EPA-650/2-75-060
July 1975
Environmental Protection Technology Series
DATA
ACQUIRED ON MECHANICAL
SALT WATER COOLING DEVICES
U.S. Environmental Protection Agency
Office of Research and Develop
Washington, O.C.204GO
-------
EPA-650/2-75-060
DRIFT DATA ACQUIRED ON MECHANICAL
SALT WATER COOLING DEVICES
by
Gunter 0. Schrecker
Ronald 0. Webb
David A. Rutherford
Frederick M. Shofner
Environmental Systems Corporation
P.O. Box 2525
Knoxville, Tennessee 37901
Contract No. 68-02-1365
ROAP No. 21ARW-002
Program Element No. 1AB015
EPA Project Officers:
Kenneth Baker
Control Systems Laboratory
National Environmental Research Center
Research Triangle Park, North Carolina 27711
and
Frank H. Rainwater
National Thermal Pollution Research Center
National Environmental Research Center
Corvallis, Oregon 97330
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
OFFICE OF RESEARCH AND DEVELOPMENT
WASHINGTON, D.C. 20460
July 1975
-------
EPA REVIEW NOTICE
This report has been reviewed by the National Environmental Research
Center - Research Triangle Park, Office of Research and Development.
EPA, and approved ior publication. Approval does not signify that the
contents necessarily reflect the views and policies.of the Environmental
Protection Agency, nor does mention of trade names'or commercial
products constitute endorsement or recommendation for use.
RESEARCH REPORTING SERIES
Research reports of the Office of Research and Development, U.S. Environ-
mental Protection Agency, have been grouped into series These broad
categories were established to facilitate further development and applica-
tion of environmental technology. Elimination of traditional grouping was
consciously planned to foster technology transfer and maximum interface
in related fields. These series are:
1. ENVIRONMENTAL HEALTH EFFECTS RESEARCH
1. ENVIRONMENTAL PRO'iECTION TECHNOLOGY
3. ECOLOGICAL RESEARCH
4. ENVIRONMENTAL MONITORING
5. SOCIOECONOM1C ENVIRONMENTAL STUDIES
6. SCIENTIFIC AND TECHNICAL ASSESSMENT REPORTS
9. MISCELLANEOUS
This report has been assigned to the ENVIRONMENTAL PROTECTION
TECHNOLOGY series. This series describes research performed to
develop and demonstrate instrumentation , equipment and methodology
to repair or prevent environmental degradation from point and non-
pomt sources of pollution. This work provides the new or improved
technology required for the control and treatment of pollution sources
to meet environmental quality standards.
This document is available to the public tor sale through the National
Technical Information Service, Springfield, Virginia 22161.
Publication No. EPA-650/2-75-060
11
-------
CONTENTS
Section
I Summary
II Introduction
Page
Definition of the Problem 5
Consent Decree 6
Environmental Protection Agency's Needs 8
Scale-up Considerations 8
III Test Objectives and Test Approaches 10
Test Objectives 10
Test Approach 11
Ambient Sea Salt Level Data Acquisition 13
Acquisition of Sea Salt Level During Operation
of One of the Cooling Devices 13
Cooling Tower Drift Emission Characterization 14
Drift Emission Characteristics Near the Spray Modules 14
IV Instrumentation and Data Reduction 16
Drift Emission Test Equipment 16
PILLS II System 16
Sensitive Paper Machine 21
PILLS and SP Data Consolidation 27
Cooling Tower Composite Curve 28
Isokinetic Sampling System (IK) 32
Comparison Between PILLS/SP and IK Data 37
Other Support Equipment for Drift Measurements 42
Airborne Particle Sampler and Deposition Sampler 43
Instrumentation Summary 47
V Meteorological Data Acquisition System 49
-------
CONTENTS (continued)
Section
VI Sampling of Airborne Sea Salt From Cooling
Device Sources and in the Ambient Atmosphere 52
Ambient Airborne Sea Salt Measurements 53
Sea Salt Measurements During Cooling Device Operation 57
Measurement Procedure 58
Quality Control Data 60
Formats for Data Presentation 61
VII Drift Emission Test 65
Cooling Tower Measurements 66
Measurement Set-up 66
Measurement Procedure 73
Drift Measurements for Florida Power & Light Company 76
Data Format 77
Drift Data Summary for the Cooling Tower 87
Cooling Tower Composite Curve Calculation 92
Spray Module Emission Test 95
Measurement Set-up 95
Measurement Procedure 96
Data Format 100
Spray Module Data Analysis Example 102
VIII References 108
IX Glossary HI
X Appendices 116
A. Chronology of Events 117
B. Cooling Tower and Powered Spray Modules 121
Operations Log
C Airborne Particle Sampler Data 123
C-l. APS Data 125
C-2. APS Procedural Background Data 235
C-3. APS Mesh Background Data 241
D. Deposition Data 246
IV
-------
CONTENTS (continued)
Section Page
E. Drift Emission Data for the Cooling Tower 324
F. Cooling Tower Drift Emission Data Acquired for
Florida Power and Light Company 415
6. Drift Emission Data for the Spray Modules 439
H. Manufacturer's Specifications for Cooling Devices 504
H-l. Marley 600/700 One Cell Wet Mechanical
Draft Cooling Tower 505
H-2. Ceramic Cooling Tower Company's Powered
Spray Module 517
I. Statements from Stewart Laboratories, Inc. 525
-------
FIGURES
No. Page
1 Cooling Tower and Spray Modules in Operation 12
2 PILLS/SP Consolidated Curve for Cooling Tower
Position 27 of Diameter SW-NE 3 29
3 Effects of Non-Isokinetic Sampling 38
4 Airborne Particle Sampler in Operation 44
5 APS Station Locations for Ambient Monitoring 54
6 APS Stations 1 and 2 which were used for Precision Runs 56
7 APS Station Locations for Ambient and Source Monitoring 59
8 Side View of Instrumentation for Drift Tests on the
Cooling Tower 67
9 Frontal View of Instrumentation for Drift Tests on the
Cooling Tower 68
10 Position of Cooling Tower Instrumentation Relative to
PILLS' Sampling Volume During the Winter Test.
Frontal View. 69
11 Position of Cooling Tower Instrumentation Relative to
PILLS' Sampling Volume During the Winter Test.
Top View. 70
12 Position of Cooling Tower Instrumentation Relative to
PILLS' Sampling Volume During the Summer Test.
Frontal View. 71
13 Position of Cooling Tower Instrumentation Relative to
PILLS' Sampling Volume During the Summer Test.
Top View. 72
VI
-------
No. Page
14 Comparison of IK Adjusted Sodium Mass Flux vs. Position 91
15 Cooling Tower Composite Drift Mass Density Distribution 94
16 Barge Instrumentation for Spray Module Drift Tests 97
17 Position of the Barge Instrumentation Relative to PILLS'
Sampling Volume. 98
18 Drift Flux and Mass Median Diameter vs. Measurement Height:
Spray Module Drift Tests, 2/1/74 103
19 Drift Flux and Mass Median Diameter vs. Measurement Height:
Spray Module Drift Tests, 3/26/74 104
20 Adjusted Mineral Mass Flux vs. Measurement Height:
Spray Module Drift Tests, 3/26/74 105
21 Drift flux and Mass Median Diameter v's. Measurement Height:
Spray Module Drift Tests, 3/30/74 106
22 Adjusted Mineral Mass Flux vs. Measurement Height:
Spray Module Drift Tests, 3/30/74 107
23 Airborne Particle Sampler Station Locations 124
24 Cooling Tower Layout Illustrating Diameter Traverses 325
25 Velocity Profile for SW-NE Diameter, 2/20/74 329
26 Velocity and Temperature Profiles for SW-NE Diameter,
2/21/74 330
27 Velocity and Temperature Profiles for SW-NE Diameter,
2/22/74 331
28 Velocity and Temperature Profiles for SW-NE Diameter, 3/9/74 336
29 Velocity and Temperature Profiles for SW-NE Diameter, 7/24/74 366
30 Velocity and Temperature Profiles for NW-SE Diameter, 2/27/74 385
31 Cooling Device Site Plan 440
32 Sectors for Wind Direction Distribution 483
33 The Marley Company's 600/700 mechanical draft cooling tower 515
34 Ceramic Cooling Tower Company's Powered Spray Module 525
vi i
-------
TABLES
No^ Page
1 Sodium and Magnesium Concentrations of the Cooling Water 81
2 Rate of Drift Water Emission from the Cooling Tower 88
3 Adjusted Total Mineral Mass Emission Rates from the
Cooling Tower 89
4 Adjusted Sodium Mass Flux Data Summary 90
5 Cooling Tower Composite Drift Mass Parameters 93
6 Per Cent Counts in Each Velocity Range for Each Position,
SW-NE Diameter, 3/8/74 332-
333
7 Per Cent Counts in Each Velocity Range for Each Position,
SW-NE Diameter, 3/9/74 334-
335
8 Cooling Tower Drift Data Supplement as Acquired by SP
Large Stain Count 414
9-28 Wind Speed and Direction Distributions 484-
503
vm
-------
ACKNOWLEDGEMENTS
The authors wish to express their appreciation to Messrs. Frank H.
Rainwater and Ken Baker for their assistance and support of this
project. The cooperation of Florida Power & Light Company and their
contractor, International Management Associates, was most helpful
throughout the contract and is acknowledged with sincere thanks.
The secretarial assistance of Miss Sue Rushing and Mrs. Carolyn Wells
is gratefully acknowledged.
IX
-------
SECTION I
SUMMARY
This contract was directed towards the acquisition of data on the drift
emission from a single cell mechanical draft cooling tower and two
spray modules and the measurement of airborne salt loadings in the
vicinity of these cooling devices up to a distance of about 2 km. The
airborne salt loadings were measured before the cooling devices became
operational and later during the operation of either the cooling
tower or the two spray modules. The test was executed at Florida
Power and Light Company's (FP&L) Turkey Point electric power generation
plant which is located about 50 km (30 miles) south of Miami at the
shore of Biscayne Bay.
For condenser cooling this plant uses a closed-cycle system of shallow
canals which dissipates the heat to the atmosphere primarily by surface
evaporation. The two spray modules were installed into this canal
system, and the cooling tower was erected at its shore for the purpose
of these measurements. The tower received the hot water from the
cooling canal system and discharged the cold water back into it.
Drift measurements were conducted on both cooling devices during the
winter test phase which lasted from January 21 to March 31, 1974, and
again on the cooling tower during the summer test phase from July 16
to 24, 1974.
The drift instrumentation package consisted of a PILLS II-A instrument
(Particulate Instrumentation by Laser Light Scattering) and a
Sensitive Paper (SP) machine, both of which counted and sized drift
droplets, an isokinetic (IK) sampling tube which measured the mineral
mass flux, a propeller anemometer for air speed measurements, and an
electronic psychrometer.
During the cooling tower test the inlet and outlet water temperatures
and the water levels in the hot water basins were monitored. The
canal water temperature was monitored during the spray module test.
A 10 m tall meteorological tower, located within 50 m of both cooling
devices, provided data during most of the winter test phase and
during the summer test phase. Canal water concentrations of sodium
and magnesium were monitored during both testing phases.
-------
Cooling tower drift data were acquired along five fan stack exit
diameter traverses, with 12 to 16 data points per traverse. Each
data point was usually comprised of a drift droplet size spectrum,
sodium and magnesium mass fluxes, air updraft velocity, exhaust air
temperature, and tower operational and meteorological data. The range
of measured droplet diameters was 10 to 2240 urn. At 85% of all
measurement positions the number of counted and sized droplets was
sufficient to allow the determination of the droplet size spectrum
in the diameter range of 10 to 600 ufo; at the remaining 15% the
upper limit of the diameter range was between 300 and 550 \im. Droplets
with diameters larger than 600 urn were measured at about 30% of all
measurement positions. However, since typically one or two, but
never more than three, of such large droplets were encountered at any
one of those positions, the number of droplets was too small to
include them into the droplet size spectra.
A cooling tower composite drift droplet size spectrum was calculated
from all spectra obtained along the diameter traverses. The composite
spectrum is representative of the drift droplet emission encountered
under the meteorological conditions and tower operational parameters
existent during the winter and summer test phases. The mass median
diameter of the composite droplet size spectrum was 120 urn, and the
drift droplet mass emission calculated from the composite droplet
size spectrum was 0.00027% of the water flow rate of 1,260 kg/s (20,000
gpm). This percentage value is commonly referred to as the drift
fraction.
The mineral mass emission fraction was calculated for each of the
five diameter traverses from the mineral mass fluxes obtained at
each measurement position. This parameter expresses the rate of
mineral mass emission as a percentage of the rate of mineral mass
circulating through the tower as solute in the cooling water.
The average mineral mass emission fraction of all five diameter
traverses was 0.00083%. This number takes into account that the
water flow rate was 1,260 kg/s (or 20,000 gpm) during the winter test
phase, but only 970 kg/s (or 15,400 gpm) during the summer test phase.
During the spray module drift emission test a barge was used as
instrumentation carrier. Since all support equipment including the
power supply were on board, it was able to move freely on the canal
system that harbored the floating spray modules. The drift
instrumentation package contained the same instruments as mentioned
before. The propeller anemometer, however, measured the wind
speed instead of air updraft speed. Also, a wind vane was added to
the instrument package in order to measure the relative wind direction
with respect to the barge's center line. The barge supported a
-------
tower which allowed the positioning of the instrument package any-
where between 1 m and 11 m above water level.
The spray module test yielded drift emission data, i.e. the drift
droplet size spectrum and mineral mass flux, together with meteoro-
logical data, at selected points in space downwind of the spray
modules. Thirty-eight data points were obtained at various downwind
distances between 21 m and 88 m and heights between 2.4 m and 11 m.
About 50% of the data were measured at a height between 4.3 m and
4.6 m which was slightly above the spray umbrella height of about 4.1 m.
The range of measured droplet diameters was between 10 ym and, in the
average, 300 pm. The upper limit varied between 200 and 500 pm,
primarily due to wind speed and distance from the spray modules.
Whereas the data obtained in the cooling tower's stack exit plane
allowed a quantitative characterization of the total drift emission,
the spray module test provided data at selected points in space
downwind of the spray modules. Traverses of an efflux plane analogous
to the stack exit plane of a cooling tower which would allow a
determination of the total mineral mass emission of the spray modules
were not attempted.
Ambient airborne salt loadings were measured during the period of
August 24, 1973 to January 11, 1974, by means of a network of six
sampling stations. Each station consisted of an Airborne Particle
Sampler (APS) which measured salt concentration, and a deposition
sampler for salt deposition flux measurements. The six sampling
stations were distributed over five locations along a line that
extended approximately 2,400 m inland from the shore. A total of
82 runs, i.e. simultaneous operation of the network stations, was
obtained during the indicated period of time.
Two of the sampling stations were located at a distance of about 15 m
from the shore and within 4 m of each other. These stations were
always operated simultaneously in order to allow unambiguous
comparison of the results. Sixty-five APS and 40 deposition sampler
runs were obtained and the average error* between the two values
for each run was found to be 7% and 23% respectively.
Between January 31 and July 24, 1974, airborne salt loadings were
measured during the operation of either the cooling tower or the
two spray modules. About 130 runs were obtained with an enlarged
and rearranged network of nine sampler stations. Depending on wind
direction, one or more samplers were located upwind of the operating
*The defining equation for the error is given by Equation (44).
-------
cooling device. This allows comparison of salt loadings upwind and
downwind of the cooling device in order to determine its contribution
of salt to the atmosphere. The upwind salt loadings also expand
the data base of ambient salt loadings to a total of 11 months.
A statistical analysis of the APS data is presently being conducted
for the Environmental Protection Agency by the Adapt Service
Corporation under Contract No. 68-03-2176 (Project Officer: Dr. Bruce
Tichenor, National Environmental Research Center, Corvallis,
Oregon).
No conclusions are presented since this contract emphasized data
acquisition. However, future analysis, interpretation and scale-up of
all data will help to evaluate the potential impacts of drift from
cooling systems utilizing mechanical draft cooling towers or spray
modules.
-------
SECTION II
INTRODUCTION
DEFINITION OF THE PROBLEM
One of the environmental problems associated with evaporative
cooling devices such as mechanical draft wet cooling towers and
spray modules, besides ground fogging and icing, is the mineral
mass emission. The mineral mass is contained in small water droplets
which originate with the circulating cooling water, are entrained
into the air flow, and are injected into the atmosphere. These
droplets, which are called drift, rise with the moist, bouyant
plume until they fall out and embark on a trajectory through the
ambient atmosphere. Eventually the drift droplets or their mineral
residues are collected by vegetation or structures in the surroundings
of the cooling device. The ultimate question is how the drift
mineral residue affects man-made structures and life indigenous
to these surroundings compared to the effects of similar minerals
found in the ambient environment. If it can be shown that the
impact of the cooling device contributions is negligible compared
to ambient levels, environmental acceptability of the cooling device,
with respect to drift, may be concluded. This question is particularly
important for salt water cooling devices. Some are already in
service in near-seashore "environments (e.g.Beesley's Point, New
Jersey and Chalk Point, Maryland) and more are in the planning stage.
The drift problem outlined above may be broken down into the following
five segments:
1. characterization of the drift emission of the source;
2. characterization of drift transport by the plume and through
the ambient atmosphere;
3. characterization of the drift mineral residue levels at
ground or near-ground levels downwind of the source;
4. characterization of the ambient levels around the cooling
device; and
-------
5. characterization of the effects of the drift mineral
residue on materials and life forms.
CONSENT DECREE
In 1970 and 1971 Florida Power and Light Company and the Environmental
Protection Agency (EPA) were involved in court litigations over the
subject of once-through cooling for FP&L's Turkey Point power plant. The
plant is located south of Miami, Florida, and consists of two 430
MWe fossil fueled steam electric generating units and two 730 MWe
nuclear units. At that time the nuclear units were still under
construction, but are completed now.
As a result of court litigations FP&L considered alternative means of
condenser cooling, i.e. spray module systems, cooling canal systems,
and especially cooling towers. A characteristic of the Turkey Point
site is the lack of an adequate supply of fresh water for cooling
tower make-up. Consequently, a study was initiated in which
Southern Nuclear Engineering, Inc. assessed the state of the
technology of saltwater cooling towers. Such towers were already
in service, both in the USA and abroad, but were typically 20 to 100
times smaller than what would have been required at Turkey Point.
The report1, which was issued in February 1970, states in part:
"... Drift represents an outstanding problem area. ...
The problems are: (1) how much salt comes out of the
cooling towers; (2) what is the size of the area over
which this salt is deposited; and (3) what effect does
the salt have upon the surrounding environment, including
plant and animal life, and soil and structures of the
area. The cooling tower suppliers are willing to
guarantee a maximum limit of drift from their equipment;
however, the industry possesses no accurate standard
method for experimentally measuring drift, and there-
fore present drift guarantees are probably not too
meaningful, particularly at low values. The significant
problem is that even operating within the guaranteed
drift values for currently operating towers, the amount
of salt coming out of the Turkey Point cooling towers
is calculated to be from 20 to 400 tons per day and area
deposition rates are potentially prohibitively high.
Prior to building a salt water cooling tower as large
as that required for Turkey Point, substantial research,
development, and prototype testing will be required.
There is no such research development and testing
being carried out at this time, or even contemplated.
It is judged that a program to do this job would require
a minimum of 4 years and several million dollars."
-------
Thus salt water cooling towers were rejected as an alternative to
once-through cooling mainly due to the potential salt drift problem.
The parties finally agreed on an excavated canal system2'3 as a means
of condenser cooling. This plan was incorporated in a consent decree,
the Final Judgement1*, which was issued on September 10, 1971. Among
the provisions of the consent decree were the following:
"Florida Power and Light shall immediately arrange
with appropriate officials of the United States,
the State of Florida, and other appropriate juris-
dictions, to commence studies of : ... (c) mechanical
cooling devices such as powered spray modules and other
reasonable concepts for reducing adverse environmental
effects attributable to the cooling system specified in
this Final Judgement:
The studies specified shall be directed toward
the determination of the feasibility, practicability
and acceptability of utilization of such alternate
sources of water as a substitute or supplement for
withdrawals of make-up water from Card Sound for the
cooling system described in Paragraph V below;
shall utilize those waters which, as a result of the
studies referred in subparagraph 11 above, the
Administrator of the Environmental Protection Agency
may identify as being available to provide make-up water
for Florida Power and Light's cooling system, to the
extent this can be done feasibly and practicably and
at a cost which is not disproportionate to the degree
of environmental protection to be achieved "
In order to satisfy this requirement and provide the Administrator
of EPA with adequate information on salt water cooling, EPA and
FP&L cooperated in an effort to test a single cell mechanical draft
wet cooling tower and two spray modules. FP&L provided the cooling
tower and the test site, EPA funded the contract Number 68-02-1365
"Demonstration of Mechanical Cooling Devices for Salt Water at
Turkey Point", which covers the purchase and installation of two
spray modules and the testing phase whose objectives will be
addressed in Chapter II. This contract was awarded on July 1, 1973
to Environmental Systems Corporation (ESC), who had since 1971
pioneered the development of drift measurement instrumentation5.
-------
ENVIRONMENTAL PROTECTION AGENCY'S NEEDS
EPA's needs are stated in Reference 6, as follows:
1. "The National Environmental Policy Act requires Federal
licensing agencies to consider alternatives (including
cooling systems) to negate or minimize environmental
degradation. To date, quantitative information on drift
from salt water systems has been inadequate for a
definitive position by the utilities, Atomic Energy
Commission, or EPA—particularly in respect to (a) ambient
air salt concentration and fallout, (b) source characteristics,
(c) transport and deposition, and (d) terrestrial impacts.
The contract will contribute valuable data on Items (a),
(b), and (c) to the literature."
2. "PL 92-500 requires EPA (1) to promulgate acquatic effluent
standards for the electric power industry and (b) to issue
discharge permits. The contract will contribute to the
technical base for executing these requirements in all
coastal regions."
SCALE-UP CONSIDERATIONS
The data acquired under this contract and the subsequent data analysis
are intended to satisfy one of the provisions of the consent decree:
the study of salt water mechanical cooling devices. In using the
data presented in this report, it is important to remember that only
one single cell cooling tower designed for a water circulation rate of
1260 kg/s (20,000 gpm) and two spray modules designed for a total
flow rate of also 1260 kg/s were studied, not a cooling system
which would meet the needs of the Turkey Point plant with its combined
capacity of about 2300 MWe. The difference lies in single units or
small scale versus many units or full scale. If condenser cooling
of all four Turkey Point units were to be provided by mechanical
draft wet cooling towers or Powered Spray Modules, the cooling system
would consist of many cooling tower cells or spray modules. Reference
1 contains an estimate of about 100 cooling tower cells for a specified
design condition, but each cell was larger in size, and its heat
rejection capability higher, than the cell that was tested at Turkey
Point. Reference 7 contains, for the same design conditions as above,
an estimate of 700 Powered Spray Modules. Current estimates would
likely yield a lower number primarily due to the advances of the last
4-5 years in the state-of-the-art of predicting thermal performance
of spray systems.
8
-------
It should be noted that these estimated numbers of cooling tower cells
or spray modules are only quoted here in order to give the reader an
order-of-magnitude impression of the size of such an alternate
cooling system. The magnitude of these numbers demonstrates that
the results of this contract have to be scaled up before they can
be considered representative of a full-size cooling system. We
understand that the Thermal Pollution Branch of the Pacific Northwest
Environmental Research Laboratory is pursuing cooling tower plume
studies which may be extended to scale-up problems.
-------
SECTION III
TEST OBJECTIVES AND TEST APPROACHES
The purpose of this contract is to provide data for studying the
environmental acceptability of mechanical cooling devices. Such a
study is necessary to satisfy one of the provisions of the previously
mentioned consent decree (Reference 4). Consequently the thrust is
directed towards data acquisition only; data analysis or the
aforementioned study itself are specifically not part of the scope
of work in this test portion. Data acquisition in a program such
as this inevitably leads to an accumulation of data which defy a
cursory analysis on the part of the reader. Distillation of basic
trends, practical correlations and the relevation of a coherent
structure must be reserved for a full scale indepth examination.
TEST OBJECTIVES
The test objectives were formulated as follows:
1. Measurement of ambient airborne sea salt levels at the
Turkey Point site. Statistical analysis of the data, a task
which is not within the scope of this contract, should
determine, for example, average seasonal salt levels,
ranges of salt fluctuations, and whether an inland gradient
in the ambient sea salt levels exists.
2. Measurement of airborne sea salt levels at the Turkey Point
site during operation of one of the cooling devices. An
analysis of these data should determine if either of the
cooling devices contributes measurably to the sea salt levels
over and above the ambient sea salt levels at various
distances from the cooling devices and under various
meteorological conditions. Again, this analysis is not with-
in the scope of this contract.
3. Drift emission characterization of the cooling tower.
4. Drift emission characterization near the spray modules.
10
-------
Thus, data were acquired for drift problem areas 1, 3, and 4 of the
five areas listed in Section II.
TEST APPROACH
Before the test approach is addressed, a brief description of the site
is necessary. This description follows that given in Reference 8. The
Turkey Point site is located approximately 50 km south of Miami, Florida,
at the west shore of Biscayne Bay. The low, swampy land surrounding
the site is extremely flat, rising from sea level at the shoreline to
an elevation of only about 3 m at a distance of 13 km west of the site.
The site itself has a similar flat natural relief of only 0.3 to 0.6 m
above sea level. East of the site, 8 to 13 km across Biscayne Bay,
is a series of islands running in a northeast-southwest direction
between the Bay and the Atlantic Ocean. Four steam electric
generating units are located on the site: two oil-fired units with
430 MWe each and two nuclear units with 730 MWe each. Condenser
cooling for all units is provided by a salt-water canal system with
dimensions of 8.4 km in north-south direction and 3.5 km in east-west
direction. A "hurricane" dike, intended to shield the canal cooling
system from hurricane induced flooding, separates the cooling system
from the shore of Biscayne Bay, which extends in a general north-south
direction. The four generating units are located at the northeast
edge of the canal cooling system which dominates the site due to its
size.
In the north, the canal cooling system is bound by the feeder canal
which runs in an east-west direction. The research cooling tower is
located at the north shore of the feeder canal approximately 1,200 m
west of the plant, and the two research spray modules are anchored
in the feeder canal within a hundred meters of the tower. Neither of
these cooling devices is needed for cooling of the power plant.
Agreement on the type and manufacture of the cooling devices tested
was reached between EPA and FP&L before the award of this contract.
Manufacturer's specifications for the devices are given in Appendix
H, and Figure 1 shows both devices in operation. The contract's
test objectives did not include an evaluation of the mechanical,
hydraulic or thermal performance of either cooling device.
Consequently, only easily measured parameters such as the height
and diameter of the spray umbrella of the spray modules were checked.
For each drift data point acquired on the cooling tower some
operational parameters, such as hot and cold water temperatures,
were measured to characterize the performance of the tower during
drift data acquisition rather than to verify it.
11
-------
.
Figure 1. Marley 600/700 one cell wet mechanical draft cooling tower
and Ceramic Cooling Tower Company's Powered Spray Modules
in operation at Florida Power and Light's Turkey Point site.
The barge with its 13 meter (40 feet) tower is also visible.
Note: No data were acquired during simultaneous operation of the
cooling devices.
12
-------
In the following, a brief outline of the test approaches, designed to
meet the test objectives, is given. They are discussed in more
detail in Sections VI and VII.
In order to meet the test objectives, the following test programs were
developed:
Ambient Sea Salt Level Data Acquisition
The ambient sea salt levels were characterized by two parameters:
1. the near-ground airborne sea salt concentration which is the
mass of sea salt per unit volume of air; and
2. the near-ground airborne sea salt deposition flux which is
the mass of sea salt that crosses a horizontal unit area
per unit time.
"Near-ground" represents the fact that the collectors were not
located at ground level but at a height of approximately 3 to 4 m
above grade at the particular collector location. Six Airborne
Particle Samplers, which are described in Section IV were used as
airborne sea salt concentration measuring devices along with the
same number of deposition samplers. The selection of the station
locations was important since one of the goals of a subsequent data
analysis will be the detection of an inland gradient. The six
samplers of each kind were therefore distributed along an east-
west line which is perpendicular to the general north-south orientation
of the shore of Biscayne Bay (see Figure 5 and 23). With this
experimental set-up, ambient data were acquired at a rate of five
runs a week over a period of approximately four months during the
time the cooling devices were not operating. Later, during operation
of one of the cooling devices, ambient data were also acquired upwind
of the operating device increasing the period of time of ambient
background data acquisition to a total of eleven months.
Acquisition of Sea Salt Level Data During Operation of One of the
Cooling Devices
With one of the cooling devices operating, the sea salt levels were
again characterized by the airborne sea salt concentration and the
sea salt deposition flux. More sampler stations and a different
array of the station locations (see Figures 7 and 23) were used
in order to acquire data that would permit an analysis to detect
source contributions above the ambient sea salt levels. Over a
13
-------
seven month period, data were acquired at a rate of five runs per
week during three months and at a rate of six runs per week during
four months.
Cooling Tower Drift Emission Characterization
The basic quantities measured were:
1. the drift droplet size spectrum; and
2. the drift mineral mass flux.
These quantities were measured in the exit plane of the cooling tower
stack. A horizontal beam placed diametrally across the exit plane,
as shown in Figures 8 and 9, supported the instrument package which
could be brought into any position along the diameter. At various
positions the Particulate Instrumentation by Laser Light Scattering
(PILLS) and the Sensitive Paper (SP) techniques were used to acquire
the droplet spectrum and the heated glass bead Isokinetic Sampling
technique (IK) yielded data on the drift mineral mass flux. These
basic quantities along with the updraft velocity profiles measured
with a propeller anemometer were acquired during five diameter
traverses with 12 to 16 measuring positions each. The PILLS and SP
data reduction yielded subsequently drift mass spectra and drift mass
flux spectra for the particular measuring points as well as a
drift mass spectrum representative of the cooling tower as a whole
during the entire data acquisition period. The IK data yielded sodium
and magnesium mineral mass fluxes for the individual positions
along the diameter traverses as well as total sodium and magnesium
mass emissions for the tower.
The drift characteristics could depend on tower operational data, such
as rejected heat, water and air flow, salinity; and on meteorology.
Therefore, for each drift data point, those tower operational data that
were readily accessible, for example hot and cold water temperatures,
the heads in the hot water distribution basins, salinity, and exit
air temperature were measured. A meteorological tower, located
approximately 50 m east of the cooling tower, provided meteoro-
logical data continuously during drift data acquisition periods.
Drift Emission Characteristics Near the Spray Modules
A fundamental difference exists between the drift emission
characterization of a cooling tower and that of a spray module.
It is recognized that a cooling tower has a well-defined efflux
plane in which measurements can be made to characterize the drift
emission. Such a plane, however, does not in principle exist
uniquely for a spray module since the emission and transport
14
-------
phenomena are dependent upon the local climatology (ground level
wind speed, wind direction and turbulence, and the dry and wet bulb
temperatures of the air). If measurements are made in the near
proximity of the modules, e.g. within 1 to 5 m of the downwind
spray umbrella, then the droplets crossing the measurement plane
could be characterized by a set of measurements having small
horizontal and vertical extent but would not be necessarily re-
presentative of the transport of drift beyond the spray canal or the
plant property line. In other words, measurements made under given
wind conditions in a plane near the source may have large contri-
butions by large droplets which may not leave the spray canal under
the given wind conditions.
On the other hand, if measurements are made at, e.g. 100 to 200 m
distance from the source, then that part of the drift is measured
which is clearly transported from the spray canal into the
environment. However, much larger horizontal and vertical
excursions have to be made in order to represent the drift that is
transported across the measuring plane.
Clearly, this problem is more severe when the winds are variable
in either speed or direction. Thus, a measurement plane(s) must be
chosen which is a compromise between non-representative but
easily obtained data and more representative but more difficult to
obtain data.
Recognizing this principal difficulty, the primary goal of this
spray module test (the first that was ever attempted to the knowledge
of the authors) was to obtain, under meteorological conditions as
constant as possible, drift droplet size spectra and drift mineral
mass flux data at certain distances downwind of the modules as a
function of height. However, these data do not allow the calculation
of drift and mineral mass emission rates for the spray modules.
It was hoped, of course, that wind speed and direction would be
sufficiently steady for a sufficient period of time to allow a
complete traverse of a measurement plane such that emission rates
could be determined.
The same instrumentation as mentioned previously in this section
was used here. The instrument package was traversed along a vertical
mast positioned on a barge as shown in Figure 16. The barge was
completely self-sufficient containing all support equipment for the
instrument package and motor generators for electric power.
15
-------
SECTION IV
INSTRUMENTATION AND DATA REDUCTION
In this section, descriptions of the instruments employed in the
test program are given along with the fundamental equations used in
the data reduction. Techniques for measuring drift droplet size and
number density are described first, followed by a description of
how these data are consolidated into a meaningful representation of
the droplet emission characteristics. Next follows a description
of the instrumentation for measuring mineral mass flux. Then some
remarks are made regarding the comparison of parameters derived
from the droplet size spectra and parameters derived from mineral
mass flux data. Then a description of the support instrumentation
used in drift emission measurements is presented, followed finally
by a section on instrumentation for airborne sea salt concentration
and deposition flux measurements and a discussion of these parameters.
DRIFT EMISSION TEST EQUIPMENT
PILLS II System
The PILLS II System has been developed to provide in situ, on-line
measurements of drift droplet density distributions in cooling towers.
The PILLS technique of droplet sizing was developed under the
sponsorship of the Environmental Protection Agency (Contract Number
16130GNK, Project Officer: Frank H. Rainwater), and first
demonstrated5 in Oak Ridge, Tennessee, in 1971. Since then, field
experiments such as those conducted inHornaing, France, Homer City,
Pennsylvania, and again in Oak Ridge, have demonstrated its measurement
capability and field reliability. The PILLS instrument employed at
Turkey Point is designated PILLS II-A and was the latest generation of
that line of instrumentation.
The operating principle of the PILLS System is described in References
5, 9 and 10. This electro-optical instrument produces a voltage
output which is related to the size of a droplet which is present in
the external sampling volume coincident with a pulse of laser light.
The size of the sampling volume is determined such that it is
16
-------
unlikely that multiple droplets in the size range of interest will be
simultaneously present in the volume. For most of the Turkey Point
measurements, this volume was 2.33 cubic centimeters.
References 9 and 11 describe the calibration of the PILLS System which
is accomplished by means of a vibrating orifice monodisperse water
droplet generator. Based on the calibration with droplets of known,
uniform size the overall accuracy of the PILLS System was found9 to
be +15%.
The voltage pulses generated by the PILLS System were fed into a p_ulse
height analyzer (PHA) especially developed for the system with 128
independently adjustable channels, of which typically a third were
used for storing PILLS data. The pulse height analyzer provides as
output a voltage distribution which is analyzed via calibration data
to yield the particle density distribution. p(d), which is defined as:
number of droplets in size range Adj
droplet size range Ad-j (urn) x sampled air volume (m3) (1)
where i represents the droplet size range and j the location in or
near the source. The particle density distribution is the basic
parameter measured by the PILLS System, and it represents the number
of droplets per unit droplet size range and unit volume of air. As
described below, other parameters may be derived from it.
The PILLS instrument used at Turkey Point was set up to generate
particle density distribution data in the droplet diameter range of
approximately 40 to 1,000 ym. The upper limit is determined by the
amplifier saturation point and statistical quality of the field data,
i.e. the number of pulses per PHA voltage channel accumulated during
the measuring time, or, in terms of droplet size, the number of droplets
per diameter range accumulated during the measuring time. The lower
limit is typically determined by either electronic noise or by
optical noise caused by a number of small water condensate droplets
(fog) that are in the sampling volume each time it is illuminated by
a laser light pulse. The fog droplets which are believed to be
smaller than 10 or 20 um in diameter generate stray light which
interferes with the sizing of droplets of the same and larger diameters.
The lower limit due to electronic noise is determined by operating the
PILLS instrument for a period of time outside of the cooling tower
17
-------
plume, i.e. without droplets entering the sampling volume. At
Turkey Point such electronic noise background runs which lasted
between 30 and 60 minutes were obtained daily during the first week of
testing. Since the test results showed a constant electronic
noise background, the number of background runs was subsequently
reduced to one per week. The lower limit, due to electronic noise,
was consistently about 40 um. The effect of fog on the lower limit
has to be determined during each actual measurement since it varies
with both measurement location and time. The lower limit of the droplet
diameter range was during the cooling tower test between 40 and 70 um
due to a low level of fog. The upper limit of the droplet diameter
range, which is affected by actual field conditions as is the
lower limit, was during the cooling tower test usually 600 um and
during the spray module test 250 to 350 um depending primarily
on the position of the instrument relative to the spray modules and
the wind speed. More information regarding the droplet size limits
will be given later in this section and in Section VII.
The drift mass density distribution, defined as AXij/Ad, represents
the mass of droplets per unit droplet diameter range and unit volume
of air as a function of the droplet diameter. It is derived from the
particle density distribution:
where di is the center diameter of droplets in the size range i and si
is the representative density of the drift droplets in the size range i
Since s-j is generally unknown, an assumption has to be made which will
be discussed at the end of this section. The drift mass concentration
represents the mass of droplets in the droplet size range Adi Per
unit volume of air:
AN • •
(3)
and the total drift mass concentration at a measuring point is
obtained by summation over the measured size ranges:
18
-------
XJ = ? AXij - e ? AdT^VT Adi di3 si vgm/m-j /4\
i i i s v»;
provided that:
1. the drift droplet size spectrum does not extend below the
lowest droplet size detectable by PILLS;
2. the fog droplet size spectrum at the exit of the cooling
tower fan stack which is generally assumed to be confined
to diameters of smaller than 10 or 20 gin, does not extend
into the region of the PILLS sensitivity.
The drift mass flux in the size range i is the mass of drift droplets
in that size range that crosses the area AA in unit time. For a
mechanical draft cooling tower with a circular stack, AA is a
section of an annulus in the tower exit plane whereas for spray
modules it can be part of a plane that is downwind of the modules
and perpendicular to both the earth's surface and to the mean horizontal
wind vector. The drift mass flux is computed by multiplying the
drift mass density by the droplet velocity component perpendicular
to AA. For the tower, this velocity component is vertical, hence
the droplet terminal velocity must be taken into account. In this
case the drift mass flux for the size range i is given by
(vuj - vti)
AN
Adi I di3 si Kjj-vti) (gm/m2-s) (5a)
where AD-jj is the drift mass emission rate in the size range i and
at location j, ADij/AA is then the associated drift mass flux,
7uj is the vertical component of the time-mean air updraft velocity
and vti is the terminal velocity of a droplet with diameter d"i .
For spray modules the velocity of the droplets perpendicular to AA
is assumed to be equal to the time-mean horizontal wind speed. Thus,
the drift mass flux for the size range i is
19
-------
(5b)
with u" as the time-mean horizontal wind speed.
The total drift mass flux at location j is obtained by summation
over the size ranges:
AD
AA
(gm/m2-s)
(6)
provided the same considerations regarding the drift and fog droplet
spectra apply as mentioned previously in the calculation of total
drift mass concentration at a measurement point. The total rate of drift
mass emission, D, then, is given by
D = I
AD-
lAA J
AA-
(gm/s)
(7)
In the case of cooling tower measurements, this summation covers the
exit area of the tower. In the case of spray module testing, the
geometrical extent of the drift plume must be determined before this
summation can be realized. At Turkey Point the extent of the drift
plume was not determined, as mentioned before. The drift emission of
the spray modules was rather characterized at each of the measurement
positions, that is, at certain points in space within the drift plume.
If the drift emission is to be characterized by the drift fraction,
A, which expresses the drift emission in percent of the circulating
water mass flow rate, R, then:
A = {{• x 100%
(8)
Equation (2) introduced s^, the representative density of drift droplets
in the size range i. The density of drift droplets depends on the
kind of minerals contained in the droplets, and on their concentration.
With regard to the kind of minerals and their respective mass ratios,
it is assumed that both are equal to those of the circulating cooling
water. The mineral concentration, however, is unknown because it
20
-------
may change due to evaporation or condensation. Fortunately, even though
the concentration may change considerably, the associated density
change is relatively small. For aqueous sodium chloride solutions,
for instance, the concentration may change from 20,000 ppm to
317,460 ppm (saturated solution), whereas the density changes only
from 1.013 to 1.2 gm/cm3, respectively.
In view of this fact, the density of all drift droplets is assumed to
be equal to that of the circulating cooling water: s^ = scw. Since
the difference in density of the cooling water for salt water cooling
towers and the density of pure water, sw, is less than 2%, the
assumption is extended here to
si = scw = sw = 1.0 gm/cm3 (9)
Sensitive Paper Machine
A completely independent and complementary technique to the PILLS
System utilizes the well-known principle of water-sensitive paper12'9.
This paper is chemically treated according to published procedures
such that a droplet of water impinging on it will produce a stain
whose size is related to the original droplet size and to the
dynamics of its impingement. The relationship between the stain and
the droplet size is obtained by calibrating the Sensitive Paper
System by means of the vibrating orifice monodisperse water droplet
generator over a range of droplet sizes and impingement velocities
ranging from 2.5 m/s to 15 m/s. The paper is employed in
machines which offer controlled exposure of the paper to the drift
droplets and protect the paper before and after the exposure period.
The overall accuracy of the SP technique is estimated to be approxi-
mately +15% for droplets larger than 50 pm. For droplets less than
50 urn in diameter the accuracy of droplet size determination is
better than +15% but the effective volume sampled is reduced and must
be corrected as explained later. No accuracy has been established
yet for the correction factor.
The Sensitive Paper technique is employed to extend the particle
density distribution obtained by the PILLS System towards smaller
droplet diameters which are below PILLS' sensitivity limit. Moreover,
since the SP technique typically provides droplet size data in the
range of approximately 10 to 200ym, crosschecks between the two
droplet sizing techniques are possible.
21
-------
The lower limit of this diameter range is due to the aerodynamics of
the flow around the disc-shaped sampling head and the dynamics of the
droplets in the flow. It is therefore a function of the droplet size,
mass and speed, the geometry of the sampler and the air speed. The
upper limit is due to the number of stains generated on one disc.
If the number of drift droplets per unit volume of air increases as
the droplet diameter decreases, as is characteristically observed in
a cooling tower or downwind of spray modules, then the exposure
time of a sensitive paper is limited by the number of small droplets
impinging on the paper. With proper exposure time the stains caused
by these small droplets cover most of the area of the paper, and the
number of stains of larger droplets becomes fewer as the droplet
diameter increases. With only a few, say five or less, large droplet
stains per sensitive paper, the calculated particle density distribution
data may become erratic. This indicates the upper limit of the
diameter range for which particle density distribution data can be
obtained from a particular sensitive paper.
The upper limit cannot be increased by a longer exposure time since
this would yield overlapping stains and a resulting loss of stain
definition. However, it can be increased by properly exposing more
than one sensitive paper and adding the number of stains, but this
necessitates the processing of more sensitive papers which becomes
economically less feasible with an increasing upper limit of the
droplet size range.
The processing of the exposed sensitive papers consists of measuring
the stain diameters by means of a microscope with a reticle eyepiece
and grouping the counts of all stains by stain size ranges. A
statistically significant number of stains, typically about four
hundred, are counted for each of the papers. Since the number of
stains per stain size range usually decreases with increasing stain
size as already outlined, three sensitive paper counts are typically
made.
The stain diameters given here should not be confused with drift
droplet diameters which must be inferred from calibration data.
Small Stain Count - More than 250 stains of diameters smaller than
300 to 400 ym are counted and sized. This number of small stains is
usually obtained from just a portion of the total area of the
sensitive paper.
22
-------
Medium Stain Count - Stains in the diameter range of 200 to 1,500 ym
are counted. Here a larger portion of the sensitive paper area
usually must be interrogated in order to size and group a total
number of 150 stains.
Large Stain Count - The entire area of the sensitive paper is in-
terrogated for stains larger than 1,000 ym in diameter. In this
type of count, the frequency of the large droplets is usually quite
low necessitating treatment of the data on a single droplet
basis as explained in Section VII.
It should be noted that the quoted stain size ranges are typical ones
and are those used in the Turkey Point data reduction. The stain
size ranges may change depending on the stain size distribution and
the stain density on a particular sensitive paper. Compared to
counting and sizing every stain on the paper, the outlined method
is economically more feasible and does not compromise the data
quality. That is, data accuracy remains within the limits previously
quoted.
Once the stain sizes are counted and grouped according to size,
calibration curves for specific stain sizes and impaction velocities
are used to generate the original droplet sizes from which the stains
were formed. A consolidated p(d) curve is then generated for each
measurement position from the SP and PILLS particle size distribution
data. This step will be discussed in the following section titled
"PILLS and SP Data Consolidation".
Three types of sensitive paper machines were employed at Turkey Point:
1. The SP machine used on the barge had a pair of rotating
sampling heads, each of which exposed one sensitive paper
disc measuring 47 mm in diameter. It utilized a small motor
that gave the sampling heads a constant peripheral speed of
10 m/sec. The axis of rotation was parallel to the average
wind direction and the heads were aligned such that the
sensitive paper plane was parallel to the average wind
direction and therefore also parallel to the horizontal
component of the droplet trajectory. This design has two
advantages:
a. the impingement speed of 10 m/s is larger than usual
wind speeds at the site (wind speeds from 1 to 7 m/s
were observed during the module test). This increases
the collection efficiency which, according to
Reference 13, increases with the velocity in a non-linear
23
-------
fashion. Consequently data quality is improved although
no experimental correction factors for collection
efficiency have been established for these lower
impingement velocities. However, a correction factor is
known for 10 m/s as explained in (2).
b. The impingement speed is constant, which facilitates
calibration curve use.
The Strip SP Machine is the same as the one described above
under (1) except that it exposes a 3 mm wide, 47 mm long
strip of sensitive paper instead of a 47 mm diameter disc.
The collection efficiency of the strip for small droplets
is substantially better than that of the disc. According
to Reference 13 it is 90% for 15 urn diameter droplets and
50% for 5 urn diameter droplets. That is, 90% of the
15 urn droplets equally distributed throughout a volume whose
cross-sectional area is identical to that of the SP strip
will impact on the strip when it is swept through the volume
at a velocity of 10 m/sec. This machine was used to obtain
experimentally the correction factor between strip and
disc data for an impingement velocity of 10 m/s, as will
be described later.
It should be noted that the Strip SP Machine is not a
suitable substitution for the SP machine that exposes
sensitive paper discs. The sensitive paper strips have only
about 8% of the area of the discs and the number of droplets
collected by the strips is therefore also only about 8%
of the number of droplets collected by the discs. This is
of no consequence regarding the small droplets of interest
(smaller than about 50 urn in diameter). A correctly exposed
strip always collects more than needed for a small stain
count. The number of stains, however, that are recorded
during the medium stain count is usually much less than the
required number of 150 stains. Thus the strips collect an
insufficient number of droplets larger than about 50 um in
diameter which prevents the generation of p(d) data for
this droplet size range.
The SP machine used on the cooling tower was equipped with a
stationary head instead of two rotating heads. The
advantage of the stationary head is that it provides data at
a well defined point in the cooling tower exit plane,
whereas the rotating heads provide an average over a circular
path whose diameter is 0.6 m and therefore large compared
to the change of updraft velocity in the exit plane along
24
-------
a diametral traverse. The stationary head is aligned such
that the plane of the sensitive paper is parallel to the
tower exit plane. The impingement velocity is therefore
the vertical component of the time-mean droplet updraft
velocity:
ij
= vuj - vti (m/s) (10)
The SP machine, with the rotating heads, generates as the basic para
meter the particle density distributions p(d) like the PILLS System.
The sensor heads on this device sweep out a volume of air in a
direction perpendicular to the air flow and in the process collect
the drift droplets in that volume. Equations (1) to (8) are there-
fore directly applicable.
The SP machine with the stationary head collects only those drop-
lets which, due to the air flow, are transported to the plane of the
sensitive paper. Large droplets in the updraft air do not move at
the same speed as the air due to their settling velocities.
Consequently, even if they were present in the same numbers as the
small droplets, not as many would strike the sensitive paper
surface during the sampling time. This device, then, measures
the droplet number flux directly, from which the particle density
distribution, p(d), can be found as outlined in the following.
The droplet number flux is the number of droplets that cross a unit
area in unit time. For a size range i this can be written as:
number of droplets in size range Adj^
area of the sensitive paper x sampling time (11)
The drift mass flux in the size range i is then
AD
AA
AN
ij
V's.
(gm/m2-s) (12j
Equating Equation (12) and (5a) yields the particle density
distribution, p(d):
25
-------
_ANj
r » * /\Q 4 * • r- iim.-ww » - . . . - • • v •
(13)
Having acquired this basic parameter, the data reduction may proceed in
the same way as described for the PILLS System.
As outlined earlier, the Strip SP Machine was used to obtain
experimentally the correction factor between strip and disc data
for a 10 m/s impingement velocity. The correction factor enables
us to extend the useful range of the disc data below the theoretical
lower limit of approximately 36 mn diameter droplets without exposing
a sensitive paper strip for every sensitive paper disc.
The correction factor is defined in terms of the collection
efficiencies at a given droplet diameter:
Bl =
Estrip
Edisc
(14)
where Bi is the correction factor for the size range i and Estrip
and Edisc are the collection efficiencies of the strip and
the disc, respectively, at the center diameter di of the size range
Adi-
Experimentally the correction factor is given by
ANi
/ :— j.
strip ' lAd-j-VJ disc
(15)
The correction factor depends on both the droplet diameter and the
impingement velocity. As stated above the experiment was designed
to obtain Bi for an impingement velocity of 10 m/s. Since Bi does not
depend on the location of j, other than in terms of the velocity at
j, Al^ instead of AN^j appears in Equation (15).
Experimental determination of the correction factor in terms of both
the droplet size and the impingement velocity is a more involved
task and was not the goal of the rather brief experiment during
the winter test.
26
-------
Correction factors for a range of droplet diameters greater than
10 ym were experimentally obtained,and after comparing them with
the theory13, the following correction factor as a function of the
diameter was extracted and used in the data reduction:
6 =
50 for 10 m/s impingement velocity and
cT 10 < d < 50 ym
1 d < 50 gm (1C)
where both numerator and denominator have the same dimension of urn.
The correction factor 6 was used in the reduction of the sensitive
paper data of both the spray module and the cooling tower tests.
The spray module data were acquired with a fixed impingement
velocity of 10 m/s (SP machine with rotating collection heads)
and the correction factor is therefore directly applicable. However, the
impingement velocity during the cooling tower test was approximately
equal to the local vertical air updraft velocity (SP machine with
stationary collection head) and differed therefore usually from 10 m/s.
The application of 6 to the cooling tower data introduced therefore
an error. Average updraft velocities at the SP measurement points in
the tower ranged from 4.5 to 13.8 m/s. Whenever the droplet
velocity was smaller than 10 m/s, the drift emission of droplets
smaller than 50 urn in diameter is underestimated; whenever it is
larger, the drift emission of droplets smaller than 50 ym is over-
estimated. Since 67% of the average updraft velocities taken at
SP measurement points were larger than 10 m/s, the total drift
emission rate and thus the drift fraction are probably slightly
overestimated.
PILLS and SP Data Consolidation
When both the PILLS and SP techniques are used together in drift
measurements, the data are usually consolidated in a fashion so
that only one particle density distribution curve, p(d), results
from each measurement point. The first step in generating this
curve is to plot the data points generated by the small, medium
and large sensitive paper stain counts, and the p(d) data points
generated by the PILLS System. The second step is to generate
the single p(d) - curve which consolidates the constituent data
points.
Some subjective judgement enters into fitting the consolidated curve
to the data points. For instance, the corrected SP data for droplet
27
-------
diameters smaller than 50 gm are usually taken at face value instead
of the PILLS data because of the fog background which limits the
PILLS system's lower detection limit to droplet diameters larger
than approximately 70 ym. Since the PILLS System sampled per
measurement point typically 4 to 7 times more air volume than the
SP System, the PILLS count frequency was proportionally higher per
droplet diameter range. Consequently, the PILLS data are weighted
heavier than the SP data, especially above droplet diameters of
approximately 200 urn where the number of droplets that result in a
medium stain count data point becomes small, e.g. less than 10.
The two independent droplet sizing techniques overlap between droplet
diameters of 70 to 200 urn, and both sets of data show good agreement.
An example of a typical consolidated p(d) - curve is shown in Figure
2. The data points were generated by the PILLS System and by SP
small and medium stain counts. At about 30% of all measurement
positions in the cooling tower exit plane the SP large stain count
showed 1 to 3 droplets with diameters larger than 600 wm. Since
this is an insufficient statistical basis to formulate a p(d) data
point, no data generated by the SP large stain count are included
in any of the consolidated p(d) curves. Such single large droplets
were not observed during the spray module test.
Cooling Tower Composite Curve
Once a particle density distribution, p(d), is established for each
measurement point (either just from PILLS data, or just from SP data,
or a consolidation of the data of both), various other parameters
characterizing the drift emission at the particular measurement
point can be calculated as outlined before. Drift emission rates
can be determined if the geometrical extent of the drift efflux plane
is known, which is the case for the cooling tower but not for the
spray modules as mentioned before.
At Turkey Point, drift data were obtained at measurement positions
along two perpendicular diameters of the efflux plane of the cooling
tower. These two diameters were traversed a total of 5 times, 4 times
during the winter test phase and once during the summer test phase.
Both meteorology and tower operational conditions were different
during these two test phases, and they were also different, to a
lesser degree, for each measurement position of a diameter traverse.
For applications such as drift transport calculations the data for
all measurement positions must be combined into one distribution
which distributes the total drift mass emission according to droplet
diameter ranges. Totally this single distribution would characterize
the drift water emission of the cooling tower for the various meteoro-
28
-------
1 E4
5 E3
2 E3
1 E3
en
f 5 E2
E
3.
"£ 2 E2
I 1 E2
c
z 5 El
CO
IS)
ro i— i
2 El
1 El
5 EO
2 EO
LiJ
O
1 EO
d 5 E-l
a:
et
2 E-l
1 E-l
5 E-2
2 E-2
1 E-2
Figure 2.
PILLS/SP consolidated curve for cooling
tower position 27 of diameter SW-NE 3.
DATE: 7/23/74
a PILLS DATA
o SP, SMALL STAIN COUNT
• SP, MEDIUM STAIN COUNT
CONSOLIDATED CURVE
ORDINATE NOTATION: 5 E-l MEANS 5x10"
I I I I 1 I I I I I I I I I I 7 I
0 50 100 150 200 250 300 350
DROPLET DIAMETER, urn
400
450
500
550
600
-------
logical and tower operational conditions that typically occur during
a period of time such as a season or a year.
In the following it is described how all cooling tower data ob-
tained at Turkey Point by means of the droplet sizing techniques,
PILLS and SP, are combined into a single drift mass density distri-
bution (which was defined as mass of droplets per unit droplet
diameter range and unit volume of air). This composite drift mass
density distribution thus represents the drift water emission of the
Turkey Point cooling tower under the meteorological and operational
conditions experienced during the testing phases. There are
possibly other parameters which could characterize the drift water
emission of this cooling tower, but this question will not be
addressed in this report.
Equation (5a) which is rewritten here for convenience is the starting
point in the formulation of the composite drift mass density dis-
tribution, AXi/Ad| composite:
(vuj - vti) (5a)
is the drift mass flux in the size range i, AX-jj is
the drift mass concentration in the size range i and at the measure-
ment location j, vuj is the time-mean air updraft velocity at
location j, and vt-j the settling velocity of a droplet with a diameter
which is centered in the size range i.
From each diameter traverse the total rate of drift mass emission of
the tower in a droplet size range i, AD^, can be calculated, assuming
azimuthal symmetry:
ADi = 5 A Xij (vuj - vt1) AAj (17)
J
where AAj is the area associated with the measurement position j. In
the case of a diameter traverse across a circular exit area, AAj
represents one-half of an annul us. The composite, or average, rate
of drift mass emission of the tower in the droplet size range i is
obtained by summation over the measurement positions of all 5
diameter traverses, and division by the number of diameter traverses:
30
-------
I N I- I
composite = N E z fAxijn- (vuin~ vti'>AAJn]
n=l j J
where N is the total number of diameter traverses, which is here N=5,
and n indicates a particular diameter traverse.
The composite drift mass density distribution for the cooling tower,
AXl'/Adl composite' can now be der1ved as follows from Equation (5a):
ADi composite
i
composite ~ A~~^ rvu - vt1-) (19)
All quantities in this equation are now related to the cooling tower
as a whole and not to a particular measurement position, and
appropriate numerical values for the area A and the time-mean air
updraft velocity vu have to be selected. Here the exit area of the
cooling tower fan stack and the average air updraft velocity as
defined by the ratio of design volumetric air flow rate to the cooling
tower fan stack area were used. These quantities are known for any
tower as opposed to, for instance, the area of the annul us of the
fan stack exit for which the air updraft velocity is positive. The
numerical value of such an area would have to be established by
measurements.
Thus, with these well-defined cooling tower parameters, Equation (19)
becomes
AV . ADi composite
uX-j
Ad
composite
Ad
Afse fee" ' V«J (20)
where Afse is the area of the fan stack exit and Vai> is the design
volumetric air flow rate. Equations (18) and (20) were used to
calculate a composite drift mass density distribution, shown in
Figure 11, and from it, other composite drift emission parameters as
discussed in Section VII.
31
-------
Isokinetic Sampling System (IK)
In the planning stage of the Turkey Point program, the instrument for
measuring the mineral mass flux was chosen to be the heated glass
bead isokinetic sampling system. This system was chosen over the
isokinetic cyclone separator, which also measures mineral mass flux,
because of the inherent simplicity of the glass bead design, a
factor of significance in field operational reliability and con-
venience in handling. There is no danger of water leakage once the
sampling tubes are exposed and sealed as there is when drift water
samples are taken.
The heated glass bead isokinetic sampling tubes collect minerals
contained in the drift droplets which evaporate after impinging upon
the hot glass beads. The air velocity through the tube is adjusted
so that it is equal to the time-mean velocity of the updraft air as
determined by measurements with a vane anemometer. The minerals
collected in the IK tubes are stripped from the tubes with a wash
solution which is then chemically analyzed. A statement from the
chemical laboratory with regard to the accuracy of the analytical
procedure is presented in Appendix I.
The basic parameter generated by the IK system is the total mineral
mass flux, F^:
minerals collected _ Mkj - MBk ( 2 } -
Fkj = sampling time x sampling area ' ts • As wm 5; (21)
where the index k represents either a chemical element or compound for
which the sampling tubes are analyzed, or all collected minerals. For
the Turkey Point measurements the index k represents sodium and
magnesium. The index j represents, as before, the measurement
location, M the mass of the element or compound or total minerals
stripped from the IK, tube and MBk is .the average background value of
the tubes for the kth element or compound. The sampling time and
the cross-sectional area of the IK tube are ts and As, respectively.
For the tubes used at Turkey Point, As is equal to 5.07 cm . The
mineral mass concentration, (fry, is the mineral mass flux divided
by the time-mean representative droplet updraft velocity at j, vpj:
(gm/m3)
^ (22)
32
-------
where Vs is the sampled air volume and vuj is the time-mean air
updraft velocity at location j.
The time-mean air updraft velocity at location j, reduced by the
settling velocity of a droplet with mass median diameter as determined
from the droplet size spectrum measured at location j, may be used
as time-mean representative droplet updraft velocity. However, since
the air updraft velocity at those points of the Turkey Point tower
which emit at least 50% of the total mineral mass is at least
10 m/s, as compared to settling velocities of 0.25 m/s and 0.7 m/s for
dropjets with diameters of 100 and 200 um, respectively, the assumption
of Vpj = vuj was used in the Turkey Point data reduction. For mechanical
draft cooling towers this is generally a very satisfactory assumption.
The mineral mass emission of the kth element at location j can be
found from the mineral mass flux:
(My - MBk).AAj
Altlkj = Fkj ' AAJ = — ts.As - (9m/s) (23)
where AAj is an area associated with the measuring location j. The
total mass of the k*h element crossing the measurement plane is
obtained by summation over the measurement locations:
mk = Z Amkj (gm/s)
J (24)
For the Turkey Point cooling tower the measurement plane was the
exit plane of the fan stack. For spray modules the measurement
plane is oriented perpendicular to the time-mean wind direction and
located downwind of the modules. In order to obtain the total
mineral mass crossing through such a plane the geometrical extent
of the drift plume has to be determined as well as mineral flux
data within the drift plume and the measurement plane. Since the
determination of the geometrical extent of the drift plume was not
attempted at Turkey Point, Equations (23) and (24) are not
applicable to the spray module drift emission.
Similarly to the drift fraction which was given in Equation (8) a
mineral mass emission fraction, nk> can be defined as the total
mass of the kth element emitted from the cooling tower in percent
of the mass flow rate of the kth element circulating as solute in
the water:
33
-------
mk"scw
in~C x 100% (25)
where Ck is the concentration of the kth element or compound in the
circulating water (mass of solute per unit volume of solution), R is
the mass flow rate of the cooling water and s^ is the density of the
cooling water. It is assumed in Equation (25) that scw, Ck and R
remain constant during the period of time in which the Amy's are
measured. If this were not the case the following equation applies:
imUr * m% (26)
where scw, R and Ck are determined for that period of time during
which the individual values of Amy are measured. At Turkey Point
R was always constant during a diameter traverse. Furthermore,
the approximation of scw =1.0 gm/cm3 which was introduced already
in the description of the PILLS data reduction applies here as well.
Ideally the mineral mass emission fraction does not depend on the
particular element or compound used to calculate it; that is,
another element or compound should yield the same value for the
mineral mass emission fraction. The underlying assumption is that
the concentration ratios in the drift droplets are the same as in
the circulating cooling water. In experimental practice, however,
if the IK tubes are analyzed for different elements, different
numerical values for the mineral mass emission fractions will be
obtained. For this reason the subscript k was retained on the left
hand side of Equation (25),and (26).
Finally the different numerical values of the mineral mass emission
fraction calculated for different elements or compounds can be
averaged:
1 N
N nk (27)
where N is the total number of elements or compounds the IK tubes
were analyzed for.
34
-------
The mineral mass flux measured in a cooling tower or downwind of
spray modules is expected to depend on the mineral concentration of
the circulating cooling water. If it is assumed that the fluctuations
of the mineral concentration around a mean value do not affect the
drift droplet generation, transport and elimination processes,
then a direct relationship between the mineral mass flux and the
mineral concentration in the cooling water exists, provided all other
operational and meteorological parameters remain constant:
(28)
where Ck , and Ck 2 are two different concentrations of the ktn element
or compound and Fkj and FkJ2 are the associated mineral mass fluxes
at the measurement location j. Equation (M ) is supported by Reference
14 which shows for a mechanical draft cooling tower that the apparent
drift mass concentration, xkj, decreases linearly with increasing
cooling water concentration, Ck. The apparent drift mass concentration
equals the mineral mass concentration, ki, divided by the dimensionless
concentration of the cooling water, Ck/scw. A fluctuation in Ck by
±25% around a mean value causes, according to Reference 14, a
fluctuation in xkj by T3% around its mean value. If it is assumed that
xk'i is independent of Ck, and since voi is constant and srw is, as
before, assumed to be constant, Equation (28) follows from Equations
(21) and (22).
Thus for every measured mineral mass flux data point the associated
mineral concentration must be stated. In order to compare mineral
mass fluxes measured at different mineral concentrations it is
necessary to adjust them to a common value of the mineral co centration
According to Equation (28) this can be accomplished by:
(gm/m*.s)
where Ck Ref is a reference mineral concentration, Fkj is the mineral
mass flux measured at the time when the cooling water mineral
concentration was Ck, and Fj*, is the mineral mass flux adjusted to the
reference mineral concentration. Other mineral mass emission parameters,
e.g. the mineral mass concentration, (|>kj, the mineral mass emission,
Amy, and the total mineral mass emission, mi,, can likewise be
adjusted:
35
-------
= *kj CkRef/Ck
CkRef/Ck (gm/s)
mjj = i amj|.j (gm/s) (32)
The mineral mass emission fraction, Equation (25) can be rewritten
as:
mk scw
Hk = n r X 100%
K K Lk Ref
r ck Ref i
scw i Amkj Ck scw j *j *
= ^ x 100% = x 100%
' R Ck Ref R
(33)
Thus the mineral mass emission fraction is not an adjusted value,
even though the adjusted total mineral mass emission and the reference
mineral concentration are used in the numerator and denominator,
respectively. Equation (33) follows, for variable Ck, directly from
Equation (26).
At Turkey Point the sodium and magnesium concentration in the cooling
water fluctuated in the order of + 20 to 30% of the average value
during the entire period of drift testing. Therefore, all mineral
mass emission parameters were adjusted to reference sodium and
magnesium concentrations as shown in Section VII.
With regard to the accuracy of the heated glass bead isokinetic
sampling tubes, Shofner, et. al.9, concluded from experimental
results that if isokinetic conditions are maintained within +15% for
air speed and +15° angle of attack (angle between tube centerline and
air flow vectoT), the error will be within +15% of the value of the
IK tube which operated under isokinetic conditions. Air speeds which
fluctuate about an average should have a compensating effect on the
36
-------
measured parameters according to the following one-dimensional fluid
mechanics considerations. If the sampling speed is greater than the
local air speed as illustrated in Figure 3a, the cross-sectional area
of the streamtube, which envelopes the sampled air, is larger in the
upstream direction than it would be under isokinetic sampling conditions.
Consequently, the streamlines are curved and droplets, especially larger
ones, may cross the streamlines and leave the streamtube due to their
inertia, whereas smaller droplets tend to remain within it. Compared
to isokinetic sampling, this results in a larger drift and mineral mass
flux due to the presence of predominantly smaller droplets in the
additionally sampled volume of air. However, the drift mass concen-
tration (mass of drift droplets per unit volume of air) is smaller
since some of the larger droplets leave the streamtube. If the sampling
speed is less than the local air speed as shown in Figure 3b, the cross-
sectional area of the streamtube decreases in the upstream direction.
Large droplets outside of the streamtube may cross the streamlines and
enter the streamtube, whereas smaller droplets outside of the streamtube
tend to follow the streamlines and diverge around the IK tube. Compared
to isokinetic sampling, it follows that the drift mass concentration
increases due to the intrusion of some large droplets into the stream-
tube. However, the drift and mineral mass flux will decrease since
the sampled air volume is smaller than that acquired under isokinetic
conditions as is the number of smaller droplets sampled.
In tests wherein high mineral mass emission fractions15, 16 (0.08 to
0.12%, as compared to 0.0012%, which was the highest value
measured at Turkey Point) were encountered such that it was deemed
necessary to place two tubes in series to sufficiently evaporate
the droplets, collection efficiencies in excess of 90% were observed
for the first tube. When the drift water is not completely captured
and evaporated, it can be seen leaving the IK tube and collecting
on the walls of the glass connector between the tube and the vacuum
hose. This was not observed at Turkey Point, hence it was not
necessary to use tubes in series.
Comparison Between PILLS/SP and IK Data
The PILLS/SP techniques measure the droplet size distribution from
which the drift mass concentration, Equation (4), can be derived.
The IK technique measures the mineral mass flux from which the mineral
mass concentration, which is mass of drift mineral residue per unit
volume of air, can be derived, as shown in Equation 22. The mass
of drift water that contains these mineral residues is_ obtained by
dividing the mass of drift mineral residue by Cj
-------
IK TUBE
PATH
DROPLET
STREAMTUBE
CONTAINING VOLUME
OF AIR SAMPLED
STREAMTUBE UNDER
ISOKINETIC
CONDITIONS
(a) sampling speed is greater than local air speed
(b) sampling speed is less than the local air speed
FLOW
STREAMTUBE
CONTAINING VOLUME
OF AIR SAMPLED
IK TUBE
PATH
DROPLET
^STREAMTUBE UNDER
ISOKINETIC
CONDITIONS
Figure 3. Effects of non-isokinetic sampling.
33
-------
Thus, the drift mass concentration (mass of drift water per unit
volume of air) can be derived from the mineral mass concentration,
Equation 22. The respective equations for the drift mass
concentration as derived from PILLS/SP and IK measurements are then
as follows:
TT i Q'"ij
Xj PILLS/SP = 6 i Adi vs Adi di Si wm3) (4)
X
VUJ-
cw.
J IK = Vs-rk/s VpJ 9mm (34)
The arguments that lead to the assumptions ST = scw and vpj = 7uj were
already introduced in this section. The first assumption can
readily be extended, by the same argument as before, to ST = s = s
With these assumptions Equations (4) and (34) reduce to
xj PILLS/SP = 6 scw ? Ad,--Ve Adi
Mkj ' MBk
Vs.Ck/scw (36)
If all quantities that enter into these equations were known then both
drift mass concentrations should agree within the ranges of accuracy
of the measurements which were given before. The only unknown quantity
in Equation (36) is Ck- A natural assumption is that the average
mineral concentration of the drift equals the mineral concentration of
the cooling water: C|< = C|< cw. With this assumption, Equation (36)
becomes
IK VCk cw/'cw 9mm 07)
where X^ represents now, due to the assumption on the mineral
concentratron, a drift mass concentration associated with the IK
technique alone.
39
-------
Historically, the results of IK measurements were often expressed in
terms of X- IK which was then compared to X< piLLS/SP- Such
comparisons yielded usually that the ratio of xj IK/Xj PIN s/SP 1S
larger than one. For the Turkey Point cooling tower data
this ratio is, in the average, about 3, and for the spray module data
it is about 18, with a range of 2.7 to 70.
The reason for this deviation of the ratio from unity is believed to
be primarily due to droplet evaporation which increases the droplet's
mineral concentration. The assumption of C|<. = C|< cw would thus
result in too large a value for XJIK- The increase in the droplet's
concentration depends on several parameters like droplet diameter,
kind of solute and its concentration in the droplet, the relative
humidity of the surrounding air, the residence time of the droplet
in the air, etc. The following simple examples should demonstrate
the order of magnitude of possible droplet mineral concentration
increases. The particular numerical values of the relative humidity
and salt concentrations that are used in the examples are not
intended to be representative for Turkey Point.
The mineral concentration is related to the droplet diameter by:
CE/Cj = (dj/dE)3 (38)
where C is the droplet salt concentration, d is the droplet diameter
and the subscripts I and E represent the initial and the equilibrium
states, respectively. The term "equilibrium" refers to the condition
that the droplet surface vapor pressure is equal to the vapor pressure
of the surrounding air, which implies that no further droplet
evaporation occurs. If the relative humidity is 90% and the initial
salt concentration is 1500 ppm, then one can calculate the ratio of
equilibrium to initial concentration:
CE/C! = 64 (39)
From Equation (38) follows dj/dE = 4. For GI = 30,000 ppm and the
same relative humidity
CE/C! = 5 and dj/dE = 1.7 (40)
40
-------
These are the concentration increases for 90% relative humidity. They
are larger for lower relative humidities.
Since the rate of evaporation depends on the droplet diameter such
that smaller droplets evaporate faster than larger ones, the
smaller droplets will usually reach higher concentration ratios than
the larger droplets. The Marley Company17 conducted some preliminary
calculations for a mechanical draft cooling tower which indicate that
drift droplets smaller than about 50 ym in diameter could possibly have
increased mineral concentrations whereas those larger than 50 ym have
about the same mineral concentration as the cooling water. Of course,
the final mineral concentration of a drift droplet depends primarily
on the size of each individual droplet and on the relative humidities
it encounters during the period of time of its trajectory from the
fill section to the exit area of the fan stack. Thus the number of
50 urn is quoted here in order to roughly quantify the "small"
droplets whose concentration may be increased by evaporation, and
the "large" droplets whose concentration remains more or less unchanged.
If the mass fraction of the small droplets in the drift emission
increases, the average mineral concentration, C^, should also
increase. As a consequence, the ratio Xj JK/XJ PILLS/SP would
likewise increase. There are other possible reasons that may
contribute to the deviation of the ratio from unity. The most im-
portant is that additional minerals from atmospheric particulate
pollution may not be scrubbed out entirely in the cooling tower and
reach therefore the IK tube. Both arguments, the increased droplet
mineral concentration and the insufficient removal of particulate
pollution, apply especially to drift measurements on spray modules.
If the test equipment is located at some distance downwind from the
modules the drift droplets travel through either ambient air or
a plume whose relative humidity has already been reduced by entrained
air. Thus it is expected that all droplets reach, in general,
higher concentrations than they would in a cooling tower.
In summary, drift parameters which are calculated from mineral mass
emission data with the assumption that the drift droplet mineral
concentration is the same as that of the basin water are larger
than the drift parameters obtained from droplet size data. The main
reason for this is believed to be the increase of the average
mineral concentration of the drift over the mineral concentration of
the cooling water, caused by evaporation. Small droplets, probably
smaller than 50 ym in diameter, are believed to contribute primarily
to this increase in mineral concentration. Consequently, the use of
this assumption for obtaining drift values from mineral mass emission
measurements is a somewhat dubious proposition. A method for
measuring individual drift droplet concentration or a different
41
-------
set of assumptions is needed before the PILLS/SP and the IK data can
be compared.
As a consequence, the data which were obtained by the PILLS/SP
techniques and by the IK technique are not consolidated. Whereas
the PILLS/SP technique yields data on the liquid drift emission
(droplet size, drift water emission, etc.), the IK technique yields
data on the drift mineral emission.
OTHER SUPPORT EQUIPMENT FOR DRIFT MEASUREMENTS
A Gill propeller anemometer Model 27100 was used to measure air speed
both on the tower and on the barge. Due to its cosine response, it
measures the velocity component parallel to its axis of rotation.
This anemometer was used successfully in other mechanical draft cooling
tower tests conducted by ESC. During the Turkey Point winter test,
however, the four blade molded polystyrene propellers (9" diameter)
disintegrated during operation at a disturbingly high rate although
the highest speed they encountered was only half of their maximum
rated speed. The dynamic loading on the blades caused by the
rapid updraft velocity changes is believed to be the cause of the
frequent blade failures. During the summer test a much stronger
experimental three blade propeller (designated "ABS") was used
successfully with no breakage. The Gill anemometer provides a voltage
output that is negative or positive depending on the direction of
blade rotation. The voltmeter that was generally used as output
displayed only positive voltages. For this reason, negative voltages
and thus negative updraft velocities were not measured and are
therefore not shown in the updraft velocity profiles in the data
section. The same holds for the velocity distribution data since the
PHA does not accept negative voltages.
A modified Yellow Springs electronic psychrometer, Model 3314, was'
mounted on the instrument package to provide dry bulb temperature and
wet bulb depression. Measuring wet bulb and/or dry bulb temperatures
in cooling tower environments is a nontrivial task. Due to the
presence of liquid water, the dry bulb is usually wet. Initially
botF) the dry bulb and the wet bulb sensors were used in the cooling
tower exit plane, but since a depression was never detected, the
water supply to the wet bulb sensor was discontinued. On the barge,
however, the psychrometer was used with a dry bulb and wet bulb
sensor, and wet bulb depressions of up to 7°C were observed.
42
-------
A Weather Measure wind vane, Model No. W120-D, was installed on the
barge in order to give an indication of the percentage of run time
the wind came from the direction of the spray modules. To obtain
this data, the output voltage of the vane was fed into the pulse
height analyzer.
AIRBORNE PARTICLE SAMPLER AND DEPOSITION SAMPLER
The most conventionally used parameters for expressing atmospheric
salt loadings are the near-ground level air salt concentration,
* (ug/m3), and the near-ground level deposition flux, dp (kg/km2'mo).
"Near-ground level" refers to the fact that the collectors were not
located at ground level but at a specified height above grade. This
minimizes contamination from sources like plants and animals. At
Turkey Point, where both the air salt concentration and the air salt
deposition flux were measured, the salt concentration sampler and
the deposition sampler were located approximately 3.4 m and 3.8 m
above grade, respectively.
Of those instruments which can be employed to measure the near-
ground level air salt concentration, the one used at Turkey Point
was the Airborne Particle Sampler (APS). The APS.which employs the
principle of inertial impaction as the collection mechanism,was
designed to measure jnrborne sea salt concentrations independent of
wind speed, wind direction or relative humidities typical for coastal
regions. "Coastal region" implies here that the relative humidity is
typically higher than approximately 40%. For relative humidities
much below this figure, salt particles could evaporate to dry crystals18
which may impair the APS collection efficiency.
Figure 4 shows an operating APS head of a station at Turkey Point. The
sampling head is bearing-mounted and rotates due to its wind vane
such that the axis of rotation of the motor shaft is parallel to the
wind direction. This minimizes the effects of wind speed or direction
on the sampling rate and collection efficiency of the collector.
On the upwind side of the motor is the mesh support with a pair of
woven polyester meshes as collection elements. This material has
been proven in field experiments to possess good mechanical and
chemical properties (low sodium background, for example) and is
easily handled in the field. A rotation counter, visible between the
mesh supports and the motor, permits accurate measurement of the total
number of revolutions made during the testing period. This insures
accurate calculation of the sampled air volume. On the downwind side
of the motor is a small fan which moves unsampled air past the meshes
even under calm wind conditions.
Although an APS unit samples about 90 m3 of air per hour, the power
consumption of about 24 W is sufficiently small to allow 10 to 12
43
-------
Figure 4. Airborne Particle Sampler head of one of the Turkey Point
stations. David Rutherford, ESC Field Engineer, checks
the unit's RPM.
44
-------
hours of operation with two standard automotive batteries (the run times
at Turkey Point were usually between 1 to 4 hours). This is an
important feature which facilitates field operations. If a 110 V AC
power supply is available, the APS unit can also be operated from it.
Reference 19 describes the theoretical foundation, including
collection efficiency, and the operational features of the APS
system in more detail.
High volume samplers with comparable air flow rates, which are also
used for salt concentration measurements, consume an order of
magnitude more power than an APS unit and have to be either operated
from a motor generator or from standard 110 V power supplies. More-
over, the mounting and removal of the filter papers is a more involved
task than that of the meshes due to the greater size of the filter
papers. Contamination of the filter papers is therefore more likely.
Also, for the same data quality, the analysis of filter papers is
twice as costly as the analysis of meshes. For these reasons the
APS system was selected for the Turkey Point salt concentration
measurements.
At Turkey Point the APS units measured as a basic parameter the air
sodium concentration, <|>Ma:
MNa " MB Na
Na = V (ug/m3)
where MNa is the mass of sodium stripped from the mesh pair, MB Na
is the average procedural background of the mesh pair and Vs is the
sampled air volume. For every day of operation of the APS units,
one procedural background was obtained by the following procedure:
The two meshes which are shipped and stored as a pair in a 50 mm
(2") diameter petri dish, are removed from the petri dish and mounted
to the mesh supports of the APS head. Immediately after mounting they
are both removed from the head and transferred back into the petri
dish and, after shipping to the laboratory, analyzed for sodium.
Thus, the procedural background reflects the sodium background of the
mesh pair plus additional sodium contamination that occurs during the
handling of the meshes before and after the sampling process. An
average of these procedural backgrounds is entered into Equation (41)
as MB Na. For Turkey Point, this average value varied between 2.7
and 8.5 ug per mesii pair.
The salt concentration is obtained from the sodium concentration by
multiplication with 3.267. This factor is the inverse of the sodium
45
-------
mass fraction of the total dissolved solids in sea water published in
Table B-2 of Reference 20. This factor may vary in time and could
also depend on the source of the airborne sea salt. For instance,
when the wind comes from the east, sources of airborne sea salt may be
the Atlantic Ocean, Biscayne Bay, and, if the wind is strong enough to
cause wave action on the cooling canal system, the cooling canals
themselves. Since the factor is, however, used as a constant, the
so determined sea salt concentration is called "apparent salt
concentration." Thus the working equation for the apparent salt
concentration is
*»lt • 3.267 x ""* "B "* («/.')
(42)
The quality of the APS sampling procedure was insured by the following
steps:
1. One procedural mesh background sample was taken per day of
operation and analyzed for sodium. This background contains
the mesh background which is addressed under 2, and the
sodium contamination due to handling of the meshes. A
complete list of the results of the chemical analyses of
the Turkey Point procedural mesh backgrounds is part of
Appendix C.
2. After meshes were chemically analyzed and cleaned, about 6%
of them were resubmitted to the laboratory in order to
determine their sodium background. Again, a complete list
of the results of the chemical analyses of these meshes is
part of Appendix C.
3. The motor rotations per minute were checked at the start and
end of each APS operation. Reduced motor rotations per
minute decrease the collection efficiency of the meshes19.
The cylindrical objects supported by the APS units shown in Figure 6 are
deposition samplers. They consist of a cylinder which is open at both
ends and which acts as a stilling chamber. Inside the cylinder a poly-
ethylene funnel is mounted on which the salt particles deposit by
gravitational settling. Procedurally, a deposition sampling run is
started by placing a cleaned funnel into the stilling chamber and securing
a cleaned polyethylene bottle to the funnel neck. At the end of a run,
the inside of the funnel is washed with distilled water that drains into
the bottle. The amount of distilled water used for funnel cleaning was
in the range of 100 to 150 ml. The bottle with the strip solution is
46
-------
then separated from the funnel and shipped to the laboratory for
chemical analysis.
At Turkey Point, the run time for about 80% of the runs was
approximately 24 hours and for the remaining 20% either approximately
48 to 72 hours. The longer run times occurred on weekends or over
holidays.
The deposition sampler measures the sodium deposition flux from
which, by multiplication with 3.267, the apparent sea salt flux
is derived:
MM- - MR M,
dFsalt = 3-267 * A' • t° m.mo (43)
where ts is the sampling time and As is the sampler area which is
here the horizontally projected area of the funnel entrance. Mp Na
is an average procedural sodium background which was determined
as follows. At the end of a deposition run, after the polyethylene
bottle with the strip solution had been removed from the funnel, the
funnel was cleaned with distilled water and another bottle was
mounted to the funnel neck. Then the inside of the funnel was washed
again with distilled water and the strip solution submitted for
chemical analysis. The mass of sodium found in this strip solution
is attributable to the handling of the funnel and bottle, to the
sodium contamination inside the bottle, and to the distilled water.
This procedure establishes, therefore, a procedural background.
At Turkey Point, the average procedural background was found to
be 5 pg.
INSTRUMENTATION SUMMARY
In summary, the measuring equipment used by ESC during the Turkey Point
test, as discussed previously in this section, consisted of:
1. a PILLS II-A system with pulse height analyzer from ESC,
2. two ESC sensitive paper (SP) machines,
3. a heated glass bead isokinetic (IK) sampling system from
ESC,
4. a maximum of nine ESC Airborne Particle Sampling (APS) units
with deposition samplers,
47
-------
5. a Gill propeller anemometer, Model 27100, from R. M. Young Co.,
6. a Yellow Springs electronic psychrometer, Model 3314, and
7. a Weather Measure wind vane, Model W120-D.
48
-------
SECTION V
METEOROLOGICAL DATA ACQUISITION SYSTEM
A system for the continuous monitoring of ambient meteorological
conditions in the vicinity of the cooling tower and spray modules
was put into service early in February 1974. This meteorological
data acquisition system was originally installed to complement the
intensive drift tests on the cooling tower and spray modules during
the months of February and March 1974 although it was used during
later testing as well.
The meteorological tower was installed by ESC approximately 50 m
east of the cooling tower. The distance of 50 meters was chosen so
that meteorological instruments would be near enough to the
cooling devices to measure local ambient conditions but far enough
upwind from the cooling tower to insure that measurement of wind
speed and direction would not be interfered with. A position
east of the cooling tower was chosen because winds at Turkey Point were
expected to come predominately from the east. The wind speed anemometer
and the wind direction vane were installed at the top of the 10 m tower
A mechanically-aspirated psychrometer which provided dew point and
dry bulb temperatures and a Yellow Springs dew point sensor which
provided dew point and dry bulb temperatures were mounted on the
tower at a height of about 2 m. A probe for monitoring the canal
water temperature was attached to the power cable leading to the
spray modules. Later, at the end of February, 1974, a pyranometer for
measuring solar radiation was installed on the roof of the switch house
23 m east of the cooling tower. The output signals from the monitoring
devices were routed to an eight track strip chart recorder located in
the switch house. The readings for wind direction, wind speed,
dry bulb temperature, dew point temperature, and solar radiation
were recorded individually on separate channels of the recorder.
Readings for wet and dry bulb temperatures from the psychrometer
and canal water temperature were fed through a scanner such that all
three values were consecutively recorded over a set time interval
on a single recorder channel. These values were also displayed on
a meter which was attached to the scanner.
49
-------
All monitoring instruments were supplied by EPA with the
exception of the eight track strip chart recorder which was supplied
by ESC. The equipment was operated daily during the winter test
(February and March 1974). This practice was continued, although
not required, until June 22, 1974. Monitoring of the meteorological
data was resumed during the summer test (July 19-24, 1974).
Each morning, after the instrumentation had warmed up, the calibration
of each recording channel was checked by means of the independent
meter displays and readjusted if necessary. All pertinent information,
such as starting time, channel sensitivities, and scales, were
written on the charts. The three temperature sensors for dry and
wet bulb temperature (both part of the psychrometer) and canal water
temperature were fed into a scanner, as mentioned above, and
consecutively recorded on one channel of the strip chart recorder.
The signal conditioner electronics were part of the scanner, i.e. one
signal conditioner served all three temperature sensors. This caused
a problem since only one sensor signal could be calibrated correctly
and a decision was made to calibrate the wet bulb temperature
sensor. The canal water temperature showed subsequently the largest
discrepancy between recorded and actual value as determined with a
mercury-in-glass thermometer with a graduation of 1/10°C. For this
reason the canal water temperature was often measured with such a
thermometer. During the cooling tower test, for instance, the water
temperature in one of the hnt water basins, which equals the tem-
perature of the canal water, was measured for each drift measurement
position.
