&EPA
United States
Environmental Protection
Agency
Robert S Kerr Environmental Research
Laboratory
Ada OK 74820
EPA • > 1 73
Research and Development
Evaluation of a
Hydrosalinity Model
of Irrigation Return
Flow Water Quality
in the Mesilla Valley,
New Mexico
-------
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development. U.S. Environmental
Protection Agency, have been grouped into nine series. These nine broad cate-
gories were established to facilitate further development and application of en-
vironmental technology. Elimination of traditional grouping was consciously
planned to foster technology transfer and a maximum interface in related fields.
The nine series are:
1. Environmental Health Effects Research
2. Environmental Protection Technology
3. Ecological Research
4. Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Technical Assessment Reports (STAR)
7. Interagency Energy-Environment Research and Development
8. "Special" Reports
9. Miscellaneous Reports
This report has been assigned to the ENVIRONMENTAL PROTECTION TECH-
NOLOGY series. This series describes research performed to develop and dem-
onstrate instrumentation, equipment, and methodology to repair or prevent en-
vironmental degradation from point and non-point sources of pollution. This work
provides the new or improved technology required for the control and treatment
of pollution-sources to meet environmental quality standards.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/2-79-173
August 1979
EVALUATION OF A HYDROSALINITY MODEL
OF IRRIGATION RETURN FLOW WATER QUALITY
IN THE MESILLA VALLEY, NEW MEXICO
by
Lynn W. Gelhar
and
Stephen G. McLin
Department of Geoscience
New Mexico Institute of Mining and Technology
Socorro, New Mexico 87801
in cooperation with
New Mexico Water Resources Research Institute
Las Cruces, New Mexico 88003
Grant No. S803565
Project Officer
Arthur G. Hornsby
Source Management Branch
Robert S. Kerr Environmental Research Laboratory
Ada, Oklahoma 74820
ROBERT S. KERR ENVIRONMENTAL RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U.S. ENVIRONMENTAL PROTECTION AGENCY
ADA, OKLAHOMA 74820
-------
DISCLAIMER
This report has been reviewed by the Robert S. Kerr Environmental Re-
search Laboratory, U. S. Environmental Protection Agency, and approved for
publication. Approval does not signify that the contents necessarily reflect
the views and policies of the U. S. Environmental Protection Agency, nor does
mention of trade names or commercial products constitute endorsement or rec-
ommendation for use.
ii
-------
FOREWORD
The Environmental Protection Agency was established to coordinate admin-
istration of the major Federal programs designed to protect the quality of
our env ir onmen t.
An important part of the Agency's effort involves the search for informa-
tion about environmental problems, management techniques and new technologies
through which optimum use of the Nation's land and water resources can be as-
sured and the threat pollution poses to the welfare of the American people
can be minimized.
EPA's Office of Research and Development conducts this search through a
nationwide network of research facilities.
As one of these facilities, the Robert S. Kerr Environmental Research
Laboratory is responsible for the management of programs to: (a) investigate
the nature, transport, fate and management of pollutants in groundwater; (b)
develop and demonstrate methods for treating wastewaters with soil and other
natural systems; (c) develop and demonstrate pollution control technologies
for irrigation return flows; (d) develop and demonstrate pollution control
technologies for animal production wastes; (e) develop and demonstrate tech-
nologies to prevent, control or abate pollution from the petroleum refining
and petrochemical industries; and (f) develop and demonstrate technologies to
manage pollution resulting from combinations of industrial wastewaters or
industrial/municipal wastewaters.
This report contributes to the knowledge essential if the EPA is to meet
the requirements of environmental laws that it establish and enforce pollu-
tion control standards which are reasonable, cost effective and provide ade-
quate protection for the American public.
a.
William C. Galegar
Director
Robert S. Kerr Environmental
Research Laboratory
iii
-------
ABSTRACT
A multi-cell lumped parameter model of irrigation-related water quality
is applied to the Mesilla Valley, an irrigated valley encompassing roughly
40,500 hectares (100,000 acres) adjacent to the Rio Grande in southern New
Mexico. The model, which was originally developed by the U. S. Bureau of
Reclamation (USBR) for the Environmental Protection Agency (EPA), simulates
diversions and pumping to meet irrigation needs, irrigation return flows,
chemical transformations in the soil, and mixing in groundwater reservoirs.
Data on water quality at 35 surface and groundwater sites within the
valley were collected on a monthly basis over two irrigation seasons. These
data along with extensive data from previous and concurrent investigations
provide a data base which is suitable for testing the USBR-EPA model. Anal-
ysis of water quality data from several observation wells in the shallow al-
luvial aquifer underlying the irrigation area demonstrates that there has not
been a statistically significant change of the average salinity of the aqui-
fer over the last decade. A special regression technique is developed to
estimate the aquifer parameters required for the model.
The USBR-EPA model is evaluated in several computer simulations covering
the ten-year period from 1976 through 1976. It is found that the model ade-
quately simulates the observed seasonal pattern of salinity variation in the
Rio Grande at the lower end of the valley near El Paso, Texas. Simulation
results indicate that when irrigation efficiency is increased, there is a re-
duction in concentration of dissolved solids in the Rio Grande at El Paso,
especially during the winter months.
This report was submitted in fulfillment of Grant No. S-803565 by the
New Mexico Water Resources Research Institute (NMWRRI) under the partial spon-
sorship of the U. S. Environmental Protection Agency. This report covers a
period from February 17, 1975 to August 16, 1978. The work was completed as of
November 1, 1978.
iv
-------
CONTENTS
Foreword
Abstract iv
Figures vi
Tables viii
Acknowledgment x
1. Introduction i
2. Conclusions r
3. Modeling Developments g
Model structure 6
Adaptation of model to Mesilla Valley 9
Preliminary simulations 12
4. Data Acquisition and Analysis 14
Existing data base 14
Data collection 15
Water balance and parameter estimation 15
Analysis of chemical and water-level data .... 20
Analysis of aquifer and well data 29
Consumptive use 35
5. Simulation Results and Conclusions ... 35
Model preparation 35
Simulations 37
References 46
Appendices 5Q
A. Mesilla Valley Input Data for the USBR-EPA Model ... 50
B. Fortran Listing of USBR-EPA Hydrosalinity Model
for the Mesilla Valley 155
C. Sample Data Input and Model Output for the
Mesilla Valley 177
D. Estimation of Missing Water Duality i»ata at
Leasburg 185
E. Conversion Table for English to SI Units 191
-------
FIGURES
Number Page
1 Location map of Mesilla Valley, New Mexico 2
2 Schematic flow chart showing the features simulated in each
node of the model 7
3 Nodal representation of Mesilla Valley v . 10
4 Mesilla Valley system flow chart 11
5 Schematic vertical section of an aquifer with a perched stream . 17
6 Monthly drain flow (QJ) versus average water level (h) 18
7a Observed and predicted groundwater levels 19
7b Observed and predicted drain flows 19
7c Estimated recharge compared with observed irrigation diversion . 19
8a Water-table map, May-June, 1967, northern Mesilla Valley 21
8b Water-table map, May-June, 1967, southern Mesilla Valley 22
9a IDS contour map in ppm, May-June,1967, northern Mesilla Valley . 23
9b TDS contour map in ppm, May-June,1967, southern Mesilla Valley . 24
lOa TDS contour map, May,1976, northern Mesilla Valley 26
lOb TDS contour map, May,1976, southern Mesilla Valley 27
11 Monthly TDS values from 15 observation wells for November,1975
to November, 1977 28
12 Comparison of analyses from New Mexico State University and
New Mexico Tech 31
13 Specific capacity versus depth for 76 wells in the Mesilla
Valley 33
vi
-------
Number Page
14 Log-normal probability plot of specific capacity and well depth . . 34
15 Simulated and average observed water-level changes, May,
1967 - December, 1976 38
16 Root mean square error in simulated aquifer water levels and
simulated outflow chemistry as function of consumptive
use multiplier 39
17 Observed and predicted TDS using an alluvial aquifer 24 meters
(80 feet) thick and irrigation efficiency of 50% 41
18 Observed and predicted TDS using an alluvial aquifer 46 meters
(150 feet) thick and irrigation efficiency of 50% 42
19 Observed and predicted TDS using an alluvial aquifer 24 meters
(80 feet) thick and irrigation efficiency of 75% 43
vii
-------
TABLES
Number Page
1 Summary of Major Model Features 8
2 Summary of Results of Model Sensitivity Analysis 13
3 Statistical Analysis of Temporal Variability of Water
Quality 30
4 Comparison of Results as Measured by rms Error in TDS ... 40
A-l Rio Grande Flow and Water Quality Above Leasburg
Dam for 1967 50
A-2 Irrigation Diversion at Leasburg Dam 60
A-3 Irrigation Diversion at Mesilla Dam 61
A-4 Rio Grande Flow and Water Quality at El Paso (Crouchane
Bridge) for 1967 62
A-5 Mesilla Valley, Initial Soil Analysis 72
A-6 Blaney-Criddle Consumptive Use for 74622, Cropped
Acres in 1967 73
A-7 Well Numbering System, Evaluations, Location, and
Theissen Weighting Factors 83
A-8 Mesilla Valley Water Levels for 1946, All Units are
in Feet Above Mean Sea Level 84
A-9 Surface Water Sample Locations Taken During this
Project Study 115
A-10 Monthly Drain Flows in Acre-Feet/Month 116
A-11 Surface Flow and Water Quality Data, Mesilla Valley .... 117
A-12 Groundwater Sample Locations Taken During this
Project Study 128
viii
-------
Number Page
A-13 Depth-to-Water and Groundwater Quality Data,
Mesilla Valley 129
A-14 Depth-to-Water for Selected Wells, Mesilla Valley .... 154
D-l Regression Relationships for Estimating the Missing
Water Quality Data at Leasburg, Obtained from the
Data Listed in Hernandez (1976) 186
D-2 Results Obtained for November,1972, Using the Iteration
Procedure to Balance Cations and Anions so that the
Calculated TDS Obtained Equals the Observed TDS .... 187
E-l English-Metric Conversion Table 191
ix
-------
ACKNOWLEDGMENTS
The work reported here is part of a multidisciplinary project entitled
"Demonstration of Irrigation Return Flow Salinity Control in the Rio Grande"
which was supported primarily by the United States Environmental Protection
Agency. Dr. Arthur G. Hornsby of the Robert S. Kerr Environmental Research
Laboratory at Ada, Oklahoma, served as project officer.
The following individuals contributed to various aspects of the work re-
ported here:
Name Position
Adel A. Bakr Research Associate in Hydrology
Pongsarl Huyakorn Assistant Professor of Hydrology
Richard L. Naff Lecturer in Hydrology
Vijay P. Singh Assistant Professor of Hydrology
Denise Bierley Graduate Assistant
John B. Czarnecki Graduate Assistant
Santiago Pinzon Graduate Assistant
C. David Updegraff Graduate Assistant
David L. Buckout Undergraduate Assistant, Programmer
Lisa Cole Undergraduate Assistant
Michael Shea Undergraduate Assistant
John W. Clark, former Director of the New Mexico Water Resources Re-
search Institute, was instrumental in initiating this work and provided ad-
ministrative guidance during early phases of the work; Carrey E. Carruthers,
Acting Director of NMWRRI continued that support. The U. S. Bureau of Recla-
mation in El Paso, Texas, provided unpublished data from their files; the
cooperation of Daniel Farias and James W. Kirby is acknowledged. Data on
cropping patterns and soil properties were provided by Robert R. Lansford,
Department of Agricultural Economics and Peter J. Wierenga, Department of
Agronomy, both at New Mexico State University.
-------
SECTION 1
INTRODUCTION
The overall objective of this study is to implement and test a computer-
based mathematical model of irrigation-related water quality in the Mesilla
Valley of south-central New Mexico. The model, which was developed by the
U. S. Bureau of Reclamation (1977c) for the Environmental Protection Agency
(EPA), can represent a general water and mass balance for a river basin or por-
tion thereof (see Appendix B). The model includes components which simulate
surface and groundwater reservoirs, diversions to meet irrigation needs and
other uses, irrigation return flows, and chemical transformations in the soil.
Several nodes can be used to simulate the conditions in different segments of
a basin. The model is classified as a multicell lumped parameter model. In-
put data on water use, surface and groundwater quality, and streamflows and
diversions are required for its operation.
The Mesilla Valley, an alluvial valley adjacent to the Rio Grande in
southern New Mexico (Figure 1), extends approximately 96 kilometers (60 miles)
from Seldon Canyon to El Paso Canyon and has a maximum width of about 8 kilo-
meters (5 miles). The valley encompasses a gross area of about 40,500 hectares
(100,000 acres). The area has had a relatively reliable supply of surface
water for irrigation since the completion of the Elephant Butte Reservoir in
1916. Groundwater was developed extensively to supplement surface water during
the severe drought in the 1950's and continues to be an important source. The
major population centers include Las Cruces, New Mexico, and El Paso, Texas.
The valley has a fairly level topography with a relatively flat alluvial flood-
plain ranging in width from about 100 meters to about 8 kilometers; it is
bordered by steep bluffs of about 15 to 30 meters (50 to 100 feet) high, com-
posed of loosely cemented sand, silt, clay, and gravel. Recent alluvium on the
order of 30 meters (100 feet) thick forms the primary aquifer; this aquifer is
underlain by basin fill deposits (Santa Fe Group) which also yield substantial
amounts of water. The climate of the valley is predominantly semi-arid. It is
characterized by clear and sunny days, large diurnal temperature ranges, low
humidity and scant rainfall. The mean annual precipitation averages less than
25 centimeters (10 inches), with a recorded maximum of about 51 centimeters
(20 inches) and minimum of about 8 centimeters (3 inches). The summer months
are generally the wettest ones when tropical air masses from the Gulf of
Mexico predominate over the area and cause thundershowers.
Several previous studies have dealt with the groundwater resources and
irrigation in the Mesilla Valley. The work by King, et al. (1971) describes
the hydrogeology of the valley and adjacent areas, and Richardson (1971) uses
a digital computer model to simulate two-dimensional groundwater flow in the
-------
I 3
ARIZONA
C OLOR A DO
UPPER RIO GRANDE DRAINAGE BASIN
MEXICO TEXAS
MESI LL A VALLEY
N I ...
i *3H&"«
M e
MESILL A VALLEY
DEMONSTRATION FARM
ANTHONY _N_| W MEXICO
"TEXAS
N_E_W M E X I C 0
MEXICO
Figure 1. Location map of Mesiila Valley, New Mexico.
-------
Mesilla Valley; both of these reports contain extensive reviews of earlier
studies of the groundwater conditions in the valley. Information on the hy-
draulic properties of the aquifer has been developed by Conqver (1954) and
Leggat, et al. (1962). Studies by the U.S. Salinity Laboratory (Wilcox,
1968) investigate salt balance conditions in the Mesilla Valley and other
areas of the upper Rio Grande Valley. Extensive records of surface and
groundwater are maintained by the International Boundary and Water Commission
and the U.S. Bureau of Reclamation. Recently, Hernandez (1976) has compiled
much of the historical data on the quality of surface waters and reported the
results for water quality monitoring at several sites in the valley. The
U.S. Geological Survey at Las Cruces is currently conducting extensive field
investigations which emphasize the groundwater conditions in the underlying
basin fill (Santa Fe Group). Generally, there is comprehensive data on hy-
dro logic conditions in the valley, but little or nothing has been done to in-
corporate this information into a model to predict the impact of irrigation
on water quality.
Much emphasis in irrigation return-flow modeling has been on the flow
and chemical characteristics in the near-surface unsaturated zone above the
water table. Hornsby (1973) reviews modeling techniques which have been ap-
plied to predict the quality of irrigation return flows. Examples of recent
computer-based models of moisture and salt transport in soils include
Willardson and Hanks (1976); King and Hanks (1973); and Dutt, Shaffer, and
Moore (1972). The latter represents chemical equilibrium of major ions and
a kinetic approach to the nitrogen cycle in the soil. The inorganic soil
chemistry portion of the USER-EPA model, which is being used in the current
study, is an outgrowth of that model.
When one considers the large volumes of water in groundwater storage, it
is evident that aquifers underlying irrigated areas can play a central role
in irrigation return-flow quality. At a recent workshop on irrigation return-
flow modeling, Walker (1976) noted the need for improved information on
groundwater behavior. Several recent modeling studies have emphasized the
groundwater flow in salinity models (Maddaus and Aaronson, 1972; Lyons and
Stewart, 1973; Konikow and Bredehoeft, 1974; and Hassan, et al., 1974); these
models all represent two-dimensional horizontal flow with total dissolved
solids taken as a conservative solute. In contrast, the Bureau of Reclama-
tion (Shaffer, Ribbens, and Huntley, 1977) considers two-dimensional ground-
water flow in a vertical plane and chemical equilibrium for major ions.
Gupta, Tanji, and Luthin (1975) have developed a three-dimensional distributed
parameter groundwater flow and quality model assuming a conservative solute.
Lumped parameter groundwater flow and quality models have been used by Gelhar
and Wilson (1974) and Mercado (1976); these models are similar to the struc-
ture implicit in the groundwater portion of the USBR-EPA model being used in
the current study.
There have been several efforts to test the USBR-EPA model for field
sites near Vernal, Utah; Cedar Bluff, Kansas; and in the Grand Valley in
Colorado (U.S. Bureau of Reclamation, 1977a, 1977b). However, these case
studies involved relatively small irrigated areas (around 4050 hectares or
10,000 acres) over simulation periods of only a few years, and the results
seem to be rather mixed. In several cases, there are major differences
-------
between the observed and predicted seasonal pattern of water quality varia-
tion. It is not clear whether these differences are due to limitations of
the input data or deficiencies of the model; the predictive capabilities of
the USBR-EPA model have not been established.
The main objective of this study is to evaluate the predictive capabili-
ties of the USBR-EPA model in a large scale complex irrigation system over a
relatively long time frame. The Mesilla Valley, with its extensive base of
existing data, is uniquely suited for this testing. The modeling results
will also serve as input for economic studies on the effects of improved ir-
rigation management in the valley.
-------
SECTION 2
CONCLUSIONS
The U. S. Bureau of Reclamation Conjunctive Use and Water Quality
Model, modified slightly to represent conditions in the Mesilla Valley, does
adequately simulate the observed seasonal variation of salinity in the Rio
Grande near El Paso, Texas, over the ten-year period from May, 1967 through
the end of 1976.
The data collected during this study, along with that available from
previous and concurrent studies, provides a suitable data base for evaluation
of the USER-EPA model in the Mesilla Valley. The data on groundwater quality
are least adequate because of the high degree of spatial variability. The
problems of adequate sampling of spatially variable subsurface water quality
require attention in future research.
Analysis of data on dissolved solids from several shallow wells in
the alluvial aquifer underlying the irrigated area in the Mesilla Valley shows
that there has not been a statistically significant change of salinity over
the last decade.
The USBR-EPA model, with soil chemistry effects included, predicts
that an increase of irrigation efficiency during the last decade would have
significantly decreased the salinity of the outflow from the valley in the
Rio Grande at El Paso.
-------
SECTION 3
MODELING DEVELOPMENTS
MODEL STRUCTURE
An extensive description of the U. S. Bureau of Reclamation Conjunctive
Use and Water Quality Model (referred to herein as the USBR-EPA model) is
given in the users manual (U. S. Bureau of Reclamation, 1977c); here emphasis
is only on those features which pertain to the Mesilla Valley application.
The USBR-EPA model represents an irrigated area by a series of small sub-units,
each of which is called a node. The number of nodes depends on the physical
features of the study area, the availability of data, and the number of points
at which the model response is desired within the area. The model structure
is based on a water balance for a given time interval which is computed and
maintained for each node. The transfer of water between river and aquifer
may be essential to maintain this balance. A soil column is included to simu-
late chemical exchange reactions as water percolates through the soil. The
chemical exchange in the soil is represented by chemical equilibrium reactions
for major ions which contribute to salinity; this segment of the model is based
on the development by Dutt, Shaffer, and Moore (1972). The model allows the
mixing of one water with another, and computes the chemical quality of the
mixed waters in proportion to the volumes mixed. Thus, a chemical mass balance
is simultaneously maintained. All these computations are performed for one
node at a time and progress from the upstream to the downstream nodes.
A node includes simulation of several features as shown in Figure 2.
These are: magnitude and quality of river flow; surface diversion to meet the
irrigation demand; pumpage to meet irrigation demand; water transfer between
river and aquifer; and irrigation return flows directly to the aquifer, through
the soil to an aquifer, or to the river. The river flow at the start of a
nodal operation is a known quantity, a portion of which is diverted to meet
the irrigation demand. The irrigation return flow is then computed by sub-
tracting the crop consumptive use from the irrigation demand. The chemical
quality of mixed waters is computed at each point. At the end of a nodal op-
eration, the balance between inflow to and outflow from the river is deter-
mined. If the river flow is in excess of that observed, the additional water
is transferred to an aquifer; if the river flow is in deficit, water is with-
drawn from the aquifer to maintain the balance. Hydraulic properties of the
soil and aquifer are not considered directly in the model. These major fea-
tures of the model are summarized in Table 1.
The input data needed to operate the model include irrigation demand,
crop consumptive use, diversion, river-water quality, initial aquifer-water
-------
CONSUMPTIVE
USE
DIVERSION
RIVER
I
PUMPING
IRRIGATED
AREA
RETUR
FLOW
S0IL
COLUMN
AQUIFER
Figure 2. Schematic flow chart showing the features
simulated in each node of the model.
-------
TABLE 1. SUMMARY OF MAJOR MODEL FEATURES
MODEL FUNCTION
Multi-cell lumped parameter model
will accept up to 20 cells (or
nodes)
Irrigation water balance to com-
pute return flow
Irrigation water chemistry repre-
sented by eight chemical constitu-
ents and TDS (Ca++, M8++, Na+,
IMPLIED LIMITATION
All variables are functions of time
only
Deals with monthly average over nodal
area
Deals with monthly average over nodal
area
DATA REQUIRED
See following
Diversion, irrigation demand, GW pump-
age, irr. eff., consumptive use, % of
return to aquifer and to river
Surface diversion chemistry and GW
chemistry
COMMENTS
Number of nodes depends on
available data and physical
features of area
Much of required data is
hypothetical
Chemistry based on volume
proportion of waters mixed
Cl", SO,
HCO,
CO,
00 Soil moisture movement thru as
many as 10 soil column segments
Soil chemistry includes reactions
involving
HCO -, CO,
Steady forced displacement each month Soil moisture content
Mg-*-, Na+, SO,.
and undissolved
CaS04 and
^,
Aquifer balance transfers water to
or from surface and to downstream
nodal aquifer(s)
Aquifer chemistry included in
simulation
Chemical equllibra approach where ex-
tended Debye-Huckel theory applies
Transfer of flow between river and
aquifer is forced to maintain water
balance
Uniform aquifer chemistry throughout
an entire node
Soil chemical analysis, cation ex-
change capacity, gypsum concentration
Initial aquifer volume
Average initial aquifer chemistry
Optional feature of model
Neglects reactions involv-
ing Cl- and N0-
River-aquifer transfer
should depend on aquifer
water level
Equivalent to a 'Veil-
mixed" reservoir assumption
-------
storage and chemical quality, and soil moisture content and its chemical
quality.
ADAPTATION OF MODEL TO MESILLA VALLEY
The Leasburg and Mesilla diversion dams, the two major water diversions
in the Mesilla Valley, form natural nodes for the model. The quantity and
chemical quality of flow in these diversions are observed. Therefore, two
nodes were used to represent the Mesilla Valley as shown in Figure 3. Each
node includes several operational features as depicted in Figure 4. The nodal
configuration and its subsequent operation are best described by a sequence of
operations that actually occur. Each operation is assigned a sequence number
in the order that it takes place (Figure 4). In the assignment of sequence
numbers, a positive number is assigned to inflow and a negative number to out-
flow or diversion. The configuration of operations in node 1 is essentially
the same as in node 2, thus only node 1 is explained here.
At the upstream end of node 1, the flow in the Rio Grande is observed.
The portion of this river flow diverted at Leasburg Dam is also observed. The
river flow remaining after diversion is then computed; this quantity of flow
is not available for irrigation use within node 1, and therefore is diverted
from the node through sequence 1. The irrigation demand for crops in the area
is computed independently, using the crop consumptive use and the overall ir-
rigation efficiency. If the amount of surface water diversion is not suffi-
cient to meet the demand, additional water is pumped from the aquifer. This
feature was not available in the model input data setup for the Vernal study.
Originally, the model would satisfy the demand either entirely by surface wa-
ter or groundwater. Then the return flow, the difference between the demand
and the consumptive use, is computed. A part of this return flow will go to
the river and a part to the aquifer through the soil. Once the return flow
mixes with river flow (after diversion), the chemical quality of river flow
is updated; this river flow is identified as the predicted river flow. At
the downstream end of the node the river flow, a combination of the waste
flows from the Del Rio Drain and the Rio Grande at Mesilla Dam, is observed.
A comparison is made between this observed flow and the predicted river flow
to establish the required water transfer between river and aquifer. If the
predicted flow is higher than the observed flow, the model forces a transfer
of water from river to aquifer. If the predicted flow is lower than the ob-
served flow, a transfer of water from aquifer to river is required. This ex-
change mechanism is essential to accomplish the hydrologic balance. When the
exchange is made, the chemical quality of the flow is updated simultaneously.
Finally, at the end of the nodal operation, the model yields the flow and its
chemical quality.
The monthly input data used to operate the model include: observed river
flow at the upstream end of the node and its chemistry, the amount of water
diverted, crop consumptive use and irrigation efficiency, and observed river
flow at the downstream end of the node; initial aquifer water storage, chemi-
cal quality, and soil chemistry are also necessary inputs. The soil chemistry
input data are based on data from field plots at the New Mexico State Univer-
sity Plant Science Farm (Wierenga, 1977, Appendix Tables A-7 through A-14); the
input data are averages of 42 analyses in each 10-centimeter (0.33 feet)
-------
LEASBURG
' DIVERSION DAM
iLAS CRUCES
MESILLA
DIVERSION DAM
CURRENT WELL SAMPLING
SITES
SITES OF EXISTING SURFACE
WATER DATA
BOUNDARY OF SURFACE
IRRIGATED AREA
MAJOR IRRIGATION CANALS
_
6 MILES
r EL PASO
Figure 3. Nodal representation of Mesilla Valley.
10
-------
N SEQUtNCE NUMBERS
•H = DIVERSION
+N = INFLOW
PUMPAGE FROM G. W. TO
SUPPLY DEMAND x-?
O
.©
NODE 1
AQUIFER
RIO GRANDE FLOW BELOW
LEASBURG CANAL
**USE 'CONUSE' CARD TO
INDICATE THIS DISTRIBU-
TION OF RETURN FLOW
© O
_ RIO GRANDE AT HEAD OF SYSTEM
RIVER FLOW AFTER DIVERSION
(TO #3 BELOW)
_, IRR. DEMAND SUPPLIED FROM G. W.
IRRIGATION DEMAND
.IRRIGATION
RETURN FLOW
NODE 1 WASTEWAYS TO RIVER
RETURNED TO RIVER
('SUR' ON CONUSE CARD)
*n TO son cm IIMM
y CGMV ON CONUSE CARD)
NODE 1 AQUIFER
TRANSFER OF FLOW
KIVtK lu AljUlrtK
INFLOW TO AOUIFER
FROM RIVER
_ TRANSFER OF FLOU
^-' AQUIFER TO RIVER
INFLOW TO RIVER FROM AQUIFER
PREDICTED OUTFLOW OF MOfi':L
(OBSERVED OUTFLOWS)
EXCHANGE MECHANISM SETS
HYDROLOGIC BALANCE
0
PUMPAGE FROM G.
RIO GRANDE FLOW BELOW
MESILLA DAM
**USE 'CONUSE' CARD TO S7\
INDICATE THIS DISTRIBU-V_X
TION OF RETURN FLOW
o
RIO GRANDE AT MESILLA DAM
HEAD DF KDDhZ
RIVER FLOW AFTER DIVERSION
(TO #3 BELOW)
IRR. DEMAND SUPPLIED FROM G. W.
IRRIGATION DEMAND
IRRIGATION
NODE
-/ RETURN FLOW
2 WASTEWAYS TO RIVER
% RETURNED TO RIVER
SUR' ON CONUSE CARD)
**% TO SOIL COLUMN
f ('GUV ON CONUSE CARD) ~
NODE 2 AQUIFER
TRANSFER OF FLOW
RIVER TO AQUIFER
INFLOW TO AQUIFER
FROM RIVER
TRANSFER OF FLOW
Vi' AQUIFER TO RIVER
INFLOW TO RIVER FROM AQUIFER
PREDICTED OUTFLOW OF MODEL
(OBSERVED OUTFLOW)
EXCHANGE MECIIAIIISM SETS
HYDROLOGIC BALANCE
Node 1
Node 2
Figure A. Mesilla Valley system flow chart.
-------
depth range for May, 1973. These averages are listed in Appendix A.
PRELIMINARY SIMULATIONS
Preliminary simulations were then developed for the Mesilla Valley with
input data and operational procedures described above. The objectives of
these simulations were to determine what model structure is suitable for the
Mesilla Valley and to test the sensitivity of the model results to input
data. The model was implemented with existing field data for the period of
July, 1967 to June, 1968. A complete set of groundwater data was available
at the beginning of this period.
To test the sensitivity of the model results to input data, the model
response for both nodes in terms of total dissolved solids (TDS) in ppm from
July, 1967 through June, 1968 was then examined by varying several input
parameters. Initially the model was run using consumptive use of about 107
cm/yr (3.5 ft/yr) per unit area of cropland. The effects of several differ-
ent input variables were then explored in simulations, the detailed results
of which are given in previous annual reports (Lansford, et al., 1976, 1977).
The features examined in the sensitivity analyses included the effects of
(1) a 25 percent reduction in the initial aquifer pore
volume,
(2) a 50 percent reduction in the initial chemical con-
centration of aquifer waters,
(3) an average crop consumptive use of 61 cm/yr (2.0
ft/yr) with an irrigation efficiency of 50 percent,
and
(4) a 50 percent increase in the initial chemical con-
centration in the soil.
Results of the effect of the above changes on the predicted model out-
put are summarized in Table 2 and are discussed by McLin and Gelhar (1977).
The results of the sensitivity analyses demonstrate that, in contrast to the
minor role of soil chemistry and aquifer pore volume, the initial chemistry
of aquifer waters and the combined effects of crop consumptive use and
irrigation efficiency play an important role in the predicted TDS output.
These results influenced the emphasis in data collection and the final simu-
lations .
12
-------
TABLE 2. SUMMARY OF RESULTS OF MODEL SENSITIVITY ANALYSIS
Physical Feature Effect
(1) Twenty-five percent reduction No appreciable difference from origi-
in initial aquifer pore volume. nal predicted IDS output (i.e. iden-
tical to Figure 7)*.
(2) Fifty percent in chemical con- Large systematic differences of sev-
centration of aquifer waters. eral hundred ppm were noticed as com-
pared to the original predicted IDS
output (see Figure 8)*.
(3) Consumptive use, 61 cm/yr; ir- Produced systematic differences in
rigation efficiency, 50 percent. predicted IDS output (see Figure 8)*.
The transfer of water from the aqui-
fer to the river remained practically
unchanged (not shown in Figure 8)*.
(4) Fifty percent in initial chemi- Produced only minor differences in
cal concentration in the soil. TDS from that originally predicted
for node 1. Node 2 differences are
somewhat larger (see Figure 9)*.
*Figures referred to are in Lansford, et al., 1977.
13
-------
SECTION 4
DATA AQUISITION AND ANALYSIS
EXISTING DATA BASE
Surface water data for the Mesilla Valley during the last 50 years are
extensive; long-term records of flow since 1920 are available for most parts
of the Mesilla Valley, except for the Rio Grande at Mesilla Dam. The latter
information would be useful as a water balance check point for node 1, but
the data are not required to operate the model. Extensive data on chemical
quality are also available for the Rio Grande at the Leasburg Dam and at El
Paso. Complete analyses of major ions are available for much of the period
since 1920; however, some of the water quality data are in the form of elec-
trical conductivity or TDS. The main drains (Selden, Picacho, Del Rio, La
Mesa, East, and Montoya) have a long record of flow rates but a short record of
water quality, usually in the form of electrical conductivity. Irrigation
diversions (leasburg, East Side, and West Side canals) have excellent long-
term flow-rate records but no chemical records. It is assumed that the Leas-
burg canal chemical quality is the same as that of the Rio Grande at the
Leasburg Dam, and that the East Side and West Side canals have the same quality
as the Rio Grande at the Mesilla Dam. A detailed summary of the existing sur-
face water data availability is given in Table 2 of Lansford, et al., (1976).
Agencies that have provided surface water data are the Bureau of Reclamation
and the International Boundary and Water Commission, both at El Paso, Texas.
Wilcox (1968) and Scofield (1938) were also sources of useful surface water
data.
The groundwater data are less complete than the surface water data. The
only long-term, monthly measurements of water levels are done by the Bureau of
Reclamation in Las Cruces, New Mexico. Measurements of water levels in 40
shallow observation wells, penetrating into the upper portion of the flood
plain alluvium, have been made since 1946. The chemical quality of water from
these wells was apparently measured only once, during late May and early June
of 1967 (Easier and Alary, 1968). Otherwise, the records of groundwater levels
and quality are sporadic. Water-level and quality data were obtained from the
U. S. Geological Survey branch offices in Las Cruces, New Mexico, and El Paso,
Texas, the El Paso Water Utilities Public Service Board in El Paso, Texas, and
from the following publications: Easier and Alary (1968); Conover (1954);
Hudson and/or Bush (1964-1973); Leggat, Lowery, and Hood (1962); King, et al.
(1969, 1971); and Richardson (1971).
The available surface and groundwater data for the Mesilla Valley for
the period 1967 through 1976 are listed in Appendix A. Because of the lack
14
-------
of earlier quality data for groundwater, only this period could be simulated
with the model. Most of the earlier data are available in the appendices of
reports by Richardson (1971) and Hernandez (1976). Also included in Appendix
A are flow data collected by the Bureau of Reclamation as a part of their
operational activities for the irrigation system in the Mesilla Valley.
DATA COLLECTION
Because of the importance indicated by the sensitivity analysis, the
data collection program for this study emphasized groundwater quality. Month-
ly water samples were taken from 25 shallow two-inch diameter observation
wells. These wells are maintained by the USER or the USGS; their locations
are shown in Figure 3. The wells were sampled using a one-pint bailer and
were bailed at least 20 times, or until the well went dry. This was done to
insure that aquifer water was obtained. Water levels were measured in each
well before it was bailed. Electrical conductivity, temperature and pH were
measured in the field. Monthly surface-water samples were obtained at ten
locations as depicted in Figure 3. Electrical conductivity, temperature, pH,
and alkalinity were measured on site. The water samples were analyzed by the
Soil and Water Testing Laboratory at New Mexico State University; laboratory
analyses included conductivity, pH, Mg"1"*", Na+, K+, Ca4"*, Cl~, HC03~, C03=,
SOi^, and N03~. A few check samples were also analyzed at the Water Chemical
Laboratory of the Bureau of Mines and Mineral Resources at New Mexico Tech.
Data collected during the project are also listed in Appendix A.
WATER BALANCE AND PARAMETER ESTIMATION
The specific yield of the aquifer must be determined in order to evaluate
the volume of water initially stored in the aquifer. A calibration technique,
or parameter estimation procedure, was developed for this purpose to deter-
mine the storage characteristic of the aquifer from observations of water
level and drain flow. A simple water balance equation is used, which may be
written in the form
5 ft • -"d +
-------
The outflow from the aquifer can be approximated by the linear term (Gelhar
and Wilson, 1974)
a.
(h - h.) (2)
in which ad is an outflow constant (1/mo), h (m) is the average aquifer water
level and h^ is the elevation of water in the drains (m); at the drain level,
h(j represents a reference level at which the outflow is zero (Figure 5).
The model represented by Equation (1) with the outflow in Equation (2)
is a lumped parameter model in the form of a linear reservoir. A sequential
linear regression approach was used to estimate parameters for the shallow
aquifer. In the following paragraphs the procedure is briefly described (for
details see Updegraff and Gelhar, 1978).
First, Equation (2) is used to estimate a, and h,, given monthly
values of h and q. (see following section for computation of h). Then solv-
ing Equation (1) in finite difference form during the period of no irrigation
(i.e., q = 0) and applying the regression method to the resulting solution,
the parameters S and qr are estimated. Finally, the net recharge during the
irrigation season is computed numerically integrating Equation (1) with all
parameters known except q . The term qr, which was taken to be a constant
during each year, represents leakage from the Rio Grande treated as a perched
stream, plus other unmeasured sources of inflow to the aquifer (such as
lateral flow from adjacent aquifers). This term, which averages about 1.8
cm/mo (0.06 ft/mo), reflects an additional net recharge to the aquifer over
the year.
Monthly values of drain flow, q^, are plotted in Figure 6 versus values
of average groundwater levels in the Mesilla Valley for the period March,1946
through February,1951; the regression line fitted through the points is also
shown. The slope of this best fit gives the outflow constant, aj; its inter-
cept with the abscissa determines h
-------
water table
land surface
Figure 5. Schematic vertical section of an aquifer
with a perched stream.
17
-------
3825
3826 3827
AVERAGE WATER LEVEL, h, FT
3828
Figure 6. Monthly drain flow (qd) versus average aquifer level (h).
18
-------
1946 1947 1948 1949 1950 1951
Figure 7a. Observed and predicted groundwater levels.
S" 0.20
o
-i r
O OBSERVED
SIMULATED
1946 1947 1948 1949 1950 1951
Figure 7b. Observed and predicted drain flows.
A OBSERVED IRRIGATION DIVERSION
O ESTIMATED RECHARGE
1946 1947 1948 1949 1950 1951
Figure 7c. Estimated recharge compared with observed irrigation diversion.
19
-------
aquifer would probably average about 0.25.
The above parameter estimation procedure has also been done for the pe-
riod 1946 through 1976 using a nonlinear outflow relationship which is more
accurate than Equation (2) for small drain flows (see Pinson, 1978, for de-
tails). In this case, the specific yield was found to be 0.22; this value
was adopted to estimate the aquifer volume used in the final simulations with
the USER-EPA model.
ANALYSIS OF CHEMICAL AND WATER-LEVEL DATA
The Thiessen polygon method (Linsley, Kohler, and Paulhus, 1975, p. 82-84)
was used to obtain areal average values of observed quantities of TDS and
water levels over each of the nodes of the model. This method is convenient
because it yields fixed weighting factors for a given configuration of wells.
The initial storage in the alluvial aquifer was determined by applying the
Thiessen weighting factors to the observed depths to water in the observation
wells to produce an average depth to water in each node. The bottom of the
alluvial aquifer was taken to be an average of 24 meters (80 feet) below the
land surface as indicated by King, et al. (1971). The horizontal extent of
the alluvial aquifer was taken to be the gross area encompassed by the bound-
ary of the surface-irrigated area as measured from the Elephant Butte Irriga-
tion District Map, Mesilla Valley unit, provided by the U. S. Bureau of
Reclamation; the areas of nodes 1 and 2 are 16,498 and 27,376 hectares (40,767
and 67,645 acres), respectively. As discussed previously, the specific
yield of the aquifer was taken to be 0.22.
Figure 8 shows the water-table contour map which was constructed from
the water level data for the 40 USER observation wells for May, 1967, the ini-
tial condition for the simulations. This map shows a general downvalley
gradient; the water-table configuration appears to be very smooth and regular.
A water-table map was also constructed for May, 1976; although there were some
minor differences in water level at individual wells, the general pattern of
the water-table contours was not significantly different from that in 1967.
If more observation wells were available, the water-table configuration might
be more complex. For example, using data for May, 1965 through August, 1968,
King, et al. (1971) have prepared a water-table map which includes the same
area. Their map shows the same general downvalley gradient but the water-
table configuration is more contorted in the area around Las Cruces. This
complexity seems to be associated primarily with the municipal well field
east of Las Cruces. This field is outside the area of the alluvial aquifer.
Some of the variations in the map by King, et al. (1971) may also reflect
seasonal or temporal changes in water level through the three-year period
which was used by them. In any case, the water-table configuration is quite
smooth so that the Thiessen method should yield accurate estimates (say with-
in a few percent) of the average water level in the valley.
As shown in Figure 9a, b, the spatial variation of groundwater quality
(TDS for May, 1967, from Easier and Alary [1968]) is much more complex than
that of the water table. Although there are large local variations of TDS
which probably depend on local drainage conditions or proximity of irrigation
ditches, there seems to be an overall trend of increasing salinity down the
20
-------
Figure 8a. Water-table map, May-June,1967, northern Mesilla Valley.
21
-------
Figure 8b. Water-table map, May-June 1967, southern Mesilla Valley
22
-------
O r"s C*T* SITES
KM4CMT C* SJVACt
•V I^OJ-E: •«•
Figure 9a. TDS contour map in ppm, May-June,1967, northern Mesilla Valley.
23
-------
O TDS BIT* S.TES
NLA '
Figure 9b. IDS contour map in ppm, May-June%1967, southern Mesilla Valley.
24
-------
valley, as suggested by Conover (1954) and Leggat, Lowery, and Hood (1962).
Figure lOa, b shows the corresponding contour map of IDS for May, 1976, based
on data collected during this study. There seem to be major differences in
the water quality patterns between Figures 9a, b and lOa, b although some of
this difference may reflect the fact that fewer observation points were avail-
able for obtaining aquifer chemistry data in 1976. There remains, however, a
trend of increasing salinity down the valley.
Because of the complex spatial variation of aquifer water quality, another
method was considered for estimating the average concentration by integration
of the area surrounding given concentration isopleths on maps such as Figures
9a, b and lOa, b. This method was used to estimate average TDS from Figure
9a, b; an estimate for HCOs was also made from the data of Easier and Alary
(1968). The average TDS obtained from the integration method was 16 percent
higher than the value found using the Thiessen method, but the difference be-
tween the two methods was only 1 percent for HCOg . Because the construction
of concentration isopleth maps is quite subjective, especially with the small
number of data points available, the Thiessen method which yields a unique
set of weighting factors for a given configuration of wells was chosen.
The estimation of the average water quality of the aquifer is further
complicated by the fact that there are major changes of concentration in any
vertical direction selected in the valley. The water in the underlying Santa
Fe Group, which may be several hundred meters below the land surface, is gen-
erally of good quality; the TDS may be as low as 300 to 400 ppm. In contrast
the shallow wells which were sampled throughout this study, and earlier by
Easier and Alary (1968), probably represent only the upper part of the allu-
vial aquifer; average concentrations in these wells are about 1900 ppm of TDS.
Very little detailed information is currently available on the vertical
distribution of salinity, but some preliminary results of an on-going study
by the U. S. Geological Survey (C. A. Wilson, written communication, 1977)
indicate that the transition zone occurs in the range of 15 to 45 meters
(50 to 150 feet) below land surface. The transition does not necessarily
coincide with the geologic unconformity at the base of the recent flood-plain
alluvium. The concentration was assumed constant with depth to the assumed
average base of the alluvial aquifer at 24 meters (80 feet). (USER well no.
34 was not used in the calculations of average aquifer water quality because
we felt the extremely high TDS (greater than 11,000 ppm) was a local anomaly
which was not representative of the quality over the depth of the aquifer).
To further illustrate the variability of groundwater quality, Figure 11
shows monthly values of TDS from 15 of the observation wells over a two-year
period from November, 1975 to November, 1977. It can be seen that the tem-
poral variation at any one individual well is much less than the variation
between wells at a given time. There are some temporal changes which seem
common to most wells (e.gw, the increase in November, 1976) but there does
not seem to be any clear seasonal pattern in the data.
The importance of the large variability of groundwater quality becomes
more evident if a statistical interpretation of temporal changes in the water
quality is made. Table 3(a) summarizes data for May of 1967, 1976, and 1977;
25
-------
O TOS O»TA SITES
:•: g
Figure lOa. IDS contour map, May,1976, northern Mesilla Valley.
26
-------
O TOS DATA SITfS
Figure lOb. TDS contour map, May:1976, southern Mesilla Valley.
27
-------
4000
S3
00
1976 1977
Figure 11. Monthly IDS values from 15 observation wells for November,1975 to November ,1977
-------
the Thiessen weighted and the arithmetic means are shown along with the
standard deviation of the arithmetic values. There are similar systematic
changes of the Thiessen weighted and arithmetic means over these years, but
one may then ask the question: Has there been a significant change in the
quality of the shallow groundwater in the Mesilla Valley over the last decade?
If it is assumed that the observations are spatially independent and that the
observations at any two times are independent, a standard test of hypothesis
based on the student t-distribution leads to the conclusion that the differ-
ences of the arithmetic means is not significant at the 95 percent level.
This is a robust result; the standard deviation would have to be at least one
order of magnitude smaller for the difference of means to be significant.
However, inspection of data in Figure 11 indicates that the TDS concen-
trations are correlated at least over the two-year period (November, 1975 to
November, 1977), and the concentration remains high throughout the period for
some wells and low for others. To determine whether this correlation has per-
sisted over the past decade, it is necessary to consider only wells for which
data is available for both of the periods being compared (e.g., May, 1967 com-
pared to May 1976; May, 1967 compared to May, 1977), and consider the statisti-
cal dependence of the observations. Table 3(b) summarizes the results of such
an analysis; the strong dependence of the samples at given wells, even over a
ten-year period, is indicated by the high correlation coefficients. None of
the changes in the mean TDS are significant at the 95 percent level; however,
the decrease in TDS from 1967 to 1976 would be significant at the 80 percent
level. The analysis which assumes independence (Table 3[a]) can be very
misleading as it implies that the decrease in TDS from 1967 to 1976 is far
from being significant. Thus, if one is attempting to monitor temporal change
of groundwater quality in a spatially variable system, it is important to use
the same network of wells throughout the observations. The results in Table
3(b) also imply that the similar spatial pattern of groundwater quality dis-
tribution has persisted in the Mesilla Valley over the last decade. In this
case, statistical analysis is required to identify this persistent spatial
pattern; subjective comparison of concentration isopleth maps (Figures 9 and
10) does not show this feature.
Statistical comparison of the results of the chemical analyses from the
laboratories at New Mexico State University (NMSU) and at the Bureau of Mines
and Mineral Resources at New Mexico Tech (NMT) were also made; typical results
are shown in Figure 12. The 95 percent confidence intervals on the slope
and intercept of the linear regression parameter indicate that these values
are not significantly different from one and zero, respectively; hence, in
conclusion the analyses from the two laboratories were consistent. The data
from the NMSU laboratory were used in subsequent analysis.
ANALYSIS OF AQUIFER AND WELL DATA
Some observations which pertain to the vertical extent of the alluvial
aquifer used in the USER-EPA model are considered. It is generally accepted
that the depth of the lat quaternary flood-plain and channel deposits of the
Rio Grande averages around 24 meters (80 feet) in the Mesilla Valley (see
King, et al., 1971, and several references therein). Drilling and well
29
-------
TABLE 3. STATISTICAL ANALYSIS OF TEMPORAL VARIABILITY OF WATER QUALITY
Sample
1976
1977
1977
(a) STATISTICAL COMPARISON OF TOTAL DISSOLVED SOLIDS (PPM)* CHANGES A
INDEPENDENT SAMPLES
Theisson
Weighted Arithmetic
Date No. of Wells Mean Mean
May 1967 32 1846 1930
May 1976 24 1777 1857
May 1977 22 1887 2071
t-Statistics Test
1967(x) to 1976(y): Estimated standard deviation s=2124, m=32, n=
SSUMING
Sample
Standard
Deviation
1976
2310
2283
=24, degrees
of freedom m t n-z=D4, 95% t- 2.01, t-/ mn/(m + n) (x-y)/s=0.126 <2.01.
Difference is not significant at 95% level.
1967(x) to 1977(y): Estimated standard deviation s=2105,
m=32, n=22, degrees of freedom m + n-2=52, 95% t=2.01,
t=0.242 < 2.01. Difference is not significant at 95% level.
(b) STATISTICAL COMPARISON OF TOTAL DISSOLVED SOLIDS (PPM)* CONSIDERING
DEPENDENT PAIRED SAMPLES FOR MAY
Estimated Standard
Year No. of Wells Arithmetic Means Deviations
2- S. £ 1 z Sx % sz
!967 17 2096 2282 -186 2655 2562 467
1967 15 2258 2345 -87 2642 2730 341
!976 21 2031 2020 10.4 2331 2431 368
Difference, z=x-y; correlation coefficient, r =[Exy-(Zx) (Iy)/n]/ [s
z variance, 3^=8^ + sj*- 2r^ SJB^; t statistic, t= x-y|»^/s_.
r
xy t
0.9846 1.65
0.9925 0.99
0.9889 0.13
xsy(n-l)];
95%t
2.12
2.15
2.09
, and
-------
1500 -
s
Oi
v^
CO
g
Pi
o
w
I
1000-
500 -
500
1000
NMSU-TDS (PPM)
IDS comparison
1500
2000
Figure 12,
I 2345678
NMSU VALUE FOR CL~(MEQ/L)
Chloride comparison
Comparison of analyses from New Mexico State University
and New Mexico Tech.
31
-------
logging data which is being collected by the U. S. Geological Survey as part
of an on-going study of the groundwater resources of the area also supports
this value for the depth of the recent alluvium (C. A. Wilson, written com-
munication, 1977). Previous studies also indicate that hydraulic conductivity
of the underlying Santa Fe Group is substantially lower than that of the al-
luvium; aquifer test data reported by Leggat, Lowery, and Hood (1962) imply
that the hydraulic conductivity of the alluvium is ten times that of the Santa
Fe aquifer, and Conover (1954) indicates threefold differences in the hydraulic
conductivity between the two aquifers.
This contrast in hydraulic conductivity is also implied from the analysis
of specific capacity data for many wells in the Mesilla Valley. Using data on
water levels in pumping wells as collected by the U. S. Geological Survey
(C. A. Wilson, written communication, 1977) and estimates of the static water
levels obtained by interpolation between wells in the United States Bureau of
Reclamation network, calculations were made of the specific capacity of 76
wells ranging in depth from 19 to 230 meters (62 to 750 feet). These are
mainly irrigation wells which are usually screened or perforated over the en-
tire depth. However, some of the deeper wells are known to be screened only
in the Santa Fe aquifer. The data are summarized in Figure 13, which shows
that the logarithm of specific capacity of these wells tends to decrease with
increasing well depth. Although there is a substantial amount of scatter, the
negative slope of the regression line is significant at the 95 percent level.
Because the specific capacity is proportional to the transmissivity, this re-
sult further demonstrates a significant reduction of hydraulic conductivity in
the Santa Fe aquifer. Figure 14 shows a normal probability plot of these data
in terms of the logarithms of depth and of specific capacity. The roughly
linear relationships imply that both variables follow approximatley a lognormal
distribution.
From Figure 14 it is evident that many irrigation wells will produce from
the alluvium and the Santa Fe aquifer; the median well depth is around 46 me-
ters (150 feet). Also, over the years, the average depth of irrigation wells
seems to have increased because new wells are drilled deeper to obtain the
better quality water. This fact further complicates the definition of the
lower boundary and the initial chemical quality of the aquifer used in the
model; the depth of 24 meters (80 feet) has been arbitrarily selected to repre-
sent the alluvium since the primary interest is in the aquifer water chemistry
resulting from the influence of irrigation (see previous discussion).
The areal extent of the alluvial aquifer and possible lateral inflows to
it are also difficult to define precisely. The water-table map of King, et al.
(1971) indicates that lateral inflow could be significant from the area east
of the valley; considering the transmissivity of the Santa Fe aquifer and the
indicated gradient, the amount of lateral inflow may be on the order of 1.23
x 10 m /yr (10,000 ac-ft/yr). This inflow may be partly compensated for by
the outflow from the alluvium which is induced by pumping in the Las Cruces
well field and other municipal supplies; such outflows are probably similar
in order of magnitude to the lateral inflow. Phreatophyte transpiration may
also account for a loss of water of about his same magnitude, but this will
be balanced to some extent by contributions from the precipitation over non-
cropped areas and intermittent surface runoff from adjacent areas. However,
32
-------
1000
Q.
o
100
u>
u
CL
o
o
LL
5 10
UJ
CL
00
200
400
WELL DEPTH,FEET
600
800
Figure 13. Specific capacity versus depth for 76 wells in the Mesilla Valley.
-------
500
2
Q.
O
O
< 100
o
o
o
UJ __
Q. 50
20
10
: - 1
c, •»
1 1 1 1
•*••••
1000
1
I
I
10 20 30 40 50 60 70 80
PROBABILITY, PERCENT
1
500
200
Ld
UJ
100 g.
o
UJ
50
20
90 95 98 99
Figure 14. Log-normal probability plot of specific capacity and well depth.
34
-------
the above flows are typically at least one order of magnitude less than the
amount of water applied in the valley for irrigation (say 3.1 x 108 m3/yr or
250,000 ac-ft/yr). Because of the secondary role of the other sources of in-
flow or outflow, their generally compensatory nature, and the difficulty in
determining their influence on the alluvium, any explicit consideration of
these sources in the model setup has been omitted.
CONSUMPTIVE USE
The crop consumptive use is one of the most important input parameters
for the model. In preliminary calculations, two different methods were used
to estimate the consumptive use. The modified Jensen-Haise method (Jensen,
Robb and Franzoy, 1970)"was applied using data on solar radiation and air
temperature for Las Cruces, New Mexico, and El Paso, Texas, in the pro-
gram EVPCOM which was also prepared by the U. S. Bureau of Reclamation (1974).
The Jensen-Haise method, with cropping patterns of the Mesilla Valley, yields
a consumptive use per area of crop land of about 107 cm/yr (3.5 ft/yr) (Table
3, Lansford, et al., 1976); this value is much higher than the commonly ac-
cepted estimate of around 61 cm/yr (2.0 ft/yr) based on the Blaney-Criddle
equation (Henderson and Sorensen, 1968; Lansford, et al., 1973).
Measurements reported by Gregory and Hanson (1976) for alfalfa in the
Mesilla Valley show an annual consumptive use of around 150 centimeters (5.0
feet); they found that their observations were in reasonable agreement with
values computed by the Jensen-Haise method., In contrast, the Blaney-Criddle
method (Blaney and Hanson, 1965) predicts a consumptive use of around 100
centimeters (3.0 feet) for alfalfa in the Mesilla Valley. On the other hand,
recent lysimeter work (Al-Khafaf, 1977) with cotton in the Mesilla Valley
yielded an annual consumptive use of 52 centimeters (1.7 feet) in 1976; the
Blaney-Criddle method yields a consumptive use of about 61 centimeters (2.0
feet) for cotton in the same area (Blaney and Hanson, 1965). It is evident
that the various methods of calculating consumptive use can yield quite di-
vergent results and that similar differences have been observed by several
independent workers. Hanson (personal communication, 1977) attributed some
such differences to variations in water management and crop yield.
Because of the general uncertainty concerning the evaluation of consump-
tive use, £he simple and widely accepted Blaney-Criddle method was chosen to
estimate the consumptive use for input to the USBR-EPA mode. This method
requires only mean monthly temperature and precipitation. The procedures of
Blaney and Hanson (1965) were followed throughout the calculations using the
crop coefficients and effective precipitation relationships which they sug-
gest. Data on cropping acreage for each year were provided by New Mexico
State University (Lansford, et al., 1978). In the USBR-EPA model simulations,
these initial consumptive use estimates, were further adjusted so that the
simulated and observed aquifer water levels followed similar trends. Values
of calculated consumptive use for each node of the model are listed in Ap-
pendix A.
35
-------
SECTION 5
SIMULATION RESULTS AND CONCLUSIONS
MODEL PREPARATION
As noted previously, an initial trial aquifer thickness of 24 meters (80
feet) was selected on the basis of. geological, aquifer, and chemical data.
Because of the paucity of information regarding the quality and quantity of
water from the deeper aquifer, pumpage from this deeper system was ignored in
the modeling process. Instead all pumpage to supplement irrigation was as-
sumed to originate in the shallow alluvial aquifer and to reflect its average
chemistry..
Consumptive use for the cropped area, as predicted by the Blaney-Criddle
method and adjusted to include effective precipitation, was further modified
so as to minimize the rms error in average valley water levels. This modifi-
cation was made using an average consumptive-use multiplier. Initial and
modified values for consumptive use are listed with the input data in Appendix
C. Allowance for effective precipitation slightly decreases the model input
values for consumptive use, resulting in an average annual value of approxi-
mately 52.4 cm/yr (1.72 ft/yr), based on the yearly cropped acreage, or 82.9
cm/yr (2.72 ft/yr), based on monthly cropped acreage (see Appendix A for com-
plete listing of consumptive use). Additionally, calculation of irrigation
demand necessitates the estimation of an average irrigation efficiency for
the valley. The often cited value of 50 percent was used (R. R. Lansford, per-
sonal communication, 1977), which is somewhat smaller than some field plot
irrigation efficiencies cited by Blaney and Hanson (1965). This irrigation
efficiency implies that one-half of the irrigation demand is used by the crops
and one-half percolates through the soil root zone to the alluvial aquifer.
In most irrigation systems, some amount of water is lost from unlined
canals before the water can be delivered to the fields. In this model, al-
lowance was made for these losses via a delivery system efficiency factor,
rather than actually specifying individual monthly values in each node (this
feature was not originally available in the model but was incorporated here).
The USBR-EPA model already has the capability of incorporating monthly irri-
gation losses to the river or to the aquifer, with or without being subject
to soil column chemistry reactions. However, the model makes these loss cal-
culations after first subtracting the consumptive use. The resulting water
has a considerable higher dissolved solids content than applied water, whereas
water derived from canal losses is expected to reflect the chemistry of
applied water, before any modification by consumptive use. Thus, the model
was modified to allow for a direct transfer of diverted river water to the
aquifer by means of a delivery system efficiency factor. This factor was
36
-------
calculated to be 55 percent (USSR water distribution records, El Paso, Texas),
which implies that 45 percent of a given monthly surface diversion is lost
directly to the alluvial aquifer. The use of a delivery system loss factor
is justified, at least in the Mesilla Valley, in that it attempts to more
closely represent actual system water and mass transfers. This factor is
user specified and remains constant throughout the simulation period.
