) ' (STO ST
_iwg,(Flue Gas Density/Air Density)! Ts, Gs_ n.d.
(STO C)
_in. Meter Temp., T
(STO A)
m-
(STO O)
Select Fe
SC Feet/104 Btu
Oil (A)
92.2
Gas (B)
87.4
Coal (C)
98.2
Other:
<-)
Press (E) if meter is not temperature compensated.
1. Sample Gas Volume Vm _. « 0.0334 Vm(Pw + H/13.6)
std oar
2. Hater Vapor
Vw
std
°'0474 v
j.c
3. Moisture Content Bwo = Eq. 2/(Eq. 1 + Eq. 2)
std
4. Concentration a. C = 0.0154 Mn/Vm
b. C - 2.205 x 10"6 Mn/Vm
C. C = Eq. 4b x 16.018 x 10
5. Abs. Stack Press. Ps = P. „„ x 13.6 + Psg
oar
std
3
00
Gs
Ps
6. Stack Gas Speed Vs = 174 Fs /APTs J~- x ^
7. Stack Gas Flow a. Qsw = Eq. 6 x As x -— x
Kate @ 70°F
b. Qsd » Eq. 7a x (1. - Eq. 3)
8. Material Flow Ms = Eq. 7b x Eq. 4b x 60
9. K>2 factor
10. Emission
11. % isokinetic
X02f - 2090/(20.9 - XO %)
a. E » Eq. 4b x Fe x Eq. 9
b. E = Eq. 4c x Fm x Eq. 9 x 1000
14077
6 x Vs x Ps x Dn
•If calculating by hand:
1) Convert Ts and Tn to °R
2) Multiply EQ 1 by 530/Tn(*R) if meter not temperature compensated.
3) Fn • 2.684 x 10'5 x Fe
SCF
SCF
N.D.
grains/DSCF
Ib/DSCF
grams/DSCM
in. w abs.
ft/min
WSCF/min
DSCF/min
N.D.
Ib/MMBtu
ng/ joule
Data Sheet 6002-4
Revised 9/27/78
KVB11-6015-1224
-------
Figure B-13.
- iject:
bate:
KVB, Inc.
VELOCITY TRAVERSE
Test Description:
Location:
Unit:
Test:
Fuel:
Stack Cross Section
Personnel:
Barometric Press, (in. Hg):
Absolute Static Press, in Stack (in. Hg}:.
Pitot Tube Coefficient:
(P8)
= 85.48
1/2
Time
•^ ••
Traverse Point
Port Depth
"
Velocity
Head
(in. H?0)
AP
Gas Temp.
(°F)
Gas Temp.
CR)
TS
Molecular
Wt.
' MS
Velocity
(ft/sec) •
vs
02
Cone.
(% Dry)
72
Data Sheet KVB 6002-13 KVB11-6015-1224
-------
Figure B=~14.
Test NO
Fuel
(f)(CL
(C)
1R/S)
IR/S)
(R/S)
«R/S)
(R/S)
(R/S)
(f)(A)
(R/S)
(R/S)
-------
APPENDIX C
CONTINUOUS MONITOR CERTIFICATION DATA SHEETS
KVB11-6015-1224
74
-------
MONITOR PERFORMANCE TEST DATA SHEET
ACCURACY DETERMINATION (NO )
A
Engineer
Test
No.
1
2
3
4
5
6
7
8
9
Date
and
Tine
-?. \o--\^
^•2>o
<\2>o
to 3o
n So
17.30
>»»3O
1430
\53O
KoSO
Reference Method Samples
NO
X
Sample 1
(ppm)
-\AT
VOO Z.
q?.^
\o~nfi
<\\(o
<\(o?>
«\13
\o~i 7:
CvA^
NO
X
Sample 2
(ppm)
-143
I0\fc
l
Mean refei
test value
95% Confidence intervals « -I- 4>~K \^ ppm
Accurat
• Expli
, Mean of. the differences •*• 95%
N0x
Sample 3
(ppm)
-\AO
Q(^
\O"t »
S04-
q^^
^-ss
\e>7.fe
\\ o»
o^SZ
NOx Sample
Average
(ppm)
-\4-3
«\q4
Ct-i4
Ci3%
^7.1.
qso
<\TB
lo~&1.
«\4-(o
•ence method _ A
, IMO . ^47-
(N0x)
confidence interval ..._
0 Mean reference method value ** **""
lin and report method used to determine integrated averages
Analyzer 1-Hour
Average (ppm) *
N0x
SQ"1
-llol
n^-s
*B5\
e^
8B~7
ei.o
63 /
«BS-7
Difference
(ppm)
M0x
~ \43
-c\3
- \sa
- »s|
- °\
Mean of
the differences - \ "5 S
1 \G\/*>4% (NO )
CD
Data Sheet 6017-32
40CFR60/App. B
7/1/77
-------
MONITOR PERFORMANCE TEST DATA SHEET
ACCURACY DETERMINATION (NO )
Engineer^
i Test
NO.
1
2
3
4
5
6
7
B
9
Date
and
Time
(ff-e--^*\
cr.'iO
\0-.3iO
It 30
!*• 30
*•»>•. 2»0
14 '. "30
IS'. 3.0
\
*.»»«r TAKCM
555
SB (o
t*Z(o
(^ClO
^4.
S54-
NO
X
Sample 2
(ppm)
-ITZ.
n 14
545
SS2-
SloO
Co l^H
-too
L*8°\
©•2»\
Mean refei
test vaitu
95% Confidence intervals - + 33 f\ \ ppm
Accura
* Expl
, Mean of. the differences -I- 95%
N0x
Sample 3
(ppm)
-157-
T2.I
SS3
S-2.B
5S~1
O> t S
(o^to
~1OO
^.oS
NO Sample
Average
(ppm)
-i^e
-1 I A'
S^"3
<548
S?»B
(r»^0
(o^T.
Co^4
©•s.0
rence method ,*
» fun ) Lo vo *t-
(N0x)
confidence interval „ ,^«
"*• u Mean reference method value
ain and report method used to determine integrated averages
Analyzer 1-Hour
Average (ppm) *
N0x
(^© \
Co-17-
540
4fcS
5\3»
SSI
«=,B^
sqA
toC\4
Difference
(ppm)
N0x
-~n
-42L
-Z3
-(oO
-45
- (o3
- lO0!
- \oo
- \3to
Mean of
the differences ~ T Z . "7
• IU>.05 % (N0._)
CD
Data Sheet 6017-32
40CFR60/App. R
7/1/77
-------
KVB
MONITOR PERFORMANCE TEST DATA SHEET
RESPONSE TIME
Date of Test Vo-"7. 1Q
Span Gas Concentration Q.2.T *7& ppm
Analyzer Span Setting R2.T ppm
1 Q1-O seconds
Upscale 2 S3.S seconds
3 S5.O seconds
Average upscale response SS-8 seconds
1 R i .r> seconds
Downscale 2 CH i.T. seconds
3 ^O. *2- seconds
Average downscale response ^O»ft seconds.
System average response tine (slower tine) •= &g-S seconds.
% deviation from slower Faverage upscale minus average downscale j IQO% =— .02-.
system average response " slower tine J -
40CFR60/App. B
7/1/77
77 KVB11-6015-1224
-------
KVB
MONITOR PERFORMANCE TEST DATA SHEET
RESPONSE TIME
Date of Test
Span Gas Concentration \~i.g «n<>
Analyzer Span Setting ^5.Q ppm
seconds
Upscale 2 "7 "7 seconds
3 "7.G seconds
Average downscale response ~l(n* I seconds.
System average response time (slower time) » "l(o.P> seconds.
% deviation from slower average upscale minus average downscale
o [average upscale minus average downscale [
I slower tiim* I
1Q(J%
system average response
40CFR60/App. B
7/1/77
78 KVB11-6015-1224
-------
KVB
MONITOR PERFORMANCE TEST DATA SHEET
RESPONSE TIKE
Date of Test
Span Gas Concentration 7.3 4 ppm
Analyzer Span Setting 0^4. p
1 Qo. 4 seconds
Upscale 2 ~ie> . U> seconds
3 €>(oA seconds
Average upscale response *5> \.'S seconds
1 S 5.O seconds
Downscale 2 So-o seconds
3 S3.O seconds
Average downscale response QT..-I seconds.
System average response tine (slower time) « S"2..~7 seconds.
% deviation from slower [average igscale minus average downscale |
^[average igscale minus average downscalel
I slower time J
system average response ' -* -J— ' x 100% " "-
40CFR60/App. B
7/1/77
79 KVB11-6015-1224
-------
KVB
MONITOR PERFORMANCE TEST DATA SHEET
RESPONSE TIME
Date of Test Co-1-
Span Gas Concentration ^QQ ppm
Analyzer Span Setting <\O.o ppa
seconds
Upscale 2 Q \ . U seconds
3 S 1 . o seconds
Average upscale response gi.Q seconds
1 &~i-~l seconds
Downscale 2 S"7. O seconds
3 84.Q seconds
Average downscale response 6>Co. 7. seconds.
System average response tine (slower tine) « QUO seconds.
% deviation from slower [average upscale minus average downscale
system average response slower time
3
40CFR60/App. B
7/1/77
80 KVB11-6015-1224
-------
KVB
MONITOR PERFORMANCE TEST DATA SHEET
ZERO AND CALIBRATION DRIFT (24-HOUR)
Engineer
Oate Zero Span Calibration
and Zero Drift Reading Drift
Tine Reading (AZero) (After Zero Adjustment) (ASpan)
(fl-5- 1^
e.-. so
!«-T--W
B' 5 O
(o- Q -nS
©>' 60
^\ft
-------
KVB
MONITOR PERFORMANCE TEST DATA SHEET
ZERO AND CALIBRATION DRIFT (24-HOUR)
Engineer
Date
and
Time
u-s-iq
a- so
6- SO
IP- i-n^
S' 50
@* SO
to' ^-Tl
©'.SO
©'.so
to- M--\«»
e-.so
EC So
Zero Drj
Calibrat
*Absolut
Zero . Span Calibration
Zero Drift Reading Drift
Reading (AZero) (After Zero Adjustment) (ASpan)
O \~l.ft°7
-------
KVB
MONITOR PERFORMANCE TEST DATA SHEET
ZERO AND CALIBRATION DRIFT (24-HOUR)
Engineer
Kl A
Date
and
Tine
<»-5-~iq
S1 SC3
.(a -(a • ~\q
B'SO
ft' SO
(o - S - ""\*?
•B- So
la. 1 . If
ft • so
l« • t a- ifl
&I(ba
- so
Zero Dr:
Calibral
*Absolu1
Zero Span Calibration
Zero Drift Reading Drift
Reading (AZero) (After Zero Adjustment) (ASpan)
O.o — T.^4 PPM t>
— U» P & Kt *~ (O 1A 4 P P Kl O
V A PPK\ 4 A 7-1.4 PPf) O
•
-•?>P?K\ -"5 l.%4 PPK) O
0-d O >*A P^W fl
•
O-O O t^A P 9 f\ O
4 \ ?P ^ 41 t*4 PPi-1 O
<*i C» 1.% 4 PP1*'! 6
Lft - [Mean Zero Drift* <$ + C.I. (Zero) £.$O ]
? [Instrument Span] x 100 = / 7f
Lion Drift "-[Mean Span Drift* 0 + C.I. (Span) O 1
T [Instrument Span] x 100 = jp
:e Value
83
Data Sheet 6017-34
40CFR60/App. B
7/1/77
KVB11-6015-1224
-------
KVB
MONITOR PERFORMANCE TEST DATA SHEET
ZERO AND CALIBRATION DRIFT (24-HOUR)
Engineer
^-^
Date
and
Tine
t*-s--VH
S'So
« , « _
la -l--\c,
e,- so
ft- 60
B*'€0
Zero Drd
Calibral
* Absolut
Zero Span Calibration
Zero Drift Reading Drift
Reading (AZero) (After Zero Adjustment) (A Span)
_
o. o ^ oo p p w
O.Q Cl^O — P p ^\ _
Q . o p*p c^l ^ O O P P ^
C3 .0 ^00 PPtn
ift - [Mean Zero Drift* 4 C.I. (Zero) ]
* [Instrument Span] x -100 «
lion Drift - tMean Span Drift* ' 4 C.I. (Span) _]
T [Instrument Span] x 100 e .
:e Value
84
Data Sheet 6017-34
40CFR60/App. B
7/1/77
XVB11-6015-1224
-------
02. .
MONITOR PERFORMANCE TEST DATA SHEET
ZERO AND CALIBRATION DRIFT (2 HOUR)
Data
Set
No.
^-TUR-T
2
3
4
5
6
7 VTAHT
8
9
10
11
12
13
14
15
16
17
18
19
«i»T»>^T
20
Time
Begin
e-scs
lO'SO
\Z' SO
\ 4 '. &0
\(a' SO
\ - ~\Q
(o-la- IR
G,-G.-^q
IO-G.--V*
l/> - Co • ~^^
to - "\- ~^q
to - ->- -\q
C\.IT7«
^ .^o^
°».ZS°7a
«\ T.S«^
^.tn0!*
°,.3--V°»«
«\.-2.T)«
q zqo,a
^.O-qio
O^^qoy^
v . 03
V • I I
o
__
-.ox.
o
0
v.et
o
—
•v .01
0
0
+ .1. »
-V . \
—
Calibration
Drift
(Span-Zero)
—
O
.0 1
. OS
. \ 1
0
___
.07.
G
A
.0-2-
Q
, —
-02.
&
O
.1. \
. \
—
T [Span] x 100 « OKS°?o.
CD
01
Ol
O
!-•
U1
ro
10
Data Sheet 6017-33
40CFR60/App. B
3/26/79 (Rev. 1)
-------
MONITOR PERFORMANCE TEST DATA SHEET
r,n
Data
Set
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
UCISV
Time
Begin
&-50
10.50
\i-.so
\4'.50
\lp-.50
\ft '. 5O
B: so
I O '. SO
\ 1 '. SO
\4'- so
\ (o '. 5O
is-.so
B'50
\o ' 5o
\-Z--.50
14 '.SO
Ife'.SO
16'50
fc' So
End
Date
-5-->q
(*-5-nq
i*-5--n
VO ~ Vfi ™ »^1
\^ • io™^*^
^-Ifl-^Ok
lo- (o-~!Q
to- Co-"l°i
k-(o--iq
i«--i--»q
(^--n--»<\
(fl-T--!0!
(o--i-~Aq
U-l-lOl
(o-^-^q
io-©-^q
u nnw v^vu^onnxxwn urvxc i \f nwunj
Zero
Reading
o.o
^ P9^
lo PPf\
\0 PPl"\
^ PP^
o . o
o.o
VOPP^
VOPPVI
VO P P K\
\5 V>V>tO
O-O
0.0
o -o
4 ?P«^l
o. o
o. o
0-0
0.0
Zero
Drift
(AZero)
0
5
A
-4-
o
10
o
o
5
- 15
o
G
4
0
0
0
__
Zero Drift = [Mean Zero Drift* ^.^7 + CI (Zero) 7.. Ifl 2. ]
Calibration Drift » [Mean
* Absolute Value.
Span Drift* 5.^ + CI (Span) ?>
Span
Reading
Qoo
^oo
l^j^\ i^S
^^ ^SL ^^
y^^ i^j ^^
s-io
e-io
^ oo
cyoo
°\oo
q0o
C(^\Q
^-VOo
Qoo
^loo
c^o o
qoo
^CiO
cuo
Span
Drift
(ASpan)
O
O
-7_
- ,a
- 10
o
o
o
0
o
o
0
0
o
o
10
—
Calibration
Drift
(Span-Zero)
___
-S
-3>
-2.-Z-
-Co
o
— \o
o
0
-5
-^ \S
,£,
o
- 4-
0
0
* 'O
T [Span] x 100 = .S**0^ .
. C? ] T [Span] x 100 = .&c\°7* .
CD
O)
-------
to
MONITOR PERFORMANCE TEST DATA SHEET
ZERO AND CALIBRATION DRIFT (2 HOUR)
Data
Set
No.
1
2
3
4
5
6
7 ST ART
8
9
10
11
12
13
14
15
16
17
18
19 START
20
Time
Begin
B-.5^
Ift'.SO
17.' SCS
\4' 5>O
Vto-50
IB '50
8'=>0
\ft--SO
\a 50
Ito'&O
\fe'£>0
e- so
\0-^ft
\1' SO
»4 : so
\lo'50
XB'.SO
e-so
\O'.SO
End
. .-
Date
lf)-5--»q
to-s-^q
lo-5-"^^
1^-5- "^q
fc-S.-\q
ID- 5- -v<*
(n- (o-"\q
lo-fo-HQl
^-o»--\q
U (« -1Q
L8--V--|C\
u>--i--iq
Vo--l--V*
il'-^T^
Vo- ~A--\<\
^-«.-^«\
lo- e-~\q
Zero
Reading
o • o
0 PPM
\
S
u
10
a
\s
\ -i
0
1.5
2.5
IX
10
^
7.
Zero
Drift
(Azero)
—
\-5
- A
+ 4
* (o
_1
__
* 8
^ -,
-v 5
_ -5
- 5
—
•Z.5
0
^.5
-Z
O
__
4-7.
Zero Drift » [Mean Zero Drift* 3.5 S + CI (Zero) L43B 1
Calibration Drift - [Mean
'Absolute Value.
Span
Reading
<\4.ari2>4^
\00 (l4tt^
C\A o (l^4)
QS.o (z^
10O-O (XftO^
o,q.0 ^4e^
c\4.ft^7.^4^
'VI.O (T.A'i'i
<*U> (Z.AB'i
0.qB f^AQ^
\oa.o rrSo^
t\no Cr4a^
c»4.0 (taO
O.4.O (Tl^b
«\n.o (T-A^-)
^o (-i.Aft'i
q80 ,^AS-i
qeo l^ASi
qae f^A^
«\A.o Ir^A^
Span
Drift '
(Aspan)
—
* (*
-(^
* I \
•v 5
-TL
—
•* c\
^ 5
O
* 7.
__
0
4 R
.5
o
» ^
0
Calibration
Drift
(Span-Zero)
Vl
- 2.
v -\
_ <
- 1
—
•»- i
- 7-
-^
* S
-2_
—
- -1..S '
8
-H.5
-1
0
-
-2.
T [Span] x 100 = \A^ °7o •
Span Drift* ?.Sd)' -f CI (Span) l.\«\ ] * [Span] x 100 » m °/A. .
S
M
Ul
M
10
10
Data Sheet 6017-33
40CFR60/App. B
3/26/79 (Rev. 1)
-------
MONITOR PERFORMANCE TEST DATA SHEET
ZERO AND CALIBRATION DRIFT (2 HOUR)
Data
Set
NO.
Zl
12
-3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Tine
Begin
\i-fco
1 4- -SO
End
•
Date
io-e-iq
fc-0
-^
•
Zero
Reading
t~ PPK\
1_
Zero
Drift
(Azero)
tt
q
•
•
Zero Drift « [Mean Zero Drift* ... -I- CI (Zero) . , ]
Calibration Drift » [Mean Span Drift* +
*Absolute Value.
CI (Span)
Span
Reading
*\4 o (TSA^
=V 4.e,(i»0
Span
Drift '
(Aspan)
c>
O
-
Calibration
Drift
(Span-Zero)
O
-i £>
T [Span] x 100 «
1 T [Span] x 100 » ' .
00
00
i
o
I-
U1
10
*»
Data Sheet 6017-33
40CFR60/App. B
3/26/79 (Rev. 1)
-------
Co
MONITOR PERFORMANCE TEST DATA SHEET
ZERO AND CALIBRATION DRIFT (2 HOUR)
Data
Set
No.
1 START
2
3
4
5
6
^ «bTf\RT
8
9
10
11
12
^>T»\fcT
14
15
16 ~
17
18
19 STI^WT
20
Time
Begin
a* so
\
lu- 60
IB" SO
B'SO
\0-6O
\Z'5O
\4*SO
VI^'SO
l^'^fc
a1, so
lo-so
»•*.-. so
lA- so
\to'60
\e*&o
6-50
End
•
Date
la-5-~lQ
<«-s--\o.
U-'S-"\cl
0>-s--\q
i
(a • S - ~\<^
<«-5--\q
(o.(fl--\-lo--\cl
(«-to--\q
Gs - (o - ~VCi
U-U-~\c>
(* - la -~\Ci
(e--^- -\(\
U)-n -noi
(a - ~\ - -^\
(a - -\ - IS
(o-T--Aq
(o--A--\q
o.-a-^<\
Zero
Reading
o
o
o
c>
o
Q
*••••»
o
c>
o
o
a
0
o
^
o
«~>
0
0
Zero
Drift
(AZero)
—
—
—
-
—
-
—
—
-
-
—
—
—
—
—
—
—
—
Zero Drift • [Mean Zero Drift* O + CI (Zero) & ]
Calibration Drift - (Mean
'Absolute Value.
Span Drift* .05 -f CI (Span)
Span
Reading
\~i.e °?o
n.e«7a
n.e^a
ll-ta^o
Vl.U^fl
\ n .<&«?<»
\T.e*7«
V-\.S°7o
\-i.e°7»
n.s^o
\-l.««7o
n.%0?-
\n.TA*7o
V^.T^Ja
vn.^^o
Span
Drift
(ASpan)
_
o
o
—.7.
O
4-.Z
O
O
O
o
o
a
Ci
0
o
0
A . 4-
—
•
Calibration
Drift
(Span-Zero)
—
o
O
.•7.
O
. 2.
0
0
0
o
0
0
—
e>
0
o
^
.4-
—
* [Span] x 100 • o
m 1 + [Spanl x 100 - 0S\°1A .
Data Sheet 6017-33
40CFR60/App. B
3/26/79 (Rev. 1)
-------
KVB
MONITOR PERFORMANCE TEST DATA SHEET
CALIBRATION ERROR DETERMINATION
£L
Calibration Gas Mixture Data
Mid (501) 5.0*78PP"' High (901)
Run t
Calibration Gas
Concentration, ppm
Measurement System
Reading, ppm
Differences, ppm
_&.
. 1
_fl_
.11 ^n
Q.-M*?*
IB °7
18
10
11
.\
12
14
. O(0
oto
15
-SsjCL
5.
vfc
Mean difference
Confidence interval
Calibration error
He*" Difference + C.I.
Average Calibration ^5 concentration
Calibration gas concentration - 'measurement system reading
Absolute value
Mid High
,\S _ .cto
* .05 ±_0
90
40CFR60/App. B
7/1/77
KVB11-6015-1224
-------
CO
KVB
MONITOR PERFORMANCE TEST DATA SHEET
CALIBRATION ERROR DETERMINATION
Calibration Gas Mixture Data
Mid (50\) jo2fl_pp"- High (90%) n.e«a PP"-
Calibration Gas Measurement System ^
Run * Concentration, ppm Reading, ppm Differences, ppm
.•2.
o
10
" to.o"* 5.8*7/1 ^
12
13
14
.i! vo.e^
Mid High
Mean difference ****
Confidence interval * '°"T ±.
Mean Difference •» C.I. ,nft •> -* » x^
Calibration error - Average calibration Gas Concentration « 10° -^^-% 2.
Calibration gas concentration - 'measurement system reading
Absolute value
40CFR60/App. B
91 7/1/77
KVB11-6015-1224
-------
H£L
KVB
MONITOR PERFORMANCE TEST DATA SHEET
CALIBRATION ERROR DETERMINATION
Calibration Gas Mixture Data
Hid (50O \IQ ppa. High (901) 1^4 P^
Calibration Gas Measurement System ^
Run 41 Concentration, ppm Reading, ppm Differences, ppm
1.G
_Q_
•2-^4
\1o
o
-2-34
a
11
\to
12
13 o o
14
15
Mid High
Mean difference
Confidence interval
_ ... .. Mean Difference + C.I. lftf. , -t- . ,— .
Calibration error » Average calibration Gas Concentration * 10° UOS % ° %
Calibration gas concentration - "irjeasurement system reading
Absolute value
40CFR60/App. B
92 7/1/77
KVB11-6015-1224
-------
APPENDIX D
CONTINUOUS MONITOR PERFORMANCE SPECIFICATIONS
KVB11-6015-1224
93
-------
App.B
Pp>ro»u*ncr
Title 40—Protection of Environment
f nsr no-
CDU1M VO* MOHTTOM OF BOl *H» NOl
'
I. Principle aad Applicability.
l.i Principle. Tbt concentration of aulfnr
dioxide or elide* of nitrogen pollutants IB
•lack emissions li measured by a continu-
ously operating emission measurement sys-
tem. Cooeumnt with operation of the eon-
tlDiieui monitoring system. the polluuat
eoDccntrmtloci uc alto measured with refer-
ence method* (Appendix A) . As average of
the continuous monitoring system data l«
computed for each reference method testing
period tnd compared to determine the rela-
tive accuracy of the coatlnuoui monitoring
system. Other tette of the continuous mon-
itoring system are also performed to deter-
mine calibration error, drift, and response
characteristics of the system.
U Applicability. Tbl* performance spec-
location li applicable to evaluation of con-
tinuous monitoring cyitcmi for measurement
of nitrogen oxide* or nilfur dJoiide pollu-
Unu. These cpeelneationa contain ten pro-
cedure*. Initallitlon requirement*. tad data
computation procedure* for evaluating tbe
acceptability of tb* continuous monltortag
systems. . .
