-------
Figure 45
Annual Operating Costs vs. Efficiency
8
CASE: Electrostatic Precipitator
o
Q
•M
10
O
O
(O
I
o
90% - $5,840
95% - $6,380
99% - $8,150
90
95
Removal Efficiency %
100
- in -
-------
90 r-
80
70
CO
at
;= 60
8
CO
o
W»
o
N
50
40
30
20
Figure 46
Annualized Costs vs. Air-to-Cloth Ratio
KEY:
O Teflon
& Gore-Tex/Gore-Tex
Q Nomex
Q Gore-Tex/Nomex
Oralon
6 8 10
Air-to-Cloth (ACFM/Ft.2)
- 112 -
-------
insurance and other miscellaneous costs, are assumed equal to the amount
of depreciation, or 6 2/3% of the initial installed cost. Therefore,
depreciation plus these other annual charges amount to 13 1/3 percent
of the installed costs. See example calculation of annualized cost in
the Appendix.
Annualized cost for the ESP case at 90, 95 and 99% collection
efficiencies were determined to be $60,766, $69,097 and $87,960 respec-
tively, see Figure 47. The annualized cost for 90% is higher than all
cases of the fabric filter at A/C ratio of 5.8 and greater. Even at
A/C ratio of 2.9 the fabric filter annualized cost is less than that
for the ESP at 90% for three (3) of the five (5) bag materials with only
Teflon and Gore-Tex/Gore-Tex being higher. All costs are tabulated in
Tables 28 and 29 for easy reference.
A cursory attempt was made at determining the effect of accelerated
depreciation on annualized cost. The resultant costs are presented in
Table 30 and Figure 48. Accelerated depreciation was based on straight
line depreciation over five (5) years (20% per year) plus 6 2/3 percent
used again for other capital charges. This basis for capital charges
was used only to be consistent and is not meant to be indicative of the
real case. To establish a realistic factor for "other capital charges"
would involve a detailed cash flow analysis with the result applicable
only to a single case. The basis chosen was discussed with by Mr. F. L.
C4\
Bunyard , EPA Cost Analysis Section. It was felt that the comparison
of accelerated and standard depreciation was worthwhile as long as the
basis was clearly established. The net result as seen in Figure 48 was
an accentuation of the difference between annualized costs for fabric
filters as opposed to electrostatic precipitators.
Finally, outlet loading versus annualized cost is presented in
Figure 49 for the fabric filter employing four (4) types of bags and the
electrostatic precipitator. This comparison indicates that the fabric
filter may be capable of competing with the electrostatic precipitator
- 113 -
-------
90r
Figure 47
Annualized Costs vs. Efficiency
85
CASE: Electrostatic Precipitator
80
i.
(O
o
O
75
in
-M
in
O
o
-o 70
60
90% - $60,766
95% - $69,097
99% - $87,960
55
90
95
Removal Efficiency %
!00
- 114 -
-------
Table 28
01
I
Nomex
Gore-Tex/Gore-Tex
Gore-Tex/Nomex
Oral on T
Teflon Felt
Nomex
Gore-Tex/Gore-Tex
Gore-Tex/Nomex
Oral on T
Teflon Felt
Nomex
Gore-Tex/Gore-Tex
Gore-Tex/Nomex
Oral on T
Teflon Felt
A/C 2.9
244.87 (3.50)
267.80 (3.83)
218.12 (3.12)
192.20 (2.75)
322.60 (4.75)
14.57 (0.21)
30.53 (0.44)
18.16 (0.26)
9.88 (0.14)
44.98 (0.64)
47.14 (0.67)
66.19 (0.95)
47.17 (0.67)
35.15 (0.50)
89.22 (1.27)
Fabric Filter Costs Data
Installed Costs X 103
A/C 5.8
133.59 1.91)
145.06 2.07)
120.22 1.72)
107.26 (1.53)
177.46 (2.54)
Annual Operating Costs X
Dollars & ($/ACFM)
A/C 8.9
109.56 (1.57)
114.81 (1.64)
98.25 (1.40)
89.61 (1.28)
136.41 (1.95)
103 Dollars & ($/ACFM)
16.93 (0.24) 15.82 (0.23)
20.07 (0.29) 21.40 (0.31)
13.86 (0.20) 17.26 (0.25)
11.67 (0.17) 13.01 (0.19)
25.93 (0.37) 22.02 (0.31)
Total Annual i zed Cost of Contraol X 103 Dollars &
34.69 (0.50)
39.36 (0.56)
29.85 (0.43) x
25.93 (0.37)
49.53 (0.71)
30.39 (0.43)
36.70 (0.52)
30.33 (0.43)
24.93 (0.36)
40.16 (0.57)
A/C 11.3
99.96 (1.43)
102,71 (1.47)
89.46 (1.28)
82.55 (1.18)
.119.99 (1.71)
15.49 (0.22)
22.92 (0.33)
19.61 (0.28)
13.55 (0.19)
22.76 (0.33)
($/ACFM)
28.79 (0.41)
36.58 (0,52)
31.50 (0.45)
24.52 (0.35)
40.90 (0.58)
-------
Table 29
Electrostatic Precipitator Cost X TO3 Dollars ($/ACFM)
Efficiency
90% 95% 99%
Installed Costs 41Z.97 (5.90) 471,60 (6.74) 600.10 (8.57)
Operating Costs 5.84 (.083) 6.38 (.091) 8.15 (0.116)
T. Annual!zed Costs 60.77(0.87) 69.10 (.99) 87.96(1.26)
- 116 -
-------
Table 30
Case (A/C. Efficiency)
Dralon T (5.8/1, 97.3%)
Teflon (5.8/1, 98.1%)
ESP (90%)
ESP (95%)
ESP (99%)
Annual i zed Costs
Installed Costs
107,260
177,460
412,970
471,590
600,100
Based on Accel ei
Annual
Operating Costs
11,670
25,930
5,840
6,380
8,150
Annualized
Capital Costs
28,600
47,310
110,100
125,730
159,990
Total
Annualized Costs
Accelerated (Standard)
40,260
73,240
115,940
132,100
168,130
(25,930)
(49,530)
(60,770)
(69,100)
(87,960)
-------
Figure 48
Annualized Cost Comparison
175r-
150
£
.2 125
§
o
o
X
.2 100
>
o
o
-o
at
N
(O
1 75
«c
50
25
Accelerated
BS
Depreciation Over Five (5) Years
vs.
j^3 Standard Depreciation Over Fifteen (15)
Years
—
-
1
_ 1
KXXXXXXXV
F3
/.
^XXXXXXXX
I
y
fj
vXXXXXX\XXN
Dralon T Teflon ESP ESP ESP
A/C=5.8/1 A/C-5.
8/1 90% 95% 99%
97. 3% 98.1%
Method of Control
- 118 -
-------
.025
.020
£ .015
CO
CJ3
CT)
"3
O
cu
+J
3
O
.010
.005-
Figure 49
Outlet Loading vs. Annualized Costs
20
30
40
50
60
KEY:
O Nomex
O Teflon Felt-Style 2663
A Dralon-T
D fiore-Tex/Nomex
X ESP
70
80
90
Annualized Costs X 10 Dollars
-------
as a viable economical method of participate control for industrial coal
fired stoker boilers.
- 120 -
-------
DISCUSSION
The performance of the pilot plant indicates that fabric filtration
is a viable control method for industrial size stoker boilers. A summary
of overall performance for the four media evaluated is presented in
Figures 48, 49 and 50 and Table 30. All media proved capable of exceeding
State and Federal requirements for particulate removal. Nomex felt had
the lowest outlet loading at each respective A/C ratio, while Teflon felt
was capable of performing satisfactorily at A/C ratios as high as 14/1.
Nomex and Gore-Tex operated at pressure drops between 2 and 6 inches of
water while Teflon felt operated at pressure drops up to 7 inches at
14/1. The pressure drop curves for Nomex and Dralon T appear to be
leveling off at increasing velocities and would indicate that even higher
velocities than those evaluated might prove economically feasible. The
efficiencies shown in Table 31 might be considered low for a baghouse,
only Nomex achieved greater than 99% removal at an A/C of 6/1. However,
since this apparent low efficiency is due in part to the low inlet concen-
tration, the outlet concentrations are probably a better tool for eval-
uating overall performance. These outlet concentrations were less than
0.015 Gr./SCFD in all cases and less than 0.005 Gr./SCFD for the low and
middle velocities for both Nomex and Gore-Tex.
As shown in the economic analysis, the operating costs for a bag-
house are higher than those for an electrostatic precipitator. The higher
baghouse cost is due to bag replacement. Therefore, bag life is really
the critical factor in determining whether the fabric filter is econom-
ically competitive. On the basis of installed costs the baghouse costs
are lower even for Teflon felt at an A/C of 2.9/1. This comparison is
reflected in total annualized costs for the bag life assumption used
where all cases of the fabric filter, except Teflon at 2.9/1, have lower
costs than the ESP at 90% efficiency. The performance (outlet loading)
versus annualized cost curve (Figure 47) really states the overall case
for the fabric filter as a competitor, both technically and economically
with ESP for control of particulate emissions from industrial size stoker
boilers.
- 121 -
-------
Figure 50
Outlet Cencentration
vs.
Air-to-Cloth Ratio for Various Bag Materials
.020
ro
ro
CO
--,
00
c:
ro
c
o
-------
0.4r
0.1
.08
Figure 5.1
Penetration vs. Air-to-Cloth Ratio
for Different Bag Materials
0.2 - 81.25% Removal* Required by State of North Carolina
*Based on allowable emissions of 25 Ib/hr. (,082 Gr./SCF)
and inlet loading of 0.473 Gr./SCF at 35,600 scfm.
I -06
ID
•W
01
41
Q.
.04
.02
.01
.008
.005
0
12
Air-to-Cloth Ratio (ACFM/Ft/)
14
- 123 -
-------
Figure 52
Comparison of Operating Pressures for Various Bag Materials
8
ro
.£»
CO
en
rrj
OQ
VI
vt
2 4
tj H
CL
o
o
>
«/>
(U
KEY:
Q Nomex
Teflon Felt - Style 2663
Gore-Tex/ Nomex
Oral on T
Immediately Before Cleandown During Normal Operation
(Cleaning Duration 7 Seconds - Cleans Once Every 140 Sec.)
12
14
Air-to-Cloth Ratio (ACFM/Ft/)
-------
Table 31
Comparison of Particle Size Efficiencies
for Various Bag Materials
Air-to-Cloth Ratio 6/1
Particle
Diameter (Dp)*
Microns Nomex
8.37 99.62
5.29 99.59
3.54 99.45
2.47 98.07
1.57 97.92
.79 97.44
.49 96.23
.36 95.00
< .36 96.52
Overal1
Efficiency 99.12
% Efficiency
Teflon Felt
Style 2663**
99.33
98.95
98.09
96.96
96.96
90.23
86.79
79.10
92.32
Oral on T
98.48
98.99
97.86
95.86
94.82
89.07
87.54
78.66
94.49
98.05
97.27
Gore-Tex/Nomex
99.33
99.43
97.95
96.07
96.96
96.28
94.53
97.27
97.97
98.61
*Corrected for particle density and stack temperature.
**Teflon Felt, Style 2663 - A/C 5.4/1
All efficiencies based on the same inlet loadings and therefore assumes
constant inlet conditions.
- 125 -
-------
REFERENCES
1. A. E. Vandergrift, "Particulate Pollutant System Study, Volume 1,
Mass Emissions", May - 1971, NTIS PB-203-128.
2. D. W. Locklin, et al, "Design Trends and Operating Problems in
Combustion Modification of Industrial Boilers", April - 1974,
NTIS PB-235-712.
3. J. D. McKenna, "Applying Fabric Filtration to Coal Fired Industrial
Boilers", July - 1974, NTIS PB-237-117-7WP.
4. N. G. Edmisten and F. L. Bunyard, "A Systematic Procedure for
Determining the Cost of Controlling Particulate Emissions from
Industrial Sources", Journal of the Air Pollution Control Association,
Volume 20, No. 7, July - 1970.