The modeling process was initiated with shallow aquifer water quality
data from Easier and Alary (1968) averaged for each node as discussed pre-
viously. Since no other compatible subsurface chemical data exists over the
valley in the intervening years between 1967 and 1976, the model output was
only compared against existing surface water quality data for the Rio Grande
at El Paso, Texas, for the entire ten-year period.
SIMULATIONS
The ten-year period, 1967 through 1976, was used in the final simulations
to evaluate the USBR-EPA model in the Mesilla Valley. The following factors
were considered in these simulations:
(1) the influence of changes in consumptive use,
(2) the influence of including chemical reactions within the soil,
(3) the effect of increasing the aquifer depth, and
(4) the effect of improved irrigation efficiency.
Because of the uncertainty in the estimated consumptive use, its optimal value
was obtained by minimizing the difference between the predicted and observed
average water levels in the aquifer: it was found that the predicted average
water level in the aquifer is very sensitive to the value chosen for consump-
tive use. Figure 15 illustrates water-level changes over the ten years during
which the consumptive use is taken to be 1.6 and 1.7 times that determined by
the Blaney-Criddle method. The results of several runs made to determine the
optimal value of this comsumptive use multiplier are summarized in Figure 16.
The root mean square (rms) error in predicted water level shows a very dis-
tinct minimum around 1.7; the rms error in predicted IDS shows a linear rela-
tionship, but is much less sensitive to the multiplier.
The multiplier of 1.7 implies an average consumptive use of around 89
cm/yr (2.92 ft/yr) based on the total cropped acreage, which average around
30,000 hectares (75,000 acres) over this period. However, the total area of
the valley encompassing the alluvial aquifer was taken to be 43,874 hectares
(108,412 acres); there are undoubtedly other significant sources of water con-
sumption related to the additional area, such as phreatophytes, evaporation
from water surfaces, and municipal depletions. If it is assumed that the same
consumption rate applies over cropped and uncropped areas, the average consump-
tive use per acre of cropland is about 61 cm/yr (2.0 ft/yr). This estimate
implies a net depletion; with an average effective precipitation of 19.1
centimeters (7.5 inches) (Blaney and Hanson, 1965), the total average consump-
tion of water per acre of cropland would be about 79 centimeters (2.6 feet).
Interestingly, Meyer and Gordon (1973) have estimated the crop consumptive
use in the lower Mesilla Valley in Texas to be 79.6 and 82.0 centimeters
depth per hectare (2.61 and 2.69 acre-feet per cropped acre) for 1970
37
-------
I-
U-
UJ
>
LU 6
_J
DC
UJ
o
o:
a:
LJ
0
500
C/)
o
400 ±
o:
o
cc
cr
300
1.4 1.6 1.8
CONSUMPTIVE USE MULTIPLIER
Figure 16. Root mean square error in simulated aquifer water levels
and simulated outflow chemistry as function of consump-
tive use multiplier.
38
-------
co
vo
o
a
en
-------
and 1971, respectively.
Once the optimum value for consumptive use was selected, the effects of
the previously mentioned factors were examined using the same ten-year simu-
lation period. With the consumptive use multiplier of 1.7 and a water deliv-
ery system efficiency estimated to average 55 percent, the following simula-
tions were made:
(1) an initial irrigation efficiency of 50 percent and an average aquifer
saturated thickness of 24 meters (80 feet);
(2) an initial irrigation efficiency of 50 percent and an average aquifer
saturated thickness of 46 meters (150 feet); and
(3) an increase in irrigation efficiency from 50 percent to 75 percent,
using an average aquifer saturated thickness of 24 meters (80 feet).
Two computer runs were made for each of the above cases. The first run took
into account chemical reactions within the soil zone, while the second run
was made without such reactions. The effects of soil zone chemical reaction
simulations could therefore be directly evaluated under several varying condi-
tions. For all cases, the time history of average predicted water levels re-
mains unchanged, as any change in infiltrated water must be equal to a change
in pumpage (surface diversions are constrained by observation and consumptive
use by the aforementioned optimization procedure). Thus, the time history of
predicted water levels for all cases is identical to that of Figure 15 with a
consumptive use multiplier of 1.7.
Figures 17 through 19 show a comparison of predicted and observed total
dissolved solids for the various cases examined. The predicted TDS values
are compared with observed data in the Rio Grande at El Paso, Texas, over the
ten-year simulation period. It can be seen that the model simulates the ob-
served seasonal variation in water quality quite well for all cases. This
seasonal pattern seems to be related to the fact that the relatively high sa-
linity groundwater, which drains from the aquifer after the irrigation season,
is the predominate source of flow during the winter months. However, in the
early part of the growing season, large quantities of relatively low salinity
surface diversions are applied; these waters tend to dilute the drainage
waters.
Table 4 shows a summary of results for the simulation cases considered.
Figures 17 and 18 seem to indicate that the USBR-EPA model reproduces the
TABLE 4. COMPARISON OF RESULTS AS MEASURED BY RMS ERROR IN TDS
AquiferSoTTIrrigationrms error
depth chemistry efficiency in TDS
meters (feet) % ppm
24
24
24
24
46
46
(80)
(80)
(80)
(80)
(150)
(150)
yes
yes
no
no
yes
no
50
75
50
75
50
50
344
329
319
328
328
330
40
-------
CJ
Oci
X Hi
si-
CL.
G-
__ ca
I?
Q_
cr<,
c_>
o Observed Dota Points
A Predicted Dota Points
^957.00
TIME" IN
(a) Without soil column chemical reactions
o Observed Doto Points
Predicted Data Points
°19B7.0D 1968.DO 1963.DD 1370.00 1971.00 1978.00
TIME IN YERR5
1973.00 19714.00 1975.00 1976.00 1977
(b) With soil column chemical reactions
Figure 17. Observed and predicted IDS using an alluvial aquifer 24
meters (80 feet) thick and irrigation efficiency of 50%.
41
-------
CL.
a.
o Observed Doto Points
A Predicted Data Points
iQ7i.oa ;s?2.co 3373.00
TIME IN YEflRS
(a) Without soil column chemical reactions
1375.CC 597T
o Observed Doto Points
A Predicted data Points
.. . . .
TIME IN TERRS
(b) With soil column chemical reactions
Figure 18. Observed and predicted TDS using an alluvial aquifer 46
meters (150 feet) thick and irrigation efficiency of 50%.
42
-------
Q-
C_
31*
G-
o Observed Data Points
A Predicted Data Points
^957 DO 5363 PC : 959.00 1D7D.D3 1971.DO 1S7E.OD 1373.OD :97U.DO 197i.DC
TIME IN YEflRS
(a) Without soil column chemical reactions
3377
24
O
O
x "6
•5.
o.
a
o
2 12
a.
6 8
z
o
o
o Observed Data Points
A Predicted Data Points
J_
_L
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
TIME IN YEARS
(b) With soil column chemical reactions
Figure 19. Observed and predicted TDS using an alluvial aquifer 24
meters (46 feet) thick and irrigation efficiency of 75%.
-------
total dissolved solids in the Rio Grande at El Paso slightly better when soil
chemistry effects are not included in the model, especially toward the end of
a given simulation run. This is true for both aquifer depths considered,
though the rms error between observed and predicted IDS for an alluvial thick-
ness of 24 meters (80 feet) is somewhat lower than when it is taken to be 46
meters (150 feet). The rms error from both cases, however, is still relatively
small. It would thus appear that the aquifer thickness is not a major para-
meter in the USER-EPA model simulations.
Comparison of Figures 17a and 17b shows that inclusion of the soil-water
chemical interaction effects in the USBR-EPA model has a significant effect
on the predicted TDS in the Rio Grande, although this effect is not evident in
the first few years of the simulation. This observation emphasizes the slow
chemical response of soil-aquifer systems in general. The influence of the
soil-water chemical reactions is most important when the irrigation efficiency
is increased from 50 percent to 75 percent as illustrated by Figures 19a and
19b. The results with and without the model soil column reactions differ impor-
tantly in these cases; the conservative system (i.e., without the model soil
column reactions) with a 75 percent efficiency indicates a significant predic-
ted TDS increase in the Rio Grande at El Paso over that for the 50 percent
efficiency case. On the other hand, the more complete description with soil
chemistry effects included shows a definite predicted TDS decrease in the Rio
Grande, especially towards the end of the simulation period.
The simulation results indicate that a significant decrease in the Rio
Grande TDS at El Paso would have occurred if the irrigation efficiency had
been increased to 75 percent for the period of 1967 to 1976, if we accept the
more complete model with soil chemistry reactions. Comparison of the simulation
results with soil column chemical reactions in Figures 17b and 19b shows that
in the last four years of the ten year simulation period the average maximum
TDS in the Rio Grande was typically about 550 ppm lower with the higher irri-
gation efficiency. This management option appears to be a viable method for
improving downstream water quality. The technique does, however, take some
time before giving any noticeable improvements in water quality. In the
Mesilla Valley, this time period would apparently have been about six years.
All of the above simulations were made with the USBR-EPA model as repre-
sented by the FORTRAN listing in Appendix B. Only minor changes of input data
are required.to simulate the various cases presented above. A typical listing
of input data and output are shown in Appendix C for the case with 50 percent
irrigation efficiency with soil chemical reactions. To exclude the soil
chemistry, monthly CONUSE cards are changed as indicated in the data listing,
Appendix C. A complete program source listing with ten-year data input and
simulation output for the Mesilla Valley is available on microfilm form the
Environmental Protection Agency, Ada, Oklahoma. Appendix C lists only the
first two months of data input and simulation output for the valley. The
aquifer depth is changed simply by altering the initial volume of water in the
aquifer. Changes in irrigation efficiency are introduced as indicated in the
program listing in Appendix B; changes in the water delivery system efficiency
can also be changed as indicated in Appendix B.
The results of the above simulations demonstrate that the USBR-EPA model
44
-------
can simulate pre-existing conditions quite well if adequate data are available
to describe the overall water balance and the conditions of the aquifer. The
experience with the Mesilla Valley system indicates that the overall data on
flow are quite reliable and consistent. The resolution of the groundwater
quantity data also seems adequate, but the groundwater quality shows a very
high degree of horizontal spatial variability. The vertical extent of the
higher salinity groundwater is not well defined. For example, is one addi-
tional well (USER Well No. 34) were included in the calculation of average
aquifer quality, the initial dissolved solids concentration would be increased
over 300 ppm.
The actual predictive capabilities of the USBR-EPA model are less clear.
In order to predict the effects of changes in water application, one must be
able to synthesize the resulting changes of flow in and out of the system.
Because the "USBR-EPA model completely ignores the dynamics of flow in the
aquifer (e.g., no aquifer hydraulic properties are used in the model), changes
in outflow which result from changes in aquifer water level are not simulated
by the model. For example, in the Mesilla Valley simulations, the flow of the
Del Rio drain appears as a flow transfer from node 1 to node 2. When the
simulation for improved irrigation efficiency was developed, it was necessary
to make some assumption about this flow as input data for the model. The
drain flow was arbitrarily assumed to be unchanged. Because of features such
as this, the predictive capabilities of the USBR-EPA model may be quite lim-
ited in some situations. If reliable information is available on how the
water balance and flow conditions will change, the USBR-EPA model can provide
reasonable predictions. However, this is just another way of saying that the
model is not complete in its description of flow dynamics.
These features may seem to suggest that the USBR-EPA model should be
modified to incorporate some dynamic characteristics of the groundwater flow.
However, it is not suggested that the present model be modified because it is
generally very difficult to use, especially if any changes of program struc-
ture are required. The documentation of the computer program was not consid-
ered to be adequate for most users.
Considering the very simple conceptual framework of the USBR-EPA model
(i.e., the aquifer in each node is simply a mixing cell), the computer program
seems unnecessarily complicated. Models which incorporate the mixing cell
structure plus the flow dynamics of the aquifer are already available (Gelhar
and Wilson, 1974), and have been applied with reasonable success to the irri-
gation return flow situation in the Arkansas River Valley near La Junta, Col-
orado (McLin, 1978). These models can be operated with much simplier computer
programs; the calculations can be performed quite conveniently on a program-
able pocket calculator.
45
-------
REFERENCES
Al-Khafaf, S., 1977, Observed and computed water content distributions in
layered soils under cotton. Unpub. Ph.D. dissertation, Agronomy Dept.,
New Mexico State Univ., Las Cruces, New Mexico, 200 p.
Easier, J. A. and L. J. Alary, 1968, Quality of the shallow water in the
Rincon and Mesilla Valleys, New Mexico and Texas. USGS, open file re-
port.
Blaney, H. F. and E. G. Hanson, 1965, Consumptive use and water requirements
in New Mexico. N. Mex. State Engr., Tech Bull. 32, Santa Fe, New Mexico,
82 p.
Conover, C. S., 1954, Groundwater conditions in the Rincon and Mesilla Valleys
and adjacent areas in New Mexico. USGS Water Supply Paper 1230.
Dutt, G. R., M. J. Shaffer, and M. J. Moore, 1972, Computer simulation model
of dynamic bio-physiochetaical processes in soils. Agricultural Experi-
ment Station, Tech. Bull. 196, Univ. of Arizona, Tucson, Arizona, 101 p.
Gelhar, L. W. and J. L. Wilson, 1974, Groundwater quality modeling. Ground-
water, v. 12, n. 6, p. 399-408.
Gregory, E. J. and E. G. Hanson, 1976, Predicting consumptive use with clima-
tological data. N. Mex. Water Resources Research Institute, Report No.
66, Las Cruces, New Mexico, 43 p.
Gupta, S. K., K. K. Tanji, and J. M. Luthin, 1975, A three dimensional finite
element groundwater model. California Water Resources Center, Contribu-
tion 152, Univ. of California, Davis, California, 119 p.
Hassan, A. A., D. C. Kleinecke, S. J. Johanson, and C. E. Pierchala, 1974,
Mathematical modeling of water quality for water resources management,
two volumes. Research Grant Technical Completion Report to the Office
of Water Resources Research, U. S. Dept. of Interior, Washington, D.C.
Henderson, D. C. and E. F. Sorensen, 1968, Consumptive irrigation requirements
of selected irrigated areas in New Mexico. Agricultural Experiment Sta-
tion, Bull. 531, N. Mex. State Univ., Las Cruces, New Mexico, 55 p.
Hernandez, J. W., 1976, Rio Grande water quality base line study 1974-75,
Summary Report. N. Mex. Water Resources Research Institute, Report No.
64, Las Cruces, New Mexico, 97 p.
46
-------
Hornsby, A. G. , 1973, Prediction modeling for salinity control in irrigation
return flows. (EPA-R2-73-168), National Environmental Research Center,
Corvallis, Oregon, 55 p.
Hudson, J. D. and/or Bush, F. E., 1964-1973, Groundwater levels in New Mexico,
basic data report. N. Hex. State Engr., Santa Fe, New Mexico, yearly
reports.
Jensen, M. E., D. C. N. Robb, and C. E. Franzoy, 1970, Scheduling irrigation
using climate-crop-soil data. J. Irr. Drain. Div., ASCE, v. 96, n. IR1,
p. 25-38.
King, L. G. and R. J. Hanks, 1973, Irrigation management for control of quali-
ty of irrigation return flow. (EPA-R2-73-265), U. S. Environmental
Protection Agency, Washington, D.C. p. 307.
King, W. E., J. W. Hawley, A. M. Taylor, and R. P. Wilson, 1969, Hydrogeology
of the Rio Grande Valley and adjacent intermontane areas of Southern New
Mexico. N. Mex. Water Resources Research Institute, Report No. 6, Las
Cruces, New Mexico, p. 141.
, 1971, Geology and groundwater resources of Central and Western
Dona Ana County, New Mexico. N. Mex. Bureau of Mines and Mineral Re-
sources, Hydrologic Report No. 1, Socorro, New Mexico, 64 p.
Konikow, L. F. and J. D. Bredehoeft, 1974, Modeling flow and chemical quality
changes in an irrigated stream-aquifer system. Water Resources Research,
v. 8, n. 4, p. 546-562.
Lansford, R. R., S. Ben-David, T. G. Gebhard, Jr., W. Brutsaert, and B. J.
Creel, 1973, An analytical interdisciplinary evaluation of the utiliza-
tion of the water resources of the Rio Grande in New Mexico. N. Mex.
Water Resources Research Institute, Report No. 20, Las Cruces, New Mexico
152 p.
Lansford, R. R., P. J. Wierenga, L. W. Gelhar, T. A. Howell, C. M. Hohn, and
G. 0. Ott, 1976, Demonstration of irrigation return flow salinity con-
trol in the upper Rio Grande, Annual Report, Year 1. N. Mex. Water Re-
sources Research Institute, Report No. 70, Las Cruces, New Mexico, 121 p.
, 1977, Demonstration of irrigation return flow salinity control in
the upper Rio Grande, Annual Report, Year 2. N. Mex. Water Resources
Research Institute, Report No. 86, Las Cruces, New Mexico, 94 p.
, 1978, Demonstration of irrigation return flow salinity control in
the upper Rio Grande, Final Report, Las Cruces, in press.
Leggat, E. R., M. E. Lowery, and J. W. Hood, 1962, Groundwater resources of
the lower Mesilla Valley, Texas and New Mexico. Texas Water Commission,
Bull. No. 6203, 191 p.
47
-------
Linsley, R. K., Jr., M. A. Kohler, and J. L. H. Paulhus, 1975, Hydrology for
Engineers, 2nd edition, McGraw-Hill, New York, 482 p.
Lyons, T. C. and J. Stewart, 1973, Groundwater model development and verifi-
cation for the San Jacinto groundwater basin. Water Resources Engineers,
Inc., Final Report on Task XV(s)-l.
Maddaus, W. and M. A. Aaronson, 1972, A regional groundwater resource manage-
ment model. Water Resources Research, v. 8, n. 1, p. 231-237.
Mercado, A., 1976, Nitrate and chloride pollution of aquifers; a regional
study with the aid of a single-cell model. Water Resources Research, v.
12, n. 4, p. 731-747.
Meyer, W. R. and J. D. Gordon, 1973, Water-budget studies in lower Mesilla
Valley and El Paso Valley, El Paso County, Texas. U. S. Geological Sur-
vey, open file report, 43 p.
McLin, S., 1978, Validity of the lumped parameter hydrosalinity model in pre-
dicting irrigation return flow. Unpub. Ph.D. dissertation, New Mexico
Institute of Mining and Technology, Socorro, New Mexico, in progress.
McLin, S. G. and L. W. Gelhar, 1977, Hydrosalinity modeling of irrigation re-
turn flow in the Mesilla Valley, New Mexico. International Conference on
Managing Saline Water for Irrigation, Texas Tech Univ., Lubbock, Texas,
August 16-20, 1976, p. 28-48.
Pinzon, S., 1978, A non-linear lumped parameter model for the Mesilla Valley,
New Mexico. Unpub. Independent Study, New Mexico Institute of Mining
and Technology, Socorro, New Mexico, in progress.
Richardson, G. L., 1971, Water table investigation in the Mesilla Valley.
Unpub. M.S. thesis, Civil Engr. Dept., N. Mex. State Univ., Las Cruces,
New Mexico, 206 p.
Scofield, C. S., 1938, Quality of water in the Rio Grande Basin above Fort
Quitman, Texas. USGS Water Supply Paper 839.
Shaffer, M. J., R. W. Ribbens, and C. W. Huntley, 1977, Prediction of mineral
quality of irrigation return flow, vol. V, Detailed return flow salinity
and nutrient simulation model. Robert S. Kerr Environmental Research
Laboratory, EPA-600/2-77-179e, Ada, Oklahoma, 229 p.
Updegraff, C. D. and L. W. Gelhar, 1978, Parameter estimation for a lumped
parameter groundwater model of irrigation return flow. N. Mex. Water
Resources Research Institute, Las Cruces, New Mexico, in press.
U. S. Bureau of Reclamation, 1974, Irrigation management services, annual re-
port for 1973, Rio Grande Project, New Mexico and Texas. Bureau of
Reclamation, Southwest Region, Amarillo, Texas, 92 p.
48
-------
U. S. Bureau of Reclamation, 1977a, Prediction of mineral quality of irriga-
tion return flow, vol. I., Summary report and verification. (EPA-600/2-
77-179a), Robert S. Kerr Environmental Research Laboratory, Ada, Oklahoma,
59 p.
, 1977b, prediction of mineral quality of irrigation return flow,
vol. II, Vernal field study. (EPA-600/2-77-179b), Robert S. Kerr Environ-
mental Research Laboratory, Ada, Oklahoma, 106 p.
, 1977c, Prediction of mineral quality of irrigation return flow,
vol. Ill, Simulation model of conjunctive use and water quality for a
river system or basin. (EPA-600/2-77-179c), Robert S. Kerr Environmental
Research Laboratory, Ada, Oklahoma, 285 p.
Walker, W., 1976, Assessment of irrigation return flow models. (EPA-600/2-76-
219), Robert S. Kerr Environmental Research Laboratory, Ada, Oklahoma,
75 p.
Wierenga, P. J., 1977, Influence of trickle and surface irrigation on return
flow quality. (EPA-600/2-77-093), Robert S. Kerr Environmental Research
Laboratory, Ada, Oklahoma, 157 p.
Wilcox, L. V., 1968, Discharge and salt burden of the Rio Grande above Fort
Quitman, Texas, and salt balance conditions of the Rio Grande project,
summary report for the 30-year period 1934-1963. U. S. Salinity Labora-
tory, Research Report No. 113, Riverside, California.
Willardson, L. S. and R. J. Hanks, 1976, Irrigation management affecting
quality and quantity of return flow. (EPA-600/2-76-226), Robert S. Kerr
Environmental Research Laboratory, Ada, Oklahoma. 191 p.
49
-------
APPENDIX A
A. MESILLA VALLEY INPUT DATA FOR THE USBR-EPA MODEL
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1967
MONTH
2
FLOW CA
AOFT MG/L
0,
R"
0,
74
II'
K NA HC03
^c> x L* MG/JU "G/IJ H
s»
o.
8-
S«
8;
•» o, o, o, n, o.
5 42150, 74, 15, 92j 7l!
6 47930j 72j 1?! 8§! 68j
7 70069! 48,' T! 9j! 6oJ
8 79419! 80, 13! 18?! 103!
9 56609, 40, !a, 200, 106!
10 5030, 80, 11, 200, 120.
it 386o! no! 10! i7o! 200!
12 3770, 150, 9! 16s! 17?!
:iON SOURCE: USER; EL PASO, TEXAS
?IRST FOUR MONTHS ARE NOT REPORTED HERE.
12 3
INFORMATION SOURCE
NOTE: FIRST FOUR
504 N03 CL TD5
MG/L MG/L MG/L MG/L
2'
0,
o!
o,
o!
o
(Continued)
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1968
Ui
MONTH FLOW CA
&C-FT MG/L
1
2
§
4
S
6
7
a
9
10
u
INFORMATION
NOTE:
1690
3220
84110
45220
43700
90560
79640
78930
45090
3320
. 160,
. 160,
I 60,
. 80,
. 80,
: ii:
* 84,
. 68,
. 86.
: 95;
9C N &
MG/L MG/L
15
15
11
9
1?
1 4
j 7
25
SOURCE: USER; EL PASO,
INDIVIDUAL ION
COMPLETE DETAILS, ALL
t 160.
I 215.
* 118.
80.
• }2j>.
. *» 3 .
. 106.
: ill:
TEXAS
CONCENTRATIONS FROM JULY
OTHER DATA
IS
OBSERVED.
HC03
MG/L
191,
199,
99 •
78.
7|j
61.
81.
isoj
153*.
1968
C03
MG/L
400.
340.
3| 0 ,
320 .
280.
260*
294^
24lJ
443*
S04
MG/L I
200.
no .
o •
160 1
1 40 .
?J§
89t
106,
83.
•M:
TO DECEMBER 1975
N03
0
o!
0.
0.
o!
0.
> • * •
ooo
ARE
MG/L
0. 1
3. 1
1.
0.
3t
i:
o.
0,
o.
o.
o.
ESTIMATED,
TDS
MG/L
118.
B°«
662,
' ?i t
662 .
600,
i2 '
649 •
J47.
. SEE APPENDIX D FOR
(Continued)
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1969
MOHTH FLOW C* K NA HC03
AC-FT MG/L MG/L MG/L MG/L
S04
XC/L
N03 CL IDS
MG/l MG/L
Is)
4
5
6
7
8
9
JO
h
75,
40.
92460.
62990
56990,
ftQO.
30,
Ql
23
l:
810,
112,
8:
66,
69i
69,
89;
156,
I65j
139;
;
29;
•
216,
179,
58.
ss-
S?:
79l
93!
ISO,
"i:
I:
41
3.
:
ill:
141.
8-
J.
1
:
897,
933!
0, 1294,
o. toeo.
INFORMATION SOURCE: USER; EL PASO, TEXAS
NOTE: INDIVIDUAL ION CONCENTRATIONS FROM JULY 1968 TO DECEMBER 1975 ARE ESTIMATED.
FOR COMPLETE DETAILS, ALL OTHER DATA IS OBSERVED.
SEE APPENDIX D
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1970
MONTI.
FLOW CA
AC-FT MG/L
NA HC03 C03 S04 N03 CL TDS
MG/L MG/L MG/L MG/L MG/L MG/L MG/L
Ol
4
4
S
8
9
2710,
7880,
95540,
69430.
72980,
106080,
51570,
6640,
2500.
2650,
H:
6l!
140,
147,
130,
18B,
197.
If;
83!
il:
18),
8«
Q.
?!
f
o!
S*
S»
Ji
0,
INFORMATION SOURCE: USER; EL PASO, TEXAS
NOTE: INDIVIDUAL ION CONCENTRATIONS FORM JULY 1968 TO DECEMBER 1975 ARE ESTIMATED.
FOR COMPLETE DETAILS, ALL OTHER DATA IS OBSERVED.
SEE APPENDIX D
(Continued)
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1971
MONTH
FLOW CA
AC-FT MG/L
K NA
MG/L MG/L
C03 S04
MG/L MG/L
N03 CL IDS
L MG/L MG/L
Ul
2060.
2680,
94150.
530,
3550,
320
280,
:
173,
174i
*R.
7B'
III
U4?:
106,
144,
86;
o.
•
:
Of
. 1022,
INFORMATION SOURCE: USER; EL PASO, TEXAS
NOTE: INDIVIDUAL ION CONCENTRATIONS FROM JULY 1968 TO DECEMBER 1975 ARE ESTIMATED.
FOR COMPLETE DETAILS, ALL OTHER DATA IS OBSERVED.
SEE APPENDIX D
(Continued)
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1972
Ui
Ui
MONTH FLOW CA K
AC-FT MG/L MG/L
NA
776,
369*.
77HO,
34180.
18140.
in.
61,
6
63,
98,
105,
1JS:
504
MG/L
8:
r •»- P
'Si:
H:
N03 Cli IDS
MG/t MG/L
0. 904.
2« 212*
0, 485,
0. 485.
8:
?:
INFORMATION SOURCE: USER; EL PASO, TEXAS
NOTE: INDIVIDUAL ION CONCENTRATIONS FROM JULY 1968 TO DECEMBER 1975 ARE ESTIMATED.
FOR COMPLETE DETAILS, ALL OTHER DATA IS OBSERVED.
SEE APPENDIX D
(Continued)
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1973
Ui
MONTH
1
6
ft
9
i?
12
FLOW
AOFT
680,
692,
63980.
67400.
65380.
91760!
84180.
123380
68770!
6250.
912!
922!
CA K Nft
MG/L MG/L MG/L
77, 16, 106.
15: I!
73, 15
70, 1^
61, i;
S3- .1:
70, 1<
149! 31
i* Mi-
'• 78,
I?;
•t 89,
: ?!:
• 74,
• 8ft!
I iif;
. 201!
HC03
MG/L
105,
6l!
54!
56!
64!
136!
186!
199!
C03
MG/L
2H4,
379!
226!
237!
259!
243!
Ill'9
443 ,
55l!
504
MG/L
55,
11:
Hi!
110,
N03
MG/L
0.
o!
o!
A ^
o!
o!
o!
CL
MG/L
o.
o!
8:
TDS
MG/L
618.
824!
4fi5
50?!
552,
522!
456!
485!
529!
111!:
INFORMATION SOURCE: USER; EL PASO, TEXAS
NOTE: INDIVIDUAL ION CONCENTRATIONS FROM JULY 1968 TO DECEMBER 1975 ARE ESTIMATED. SEE APPENDIX D
FOR COMPLETE DETAILS, ALL OTHER DATA IS OBSERVED.
£Continued)
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1974
Ul
•vl
MONTH
|
5
8
9
12
FLOW
AC-FT
980,
loiosoj
68300.
74570,
112780,
100500,
975901
54520,
1230I
CA K NA
MG/L MG/L MG/L
136, 28, 185,
'«: ft: '15:
ii: |
56)
Ji: i
: «:
i: W:
1. 67,
1* 66,
139, 29; IBP;
MC/3
'fl*
48,
52"
ii:
so;
50,
I8l!
MG/2
503,
449^
248,
|
\
1
«6,
96,
95,
95j
94,
sn;
504
97;
72l
so!
!§•
ii*
ii:
107,
N03
MG/L
8:
0.
o,
<>•
o!
0 ,
o ,
0*
o!
CL
MG/L
Ii
8:
0,
0.
o ,
o •
8:
o.
IDS
MG/L
1088,
9781
532;
39
Ii
4;
4:
;
8:
£;
1*
9 ,
2 ,
i:
1103,
INFORMATION SOURCE: USBR; EL PASO, TEXAS
NOTE: INDIVIDUAL ION CONCENTRATIONS FROM JULY 1968 TO DECEMBER 1975 ARE ESTIMATED.
FOR COMPLETE DETAILS, ALL OTHER DATA IS OBSERVED.
SEE APPENDIX D
(Continued)
-------
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1975
MONTH
FLOW
AC-FT
MG/L
MG/l MG/L
HC03
MG/L
CQ3
MG
/L
304
MG/L
N03 CL
MG/L MG/L
TDS
MG/L
Ul
00
7200,
3580.
65550.
•
o!
II:
I:
it:
INFORMATION SOURCE: USSR; EL PASO, TEXAS
NOTE: INDIVIDUAL ION CONCENTRATIONS FROM JULY 1968 TO DECEMBER 1975 ARE ESTIMATED.
FOR COMPLETE DETAILS, ALL OTHER DATA IS OBSERVED.
SEE APPENDIX D
(Continued)
-------
Ul
TABLE Al. RIO GRANDE FLOW AND WATER QUALITY ABOVE LEASBURG DAM FOR 1976
MONTH
J
4
5
6
7
P
9
1?
12
AC -FT
199RO,
21580,
82430.
85900,
104010,
95840;
87300,
109440.
50430.
4020,
1550,
1230,
MG/L
Hi
Hi
!!•
K:
in!
K
MG/L
III
\\:
7S*
10,
if:
23;
NA
MG/L
!!!
7r>;
fii
lii:
15?.
HCD3
MG/L
|l:
|}i
pi
73l
80.
fi°->
MG/L
!li:
202!
207;
208,
i9o;
209,
343;
39§;
458,
504
MG/L
47.
|?:
50.
|f.
Si:
il:
iSi:
147,
NOJ
MG/L
0,
2«
o»
o,
2§
2«
0.
8*
0,
HG/L
8-
8»
0.
S:
:
0,
o,
S«
0,
TUi
MG/1
III
ill
£1
441
402
445
452
682
788
903
J
INFORMATION SOURCE: USER; EL PASO, TEXAS
-------
TABLE A2. IRRIGATION DIVERSION AT LEASBURG DAM
YtSAH
JAN
FEB
MAR
MAY
JUM
JUL
Aur.
SEP
OCT
OEC
o\
o
1967
1963
1969
1970
1971
1972
1973
1974
1975
1976
9
0
0
0
0
0
0
0
0
273
0
140
0
1444
0
0
0
0
1010
3001
18157
111RS
19752
1P021
17522
9579
7944
17171
9361
14194
*9f.3
£7*0
1P7Q3
1*374
77?4
3319
J12P7
1P093
H604
1> 0 1 6
5990
5187
8121
13099
7407
11 y9
9021
14*47
13111
Ibl45
6989
144*9
17J*1
1B797
11454
22*1
15879
2ib30
163«2
17937
13516
16455
26099
27083
16S4R
820S
14
-------
TABLE A3. IRRIGATION DIVERSION AT MESILLA DAM
YEAR
JAN
APR
MA*
J'H
JIJL
AUG
OCT
MOV
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
33
0
0
0
0
0
0
0
524
8530
0
0
0
1321
0
0
0
0
859
14996
35407
27348
34262
32846
353 IS
26183
20629
36440
23553
32185
1/34*2
1 e 8 n 3
2n6;?4
2/l4o5
17119
1 P 7 ;? 6
22^1 I
2M?3
2?613
3Mr>9
13474
14558
20443
25220
JS673
493S
21594
27982
25941
35756
13404
27033
38812
33220
25760
5617
3407S
39317
33538
35815
23400
31197
50376
45232
32129
20S13
35*91
36355
4 11 92
3fe9*J8
26819
38152
56266
45419
33000
17481
46990
370B4
43831
4bl5H
20802
19882
20b76
22930
12540
3424
*360b
19946
2S371
23b9b
0
0
0
143
0
0
225
39
J735
99
n
0
n
0
n
0
I")
0
0
0
0
0
0
0
0
u
0
u
0
u
INFORMATION SOURCE: USER; EL PASO, TEXAS
NOTE: NET SUPPLY MINUS NET TO RIVER REPORTED HERE.
ALL UNITS ARE IN AC-FT/MONTH.
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1967
ON
ro
MONTH
1
I
1
6
7
8
9
10
U
FLOW
AC-
0
8
0
24209
25298
m\
2747?
5094
2522
2809
INFORMATION SOURCE:
NOTE: FIRST
FT
,
•
•
•
.
,
•
•
.
t
.
CA
K
NA
MG/L MG/L MG/L
0
8
0
91
90
85
91
90
123
129
125
• \f •
A \/ f
: 11:
* z *
• ) 7 ,
* ' i *
t 28 ,
0.
s-
0.
0,
l«:
1?:
i.t?:
HC03
MG/L
0
8:
o.
94*
Ui:
111:
CQJ
MG/L
0.
o!
280,
258*,
240,
233,
549?
560.
504
MG/L
0.
0.
Ot
204.
4« 3 2 •
Pi-
ll!:
N03
MG/L
o.
o,
o!
oj
o!
?!
CL
MG/t
0,
8:
o.
J:
t.
2!
I:
TDS
MG/L
0.
831*
75$;
692,
1662!
1685,
USSR; EL PASO
FOUR MONTHS
ARE
NOT REPORTED HERE.
(Continued)
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1968
MONTH
FLOW CA
AOFT MG/L
MG/L MG/L
HC03
MG/L
C03
MG
/L
§04
MG/L
N03
MG/L
CL
MG/L
IDS
MG/L
I
I
8
9
10
U
2778,
1878!
39553
2727j!
2346$!
41408!
46582!
4072l!
23895,
6630,
5000,
5227J
122,
101,
98!
101,
11:
H
'I:
?:
I!
39
I:
,
33!
INFORMATION SOURCE: USER; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
6.
0,
35'
!
8!
»
8;
1, 1629,
0.' 1669,§
0,
J
(Continued)
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1969
MONTH FLOW CA K Np HC03 C03 £
AOFT MG/L MG/L MG/L MG/L MG/L MC
1 4687 140. 3
2 2571 134! 3
5 30941
6 5279
7 67715
5 69244
9 36601
97J 1
92, 1
III
ios!
10 10842 139; J
11 6793 143,
12 7180 114, J
0, 355. :
5 417* :
4. 12* 1
6, 144,
§' J*3' 1
!• US'
3, 102,
06. 55!
08, 28
09, 27S
80, ?jj|
25 * 'IQ!
3
2(
2
2i
.04 N03 CL IDS
S/L MG/L MG/L MG/L
2« S« !• 1S33
4, 0, 4, 1831
>5, 0, 1, 75<
2, 0, 1, 80
:f: |: i: I)
197, 0, 0, 02
237. o: 1. 89^
7! 29s! 246; 506 300, 0, 1, 1448
1 335 273[ 548 322, 0, 1, 1584
0, 314, 265 516 187, 0, 0, 1396
INFORMATION SOURCE: USER; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
(Continued)
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1970
MONTH
FLOW CA
AC-FT MG/L
K NA HC03 C03 504 NQ3
MG/L MG/L MG/L MG/L MG/L MG/L
CL
MG/L
TDS
MG/L
Ul
5S9<
557!
46381
ill
96,
88.
}|
13
I:
INFORMATION SOURCE: USER; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
(Continued)
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHAKE BRIDGE) FOR 1971
MONTH
FLOW CA
AOFT MG/L
K NA HC03
MG/L MG/L MG/L
§04
MG/L MG/L
N03 CL IDS
MG/L MG/L
5
6
8
9
10
2.
•
7l
5*
I*
I
INFORMATION SOURCE: USER; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
(Continued)
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1972
MONTH
1
5
9
9
10
u
FLOW CA
AOFT MG/L
2495,
1740
125,
,
2
1
10
K N* HC03 C03 504 N03 CL IDS
MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L
19.
INFORMATION SOURCE: USSR; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
305,
335;
Hi:
So2:
450
U6;
-
0, 1600,
0. 1690.
Of £85,
1070,
1640.
206
(Continued)
-------
oo
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1973
MONTH
J
3
I
7
8
9
B
FLOW
AC-FT
465,
344!
24938.
30401,
4429?;
53276.
58592,
38158,
10008,
5512!
4544!
CA K MA
MG/L MG/L MG/L
103. :
112! :
78,
88!
11:
84!
84,
U8 i
4, 565,
s! 570!
I:
I:
7,
1:
[Hi
29 •
111:
118, 27, 33§;
124! 29! 379!
116! 26! 323!
HC03
MG/L
Hi:
!8J;
I8o"
89!
*§!
182!
278!
hi:
C03 504
MG/L MG/L
7.JO. '
ill:
nil \
1A") '
*"* • 4
U8,
42!
us!
18
>: 2!
238 220 "
382! 290!
512. 288.
562! 301 !
491. 282.
NUJ
MG/L
0.
o!
0.
o!
0.
o|
oi
V.U
MG/L
o.
0.
0,
0 •
si
o!
i US
MG/L
2040.
2090!
552!
72?!
668!
6p!
H»!
INFORMATION SOURCE: USER; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
(Continued)
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1974
MONTH
1
2
•
i
1
w
j
i
1°
U
PLOW
AC-FT
4270,
3712!
49334!
35722!
36454!
56888.
47254!
44018!
25925.
70*7!
3932.
389l!
CA
K NA
MG/L MG/L MG/L
}?8- 2
130, .
109! i
86,
79!
85,
97! (
>0, 370,
12! 39o!
il 910
V III*
1 . .3 W .
if, 271 !
4! 10 1
3! lie!
5. 110.
21. 160.
no! 27; 23^;
120, 35, 310.
119! 28! 347!
HCOJ
MG/L
290,
320!
126!
22l!
77!
78!
79l
190!
it?:
C0.3
MG/L
580,
570l
360.
28$!
427!
213.
hi!
380.
520,
522!
504
MG/L
III:
228!
265.
208.
\l
254 .
266!
11?:
N03
MG/L
o.
o!
8:
o.
o!
16!
o!
o!
o!
o!
o.
CL
MG/L
0.
o.
8:
Ot
ol
o!
\\
TPS
MG/L
lilt:
l$l%'
1239!
637!
Si9"
770,
836!
iiia!
INFORMATION SOURCE: USER; EL PASO
NOTE:
FIRST FOUR
MONTHS ARE
NOT REPORTED HERE.
(Continued)
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1975
MONTH FLOW CA K NA HCC3 C03 504
AC«FT MG/L MG/L MG/L MG/L MG/L MG/L
N03 CL IDS
Mtt/L MG/L MG/L
9070.
6703,
49144
55585.
47040J
13446!
9047!
8880.
28.
27!
2f
Jo*
li
ii
INFORMATION SOURCE: USSR; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
293. 534. 294.
276! 509! 287!
)89? 380 253!
"li! i?7!
!I •
: III: ill: HI:
oi
o.
I:
li
15
14
0,
0.
,
676
868!
-~f
o.
680,
33?!
0 16621
(Continued)
-------
TABLE A4. RIO GRANDE FLOW AND WATER QUALITY AT EL PASO (CROUCHANE BRIDGE) FOR 1976
MONTH
1
2
4
5
6
7
a
9
10
h
FLOW
AC -FT
15600,
14198,
40200.
50279!
60697.
50099.
47905.
57382,
I4340l
10475,
9999;
CA
K N&
MG/l MG/I. MG/L
107, 23, 25R,
111! 24; 285.
109; 23! 269!
85 1
91.
120! ;
93, !
95i
121. :
109; :
4; 99.
g t 552 .
I: III:
8, 36f»,
J4. ?72.
115 26, 319.
114; 25 305!
HC03
MG/L
209,
233!
2191
1 1 i •
?§9 •
I2?i
134!
222!
255!
249,
C03
MG/L
410,
445l
425.
210.
528 ,
297*
538!
428,
478,
469,
S04
MG/L
261,
270;
265;
208,
22?.
292.
226
231 .
295.
265.
279.
276.
N03
MG/Ju
0
oj
o
0.
0.
0,
8-
o.
o .
6.
0,
CL
MG/t
0, j
IDS
MG/L
1190.
0, 1288;
0 ,
o.
o.
o! i
0.
o! i
0, :
0, :
0, 1
1232;
630,
777,
1523|
Hi:
1551,
242,
382,
35§!
INFORMATION SOURCE: USER; EL PASO
NOTE: FIRST FOUR MONTHS ARE NOT REPORTED HERE.
-------
TABLE A5. MESILLA VALLEY, INITIAL SOIL ANALYSIS
CONSTITUTED
CA (HEQ/L)
MG (MEO/L)
NA (MEQ/L)
CL (MEQ/L)
S04 (MEQ/L)
HC03 (MEQ/L)
CQ3 (HEQ/L)
N03 (MEO/L.)
SOIL/WATER RATIO
OF EXTRACT
VOLUME OF WATER IN
SOIL 5EG. (ML)
CATION EXC. CAP,
(MEQ/100 GM)
GYPSUM (MEQ/100 GM)
SOIL BULK DENSITY
(GM/CC)
LENGTH OF SOIL SEG
(CM)
SOIL SEGMENT
1 2
10,0
2,7
11.4
3,0
9.8
11,0
0,0
0,6
0,7
10.0
20,0
0,4
1.4
20.0
10,4
3.0
13,1
2.*
12.7
IP, 4
0,0
0.8
0.7
10,1
20,0
0.4
1,4
20,0
NO.
20,7
6,3
20,2
3,7
33.6
9,0
0,0
0,6
0.8
10,1
20,0
0,4
1,3
20,0
4
32,0
10,3
30,2
6.2
56,8
8,1
0,0
1.2
0,7
10,7
20,0
0,4
1.5
20.0
5
32.6
11.4
38,4
10,9
59.9
8.0
0,0
3.0
0.4
5.8
5,0
0.2
1.5
20.0
6
22,9
7,1
27,6
9,0
38,9
7,4
0,0
1,8
0,4
5,2
5,0
0,2
1.5
20,0
7
17.6
5.5
22,3
7.5
29,4
6,9
0,0
1.1
0.3
5.4
5,0
0.2
1.6
20,0
8
15.9
4,6
20,3
6,4
26,1
6,7
0,0
0,9
0,3
4,9
5,0
0,2
1.6
20,0
INFORMATION SOURCE: NMSU, LAS CRUCES
-------
TABLE A6. BLANEY-CRIDDLE CONSUMPTIVE USE FOR 74622, CROPPED ACRES IN 1967
OJ
MONTH
l
JAN
FEB
MAR
APR
MAY
JUN
JUL
A(JG
SEP
OCT
NOV
DEC
TOTAOSi
NODE 1
(AC -FT /MO)
H6 7
77^2
4243,7
5612.1
7300,9
10622.2
3690 1 6
24R6,6
2580,2
f»R8,9
47.0
KT (FT/YR)
ET (FT/YR)
ET (FT/YR)
SOME ARKAS
NOPE 2
TPTAl FOR
(AC -FT/MO) (AC -FT/MQ)
226,
128,
7041,
9312,
12114,
17625,
17655
6123,
4J25,
4281,
1475,
78,
BASKn ON
8 A s £ f) ON
BASED ON
PRODUCE '•
• P
,1
;
-------
TABLE A6.
MONTH
JAN
FEB
MAR
APR
MAY
JWN
JUL
AUG
SEP
OCT
NOV
DEC
TOTALSi
(AC-FT/MO)
HO, 4
57. B
1944.9
5077,9
8770,7
14469,3
9475,8
2538,7
2522,2
2451,2
290,0
75,3
ET (FT/YR)
ET (FT/YR }
FT t FT/YR)
SOME! AREAS
NODE 2
(ftC-FT/f'O)
133,5
95,8
3061,3
8425,7
14553,1
24008,7
15723.2
4212,4
4185.0
4067^2
431.1
124,9
WASRD ON FM
TOTAL FOR
VALLEY
213,9
153,6
4906,2
13503^6
?3323, 8
3*47P.O
6751 ft
6707^2
6518,4
771 II
200,2
126726.0
TlpF VALLEY
BASED OM YKART.Y CROPPED
BASF'H Of* ".Q
PRODUCE MIJL
TOTAL FHR
VALLEY
(KT/MU)
OOiiSH
J001B5
.05924
,16305
,28162
,46460
.30426
,08151
.OR098
.07871
,00931
,00242
1,J>3
ACKEAGF = 1 ,
ACBKAGl- s I
Ntubv CpnppEO ACREAGE =
TIPLF YEARLY
CHOPS
TOTAL CROPPED
ACRES
621«
3022!
734781
73478,
73478,
71783,
71783,
27488,
25410,
?7004,
15565,
3196,
17
,53
2,40
TUTAL F.T
PER ACPK
(FT /MO)
0,03440
0,05083
0,06677
o, 18 37 8
0,31743
0,53603
0,351.04
0,24560
0,26396
0,24139
0,04954
0,06264
..40
-------
TABLE A6. • BLANEY-CRIDDLE CONSUMPTIVE USE FOR 81497, CROPPED ACRES IN 1969
Ul
MONTH
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
TOTALS:
MODE 1
(AC -FT/MO)
93,6
$5,3
3758.5
6067.5
7B36.1
12360J3
7 5 P 3 , fl
4761 ,2
2776,0
1740,6
1068,9
0,0
ET (FT/YR)
ET (FT/YR)
ET (FT/YR )
SOME APEAS
NODF 2 TOTAL FUR
(AC-FT/MO) (f
155.2
141.5
6736,4
10067,8
13002,4
20509,4
12583IE
7900,3
4606,7
28*8.1
1773,6
0,0
BASED ON k.NTXP
BASED ON YE.AHI
VMjI.EY
C-FT/MO)
24S.8
226, «
J6135I3
32R69*7
70167,6
12661,5
46 2^,7
2^47,5
0,0
177996.4
IOTA I* FOP
V A f j L F Y
(FT/MO)
,00305
,0027S
,12264
H9799
.25570
,40332
,24746
.15536
,00058
,05680
, 0 34R B
,00060
1.57
F VALLEY ACREAGE a 1.
Y CROPPED
BASED ON MQNTPLY CROPPED
PRODUCE MULTIr
LI- YGABtiJt
ACREAGE = 1
ACREAGE =
CRUPS
TUTAT. CROPPED TUTAL ET
AC RK8
5432,
2422,
72265,
72265,
72265,
71952.
719521
28301 ,
26641 .
28144,
16508,
3010,
1 fl
.57
2,59
PER ACRE
(FT/MM)
U.045HO
0,09363
Q.13P31
0.2232B
0,28fi36
0,45683
0,2H029
0,44739
0,27710
0,16446
0,17219
0,00000
2,59
(Continued)
-------
TABLE A6. BLANEY-GRIDDLE CONSUMPTIVE USE FOR 83619. CROPPED ACRES IN 1970
MONTH
JAN
FEB
MAR
APR
HAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
NDDF: 1
(AC -FT /MO)
14-1.1
56.1
3202,9
5846.5
8943.8
14494.7
14133.0
5591.5
3685,5
2649,6
1300.2
108,9
NOOK 2
(AC-FT/MO)
239.0
93,0
5314,6
9701,1
14840.4
24051,0
23450.8
9261."
61 15,3
4396,5
2157,4
130,8
TOT AT, MJR
VALLEY
(RC-FT/MO)
383,1
149,1
8517,5
15547,6
73784.2
38545,7
37583l«
14R42.9
9BOn;7
7046,1
3457,6
289,7
TOTAL FDK TOTAL CHOPPED
VAkLF/
(FT/MO)
,00458
.00178
,10186
;i*593
I2R444
,4*097
,4494b
,17751
Ill721
,08426
,04135
,00346
ACPKS
500B,
1904,
754HU
75481,
754HU
75526,
7552^,
30562.
2807h,
29627,
1870f*,
3104.
TUTAL ET
Pc,H ACHE
(FT /MO)
V, 07650
0,07832
u , 1 1 2 H 4
0,20598
0,31510
0,51036
OJ49763
0,48567
0, 34909
0,23783
0,18482
0,09334
TOTALS:
15994P.O
I.
3.15
FIT (FT/YR) BASED OK EMIPE VALUJY &CR»<,A^F, = 1
ET (FT/YR) BASED UN YERHfY CROrpEU ACKKAGE s
KT (FT/YR) BA5FD OK MONTHLY CPOPPEP
SOME RREAS PRODUCE MUI,TTrF,F YEARLY CHOPS
.48
t.91
(Continued)
-------
TABLE A6. BLANEY-CRIPPLE CONSUMPTIVE USE FOR 81091, CROPPED ACRES IN 1971
MONTH
JAN
FEB
MAR
APR
MAY
JUN
JIJL
AUG
SEP
OCT
NOV
DEC
TOTALS!
NOOK t
(AC-FT/MO)
105.0
54^4
4627^1
5607.6
8880.7
15280,1
12255*3
5365,4
3494,9
1733^7
1100,5
50,2
NODE 2
(AOn/MO)
174,3
90.3
93041?
14735,6
75354 2
20335,1
8902,7
5799,0
2876,7
1826,0
B3l3
TOT&L .FOR
v A j,j tj it* j
f • f* t* W y A*. <* | \
279,3
144; 7
J2304J9
14912,3
? 3^> 1 6 , 3
5 .
75233,
75233,
29786,
77233.
2852?,
18701,
25«0,
TUi'AL KT
pen ACPP^
(FT /MO)
y 0715^
oj 10943
0.16480
0,19972
0.31630
0,54011
0 . 4 3 3 1 9
0,47902
0,34127
0,16164
0 f. J 564'-'
0,05176
3,0?
ET (FT/YR)
FJT (FT/YR 5
ET (FT/YR)
BASED UN KNTIPE VftFJ.fcY ACRKAGB a 1.44
BASED ON YEAPI.Y CPUPPEO ACRfcAGB * 1.92
BASED ON M&NUJLY CROPPED ACREAGE s 3.03
SOME AREAS PRODUCE KlH;Tll?L-F
CROPS
(Continued)
-------
TABLE A6. BLANEY-CRIDDLE CONSUMPTIVE USE FOR 78575, CROPPED ACRES IN 1972
oo
MONTH
NODE 1
HOPE 2
(AC»FT/«0) (AC-F1/MO) (
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
MOV
DEC
89.8
60,4
4924,0
6048.3
8546,8
10957.4
1275311
3323.6
2585.1
52t.8
1039.9
46.6
149.0
100.2
8170.4
10035,9
14181*6
18181.5
2H61.1
5514,8
42*9.4
865,9
1725.6
77.3
TOTAL FOR TOTAL FOR TOTAL CROPPED
VALLEY VALLEX ACRES
:AC. FT/MO)
23«,7
160.6
13094,4
16084,2
33914*3
6874 1 1
1387,7
2765,5
123,9
(FT/MO)
,00304
,00204
,16665
,20470
,23926
.37084
,43162
,11248
*OI766
,03520
,00158
399t>.
14191
73030,
73030,
73030,
72561,
72561,
28011,
2608B,
27376.
18263,
2576,
TOTAL FT
PfcR ACRE
(KT/rtO)
0,05976
0,11315
0,17930
0*22024
O.M122
0.4015H
0*46739
0,31551
0*.05069
0,15143
0.04809
TOTALS)
ET (FT'YR)
ET (FT/YR)
ET (FT/YR)
135349,4
1,72
BASED ON FNTlnE VALLEY ACREAGE s
BASED ON YEARLY CPOPPKO ACRFJASE «
BASED ON MONTHLY CHOPPED ACREAGE =
1.25
1.72
SOME AREAS PPOOUCE MUT.TlrLr YEART.K CROPS
(Continued)
-------
TABLE A6. BLANEY-CRIDDLE CONSUMPTIVE USE FOR 82787, CROPPED ACRES IN 1973
vo
MONTH
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
TOTALS:
NODE 1
(AC -FT /MO)
0,0
' * *
3696*3
5747.3
81 58. 3
12273.3
7572,5
5893,4
4182,9
1058,0
1473,2
122,0
F.T fFT/YR)
F,T (FT/YR)
f;T (FT/YR)
SOME AREAS
MODE 2
(AC-FT/KO)
0,0
6133^2
9536,4
1 3537,1
20365,0
12565.0
9778,9
6940,6
5074,1
2444.5
202.4
BASED ON ENT
TOTAL FOR
Vf,LLEY
(/•C.FT/N'U)
0,0
9829*4
1 S28 3 , 7
21695,4
3263^.3
201 1 7 , 6
15672,3
!8132!l
3917.7
324.3
13876U3
IPE VALLEY
BASF.D ON YE ART. V CROPPE
BASF.D ON MOfc
PRODUCE MULT
THLy CHi'ipp
1PLP »E»RI,
10TAL FOR
V A L L F ¥
(FT /MO)
,00000
,00008
,11873
.JH461
,26206
,3^424
,24325
,13931
,13436
,09823
.04732
,00392
1.6«
ACREAtSt1. s 1.
D ACKftAti£ s 1
i«" M A ^ U ^ A fH P* ••
ij i / M v* r> t* ^ vi \. .> ^
i CROPS
TOTAL CROPPED
ACRES
4671 .
1491,
7533ft!
7533d,
75338.
75871,
75871 ,
3209ft,
29824,
31390,
20S04.
3180,
28
.68
2,73
TOTAL RT
pt;« ACRE
CFT/rtO)
0,00000
0,00469
0, 13047
0,20287
0,28797
0,43018
0 , ^6542
U, 48829
0,37217
0,75907
0,19107
0, 10199
2,73
(Continued)
-------
TABLE A6. BLANEY-CRIDDLE CONSUMPTIVE USE FOR 81963> CROPPED ACRES IN 1974
oo
o
MONTH
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
MOV
DEC
NODE 1
(AC-FT/MO)
33'7
43.0
4050,3
6136.2
9433.2
15724.5
H954.7
3145.5
1403,9
1221.6
1108,7
29,8
NODE 2
(AC-FT/MO)
64,2
71,3
6720^7
101«1 ,7
15652,5
26091 \5
14P5hJs
5219,4
?329,4
2027,0
1639,7
49,4
TOTAL FOR
VALLEY
(/OFT/MO)
102, P
M4,3
10771 >
J631H.O
75085,7
41816.1
?3«i3;2
B364.9
3733^3
3248,7
2948,4
79,2
TOTAL FOR TOTAL CROPPED TOTAL ET
VALLfcJt
(FT/MO)
,00125
,00139
.13141
,19909
,3060ft
,51018
.29054
,10206
.04S55
,0?9M
,03597
.00097
ACRES
349fl,
111H,
76836,
76R36,
76836;
76P68,
7686H|
28320,
26933,
28038,
18544,
2380.
PKH ACHE
(FT/HO)
0,C2
-------
TABLE A6. BLANEY-CRIDDLE CONSUMPTIVE USE FOR 80796, CROPPED ACRES IN 1975
00
MONTH
JAN
FEB
MAR
APR
MAY
JUN
JUL
AUG
SEP
OCT
NOV
DEC
TOTALS
NODE 1
(AC-FT/MO)
203,7
366,4
3967,6
5754,9
7893.2
12692,1
11901,0
4489^1
iS8J:J
10??:3
i
ET (FT/YR)
ET (FT/YR)
FT (FT/YR J
SOME AREAS
NOIlt 2 TOTAL FOR TOTAL, FOR TUTAL CROPPED
/ALLEY VALLF.Y ACRSS
(AC-FT/W IK-FT/MU)
338,0 541,8
60719 974,3
6583.3 10550,9
95*9!l 15304.0
13097,1 ?0990,3
21059,9 33752,1
19747.2 31648,1
7446I7 U937;8
4450^9 7133.3
3*22^3 6125.9
1788,6 2366,5
92,8 148,7
141973,6
BASED ON FNTlFE VALLKY A
BASED ON YEAP.TY CROPPEO
RASED ON MONTHLY CROPPED
PRODUCE MULTIPLF VEAHLY,
(FT/t^O)
.OWl
,01206
,13059
,1^942
'25979
141774
139170
:i4775
Jo758'2
,03548
.00184
1.76
CREACJF a 1. •
ACREAGE ,= 1,
CHOPS
14867.
12733,
74231,
74231,
74231,
63953,
63953,
32757.
31950,
32482,
u
^78
TOTAL FT
ptR ACRK
(VT/MO)
0,03644
0,07651
0.14214
0,20617
oj<2776
0>9437
0,36443
0,22327
0,18859
0,16697
0,06968
2,78
(Continued)
-------
TABLE A6. BLANEY-GRIDDLE CONSUMPTIVE USE FOR 79558. CROPPED ACRES IN 1976
oo
to
MONTH
1
JAN
FEB
MAR
APR
MAY
.TUN
JUL
AUG
§EP
CT
NOV
occ
TOTALS |
MODE 1
[AC-FT/MO)
132.9
165.6
4261.9
476II6
8123.4
12210.4
10937. C
6008,1
27R3.7
1*47. S
54] ,2
76,9
ET (FT/YR)
ET (FT/YR)
ET (FT/YR)
(AC -FT /MO
?20,
?74 ,
7071.
7900.
13479,
20260.
1*149;
9969,
4619,
3066.
898.