3. Apparatus,
3.1 Calibration Omf Mixture*. Mixture* of
known eoueeatritlon* of pollutant gae la •
diluent ga* shall be prepared. Tb» pollutant
fas ahall be rulfur dleUde or tbe appropriate
oxide (s) of nitrogen tpeelSed by paragrmpb
6 and within rubparta. For tulfw dlofide gu
mixture), tbe diluent ga> may be atr or altra-
gea. For nitric oUde (KOI P* mixture*, tae
diluent gai iball be ciygen-free «10 ppa)
nitrogen, and for altrogea dioxide (NO,) gmi
mlituret the diluent gai enall be air. Coaeea-
tratioa* of appro*! mate! j 50 percent aad 90
percent of ipan am required. The BO percent
ga* mixture I* uaed to »et aad to check the
•pan aad b referred to a* tbe ipaa ga*. . .
3A Zero Oat A ga* certified by tbe manu-
facturer to eeaula leu than 1 ppm of tbe
pollutant ga* or ambient air may be need.
9 a Equipment for measurement of tbe pol-
lutant ga* concentration utlng the reference
method ipecUed IB tbe applicable etaadard.
a.l Data Recorder. Analog chart recorder
or other nilUble device with Input voltage
range compatible with an airier *ynem out-
put. Tbe resolution of tbe recorder1* daU
output shall be tufflclent to allow eompietion
of tbe tort procedures within this
3.6 CoaHBiioui monitoring ryetem for SO,
or HOt pollutants a* applicable.
a.Deflaitioas.
4.1 Continuous Vonltortng Byctem. Tbe
total equipment required for tbe determina-
tion of a pollutant gas concentration tn •
source effiuent. Continuous monitoring ITS-
tern* ceeilit of major nibtyttem* ee follow*:
1.1.1 Sampling Interface That portion of
an extractive eeatinuon* monitoring eyatem
that perform* one or mere of the following
operations: Acquisition, transportation, and
conditioning of a aampte of tbe source efflu-
ent or that portion of aa la-altu continuous
monitoring system that protect* the analyzer
from tbe effluent.
3.13 Aaalrxer. That portion of the con-
tinuous monitoring cyitera which senses the
pollutant ga* and generates a signal output
that Is a function of tbe pollutant concen-
tration.
l.U Data Recorder. That portion of the
continuous monitoring system that provides
a permanent record of the output signal la
terms of concentration unite
SJ Spaa. The value of pollutant concen-
tration at wbieb tbe continuous monitor-
Ing lyitem Is aet to produce tbe maximum
data display output. Tbe span shUI be *et
at the concentration specified la each appli-
cable subpart.
U Accuracy (Relative). Tbe degree of
correetnesa with which tbe continuous
monitoring *y*tem yield* tbe value of fee
concentration of a sample relative to tbe
value given by a defined reference method.
This accuracy u expressed in terms of error.
which la the difference between the paired
concentration measurement* expressed a* a
percentage of the mean reference value.
14 Calibration Error. Tb* difference be-
tween tbe pollutant concentration Indi-
cated by tbe continuous monitoring *y*tem
and the knows concentration of tbe tort
mmM iBixture.
1.6 Zero Drift. The change m the continu-
ous monitoring iritcm output ever a dated
period of time of normal continuous opera-
tion when the pollutant concentration at
the time for the measurements la cero
S6 Calibration Drift. The change IB the
continuous monitoring eyetem output over
• stated tune period of normal continuous
operations when the pollutant concentra-
tion at the time of the measurement* I* the
aane known upscale value.
1.7 Response Time. The time Interval
.from a step change In pollutant concentre- •
tloa at the Input to tbe continuous moni-
toring eretem to tbe time it which BS per-
cent of tbe corresponding anal value la
reached a* displayed oa the continuous
monitoring system data recorder.
U Operational Period. A minimum period
of time over which a measurement aywtea
Is expected to operate within certain per-
formance specification* without unsched-
uled maintenance, repair, or adjustment.
SJ8 Stratification. A condition Identified
by a difference In excess of 10 percent be-
tween the average concentration la the duct
or stack and the concentration at any point
more than 1A meter from the duct or stack
wall.
4. Installation Specifications. Pollutant
continuous monitoring systems (SO, and
HO,) shell be installed at a sampling loca-
tion where measurements can be made which
are directly representative (4.11. or which
can be corrected so a* to be repreeenutlve
of tbe total emissions from the affected
94
KVB11-6015-1224
-------
Chapter I—-Environmental Protection Agency
App.S
facility. Coatormance with this r»qu Ire meet
•hill be accomplished as follows:
4 1 EfflurDt gu« may be uiumed to be
Bonstratlfled U a templing location eight ot
more lUck diameters (equivalent diameter*)
downstream ol any air la-leakage to se-
lected This assumption end data correetloo
procedures under paragraph 4.2.1 may not
be applied to sampling locations upstream
of HI air preheater IB a iteam generating
facility under Subpart D of tbti pan. Tor
sampling locations where effluent gase* arc
either demonstrated (4.3) or may be as-
sumed to be noiutratiaed (eight diameters).
a point (eitractlTe eystema) or path (In-situ
systems) of average eeoeeatratlon may fee
monitored.
4.3 For sampling location* where effluent
gu« ctanot be assumed to bt nonatiatl-
fled (leu than elgbt dlameten) or neve been
ehova under paragraph 4.3 to be stratified,
results obulaed nuit be consistently repre-
sentative (•«. • point of average ooncentrf
tinn may shift with load change*} or the
data generated by sampling at a point (ex-
tractive fystems) or aeroti a path (tn-aitu
systems) must bp corrected (4J.1 and 433}
co u lo be repraentatlve of the total emto-
ttona from the affected faculty. Oonlarm-
anee with tbu requirement may be aeeom-
plbhed In either ol the following way»:
4J.1 InitallatioD of a diluent eoDtlauooi
monitoring lyitem (0, or CO, w applicable)
In aecordasee with the proeeduree under
paragraph 43 of Performance Specification
1 of till appendix. If the pollutant tad
diluent monltormg ayatenu are not ot tbe
MDU typ* (both enuetiTt cr both ta>iitu).
the eivactive lyiiea muit uae a multipoint
probe.
taa iDitallatlon of e(traetl*e poUuUnt
monitoring ayfiema ualag multtpolBt aam-
pling probe* or la-iltu pollutant monitoring
•yitemi that aaaple or flew emlailonc which
•re eouUtently repreunUUre of toe total
«nlaiioai for the enure croai aeetion. The
Administrator may require data to be iub-
mltted to demonitnte that the emlailou
•ampled or *lewe4 are consistently repre-
aeotatlve for aeverej typical facility proceai
oprrttlog condition!.
4J The owner or operator may perform, a
tra*ene to characterize any •tratlButlon of
effluent gase* thtt might eilit In a itack or
duct. If BO itratlBcatlon It preaent. taapllag
procedure* under paragraph 4.1 may be ap-
plied even though the elgbt diameter criteria
t* not met.
44 When elngla point campling prebei for
extractive lyitrma err laiUDed wltaln the
•Uek or duet under paragrapbi 4.1 tad 4.3.1.
the aaaple ma; not be extracted at asy point
leas than 14 meter from the stack or duel
wall. Multipoint aampling probes uttatled
under paragraph 132 may be located it any
pclnti necessary lo obUIn conilattntly rep-
reaentatlre eamplM.
8. Contlnuoui Monltortnt Brston Per-
termanee Bnteineanona
The eontuuoai moaRorl&g eyetcsa ehall
meet the perfarmuace epeetteatloa* ta Table
9-1 to b* considered acceptable under this
aeUiee.
TABU 3-1.—Performance
. „ £ JB pel «l ib« attn taint of Oa nlune* metbad uei
dau.
I CallbratloB snor > S i pet ofeach 00 eel. 90 pet) callbmdeo pa alttan
VSJM.
i, Zero drift R hi i—, ..... . . ....... Spetafspaa •
4. Zcmditfl Of h) i -,..... Do.
(. CaUbiauoD drift (I a)' .__. Do.
a.CaUbtadondrtd(Mb)'. - _._. Upct-efnaa
T. Ropenic 110*. U »lo mulatto. '
a. OprrtUooil p«l«d..^..... .... . . IB b nJiuoium.
•am of ttaoluu neu ralue plot U pet anfldtneal ntanal el a aiila ef usta.
8. Performance Specification Test Proce-
dure*. The following (eft procedures shall b*
wed to determine cenfbrmaeos with the
requirement* of paragraph 6. Tor MO> «a-
eJyceni that oxidise nitric exldt (NO) to
nitrogen dioxide (NO.), the response Vat
test under paragraph S3 of this method eball
be performed using nitric oxide (NO) span
(u. Other test* for NOi continuous monlior-
log eyitema under paragraph! 8.1 mad ta end
all teeta for sulfur dioxide system* saalt .be
performed using the pollutant spaa (as spe-
cified by each eubpart. '
11 Calibration Brer Teat Procedure. Set
up and calibrate the complete continuous
BOBttortng system according to the manu-
facturer's written Instruction* This may be
accomplished either In the laboratory or la
• the Held.
•6.1.1 Calibration Oas Analyses. Triplicate
•nalyees ef the gas mixtures shall be per-
formed within two week* prior to use vug
jUterenee Methods B for BO, end 1 for HO*.
Analyse each calibration gae mixture 160V
M%] and record the reeulti en the eiaaple
eheet shewn la Plgun 9-1. Xaeh cample ten
result must be wltbla SO percent ef the ever-
«ged result or the teste ahall be repeated.
This step may be omitted for non-extractive
tnonltort where dynamic calibration gea mix-
turea en not need (e.l J).
tia Calibration error Test Procedure.
Uske e total of 13 noneonsecutlve meature-
menta by alternately using tero eta tad each
callbratlop gas mixture/concentration Itf,
0«. M%. «%. »«. 60*. 00«. H«. *%.
**~~* ^T rmnr *—r irrrt ft"1
95
KVB11-6015-1224
-------
App.B
Title 40—Prelection of Environment
eetli whose concentrations are certified by
the manufacturer to be functionally equlva-
lent to Ibnc gas concentration* Convert tbe
continuous monitoring system output read-
tegs to ppm and record the results en tbe
example sheet shown ID Figure 3-3.
6.3 Field Test for Accuracy (Relative).
Zero Drift, mat Calibration Drift. Install aad
operate tbe continuous monitoring system la
accordance with the manufacturer's written
Instruction* and drawings at followi:
6.3.1 Conditioning Period. Offset the eero
eetuag at least 10 percent of tbe spaa §o
that negative icro drift can be quantified.
Operate the system for an Initial 168-hour
conditioning period IB normal operating
manner.
623 Operational Test Period Operate tbe
continuous monitoring system for an addi-
tional 168-hour period retaining the too
offset. Tbe system ibaU monitor the aouree
effluent at all times except when being
farced, calibrated, or backpurged.
t£3.\ »I»M T»«t fur Ami-«_-T /TtjilAlig*!—
For continuous monitoring system* employ-
ing extractive sampling, tbe probe tip for tbe
continuous monitoring system and the probe
tip for the Reference Method sampling train
should be placed at adjacent locations la tbe
duct. For NO, continuous monitoring iys-
tems. make 37 NO, concentration measure-
mente. divided Into nine teU. using the ap-
plicable reference method. Mo more than one
set of tests, consisting of three Individual
measurements, abal) be performed IB may
one hour. All Individual measurement* of
each set shall be performed concurrently,
. or within a three-minute Interval and tbe
results averaged. For SO, continuous moni-
toring systems, make nine GO, concentration
measuremecta using tbe applicable reference
method. No more than oae measurement
shall be performed in any one hour. Record
the reference method test data and the con-
tinuous monitoring system concentrations
on the example data sheet shown la Figure
3-8.
«J33 Field Teit for Zero Drift and Cali-
bration Drift. For extractive systems, deter-
mine the values given by aero and spaa gee
pollutant concentration* at two-bow Inter-
val* until 16 sets of data are obtained. Mr
aroduc'TH
lLry-laeludlng. 4he
by-iaseniat Uuiu ui -more-callbratioa -«M
Belis and computing tbe cere point from -the
iipsrale onnanremeBta. If-tzdr-fetter*tOBB>
ajq.ua «* «"
by-she •owner «r-op<
menu (or the computed sere drift) OB the
example data sheet shown la Figure 3-L
The two-hour periods over which measure-
menu are conducted oeed not be consecutive
but may aot overlap. All measurements re-
quired under this paragraph may be eon-
ducted concurrent with test* under para.
graph 6.3.3.1.
6.3.3.3 Adjustment*. Zero and calibration
correction* «nd «dhmrrr"u "' """"a B^if
at S< -hour Intervals or at such shorter in*
to
eh
*toeat eystem that shows the relationship *•—
sweea-tbe -openale -meanremints'sad fee
•sro point. .Tne spaa of -the system shell be
ebeeked *r «"<"|» » —'Ibratlnii tin mil nnr
Bflfd by tha. manufaeturer-io.be <\iaetloB>
aUfLequivaleat-to-60 percent of spaa
.cntioa. Record the eero and spaa
at
lerva
vals as the manufacturer's written In-
struction* specify. Automatic corrections
made by tbe measurement system without
operator Intervention or Initiation are allow-
able at any time During tbe entire 168-hour
operational test period, record OB the ex-
ample sheet shown la Figure 3-8 the values
given by sera and spaa gas pollutant con-
centration* before and after adjustment at
34-hour Intervals.
6.3 Field Test for Response Time.
6.3.1 Scope of Test. Ose the entire continu-
ous monitoring system as installed. Inducing
sample transport lines If used. Flow rate*.
line diameters, pumping rate*, pressure* (do
not allow the pressurized calibration gas to
change the aormal operating pressure la the
•ample line), etc.. shall be at tbe nominal
values for aormal operation as specified In
the manufacturers written Instructions. XI
tbe analyzer Is used to sample more than one
pollutant source (stack), repeat this test for
each sampling point.
6.8.3 Response Tims Test .procedure. In-
troduce cero gas late tbe continuous moni-
toring system sampling Interface or ee close
to the sampling Interface as possible. When
the system output reading has stabilized.
•witch quickly to a knows concentration of
pollutant gas. Record the time from concen-
tration switching to 95 percent of flaal stable
response. For non-eztraetlve monitors, tbe
highest available calibration gas concentra-
tion shall be switched Into and out of the
sample path and response times recorded
Perform this test sequence thr»« ffl) PWJ
ftecora ue results of each test OB the
example sheet shown In Figure 3-6.
7. Calculations. Data Analysts aad Report-
lag
Tl Procedure (or determination of meaa
values aad confidence intervals.
v T.1.1 Tbe mean value «f a data eet b
calculated according to equation 8-1.
Equation 2-1
•here:
lisabjplute.value of the measurements,
j. Xssum of tbe Individual values.
• i=mean value, aad
' a = number of data points.
. T.I J The 88 percent confidence Interim!
(two-elded) Is calculated according to equa-
tion 9-3: .
C.L.
Equation 2-2
96
KVB11-6015-122*
-------
Chapter 1—Environmental Protection Agency
APP.B
where:
£ 11—sum of all data points,
tjM-ti-ft/a.ud
C.l.»«=95 percent confidence Interval
estimate of the average mean
value,
Values for V97S
Th§ value* la tail table an already cor-
rected for a-1 degrees of freedom. Use a
equal to the number of samples ai data
points.
13 Data Analysis aad Reporting.
7.3.1 Accuracy (Relative). For each of the
nine rtfereace method test points, determine
the average pollutant concentration reported
by the continuous monitoring tyitem. These
average concentration* atatl be deurmiaed
Item the conttauoui moaltorlag system data v-
recorded under 122 by Integrating or aver-
aging the polluUat concentrations over each
at the time intervals concurrent with each
reference method tettlni period. Before pro-
ceeding to the next itrp. determine tbe basis
(wet or dry) of the continuous monitoring
system data and reference method Ult data,
concentration!. If the buet an not con-
sistent, apply • moisture correction to either
reference method concentration* or the con-
tinuous monitoring lyitcm concentrations
as appropriate. Determine the correction
factor by moisture tests concurrent with the
reference method testing periods. Report the
moisture test method and the correction pro-
cedure employed. For each of the nine test
runs determine the difference for each teat
run by subtracting the respective reference
method test concentrations (use average of
each aet of three meuuremeats tar KOil
from the continuous monitoring system Inte-
grated or averaged concentrations. Using
these data, compute the mean difference and
the 95 percent confidence InterveJ of the dif-
ferences (equations 3-1 ead 3-3). Accuracy
la reported as the sum of the absolute value
of the mesa difference and the 0i percent
confidence interval of the difference* ex-
pressed as e> percentage of the mean refer-
ence method value. Use the example sheet
~iown la Figure 9-4.
133 Calibration Brier. Bang the data
from paragraph 8.1. subtract the measured
pollutant concentration determined under
paragraph 6.1.1 (Figure 1-1) from the value
shown by the continuous monitoring system
for each, of the five readings at each eon-
eentratlon measured under B.I 2 (Figure a-3).
Calculate the mean of these difference values
and the SS percent confidence Intervals ac-
cording to equations 9-1 and 9-3. Report the
calibration error (the sum of the absolute
value of the mean difference and the tS per-
cent confidence Interval) as a percentage of
each respective calibration gas concentra-
tion. Dse example sheet shown In Figure 3-9.
7.9.3 Zero Drift (9-hour). Using the scro
concentration values measured each two
hours during the field test, calculate the dif-
ferences between consecutive two-hour read-
Ings expressed la ppm Calculate the mean
difference and the confidence Interval using
equations 9-1 and 2-9 Report the tero drift
as the sum of the absolute mean value and
the confidence interval as a percentage of
spaa. Use eiample iheet shorn la Figure
3-4.
75.4 Zero Drift (94-hour). Using the cere
concentration value* measured every 94
hours during the field test, calculate the dif-
ferences between the zero point after cere
adjustment and the sere value 94 hours later
just prior to tero adjustment, calculate) the
mean value of these polats aad the confi-
dence interval using equations 3-1 aad 3-9.
Report the wro drift (the sum of the abso-
lute mean and confidence latervall M a per-
centage of spaa. Use example sheet shown in
Figure 8-6.
7.8 J Calibration Drift (9-hour). Using
the calibration values obtained at two-hour
Intervals during the field test, calculate the
differences between consecutive two-hour
readings expressed as ppm. ness values
should be corrected for the corresponding
aero drift during that two-hour period. Cal-
culate the mean and confidence Interval of
these corrected difference values using equa-
tions 3-1 and 3-9. Do not use the differences
between non-consecutive leading*. Report
the calibration drift as the sum of the abso-
lute mean and confidence interval as a per-
centage of span. Use example sheet shown In
tn Figure 9-4.
13.6 Calibration Drift (94-hour). Using
the calibration values measured every 94
hours during the field test, calculate the dif-
ferences between the calibration concentra-
tion reading after cero aad calibration ad-
justment, aad the calibration concentration
reading 34 hour* later after asro adjustment
but before calibration adjustment. Calculate
the mean value of these differences and the
confidence Interval using equations 3-1 aad
3-3. Report the calibration drift (the sum of
the absolute meaa aad confidence Interval)
as a percentage of spaa. Use. the example
sheet shown la Figure 3-*.
13.1 Response Time. Using the charts
from paragraph 63. calculate the time Inter-
val from concentration switching to 9S per-
cent to the final stable value for all opteale
aad downscale testa. Report the meaa of the
three upscale test times aad the meaa of the
three dowascale test time*. The two aver-
age times should not differ by more than IB
percent of the slower time. Report the slower
97
KVB11-6015-1224
-------
App.B
Title 40—Protection of Environment
time M the system reaponie time Uie the ex-
•apis sheet shown in Figure 3-8.
7.2.8 Operational Test Period. During tie
168-bour performance and operational tost
period, the eoatinuoiu monitoring system
•lull not require any corrective mstntenance,
repair, replacement, or adjustment other than
that clearly specified u required in the op-
eration and maintenance manuals aa routine
and expected during a one-week period. If
the continuous monitoring system operates
within the specified performance parameters
and does not require corrective maintenance.
fjpair. replacement or adjustment other than
M specified above during the 168-hour test
period, the operational period will be success-
fully concluded. Failure of the continuous
monitoring system to meet this requirement
•hall call for • repetition of the 168-hour test
period. Portions of the test which were satis-
factorily completed Bead not be repeated.
Failure to meet may performance specifica-
tions shall call for a repetition of the one-
week performance test period and that por-
tion of the testing which is related to the
faUed specification All maintenance and ad-
justments required shall be recorded. Out-
put readings shall be recorded before and
after all adjustments.
8. References.
8.1 "Monitoring Instrumentation for the
Measurement of Sulfur Dioxide la Stationary
Source Emissions." Environment*) Protection
Agency. Research Triangle Park. N.O. Feb-
ruary 1873,.
U Instrumentation for the Defermtaa*
tlon of Nitrogen Osldei Content of Station-
try Source Emissions." Environmental Pro*
tectlon Agency. Research Triangle Park. N.C.
Volume 1. APTO-OB4T. October 1871: Vol-
ume 3. AFTD-00<2. January 1872.
8J "Experimental Statistics." Department
of Commerce. Handbook 01. 1863. pp 8-41.
paragraphs 8-8.14.
84 "Performance Specifications for Sta-
tionary-Source Monitoring Systems for Oases
and Visible Emissions." Environmental Pro-
tection Agency. Research Triangle Part, N.C,
EPA-830/3-74-018. January 1874.
XI^UM» Int.) tiltnnlpt fai mit^m
UK* <•!• *>ifiti tf blimtta In Man*
98
KVB11-6015-1224
-------
Oiopttr L«.Envlrenmtntal*?rottcKon Agency
App.B
Calibration CBS Klxture Dau (From FIguri Z-1)
JIW (505) ppq Htgh (90S)
Run f Concentration.cent
Meisurement Systen
pan
01 ffertncet. DM
ifi.
V
IS
Hein dlffcrtnce
Cenfldenci 4ntirv«1
Calibration trrer •
Pifftrenee* * C.I.
Average Calibration Gai Concentration
•KlOO
Calibration gai concentration • Kaiurement systea reading
^Absolute value
Fljwrt 2*2. Calibration Error Oeterefnatlon
99
KVB11-6015-1224
-------
APP.B
Title 40—Protection of Environment
fit
to.
1
f
]
I
ktt
t*4
Ita.
S«C?( 1
(PI-)
j
i i !
y
g
Irifi
lit
i
M (
lew
'Ul
PtflftKt 1
ulut (SO,!
mntnt* <
•UK
•Until •
•k»«f
«.
l»f*ll 1
(PO)
•
».
!*•»»•»
(MB)
•
Nun riftr*
.IMttllM
• .. ... .... ••
l»lll
(MB)
.
••
• >M»I<
«iir«i
(Ml!
•
ctiMM
•B )
IID.» . .
|hl mriinncil , m f,*Htl*ct Inttnil _ ... _
*c ** Min riftrinct PtlDofl fll«t v
lit* tM nport mvat mtd w *twmtiii tnu«ri(jtf mn|ti
Anil/Iir l^tovr
MtrtJI («»)•
», «.
.
.
eifftnwi
-r-J
Urn of *
IM ilffmtKU . . ..
«-
_J«MZ
•.»..
• .« l»J
f1|yrt M. teunc/ kumlutlM (10, M* «(
)tu
lit TIM
... l*5'n M
OiU
Ir«
Itr*
Drift
(tlm)
Spin
-inn
BHft
<«Spm)
trill
(tf«)
ltf» grin • l(mnTtf»Brirt*
Cilttritlm ft-lft • [MM Syi" 1
Htulvtl «llM.
2ffro and ultor«ilen Qrlfi (I
100
KVBll-6015-1224
-------
Chapter I—Environmental Protection Agency App.B
Date Zero Span Calibration
•nd 2ero Drtft Reading Drift
Tine Reading (iZero) (After lero adjustment) (fiSpen) •
Zero Drift • [Mean Zero Drift* * C.I. (Zero) '•" ]
« [Instrument Span] x 100 • .
Operation Drift • [Mean Span Drift* * C.I. (Span)
« [Instrument Span] x 100
Absolute value
Figure 2-S. Zero and Calibration Drift (24-hour)
101
KVB11-6015-1224
-------
App.B
Tl(l« 40—Protection of Environment
fete of Test
Spin C*( Cenctntrttlen ,
Analyzer Spin Sitting
_ppn
Vpteilt
1 seconds
I seconds
3 seconds
Average upscelt ns
Oowntcele
Average downieale res pome
Sytten everege response time (slower tint] • _
(deviation from slower
jritcm everige response
_*econdt
tecondt.
[Tveri
l»ver«ee upictle mtnji everane downicele
»Ioxer tine
figure 2-6. Respense T1ne
, 3—Performance
atlona and epeeifl cation ten prooa-
d~nrca for monitors- of CO, and O, mm eta-
Coaary Munet.
1. Prlaelple and Applicability.
U Principle Effluent gaae* en eontlBii-
euily euDpled ma ure utlyced, ret carbon
dioxide or oxygen by • ceauauoui monllcr-
Ing tjrtem. Te*te ot tbe ifitem en perforaed
duxlag e, mlaiBua oper»»Dg period to deter-
alne uto drift, eellbntlon drift, tad M-
eponie time eBkrMterunee.