Even though the wet bulb temperature was calibrated with an accuracy
of about +0.2°C, the calibration was not stable. As a result the
recorded values of all temperature sensors showed a deviation of
0.5° to 2.5°C from the actual values, and the recorded values were
consistently larger than the actual ones.
Another difficulty was encountered with the wind speed anemometer
whose readout operated only sporadically. Yet, frequent checks and
services made it possible to obtain usable data. The dew point
sensor became operational only toward the end of March 1974. However,
intermittent loss of power on site made the use of this sensor
cumbersome since its probe required baking for a half-hour period
after each power interruption. Once, on March 27, the relative
humidity, as determined from dry bulb and dew point temperatures,
was compared to the relative humidity determined from dry bulb and
wet bulb temperatures. The agreement was better than 2% at a
relative humidity of about 74%.
50
-------
Additionally, difficulties were encountered when the meteorological
equipment was restarted for the summer test in July. The mechanically-
aspirated psychrometer was inoperable due to heavy corrosion of the
motor coil and fan blade shaft. However, the entire motor assembly
was removed and the wind provided henceforth the aspiration of the
wet bulb sensor wick. The wind direction sensor appeared to be
operating well mechanically, but some problem in the electrical
output was encountered and could not be corrected in the field.
Similar problems with the canal water temperature probe were observed
and its use was discontinued. In addition, one of the radiation
shields of the dew point sensor was broken during the interim period
between the winter and the summer tests.
Florida Power and Light Company routinely acquires meteorological
data from instruments located at the power plant. These data include
wind speed and direction at two vertical levels, ambient temperature
at two vertical levels, barometric pressure, relative humidity and
rainfall. FP&L has agreed to the release of these data which are now
available upon request from the Technical Information Section,
National Environmental Research Center, Control Systems Laboratory,
Research Triangle Park, North Carolina 27711.
The data obtained at the 10 m meteorological tower were transcribed
from the strip charts to tables by EPA, Research Triangle Park.
However, these data still have to be checked, which is especially
important in light of all the instrument problems encountered.
They may be available upon request at a later time.
51
-------
SECTION VI
SAMPLING OF AIRBORNE SEA SALT FROM COOLING DEVICE
SOURCES AND IN THE AMBIENT ATMOSPHERE
In order to evaluate the environmental acceptability of a proposed
evaporative salt water cooling device with respect to salt drift,
one of the present approaches is as follows21. Drift emission
characteristics and meteorological data are substituted into one of
the presently available drift transport models to predict the quantity
of salt drift mineral residue downwind of the cooling device. These
source contributions are then compared to measured ambient salt
loadings in order to determine whether the predicted cooling device
contributions increase significantly the airborne salt levels in
the environment of the cooling device. The quantification of
"significant", which is addressed in Reference 22, and the acquisition
of ambient salt level data are the two areas of primary importance
in this approach.
Contrary to this approach, the objectives of this study were to
measure both the ambient salt loadings and the contributions of
each of the cooling devices to the ambient salt loadings. In particular,
the objectives were to obtain:
1. measurements of the ambient airborne sea salt levels at the
Turkey Point site. A statistical analysis of these data,
which is extraneous to this contract, should determine,
for example, whether an inland gradient in the ambient sea
salt levels exists, and what the average seasonal salt levels
and ranges of fluctuations are;
2. simultaneous measurements of airborne sea salt levels upwind
and downwind of each of the cooling devices. Statistical
analysis of these data,which again is outside the scope of
this contract, should determine the extent of the
contributions to the airborne sea salt level from the
cooling devices.
52
-------
Previous experience gained at other ambient salt monitoring programs,
for instance at Forked River and Atlantic City, both in New Jersey,
indicated that airborne salt concentration and deposition flux levels
exhibit order of magnitude variations with respect to wind speed,
direction, and other meteorological parameters. Seasonal effects may
also influence the airborne salt levels, and the degree of influence
may also depend on the latitude of the site. Thus, in order to obtain
ambient base line data for environmental acceptability studies, an
ambient monitoring program must be established and operated over an
extended period of time such as a year or longer.
The atmospheric salt monitoring program at the Turkey Point site can
be conveniently broken down into two sections:
1. ambient measurements, and
2. exploratory measurements of the source contributions from the
cooling devices.
AMBIENT AIRBORNE SEA SALT MEASUREMENTS
The ambient airborne salt monitoring program was started on August 24,
1973, with samplers located at stations 1 through 6 (see Figure 5).
Each station was equipped with an Airborne Particle Sampler for
airborne sea salt concentration measurements, and a deposition sampler
for sea salt deposition flux measurements. The stations were arranged
approximately along an east-west line for two reasons:
1. One of the goals was to determine whether a measurable gradient
in the airborne salt concentration exists between the shore
and inland. Since the shore line of Biscayne Bay runs
approximately north-south at the test site and in its "
vicinity, an east-west array of sampler stations was
desireable. The fact that the prevailing wind direction
at the site is from the east is a fortunate coincidence.
2. Accessibility is a serious problem at the Turkey Point site
and the road along the feeder canal which extends in an
east-west direction provides access to convenient station
locations. In order to be able to situate stations north
or south of the cooling tower site the cooling canal
system or the swamp has to be penetrated.
Ambient salt concentration data that were acquired at Forked River,
New Jersey, for the General Public Utilities,23 show, for onshore
winds, the existence of a large inland gradient: within 50 meters of
the shoreline of the Atlantic Ocean the average sea salt concentration
53
-------
1
m
IT
i
(
\
i
vM'
410 1
1
1
•> ^
Y- s
ft
1 ex
•N
COOLING TOWER SITE
(under construction)
Figure 5. APS station locations for monitoring ambient
air salt loadings. August 1973 - January
1974. Distances in meters.
54
-------
is about 25 pg/m3 and it decreases rapidly to about 5 yg/m3 at a
distance in excess of 35 km from the shore. A limited examination
of the Turkey Point ambient salt concentration data did not reveal
the existence of an inland gradient, but a final conclusion on this
is reserved for the data analysis which is currently being conducted
by the Adapt Service Corporation as mentioned in Section I. The
absence of a large inland gradient, however, indicates that the
Turkey Point site, although it is located on the shore of Biscayne
Bay, may actually be an inland site. This is supported by the fact
that Key Elliott is located about 11 km offshore and that the
primary salt particle generation may take place at the ocean surface
off Key Elliott. However, it was observed that onshore winds in
excess of 14 to 18 km/hr generate white caps on Biscayne Bay. Under
this condition the bay may be a sufficiently strong source of sea salt
particles to cause an inland gradient of the ambient sea salt
concentration at the Turkey Point site.
Stations 1 and 2, which are shown in Figure 6, were located about 15
meters from the shore of Biscayne Bay and within 4 meters of each other.
These two stations were used for precision runs, i.e., simultaneous
runs were conducted to allow unambiguous comparison of the results.
A "Precision Run Error" was defined for this purpose:
Precision Run Error = fl - Caller value]
I ^larger value J
i
Between 8/25 and 12/6/73 a total of 65 precision runs were obtained
which yielded an average precision run error or 7% and a standard
deviation of the precision run error of about 11%. It should be
noted that the two APS stations were the same in design and differed
from each other only within the manufacturing tolerances. The
stations were also operated in the same way as the other stations;
they did not receive any preferential or additional attention. The
data acquired by the two stations do not show any apparent bias,
i.e., the larger of the ^-values was acquired randomly by one of the
two machines. However, only the detailed data analysis which is
currently conducted by the Adapt Service Corporation will answer this
point conclusively.
Precision runs were also performed with the deposition samplers
which are the cylindrical objects attached to the APS stations shown
in Figure 6. Forty precision runs were conducted which yielded
an average precision run error of 23% and a standard deviation of error
of about 20%. The "Precision Run Error" is defined as in Equation (44)
substituting the salt deposition flux df for the air salt concentration,
55
-------
Figure 6. Airborne Particle Sampler stations #1 and #2 at the
Turkey Point site. These stations were used for the
precision run experiment. The body of water is part of
Biscayne Bay.
56
-------
When the ambient salt sampling program started on August 24, 1973,
and during the following two month period, heavy trucks and loading
equipment were operated at a distance of about 1200 m southeast of the
cooling tower. At that location coral rock from huge 10 m high piles
was loaded on trucks and hauled away. The loading operation and
maneuvering of the trucks caused dust and the possibility existed
that the dust would contaminate the APS meshes and deposition samplers.
A project was therefore initiated with the objective to determine
the mass fraction of the sodium collected by the APS meshes that was
attributable to dust contamination. Chemical analyses of an ocean
water sample and two dust samples, one collected from the coral rock
piles and the other from the road bed, yielded aluminum and silicon
as suitable dust tracer elements. Furthermore, the sodium availability
from the dust samples, i.e., mass of sodium per unit mass of dust,
was determined by subjecting a known mass of dust to the mesh washing
process. Subsequently 5 meshes exposed at stations 1 to 5 on August
25, 1973, Run #3, during southeasterly winds, were analyzed for
sodium as usual and, additionally, for both tracer elements. The
largest dust contamination, 10 ug, was found on the mesh pair of
station 3 which was downwind of the loading area on that day. The
meshes of station 4 which is located 400 m west of station 3 received
only 0.3 ug of dust, and all other mesh pairs less than 0.1 ug. A
maximum sodium contribution from dust was then calculated by means
of the sodium availability mentioned above. Even for station 3, whose
meshes collected 10 ug of dust, the mass of sodium attributable to
dust was only 0.02 ug or 0.003% of the collected mass of sodium. It
was therefore concluded that the effect of dust on the ambient sea
salt concentration measurements was negligible. The results of the
chemical analyses conducted for this project are part of a brief
report submitted by Stewart Laboratories, Inc., which is contained
in Appendix I.
The cooling tower was under construction during the entire ambient
sea salt sampling program. The cold water collection basin and thus
the necessary excavations for its construction were already completed
before the start of the program. Until November 1973 the tower was
assembled from prefabricated parts, and this activity was without
any noticeable dust generation. However, it should be kept in mind
during the data analysis that especially stations4 and 3 which were
located 160 m west and 240 m east of the tower may have been, at times,
subjected to dust.
SEA SALT MEASUREMENTS DURING COOLING DEVICE OPERATION
After the spray modules were installed into the cooling canal system
in December and the cooling tower was completed in January, airborne
sea salt measurement during cooling device operations could be
57
-------
initiated. The array of sampling stations was rearranged in order
to increase the probability of obtaining simultaneously airborne
sea salt level data upwind and downwind of the operating cooling
device. Station 1 was moved to station 11 and station 2 to station 7.
Three additional sampling stations were located at stations 8, 9, and
10, increasing the total number of APS and deposition samplers
from 6 to 9. Figure 7 shows the location of stations 3 to 9
relative to the cooling tower. Station 11 was mounted on a barge
such that its position with respect to the cooling devices could be
easily changed within the limits of the cooling canal system.
However, such need did not arise and the barge was anchored on the
north shore of the feeder canal half way between stations 4 and 5
where it remained for the entire sampling program.
Due to the scarcity of accessible station locations at the Turkey
Point site, the total number of available stations, and the fact that
winds out of the eastern quadrant have the highest frequency of
occurrence, this new array of station locations was considered optimal.
Airborne sea salt measurements during the operation of one of the
cooling devices were initiated on January 31, 1974. Until the end of
the winter test, March 31, the operation of the cooling devices was
governed by the drift test requirements. After March 31 it was
planned to operate henceforth one cooling device 24 hours a day for a
week, then the other one for the same period of time, and so forth,
in this alternating fashion. The implementation of this plan required
shielding the transformer from the spray modules' salt drift. The
transformer which provided power for both cooling devices was located
24 m north of the nearest spray module. When the wind came from the
south, the transformer was in the drift plume of the spray modules.
Under such conditions it shorted out twice as noted in the operational
log of the cooling devices, Appendix B. After a protective shield
had been constructed on April 17, such problems were no longer
encountered. Subsequently each cooling device was operated continuously
for a week every other week, and airborne salt measurements were
obtained at an average weekly rate of six runs, i.e. quasi-simultaneous
operations of all sampler stations.
MEASUREMENT PROCEDURE
One run consisted usually of the quasi-simultaneous operation of all
sampler stations, and the acquisition of meteorological and quality
control data. The term "quasi-simultaneous" expresses the fact that
simultaneous station operation is only approached as much as possible
under the constraint of a sequential station set-up procedure. Thus,
all stations were set up one after the other and later taken down in
58
-------
•N
•SPRAY MODULES
COOLING TOWER
Figure 7. APS station locations for monitoring ambient
air salt loadings and salt contributions from
cooling device sources. January 1974 - July
1974. Distances in meters.
59
-------
the same sequence. The meteorological data consisted of wind speed,
wind direction, dry bulb and wet bulb temperature, and were acquired at
each station at the start and end of its operation. For each run
the quality control data consisted, for the APS units, of one
procedural mesh background sample, and for the deposition samplers
of one procedural funnel background sample and a distilled water
sample.
The procedure of operating a station which was the same for all
stations was as follows. Sequentially, the deposition sampler was
always set up first. In order to obtain the sample the inside
surface of the funnel was rinsed with about 100-150 ml of distilled
water which was collected by a sample bottle at the funnel neck. The
deposition sampler was then set up for the next sampling period which
usually lasted for about 24 hours. The next step was to set up the
Airborne Particle Sampler. First, two battery boxes, each containing
one standard 12 V automotive battery, were placed next to the APS
tower. Then the APS head, which belonged to the particular station, was
placed on the APS tower. During non-operation all APS heads were
stored in the van to keep them clean and in good operational condition.
Next, the sampling arm which supported one sample mesh on each end was
cleaned with distilled water, and the meshes were removed from the
petri dish container and mounted to the arm by means of a cleaned
pair of tweezers. The sampling arm was then mounted to the motor
shaft of the APS head. After the revolution counter reading had been
recorded, sampling was initiated and the revolutions per minute of
the motor shaft were measured and also recorded. This concluded the
set up procedure of the APS unit. The next step was the acquisition
of the meteorological data. The wind direction was read directly
from the position of the sampling head that weather-vanes around its
vertical axis. The wind speed was measured for usually one minute
by means of an accumulative vane anemometer. Dry bulb and wet bulb
temperatures were determined with a sling psychrometer. This
completed the set up procedure of one station. The shut down
procedure which took place one to four hours later consisted of
measuring and recording the revolution counter reading, removing the
meshes from the sampling arm and placing them back into the petri
dish container, removing the APS head and placing it into the
storage rack in the van, and collecting the two battery boxes. Then
the same meteorological data as described before were gathered. This
concluded the shut down procedure.
QUALITY CONTROL DATA
The procedural and funnel background samples were taken once per day
at one of the stations, during source contribution measurements
usually at an upwind station. All procedural mesh background data
60
-------
are listed in Appendix C-2. Averaged values which were between 2.7 and
8.5 yg were entered in Equation (41). As stated before, the procedural
mesh background reflects the sodium background of the mesh pair and the
additional sodium contamination that occurs during the handling of
the meshes before and after the sampling process.
The sodium background of meshes, (called "mesh background" or, by
Stewart Laboratories, "blank") was determined from time to time by
resubmitting meshes for analysis which just had been analyzed and
cleaned. The mesh background represents the sodium content of a mesh
pair in an unopened petri dish. These values are listed in Aooendix
C-3. One to two ug was judged as an acceptable mesh background value
for the Turkey Point sampling program. Since larger values were
encountered in October 1973, steps were taken to rectify the problem.
The petri dishes of the meshes were exchanged for new ones, and the
meshes were more carefully stripped and cleaned. Later, in mid-April,
Stewart Laboratories started to use an ultrasonic cleaner which
eliminated the problem. Appendix C-3 contains a letter report of
Stewart Laboratories which states results of mesh cleaning with the
ultrasonic cleaner.
FORMATS FOR DATA PRESENTATION
The data are presented in two appendices. Appendix C contains all air
salt concentration data including the procedural background and mesh
background data and Appendix D all salt deposition flux data.
Appendix B contains the cooling tower and spray modules operations
log which lists the date and times of cooling device operations.
Definition of column headings and other pertinent data contained in
the APS section (Appendix C) is as follows:
ST # - identification of APS sampling station location
PHI - apparent atmospheric sea salt concentration, ug/m3
C - comment code:
0 - good run
1 - sample caught in light rain, but it is still considered
useful. This code reflects the opinion of the
operator that the mesh pair was subject to drizzle for
a few, e.g. 2, minutes, or to rain for a brief period
of time, e.g. 30 seconds or less. The operator
expresses with this comment code his opinion that the
rain or drizzle did not effect the amount of sea salt
collected on the mesh pair.
61
-------
2 - sample caught in heavy rain; results are questionable.
The operator expresses with this code his opinion that
the rain did effect the amount of sea salt collected
on the mesh pair.
3 - possible contamination due to insects that were caught
on the mesh pair. The operator sees insects or the
remnants of insects on the mesh pair at the end of a
run. If he is able to remove some or all of this
contamination with a pair of cleaned tweezers he
will do this, but this comment code will be assigned
to the mesh pair anyway.
4 - possible contamination from dust. This code is assigned
to the mesh pair if dust or sources of dust are
observed by the operator in the vicinity of the
sampler location.
5 - other comments or a combination of the coded comments.
This comment code will be supplemented with a written
footnote below the run.
9 - whitecaps on the bay. This characterizes the state of
the surf on Biscayne Bay as determined from
observations at stations 1 and 2. This generally
corresponds to winds in excess of about 18 km/hr
from an easterly direction.
It should be noted that all comment codes, with the exception of 3, are
based on the subjective observations and judgement of the operator.
VOLUME - volume of air sampled by the mesh-pair during the run, m3
NET SODIUM - total sodium as verified by chemical analysis minus
average procedural background for the mesh-pair, yg of
sodium
TIME - time of day at the start and end of a run (Note: daylight
sampling only)
WINDSPEED - average wind speed measured for one minute at the
start and end of a run, km/hr
WIND DIR. - direction from which the wind is blowing at the
start and end of a run, represented by integers from 1
to 16 corresponding to a 16-point wind rose with 1 as
north, 5 as east, 9 as south, and 13 as west
62
-------
DRY BULB TEMP & DIFF - dry bulb temperature and the difference
between the dry bulb and wet bulb temperatures measured
at the start and end of a run, °C
EXAMPLE: 31.1 & 3.3/30.0 & 1.7 means:
Dry bulb temperature at start = 31.TC
Wet bulb temperature at start = 31.1-3.3 = 27.8°C
Dry bulb temperature at end = 30.0°C
Wet bulb temperature at end = 30.0-1.7 = 28.3°C
RELAT HUMID - relative humidity at the start and end of a run, %
COOLING DEVICE CODE -
0 - no cooling device operating
1 - cooling tower operating
2 - spray modules operating
Station numbers as listed in the first column will be numbered 1
through 6 for all runs through January 11, 1974 and 3 through 11 for
all runs thereafter because of relocations and the addition of new
sampling stations, as mentioned before. This information, as well
as weekly sampling frequency, is included in Appendix A, Chronology
of Events.
In examining the data in Appendix C it will be noted that sometimes the
meteorological data (wind speed, wind direction, dry bulb temperature
and depression) are missing at the end of a run for all or some of the
stations. The reason was always that the operator expected immediate
rainfall and terminated the run. In order to collect the mesh-pair
of each station as quickly as possible, the meteorological data
collection was omitted. These data are, however, obtainable from
FP & L's meteorological data summaries (see Section V).
The remark "Low RPM" indicated that the motor rotation per minute was
lower than design (1200 rpm) which, at Turkey Point, was always due
to low battery voltage. It implies that the mesh speed, i.e., the
impaction speed of the salt particles, is reduced which causes a
decrease in the mesh collection efficiency. For a known sea salt
63
-------
particle mass distribution, the change of the collection efficiency
can be estimated.
Definitions of column headings and other pertinent data contained in
the deposition section (Appendix D) is as follows:
ST # - identification of deposition sampling station locations
(concurs with APS location)
DEP - apparent sea salt deposition flux, kg/km2'month
C - comment code:
0-5 - same as listed already for the APS data except for
following additions:
6 - possible contamination due to the presence of a tree
frog in the funnel or bottle
7 - contamination from bird excrement in the funnel and
bottle
NET SODIUM - total sodium as verified by the chemical analysis
minus the average procedural background, yg of sodium
TIME - time of day at the start and end of a run
As mentioned before, deposition samples are left out for a period of 24
hours or longer. The time at the start of the run corresponds to the
beginning date listed beside the run number, and the end time corresponds
to the date of conclusion of the run. Since these samples are left
out for such a long period of time, there is a much greater possibility
of sample contamination from rainwater, dust, bugs, etc., than with
the APS system.
Both Appendices C and D contain runs with less than the full number of
stations. The most common reasons for not operating all the
stations were:
f
1. Impending rain forced premature termination of those sampling
stations already set up and prevented the set up of the full
sampling system.
2. Sampling equipment was being repaired.
3. The operator had to take care of business related to the
sampling program and did not have enough time to set up the
entire system.
64
-------
SECTION VII
DRIFT EMISSION TEST
This chapter describes the drift characterization tests completed
on the cooling tower and spray modules during the winter and summer
of 1974. The test set-up and procedure are described for each
cooling device along with an explanation of the data format and the
presentation of some summary data. Moreover, a composite drift mass
density distribution for the tower is given, which was calculated
along the lines described in Section IV.
Drift emission tests were conducted in two field campaigns. During the
winter test, data were acquired on both the cooling tower and the
spray modules. During the summer test, however, measurements were
made only on the cooling tower. Chronologically, cooling tower drift
tests were intended to be conducted first after the ESC crew arrived
at Turkey Point on January 21, 1974. It was also planned that an
EPA crew would conduct concurrent measurements in the vapor plume by
means of a radiosonde suspended from a tethered balloon. After ESC's
instrumentation was installed into the cooling tower and the first
exploratory tests were initiated, the circulating water pump mal-
functioned and had to be disassembled for repairs. Since a delay
of about a week was predicted, the cooling tower test, and the
EPA vapor plume test, were rescheduled for the last week of February.
The instrumentation was then shifted to the barge and spray module drift
measurements were conducted until February 19, when the equipment
was shifted back to the cooling tower in preparation for the con-
current tests with the EPA field crew. These tests were completed on
February 26, and ESC finished the cooling tower test on March 15.
For information regarding the results of EPA's vapor plume measure-
ments, contact Bruce Tichenor, Thermal Pollution Branch, National
Environmental Research Center, Corvallis, Oregon 97330. The
equipment was subsequently again installed into the barge and the
spray module test completed on March 21, 1974. The summer test,
which consisted only of cooling tower drift measurements, was
conducted between July 19 and 24, 1974.
65
-------
The following main parts of this section describe the cooling tower
tests, both winter and summer, and the spray module test.
COOLING TOWER MEASUREMENTS
Measurement Set-Up
For the cooling tower test, measurements were made along the NW-SE
and SW-NE diameters in the exit plane of the fan stack. A
schematic top view of the tower, illustrating these diameters is
shown in Figure 24, Appendix E. The instrument package was mounted
on a carriage which could be moved along a beam extending across
the exit plane of the tower. The beam was marked at regular intervals
of 0.3 m (1 ft.) which facilitated the positioning of the instrument
package at any desired point along the 8.36 m diameter of the tower
exit plane. In the winter test, the beam was set along the SW-NE
diameter first and one drift measurement traverse was made. The beam
was then positioned along the NW-SE diameter and a traverse made there.
Next the beam was positioned again along the SW-NE diameter for a
third traverse and finally, one more traverse was made along the
NW-SE diameter. Additional data were acquired for FP&L along the NW
radius. These data, which have been made available by FP&L, will be
addressed later. During the summer test phase another measurement
traverse along the SW-NE diameter was completed. Thus, for this
contract, a total of five measurement traverses were made along two
perpendicular diameters of the tower, three along the SW-NE diameter
and two along the NW-SE diameter.
The instrument package, of which two views are shown in Figures
8 and 9, contained the following instruments:
1. The PILLS II-A System.
2. A Sensitive Paper machine with a stationary sampling
head.
3. The hot glass bead IK System.
4. A Gill propeller anemometer.
5. A dry bulb/wet bulb psychrometer.
The sampling volume of the PILLS instrument was the reference point of
the instrument carriage during drift measurements. Thus, when the
instrument package was to be positioned at a predetermined point along
the beam, PILLS' sampling volume, which was 2.33 cubic centimeters
66
-------
Figure 8. Side view of instrument package during a measurement.
The Sensitive Paper Machine is located to the left of
PILLS (large white cylindrical object) directly above
the rim of the tower wrapped in plastic. Directly to
the right of it is an IK tube, then PILLS, and to
the right of PILLS are the wet bulb/dry bulb psychrometer
and the Gill anemometer. The psychrometer is directly
under the cross beam supporting the instruments, and
the blade of the anemometer is blurred due to its
rotation. The cables coming from the left are the
PILLS umbilical cord and purge lines plus the IK
pump hose and heater wires and SP control lines.
67
-------
.
iSA'.-
.
Figure 9. View of the instrument package along the traversing beam.
This view of the PILLS, IK and SP instruments shows the
PILLS sampling volume in approximately the center of the
photograph with the SP machine to the right wrapped in
plastic. Further right is an IK tube. The GILL anemometer
and psychrometer are hidden by the PILLS mounting plate in
this view.
68
-------
PSYCHROMETER
ANEMOMETER
Ife^-- ^
en
10
PILLS
SAMPLING VOLUME
10
S.R
MACHINE A
IK TUBE
TOP OF COOLING TOWER FAN STACK
Figure 10.
Position of the cooling tower instrumentation relative to PILLS' sampling volume
during the winter drift tests. Frontal view along the SW to NE diameter9 ?ns?ru-
ments are not to scale. Distances in meters.
-------
SENSITIVE
PAPER
MACHINE
ISOKINETIC
SAMPLER
TUBE
•r'
.33
M
PILLS
SAMPLING
VOLUME —
i s
GILL
ANEMOMETER
" .13
SW
A
<
111
co
O
PSYCHROMETER
V
NE
Figure 11. Position of the cooling tower instrumentation relative to PILLS' sampling volume
during the winter drift tests. Top view. Instruments are not to scale. Distances
in meters.
-------
' PSYCHROMETER
S.P. MACHINE
PILLS SAMPLING
VOLUME
IK TUBE
GILL
TOP OF COOLING TOWER FAN STACK
— =4
— - — u
NG
lETFB
i
Figure 12. Position of the cooling tower instrumentation relative
during the summer drift tests. Frontal view along the
ments are not to scale. Distances in meters
to PILLS' sampling volume
SW to NE diameter. Instru-
-------
SP
MACHINE
ISOKINETIC
SAMPLER
TUBE
.33
r>o
PILLS
SAMPLING
VOLUME
.38
1
SW
A
o
PSYCHROMETER
•
7
NE
GILL
-ANEMOMETER
Figure 13.
Position of the cooling tower instrumentation relative to PILLS' sampling volume
during the summer drift tests. Top view. Instruments are not to scale. Distances
in meters.
-------
in size, was lined up with this point. The other instruments were
located at known positions with respect to the PILLS sampling volume,
as shown by Figures 10-13.
Instrumentation for the winter and summer test was the same with the
exception of the GILL anemometer propeller. During the winter test
five of the four-blade molded polystyrene propellers failed during
air velocity measurements in the tower exit plane, as mentioned
previously. Therefore, the four-blade propeller was replaced by a
newly developed three-blade propeller which lasted through the summer
test.
Measurement Procedure
Before initiating drift measurements along a diameter traverse, an
updraft air velocity profile and an air temperature profile were
obtained along that diameter traverse. For this purpose, the
instrument package was positioned such that the Gill propeller
anemometer was lined up with the marked points along the beam.
Position 0 was within 10 cm of the fan stack rim while position 1
was 0.3 m (1 ft.) toward the center of the cooling tower exit plane,
position 2 was 0.6 m (2 ft.) toward the center and so forth until
position 27, which was within about 10 cm of the opposite fan
stack rim. A visual estimate of the average updraft velocity and the
range of velocity fluctuations at each measurement position was
obtained by observing the anemometer's readout meter. The time of
observation depended on the range of velocity fluctuations. For
fluctuations greater than ±10% the meter was observed for
approximately 60 seconds. For fluctuations less than ±10% the
meter was observed for approximately 10 seconds. At the same time
the air temperature was determined by observations of the psychrometer
readout. If a temperature difference with respect to the previous
measurement position existed (it was always smaller than 0.8°C), then
the readout changed within a few, say 3 or 4 seconds, and was
constant thereafter. Short-term fluctuations of the air temperature
were not observed, probably due to the psychrometer's response time.
The psychrometer readout displays either the dry-bulb temperature
or the wet-bulb depression. Only the dry-bulb temperature was
recorded since the wet-bulb depression deviations from zero were
usually within the accuracy of the psychrometer (better than 2%
RH except at extreme low temperatures and RH).
These resulting updraft velocity and temperature profiles were
plotted and are presented in Appendix E. As the anemometer was moved
from the tower rim (position 0) towards the center of the diameter,
73
-------
the velocity usually reached a peak, then dropped until around position
7 or 8 where the propeller would stop and reverse direction For the
positions close to the center of the fan stack exit plane, highly
fluctuating (> +100% of average value) and mostly downward velocities
were observed. That is, the average component of air velocity
was directed down into the tower. Sensitive papers exposed in this
region showed only one or two small droplet stains indicating
negligible drift effluent in this region. Consequently, the drift
measurements were made at those positions where the updraft velocity
was positive. As the anemometer was moved through the center region
toward the opposite rim, the average updraft velocity «"™ ^ww
positive again at positions 18 to 20 and would remain so an the way to
the rim.
A drift measurement run was usually begun by exposing a sensitive paper
at the measuring point. It should be noted that since PILLS and SP
data were not acquired simultaneously, the SP machine was lined up
at each measurement position while exposing the paper. The instrument
package was then pulled back to the rim of the fan stack, the exposed
baper was removed and an unexposed IK tube was attached to the suction
hose. Then the instrument package was returned to the measuring point
for concurrent and continuous measurements with PILLS and IK. me
measurement time was usually between 25 and 60 minutes and was the
same for both instruments. At the start of the measurement period, the
air flow through the IK tube was adjusted so the the air velocity at
the tube opening was equal to the time-mean updraft velocity at that
point, as determined by an anemometer measurement which had either
been made during the previous run (the distance between the anemometer
and PILLS sampling volume was 0.3 m or 1 ft. during the winter test)
or from the velocity profile previously taken. At the end of a run,
the exposed IK tube was removed and sealed for chemical analysis,
the PILLS data were recorded from the pulse height analyzer and,
concluding the run, a second sensitive paper was exposed at the
measurement position.
For a small fraction of the measurement positions (<10%) both
sensitive papers were exposed after the PILLS and IK measurement
runs. Unless some difficulty was experienced w1th.th^.s^^ .
paper (over-exposure or poor contrast on the paper) which happened
less than 10% of the time, only two SP's were exposed at each point.
During the PILLS/IK measurement period the following pertinent cooling
tower and ambient data were recorded: Updraft air temperature hot
and cold water temperatures, heads in both hot water distribution
basins, wind speed and direction, and ambient air wet and dry bulb
74
-------
temperatures. The basin heads were measured to give an indication of
the water flow rate. It was noted during such measurements that the
heads were 5 to 7 cm lower during the summer test than they were
during the winter test. This indicated a lower water flow rate
during the summer test. A visual check was made of valve positions,
pump head, and hot water basin floor, including nozzle plugs, along
with a check for leaks inside the tower. All were found to be in
proper order.
The data from the on-site meteorological tower instruments were
recorded continuously on a strip chart recorder throughout each
day when drift measurements were in progress, both on the tower
and during the spray module tests.
Thus, the raw data obtained at one measuring point consisted typically
of:
1. a voltage distribution (from PILLS);
2. two exposed sensitive papers;
3. one exposed IK tube;
4. updraft air velocity data;
5. temperature data of the updraft air;
6. hot and cold water temperatures;
7. hot water distribution basin heads; and
8. meteorological data (wind speed and direction, ambient wet
bulb and dry bulb temperatures).
Also, usually once during a day of drift data acquisition, a water
sample was taken from one of the hot water distribution basins for
analysis of its sodium and magnesium concentration.
A note is necessary with respect to the tower hot and cold water
temperatures. All hot water temperatures were measured with a mercury
thermometer in the north hot water distribution basin. The cold water
temperature was obtained by means of a thermometer which was installed
into the discharge pipe prior to ESC's winter test. During the winter
test this thermometer was calibrated by ESC three times. It was found
that it read at least 1.67°C (3°F) too low. Therefore, 1.67°C was
added to all discharge temperatures obtained with this thermometer
75
-------
during the winter test. During the summer test recalibration of this
thermometer indicated that it read at least 2.8 to 3. 3°C too low. It was
furthermore later determined that the temperature sensor had been dis-
lodged from its original position and drifted down the discharge pipe
as far as the attached cable permitted. For these reasons, the outlet
temperature measurements are considered unreliable and are not recorded
on the summer test data sheets.
To insure consistency in the resultant data from PILLS and SP, certain
measures were taken for quality control. As mentioned previously, the
monodisperse water droplet generator was taken to the field for
calibration checks on the PILLS instrument. Moreover, the PILLS
instrument was calibrated before both the winter and summer test
phases. The timer on the SP machine was checked from time to time
against a stop watch to insure correct exposure of the sensitive
papers. Also, a sample of an SP from each batch was tested for good
contrast properties before that batch was used for data acquisition.
Together, these steps helped to guarantee uniformity in the field
data quality.
Drift Measurements for Florida Power & Light Company
On February 27, 1974, during the winter test phase of the cooling
tower test, drift data were acquired by ESC for Florida Power &
Light Company along one-half of the NW-SE diameter. A copy of the
complete test report is included in Appendix F. ESC and EPA wish to
express their appreciation to Florida Power & Light Company for
allowing these data to be included in this report.
Measurement techniques employed during the FP&L test as well as the
types of data taken were the same as described above. However, the
IK data measured for FP&L are presented in terms of apparent drift
parameters . These are drift water parameters which are calculated
from drift mineral residue parameters with the assumption that the
mineral concentration of the drift droplets equals that of the
circulating cooling water. The same assumption was already used in
Equation (37). Starting, for example, with the sodium mass
concentration, N, is which is defined by Equation (22), the
apparent drift massjconcentration, X' ,, can be calculated as
follows: N J
Naj = CTI 9mm (45)
where CNa with dimensions of mass per volume is the sodium concentration
in the circulating water during the period of time 4>Na j was measured
76
-------
and scw is the density of the cooling water which is again approximated
by scw = 1.0 gm/cm3.
Ideally, the apparent drift mass concentration, X^a ,-, should depend only
on the measurement position, but not on the element used to calculate
it; that is, using another element should yield the same numerical
value for the apparent drift mass concentration. In practice this
is usually not the case. The average discrepancy between the
apparent drift mass concentrations calculated from sodium and
magnesium analyses was only 6% for all Turkey Point IK data. In
earlier programs, however, larger average values have been observed.
The underlying reasons for this discrepancy are not known. It has
been suggested2" that it may be due to different retentions of various
elements in the heated IK tube, or possibly to the enrichment or
derichment25 of constituents of the drift droplets themselves during
their formation in the fill. Whatever the reason the subscript "Na"
was consequently retained on the left hand side of Equation (45).
It should be noted that the apparent drift mass fraction which is
defined as the apparent drift mass emission in percent of the cooling
water mass flow rate, is identical to the mineral mass emission
fraction, n.k:
Am. .
Ck/scw
Apparent drift mass fraction = ^ — -^ - x 100%
If scw and R are again considered constant, then:
s
cw
Amkj-/Ck
Apparent drift mass fraction = - - x 100% /47\
The right hand side of this equation is equal to the right hand side
of Equation (33). Thus the apparent drift mass fraction which is
denoted by A in ESC's report to FP&L can be directly compared to
the mineral mass emission fractions presented in this report.
Data Format
The data resulting from the cooling tower measurements are presented
in Appendix E. The data are grouped according to each of the five
measurement diameters (SW-NE 1, 2, 3, and NW-SE 1, 2).
77
-------
Within each diameter are presented updraft air velocity and
temperature profile sheets, PILLS/SP droplet size spectra sheets,
an isokinetic sampling data sheet and an isokinetic data extension
sheet. A summary sheet of droplet mass for droplets over 600 um in
diameter for the five diameters is included at the end of Appendix E.
A description of each of these data sheets with its nomenclature
follows here.
The first type of data sheet presented gives updraft air velocity and
temperature profiles for the diameter. These take the form
of a graph and as such are essentially self-explanatory. Air updraft
velocities taken from velocity profiles are plotted along with
visual estimates of the velocity fluctuation. Points are also
plotted for the velocities which were recorded during drift measure-
ment runs. These velocity profiles are given in Figures 25 through
30 in Appendix E. Two velocity traverses are also shown for the SW-NE
diameter where the output of the Gill anemometer was fed into the PHA for
a percent time vs. velocity distribution for approximately 30 seconds
at each position. These data are presented in Tables 6 and 7,
Appendix E. They show a time distribution of updraft air velocity
and were taken in order to determine the range of fluctuation of the
air velocity over a relatively short period of time (30 sec.).
Although this technique yields more accurate data with regard to the
updraft air velocity than the technique described earlier, the
visual observation of the anemometer readout was more useful for
quickly identifying the average updraft air velocity at a point and
therefore was used throughout the test.
It should be noted that the Twet/T(jry and wind speed data
written on the velocity and temperature profile graphs pertain to
ambient meteorological conditions when the profiles were taken.
The secondtype of data sheet is that which presents droplet distri-
bution data from the PILLS and SP systems. Each sheet identifies
the diameter, whether it was the first, second or third traverse
along that diameter, position, date, and time frame of the measurement.
Reference is made on each sheet to the position where an IK tube was
exposed during the same time frame. Each PILLS/SP data sheet
corresponds to one position on a tower diameter.
The tabular data is arranged according to droplet size range. Each
droplet size range, I, is defined by the lower diameter, D(LOW); the
upper diameter, D(HI); the difference in these diameters, DEL D; and
the center diameter of the range, D(CEN).
78
-------
For each droplet size range, the value of P(D), the particle density
distribution, is given. The formulation of this data from PILLS and
SP raw data was described in detail in Section IV. The tabulated
values of P(D) are taken from the.consolidated PILLS/SP curves. In
the next column to the right, the mass density distribution data, DEL
X/DEL D, is tabulated. These values were calculated using Equation (2)
in Section IV. Next is listed the drift mass concentration (drift mass
per unit volume of air) in each size range, DEL X, which was calculated
from Equation (3) in Section IV. The drift mass flux, DEL FLUX, is
listed next. These values were calculated using Equation (5a) in
Section IV. The droplet velocities are listed in the last column.
They were calculated by subtracting the settling velocity of a droplet
with diameter D(CEN) from the time-mean air updraft velocity measured
at this position.
The total drift mass per unit volume of air, X,which is the summation
of the individual DEL X values, is presented directly below the
tabulation. Likewise the value of DRIFT FLUX is found from a summation
of the DEL FLUX values. By multiplying the flux by a half annulus
area, AA, associated with the position, the total emitted drift
mass associated with that position is found. Also given is the mass
median diameter calculated from the drift mass concentration data,
UCL. A •
Tower operational conditions during the time of the measurement are also
presented on each data sheet. The time-mean air updraft velocity at
the measurement position is represented by v~u; Ta is the temperature
of the air leaving the fan stack; T^ is the hot water temperature; and
T0 is the cold water temperature. For the winter test, range, approach
and approximate heat load were calculated, the latter by using the
manufacturers' specified water flow rate of 1,260 kg/sec (20,000 gpm).
Last are presented ambient conditions during the time of the test:
wind speed, wind direction and wet bulb/dry bulb temperature.
In the PILLS/SP data section of this report, the tabular data for the
droplet density distribution are typically terminated at droplet
diameters of 600 urn and sometimes below. Because of the nature of
the PILLS instrument response characteristics it is necessary for
the field data to have good statistical quality before an accurate
particle density distribution curve, p(d), can be derived.
Consequently, although PILLS is sensitive to droplets up to 1,000
gm in diameter, the accuracy of measurement to that limit depends
heavily on the droplet count which is often sparse in the large
diameter ranges. In the time interval typical for a measurement at
Turkey Point, the generated droplet statistics were adequate for
definition of a p(d) only up to 600 urn. However, droplets above that
79
-------
size range up to 2,240 ym were observed on sensitive papers but only
singly and with no statistical basis to formulate a p(d). Since the
possibility existed that these droplets might contain a significant
amount of drift mass, e.g. more than 20% of the drift mass contained
in droplets smaller than 600 ym, their drift mass flux was calculated
and the results are included in the third type of data sheet, Table 8
in Appendix E. On this sheet the diameter traverses and positions
are shown where droplets larger than 600 urn in diameter were measured
by the SP system. Since only a few positions from each diameter
showed this type of data, the results from all 5 diameters are
included on one sheet. Also tabulated is the percentage of drift flux
these droplets represent over the flux already shown up to 600 urn
on the regular PILLS/SP data sheets.
The isokinetically obtained drift mineral residue data are tabulated in
the fourth type of drift data sheet. Each sheet contains the IK data
for the measurements made along an entire diameter. The results of
the IK measurements and data reduction are arranged in rows corresponding
to each measurement point. The position along the diameter traverse
and the data of measurement are given at the left side of each sheet.
Reading from left to right, then, follow M^ and M^g, the masses of
sodium and magnesium collected by the IK tube. Next is given Vs, the
volume of air sampled by that tube and vu, the time-mean air updraft
velocity measured at that point.
As mentioned previously, the concentration of sodium and magnesium
in the cooling water fluctuated from day to day during the test
period. The concentration values for sodium, CNa, and magnesium,
C|v|g» which were found by taking a sample of the cooling water and
chemically analyzing it, are listed in Table I along with the averages
of these values, CNS and C^g These average values of the sodium and
magnesium concentrations wef£ selected as reference concentrations,
CNa Ref = cNa ancl cMg Ref = cMg» to which all mineral mass flux data
were adjusted as outlined in Section IV. The adjusted sodium and
magnesium mass fluxes were calculated for each position according to
s> <48>
80
-------
Table 1
SODIUM AND MAGNESIUM CONCENTRATIONS OF THE COOLING WATER
CNa CMg
(mg/1) (mg/1)
1/28/74 8,975 975
V3V74 8,900 982
2/OV74 9,025 995
2/13/74 7,375 848
2/14/74 9,500 1 ,050
2/15/74 8,638 937
2/23/74 7,800 903
2/25/74 6,875 783
2/26/74 7,500 848
2/27/74 6,625 743
2/28/74 7,675 818
3/08/74 11,875 ] 180
3/09/74 10,875 60
3/H/74 11,575 80
3/12/74 11,375 1J40
n,875 1,160
3/14/74 11,125 j 16Q
3/15/74 11,875 1200
3/31/74 11,575 260
7/20/74 11,000 1,200
7/22/74 10,550 i 210
7/23/74 11,200 240
7/24/74 9,850 220
AVERAGE SODIUM CONCENTRATION, CNa = 9,723 mg/1
AVERAGE MAGNESIUM CONCENTRATION, CMg = 1,054 mg/1
-------
These equations follow from (20), (21) and (29) if the average sodium
and magnesium background values of the IK tubes, MB Na and MB Mg, are
neglected. Chemical analyses of unexposed IK tubes selected at random
as a data quality control measure yielded in the average MB NS = ^9
and MB Ma < 1 gg. The chemical analysis of the exposed IK tubes
showed that all but two IK tubes contained more than 1000 pg of sodium
and more than 100 ug of magnesium. The two remaining tubes contained
each more than 500 wg of sodium and more than 50 ug of magnesium.
The background values were therefore neglected.
The adjusted mineral mass emissions for sodium and magnesium, Amfja and
AmJ , were calculated by multiplying the flux by AA, the section of the
fangstack exit area associated with the measurement position. g The
total adjusted sodium and magnesium mass emissions, mN and Mug, were
found by summing over all values of Amjja and Amftg, respectively.
Beneath the tabular data, the mineral mass emission fractions, 0^3 and
nM , are listed which were calculated according to
rig
R -CNa X (50)
cw •• 100%
=— . .
CMg (5D
Again, scw = 1 gm/cm3 and R = 1260 kg/s during the winter test and
R = 970 kg/s during the summer test. Finally the average value of the
mineral mass emission fraction, n, is given.
If the mineral mass emission data obtained during the winter and summer
tests are compared, the differences in the water flow rates should
be kept in mind since the data are not adjusted to a common water
flow rate. However, the mineral mass emission fractions are directly
comparable.
A potential error source in the IK measurements is the sodium component
of sea salt that is contained in the ambient air. When the air passes
through the cooling tower fill an unknown fraction of the sea salt
particles is scrubbed out by the cooling water. Thus the air that
is sampled by the IK tubes contains, besides drift droplets, sea salt
82
-------
particles at a concentration that is smaller than the ambient sea salt
concentration. In order to arrive at a conservative estimate of the
mass of sodium that may be attributable to ambient sea salt,
calculations are presented which are based on the following assumptions;
1. No scrubbing of sea salt particles takes place in the
cooling tower fill.
2. The IK tubes collect sea salt particles with 100%
collection efficiency.
3. 30.6% of the sea salt is sodium.
With these assumptions, the following equation expresses the collected
mass of sodium, MANa, attributable to ambient sea salt in percent of
the total mass of sodium stripped from the IK tube:
M * • 0.306 • Vs
MANa = ^ * x 100% (52)
where * is the ambient sea salt concentration as determined by the
Airborne Particle Sampler and tabulated in Appendix C, Vs is the
volume of air sampled by an IK tube, and Mwa is the mass of sodium
stripped from an IK tube. Vs and MNa are listed in the isokinetic
sampling summaries that are part of Appendix E.
For the cooling tower test, M/\Na was calculated for several IK tubes
1. IK tube exposed at position 23.3 of diameter SW-NE 2 on
3/12/74:
Vs = 38.64 m3
This IK tube sampled the largest air volume of all tubes
exposed during the cooling tower test.
MNa = 24,739 ug
c|> =3 ug/m3 at station 3 (Run #108)
MANa = 0.14%
83
-------
2. IK tube exposed at position 1.33 of diameter SW-NE 1 on
2/23/74:
Vs = 28.71 m3
MNa = 2868 ug
$ = 11.76 ug/m3 at station 3 (Run #99)
$ was one of the highest ambient values that occurred
during the cooling tower test
MANa = 3-6%
3. IK tube exposed at Position 22.3 of diameter NW-SE 2 on
3/15/74:
Vs = 16.2 m3
MNa = 2864 ug
4> = 10.65 ug/m3 at station 3 (Run #111)
4> was one of the highest ambient values that occurred
during the cooling tower test
MANa =1.8%
4. IK tube exposed at position 0.6 of diameter SW-NE 3 on
7/20/74:
Vs = 9.3 m3
MNa = 554 ug
This IK tube collected the lowest amount of sodium
during the cooling tower test
cf> = 3.8 ug/m3 at station 3 (Run #206)
MANa = 2%
It should be noted that these IK tubes were selected such that in
Equation (52) either one of the two parameters in the numerator was
the largest, or the parameter in the denominator was the smallest
that was experienced during the cooling tower test. Although a
combination of all three parameters may exist that would yield a
84
-------
larger value of MANa than the largest calculated above, the above
values give an idea of the magnitude of
For the IK tubes exposed during the spray module test MAN* can be
calculated in the same manner. The fact that the first assumption of
the three listed above is inapplicable is of no consequence. Thus for
the spray module test MANa was calculated for the following IK tubes:
5. IK tube exposed at position 33.5/270/4.6 on 2/15/74 at .
1359 hours:
Vs = 17.82 m3
This IK tube sampled the largest air volume of all tubes
exposed during the spray module test.
MNa = 5740 ug
* = 5.3 ug/m3 at station 3 (Run #93)
MANa = 0.5%
6. IK tube exposed at position 73.2/280/7.6 on 3/27/74
at 1801 hours:
Vs = 2.73 m3
MNa = 138 ug
This IK tube collected the smallest amount of sodium of
all tubes exposed during the spray module test.
=5.9 ug/m3 at station 3 (Run #118)
= 3.6%
7. IK tube exposed at position 36.6/290/9.1 on 3/26/74 at
1352 hours:
Vs = 5.86 m3
MNa = 439 ug
$ = 8.0 ug/m3 at station 3 (Run #117)
85
-------
$ was the highest ambient value that occurred during the
spray module test.
MANa = 3-3%
These- values are very similar to those obtained for the cooling tower
test, and, as mentioned before, there may be a combination of parameters
that yield a larger value for M^a than the largest calculated above.
In summary, the amount of sodium that may be attributable to ambient
sea salt which is collected by the IK tubes during the drift tests at
Turkey Point is of the order of 3% of the total collected mass of
sodium and therefore considered negligible.
Due to the fact that the sodium and magnesium mass emission fractions
agree well, it is tempting to infer that MAMg is likewise of the order
of 3% of the total collected mass of magnesium.
During the winter test no isokinetic sampling tubes were exposed at the
edges of the region of the tower with high updraft velocity. In
earlier drift tests on mechanical draft towers, the rate of mass
emission decreased quite rapidly at positions such as this since both
the mineral mass concentration and the updraft velocity decrease as the
edges of this region are approached. During this measurement program,
however, the mineral mass concentration had relatively high values at
the edge of the measurement region for each of the radial traverses.
It therefore became clear during the data reduction that more IK data
points during this phase would have been useful. Consequently, during
the summer test, IK data were taken at more points along the diameter;
sixteen points versus ten to twelve points in the winter test.
In order to calculate an upper limit of the mineral mass emission
fraction for the winter diameters, the adjusted mineral mass emission
rates were calculated for those positions on the tower where the
updraft velocity was positive, but where no IK tube had been exposed.
For these positions it was assumed that the adjusted mineral mass
concentration, <|>j*j, has the same value as at the nearest position at
which a measurement had been made. This assumption was made only in
order to arrive at an upper limit of the mineral mass emission
fraction. This data extension may best be demonstrated by an example.
The isokinetic sampling summary for diameter SW-NE 1 shows that IK
data were obtained for positions 0.3 through 5.3. In order to obtain
a sodium mass emission estimate for position 6.3 it is assumed that
the adjusted sodium mass concentration at position 6.3 equals that of
position 5.3:
86
-------
'Na 6.3 " ^Na 5.3
a a
<|>Na 5 3 is obtained from the adjusted sodium mass flux, FNa 5 3
according to:
4 5.3 = 4 5.3' 7u 5.3 = 2256 / 10'9 = ™ ^
The sodium mass flux at position 6.3 is then
6.3 = 4 6.3 ' vu 5.3 = 207 • 8 = 1656 (55)
The area associated with position 6.3 is AAg 3 = 2.16 m2 and the
adjusted sodium mass emission through this area is
6.3 = FNa 6.3 ' ^6.3 = 1656 • 2.16 = 3577^ (56)
These extended sodium emission parameters can be found on the Turkey
Point Isokinetic Data Extension for Diameter SW-NE 1 together with
the extended magnesium emission parameters. Isokinetic data
extensions were calculated for all diameter traverses obtained
during the winter test, that is, SW-NE 1, SW-NE 2, NW-SE 1, NW-SE 2.
o
Drift Data Summary for the Cooling Tower
The drift water emission rates of the cooling tower as determined by
PILLS/SP are listed in Table 2. Likewise the sodium and magnesium
mass emissions rates, as determined by IK, are tabulated in Table 3.
The adjusted sodium mass flux for each position of all five diameters
is given in Table 4. The values for the four diameters traversed
during the winter test were averaged, and the averaged values are
listed in Table 4, and are also plotted in Figure 14. If data at a
position were not taken for all four diameters, only the available
data was averaged. It should be noted that these four measurement
traverses were made along two perpendicular directions, hence the
average values should not be associated with only one diameter;
rather with a sector which includes the two perpendicular radii.
Moreover, the measurement positions for each diameter do not fall
exactly at the same distance from the fan stack rim. Data summarized
87
-------
Table 2
RATE OF DRIFT WATER EMISSION FROM THE COOLING TOWER
(From PILLS/SP Measurements)
Drift Drift
Diameter Test Phase (ug/s) (Ib/hr)
SW-NE 1 Winter 2,296,000 18.22
SW-NE 2 Winter 5,484,000 43.52
SW-NE 3 Summer 6,602,000 52.40
NW-SE 1 Winter 1,309,000 10.39
NW-SE 2 Winter 1,412,000 11.21
88
-------
Table 3
00
Test
ADJUSTED TOTAL MINERAL EMISSION RATES FROM THE COOLING TOWER
(From IK Measurements)
Measured Extension Measured Extension Total Total Total Total
maNa
maNa
Diameter Phase (ug/s) (ug/s) (ug/s) (ug/s) (ug/s) (uq/s) (Ib/hr) (Ib/hr)
SW-NE 1
SW-NE 2
SW-NE 3
NW-SE 1
NW-SE 2
Winter
Winter
Summer
Winter
Winter
62,436
103,791
111,704
59,829
60,063
25,730
18,342
-
14,385
15,402
6,786
10,977
11,989
6,893
6,679
2,818
2,021
-
1,644
1,747
88,166
122,133
111,704
74,214
75,465
9,604
12,998
11,989
8,537
8,426
0.70
0.97
0.89
0.59
0.60
0.076
0.10
0.095
0.068
0.067
Note: These values for mineral mass emission rates have been adjusted to a reference value
for the mineral concentration in the basin water.
-------
Table 4
ADJUSTED SODIUM MASS FLUX DATA SUMMARY
(ug/m2-s)
Winter Test Average of 4 Summer Test Average of
POS SW-NE 1 SW-NE 2 NW-SE 1 NW-SE 2 Winter Diameters SW-NE 3 All 5 Diameters
0 1,095 715 620 599 757 461 698
1 1,211 1,242 860 1,620 1,233 621 1,111
2 1,445 829 1,841 1,842 1,489 970 1,385
3 2,568 1,152 2,223 2,832 2,194 1,207 1,997
4 2,440 1,160 1,764 3,808 2,293 2,305 2,295
5 2,256 962 1,286 1,623 1,532 1,227 1,470
6 887 887
7 277 277
19 1,207 1,207
20 2,163 973 1,568 3,027 2,054
21 3,078 1,639 1,143 1,953 3,220 2,270
22 2,073 5,183 2,469 1,290 2,754 6,056 3,414
23 2,621 7,673 2,469 1,370 3,533 2,222 3,271
24 3,191 7,632 2,669 2,515 4,002 1,526 3,507
25 2,118 3,568 2,271 1,118 2,269 6,142 3,043
26 5,236 5,236
Note: Water flow rate for the winter test was 1,260 kg/s (20,000 gpm)
Water flow rate for the summer test was 970 kg/s (15,400 gpm)
-------
6000
5000
4000
in
et
= 3000
o
o
to
o
L±J
LO
O
•a;
2000
o
1000
o AVERAGE OF 4 DIAMETER TRAVERSES OBTAINED
DURING THE WINTER TEST
O AVERAGE OF ALL 5 DIAMETERS
.o--
0 1
456 7 8 19 20 21 22 23 24
POSITIONS ALONG THE SW-NE AND NW-SE DIAMETERS
25 26 27
Fiqure 14. Comparison of IK average adjusted sodium mass flux vs. position.
-------
in this manner are mainly useful for the purpose of illustration. Also
shown in Table 4 and in Figure 14 are the averages of all five diameter
traverses. Comparing the two curves in Figure 14, one can see that
the effect of including the summer data in the average is small on
only one radius, tending to decrease the sodium mass flux at each
position approximately equally. On the other radius the effect is
quite noticeable and erratic. The high value at position 26 was due
to the one data point taken during the summer test since no IK
measurements were taken at this position during the winter test.
The calculated values for the upper limit of the mineral mass emission
fraction for each of the five diameters is shown below, as obtained
from the IK data sheets:
Upper Limit of the
Mineral Mass Emission Fraction
Diameter Traverse _ imax* (%) _
SW-NE 1 0.00072
SW-NE 2 0.00099
SW-NE 3 0.0012
NW-SE 1 0.00062
NW-SE 2 0.00063
The arithmetic average of these values is 0.00083%. It should be noted
that the water flow rate during the winter test was 1260 kg/s
(20,000 gpm) whereas it was only 970 kg (15,400 gpm) during the summer
test when data along the diameter traverse SW-NE 3 were obtained.
Cooling Tower Composite Curve Calculation
The drift droplet size data obtained by PILLS/SP during the five
diameter traverses of the cooling tower was used to calculate a
cooling tower composite curve in the manner described in Section IV.
The values calculated for composite drift mass emission, ADi composite*
and composite drift mass density distribution
composite
tabulated in Table 5. The composite mass emission data for each size
range were summed yielding a total composite drift mass emission rate,
DcomDOSite» of 3-42 9m/s- The composite tower drift fraction at
design flow of 1260 kg/s is, therefore, 0.00027%. The composite mass
median diameter calculated from the drift mass density distribution
equals 120 urn. The composite drift mass density distribution is
plotted in Figure 15. It shows a peak in the droplet size range of
30 to 50 urn with a center diameter of 40 urn. The largest value of
droplet diameter for which the mass density distribution is shown
92
-------
VO
co
d(center)
20
40
65
95
130
175
225
275
325
375
425
475
525
575
Table 5
COOLING TOWER COMPOSITE DRIFT MASS EMISSION PARAMETERS
Ad Composite Drift Flux
(urn) (ug/m -s) _
20 590
20 881
30 1,205
30 958
40 987
50 867
50 600
50 378
50 287
50 240
50 219
50 185
50 171
50 168
AXi/Ad
(ug/m3*um)
29
44
40
31
24
17
12.0
7.6
5.7
4.8
4.4
3.7
3.4
3.4
Composite Drift Mass
Emission Rate, AD-j
(tig/s)
2.78E 05
4.14E 05
5.61E 05
4.40E 05
4.46E 05
3.82E 05
2.57E 05
1.58E 05
1.16E 05
9.41E 04
8.37E 04
6.89E 04
6.12E 04
5.83E 04
Note: 2.78E 05 means 2.78 x 10s
TOTAL COMPOSITE DRIFT FLUX
TOTAL COMPOSITE DRIFT MASS EMISSION RATE
MASS MEDIAN DIAMETER of the composite drift mass
density distribution, AXi/Ad
COMPOSITE TOWER DRIFT FRACTION
(based on the design flow rate of 1260 kg/s)
= 7,736 ug/m2-sec
= 3.42 gm/s
= 120 pm
= 0.00027%
-------
(O
CO
Table 5
COOLING TOWER COMPOSITE DRIFT MASS EMISSION PARAMETERS
d(center)
(ym)
20
40
65
95
130
175
225
275
325
375
425
475
525
575
Ad
(ym)
20
20
30
30
40
50
50
50
50
50
50
50
50
50
AXi/Ad
(yq/m3-ym)
29.5
44.1
,2
.9
,7
,3
40.
31
24.
17.
12.0
7.6
5.7
4.8
4.4
3.7
3.4
3.4
Composite Drift Mass
Emission Rate, AD*
(yg/s)
2.78E 05
4.14E 05
5.61E 05
4.40E 05
4.46E 05
3.82E 05
2.57E 05
1.58E 05
1.16E 05
9.41E 04
8.37E 04
6.89E 04
6.12E 04
5.83E 04
Note: 2.78E 05 means 2.78 x 105
TOTAL COMPOSITE DRIFT MASS EMISSION RATE,
MASS MEDIAN DIAMETER of the composite drift mass =
density distribution, AX^/Ad
COMPOSITE TOWER DRIFT FRACTION
(based on the design flow rate of 1260 kg/s)
FAN STACK EXIT AREA, A
TOTAL COMPOSITE DRIFT FLUX, EADn-/A
3.42 gm/s
120 v>m
0.00027%
54.5 m2
0.063 gm/m2-s
-------
o
I—I
I—
CO
o
>- n.
1— •
»_t "•*
tp E
LJJ en
O ^
I/) ••
to -O
LO
O
Q.
50 i—
40 —
30
20 —
10 —
J I I I 1
L_J I L
20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 620
DROPLET DIAMETER, Mm
Figure 15. Cooling tower composite drift mass density distribution.
-------
is 575 pm. This does not imply that no drift mass exists above this
value. As mentioned above, the PILLS/SP data were given in the data
sheets only up to this value of droplet diameter because the
statistical quality of the data prevented the formulation of a p(d)
value beyond that point whose accuracy lay within the accuracy limits
previously stated for PILLS. Consequently, this composite curve
which was calculated from the p(d) values tabulated for each position
and each diameter, is also shown only up to 575 urn. The curve is
dashed beyond this point to indicate that the drift mass density
distribution may extend beyond this point. For small droplet
diameters the curve is likewise limited by the accuracy of sizing
small droplet stain sizes, as well as by the collection efficiency
of the sensitive paper.
SPRAY MODULE EMISSION TEST
The spray module emission test was performed in two parts. The first
part was begun full scale on January 30, 1974. On February 18, the
test was broken off at the request of EPA and the equipment moved
to the cooling tower so that measurements could be made
simultaneously with EPA's vapor plume measurements. Once the cooling
tower test was completed, the equipment was moved back to the barge
and the spray module test resumed. The second part of the test
began on March 18 and the test was completed on March 31. No testing
of the spray modules was conducted during the summer campaign.
Measurement Set-Up
The task of measuring the drift emission of the spray modules presented
different problems from those of the cooling tower test. Unlike the
tower, where all drift is emitted through a well defined exit plane
with an opening of approximately 55 m2, the drift from the spray
modules is emitted in all directions into the open air. When
observed away from the spray modules, the drift is a strong function
of ambient weather conditions, especially wind speed and direction.
The measuring instruments had to be mounted such that they could be
easily positioned throughout the region of space surrounding the
spray modules. For this purpose, a barge was constructed and the
instruments were mounted on a 13 meter tower which was raised on the
barge. The barge could be positioned in the cooling canals downwind
of the spray modules and the instrument package could be moved up and
down the tower and positioned at various heights above water level. As
a result, sampling points could be chosen over a large region of space
where the instrument sensors could make drift measurements. An
instrumentation shack on the barge was used to house the instrument
control equipment and protect it from effects of the salt water drift
95
-------
and adverse weather. Two motor generator sets were used as sources
of electric power on the barge so that the resulting system was
completely independent of power support from shore. The barge was
powered through the water by an outboard motor.
The instrument package was essentially the same as that on the cooling
tower except for the changes discussed below which facilitated the
data acquisition process. The PILLS, IK, Gill anemometer and wet
bulb/drybulb psychrometer were used unchanged on the barge except for
differences in the mounting geometry. Because of maximum air velocities
whtch were one-third to one-half of those experienced on the cooling tower,
the rotating type SP machine was used on the barge. Before the second
part of the test began a Weather Measure wind vane was added to the
instrument package. It delivered a voltage signal corresponding to
wind direction referenced to the front of the barge. When this signal
was fed into the PHA and recorded during a drift measuring interval,
the result was a recording of the amount of time the wind had come
from each direction. Likewise, the output of the Gill anemometer was
stored in the PHA and gave the amount of time during the run that the
wind had a certain velocity. The position of the other instruments
in relation to PILLS' sampling volume is shown in Figures 16 and 17.
The wind vane had not been added yet when the photograph was taken.
Measurement Procedure
In order to make a drift measurement run, the barge was moved into
position downwind of the spray modules. The barge was then attached
to the spray module array by a rope yoke with a slip knot and allowed to
swing freely in the wind. In this manner it was intended that the
barge would follow changes in wind direction and remain in the drift
plume. This idea was successful for slow variations in wind direction.
However, at times, the wind varied quite rapidly (30 degrees or more
in a few seconds) and the barge, due to its large inertial mass, was
unable to follow this type of wind variation. During the second
part of the test, the wind variation data was recorded, however, in
the PHA, as explained above, and is included with the data at the end
of this report. Also, at times, particular measuring points placed
the barge in a position such that it was essentially held by the canal
current and could not easily follow even slow variations in wind
direction. This happened only when the wind was from the NE and only
when the barge was'in one of the cooling canals that ran perpendicular
to the feeder canal (less than 15% of the time). For the majority of
measurements the barge remained in the feeder canal west of the
spray modules. A diagram showing the spray module position in the
cooling canal is shown in Figure 31 and Appendix G.
96
-------
Figure 16. Barge instrument package showing also a part of the barge
tower and the instrument shack. Center: PILLS instrument.
Directly above: the wet bulb/dry bulb psychrometer.
On the viewer's right: the Sensitive Paper machine. On
the left: the Gill anemometer. A Weather Measure wind
vane was later added directly above the anemometer. The
U-tube of the Isokinetic Sampling System is visible below
the PILLS instrument on the left side of the tower.
97
-------
ANEMOMETER &
WIND VANE —
L
PSYCHROMETER
3^
00
IK SAMPLING
TUBE
PILLS
SAMPLING
VOLUME
L
.45
-------
The northwest spray module nozzle was used as a reference point for the
barge position in relation to the array of spray module nozzles when the
barge was west of the modules. The northeast spray module nozzle
was the reference when the barge was east of the modules. At each
measuring point the distance from the reference point to the instrument
tower was recorded along with the height of the instrument package above
water level. As already mentioned, the position of the PILLS sampling
volume was used as the reference above water level. Along with distance
from the nozzles and height above water level, the direction of the
barge from the spray nozzles was taken in terms of azimuthal degrees
where magnetic north was referenced at zero. This number represents
a visual estimate of the position of the barge during the major
portion of the run at a particular sampling point and was judged accurate
within ±10°. These three numbers, distance from spray module, height
above water level and azimuthal position pinpoint the position of the
instruments at each sampling position.
Since the spray modules were positioned in the canal approximately
10 meters from the north bank, it was not feasible to make drift
measurements when the wind came from the south. There was not
enough room in the canal north of the spray modules for the barge to
make measurements since the amount of drift within 10 meters from the
spray modules with a south wind was heavy enough to saturate the
instruments. In fact, the transformer supplying power for the cooling
tower and spray modules shorted out under such conditions. It is
situated on the north bank of the canal at a distance of about 24 m
from the nearest spray module and was thus exposed to the drift
whenever the spray modules were operating and the wind came from the
south. To relieve this problem a shield was constructed after the
winter test around the transformer to protect it from drift. For these
reasons the spray module testing was suspended during days with
southerly winds (March 19 - 25 and March 28 - 29). This time was
utilized for instrument calibrations, maintenance, and data reduction.
Furthermore, a dew point meter, mounted to the 10 m meteorological
tower, was made operational.
A typical test at a sampling position would last anywhere from 20
minutes to 2% hours, depending on the drift rate. The test was begun
by moving the barge to an assigned distance from the reference spray
nozzle and positioning the instrument package at an assigned height
on the barge tower. Preliminary runs with PILLS and SP established
a range of instrument positions for drift measurement. These points
ranged from 2.4 to 11.0 meters above water level and from 20.7 to
88.4 meters downwind of the spray modules.
99
-------
Once the barge was in position an unexposed IK tube was attached to the
suction hose. PILLS and IK were then started up together to run
continuously through the sampling period. The PILLS data were recorded
by the PHA along with wind speed and direction referenced to barge
orientation. Unlike the tower test, it was possible to expose
sensitive papers without moving the instrument package. Two or three
sensitive papers were usually exposed during a run. Since it was
observed that variations in wind speed and direction could deliver
bursts of drift for a few seconds then almost nothing shortly there-
after, each exposure of a sensitive paper was composed of multiple
sets of short exposures taken at random. This procedure was to insure
that the sensitive paper technique yielded drift parameters that
represented time-mean values for the period of time PILLS and IK
sampled at a position. At the end of a measurement period, the exposed
IK tube was removed and sealed for analysis and the PILLS data and wind
information were recorded from the PHA. PILLS data, IK data, wind
speed and wind direction data were recorded continuously during a drift
measurement run.
In order to compare the influence of ambient weather conditions on the
drift, multiple runs were made at approximately the same position.
The exact number varied from position to position. Also, on March 31,
the normal procedure of allowing the barge to follow the wind was
not observed so that the drop-off in drift across the plume in the
crosswind direction could be measured. These are the runs started at
13:45 and 14:41 on March 31 for reference to the data section. For
these runs, the instrument package was positioned 4.6 meters above the
water level. The barge was positioned close to the sides of the cooling
canal by means of a rope which extended across the canal. During
these runs, the front of the barge faced directly east, otherwise,
the measurement procedure was the same as described above.
Data Format
The measurement data from the spray module test are presented in
Appendix G. The drift emission data are presented on sheets very
similar to those used for the cooling tower drift data. Wind speed and
direction data referenced to barge orientation are included separately,
but correspond to the drift data positions and sampling times.
The first type of data sheet is the PILLS/SP droplet size distribution
data sheet. Each measurement run is shown on a separate sheet with
reference to the corresponding IK data sheet and wind data sheet, if
available. The sampling point is defined by three numbers, as
explained previously. Hence (20.7/280/4.3) is the point 20.7 meters
from the NW spray nozzle, 280 degrees clockwise from north, and 4.3
meters above water level. It should be reiterated that in the case of
100
-------
westerly winds when the barge was positioned east of the modules, the
reference point became the NE spray nozzle. The explanation of the
nomenclature for the PILLS/SP droplet size distribution data has been
explained in the cooling tower data format section and hence will
not be repeated here. Relevant ambient meteorological information
at the time of the run (average wind speed and direction, wet bulb/dry
bulb air temperatures) is included on this sheet together with
conditions at the instrument package (wet bulb/dry bulb air temperatures,
wind speed and direction distribution) and the canal water temperature.
Data from the isokinetic sampling system is presented on three data
sheets at the end of the PILLS/SP data sheet group. Each IK measure-
ment point is listed according to position, date and time. The
nomenclature on these sheets is the same as that on the cooling tower
data sheets, except that the time-mean wind speed u at the measurement
point replaces the time-mean updraft velocity vu for the calculations
of adjusted mineral mass flux. As indicated by Table I, no canal
water analyses are available between 3/16 and 3/30, 1974, due to
loss of the water samples. Telephone communication with FP&L
established that the sodium concentration did not change more than ±3%
around the average value of the concentrations measured on 3/15 (11,875
mg/1) and 3/31 (11,575 mg/1). Thus the concentration data obtained on
3/15 were utilized to reduce the IK data of 3/18 and 3/19 whereas the
canal water concentration of 3/31 was used to reduce the IK data
obtained on 3/26 or earlier.
It should be noted that the final values in both PILLS/SP and IK data
take the form of drift water flux and adjusted mineral mass flux,
respectively. If such data could be obtained within a plane that is
perpendicular to the wind velocity, the flux data could be integrated
over the geometrical extent of the drift plume in that plane to
yield the total mass of drift water or the adjusted mineral mass
emitted by the spray modules. However, to obtain such flux data
together with the geometrical extent of the drift plume, winds
sufficiently steady in both direction and speed are necessary over
an estimated period of 8 to 12 hours for the instruments and techniques
described. The quantification of "sufficiently steady" could be one
of the results of an analysis of these data.
The third type of data sheet in this appendix presents the wind speed
and direction data recorded on the PHA during each sampling period.
These sheets give the percentage of total time during the sampling
period that the wind was in a certain wind speed range and was from a
certain wind direction in relation to the barge orientation. These
data indicate the amount of angular variation in wind direction with
the front of the barge referenced as 0°, plus the per cent of time
the wind came from each direction.
101
-------
Initially, problems were encountered on the barge with conditioning
the signals from the anemometer and wind vane for input to the pulse
height analyser (PHA). These difficulties account for the occasional
absence of this data in the wind speed and direction distribution tables
corresponding to the runs made before March 27, 1974. It was not
foreseen before the spray module test that the wind speed and
direction data would be stored in the PHA. Consequently, in the first
part of the test, this mode of data acquisition was given low priority
and when these data are not shown, the data from the wind instruments
on the meteorological tower must be consulted instead.
Spray Module Data Analysis Example
Some examples of data extracted from the spray module data section and
displayed in graph form are given in Figures 18 to 22. Each figure
represents PILLS/SP or IK data as a function of height above the
water level for a fixed distance from the spray modules. Drift flux
and mass median diameters are plotted in Figures 18, 19, and 21.
Sodium and magnesium mass flux are plotted in Figures 20 and 22.
Figures 19 and 20 illustrate data measured at the same time and
position by the PILLS/SP and the IK system, respectively. A comparison
between the two figures shows that both drift flux and adjusted
mineral mass flux decreased with increasing height above water. A
comparison of Figures 21 and 22 also shows a similar relative agreement.
That is, the drift flux and mineral mass flux are highest for the
middle value of height above water.
These graphs are not meant to be comprehensive by any means, but merely
serve to illustrate some rudimentary data manipulation and grouping
which might preface a full scale data analysis effort. These graphs
illustrate change of PILLS/SP data with height. Other means of
illustrating the results such as plots of the data vs. wind speed,
distance from spray modules, etc., would also prove enlightening.
However, as stated previously, a full scale, in-depth analysis
was not within the scope of this report.
102
-------
1 E5 P—
5 E4 —
DATE: 2/1/74
DISTANCE FROM NW OUTBOARD NOZZLE: 36.6 meters
WIND FROM THE EAST
WIND SPEED IN km/hr IS LISTED BELOW EACH CONCURRENTLY ACQUIRED DATA PAIR
o - DRIFT FLUX
a - MASS MEDIAN DIAMETER
I/I
(N
_ CT 1 E4
o zl
^^ A
X
^ 5 E3
t—
Ll_
O
1 FT
—
•__
-
o
D— I
O-
o
D
D
o-
-
—
—~~
—
— 5.4 10.1 10.8
1
- —
1 1
120
100 £
3.
80 g
i —
LU
60 i
Q
40 1
o
LU
20 ^
OO
00
s:
8
HEIGHT ABOVE WATER, meters
10
12
Figure 18.
Spray module test: Drift flux, as measured by PILLS/SP, and
droplet mass median diameter vs. measurement height.
-------
1 E5 ,—
5 E4 —
CM
E
1 E4 —
5 E3 —
1 E3
DATE: 3/26/74
DISTANCE FROM NW OUTBOARD NOZZLE:
WIND FROM THE SOUTHEAST
36.6 meters
— w.mu or ecu in MM/IK 10 LIJIC.U
= o - DRIFT FLUX a
^^"^
—
—
^^__
—
—
—
o
a
10.8
0
o
a
a
14.4 12.6
1
oci_un Lnixii VjUiiV'UrxiM.ii i i- i
- MASS MEDIAN DIAMETER
a
o
15.1
1
rvov^UiiM-u un i n
^—
1
120 1
100 £j
LU
80 |
_,
60 2
o
UJ
40 ^
A to
8
HEIGHT ABOVE WATER, meters
10
12
Figure 19.
Spray module test: Drift flux, as measured by PILLS/SP. and
droplet mass median diameter vs. measurement height.
-------
2000
10.8
O
1500
DATE: 3/26/74
DISTANCE FROM NW OUTBOARD
NOZZLE: 36.6 meters
WIND FROM THE SOUTHEAST
WIND SPEED IN km/hr IS LISTED ABOVE
EACH DATA PAIR
G - F<
14.4
O
Na
Mg
12.6
O
to
CO
1000
\f>
=
T
500
15.1
O
J.
±
_L
_L
J_
±
123456789
HEIGHT ABOVE WATER, meters
Figure 20. Spray module test: Adjusted mineral mass flux vs.
measurement height.
105
10
-------
DATE: 3/30/74
DISTANCE FROM NE OUTBOARD NOZZLE: 73.2 meters
WIND FROM THE SOUTHWEST
WIND SPEED IN km/hr IS LISTED BELOW EACH CONCURRENTLY ACQUIRED DATA PAIR
o - DRIFT FLUX
a - MASS MEDIAN DIAMETER
o
en
01
0£
o
—
1 E4
5 E3
i ri
DO
D
O
0 0
X
20.5 21.1 25.3 '
1 1 1 1 1
120
100
80
60
^
ff
6 8
HEIGHT ABOVE WATER, meters
10
12
C£
UJ
I/)
oo
Figure 21. Spray module test: Drift flux, as measured by PILLS/SP, and
droplet mass median diameter vs. measurement height.
-------
DATE: 3/30/74
DISTANCE FROM NORTHEAST OUTBOARD NOZZLE: 73.2 meters
WIND FROM THE SOUTHWEST
WIND SPEED IN km/hr IS LISTED ABOVE EACH DATA PAIR
1400
O -
D -
"Mg
(/)
•
rv
E
^
n
•i
x
I/J
CO
1000
Q
LU
CO
13
O
500
21.1
O
20.5
O
25.3
O
_L
J_
_L
_L
J.
45678
HEIGHT ABOVE WATER, meters
10
11
12
Figure 22. Spray module test: Adjusted mineral mass flux vs. measurement
height.
107
-------
SECTION VIII
REFERENCES
1. An Evaluation of the Feasibility of Salt Water Cooling Towers for
Turkey Point. For Florida Power & Light Company by Southern
Nuclear Engineering, Inc., Dunedin, Florida. Report No. SNE-54.
February 1970.
2. Henderson, C.D., and S.H. Dowdell. A Test Program on Environmental
Effects of Salt Water Mechanical Cooling Devices. Florida
Power & Light Company. (Presented at the Cooling Tower Environment
1974 Symposium. Washington, D.C., March 4-6, 1974) 15 p.
3. CANALS COOL FLORIDA'S STATION DISCHARGE. Electrical World.
182(4):39-41, August 1974.
4. United States District Court for the Southern District of Florida.
Final Judgement, Civil Action No. 70-328-CA. September 10, 1971.
5. Environmental Systems Corporation. Development and Demonstration
of Low-Level Drift Instrumentation. U.S. Environmental
Protection Agency. Washington, D.C. EPA-16130GNK10/71. October
1971.
6. Rainwater, F. Unpublished Memorandum. U. S. Environmental
Protection Agency. Corvallis, Oregon. October 1973. 2 p.
7. An Evaluation of the Powered Spray Module for Salt Water Service
for Turkey Point. For Florida Power & Light Company by Southern
Nuclear Engineering, Inc., Dunedin, Florida. Supplement No. 1 to
SNE-54. May 1970.
8. Final Environmental Statement Related to Operation of Turkey Point
Plant. U.S. Atomic Energy Commission, Washington, D.C.
July 1972.
108
-------
9. Shofner, P.M., G.O. Schrecker, T.B. Carlson, and R.O. Webb.
Measurement and Interpretation of Drift Particle Characteristics.
Environmental Systems Corporation. (Presented at the Cooling
Tower Environment - 1974 Symposium. Washington, D.C. March 4-6,
1974.) 23 p.
10. Shofner, P.M., Y. Watanabe, and T.B. Carlson. Design Considera-
tions for Particulate Instrumentation by Laser Light Scattering
(PILLS) System. ISA Transactions 12. January 1973. 21 p.
11. Shofner, P.M. Explicit Calibration of the PILLS II System.
By Environmental Systems Corporation for the U. S. Environmental
Protection Agency. Washington, D.C. EPA-660/2-73-011. September
1973.
V
12. Chilton, H. Elimination of Carryover from Packed Towers with
Special Reference to Natural Draught Water Cooling Towers.
Trans. Instn. Chem. Engrs. 30:235-250. 1952.
13. Golovin, M.N., and A. A. Putnam. Inertial Impaction of Single
Elements. Battelle Memorial Institute. Columbus, Ohio. I&EC
Fundamentals 1(4):264-273. November 1962.
14. Margetts, M.J., and P.M. Shofner. Characterization of the Drift
Emissions of a Natural Draft Cooling Tower and Examination of the
Sensitivity to Operational Parameter Variations. (Presented to the
Joint Power Generation Conference. New Orleans, Louisiana
September 16-19, 1973.) 9 p.
15. Shofner, P.M., G.O. Schrecker, and K.R. Wilber. Characterization
of Drift Emissions and Drift Transport for Representative Cells of
the K-31 and K-33 Cooling Towers. Environmental Systems
Corporation for Union Carbide Corporation. Oak Ridge, Tennessee
October 1972.
16. Jallouk, P.A., G.J. Kidd, Jr., and T. Shapiro. Environmental
Aspects of Cooling Tower Operation: Survey of the Emission,
Transport, and Deposition of Drift from the K-31 and K-33 Cooling
Towers at ORGDP. Union Carbide Corporation Report Number K-1859.
Oak Ridge, Tennessee. February 1974.
17. Holmberg, J.D. Private Communication. 1974.
18. Orr, C., Jr., K. Hurd, and W.T. Corbett. Aerosol Size and
Relative Humidity. Journal of Colloid Science. 13:472-482
July 1958. —
109
-------
19. Wilber, K.R. An Experimental Approach to the Evaluation of
Mesh Collection Efficiencies Using Mechanism of Inertial Impaction.
Master's Thesis. University of Tennessee. June 1974.
20. Westinghouse Electric Corporation. The State of the Art of
Saltwater Cooling Towers for Steam Electric Generating Plants.
U.S. Atomic Energy Commission. Washington, D.C. February 1973.
21. Schrecker, G.O., K.R. Wilber, and P.M. Shofner. Prediction and
Measurement of Airborne Particulate Concentrations from Cooling
Device Sources and in the Ambient Atmosphere. Environmental
Systems Corporation. (Presented at the Cooling Tower Environment -
1974 Symposium. Washington, D.C. March 4-6, 1974.) 21 p.
22. Schrecker, G.O., S.L. Williams, P.M. Shofner. Atmospheric
Dispersion of Cooling Tower Slowdown. Environmental Systems
Corporation. (Presented at the Symposium on the Physical and
Biological Effects on the Environment of Cooling Systems and
Thermal Discharges at Nuclear Power Stations. Oslo, Norway.
August 26-30, 1974) 14 p.
23. Shofner, P.M., J.D. Womack, and K.R. Wilber. Ambient Sea Salt
Measurements in the Forked River, New Jersey Environs July
1972 - August 1973. Environmental Systems Corporation for
General Public Utilities. Parsippany, New Jersey. August 1973.
24. Rainwater, F., and J. Thatcher. Methods of Collection and Analysis
of Water Samples. U.S. Geological Survey. Washington, D.C.
Water Supply Paper #1454. 1960.
25. Glass, S.J. Jr., and M.J. Matteson. Ion Enrichments in Aerosols
Dispersed from Bursting Bubbles in Aqueous Salt Solutions.
Tell us. 15 March 1973.
110
-------
SECTION IX
GLOSSARY
TEXT NOMENCLATURE
As - collection area of sampling device (sensitive paper, IK
tube, APS mesh, deposition funnel)
APS - Airborne Particle Sampler
C|< - concentration of the Ktn element or compound in the
cooling water, mass of solute per unit volume of
solution
Cj< - average concentration of the Kth element or compound
in the cooling water, mass of solute per unit volume
of solution
^k Ref " reference concentration of the Kth element or compound
in the cooling water, mass of solute per unit volume
of solution
D - rate of drift mass emission
dp - salt deposition flux, mass of salt per unit area and unit
time
d~i - drift droplet center diameter for the droplet size
range Adi
Ed-jsc - collection efficiency of a sensitive paper disc
collector
^strip " collection efficiency of a sensitive paper strip
collector
EPA - Environmental Protection Agency
ESC - Environmental Systems Corporation
111
-------
F|
-------
p(d) - particle density distribution as defined by Equation (1)
PHA - Pulse Height Analyzer
PILLS - Particulate Instrumentation by Laser Light Scattering
R - mass flow rate of the circulating water
RPM - rotations per minute
s - second
scw - density of the circulating water
s-j - representative density of drift droplets in size
range i
sw - density of pure water
s - average density of drift droplets of all size classes
SP - Sensitive Paper
ts - sampling time
u - time-mean horizontal wind speed
Vs - sampled air volume
vuj - vertical component of the time-mean air updraft velocity
at position j
vt-j - settling velocity of a water droplet with diameter cTj
Bi - sensitive paper correction factor for droplet size
range i
A - drift fraction as defined by Equation (8)
AAj - section of the cooling tower fan stack exit plane
associated with position j
AD-jj - drift mass emission rate in the droplet size range i
at position j
113
-------
- drift mass flux in droplet size range i at position j
AA
Adi - drift droplet size interval of droplet size range i
Amki - rate of emission of the Kth element or compound at
J position j
Amj*. - rate of adjusted emission of the K^1 element or compound
^ at position j
AN-jj - number of droplets in droplet size range Ad^ measured at
position j
A X-jj - drift mass concentration in droplet size range i at
position j, mass of drift droplets per unit volume of
air
AXjj .
~A~a drift mass density distribution in droplet size range i
at position j, mass of drift droplets per unit droplet
size range and unit volume of air
m^ - mass fraction of the K^1 element or compound as defined
by Equation (25) and (26)
ug - - micrograms
ym - micrometers
kj - mass concentration of the Ktn element or compound at
position j, mass per unit volume of air
- adjusted mass concentration of the K^ element or
compound at position j, mass per unit volume of air
X. - drift mass concentration at position j, mass of drift
J water per unit volume of air
X.J IK - drift mass concentration at position j as calculated from
J IK data with the assumption that the mineral concentra-
/or x'. \ tion in the drift droplets is the same as that of the
J cooling water (apparent drift mass concentration)
0 - angle between magnetic north and a line from reference
position of the spray modules to PILLS' sampling volume
114
-------
DATA SECTION NOMENCLATURE
C - APS data comment code
CJv|a - average concentration of magnesium in basin or canal water
C~ma - average concentration of sodium in basin or canal water
D(CEN) - center diameter of droplet size range DEL D
D(HI) - upper droplet diameter of size range DEL D
D(LOW) - lower droplet diameter of size range DEL D
d - distance from spray module reference point to
measurement position
DEL D - same as Adj in text
DEL X - same as AXi in text
DEL X/DEL D - same as AXi/Ad in text
DEL FLUX - same as AD^/AA in text
DEP - same as dp, sea salt deposition flux
h - height of instrument package above water level during
spray module test
I - drift droplet size range index
P(D) - same as p(d), particle density distribution
PHI - same as <|>, air salt concentration
Ta - tower exit air temperature
Tdry - ambient dry bulb temperature
Ti - hot water temperature
T0 - cold water temperature
Twet - ambient wet bulb temperature
115
-------
SECTION X
APPENDICES
Page
A. Chronology of Events 117
B. Cooling Tower and Powered Spray Modules Operations Log 121
C. Airborne Particle Sampler Data 123
C-l. APS Data 125
C-2. APS Procedural Background Data 235
C-3. APS Mesh Background Data 241
D. Deposition Data 246
E. Drift Emission Data for the Cooling Tower 324
F. Cooling Tower Drift Emission Data Acquired for Florida
Power and Light Company 415
G. Drift Emission Data for the Spray Modules 439
H. Manufacturer's Specifications for Cooling Devices 504
H-l. Marley 600/700 One Cell Wet Mechanical
Draft Cooling Tower 505
H-2. Ceramic Cooling Tower Company's Powered Spray
Module 517
I. Statements from Stewart Laboratories, Inc. 526
116
-------
APPENDIX A
CHRONOLOGY OF EVENTS
In order to provide an overview of the proceedings of the contract
work, the major events and time periods of the contract are listed
in chronological order in the following:
June 29, 1973: Contract award.