- 126 -
-------
BIBLIOGRAPHY
1. R. L. Adams, "Fabric Filters for Control of Power Plant Emissions",
Paper No. 74-100 presented at 67th Annual Meeting of the Air Pollution
Control Association, Denver, Colorado, June, 1974.
2. F. A. Bagwell, L. F. Cox and E. A. Pirsh, "Design and Operating
Experience: A Filterhouse Installed on an Oil Fired Boiler," Journal
of the Air Pollution Control Association, Volume 19, No. 3, March,
1969, pp. 149-154.
3. F. A. Bagwell and R. G. Velte, "New Developments in Dust Collecting
Equipment for Electric Utilities", Journal of the Air Pollution
Control Association, Volume 21, No. 12, December, 1971, pp. 781-782.
4. C. E. Billings and J. Wiler, "Handbook of Fabric Filter Technology,
Volume 1, Fabric Filter Systems Study", December, 1970, NTIS No.
PB-200-648.
5. R. H. Borgwardt, R. E. Harrington and P. W. Spaite, "Filtration
Characteristics of Fly Ash from a Pulverized Coal-Fired Power Plant",,
Journal of the Air Pollution Control Association, Volume 18, No. 6,
June, 1968, pp. 387-390.
6. R. L. Davison, D.F.S. Natusch, J. R. Wallace and C. A. Evans, Jr.,
"Trace Elements in Fly Ash - Dependance of Concentration on Particle
Size", Environmental Science and Technology, Volume 8, No. 13, December,
1974, pp. 1107-1113.
7. N. G. Edmisten and F. L. Bunyard, "A Systematic Procedure for Determining
the cost of Controlling Particulate Emissions from Industrial Sources",
Journal of the Air Pollution Control Association, Volume 20, No. 7,
July, 1970.
8. D. N. Felgar and W. E. Ballard, "First Year's Experience with Full-Scale
Filterhouse of Alamitos Generating Station", Proceedings of the American
Power Conference, Volume XXVIII, 1966, pp. 546-555.
9. G. H. Glockley, R. P. Janoso and W. R. Small, "Dust Collectors for Low
Sulfur Fossil Fuel Plants", ASME Air Pollution Control Division,
Proceedings of the 3rd National Symposium Forum on "Is Demonstrated
Technology Available to Meet the Standards".
10. A. E. Gosselin, Jr., "Pilot-Plant Investigation of the Bag Filterhouse
for Control of Visible Stack Emissions from Oil-Fired Steam-Electric
Generating Stations", Proceedings of the American Power Conference,
Volume XXVI, 1964, pp. 128-137.
- 127 -
-------
BIBLIOGRAPHY
11. A. E. Gosselin, Jr., "The Bag Filter-house for Oil-Fired Power Plants",
Journal of the Air Pollution Control Association, Volume 15, No. 4,
April, 1965, pp. 179-180.
12. A. E. Gosselin, Jr., and L. W. Lemon, "Bag Filterhouse Pilot Instal-
lation on a Coal-Fired Boiler - Preliminary Report and Objectives",
Proceedings of the American Power Conference, Volume XXVIII, 1966,
pp. 534-545.
13. D. B. Harris, J. H. Turner, "Particulate and S02/S03 Measurements
Around An Anthracite Steam Generator Baghouse".
14. R. P. Janoso, "Baghouse Dust Collectors on a Low Sulphur Coal-Fired
Utility Boiler", Paper No. 74-101 presented at the 67th Annual
Meeting of the Air Pollution Control Association, Denver, Colorado,
June, 1974.
15. P. R. Langston, "Effect of Chemical Environment of Industrial Effluent
Gas Streams on Wear Life of Filter Bags, January, 1975, unpublished.
16. D. W. Locklin, et al, "Design Trends and Operating Problems in Com-
bustion Modification of Industrial Boilers", April, 1974, NTIS
No. PB-235-712.
17. R. L. Lucas, "Gas-Solids Separations - An Industrial View of the
State-of-the-Art", Paper No. 54A presented at the 66th Annual Meeting
AIChE, Philadelphia, Pennsylvania, November, 1973.
18. W. C. McCrone, R. G. Draftz, J. G. Delly, The Particle Atlas, Ann
Arbor Science Publishers, Ann Arbor, Michigan, 1967.
19. J. D. McKenna, "Applying Fabric Filtration to Coal Fired Industrial
Boilers", July, 1974, NTIS No. PB-237-117/7WP.
20. B. Quillman, C. W. Vogelsang, "Control of Particulate and S02
Emissions From an Industrial Boiler Plant, Economic Analysis of
Options", presented at the Industrial Power Conference, May, 1973,
ASME publication 73-1PWR-S.
21. S. A. Reigel, "Reverse Pulse Baghouses for Industrial Coal-Fired
Boilers", Power Engineering, August, 1974, pp. 56-59.
22. P. W. Spaite, D. G. Stephan, A. H. Rose, Jr., "High Temperature
Fabric Filtration of Industrial Gases", Journal of the Air Pollution
Control Association, Volume 17, No. 5, May, 1967.
- 128 -
-------
BIBLIOGRAPHY
23. P. W. Spaite and R. E. Harrington, "Endurance of Fiberglass Filter
Fabrics", Journal of the Air Pollution Control Association, Volume
17, No. 5, May, 1967.
24. E. W. Stenby, J. L. York, K. S. Cambell, "Particulate Removal When
Burning Western Coal", Paper No. 6c presented at the 78th National
Meeting of AIChE, Salt Lake City, Utah, August, 1964.
25. A. Tankha, "Try Fabric Dust Collections on Small Boilers", Power,
August, 1973, pp. 72-73.
26. A. E. Vandergrift, "Particulate Pollutant System Study, Vol. I -
Mass Emissions", May, 1971, NTIS No. PB-203-128.
27. N. H. Wagner and D. C. Housenick, "Sunbury Steam Electric Station -
Unit Numbers 1 & 2 Design and Operation of a Baghouse Dust Collector
for a Pulverized Coal Fired Utility Boiler", paper presented at
Pennsylvania Electric Association Engineering Section Power Generation
Committee, Spring Meeting - May 17 and 18, 1973.
28. A. B. Walker, "Characteristics of Emissions From Industrial Boilers",
presented at the Industrial Coal Conference, Purdue University,
Lafayette, Indiana, October, 1966.
- 129 -
-------
APPENDIX
Section Contents Page
A-l Units of Measure - Conversions 132
Experiment on Nomex.and Teflon 133
A-2 Teflon Felt, Style 2063 135
A-3 Pilot Plant Flow Data 145
Particle Size Distribution Data 154
Fractional Loading Data 157
A-4 ESP Installed Cost Basis 163
Sample Calculations for Operating 164
and Annualized Costs
A-5 Kerr Boiler Sheets 168
A-6 Statistical Analysis 179
- 130 -
-------
Appendix A-l
Units of Measures - Conversions
Experiment on Nomex and Teflon
- 131 -
-------
UNITS OF MEASURE - CONVERSIONS
Environmental Protection Agency policy is to express all measurements
in Agency documents in metric units. When implementing this practice will
result in undue costs or lack of clarity, conversion factors are provided
for the non-metric units used in a report. Generally, this report uses
British units of measure. For conversion to the metric system, use the
following conversions:
TO CONVERT FROM
°F
ft
ft2
ft3
ft/min (fpm)
ft3/min
in
in2
oz
2
oz/yd
grains
grains/ft3
Ib force
Ib mass
lb/ft2
in H20/ft/min
in H20/ft/min
lb/ft2
TO
°C
meters
2
meters
3
meters
centimeters/sec
centimeters /sec
centimeters
O
centimeters^
grains
r\
grams/meter
grains
grams/meter3
dynes
kilograms
grams/centimeter2
cm " l^O/cm/sec
cm IL^O/cm/sec
gm/cm
MULTIPLY BY
_5 (°F-32)
9
0.304
0.0929
0.0283
0.508
471.9
2.54
6.45
28.34
33.89
0.0647
2.288
4.44 x 105
0.453
0.488
5.00
10.24
- 132 -
-------
Appendix A-1
Experiment on Nomex Felt (HT)
Shrinkage, Weiaht Loss, Permeability - 10/25/74-11/12/74
Description:
Cut test swatch 6" X 6" - measured, weighed and ran perm at 0.5"
WG.
Placed test swatch in oven at 300° F; remeasured, weighed and ran
perms weekly.
r^ i
Nomex (HT) Test Swatch
Results
Before 10/25
Wt. 11.49 grams
A = 6 1/16"
B = 6
C = 6
D - 6
E = 8 9/16
Perm = 39.94 ,,
cfm/ft/
10/29
Wt. 10.73 gr.
A = 6 1/16"
B = 6
C = 6
D = 5 15/16
E = 8 9/16
Perm = 40.18
11/5
Wt. 10.73 Gr.
A = 6 1/32"
B = 6
C = 6
D = 5 15/16
E = 8V
Perm = 38.83
Net Change
Wt. - 0.77 grams
A = None
B = None
C = None
D = 1/16"
E = 1/16"
Perm = + 3.3 cfm/ft.
11/12
Wt. 10.72 Gr.
A = 6 1/16"
B = 6
C = 6
D'= 5 15/16
E = 8^
Perm = 43.24
- 133 -
-------
Appendix A-1
Experiment on Teflon Felt (26 oz.)
Shrinkage. Weight Loss, Permeability - 9/20/74-9/21/74
Description:
Cut test swatch 6" X 6" - measured, weighed and ran perm at 0.5",
1.0", 3.0", 5.0" WG.
Placed in oven at 300°F for 24 hours, cooled to ambient temperature
in dessicator and remeasured, weighed and ran perms.
D
Before
Wt. 19.1115 grams
A = 6 1/32"
B = 6 1/32"
C = 6.0"
D = 6.0"
E = 9 9/16"
A£
0.5
1.0
3.0
5.0
Perms ?
cfin/fr
24.92
49.84
123.10
784.88
B
Teflon Test Swatch
Results
After
Wt. 18.7870 grams
A = 5 3/4"
B = 5 5/16"
C = 5 23/32"
D = 5 7/8"
E = 9 7/16"
Net Change
Wt. .3245 Grams
A = 9/32"
B = 3/32"
C = 9/32"
D = 4/32"
E = 4/32"
0,5
1.0
3.0
5.0
Perms ,,
cfm/fr
19.38
38.41
97.06
142.6
0.5
1.0
3.0
5.0
Perms 9
cfm/fr
-5.54
-11.34
-26.04
-46.30
- 134 -
-------
Appendix A-2
Teflon Felt Data - Style 2063
- 135 -
-------
Teflon Felt - Style 2063
Sixteen Teflon felt bags were placed in Cell 2. (See Figure A-l for
bag positioning).
The Andersen sampler was utilized in obtaining in-situ particle size
data at air-to-cloth levels of 5.2 to 1, 8 to 1 and 14 to 1. Inlet flue
gas volumes ranged between 950 and 2600 ACFM. Because of the limited
amount of Teflon cloth on hand, difficulty was experienced in trying to
operate at the lower air-to-cloth levels. In order to effect an air-to-
cloth ratio of 5 to 1, the main fan was throttled almost completely. The
reverse air volume, although not used during sampling periods, was 3500
acfm.
The particle size distribution for the individual runs was averaged
at each of the three levels of air-to-cloth. The comparison of this data
is graphically displayed in Figure A-2. The mass mean particle diameters
were 2, 3 and 4 microns for air-to-cloth ratios of 5.2, 8 and 14 to 1
respectively.
The size distribution curves indicate that about 50% of the partic-
ulate was less than 2 microns at the lowest air^to-cloth, wh.ile only 37%
of the particulate by weight was less than 3 microns at 14 to 1.
Average outlet concentration cumulative percent and penetration by
particle size are listed in Table A-l. Outlet concentration as a function
of velocity is presented in Figure A-3.
Pressure drop versus air-to-cloth data is presented in Figure A-5
while examples of typical cleandown cycles are shown in Figure A-6.