127.
BASED ON
BASED PN
BASED ON
TOTAL FUR
VALLEY
) f AC
5
7
7
9
2
ft
0
1
0
1
0
6
I
ENTIRE
YEAPr-Y
^ONTHtj
-FT/MO)
353.3
440.3
1 1333,6
12662,6
71602,6
32471 ,0
? 9 f • 8 ft , H
15977,2
7402|7
4913,9
1439,2
204,6
37887,7
TOTAL f'OR
VALLEY
(FT/MO)
.00444
,00553
,14246
,1!»916
^40814
J656 1
.20082
.09305
,06176
.01809
,00257
1.73
VALLEY ACREAGE = J ,
CROPf EJ)
V CROPPED
ACREAGE s 1
ACREAGE a
TOTAL CROPPED
ACRES
7193.
4925,
73406,
73406.
73406,
70401 .
70401,
29934.
2914?,
30410,
15108.
2268,
.27
'x73
5,77
TOTAL ET
PER ACRE
0
0
0
0
0
0
0
0
0
0
U
0
2
(FT/MO)
.04912
.0894P
,15440
,17250
,29429
,46123
,41316
,53375
.2S402
.16159
,09526
,09019
,77
SOME ARFAS PRODUCE MOLTlPLF YEARLY CHOPS
-------
TABLE A-7. WELL NUMBERING SYSTEM. ELEVATIONS. LOCATIONS, AND THEISSEN WEIGHTING FACTORS.
WELL NO,
ELEV
LOCATION
Wl
W2
WT
oo
26
20
19
15
18
6
2
4
0
9
8
25
7
6
5
24
4
27
21
23
22
28
32
h
39
29
38
1
2
37
36
35
33
34
3928,52
3926,59
3921,84
3904,81
3908I35
3908,21
3893,13
3894,19
3880,79
3861,36
3860,40
3849,85
3847,08
3849,00
3833,74
3845,47
3827,05
3819,78
3817,41
3812,76
3813;06
: 808,98
: 8o?;5o
: 803,18
:8ii,oi
3804,95
;793,08
3791135
3792,96
3788,53
3786,84
3777,54
3769J70
3771,68
22H«?I
24S,?E:23,133
24S,?E*.23,3<"
2«5.?£.2?-«3;
25S,7E.oi,4;
27s|3E!09l444
27S;|E;28,314
28S!3E'26!24
29Sj4E!06j243
0,03142
0,07481
0,07494
0,03753
0,11945
0,15349
0,03067
0,03741
0,0391b
0^04214
0,03317
0,02456
0,00000
0,00000
0.00000
0,00000
0,00000
0,00000
0,00000
o,,ooooo
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
0,00000
o.ooooo
0,00000
0 . 0 0 0 0 U
0,00000
0,00000
o.ooooo
0,00000
o.oouoo
o.ooooo
G,OOOUO
0,01809
0,0025b
0,00ttl3
0,01482
0,05637
0,0436*
0,06506
0,0405b
0,03359
0.02668
0,01360
0.01269
0.01968
0.01216
0,05282
0,01991
OJ00988
0,01064
0,0flbl3
0,03618
0,07689
'/ A D O 0 A P
0,01778
0,04385
0,05434
0,02440
0,02536
0,03861
THE ELEVATION IS IN FEET ABpVE MEAN SEA kEVEl. (USCSG DATUM),
THE LOCATION T5 GIVEN USING THE U5GS SYSTEM,
Wl IS THE THEISSEN POLYCOM WEIGHT FACTOR FOR NODE I
W2 IS THE THEISSEN POLYGON WEIGHT FACTOR FOR NODE 2 „ , . ,, „„,„„
WT IS THE THEISSEN POLYGON WEIGHT FACTOR FOR THE ENTIRE MESILLA VALLEY
USE THESE FACTORS TO CALClftATE AVERAGE «IATER LEVELS,
0,01190
0,02833
Q.0283H
0.01421
0,04524
0,05813
Oj6l4»3
0,01417
0.1054B
0,01757
0,01761
0,01851
0,02507
0,03626
0,02710
0,04042
0,02521
0.020R7
U.OOB45
0.007H9
0,012^3
0,00/56
0,032«2
0,01237
0,01672
0.00614
0,006ft!
0,05238
0.02248
0,04900
0,04056
0,01105
0,02725
0,03376
0.01516
0,01577
0,02399
-------
TABLE AS.
oo
-P-
"MESILLA VALLEY WATER LEVELS FOR 1946, AUl ONITS AHE
INFORMATION sot'RcEt HUDsoNU97O
~tn FEfcT'TBTTVE MEAN sE'A "LEVITT,
WELL
39,59
730147
3921,32
3921,39
39lt.04
3898.91
380^.25
3R99 41
3805.43
3892199
3876159
3855,3*
3853.40
3842195
3839,38
3841,00
804.11
8.95
9.38
3787195
3787.56
3783,73
3782184
377S144
3761,20
3764.78
374fll62
3748185
374ll87
3739169
3730177
.1UL
3922,17
3922, 19
39RJ 79
3876,49
38b6,26
3853,40
3843,65
3839,39
3941 60
3829,84
3836,17
3820,25
3812.18
3B13 11
3807126
3808,46
3802,86
3802.90
3798, 4«
3804121
3798195
37R9.38
37fl»lt5
3787166
3784,03
3782164
3775 24
3761,50
37fiSl3B
3748,92
3749, 2S
3741,97
3739,39
3731)137
AUG
HCT
C uv
3922,92
3922ll9
3916.24
3899,31
3900,05
3900.21
38»5.53
. B9
3876.19
JH56.36
3854120
3843J95
3839, 4B
3841,40
3829.74
3H36.17
3820,55
3S11.9S
3813.21
3807.36
3808,66
3803,19
3H02.80
380431
379V. 85
378H55
3787. S6
37HJ.93
3702,74
377bl34
3761,20
37* 1.69
J» 74. 69
3<-S ^,4^
3--S1.9U
3"* 1.95
3"*9.3«
3 < J H , 9 0
Jol S.2S
3"0
3/4U.J7
3737,49
3V 28. 57
•(Continued)
-------
-1MM.A-8. (CONTINUED.).
CO
_ — _ M_
WESILLA VALLEY WATER LEVEfS FOP 1947, All UNITS ARE
INFORMATION SOnRrEj HUOSON(1971)
USBR
WELL NO, JAM KEB MF APR M*y
26
15
id
!i7
16
: 2
3
14
to
9
8
2?
1
24
27
21
23
i
28
32
30
39
59
38
I
2
3/
36
35
33
34
VALLEY
MEAH.,,
NODE i
MEAN...
NODE 2
MEAN,,,
3919,42
3919.29
3913,74
3897,71
3898,05
3997.01
3885,43
3881,59
3874,49
3852.86
3R51.70
3841.85
3839.38
3838,60
3825.34
3854.27
3818,15
3810.08
3811.01
3805,26
3804,76
3801.08
3798,60
3795,48
3803,11
3796.85
3786,38
3785.75
3786, 96
3781,23
3781,04
3771,84
3759,10
3763,18
3747. «2
3746,35
3740.27
3737,39
3728,47
3825.96
3886.13
3789.26
3919,02
39J9)o9
'913,54
97,61
-897,75
3896,81
38B5.41
3881,39
3874,59
3852,66
3851, 6C
3841 ,6S
3839,18
3838,60
3825,44
38.14,17
3818,15
3810,08
3811 ,01
3805,36
3804, 86
3801,08
3799, go
J795;4>
3H03.11
37861 18
378^ ,65
3786,16
1781 ,03
.1781,14
,1771 )84
3759,40
3762.98
3747, ft2
3746,25
1740,47
3737,29
3728,17
3825,89
3885,95
3789,27
3918.82
39 5)29
3914)14
38<)7)81
3 f) Q£ 9 1
38p5)33
38ol)69
38* 2 * 46
38* 1 * 3 0
3841)55
38 i9 38
.1819)90
38-»5)84
38 =,4 47
38^8)25
3BJO)28
3 8 fl5 8 ft
38pl*38
3 R 0 0 00
37q5"58
3 fl o 3 11
37o7)35
37p6*88
17P6 35
37p6)66
37pl)63
37pl 94
1772)24
37*3)08
'747.9?
37<6)45
37i8)39
3fl?6, 18
38B6.02
3789,69
3920.02
3921.09
3915.04
3898.71
3998.15
3897.81
3685.33
3882)29
3876,69
3853,76
3852.60
3842,55
3839,2ft
384y,5o
3827,34
3835137
381l)38
3812,41
3»0&)26
3806, *6
380^.18
3801, So
379), 08
3803,91
3788)48
3787)05
1782193
3782,44
3774)14
376U.90
3763,78
3748,82
3747 85
3741, b7
373B)&9
3730,67
3827,18
3886.90
3790,76
3920.22
3921,29
3915,54
3898,91
3898,45
? fl 9 ft • 3 t
3885,33
3882,39
3875,19
3854,66
3853,10
3842. S5
3839,28
1841,30
38?8,14
1819)25
3811 48
3812,61
3806,86
3807,66
3801 ,88
3803,30
3797 48
3804,01
3798,55
3787)o5
3787,36
3783 21
3782,64
3774,44
3760,90
3764,08
3748,62
3748.15
3741,37
373H.89
3730I27
3827,50
3887,31
3791,03
IN FkTT AbOVE MEAN SKA I.Ki/i 1,,
ju" .iin, AUi
3920,82
3921,79
3916.04
3898,71
3898,85
3898,81
3865,33
3881,99
3876,09
385.5,26
3853,41'
3812. 6f>
3839.28
3841 ,80
3828.84
3836,17
3820,05
3811,48
1511:71
3808,66
•3802.08
3801,50
3716,98
3804,21
3798,35
3788J3P
37H6.9S
3786, 9h
3783,61
3782,64
3775,14
37bl ,00
3764,28
3748,82
3748,75
3741,87
3738,99
37,10,17
3827, at
3887.71
3791 {28
3921,42
39JM.70
39U.71
3 H 9 ') . 0 1
j 4 99 *> J
3 R 85 . 4 1
3 8 8 1 . 8 9
3 B 5 ") • b 6
3851,80
3843, 3S
3840, 2*
3 8 4 1 , B 0
381(1.14
3830,57
381 2*9)
3 8 C) 7 , 3 b
3808,16
3 8 0 2 , 7 S
3803 30
3798, 48
3804,41
3798. S-S
3 7 K Q 2 W
37H8.15
3 7 fl 4 I b 1
3782.94
376lIsO
3764,78
3749,2?
3741 ".87
371M, !•»
3730,77
3U28.33
388H.2P
3791,82
J97I ,9?
1 9 1 6 1 6 4
3 A 9 d 91
.1 8 9 9 , 7 '>
^ % LI*} *j |
1 n n b . 4 1
188} ,4-1
IHbftlltf.
1WS4.2')
1813, 4H
1 R 4 0 , 2 8
.4841,50
!R2<5,t>4
3B4b,37
38?0.*,5
1S1 1 .98
.1 B i) 7 \ 4 h
4ttnH , 1 f>
3 ft i>2 , } M
l«ni ,fau
4804)41
» /ya.ij^
37H4.0H
17H7.75
? 7 ** ^ • 7 ft
47H4.1 1
37!!^ . 14
17 7 5 . 7 4
4 7 6 1 , 1. o
.mojiiz
1 749, 7«i
3 7 4 I . H 7
1 7 4 « . 6 -3
3710,17
18?«,3?
4BH)J ,^S
1791,77
3KP
1921,02
19 14! 84
1**"^, Ob
'? K 9 8 , 9 1
1 b ** S S3
1 a 8 1 ,19
ii* 7 ^ ^y
3 HSb , 76
4 &S 3 , 30
1 tt 4 ) , 1 S
3 d 4 \) , ,4 R
1^41 , 1) o
3«3t>! I 7
3ttl'l J7'*
3tt C 7 1 o h
4 **(' 7 , ^^>
3 d 0 * , S M
1 » (i I . (i 0
1 1 ^ / , ^ H
J H 0 * , 2 1
4 7 W 8 . 4 S
47 kb.SH
< /^8)36
4 7 H 3 , 0 3
1 / / b • 5 ^
1 7 h u , e o
lV(v4,9M
.1 7 < H , 1 i)
1 7*8,65
3 7 4 u * 7 ?
1 7 ! H . 1 9
1 / ?(', 17
4 H 2 7 , 7 7
.4 d B 7 , b (I
:4 ; " i , ?. H
OCT
3921,32
1919,29
.1914,24
3897.91
3b98,45
3 S 9 S • 2 J
laSS, S3
3*83,99
.1874,49
3H55.16
.18S2.70
3842. 7b
3H40.28
3840.80
la?b.44
38t9)6S
3810, 7H
.4»1 1 ,41
3U0O, 2b
3hob ,56
1 » 0 1 , b B
3799,40
1 / o^> , 38
1 -» 0 3 . 5 1
1797,05
1787.18
3786.15
1 7 H h ,* '/ >i
1/81.93
17H1.04
3/73.54
3/b9,80
3/64.08
1/48,22
1746,95
4/40.07
4737,49
r/78,97
3tt26,»5
3887,11
3790,10
3919,62
3918,89
1913.64
3897)81
3898.35
3h97.71
3885.23
3880.69
3874,39
38*4.46
3852, bO
3842V35
3840^38
3839.50
3825.54
1834,67
38lB.9b
3810. 3«
3811,11
3aOb,8b
3804,96
3B01.38
37^6,90
3795,88
3B03.31
~\ "J ^ b » 7 H
.1 7 H 5 * 8 b
3 7 ^ 6 » i fc
3780)94
3772,34
3759,00
37M.58
374S.12
374b,65
3740,07
3737,39
3728,77
3826,39
3886.67
3789,62
UfcC
3>J8)79
3913.34
3^97.71
3^98,35
J«y8l03
3 o B 5 23
3H80 39
3
-------
TABLE A6. (CONTINUED)
00
ME8ILLA VALLEV WATER LEVEl 5 TOR 1948, ALL UNITS ARE IN FEET ABOVE MEAN SEA LEVEL.
INFORMATION SOl'RrCl HUDSONU971)
USBR
HELL NO.
JAN
FEP
12
i
VALLEY
MEAN,,,
NODE 1
MEAN,,,
NODE 2
MEArf.,,
3n?:«
3898,35
VAP
\\M\\l
HWl
3809^35
38PS:0
38po!l
3«''«!l9
38s2!l6
38MJ40
HSit!
38 J8. lift
APH
MAY
JUN
38.14
38iO!71
38c5!4A
3flr4*56
isoijoe
3749260
384
384t..,
3839,00
WW
3818,bS
3811.48
3812.91
3806.26
3807II6
3801,98
3801,90
3796,68
3803,91
3798 05
3787,98
B J1 I
818,
811 ,«o
^:U
807,86
3802130
3797|l8
3804,11
3798.55
3788,08
iiliill
3760,80
3763,68
IW'.tt
3741.97
JUS:«
3919.62
3920.49
3914J74
3898.41
3898,35
3898.01
38fll*29
3875)69
3854,!>•
3852.70
3842.25
3840,18
3839^0
3828.94
3835.17
3819.25
3810.98
3813.21
3806.36
3808.16
3802J70
3797I6P
3803,31
3798195
Hg§'?S
3782.14
3774174
1761,10
3763,80
3749.42
W2:i?
H8:i?
JUL
3920,22
miM
3915,24
3808.81
3H99.35
?92?.°I
3876, 19
3H53..10
3842,85
3H40,18
384o;30
3879,94
3B3bl47
3819,65
3811,59
3813.11
3806.56
3808.26
3903,20
3797,89
3H03.41
3798.75
iZ5«.??
3793,54
3775,94
3761.50
3764,98
37bO,32
ittfctf
iHW?
AUG
1921.07
3921.69
391S.74
3899,01
3899.61
39Hl)9P
3875.3<»
3854.40
3843.45
3M10.1«
3840,30
1S29.84
3835.67
3819.65
381 1.78
10(13.11
1806,66
38*9. Jfi
3803^00
3798.08
3803,51
3799.05
3789.18
3792.93
3783,44
3775.74
3761,30
376SI3H
3750,02
3749^95
3741,97
3739.99
3730117
str
1920.92
3921.59
39lb,34
38«»,bl
3899.25
3M99.21
3H7b.t)9
3H5b,3b
3(153,8U
38<3.bb
3440.18
3H40.3U
387b.44
3834.97
38)9.65
3811.18
3812.61
3806,56
3307.26
3HOJ.3l>
3/o;,38
3«n3,2l
3798.5b
37H8.4ti
37X2.04
377b,34
3760,90
3764.H8
1749,"
3740,97
3738,6V
372»l57
OCT
.1920,2;
3920.49
3914,61
ifa.<)\
389H.21
388U19
3874J29
3852.70
3««2,H5
3840. 2H
38*0.20
38?7.14
3834.77
3819.35
3EH0.6H
3812,01
3806,01
3806.06
38nu,90
379ft,58
3803,21
379H,bS
3787,48
3781,24
3774174
3760,20
376«Il8
3748.72
3747,35
3740.47
3737.99
.1919,62
3919.7*
3915,14
389H'
3897)91
3874. 29
J8b2,Jy
JH42.bb
3b3B.bC'
3876.54
3834.27
3t»18.3b
3SJO,ub
3811,/I
3M')t>,Ob
3t*"5.4h
3799,hfi
37<>b,vH
3tHl3,ll
3707.JH
37M.U4
3774.04
3760,11)
3763,78
3748,b2
3746 95
3740.31
3737.99
3728.7V
f.eg
3919.22
3919. 2<*
3C'11.84
3897J71
3<80.69
3»74.29
39b2l()0
3*42.3b
3»40, 18
3t3fl.30
3f26.04
3*34,27
3bl*>.2b
3009.88
J-ll.bl
1«o4,76
3CU5.16
3>Hiu!ou
3795^58
3*103,11
3'V8,4b
3VH6.88
3Vh0.iJ4
37/2J94
37bO,Ol>
3/63,48
3748.42
3/40137
3737.39
3/2H^67
(Continued)
-------
TABLE A6. (CONTINUED),
ME5ILLA VALLElf WATCP LEVKT5 FOR 1949. ALL UNITS ARE IN FEET ABOVE HKAN SEA LtVETJf
INFORMATION SOt'RcEl HUDSONC1971)
USHR
WELL NO, JAN FER HAp APR MAY OUN JUL Atjfi
ser
OCT
00
VALLEY
MEAN...
NODE: i
MEAN...
NODE 2
MEAN.,,
3772;i4
3760,00
3763:?8
3748,32
3746I4S
12*2.1!
3885.88
3789.32
3052,56
3851J60
J841 85
mwi
»U:W
8
3874:i
$852:$6
3851,60
384UB5
3840,08
3838.20
§04.?$
[786,68 3786J58
hisjBS 37i5 75
378sJSfc
78o!§3
780,74
771J94
759180
763.28
744l:ll
740,27
1728157 728:47
3804,86
3801,18
379fl:SO
II9§'»8
3825.90 3825.87
3885.88
3789.27
919.12
920,09
4:54
3919.42
3921,09
3914J94
3898.71
3898.35
3898,81
J884.93
3854,56
3852,90
3R42.85
3830,98
3839,50
3828.54
3835.57
38IB.V5
3807,66
3801.98
3RQ1,40
3796.6B
3803.21
3798 IS
3788,68
3787,45
3786,96
37B2J03
376K94
3773184
3760,30
3763,78
"'!:«
3748
374i;87
3739J79
3730J27
3919.92
3921,19
389X11
3899.65
3898.81
3884,93
SBBlJs1*
3854196
3853,30
3842,95
383''. 9B
3839 bO
3828.64
38)5,37
3819 35
3802, 2H
3802,30
3787,16
3782,33
37P2J44
3773J34
3760,80
3748^2
3748:65
3742J47
3739,99
3730,07
3920,62 3921.8
3921,49
39ib, 14
3900:25
3S84J83
3881.99
3875,49
3856,66
38S4.00
3M43.5S
3B4Q.O"
3839,40
3828,74
3B35.67
3819,88
3 8 11 , b B
38]3,51
3806.J6
3802:lfl
3802,BO
37^7,78
380},41
3798.95
3789,88
3789,55
3787,66
3782.63
3783,14
3774134
3760,90
3764.9H
3749,52
3749J55
3742,47
3739,89
3730,37
392i;i9
391&;54
3899.61
3900,65
3885,33
38K2.09
3875,79
1854J60
3844,05
3H39J40
3829.14
3835:37
3820,OS
38J1.bH
1813J41
3806.36
3808,6h
3803,38
381)3,40
3603:41
3799,55
3789,5«
37H9.2S
37H7.56
3782.63
1783,54
3774J44
3760,<>0
3764,78
374B.72
3749115
3741,77
3739.99
3730.07
3921.32
3*20. 89
390ol31
399V,35
3985,53
3681.8§
3tf5b.bb
3954,90
3843,65
3940,18
3939,ou
3829.54
393b,27
3 « 1 11 3 B
3913.21
3b(lj!oB
3802.00
3HOJ.'3)
V798.25
3/88.88
37R7.65
3786,96
3782.13
37S3.04
3/74,34
3760.80
3764.39
3748,32
3747:75
3741,27
3/39,79
3729,77
3988,00
3790,80
31*20.32
39?0,09
3914,94
3998,M
3898, bl
3HR1.29
3974,29
3db5,0b
3952,90
3«4j.2b
3b3b,07
3H10.40
3812.01
3b05,9b
3bOb. Ib
3801,7H
3H00.30
37<5b|2B
3bn3.21
3797.4b
1787. 9H
37»h,7b
37Boj93
3782.14
3774,24
3760,70
3763,9b
3747.82
3746,7b
3740,37
3737.49
3728,97
39B7.24
3790,Ob
3914,44
3f)7,.b2
3886.82
3789,75
3^19,22
-••••-' tv
3"l*7,51
i a I 4 , 19
3fb3j66
3*40,OH
3*37,bO
3-134:37
3l-L"»:»h
3 'i 1 I , 41
3 HIM ,2«
3 »V9,00
3 V B 7 . 0 8
3 ' b h , f) b
3/bb.rth
3/H0.73
3/«1.34
3 V 7 .» . 4 4
3/bO,bO
3 'bi.OK
3739J77
3/37.29
3/28.57
3VH9.51
(Continued)
-------
_T_ABLE_ A6_._._(CONTINUED)
MEL
L NO,
MC8ILLA VALLEY WATER LEVELS FOR 1950, ALL UNITS ARE IM FfcF.T AbOVE MEAN SEA
INFORMATION SOuRcEl HUDSON(1971)
JAN
FEE
VAp
APR
MAY
JUS
JUL
All'
5KP
"CT
00
00
* ,45
3898,51
J885 13
litfsS §9
i!!Z$!?9
3787J
3787;56
lli:i
§9.5?
3748 12
3746 85
314?'--
88:98
!Wi
3920.42
3920.99
3915.44
3899.21
3899,75
3899.51
J8R5.13
J881 99
3875 4<»
3855.36
3852,80
3844 25
3839.98
3839.70
3829.04
3835.67
}819;75
I'i8
3805J26
909.06
37*2
3771.
3760,70
3763:7*
3748:32
3747.75
374lj77
3737:79
3729157
3920,52
392U39
3915,74
3899 41
3900,05
3999,81
3885,13
3882,09
J87b,4«
3856,76
3853.60
3844.45
3839.9B
3819 50
3829,24
835 47
819 95
811 78
8l| 41
805,16
808,86
H03.08
W:l«
KM
Will
32§Z«2*
3^94
377
J760.SO
3764,38
3748.47
3748.85
--•I.Tl
. .'.29
3729.67
737
3921.17
3922.29
3915.84
3899.51
3900.7b
3900.11
3805,13
3882,29
3875,69
3856,46
3853,00
1844.45
3840.OH
3839.10
3829.64
3835.57
3870.35
38 12. IS
38J3.3
3805,2
3908,56
3802.58
3801,70
3791J2P
3803.41
3797185
37B9.1B
3786.95
3797,06
3782,43
3783 3*
3774;i4
376o:8o
3764.2B
3748)37
3749,35
3742:37
12J!:H
1
h
.
3729
,, 3*26,02 3825,95 38?6.21 3826,99 3827,41 3827.60 3827,81 3828.00
NODE 1
MEAN,,. 3886,09 3886,00 3886.37 3887.12 3887,71 3887,86 3888,40 3888.58
MEAN,?. 3789.39 3789.33 3789.51 3790.32 3790.62 3790.84 3790,86 _ 3791,06
3K7U.72
391b.24
3899.11
JB74.99
3Hbb.Hb
3H4 J.I.)1)
1b4U.UH
3H3H.70
?HIb,34
3«3b.27
1H70.05
3812.08
3B12.4
.41
,16
3807,16
38(12,28
3800.00
379b.68
3803.21
3797.25
17B7.76
3786.45
378b.96
37«i,73
3781.44
3774.14
3760.40
3764,08
374B.32
3747.65
3740,57
3737:29
3729.67
3920,12
3920,39
3914.24
3B98I61
lB9b.4b
3H98.71
3bB5,33
3«Ht,49
1h74,29
Jb54,76
J6S3.00
1B43.35
.3 h 4 0 , 1B
3*38.10
3*76.64
3814.67
3bl9.2b
-•U.28
3759,90
3763.48
3747,82
3746.65
3739,87
3737,29
3/29.37
3919,52 J>19.12
3919,29 " ~~
3914 04
3898,21
3898,45
3898:21
3BP5.23
3880,99
3b74 29
3B54.36
3852,80
3843,05
3640,06
3837,70
3875,84
3834127
3018,75
3810,70
3»ip,bi
3605,06
3804.66
3801,Qb
3796:90
3795 3H
3H03.21
3796.55
37M6.48
3784,85
3785,8b
3780,73
3780^4
3773.64
3759,60
3763.08
3747.72
3746.35
3739,47
373/J29
3728,97
391^
3M98:35
3b97,81
3t*65:23
3*74j29
3Ub3:96
3*>52.40
3«*2.9b
3b«o,ob
3«37.40
3U25.44
3*34,27
3fl9.2b
3H10.28
3W10.31
3WUb,16
3S04.26
3aul,Q8
jmjto
3<<03,21
3796^5
3706,28
S'/bgJeb
S/BSjsb
3'«0.73
3/W0.44
3/73J34
3/S9.60
3762.98
3/46172
3746JJS
3/39:&7
3737,29
3'2«:77
(Continued)
-------
i_jrABLEjWjli._ (CONTINUED)
MC8ILLA VALLEY HATER LEVELS FOR 1951, ALL UNITS ARC IN FEET ABOVE MEAN SEA LLVEL,
INFORMATION SOnPcEl HUDSON(1971)
USBR
HELL NO,
JAN
FEB
VAp
APR
MAX
JUL
HUG
SEP
OCT
NC1V
oo
37948P
3803,"'
3913,
3897)
3898
:Si
3897;oi
3884.73
3879.89
J874.29
)853)26
$851,90
3841)85
3839,88
3838)20
3825)34
3834,47
3817,45
3809,78
3810.91
3805)06
3805.26
3795)4(1
itt?:U
llli-M
3786.76
3780,93
3780,94
m-.li
mil
3746 45
3740,07
3737)39
3729,07
3918.02
3919)59
3913,94
3897)91
3898,65
3897)21
38P4.93
3878.99
3874.79
3852.86
3H52.10
3841.95
3839.3P
3838)60
3826.24
3834.57
3818.45
3809.8R
3811.01
38(15,16
3805,96
3801, 2H
3800,30
3795)58
3803,31
mm
3786,05
3786)56
378l)o3
378l)l4
377j)64
3760.10
3761.68
3748.82
3746)45
3740,87
3737)49
3728)87
3918,32
3914,59
3913,94
3898,01
3898.65
3897.21
J8B4)73
3879.09
3875,29
3852)96
38b2,20
3841,95
3839,78
3826)84
3834.77
3818.55
3809)78
3811.11
3H05. 26
3801,2B
3799)90
3796.08
3803.31
3797.65
3787.08
3786,15
3786,46
3780,83
3781.44
3772)64
3760.10
3760,68
3748,62
3746,4?
3918,62
3920.69
3914,04
3897,91
189S.6S
3B97.21
3B84.B3
3HB0.49
3875.49
3852.86
3851.60
3842.11)
3839,7P
3625.44
1R34.77
3818.45
3811.88
3810.71
3805.16
3801.78
3800.40
3795)93
3803.31
3797)55
37fl7)28
3785.95
786.36
780.63
781.24
-772)64
3760.10
3760,78
3746)4i
3741,07
?n?!«9
3918.32
3919,69
3913,54
3897,81
3898,65
3897,31
3Bti4,H3
388U.69
3874,69
3851.60
3819)68
3B25.54
3834.57
3H1U.91
3805,16
3B01.28
3799.20
3795.48
3H03.31
3796.95
3783.58
378b,95
37P6.16
37BU.43
3780.64
3772.64
3759.70
3761,08
3747)72
3746,45
3739.87
3729.17 3729.17 3729.17
3886.29
3789.25
918.32
918,19
3898.55
3B97.21
3884,73
3B80.39
3874.49
3851.30
3H41.85
3B39.4B
3825.44
3834.47
3809. 7H
3810.21
3B05.16
3/94.78
3803.31
3796,bb
37R5.40
37R6.05
3766,yb
37R0.23
3780.14
3772,64
3/5§)bO
3761,68
3747.32
3746,55
3739,57
3737.59
3728.87
3825.90 3825.84 3895.93 3826.32 3825,99 3826,19 3826.24 3826.29 3*26.01 1625.83
NODE 1
MEAN,,. 3886.17 3886,11 3886.03 3886.52 3886.15 3886,15 3886,22 3886.33
NODE 2
MEAN,,. 3789.14 3789,08 37*9,29 3789,61 3789.31 3789.62 3789,66 3789.67
3918,32
3919.09
3913,54
3897,61
38*4,^3
3880.29
3874.49
3851)20
3841,85
3839,38
3837,bO
3875.44
3834.47
3*10.01
3605,06
3V04.5P
3*»('3.31
379b,3b
3785.3«
37P5.95
37R0.03
3779.94
3772.54
3759.3C
3761,bb
:"»7,2i
3746,45
3741
3789.14
3739,47
3/37,49
3728.b7
3B25.75
3685,98
3789,01
3 '17.32
3^18,!><)
3V13.34
' ..11
3-9o)3l
3*>nb) 19
3^72,79
3 f S 1. 6 0
3 « 4 1 . 1 b
3^37,48
3«37,b
-------
VO
O
USSR
WELL NO,
MESILLA VALLEY WATER LEVEl.S FOR 1952, ALL U
INFORMATION SOURCEl HUDSONC1971)
ALL UNITS ARE IK FEET ABOVE MEA" SEA
VALLEY
MEAT!,,.
MODE 1
MEAN,,.
NODE 2
MEAN...
JAN
rEB
t'Ap
APR
im:si
IB:*
MAY
JUN
JUL
AI'G
5£P
OCT
NOV
.»}S:tt
3804,56
mill
3793,98
_9|00
820,54
834,57
817 25
808,BB
810,91
3803,96
-805.06
3916.52
3918^9
3839.00
3816.24
3834.87
3817^35
3809.08
3811.71
3804,16
3806,06
3901,00
1.
3759ao
3916.82
3919.40
3913.04
3B97.11
3895.2*
3S95.01
3BU3.03
3H80.09
3B75.59
3HM.36
3851.90
3841.25
3837,OP
3839,10
J«l<>,24
3fl35!l7
3817.95
3809.38
-'"I.5}
3824.56 3824.69 3825.17
3884,16 3884,23 3884,82
3788,22 3788,39 3788,80
3917.32
3919.29
3913.44
3D97.31
3896,45
3H95 71
3883.23
3879.79
3874,39
3851.56
3851.90
384l|55
3836,98
3B23J44
3834.87
3818,25
3809,7B
3611,31
3804,76
3805.66
.
ll3
!J9
.79
3916.82
3919,69
3913,34
3«§6,3l
3895,85
31195,41
3883!)
3880?'
38731
3851.06
3851.60
jmO"
ii
3810|91
3H04.76
3804.56
"SCO.98
391b,72
3918,99
3913.14
389t>,£i
3895,45
3895,21
3883 33
3880.59
3873,39
38bol?b
3851. 4U
3841.1!)
3B3fi,UU
3623,b«
3B33 /7
3B17,5b
3809.7H
3H10.71
3BU4,bb
3B04, lt>
3800.71)
S
3728.1
3824.97 3624.84
3884.83 3884.53
3788.45 378B.44
UEC __
1916,52
5*18 69
3912,94
3b»6 jl
3»»5 25
3B95.01
38S3 63
3BH0.49
3H72.99
3*50.Jb
3*51,30
3H37J90
3b24.04
3"33.47
3«17,45
S^mlsi
3fl/4.7h
3fU3.9b
3»U0.68
:
:
3/59,
3H24.70
3S84.35
3788,32
(Continued)
-------
JMULM.- (CONTINUED)
MCSILLA VALLEY WATER LEVEr S FOR 1953, ALL UNITS ARE
INFORMATION SOt'RcCl HUD50N(1971)
USSR
WELL NO,
26
20
19
15
J 7
II
11
13
14
10
8
25
7
b
b
24
4
27
J I
2 3
22
28
32
31
30
55
11
i
3
36
35
33
34
VALLEY
MEAd,,,
NODE 1
MEAN,,,
NODE 2
JAN
3916,62
3918,59
3912)84
3896,31
3895.15
3894.91
3883.63
3872)79
3851. B6
5851.10
3840.85
3837,48
3837,80
5823.74
3833.27
3814.85
3809,48
3"1D,4l
3804,66
3R03.86
3P00.58
3795)7n
3794.38
3785)68
3785.45
3784.86
3779,13
377g;44
3759. JO
3761.96
5747)62
1745.65
3739,47
3736)59
3727,87
3824,72
3884,68
3788,14
FEB
3916,62
39 1 fl • 49
39 1 2 • 7 4
3896,01
3994.85
3994,71
38R3.33
5890 15
3872,59
3851.46
3851,10
3846)75
3837)l8
3837,80
3822)64
3855)97
3814,55
3909, 4P
3810,01
3804.46
3803.66
3900, 4B
3 7 ^ 4 *3 0
3794,28
3807,51
3796)35
3785,38
3785.45
3784,76
3779)03
3779)84
377o;34
376l)li
3745)11
3739.37
3727)97
3824.50
3884,45
3787,94
vAp
3916.52
39i8)49
J9J2)04
38o6 1 1
igq 3 * 95
5 8 9 4 * 6 1
38PJ)B3
5875)39
3 8 7 4 39
38^0 * Q6
38*1*60
3840*65
38^7 18
3838 30
3653*84
38(3*47
38i5!05
3 B o 8 29
ilnS'li
38 P 3 * 46
3 8 ftO 88
3 8 n 7 * 5 0
3793*88
38o?)31
37o6)6$
37fl5)45
377^)73
37flO)84
3771)04
37«i9)90
3/46 15
3740)27
37.16)90
37?8.67
3874.65
38R3.99
37*8.47
APR
3916,22
3918,99
3912)54
3896.61
3894.65
3894,71
3882.93
3879.95
3874.69
3851.36
3851,40
3840,85
3836,78
3838,70
3824,94
3834.67
3816.25
3809,58
3811,21
3804)46
3804.66
3B00.88
3794,50
3794,46
3802.51
3797;i5
378b)SB
3785)45
3785,86
3779)73
3780,64
377l)44
3759,80
3761.48
3748,02
3746.65
3740,27
3737)l9
3728.67
3825,01
3884,50
3788j73
MAY
3916,02
3918,59
3912.34
3896,51
3893,55
3894,41
3882.43
3879 49
3H74.49
3850.46
3850,90
3840)65
3835,78
3837.80
3824,44
3834)87
3816,45
3808,90
3810.61
3804,26
3804,36
3B00.8B
3793,30
3794)68
3802.31
379l)lS
3783,78
3785,05
3785,56
3779.53
37H0.34
J?S4:M
««:«
3746,05
3740)07
3737,09
3728)47
3824,59
3883,95
3788.39
I»I FEET ABOVE MEAN SEA LEVEL,
JUN
3916,02
3918.19
3912.04
3896.71
3894,15
3894,31
3882,13
3876)59
3W74.90
3851.06
3850.60
3840,85
3837.28
3838,30
3825,14
3834,97
3816,55
3809.28
3810,81
3804.16
3804,86
?0 0 . fl 8
93 4^
94*03
379!*^
3785)4P
3785,05
3785.3*
3780)44
3772.24
3760,00
3760, 6«
3747)62
3746,15
3740,47
3737 69
3728.87
3824.80
3884,05
3708,67
JUL
3915.92
3918,29
3911.94
3B96.61
3H93.R5
3894.31
38B1.B3
3879)49
3H75.19
3846.86
3850,80
3840,45
3835,58
3839.40
3825.74
3815.17
3S16.75
3809, 5B
3R11.31
3B04.16
3805.26
3801,08
3795)30
3792 48
3805,61
3797;o5
3785, 2R
37H5)25
3786,26
5779 93
3780,94
3777.24
3759.80
3760.18
3748,02
3746,85
3740, R7
3737.09
372S.97
3824.48
3883,02
3788,79
A IK;
3916.02
1919.60
1911.94
3806.51
3893,85
1894.31
3882.43
3877.10
3*75.44
3849.56
3851.50
3840.35
3835. 8B
3838.4"
3823.44
3835)07
3816,65
3808, 08
3810, HI
3804.06
3806,76
3801 .2B
3796)70
3793.38
3802.51
3797, b5
37B5.9R
37B5.4b
37H6.66
3780,13
37R1 ,44
3771.44
3759. 7n
3760, 4«
3748.02
3746,55
3740, R7
3737 69
372R.77
3824.73
3883,77
37B8.73
SEP
3916,12
1918.99
1912.04
3B9b,6l
3804.65
1894.41
3MR2.53
I87b.59
3 H 4 y . 7 6
3851,30
3840,75
3fl3H)4u
3«?J,74
3634,87
3Hlb.45
lH(j9,38
3all,61
iBOe) Ib
1 B 01 , 4 8
1798,20
3/93,28
3802,71
3/97,25
?7Hb)95
37flb,46
3/8U.63
37B0.94
3771,74
3760,00
3761,08
3748,02
3746,65
3 7 4 i , 2 7
3737.49
3/28,97
3824.92
3dR3,91
37R8.95
nCT
3915.52
391 ».b9
39)2,14
J896.21
3B94.05
3894.11
3UB2.0J
3873)59
3 H S 0 , 60
1640.4.5
38.17.1U
3H37.UO
3823,74
Je34. 17
3815,75
3«09,bB
3810.51
3H04.56
3 « 0 0 ) 7 8
3/97.30
3794. b8
3802.61
3796, 6b
3 7 B 5 , H B
37B5.35
3785.46
1 7 7 9 . b 3
3780,34
3770.64
3759. bO
3761,28
3747,52
3746.05
3719.37
3/3b,b9
1 7 2 B , 0 7
3B24.47
3 B H 3 . 7 3
3798.32
MdV
3915,32
391 7.79
1911.94
3 ^ y 5 . v i
3 ^ ^ 3 . b5
3H94.01
j y 7 2 tj ^
3 H S u A J t>
3 1? H 0 • 30
3b40,35
3837. 1»
3 b 3 7 t 4 1)
36?3,94
3B33.4/
3 H 1 b . ob
3 b i' 9 , 4 8
3b(j4)hb
1 H 0 b . 7 h
3 K (H) , b b
37«7,in
1794. 4B
3 B 0 2 . 7 1
3 7 P 5 ! 7 H
17f»b,3b
37B5.16
3779,43
37BU.24
3770.34
37S9,bO
3761,78
3747,42
3 V 4 5 i 8 b
3 7 3 W a 3 7
J736)b9
3727.87
3624.40
38*3,72
37K8.,(3
uv:c
3VIS.32
3^11 {44
3*95 41
j n 9 3 (|5
3 4 9 1 ) H 1
3n ( jt t> ^
J *i b 0 2b
3 n b rt t \ t,»
3».'40t5b
3 ^ 3 7 t U H
30J7.50
j i i 3 i4
3"33.17
.5 1 1 4 . / b
3 o u 9 •> H
3-!i4)?6
1 B y J ) 7 b
J r i^ u . 3 b
.1/96,00
3794, 4b
3/Hb)3«
37Hb.6b
3 / b *) 06
3 / 74. 43
3 /BO, 24
37/0.44
3''bO,40
3 /b 1 ,6H
374?. )2
3/45.45
3/39,27
3/36,59
37^7,67
3H24.2B
3Hb3,65
3/BU.07
(Continued)
-------
TABLE Afi. (CONTINUED)
to
VALtEY MATER LEVELS rOR 1954, ALL UNITS ARE IN FEET ABOVE MEAN SEA LEVEL,
INFORMATION SOURCE I HUDSONU971)
JAN
NODE 1
MEAN...
NODE 2
MEAN,,,
««
3745,6
ln\:\l
2718
?
rce
f Ap
3736,69
3727167
?MH?
APR
372817
MAY
3892,01
3881 23
3879,19
3874,09
3847,96
3849.10
3R39 45
3835,18
3836,40
3833,87
815,85
808,68
§10.01
803,36
803.36
806,3ft
3769.34
i^.r*
mi'M
mwl
3727187
JUN
3914,02
3917,09
3909,74
3995 21
|«ii
m\A
3874,09
3847,86
3848.60
3839,15
3934llP
3836,30
3816154
"?2'22
1803,16
3800.48
3790,40
3792138
3800,91
|796,55
[84175
r84,86
_JUL
'ii\i:ii
mm
' -3 • 3 T
,-73,89
??i^35
3H04.16
3800,30
3790.40
3791I7B
3800,41
3796.75
3784. OB
3758,88
3746.42
3744,15
3739,57
S736;i9
3727i57
AUC
3912.62
3915199
3909,04
3890^85
3889,61
3848, in
3838.45
3833,40
3*34,70
3819,74
3832,97
3814,75
3806,48
3810,41
iBoalo*
3803,46
3800, 4H
3701,30
3791,28
3799,91
3797,15
37S2.8R
37PII35
3759,30
3757,88
3746,42
3743I3S
3739,77
3735,89
3728,37
3824,33 3823,96 38?3,33 3823.31 3823,14 3822,79 3822.20 3822.20
3883,45 3883,15 3802,68 3882,47 3882,18 3881.82 3880,95 3880,70
3J88.27 3787,86 J7p7,14 3787,23 3787,13 V^jJP ,?!!*i19 _3786«53
SEP
OCT
MOV
VKC
3912.32
3915,55
3908,84
3 tf 94 • 4 1
3890, lb
1990,01
3879 13
3877.89
3872.79
3846,86
3847,70
3838.25
3834,38
3820J34
3832.37
3814,45
3t)06,4b
3809,91
3801,86
3802.66
3HOU.18
3792,10
3791,96
3800,11
3796,45
3782,48
3783,95
3784,56
3778,13
3780,24
3768.04
3757,70
3757,98
3745,92
3743 05
3738,77
3736.29
3727,67
3822,13
3880.82
3786,35
3912.12
3916.19
3909.44
3894.51
3890,55
38»9,91
3680.43
3879.29
3872.89
3847.66
3847.40
3839.35
3835,38
3836,70
3822,14
3831.97
3814.65
3806,78
3810,01
3802.16
3602.8H
3800,28
3793.40
3790,88
3800,41
3796.35
3782, 88
3784, 05
3784156
3779 94
3767,64
3757.70
3758.28
3745.92
3743J45
3738,77
3736,39
3727|37
3822.44
3881.28
3786,55
3912,02
3915,8V
3909,14
3894,41
3890,95
3U9u,ul
3880,83
3878,80
3H77.59
3847. bb
3847.31'
3838,45
3to3S.t>8
3821 Jb4
3831.67
3814I7S
3bl'b,78
3810.01
3802. 3b
3603.06
3794jlO
3800 Jbl
3796,25
J 7 ^ 3 ti b
37H4.46
3778,33
3779,64
3767,64
3756,30
37S8.2B
3745,82
37?e!67
3736,49
3727,47
3822,38
3«fU.2b
3786,48
3*12.12
3*1 S, 69
J9U9.24
3 * y 1) , £ jj
3 ^ d y Ml
3«">1 Jo3
3*72149
3 »• 4 7 ' 1 0
3-J8.4S
3 e .1 <» ! 3 0
3»22.44
3^1,47
3 *' U h I 7 b
3"l"J.rJl
3 n 0 3 ID
JHUO 3H
37->5,20
3 1> t J I u 1
3.' 81 I OH
37H4J46
3'78,h3
3'b7|94
3 'Sh.feU
3/bH.f.t-
3V43|3S
3738,67
3/36,49
3727,47
3^22,40
3H81.0W
37*6,62
(Continued)
-------
TABLE A8. (CONTINUED)
VO
MESILLA VALLEY MATER LEVELS TOR 1955, ALL UNITS AR£ IN FEET AbOVE MEAN SEA LEVEL
INFORMATION SOl'RcEl HUDSONU971)
USBR
NELL. NO.
VALLEY
MEAN,,,
NODE 1
MEAN,,,
NODE 2
MEAN,,,
JAN
siw
FEB
vAR
3890.6
3889.8
388
387 ...
3872.29
3841,36
3"46,
3838.45
\l\M
792)78
J80l)21
}79fi)25
hi?!*§
3838.35
1935.38
1836,80
3801,01
3796,25
3783.39
3784.25
3787,36
3778,83
3779:74
3767124
3759,00
3758,18
3911.92
39o8)04
«|3i
38P8)*-
SBpo)1
3879 -
3871)49
3846)56
3845)90
38*7)85
' .43
1)71
!1
Hi?:
37o
3|||:J5
mfy
3757:47
3871,36
3880,35
3911,32
3913)99
3907,94
3893)71
3889 35
3888,91
3879 53
3S77 49
3873,39
3844,86
3845,80
3838,25
3833,08
3836,40
3817,44
3831,47
3814,35
3805,88
3809,11
3801 66
» O n i 1 C
.80
3 In»,18
3799,71
3796)25
3782,58
3783)75
3786,76
3776,83
3779 34
3765,94
3754,90
3757)38
1745,62
MAY
3911,02
3913.29
3907 44
3893,21
3889 OS
3887,91
3878,83
3877 99
3872,69
3844,96
3845,70
3837,55
3833.98
3835,50
3815,14
3830,87
3813,95
3805,08
3809,01
3801,26
3802.16
3799,98
3790.90
3792.68
3799,31
3796,05
3782, IS
3783 55
3786,56
3776,03
3779,54
3765,14
3754,60
3756,98
__£UN__
3910,42
3911,89
3907)24
3887)95
3887,21
3878 03
3877,29
3872)39
3844,46
3845,10
3837,05
3831,OH
3834)70
3815,04
3830,87
3813,45
3804,3«
3808,7}
3800,76
3801. 9ft
3799,78
3790,30
3792 IP
3798,81
3795,95
37*1,78
3783,45
3786,36
3775.33
3779,04
3765,14
37*3.90
375t>,58
374l)35
J738;37
3735;59
3726)87
3820,20
3878,70
3784.53
JUL
3909.82
3911.79
3906,44
3893.31
3887,55
38R6.91
3877.39
3873.19
3843,06
3844.60
3836,65
3831.8H
3834.30
3815.14
3830.77
3813.15
380<>)oi
3800.26
3802.76
3800.26
3802,76
3795)9B
3790,30
37923B
379S.61
3796)25
37H1 ,8fl
37S3.65
37B6.56
3775,23
3779,24
3766,34
3756,40
3756,4P
3745,02
3740,95
3738 97
3736,09
3727,67
_JIUG
3909,32
3912.89
3906,74
38<»3.1 1
38«7,bb
3877,49
3H73.1"
3842.8*-
3844,8"
3H33.30
1815,74
3829,97
3H12.9S
3flnn)9i
3/99,9*.
3K02.3*-
37o3,tffl
3790.50
37*7,23
3718.11
3786, lift
3775,73
3779.•>•!
3766.24
3752.«0
3744.92
3740.75
3739,17
373b)99
3727.97
StP
39C9.12
391 2.7
-------
..-TABLE. A6. (CONTIffliED).
vD
USSR
WELL NO,
MESILLA VALLEY HATER LEVELS FOR 1956. ALL UNITS APE IN FEET ABOVE MEAN SEA LEVEL,
INFORMATION SOURCE I NUOSON(1971)
JAN FEB MAR APR MAY JUN JUL AUO
384 1
;84i!io
:B36!JS
Kiii
3908.22
3909,69
3905.64
3692.51
3885.65
3833,81
1872.79
J839 76
842,70
3835 05
3830,58
3R32.10
3818,84
3???.12
37R5I96
3773,73
Izsllh
1,15
-i-5.17
tfK:H
3907.72
.
3872,09
3R39.46
3841,90
3834;55
3829, 5P
3832.80
3818.84
3828,77
3810.95
3800. 60
4002,JO
3799,58
3789,70
3790.OR
3797ll1
3795.45
3778.76
3782.25
3786,36
3773,83
377B§34
3762 34
3750,30
3754,48
3714,52
1741I05
3739^37
3736,69
3727107
SEP
3907,22
39C9.49
3905.04
3892.31
ill
3876,
3876,
3B72.29
38*9,86
3M1.40
3434.25
0,08
3819.04
3H28.07
3810.55
3800.28
3808,91
3798.16
f.lb
3801,66
37R9:io
379
3790,28
'I
""'
3779,98
37B2.15
3765.96
3773.83
377R.14
3763,24
1750,00
3754.28
3744,22
3740 55
3738.57
3736,89
3726,47
OCT
3906.92
3910,79
3905.24
3892.01
3884,75
1SB3.81
3B77.U3
3876,79
3H?l!f?
3841,70
3t)34 15
3831,08
3832,60
3818,94
3827.57
3010.35
3800.78
3WOB.91
3708,36
3901,66
"%"
—Wi
iyw\
3801,66
3798,98
3790,40
3790,38
3797|4-
3763,54
3750,30
3754,38
3744252
3740,85
3738,07
3736,69
3726J37
NOV
3907.12
3911,49
390$,24
3891 91
3885,35
i!S«!ii
3819.04
3827,27
" I0l25
IOI.IB
6
3763^74
l»S:i2
llil'Al
mill
3726.67
U£C
3907,32
3911,69
3S03.24
3891.61
3«85.75
3HB4.31
387B*93
iHl^ SO
3785 76
3774,43
1KIM
»«:«
mill
3737J57
3736.49
37^6 87
WkKI.
NODE 1
MEAN,,,
NODE 2
NEAR.,.
3820,77
3879,03
1715,24
3820,67
3878,85
3785.19
3819,66
3877.26
3704.54
1819,98
1877,75
1784.75
3819.50
3877,41
3784,19
3819,15
3876.92
3783.92
3818.40
3876.07
3783.24
3818,15
3875.44
3703,21
3818,25
3875.85
3783.13
3816.38
3876.09
3783.18
3818,59
3876,39
1783,34
3018,74
3876,39
3781,57
(Continued)
-------
TABLE AB. (CONTINUED)
VD
Ul
MESILLA VALLEr WATER LEVCf.S TOR 1957, AUi UNITS ARE IN FEET ABOVE MEAN SEA LEVEL,
INFORMATION SOllRcEl HUDSOM1971)
USBR
WELL NO.
JAM
FEB.
MAR
APR
NODE 1
MEAN,..
NODE 2
MEAN,,.
3907.72
-911*79
904 94
890 91
3885,65
3884.51
-841.16
3840 70
3834.45
3831 2P
3833,40
3819.74
3827*27
3811.05
3802,5H
3808.81
3799,36
3801,76
3798,98
3792I5Q
379|Jaft
3797J91
3794.85
3781,58
J782 65
3785,66
3774,93
3777,84
3764,14
3752:^
3737 47
3736,29
3726,97
3819,01
3876,58
3783,90
!!&!!
iittiii
38p3 U
l!?ii»
3869169
3840 46
3840!40
3BJ4:2S
3S31.2S
38jS*00
3«18'74
38?7;27
3810)65
SSolJOfl
3«08*71
37afl*56
38oi:56
37qft*88
$;!!
3777J9B
3782^5
37R5J56
3773163
3777J64
37MJOO
3742^5
3717J17
3735:59
3818.13
3875,57
J7.p3.l0
3906.62
{909.99
3903:34
3891I61
3883.65
3893:21
387/103
3874:39
3871,69
3839J36
3840;iO
3833:95
3829.58
3§3i:iO
3818:34
3B28:07
1808.75
380i:0fl
?i?2:?»
3797.96
3801,4f
3796.58
3789, 5
3796,31
3794:65
3780.68
3782.,25
378§:i6
3772J93
377«:i4
3762,24
374^j90
3753^8
3742^2
3741J55
3738,H7
3736^9
3726:07
3817,72 3817,54
3875.20
3782,67
_ ^*L_
3906.52
3909,69
3903J94
389i:31
3883:95
3882.31
3877,03
387^:19
3871,59
3839 56
3839.80
3833.55
3829.88
3831,20
3817,44
3827,27
3609)35
3800.46
3807.71
3797,46
3800.96
3798.38
3789.40
379U68
3796:il
3794I75
3779.98
3781,95
I285..Q6
)761,64
9749.80
JUL
3875.08
3782.44
a*uj./*
3691.71
aHMjas
3882:51
3876,03
3875,09
3871,8
3/S9.01
3'yS.lb
3782I4B
3/82,95
37Bb!o6
3'76,03
3778*04
3'63,94
3VM.90
3/b4.98
3745*12
3 44,0t>
3/38,57
3/37,19
3/26,67
3019.81
3784,65
(Continued)
-------
.TABLE A6. (CONTINUED)
VD
USSR
HELL HO,
HESILLA VALLEY WATER LEVEl3 FOR 1958,
INFORMATION SOllRcEl HUDSON (
MEM,,,
NODE 1
MEAM,,.
NODE 2
MEAN,,.
ALL UNITS ARE
1971}
JAN
836*,30
822 14
828.47
All,85
803,48
UU*
803 36
" ?!s?
37B6
'776. ._
Z7BJ24
W:!*
"I:H
FEB
IDnn • 03
1885,11
1881 (3
J879.69
3872,29
3841 76
3840,60
3834,85
3831.78
sHHS
\l\\\ri
!!&!!
!:!i
3Bp7*2i
38fl5!f-
IBBf'5
3875.. .
3874'69
384l*,96
3B-10*,70
3815*, 45
383l!88
3836*40
APR_
TiJiiH
3908*64
MAY
3895,01
IS
91
3881,63
,
3888 I
1895 91
38JB*,77 3830
38i2!25
3803*58
*?!!&
mill
3786,06
3776 23
3778 04
3764*54
4 i K i e. f\
3880,79
387b,39
3842.76
3841 40
3836,25
3833,18
3840,00
3824 04
3830.07
1H13,25
3804,68
3811,01
3801,46
380S.46
3800,88
22?b.20
IN FEET ABOVH MEAN SEA UEVfiL,
AUO
3888,75
3886,31
3882,33
3fl«l,09
3875,59
3844,16
3841 .60
3835.65
3832,7P
3840.80
3825.b4
3831,87
3813,85
3805,68
3811.41
21
3842!e3
38B1J49
3876,3<»
3896*21
3887*41
3B83.43
3882,09
JB76.19
..50 3B4J.20
3836.OS 383b,65
3833.SB 3833,98
\W\ll iS$i:iS
3§?3,37 3833,67
3913,32
3919. b9
3913,44
3a9b,41
3«84,0!
3NR2.01)
1H76.59
3R47.36
3817.35
3d3b.3H
3H40.50
3808,11-1 JH09,5«
3795 18
3800,71
379b,15
3784,15
37B7.16
380b,9*
3801.2«
3796,70
3795,08
3801,01
3796,55
37B4 38
3784145
3787,46
3779,5.1
3779,04
3767,04
3862:76
3807.56
3801.68
3794IOO
3796,88
3801,81
3797105
3785,3«
3784,95
3788,06
37R0.93
3779,04
3768.54
3754.20
3755,98
3803,76
3BOH.66
J802.5S
3799.80
3796,58
3602.91
3797,85
3786,28
37P5,5b
3788,96
3782.33
377-)|64
3770,24
3754.90
3756.38
3747,5?
3747 95
3741,b7
3739,09
3728,27
3810,is
1*13./1
1804.36
3808.8*
1799,90
379H, |H
1803,81
1799.7S
3787,28
37H6.35
3790.06
J7«2,7.1
3780.04
3771.54
3760.40
3756.68
3747,8?
3748,71
3741,67
3739,09
3727.37
SEf
OCT
li/13.92 3914,32
3884.13
1*47*. 96
3M1b,3b
Jeto.08
.1749,Ob
1741.67
1740,09
372«.b7
3B84.53
38H1.79
3875.09
.i y 4 B & 3 o
3H45.50
3836.20
3b38,80
3H13.17
1H09J68
3h06.5b
3do3,2P
3799.70
1798JOR
37986
3787|j8
.
17CH.SH
.iBli.bl
3/9llS
3790.06 37H9.6h
»7lPy.34
3/7^.14
3 7 b U . 7 u
3/57.48
3780,44
3771,44
37hu,bO
3758.1«
3749,22
3/42,S7
373H.69
3/?9,77
JB24.94
3882.56
3789,79
NUV
3914.6,,!
3919 3'J
3913 •>«
3892 25
3HFM.3J
3t)Hl ,b'»
3«74,]y
3845,bO
3H36Ilh
3b(lb.Hh
Jb()2,b«
3bd3,91
3798 bb
3787 08
J7RV, ju
.17»«c!34
37^0,
.17 bH,
3740. d/
17.18, 19
3727,b7
3H24.6/
38Hi.55
37»9.37
3 " te t). b >*
3"i«7*Br:
3^1)91 IB
3 " 0 S * S »
3 / h fi *. 7 «
3 / b (1 ', 2 *
3 "Jujsu
3/<»w,77
J/J7,'*'J
3"24,47
3o«2.3i
3 '«<»,1S
(Continued)
-------
TABLE fS. (CONTINUED)
MESILLA VALLEY MATER LEVElS FOR 1959, ALL UNITS ARE IN FEET ABOVE MBAN SEA LE/EL,
INrORMATION SOl'RCEl HUDSON(i97l)
USSR
WELL NO,
JAN
FEB
APR
HAY
JUN
Xffitf.