1.3 Applleibitltf. Tali pertorn»Dca eprcl*
fleatlon U epplicable to etelue.Uen of coa-
ttauoiu BOtitoring ejiuae for meuureaent
a* cartoon dioxide or exyfea. nete epeelfleei-
tjon» eonttln ten proeeauree. tntttjittloa re-
qulreaeatt. ead date, eompuUUon pmoe-
dure* for eraluatlag the ecEepUbllltr of the
oaatlauoiu moaJtortnf ffiteaw •ubject to
stpproval by. the Adminutritor. Sampllaf
m»j include either extractive or aoD-exomc-
a»» (lB-altu) procedure*.
3. Appaimtua.
U Coatlauou Monitoring Byetem for
Carbon Dioxide or Oxygen.
9.9 Callbratloa Ow Mlxwree. Mixture of
fcaova eoaeeatrauon* of carbon dioxide or
oxygen la nitrogen or air. Mldrange tad 90
percent of epaa carbon dioxide or oxygen
ooneeatratloae arc required. The 90 percent
of «pan gmi nuxnire la to be wed to e*t and
check the analyser epan aad U referred to
ae epaa gae. Per oxygea analyxere. If tb«
•pan la hlgber than 91 percent Or ambient
air may be iiaed la place of the M percent of
epan calibration gae mixture. Triplicate
analyaea of the gae mixture (except aableat
air) thai] be performed within two week*
prior to u»e uclng Reference Ifethod • of
thupart.
3 J zero Oae. A gae containing Jeae than 100
ppa of carbon dioxide or oxygea.
3.t Data Recorder. Analog chart recorder
or other eultable device with Input voltage
range compatible with analyser eyatern out-
put. The reeoluuoa of the recorder'* data
output ahall be cuffleient to allow completion
of the test proeeauree within thle apeeiaca-
«. Definition.
U Continuous Monitoring Syetem. The
total equipment required for the determina-
tion of carbon dioxide or oxygen la a given
eeorco effluent. The eyeMm coniliU of three
major eubayatemi:
t.U BampUag Interface. That portion of
the eoatlauoue aoaitortng eyetem that per-
fonaa oae or more of the following opera-
tion*: Delineation, acqulaltloa. traaaporta-
tjon, aad eonaitlonlng of a eample of the
eoune efluent or protection of the aaalycer
from the hoatlle aepeete of the eample or
aouree envlronmeat.
102
KVB11-6015-1224
-------
Chapter I—Environmental Protection Agency
S.IJ Analyzer. That portion of the con-
tinuous monitoring system wblcb senses the
pollutant gas and generates a signal output
that U e function of tbe pollutant concen-
tration.
3.14 Data Recorder. That portion of the
continuous monitoring eystem that provide*
• permanent record of the output ngnjkl to
term* of concentration uoiu.
S J Spaa. Tbe value of oxygen or urban di-
oxide concentration at, which lit continuous
monitoring system U act that produce* the
maximum data display output. For tbe pur-
poses of this method, the span shall be. set
no lest than 14 to 24 times tbe normal car-
boa dioxide or normal oxygen concentration
in the etack gu of the enacted reality.
ta Uldrange. Toe value of oxygen or ear-
boa dioxide concentration that U representa-
tive of the normal condition* IB the stack
gu of the affected facility at typical operat-
ing rale*,
1.4 Zero Drift. The change In the eenOa-
uoua monitoring system output over a Mated
period of time of oonnsl continuous opera-
tion when the carbon dioxide or oxygen con-
centration at the time for the meaturemsate
l§ sjero.
84 Calibration Drift. The change IB the
continuous monitoring system output over a
etated time period of normal continuous op-
eration when the carbon dioxide or oxygen
continuous monitoring system le measuring
tbe concentration of span gae.
14 Operational Teet Period. A minimum
period of time over which the continuous
monitoring eystem Is expected to operate
within certain performance specifications
without unscheduled fnalfil-iMi**"^. repair, or
adjustment.
a.T Rceponse time. Tbe time Interval from
• step change in concentration at the Input
to the continuous monitoring lyitem to the
time at which 96 percent of the contepond-
1ng final value U displayed on the continuous
monitoring system data recorder.
«. Installation Specification.
Oxygen or carbon dioxide continuous mon-
Itorlng system* shall be Installed at a loca-
tion where measurements are directly repre-
eenutlve of the total effluent from the
affected facility or representative of the aame
effluent sampled by a BO, or HO, continuous
monitoring eystem. This requirement shall
be compiled with by use of applicable re-
quirements In Performance Specification a of
this appendix ae follow!:
d.1 Installation of Oxygen or Carbon Di-
oxide contiguous Monitoring Byitems Hot
tlsed to Convert Pollutant Data. A sampling
location shall be selected la accordance with
the procedures under paragraph* 4.3.1 or
433. or Performance BpedfleeOon > of tali
appendix.
O testallstloa of Oxygen <* Carbon Di-
oxide Continuous Monitoring Bystaae Uaed
to Convert Pollutant Continuous Monitoring
System Date to Dalts of Applicable Stand-
ard*. The diluent continuous monitoring eye-
tern (oxygen or carbon dioxide) ahall be la-
etalled at a sampling location where measure-
ments that can be made are representative of
the effluent gases sampled by the pollutant
continuous monitoring system
-------
APP.B
Title 40—Prelection of Environment
with the manufacturer'! written instructions
•ad drawings at follows:
TABIX t-l.—Performance ipeetfleetlaiu
SprdjIoXfen
£0.4 pet Oi or COt
normal operational manner.
923. Operational Test Period. Operate tbe
continuous monitoring system for aa addi-
tional lU-bour period maintaining tbe tero
offset. The system shall monitor tbe source
effluent at all times eieept when being
•treed, calibrated, or baekpurged.
6.3.3 Field Test for Zero Drift and Calibra-
tion Drill. Determine tbe values given by
sen and mldrange gas concentrations at two-
hour intervals until IS sets of data are ob-
tained. For non-extractive continuous moni-
toring systems, determine the tero value
given by a mechanically produced cere con-
dition or by computing the tero value from
upscale measurements using calibrated gas
cells certified by the manufacturer. Too mid-
range checks shall be performed by using
certified calibration gas cells functionally
equivalent to less than (0 percent of epan.
Record these readings on the eiample sheet
shown in Figure 9-1. These two-hour periods
need not be consecutive but may not overlap.
In-sltu CO, or O, analyzers which cannot be
fitted with a calibration gat cell may be cali-
brated by alternative procedures acceptable
to the Administrator. Zero and calibration
corrections and adjustments are allowed
only at 24-hour Intervals or at inch shorter
Interval* at the manufacturer's written in-
structions specify. Automatic corrections
made by tbe continuous monitoring system
without operator Intervention or initiation
aro allowable at any time. During tbe en-
tire 168-hour ten period, record the values
given by tero and spaa gas concentrations
before tad after adjustment at 94-hour In-
tervale IB the example sheet shown In Figure
U Field Test for Response Time.
6J.1 Scope of Test.
This test shhl! be accomplished using the
continuous monitoring system as Installed.
Including sample transport lines If need.
Flew rttes. line diameters, pumping rates,
pressures (do not allow the pressurixed cali-
bration gat to change the normal operating
pressure in the sample line), etc, shall be
at tbe nominal values for normal operation
at specified In tbe manufacturer's written
Instructions. If the analyzer Is used to sample
more than one source (suck), this test shall
be repealed for each sampling point.
632 Response Time Test Procedure.
Introduce xero gas Into the continuous
monitoring system sampling Interface or as
close to the sampling Interface as possible
When the system output reading has stabi-
lized, twitch quickly to a known concentra-
tion of gas at 90 percent of span Record the
time from concentration switching to 95
percent of final stable response. After the
system response has stabilized at the upper
level, switch quickly to a tero gat. Record
tbe time from concentration twitching to 05
percent of final stable response. Alterna-
tively, for noaextrtetlve continuous monitor-
ing systems, the highest available calibration
gas concentration shall be switched Into and
out of tbe sample path and response times
recorded. Perform this test sequence three
(3) times. For each test, record the results
on tbe date sheet shown In Figure S-3.
7. Calculations, Data Analysis, and Report-
lag.
7.1 Procedure for determination of mean
values end confidence Intervals.
7.1.1 Tbe mean value of a date, set Is cal-
culated according to equation 8-1.
Equation 3-1
«-2-»*l
x,=absolute value of the measurements,
Z=sum of the Individual values.
i=mean value, and
n=number of date point*
7J.I The 95 percent confidence Interval
(two-sided) Is calculated according to equa-
tion 8-2:
t.,
Equation 3-2
XT.=sum of an date points.
•J75=t,-«/2.and
CJws9S percent confidence Interval es-
timates of the avenge mean value.
16 ...............
104
KVB11-6015-1224
-------
Chapter I—Environmental Protection Agency
App.B
The values ID this Uble are already corrected
lor D-l degrees of freedom. DM a equal to
tbe number of samples as data point*.
ta Data Analftli and Reporting.
1 J.I Zero Drift (3-hour). Using the cere
concentration valuea measured each two
boun during the field teit, calculate tbe Alt-
ferencea between Uie consecutive two-hour
icadlnga expressed la ppm. Calculate Ui*
mean difference and the confidence interval
using equation! 3-1 aod 3-3 Record tbe mm
of the absolute mean value and the confi-
dence interval on the data sheet ebown la
Figure 3-1.
13A Zero Drift {J4-hour}. Calog tae cero
conctntrstlon valuea measured every M
hours durleg tat field teal, calculate tbe dlf-
ferences beiwetn toe ten point after nro
adjustment mnd the tcro value 24 hours
later lust prior to tiro adjustment. Calculate
the mean value of these polnu and tbe con-
fidence interval using equations 3-1 and 3-a.
Record tbe nro drift (tbe sum of the ab-
solute mean and confidence Interval) OB the
data sheet shown in Figure 3-J.
7JJ Calibration Drift (3-hour). Using the
calibration values obtained at two-hour In-
tervals during the field test, calculate the
differences between consecutive two-hour
resdlngs expressed ma ppa, Tbeae values
should be corrected for tae corresponding
aero drift during that two-hour period. Cal-
culate the ITU in and confidence Interval of
tries* corrected difference values using equa*
Uons 3-1 and 3-9. Do not use the differences
between non-consecutive readings. Record
the sum of the abiolute mean and confi-
dence Interval upon the data sheet shown
in Figure 3-1
7.2.4 Calibration Drift (24-hour). Using the
calibration valuea measured every 34 boun
during tbe field test, calculate tbe differ-
ences between tbt calibration concentration
reading after wro and calibration adjust-
ment and the calibration concentration road-
Ing 31 noun later after cere adjustment but
before calibration adjustment. Calculate the
mean value of these differences and tbe con-
fidence interval using equations 3-1 tad 3-3.
Record the eum of the absolute mean and
confidence) Interval on the data sheet shown
In Figure 3-3.
T2.6 Operational Test Period. During tbe
lie-hour performance and operational test
period, the continuous monitoring system
ahall not receive any corrective maintenance.
repair, replacement, or adjustment other
than that clearly specified as required In tbe
manufacturer's written operation and main-
tenance manuals as routine and expected
during a one-week period. If the continuous
monitoring system operates within the speci-
fied performance parameters and does net re-
quire corrective maintenance, repair, replace-
ment or adjustment ether than as specified
above during the 188-hour test period, tbe
operational period will be successfully con-
cluded. Failure of tbe continuous monitoring
system to meet this requirement shall call
for a repetition of Ute 168 hour test period.
Portions of the test which were satisfactorily
completed need not be repeated. Failure to
meet anj performance specifications abaU
call for a repetition of the one-week perform-
ance test period and that portion of the test-
Ing which is related to the failed specifica-
tion. All maintenance and anjuitmente re-
quired shall be recorded. Output readings
•hall be recorded before «nd after ell ad-
justments.
T3J8 Response Time. Using Ue 4a>te devel-
oped under paragraph 8£. calculate the ante
Interval from concentration switching to 93
percent to the final stable value for all up-
scale and downscale tests. Report tbe mean of
the three upscale test times and tbe mean, of
tbe three downscali tost times Tbe two av-
erage times should not differ by more than
IS percent of the slower time. Report tbe
•lower time as tbe system response time. Re-
cord the result* oa Figure 3-*.
3. References.
•.1 "Performance Specifications for Bto-
ttenary Source Monitoring Systems for Oaees
and Visible Emissions." Environmental Pro-
tection Agency. Research mangle Park. N.C,
BPA-etO/a-Tt-013. January MM.
U "Experiment*] Stettsflcs.- Department
of Commerce. Matlonal Bureau ot Standards
Handbook 91. 1983, pp. 3-41. paragraphs
105
KVB11-6015-1224
-------
App. B
Title 40—Protection-of Environment
tau
«t
bfte I'd
IfT*
»P»fl
(tlm)
«*•»
rlft
hn'B.-ift . Ir... ;.r. Brill' _ • U Uir.1 J •"
Cilltritlcn Orlft • fKrrf !p«n Brih* • CI <»*» J
>-1. lira nid CitftrmtlBi Brlft
106
KVB11-6015-1224
-------
Chapter I—Environmental Protection Agency
App.B
Ale 2ero Span Calibration
nd Zero Drift Reading Drift
! Reading UZero) (After zero adjustment) (tSpan)
Cero Drift • [Kein Zero Drift*
Vibration Drift • [Mean Span Drift*
4 C.I. ttero}
C.I. (Span)
Absolute value
Figure 3-2. Zero and Calibration Drift (24-hour)
107
KVB11-6015-1224
-------
APP.C
40—Protection of Environment
Date of Test
Span Gas Concentration
Analyzer Span Setting
I. .
Upscale 2.
3.
.PP*
.PP«i
_seconds
mseconds
seconds
Average upscale response
seconds
Downscalc
1.
2.
3.
,seconds
,seconds
seconds
Average downscale response
/stem average response time (slower tfne) •
seconds
seconds
from slower m averaae upscale iMrui avertoe dcwnicale
ystem average response slower tine
Figure 3-3. Response
[40 Fit 48256. Oct. 6. IBIS. 40 FR 6B204. BB30S. Dee. 22. Itflt. U amead«d at 42 FR
_ Jaa. 31.1»77J
Artma O-DimKBunoii or ZMMOK BJITI
LI Tb» (o'.lovlni nrUod ibaO to Mul Co ditanaJM
whether t phrtcil or opcnUankl ebaoct to u oUUu
bdUlf nouJud la ID lunut la tb* eiriifloD nu to UM
kimnpbeM. Tb* Btlbod uwd u UM BtadHt't I tot.
Maoanlj o»4 10 xakkeloliRoect 0«m ouU
9937.
(1)
1 Ate.
U Kteh nnltf on Urt ibiB eaodJt «t « ram cb M (f
tb* pnoBdutt ipatlfed ID lb» ippUatlt nbpul belb
btten tod if nr tb* chtoci to obuin lb* dmu.
U Wbraianf BonUnnoiumonlun.lbrlKimilbiJlbt
epmud u ti * nioaiJ unJsiion tan *cr* belat per-
fermcd V*lldd»uulD|tb*iTCraflniUm*«nleb«ould
bt wqoJ!*d l' i ir»u) tmlaloD uu wm btl&f eon-
doeuri ib*U DI a*M.
t, fnatan.
11 Batanlpu • tad b daeU anebiaf* tad po*t.
ebUftmpeetJnlr.
U Ctlniliu (b* iffibmtne i
(EqmUuL
n-I
M CdcobUtt* poeM
ttob S.
fl-1
(2)
. r(
B'~l
_
nu. E, Or
•••Hia
U CklenMi tb* tot ouune, (.
(ft*-i) sf
-2 J
(3)
4.
10B
KVB11-6015-1224
-------
APPENDIX E
TABULATION OF HOURLY EMISSIONS DATA
KVB11-6015-1224
109
-------
•ft*****************************)
• ft 24 "»UH DATA
•ft URV STACK G»3 CONCENTRATION
•ft
•ft
••
«•<
•ft
• ft
• ft
• ft
• •
• ft
• ft
•ft
**
••
• ft
• •
• ft
•ft
• ft
ft*
• ft
•ft
•ft
• ft
• ft
• ft
*•
• ft
• ft
•ft
• ft
ft*
• ft
• ft
• ft
• ft
•ft
•ft
•ft
• ft
• ft
• ft
ft*
••
• ft
• ft
• ft
DATE TIME
!••«««••• *****«•
6/ 1/79
6/ 2/79
6/ 3/79
6/ 0/79
6/ 5/79
fc/ 6/79
6/ 7/79
6/ 8/79
6/ 9/79
6/10/79
6/11/79
6/12/79
6/15/79
6/10/79
6/15/79
6/16/79
6/17/79
6/18/79
6/19/79
6/20/79
6/21/79
6/22/79
6/23/79
6/20/79
6/25/79
6/26/79
6/27/79
6/28/79
6/29/79
6/30/79
7/ 1/79
7/ 2/79
7/ 3/79
7/ 0/79
7/ 5/79
7/ 6/79
7/ 7/79
7/ 8/79
7/ 9/79
7/10/79
7/11/79
7/12/79
LUAO
NKTH
••«••»<
55.4
|9.B
(4.0
34.7
221ft
29,8
10.3
19.9
18.4
If. 6
30.5
23.3
38.6
21. «
19.4
20.
18.
31.
18.
22.
20.
23.1
?0.2
21.0
19^2
l7.b
37)2
{9.8
20.7
22.3
l<*. 1
|7.7
1*.4
37.6
a'j.b
33.0
02
VULZ
**F »S
i»*****i
b.b
8.3
9.0
8.5
9.5
B.I
9.3
8.1
8.4
8.6
8.5
8.8
9.0
8.5
9.2
8.8
8.8
8.9
9.0
8.8
8.
8.
8.
Q «
8.
8.
8.6
6.5
8.-H
.8
.5
.3
.b
.5
.4
.5
.7
.4
.0
7."
8.0
C02
VI'LX
HtAS
i»***t*i
II. 3
II. 0
.0
.0
10.3
10.4
10.8
10.5
10.1
10.0
10.3
10.4
10.6
10.5
10.2
10.2
10.3
10.3
10.0
10.0
10.7
10,. 5
10.6
10.2
10.2
10.3
10.3
10.5
10.4
10.2
9.9
tO. 3
10. 6
10.3
10.3
10.3
10.2
9.9
10.3
V.9
11.2
10.6
••••••*<
CO
PPMV
MEAS
••••••1
28.
21.
16.
18.
20.
21.
51.
28.
27.
33.
JB,
0.
0.
49.
86.
0.
0.
0.
35.
33.
21.
35.
36.
30.
36.
37.
15.
25.
34.
SO.
33.
33.
19.
35.
15.
21.
35.
47.
80.
92.
75.
84.
>•**•••
NO
PPNV
HEAS
t«*****l
529.
055.
392.
389.
309.
366.
583.
010.
006.
396.
3«e.
008.
3«>7.
040.
320.
360.
356.
357.
358.
361.
031.
050.
049.
395.
010.
027.
026.
073.
50* i
OS*.
455.
alb.
487.
424.
4tb.
385.
38•••«•••<
35.
30.
24,
26.
32.
30.
04.
34.
58.
48.
55.
0.
0.
71.
131.
0.
0.
0.
52.
50.
31.
51.
52.
50.
54.
55.
22.
37.
4fl.
44.
OB.
47.
28.
51.
21.
30.
50.
69.
115.
139.
10?.
117.
•••**••
NO
PPMV
3t02
t**ft»**i
662.
644.
588.
5S9.
405.
5|4.
504.
572.
581.
576.
561.
602.
599.
601.
195.
551.
5?6.
530.
532.
544.
637.
656.
641.
577.
6|6.
639.
620.
686.
7?H .
647.
673.
629.
6" a.
6lA.
599.
550.
556.
5|0.
526.
6ft 1.
7Qft.
566.
•••••••
en
NG/J
•••••»i
12.
11.
9.
9.
11.
1 1.
|b.
1".
14.
17.
20.
0.
0.
25.
07.
0.
U.
0.
19.
18.
11.
18.
IB.
18.
|Q,
20.
e.
13.
17.
16.
17.
n.
10.
1C.
7.
It.
16.
25.
01.
50.
37.
02.
••*••••
NO
NC/J
••••••I
389.
378.
3«5.
328.
?B5.
302.
320.
51*.
34 1 .
338.
329.
353.
352.
376.
2«M.
323.
3U9.
311.
312.
319.
374.
385.
377.
339.
361.
3T5.
364.
403.
427.
i*d.
395.
369.
ill) 7.
363.
352.
323.
326.
302.
309.
400.
alb.
332.
••***••
*«
• •
• •
>•••
• •
• •
• •
*•
• •
• •
*•
• •
*•
• *
• •
••
• •
• *
• •
• •
• *
• •
• •
• •
• •
••
• *
• •
• •
• *
• •
•«
*»
*«
**
*«
• •
«*
»»
• •
• *
• •
*•
• •
• •
• •
>•*•
KVB11-6015-1224
110
-------
»••••*»••*•***•**•***•*•**«••
*« HOURLY DATA •*
** DRV STACK GAS CONCENTRATION •*
*• **
• * 02 C02 CO NU CO NO CO NO *•
«« ^0*0 VOUX VOIX PPMV PPMV Pf»«V PPKV NGXJ NG/J •*
*• DATE TIME H»TH HEAS MEAS MEAS MEAS 3XC2 3X02 ••
•••***•••»•••*«*••»»••••»*•••••*••••••••*••«••••*•••«••«••«••••••**••*•*•**•*****••*
•« ox
•• ox
•• ox
** o/
•• ox
•• ox
•* o/
•• ox
** o/
** ox
*« ox
•* ox
*• ox
*• ox
•* ox
«* 6X
• • 6X
• • 6X
• « ft/
•* 6X
• • fc/
«* 6X
• * 6X
*• 6X
0X79
OXTfl
0X79
0X79
0X79
0X79
0/79
0X79
0X79
0X79
0X79
0X79
0X79
0X79
0X79
1X79
1X79
1X79
1X79
1X79
1X79
1X79
1X79
1X79
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1600
1700
ieoo
1900
2000
2100
2200
2300
2«00
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
tO
S«>.2 1
56.3
55.1
55.1
52.7
50.4
58.0
SB. 3
55.7
.0 .0
.0 .0
.0 .0
.0 .0
.0 .0
.0 .0
.0 .0
.0 .0
.0 .0
.0 .0
.0 .0
.0 .0
.0 .0
.0 .0
.0 .0
'.5 11.1
.7 11.3
.3 11.3
.3 11.3
.3 11.2
.0 11.2
.a 11.3
.6 11.3
.9 11.3
0.
0.
0.
0.
0.
0.
' 0.
0.
0.
0.
0.
0.
0.
0.
0.
28.
31.
29.
30.
30.
30.
27.
21.
22.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
578.
5*5.
531.
518.
514.
490.
523.
523.
516.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
37.
39.
36.
36.
37.
37.
3".
30.
26.
0.
Oi
0.
0.
0.
0.
0.
0.
Ot
0.
0.
0.
0.
0.
0.
772.
712.
651.
636.
630.
60S.
646i
655.
660.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
13.
14.
13.
13.
13.
13.
12.
11.
10.
0.
0.
0.
0.
0.
o.
o.
o.
o.
0.
o.
0.
o.
0.
o.
453.
418.
382.
373.
370.
355.
379.
3*4.
387.
**
• *
• •
• *
*«
• •
• *
«*
• •
• •
• •
• •
• *
• *
• *
• *
*•
**
»*
**
• *
**
«*
**
111
KVB11-6015-1224
-------
**
**
•*
•• DATE
AAAAAAfr**^^
WWKMVVWWWfl
** b/ 2/79
«* b/ 2/79
*• b/ 2/79
*• b/ 2/79
•* b/ 2/79
•• b/ 2/79
•• b/ 2/79
•• b/ 2/79
•• b/ 2/79
«• b/ 2/79
•• b/ 2/79
•• b/ 2/79
•* b/ 2/79
•• b/ 2/79
*• b/ 2/79
*• b/ 2/79
*• b/ 2/79
•• b/ 2/79
•* b/ 2/79
•* b/ 2/79
** b/ 2/79
•• b/ 2/79
•* b/ 2/79
•* b/ 2/79
TIME
A * *•* * A A
W • MW • • W
100
200
300
400
500
bOO
700
600
900
1000
1100
1200
.1300
1400
1500
1600
1700
1800
1900
'2000
2100
2200
2300
2400
02
LOAD VULX
MWTH MEAS
ft^AAAftAAft^1
39.8
I7.b
15.2
15.2
15. B
is. a
15.8
16.4
16.4
15.8
is. a
20.2
15.2
14.4
• •> w •
.4
.5
.4
.5
.6
.b
.2
.9
.1
.2
.4
.5
.1
.2
14.1 .0
14.6 8.1
14.1 7.4
14.1 7.4
14,1 7.0
36.9 6.4
55.1 b.l
35.2 b.5
l«.l 7.2
|4.1 7.4
HOURLY DATA
STACK GAS CONCENTRATION
C02 cn MO CQ
VOLX PPMV PPMV PPMV
MEAS
A ft A A A A A
11.0
9.9
9.9
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
13.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
MEAS
AA A A A A1
19.