Although Teflon felt exhibited the highest dust penetration of the
materials tested, it was capable of operating with the lowest pressure
drops. As shown in Figures A-5 and A-6 it would be economically feasible
to operate at even the highest air-to-cloth levels.
- 136 -
-------
After fifty-two hours on stream the bags were inspected. They
showed no signs of wear with only slight evidence of pearling in a 3/16"
build-up of a friable dust.
- 137 -
-------
CO
CD
0000O
55
00000 ,_
0000OQOO0
000000000
ooo
Damper
Opening
Cell 2
KEY:
Teflon Felt
Plugs
Figure A-l
Positioning of Teflon Felt Bags
Style 2063
-------
Figure A-2
Outlet Particle Size Distribution
10
8
Case: Teflon Felt, 2063
Note: Corrected for Temperature and Density
KEY:
A/C Ratio
O 5.2/1
O
a
V)
c
o
I 2
A
OJ
N
•r~
if)
93
r—
O
t 1.0
D_
.8
.6
.4
5 10 20 40 60
% Less Than Size Indicated
80
- 139 -
-------
Table A-l
o
Outlet Concentration, Cumulative %
and Penetration
Teflon Felt, Style 2063
Air-to-Cloth Ratio 5.2/1
Avg . (2)
Outlet
Cone.
Gr./SCFD
.00325
.00084
.00184
.00176
.00181
.00159
.00109
.00055
.00184
.01457
(3)
Cum! .
%
100
77.69
71.92
59.29
47.21
34.79
23.88
16.40
12.63
Pene-(4)
trati on
.0223
.0218
.0696
.1368
.1418
.3232
.4037
.1862
.4289
.0581
Air-to-Cloth Ratio 8/1
Avg.
Outlet
Cone.
Gr./SCFD
.00142
.00019
.00041
.00058
.00026
.00025
.00033
.00008
.00037
.00389
Cum! .
*
100
63.49
58.61
48.07
33.16
26.48
20.05
11.57
9.51
Pene-
tration
.0098
.0049
.0155
.0451
.0204
.0508
.1222
.0269
.0862
.0155
Air-to-Cloth Ratio 14/1
Avg . ' •
Outlet
Cone.
Gr./SCFD
.00967
.00512
.00434
.00359
.00257
.00182
.00092
.00041
.00102
.02946
Cuml .
%
100
67.17
49.79
35.06
22.87
14.15
7.97
4.85
3.46
Pene-
tration
.0665
.1330
.1642
.2789
.2014
.3699
.3407
.1380
.2378
.1174
TOTAL
1. Corrected for particle density (2.6 grams/C.C.) and stack temperature.
2. At 5.2/1 three (3) tests averaged, at 8/1 two (2) tests averaged, at 14/1 two (2) tests averaged.
3. Percent of total outlet concentration less than size indicated.
4. Penetration based on average inlet concentration at corresponding impactor stages.
-------
Figure A-3
Outlet Concentration by Particle Size
vs.
Air-to-Cloth Ratio
Case: Teflon Felt
.010
a .008
o
u.
o
V)
10
c
o
TO
+J
0)
u
c
o
o
O)
•M
3
O
KEY:
Q .36 um
O 2.84 um
A 5.87 un
O Total of All Sizes
>9.37 um
.006
,004
,002
Air-to-Cloth Ratio (ACFM/Ft/)
- 141 -
-------
Figure A-4
Penetration vs. Particle Diameter
O
+3
-------
Figure A-5
Pressure Dr»p Across Bags
vs.
Air-to-Cloth Ratio
CASE: Teflon Felt
U
c
o>
£
VI
o
Q.
£
o
Ut
Q Before Cleandown
After Cleandown
Reverse Air Volume
3500 ACFM
5 10
Air-to-Cloth Ratio (ACFM/Ft.2)
16
- 143 -
-------
8
en
10
fiQ
S 6
e
Figure A-6
Typical Cleaning Cycles
Teflon Felt
A/C - 14/1
v>
§•
A/C - 0/1
V)
§
o.
j
0
2 4
Time - Minutes
O Before Cleandown
O After Cleandown
Reverse Air Volume
, 3500 ACFM
- 144 -
-------
Appendix A-3
Pilot Plant Flow Data for Andersen
Tests No. 2-80
Particle Size Distribution Data
Fractional Loading Data
- 145 -
-------
Table A-2
Date
&
Time
5/29
1150
5/30
5/31
1050
6/6
1145
6/6
1600
6/7
1544
6/8
1236
6/10
1342
6/11
1627
6/12
1150
6/12
1600
And.
Test
No.
2
3
4
5
6
7
8
9
10
11
12
Main Slide
Gate Position
% Open
100
100
10
10
_
10
10
5
5
5
Flow Rate
V V
r R
2380 4374
2380
1475
1475
1677
2496
2563 2127
943
1017
1017
Pilot Plant Flow
Air-to-Cloth
Ratio (Ft./Min.)
(A/C)_ (A/C).
t K
6.9 12.7
6.6
8.0
8.0
9.1
14
14 12
5.2
5.2
5.2
Data
Temperature
TF (°F) Tp
160 100
170 135
130
120
120
150
150 130
110
120
120
Bags Tested Pressure Drop
& Exposure Across Cell
(Hrs.) at Cell 3 Cell 4
Test Time (In. H^O)
^
Inlet - 8.4
Inlet
Inlet - 7.6
TF 15 //2
4.6
TF 20 #2
4.6
Inlet #2
2.8
TF 31 #2
7.3
TF 36 #2
6.3
TF 42 #2
0.5
TF 46 #2
1.1
TF 50 #2
1.0
*F - foreward flow i.e., flue gas
*R - reverse flow i.e., reverse air
TF = Teflon felt
-------
Table A-2
Pilot Plant Flow Data
Date
&
Time
6/18
1056
6/18
1540
6/19
1035
6/19
1533 .
6/20
1133
6/21
1130
6/24
0945
6/24
1435
6/25
1121
6/25
1551
6/26
0950
And.
Test
No.
13
14
15
16
17
18
19
20
21
22
23
Main Slide
Gate Position
'/, Open
5
5
5
60
20
20
20
20
20
30
15
Flow Rate
Q Q
1068 -
1068 -
975 -
2120
2094
2060
1897 -
2422
1988 -
2171
1198
(continued)
Air-to-Cloth
Ratio (Ft./Min.)
(A/C)r (A/C)_
l" IV
3.1
3.1
2.9
6.1
6.1
6.1
5.5
7.0
6,0
6.5
3.6
Bags
Tested
& Exposure
Temperature
Tr (°F) Tr
~-"c' K~~*
120
130 110
125 105
175 140
155
185
160
190 150
180 140
195 145
143
(Hrs
Test
N
N
N
N
N
.) at
Time
89
94
98
103
108
Inlet
G
6
Aborted -,
G
G
G
14
19
23
Pressure Drop
Across Cell
Cell 3 Cell 4
(In. H00)
1.2
1.1
0.9
7.1
4.2
3.5
3.6
2.8
2.9
4.5
2.5
N » Nomex
G « Gore-Tex
-------
Table A"2
Pilot Plant Flow Data
Date
&
Time
6/26
1453
7/9
1818
7/10
1118
7/11
1125
' 7/12
£ 1035
Oo
, 7/17
1003
7/17
1500
7/18
1519
7/24
1056
7/24
1435
7/25
1030
And,
Test
No.
24
25
26
27
28
29
30
31
32
33
34
Main Slide
Gate Position
% Open
15
20
20
70
100
80
5
100
5
5
20
Flow Rate
V- QR
1258 -
2082 -
2088 3296
3000 3222
2867 3222
2777 -
1004 -
3044
789 -
926
1802
(continued)
Air-to-Cloth
Ratio (Ft./Min.)
CA/C) CA/C)
r '^R^
3.7
6.2
6.3 9.9
9.0 9.7
8.6 9.7
8.3
3.0
9.1
2.7
3.2
6.3
Bags
Tested
& Exposure
Temperature
T_ (°F) T_
r iv^
160
190
197
195 160
193
204
4
132
203
140 130
125 120
180 155
(Hrs
Test
G
G
G
G
G
G
G
G
G
G
G
.) at
Time
28
36
42
52
58
62
68
74
84
88
92
Pressure Drop
Across Cell
Cell 3 Cell 4
(In. HnO)
• • •£—*
2.7
4.0
4.2
6.9
7.5
7.3
1.5
7.4
1.8
1.5
5.1
G = Gore-Tex
-------
Table A"2
Pilot Plant Flow Data
Date
&
Time
7/25
1425
7/26
1015
7/26
1400
7/29
1535
. 7/30 '
M 1640
£ 7/31
i 1129
8/6
0745
8/6
1040
8/6
1330
8/7
0740
8/7
1033
8/7
1340
And,
Test
No.
35
36
37
38
39
40
41
42
43
44
45
46
Main Slide
Gate Position
% Open
20
100
100
15
50
80
80
80
80
100
100
100
Flow Rate
Q_ Q
1761 -
2613 -
2547
2107 5000
2972
2812 3100
6425 1420
5909 1420
5910 3160
6670 3160
6670 4000
5390 4000
(continued)
Air-to-Cloth
Ratio (Ft./Min.)
(A/0 (A/0
r K
6.1
9.1
8.9
6.1 14
8.7
8.2 9.0
9.3 2.1
8.6 2.1
8.6 4.6
9.6 4.6
9.6 5,8
7.8 5.8
Temperature
T (°F) T
180 160
208
182
174
200
191 164
223 185
230 196
230 198
220 195
220 195
225 195
Bags Tested
& Exposure
(Hrs.) at
Test
G
G
G
G
N
N
N
N
N
N
N
N
f~t
Time
96
100
104
113
120
124
128
131
135
138
141
143
•^ . j.
Pressure Drop
Across Cell
Cell 3 Cell 4
(In. HnO)
i~ 2— <
5.5
7.8
8.3
n
2.0
6.7
7.6
5.7 6.3
5.6 6.4
4.8 5.2
6.4 6.8
4.8 6.0
5.8 6.0
N " Nomex
-------
Table A-2
Ul
o
Pilot Plant Flow Data
Date
&
Time
8/8
0750
8/8
1035
8/14
1110
8/14
1110
8/14
1400
8/14
1400
8/15
0800
8/15
1040
8/15
1350
8/16
0740
And.
Test
No.
47
48
49
50
51
52
53
54
55
56
Main Slide
Gate Position
% Open
80
80
80
80
80
80
60
60
60
60
Flow
(£
F
4512
4512
4653
4653
4653
4653
4421
4421
4421
4421
Rate
QR
1400
1400
Off
Off
Off
Off
3100
3100
4000
4000
(continued)
Air-to-Cloth
Ratio (Ft./Min.)
(A/C) (A/C).
• ' ' "f K
6.5 2.1
6.5 2.1
6.7
6.7
6.7
6.7
6.4 4.5
6.4 4.5
6.4 5.8
6.4 5,8
Temperature
T /'"T
i-p V 1
200
200
212
212
205
205
200
210
200
200
?) TR
150
150
175
175
170
170
165
170
170
170
Bags Tested
& Exposure
(Hrs.) at
Test Time
N 147
N 150
Inlet
Inlet
Inlet
Inlet
N 164
N 167
N 171
N 174
Pressure Drop
Across
Cell 3
(In.