July 1 - August 23, 1973: Definition of the test program; construc-
tion and installation of APS equipment.
August 7, 1973: Turkey Point briefing session in Knoxville,
Tennessee. Discussion and finalization of the Turkey Point test
program. Attendees: representatives of EPA offices in Corvallis
and Research Triangle Park, National Oceanic and Atmospheric Agency,
FP&L, and ESC.
August 24 - November 22, 1973: Intensive ambient airborne sea salt
sampling program (5 runs/week).
November 23, 1973 - January 30, 1974: Less intensive airborne sea
salt sampling program (3 runs/week).
November 27 - December 17, 1973: Construction of the barge and
installation of the barge rigging. Construction and installation
of the cooling tower rigging. Assembly and installation of two
spray modules.
December 7, 1973: Delivery of the "Preliminary Ambient Salt
Sampling Report" to EPA and FP&L.
January 21 - 23, 1974: Arrival of ESC test crew on site. Start
of winter test. Installation of the test equipment into the
cooling tower rigging and shakedown. First exploratory-type tests
on the cooling tower. Termination of the tests due to cooling tower
water pump failure.
117
-------
January 24 - 29, 1974: Test equipment is removed from cooling tower
and installed into the barge rigging. Start of spray module emission
test was delayed by unfavorable wind directions. Installation of
10 m meteorological tower east of the cooling tower.
January 30 - February 2, 1974: Spray module drift emission test.
Start of intensive airborne sea salt samoling program (5 runs/week)
during the operation of one of the cooling devices.
February 4-6, 1974: Reduction of data acquired during January 30 -
February 2. Review of data and test procedure.
February 7-11, 1974: Extension of barge tower from 30 to 40 ft.
height. Installation and calibration of meteorological equipment on
10 m tower.
^ebruary 12 - 18, 1974: Resumption of spray module drift emission test.
February 15, 1974: Turkey Point briefing session at Homestead.
Florida. Presentation and discussion of data acquired during the
spray module emission test. Presentation and discussion of pre-
liminary ambient sea salt data analyses performed by EPA Corvallis.
Discussion of satellite program at Turkey Point. Attendees: repre-
sentatives of EPA Office of General Counsel, EPA offices at Corvallis,
Research Triangle Park and Atlanta, FP&L, Ceramic Cooling Tower Company
and ESC.
February 19 - 22, 1974: The spray module emission test was inter-
rupted because EPA asked for concurrent cooling tower drift emission
and vapor plume tests. The plume test was to be conducted by an EPA
test crew. ESC's test equipment was moved from the barge to the cool-
ing tower. Shakedown of equioment.
February 21 -26, 1974: Measurement of velocity and temperature pro-
files on the cooling tower. Cooling tower drift emission test con-
current with EPA's plume test.
February 27 - March 8, 1974: Interruption of test and review of
acquired cooling tower drift emission data. This unscheduled re-
view was initiated because EPA requested a deferral of the spray
module test until March 12-15 to accomodate the terrestrial effect
studies of Dr. L. Rani ere, NERL, Corvallis, who needed continuous
cooling tower operation during this period of time.
March 9 - 15, 1974: Resumption and conclusion of the cooling tower
drift emission test.
118
-------
March 16 - 17, 1974: Test equipment moved from cooling tower to
barge.
March 18 - 31, 1974: Resumption and conclusion of spray module
drift emission test.
Aoril 1, 1974: Start of increased frequencv of airborne sea salt
sampling during operation of one of the coo'ling devices. The fre-
quency was increased from 5 to 6 runs per week"
April i - 3, 1974: Removal of the PILLS, IK and SP equipment from the
site. Conclusion of winter test.
April 1 - June 30, 1974: Data reduction and Interim Report orenara-
tion.
July 3, 1974: Delivery of the Interim Report to EPA and FP&L.
July 1 - 15, 1974: Preparation for the summer test.
July 16_- 19, 1974: Arrival of ESC test crew on site for the
Summer iest. Installation of the equipment into the coolina tower
rigging.
July 19, 1974: Termination of the airborne sea salt deposition flux
monitoring program which is one part of the airborne sea salt sampling
program. The other part, the airborne sea salt concentration monitor-
ing program, is continued.
July 19 - 24, 1974: Drift emission test on the SW-NE diameter of
the cooling tower.
July 24, 1974: Termination of the data acouisition at Turkey Point.
July 24-26, 1974: Removal of ESC equipment from the site.
August 8, 1974: Turkey Point briefing session at Atlanta, Georgia:
ESC reported on the amount of data acnuired at Turkey Point. It
was discussed particularly whether the data satisfied the provisions
set forth in the court decree. This question was answered affirma-
tively. Discussion of the Interim Report and of the format of the
Final Resort. Attendees: representatives from the EPA offices in
Corvallis, Research Triangle °ark and Atlanta, FP&L, The Marley
Company and ESC.
August - September, 1974: Reduction of the recently acquired and
examination of all airborne sea salt concentration and airborne
sea salt deposition flux data.
119
-------
September - November, 1974: Reduction of the recently acquired and
examination of all PILLS, SP and IK data.
October 1, 1974: Delivery of all airborne sea salt concentration data
to EPA.
November - December, 1974: Preparation of the first draft of the
Final Report.
December 21, 1974: Delivery of the first draft of the Final Report to
EPA and FP&L.
April 12, 1975: Delivery of the second draft of the Final Report to
EPA and FP&L.
June 17, 1975: Delivery of the third draft of the Final Report to
EPA and FP&L.
120
-------
APPENDIX B
COOLING TOWER AND POWERED SPRAY MODULES
OPERATIONS LOG
Date Spray Modules Cooling Tower
Prior to Tower was run a total of
Jan- 21 approximately 12 hours by
The Marley Company.
Jan. 21 6 hours
22 1100-1600, 1700-1800 1300-1630
23 ran about 30 minutes
around 1700 1030-1500
24
25
26 1200-1730
27
28
29 1000-1800
30 0900-1900
31 0830-1900
Feb. 1 0830-1910
2 0900-1330
3
4
5
6
7 1130-start 24 hr.
operation
16 off 1000-transformer down
18 1000-1900
19 1045-1730
20 0945-1915
21 0930-start 24 hr. operations
121
-------
COOLING TOWER AND POWERED SPRAY MODULES
OPERATIONS LOG (continued)
Date Spray Modules Cooling Tower
Mar. 18 1300-1900 off 0800
19 1000-1300
20
21
22 0930-0935
23
24
25 0900-0905
26 1100-1500
27 1535-1845
28
29
30 1320-1355, 1530-1940
31 1210-1730
Apr. 8 on 0830
14 0800-2300 transformer down off 0800
17 on 1600
21 off 1640 on 1640
28 on 0900 on 0900
May 5 off 0800 on 0800
13 on 1025 off 1025
19 off 0800 on 0800
26 on 0800 off 0800
June 2 off 1455 on 1455
9 on 0800 off 0800
16 off 0800 on 0800
23 on 0800 off 0800
30 off 1050 on 1050
July 7 on 0800 off 0800
14 off midnight
15 0940-1330
16 0740-1315
17 on 0940
25 off 1515
122
-------
APPENDIX C
AIRBORNE PARTICLE SAMPLER DATA
C-l APS Data
C-2 APS Procedural Background Data
C-3 APS Mesh Background Data
123
-------
SAY
N
;:;Figure 23. Airborne Particle
^ampler station locations.
^Distances in meters.
124
-------
APPENDIX C-l
APS DATA
125
-------
FORMAT FOR DATA PRESENTATION - AIRBORNE PARTICLE SAMPLER DATA
Note: For more detailed descriptions of column headings see text
Section VI "Formats for Data Presentation".
ST #
PHI
C
VOLUME
NET SODIUM
TIME
WINDSPEED
WIND DIR
Identification of APS sampling station location.
Apparent atmospheric sea salt concentration, ug/m3.
Comment code:
0 - good run
1 - sample caught in light rain
2 - sample caught in heavy rain
3 - possible contamination due to insects on the
mesh-pair.
4 - possible contamination from dust.
5 - other comments or a combination of the coded
comments; supplemented with a written footnote.
9 - whitecaps on the bay.
Volume of air sampled by the mesh-Dair for the
run, m3.
Total sodium as verified by chemical analysis
minus the average procedural background for the
mesh pair, ug of sodium.
Time of day at the start and end of a run.
(Note: daylight samoling only.)
Average wind speed measured for one minute at
the start and end of a run, km/hr.
Direction from which the wind is blowing at the
start and end of a run, reoresented by integers
from 1 to 16 corresoonding to a 16-point wind
rose with 1 as north, 5 as east, 9 as south, and
13 as west.
126
-------
DRY BULB TEMP & DIFF
RELAT HUMID
COOLING DEVICE CODE
Dry bulb temperature and the difference between
the dry bulb and wet bulb temperatures measured
at the start and end of a run, °C.
Example: Run #1, station #3. Tdry (start)=31.1°C,
Twet (start)=27.8°C, Tdry-Twet=3.3*C; therefore,
DRY BULB TEMP & DIFF =31.1 I 3.3.
Relative humidity at the start and end of a run,
0 - no cooling device operating.
1 - cooling tower operating.
2 - spray modules operating.
Note: Input data for all runs were checked at least twice and found to
be correct. Input for runs containing results which appear to be "out
of line" with concurrently-acquired data at other station locations were
checked again for correctness, therefore, no written footnote to this
effect will be included.
127
-------
IM
00
RIJMH
ST
*
3
4
5
6
PUN«
ST
4
5
RUN*
ST
1
3
4
5
1
PHI
li. IB
0.54
0.94
3.54
?
PUT
5. (11
4. If.
3
PH!
7.21
7.15
6.69
7.00
6.7?
HATE: F/24/n CrrL
r
2
i
V-ILIIMC
190/1
2P7.3
403.3
313.3
NET
11.0
47.5
116.3
339.3
INT, JEVICF
TIMF
START /END
1104/1306
1031/1332
955/1403
1240/1553
naTP: P./24/73 COOLING TFVICF
C
0
0
PUT
r
0
0
0
0
n
VOLUME
111.6
125.0
F: fl/25/
VPl JME
151. h
127.5
291.5
14 H. 6
416.9
NFT
SODIUM
171.3
155.3
71 C'lOL
NTT
142.3
275.3
597.3
747.3
899.3
TIME
STA1T/ENP
1541/1650
1520/L633
INC, OFVICF
| | Sd C
1301/1439
1311/1429
121 't /1 5 1-7
1146/1532
UP3/1544
cmc-=o
WINUSPEED
STAP T/CNO
19. 4/ 6.4
14.6/20. 8
10. 4/17.0
R. 0/18. 8
CPDE=0
WINDSPEED
START/END
22.0/16.4
22.1/14. I
cnnf=o PRFC
WINOSPf-ED
START/FND
12.2/11.5
12.2/11.5
16.4/17.7
l'J.l/17.8
16.7/14.1
WIND DIR.
START/END
8/ 7
>/ 6
7/ 7
7/ 6
WIND DIR.
START/END
5/ 6
5/ 5
ISION RUN
WIND DIR.
START/END
6/ 6
hi 6
7/ 8
7/ 7.
5/ 6
DRY BULD TE»1P C
START/END
31. 1C 3.3/30.0C
31. 1C 3.3/31.7C
31. 1C 3.3/32.8C
32. BC 4.4/30.0C
DRY BULB TEMP C
START/END
30. 6C 2.2/29.4C
30. 6C 2.2/29.4C
ERROR= 3.1*
DRY BULB TEMP C
START/END
30. 6C 3. 3/31. 1C
30. 6C 3. 3/31. 1C
31. 7C 3.9/J1.1C
31. 1C 3.3/31.7C
31. 1C 3.3/32.2C
DIFF
1.7
2.8
4.4
1.7
DIFF
2.2
2.2
DIFF
3.
3.
3.
3.
3.
RELAT
HUMID
77/88
77/81
77/71
71/88
RELAT
HUMID
85/84
85/84
RELAT
HUMID
77/77
77/77
74/77
77/78
77/75
-------
» UN*
I
2
3
4
5
A
owl
f. .03
5.12
5.IS
5.5fl
5.T3
0
n
o
:: f/27/73 C,'
VI Uf-'r M^T
537.7
6 I ? . 3
M7.3
'.85. 3
(.00.3
•3.15.3
TIME:
rrnE=o
PRECISION RUN fcRROR= 7.3*
1314/17*3
WINDSPPED
WIND DIP.
STAFT/EMD
17.6/20.1
1 f.b/20. I
22.1/18.0
If.. 6/18. 8
12.8/13.7
14.6/15. 1
3/ 4
3/ 3
3/ 3
DRY BULB TEMP. 6 OIFF RELAT
START/END HUMID
31.lt ^.9/29.4£ 3.3 74/77
31.IF. 3.y/29.4C 3.3 74/77
30.5C 3.3/28.9C 2.8 78/80
32.8C 3.9/29.4C 3.3 75/77
32.26 3.9/28.9£ 2.8 75/80
31.1C 4.4/31.U 3.9 71/74
ro
to
ST
FUJ
NET
cnor=o PRFCISIHN RUN ER<>nR = ii.9i:
WIIMD5PFE11
STA*T/«END
1
2
3
4
5
5.
5.
5.
5.
5.
?6
"ft
34
SO
12
0
0
n
0
n
24-2.
?27.
37R.
40?.
516.
fi
5
7
1
3
3hr'
'tlb
619
677
309
.-<
.3
.3
.3
.3
115t>/1421
1 15-*/l',24
1117/1516
1053/1526
1033/1544
16.3/13.4
16.1/13.4
2-1.8/19.2
15.2/16.6
11.0/13.2
2/
2/
2/
2/
21
2
2
4
4
3
DPY BULK TuMp t 0| FF RELAT
START/LND HUMID
30.6£ 3.0/30.6C 3.9 74/74
30.6£ J.9/30.6& 3.9 74/74
31.1C 3.9/31.7C 4.5 74/71
31.1C 3.9/31.7C 4.5 74/71
30.OC 3.3/32.8C 5.0 78/68
-------
s T
4
s
,\Tr :
r v:un-
21.1
77.0
S1DIUM
START/FND
nor/1120
CTif =0
A'I \DSPFED
STAKT/FND
TO.
lfl.6/20.5
WINO DIR. D«Y BULB TPMP C 01 FF PFLAT
STAH/FND STAPT/FNO HUMID
6X 8 30. 0£ 2.2/2A.7C 0.0 85/99
6/ 8 28.9C 2.8/26.7C 0.0 80/99
«
I
3
5
6
7 r»ATr:
PUT C
1.13 0
3.lfl o
2.77 0
?.ft4 n
1.61 0
IP 0.0
173.^
2S2.0
11 4.2
CTLIN-.
NCT T
172.3
PPi
352.3
24?-.1
11^3/1335
:isnKJ RUN
MINI) DIR.
START/END
13.5/14.2
11. -5/14. 2
18.6/21.9
17.3/18. 7
14.3/22.1
17.3/16.4
7/ 7
If 7
7/ d
7/ 7
5/ 6
If 7
OPY BULS TFMP e OIFF RFLAT
STABT/END HUMID
10.6C 3.4/31.1S 3.3 77/77
30.6f. 3.4/31.1C 3.3 77/77
30.OC 3.1/31.7£ 3.9 78/74
30.OC 3.3/31.16 3.9 78/74
31.1C 5.5/31.0C 3.8 64/74
27.8C 2.2/31.1C 3.9 84/74
-------
narr:
OEVICE COOE=O
PRECISION PUN EPROR= 3.OH
T
*
1
2
3
4
5
DHI
5.rif>
5.71
5.01
5.69
s.'.n
r
i
r>
0
0
n
V3LU«"
ltd.S
158.?
309.0
323.1
380.3
HFT
SODIUM
?87.3
277.3
D59.3
562.3
652.3
TIM?:
START/FND
1224/140P
1233/1404
1125/1431
lll?/1440
1055/1447
WTNOSPEED
START/END
14.5/16.3
14.5/16.3
19.2/15.3
16.6/14.6
11.8/16.7
WIND DIR.
START/END
S/ 6
6/ 6
6/ 7
6/ 6
5/ 5
DRY BULB ~EMP 6 OIFF RELAT
START/END HUMID
28.9C 2.3/30.0C 3.3 80/78
28.9C 2.a/30.0£ 3.3 80/78
28.3C 2.2/30.66 3.4 84/77
28.3t 2.2/30.0& 2.2 84/85
27.8t 2.2/30.6C 2.3 84/84
IJ'I*
DAT:
-------
?UM«
ST
ft
1
7
3
4
5
6
i in
PHI
0.69
n.7f>
0.61
0.62
n.si
0.56
niTc: q/iu/73 CPPI
r
0
0
0
0
0
n
VM.U»ii
183.1
169.6
3*3.8
37d.O
*7*.7
393.5
NET
SfTMUM
38.6
36.6
63.7
71 .5
7*. I
67.9
irv> ')£vicp cmc=o PRECISION RUN
TIME
START/END
1128/1318
1132/1320
1009/13**
950/1353
*>?*/ 14-00
10*7/1*52
V»ll»DSPEEn
START/FNP
10.8/15.3
10.K/15.3
13. */!*.*
•a.3/11. 7
9.0/ 5.8
14. */10.2
WIND DIR.
START/END
15/1*
15/1*
15/1*
13/1*
13/15
12/1*
DRY BULB TEMP G DIFF RELAT
START/END HUMID
32.2£ 5.6/33.9C 6.7 65/60
32.2G 5.6/33.9& 6.7 65/60
30.6£ 3.3/33.9C 6.7 77/60
29.*£ 2.2/35.0E 7.2 8*/57
28.3C 1.7/3*.*£ 7.2 88/57
32.26 5.0/33.9C 7.2 68/57
u>
ro
RUN*
ST
*
1
7
3
*
5
6
11
PHI
1
I
1
1
1
n
.66
.OR
.33
.'0
.31
.16
DATC: 9/11
C
0
0
0
0
0
n
vui:
16.
13.
?in.
263.
2*0.
»35.
ME
7
2
H
6
0
I
/73
NF
S-'Ol
**
4?
99
06
96
128
CPOL
T
IJ
.
.
.
.
.
.
V
1
9
1
6
6
3
ING DEVICE
TIME
STA^r/FMD
1321/1*17
133J/1*19
1236/1*38
l?n/l**7
1150/1*56
1108/1529
fODF=0 PPEC
WINDSPEEO
STA9T/F.ND
31. 6/2*. 7
31. 6/2*. 7
17.5/27.5
17.8/26. 8
17.8/18.7
18.7/??.l
ISION RUN
WIND DIR.
START/END
13/1*
13/1*
13/13
12/1*
12/13
12/1*
DPY BULB TEMP £ DIFF RELAT
START/END HUKID
31.l£ *.4/10.06 3.9 70/74
31.1£ *.4/30.06 3.9 70/7*
30.0£ *.*/30.0£ 5.0 70/67
28.96 3.9/30.06 *.* 73/70
28.36 3.3/29.*£ *.* 76/70
30.66 3.9/28.96 3.9 7*/73
-------
BUN*
ST 1
I
2
3
4
5
1?
>MI
.15
.21
.26
.17
.22
DATE: 9/1
C VUUMF
0 163.7
3 159.2
3 301.7
0 366.8
3 4?2.6
CnnLING OFVICE COPF=0
PRECISION RUN ERROR=10.5*
67.9
59.1
116.3
Ml. 3
157.3
MME WINOSPEED WIND DIR. DRY BULB TEMP C OIFF RELAT
START/END START/END START/END START/END HUMID
1214/1354 8.5/ 9.7 7/ 7 3l.lt 3.9/31.7C 4.4 74/71
1216/1356
CO
BUN* 13
ST
«
1
2
3
4
5
PUT
1 .80
1.86
1.25
1.R6
1.78
n«TE: 9/13/73 COOL I NO DEVICE CCDE=0 PRECISION RUN
r
0
n
0
0
0
VOLUME"
175.1
174.2
300.5
362.7
409.3
NFT
SODIUM
96.6
99.3
115.3
206.3
223.3
TIME
STAOT/FNH
1158/1350
1200/1352
1057/1414
1035/1426
1010/1439
WINDSPFED
START/END
5.4/ 7.9
?.4/ 7.9
7.6/11.8
8.0/13.3
9.9/in.O
WIND PR.
START/END
6/ 7
6/ 7
6/ 6
5/ 9
5/ 9
=' 3.3*
DRY BULB TFMP C DIFF RELAT
START/END HUMID
30.6C 3.3/33.3C 5.0 77/68
30.6t 3.3/33.3C 5.0 77/68
30.6C 3.3/31.1C 3.9 77/74
30.6C 3.3/31.1C 3.9 77/74
31.7f. 3.3/31.7C 5.0 78/68
-------
?UN* 14
9/14/7-*
. ING TfviCE cnnE=o
PrECISIQN RUM ERROR* 7.7?
ST
n
\
7.
3
4
5
6
I'HI
1 .15
1..17
1.16
1.16
I. 10
1.07
r
0
n
0
0
0
n
VQLLIMF
82.3
df'.D
746.5
365.4
411.1
214.3
NET
<;inil|M
29.1
2ft. 1
87.o
129.3
138.3
70.4
TT*F
START/END
1314/1405
1317/1408
1141/1428
1104/1452
1O46/1501
1225/1440
WINDSPEEO
START/FNO
16. 2/ 8. 1
16. 2/ 8.1
10.5/18.1
11.8/14.8
10. O/ 8.3
H.8/12. 7
MIND PIR.
START/END
10/11
10/11
10/12
10/12
8/11
10/11
DRY BUL1 TEMP 6 DIFF RELAT
START/END HUMID
32.86 5.6/32.86 6.7 65/59
32.86 5.6/32.86 6.7 65/59
32.26 5.0/33.36 6.1 68/62
31.16 4.4/33.36 6.1 70/62
31.76 5.0/33.96 6.7 68/60
31.76 5.0/33.96 6.7 68/60
RUNff 15
?T
*
1
2
1
4
5
PHI
?.7?
1.71
1.44
1.4?
1.70
HftTr:
r
O
0
'1
n
0
VTl
87
P6
\ 7(j
231
283
9/17/73
n-r
.5
.->.
.7
.4
.P
NE
SODI
72
45
78
100
147
COOL
T
(|v.
.n
.1
.1
.3
.3
ING DEVICE C3PE=0 PRECISION RUN ERROR=37.1*
TIMF
STAST/fND
1421/1518
1425/1520
1346/1539
132R/1548
130J/1558
WINOSPFED
START/END
12. I/ 9.1
12. I/ 9. 1
1?. 5/17. 7
15.4/16.0
10.2/13. 9
WIND DIP.
ST ACT/END
9/LO
9/10
8/10
9/ 8
10/10
DRY BULB TEMP 6 DIFF
STAFT/ENO
32.86 6.1/31.16 4.4
32.86 6.1/31.16 4.4
32.26 4.4/30.66 5.0
31.76 3.9/30.66 3.9
32.26 5.0/30.66 3.9
RELAT
HUMID
62/70
62/70
71/67
74/74
66/74
-------
ST
U
\k
PHI
PATE: 9/18/71 COOLING DEVICE fODE=0
PRECISION RUN ERROR=45.0%
VCl-U^F
NE:
WINDSPEED
UM
WIND DIR.
START/END
I
?
3
4
5
?.S5
6.45
2.73
3.04
2.65
0
0
0
0
0
fto.o
60.4
143.9
199.2
?55.4
65.1
119.3
120.3
185.3
207.3
130f/1345
1301/1347
1232/1407
1213/1418
1154/1428
16.4/13.0
16.4/13.0
9.6/18.3
5.5/15.4
6.1/13. 1
8/
8/
9/
9/
R/
8
8
8
8
9
DRY RULB TEMP C DIFF RELAT
START/FNO HUMID
32. 2t 5.6/31.1C 4.4 65/70
32.2E 5.6/31.U 4.4 65/70
32.2t 5.6/32.26 5.0 65/68
31.7C 5.0/32.8C 5.0 68/68
31.76 5.0/32.86 5.0 68/68
"UN* 17
OA
9/19/73 COOLING JCEVICF CGDL-0 PRECISION RUN ERROR= 4.OX
T PMI r
VOLUMC
Nc
T
T IMC
* jnC>IUM STA3T/ENO
1
2
3
4
5
6
3.
3.
2.
1 .
2.
1.
13
?6
42
flf»
05
66
0
0
0
n
0
0
117.1
110.4
279.8
334.6
397.5
492.0
112
110
207
184
249
249
•
•
•
•
•
•
3
3
3
3
3
3
I25i/I409
1258/1410
1215/1518
1154/1528
1136/1539
935/1443
WINOSPEEC
STAU/END
] 1.1/12.5
11.1/12.5
S. 8/20. 6
10.3/22.3
9.7/10.4
4.9/10.6
WIND DIR.
START/END
8/
8/
8/
3/
9/
8
8
8
7
9
9
DRY BULB TEMP 6 DIFF RELAT
STAPT/END HUMID
32.26 5.6/32.26 5.0 65/68
32.26 5.6/32.26 5.0 69/68
32.26 7.2/32.26 4.4 56/71
31.76 7.2/32.26 5.0 55/68
32.26 7.2/32.86 6.1 56/62
30.06 5.0/32.86 7.2 67/56
-------
»un# IB
ST PHI
HATE: 9/20/71
r .inL j NG n<=vlcc COPC =0
PRECISION RUN
1
2
3
2.44
2.40
2.16
2.01
0
0
0
0
0
221 .5
210.5
245.0
NFT
SODIUM
165.3
161.3
?<37.6
162.3
183.3
TIME
STA3T/FNP
1121/1341
1125/1343
1017/1310
953/1256
WINOSPEED
START/ENO
8.5/11.6
8.5/11.6
fl.4/13.1
8.T/10.7
i- . 3/ 'i.l
WIND DIP.
START/END
4/ 5
4/ 5
3/ 5
3/ 5
3/ 3
1.5*
DRY BULB TEMP C DIFF RELAT
STAPT/END HUMID
31. 1C 4.4/31.7C 5.6 70/65
31. 1C 4.W31.7C 5.6 70/65
30. OC 3.9/31.7C 5.0 74/68
30. OC 3.9/31.7C 5.6 74/65
31. 1C 5.0/32.2C 6.1 67/62
PIJNff 1Q
ST PHI
K
1
2
3
4
5
2. 30
3.13
2.65
2.3.1
2.13
DATF: 9/20/73 CPPL I NG n«=VICE CODF=0 PR EC
C Vl3LUvc '4rT TIMF KU'DSPEED
0
0
O
n
0
78.5
78.5
U9.4
211.7
?(S0.7
«noiUM
69. ft
75.3
137.3
149.3
174.3
STA1T/FND
1343/1437
1350/1439
1325/lblfr
1313/1527
125J/1537
START/END
11.6/14.9
11 .6/14.9
13.1/16.0
10.7/14.6
9.1/17.0
ISION RUN
WIND DIR.
START/PND
5/
5/
•>/
5/
3/
5
5
6
5
6
EPROR= 7.6?
DRY BULB TE*» £ DIP
STA"»T/ = ND
31. 7C
31. 7C
31. 7C
31. 7C
32. 2C
5.6/31.7G
5.6/31.7C
5.0/31.7C
5.6/31.7C
6.1/30.6C
5.6
5.6
5.0
4.4
3.9
RELAT
HUMID
65/65
65/65
66/68
65/71
62/74
-------
RUN* ?n r»ATC: 9/21/73 CODLING DEVICE CPOE=0
PRECISION RUN ERROR= 4.9*
ST
*
1
2
3
4
5
PHI
C
VOLUME
HE
T
SODIUM
3.26
3.10
2.51
2.07
2. IS
0
0
0
0
0
240.
241.
258.
313.
342.
S
8
4
5
4
240
229
198
198
225
.3
.3
.3
.3
.3
TIME
START/END
H4?/1412
1144/1413
1055/1357
1030/1346
1009/1336
WINDSPEEO
START/END
14. 5/13.
14.5/13.
13.2/17.
8.0/16.
6.4/ 9.
5
5
1
0
9
WIND OIR.
START/END
4/
4/
3/
3/
3/
5
5
5
4
4
DRY BULB TEMP £ DIFF RELAT
START/END HUMID
30.OC 4.4/30.6t 3.9 70/74
30.OC 4.4/30.6C 3.9 70/74
30.OC 3.9/31.1C 4.4 74/70
28.9C 3.3/31.1C 5.0 77/67
28.9C 2.2/31.7C 5.0 84/68
9 UN* 21
PHI
DATE: 0/21/73 COOLING DEVICE CCDF=0
PRECISION RUN ERROR= 2.7*
ST
*
1
2
3
4
5
3.R4
3.74
3.54
2.87
2.63
f VOLUME NFT IMF WINDSPEED WIND DIR. DRY BULB TEMP C DIFF RELAT
SPDIUM STA3T/FND START/END START/END START/END HUMID
0 93.9 110.3 1419/1517 13.5/17.6 5/ 4 30.6C 3.9/30.0C 4.4 74/70
0 93.9 107.3 1421/1519 13.5/17.6 5/ 4 30.6£ 3.9/30.0C 4.4 74/70
0 145.0 157.3 1400/1537 17.1/11.8 5/ 4 31.1C 4.4/28.9C 3.3 70/77
0 182.6 160.3 1350/1548 16.O/ 8.5 4/ 3 31.1C 5.0/29.4C 3.9 67/73
0 220.5 177.3 1340/1600 9.9/12.6 4/ 4 31.7C 5.0/28.9C 3.9 68/73
-------
?UN<
ST
#
1
2
3
4
5
6
» ?? DV
PHI C
4.?1 0
4.46 0
4.18 0
4 . f> I 0
3.5fl 0
2.56 0
rF: 9/24/73 COOLING DEVICE COnF=0 PRFCISION RUN ERROR= 5.71!
VUlJW.t
60. H
58.?
11-',. 1
231.1
319.5
343.2
NFT
SODIUM
78.3
79.5
212.5
2S3.5
350.5
268.5
TIME
START/END
1333/1411
1335/1412
1245/1440
1223/1449
1130/1455
1044/1428
WINDSPFED
START/FNO
10. I/ 8. 3
10. I/ 8.3
14.6/10.3
15.4/11.9
7.9/10.0
10.9/10.2
WIND DIR.
START/END
10/10
10/10
10/10
8/10
11/16
9/10
OPY BULB TEMP £
START/FND
28. 3£ 2.8/29.4£
28. 3£ 2.8/29.4C
28. 9J. 1.7/28.9£
28. 3£ 1.7/28.9C
28. 3£ 2.8/28.3£
28. 3C 2.2/30.6£
DIFF
2.8
2.8
2.8
2.8
1.7
3.9
RELAT
HUMID
80/81
80/81
88/81
88/81
80/88
84/74
RUN* 23 DATr: 9/25/73 COOLING OEVICF CODr=0
PRECISION RUN ERROR= 2.1?
ST
if
1
?
3
4
5
PMI
1.9R
1 .94
2 .11
? .4 1
1.12
r
0
0
0
0
3
vcLiric
128.2
128.9
1RH.3
43.5
278.3
MFT
SOP HIM
77.8
76.6
134.5
179.5
95.5
T I "IF
STA»T/EM)
1205/1326
1207/1328
1137/1346
1121/1355
110J/1403
WINDSPEED
S7ART/FNP
5.9/10. 1
5.9/10. 1
11.0/12.7
1 3.9/11.7
10. 8/ 6.9
WIND OIR.
START/END
9/ 9
9/ 9
12/10
10/ 9
11/10
DRY BULB TEMP C DIFF RELAT
START/END HUMIO
30.6£ 3.9/31.It 3.9 74/74
30.6C 3.9/31.1C 3.9 74/74
31.1C 3.9/31.76 5.0 74/68
30.6C 3.3/31.7C 3.9 77/74
28.9t 2.8/31.1C 4.4 81/70
-------
0/26/73 COOLINO DEVICE CODE=0
PRECISION RUN ERROR= 2.0?
ST
*
I
2
3
4
5
6
PHI
C
VOLUME
NFT
SODIUM
3.43
1.50
3.01
4.21
4.41
4.06
0
0
0
0
0
0
113.5
11 1.2
228.5
373.9
441.4
390.6
119
121
273
481
596
485
.3
.3
.3
.3
.3
.3
TIME
START/END
1224/1335
1226/1337
1126/1358
1015/1410
950/1422
1045/1455
WINDSPEED
START/END
11
11
17
15
12
13
.9/11.
.9/11.
.3/13.
.5/13.
.3/17.
.5/14.
2
2
4
7
0
a
WIND DIR.
START/END
6/
6/
7/
5/
7/
6/
7
7
7
6
7
7
DRY BULB TEMP t DIFF RELAT
START/END HUMID
3l.lt 3.3/32.2t 3.9 77/75
31.U 3.3/32.26 3.9 77/75
31.1C 2.8/30.6C 3.3 81/77
30.Ot 2.8/32.2C 3.3 81/78
30.Ot 2.8/3l.7t 3.3 81/78
30.Ot 2.8/31.It 3.9 81/74
COOLINH DEVICE CUDE=0
PRECISION PUN ERROR=28.0*
T
*
1
2
3
4
5
6
PHI
5.34
3.85
9.29
5.64
3.89
5.36
C
0
0
0
1
1
1
VOLUME
134.2
130.2
257.1
35.7
87.5
401.2
urr
SCDIUM
219.3
153.3
731.3
61.6
104.3
658.3
Tplc
STA3T/END
1303/1420
1305/1421
1223/1507
1119/1141
1051/1144
1012/1431
WINDSPEED
START/END
27.6/21.9
27.6/21.9
23.0/20.4
17. I/
12. 3/
9.5/16.0
WIND DIR.
START/END
5/ 5
5/ 5
4/ 5
4/ 5
5/ 5
5/ 5
DRY BULB TEMP t DIFF RELAT
START/END HUMID
29.4t 2.8/28.9t 2.8 81/81
29.4t 2.8/28.9t 2.8 81/81
29.4t 2.8/27.8C 2.2 81/83
30.6t 3.9/ 74/
30.6t 3.3/ 77/
30.Ot 3.3/29.4t 2.8 77/81
-------
ST
#
?S r^ATP: 9/27//3
PM! r VCLM-F
7.19 n 300.5
f- . 9 1 0
J=VICE CCOL=0
756.3
ST
1208/1516
1158/1532
MNOSPEEO
START/END
17.9/15.9
14.9/20.0
WIND OIK. DRV BULB TEMP £ DIFF RELAT
START/END START/END HUMID
3/ 4 30.6£ 3.3/2fi.3£ 3.3 77/76
5/ 5 3l.lt 3.3/28.9E 3.3 77/77
»UN# 77 DAl
«T
It
1
2
3
4
S
6
PHI
1 1.57
1 l.«7
12. 1R
»1.57
12.7''
lO.f.7
r
n
0
0
0
0
0
rF: 9/2C/73 COOLING 3EVICF Cnnf =0 PRECISION RUN
VOLUMF
M.I
61 .2
194. y
253.5
M C.O
''flh.O
MTT
SODIUM
216.3
?24. 3
726.3
98 .3
1246.3
934.3
TIMF
STA^T/ENO
12^5/1243
1207/1245
1113/1321
1048/I33O
1028/1338
957/1259
WINDSPFEO
STArtT/FND
20.0/21.2
20. 1/21.2
17.9/16.3
14.9/17.0
IP. 3/16. 1
15.9/16.7
WIND DIR.
START/END
4/ <.
4/ 4
4/ 5
4/ 4
4/ 4
4/ 4
DRY BULB
START/END
DIFF RELAT
HUMID
29.4£ 4.W29.*£ 3.O 70/73
29.4£ 4.<»/29.4£ 3.9 70/73
30.OC 4.4/30.6£ 4.4 70/70
30.Ot 4.4/3O.6C 4.4 70/70
30.0£ 3.1/31.1C 5.6 74/64
29.4£ 3.9/30.6£ 5.0 73/67
-------
»UN» 2B
ST iP'HI,
'1
2
'3
A
5
5.53
5.60
7.19
'6.19
6.18
0
0
0
0
0
: 10/ 1/73
VOLUME
68. 4
170. 1
COOLING :i = VICF CODF=0
?87.6
117.3
3741-3
4 20'. 3
544.3
S-TlAU'T'/EN'D
1136/1221
'1O52VX124'6
1035/1 258
1014/1309
WINDS'P'E'IED
START-/ END
1 8.2715. 3
18.2/15.3
PRECISION RUN ERRHRv 0..4X
bRY.'^BULB
WIND" DIR.
STA'RT/END
6V 7
6/ 7
"6V
6
'
13.4/18.9
5/ 6
29.4C 3.9/3vl.TC 6.7
29.4£ 3.9/31.76 6.7
30. Ott M!4/3'OlJ.OC 3...9.
'30^. 0£ 5 ; O/TO". 66 3V9~
30.06 3.3/31.16 4.4
T3X56
73./W
I.
67/7%
77/70
RUN* 29 nATF: 10/ 1/73
ST PHI-- C VOLJMF
COOLING DEVICE COPF.=0
T
SODIUM
PRECISION RUN ERROR= 4.2?
WIND'DIR. DRYVBULB JTE HPJ 6 BIFF RELAT
STAOT/ENI3 S^ART/END STAR'T/END START/END' HOHID
31'.76 6.7/29.^6 4.$ 58/70
31.76 6.7/29.46 4.4 58/70
30.06:3.9/31 Vlt 5.0 7*767
30i'6E 3.9/30VO6 3;9 74/7*
31.16 4.4/30.66 3.9 70/74
1
2
3
4
5
6:71
6.43
8.78
7.89
8.31
0
0
0
0
n
105".7
101.8
127.3
127.2
130.6
21713
200.3
•342 '.'3
307.3
332.3
1226/1331
1228/1333
1251/1415
1303/1424
1314/1432
15.3/25.4
15.3/25.6
lV.5/12i;l'
16.4/17.1
18.9/16.3
11
11
6/
6/
6/
6
6
6"
'5''
6
-------
ST
H
I
?
3
4
5
30
ouf
i).\Tf: in/
C vi I!'
-------
?Ufi«
ST
It
I
2
1
4
5
' 32
mi
2.70
?. 71
0.82
0.45
0.?7
na-
C
0
0
i
2
2
Tf. 10/ 3/73 f.-ir>i
VOL'JME NCT
13<5.0
137.0
193.2
209.5
231.2
sooiti'1
115.3
114.3
40.5
29.0
19.0
.ING DEVICE Cnr>F=0 PFEC
TIME KINDSPEED
START/END
1221/1350
1224/13*2
1123/1329
1'100/1317
1043/1304
START/END
11.3/11.6
11.3/11.6
10.9/11.0
12. O/ 8.3
9.4/ 6.1
I SIGN RUN
WIND DIR.
START/FND
5/
5/
4/
3/
3/
4
4
^
4
2
ERROR= 1.2*
DRV BULB TEMP C
DIFF
START/END
27. 8C
27. 8C
29. 4t
29. 4C
30. OC
2.8/27.8G
2.8/27.8C
4.4/28.9C
3.9/27.26
3.9/27.2C
3.3
3.3
2.2
2.2
RELAT
HUMID
80/76
80/76
70/69
73/83
74/83
?un«
ST
a
3
4
5
33
OAT?: in/ 3/73
PHI f VHLUMf
2
?
2
.76
.45
.36
0
n
0
74
116
162
.7
.2
.1
sr«r)I
63
87
117
COILING HEVICF CTDE=0
T
UM
.0
.2
.3
TI-IE
STAUT/FNH
1333/1423
1321/1436
1310/1447
START/END
11.0/12.2
B.3/ 7.6
6. 1/ 9.2
WIND r
START/
4/
4/
2/
)I
'E1
5
3
4
DRY BULB TEMP t DIFF
28. 9£ 4.4/28.3C 3.3
27. 2C 2.2/28.3C 3.3
27. 2£ 2.2/29.4C 4.4
RELAT
HUMID
69/76
83/76
83/70
-------
PU'ifr JA n-VTc.. 10/ a/7T CTLING DEVICE Crrr=0 PRECISION RUN
ST
*
1
2
3
4
5
6
PHI
2.^1
2.41
2.1"
2.13
1.10
2.01
r
0
n
rt
0
1
;)
vomur
llfr.4
io«.o
09.2
12'). 5
207.4
145.7
NFT
^nillM
82.2
79.7
59.7
78.5
116.3
89.7
TIMF
STA3T/END
1546/1658
1551/1700
134)/1'»37
1313/L429
1125/1421
1234/1408
WINOSPEED
START/END
1 '*. 1 /I 3. 7
14.1/13.7
17.3/11.2
16.7/18.4
1A.I/IA.9
13. O/
WIND DIR.
START/END
7/ 6
7/ 6
8/ 7
6/ 5
7/ 6
5/ 6
DRY BULB TEMP £ DIFF RELAT
START/END HUMID
28.Ot 3.5/28.06 3.0 75/78
?8.0C 3.5/28.0C 3.0 75/78
30.OE 4.0/28.6E 3.4 73/76
30.0£ 4.0/29.0C 3.3 73/77
30.Ot 2.8/29.0C 3.0 81/79
31.1C 4.4/ £ 71/
PUN* 35 HATE: 1O/ 9/73 COOLING OcVICC CCDE=0
PRECISION RUN ERROR= 3.7*
T
*
I
?.
3
4
5
6
PHI
I. 66
1.7'
3.^3
2.12
2.80
1.?3
C VnLU.'-T
0
0
"I
0
O
1
8°
17
."'C )
?f-. 7
323
2HO
.7
. ^
.3
.1
.3
.5
NET
SHDIU«
45.5
46.0
213.3
230.3
277.3
277.3
TME WINOSPEF.D
STA^T/fcND
1414/1511
1410/1513
1318/1531
1255/1543
1235/1553
113W1434
S T
10
10
?0
11
10
13
APT/FND
.5/ 8.
.5/ 8.
.8/ 9.
.5/10.
.9/ 9.
.3/ 6.
2
?
6
8
8
9
WIND DIR.
ETART/CND
5/
5/
7/
4/
5/
2/
5
5
5
5
5
6
DRY BULB TEMP £ OIFF RELAT
STAPT/END HUMID
28.0£ 3.7/28.4£ 3.4 74/76
28.Ot 3.7/28.4t 3.4 74/76
29.2E 3.6/29.BC 4.0 75/73
29.8E 3.6/29.8t 4.2 75/72
30.5t 3.9/30.0£ 3.8 74/74
28.6£ 3.3/29.5£ 4.5 77/69
-------
'UN*
ST
4
I
7
3
PHI
3.01
2.09
3.?6
2. HO
3.01
2.37
DATp: in/in/73
r.
9
9
0
n
o
o
128.4
129.<.
73R.7
P99.2
376.4
273.2
346.5
.5
C IDLING JEVICE CODE=0
TM6
STA-IT/ENI1
1401/1522
1405/1525
1314/1545
1245/1556
122?/1605
1144/1437
llrt.5
1 14.5
23H.5
START/END
.8/19.7
.8/1*.7
.5/20.6
.4/11.0
11.4/17.6
10.7/12.6
15.
15.
17.
9.
I
w
SION RUN ERROR
IND
DIR.
DRY
START/ENO
4/
4/
5/
3/
3/
3/
4
4
4
3
3
3
28
28
29
30
30
30
.
.
.
.
•
.
= 4.1
BULB
*
TEMP
C
DI
FF
START/END
OC
OC
2C
OC
OC
OC
4.
4.
4.
5.
4.
6.
4/28.
4/28.
0/28.
0/29.
8/28.
0/27.
8C
8C
2C
2C
OC
5C
4
4
4
5
4
4
•
•
•
•
•
•
8
8
2
0
0
0
RELAT
HUMID
70/67
70/67
72/71
67/66
68/72
61/72
37
ST
If
,
6
PHI
?3.72
12.09
r
5
0
V!"IHJW
62.3
147.1
: 10/11/73 C:i"LlNG 0-.VICF CCRE=0
NET Tiyc WINDS°EfcP
452.3
544.3
1412/1447
1255/1434
28.4/
20.0/18.8
WIND niR. DRY BULB TEMP C DIFF RELAT
START/END START/Er.'D HUMID
4/ 28.5C 4.7/ C 68/
5/ 3 25.2C 2.0/29.5C 5.9 84/61
rain.
heavy
the sample. Station
-------
HftTF: 10/12/73
CP^LTNr, nSVICE C0nf=0
PRECISION RUN ERROR= 6.84
T
*
1
7
3
4
5
6
PHT
IP. 57
1 7.30
15.57
16. 5T
17.31
16.05
C
9
1
0
0
0
0
VnLU
163.
151.
290.
338.
411.
277.
0
4
0
8
7
2
NTT
SSOIll"
926.5
an i . 5
1381.5
1711.5
?181 .5
1361.5
T IMC
STA3T/ENH
1340/1513
1349/1516
1246/1544
1222/1556
1200/1605
11P5/1417
Wlf.'DSPEEO
START/END
32
32
23
16
20
19
.4/34.
.4/34.
.4/23.
.5/21.
.4/19.
.8/24.
9
9
1
9
5
8
WIND DIR.
START/FND
5/
5/
4/
3/
3/
3/
5
5
4
3
3
4
DRY BULB TEMP £ DIFF RELAT
START/END HUMID
26.2£ 4.2/27.8£ 6.1 70/59
26.21 4.2/27.8t 6.1 70/59
28.66 5.1/27.5C 5.3 65/63
28.5C 5.5/27.7C 5.4 63/63
28.OC 5.4/28.2C 5.5 64/63
28.OS 5.9/27.6C 6.0 61/59
30
PHI
DATf: 10/15/73 COOLING DEVICE CPDE=0
r VJLU^F NFT
PRECISION RUN
D
STATT/END START/END
WIND DIR.
START/END
I
2
3
4
5
6
T.
h.
P.
7.
8.
7.
27
54
47
63
01
25
q
y
n
n
0
0
64
63
195
245
327
375
.4
.6
.4
.5
.9
.4
lt>4
166
506
57?
803
R33
.3
.3
.5
.5
.5
.5
1435/1515
1431/1517
1335/1535
1303/1545
1244/1554
1210/1612
17.6/23.5
17.6/23.5
17.1/15. 2
14.5/19.3
18.3/21.0
14.3/17. 3
4/
4/
5/
4/
4/
4/
5
5
6
4
5
5
3.2«
DRY BULB TEMP £ DIFF RELAT
START/END HUMID
27. 2£ 3.9/27.l£ 4.6 72/67
27. 2t 3.9/27.l£ 4.6 72/67
28. 4£ 5.4/28.2£ 5.6 63/62
29. 0£ 6.0/28.0C 5.8 60/61
28. 8£ 5.8/28.2£ 4.6 61/68
27. 8£ 5.8/27.7E 5.2 61/64
-------
RUN* 40 DATE: 10/16/73 COOLING TEVICE CODF=0
PRECISION RUN FRROR= 1.5*
T
*
1
2
3
4
5
6
PHI
3. TO
3.Qft
4.35
3.73
3.92
3.65
C
0
0
0
0
0
0
VOLUME
59.
60.
166.
209.
282.
352.
6
1
3
8
8
0
NFT TIHC
SODI
71
7?
221
230
330
393
IJM
.1
.8
.5
.5
.5
.5
START/END
1356/1435
1351/1436
131?/1500
1251/1510
1228/1517
1150/1535
WINDSPEF
D
START/END
11.5/14.
11.5/14.
8.2/10.
13.0/12.
12.8/12.
10.2/13.
2
2
6
7
0
7
WIND DIR.
START/END
5/
5/
5/
5/
6/
5/
5
5
5
6
5
6
DRY BULB TEMP fi DIFF RELAT
START/END HUMID
28.Ot 4.5/27.7C 4.7 69/67
28.Ot 4.5/27.7C 4.7 69/67
29.Ot 6.0/28.36 5.5 60/63
28.5C 4.5/28.26 5.4 69/64
29.2t 5.?/28.5£ 4.9 65/67
28.2t 5.5/28.0t 5.0 63/66
^ UJN* 41 fMTF: 10/17/73 CDPLING DEVICE CPDE=0 PRECISION RUN E"ROR= 0.3*
T PHI
r
VOLUME
NET
* S3DIUM
1
2
3
4
5
6
2
2
2
2
2
2
.85
.86
.8R
.57
.83
.60
0
0
0
0
0
0
63.
59.
175.
215.
276.
378.
3
5
3
4
7
7
55
52
154
169
239
301
.3
.1
.5
.5
.5
.5
T I ME
START/END
1337/1416
1339/1417
1245/1434
1222/1443
1207/1452
111'*/ 15 10
WINDSPEEO
START/END
11.0/10.3
11.0/10.3
13. 2/13. R
9.5/11.4
11.5/11.0
11. 3/ 9.0
WIND DIR.
START/END
3/
3/
3/
2/
2/
2/
3
3
4
3
3
3
DRY BULB TEMP t DIFF RELAT
STAPT/END HUMID
29.Ot 4.8/29.26 4.5 67/69
29.Ot 4.8/29.2C 4.5 67/69
28.7t 3.9/28.5t 4.2 73/71
28.7t 4.3/29.2t 4.6 70/69
28.6t 4.1/29.0t 4.5 72/69
28.Ot 4.2/?9.0t 5.0 71/66
-------
n\T<=: io/lS/73
'JjVKE r.LTE=0
PPFCFSION RUN EPRTR= 8.65!
T
*
1
t
3
4
5
6
9
9
0
H
It
6
4
HI
.iS6
.H3
. I 5
.flft
.07
.45
c
0
0
0
0
0
0
vr>LU
60.
f,0.
317.
330.
430.
523.
6
0
9
1
5
3
NFT
srniu
179.
162.
793.
*93.
79«>.
713.
M
-,
3
5
5
5
5
TIMF
STA3T/ENO
1153/1229
1155/1231
1100/1415
104T/142 3
1020/1432
925/ 1449
WINDSPEED
START/END
14.6/18.2
14.6/18.2
24.3/20. 5
20.4/14. I
14.8/15.3
1 7.3/14.3
WIND DIR.
5TART/FND
4/
4/
4/
3/
4/
4/
4
4
4
4
4
4
DRY BULB TEMP £ OIFF RELAT
START/END HUMID
27.OC 2.2/28.0C 3.1 84/78
27.OC 2.7/28.0C 3.1 84/78
27.8C 3.3/29.0C 4.0 76/72
28.2C 3.7/29.0C 4.0 74/72
20.8£ 3.8/29.5£ 4.0 74/73
28.Ot 4.5/29.0£ 4.0 69/72
*l»N
ST
«
1
» 43
DMT
1H. 46
10.43
D4TE: 10/18/73 COOLING DEVICE CrDt=0 PPFCISION RUN ERPOR= 0.3^!
r
0
3
VOLJMC
lll.O
109.4
NTT
355.3
349.3
STil.-T/CND
1?3')/1343
124 1/1345
STAftT/END
IB. 2/2 2. 7
18.2/22.7
WIND ni<*.
ST^RT/END
3/ 3
3/ 1
DRY RULE
STAR
28. OC 3.
28. OC 3.
TEMP t
T/FND
1/28. OC
1/28. OC
DIFF
3.2
3.2
RELAT
HUMID
78/77
78/77
-------
'U'll 4'» r)AT = : in/??/7T rn''l
C T
H
I
?
3
4
5
6
PUT
17.1 1
li).^ 5
6.<>S
7.60
5.09
5.04
r
7
7
?
2
2
2
VLH-F
167. i.
161 . 7
2^7. 5
2?4.9
34B.4
555.6
IT -
sen i ii"
fl-12.3
507.3
SQQ .5
662.5
542.5
057.5
.IMG i'fvir.p cnor:=o PRECISION HUN FRRnR = 4i.r*
*\-'~
STAPT/FNO
132S/1500
1324/1501
1225/1515
1219/1523
1205/1529
lOO'l / 1547
WlfiDSPFED
START/END
19. O/
10. O/
35. 2/
18. 3/
17. 7/
14.5/21.9
WIND OIK.
START/END
2/ 2
2/
2/ 2
2/
2/ 2
2/ 2
DRY BULB TrMP
STA"T/FNO
27. 3G 1.3/
27. 3C 1.8/
28. OC 2.5/
29. OC 3.2/
28. 8C 3.2/
28. 4C 3.4/28.
C
C
C
C
C
C
8C
OIFF
3.3
RELAT
HUMID
36/
86/
82/
78/
78/
76/77
3
-------
»IJN# 46
ING OEVICC CODF=0
PRECISION RUN F.RR3R = 0.83!
ST
*
I
?
3
4
5
6
OHI
11.79
1 1 . 70
11. r>'
9 .P9
10.21
9.79
r
3
0
0
n
0
0
VDLUVP
147.6
145.9
281.4
28?. 6
^74.7
438. H
•irr
snijim
532.5
522.5
992 .5
fi55.5
1 1 70.5
1315.5
TIMS
STA3T/ENO
120W1336
1209/1338
1113/1405
105-3/1413
103 J/1421
1007/1438
WINDSPEED
START/END
13. O/ 9.8
13. O/ y.8
17.2/11.4
14.4/10.9
10. 7/ 7.6
1 3.9/12.6
WIND DIR.
START/FNO
16/16
16/16
16/ I
15/16
16/15
16/16
DRY BULB TEMP t DIFF RELAT
START/END HUMID
27.0£ 4.0/27.2t 5.2 71/64
27.OE 4.0/27.2C 5.2 71/64
26.2£ 3.7/27.PC 4.6 73/67
26.OC 3.7/28.0£ 5.2 73/6b
25.3E 2.9/28.5E 5.7 78/62
24.8t 2.5/28.4C 6.9 80/55
47
HATF: 10/25/73 CIPIIMC TEVICT CODE=O
PRECISION RUN ERROR= 2.3-8
T
4
I
2
3
4
S
6
rn
I
r
VLl'"r NE T TT-4,- WINDSPEED
F^DIU" S'"a°T/CND START/END
8.
8.
S.
5.
8.
8.
S7
37
12
^8
^T
^l
3
3
0
0
4
0
157.
160.
? J5.
?in.
?£2.
277.
7
9
1
7
3
T
41?
412
572
4Oi'
6t>(
^92
.5
.5
.5
.5
. 5
• *
1235/1411
123^/1417
1145/1353
1 ll'«/1342
1055/133"
1021/1310
15.4/10.
15.4/10.
14.4/16.
12.4/13.
11. 11 9.
12. 3/ 8.
0
0
4
2
8
2
WIND 01*.
START/FND
16/16
16/16
16/16
16/16
15/16
16/16
DPV BULB TEMP £ DIFF RELAT
START/END HUMID
26.2C 5.0/27.7C 5.7 64/61
26.2C 5.0/27.7C 5.7 64/61
26.OE 4.7/27.6E 5.8 66/61
26.3E 4.6/27.5E 5.7 67/61
25.OE 4.0/27.4E 5.4 70/63
24.5E 4.5/27.6E 5.6 66/62
-------
nftTF: 10/25/71
<5T
4
1
?
3
4
5
6
PHI
6.) 3
5.8T
13.19
-0.05
5.47
6.50
r
0
0
0
0
4
0
V?t 'JMC
215.5
203.0
266. V
263.4
352.4
142.0
NET
Si-Dill*
40
362.5
1077.5
-4.0
590.5
282.5
T J^C
STfi^^/END
14l=i/lt>25
1421/1627
1357/1645
134W1652
1335/1704
1313/1440
w INDSPEFD
STAPT/ENn
10. 0/ 8.8
10.0/ 8.8
16. 4/ 9.0
13.2/11.4
9.8/10.4
8.2/ 9.2
WINO OIR.
START/END
16/16
16/16
16/16
16/16
16/16
16/16
nPY BULB TEMP £ OIFF RELAT
START/END HUMID
27.7£ 5.7/27.06 5.5 61/61
27.7£ 5.7/27.0& 5.5 61/61
27.6£ 5.8/27.8£ 6.3 61/58
27.5£ 5.7/27.5£ 6.5 61/56
27.4£ 5.4/27.4£ 6.8 63/54
27.6£ 5.6/28.0£ 6.0 62/6O
10/26/73
fOOF=0
PRECISION RUN EFRPR= 0.3*
T
*
I
2
1
4
5
6
PHI
10.47
10. «0
13.71
ii.no
11.55
9.61
C
0
0
0
0
3
0
V-IL
338
329
186
216
295
41?
UME
.7
.9
.0
.6
.7
.1
•ICT
SC'DIU"
10R5.5
1060.5
780.5
782.5
1045.*
1220.5
T IMP
STA*T/FIMC
1301/1628
1305/1630
1235/1433
1211/1448
120ft/1504
1 14?/ 1600
WINOSPFED WINO DIR.
START/FND
14.
14.
19.
9.
13.
9.
0/11.
0/11.
9/18.
2/14.
0/13.
1/10.
1
1
8
0
2
4
START/END
2/
2/
2/
2/
2/
2/
4
4
3
3
3
3
DRY BULB TEMP £ DIFF RELAT
START/END HUMID
26.8£ 3.3/26.8£ 4.8 76/66
26.8£ 3.3/26.8£ 4.8 76/66
27.3£ 3.8/27.7£ 4.7 73/67
28.0£ 4.8/27.0£ 5.0 67/65
27.0£ 4.0/28.1£ 5.4 71/64
27.3£ 4.3/27.5£ 5.3 69/63
-------
ST
PUT
HATf: 10/29/73
C VOLUME MET
1
2
3
4
5
6
1 .70
1.72
1 .?7
1.30
1.43
1 .3ft
0
0
3
3
3
3
139.5
137.1'
256.0
365.4
45H.2
555.2
72.7
72.7
99.5
145.5
200.5
231 .5
1206/1335
120K/1336
1107/1354
1057/1519
1047/1528
951/1545
10.4/23.8
10.4/23.8
13.1/10.7
1ft. 9/ 6.4
15. 6/ 7.4
20.3/14. 1
14/15
14/15
15/16
14/15
14/16
15/15
ItVICE COPE=0 PRECISION RUN FRROR= 1.2*
TIMF WINOSPEEP WIND PIR. OPY BULB TEMP
STA^T/FNO START/END START/END START/END
28.56 6.2/27.56 4.8
28.56 6.2/27.56 4.8
27.86 5.6/28.26 5.0
27.86 6.4/28.56 5.7
27.76 5.7/28.36 5.5
26.16 4.3/28.26 5.7
RELAT
HUMID
59/66
59/66
62/66
57/62
61/63
69/62
51
0\TE: 10/30/73
en
ro
COOLING DEVICE CCnE=0 PRECISION RUN ERROR* 1 8.6'*
DRY BULB TPMP 6 DIFF
T
*
I
2
3
4
5
6
puj
3.P3
4.71
5.?3
4.57
3.84
5.0.)
r
3
3
3
3
0
0
VLJJ"."
198.3
194. P
294. t
315.0
451. 7
349.7
Kc T
SOU HIM
232.5
200.5
477.5
440.5
530.5
535.5
T T 1r
STA5T/END
125S/1503
1259/1504
1205/1524
1149/1533
1103/1543
1041/1422
WINOSP^ED
STA-«VFND
16. 5/ 9. 1
16. 5/ 9. 1
14. a/12. 4
10. O/ 8.9
14. 3/ 7.6
15. 4/ 5.9
WIND OIR.
STAPT/ENO
16/16
16/16
16/16
16/15
16/12
16/16
23. 0£ 5.1/24.2£ 6.2
23.06 5.0/24.26 6.2
23.76 6.2/24.06 6.5
23.36 5.8/24.06 6.7
22.56 5.0/24.36 6.7
22.06 5.4/25.06 6.5
RELAT
HUMID
57/54
57/54
54/52
57/51
61/51
58/53
-------
5?
10/31/73 CYCLING T=VICC CODF=0
PKcCISinN PUN FPROR= 0.3S
T
*
1
2
3
4
5
6
PHI
3. 44
3.^°
3.72
3.78
T&33
2.86
r.
3
T
o
0
0
3
VOUJMF
235.1
238.0
18S.3
?96.7
368.9
431.0
NLT
S 10 I DM
250.5
754.5
136.5
297.5
375.5
377.5
"I "IE
STA3-/FNO
1253/1524
1755/1526
1213/1413
1 103/1474
1049/1432
1015/1448
UIMDSf'FED
START/rrjo
6.0/10.0
6.0/10.0
11.3/15.7
7.6/17. I
7.3/12.8
1.8/11.8
WIMO UIR.
START/EENO
5/ 9
5/ 9
8/10
8/ 9
8/ 9
8/ 9
nPY BULB TEMP £ DIFF RELAT
START/END HUMID
24.8G 3.9/26.0£ 3.2 70/77
24.86 3.9/^6.0C 3.2 70/77
26.lt 4.1/26.AC 3.7 70/73
25.8C 4.0/27.0& 3.5 71/7*
25.OC 4.5/27.2C 3.9 67/72
?4.5C 4.8/26.3£ 3.3 64/76
ui
to
IJM«
T
*
1
2
3
4
5
53
PHI
1.63
1.61
1.7.9
1.39
1.47
n/v
r
0
0
0
0
0
TF: ll/
V1LUM
125.7
129.8
294.1
428.3
543.5
-:EV:CE ccoe=o
62.7
64.0
116.5
182.5
244.5
S-">T/rriD
1114/1237
1117/1238
949/1301
835/1330
613/1345
WI'JOSPPPD
STAPT/fNP
10. 6/ 6.5
10. 6/ 6.5
11.5/11.0
/15.1
2.7/11.1
WIND DIP.
START/END
4/ 6
4/ 6
ll/ 6
5/ 6
I/ 8
1.2*
DRY BULB TEMP £ DIFF RELAT
START/END HUMID
28. 2C 2.0/30.8£ 3.7 85/75
28. 2C 2.0/30.8£ 3.7 85/75
28. OE 2.3/29.7£ 3.0 83/79
29. OC 3.0/29.9C 3.1 79/79
26. 0£ 1.0/30.8C 4.0 92/73
-------
54 HiTT: ll/ 5/7"*
Pill C VOLUME
COCLING OEVICF CDDE=0
PRECISION RUN ERROR= 4.5%
ST PHI C VOLUME NFT T I IE WINOSPEED WIND DIR. DRY BULB TFMP £ OIFF RELAT
* SODIUM START/END START/END START/END START/END HUMID
I 1.90 0 299.9 174.5 1039/1351 8.6/11.0 6/ 8 28.8£ 3.6/29.0£ 4.2 75/71
? 1.99 0 3'1fc.() 186.5 1042/1353 8.6/11.0 6/ 8 28.8£ 3.6/79.0E 4.2 75/71
3 ?.06 0 444.5 280.5 927/1417 8.2/16.7 6/ 8 28.2t 3.1/28.5£ 3.7 76/74
4 l.RS 0 469.2 266.5 90D/1424 8.5/ 9.9 6/ 7 27.2£ 2.7/29.2£ 3.7 80/74
5 1.96 0 585.0 350.5 833/1431 9.0/13.3 5/ 7 28.3£ 3.4/29.2£ 4.0 76/72
RUN* 55
ST PHI
DATE: ll/ 6/73
r vnn
COOLING DEVICE CPDE=0 PRECISION PUN ERROR= 1.0"*
WJNOSPFED
STA'T/ENP
WIND DID.
START/END
I
2
3
4
5
l.?3
1.24
1.14
O.B'*
0.75
0
0
0
n
0
296.3
306.5
471.6
<-69.6
593.2
111.5
116.5
164.5
119.5
135.5
1150/1457
1153/1500
1003/1517
955/1526
944/1536
6.7/11.4
8.7/U.4
13.5/15.5
7.3/11.9
0.5/11.9
3/
3/
3/
2/
2/
3
3
4
4
4
DRY BULB -TETP £ OIFF PELAT
START/END HUMID
28.2£ 3.7/29.0£ 5.2 74/65
28.2£ 3.7/29.0£ 5.2 74/65
27.3£ 2.8/27.8£ 4.3 79/70
27.6R 3.4/28.0£ 4.5 76/69
26.7£ 3.2/27.5£ 3.7 76/73
-------
RUN* 56
ST PHI
*
1
2
3
4
5
1 7.86
18.46
17.53
15.46
15.81
DATE: ll/ 7/73 CGGLING DEVICE CODE=0 PRECISION RUN
C VOLUME NET TIME WINDSPEED WIND DIR.
9
9
0
0
C
267.3
268.3
349.8
352.2
461.6
SODIUM
1461.5
1516.5
1876.5
1666.5
2233.5
START/END
1211/1449
1213/1450
1133/1514
1118/1520
1050/1528
START/END
25.2/20.1
25.2/20.1
14.1/17.8
17.4/12.2
16.3/16.0
START/FND
4/
4/
5/
5/
5/
4
4
4
4
4
ERROR= 3.3*
TOY BULB TEMP 6
DIFF
START/END
26.36
26.36
28.36
27.86
27.66
3.5/26.06
3.5/26.06
4.5/26.36
4.8/26.06
4.4/26.06
3.0
3.0
4.3
4.0
4.0
RELAT
HUMID
74/78
74/78
69/69
67/71
69/71
RUN*
ST
1
2
..3- -
4
5
57
PHI
7.90
7.98
-S.09
8.38
C.53
DATE: ll/
C VOLUME
0 365.5
0 375.1
0 463.7
0 488.1
0 599.1
CCCLIKG DEVICE CODE=0
PRECISION RUN ERROR= 1.0%
NET TIME WINOSPEED WIND DIR. DRY BULB TEMP 6 DIFF RELAT
SCDIUM START/END START/END START/END START/END HUMID
864.5 1040/1433 5.5/ 7.8 4/ 6 27.86 4.3/27.06 4.0 70/71
S16.5 1043/1435 5.5/ 7.8 W 6 27.86 4.3/27.06 4.0 70/71
1269.5 947/1454 10.3/ 9.7 4/ 6 27.26 4.0/28.06 4.0 71/72
1251.- 913/'500 8.2/ 8.3 "/ 7 27.56 3.8/27.26 4.2 73/70
1564.-; 917/1517 10.7/11.2 5/ 6 26.96 3.7/27.06 3.8 73/72
-------
RUN*
ST
1
2
. 3
4
5
58
PHI
5.40
5.70
5.91
5.29
5.64
DATE: 11/1
C VOLUME
0 244.7
0 252.6
.3 306.5
C 334.3
0 391.6
COOLING DEVICE CODE=0
PRECISION RUN ERROR= 5.2*
NET TIME WINDSPEED WIND DIK. DRV BULB TEMP t DIFF RELAT
SODIUM START/END START/END START/END START/END HUMID
404.5 1125/1401 7.2/ 9.9 I/ 3 26.8C 3.5/26.8C 3.1 74/77
440.5 1129/1405 7.2/ 9.9 I/ 3 26.8£ 3.5/26.8C 3.1 74/77
554.5 1105/1423 11.3/14.7 I/ 3 26.8£ 4.0/26.7& 3.2 71/76
541.5 1050/1431 12.6/ 9.2 I/ 3 27.86 4.6/27.2C 3.7 68/73
676.5 1036/1438 9.0/10.5 I/ 3 26.Ot 3.2/26.8C 3.3 77/76
RUN* 59 DATE: 11/12/73 COOLING DEVICE CODE=0
ST
ft
PHI
VOLUME
3 14.56 1 121.9
4 12.31 1 141.5
-.5 ..-9.54 1 . 181.0
NET
SCDIUM
543.5
533.5
52 e. 5
TIME
START/END
MINDSPEED
START/END
1131/1244 27.I/
1110/1240 11.21
1048/1236 14.6/
WIND DIR.
START/END
3/
3/
3/
DRY BULB TEMP I DIFF
START/END
24.5C 4.2/
23.6t 4.9/
24.2C 5.2/
t
t
RELAT
HUMID
68/
63/
61/
-------
RUN* 60
ST PHI
DATE: 11/13/73 COOLING DEVICE CCDE=0
PRECISION RUN EPROR= 2.3*
VOLUME NET TIME WINDSPEED WIND DIR. DRY BULB TEMP 6 OIFF RELAT
« SODIUM STAPT/END START/END START/END START/END HUMID
1 10.79 9 280.4 926.5 1208/1455 23.4/19.4 4/ 4 23. 86 3.3/24.06 3.5 74/73
2 11.05 9 280.3 S48.5 1209/1457 23.4/19.4 4/ 4 23. 8£ 3.3/24. 06 3.5 74/73
3 11.39 0 397.9 13F6.5 1111/1518 26.0/21.1 4/ 5 25.36 4.7/24.66 4.1 66/69
4 9.83 0 419.4 1261.5 1053/1526 17.1/17.5 4/ 4 26. OC 5.0/24.76 3.9 64/70
5 IC.lt 0 498.7 1551.5 1030/1534 14.2/16.3 4/ 4 25.36 4.8/25.06 4.0 65/70
RLN* 61
ST PHI
*
1
2
3
4
5
12.38
12.30
....12.48
1C.7C
11. 08
CATE: 11/14/73 CCCLING DEVICE COOE=0 PREC
C VOLUMF NET TIME WINDSPE5D
0
0
0
0
0
227.9
220.1
298.0
320.2
397.1
SCDIUM
863.5
826.5
1138.5
1048.5
1346.5
START/END
1137/1355
1140/1357
1113/1442
1101/1425
1049/1447
START/END
20.5/21.3
20.5/21.3
14.6/16.2
13.3/13.7
14.6/12.9
I SIGN RUN
WIND DIR.
START/END
5/
5/
5/
•>/
5/
4
4
5
5
4
ERROR= 0.7%
DRY BULB TEMP £
DIFF
START/END
24. 2C
24.2C
26. OC
26. 56
26.06
3.2/24.16
3.2/24.16
4.5/26.06
4.7/28.96
4.8/25.56
3.3
3.3
4.9
7.9
4.9
RELAT
HUMID
75/74
75/74
68/65
66/49
66/64
-------
RUN*
ST
*
1
2
3
4
5
62
PHI
6.75
6.88
£.35
7.36
7.51
DATE: 11/15/73 CCOLING DEVICE CODE=O PRECISION RUN
C VOLUME NET TIME WINDSPEED WIND DIR.
0
0
0
0
0
214.6
206.0
210.6
360. i
421.1
SCniUM
443. 5
433.5
793.5
Ell. 5
968.5
START/END
1103/1315
1107/1317
1030/1349
1015/1403
1003/1415
START/END
10.9/10.4
10.9/10.4
13.8/11.1
14.4/11.9
12.1/13.9
START/FND
6/
6/
6/
6/
6/
6
6
6
6
5
PRROR= 1.8%
DRY BULB TEMP 6
DIFF
START/END
25. 86
25. 8C
26. 6C
26. 5E
26. 8t
3.1/26.06
3.1/26.06
4.1/26.76
4.2/25.56
4.0/25.56
2.8
2.8
3.7
3,0
3.0
RELAT
HUMID
77/79
77/79
70/73
70/77
71/77
RUN* 63
i—
CJ1
00
"
ST
*
1
2
3
4
5
PHI
3.62
3.59
. 5.C4
4.68
5.36
GATE: 11/16/73 CCCLING DEVICE COCE=0 PRECISION RUN
C
0
0
0
0
0
VOLUME
22f. 5
217.2
381.8
407.3
487.5
NET
SODIUM
24P.5
238.5
566.5
563.5
803.5
TIMF
START/END
1243/1501
1245/1503
1110/1517
1100/1524
1044/1533
HINDSPEED
START/END
12.7/12.4
12.7/12.4
11.0/12.4
8.8/14.1
6.1/14.3
WIND DIR.
START/END
5/ 7
5/ 7
4/ 7
5/ 7
5/ 7
DRY BULB TEMP
START/END
DIFF
25. 5£ 1.8/25.8C 2.3
25. 5£ 1.8/25.8& 2.3
27. OC 4.1/25. 3C 2.3
26. 8C 3.3/25.86 2.0
28. OC 5.0/26.0C 2.9
RELAT
HUMID
86/83
86/83
70/82
76/85
66/79
-------
PUN* 64
ST
«
1
2
3
4
5
..6
PHI
4.10
4.17
£.42
7.23
4.03
.2.11
CATE: 11/20/73 CCQLING DEVICE COOE=0 PRECISION RUN
C
0
0
0
0
0
0
VOLUME
242.0
236.3
249.4
258.3
278.2
233.0
NET
SODIUM
303.5
301.5
413.5
571.5
343.5
221.5
TIME
START/END
1215/1440
1217/1442
1144/1421
1125/1410
1113/1400
1043/1309
WINOSPFED
START/END
17.8/18.5
17. 8/18. 5
13.1/15.0
18.2/20.7
17.9/20.2
18.4/14.6
WIND DIR.
START/END
6/ 5
5/ 5
6/ 6
6/ 6
5/ 5
6/ 5
DRY BULB TEMP C DIFF RELAT
ST4PT/FND HUMID
27.OC 3.2/26.4C 3.4 76/75
27.OC 3.2/26.4C 3.4 76/75
28.OC 3.7/28.0C 3.5 74/75
28.06 4.0/27.66. 3.2 72/77
28.2C 3.7/28.0C 3.0 74/78
26.3t 3. 3/27. 86. 3.8 76/73
in
to
RUN*
ST
H
1
2-
3
4
5-
6
£5
PHI
4.25
. 4.35
5.09
4.33
.4.44
1.78
DATE: 11/20/73 CCOL1NG DEVICE CODE=0 PRECISION RUN
C VOLUME NET TIME MNDSPEED WIND DIR.
C
0
0
0
0
0
162.4
162.7
159.6
144.4
149.8
175,5
SCDIUM
21 1.5
216.5
248.5
191.5
203.5
95.5
START/END
1448/1625
1450/1627
1425/1603
1415/1546
1405/1533
1323/1511
START/END
18. 5/
18. 5/
14.4/17.6
20.7/18.6
20.2/18.3
14.6/13.3
START/END
5/
5/
6/
6/
5/
6/
6
6
6
6
6
6
ERROR= 2.1?
DPY BULB TEMP C
OIFF
START/END
26. 4C
26. 4£
28. OC
27. 6C
28. OC
27. 8C
3.4/ C
3.4/ C
3.5/26.6C
3.2/27.0C
3.0/27.0C
3. 8/26. 7C
3.4
3.4
3.0
3.4
RELAT
HUMID
75/
75/
75/75
77/75
78/78
73/75
-------
RUN* 66 DATE: 11/21/73 COOLING DEVICE CODE=0 PRECISION RUN ERROR=33.2*
;T
*
i
2
3
4
5
6
PHI
9.71
6.4R
10.95
11. »0
7.07
9.12
C
0
0
0
0
0
0
VOLUME
249.4
248.6
322.6
343.8
490.5
363.2
NET
SCDIUM
741.5
493.5
1C81.5
1178.5
1C61. 5
1C13.5
TIME
START/END
1234/1503
1236/1505
1208/1528
1156/1538
1109/1553
1042/1425
WINDSPEED
START/END
17.5/16.7
17.5/16.7
21.3/17.3
22.6/16.5
18.9/
15.3/18.5
WIND DIR.
START/END
6/
6/
7/
7/
7/
6/
6
6
6
6
6
6
DRY BULB TEMP £ OIFF RELAT
START/END HUMID
27.lt 2.1/26.3E 1.8 84/86
27.lt 2.1/26.3C 1.8 84/86
28.OC 2.7/27.0£ 2.5 80/81
27. 8t 2.7/27. It 2.1 80/84
29.OC 3.0/ £ 79/
26. 5£ 3.2/27.0& 2.5 77/81
.- -RUN* 67
H^
S ST
H
1
2
3
4
5
6
PHI
9.36
9.C7
11.17
10.00
8.70
6.49
DATE: 11/27/73 COOLING DEVICE CCDE=O PRECISION RUN
c
0
c
0
0
0
0
VTLUMt
15.9.0
154.4
233.5
257.6
326.0
385.3
NET
SCDIUM
456.5
428.5
798.5
7P6.5
666.5
1C01.5
TIHF
START/END
1402/1538
1405/1539
1329/1553
1313/1600
1255/1607
1225/1622
WINDSPEED
START/END
13.1/14.0
13.1/14.0
16.5/14.9
21.5/15.7
19.7/15.5
19.2/11.9
MIND DIR.
START/END
8/ 7
11 1
8/ 8
7/ 8
8/ 8
8/ 8
DRY BULB TEMP £ DIFF RELAT
STAPT/FND HUMID
27.5£ 3.4/26.OC 2.1 75/84
27.5£ 3.4/26.0C 2.1 75/84
27. 5£ 3.3/27. 3£ 2.5 76/81
27.4£ 2.5/26.7£ 2.0 82/85
28.7C 3.1/27.6C 2.1 78/84
27.9£ 3.2/26.2C 2.7 77/80
-------
PUNK 68 DATE: 11/30/73 CHCLING DEVICE CODE=0
PRECISION RUN ERROR=
T
*
1
2
3
4
5
6
PHI
21.21
2C.97
27.96
20.10
2C.3R
12.74
C
9
9
C
0
0
0
VOLUME
256.7
256.5
367.0
381.8
472.0
536.2
NET
SODIUM
1666.5
1646.5
3141.5
2348.5
3016.5
2091.5
TIME
START/END
1147/1424
1149/1425
1100/1442
1040/1450
1019/1456
942/1512
WINCSPfEO
START/FNn
19.0/19.8
19.0/19.8
29.3/19.7
21.0/17.0
15.0/19.7
10.9/15.0
WIND OIR.
STAPT/ENO
3/
3/
3/
3/
3/
21
3
3
3
3
3
3
DRY BULB TEMP £ DIFF RELAT
START/END HUMID
23.9C 4.9/22. It 4.1 63/67
23.9t 4.9/22.It «>. 1 63/67
23.4t 3.8/22.0£ 3.8 70/69
23.8t 4.8/22.Ot 3.7 63/70
23.7t 4.7/22.0t 2.7 64/78
21.5t 4.4/22.2t 4.1 65/67
DATE: 12/ 1/73 COOLING DEVICE COOE=0
PRECISION RUN ERROR= 8.5?
RUN* 69
ST PHI C VOLUME NET TIME WINDSPEEO WIND DIR. DRY BULB TEMP t OIFF RELAT
* SODIUM STAPT/ENO START/END START/END START/END HUMID
1 11.59 0 137.7 486.5 1307/1430 14.9/14.0 3/ 3 23.Ot 4.0/23.2t 3.7 69/71
2. 10.60 0 133.6 433.5 1309/1432 14.9/14.0 2/ 3 23.Ot 4.0/23.2t 3.7 69/71
3 7.95 0 416.4 1013.5 1207/1502 19.2/17.7 3/ 3 23.Ot 3.5/23.0t 3.5 73/73
4 10.0« 0 308.0 951.5 1144/1510 16.1/12.3 3/ 3 23.Ot 3.6/24.0£ 4.0 72/69
-5. 1C.80 0 388.4 1283.5 1126/1517 18.0/13.8 3/ 3 23.2t 4.1/23.7£ 4.1 68/68
6 9.15 0 293.3 821.5 1235/1530 13.3/17.5 3/ 3 24.Ot 4.8/22.8t 3.8 63/70
-------
RUN* 70
Sf PHI
1 16.53
2 17.37
3 ._1£.91
4 20.08
5 C.96
6-. 14.53
DATE: 12/ 4/73 COOLING DEVICE CODE=0
PRECISION RUN EPRO*= 4.8*
C VOLUME NET TIMF WINDSPEEO WIND OIR. DRY BULB TEMP t OIFF RELAT
SCCIUM START/END START/END START/END START/END HUMID
0 204.2 1033.5 1204/1402 24.1/15.9 6/ 6 24.56 2.8/24.56 2.5 78/80
0 200.6 1066.5 1206/1404 24.1/15.9 6/ 6 24.5t 2.8/24.56 2.5 78/80
0 301.8 1746.5 1121/1417 18.3/17.6 6/ 7 26.Ot 3.0/26.06 3.7 78/73
0 377.6 2221.5 1027/1426 20.1/20.7 6/ 7 26.Ot 2.9/26.06 3.0 79/78
0 483.3 142.5 956/1436 20.9/21.5 6/ 7 26.Ot 3.5/25.76 3.7 74/73
0 226.7 1C08.5 1234/1450 20.9/20.6 6/ 6 26.2t 3.7/25.6t 3.6 73/73
BUN*-.. 71 .
ST PHI
. *
1
2
3
4
5
t
-
9.
s.
9.
11.
10.
9.
,98
,62
,39
,C5
23
,15
DATE: 12/ 5/73 COOLING DEVICE COCE=0 PRECISION RUN
C VOLUME NFT TIME WINDSPEED WIND DIR.
0
0
0
0
4
0
241.0
238.2
427.5
3-J7.1
440.1
341.4
SODIUM
736.5
701.5
1228.5
1343.5
1376.5
S56.5
START/END
1324/1548
1325/1549
1115/1531
1 107/1521
1056/1510
1251/1620
START/END
11. 7/ 9.5
11. T/ 9.5
23.5/15.1
22.4/14.4
16.0/12.3
6.3/ 8.8
START/END
8/10
8/10
10/10
1O/10
8/10
9/10
ERROR- 3.6*
DRY BULB TEMP 6
OIFF
START/END
25.56
25.56
25.56
25.26
27.06
27.06
2.6/25.06
2.6/25.01
1.8/25.66
2.0/25.56
3.0/25.56
3.7/25.06
3.0
3.0
2.8
2.9
3.3
3.4
RELAT
HUMID
80/77
80/77
86/79
84/78
78/75
73/74
-------
RUN* 72
ST
It
1
2
a
4
5
_fi.
PHI
9.57
9.25
1.0.98
10. 99
11.02
—9.12
DATE: 12/ 6/73 CQGLING DEVICE CODE=0 PRECISION PUN ERROR= 3.3%
C
0
0
0
0
0
0
VOLUME
226.9
229.2
249.5
330.4
375.6
401.5
NET
SODIUM
664.3
64<=.3
836.5
1111.5
1266.5
1121.5
TIME
START/END
1250/1513
1252/1514
1220/1455
1113/1446
1054/1438
1017/1424
MINDSPEEC
START/END
8.9/10.7
8.9/10.7
15.8/11.0
18.1/16.4
13.3/15.3
13.9/14.7
MIND OIR.
START/END
7/ 7
7/ 7
8/ 8
8/ 7
8/ 7
7/ 7
DRY BULB
TEMP C
DIFF
START/ENP
27. 5t 3.
27. 5t 3.
28. OS 4.
27. 26 3.
28. 5t 3.
27. Ot 4.
0/26. SC
0/26. 5£
0/27. 8C
2/27. OG
6/27. 8G
0/27. 26
2.8
2.8
3.4
3.5
3.8
4.1
RELAT
HUMID
78/79
78/79
72/76
77/74
75/73
71/71
Station 2 was dismantled for relocation in order to facilitate upcoming cooling device contribution
measurements. Run #72 contains therefore the last precision run.
CTl
OJ
RUN* 73
ST PHI
1 4.S6
..3....11.31
4 2.95
5 3.58
-_6 3.36
GATE: 12/1
C VOLUME
5 350.0
0 139.6
0 502.4
0 565.8
0 609.0
COOLING DEVICE CODE=0
NET
SODIUM
531.5
463.5
453.5
626.5
TIME
START/END
1107/1432
1051/1456
1024/1530
1012/1545
948/1604
WINOSPEED
START/END
22.8/12.4
22.0/11.2
10.3/ 7.6
24.O/ 8.2
14.3/10.6
WIND DIR. DRY BULL TEMP t OIFF RELAT
START/END START/END HUMID
14/15 14.8t 2.9/17.OS 4.7 72/58
15/15 14.5£ 2.5/17.2C 5.2 75/54
1/16 14.6C 2.6/17.2& 5.2 74/54
16/ 1 13.96 2.3/16.8t 5.0 77/55
I/ 1 13.5t 2.2/17.0C 5.3 77/53
Trash..fire across the canal directly upwind of Station 1. Possible contamination from heavy smoke.
-------
RUN*
ST
*
1
3
.4. ..
5
6
7*
PHI
1.84
2.68
2.54
2.09
1.97
DATE: 12/13/73 COOLING DEVICE CODE=0
C
0
3
0
4
3
VOLUME
471.2
408.2
449.6
549.4
787.9
NET
SODIUM
265.3
335.3
349.3
352.3
475.3
TIME
ST4PT/ENO
1221/1708
1202/1647
1033/1600
1105/1630
950/1752
WINDSPEEO
START/END
12.1/11.5
10. 3/ 9.2
10.5/ 6.1
9.5/ 7.6
9.4/ 3.4
WIND DIR.
START/END
14/11
15/12
14/11
14/12
15/12
OPY BULB TEMP 6 01PF RELAT
STAPT/ENO HUMID
21.06 5.0/19. 56 4.6 60/61
20.2C 5.1/21.06 5.0 58/60
19.66 4.7/21.66 5.3 60/58
20.86 4.8/21.2C 5.4 61/57
1B.8C 4.8/17.26 3.0 59/72
RUN* 75
£ ST
*• *
1
3
4 .