18.
17.
15.
15.
13.
13.
12.
13.
16.
IS.
22.
23.
24.
19.
25.
27.
27.
26.
26.
29.
26.
29.
25.
MEAS
F A A A ft A ft 4
501.
428.
417.
418.
414.
415.
416,
413.
430.
443.
454.
445.
455.
461.
465.
446.
453.
455.
456.
510.
597.
534.
453.
437.
3XU2
A A Aft ft ft 1
25.
27.
26.
23.
24.
21.
19.
18.
20.
24.
24.
35.
35.
35.
16.
34.
36.
36.
36.
35.
35.
35.
38.
33.
MO
PPMV
3X02
f A A AA A A A
665.
6|8.
650.
656.
655.
658.
636.
b|6.
b52.
678.
707.
699.
690.
649.
398.
624.
600.
603*
S90.
630.
722.
664.
592.
579.
CO
NG/J
ft A ft ft Aft I
.
.
,
,
8.
7.
7.
7.
9.
8.
13.
12.
12.
6.
12.
13.
13.
13.
13.
12.
13.
14.
12.
NO
NG/J
i A A A ft ft ft i
390.
363.
381.
385.
385.
386.
373. .
361.
S«3.
398.
415.
411.
405.
381.
234.
366.
352.
354.
306.
370.
424.
3«»0.
3«7.
340.
**
**
**
**
»*
**
k***
**
**
**
*•
**
*•
**
**
»*
• •
*•
• •
**
• •
*•
*•
• *
*•
*•
• •
• •
**
*•
112
KVB11-6015-1224
-------
*•
HOURLY DATA
DRY STACK GAS CONCENTRATION
• •
*•
•• DATE
444444 44 44f
•• b/ 3/79
•* &/ 3/79
*• b/ 3/79
•* b/ 3/79
•* b/ 3/79
•• b/ 3/79
•• b/ 3/79
•• b/ 3/79
•• b/ 3/79
•• b/ 3/79
*• b/ 3/79
•• 6/ 3/79
•• b/ 3/79
•• b/ 3/79
•• b/ 3/79
•• b/ 3/79
•• b/ 3/79
•• b/ 3/79
•• b/ 3/79
*• b/ 3/79
•• b/ 3/79
•• b/ 3/79
•• b/ 3/79
*• b/ 3/79
TIME
444444'
100
200
300
400
500
bOO
700
" ' 800
900
1000
1100
1200
1300
" 1400
1500
1600
1700
iaoo
1900
2.000
2100
2200
2300
24QO
LOAD
MNTH
1 44 ft 4 4 ft
nit
14.1
14.1
14.1
14.1
14.1
*14.1
14.1
14, a
16.7
18.8
14.1
14.1
14.1
14.1
14.1
14.1
14.1
14.1
1". 1
14.1
14.1
14.1
02
VOLX
«E*3
1 ft ft ft ft ft ft 1
8.1
a.
9.
10.
10.
10.
10.
10.5
10.7
10.7
9,4
9.1
8.8
8.1
7.7
7.3
7.1
.0
7.8
7.7
7.7
a.o
8.3
8.7
C02
VOLX
HEAS
tft ft ft ft 44*
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
CO
PPMV
HEAS
1 ft ftftftftft
19.
14.
12.
10.
10.
a.
6.
7.
6.
7.
13.
13.
16.
19.
22.
24.
26.
0.
26.
25.
25.
22!
21.
NO
PPHV
HEAS
1 44ft 4441
417.
413.
405.
404,
399.
395.
396.
393.
391.
395.
412.
394.
403.
400.
406.
415.
428.
0.
379.
378.
366.
354.
341.
334.
CO
PPHV
3X02
r4ftftftftft
26.
20.
18.
17.
17.
14.
10.
12.
11.
12.
21.
19.
24.
26.
30.
32.
33.
0.
35.
34.
34.
33.
31.
30.
NO
PPHV
3X02
&444ftftft<
584.
6Q1.
624.
682<
693.
686.
68 1.
676.
686.
694.
670.
597.
596.
560.
550.
5«6.
555.
0.
518.
513.
496.
492.
485.
491.
CO
NG/J
1 4ft ftft ft
9.
7.
7.
6.
6.
5.
4.
0.
«.
4.
7.
7.
9.
9.
11.
12,
12.
0.
13.
12.
12.
12.
1 1.
11.
NO
. NG/J
) 4 ft ft ft ft ft
3«3.
353.
367.
401.
407.
403.
400.
397.
403.
407.
393.
351.
350.
329.
3?3.
321.
326.
0.
304.
301.
291.
2B9.
2«5.
288.
*•
**
• •
••
ft* A ft*
• *
• •
• *
**
*«
**
• »
*•
*•
*•
**
• •
• *
*•
**
*•
• •
• •
• •
**
**
*•
**
113
KVB11-6015-1224
-------
t««f •••••«•<
• *
• •
ft*
•*
••
•• DATE
ftftftftftftftftftftfti
•* 6/ a/79
•• 6/ a/79
•• 6/ a/79
*• 6/ a/79
*• 6/ a/79
•• 6/ a/79
*• 6/ «/79
*• 6/ a/79
•• 6/ a/79
•• 6/ a/79
•* 6/ a/79
•• 6/ a/79
** 6/ a/79
•• 6/ a/79
** 6/ a/79
** 6/ a/79
•* 6/ a/79
•* 6/ a/79
•* 6/ a/79
•* 6/ a/79
** 6/ a/79
•• 6/ a/79
•• 6/ a/79
•* 6/ a/79
!••••••
TIME
.A A A* * *
• ^ W W W W 11
too
200
300
aoo
500
600
700
600
900
1000
1100
1200
1300
1000
1SOO
1600
1700
1800
1900
2000
2100
2200
2300
2aoo
*****•<
LOAD
H*»TH
*•••••*
14.1
ta.i
i
CU
NC/J
Ift ft ftftftftf
9.
7.
0.
6.
6.
5.
5.
5.
a.
5.
•
•
t
•
•
11.
11.
11.
13.
12.
13.
10.
13.
11.
>*•»****«**
*•
»*
NO
NG/J
!****.*<
281.
267.
291.
290.
301.
316.
335.
309.
386.
019.
474.
467.
416.
351.
349.
323.
3?l.
321.
325.
328.
313.
299.
233.
236.
**
»*
**
• •
»***
»»
• •
• •
*•
• •
• •
**
• •
• •
• •
• •
• •
*•
*•
• •
• •
*•
*•
• •
• •
**
• •
*•
• •
*•**••••••«*•••*•***•*••••*••***•***•*»•••••*•**«**•****•••.**»****.*•**•*•****••**•
KVB11-6015-1224
114
-------
•*
*•
••
••
••
*• DATE
ftftftftftftftftftft^
*• b/ 5/79
*• b/ 5/79
*• b/ S/79
»• b/ 5/79
•• b/ 5/79
•• b/ 5/79
•• b/ 5/79
•• b/ 5/79
•• b/ 5/79
*• b/ 5/79
•• b/ 5/79
•• b/ 5/79
•• b/ 5/79
•• b/ 5/79
•• b/ 5/79
•• b/ 5/79
•• b/ 5/79
•• b/ 5/79
•• b/ 5/79
•• b/ 5/79
•• 6/ 5/79
•• b/ 5/79
•• b/ 5/79
•« b/ 5/79
TIME
• Aft ft ftft1
too
200
300
400
500
600
700
600
900
1000
1100
1200
1300
"loco
1500
IbOO
1700
1800
1900
2000
2100
2200
2300
2000
DRV
02
LOAD VOLX
H*TM ME«3
Iftftftftftftftftftftftftft1
i«. a. a
1«.
15.
15.
!«.
1«.
. 1*.
1*.
16.
16.
1«.
22.
23.
20.
22.
28.
28.
28.
28.
24.
9.6
10.5
11.2
11. 7
12.2
12.1
II.'
10.8
8.9
8.9
.6
.5
.2
.5
.6
.7
.8
.8
.0
20.5 .a
I'.O .1
15.8 .6
15.5 8.3
STACK
C02
VOLX
MEA3
Ift ft ftft ft'
.0
.0
.0
.0
.0
.0
.0
.0
.0
10.1
9.9
10.5
to. a
10.5
10.2
10.
10.
10.
10.
'.
10.
10.
10.1
10.4
HOURLY
DATA
GAS CONCENTRATION
CU
PPMV
MEAS
'ft ftft ftft ft '
19.
IS.
11.
'.
9.
8.
8.
7.
48.
25.
0.
27.
28.
31.
32.
27.
22.
20.
19.
22.
23.
24.
23.
25.
NO
PPNV
MEAS
rAAAAAAAi
• W WW WW WW1
266.
253.
246.
241.
239.
232.
230.
225.
114.
355.
377.
356.
352.
348.
365.
389.
396.
389.
507.
0.
0.
0.
0.
0.
CO
PPMV
3X02
rft ft ft ft ft ft 1
28.
24.
19.
18.
17.
17.
17.
1«.
85.
38.
1.
39.
41.
on.
«7.
40.
32.
30.
29.
3«.
33.
34.
33.
36.
NO
PPMV
3X02
i * A A A A A I
1 •••• WW1
394.
400.
423.
445.
464.
477.
068.
447.
202.
529.
562.
517.
508.
491.
527.
567.
581.
576.
750.
0.
0.
0.
0.
0.
CO
NG/J
i A A A* A AI
1 WW W V • W>
10.
8.
7.
6.
6.
6.
6.
5.
30.
14.
0.
14.
15.
16.
17.
14.
11.
11.
10.
12.
12.
12.
12.
13.
NO
NG/J
r ftft ftftftft '
231.
235.
248.
261.
273.
260.
275.
262.
119.
311.
330.
304.
298.
268.
309.
333.
3«1.
338.
440.
0.
0.
0.
0.
0.
• •
*•
*«
• *
• •
• •
h A* *
• WWW
**
• •
**
*•
*•
**
• •
**
*•
• •
• •
••
••
• •
• •
••
•«
*•
**
*•
**
• •
• •
**
•••••*••*•••*•*•*•«•*•••**•*••*«*•**«*•*••••**•«*•*•••**•*•••******•**»••••**•**•**•
KVB11-6015-1224
115
-------
l**«*»**ft*******»»ft**
•ft
•ft
•ft
•ft
••
•• DATE
••••••••••1
•ft 6/ 6/79
•• 6/ 6/79
•• 6/ 6/79
•ft 6/ 6/79
•• 6/ 6/79
•ft 6/ 6/79
•* 6/ 6/79
•• 6/ 6/79
•ft 6/ 6/79
*• 6/ 6/79
•• 6/ 6/79
*• 6/ 6/79
•• 6/ 6/79
•• 6/ 6/79
•• 6/ 6/79
•ft 6/ 6/79
•ft 6/ 6/79
•ft 6/ 6/79
•• 6/ 6/79
•ft 6/ 6/79
•• 6/ 6/79
•• 6/ 6/79
•* 6/ 6/79
•ft 6/ 6/79
TIME
[ftftftftftftft
too
200
300
400
500
600
_ .700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
-2400
LOAD
MHTH
••*•••<
lS.8
IS.B
15.8
U.4
16.1
16.1
16.4
16.7
16.7
16.4
16.1
16.1
16.4
26*4
39.6
47.5
47.5
47.2
36.9
20.5
15.5
15.2
15.2
DRY
02
von
MEAS
[ft ftft ft ft ft '
8.1
8.2
8.2
8.2
8.3
8.3
8.2
8.0
7.5
8.1
8.5
8.5
8.4
8.4
8.6
.0
6.7
7.4
7.5
7.8
8.5
8.6
8.7
8.7
HOURLY DATA
STACK GAS CONCENTRATION
C02
VOL*
MEAS
rft ftft ft ftft 1
10.6
10.5
10.5
10.5
10.3
10.3
10.5
10.6
10.1
10.6
10.2
10.2
10.3
10.4
10.2
.0
10.7
10.7
11.0
11.2
10.3
10.2
10.1
10.2
CO
PPMV
MEAS
'ft ftftftftft 1
25.
22.
15.
16.
.
.
*
.
.
33.
33.
35.
37.
37.
36.
0.
3.
8.
2.
29,
29.
30.
29,
29.
NO
PPMV
MEAS
f ftft ft ft ft fti
0.
0.
0.
0.
0.
0.
0.
0.
370.
348.
370.
376.
374.
365.
380.
0.
378.
285.
378.
415.
374.
365.
358.
352.
CO
PPHV
3X02
'ft ft ft ft ft ft i
36.
31.
21.
22.
6.
0.
4.
9.
0.
47.
47.
51.
S3.
53.
52.
0.
4.
11.
3.
39.
42.
44.
43.
43.
NO
PPMV
3*02
1 A A * * 4 *l
!••••«»•
Oi
0.
0.
0.
0.
0.
0.
0.
494.
486.
535.
543.
53*.
523.
553.
0.
476.
378.
505.
S6«.
540.
531.
525.
517.
CO
NC/J
tft ft ft ft ft ft 1
13.
11.
8.
8.
2.
0.
1.
1.
0.
17.
17.
18.
19.
19.
19.
0.
2.
4.
1.
14.
IS.
16.
15.
15.
NO
NC/J
1 ft ft ft ft ft 4 1
0.
0.
o.
o.
o.
o.
0.
o.
290.
285.
314.
319.
315.
307.
325.
o.
280.
222.
297.
333.
317.
312.
3UA.
303.
• *
**
• •
• •
'•* ft
• *
• •
• •
• *
••
»*
• *
*•
*•
• *
• *
**
**
• *
*•
**
**
• •
• •
*•
•*
• •
ft*
KVB11-6015-1224
116
-------
•ft
DRY
HOURLY DATA
STACK GAS CONCENTRATION
••
•ft
• •
•ft C
•••••«
• • 6/
• ft 6/
•• 6/
• • 6/
• • 6/
•• 6/
• • 6/
• • 6/
• • 6/
• ft 6/
• • 6/
• • 6/
• ft 6/
•• 6/
• • 6/
•• 6/
• • 6/
• • 6/
• • 6/
•• 6/
• • 6/
•• 6/
• • 6/
•• 6/
ATE
••••«
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
7/79
TIME
•••••••
too
200
300
400
500
600
700
600
900
1000
1100
1200
1300
" 1400
1500
1600
1700
1000
1900
2000
2100
2200
2300
2400
02
LOAD von
MWTH MEAS
••••••••••*•••
18.2 .7
15.2 .5
15.2 .6
15.5 .4
15.2 .5
15.2 .5
15.5 .4
16.1 .6
15.8 .7
.0 .0
.0 .0
.0 .0
17.9 8.6
20.8 8.5
39.6 7.6
49.2 7.4
49.2 7.0
49.2 7.8
49.2 7.7
40.6 .0
46.3 0.0
40.3 0.2
36.9 0.6
17.9 8.7
C02
VOLX
MEAS
•••••*•
10.1
10.3
10.2
10.4
10.3
10.4
10.4
10.3
10.2
.0
.0
.0
10.5
10.6
11.3
11.7
11.5
11.5
11.6
.0
11.3
11.2
10.6
10.7
CO
PPMV
MEAS
•••*••<
26.
26.
29.
26.
26.
29.
31.
26.
26.
0.
0.
0.
29.
34.
28.
32.
31.
32.
33.
0.
35.
34.
34.
38.
NO
PPMV
MEAS
•**••*•
349.
34|.
340.
342.
347.
342.
337.
348.
349.
0.
0.
0.
369.
361.
404.
354.
371.
390.
409.
0.
514.
509.
466.
413.
CU
PPMV
3XU2
••*•••<
41.
41.
43.
41.
40.
42.
45.
41.
41.
0.
0.
0.
43.
50.
38.
42.
43.
44.
45.
0.
48.
46.
50.
56.
NO
PPMV
3X02
>•••*•*•
513.
492.
495.
490.
501.
493.
4fl3.
506.
512.
0.
0.
0.
546.
522.
544.
469.
507.
533.
555.
0.
713.
7|6.
689.
606.
CU
NC/J
•*•••••
15.
15.
15.
15.
14.
15.
16.
15.
15.
0.
0.
0.
15.
16.
I*.
15.
15.
16.
16.
0.
17.
17.
16.
20.
NO
NG/J
• * * • 4 • 1
5o l
269.
290.
268.
29(1.
290.
264.
297.
301.
0.
0.
0.
321.
306.
319.
276.
29H.
313.
326.
0.
419.
"21.
805.
356.
*•
*•
* •*•
*•
**
**
"
• *
••
*'
••
**
**
**
• •
*•
••
**
• *
••
**
• •
• *
• •
••
••
**
117
KVB11-6015-1224
-------
•••«*«•«•*»**••••**•*•«••«•**«••••*••**«*»*»»**«•*•*•••*•»*«»••»***••*••«*•*••***•••
*«
••
HOURLY DATA
DRY STACK GAS CONCENTRATION
*•
**
**
•* DATE
************
•• 6/ 8/79
•* 6/ 8/79
•* 6/ 8/79
•• 6/ 8/79
•* 6/ 8/79
•• 6/ 8/79
•• 6/ 8/79
•• 6/ 8/79
•• 6/ 8/79
•• 6/ 8/79
•• 6/ 8/79
•* 6/ 8/79
•• 6/ 8/79
*« 6/ 8/79
*• 6/ 8/79
*• 6/ 8/79
•• 6/ 8/79
•• 6/ 8/79
** 6/ 8/79
*• 6/ 8/79
•• 6/ 8/79
•• 6/ 8/79
•• 6/ 8/79
•• 6/ 8/79
TIME
******
100
200
300
400
500
600
700
BOO
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
24QO
LOAD
HHTH
••*•••*
17.9
17.9
17.9
18.2
17.6
17.9
2"! «
45.4
49.2
49.2
49.2
48.6
48.3
48.3
48.3
48.3
29.3
16.1
17.6
16.5
18.5
18.5
18.2
02
von
MEAS
k ** * * *(
.6
.
.
.
.
.
.
.
.0
.0
7.0
7.0
7.0
.6
.7
.8
.1
.6
.9
.4
.7
8.4
8.6
8.6
C02
VOL1
MEAS
*****
10.1
10.1
10.1
10.1
10. t
10. «
10. «
10.!
.(
10. <
10.
10.
10.
10.
10.
10.
10.
10.
9.
10.
10.
10.
10.
10.
CO
PPMV
MEAS
**ft*****1
38.
38.
39.
40.
41.
42.
43.
40.
) 0.
! 3.
3.
3.
4.
4.
4.
4.
5.
44.
44.
44.
42.
43.
42.
43.
NO
PPMV
MEAS
*******
413.
411.
409.
410.
413.
411.
412.
412.
0.
498.
504.
412.
373.
385.
412.
431.
442.
223.
401.
U04.
423.
413.
411.
410.
CO
PPMV
3*02
******!
55.
55.
56.
59.
60.
61.
61.
60.
0.
3.
5.
4.
5.
5.
5.
5.
6.
64.
66.
63.
62.
61.
61.
62.
NO
PPMV
3X02
***• ***
601.
604.
596.
597.
601.
603.
59Q.
615.
0.
427.
609.
531.
480.
482.
519.
Sfl7.
573.
325.
598.
578.
621.
592.
599.
596.
CO
NG/J
A A * A A A 1
WW WW Wfc»
20.
20.
20.
21.
22.
22.
22.
21.
0.
1.
2.
2.
2.
2.
2.
2.
2.
23.
24.
23.
22.
22.
22.
22.
NO
NG/J
****** 1
353.
35U.
350.
350.
353.
354.
347.
361.
0.
250.
391.
312.
282.
2*3.
305.
3?1 .
337.
191.
351.
339.
365.
3<«7.
352.
350.
*•
' * * *
• •
• •
••
• •
*•
• •
*•
• •
••
••
• •
• •
*•
• •
• *
*•
• •
• *
**
• •
• *
*•
• •
••
KVB11-6015-1224
118
-------
••
••
••
•*
••
*• DATE
ftftftftftftftftftftfl
*• 6/ 9/79
•• 6/ 9/79
•• 6/ 9/79
•* 6/ 9/79
•* 6/ 9/79
•• 6/ 9/79
•• 6/ 9/79
•* 6/ 9/79
•• 6/ 9/79
•• 6/ 9/79
•• 6/ 9/79
•• 6/ 9/79
** 6/ 9/79
•• 6/ 9/79
•* 6/ 9/79
•• 6/ 9/79
•• 6/ 9/79
•* 6/ 9/79
•• 6/ 9/79
*« 6/ 9/79
•* 6/ 9/79
•• 6/ 9/79
•* 6/ 9/79
•• 6/ 9/79
TIME
ft ftft ft ft 4 4
100
aoo
300
aoo
soo
600
700
600
900
tooo
1100
1200
1300
"~iaoo
1500
1600
1700
1800
1900
2000
2100
2200
2300
2000
DRV
02
LOAD VdlX
M»TH MEAS
ftftftftftftftftftftftftftl
18. 5 .5
1«.5 .4
18.5 .7
18. 5 .7
18.5 .6
18.5 .5
18.
IB.
18.
21.
25.
25.
20.
22.
20.
19.
l».
19.
20.
19.
U.
.4
.4
.3
7.4
7.8
7.6
7.5
7.7
9.0
8.5
8.6
8.6
8.5
8.9
8.9
17.0 9.1
17.9 8.7
18.2 .0
HOURLY DATA
STACK GA9 CONCENTRATION
C02
VOLX
HEA3
! ft ft ft ft ft ft 1
10.4
10.5
10.2
10.2
10.3
10.3
10.4
IO.S
10.4
10.2
.8
.6
.8
.8
.7
10.2
10.0
10.1
10.2
9.8
9.7
9.5
10.0
11.5
CO
PPMV
NEAS
Fftft ftftft ft1
42.
41.
41.
42.
41.
41.
42.
42.
7.
4.
3.
3.
3.
3.
27.
30.
29.
27.
27.
30.
28.
28.
27.
0.
NO
PPMV
MEAS
1 4 •** * *d
I H W" W • W1
412.
402.
408.
401.
398.
402.
394.
397.
0.
412.
443.
436.
439.
419.
400.
397.
406.
411.
409.
389.
394.
360.
364.
395.
CO
PPMV
sxoe
! ft ft ft ft ft ft '
61.
59.
61.
62.
60.
60.
60.
60.
10.
5.
4.
4.
4.
4.
40.
43.
42.
40.
39.
45.
43.
42.
39.
0.
NO
PPMV
3X02
595.
576.
59A.
569.
579.
500.
565 1
568.
0.
546.
60S.
569.
586.
568.
602.
573.
591.
59R.
591.
580.
587.
576.
563.
338.
CO
NG/J
i ft ft ft ft ft ft i
22.
21.
22.
22.
22.
21.
21.
21.
3.
2.
1.
1.
2.
2.
14.
15.
15.
14.
1«.
16.
15.
15.
14.
0.
NO
NC./J
f ft ft ft ft ft ft 1
3««».
338.
S51.
346.
3ttO.
341.
«2.
333.
0.
3?1.
355.
3«6.
344.
334.
354.
337.
347.
35t.
3«7.
341.
345.
338.
331.
199.
»*
**
• *
**
**
*•
rft * •
• •
• *
• •
• *
**
**
**
*•
• *
• *
• *
• •
• *
• «
• *
• *
• •
**
• *
**
• *
• *
• •
• •
KVB11-6015-1224
119
-------
**
*•
ft*
ft*
** DATE
••••**•*••<
** 6/10/79
•• 6/10/79
«• 6/10/79
•• 6/10/79
•• 6/10/79
•• 6/10/79
•* 6/10/79
•• 6/10/79
•• 6/10/79
•* 6/10/79
•* 6/10/79
•* 6/10/79
•• 6/10/79
•* 6/10/79
•• 6/10/79
•• 6/10/79
*• 6/10/79
«* 6/10/79
*• 6/10/79
** 6/10/79
•• 6/10/79
•• 6/10/79
*• 6/10/79
*• 6/10/79
TIME
1*******
100
200
300
400
500
600
700
600
900
1000
1100
1200
1300
1400
1500
1600
1700
1600
1900
2000
2100
2200
2300
2400
LOAD
MMTH
•••*•*(
16.2
16.2
17.9
17.9
16.2
16. 8
19.0
19.0
]9.0
]9.0
ifl.e
16.5
16.2
18.2
16.2
18.8
16.5
17J9
16.2
17.6
17.6
17.9
DRV
02
VOLZ
MEAS
)*••••*<
.7
.7
.7
.6
.9
.6
8.5
8.7
7.9
6.0
8.7
6.7
7.9
7.8
6.7
8.7
8.7
8.8
9.0
8.8
8.7
6.8
9.0
9.0
HOURLY DATA
STACK GAS CONCENTRATION
C02
VULZ
MEAS
l******1
10.2
10.2
10.2
10.3
10.0
10.3
10.5
10.3
10.1
9.8
10.1
10.1
9.8
9.8
10.0
10.1
10.1
.9
.7
.9
1 .1
1 .0
.9
.8
CO
PPMV
MEAS
l**«*ft*1
26.
23.
24.
24.
22.
24.
25.
25.
30.
26.
30.
32.
26.
0.
19.
41.
42.
42.
45.
44.
44.
44.
43.