6.0
6.1
5.5
5.5
5.7
5.7
5.0
5.8
5.7
5.4
Cell
Cell 4
H00)
6.1
6.1
5.6
5.6
5.9
5.9
5.0
5.9
5.8
5.6
N = Nomex
-------
Table A-2
Pilot Plant
Flow Data
(continued)
Date
&
Time
8/16
1035
8/20
0735
8/20
1100
8/20
1330
1 8/21 '
G 0730
. 8/21
1005
8/26
1150
8/26
1430
8/27
0730
8/27
1035
Bags Tested
And. Main Slide Air-to-Cloth & Exposure
Test Gate Position Flow Rate Ratio (Ft./Min.) Temperature (Hrs . ) at
No. % Open ()„ Q^ (A/C),, (A/C).. !„ (°F) T.. Test Time
57
58
59
60
61
62
63
64
65
66
20
20
20
20
60
60
30
30
30
20
•T i\ r
2129 1400 3.1
2313 1400 3.4
2313 3160 3,4
2313 3160 3.4
2275 4000 3.3
2275 4000 3.3
2550 - 8.5
2550 - 8.5
2666 - 8.9
1817 - 6.1
rv r
2.1 170
2.1 165
4.6 160
4.6 150
5.8 150
5.8 160
190
175
150
162
i\
140 N 177
140 N 180
140 N 183
140 N 186
125 N 190
135 N 192
.135 Aborted
135 DT 27
DT 30
DT 33
Pressure Drop
Across Cell
Cell 3 Cell 4
(In. H.,0)
2—t
3.1 3.0
2.9 2.8
2.7 2.6
2.5 2.4
2.2 2.2
2.2 2.2
5.6
6.2
5/4
2.9
N = Nomex
DT = Dralon T
-------
Table
Ut
to
Pilot Plant Flow Data
Date
&
Time
8/27
1350
8/28
1135
8/29
1110
8/29
1400
11/18'
1405
11/19
0955
11/19
1355
11/19
1615
11/20
1145
11/20
1520
11/21
1140
And.
Test
No.
67
68
69
70
71
72
73
74
75
76
77
Main Slide
Gate Position
% Ooen
20
20
10
10
10
5
5
5
10
10
10
Flow Rate
o. Q_
1817
1817 3810
997
997
3100
1760
1383
1383
3300
1830
3260
(continued)
Air-to-Cloth
Ratio (Ft./Min.)
(A/C),, (A/C)^
F R—
6.1
6.1 13
3.3
3.3
14
7.9
6.0
6.0
14.3
8.0
14.2
Bags
Tested Pressure Drop
& Exposure Across Cell
Temperature
T (°F) T
*r" v ' rt
r K
170
- -
130
140
160
120
100
80
160
130
150
(Hrs
Test
DT
DT
DT
DT
TF
TF
TF
TF
TF
TF
TF
.) at cell 3 Cell 4
Time (in. H00)
• • ' • • 2 '• -
36 - 5.0
42 - 5.2
48 - 2.2
51 - 2.2
25 375
29 3.0
34 1.0
37 1.0
40 6.8
43 3.0
47 7.8
DT » Dralon T
TF = Teflon felt
-------
Table A-2
Date
&
Time
11/21
1350
11/21
1555
11/22
0925
And.
Test
No .
78
79
80
Main Slide
Gate Position
% Open
5
5
Flow Rate
1930 -
1180 -
1180
Pilot Plant Flow Data
(continued)
Air-to-Cloth
Ratio (Ft./Min.)
(A/C)- (A/C).
-R-
8.4
5,4
5.4
Temperature
IF C°F) T
125
80
90
Bags Tested
& Exposure
(Hrs.) at
Test Time
TF
TF
50
TF 52
Pressure Drop
Across Cell
Cell 3 Cell 4
(In. HZQ)
4.0
1.8
54 1.5
i
M
U1
I
TF = Teflon felt
-------
Table A-3
PARTICLE SIZE DISTRIBUTION FOR ANDERSEN TESTS
D R A L 0 N T
And. A/C
Run# Ratio
Particle Size Distribution
64
65
66
67
68
69
70
Total
Avg.
And.
Runtf
13
14
15
16
17
39
40
38
Total
Avg.
And.
Run//
19
21
22
23
25
26
27
28
32
8.5/1
8.9/1
6.1/1
6.1/1
6.1/1
3.3/1
3.3/1
A/C
Ratio
3.1/1
3.1/1
2.9/1
6.1/1
6.1/1
8.7/1
8.2/1
6.1/1
A.C
Ratio
5.5/1
6.0/1
6.5/1
3.6/1
6.2/1
6.3/1
9/1
8.6/1
2.7/1
>9.8
>9.7
>9.8
>9.3
>9.8
>8.6
>8.6
65.6
>9.37
6.
6.
6.
5.
6.
5.
5.
41.
5.
1
0
1
9
1
4
4
0
86
N
4.1
4.0
4.1
3.8
4.0
3.6
3.6
27.2
3.89
0 M E
Particle Size
>8.5
>8.37
>8.8
>9.8
>9.9
>8.4
>8.4
>9.7
71.87
>8.98
5.
5.
5.
6.
6.
5.
5.
6.
44.
5.
4
29
5
0
2
3
3
0
99
62
3.5
3.48
3.7
4.0
4.2
3.6
3.6
4.0
30.08
3.76
Particle Size
>10.2
>9.7
>9.6
>9.4
>9.3
>9.9
>10.5
>9.2
>7.27
6.
6.
6.
5.
4
1
1
9
5.9
6.
6.
5.
5.
2
6
7
55
4.3
4.0
4.0
3.9
3.8
4.1
4.4
3.83
3.73
2.8
2,8
2.8
2.7
2.8
2.5
2.5
18.9
2.7
X F E
1.
1.
1.
1.
1.
1.
1.
12.
1.
L
79
80
80
72
81
59
59
10
73
T :
.92
.92
.92
.88
.92
.82
.82
6.20
.89
(Zero
.57
.58
.58
.54
.58
.50
.50
3.85
.55
RA)
.39
.38
.38
.36
.36
.34
.34
2.55
.36
Distribution
2.48
2.81
2.5
2.8
2.9
2.52
2.51
2.9
21.42
2.68
G 0 R
1.
1.
1.
1.
1.
1.
1.
1.
13.
1.
89
54
9
77
84
55
55
78
82
73
E - T
.79
.79
.83
.91
.95
.80
.80
.91
6.78
.85
E X
.49
.475
.51
.57
.59
.49
.49
.56
4.18
.52
.33
.32
.35
.37
.40
.33
.33
.38
2.81
.35
Distribution
3.0
2.9
2.8
2.8
2.73
2.9
2.93
2.65
2.57
1.
1.
1.
1.
1.
1.
1.
1.
1.
87
80
79
75
74
82
93
67
62
.97
.91
.92
.90
.88
.94
.99
.871
.847
.59
.56
.57
.55
.55
.58
.61
.536
.515
.41
.38
.38
.37
.36
.39
.41
.36
.35
41
38
38
37
36
39
41
<.36
<.35
- 154 -
-------
Table A-3 (continued)
PARTICLE SIZE DISTRIBUTION FOR ANDERSEN TESTS
GORE-TEX cont.
And.
Run#
33
34
Total
Avg.
And.
Run//
5
6
8
9
10
11
12
Total
Avg.
A/C
Ratio
3.2/1
6.3/1
A/C
Ratio
8/1
8/1
14/1
14/1
5.2/1
5.2/1
5.2/1
Particle
>7.25
>10
102
> 9
.6
.9
.35
5.55
6.6
66.6
6.05
T E
Particle
>8
>8
>9
>10
>9
>9
>9
65
>9
.96
.96
.3
.8
.2
.04
.3
.56
.37
5.66
5.66
5.98
6.5
5.79
5.6
5.9
41.09
5.87
Size
3.73
4.49
44.28
4.03
FLO
Size
3.69
3.69
3.99
5.0
3.82
3.79
3.9
27.88
3.98
N 0 M E X
And.
Run#
41
42
43
44
45
46
47
48
53
54
55
56
57
58
A/C
Ratio
9.3/1
8.6/1
8.6/1
9.6/1
9.6/1
7.8/1
6.5/1
6.5/1
6.4/1
6.4/1
6.4/1
6,4/1
3.1/1
3.4/1
Particle Size
>9
>9
>9
>9
>9
>9
>9
>9
>9
>9
>9
>9
>9
>9
.6
.7
.5
.7
.6
.0
.52
.3
.0
.0
.0
.0
.57
.16
6.0
6.1
6.0
6.1
6.0
5.8
6.0
5.78
5.77
5.77
5.77
5.77
6.0
5.81
3.9
4.0
4.0
4.0
3.9
3.8
3.9
3.69
3.87
3.87
3.87
3.87
3.96
3.83
Distribution
2.57
3.1
30.95
2.81
N F E
1.62
1.93
.847
1.0
19.54 10.08
1.78
L T
.92
(Style
.515
.62
6.20
.56
2063)
.35
.43
4.19
.38
<-35
<.43
4.19
<.38
Distribution
2.63
2.63
2.79
3.66
2.7
2.66
2.8
19.87
2.84
PEL
1.65
1.65
1.79
1.89
1.7
1.66
1.7
12.04
1.72
1.05
1.05
.93
.98
.527
.527
.54
.603
.856 .54
.86
.89
6.62
.95
.53
.55
3.82
.55
T (Three levels
.329
.329
.37
.413
.36
.36
.37
2.53
.36
RA)
^.329
<.329
<.37
<.413
<.36
<.36
<-37
2.53
<.36
Distribution
2.80
2.8
2.8
2.8
2.8
2.7
2.8
2.65
2.67
2.67
2.67
2.67
2.8
2.66
1.79
1.8
1.77
1.8
1.79
1.67
1.79
1.67
2.04
2.04
2.04
2.04
1.85
1.71
.91
.92
.91
.92
.91
.86
.91
.89
.86
.86
.86
.86
.91
.87
.56
.56
.55
.56
.56
.52
.56
.54
.53
.53
.53
.53
.56
.53
.37
.38
.38
.38
.37
.35
.37
.36
.36
.36
.36
.36
.37
.36
<.37
<.38
<.38
<.38
<.37
<.35
<.37
<.36
<.36
<.36
<.36
<.36
<.37
<.36
- 155 -
-------
Table A-3 (continued)
PARTICLE SIZE DISTRIBUTION FOR ANDERSEN TESTS
NOMEX FELT (Three levels RA) cont.
And.
Run//
59
60
6£
62
Total
Avg.
And.
Run//
77
78
79
80
81
Total
Avg.
A/C
Ratio
3.4/1
3.4/1
3.3/1
3.3/1
Particle
>9.3
>9.3
>9.16
>9.16
5
5
5
5
167.57106
A/C
Ratio
14.2/1
8.4/1
5.4/1
5.5/1
14/1
>9.31
5
.88
.88
.81
.81
.05
.89
T E
Particle
>8.27
>8.25
>8.53
>8.75
>8.08
41.88
>8.38
5
5
5
5
5
26
5
.15
.19
.43
.55
.14
.46
.29
Size
3.83
3.83
3.83
3.83
69.78
3.88
Distribution
2.72
2.72
2.66
2.66
49.05
2.73
F L 0 N F
Size
3.52
3.53
3.62
3.65
3.42
17.74
3.55
1.73
1.73
1.71
1.71
32.68
1.82
E L T
.88
.88
.87
.87
15.95
.89
(Style
.55
.55
.53
.53
9.78 6
.54
2663)
.35
.35
,36
.36
.55 •
.36
<.35
<-35
<.36
^36
6.55
<.36
Distribution
2.51
2.46
2.45
2.55
2.39
12.36
2.47
1.56
1.59
1.55
1.63
1.51
7.84
1.57
.77
.785
.81
.83
.76
3.96
.79
.49
.479
.50
.51
.46
2.44 1
.49
.32
.32
.34
.35
.31
.64
.33
<.32
<.32
<.34
<-35
<.31
1.64
<.33
- 156 -
-------
Ta.talo
And.
Run*
Air-To-Cloth - 3/1
13 14 15
.00068
,00027
,00030
.00030
,00018
,00012
,00006
* .00009
.00006
Total.00206
«J to
rt tofl
O G
4_) "O
o n)
C0 O
w \ 1
.00040
.00014
.00043
.00037
.00040
.00032
.00017
,00009
,00015
.00085
.00010
.00022
.00019
.00022
.00016
.00010
.00006
.00006
.00247 .00196
Air-To-Cloth = 5.2/1
And.
Run#
_<
Fractional
Loadings
Total
10
.00400
.00065
.00142
.00103
.00116
.00090
.00071
. 00065
.00149
.01201
11
.00290
.00088
.00198
.00185
.00185
.00162
.00114
.00057
.00299
.01578
12
.00284
.00098
.00213
.00241
.00241
.00224
.00142
.00044
.00104
.01591
FRACTIONAL LOADING FOR ANDERSEN TESTS*
N 0
i M E X F
E L T (Zero RA)
Air-To-Cloth
Avg.