5
6
PHI
2.92
3.39
2.88
3.09
2.71
DATE: 12/14/73 CCCLING DEVICE COOE=0
C
C
0
0
3
C
VOLUME
256.2
188.4
176.1
214.1
292.4
NET
SODIUM
229.3
195.3
155.3
2C2.3
242.3
TIME
START/FMD
1209/1435
1305/1502
1316/1516
1326/1529
1344/1638
WINCSPEED
START/END
14.5/13.9
23.3/20.6
19.7/21.4
20.3/17.5
15.1/11.7
WIND DIR.
STAKT/FND
11/11
11/11
11/11
11/11
11/11
DRY BULB TEMP 6 DIFF RELAT
START/END HUMID
24.26 4.4/24.5G 4.5 66/66
24.66 4.1/23.86 3.8 69/70
25.06 4.0/23.96 3.9 70/70
23.96 4.3/23.26 4.2 67/68
25.06 4.4/23.06 4.2 67/68
-------
RUN* 7f> DATE: 12/17/73 COOLING DEVICE CODE=0
T
*
1
3
4
5
6
PHI
8.87
6.71
7.54
7.49
7.96
C
0
3
0
0
0
VOLUME
445.3
391.9
358.3
361.9
351.9
NFT
SODIUM
1209.3
eos.3
627.3
82S.3
£57.3
TIME
START/END
935/1400
1005/1412
1024/1420
1044/1427
1108/1443
WINOSPEED
START/END
12.2/18.2
11. 2/ 8.7
6.4/10.1
7.1/14.1
8.4/14.4
WIND DIR.
START/END
15/12
13/15
16/15
16/15
16/15
DRY BULB TEMP 6 DIFF RELAT
START/END HUMID
12.5C 2.0/16.96 3.1 79/71
12.76 2.2/17.66 3.5 77/69
14.86 2.8/16.46 3.4 73/68
13.4t 2.4/16.06 3.0 75/71
15.Ot 2.5/17.46 3.6 76/68
RUN* 77
ST
H
1
3
4
5
6
PHI
2.45
2.56
2.18
2.00
1.77
GATE: 12/18/73 COCLIHG DEVICE COOE=O
c
0
0
0
0
3
VOLUME
292.7
309.9
322.0
345.3
437.3
NFT
SCDIUM
21S.3
243.3
215.3
211.3
237.3
TIME
START/END
1315/1606
1300/1621
1251/1628
1240/1636
1223/1658
MINOSPEFD
START/END
9.4/10.6
20.0/14.1
8.5/ 9.2
10.8/10.3
6.7/ 7.1
WIND DIR.
START/END
2/ 1
21 1
3/ 1
3/16
3/ 2
ORY BULB TEMP t OIF* RELAT
START/END HUMID
15.7t 3.7/16.5C 1.5 65/85
15.3& 4.0/16.3£ 1.3 62/87
17.OC 4.9/16.36 1.5 56/85
15.56 4.0/16.86 1.8 62/82
16.36 4.8/16.56 1.5 56/85
-------
RUN* 78
ST PHI
1 11.25
3 10.72
4 . 10.15
5 5.S5
6 9.19
CATE: I/ 2/74 CfCLING DEVICF CODE=0
0
0
0
0
0
VOLUME
259.9
329.9
317.2
369.4
212.4
NFT
SODIUM
695.3
1062.3
585.3
1125.3
5<57.3
TIME
START/END
1314X1540
1214/1526
1156/1519
1142/1511
1238/1443
WINOSPEED
START/END
22.7/20.7
25.1/26.0
18.3/21.7
26.8/23.6
25.6/16.7
WIND OIR. DRY BULB TEMP C DIFF RELAT
START/END START/END HUMID
5/ 5 24.9C 1.9/24.8£ 2.0 85/84
6/ 6 26.7C 2.7/25.6C 2. P 80/79
6/ 6 26.7C 2.7/26.1C 3.1 BO/77
5/ 5 26.8t 2.6/26.5C 2.5 81/81
6/ 6 26.4C 2.4/26.6C 3.4 82/75
RUN* 79
H*
Ol
a\
ST
t
1
3
— _ 4
5
6
PHI
e.02
6.18
8.10
7.96
7.00
DATE: I/ 4/74 COOLING DEVICE CODE=0
C
0
0
0
0
0
VOLUME
177.3
304.6
315.6
405.9
30*. 2
NFT
SCDIUM
435.3
762.3
782.3
589.3
t?2.3
TIME
START/END
1258/1443
1151/1456
1133/1505
1120/1512
1219/1529
MINDSPEED
START/END
10.5/11.0
20.2/16.1
16.4/18.9
15.3/18.8
20.2/14.3
WIND DIR.
START/END
7/ 7
7/ 8
6/ 7
7/ 7
7/ 7
DRY BULB TEMP £ DIFF RELAT
START/CNO HUMID
25.5C 2.0/26.06 2.5 84/81
26.2C 2.2/26.26 2.7 84/80
27.Ot 2.6/25.5C 2.3 79/82
27.Ot 3.0/25.OK 2.4 78/81
26.Ot 2.5/2S.3& 2.7 81/79
-------
RUN* 80
ST
*
1
3
4
5
6
PHI
2.69
3.08
2.75
3.80
2.76
DATE: I/ tt/74 COOLING DEVICE CODE=0
C
0
0
0
0
0
VOLUME
251.8
257.0
253.5
220.6
353.7
NET
SODIUM
2C7.3
242.3
213.3
256.3
296.3
TIME
START/END
1343/1617
1320/1600
1300/1549
1252/1538
1137/1515
MINDSPEED
START/END
7.9/ B.2
7.2/14.0
7.9/12.4
12.1/10.3
7.8/10.4
WIND DIR.
START/END
6/ 6
7/ 6
6/ 6
6/ 6
7/ 7
DRY BULB TEMP £ DIFF RELAT
START/END HUMID
25.4C 2.4/26. 7£ 3.2 81/76
26.0£ 2.8/26.5£ 3.4 79/75
26.5C 2.5/26.2t 3.2 81/77
27.0£ 3.0/27.36. 3.3 78/76
25.46 2.6/26.9£ 3.4 80/75
RUN*
ST
H
1
3
_ 6 .
5
6
81
PHI
t.S4
6.69
6.97
7.09
6.4C
DATE: I/ 9/
C VOLUME
0 241.1
0 238.0
0 322.3
0 361.7
0 229.2
74 COOL
NET
SCOIUM
512.3
487.3
687.3
785.3
449.3
ING DEVICE
TIME
START/FND
1342/1604
1256/1520
1145/1509
1130/1456
1320/1539
COOE=0
WINDSPEEO
START/END
17.5/14.9
12.5/14.3
22.6/17.8
17.0/18.2
14.9/20.2
WIND DIR.
START/END
6/ 6
7/ 7
6/ 6
6/ 5
7/ 5
DRY BULB TEMP £ DIFF RELAT
START/END HUMID
25.6t 3.6/25.5C 3.5 73/74
26. 7£ 3.7/25.8£ 3.3 73/76
26.2C 3.1/26.7C 3.7 77/73
26.5£ 3.6/27.0£ 3.5 74/74
27.OE 4.0/26.1C 4.1 71/70
-------
RUN* 82
ST
•
i
3
4
5
6
PHI
7.74
e.86
. 9.47
8.45
6.64
CATE: 1/11/74 COOLING DEVICE CODE=0
C
0
0
0
0
0
VOLUME
429.1
428.7
396.4
427.5
382.6
NET
SCDIUM
1017.3
1162.3
1C27.3
1105.3
777.3
TIME
START/ END
1137/1550
1121/1533
1110/1522
1058/1511
1035/1441
WINOSPEED
START/END
15.2/12.2
15.6/19.9
19.3/17.2
14.0/17.2
14.2/16.9
WIND DIR.
START/END
6/ 7
7/ 7
7/ 7
7/ 6
7/ 7
DRY BULB TEMP 6 DIFF RELAT
START/FNO HUMID
24.66 2.6/26.06 2.1 80/84
25.96 3.8/26.96 3.7 72/73
26.06 3.0/25.76 2.7 78/80
26. 5t 3.5/27. 06 3.9 74/72
24.96 3.4/26.06 4.0 74/71
RUN* 83
5 ST
00 #
3
4
- 5-
6
7
a
9
10
PHI
5.48
11.29
- 7.C6
4.69
5.55
.4.81
4.31
3.67.
DATE: 1/31/74 COOLING DEVICE COGE-2
C
0
0
0
0
0
0
0
0
VOLUME
736.2
459.2
342.2
277.0
454.3
472.9
282.1
220.3
NET
SCDIUM
1234.3
15E7.3
73?. 3
397. 3
772.3
697.3
372.3
247.3
TIME
START/END
910/1723
938/1427
1017/1433
1225/1522
958/1443
1035/1605
1208/1507
1240/1534
WINDSPEED
START/END
5.5/13.6
4.2/ 8.6
3.8/12.6
8.3/18.7
2.9/10.7
4.0/13.1
8.6/ 6.8
6.5/15.8
WIND niR.
START/END
I/ 6
3/ 6
15/ 5
9/ 5
3/ 6
3/ 5
5/ 5
5/ 6
DRY BULB TEMP 6
DIFF
START/END
21.86
23.56
24.06
27.26
23.26
25.06
27.56
27.66
1.0/26.16
2.0/26.86
2.0/26.86
4.9/26.86
1.7/26.66
2.5/26.46
4.5/27.06
4.8/26.96
4.1
3.9
3.8
4.3
4.4
3.4
4.3
4.5
RELAT
HUMID
91/70
84/72
84/72
65/69
86/68
80/75
68/69
67/68
-------
RUN* 84
ST PHI
*
3
4
5
6
7
a
9
10
11
2.59
5.57
5.38
4.01
3.71
3.47
3.0C
2.41
14.16
DATE: 2/ 1/74 COOLING DEVICE CODE=2
C VOLUME NET TIME WINOSPEEO
0
0
0
0
0
0
0
5
0
470.0
280.8
291.1
268.1
289.6
267.5
296.3
58.5
299.2
SODIUM
272.3
822. 3
479.3
325.3
329.3
264.3
272. J
43.1
1257.3
START/END
1003/1635
1231/1534
1252/1554
1415/1700
1238/1539
1305/1609
1357/1710
1427/1645
1155/1505
START/END
6.4/ 7.2
4.9/ 9.2
10. 3/ 9.6
8.5/10.7
8.5/11.2
11. 6/ 7.4
8.6/ 9.1
11. I/ 9.7
12.1/10.3
WIND DIR.
START/END
2/
5/
6/
6/
5/
6/
4/
3/
5/
7
6
5
6
5
6
5
5
5
DRY BULB TEMP 6
DIFF
START/END
25. 06
26. 8t
26. 36
26.76
26. 1C
25. 6C
27. 4C
26. 66
25. 36
4.7/26. OC
4. 9/26. 46
4.2/26.36
4.5/25.96
4.8/26.46
3.4/26.06
5.2/26. 16
4. 7/26.36
4.0/25.86
4.0
4.4
4.4
4.0
4.4
3.9
4.0
4.8
4.0
RELAT
HUMID
65/71
65/68
70/68
68/71
66/68
75/72
64/7]
66/66
71/71
Low RPM on Station 10.
._ . RUN* 85
ST PHI
3 2.99
. 4 ..3.20
5 4.17
1 7 19.14
DATE: 2/
C VOLUME
0 279.6
0 220.7
0 257.8
0 198.4
CGCLING DEVICE COOE=2
NET
SCDIUM
256.3
216.3
329.3
1162.3
TIME
START/END
1055/1320
1105/1326
1116/1350
1140/1344
WINOSPEEO
START/END
19.4/18.7
17.5/17.8
18.7/14.2
14.8/19.3
WIND DIR. DRY BULB TEMP 6 DIFF RELAT
START/END START/END HUMID
8/ 8 25.56 5.2/26.26 5.1 62/64
8/ 8 26.06 4.5/27.06 4.8 68/66
8/ 8 26.16 5.3/26.06 4.5 62/68
7/ 7 26.06 5.5/26.86 5.0 61/64
-------
DATE: 2/ 6/74 CGGLING DEVICE CODE=0
ST
*
3
4
5
6
7
8
9
1C
PHI
24.<55
2C.59
22.26
18.21
15.17
2C.57
16. 54
15.63
r
0
0
0
C
0
0
0
0
VOLUME
323.7
396.?
307.8
313.5
JS3,6
317. 4
JO 3.0
281.7
NET
SODIUM
2472.3
24? 7. 3
2C57. ?
1747.3
2309.3
lSSfl.3
1534.3
1347.3
TIME
START/END
1111/1509
1127/1524
1151/1544
1329/1657
1137/1534
1239/1557
1314/1624
1339/1707
WINDSPEED
START/END
22.5/28.4
28.8/24.2
25.7/24.0
20.9/16. S
24.0/26.2
24.2/24.5
14.5/15. S
23.2/19.2
WIND DIR.
START/END
7/
7/
7/
7/
7/
7/
6/
6/
7
7
7
6
6
7
6
7
DRY BULB TEMP E
OIFF
START/END
22. 5E
24. Ot
24. 2E
24.«»E
22. 8E
23. 5C
25. 3C
24. 9t
3.5/25.0E
3.4/25.0E
3.6/24.8E
4.1/25.0E
4. 1/24. 96
3.5/24.4E
4.1/24.0E
4.7/25.5E
4.0
3.7
4.3
4.3
4.8
3.9
3.9
5.5
RELAT
HUMID
72/70
73/72
72/68
69/68
63/65
73/70
70/70
65/60
PUN* 67
ST
*
6
9
1C
PHI
2.86
2.11
1.21
DATE: 2/ 7/74 COOLING DEVICE COCE=2
C
5
1
1
VOLUMt
322.5
570.8
490.4
NET
SODIUM
262.3
369.3
162.3
TIME
STAPT/END
1109/1710
10'58/1700
1123/1715
hINDSPEEC
START/FND
21. 5/
17.6/
15. 8/
WIND DIR.
START/END
8/
7/
fi/
7
7
8
DRY BULB TEMP E DIFF RELAT
START/END HUMID
25.86
26. OE
26.2E
4.0/
4.0/
4. 2/
E
E
E
71/
70/
Low RPM on Station 6. All stations caught in light rain.
-------
RUN* 88
ST PHI
H
3
4
5
6
7
a
9
10
3.76
4.01
3.97
5.17
3.50
4.27
5.45
3.94
OATf : 2/ 8/74 COOLING OfVICE CQDE=2
C VOLUME NFT HMC WINDSPEEO
0
0
3
0
3
0
0
5
319.2
325.6
381.8
380.9
325.7
334.2
370.3
234.1
SOOIUM
?67. 3
?«=. 3
464. 3
602.3
349.3
437.3
617. 3
282.3
START/END
125P/1634
1249/1609
1204/1547
1041/1428
1236/1558
1151/1533
1025/1413
1055/1438
START/END
18.3/30.0
16.1/20.3
17.9/16.3
9.4/22.4
16.6/15.5
15.5/19.0
11.2/15.5
7.9/16.4
WIND DIP.
START/END
11/12
12/12
11/11
10/10
10/11
10/11
10/10
9/12
DRY BULB TEMP C
DIFF
START/END
27. OC
27. OC
28. OC
25. 2C
27. OC
27. 3t
25. Ot
25. OC
4.0/28.5C
3. 8/26. 1C
4. 5/29. 1C
2.0/29.0C
4.0/28.8C
3.3/29.8C
1.9/28.7C
2.0/28.0C
3.7
4.9
5.9
6.0
5.8
5.8
5.5
5.5
PELAT
HUMID
71/74
72/67
69/60
84/60
71/61
76/62
85/63
84/63
Low RPM on Station 10.
RUN« P9
ST PHI
if
3
4
5
6
7
8
9
10
1.72
12.57
5.C3
2.98
1.88
1.82
1.78
2.02
DATE: 2/11/74 CfJLING DEVICE CODE=2
C VOLUME NET TIME WINDSPEEC
0
C
0
3
0
0
3
3
350.2
403.3
422.6
360.2
415.6
349.7
366.0
352.2
SCOIUM
164.3
1552.3
652.3
328.3
239.3
1°4. 3
199.3
217.3
STAPT/ENP
1000/1416
1014/1434
1038/1500
1251/1647
1025/1446
1051/1514
1234/1634
1305/1703
START/END
8.9/12.6
4.4/ 9.4
7.5/ 2.3
8.6/ 4.4
5.9/11.0
8.9/11.8
6.4/ 5.5
5.6/11.2
HIND DIR.
START/FND
2/ 5
I/ 5
I/ 3
14/12
16/ 5
I/ 5
15/ 2
I/ 7
DRY BULB TEMP C
DIFF
STAPT/END
14. 5C
15. 9C
17. OC
19. 5C
15. 8C
16. 2C
19. 5C
19. 5C
5.0/19.0C
5.4/19.5C
5.0/20.0C
5.5/21.0C
4.6/20.0C
4.7/20.0&
6.0/20.0C
6. 0/19. 8C
4.5
5.5
5.5
6.5
5.5
5.0
6.0
4.8
RELAT
HUMID
52/62
51/54
55/55
54/49
57/55
57/58
51/51
51/60
-------
RUN* 90
DATE: 2/12/7*
CPOLING DEVICE CODE=2
ST
*
3
A
5
6
7
8
9
10
PHI
2.79
2.81
2.84
1.93
2,71
2.94
2.27
1.36
C
0
C
0
0
0
0
3
0
VOLUMF
264.0
287.3
320.7
298.5
288.5
391.4
468.5
419,4
NET
SCDIUM
225.3
247.3
279.3
173.3
239.3
352.3
325.3
239. 3
TIME
START/END
1336/1646
1325/1635
1305/1621
1031/1528
1317/1628
1150/1612
1015/1518
1045/1543
WINDSPEEQ
START/END
8.3/12.2
9.9/ 7.3
9.7/ 7.4
7. 8/ 8.9
3.2/ 6.6
10. 4/ 7.0
8.3/ 8.0
10. 9/ 6.9
WIND DIP.
START/END
2/
4/
3/
15/
15/
15/
14/
15/
3
2
2
2
2
3
2
2
DRV BULB TEMP 6
DIFF
START/END
22. 2C
23. OC
22. OC
17. 5C
22. OC
20. OC
16. 3C
18. OC
6.2/21.3C
7.0/21.8C
6. 5/22. 1C
5.2/21.5C
6.5/21.5C
6.0/22.0C
4.3/21.8C
5. 0/21. 1C
6.1
6.8
6.1
6.6
6.3
6.0
6. B
9.3
RELAT
HUMID
53/52
49/48
50/53
54/49
50/51
51/54
60/48
57/30
"> RUN* 91
DATE: 2/13/74
CrOLINf, DEVICE CCOE =
ST
«
3
4
.5 ..
6
7
_fl _
9
10
PHI
3.11
4.13
3.47
4.42
3.10
.3.59
4.21
3.51
C
0
0
0
0
0
0
0
0
VOLUME
430.5
461.1
45b.4
319.8
461.3
357.2
307.0
302.7
NET
SODIUM
4C9.3
539.3
4E4.3
4?2.3
437.3
292.3
395.3
325.3
TIME
START/END
944/1444
1000/1455
1018/1515
1240/1610
1009/1505
1030/1526
1226/1558
1251/1624
MINDSPEED
START/END
6,4/ 8.6
4.9/ 6.7
6.5/11.6
9.4/10.1
6.9/11.0
a. 8/12. 6
8. I/ 9.7
6.2/11.0
MIND D1R.
START/END
16/
16/
15/
7/
I/
2/
4/
2/
3
4
4
4
3
4
2
4
DRY BULB TEMP C
DIFF
START/FNn
18. at
19. 8C
20. 3C
23. 2C
20. OC
20. 9C
24.0*.
23. 5C
4. 8/23.5C
4.8/23.5C
5.1/24.0C
6.3/23. 4C
5.1/23.3C
5.6/23.0C
6.8/23.8C
7.3/23.3C
6.7
7.0
7.0
6.5
6.7
6.0
6.7
6.3
RELAT
HUMID
59/51
60/49
58/49
53/52
58/51
55/55
50/51
47/53
-------
RUN* 92 DATE: i/14/74 CCGLIMG DEVICE C00fc=2
ST
H
2
4
5
6
7
e
9
10
PHI
4.
4.
4.
4.
4.
4.
3.
3.
22
CO
56
52
39
11
99
68
C
0
0
0
0
0
0
0
0
VOLUME
351. 6
352.7
346.2
321.4
392. 8
269.4
310.2
289.0
NET
SODIUM
454.3
432.1
483.3
444.3
527.3
339.3
369.3
325.3
TIME
START/END
1042/14^7
1103/1458
1143/J518
1311/1613
1114/1509
1213/1529
1259/1622
1322/1544
WIMDSPEED
START/END
12.
8.
10.
6.
12.
14.
10.
10.
4/11.
9/ 9.
0/14.
9/ 7.
7/11.
5/17.
9/11.
O/ 8.
5
0
1
2
8
3
9
5
WIND DIR.
START/END
2/
3/
3/
21
3/
4/
3/
I/
•t
ft
4
5
3
5
6
5
DRY BULB TEMP C DIFF RELAT
START/END HUMID
21.OC 4.2/24.0C 5.0 66/62
23.5C 5.9/24.9C 5.8 56/58
23.8C 5.8/24.5C 5.9 57/57
24.9C 6.4/24.6C 5.1 54/59
22.3C 5.1/24.0C 5.1 60/61
23.26 4.9/23.1C 4.9 63/63
24.7C 6.6/25.1C 6.3 52/55
25.5C 7.0/24.5C 6.5 50/53
CrrLING DEVICF CODE=2
ST
*
3
4
. 5
6
7
8
9
10
11
PHI
5.31
2S.72
6.45
5.41
0.65
5.10
5.15
5.56
11.83
C
0
0
0
0
0
e
0
0
0
VOLUME
460.1
460.6
467.3
390.9
481.5
334.4
350.9
336,5
372.0
NET
SCniUM
747.?
4372,3
12C9.3
647.3
95.6
522.3
562.3
572.3
1247.3
TIME
START/END
1C05/1521
1028/1530
1101/1555
1318/1719
1049/1543
1117/1610
1305/1705
1328/1742
1235/1629
WINDSPEED
START/END
7.0/18.1
2.1/15.7
7.5/15.9
7.9/11.7
4.8/14.4
7.7/16.7
14.3/11.5
9.0/12.6
12.0/22.5
WIND DIR.
START/END
2/
5/
5/
4/
6/
6/
4/
4/
4/
8
6
6
8
6
7
6
7
7
DRY BULB TEMP C
START/END
22. 8£
24. OC
25. OC
25. 3C
24. 5C
24. OC
25. 1C
26. 2C
24. 2C
3.9/25.5C
4.8/25.8C
4.5/26.2C
5.0/25.0C
4.6/25.9C
4.0/25. 5C
4.3/25.7C
4.9/24.8C
3.9/25.0C
DIFF
4.5
4.9
4.9
4.7
6.0
4.5
4.7
4. 8
4.5
RELAT
HUMID
70/67
63/65
67/65
64/65
65/57
t>9/67
68/66
65/64
70/67
-------
ST
«
3
A
5
6
7
e
^
10
PHI
3.
-------
RUN*
-------
PATE: 2/22/74 CTCLINf. DFVICE CODE = 1
ST
0
3
4
5
6
7
e
9
10
PHI
8.06
7,53
6.C7
6.34
5.48
6.54
6.70
7.: 2
C
0
0
1
0
1
1
0
0
VOLUME
503.4
432.4
476.9
661.7
521,0
333^2
560.4
517,1
MET
SCPIUM
1241.3
996. 3
886.3
1C89.3
674. 3
871.3
1161.3
1126. 3
TIME
START/END
848/1400
«00/1406
"30/1424
'138/1732
°12/1422
10C3/1435
1129/1720
1148/1750
WINDSPEED
START/END
17.3/28.6
17.1/28.4
18.4/2S>.2
16.3/13.0
34.3/21.0
19.4/23.0
15.2/11.7
20.0/11.8
WIND DIR.
STAPT/END
8/10
I/ 9
9/10
q/io
9/10
9/10
8/ 9
8/10
DRY B
S
26.06
25.86
26.06
27.96
25.16
26.16
27.96
27.06
TEMP t 01FF RELAT
STAPT/EMO HUMID
1.5/26.76 2.0 89/85
1.0/26.76 2.3 92/83
1.5/27.06 2.2 89/84
3.7/27.36 4.3 74/69
1.8/26.56 2.3 85/83
2.0/28.06 4.0 85/72
3.5/27.16 4.5 75/68
3.8/26.56 4.0 72/71
RUN* 99
ST PHI
*
•t
4
5
6
7
8
9
1C
1 1.76
9.26
10.55
7.97
9.60
11.58
9.G3
1C. 91
DATE: 2/23/74 COOLING DEVICE COCE=1
c VOLUKF NET TIME WINDSPEEO
0
0
0
3
0
0
0
0
346.1
439.6
304.7
516.3
450.1
412.0
506.0
489.9
SCDIUrt
1246.3
1246.3
S84.3
1260.3
1323.3
1460.3
1298.3
1648.3
STAPT/END
101R/15CO
1027/1509
1101/1526
1213/1755
1048/1518
1114/1555
1203/1748
IP21/180C
START/FNO
15.5/17,9
10. B/ 9.5
9.2/ B.9
9.2/ 7.9
9.2/13.3
9.4/13.4
7.8/ 9.5
7.5/10.1
WIND DIR.
STAKT/f-NO
2/
2 1
3/
3/
2/
3/
2/
I/
3
3
4
4
2
3
4
4
DRY BULB TFMP C DIFF RELAT
START/END HUMID
18.5£ 4.2/24.2C 3.2 64/75
20. Ot 5.0/24.0C 3.5 58/73
20.7C 4.7/24.8C 3.8 62/71
22.56 3.6/24.46 4.1 71/69
19.26 3.9/23.06 3.0 67/76
20.26 3.7/24.36 2.5 69/80
21.96 4.9/24.26 3.7 61/71
22.06 4.1/25.06 4.7 67/65
-------
RUN* 100 DATE: 2/25/74 CCCLING DEVICE CCDE=1
ST
*
3
4
5
f
7
8 .
9
10
PHI
3.14
3.45
3.48
3.32
3.64
.3.76
3.46
3.30
C
0
0
0
4
0
C
4
4
VOLUME
537.9
469,4
346,6
314.0
502.4
370.9
240.1
391.9
NET
SCDIUM
31 A. 3
516.3
371.3
319.3
559.3
426.3
254.3
396.3
TIME
START/END
1024/1531
1035/1542
1059/1606
1252/1749
1045/1555
1113/1619
1241/1805
1303/1739
WINDSPEED
START/END
17.4/15.3
9.8/14.3
18.4/20.1
20.2/11.5
19.1/17.4
19.2/17.4
13.1/13.7
17. I/ 9.8
MIND DIR.
START/END
I/ 1
16/16
16/16
16/16
1/16
1/16
16/16
16/16
DRY B
S
19.26
20.46
20.56
22.36
20.06
20.36
22.06
22.06
TEMP 6 DIFF RELAT
START/END HUMID
3.8/21.46 5.1 67/60
3.6/21.36 5.2 70/5«
4.0/20.06 4.0 67/66
5.1/17.86 4.6 60/60
3.5/20.66 4.5 70/63
4.2/20.06 4.1 65/65
5.0/17.66 4.6 61/60
5.0/18.06 4.5 61/61
il PUN« 101
ST PHI
GATE: i/26/74 COCLING DEVICE CDDE=l
VOLUME
3
4
5
6
7
8
9
10
0.05
0.05
C.C4
C.05
C.C5
C.04
0.05
O.C5
0
0
4
4
0
C
4
4
478.7
505.2
352.1
440.1
542.3
408.7
463.4
457,4
NET
SCCIUM
7.3
6. 2
4.6
6.7
8.9
5.2
6.8
7.4
TIME
START/END
951/1456
1003/1509
1033/1549
1253/1734
1020/1535
1048/1607
J238/1723
1305/1745
WINOSPEED
START/END
13.1/27.1
20.5/15.2
20.6/18.7
31.6/14.2
29.0/26.8
16.8/21.4
27.4/16.9
17.3/18.6
WIND DIR. DRY BULB TEMP 6 DIFF RELAT
START/FND START/END HUMID
16/16 8.56 3.3/15.86 6.8 60/39
16/16 9.66 3.4/15.96 5.9 61/47
16/16 9.86 3.6/15.56 6.2 59/43
15/16 13.06 5.2/15.06 6.8 48/37
16/ 1 10.06 4.0/15.46 6.9 55/38
16/ 1 9.26 3.7/16.06 7.1 57/38
15/16 12.56 5.0/15.06 6.4 49/41
15/16 13.96 5.7/14.56 6.5 44/38
-------
BUN* 102 H4TE: 2/27/74 COOLING DrVICE CODE=1
ST
PHI
C
VOLUME
NET
« SCDIUM
3
4
5
6
7
8
9
10
11.
t.
E.
c.
7.
9.
11.
E.
19
80
33
41
70
42
39
45
0
0
0
0
0
0
0
0
455.
293.
312.
332.
371.
232.
411.
309.
7
6
4
0
9
7
5
0
156C.
611.
796.
<=56.
676.
671.
1435.
801.
3
3
3
3
3
3
3
3
TIME
START/END
1026/1544
1042/1505
1128/1439
1245/1631
1052/1453
1144/1422
1235/1646
1255/1620
KINOSPEED
START/END
14.9/23.3
6.9/11.7
9.4/12.2
10.4/17.9
13.3/14.6
12.7/11.8
10.0/12.8
11.1/11.7
WIND DIR.
START/END
I/
15/
16/
16/
16/
16/
16/
16/
3
?
1
2
?
1
?
2
OPY BULB TEMP £ 01FF RELAT
START/END HUMID
14.Ot 3.0/18.0C 4.1 70/64
15.8t 3.8/20.5£ 5.5 64/55
18.5t 4.5/18.3C 5.3 61/55
15.5£ 3.5/19.2C 5.0 67/58
15.5t 3.3/18.7C 5.2 68/56
15.5£ 1.6/17.2t 4.4 84/61
15.3C 3.5/18.4£ 4.4 67/62
15. 7t 3.5/19.0£ 5.0 67/58
00 RUN* J03 TATF: 2/2d/74 CCOLING DEVICE CODE=1
ST
H
3
4
5
6
7
8
9
10
PHI
14.55
17.^3
18.82
12.43
14.68
13.02
11.64
1C. 39
C
0
0
0
0
0
0
0
C
VOLUME
417.8
273,8
279.6
410.?
403.0
224.4
392.6
385.0
NET
SCDIIJM
1E60. 3
1460.3
Itl0.3
1560.3
1810.3
694.3
13SS. 3
1224.3
TIME
START/END
1050/1520
'107/1525
1146/1541
1318/1736
1126/1534
1205/1550
1300/1720
1327/174B
MINDSPFED
START/END
22.1/14.1
14.0/10.2
11.0/11.2
16. I/ 9.3
16.7/11.9
16.4/17.0
20.3/12.2
16. 1/ 7.9
MIND DIR.
START/END
5/
4/
4/
5/
4/
5/
4/
4/
5
5
4
4
4
4
•j
3
DRY BULB TEMP £
DIFF
START/FND
19. 2£
20. Ot
21. Ot
24. Ot
20. 8t
20. 9t
22. 8t
23. 5£
4.2/23.0t
4. 8/22. 8t
5.0/22.0£
6.5/21.5£
5.6/21.7£
4.0/22.6£
5.8/21.8£
6.4/21.5£
6. 3
6.8
5.8
5.0
4.7
5.6
5. 5
4.6
RELAT
HUMID
64/53
60/50
60/55
52/60
55/63
67/57
56/57
53/63
-------
RUN* 104
ST
3
4
5
7
g
9
10
PHI
£.87
5.22
5.49
4.96
5.96
6.C2
5.5C
4.90
DATE: 3/ 1/74 CCCL
c
o
o
0
o
o
0
0
0
VOLUME
474.0
420.4
429.1
481.9
469.3
304. 6
479.0
294.1
NFT
SGniUM
996.3
671.3
721.3
731.3
856.3
561.3
806.3
*41.3
ING DEVICE CODE=1
TIME
STAPT/END
955/J501
1023/1506
1038/1517
1135/1653
1028/1512
1049/1524
1121/1642
1145/1700
HINOSPEFD
START/END
12.8/18.8
0.0/10.1
12.9/12.0
12.8/12.0
15.5/21.7
14.8/21.7
15.5/11.6
10.7/11.2
WIND DIR.
START/FND
2/ 3
2/ 4
2/ 3
I/ 3
2/ 3
21 3
2/ 2
1/2
DRY BULB TEMP t 01 FF RELAT
START/END HUMID
19.OE 2.5/24.0E 5.8 79/57
22.2E 4.4/24.0E 5.6 65/58
21.5C 4.3/24.5E 6.3 65/54
23. 56, 4.6/23.0E 5.8 65/57
21.5E 4.0/23.3E 5.3 68/60
22.2£ 4.0/24.0E 5.7 68/57
23.2£ 5.1/23.56 6.3 61/53
22.BE 4.5/23.It 5.8 65/57
CCCLING DEVICE CODE=1
ST
*
3
4
,_.5
6
7
8
9
10
PHI
4.29
8.04
. _5^45
3.33
2.91
4.1?
3.5S
2.98
C
0
0
0
0
0
0
0
0
VOLUME
344.6
340.4
393.1
304.4
360.0
246.0
361.5
227.1
NET
SCRIUM
452.3
637.3
655.3
310.3
320.3
315.3
392.3
207. 3
TIME
STAPT/END
1107/1458
1119/1511
1148/1539
1355/1704
1130/1527
1312/1556
1343/1732
1408/1651
WINDSPEED
START/END
70.7/21.6
16.4/12.6
22.3/15.5
11.8/16.7
16.9/20.8
22.5/19.3
16.4/17.7
11.7/13.0
MIND OIR.
START/END
6/ 5
6/ 5
5/ 5
4/ 5
5/ 4
4/ 4
5/ 4
5/ 3
DRY BULB TEMP £
START/END
25. 3t 2.8/26.5t
25. 9C 3.1/27.0C
26. 7E 2.7/27.0t
27. OE 4.0/24.5C
26. OC 5.0/15.7C
26. 5C 3.0/26.8C
26. 9E 3.9/26.0E
28. IE 4.6/25.5E
DIFF
3.1
3.B
3.8
2.3
3.1
2.8
3.1
3.3
RELAT
HUMID
79/77
77/72
80/72
71/82
78/77
78/79
72/77
68/75
-------
RUN* 1C6 RATE.:
8/74 CCCLING DcVICE CiOfc
ST
H
3
4
5
6
7
8
9
10
PHI
5.63
7.57
6.16
5.30
8.27
8.11
7.22
5,68
C
0
0
0
0
0
0
0
C
VCLUMT
4C9. 4
473.8
497,2
540.8
370.1
429.9
36! .0
401,2
NET
SCCIUM
12C7.3
1C97.3
937. 3
977.3
927. 3
1C67.3
797.3
697.3
TIME
STAPT/E>'0
lOlh/1514
1034/1528
1107/1555
1250/1831
1047/1541
1121/1612
1232/1817
1259/1842
kINDSPEED
START/END
20.2/16.8
16.3/17.8
23. VI?. 6
20.6/13.0
16.4/22.1
20.5/19.2
19.8/19.4
15.3/15.9
WIND DID.
STAKT/FND
5/
5/
5/
5/
5/
6/
5/
5/
4
5
4
4
4
c
4
4
DRY BULB TEMP £
OIFF
START/END
25. 9£
26. OC
26. 7£
27. OC
26. OC
26. 7t
27. 3t
27. 5£
2.9/26.8£
2.5/27. 7£
3.0/27.4C
3.3/24.3£
3.1/26.4G
3.0/27.4£
4. 1/24. 7£
4.0/24.5£
3.9
4.2
3.5
2.5
3.4
3.4
2.7
2.3
PEtAT
HUMID
79/72
81/71
78/75
76/80
77/75
78/75
71/79
72/82
00
o
PUN« 107 DATE: 3/11/74 CCOLING UEVICE r.CD!I = l
ST
*
3
4
5
6
7
8
9
10
11
PHI
1.61
12. 70
2.43
2.03
1.61
1.79
1.S4
1»°1
5.09
C
0
0
5
0
0
0
0
0
0
VOLUME
534.o
578.2
t'34.0
558.6
563.8
405.7
5b0.9
477.1
447.9
MET
SCOIUM
2f 3.3
2247. 2
177.2
347.3
2P.8.3
222.3
332.3
278. 3
6S7.3
TIME
STAPT/END
1029/1630
1045/1651
1150/1723
1347/1949
J057/1705
1206/1743
1337/1926
1355/19«=7
1139/1716
WINOSPEED
START/END
4.
3.
9.
9.
11.
9.
15.
12.
12.
0/18.
6/15.
0/15.
7/12.
2/11.
9/12.
5/11.
9/13.
4/12.
0
7
1
8
2
2
5
7
9
MIND DIP.
DRY B
START/END S
4/
8/
6/
5/
3/
6/
5/
4/
6/
6
6
6
6
6
7
4
5
7
25. 2C
25. OC
27. 8C
27. OC
25. OC
27. OC
26. 7C
28. OC
27.0C
TFMP C DIFF
STAPT/END
4.3/26.3C 5.0
3.5/26.3C 4.2
6.0/26.2C 4.7
6.5/22.8C 2.8
3.5/26. 5£ 5.5
5.1/25.4C 4.0
5.4/23.2C 2.7
6.1/22.7C 2.5
4.0/26.0C 4.0
HUMID
68/64
73/70
60/66
56/76
73/61
64/70
62/79
59/fiO
71/71
Low RPM on Station 5.
-------
OUN<
ST
*
3
4
5
6
7
8
<;
1C
» IC8
PHI
2.S6
3.47
2. 96
2.63
2.74
3.24
2.61
2.49
CATE
C
0
0
0
0
0
0
0
0
: 3/12/74
VOLUME
c
236.5
336,1
412,9
373.2
419.1
306.8
328.3
316.6
CCCLI
NET
CDIUM
259.5
357.5
374.5
?00.5
351.5
304.5
262.5
241.5
f^G DEVICE
TIME
START/END
1023/1447
1038/1457
1103/1519
1320/1708
1050/1507
1202/1532
1304/1657
1328/1716
CCCE=1
WINOSPEED
START/END
2.9/26.6
4.1/23.1
11.5/17. 3
11.9/11.9
5.6/13.9
9.1/19.3
6.8/12.4
11.9/11.9
WIND DIR.
START/END
14/ 9
14/ 9
10/10
9/ 9
13/10
8/ 9
9/ 9
DRY BULB TEMP C OIFF RELAT
START/END HUMIO
24.8C 3.6/27.3C 3.3 73/76
25. 5f. 3. 5/27. Of. 3.! 74/77
26.OC 2.4/26.0C 4.8 82/66
27.Ot 5.2/27.2C 6.9 63/54
25. 7C 4. 0/28.0C 5.0 71/66
26. 5C 5. 6/27. OC 5.0 60/65
27.OC 5.0/26.5C 6.2 65/57
27.OC 5.2/27.2C 6.9 63/54
oo
PUN* IC9 CATfc: 3/13/74 COOLING DEVICE COnE=i
ST
4
3
4
5
6
7
8
9
10
PMI
1.92
1.65
1.59
1.24
1.51
1.40
0,33
'.34
C
0
0
0
I
0
0
1
1
VOLUME
344.2
381.3
406.4
389.3
293.0
238.2
398.9
300.9
MET
SCDIUM
202.3
192.3
197.3
147.3
135.3
102.3
29.8
123.3
TIME
STAivT/FND
1013/1427
1021/1438
1044/1505
1158/1555
1035/1*54
1105/1518
1149/1600
1207/1551
bINDSPEED
START/END
17.1/12.3
16. 3/ 6.4
18. 4/ 7.4
16. I/
18. 4/ 8.6
13. 7/ 3.6
17. 6/
14. 3/
WIND OIR.
STAPT/END
15/16
15/15
15/16
I*/ 6
15/15
16/14
14/ 6
15/ 7
DRY BULB TEMP C OIFF RELAT
STAPT/END HUMID
23.9C 2.7/29.0C 6.8 79/55
24.4C 2.7/27.5C 6.6 79/56
24.8C 3.7/27.5C 6.5 72/56
27.5C 5.6/ C 62/
24.8C 3.8/27.3C 6.5 71/56
25.9C 4.7/27.6C 6.6 66/56
27.3C 5.5/ C 62/
25.8C 4.5/ C 67/
-------
RUN« 110
ST
u
3
4
5
6
7
9
9
10
PHI
4.25
4.95
6.27
"'.SI
5.52
7.13
7.76
7,44
CATt: 3/14/74 CCCLING DEVICE C00f=l
C
0
0
0
0
C
0
C
0
VCLUME
220.1
261.9
^32.8
331.5
261.3
181.6
360.9
267.7
NFT
SODIUM
266.5
3=6.5
44t.5
761.5
441.5
3S6.5
857.5
60S. 5
TIME
ST4RT/END
1040/1322
105H/1345
1135/1429
1238/1603
1106/1351
1151/1416
1227/1615
1250/1C52
WINOSPEEU
ST4RT/FNO
7.6/15.7
2. 5/11. C
2.3/11.3
15.8/22.9
5.3/10.3
5.5/16.1
8.4/15.9
8.5/15.8
WIND DIR.
START/END
5/ 4
16/ 5
14/ 4
5/ 5
•>/ 3
7/ 4
I/ 3
5/ 2
DRY BULB TEMP 6 DIFF RELAT
START/END HUMIT
22. Ot 2.0/25.46 3.5 83/7<*
23.OC 2.7/26.0C 4.5 79/68
25.OC 3.8/26.36 4.8 71/66
26.OC 3.8/25.6C 4.4 72/68
23.2C 2.4/26.06 4.2 81/70
25.OC 3.0/26.16 3.3 77/76
26.OC 4.0/26.0C 4.0 7J/71
26.8C 4.6/26.56 4.4 67/68
00
I\J
PUM« 111 DATE: 3/15/74 COOLING DEVICE CnDE=l
T
*
3
4
5
7
PHI
1C. 65
13. U
11.21
10.47
C
0
C
0
0
VOLUME
221 >4
222.5
237.1
229.1
NET
SOOIUM
721.5
9Ct. 5
ei3,5
734.5
TIME
START/FNO
1250/1510
1300/1516
1318/1530
1308/1522
WINDSPEED
START/END
27.4/25. 9
22.3/19.7
24.1/20.5
25.7/17.5
WIND DIR.
START/END
6/ 6
6/ 6
6/ 6
6/ 5
DRY BULB TEMP t. DIFF RELAT
START/END HUMID
25.56 2.7/25.0£ 2.8 79/78
26.2t 2.7/25.0C 2.2 80/83
26.2C 2.7/25.7C 1.8 80/86
25.3t 3.3/24.8£ 2. «> 75/77
-------
RUN* 112 DATE: 3/18/7* COCLING DEVICE COCE=2
ST
«
3
4
5
6
7
8
9
10
PHI
3.12
3.03
3.55
*.70
3.19
3.59
4.56
4.50
C
0
0
0
0
0
0
0
0
VOLUME
273.4
264.6
29*. 7
337.6
297.5
259.6
322.5
£60.2
NET
SODIUM
2t 5.5
245.5
320.5
485.5
2*0.5
285.5
450.5
3«?8.5
TIME
START/END
1200/1512
1213/1519
1236/1531
1327/7705
1225/1525
1249/1540
1313/1646
1336/1712
WINDSPE50
START/END
19.7/16.3
10. 5/ 9.5
14.3/15.2
11.2/10.3
15.4/12.6
16.0/16.9
12.3/10.8
8.8/11.0
WIND DIK.
START/END
3/
4/
4/
5/
2/
*/
3/
2/
4
4
5
3
4
4
4
3
DRY BULB TfcMP 6 DIFF RELAT
START/FND HUMID
21.76 5.2/23.56 5.0 59/62
23.36 6.8/25.56 5.6 50/60
22.46 6.2/24.66 5.0 53/63
24.46 7.4/24.06 5.6 47/58
22.26 4.7/24.06 4.5 63/65
23.56 5.9/24.06 4.0 56/69
25.06 7.9/24.26 6.1 44/55
24.36 7.3/23.66 6.0 47/55
RUN* 113 DATE: 3/19/7* COOLING DEVICE CODE=2
ST
PHI
C
VOLUME
NET
1 SCOIUM
3
*
5
6
7
8
9
10
2.51
3.53
2.20
3.50
2.00
2.64
3.19
3.16
5
0
C
0
n
0
0
0
310.
*16.
476.
453.
474.
353.
*62.
370.
6
5
3
3
8
1
5
5
238.
*50.
220.
4F5.
2C0.
265.'
450.
358.
5
5
5
5
5
5
5
5
TIME
START/END
1022/1600
1031/15**
1052/1525
1207/1645
1040/1533
1105/1510
1155/1351
1215/1634
WINCSPEED
START/END
20.7/18.2
18.7/12.6
12.4/17.3
14.0/11.2
13.0/18.0
15.1/19.1
11. I/ 8.3
1.2.3/ 7.4
WIND DIR.
DRY 6
START/END S
8/
7/
7/
7/
6/
B/
6/
7/
8
8
8
8
H
8
q
9
24. *6
25.06
26.06
25.16
25.06
25.26
25.66
27.06
TFMP 6 DIFF RELAT
STAFT/ENO HUMID
3.8/25.96 3.4 71/75
3.3/25.96 3.1 75/77
5.0/26.16 4.2 64/70
4.5/26.96 4.9 67/65
4.0/25.86 4.9 70/65
4.6/26.56 4.2 66/70
5.6/27.06 5.2 60/63
5.7/27.66 5.6 60/62
Low RPM on Station 3.
-------
RUN* 114
ST
*
3
4
5
6
7
8
9
10
PHI
7.C5
6.83
6.34
6.C6
6.48
7.55
5.72
5.77
CATE: 3/21/74 COOLING DEVICF CODE=0
C
0
0
0
0
C
0
5
5
VOLUME
294.4
354.5
377.7
?69.7
386.0
339.9
26a. 2
275.1
NET
SODIUM
635.5
740.5
79C. 5
500.5
765.5
785.5
460. 5
485.5
TIME
START/END
1118/1510
1127/1518
115b/1530
1308/1607
1136/1525
1208/1538
1320/1600
1257/1614
WINDSPEED
START/FNO
32.1/28.8
29.3/27.5
20.3/17.2
12.6/13.8
20.8/17.8
19.6/16.4
15.9/15.6
15.0/14.6
WIND DIK.
STAPT/END
9/ 9
10/ 9
9/ 9
9/ 9
9/ 9
9/ 9
8/ 7
8/ 8
DRY BULH TEMP 6 01FF RELAT
START/END HUMID
27.06 3.2/28.06 3.5 76/75
27.56 3.6/28.56 3.6 74/75
28.06 3.9/29.56 4.5 73/69
29.06 4.8/29.06 3.7 t7/74
27.76 4.4/29.06 4.5 69/69
28.86 3.9/29.36 4.7 73/68
29.06 '5.0/29.06 4.0 66/72
28.76 5.6/28.36 3.8 62/74
Station 9 and 10 each had a large butterfly on one of the meshes.
RUN*
ST
*
3
4
5
6
7
8 .
9
10
115
PHI
4.C3
3. "55
4.27
3.53
3.78
4.56
3.32
3.01
OATF
C
0
0
C
0
0
0
C
0
: 3/2
VOLUME
373.5
360.3
344.6
222.5
436,7
333.5
236.6
£59,2
COOLING DEVICE CODE=0
NET
SCOIUM
460.5
4^5.5
450.5
240.5
505.5
465.5
240.5
238.5
TIME
STAPT/END
1001/1553
1010/1446
1114/1434
1150/1410
1020/1440
1054/1427
1136/1402
1153/1415
WINDSPEED
STAKT/ENO
18.3/18.4
11.8/21.2
13.1/18.4
13.1/15.9
13.5/15.8
16.0/19.5
11.3/15.5
13.4/17.3
WIND DIR. DRY BULB TFMP 6 DIFF RELAT
STAPT/FND ST/SRT/FND HUMID
10/ 9 26.86 3.0/29.06 4.0 78/72
10/ Q 26.86 2.9/28.06 3.2 7O/77
9/ 8 28.76 4.8/29.86 4.6 67/69
9/ 9 28.56 3.8/30.06 5.1 73/66
8/ 8 27.06 4.4/29.26 4.4 68/70
9/ 9 27.86 3.8/29.86 4.1 73/72
9/ 7 29.06 5.1/30.56 5.0 65/67
8/ 8 29.06 5.0/29.96 4.4 66/71
-------
RUN* 116 DATE: 3/25/74 CCCLING DEVICE COOE=O
ST
«
3
4
5
6
7
e
9
10
PHI
10.78
5.95
9.81
7. 86
8.21
7.79
7.66
7.16
C
0
0
0
0
0
0
0
0
VOLUMF
489.2
*93.7
368.2
370.1
489.9
J73.3
411.9
287.8
NET
SOOIUM
1613.5
1503.5
1165.5
890.5
1230.5
890. 5
965.5
630.5
TIME
START/END
1031/1550
1050/15*6
1205/1606
1251/1639
1105/1601
1148/1614
1232/1646
1307/1633
WINDSPEED
STftRT/ENO
24.9/18.0
21.3/22.0
18.2/14.8
14.0/12.9
20.2/16.3
22.9/16.5
14.0/12.9
12.5/15.5
WIND DIR.
START/END
a/
9/
8/
9/
8/
8/
9/
8/
8
7
7
7
8
8
7
6
DRY BULB TEMP £
DIFK
STAPT/FND
27. BC
27.46
28. OE
29. OE
27. OE
28.0E
29. OE
29. 9E
3.9/29.0E
2.8/2H.3E
3.2/29.6E
5.0/27.6E
4. 0/28. IE
4. 2/29. IE
5. 3/29. IE
5.1/27.6E
4.1
3.3
5.4
3.6
•.8
4.9
5.3
4.6
RELAT
HUMID
73/72
79/77
77/64
66/74
71/67
71/66
64/64
66/68
CO
in
RUN« 117
ST PHI
*
3
4
5
6
7
8
S
10
8.02
18.30
8.33
7.75
11.98
8.86
6.8»
7.78
DATt: 3/26/74 CCCLING DEVICE CODE=2
C VOLUME NET TIME WINDSPEED
5
0
0
0
0
0
0
0
363.1
329.3
359.4
318.8
408.2
312.2
332.9
250.3
SCO HIM
891.5
1894.3
971.3
756.3
14S6. 3
846.3
701.3
5S6.3
START/END
1043/1508
1107/1517
1201/1530
1308/1623
1121/1525
1220/1539
1250/1615
1328/1630
START/END
21.4/16.2
20.3/16.0
16.6/14.3
14.5/13.0
10.3/18.8
17.1/21.8
14. 7/ 8.4
20.8/13.3
WIND DIR.
START/END
7/
7/
7/
7/
7/
6/
11
bl
8
8
8
6
6
7
6
5
DRY BULB TEMP E
D1FF
START/END
27. OE
28. OE
28. OE
29. OE
27.4E
27.4E
28. 2E
28. IE
3.0/28.2E
3.1/28.5E
3.5/29.0E
4.6/28.7E
3.4/28.0E
3.4/27.3E
4.2/29.3E
4. 1/27. IE
3.2
3.5
4.1
4.8
4.4
3.4
4.4
3.6
RELAT
HUMID
78/77
78/75
75/72
68/67
75/70
75/75
71/70
71/74
Airboat passed Station 3 while removing the meshes. Possible contamination from heavy spray.
-------
«UN0 118 CATE: 2/27/7*. COOLING DEVICE CODE = 2
T
*
3
4
5
7
8
PHI
5.90
26.84
6.C6
6.01
6.13
C
0
0
0
0
0
VOLUME
182.
171.
170.
187.
152.
9
7
1
8
1
NET
SODIUM
330.5
1410.5
215.5
345.5
2P5. 5
TIME
START/END
1546/1750
1600/1756
1713/1853
1610/1804
1702/1841
WINDSPEED
START/END
15.
15.
11.
15.
18.
6/14.
9/10.
3/10.
3/12.
2/13.
2
9
1
8
2
WIND 01 R.
START/END
7/
6/
fe/
6/
7/
7
6
6
6
7
DRY BULB TEMP £ DIFF PELAT
START/END HUMID
28.3£ 4.3/26.5£ 2.8 70/79
27.8£ 4.6/26.7C 2.7 68/80
27.5£ 3.8/26.2C 2.4 73/82
27.6£ 4.1/26.06 2.9 71/79
27.5£ 4.0/26.7£ 3.1 72/77
K ST
PHI
DATE: 3/29/74 COOLING DEVICE CQDE=0
VOLUME
2.28 1 132.8
2.17 1 ill.8
2.94 1 i!4.9
NET
SCOIUM
TIME
START/END
WINDSPEED
START/FNH
133.5 1135/1318 11.6/
1C8.5 1153/1324 13.6/
103.5 1200/1330 9.2/
WIND DIP.
10/10
10/11
11/11
DRY BULB TEMP £ DIFF
START/END
28.OC 4.5/
29.6£ 4.6/
29.4£ 5.6/
£
£
£
PELAT
HUMID
69/
69/
63/
-------
PUN* 120
ST
*
3
4
5
7
8
PHI
i e.55
4.22
2.77
2.79
2.65
DATE: 3/30/74 COOLING DEVICE COOE=2
C
0
0
0
0
0
VOLUME
619.1
382.4
451.3
544.7
332.8
NET
SODIUM
35!5.5
493.5
365.5
465.5
269.5
TIME
START/END
1025/1755
1200/1747
1236/1636
1213/1738
1254/1623
WINDSPEEO
START/END
19.0/32.6
24.6/19.0
17.1/21.7
22.8/20.3
22.B/24.4
WIND DIR.
STAPT/END
12/13
12/13
12/13
13/12
13/13
ORY BULB TEMP 6 OIFF RELAT
START/END HUMID
27.66 4.6/28.56 6.5 68/57
29.46 4.4/28.96 5.9 70/60
30.06 6.0/30.06 7.0 61/55
28.96 5.9/28.66 6.8 60/55
30.86 7.8/30.26 8.0 52/50
CO
RUN* 121
ST PHI
*
3
4
5
6
7
8
9
10
2.47
112.08
8.40
1.91
2.55
2.20
1.96
1.68
OATE: 3/31/74 COOLING DEVICE CODE=2
0 VOLUME NET TIME WINDSPEF.D
0
0
0
0
0
0
0
0
311.
346.
351.
186.
276.
297.
280.
211.
5
6
3
1
6
4
5
3
SODIUM
235.5
11,890.5
903.5
1C8.5
215.5
200.5
168.5
1C8.5
START/END
1257/1700
1305/1707
1350/1719
1448/1752
1343/1714
1400/1727
1500/lflOO
1439/1747
STJRT/END
13.
13.
20.
11.
11.
15.
9.
13.
1/19.
0/13.
4/11.
2/ 8.
0/11.
3/ 9.
I/ 8.
5/12.
0
4
2
7
9
3
9
2
WIND DIR.
START/END
6/
6/
6/
6/
4/
6/
5/
7/
7
8
7
6
8
8
5
8
DRY BULB TEMP 6 01FF
STAPT/END
27.96 7,
28.56 6.
27.86 5.
28.56. 7.
28. 56 9.
27.4t 6.
29.7t 9.
28. 8E. 8.
0/27. 9E 6.9
5/28.1C 5.6
3/27.9C 6.0
9/27.26 6.1
2/27.96 6.4
3/28.26 7.5
7/27.36 5.5
5/27.86 7.8
Very high concentration at Station 4 is probably caused by the operating spray modules. However additional
contamination from unknown sources is possible. Input data were checked and found to be accurate.
HUMID
54/54
57/62
64/60
49/58
42/57
57/51
41/62
46/49
-------
1/7't
CTLIMG )EVICE CCCF=0
? T
*
.3
4
5
6
7
8
q
10
OUT
<).qo
a. 45
8.77
7.T
fl.4 i
8.7B
7. 'IR
7. Id
r
•)
n
0
o
0
0
n
0
VnLMT
272.6
75?. 6
2?"''. 3
1 4 b . y
261. )
229.4
12^.4
13P.i
NFT
? 1PIU'-'
S33.5
6 5 j .5
591 .S
3 5 7 . f>
67fl . S
6 1 ( > . 5
?71 .5
303.5
T! 1F
STA3T/FND
1005/1256
1017/13.52
1 1 0 ) / L 3 1 b
12?9/135R
1030/1309
105J/1325
1 243/1405
1217/1353
WIMOSPFEO
STAPT/END
29.0/21. 5
27.2/19.2
18.7/24.1
21.8/20.4
21 .R/18. 5
22.3/22.2
14.3/16.0
19. 9/18. fl
WINO DIP.
START/END
a/
d/
8/
7/
7/
8/
8/
8/
8
8
7
7
7
7
7
6
DPY BULB TFMP E
OIFF
STAPT/END
27. OC
27. 8C
28. 4C
28. OC
26. 3C
28 . 2C
29. 6C
79. OC
4.0/29.0C
3.6/29.5C
5.1/27.9C
5.2/29.3C
4.2/28.5C
4.9/77.6C
6.1/28.0C
5.0/29.5C
4.8
4.5
4.5
5.1
4.9
3.7
4.5
4.9
RELAT
HUMID
71/67
74/69
65/69
65/66
70/67
67/74
60/69
66/67
'll'ii/ 123 [UTC; t,/ './•"•,
CT
0
3
4
5
6
7
8
9
10
PUJ
IS. 3*
1 4 . ?. \
1 '» . 1 P
11.75
14.47
14.65
1 1 .SS
11.15
C
0
0
n
n
0
0
0
o
V?l U"F
71P.S,
2 7 ? . 0
279.0
181.2
273.6
257.2
103.7
164.5
•irT
viniii«
11S3.5
1 1PU . •>
121 1.5
651 .b
1 ?l I . 5
1153.5
651 .r>
5(Sl .5
TIMP WI'IO^F-CD WI.NO DIR.
STA^T/ENO
1117/1409
1125/1416
115J/1428
1320/1512
1139/1421
1202/1438
1308/1505
1321/1524
START/END
32.7/23.9
20.1/25.6
21.1/21.0
19.9/15.1
15.8/14.9
26.3/20.0
Id. 3/17.0
11. I/ 16. 2
START/END
a/
R/
8/
8/
B/
8/
7/
7/
8
R
R
8
8
S
R
8
DRY BULfl TEMP C
DIFF
START/END
26. 9C
28. OC
29. 8C
29. 5C
28. 2C
29. 4C
29. 3C
30. OC
2.9/28.9C
3.3/29.3C
4.2/29.7C
5.5/29.5C
4.5/29.7C
3.8/30.0C
5.3/79.8C
5.0/29.6C
4.0
4.3
4.7
5.3
5.2
5.0
5.8
4.6
RFLAT
HUMID
79/72
76/71
72/68
63/65
69/65
74/67
64/62
67/69
-------
r>A-F: 4/ 8/74 roni ING DEVICE
ST
H
3
tt
5
6
7
8
9
10
PHI
5.13
9.74
5. (SO
5.6S
7.56
5. PS
5.05
5.47
r
0
0
n
0
0
0
0
0
VPLUf".
207.
202.
1R7.
220.
239.
192.
220.
186.
9
7
5
4
3
7
9
1
NET
siniuM
32ft. 5
(.04.5
121. 5
331.5
553.5
346.5
341.5
311.5
TI^F
S"A>T/END
933/1223
945/1729
1023/1242
1124/1343
955/1235
1037/1251
1112/1328
1135/1348
WH'nSPEFD
START/END
14
If.
12
13
in
10
10
11
.6/18.
.6/14.
.8/10.
.6/15.
.8/14.
.O/ 8.
.5/10.
.9/16.
0
H
8
1
<5
8
6
4
WIND OIR.
START/END
8/
8/
8/
7/
7/
9/
6/
7/
7
7
8
6
8
R
7
7
DRY BULB TEMP £ DIFF RELAT
START/END HUMID
24.0£ 5.8/25.5E 4.7 57/66
25.Ot 5.5/26.0C 4.5 60/68
26.06 5.9/26.0C 6.0 58/58
26.OC 6.0/27.3£ 5.5 58/62
24.5C 5.9/26.0C 5.1 57/64
25.9C 5.1/25.6& 5.7 63/59
26.4C 6.9/25.3d 6.3 52/55
27.4t 5.9/27.3C 6.3 60/57
oo
04-F: 4/
)EVICE
ST
3
4
5
6
7
8
9
10
PHI
4.?*
3.36
3.04
2.84
3.0'j
2. sn
c
0
0
0
0
0
0
0
n
VHLIJMF
277.2
271.0
264.2
2 1 6 . 8
2B3.3
241.5
213. R
173.5
NFT
siniuM
311.5
353.5
271.5
201.5
246.5
226.5
183. 5
141 .5
TMF
START/END
1112/1410
1122/1418
1142/1430
1311/1527
1131/1424
1155/1438
1254/1535
1325/1521
WINDSPEcg
START/END
4.8/14.8
3.5/20. 7
11.5/20.6
11.0/17.3
5.5/13.3
9.5/16.9
10.9/14.6
17.8/17.6
WIND DIR.
START/END
14/11
15/10
13/11
10/11
15/11
14/11
10/11
10/11
DRY BULR TEMP £
START/END
26. OC
25. 8C
27. OC
27. 9£
25. 6C
26. 1C
28. 5£
28. 1C
5.9/29.6C
5.0/28.5C
5.B/28.6E
6.7/28.5C
5.6/28.2C
5.8/29.2C
6.9/28.0C
6. 7/29.6C
DIFF
5.6
5.0
6.1
5.5
6.2
7.0
6.0
6.6
RELAT
HUMID
58/63
59/66
60/59
56/63
60/59
59/54
55/60
56/57
-------
5llf!» l?h
nATF: '»/li-/74
rcor
ST
«
3
4
5
6
7
8
9
in
Dill
9.1«5
8.09
l'-».41
6.r>^
7.77
1 0 . r> I
6.?7
ft. 11
r
0
0
n
0
0
0
0
0
VILU'T
U.3.7
261.9
181.6
245.0
340.1
26?. 7
?Sh.7
206. 1
'icT
snoiu*
453.5
648.5
•57G.5
491.5
nofi.5
"353.5
496.5
381.5
M^r
ST^T/FND
1143/1525
1203/1531
1320/1545
135a/l628
1215/1538
1311/1553
1345/1635
1417/1622
wiK-nsPEEn
START/END
16.6/20.2
6.8/13.2
11.4/17.9
13.0/20.8
14.2/17. 1
19.1/23.5
13.6/22. 1
13.5/17.2
WIND DIR.
START/FIND
3/
'»/
3/
4/
21
B/
3/
3/
3
4
3
3
4
4
3
4
DRY BULB TEMP E
OIFF
START/END
23. 6C
26. OE
27. 6E
27. OE
24. 8t
26.26.
27. 5E
27. Of.
4.4/26.0C
4.8/26.8C
4.8/26.9S
5.8/26.7C
4.3/25.9C
3.2/26.4C
5. 3/26. BE
5.3/26.9C
4.1
5.3
5.9
5.8
5.1
3.5
5.8
5.9
RELAT
HUMID
66/70
66/63
67/59
60/59
68/63
77/74
63/59
63/59
PUN*
4/11,
c T
*
3
4
5
6
7
8
9
in
PHI
? 7 . A'?
25.31
20.92
19.75
19.1'
17.51
70.09
18.77
r.
0
0
0
0
0
0
0
0
VCLUMC
1&9.0
211.2
191.3
176.4
188.8
167.3
177.5
175.0
NF T
S"TIll^
1432.5
1641.5
1228.5
1066.5
1116.5
896.5
1091.5
978.5
TI'4E
STA*T/END
12-16/1433
1216/1439
1303/1451
1359/1549
1227/1443
1315/1500
1411/1556
1343/1540
WINDSPTED
r.TART/FNO
T9.3/22.6
28.9/23.0
25.0/24.0
2
-------
ST
3
4
5
7
fl
PHI
6.40
7.95
DATE: 4/16/74 rnri.ING 0?VICE
f VPLUME NCT
STA3T/FNO START/FNU
1
1
1
1
0
2 5<;. 6
?01 .9
166.7
206.6
142.5
531.5
331.5
326.5
311.5
346.5
1111/1410
U40/1355
1218/1404
1153/1400
1241/1419
9. I/
18. I/
11. 2/
14. 2/
3.U/
WIND DIH.
START/ENO
10/ 9
9/10
<>/ 9
9/10
11/10
DRY BULB TEMP 6 DIFF
START/END
28. 66
29.06
27.06
I/
O/
O/
27.66 4.6/
25.36 2.8/
6
6
6
RELAT
HUMID
72/
72/
71/
68/
» UN* l?^
a
3
4
5
6
7
8
9
10
1.60
I.*)/.
1.47
1.32
1 .?fl
1 .4«
0.8 I
1.17
n.V
r
0
0
0
1
0
0
2
1
rr: 4/17/74 C?Pl
V?1.U'-'F ,M?T
270.1
149.7
254.8
166.9
250.7
201.6
140.4
132.3
r r»o 1 1 IM
132.3
89.7
114.3
67.?
98.3
92.2
34. H
47.?
.INC, TLvicr COOF=O
TIM? V'TNDSPEED
STA5T/END
1134/1458
1218/1503
1241/1514
1354/1540
1229/1509
1301/1521
1339/1543
1410/1536
STi-U/FNO
4.4/19. 1
7.0/15.2
7.7/18. 1
11. 21
8.2/13.4
11.4/21.7
°.o/
13. 7/
WIND DIR.
START/ENO
4/ 7
6/ 7
6/ 8
8/16
6/ 7
7/ 8
6/15
7/ I
DRY BULB TEMP E DIFF RELAT
START/END HUMID
26.7t 3.7/28.0& 3.5 73/75
28.5t 3.6/2d.Ot 4.0 75/72
27.8C 4.3/28.0C 4.4 70/70
28.0& 6.0/ & 60/
27.Ot 3.3/27.6C 3.8 76/73
28.4t 4.1/27.9& 4.8 72/67
29.9C 5.9/ £ 61/
29.96 6.9/ 6 56/
-------
CfLI'-G
CODF=2
ST
ft
3
4
5
6
7
8
1
10
11
PHI
7.07
S>.41
4.57
5.16
5.flfl
6.74
ft.O-t
4.9 ^
5. "4
r
0
0
n
0
5
0
n
0
0
VOLl'MP
261.7
200.5
P79.9
158.7
107.5
18R.2
15S.9
141 . *
222.0
NF"
E^OI DM
56^.5
333.5
391.5
-750.5
193.5
398.5
?95.5
213.5
403.5
TIME
STA^T/END
1275/1511
1?35/ 1518
1323/1532
1 423/16 ")9
174W1524
1339/1540
1418/1603
1435/1613
1310/1528
WINDSPEEO
STAPT/ENO
19.3/18. 2
17.0/13.4
18.4/16.6
17.9/19.7
IV. 8/16. 9
28.1/19.4
21.7/16.7
11.7/17.3
IS. 4/13. 6
WIND DIR.
START/END
3/
4/
4/
4/
3/
4/
5/
3/
3/
4
5
4
4
4
4
3
4
3
DRY BULB TEMP 6
DIFF
START/END
26.26
26.16
25.86
26.06
26.86
25.76
26.26
26.46
26.36
5.3/25.86
5.4/25.86
4.6/26.46
5.2/25.76
5.8/25.76
4.9/26.96
5.5/26.?6
6.2/25.86
5.6/25.86
5.4
5.4
5.8
5.4
5.4
4.9
5.6
5.7
5.2
RELAT
HUMID
62/61
62/61
67/59
63/61
59/61
65/65
61/60
57/59
60/63
Low RPM on Station 7.
V)
ro
131
C'JDLINP DEVICE CODE=2
ST
*
3
4
5
6
7
a
q
10
11
PWI
•>.*•*
4.30
6.10
3.60
4 .67
5.70
3.79
3.?6
4.23
r
0
0
0
0
0
0
5
0
1
VPLUMF
?48.4
152.4
137.9
166.7
156.4
175.6
126.3
163.9
195.8
NFT
SODIUM
412.5
200.5
257.5
183.5
223.5
306.5
146.5
163.5
253.5
TIMF
STA*T/EMD
1 107/1406
1150/1413
1233/1428
1321/1510
12-J3/1419
1245/1437
1309/1502
1330/1515
1224/1423
WINDSPE^D
START/E^D
15.0/19.3
15.7/16.9
15.4/13.6
14.9/12.8
15.5/20.?
20.2/19.4
18.2/16.9
12.7/11.8
13.6/17.6
WIND DIR.
START/END
4/
4/
5/
2/
3/
3/
.3/
3/
4/
4
4
5
?
3
3
3
3
4
DRY BULB TEMP 6
DIFF
START/END
25.56
26.06
27.26
26.36
26.26
26.46
27.16
27.06
26.96
6.0/26.66
5.5/26.06
6.2/26.86
6.4/26.26
6.3/25.96
5.4/26.16
7.1/26.06
7.1/26.06
6.6/26.06
6.2
6.6
7.0
6.3
6.3
6.0
6.4
7.0
6.8
RELAT
HUMID
57/57
61/54
58/52
55/56
56/55
62/58
52/55
52/51
55/52
Low RPM on Station 9.
-------
4/20/74 COOLINr, OEVICF COPE = 2
ST
*
3
4
5
6
7
8
9
10
11
PHI
15.56
31.46
40. rM
8.22
10.08
10.81
9.0',
T.95
22.01
C
5
0
0
0
0
0
o
0
0
V9LUMr-
89.3
1 2 8 . S
120.1
151.5
198.2
159.8
141.2
142.5
166.5
fJFT
SODIUM
425.5
1241.5
1471.5
381.5
611.5
528.5
391.5
346.5
1121.5
TIME
STMT/FND
12U/1442
1247/1446
1314/1500
14D/1542
1251/1451
1330/1507
1422/1547
1400/1537
1310/1455
WINDS"EEO
START/END
23.6/23.2
19.9/20.3
20.8/19.3
22.9/21. 1
26.2/19.8
27.3/27.8
20.8/18.4
24.2/19. 1
20.9/18.0
WIND DIR.
START/END
5/
5/
5/
4/
5/
5/
4/
4/
6/
5
5
5
4
5
4
3
4
6
DRY BULB TEMP C
DIFF
START/END
26. 7C
27. OC
27. 7C
25. 7C
26. 9C
26. 7C
27. OC
27. 1C
27. OC
4.9/26.9C
5.8/26.5C
4.9/26.7C
5.3/26.2C
5.7/25.4C
4.5/26.5C
5.9/27.5C
6.1/28.0C
6.0/27.0C
5.1
4.5
4.7
6.2
5.4
5.2
6.3
6.0
6.0
RELAT
HUMID
65/64
60/68
66/66
62/56
60/61
68/63
59/57
58/60
58/58
Low RPM on Station 3.
to
co
RUN* 133
ST PHI
H
3
4
5
6
7
8
9
10
11
20.00
39. 6B
23.47
15.07
18.22
19. ?1
15.16
14.52
22.00
DATF: 4/22/74 COOLING DCVICE fODP=l
C VCLUMF NET TIME WINDSPEED
0
0
O
n
0
0
0
0
0
273.5
271.0
209.0
232.2
269.3
184.0
?34.3
203.2
212.5
SODIUM
Ih81.5
3291.5
1501.5
1071.5
1501.5
1081.5
1101.5
903.5
1431. b
STA3T/FND
958/1257
1010/1301
1049/1315
1127/1349
1019/1306
1058/1322
1137/1415
1117/1345
1038/1110
START/END
23.8/18.2
21.3/19.6
24.8/19.1
19.2/18.3
16.7/20.0
23.2/25.2
23.3/15.2
15.7/20.8
23.8/18.6
WIND DIR.
START/END
6/
6/
7/
6/
6/
6/
6/
5/
7/
6
6
7
6 .
6
6
6
5
6
DRY BULB TEMP C
DIFF
START/END
25. 7C
26. OC
27. OC
26. 5C
25. 7C
26. 4C
27. 2C
26. 1C
26. 3C
4.5/26.0C
4.3/26.6C
4.1/27.5C
4.6/28.0C
4.5/25.4C
4.6/27.0C
5.3/28.0C
4.9/27.0C
4.3/27.0C
4.0
3.7
3.7
5.0
4.2
3.7
4.3
5.0
4.0
RELAT
HUMID
67/71
69/73
70/73
67/66
67/69
67/73
63/70
65/65
69/71
-------
CT
a
PHI
r> v
r
4/23/74
Vrl 'I'1!'
INC, :)=VICF LCf)L =
ST A
START/END
*
4
5
f
7
R
o
1 0
1 1
1?.
1 ? .
11.
f>.
I ?.
1 0.
•1.
i>.
1 •'.
7-1 0
73 n
30 o
1' 0
14 1
~" 7 }
}•> n
"•* •)
R.) ii
117.
13".
152.
M • i .
1 •»•' .
lr>f-.
I V •
I??.
1 * i.
?
1
•j
t.
:)
U
<,
4
7
45*.
541.
553.
S41 .
7t>3.
'»9 I .
5)3.
3 3h.
ftl 1 .
•j
s
s
c.
5
5
5
.s
•5
1('?7/1 ?43
1 ;)W/l?48
11 1 7/1303
1 I 'j •-> / 1 3 •> 3
l-m/1253
1 1?/
2.S/
n.8/
3.0/
4.6/
9. I/
12. '!/
' ': fc" D
4.7
2.4
4. 1
9. 7
6. 1
8. 1
9. I
12.8/10.9
4.4/
7.1
WINf) OIR.
STAKT/END
It)/ 4
15/16
I/ 1
9/ 9
15/15
I/ t
1W14
14/14
15/15
DRY BULB TEMP C
DIFF
START/FND
27. OC
26. OC
27. OC
28. OC
28. OC
28. OC
29. OC
27. 6C
P7.0C
4.0/27.8C
3. 1/28. 9C
4.0/28.6C
5.8/28.6C
5.0/28.8C
5.0/28.0C
6.0/28.0C
5.4/28.0C
4.8/29.0C
4.6
6.6
4.8
5.4
5.4
4.5
4.9
5.6
5.7
RELAT
HUMID
71/68
77/56
71/67
61/63
66/63
66/69
60/67
63/62
66/61
Low RPM on Station 7.
-------
OATf: 4/25/74 CYCLING OEVICE CHDF =
ST
*
3
4
5
6
7
fl
9
10
11
PHI
17. ?7
13.40
10.78
12.04
14.15
18.30
14.21
12.53
13.85
C
0
0
0
0
0
0
0
0
0
VPLUM"!
242.4
220.2
262.5
182.7
231.3
152.4
171.6
144.4
177.8
r'FT
SODIUM
1281.5
903.5
866.5
673.5
1001.5
853.5
746.5
553.5
753.5
TIME
STA^T/FND
1034/1302
1048/1308
1140/1330
1226/1418
1 10?/1316
1153/1339
124)/1428
1215/1413
1120/1323
VflMDSPEED
START/END
26.6/20.4
17.5/15.2
lfl.7/24.8
17.8/14.9
20.8/25. 7
37.1/28.2
25.1/18.2
19.5/21.7
13. 7/16. 6
MIND DIR.
START/END
4/
4/
5/
3/
3/
4/
2/
2/
4/
4
4
5
1
3
3
2
2
4
DRY BULB TEMP C
DIFF
START/END
25. 1C
25. 3C
25. 8C
25. 1C
25. 4C
25. 7C
25. 2C
25. 7C
25. 7C
4. 7/25. 1C
5.0/25.7C
5.1/25.9C
4.7/27.2C
5. 1/25. 1C
4.4/25.5C
5.0/26.0C
5.2/27.0C
5.0/25.7C
4.6
4.9
5.3
5.6
4.7
4.4
5.0
5.8
4.7
RELAT
HUMID
65/66
64/65
63/62
65/61
63/65
68/68
63/64
63/60
64/66
> (IN
ST
a
•j
4
5
6
7
R
9
10
11
# 137
PHI
10.42
8.91
9.43
8.0?
8.74
10.70
7.°'»
6.60
S.I 4
DATE: 4/26/74 CfirLING OEVICE CODF=1
C VOLUMF NET TIME WINDSPEED
0
0
0
n
0
t
0
0
0
212.7
150.5
230.9
200.2
113.5
219.5
18ft. 5
137.8
247.2
S3DIUM
678.5
410.5
666.5
491.5
303.5
685. S
453.5
278.5
691 .5
STA^T/END
1026/1319
1037/1328
1118/1341
1154/1410
1043/1332
1128/1347
1206/1416
1148/1405
HO'J/1337
START/END
13.5/16.0
11.1/14.3
10.6/15.5
IP. 1/15.0
15.7/15.1
13.3/16.7
14.4/17.0
11.2/12.8
11.5/12.6
WIND DIR.
START/END
5/
3/
4/
3/
3/
3/
3/
3/
3/
5
3
4
4 .
3
3
3
2
3
DPY BULB TEMP C
DIFF
START/END
23. 5C
24. 6C
26. OC
25. 6C
23. 6C
24. 9C
26«£C
25. 2C
25. 3C
6.5/24.8C
6.6/25.6C
7.0/26.0C
6. 7/26. 1C
6.4/25.0C
5.9/25.6C
7.5/26.5C
6. 3/26. 96
6.6/25.8C
5.8
6.7
7.1
6.3
6.5
5.6
7.7
7.9
7.0
RELAT
HUMID
52/58
52/53
51/50
53/56
53/53
57/60
49/48
55/48
53/51
-------
•'IV
INT. ")EVICF
« T
*
3
4
5
6
7
Q
9
10
11
DHJ
11.77
70. S7
73. 1 ^
12. S8
14.33
14. .H
11.3°
o.na
22. ft?
r.
o
0
0
n
5
1
n
n
5
V°L J" =
179.5
163 .<*
90.4
234.7
35. 7
13^.1
??T.O
183. '•
63. {i
•IT"
c i *» rj T ij M
4 ft £) • 5
1 131.5
641.5
'.03.5
150.5
597.5
797. •)
•553.5
441 .!>
TTMF
1TMT/EMD
1037/1302
1044/1306
111 1/1326
1 1 4d / 1 4 1 2
1057/1316
1177/1333
1155/141H
1 1 » J/1407
1 10?/1 32?
WIMDSPEFD
ST41T/FND
19.5/16. 1
17.8/16.7
18.5/16.9
17.2/17.9
1^.6/19.5
2?. 7/23. 9
17.8/19.4
10.4/15.8
15.0/17. 8
WIND 01".
DPY BULB TEMP C
OIFF
ST4RT/END START/END
5/
5/
5/
i>/
5/
5/
3/
4/
5/
5
5
6
5
5
6
4
4
5
25. 8C
25. 8C
26. OC
26. 8C
25. 4C
26. Ot
7.7. OC
26. OC
26. 5C
7.6/26.3C
7.6/25.9C
7.1/26.0C
6.5/27.2C
7.2/24.8C
6.0/26.0C
6.2/27.0C
5.H/26.2C
7.5/26.0C
6.1
6.9
6.2
7.2
5.8
5.5
6.8
7.2
6.8
RELAT
HUMID
47/57
47/52
50/56
55/52
49/58
58/61
57/54
59/50
49/52
Low RPM on Stations 7 and 11.
DIJN»
4/?S/7-«
=2
S T
tf
3
4
5
6
7
8
9
10
11
PHI
r
VnLIJivf- NFT MM= WTMJS^CED WIND DIR.
531'UM SmT/L.NP STiqj/END STAPT/END
6.09
? 2 . I 2
13.77
6.01
5.70
5.35
5.11
3.flS
13.20
0
0
0
0
0
0
n
0
0
1P*.P
1B4.H
152.2
131 .5
193. *
156.7
Ib7.7
93. /
143.2
3*7.5
12^)1.5
f.41.5
'41.5
316.5
7 5 f j . b
?'.l, .5
110.5
"J7S.5
1022/1230
1032/1235
1101/1256
1 145/1328
1043/1243
lll'J/1304
1153/1336
1137/1323
1107/1250
14.4/13.8
16.3/10.4
1 0 . '> / 1 5 . 7
11. 6/ 9.2
12.6/12. 6
13.7/12.6
14.W10.5
13. 8/ 9.8
9.2/10.0
4/
5/
4/
5/
4/
4/
4/
4/
4/
5
5
4
5
4
4
4
4
4
DRV BULB TEMP C
DIFF
STACT/END
25. ?C
25. 6C
26. 9C
27. OC
25. 3C
26. 2C
27. OC
27. OC
26. 1C
6.2/26.7C
6. 8/27. 1C
7.3/27.2C
6. 7/28. 1C
6.8/26.4C
5.7/27.3C
6.8/29.0C
7.1/27.0C
6. 9/2 8. Of,
6.9
7.'i
6.3
7.8
6.5
6.8
7.9
7.2
7.0
RELAT
HUMID
55/53
52/53
51/54
54/49
52/55
60/54
54/49
52/52
52/5*
-------
;HN
ST
3
4
5
6
7
8
9
10
11
* i'*n
PHI
?3.f>5
7.-M
5.04
5.98
6.39
4.40
15.77
r.
n
0
0
0
0
0
0
0
o
r^: 4/29
V "'LUMP
160.0
15*. 3
140.7
104.7
172.9
129.7
172. 1
74.7
10L.I
/74 CrVLING DEVICE (
tt~r Tl^ =
SnDIIJM
1 131.5
331 .5
16 1 . 5
316.5
253.5
310.5
100.5
472.5
~HDC='
k INDSPEcn
WIND niR.
STAIT/'-NO START/R:D START/END
1233/1426
1240 /I 4? 9
1259/1442
1331/1529
1247/1434
1307/1448
1331/1536
1325/1523
125W1437
13.3/17.1
10.4/10.2
15.7/U.4
9.2/13.9
12.6/13.3
12.6/18.0
in. 5/15.0
9.8/11.3
in. 0/10.4
5/
5/
4/
5/
4/
4/
4/
4/
4/
4
4
5
3
4
4
3
4
4
DRY BULB TF.MP C
DIFF
START/END
26. 7C
27. 1C
27. 2C
28. 1C
26. 4C
27. 3C
29 .OC
27. OC
28. OC
6.9/27.0C
7.0/27.2C
6. 8/28. OK
7. 8/26.86,
6.5/27.0C
6.8/27.0C
7.9/25.3C
7.2/27.0C
7. 0/27.7C
7.1
7.2
7.0
6.9
6.9
6.2
5.8
7.2
7.5
RELAT
HUMID
53/52
53/52
54/54
49/53
55/53
54/57
49/58
52/52
54/51
«»uu
*
3
4
5
6
7
8
9
1 0
1 1
H 141
PHI
27.77
6.56
2.17
2.21
? .fl9
2 .05
1 .77
10.4?
HATE: W30
0
0
0
0
n
0
0
0
130.1
126.0
183.5
133. H
114.8
162.5
1 4 c . ft
99.7
187.4
m COOLING DFVICE (
NET THE
?. 00 1 U*
87.7
1051.5
368.5
38.7
77.7
143.5
91.5
53.9
597.5
ST/UT/END
1037/1257
1053/1301
1122/1315
U5//1347
1057/1306
1137/1322
120<>/1353
1143/1342
1115/1310
:CPF=2
WJNOSPEFO
S'ART/ENO
8.1/11.3
7.9/ 8.9
5.4/ 8.2
11. 0/ 9.6
t. 4/10. 7
11. 8/ 9.7
6.3/13.6
5.9/ 6.4
7.7/ 7.1
WIND DIR.
START/END
8/
8/
8/
5/
6/
4/
4/
5/
7/
4
5
6
3
3
3
3
4
5
DRY BULB TEMP C
STA1T/END
25. 5C
26. OC
26. OC
26. 7C
25. 3C
25. 8C
27. 6C
26. OC
?5.7C
6.3/27.0C
6.0/26.8C
7. 1/27.3C
7.1/27.0C
6.8/26.8C
6.6/27.2C
7.4/27.0C
7.0/27.9C
6. 5/27. 1C
DIFF
7.2
7.3
7.3
7.4
7.B
6.6
7.8
7.9
7.1
RELAT
HUMID
55/52
58/51
50/51
52/51
52/48
53/55
51/48
51/49
54/52
-------
31)"-* 14? TATr: ?'/ l/7<»
G J?VICC
=2
« T
*
3
*
5
I,
1
P
9
I 0
11
PI i! r.
2 . I h 1
"I 9. 5? ,'
'i.O-l ri
' . '• 1 .)
?.'•.<> 1
3 . '. "> i>
?.r.? 0
2.m o
i r- . r> 7 n
V<- LUMP
IT 7.'.
ItO.I
•JS.S
? 3 4 . 7
? ^ a . h
12'-. 3
?3T.h
IHt .'1
127.0
NFT
S">i!U.X
'U.O
1 767. •*
177.3
1 07. 3
?02. *
134.3
Iri4.3
IOC. 3
766.3
T
101
10?
110
113
103
111
1 14
in
105
I ME
3T/FND
1/1307
3/1316
?/133?
9/140fc
i/1322
J/133V
)/ 140 1
3/1326
wir'OSPf-EO
START/END
R. 0/13. 6
1.5/11.6
S.2/ 9.4
R.0/13. 3
12.3/14.2
9.2/12. r
2.2/10.4
4.2/11.5
2.6/13.2
WIND 1
1IR. DRY BULB TE"1P C
STtRT/END
ll/
16/
13/
6/
9/
8/
10/
ll/
12/
7
6
6
7
7
8
7
6
R
OIFF
START/END
26. OC
26. 7C
27. OC
28. OC
26. 5C
27. 2C
29. 1C
28. 1C
27. 2C
5.2/26.9C
6.2/27.6C
6.6/2H.6C
6.9/28.6C
6.0/26.7C
6.R/28.1C
7.8/28.2C
7.1/28.0C
6.1/27.2C
5.7
6.5
6.8
b.l
6.8
6.9
6.9
5.2
RELAT
HUMID
63/60
57/57
55/57
55/55
58/58
54/55
50/55
53/55
58/64
Low RPM on Station 5.