NODE i
MEAN,,,
NODE 2
MEiN,,,
3805,06
3802,48
3795)8C
3797)0(
3803,51
3796)25
«??!!•
173
39
882
,,880,.,
S873)l9
3848,06
i*')!?
I I 7Q • QV
1796.18
3803,31
3797 95
3785.38
17*5,15
1788,26
3780.S3
3779.94
3770)24
3760,40
3759)78
3748.12
3747,85
3739;97
3737)69
3727)47
3823,97
3881,88
3788,69
\M\II
«««
38*2)83
38*5)59
3875)59
3848)16
3845)40
3836)95
38i7)55
38n9)OB
m:\i
iiiiiii
»««
37P8-16
57*1)43
•> V Q ' t V 1
3883)43
3880,99
3875)09
3848 66
3846,60
3839 25
3836,68
3805,jo
3806,46
3802,18
3798 80
3797 28
3804,01
3797;7S
3788 38
3786)95
3780)76
37*l)*3
3882,52
3789,84
«,i 19
3848.76
3847)lO
3839)35
3836)88
HI2-72
3806.56
3802)28
3804)|l
3797,85
3788.48
3786,75
3786,66
3781)93
37*5)64
3772,84
3761,10
3760,78
3750,'02
3749)85
3740,97
3738.99
3728,67
3825.03
3882,65
3789,89
3879 3?
3876,09
3849)56
3847)20
3839,95
3637 36
II36.60
3818,05
3809,88
3812.11
3805)46
3808.06
3802)28
3799 20
3798)29
3804)31
3797 95
3789)68
3786,95
3789,16
3782)03
3781,04
3773)54
3760,90
3761,58
3749)72
3750,75
374l)27
3739)49
3727.17
3825.39
3863,12
3790,1*
jJUL_
3917,82
3919)79
3897)21
3894,15
389o)-'
3883, .
3880,9.
3875)99
3850.06
3848,10
3840)35
3837 48
3839)70
3829,04
3833,67
3809)78
3812,11
3805)16
3*08,86
3802 58
3799.40
3798)38
3803,31
3797,95
3788)j5
3789.66
3782,S3
37*1)44
3774,54
3761,20
3762.48
3749.92
3750.45
3741,47
3739)39
3727,97
3825.89
3883,77
3790,60
AUG
SEP
OCT
NOV
3918,32
3920.04
3914.44
3897 81
3895.05
3892,01
3884,1 3
388), 39
3875,79
3850,66
3*48,60
3840,95
3837,78
3840.20
3828,84
3834,07
3818,65
3810.18
3612,01
3805.16
3807,96
3802. 6B
3799,40
3797,85
3803,41
3797, 65
3788.58
3787, IS
37t9,2f-
3782 31
3781. !>4
3774,24
3761.50
3762.78
3750.32
3750,55
3741,67
3739,09
3727,97
3826.10
3884,34
3790,59
3918.22
3919, 59
39)4,04
3*97,41
3895,55
3892.51
3833,73
3874^9
3850.86
3849.10
3841 25
3838.18
3839, 5o
3828,74
3833, 87
3818.75
3809,98
3811.71
» » 0 6 ', 8 0
3802,28
3798,70
379;. 18
3797I55
3787125
3/88.96
37PU34
3773,34
3 / 6 1 , 2 0
37*2. h8
3 M9.82
3749.65
J74l/,57
3739.59
3727.27
38Z5.80
38M.38
3790,17
3917,92
3919,09
1913,54
3*96.91
3892^1
3*83.33
3*80.79
1873.89
3850.96
3848,90
3*40,95
3838)30
3826,14
3833,27
3818.05
3809,38
3810.81
3804.56
3805,2*
3801,68
3797.40
3796.38
3802,51
3796,95
37Sb,9K
376t>,05
37CH.36
3780,43
3 /HO, 64
3771,74
3760,90
3762, 2P
374C.82
37 «-*, 45
3739,97
3737,79
.3726.97
3B25.19
3«H4,lb
3789.23
3917,82
3918,79
3913.24
389b.Sl
3894.65
3HR3)lJ
3H7K.79
3873,39
3850,96
3848.70
3840.65
383fr,9H
1837,50
3825,64
3832.67
3817.85
3809,08
38 1C. 31
3804.46
3804,56
3801, Jh
37 9b y o
379fr.o8
3»02,41
3796, 7i
37*6,38
3785)55
37B7.V6
37P0.13
3780,24
3771,14
3760,60
37^1 9 B
3748,52
3747.85
3739,97
3737 49
3727.27
3824.89
3883.96
3788,87
UEC
3*18,59
H12.64
3^4)35
:J!
3^/3,39
3^4*160
3B40.45
3^5)34
3810.01
3^04)3"
3/9h)80
3''95. 8 8
3f02,31
3'/79,93
3/'9)94
3/70.94
3760,60
3/02.08
3/47.22
3/47,25
3739,97
J/J7.49
3727,37
3*83,82
3/89,62
(Continued)
-------
VO
00
HEL
LL NO.
TABLE A8. (CONTINUED) _____
MESILLA VALLEY WATER LEVEl S FOR I960, ALL UNITS ARE IN~ FEET TbOVE MKAN SEA
INFORMATION SOWRcEl HUDSON(1971)
JAN
VALLEY
mN.,.
N
KOI
1
NODE 2
MEA
808.61
lll'll
3824,97
.;, 3883,65
N,?, 3788,33
FEB
5809,91
}'^:?t
}787)86
5779)63
MAR
APR
MAY
7ft2;98
3748)22
3747)76
3741)07
37j8 49
37?7 77
3824,82
3883,64
3788.95
mm
3879)89
}kw
WW
3836)98
55J7) 0
P v w -• a w
1806, 6
801)78
798)53
796)8P
ll-P
.86)35
'7.S?.™
' F « V | i v>
1781,03
781 04
7?J)24
3802.61
3797;45
3787)l8
3786)05
3788.86
JtthH
IHfJ4.
762)88
74ft,02
748,55
?jl:i!
726)47
JUM
S7B1 14
3773)44
3826,07
3885,27
3789,97
JUL
918,72
919 59
913,94
897,81
896)85
894,01
)»{:?*
3875.49
3852,96
^850 30
3841 55
3837,4f
3B39)9'C
3828,44
3833)67
3819,35
3810.18
3811 .81
3805,16
3807)96
3902,48
3799,50
3796)88
3803,01
3797)65
3789,9"
3787 35
»ZS?!lfe
3826,36
3885,43
3790,34
AUfi
3919,62
3919,79
3916,64
3897)91
3897)45
3894.91
3883)93
3881.49
3876.09
3853.66
3850,80
38*l)75
3837,78
3840)70
3829.84
3833)97
3819.55
3810.08
3812)01
3805)46
3809,46
3803,08
3799,50
3797,5B
i?283:?*
J?«:"
37B9.,0
37B2:i3
3781.44
ft
j i o t 4 *J5
37R9.96
"B2J13
,.81.44
3774,04
3760.80
3763.89
3748)4?
3249:2:
3742jo7
3739)39
3728)§7
3826, a3
3866.13
3790.67
SEP
3919,62
3'JlV,h9
1914.H4
3>197,61
3H<17)5b
3804.61
3UP3.93
3U74.99
3HS4.46
3850,90
3b3?)bH
3S39.20
3H28.24
3833.97
3814.45
3dl0.38
3811,91
3rf05,26
3H07.66
3802.66
37<»5,50
3797)98
3U03.11
37HB.1H
3780 Q5
3789.36
378l)33
3772.84
3760.70
3763)78
374tt,02
37*8,25
3740,67
373H.59
372B.47
3d2e,47
3det>,U9
3790,12
I'CT
3919.22
3V19.89
1914.34
3897.11
3«9b)21
3W83.53
3873,79
3W50)40
3837)38
3838,60
3H77)64
3H33.57
3819,08
3009.98
3811.01
3U04.86
3S05,8b
3W01.9H
3/97.7U
3796.7B
3402.71
3797)25
3787.18
37P6.15
3708.86
37A0.63
37B0.64
3771,5«
3760,30
3763,0»
3747.52
3747.65
3740,17
3737!99
3727,97
3825,93
3HHb,71
3789,47
NOV
3873,89
3US2.8b
3637.UN
3t<3b.OO
382^.34
3b32.97
3818.55
3W09,o8
3«10.bl
3<>(i4,bb
3KU4,<*b
3797:20
i7?P.i?
379b,bb
37Rb.b«
37bb.0b
37h6.4b
37R0.23
377o,S4
37*0,10
lI$5l5!S
3740.27
3737)b9
3727)77
3B25.52
38*5.36
37R9.03
UKC
3919.02 3^18.62
3913.«4
3bSb,bl
3890.65
3B4b.ll
3883.23
3913,44
3*1^6.61
91
?(,
3 I3b,78
3*>J7.70
3 >i!5.(>4
3KJ2.67
JHIH.25
«.
3-'lU,Sl
3"04,56
«-,
3797,00
J'/y&.HB
3fU2.51
3'9b.7b
3'Hb,18
3/bi)7b
37b8.2b
3(74,93
3779.94
J770,64
3't.p.OK
3;h2,4H
3 '47, 22
J'40,37
3'37.!)9
37^7)67
(Continued)
-------
TABLE A6. _. (CONTINUED)
MESILLA VALLEY WATER LF.VET.S FOR i46i, ALL UNITS ARE IN FEET ABOVE MEAN SEA LEVEL,
INFORMATION SOURcEl HUDSOHU971)
USSR
WELL NfJ.
JAN
FEP
vo
HAY
NODE 2
MEAH
38R4.00
3788,22
APR
'3917,12"
3919.69
39)2,84
3897121
380b • 25 jo 7<* • *a
3894,41 3894,11
3883.63 3803.33
3880 49 387ft)l§
3875,19 3874,79
3851,76 >"•*"'
3850,60
3840 55
3836,68
3837,90
3825.84
3833 37
3817,45
3809,28
3B11 Si
3804,26
3806,56
3801 78
3797,80
3796 98
3802171
3797,35
3787,28
3786 15
3788,46
769)64
760,30
m\n
Wtt
ili:2?
3825,28
3884,79
3788,99
TiiJip
««&
3894/^5
i« /*, ff
3851,86
3850,20
3tt4Q,B5
3838,^0
3925 54
3832,97
3817, J5
3811.51
3B04.06
3806,76
3801.68
379S.30
3795 78
3802,31
HK:tt
3785)75
??28«&S
28
72
5746J87
3739.29
3727,77
3825,20
3884,52
3789,03
JUN
3918.79
!?9?:JJ
3895,85
3894,21
38B3 43
3880.09
3975 19
3851,56
3850,20
3840,85
3836.38
3839,00
3826^94
3833,67
3817,45
3809.28
3811.81
3804,36
3807,56
3802.08
3799,20
3797i08
3802,41
>760,50
3763,58
374762
3748 15
3740|67
3738.49
728,57
3825.57
3884.73
3789,49
JUL
918, 5 2~
wilt*
llKill
3850.10
1840,65
3837.08
3827*04
3833.57
3818.25
3809,58
3B1l)91
3804,36
3807,96
3802,48
3799,00
3796)88
3802.81
3797.85
785.88
789)55
789,56
790,93
780)74
773)54
760,50
.1762,78
37*7 32
3749,25
3740 47
3738,09
3728137
3825,77
3884,81
3789,77
AUG
~39l"9,22
3919199
3913 84
3897.81
3896.45
3894)91
3882.83
3880,29
3875 19
3852.36
3850.50
3841.05
3837.48
383^.60
3827.84
3833)47
3818.25
3808.38
3812)01
J 9 A « • W J.
3804.66
3807.76
3802.48
122?)?Q
3789.86
3773)44
?2?S.52
SEP
"3"919".52
39J9.69
3913.84
3897)71
3896,6b
38^4.9}
3883.33
3H80.79
3874.69
3851.86
385U.80
3841.25
3*37.86
3838,60
3827.84
3833)47
3818,45
3809.61
381l)7J
3804,96
3807.16
3802.48
3798.10
3796)78
3802.91
3797.85
3788,28
3787)35
3Z»?.4S
3782.13
3781.24
?2?|.2«
£CT___
3919,02
3919.09
3gy«94
3U9b)45
3ta94.9l
«^:H
3873.89
3B51J76
3850,30
3U41.15
3826)l4
3832177
3817.95
3808,8H
3H10.81
3804,6h
78
40
3802.71
3797.35
3786,78
3H01.
3797,
3786.35
3788.86
3780.33
3780.44
3771J64
3760,10
3762)58
3747,32
3747,05
3738.47
3736)79
3727)77
MOV
3771,24
3760.10
3762.58
3747.12
374b.b5
373B.77
3736.69
3727.77
3825.26 3825.01
3884.84 3884,61
3788.93 3788.65
wee
3918,62
3919,09
39)3.04
3H9b)ei
3695.65
3894,51
3HH3.33
3610.49
3b74,09
3*50.9b
3850.10
3841.05
J83V,2»
3836.90
3825,24
3832,37
3617)65
3809,08
3810.31
3804.56
3U04.46
3BOU,4b
3797,00
379(J)o«»
3802.61
3797)06
37H6.48
3786.35
37H8.46
17HO.Q3
3918,79
84
l^2:a?
3S74.09
31J7.00
3*24.74
3*32,07
3'tlO.ll
3«U4,46
IHU2.51
3/96.15
J/86.18
3/85.65
3/71.a*
3/60.10
3/47ll2
3V4t>;i5
3738,97
37i?j77
3«24.87
3884.45
(Continued)
-------
JtABLE-M, (CONTINUED)
o
o
HE:
tt-Bo.
II
i
25
NESILLA VALLEY HATER LEVELS FOR 1962, ALL UMTS ARE IN fEET ABOVE MEAN SEA LEVEL,
INFORMATION SOURcEl HUDSON(1971)
VA
ME
LLEY
AN,,.
MODE 1
MEAN,,,
MODE 3
MEAN..,
JAN
173.79
2«t
'5.68
FEB
J604;2
3803,5
3800,98
3796J90
3795 68
802131
796J75
7B5J78
213*45
708,06
779J7?
779134
770J64
2?'.??
J^76:!?
MAR
648:20
III i
8JJH
~7?5
l?3
00
APR
3851 26
3850,60
384lj35
3835 9B
3837J60
'826,34
,806,26
3801,68
3799,00
3796,28
3803 01
379«J05
3787:68
3786:65
37fl§ 46
JTBoJo
378oj44
Ull'l*
3825,57
3864,95
3789.35
MAY
3R95.95
3894.91
3883.9
3881. l
3875,
Mlitl
3806^6
3801,68
>I??.?Q
378906
780.73
JIJN
3919,52
3919J79
3914, 04
3897:71
,875,89
?B53 16
3850,60
83 I*"
3§ll!«
3799,50
3798jOfl
3779?94
774J44
_JUL
3920,72
3920,39
3914^4
3898,01
3897:95
3996:21
3884.43
3881,69
3875,79
3853^6
3851 40
3842 05
3*38, 4B
3R39.90
3H29 44
3834.37
3819,05
380R.56
3802,68
3799,80
3798 48
3803.61
3798.65
3789, 48
378?j65
3789.96
3782,03
AUG
3914.44
3898.01
3897.25
3896,21
3884.S3
387§:i9
3852^0
3842.05
3838.4R
3838.80
5829124
3834.37
3819:35
3811 OS
JB12.41
3606,0^
3808136
380j:6«
379§j70
3798:28
3803.81
3298.65
7.9H
itni!!
wiiti
3760i90
12*4.2»
.Ml,07
)738 59
1729,47
SfcP
3921,42
3920,29
•J W V * B T v
3798,50
3796,48
3803,71
3798.15
3/89,86
3787jl5
3/R9.16
3781.43
3781,64
377J 34
3760,90
3763.68
3748.42
3746,95
374U.47
3737,b9
3729,37
OCT
3913,74
3a97,21
3H97J25
3896,41
3884.03
3<*
3747.72
3747.45
374L.27
3736J79
37?8,17
otc
3-»19,42
3^19,59
3^13,24
3^95,81
3083,63
3-do:i?9
3"41,35
37, 1»
3^37
, 14
H33.U7
'
3"K).5
.51
.16
3/V7.U5
r'80.88
3'85.6b
3 'b3, jb
3'bO,23
37H0.24
3770,94
3 '00, 3d
3^2.88
3747,52
3^47,25
3/40,07
3'/36,69
(Continued)
-------
' .. ... inD^E, HO. ^UHHWU&O)
MESILLA VALLEY WATER LEVEI S FOR 1963, ALL UNITS ARE
...... INFORMATION ROriRrEl HUDSON(1971)
UoBn
WELL NO,
26
20
19
15
18
17
16
12
11
13
14
10
1
25
7
6
ii
22
H i
it,
39
36 !
!! i
VALLEY
JAN FEB
919,22 3918,82
919,39 3919,19
913,14 3912)64
1896,71 3896.61
1897,15 3895,45
1895,41 3894)91
1883)73 3883)63
1880,79 3880,49
1874,19 3873,99
1852.66 3852)l6
1850,50 3850,20
1141,15 3841,o«i
1836,98 3836,58
1837,90 3837 50
1825,34 3824 64
1832,77 3832)57
1818.25 3817,95
1809)68 3809)38
'810 31 3810 11
1804)96 3804)66
1804,26 3804)26
1801 08 3800 9*
1797)00 3796,70
1794)68 3794.58
1802.71 3802,61
1797,05 3796)95
1786,38 3786 08
785,65 3785,15
787,96 3787, 7h
780,13 3780)03
780.14 3779)84
770.64 3770,54
760,10 3759)90
762,78 3762)58
747,42 3747.32
747.05 3746)85
739,97 3739)57
736,59 3736)59
727 37 3727 87
MEAN,.. 3825,42 3875.08
NODE 1
MEAN.., 3885,42 3884,90
NODE 2
MEAN... 3788,83 3788,60
H'AR
3918.02
3919)79
3913)24
3807)01
3806)25
3805)61
38fll)o9
3875)69
38*2)26
38?6)24
3832)87
38j7)8S
38)0)28
3810)41
3804)86
3801)58
3706)70
3765)28
3707)65
37s7)08
37p6)45
37fl8)96
37PO)23
37fll)04
3771)44
37*0)10
37ft3)o«
3748)32
37-17)85
37^)89
37j8)57
38J5.65
38P.5.32
3709.26
APR
3919,42
3919)69
3913)84
3897)31
3896.95
389b)ll
3884,03
3MR1.19
3853)46
3851.20
3841.35
3836.HH
3838,00
3833)37
3809)98
3811.31
3804.86
3797)bO
3786)4b
17Hl))63
3780.84
3772)24
176o)iO
3762)38
3748,02
3748,45
3740)87
3737)59
3729,17
3826, U2
3885,90
3789,50
MAY
3919.42
3919,69
3914)04
3B97.31
3996.55
3BR4)03
3881.09
387b,09
3flbO)80
3841.25
3836. 5«
3837,00
3026.04
3833,57
3818,45
3809, bfj
3811,71
3804)56
3806,36
3801.68
3798.30
3795,18
3802)71
3797,95
3787,18
3786,05
3788,46
3780,73
3780,54
3771,74
1760,00
3761,98
3748.02
3748,25
3740, h7
3737 59
3728,87
3825,92
3885.88
3789,35
IN FEET AbOVE MEAN SEA f.EVKL,
4UN
3919,32
3919,49
3913 74
3897.21
3896.35
3896,11
3883,33
3881.09
3875,09
3851.86
3850 ) 90
3840.95
3836. 6«
3838,20
3826,84
3933,57
381H.15
3B09.9R
3811. HI
3804,66
3H07.06
3801.58
3798)40
3802)81
3797. 6-S
3786, «8
3/85)75
378R.96
3780.31
37R0.74
3772,44
3760.00
3761,4*
3747,82
3748)25
3740,87
3738)ow
3728,77
3825,77
3885,34
3789,44
JUl
3919,72
3919 39
391 3,34
3897,01
3896,75
3996,21
3883.03
3877.99
3875,59
3850,26
3851.30
3840.95
3837,58
3838.60
3826.24
3813,77
381H.41)
3 B 09. 48
3S12.J1
3804,46
3807,96
3802.78
3797)70
3803)21
3707.55
37P8)98
3787,65
3789,16
3781.03
37Bl)24
3760)20
3762. 2B
3747,82
3749.25
3741.27
3738.99
3729.47
3825,78
3884,91
3789.72
AUG
3920,12
3919.49
3913.54
3897,51
3894)61
3883.63
3880,89
3875,09
38">0.56
3851,40
3841,15
3837,18
3838,50
3827)04
1833.97
3817,45
3809.08
3812,01
3804.56
3808, bb
3H02.8H
3798.20
3796. IB
3802.91
3798,65
3787, 5fl
3786, 3S
3789,16
3781)43
37R1.54
377l)64
3760.2"
3761. 9B
3747,32
374l)o7
3737)69
3728,67
3825, 6s
3884.86
3789,59
SEP
3919.72
3919,49
3913.34
3896.91
3df<3!73
3HS0.89
3874,49
3850.46
3851,20
3841,65
38-37,38
3838.70
3809)4h
381 1.61
380bl3b
3802.28
3/97,80
09b.2b
3/97)95
37H7.68
3780)93
37S1.04
3V6u)90
v;47)?2
3V4S.05
3740.07
3/37,29
3728.47
3e2b,53
3UM4.90
3789,31
fICT
3919,12
3919,39
3913)24
3d96.51
3896,05
3H9S.21
38H3.h3
3b73)99
3850)80
3841, Ob
3836,78
3837,20
3824,84
? (i 3 3 ) 17
3*09)l8
3blO. /I
3e04,bt
3797)l<)
3786)68
.1785. 9b
3780, 1»>
3780,43
37»0,34
377(l)H4
37^0.41)
3747;42
3747,25
3V 39, 67
3736,69
3727,67
3b2S,13
3UH4.70
3/R8.81
NfjV
391P.72
3919,19
3912)94
3B96.41
18^3)73
3 b H y , t, t)
38/3.4"
3 b 4 1 ) 7 b
3 H .' h . <} H
3*37,00
3*' «)77
3H17.75
U 0 . 0 h
3810.41
3 B 0 1 ) C 8
J7Q«5 ,90
3794,bH
3802. bl
3V97,Ob
3 7 fl ti , l 8
37no)l3
377S.K4
3770.44
J 7 f> 0 , 1 0
3717)ob
1739. 6/
3736, «,9
3727,57
3825.00
3bH4,7i
3788. bb
(Continued)
uec
3^13.62
3^12)74
309S)5S
3^94,71
3 < / 3 ) 1 *»
3 "ha) 40
3;;40,bb
) 0 J 7' ) 1 1)
1 i i 1 \ b 7
3 1> 1 7 . h '•>
3 '. U 8 . 9 b
j " i M , n
.1 «')•», 4 ft
3 t 0 4 . 1 h
3 - 0 0 , '* t.
3 V 9 4 ) 4 cJ
3 " (i 1 , S 1
3 /bS )««
3 'H?)7h
3/b(j,l3
3/70134
3 / *i 0 , 0 o
3 '47)32
3V47.05
V'39,77
3/36,49
3727,67
3-24, HH
3"«4,bO
3 V K H , 5 2
-------
TABLE A6. (CONTINUED)^
O
S5
WSLI
f **
\\
MESXLLA »»««;0ji*«5oii*;a8cS?"HasMic»7nl'lT8 ARE '""" ABOVC MEAN •" ™r
JAN
i 800,88
794)38
W;h
Mill
3787)66
"?§:?J
FEB
IlliB
79)83
79,44
37H7.56
37
37
3770,04
3759.80
3761 .SB
3747)22
3746 65
3739 67
3736,39
3727)57
l\l&
W«
''i*
IR)*
IIII'll
ilillll
J8J3 78
l5!3!?«
j <»i. ya j rq j iti
?12?-U HsilJi
APR
3893
893.21
882:13
: I
3810, 01
3803 06
3804.46
395 48
mi III
3778.63
3767)94
3759)90
ilaf^i
3879,39
3873.09
3846)76
3848,80
3839)25
3634,28
3831)87
3816)25
3806)88
3609,61
3802,76
3803,86
380U.38
3794)90
3793)48
3801,21
3297)05
3779.64
3765,84
3758.70
3759,68
JUN
3916,12
3916)59
39J0.04
3095,01
3891 95
3891,71
3A80)l3
3870,59
3873.39
3845,66
3848,00
3639 2R
3834,40
3834.90
382l)94
3831,77
38lS)7r
806)78
48()9,21
3802,46
3803)86
?!'?«!§
3787)06
3777.63
3780,44
3765 74
3758)40
3758)88
3745)72
3738)97
3735)70
3727)47
JUL
3843 Of
3847 4C
3838)3!
3833.08
3834,60
3820,44
3831 67
3815,05
3805)58
3809,21
3801.86
3804.16
J719.6P
3792,2"
3793)58
380o)ll
3796,75
3783)78
3784)95
3786.96
3776, fl3
37PO,b4
3765)64
3756)20
3757)68
WA'll
4 I»4•ny
3738)77
Mill
AUG
SKP
DCT
3915,02
39l5l49
3909,04
3894.51
38H9.9S
1889,91
1878)53
1874.99
3872.89
3842)36
3847,20
3837.45
3801.06
3803.96
3783,48
3784)55
3786.86
llllill
3766,44
3755,30
3756,78
3739.
3914,52
39!S)l9
3909,24
3894)7}
3HB9)61
3879.33
3b7739
3873.4
3U43.06
3046,40
3836,95
3033,40
3H30.10
3820,64
3831,17
3813.45
1804,24
3810.01
3800,76
3003.96
3799.68
3792,20
3793,38
3799!21
379b,65
3793,18
-i-j)5b
:
3766,24
3753,80
3756,58
3743,72
3743125
3738,67
1734.69
... 3624.75 3824,50 3823.57 3823,48 3822,96 3822.54 3821,77 3821,09 3821,12
... 3684.30 3884.03 38B2.58 3882.62 3882,04 3881,43 3880,60 3879,56 3879,80
r\
U 3Jfllt *>.,. J7*..ljjj- 3787,41 3786.94 3786.63 3785.89 3785.4| 3785,33
3914.22
3915)t>9
3909,54
3894,21
3089,85
3089.41
3879)93
3878,69
3872)69
3842,96
3845,90
3836,85
3813)38
3835,80
3M20.94
3830,b7
3013.03
3H04.6H
3809)71
3801,06
3803, 3b
3799)78
3793)40
3792,98
3799)41
3796)35
3782,9H
3783)75
3786,66
3776,53
3778)94
3766)04
3754)60
3756,88
3744;u
3743.35
3737,67
3735,09
3726)77
3821,11
3879,73
3785.36
ntjV
39)3.92
3915. 7'»
3909,54
3890.05
38H9.21
38UC.6J
3H79.29
387^.69
384b)jo
3836, 0S
3833.2H
3835.80
3871,34
383U.3/
3813.05
380S.08
3809.bl
38oi,J6
3002,9o
37f>9,78
3794,10
3793)j8
3799)81
379B.25
3776,93
3778,64
3766,14
3726)87
3821,35
3680,07
3785,53
I.'EC
3V13.-I2
3-«45,00
3^36,85
3^33,18
3f3S.ao
J'U1.54
3-U0.27
u,6b
3»uJ,9b
3/99,88
3/94, 40
3/93,28
3eOO,01
3/9b»15
3/82,98
J/B3J45
3/t«b,b6
3777,13
3778J44
7
37b634
3755,40
3Vb7;3B
3744 82
3743,75
3^37137
3735,59
37^6)77
3BB0.15
3/85,66
(Continued)
-------
TABLE A6.._ (CONTINUED)
MESILLA VALLEY WATER LEVELS FOR 1965. ALL UNITS ARE IN FEET ABOVE MEAN SEA LEVEL.
„.,„„ INFORMATION SOURCEl HUDSONC1971)
U8BR
NELL NO.
JAN
re*
MAR
APR
HAY
VALLEY
HCA(!.,,
NODE 1
MEAN,,,
NODE 2
.MEAN,.,
; 5
itHiit
3821,49
3880,IS
3785,7_2.
it6il)i
iipils?
180
\t;ti
ili-.n
i2ll64
~29l97
'^16!
,38
'I5J
7V • V*
§2l98
.l!«
3737ll7
37J5179
J727 17
3821.46
3880,03
3785.74
.
\m-.u
384
!
>hs
3793171
3796J45
l?§!l^I
m:%
JUN
?§?i.?l
il^iil
Iffi-M
81!
JUL
3753,70
3756,00
3743.82
3744.OS
3739.37
3735169
*727l37
3906,54
3894,91
3888.45
3886,51
3878,33
3875169
3875.29
3840.26
3942,90
3933145
3831.08
3836,00
3820.64
383ll57
3811,95
3803,08
3810,71
3800.86
3799.96
3799,61
3797,05
3783.4f
3784.3!
3766,84
3753.80
3756,48
3744.62
3744I7-J
3739,87
3737,39
3728,17
3670.59
3878.25
3785.44
AUG
,
174
3895.81
3889,65
38H8.91
3879.43
3879129
.95
178
38.,
381!
3801
3811,v,
380ll4«
3802,16
i».r*
m\n
3797145
37B3.78
37B4.55
3787,96
3778154
3768.14
3754.60
3756,7H
3745152
3746,OS
3740,27
3737.39
372M.17
3321.82
3879,68
3786.54
3996,01
3890 15
J8R9.01
OCT
mi.??
3895,51
3«90 25
3889131
3844,40
3836 35
3832.88
3839160
3824.84
3832.67
3813.05
3806.28
3bl4.01
3802.06
3804.16
3801.S8
3797.80
3t»0llll
37"7.4b
3783,78
3784,75
3787,96
37RJ.03
3778,54
3760,34
375b*20
3757,08
3746,12
3746.25
3739.67
3737,09
372«.l/
3U22.45
3880,00
3787.35
3844,30
3836 Sb
3833,08
3B38.40
3923,04
3931.97
3914,65
3806.88
3811.71
3802*56
3902.26
3800,78
3796,90
3794138
3b01,41
3796,95
3784,28
3784145
3787,56
37B0.33
3778,44
3767,84
3755.20
37b7ll8
374t>!42
3745.95
3738,87
3736,29
3727J17
31)22.23
3879.99
3787.00
VI 3, 9?
.
3833.18
3837170
3023.04
3811.57
38lS,3b
3807148
3610.91
3802.96
3802,36
3800,6«
3796,60
3794.3«
3801.bi
3796,75
3784,2H
37«4:3b
3787,4b
3780,23
3778.34
3767,64
3755,70
3757,36
3746^52
3745,75
373^,67
3736,09
3727,37
3822,35
3880,27
3787.03
NOV
~39n~8?'
3916,39
3910 24
3895.31 3oV5;31
3890.25 3«90,4b
3889.11 3B69.01
3881,83 3B82.03
3880,09 3»8olo5
3873,79 3H73.79
3844,26 l«4i.56
3844.20
3836.75
3>«44,10
3036.85
3HJ3.2B
3a23.04
3831.37
3U1S 55
3407,68
3410,61
3B03.16
3H02.36
3796,70
3/94 3»
3764,25
3'87,40
3'd'),13
3'nt.T^
3/07,74
3756,00
3'/57,S8
3/46. ft^
3/45, Hb
3738,77
3/36,19
3727|47
3^/2.42
37B7.08
(Continued)
-------
1ABIK AH. ILONTINUED)
o
-e-
MESILLA VALLEY WATER LEVELS FOR 1966, ALL UNITS ARE IN FEET ABOVE MEAN SEA LEVEL,
INFORMATION SOURCEl HUD50NU971)
U5BR
HELL NQ,
JAN
FEB
VAp
B
,1
*««!.
ME
NODE 1
MEAN,,.
NODE 2
MFA8,.,
782;35
)78S)66
3822,35
3880,33
3786,99
J792)?8
3801.71
3796)85
3787)58
3782)55
3785 86
3767^54
.756,-
J757
5756,50
•"7)96
\M
3873)49
lltl'll
Hslisa
37f,8)l4
^»
H5J:!j
!!)!;«
APR
3910)84
3897 01
}W;l\
lltftl
lll&l
3844,30
iv*>h
MAY
iw..t
WMl
Vl\;K
3778 84
3770.04
3756,30
SH»-M
9 39
3728 47
•f n TV • r a
38P9*,fl
3882.33
3880,^9
3675,39
3845)16
3844)lO
3837)45
834.38
H3R.80
*&•£
J O U f m r *7
3801.38
Wi:ti
l?9°?:§i
3786.48
3783.85
37R6.86
3781.83
3774)14
3770)74
3759)70
3758.78
3747,42
3747)55
3737)57
3738)79
3728,17
3823.71
3881,04
3786.75
JUN
T?T?:fl
»u
3691
389C. .
3882.53
38P0.29
3676,09
3846,26
3844 30
3637)§5
3835,08
Ii9:»
iHI:J2
3809)18
3812,01
3804,86
3808,5ft
3801,78
37*55 50
3793,98
3601,51
3797)75
3790,08
3784)35
3787)46
3782)53
ffllltt
m8:i8
iW?:H
3737)77
3739)79
3730)07
3824,37
3881,68
3789,42
JUl
3916.02
3918.09
3913.14
3896,61
3892.35
3890.21
3882,73
J8H0.69
3876,19
3847)46
3845.30
3838,35
3836)28
3839)80
3827,24
3833)l7
3817,95
3809,88
mill
3808.16
3802.68
3800,60
3795)48
3804,21
3798,25
3789,98
3786)l5
37R8.2*
3782,93
37H0.44
3772.54
3760,50
3759.88
3747)72
S74B)25
3737)97
3739)69
3728)47
3824.86
3682.26
3789,85
AUfi
SCP
OCT
MJV
Ui£C
3916,72
3919)59
3914.84
3896.91
3892.95
38^0,91
3884.23
3881.19
3876.19
3848.76
'846.20
3839.05
3836. VR
3840.40
3828.1*
3833.47
3818.45
3810. 2P
3812.71
3806146
3809.06
3802.98
3800.80
3795.08
3804,71
3798,85
3789,98
3786,25
37R8.86
3783,43
37S1.04
3774)34
3761.20
3761, 3B
3746,52
3749)05
3738)37
3740)39
3730,57
3825.65
3883.18
3790.57
3917,32
3919,79
3914*24
3896,81
3893,25
389x131
38R3.73
3881,39
3875.49
3849,36
3846.70
3839,25
3836,98
384U.60
38?b.74
3833,47
3H18.85
3811,08
38U.61
3806,66
3*08.16
3802,58
tt«:?«
3804,81
3798,65
3788,78
3786.85
3789, 26
3782,93
3780.94
3773J54
37*1.10
37*1,78
3/48,62
3748,65
3739,97
3739,79
372V.97
3875.59
3803.41
3790,33
3917.42
3919,89
3914,04
3896,41
3893.05
J8R3*53
3ofll)09
3874.69
3849.86
3847.10
3840)25
3836.68
3839.40
1825,74
3832,87
3818,85
3810,58
!go5)l6
3805.46
3801.78
3800,20
3793)l8
3803 21
3797,95
3789)28
3786,05
378B.8f-
3783,03
3780.44
3772.14
37*0,60
3760.88
3748,02
3747,35
3737,27
3738.69
3728.47
3825. 1R
3bfl3,50
3789,61
3917.12
3919,59
3913)b4
389*)il
3892,85
3b9l)31
38P3.33
388l)u9
3874.79
3849.66
3847.10
3839,85
3836, 3»
3838,70
3825,24
3832,57
38)6.35
3810,08
3810,71
3805.66
3804,56
3801.48
3800.40
3792.78
38o3.ll
3797.75
3788.98
37B5.45
3788,46
3781 23
3780)24
377l)44
37*0,50
37*l)28
3747)82
3737) ?7
3739,69
3726,27
3824.84
3b«3.31
37S9.1b
3*17.02
3VJ9.39
m3)34
3B9(j)21
3o92.75
3KV1.21
3r,9S
3 "'30 97
3''Jb,69
37*H,17
3U24.55
3«b3.12
j;»bt9^
(Continued)
-------
TABLE A8. (CONTINUED)
WELL
USSR
NO.
MC8ILLA VALLEY MATER LEVELS FOR 1967. ALL UNITS ARE
INFORMATION SOURCE! HUDSON(197n
IN FEET ABOVE MEAN SEA LEVEL,
JAN
FEB
MAR
APR
MAX
JUN
JUL
AUG
SEP
OCT
MOV
UEC
o
Ul
VALLEK
MEAN,,,
NODE 1
HEA3...
881
79J
802I61
797,45
J788.68
3784,95
3788.06
3780.93
3779,94
3770*94
"59.«
3738,49
157
3727
HK:i
3874*t
3948,86
1111:11
3760,00
3760 38
!Z47t52
3746 65
3736,97
3739,69
1727*57
39il*74
3896^21
3802.65
3891*51
38R2*i3
3879*99
3876109
3848*36
3847^80
J7*o;io
37*1:4*
3748*22
3747155
3879^9
3875,59
3847,76
3846:90
3839,65
^'55
3806,
3801.68
3799.90
3792:88
3803 l!
3798.05
3789:58
3786:25
3789,16
j|;*:]j
jj2|!jj
1747J95
3737.57
3738199
3728,57
3911.84
389SI91
3892.65
3890,91
3881.83
3879^9
3875169
3846.96
3846^0
3839.75
380i;2(
3799;§0
3791,98
3802.51
3797.95
37B8.2B
3785175
378S.46
3780.83
3780,24
3770,94
3760,00
3760:6fl
3747,42
3747,-85
3736.97
3738:39
372B.-J7
3915,52
3916,89
3912 04
3896,21
3891,95
389i:il
3881 93
3879:99
3B75 69
3846.46
3845.80
3838^5
"•836,38
806,86
-801,08
379? 50
3791,98
3802,81
3797,65
378B.7B
3784J95
3788.16
378i:-)1
3779,B4
377oj74
3759.20
3759,9P
.1747;62
3746.96
3736.87
3738.89
37JH.27
3915,62
39J6|39
3911 H4
3895 81
3891 65
3884 61
3882,03
3876,89
3875J49
3846,06
3845.80
3839,05
3835,28
3838.30
3826.04
3833:27
3807,66
3801 OS
3799J30
379i:i8
3603,31
3798.55
3789,Jfl
3785,85
J7BH.76
37S1.13
3779.94
3770.84
37S9.10
3759.6«
3747,02
3747,Hb
37.17.37
3739,29
3873,89
3881,30
3788,89
3915,52
3915,69
3912,14
3895,71
3891,75
3890.41
3882,33
3879,09
3875 59
3846.96
3846.20
3839,25
3836 78
3838,30
3826,84
3832,97
3819,45
3809.QB
llttlll
3807,86
3B01.48
3799,70
3792,6B
3803.21
3798 35
37B9.3B
3786,15
3789,0*4
3780.23
3779.14
3771 ,S4
37b9.40
3759.OH
3748.42
3747,85
3737.57
3739.19
3728,B7
3834,27
38B1.78
3789,21
3916,02
3917 6*
3912,64
389b!91
3892.IS
3890.61
3882.83
3880,69
3876.39
3847.96
3846,60
3839,35
3836,98
3838.60
3828,34
3833.37
38)8.85
3809.28
^S1?'4!
3807,86
38Q1.B8
3799,70
3791.88
3803,51
3798,45
37R9.58
3788,36
3780,04
3771.64
1759.60
3/S9.68
1 / 4 7 , 7 02, 41
3 /9H..J5
3/80,13
J//9.34
3770,04
3'b9.40
3/00.06
3''J7,1J|
3/3HI29
3727.87
3823,86
3»>82,16
3V 88,31
(Continued)
-------
_TABLE A6. (CONTINUED)
U86R
HE8ILLA VALLEY WATER LEVEtS FOR 1968. ALL UNITS ARG IN FEET ABOVE MEAN SEA LEVEL,
INFORMATION SOURCCl HUDSONC197U
JAN
PER
MAP
APR
MAY
JUN
JUL
AUG
Hii:»
'., 3823,88 3823.57 38?4.27 3824.15 3823.95 3824,03 3824.52 3825.08
NODE I
MEAN,.. 3883,31 3881,74 3802.31 3882,26 3881,60 3881,46 3881.79 3882,60
SEP
A.... .1.7.11,
3788,09 3788.87 3788,71 3788,79 3789,01 3789,58 3790,00
3903.91
!? M
min
3780,73
3780,54
3771 74
3761.40
3761)48
3747.52
3748)85
3737)47
3738,99
3728,67
3825,30
3883,28
3789.94
,.».,06
3HOl)5t)
3800,00
379|.)4H
3803,21
m
3788,46
3780)03
3780,14
3770,64
3760.50
376l)3S
3697
49
l7
3738,49
3728l
3824.50
3882.83
3788,92
NOV
3817.95
3809, 88
3B10.91
3605,06
3804.56
3801.38
3770.74
3760,60
3761.38
3747)l2
3^47,45
3738)49
37?b,17
3824,45
3882.80
3788,87
UEC
3^16,92
3 '.'19, 19
3446,10
3839)35
3835.68
3»J8,10
3B24J9
94
.07
3^16,75
J»U9,5«
3810,51
38U4.66
3760,40
3 61,48
J/46.B2
3.'4h,95
37J6.97
3748,59
3788,54
(Continued)
-------
TABLE A8. (CONTINUED)
USSR
HCSILLA VALLEY WATER LEVETS FOR 1969. ALL UNITS ARE IN FEET ABOVE PEAN SEA LEVEL,
INFORMATION SOllRCEl HUDSONU971)
VALLEY
MESS.;,
NODE 1
MEAN...
NODE 2
JiEAM...
JAN
845,90
.1 0 V i7 I W V
1801,18
179ft 80
'1792,68
3802.51
p!
3787,66
FEB
3882.23
3788. 05
MAR
APR
MAY
3010,01
3893.05
3891.81
3882,93
3881:19
3875.19
3849,16
3846.20
3839,45
3836.38
3838.40
3826.74
3833.17
3817.85
3809)68
3812,01
3805.16
3807JOS
3801.58
3798,°"
379"
3824.83
3883.20
3789.23
JUN
JUL
"I'M!
3919J29
3913.84
3896,31
3893.75
3691.41
3881.93
3961.09
3875.89
3849,36
3846.60
3839.45
3836.56
3638.50
3827154
3833,47
3817.45
3809,68
3812,21
3604,36
3807.16
3801,80
3798.90
iz?<:
3883,33
3789.45
3917,82
3920.49
3914.74
3696.91
3895,05
3H93.01
3883,93
3876.19
3850.26
3846,90
3840,15
3837.18
3839 40
3826,94
5834 27
3819.55
3812,38
3612,61
3806,16
3809.4ft
3802,9H
3799,80
3794.88
3804.51
3799,15
3790.38
3786:55
^790.3/
780,6
1782,3*
I775I24
AUG
3919.42
3921.09
3915 84
3897.41
5895,85
3894,21
3884.53
3363 89
3876.49
3850.96
3849,10
3840.75
3837.88
3?J2.8?
w?:«
383
3820,35
3812,58
3812,71
3805,66
3609,66
SeOlIlB
3794,58
3804.61
3799,35
3790.68
3786,95
3789,96
3748.62
3749105
373«*,37
3740,19
3729*,47
3826.63
3885.20
3790.91
SEP
nCT
NOV
3919.22
3921 59
3915.24
3897.11
3696.65
3894,41
3884,33
366j|09
3076,29
3851.36
3849.70
3640,95
3837.88
3839,20
3629,54
3834,57
3620,75
3613,38
3012 11
3805,36
3808,06
3802,78
180U.OO
3794138
3804.11
379U.95
3790,68
37*"6,75
3789.76
3780,83
3781 34
3773,44
376l",70
3763,46
3748,52
3750,35
3916,92
3920.49
39)4.54
3896,81
3896.05
3094,51
3684,33
3862149
3875.29
3851.06
3850,10
3B41 85
3637.58
38J7.90
3626.94
3633.87
3818,55
3810,78
3611,21
3605,86
3805.36
3001.98
3799,50
3793.48
3803.51
3789j5»
3766,95
3 88.66
3 79.53
3 80.64
3 71,64
3 60.90
3 63,08
3747,72
3748.65
3737.37
3739,09
3728J57
391 6,62
3919,69
3913 74
3896.41
3895.65
3894, 11
38H4,03
3681,99
3674,69
3651,06
3849, bO
3840. 85
3637,28
3837.90
3825,94
3835,27
3617,95
3610,28
3610,81
3805,36
3804.76
3601,58
3799,30
3793,08
3003.21
3797,75
3789,08
37R7.15
3788.06
3779 13
3776,84
3771,94
3761.10
3762,78
3747*,b2
3748,05
3737ib7
3739,29
3728,77
3826.56 31(25,74 3625,38
3885.37 3885,06 3864.73
3790,70 3789.56 3769,19
3474.69
J8b0.7fa
3U36.96
3»JH,10
3418,05
3410,48
JolO.51
3005,46
3004,86
3t'01,4B
3/93J1M
3403.01
3/97,65
3768,8H
J7B7.2S
3708.16
3779,23
J77ll94
J/61,10
3/62,68
3/47,52
??««.1$
)9,39
J'^8,77
3H25.24
3H64,36
3/89.16
(Continued)
-------
TABLE A8. (CONTINUED)
O
00
KESILLA VALLEY HATER LEVELS FOR*1970, Abb UNITS ARE
INFORMATION SOURCEI HUDSON(1971)
IN FEET ABOVE MEAN SEA LEVEL,
JAN
3818,65
3809,68
3810.41
3804176
'
FEB
!iii:fi
894,05
!!!:!l
si
848 60
840,35
836,18
|SiS;h
3852 47
3818,05
3809 28
3810,21
3§04 56
3804,06
3801,08
3799,00
3792,58
3803 61
:i79T •'
3781
*?iS6
MAp
ill
ill
833 67
818^35
808*58
377l|54
3747|72
3746 15
37j7!77
3740ll9
3730 67
APR
HIM!
-b
1840,1 .
J83b*,98
3838,10
3825294
3833.47
3818,65
1809,28
m:i\
3794,28
3805,01
379H.45
3789,68
3737,77
KB:!?
MAY
JUN
3918,02
3918,89
Hi!:*?
3895.75
3894,51
3804.53
3883.19
3876149
3850.56
1850.30
1840,95
**37,2»
839,50
827,94
834,77
819,25
811,68
3812.31
3805 96
3808.16
3802,18
3800,90
3797J5R
3805,61
3798,75
378S 6H
3787,15
3790,26
3780.63
mwi
mill
1748,12
I749|l5
1737,97
il i a oa
JUL
J^IV,.
"14l<
389722
38?7l(
3918.62
3919.39
':«
. .05
3894.61
3884,83
3819,32
3''19,19
&iiftf
J n 7 0 • J 1
3H97.45
3h95.51
3*««4.03
Jo83.69
3b5l!9b
3HbO,50
3039,95
3^37,08
3037,70
3«27,74
3*33,77
3819.05
3nlO,48
3«10.71
3«06,06
3-115.2b
3»U1,58
I.!^?«40
3t.U3.ll
3797175
3VbH,il8
3/b4,9b
3/88.Sb
3/79. 13
3'/Mol74
3/70,74
37bO,50
3'62.b»
3/47 52
3745,85
3737,37
3/39.H9
3B26.07 3b25,97 3»25,62
3885.62 3b85.b3 3*05,30
3789.75 3789.64 3/89,22
(continued)
-------
TABLE A8. (CONTINUEDj
O
•VO
U8BR
HELL NO
MESILLA VALUEV WATER LEVELS FOR 1971. ALL UNITS ARE
INFORMATION SOnRCEl HUDSON(1971)
IN FEET ABOVE MEAN SEA LEVEL,
JAN
3874,59
3851,06
3850)00
\l\llK
"{2:«
Jl3!
J795J78
3803)71
3797 55
3788)78
3784:85
37§7)86
3778)83
+ m n /i M »
TEB
iiil:ii
3873.89
3850)56
3849)50
3840.55
1»«.|i
38o4;ib
380l)3P
3799,20
3795,88
3803,21
n|j:45
3784)55
3787,66
jzz8:??
HAP
APR
MAY
JUM
JUL
AIJG
3917.82
3ais:7i
3805)35
58R3:39
3875179
38?o)l6
3849:30
3840)05
38no:68
3800^0
3705148
3803:81
37q6 45
37fl9:5B
37R4I65
1225 "
3884.19
3874,09
3850^6
3B49)70
3839,25
3834.08
3834,80
3824.44
3833)77
3818.25
ssiojia
3808,51
3804196
3803J16
3800.18
3799,70
379$:48
3803:81
3789:28
3784^5
37R»:46
Till
Mil
3729J07
\nt:ti
\n\ii\
J882.13
)884,19
5874 09
J849I76
9849,20
1839:95
1836:38
'MJill
8
3818,15
3809:9
3811,81
1806,96
jeoijes
3799J70
3796:28
3803,71
3784)55
3788.36
37.79.53
3917.62
3919,29
3912,84
3896)41
3§?4.?5
3881.83
3884.29
3873,89
3849)56
3849.10
3840.25
3836,58
3834,80
3825.54
3833,57
3817.95
ill!:!!
3805.76
3801.48
3799,60
3796,3«
3804.51
3798.15
3789118
37 4-145
3788.06
3779J33
3780.44
S771iR4
3760.JO
Jiiy.3j
3780.64
3772114
J760.50
3761.98
3747^92
3748^5
3737.67
1741.69
1729I27
j '
l\
3917,92
3919)49
3912,94
3896,51
3894.35
3H94.31
3881.93
3884)39
3873,8-9
3849,26
3848.70
3840.55
3837,4B
3835,20
3825 §4
3833,87
3818,05
3810.48 j»]U.«»<
3811.51 3B12.31
3804,56 3804J76
3*05,96 3W08.1*
3801,68 3801.78
3799,90 --"" •"•
37«»4.6«
3804,91
3798135
37BB.98
3785.05
3788.26
3779153
•a T fi/\ f. A
3918,62
3917)29
3913.14
3896.3)
3894,75
3893,61
3801.53
38H4, J
3801.78
3799,50
3794,58
3803,61
3798,95
3789,OB
37H5.15
3787)76
37B0.13
3780.44
3770:24
3760,90
SEP
3917,22
3917,69
3912,94
3896.41
3894,15
3893,61
3882,63
3884,19
}0,20
3/bl,4B
3/47J62
3/47J45
3"'3t.,97
3M0.09
3825.15 3824,73 3824,99 3824,89 3825,12 3825,02 3825,23 3825,04
3883.81 3884.00 3883.73
NODE 1
MEAN,,, 3884,65 3884,07 38R4.28 3883.91 3883.95
NODE 2
.HEAJIjMJl 3788.86 3788.55 37B8.83 3788. B9 3789,24 3789.17 il8_9_»iL. *J**.' I4.
3824,68 3824.52 3824,4!)
3883.98 3b83.78 3883.40
3788.84 3^88^38 3788.50
(Continued)
24, 6H
3U83.63
3788.73
-------
TABLE A6. (CONTINUED)
WELL NO,
MESILLA VALLEY HATER LEVELS FOR 1972. ALL UNITS ARE IN FEET ABOVE MEAN SEA UIVEL,
INFORMATION SOURCE! USSR) EL PASO, TEXAS
JAN
FEB
HAP
APR
MAY
JUN
8l2!35
; 80«!48
: 808^71
JUL
39TsT7T
3914139
3908,04
0,00
3H9KJ5
3890,81
+ «* -• tf §. j w
3844,30
3837.75
3832,08
3836,40
3832JS7
3814,45
3867J78
3810,21
3803.06
3803,4ft
3798.78
3794JOH
3802,01
3796.05
37P3.0H
3783^45
3784,46
m*.??
AUG
391674?"
3914,19
3907.84
?8?4:81
3889.71
3890193
3843.80
3837 45
3832.18
3836.20
*H?:u
KIMS
3810,21
3803,16
3S2««9*
3795.08
3801.91
3797.35
3782,98
3783.35
3784,76
3776,33
-ZZe.jJ
3736;39
S727I97
, 3823.32 3823,11 3822.93 3*22.73 3822.66 3822.65 3767.32 3822.54
NODE 1
MEAN,,, 3882,03 3882,00 3881.84 3881.67 3881.70 3881.56 3734,74 3880,54
NODE 2
MEAN.., 3787,81 3787,19 3787.01 3796.78 3786.98 3786,72 3787,14 3787.17
5EP
3915,62
"15.89
3907.74
391
3894.71
-'-ilss
3820.54
3831.67
3814.95
3807,88
3809.61
3803.16
3802,36
3794^70
3794.88
3801.61
3796ll5
3702.78
3781155
3784.96
3777,03
!??}:«
37h7.10
3736.79
37J9.17
3B22.92
3881.11
3767.43
t'CT
3916.69
3907.94
3894.81
3891. 95
JB9S.41
3d«6,83
3878,09
3872.69
'"-'
JOi»,pa
3808,08
3809141
3801,96
3H03.76
3799.58
3795,80
3795.28
3801,41
379617-i
3783,38
3784J05
3766.90
3756,98
3745^02
3743,75
3735147
3737,19
3729.17
3823,54
3882.34
3787,68
3916,12
3916.59
3908,44
3894161
§891.65
3895.31
3886 ?5
3877,89
3B72 59
ISSjf'S?
3ofl5•00
3834288
!!t:ilf
3814J45
3«2?.i»«
3803,b6
mi:tt
3795118
3801,21
37KJI28
3783,95
37^4,96
3777|&3
3778,64
3772|?4
3738.37
3737J09
3728 87
3823,49
3882.34
3787,60
DEC
3W16.79
3^08.84
f^Z)
3d94,
3B78.09
3*72,79
3^38.05
3035,08
3yj5;i7
JX14.45
3HU2.26
3MU3.86
3799^58
3/95,30
J/95.3H
3MU1.41
3796,75
3/U32'}5
37J7J73
i/72l84
3/67,40
37S7.88
3V44.92
3/43,95
3/38.47
3737,59
3o23,71
3ab2,61
3/87,79
(Continued)
-------
TA^LE AS. (CONTINUED)
KESILLA VALLEY HATER LEVEj.S FOR 1973, ALL UNITS ARK IN FEET ABOVE MEAN SEA LEVEL.
INFORMATION SOllRCCl USBRj EL PASO, TEXAS
USBR
WELL NO, JAN FEB VAP APR HAY
i
i
6
1
6
•
2H
I
36
35
VALLEY
MEAN.,,
|l[i:tt
3909)04
3895)41
Il3? 55
5*
?:
i;]
815 85
8(8,88
809 31
3802,96
3804,86
oo.ie
,70
796,
3794198
3802.31
3797,95
3784,08
:i784,15
3839J65
Ittl'.ti
urn*
380058
3797)50
3796)98
3802,41
JUN
JUL
AUG
SfcP
OCT
3915,52
3917,19
3908)84
•894,61
890,25
890,31
3883)23
'ffliH
.845.80
3838)75
..10.41
802,96
3804.46
3800,18
-797)10
795)28
801,91
796,15
_7P4,2H
3703.75
779,44
773,54
767.60
745)35
737,97
3737)39
3728,97
3914.92
M8.19
"It!4
391
3909.,.
3995.01
3891,15
90.71
83)65
3890,
3»83i
3879)79
3872,39
3847,76
3846,20
3839)05
835)68
833.80
823)74
H:
817,25
810)§8
810,61
3803,76
3806.06
3801,18
3798)70
3796)38
3«0?.4l
3796,45
37H5)2fi
3784,15
3773,54
3767.80
3759.28
mill
HH:«
3728,47
3916.12
3918.59
3910.04
3895)31
3892.25
II\'A\
890.29
872.99
848)46
846.70
840.15
3836.28
3834)40
3833)77
3817.15
3810,18
381l)6l
3803.96
3806.26
3801)38
3799:jO
3796,78
3802,61
3796)65
3785.68
3784)35
3785.56
3780,13
3780.64
376§)oo
3759)48
3747,17
3747.IS
3738.57
J737;99
377.0)77
3824.00 3824.39 3824.49 3824.01 3824.38 3823,5ft 3824.17 3824.58
I,), 3882,89 3883.34 3883,55 3882.58 3883,05 3881,42 3881.63 3882.47
S,J, 3788,08 __17J8t44 S7.BJU.47 3788^30 3788.61 3788,28 3789,01 3789.27
3916,62
3919,29
3910.84
3894,61
3092.05
3091,21
3883)33
3080,19
3072.59
3847.56
3846.1
3042.5
3035.4
035.80
823)84
034,27
3818.05
3811.40
3011.01
3004,16
280!>'g$
3000.98
3790,70
3796,18
3796,45
3765.08
3783.95
3785.76
3780,03
378U<54
3769.
:«
3728.87
3024.60
3882.28
3789.42
3916.92
3918.6?
1910.04
3091.71
3883,43
3079,49
3872)l9
3848)06
1046,30
3042,05
3834,68
3036.70
3824,14
3033)67
3017.55
3«10.30
3011,01
3003,96
3805.66
3000,78
3798.40
3795.58
3801,31
3796)65
3784,78
3/83)55
3785.46
3779)63
37*0)54
3773,14
3768,90
37S9,4t>
3747102
3746,55
3737)77
3730)19
3720)l7
3024,50
3882.47
3789.14
NOV
3917,52
3910)59
3910)?4
3096,01
38V2,|5
3891.61
3883, 13
3079,99
3071,99
3847.86
304t>.10
3841.45
3034,40
3636 40
3824)34
3033)27
30)7,25
3810.00
38<»9,71
3003,56
3805.26
3000,38
3795,98
3800.81
379b)45
3704,40
37B3 45
3785.16
3779)33
3779)b4
3772;74
3750)90
3746,92
3745,05
3737,67
3737)09
3725,97
3024,09
3882.35
3708.55
OKC
3n7.32
3*18.19
3l>10.44
3«95)9l
I*1?.!.«
3"03,76
3oU4.96
3». 0 0 .1B
J7.!{?.25
3.'9b.25
3/H3)35
3/79,33
3779,44
3772,54
3/6H.10
3'/46,72
3.(4b,05
3 37,57
3/36,99
3/20,97
3H23.90
3«i02,ll
(Continued)
-------
TAffl.F. Aft.
t-0
MESILLA VALLEY WATER LEVELS FOR 1974, ALL UNITS APE IN FEET AbOVE MEAN SEA LKVt.1,,
INFORMATION SOURCEl USBRj EL PASO, TEXAS
WELl^NU, JAN FEB N-Ap APR MAY JUf JUI,
AUG
OCT
3918.12
3?}Z!§?