.00064
.00017
.00032
.00029
.00027
.00020
.00011
.00008
.00008
.00216
TEFL
16_
.00043
.00015
.00011
.00011
.00022
.00025
.00014
.00007
.00011
.00159
ON F E
17.
.00059
.00018
.00022
.00037
.00048
. 00019
.00026
.00015
.00037
.00281
= 6/1
_38_
.00120
.00031
.00078
.00031
.00075
.00024
.00062
.00007
.00017
.00445
Air-To-Cloth = 8.
Avg.
.00074
.00021
.00037
.00026
.00048
.00023
.00034
.00010
.00022
.00295
39.
.00228
.00080
.00135
.00085
.00094
.00039
.00036
.00006
.00016
.00719
4£
.00114
.00047
.00083
.00045
.00075
.00025
.00050
.00008
.00022
.00469
.5/1
Avg.
.00171
. 00064
.00109
.00065
.00084
.00032
.00043
.00007
.00019
.00594
L T (Style 2063)
Air-To-Cloth
Avg.
.00325
.00084
.00184
.00176
.00181
.00159
.00109
.00055
.00184
.01457
5.
.00224
.00015
.00025
.00025
.00021
.00018
.00009
.00006
.00040
.00383
£
.00060
.00022
.00057
.00091
.00032
.00032
.00057
.00009
.00035
.00395
= 8/1
Avg.
.00142
.00019
.00041
.00058 .
.00026
.00025
.00033
.00008
.00037
.00389
Air-To-Cloth
j8
.00573
.00435
.00305
.00275
.00198
.00111
.00050
.00019
.00042
.02008
2.
.01362
.00590
' .00562
.00443
.00316
.00253
.00133
.00063
.00162
r03884
= 14/1
Avg.
.00967
.00512
.00434
.00359
.00257
.00182
.00092
.00041
.00102
.02946
*A11 values are Grains/SCFD
-------
Table A-4 (continued)
VI
00
FRACTIONAL LOADING FOR ANDERSEN TESTS
And.
Run#
Fractional
Loadings
Air-To-Cloth = 14.1/1
77
.00362
.00086
.00106
.00075
. 00086
.00060
.00161
.00111
.00468
Total, 01515
81
.00281
.00072
.00108
.00084
.00078
.00078
.00060
.00072
.00126
.00959
Air-To-Cloth -
And.
Run#
Fractional
Loadings
Total
70
.00124
.00098
.00124
.00118
.00101
.00087
.00056
.00048
.00045
.00801
60
.00121
.00113
.00164
.00147
.00127
.00096
. 00065
.00045
.00056
.00934
Avg.
.00321
.00079
.00107
.00080
.00082
.00069
.00110
.00092
.00297
.01237
3.3/1
Avg.
.00122
. 00106
.00144
.00133
. 00114
.00092
.00061
.00046
.00050
.00868
TEFL
ON FELT (Style 2663)
Air-To-Cloth - 5.
79
.00087
.00035
.00041
.00035
.00048
.00038
.00024
.00035
.00052
.00395
80
.00095
.00047
.00044
.00055
.00054
.00066
.00047
.00058
.00054
.00520
D R A L
Air-To-Cloth
66
.00218
.00029
.00037
.00048
.00071
.00089
.00066
.00052
.00037
.00647
iZ.
.00149
.00027
.00044
.00061
«00088
.00071
.00054
.00031
. 00020
.00545
4/1
Avg.
.00091
.00041
.00043
.00045
.00051
.00052
.00036
.00046
.00053
.00458
0 N T
- 6.1/1
68
.00239
.00061
.00061
.00071
.00103
.00121
.00079
.00061
.00057
.00853
Air-To-Cloth - 8.4/1
28
.00257
.00082
.00108
.00108
.00082
.00087
.00072
.00093
.00134
,01023
Air-To-Cloth
Avg.
.00202
.00039
.00048
.00060
.00087
.00094
. 00066
.00048
.00038
.00682
64
.00145
.00039
.00050
.00046
.00071
.00075
.00046
.00032
.00021
.00525
j>5
.00143
.00065
.00061
.00057
.00075
.00072
.00064
.00036
.00022
.00595
-8.7/1
Avg.
.00144
.00052
.00055
.00051
.00073
.00074
.00055
.00034
.00022
.00560
-------
Table A-4 (continued)
FRACTIONAL LOADING FOR ANDERSEN TESTS
GORE-TEX
Air-To-Cloth =
And.
Run#
Fractional
Loadings
Total
27.
.00156
.00034
.00097
.00059
.00114
.00046
.00088
.00021
.00030
.00645
.28
.00189
.00131
.00201
. 00096
. 00134
.00026
.00048
. 00003
.00016
.00844
• 8.8/1
Avg.
.00173
.00082
.00149
.00078
.00124
.00036
.00068'
.00012
.00023
.00745
Air-To-Cloth « 3.2/1
23
.00086
.00040
. 00050
.00083
.00069
.00053
.00030
.00016
.00023
.00450
_32
.00072
.00038
.00110
.00061
.00075
,00029
.00052
.00006
.00015
.00458
33
.00054
.00074'-
.00089
.00057
.00069
.00034
.00040
.00009
.00009
.00435
Avg.
.00071
.00051
.00083
.00067
.00071
.00039
.00040
.00010
.00016
.00448
Ui
VO
Air-To-Cloth = 6.1/1
And.
Run#
fractional
Loadings
r~-i
Total
11
.00219
.00023
.00061
.00069
.00073
.00050
.00035
.00008
0
.00538
21
.00142
.00025
.00032
.00046
.00032
. 00025
.00017
.00011
.00011
.00341
25.
.00036
.00007
.00033
.00030
.00026
.00020
.00013
.00007
.00007
.00179
26
.00037
.00011
.00033
.00041
. 00033
. 00011
.00015
.00007
.00033
.00221
J22.
.00064
.00021
.00050
.00057
.00043
.00032
.00018
.00003
.00014
.00302
34
.00198
.00011
. 00060
.00097
.00093
.00045
.00079
0
.00037
.00620
Avg.
.00116
.00016
.00045
.00057
.00050
.00031
.00029
.00006
.00017
.00367
-------
o
I
Table A-4 (continued)
FRACTIONAL LOADING FOR ANDERSEN TESTS
N 0 M E X
And.
Run//
a) 03
tf 60
o a
•H "rt
0) O
£ ^
Total
And.
Run//
H) (0
0 (3
JJ TJ
O flj
cQ O
^ i"^
Total
RA
57_
.00129
.00057
.00054
.00014
.00061
.00054
.00036
.00061
.00043
.00509
RA
47
.00170
.00094
.00073
.00073
.00048
.00048
.00003
.00042
.00017
.00568
• 1400
58
.00123
.00026
.00039
.00023
.00036
.00029
.00023
.00016
.00010
.00325
N
- 1400
48
.00097
.00098
.00078
.00088
.00026
.00049
.00003
.00039
.00003
.00481
Avg.
. 00126
. 00041
.00046
.00019
.00048
.00041
.00030
.00039
.00027
.00417
0 M E X
Avg.
.00133
. 00096
.00076
.00080
.00037
.00049
.00003
.00041
. 00010
.00525
FELT
59
.00118
.00031
.00028
.00014
.00021
.00024
. 00011
.00014
0
.00261
FELT
53.
.00134
.00062
.00055
.00058
.00040
.00058
.00029
.00076
.00037
.00549
(3 levels of RA)
RA = 3100
60
.00102
.00035
.00031
.00017
.00021
.00021
0
.00011
.00014
.00252
(3 levels
RA - 3100
54
.00230
.00095
.00092
.00089
.00081
.00057
.00050
.00032
.00021
.00747
Avg.
.00110
.00033
.00029
.00016
.00021
.00022
.00006
.00013
.00007
.00257
of RA)
Avg.
.00182
.00078
.00073
.00073
.00061
.00058
. 00040
.00054
.00029
.00648
Air-To-Cloth - 3.4/1
RA =
61
.00107
.00027
.00027
.00027
. 00030
.00027
.00010
.00017
.00017
.00289
Air-To-Cloth
RA -
55
.00086
.00053
.00060
.00071
.00053
.00057
.00057
.00050
.00029
.00516
• 4000
*2
00111
00041
00034
00030
00037
00030
00030
00017
0
00330
- 6.4/1
4000
56_
00128
00095
00128
00071
00078
00047
00044
00037
00057
00685
Avg.
.00109
.00034
.00031
.00029
.00033
.00028
.00020
.00017
.00009
.00310
Avg.
.00107
.00074
.00094
.00071
.00065
.00052
.00051
.00044
.00043
.00601
-------
Table A-4 (continued)
FRACTIONAL LOADING FOR ANDERSEN TESTS
N
0 M E X
FELT
RA = 1400
And.
Run# 41
.00374
.00139
3 «• 00150
g g>. 00160
33.00192
a g. 00032
£ -".00061
0
.00001
Total. 01119
42
.00270
.00142
.00222
.00131
.00127
.00044
.00076
.00015
.00029
.01056
Avg.
.00322
.00141
.00186
.00145
.00159
.00038
.00069
.00008
.00020
.01088
M
.00243
.00091
.00162
.00102
.00120
.00046
.00060
.00063
.00028
.00915
(3 levels of RA)
Air-To-Cloth = 8.9/1
RA - 3100
44
.00210
.00112
.00188
.00271
.00315
.00094
.00058
.00043
.00011
.01302
Avg.
.00226
.00102
.00175
.00187
.00217
.00070
.00059
.00053
.00020
.01109
45
.00284
.00119
.00172
.00113
.00084
.00060
.00007
.00042
0
.00881
RA - 4000
-46_
.00221
.00115
.00090
.00115
.00022
.00070
. 00006
.00042
.00003
.00684
Avg.
.00252
.00117
.00131
.00114
.00053
.00065
.00007
.00042
.00002
.00783
-------
Appendix A-4
ESP Installed Cost Basis
Sample Calculations for Operating
and Annualized Cost
- 162 -
-------
APPENDIX A-4
Electrostatic Preclpitator Installed Cost Basis
Budgetary quotations for electrostatic precipitators were
solicited from several of the leading ESP manufacturers. Listed
below are the design parameters furnished with the requests for
quotations.
General Design Parameters
1. Coal Analysis - See Table 9
2. Emission Rates:
35,000 acfm/Boiler
Parti culates, 130 Lbs/Hour/Boiler
SO-
C0
CO
Temperature
Moisture
3. Particle Size of Ash:
Particle Diameter
Microns _
6.4
4.2
2.8
1.8
0.94
0.58
0.38
- 70,000 scfm Total
- 260 Ibs./Hour Total
- 250-500 ppm
- 3'6 Ppm
- 9.5%
- 0%
- 10%
- 80%
- 350° F
- 5.0% By Volume
Percent Less Than
Size Indicated
49
38
27
18
12
8
7
51% of particles are greater than 6.4 microns.
- 163 -
-------
APPENDIX A-4
ELECTROSTATIC PRECIPITATOR
Operating and Annualized Cost Calculations
Formula for calculating theoretical operating and annualized cost
of control were taken from: Edminsten, N.G. and Bunyard, F.L., "A
Systematic Procedure for Determining the Cost of Controlling Particulate
Emissions from Industrial Sources", JAPCA V20 N7, p. 446, July 1970.
I. Electrostatic Precipitator Operating Cost:
G = S [JHK + M]
Where,
G = Theoretical Annual Operating Cost
S = Design Capacity, ACFM
J*= Power Required, Kilowatts/ACFM
H = Annual Operating Time, 6240 Hours
K = Power Costs, $/KWH
M = Maintenance Costs, $/ACFM
*Does not include power for main fan.