46.
NO
PPMV •
MEAS
tft******
392.
369.
366.
385.
379.
376.
368.
393.
403.
404.
395.
397.
408.
415.
401.
407.
408.
410.
387.
405.
402.
396.
392.
381.
CO
PPMV
jxna
**•*••<
39.
34.
35.
35.
32.
35.
37.
36.
41.
39.
43.
47.
39.
0.
26.
60.
61.
62.
68.
65.
65.
65.
65.
69.
NO
PPMV
3102
>****«*i
575.
571.
566.
560.
566.
54A.
560*
576.
555.
561.
580.
582.
562.
567.
son.
597.
598.
606.
582.
599.
S«0>
586.
59Q.
573.
CO
NG/J
>•***•••
12!
13.
13.
12.
12.
13.
13.
15.
14.
16.
17.
14.
0.
10.
21.
22.
22.
24.
23.
23.
23.
23.
25.
NO
NG/J
»•••«•(
337.
335.
333.
329.
332.
322.
329.
338.
326.
329.
3«0.
3«2.
330.
333.
346.
351.
351.
356.
3«2.
352.
3«6.
346.
337.
«•
*•
• *
• •
*•
••
»•••
ft*
**
*•
• •
• •
• •
• •
**
• •
• *
*•
• •
• •
• •
*•
• •
• *
• •
ft*
*•
**
• •
• *
KVB11-6015-1224
120
-------
HOURLY DATA
•ft
ft*
••
*•
•ft DATE
ftftftftftftftftftft
•• 6/11/79
•• 6/11/79
•* 6/11/79
*• 6/11/79
•ft 6/11/79
•ft 6/11/79
•• 6/11/79
•• 6/11/79
•• 6/11/79
•ft 6/11/79
•ft 6/11/79
•ft 6/11/79
•• 6/11/79
•ft 6/11/79
•• 6/11/79
•• 6/11/79
•• 6/11/79
•• 6/11/79
*• 6/11/79
•• 6/11/79
•• 6/11/79
•• 6/11/79
•• 6/11/79
•• 6/11/79
DRV STACK GAS CONCENTRATION
TIME
AAAAAA4A4
•wwwwwwwi
100
200
300
400
500
600
700
800"
900
1000
1100
1200
1300
~ 1400 "
1500
1600
1700
1800
1900
""2000
2100
2200
2300
2400
02 C02 CO
LOAD VOLI VOLX PPMV
MMTH MEAS MEAS MEAS
^AA*A*AA^AAAA-*-AAAAA^-*--*-AAAAJ
••••£WWWr
17.0
17.0
IT.
l\
20.
20.
20.
20.
20.
20.
20.
20.
20.
16.
16.
16.
18.
IT.
IT.
IT.
IT.
IT.
IT.
• •••••wwwwwi
• 5 10.
• T |0.
.6 10.
.6 10.
.5 10.
.7 10.
.T 10.
10.
10.
10.
10.
9.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
•HWWWXIKWI
SO.
so.
47.
50.
50.
48.
48.
09.
14.
11.
25.
IT.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
NO
PPMV
MEAS
t ft ft ft ftft ft 1
377.
384.
385.
386.
389.
390.
389.
385.
0.
388.
384.
396.
389.
403.
402.
392.
398.
387.
391.
391.
381.
379.
375.
379.
CO
PPMV
3>02
1 ft ft ftft ftft
72.
73.
TO.
72.
T2.
TO.
TO.
T2.
20.
16.
36.
23.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NO
PPMV
3X02
tftftft ftftftd
545*
563.
570.
562.
562.
572.
571.
565.
0.
560.
555.
541.
548.
573.
590.
561.
575.
563.
569.
568.
550.
552.
550.
552.
CO
NG/J
iftft ft ft ft ft i
26.
26.
25.
26.
26.
25.
25.
26.
7.
6.
13.
8.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NO
NG/J
fft ft • ft ft ft1
320.
330.
335.
330.
330.
336.
335.
332.
0.
3?9.
326.
318.
322.
337.
3«7.
330.
338.
331.
334.
334.
323.
324.
323.
324.
• *
• •
• •
• *
••
r***
• *
**
• •
• •
• •
**
*•
• *
• *
ft*
• *
**
ft*
• •
• *
*•
*•
**
• *
• •
*•
• •
• *
• •
KVB11-6015-1224
121
-------
••
••
••
••
••
*• DATE
•••••••••ft
•• 6/12/79
•• 6/12/79
*• 6/12/79
*• 6/12/79
•• 6/12/79
•• 6/12/79
•• 6/12/79
•* 6/12/79
•* 6/12/79
•• 6/12/79
*• 6/12/79
*• 6/12/79
•• 6/12/79
•• 6/12/79
•ft 6/12/79
*• 6/12/79
*• 6/12/79
•• 6/12/79
•* 6/12/79
•• 6/12/79
•* 6/12/79
•• 6/12/79
•* 6/12/79
•• 6/12/79
HOURLY DATA
DRV STACK GAS CONCENTRATION
TINE
)•••••••
100
200
300
400
500
600
7.00
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
~ 2000
2100
2200
2300
2400
LOAD
NNTH
•••••ft
22.3
22.3
34.0
47.5
48.3
48.1
47.8
47.8
47.8
48.1
47.8
31.6
.20.2
18.2
18.5
18.5
18.5
18.5
18.5
20.2
21.4
21.4
22.3
22.3
02
VOLX
MEAS
•ft ••• •(
9.0
.9
.9
.0
.0
.0
. . .0
.0
.
,
8.
8.
7.
8.7
.0
.0
.0
.0
.0
7.8
7.8
8.2
8.9
10.0
C02
VOLX
MEAS
•*•••••<
10.0
10.1
10.1
10.1
10.1
10.2
10.2
10.2
10.2
10.2
10.4
10.4
. 9.9
7.1
10. 5
11.1
11.8
11.3
11.2
11.1
11.2
11.2
11.0
10.4
CO
PPMV
MEAS
*••••••<
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NO
PPMV
MEAS
!•••• ftft!
384.
382.
381.
378.
377.
370.
380.
382.
0.
406.
402.
431.
447.
258.
0.
0.
0.
0.
0.
511.
507.
490.
453.
412.
CO
PPMV
3X02
)••••••
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NO •
PPMV
3X02
»••••••'
577.
570.
568.
569.
567.
557.
572.
575.
0.
601.
595.
632.
615.
378.
0.
0.
0.
0.
0.
698.
693.
69| .
675.
676.
CO
NG/J
!••• ••• '
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NO
NG/J
?••••••
339.
335.
333.
33
-------
••
••
HOURLY DATA
DRY STACK GAS CONCENTRATION
**
•• 02 C02 CO NO
•• LOAD VOLI VOLX PPMV PPMV
•• DATE TIME MHTH HEAS *EAS ME»3 NEAS
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••I1**
••
*•
•ft
••
••
•ft
• •
••
••
••
**
•*
•*
•*
••
• •
••
••
••
•ft.
• ft
••
••
••
6/13/79
6/13/79
6/13/79
6/13/79
6/13/79
6/13/79
6/13/79
6/13/79
6/13/79
6/13/79
6/13/79
6/13/79
6/13/79
6/13/79 —
6/13/79
6/13/79
6/13/79
6/13/79
6/13/79
6/13/79 '
6/13/79
6/13/79
6/13/79
6/13/79
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
19.9
20.5
21.1
21*1
21.1
27^5
27.5
27.5
27.5
27.5
27.5
27.5
'24.6
22.0
22.0
21.7
21.7
21.4
21.4
21.4
21.4
21.1
20.2
8 10.4
7 10.4
7 10.4
7 |0.4
7 10.4
10.3
10.5
10.6
10.3
10.0
10.3
11.0
11.0
10.7
10. B
10.9
10.9
to. a
10.4
10.7
10.6
10.6
10.6
10.5
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0
0
0
0
0
401.
397.
366.
369.
365.
354.
374.
373.
364.
0.
394.
442.
436.
440.
421.
429.
430.
406.
305.
415.
403.
399.
393.
392.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
647.
634.
619.
622.
615.
571.
603.
59|.
530.
0.
578.
633.
629.
635.
613.
624.
625.
591.
455.
615.
601.
596.
587.
584.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
380.
372.
364.
365.
361.
335.
354.
347.
311.
0.
339.
371.
369.
373.
360.
366.
367.
347.
267.
361.
353.
350.
345.
343.
• •
• •
• •
••
• •
• •
• •
••
••
••
•*
••
••
••
••
••
••
••
•*
••
••
••
*•
••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••ft**************
KVB11-6015-1224
123
-------
*•
**
**
**
**
•* DATE
TIME
D»V STACK
02 C02
LOAD VOLZ VOLX
MMTH MEAS MEAS
HOURLY
DATA
• •
CAS CONCENTRATION ••
CO
PPMV
MEAS
NO
PPMV
MEAS
CO
PPMV
3102
NO
PPMV
3Z02
CO
NG/J
NO
NG/J
• •
• •
. *•
**
••••*•••••••••••••••••••••••••*••••••••••*••*•••••••••••••*•••••••••*•••••»*•••**•••
*• 6/14/79
•• 6/14/79
•• 6/14/79
*• 6/14/79
•• 6/14/79
•• 6/14/79
•• 6/14/79
*• 6/14/79
*• 6/14/79
** 6/14/79
•• 6/14/79
•• 6/14/79
•• 6/14/79
•• 6/14/79
•• 6/14/79
•• 6/14/79
•• 6/14/79
•• 6/14/79
•• 6/14/79
•• 6/14/79
•• 6/14/79
•• 6/14/79
•• 6/14/79
•• 6/14/79
too
200
300
400
500
600
700
800
900
1000
1100
1200
_1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
I4.
1't
|9(
19.
20.
23.
25.
27.
27.
24.
17.
47l
8.9 10.5
9.0 10.4
8.9 10.4
8.
8.
8.
8.
8.
8.
8.
8.
8.
. .7.
63.0 .
62.7 8.
62.7 8.
62.4 8.
62. 7.
62. 7.
62. 7.
61. 7.
51. 8.
40. 8.
21. *•
10.4
10.4
10.4
10.5
10.5
9.6
10.0
9.8
9.8
.11.3
.0
10.3
10.2
10.4
10.7
11.1
11.2
11.2
11.3
11.3
10.1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
3.
0.
0.
0.
0.
46.
43.
44.
53.
62.
69.
73.
387.
389.
386.
384.
3«5.
389.
3«2.
405.
420.
340.
290.
325.
506.
0.
575.
5'0.
560.
582.
574.
549.
527.
480.
40U.
321.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
4.
0.
0.
0.
0.
62.
56.
58.
73.
91.
100.
113.
577.
585.
576.
574.
574.
581.
585.
600.
611.
503.
429.
485.
691.
0.
830.
859.
796.
777.
705.
723.
726.
698.
607.
500«
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
1.
0.
0.
0.
0.
22.
20.
21.
26.
32.
36.
40.
339. .
343.
338.
337.
337.
3M.
344.
352.
359.
295.
252.
285.
406.
0.
487.
504.
467.
456.
137.
425.
426.
410.
380.
293.
**
**
••
••
• *
**
• *
**
• •
••
• *
*•
_••
**
**
• •
• *
• *
• •
**
••
• •
**
**
KVB11-6015-1224
124
-------
»**•**•**•••••••*••••••••••**•••••••«••••••••••••••••«••••••••••*•••••••••••••••••*•
** HOURLY DATA •«
•* DRY STACK GAS CONCENTRATION *•
•*
•*
•* DATE
••••••••••l
•• 6/15/79
•• 6/15/79
•• 6/15/79
•* 6/15/79
•• 6/15/79
•* 6/15/79
•• 6/15/79
*• 6/15/79
•• 6/15/79
•• 6/15/79
•• 6/15/79
•• 6/15/79
•• 6/15/79
*• 6/15/79
*• 6/15/79
*• 6/15/79
•* 6/15/79
•* 6/15/79
•• 6/15/79
•• 6/15/79
•• 6/15/79
•* 6/15/79
•* 6/15/79
•• 6/15/79
TIME
!*•**••
too
200
300
000
500
600
700
BOO
900
1000
1100
1200
1300
'"1000
1500
1600
1700
1800
1900
* 2000
2100
2200
2300
2000
02
LOAD VOLI
MMTM MEAS
••••••••••r
ie.e
|5.8
15.8
15.8
IS. 8
i5.a
16.0
" 17.3
18.8
19.0
19.3
19.0
19.0
"19.3
19.3
19.0
18.8
18.8
21.0
20.5
18.8
18.8
10.8
10.5
1 • WW1
.0
.2
.5
.5
.4
.5
.3
.3
.2
.0
.2
.1
.9
.0
.1
.2
.2
.2
.0
.1
.1
.2
.2
.1
C02
VOLX
MEAS
^•••••ft •
9.9
10.1
.8
.7
.0
.7
.9
.9
10.1
9.9
10.2
10.0
10.6
10.5
10.3
10.0
10.0
10.3
10.5
10.5
10.4
10.5
10.5
10.0
CO
PPMV
MEAS
• •••• • 1
75.
77.
83.
07.
07.
09.
90.
91.
92.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NO
PPMV
MEAS
1 •••••• 1
277.
2T1.
206.
209.
292.
295.
208.
291.
209.
290.
337.
330.
338.
305.
350.
356.
358.
361.
365.
360.
353.
352.
352.
339.
CO
PPMV
3>02
]••••••'
117.
lie.
130.
136.
135.
139.
139.
101.
tot.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NO
PPMV
3X02
1* ******
1 W W • • • W w
031.
om.
OOA.
050.
055.
063.
Ofl5.
049.
042.
036.
515.
507.
5oo.
520.
531.
505.
50A.
552.
509.
506.
536.
539.
53A.
5|0.
CO
NG/J
• • ft *. *. • 1
02.
02.
06.
09.
48.
50.
50.
50.
50.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NO
NG/J
t* ******
253.
20J.
263.
267.
267.
272.
261.
264.
259.
256.
303.
29«.
296.
305. "
312.
320.
321.
324.
323.
321. '
315.
316.
316.
302.
*•
**
*•
k * ft
*•
• •
• ft
• •
• •
••
*•
• ft
• ft
• ft
ft*
• ft
• •
ft*
ft*
ft*
• «
• ft
• •
• ft
• ft
• •
ft*
••
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••ft**************
KVB11-6015-1224
125
-------
*•
"•
•ft
*•
*•
*• DATE
TIHE
UKT STACK C
02 C02
LOAD VOLX VOH
M*TH MEAS MEAS
iAS CON(
CO
. PPMV
MEAS
:ENTHAT]
NO
PPMV
MEAS
[ON
CO
PPMV
3*02
NO
PPMV
3X02
CO
NG/J
NO
NG/J
• *
**
*•
• *
*•
**••***••***••*•«•*•***•••*•«*••*•«**••**••«***•**••••*«••»•••*«•*****«««•••••«•«*•«
•* 6/16/79
*• 6/16/79
•* 6/16/79
•* 6/16/79
*• 6/16/79
*• 6/16/79
*• 6/16/79
•* 6/16/79
•• 6/16/79
*• 6/16/79
• • 6/16/79
•• 6/16/79
•• 6/16/79
•* 6/16/79
•* 6/16/79
•• 6/16/79
•• 6/16/79
** 6/16/79
•• 6/16/79
•• 6/16/79
•• 6/16/79
•• 6/16/79
•• 6/16/79
•• 6/16/79
100
200
300
OQO
500
600
700
BOO
900
1000
1100
1200
1300
1000
1500
1600
1700
1800
1900
' 2000
2100
2200
2300
2000
18.
18.
18.
18.
18.
18.
19.
22.
23.
23.
20.
17.
|7.
17.
21.
29.
29.
29.
26
23.
23.
23.
23.
19.
10.3
10.3
10.2
10.1
10.1
10.1
10.1
10.2
10.2
10.2
10.2
10.0
10.2
10.1
10.2
10.0
10.0
10.3
10.3
10.3
10.5
7 10.5
a lo.o
a 10.3
0.
0.
0.
0.
0.
0.
0.
o.
o.
0.
0.
o.
o.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
336.
341.
339.
340.
330.
326.
3«6.
370.
376.
379.
371.
300.
305.
337.
350.
400.
003.
3.97.
392.
002.
370.
392.
385.
358.
0.
0.
0.
0.
o.
0.
0.
o.
0.
0.
o.
0.
o.
0.
0.
0.
o.
o.
0.
0.
o.
o.
0.
0.
519.
526.
524.
525.
515.
499.
529.
572.
570.
574.
567.
529.
532.
521.
518.
598.
597.
593.
585.
600.
544.
575.
570.
530.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
0.
0.
0.
305.
309.
308.
308.
302.
293.
310.
336.
335.
337.
333.
311.
313.
306.
300.
351.
350.
348.
340.
352.
320.
338.
334.
311.
• •
• •
*•
• •
**
• *
*•
• *
• *
• *
• *
*•
• •
**
**
**
• •
• •
• ft
"•*
*•
*•
*•
**
KVB11-6015-1224
126
-------
•ft
••
•ft
•ft
** DATE
ftftftftftftftftftftf
*• 6/17/79
•* 6/17/79
•* 6/17/79
•* 6/17/79
•• 6/17/79
*• 6/17/79
•• 6/17/79
•* 6/17/79
•• 6/17/79
*• 6/17/79
•• 6/17/79
•• 6/17/79
*• 6/17/79
** 6/17/79-
•• 6/17/79
•• 6/17/79
•• 6/17/79
•• 6/17/79
•* 6/17/79
*• 6/17/79"
•• 6/17/79
•• 6/17/79
•• 6/17/79
•• 6/17/79
HOURLY
DATA
• *
DRY STACK CAS CONCENTRATION ••
A *
TIME
AAftftftftfttf
100
' 200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
~~*2000~
2100
2200
2300
2400
02 C02 CO
LOAD VOlt VOLX PPNV
HkTH MEA3 ME A3 MEA3
ft ftfttf"
18.
18.
18.
18.
18.
IB.
18.
19.
19.
19.
19.
|9,
19.
19.
19.
19,
19.
22.
18.
|8.
18.
18.
1 v «"W w w •
19.0 «
19.0 6
' wwvwwwwv MI«WWWWWI
10.3 0.
10.3 0.
10.2 0.
10.2 0.
10.2 0.
10.2 0.
10.2 0.
10.2 0.
10. 1 0.
10*2 0.
10.2 0.
10.2 0.
10.0 0.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
7 10.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NO
CO
PPMV PPMV
MEAS 3
iftftwftftftftAAN
346.
334.
330.
335.
336.
335.
338.
346.
366.
362.
358.
364.
380.
400.
381.
387.
382.
36|.
361.
351.
351.
351.
347.
348.
toa
A A A AI
WWW !•'
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NO
PPMV
sxo2
I ft ft ft ft ft ft I
516.
498.
492.
500.
501.
500*
504.
516.
551.
540.
534.
543.
567.
583.
554.
563.
561.
521.
530.
Sit.
511.
511.
510.
511.
CO
NG/J
i * A •% A A
1 WM W • W
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
" 0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NO
NG/J
iftftftftftftftftf
303.
289^
294.
?9«,
294.
296.
303.'
323.
3J7.
314.
319.
333. .
302.
325.
330.
329.
306.
311.
' 300. '
300.
300.
299.
300.
• *
• •
ft A
•«
•«
••
*•
• •
• •
• •
• •
• •
**
• •
*•
• •
• •
• •
••
••
• •
*•
••
••
••
•*
*•
•*******••*•*«•*•**•«•»*•••••»«••*****•*«•*•*•*•***•*•**•***•***•••***•••••«•*•*****•
KVB11-6015-1224
127
-------
•*
•ft
••
*•
•ft
•• DATE
• ftftfftftftftfrA
•• 6/18/79
•• 6/18/79
•• 6/18/79
•• 6/18/79
•• 6/18/79
•• 6/18/79
•ft 6/18/79
*• 6/18/79
•• 6/18/79
•ft 6/18/79
•• 6/18/79
•ft 6/18/79
•• 6/18/79
•• 6/18/79
•• 6/18/79
•• 6/18/79
•• 6/18/79
•• 6/18/79
•• 6/18/79
•• 6/18/79
•• 6/18/79
•• 6/18/79
•• 6/18/79
•• 6/18/79
TIME
* A A4 A A A
| • W W WWW
100
200
300
400
500
600
700
800
9QO
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
DRV
02
LOAD VULX
MNTH MEAS
k*A***AAAA+*AA
(•^••••(•••r
18.8
18.8
18.8
18.8
18.8
|8.8
18.8
23.4
25.2
26.4
2'.3
23.4
1«*2
18.2
U.6
17.6
21.1
26.4
26.4 .
23.7
23.4
23.4
22.9
22.9
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.9
.0
tO
.1
.2
• 0
.0
.0
.9
.9
.8
.8
.8
.7
HOURLY DATA
STACK CAS CONCENTRATION
C02 CO NO CO
VOLX PPMV PPMV PPMV
MEAS
A*A*AAA*«
•WWWWWWW1
10.4
10.4
10.4
10.4
10.4
10.4
.10.4
10.5
10.6
10.5
10.4
10.2
10.2
10.0
9.9
10.1
10.2
10.2
10.4
10.4
10.4
10.4
10.4
10.5
MEAS
i A* A A * i
1 WW • • '
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
o.
MEAS
1* A A 6 A A* '
i WW m W W W W
348.
341.
348.
352.
358.
353.
355.
385.
399.
394.
382.
372.
348.
360.
354.
354.
328.
333.
339.
347.
351.
352.
358.
366.
3X02
t * A * A * i
I • v •• V
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NO CD
PPMV NG/J
3X02
|AAA*AAAA4
'•••••WWII
511.
500.
510.
516.
525.
518.
521.
566.
585.
577.
569.
560.
523.
545.
542.
532.
494.
501.
505. .
517.
520.
520.
530.
536.
£ £ £ ^ £ .
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0. _
0.
0.
0.
0.
0.
0...
0.
0.
0.
0.
0.
NO
NG/J
1 A £ A A
I W W • V
300.
293.
2«»9.
303.
308.
304.
306.
332.
3«4.
339.
334.
329.
307.
320.
318.
313.
2*0.
294.
297.
304.
305.
305.
311.
315.
• *
• •
•*
••
••
••
b A * A *
• w WH •
**
• •
**
• •
• •
• •
ft*
• •
• •
• •
• *
• ft
• •
••
••
•*
• •
• •
••
" ••
••
• *
*•
• •
KVB11-6015-1224
128
-------
DATA
• *
*•
#«
•*
**
*• DATE
ftftftftftftftftftftftft
•• 6/19/79
•* 6/19/79
** 6/19/79
•• 6/19/79
•• 6/19/79
•» 6/19/79
•• 6/19/79
** 6/l9/79~
•* 6/19/79
•* 6/19/79
•• 6/19/79
*• 6/19/79
•• 6/19/79
*• 6/19/79—
•• 6/19/79
»* 6/19/79
•* 6/19/79
•• 6/19/79
•• 6/19/79
•* 6/19/79 "
** 6/19/79
*• 6/19/79
•• 6/19/79
•• 6/19/79
TIME
t ft ftft ftftl
too
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
our STACK
02 C02
LOAD VOIX VOLX
MHTH NEA3 MEA3
f****^***^^^*^*'^*^*1
'••••VHHWW
21.1
IB.
18*
18.
18.
17.
19.
24.
27.
20.
20.
17.
17.
19.
24.o
18.5
16.7
15.8
17.6
19.6
24.3
24.6
23.4
21.7
10.4
10.2
10.2
10.2
10.1
10.1
10.2
10.2
10.2
10.1
.9
.9
.9
~~ .9
.0
0 .0
0 .7
0 .7
9 .9
9 .»
7 10.1
7 10.2
7 10.1
8 10.0
GAS CONCENTRATION ••
CO
PPHV
HE A 3
fft ft ftft ft ft ft '
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
26.
30.
33.
35.
38.
36.
39.
42.
NO
PPNV
MEAS
( ft ft ft ft ft ft '
359.
350.
342.
343.
350.
344.
347.
382.
379.
377.
364.
359.
365.
346.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
CO
PPMV
3X02
i 6 A 6 44 *<
f WW W W W 9'
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
39.
46.
49.
52.
55.
54.
57.
62.
NO
PPMV
3X02
1 4 4 A A 4 ft t
I • W W W • • •
531.
S21.
510.
512.
522.
5|4.
5|8.
566.
565.
562*
546.
539.
549.
507. "
0.
0.
0.
0.
o.
0.
0*
0.
0.
0.
CO
NC/J
ft ft ftft ft A ft
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
14.
16.
17.
18.
20.
19.
21.
22.
NO
NG/J
t ft ftft ft ft ft 1
312.
306.
299.
301.
306.
302.
304.
332.
332.
330.
321.
317.
322.
298. •-
0.
0.
0.
0.
0.
0. '
0.
0.
0.
0.