J W * *F
Hi*'
,81
881.
IJ5ol§
833. 98
809,OB
Io°3l§6
804,66
703,
3!?li74
3746112
3744.75
3737197
3736,99
3728,07
JHi...
Hit:!*
3816,75
3808,78
3809,41
3802196
3804,46
3800,08
3796.70
3794138
3800.21
3794195
3783,68
?7B2l75
37S? 36
3778103
3779104
377ll44
3767170
3759J08
37.45.8?
3916,72
S9)5 59
39(0 64
3895151
J92141
37P4J98
37P319S
.1785196
77&153
777l«4
3766164
.
3
3
374517J
3744J45
'
.
715199
7J7197
HJ):lc
HIM
381bl8!
"H:«
J I * W f I U
3794,28
3B02.81
3796lgS
3784168
3783,45
3705156
3777j«3
377Blb4
3767,14
3768,60
3758,88
3746,02
3746,05
3738177
3737159
3729,07
'mz:«
H4H1
3893175
3f?5l31
j/ia,ta
3803,01
379518S
3784.68
3783.95
3785.86
378C "
3767.44
3768,50
3759128
S747162
3746185
3739,37
3737l?9
3729107
VAT f P V
MEA.1,,, 3823,78 3823.54 3823,04 3823,70 3824.34
NODE 1
HEAiJ... 3882,14 3881.96 3*82.24 3882,67 3882,92
NODE 2
MEA*,,, 3788.19 3787.92 37B6.92 3787.73 3788.61
3918,12
3920149
3893. H5
3891 81
3882173
3843,76
3847.40
3835148
3838.30
3822.94
3833,67
3917,35
38|l,3»
3lH;p
I803.S6
380^
J00,2«
1799,10
)795 6H
J803.61
>784l8f<
784125
767J74
768130
759J7B
747192
748,05
3739,57
3738119
3729J77
3824.74
3883.16
3789.11
3918,12
3919.99
3913,64
3B9$l21
3893.65
"M:H
3848156
3836,18
3838,20
3823.44
3833.87
3818,05
J8JU58
3811,11
3804,46
3B03.86
3800,6R
3798,60
3796,18
3103.81
3796 75
3785.OS
3784,35
378ol73
3779164
3768134
3768,60
3760.28
3748,02
3748155
3739,57
3738,19
37291J7
3824.92
3883,29
3789.33
3918.42
3919.99
3912.74
389bl
.
141
3882163
oi
3893.25
3893141
387i;i9
384$l26
3847170
3838,25
3B3616B
3837.80
3823.64
3834157
3818.25
3811.68
3811,31
3804136
3801.18
3798.60
3796.88
?524.ii
37Hb.lfl
3784155
3779.94
3768,64
3768.70
WHS
HH:i
HB;8?
3825.03
3883.37
3789.45
3849,16
3t)47,80
3B3/,95
3835,88
3837,50
3823,04
,1835.07
3818,45
JBU.80
3810,81
3804l5ft
3801,IB
3798,30
3797.2«
3804.61
3796,65
3784 98
3784,95
3787,4b
3779194
376'i.H
37ft(j,hO
3761,88
•?74tJ,62
374/,6b
3739.77
373B.49
3730,57
3825.13
3B83.45
3789.56
39(8,12
3919.59
3913,04
3894, HI
3893.55
3B93.71
3882.43
3*80. 40
384gl|('
3847,7u
3B37.45
3B35.6B
3D38.90
3823.04
3U34.67
3818,05
3809,91
3804,26
3800,78
3797,40
3796,9H
3004,31
37S4.6B
3784.55
378b,9b
377°lh4
37b8,74
37f>7,90
3761,38
3747,82
3746,05
3739137
3737,59
3730,47
MlV
3917.72
J!Mol44
3893ll«5
3U92.41
36S3.83
3835,48
3B37.00
3B?4,b4
3834,27
1B17.2S
3B10.5H
3810,71
3804,86
3U01.1H
379B.7U
3795.96
3801.81
379b.bb
37«3l?5
:»7hS. Jb
3Z7»:54
3772;i«
37h«,yu
3759,58
37«6,72
370*.7b
3737,37
3738.J9
3727.97
3824,79 3«?4,&3
3883,20 3862.91
JI?!*.1.*! ...^bg.Qb
(Continued)
JV17.32
J'M8,69
titt'-
J"y3.1b
3fV3.M
3«B4,23
3B4b,bb 3u48,4b
Jo3b,60
3f23,34
3B35.07
3«l7l55
3H10.28
3<>U9,61
3«U2, 2b
} d u 1, 2 b
j-jun.ea
3.96,90
3'»5l38
3^03,51
i/Bslse
3/H2.25
3/V1.54
J'bH.SU
J/bl,48
3/47152
3'45,9b
3/36,97
3/J/.39
1728.77
3<«24,58
3««3,22
3«B8.bl
-------
_TABLE_AB. (CONTINUED)
MESILLA VALLEY HATER LEVELS FOR 1975, ALL UNITS ARE IN FEET ABOVE MEAN SEA LEVEL,
INFORMATION SOURCEl U8BR| EL PASO, TEXAS
WELLED,
JAN
FEB
VAR
APR
MAY
JUM
3917,72
1919,19
89
684
eao
872.59
672.39
848,56
848 20
3842,25
3835.28
3836,60
810221
802236
3904246
3801298
3797250
3795238
3903281
3795J95
37R4'68
5
376496
3779J-
Z2?2
3825,07
3883,73
3789,29
NODE 1
MEAN,,,
3683,64
3789.32
NODE 2
MEAN..,
810.98
3810.81
3803216
3905,06
3602208
-798,70
795256
-8002S1
3796275
3795,09
3782275
3795.5f>
lllllll
377l2*4
3768,70
3763,86
3748 12
3?-«t?*
739,07
738239
730217
3825,34
3884,29
3789,38
JBHl, t*
3872,79
3050.76
3850,00
3842,65
3837.68
3839.00
3819^45
3811,58
-.n
3799,90
3796,98
3BOl|21
3796,95
37X5,48
3782195
3785,76
JUL
918,82
918,99
3850,56
3849240
3842265
3837248
3838,60
3818,25
3611,18
3811.01
3803266
3904,86
3802,28
3799260
3796,79
3800.81
I22&.55
3779,04
3770^94
3768,90
3763.88
3748^42
3747^45
3738,57
3738,59
147
Aur,
3919.92
3920260
HUM
jo »u ko _
jKJ:*5
3885.1-
3891.99
** w w * % •> *
3871,89
3850206
3846,20
3842.75
J819.15
3812,09
I81l271
1804216
1804,06
1601.58
J799.50
3797219
3801281
3796.85
3794.68
3783235
3785.76
3780291
3779244
-M8.22
3747285
3738.17
3737.69
3730.17
3825.74
3884,61
3799.84
3919.92
3920.69
3913.44
3U9b,31
3865.:
3871.59
3850.26
3tt48.50
3842.35
3836.00
3U38.20
3826,34
3834177
3819,25
3811,21
3803.96
3803.66
3H01.18
3799.50
3797,48
3796,45
3784.28
3782.85
37Rb,36
3/HU.53
3779.64
3770,74
37«>8.60
3761,98
3748^12
3747,05
OCT
3918.92
3919.79
3912.14
3896,31
3894.25
3896.71
38R3.13
1890.39
3871,29
3B50206
3848,40
3842235
3335250
3U37.00
3626,24
3834,27
3818,75
381029B
3810,41
3605226
3803,56
3dUl,46
3797,50
3795268
3802.51
3796.15
37R4.5H
3782.85
3785.46
3779.43
3779.24
377lj04
lllllll
mill
mil
3729.17
3825.24
3884.32
3789,20
__K>y
3919,02
3919,19
3912224
3«9t.0l
3894.35
3b95.yl
3BH3.33
3aHi.i'j
3872,99
3849286
3B4R.2U
38422b5
3B35.48
3836,50
3824274
3833,47
3818.25
3B10.7B
3808.51
3B04.56
3602.56
3800.3b
3797.00
3V9S.3H
'B022ol
79h.35
-785.b8
37R3225
37B5.40
377H.53
377K.64
3770.74
3760.18
374*292
3746,15
3738237
3728;97
3824.88
38B4.0V
37S8.76
l»EC_
3^18,52
3*11284
3^94,71
39H2.63
3«BO,69
3*72,59
3448,40
3«J9,35
3-.(JS.bB
3^36.00
3HJ2.97
3t>l7,55
3^08,41
3003276
J/W9.98
3/96.00
3/94,6«
3/yfi24b
3VH2285
3'7aloi
3VV8.34
3VV0.34
3'b7,70
3?bO,88
3/45,92
3/45,65
3/39,07
3/36229
3/28.47
3024.48
3483.76
37b9,32
(Continued)
-------
TABLE A-8 (CONTINUED)
MESILLA VALLEIT WATER LEVELS FOR 1976, ALL UNITS APE IN FEET ABOVE MEAN SEA LEVEL,
INFORMATION SOURCE I USBgj EL PASO, TEXAS
WELL NO, JAN
1
<
! i11
!
2
1 i:
4
9
» i
7
X
24
27 3
l\ 1
.
i
3
j
1
9
i 1
1 !
36 3
ii i
IfS i
jji
||
17
<
i
o
j.
i
1
i
;
|
(
i
04 6
01 6
0
9
9
s;
a
I
fl i
' '!
8
/
1
j
1
j
'9 4
'71 !
'to !
f ( S '
Ii
VALLEY
MEAN,., 3824,69
HODC 1
MEAN,,, 3183,54
NOOK 2
MEAN,,, 3788,73
FEB
APR
MA*
JUN
JUL
3920,12
16
JO
3839,85
3837288
383n2lO
1825274
)835 97
3819,65
}«ill2?8
1811,71
)802 86
5805 06
3737;99
3730237
3825.84
3884.72
3789.94
AUG
SEP
OCT
3920.22
3926.09
tatt tA
iOtJtOZJ
!Ki:tt
1881,9"
1872.99
§48.46
44290
837,25
1833238
1837200
.54
•'2
• * '
:»
J f»3,42
3747275
3738,07
3737289
1730257
3824.60
3883.55
3788.65
3920,12
3920.59
3913.04
3897,01
3K94.35
3*96.01
3885.13
3882.19
3871.79
385U.56
3848.30
3842.65
1835.68
3830.00
3826.94
3835,07
3819.05
3812.18
3810271
3803276
3803,86
3800.88
?2!2.»c
?!!:!!
WoW
3768.2C
3761,6£
3747^"
3746,
Ii68
J(J:?52
m:ii
3729.97
3825.57
3884,70
3789,51
3919,82
3919,09
3913,04
3896.51
3*94,75
3b9b.7l
JUR5.53
3883,79
3B72.29
3849.26
3847,80
3840.65
3H35.9B
3837,80
3825224
3834227
3619,05
3811230
3810,21
• 3804,46
3805,06
3801,78
3798250
3796,78
3801,51
3796295
3784 58
3783,85
3785,96
37B0.23
3779284
3770 54
3768,20
3761,48
3747262
3745245
nn sz
3825,27
3864,25
3789.30
3919,52
39m,59
3891,71
3BM!^'J
3H72.4V
384W.96
3847.5U
3H39.2S
1M35.48
3«36,5U
3824224
3833,67
3
S
3811.58
3808.91
3803.46
3801.Hh
3801.4b
3797,00
3796248
3802.51
3795,75
3784,58
3784275
3786.06
3778,93
1779,94
J768.04
37f>7.20
3761,5b
3747,52
3746,25
3736,57
3737 29
3728 47
3824,45
3883,20
3788,62
3X42,55
3*39.08
3*36.30
3*28,54
3*3*227
3C18.25
3609.78
3HU9.51
38U7.16
38U1.16
3794.88
3796,80
3''96,3B
3795,55
379U.08
37B7235
3/M7.66
37/8.73
3779.64
3773.64
3769,2C
3/01,It
m:n
)>i
:*!
37J7J19
37*7.37
3H25.90
3MU5.17
3/K9.76
(Continued)
-------
TABLE A9. SURFACE WATER SAMPLE LOCATIONS TAKEN DURING THIS PROJECT STUDY
Site #
Name and general location
Remarks
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Rio Grande at Leasburg Dam
Leasburg Canal at Leasburg Dam
Selden Drain at N.M. State Route 85
Leasburg Drain near N.M. State Route 85
Pacacho Drain below Nusbaum Lateral
Rio Grande at Mesilla Dam
East Side Canal at Mesilla Dam
West Side Canal at Mesilla Dam
Del Rio Drain at East Side Canal
Mesilla Drain at East Side Canal
Mesquite Drain near East Side Canal at
Bannock Lateral
Del Rio Drain at Vado off N.M. State Route
80-85A
Chamberino Drain off N.M. State Route 266;
north of LaMesa Drain and Marquez Lateral
LaMesa Drain at Rio Grande above W.W. 31
Anthony Drain above East Drain and South
of Anthony, Texas
East Drain below Anthony Drain Junction
West Drain at Texas State Route 260
Nemexas Drain at Texas State Route 260
Montoya Drain at N.M.-Texas State L'ine
Rio Grande at El Paso (Crouchane Bridge)
water quality assumed
equal to Site #1
water quality assumed
equal to Site #6
water quality assumed
equal to Site #6
115
-------
TABLE A-10.
Hl* UR.AIM KbOrfS it* ArKF»t'EKl/*Q*Ttlv
SITS YEAR JAM fhH N AH AHH rtAX JPiM JUL AUG SEP OCT ttQV DEC
i/
S 19/5 215. 194. 295. 29B. 24o, 2bd, 307, 307, 446, 523, 226, 277.
•> 1970 357, ?HH, 246; 446. 461, 29y, 277, 369. 4*6, 282, 297, 228,
12 1975 2029, 158*. 2214. 3142. 372U, 35*0. 3720, 4027, 389H, 4027. 2987, 2337,
12 19/b 25*2. 3060, 3720^ 3285, 3597, 2291, 3843, 3413. 3421, 3376, 1815. 2017,
14 1975) 2/7. 400. 65H 9H2, 113*9, 1696, 2367, 2798, 3570, 3105, 2249, 107tj,
l> 1976 1199, 1007. 113*; 1&47. 2b9^i 2707. 249U. 3413. 3U05, 1347, 863. 7(i7.
Ib 1975 5«-%t 3bS», 3«l. 583, 67o, 633, 1045, !5bH. 2410, 2490, 1607, 73b,
i6 1976 H6|. SIR, 615* 1J57, JS9'J, 270/, 1722, 1691, 1934, M55, 893, 793,
17 1974 603. 2S5. 584. 1696, 1937, 2005. 2U54, 2029, 2358, 2152. 1363, 1906,
17 1975 1722, 1222, 10bl| 1380, 15J7. 1654, 2214, 1875, 4195, 4027, 2B56, 1X07,
197ft 12M, 1311, 1599. 1993, 3167, 360J, 1R75, 3794, 3671, 1H82, 1220, 922,
1974 449, ^, 1220, 1537, 1476, 1428, 1334, 595, 461,
19 1975 2M7!», 1»49, 271H. 1154, 2/9d, 3005, 3658, 3720. b224, 5257, 40H4, 2423,
\"i 1976 27 OS, 3077. '^798* 4046. 4j?j. 449j. 1720. 340U. 3291, 3074, 2975, 2472.
-------
TABLE A-ll.
SITE
1
1
1
1
1
1
1
\
1
t
1
1
1
1
1
1
1
1
1
DATE
19/ 9/75
20/11/75
14/ 1/76
26/ 2/76
2/ 4/76
30/ 4/76
17/ 5/76
Ht 6/76
29/ 7 /7 b
26/ 8/76
4/10/76
2/11/76
7/12/76
10/ 1/77
3/ 2/77
3/ 3/77
14/ 4/77
9/ 5/77
7/ ft/77
li/ 7/77
9/ H/77
*/ 9/77
9/10/77
6/11/77
FLO*
AC-FT
0.00
0.00
0.00
0,00
0.00
0.00
0,00
0.00
0.00
0.00
0.00
0.00
0,«»0
O.IH)
0,00
0.00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0.00
MG/L
173,0
152,0
91,0
87,0
73.0
7llo
70,0
72,0
75,0
148.0
303.0
240.0
296.2
217*6
102.6
107.9
90, 8
91. H
97,8
98.9
181,7
197,3
K
MG/L
10.6
12*.9
9*.4
7!o
5*.5
2 0
5 5
5*5
6*,6
M'l
10*,9
8 2
9*2
7*0
12.1
CA
MG/L.
135.0
143.0
187.0
78.0
63.0
62.0
61.0
62,0
64,0
60,0
130.0
110.0
135,0
12U2
129,9
134.9
74*,7
71^3
54,5
64*,5
119.0
135.5
MG
MG/L
24.2
28.6
35.4
13.4
11.4
11.7
11,2
12.2
lllb
JJli
3ol9
13.5
15.0
14,7
117
13,0
14.3
30*3
HC03
MG/L
260.0
248..0
265,0
204.0
168,0
170,0
157.0
200,0
204,0
167,0
218,0
238,0
387'0
278.2
200,1
207,4
197*,7
179.4
206,2
195.2
185.5
162.3
209,9
227,0
CO 3
MG/L
0.0
0.0
0.0
0.0
12.6
0.0
12.6
o",o
0.0
0.0
24. 0
0.0
ojo
0.0
16.8
3 ft
!:J
10,8
0.0
0.0
CL
MG/L
133,0
158,0
161 0
96.0
45.0
40,0
46.0
42 0
43 0
47,0
386*,0
252,0
370,6
162,1
196.4
80.0
90,4
74 1
58J9
71,6
81,2
142,9
161,0
S04
MG/L
390.0
346.0
126*0
138.0
130.0
145.0
138,0
148*>0
359.0
255 5
308,0
299.2
48411
163,8
183,5
160*4
172,9
1«2,5
167.1
432 3
453.4
N03
MG/L
0,0
1,7
3,5
2.0
oil
04
0.1
0.5
23
2.0
1*0
0,0
0.0
0.0
0,3
0.2
02
0.1
03
0.6
0,2
0.2
PH
TDS
MG/L
0,00 1125,8
8.09 1090,2
7.88 1141.7
8,02 1
8.09 !
8.21 t
8.35 !
8.31 !
3.23
i 3,4
>: 6,6
il 2,0
il 5,9
: 0,2
: s!?
8^54 525:5
8,14 (
8.26 :
7 66 :
7.40 14
S:ii 1!
8.09 1
114,6
JV4J7
169,6
123,6
23 7
82,5
8,35 676iO
8.32 629;?
8.17 611,8
9.41 617 6
8,37 606,4
8.07 1124 3
8.09 1214 8
E.C.
C-g
0,0
1460,0
1780 0
840,0
640,0
640,0
630,0
620,0
680.0
620,0
J Jl 0 ( Q
1710|0
1920.0
1620,0
1800.0
880,0
930,0
900,0
tiw
890.0
0,0
1620,0
SEE PRECEDING TABLES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE, OR
WERE NOT RECORDED.
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMLMT, SOCORRO; AND NMSU, LAS CRUCES.
(CONTINUED)
-------
TABLE A-11 (CONTINUED)
oo
SITE DATE
l4/ 1/76
26/ 2/76
2/ 4/76
/76
-„ Ml
W «»
/ 6/76
/ 7/76
6/ 8/76
4/10/76
2/11/76
7/12/76
1»/ 1/77
3/ 2/77
8/ 9^/77
9/10/77
FLOW
HOFT
19/ 9/75 0,00
v § i. .
0.00
o.oo
W f <
0,00
0,00
0,00
0.00
0,00
0,00
0,00
0,00
0,00
0.00
0.00
NA
MG/L
190.0
161,0
220,0
134,0
190^0
164,0
166,0
182.0
191.0
176.0
205,0
201.0
196.2
lbfc,8
162.4
165.1
HC03
_M£/L_
198,0
32?:g
i,::
333lo
328;o
ii:8
319lo
JM:»
!»:!
C03
MG/L
0.0
'.0
8:8
16.8
0.0
304
NG/L
wl
MG/
w • »
111
•A
•
1:1
o!9
0,0
PH
2*3 1'
°: .
,98
11
I
:ll
Ml
:V
0,0
*3!8«8
i!»i:I
}!«:»
jjsojo
J22M
128:8
118:8
'?o:o
370,0
0,0
SEE PRECEDING TABLES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE, OR
WERE NOT RECORDED.
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
(CONTINUED)
-------
TABLE A-11 (CONTINUED)
[TE DATE
5
5
5
5
5
b
5
5
5
5
5
5
5
5
b
5
5
S
5
5
5
5
-Si,
i
1
2
3
l
5
i
l
9/
O/
5/
6/
2/
«
4/
6/
$
O/
3/
3/
14/
1
9/
7/
I/
9/
8/
9/75
11/75
1/76
2/76
4/76
4/76
5/76
6/76
7/76
8/7o
10/76
11/76
12/76
1/77
a/77
3/77
4/77
5/77
6/77
7/77
9/77
9/77
9/10/77
ft/
11/77
FLOW
AOFT
S*
o.
°t
o:
o.
8*
o.
o:
o.
«:
o.
8:
o.
8:
t»:
0.
<>.
o.
oj
o.
o.
o.
00
00
00
00
00
00
00
00
00
00
00
00
00
00
oo
00
00
00
00
00
00
00
00
no
NA
HG/L
221
157
207
415
199
fH
154
163
179
201
•
f-
*
§
t
.
0
0
0
0
0
0
0
0
0
0
0
208,0
208.0
172
177
185
196
181
161
178
203
196
214
193
J
9
9
f
f
7
6
6
5
9
2
0
e
9
6
9
K
MG/I,
>•':§
8 2
8 2
f'o
a * j
8 * '
8*3
8* '
?•!
7j8
7j4
9:8
8j6
90
90
9*4
1°:?
8*6
r.B
... O.
CA
HG/L
143,0
152:0
155,0
95 . 0
9U.O
95 0
147 0
izojo
82,0
95 (>
156.0
154,0
136^
101,4
2«:5
V3
176
07 0
111,2
142^
**.*!?.
2.S.P.
25i5
13.6
24,3
HC03
MG/L
309,0
266.0
364.0
III:?
KW
h? D
306.0
C03
MG/L
0.0
0.0
0,0
0^
Oj0
8:8
0:0
0,0
0.0
0.0
^•S
0,0
0.0
?iO
.6
0.0
18,0
0^
H:'i
24,0
0*0
0.0
CL
MG
/L
175,0
162 U
163 0
169.0
162,0
163.0
162.0
162,U
Ibl 0
155 0
164,0
I73jo
504
MG/L
418,0
350:0
366,0
337:0
339.6
403.0
397:2
N03
HG/L
SEE PRECEDING TABLES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE OR
WERE NOT RECORDED. '
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
(CONTINUED)
-------
TABLE A-11 (CONTINUED)
1TE
6
I
f
6
6
6
6
6
6
6
6
6
6
6
6
6
d
6
6
6
6
DATE
19/ 9/75
20/11/75
14/ 1/76
26/ 2/76
31/ 3/76
29/ 4/76
17/ 5/76
£4/ 6/76
29/ 7/76
26/ 8/76
4/10/76
2/11/76
7/12/76
10/ 1/71
3/ 2/77
3/ 3/77
14/ 4/77
9/ b/77
7/ fe/77
ll/ 7/77
9/ 8/77
8/ 9/77
9/10/77
FLOW
AC-FT
0 ,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0.00
0,00
O.Ou
0,00
0,00
0,00
o,oa
0,00
0.00
0,00
0,00
0,00
0,00
0,00
NA
183,0
163,0
234)0
92,0
72lo
62,0
70,0
78,0
75.0
164.0
202.0
207,0
203. t)
166.3
204,0
97l3
95 2
87,2
101*7
182.4
K
MG/I.
12.9
149
12!9
{•1
6*3
59
O
10*2
13*3
HJ
1 2 S
1 6 * 8
7*4
9*4
7!8
7!e
7*4
u;9
HC03
MG/L
98.0
U:8
C03
MG/L
504
MG/L
:i75,0
58.0
i'fil.o
NO]
MG/L
SEE PRECEDING TABLES FOR PLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE, OR
WERE NOT RECORDED.
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE. (CONTINUED)
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
-------
TABLE A-ll (CONTINUED)
SITE
9
9
9
9
9
9
9
9
9
9
9
9
9
9
4
9
9
9
9
9
9
9
9
OATE
20/11/75
14/ 1/76
26/ 2/76
Jl/ 3/76
29/ 4/7b
17/ 5/76
24/ b/76
29/ 7/76
26/ 8/76
4/10/76
2/11/76
1/12/76
107 1/77
3/ 2/77
3/ 3/77
14/ 4/77
9/ 5/77
7/ *»/77
ll/ 7/77
9/ S/77
8/ 9/77
9/10/77
6/11/77
PLOW
AC -FT
0,00
0,00
0,00
0 . 0 0
0,00
0,00
0,00
0,00
0,00
0,00
0.00
0.00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
MA
hG/L
131.0
146,0
140.0
144.0
128.0
122.0
121.0
141.0
134, D
138.0
146,0
157iO
151.1
147.2
142.6
129.0
135,9
153,4
129,3
126,5
123,7
125.3
144,4
MG/T
10,2
« • 2
T * 2
7,8
7,4
•
1 4
82
2'5
:«
78
Z 4
2i0
7!»
8',2
P « *
8 . D
7>
7t4
7,8
MG/L
u?«°
133,0
97,0
75,0
99 . 0
98 , 0
102,0
li?'°
79,0
107.0
U6iO
134,0
121,2
107,6
i08 , 4
11.2
99.8
89,0
101,8
110,4
104.6
8:?
1
iHii
9,8 206,2 22.8
23.0 270,0 0.0 117,0
IH:S
i
i :?
1I9.S
ifii!
:
284.1
PH
932,8
» I :
:
1 ;
:
:
fl*'
»:
8:
:
:
nn
SEE PRECEDING TABLES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE, OR
WERE NOT RECORDED. , _
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE. (.CONTINUED;
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
-------
TABLE A-ll (CONTINUED)
S1TK OATt.
11
11
11
n
\ i
11
11
11
n
U
n
n
n
11
n
11
11
U
20/11/75
14/ l/7h
31/ 3/7C
29/ 4/7b
t7/ 5/7h
24/ fj/76
29/ 7/7b
2 1> / ^ / 7 h
4/10/76
2/ll/7h
7/12/76
10/ 1/77
3/ 2/77
3/ J/77
14/ ^/77
'>/ 5/77
7/ *>/77
tl/ 7/77
9/ 8/7/
8/ 9/77
AC-KT
™0^00
0,01.
ojoo
ojiin
0.00
ojoo
0,0*)
0*1)1)
U . <> I'
c.oo
o.oo
o.oo
0.00
o.oo
0.00
0 . 0.0
0.00
K'A
39*. it
41V.O
?63,0
IS9.0
21-3,0
211, 0
285,0
12V. 0
211.0
337,0
497,1)
4 1 J
70ft, 4
«01,7
93,2
99,4
90,6
88,«?
100,7
HC03
MG/L
317^0
499,0
243.0
200,1'
260,0
175,0
277.0
233.0
181.0
277,0
294,0
323.0
212i3
256.2
146.4
1J9.8
176,9
207,4
184,3
1 9 ft* • S
201,3
C03
MG/L
" 0 , 0
0,0
0,0
0.0
0.0
6.0
10,8
0.0
0,0
0,0
16.8
0.0
10.8
0.0
P. 4
ojo
14.4
8.4
0,0
CL
MG/L
~299,u
2*2,u
207,0
112,0
121,0
146,0
168.0
213^0
314lo
2?7jo
329j»
446,4
83.0
79J4
81,6
*3.1
2,8
S04
MG/L
793,0
697,0
498,0
267,0
323.0
4SO.O
Slb.O
215,0
363.0
b54,0
2*8.0
90B.7
1219,5
.74.8
159.5
159^5
N03
MG/L
PH
3.5
?ll
0,0
0.2
ojo
ojo
0.0
0,0
IDS
MG/L
2056,5
IBM
167b 4
2346.4
4649
1 620;7
8,12 660^3
8,10 598,
8^22 624^
2660,0
2840,0
1960,0
1140,0
'410|0
2120jo
2990.0
3220^0
3850.0
930.0
¥80.0
900.0
830.0
820,0
880,0
SEE PRECEDING TABLES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE, OR
WERE NOT RECORDED.
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE. (CONTINUED)
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
-------
TABLE A-11 (CONTINUED)
SURFACE: FLU* A*O *ATtH
UATA
VALLEY
SJTf; DATE
AC-f'f
12
12
12
12
1 2
12
1 ?
12
12
12
12
12
12
12
12
12
12
H
12
\l
12
19/ 9/75
20/11/75
14/ 1/76
life/ 2/76
31/ 3/76
/y/ 4/7*
17/ 5/76
^4/ 6/76
2<»/ 7/76
26/ S /76
4/10/76
2/J.J/76
7/12/76
JO/ 1/77
3/ 2/77
3/ 3/V7
14/ 4/77
9/ 5/77
7/ 6/77
U/ 7/77
9/ 8/77
BO/97/71
9/10/77
6/11/77
0,00
0,00
0,0 II
o . no
O.'JO
0,00
0.00
i) t y i»
O.HO
0,00
0,00
0,0')
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
192,0
173,0
1 $ K , (.'
193,0
177,0
196,0
205,0
210,0
194,4
1*7.0
184,2
172.b
1S3,8
I63jb
166,S>
196,4
200,1
MG/t
183,0 J1.3
loj6
1 0 J 6
9 Jl)
12j5
tOjo
1H
10; 2
Ilj7
117
9j8
9j8
10J9
CA
"(i/L
109,0
134,0
147,0
126,'J
71,0
H3.0
loijo
122.0
67.0
103.0
I3f',0
lU.O
130,7
123,2
111,2
113.W
Joeja
101.2
110,6
ilG/L
20,3
24 J 6
23 ji
2l'«
9j5
21.0
23.5
24.7
24.9
25.1
2ei,5
23,0
21.0
21.6
20.?
^•f
23,6
26.0
HC03
MG/L
245,0
295,0
376jo
2B7.0
264.0
171,0
282.0
308,0
193 0
220,0
251.0
299 0
30216
230,6
219,6
208j7
235J5
245J3
250,1
42M
256,2
284JS
305,1
C03
MG/L
CL
WG/L
S04
WG/L
NU3
MG/L
PH
0,0
0,0
0,0
0.0
14j7
0.0
6,9
6.0
0,0
0.0
0.0
147,0
I49jo
isojo
150,0
146.0
139,0
144.U
126,0
139jo
135,0
327,0
325.0
342,0
04j8
^ v mr f v
392.0
417 9
*9i«5
»5Si3 >8f,J 2^3 7,87
MG/L
1045,0
Il02jo
1259*
1W:*
075i .
940,6
!???:!
lIO.Sj*
B.
1460,0
1460,0
1730,0
Htt:8
1440 0
1400,0
1210.0
1450,0
1240,0
1420*0
1460,0
1460.0
1490 0
1420,0
»41R'8
0,0
1610,0
SEE PRECEDING TABLES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE, OR
WERE NOT RECORDED.
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE. (CONTINUED)
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
-------
TABLE A-ll (CONTINUED)
NJ
SITE DATE
14
14
14
11
14
11
H
U
14
14
14
14
14
14
14
19/ 9/75
20/11/75
' ' l/7b
31/
4/70
17/ 5/7t>
24/ 6/76
7/76
4/10/76
2/11/76
7/12/76
1
0,00
0,00
0,00
0,0()
(1,01.
0.00
".00
ti.OO
ll. 00
f',00
U.Ou
0 , U 0
0,00
0, 0 0
0,00
0 I I! 0
0.0 y
u^oo
K
MG/l,
CA
HG/l-
HC03
MG/1,
C03
rtG/L
CL
MU/L
S04
MG/L
N03
PH
2 3 H , 0
25* Jo
205.0
1?H,0
217.1!
1*2,
"
•
-,J,I
191,0
* • — (_
203,. 0
'1 \ b , ('
252,0
237.b
213,9
2*1.0
187,9
1 9 0 I «
1H2.2
181. V
177.6
234,6
301,B
11.3
10*2
U>*,2
19'4
9*8
9>
9*0
96
9!ft
9!i»
12*1
10*2
lo*. 2
10^9
9*4
21*1
159.0
IbO.O
2 1 f* . 0
H
2.0
103,0
145*,U
123,-)
21l!li
213,11
147N
134,7
146,7
125,-5
129.1
135,1
163,7
29.8
31. *
36,4
27.7
J2.0
36.2
3o.7
3b,4
3b*.9
2«.o
27*b
26.b
2b!«
3b,0
3b.o
323.0
301,0
445.0
299.0
212.0
310,0
162,0
308.0
319. v
170,0
261 ,0
279,0
333,0
342.9
203.b
270.9
253.4
244,0
316.0
248,9
257*,5
285,5
0.0
0.0
0,0
0.0
0.0
b.O
ojo
0,0
44,4
10,8
0,0
0,0
0,0
10,8
1,0
18,0
16,6
18.0
0,0
0,0
189,0
203,0
223.0
187.0
179*0
165,0
158,0
153,0
159JO
- 0,0
219.0
213.V
208,5
235 J
Ibl 4
148*6
14K.9
262|o
448.0
357,0
515.0
405,0
366.0
Bt:l
388.0
427.0
472,0
599,0
567,0
blti.b
518.2
588,4
403.0
397.7
424.6
420,7
409.2
380,4
542,7
586,0
IDS
MG/L
1400.5
1229,4
7,89
J186.4
1235*2
1086,4
1294*7
1657 b
1636,5
1656,5
1342,9
1553,9
1199*6
|52t:s
HHJ
Mi:!
..U3?l*.
1800,0
1610.0
2370,0
1600*0
it!8:8
1500,0
1620.0
1450,0
i7zo;o
2030,0
2040,0
1930.0
2070.0
2150,0
1720,0
1630.0
1770,0
1650.0
1630,0
1630,0
00
2400,0
SEE PRECEDING T.'^LES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE, OR
WERE NOT RECORDED.
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
(CONTINUED)
-------
TABLE A-11 (CONTINUED)
SITE DATE
Ul
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
19/ 9/75
20/11/75
26/ 2/76
Jl/ 3/76
29/ 4/76
17/ 5/76
^4/ 6/76
I?/ 7/76
26/ 8/76
5/10/76
2/11/76
7/W/76
10/ 1/77
3/ ?/77
3/ 3/77
14/ 4/77
9/ 5/77
7/ ft/77
U/ 7/77
9/ 8/77
8/ 9/77
9/10/77
fi/11/77
FLO*
AC -FT
0.00
0,00
0.00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0.00
0.00
o.oo
0,00
0.00
0,00
ojoo
0,00
0,00
0.00
0,00
0,00
0.00
0,00
NA
MG/L
462.0
383, 0
7042(J
96.0
320.0
444. &
247.0
390.0
367.0
221.0
530.0
611.0
678.0
659.2
685.9
677.6
296.9
488.5
444.8
500.0
318,8
183,5
601.2
603,1
K
MG/t,
24.3
4226
4825
9J8
2129
2?2o
29 * 7
27jO
21 9
3925
4125
4&2l
^49 7
457
49 7
22 * 7
4|20
3725
36jo
2829
3428
47 7
*328
CA
MG/L
134,0
138,0
lJ92o
§30
77 2 0
61 ,0
60,0
101,0
692o
58,0
117,0
llbjo
102,0
107,2
8626
U624
105,0
9922
9524
88,2
942a
Ik/,9
97,2
355
HC03
MG/L
438,0
409,0
60020
21020
35-5,0
198jo
37&Io
367,0
416.0
436.8
34625
396,6
222,1
3382(1
372.2
362.4
29U6
340.4
377.0
364,8
CQ3
MG/L
0.0
0.0
O.I)
11.4
0,0
0,0
20.4
18,0
13 2
60
96
7,2
43
9,6
^2
26.4
§:§
CL
M
-------
TABLE A-11 (CONTINUED)
SITE DATE
19
L9
L9
9
9
1
9
9
9
1
9
9
9
1
\l
19
'3
9
19/ 9/75
20/11/75
14/ 1/76
26/ 2/76
3t/ 3/76
29/ 4/76
17/ 5/76
24/ 6/76
29/ 7/76
26/ 8/76
5/10/76
1
YAW
I',
I
_. 76
1/77
_ 2/77
4/ 3/77
14/ 4/77
9/ 5/77
7/ 6/77
ll/ 7/77
9/ 8/77
8/ 9/77
9/10/77
6/11/77
FLOw
AC "FT
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0.00
o.oo
0.00
0.00
o-.oo
0.00
0,00
0,00
0,00
0.00
0,00
0,00
0,00
0.00
MA
MG/L
329,0
326,0
440,0
m.O
2R7.Q
310,0
26V, 0
263.0
284,0
290.0
317.0
381.0
442,0
417.2
519.5
5|2:
35.5
33,4
35 . 6
27.0
2b!5
27 S
25,5
2b 7
31.4
33.1
HC03
MG/L
364,0
356,0
49S.O
298,0
201,0
312.0
1ft, 0
359,0
344,0
182,0
238 0
298,0
383,0
345,3
291,6
370.9
253.8
306,|
341 7
308.7
309,9
285,5
43oj7
C03
MG/L
0.0
20.4
0.0
0,0
0^
0.0
0^
8:8
0.0
8*0
8
3.6
16,8
0 § 0
!?o
25*6
?:!
9,6
24!0
8:8
CL
MG/L
256,y
295,0
314JO
226,y
204:0
219.0
200,0
208,0
196,0
219,0
2S5'°
291,0
308,0
!«:?
418:0
312,6
300J7
226J6
220^
220j6
208,2
28«j7
299,6
504
M5^L
498,0
531.0
S56.0
370.0
387,0
408,0
«7.:o
N03
MG/L
PH
80,0
SEE PRECEDING TABLES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE, OR
WERE NOT RECORDED. , WTTO.
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE. (CONTINUED)
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
-------
TABLE A-11 (CONTINUED)
SITK DATL
N»
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
i!
20
.18
20/11/75
IV 1/76
26/ 2/76
29/ 4/76
17/ b/76
24/ b/7o
29/ 7/70
2b/ 8/7o
4/10/76
2/11/76
7/12/76
10/ 1/77
2/77
3/77
4/77
5/77
6/77
7/77
8/77
3/
4/
14/
9/
It/
9/
»/
9/77
9/1U/77
/XOfT
0,00
0,00
0.00
0.00
0.00
0.00
0.00
0.00
0,00
0,00
0,00
0,00
0,00
0,00
0,00
0,0"
0,00
0,00
O.on
0.00
0,00
0,00
0,00
NA
MG/IJ
26*7o~
J61.0
190.0
132.0
120.0
llfl.O
1)2,0
216,0
164,0
244.0
310,0
316,0
302.5
356,0
461,1
249,8
193,4
176,9
177,3
136.6
134.3
431,9
36,9U8
HC03
MG/L
C03
MG/L
#
/L
504
MG/L
NU3
MG/L
304,0
439,0
264jo
213^0
196,0
221.0
382.0
197,0
232.0
262,0
298.0
275^8
245,3
256,2
185^5
208)7
220,9"
?«:»
203)8
"4,8
0.3
iJ
16)8
264,0
«l:«
n:
95.0
88 U
163,0
127)0
209)0
244)0
W:I
ill;!
213)l
161)7
144)3
"*3«?
494,0
293,0
196 0
219)0
227,0
207,0
338,0
240)0
447,0
540,0
536,0
478 4
Hi
0)|
s)i
I:i
14
i:l
Q!?
i:<
PH
-_.„.
Ill
1514,9
1743,5
068,5
696.3
e.g.
**O
2090.6"
SEE PRECEDING TABLES FOR FLOW RECORDS. IF NOT LISTED THERE, THEN THEY ARE CURRENTLY UNAVAILABLE, OR
WERE NOT RECORDED.
ION CONCENTRATION VALUES OF ZERO INDICATE THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; AND NMSU, LAS CRUCES.
-------
TABLE M2. GROUNDWATER SAMPLE LOCATIONS TAKEN DURING THIS PROJECT STUDY
Site #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Well #
USER #26
USER #20
USER #19
USER #18
USGS-Well Nest
USER #16
USGS-Well Nest
USER #12
USGS-Well Nest
USGS-Well Nest
USER #13
USER #14
USER #8
USER #7
USER #6
USER #24
USER #5
USGS-Well Nest
USER #22
USGS-Well Nest
USER #28
USER #39
USER #29
USER #1
USER #2
USER #7
USER #36
USER #33
USER #34
Name USGS Location Remarks
22S.1E.09.241
22S.1E.09.333
22S.1E.16.433
22S.1E.35.343 WL only
Highway 70 N. 23S.1E.10.134 North Well
23S.1E.16.211
Firehouse 23S.1E.13.411 South Well
23S.1E.16.424
USER yard 23S.2E.18.313 North Well
Harris Farms 23S.1E.34.423 South Well
24S. 2E. 08. 434
24S.2E.09.433
24S.2E.28.331
25S.2E.04.114
25S.2E.23.212
25S.3E.20.321
25S.2E.25.322
Berino East 26S.3E.03.344 2nd well from east
26S.3E.09.212
Berino West 26S.2E.12.421 Middle Well
26S.3E.15.112 WL only
26S.3E.32.441
27S.3E.02.112
27S.3E.28.314
27S.3E.32.231
28S.3E. 11.311
28S.3E.15.122
28S.3E.24.323
29S.4E.06.243
128
-------
TABLE A-13. DEPTH-TO-WATER AND GROUNDWATER QUALITY DATA, MESILLA VALLEY
to
DATE
DEPTH
FEET
NA
MG/L
K
MG/L
MG/L
MG
MG/L
HC03
MG/L
• 81
CL
MG/L
504
MG/L
N03
MG/L
PH
508
/L
fO/11/75
[5/ 1/76
6/ 2/76
2/ 4/76
JO/ 4/76
17/ 5/76
24/ 6/76
29/ 7/76
8/7
I U2"7
10.13
Ml
o.o
'•8
0
2.
7.
89.0
B7.0
292.0
~Z6tO
1:8
?*:s
•'
I
111:1
3.3 115.
;J '8*:.
_4;t 79:0
J:8
Hl:8
608,0
359.0
689,0
666,0
395,0
<,-' '
^
240,0
0.1
0,0
§•'
0,0
04
»:i
8:8
:i
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; AND NHSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
U)
o
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
20/11/75
L5/ 1/76
8/76
S/76
4/76
5/76
§/76
7/76
26/ 8/76
4/10/76
«t/77
9/77
13/10/77
10/11/77
DEPTH
FEET
148.7
59^
16lj7
170^
151,5
166 7
151J7
169,5
MG
MC/l
-------
TABLE A-13. (CONTINUED)
SITE DATE
UJ
5
5
5
5
5
5
5
5
5
5
5
5
5
16/ 1/76
26/ 2/76
2/ 4/76
JO/ 4/76
17/ 5/76
2-4/ 6/76
29/ 7/76
26/ 8/76
4/10/76
3/11/76
7/12/76
10/ 1/77
3/ 2/77
3/ 3/77
9/ 5/77
7/ 6/77
il/ 7/77
9/ fi/77
B/ ^9/77
13/10/77
10/11/77
DEPTH
FEET
0,00
Mi
i:§
2 17
2,78
2,16
3,81
3.96
4l20
4,25
4,34
3 21
3,00
3,29
2,30
2,93
4,20
4.39
NA
MG/L
122.0
93.0
103.0
104.0
80.0
86.0
92.0
9B.O
96.0
inn.o
117.0
89^2
82.3
92.2
108^8
108.6
107.4
121.0
115,9
85.6
M
-------
TABLE A-13. (CONTINUED)
SITE
DATE
DEPTH
FEET
NA
MG/L
MG/l
MG/L
MG
MG/L
HC03
MG/L
C03
MG/L
CL
MG/L
504
MG/L
N03
MG/L
PH
IDS
MG/L
1*9*
E*6
!
6
6
6
6
6
6
f
6
t
!
6
6
6
6
6
6
6
6
6
18/ 9/75
21/11/75
IS/ 1/76
26/ 2/76
2/ 4/76
30/ 4/76
17/ 5/76
24/ 6/76
29/ 7/76
26/ 8/76
4/10/76
3/11/76
7/12/76
10/ 1/77
3/ 2/77
3/ 5/77
14/ 4/77
9/ 5/77
7/ 6/77
ll/ 7/77
9/ 8/77
8/^9/77
mm
9,84
|8:U
10:54
10 , 7 1
10:41
ilia
l^l
9:03
I:U
9,49
9 52
.i:H
18:3?
10,29
10 45
10 2fl
372.0
iJl'f!
i2B*n
344jo
386,0
I??!?
353
355
11,3 249.0
0.0
8:8
ojo
314.0
soijr
lll\\
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
0.0
0,0 7.56
03 8
0.2
0
0,
«:t
O.J
0,0 S,43
,99
2640,0
if$;8
18<
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
u>
js
DEPTH
FEET
15/ 1/76
26/ 2/76
2/ I/
30/
J/76
_-. 4/76
17/ 5/76
' 6/76
7/76
26/ 8/76
4/10/76
5/11/76
V12/76
$
10/ 1/77
3/ 2/77
3/ 3/77
J4/ 4/77
9/ 5/77
7/ 6/77
I/ 7/77
9/ 8/77
8/ 9/77
13/10/77
10/11/77
NA
MC/L
269.0
206.0
2f»3.0
215.0
ii!:l
K
Hc/r,
JCf-5 !?.S
Ijjj
'|i
8 .">
9j4
»J
112
11 3
'8;
.»:$
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
LO
Ul
SITE
*x~*. ,,.s»,.ii;.»
DATE
— — •-
9 18/ 9/75
\ !
9 1
9 ;
9 5
9 \
9
9
6/ 1/76
6/ 2/76
2/ 4/76
7/ 5/76
4/ 6/76
9/ 7/76
6/ 8/76
4/10/76
2/11/76
9 7/12/76
? 1K«H
S ,HHH
9
9/ 5/77
7/ 6/77
9 ll/ 7/77
9
9
9/ fl/7*
8/ 9/77
9 13/10/77
9 10/11/77
DEPTH
FEET
27
303,8
298,9
-74J5
|9,7
336 fi
JSl
0,0
10.8
«":»
I
0.0
0,0
il;l
28;8
0,0
102
804
MG/L
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
N03
L
MG/
J
O
PH
0,0 g,16
_ * —. • i • A ^
1,0 8
iii it
'•74
. * t{
!:i f:lf
8;I !;H
" 8l20
«' 3
7*63
100
to?oo
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
DEPTH
FEET
NA
MG/L
K
MG/t
CA
MG/fc
MG
MG/L
HC03
Mg/L
C03
MG/L
CL
Mfi
/L
504
MG/2
N03
MG/L
PH
IDS fcJ.C
fl/t 2-6
u>
u
1*
10
10
IS
I*
10
10
18
10
0
10
16/ 1/76
?./ 4/76
30/ 4/76
1-7 / 5/76
34/ 6/76
7/76
26/ 8/76
4/10/76
3/11/76
7/12/76
ll/ 1/77
3/ 2/77
I/ 3/77
14/ 4/77
9/ 5/77
7/ 6/77
It/ 7/77
9/ 8/77
8/ 9/77
13/10/77
10/11/77
B4,0
103,0
90,0
,0
0
86
*3.0
74,0
78,0
75,0
77,0
72,9
74,8
«3|9
U8',7
119,8
99,8
"3,8
'!!:!
115,5
10,9
14 2
13
11,
12.
0,0
0,0
0,0
19 5
6|0
0,0
9,6
12.0
'H'S
8:8
0.0
0,0
45,0
55,0
48 0
44;5
70iO
48^0
?|lo
49.
»!|
58,9
136.0
113,0
96.0
07,0
21,0
33,0
48,0
53.0
0,0
15,0
5.6
160.4
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
OJ
TABLE
A- 13. (CONTINUED)
SITE
11
ii
11
H
i
11
DATE
21/11/75
IS/ 1/76
26/ 2/76
31/ 3/76
29/ 4/76
17/ 5/76
24/ 6/76
29/ 7/76
26/ 8/76
4/10/76
3/11/76
7/12/76
10/ 1/77
3/ 2/77
DEPTH
FEET
11.94
12 4fc
12.56
11. 86
11.40
!of97
lojsq
11.26
jlj54
Ilj99
NA
MG/L
99,0
111.0
100,0
1P1.0
110,0
nw
0,0
0,0
0,0
0,0
0,0
K
MG/I
9.4
iji
7*8
7*4
ojo
0^
ojo
ojo
CA
MG/L
90,0
84jo
67,0
6njl
70,0
73,0
79,0
04,0
79,0
0,0
0,0
0,0
ojo
0,0
MG/L
13,6
14,8
16:?
lb,*>
J5.7
ib,5
19,3
17,5
0.0
0,0
0,0
0,0
0,0
HC03
MG/L
112,0
214.0
l!l:8
168,0
Hi:!
197,0
161,0
0,0
0,0
ojo
0,0
ojo
COS
MG/L
0,0
8:8
0:0
0,0
24je
8*8
ojo
0,0
0,0
Cl
176,0
82,0
85lo
flfijo
?§;o
85.0
ojo
Olo
0,0
ojo
0^
S04 N03 PH
MG/L MG/L
162 ,0 0,5 7 , 23
198 ,0 0,5 ' , *9
5J3.0 0,9 7,86
6B.O 0,6 il IB
205.0 0,4 7.49
H2« g 2.2 jj.J?
236 ,0 2,3 8,31
250,0 2,9 8.19
233.0 2.3 8.55
0,0 0,0 0.00
0,0 ojo o.oo
0,0 0,0 0,00
0,0 0,0 0,00
ojo 0,0 0,00
»S?E 14-
662.5 950,0
614*J pojo
666,1 920,0
7;ij6 94oJu
766,2 1040. C
721 6 940.0
0.0 0,0
o.o ojo
0,0 0.0
0,0 0.0
0.0 0.0
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
DEPTH
FEET
NA
MG/L
K
MG/T
CA
MG
MG/L
HC03
MG/L
C03
MG/L
CL
504
HG/I,
N03
MG/L
PH
IDS
Mti/L
J-.c.
i*6
Id
CO
12
12
H
12
i*
12
12
12
12
12
2
12
12
12
12
12
15/ 1/76
26/ 2/76
31/ 5/76
29/ 4/76
17/ 5/76
24/ 6/76
29/ 7/76
26/ 8/76
4/10/76
2/11/76
7/12/76
10/ 1/77
3/^2/77
3/ 3/77
14/ 4/77
9/ 5/77
7/ 6/77
li/ 7/77
9/ P/77
B/ 9/77
13/10/77
10/U/77
• • V •*
1:8
'JrB
7 91
\99
26,0
07^0
35,0
40,0
123,0
126,0
142*0
141 0
148,0
166,0
ItM
203.3
9.8
0,
3!
6'
J
P.*
0,
0,
0,
0
0,
0,
0,
A ZEKU VALUE INDICATES THE INFORMATION IS
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU
NOT AVAILABLE.
, LAS CRUCES.
215.0
m$
iii:§
273^0
304;?
1190.0
880.0
1110,0
1160,0
1080.0
10RO.O
1180.0
1010,0
j|io!o
1540.0
1440;o
ilflolo
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
DEPTH
FEET
NA
MG/L
K
MG/t.
CA
MG
/L
MG
MG/L
HC03
MG/L
C03
MG/L
CL
Mg/L
504
MG/L
N03
L
MG/
UJ
21"WS
/76
... J/76
29/ 4/76
,5/ 6/76
30/ 7/76
27/ 8/76
4/10/76
2/11/76
8/12/76
ll/ 1/77
4/ 2/77
4/ 3/77
10/ 5/77
8/ 6/77
12/ 7/77
It)/ 8/77
§/ 9/77
13/10/77
10/11/77
"ill
11:81
'!•«
H:li
il:!!l
i?:i2
11«o i
itjis
}?•!'
12:43
180,0
|!H
311,0
332,0
332.9
129
11!:|
122,8
89^
I22h
339.0
20,4
8:8
!«?
19.0
800,0
83$:0
810,0
800,0
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
FFFT
FA
YiG/L
CA
HC/L
MG
MG/L
HC03
MG/L
C03
MG/L
CL
MG/L
504
MG/L
N03
MG/L
PH
IDS
fc,C.
E>6
14
14
It
ii
14
U
ii
14
!i
it
is
1/76
3/76
/76
6/76
7/76
.. 8/76
5/10/76
2/11/76
8/12/76
'« I'"
4/
15/
12'
8/
12/
to/
9/
_/77
3/77
4/77
5/77
6/77
7/77
8/77
9/77
13/10/77
ln/h/77
12,88 224,0 10,6
1W
10.43
10.6«
11.50
12.18
12.61
12.89
13."
.58
11. r-
liJ:§
267^0
?54,0
283.0
253.0
26H.O
2T8.0
274«2
253.0
755.8
237.6
239,2
247,•)
270,9
^§'4
266,3
8,0
55,0
fl?,0
691 u
58,0
43,0
209,0
195,0
J66I3
55,7
72^9
82.6
1^2 4
139,5
142^7
1.0
10,7
18.8
59,2
103,0
153,0
154,0
(81.0
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
694,8
1039,0
l»!:>
1304.H
*i!:i
Ii
16
Ii?
iJ:»
i *i * *
1170,0
-640,0
640,0
760iO
860,0
800.0
790.0
590.0
600.0
130.0
m«9
.0
2120,0
690,0
m:8
.730,0
24BO 0
2450.0
2600.0
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
DEPTH
FEET
NA
MG/b
K
MG/L
CA
MG/L
MG
Mti/L
HC03
MG/L
C03
NG/L
CL
MQ
/L
804
MG/L
N03
MG/L
PH
IDS
MG/L
E,C
E-5
I
21/11/7
15/ 1/7
27/ 2/76
Si/ 3/76
2?/ 4/76
!1 ii^lHi
15 30/ 7/76
15 27/ 8/76
15 4/10/76
15 2/11/76
15 8/12/76
15 il/ 1/77
15 4/ 2/77
15 3/ 3/77
15 ISA 4/77
15 tO/ 5/77
15 8/ 6/77
15 12/ 7/77
15 10/ 8/77
15 9/ 9/77
IS 13/10/77
15 10/11/77
10.05
9187
il.Ol
8.00
'*\\l
10.30
11 05
92,0
fi?:li
130|0
1H:8
iii:8
169,0
162,0
155,0
149 0
137,5
14429
144,9
147 2
155.3
146.7
166,1
159 4
156,4
153,4
76,0
260,0
6e;o
68.0
ili;i
7,0
W:8
J?:f
17tl
135
*9i§
47,6
6P.4
.69,6
183.0
196'.5
!*8
*:!
*•
400,0
}si8:8
!?t?
50,0
18:8
1!
li
1-
90 0
P:S
\\
Ji8
40,0
oo;o
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
NJ
SITE DATE
6
6
6
6
6
6
6
16
16
it
16
6
i
6
_6
16
!/76
J/76
. . 4/76
L7/ 5/76
24/ 6/76
29/ 7/76
26/ 9/76
4/10/76
'/12/76
10/ 1/77
3/ 2/77
3/ 3/77
14/ 4/77
9/ 5/77
7/ 6/77
ll/ 7/77
9/ 8/77
8/ 9/77
13/10/77
10/11/77
DEPTH
KEET
6.2]
5,86
7^39
17.80
NA
MG/L
K
Mc/r
286,0
406.0
275,0
242.0
251.0
759,0
24?,0
278,0
269JO
212 0
249,0
256,9
22B 9
in-.i
i\i$
JM:»
567.3
242.0
36,4
i^i
ii;
:is
•U
47j7
4fl;i
48|l
Jii:
Uli
JJi?
ilii
CA
MG/L
10,0
i:8
25,0
40,0
52,0
44,0
52,0
60,0
*2 °
57,
§3.2
ii:)
1:i
j:J
JJ:?
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE OftTE
OKPTH
KFET
NA
K C*. M6 HC03 C03
MG/T MG/L r»G/L MG/L MG/L
504
MG/L
N03
MG/L
PH
TDS
L
MG/
486,0
t.
17
17
17
17
\]
17
i?
B
1/76
27/ 2/76
Jl/ 3/76
29/ 4/76
17/ 5/76
17 25/ 6/76
_0/ 7/76
27/ 8/76
4/10/76
2/11/76
8/12/76
ll/ 1/77
4/ 2/77
3/ 3/77
15/ 4/77
10/ 5/77
8/ ft/77
17 J2/ 7/77
17 10/ 8/77
17 9/ 9/77
17 13/10/77
17 10/11/77
10,00
9,79
9,05
8,97
8,67
«:-M
7,64
7j9l
8.65
9.92
O.J 6
10.63
10.38
10,59
10,58
10,76
10IP4
10,76
10,95
11,00
479,0
743,0
7P6jo
Blllo
869,0
70210
876;0
902,0
903jo
837jo
R64:o
P80.9
788^
823,6
828J7
"33 1
882,0
S40.7
835,4
R.35,4
935.9
H61,3
!i»2
i?j'
12.0
53,0
49^
61.0
65. g
12S.O
"5.0
..... 175,0
JSjfi 131,5
12J9 99jH
94,4
82,0
84,*
91.9
67,1
57 3
42.4
162,0 29.7
36.0
09
J09.0
131 0
156.0
}8*:o
160,0
161,0
198,0
63.5
59.8
59,8
9.9
o;o
U,0
il:!
o.u
0:0
0:0
8:8
0,0
0,0
0:0
ojo
368:8
0.0
liOlia
:» !i! i!
».3
5.5
0.0
0.0
«J?