At 90% efficiency,
G = 70,000 [(.00019) (6240) (.0175) + .02]
G = 70,000 (.040748)
G = $2,852
At 95% efficiency,
G = 70,000 [(.00026) (6240) (.0175) + .02]
G = 70,000 (.048392)
G = $3,387
At 99% efficiency,
G = 70,000 [(.0004) (6240) (.0175) + .03]
G = 70,000 (.07368)
G = $5,158
- 164 -
-------
Operating and Annualized Cost Calculations
(continued)
Main fan costs, (F) = S r.7457 PHK,
L6356E J
Where,
S = Design Capacity, ACFM
.7457 = A Constant (1 Horsepower =0.7457 Kilowatts)
E = Fan Efficiency, 60%
P*= Pressure' Drop, Inches of Water
H = Annual Operating Time, 6240 Hours
K = Power Cost, $/KWH
F = 70,000 .7457 (2) (6240) (.0175),
l(6356) (.6) J
F = 70,000 [.042705]
F = $2,989
*Assumes 0.5 inches for ESP plus 1.5 inches for inlet duct, etc.
* . Total Annual Operating Costs = G + F
at 90% Efficiency, $2,852 + $2,989 = $5,841
at 95% Efficiency, $3,387 + $2,989 = $6,376
at 99% Efficiency, $5,158 + $2,989 = $8,147
II. Electrostatic Precipitator Annualized Costs
Total annualized cost of control is equal to the annual
operating cost plus the annualized capital cost.
Annualized Capital Cost* = 0.133 X Installed Cost
Total Annualized Cost = 0.133 X Installed Cost + Operating Cost
at 90% Efficiency = (0.133) (412,970) + 5,841
= 54,925 + 5,841
= $60,766
at 95% Efficiency = (0.133) (471,588) + 6,376 = $69,097
at 99% Efficiency = (0.133) (600,100) + 8,147 = $87,960
*See fabric filter case (Page 167) for annualized capital cost
assumptions.
- 165 -
-------
Appendix A-4
Fabric Filter
Operating and Annualized Costs
Sample Calculations
Formula for calculating theoritical operating and annual i zed cost
of control were taken from: Edminsten, N.6. and Bunyard, F.L., "A
Systematic Procedure for Determining the Cost of Controlling Particu-
late Emissions from Industrial Sources", JAPCA V20 N7, p. 446, July
1970.
I. Fabric Filter Operating Cost:
Case - Teflon Felt at A/C = 5.8/1
PHK + M]
Where: G = Theoretical annual cost for operation and
maintenance
S = Design capacity, acfm
P = Pressure drop, inches of water
E = Fan efficiency, assumed to be 60% (expressed
as 0.60)
0.7457 - A constant, 1 horsepower = .7457 kilowatt
H = Annual operating time, 6240 hours
(24 hours/day X 5 days/week X 52 weeks/year =
6240 hours/year)
K = Power costs, $/KWH
M = Maintenance cost, $/ACFM (based on 25% bag
replacement per year)
In this case:
S = 70,000 acfm
P = 3.8 Inches of Water
E = 60%
H = 6,240 Hours
K = $0.0175/KWH
M = (No. of bags in house X 25% replacement rate X
cost per bag) r S
- 166 -
-------
Sample Calculations
(continued)
M = 1080 Bags X .25 X $75/Bag _ t ,Q/flrFM
- y0'000 ^fm - * - $ ' 29/ACFM
Assuming a 60% fan efficiency reduces the above
equation for G to:
G = S (195.5 X 10"6 PHK + M)
Substituting the figures above yields:
G = 70,000 (195.5 X 10"6 X 3.8 X 6240 X .0175 + .29)
= 70,000 (.0918 + .2893)
= 70,000 (.3811)
= 25,929
II. Total annuali zed cost of control is equal to the annual operating
cost plus the annual ized capital cost.
Annualized Capital Cost = 0.133 X Installed Costs
Assumptions:
1. Purchase and installation costs are depreciated over
fifteen (15) years.
2. The straight line method of depreciation (6 2/3% per
year) is used.
3. Other costs called capital charges are assumed to be
equal to the amount of depreciation. Therefore,
depreciation plus other capital charges amount to
13 1/3 percent of the initial capital costs of the
equipment.
In this case: Teflon Felt at A/C = 5.8/1
Total annual ized cost of control = .133 X Installed Costs +
Operating Costs
= .133 X 177,460 + 25,929
= 23,602 + 25,929
= 49,531
- 167 -
-------
Appendix A-5
Kerr Boiler Sheets for August 8th, 15th, 16th, 20th and
21st. Corresponds to Andersen Test Numbers 47 and 48 and
53 thru 62. Testing Nomex felt at A/C ratio of 6/1 and
3/1 at three levels of reverse air.
- 168 -
-------
:. !'-,: i io
-------
2 g*
STOW PHES.
FLOW
oo
ICO
'-KJ
i .-;v3>.
F. C. TEKP. -. A. H. IN
O'JT
AIR TEJA'1. : A.M. OUT
INSIDE
OUTSIDE
' f ^ DR'JV WATER LEVEL
I L DRAfT F. 0. OUT
H h
...-(— - l~|
FUftNACt
A. H. IN
CUT
1.0. IN
0. F. A"? PRESSURE
CINO. RTfl. PRES.
MASTER AIR PRESSURE
CMEM. FEED BLR.
W. HTR,_
*. ?'JM.C UtC. *»
N «Z
Bi.0* OFF VALVE SETTING
..H _Jf
U^-J.-.--^.
I .*
h
'&&-3.J4
%, o
frlT f;
~t-
1*
a .
xi:._ _
_,..v^:.
_JL_. ..._...
.X
__,!.
__,_?
_3._4.
.JLfj
...JL
»X
'3Jt
— JJ-.JL-.^.^
• Tl • (o .71 .
. _ . — I i + . —."_ ..:"^ t - - •-——- J— j • -ig—•
5.<^ i 3.2. I 5,
JT5* i:^-
71
.1- ;
;^r_"::.^
^^^jfii;.
,y
./,
.7«
L__t2L_.t4j. S5L,ii
1 27,?|Z7.1i27^?7.4
-IS V3r *&£[££
X_
-^j
*a. I «
- • - f--- —-^--
vrix
r*..
tx""
.-^._
ux
J*
LX
?•
"tX
.2_
IX
L".L7
iV I .*-
X :
£
3
o I-
Tf MP.
D. DAMPCr:
FAN ERflSS.
'-"OTOR REGULAR
STAND BY
F. (X FAN~B RNGS".
'.OV-lPER
FUEL Ff.EO
i ~ *. S . C H'. 3. * IR .
F. W. HTR. PRtS.
K
X
\ $-4 ---1-4-4-—
J A ! ' \ '
i: % ..;_...,; jXM vx"
i 2-3,T i »/ ,
^MXfi.lT-'i
-*f^- _ |._3_Pi ;.?g
I's^l" """ Tx ' k^-
ixT
.v;:;.
./^l «X | y^
• -»L_—_ , .; .».—._.j _v:
7 _? ; ?_: ?
^- t^r- i^ ^/
i:'?::
^ ix-
s~. *^
1^
-_..ljx.
j/:'
iX
^
v/
IX'
t^
..*<
-JX*
y
IP.
,o i a,o.
i
7
.... . Q
--- • r-
-n
O
• U J
-
-------
V'\
F. M. KTR. PRES.
TEMP.
-TT-nrneT JL*T •
-------
rn jc ~
O O X
> nui r.iti r.i.i.
r n
i i
- -
^ -t-
• ox
- > !>
TIMF
"STEAM PR^^.
FLCiV
c." w por^
TEM?.
F. C. T£MP.: A. H. IN
OUT
AIR TEMP.-. A. H. OUT
INSlOe
OUTSIDE
Off.'-! w.vi-;s it. ...
OHAFT F. 0. OUT
WINDBOX
FURNACE
A. H. IN
OUT
3;
330
330
3C*
rpi??:
IT^tC-OL
32-0
...^r ?/3£.Jv.".r_jTr [.2Z
t"2/z T-^-^T -/?/:*
-"•>.-.-. 'o-i">' CINO. RTN. PSE:
••• -v • fN1^
I '- «<-\5T = 9 AIP PPV:!
•-, " ••-. ; >• - - •
r\i
I—- 0. F. AIR Ff::. SS'JRF.
CINO. RTN. PSES.
ASSURE
CHtV
F, W. HTP.
v. V«. PUMP ELF.C. »1
LI.:,* OFF v.»: vr
!((:•. R . PU! "
/ I ;: r-v.^o »>
.
f C! (V *AiL* HiTES.
v
£ TEMP.
. ^ I. 0. DAMPER
FAN BRNCS.
MOTOR REGL". AR
ST*ND BY
D. FAY7 BSNG2."'
s.
6
i. o
:^f
> | • -
....._.._......
^._gl_2^
+__]..
zsji'-f /.:
7.
I"UTTT'n>"D[?rn
Avs. i Ava.
2*L° J!
fiSii
i./ora./..o
rsfo^ 3"^" Shsra 7
4..... — - *..». . 4-^ .... ./
..i_.i_::L£n
T7? i
t.
ti __. J .L...,./l__^J ..
^'?r^f 3^ £jl -fj
^J-...,jL-.U4
.._!!_.. 7! ._..?_.
L.6L
-.^
3,J?I
_*^^J
I
JffiJfr 3^ Jr.'jr 3
...JLll_. 2. :. 2 ;. ..2...1.JL. . _«
-icr
C
X I
4 -
L.-S' 1
< t:
2_J_Ti_7 i.J?_.i_.
. ^r. I j, f i-^- t^-^ '
v.ti:r:.z.-L-..
+. * - • '-^- -i ...:..
\ * \ \ *-l '.
x
. j.
••- r •_ i
... .... .... r
-->, C
u
_ ! n
i F
' rr
r
3*
I' .
i
HAMPtR
i
r~i
vi'N r
_X.
x I
Jo
!..... ;.._ _1 : ...
't
~ "r __•• •
.JSLJOL
£3JO ZZLO
Q
o
2.0
\J± . .3.2.
5-5
-t—-H
-------
O
rx.uj"i *
I" TIM;
£™ STcftM PScs.
P* FLOW
i""' f-. ft. Fi-l"
i
"*v.
ip
\ i
L' K>T'""! f
"r^'prr"'"
! I3i
'• rr* i
i ^;
i
?t -
Kpf:^j
-,t -i o
T»
n
K i o i ;o
>
-t
- \"
\ •
"•^1
••;', .1
2)
N
F. G. TO.IP. : A. H. IN
CUT
AIR T£?V. : A. H. OUT
INSIDE
oursjoe
DRUM WATtf-:' LEV?;L
DRAFT f. D. OUT
WIN080X
FURNACE
*. H. IN
OUT
I . 0. IN
t y rr
r>"tzz
,f _/ !
:/":a/,^
__^_y _ £
=3r3
-v-y4-^*-^:
7vw C. F. AIR PRESSURE
CIND. RTN. PRES.
ASTER AIR PRESSURE
; C-•/;•-. FEE" ELR.
?. *. PUV EL EC. »!
^•••- *2
S ! t-'.V
VALVE SETTING
S>- BL'J*_OfF V_AL
P:>v ftCVR. PUMP t
A I FT'-COV? .
t - r,'- a -
_ L -11* • •->
• r >»•""• *' tv." --.
. •&:. .^^•'-i.'-i, ^»
f I ^i-^-u •« ^
Ci i •• WATta
in. -r.-s:
D.WPEH
FAN 33NG5.
MOTOR RiGULA??
STAHD BY
FAN
E
ihmT-i
y Fi;,-:.. r£~n
C. F. AiR
S!KR. BW.'G. STS.
F. *'. HTR. PSCS. •
FEtf," .
VENT
SiiJ
,-
_._./_.
J"r
-12.
,S£_
...j£_. ...
V
^3fiL
^H
JC
Zf/7
V
Q&?..
PL.AJST
AVG.
o: ? ^>
4-
_X
&
7zazir:i^,p..,;
/ * c1" i -•-- •
. <)
L i /-3-p I
S^^^L^^JA _LL=2£
-Ifc^J/tf *^'—
//-T
. V
II/UTT; _:.TT;irGrrzzi2
i^
*j U\ li .*fr\ V. ft
' \ vf 7 >i ?' *
y - ^ i ^ *_ ^_ • / . ,^ j.