'UN« 143 n\TF: •;/ ?/7^
ST "HI r vnLuwt: 'jr
«
3
4
5
6
7
8
Q
10
11
CCOl
'NO TfVlCP (
SODIUM «TA-?T/END
l.r.h 1 Z3'>.H
3 . 4 ft 0 ? 3 '3 . 2.l!
1.33 0 97.5
0.13 5 87. 7
1.57 S 7H.H
I.?? 5 ^o.7
112
253
77
24
785
39
?3
37
36
.3
.3
.3
.U
.3
.8
.6
.P
.1
1019/1300
U3J/1305
1113/1324
115^/1430
1041/1310
1127/1333
1206/1406
1148/1354
11D/1315
:nnE -2
WINUSPFED
STAm/CND
14.7/14.3
12.0/12.2
14. ?/ 5.7
9.7/12.0
7.8/10.0
10.4/11 .5
1 1 .U/ 9.4
11 .»/ 6.7
17.5/14.0
W!ND DIP .
START/END
9/
9/
7/
10/
8/
7
9
9
R
8
8/10
8/
8/
10/
U
8
8
D»Y BULB TFMP C
DIFF
START/END
27. OC
26. 7C
28. 5C
28. OC
26. 8C
27. 9C
29. 1C
29. OC
27. OC
4.4/25.7C
5. 1/27. 1C
5. 5/26. Of.
6.4/28.8C
5.7/27.0C
5.7/28.3C
6.8/29.2C
6.5/28.6C
4.5/27.4C
4.2
5.1
5.2
7.0
5.9
6.4
7.6
6.7
4.6
RELAT
HUMID
68/69
64/64
63/63
58/54
60/59
62/58
55/51
57/56
68/68
Low RPM on Stations 6, 9, 10, and 11.
-------
144
5/ 3/74 COHLING OFVICE fnOE=2
ST
3
4
5
6
7
8
9
10
11
PHI
.68
.78
.70
.77
.02
.36
.44
.51
r
n
0
0
n
0
0
n
0
0
VOLUME
345.8
3?6.1
255.8
30?. 6
337.0
313.0
310.0
221.7
172.3
NET
SODIU^
177.3
177.3
133.3
136.3
285.3
193.3
129.3
100.3
79.8
TI IE
1033/1440
1057/1444
1122/1456
1215/1526
1106/1449
1132/1503
1213/1532
1107/1522
1115/1452
WINOSPEPD
STA3T/END
12.4/20.2
12.2/16.6
8.5/15.3
14.7/12.5
10.4/12.0
13.6/17.4
7.6/ 9.6
9.1/10.5
14.8/16.9
MIND OIR.
START/END
8/ 9
8/ 6
9/ 7
10/ 8
10/ 7
7/ 8
7/ 8
7/ 7
10/ 9
DRV BULB TFMP C DIFF
START/END
28. 1C 5.8/29.6C 6.4
27. 9C 5. 7/29. 1C 7.1
29. 6C 7.2/30.3C 7.3
28. OC 6. 8/29. 1C 6.7
28. OC 5.7/29.3C 7.5
28. 5C 6.2/29.4C 7.4
30. 2C 7.7/31.0C 8.1
30. OC 7.0/31.0C 8.4
28. OC 5. 8/29. 1C 6.1
RELAT
HUMID
61/58
62/54
54/54
55/56
62/52
59/52
52/51
55/49
61/59
10
vo
145 DATE: 5/ t/74 COOLING DEVICE CODE=2
ST
0
3
4
5
6
7
R
9
10
1 1
PHI
2.59
0.87
0.96
0.72
0.6R
0*7?
0.64
0.7ft
r
0
0
0
0
0
n
0
0
0
VOLUME
231.2
220.8
205.3
185.8
235.2
177.2
174.7
164.4
207.6
NFT
SODIUM
Ifl3.5
59.0
60.3
40.9
49.0
34.6
38.4
32.1
48.4
TIME
ST1UT/END
808/1050
823/1056
911/1118
1000/1202
B36/1103
927/1128
1011/1212
949/1155
859/1111
WINDSPEED
STAPT/EMD
3.3/ 4.5
3.6/ 4.4
4. I/ 4.6
*.5/ 8.6
4. 1/ 3.5
5. I/ 4.4
4.3/ 7.0
3.8/10.0
5.8/ 3.7
WIND DIR.
STA9T/ENO
16/12
16/10
14/10
14/ 8
I/ 9
I/ 7
3/ 5
I/ 8
16/12
DRY BULB TEMP C
START/END
20. OC 2.2/27.3C
20. 2C 2.1/27.8C
22. 1C 2.6/28.0C
24. 3C 3.3/29.0C
21. OC 2.2/27.5C
22. 7C 2.7/28.0C
25. OC 4.0/29.5C
23. 7C 2.9/28.8C
22. OC 2.8/27.5C
DIFF
5.4
5.7
6.8
7.7
6.3
6.7
7.8
7.6
5.8
RELAT
HUMID
81/62
82/61
78/55
74/50
81/57
78/56
70/51
77/51
77/60
-------
146
,./74
?T
*
3
4
5
*
7
1
o
1 1
1 1
PMI
2.SS
? ,R7
7.115
1 .'.7
2.41
2.^6
I . 7'<
1.T7
7.4 1
r
0
1
•1
0
•">
0
0
0
"•
V 'LIJMf
.705.4
21?. 4
723. ti
l »<••.; ?
;> ha. 3
1-54.0
1 H " . 4
1 ^ * . i
,'3 7.1
r F-T
s:i nr1
lo?.5
Iff .5
194.5
*?. *
1 9 '» . •»
ltO.5
SP . S
56. '>
174. 5
Tjvc
ST£->T/f\JD
1012/1258
102W1304
11-13/1322
1 73 f/ 1401
103W1310
1125/1329
1155/1351
171 J/1405
I05i/1316
WIfnSPcED
START/rND
l't.7/11.6
ir .o/? i . ?
".1/13.2
11. J/ll.9
•3.6/16. C
12.5/20.2
10.4/13.4
IV. 5/12. 5
a. 9/17. 9
MINI) DIR.
STAPT/FND
8/ 8
8/ 9
«/ 9
8/10
8/ '?
9/ 9
9/ 9
9/ 9
10/11
DRY BULB TEMP C
niFF
START/END
2b.5C
28. 8C
30. OC
30.96
29. OC
30. 7C
28. 3 C
31. 4C
?9.2C
3. 3/31. 1C
3. 8/31. 1C
4.9/32.0C
5.3/32.6C
4.H/31.7C
4.8/32.0C
4. V32.4C
•J.7/32.5C
4.4/31.0C
5.1
5.2
8.5
8.4
7.1
8.0
8.0
8.4
6.5
RELAT
HUMID
77/66
74/66
68/48
65/50
67/56
68/51
72/52
63/50
70/59
147
5/ 7/74 C-I-LIMG J---VICE rrrc=i
*;T
I'M I
r
vr>i_u»-r
I'f T
T'MF
WINDSP^ED
* S^nilH ST45T/F'JD STA^T/END
3
4
5
f,
7
8
9
10
1 1
2. I"
2.23
2. "3
1.R3
1 .74
2. S3
2.7-1
1.6S
2.07
0
0
n
0
0
0
0
0
0
7 ' r- . H
7.66.2
750.5
2?3.fi
273. fc
2?2.5
221.8
196.8
229.1
144.5
18^.5
155.5
125.5
145.5
172.3
154.5
99.5
145.5
92J/1220
930/1224
10OS/ 1 239
1045/1310
940/1229
1016/1246
1053/1316
1035/1303
953/1234
6.8/10. 6
2.6/
1 .7/
3. ^/
2.5/
7.2/
6.0/
0.5/
1.3/
7.4
5.5
6.7
7.8
7.1
3.3
6.5
5.8
WIND DIR.
START/END
2/
8/
15/
12/
16/
I4/
10/
I6/
12/
4
3
4
9
4
5
4
4
4
D"Y BULB TEMP C
DIFF
START/END
24. OC
25. 8C
26. OC
26. 5C
26. OC
25. 8C
25. 6C
26. OC
25. 5C
2.8/27.8C
3.R/28.2C
3.7/29.0C
4.2/29.3C
3.7/28.0C
3. 6/28. 1C
3.6/30.4C
4. 9/29. 1C
3. 5/28. 1C
4.6
4.5
4.7
5.4
4.5
3.7
6.4
5.2
4.9
RFLAT
HUMID
78/68
72/69
73/68
70/64
73/69
74/74
73/59
65/65
74/67
-------
PA-F: 5/
C'OL
TEVICE CCT)F
ST
«
3
4
5
6
7
8
9
10
11
PHJ
l.*9
1 2. M
2.17
1 .84
1 .93
2.20
1 .?9
1.44
3.°'+
r
"
0
0
0
0
0
0
0
0
vnnj^-F
261.3
266.7
2 4 b . fl
23A.fi
271.9
208.8
266.3
159.4
252.3
MCT
Snniuv
150.5
I J21 . 5
163. b
134.5
160.5
140.5
12*1. 5
71.5
334.5
TI,-«:
STAT>VENr
9P4/122C
935/1224
1007/1238
104S/1322
943/1229
1019/1245
1033/1326
1056/1318
1030/1233
WINOSPEEO
START/END
6.8/14.7
12.7/14.0
8.8/10.9
10. O/
9.1/11.3
12.3/13.9
10. I/
6.5/
15.3/13.6
HIND DIP.
START/FNO
8/
8/
7/
6/
7/
6/
6/
7/
7/
6
7
6
6
7
7
6
6
7
OPY BULB TEMP C
START/END
26. 8C
28. 6C
28.8e
28. 7t
28. OC
28. ie
2U.8C
29. 3C
28. 3£
3.8/29.0£
4.Q/30.0C
4. 8/30. 6(1
4.7/ e
4.7/30.0C
4.1/28.3&
4.8/ C
4.4/ £
3.8/29.6C
OIFF
4.0
4.2
5.7
5.5
4.2
4.8
RELAT
HUMTD
72/72
72/72
67/63
68/
68/64
71/71
67/
70/
73/68
ro
o
CODF=l
«T
*
3
4
*i
6
7
8
**
1 3
1 1
PHI
2.14
2.12
2.0*
1 .**
1 .80
I .93
I .90
1.60
1.93
C
0
n
o
0
0
^
0
0
0
VOLUME
?54.3
280.0
252.1
235.8
249.0
? ? 5 . 3
?3l.R
175.6
255.3
ntT
S-1D111M
166.5
181.5
156.5
121.5
141 .5
136.5
134.5
Ofc.-J
156.5
IMF
STA^T/END
1001/1257
1011/1302
1043/1318
1123/1353
1011/1307
M52/1325
1115/1346
1132/1358
1033/1312
KIMOSPEEO
START/END
1.4/12.3
1.7/10.1
4.4/13. 1
3.0/13.3
0.5/11.6
3.8/13.7
3.3/13.6
5.9/12.1
2.9/12.4
WIND OIR.
DRY BULB TEMP 6
DIFF
START/END START/END
16/
IS/
12/
15/
10/
5/
5/
I/
I/
4
4
3
4
4
3
3
3
5
26. 1C
26. OG
25. 9C
28.lt
26. 9t
26. 46
26. 9t
27. 2G
28. OC
3.7/26.9£
3.7/28.0C
3.9/2B.2C
5.8/28.4C
4.6/27.8C
4.2/2S.5&
4.8/29.3C
5.1/28.8C
3.9
4.8
4.6
5.3
4.7
4.3
5.3
5.9
5.0
RELAT
HUMID
73/72
73/67
72/68
61/64
67/66
70/70
66/64
65/60
65/66
-------
»UN* 150
ST PHI
•
3
*
5
6
T
«
9
in
11
1.51
10.06
1.21
l.?T
i.?r
1. 28
1.12
0.88
2.19
OATh: 5/10/74 COPLING DEVICE CODE = l
C VOLUMF NFT TINE WINDSPEED
0
0
0
0
0
0
0
0
0
?84.s
297.5
274.3
235.5
274. 6
213.8
239.9
168.9
278.6
SODIUM
131.5
916.5
101.5
91.5
106.5
84.0
82.0
45.5
186.5
START/END
937/1243
945/1248
1020/1302
1107/1337
951/1252
1032/1310
105&/1331
1115/1341
1012/1257
START/END
12.7/11.2
8.6/13.7
16.0/16.8
12.1/ll.S
15.6/16.7
12.7/10.5
12. 1/ 9.5
13.2/10.5
11.9/11.8
WIND DIR.
START/END
7/
8/
5/
8/
6/
7/
6/
6/
9/
6
6
6
7
5
6
5
6
9
DRY BULB TENP 6
DIFF
START/END
27.66
28. 26
28.76
28.66
27.0t
28. 2t
28. 2C
28. 9t
27.96
4. 0/28. 1C
4.1/28.56
3. 8/29. U
4. 3/29. 1C
4.1/28.26
4.3/28.6C
4.4/29.86
5.5/29.56
4.0/28.66
4.1
5.5
4.1
4.7
*.4
4.4
5.6
5.2
4.2
RELAT
HUMID
72/71
72/63
74/72
70/68
70/70
70/70
70/63
63/65
72/71
PUN* 151
ST PHI
i
3
4
5
6
T
8
9
10
11
7.09
B.63
8.09
6.88
10.07
8.56
7.12
6.34
o.u
OATF: 5/11/74 COOLING DEVICE C00f=l
C VOLUME NET TIME WINDSPEEO
0
0
0
n
0
0
0
0
0
332.6
320.4
293.3
259.5
306.9
250.7
257.6
169.7
292.7
SODIUM
721.5
846.5
726.5
546.5
946.5
656.5
561.5
329.5
9.5
START/END
829/1146
842/1152
933/1215
1015/1254
855/1158
944/1224
102fi/l302
1004/1246
921/1108
START/CND
30.9/29.2
29.0/21.9
22.8/23.0
21.2/20.0
23.0/26.5
28. 6/26. B
16.3/24.0
22.5/21.3
26.1/22. 1
WIND DIR.
START/END
a/
7/
7/
7/
7/
7/
7/
7/
9/
8
8
6
7
7
8
7
6
8
DRY BULP TEMP C
DIFF
START/END
26. 7£
27. 36
27.76
27. 8t
27.06
28.06
29.06
28.26
27.66
3.7/28.86
3.1/29.06
2.7/30.06
3.2/29.96
3.7/28.06
2.9/29.16
2.8/30.06
2.9/30.06
3.4/28.86
3.8
3.4
4.2
4.6
3.3
3.8
4.8
4.9
3.1
RELAT
HUMID
73/74
77/76
80/72
77/69
73/76
79/74
80/68
79/68
76/78
-------
*UN<
ST
It
3
4
5
6
7
8
9
10
1 1
» IS2
PHI
1.89
4.40
6.68
4.03
1.37
1.90
2. OR
1.77
6.2
-------
' IJN
ST
3
5
7
R
11
* 15A
PHI
a. 13
7.04
1 l.?9
•5.18
7.?7
ns
r
I
l
I
1
1
TF: 5/1
VLlT'c
34.1.1
187. q
280. r>
2?O. 3
?37.9
crn IMC,
ICT 1
-.5
"O't .5
.5
>.5
529.5
CCDF=2
WINOSPFED
START/END
103^/1^23
1140/1435
123S/15TO
in.
15,
12,
1/16.1
A/11. 1
1/10.4
1A.2/16.7
19.2/19.7
WIND niR. DRY RULB TEMP C OIFF RFLAT
START/END STAPT/END HUMID
8/ 8 29.8C 2.8/28.1C 3.1 81/78
5/ 7 29.8 £1 2.6/28.2C 2.5 82/82
3/ 7 29.1C 3.8/2B.2C 3.2 7A/77
If 8 28.9C 3.6/28.2C 2.6 75/81
8/ 9 29.AC 2.6/30.0C 3.5 82/76
a UN
ST
*
3
4
5
6
7
B
9
10
11
« 155
PUT
6.03
67.61
n.23
1 0 . ^ 9
R . 7 1
7. PI
2
>J 36 . S
786.5
951 .b
601 .'j
931.5
ST-UT/FNP
11 11/1442
112V1450
1155/1517
1242/1606
112 VI 500
1205/1527
1233/1618
125V1554
1 147/1506
START/END
16.3/15.2
?1 .7/20. 1
17.5/22.0
IP. 5/19. 7
20.2/19. 1
21.5/23.5
16.1/18.6
1°. 9/16.0
22.2/18.5
WIND OIR.
START/END
6/
11
bl
bl
6/
5/
bl
bl
7/
5
5
A
5
6
5
5
A
7
DRY BULB TEMP C
DIFF
START/END
29. 5t
28. 9C
29. 7C
30. OC
28. 3f.
29. 2C
30. 1C
29. 8C
29. AC
3.6/30.2C
3. 1/30. 1C
3.6/29.8C
A. 3/29. AC
4. 1/29. 1C
3.3/29.2C
A.3/29.7C
A.8/30.7C
3.A/29.7C
3. A
3.5
3. A
A. 2
A.O
3.3
A. 3
A. 9
3. A
RELAT
HUMID
75/77
78/76
75/77
71/71
72/72
77/77
71/71
68/68
77/77
-------
P.\TC: s/i7/74 cnML!fir, 'iE
''. vi'.c: v
T | ^l_
STAOT/fMi
911/1152
914/1 159
94P/1216
1032/1305
925/1203
957/1224
1024/L310
I0'0/l?57
935/1209
MUDS PC CD
START/END
19.7/15.7
1 4.2/?0 . 0
23.5/17. 1
I 7.9/19.4
20.6/15.8
2ft. 4/23. 6
19.8/15.4
14.4/15.7
IS1. 3/21. 1
bIND DIP .
START/END
7/
5/
5/
5/
5/
5/
5/
5/
7/
6
5
4
6
5
5
6
5
7
DKY BULP TEMP 6
DIFF
STtPT/FNfJ
27.16
28.76
28.86
28.26
27.66
27.96
28.66
28.76
28.16
3.2/29.76
3.0/29.06
3.2/29.06
4.4/28.66
4.4/28.46
3.9/28.96
4.7/29.86
5.0/30.56
3.9/29.16
4.4
4.0
3.2
4.7
4.6
3.9
5.2
6.0
3.7
RELAT
HUMID
76/70
79/72
78/78
70/68
69/66
73/73
68/66
66/61
73/74
ro
o
en
OU-
ST
*
3
4
5
6
7
8
9
10
1 1
« 157
PHI
P. 65
11.12
10. 75
9.41
7.71
9.Q1
9.14
9.24
11.00
PAT: 5/20/74 C -IDLING >rVICF CODC=l
r
0
0
0
f)
0
0
n
0
1
Vnl IIML
12?. 5
327.7
? 7 >J . 9
?? 7.6
316.3
252.4
?52.6
22?. 2
268.3
riCT
SOOin
853.
1115.
H75.
655.
753.
765.
72?.
62G.
903.
V
5
5
5
5
5
5
5
5
5
MMF
SM'T/END
R47/1207
900/1213
94 'I/ 1 ? 38
103H/I313
91 ^/1?20
1003/1242
104J/1321
1027/1305
"17/1226
WINDSPEEO
START/END
21.7/16.2
22.7/17.0
21.5/19.7
70.3/19.3
19.0/18.9
24.4/22.3
24.1/16.1
17.1/10.3
18.5/19.4
WIND
DIK.
START/END
6/
6/
5/
6/
6/
6/
5/
6/
7/
7
6
5
5
6
6
4
4
7
DRY BULU TEMP 6 DIFF
STAPT/END
26.86 2.5/29.36 3.0
27.16 1.8/30.06 2.7
28.06 2.4/29.56 2.5
27.96 3.2/29.66 3.9
27.06 2.7/29.06 3.7
27.86 2.7/28.56 3.0
28.06 3.2/23.96 3.9
28.06 3.2/29.06 4.0
28.06 1.9/30.06 2.8
RELAT
HUMID
81/79
86/81
82/83
77/73
80/74
80/79
77/73
77/72
86/81
-------
croE=i
?35.'>
776.5
243.7
714.3
197.5
?f.9.7
NrT
••-•-DIUM
335.5
1059.5
h65. 5
5B4.5
790.5
?58. 5
315.5
4?^ .5
035. b
TM~ WIMJSPEED
STA^T/FNO START/END
63<*/ll31 12.7/16.6
95?/U37 15.2/20.6
17/S/1157 27.6/16.3
1010/1233 71.9/24.5
9JM/1143 1J.W21.4
937/1205 22.7/10.9
10?->/1242 22.4/18.0
957/1227 19.4/19.8
916/1150 18.9/19.4
WIND OIR.
START/END
6/
6/
4/
6/
5/
5/
5/
6/
6/
6
5
5
6
5
5
5
5
6
DPY BULB TEMP 6
niFF
START/END
27.06
27.86
28.56
28.36
27.76
28.86
28.36
29.56
28.06
2.0/28.56
2.6/29.06
2.3/29.46
3.3/28.06
3.2/28.96
2.7/29.06
3.3/28.26
4.2/29.26
2.8/29.06
3.0
3.5
2.5
3.2
3.7
3.0
3.2
4.2
2.7
RELAT
HUMID
85/79
81/76
83/83
77/77
77/74
81/79
77/77
71/71
80/81
RUN0 1 5° n
ST mi r
S/2P/7*.
E CODF=l
3
4
5
6
7
8
9
10
11
4.H7
i. on
.13
>.4 J
9.1 1
•1
0
•1
0
'I
0
•1
0
r,
2J?."
234.3
296.7
751.3
177.9
? 3 n . 5
TICT
347.
1163.
45P.
3-JC .
'«65.
415.
37".
23'..
7Q7.
M
5
5
5
5
5
5
5
5
5
TIM?
STAHT/rND
85D/1207
91W121?
943/1231
1031/1310
916/1219
IOTJ/1239
104L/1317
107.1/1303
937/1275
WIfJOSOFED
START/FND
14. 2/ B.O
13.9/13.5
10.5/12.1
1 1.2/11.5
22.3/12.8
1 7.6/15.4
13.4/13. I
13.')/12.2
15.0/10.5
WIND
niR.
URY
START/END
7/
7/
5/
5/
5/
5/
6/
5/
7/
6
6
5
5
5
5
b
6
7
27.
27.
28.
27.
27.
28.
27.
27.
27.
BULB
TEMP 6
ni
FF
START/END
76 3.
56 2.
06 2.
86 3.
06 3.
06 3.
16 3.
76 3.
96 3.
0/27.86
7/28.26
4/28.56
7/29.06
0/28.06
5/28.96
2/28.46
7/29.66
1/28.06
3.
3.
3.
4.
4.
4.
3.
4.
3.
5
2
3
5
3
I
9
6
1
RELAT
HUMID
78/75
80/77
82/77
74/69
78/72
75/72
76/73
74/69
78/78
-------
)IJN'
ST
3
4
5
6
7
8
9
10
11
» It
,n
PHI
3.
3.
2.
3.
2.
2.
2.
37
?7
81
11
87
71
*l
HATE
r
n
0
n
n
0
0
0
0
0
: 5/2^
VOL lift
300.7
31 ',.0
?09.8
309.4
215.4
746.7
177.0
28S.4
/74 rri?L
NFT
SlfMUM
310.5
',25.5
268.5
190.5
360.5
189.5
204.5
141.5
•»08.5
ING -)=VIfF
'IMF
STA3T/FIJO
842/1158
055/1204
"45/1223
1032/1305
°06/1210
954/1232
1021/1257
1043/1312
coof?=i
WIMDSPEFO
START/END
16. O/ 8.1
12.7/10.3
10. 8/ 6.7
9.0/ 7.9
12. 3/ 7.4
9.5/ 9.8
6.4/ 5.3
7.4/ 6.9
11. 1/ 8.0
WIND
DIR.
STAPT/END
9/
9/
9/
9/
8/
8/
7/
9/
9
8
8
8
8
9
9
6
10
DPY BULB TEMP 6 DIFF
START/END
26. OC 3.2/29.0C 4.2
28. OC 3.3/29.06 4.9
28.06 4.0/28.06 4.7
29.06 5.5/29.96 5.7
27.26 4.2/29.26 5.5
28. 8C 5.0/30.06 5.2
29. OC 5.2/30.16 5.6
29.96 5.7/30.46 5.7
28. 1C 3.9/29.16 5.6
RELAT
HUMID
77/71
76/66
72/68
63/63
70/63
66/66
65/63
63/63
73/62
"Una 161 n*TE: 5/24/74 CYCLING 0>EVICE CflDF = l
ST
*
3
4
5
fr
7
8
9
10
1 1
PHI
2 . 06
4.
-------
»IJN# 16?
«T PHI
*
3
4
5
A
7
8
9
10
1 1
17.f,B
1.10
l.H
l.ll
1.14
I.Ob
1. )h
1 .11
1.18
[MTc; 5/?7
r VUJMF
n ?3->.4
0 197.7
0 23^.1
n 235.3
't 2 S 4.h
0 ?40.'i
0 ? 5 «.' . 4
0 1 8 1 1 . TJ
0 ?87.0
/74
NC
s ini
1295
66
S5
79
I')?
79
81
57
103
CPnLIN1 OEVICf rpDF = 2
T TIMF WIMDSPtED
IJM
.5
.3
• ">
.9
. 5
.9
.6
.4
.5
START/PND
B3W1148
h't7/ll54
•n?/1213
1017/1254
953/1201
945/1222
1007/1247
1029/1303
919/1207
CTART/EIYD
14.4/17.7
12.4/13. 1
10. 8/ 9.4
11.8/11.7
7.2/12.1
10.4/10.1
13.8/11. 8
9.0/15. I
11 .8/13.8
WIND DIR.
STAPT/FNO
11/12
11/12
11/11
12/10
10/12
13/11
12/ 9
12/11
13/13
DRY BULB TEMP C
DIPF
START/ENft
29. OC
29. 2C
30. OC
31. OC
29. 1C
30. 1C
31. OC
31. 3C
30. 1C
2.7/32.0C
3.1/32.2C
4.9/31.8C
ft. 2/33. 2C
3.9/33.0C
5.1/32.5C
6.2/31.6C
6.7/33.0C
4. 3/32. 1C
6.7
7.4
7.0
7.4
7.7
7.5
6.8
8.3
7.0
RELAT
HUMID
81/58
78/55
68/57
60/56
73/54
66/54
60/57
58/51
71/57
ro
o
00
J UMtf H,3 "\rr::
ST
1
3
5
6
7
8
q
in
n
PHI
3.-^
0.84
1.02
0.<>7
0.90
O.R7
1.24
J.93
r
,
0
0
It
0
0
0
n
VOI
?47
?2r>
18^
2b7
21)8
?l 5
187
?45
•5/2U/74 COP I.
\>"C
.5
'.2
.0
.1
.8
.f>
.3
.7
tyjcr
<:nDIU
268.
50.
57.
7< .
57.
57.
71.
69.
M
5
I
4
?
4
4
?
9
.ING DEVICE CODE=2
TIMC
ST/>
-------
*UM* 164 DV
ST
*
3
4
5
6
7
8
9
10
11
PHI
0.47
0.4't
0.60
0.64
0.61
0.66
0.76
0.57
0.6'*
C
0
0
0
0
0
0
0
0
0
r = : 5/29/74 COCLINr, DEVICE CODE=2
VOLUME
266.8
17?. 0
240. n
206.2
265.2
212.8
225.8
1B2.9
243.6
"IET
sonnjM
38.1
23.1
49.9
40.6
49.3
43.1
52.4
31. 8
47.4
TIME
STA^T/FNP
835/1138
853/1144
934/1203
1018/1244
903/1151
947/1212
1O23/1252
1008/1237
925/1157
WIN'OSPEEO
START/FND
5.2/ 9.0
4.7/ 5.5
4.9/ 4.9
7.1/10.6
5.7/ 4.0
3.8/ 3.2
3.8/ 9.3
5.9/ 8. 7
4.0/ 5.8
WIND [MR.
START/END
16/ 4
15/ 5
14/ 2
16/ 5
16/ 2
16/ 5
16/ 4
16/ 4
16/ 3
DRY BULB TEMP 6 DIFF
START/END
26.06
26.86
27.86
28.86
26.26
27.56
29.26
28.26
27.56
2.5/29
2.7/29
3.2/29
4.3/29
2.7/29
3.4/29
4.4/30
4.0/31
3.0/29
.26 3.7
.86 4.2
.96 4.3
.86 4.5
.76 4.6
.06 4.0
.06 4.5
.06 4.8
.96 4.6
RELAT
HUMID
81/74
80/72
77/71
70/70
80/69
75/72
70/70
72/68
78/69
rv>
S
165 DATF: 5/30/74 CO^IING OEVICE CODE=2
ST
*
3
4
5
6
7
fl
9
10
11
PHI
1.64
4.82
2.17
1.46
1.83
1 .45
1.34
1.06
2.06
C
0
0
0
0
0
0
0
0
n
VOLUME
744.7
182.0
173.6
159.8
190.1
173.0
151.1
145.9
210.0
NET
SOOIUM
122.5
268.5
115.5
71.2
109.5
76. B
63.7
47.4
132.5
TIME
STA^T/END
826/1111
839/1114
923/1125
1005/1151
851/1118
935/1130
1018/1155
955/1147
913/1122
WINDSPEEO
START/END
0.4/ 5.2
0.3/
2.4/
2.6/
1.9X
2.0/
1.4/
3.5X
3.8/
WIND DIR.
START/END
I/
15/
9/
15/
7/
9/
14/
15/
3/
5
5
4
7
6
7
7
7
4
DRY BULB TEMP C DIFF
START/END
25.86
27.56
27.56
28.86
27.26
29.06
27.76
29.56
28.26
2.1/28
2.7/
3.0/
3.8/
2.4/
3.0/
3.5/
4.5/
2.7/
.86 3.6
C
C
6
6
6
&
6
RELAT
HUMID
84/75
80/
78/
74/
82/
79/
75/
69X
SIX
-------
n«,rr: 5/31/74 CHOLINr, .1FVICE fPOF=2
ST
*
3
4
5
6
7
R
P
10
11
PHI
4.07
1.74
1.0'
0.0 .»
5.31
1 . 00
n.o?
1.56
O.R7
f VOLUME
n 262.1
0 ? fc 0 . ?
n 2 1 r> . I
•< 179.9
0 '61.4
0 :"J4.1
n ?i i ,Q
') \ti'i.2
0 ?41.H
l\jr_T
^iDIUV-
398.5
138.5
f > 7 . '»
50.6
425.5
62.4
Si. 9
93.5
64.3
TIME WINOSPEEO
STA"T/END
93T/U28
948/1134
931/1151
1012/1230
85H/1140
942/1200
1023/1238
1002/1??3
919/1146
STA3T/ENO
5.3/
2. I/
3.5/
3.8/
1.9/
5.5/
4.3/
3.d/
3.6/
6.3
6. 7
8.0
8.9
6.0
9.0
3.7
8.2
9.5
WIND DIR.
START/END
12/
12/
8/
10/
10/
10/
8/
8/
ll/
7
8
8
7
8
8
7
6
8
DRY BULB TEMP t
DIFF
START/END
27. 6t
2B.lt
29. Ot
30. Ot
28. Ot
28. 7t
30. 8t
30. Ot
28. 5t
3.6/30.0C
3.6/30.5C
3.9/3l.2t
4.8/31.0C
3.3/30.0t
3.7/30.0t
5.6/30.9t
4.7/31.5t
3.5/30.6t
4.5
4.5
4.9
5.0
5.0
5.0
5.6
5.4
5.1
RELAT
HUMID
74/70
75/70
73/68
68/67
76/67
74/67
64/64
69/65
75/66
ro
!•*
o
1TC: &/ 3/74
INf, DEVICE CnDF
ST
*
3
4
5
6
7
8
9
10
11
PHI
1.1?
1.45
I . ?6
0.33
1.52
1.20
0.99
0.40
1.48
C
0
0
i)
?
0
0
0
?
0
VflLIIME
?39.9
170.?
?1 d. 7
182.0
731.3
190.3
187. S
in s.i
7?l.l
rjrr
?llOIUM
111.5
lOl.S
84. 6
10.2
111.5
74. !>
57.0
2?. ft
100.5
TIM?
STA^T/END
837/1114
34W1119
921/1139
1011/1217
151/1127
939/1147
102?/1224
100J/1212
918/1133
WINOSPEPO
START/END
6.3/
5.9/
4.3/
5.6/
5.3/
4.9/
4.2/
5. I/
4.8/
9. 5
6.6
4.9
4.2
7.4
7.2
5.6
WIND DIR.
START/END
10/ 8
12/10
ll/ 7
ll/ 7
9/12
ll/ 9
8/ 7
13/ 7
14/13
DRY BULB TEMP C
DIFF
START/FND
28. 5t
28. 4t
28. 2t
29. Ot
28. 5t
30. Ot
28. 5t
27. 9t
29. Ot
4.0/30.0t
3.8/?9.8t
4.2/32.0t
4.7/ t
4.0/29.0t
5.7/31.7t
5.2/30.0t
4. 1/ t
3.5/30.0t
5.0
4.6
5.7
5.0
6.5
6.5
4.9
RELAT
HUMID
72/67
73/69
71/64
68/
72/66
63/59
65/58
7l/
76/68
-------
6/
OfVICE
ST
*
3
*
5
6
7
8
9
1 O
1 I
PHI
1.<>S
1.31
1 . 1 0
1.27
1.37
1.10
1.20
1 .0?
I.? J
C
0
0
"
0
0
0
0
0
n
VOLU§'F
196. H
UO J
O • £
177.4
182.6
235.1
170.5
182.3
173.1
214.6
NCT
•nniur,
101.5
75.7
5y .5
70.7
98.5
57.6
67.0
53.9
83.9
r i MC
ST4PT/ENn
631/1112
848/1118
929/1134
1008/1208
858/1124
941/1 141
1013/1?! 5
959/1202
920/1128
WirjnSPEFP
START/END
7.4/
5.8/
4.6/
4.5/
5.5/
3.7/
5.3/
4.2/
4. I/
6.0
3.5
1.0
8.5
4.2
4.3
3.0
1.9
2.2
WIND DIR.
START/END
13/14
12/15
14/15
13/ 4
11/13
11/15
12/ 3
13/ 1
14/13
DRV BULB TE"P 6
OIFF
START/END
28.26
28.56
28.86
29.66
28.06
29.06
28.26
29.56
29.06
3.0/30.06
3.2/30.36
4.6/30.06
4.6/31.96
3.2/30.26
4.0/3O.76
4.1/30.06
4.5/31.06
3.8/30.26
6.4
6.8
6.0
6. 1
5.9
6.5
5.2
6.2
6.6
RELAT
HUMID
79/59
77/57
68/61
69/62
77/62
72/58
72/66
69/60
74/58
16" PATE: 6/ ^,/74 COOLING OEVICE CCDE =
ST
K
3
4
5
6
7
10
11
PHT
n.q?
2.RI
0.74
1.77
0.86
I. IB
0.°4
r
0
0
0
0
n
0
0
VOLUME
173.4
175.2
138. 7
106.5
173.2
114.4
15P.O
NCT
r.noiuv
48. <,
150.5
31.4
57.6
45.7
41.4
45.7
TIME
START/END
SIS/1020
83V1023
90J/1033
941/1100
839/1026
93W1055
R'>3/1029
WINDSPEEO
START/END
0.6/
l.O/
3.6/
3.7/
1.3/
1.8/
1.6/
WINO DIK.
START/END
1/13
1/13
9/ 9
7/10
4/ 8
6/10
14/13
DRY BULB TFMP 6 DIFF RPLAT
STAPT/ENO
26.06
26.86
27.16
27.56
27.86
28.06
28.26
1.5/
1.8/
3.0/
3.0/
3.3/
3.5/
3.?/
6
6
6
6
6
6
6
HUMID
89/
86/ '
78/
78/
76/
75/
77/
-------
TEVICE
ST
1
4
5
6
7
fl
Q
10
I 1
"HI
2. 14
5.T7
2.31
?.'H
2.11
?. I 7
?.l 1
1.91
r . 7 a
r
i
i)
0
'1
0
0
0
n
0
s ID! UM
'14. I
162.1
?"><•'. 7
Id t . 1
? ? 6 . 3
183.0
IPO. 7
161.5
??l.t!
1911.
251 .
149.
in.
IM.
121.
12n.
'.'6.
I do.
5
5
5
b
c;
5
5
5
'j
STAST/FNI?
JJ33/1101
34 J / 1 1 1 1
92J/112B
1102/1157
859/1116
931/1136
1013/1204
951/1152
911/1123
START/END
5.5/
7. I/
2.8/
5.0/
'-».!/
4.4/
1.8/
2.5/
5.5/
9. 1
9.2
7.0
R.2
6. 1
7. 4
4.9
5.8
fl.O
WIND DIH.
START/FND
10/ 7
10/ 7
7/ 4
10/ 6
8/ 6
9/10
n/ 5
10 / 5
8/ 6
np.v BULB TEMP 6
STAFT/END
29.06
29.06
29.06
29.36
21.26
28.56
30.26
30.06
28.56
3.3/30.06
3.5/29.36
3.?/30.06
4.5/31.86
4.2/30.16
3.3/29.36
4.7/29.56
4.7/32.06
3.5/29.86
DIFF
4.0
3.3
3.2
5.3
4.1
3.3
4.4
5.7
3.8
RELAT
HUMID
77/73
76/77
78/78
69/66
71/72
77/77
69/70
69/64
75/74
171
CTILINC. JFVICf
S T
*
1
4
5
6
7
8
o
10
11
PHI
4.4L
12.1°
4.37
4. 'I
4.^5
5.0'j
4.2 T
4. "4
5.61
r
0
0
0
o
0
1
0
ll
0
v-|_irr
204.6
151. »
U'1.5
179.!)
171./,
IP 7.0
181. T
l'b't.7
?09.e
"PT
S'Diuy
?76.!j
V.fc.b
?56.5
211.5
?36.5
?T1.S
P36.5
1-91.0
3ftl . h
TU'E
ST'^T/FNL
831/1050
841/1056
9l?/lll5
952/ll-*6
'151/110?
92P/1121
100T/1153
942/1139
90 l/ 1 l"8
U'lr'USPE^D WIND PI".
5TART/ENP
10.6/11.5
9.6/ Q.?
7.7/ 6.4
9.7/ 9.1
10. 7/ 9.4
12.7/10. 1
7.7/ 8.3
13. 0/ 9.2
7.0/12.4
ST«RT/END
7/
7/
6/
7/
6/
8/
7/
6/
7/
7
7
6
6
6
8
6
6
8
DRY BULB TfMP 6
DIFF
START/FNO
28.66
28.86
28.26
30.06
28.76
29.26
30.26
30.06
29.56
3.4/29.76
2.8/30.26
3.2/31.06
4.2/30.86
3.4/30.06
3.4/30.16
4.2/31.56
5.0/30.86
3.3/31.06
4.1
3.7
4.0
4.8
4.8
3.9
5.0
5.6
4.0
RELAT
HUMID
76/72
80/75
77/73
72/68
76/68
76/74
72/68
67/64
77/73
-------
DEVICE
ST
4
3
4
5
6
7
**
9
10
I 1
PMI
"
5.74
I 3. 86
6.15
4.f.5
5.50
5.86
5.35
4.58
9.91
r
0
n
0
n
0
0
n
0
0
VCLU'T
251.2
24?..;
?06. 6
176.7
260.7
208. 1
202.4
179.4
216.5
NET
SnPT IJM
441 .5
1026.5
401.5
P51.5
446.5
373.b
331. S
251.5
561.5
T I SE
c T A3 T/ F»|p
831/1131
851/1135
93)/1148
10J--J/1218
9.07/1140
942/1155
10P3/1227
959/1212
922/1145
WIK'DSPEED
START/FND
14. O/ 7.0
10. 2/16.0
11.7/15.9
11. 9/13. 7
5.7/16.0
7.8/19.3
13.8/23.6
10.1/19.0
8. 0/15. 9
WIND DIR.
START/END
7/
6/
5/
6/
6/
8/
5/
6/
8/
6
6
5
7
5
8
7
7
7
DPV BULB TEMP 6
DIFF
START/FNO
28.56
30.56
29.06
30.36
28.96
29.06
30.76
29.56
29.06
1.0/30.06
3.3/30.26
2.7/30.36
3.7/30.66
3.7/30.46
3.2/31.06
4.2/29.06
3.5/31.06
2.8/31.06
3.8
5.0
2.4
4.1
4.1
4.5
3.7
4.3
4.2
RELAT
HUMID
79/74
78/67
81/83
75/72
74/72
78/70
72/74
76/68
BO/72
3UM
-------
31 If* 174.
5 T FMT
#
PAT
C
0/11
rnfjl
"JFVICF CTlc = -c
STAT/END
3
*
5
6
7
8
9
in
1 1
?.?3
73.31
3.4r>
2.55
5.43
2.53
2.56
2.79
3.35
n
0
0
0
0
0
0
r>
0
95.9
96.9
133.0
126.2
I 7 i: . 0
133. b
137.0
109.6
17H.b
65.3
691 .j
141.5
93.5
290.5
103.5
I '13. 5
93. ">
•+5C.5
351/1100
9.54/1103
937/111*
HHo/1137
914/1106
94'>/l 1 19
1<1?3/ 1 1 5 1
1007/113*
525/1110
5^)/
4.6/
4.3/
5.5X
7.*X
5.9X
4. T/
4. OX
5.n
WIND OIR. DRY BULB T£MP £ DIFF
START/END START/END
7/
7/
7/
7X
7X
9X
5X
6X
8X
6
6
5
8
5
6
4
6
7
27
28
29
29
28
29
30
30
28
•
•
•
•
•
•
•
•
•
S£
0£
2£
8£
2£
3£
1 £
0£
8£
3
3
3
*
3
3
4
*
3
•
•
•
9
m
•
•
.
•
3X
OX
3X
3/
4X
3/
5/29
6/
3/
r.
£
£
£
G
£
.2£
£
£
4.2
RELAT
HU». IT/EMC
KIND rm.
STARTXEMD
3
4
5
f>
7
R
o
10
11
4.?0
14. 5^
4.41
3.14
2.35
1.51
t.'6
1.46
9.09
1
0
0
0
0
•)
0
0
0
232.0
213. <•
197.6
183,-i
21 t.4
161.7
1B7.3
117.4
17d.S
341
'77t
?(•(>
176
153
7*
72
52
496
.5
.5
.5
.5
.5
.3
.3
.3
.5
841/1 128
dStf/l 130
9*2/1 lie
1020/1223
919/1133
953/1 145
1032/1229
1011/1217
932/1135
1 .8X
3.7X
3. OX
3. IX
2.4X
?.8X
4.3X
X
4.5X
5.
ft.
6.
5.
9.
2
1
4
8
5
13X
16X
IOX
9X
6X
IOX
6X
11X
12X
6
5
4
*
*
3
5
*
3
DRY BULB TCMP 6 OIFF RELAT
STAPT/END HUMID
27.8£ 2.8/ t SOX
27.5£ 2.5X £ 82X
27.0£ 3.0/31.0E 5.3 78X65
29.0£ 4.7X30.0E 5.8 68X62
27.0£ 2.4X £ 82X
27.7£ 3.7X29.5£ 4.8 74X68
30.1£ 5.5X29.3£ 5.3 6*X6*
28.8£ 4.1/30.9C 6.1 72X61
27.8£ 3.OX £ 78X
-------
PUN* 17* OATF: 6/1^/74 COIL I NO ) = VICF C--JD==2
ST
K
3
4
5
6
7
8
9
10
11
PH!
!.*«
1 7."*
5.47
2.16
1.30
1.68
1 .38
1.^7
14. 2S
r.
0
0
r>
0
0
0
o
0
0
VOLII'T
221.0
233.3
?3«>.8
191.1
161.7
193.2
173.7
150.2
232.3
NET
s no HIM
113. •>
1 23 1 . 5
386. b
126.5
64.3
99.5
73.1
72.3
1013.5
TIME
ST43T/END
913/1201
931/1206
1011/1228
1054/1250
943/1216
1022/1234
1106/1306
1041/1253
1001/1223
WlfiDSPEEO
SMRT/END
2.3/ 5.9
6.2/ 2.5
4. I/ 6.6
3.3/ 5.2
3.8/10.7
4.6/ 4.3
4.5/ 4.9
5.0/ 4. 7
3.5/ 5.4
MIND DIR.
START/END
6/
9/
6/
4/
5/
9/
3/
4/
8/
7
4
7
4
4
7
3
4
5
DRY BULB TEMP C
START/END
28. 3C
28. 5£
29. 5£
28. 8£
28. 5£
29. 2£
30. 3£
29. 7£
29. 2£
3.
3.
3.
3.
3.
3.
4.
3.
2.
1/28. 8£
5/29. 96
0/30. 2£
6/31. Od
4/30. 6t
7/30. 4£
6/29. 2£
9/32. Ot
8/30. It
DIFF
3.0
4.2
3.7
4.8
4.2
4.2
4.0
5.5
4.1
RELAT
HUMID
78/79
75/72
79/75
75/68
76/72
74/72
69/72
73/65
81/72
?UM
ST
4
3
4
5
7
8
11
« 177
PHI
1.95
1 1.'»5
4.66
1.79
19.76
6.07
PATF: 6/14/74 CQI1LINC ')EVICE CODE=2
C
0
0
o
0
0
0
vrtuMr
61.2
108.1
92.0
50.5
77.9
7b.3
NET
S DO HIM
36.6
385.5
131 .3
27.7
471.3
157.5
TIME
STA^T/ENO
912/1034
923/1038
95B/1054
939/1042
1009/1103
95 J/ 1048
WINDSPEFO
START/END
4.9/ 3.6
3.4/ 5.0
4.3/ 4.9
3.4/ 4.9
Q.5/ 8.8
5. I/ 5.0
HIND DIR.
START/END
3/ 4
8/ 4
3/ 3
2/ 5
6/ 6
4/ 5
DRY BULB TEMP £ DIFF RELAT
START/END HUMID
28.8£ 3.1/30.0C 4.2 78/72
29.OC 4.0/30.2£ 4.4 72/71
28.3£ 3.3/30.8C 4.7 77/69
29.OG 3.9/30.0C 4.5 73/70
30.0£ 3.5/30.3E 4.0 76/73
23.5£ 3.6/30.7£ 4.7 75/69
-------
'!!"* 178
ST P>M
3 4.31
4 1.94
5
6
7
8
9
10
11
.S?
.5?
.9'
.73
.49
.15
.•55
I'iTf: 6/IS/7', r.TU
r vnLUv(> IVTT
S10IUM
n
0
0
0
o
n
3
0
0
??9.7
P40.7
It9.2
186.7
233. ft
178.3
186.2
117.1
154.1
303.3
143. ^
94.1
87.0
137.5
97.3
05.2
41 .4
73.3
ING ')EVICE f
START/END
832/1L16
844/1121
925/1133
10VW1204
854/1125
937/1138
1011/1208
9S-./1201
91ci/1129
CDG = 2
WINDSPEEO
START/END
4.6/
3.8/
1.7X
2.6/
7. 1
3.6
4.4
2.4/10. 7
2.5/
4.5/
4.4/
1.9/
4.6
4.6
4.0
WIND DIR.
START/END
2/15
14/14
14/13
12/12
1/15
13/ 1
12/12
14/12
1/14
DRY BULB TEMP £
START/END
26. 9£
26. 8£
27. 9£
28. 6£
27.lt
28. Ot
29. 2t
28. 4£
27. 7£
1.7/31.0£
l.9/30.5£
2.9/29.8£
3.4/ £
2.1/30.8£
3.0/30.5£
3.8/31.9£
3.2/ £
2. 2/31. It
DIFF
4.9
4.3
4.6
4.8
4.7
5.8
4.9
RELAT
HUMID
87/68
86/71
79/69
76/
84/68
78/69
74/63
77X
84/68
ro
=» UN*
17/74
1EVICE
5 T
*
3
4
5
6
7
8
9
10
11
PH J
1.54
l.f-9
1.54
1.41)
1.17
l.M
1 .'9
1 .?'>
1.69
r
D-
0
0
n
0
0
0
0
0
VTLUN'F
2-M.5
212.4
200.9
179.?
83.0
174. y
147.7
16H.?
211.1
"FT
SJDIU"
liH.5
I0r'.5
94.5
.76.6
31.6
Pf. . 1
59.1
63.1
109.5
T I ME
WINDS'
'?=D
START/END START/END
8-M/ll)44 8.0/12.2
833/1050
904/1107
9*2/1138
841/1055
915/1115
053/1144
934/1U2
853/1100
a.8/
6.4/
7.2/
7. I/
10. 4/
7.0/
7.2/
7.7/
6.0
5.2
5.6
7.2
R. 1
8.8
9.7
6.2
WIND DIR.
START/END
13/11
12/10
12/11
11/10
12/10
12/12
9/10
11/11
13/12
PPY BULB TEMP £ DI^F
START/END
27. 5£
27. 5£
27. 6£
28. 5£
27. 2£
28. OC
29. 3£
28. 1C
27. 9£
2.l/29.5£
3.U/29.6£
2.6/29.0C
3.5/30.6E
2.9/30.0£
3.0/30.0C
3.7/30.0£
3.1/30.0£
2.9/30.8£
3.5
4.1
4.3
5.1
5.0
4.5
4.9
4.5
4.0
RELAT
HUMID
84/76
78/72
81/70
75/66
79/67
78/70
75X68
78X70
79/73
-------
OATF: 6/1M/74 CnrHING TEVICE CdOE=l
IT
n
3
4
5
6
7
8
9
10
11
PHI
r
VPLUMF
NET
SQOIU'i
0.51
0.4 a
0.68
0.71
O.C.S
0.86
o.s?
0.75
0.64
0
0
•)
0
0
0
n
0
0
154.
U,8.
?4l.
190.
241.
212.
?r.o.
184.
162.
1
5
0
2
0
2
1
1
6
25.
?4.
5').
42.
47.
55.
3D.
41.
32.
2
5
2
7
7
8
3
3
0
T J,,C
STA°T/PND
811/1101
H21/1 104
848/1115
927/1140
833/1108
857/1121
93J/1144
913/1135
842/1112
WI.NDSPEED
START/END
1.0/12.4
2.2/ 9.2
2.4/ 9.4
2.0/ 9.5
3.7/12.2
4.0/ 8.9
1.7/12.2
?.7/ 9. 1
2.0/ 8.3
WIND OIR.
START/END
2/
13/
16/
16/
4/
2/
I/
2/
2/
4
3
3
4
2
6
5
3
5
DRY BULB TEMP £ OIFF
START/END
26. 6£ 2. 4/28. AC 3.6
27. 0£ 2.5/29.2C 3.7
27. 4£ 2.6/30.2C 3.8
28. 4C 4.2/30.4C 4.2
26. 9C 2.7/29.0C 4.2
27. 2£ 3.0/29.5£ 2.7
29. 0£ 4.0/30.2C 4.?
28. 2£ 3.7/30.4£ 4.8
27. 4£ 2.9/29.5£ 4.1
RELAT
HUMID
82/75
81/74
81/74
71/72
80/71
78/81
72/72
74/68
79/72
*UN# 181
ST PH!
*
3
4
5
6
7
8
9
10
1 I
0.85
0.72
0.86
l.n?
0.85
o.«u>
0.69
0.75
0.88
OA1
C
0
0
0
0
0
0
n
0
0
F: 6/10/74 Cr-GL
VOLUME NFT
202.1
187.3
195.7
171.3
213.8
162.3
L?5.?
174.2
212.7
snniuM
52.7
41.4
51.4
53.3
55.8
42.7
26.4
40.2
57.0
IMG JEVICE CODE=1
TIME WINDSPEEO
STA1T/END
815/1041
826/1045
848/1057
920/1125
834/1049
856/1104
928/1133
913/1119
842/1053
START/END
2.5/
3. 1/
2.8/
3.5/
3.2/
4. I/
2.3/
4.0/
2.6/
6. 2
7.7
4.7
7.2
4. 7
4.7
7.6
1.0
7.6
WIND DIR.
START/END
3/
15/
15/
3/
I/
6/
4/
12/
15/
5
3
3
3
2
4
4
4
4
DBY BULB TEMP £
DIFF
START/END
27. OC
27. 4C
28. 2£
28. 4£
27. 2£
28. 4(.
29. 4C
28. 8C
28. OC
2.2/29.4C
2.2/29.8C
2.8/30.2C
2.8/29.5£
2.2/29.6C
3.0/29.6C
4.0/31.0C
3.4/28.8£
2.6/29.2C
4.0
4.4
3.8
4.0
4.2
3.8
4.1
3.2
4.2
RELAT
HUMID
84/73
84/70
80/74
80/73
84/71
79/74
73/72
76/78
81/71
-------
3||HI
*.
START/END
4/
3/
3/
I/
I/
3/
4/
16/
3/
5
4
2
3
4
6
2
4
4
DRY BULB TEMP £
DIFF
START/END
28.26
28.06
28.56
28.0£
29.56
28.06
28.16
29.06
29.06
2.5/29.26
3.2/30.86
3.5/30.4£
3.5/30.56
3.5/29.2£
3.0/28.76
3. 1/30.76
4.2/29.26
3.5/30.36
3.2
4.3
3.9
4.3
3.7
3.0
4.6
4.0
4.2
RELAT
HUMID
82/78
77/71
75/74
75/71
76/74
78/79
78/69
71/72
76/72
-------
ro
•-•
«o
'l)N<
4
3
4
5
6
7
3
9
10
11
t 18'+
PHI
041
r
rF: 6/2?/74 C<"nl
VriLMMF "-IPT
.ING TEVICF r.01)E=l
TIME WINDSPEED
S!?r>IIJM STA3T/FIMD ST4RT/ENO
0.91
O.Hi
0.74
1.38
0.93
0.75
O.A4
1.01
0.90
n
0
i)
0
0
0
n
0
0
26?. 9
305.2
225.0
15?. 1
305.8
210. R
244.0
375.7
293.3
73.1
82.4
51.2
148.5
86. R
4R.1
48.1
116.5
81.2
811/1125
326/1138
907/1208
953/1430
839/1149
919/1219
1010/1439
942/1422
857/1156
7.0/
2.2/
4.t/
3.3/
2.8/
4.3/
3.2/
4.9/
4.6/
O.R
0.7
3.4
ri.6
1.6
2.5
6.1
5. 1
0.7
WIND HIR.
START/END
1/13
15/ 2
16/ 5
16/ 4
15/ 3
1/10
16/ 5
I/ 5
15/ 6
DRY BULB TEMP £
DIFF
START/END
24.86
24.26
24.86
26.46
24.06
25.46
26.96
26.26
24. 7£
1.6/29.26
1.0/29.06
1. 1/30.26
1.8/30.56
0.6/29.26
1.2/29.26
2.0/30.46
1.7/31 .56
1.1/29.46
3.3
3.6
3.7
3.3
3.7
3.6
3.9
4.5
4.0
RELAT
HUMID
87/77
92/75
91/75
86/78
95/7*
90/75
85/74
87/70
91/73
*UN<
ST
0
3
4
5
6
7
R
9
10
1 1
( 185
PHI
1.00
3.51
1.31
2.01
1.20
o.m
0.^4
0.82
2.35
DATE: 6/22/74 COOLING 3EVICE C2DE=1
C VOLUME NFT TIME WINDS°EED
0
0
5
0
0
5
0
0
0
283.3
318.2
115.1
89.2
316.8
06.3
63.3
133.6
321.5
SODIUM
86. n
341 .5
46.2
54.9
116.5
?l . n
12.4
33.7
231.5
START/END
1139/1502
1144/1508
1212/1531
1434/1508
1153/1516
1222/1541
1441/1512
1426/1504
120?/1524
START/END
0.8/ 3. 7
0.7/13.4
3.4/ 7.4
8.6/
1.6/ 5.9
2.5/ 8.7
6.1/11. 4
5. I/
0.7/ 6.9
WIND DIR.
START/FND
16/
I/
5/
5/
4/
9/
5/
5/
16/
4
6
3
4
1
7
5
5
5
DRY BULB TEMP £
DIFF
START/END
29.26
29.06
30.26
30.56
29.26
29.26
30.46
31.56
29.46
3.3/30.06
3.6/29.56
3.7/30.3E
3.3/ £
3.7/29.7£
3.6/29.9£
3.9/28.4£
4.5/ £
4.0/29.9£
3.5
3.3
3.3
3.3
3.1
2.6
3.4
RELAT
HUMID
77/76
75/77
75/78
78/
74/77
75/79
74/81
70/
73/77
Low RPM on Stations 5 and 8. Calculated RPM values at Stations 6 and 10 are in excess of 2,000 RPM.
Input data was checked and found to be correct, although such high RPM's are not likely to occur.
All
-------
-•PVICF crcr=?
T IME
,5
1 -73.5
s
ft
1
3
o
10
14.6,?
?O.S7
15.34
1 6 . S 7
I •>.'• 1
1 ? . r '
1
0
0
I)
•1
0
?4 J.<-
I!;0. <•
252.3
P39.0
2 -1» 3 . ^
1 .< T . S
1003.5
11C4.5
645/1115
J5W1120
91 J/L132
100V1208
93»/ll25
^31/1140
IOOJ/1213
•5*1 .
WINOSPFED
START/ENF
30.4/72.8
2R.I/3&.8
21.5/26. 1
?5.3/?5.1
19.0/18.3
24.9/26.5
12.3/15. /
21.0/23.8
MND DIR.
START/F^ID
10/ 9
10/10
9/10
12/ 9
9/ 9
DRY BULP TEMP £ DIFF
28.4C 1.9/29.5C 2.3
29.OC 2.2/?9.9C 2.4
27.8C 2.3/29.0C 2.5
28.5C 3.0/29.4C 3.5
28.4C 2.2/28.0C 1.8
28.OC 2.1/29.0C 2.5
28.7C 3.?/29.5C 3.5
28.5C 3.1/29.4C 3.2
HUMID
86/8*
85/83
83/83
79/76
84/86
84/83
78/76
78/78
6/P7/74
ST
a
4
5
6
7
8
Q
1 )
1 1
(JU[
7.^0
7.44
^.'tO
ti. 5 5
h."-'7
5.11
S.OT
5. 15
r
0
•1
0
0
0
(1
0
0
V n L U M c
2 o 1 . !>
lft(..7
17^.3
159.3
2i I .«'
?''4.3
170.?
25';. 4
r.CT
s-.oiij-
oO(,.5
379. 'i
354.5
319.5
494.5
319.5
?7-;.t>
464.5
sriJI/'MC
33->/U15
905/1128
942/1152
84S/1120
915/1135
•34^/1157
•'3J+/1147
65H/1174
ST^/E'D
13.6/27. 7
14.6/U.7
1 'J. 3/20. 5
19.6/17.6
25.4/21. I
13.7/lft.4
1 f, b/ IP. 4
?l. 1/73.3
WTNO HIR.
9/ 9
9/ 9
11/11
9/ 9
ll/ll
8/ 9
9/tO
10/11
RRY BULB TEMP C
STAPT/END
29. 6C
29. OC
29. 5C
28. 7C
29. OC
29. 6C
29. ST.
29. 7 C
!.->/30.bC
1.6/30.4C
2.6/31.2C
P.O/30.8C
1.9/30.5C
2.6/30.4C
3. 0/31. 1C
2.1/31.5E
RIFF
2.4
3.6
4.0
3.2
3.6
3.6
3.9
3.0
RELAT
HUMID
91/83
89/76
82/73
86/78
87/76
82/76
79/74
85/80
-------
'UN« 11* n-\Tr: 6/27/7* C TH I NG JFVICF CC.CT=2
*T
4
*
5
13
7
8
9
10
1 I
°"'
6.'->s
t .3")
6.f-R
6.4.S
5 .m
*. l . n
114.9
175.9
74.2
23f..O
232.*
195.5
253.1
ncT
""OHJ"
42'J.S
221. !>
35«5.5
1*6.5
36*. 5
3*9.5
31". 5
569.5
•«• Jf/C
STA*T/FNn
111.1/13*1
1131/1353
1155/1*23
1123/13*5
1137/1*03
1202/1*28
1153/1*19
1127/1350
WTNDSPEEP
ST4RT/END
27. 7/2*. 4
18.7/18.0
20.5/22.7
17.5/19. 1
21.1/17.9
1 6.4/15. 5
18.*/21.*
73.3/?fl. 9
WIND DIK.
START/FND
9/10
9/ 9
9/11
9/10
9/ 0
9/10
9/10
9/11
DRY BULB TFMP C
DIFF
START/END
30. 8C
30. *C
31. ?£
30.86
30. 5C
30. *£
31.lt
31. 5£
2.*/31.5£
3.6/31.*£
*.0/31 .9£
3.?/3l.*£
3.6/31.6£
3.6/32.0£
3.9/3l.9£
3.0/3l.*£
2.6
3.*
*.5
3.9
3.*
*.8
3.2
RELAT
HUMID
83/82
76/77
73/71
78/7*
76/77
76/69
7*/70
80/78
Low RPM on Stations 5 and 7.
ro
ro
J,/2.r/7*
"'I ! \r, '.ifVICF r"OE=2
ST
4
3
*
5
6
7
8
•J
10
I I
PHI
*.<;<>
*.i*
*.i'f
fr. 9*
*. 12
3. 7'»
3.1 T
3. 19
*.«•<>
r
0
n
0
5
0
0
''
1
1
voLijyp
197. b
24*.?
152.8
b*.k
?*!.?
l°3 .e
194. ^
166.4
1 'j 7 . 4
M-'
SGDIU"
?69.5
329.5
?06.5
l?*.5
31*.1)
??l ."i
1 »»y. 5
1 •>" . 5
2 1 b . 'j
T TMC
STA7T/END
850/1057
831/1103
911/1117
9*0/11**
ft* )/1107
913/1123
9*H/ 115*
933/11*0
903/1112
WI-'JDSPFEC
START/tMO
23.2/12.8
19. 0/1*. 0
10. 7/ 9. I
10.1/10.2
15.*/12.0
15. 9/ 9.0
8.8/ 8.7
11.4/11.7
17.0/1*. 3
WIND DI«.
DRY BUI B TEMP £
DIFF
START/END STAOT/END
9/ 9
9/ 9
9/10
12/11
9/10
11/12
9/ 8
10/10
10/11
29. 5C
29. *£
30. 5£
30. 8t
?9.*£
30. 2£
30. 3£
30. 8t
30. 2£
1.7/30.6C
1.2/30.9£
2.5/29.7£
3.0/30.0£
2.2/29.9£
2.3/29.8£
2.*/30.6£
2.9/30.2£
1.5/30. 8t
2.7
2.9
3.2
2.8
3.*
2.9
3.5
3.5
2.*
RELAT
HUMID
88/81
91/80
83/78
79/81
85/77
8*/80
83/76
8O/76
89/83
Low RPM on Station 6.
-------
3||f« io--> n,\T: b/?s/7't
C~DE=?
5 T
«
4
5
6
7
fl
9
10
I 1
Phi
9. on
•».8<1
1 7. IS
5.7S
4 .70
4.57
l.'->5
<*.! ^
C
n
i^
5
0
0
o
5
n
VOLUME
?02.F
?<•• 7...
ft 1.3
303.fi
?5>8.7
?63.9
lll.R
304.1
N^T
S~>nrnf4
P41.5
ST^t.'i
/l?06
I00?/l?5^
83J/11*5
920/1219
IO16/1305
<7 1 . 7
137.0
?4f*. "»
I / 74 (•-"•>
S.iniun
7f^9.5
194.5
109.5
IB9.5
174.5
115.3
459.5
1 IMG OE.VICE
STMT/PND
I10't/l345
1123/1400
1216/1427
1137/1406
1225/1432
1208/1423
1121/1356
9.4/ 8.6
7.8/11.2
7.4/ 0.5
7.6/10.8
6.2/ 9.2
7.9/ 8.5
7.7/ 5.7
WINO rjIR. DRY BULB TEMP £ DIFF RFLAT
START/END STAPT/END HUMID
6/ 5 29.2£ 2.7/30.2£ 2.1 81/85
5/ 5 29.0£ 2.5/29.8£ 1.8 83/87
6/ 6 28.8£ 2.7/28.86 3.3 81/77
7/ 8 29.Ot 3.0/29.2£ 1.4 79/90
6/ 6 29.2t 2.9/29.0E 3.0 80/79
5/ 6 29.0£ 3.0/29.It 3.3 79/77
6/ 6 28.7£ 3.5/29.5£ 2.5 76/83
-------
'UN
*
3
*
5
6
7
8
9
I 0
1 1
* 19?
PHI
6.3C,
3.63
6.54
1 5.87
6.70
6.68
5.6.T
5.17
6.97
TA1
r
T
0
"
5
0
0
0
0
0
rc: 11 ?,
V°LU' P
™<.?
252.4
254.1.
51.4
?72 .9
171.0
221.2
179. h
252.9
/74 crnLiuG TEVICE rncp=i
MCT Tire WfNOSPFED
SnoiUM
551.5
744.5
!>!)'/. "3
249.5
559.5
349.5
37C.5
234.5
539.5
STAPT/END
82?/ll26
* 3 5/1130
9V/U4?
94 W 1209
848/1135
917/1146
952/1212
935/1206
901/1138
STAOT/END
17.5/11.2
14.8/11.3
10.9/11.2
ti.9/
13.9/10.6
10.4/18.0
10. 7/ 9.9
S.2/
10.3/10.9
WIMD DIR.
START/END
8/
6/
HI
7/
7/
8/
6/
7/
8/
7
6
6
9
6
8
8
7
8
DRY BULB TEMP £
START/END
28. 8C
29. 4t
28. 8t
28. 8t
28. 4C
29.lt
30.lt
29. 2C
29. 2C
?.6/30.0£
2.4/32.0£
2.8/30.5C
2.8/ £
2.8/30.5t
2. 8/29. 8t
3.6/29.9£
3.2/ £
2.4/29.7£
DIFF
3.0
5.2
3.5
4.0
3.6
3.5
3.0
RELAT
HUMID
82/79
83/67
80/76
80/
80/73
SO/ 75
76/76
78/
83/79
Low RPM on Station 6.
ro
ro
»UN» 193
ST
0
3
4
5
6
7
R
9
10
11
OMI
7.61
1 2.95
7.^9
10.99
7..? 5
7.^4
G.S-*
5. 12
8.37
r
0
0
o
0
0
0
•)
r>
0
vn uf'r
190.6
141.6
179.1
11 1.0
1^0.7
u.e.3
I 'j "* . 3
•n.7
196.5
NFT
soniuM
443.5
561.5
421 .5
373. b
4?3.5
T73.5
341.5
163. i>
50?. 5
TI^F
WIfiDSPEED
iTft^T/P.MD START/FND
815/1023
32-J/1031
H57/1047
9 3 ' i / 1 1 2 ?
835/1038
907/1055
947/1130
926/1114
S48/10«t3
7
6
6
10
4
10
10
9
10
.0/10.
.1/10.
.5/10.
.1/11.
.0/10.
.7/13.
.7/13.
.7/12.
.0/11.
1
2
0
e
I
3
6
a
4
WIND OIR.
OPY BUL8 TEMP £
START/END
7/
7/
6/
8/
6/
10/
5/
7/
7/
7
5
6
7
6
9
5
6
6
27
27
28
29
27
29
29
28
29
DIFF
START/END
.5£
.9t
.at
.2t
.at
.OC
.2t
.at
.ot
1.6/28
1.7/29
2.0/30
2.9/30
2.0/28
2.7/29
2.8/31
2.3/30
2.0/29
.5£
.It
.It
.7t
.OC
.5£
.Ot
.It
.It
2.0
2.4
2.6
3.6
2.0
2.3
3.5
2.8
2.0
RELAT
HUMID
88/86
87/83
86/82
80/76
85/85
81/84
81/76
80/81
86/86
Low RPM on Station 10.
-------
»'IF»* 194
r-.,«-c:
7/ ,)/7/( COOLING OEVICE CC1DE =
ST
#
1
A
5
6
7
8
o
1 0
I I
PH!
9.?J
l'.n?
8.0'
13.47
».71
10. h?
7.1 R
d.08
9. l^
r
0
0
0
0
0
0
0
0
0
Vr>Lll" =
I';". 3
1 <5 7 . '>
PA."
101.5
isii.i
131.2
157.7
134.fi
ll'ft.fl
NET
r'JDIUM
L>nl .5
S93.5
?3n.5
4?6.5
501.5
t2t.5
»4fr.5
333.5
S0<>.5
TIME
START/END
853/1 114
915/1119
956/1132
104W1234
92-S/1124
1011/1143
105>/1238
1034/1231
943/1128
WINDSPEEO
START/END
9.8/
18. 8/
8.2/
9. I/
15. 6/
14. 6/
10.7/13. 3
7.5/
13. O/
WIND OIR.
START/END
7/
6/
5/
8/
6/
10/
9/
6/
6/
6
6
8
7
6
9
6
5
8
DRY BULB TEMP £ OIFF
START/END
27. 6C
29. 3C
29. 7£
29. ?f.
28. 8t
29. 2£
30. Ot
28. 9t
29. 8C
1.8/
?.6/
2.7/
2.3/
2.8/
2. I/
3.1/29
2.7/
2.0/
C
r.
C
6
t
C
.Of. 2.2
C
C
RELAT
HUMID
86/
82/
8l/
84/
SO/
85/
79/85
81/
86/
ro
ro
ST
PHI
7/0/74 COOLING TtVICE COOE=2
v:ill"L
3
4
5
6
7
q
*»
10
1 1
3. 51
11. *7
3. 56
4. HO
3. n
3 .5ri
3 . ^«*
3 .06
ll.Sf,
0
0
O
0
0
T
n
0
o
/?57.')
271.4
'53. 5
87.4
? t i . ')
n 1.7
^ 1 -3 . a
130.0
?53.4
•JTT
761.
161.
27f>.
123.
116.
?3R .
>23.
H-fl .
3<>ft.
n
5
5
5
t,
5
*>
5
S
5
TlUt
ST^T/E!ND
«<«J/ll*l
-------
?Llf'« lift IMTF: 7/ 9/74 CnrLING DEVICE rOCf-=2
ST
*
3
4
5
6
7
8
9
10
1 1
PMJ
3.B7
14.69
6.61
5.19
5.40
3.59
2.63
2.59
9.57
r
0
0
0
0
0
0
0
0
0
VOLUME M?T
2?5.
149.
229.
152.
236.
203.
218.
181.
229.
n
8
I
1
7
3
9
1
8
jnoiui*
26(1.5
673.5
463.5
?41.5
391.5
223.5
176.5
143.5
673.5
TIME
STA3T/FND
821/1054
831/1059
854/1113
925/1148
839/1105
90W1121
932/1153
919/1144
847/1109
WIIJOSPFEO
START/END
6.5/
6.4/
10. O/
9.5/
8.6/
7.8
7.2
9.3
7.8
9.4
10.9/10.7
6.4/
8.5/
12. I/
8.6
8.3
hi MO OIR.
DPY B
START/END S
7/
7/
7/
9/
6/
ll/
8/
8/
8/
7
7
5
8
7
8
6
8
8
28. 8£
29. 2£
30. 2£
29. 6£
28 .9f.
29. OC
29. 6£
28. 7£
28. 8£
TEMP £ DIFF RELAT
START/END HUMID
2.6/30.5C 3.8 82/74
2.9/31.2£ 4.5 80/70
3.0/30.3C 3.1 79/79
3.4/32.4E 5.0 77/68
3.0/30.4£ 4.2 79/72
2.1/31.0£ 3.8 85/74
3.7/31.6£ 4.6 75/70
2.8/31.7£ 4.9 80/68
2.1/30.9C 4.1 85/72
to
ro
in
»UN«
ST
4
3
4
5
6
7
8
q
10
1 1
n?
PHI
2.64
3.77
2.56
?.Bfl
2.11
1.55
1.97
1.92
2 .89
DV
C
0
0
u
0
0
il
0
0
0
Tf.: 7/10/
VOLUVF
233.4
222.3
151.?
145.8
234.1
1P7.5
I 85.0
I 7?.. 8
230. I
74 C"
NCT
SODIUM
188.5
256.5
LIB. 5
1 2fc . 5
151.5
fcf. .7
III. 5
-------
7
S
9
10
1 I
i <;a n t
Biit r
? ,'V-i n
?.?7 i)
? . ' 7 0
i.'.-v n
4. IS I)
7/11/7'.
'JFVICE
77 l.u
24'J.l
Nr
nr1 T '
741
l<)4
1^>4
IV,
105
129
00
236
144
T
Uw
.S
. r>
.*,
.5
.s
. '3
.3
.S
. S
T | vc
ST''JT/
/l
!32'i/ I
VJl/1
T37/1
H34/1
<>11/1
9 <• "i 1 1
93 VI
049/1
Fun
107
113
124
153
117
131
204
146
121
UI
s~
?
1
2
?
2
4
3
3
2
"IDS'
•1RT/
.5/
.3/
.9/
.5/
.I/
.O/
.7/
.4/
.7/
•L-ED
'FND
4.1
3.4
0.8
2.3
0.7
6.3
2.0
1.2
0.3
MIND OIR.
START/END
14/14
13/13
10/15
ll/ 5
16/ 8
14/16
10/ 8
10/ 1
14/15
DRY BULB TEMP C
DIFF
START/END
26. 9C
27. 8 t
28. 5t
29. 5G
27. 9t
29. Ot
30. OC
29. 3C
2B.5C
1.4/30.2C
2.1/31.6C
2.7/30.5C
4.2/31.5C
2.3/32.0C
3.6/30.6C
4.0/32.3C
3.5/32.BC
3.0/30.8G
4.2
5.4
4.5
4.7
6.0
1.1
6.2
5.7
5.4
RELAT
HUMID
89/72
84/65
81/70
71/69
83/62
75/92
73/61
76/64
79/65
ro
ro
en
ST
u
7/12/74
fr.jLIf-.'G JEVlLF
4
«i
6
7
R
9
1 T
I I
0
0
1
0
0
0
.
^
.*•'»
.'l-'
.17
.••• «
. 7 1
.(•> t
.r>l
. fl'j
r
0
n
r,
n
0
•"•
0
250.
'50.
157.
1??.
22''.
-'2 .' .
2 !-•'';.
'?o.
5
7
3
3
0
r
1
1-
'!*"'
iJIUM
196. 5
4C.O
47.0
56.5
17.3
40.0
44.0
i2.3
31 .S
T I MC
STA^T/TND
01 7/H06
02-3/11 11
053/1123
925/1152
837/1116
'!•}?/ 1 130
932/1157
'il H/1148
*43/U20
WINDSPEEO
START/END
5.8/ 7.3
4.3/ 9.1
7.?/ 7.4
8.5/ 6.3
6.2/ 7.9
8.6/ 7.3
S.7/ 5.1
6.1/10.1
7.2/ 3.3
WIND (MR.
START/FND
15/16
13/13
14/12
13/13
12/13
1/15
•14/11
14/14
15/16
DRY BULB TEMP £ DIFF
START/END
27.7C 2.1/31
27.BC 2.1/31
28.OC 2.4/31
28.9t 3.3/31
27.8£ 2.4/31
28.7t 2.9/31
29.2G 3.3/32
29.2£ 3.2/32
.2£ 5.0
.2£ 5.0
.6£ 5.4
.OC 5.2
.2G 3.0
.3£ 5.6
.4G 6.2
.!£ 6.5
2.6/32.0£ 5.4
RELAT
HUMID
84/67
84/67
82/65
77/66
82/80
80/64
77/61
78/60
81/66
Low RPM on Station 7.
-------
9IJM
ST
3
4
5
7
8
LI
1 200
Pi'I
1.95
('. 74
0.79
0.77
0.77
0.83
HATE
r.
0
n
0
0
0
5
: 7/
V9LUM
309. R
?93. 8
300.7
314.3
260.2
173.7
MFT
soniu"
184.5
b6.5
72.8
74.0
61 .5
.INf, TFVICF
TIME
START/END
845/1212
901/1219
934/1239
91J/1226
950/1248
924/1232
WIMOSPEED
START/END
5.0/ 5.0
2.9/ 1.3
4.6/ 5.2
10.5/ 2.7
V.3/ 6.1
4.8/ 4.8
WIND OIR. DRY BULB TEMP £ DIFF RELAT
START/END START/END HUMID
15/14 25.7C 1.2/30.0C 3.4 91/77
15/10 26.1C 1.7/30.5C 3.8 87/74
13/11 27.6C 2.8/30.4£ 4.1 80/72
16/13 26.3C 1.4/30.8C 4.6 89/69
3/ 2 27.4C 3.0/30.6C 4.6 78/69
16/14 27.OC 2.4/30.6C 3.7 82/75
Low RPM on Station 11.
RUN* 201
HATE: 7/15/74
COOLING DEVICE cooE=2
ro
ro
ST
*
3
4
5
7
9
11
PMT
8.44
14.91
7.41
4.14
4.71
9.13
r.
0
0
0
0
0
0
VOLUME
230.
215.
218.
228.
191.
229.
8
8
1
6
e
5
NFT
SODIUM
596.5
984.5
494.5
289.5
276.5
641.5
TIME
START/END
1004/1237
lOlb/1244
1049/1302
1027/1249
1100/1309
1039/1256
MI MO SHE ED
STA^T/END
4.2/
2.0/
1.6/
4.0/
1.9/
4.3/
6.
8.
6.
8.
8.
5.
7
1
4
2
5
9
WIND DIR.
START/END
13/
9/
14/
14/
13/
13/
5
5
3
4
8
4
DRY BULB TEMP £ DIFF RELAT
START/END HUMID
20.0£ 4.8/30.4£ 5.2 67/66
29.3t 5.0/30.9C 5.9 66/62
29.3£ 6.2/31.5£ 5.7 59/64
28.8£ 5.7/30.1C 5.6 62/63
30.U 6.0/30.7C 4.9 61/68
29.5£ 5.5/30.8£ 5.8 63/62
-------
« T
U
7
fl
10
11
"MI
5.01
2.33
1.3'
1 . ^H
1.40
o
0
J
I)
0
o
VPLU*=
1M .7
HP
WIUHSPFEO
3fl'i. 9
lfll.3
274. J
2.S2.7
1 4 b . R
554. b
1 h I . 5
H2.ti
155.5
1 3 r.. <3
S4.5
IU 3. 5
STAkl/END
749/1148
lOlff/1304
904/121 I
.5/ 3.5
.7/15.7
,4/ 8.3
3.3/ C.O
I.'*/ 6.9
4.1/ 8.2
2.1/14.4
WINO cm.
START/END
13/ 9
ll/ 8
10/ 8
12/10
ll/ T
14/12
9/ 8
8/ 7
14/10
DRY BUL4 T9MP 6
STAPT/END
26.26 2.1/31.66
25.86 1.2/31.36
27.26 2.7/31.36
29.76 3.8/30.76
2b.76 2.3/31.46
28.26 3.2/32.06
29.66 4.4/31.26
29.26 3.8/32.86
26.96 2.1/31.56
DIFF
4.2
4.7
4.9
5.7
4.6
5.7
5.7
6.7
4.3
RELAT
HUMID
84/72
91/69
80/68
74/63
83/70
77/64
70/63
74/59
84/72
ci|i"« 203 MAT: 7/16/74
=1
ST
4
3
*
5
6
7
8
9
10
1 1
RUT
4.™
1 2 . 8 6
4.M
1 4 ..HP
4.69
5.17
3.5^
2.6S
6.27
r
0
0
0
11
0
0
0
0
0
VUU'
-------
»UN* 204
ST PHI
«
3
4
5
6
7
8
10
11
4.?9
12.74
4. IS
6.0i)
3.99
4.48
3. SO
7.89
r>ATF: 7/18/74 CPPL
C VOLUME NET
n
0
n
0
0
0
0
n
195.4
211.9
134. A
139. «
212.2
201.5
183.7
?15.1
S HO HIM
256.5
rt26.5
20'i . 5
?56.5
259.5
276.5
196.5
519.5
ING OEVICE CrOE=l
TIME V/INDSPECD
STA*T/END
1054/1302
1059/1306
1112/1319
1137/1345
1104/1311
1119/1325
1131/1341
1 103/1315
START/FND
14.0/10.0
17.8/18.7
17.0/11.4
19.1/12.2
12.2/19.4
13. 3/16. C
14.7/11.3
16.3/14.8
WIND DIR.
START/END
6/
6/
9/
7/
11
10/
6/
7/
6
6
6
6
6
8
6
6
DRY BULB TEMP £
DIFF
START/END
30. 7C
30. 8C
31. 6C
29. 8C
30. 2C
31. 2C
30. 7C
30. 5£
4.1/32.2&
4.2/31.4C
4.4/32.6C
4.2/31.5C
3.5/31.56
4.3/31.8&
4. 5/32. 6(1
3.8/32.0C
4.6
4.4
4.8
5.5
4.1
3.6
5.0
3.8
RELAT
HUMID
72/70
72/71
71/69
72/65
76/73
71/76
70/68
74/75
»UM» 205
ST PHI
«
3
4
5
6
7
8
q
10
11
5.52
12.59
6.P4
11.54
S .1 1
5.43
b.OO
4.7fr
8.74
DA"1
r.
n
0
0
5
n
n
0
0
n
T: 7/19/74 C'"UINr, 3EVICF C
VOLUM= N'ET T I ME
246.1
254.8
271.9
69.0
753.4
241.5
254.7
215.7
27U.2
SODIUM
415.5
941. 5
569.5
246.5
396.5
401.5
3R9.5
261.5
744.5
START/END
B25/1109
836/1116
912/1150
947/1228
84-1/1122
925/1159
955/1236
941/1218
902/1143
OD!f = l
WINDSPEED
START/END
13.9/12.5
13.8/14.9
10.1/17.5
9.1/14.3
13.1/U..O
11.3/16.9
3.0/ 9.3
B. 0/12. 4
14.5/14.0
WIND DIR.
START/END
6/
7/
5/
7/
6/
B/
5/
4/
11
5
5
5
5
4
8
4
5
6
DRY BULB TEMP C
DIFF
START/END
29. 4E
30. 2C
30. 1C
30. OC
28.86
29. 2C
31. 2C
30. 7C
30. 5C
3.2/30.0C
3.2/31.9C
3.1/30.7C
3. 9/31. It
3.6/30.4C
3.1/30.56
4.7/31.6C
4.7/31.8&
3.2/31.8&
3.6
5.3
3.7
4.3
4.5
2.6
4.5
5.0
3.6
RELAT
HUMID
78/76
78/66
79/75
74/71
75/70
78/82
69/71
69/68
78/76
Low RPM on Station 6.
-------
3 UN* ?• ('
ST PH'
CL-T
5
6
7
9
10
1 I
7.;
T.70
3.41
3.33
4.61?
0
1
ii
0
0
n
735.0
lh't.3
7 3 4 . n
23 5.-1
206.3
'J = T TI"*!- WIfJDSPEE
D
HIND DIR.
ini'J'-' STS'T/cjyjQ STA8T/Ff,jD START/END
77"* . 3
54 7. 3
?r-7. 3
'OS. 3
->77. . 3
'67.3
272.3
?10.3
347.3
93 J/ 1701
937/1209
l'J'H/1235
1031/1310
94 1 / 121 7
10T3/1245
1037/1313
1073/1302
951/1225
3
4
5
2
2
4
4
1
6
.1/9.
.6/ 0.
.7/11.
.2/10.
.4/ 8.
.4/11.
.!/ 7.
.9/10.
.21 8.
I
4
2
1
6
3
1
8
C
6/
4/
6/
5/
15/
9/
?/
5/
5/
4
2
5
8
5
8
5
4
5
DRY BULB TEMP C
DIFF
START/END
30 .OC
30. 2C
30. 7C
31. OC
29. 8t
30. 2C
32. OC
31. 4C
29. 9C
4.?/31
5.1/31
5.0/31
5.2/32
5.3/31
4.3/31
5.8/33
5.7/32
4.5/31
.5C
.5C
.6C
.2C
.3C
.3C
.7C
.OC
.1C
5.3
6.3
6.3
6.4
5.8
5.4
6.6
6.3
5.7
RELAT
HUMID
72/66
66/60
67/60
66/60
65/63
71/65
64/60
63/61
70/63
IN)
b>
?T
* 2'". 7
PHI
C
'c: 7/?i',/74 C^l
VCLU'T '|i=T
.IMG DCVICF crr;p=i
TIM1 KlfOSPfrD
* SOIM'JM ST,'.= T/?NO
3
4
5
6
7
a
9
10
1 1
3.
10.
3.
4.
3.
3.
2.
2.
6.
40
!4
G6
43
3iS
OQ
93
77
17
0
0
1
1
1
0
n
0
0
777.
27°.
267.
169.
261.
234.
224.
207 .
27*.
5
3
6
1
f
4
8
4
4
1204/1503
121 1/15)6
1233/1517
1313/1540
1721/1510
124=5/1522
132'./1545
1305/1536
127-1/1514
S-MRT/TNO
9. 1/ n. i
9.4/ 7. 1
11. ?/ 8.5
10. I/ 7.7
B.6/ 8.9
11.3/10. I
7.1/10.7
10. d/ 8.9
e. 0/10.7
WIND DIR.
START/END
3/
4/
5/
8/
3/
8/
5/
5/
• 5/
5
4
5
6
6
q
5
5
6
DRY BULB TPMP c OIFF
STAPT/END
31.5C
31.5C
31.6C
32.2C
31. 3C
31. 3C
33.2C
32.OC
31 . 1 C
5.3/32
b.3/31
6.3/32
6.4/32
5.8/31
5.4/31
6.6/32
6.3/31
5. 7/31
.OC 7.0
.9C 6.2
.OC 5.8
.1C 7.1
.8C 6.2
.5C 5.4
.3C 6.5
.8C 6.6
.3C 5.8
RELAT
HUMID
66/57
60/61
60/64
60/56
63/61
65/65
60/60
61/59
63/63
-------
205
nATF: 7/21/74
CnOLINf, 1EVICE CODE =
ST
*
3
4
5
6
7
9
9
10
11
PM!