• •
*•
••
**
1 + 4
1 w»
•*
**
*•
••
**
•*
••
**
*•
•*
•*
**
••
••
*•
**
•*
••
•*
*•
••
*•
••
KVB11-6015-1224
129
-------
•ft
££
•*
••
*• DATE
T1HE
DRV
02
LOAD VOLX
HMTH HEAS
STACK
C02
VOLX
HEAS
GAS CON(
CO
PPHV
HEAS
:ENTRATI
NO
PPHV
HEAS
[ON
CO
PPHV
3X02
NO
PPHV
3X02
CO
NG/J
NO
NG/J
• ft
• •
• ft
• •
• ft
*•••••••••«•• •••••••••««•*•••«•••**«••*•••••*•*•*••**•••••••**•***•••*••••*•***•*•**•
•• 6/20/79
•• 6/20/79
•• 6/20/79
•• 6/20/79
•• 6/20/79
•• 6/20/79
•* 6/20/79
*• 6/20/79
•• 6/20/79
•• 6/20/79
•• 6/20/79
•• 6/20/79
•• 6/20/79
•• 6/20/79
•• 6/20/79
•• 6/20/79
•* 6/20/79
•• 6/20/79
•• 6/20/79
•• 6/20/79
•* 6/20/79
•• 6/20/79
•• 6/20/79
•• 6/20/79
100
200
300
400
500
600
700
BOO
9QO
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
16. 6.6
16.
16.
17.
171
2o!
25.
20.
1*.
16.
ie!
IB.
16?2
17.6
17.6
17.6
17.6
20.5
21.1
17.9
.6
.6
.0
.4
.1
.6
.8
.7
.7
.8
.8
.8
.8
.9
.9
.2
.0
.8
.4
.5
.7
.7
.3
10.0
10.0
9.9
9.7
9.2
9.6
10.0
10.1
10.2
10.1
10.1
10.1
9.6
9.9
10.3
10.4
10.3
10.4
10.6
10.1
9.9
9.6
9.9
10.3
45.
46.
46.
47.
50.
49.
48.
48.
46.
45.
45.
44.
25.
16.
11.
13.
0.
7.
21.
23.
27.
31.
30.
33.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
376.
366.
374.
367.
367.
350.
336.
358.
357.
364.
37|.
325.
67.
66.
68.
71.
78.
75.
71.
71.
67.
67.
66.
65.
37.
24.
16.
19.
0.
It.
32.
36.
42.
49.
48.
51.
0.
0.
0.
0.
0.
0.
0*
0.
0.
0.
0.
0.
559.
571.
559.
547.
561.
526.
49R.
557.
561.
562.
593.
Sot.
24.
24.
24.
25.
20.
27.
25.
25.
24.
24.
24.
23.
13.
6.
6.
7.
0.
4.
II.
13.
15.
17.
17.
16.
0.
0.
0.
0.
0.
o.
0.
0.
0.
0.
0.
0.
_.326.
335.
326.
3?1 .
329.
309.
292..
327.
329.
341.
348.
294.
• •
• •
• ft
• ft
• •
• ft
• ft
• •
• •
• •
• •
• ft
•ft
• ft
•ft
• ft
• •
••
••
• •
••
•ft
• •
•ft
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••ft***********
KVB11-6015-1224
130
-------
ft*
HOURLY DATA
ft*
ft*
ft*
•ft
•ft DATE
AAAAAAAAAAAAd
WwwWWWWWWWWHI
•• 6/21/79
•• 6/Z1/79
•• 6/21/79
•• 6/Z1/79
•• 6/21/79
•• 6/Z1/79
•• 6/21/79
•• 6/21/79 "
•* 6/21/79
•• 6/Z1/79
•• 6/Z1/79
•• 6/21/79
•• 6/21/79
•• 6/21/79 "
•• 6/21/79
•• 6/21/79
•• 6/21/79
•• 6/21/79
•• 6/21/79
*• 6/21/T9
•• 6/21/79
•• 6/21/79
•• 6/21/79
•• 6/21/79
TIME
ftft ft ft ft 1
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
PRY STACK
U2 C02
LOAD VOLX VOL*
HKTM HEAS HEAS
'ftftftftftftftft^
17.9
18. ft
18.8
18.8
19.0
18.8
18.8
21.1
24.6
24.9
24.3
22.6
25.5
9
•
,
•
t
•
*j
.
,
.
.
.
38.1 7.
45.7 7.
50.1 7.
50.1 8.
• arwfiwuwwi
10.2
10.4
10.3
10.0
10.1
9.9
10.0
10.3
10.0
10.5
10. 5
10.6
10.6
11.2
11.4
11.3
11.3
48.9 8.1 11.3
48.1 8.1 11.3
48.1 8.2 11.2
48.1 8.2 11.4
45.1 8.2 11.3
36.9 8.3 11.2
27.0 9.0 10.3
GAS CONC
CO
PPHV
HEAS
1 A A A A A A *<
• •wftw***1*'
32.
30.
27.
25.
24.
22.
22.
21.
1.
7.
4.
a.
9.
8.
1.
6.
24.
35.
34.
31.
32.
33.
33.
33.
;ENIRATI
NO
PPHV
HEAS
1 A A • A A * 4
' W • W W W V 1
332.
329.
328.
333.
338.
336.
332.
355.
371.
378.
385.
357.
350.
511.
552.
559.
554.
550.
555.
530.
531.
519.
499.
470.
ON
CO
PPHW
3<02
1 ftft ftft ftft '
471
43.
40.
38.
35.
35.
33.
2.
11.
6.
11.
13.
11.
1.
8.
34.
49.
48.
44.
45.
47.
47.
50.
NO
PPHV
3102
1ft ft ft ft ft ft l
517.
513.
510.
524.
536.
537.
525.
553.
593.
579.
580.
515.
Sot.
7Q4.
754.
770.
775.
769.
776.
747.
748.
732.
7Q9.
7Q6.
CO
NG/J
i ftftft ft ft ft '
18.
17.
15.
14.
14.
13.
12.
12.
1.
4.
2.
4.
5.
4.
0.
3.
12.
18.
17.
16.
16.
17.
17.
18.
NO
NG/J
» * A A A A A i
r 9 • » • W w 1
304.
301.
299.
307.
314.
315.
309.
3?5.
348.
340.
3«0.
302.
294.
413.
443.
452.
455.
451 .
456.
438.
439.
430.
417.
415.
• •
ft*
• ft
• ft
••
f ft ft ft
ft*
• ft
ft*
ft*
• ft
• •
• •
**
• *
• •
• *
ft*
• •
• *
*•
• •
• *
• «
• *
• •
• •
• •
• •
KVB11-6015-1224
131
-------
*•
••
••
•*
*•
•• DATE
••••••••••
** 6/22/79
•• 6/22/79
•• 6/22/79
•• 6/22/T9
•• 6/22/79
•• 6/22/79
*• 6/22/79
•• 6/22/79
•* 6/22/79
•• 6/22/79
•• 6/22/79
•• 6/22/79
•• 6/22/79
*• 6/22/79
•* 6/22/79
•• 6/22/79
•• 6/22/79
•• 6/22/79
•• 6/22/79
*• 6/22/79
•• 6/22/79
•• 6/22/79
•* 6/22/79
** 6/22/79
TINE
ftttftftftfl •
100
200
300
400
SOO
600
700
aoo
900
1000
1100
1200
1300
'1400
1500
1600
1700
taoo
1900
""2000
2100
2200
2300
2400
DRY STACK
02 C02
LOAD VOLX VOLX
HHTH ME«3 MEAS
l*A*ftf
IB.
17.
17.
1*.
18.
17.
ifl.
17.
16.
18.
16.
IB.
_1B.
It*WWWWWWWWW»WH*
B.6 10.7
6.6 10.7
18.2
IB. 2
18.5
IB. 2
17.
17.
"80. '
22.
22.
l«.
I*.
.6 10.6
.7 10.5
10.4
10.3
10.4
10.4
10.4
10.4
10.4
10.4
10.6
10.5
10.5
10.5
.5 10.4
.5 10.5
.5 10.5
.5 10.4
.5 10.4
.2 10.7
.4 10.5
.5 10.4
HOURLY
DATA
GAS CONCENTRATION
CO
PPNV
MEAS
'•#••*•'
36.
40.
41.
•1.
41.
•I.
40.
40.
38.
38.
37.
36.
0.
0.
o.
11.
26.
0.
30.
26.
34.
38.
39.
«8.
NO
PPNV
MEAS
f #• ••••• 1
466.
437.
440.
439.
441.
442.
447.
439.
443.
438.
436.
434.
453.
459.
466.
465.
473.
460.
477.
439.
435.
440.
445.
«53.
CO
PPMV
3X02
iftftft • • ft'
57.
59.
59.
60.
60.
60.
60.
60.
57.
56.
55.
53.
0.
o.
0.
16.
37.
».
03.
38.
50.
53.
56.
70.
NO
PPNV
3X02
*••*•*•<
689.
636.
641.
645.
652.
654.
661.
649.
655.
646.
645.
642.
655.
666.
681.
677.
683.
694.
689.
633.
628.
620.
638.
655.
CO
NC/J
1 *#• • ftflft
20.
21.
21.
21.
21.
21.
21.
21.
20.
20.
20.
19.
. 0.
0.
0.
6.
13.
3.
15.
14. '
18.
19.
?0.
25.
NO
NG/J
!• ft *ft A
«oa.
374.
376.
379.
3«3.
384.
386.
361.
385.
360.
379.
377.
384.
392.
400.
397.
401.
407.
404.
372."
369.
364.
37a.
364.
*•
**
*•
• *
*•
• •
• • ••
*•
**
*«
*•
**
*•
• *
**
*•
**
**
•*
«*
• •
**
**
• •
• •
••
' •*
••
• *
••
*«
•*•••*•**•••••*•*•••***•*•••**•*••*•*•*•••«******••*•***•••***••••******••****••****
KVB11-6015-1224
132
-------
ft*
••
••
• *
•*
••
ftftl
•*
*•
*«
••
• ft
*•
*•
••
•*
ft*
••
•*
•*
*•
•*
••
••
••
*•
*«
••
*•
*•
*•
HOURLY DATA
DRY STACK GAS CONCENTRATION
DATE
f ftftft AAftft
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
6/23/79
TI»E
• fl ftftft A £
100
200
300
400
500
600
700
BOO
900
1000
1100
1200
1300
1400
1500
1600
1700
1«00
1900
" 2000
2100
2200
2300
2400
02 C02
LOAD VOLX VOL*
HHTH HEAS HEAS
b****^AAA44^AAA^AA A * * ^
IWWWWVffVWWW
|9.0
I9.9
!«.«
10.9
1«.3
1'.3
..!»•« -
20.5
20.5
21.4
25.5
27.0
27. B
27.8
25.5
23.4
23.4
23.4
2«.3
24.0
23.7
23.4
23.1
!".«
mmmmmmmmm m t
4 10.5
2 10.7
1 10.7
2 10.7
1 10.7
1 10.7
2 10.7
2 10.7
3 10.6
2 10.7
2 10.7
2 10.6
2 10.7
' 10.7
10.5
10.S
10.5
10.5
10.5
10.3
10.3
10.4
10.5
10.4
CO
PPHV
MEAS
r»G/J
> A A A* A A .
r • W Ww H V
22.
23.
23.
24.
24.
29.
24.
24.
24.
24.
24.
23.
23.
0.
8.
6.
8.
a.
10.
10.
13.
16.
16.
18.
NO
NG/J
1 A A A A * *
1 W • « • • W
385.
386.
382.
3fl6.
369.
3»2.
391.
382.
376.
375.
379.
392.
392.
00 1.
389.
372.
370.
366.
343.
355.
357.
357.
356.
360.
»*
*•
**
*•
**
• •
tt t & ^
• •
*•
• •
»•
**
«*
«•
t*
**
**
**
• »
**
••
**
*•
**
**
••
" ••
**
• •
• •
• •
KVB11-6015-1224
133
-------
••
ft*
*•
«*
••'
•• DATE
ftftftftftftftftftft^
•• 6/21/79
•• 6/24/79
•• 6/24/79
•• 6/24/79
•• 6/24/79
•• 6/24/79
•* 6/24/79
•• 6/24/79
•• 6/24/79
•• 6/24/79
•• 6/24/79
•• 6/24/79
•• 6/24/79
•• 6/24/79
•• 6/24/79
•• 6/24/79
•* 6/24/79
•« 6/24/79
•• 6/24/79
•• 6/24/79
•• 6/24/79
** 6/24/79
•• 6/24/79
•• 6/24/79
HOURLY DATA
DRY STACK GAS CONCENTRATION
02 C02 CO NO CO
LOAD VOLX VOL* PPMV PPMV PPHV
TIME
ft ft ftftftft ft
too
200
300
400
soo
600
. TOO
600
900
1000
1100
1200
1300
1400
1500
1600
1700
1SOO
1900
2000"
2100
2200
2300
2400
MMH MEAS
lft#ftftftftftftft*ftftft
20.2 8.6
20.2
20. 5
20.8
20. a
21.1
20.2
20.2
21.1
21.1
20. 6
20.5
20.2
20.2
1«.9
20.2
l«.9
19.9
19.9
21.7
.6
.7
.7
.7
.7
.7
.7
.6
.6
.6
.6
.6
.5
.5
.5
.5
.5
.5
.5
20.5 a.e
19.3 8. 6
19.0 8.9
19.3 8.9
MEAS
I ft ftftftft A
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.2
10.0
10.0
10.0
10.0
MEAS
ft ft ft ft ftft
30.
40.
40.
50.
50.
51.
55.
56.
60.
60.
60.
60.
55.
10.
10.
10.
10.
10.
10.
10.
20.
20.
20.
20.
MEAS
bft ft ft ft ft ftft
425.
425.
423.
422.
420.
4ia.
018.
409.
406.
402.
400.
400.
395.
380.
380.
377.
378.
381.
380.
350.
375.
372.
380.
374.
3*02
ft ft • til ft
««.
58.
59.
73.
73.
75.
81.
82.
87.
87.
87.
87.
80.
14.
11.
14.
14.
14.
14.
14.
30.
30.
30.
30.
NO
PPMV
SX02
**•****•
6tn.
6|R.
621 •
6|9.
616.
6|3.
613.
600.
591.
585.
582.
582.
575.
549.
549.
544.
546.
550.
549.
505.
555.
550.
567.
S5A.
CO
NG/J
ft Aft Aft fl
16.
21.
21.
?6.
26.
27.
29.
29.
31.
31.
31.
31.
29.
5.
5.
5.
5.
5.
5.
5.
11.
11.
11.
11.
NO
NG/J
Ift ft ft ft ft ft ft
363.
363.
364.
364.
362.
360.
360.
352.
3«7.
3«3.
3«2.
342.
338.
322.
322.
320.
320.
323.
322.
297.
326.
323.
333.
328.
tt
• *
**
• *
• •
**
• **
*•
• *
**
••
**
**
«•
• •
**
•»
*•
• *
•*
«•
*•
**
• •
• *
• •
**
•*
**
•*
• *
•*****•**•••••••*•••••••••**••••••**••*•••••*•*•*•*••••***•*•••••*••**•••*•*•**•••*•
KVB11-6015-1224
134
-------
••
HOURLY DATA
DRV STACK GAS CONCENTRATION
••
ft*
•• DATE
www A wwww w w
•* 6/25/79
•• 6/25/79
•• 6/25/79
•• 6/25/79
•• 6/25/79
•• 6/25/79
•* 6/25/79
»• 6/25/79
•* 6/25/79
•• 6/25/79
•• 6/25/79
•• 6/25/79
•• 6/25/79
•• 6/25/79
•• 6/25/79
•• 6/25/79
•• 6/25/79
•« 6/25/79
•• 6/25/79
«• 6/25/79
•• 6/25/79
•• 6/25/79
•• 6/25/79
•• 6/25/79
TIME
k 4k fkf| * A A 4
| W W W W W W 1
too
200
300
400
500
600
700
"eoo"
900
1000
1100
1200
1300
~ 1400'
1500
1600
1700
1800
1900
~2000
2100
2200
2300
2400
02
LOAD VOH
MHTH MEAS
AA*AAAAflltfk^*A^A'
wwwwwflwwwr
19.9
20.2
20.2
19,9
19.9
|9.9
20.2
" 20,8
20,8
i • m -mmm
.9
.9
.9
.9
.0
.0
.0
.0 '"
.0
22.0 .0
25.5 .0
26.7 .0
27. 9.0
~ 27. " '
27.
27.
27.
25.
24.
24. -
23.
23.
iete
.7
.1
.0
.6
.7
.9
.1 "
.9
.9
.0
.2
C02
VOLT
MEAS
* A 4k A
• WWW
,
.
,
.
.
10.0
10.0
10.0
10.1
10.1
10.2
10.1
10.7
10.8
10.0
10.7
10.6
10.5
io.s
10.5
10.6
10.5
10.3
CO
PPMV
MEAS
tAAAffcAdlAl
•wvwwwwwi
30.
35.
38.
42.
48.
50.
55.
' 60.
60.
60.
60.
30.
10.
"5.
6.
10.
13.
20.
29.
SB.
38.
42.
41.
NO
PPMV
MEAS
ptft* A 4>4tA<
i W W W WWW1
375.
375.
378.
377.
377.
377.
376.
374.
374.
378.
378.
420.
455.
456.
450.
428.
44|.
447.
443.
414.
435.
432.
431.
445.
CO
PPMV
3X02
t A * A A A Ai
rw w wwwm
45.
52.
57.
63.
72.
75.
83.
90.
90.
51.
51.
26.
IS.
8.
9.
15.
20.
30.
44.
57.
56.
60.
63.
63.
NO
PPHV
3X02
t •% A A A * Ad
' WW •• W W V
559.
559.
564.
562.
567.
567.
566.
563.
563.
324.
324.
360.
684.
729.
682.
643.
64|.
656.
660.
628.'
649.
645.
609.
681.
CO
NG/J
A A A Afk A 1
WW W WWff 1
16.
19.
20.
22.
26.
27.
30.
32.
32.
18,
18.
9.
5.
'3.
3.
5.
7.
11.
16.
'21.
20.
21.
23.
22.
NO
NG/J
,AAAAft%*Aft1
•WWWWWW1
s?e.
328.
331.
330.
333.
333.
332.
330. ~
330.
190.
190.
211.
402.
428.'
401.
378.
377.
385.
388.
369.
381.
379.
381.
400.
• •
• •
••
W ft
*•
*•
ft*
• *
• *
• *
• •
• •"
• *
• •
• •
• •
• •
• •
• •
*•
• •
• *
• •
**
• •
• •
• •
• •
KVB11-6015-1224
135
-------
••••••••••••l
ft*
ft*
**
ft*
ft*
*• DATE
AA*AAAAA****<
WWWWWWWWWWWWl
•• 6/27/79
•• 6/27/79
•• 6/27/79
•• 6/27/79
•• 6/27/79
•• 6/27/79
•• 6/27/79
** 6/27/79
•• 6/27/79
•• 6/27/79
•* 6/27/79
•• 6/27/79
•* 6/27/79
•• 6/27/79
•• 6/27/79
•• 6/27/79
•* 6/27/79
*• 6/27/79
•• 6/27/79
** 6/27/79 "
*• 6/27/79
•• 6/27/79
•• 6/27/79
•• 6/27/79
»**•*•
TIME
k* A ** A
V W W WWW
too
200
300
400
500
600
700
BOO
900
1000
1100
1200
1300
1400
1500
1600
1700
1600
1900
2000
2100
2200
2300
2400
••••••i
LOAD
MNTM
WW* WWfti *
16.1
16.1
16.1
16.4
16.7
16.4
17.0
20.5
I'.S
2". 6
24.9
25.2
25.2
23.7
19.6
19.6
23.7
25.2
25.2
23.4
19.9
17.0
l»\n
»••**•*!
DRY
02
VOLX
MEAS
b wft 6 ft Awl
6.8
6.7
6.6
6.5
6.5
8.6
6.6
6.7
.0
6.7
6.6
6.5
6.5
8.5
6.5
8.6
6.6
6.6
6.6
6.6
6.7
6.6
6.7
8.8
••••••••••••••••••••••••••••••••••••••••••<
HOURLY DATA
STACK GAS CONCENTRATION
C02
VOLX
MEAS
bAwAwwwi
10.2
10.2
10.3
10.3
10.2
10.2
10.2
10.1
10.0
10.4
10.5
10.5
10.5
10.5
10.5
10.4
10.3
10.4
10.4
10.4
10.3
10.4
10.4
10.2
CO
PPMV
MEAS
b**A***4
IWWWWWW1
a.
10.
10.
10.
11.
11.
11.
11.
20.
29.
30.
30.
30.
IS.
22.
23.
11.
|9,
18.
IB.
8.
0.
1.
0.
NO
PPMV
MEAS
kwwAwwAd
418.
413.
415.
416.
422.
422.
414.
417.
410.
441.
445.
446.
455.
460.
453.
455.
450.
448.
439.
421.
390.
396.
390.
379.
CO
PPMV
3*02
lA4****<
IWWWWWWl
12.
14.
15.
15.
16.
16.
16.
16.
17.
43.
44.
43.
43.
22.
32.
34.
17.
26.
26.
26.
11.
1.
1.
0.
NO
PPMV
3X02
b**A*6*4
• WMWWiBiVI
618.
606.
604.
604.
609.
614.
603.
612.
351.
646.
648.
647.
657.
664.
654.
662.
655.
652.
639.
612.
57?.
576.
572.
561.
CO
NG/J
bftwwwft+1
4.
5.
5.
5.
6.
6.
6.
6.
6.
IS.
16.
15.
15.
8.
11.
12.
6.
10.
9.
9.
4.
0.
0.
0.
»••••••••••
• •
• •
• •
NO
NG/J
b w ft ft ft ft w (
36J.
356.
355.
355.
358.
360.
354.
359.
206.
380.
3dO.
380.
386.
390.
384.
388.
384.
363.
375.
359.
336.
336.
336.
329.
• •
*•
b ft ft 4
• •
• •
• •
• •
• •
••
••
• •
• •
••
• •
• •
• •
•*
••
*•
••
••
• •
••
••
••
• •
••
KVB11-6015-1224
136
-------
*•
DBV STACK
HOURLY DAT*
GAS CONCENTRATION
•*
•*
**
*• DATE
TIME
LOAD
MNTH
02
VULX
MEAS
C02
VOLX
MEAS
CO
PPMV
MEAS
NU
PPMV
MEAS
CU
PPMV
NO
PPMV
3X02
CO
NG/J
NO
Nb/J
*•
**
•••••'••••••••••••••••••••••••••••••••••••••ft******************************..**.****
•• 6/28/79
*• 6/28/79
•• 6/28/79
•• 6/28/79
*• 6/26/79
•• 6/26/79
•• 6/26/79
«• 6/28/79
•• 6/28/79
•• 6/28/79
•• 6/28/79
•• 6/28/79
•• 6/28/79
•• 6/28/79
•• 6/28/79
•• 6/28/79
•• 6/28/79
•• 6/28/79
•• 6/28/79
•* 6/28/79
•• 6/28/79
•* 6/28/79
•• 6/28/79
•* 6/28/79
100
200
300
400
500
600
700
600
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2000
I7.fr
17.9
18.2
10.2
16.2
16.2
18.5
10.9
23.4
20.9
26.7
20.5
19.9
19.9
2oU
27.2
28^7
26.1
20.2
|7.6
IS. 8
15.2
6.8
8.7
8.7
8.8
6.6
8.6
8.8
8.8
6.0
8.3
6.0
6.3
8.2
0.3
0.2
8.3
8.3
8.4
6.4
8.4
6.5
6.8
9.1
9.1
10.2
10.2
10.2
10.2
10.1
10.1
10.1
10.1
10.7
10. 8
10.7
10.8
10.9
10.8
10.7
10."
10.8
10.8
10.8
10.8
10*7
10.3
10.0
9.9
9.
0.
3.
21.
I".
24.
a.
25.
25.
27.
27.
30.
29.
29.
33.
24.
18.
21.
26.
31.
39.
45.
45.
49.
370.
367.
352.
342.
336.
329.
329.
320.
431.
46|.
460.
422.
427.
44|.
444.
068.
613.
664.
672.
675.
612.
588.
611.
606.
13.
0.
5.
31.
28.
36.
12.
38.
36.
36.
38.
43.
00.
02.
47.
35.
26.
11.
17.
45.
57.
67.
69.
75.
548,
539.
516.
SOS.
498.
487.
487.
471.
6]7.
655.
659.
6QO.
603.
627.
626.
665.
871.
962.
967.
67Q.
920.
5.
0.
2.
11.
10.
13.
4.
13.
13.
10.
isl
IS*
17.
12.
9.
11.
13.
16.
20.
24.
25.
27.
322.
316.
303.
297.
292.
266.
2"6.
278.
362.
185.
3B7.
352.
35a.
368.
3*7.
390.
512.
559.
565.
568.
519.
511.
504.
5UO.
t*
»*
• «
.*
• •
«•
• *
««
• *
• *
**
• •
**
**
• *
• *
• *
• *
••
• *
**
*•
**
••
••*«***•*•••••«•*••**•*****••*••*••***•*•*••***•***•.•**••«•••«.•**.*»*.«*»****«*•*.
KVB11-6015-1224
137
-------
•t********»l
**
**
•*
**
• *
** DATE
»••••*«
TIME
•••**••«•***•
OUT
02 .