8:i
8:1
S:J
8 7H
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
1482,0
-52617
2410,0
3090,0
3770:5
4000,0
403(>:0
4230^
3850,0
-. w •» ** • >r
4340.0
4340,0
4250,0
430010
«»:»
4410:0
4250:p
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
DEPTH
fEET
NA
MG/L
K
HG/I,
CA
MG/L
MG
HG/L
HC03
HG/L
CL
MG/L
804
MG/L
NU3
MG/L
PH
IDS
MG/L
19/ 9/73
26/ 2/76
5i/ 3/76
29/ 4/76
17/ 5/76
24/ 6/76
29/ 7/76
26/ 8/76
4/10/76
2/11/76
7/12/76
»B 1JW
M im
9/ 5/77
7/ 6/77
ll/ 7/77
9/ 8/77
8/ 9/77
/11/77
8,77
'8:1?
?:?
9|OS
7|81
7 84
9^55
10,05
10.33
loj49
10.58
lill
8.64
•P
Is
752.0
9I~ -
:!
??;
PC . V
il:S
74,0
1:8
768.0
74910
698.0
702.0
705,4
690,5
693,5
lt?§:i
j!JJ:3
1167 3
682:
6^0
44.6
n-'
59^4
t?;i
64;?
63^0
60.6
60 6
68 fl
62,6
6? §
42,0
52,0
17«,0
166.0
164,5
109,4
»«2l'
40.2
46.6
48 4
4^2
*l:f
58,2
60|4
6»,4
62.2
»;i
'!;!
6.!
64.
575.9 0.9 232.9
5i?:8
509JO
362,0
625lo
610,0
234.0
306,0
486,0
556.0
602,8
466,1
424.6
452,7
§?0 4
1
J:?
o;o
8:8
20.4
14.4
59 8
10.8
0,0
o'.o
I "
787,0
7S3 °
743lo
|??:8
''ilii
? s
704|2
"'I?
43.2
40.8
3«» 5
596,0
692.0
m:!
mil
653.0
634.0
708;o
?2?!o
28K3.0
3146,6
&8:i
JJM.?
§iS:|
Hi:!
1:1
3870.0
4260.0
u;§:§
W-'f
4000,0
3870)0
4000,0
3530.0
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE
DEPTH
FEKT
MA
MG/L
K
MG/T
CA
MG/L,
MG/t,
HC03
MG/L
C03
MG/L
CL
MG/l,
504
MG/L
N03
MG/L
PH
IDS
MG/L
Ln
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
19
21/11/75
14/ 1/76
26/ 2/76
il/ 3/76
29/ 4/76
17/ 5/76
24/ 6/76
29/ 7/76
26/ 8/76
4/10/76
2/11/76
7/12/76
10/ 4/77
' 2/77
3/77
4/77
5/77
6/77
7/77
8/77
3/
14/
9/
7/
ll/
9/
8/
9/77
13/10/77
10/11/77
7,96
8,'M
P. 35
h,20
7^41
6,54
6,04
6,38
7 51
7.86
6,00
8,25
7*44
6 I 98
7.32
7^20
Z*8,2
8,30
291,0
574,0
695,0
736,0
775,0
73310
7is;o
761,0
67fl,0
747,0
769.0
700,3
661.8
650,7
650.0
645,8
675,0
667,0
656,7
841,8
799,0
821.1
43,4
74j7
74|7
72 7
64)9
73)9
79)4
68,0
7fl;?
7P.2
103!b
49,0
2o;o
24lo
23.0
24,0
2f»,0
n;o
t3ojo
36.0
27.1
3fl'1
2f>\\
29.5
24.2
'9.4
.7j2
25,7
2|,9
1
1
1R8.0
346.0
380,0
282,0
;»60,0
354.0
372,0
354.0
298,0
331 ,0
472 0
332.0
303.8
286,7
262,3
233,1
275, H
272,1
575,8
228,2
394 1
385,6
377JO
29 7
32.4
10,6
3l|2
27.6
•>2,8
52,8
20,4
24,0
15,6
« 2
20,4
20,4
3,6
25,2
40,8
25 2
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
324,0
562.0
699JO
656.0
633.0
654.0
65710
69
602,1
600*7
582,3
620 9
585,1
613.5
757^4
756.0
750.0
631.0
540.0
600.0
647.0
590.0
58|;t)
707^0
693.1
701.2
686.8
696.4
662,8
830,9
845.3
888.6
2474.6
i575.6
2366.5
3092^7
7777J6
2554 3
?8ll6
2373,4
247" '
27;
3045,0
3015I1
3620,0
3470 0
3390.0
4090,0
J770.0
3400,5
3630|0
3570,0
3480,
itcn
0
3460,U
3550.0
3630.0
3630,0
3610.5
4400,0
4750,0
4750.0
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
20
20
20
20
20
ll
n
20
20
20
20
20
20
20
IS
J1
20
20
19/ 9/75
27/ 2/76
31/ S/76
29/ 4/76
17/ S/76
,0/ 7/76
27/ fe/76
5/10/76
2/11/76
B/12/76
ll/ 1/77
4/ 2/77
3/ 3/77
15/ 4/77
10/ 5/77
P/ 6/77
W/ 7/77
10/ 8/77
9/ 9/77
13/10/77
10/11/77
DEPTH
FEET
0,00
2)26
7,24
7 44
7)04
7)2*
7,24
7)48
8,61
8,83
8)99
10, *«
9,S3
10,14
i!"
MA
MG/L
1P7.0
99,0
119.0
0,00
9,03
104,0
109,0
106,0
115,0
109,0
127)0
122.1
108,6
111,1
115)9
117)3
124.9
114.3
116.6
0.4
9.9
127.7
U
K
MG/f
CA
MG/L
MG
MG/L
HC03
MG/L
C03
HG/L
Ct
804
NOJ
MG/L
PH
TD3
M5/L
65.0
94)0
60.0
68.0
65.0
82,0
eo)o
65,0
104.0
139)0
143.0
87)4
84,6
84)2
84)2
7B)t.
79)6
75)4
93.0
94)2
9.1 4
i;7
13,9
f
b)9
-s-§
16,7
21,0
216.0
181,8
l|9)l
176)9
135)4
pi
218)4
224)5
72.0
0.0
$
!3:8
82,0
???
ll:l
80.5
80;8
0.1
7 2
832,0
140.6
63,0
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
22
22
22
ii
22
11
22
a
22
!i
22
22
22
DEPTH
FEKT
MA
MG/L
K
HG/T,
CA
MG/L
'I I
l/
21/11/75
1/76
2/76
3/76
4/76
5/76
h/76
7/76
8/76
17/
25/
30/
26/
5/10/76
1/11/76
1/12/76
ll/ t/77
4/
3/
15/
7/
U/
9/
2/77
3/77
4/77
5/77
6/77
7/77
8/77
22 10/11/77
9,71
9,21
«IlO
?:h
7|87
»,1*>
9|35
9|7§
10.'44
10,91
10.74
10,00
9,<>2
10,19
13/10/77 10,29
186,0
396.0
4'2.0
427.0
405.0
428.0
44R.O
462.0
422.0
452.0
438,6
451^7
453,6
439.3
427.8
416.3
394.5
390.,.?
18,8
17.'-
16J4
?»!'
20j8
?iIS
2.?
2:5
9^2
26.0
27,0
30,0
23.0
51,0
42, n
41 o
36,0
34,0
14.0
155,0
130,0
12U2
105:?
185 4
94^
122:6
u*:?
38.3
MG
MG/L
»f:!
II:)
84,6
51:5
\l:\
3o:§
»:1
3b b
i^:i
44Z'/
44.5
44,0
47^2
43.8
33.9
3 ?: 7
HC03
HG/L
159,0
i!!:S
238,0
408,0
204.0
55ft,0
278JO
245,0
243.0
133.0
450.0
452,7
362.4
441,7
23?j9
328,2
385.6
26»,4
295j3
176,9
225J7
C03
MG/L
CL
25,2
0,0
i?:J
0.0
'*:!
3§:2
18,0
0,0
Q,Q
0.0
25,2
1 :8
24,0
6,0
ojo
0,0
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
185,0
226,0
229JO
2so;o
304,0
272jo
546 0
230,0
286,0
263jo
288|o
iJS;2
1H:I
267J?
260 3
JM:i
248^
23^2
221 b
SU4
MG/L
H03
MG/L
TOS
!•£«
fc-6
1130,0
2010,0
1850,0
2090,0
2750 0
2440 5
5210 U
2490,0
2466 0
2260,0
2620,0
2500,0
2310,0
M!W
2506,0
2150.0
2000,0
(Continued)
-------
TABLE A-13. (CONTINUED)
00
SITE DATE;
21/11/7S
14/ 1/76
7/76
3/76
4/76
5/76
6/76
7/76
8/76
5/10/76
2/11/76
7/12/76
10/ 1/77
"\m
4/77
5/77
6/77
7/77
4
7/
ll/
9/
8/
8/77
9/77
13/10/77
10/11/77
DEPTH
FEET
NA
MR/L
CL
MG/L
504
MG/L
7,83
0.04
?:H
2:J§
6,84
6,73
6,41
6.10
6.13
!:il
jlli
7|56
?:H
7.05
8^73
205,0
34b.O
277,0
358,0
339,0
355,0
364,0
389,0
415,0
380,0
406,0
436,0
361 3
384,8
3«4,3
«»:J
Jl 1 "I *5
' r § *
17.2
82j7
*!•!
41 ,
382
391,9
399 3
372 6
345,5
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE,
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
191,0
455!o
NOJ
HG/L
PH
ps
MG/L
7,79
999,2
1
796.6
784;o
07617
019,4
MS!I
?o;o
M
tt*8;8
2610 0
2670,0
2750.0
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE DATE
24
24
DEPTH
FEET
NA
MG/L
1
V,
1/77
2/77
9,99
10
10.06
2:15
24 4/ 3/77
24 15/ 4/77
10/ 5/77
7/ 6/77
il/ 7/77
9/ 8/77
8/ 9/77
. 13/10/77
J4 iO/H/77
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
Ln
O
SHE DATE
25
25
11
25
25
p
25
25
25
25
25
X
25
DEPTH
FEET
MA
MG/L
K
MG/f
CA
MG/L
MG
MG/L
27/
ll/
29/
iJ/
29/
2§/
21/11/75
14/ 1/76
• 2/76
3/76
4/76
5/7fi
6/76
7/76
. fl/76
5/10/76
2/11/76
H/12/76
ll/ 1/77
2/77
3/77
4/77
5/77
6/77
7/77
«/77
3/
4/
IS/
l^
ll/
9/
8/ 9/77
13/10/77
10/11/77
10,58 7B5.0 20.7
•• -• 769)o ' '-
626.0
711.9
9 61
9.B6
692.0
675.0
697,0
76l)o
H15.0
728,0
792)0
664)0
S53.3
806.6
B37)0
?»:i
o.o
736,0
776)5
837)-
67,0
67.0
45)0
44,0
44)0
13:8
|W
h)o
54 0
24.0
26)5
17)2
»:i
M
0,0
tt:§
B:S
1!
•?
i*;i
28.9
JI:f
?2'°
* " •
iw
0.0
55:;
iS:5
HC03
MG/L
14,9 620.0
• 9
60.0
566.0
397)0
426.0
5?!:8
390,5
ISM
1S?:1
•217.1
M»:i
525:3
l??:S
CL
MG/L
S04
MG/L
419,0 81.7,0
374 o
380)0
377)0
327.0
392.0
46H.O
505)7
452)l
455,3
489)1
.0
406 0
525 5
536)9
494)0
7iJ:8
859)0
805.0
959.0
868,0
0,0
955)8
94l)4
979)8
946)2
N03
MG/L
PH
IDS
0,0
f:I
?:i
0:8
S:S
8:?
8:3
0.3
0)6
E.C,
L-6
2743.6 3580,0
32tO)0
3310,"
3269)
HS2»«
3400,0
3190)5
3230 0
3550,0
3690.0
3630,0
3?50,"
3950,0
4000)0
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A- 13.
(CONTINUED)
SITE DATE
26 14/ 1/76
26 27/ 2/76
26 Jl/ 5/76
26 29/ 4/76
26 17/ 5/76
26 24/ 6/76
26 29/ 7/76
26 26/ P/76
26 5/10/76
26 2/11/76
26 7/12/76
26 ll/ 1/77
26 3/ 2/77
26 4/ 3/77
26 14/ 4/77
26 9/ 5/77
26 7/ 8/77
DEPTH
FEKT
6.90
6.32
6,05
6 , 0<*
5.52
ftlai
6,59
6,75
6.85
7.20
8,10
7,23
7 72
til
K CA
MG/L MG/T, MG/L
325.0 1
L1.7 35.0
451.0 12^9 |4iO
798.0 10^6 §0,0
866,0 12!l 26.0
9fl9 . 0
934,0 1
999.0
1021.0
1023.0
1049.0
1033,0
1032,5 1
952,9
929.7
912.4
9R9jo
,4;i 37;o
L2.9 35,0
§t° «3i°
[1.2 65|0
13^7 77,0
li i 'K:J
i?! «:»
4^9 77,6
3^7 72,3
L4l» 72,7
4^9 69^9
MG HC03 C03 CI. S04 N03 PH IDS E.G.
NG/L MG/L MG/L MG/L HG/L MG/L MG/L t-6
6.8 275,0 0,0 312,0 210,0 0.5 8,26 1176,0 1940,0
25.8 111.0 0,0 585|0 §98.0 0,1 8.24 2117.8 3700.0
46,7 163JO O;Q 64i;o 1123,0 0.0 8,35 28J2.3 4150,0
47.2 242.0 0,0 593,0 jl|6,0 0.] 8,32 |9|2,4 4I4°«§
52,9 337|o 7^2 57e|o 1180^0 0,1 8,64 ! !37jl 4.llo!g
54,0 211.0 0,0 573;u 1302.0 3,7 8.51 : 194^ 4 >40,0
57N 36§ 0 54lo 639 0 1545 0 08 8flfi , 4b3 9 4-300
58,4 351.0 32,4 597 0 1366,0 1,5 8,67 3520,0 +470 0
56,2 392.0 22,8 627;5 l470,6 6,4 8,59 37§1 8 4640,0
50,1 394,0 10,8 588,0 I3«3,0 2,0 8,36 .557; 2 4520,0
39,6 372,2 IR.O 583,0 1373.2 1.7 8,34 §498 9 4310,0
43,4 327,0 42,0 561,0 1330,4 1,5 9,00 3341,3 4730,0
499 3502 360 -iS"? 2 135B J 18 873 : 377 4 47200
52.8 340,4 68,4 561,7 1255,0 2,8 8,82 : 279,5 4620,0
52,3 375. R 37.2 556,4 1397,7 2.3 8,57 :4«5|3 474Q.O
54,6 423,4 20,4 614,9 1392,9 0,4 8.32 1S80|4 4870.0
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
(Continued)
-------
TABLE A-13. (CONTINUED)
Ul
ro
SITE DATE
OF.PTH
FFFT
27 21/1
27 14/
27 27/
0/76
1/76
2/76
1/77
2/77
3/77
8.22
6^74
6..18
6.29
5.99
O9
6.28
7^75
ft,34
6.62
R.B5
9,Ofl
MG/L
K
HG/L
CA
«G/L
MG/L
97,0
95,0
90,0
100,0
95 0
116,0
87,0
88.0
96,0
92,0
101,0
99^1
115.0
111,6
12,5
8*2
7*8
ii!
!i
47,0
52,0
60,0
32,0
30,0
42,0
55,0
59,0
57,0
'9,0
26,0
46,3
43,3
58,7
20
HC03
MC
/L
196,0
254.0
205,0
157.0
nijo
i??.2
16< .
202,6
190,4
31 7
C03
MG/L _
0.0
0.5
0,0
0.0
8:8
ojo
21.6
6.0
14^4
0.9
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
Mfl/L
63,0
62,0
57^0
64,0
94,0
55l&
55.9
64,2 352.0
S04
MG/L
148.0
150,0
145|0
155,0
133 0
175.0
142.0
152.0
167,0
126,0
N03
MG/L
132.0
-60,'
PH
IDS
MG/L
583,0
64o;o
589,4
504)4
626,3
568,3
587,8
604,8
454,1
601.2
«J:»
l»:»
740,0
910,0
610 0
770,0
700 0
910,0
720,0
790.0
750,0
610.0
740.0
730.0
Bfto.o
900,0
960.0
(Continued)
-------
TABLE A-13. (CONTINUED)
SITE OATE
Ul
DEPTH
P'EKT
Nfc
MG/L
29
29
29
ft
29
II
29
29
31
It
29
29
59
29
21/11/75
I*'. l>2*
I"
2/76
3
Jl/ 3/76
29/ 4/76
17/ 5/76
24/ 6/76
29/ 7/76
26/ 8/76
15/10/76
2/11/76
7/15/76
10/ 1/77
3/ 2/77
4A 3/77
14/ 4/77
9/ 5/77
7/ 6/77
ll/ 7/77
9/ fl/77
13/10/77
10/11/77
5,10
5,42
5.09
4 38
4154
337.0
1914,0
\ni\l
3583.0
3649,0
3262IO
3782,0
3841,0
3102,0
3576JO
3617,0
3611.9
3175,6
3078.1
3113.3
3128.5
m\
4,64
6,61
6,55
6,59
6,56
6 93
8,12
6.53
6.76
§.?2
7I6S 2941.7
C03 CL
MG/L MG/L
504
MG/L
N03
MG/L
PH
TD8
M«/L
0.0
0,0
2§»!
8,4
0,0
0.0
3379,
3596;*
3304,5
jfe
A ZERO VALUE INDICATES THE INFORMATION IS NOT AVAILABLE.
INFORMATION SOURCE: NMIMT, SOCORRO; NMSU, LAS CRUCES.
E.G.
2320,0
0680,5
5290,0
4740,0
5290J0
5100,0
-------
Ui
TABLE AiA.
DeiPfH-Tti-wATEfc FOP .SELECTED WFI-TS* .SESILLA VALLE*
CMEMISTKX 4UKAVAIbAtH.fc, INFGKK/iljoK SQUHCbl NMiMf, SdCOKHO
SITE YtftR JA* FtH MAR APH MA* JUrt JUL AUG SKP OCT NOV DEC
4
4
4
«-)•»»>
r<* •>*?>*
2«
1975
1976
1977
1975
J976
1977
1975
1976
1977
0.00
15,50
0,00
9,58
0,00
8,79
8,73
0,00
16, PU
1 5 , I f >
0 , 0 0
o,.ou
B,6V
8,80
0,0r.
15!bQ
0,00
a,HQ
9,44
O.Of!
B.3P
o,oc
15.65
15,73
0,00
6*83
0,00
8^10
P. 23
0,00
15,64
0,00
0.00
8.35
0.00
0,00
15,50
15.65
0,00
8,58
0,00
7,95
0,00
14.39
16,20
0,00
8.26
0,00
7.V5
0,00
0,00
14,02
16,60
0.00
8.16
0.00
o!oo
o.oo
0.00
16.33
0.00
0,00
8.54
0,00
0,00
0,00
0,00
13,20
16.37
P. 00
8,71
9*,35
0,00
8,12
0,00
14,75
13,85
16,74
0,00
9j49
8,81
o.uo
0,00
0,00
oloo
u.oo
9,34
0.00
0,00
8,67
0,00
A ZEHO VAf.'UK IUOJCATKS THK UFOH^AIION is
"4 SOUHCfcl: .»»«IKTr SnCHRPO
-------
APPENDIX B
B. FORTRAN LISTING OF USBR-EPA HYDROSALINITY MODEL FOR THE MESILLA VALLEY
Model Revision
The revision of the model from its original form to the present Fortran
version consisted of the following changes:
a. The subroutines PWROPR, RESOPR, and DTABLE, describing the
operation of a surface reservoir and power plant, were deleted, for
they are not needed in either the Vernal case study or Mesilla Valley
study. Necessary changes, as a result of the deletion of these sub-
routines, were made in the subroutine PERUSE.
b. Originally, the computer program for the model was written
for a Control Data Corporation computing system. To make the pro-
gram compatible with an IBM 360-44 system, three types of changes
were made:
1. Definition of variables and arrays — Several vari-
ables and arrays were defined by alphanumeric fields (A-
FORMAT) having work lengths of more than four bytes (e.g.,
A6, A8, etc). Because of the smaller word length available
on the IBM 360-44 (four bytes or less), a provision was made
to accommodate such variables and arrays. Some data arrays
were part alphanumeric and part real variable. These data
arrays were changed so that they could be accommodated on an
IBM 360-44.
2. Format statements — The original program used an
R-FORMAT to define a number of variables. These variables
were redefined by nonexecutable statements (e.g., integer
or real statements). The A-FORMAT statements involving Ai,
i > 4 (e.g., A6, A8, etc.) were changed.
3. Dimension statements — The dimension of the ar-
rays containing 20 nodes were changed to 5 nodes, since we
do not propose to use more than 5 nodes in this study.
This reduced the computer storage space and made the program
more efficient.
c. The form of the data input was modified to allow the irriga-
tion requirement to be met by both surface and groundwater when sur-
face water is not sufficient.
These changes do not alter the basic structure of the model; all changes are
indicated in the source listing following.
155
-------
Before proceeding with simulations for the Mesilla Valley, the model was
tested to see if it would reproduce the previous results for the Vernal, Utah,
case study. After the program was modified to permit internodal transfer from
the upstream aquifer to the downstream aquifer, the model produced results
which were identical to those given by the U. S. Bureau of Reclamation (1977b).
Program Source Listing
The following code is used in the USBR-EPA model source listing to indi-
cate changes made by us.
A: cards changed
B: cards added
CN: cards deleted, N = number of cards
156
-------
> .TX(
THIS ^HWPUT^R 6"nL
jvr, r--vji)srT ivr u$-
4 wtT-5 R^IN TN'T"
ft7cjs ALLT-J'NG AS v
"
.
"'nIr\' "
ATTNG
I '->NCD AS 4 SYSTEM ANALYSIS
N3nit CONCEPT IN DIVIDING
,
FLrxmiLITY IN MQOF.L DESIGN AS WAS
>r ^ M M j e; t
"DTAMK(
GFNRL / LT ITLC(16),MCTRL( 5, 3), HDBEG, IYRHEG, 1TEND,
'Nnn, iscn( 5, 201, KDOf, M(J«SFO{ 5), NPWTt>< 5, ?Q)
cSr" /
lOllM^ K'MVN'M '5,' 10,16) , KAQUNM (5,16)
PRn'FB / SOIL! 5, 10, 2t), BTANM 5, 10), TTANKI 5, 10)
, 101 , NS^r, ( 5) , •."•Jlisc ( 5, 10, 30)
(iN KUSTC5, 10, 301
/ SALT / OTH ( <;, 23), WQAL( 5, 23)
/ PARAM / BFG'RPS ( 5, II I , TGWR ( 5, 10 ) ,
PRnDIr ( 5, 10 ) , nBSVAL ( 5,10), CHEMDM ( 5, 10, 101
ON QINRIVtlO), nPSEPV(13l. KFA(23),
OFLPW flO ) , TFMp (10)
r<1|j! VALFNCE ( CfNUSF, KUSF )
THIS is TMC FIOST TTMF PROGRAM HAS REEM ENTERED FO" A PARTICULAR
J2P_- SFT 0CAO 6MH W»ITF UN'TS 4 W RFflO SYSTEM STRUCTURE ANO
HYHQQOIO
HYD00020
HY00003D
HYn00040
HYD00050
IHY000360
HYD00070
HYDOOIOO
HY000160
HYD00170
HYD00180
HYD00190
HYD00200
HYD00210
**** K 5 K = 1, 4
J^FAT = K
CALL "EPusFf jRE»ri, tw, IR,FI p«sni
5 T INT I NUF
Vn = MO^EG
'YR = IYRBCG
r«««« INITIAILI'ZE PASS INDEX np EACH N10E FOR USE IN ITERATIVE SCHEME
"**** IMITlALr?E STA^TiMr, INOKFS FOP NODE (MIN) AND SEOUENCE ( MINA )
r**** L^OPS
11 WRITE! I W, 161
16 COR^AT ( 1HI, RX )
HY000260
HYD00270
HYD00280
HY000290
HY 000 300
HYD00310
HYD00330
HY900350
HYD00360
HY000370
HYD00410
HYD00420
HYP00450
HY000460
B
A
Cl
C3
C2
^
;**«* R*r;jM ITERATIVE SCHEME FOR EACH NODE ^HERE NUMNOD = NUMBER 3F NOOEHY660470
20 T^ 600 K^=1,NUMNCO
C**** CHFCK 10 OETERMINF IF THIS IS THE FIPST PASS THROUGH THIS N3DE
;»*«* THIS IS THE FIRST PASS THROUGH THIS NTDE ** INITIALIZE RIVER
C**** FLOW «\'D CHEMISTRY ARRAY ( OINRIV ) ANO UPDATE AQUIFER ASSUME ONE
C**** MONTH LAG IN CHEMISTRY KIX ** LET ARRAY BEGWR = BEGINNING
;**** CONDITIONS OF AQUI FF.R AT START 3F TIME FRAME
00 25 K = 1, 10
OINRIV (K) « 0.0
BTANK ( KN, K ) = 0.0
TTANK ( KN, K ) = 0.0
B^GWR (KN, K 1 = GRTANK ( KN, K )
25 C3NTIMUF
C**** THIS PORTION OF THE SUBROUTINE IS USED FOR ALL PASSES ** LET NS=
;**** NUMBER OF SEQUENTIAL OPERATIONS IN THIS NODE
30 NS = t'JMSEO 1 KN)
HYD004BO
HYD00490
HY000510
HYD00520
HY 000530
HY000540
HY000550
HYD00560
HYD00570
HYD00580
HY000590
HYD00600
HYD00610
HYD00620
HYD0063Q
Cl
C****
50
51
\l
52
57
53
55
;****
C****
C****
C****
C****
:*»**
-»***
c****
c****
c**»*
60
C****
70
BO
C****
C****
C****
c****
c****
100
LOOP THROUGH EACH SEQUENCE IN NODE
00-503 KS*1,NS
IS = IABS ( ISEO (KN, KS ) I
IP ( ISEO «KN, KS)) 50, 500, 433
IFIOEMAND! KN.is.MTI ,NE. O.'oJGO TO 54
DEMANDID ( KN ,1 S, MO)
IFIDEMANDIKN,IS,MOI .GT. Q1NRIV I 1)IDENAND!KN,IS,MOI = QINRIV(II
GO TO 55
RLEAK
00 57 11=2,10
RLEAK(II)=Q1NRIV(III
CALL CHEMBT(RL6AK,0.0,KN,!S)
OEMANOIKN.IS.MOl'OEMANDIKN^.MOl-OINRIVdl
IFrDEMANOrKN,IS,MO))53.55,55
ic(ASS I DEMAND!KN,IS,MO)).LE.I.0)OEMAND
IF ( TEST . EO. 6.0 ) GO TO 230
TEMPR «= QINRIV (1) - CONST
IF ( ABS CTEHPRI.LT. 1.0 I TEMPR
IF ( TEMPR . LT. 0.0 ) GO TO 103
DEMAND CAM BE FULLY MET BY FLOW IN
KYD00640
HY000650
HYD00660
HYD00670
0.0
THE RIVER SET INDEX IINDY)
HYD00690
HYD00700
HYD00710
HY000720
HY000730
HYD00740
HY000750
HYD00760
HYD00770
HYD00760
HYD00790
HY000800
HYD00810
HYD00820
HYDOOB30
INDY » I
CALL RETURN FLOM AND SHORTAGE SUBROUTINE ( RFCOHP I TO COMPUTE
AMD ALLOCATE RETURN FLOW MAGNITUDE AND CHEMISTRY AND COMPARE HYD00840
SHORTAGE C IF ANY J WITH SHORTAGE INDEX ** IF THE TEST FAILS THE HYOOOB50
SHORTAGE CRITERIA RFCOMP WILL TERMINATE COMPUTATION
CALL RFCOMP I QINRIV, KN, IS, INDY, MO, CONST, IW I
SFT ACTUAL 0IVERSION AND CHEMISTRY OF HATERS DIVERTED
DEMAND (_KN, IS', 16 ) = CONST
OINRIV (1)
00 80 K = 2,
CHEMQM ( KN,
CHNTINUE
GO TO 500
I1?
K I = QINRTV (Kl
HYD00860
MYD00870
HYD00880
HYOOQ890
HYD00900
HYD00910
HYD00920
HY000930
HYD00940
THERE ARE NO UPSTREAM RESERVOIRS AVAILABLE FOR ADDITIONAL REL EASESMYOOIOIO
SFT OIVfBSION FOUAL TO FLOW IN RIVER ANO CALL ROUTINE RFCOMP
TO DETERMINE IF SHORTAGE IS TOLERABLE AND COMPUTE RETURN FLOW
AND ALLOCATION. IP SHORTAGE IS MOT TOLERABLE ROUTINE RFCOMP WILL
TERMINATE COMPUTATION
JVIOY = 2
CONST = OINRIV Cl)
TEMPR = 0.0
HYD01020
HYD01030
HY001040
HYD0
060
157
-------
;****
;*«**
uq
;*»**
170
;****
c****
c****
c«***
-*•**
c****
180
us
to TO 60
FARCH FOR AVAILABLE JPSTREAM RESERVOIRS FOR POSSIBLE ADDITIONAL
RELEASES TO MEET THIS DEFICIT
CONTINUE
GO TO 100
DEMANO IS TO BE SUPPLIED FRO* AQUIFER ( SUBSURFACE FLOW I
T5MPR = GRTANK I KN, 1 » - CONST
IF ( TEST .EQ. 6.0 I GO TO 340
IF } »BS ( TEMPP ) .LT. 1.0 ) TEMPR - 0.0
IF 1 TFHPR . LT. 0.0 I GO TO 220 .
O^MANrTCAN HE FULLY SUPPLIED FROM AQUIFER f SUBSURFACE FLOW I
S^T INDEX (INOYI = I
IHIDY = I
C»LL RETURN FLOW AND SHORTAGE SUBROUTINE » RFCOMP I TO COMPUTE
AND AILOCATF RETURN FLOW MAGNITUDE AND CHEMISTRY AND COMPARE
S-IORTASE ( IF ANY ) WITH SHORTAGE INDEX ** IF THE TEST FAILS THE
SHORTAGE CRITERIA RFCOMP WILL TERMINATE COMPUTATION
HYD01090
HYOOHOO
HYOOtllO
^nn,^.n
HYD01540
HYD01550
0? 185 K = 2, 10
TFMP (K) = BEGWR ( KM, K I
'31
; * ***
• ****
•"****
CONTINUe
C«LL RFfOMP ( TFMP , KN, IS, INOY, MO, CONST, IH 1
G'T»N« t KN, 1 I » TEMPR
S-T ACTUAL DIVERSION AND CHEMISTRY OF WATERS DIVERTED
nc^4^J^> ( nn , \$, 16 I = COMST
D"1 ?OQ K - ', 10
r^CMlM ( It", IS, K ) = PFGWa ( KN, K »
HY001580
HY001590
HY001600
HYD01610
HYD01620
HYD01630
HYD01640
HY001650
HYD01660
HY001670
HYD01680
HYD01690
HYD01720
HIR2,1Z?2
HYDOtT^O
r,-. TO 500
f>e*|/\Nn rv» N^T BE FULLV SUP"LlFf) BY AQUIFER- COMPUTE SHORTAGE
9FTUHN FLOW AND ALLOCATtON ( IF SHORTAGE NOT TOLERABLE RFCOMP
WTLL rrcMiN»TE r.nMPijTSTioN I
r^NST = T.9TANK ( KN, 1 I
HYD01760
HYD01770
HYD01780
HYD01790
HY
• * ** *
- * **•*
*****
* ****
s **»*
C****
-*««*
250
-**««
r**«*
<-•*»*
- »***
•***»
r ****
C****
790
HYD01830
HY001840
HYD01850
HYD01860
TCVIP,J~=: OIN'IV (1) - CONST HYOOIB70
IP ( TFMpi . I.T. 0.0 I GO TO 1010 SI221I62
r.i T1 70 HY001890
uHcu -ir«&s|i3 ( KH, IS, 14) THE DESTINATION OR USE INDEX IS GREATER HYD01900
T"»N 2.3 SIMPLE f PANDERS OF FLOW ARE TREATED AS DEMANDS SO THAT HY001910
ROUTINE RFCOMP HHL SET UP THE PROPER QINFLO ARRAY. THESE TRANSFERHY001920
TUN H&VF PFRCOMPUTEO VOLUMES (INPUT DATA i OR WILL B= COMPUTED IN HYD01930
HYD01940
HY001950
HYD01960
HY001970
HYD01980
HYD01990
(ii _ -nmsT HYP02000
T. 1.0 I TFMPR = 0.0 HY002010
i. i.y --'nM u*u HYD02023
HY DO 20 30
, - 3 j
-1 l«»i
TF«(VMr> BEPPESFNTS A SU«FA:= FLOW THAT is TRANSFERRED OUT
cTFM
V III - CONST
i.T. 0.0 I GO TT 1010
IS, 13 I .GT. 1.0 ) GO TO 290
WVOF FROM THE RIVER (SURFACE FLOWI TO AQUIFER
IF t DELANO I KN,
TB&NSFFOS WILL Pf
OR son COLUMN
lc ( TEST.C0. 3 I
ir ( TFST.CO. 4 i
TCXPR = DIMRIV
IF (• SBS
IP ( TFMP»
LT. 3.3 ) GO
TRANSFERS WILL PF MftDE FROM THF AQUIFER (SUBSURFACE FLOW ) TO THE HY002040
RIVER ** CONDITIONALLY IF TMF AQ'J! FFH I>j ANY NODE CANNOT MEET THE HYD02050
RE^SE^N^oVTHM^^
!C«RREFICIGRT*NK « KN, i , - CONST
IF t 49S ( TFMPP ) . LT. 1.0 I TEMPR = 0.0
ir ( KN. GT. 1 ) C,n TO 295
IF ( TEMPR . LT. 1.1 ) GO T-I 1370
** *! TT 1 ft Q
S'^T oiNFL-1 ARRAY ** iff Non^ = KJSF ( KN, is, 24) AMD SEQUENCE =
KUSF I KN. IS , 2"> ) . ALS" SFT UPSTPEAM AQUIFER NODE = KUSE
( KN. IS, 78 I FPR INTFRNODSL TRANSFER I IF REQUIRED )
LM = KUSE ( XN, t*, 2 1
Ic ( LN . FQ. 0 I GO TO 1071)
KT, = fJFINO ( IN I
L'J = KUSF ( KN, I?, 24 )
IF ( LN . EQ. 0 I GO Ti"> 1070
330
C****
310
3?0
_ = KUSE ( KN, IS , 35 I
IE | Ttr«0} . LT. 0.0 ) GO T0 310
fin iNTEFNn04L TRANSFER PFOUIRFO
DO 3J1 K > I, 10
QINFLO ( KP, , K I - 0.0
r^NTIN'J"1
AM TNTFRNOOHL TRANSFER is p^aui'EP CHECK CONDITIONS OF AQUIFER IN
:Ah NODE
i 4515 ( TFCPR )
= GRTANK ( KG, 1 ) - COMP
40'JI^FP ?AN icFT°ofciC?T SFT QINFLP AND GRTANK ARRAYS
r****
340
"****
" ****
r «»**
4OO
391
412
403
406
404
GRTANK I KG, I ) *
QINFLO ( KP/KZ, K ) = GRTANK ( KG , K I
CONTINUE
O'NFLO ( KP, KZ , 1 ) - COMP
TCUpO ~ 0 0
OCMAN-UKN^IS,MO> = OE«AW(KN, is, MO> - QINFLOIKP.KZ.I )
rnNST =B0=MANO(KN,IS,MO)
RgPRFSFNTS S SIBSUPFACE FLOW THAT IS TRANSFERRED
. 3.3 » CO Ti 1321
GO TO 190
THIS o^HTI°NS6FVTHF PROr,PAM INrLUOFS THE VOLUME AND CHEMISTRY
UTATES FOR ALl INFLOWS TO THF MOPE
GO(TO(;o9',409?402?403%09,434,405,409.409,409),IS
GO T0(409)409,407,403,409,409,409,409,409),IS
HY002060
HY0020TO
HY 00 2080
HYD02090
HYD02100
HY002110
HYD32L20
HY DO 2130
HYD02140
HY002150
HYD02160
HYD02I70
HY002180
HY 002190
HYD02200
HYD02210
HYD02220
HYH02230
HYDOZ240
HY002250
HYD02260
HYD02270
HY002280
HYD02290
HY002300
HYD02310
HYD02320
HY002330
HY002340
HY002350
HYD02360
HY002370
HYP02380
HYO02390
HY002400
HY002410
00002415
00002416
HYD02420
HYP02430
HYD02440
HYD02450
HY002460
HYD02470
HY002510
HY 002 520
GO TO 409
406 K*?,1
QINRIV
-------
'. ? 7
405
O'-Mn.Tl 1,6,
r-,T TO 439
K ) = T
. 1 .
OTNFL1I 1,7
m 4C1? K=2.lO
--JI wr(_n( 1 ,7, X| =QTN>=f "f I , ] , K)
0" 41] K=l , 11
TTMS (K) = 0!Ncir ( K'.>, IS, K
r.-NTIM'Jr-
T-<;T = OINFID (KN, IS, II I
r~NST = OT\FL° (KM, IS, 1 )
ir ( T^CT . MF. 1.0 > HP T
T"TS tS AN TNFliyj I' THT pi
if• 4***
450
: ****
500
r.****
c****
• ***»
:****
5?0
r ****
;****
r«**«
540
550
560
570
600
Gn TT 503
!•= I TEST .
THI<; fS AN
TF(TFMP(L)
( OTNPIV. rri»ST, <:*
OTNP!V (I) t CITNST
. EO. 3.3)00 TO 503
S I
HYD02S40
HYn-32550
HYP02560
HYDO?570
HYn02580
HY002590
HYDO?603
HYR02610
HYPO?620
HY002630
HYH02640
THT$ f? AN
.. .-_... _ AS A SUBROUTINE r>R I SFOIES OF SUBROUTINES AND/OR
FUNCTIONS WHI'.H ARE MONITORC0 «Y THE SUBROUTINE CALLED AT THIS
P3IMT. THE TECHNIQUE AS OUTLINED FOES NOT DESTROY THE
GCNCR*LIZCO CONCEPT OF THE MODEL.
TUIS AN (BSERVFT CHEC< POINT
C3LL VERNAL SUPROOTINE TO SIMULATE TRANSFERS OF FLOW
BETWEEN SURFACE ANn SUBSURFACE FACILITIES TO OBTAIN HYDRAULIC
BALANCE IN NODE
CALL VFRNAL (KM,IS,MO,OPSFRV.QINRI Vt
Nf=. ?.0 I GO T"
INcLrW TT THF _
,F3. 0.0 -A\'D. CONST .FO. O.OIGO T" 530
TALL fHFM'JR't T^MP, CONST, KN, IS ) HYD02650
GRTANK ( KN, M = GRTANK (KM, i ) *• CONST HY002660
GO TO 500 HYD02670
IF ( TEST . Nc. 3.0 I GO T-i 453 HYP02690
~ " IMFLCK TT THC PfVOING POOL HYf>02690
^P(l) .FO. 0.0 ^NO. CONST .EO. 0.0)GO TO 500
THEMTT ( TEt»P, rr>NST, KN, IS ) HY002700
TTANK ( KN, i I = TTANK ( KN, i i * CONST HY0027to
r,n TO 500 HYD02T20
I<= ( TFST ,NE. 4.3 ) GC T^ 1333 HYD02730
AT THIS POINT IN THE MODEL :RTT=RIB FOR THE OPERATION OF THF HYno27*o
IS RcQUIPer>. THF OPERATIONAL '"ITERIA SHOULO BE FORMULA TEOHYD02750
------------ HYD02760
HYD02770
HYD02783
HY002790
HYD02800
HY002BIO
HYD02P20
HY002830
HYD02840
HYD02850
HY002860
HYD0287O
HYD02880
HYD02890
HYD02900
HYD02910
HYD02920
HY002930
HY002940
HY002950
HYD02960
HY002970
HYD02980
HYD02990
HYD03000
HYD03010
HYD03020
HYD03030
HYD03040
HYD03050
HYD03060
HYD03070
HYD03080
OBSERV (K) HYD03090
HY003100
HY003110
HY003120
HYD03130
CHECK TC DETERMINE IF A SOIL CDLU«N EXISTS IN THIS NODE
It ( TTSNK ( KN, I I . LE. 0.0 ) f,0 TT 540
CHECK TC DETE'MINE IF S"IL "!r5LU>'N PAT4 EXISTS FOR THIS N3DF
NSDIL = NSE<5 1KN )
IP ( NSML . EO. 0 I r-,0 TO 1030
STIL COLUMN n&TA EXISTS PFRr.TLATE HfiT^as {N TTANK
SrTL COLUMN INTT RTAW
CALL SPIL'O ( KN, IH, IS, NSOU )
UPr)ATc AOUIFE5 WITH LINEAR MIX WITH WATF* IN RTANK
STANK (KN, L» = TTANK ( KN , t I
01 520 K = I, 10
TCMP (K) = UTANK
CONTINUE
CALL CONVER « TFMO , 2 ,IW)
CALL CHEM3T ( TE«P . 3., KN, t I
K ( KN, K J
UP TRANSFERS OF OUTFLOW FROM THIS NODE TO NEXT . ._
- WHER.F N0= NODE NUMBER "F NEXT LOWER NODE AND NS =
ENTERING SEQUENCE CF NEXT LOWER NODE
NO = NCTRL ( KN, 2 >
GO TG 560
IF ( KN . EQ. NUMNOO
NO = NFIND (NO)
NS = NCTRL { KN, 3 )
no 550 K » it 10
OINFLO (NO, NS, K) =
CONTINUE
= 1,10
KM, K )
KN, K I
OT 570 K
PREOIC (
OflSVAL (
^ONTINUe
CONTINUE
CALL WRITIMO.IYR ,1 W, KKOUNT ,' YO,:
Q1NRIV (K»
08SERV CKI
, TX, OEXCS I
1365
i f\fn
1375
HY003140
HY003150
HYD03170
IFUYR.EQ.IYRENn .AND. MO.GT. "OENOICALL EXIT „„„.„„
IF f MO . LE. 12 I GO TO 753 ^8§!llo°
IYR = IYR «• 1 HY003230
^EAo'ry LT- IWFNO • G0 T0 77° ^g833223l8
^0LTn°!oUSE'JRFADlIWtIR'El-PAS01 HY003250
PROGRAM CONTROLLED ERROR MESSAGES ARE GENERATED HERE HYD03260
WRITP I IW, 1005 ) TEST HYD03270
CORMAT ( IH1, 7X, 20HDESTINATION INDEX = ,F3.0,12H IS IN ERROR I HY003280
GO TO 1500 HYD03290
WRITE ( IW, 13151 HYD03300
F1RMAT( 1HI,7X,45HOEMANO LEAVING SYSTEM FROM SURFACE IN OEFICITI HYD03310
r.h TO 1500 v HYD03320
WRITP 1 IW. 1025 > 1^003330
FORMAT (lHl,7X,48HDEMA\in LEAVING SYSTEM FROM SUBSURFACE IN DE FIC IT) HYD03340
GO TO 1503 HY003350
MPITF I[ IH , 1035 1 HY003360
FORMAT ( IHlt 7X, 25HNO SOIL COLUMN DATA FOUND I HYD03370
GO TT t "500 HY003380
URTTF ( iw . 1065 » HYD03450
CTRMAT ( IHlt 7X, 42HSURFACE TPAMSFER AS A DEMAND IS IN DEFICIT ) HY003460
GO TO 1500
WHITE ( IW . 1075 1
,EO. IYHEND .AND. MO .GT. MOENO)WRITE(7,749 IKYR.KMONTH,
< 3RTANM I, U ,GRTANK{ 1, 101, GRTAMK {2, I ) , GRTANK ( 2, 10 )
749 FORMATU5. 13,' l',?F10.1,' 2',2F10.l)
IF(IYR.EO.IYREND .AND. MO.GT.MfFNOICALL GRAFF(CYO,CYP,TX,KKOUNT,
750
770
****
l?0?
1015
1tl?n
1025
1030
1035
Cl
C6
HYD03470
WKiir i IN . iui3 i HYD03480
FORMAT ( IH!, 7X.45HSU9SURFACE TRANSFER AS A DEMAND IS IN OEFICITIHY003490
rn rn i **Ort Hr003500
WRITE t IW, 1510 i KN , IS . ft ^ „ , Hf003519
1510 FORMAT ( 3X, 12HFOR NODE = , 13, 9X, 10HSEO.NO. * ,131
CALL EXIT
END
HYD03540
159
-------
JHFST SEVERITY
001rCC PYTES
OE WAS 0
3), ^O^EG, lYRflEG, MOEMO, IHYD03560
EQ( 51 » NOWTR < 5, 20) HY0035TO
HYD03660
HY003670
SUBROUTINE ...
:"".MON / GFN»L / LTITLFU&),HCT!*L(
AYRFNO, t>!UMNOQ, ISCQ< 5, 201, KPRt,
^HMKOM / iJFSER /
\ niNFL^O, 10,121, OEMANDI5, 10, 16), K HY000090 A
19F"NM| 5, 10.165, KQTNNM{ 5, 10,161 , KAQUNM (5,161 HYO00100
rnMM:N / PROPER / SOIL! 5, 10, 211, 'A! V,iC,HV/'GH
6':HK '/.tTPM/tTRN • / , $ TnA/ «TOA '/.JPDA/'POA '/.tENE/'^NF i/
f**** <;FT npto AMD URITF i_nr,tfAL UNITS
C**** WRITE INPUT LISTING HEADING AND VALUES OF JREAD
WRITF ( IW, 10 I
ID F-IRMAT IIHI, 2^x, T?H *** LISTING ~.F INPUT DATA **» / / )
WRITE ( IW , *0 ) JRFAD
30 FORMAT (IH
** WHt'N JREAD * I RF10 AND
HYD036BO
HYD03693
HYD03700
HYD03710
HYD03720
HY003730
SYSTFM STRUCTURE - CHNCHJO^ THIS
KYD03750
**»FAn KITH CARD CONTMNING THE VORO CONFNO IN TH? FIRST SIX CnLU*NSHYr»03760
WHEN JREAD * 2
TITLES AND INITIAL CONDITIONS OF
flNP ?TORF INITIAL SOIL CONTITIONS AS
-• RFS. CONCLUDE THIS READ WITH
THE CIRST SIX COLUMNS
HYD03770
HY003780
^ f" COl END
HYD03800
HYD03810
HY003820
HYD03830
-** **wHFN JSFAD = 2 RFAO AND
C«* **SJRFACF * •• ~
r**
- **
C*****CARO CONfAINING THE
C
C*****WHFN J»CAO = 3 READ AMP STO^F KATHF*IAT ICAL REPRESENTATIONS OF
r.*****ocPTlNFNT SURFACE FACILITIES PHYSICAl FEATURES . "ONCLUOE T4IS HYP03850
r*****RCAD WITH CARD CONTAINING FOUENO IN THE FIPST SIX COLUMNS HYD03860
r HYD03870
r«****wHEN JREAO = 4 RF«P INFlOwS AND DEMSVOS WITH TITLES FOR THE FIRST HYD03880
c*****F3£ME- DNLY NOTE ** TITLF MUST PRECEDE EACH INFLOW AND DEMAND DATA HYoo3690
C*****CONCLUDE THIS PFAD WITH CARD CCYTAINIYG THE WORD ENDATA IN THE HYD03900
;**«**FIHST SIX COLUMNS HY003910
C HY 003920
-«*»»*VHCN JREAO = 5 PFAD INFLOW AND DE«AND DATA CARDS SUSEOUENT TO THE HYD03930
C*****FIRST TIME FRAME AS WFLl AS ANY TRANSACTION CARDS— CONCLUDE THIS HYD03940
r*****RE*D WITH CARD CONTAINING THE vORD =NOATA IN THE FIRST SIX COLUMNSHYD03950
FJ = 0,50*
.
0" TO ( 40, 220, 2000, 600, 650 )
>:*»** RPAD SYSTFM CONTROL CftopS
AO RF&O ( IR, VD I ITITLE, KPRI
60 FTRKAT (16A4, T16)
, WRITE ( IW, 33 ) LTITLf , K"RI
•^3 F^R«AT « IH ,16#4, I 16)
JK= 0
J.I = 3
100 READ t U,l?0)in»'F,iTyn, (LTFMnm ,
1?0 F"R"AT (2A3,??I3)
WITEdW.l^-mGNe, IT«0,
140 FTRMAT JlH , 2A3.22I3)
•;**** STnRE SYSTEM I-O^TOTL DA
1C ( IDME . NE. «CON I
IF [ ITHT . N=.
JK = JK + 1
JRFAP
OHYD0396
HY003970
HY003980
HY003990
HYP04030
HYP04010
HYD04020
r-i T
1000
160
150
160
OP 153 K = 1,
UK, K
JK
NS
TO 100
( I TWO . N'E.
= V^INO ( LT(
(JK) = L1
ITFMP (2)
GT. 20 I
= 1, NS
IF ( NS .
"1 17D K
KX •* < «•
( JK,
^Q I Gn TO
(II )
IF
IV 4
TT
G-> TO 100
110 T<= ( ITWD . N1^. tWAT I
JK = VFIvn ( I TFWP ( II )
*** STTOF SYSTEM F| nw ARRAY
m 260 K = 1, ?0
KX = K t t
( j<. K ) s LTFMP
100
RC
{ i )
,7
(3)
rnp
«*»* t\j THIS POSTIT*: C-F TU
?">'~) R=AD (1°, 737) I'"VF, ITWCI,
230 F-R»IAT (2*3,12, IX, 13, A3,
WOTT« (IW, 2*0) 'ONE, "
I»'TTI*I
^^^UTIM
ITWO,
A; T[TL=S OF SA
PHYSICAL PAT A
16i4)
I = I,
HYD04053
HYP04070
HYP0408D
HYD04090
HYD04100
HY004110
HY004120
HY03413D
HYD04140
HYP04160
HYr>04l«0
HYf>04200
HYD14210
HYD04220
HY?14240
HY004250
"YD 04260
HYP04270
"YO04280
HY004290
HY 0043 10
HYD0432}
HY004330
HYi>04340
Hvri 04350
HY OQ4360
HYP043PO
1,3),(NTFVP(
HV004403
HY004410
HVnQ44?0
HYD04430
HYO04440
HY004450
" HY104460
HYO04470
, 16)OYD04430
MYO 04490
, 16)HY00450J
160
-------
2*0
( IH
IXr
STORE "MTI >: OF~f-«lMcro (
JK S'NFINO "( LTFV ( 21 i
on 250 K = It 16
( JK,XI=NTF"iP(KI
10) ,
UR, 2<)3) IONE, ITWH, (LTEMP(I», T = I, 4), (CTEMPfJ), J =
,, ,.. .,(LT?^P(K),K = 5, 7)
790 cr.3-.iAT (743,!?, Tl, 13, A3, 10^6.0. '2, II, 12)
WITE (I*. 300) IONF, ITwn, ( LTC.MIM I) , I = 1, 4), (CTEMPIJI, J =
11, 10), (LTEMP(K), K - 5, ^^
300 FTRMATUH ,2A3,12,11,13,ft3,c7.0,9F6.1, T2, I I, 12)
340 IF ( IOVE . NF. 1,r,at | GO TO 1220
•--•sc INITIAL CAPACITY AND CHEMISTPY i^R AOUICFR
JK = NFIND ( LTEMPI31)
**** ^HFTK TO DETERMINE IF ONLY TOTAI SALT"; tN PPM ARE REPORTED
IFCCTEMP (10) . GT. 0.0 I 00 "n 350
;**«* CONCENTRATIONS CF. CONST ITUFNTS ARF RE°QRTED CONVERT TO PPM
,**«-» n\jr> C3>*PIJTE T1TAL SALTS ON BASIS r>p CnNC"ENT«ATIONS
CALL COWER I CTFMP, LTEMP (21.IWI
35J TO 363 K = 2, 10
r.BTANK ( JKt K } = CTFMP (Kl
360 cnMTtkjijp
NEXP = I TEMP (6>
FAT = 10.0 ** NEXP
G"TANK ( JK, I J = C,TF«1P (1) * PAC
^0 TT 220
**** READ SOIL DATA FC» SOI L COLJMN - FACH SEGMENT IN SOIL C3LUHN MUST
«*** RC TH PROPER SEQUENCE. SEG1FNT NUMBER ONE IS SEGMENT NEAREST
**** GROUN3 SURFACE.
370 IF I IONE . NF.. $nL
IF ( ITMO .EO. tENt) I
IF ( ITWO . NE. t^EG
LSFG = 0
KNPOE = LTEMP(2I
JK = NFINO (KNOOE )
( JKJ = LTEMP (I)
= KNODE
MAX = NSEG (JK)
01 433 J = I, MAX
RFAO(IR,3RO) lONEtlTHO, I LT'MP ( KA I , KA=l,2», (CTEMP( KB I ,KB
390 FORMAT(2A3,2I3,8F5.0,F3.0,
1 GO TO 10«0
GP Tn ZOOO
J GO TO 1100
, 1 51
WRifEHw;59biT6K'E;ifwO."TtfEMp""{KAr,'KA=i;2j, (CTEMP )
IS = LTEMP (IJ
r**t* RAISE M6GNITUOE OF DEMAND BY POWER OF 10 ( LTEMP 16) )'
NFXP = LTEMP (6)
FAC = 10. 0 ** NEXP
CTFMP (I) = CTEMP (11 * FAC
1F(JK .EQ. 2)60 TH 651
TF(LTEMP(4I .NE. $CHK)GO TO 651
TFUS .NE. 5IGO TO 653
ELPASO=CTEMPtl)
GO TO 651
653 1F(IS .NE. 6)GO TO 651
01 652 J=2,10
652 CTEMP{ JI=GRTANK(1,JI
c,*!l SoC'Di§ANDNOATA*WITH)ORGSlTHOUT°REQUlRED CONSUMPTIVE USE DATA
sfoRF^SPURCE INftlCATOR" INVOCATION 13 OF DEMAND ARRAY
SYMBOLICALL! THERE ARE ONLY TWO SOURCES SUPPLYING DEMANDS
HYD06290
1HYD06300
HYD06310
HYD06320
HYO06330
HYD06340
HYD06350
HYD063*0
HY 006370
HYD06380
HYD06390
HYD 06400
HY DO 641Q.
;****
OR MUNICIPAL^ND^NDUSTRIArOR''^^ DESfiNAT lON^A^RANSFER 'OF
TF^'L?^ fW^IK.T°»?SS1VI5?«ND ( JK. IS. 14 ) » 1.0
IF ( LTEMP 14) I EOl «MAI ) DEMAND « JK, IS, I* > - 2.0
HYD06420
HYD06430
HYD06440
HYD06450
HYD06460
HYD06470
HYD064BO
HYD06490
HY-006520
HY006530
HYD06540
161
-------
( LTEMD
IF ( LTEMP
5.0
6.0
JK, IS, 14 )
FO.
_ .. . FQ. iruT ) nF«sNn t JK, is, 14 »
;**** LTEMP (21 CONTAINS INDICATOR DESIGNATING CONSUMPTIVE USE OATA
:»*** o° TRANSFER OITfl HILL 0» WILL NOT FOLLOW DEMAND CARD
IF ( LTEMP (2) .ME. I ) GO TO 600
^ESH ( IR. 660FlpICHK.(LTEMP(K^,K = 1.7»,(CTEMP(KA),KA=l,3l,
660t=1»MAT ( 46, jl'jIZt F<}!o, 2F3.3, 3 ( A3, 13, 12, 131 , 16X, 12
W»ITF ( IW/6701 ICHK,(LTEHP(K),K=1,2),(CTEMP(KAI,KA = 1,3) ,
i-.^^^ou.T.. itTf"P (KI" t KB « 3, 16 I
670iF?"MAT(lHi,A6jI3jI2, F9.0, 2F3.0, 1 ( A3, 13, 12, 13) , 16X, 12
:**** ;-nNSU«PTIVE'uSE OR TRANSFER DATA WILL BE READ AND STORED
IF ( ICHK . NE . $SC1 I GO TT U69
JK = NFIND ( LTEHP (II »
IS = LTEMP (21
MO = LTEMP ( 151
CONUS* ( JK, TS, MO > = CTEMP (II
( JK, is! 13 I = CTF-P (21
f JK, IS, 14 I ~
20D1
C3NUSI-
CTEMP (3)
JK, is 13
JK, IS,
.NE.3IGO TO
( JK.IS.MQKTEHPt
01=CONUSE( JK,IS,MOI/Fl
0? = CONUSE( JK,I S,HOI / E2
OELO=(r>l-D2l/2.0
OFLDH=I>l-D2
zoo* OCMANOI jK,!s,ioi=D2
WRITE(6,2002IOEMANC( JK t IS ,KOI .CONUSE ( JK,I S ,KOI ,E2,ETFAC
2332 F'5RMAT(//t25X,'*** CALCULATED INPUT 04TA ***•,//, 20X, • IRR IGATION 0
CINFLO (JK, IS, 11 I
DO 710 K = 1. 10
OINFIO (JK, IS, K » « 0.0
CONTINUE
IF ( CTEHP (II . IE. 0.0 I 60 TO 600
?INFLO (JK, IS, 1 I > CTEMP (II
HECK TO DETERMINE IF OATA CONCERNING CHEMICAL CONSTITUEMTS
ARE PART 3F THIS DATA
1C | CTEMP (21 . GT. 0.0 1 GO T3 720
CARD DDES NOT CONTAIN DATA FQR CHEMICAL CONSTITUENTS
OINFLO ( JK, IS. 101 = CTEMP (101
GO TO 600
CARD CONTAINS DATA FOR CHEMICAL CONSTITUENTS
CALL EONVER ( CTEMP , LTEMP (2I,IWI
DO 730 K = 2, 10
QINFLT (JK,
CONTINUE
OINFLO ( JK,
GD TO 600
IF ( IONE
GO TO 600
ALL PROGRAM CONTROLLED ERROR MESSAGES ARE GENERATED HERE
WRITE ( IW, 1010 I
FORMAT ( IHl, 7X, 26HTHIS IS NOT A CONTROL CARD I
CALL EXIT
WRITE ( IW , 1030 )
FORMAT ( IHl, TX, 36HNUMBER OF SEQUENCE POINTS EXCEEDS 20 I
CALL EXIT
WRITE I IW , 1050 I
FORMAT ( IHI, 7x, 36HNO END SIGNAL FOUND FOR CONTROL DATA
CALL EXIT
WRITE ( IW , 1070 I
FORMAT ( IHl, 8X, 33HRESERVOIR CHEMISTRY CARD MISSING I
CALL EXIT
WRITE I IW , 1090 I
FORMAT ( IHl, 7X, 34HOATA FOR JREAD = 3 IS OUT OF ORDER I
K I = CTEMP (Kl
IS, 12 I = LTEMP (21
NE. .$TRN I GO TO 1200
I
CALL EXIT
WRITE ( iw , 1110 i
FORMAT ( IHl, 7X. 29HSOIL COLUMN DATA OUT OF ORDER I
CALL EXIT
FORMAT ( IHl, 8X, 30HNO CONSUMPTIVE USE CARD FOUND I
CALL EXIT
FORMAT ( IHl, 7X, 39HINFLOW OR DEMAND CARDS ARE OUT OF ORDER I
CALL EXIT
WRITE ( IW, 1210 I
FORMAT ( IHl, 7X, 34HTP.ANSACTTON CARDS ARE OUT OF ORDER
CALL EXIT
FORMAT'(IWlHlt27X,'34HDATA FOR JREAD « 2 IS OUT OF ORDER I
CALL EXIT
2000 RETURN
END
HYD0704C
HYD 07420
HYD07430
HY007440
HYD07450
HYD07460
HYD07470
HYD07480
HYD07490
HYD07500
HYD07510
HY007520
HYD07530
HYD0754'
HYD0755
HYD0756.