1.(.7
1.79
1.6 A
2.40
1.68
I. S3
1.48
1.59
1.75
r.
0
0
n
0
0
0
0
0
0
vnniME
?57.5
275.9
27rt.fr
193.0
255.3
234.8
246.4
210.8
269.3
NfT
SODIUM
131.5
151.5
141.5
141.5
131.5
131.5
lll.S
10?. 5
144.5
TIME
STABT/END
756 /1 046
807/1054
831/1116
911/1148
815/1101
843/1125
920/1155
901/1141
82W1108
WINDSPEED
START/END
6.7/
3.4/
2.6/
6.2/
2.3/
5.2/
3.4/
5.9/
3.1/
2.2
1.0
3.5
8.7
6.6
7. I
5.2
6. 3
3.B
WIND PIR.
START/END
12/12
13/11
15/ 6
15/ 6
14/ 5
3/ 8
13/15
16/ 5
14/13
DRY BULB TFMP 6
OIFF
START/END
27.86
27.66
27.66
28.86
27.16
28.16
28.86
29.06
27.46
3.2/31.26
2.4/31.46
2.4/31.06
3.5/31.56
1.8/31.16
2.9/31.26
3.6/32.36
3.6/31.56
2.0/31.06
5.4
6.0
4.8
4.9
5.7
4.6
4.8
5.1
5.2
RELAT
• HUMID
77/65
82/62
82/68
76/68
86/63
79/70
75/69
75/67
85/66
•NJ
to
RUN* 209
7/21/74 COOLING OEVICE CnDF=l
ST
«
3
4
5
6
7
8
9
10
1 1
P»'I
1.98
6.97
2.39
2.73
2.06
0.17
0.69
1.9
-------
3|JVtf 210
ST PHI
*
3
4
5
6
7
8
9
.68
.35
.34
.96
. ?8
.26
.19
10 1.19
11 1.21
OATF: 7/22/74 CHCL
f VOLUME NFT
SODIUM
0
0
0
0
0
0
0
0
0
197.
200.
179.
103.
189.
162.
139.
137.
183.
3
7
9
9
7
3
7
4
8
IO1
83
73
62
74
62
SO
50
6<)
.3
.2
.7
.4
.2
.4
.9
.2
.7
ING OEVICE CODF=l
TIM£ WIN'DSPEEO
START/tMD
824/1032
835/1036
901/1048
043/11 12
34 >/ 1039
911/1055
94S/1U6
933/1109
853/1044
ST
4
2
4
3
/»
S
3
3
4
ART,
.2/
.5/
.7/
.I/
.4/
.9/
'E'J
6.
2.
.8/10.
.8/
.4/
3.
n
3
8
3
9
WIND DIR.
START/END
15/12
15/12
13/14
15/ 3
15/11
15/14
12/12
15/ 8
15/11
DRY BULB
STAf.T/ENO
0IFF
28. 2C 2.9/29.5C 4.7
28. 4C 3.0/ C
28. 8C 3.0/ £
2<;.4t 3.6/ G
28. 5C 3.3/ £
28. 7£ 2.8/30.6£ 4.9
30. 3£ 4.2/2fl.O£ 2.1
29. 9£ 3.7/ £
28. 7£ 3.5/30.P£ 4.9
RELAT
HUMJD
79/68
79/
79/
75/
77/
80/68
72/84
75/
76/68
7/23/74 COOLING TEVICF CDnfc=l
ST
*
3
4
S
6
7
8
9
10
1 I
PHI
T.98
1.19
1.01
1.35
0.72
n.7S
0.7ft
0.77
1 .is
r
0
0
0
0
0
0
0
0
0
VPLUPE
288.9
307. t
310.1
199.5
303.3
277.4
294.9
254. H
314.6
NFT
sioiur
H6.4
112.3
96.2
82.3
66. R
63.3
68.6
^0.8
110.3
TIME
S'A^.T/FMr.
759/U06
0"7/1114
833/1140
912/1212
814/1121
K43/1149
921/1221
90W1204
827/1133
wir DSPECD
START/END
i.s/ a.?
1.8/11.2
5.6/ 9.8
O.?/ 9.3
2. 1/ 8.9
0.8/ 9.7
1.3/ 7.2
3. 1/ 9.7
3.4/11. 1
WIND
niR.
START/ END
I/
12/
12/
13/
I/
13/
21
2/
14/
4
6
6
6
7
10
4
6
7
DRY HULB TEMP £
OIFF
STA9T/END
26. 2£
26. 8£
27. 2£
29. 0£
27. 1C
28. 3 £
30. 4£
2B.9£
27. 7£
2.7/28.7E
2.7/31.3£
3.0/3l.7£
4.0/31.8E
2.9/31.6C
3.6/31.2C
4.8/32.6£
4.0/32.6£
3.1/30.8£
3.1
4.7
5.4
5.7
5.6
4.3
5.9
6.4
5.2
REIAT
HUMID
80/78
80/69
78/65
72/64
79/64
75/71
68/63
72/60
78/66
-------
OATF: 7/23/74 CnnL|NG OEVICE CODE=1
ST
*
3
4
5
6
7
8
9
10
1 1
FHI
1.28
6.75
1.40
1.14
0.66
0.72
0 .8?
0.74
2.86
C
0
0
0
0
5
0
0
0
0
VOLUMF
171.6
1*9.9
180.0
167.2
B.8
159.9
188.5
157.4
179.4
NET
SODIUM
67.3
392.3
77.3
58.6
1.8
35.1
47.3
35.8
157.3
TIMF
START/END
1109/1304
1117/1310
1143/1329
1215/1410
1127/1315
1152/1337
1224/1419
1203/1401
1136/1324
WINDSPEFD
START/END
n.?/ 9.B
11.2/12.0
9.8/12.7
9.3/ 7.4
8.9/10.4
9.7/12.1
7.2/14.2
9.7/13.2
11.1/11.6
WIND DIR.
START/END
6/
5/
6/
6/
5/
6
5
5
a
5
10/10
4/
9/
7/
6
5
8
DRY BULB TEMP £
START/END
28. 7£
31. 3t
31. 7E
31. 8£
31 .66
31. 2£
32. 6£
32. 6t
30.86
3. 1/31. 36
4.7/31.0C
5.4/31.8E
5.7/32.5E
5. 6/31. 76
4.3/31.7E
5.9/32.8£
6. 4/32. It
5.2/32.16
DIFF
5.3
4.5
5.1
5.1
5.5
4.3
6.2
5.3
5.2
RELAT
HUMID
78/66
69/70
65/67
64/68
64/65
71/72
63/61
60/66
66/67
Low RPN on Station 7.
IM
CO
CO
RUM* 213
ST
t
3
4
5
6
7
8
9
10
11
PHI
O.fl4
2.14
O.P3
0.96
O.f>7
O.f>9
1.20
0.64
0.90
DATE: 7/24/74 COOLING DEVICE CODE=l
C
0
0
0
0
0
0
0
0
0
VOLUME
194.8
183.3
172.4
137.7
182.1
153.3
145.8
142.4
183.9
NET
SODIUM
49.9
120.3
49.1
40.4
37.4
J2.6
53.6
28.1
50.9
TIME
STA^T/ENO
83?/1035
843/1042
912/1056
949/1121
852/1048
941/1101
957/1130
941/1112
904/1053
WINOSPEEO
START/END
2.5/ 7.0
3.0/ 6.8
1.4/
3.5/12.2
3.7/ 9.5
1.4/
6.0/13.0
1.7/13.2
3.5/12.2
WIND OIR.
START/END
16/ 8
16/ 6
15/ 5
I/ 8
16/ 5
14/ 8
3/ 3
16/ 5
16/ 7
DRY BULB TEMP £
START/END
28. 6£
29. OE
29. 4C
31. Ot
28. 2£
29. 5£
31. Ot
30. 3t
29. 4£
3.6/31.2E
3.6/31.5C
3.6/ £
4. 4/31. It
3.4/31.4C
4.3/ £
4.3/31.6E
4.6/31.6t
3.2/3t.l£
DIFF
4.2
4.3
3.9
4.2
4.4
4.6
3.5
RELAT
HUMID
75/72
75/72
75/
71/74
76/72
71/
71/71
69/70
78/76
-------
ST
3
4
5
7
10
11
214
PHI
rt.7*
n.77
0.r>-3
1 .44
7/P4/74
0
0
0
T
n
n
113. 5
100...
m.3
L23.7
s .in i KM
193.3
27.9
2H.6
17.6
r« Jl Ifjr, DEVICE
TIME
ST4P.T/ENO
1302/1416
1321/1430
1301/1421
1333/1445
1314/1426
WINDSPEED
ST/mT/END
*.6/ 5.8
3.7/11.6
7.0/ 3.1
4.9/10.4
lf).3/ 7.7
12.2/ 3.6
WIND DIR. DRY BULB TEMP £ DIFF RELAT
START/END START/END HUMID
4/ 8 31.3£ 4.3/32.5£ 4.4 71/72
10/ 6 31.6£ 4.2/31.7£ 4.5 72/71
8/ 7 32.2£ 5.2/32.5£ 5.4 67/66
8/ 5 31.7£ 5.5/3I.5£ 4.4 65/71
6/ 6 32.8£ 6.6/32.7C 5.7 59/64
8/ 7 31.6C 5.?/31.5£ 4.0 67/73
"UN* 215
7/24/74 C'ntlNG TFVICE COD==1
ST PHI C VHLlJv.t N=T TIM= W1NOSPEFD
WIND DIR.
* SODIUM ?TA^T/FMD ST\RT/CMQ START/END
3
4
5
7
I 3
11
••>.<»?
t>.°2
0.r-6
T.3S
0.75
1.1?
•1
0
1
0
0
1
92.2
76.3
1«1 .4
P'3.0
10?.-;
132.2
25
136
32
23
23
45
.°
.3
.6
.1
.6
.4
1417/1516
1421/1539
143 t/1550
142S/1543
144')/1600
14?'}/1^46
5
] i
t)
10
7
d
.8/ 8.
. 6/ °.
.1/11.
.4/ 7.
.7/10.
.6/11.
1
3
1
4
6
5
8/
6/
5/
6/
7/
7
7
5
5
8
6
BULB TEMP t DIFF RELAT
START/END HUKID
32. 5£ 4.4/31.7& 4.7 72/70
31. 7C 4.5/31.0£ 3.8 71/74
32. 5£ 5.4/32.0£ 4.5 66/71
31. 5£ 4.4/31.5£ 4.8 71/69
32. 7£ 5.7/32.3C 5.6 64/65
31. 5£ 4.0/31.5C 3.8 73/75
-------
APPENDIX C-2
APS PROCEDURAL BACKGROUND DATA
Procedural Background
Date (ug of Sodium)
08/24/73 2.0
08/27/73 2.42
08/28/73 7.72
09/04/73 0.65
09/05/73 1.08
09/06/73 0.60
09/10/73 0.80
09/11/73 2.90
09/12/73 0.57
09/13/73 0.57
09/14/73 0.25
09/17/73 7.83
09/18/73 7.30
09/19/73 13.0
09/20/73 13.1
09/21/73 6.73
09/24/73 40.20
09/25/73 17.00
09/26/73 1.68
09/27/73 28.30
09/28/73 1.85
10/01/73 0.13
10/02/73 0.36
10/03/73 0.78
10/08/73 0.61
235
-------
APS PROCEDURAL BACKGROUND DATA (cont.)
Procedural Background
Date (yg of Sodium)
10/09/73 0.48
10/10/73 1.28
10/12/73 0.96
10/15/73 1.42
10/16/73 3.92
10/17/73 2.62
10/18/73 2.42
10/22/73 4.06
10/23/73 6.33
10/24/73 7.90
10/25/73 11.0
10/26/73 7.20
10/29/73 2.70
10/30/73 3.12
10/31/73 7.95
11/02/73 2.38
11/05/73 3.00
11/06/73 4.52
11/07/73 3.33
11/09/73 2.92
11/10/73 8.42
11/13/73 2.53
11/14/73 5.38
11/15/73 3.60
11/16/73 6.43
11/20/73 4.58
11/21/73 3.13
11/27773 6.10
11/30/73 13.60
12/01/73 5.63
12/05/73 2.95
12/06/73 1.55
12/11/73 2.53
12/13/73 0.29
12/14/73 0.75
236
-------
APS PROCEDURAL BACKGROUND DATA (cont.)
Procedural Background
Date (ug of Sodium)
12/17/73 0.67
12/18/73 0.56
01/02/74 0.37
01/04/74 0.53
01/08/74 0.56
01/09/74 3.40
01/11/74 0.63
02/01/74 70.80
02/02/74 43.63
02/06/74 10.8
02/08/74 3.86
02/11/74 1.11
02/12/74 2.56
02/13/74 7.31
02/14/74 14.8
02/15/74 1.41
02/18/74 1.21
02/19/74 0.36
02/20/74 2.45
02/21/74 2.85
02/22/74 2.33
02/23/74 0.60
02/25/74 1.58
02/26/74 3.73
02/27/74 1.73
02/28/74 2.53
03/01/74 2.40
03/07/74 2.10
03/08/74 3.60
02/11/74 2.13
03/12/74 2.48
03/13/74 0.98
03/14/74 20.30
03/15/74 1.35
03/18/74 3.68
237
-------
APS PROCEDURAL BACKGROUND DATA (cont.)
Procedural Background
Date (pg of Sodium)
03/19/74 0.68
03/21/74 1.33
03/22/74 10.10
03/25/74 0.13
03/26/74 0.28
03/27/74 0.98
03/30/74 1.48
03/31/74 0.48
04/03/74 0.35
04/04/74 0.60
04/08/74 12.40
04/09/74 2.65
04/10/74 0.38
04/11/74 1.03
04/16/74 16.40
04/17/74 0.19
04/18/74 2.24
04/19/74 8.66
04/20/74 17.70
04/22/74 12.50
04/23/74 1.81
04/24/74 0.29
04/25/74 1.74
04/26/74 1.57
04/28/74 0.43
04/29/74 0.80
04/30/74 0.75
05/01/74 0.33
05/02/74 1.20
05/03/74 1.91
05/04/74 1.88
05/06/74 3.48
05/07/74 0.61
05/08/74 1.98
05/09/74 2.13
238
-------
APS PROCEDURAL BACKGROUND DATA (cont.)
Procedural Background
Date (tig of Sodium)
05/10/74 ' 1.78
05/11/74 3.45
05/13/74 2.78
05/14/74 1.85
05/15/74 2.90
05/16/74 2.28
05/17/74 2.53
05/20/74 3.68
05/21/74 17.10
05/22/74 3.10
05/23/74 7.28
05/24/74 2.40
05/27/74 2.33
05/28/74 2.98
05/29/74 1.58
05/30/74 2.40
05/31/74 4.18
06/03/74 0.45
06/04/74 0.20
06/05/74 0.41
06/06/74 1.28
06/07/74 0.23
06/08/74 4.05
06/10/74 2.40
06/11/74 3.63
06/12/74 1.73
06/13/74 2.63
06/14/74 1.59
06/15/74 1.86
06/17/74 1.60
06/18/74 3.21
06/19/74 1.80
06/20/74 2.50
06/21/74 15.30
06/22/74 7.63
239
-------
APS PROCEDURAL BACKGROUND DATA (cont.)
Procedural Background
Date (ug of Sodium)
06/22/74 1.81
06/25/74 0.38
06/27/74 1.38
06/28/74 0.28
06/29/74 2.08
07/01/74 1.28
07/02/74 0.43
07/03/74 1.10
07/06/74 1.98
07/08/74 1.25
07/09/74 3.33
07/10/74 1.15
07/11/74 0.99
07/12/74 7.08
07/13/74 10.10
07/15/74 1.70
07/16/74 2.04
07/18/74 1.04
07/19/74 11.40
07/20/74 0.63
07/21/74 2.50
07/22/74 1-83
07/23/74 1.38
240
-------
APPENDIX C-3
APS MESH BACKGROUND DATA
Background
(ug of
Date Sodium)
08/06/73
08/25/73
09/21/73
12/21/73
0.28
0.65
0.13
1.30
0.48
0.68
0.33
1.53
1.60
0.87
0.50
0.33
0.52
0.40
0.20
0.08
0.37
0.18
0.05
1.36
2.08
1.12
Background
(ug of
Date Sodium)
01/15/74
03/12/74
03/13/74
03/14/74
03/15/74
03/18/74
03/27/74
03/29/74
03/30/74
03/31/7,4
04/03/74
04/04/74
0.23
0.23
0.20
0.27
0.13
1.98
0.98
2.35
1.48
3.68
0.98
1.48
1.48
0.48
0.93
1.53
Background
(ug of
Date Sodium)
04/08/74
04/09/74
04/10/74
04/11/74
04/16/74
04/17/74
04/30/74
11.7
3.73
0.28
0.63
8.6
0.34
0.37
0.92
2.43
8.49
0.73
0.73
0.09
0.61
0.44
0.34
0.02
0.22
0.32
0.19
0.22
0.14
0.47
0.27
0.44
0.42
241
-------
APS MESH BACKGROUND DATA (cont.)
The following petri dishes containing each a mesh pair were submitted
for background analysis on 10/23/74. After the analysis, each mesh
pair was cleaned and placed in a new petri dish, whereupon they were
re-analyzed for sodium background on 10/26/74. Subsequently, all mesh
pairs were stored and several were analyzed at later dates to check
accumulation of sodium on unopened mesh pairs.
Background after
Background cleaning and Background Background
10/24/73 reboxing 10/26/73 12/31/73 6/4/74
Number (yg of Na) (ug of Na) (yg of Na) (ug of Na)
1 2.80 0.05 2.08
2 6.38 0.05 1.90
3 1.52 0.73 1.93
4 2.15 0.05 7.30
5 3.60 0.90 0.75
6 5.20 0.13 3.18
7 3.98 0.13
8 4.62 0.05
9 11.7 0.61 2.55
10 3.82 0.13
11 16.6 0.13 2.70
242
-------
^laboratories, <31nc.
820 TULIP AVENUE — KNOXVILLE, TENNESSEE 37921
615—525-1123
April 3, 1974
Dr. Gunter 0. Schrecker
Environmental Systems Corporation
Route 2
Alcoa, TN 37701
Dear Dr. Schrecker:
The enclosed report is for five (5) screens which were chosen for
testing after a problem of unusually high blank values was discovered.
Initial testing revealed an apparent solution to the problem in the
use of the ultrasonic cleaner. All screens submitted after this initial
work was completed were washed in the ultrasonic cleaner before being
returned to Environmental Systems Corporation. Test //2 and Test #3
confirmed that washing after stripping the screens for analysis is the
solution to the problem of high blank values.
In no case have we found the amount of sodium remaining on the screens
after they are stripped for analysis to be significant in terms of the
total amount of sodium present. However, the extra cleaning step has
resulted in the more consistent blank levels and has eliminated the necessity
for logging the history of each screen. The cleaning step has been
incorporated into our routine handling of screens at no extra charge to
Environmental Systems Corporation.
Sincerely,
STEWART LABORATORIES,
Barry A. Stephenson \
Manager of Administrative
Services
BAS/lpj
enclosures
243
-------
jstcfaart laboratories,
820 TULIP AVENUE • KNOXVILLE, TENNESSEE 37921
CERTIFICATE OF ANALYSIS
TO Dr. Gunter 0. Schrecker
Environmental Systems Corporation
Route 3 - Municipal Airport
Alcoa. TN 37701
DATE REPORTED
CODE
ORDER No
pril 3. 1974
ESC - Experimental
Sample Description: Five (5) test screens
Concentration units are total micrograms
Stewart Laboratories
Code
1209
1210
1211
1212
1270
Sodium
Original Analysis
1525.
1885.
1675.
2242.
3150.
Sodium
Test //I*
1.60
3.45
0.78
0.43
0.35
*Test tl - Samples were cleaned using the ultrasonic cleaner
prior to being processed for analysis a second time.
Sworn to and subscribed before me this
day of April
STEWART LABORATORIES, INC.
NOTARY PbflLIC
My commission expires January 17, 1976
244
-------
Jtolnart JSabnraturics, ,3liir.
820 TULIP AVENUE • KNOXVILLE, TENNESSEE 37921
CERTIFICATE OF ANALYSIS
TO Dr. Gunter 0. Schrecker
Environmental Systems Corporation
Page 2
DATE REPORTED Ap_ril_3, 1974
CODE jj>C_- Experimental
ORDER No
Sample Description: Five (5) test screens
Concentration units are total micrograms
Stewart Laboratories
Code
1209
1210
1211
1212
1270
Test l?2**
0.07
0.29
0.39
0.50
0.07
Sodium
Test 03***
a b
0.33 0.13
0.77 0.03
0.70 0.33
0.27 0.20
0.20 0.23
c
0.17
0.27
0.20
0.13
0.13
**Test //2 - Screens were held for 2 weeks, cleaned in the ultrasonic
cleaner, and analyzed as if they were samples.
***Test 93 - Screens were held for an additional week, cleaned in the
ultrasonic cleaner, and analyzed as if they were samples.
The process was repeated until a stable blank was established.
Sworn to and subscribed before me this 3rd
day of April 1071 .x—.
NOTARY PUBLIC
My commission expires January 17. 1976
STEWART LABORATORIES, INC.
-------
APPENDIX D
DEPOSITION DATA
246
-------
FORMAT FOR DATA PRESENTATION - DEPOSITION DATA
Note: For more detailed descriptions of column headings, see text
Section VI "Formats for Data Presentation".
ST # Identification of deposition sampling station
locations. (Concurs with APS location.)
DEP Apparent sea salt deposition flux, kg/km^.month.
C Comment code:
0 - good run.
1 - sample caught in light rain.
2 - sample caught in heavy rain.
3 - possible contamination from insects in the
funnel or bottle.
4 - possible contamination from dust.
5 - other comments or a combination of the coded
comments; supplemented with a written foot-
note.
6 - possible contamination due to the presence
of a tree frog in the funnel or bottle.
7 - contamination from bird excrement in the
funnel and bottle.
NET SODIUM Total sodium as verified by the chemical analysis
minus the average procedural background, ug.
TIME Time of day at the start and end of a run.
247
-------
b/1973TC
6/1973
ST.«
nt?
1
4
5
2H7.9
2C0.5
2 tik.fr
C,
0
r.
. 6
1^29/1133
1112/100S
r i
S«-Ar:M!-.C. f-Pi'M 5/12/1973TJ 9/13/1973
PRECISIO'J FUN
ST.u
HFP
r.cr
TIf-.E
£TA^ 7/CND
ro
^
00
1
?
3
i,
s
(<
15.4
37.7
10.0
13.4
15.8
53.5
0
n
0
L
l
r
4.9
11.9
3.2
4.3 '
5 .<'.
17.0
1214/U5H
1216/12 )0
1112/1057
1047/103-J
1027/1010
1514/1500
SPANM Nf,
9/13/1973TT1 9/14/1973
PFECISIOM
ST.*
Tlfl-
1
2
3
^
5
f.
1?.?
Prt.O
14.6
H.7
16.2
39.1
0
0
G
0
P
J
4.1
9 .4
4.8
2.rf
5.3
11.2
1156/1314
120D/13 17
1057/114C
1035/1104
101J/1046
150J/122S
-------
Flir* 4 SPANNING F"OM 9/17/1973TH 9/18/1973 PRECISION «UN ERR03=31 .4*
ST.* HEP C NFT TIME
SODIUM START/fcNC
1
?
3
4
'j
46.9
32.2
14.8
17.7
2563.8
C
0
0
0
0
1^.2
1.8
4.5
5.4
770.2
1423/1307
1425/1309
1346/1232
1328/1213
1309/1154
PUN* 5 SPAWNING F*Oi" 9/IH/1973TJ 9/19/1973 PRECISION PUU ERROR=bl.8?
ro
* ST.# n^P C NtT TIMF
SODIUM START/END
1
2
3
4
S
6
36.9
76. 'j
32.9
26.5
32.3
204.8
C
0
0
f)
0
6
11.7
24.3
10.4
8.4
10.2
!>1.4
1307/1256
1309/125P
1232/1215
1213/1154
1154/1136
1447/ 935
-------
UN* 6 SPAMMNf, FRUM 9/19/1973TO 9/20/1973 PRECISION PUN EFROR=13.'V*
ST.1 HEP C fiET TIME
M STAPT/END
I
•>
3
4
5
171.9
199. f,
122.6
134.3
98.3
1
1
1
I
1
SI. 5
59. fc
36.5
39.9
29.2
12bo/ 1123
1258/1125
1215/1035
1154/1012
1136/ 953
140.5 6 54.5 935/1440
cilNrr 7 SPANNING FP f M 9/20/1973TI,' 9/21/1973 PRECISION kUN ERROR* 5.6%
ro -
o
ST.* PEP C NET TIME
SOniUM START/END
1
?
3
4
5
2J4.U
221.6
268.4
156.4
140.4
0
0
0
0
0
76.2
71.9
117.1
ri0.7
45.5
112 J/114?
1125/1144
1035/IOD5
1012/1030
953/1009
369.1 0 103.9 1440/1146
-------
RUN* 8 SPANNING FRCM 9/25/1973TO 9/26/1973
ST.# OEP C NET TIME
SODIUM START/END
3
4
5
6
265.7
288.3
240.0
424.7
1
1
1
1
84.4
87.9
72.7
113.3
1137/1126
1123/1015
1108/ 950
1445/1045
PUN* 9 SPANNING FROM 9/26/1973TO 9/27/1973 PRECISION RUN ERROR=10.7*
ST.* DEP C NET TIME
SODIUM START/END
1
2
3
4
5
6
222.9
199.1
124.4
260.5
224.7
328.3
1
1
1
0
C
0
73.3
65.5
41.4
67.1
75.0
102.7
1224/1303
1226/1305
1126/1223
1015/1119
950/1051
1045/1012
-------
ro
tn
ro
10 SPANMflO ff*C» 9/27/1973TQ 9/28/1973 PRECISION kUN ERROR=45.9*
DEP C f'FT TIMF
SHDIUM START/END
I
2
3 550.8
•5 688.7
6
1
1
1
I
1
1
207.3
112.0
167.8
253.7
217.0
331.7
1303/1205
1305/1207
1223/1113
1119/1048
1051/1028
1012/ 957
PU«!«J 11 SPANNING FRC^I 9/28/1973TQ 10/ 1/1913 PRECISION RUN ER»OR= 5.3*
ST.O OEP C MET TIME
SODIUM START/END
1
2
3
4
5
b
3A7.5
3*8. C
337.6
342.5
36?. 1
316.3
0
0
0
0
0
0
350.5
331.9
322.7
328.1
346.7
324.8
1205/1134
1207/1136
1113/1052
1043/1035
1028/1014
957/1455
-------
PUMP 12 SPANNING FROM 10/ 1/1973TG 10/ 2/1973 PRECISION RUN ERROR= 3.8*
ST.* OEP C NFT TIME
SCDIUM START/tND
1
2
3
4
5
442.1
459.3
474.8
538.3
505.9
1
1
n
0
0
146.7
152.5
158.0
178.fi
168.6
1134/1226
1136/1229
1052/1148
1035/1129
1014/1113
PUN* 13 SPANNING FFOM 10/ 2/1973TG 10/ 3/IS73 PRECISION RUN ERROR=10.4*
ro
™ ST.* OEP C NET TIME
SOOIUM START/END
1
2
3
4
5
253.4
227. C
304.3
344.5
1«5.3
0
C
0
0
0
80.8
72.4
95.7
108.1
61.2
1226/1221
1229/1224
1148/1123
1129/1100
1113/1043
-------
PIJMtf 14
SPANNING
10/ 3/1973TO 10/ 4/1S73
ST.*
PEP
NET
SODIUM
TIME
START/END
3 147.5 2 44.6 1123/1235
4 232.9 I 78.1 1100/1208
5 207.0 1 66.0 1043/1038
RUM* 15 SPAMNING FP CM 10/ 8/1973TO 10/ 9/1973
PRECISION RUN ERROR=17.3«
ro
(ji
ST.«
DEP
NET
SODIUM
TIfE
START/END
1
2
3
4
5
6
64.2
77.6
61.0
52.0
46.0
260.5
0
0
0
0
0
0
19.2
23.3
19.2
16.4
15.6
79.6
1528/1353
1534/1403
1332/1307
1305/1246
1103/1225
1226/1120
-------
BUN* 16 SPANNING FRCM 10/ 9/1973TO 10/10/1973
PRECISION RUN ERROR=34.6«
ST.*
NET TIME
S?niUM STAfU/FNO
1
140.2
<31.7 1
201.0 1
44.4
20.4
64.0
1430/1344
1406/1345
1313/1305
"UN* 17 SPANNING FRC'* IO/10/1973TQ 10/11/1973
IM
Ul
ST.*
OEP
NET
SODIUM
TIME
START/FND
3
4
5
6
866.3
1672.2
12?5.8
1974.0
1
1
1
I
207.6
559.3
409.4
550.6
1308/1402
1241/1345
1216/1318
1434/1142
-------
IH SPANNING FRCM 10/11/1973TO 10/12/1973
DFP C NET TIME
START/FNO
3 1450.8 I
5 759.1 1 227.0 1323/1148
SCANNING F°DM 10/12/1973TJ lO/lb/1973
<:T.» HEP C NET TIMfc
M START/FNO
ro
$
7.
^
4
•5
6
492.2
494. 7
596.5
4b7.4
364.2
0
0
0
0
0
479.6
480.3
578.0
453.2
353.2
1320/1422
1233/1325
1217/1255
1153/1233
1118/1159
-------
2T S°ANMNU F?CM 10/ 15/19 73TJ 10/16/1973
NET TUF
START/FN11
2
3
4
5
6
123.?
163.0
216. 1
107.2
106.8
0
0
0
0
0
3b.2
51.?
68.3
33.8
33.5
142V/1342
1330/1304
1302/1244
1240/1216
1206/1137
CUM* 21 SPANNING FKCM 10/ib/1973TL' 10/17/1973
ro
iS ST.« nFP C MPT TIME
SCDIUM START/IND
2 *«.8 C 14.1 1349/1324
3 fcfl-fc " ?1.5 130J/123B
/f 59.7 0 10.7 1249/1^14
6 45.7 C 14.4 1222/115h
<• 3^-9 0 12.5 1142/U05
-------
??. S».V.'JI»H, FT.-, 10/17/1973T1 IC-X la/1973
"UN
3CnlUM STAKT/CfJD
256.7
177.6
1 4fl. C
206.5
130.7
115.9
d
0
c
0
0
75.5
S? .8
43. 9
61 . J
3H.7
131J/HJ6
l?32/ l()4b
1217/1033
1200/IC12
UlV/ 91fi
SPCNM'K, F«r:< 10/1«/1973TJ 10/19/1973
r)E!>
252.9
rthb. t
551.5
771.3
738.8
c
]
I
1
2
2
snniuM
f<2.9
2il 9 . tJ
192 • t!
279.6
2/1.4
TIME
1141/1215
L143/121G
1015/1325
921/1253
^ PF^ECISIJN SUN ERROR=71.5«
tn
00
-------
24
f^PM 10/22/1973TT 10/23/1973
PRECISION RUN ERRQR= 1.3*
ST.*
NET
SOOIUM STAET/FND
1
7
"*
4
5
f
785.6
795.9
556.5
681.8
1032.7
991.7
0
0
0
0
1
1
247.2
250.8
182.1
290.2
340. b
315.1
13 JO/ 123 5
1303/1240
1139/1211
1110/1150
1051/1135
1005/ 954
25 SCANNING FRCM 10/23/1973TD 10/24/1973
PRECISION PUN ERROR- 2.8*
ST.*
DEP
. fT
TIMF
I
?
3
4
5
6
279.8
287.8
291.2
478. «
504.8
368.3
0
0
0
1
1
0
86.3
b9.U
(38. P
146.5
154.1
117. C
1239/1147
1243/1153
1215/1107
1151/1049
1139/1032
959/ 957
-------
?6 SPANMNf, FRi.M I.I/24/1973T} 10/25/1973
PkECISIOi\ KUM
ST.'i
TIME
START/END
5
6
238.4
173. 7
155.1
158.0
18fl. 7
0
0
0
0
I
0
77.0
56.6
bO.7
70.6
51.0
M.O
1152/1216
1156/1222
110-J/113P
105.1/1108
1001/1015
PU?:« 27 SPAMJl'IG FKD'1 10/25/1973TO 10/26/1973
ro
at
o
ST.«
PRECISION RUN ERROR=15.'»?:
t!ET
TIME
STAi*T/£ND
I
?
3
4
5
6
133.9
217.4
151. t
178.6
156.5
1R0.2
0
0
0
0
0
C
69.5
82.1
46.0
56.0
50.1
60.8
12?2/1642
1226/1645
1132/1113
1110/1100
1051/1050
1018/1135
-------
ro
o>
KUN« 20 SPANNING FFOM 10/26/1973T3 10/29/1973 PRECISION RUN FRROR=
DEP C. NfcT TIME
M START/END
I
?
3
4
5
6
117.4
11?. 1
102.5
118.8
100.0
109.4
0
0
0
C
0
0
105.0
100.3
57.0
113.1
05.7
102.1
1645/1147
1648/1152
1116/1012
1103/1024
1053/1035
1138/ 937
PIIN« ?9 SPANMNf, FFCM 10/29/1973TO 10/30/1973 PRECISION RUN ERROR=35.01!
CEP C tE- TIKE
SDOIUM START/END
1
2
3
4
5
6
155.3
101. 0
73.0
75.3
76.9
57.5
0
0
C
r
G
0
51.4
33.4
25.1
25.4
25.0
19.0
1152/1240
1156/124!>
1015/1159
1028/1143
1040/1100
944/1030
-------
°'Jfl* 30
SPANNING
1 0/30/1 973TU 10/31/1973
PPECISICN PUN ERROR=75.4«
1
2
3
4
5
6
DSP
2<;8.6
73.5
70.4
5365.8
71.5
55.4
f
0
0
0
7
0
0
MET
srnniM
95.3
2J.5
22.6
1664.5
22.5
17.4
TIME
START/END
1245/1240
1248/1245
1202/1204
1146/1101
1103/1040
1034/1008
°UN« 31 SPANNING FRCM io/3i/i573Tj n/ 2/1973
PRcCISION RUN ERROR= 5.1*
ST.tf
"ET TIME
SODIUM START/END
1
?
3
4
5
80.0
85.2
78.5
4007.5
34.0
1
1
1
7
0
49.8
52.6
47.8
24?5.7
21. rt
1245/1058
1248/1107
1207/ 943
1104/ 826
1043/1040
-------
fii|N# 32 SPANNING FPPM 1 I/ 2/1973TD H/ 5/1973
PRECISION RUN tRRCR= 2.8«
ST.«
OEP
TIME
START/END
1
2
3
4
5
105.9
102.9
64.3
5347.7
83.9
0
l-
0
7
0
100. b
98.0
61.4
5161.0
{.1.1
1107/1026
1110/1C30
946/ 921
830/ 650
804 / 630
ro
tn
»UN# 33 SPANNING FH OM ll/ 5/1973T.J ll/ 6/19/3
ST.«
PFECISION *UN ERROP=13.5?
OF.P
MET TIKE
SnD!UM STAPT/FND
1
2
3
4
5
259.2
224.2
238.9
342.3
207.3
0
0
C
0
o
66.0
75.1
89.0
139.8
86.1
1030/1136
1034/1140
«*24/1320
854/1530
833/1540
-------
ST.»
J4 SPANNING FR^" ll/ 6/1973T.) ll/ 7/1973
TIME
START/ENf!
PRECISION "UN EPPOR
I
2
3
4
5
623.1)
'.15. 1
779.0
1407.3
1059.1
0
0
1
1
1
201.7
1T9.3
228.3
360.3
268.2
1140/1155
1143/1200
1322/1120
1532/110S
1543/1042
RUM* 15 SPANNING FFPM ll/ 7/1973TO ll/ 9/1973
C NET TIME
scnun START/ENO
2 ST.-
PRECISION RUN ERROR=32.3?
I
2
3
4
5
394.9
267.3
359.7
1">970.7
}0ft.7
.1
0
0
7
0
244.3
Io5.5
221.8
Qd4H .0
IH9.7
120U/1022
1203/1028
1129/ 942
llll/ 524
1045/ 907
-------
36 SPANNING FROM ll/ 9/1973TO 11/12/1973
PRECISION RUN ER«OR= 9.8$
ST.*
NET TIME
SPOIUM START/END
1
2
3
4
5
495.1
446.7
501.5
6313.0
391.7
0
0
0
7
I
4R5.0
437. B
492.0
6195.0
384.0
1028/1154
1031/115U
945/1 124
927/110C
910/1038
ro
01
01
ST.«
SPAN-NINO FPCM 11/12/1973TC H/13/1S73
OEP
NFT
PRECISION RUN
TIHE
START/FND
1
2
3
4
5
529.7
347.6
D43.
-------
CUN«
SPANNING
11/13/1973TQ 11/14/1973
PRECISION
ERR3S=17.7<
r,pp
s-JDiur-
TIM?
STAPT/FND
1
2
3
4
•i
14«». 4
28 J.3
405.6
7590.9
?86. 0
0
0
0
7
0
120.1
'Jb.ft
148.U
2835 .8
1 J9.2
1156/1404
1200/1409
UOb/1429
1043/1443
1021/1454
ro
at
ST.
39 SPANNING FPPM 11/14/1973TQ 11/15/1973
NtT
PPfCISION "UN FPROR=31.9ig
TIME
START/END
1
2
3
4
5
1289.5
P7H.3
145H.7
l?0b.9
U73.C
O
0
0
0
0
400.3
272.8
455.4
359.0
409.7
1409/1325
1412/1329
1431/1355
1445/13C6
1457/1319
-------
OHMS 40 SPANNING FKCM 1I/ 15 /1 «J73T 1 11/20/1973 "(. CC 1 S ION MJN FRROS = 27.2'S
OEP
TIMf
START/FfP
I
2
3
11
o92.5
504.0
543. C
545.3
1
1
0
0
1137.4
828. n
8b5.0
869.4
1329/1635
1332/1640
1359/ If'OO
1323/1538
41 SPANNING
1 1 /20/1973T J 11/21/1973
Pc EC IS I ON RUN EKROR=13.9<
5? ST-«
nep
SCO I DM
TIME
STAKT/FNL
I
?
"*
4
5
6
3167.0
272S.C
1390.0
1 3P7.9
1325.0
3318.9
1
1
0
0
0
0
950.7
619.0
433.3
599.5
429.0
1031.0
1640/1510
164J/1M4
1611/1533
1550/1544
1542/1557
1511/1426
-------
SPJKNI MG
1L/21/1973TO 11/27/1973
PRECISION RUN FPROR=ll.*«
166.3
146.4
in. 5
131.3
142.4
0
0
0
0
0
o
t =T
SODIUM
316.3
278.5
214.8
232.5
246.7
2t'». 3
Tiff
STADT/FNO
1514/1349
151d/1353
1534/1322
1550/1307
1600/1248
1432/l?18
ro
O)
CO
ST.#
43 SPANIjINC. F-RCM 11/27/1973TO ll/3'i/1973
PF.FCISION
ERRPR= 5.8«
OEP
MET TUT
SODIUM START/FNO
I
2
3
4
5
6
2n.i>
307. 2
263.7
1223. 7
173.4
302.3
1
1
1
7
2
2
269. 1
285.6
244.4
1132.5
160.5
279.1
1353/1133
1357/1137
1325/IOS3
1310/1032
1350/1012
1221/ 93?
-------
RUN* 44 SPANNING FPC* 11/30/1^7310 12/ 1/1*73
PhELISION 'VUN ESKOR=12.7*
ST.*
1
2
3
4
5
6
pep
368.2
321. 4
329.8
5919.9
314.2
336.7
c
0
0
0
7
0
0
NFT
SDDIUM
132.6
115.6
110.4
1974.6
105.1
120.8
TIMC
STArtT/FND
1137/1437
1141/1441
1055/1200
1036/1136
1015/1114
936/1230
to
PUN* 45 SPANNING FPCM 12/ 1/1973TG 12/ 4/1973
ST.*
PRECISION KUN ERRQR=23.7«
OEP
NET TIME
SODIUM ST.ART/EN'D
1
2
3
4
5
6
270.3
206.3
234.9
370.4
206.6
210.8
0
0
0
0
I)
0
249.4
190.5
223.0
349.0
194.2
202.4
1441/1151
1444/1156
1204/1113
1141/1018
1122/ 94S
1232/1226
-------
INO FPJM I?/ 4/1973TO 12/ 5/1973 PRECISION liUN ERROR= 7.J*
3T.X nE» C ^!E•r TINE
SODIUM START/END
1
7.
3
4
5
ft
329.1
306.1
270.1
238.9
350. C
300.4
0
0
0
0
0
0
123.2
114.6
102.1
92.0
I J 7 . 6
97.1
1156/lbUO
1200/16J3
1116/1535
1020/1526
952/1516
1230/1244
RUN* 47 SPANNING FMM 12/ 5/1973TO 12/ 6/1973 PRECISION PUN ERROR=32.3*
ro
o
ST.* npp C ' NET TIME
SODIUM STAkT/FND
1
?
J
4
5
6
174.9
2S7.2
2?9.9
199.4
1H9.0
206.4
0
0
0
0
0
0
54.4
00.0
63.2
52.2
49.0
58. H
1603/1522
1606/1525
1539/1215
1529/1106
1519/1046
1247/1009
-------
SPANNING FROM i2/ 6/197310 12/11/1973 PPECISICN RUN
ftp c NFT TIKE
1*6.7 2 249.2 1525/1438
2
3
4
5
6
109.8
128. 1
1107.9
151.3
238. 9
2
2
7
2
2
174.5
209.7
183d.6
252.4
3bl .1
1523/1437
1217/1500
1110/1533
1048/1551
10U/1609
RUN* 49 SPANNING M CM 12/11/197310 12/13/1973
IM
^J
H-l
^T.« OEP C NET TIME
M START/FNO
1
3
4
S
6
40. H
41.7
125.2
6-9.2
176.1
'i
0
0
0
0
27. P.
27.7
61.7
44.9
97.5
1443/1741
1504/1650
1536/1613
1554/1637
1613/ 943
-------
5J
SPAM.IW,
12/13/1973TO 12/14/1S73
ST.*
fJET TIME
SODIUM START/FND
1
1
4
5
6
57.6
115.3
50.9
25.2
34.5
0
0
0
0
0
16.5
34.3
15.7
7.7
14.3
1719/1444
1653/1510
161o/1523
164)/lb35
94//1645
ro
I!U^<( 51 SPANNING FkOM 12/14/1973TO l/17/19-73
MET TIME
SODIUM START/END
1
3
4
5
6
16H.4
579.2
33B3.3
PC9.0
290.3
0
0
7
1
1
149.8
145.3
3017.fr
136.8
257.1
1449/ 928
1512/1000
1526/1017
1539/1038
1643/1103
-------
RUN* 52 SPANNING FROM 12/17/1973TO 12/19/1973
ST.*
DEP
NET
SODIUM
TIME
START/LNO
1
3
4
5
6
262.5
267.6
401.1
253.2
331.6
0
0
0
0
0
180.6
181.8
270.6
169.4
219.2
932/1306
1002/1258
1019/1253
1040/1249
1105/1238
RUN* 53 SPANNING FROM I/ 2/1974TO I/ 4/1974
ST.*
HEP
NET TIKE
SODIUM START/CUD
1
3
6
492.9
358.4
179.8
0
0
0
314.0
227.5
241.4
1304/1249
1206/11tO
1233/1211
-------
I/ 4/1974TU I/ 6/1974
NET
SC'DIUM
TIMF
STAPT/LND
89.0
99.7
0
0
0
0
0
?5.5
20.7
35.9
^7.7
12.4
1623/1609
160b/1524
1553/1513
154J/lb02
1521/1544
-------
RUN* 56 SPANNING FRCM \/ 9/1974TU 1/11/197*
ST.
1
3
4
5
6
OEP
177.1
132.6
84.7
141.?
0
0
0
0
(1
NET
SODIUM
112.6
70.9
85.?
54.4
88.5
TIME
START/END
1612/1552
1526/1536
1516/1525
1505/1514
1547/1445
PUN* 57 SPANNING FROM 2/ 6/1974TO 2/ 8/1974
ro
*" ST.«
nep
NET TIME
SODIUM START/END
3
4
5
6
7
8
9
10
213.8
192.2
167. U
240.6
33?. 8
558. 4
195.0
233.4
0
0
0
0
0
0
1
0
140.6
125.0
107.5
145. «
214. B
3!>4.7
119.2
141.6
1520/1637
1527/1612
1548/1550
1703/1430
1538/1600
1600/1536
1623/1417
1714/1443
-------
5"
SPANNING
2/ 8/1974Ti) 2/11/1974
ST.*
3
4
5
A
7
S
9
10
HEP
56. 5
3736.1
69.3
149. C
62.9
68.6
127.0
60.4
C
0
7
0
0
0
0
n
C
N?T
SODIUM
52.5
3507.6
05.8
143.7
59.3
o5.6
I25.fi
59.9
TIME
STAR.T/LND
1639/142U
1615/1437
1553/1503
1433/1450
1604/1448
1539/1518
1421/1636
1446/1704
SPANNING
2/U/1974TO 2/13/1974
ST.O
4
5
6
7
3
<3
in
DEP
149.3
45S4.4
71.2
155.0
21.6
58.4
38.6
21.4
C
C
7
0
0
C
0
C
0
NET
SCDIUV
96.4
2953.3
45.8
102.1
13.9
37.5
24.4
13.5
TIME
START/tNC
1423/1446
1440/1457
1506/1518
1452/1613
1451/1507
1521/1529
1639/1600
1707/lo2o
-------
/,0
2/13/1974TO 7/14/1974
7
8
9
10
r,cp
99.6
19982.C
43.4
71.0
75.3
48.5
53.0
B-3.4
f
./
7
0
0
(•
(I
0
0
MET
SC'HUM
31.9
6402.9
15.5
23.1
24.2
15.5
IV.?
27.7
T I Kt
STAF.T/PMC
144d/ It A 9
1500/lbOl
1521/1520
1615/1636
1509/lbll
1531/1531
1603/1624
1629/1647
ro
-sj
2/15/1974
ST.*
4
5
6
7
0
9
10
57.5
7386.C
110.5
91 .3
44.?
50.9
65.2
c
,>
7
0
n
'.)
0
n
0
NET
scniun
Ib.U
2413.0
36.2
28.9
48.0
14.5
16.8
21.7
STA-T/FND
1452/1523
1504/1533
1523/1558
1639/1622
1513/154!.
1533/1612
1626/1708
1649/1744
-------
2/15/1974TO 2/18/1974
ST.* pfiP C 'JET TIMF
STAFT/fcM!
3 56.C 0 S3.5 1525/1505
4 05.68.4 7 63S1.C 153&/1526
5 60.1 7 2-«'J.4 1601/155?
6 im.6 0 100.6 1625/1713
7 74.2 C 71.2 1548/1538
H 64.3 0 61.7 1615/1607
9 74.2 0 71.6 1710/1726
10 74.9 0 71.2 1747/1702
"UNB 63 SPANNIM, FKCM 2/18/1974TO 2/19/1974
ST.« OFP C MET TIME
SUDIUK START/END
3
4
5
6
7
8
0
151.3
12371.6
184.8
209.6
136. C
21?. 4
180.5
223.3
0
7
0
0
0
II
0
0
48.1
39J1.0
*>9.8
65.2
42.9
67.0
56.2
66.4
1508/1458
1530/1508
1555/1532
1716/1635
1541/1519
1609/1547
1728/1646
1706/1523
-------
/>4
Sf>.".M«iI\r,
2/19/1'., 74TP 2/20/1974
TEP
NtT
S1DIUM
1
4
5
6
7
8
1
O
1?3.6
643d. 4
115.3
2*3.3
I 39.4
124. 2
110. 1
97.1
C
7
r
6
()
0
C
1
43.3
2 Ib6.2
37.9
b4.6
40.7
39.9
32.2
31.0
1501/1717
1512/1639
1534/ Itl2
1633/1501
1522/ 1627
1550/1557
1650/1445
1526/1521
2/20/1974TJ 2/21/1974
NC-T
r-noi
Tlf-'.F
START/FND
6
7
H
in
i:4.9
12T2.1
?lfl.9
119.4
178. 9
243 . 1
1 17.1
153.4
0
r\
0
0
"l
0
0
1)
29.2
374.6
66.4
40.5
53.?
75.5
39.8
51. R
1720/1413
1642/1436
1615/145?
1507/1632
I630/I44b
1600/1517
It4d/ltl7
1524/ 1644
-------
SPftNNIVf, FFOM 2/21/1974TQ 2/2*/1974
NET TIME
S10IU" START/END
3 135.5 J 175.y 1416/1533
*> 119.1 0 154.3 1503/1608
* 109.0 0 259.fc 1633/1756
7 116.6 i) 177.0 1450/1558
13 149.9 0 H4.1 1520/1&22
9 118.7 0 155.J 1620/1813
10 121.6 f> 157.4 1642/1743
g ",jf,tf 67 SPANNING FPCIM 2/25/1974TO 2/26/1974
ST.« 1EP C N«?T TIME
SJOIUP START/END
3
•>
6
7
8
9
J
30.7
•53. 8
12.3
44. C
62.1
70.3
44. 4
0
0
0
0
0
0
0
9.6
1*».6
3.9
13.9
19.7
21.8
l'+.2
1535/1502
1611/1555
1800/1738
1600/1540
1625/1611
U13/1727
1746/1749
-------
"UN* 68 SPANNING FPUM 2/26/1974TO 2/27/1974
ST.« OEP r, HET TIME
SOfJIUM STAFT/FMD
H3.6 0 37.5 Ib05/1548
5
6
7
8
9
10
89.3
147. 7
105.7
13?. 3
265. 2
189.0
0
0
0
C
0
0
27.1
45.2
32.8
39.2
(32.6
56.9
1558/1*44
1741/1636
1543/1458
1614/1427
1730/1651
1753/1624
OJ PUN*
-------
PUN* 70 SPANNING FhCM 2/2B/1974TO 3/ 7/i<>74
ST.«
3
,5
6
7
ft
q
10
HEP
187. C
ma. 7
2T6.4
219.5
325.1
366.1
182.3
C
1
1
1
1
1
7
1
NET
S 10 1 UK
429.7
433.1
528.0
5H4.2
74?. 3
821.5
406.0
TIME
STAPT/END
1047/1503
1142/1543
1743/1708
1123/1532
1202/1509
1727/1738
1759/1655
09
IM
71 SPANNING KrOM 3/ 7/1974TO J/ 8/l
-------
7?
SPANNI'40
3/ 8/107410 3/11/1974
ST.*
STDIUM STAKT/dNO
1
4
5
6
7
a
P
10
CO. 7
398.0
103.1
398.5
126.0
144.2
3ft5.3
407.3
O
7
<:
<
u
0
7
0
74.f<
38J.8
1'rl.l
3(.9.6
123.4
141.4
356.4
375.8
1521/1635
1533/1657
16UI/1732
1836/1607
154o/170S
1617/ 174C
1823/1930
1847/ 1556
ro
73 SPANNING
3/ll/l«*74TJ 3/15/197-i
ST.#
0CP
^!5
TIKE
START/EMO
"1
4
5
7
H
q
30.7
1"?. 5
57.6
36. f
37.1
305.0
0
0
0
0
0
7
ia.fi
117.4
35.0
22.9
22.5
182.2
1 539/ 143 1
1700/1443
1735/1508
1712/1557
1751/1522
193J/1C19
-------
=UN* T* SPANNING FROM 3/13/1974TO 3/14/1974
ST.«
3
4
5
7
a
OFP
66.9
168.4
66.9
79.4
124.4
0
0
0
0
0
NET
SODIUM
20.4
51.8
20.8
23.3
38.0
TIME
START/END
1434/1326
1447/1350
1511/1432
1600/1401
1525/1420
PO
2
RUN« 75 SPANNING FnOM 3/14/1974TO 3/19/1974
ST.* DEP C NET TIME
SODIUM START/END
1
4
5
7
R
183. S
390.8
3096.9
4276. 9
206. I
1
1
1
1
1
295.2
635.8
4993.4
6937.0
332.3
1329/1603
1353/1549
1436/1527
1404/1538
1422/1513
-------
7o S°ANNIMl,
3/14/1974TO 3/25/1974
NET
SJOIUM
TIME
STAP.T/tM.
ft
q
10
2H3.2
112.0
200.9
t.
7
3
352.3
1611/1243
1622/1225
1600/1300
C(JN« 77
SPANNING
ro
00
en
DEF
TIKE
3
4
5
7
H
61 .3
100.1
80.3
56. 0
5H.O
0
0
0
•j
0
112.9
Ub.4
l'JO.5
l'i*.0
110.2
1616/1025
1S52/1044
1529/1157
1541/UOO
1517/1141
-------
78 SPANNING FROM 3/25/197410 3/26/1*74
ST.« PFP C NET TIME
SODIUM START/END
30.3 1028/1036
4
5
6
7
8
9
10
117.1
80. 9
33.3
116.9
109.4
95.3
82.3
0
0
0
0
0
0
0
37.9
25.8
26.9
37.8
35.8
30.9
26.7
1046/1101
1201/1155
1247/1301
110J/1116
1143/1215
1228/1245
1304/1321
RUN« 79 SPANNING FROM 3/26/1974TO 3/29/1974
ST.* HEP C NET TIME
SOOIUM START/END
3 55.6 0 54.0 1034/1125
4 93.0 0 90.2 1103/1143
7 66.5 0 64.6 1118/1204
-------
MO SPANMNG Ft. CM 3/2o/197<.TO 3/30/1S74
SID HIM STftPT/Fr.D
7 2371.0 1157/1230
HI SPiNNII-r,
ST.*
ro
oo
87.6
MET
SODIUM
170.9
223.0
TI^t
1247/1237
132b/1211
-------
PUN« 82 SPANNING FROM 3/29/1974TU 3/30/1974
ST.« DEP C
3 44.4 0
4 134.7 0
7 63.0 0
NET
SODIUM
13.6
43.4
20.2
TIME
START/END
1127/1020
1146/1155
1206/1208
RUN* 81 SPANNING FROM 3/30/1974TO 4/ 3/1974
ST.» DEP C NET TIME
™ SODIUM START/END
oo
?
4
5
7
a
119.4
137.2
77.7
61.4
65.5
0
0
n
0
0
152.3
172.5
98.0
77.2
82.1
1022/1000
1157/1012
1232/1105
1210/1024
1251/1047
-------
<>IJM« 84 SP.'.NMNC FKQK 4/ 3/1974TC 4/ H/1974
?T«* CEP C f.E' TINE
START/END
4
5
6
7
8
9
10
243.9
300 . <-.
246.4
311.7
2?0.9
224.8
247.7
177.1
1
1
1
1
1
1
1
1
IUfa.4
479.0
391.8
494.5
351. R
359.0
391.5
281.9
1C03/ 926
1014/ 940
1107/1017
1225/1119
1027/ 950
1050/1032
1239/1106
1214/1130
*° PUN* dS SPANNING Ff-CP 4/ 8/1974TC 4/ 9/1974
ST.* PFP C NET Tll-F
SfiDIUM STA^T/Ff.T
3
4
5
6
7
8
9
n
f-l. 6
86.6
95.2
273.4
75. S
44. 1
95.7
138.1
0
0
0
6
0
0
C
0
21.0
29.6
32.1
"3.9
25.6
14. c
32.8
47.5
93J/1107
942/1117
1020/1138
-• 1121/1305- .
952/1127
1034/1150
1103/1249
1132/1319
-------
"UN* 8ft SPANNING FILM 1*1 9/1974TO 4/11/1S74
DEP
MET
TIMfc
STA3T/FNC
3
4
5
(,
I
n
9
10
163.0
240.3
156.4
184.9
160.4
204.2
126. C
114.2
0
0
0
0
0
0
0
0
106.2
l!>ti.7
lu?.9
120.3
104.6
134.4
H2.7
73.7
1KN/1200
111^/1212
1140/1258
1307/1354
1129/1223
1151/1310
1251/1405
1322/1343
ro
§ PUN*
SPANNING FFG" 4/11/1974TO 4/16/1974
ST.«
DEP
NET
SrDIUM
TIME
START/END
-\
4
5
7
3
?OB.4
'»00 . 5
261.1
)3i.a
387.5
0
D
0
0
0
331.0
637.6
41H.4
528.4
617.3
1202/1106
1214/1134
1300/1211
1225/1146
1312/1235
-------
a« SPANMNU FCCM 4/ll/1974T£ 4
ST.# DEP C NET TU-C
SUDMJM START/END
6 597.5 b 1147.0
*> 260.1 1 497.7 1407/1332
10 556.4 1 1071.3 1345/1404
ro
vo
"U»i« 09 S°ANNINC FPCM 4/16/1974Tn 4/17/1974
ST.# nEP C NET TIKE
•J
4
5
7
a
1134.3
892.0
863.1
948.2
406.8
1
1
1
1
1
368. b
293.0
2b0.6
311.0
131.9
1106/1129
1136/1213
12U/1235
1149/1,224
1237/1255
-------
SP ANN INC. FFP^ 4/17/147410 4/18/1S74
ST.« DEP C NET TIME
START/ENTJ
3
4
5
ft
7
R
q
10
230.7
2134.9
IBS. 5
255.3
198.3
134.2
172.0
?29.5
1
1
1
1
1
1
1
1
76.2
69C.8
62.0
83.6
64.1
44.0
56.6
74.8
1131/1216
1215/1230
1237/1315
1352/1424
1226/1240
1256/1332
1334/1*14
1406/143?
PU'I« 91 SPANNING FPOM 4/18/1974TO 4/l9/197
-------
ro
vo
ST.« DFP r MET TIME
f TP.IM STAf-T/£f.C
3
4
5
fc
7
8
q
10
11
9^.7
1 3<1.6
447.7 0 270.0 1406/1120
7 411.3 ', 244.4 1247/1014
ri 4-50.5 •• Ji'2..') 1323/1053
9 201.5 0 126.4 1418/1132
10 2K8.1 0 173.9 1357/1112
II 6<'6.4 i, 367.0
-------
RUN# 94 SPANNING FROM 4/22/1974TO 4/23/1974
ST.»
3
4
5
6
7
8
9
10
11
OEP
224.7
All. 8
310.4
281.6
361.7
418.7
226.8
258.3
316.4
0
0
0
0
0
0
0
0
0
NFT
SODIUM
73.0
13-*. I
101.0
91.8
117.8
136.6
74.2
84.2
103.1
TIME
START/END
954/1015
1007/1032
1047/1111
1-126/1151
1017/1041
1056/1123
1135/1206
1115/1142
1035/1101
RUN« 95 SPANNING FRCM 4/23/1974JO 4/24/1974
ST.*
OEP
NET
SODIUM
TIME
START/END
3
4
5
6
7
8
9
10
11
136.3
178.9
97.9
404.0
102.9
98.4
82. 5
206.7
81.9
0
0
0
0
0
0
0
0
0
43.4
57.1
31.2
145. O
32.8
31.4
26.2
65.9
26.2
1019/1011
1035/1030
1114/1110
1154/1448
1045/1039
1126/1121
1209/1158
1145/1140
1104/1102
-------
SPANMfif. \-^-:H 4/25/1974TO 4/26/1S74
ST.* DEP c NLT T If11-
M STAH/E.ND
I- U 112^ 1045/1032
*> 170. f (1 53.( 1137/1112
6 287.'I 0 09.« 122W1151
7 ?65.ft 0 84.0 1054/1041
« 247.3 f 77.h 1151/1123
0 179.7 0 56.0 1236/1201
10 193.4 0 fcO.fe 1212/1141
11 203.0 0 64.3 1125/1104
4/26/1S74
ST.«
STAkT/F,\C
252.5 0 1M.P 1023/102!:
4
S
ft
7
P
9
1C
378. C,
IP?.0
241.0
747.0
^ 711 . 8
.-> 1 1 . 4
174.2
C
C,
0
0
0
0
o
242. 8
116.2
153.7
158.4
172.8
134.7
111.1
1035/1039
1115/1 106
1155/1143
1044/1048
11 26/1 IK,
1200/1151
1147/1135
11 316.4 0 202.0 1106/1057
-------
"UN* 9rt SPANNING FRO 4/28/1974T3 4/29/1974
ST.* OEP C NET TIME
SODIUM START/END
2C9.9 0 66.5 1029/1015
4
5
6
7
8
9
10
249.1
172.1
160.1
207.7
236.3
111.3
127.2
0
0
0
0
0
0
0
79.0
55.0
51.0
65.8
75.4
35.5
40.6
1042/1028
1108/1105
1146/1140
1051/1036
1119/1114
1154/1149
1138/1133
11 270.3 0 86.2 1102/1057
ro
g
PUN* 99 SPANNING FB()M 4/29/1974TO 4/30/1974
ST.* DEP C NET TIME
SODIUM START/END
3
4
5
6
7
H
9
10
11
160.0
347.6
105.8
127.2
73.5
80. H
62.9
47.8
205.8
0
0
0
0
0
0
0
0
0
51.7
112.3
34.1
41.0
?3.8
26.0
20.3
15.4
66.4
1020/1033
1031/1044
1103/1118
1143/1152
1040/1053
1118/1128
1151/1202
1136/1145
1100/1111
-------
ro
vo
-j 5/
DFP C tjLT Tier
3
4
5
t>
7
8
9
10
11
360. 3
613. b
163.?
.-163. !'•
26. 1
29. 8
27.7
218.0
305. 7
0
n
w
i
0
0
0
0
0
115.0
192.6
M.4
IK.. 2
0.2
9.4
8.7
6H.7
lh.2
I03b/ 1006
1 0-V 7 / 1 0 1 8
1121/10^7
1155/U35
1056/lu2J5
1131/11CM
1205/1 U^
ll5.4
13.4
DO.O
20.7
14.9
7.0
17. C
28. •»
1011/ 10^0
1022/1026
1100/1113
1133/1152
1031/10*7
1111/1123
1146/1201
113J/1144
1051/11(10
-------
102 SPANNING FPCM 5/ 2/1974TQ 5/ 3/1974
ST.* nEP C NET TIME
SODIUM START/EMD
3
4
5
A
7
8
9
10
11
460. ft
SI. 5
27.3
52.5
89.3
25.6
10.5
77.3
63.3
0
0
0
0
0
0
n
0
0
148.6
26.5
8.7
17.0
29.0
8.2
3.4
25.0
20.3
1023/1034
1031/1053
1116/1118
1155/1210
1040/1101
1125/11?8
1204/1220
1146/1200
1109/1111
ro
to
RUN* 103 SPANNING FROM 5/ 3/1974TH i,/ 4/1974
ST.« DEP C MET TIMF
SODIUM START/END
3
4
5
6
7
8
9
10
11
321.
23.
28.
17.
16.
9.
28.
5.
0.
.1
,0
,3
.3
.1
,3
,3
6
.9
0
0
0
0
0
0
0
0
0
91
6
a
5
4
2
8
1
0
.6
.5
.2
.0
.6
.7
.2
.6
.2
1037/
1056/
1121/
1213/
1103/
1131/
800
817
905
953
828
920
1223/1005
1209/
1113/
943
851
-------
"UNS 1.14 SPANNING FkC« 5/ 4/1974TO 5/ 6/1974
ST.« DPP C \ET TIf.E
3
4
5
6
7
8
9
10
11
31. T
46. ",
3-J.3
236. 8
32.2
27.0
25.4
62.7
?9. 0
0
0
C
4
r.
C
0
0
0
22.6
31.?
26.2
158.3
21.4
18.0
16. b
42.2
19.3
80J/10G7
b21/10l9
90-^/1103
95//12C3
83l/l"31
924/1120
lOOb/115C
947/1215
655/1051
r-o
io
PIKJrf 105 SP'>NrjI\C> f - ^M b/ 0/1974TC 5/ 7/1974
ST.« DFP C NET TIM=
SC. nill.M STA--7/[iMfi
« 14.9 U 4.6 1021/ ...
5 31.7 0 9.7 1136/1001
ft 60. I 0 lfi.1 1205/1C40
7 ?.4 . i.7 1C34/ 935
» 10.4 0 b.O 1122/1012
9 IH.t 0 ll.ii 1152/1355
l«> 472.6 '! 140.2 121 ?/1031
11 21.P (- o.b 1054/
-------
106 SPANNI'JC, Fk3M 5/ 7/1974TO 5/ 0/1974
3
4
5
6
7
a
9
10
11
DEP
407.3
553.9
218.0
976.0
310.5
797.6
208.2
325.6
NET
SPOIUM
130.8
177.5
69.8
313.0
99.5
255.4
149.5
67.5
1(14.?
TIKE
START/END
916/ 920
928/ 929
1004/1 J04
1043/1044
938/ 939
1015/1015
1057/1035
1033/1051
956/ 955
o
o
107 SPANNING FPOM 5/ 9/1974TO 5/10/1974
ST.HI
3
4
5
6
7
a
9
10
11
OEP
8.3
97.7
7.5
19.0
15.6
10.8
6.0
7.4
739.8
C
0
0
0
0
0
0
0
0
0
NET
SODIUM
2.6
30.7
2.3
6.0
4.9
3.4
1.9
2.3
232.6
TIME
STA*T/END
959/ 933
lOOa/ 941
1041/1015
1121/1101
1016/ 948
1051/1027
1113/1052
1129/1112
1033/1007
-------
108 SPANNING Fcr,N| 5/IO/1974TO 5/11/1974
ST.* OEP f l.'CT
SODIU'1 STADT/END
1
5
b
7
8
9
10
11
41.3
42.1
n9.u
46.3
58.3
28. U
52.7
P84.6
0
0
0
c
0
0
c
c
12.2
13.0
?1.3
14.2
16.0
9.0
16.0
87.4
936/ 824
1017/ 927
1105/1010
9^>l/ 849
103J/ <*39
1055/1022
1U4/ 959
1010/ 911
109 SOANNIfJO Fi-CM 5/1 l/l 9 74T 3 5/13/1974
ST.« otp r NUT TIME
SODIUM STakT/?NP
3
4
5
6
7
0
9
10
11
107.2
71.3
111.7
90.6
93. C
104.?
93.4
88.3
169.; ?
0
0
I;
0
0
o
0
0
0
72.0
47.9
75.4
61.0
65.6
69.7
(.5.8
59.9
113.8
627/1C5C
639/1100
930/1206
1013/1242
S53/1112
942/111)1
1024/1230
1002/1253
914/113H
-------
110 SPANNING Ff»f>' 5/13/1974TO 5/14/1974
ST.* OEP C NET TIME
SODIUM START/END
3
4
5
h
7
8
9
10
11
41.4
550.7
109.2
65.5
54.2
56.8
29.9
41.5
381.3
fi
0
0
0
0
0
0
0
0
12.2
163.0
31.7
19.1
16.0
16.8
8.7
12.1
112.6
1052/ 903
1102/ 913
1208/ 955
1244/1038
1115/ 922
1153/1C06
1232/1028
1255/1046
1140/ 948
"UN* 111 SPANNING FKOM 5/14/1974TO &/15/1974
DFP C NFT TIME
SnniUM START/END
62.9 0 21.4 906/1035
4
5
7
8
11
393.2
63.3
100.3
47.9
272.0
0
0
0
0
0
134.2
22.6
35.0
16.8
95.8
916/1051
958/1244
925/1135
1009/1230
951/1215
-------
u>
o
co
112 SPANNI'JO FrPM 5/20/1974TC 5/21/IS74
TIMF
3
4
5
(>
7
r,
c
10
11
130.4
411.0
185. «y
IBS. 1
.->56.'V
'«CO.
151.6
l«>8. 7
PS8.8
0
0
0
u
0
0
0
J
u
41.4
130.7
S8.5
59.3
cU.5
154.3
47.5
49.1
HI. 5
644/ 833
d57/ 847
945/ S20
1«)35/1(I04
90-J/ B58
10CJ/ <<33
1047/1016
102^/ 932
935/ 911
113 SPifiiJT'O F>..-M 5/2l/l974Trj
ST.« DEP C .','?' TIMF
STAPT/EIMU
3 566.0 2 182.2 H36/ 844
4 1760.9 2 563.2 849/ 900
5 591.3 ^ 192.3 923/ 944
6 923.1 2 2<>9.3 1007/1025
7 792.H 2 255.6 901/ Til
* 76S.1/ ? .749.f, V35/ 95(«
9 1367. <, 2 3t6.1 1019/1037
10 772.0 2 254.1 935/1015
U SH8.1 2 32').U 9U/ 933
-------
»UN» 114 SPANNING FROM 5/22/1974TO 5/23/1974
ST.* DEP f NFT TIME
S?PIUM START/fND
3
4
5
fr
7
8
9
10
11
29.2
135.4
160.3
60. b
53.8
58.8
46.8
126.1
109.0
0
0
0
0
0
0
0
0
0
9.3
43. (J
51.1
19.4
17.1
ia.a
14.8
41.0
34.9
847/ 837
902/ 850
94fa/ 940
1028/1028
913/ 902
958/ 952
1037/1016
1018/1038
<»35/ 923
BUN* 115 SPANNING FRDM 5/23/1974T3 5/24/1974
ST.« DEP C NET TIME
SODIUM STAkT/FND
3 '
4
5
6
7
8
9
10
11
25.9
35.8
36.3
25.3
35.8
21.0
30.1
35.4
53.9
0
0
0
0
0
0
0
0
0
8.9
12.3
12.3
B.5
12.3
7.1
10.3
11.8
Id. 3
839/1025
852/1035
943/1105
1030/1147
904/1045
955/1118
1018/1155
1040/1137
925/1054
-------
lift SPANNING FfcLM 5/24/1974TC «)/27/1974
CO
o
U1
ST.# HEO f flET TIMF
SODIUM STAiT/CNO
T
4
5
6
7
H
9
10
11
61.0
36. «.
135.4
?5.6
52. }
77.6
45.0
ld.1
30.6
0
.1
7
0
0
0
0
0
0
57.0
34.5
127.0
24.0
46.6
72.8
42.0
17.3
6/ 914
UM« 117 SPAN'fJl'fe Ft-M 5/27/1974TO 5/28/1974
ST.« DFP C NET
SODIUM STA=T/LM,
3 245.3 0 78.6 «32/ P33
* 11.9 0 3.8 845/ U46
5 36. G 0 11.5 92«I/ 925
7 18.7 r, 6.C B51/ 855
8 30.0 0 9.5
«' 10.0 0 3.2
1° 29.5 i) 9.3 1M27/10U3
11 U.4 0 3.6 9lh/ 913
-------
°UM* HB SPAMYING FROM 5/28/1974TO 5/29/1*74
ST.* PEP C NET TIME
SODIUM START/END
3 660.4
4 171.9
5 150.2
6 201.2
7 175.5
9 180.8
10 186.1
11 349.3
2
2
2
2
2
2
2
2
2
210.6
55.0
48.2
64.3
56.2
149.0
57.7
59.5
112.1
B36/ 830
846/ 847
V27/ 930
1017/1014
858/ 856
938/ 941
1028/1024
lOOb/1004
916/ 920
PUN* 119 SPANNING FPOM 5/29/1974TO 5/30/1974
ST.* DEP C NET TIME
SODIUM START/END
3 36.3 0 11.5 832/ 820
4 98.8 0 31.3 850/ 834
5 64.7 P ?0.5 932/ 918
6 20.3 0 6.4 1016/1000
7 3.7 0 1.2 901/ 846
H 4.7 0 1.5 944/ 930
9 9.5 0 3.0 1026/1010
10 6.3 0 2.0 10J6/ 950
11 57.2 0 18.1 923/ 907
-------
OJ
o
12) SPAN'H IG (-•-•-» 5/30/1974T3 5/31/1974
CT.# OEP C MET TIC.fc
STAf-T/Ef.'P
3
4
5
6
7
8
9
10
11
191.2
114.3
143.1
68. 5
62.1
25.3
15.5
21. C
31.5
ii
0
0
0
0
n
0
0
o
61.3
3to.G
46.0
?2.0
20.0
ri.l
5.0
6.£J
10. 1
823/ 825
H33/ 843
92 I/ 925
1002/1007
648/ 854
933/ 937
1013/1018
9:>2/ 956
910/ 913
MJN* 121 SPANNING FI--'.'-< 5/31/1974TQ <,/ 3/L074
ST.« DEP C NCT Tlf.F
SJOIUM START Xf.ND
45.3 C 44.0 620/ h27
4
5
A
7
8
Io3.2
49.2
46. 2
120.7
48. C
0
0
0
(»
0
156.5
47.2
44.3
115.7
46.0
H45/ H3B
9?8/ 924
1 J1G/1CC5
856/ fa49
940/ 934
* 67.1 li 59.6 1021/1017
10 148.3 6 It2.2 1000/ 955
11 73.9 0 70.9 yj.6/ 912
-------
"UM« 122 SPANNING FROM 6/ 3/1974TO 6/ 4/1974
ST.*
3
4
5
6
7
a
9
10
11
HEP
229.2
364.9
422.2
204.1
317.6
85.6
151.3
234.6
194.2
NET
snniuM
73.3
117.5
135.0
65.4
97.6
27.4
48.2
74.9
62.2
TIME
START/END
830/ 828
B41/ 84V
927/ 925
1003/1004
952/ 854
937/ 936
1020/1013
958/ 955
915/ 915
RUN* 123 SPANNING FROM t>/ 4/1974TO 6/ 5/1974
ST.«
3
4
5
6
7
8
9
10
11
OEP
269.0
159.0
152.0
285.5
107.0
129.4
166.0
198.?
139.1
NET
SODIUM
85.0
50.2
47.7
89.5
J3.8
40.6
52.0
62.2
43.6
TIME
START/END
831/
846/
927/
1007/
857/
939/
1016/
957/
917/
812
826
858
937
835
910
945
928
847
-------
FUN«
ST.*
SPANNING
HEP C
6/ 5/1974T3 6/
NET
S10IUM
TIME
START/FNP
3
*
5
6
7
R
9
10
11
1 75.8
171.1
142. 2
sOl .*
141.1
^17. 1
197."
185.6
226.7
L 57.0
L 55.4
46.0
65.3
4b.7
70.2
64.3
60.1
73.4
815/ 833
828X 845
90 J/ 915
939/ 957
837/ 655
912/ 926
948/1009
931/ 947
850/ VOt
to
o
vo
ST.«
125 SPftMMNG
OEP
6/
NET
TIMF
STAHT/END
3
4
5
6
7
8
9
10
11
29.?
82.9
81. H
173.2
60.3
250.0
380.0
47.2
56.9
0
G
0
0
L)
0
c
0
0
9.3
26.3
26.0
b5.0
19.1
79.5
120.4
15.0
ia.i
836/
847/
•U7/
959/
«57/
928/
1011/
94
-------
HUNK 126 SPANNING FhOM 6/ 7/1974TO 6/ 8/1974
ST.*
5
6
10
11
DEP
44.9
112.2
56.1
69.5
0
0
0
0
NET
SODIUM
14.5
36.2
18.1
22.5
TIME
START/tND
909/ 926
953/1003
941/ 953
901/ 917
BUN* 127 SPANNING FROM &/ 8/1974TO 6/10/1974
ST.*
OEP
NET
SOOIUM
TIME
START/END
3
4
5
6
7
a
i
10
11
93.8
29A.O
74.8
at. 7
1Q3.6
94.1
31.7
731.6
133.5
0
0
0
0
0
0
0
0
0
33.8
164.0
47.8
43.4
66.4
63.4
37.0
47.2
85.3
835/ 837
990/ 891
928/ 922
1006/1011
S59/ 900
940/ 938
1018/1020
956/1003
920/ 913
-------
RUN* 12B SPANNING FtOM 6/U/1974TD 6/12/1974
ST.« HEP C NET TINF
S'''OHI» START/fNC
3
4
5
f>
7
R
9
10
11
*j9.2
08.3
I20.fl
74.2
163.5
73.1
62.5
88.0
165.3
0
C
0
0
C
n
0
0
0
22.9
C6.2
38.7
?3.8
1*2.0
23.3
2J.O
28. 1
53.1
b4o/ 935
900/ t!49
933/ 934
1015/1014
91 O/ 900
94
-------
PUN» 13(1 SPANNING FRO* 6/18/1974TO 6/19/1974
ST.«
3
4
5
6
7
«
q
10
11
Off
66.9
99.3
43.7
1529.9
39.4
37.6
16.0
81.7
34.1
C
0
0
0
0
0
0
0
0
0
NET
SJOIIJM
21.4
31.7
14.0
486.8
12.6
12.0
5.1
27.4
10.9
TIME
START/END
S03/ 811
826/ 822
84 7/ 845
924/ 915
832 / 829
855/ 852
9)2/ 923
912/ 909
841/ B37
HUN« 131 SPANNING FROM 6/19/1974TO 6/20/1974
DEP
NET
SODIUM
TIME
START/END
3
4
5
6
7
8
9
10
11
25.6
133.0
29.2
44.7
19.4
27.2
1.9
16.5
34.5
0
O
0
0
0
0
0
a
0
8.2
42.4
9.1
14.4
6.2
8.8
0.6
5.3
11.0
013/ 806
824/ 819
84T/ 850
917/ 923
831/ 830
B54/ 859
92 3/ 931
911/ 919
840/ 841
-------
13? SP&NM'.T, f-FC.l 6/20/1974T1 b/2l/1974
ST.'/ nep r r>fcT TIM-
SODIUM START/CND
3
4
5
6
7
8
9
1C
11
92.3
138.3
139.6
242.3
134.2
206.2
302.0
66. 2
190.')
I.
0
0
0
0
1
1
0
0
31. P
47.5
H7.8
f'3.0
4o .0
70.6
103.5
29.6
65.4
808/ 958
022/1007
852/103?
920/1107
834/1015
902/1042
933/1115
917/1100
844/1025
NW 133 SPANNING FFCM 6/2 1/1 47t7n 6/22/1974
ST.« D*=P f NET TIME
S'JOIU'-i STAFT/END
3
4
5
6
7
8
9
10
11
14.6
23.3
ia.o
13.2
12.4
8.7
12.4
3.6
4.6
C
0
0
0
n
0
0
0
0
t.3
6.9
5.4
4.0
3. 1
2.6
3.6
1. 1
I .4
1000/ R04
1009/ 820
1035/ 902
1110/ 946
101// U32
1043/ 915
1117/1000
1102/ «)3H
1027/ 651
-------
134 SPANNING FPHM 6/22/1974TO 6/25/197*
ST.« PEP c NET TIME
S1DIUM START/END
3
4
5
6
7
9
10
11
303.6
389.6
166.8
272.0
316.5
219.1
196.6
644.5
1
1
1
1
1
1
1
1
291.9
376.8
160.4
261.6
305.9
210.6
189.0
619.4
806/ 840
822/ 851
905/ 911
951/ 9!>6
834/ 900
1302/1004
940/ 945
853/ 055
co
* "UN* 135 SPANNING FRC.M 6/25/1974TQ 6/26/1974
ST.* DEP C NET TIME
SnniUM START/END
3 1628.9 1 524.8 842/ 851
* 663.5 1 213.4 854/ 900
' 961.5 1 309.2 903/ 909
-------
"UN* 136 SPANNI JG F-C1 6/2*/1974TO t/27/1974
ST.« I5EF C NET TIME
SOOIUM START/fcNO
5
6
rt
9
10
704.4
948. 6
702.6
538.9
1044.1
1
1
1
1
1
449.1
602. 9
447.6
342.5
6b4.5
914/ 901
959/ 937
926/ 911
1007/ 945
94d/ 930
137 SPiNfJI\G f-'^CM 6/26/1974TT 6/27/1974
ST.# D^P C 'J = T TUE
START/rND
660.9 0 207. b 903/ 835
t>48.6 0 «>J3.H 912/ 845
-------
138 SPANNING FROM 6/26/1974TO 6/28/1974
ST.* DEP C NET TIME
S1DIUM START/END
407.6 0 260.2 354/ 845
PUN« 139 SPANNING FHCM 6/27/197*10 6/28/1974
ST.f DEP C NET
SODIUM START/END
co
i-*
CT>
4
5
6
7
H
1
10
11
91.8
91.1
70.7
97.6
87.6
163.2
90.7
85.1
0
0
0
0
0
0
0
0
29.2
29.2
22.6
31.0
38.0
S2.1
29.0
27.2
838/
903/
9407
847/
913/
947/
932/
857/
826
906
937
833
913
943
930
897
-------
14.0 SPtNNIVK, F?C^ 6/26/LS74T') 6/29/197',
HEP C 'JtlT TICE
START/FNf
4
•5
fr
7
8
9
10
11
29.2
14.4
73.0
09.1
27.4
47.0
54.8
43.5
!•
C
<*
0
0
o
0
c
9.2
11. C
23. S(
31. b
3.S
15.3
17.6
14.4
02 d/ 610
909/ SOO
940/ 954
638/ 629
915/ 914
946/100?
932/ 939
80J/ 845
141 SPANNING PF'.T' 7/ 1/1974T3 7/ 2/1974
ST.* DEP C NET TIME
S'lOIIJM ST/IPT/FMD
3
4
5
6
7
fl
q
10
11
3f-7.r
67R.O
442. S
375.0
499.0
5S7.3
356.9
410. 7
544.4
1
1
1
I
1
1
1
1
1
99.9
179.9
I2b.3
107.0
14J.5
160.6
1 0 I . H
11 7.0
157.3
1 152/
1102/
1120/
1215/
lllu/
1136/
1224/
1207/
112J/
blfa
fc30
904
'J38
b43
S12
947
928
657
-------
"UN*
SPANNING
7/ 2/1974TO 7/ 3/197*
ST.*
3
4
5
6
7
8
S
10
11
PEP
153.0
331.2
216.5
240.3
259.4
289.0
701.1
221.3
247.1
0
0
0
0
0
0
7
0
0
NET
SODIUM
48.8
105.2
68.7
76.4
82.2
91.9
223.4
70.5
78.2
TIME
START/END
tU8/ 811
834 / 822
906/ 853
941/ 931
84o / 831
914/ 904
9497 942
930/ 922
859/ 842
co
i—•
00
RUN* 143 SPANNING FROM 7/ 3/1974TO 7/ 6/1974
ST.*
HEP
NET
SODIUM
TIME
START/END
3
4
5
6
7
a
9
10
11
516.7
556.7
300.6
334.1
337.8
366.5
367.2
279.0
419.6
1
1
1
1
1
1
1
1
1
501.0
540.0
292.5
325.7
328.0
356.9
357.7
271.9
407.6
813/ 853
824/ 906
855/ 950
933/1038
B33/ 920
906/1005
944/1045
924/1026
846/ 934
-------
"UN* 144 SPAM, IMC, n T! 7/ 6/l-.)7*Tj 7/ b/1974
ST.# I-CP C
5 9H.'j r
ft 121.3 f
8 110.2 0
13 h2.4 0
10 1C9.9 0
II 139.5 0
'IFT
SJOIU*
f.2.3
76.9
M.O
39.5
09. d
120.7
TICE
ST4x7 /END
c»54/ 931
1041/1012
1007/ 944
1056/IC24
1020/1003
933/ 1,22
145 SPANNING Fmy 7/ 8/1974T3 7/
ST.* HEP f ;jcT TIME
3
4
S
6
7
R
9
10
11
50.6
7fa5.f,
88. 4
91.6
62. I
57.4
30.7
47.3
3? 7. H
C
H
0
C
l>
C
u
C
0
15.9
P39.3
28. 6
23.2
19.4
17. rt
*.f
14.6
102.1
S46/
35--J/
634/
lOla/
90J/
946 /
1026/
IOOOX
924/
ft 17
82t
849
922
634
900
926
*15
f.44
-------
co
ro
PUN* 146 SPANNING FROM II 9/1974TC1 7/10/1974
ST.* DEP C NET TIME
SOOIUK START/END
3 72.8
4 449.1
5 77.9
6 53.0
8 78.1
9 48.3
10 51.6
U 145.7 0 46.7 046/ 847
0
0
0
0
0
n
0
0
23.3
143.5
25.0
17.0
39.8
25.0
15.5
16.6
819/
823/
852/
924/
836/
902/
930/
917/
815
825
853
926
837
902
934
920
PUN* 147 SPANNING FROM 7/10/1974TO 7/11/1974
ST.* DEP C MET TIME
SODIUM STftRT/tND
3
4
5
6
7
R
9
10
11
180.8
448.6
85.0
47.2
64.5
62.0
39.3
51.8
141.9
0
0
0
0
0
0
0
0
0
57.5
143.0
27.2
15.2
20.5
19.9
12.6
16.6
45.2
817/ 808
827/ 820
855/ 854
928/ 931
83V/ 829
905/ 905
937X 938
922/ 922
849 / 842
-------
148 SPAr,MN(, ftf.'l 7/U/19747-' 7/12/1974
to
ro
OEP ( \=T TIMfc
£T^^T/^ND
<
4
b
6
7
H
«i
10
11
915.0
664. 7
371.5
439.1
332.7
839.6
359.8
455.0
445.2
1
I
I
1
1
1
I
1
1
2°3 .5
P12.H
113.2
139.4
106.3
267.2
114.2
144.8
142.0
Rll/
622/
057/
933/
831/
9D7/
941/
92i>/
845/
812
822
848
921
828
658
928
914
C4C
UMi 1^4 SPANNING FFl.M 7/l2/1974T0 7/13/1974
N£T
STOIU" STAkl/FNt)
3
4
5
6
7
H
O
in
11
244.5
22.1
14.9
14.4
4.5
22.2
11.4
Id. 3
25.3
0
0
0
0
li
0
0
1)
0
79.4
7.2
4.9
4.6
1.5
7.3
3.fi
6.2
ri.3
Rib/ E3C
S24/ 851
850/ S30
923/ 919
830/ 905
900/ 943
93J/1031
916/1J05
842/ 920
-------
to
ro
ro
PUN* 150 SPANMMG FPOM 7/13/1974TO 7/15/1974
ST.* DEP C MET TIHF
SODIUM START/END
3
4
5
7
8
11
202.2
179.1
161.0
168.1
169.7
136.3
1
1
1
1
1
1
133.0
117.7
105.7
110.4
111.3
89.5
842/1000
856/1012
932/1044
908/1023
946/1055
922/1035
PUN* 151 SPANNING FROM 7/15/1974TO 7/16/1974
ST.* HEP C NET TIME
SODIUM START/END
3
4
5
7
8
11
48.7
199.8
27.4
71.9
41.0
54.3
0
0
0
0
0
0
14.1
59.7
8.2
21.5
12.3
16.2
1002/ 743
1015/ 838
1046/ 911
1025/ 848
1057/ 925
1037/ 859
-------
co
ro
to
DNtf 15? SPANNING TFCj* 7/16/1974TO II IB/1974
=T.# PEP C NET TIME
3
4
5
6
7
fl
q
10
11
57.5
84. 8
50. -V
40.9
29.5
27.5
35.7
34.8
34.6
C
0
0
0
0
0
n
0
0
37.2
54.0
32.0
25.8
18. B
17.4
22.5
22.0
22.0
74W
840/
91W
1004/
850/
927/
1016/
953/
902 /
B12
823
f»46
919
831
856
927
912
840
W 153 SPANNIfJt FPCM 7/ld/1974TO 7/19/1974
ST.* r.EP L M^T TlNfc
SJDIUN1 STAPT/END
3
. 1
85.9
57.3
90.9
114.1
0
0
0
0
0
n
r
0
0
19.?