. ir \">i '"."^
^?
JL
X
^
x
"¥i
^ !
. ?
_ej
•7 <-
-i . >-»_
.7 :.... 7
^Jl
^ r
. >i ,>
itefclte
^ T / . -•: s >7Tv
/ r : / ,
a • • c . •:
Lt -J
-7a
Z
.>
^.__Li.
Z2^LL
^^1
l^J"
._2L
7
i
_|_
)- _-
il
•-• f
_.7__LZ
-
G.
V-
^
ZTzr
i£
F
^^
^&
^1
!
i
oc
c
r
r
:*
r
C
:z~j 5
• ! n-
- • i r
ji._ii£_n_:li :
^-^—i
<- u i
-^ 4 4 4
«-- I' 3
r—IT—t-—f—
T^
^£_«?.
L2,~<3
,x
..rr
-------
! ^ -n o
-O •«! • -
£.
G
-T
v\
•'Si
\ V
* -f [ *;
• m . .
2 33 b.
O f>-
TS1
--kbJid
o
>>li-J
-PS
1 ^ I?1''
Vjy rj
£J
•U-L^
•>§
tft*VJ
*4-
1..;-.,-%,.'
13
\\
!...-"•-: n «-
^_>V' ->|2
^^-!---; rb_.
»
i^t^i?.j_.
1 ^'
^^^
-m^i4-
a»l
_ ^_£ j 2 ! Cj -7 ' I ^_ /
' ''-'''1 •
AIR TEir.; A. H. OUT
ORL'M WATER LEVEL
DRAFT F. D. OUT
WINDBOX
FURNACE
A. H. IN
OUT
' I. D. IN
1^0. F. AIR PRESSURE
CIND. RTN.
-J
-fe
S^
!0
~f~
fc
t?
x
T
jjL
JSTER AIR PRESSURE
FttO BLR.
F. W. HTR.
F. W. >Li^? El EC. »I
! *2
STEA.M
LO* OFF VAt_VE J5ETTING
*l
#2
JAI R COM?. »l
I »2
03
Ci TV WATER PRES.
TEM?.
FAN BRNGS.
MOTOR REGULAR
STAND BY
D. FAH BRNGS. ~~
DAMPER
, 1
J.
—--11--^—--Z1 >7> -7^ -"?! -7! -
» 434 -? O': •» fy "9 {? ~3 ^* *7 ^^ •» a- r_
i J» o, j» o -J ' a , j > a J>. e i j, o • 5", o :«y ~
--T : ^ • '*'"". 1- ^ •*^p~t~ ^1" " .^... •.».- — 1 M^_X i ^^..-^
^A,
>/
JL
Y^
y
JTFs .F
ST 01 &,ol ^
^-
-------
-------
- T L. .f'm « I '
AVG. It AVG. ;
2ttr*5friaLV41
•M J _ ^* . .. . I
-Z-^-2
' rr' e*Q\
T A--._!T-.. j- —J?-*,. -T-
l-t\.
1-3.8. ."3fi.JliB._L_3JU
o .^> I -, i 'i
xx:_:3..i:::.
_STJEA.V
BLOW OFF VALVE SETTING
:vs. PL-VP #1
-------
->J I
-'
-------
^
~>l
00
$ ^
-T"
_.h
'~ii
* ' • !
~T
»»
4--
m.Z I- in > BOILER Hf,-. . • '• 1 1
1 1: ™ " T'-1' 33O AVG.
? pr STE-M r»es.
-.j"1^-'- T ; ' FLOW
..;,'h<' _ F. '.V. PIM^
£L^ V > T1*?-
.-.'-iV- .^ "'. K. G. TLvr.-. A. H. IN
• ~ ^*- f ~
'...'•••: : -i. 0 -• i
. '1. .-• ^j (.;. Ai ,i 1 -•. '• . ; A. H. C'j'i
.' "N I ^ INSIDE
: -1 .._.!.. H OUTS 1 OF.
| | mi '- tirtt'M *A.rER LEVEL
i 3 ! - DRAFT r . 6. 01 T
: ; X. wifir:nox
vN' '., ,! * n, -L-
" .'-": ..' '^ ;i A. H. IN
•'' •/ ' ' 0 OUT
r.~ i V : in
' -,r"v ••' i . o. IN
^1^ t* — i-^1 °- f- A!R P'';-"2'i'J3t
r-^-1 IM« AT..
• . • IX.^.' CI.NO. (UN. PRES.
' ' -J 1 S/Nv MAS1[ER A!R PRESSURE
I'll* SHP.'!. FtCP BIR.
; j -i J • \ F- w- HTR-
! j r< j, F. W\ P'J"? ELEC. »l
-i , j \ *'<•
\ \- \ ST.AM
1 •*,'-/' BLOA CFF^A^VE SETTING
! i • 1 RCVS. PUV3 »l
! *2
: : , !r. C'^,- . "\
: i ^
• •... K'J
• I • ' •• CUV •,',iATC - PritS.
1 • ' ^ T FV? .
i . : .•-•'..
1 !---}£ MOTOR REGULAH
1 5 1-X
i I:a1 siv ;., BY
! i •)-< ft"—— -Ci D- FAN SRfJCS.
<"' •• V
T t> \ DW/PER
.- p. VU::L FECD
•• '^ ^.. F. AI r.
V.
',_ ci i ' • >'r '•;T!l- FRCb.
< ' -" ' n ;
::'• :, '" ' 1r-: ' •
/ ~fr y«— g>
-j^— -
1 -/ .-
.*'- •' '
^'*-
J J]/
&*{/
1 1 0
ci/
J.~K im-i.Li . "- ->•
-J? J1 °
~fe
+ I
1 /-" 11
, ^
_.....
_.^
L___?, i]
._•? .. •• _^_rl
6 . c ; £ c
.. ^---.
^ -ijJi,
• rf
\
>/
— : —
. '"L
X
^—
.. ,
X. _
...$'? .
...A..L\...
t
JTf^
«f
)^
\
j \
t
t
•
i--: :
.*:£.
-3]^T
/^r
5^p
3X0
3£o
X
K
fA
/, £
,. ...4J
, /
_ ?,
L JL ^1
rf
2X /
^A
JL.-
46
2*6
3if6
•r?e>
320
.
4^
2..0
.._ «Jfcj
. 71
h^-
7^0
M
1/0
XJQ
^7f>
32.6
/$*
*/(*
jtJH
^?/p
^"70
320
JLfe.
j
^
2>6I
-^
,. • .i-^i
V.^J 5. ?
:^;1
27,^ *27.^
,i*
.A A
X
±T~
•^ i ^
~\s t" •" '
LA. _
£,...,
. •:
* ...
LJL
rJiS-1
[.^
is* ,
±Xz.
-:'±
eX,
i
^
Wi
• n
"7T6
Z/^
j£&*2±
.4TO,
-..jff.ft
>F^
I „?
. /
.^7^,7,
^.^> i ^. ^
--^AJ
• z
-¥•
i^: ,
• ~
3^
,2.
.4 —
«i j ^ r r r jp
_.«<_..
y
/ _.
kx" j^
~K~\ "1
"x t~~ ~"
ii:;
•^
./ i
^
*s
w
#3
ff
s
$&
3a.o
LS*
5 "2-
t^*
^
i^H
^^
?^>
6<^
*r
^0
2.3^
4^—
^^, t
- -
1
4^~.
*^-
5"d
y o
&0
t^-
3JO
z^o
^~-
3T&6
32*GL.
3?o
-W
~~~> /
K -i-7
J^uT
, £
?7,6>
-i£-
*
4/i.
25/
2 /01
fv^
1
-f£-
> i
. 7
uJ.^,
_.£,
27.^
3^
1r "a:
<^-- t---
<^ i >" _
_ , . _ .
..
—3r ^~^
~
*~*
4*-^ J 4^-
....
[ff
5^
^^
5-O
&3.0
i^~
._
V%
l#d
"TT\
t^'
3-0
$:ifj
t^~-
32—
(^
u-^
w
lj^_.
LO
C-'
^-«5
:- ^ c-
^~
•- — •
-~
3 3^0,
i ] 72. !
i i s- '...; i
i£SJ::iT:::.i
2LTu.7/.Ae.
_.'5, _fy: ...*/!
:iit :xr..V.-
^eiA.ffL^.fc:
2- '
• i- - . -!
V J? c
lifi i ip
R !i '• r
i i
T If i r
a .... .. J /~
\M
«--" ! cT
; •• • " - -- ~ j w.
_£ ' 1 'S
4^_, ' i rr
_, . |-r
'" • "" jj "
! •' i
t ;'
r ~i i s^
3 A ! I
; it
«--- fc^' ! ;i
t^~-
— I !
*-• | *^- i "
^W-^3^- .. • :
f 0
t 0
*-"
3-0
.-'tft
.
xfcSTi ,
-CT! . ,. J .:
u -i .....! __ -
^.o ; •
•-. ' ! i
i-~- \
-------
Appendix A-6
Statistical Analysis
- 179 -
-------
Appendix A-6
Statistical Analysis
A statistical analysis was conducted to determine if there was a
significant relationship between outlet loading and air-to-cloth ratio
(velocity thru the filtering media). This analysis was done In two parts,
First, the outlet loading data for each of the four bag materials was
analyzed with respect to the three levels of velocity tested. Second,
the outlet loading data for Nomex felt at three levels of reverse air
for each of three levels of velocity was analyzed.
One-sided and two-sided tests for variance were employed utilizing
the F-test for significance. The outlet loading data was organized as
shown in Table A-5. Then the one-sided test for variance was conducted
for each bag material. Following is an example calculation for the case
of Nomex felt.
TL = (.0021) + (.0025) + (.0020) = .0066
TM = (.0016) + (.0028) + (.0045) = .0089
TH = (.0072) + (.0047) = .0119
TG • TL + TM + TH = '°274
Where TL = total of the outlet loading values at low velocity
TM = total of the outlet loading values at medium velocity
Tu = total of the outlet loading values at high velocity
n
TG = total of the outlet loading values at all three
velocities
Calculate S$T = (.0021)2 + (.0025)2 +- + (.0047)2
SST = .000119
Where SSj = Sum of squares of the outlet loading values at all three
velocities.
- 180 -
-------
Appendix A-6
[continued)
Calculate SSE, variation within velocities
Where, SSC = SST - T, 2 + TM2 + Tu2
t. I — L — — FT— ft
332
SSE = .000119 - (.000015 + .000026 + .000071)
SS
.000119 - .000112
SSE = .000007
Calculate SSy, variation between velocities
Where, SS
T, 2 + TM2 + T.,2 + Tr2
-T.— -M— — H— — G—
3328
<:<; - -0000^ . .000079 . .000142 .000751
bi>V 3 + 3 2 8
SSV = .000015 + .000026 + .000071 - .000094
SSy = .000018
Set-up an analysis of variance table as follows:
Analysis of Variance Table
Variance
ssv
SSC
Source of Variation
Between Velocities
Within Velocities
Sum of
Square
.000018
.000007
Degrees
of Freedom
2
5
Mean Squares
.000009
.0000014
Then, the F-test gives
F - -000009 fi
r " .0000014 " °-'
Conclusion: The F- Statistic is found to be significant at the 0.05
level of significance.
- 181 -
-------
Appendix A-6
(continued)
The results of similar computation employing the one-sided test for
the other three bag materials as well as Nomex felt are shown in Table
A-9. Also Included in Table A-9 are the results obtained when the one-
sided test is applied to the Nomex felt data for three levels of reverse
air (RA).
The two-sided test for variance was utilized to evaluate the Nomex
felt data at three levels of reverse air for each of three velocities.
This allows determination of the significance of reverse air and velocity
upon outlet loading simultaneously and also significance of interactions.