HY007570
HYD 07640
HYD07650
HY 007660
HYDO7670
HY00768
HYD0769
HYD0770_
HY007710
HYD07720.
HYD07730
HYD07740
HVD07750
HYD07760
HVD07770
162
-------
E WAS
SllflPr>l»TIN!= «PtT(url,TYR , TW,KKOUNT,r.YO,CYP,TX,OEXCS)
0=XCS( 2, 10)
CVII 122),CYP( 122),TX(122I
!» f r,cN^L / ITITLEH6I ,NCTRL( 5, 3), MOBEG, IYR9Fr,, MOENO, IHY007790
,NTFMP(10) HYD07910
INTEGER SJAN/'JAN-*/,*FEP/'FEB '/.JMAH/'MAR */,«MAY/'MAY '/,*JUN
l/'JUN V.tJUL/'JUL • f, SAUr./'AUG «/,tSFP/'SEP '/.iOCT/'OCT V.SNOV
*/'NCV '/.triEC/'DEC •/
EOUIVALFNr.E ( CONUSE, KUSF ) HYD07920
DATA MPN/'JAN ','FFP. ',«MAR •.•APR ','MAY ",'JUN ','JUL ' ,' AUG ',
I'SFP ','OCT «,'NOV ','DEC •/
DATA IPAHE f 0 /
MONTH = MON (MO I HYD07960
KYP = IYR + 1900 HYD07970
700 KN = I, NUMNTO
r'c ( IW, '53) (LTITLE (K) , K = 1,16 I , IPAGE
50 FORMAT! 1H1, 7X.16A4, 3X, 19HNUMBER OF NODES =2 , 6X,
1 8HPAGE NO. .13/1
_ 2HNA, 4X, 2HCL, 4X, 3HSC4 , 2X, 4HHC03 , 3X, 3HC03 , 3X,
3 3HNH3 , 3X, IIHTCTAL SALT*: / 56X, 9HACRE FEET,
4 9 (3X, 3HPPM ) , 3X, 7HTOMS/AF / I
WRITE ( IW, 70)
70 FORMAT { flX, 42HOPERATIPNAL SFOUFMCE OF SURFACE FACILITIES / )
95 W TO t100. 110>,KN
MA REFERS TO THE "IRRIGATION DEMAND" CARD OPERATION
NUMBER. FOR N3PF 1 THIS SEOUENCC NUMBER IS -3, BUT IT IS THE 5TH
OPERATION IM THE MODE I SFWFNCE OF OPERATIONS.
MB REFERS TH THF 1ST OB?EPVcn OUTFLOW OPERATION NUMBER. FOR NODE I
THIS SEQUENCE NUMBER IS 5, BUT IT IS THE 8TH OPERATION IN THE NODE
I SEQUENCE OF OPFPATiriNS.
HYD07980
HYD07990
HYD08000
HYOOBOIO
HYD08020
HYO08030
HYOOB040
HYD08050
HY008060
HY008070
HY008080
HY008090
HYD08100
HY008110
HYDOB120 A
MC REFERS TO THE LAST OBSERVED OUTFLOW OPERATION NUMBER. FOR NODE
. ~NIIMRE« IS 7, BUT IT IS THE 10TH OPERATION IN TH6
I THIS SEQU^NCf
N9DF 1 SEQUENCE
OF OPERATIONS.
C
C MD REFERS TO THF "IRRIGATION RETURN FLOW" CARD NUMBER. FOR NODE I
C THIS SEQUENCE NUMBER IS 8, PUT IT IS THE UTH OPERATION IN THE
C NDOE 1 SEQUENCE OF OPERATIONS.
100 MA=5
MC=10
M0=ll
GO TO 150
110 MA=5
HYD08170
.
MD=9
150 NS = NUMSEO ( KN I
MARK = 0
03 490 KS = I, NS
IS = UBS ( ISEO ( KN, KS I I
C**«* WRITE OUTPUT OF LIN<=S CONTROLLFO BY INOEX(MA) (INFLOWS- UtMANOS)
IF ( US. GT. MA I GO TO 190
~- ' ' KN, KS I.GT. 0 I GO TO 450
KN, KS l.LT. 0 ) G3 TO 300
160 IF I ISEQ (
IF ( ISEQ (
GO TO 490
190 IF { KS . NE. MR ) GO TO 220
WRITE ( IW , 210 )
210 FORMAT t/8X, 28H08SERVFO OUTFLOWS FROM NODE / )
220 IF ( ,2X,I5. 3X.F6.3)
250 IF ( KS . LF. NS I GO TO 160
;***** THIS PORTION OF THE SUBPOUTI
LAST TIME FRAME .5X.I9,
r*«***fN CORRECT OUTPUT MODE
UBPOUTINE SETS UP ALL DEMANDS FROM SYSTEM
HY008520
00000059 A
HYD08540
HYD08550
HY008560
163
-------
300
320
330
340
• ****
400
405
408
411
410
409
C****
c****
4ZO
c«*»*
c****
450
460
470
490
C****
C****
500
520
OO 320 K = 1, 10
NTEMP(KI=KOEMNM(KN,IS,K)
LTEMP (K) = KDEMNM ( KN, IS, K )
CONTINUE
LTEMP (6> = DEMAND ( KN , IS, 16 I
DO 340 K = 2, 10
K4 = K «• 5
LTEMP (KA| = CHEHDM ( KN, IS, K I
CONTINUE
TONS = CHEMOM (KN, IS, 10 » * 1.36 E-3
THIS IS THE GENERAL OUTPUT STATEMENT FOR MOST OF THE OUTPUT
IF { MARK .GT. 8 ) GO TO 408
IF ( LTEMP (6) .GT. 0 ) GO TO 408
TONS= 0.0
01 405 K = 6, 15
LTEMP (K) = 0
CONTINUE
IF(ISEO(KN,KS> .NE. 4IGC TO 410
IF(QEXCS(KN,l) .EO. O.OIGO TO 410
DO 411 K=l,10
K»=K+5
LTEMP(KAI=QFXCS(KN,K)
TONS=QEXCS(KN,lOI*l.36E-3
CONTINUE
WRITE(IW,409)(NTEMP(K),K=l.lO),(LTEMP(Jl,J=6,15),TONS
FORMAT!IIX.10A4.5X,19,8 IIX,I5),2X,15,3X,F6.3I
IF ( ISEO < KN, KS ) . GT. 0 ) 10 TO 490
IF ( DEMAND ( KN, IS, 14 ) . GT. 2.0 ) GO TO 490
IF(ISEOIKN.KS) .60. -DGO TO 490
THIS PORTION OF THE SUBPOUTINF COMPUTES AND OUTPUTS THE SHORTAGES
FROM THE IDEAL DEMANDS
KTEM = DEMAND ( KN , IS. MO I
LTEMP (171 = KTEM - LTEMP (6)
WRITE ( IM, 420 I LTEMP (17 I
FORMAT I MX, 31HSHORTAGE FROM THE IDEAL DEMAND , 14X, 19 )
GO TO 490
THIS PORTION OF THE ROUTINE SETS UP ALL INFLOWS TO THE
SYSTEM IN THE CORRECT OUTPUT MOOE
DO 460 K = 1, 10
NTEMP (K) = KOINNM ( KN, IS , K )
LTFMP (Kl = KOINNM ( KN, IS , K I
CONTINUE
LTEMP (61 = OINFLO ( KN, IS , I I
D"> 470 K = 2, 10
KA - •< «• 5
LTEMP (KAI - QINFLO ( KN, IS, K >
CONTINUE
TONS = OINFLO ( KN, IS, 10) * 1.36E-3
GO TO 400
CONTINUE
BEGIN THE COMPARISON OF OBSERVED AND PREDICTED END OF NODE
FLOWS AND CHEMISTRY
WRITE ( IM , 520 )
FORMAT ( // 8X, 16HCOMPARISON INDEX f )
00 530 K = I, 10
K4 = K + 5
HYD08570
HYDOB580
HYD08590
HYD08600
HYD08610
HrD08620
HYD08630
HYD08640
HYOOB650
HY008660
HYD08670
HYD08680
HYD08690
HYD08700
HYD08710
HYDOB720
"0
FROM NOOE.12X.I9.BdX.I5l.
LTEMP (KA I = OBSVAL ( KN , K )
<_KNt.lO ) * 1.36E-3
535 pnRMAT ( 1 Lx»33H
<2X,I5,3X,F6.3)
OP 540 K = I, 10
K A — K + 5
LTEMP (KA I = PREDIC ( KN, K I
TONS = PREDIC ( KN , 10 I * 1.36E-3
545 «M!T!!f{iMiAVS??ttRlDT!tlSI65?^0« FROM NOOE.lU.I9.SUX.m
<2X,I5,3X,F6.3)
TFuP^K1) = OBSVAL (KN, K ) - PREDIC ( KN, K I
KA = K+ 5
LTCHP (KA ) « TEMP (Kl
550 CONTINUE
TONS =.TEMP (lpi_*_l.36F-3 ^
, I9,8( IX,
555
<»,2X,I5,3X,F6.3I
560 FORMAT1 ( /*8X, 25HCHE-ICAL CHANGES IN NODE / )
OT 570 K = 3, 5
ITFMP (Kt =»C8N23
570 CONTINUE
T?MP8?K^ = OBSVAL ( KN, K > - OINFLO (KN, 1, K I
KS = K *• 5
ITFMP (KAJ = TEMP (K I
580 TMp 101 * U36E-3
5I.W
i PREO?C (KN, K ) - OINFLO (KN, I, K » '
KA = K * 5
LTEMP (KA) = TEMP (Kl
590 CONTINUE
LTEMP (61 = 0
5os ^Siiiftjl:?^!??!^
IF ( KN . NE. NUMNOD I GO Tn 700
600 FORMAT* ("'sxJ^tHCHEM'lCAL CHANGES IN SYSTEM / I
T5«P1?K» = nBSVAL ( KN, K J - OINFLO (1. I, K»
K4 = K t 5
LTFMP (KA I = TFMO (KJ
0 CHNTINUF
HYD08730
HY008740
HYD08750
HYD08760
IS HYD08770
HYD08780
HYD08790
HYD08800
HYD08810
HYD08820
HYD08830
HYD08B40
HVD06850
HYD 08860
HYD08870
HYD 088 70
HVD08880
HYDOB890
HYD08900
HYD08910
HYD08920
HYD08930
HYDO8940
HVD08950
HYD08960
W008970
HYD08980
HYD08990
HYD09000
HYD09060
m.D_Q9Q2fl
HYD09080
HYD09090
HYD09100
00000106
HYD09120
HYD0917O
HYD09180
HYD09190
HYD09200
HYD09210
00000112
, HYD09230
HYD09280
HYD09290
HYD09300
HYD09310
HYD09320
HYD09330
30000119
I5HY009345
HYD09350
HYD09360
HYD09390
HY009400
HYD09410
HYD09420
HYD09430
HYD09440
HY 0094 50
HYD09460
HYD09470
HYD09480
00000151
HYD09510
HYD09520
HYD09530
HY009540
HY009550
HYD09560
HYD09570
HYD09580
00000159
HYD09595
HYD09600
HY 009610
HYD09620
HYD09650
HYD09660
HY009670
HY009680
HY009690
A
B
C5
A
I
D
.
|
C6
A
B
C2
A
CYOIWOUNTIiO'lSVALIKN, 10)
164
-------
"YPtKKPUNT) =PREDIC(KN, 10) R
TX(KKOIINT)=KKOUK'T 8
LTE"*P (6) = 0 HYD09700
TONS = TEMP (10 ) * 1.36F-3 HYD09710
WRITE(IW,5S5)(LTF»P(K|,K=6,15).TONS 0
Di 620 K = I, 10 HYD09750r?
TFMD (K) - PREPIC (KN, K ) - OINFLP (I, I, K ) HYD09760
KA = K + 5 HYD09770
LTEMP (KAI = TEfP (K) HY009780
6?0 CONTINUE HYD09790
LTTMO (6) = 0 HYD09800
TPMS = TEMP (10 I * 1.36E-3 HYD09810
WMTEt IW,5951(1 TEMPIK),K = 6, 15) .TONS
700 rONTINUE HYD0983Q
2000 PFTURN tiTu^o.u
5ND HYD09850
MCMnpv REOUIRFMFNTS 051964 BYTES
HIPHcyT SEVC°ITY CODE WAS 0
FUNCTION NFIND (NODE) C7ii
COMMON / GENOL / LTITLF(16),NCTRLt 5, 3), MOBF/G, IYR8EG, MPEND, IHYD15970
AY'END, NUMNOD, ISEOt 5, 20), KPRI, NUMSEO( 5), NDWTR( 5, 20) HYD15980
----- SlinpQjTINE FIK'OS SUBSCRIPT NUMBER FOR NODE PASSED THROUGH ARGUMENTHYDl 5990
**** LfST
I
10
on 5 J
JK = J
IF mOE.FO.NCTPLU, II) GO
CONTINUE
GO TO 15
NFINO = JK
RETUfcN
;**** ERROR MESSAGES FOR P»3G"AM '
15 WRITE MH, 20) NODE
CALL EXIT
20 FPR14T (1HI, 44HNC »1«TCH H4
fNtl
MFMORY REQUIREMENTS 000270 «YTES
HIGHEST SEVERITY CODE WAS 0
HY016000
A
HYD16020
HYD16030
HYD16040
HYD16050
HY 01 6060
HYD16070
HYD16080
:D ERRORS ARE GENERATED HERE HYD16090
HYD16100C1
HYD 16 120
IN CONNOD FOR N3DE NUMBER, I5IHYD16130
HYD16140
SUBROUTINE RFCOMP ( QFLTW, «JK, IP, INDY, MO, CONST, IH >
COMMON / RFSFR /
* 3INFLDI5,10,12),9FM&ND(5,10,16),K
30EMNM( 5, 10,16), KOINNMt 5, 10,16) , KAOUNM (5,16)
COMMON / PROPER / SOILI 5, to, 21), ITANKC 5, 101, TTANKI 5,
I -RTANK t5, 101 , NSEG ( 5) , CHNUS? ( 5, 10, 30)
DIMENSION KUSE(5, 10,301
INTEGER tSUR/'SUR '/.*GWR/'GWD '/.tlPP/'IRR '/.iMAI/'MAT •/
HYD00100
10).HYD16190
HYD16200
C****
C****
C****
c****
; ****
C****
C****
;****
c****
* ****
- ****
:****
c****
70
" *»**
no
r****
or)
100
110
120
INTEGER tGHV/'GHV'/
EQUIVALENCE. 1 CCNUSE, KUSE )
DIMENSION OFLOW (10), RFLCW (10) >
THIS SUBROUTINE C°MOUTFS MAGNITUDE, CHEMISTRY AND THE ALLOCATION
pc RETURN FLOWS. ALSO THE SUBROUTINE COMPUTES SHORTAGES AND
rnwpARES THESF WITH THE SHORTAf.F INDICES. EXCHANGES BETWEEN
SURFACE FLOWS , SUBSURFACE FLOWS, ANT THE SOIL COLUMNS ARE
SIMULATED AS DEMANDS WITHOUT prTijRN FLOW ALLOCATIONS. THERE ARE
ONLY TW1 DEMANDS WITH RETURN FL^W ALLOCATIONS AND THOSE ARE FOR
IRRIGATION ANO MUNICIPAL ANn INDUSTRIAL REQUIREMENTS. DEMANDS
ARE THOSE CONSIDERED IDEAL nt>. FULL SUPPLY COMPUTED AT THE
P^INT OF DIVERSION AND INCLUDE CONVEYANCE IOSSES ANO FARM LOSSES
-TN^UMOTI VE USE VALUFS RFPRcjEk.T A LUMPED BENEFICIAL AND NON
pp^lPtriAL REOUIRE"CNT. " "QFLOW = VnLUMF ANO CHEMISTRY OF
S^URrc, NK ANP IP ARE THE NODE 4ND SFOUENCE INDICES RESPECTIVELY
INDY = USC INDEX , MP = MONTH ANO IW = WRITE UNIT.
70 K=l,10
IF ( INOY .GT. 5 ) r-n TP loin
G^ TO ( 80, 200, 300, 300, ^30) , IN1Y
DEMAND HAS BFFM MET S^T SHnRTAG= ( PERCENT I EQUAL TO ZERO
CHNUSE ( NK, IP, 15 1 = 0.0
B^GIN TO COMPUTE RETURN FLOW ITS ALLOCATION AND CHEMISTRY
RFLOW (1) = CHNST - CPMUSE (NK, IP, MO )
!F(RFLOW(l) .LE. 0. 0 IP CL^W( 1 ) =0. 0
IFIRFLOWd) .LF. O.Oir.n TO 110
VrLB = RFLOW (1 )
DT 100 K = 7, 10
RFLOW (K) = OciPW
CONTINUE
(Kl
t VHL» / VnL B I
130
" ****
r ****
•*•***
700
IF ( K . f,T. 27 ) GO TO 2030
KTES = KUSE [ NK, IP, K)
KNODE = KUSC INK, IP, K + I )
IF ( KNOOE . LE. 3 ) C,r TO 120
KS = 0 = KUSE ( NK, IP, K «• 7 I
KPFP = KUSE < NK, IP, K * 3 )
JK = NFINT (KNCDE )
pea = KPE^
OINFLO ( JK, KSFO, I )
D"< 130 KA = 2, 10
OINFLO.I JK, KSFQ, KA
CONTINUE
KDES . tO. «SU°
KDES . EO. tr-WR
KPFS . Fl. «GWV ._.._... -----
ALPHA iNiKtT^p T" SHOW RETURN FL^W is EITHER FROM
CATION OR 4 Mi^'TCIPAL ANO I^PU^TRIAL USE
DFMAMO ( *K, IP, 14) . C0. 1.0 I KUSE I NK, IP, 17
OEMANO ( NK, I", 14) . C0. ?.0 I KUSC ( NK, IP, 17 I
Tn 120
HAS MCT PFt=N "rT COMPOTE St-
RftTIO = C-'NIIS17 ( NK, T',^13 ^ * 1.0'-?
IF
IF
IRO
IF
IF
)
)
= °.FLPW
= P^LHW
OINcLrt
OfN^LPt
(1) *
(K?. 1
.IK,
JK,
JK,
OCR *
KSEQ,
KSFQ*
I
It
11
11
.OE-
)
:"
2
I
3
.0
.0
.0
HY016220
HY016230
HYD16240
HY016250
HYD16260
HYD16270
HY016280
HY016290
HYD16300
HYDL6310
HYD16320
HYD16330
HYD16340
HYD16350
HYD16360
NK, IP,
IN PERCENT
HYD16370
HYD16380
HYD16390
HYD16400
HYD16410
HYD16420
HYD16424 C2
HYD16425 B
HYD16430
HYD16440
HYP16450
HY016460
HYDI6470
HYD16480 A
HYD16490
HYD16500
HYD16510
HYD 16520
HYD16530
HY016540
HYD16550
HY016560
HYD16570
HYD16580
HYD16590
HY016600
HYD16610
HYD16620
HY016630
HYO16640
HYD16650
wvn16660
HIRRHYD16670
HYD1669D
HYP16700
HYD16710
HYH16720
165
-------
;****
c****
c*»*«
c****
c****
300
310
315
320
330
1000
130?
1010
1015
SHORT = ( 1.0 - ( TEMCU / CONUSE (NK, IP, HO)) I * I.OE2
COMPARE SHORTAGE WITH SHORTAGE INDEX
IF ( SHORT . GT. CONUSF < NK, IP, 14 I 1 GO TO 1000
SHORTAGE IS LESS THAN SHORTAGE INDEX COMPUTE RETURN FLOW
RFLOW (1) = CONST - TFMCU
CONUSE ( NK, IP, 15) = SH"CT
GO TO 90
WHEN THE INDEX ( I NOY I IS r.REATfR THAN 2 THE ROUTINE TREATS
THE DEMANDS AS TRANSFERS OF FLOW WTTH3UT RETURN FLOW OR
CONSUMPTIVE USE
KOES * KUSE (NK, IP, 19)
KNODE = KUSE (NK, IP, 20)
KSEQ * KUSE ( NK, IP, 21 I
JP = NFINO ( KNOOE)
IF ( C3NST . GT. 0.0 ) GO TO 315
00 310 K = I, 10
OINFLO( JP, KSEO, K ) = 0.0
CONTINUE
SO TO 330
TNFL9J JP, KSEO, 1 ) = CONST
DO 320 K * 2, 10
OINFL3 ( JP, KSEO, K ) * OFLOW (K)
CONTINUE
IF ( KDES . EQ. SSUR ) QINFLO( JK, KSEC
IF ( KDES . EO. SGWR ) OINFLO( JK, KSEC. .- ,
IF ( KDES . EQ. SGWV ) OINFLO( JK, KSEQ, 11 I
GO TO 2000
WRITE ( IW. 10051 (KDEMNM ( NK, IP, K) . K' 1. 8), NK, IP
FORMAT { IHI, 7x, 32HSHCRTAGE INDEX is VIOLATED FOR , BAB i
t 13HFO" NODE NO. , 13, 5X, 12HSEGMENT NO. , 13 )
WRITE ( IW, 1015 ) I NOY , NK, IP
FORMAT ( IHI, 7HiNov = , 13, sx. 24HWHICH is GREATER THAN 5
I 13HFOR NODE NO. , 13, 5X, 12HSEGMENT NO. , 13 )
11 ) = 1.0
11 I = 2.0
3.0
CALL EXIT
2000
ENO
MEMORY REQUIREMENTS OOOAFC BYTES
HIGHEST SEVERITY CODE WAS 0
HYD 16900
HYD16910
HYD 16920
HVD16930
HYD16940
HYD16950
HYD16960
HVD16970
HYD16980
HYD
HVD
HVD
HVD
HVD
HYD
HYO
HYD
HYD
6990
7040
7050
_7060
17070
HYD17080
HVD1709
SUBROUTINE CHEMGR ( OFLOW
COMMON / RESER /
CONST
KN, KS 1
3DEMNM( 5, 10,16), KQINNM( 5, 10,161 , KAQUNM (5,161 HYDOOIOO
:OMMON / PROPER / SOIL( 5, 10, 21). BTANKt 5. 10), TTANK( 5, 10),HYD17140
I GRTASK( 5, 101 , NSEG ( 5) , CONUSE ^ 5, 10, 301
DIMENSION KUSE(5, 10,30)
EQUIVALENCE ( CONUSE, KUSE )
DIMENSION QFLOW( 101 ,QIN=R WITH RIVER
ENTRY CHE1RV(QINR!V, CONST, KN.KS)
KAT=3
VOVA = Q1NFLO( KN. KS, 1 I
VOL9=OINRIVt 1)
VOLUME * VOLA + VOLB
IF ( VOLUME. LE. 0.01 GO TH 20fH
00 70 K = ?, 10
OINRIV(K)=(QINFLO(KN,KS,K)*VOLA*OINRIV(K)*VOLB)/VOLUME
70 CONTINUE
GO TO 2000
C**** TH1S ENTRY MIXES 60UIFEP Fin* *1TM «tvER FLOW
ENTRY CHE^AQ(QFLOW, CONST, KN.KS)
KAT=4
VDLA = OFLnw ( 1 )
VH* = fiRTANK (KN, I >
VOLUMF = VOLA + VOL9
IF ( VOLUME. LE. 0.01 GO TT 2001
Q~> 133 K = 2, 9
OFLOW (K) » ( OFL"M (K) * V>LA » R1TANK ( KN, K ) * VOLB)/ VOLUME
130 ONTIS'JE
Gr> TO 2003
;**** THIS ENTRY MIVPS RTJ1NK kfTF? WITH AQUIFER
FNTRY C HE MBT ( OF LOW , C ONST , KN, KS)
KiT=5
VnLft = QFLnW (11
VPLB = GRTSNK (KN. 1)
V^it'MP = VnLA * VOt^
HY017210
HVD17220
HYD17230
HVD 17 240
HYD17250
D
HYD 1 7260 B
HYD17270
HYD17280
8
HYD17290
HYD 1 7300
HYD17310
HYO 17320
HYD17330
HYD17340
HYD17350
B
HYOL7360
HYD17370
HYDI7380
B
HYD17390
HY 01 7400
HYD17410
HYD17420
HYD17430
HYD I 7440
HY017450
B
HYO 17460 .
HY017470 K
HYD I 7480
B
HY0174SO
HYD17500 A
HYD17510
HYD17520
HYO 17760
HYD17770
B
HYD17780
HY017790
HYOL7800
B
HYD17810
HYD178?0
HYD17B30
HYD I 7843
HYD I 7850
HY017860
B
HYO 17870
HY017880
HYO17893
166
-------
1
[KM, K)
10
140 CONTINUE
G'T4M< (KN, 1 ) = VPUJWE
Gn rn 2000
23TI rtSTTEt 6, 2-J02J "<».', K<;,K*T
?00? «=-.OMATt5X, 'VOLUME LESS THAN no
l'SrOlJENC1- EOUSL TO '.I5.2X, "KIT
Tn
T2/I
V-1L B I /
C0R NODE ',I5,2X,
EN1
030403 BYTES
E M»5 0
HV017910
HYD17920
HYP17930
HYD17940
HYD17950
HYD17960
43
SUBROUTINE CDNVER ( TFMP , KR ,IW)
t**** THIS SUBROUTINE IS USED TO :ONVCRT IN°UT UNITS TO PPM AND
:**** ALSO TO CHECK BALANCE BETWEEN C»TIDNS AND ANIQNS
DIMENSION TEMP (15) , EQVWT (81
?*T* |iVMTMc 20.04,12.16,23.0,35.46,4B.03,61.01,30.0,62.OOB/
:**** UNITS ARE IN'MILLIFQUIVALENTS PER LITFR CHECK SUM OF CATIONS
C**** AND ANICNS
C**»* SUM CATIONS
10 SUMC = 0.0
D" 20 K = 2, 4
SUMC = SUMC » TEMP (K)
20 C1NTI1UE
C**** SUM ANIONS
SUM4 = 0.3
DO 30 K = 5,9
SUMA = SUMA * TEMP (Kl
30 CONTINUE
OICF = *UMC -. SUMA
IF ( DIFF . GT. 0.0 ) GO TO
TE«P (21 = TEMP (2) * 4BS (
GO TO 45
40 TFMP (61 = TEMP(6) * OIFF
C*»*« CONVERT FROM MILL IEOUIVAL ENTS PER LITER TO PARTS PER MILLION
45 DP 50 K = 2, 9
KA = K - I
TEMP (K) = TEMP (K) * EQVWT ( K4 »
50 CONTINUE
;***» COMPUTE TOTAL DISSOLVED SOLIDS *ROM ANALYSIS
TDS = 0.0
00 73 K « 2, 9
IF I K . EO. 7 ) GO TO 60
T!)S = TDS * TEMP IK»
G" TO 70
60 TOS = TOS *• { TFMP (Kl » 5.0E-1 )
70 CONTINUE
TEMP (10 )= TDS
WRITE ( IK, 75) ( TEMP (Kt , K = 1, ID I
75 FORMAT i sx, 10 ( 2x, Fio.2 ))
GO TO 2000
:*««* CONVERT PARTS PER MILLION TO MILL1FOU!VALENTS PER LITER
RO DO 05 K = 2, 9
TEMP (K) = TEMP (Kl / EQVWT (KA)
«5 CONTINUE
GO TO 10
2000 RETURN
END
REQUIREMENTS 0004B4 BYTES
HIGHEST SEVERITY CODE WAS 0
HYD179BO
HYD17990
HY018000
HYDIB010
HYD18030
HYD18040
HYDIR050
HYD18060
HY018070
HY018080
HYD18090
MY DIB 100
HYD18110
HYD18120
HYD18130
HYD18140
HYD18150
HY018160
HYD18170
HYD18180
HYD18190
HYD18200
HYD18210
HYD18220
HYD18230
HY018240
HYD18250
HYD18260
HYD18270
HYni8280
HYD18290
HYD18300
HYD1S310
HY018320
HYD18330
HYD18340
HY018350 A
HY01P360
HYD18370
HYD18380
HY018390
HYD18400
HYD18410
HY018420
HYO 18430
HYD18440
HY018450
SUBROUTINE VFRNAL ( KN, T S. Mf, nnc cpv QFL"M)
C**** THIS SUBROUTINE SIMULATES tH? ASSUMED CRITERIA FOR EACH NODE HYDIB470
r«*** in OBTAINING 4 HYOPOLOGIC BAI. (MCE WITH SIMPLE TRANSFERS FROM HYD18480
:**** SURFA:E TO SUBSURFACE OR THF CPNVERSE. THE ARGUMENT LIST is HYD18490
C**** AS FOLLOWS - KM AND IS ARE THE ^"inE &ND SEQUENCE INDICES HYD18500
;**** RFSPE:TIVELY. OBSEV» is THE ARRAY CONTAINING THE OBSERVED OUTFLOWSHYDIBSIO
TH=
VOLUME AND CHEMISTRY
KAOUNM (5,16)
C**** OFLOW IS THE APPAY CONTAINING
COMMON / RESER /
4 OINFLD(5, 10, 12 I, DEMAND (5, 10, 16) ,K
IDEMNMC 5, 10,16), KOINNM( 5, 10,16)
DIMENSION OBSERV (10) , OFLOW (101
G? TO (50.70I.KN
;**** THESE ARE THE TRANSFER PARAMETERS FOR NODE 101
C MIN IS THE SEQUENCE NUMBER np THE 1ST OBSERVED OUTFLOW
MAX IS THF SEQUENCE NUMBER OF THE LAST OBSERVED OUTFLOW
KA IS THE SEQUENCE NUMBER CF THE "TRANSFER OF FLOW FROM AQUIFER
TO RIVER" C4RD
CARD KHY018751 IS INCLUDED POR 1SOE 2 BEC4USE MIN=M4X FOR THIS
C4SEUE, THERE WAS ONLY ONE OBSERVED OUTFLOW IN NODE 2J
50 MIN=5
M4X = 7
GO TO 110
;**** THESE 4RE THE TR4NSFER P4RAMETERS FOR NODE 102
70 HIN=5
110
IF ( IS .GT. MIN
00 130 K = I, 10
OBSERV CK) » OINFLO (
130 CONTINUE
IF(KN .EO. 2IGO TO 181
GO TO 2000
150 VDLA = OBSEPV tl)
GO TO ISO
KN, IS, K)
HYD18520
HYD00100
HYDIB560
HYD18570
HYD1B580
HYD18590 A
HYD18600 A
HYD18610 A
HY018620
HY018630
HYD18640 A
HY018650 '
HYO18660
HYD18720
HYD18730
HYDIB740
HYD18750
00018751 B
HYD18760
HYD18770
167
-------
- = Wll.fi
"
01 170 f. - 7 , 10
OeSF.PV (X) = ( "P-
I VPLU«E
170 r.1NTIN'JF
in~) n*» SERVC 1! = VOLt)wr
TF ( IS.LT. «AX )
l»l X51 = Kfl-1
TIFF = OB
( DTFF
(K) * v"(. A * Of-: FLO CKN, IS, K ) « VOLB I
?000
=>***
****
****
190
2300
LHW (1)
.C TO 190
VOLUME OF T?S?RVFO TUTFLfW TS G3F.STF.R THAN THE PREDICTED OUTFLOW
SCT UP TR,IJSFFR op RTVFp FL-,W TO THF AQUIFER
(1) -
LT. 0.0
( KM, KR, MC ) = 0.0
G~> T0 ?000
VOLUME OF OBSERVED OUT FLOW !S LFSS THAN THE PREDICTED OUTFLOW
SET UP TPJNSFCR FROM THF AOUIFFR T" THE IUVER
Of "AMD C KH, KA, MO ) = 0.0
DFMAND (KN, KR , MO ) = ABS (DIFF)
OOI^FD BYTFS
E WAS 0
HY0187QD
B
HYniSBOO
/ HYD18810
HYD18820
HYD18830
A
HYD18850
HY018860 A
HYD18870
HYP 1 8880
HYD18890
HYOIB900
HY018910
HYD18920
HYD18930
HY01 89*0
HY018950
HYD18960
HYD18970
HVD18980
HYD18990
SEVERITY
RO^TWO ( KNPHE t KSEG , CA , HOLE
r:SLrULAT': ROC1T IF (XI USING QUADRATIC WHERE
' ~ ---- - - - ......
iw )
r. **** x
R » SORT ( R*B -
C**** INOEX AND KSEG « SEGMENT
c**** IM OE:RFASING POWERS OF (xi
0««ENSION CA UO)
R40 = CA (2) * CA (21 - < 4.0 * CA
IF ( *AD . LE. 0.0 I GO TO 1000
4 * A * C"»~/ 2 A KNODE = NODE
INOEX CA = ARRAY OF COEFFICIENTS
MOL? = ALPHA DEFINITION OF (xi
til * CA (3> »
ROOTWT
50
{ Tw
I
.
50 I
8X,
(2)
i
O ?ooo
1303 WTTF ( TM
1005 F->o««AT(lHl,
I 5H
JOOO
FNO
SORT ( RAO ) ) /(2.0 * CA ( U»
, CM 1) , CA(2) . CA(3I , RAO , ROOTWO
2X,
F15.B, 2X,
F15.«, ?X,
F15.S, 2X,
1005 1 KHOOE » KSF.T. . MCLE
RX, 25HPRPBAPLY MDT A PFAL ROOT , 5X, HHSET ROOT
R! , 5X, 7HNODE = , !3 , 5X, 6HSEG = , 13, 5X,
, A6, 2X, 1 IHCOMPUTATIHM )
P6,
(2) =
9HCA (3) =
9HRAOCAL =
HYD19010
HYO19020
HYO19030
HYD190*0
HYD19050
HYOI9060
HYD190TO
HYD19080
HYO 19090
HYD19100
HYD19UO
HYD 19120
HYD19130
HYD19I*0
HVD19150
HYD19160
HYOI9170
TO HYD19180
HYD19190
HYD19200
HYD19210
HVO19220
1EWORY REOUIRFMFNTS 000300 PYTFS
SEVERITY :CIOE HAS o
FUNCTION ROOT (CONST, XMAX, XMI«J , MOLE , CA, TESTA 1
r**«* THIS FUNCTION WILL COMPUTE THF SEAL ROOT IF ONE EXISTS
<:**** JM THF RANGE XMIN - XMAX INCLUSIVE. TF A ROOT EXISTS IN THIS
C**»* MOLE WILL BE SET = TRUE, IF NO 300T EXISTS , MOLE WILL BE SET
C**** FALSE. F (X) = CONST AND COEFFICIENTS CA ( 1 » ) 1 CA (N*l ) ARE
;>*** T»ANSFERRED THROUGH ARGUMENT LIST IN INCREASING POWERS OF THE
r**** INOEPENOENT VARIABLE. IN THE F'JNCTIOM FOFX NK = 5 , SO IF A
;**** n HIG^R THAN FOURTH OEd»EE POLYNOMIAL IS TO SOLVED RESET NK
C**** IF NO ROOT IS FOUND AFTER TWENTY ITERATIONS NO ROOT WILL BE
C**** CONSIDERED AND MOLE WILL BE SET = HONE.
DIMENSION CA(IO)
INTEGFR iSC4/' FALS'/.SSCfc/'NONF! /, iSC 7/ 'TRUE •/
XA = i.E-t * XMAX
IF 1 XHIN . LT. 0.0 ) XA = l.E-L * XMIN
Xft = XA »• XA
I W=6
T WRITE ( -IW , 5 ) XMAX , XMIN , MOLE
Z 5 FORMAT ( IH1, 8X, 7HXMAX = ' , F15.8, 5X, 7HXMIN = , F15.8 ,
r. I 4HFOR , R6 // )
DO 15 K= It 5
' WRITE(IW.IO) K , CA CK)
C 10 FORMAT ( 8X, 4HCA( , 1 2 , 5H » = , F20.8 // )
15 CONTINUE
C MRITE ( IM , 18 1
HYD 192*0
RANGEHYD192SO
HYD 19260
HYD19270
HY019280
HYD19290
HYD19300
HYD19310
HYD19320
HYD19330
HYD 19340
HYD 19 350
HYD 19360
HY019380
5X, HY019390
HYD19400
HY019410
HY019420
HYO 19*30
HYO 1 9** 0
HYD 19450
'. 19 FORMAT ( 10X, 2HXA , 18X, 3HFXA , 1BX, 2HXB , 18X, 3HFXB , 18X, HYO 19460
C L 2HXC , 16X, 5HCONST / \ HY019470
MOLE = *SC7
NK = 0
CA(1| = CA(1I - CONST
FXA = FOFX ( CA , XA, 1 1
GO TO 30
'0 FXA = FXB
30 NK = NK » 1
IF(NK.GT.20I GO TO 100
FXB « FOFX ( CA, XP, 1 I
DX = XB - XA
OXOP = FXB - FXA
IF(OXOP.EQ.O.O» GO TO 50
XC = X8 - DX * FXB / HXOP
C WRITE(6l, 401 XA, FXA, XB, FXB, XC , CONST
C 40 FORMAT ( 6E20.10 1
PPSLON = ARS IXC - XR)
IF ( ABS (EPSLONI . LT. TESTS ) GO TO 50
XA = XB
XB = XC
GO TO 20
50 RnOT » XB
IFfXB.GT.XMAX.OR.XB.LT.XMINI MOLE = »SC4
61 TO 2000
HYD 19*80
HYD19490
HYD19500
HY919510
HYD19520
HYO 19530
HYD19540
HYD19550
HYD19560
HY019570
HYD 19580
HYD19590
HYD19600
HYO 19610
HYD 196 20
HYD19630
HYD 19640
HY019650
HYO 1 9660
HYO 19670
HYD19680
HY019690
HY019700
168
-------
100 ROOT = 0.0
MOLE » *sc6
2000 RETURN
^ 00043C B
HIGHEST SEVERITY CODE WAS 0
HVO19710
HY019720
HYD19730
HYO 19740
FUNCTION FOFX(CF,X, KA M I
C**** THIS FUNCTION EVALUATES ANY POLYNOMIAL FROM 1ST DE3REE TO
C**** FOURTH DEGREE INCLUSIVE < SEE SETTING OF NK I IF A HIGHER DEGREE
C*«** POLYNOMIAL IS TO BE EVALUATED RESET NK WHERE NK - I - DEGREE
DIMENSION CFdOl
FOFX = 0.3
FOFX «• CF(NK)
FOFX * -X
NK - 1
30 FOFX
FOFX
NK
IF(NK.GT.l) GO TO 30
FOFX = FOFX * CF(1)
IF ( KAM . NE. 0 ) GO TO 2000
DO 40 K = I, 10
CF (ICI = 0.0
40 C3NTIMUE
2000 RFTUR^
END
MFMPPY REQUIREMENTS 000278 BYTES
HIGHEST SEVERITY CODE WAS 0
HY019760
HY019770
HYD197BO
HYD19790
HYD19800
HYD19810
HYD19820
HYD19830
HYD19840
HY019850
HYD19860
HYD19870
HYD 19880
HYD19890
HYD19900
HYD19910
HYD 19920
SUBROUTINE SOI LCD ( KNODE , IW , IR , NSEGS)
C****
r**«* THIS SUBROUTINE IS USED AS A MONITOR SUBROUTINE FOR ALL SUB-
C***V ROUTINES USED IN THE SIMULATION OF PERCOLATING APPLIED WATERS
C**** VERTICALLY THROUGH A SOIL COLUMN USING PISTON DISPLACEMENT OF
C**** SOLUTION FROM SEGMENT TO SEGMENT. THE FIRST STEP IS TO CHECK
C**** FOR FIRST CALL TO THIS SUBROUTINE -- IF FIRST CALL CLEAR ARRAY
C**** ITER WHERE TALLY IS KEPT F0« NUMBER OF TIMES SEGMENT HAS BEEN
C**** EQUILIBRATED FOR EACH APPLICATION OF WATERS TO BE PERCOLATED
C**** AND ALSO ARRAY KHATER WHERE TALLY IS KEPT OF EACH APPLICATION
C**** OF NEW WATER. '
COMMON /SOLUTE / SLCA, SLMG, SLNA, SLCL , SLS04, SLHC03, SLC03,
1 SLN03 .UCAS04 , UMGS04
COMMON /SOLID/ CATEX, GYPSUM, SLIME ,«OENS, EXCA , EXNA, EXMG ,
t EXTRAC , DEPTH, SEGVOL , INTER
DIMENSION ITER (20, 10 I , KWATER (20) , CA (10)
DATA IFIR / 0 /
IF ( IFIR ,NE. 0 ) GO TO 25
DO 20 K = I, 20
KWATER-(K) * 0
20 CONTINUE
IFIR = I
25 DO 30 I = 1, 20
DO 30 J = 1. 10
ITER ( I, J) - 0
30 CONTINUE
IF ( KWATER (KNODE )
ISW = 0
MAX = NSEGS
HIN » i
BEGIN EQUILIBRATION OF ALL SEGMENTS IN SOIL COLUMN FOR A
A PARTICULAR ITERATION INDEX
35 DO 200 K = MIN , MAX
NCT = 0
;**** UPDATE COUNTER (ITER) WHICH INDICATES NUMBER OF TIMES THE
----- KTH SEGMENT HAS BEEN EQUILIBRATED
GT. 3 ) GO TO 300
HYO19940
HYD19950
960
HYDZO
HY020
HYDZO
HYDZO
HYO 20
HYDZO
HYD 20
.40
SO
60
70
80
90
ITER (KNOOE . K ) * ITER ( KNODE , K ) * 1
C**** PLACE DATA FROM SOIL ARRAY INTO COMPUTATIONAL VARIABLE
C**** NAME SEQUENCE FOR THE KTH SEGMENT
CALL SETUP ( KNOOE , K , NSEGS, ISM )
C WRITE ( IW , 40) ITER ( KNOOE t K ) , KNODE , K HVD20330
C 40 FORMAT ( 1HI, 7X,41HBEGINNING CONDITIONS-EQUILIBRATION NO. - ,I2/ HYD20340
11HFOR NODE
13, 5X,IOHSEGMENT
J. » t I
IZ/ (
HYD20350
HYDZO 360
GRAMS OF WATER /.GRAMS OF SOIL HYDZ03TO
1 8X,
C CALL SCRIBE (IWI
CALCULATE M3ISTURE CONTENT (WRATIO) . . _ . _.
C**** FOR THE INITIAL SOIL ANALYSIS WRATIO = EXTRACT (EXTRAC) . MO ISTUREHY020380
C**** CONTENT FOR APPLIED WATERS IS A FUNCTION OF VOLUME OF WATER, HYOZ0390
C**** BULK DENSITY AND DEPTH OF KTH SEGMENT HYD20400
;**«* MOISTURE CONTENT IN PERCENT (PRATIOI = WRATIO * I.E2 HYD20410
WRATIO = EXTRAC HYD204ZO
TF ( KWATER (KNOOE) . GT. 0 ) WRATIO = SEGVOL / ( BDENS » DEPTH I HY020430
PRATIO = WRATIO * I.E2
IF ( KWATER (KNODE ) . GT. 0 ) GO TO 50
C**** IF APPLIED WATERS HAVE NOT BEEN PERCOLATED THROUGH SOIL
CALL SUBROUTINE TO EQUILIBRATE INITIAL SOIL ANALYSIS FOR EACH SEGMENT
CALL FRSTIM ( KNODE , K, IW )
C CALL SCRIBE (IWI
C**** COLUMN - EQUILIBRATE ON BASIS OF ORIGINAL SOIL ANALYSIS
CALL SU3ROUTINE TO CALCULATE SOLUTION - PRECIPITATION OF GYPSUH »*
CAS04 . 2H23
50 CALL GYPEX(KNODE,K,IW,PRATIO)
C CALL SCRIBE (IW)
C CALL SCRIBE .(IW)
:ALL SUSROUTINE TO CALCULATE EXCHANGE OF CALCIUM AND SODIUM
CALL EXCANA ( KNODE , K, IW , PRATIO )
C CALL SCRIBE (IW)
CALL SUBROUTINE TO CALCULATE EXCHANGE OF CALCIUM AND MAGNESIUM
CALL EXCAMG ( KNOPE , K, IW , PRATIO )
: CALL SCRIBE (T '
CALL SUBROUTINE TO CALCULATE REACTION OF CALCIUM WITH CARBONATE -
C**** BICARBONATE SYSTEM
CALL CALCAR ( KNODE , K, IW , PRATIO I
C CALL SCRIBE (IW)
HYD
HYOZQ570
HYD2061D
HYD20620
HYD20630
HYD20640
HYO20650
HYD20660
HYD20670
HV020680
169
-------
C« (41 = SLTA
HEfK T-> OETFRMINF IF COUI LI "> t !UV H
**** SYSTF^ USING CONCENTRATION ~r
»* ^EFN ATTAINED IN THE SOIL - WATER
CALrill" IN SOLUTION AS THE
M = I, 4 I
12 , / 4 ( 8X, F15.3 ))
WITF ( IH, 60 ) NCT , ( CA (Ml
63 FORMAT ( 1HI, BX, 19HC HINTEo =
MHT = MCT + 1
IF ( NCT . r.T. 10 ) r.o TO 200
OH 70 t =1,4
FO?LON = CA (LI - 5LC"-
T.F ( "VPS (EPSLON) . GT. 5.P-4 ) GO Tl 50
**** '•"•>MPUTJTinNAL SFOUENCF BACK INTO SOIL ARRAY
CALL RELOAD ( KNODE . K . NSFGS , ISW J
****
-------
90 K =l,S
L = K «• 1
STANK (KN,L)
I
90
(KM,II *(SOIL (KN.KR.KH
r ****
05
IF < ISW
EiJ.
97
. . ) GO TI 2000
KO ^ KPL-T1°N OF ONn SEr'MENT TC '""XT t-OWFR SEGMENT
-- ? -
KP
KH I
O rn
HY021800
HYD21810
HY021820
HYD21830
HYD21840
HYD21850
HYD21860
HYD21870
* VALNCE(K>HYD21BBO
HYD21R90
HY021900
HYD21910
HYD21920
HYR21930
ni 100 x = i, B
101
IP)
•f *** *
11 135 K
L = K + I
APPLIED
?000
1, 3
HY021950
HY021960
HYD21970
HYD21980
HYD21990
HY022000
HYD22010
HY 02 20 20
HY022030
13}
;****
r *** *
C****
("OVWTIKI * VALNCE(K> * 1.F3I
AT
2000
F EO IL I "•? /••
Y TPA»J<;c"P HP p^T4
All
IM -, r.,o,jfAT T -,N4L
HY022050
HYD22060
HY022070
F4CH SEG"FNT THI<; PNTPY REtOAHYn2209°
r n«PUT &T r PNA L VARIABLE NAHF
- VARIA5L- NAMF
SnIL (KN.KV, 2)
S^IL '>\'>r\
HYD22l!8
HYD22UO
HYD22150
HYD22160
HY022170
HY022180
HY022190
HYP22200
HY022210
HY022220
HY022230
HY022250
HY022260
HY022270
HYD22280
HYD22290
HY022300
SUBROUTINE FRSTIW ( KNCOF , KSE" , IW \
C**«* THFS SU^RrsUTUJE IS USED TO CALCULATE IONIC CONCENTRATIONS HY022320
C***-* 3C CAiriUM, "AGNFSIUW .SULFATE iNO TH^ UNOI SSOCIAT FO CALCIUM HYD22330
r**** S'JLFATE A'40 MAGNPSIU^ SULCATE . THF SUBROUTINE ALSO CALCULATES HYD223AO
r*t«* THE ?XCHA\'GEABlF CALCIUM .MAGNESIUM AND SODIUM . THIS SUBROUTINE HYD22350
**** IS USED OMLY QNC E FOO FACH SOIL SEGMENT AND USES DATA FROM INIT IALHYD22360
i
INTE
SLS04, SLHC03, SLC03,
EXCA, EXNA, EXMG,
C**** S^IL ANALSIS. .
:0*MON /SOLUTE / SLCA, SLMG, SLNA,
I SLN03 .UCASO* , U
rl"MON /SOLIO/ riTFX.GYDSUW, SLIM-=
I FXTPAC. DEPTH. SEGVPL,
nTMENSIONCA (10)
INTEGER tsr.l/' FRST'/, « SC 2/' TRUC ' /
0»TA T=C\/ 4.9F-3/. TFTMR/ 5.9E-3/
:4LrULATE ACTIVITY CQEPFICIENT FOR OIVALFNT IQM (GAMMA2)
GAMMA2 = G(2)
CAtrULATF CONCENTRATION TP UNCP^BIWED SULFATF ION AS A POSITIVE REAL
r«**-» ROOT If A THIRD DEGREE PHLNHMIAL . LET THERMOOYNAM 1C EQUILIBRIUM
HYD22370
HYD22380
HY022390
HYD22400
HYD22410
HY022420
I
HY022430
HY022460
HYD22470
r**** CONSTANTS FP" UNOI SSOC ! ATEP CALCIU" SULFATE AND MAGNESIUM SULFATE HYD22480
r«»** = 4.9E-3 AND 5.9F-3 RESPECTIVELY HY022490
CHECK FTPST TO TFTERMINF IF SULFATE IS IN SOLUTION - IF NO SULFATF IS HYD22500
r**** 5TLUTICN 1YPASS COMPUTATIONS WHCR F SULFATE IS A VARIABLE HYD22510
IP(SLSP4.LE.O.O) GO TO 63 HY022520
fALrULATP C1FFFICIENTS FDR THIRD "EGRPF POLYNOMIAL HYD22530
n~i 50 K = 1,10 HY022540
CMKJ = 0.0 HYD22550
50 CONTINUE HYD22560
GSOR = GAMMA2 * GAMMA2 HY022570
t«( HY022740
UCAS04 = SLCA * FS04 * GSQR / (TECA «• GSQR » FSQ4I HY022750
CALCULATE UNCOHBINEO CA (MOLES/ LTTER* HYD22760
171
-------
HYP22770
HYr>22780
HY177790
HYn228t>0
, in
cntnvMrKlT$ UTC |!'=? HY022830
?|>r. = SL'''- * 7. HYP22840
SLC'. = SLfTA » 2. HY02285Q
-,-> TO 7J HYD22860
60 (=$-V = 0.0 HY022870
" HYD22830
, .
«*< LCT =xrHAMr,'= rrm^-TA'jT C«-1G = 3.67 ANn FIR Cfl-MA = ?.} HY022893
l.riiL4TP 1'TIVTTV rrE^c^r IC\;T c^p Mn^TVII.-'.!! T 'W~ ( GAMwa 1 1 HYD22900
70 <;»^AI = r,< 11
- . - GJ.MIM42)) * 1.0 + 6.7E-IHYD22920
HYD22930
TN rr}ij IVAL ENTS PF1! P,oAM HY022950
SI ''A * HAMM/U / C.O * SOST (SLCA * GAM^1A2J) HYD22960
) IV FTUIV4LFNTS °EQ GR4M HY022970
,
r**** fHBNir,- JMTT<; For» 'rou!V4L?NT<; P=» r.p« M AND EQUIVALENTS »FR HYD22990
r**** LITCO TO -(fU^ PFP G"*""1 A MO wOL5 "FR LfT'rP HYO23000
CXT5 * "=xra * 5.E-1 HY023010
c<«<; = Fx'J", * 5.F-1 HY023020
t »r. = «L^G * 5.F-1 HYD23030
* 5.^-1 HYD230*0
HYn23050
. HYD23060
C^OTJ yFSSA^FS ^P- r>Pj^T^n HFPT HY023070
90T W^TC (TM.91D) Kvnn? , K« FG HY023080
910 F^OMAT ( IHI ,I«,HFP'"I» IV KirinF , r 3 ,?X ,l?HSEG^ENT NO. , 13, HYn?3090
I IV-nffAUSF 0E **** ) HY023100
^TC (IW.^&Sl FSTf . SIS?* HY023110
(RX , 'OHP?PT IS TUT "F BANC,c , 7HROOT = tFlO.5 , HYD23120
SX.ISHBAHGC = 0.0 TT , F10.5 ) HYD23130
FXIT HVDZ3U9
V HY023150
HYn23160
T^ 000f>00 PYTF^
CODE WAS 0
GY'FX (KNODE, KSCC , TW, PRATIO I
THIS SDBRTIJTIN^ IS USFO TO TALC'JLATE THE SOLUTION OR PRFCIPI TAT IONHY023 1 80
;**** OF GY»SUH ( CACr4*2H2" I 4NO THE REQUIREMENTS OF CALCIUH HY023190
.***x, 4Mn H»nNFSIU1 FOO THE 1JNDI SSOC I*T?0 ION PAIRS CAS04 AND MGSQ4. HYD23200
TKiTrr.co $<:ri/>rYPS'/, ISCa/'CASD'/.SSCS/'MGSO'/
"IMENSIHN CA (131 HYD23210
'•0»«>nN /S11UTF I SLCA, SLMG, SLMA , SLCL , SLS04, SIHC03, SLC03t MYn23220
I SLN03 tUCA<;04- , UHGSO^ HYD23230
T\N /SPUD/ f-ATEX, GYPSU", SLIME ,BO£NS, EXCA ,EXN&, EXMG , "J2?Hi2
FXTRAC , "EPTH, SEGVOL • INTER HYD23250
ACTIVITY 1-DFFCTCIF.NCT CF DIVALENT ION JGAMHA2I H£P.23260
!-,3*iM42 ~ G(2) HYD23t'O'
rcon - TAMMA? # GAMMA? HYD23280
CALCULAT" CHANGES IN TCNC^NTPATIONS OF CALCIUM AND SULFATE (*>. GIVEN THHYD23290
rJi** smuBILITY PRODUCT (KSP) OF GYPSUM = 2.4E-5. SOLVE FOR (X) USING HYD23|00
^*"* ?xj°is POSITIVE SOLUTION IS UNDF.RSATUR AT ED. WHEN I XI IS ZERO OR HYD23320
-*,„« N=GATIVE SOLUTtrN IS SATURATED 00 SUPF"SATURATEO. COMPUTE COEFFICIHYD23330
C**** c'-iR QUADRATIC EQUATION HiRil«o
^0 Cilll = 1.0 .. ._. HYD23360
- I2.4E-5 / GSORI HYD23370
yni F - t*»r t
rrNVFUTGVPSUM VsOLinl FROM MOLS/GRAM TO MOLES PER LITER - PRATIO IS
*
NV
ri«** iin^TjoF CONTENT IN PERCENCT - 10LS/LITER = (1.0 /PRATITI* I.E5
r.YPSQL = GYPSUM * (1.0 /PRATIO) * 1 . E5
X = ROOTHO IKNWE.KSEG.CA. HOLE, 1W)
IFIX.LT.O.OI GO TO 60
IS UNDERSATURED
ieiv IF n nT rr TO so HYD23*60
TION - ENOUGH GYPSUM IN SOLID STATE TO SATURATE SOLUTION - UPDATE HY0234TO
r»LCIU«f AND SULFATE CONCENTRATIONS. ^Rlltln
SIC A = SLCA t X JJ2n?«on
ft cr>A - ci cni * Y HYD23^OD
rvp^ni"- v HYD23510
p^ rn Tn HY023520
CONDITION-NOT ENOUGH GYPSUM IN SOLID STATE JO SATURATE SOLUTION 01 SSOLVEHYD23530
r***» All GYPSUM - UPDATE CALCIUM AND SULFATE CONCENTRATIONS
- 50 GYPsoL = 0.0 -
TinwI^LUTION IS SUPFRSATURATED ADD EXCESS TO GYPSUM IN SOLID STATEHYD23590
U'DATE CALCIUM AND SULFATE CONCENTRATIONS HYD23610
69 X = A3SJX) wvrv ^^A^n
- 6JPSOL » X HYDllllo
nt - kftnZ X HY0236*0
- TEST IF IJNDISSOC I ATED CASO* IUCASOU IS AT MAXIMUM CONCENTRAHYD23650
Ci**« OF 4.?87E-3 MOLS /LITER
E — 3 — UC&SQ4 H YD 2 3700
GYPSUM TO BRING UCASO* TO MAXIMUM CONCENT*HY023710
* GYPSDL uYn?^730
GYPSOL =0.0 HYD23T40
NT- ENOUGH RESIDUAL GYPSUM Tn MEET MAXIMUM CONCENTRATION OF UCASHY023750
SO GYPS3L = GVPSOL - W HYO23T70
*FSIOU»L*G"!U« FOR MOLS/LITFR BACK TO MOLS/GRAM
PO GYPSUM = GYPSOL * PRATJO / I.E5
172
-------
r-1 TT 200
•AL'r'JLATf CHANGES TN r.AI.CIU"« ANO <:UL FAT c CONCENTRAT IHNS (X) TO SATISFY
;**** uNnissnciAT^D CASC* (ucASn*i - WHFRE EOUATIPN OF EQUILIBRIUM is
;**** FTinLI^R HJM CONSTANT = 4.9F-3 - COEFFICIENTS FOR SFC ON" ~D£GREE
•**** CO'JATICN ARE AFTER RECnMPUT!NG IONIC STRENGTH
100 C,A«MA 2 = G(2)
GCQR = GAMMA2 * GAMMA2
113 Cft/ll = GSQ"
CAI2I = GSOR « (SLCA * SLSP4» + 4.9F-3
r«(3) =(GS<3» * SLCA* SLS04) -(4.9E-3 * UCAS04)
*nLp = $SC2
X = ROPTWO
HYD23HOO
HYP238U
HYOZBBZO
HY023830
HYD23840
HY023860
HYD238TO
HYD238BO
HY023890
HYD 23900
HY023910
HY023920
HY023930
HYD23940
HY023950
KS^G, CA, WOLF , rwi
CONCENTPSTICNS OF CAS04, CA ANO S04
U-A S04 = UCASH4 - X
SLCA = SLCA * X
SLSP4 = SLS04 «•-X ,,.!,«...„.,«
:ALCUL»TE CHfJGES IN MAGNESIUM AND SULFATF CONCENTRATIONS TO SAT ISFYHYD23960
-,**** UNDISSOCIATETJ MGS04 (UMGS04)- WHERE EQUATION OF EQUILIBRIUM IS HY023973
;***-* CJMGS74 -X ) K = GAM«A2**2( (SL»G *-X MSLS94 *X » AND K = THERMOHYNHY023980
:**** EQUILIBRIUM CONSTANT = 5.9E-3 - COEFFICIENTS FOR SCCONO DEGREE HYD23990
;**** EQUATION ARE - HYD24000
200 CA(l) = GSOR HY024010
CA(2) = GSQR * (SLMG * SLS04» » 5.9E-3 HYD24020
CA(3I = (GSOR * SLMG * SLS041 -t5.9E-3 * UMGS04I HY024030
MILE = SSC3 HYD24040
X = ROHTWO (KNPOE, KSEG, C,«, «°LC, IW) HYD24050
;**** UPDATE CONCENTRATIONS PF «GS04, MG AND 504 HYD24060
UMGS04 = UMGST4 - X HYP24070
SLMG = SLMG * X HY024080
St. SC4 = SL.S04 * X HYD24090
HYD24100
2000
FND
REO(/TREMCNTS 000574
HIGHEST SEVERITY CODE WAS 0
HYD24110
C****
-****
C****
C**+*
r***o
c****
r****
C***»
SUBROUTINE Fxr^MA ( KNOPF , XSF"; , IH, PRATIO )
THIS SU"R3UTINr CALCULATES THF S10IUM (MONOVALEMT) EXCHANGE WITH
CA(.CrL(M(OIVALENT). T4C RApntg EQUATION EXPRESSING THE
RCLATITNSHIP ^F C.AL!"I!jy fttvjP snOIIIM IN TERMS OF CONCENTRATIONS
MAS USFD. LET (X) REPOCSEUT THE CHaNG^ IN CONCENTRATION 3F THE
OTVALFNT ION IN THE S^tl" PHASF IN UNITS OF MOLS PER GRAM.