67.1
28.8
22.5
24.5
27.9
1C. 6
29.o
36.8
815/
826/
H4d/
923/
833/
85S/
929/
914/
fa42/
820
R32
913
541
f42
921
Si 50
936
H52
-------
APPENDIX E
DRIFT EMISSION DATA FOR THE COOLING TOWER
324
-------
Figure 24. Cooling tower layout illustrating diameter
traverses. Dimensions in meters.
325
-------
FORMAT FOR DATA PRESENTATION - COOLING TOWER DRIFT EMISSION DATA
Note: For a more detailed description of the data format, see text
Section VII "Data Format".
Table Headings
DIAMETER
POSITION
DATE
TIME FRAME
Refers to the measurement traverse during which
the data were taken. There were three traverses
of the exit plane from SW to NE, hence all data
sheets for this diameter will be labeled SW-NE 1,
2 or 3. Diameters SW-NE 1 and 2 were traversed
during the winter test phase and diameter SW-NE 3
was done during the summer. Two traverses of the
NW-SE diameter were made during the winter test,
such that all data sheets for this diameter will
be labeled NW-SE 1 or 2.
Gives the location of the instrument package
relative to the stack rim. Position 0 is located
directly over the rim and succeeding positions are
located at 1 foot (.3m) intervals along the dia-
meter traverse.
Date on which the data were acquired.
Time interval for data acquisition period.
Column Headings
I
D(LOW)
D(HI)
DEL D
D(CEN)
P(D)
Integer number for droplet size ranges.
The lower diameter of size range I, pm.
The upper diameter of size range I, urn.
The width of the size range I, as determined by
the difference between diameter D(HI) and D(LOW),
yltl.
Center diameter of droplet size range I, urn.
Particle density distribution; the number of
droplets of diameter D within unit size range
and unit volume of air, number/urn-m3.
326
-------
DEL X/DEL D
DEL X
DEL FLUX
PARTICLE VEL
DRIFT FLUX
DRIFT MASS EMIS
MASS MEDIAN DIAM
Drift mass density distribution; the mass of
droplets of diameter D within unit size range and
unit volume of air, ug/gm-m3.
Drift mass concentration; the drift mass due to
droplets within a size range I per unit volume
of air, ug/m3.
Drift mass flux; the drift mass due to droplets
within size range I which passes through a unit
area per unit time, pg/m2-s.
The vertical component of the droplet velocity of
a droplet with diameter D(CEN) determined by the
difference between the vertical component of the
time mean air updraft velocity and the terminal
velocity of a droplet of diameter D(CEN), m/s.
Drift mass concentration; mass of droplets of all
size ranges per unit volume of air; sum of all
DEL X, pg/m3.
Total drift mass flux; mass flux of all droplets
of all size ranges; sum of all DEL FLUX, ug/m2.s.
Total rate of drift mass emission for the given
position, determined by the DRIFT FLUX multiplied
by the half-annulus area, AA, associated with that
position,- ug/s.
The droplet diameter at which half of the emitted
mass is due to smaller droplets and half due to
larger droplets, urn.
Tower Conditions
Ti
Time average updraft velocity of the cooling tower
exiting air, m/s.
Temperature of the exiting sir, °C.
Temperature of the hot water in the inlet basins,
I* •
Temperature of the cold water at the discharge
pipe, °C.
327
-------
Range
Approach
Heat Load
The difference between the inlet and outjet water
temperatures, T^ - T0, °C.
The difference between the temperature of the
water leaving the cooling tower and the wet bulb
temperature of the air; T0 - Twet, °C.
The rate at which heat is removed from the cir-
culating water, megawatts.
Ambient Conditions
wind Speed
Wind Direction
Mind speed in km/hr.
Direction from which wind is blowing.
Wet and dry bulb temperatures of the ambient air,
Note: Tabular data are presented in E format which designates scientific
notation. Example: 5E 01 = 5 x 10'
328
-------
o VELOCITY FROM TRAVERSE, 2/20/74
WIND: 13.2 km/hr FROM THE EAST
Twet/Tdry: 22.5°C/26.0°C
x MEASURED VELOCITY FROM FIRST DIAMETER,
2/23-26/74
o MEASURED VELOCITY FROM SECOND DIAMETER,
3/9-12/74
SW RIM
7 9 11 13 15 17 19 21
POSITION AND DISTANCE, feet
NE RIM
Figure 25. Velocity profile, SW-NE diameter.
-------
00
CJ
o
o 33
O
a 32
I 31
(jj «3J
Q_
5
*- 30
16
14
^ 12
10
8
_
3
LU
t 6
o
§i 4
2
0
SW RIM
o VELOCITY
O TEMPERATURE
DATE, TIME: 2/21/74, 1830-1900
WIND: 12-20 km/hr FROM THE SE TO SSE
WTdry: 22.8"C/29.8"C
FLUCTUATION
7 9 11 13 15 17 19 21 23 2
POSITION AND DISTANCE, feet
Figure 26. Velocity and temperature profiles, SW-NE diameter
27 V, NE RIM
-------
34
oo
co
o
o
111 «J«J
I 32
UJ
0.
UJ 01
i- 31
16
14
^ 12
G 10
o
2
o
Q.
8
6
4
2
SW RIM '/.
o VELOCITY
O TEMPERATURE
DATE, TIME: 2/22/74, 1210-1242
WIND: 20 km/hr FROM THE SOUTH
Twet/Tdry: 23.2°C/27.0°C
FLUCTUATION
J I I I I i
"2022i
22 24 26
Figure 27.
8 10 12 14 16 18
POSITION AND DISTANCE, feet
Velocity and temperature profiles, SW-NE diameter.
^ NE RIM
-------
Table 6
PER CENT COUNTS IN EACH VELOCITY RANGE FOR
EACH POSITION
SU-NE DIAMETER
MEASURED ON 3/8/74, 1400 - 1515
16
15
14
13
12
11
10
X 9
E. 8
UJ
I 7,
cr
t 6,
i 5
LU
4
3.
2.
1
10-17 05
14-16.10
19-15.14
24-14.19
29-13.24
33-12.29
38-11.33
43-10.38
48- 9.43
52- 8.48
57- 7 52
62- 6.57
67- 5 62
71- 4 67
76- 3 71
81- 2 76
86- 1.81
868below
04 08 .07
.08 .38 .16 .20
.10 1 68 1 89 1 57 .02
32 .26 8.96 7.20 7.90 .36 02
1 94 3 ™ 23 4 20 5 17.0 2.16 .22
9.42 14.2 3.03 22.4 18 3 8.65 1.16
26.3 37.7 23 1 17 1 20 4 16.9 4 51 34
293 29.3 846 104 14.3 15.1 9.65 1.88
23.3 12.9 240 8.23 8.76 13.3 13.1 3.47 .36
8.18 2.26 1.38 6.44 4.54 10.9 13.3 7 84 1 54
1 22 28 3.80 2.84 9.23 14 1 10.9 4.11 .04 18
91 1 71 7 33 13 6 11 3 6 86 52 22
.40 .78 5.89 9.67 9.84 10 0 84 32
36 1 01 4 35 8 40 12 6 10.9 3.05 1 02
.08 .60 3 85 5 85 15.2 12 5 5 99 76 68
.03 1 08 4 41 10 6 12 7 113 3 49 2 88
84 1 72 7 49 20 1 13 3 5 29 8 16 1 68
04 04 18 8 56 21 0 65 0 88 7 88 3 98 3
1
7
10 11
POSITION
12
332
-------
NOTE- Pulse Height Analyzer did not
accept negative voltages Lowest
velocity range includes, therefore,
all negative updraft velocities
.80
.16 3.84
5.07 28.9 1 04
26.0 43.0 7.18
4.30 30.7 18?6 21 5 26 .74
1 70 21 1 18.0 4.54 26.7 6.56 1.78
20 7 08 28 9 7 92 .94 21.6 21.3 5.93
2.42 16.3 19.5 4.43 .02 11.8 24.8 17.2
04 7.54 19.6 10 7 3 59 5.60 22.8 27.9
1.20 13.7 18 1 7.68 2.31 2 56 17.1 25 4
44 3.21 20.4 14 8 3.42 1 10 1.30 5.30 13.9
002 192 597 25.9 124 1.72 59 12 1.18 5.65
06 1.52 7 71 13 3 18.6 5.80 1.28 16 .50 1 42
2.06 9 50 18 9 27.9 7 33 2 92 .66 24
30 9.92 25 5 28.7 24 4 2 65 98 32
.84 1.30 284 350 358 279 19.3 1.23 26 44
98.9 98 7 97 2 52 9 27 6 14.4 4 67 04 02
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
333
-------
Table 7
PER CENT COUNTS IN EACH VELOCITY RANGE FOR
EACH POSITION
SU-NE DIAMETER
MEASURED ON 3/9/74, 1545-1650
18
17
16
00 "»
05-18
10-17
15.14-16
14
19-15
13.24-14
12.29-13
11.33-12
£
^=
UJ
a
I
h-
8
UJ
10
9
8
7.
6
5.
4.
3
2
1.
•
38-11
43-10
48- 9
52- 8
57- 7
62- 6
67- 5
71- 4
76- 3
81- 2
86- 1
.95
00
05
.10
.14
.19
24
.29
33
38
43
48
52
57
62
67
71
76
81
86&below
.06
.12
12
1.40
08 5 34
.86 14 5
1.78 9.15 29.6
13.0 26 9 26 6
23 4 24 4 10 9
34 1 24 3 8 78
15 5 9 78 1.76
8 75 3 40 51
3 14 1 04 28
26 .10
06 02
.02
58
5 80
20.1
24.7
29.9
12.2
3 48
2.36
64
18
02
.30
3 5
12 7
18.6
28.4
17.4
8 24
6 32
2 50
1 64
48
04
1
7
day
.22
.98
24
15 6
18 9
13.0
13 9
9
7
4
3
2
1
.56
90
73
19
39
26
01
and
02
18
74
1 70
4 79
8 69
12 5
16 9
15 4
17 5
13 3
7.01
1 42
time. Figure 28
08
40
1.G4
3 49 04
6 57 1 78
10 2 2 83 16
13 5 6 10 1 64 08
20 5 11 0 3 00 1 12
19 9 17 8 7 97 30 1 96 02
15 6 21 8 14 3 66 9.69 1 36
8 00 38 7 72 9 99 0 87 2 98 6
10 11
12
334
-------
NOTE: Pulse Height Analyzer did not
accept negative voltages. Lowest
velocity range includes, therefore,
all negative updraft velocities.
.80 1.34
.26 5.12 8.05 .82 1.02
.06 2 2J 16.1 20.8 5.36 '0.0
.02 1.18 10.4 19 8 20.4 12.7 5.48
.24 12.2 29 6 31.5 31.4 33 9 25.1
1.24 21.0 26.6 14.9 10.1 22.1 26 9
3.78 16.9 12.5 5 52 4.17 10 7 15.2
04 8.23 21 8 12 1 4 34 2.84 9.86 17 5 .14
1.00 14 1 12 9 3 93 .88 58 3 16 5.48 1.22
3.64 14.7 780 1.71 .26 .08 1.16 2.42 3.08
46 7.89 18.9 4.38 .62 .28 .22 .78 7.53
2.80 12.0 15.1 1 28 06 .J2 02 06 16 9
.10 10.0 17 7 12 4 38 08 32 0
2.97 17 8 21 6 7 97 12 06 29 1
•46 14 1.10 5.77 218 180 2.84 02 946
2 27 1 78 2 80 3 21 15 1 16 3 12.1 48 70
97 3 98 2 97.1 95 7 76 0 .31 5 10 02
13 14 15 16 17
POSITION
18 19 20 21 22 23 24 25 26 27
335
-------
OJ
CO
01
o 35
ui'34
at
133
UJ
Q.
£ 32
16
14
«, 12
I 8
UJ
t 6
o
= 4
2
0
SW RIM
o VELOCITY
O TEMPERATURE
DATE, TIME: 3/9/74, 1546-1615
WIND: 17.7 km/hr FROM THE EAST
25.00C/29.4°C
FLUCTUATION
9 11 13 15 17 19 21
POSITION AND DISTANCE, feet
23 25
NE RIM
Figure 28. Velocity and temperature profiles, SW-NE diameter.
(see velocity distribution, Table 7.)
-------
GO
OJ
DIAMETER; SU-NF
POSITION:
DATE: 2/23/74
TIME FRAME: 1330-1430
NOTE: Concurrent IK Data Point: Position 0.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
?
4
5
6
7
8
9
10
11
12
13
14
D(LGW)
(UMI
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
Dim i
-------
DIAMETER; SW-NE 1
POSITION:
DATE; 2/23/74
TIME FRA«; 1K15-175B
NOTE: Concurrent IK Data Point: Position 1.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
GJ
00
I
1
2
3
4
5
6
7
a
9
10
11
12
13
14
DILOW)
(UMI
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
DIHII
IUM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
(UMI
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
OICENI
(UN)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
PIO)
(•/UM-M3)
7. 100E 03
1.130E 03
1.400E 02
2.500E 01
7.900E 00
2.200E 00
5.000E-01
1.800E-01
8.900E-02
5.000E-02
3.500E-02
2.200E-02
1.400E-02
l.OOOE-02
DEL X/OEL D
IUG/UH-M3)
2.974E
3.787E
2.013E
1. 122E
9.088E
6. 174E
2.982E
1.960E
l.ftOOE
1.331E
1.407E
1.235E
1.061E
01
01
01
01
00
00
00
00
00
00
00
00
00
9.994E-01
DEL X
IUG/N3I
5.948E
7. 573E
6.039E
3.367E
3.635E
3.087E
1.491E
9.800E
7.999E
6.903E
7.034E
6. 173E
5.304E
4.977E
02
02
02
02
02
02
02
01
01
01
01
01
01
01
DEL FLUX
IUG/M2-SEC)
6.952E
8.824E
A.994E
3.859E
4. 107E
3.414E
1.408E
1.031E
8.203E
6.909E
6.875E
5.897E
4.956E
4.553E
03
03
03
03
03
03
03
03
02
02
02
02
02
02
PARTICLE VEL
IN/SEC)
1.169E 01
1.165E 01
1.158E 01
1.146E 01
1.130E 01
1.106E 01
1.079E 01
1.052E 01
1.026E 01
1.0011 01
9.774E 00
9.5S4E 00
9. 3491 00
9.1481 00
X
IUG/M3I
3.596E 03
DRIFT FLUX DRIFT MASS ENIS.
(UG/M2-SEC) IUG/SEC1
MASS MEDIAN DIAM.
(UM)
4.053E 04
1.390E 05
72
TOWER CONDITIONS; vu =11.7 m/S ; Ta = 33.50C ; ^=35.9 °C ; T0 >30-6 «c
Range: 5.3 °C ; Approach: 10.5 °C ; Heat Load: ~27.9 MM
AMBIENT CONDITIONS; Wind Speed: 9.5 Km/hr ; Wind Direction: NE ; Twet/Tdry - 20.1/23.5 °C
-------
CO
CO
vo
DIAMETER: SW-NE 1
POSITION:
DATE: 2/23/74
TIME FRAME; 1820-1920
NOTE: Concurrent IK Data Point: Position 2.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
4
5
6
7
8
9
10
11
12
13
14
DCLOWI
IUM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
D(Hl I
IUM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
55U.
600.
DEL 0
IUM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
5U.
50.
D(CEN)
c
-------
DIAMETER:
SW-NE 1
POSITION;
DATE: 2/25/74
TIME FRAME: "20-1220
NOTE: Concurrent IK Data Point: Position 3.33
PILLS AMD SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
4
5
6
7
8
9
10
11
12
13
14
O(LOW)
IUM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
OIHII
(UNI
30.
90.
80.
110.
190.
200.
290.
300.
390.
400.
490.
900.
990.
600.
DEL 0
IUMI
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
OICENI
(UNI
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
925.
575.
PJDI
I0/UH-M3I
7.900E 03
1.400E 03
1.800E 02
2.300E 01
5.600E 00
i.aooE oo
5.600E-01
2.500E-01
1.600E-01
l.OOOE-01
6.300E-02
4.000E-02
2.800E-02
1.800E-02
DEL X/OEL D
IUG/UM-M3)
3.309E
4.691E
2.988E
1.297E
6.442E
9.051E
3. 340E
2.722E
2. 876E
2.761E
2.932E
2.245E
2.121E
1.792E
01
01
01
01
00
00
00
oo
00
00
00
00
00
00
DEL X
(UC/N3)
6.618E
9.383E
7.765E
3.771E
2.577E
2.926E
1.670E
1.361E
1.438E
1.381E
1.266E
1. 122E
1.061E
8.999E
02
02
02
02
02
02
02
02
02
02
02
02
02
01
DEL FLUX
IUG/H2-SECI
8.926E
1.262E
1.039E
5.001E
3. 3 796
3.248E
2.102E
1.677E
1.734E
1.630E
1.463E
1.2746
1.182E
9.808E
03
04
04
03
03
03
03
03
03
03
03
03
03
02
PARTICLE VEL
IH/SECI
1.349E
1.343E
1.338E
1.326E
1.3106
1.28*6
1.259E
1.232E
1.206E
1.181E
1.137E
1.135E
1.11SE
1.095E
01
01
01
01
01
01
01
01
01
01
01
01
01
01
X
IUG/M3)
4.283E 03
DRIFT FLUX DRIFT MASS ENIS.
IUG/M2-SECI IUG/SECI
5.561E 04
1.379E 05
MASS MEDIAN DIAM.
(UM)
71
TOWER CONDITIONS; Vu = 13.5 m/s ; Ta=>31.1°C ; TI - 34.0 *C ; T0=28.3oc
Range: 5.7 «c ; Approach: H-3 «c ; Heat Load: *3
AUBIEHT CQNP.IT10.NS; Wind Speed: 18.4 Km/hr ; Wind Direction: N . T^et/Tdry - ".0/21.0 »c
-------
DIAMETER: SW'NE
POSITION:
DATE: 2/25/74
TIME FRAME: 1235-1335
NOTE: Concurrent IK Data Point: Position 4.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA, TURKEY POINT
I DILOWI D(HI>
(UMI (UM)
I
2
3
4
5
6
7
8
9
10
11
12
13
14
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL D
CUM)
DICENI
(UM)
PID)
(4/UM-M3I
DEL X/DEL D
(UG/UM-M3)
DEL X DEL FLUX PARTICLE VEL
(UG/M3I (UG/M2-SECI (H/SECI
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
6.300E 03
l.OOOE 03
l.OOOE 02
1.300E 01
2.800E 00
7.900E-01
3.500E-01
1.800E-01
l.OOOE-01
0.300E-02
3. 500E-02
2.000E-02
1.100E-02
7. 100E-03
2.639E
3.351E
1.438E
5.836E
3.221E
2.217E
2.087E
1.960E
1.797E
1.740E
1.407E
1.122E
01
01
01
00
00
00
00
00
00
00
00
00
8. 334E-01
7.067E-01
5.
6.
4.
1.
1.
1.
1.
9.
8.
8.
7.
5.
4.
3.
278E
702E
314E
751E
288E
108E
044E
800E
987E
698E
034E
612E
167E
534E
02
02
02
02
02
02
02
01
01
01
01
01
01
01
6. 169E
7.809E
4. 995E
2.007E
1.456E
1.226E
1.126E
1.031E
9.217E
8.705E
6. 875E
5.361E
3.894E
3.233E
03
03
03
03
03
03
03
03
02
02
02
02
02
02
1.169E
1.165E
1.158E
1.146E
1.130E
1.106E
1.079E
1.052E
1.026E
1.001E
9.774E
9.554E
9.345E
9.148E
01
01
01
01
01
01
01
01
01
01
00
OO
00
00
x
(UG/H3I
2.627E 03
DRIFT FLUX DRIFT MASS EMIS.
(UG/M2-SEC) (UG/SEC)
2.955E 04
7.534E 04
MASS MEDIAN DIAM.
CUM)
58
TOWER CONDITIONS; vu = n.7 m/s ; Ta=30>8°C ; TJ - 35.3 °C ; T0 =, 29.2 °C
Range: 6.1 °C ; Approach: 12.1 °C ; Heat Load: NJ2.1 MU
AMBIENT CONDITIONS; Wind Speed: 13.1 Km/hr ; Wind Direction: N ; Twet/Tdry • 17.0/21.7 °C
-------
DIAMETER: SW-NE 1
POSITION:
DATE: 2/2S/74
TIME FRAME: 1406-1506
10
-p»
ro
NOTE: Concurrent IK Data Point: Position 5.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
4
5
6
7
8
9
10
OILOMI
(UN)
10.
30.
50.
BO.
110.
150.
200.
250.
300.
350.
OIHI)
(UMI
40.
90.
80.
no.
190.
ado.
240.
300.
390.
400.
DEL D
IUM)
20.
20.
30.
30.
40.
50.
90.
50.
50.
50.
DICENI
IUM»
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
PID)
I0/UM-H3I
5.600E 03
8.900E 02
1.100E 02
1.100E 01
2.000E 00
5.000E-01
1.400E-01
5.000E-02
2.000E-02
9.000E-03
DEL X/DEL 0
IUG/UM-M3)
2.346B 01
2.982E 01
1.582E 01
4. 9388 00
2.301G 00
1.403E 00
8.390E-01
5.449E-01
3.599E-01
2.4898-01
DEL X
IUG/M3I
4.691E
5.965E
4. 745E
1.481E
9.203E
7.015E
4.175E
2.722E
1.797E
1.243E
02
02
02
02
01
01
01
01
01
01
DEL FLUX
IUG/M2-SEC)
4.216E
5.340E
4.214E
1.298E
7.912E
9.866E
3.376E
2.128E
1.358E
9.081E
03
03
03
03
02
02
02
02
02
01
PARTICLE VEL
IN/SEC)
8.9886
8.952E
8.880E
8.7A3E
8.9986
8.3616
8.088E
7.8176
7.99AB
7.3096
00
00
00
00
00
00
00
00
00
00
X
IUG/H3)
1.950E 03
DRIFT FLUX
(UG/M2-SECI
1.722E 04
DRIFT MASS ENIS.
IUG/SEC)
3.823E 04
MASS MEDIAN DIAM.
(UM)
47
TOWER CONDITIONS) Vu => 9-0 m/S ; Ta =30.8 »C ; Tj - 35.6 °c ; T0 =29.2 »c
Range: 6.4 °C ; Approach: 12.2 °C ; Heat Load: ^33.7MM
AMBIENT CONDITIONS: Wind Speed: 17.1 Km/hr ; Wind Direction: N ; Twet/Tdry • 16.9/22.0 °C
-------
DIAMETER: SW-NE 1
POSITION:
DATE: 2/25/74
TIME FRAME: 1539-1600
NOTE: Concurrent IK Data Point: Position NA
PILLS AMD SENSITIVE PAPER PARTICLE DISTRIBUTION DATA, TURKEY POINT
CO
I
1
2
3
u
5
6
7
R
9
D(LOW)
(UNI
10.
30.
50.
80.
110.
150.
200.
250.
300.
0(HI )
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
DEL 0
(UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
OICENI
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
325.
P(OI
U/UM-M3I
•
5.000E 03
6.300E 02
8.900E 01
1.300E 01
2.500E 00
7. 100E-01
2.000E-01
6.200E-02
1.60UE-02
DEL X/DEL 0
(UG/UM-M3)
2.094E 01
2.111E 01
1.280E 01
5. 836E 00
2.876E 00
1.992E 00
1.193E 00
6.751E-01
2.876E-01
DEL X
(UG/M3)
4. 189E 02
4.222E 02
3.839E 02
1.751E 02
1.150E 02
9.962E 01
5.964E 01
J. 376E 01
1.438E 01
DEL FLUX
(UG/M2-SEC)
2.508E 03
2. 513E 03
2.258E 03
1.009E 03
6.439E 02
5.341E 02
3.034E 02
1.626E 02
6. 552E 01
PARTICLE VEL
1M/SECI
5.988E 00
5.952E 00
5.880E 00
5.763E 00
5.598E 00
5.361E 00
5.088E 00
4.817E 00
4.556E 00
X
(UG/M3)
1.723E 03
DRIFT FLUX DRIFT MASS EMIS.
(UG/M2-SEC) (UG/SEC)
9.997E 03
1.999E
MASS MEDIAN DIAM.
(UM)
52
TOWER CONDITIONS; vu = 6.0 m/s ; Ta = 3o.80C ; ^=35.3 "C ; T0 =28.9 °C
Range: °C ; Approach: 13.1 °C ; Heat Load: -v33.8 MM
COND^ONS; Wind Speed: 19.i Km/hr ; Wind Direction: N ; Twet/Tdry • 14.0/18.0 °C
-------
DIAMETER: SW-NE 1
POSITION: 20
DATE: 2/26/74
TIME FRAME; 1930-1930
NOTE: Concurrent IK Data Point: Position NA
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
1 OILOM) D(HI)
(JM» (UN)
1
a
3
4
5
6
7
8
9
10
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
30
50,
80,
110,
ISO,
200,
250,
300;
350,
400.
DEL 0 OtCENI
IUMI IUM)
P1D)
<«/UM-M3)
DEL X/OEL 0
(UG/UM-M3)
DEL X DEL FLUX PARTICLE VEL
IUG/M3) IUG/M2-SEC) (H/SECI
20.
20.
30.
30.
40*
22"-
90.
50.
50.
50.
20.
40.
65.
- 95.
^130.
175.
225.
275.
325.
375.
6.300E 03
1.250E 03
2.820E 02
6.300E 01
1.600E 01
5.000E 00
1.600E 00
5.600E-01
2.500E-01
1.300E-01
2.
4.
4.
2.
1.
1.
9.
6.
4.
3.
639E
189E
055E
828E
841 E
403E
543E
098E
494E
590E
01
01
01
01
01
01
00
00
00
00
5.278E
8.378E
1.216E
8.485E
7.362E
7.015E
4.771E
3.049E
2.247E
1.795E
02
02
03
02
02
02
02
02
02
02
2.368E
3. 730E
5.328E
3.617E
3.017E
2.709E
1.712E
1.011E
6.867E
5.041E
03
03
03
03
03
03
03
03
02
02
4.488E
4.452E
4.380E
4.263E
4. 098E
3.861E
3.588E
3.317E
3.056E
2.809E
OO
OO
00
00
00
OO
00
00
OO
00
X
IUG/M3I
6.054E 03
DRIFT FLUX DRIFT MASS ENIS. MASS MEDIAN DIAMETER
(UG/M2-3ECI 1UG/SECI ntUJWMJIAMETER
2.468E 04
4. 517E 04
96
TOWER COND1TIC;.5.; vu = 4.5 H/S ; Ta =24.7°C ; Tj = 29.0 °C ; T0 = 23.3 °C
Range: 5.7 °C ; Approach: 17.2 °C ; Heat Load: -x-30.0 MM
CQNPITIQUS; Wind Speed: 18.6 Knvfhr ; Wind Direction: N ; Twet/Tdry - 6.1/10.7 °C
-------
DIAMETER; SW-NE 1
POSITION: 23
DATE: 2/26/74
TIME FRAME; 1501-1546
NOTE: Concurrent IK Data Point: Position 22.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
4
5
6
7
8
9
10
11
12
13
14
O(LOW)
(UM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
0(HI 1
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
4UO.
450.
500.
550.
AOO.
DEL 0
(UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
LHCEN)
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
32b.
375.
425.
475.
525.
575.
P(0)
U/UM-M3)
5.000E 03
7. 100E 02
1.600E 02
5.600E 01
2.200E 01
l.OOOE 01
3.500E 00
1.600E 00
7. OOOE-01
4. 0006-01
3.200E-01
1.100E-01
5.600E-02
4.000E-02
UEL X/DEL D
(UG/UM-M3I
2.094E 01
2.379E 01
2.301E 01
2.514E 01
2.531E 01
2. 806E 01
2.087E 01
1.742E 01
1.258F 01
1.104E 01
1.286E 01
6. 173E 00
4.243E 00
3. 982E 00
DEL X
(UG/M3J
4. 189E 02
4. 758E 02
6. 902E 02
7. 542E 02
1.012E 03
1.403E 03
1.044E 03
8.711E 02
6.291E 02
5. 522E 02
6.431E 02
3. 086E 02
2.12U 02
1.991E 02
DEL FLUX
(UG/M2-SEC)
4. 879E 03
5. 526E 03
7.9o5E 03
8.615E 03
1.1 40E 04
1.546E 04
1.122E 04
9. 127E 03
6.427E 03
5. 505E 03
6.260E 03
2.936E 03
1.974E 03
1.813E 03
PARTICLE VEL
(M/SEC)
1.165E 01
1.161E 01
1.154E 01
1.142E 01
1.126E 01
1.102E 01
1.075E 01
1.048E 01
1.022E 01
9.969E 00
9.734E 00
9.514E 00
9.305E 00
9. 108E 00
X
(UG/M3I
9.214E 03
URIFT FLUX DRIFT MASS EMIS.
(UG/M2-SEC) (UG/SEC)
MASS MEDIAN DIAM.
(UM)
9.910E 04
2.686E 05
186
TOWER CONDITIONS: Vu = 1L7 m/s ; Ta =25.8 °C ; T, = 30.4 °C ; T0 =24.2 «>c
Range: 6.2 °C ; Approach: 16.6 °C ; Heat Load: *32.7MW
AMBIENT CONDITIONS: Wind Speed: 15.2 lOn/hr ; Wind Direction: N ; Twet/Tdry = io.Q/15.9 "C
-------
DIAMETER: SW-NE 1
POSITION: 24
DATE; 2/26/74
TIME FRAME: 1617-1701
LO
-P>
Ol
NOTE: Concurrent IK Data Point: Position 23.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
4
5
6
7
a
9
10
11
12
13
14
DILOWI
(UMI
10.
30.
SO.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
0(HI)
(UH)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
(UH)
20.
20.
30.
30.
40.
50.
50.
5U.
50.
50.
50.
50.
50.
50.
D(CEN)
(UMI
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P(OI
(0SUM-M3I
6.300E 03
7.900E 02
1.600E 02
t.SOOE 01
2.000E 01
8.900E 00
2.200E 00
6.300E-01
2.500E-01
l.OOOE-01
5.600E-02
4.000E-02
2.800E-02
2.500E-02
DEL X/DEL 0
(UG/UM-M3)
2.639E
2.647E
2.301E
2.020E
2.301E
2.497E
1.312E
6. 860E
4.494E
2. 761E
2.251E
2.245E
2.121E
2.489E
01
01
01
01
01
01
01
00
00
00
00
00
00
00
DEL X
(UG/M3I
5.278E
5.295E
6.902E
6.060E
9.203E
1.249E
6.561E
3.430E
2.247E
1.381E
1.125E
1.122E
1.06 IE
1.244E
02
02
02
02
02
03
02
02
02
02
02
02
02
02
DEL FLUX
(UG/M2-SECI
7.277E
7.281E
9.442E
8.220E
1.233E
1.644E
8.455E
4. 328E
2.776E
1.672E
1.336E
1.308E
1.214E
1.400E
03
03
03
03
04
04
03
03
03
03
03
03
03
03
PARTICLE VEL
(M/SECI
1.379E
1.375E
1.368E
1.356E
1.340E
1.316E
1.289E
1.262E
1.236E
1.211E
1.187E
1.165E
1.145E
1.125E
01
01
01
01
01
01
01
01
01
01
01
01
01
01
x
(UG/M3)
6.340E 03
DRIFT FLUX
(UG/M2-SEC)
8.347E 04
DtUFT MASS EMIS.
(UG/SEC)
2.504E 05
MASS MEDIAN DIAM.
(UM)
145
TOWER CONDITIONS; vu = 13.8 m/s ; Ta = 26.SPC ; Tj = 29.9 °C ; T0 = 23.9 °C
Range: 6.0 °C ; Approach: 16.7 °C ; Heat Load: -x. 31.6 MM
AMBIENT CONDITIONS: Wind Speed: 21.4 Km/hr ; Hind Direction: N ; Twet/Tdry - 7.2/15.2 °C
-------
DIAMETER; SW-NE 1
POSITION:
DATE; 2/26/74
TIME FRAME:
NOTE: Concurrent IK Data Point: Position 24.33
CO
^
•vj
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
4
5
6
7
8
9
10
11
12
13
14
O(LOh)
.
425.
475.
525.
575.
P(DI
« */UM-M3»
6. 300E 03
1.300E OJ
2.500E 02
4. 5 JOE 01
1.600E 01
4.000E 00
l.OOOE 00
3.500E-01
2.000E-01
1.100E-01
7.900E-02
5.600E-02
4.500E-02
3.200E-02
OEL X/OEL 0
JUG/UM-M3I
2.639E 01
4.356E 01
3. 595E 01
I.02UE 01
1.S41E 01
1.122E 01
5.964E 00
3. SHE 00
3.595E 00
3.037E 00
3. 175E 00
3. 142E 00
3.409E 00
3. 185E 00
DEL X
(UG/M3I
5.278E 02
8.713E 02
1.078E 03
6. 060E 02
7.362E 02
5.612E 02
2.982E 02
1.906E 02
1.797E 0C ; T0 = „ fi -C
*•*' I " £.3.0 w
Range: 6.1 °C ; Approach: 16-4 °C ; Heat Load: -^322""
jaiNfllllflNS: Wind Speed: 16.g I0n/hr ; Wind Direction: N ; Twet/Tdry = 7.2/14.1 °C
-------
CO
DIAMETER: SW-NE 1
POSITION: 26
DATE: 2/26/74
TIME FRAME: 1830-1903
NOTE: Concurrent IK Data Point: Position 25.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
4
5
6
7
8
q
10
u
12
13
1*
DILOhl
(UM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
900.
550.
OIHI)
(UN)
30.
50.
80.
110.
190.
400.
2SO.
300.
390.
400.
490.
900.
950.
600.
DEL 0
IUM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
U(CEN)
(UM)
20.
40.
65.
95.
130.
175.
225.
.275.
325.
375.
-r25.
475.
5*5.
575.
PIUI
(ft/UM-M3i
6.300E 03
1.400E 03
2.820E 02
5.600E 01
l.faOOE 01
4.000E 00
7.900E-01
3.500E-01
2. OOOE-01
1.300E-01
1. OOOE-01
6.300E-02
4.000E-02
2.00UE-02
DEL X/DEL D
(UG/UM-M3)
2.639E
4.691E
4.095E
2.314E
1.841E
1.122E
4. 712E
3.811E
3.595E
3. 590E
4.019E
3.539E
3.031E
1.991E
01
01
01
01
01
01
00
00
00
00
00
00
00
00
DEL X
(UG/M3I
5.278E
9. 383fc
1.216k
7.542E
7. 362E
5.612E
^.356E
1.906E
1.797E
1. 795E
2.010E
1.768E
1.515E
9.954E
02
02
03
02
02
02
02
02
02
02
02
02
02
01
DEL FLUX
(UG/M2-SEO
6.327E
1.121E
1.445E
8.871E
8.539E
6.376E
2.612E
2.061E
1.897E
1.850E
2.025E
1.742E
1.462E
9.405E
03
04
04
03
03
03
03
03
03
03
03
03
03
02
PARTICLE VEL
(H/SECI
1.199E
1.199E
1.188E
1.176E
1.160E
1.136E
1.109E
1.082E
1.096E
1.031E
1.007E
9.U54E
9.645E
9.448E
01
01
01
01
01
01
01
01
01
01
01
00
00
00
X
IUG/H3I
6.148E 03
DRIFT FLUX DRIFT MASS EMIS.
IUG/M2-SECI IUG/SECI
7.037E 04
2.477E 05
MASS MEDIAN DIAM.
(UM)
96
'29.4
'0=23.4
TOWER CONDITIONS; Vu = ]2.0 m/s ; Ta = 2? 2«C ;
Range: 6.0 °C ; Approach: 166 °C ; Heat Load: ~31.6 MW
AMBIENT CONDITIONS,; Wind Speed: 18.6 Km/hr ; Wind Direction: N ; Twet/Tdry = 6.8/13.3 °C
-------
DIAMETER: SW-NE
POSITION; 27
DATE; 2/26/74
NOTE: Concurrent IK Data Point: Position NA
TIME FRAME; 1"40-1941
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I J(LUV») OHM j fiFL ^
«U1> dl") (ij-.||
1 1J. 't»n.
3 )0.
330.
400.
450.
500.
550.
600.
X
(UG/M3)
.642E 03
<••: vu =
Range
30.
40.
5f>"
*>0 .
r)0.
50.
50.
50.
1.0.
50.
(MM)
/ r
I > .
130.
>?S *
"» ?r- "
•-i •» s "
375.*
425.
475.
525.
575.
D ( n )
( VIM-MI »
1. nnr 03
?.?4">r •)?
I. 3 OOF 01
7* ^nr
7* ' " ~ l
t""'nllr ~ "
4.500E -02
2.200E -02
1.250E -02
7.100E -03
4.500E -03
Pr
5
^
1
1
^
*
2
1
8
7
5
4
DRIFT FLUX
(UG/M2-SEC)
5.403E 04
12.0m
: 5.7
/s ;
°C ;
Ta =26.0«C ;
Approach: 17
Tl
.2
.6391 01 5.778C
. T?6- 01 3.713^
.'?1E 01 °.
-------
TURKEY POINT ISOKINETIC SAMPLING SUMMARY FOR DIAMETER SW-NE 1
to
in
IK Tube
Position
0.3
1.3
2.3
3.3
4.3
5.3
22.3
23.3
24.3
25.3
Date
2/23/74
2/23/74
2/23/74
2/25/74
2/25/74
2/25/74
2/26/74
2/26/74
2/26/74
2/26/74
MNa
(yg)
3,468
2,868
2,323
3,313
2,948
2,123
2,798
3,073
2,713
2,673
i
385
335
275
375
335
250
310
345
310
308
Vs
(m3)
20.98
28.71
24.92
24.38
22.32
14.46
17.55
19.36
14.92
19.20
(m/s)
5.3
9.7
12.4
13.4
13.1
10.9
10.0
12.7
13.5
11.7
Ca
1.25
1.25
1.25
1.41
1.41
1.41
1.30
1.30
1.30
1.30
CMg
1.17
1.17
1.17
1.35
1.35
1.35
1.24
1.24
1.24
1.24
Fa
(ug/m2.s)
1,095
1,211
1,445
2,568
2,440
2,256
2,073
2,621
3,191
2.118
Fa
FMg
(ug/m2-s)
114
132
160
278
265
254
219
281
348
233
AA
3.25
3.62
3.33
3.04
2.74
2.45
2.52
2.81
3.10
3.39
TOTALS:
Na
(ug/s)
3,559
4,384
4,812
7,807
6,686
5,527
5,224
7,365
9,892
7,180
62,436
^Mg
(wg/s)
371
478
533
845
726
622
552
790
1,079
790
6,786
TOTAL MASS EMISSION RATES ARE: m* = 62,436 vg/s and m* = 6,786 ug/s 1f the basin water concentration equal the
na rig
mean concentrations CNa and CMg as listed 1n Table 1 , and 1f the water flow rate equals 1,262kg/s (or 20,000 gpm).
MINERAL MASS EMISSION FRACTIONS: nNa " 0.00051 X; nMg = 0.00051 X; n = 0.00051 %
-------
TURKEY POINT ISOKINETIC DATA EXTENSION FOR DIAMETER SW-NE 1
CO
en
a
Position (pg/m3)
6.3
7.3
8.3
18.3
19.3
20.3
21.3
26.3
UPPER LIMIT OF
s.
207
207
207
207
207
207
207
181
MINERAL
a
Wtjlfm
no
(pg/m3)
23.3
23.3
23.3
21.9
21.9
21.9
21.9
19.9
MASS EMISSION
= 0.00072% n
*u p;
u Na
(m/s) (pg/m2-s)
8.0
4.85
1.00
0.50
2.50
5.25
7.40
12.15
FRACTIONS:
1656
1004
207
104
518
1087
1532
2199
^g = 0.00072%
FS *A
Mg
(pg/m2.s) (m2)
186 2.16
113 1.87
23.3 1.57
11:0 1.33
54/18 1.61
115 1.93
162 2.22
242 6.13
TOTALS:
n1 • 0.00072%
=====
(ng/s)
3,577
1,877
325
138
834
2,098
3,401
13,480
25,730
=====
402
211
36.6
14.6
88.3
222
360
1483
2818
-------
DIAMETER: SW-NE 2
POSITION:
DATE; 3/9/74
TIME FRAME: 1703-1803
NOTE: Concurrent IK Data Point: Position 0.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
to
in
ro
I
I
2
3
4
5
A
7
8
9
10
11
12
13
DILOWI
(UMI
10.
30.
50.
BO.
110.
150.
200.
250.
300.
350.
400.
450.
450.
OIHI I
IUHI
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL D
(UN)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
D(CEN)
(UN)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
PIDI
M/UN-M3I
4.000E 03
5.000E 02
4.500E 01
7.900E 00
2.500E 00
7.900E-01
2.800E-01
1.100E-01
4. 500E-02
2.500E-02
1.300E-02
7.900E-03
4.500E-03
2.800E-03
DEL X/DEL D
(UG/UM-N3)
1.676E 01
1.676E 01
6.471E 00
3.546E 00
2.876E 00
2.217E 00
1.670E 00
1.198E 00
8.088E-01
6.903E-01
5.225E-01
4.433E-01
3.409E-01
2.787E-01
DEL X
(UG/M3)
3.351E
3.351E
1.941E
1.064E
1.150E
1. 108E
8.350E
5.989E
4. 044E
3.451E
2.613E
2.217E
1.705E
1.394E
02
02
02
02
02
02
01
01
01
01
01
01
01
01
DEL FLUX
(UG/M2-SECI
3.414E
3.402E
1.957E
1.060E
1.127E
1.060C
7. 755E
5.400E
3. 541E
2.937E
2.162E
1.785E
1.337E
1.066E
03
03
03
03
03
03
02
02
02
02
02
02
02
02
PARTICLE VEL
(H/SECI
1.019E
1.015E
1.008E
9.963E
9.798E
9.561E
9.288E
9.017E
8.756E
8.509E
8.274E
8.054E
7.845E
7.648E
01
01
01
00
00
00
00
00
00
00
00
00
00
00
X
IUG/M3)
1.494E 03
DRIFT FLUX
IUG/M2-SEC)
1.462E 04
DRIFT MASS EMIS.
(UG/SECI
5.145E 04
MASS MEDIAN DIAM.
(UM)
62
TOWER CONDITIONS; Vu = 10.2m/s ; Ta =33.0°C ; TI = 35.9 °C ; T0 - 30.6 »c
Range: 5.3 «c ; Approach: 8-8 °c ; Heat Load: -v27-9 MW
AMBIENT CONDITIONS: Wind Speed: 20.8 Km/hr ; Wind Direction: SE ; Twet/Tdry -21-8/25.1 °c
-------
DIAMETER; SH-NE 2
in
CO
POSITION:
DATE; 3/9/74
TIME FRAME; 1828-1928
NOTE: Concurrent IK Data Point: Position 1.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I DfLOWl
(UMI
DIHI )
(UMI
DEL 0
(UMI
O(CEN)
(UM)
PC ; T, = 36.0 »c ; T =
Range: 5.4 oc . Approach. 8.9 »c . Heat Load: -u28-4MW
/WENT CONDITIONS: Wind Speed:20.8 Kn,/hr ; Wind Direction: SE ; Twet/Tdry =21.7/24.3 »C
-------
DIAMETER:
SW-NE 2
POSITION:
DATE: 3/11/74
TIME FRAME: 1117-1217
00
in
NOTE: Concurrent IK Data Point: Position 2.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
f-
7
10
1!
12
\4
n(LGk) DIHII
( J"I) ( UM)
10.
JO.
HC.
I 10.
lr>0.
300.
i?0.
5JO.
5-jf).
30.
5C.
bO.
11U.
150.
250.
300.
350.
400.
-50.
500.
550.
fcOO.
0-L U
( UK)
0(CtM
(UHI
Po.
50.
SO.
50.
50.
20.
HO.
o5.
95.
130.
175.
225.
275.
J25.
? 75.
t25.
475.
525.
575.
6.300E 03
(J.3DOF 02
7. 'OO1: 01
l.OOOF 01
4.UOOE 00
1.800E 00
7.900e-01
4.000E-01
2.000E-01
1.1JOE-01
7. 100E-02
4.000E-02
2.230E-02
1.400E-02
2.639E
2.111E
1.136E
4. 489E
4.601E
5.051E
4.712C
4.35&E
3. 3-J5L
3.037E
2.854E
2.245E
1.667E
1.394E
01
01
01
00
00
00
00
00
00
00
00
00
00
00
5. 27oE
4.222E
3. 408E
1.347E
1.8416
2.526E
£• 35toE
2.178E
1.797E
1.519E
1.4^7E
1. 12^E
8.334E
6.968E
02
02
02
02
02
02
02
02
02
02
02
02
01
01
6.
5.
4.
1.
2.
3.
2.
2.
2.
1.
1.
1.
8.
7.
644E
300E
253E
665E
245E
021E
753E
486E
005E
657E
523E
173E
539E
001E
03
03
03
03
J3
03
03
J3
03
03
03
03
02
02
1.259E
1.255E
1.243E
1.236E
1.220E
1.196E
1.169E
1.142E
1.116E
1.091E
1.067E
1.045E
1.025E
1.005E
01
01
01
01
01
01
01
01
01
01
01
01
01
01
X
(OG/-O)
03
DRIFT FLUX ufilFT MASS EMIS.
(UG/M2-SEO (UG/SECI
3.628E 04
1.088E 05
MASS MEDIAN DIAM.
(UM)
132
TOUER CONDITIONS; vu = l2.6m/S ; Ta=33.0°C ; ^=38.0 °C ; T0 = 31.4 °C
Range: 6.6 °C ; Approach: 11.2 °C ; Heat Load: -v.34.8MW
AMBIENT CONDITIONS; Wind Speed: 12.4 Km/hr ; Wind Direction: E-SE ; Twet/Tdry = 20.2/25.9 °C
-------
DIAMETER: SW-NE 2
POSITION:
in
en
DATE; 3/11/74
TIME FRAME; i234-1334
NOTE: Concurrent IK Data Point: Position 3.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I D(LOW) D(HI)
(UM) (UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL U
(UM)
D(CEN)
(UMI
P(DI
(K/UM-M3)
DEL X/DEL D
(UG/UM-M3I
DEL X DEL FLUX PARTICLE VEL
IUG/M3I (UG/M2-SEC) IM/SEC)
1
2
3
4
5
6
7
fl
9
10
11
12
13
14
10
30,
50,
80,
110,
150,
200,
250,
300,
350,
400,
450,
500,
550,
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
6.300E 03
6. 300E 02
6.300E 01
1.300E 01
4. 500E 00
1.800E 00
7. 900E-01
4.000E-01
2.000E-01
l.OOOE-01
5.000E-02
3.200E-02
1.800E-02
l.OOOE-02
2.
2.
9.
5.
5.
5.
4.
4.
3.
2.
2.
1.
1.
9.
639E
111E
059E
836E
177E
051E
712E
356E
595E
761E
010E
796E
364E
01
01
00
00
00
00
00
00
00
00
00
00
00
954E-01
5.278E
4.222E
2. 718E
1.751E
2.0T1E
2.526E
2.356E
2. 178E
1.797E
1.381E
LOOSE
8. 978E
6. 819E
4.977E
02
02
Oi
02
02
02
02
02
02
02
02
01
01
01
6.327E
5.046E
3.229E
2.059E
2.401E
2.869E
2.612E
2.356E
1.897E
1.423E
1.012E
8.847E
6. 577E
4.702E
03
03
03
03
03
03
03
03
03
03
03
02
02
02
1.199E
1.195E
1.188E
1.176E
1.160E
1.136E
1.109E
1.082E
1.056E
1.031E
1.007E
9.854E
9.645E
9.448E
01
01
01
01
01
01
01
01
01
01
01
00
00
00
X
(Uli/M3)
2.936E U3
DRIFT FLUX
(UG/M2-SEC)
3.325E 04
DRIFT MASS EMIS.
CUG/SECI
9.010E 04
MASS MEDIAN DIAM.
(UM)
124
TOWER CONDITIONS: vu -12.0 m/s ; Ta =34.! 'C ; T, = 38.0 'C ; T0 = 31.4oc
Range: 6.6 °C ; Approach: n.6 °C ; Heat Load: *34.aMW
AMPIENJ CONDITIONS: Wind Speed: 15.5 I0n/hr ; Wind Direction: E-SE ; Twet/Tdry = 19.8/26.5 "C
-------
DIAMETER: SW-NE 2
POSITION:
DATE: 3/11/74
TIME FRAME: 1434-1525
NOTE: Concurrent IK Data Point: Position 4.33
CO
01
en
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
?
3
I*
5
s
7
a
9
10
11
12
nuuKl
(iir.)
1U.
10.
SO.
so.
110.
ISO.
200.
250.
300.
250.
400.
-50.
D(HI 1
(UM>
30.
50.
80.
110.
15U.
200.
250.
300.
350.
tOO.
450.
bOO.
UfcL D
( UM I
20.
20.
30.
30.
40.
5o.
50.
•sO.
50.
50.
50.
50.
D(CEM
75.
t25.
•.75.
P(OI
1 4/UM-M3I
6.300E 03
o. iOOc. 02
5.000E 01
i.lOOE 01
3.500E 00
l.OOOE 00
3.200E-01
1.300E-01
6.300E-02
3. 500c-02
2.000E-02
1.300E-02
DfcL X/OEL 0
(UG/UM-M3)
2.639E 01
i.lllE 01
7.190E 00
4.938E 00
4.026f 30
2.S06E 00
1.90<)E 00
1.416E 00
1.132E 00
9.664E-01
6.0b9E-01
7.295E-01
DEL X
(UG/M3I
5.278E
4.222E
2.157E
1.461E
1.610E
1.403E
9.543E
7. 078E
5.662E
4.832E
4.019E
3.647E
02
02
02
02
02
0£
01
01
01
01
01
01
DEL FLUX
(UG/M2-SEC»
5.377E
4.286E
2.174E
1.476E
1.578E
1.342E
8.863E
6.382E
4.958E
4.111E
3.326E
2.938E
03
03
03
03
03
03
02
U2
02
02
02
02
PARTICLE VEL
• MX SEC)
1.019E
1.015E
1.U08E
9.963E
9.798E
9.561E
9.288E
9.017E
8. 75oE
8.509E
8.274E
8.054E
01
01
01
00
00
00
00
00
00
00
00
00
X
IUG/M3)
1.963E 03
DhlFT FLUX JRIFT MASS EMIS.
(UG/M2-SEC) (UG/SEC»
1.929E 0*
4.6&8E 04
MASS MEDIAN DIAM.
(UM)
54
TOWER CONDITIONS: vu =10.2 m/s ; Ta=33.7'C ; Ti - 37.8 "C ; T0 = 31.7»C
Range: 6.1 °C ; Approach: 10.5 °C ; Heat Load: ^32.1 MM
AMBIEUT CONDITIONS: Wind Speed: 12.9 Kn/hr ; Wind Direction: E-SE ; Twet/Tdry = 21.2/26.0 -C
-------
CO
in
DIAMETER: SW-NE 2
POSITION;
DATE;
TIME FRAME; 1544-'|645
NOTE: Concurrent IK Data Point: Position 5.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
u
5
ft
7
8
9
10
11
12
13
14
O(LOW)
( UM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
D(HI)
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL d
(UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
O(CEN)
(UM)
20.
40.
05.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P(0)
(#/UM-M3)
5.000E 03
3. 200E 02
3.500E 01
6.300E 00
1.800E 00
6.300E-01
2.200E-01
7.900E-02
2.800E-02
1.400E-02
8.000E-03
4.000E-03
2.000E-03
1. 0006-03
DEL X/DEL D
(UG/UM-M3)
2.094E 01
1.072E 01
5.U33E 00
2.828E 00
2.071E 00
1.768E 00
1.312E 00
8.602E-01
5.033E-01
3. 866E-01
3.216E-01
2.245E-01
1.515E-01
9.954E-02
DEL X
(UG/M3)
4. 189E
2.145E
1.510E
8.485E
8.283E
8. 839E
6.561E
4. J01E
2.516E
1.933E
1.608E
1.122E
7. 577E
4. 977E
02
02
02
01
01
01
01
01
01
01
01
01
00
00
DEL FLUX
(UG/M2-SEC)
3.262E
1.663E
1.160E
6.417E
6. 127E
6.330E
4.519E
2.846E
1.599E
1.181E
9.445E
6.345E
4. 126E
2.612E
03
03
03
02
02
02
02
02
02
02
01
01
01
01
PARTICLE VEL
tM/SEC)
7.788E
7.752E
7.680E
7.563E
7.398E
7.161E
6.888E
6.617E
6. 356E
6.109E
5.874E
5.654E
5.445E
5.248E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
X
(UG/M3)
1.23JE 03
DRIFT FLUX DRIFT MASS EMIS.
(UG/M2-SEC) (UG/SECI
9.211E 03
1.953E 04
MASS MEDIAN DIAM.
(UM)
49
TOWER CONDITIONS: Vu=7.8 m/s ; Ta = 33.0'C ; Tl=37>8 «»c . JQ __^7 -(.
Range: 6.1 °C ; Approach: 10.6 °C ; Heat Load: -v32.1 MM
AMBIENT CONDITIONS: Wind Speed: 18.0 Km/hr ; Wind Direction: E-SE . TWet/Tdry = 21.1/25.4 -c
-------
in
00
DIAMETER:
SW-NE 2
POSITION: 21
DATE: 3/11/74
TIME FRAME: 1813-1913
NOTE: Concurrent IK Data Point: Position 20.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
u
•5
b
7
8
9
10
11
12
13
14
0«LOM
CJM)
10.
30.
50.
30.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
Olhl I
30.
50.
BO.
110.
150.
200.
250.
30J.
350.
4UO.
450.
5UO.
550.
600.
DEL 0
( UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
OCCEM
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P(0)
M/UM-M3)
l.OOJE 04
l.bOOF 03
4.500E 02
1.400E 02
5.000F 01
1.400E 01
5.600E 00
l.bOOE 00
5.600E-01
2.800E-01
1.300E-01
8.000E-02
5.600E-02
«..500E-02
DLL X/OEL 0
(UO/UM-M3)
4.189E
5. 362E
6.471E
0.285E
5.752E
3.929E
3.340E
1.960E
1.007E
7.731E
5.225E
4.489E
4.243E
4.479E
01
01
01
01
01
01
01
01
01
00
00
00
00
00
UEL X
(UG/131
3.378E
1.072E
1.941E
1.88SE
2.301E
1.964E
1.670E
9. 800E
5.033E
3. 866E
2. 613E
2.245E
2. 121E
2.240E
02
03
03
03
03
03
03
02
02
02
02
02
02
02
DEL FLUX
(UC./H2-SECI
8.535E
1.089E
1.957E
1.878E
2.254E
1.878E
1.551E
8.837E
4.407E
3.239E
2. 162E
1.808E
1.664E
1.713E
03
04
04
04
04
04
04
03
03
03
03
03
03
03
PARTICLE VEL
IM/SEC)
1.019E
1.015E
1.008E
9.963E
9.798E
9.561E
9.288E
9.017E
8.756E
8.509E
8.274E
8.054E
7.845E
7. 648E
01
01
01
00
00
00
00
00
00
00
00
00
00
00
(UG/M3)
1.446E 04
DRIFT FLUX DRIFT MASS EMIS.
JUG/M2-SEC) (UG/SECl
MASS MEDIAN DIAM.
(UM)
1.385E 05
3.074E 05
136
TOWER CONDITIONS: Vu = 10.2 m/s ; Ta = 33.9°C ; 1) = 37.7°C ; T0 = 31.7oc
Range: 6.0 »c ; Approach: 10-6 °C ; Heat Load: *31-6MW
AMBIENT CONDITIONS; Wind Speed: 11 -5 Km/nr ; Wind Direction: E-SE ; Twet/Tdry =21 •1/24.3 <>c
-------
DIAMETER; SW-NE 2
POSITION: 22
DATE: 3/12/74
TIME FRAME: 1133-1245
NOTE: Concurrent IK Data Point: Position 21.33
OJ
en
10
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
4
6
7
R
10
11
1
12
13
14
DILOWI
CJM)
10.
30.
50.
BO.
11 f\
10.
ISO.
200.
250.
300.
ISO.
400.
490.
500.
550.
DIHI >
-------
DIAMETER:
SW-NE 2
POSITION: 23
DATE: 3/12/74
TIME FRAME: 1334-1434
NOTE: Concurrent IK Data Point: Position 22.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
OJ
en
0
I
1
2
3
4
5
f,
7
8
q
10
11
12
13
14
DILOU
MM)
10.
10.
50.
RO.
110.
150.
2^0.
250.
300.
350.
400.
450.
500.
550.
DUII I
(UM)
30.
50.
80.
llu.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
(UM)
20.
?d.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
O(CEN)
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P
-------
DIAMETER: SW-NE 2
POSITION: 24
DATE: 3/12/74
TIME FRAME: 1507-1600
NOTE: Concurrent IK Data Point: Position 23.33
OJ
CT»
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
4
5
6
7
n
9
10
11
12
13
14
000fc 03
1.400E 03
t.500b 02
1.400F 02
4.500E 01
1.30JE 01
2.500E 00
l.OOOE 00
5.000E-01
2.800E-01
1.400E-01
9.000E-02
5.600E-02
DfcL X/DEL 0
(UG/UM-M3)
6. 702E 01
1.508E 02
2.013E 02
2.020E 02
1.610E 02
1.263E 02
7. 753E 01
2.722E 01
1.797E 01
1.381E 01
1.125E 01
7. B56E 00
6. 819E 00
5. 574E 00
DEL X
(UG/M3I
1.340E 03
3.016E 03
6.039E 03
6.060E 03
6.442E 03
6.314E 03
3.B77E 03
1.3615 03
S.9S7E 02
6. 903E 02
5.627E 02
3.928E 02
3.409E 02
2.787E 02
DEL FLUX
(UG/M2-SECI
1.929E 04
4. 328E 04
8.624E 04
8.583E 04
9.017E 04
8.689E 04
5.229E 04
1.799E 04
1.164E 04
8.773E 03
7.020E 03
4.813E 03
4. 107E 03
3.302E 03
PARTICLE VEL
JM/SEC)
1.439E 01
1.435E 01
1.428E 01
1.416E 01
1.400E 01
1.376E 01
1.349E 01
1.322E 01
1.296E 01
1.271E 01
1.247E 01
1.225E 01
1.205E 01
1.185E 01
X
(UG/M3I
3.761E 04
JRIJ-T FLUX
(UG/M2-SEC)
5.216E 05
DRIFT MASS EMIS.
(UG/SEC1
1.638E 06
MASS MEDIAN DIAM.
(UM)
125
TOWER CONDITIONS; vu = 14.4 m/s ; Ta = 36.0°C ; T1=37.7 °C ; T0=32.2 «>c
Range: 5.5 »c ; Approach: 8.5 <>c . Heat Load: -x.29.0 MW
AMBIENT CONDITIONS; Wind Speed: 19.3 Km/nr ; Wind Direction: S . Twet/Tdry =23.7/27.3 -c
-------
DIAMETER: SW'NE 2
POSITION:
25
DATE: 3/12/74
TIME FRAME: 1653-1753
NOTE: Concurrent IK Data Point: Position 24.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
U)
en
ro
I
1
2
3
4
5
0
7
ft
9
10
11
12
13
14
OIL OWI
(UMI
10.
30.
50.
30.
110.
!50.
200.
250.
300.
350.
400.
450.
500.
550.
DIHI 1
IUV I
3C.
50.
bO.
110.
150.
200.
. 098E
2.876E
2. 181E
1.809E
1.571E
1.212E
1.394E
01
02
02
02
01
01
01
00
00
00
00
00
00
00
DEL X
(UG/M3I
1.676E
3.016E
5. 608E
4.310E
3.267E
2.526E
1.044E
3.049E
1.438E
1.091E
9. 0*4E
7.85&E
6. 06 IE
6.968E
03
03
03
03
03
03
03
02
02
02
01
01
01
01
DEL FLUX
(UG/M2-SECI
2.260E
4.057E
7.503E
5.716E
4.279E
3.248E
1.314E
3. 755E
1.734E
1.288E
1.047E
8.920E
6. 755E
7. 629E
04
04
04
04
04
04
04
03
03
03
03
02
02
02
PARTICLE VEL
(M/SECI
1.349E
1.345E
1.338E
1.326E
1.310E
1.286E
l.2"59E
1.232E
1.206E
1.181E
1.157E
1.135E
1.115E
1.095E
01
01
01
01
01
01
01
01
01
01
01
01
01
01
X DRIFT FLUX DRIFT MASS EMIS.
(UG/M3) (UC./M2-SECI (KG/SEC)
04
2.93<5= 05
1.008E 06
MASS MEDIAN DIAM.
(UM)
86
TOWER CONDITIONS: Vu=13.5m/s ; Ta=35.50C ; ^=37.5 °C ; T0=31.9 °C
Range: 5.6 °C ; Approach: 9.9 °C ; Heat Load: -v-29.5 MW
AMBIENT CONDITIONS: Wind Speed: H-9 Km/hr ; Wind Direction: S . Twet/Tdry = 22.0/26.5 «c
-------
to
c
Range: 5.5 »c ; Approach: 10.4 »c ; Heat Load: ^29.0 MM
AMBIENT CONDITIONS; Wind Speed: 11.9 Whr ; Wind Direction: S . Twet/Tdry = 21.3/26.2 -C
-------
TURKEY POINT ISOKINETIC SAMPLING SUMMARY FOR DIAMETER SW-NE 2
IK Tube
Position
0.3
1.3
2.3
3.3
4.3
5.3
20.3
21.3
22.3
23.3
24.3
25.3
Date
3/09/74
3/09/74
3/11/74
3/11/74
3/11/74
3/11/74
3/11/74
3/12/74
3/12/74
3/12/74
3/12/74
3/12/74
MNa
(wg)
1,324
2,599
1,889
2,389
2,214
1,789
6,339
5,639
12,739
24,739
14,739
7,538
MM
(ug)
134
268
208
261
252
202
570
505
1,325
2,400
1,350
780
Vs
(m3)
15.90
20.30
22.96
21.78
18.27
14.37
19.69
17.13
27.16
38.64
23.31
24.06
"Vu
(m/s)
9.65
10.9
12.0
12.5
11.4
9.2
8.0
11.0
13.0
14.1
14.2
13.4
cNa
5ta
0.89
0.89
0.84
0.84
0.84
0.84
0.84
0.85
0.85
0.85
0.85
0.85
CMg
CMg
0.91
0.91
0.89
0.89
0.89
0.89
0.89
0.92
0.92
0.92
0.92
0.92
Fa
Fa
M
(pg/m2.s) (yg/nr-s) (m2)
715
1,242
829
1,152
1,160
962
2,163
3,078
5,183
7,673
7,632
3,568
74
131
97
133
140
115
206
298
583
806
757
400
4.95
3.49
3.20
2.40
2.61
2.32
2.06
2.35
2.60
2.93
3.28
3.52
TOTALS:
^Na
(ug/s)
3,539
4,335
2,653
2,765
3,028
2,232
4,456
7,233
13,480
22,480
25,030
12,560
103,791
a
(ug/s)
366
457
310
319
365
267
424
700
1,516
2,362
2,483
1,408
10,977
TOTAL MASS EMISSION RATES ARE: mja =103,791 ug/s and mjg = 10,977 u9/s if the basin water concentration equal the
mean concentrations CNa and CMg as listed in Table 1 , and if the water flow rate equals 1,262^9/5 (or 20,000 9Pm)-
MINERAL MASS EMISSION FRACTIONS: nNa =0.00085 %; nMg = 0.00083 «; n = 0.00084 %
-------
TURKEY POINT ISOKINETIC DATA EXTENSION FOR DIAMETER SW-NE 2
Position
6.3
7.3
17.3
18.3
19.3
26.3
*Na
(pg/m3)
105
105
270
270
270
266
*Mg
(pg/0,3)
12.5
12.5
25.8
25.8
25.8
29.9
v
(m/s)
3.0
0.2
0.4
1.8
4.1
12.5
F3
(wg/m2-s)
315
21.0
108
486
1107
3325
Fa
(yg/m2-s)
37.5
2.5
10.3
46.4
106
374
AA
(m2)
2.03
1.71
1.19
1.48
1.77
4.47
Ama
(pg/s)
639
35.9
129
719
1959
14,860
Ama
(yg/s)
76.1
4.3
12.3
68.7
188
1672
CO
01
en
TOTALS:
18,342
2,021
UPPER LIMIT OF MINERAL MASS EMISSION FRACTIONS:
0.0010% n1 = 0.00098X
n1
0.00099%
-------
OJ
CT>
CM
UJ
QC
«£
ce.
40
39
38
37
36
35
16
14
12
10
t
I 4
0
SW RIM
o
o
VELOCITY
TEMPERATURE
DATE, TIME: 7/24/74, 1715-1752
WIND: 16-19 km/hr FROM THE SSE
WTdry: 26.0'C/30.8-C
I I I
1 3 57 9 11 13 15 17 19 21 23 25 27|
POSITION AND DISTANCE, feet
Figure 29. Velocity and temperature profiles, SW-NE diameter.
NE RIM
-------
DIAMETER; SW'NE 3
POSITION:
DATE: 7/20/74
NOTE: Concurrent IK Data Point: Position 0.6
•
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
T ^(LCW) 0( hi)
MO. IsO.
6 150, tOG,
7 2CO. 250.
w 1 250. 300.
-j
-
TOWER CONDITIONS:
l.'EL 0 ncENI P(|)l DEL X/OEL 0 DEI X
(IJM> H'M> (4/UV-M3I CJS/UM-M3) (UG/M3I
20. ^0.. 5.000? 03
20. ^C. 7.900C 02
30. ts. 5.500F 01
JO. 95. 6. }QOF 00
=»0, 120. 1.700? 00
^0. 175. 2,500F-01
50, 2?5. 1.1006-01
50, 275. 2.900c-02
X Of> IFT FLUX
(UG/M3I (UG/M2-SEC
1.44ftF 03 1.427E OA
vu =10.0 m/S ; Ta = „ o°C ;
2.094E 01 4. 189E 02
2.6&7F 01 5.2955 02
7.909= 00 2.373E 02
2.928E 00 8.485F 01
1. 956? JD 7.822E 01
9.322^-01 4.911F 01
f.561E-01 3.280E 01
3.158E-01 1.579E 01
CRIPT MASS EMIS.
) (UG/SEC)
5.267E 04
T< -AI o °C : f~ =
DEL FLUX PARTICLE VEL
-------
DIAMETER: SW-NE 3
POSITION; 2
DATE; 7/?n/7d
NOTE: Concurrent IK Data Point: Position i.6
TIME FRAME; 1328-1 an?
CO
at
oo
I
1.
•j
7
0
o
1 1
12
13
14
Ml ~\ )
('I1')
i i i.
1^0.
TOO.
3'.0.
4 ) ).
450.
500.
550.
cm
3.1.
11".
150.
300.
J50.
400.
450.
500.
550.
600.
.•'•'. L M
I i
-------
to
vo
DIAMETER: SW-NE 3
POSITION: 3
DATE; 7/20/74
TIME FRAME; idan-ism
NOTE: Concurrent IK Data Point: Position 2.6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
I
'*
11
tl
7
1 1^
li)
1 '
13
14
• Ml. ' * )
III1')
I ).
•^ •*
* ' •
5 1 .
•< 0.
til.
1 50.
""10.
' 51 .
•I C i
1 > 1 * .
400 .
•+50.
500.
550.
H(H[ )
(n- )
Ji).
r) i •
"• ) .
11 ".
1 ">••• .
?•! J.
? 1 0 .
3D'1 .
.15 1.
4 •' .
4^0.
550."
600.
" i " I '
in1)
£.'.
•' '•
' " •
"> 1.
'• '.
'; ).
5 ^" .
r>o.
so.
u "*•
50.
50.'
50.
X
(UG/M3)
nif f i p(n»
1 ".-'I 1 t/m-M3)
2«J. 1.7 OOF 03
4 '. -'». 75(j= '}?
•'>r-. ^.0 10r 01
"•-.. 1.1 117 01
1"L'. 3.5iK)E 00
I '5. ] .750= 00
^?5. a.O)JE-Ol
-^7S. 5.000C-01
125. 2. 4)0= -01
)Tj* l.i?5i)?.-0l
•*^'3. '». 500^-02
475. 1.7106-02
525. 7.100 E-03
575. 3.200 E-03
UK I FT FLUX
(UG/M2-SEC)
->FL X/DFL D DEL X
(
1
I
7
4
4
4
4
5
4
3
1
9
5
3
"K./UM-V3
.551= 01
.592: "1
. 19JC 00
. 4{»9F 00
. 026F 00
.911F 00
.771= 00
. 445F 00
.314= 00
.451= 0')
. 809E 00
.5^05-01
.382 E-01
.134 E-01
(UG/M3)
3.130.=.
3.183E
?. 157F
1.347=
1.61 OF
2.455E
2. 386=.
2.722F
2. 157=
1.726E
9.044E
4.770=
2.691 E
1.592 E
02
02
02
0?
02
02
02
02
02
02
01
01
01
01
DRIFT MASS EMIS.
(UG/SEC)
DEL FLUX PARTICLE V
(UG/M2-SEC) (M/SEC)
4.956E
5.078E
3.425=
2.123=
2.512?
3.772E
3.599F
4. 034=
3.140=
2.469E
1.273E
6.608E
3.673E
2.141E
MASS
03 .599E 01
03
03
03
03
03
03
03
03
03
03
02
02
02
.595E 01
.588E 01
.576E 01
.560F 01
.536E 01
. 509E 01
.482E 01
.456E 01
.431E 01
.407E 01
.385E 01
.365 E 01
-34S F 01
MEDIAN DIAM.
(pm)
2.464E 03
3.762E 04
1.181E 05
169
TOWER CONDITIONS; Vu = 16.0 m/s ; Ta = 37.CPC ; Tf - 42.5 °C ; T0 = »c
Range: °C ; Approach: °C ; Heat Load: * MW
AMBIENT CONDITIONS: Wind Speed:14.5 Km/hr ; Wind Direction: ESE ; Twet/Tdry - 23.9/31.0 °C
-------
u>
»J
O
DIAMETER: SH'NE 3
POSITION!
DATE; 7/20/74
TIME FRAME: 1656-1733
NOTE: Concurrent IK Data Point: Position 3.5
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
1
1
f
n
O
O
I ^
11
M
i*
M i. r .-' i
( i")
10.
1 C\
) U .
so.
13.
11^.
1 ->.0.
? - '. ' *
no.
ISO.
'OO.
SOil.
iso.
n00.
-,rL -,
( U")
20.
?';.
10.
30.
4'1.
!»0.
50.
so.
sn.
5H.
so.
Sil.
S 1.
r>l).
:x <•'•!)
( i."1)
PO.
40.
6S.
05.
1 Vi.
17S.
P^S.
37S.
S7S.
575.
P(,T)
( ''/in-MII
S.OTD^ 01
S. 0 )f)5 0?
5.30.)c 01
1.210C 01
S.H0.1F OO
2.7SO«= 00
l.bOOF 00
d. j 00C —01
S.700E-01
2 . J )0^-0 1
1.5'JOE-ll
1.700E-01
"rL X/[)EL D DF.L X
JU'./UM-MSI
2.094tf
1 . ft 76 c
7.621F
5.387E
6.672E
7.717E
9. 543E
9.038E
1.025E
l.OOSfc
1. 136P
1. 194E
01
01
00
00
00
00
00
00
01
00
01
01
01
01
(UG/M3)
4.189E 02
• 3.35lc O2
2.286F 02
1.616E 02
2.669E 02
3.858E 02
•».771E 02
4.519E 02
5.123E 02
4.832= 02
5.024= 02
5.612E 02
5.682E 02
5.972E 02
DEL FLUX PARTICLE VEL
(UG/M2-SEC) IM/SEC)
5.775E
4.608E
3. 128E
2.192S
3.576E
5. 078E
6.149E
5.702E
6.330E
5.851E
5.966E
6.539F
6.504=
03 1.379E
03 1.375E
03 1.368E
03 1.356E
03 1.340E
03 1.316E
03
03
03
03
03
03
03
.289E
.262E
.236E
.211E
.187E
.165E
. 14SF
03 1.125E
01
01
01
01
01
01
01
01
01
01
01
01
01
01
(llf./M3 J
5.9S1E 01
TOVQ CONDITIONS; vu = 13.8 m/S ;
Range: °C ;
D'IFT FLUX ORIFT MASS FMIS.
(UG/M2-SECI IUG/SECI
7.4-12F 04 .2. 105E 05
Ta B36.1°C ; T< -42.8 °C ; T0 -
Approach: °C ; Heat Load:
MASS MEDIAN DIAM.
(um)
324
»C
MM
AMBIENT CONDITIONS: Wind Speed: ! 9.3 Km/hr ; Wind Direction: ESE ; Twet/Tdry - 24.6/31.0 °C
-------
DIAMETER: SW-NE 3
POSITION;
DATE; 7/20/74
TIME FRAME; 1756-1826
NOTE: Concurrent IK Data Point: Position 4.6
T
I
7
"*
4
5
6
7
8
o
1 T
11
I?
13
14
"•(Lrvo
CIM)
M.
<0.
5,1.
1f' .
HO.
1 50.
200.
751.
300.
Tin.
4i)0.
45(l.
5 10.
5r>0.
n ( M I )
(M 1)
J'l.
so.
'10.
1 in.
111.
?i)0.
250.
301 .
350.
400.
4'i1.
5.1.1.
550.
f>m.
r^L P iMfr'D pjnj OFL X/DEL D
HI")
?H.
?0.
30.
30.
40.
50.
50.
50.
5-1.
00.
50.
50.
50.
50.
(U 1)
?0.
4l).
65.
<)•>.
I V3.
175.
275.
275.
325.
375.
4?.5.
475.
525.
575.
DEL X
M/I.M-M3I (ur./UM-'ll) (UG/M3I
6.4i).)c 03
3.2 )0C 02
«">.5Ji)K 01
1.710«E 01
5.U01E 00
2.300E 00
1.150E 00
5.000E-01
P.400F-01
I.J5JF-01
9. 3 JOE -0?
7.000^-02
5.000F-02
3. oOOc-02
2.601C
1.072P
9. 347=
7. 632E
6.672E
6.454E
6. 859E
5.445E
4. 314P
3. 728E
3.738E
3. 92 HE
3.78HE
3. 583C
01
01
00
00
00
on
00
00
00
00
00
00
00
00
5.362E
2. 145E
2.804E
2.289E
2.669E
3.227E
3.429F
2.722E
2.157E
1.864?
1.869E
1.964=
1.894E
1.792E
02
02
02
02
02
02
02
02
02
02
02
02
02
0?
DEL FLUX PARTICLE VEL
(UG/M2-SEC) (M/SEC)
6.695F.
2. 671E
3.471E
2.808E
3.229E
3.828E
3.974F
3.081E
2.385E
2.014E
1.976E
2.033E
1.922E
1.782E
03 .249E
03
03
03
03
03
03
03
03
03
03
03
03
.245E
.238F
.226F
.210E
. 186E
.159E
.L32E
.106E
.08 IE
.057E
.Q35E
• 015E
03 9.948E
01
01
01
01
01
01
01
01
01
01
01
01
01
00
(iir./im
}.hl«)f- 03
r)RIPT FLUX flRIFT MASS
njr,/M2-SFCI (UG/SFCt
4.1H7C 04
1.068E 05
MASS MEDIAN DIAM.
(UM)
194
TOWER CONDITIONS; Vu-12.5 m/s ; Ta -36.9«c ; Tf - 43.1 *C ; T0 .
Range: °C ; Approach: °C ; Heat Load: *
AMBJENT CONDITIONS; Wind Speed: i6.l Km/hr ; Wind Direction: SE ; TWet/Tdry - 25.5/29.5 °C
°C
MW
-------
DIAMETER: SW-NE 3
POSITION; 6
DATE: 7/22/74
TIME FRAME;
NOTE: Concurrent IK Data Point: Position 5.6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
r
i
?
3
'•
'•
'<
T
^
11
in
£ H
ro 1?
1 1
1'.
•Ml nw)
( l«)
l.t.
10.
5 ).
'! 0 .
1 1 0.
I r> ).
710.
•"•' 1.
•vin .
3.
41 ).
450.
5)1.
55 1.
OIHT 1
IT')
»'.).
Si).
ill.
l in.
isn.
?:)U.
? '"• n .
301.
350.
410.
'+53.
son.
550.
(> si:).
Ill I 1
r'(Cc-J) P<0) DfL X/DEL D
(U"l) JM") (1/.M-M3I (UG/UM-M3)
P.).
21.
10.
?n.
'.I.
50.
= ••>.
sr.
5n.
sn.
?o.
si.
r-o.
5:):
?0.
40.
65.
'15.
1 50.
175.
??5.
275.
3? 5.
'575.
475.
475.
525.
575.
f>.
5.
5.
1.
5.
?.
I .
' 7.
5.
4.
3.
2.
2.
1.
no= m
f.50F 02
inoE 01
^1,T= 01
T)0= 00
'tO')F UO
no= oo
OOOF-Ol
')^0=-01
0 J1F-01
20 IE -01
750E-01
250E-01
8 00= -01
2.555E
1.S93F
7. 190E
7. 133E
6.672E
6.735E
6.739E
7.622E
P.987E
1. 104E
1.286=.
1.543=
1.705E
1.792F
01
01
00
00
00
00
00
00
00
01
01
01
01
01
DEL X
(UG/^3)
5.110= 02
3.787= 02
2.157= 02
2.155= 02
2.669= 02
3.367E 02
3.370E 02
3. SUE 02
4.494= 02
5.522E 02
6.431= 02
7.716E 02
8.524E 02
8.959E 02
DEL FLUX PARTICLE VEL
(UG/M2-SFCI (M/SEC)
5.615E
4.147E
2.347=
2.319F
2.828E
3.489E
3.399E
3.741E
4.294E
5.140E
5.836E
6.831E
7.369F
7.568E
03
03
03
03
03
03
03
.099E
.095E
.088E
.076E
. 060E
.036E
. 009E
03 9.817E
03 9.556E
03 9.309E
03 9.074E
03 8.854E
03 8.645E
03 8.448E
01
01
01
01
01
01
01
00
00
00
00
00
00
00
(IHVM3 )
6. 8 )/c 03
n"IFT FLUX DRIFT MASS EMIS.
IUG/M2-SEC) (UG/SEC)
6.493E 04
TOWER CONDITIONS; Vu = 11.0 m/S ; Ta « 35.2°C ; T
Range: °C ; Approach:
1.44IE 05
= 42.3 °C ; T0 »
°C ; Heat Load:
MASS MEDIAN DIAM.
(urn)
378
°C
MM
AMBIENT CONDITIONS: Wind Speed: 8.0 Km/hr ; Wind Direction: S ; Twet/Tdry " 21.7/27.9 °C
-------
CO
^1
CO
DIAMETER; SW-NE 3
POSITION;
DATE: 7/22/74
TIME FRAME:1523-1610
NOTE: Concurrent IK Data Point: Position 6-6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
7.
3
4
5
'••
7
n
'-'
'M L<> 1
(IJM)
10.
10.
•5.1.
10.
110.
150.
?00.
750.
TOO.
rxi-T )
(MM)
30.
'.0.
l!0 .
110.
150.
200.
? VI.
3">0.
I'JO.
nt L n '"•( C zN ) D ( 0 1
( UM)
20.
?0.
30.
30.
4 T.
50.---
50.
5').
50.
(IJM)
20.
40.
65.
15.
130.
1 75.
225.
275.
325.
( Y/IM-M3I
8. OOOE 03
rt.OJOF. 02
7. 500E 01
l.flOOE 01
4.700E 00
1.5.)0<- 00
5. 500E-01
2.400E-01
l.OOOF-01
nFL X/OFL 0
IUG/UM-M3)
3.351E
2.681E
1.078F
8.081E
5.407E
4. 209F
3.P80E
2. 6l!4E
1.797F
01
01
01
00
00
00
00
00
00
DFL X
DEL FLUX
(UG/M3I (UG/^I2-SEC)
6.702E
5.362E
3.P35E
2.424E
?. 163E
2.105E
1.640E
1.307E
8.987E
02
02
02
02
02
02
02
0?
01
4.549E
3.620E
2.161E
1.591E
1.384E
1.297E
9.657E
7.340E
4.814E
03
03
03
03
03
03
02
02
02
PARTICLE VEL
M/SEC)
6.788E
6.752E
6.680E
6.563E
6.398E
6.161E
5.888E
5.617E
5.356E
00
00
00
00
00
00
00
00
00
X DRIFT FLUX DRIFT MASS EMIS.
(UG/M3) (UG/MP-SECI (UG/SEC)
2.534E 03 1.67fl»: 04 3. 357E 04
MASS MEDIAN DIAM.
(pm)
58
TOWER CONDITIONS; 7U«6.8 m/s ; Ta -34.0°C ; ^-43.1 °C ; T0 . «C
Range: °C ; Approach: °C ; Heat Load: •», MU
CONDITIONS; Wind Speed: 20.9 Kn/hr ; Wind Direction: SSW . Twet/Tdry = 25.6/29.7 «C
-------
DIAMETER; SW-NE 3
POSITION:
7/97/7A
TIME FRAME;
NOTE: Concurrent IK Data Point: Position 7.6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
T
I
2
1
4
5
6
7
8
9
10
11
rKLHWI
( /MI
10.
10.
50.
80.
110.
150.
'00.
750.
300.
150.
400.
n ( H i )
(UM»
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
I^L 1)
IU'1)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
r>| CM)
di'M
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
P(D)
(4/IJM-M3I
?.500E 03
?. 500E 02
3. roar- 01
7. OOOE 00
1.700E 00
5.000E-01
1.500E-01
6.800E-02
3.300E-02
2.300E-02
1.500E-02
DPL X/DFL 0
(UG/UH-M3)
1.047E 01
8. 378E 00
5.*20€ -00
3.142P 00
1.956E 00
1.403E 00
8.946E-01
7. 4,05E-Q1
5.931E-01
6.351E-01
6.029E-01
OEL X
IUG/M3)
2.094E
1.676E
1.596E
9.427E
7.822E
7.015E
4.4736
3.702E
2.966E
3.175E
3.015E
02
02
02
01
01
01
01
01
01
01
01
DEL FLUX
(UG/M2-SECI
7.514E
S.951E
5.594E
4.170E
2.501E
2.077E
1.2Q2E
8.948E
6.3956
6.060E
5.048E
02
02
02
02
02
02
02
01
01
01
01
PARTICLE VEL
(H/SECI
3.588E
3.552E
3.480E
3.363E
3.198E
2.96ii
2.6MC
2.417B
2.156E
1.909E
1.A74E
00
00
00
00
00
00
00
00
00
00
00
-------
DIAMETER: SW-NE 3
.POSITION: 20
DATE: 7/24/74
TIME FRAME: 1616-1645
NOTE: Concurrent IK Data Point: Position 19-6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
CO
^J
in
.ML~K)
1
•)
•\
4
c,
6
7
•1
n
1 1
i?
10
10
so
no
1 K
150
'1 )
no,
150
400,
450,
(n")
Ji.
50.
80.
110.
15«--.
3'10.
ISO.
'.00.
S10.
TL r
(ii")
(in)
CO)
o
(UG/U1-M3)
DEL X DEL FLUX PARTICLE VEL
(UG/M3) IUG/M2-SEO IH/SEC)
?0.
?i1.
30.
30.
40.
50.
5 3.
SH.
SO.
53.
50.
5,1.
20.
40.
ft5.
95.
130.
175.
?25.
?75.
325.
375.
425.
475.
2.303E 04
3. >OOE 03
t.^SOE 02
1.0)0* 02
2.000= 01
4.00JE 00
1.3 OOP 00
4.200E-01
1.750P-01
7. \ir»o.c_02
3.? )0f-02
1.500E-02
9.
1.
a.
4.
2.
1.
7.
4.
3.
1.
1.
3.
>S34E
D72E
•J87E
439E
301E
122E
753E
573E
145E
933E
286E
41 7E
01
02
01
01
01
01
00
00
00
00
00
-01
1.927E
2.145E
2.696E
1.347E
9.203E
5.612E
3.8775
2.287E
1.573E
9.664E
6.431F
4.209E
03
03
03
03
32
02
02
02
02
01
01
01
1.539?