LOAD VOU
HWTH MEAS
»••»*•
STACK
C02
VOLS
MEAS
»•••••**•••**••
HOURLY DATA
»*•••*•
•*»••*«
»«•••••
k ft 4 4 4 *
GAS CONCENTRATION
CO NO
PPMW PPMV
MEAS MEAS
CO
PPMV
3XU2
NO
PPMV
3Z02
CO
NG/J
NO
NG/J
«**•*
**
• *
»*
• •
*•
*»
*•*****••*••**•••••••••«*••***•*«•••*•*••••••••••*•••**••••••••••••••••*••••••*•*•••
*• 6/29/79
*• 6/29/79
•* 6/29/79
•• 6/29/79
•• 6/29/79
** 6/29/79
•• 6/29/79
•* 6/29/79
•* 6/29/79
•• 6/29/79
•• 6/29/79
•* 6/29/79
•• 6/29/79
•* 6/29/79
•• 6/29/79
•* 6/29/79
•• 6/29/79
•* 6/29/79
•• 6/29/79
•* 6/29/79
•• 6/29/79
•• 6/29/79
•• 6/29/79
•• 6/29/79
100
200
300
000
500
600
700
BOO
900
1000
1100
1200
1300
1000
1500
1600
1700
1600
1900
2000
2100
2200
2300
2400
15.2
IS. 2
IS. 2
IS. 2
IS. 2
IS. 2
15.5
17.
|9.
22.
24.
26.
28.
32.
25.
22.
21.
21.
21.
19.
19.
15.
14.
14.6
.0
.0
.0
.0
.9
.0
.7
.5
.4
.3
.3
.0
.2
.0
.7
.0
.3
.3
.3
.4
.4
.8
.4
.1
10.1
10.0
9.9
9.8
10.0
9.9
10.2
10.5
10.8
10.8
10.8
10.0
10.8
11.1
10.0
10.7
10.9
10.8
10.8
10.8
10.7
10.3
9.7
9.8
52. 600.
54. 596.
56. 590.
58. 586.
60. 592.
61. 587.
61. 579.
62. 586.
0. 447.
16. 450.
14. 462.
11. 460.
10. 531.
11. 540.
12. 4flQ.
16. 452.
19. 454.
20. 454.
29. 454.
34. 463.
11. 426.
44. 446.
46. 429.
10. 430.
78.
81.
8«.
87.
89.
92.
90.
90.
0.
22.
19.
17.
14.
16.
14.
22.
28.
34.
41.
49.
16.
65.
72.
IS.
903.
897.
887.
68?.
883.
863.
809.
809.
600.
600.
656.
692.
709.
709.
565.
627.
605.
606.
646.
663.
609.
660.
668.
653.
26.
29.
30.
31.
32.
33.
32.
32.
0.
8.
7.
6.
5.
6.
5.
6.
10.
12.
IS.
16.
b.
23.
26.
5.
530.
527.
521.
518.
518.
519.
499.
498.
37*.
376.
385.
406.
440.
440.
332.
366.
379.
379.
379.
389.
358.
388.
392.
363.
*•
• •
*•
*•
• •
*•
**
•*
*•
• *
•*
• •
• •
• t
**
• *
• •
*•
•*
••
••
**
• •
**
KVB11-6015-1224
138
-------
• ft
• ft
1ft
•ft
•• DATE
ftftyftftftftftftftftft 1
•• 6/30/79
*• 6/30/79
•• 6/30/79
•* 6/30/79
•• 6/30/79
•• 6/30/79
•* 6/30/79
•• 6/30/79
•• 6/30/79
•• 6/30/79
•• 6/30/79
•• 6/30/79
•* 6/30/79
ft* 6/30/79
•• 6/30/79
•* 6/30/79
•* 6/30/79
** 6/30/79
•• 6/30/79
•ft 6/30/79
«• 6/30/79
•• 6/30/79
•• 6/30/79
•• 6/30/79
TIME
ft ft ft ft ft ft 1
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
DPY
02
LOAD VULX
MMTH MEAS
ftftftftftftftftf"
10.1
io!i
i«!i
14!
IT!
1'!
22.
Z3.
23.
23.
22.
22.
25.
25.
25.
1*.
16.7
15.2
.3
.3
.3
.3
.3
.3
.3
.2
.6
.5
.0
.3
.3
.a
.0
.0
.5
.5
.5
.5
.5
.6
.8
.1
STACK
C02
VOLX
MEAS
1 ft ft ft ft ft 1
.0
.6
.5
.5
.5
.5
.5
.6
10.3
10.0
10.7
10.8
10.8
10.7
10.7
10.7
10.7
10.6
10.6
10.6
10.6
10.5
10.1
9.8
HOURLY
DATA
GAS CONCENTHATION
CO
PPMV
MEAS
*******
• • w • w w i
53.
55.
58.
59.
61.
63.
65.
66.
TO.
68.
10.
6.
3.
2.
3.
2.
3.
3.
5,
6.
10.
to!
10.
NO
PPMV
MEAS
[ ft ft ft ft ft ft ft 1
421.
414.
012.
009.
408.
410.
409.
OH.
438.
454.
058.
059.
055.
050.
055.
454.
055.
069.
066.
063.
058.
021.
032.
030.
CO
PPMV
3XU2
i ****** i
1 • W W W W W •
81.
85.
89.
9| ,
94.
97.
100.
102.
102.
98.
15.
4,
2.
o.
3.
5.
5.
7.
11.
is.
28.
21.
15.
NO
PPMV
3X02
ft ft • • ft ft 1
650.
639.
636.
631.
630.
633.
631.
628.
638.
655.
656.
653.
647.
650.
651.
650.
657.
677.
673.
669.
66t.
613.
639.
653.
CO
NG/J
ft ft ft ft ft • 1
29.
31.
32.
32.
30.
35.
36.
36.
36.
35.
5.
3.
2.
1.
1.
1.
2.
2.
3.
o.
5.
10.
8.
5.
NO
Nb/J
ft ft ft ft ft ft 1
3*2.
375.
373.
371.
370.
372.
370.
369.
375.
385.
305.
383.
380.
382.
382.
382.
386.
397.
395.
393.
388.
360.
375.
383.
**
• •
• •
• •
' ft ft ft
• *
• •
• •
• •
• •
• •
• •
• •
• ft
• •
• •
*•
• ft
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••ft**
KVB11-6015-1224
139
-------
HOURLY DATA
•ft
ftft
•ft
••
•• DATE
ftft/ftftftftftftftftftl
*• 7/ 1/79
•« It 1/79
•• 7/ 1/79
•• It 1/79
•• 7/ 1/79
•* 7/ 1/79
•* 7/ 1/79
•• It 1/79
•• 7/ 1/79
•• 7/ 1/79
•* It 1/79
•• 7/ 1/79
»• 7/ 1/79
•* 7/ 1/79
•« 7/ 1/79
•• It 1/79
•• 7/ 1/79
•• 7/ 1/79
** 7/ 1/79
•• 7/ 1/79
•• 7/ 1/79
•• 7/ 1/79
•• 7/ 1/79
•* 7/ 1/79
TIME
kftftftftftft
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
(
LOAD VI
MNTH Mf
••••••*••<
14.6
14.6
14.
14.
14.
14.
14.
is!
18.
18.
|8.
18.
18.
19.
18.
19.
20.2
20.5
20.5
20.8
19.3
17.6 1
DRY
)2
)LX
:AS
rft ftfti
.2
.2
.2
.2
.1
.1
.1
.2
.8
.8
.7
.5
.5
.5
.6
.6
.6
.6
.6
.6
.6
.7
.6
».T
STACK
C02
VOLX
MEAS
lftftftft*<
9.6
9.6
9.6
9.6
9.6
9.6
9.6
9.7
10.0
10.0
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.0
10.0
10.0
10.0
10.0
10.0
GAS CONC
CO .
PPMV
MEAS
Fftftftftft ftftf
22.
26.
31.
35.
39.
42.
45.
34.
25.
25.
25.
25.
25.
25.
25.
26.
28.
30.
32.
36.
40.
45.
48.
50.
ENTRAT
NO
PPMV
MEAS
ftftftft ftft 1
426.
428.
429.
424.
423.
423.
425.
426.
448.
470.
472.
475.
475.
481.
483.
482.
487.
478.
471.
472.
463.
440.
461.
457.
[ON
CO
PPHV
3X02
(ft ft ftftftft '
34.
40.
47.
53.
59.
64.
68.
52.
37.
37.
37.
36.
36.
36.
36.
38.
41.
44.
47.
52.
SB.
66.
70.
73.
NO
PPMV
3X02
Ift ft ftftftftl
651.
655.
657.
649.
642.
642.
645.
651.
663.
695.
693.
686.
686.
694.
70S.
701.
7Q9.
696.
685.
687.
674.
646.
671.
671.
CO
NC/J
i* A A A A A '
1 WW WW • fl
12.
14.
17.
19.
21.
23.
24.
19.
13.
13.
13.
13.
13.
13.
13.
14.
15.
16.
17.
19.
21.
24.
25.
26.
NO
NG/J
t ft ft ft ft • ft I
382.
385.
386.
381.
377.
377.
379.
382.
389.
408.
407.
403.
403.
408.
413.
412.
416.
408.
402.
403.
396.
379.
394.
394.
• •
• •
• •
• •
**
i * • A
1 W W W
**
• *
••
ft*
• *
• •
• ft
••
• •
• •
• •
• ft
••
ftft
ft*
ft*
• *
• •
• •
•ft
ft*
• ft
ft*
• ft
KVB11-6015-1224
140
-------
*•
HOURLY DATA
DRY STACK GAS CONCENTRATION
ww
• ft
**
•* DATE
ftftftftft^**A*^d
•• 7/
•* 7/
•• 7X
•• 7/
•• 7/
• • It
•• 7/
• • 7/
•* 7/
•• 7/
•• 7/
•* 7/
•• 7/
•• 7X
•* 7X
•• 7X
•* 7X
•• 7X
•• 7X
•• 7X
•• 7X
•• 7X
•• 7X
•• 7X
w ff mm m m W •
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
2/79
TIME
fftftft ftft ft
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
02 C02
LOAD VOLX VOLX
MNTH HEAS HEAS
ftft»ftftftftftftft
16.7
16.7
|7.0
17.0
|7.0
17.0
|7.0
18.8
20.5
20.5
20.5
20.2
j9.
j9.
1*.
|9,
19.
19.
J9,
|9.
1*.
18.8
18. 8
•WWWWWVWXBI
8 10.0
6 10.0
7 10.0
7 10.0
6 10.0
7 10.0
10.0
10.0
10.3
10.2
10.2
10.2
10.2
10.6
10.4
10.7
10.7
10.7
10.6
10.7
10.7
10.5
5 10.4
5 10.5
CO
PPMV
MEAS
Ift ft ft ft ft ft '
55.
60.
65.
65.
66.
67.
70.
23.
20.
18.
17.
20.
20.
23.
23.
18.
17.
18.
19.
20.
3.
30.
24.
25.
NO
PPMV
MEAS
rftft ft ftft ft <
4
-------
•*
•*
• •
t*
*•
•• DATE
ftftftftyftjftftftftftft
•• 7/ 3/79
•• 7/ 3/79
•• 7/ 3/79
•• 7/ 3/79
»• 7/ 3/79
•* It 3/79
•• 7/ 3/79
•• 7/ 3/79
•• 7/ 3/79
•• 7/ 3/79
•• 7/ 3/79
•• 7/ 3/79
•• 7/ 3/79
•* 7/ 3/79
•* If 3/79
•• 7/ 3/79
•• 7/ 3/79
•• 7/ 3/79
•• 7/ 3/79
•• 7/ 3/79
•• 7/ 3/79
•• 7/ 3/79
•• 7/ 3/79
•* 7/ 3/79
TIME
tftftftft ft fl
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
D»r
02
LOAD VOH
M*TM MEAS
ftft ftft ftft ft ft ft
18.8
18.8
18.8
|9.o
I'.O
I'.O
1«!
20!
20.
24.
fti!
63.
65.
65.
65.
65.
65.
65.
43.
23.
1'.
• H W Wl
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.4
.6
.9
.3
.2
.1
.1
.1
.1
.1
.1
.2
.7
.4
HOURLY
DATA
t*
STACK GAS CONCENTRATION ••
C02 CO
VOLX PPMV
MEAS MEAS
Iftftftftftftftftftftftft'
10.5 26.
10.5 27.
10.5 29.
10.
to.
to.
10.
10.
10.
10.
10.
10.
11.
10.
10.
10.
10.
11.
10.
10.
10.
10.
10.
10.
31.
36.
40.
46.
n!
7.
6.
5.
4.
5.
7.
12.
12.
13.
10.
IS.
16.
7.
22.
27.
NO
PPMV
MEAS
f ft ft ft ft ft ft ft 1
424.
422.
398.
390.
400.
3*1.
390.
357|
422.
427.
452.
573.
610.
620.
610.
606.
614.
603.
604.
606.
532.
424.
415.
CO
PPMV
3X02
• A • * A* A
!• • • WW W
37.
39.
41.
45.
51.
58.
66.
71.
15.
10.
9.
8.
6.
7.
to.
16.
16.
1'.
21.
23.
9,
32.
NO
PPMV
3X02
Iftftftft ft fl
612.
609.
574.
563.
577.
564.
564.
564.
515.
609.
611.
659.
788.
867.
874.
853.
847.
859.
843.
845.
807.
709.
622.
590.
CO
NG/J
ft ft ft ft ftft 0 '
13.
14.
IS.
16.
18.
21.
24.
25.
5.
4.
3.
3.
2.
2.
4.
6.
6.
6.
7.
8.
8.
3.
11.
10.
NO
NG/J
1 ft ft ft ft ft ft '
359.
357.
337.
330.
339.
331.
331.
331.
302.
357.
359.
387.
463.
509.
513.
501.
097.
504.
095.
096.
497.
440.
365.
349.
**
**
• •
••
&•• •
• *
• *
**
• *
**
**
**
**
**
*•
• «
*•
• •
**
*•
**
**
**
**
**
**
*•
• •
• •
••••••••••••••••••••••••ft***********************************************************
KVB11-6015-1224
142
-------
•••••••••••••••••••••••••••••••••••••••••••••••*f**ft********
HOURLY DATA ••
DRY STACK GAS CONCENTRATION ••
*•
•ft
•ft
*• DATE
**j*/*;*f
• ft It
** 11
•• 11
• * It
•• It
•• It
•• It
•• If
•• 7/
•• 7/
•• It
*• 7/
*• 7/
•• 7/
•• 7/
*• It
•• 11
•• It
•• 7/
•• 7/
•• It
•• It
•* It
•* It
iwwwwwv
0/79
0/79
0/79
0/79
0/79
0/79
0/79
4/79
4/79
0/79
0/79
0/79
0/79
0/79
0/79
0/79
0/79
0/79
0/79
0/79
0/79
0/79
0/79
TIME
******
too
200
300
000
500
600
700
800
900
1000
1100
1200
1300
1000
1500
1600
1700
1800
19QO
2000
2100
2200
2300
2400
02 C02 CO
LOAD VOL* VOL* PPMV
HHTH MEAS MEAS MEAS
***********
17.6
16.4
16.7
16.7
17.0
17.0
17.3
17.3
17.6
17.9
18. 8
21.1
23.4
26.0
20.9
23.4 8
23.0 8
23.0 8
23.0 8
19.6 8
|7.6 8
19.9 8
20.5 8
17.6 8
wwwww»w»"wwwwwwwi
10.2 30.
10.2 30.
10.2 39.
10.2 07.
10.1 55.
10.1 62.
10.1 60.
10.1 67.
10.1 67.
10.1 66.
10.1 09.
10.3 6.
|0.
10.
10.
10.
10.
10.
10.
10.
10.
10.
5 10.
7 10.
0.
0.
0.
0.
0.
12.
10.
11.
10.
10.
11.
11.
NO
PPMV
MEAS
i A A A A A Ad
1 • • WW Iff W\
005.
01S.
018.
020.
022.
422.
423.
419.
018.
016.
422.
427.
437.
444.
420.
019.
015.
014.
426.
400.
448.
436.
440.
438.
CO
PPMV
3X02
k A * Adb * A (
?• W*W •• *
04.
09.
57.
69.
81.
91.
95.
100.
100.
101.
72.
8.
0.
0.
0.
0.
0.
17.
10.
IS.
IS.
15.
16.
16.
NO
PPMV
3X02
i * Arfbrih *4h 1
••••••••
589.
603.
608.
616.
620.
620.
626.
621.
619.
615.
619.
621.
636.
646.
617.
610.
595.
592.
610.
573.
652.
635.
635.
643.
CO
NG/J
f ** ** * * 1
16.
IB.
20.
25.
29.
33.
30.
36.
36.
36.
26.
3.
0.
0.
0.
0.
0.
6.
5.
5.
5.
S.
6.
6.
NO
NG/J
****** 1
346.
354.
357.
362.
364.
366.
367.
364.
363.
361.
363.
365.
373.
379.
362.
358.
349.
348.
358.
336.
383.
373.
373.
377.
••
• •
••
1 * * *
••
••
••
••
*•
••
••
••
• •
••
••
•*
••
••
*•
••
••
• •
• •
••
• •
• •
• •
• •
»••»•••*••••••*•*•••••••••*••••••***•••••«••*•••«»••*•«•••••••••••••*•••<*««••***•••
KVB11-6015-1224
143
-------
HOURLY OAT*
DRY STACK GAS CONCENTRATION
••
**
** DATE
**•***•**•<
•• 7/ 0/79
•* 7/ 0/79
•* 7/ 0/79
•• 7/ 0/79
*• 7/ 0/79
•* 7/ 0/79
•* 7/ 0/79
•• 7/ 0/79
•• 7/ 0/79
*• 7/ 0/79
•• 7/ 0/79
*« 7/ a/79
*• 7/ a/79
*• 7/ 0/79
•* 7/ a/79
*• 7/ 0/79
•• 7/ 0/79
•* 11 a/79
•• 7/ 0/79
•• T/ a/79
•• 7/ a/79
•* 7/ 0/79
•• 7/ 0/79
** it a/79
TIME
>******<
too
200
300
000
500
600
700
800
900
1000
1100
1200
1300
1000
1500
1600
1700
1800
19QO
" 2000
2100
2200
2300
2000
LOAD
MhTH
•*•••••*
17.6
16.0
16.7
16.7
17.0
17.0
17.3
17.3
17.6
17.9
18.8
21.1
23.0*
26.0
2«.9
23.0
23.0
23.0
23.0
" 19.6
17.6
2o!s
17.6
02
VOL1
MEAS
• •••1
8.(
8.<
B.(
8.1
8.1
8.
8.
B.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.
8.<
8.
8.
8.
C02
I VOLX
1 MEA8
'AAfttkftftA'1
i 10.2
) 10.2
i 10.2
' 10.2
' 10.1
10.1
10.1
10.1
10.1
10.1
10.1
10.3
10.0
10. a
10.3
10. a
10.6
10.6
10.5
10.5
k 10.3
k 10.3
5 10.3
1 10.2
CO
PPMV
MEAS
>*** + *•)
• Ww w w w i
30.
30.
39.
07.
55.
62.
60.
67.
67.
68.
09.
6.
0.
0.
0.
0.
0.
12.
10.
11.
10.
10.
11.
11.
NO
PPMV
MEAS
r Aft6ftftfti
005.
015.
018.
020.
022.
022.
023.
019.
018.
016.
a22.
027.
037.
000.
020.
019.
015.
010.
026.
000.
008.
036.
000.
038.
CO
PPMV
1X02
>ft ftftftftfl \
00.
09.
57.
69.
81.
91.
95.
100.
100.
101.
72.
8.
0.
0.
0.
0.
0.
17.
10.
15.
15.
15.
16.
16.
NO
PPMV
3X02
*••*•*<
589.
603.
608.
616.
620.
620.
626.
621*
619.
6|5.
619.
621.
636.
606.
617.
610.
595.
592.
610.
573.
652.
635.
635.
603.
CO
NG/J
t*****4<
16.
18.
20.
25.
29.
33.
30,
36.
36.
36.
26.
3.
0.
0.
0.
0.
0.
6.
5.
5.
5.
5.
6.
6.
NO
NG/J
t***«**i
306.
35fl.
357.
362.
360.
366.
367.
360.
363.
361.
363.
365.
373.
379.
362.
358.
309.
3«8.
358.
336.
383.
373.
373.
377.
• *
**
!«»•
••
• *
••
• *
••
*•
• *
••
*•
••
*•
• ••
• *
**
••
••
**
• *
••
••
• •
• •
**
KVB11-6015-1224
144
-------
*•
HOURLY DATA
DHV STACK GAS CONCENTRATION
••
** c
4 ftjftjftjftj
•• 7/
• • 7/
•• 7/
•* 11
• * 7/
•• 7/
•• It
•* 7/
•• 7/
•• 7/
•• 7/
• • It
•• 7/
•• 7/
•• 11
•* 7/
•• It
•• 7/
*• 7/
•• It
*• T/
•• 7/
•• 7/
•• 7/
)ATE
rft ft ftfti*4
• • W WV W<
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
5/79
LOAl
TIME M*Tt
'ftjft/ftftftftftftftft'
100 17. <
200 17. <
300 |7.(
000 17. <
500 l7.(
600 16.1
700 16.1
800 16.'
9QO 20.<
1000 26.1
1100 26.
1200 23.
1300 23.
1000 23.
1500 23.
1600 23.
1700 23.
1600 23.
1900 23.
2000 20.'
2100 19.1
2200 19.
2300 19.
2400 J9,
02
) VfJLt
« MEAS
r*ftftftftftftft'
> 8.7
, 8.7
> 8.7
> 8.7
> H.B
r s.a
r 8.7
r a.a
! 8.5
1 8.3
8.1
8.7
.5
.3
.2
.2
.2
.2
.2
> .3
i 8.3
) 8.2
1 8.4
C02
VOIX
MEAS
r ft ft ft ft ft ft ft
10.2
10.2
10.2
10.2
10.2
10.2
10.2
10.2
10.0
10.6
10.8
•10.1
10. 0
10.6
10.6
10.5
10.5
10.5
10.5
10.0
10.0
10.0
10.2
10.1
CO
PPMV
MEAS
A A 4 + ** <
• ••WWW'
12.
12.
13.
13.
13.
16.
20.
21.
22.
13.
12.
14.
14.
13.
13.
11.
to.
9.
11.
16.
15.
17.
IT.
19.
NO
PPMV
MEAS
i* A * •> * A A
r • • w ii • • •
007.
007.
048.
048.
002.
443.
050.
060.
030.
518.
529.
012.
392.
388.
378.
381.
377.
372.
361.
356.
376.
367.
3T1.
376.
CO
PPMV
3«02
ft ft ft ft ft ft '
IB.
16.
19.
19!
27.
29.
31.
32.
18.
16.
21.
20.
I".
18.
16.
10.
13.
15.
23.
22.
24.
25.
27.
NO
PPMV
3X02
f ft ftft ft ft ft ft
656.
656.
657.
657.
650.
655.
666.
6flO.
621.
735.
740.
600.
566.
551.
532.
536.
532.
525.
538.
506.
535.
518.
531.
536.
CO
NG/J
ft ft ftftft 0 1
6.
6.
7.
7.
7.
10.
10.
11.
11.
6.
6.
8.
7.
7.
6.
6.
5.
5.
5.
6.
8.
9.
9.
10.
NO
NG/J
ft ft ft ft ft ftl
385.
365.
366.
316.
364.
365.
391.
ooo.
364.
032.
055.
355.
332.
324.
312.
315.
312.
306.
316.
297.
314.
304.
312.
316.
**
••
t***
**
• •
• *
• *
• «
• «
*•
•*
*«
**
• •
*•
• •
••
•*
• *
• •
*•
*•
*•
*•
*«
• •
145
KVB11-6015-1224
-------
HOURLY DATA
ft*
ft*
••
•*
DRV STACK GAS CONCENTRATION
02 C02 CO NO CO
LOAD VOLI VOLt PPHV PPKV PPMV
•* DATE
ftftftftftl"1
** 7X
•• 7X
*• 7X
•* 7X
•* 7X
•* 7X
*• 7X
•• 7X
•• 7X
*• 7X
•• 7X
•* 7X
•• 7X
•• 7X
•• 7X
*• 7X
•* 7X
•• 7X
•• 7X
•• 7X
•• 7X
•• 7X
•« 7X
ft* 7X
• • WWWW1
6X79
6X79
6X79
6X79
6X79
6X79
6X79
6X79
6X79
6X79
6X79
6X79
6X79
6X79 "
6X79
6X79
6X79
6X79
6X79
6X79
6X79
6X79
6X79
6X79
TIME
rftftftftfl
100
290
300
400
500
600
700
BOO
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
*MTH MEAS MEAS
ftftftftftftftftftft
19.0
|9.0
19.3
19.6
19.0
19.0
19.3
19.3
21.1
24.9
25.8
29.3
27.5
27.8
27)0
25.5
23.7
22.
22.
22.
22. 8
21. 8
19. 8
18. 8
WHWWWWMW
4 10.2
5 10.0
10. 1
10.0
10.1
10.0
10.2
10.1
10.3
10.5
10.5
10.6
10.5.
10.5
10.5
10.4
10.6
10.5
10.5
10.5
10.5
10.5
10.2
10.2
HCAS
ftft ftftft ft
19.
20.
23.
24.
26,
111
40.
31.
13.
11.
12.
13.
14.
19.
19.
19.
20.
21.