CALCULATE C^E^FICTFMT? F^O THE FHIIRTH OEGRFE POLYNOMIAL — BETA
i<; tHF TONVFRSItN FACT".P TC CONVERT M?LS PER GRAM TO MOLS
PFR LITER ANO HAS UKTTS PF ''-RAMS ^F SQLin PER LITER OF SOLUTION
FXCHAMGF roFFFICI^NT K (HEX) = 7.07S-1
INTEGER *SCl/'EXCA' / , t SC2 /• TRUE • f
CPMMQN /STLIITE / SLCA, SLMG, SLNA, SLCL , SLS04, SLHC03, SLC03,
COMMON fSnt-Inf CATFX, GYPSUM SLIMF .BDENSt EXCA ,FXN4,
I " EXTOAC , OEPTH, SCGVOL , INTER
I ON CA (10)
OEY = 7.07E-1
C**** TF T.HEPF is NT snniUM IN SOLUTION CR SOLID PHASE EXIT ROUTINE
IF ( SLNA .EO. 0.0. AMD.EXNA . Eo. O.D ( GO TO 2000
CALCULATE M3«nvALENT ACTIVITY COEFFICIENT GAMMA1
GAMHAl = G(I) .
OP 50 K = I, 10
C* (Kl = 0.0
50 CONTINUE
BETA = ( 1.0 / PRATIO) * l.t=5
ARRANGE ORDER OF COEFFICIENTS IN INCREASING POWERS OF (X)
GSOR = GAMMAl * GAMHAl
BETA2 = BETA * BETA
DEX2 = DEX * OEX
CA(l» = ( GSOR * EXNA
* SLNA * SLNA )
GSOR * EXNA * I 4.0 * SLCA t 3FTA * EXNA ) + '.0 * PEX2»
I SLNA * ?.o * 5ETA * EXCA i
FXCe * 2.0 * SLNA
2.0 * DFX2
EXNA
SLCA J - ( P6X2 * EXCA
EXCA
CA(2)
CA( 3)
(
CM4)
CA(5I
ISM
EXCA * SLNA
= 4.0 * GSOR *
FXCA * ( ofTA *
= 4.0 * BETA * (
SLNA )
= - 4.0*BETA2 * OEX2
- 4.0 * DEX?* PETA <
I - DEX2 * SLNA* SLNA
EXCA * 3ETA * GSQR * OEX2 *
HYD24130
HY024140
HYD24150
HYD24160
HYD24170
HYD24180
HYD24190
HY024200
HYD24210
HY024220
HYD24230
HY024240
HYD24250
HYP24260
HYT24280
HY024290
HVr>24300
HYD24310
HYD24320
HYD24340
HYP2436?
HYPV24370
CALCULATE A POSITIVE ROOT (REAL) IN P5NGE XMIN - XMAx
XMIN = 0.9
XMAX = EXCA
IF ( EXCA .GT. FXNA ) XMAX = FXNA
60 MOLE = $SC1
C**** SET CONVERGENCE CRITERICN (T?ST4) SO THAT F(X) IS LFSS THAN l.E-8
TESTA = l.E-8
X = R33T < CONST, XMAX , XMIN , MOLE , CA . TESTA J
IF ( MOLE . EQ . *SC2 ) GO TP 68
GO TO t 75, 68 I , ISW
;**** T;ST ROOT TO INSURE NO UPDATED CONCENTRATIONS ARE LESS THAN ZERO
68 T< 1) = EXNA * f 2.0 * X I
T»2) = EXCA - X
T(3I = SLNA - t 2.0 * BETA * X I
T»4) = SLCA <- { BETA * X )
DO 70 K = 1,4
tF ( T (Kl . LE.0.0 I GT TO 75
70 CONTINUE
GO TO 80
75 IF ( ISW . EQ. Z I GO TO 1000
CALCULATE A NEGATIVE ROOT (REAL) IN RANGE XMIN - XMAX
XMIN = - XMAX
XMAX= 0.0
ISW = 2
GO TO 60
T**** UPDATE CALCIUM AND SOOIUM CONCENTRATIONS IN SOLUTION ANO SOLID
C**** PHASES
SO FXNA = T(ll
eXCA = T(2)
SLNA = T(3>
SLCA = T(4)
GO TO 2000
HYD24390
HYH 24400
HY024410
HY024420
HY024430
HY024440
HYD24450
HYD24460
HY024470
HY0244RO
HYD24490
HYD24500
HYD24510
HY024520
HYD24530
HYD24540
HYD24550
HYD24560
HYD24570
HYO 24580
HYD24590
HYD24600
HYD24610
HYD24620
HYD24630
HYD24640
HYD24650
HYO 2 4660
HYD24670
HYD24680
HYD 24690
HY024700
HYD2471O
HV 0247 20
HYD24730
HYD 24740
HY024750
HYD24760
HYP24770
HYD24780
HYD24790
HYD24800
HY0248LO
HYD24S20
173
-------
W°tTr ( IW . 1005 > K» •>!*<• , «<;--
lOOl C-IPM&T ( IHI, 4?K*)n PFM PP^T fX'5TS
1 7MMT)F = , 13 , SX. IO
W»ITF ( IK, L010 I X, XMIM, XWSX,
1013 FTPWAT ( // flX, 4MX = , F20.8 , 3X , 7HXMIM
I THXHiX = , F20.8, 3X,
riLl ~XIT
?000 OCTU3"J
=NO
0006Ffi BYTES
ODE HAS 0
fUNGc FLIP Ci-MA PIP /
"
.S , 3X,
A5 I
MF«ORY RcOiJ
Htr.HEST SFVCQITY
HYr!24fl40
HYD24853
HY024S60
HY024870
HY024883
HYDZ4890
HY0249DO
HY024910
f", ****
r****
C****
c****
r****
c****
:****
c****
r»**«
:*«**
c****
SUBROUTINE EXCAMG t KNODE, KSFG, IW, PRAT 10 I
INTEGER JSCl/'CALM'/
CIMMON /SOLUTE / SLCA, SLUG, SLNA, SLCL , SLS04, SLHC03, SLC03, HY024"30
SLN03 ,UCASf)4 . UMGST4 HYD24940
COMMON /SOLID/ CATEX, GYPSUM, SLI HE ,^OENS, FXCA , EXNA, EXMG . HYD24950
FXTUAC , DEPTH, SFGVOL , INTER HY024960
THIS SUBROUTINE CALCULATES THF MAGNESIUM (DIVALF.NT) EXCHANGE WITH HYD24970
CALCIU* (OTViLENT) . THE COMMON EQUATION EXPRESSING THE RFLATIONSHHYD24980
SF CALCIU" AND I«AGNFSIUH 'N TERMS OF CONC FNTPATI HNS WAS USED. HYD24990
LFT (XI REPRESENT THE CHSNGE IN COMCENTRATIHN Oc THE HIVALENT ION HY025000
IN THC SOLin PHASE IN UNITS OP «IOLS PFR GRAM. CALCULATE THF HY025010
C1EFFICIENTS OF SECOND nEG°cF P?LYN5MIAL - BETA = CONVERSION HYD25020
FACTOR TO CONVERT "OUS PER GRAM Tn HOLS PER LITER AND HAS UNITS OFHYD25030
G'AMS OF SOLIO PFB LTT" OF SOLUTION. EXCHANGE COEFFICIENT
K (DEX) * 6.7E-1
DIMENSION CA UOI
DFX « 6.7E-1
*ETA = ( 1.3 / PRATIO I * I.E5
CA(It = BFTA « ( 1.0 - PEXI
CA(2I»BETA * ( DEX * EXTA * Fxwr, • * DEX * SLMG * SLCA
CA(3) - SLCA * EXMfi - ( DFX * SLMG * EXCA )
M?LF = $SCl
X * R?rTHO ( KNPPE , KSEG , CA , MOLF , IM )
UPHATF COMCENTRATIONS OF CALCIUM AND MAGNESIUM IN SOLUTION AND
S?LID PHASES
SLCA = SLCA * I BETA * X I
- --- XI
SL*G
EXCA
SLMG - ( BETA
FXCA - X
EXMG - EXMG * X
2000 RETURN
END
MEMORY REQUIREMENTS 0007EC BYTES
HIGHEST SEVERITY CODE WAS 0
HYD25040
HYD25050
HYD25060
HYD25070
HY025080
HYD25090
HYD25133
HYD25UO
HY025120
HYD25130
HYD25140
HYD25150
HVD25160
HYD25170
HYD25180
HYD25190
HYD25200
HY025210
CHECK
SUBROUTINE CALCAR ( KNODE, KSEG, IW, PRATIO I
C**** THIS SUBROUTINE IS USFO TO CALCULATE THE REACTION OF CALCIUM
C»»** WITH THE CARBONATES. IF CAC03 ( LIME | IS PRESENT IN THE SOLIO
C**** PHASE THE INDICATOR SLIMF WILL BF SET TO ONE , IF LIME \$ N(JT
C**** PRESEMT SLIME WILL BE SET TO ZERO . LOGIO (KPRIME Is -1.68 *
:**** L3GIO IPRATIOI - LDGIO (INTFRI , WHERF PRATIO = MOISTURE CONTENT
----- IN PERCENT, KPRIME = SLCA * SLHCH3 * SIHC03 * GAMMAl * GAMMAl
* GAMMA2 AND INTER - INTERCEPT. THE EXPRESSION FOR KPRIME WAS
C«*»* DERIVED USING A SIMPLE LINEAR REGRESSION ( BY DUTT ET AL I
C**** WITH A LOGARITHMIC TRANSFOR".
30MHON /SOLUTE / SLCA, SLMG, SLNA, SLCL , SLS04, SLHC03, SLC03t
I SLN03 ,UCAS34 , UMGST4
COMMON /SOLID/ CATEX, GYPSUM, SLIME ,BDENS, EXCA .EXNA, EXWG .
I EXTRAC , DEPTH, SEfiVQL , INTER
DIMENSION CA (101
REAL KPRIME , INTER
INTEGER iSCl/'CALC'/.iSCZ/'TRUE'/
IF LIME IS PRESENT IN SOLIO PHASE
IF ( SLIME .EO. 0.0 ) GO TO 50
C**** LIME IS PRFSENT CALCULATE KPRIME
IF (IMTER . NF . 0.0 ) GO T3 43
40 GAMMAl * G(II
GAMMA2 * G(2)
KPRIME = SLCA * SLHC03 *SLHC03 * GAMMAl * GAMMAl * GAMMA 2
COMPUTE INTERCEPT ONCE ONLY FOR EACH SOIL SEGMENT
INTER - KPRIME * (PRATIO * * 1.68)
43 KPRIME « INTER / (PRATIO ** 1.69 I
00 45 K « 1,10
CA (K) * 0.0
45 CONTINUE
GC1 TO 55
C**** LIME IS NOT PRESENT IN SOLIO PHASE ASSUME INTER « 4.52E2
50 INTER * 4.52E2
KPRIME » INTER / ( PRATIO ** 1.681
GO TO 100
CALCULATE SOLUBILITY OF LIHE I CAC03I , «SF EXPRESSION K - SLCA
C»*«* *SLHC33» SLHC03 »* 2 * GAMMAl **2 / SLH2C03 ( THEN LET KPRIME
C**»* = K * SLH2C03. LET (XI « CHANGE IN CONCENTRATION OF CALCIUM
C««** (OlVALENTHON IN SOLUTION PHASF IN MDLS PER LITER. CALCULATE
£*»** C"EFFl:iENTS F0» THIRD CEGRFE POLYNOMIAL IN INCREASING POWERS OF
CALCULATE A POSITIVE ROOT (REAL) IN RANGE XMIN - XMAX
55 XMIN * 0.0
XMAX = SLHC03
IF ( SLHC03 . GT. SLCA
ISW * I
'- --- - KPRIME / ( GAMMAl * GAMMAl * GAMMA2 I
4.0 * SLCA * SLHC03 * ( SLHC03 * SLHC03 I
4.0 * ( SLHC03 » SLCA 1
4.0
JSCl
"C3NVERGENCC CRITERION (TESTAI SO THAT FIX) IS LESS THAN l.E-6
TESTA = l.E-6
X * RIOT ( CONST . XMAX
GO TO ( 67, 68 I , ISW
67 IF ( MOLE ,FO. JSC2 I GO TO 69
CALCULATE A NEGATIVE ROOT (REAL) IN RANGE XMIN - XMAX
X«AX = 0.0
> XMAX * SLCA
60 CA (II
CA (21
CA (31
CA (41
65 MHLE *
CONST
XMIN f MOLE , CA
TESTA J
HY 02 5230
HY025240
HYD25250
HYD25260
HYD25270
HYD25280
HVD25290
HYD25300
HVD25310
HYD25320
HYD25330
HY025340
HYD25350
HY025360
HYD253TO
HYD25380
HYD25390
HY025400
HYD25410
HYD25420
HY025430
HY025440
HYD25450
HY025460
HYD25470
HY025480
HYD25490
HYD25500
HYD25510
HYD25520
HYD25530
HVD25540
HYD25550
HYD25560
HVD255TO
HYD25580
HYD25590
HVD25600
HYD256LO
HY025620
HY025630
HY025640
HY025650
HYD25660
HYD25670
HYD25680
HYD25690
HYD25700
HYD25710
HYD25720
HYD25730
HYD25T40
HYD25750
HYP25760
HYD25770
HYD25780
174
-------
HYD25790
L
P
P
!SW = 2
^ TO 60
61 I c 1 '401 c .Mr. «Sr. ? ) GO Tn mi
-**** ipriATc ca\jr F'JTP ATT r>N^ <"-F r&Ln!U« (StCM tNO RTfARfjDN&TF {SLMT33)
r**** iv SnIUTI"i"'
f,q CLC4 = SLC», SL"r,, SLNA, SLCL , SLS04 , SLHCH3 , SLN03
1 SLCT3, FXTPAC, SFGV^L, C4TFX, GYPSUM, SLIMF , ^DFNS,
2 DEPTH , FXCA, EXMA , EXMG, UCAS04 , UMGS34 ,
3. INTFP
10 FORMAT ( 8X, 9HSLC* = F20.8/ 8X, 9HSLMG = F20.8 /
\ 8X, 9HSLNA = F?o.S/ 8X, 9HSLCL = F20.8 /
1 8X, 9HSLS04 = >=?o.fl/ 8X, 9HSLHC03 = F?0.8 /
C 8X, 9HSLN03 •* *2Q. 3/ 8X, 9HSLC03 = F20.8 /
0 RX, 9HEXTRAC = F'O.R/ 8X, 9HSEGVOL = F2Q.8 /
F 8X, 9HCATFX = F2n.8/ 8X, 9HGYPSUM = F20.8 /
F 8X, 9HSLIME = F20.8/ 3X, 9HBDENS = F20.R /
G 8X, 9HDFDTH = F20.8/ 3X, 9HEXCA = F20.8 /
H RX, 9HEXMA = F70.8/ 8X, 9HEXMG = F20.8 /
I 8X, 9MUC&S04 = F'0.8/ =»X, 9HUMGS04 = F20.8 /
J 8X, 9HINTER = F20.8/ )
RFTURN
END
MEMORY REQUIREMENTS 000368 BYTES
HIGHEST SEVERITY CODE WAS 0
FUNCTION GIKVALI
c *****
C**** THIS FUNCTION CALCULATES THE ACTIVITY COEFFICIENT (GAMMA)
C*****
COMMON /SOLUTE / SLCA, SLMG, SLNA, SLCL , SLS04, SLHCQ3, SLC03,
I SLN03 ,UCAS04 , UMGS04
CALCULATE THE IONIC STRENGTH OF ALL SPECIES IN SOLUTION (U» WHERE
C**»* U= 1/2 (SUMMATION OF CONCENTRATION OF ION ( MOLS/LITER) TIMES
C**** VALENCE OF ION SQUARED -FOR ALL SPECIESI
U = 2.0 * (SLCA * SLMG *• SLS04 «• SIC03) » 5.E-1 * (SLNA * SLCL +
1 SLN03 * SLHC03 I
:»LCULATF ACTIVITY COEFFICIENT ******************** ION USING DEBYE-
r**** HUCKEL FORMULA AS A FUNCTION OF IONIC STRENGTH AND VALENCE
COMP * 0.0
COMP * SQRT(UI
IF(U .GT. 0.1)00 TO 55
GO TO ( 50, 100) , KVAL
50 G = EXP ( -1.17201 * COMP / ( 1.0 «• COMP ))
GO TO 200
100 G » EXP J -4.68304 * COMP / t 1.0 *• COMP »
GO TO 200
55 IFIU .GT. 0.5) GO TO 105
GO TO! 56, 1011 ,KVAL
56 G = F.XP(-l.l7201*(COMP/( I .OtCOMP )-0.3*U ) )
GT TO 200
101 G=FXP(-4.68804*«COMP/< l.OtCOMP) -0.3*UI I
GO TO 200
105 W»ITE«6, 106)
106 FORMAT! 2X, 'THE IONIC STRENGTH IS r.PE&TPR THAN 0.5')
CALL FXIT
200 RFTURN
FMO
Kyn-p^SOO
HY025810
HY025820
HYh25840
HYH25850
HYn25B60
HYD25870
HYO'SfiPO
HYD25R90
HYP25900
Hyn?59ia
HY025920
HYQ?5930
HYD25940
HY02595D
HY 02 59 60
HYD2598D
HYD25990
HYH76000
HYH26010
HY026020
,HYD26030
HV026043
HY026050
HYD26060
HY026070
HY0260RO
HYD26090
HY026100
HY026110
HYO 26120
HY 026 130
HYP26140
HYD26150
HYD26160
HY 02 61 70
HYD26180
HY026190
HY026210
HY026223
HYD26240
HY026250
HY026260
HY026270
HYD26280
HYD26290
HY026300
HYD26310
HYD26320
HYD26330
HY026340
HY026350
HYD26355
HYD26360
HYD26370
HYD26380
HYD26390
HY026391
HY026391
HYD26392
HY026393
HYD26394
HYO 26395
HY026396
HYD26397
HYD26398
HY026399
HYP26400
HYD26410
REQUIREMENTS 000308 BYTES
HIGHEST SEVERITY CODE HAS 0
SUBROUTINE GRAFF(CYO,r,YP,TX,N,Mn, IYRI
OTMFNS10N CYO(U?),CYP( 122UTX(122)
DIMENSION OCYO( 122 ) , DC YPt 122 ) , OTX( 122 )
WRITE(6,700)
700 F1RMAT( lHl,5X,'nATA SUMMARY AT =L P* SO ',//, 5X, 'YEA P' , 3X, 'MONTH • ,5X
<,'nBS. CONC.<,4X,'PREO. CONC .', 5X , 'NUMBER ' I
IF(MO-l)500,500,50l
500 M(1=0
.AND. I YR .EO. 75)10=100
r.o T0 503
501 MN=MO
IFIMN .EQ. 5
D" 505 1=1 fN
505 TX(I)=AN
175
-------
40
504
MM=13-MN
0? 50* I »l, MM
MO.H.MN-I
IP (MO .r,T. MNI GO in w
WIYP,MO,CYO< I) tCYM IJ.TXU'
r»C TO 504
WRITE(6,702)MO,CYOm,CYPt n.TXCI )
WBITE(7,703»IYR,MO,CYO(I) ,CYPtl) ,TX( I)
C1NTIVUF
MSTART=MM+1
IcfM.N .EO. 5 .AND. IYP .FQ. 75 1 1 START* 101 +NH
2 I=MSTARTtN
503
IPd.EO. 11 GO TO 4
IC(MO.LT.13)C,0 TO 3
IVR=TYR*l
MP-l
4 WRTTC(6,701»IYR,MO,CYO( IJ ,CYP d ) , TXd )
H
-------
APPENDIX C
C. SAMPLE DATA INPUT AND MODEL OUTPUT FOR THE MKSILLA VALLEY
*** LISTING OF INPUT 0*TA ***
rPNk'ODlOU02 I 0
rcwonio? o i o
rpNSFQlOl 15 I -1
rriNisFQio' 14 i -i
TNWATl 01 0 0 0
rONW*T!02 0101 0
rPNF'JO 5 67 4 75
:TIV
0
_7
-7
0
0
0
F U5 =
0 0
?. -3
0 0
0 0
0 0
STUDY
0 0
0 0
3 4
0 0
0 0
0 0
0
0
0
0
0
THF MFSILl"
0000
0000
678-4
0 0
0 0
0 0
0 0
0 0
0 0
PROJFfT
000
000
9 -5 10
390
000
000
000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
I
**" LISTTNG OP INPUT DATA ***
POIIFFP
CRTAMK
rni
o 101 FLH^D PL ATM AIL'JVIAL AOUFFR FOR NODE i
^2101 60?4l>. 170.0 31.0 tOt.O 15P.O 5*5.0 2*3
602412. 3T 7S3.77 31.00 101.00
0 107 ei.nm "LAIN MLUVIH ACtlFFR FOR NpDF 7
07ft? 106376, 135.0 33.0 358,0 787.0 705.0 473
106376.00 229.1? 33.00 358.00
» 101
0 1 I
01 ?
01 3
01 4
ni 5
"i l 6
01 7
01 i
0 10'
07 1
^7 ?
07 3
O' 4
07 5
07 A
0? 7
0 ? 1
10. 0
1 0.4
20. 7
^ ' « 0
3?. 6
7 7 ^ Q
17.6
15.0
I 0.0
10.4
70.7
3 7 . ^
12. ft
'7.0
17.6
1 5.0
2.7
6.3
1 0.3
11 .4
7.1
5.5
4.6
2.7
3.0
6.3
1 3.3
1 1.4
7.1
5.5
4.6
U.4
13.1
20.2
30.7
38.4
27.6
22.3
20.3
11.4
13. I
20.7
33.2
38.4
27.6
22.3
20.3
3.0
?.8
3. 7
6. ?
13.9
9.0
7.5
6.4
3.0
2.8
3.7
6.2
1C. 9
9.0
7.5
6.4
9.8
12.7
33.6
56.8
59.9
38.9
29.4
26. I
9.8
12.7
33.6
56.8
59.9
38.9
29.4
26.1
11. 0
10.4
9.0
^ • I
8.0
7.4
6.0
6.7
1 1.0
10.4
9.0
3.1
8. 0
7.4
6.9
6. 7
.0 2.0 0.
158.00
.0 4.0 0.
282.00
0.0
o!o
0.0
0.3
0.0
0.0
0.0
0.3
0.0
0.0
0.3
0.0
0.0
0.0
0.0
0.6
0.8
0.6
- 1.2
3.0
l.R
1.1
0.9
3.6
0.3
0.6
1.2
3.0
1.8
I. I
0.9
7
,9
.71
. 73
.78
. 70
.38
.35
.34
.31
.71
.73
.78
.70
.38
.35
.34
.31
0.0 5067
525.30
0.0 5167
705.00
10.05
13.39
10.06
10.72
5.78
5.70
r>.4l
4.93
13.05
10.09
10.06
10.72
5.78
5.23
5.41
4.93
20.00
20. 30
20.00
20.00
5.30
5.00
5.00
5.00
20. 30
20.00
20.00
20.30
5.00
5.00
5.00
5.00
283.00
423.00
0.40
3.40
0.40
0.40
3.20
0.20
3.20
0.20
3.40
0.40
0.40
3.40
O.?0
0.20
O.?0
0.20
*
*
*
it
*
*
*
A
*
*
*
*
*
*
*
*
1.42
1.38
1.29
1.54
1.52
1.49
1.61
1.61
1.42
1.38
1.29
1.54
1.52
1.49
1.61
1.61
2.00
4.30
20.0
20.0
20.0
20.0
23.0
20.0
23.3
20.0
70.3
20.0
20.0
20.0
20.0
20.0
20.0
20.0
0.73
0.90
1222.97
1823.52
I. ISTINf. "F TN"DT DATA
JRFAD
4
I 101 "IP ^
-------
*** LISTING OF INPUT DATS ***
JRF.AD « 5
QINFLO 12101SUO 47930.
47930.30
OE1SUR 1U01MAI •'
CPNtJSFlOl I
nEMGHR 2H01SU"
CONUSE101 '
OEMSUR 31101TRR
CPNUSElOl 3 l(
72,0 15,0 flfl.O 6fl.O 192.0 R9.0
72.00 15.00 88.00
. 0.0 0.0 0.0 0.0 0.0 0.0
0. 0.50.SUR101 3100SURIOI 3100SURIOI 3100
0,0 0.0 4.99.0 6067
68.00 253.41
0.0 0.0 0.0 6067
6 67
89.00
OINFIO 52101CHX
6364
OINFIO 62101THK
1664
QINFt 0 72101CHK
--I CONUSF.102 1
00 OEMGKR 2110? SIP
CDMUSF102 '
5205.
0. 0.
18615.
622. 0.
IRP-1
:nNS
OLD
447.44
447.44
73.69
73.69
543.12
543.12
264.91
264.91
1923.86
1923.86
706.19
206.19
0.0
0.0
67.94
67.9't
3424.06
3424.06
-------
**- rAICUHTFO INPUT OAT: ***
USF.
= 24*23.4
l'41l.7 T?TH CALCULATED WITH 1RR. FFF. = 0.50
AND ET*FACTOR = NFW E T t WITH FACTOR =
1.700
nFWANO =
TP. 01 N 5 101 CL "ASP CARRIAGE ANO WASTF-nRS. P1)TPLTW<;
K 6^1*. 74.0 i?.o 92.0 7i.o
f.9^4.00 74.00 15.00
0!Ncl o 6210KHK 1771,
1771.00
OTNRO 7?tOKMK
R 101
flOlOlOW 0.
4 101 TRftMS=F"
4iniRwD.,. •>..
CPNllSFini 4
9 1
1?5.0 II.0 1M.O 164.0 317.0
263.77 31.00 101.
OUTFLOW AT "FSILl A 0AM
0.0 0.0 0.0 0.0 0.0
PFT||PM FLHK
0.0 0.0 0.0 0.0 0.0
F FLOW FPOM PTVCP TO AO'IIFFR
0.0 0.0 0.0 0.0 -0.0
oo o
f,()Pr>CM 5
npMr.wp ^l
rn\'USF10l
«i
101
t 10?
c,UDr>FM I IT? T
lllT» M 13474.
1 0. O
»110?SU'»
?
7 IT
2710'Siir
1 1 T>
0. 0.*iO.GW9101 9100
INFLOW rn AOUIFFP FROM
T. 0.0 3.0 0.0 0.0 0.0
T»«NS. ^F FlOW TROM AO. TO OFL P 1 ^ ^P
0. 0.0 0.0 0.0 0.3 O.O
0. O.'iO.SU' 101 10100 000
TMFliH TO DFI R J o nPAIN FRO" AOU1FF.P
i. o.o o.o o.o o.o i.o
AT H=SILL* OAM-HFAO OF NOOF
0.0 0.0 0.0 0.0 0.0
AFTER OIVFP^IPN
0.0 0.0 0.0 0.0 0.0
.SU»102 3100SUP102 ?IOOSIJPI
r,.W. TO SU°PLV nFMANri
0.0 0.0 0.0 0.0 0.0
0. T. 51.SU0 10? 2100SLJBIO? ?100<:U''132
OF-f^VD SUPPL I EH PRO" C,.W.
0. 0.0 0.0 0.0 0.0 0.0
ATI^M OFMANO
fl5t>5. 0.0 0.0 0.0 0.0 0.0
* ~ " " ----- ----- ------ ----
T.
0.
12114. 0.50.r,WVl02 6100GWV10? 6lOOr.WVn2 6100
0.0
0.0
LIC
WN
oo' "
10R.O
00
0.0
0.0
0.0
000
0.0
0.0
000
0.0
?
"o.o
0.0
2 3100
0.0
2 ?100
0.0
0.0
2 6100
0.0
0.0
0.0
71.
0.0
158.
0.0
0.0
"v
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
00
0.0
00
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1 6
0.0 1067
I 6
0.0 1067
517.3 5067
261.70 90.00 0.0 .0.0
897 I 6
933.9 5067
525.00 2B3.00 2.00 3.73
106
0.0 5067
106
0.0 1067
106
0.0 1367
1 67
136
0.0 1067
106
0.0 1067
I 67
106
0.0 1367
106
0.0 1067
106
0.0 5067
5 67
106
0.0 5067
5 67
106
0.0 1067
106
0.0 5067
5 67
558.73
-------
VF >I<;F *
INPUT DAT* ***
41107.6
20593,8 flint CALCULATED WITH ISR. F.FF.
AND >=T*F4CT'3fi = Mi=W FT, WITH
o.5Q
1.700
IT
-
n?
iO->
2
f> IT
'»U(T"-,wo
70107'-,W^
5 102 1
5llO?clJ"
"107
107'
1102CU'
0 0
o.
DEMAND « 4118''. 6
FFF. » o.so
niFF. (WATFR SAVINGS) *
ct
o.o o.o
0.0
0. 0.0 0.0
G'&NOF. OUTFLOW AT
91.0 IR.O I
96.58
°FTU°N FLOW
0. 0.0 0.0
M««=c' OF FL'IW f-"
0. 0.0 0.0
0. 0.50.r.WP103' 7100
o.o o.o
0. 0.0 0.0
.0^ 0.50.SU<>102 «10I
i| TPAN1? riir
). 0.0 0.0
MF.SILLA DAM
0.0
1
0.0
rou
14.0
18
1
0.0
0 1 y
0.0
1 PI
0.0
*0l)
0.0
IStl°
OUI
u°<;
o.o
0.0
0.0
RCHFSNE
121.0
.00
o.o
FR in A
0^0
0 0
yco
0.0
IFCP TP
0.0
10? 910
ceo
0.0
T^FAM A
0.0
0.0
0.0
^i R I O'l
2*0.0
154.
0.0
OJt FF3
0.0
0
0.0
0.0
O^U' 10
0.0
ouirc5
o.o
o.o
o.o
204.0
00
0.0
0.0
000
0.0
. 0.0
I 1100
0.0
0.0
0.0
0.0
12.0
121.0"
0.0
0.0
0.0
0.0
0.0
0.0
3.0
0.0
0.6
0.0
0.0
0.0
0.0
0.0
0.0
106
0.0 1367
5 6
0.0 1067
106
flM.O 5067
106
0.0 1067
106
0.0 1067
1 67
106
0.0 1067
106
0.0 1067
1 67
136
0.0 1067
106
0.0 1067
234.30
12 . ,3 3
J.63
OPERATIONAL NOTES:
(1) To eliminate the soil column simulations, change each monthly "CONTJSE101 3" and "CONUSE102 3" card as follows: replace the letters "GWV" with "GWR"
(2) To change the ET multiplier or irrigation efficiency, see the Subroutine Peruse, Appendix B, the three lines below line // HYD03950.
(3) To change the water delivery system efficiency, see the main program, Appendix B, one line below line it HYD00640.
(4) Note that the listing of input data for all monthly inputs following the first month is abbreviated.
7°
450.30
450.30
7?.49
72.49
544.64
544.64
265.'3 5
265.35
1929.16
1928. 16
206.5fl
206.58
0.0
0.0
OR.
'432.70
-------
IN CONJUNCTIVE US F. STUDY FDR THF
NODE NU*3C.R * 101 MONTH OF MAY
SEQUENCE OF SURFACE FACILITY
RIO GRANDE AT HEAD OF SYSTFM
RIVFi> FLOW AFTER DIV. "LUS Ft PASO CAR.
PUMP/VGE FROM G.W. TO SUPPLY OFMANO
TRR. DFMAND SUPPLIED FPOM G.W.
IRPIGATIHN DEMAND
F»rM THE IDEAL DEMAND
GRAND* FLOW ARQVF. MPMLL* DAM
EXCESS R
PROJECT
Y=AP 1967
NUMBER OF NODES
OUTFLOWS FROM NODE
., PL PASO CARRIAGE AND WASTF-ORS. OUTFLOWS
00 OFL RIO DRAIN - OBSERVFO OUTFLOW
£ Rio ",R4NDF, OUTFLOW AT MBSIILA 0AM
SUBSURFACE "P=RATIONS AND FLOW TRANSFERS
AOUIFCP roNDITIONS OF LAST TIME
IRRIGATION RETURN FLOW
TP/JMSFPR OP PLOW FROM RIVFR TP AQUIFER
INFLOW Ti AQUIFER FROM RIVFR
GP PLOW FROM AO. TO DEL °IO DRAIN
TO OEt RIO nRAIN FROM AOUIFFR
INDEX
"BSF^VED OUTFLOWS FROM MODE
PRFOICTED OUTFLOWS FROM NOTF
DIFPFRFNC? ( OB S^RVFD-PP EDIC TFO )
^ IN NODE
TOTAL
TOTAL
CHANGE
PRFDICTEP CH4NGE
F FEET
42150
36160
21528
21528
24823
0
36160
0
6934
1771
29226
602412
12411
0
0
1771
1771
37Q31
37931
0
0
0
CA
PPM
73
73
263
263
238
73
0
73
. 263
73
263
477
0
0
263
263
82
82
0
8
R
MG
P!>M
14
14
30
30
28
14
0
14
30
14
30
57
0
0
30
30
15
15
0
0
0
NA
PPM
92
92
100
100
99
92
0
92
100
92
100
199
0
0
1JO
100
92
92
0
0
0
CL
PPM
70
70
157
157
146
70
0
70
157
70
157
292
0
0
157
157
75
75
0
4
4
S04
PPM
261
261
524
524
490
261
0
261
524
261
524
980
0
0
524
524
273
273
0
12
12
HC03
PPM
89
89
282
282
257
89
0
«9
282
89
282
514
0
0
282
2P2
99
99
0
9
9
PAGF NO.
PPM
1
3
0
0
I
M03
PPM
0
0
0
0
0
0
0
0
0
0
0
I
0
0
0
0
0
0
0
0
0
TOTAL
PPM
558
558
1222
1222
1134
558
0
55R
1222
558
1222
2269
0
0
'1222
1222
589
589
0
31
31
SALTS
TDNS/A=
0.760
0.760
1.663
1.663
1.543
0.760
0.0
0.760
I .663
0.760
1.66?
3.337
0.0
0.0
1.663
1.663
0.802
0.802
0.000
0.042
0.042
-------
RESEARCH IN CONJUNCTIVE '.JSP STUDY FOR THE M=SILLA "ROJECT
NUMBER
NOOFS
PAGE NO. 2
NODE NUMRFR
102
MONTH OF MAY
VEAR 1967
VOLUME
ACRE FEET
OPERATIONAL SEQUENCE OF SURFACE FACILITIES
"TO GRANDE AT MESHLft OftM-HFAD OF NODE 2
RIVFR FLOW AFTFR DIVERSION
PIJMPAfiF FOIM r..w. TO SUPPLY OEMANn
IRR. DEMAND SUPPLTFO FROM f..W.
IRRIGATION OEMAN1
SHPPtursF F^M THP I1FAL OFMANO
RTH r,RAMOP PLOW BELOW MESILL4 0AM
RIVCR
OliSERVF" OUTFLOW: FRO* MODE
r,Ra*inF. OLITFLTH AT cniiPCHESNF
nocRfiTIOMS ANO FLCW TRANJFFPS
24209
H. AOUIFFR C"MOTTIONS OF LAST TIME FRAME
00 IRRIGATION RETURN FLOW
N> TRANSFER "f FLOW FP.OM RIVFq TO AQUIFER
INFLOW TO AOUIFFR FROM RIVER
TRANSFER nF"TlOW FROM AOUIFFR TO RIVER
INFLOW TO RIVPR FROM AOUIFFR
INTERN^DAL TPAMS FROM UPSTREAM AQUIFER
CA
PPM
MG MA
PPM PPM
CL
PPM
S04
PPM
C03
PPM PP" PPM
TDTAL SALTS
PPM TPMS/AT
37931
24457
33776
33776
41187
0
0
82
82
229
202
fl2
0
il
32
32
29
15
0
92
92
357
357
310
92
0
75
75
2«l
2S1
?44
75
0
273
273
704
704
627
273
0
99
99
4??
422
364
99
0
C
0
3
0
0
u
0
0
0
0
0
509
1823
1123
I 60 I
589
0
0.802
0.80?
2l48J
2.176
0.80?
0.0
96
17 153
120
279
203
11
784
1.066
1063760
?0593
24fl
248
0
0
0
229
405
fl?
B2
0
0
0
32
59
15
15
0
0
0
357
620
92
92
0
0
0
281
489
75
75
0
0
0
704
1254
273
273
0
0
0
422
729
99
99
0
0
0
3
6
0
0
0
0
0
3
0
0
0
C
0
1823
3203
589
589
0
0
0
2.480
4.356
O.fO?
0.802
0.0
O.C
0.0
COMPARISON IN1F.X
TOTAL nnSFRVFO O'JTFLOWS FROM NODE
TOTAL PREDICTED OUTFLOWS FROM NODE
SIMPLE DIFPEOFNCE ( OBS FRVFP-PREDIC TFOI
CHEMICAL ".MANGES IN NODE
CHANGE
POEDICTEO CHANGE
CHEMICAL :HANSES IN SYSTEM
CHANGE
CH»NGF
24209 96 17 153 120 279 203 11 0 784 1.066
24209 82 15 92 75 273 99 0 D 589 0.802
0 13 2 6L 45 6 104 11 0 194 0.264
0 13 2 61 45 6 104 II 0 194 0.264
0 0 0 0 0 0 0 0 0 3 -0.0 DO
0 22 2 61 50 18 114 II 0 225 0.307
0 R 0 0 4 12 9 0 0 ?l 0.042
-------
TN ' '-.-"M.IUNtTl VF U<:c *,
FHB THE MC^TLLA PROJECT
NUMBER OF NODES = 2
IUN
1967
np SIJRFATF FACILITY"?
C \r MriP) IP SYSTF"
pTwpn n nw AFTFP rw. PLUS cl. "4S" CAR.*
n,,«p1'jr 'rrj-^ r,.H. T1 SUP°LV TEMAMn
tpr. rif'M ».l^ <;i|OP| 1^0 FOPM G.W.
! r> n ]".\ TT r\> ^PM n«go
<-^r3"4»c r->OM IMP Inc^L
OTO -aiiMrir r.^ nw
00
OJ
TC|_nw AT
T TO'JS ^M'1 FLpW
T I T\|<5 HP I AST TI"E
TIJRN C^
TMCL^W T° lOlirc^
r~ ^N<; ~r r| nu cn
T »it:|-ci<.,| rn -)r(_ p j ^
TO
RTVFP
rr nn PIT DP & T N
FPTM AQIMFE5
r- nvn « IT C
^ycn n JT FL'I
t-Tcn "IIJTFl n
\'pnF
~fM- TPO "H".
F. FEET
47930
40961
32281
32281
36114
0
40961
0
6364
1664
34597
594219
18057
0
0
1664
1664
42625
42625
0
0
0
CA
PPM
71
71
266
266
246
71
0
71
266
71
266
492
0
o
266
266
79
79
0
7
7
MG
PPM
14
14
31
31
30
14
0
14
31
14
31
60
0
0
31
31
15
15
0
0
0
NA
PPM
87
87
110
110
107
87
0
87
110
87
110
215
0
0
110
110
88
88
0
0
0
CL
PPM
67
67
159
159
150
67
0
67
159
67
159
300
0
0
159
159
71
71
0
3
3
SCI4
PPM
253
253
553
553
521
253
0
253
553
253
553
1042
0
0
553
553
265
265
0
11
11
HC03
PPM
BB
88
280
260
88
0
88
280
88
280
520
0
0
280
280
96
96
0
7
7
PAGE NO. 3
PPM PPM PPM
0
\
I
0
0
0
0
3 TOTAL SALTS
M PPM TONS/AF
0
0
2
I
0
0
0
2
0
2
0
0
2
0
0
0
0
0
540
5*0
1266
1266
U89
540
0
540
1266
540
1266
2378
0
0
1266
1266
569
569
0
28
28
0.736
0.736
1.722
1.722
1.617
0.736
0.0
0.736
1.722
0.736
1.722
3.235
0.0
0.0
1.722
1.772
0.774
0.774
0.000
0.039
0.039
-------
00
ACPE FFFT
IN CONJUNCTIVE USE STUDY FDR THE MESILLA PROJECT
NODE NUMBER - 102 MONTH OF JUN YEAR 1967
OPERATIONAL SFQUENCE OF SURFACE FACILITIES
RT1"* GRANDE AT MESHLA DAM-HEAD OF NnDE 2
RIVE' FL^H 4FTER DIVERSION
PIJMPAGE FROM G.W. TO SUPPLY DEMAND
IRR. DEMAND SUPPLIED FROM G.W.
IRRIGATION DEMAND
SHORTAGE FROM THE IDEAL DEMAND
"MO GRANDE FLOW BFLOW MESILL4 DAM
EXCESS RIVE* DIVERSION
1RSFRVED OUTFLOWS FROM NODE
Rin GoaNDE OUTFLOW AT COURCHFSNE RPIDGC
SlflMlRFA'F OPCR4TIONS AND FLOW TRANSFERS
AOUIFFD CONDITIONS QF t AST TIME FRAME
tRPHATION RETURN FLOW
TPANSFFR OF FLOW FROM RTVFR Tn AQUIFER
TMFL"W TO 40U1FER FROM RTVER
TRANSFER OF FLOW FROM AQUIFER TC RIVER
TN|F»OW TO'RIVER FROM AOUIFFR
T«»ANS FROM UPSTRFA* AOUIFE"
25293
NUM3ER
CA
PPM
MO
PPM
NA
PPM
NODES
CL
PPM
SD4
PPM
"AGE NO. 4
HC33 C03 N03
PPM opM PP1
TOTAL SALTS
PPM
NS/AF
42625
29221
52552
52552
59924
0
?922l
0
79
T9
232
232
213
79
0
15
15
33
If
15
0
SB
88
360
360
326
88
0
71
71
2«0
280
254
71
0
265
265
726
726
669
265
0
96
96
416
416
377
96
0
3
0
3
3
0
0
0
0
2
2
0
0
569
569
1847
1847
1690
569
0
0.774
0.774
2.513
2.513
2.299
0.774
0.0
93
17 143
112
257
231
744
1.012
n56887
29962
3923
3923
0
0
0
232
427
79
79
0
0
0
33
62
15
15
0
360
653
88
88
0
0
0
280
509
71
71
0
0
0
726
1339
265
265
0
0
0
416
754
96
96
0
0
0
3
6
0
0
0
0
0
2
3
0
0
0
0
0
1847
• 3380
569
569
0
3
0
2.513
4.598
0.774
0,774
0.0
0.0
0.0
rOMPARlSON INDEX
"BSERVF.n OJTFLOWS FROM NODE
THTAL PREDICTED 1UTFLOWS FROM NODE
SIMPLE DIFFERENCE ( 095F.RVFO-PRPOIC TED)
'HEMIfAL CHANGED IN NOD1:
CHANGF
OREDICTFD CHANGE
CHANGES IN SYSTFM
THANGE
CH4NGE
•25298
25293
0
0
0
93
79
13
13
0
21
7
17
0
d
143
88
55
55
0
56
0
112 257
71 265
41 -7
41
0
44
-7
0
4
U
231
96
135
143
0
3
0
0
0
744
569
174
174
0
203
28
1.012
0.774
0.238
0.238
•0.000
0.275
0*039
-------
APPENDIX D
D. ESTIMATION OF MISSING WATER QUALITY DATA AT LEASBURG
In order to run the USBR-EPA hydrosalinity model and simulate chemical
interaction effects in the unsaturated zone above the water table for the ten-
year period (1967-1976), complete chemical analyses of the river water at
Leasburg is required, since this is the input point at the head of the nodal
system of the model. Montly TDS values, hpwever, are the only available water
quality data for much of this period (see Appendix A). There are some other
available records of river flow at Leasburg with complete chemical analyses
for earlier years (Hernandez, 1976, Appendix B). Regression methods were
applied to this earlier data in order to establish relationships between the
major individual ion species present (Ca"1"*", Mg"*~*", Na+, Cl~, Soi^, HCOa",
C02=, and NOs") and the mean monthly river flow. Once these regression rela-
tionships were established, the concentration of major individual ion species
could be estimated for the missing data in the ten-year simulation period.
The monthly records for two periods, 1940-1944 and 1959-1963, were used
in establishing these regression relationships (see Hernandez, 1976, Appendix
B). For the period 1940-1944, the logarithm of the mean monthly discharge
(CFS) was compared against the logarithm of the respective ions (meq/1) men-
tioned above. For the period 1959-1963, the logarithm of mean monthly dis-
charge (CFS) was compared against the individual ion fraction, which is de-
fined as
,. . individual ion species (ppm)
ion fraction = —=—-r-. ;—, r •, . •,—/* \
total dissolved solids (ppm)
The latter method of comparison gave very low correlation coefficients, where-
as the former method gave relatively higher ones. Therefore the regression
relationships obtained from the first method, based on the 1940-1944 period,
were used to estimate the concentration of major ion species for the missing
data in the ten-year simulation period. These relationships are listed in
Table D-l. After estimating these ions, a cation-anion balance was made in
order to calculate a TDS value, since this procedure is automatically per-
formed in the USBR-EPA model. The model utilizes this calculated TDS based
on the ion balance in all subsequent internal simulations. In calculating
this TDS value, the USBR-EPA model will add any cation-anion deficit to either
the calcium or sulfate concentration, depending on whether the deficiency is
from the cations or anions, respectively. When this procedure was used to
calculate TDS values for the simulated input data, large discrepancies between
these and observed values often existed. In several cases this calculated TDS
value was almost twice the observed TDS value. To remedy this situation so
that the model utilized the observed TDS data, the estimated individual ion
values for the major ions present were further modified. The iteration pro-
cedure used is explained below in a sample calculation. Results are shown in
Table D-2.
185
-------
TABLE D-l. REGRESSION RELATIONSHIPS FOR ESTIMATING THE MISSING WATER
QUALITY DATA AT LEASBURG, OBTAINED FROM THE DATA LISTED IN
HERNANDEZ (1976)
Ion
species
Calcium
Magnesium
Sodium
Bicarbonate
Sulfate
Chloride
Nitrate (3)
Regression relationship
(1)
log(Ca)
log(Mg)
log(Na)
log(HC03)
log(S04)
log(Cl)
log(N03)
(2)
- -0.195 log(Q) + 2.428
= -0.196 log(Q) + 1.757
= -0.222 log(Q) + 2.594
- -0.061 log(Q) + 2.110
= -0.252 log(Q) + 3.017
= -0.284 log(Q) + 2.658
= +0.033 log(Q) - 0.090
Correlation
coefficient
-0.868
-0.924
-0.957
-0.429
-0.956
-0.944
-1-0.110
Estimated ion concentration (meq/fc) in the Rio Grande at Leasburg.
(2)
Observed river flow (CFS) above Leasburg Dam.
(3)
Not used in subsequent calculations. The nitrate concentration in
the Rio Grande was assumed to be zero for the missing data period
shown in Appendix A.
186
-------
TABLE D-2. RESULTS OBTAINED FOR NOVEMBER,1972, USING THE ITERATION PROCEDURE TO
BALANCE CATIONS AND ANIONS SO THAT THE CALCULATED TDS OBTAINED
EQUALS THE OBSERVED TDS
lon(i) «±
1. Ca 20.04
2. Mg*4" 12.16
3. Na+ 23.00
4. Cl" 35.46
M 5. S04= 48.03
00
*J 6. *HC03~ 61.01
7. C03= 30.00
8. N03~ 62.01
v 0, \
X± (ppm)
162
34
222
219
544
119
0
0
a° = 1240.5
°OBS ' 912
X1 (ppm)
119.1
25.0
163.2
161.0
399.9
87.5
0
0
a1 = 950.6
Y^Cmeq/A)
5.94
2.06
7.10
4.54
8.33
1.43
0
0
BAL = 0.80
X± (ppm)
114.3
24.0
156.7
154.5
420.5
84.0
0
0
a2 = 912.1
Y^dneq/Jl)
5.70
1.97
6.81
4.36
8.76
1.38
0
0
BAL = -0.02
*0nly one-half of the reported bicarbonate concentration is used in calculating
total dissolved solids (a).
-------
The water quality data that is missing (July>1968 to December, 1975) and
estimated by the procedure described here, is listed in Appendix A, along with
all of the observed data required to operate the USBR-EPA model.
Description of Iteration Procedure
Complete chemical analyses of major ions for surface waters are observed
at Leasburg for only a portion of the ten-year simulation period (1967-1976) ,
whereas the TDS is observed for the entire period. The detailed chemical
analyses cover the periods of May* 1967 to June, 1968, and from January ,1976 to
December, 197 6. The missing chemical analyses of major ions in the ten-year
interval (i.e., July, 1968 to December, 1975) were estimated, based on the re-
gression method described above, and the iteration procedure described here.
Once the individual ion concentrations (for Ca4"1", Mg4"1", Na+, Cl~, SOt^, HC03~,
C02=, and NC>3~) were obtained from the regression coefficients and observed
river flow at Leasburg, they were further modified by an iteration procedure.
This was done so that the calculated TDS equaled the observed TDS.
•
This iteration procedure is best described by a series of calculations
listed below. The results obtained for November, 1972 are shown in Table D-2.
The symbols appearing in the table are defined as:
a). - ion equivalent weight, which is equal to the ion atomic weight
divided by its valence.
X. - concentration (ppm) of the respective ion (i) , obtained from
1 the regression relationship.
X.J - the corrected concentration (ppm), as described in the itera-
1 tion procedure below; j refers to the iteration number.
Y •* - the concentration of X. , in meq/fc.
The steps in the iteration procedure are:
(1) compute the ratio of observed to calculated TDS, i.e.
T,.™™ 912 n
RATIO = — = -ft— = 0.
a
(2) Multiply X. by the ratio obtained in (1) above, to obtain X± , as
shown in column 4, Table D-2.
(3) Compute Y. from X. , i.e.
(4) Calculate the cation-anion balance using the values Y. , obtained
from step (3) above, i.e.
188
-------
sum of cations = Y + Y + Y~ = 5.94+2.06+7.10
-L. <£ -J
Z Cat. = 15.10 meq/£
sum of anions = Y. + Yc + Y.1 + Y,1 + Y,,1
45678
E Ani. = 4.54 + 8.33 + 1.43 = 14.30 meq/Jl
BAL = Z Cat. - Z Ani. = 15.10 - 14.30
BAL = 0.80 meq/£
(5) Since the balance (BAL) in step (4) is greater than zero, there are
more cations than anions; an anion deficit exists. The sulfate (SOi^) ion
concentration is therefore corrected using the expression
1 r 1 1
X,X = u • I Y/ , letting Y/ = 0.0
Here 0)5 is the equivalent, weight for sulfate and n is the total number of in-
dividual ions (8). The summation is done for the ion concentration in meq/S,
(column 5 of Table D-2). Thus,
X-1 = 48.03 (5.94 + 2.06 + 7.10 - 4.54 - 0.0 - 1.43)
X51 = 438.5 ppm
The corrected sulfate concentration in column 4 should now be 438.5 ppm, and
not 399.9 ppm as listed.
If a cation deficit were calculated (i.e., BAL less than zero), the cal-
cium (Ca ) concentration would be corrected using a similar relation, or
1 n 1 1
X + u) • £ Y. , letting Y = 0.0
1 1 1=1 1 L
Now w, would be the equivalent weight for calcium.
(6) A new TDS is obtained using the sulfate concentration from step (5)
above (or the calcium concentration if a cation deficit were found), and the
remaining data from column 4. Thus,
1 n 1
a = 7 X. = 119.1 + 25.0 + 163.2 + 161.0 + 438.5 + 0.5(87.5)
. i i
a = 950.6 ppm
Note that only one-half of the bicarbonate concentration is used to calculate
the TDS.
189
-------
(7) A new ratio can now be found; the iteration procedure is repeated.
(8) Multiplying X.^1 by the new ratio found in step (7) to obtain X-j^2
(column 6, Table D-2). Remember that the sulfate concentration was modified
in step (4) above.
(9) Repeat steps (3) through (6) to obtain a new BAL. If the BAL is
within one percent of the cation sum, the procedure is terminated. Otherwise
continue with steps (7) through (9).
190
-------
APPENDIX E
E. CONVERSION TABLE FOR ENGLISH TO SI UNITS
TABLE E-l. ENGLISH-METRIC CONVERSION TABLE
1.0 inch
1.0 inch
1.0 foot
1.0 foot
25.4 millimeters
2.54 centimeters
30.48 centimeters
0.3048 meters
1.0 acre
1.0 acre
4047 square meters
0.4047 hectares
1.0 gallon
1.0 gallon
1.0 cubic foot
1.0 cubic foot
1.0 acre-foot
1.0 acre-foot
3.7854 liters
0.0037854 cubic meters
28.32 liters
0.02832 cubic meters
1,233,000 liters
1233 cubic meters
1.0 gallon per minute
1.0 gallon per minute
1.0 gallon per minute
1.0 gallon per minute
1.0 cubic foot per second
1.0 cubic foot per second
3.7854 liters per minute
0.06309 liters per second
0.0037854 cubic meters per minute
63.09 x 10 cubic meters per minute
28.32 liters per second
0.02832 cubic meters per second
191
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-600/2-79-173
3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE
Evaluation of a Hydrosalinity Model of Irrigation
Return Flow Water Quality in the Mesilla Valley,
New Mexico
5. REPORT DATE
August 1979 issuing date
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Lynn W. Gelhar, Stephen G. McLin
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
New Mexico Institute of Mining and Technology
Socorro, New Mexico 87801
10. PROGRAM ELEMENT NO.
1BB770
11. CONTRACT/GRANT NO.
S803565
12. SPONSORING AGENCY NAME AND ADDRESS
Robert S. Kerr Environmental Research Laboratory
Office of Research and Development
U. S. Environmental Protection Agency
Ada, Oklahoma, 74820
13. TYPE OF REPORT AND PERIOD COVERED
Final
14. SPONSORING AGENCY CODE
EPA/600/15
15. SUPPLEMENTARY NOTES
16. ABSTRACT
lumped parameter model of irrigation-related water quality is ap-
plied to the Mesilla Valley, an irrigated valleyjencompassing roughly 40,500 hectares
(100,000 acres) {adjacent to the Rio Grande in southern New Mexico. The model, which
was originally developed^ by the U.S. Bureau of Reclamation (USER)/ for thej Environ-
mental Protection Agency (EPAJ , ^simulates diversions and pumping to meet irrigation
needs, irrigation return \ flows , chemical transformations in the soil, and mixing in
groundwater reservoirs. J
Data on water quality at 35 surface and groundwater sites within the valley were
collected on a monthly basis over two irrigation seasons. Analysis of water quality
data from several observation wells in the shallow alluvial aquifer underlying the
area demonstrates that there has not been a statistically significant change of the
average salinity of the aquifer over the last decade.
The USBR-EPA model is evaluated in several computer simulations covering the
ten-year period from 1967 through 1976. It is found that the model adequately simu-
lates the observed seasonal pattern of salinity variation in the Rio Grande at the
lower end of the valley near El Paso, Texas. Simulation results indicate that when
irrigation efficiency is increased, there is a reduction in concentration of dis-
solved solids in the Rio Grande at El Paso, especially during the winter months.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Water Quality
Irrigation
Mathematical Models
Simulation
Irrigation Return Flow
68D
13. DISTRIBUTION STATEMENT
RELEASE UNLIMITED
19. SECURITY CLASS (ThisReport)
Unclassified
21. NO. OF PAGES
202
20. SECURITY CLASS (Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
192
JU.S GOVIBIMEin PRINTING OFFICE-1979 -657-060/5421
------- | |