The computations for the two-sided test proceed as follows:
U
o
'oi
M
H
Reverse Air
L M H
.0051 .0026 .0029
.0032 .0025 .0033
.0057 .0055 .0056
.0048 .0075 .0068
.0112 .0091 .0088
.0106 .0133 .0068
SSE = .0000013
Source of variation in the table will appear as follows:
Source d.f. SS
Between RA Levels
Between Velocities
Interaction
Error
Total
2
2
4
9
17
SSRA
SSV
SSI
SSE
SS
Where SSj is corrected
for mean.
- 182 -
-------
Appendix A-6
(continued)
SS,^ = (.0112 + .0106 + .0057 + .0048 + .0051 + .0033)2 76 +
(.0092 + .0130 + .0055 + .0075 + .0026 + .0025)2 + 6 +
(.0088 + .0068 + .0052 + .0069 + .0029 + .0033)2 76-
(0.1149)2 7 18
SSRA = (.0407)2 7 6 + (.0403)2 76 + (.0339)2 7 6 - (.1149)2 7 18
SSm = .000276 + .000271 + .000192 - .000733
SS,^ = .000006
SSV = (.0197)2 7 6 + (.0356)2 7 6 + (.0596)2 7 6 - (.1149)2 7 18
SSy = (.000065 + .000211 + .000592 - .000733)
SSV = .000135
SST = .000899 - (.1149)2 7 18
SST = .000905 - .000733
SST = .000166
SSj = SST - (SSE + SSV + SS^)
SSj = .000166 - (.000018 + .000135 + .000006)
SSj = .000166 - .000154
SSj = .000012
Analysis of Variance Table:
Mean Squares £
RA SS^ - 2 = .000003 MSRA/MSE = 2>U
Vel. SSV - 2 = .0000675 MSV/MS£ = 48.2
Int. SSj - 4 = .000003 MSj/MSE = 2.14
Error S$E - 9 = .0000014
F Test for RA is not significant at 0.10 level.
F Test for V is significant at 0.001 level.
F Test for I is not significant at 0.10 level.
- 183 -
-------
Appendix A-6
(continued)
The following conclusions can be drawn:
1. The one-sided test for variance shows a significant change
in outlet loading with a change in velocity (A/C ratio) for
each bag material except Teflon felt - Style 2663. This does
not say that the 2663 Teflon outlet loadings are not valid,
only that the number of tests was too few to show signifi-
cance. A time trend appears in the data which may partially
explain the change in loading with change in velocity. There-
fore, from the analysis we cannot actually conclude that an
increase in velocity produced an increase in outlet loading.
2. The two-sided test for variance for the case of Nomex felt at
three levels of reverse air shows a very significant change
in outlet loading with a change in velocity. The reverse air
and interaction between reverse air and velocity are not signif-
cant. However, the F-statistic is large enough to indicate
the relationship may be there but is not demonstrated due to
degrees of freedom; i.e. sample size.
3. The one-sided test for variance for the case of Nomex felt at
three levels of reverse air shows a significant change in out-
let loading with a change in reverse air at the high velocity.
However, the relationship is not found significant at low or
medium velocity. This explains why the interaction F-statistic
was relatively large. That is there is an interaction but only
at the high velocity.
4. Finally, the high significance of the two sided test for
increased loading with increased velocity reinforces the signif-
cance demonstrated in the one-sided test for each bag material.
- 184 -
-------
Appendix A-6
(continued)
4. (continued)
It can be concluded that the complication of time trend, while
present, does not preclude reliability of the data.
- 185 -
-------
Table A-5
Tabulation of Data for Statistical Analysis
Andersen
Test No.
15
13
14
16
17
38
39
40
Air-to-Cloth 9
Ratio ACFM/Ft/
Nomex
2.9
3.1
3.1
6.1
6.1
6.1
8.7
8.2
Outlet Loading
GR/SCFD
Felt
.0020
.0021
.0025
.0016
.0028
.0045
.0072
.0047
Outlet Loading
.000004
.000004
.000006
.000003
.000008
.000020
.000052
.000022
.0274
.000119
Teflon Felt - Style 2063
10
11
12
5
6
8
9
5.2
5.2
5.2
8.0
8.0
14
14
.0120
.0158
.0159
.0038
.0040
.0201
.0388
.000144
.000250
.000253
.000014
.000016
.000404
.001505
.1104
.002586
Teflon Felt - Style 2663
79
80
78
77
81
5.4
5.5
8.4
14.2
14
.000016
.000027
.000105
.000230
.000092
.000470
- 186 -
-------
Table A-5 (cont'd)
Andersen
Test No.
32
33
23
19
21
25
26
34
22
28
27
69
70
66
67
68
64
65
Tabulation of Data for Stati
stical Analysis
Air-to-Cloth ,, Outlet Loading
Ratio ACFM/Ft/ GR/SCFD
Gore-Tex/Nomex
2.7
3.2
3.6
5.5
6.0
6.2
6.3
6.3
6.5
8.6
9.0
Oral on T
3.3
3.3
6.1
6.1
6.1
8.5
8.9
.0046
.0044
.0045
.0054
.0034
.0018
.0022
.0062
.0030
.0084
.0065
.0504
.0093
.0080
.0065
.0055
.0085
.0053
.0060
.0491
Outlet Loading'
.000021
.000019
.000020
.000029
.000012
.000003
.000005
.000038
.000009
.000071
.000042
.000269
.000087
.000064
.000042
.000030
.000073
.000028
.000035
.000359
- 187 -
-------
Table A-5 (cont'd)
Tabulation of Data for Statistical Analysis
Andersen
Test No,
41
42
43
44
45
46
47
48
53
54
55
56
Air-to-Cloth
Ratio ACFW/Ft.
9.3
8.6
8.6
9.6
9.6
7.8
6.5
6.5
6.4
6.4
6.4
6.4
Reverse Air
Level /ACFM
Nomex Felt
1420
1420
3160
3160
4000
4000
1400
1400
3100
3100
4000
4000
Outlet Loading
GR/SCFD
.0112
.0106
.0092
.0130
.0088
.0068
.0596
.0057
.0048
.0055
.0075
.0052
.0069
Outlet g
Loading
.000125
.000112
.000085
.000169
.000077
.000046
.000614
.000032
.000023
.000030
.000056
.000027
.000048
.0356
.000216
57
58
59
60
61
62
3,1
3.4
3.4
3.4
3.3
3.3
1400
1400
3160
3160
4000
4000
.0051
.0033
,0026
.0025
.0029
.0033
.0197
.1149
.000026
.000011
.000007
.000006
.000008
.000011
.000069
.000899
- 1!
-------
Table A-6
I
00
I
Variance
Teflon Felt
ssv
SSE
Source of Variation
- Style 2063
Between Velocities
Within Velocities
Analysis
Sum
of Squares
.000661
.000184
of Variance Table
Degrees of
Freedom
2
4
Mean
Squares F-Statistic
.000331 7.2
.000046
Gore-Tex/Nomex
ssv
ssE
Oral on T
ssv
ss£
Nomex Felt
Between Velocities
Within Velocities
Between Velocities
Within Velocities
.000022
.000016
.000010
.000004
2
8
2
4
.000011 5.5
.000002
.000005 5
.000001
ss,
ssr
Between Velocities .000018
Within Velocities .000007
2
5
.000009
.0000014
Significant at
.05 level
Significant at
.05 level
Significant at
0.10 level
6.43 Significant at
.05 level
-------
Table A-6 (cont'd)
Analysis of Variance Table
(continued)
Variance
Teflon Fel
ssv
ssE
Nomex Felt
SSy
ssE
Nomex Felt
SSy
ss£
Nomex Felt
SSy
ssE
Nomex Felt
SSy
SSC
Source of Variation
t - Style 2663
Between Velocities
Within Velocities
at Low Velocity - 3
Between RA Levels
Within RA Levels
at Medium Velocity -
Between RA Levels
Within RA Levels
at High Velocity - 3
Between RA Levels
Within RA Level
Sum
of Squares
.000063
.000016
Levels of RA
.000002
.000013
3 Levels of RA
.000002
.000013
Levels of RA
.000014
.000013
- 3 Levels of Velocity - Assuming RA
Between Velocities
Within Velocities
.000135
.000031
Degrees of
Freedom
2
2
2
9
2
9
2
9
Constant
2
15
Mean
Squares F-Statistic
.000032 4.0
.000008
.000001 0,7
.0000014
.000001 0.7
.0000017
.000007 5.0
.0000014
.0000675 33.8
.000002
Conclusion
Not Significant
Not Significant
Not Significant
Significant at
.05 level
Significant at
.001 level
-------
Table A-6 (cont'd)
Analysis of Variance Table
(continued)
Variance
Nomex Felt
SSRA
ssv
SSj
ssr
Source of Variation
at 3 Velocities and 3
Between RA Levels
Between Velocities
Interaction
Error
Sum
of Squares
Degrees of
Freedom
Mean
Squares
F-Statistic
Conclusion
Levels of Reverse Air
.000006
.000135
.000012
.000013
2
2
4
9
.000003
.0000675
.000003
.0000014
2.14
48.2
2.14
Not Significant
Significant at
.001 level
Not Significant
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO.
EPA-650/2-74-058-a
2.
4. TITLE AND SUBTITLE
Applying Fabric Filtration to Coal Fired Industrial
Boilers (A Pilot Scale Investigation)
7.AUTHOH(s)
D. McKenna, JohnC. My cock, and
William O. Lipscomb
3. RECIPIENT'S ACCESSION-NO.
5. REPORT DATE
August 1975
6. PERFORMING ORGANIZATION CODE
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Enviro-Systems and Research, Inc.
P.O. Box 658
Roanoke, VA 24004
10. PROGRAM ELEMENT NO.
1AB012; ROAP 21ADM-033
11. CONTRACT/GRANT NO.
68-02-1093
12. SPONSORING AGENCY NAME AND ADDRESS
EPA,Office of Research and Development, Industrial
Environmental Research Laboratory, Research Tri-
angle Park, NC 27711; Enviro-Systems and Research,
Inc.: and Kerr Industries. Concord. NC
13. TYPE OF REPORT AND P
Final; 6/74 - 4/75
D PERIOD COVERED
14. SPONSORING AGENCY CODE
IS. SUPPLEMENTARY NOTES
16. ABSTRACT The report gives results of a pilot scale investigation to determine the tech-
noeconomic feasibility of applying a fabric filter dust collector to coal fired industrial
boilers. It extends and confirms preliminary work reported in July 1974. The pilot
facility, on a slip stream of a 60,000 Ib/hr boiler, was capable of handling 11,000
acfm at an air-to-cloth (A/C) ratio of 6/1. Filter media evaluated were Nomex felt,
Teflon felt (two styles), Gore-Tex, and Dralon-T. Fractional efficiency was deter-
mined using an Anders en-inertia! impactor for the four filter media at three A/C
levels. The effect of reverse air volume on outlet loading and pressure drop across
the bags was evaluated for Nomex felt. Nomex felt achieved the lowest outlet dust
concentrations while Teflon felt operated at the lowest pressure drop. All media
tested achieved outlet loadings well within allowable limits. Higher collection effic-
iencies were achieved with Nomex felt by discontinuing reverse air cleaning. Varying
the volume of reverse air from 1400 to 4000 acfm had little effect on removal effic-
iency. Increasing the amount of air used for cleaning does reduce the pressure drop
across the bags. Installed annual operating and total annualized costs for a fabric
filter and an electrostatic precipitator, capable of handling 70,000 acfm of flue gas
from a coal fired boiler, are presented. A full scale demonstration is anticipated.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
Air Pollution
Filtration
Filter Materials
Coal
Combustion
Industrial Heating
Boilers
Dust Collectors
Feasibility
Te trafluor oe thy le ne
Resins
b.lDENTIFIERS/OPEN ENDED TERMS
Air Pollution Control
Stationary Sources
abric Filters
bmex
eflon
re-Tex, Dralon-T
c. COSATI Field/Group
13B
07D
13K, 14A
21D
21B, 111
13A
18. DISTRIBUTION STAThMENT
Unlimited
19. SECURITY CLASS (This Report)
Unclassified
21. NO. OF PAGES
203
20. SECURITY CLASS (This page)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
- 192 -
-------