26.
22.
23.
5.
29.
MEAS
tftftftftftftf
375.
384.
360.
383.
375.
375.
368.
360.
362.
374.
372.
379.
378.
381.
382.
400.
409.
411.
412.
380.
405.
406.
390.
384.
3X02
ft ft ft ft ft ft
28.
30.
33.
35.
37.
40.
45.
57.
45.
19.
16.
IB.
19.
20.
27.
28.
26.
28.
29.
36.
31.
32.
7.
42.
NO
PPMV
3*02
kftftft ftft ft •
538.
555.
544.
552.
538.
541.
527.
511.
519.
54|.
532.
543.
542.
546.
552.
STB.
577.
584.
585.
540.
571.
572.
563.
554.
CO
NGXJ
A A A* * A
WW WH W(
10.
11.
12.
12.
13.
14.
16.
20.
16.
7.
6.
6.
7.
7.
10.
10.
9.
10.
10,
13.
11.
12.
3.
15.
NO
NGXJ
1 ft ft ft ft ft ft
316.
326.
319.
324.
316.
318.
309.
300.
305.
317.
313.
319.
318.
320.
324.
339.
339.
3"3.
343.
317.
335.
336.
331.
326.
*•
• *4 •
• • " ^
*•
• •
*•
«•
• •
• •
«•
**
*•
• *
«•
•*
«•
•*
•*
»»
• *
•*
•*
••
•*
•*
••
«*
•••••••••••••••••••••••••••••••••••••••••A***ft•••••••••••••••••*••••••••••••••••••••
KVB11-5015-1224
146
-------
•*
HOURLY DATA
DRY STACK GAS CONCENTRATION
• •
**
*•
*« DATE
ftftftftftftftftftAftl
•• It 7/79
•• It 7/79
•• It 7/79
•• It 7/79
•• It 7/79
•* It 7/79
•* It 7/79
*• It T/T9
•* It 7/79
•• It T/T9
•• It T/T9
*• It T/79
*• It T/T9
•• T/ T/T9
•• It T/T9
•* T/ T/T9
•• It T/T9
*• It T/T9
•• T/ T/T9
** 11 T/T9
•* T/ T/T9
** It T/T9
*• It 7/79
*• 7/ 7/79
TIME
'•ft. ft ft ft ft
too
200
300
400
500
600
700
•00
900
1000
1100
1200
1300
1400
1500
1600
1700
1600
1900
2000
2100
2200
2300
2400
LOAC
NMTt
••••<
16. i
IB.
16.
1«.
16.
|6.
16.
18.
16.
IT.
21.
21.
21.
21.
21.
l'»
IB.
IB.
• 9
• 9 _
18.
18.
16.,
18.,
02
1 VOL1
i MEAS
ft ft ftftft ft 1
! •
•
.
•
.
.
,
.
.
,
,
.
.
•
.
.
.
.
.
.
.'
.'
; a.<
\ 8.
C02
[ VOLX
1 MEAS
Iftft ftftftftft ft 1
10.2
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10. 1
10.1
10.2
10.3
10.3
10.3
10.3
10.3
10.3
10.2
10.2
10.4
; 10.3
5 10.3
5 10.3
k 10.2
CD
PPMV
MEAS
ftftftftftft1
32.
35.
39.
42.
45.
49.
52.
56.
58.
62.
56.
28.
23.
21.
21.
21.
20.
19.
19.
25.
23.
25.
27.
30.
NO
PPMV
HEAS
fftft ftftftft'
381.
363.
380.
377.
386.
366.
395.
389.
383.
378.
400.
404.
406.
'406.
373.
393.
363.
373.
370.
357.
371.
371.
373.
362.
CO
PPMV
3X02
(ft ftft ftftft '
47.
51.
56.
61.
66.
72.
76.
81.
84.
90.
61.
40.
33.
30.
30.
30.
29.
28.
27.
37.
34.
36.
39.
44.
NO
PPMV
3X02
Ift ft ft ft •• <
sse!
553.
549.
561.
561.
575.
561.
554.
546.
576.
564.
566.
594.
539.
572.
556.
543.
538.
512.
536.
535.
536.
556.
CO
NG/J
(ft ft ft ft ft~£i
17.
16.
20.
22.
24.
26.
27.
29.
30.
32.
2'.
14.
12.
11.
11.
11.
10.
10.
10.
13.
12.
13.
14.
16.
NO
NG/J
' ft ft ft ft ft ft 1
325.
326.
325.
322.
330.
330.
336.
330.
325.
321.
339.
343.
3«4.
349.
316.
336.
326.
319.
316.
300.
315.
314.
316.
326.
• *
*•
• *
r ft ft ft
•*
*•
••
•*
••
*•
••
••
•*
••
•*
••
•*
*•
••
**
••
•*
•*
*•
*•
*•
•*
*•*••••***•••••***••*•*«••**••*••«••*•**•*<>****•*•*••**•*•*••*••••*•****••••****•**»
KVB11-6015-1224
147
-------
•*
• •
**
••
•*
**
DATE
TIME
DRV STACK
02 C02
LOAD VOLX VOLX
MMTH MEAS MEAS
HOURLY
DATA
GAS CONCENTRATION
CO
PPMV
MEAS
NO
PPHV
MEAS
CO
PPMV
3X02
ND
PPMV
3X02
CO
NG/J
NO
NG/J
• *
• •
(t
*•
**
•*
•ft************************************************** ft*******************, •**«••«*••*
•* 7/
•• 7/
•* 11
•* 7/
•• 7/
•• 7/
•• 11
*• 11
•• 7/
*• 11
•* 7/
•• 7X
•• 11
•• 7/
•* 11
•• 7/
•• 11
•• 7/
•• 7/
•• 11
•• 7/
•• 11
•• 7/
•• 7/
8/79
8/79
8/79
8/79
8/79
8/79
8/79
8/79
8/79
8/79
6/79
8/79
8/79
8/79
8/79
6/79
8/79
8/79
8/79
8/79
8/79
6/79
8/79
8/79
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
|9.3 8.8 10.0
18.8 8.8 10.1
18.2 8. 10.1
18.2 8. 10.0
10. 2
18.2
16.2
18.5
15.2
15.2
15.2
15.2
14.6
|4.6
14.6
17.6
19.6
20.2
1".
19.
19.
|9.
IB.
18.
10.0
• 10.0
• 10.0
.8 10.0
.1 .7
.2 .6
.2 .5
.0 .0
.1 .7
.0 .5
• .6
10.1
10.0
10.0
10.0
10.0
10.0
• 10.0
10.0
10.0
32.
36.
44.
51.
59.
67.
71.
74.
78.
84.
90.
0.
77.
30.
39.
38.
29.
25.
22.
22.
24.
28.
29.
30.
390.
387.
389.
384.
384.
382.
385.
366.
376.
369.
373.
0.
37 U
9.
380.
376.
375.
380.
380.
380.
382.
279.
276.
261.
07,
55.
65.
76.
88.
99.
106.
110.
118.
129.
137.
0.
117.
26.
56.
54.
41.
35.
31.
31.
34.
40.
41.
578.
573.
575.
569.
56".
565.
570.
570.
571.
565.
571.
0.
563.
6.
562 >
538.
533.
536.
540.
sao.
50J.
400*
395.
399.
17.
20.
23.
27.
31.
35.
38.
39.
42.
46.
49.
0.
42.
9.
21.
19.
15.
13.
11.
11.
12.
14.
15.
15.
339.
336.
338.
33«.
333.
331.
334.
335.
335.
331.
336.
0.
331.
4.
330.
316.
313.
314.
317.
317.
319.
235.
232.
234.
**
*•
**
**
• •
»•
*•
*•
**
t*
• •
• •
• •
«*
••
• •
**
*•
**
•*
**
• •
• •
*•
KVB11-6015-1224
148
-------
HOURLY DATA
DRV STACK GAS CONCENTRATION
*•
•• DATE
A*AAA*****A
wwWwWWWWWVfl
•• 7/ 9/79
•• 7/ 9/79
*• 7/ 9/79
*• 7/ 9/79
•• 7/ 9/79
•ft 7/ 9/79
•• 7/ 9/79
•ft 7/ 9/79
•• 7/ 9/79
•• 7X 9/79
•• 7/ 9/79
•• 7/ 9/79
*• 7X 9/79
•• 7X 9/79
•• 7/ 9/79
•• 7X 9/79
•• 7/ 9/79
•• 7/ 9/79
•• 7/ 9/79
•• 7X 9/79
•• 7X 9X79
•* 7X 9X79
•ft 7X 9X79
•• 7X 9X79
TIME
ft ft ft ftft ft ft
100
200
300
400
500
600
700
600
900
1000
1100
1200
1300
14QO
1500
1600
1700
1600
1900
2000
2100
2200
2300
2400
02
LOAD VOLS
MNTH MEAS
ftftftftftfcftftft*"
16.6
16.6
16.6
16.2
|7.9
17.6
18.2
20.2
23.4
16.8
1&.2
1&.8
17.9
17.6
17.6
|7.6
17.9
17.9
17.6
17.6
18.2
16.6
16.2
r w *• w «
.5
.5
.4
.4
.4
.5
.4
.2
.9
.6
.4
.4
.5
.5
.5
.5
.4
.5
.5
.5
.5
.5
.6
16,8 8.6
C02
VOLS
MEAS
ft ft ft ft ft ft i
.6
.6
.6
.8
.A
.6
.6
10.0
10.4
10.3
10.5
10.6
10. S
10, -5
IO.S
10.5
10.6
10.5
10.5
10.5
10.5
10.5
10.4
10.4
CO
PPMV
MEAS
ft ft ft ft ft ft '
30.
35.
37.
45.
52.
56.
65.
70.
0.
59.
56.
52.
72.
77.
77.
82.
97.
110.
122.
127.
126.
129.
129.
129.
NO
PPMV
MEAS
ift ft ft ft ft ft 1
387.
392.
see.
367.
387.
387.
390.
397.
322.
388.
362.
set.
362.
357.
359.
354.
352.
353.
358.
346.
336.
341.
333.
331.
CO
PPMV
3«02
ft ft ft ft ft ft ft
43.
St.
S3.
64.
74.
81.
93.
99.
0.
87.
60.
75.
104.
111.
112.
118.
140.
159.
176.
184.
185.
167.
tee.
167.
NO
PPMV
3S02
• ftft ft ft ftft
559.
566.
556.
554.
554.
559.
558.
560.
444.
565.
547.
546.
523.
516.
518.
512.
505.
510.
517.
50?.
445.
492.
465.
462.
CO
NG/J
A A A A A A 1
• w • • •• w '
15.
16.
19.
23.
27.
29.
33.
35.
0.
31.
29.
27.
37.
40.
40.
42.
50.
57.
63.
66.
66.
67.
67.
67.
NO
NG/J
1 ft ft ft ft ft 4
328.
332.
326.
325.
3*5.
326.
328.
329.
260.
331.
321.
320.
307.
303.
304.
300.
296.
300.
304.
295.
285.
289.
285.
283.
• •
•*
•*
ft ft ft ft
••
••
»•
•*
••
••
•*
••
*•
••
••
••
••
• *
••
••
••
••
••
••
••
••
••
KVB11-6015-1224
149
-------
••
••
•ft
•ft
•ft
•ft DATE
AAAAAAAAAAA4
• ••WMWWWV9
•• 7/10/7*
•• 7/10/79
•ft 7/10/79
•ft 7/10/79
•• 7/10/79
•• 7/10/79
•• 7/10/79
•• 7/10/79
•* 7/10/79
•• 7/10/79
•* 7/10/79
*« 7/10/79
•• 7/10/79
•• 7/10/79
•• 7/10/79
•* 7/10/79
•* 7/10/79
** 7/10/79
•* 7/10/79
*• 7/10/79
•• 7/10/79
•ft 7/10/79
•ft 7/10/79
*• 7/10/79
TIME
fftftftft ftft
100
200
300
aoo
soo
600
700
aoo
900
1000
1100
1200
1300
1400
1500
1600
1700
1BOO
I9QO
2000
2100
2200
2300
2aoo
DRY STACK
02 C02
LOAD VOL I VOLX
MNTH MEAS MEAS
ftftftftftftftftftftftftftftftftftftft'
16.5 .7 10.3
1«.5 .
IB.
IB.
16.
1».
1».
23.
23.
36.
50.
50.
50.
50.
50.
52.
55.
55.
55.
55.
55.
•
•
t
t
«
•
•
•
.
•
.
*
•
•
•
.
10.2
10.1
10.1
10.1
10.0
10.0
10.1
10.2
10.9
10.9
10.8
10.7
10.7
10.7
10. B
11.0
10.7
•a to.3
12.4 5.7
14.5 3.0
29.3 .0 .0
.0 .0 .0
.0 *0 .0
HOURLY
DATA
GAS CONCENTRATION
CO
• PPMV
MEAS
1 ft ftft ftft ft 1
129.
129.
130.
132.
133.
|36.
140.
129.
66.
B4.
Bl.
53.
54.
67.
65.
67.
72.
72.
72.
66.
63.
0.
0.
0.
NO
PPMV
MEAS
1 ftftftft ftftft
327.
32B.
328.
328.
339.
37|.
363.
390.
407.
087.
560.
577.
583.
580.
580.
S8|.
590.
567.
571.
357.
253.
0.
0.
0.
CO
PPMV
3X02
t ft ft ft ft ftft'
190.
192.
193.
195.
196.
201.
207,
189.
98.
118.
114.
76.
76.
95.
93.
95.
100.
103.
107.
138.
177.
0.
0.
0.
NO
PPMV
3X02
tft ftftft ftft1
4BO.
4*5.
4B5.
485.
502.
549.
567.
572.
60S.
680.
789.
620.
829.
825.
824.
BIB.
825.
BOO*
845.
752.
7Q7.
0.
0.
0.
CO
NG/J
i A A A * A A1
I V • w w w if
68.
68.
69.
70.
70.
72.
74.
67.
35.
42.
41.
27.
27.
34.
33.
34.
36.
37.
36.
49.
63.
0.
0.
0.
NO
NG/J
1 ***** Ai
1 K li w w W •*'
282.
285.
285.
285.
295.
S22.
333.
336.
354.
400.
464.
481.
486.
484.
484.
480.
484.
493.
496.
441.
«I5.
0.
0.
0.
• *
**
**
• •
• *
ft*
I A • A
1 W • ••
• *
• ft
ft*
• ft
*•
• ft
• •
• •
• •
• •
*•
• *
• •
• ft
• ft
• ft
**
• ft
ft*
• •
ft*
ft*
• ft
• *
KVB11-6015-1224
150
-------
HOURLY DATA
**
•*
•*
•*
•« DATE
TINE
DRY STACK
02 C02
LOAD YOU VOL*
MHTH NEA3 NEAS
GAS CONCENTRATION
CO
PPNV
NEAS
NO
PPNV
NEAS
CO
PPNV
3X02
NO
PPMV
3X02
CO
NG/J
NO
NG/J
*•
**
• *
«*
• •
••A*********************************************************************************
•• 7/11/79
•• 7/11/79
•• 7/11/79
*• 7/11/79
*• 7/11/79
•• 7/11/79
•• 7/11/79
•• 7/11/79
•• 7/11/79
•• 7/11/79
*• 7/11/79
•* 7/11/79
•• 7/11/79
•• 7/11/79'
*• 7/11/79
•• 7/11/79
*• 7/11/79
•• 7/11/79
•• 7/11/79
•* 7/11/79
•• 7/11/79
•• 7/11/79
•• 7/11/79
•* 7/11/79
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
"1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
.0 .0 .0
.0 .0 .0
.0 .0 .0
.0 .0 .0
.0
.0
.0
tO .
.0
48.6 7.
48.6 7.
48.6 7.
48.6 7.
"9.
49.
49.
49.
49.
50.
90.
49.
40.
2".
20.
7.
7.
7.
7.
7.
7.
7.
8.
.0
.0
.0
.0
.0
11.5
11.6
11.6
11.6
11.5
11.3
11.2
11.1
11.1
11.1
11.0
10.7
8.0 10.8
7.6 11.1
7.7 |1.3
0.
0.
0.
0.
0.
0.
0.
0.
0.
71.
71.
70.
72.
68.
68.
69.
70.
76,
79.
81.
84.
86.
88.
69.
0.
0.
0.
0.
0.
0.
0.
0.
0.
458.
460.
473.
459.
461.
520.
557.
577.
552.
556.
580.
575.
552.
536.
463.
0.
0.
0.
0.
0.
0.
0.
0.
0.
97.
97.
96.
98.
91.
92.
94.
95.
104.
108.
111.
118.
119.
118.
94.
0.
0.
0.
0.
0.
0.
0.
0.
0.
630.
633.
646.
623.
620.
7 06.
762.
782.
754.
753.
792.
804.
765.
721.
628.
o.
0.
0.
0.
0.
0.
0.
0.
0.
35.
35.
34.
35.
33.
33.
34.
34.
37.
38.
40.
42.
43.
42.
34.
0.
0.
0.
o.
o.
0.
o.
o.
0.
370.
372.
379.
366.
364.
414.
447.
459.
443.
442.
«72l
449.
«23.
369.
*•
**
• •
*•
*•
• •
*•
*•
• •
*•
**
**
**
• •
• «
**
• •
• *
• •
• •
• •
• •
*•
••
**•••*•«•*••*•••**«•*••«•«•***•••**«•**•«*•*«**•****«****•«****•*•*««•««<•««*•«•«••«
KVB11-6015-1224
151
-------
•ft
•*
•*
••
•• DATE
• ** + ••:••***<
• WWWIiWWWWVW'
•* 7/12/79
•• 7/12/79
»• 7/12/79
•* 7/12/79
•• 7/12/79
•• 7/12/79
•• 7/12/79
•• 7/12/79
•• 7/12/79
•• 7/12/79
•• 7/12/79
•« 7/12/79
•* 7/12/79
•• O/ 0/79
•• O/ 0/79
•• O/ 0/79
•• O/ 0/79
•• O/ 0/79
•• O/ 0/79
•• O/ 0/79
•• O/ 0/79
*• O/ 0/79
*• O/ 0/79
*• O/ 0/79
LOAD
TIME MhTM
lAAAAAAAAA-AAAl
iWWWWWWWWWWWw'
100 17.9
200 17.9
300 19.3
400 |9.6
500 19.6
600 19.9
. TOO 21.1
800 49.2
900 49.8
1000 49.8
1100 49.5
1200 49.2
1300 45.7
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
our
02
VOLX
HEAS
>•* A A A A A<
rW W 01 W W Wl
a.s
.2
.2
.0
.0
.9
7.7
9.1
7.7
7.7
7.7
.0
7.6
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
STACK
C02
VOLX
HEAS
• A A A A Al
PWW WWW'
10.0
10.3
10.3
10.5
10.5
10.5
10.7
9,7
11.3
11.2
ti.t
.0
It. 3
0
0
0
0
HOURLY
DATA
GA3 CONCENTRATION
CO
PPMV
' HEAS
f •***•*•¥ 4
•wwwwwwi
89.
90.
91.
92.
94.
95.
97.
66.
69.
68.
70.
0.
71.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NO
PPNV
NEAS
'ww fc w w w. wi
394.
389.
397.
401.
399.
394.
392.
320.
463.
434.
452.
0.
451.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
CO
PPttV
3X02
I wwwA ftft
129.
127.
128.
128.
130.
131.
132.
131.
94.
93.
95.
0.
96.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
NO
PPMV
3X02
Iww wdwwi
568.
548.
559.
556.
554.
543.
532.
485.
62«.
589.
613.
0.
606.
0*
0.
0.
0.
t
m
m
9
.
0.
CO
NG/J
(W. WWWW f
46.
46.
46.
46.
47.
47.
47.
47.
34.
33.
34.
0.
34.
0.
0*
0.
0.
0.
0.
0.
0.
0.
0.
0.
NO
NG/J
>w wwf 4 A
334.
322.
326.
326.
32S.
319.
312.
28S.
369.
346.
360.
0.
356.
0.
0.
0.
*
• •
*•
•«
•ft
ft*
k*ft*
**
•*
**
*•
• ft
•ft
• ft
ft*
*•
• ft
•ft
ft*
• ft
ft*
••
• •
• •
• ft
ft*
• ft
•t
*•
• ft
••
*••••*••*••**••***•••••**••*••*•••*•**•*•*•*••••*•*••*••*•••*•••••*••«***••••*••*•••*
•FIN
KVB11-6015-1224
152
-------
APPENDIX F
SUMMARY OF PREVIOUS TEST DATA
153 KVB11-6015-1224
-------
The results of gaseous emissions tests conducted under a previous
EPA program are presented in Table F-l. These tests were conducted under
Contract Ho. 68-02-1074 and the results are reported in EPA-600/2-76-086a.
The data presented herein were used to establish the baseline emissions for
the boiler at Site 3.
At a load of 14.7 MW (130,000 Ib/hr steam flow) the average NO
emissions were 456 ng/J (777 ppm, 3% 0 dry).
Table F-2 presents a summary of the coal fuel analyses from the
previous tests.
154 KVB11-6015-1224
-------
TABLE F-l. SUMMARY OF GASEOUS EMISSIONS AT SITE 3
PULVERIZED COAL FIRED BOILER
(Data was taken during EPA Contract No. 68-02-1074.)
Date
1974
12-5
12-5
12-5
12-9
12-9
Nominal Steam
Load
MW K Ib/Hr.
14.9
7.5
14.7
14.7
14.7
132
66
130
130
130
°2
Percept
7.3
7.2
7.7
7.4
7.4
co2
Percent
12.7
11.9
11.5
11.9
11.8
NO*
ng/J
474
495
4 BO
468
478
ppm
775
809
785
765
782
CO*
ng/J
0
0
0
0
0
0
0
0
0
0
•Corrected to 3% 0_ Dry
155
KWB11-6015-1224
-------
TABLE F-2. SUMMARY OF GOAL AND ASH ANALYSIS
FROM SITE 3
(Samples were taken during EPA Contract No. 68-02-1074.)
ULTIMATE ANALYSIS
Percent by Weight, As Received
Stream Run Carbon Hydrogen Nitrogen Sulfur Ash Oxygen—
Coal 169-3 62.95 5.16 0.65 1.28 10.78 18.98
a/ By difference.
PROXIMATE ANALYSIS
Percent by Height, As Received
Heat of
Volatile Fixed Combustion
Stream Run Moisture Ash Matter Carbon Sulfur (Btu/lb)
Coal 169-3 6.85 10.78 38.26 44.11 1.28 11,136
Bottom
Ash 169-3 1.42 92.44 6.11 0.03 0.56 a/
Fly
Ash 169-3 0.06 99.14 2.03 a/ 0.22 82
a/ Ash gained weight due to high iron content.
156 KVB11-6015-1224
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1 REPORT NO.
EPA-600/7-8Q-085C
2.
3. RECIPIENT'S ACCESSION NO.
a. TITLE AND SUBTITLE
Thirty-day Field Tests of Industrial Boilers: Site 3-
Pulverized-coal-fired Boiler
5. REPORT DATE
April 1980
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
W.A. Carter and H. J. Buening
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING OROANIZATION NAME AND ADDRESS
KVB, Inc.
P.O. Box 19518
Irvine, California 92714
10. PROGRAM ELEMENT NO.
EHE624
11. CONTRACT/GRANT NO.
68-02-2645, Task 4
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Task Final; 3/79-3/80
14. SPONSORING AGENCY CODE
EPA/600/13
is. SUPPLEMENTARY NOTES
541^2477.
project officer is Robert E. Hall, Mail Drop 65, 919/
i6. ABSTRACT
g a f jjj^ report for a test program to evaluate the long-term
effectiveness of combustion modifications for lowering emissions from industrial
boilers. Previous short-term tests had been performed on industrial boilers to
determine the effect of combustion modifications on such air pollutant emissions as
NOx, SOx, CO, HC, and particulate. The objective of this program was to determine
if the combustion modification techniques which were effective for the short-term
tests are feasible for longer periods. The report gives results of a 30-day field test
of a pulverized-coal-fired, water-tube boiler rated at 76.2 MW (260,000 Ib steam/
hr) output. Staged combustion air and low excess air were used to effectively control
NOx emissions. However, such additional operational problems as flame instability
can be encountered. The baseline NO measurement was 498 ng/J (815 ppm at 3% O2,
dry) with the unit operating at about 70% of capacity. At the same load, low NOx
operations yielded NO at an emission level of 422 ng/J (691 ppm at 3% O2 , dry) for
a 15% NO reduction. During 30 days of firing under low NOx operation with loads of
15 to 63 MW, the average NO emission level was 340 ng/J (557 ppm at 3% O2, dry).
Boiler efficiency increased about 1% under low NOx firing conditions.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIHERS/OPEN ENDED TERMS
c. COSATI Field/Group
Pollution
Boilers
Pulverized Fuels
Coal
Combustion
Field Tests
Sulfur Oxides
Nitrogen Oxides
Carbon Monoxide
Hydrocarbons
Dust
Pollution Control
Stationary Sources
Industrial Boilers
Combustion Modification
Staged Combustion
Low Excess Air
Particulate
13B
13A
21D
21B
14B
07B
07C
11G
13. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (ThaReport)
Unclassified
21. NO. OF PAGES
L61
20. SECURITY CLASS {Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (9-711
157
------- |