1.705=
2.125E
1.045E
6.992E
4.131E
2.748E
1.559E
1.031E
6.097E
3.907E
2.464E
04
04
04
04
03
03
03
03
03
02
02
02
7.988E
7.952E
7.880E
7.763E
7.598E
7.361E
7.088E
6. SITE
6.556E
6.309E
6.074E
5.854E
00
00
00
00
00
00
00
00
00
00
00
00
1.357F 04
9"!FT FLUX
(UG/**2-ScC
3.185F. 04
UFT MASS EMIS.
CUG/SEC)
1.49BE 05
MASS MEDIAN DIAM.
(um)
64
TOWER CONDITIONS; Vu=8.0 m/3 . Ta =35.0«C ; TI -43.3 »C ; T0 » oc
Range: °C ; Approach: °C ; Heat Load: •». MU
AMBIENT CONDITIONS: Wind Speed: 18.5 ^/^ . H1nd D1rect1on: SSE . Twet/Tdry = 26'1/28'1 °C
-------
DIAMETER; SW"NE 3
POSITION: 21
DATE: 7/24/74
TIME FRAME: 1525-1554
NOTE: Concurrent IK Data Point: Position 20.6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
T
1
?
7
i.
s
''
7
rt
o
I'"
3 11
w I?
n
14
niLnw)
( ' 1 M 1
10.
in.
50.
80.
M '">.
150.
?00.
"*50.
TOO.
•*«jii.
400.
450.
500.
SSO.
0(HI )
(DM )
"10.
50.
80.
110.
15H.
200.
?50.
300.
3">0.
400.
450.
50(1.
b50.
ftOO.
n=i n
(IJM
20.
?'l.
JO.
"*1.
4'">.
'j<">.
50.
50.
50.
50.
50.
50.
50.
!>1.
'MCF'll
(11^)
20.
40.
h5.
•Jb.
1 in.
175.
225.
275.
^2!>.
37'j.
425.
475.
525.
57f..
°IOt 0=L X/DF.L 0
(
-------
DIAMETER: SW-NE 3
POSITION; 22
DATE; 7/24/74
TIME FRAME; 1430-1500
NOTE: Concurrent IK Data Point: Position 21.6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
»
^
/I
s
(>
7
P
9
n
1 1
i?
n
14
ri M cw )
( ' IM )
in.
TO.
r>0.
TO.
11 I.
ISO.
7-10.
750.
310.
350.
410.
450.
500.
550.
n( HI )
Ci")
TO.
so.
8'1.
m.
I'iO.
200.
2'50.
300.
"*SO.
VM.
vo.
soo.
••>•-> 3.
600.
'ILL M
HIM)
20.
20.
3'l.
30.
'»•).
50.
50.
50.
50.
SO.
'.• -1 .
r'0.
so.
so.
I'JCFNI
(IJM)
20.
40.
t>5.
S»5.
130.
175.
? ?5.
2^5.
325.
375.
4«?5.
4/5.
525.
57S.
°(D) OFL X/DEL 0
(•(/'I 1-M3)
? . .) OOF 04
J.7 )JE 03
l.l.l>c 03
T.2.)JE 0?
9,.)')0C 01
2.300ft 01 -
6. 500? OO
2. 2 OOP 00
1.0 T)E 00
S.'iOlr-Ol
1 . i JJE-01
5.4005-0?
3.330E-02
1.700E-0?
(UG/UM-M3)
8. 378F
9.048t
1.532E
1.437E
1.035E
4«454E
3.877F
2.396F
1.797E
9. 940E
4.823E
J.OJOfe
?. 500F
1.692E
01
01
02
02
02
01
01
01
01
00
do
00
00
00
DEL X
(UG/M3I
1.676E
l.fllOE
4.745=
4.310E
4.141F
3.Z27E
1.938E
1.198E
8.987E
4.970E
2.412E
1.515E
1.250F.
8.461E
03
33
03
03
03
03
03
03
02
02
02
02
02
01
DEL FLUX
JUG/M2-SEC)
1.841E
1.982E
5.163E
4.638E
4.389E
3.344E
1.955E
1.1 76E
8.588E
4.626E
2.1RRE
1.341E
1.081E
7.148E
04
04
04
04
04
04
04
04
03
03
03
03
03
02
PARTICLE VEL
CM/SEC)
1.099E
1.095E
.088E
.076E
.060E
.03*6
.009E
9.817E
9.556E
9.309E
9.074E
8.854E
I.645E
8.448E
01
01
01
01
01
01
00
00
00
00
00
00
00
OPIFT FLUX O^IFT MASS E
1UG/M2-SFC) tUG/SECI
?.614E 05
6. 3755 05
MASS MEDIAN DIAM.
(urn)
110
TOWER CONDITIONS; 7
Range:
U11.0 m/s ; Ta -38.8°C ; ^-42.8*0 ; T0 .
Approach:
Heat Load:
°C
MM
AMBIENT CONDITION^: Wind Speed: 12.9 Km/hr ; Wind Direction: SSE . Twet/Tdry - 26.1/31.7 -C
-------
DIAMETER: SW-NE 3
POSITION: 23
DATE: 7/24/74
CJ
s
TIME FRAME; 1338-1408
NOTE: Concurrent IK Data Point: Position 22.6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
t
1
2
1
**
5
ft
7
H
O
11
11
12
1 1
14
^ ( L nW )
(H"l
10.
10.
50.
'JO.
110.
I 5c|.
200.
100.
150.
400.
450.
510.
r>(HI )
IUM)
30.
50.
SO.
110.
150.
?00.
2bO.
100.
150.
400.
450.
500.
550.
600.
n£L n
( U'M
20.
20.
3'>.
3.1.
40.
50.
50.
50.
50.
50.
50.
50.
5M.
OKSNI
1 IJ^I)
20.
40.
65.
95.
13').
175.
225.
?75.
3?5.
175.
425.
475.
525.
575.
P ( D 1
DF.L X/OEL D
«-*/UM-M3) (UG/IJM-M3)
1 . 2 OOE 04
3.000? 03
9.0 OOF 02
1.250E 02
I. 15 IE 02
->• 5 OOe 01
1.200E 01
3.800E 00
1.400E 00
7.500E-01
4.3 JOF-01
2.300E-01
1.300E-01
8.000E-02
5.027E
1.005E
1.294F
1.459E
1. 3'3E
7.157E
4.138E
2.516E
2.071'=
1.728E
1.291E
9. 850E
7. 963E
01
02
02
02
02
01
01
01
01
01
01
01
00
00
DEL
X
UJG/M3)
1.005E
2.011E
3.882E
4.377E
5.292E
4.911E
3.578E
2.069E
1.258E
1.035E
8.642E
6.451E
*.925E
3.982E
03
03
03
03
03
03
03
03
03
03
02
02
02
02
DEL FLUX PARTICLE VEL
(UG/M2-SEC) (M/SECI
1.255E
2.504E
4.806E
5.367E
6.402F
5.825E
4.147E
2.341E
1.391E
1.119E
9.138E
6.681E
4.996E
3.961E
04 . 749F
04
04
04
04
04
04
04
04
03
03
03
03 9
.245E
.238E
.226E
.210E
.186E
. 159E
.132E
. 106E
.081E
• 057E
.035E
.01SE
>.948E
01
01
01
01
01
01
01
01
01
01
01
01
01
00
(IJG/M3)
3.IR2E 04
D
-------
DIAMETER; SW-NE 3
POSITION: 24
(O
•*J
vo
NOTE: Concurrent IK Data Point: Position 23
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION
I r ( i -v; ) " ( " n
( '"I (l.vj
i i •«. i '.
" i''1. ">n.
51. if1 .
T. in..
•> ll". \r>t .
]Tf... ."10.
f •> )•). 'SO.
r "">•'.. i < • .
i i ") . 3 r n .
1 "» «*» 1. Mil'! .
11 iT-1. 4','"1.
1? + 5V). K )".
I 1 5'1O . S'si • .
1 '• SS^. ffi^.
TOWER CONDITIONS:
I'M " "i{r-i") »(':))
( "••• ) ( ii-<) ( i/ii -i--i3)
?n. ."M. 1.01K 0'.
? ). -VJ. -?.OJOr 03
1~> • (>ri , <». 000t 0?.
'•-I. nt>. l.lrOF 0?
•'• '. 1 "i '. 4. j ) »= 01
"O. 1 75. I. ?•}.•)£ 01
c'">. ??'3. ^. 7->OF -00
r> •. 77S. i.?s IE no
V». 1?5. 5.S).)F-Ol
5'. 17-^. >.70JE-01
•j'j. 4? i. l.5)0=-0l
c •*. 4 7S. y.O 10E-0?
'' i. 575. •>. (j )>1C-02
*••). S7T. t.000=-02
x ,T»IPT FI
(ur,/-ni (UO/M7-S
1.->7S-. o'» 1.491T
vu =12.3 n»/s ; Ta =37.6«c
Range: °C ; Approach:
.6
DATA. TURKEY POINT
nri X/DFL n
OEL X
OEL FLUX PARTICLE VEL
(IJ«/|JM-M3I (U'i/^3) (UG/M2-SCCJ
'..IS<»E
6. 707 E
b. 75lE
9. HR6.E
7.435?
t. 0?9E
5.0-30 =
4.54-SE
'•"'*"*-
U X ,-)« T F
,'C) (
05 4.
01
01
01
01
01
01
01
01
00 •
00
00
00
00
00
T MASS
UG/SFC
8
1
1
I
I
1
I
6
4
3
3
2
2
1
.378E
. 34OE
.726=
. 549E
.979 =
. 684E
.USE
.006=
.943E
.728F
.015=
.525E
.2735
.991=
02
03
03
03
03
03
03
02
02
02
02
02
02
02
1.
1.
2.
1.
2.
1.
. 1.
7.
5.
3.
3.
2.
2.
1.
029E
642 =
102E
868r
354 =
963 =
273 =
566 =
366E
954£
127E
564=
2611
941 =
EM IS. -MASS MEDIAN
1
473F 05
; Tj = 42.1 «c
°C
; Heat
; T0 »
Load:
°C
(um)
129
04
04
04
04
04
04
04
03
03
03
03
03
03
03
DIAM.
JM/SFO
1.229E
1.225E
1.218E
1.206E
1.190F
1.166E
1.139E
1.112E
1.086E
1.061E
1.037E
1.015E
9.945E
9.748E
01
01
01
01
01
01
01
01
01
01
01
01
00
00
t MU
AMBIENT CONDITIONS; Wind Speed: 10.5 Km/hr ; Wind Direction: NW . Twet/Tdry => 24.7/27.1 »c
-------
DIAMETER; SW-NE 3
POSITION:
25
DATE: 7/23/74
TIME FRAME: 1654-1722
NOTE: Concurrent IK Data Point: Position 24.6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
to
§
T
1
"•
^
4
S
6
7
»<
')
in
11
I'
13
14
•Ml ~W)
(MM)
10.
30.
50.
SO.
1 10.
1 50.
200.
?50.
TOO.
350.
41.1.
45(1.
500.
550.
nim )
UIV)
jn.
50.
PO.
110.
150.
?00.
?50.
300.
350.
400.
450.
500.
550.
frUO.
r---i r
(1IMJ
2n.
20.
30.
3'l.
40.
50.
50.
50.
50.
f.O.
50.
50.
50.
50.
nc . Tf . 41.7 *c . T() .
Range: °C ; Approach: °C ; Heat Load:
MASS MEDIAN DIAM.
(um)
85
°C
MM
AMBIENT CONDITIONS: Wind Speed: 12.1 Km/hr ; Wind Direction: SW ; Twet/Tdry - 24.4/29.2 -c
-------
DIAMETER: SW-NE 3
POSITION; 26
DATE: 7/23/74
TIME FRAME: 1435-1500
NOTE: Concurrent IK Data Point: Position 25.6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
T
1
T
6.
•%
(.
i
h
•i
M
1 1
\7
n< \ r ID
(i;1 ) -
in.
'. o .
pr>.
ll! .
1 1 .1 .
'TO.
7S'~ .
HV1.
^ s o .
4<>r>.
4->0.
i:(n j
dr
sn
;•••)
1 1 1
I-..'
,;.-in
•>'»'•
30"
Vj,
'. ')0
•»'j i
Su..i
)
)
•
|
m
.
•
.
•
m
9
.
•
• L "•
1.
)FL X/DEL n
DEL X
<
DEL FLUX PARTICLE VEL
(UG/M2-SFC) (M/SEC)
'0.
13 •.
17"..
SI.
c T.
7ue
.1^-)?
•i 10s:
*t .) )"=
ji)'!^
f- JOE
5 JOC
0 JO1:
3 OOF
bO JE
1 DOE
)T)F
lj ) T:
7 )0d
04
03
03
02
0^
01
.00
00
00
on
00
-0!
-M
-01
7.121E
1. 9t4F
?. I57b
1.975E
1. 4951:
7. 357E
S.070E
4. 356E
4. 134E
4. 142E
4. 421E
4. 489E
4.925E
5. 6 74?
01
r'2
02
02
02
01
01
01
01
01
01
01
01
01
1.
3.
6.
5.
5.
3.
2.
2.
2.
2.
2.
2.
2.
2.
4?4E
BE7P
471E
926E
982F
929E
535E
178E
06 7E
071E
21 lc
245E
462E
837E
03
03
03
03
03
03
03
03
03
03
03
03
03
03
1.
4.
7.
6.
6.
4.
2.
2.
2.
2.
2.
2.
2.
2.
650E
490C
428E
7T3E
698E
306E
709E
269F
099E
052F
139E
122C
277^
567E
04
O4
04
04
04
04
04
04
04
04
04
04
04
04
1.159E
1.155E
1.148E
1.136E
1.120E
1.096E
1.069E
1.042E
1.016E
9.909E
9.674E
9.454E
9.245E
9.048E
01
01
01
01
01
01
01
01
01
00
00
00
00
00
r"MFT FL'JX OP'FT MASS
S^CJ (UG/SFCI
I '«..'•.'?- V. 4.954" 05 1.744E 06
TOWER CONDITIONS; Vu = H.6 m/s ; Ta=38.3«C ; TI - 41.7 «c ; T0 .
Range: °C ; Approach: °C ; Heat Load:
MASS MEDIAN DIAM.
(pm)
146
°C
MU
AMBIENT CONDITIONS: Wind Speed: 12.1 Km/hr ; Wind Direction: SW . Twet/Tdry • 24.4/29.2 «>c
-------
DIAMETER: SW-NE 3
POSITION: 27
DATE; 7/23/74
TIME FRAME: 1340-1412
NOTE: Concurrent IK Data Point: Position 26.6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
.
u>
00
ro
T
1
7
3
4
S
h
t
a
CJ
10
11
1'
1 3
14
Civ,)
10.
30.
SO.
MO.
110.
150.
200.
'SO.
310.
350.
4 no.
450.
SOO.
550.
R!uII
30.
50.
HO.
] 1 n.
isn.
?0'i.
?so.
TOO.
350.
400.
450.
SOO .
S50.
ftOO.
Pc I u
(li •)
'-).
20.
30.
Id.
40.
SO.
50.
50.
50.
50.
SO.
50.
50;
SO.
CUXI
?0.
40.
0?
2.3JOE-02
1.600E-02
1.200E-02
DEL X/DEL D
IUG/UM-M3J
3.351E
8.713E
1.438E
1.481E
1.438E
6.454E
1.739E
7.078E
3.595f
2.209E
1.608E
1.291E
1.212E
1.194!
01
01
02
02
02
01
01
00
00
00
00
00
00
00
DEL X
(U6/H3)
6.702E
1.743E
4.314E
4.444E
5.752E
3.2275
8.946E
3.S39E
1.797E
1. 104?
8.039E
6.453E
6.061E
5.972E
02
03
03
03
03
03
02
02
02
02
01
01
01
01
DEL FLUX
IUG/M2-SECI
6.895E
1.786E
4.391E
4.472E
5.693E
3. USE
8.398E
3.226E
Ii»92E
9.508E
&.733E
9.2«2C
4.628B
03
04
04
04
04
04
03
03
03
02
02
02
02
02
PARTICLE VEL
-------
TURKEY POINT ISOKINETIC SAMPLING SUMMARY FOR DIAMETER SW-NE 3
CD
CO
IK Tube
Position
0.6
1.6
2.6
3.6
4.6
5.6
6.6
7.6
19.6
20.6
21.6
Date
7/20/74
7/20/74
7/20/74
7/20/74
7/20/74
7/22/74
7/22/74
7/23/74
7/24/74
7/24/74
7/24/74
7/24/74
MNa
(ug)
554
724
1,044
2,674
2,274
1,839
1,984
1,034
1,689
3,999
3,744
6,474
=^==
(ug)
64
84
120
298
203
210
225
150
175
430
423
720
^=^==
Vs
9.3
12.0
14.4
28.4
11.2
16.0
17.9
15.6
9.7
11.9
12.2
12.7
=;^^^=^=
(m/s)
8.8
11.7
15.2
14.5
12.9
11.6
8.7
4.8
7.0
9.1
10.6
12.0
=^=^=
CNa
0.88
0.88
0.88
0.88
0.88
0.92
0.92
0.87
0.99
0.99
0.99
0.99
CMg
CMg
0.88
0.88
0.88
0.88
0.88
0.87
0.87
0.85
0.86
0.86
0.86
0.86
Fa
461
621
970
1,201
2,305
1,227
887
277
1,207
3,027
3,220
6,056
FMg
(pg/m2-s)
53
72
117
134
206
132
95
39
109
283
316
585
AA
3.86
3.52
3.23
3.04
2.66
2.45
2.08
1.86
1.78
2.00
2.29
2.66
fifl
Na
(pg/s)
1,779
2,186
3,133
3,651
6,131
3,006
1,845
515
2,148
6,054
7,374
16,110
a
205
253
359
407
548
323
198
73
194
566
724
1,556
TOTALS:
-------
TURKEY POINT ISOKINETIC SAMPLING SUMMARY FOR DIAMETER SW-NE 3 CONTINUED
OJ
CO
IK Tube MNg M Vg vu CNa C^
Position Date (yg) (yg) (m3) (m/s) CNa CMg
23.6 7/23/74 2,411 270 11.8 12.5 0.87 0.85
24.6 7/23/74 1,574 205 10.5 11.7 0.87 0.85
25.6 7/23/74 3,499 430 5.7 11.5 0.87 0.85
26.6 7/23/74 6,799 748 12.2 10.8 0.87 0.85
Fa
FNa
(yg/m2-s)
2,222
1,526
6,142
5,236
ca a a
Mg Na
(yg/m2-s) (m2) (ug/s)
243 2.87 6,377
194 3.26 4,975
737 3.44 21,130
563 4.83 25,290
TOTALS: 111>704
^Mg
697
2,719
11,989
TOTAL MASS EMISSION RATES ARE: m*a =111,704
,989
if the basin water concentration equal the
mean concentrations CNa and CM as listed in Table 1 , and if the water flow rate equals 971 kg/s (or 15,400 gpm).
MINERAL MASS EMISSION FRACTIONS: nNa =0.0012 %; ^ = 0.0012 %; n = 0.0012 I
-------
CO
00
en
o
o
o
0.
31
30
29
23
16
14
12
10
8
6
4
2
0
NW RIM
o VELOCITY FROM TRAVERSE, 2/27/74, 1128-1143
WIND: 16 km/hr FROM THE NNW
Twet/Tdry: H.O°C/15.0°C
x MEASURED VELOCITY FROM FIRST DIAMETER, 2/28/74, 3/8-11/74
MEASURED VELOCITY FROM SECOND DIAMETER
3/13-15/74
O TEMPERATURE, 2/27/74, 1128-1143
FLUCTUATION
J L
J L
7 9 11 13 15 17 19
POSITION AND DISTANCE, feet
''• SE RIM
Figure 30. Velocity and temperature profiles, NW-SE diameter.
-------
§
DIAMETER: NW-SE 1
POSITION:
DATE: 3/8/74
TIME FRAME: 1553-1621
NOTE: Concurrent IK Data Point: Position 0.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA, TURKEY POINT
I
I
2
3
4
t;
o'
7
R
o
10
11
12
13
14
D(LOW)
t'JMI
10.
30.
50.
qg.
110.
200.
2-aO.
300.
"150.
400.
4-30.
SOO.
5-iJ.
OIHI 1
(IIMI
20.
50.
80.
110.
ISO.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL U
( Uhl
t.0.
20.
30.
30.
40.
50.
50.
50.
•30.
50.
50.
30.
50.
50.
LJILFM
(DM)
• 20.
to.
65.
95.
130.
175.
225.
27b.
325.
375.
4tS.
475.
525.
57t>.
P(b)
( »/UM-M3l
6.3JOE 03
l.JOOf 03
l.lOOL 02
1.300E 01
b.oooe oo
l.BOOt 00
3. 100E-01
1.300E-U1
S.OOOE-02
5.600E-02
3. 500E-02
2.500E-02
1.600E-02
1.3DOE-02
DtL X/DEL D
(UG/UM-M3)
2.639E
3. J51E
:.!>82E
5.836E
5.752E
5.051T
1.B49E
1.416E
1.436E
1.546E
1.407F
1.403E
1.212E
1.294E
01
01
01
00
00
00
00
00
00
00
00
00
00
00
DLL X
CUG/M3)
5.278E
6. 702E
4.745E
1.751E
2.301E
2.526E
9. 244E
7.U78E
7.190E
7.731E
7.034E
7.014E
6.061E
6.470c
02
02
02
02
02
02
01
01
01
01
01
01
01
01
DEL FLUX
(UG/M2-SEC)
5.430E
6.671E
4.831E
1.762E
2.277E
2.440E
8.678E
6.453E
6.367E
6.655E
5.8J1E
5.719E
4.616E
5.013E
03
03
03
03
03
03
02
02
02
02
02
02
02
02
PARTICLE VEL
(H/SECI
1.029E
1.025E
1.018E
l.OOoE
9.898E
9.661E
9.388E
9.117E
8.856E
8. 609E
d. 374E
8. 154E
7.945E
7.748E
01
01
01
01
00
00
00
00
00
00
00
00
00
00
X DRIFT FLUX DRIFT MASS EM-IS.
(UG/M?) (UG/M2-ScC) (UG/ScC)
MASS MEDIAN DIAM.
(UM)
i.90«E 03 2.857E 04 1. 034E 05 66
TOWER CONDITIONS: Vu = 10.3 m/S ; Ta =33.0°C ; ^ = 36.2 °C ; T0 = 31.1 «C
Range: 5.1 °c ; Approach: 8.6 °c ; Heat Load: -<.26.9MW
AMBIENT CONDITIONS: Mind Speed: 17.6
; Wind Direction: E ; Twet/Tdry = 22. 5/25. 7 «C
-------
DIAMETER; NW-SE 1
POSITION:
DATE; 3/8/74
TIME FRAME; 1723-1738
NOTE: Concurrent IK Data Point: Position 1.33
CO
oo
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
4
5
6
7
8
9
10
11
12
13
DILUM
(UM)
10.
30.
C rt
50.
no.
110.
150.
200.
250.
300.
350.
400.
450.
500.
D(HI )
(UM)
30.
50.
80.
110.
150.
200.
250.
30U.
350.
400.
•»bO.
500.
550.
DEL 0
(UP)
20!
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
U(CEN)
(UM)
2C.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
P(0)
(4/UM-M3)
7.900E 03
1.300E OJ
1.800E 02
2.300E 01
i.400t 01
S.oOOE 00
1.600E 00
5.600E-01
2.500E-01
1.300E-01
8.000E-02
5.000E-02
2.000E-02
DEL X/DEL 0
(UG/UM-M3)
3.309E
4.356E
2.588E
1.257E
1.610E
1.571E
9.543E
6.098E
4.494E
3.590E
3.216E
2.806E
1. 515t
01
01
01
01
01
01
00
00
00
00
00
00
00
DEL X
(UG/K3)
6.618E
8. 713E
7. 765E
3.771E
6.442E
7.857E
4.771E
3.049E
2.247E
1.795E
1.6U8E
1.403E
7.577E
02
02
02
02
02
02
02
02
02
02
02
02
01
DEL FLUX
(UG/M2-StC)
7. 537E
9.891E
8. 759E
4. 209E
7.085E
8.455E
5.004E
3. 1 1 5E
2.237E
1.742E
1. 523E
1.298E
6.653E
03
03
03
03
03
03
03
03
03
03
03
03
02
PARTICLE VEL
(M/SEC)
1.139E
1.135E
1.128E
1.116E
1.100E
1.076E
1.049E
1.022E
9.956E
9.709E
9.474E
9.254E
9.045E
01
01
01
01
01
01
01
01
00
00
00
00
00
X
(UG/M3)
5.680E 03
DRIFT FLUX
IUG/M2-SLCI
6.154E 04
DRIFT MASS EMIS.
(UC/SEC)
2.049E 05
MASS MEDIAN DIAM.
(UM)
120
TOWER CONDITIONS; vu = n.4ni/s ; Ta =32.0°C ; Tj =36.5 °C ; T0=3l.i »c
Range: 5.4 °C ; Approach: 9.0 °C ; Heat Load: i28.4 MM
AMBIENT CONDITIONS: Wind Speed: 19.4 Km/hr ; Wind Direction: E ; Twet/Tdry = 22.1/25.0 °C
-------
DIAMETER: NW-SE 1
POSITION:
DATE: 3/8/74
TIME FRAME: 1843-1943
NOTE: Concurrent IK Data Point: Position 2.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
I
2
3
A
5
6
7
B
10
11
12
13
UILOWI
(UMI
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
430.
450.
500.
550.
D(HI 1
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
UEL D
(UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
DICEN)
(UMI
20.
4C.
65.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P(U) DEL X/DEL 0
( 0/UM-M3I
6. 300E 03
1.130E 03
2.000E 02
o.JOOE 01
1.300E 01
5.030E 00
1.230E 00
a.oooE-oi
4. iOOt-01
2.500E-01
1.400E-01
7.000E-02
4.000E-02
2.500E-02
(UG/UM-M3)
2.639E
3. 787E
2.B76E
1.796E
1.495E
1.403E
1.312E
8.711E
B. 088E
6. 9J3E
5.027E
3.928E
3.031E
1.489E
01
01
01
01
01
01
01
00
00
00
00
00
00
00
DEL X
(UG/.1JI
5.278E
7. 573E
8.628E
5. 387E
5.982E
7.015E
6. 56 IE
4.35bc
4.044E
3.451E
2.814E
1.964E
1.515E
1.244E
02
02
02
02
02
02
02
02
02
02
02
02
02
02
DEL FLUX
(UG/M2-SECI
6.010E
8. 5*7E
9.732E
6.014E
b. 579E
7.549E
6. 8«OE
4.450E
4.026E
3.351E
2.666E
1.817E
1.371E
1.101E
03
03
03
03
03
03
03
03
03
03
03
03
03
03
PARTICLE VEL
IM/SfcCI
1.139E
1.135E
1.12BE
1.116E
l.iOOE
1.076E
1.049E
1.022E
9.956E
9. 709£
9.474E
9.254E
9.J45E
6.848E
01
01
01
01
01
01
01
01
00
00
00
00
00
00
X
(UG/M3)
6.581E 03
ORIFT FLUX
(UG/M2-5ECI
7.014E 04
DRIFT MASS EM1S.
(UG/JEC)
2.097E 05
MASS MEDIAN DIAM.
(UM)
150
TOWER CONDITIONS: vu=ll.4m/s ; Ta = 32.o°C ; ^ = 36.2°C ; T0 = 31.!»c
Range: 5.1 °C ; Approach: 9.1 °C ; Heat Load: ~26.9MW
AMBIENT CONDITIONS: Wind Speed: 15.9 Km/hr ; Wind Direction: E ; Twet/Tdry = 22.0/24.0 °C
-------
DIAMETER:
POSITION:
DATE:
3/9/74
TIME FRAME; 1057-1155
CO
oo
NOTE: Concurrent IK Data Point: Position 3 33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
7
"1
4
'j
t,
f
);
v
10
11
12
13
• 1-*
J(L JW)
(IMI
I J.
30.
50.
HO.
ll'J.
150.
20J.
2-30.
300.
350.
400.
45'J.
500.
550.
30.
f J.
no.
no,
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL n
('I'M
M.
30.
•jo.
40.
50.
50.
50.
50.
50.
SO.
50.
50.
50.
n ( r. F
,,,,,
4n
t-5
9S
130
175
2?5
275
3?5
"*7«5
47"i
475
57.5
575
n(p) n r |_ X/O=L O DEL X
(»/DM-
7.9()0=
l.T)0=
l.60"r
1. ?QC\C
I ,000C
.». irnc
7. 000=
1.000=
A. "?1ric
3. 500=
?. riOl=
1.300F
7.000E
4.nnoe
"31
03
03
^2
01
01
r»n
00
00
-01
-01
-°1
-01
-0?
-0?
(
3
3
?
1
1
I
1
I
1
9
I
7
5
3
• jr./UM.
.309 =
. 351F
.301 =
.437=
. 150E
. I ??c
.193E
.089E
.13? =
.664E
. r>05 =
.295=
. 304E
.98?c
-M3I
01
01
01
01
01
01
01
01
01
00
01
00
00
00
(
6.
ft.
A.
4.
4.
5.
5.
5.
5.
4.
5.
3.
7.
1.
UG/M'3)
618E
707F
902F
310=
601F
612 =
964 =
445E
66?F
832F
024=
647=
652F
991F
0?
02
0?
02
02
0?
02
02
02
0?
0?
07
02
02
DEL FLUX
( UG/M7-SEC)
7.338=
7.407E
7.578F
4.682=
4.923E
5.871E
6.076E
5.399E
5.467=
4.546E
4.610=
3.266E
2.319=
1.702F
03
03
03
03
03
03
03
03
03
03
03
03
03
03
PARTICLE VEL
(M/SECI
1.109E
1.105E
1.098=
1.086=
1.070=
1.046=
1.019F
9. 917=
9.656=
9.409E
9.174E
R.954E
9.745E
H.549E
01
01
01
01
01
01
01
00
00
00
00
00
00
00
03
ORIPT FLUX 0
-------
DIAMETER: NW-SE 1
POSITION;
DATE: 3/9/74
TIME FRAME: 1217-1317
CO
u>
o
NOTE: Concurrent IK Data Point: Position 4.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA, TURKEY POINT
I
1
2
3
4
5
6
7
8
•i
10
11
12
13
14
niicwi
( UMI
10.
30.
50.
BO.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
OIHI I
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
(UM
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
DCCfcM
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
•»75.
525.
575.
PIO)
Dt-L X/DEL D
(*/UM-M3» (UG/UM-M3)
B.900E 0>
l.OOOE 03
l.OOJE 02
i.400E 01
5.600E 00
l.SOCE 00
l.OOOc 00
4.000E-01
1.700E-01
8. JOOE-02
5. OOOE-02
3.100E-02
2.000E-02
1.400F-02
3.728E
3.351E
1.438E
6.285E
0.442E
7.015E
5.9i»4c
4. 356E
3.056E
2.209E
2.010E
1.740E
1.515E
1.394E
Ul
01
01
00
00
00
00
00
00
00
00
Ow
00
00
DEL X
(UG/M3)
7.456E
6.702E
4. 314c
1.885E
2.577E
3. 508E
2.982E
2.178E
1.5286
1.104E
1.005E
8. 698E
7.577E
6.968E
02
02
02
02
02
02
02
02
02
02
02
01
01
01
DcL FLUX
(UG/M2-SEC)
6.701E
6.000E
3. 831E
1.652E
2.215E
2.933E
2.412E
1.702E
1.154E
8.072E
7.109E
5.961E
3.035E
4.493E
03
03
03
03
03
03
03
03
03
02
02
02
02
Oe.
PARTICLE VEL
(N/SEC)
8.988E
8.952E
3.880E
8.763E
U.598E
8.361k
8.088E
7.817E
7.556E
7.309E
7.074E
6.854E
0.645E
6.448E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
x
(ur,/M3>
3.75&E 03
JKIFT FLUX OKIFT MASS tfMIS.
(UG/M2-SECI (UG/SECI
3.167E 04
7.790E 04
MASS MEDIAN DIAM.
(UM)
85
TOWER CONDITIONS: Vu = 9.0 m/s ; Ta=31.2°C ; ^=35.8 °C ; T0=31.1 oc
Range: 4.7 <>c . Approach: 9-1 °C ; Heat Load: -u24-8 MW
AMBIENT
; Wind Speed: 20.8 Km/hr ; Wind Direction: SE ; Twet/Tdry " 22.0/25.8 »c
-------
CO
to
DIAMETER; NW"SE
POSITION:
DATE; 3/9/74
TIME FRAME: 1333-1433
NOTE: Concurrent IK Data Point: Position 5.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
4
5
6
7
8
9
10
11
12
13
1*
niLOwi
(UMI
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
D(HI)
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
(UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
DICEN)
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
PCD)
(*/UM-M3)
5.000E 03
7.10GE 02
6.300E 01
1.100E 01
3.500E 00
1.300E 00
5.000E-01
2.000E-01
l.OOOE-01
5.000E-02
2.800E-02
1.600E-02
9.00UE-03
5.000E-03
DEL X/DEL 0
(UG/UM-M3)
2.094E 01
2.379E 01
9.059E 00
4.938E 00
4.026E 00
3.648E 00
2.982E 00
2.178E 00
1.797E 00
1.381E 00
1.125E 00
8. 978E-01
6.819E-01
4.977E-01
DEL X
(UG/M3)
4.189E
4. 758E
2.718E
I.481E
1.610E
1.824E
1.491E
1.089E
8. 987E
6. 903E
5.627E
4.489E
3. 409E
2.489E
02
02
02
02
02
02
02
02
01
01
01
01
01
01
DEL FLUX
(UG/M2-SEC)
3.136E
3. 546E
2.006E
1.076E
1. 143E
1.252E
9.822E
6. 879E
5.443E
4.010E
3. 157E
2.403E
1.754E
1.231E
03
03
03
03
03
03
02
02
02
02
02
02
02
02
PARTICLE VEL
(M/SECI
7.488E
7.452E
7.380E
7.263E
7.098E
6.861E
6.588E
6.317E
6.056E
5.809E
5.574E
5.354E
5. 145E
4.948E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
X
(UG/M3)
2.235E 03
DRIFT FLUX DRIFT MASS EMIS.
(UG/M2-SEC) (UG/SEC)
MASS MEDIAN DIAM.
(UM)
1.563E 04
3.375E 04
75
TOWER CONDITIONS: vu = 7.5 m/s ; Ta-31.i-C ; T, = 35.8 °C ; T0 -31.1 °C
Range: 4.7 °C ; Approach: 8.6 °C ; Heat Load: -v.24.8MW
AMBIENT CONDITIONS; Wind Speed: 20.8 Km/hr ; Wind Direction: SE . Twet/Tdry - 22.5/25.7 °C
-------
DIAMETER: N""SE
POSITION:
22
DATE:
2/28/74
TIME FRAME:
NOTE: Concurrent IK Data Point: Position 21.33
ID
ro
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
01 LOW) U(HI)
(DM) (UMI
1
?
3
4
5
6
7
8
0
10
11
12
13
14
10.
30.
50.
SO.
110.
150.
200.
25U.
300.
350.
400.
450.
500.
550.
30
50
80
110
150
200
250
300
350
400
450
500
550
600
DEL n
I UMI
D(CEM
(UMI
P(Ul
DEL X/DcL D
IUG/UM-M3)
DEL X DfcL FLUX PARTICLE VEL
(UG/M3I (UG/M2-SEC) (M/SECI
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
7.100E 03
l.OOOE 03
1.300E 02
2.JOOE 01
5.000E 00
1.1 OOE 00
2.800E-01
l.OOOE-01
5.000E-02
3.100E-02
2.JOOE-02
1.300E-02
8.000E-03
6. JOOE-03
2.974E 01
3.351E 01
1.8o9E 01
8. 976E 00
5.752E 00
3.087E 00
1.670E 00
1.089E 00
8.987E-01
8.560E-01
8.039E-01
7. 295E-01
6.061E-01
5.972E-01
5.948E
6. 7U2E
5.608E
2.694E
2.3015
1.543E
8. 350E
5.445E
4.494=
4. 280E
4.019E
3.647E
3. 03 IE
2.986E
02
02
02
02
02
02
01
01
01
01
01
01
01
01
5.703E
6. 402E
5.316E
2.522E
2.1166
1.383E
7.254E
4. 583E
3.665E
3. 385E
3.085E
2.719E
2. 196E
2.105b
03
03
03
03
03
03
02
02
02
02
02
02
02
02
9.588E
9.552E
9.480E
9.363E
9.198E
8.961E
8.688E
B.417E
8.156E
7.909E
7.074E
7.454E
7.245E
7.048E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
X
(UG/P3)
2.B42E 03
DRIFT FLUX DRIFT MASS EMIS.
(UG/M2-SECI (UG/SEC)
2.634E 04
6.612E 04
MASS MEDIAN DIAM.
(UM)
58
TOWER CONDITIONS; Vu = 9.6 m/s ; Ta = 24.6'C ; Tf = 26.9 °C ; T0 =23.6 °C
Range: 3.3 °C ; Approach: 8.1 °C ; Heat Load: O7.4MW
AMBIENT CONDITIONS: Wind Speed: 14.1 Km/hr ; Wind Direction: E ; Twet/Tdry = 15.5/21.2 «c
-------
DIAMETER: NW-SE 1
POSITION: 23
DATE: 2/28/74
TIME FRAME; 1533-1635
NOTE: Concurrent IK Data Point: Position 22.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
4
5
6
7
8
9
10
u> 11
Ifi
2 12
13
14
DdOWl
( JM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
0(HI )
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 3
(UM)
20.
20.
30.
30.
40.
50.
SO.
50.
50.
50.
50.
50.
50.
50.
D(CEN)
(UMI
20.
40.
b5.
95.
130.
175.
225.
275.
325.
375.
W5.
475.
525.
575.
PIDI
(0/UM-M3*
6.300E 03
l.OOOE 03
2.000E 02
3.500E 01
6.300E 00
l.'JOOE 00
2.300E-01
l.OJOE-01
6.300E-02
3.500E-02
2.500E-02
1.400E-02
l.JOOE-03
8.000E-03
DEL X/DEL 0
(UG/UM-M3)
2.639E 01
3.351E 01
2.876E 01
1.571E 01
7.247E 00
2.806t 00
1.670E 00
1.089E 00
1.132E 00
9.664E-01
1.005E 00
7.856E-01
7.577E-02
7.963E-01
DEL X
(UG/M3I
5.278E
6. 702E
8.628E
4.714E
2.899E
1.403E
8.350E
5.445E
5.662E
4. 832E
5.0245
3.928E
3. 788c
3.982E
02
02
02
02
02
02
01
01
01
01
01
01
00
01
DEL FLUX
(UG/M2-SEC)
6. 327E
8.010E
1.025E
5.545E
3.362E
1.594E
9.258E
5.889E
5.977E
4. 981E
5.062E
3.871E
3.654E
3. 762E
03
03
04
03
03
03
02
02
02
02
02
02
01
02
PARTICLE VEL
IM/SECI
1.199E
1.195E
1.188E
1.1 76E
1.160E
1.136E
1.109E
1.082E
1.056E
1.031E
1.007E
9.854E
9.045E
9.448E
01
01
01
01
01
01
01
01
01
01
01
00
00
00
X
(UG/M3)
3.338E 03
DRIFT FLUX DRIFT MASS ENIS.
(UG/M2-SECI (UG/SECI
3.90UE 04
1.096E 05
MASS MEDIAN DIAM.
(UM)
66
TOWER CONDITIONS; vu = 12.0 m/S ; Ta = 24.8°C ; Tf = 27.2 °C ; T0»23.6 «>c
Range: 3.6 °C ; Approach: 8.0 »c . Heat Load: ,J9. 0
AMBIENT
,; Wind Speed: n.2 Km/hr ; Wind Direction: E ; Twet/Tdry = 15.6/22.0 «»c
-------
00
10
DIAMETER; "H-SE
POSITION: 24
DATE: 9/?R/74
TIME FRAME; 1656-1756
NOTE: Concurrent IK Data Point: Position 23.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
4
5
ft
7
8
9
10
11
12
13
14
n(Lnw)
(JM)
10.
30.
50.
80.
110.
150.
200.
250.
TJO.
350.
400.
450.
500.
550.
D(HI )
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
ObL i>
(UM)
20.
20.
JO.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
D(CEN)
(UM)
20.
40.
t>5.
95.
UO.
175.
225.
275.
325.
375.
425.
•*75.
925.
575.
P(D) .
DEL X/DEL D
(•*/UM-M3» IUG/UM-M3)
5.6UOE 03
1.300E 03
2.500E 02
5.000E 01
6.900E 00
2.200E 00
6.300E-OL
2.200E-01
3.900E-02
4.400E-02
3.1UOE-02
2.20JE-02
1.600E-02
1.100E-02
2.346E
4. 356E
3.595E
2.245E
1.024E
6.174E
3. 757E
2.396k
1.600E
1.215E
1.24bE
1.235E
1.212E
1.095E
01
01
01
01
01
00
00
00
00
00
00
00
00
00
DEL X
(UG/M3I
4.691E
B. 713E
1.078E
6.734E
4. 095E
3.087E
1.379E
1.198E
7.999E
6.075E
6.230E
6. 173E
6. 061E
5.475E
02
02
03
02
02
02
02
02
01
01
01
01
01
01
DEL FLUX
(UG/M2-SEC)
5.905E
1.094E
1.346E
8.325E
4.995E
4.692E
2.196E
1.368E
6.92JE
6.626E
6. 650E
6.453E
6. 210E
3.501E
03
04
04
03
03
03
03
03
02
02
02
02
02
02
PARTICLE VEL
(M/SEC)
1.259E
1.
-------
DIAMETER: NW-SE 1
POSITION:
25
DATE:
2/28/74
TIME FRAME: 1240-1340
NOTE: Concurrent IK Data Point: Position 24.33
I
1
<_
3
5
t,
7
i. J
W 11
Ul » «_
12
it
U I L J n J
( U,M 1
iJ.
30.
60.
«
20J.
30>J.
t50.
50J.
350.
D(IU )
50.
-* w •
3C.
110.
15C.
200.
250.
300.
350.
400.
<*50.
500.
550.
600.
TEL [i
20.
?n
t. VJ «
JO.
30.
*C.
50.
50.
50.
50.
'iO.
50.
50.
50.
CJ")
20.
1 3C.
I"7?.
225.
275.
27*.
<•?•=.
5751
p
-------
DIAMETER:
NH-SE 1 POSITION: 26
DATE: 2/28/74
TIME FRAME: "20-1220
NOTE: Concurrent IK Data Point: Position 25.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
OJ
ID
O>
I
I
2
3
4
•5
6
7
8
9
10
11
12
1?
1*
OILOWI
( JM)
10.
30.
bO.
90.
110.
15U.
200.
2-50.
300.
350.
400.
45U.
500.
550.
OIMI 1
(UMI
30.
50.
bO.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
MEL J
(UM)
<0.
20.
30.
JO.
40.
50.
50.
50.
50.
50.
bO.
50.
50.
50.
OICLN)
(UM)
20.
40.
65.
95.
130.
175.
225.
?75.
325.
375.
t25.
475.
525.
575.
PIDI
(W/UH-H3)
4.000E 03
0.300E 02
d.9JOfc 01
1.300E 01
2.200E CO
4.500E-01
l.OOOE-Ol
3.200E-02
1.300E-02
8.000E-03
5.000E-03
3.100E-03
2.500E-03
2.000E-03
CEL X/DEL 0
(UO/UM-M3)
1.676E 01
2.111E 01
1.280E 01
5.836b 00
2.531E 00
1.26JE 00
5.9e>4E-Ol
3.485E-01
2.337E-01
2.209E-01
2.010E-01
1.740E-01
1.894E-01
1.991E-01
DEL X
IUG/M3)
3. 351E
4.222E
3. 839E
1.751E
1.012E
6. 314E
2.982E
1.742E
1. 168E
1.104E
1.005E
8.698E
9.471E
9. 954E
02
02
02
02
02
01
01
01
01
01
01
00
00
00
DEL FLUX
(UG/M2-SEC)
3.012E
3.780E
3.409E
1.534E
8.704E
5.279E
2.412E
1.362E
8.828E
8.072E
7. 109E
5.961E
6.294E
6.419E
03
03
03
03
02
02
02
02
01
01
01
01
01
01
PARTICLE VEL
(M/SEC)
8.988E
8.952E
8.880E
8.763E
8.598E
8.361E
8.088E
7.817E
7.556E
7.309E
7.074E
6.854E
6.645E
6.448E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
X
(UG/M3)
1.589E 03
DRIFT FLUX DRIFT MASS EMIS.
(UG/M2-SEC) (UG/SECI
MASS MEDIAN DIAM.
(UM)
1.394E 04
5.045E 04
53
TOMER CONDITIONS; Vu = 9.0 m/s ; Ta =24.5 "C ; If = 26.8 «c ; T0 = 23.3 QC
Range: 3.5 °C ; Approach: 7.8 °C ; Heat Load: * 18.5MW
AMBIENT CONDITIONS; Wind Speed: 11.0 Kra/hr ; Wind Direction: E ; Twet/Tdry = 15.5/20.3 «c
-------
TURKEY POINT ISOKINETIC SAMPLING SUMMARY FOR DIAMETER NW-SE 1
IK Tube
Position
0.3
1.3
2.3
3.3
4.3
5.3
21.3
22.3
23.3
24.3
25.3
U)
10
-J
Date
3/08/74
3/08/74
3/08/74
3/09/74
3/09/74
3/09/74
2/28/74
2/28/74
2/28/74
2/28/74
2/28/74
MNa
(ug)
1,939
2,239
3,539
3,589
3,209
2,599
3,178
4,183
3,598
3,473
2,748
%
(vg)
210
240
383
413
363
287
362
460
422
380
308
VS
(m3)
20.0
22.2
18.6
17.1
17.0
15.2
17.98
22.81
22.95
20.49
15.98
*U
(m/s)
7.8
10.4
11.8
11.9
10.5
8.45
7.3
10.6
12.4
12.4
10.4
'Na
CNa
0.82
0.82
0.82
0.89
0.89
0.89
1.27
1.27
1.27
1.27
1.27
CMg
CMg
0.89
0.89
0.89
0.91
0.91
0.91
1.29
1.29
1.29
1.29
1.29
Fa
FNa
(wg/m2-s)
620
860
1,841
2,223
1,764
1,286
1,639
2,469
2,469
2,669
2,271
FMg
(ug/m2-s)
73
100
216
262
204
145
190
276
294
297
259
AA
(n.2)
4.47
3.52
3.28
2.93
2.60
2.35
2.32
2.61
2.9
3.20
3.49
<
Na
(ug/s)
2,771
3,027
6,038
6,513
4,586
3,022
3,802
6,444
7,160
8,540
7,926
*"M
Mg
(ug/s)
326
352
708
768
530
341
441
720
853
950
904
TOTALS: 59,829 6,893
TOTAL MASS EMISSION RATES ARE:
•L
=59,829 yg/s and m* = 6,893 wg/s If the basin water concentration equal the
mean concentrations CNa and CMg as listed 1n Table 1 , and 1f the water flow rate equals l,272kg/s (or 20,000gpm).
MINERAL MASS EMISSION FRACTIONS: nNa =0.00049 X; nMg = 0.00052 *; n = 0.000505*
-------
TURKEY POINT ISOKINETIC DATA EXTENSION FOR DIAMETER NM-SE 1
*Na
Position (ug/m3) (ug/m3) (m/s) (ug/m2-s)
Mg
(ug/m2-s)
AA
(m2)
AlI1M
Na
(ng/s)
a
Mg
(ug/s)
6.3
7.3
8.3
152
152
152
17.2
17.2
17.2
6.8
4.15
1.65
1034
631
251
117
71.4
28.4
2.06
1.77
1.48
2130
1117
371
241
126
42.0
19.3
20.3
26.3
225
225
218
26.0
26.0
24.9
0.55
3.5
8.3
124
788
1809
14.3
91.0
207
1.71
2.03
4.95
212
1600
8955
24.5
185
1025
TOTALS:
14,385
1,644
UPPER LIMIT OF MINERAL MASS EMISSION FRACTIONS:
0.00060%
n' = 0.00064%
Mg
n1 = 0.00062%
-------
DIAMETER:
NW-SE 2
POSITION:
DATE: 3/13/74
TIME FRAME: 1218-1318
NOTE: Concurrent IK Data Point: Position 0.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA, TURKEY POINT
to
u>
VO
I
1
2
3
4
5
6
7
R
9
10
11
12
13
1«
n(LOw)
(UMI
10.
30.
so.
ao.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
0(HI I
«UM)
30.
50.
BO.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
-------
o
o
DIAMETER: NW"SE 2
POSITION:
DATE: 3/13/74
TIME FRAME: 1357-1457
NOTE: Concurrent IK Data Point: Position 1-33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
I
1
3
4
5
6
7
*
9
10
11
12
13
14
IHLOW)
(IJM)
10.
30.
50.
10.
110.
150.
200.
?5fl.
300.
350.
400.
450.
500.
550.
OIHI I
(UM)
30.
50.
80.
110.
150.
200.
250.
303.
350.
400.
450.
500.
550.
600.
DEL D
(UM)
20.
20.
30.
30.
40.
50.
50.
bO.
50.
50.
50.
50.
50.
50.
X
(UG/M3)
D(CEM P(D)
(UN) (4/UM-M3)
20. B.900E 03
40. 1.400E 03
65. 1.400E 02
95. 3.20J£ 01
130. 1.300E 01
175. b.OOOE CO
225. 1.300E 00
275. 3.500E-01
325. 1.800E-01
375. d.900E-02
4«J5. 3.5UOE-02
475. l.oOOE-02
525. 7.900 E-03
575. 4 500 E-03
DRIFT FLUX
(U3/H2-SEC)
UEL X/DEL 0
(UG/UM-M3)
3.728E 01
4.691E 01
I.G13E 01
1.437E 01
1.495E 01
1.403E 01
7.753E 00
3.811E CO
3.235E 00
2.457E 00
1.407E 00
8.976E-01
5.988 E-01
4.478 E-01
DRIFT MASS
(UG/SEC)
DEL X
(UG/M3)
7.456E 02
9.383E 02
6.039E 02
4.310E 02
5. 982E 02
7.015E 02
3.877E 02
1.906E 02
1.618E 02
1.229E 02
7.034E 01
4.4B9E 01
2.994 E 01
2.234 E 01
EMIS.
DEL FLUX
(UG/M2-SEC
5. 359E 03
6.711E 03
4. 276E 03
3.001E 03
4.066k 03
4.603E 03
2.438E 03
1.147E 03
9.312E 02
6.768E 02
3. 710E 02
2.269E 02
1.451 E 02
1.041 E 02
MASS MEDIAN
(jim)
PARTICLE VEL
1 (M/SEC)
7.188E 00
7.152E 00
7.U80E 00
6.963E 00
6.798E 00
6.561E 00
6.288E 00
6.017E 00
5.756E 00
5.509E 00
5.274E 00
5.054E 00
4.845 E 00
4. 640 E 00
DIAM.
5.049E 03
3.405E 04
1.168E 05
95
TOWER CONDITIONS: Vu = 7.2 m/s ; Ta =30.2»C ; Tj = 33.2 «c ; T0 = 28.6 »c
Range: 4.6 °C ; Approach: 7.8 °C ; Heat Load: 0.24.3 MM
AMBIENT CONDITIONS; Wind Speed: 12.3 Km/hr ; Wind Direction: N-NW ; Twet/Tdry = 20.8/27.8 «c
-------
DIAMETER:
NW-SE 2
POSITION:
DATE: 3/13/74
TIME FRAME; 1519-1545
NOTE: Concurrent IK Data Point: Position 2.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
I
2
3
4
5
6
7
a
9
10
11
12
13
14
D(LOWI
(UM)
,
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
025.
575.
PCD)
U/UM-M3)
l.lOOfc 04
2.000E 03
4.000E 02
7.900E 01
2. 800t 01
8.900E 00
2.800E 00
1.600E 00
8.900t-01
5.000E-01
2.800E-01
1.400E-01
7.900C-02
4. 500E-02
DEL X/DEL D
(UG/UM-M3)
4.608E
6.702E
5.752E
3. 546E
3.221E
2.497E
1.670E
1.742E
1.600E
1.381E
1.125E
7. 856E
5.986E
4.479E
01
01
01
01
01
01
01
01
01
01
01
00
00
00
DEL X
(UG/M3I
o
9.215E
1.340E
1.726E
1.064E
1.188E
1.249E
8.350E
8.711E
7.999E
6.903E
5.627E
3. 928E
4.993E
2.240E
02
03
03
03
03
03
02
02
02
02
02
02
02
02
DEL FLUX
(UG/M2-SECI
8.835E
1.280E
1.636E
9.962E
1.185E
1.119E
7.254E
7.332E
6.524E
5.459E
4.319E
2.928E
2.168E
1.579E
03
04
04
03
04
04
03
03
03
03
03
03
03
03
PARTICLE VEL
(M/SEC)
9.588E
9.552E
9.480E
9.363E
9.198E
8.961E
8.688E
8.417E
8.156E
7.909E
7.674E
7.454E
7.245E
7.048E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
X
(UG/M3)
1.226F J4
DRIFT FLUX DRIFT MASS EMIS.
(UG/M2-SEC) (UG/SEC)
1.086E 05
3.409E 05
MASS MEDIAN DIAM.
(UM)
144
TOUER CONDITIONS; vu = 9.6 m/s ; Ta=30.1°C ; Tj =33.2 °C ; T0 = 28.9 »C
Range: 4.3 »c . Approach: 7.0 QC . Hfiat Load.
CQNPnTONS; Wind Speed: 7.8 Km/hr ; Wind Direction: N-NW ; Twet/Tdry - 21.9/26.1 "C
-------
DIAMETER:
NW-SE 2
POSITION:
DATE: 3/13/74
TIME FRAME: 1641-1741
o
ro
NOTE: Concurrent IK Data Point: Position 3.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
4
5
6
7
8
9
10
11
12
13
I*
UILOW)
( UMI
10.
30.
•>o.
40.
110.
150.
200.
250.
300.
350.
400.
0.
50.
50.
50.
50.
50.
50.
50.
DCCEMI
(JMI
20.
40.
e>5.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P(D)
(#/UM-M3)
l.OOOE 04
1.600E 03
3.200k 02
5.600C 01
l.tfOOt 01
5.0JOE 00
2.500E 00
1.400E 00
7.100E-01
3.200fc-01
1.100E-01
4.500E-02
2.000E-02
l.OOOE-02
OEL X/DEL L>
(UG/U1-M3I
4. 189E
5.362E
4.601E
2.514E
2.071E
1.4J3E
1.491E
1.524E
1.27oE
8.836E
4.421E
2.525E
1.515E
01
01
01
01
01
01
Oi
01
01
00
00
00
00
9.954E-01
OEL X
(UG/M3)
8. 378E
1.072E
1.380E
7.5425
8.2836
7.015E
7.433E
7.622E
o. 381E
4.41UE
2.2115
1.263E
/.577E
4. 977E
02
03
03
02
02
02
0£
02
02
02
02
02
01
01
DEL FLUX
(UG/M2-SfcCI
8.535E
1.089E
1.391E
7.514E
8.115E
6.708E
6.924E
6.673E
5.587E
3. 759E
1.829E
1.017E
5.944E
3.807E
03
04
04
03
03
03
03
03
03
OJ
03
03
02
02
PARTICLE VEL
(M/SEC)
1.019E
1.015E
1.008E
9.963E
9. 798E
9.561fc
9.288E
9.017E
8.756E
8.509E
8.274E
8.054E
7. 845E
7.648E
01
01
01
00
00
00
00
00
00
00
00
00
00
00
X
(UG/M3)
8.635E 03
ORIFT FLUX DklFT MASS EMIS. MASS MEDIAN DIAM.
(UG/M2-SEC) (UG/SECI (UM)
8.264E 04
2.347E 05
123
TOWER CONDITIONS: Vu = 10.2m/s ; Ta=30.3«C ; Tf =33.0 «c ; T0 = 29.2 oc
Range: 3.8 °C ; Approach: 6.8 °C ; Heat Load: ^20.1 MW
AMBIENT CONDITIONS: Wind Speed: 8.0 Km/hr ; Wind Direction: N-NW ; Twet/Tdry = 22.4/26.2 °C
-------
o
U)
DIAMETER: NW-SE 2
POSITION:
DATE: 3/13/74
TIME FRAME: 1822-1922
NOTE: Concurrent IK Data Point: Position 4.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA, TURKEY POINT
I
1
2
3
4
5
6
7
8
9
10
11
12
13
14
04LGWI
(JMI
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
0(HI )
-------
DIAMETER: NM"SE 2
POSITION:
DATE: 3/14/74
TIME FRAME: 1111-1140
NOTE: Concurrent IK Data Point: Position 5.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
it
5
6
7
n
9
ID
11
OILCWl
(UM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
4-00.
DIHI I
(UM)
30.
DC.
80.
110.
15G.
00.
250.
300.
350.
*uO.
-------
DIAMETER:
POSITION; 20
DATE; 3/14/74
TIME FRAME; 1258-1358
NOTE: Concurrent IK Data Point: Position 19.33
o
en
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY >OINT
I
1
2
3
4
5
t>
7
8
9
10
11
12
13
14
DILOW)
( JM)
10.
10.
so.
no.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
OIHI I
(UH)
30.
50.
30.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
(UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
DICENI
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P(0)
J/»/UM-M3)
7.900E 03
l.OOOE 03
2.300E 01
4. 500E 00
1.300E 00
3.200E-01
1.100E-01
4.500E-02
2.200E-02
1.300E-02
8.900E-03
6.300E-03
4.000E-03
2.800E-03
DEL X/DEL D
(UG/UM-M3)
3.309E 01
3.351E 01
4.026E 00
2.020E 00
1.4956 00
8.980E-01
6.561E-01
4.900E-01
3.954E-01
3.590E-01
3.577E-01
3.535E-01
3.031E-01
2.787E-01
DEL X
(UG/N3)
6.618E 02
6.702E 02
1.208E 02
6.060E 01
5. 982E 01
4.490E 01
3.280E 01
2.450E 01
1.977E 01
1.795E 01
1.7U9E 01
1.768E 01
1.515E 01
1.394E 01
DEL FLUX
IUG/M2-SEC)
2.374E 03
2.381E 03
4.203E 02
2.038E 02
1.913E 02
1.330E 02
8.816E 01
5.922E 01
4.263E 01
3.425E 01
2.995E 01
2.570E 01
1.887E 01
1.461E 01
PARTICLE VEL
«M/SEC!
3.588E 00
3.552E 00
3.480E 00
3.363E 00
3.198E 00
2.961E 00
2.688E 00
2.417E 00
2.156E 00
1.909E 00
1.674E 00
1.454E 00
1.245E 00
1.048E 00
X
(UG/M3I
DRIFT FLUX DRIFT MASS EMIS.
JUG/M2-SEC)
-------
DIAMETER;
NW-SE 2
POSITION:
DATE: 3/14/74
TIME FRAME; 1830-1915
NOTE: Concurrent IK Data Point: Position 20.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I O(LOW) DIHI I
(UMI (UM)
1
2
3
i.
5
6
7
8
9
10
11
12
13
14
10.
30.
50.
RO.
110.
150.
?00.
250.
300.
350.
400.
450.
500.
550.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
OfcL U
(UM)
O(CEN)
(UM)
P(0)
DEL X/DEL D
(UG/UM-M3I
DEL X DEL FLUX PARTICLE VEL
(UG/M3) (UG/M2-SECI (M/SECI
20.
20.
30.
JO.
40.
50.
50.
50.
5U.
50.
50.
50.
50.
50.
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
7.900E 03
1.600E 03
1.400E 02
1.400E 01
4.0UOE 00
2.000E 00
l.OOOE 00
5.000E-01
2.000E-01
1. 3006-01
7.900E-02
5.600E-02
4.000E-02
2.800E-02
3. 309E
5.362E
2.013E
6.285E
4.601E
5.612E
5.964E
5.4<»5E
3. 595E
3.590E
3. 175E
3.142E
3.031E
2.787E
01
01
01
00
00
00
00
00
00
00
00
00
00
00
6. 61 BE
1.072E
6.039E
1.885E
1.841E
2.806E
2.982E
2.722E
1.797E
1.795E
1.588E
1.571E
1.515E
1.394E
02
03
02
02
02
02
02
02
02
02
02
02
02
02
4.
7.
3.
1.
1.
1.
1.
1.
9.
8.
7.
6.
6.
5.
360E
026E
913E
200E
141E
673E
696E
475E
268E
81 OE
422fc
998E
433E
641E
03
03
03
03
03
03
03
03
02
02
02
02
02
02
6.588E
6.5S2E
6.480E
6.363E
6. 198E
5.961E
5.688E
5.417E
5.156E
4.909E
4.674E
4.454E
4.245E
4.048E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
X DRIFT FLUX DRIFT MASS EM1S.
(UG/M3) (UG/M2-SECI (UG/SECI
4.528E 03
2.694E 04
5.71IE 04
MASS MEDIAN DIAM.
(UM)
76
TOWER CONDITIONS; Vu = 6.6 m/s '. Ta = 30.5°C ; Tj=33.2 °C ; T0 =28.9 °C
Range: 4.3 °C ; Approach: 9.6 °C ; Heat Load: *22.7 MW
AMBIENT CONDITIONS; Wind Speed: 15.9 Km/hr ; Wind Direction: NE ; TWet/Tdry =19-3/22-8 °C
-------
DIAMETER: NW-SE 2
POSITION: 22
DATE; 3/15/74
TIME FRAME; 1300-1400
NOTE: Concurrent IK Data Point: Position 21.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
?
3
4
5
6
7
8
9
10
11
12
13
14
D(LOM
(UM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
OIHI )
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
IUM)
20.
20.
30.
30.
40.
50.
50.
50.
5C.
50.
50.
50.
50.
50.
D(CEN)
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P(D»
(0/UM-M3)
l.OOOE 04
2.000E 03
1.400E 02
1.100E 01
2.300E 00
8.900E-01
3.500E-01
l.SOOE-01
8.900E-02
5.000E-02
3.200E-02
2.200E-02
1.600E-02
1.100E-C2
DEL X/DEL 0
(UG/UM-H3)
4. 189E 01
6. 702E 01
2.013E 01
4. 93SE 00
3.221E 00
2.497E 00
2.087E 00
1.960E 00
1.600E 00
1.381E 00
1.246E 00
1.235E 00
1.212E 00
1.095E 00
DEL X
(UG/M3I
8.378E 02
1.340E 03
6. 039E 02
1.481E 02
1.288E 02
1.249E 02
1.044E 02
9. 800E 01
7.999E 01
6. 903E 01
6.431E 01
6.173E 01
6. 061E 01
5.475E 01
DEL FLUX
IUG/M2-SEC)
6.524E 03
1.039E 04
4.638E 03
1.120E 03
9. 531E 02
8.943E 02
7. 189E 02
6.485E 02
5.084E 02
4.217E 02
3.778E 02
3.490E 02
3.301E 02
2.873E 02
PARTICLE VEL
CM/SEC)
7. 788E 00
7.752E 00
7.680E 00
7.563E 00
7.398E 00
7.161E 00
6.888E 00
6.617E 00
6. 356E 00
6.109E 00
5.874E 00
5.654E 00
5.445E 00
5.248E 00
X ORIFT FLUX DRIFT MASS EMIS,
(UG/M3) (UG/M2-SEC) IUG/SEC)
3.777E 03 2.816E 04 6.815E 04
MASS MEDIAN DIAM.
(UM)
46
TOWER CONDITIONS: vu = 7.8 m/s ; Ta=32.0'C ; TI = 35.0 -c . TO B 30.8 oc
Range: 4.2 »c ; Approach: 8.1 »c . Heat Load: ^22.1MW
AMBIENT CONDONS: Wind Speed: 22.3 Kn/hr ; Wind Direction: E . Twet/Tdry = 22.7/25.6 «c
-------
-
g
DIAMETER: NW-SE 2
POSITION; 23
DATE; 3/15/74
TIME FRAME:
NOTE: Concurrent IK Data Point: Position 22.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
1
4
5
6
7
8
9
10
11
12
13
DILOW)
(UMI
10.
30.
50.
80.
110.
ISO.
200.
250.
300.
350.
400.
450.
500.
OJHI 1
(UMI
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
«t50.
500.
550.
DtL 0
(UM)
20.
20.
30.
30.
4U.
50.
50.
50.
50.
50.
50.
50.
50.
D(CEN)
(UMI
20.
'. 0.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
Plot
(0/UM-M3I
l.OOOE 04
l.oOOE 03
7.100E 01
8.900E 00
2.800E 00
1.1 OOE 00
5.000E-01
2.500E-01
1.400E-01
7.900E-02
4.000E-02
2.000E-02
1.100E-02
DEL X/DEL 0
(UG/UM-M3I
4.i89E
5.362E
1.021E
3.995E
3.221E
3.087E
2.982E
2.722E
2.516E
2.181E
1.608E
1.122E
01
01
01
00
00
00
00
00
00
00
00
00
8.334E-01
DEL X
IUG/H3I
8. 378E
1.072E
3.063E
1.199E
1.288E
1.543E
1.491E
1.361E
1.258E
1.091E
8.039E
5. 612E
4. 167E
02
03
02
02
02
02
02
02
02
02
01
01
01
DEL FLUX
(UG/M2-SECI
9.037E
1.1536
3.271E
1.266E
1.340E
1.568E
1.474E
1.309E
1.177E
9.934E
7. 134E
4. 856E
3.519E
03
04
03
03
03
03
03
03
03
02
02
02
02
PARTICLE VEL
(M/SEC)
1.079E
1.075E
1.068E
1.056E
1.040E
1.016E
9.888E
9.617E
9.356E
9.109E
8. 874E
8.654E
8.445E
01
01
01
01
01
01
00
00
00
OO
00
00
00
X
(UG/M3I
3.318E 03
DRIFT FLUX
(UG/M2-SECI
3.452E 04
DRIFT MASS ENIS.
(UG/SECI
9.354E 04
MASS MEDI"M DIAM.
(UM)
45
TOWER CONDITIONS: vu = 10.8 m/s ; Ta = 31.8°C ; Tj = 35.0 °C ; T0=30.6 »c
Range: 4.4 °c ; Approach: 8.6 »c . Heat Load: ^23.21^
AMBIENT CONDITIONS: Wind Speed: 22-3 Km/hr ; Wind Direction: E ; Twet/Tdry =22-0/25'5 °C
-------
o
IO
DIAMETER:
NW-SE 2
POSITION:
24
DATE; 3/15/74
TIME FRAME; 1540-1628
NOTE: Concurrent IK Data Point: Position 23.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I 01 LOW) D(HI)
IUM) (UHI
DEL 0
(UH)
CICEN)
(UMI
PID)
(«/UM-M3)
OEL X/OEL 0
(UC/UM-N3I
DEL X DEL FLUX PARTICLE VEL
JUG/M3I IUG/M2-SEC) IM/SECI
1
2
3
4
5
A
7
8
9
10
11
12
13
14
10.
30.
50.
30.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
30.
50.
SO.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
l.OOOE 04
1.300E 03
7.100E 01
3.900E 00
2.500E 00
1.100E 00
5.000E-01
2.200E-01
1.400E-C1
8.900E-02
5.000E-02
2.500E-02
1.100E-02
5.600E-03
4.1S9E 01
4. 356E 01
1.021E 01
3.995E 00
2.876E 00
3.0S7E 00
2.9S2E 00
2.396E 00
2.516E 00
2.457E 00
2.010E 00
1.403E 00
8. 334E-01
5. 574E-01
a.
8.
3.
1.
1.
1.
1.
1.
1.
1.
1.
7.
4.
2.
378E
713E
06 3E
199E
150E
543E
491E
198E
258E
229E
005E
014E
167E
787E
02
02
02
02
02
02
02
02
02
02
02
01
01
01
9. 540E
9.891E
3.455E
1.338E
1.265E
1.661E
1.564E
1.224E
1.253E
1.193E
9.521E
6.491E
3. 769E
2.466E
03
03
03
03
03
03 ]
03 ]
03 1
03 4
03 9
02 9
02 <3
02 9
02 8
• 139E
• 135E
• 128E
• 116E
.100E
L.076E
.049E
..022E
I.956E
I.709E
I.474E
'.254E
.045E
• 848E
01
01
01
01
01
01
01
01
00
00
00
00
00
00
X
(UG/M3)
DRIFT FLUX DRIFT MASS EMIS.
nne^ni wunmiivn^. wind Speed.
.« j ^ , r-
Wind Direction: E . Twet/Tdry • 22.1/25.1 «c
-------
DIAMETER: NW-SE 2
POSITION: 25
DATE: 3/15/74
TIME FRAME: 1643-1727
NOTE: Concurrent IK Data Point: Position 24.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
1
1
2
3
4
5
6
7
8
q
10
11
12
13
14
D(LOM>
(UMI
10.
30.
50.
80.
110.
ISO.
200.
250.
300.
350.
400.
450.
500.
550.
0(HI I
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 1)
CUM)
20.
20.
30.
•30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
riCEN)
1 UMI
20.
40.
55.
95.
130.
175.
225.
275.
325.
375.
•*25.
475.
525.
575.
P(D)
( K/UM-M3I
U.900E 03
7.900E 02
7.1006 01
7.100E 00
2.000F 00
l.OOOE 00
4.500E-01
2.500E-01
i.aooE-oi
1.100E-01
7.100E-02
4.500E-02
2.SOOE-02
1.800E-02
DEL X/DEL D
(UG/UM-M3)
3.728E
2.647E
1.042 IE
3.187E
2.301F
2.806E
2.684E
2.722E
3.235E
3.037E
2.854E
2.525E
i. 121E
1.792E
01
01
01
00
00
00
00
00
00
00
00
00
00
00
DEL X
(UG/M3)
7.456E
5. 295E
3. 063E
9.562E
9.203E
1.403E
1.342E
1.361E
1.618E
1.519E
1.427E
1.263E
1.061E
8.959E
02
02
02
01
01
02
02
02
02
02
02
02
02
01
DEL FLUX
(UG/M2-SECI
6.701E
4. 740E
2.720E
8.379E
7.912E
1.173E
1.085E
1.064E
1.222E
1.110E
1.009E
8.653E
7. 049E
5.777E
03
03
03
02
02
03
03
03
03
03
03
02
02
02
PARTICLE VEL
(M/SEC)
8.988E
8.952E
8.880E
8.763E
8.598E
8.361E
8.J88E
7.B17E
7.556E
7.309E
7.U74E
6.854E
6.645E
6.448E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
x
(UG/M3I
2.958E 03
DRIFT FLUX DRIFT MASS EMIS.
(UG/M2-SfcCI (UG/SECI
2.460E 04
8.094E 04
MASS MEDIAN DIAM.
(UM)
70
TOWER CONDITIONS: Vu = 9.0 m/S ; Ta = 32.1°C ; ^=34.8 °C ; T0=30.6 °C
Range: 4.2 °C ; Approach: 8.5 °C ; Heat Load: ^22.1 MW
AMBIENT CONDITIONS; Wind Speed: 22.3 Km/hr ; Wind Direction: E ; Twet/Tdry • 22.1/25.0 »c
-------
DIAMETER: NW-SE 2
POSITION: 26
DATE: 3/15/74
TIME FRAME: 1743-1831
NOTE: Concurrent IK Data Point: Position 25.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I O(LGW) D(HI)
(DM) (UH)
1
2
3
4
5
f>
7
8
9
10
11
12
13
14
10.
10.
50.
ao.
110.
ISO.
200.
2SO.
300.
350.
400.
450.
500.
550.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
(UM»
0(CEM
(UM)
P(DI
U/UM-M3I
UEL X/DEL 0
(UG/UM-M3I
DEL X DEL FLUX PARTICLE VEL
(UG/H3J
-------
TURKEY POINT ISOKINETIC SAMPLING SUMMARY FOR DIAMETER NW-SE 2
IK Tube
Position
0.3
1.3
2.3
3.3
4.3
5.3
20.3
21.3
22.3
23.3
24.3
25.3
— .
Date
3/13/74
3/13/74
3/13/74
3/13/74
3/13/74
3/14/74
3/14/74
3/15/74
3/15/74
3/15/74
3/15/74
3/15/74
MNa
(wg)
2,138
3,703
5,739
6,338
8,069
3,614
2,439
3,389
2,864
2,339
3,364
1,589
M
Mg
(pg)
203
378
600
590
820
402
248
370
284
243
350
165
vc
s
(m3)
11.70
13.12
20.69
18.35
17.55
18.98
10.69
15.68
16.20
15.61
12.01
9.73
-
u
(m/s)
4.0
7.0
8.1
10.0
10.1
9.8
4.9
6.45
8.9
11.15
10.95
8.35
-c
"&
CNa
0.82
0.82
0.82
0.82
0.82
0.87
0.87
0.82
0.82
0.82
0.82
0.82
CMn
Mg
CMg
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.88
0.88
0.88
0.88
0.88
Fa
Na
(pg/m2-s)
599
1,620
1,842
2,832
3,808
1,623
973
1,143
1,290
1,370
2,515
1,118
Fa
Mg
(pg/m2-s)
63
184
214
293
429
189
103
134
137
153
281
125
M
(m2)
3.25
3.62
3.33
3.04
2.74
2.45
1.93
2.22
2.52
2.81
3.10
3.39
TOTALS:
a
Na
1,947
5,864
6,134
8,609
10,430
3,976
1,878
2,537
3,251
3,850
7,797
3,790
60,063
a
Mg
(pg/s)
205
666
713
891
1,175
463
199
297
345
430
871
424
6,679
TOTAL MASS EMISSION RATES ARE: mjja = 60,063 yg/s and mjj = 6,679 vg/s if the basin water concentration equal the
mean concentrations CNa and CMg as listed in Table 1 , and if the water flow rate equals l,272kg/s (or 20,000 gpm).
MINERAL MASS EMISSION FRACTIONS: nNa = 0.00049%; ^ = 0.00050%; n = 0.000495%
-------
TURKEY POINT ISOKINETIC DATA EXTENSION FOR DIAMETER NU-SF
Position
6.3
7.3
8.3
9.3
17.3
13.3
19.3
26.3
*Na
(ug/m3)
167
167
167
167
199
199
199
134
=====
*Mg
(ug/m3)
19.3
19.3
19.3
19.3
21.0
21.0
21.0
15.0
vu
(m/s)
10.0
7.9
6.4
2.4
0.5
1.8
3.3
6.7
Fa
Na
(yg/m2-s)
1670
1319
1069
401
99.5
358
657
898
==^====
Fa
X
(wg/m2-s)
193
152
124
46.3
10.5
37.8
69.3
101
TOTALS
AA
(m2)
2.16
1.87
1.57
1.28
1.08
1.33
1.61
6.12
•
AII1M
Na
(wg/s)
3607
2467
1678
513
107
476
1058
5496
15,402
=^===
\m
Mg
(yg/s)
417
284
195
59.3
11.3
50.3
112
618
1,747
UPPER LIMIT OF MINERAL MASS EMISSION FRACTIONS:
= 0.00062% n' = 0.00063%
\
0.00062%
-------
Table 8
COOLING TOWER DRIFT DATA SUPPLEMENT AS ACQUIRED BY SP LARGE STAIN COUNT
Droplet Flux Due to Flux Due to
Diameters Droplets >600 pm Droplets <600 urn
Diameter Position (urn) (gg/m'-sec) (gg/m5-secl Percent*
SW-NE 1 23 860 3,170 99,100 3
SW-NE 1 24 1620 211300 83 500 26
SW-NE 1 27 850, 2240, 1200 136,000 54,000 252
NW-SE 1 24 1090 6,550 54,900 12
SW-NE 2 22 1070 18,500 22,800 8
NW-SE 2 1 1570 58,000 26,000 223
NW-SE 2 2 670 4,580 34 000 13
NW-SE 2 3 610 3,340 109,000 3
NW-SE 2 4 960, 670 8,860 82,600 11
NW-SE 2 21 710, 960 4,730 26,900 18
NW-SE 2 24 1100, 910, 710 12,400 34,600 36
NW-SE 2 26 680, 1150 3,060 8,240 37
SW-NE 3 2 660, 680 1,290 19,400 7
SW-NE 3 3 640, 670 2,420 38,000 6
690, 610
SW-NE 3 4 660, 1010, 610 9,570 74,100 13
660, 620, 680
SW-NE 3 5 650, 650, 900 4,330 41,900 10
SW-NE 3 6 1320, 780, 1970 26,200 64,900 40
SW-NE 3 23 1340 52,000 376,000 14
SW-NE 3 24 950, 1510 50,000 149,000 33
SW-NE 3 25 790, 1900 111,000 141,000 78
* % = (Flux due to droplets >600 urn/Flux due to droplets <600 urn) x 100%
-------
APPENDIX F
COOLING TOWER DRIFT EMISSION DATA ACQUIRED FOR FLORIDA POWER AND LIGHT
COMPANY
(Report released courtesy of Florida Power and Light Company)
415
-------
PO BOX 3100 MIAMI. FLORIDA 33101
FLORIDA POWER & LIGHT COMPANY
August 30, 1974
Dr. Gunter 0. Schrecker
Environmental Systems Corporation
P. 0. Box 2525
Knoxville, Tennessee 37901
Dear Dr. Schrecker:
On February 27, 1974 you conducted a special test on the
Turkey Point cooling tower for Florida Power & Light Company,
in addition to tests done under your contract with the
Environmental Protection Agency. This was done to provide
us with some information on the cooling tower drift charac-
teristics sooner than would have been available from reports
of the tests funded by EPA.
Florida Power & Light Company has no objection to the inclu-
sion of the February 27, 1974 test data and results in the
report you make to EPA on the Turkey Point test program if
it is felt this might add any value to the report.
Sincerely,
C. D. Henderson
Manager of Environmental Engineering
CDH/SHD/ayg
cc: D. D. Dunlop
R. L. Lyerly
E. C. Weber
RECEIVED
416 SEP 0 6 1974
INWONrttmAl HaitMS CORP-
-------
ENVIRONMENTAL SYSTEMS CORPORATION
POST OFFICE BOX 2525
KNOXVILLE, TENNESSEE 37901
(615) 573-7931
CHARACTERIZATION OF DRIFT EMISSION OF THE TURKEY POINT
COOLING TOWER OF FLORIDA POWER & LIGHT COMPANY
by
Gunter 0. Schrecker
Ronald 0. Webb
Test Performed for Florida Power & Light Company
February 27, 1974
Purchase Order No. 30069-86108
Final Report Submitted
August 1974 (amended June 1975)
(Preliminary Report Submitted March 1974)
417
-------
CHARACTERIZATION OF DRIFT EMISSION
OF THE TURKEY POINT COOLING TOWER
OF FLORIDA POWER & LIGHT
On February 27, 1974, drift characterization tests were performed along the
northwest radius (Figure 1) of the Marley 600/700 single cell mechanical
draft cooling tower located at the Turkey Point Plant of Florida Power &
Light. The following instruments were contained in the instrument package
that made measurements along this radius:
1. The PILLS II-A (Particulate instrumentation by Laser Light
Scattering) System provided particle density distribution
data in the range between approximately 40 urn and 1,000 pm.
2. The SP (Sensitive Paper) System provided particle density
distribution data in the range of approximately 10 \an to
400 urn.
3. The IK (Isokinetic Sampling) System provided mass emission
data.
4. A Gill Propeller Anemometer provided air updraft velocity
data.
5. A dry bulb/wet bulb psychrometer provided data on the temperature
distribution along the radius.
An on-site meteorological tower provided wind speed and direction, as well as
ambient dry bulb/wet bulb data. The tower inlet and outlet water temperatures,
as well as the heads in each hot water distribution basin were also measured
whenever drift data were acquired by both the PILLS and SP Systems.
The following table gives information on the mode of drift data acquisition
at those positions where measurements were carried out:
POSITION
DRIFT DATA
ACQUISITION
0
SP
1
SP
2
SP
3
SP
4
SP
5
SP
6
SP
7
SP
SYSTEM EMPLOYED: IK IK IK IK
PILLS PILLS PILLS PILLS PILLS
418
-------
Figure 2 shows the updraft velocity profile for the northwest radius. The
average velocity at each point, as well as the range of velocity fluctuations
are entered. Negative (downward) velocities were not determined since the
read-out of the Gill Propeller Anemometer does not provide for negative
voltages. At position 7 the propeller stopped and reversed its direction
of rotation at times, whereas this became a frequent feature at position
8 and, in particular, at position 9. For all other positions between 9
and the center of the exit area, highly fluctuating and mostly downward
velocities were observed. The temperatures that were measured along the
entire northwest radius are all between 22.5 (72.5°F) and 23.3°C (73.9°F),
with the higher temperatures at positions 1-5 and over the hub.
Tables 1-1 to 1-8 present the particle density distribution data p(d) and
the mass density data AX for positions 0 to 7. d'-d" are the edge particle
diameters, 3" the center diameter and Ad the width of the various particle
size ranges, mp is the mass of one droplet with a diameter equal to the
center diameter. p(d) is the particle density distribution expressed as
the number of particles per unit particle size range and unit volume of
sampled air which is discussed in more detail in Appendix 3. AX is
the mass of drift per unit volume of air for each particle size range and
dm,,, is the mass median diameter. The drift mass density at the measuring
point is obtained by summing over the particle size ranges. The p(d)
data presented here are refined from the values presented in the earlier
preliminary field report. Correction factors have been applied in
a computerized data reduction to account for the collection efficiency
of the SP discs in the small size ranges and to account for the response
characteristics of PILLS II-A. These factors were not applied in the
simpler preliminary data reduction carried out in the field in order to
419
-------
present the major results immediately. The tablets also contain information
on the ambient conditions, as well as on various tower operational parameters
like heat load and approach. These data were acquired at the same time as
the drift data. Dimensions of the fill geometry are presented in Appendix A
in order to facilitate comparisons of this tower with other cooling
towers.
A note is necessary with respect to the tower inlet and outlet temperatures.
All inlet temperatures were measured with a mercury thermometer in the hot
water distribution basin. The outlet temperatures were read at the thermo-
meter that is located at the wooden staircase with the sensor in the Inlet
of the discharge pipe. This thermometer was calibrated three times against
a mercury thermometer and it was found that it reads at least 3°F too low.
Therefore, 3°F was added to all discharge temperatures read at this ther-
mometer.
The isokinetically obtained drift data are tabulated in Table II. The IK-
tube at position 0.2 and PILLS II-A at position 1 were run simultaneously
since the IK-tube is 0.8 ft. away from the PILLS II-A sampling volume. This
holds equally for the other positions of the IK.
The apparent drift mass determined from the mass of magnesium and sodium
collected in the IK-tubes are in close agreement for four of the five tubes.
Comparing the average drift mass density x to that determined by the PILLS
and SP System, it is readily noticed that x IK is larger than XPILLS/SP
by a factor of approximately 5 to 10. It is believed that this difference
420
-------
1s mainly due to the increased mineral concentration of the smaller droplets
which carry the bulk of the evaporative heat rejection process. Since the
IK-tubes collect the minerals contained in the drift droplets, an assumption
has to be made to arrive at an apparent drift droplet density. This assump-
tion is that the drift droplet mineral concentration is the same as the ba-
sin water mineral concentration. If any heat is rejected by the cooling to-
wer, the drift droplet mineral concentration will increase which yields,
with the stated assumption, an apparent drift mass concentration that is too
large.
The drift fraction expresses the drift mass emission in per cent of the
circulating water rate. Based on the five IK-tubes that were exposed at po-
sition .2 to 4.2, the drift fraction of the tower was calculated as .00062*.
No isokinetic sampling tubes were exposed between position 4.2 and the center
of the fan stack exit area. The rate of drift mass emission is usually de-
creasing rapidly at positions that are located between the peak of the velocity
profile and the point where the average velocity is zero, since both the drift
mass density JT and the updraft velocity are usually decreasing. Here, however,
the drift mass density has its largest value at position 4.2 and the rate of
drift mass emission is slightly larger at position 4.2 than at position 3.2.
It therefore became clear during the data reduction that at least one more
IK data point would have been useful.
In order to derive an upper limit for the drift fraction, the rates of drift
mass emission were calculated for positions 5.2, 6.2, 7.2 and 8.2, using
421
-------
the measured updraft velocities at these positions and assuming that the
drift mass density remains constant at 30,000 vg/m3, although in reality.the
drift mass density decreases rapidly. This assumption appears to be justi-
fied in order to arrive at an upper limit for the drift fraction. The re-
sults are shown below.
Area of _ Updraft Drift Mass Flux
B ... A?ny!us , x , Velocity V 7 • V
Position (m2) (Vg/m3) (m/sec.) (ug/m2sec.)
5.2 4.73 30,
6.2 4.29
7.2 3.69
8.2 3.00
Upper Limit
000 9.5 285
6.1 183
3.5 105
,000
,000
,000
1.5 45,000
7'87 + 2'67 x 100* = 0.
30084%
Rate of
Drift Mass
Emission
(g/sec)
1.35
0.79
0.39
0.14
2.67
of Drift Fraction " 1.262 x 106
Drift mass emission rates, both measured and estimated are plotted in Figure 3.
422
-------
A
Staircase
KARLEY 600/709 SINGLE CELL MECHANICAL DRAFT COOLING TOWER
installed at the Turkey Point Plant of Florida Power & Light
(view from above shows radius alona which drift measurements were taken)
FIGURE 1
423
-------
Updraft
Velocity
(m/sec)
14
12
10..
i r
Environmental Systems Corporation
1 Velocity Profile
: Northwest Radius
• 2/27/74
j Turkey Point
VELOCITY MEASUREMENT POINTS
(distance between points = 1 ft.)
Diameter of Fan Stack Exit = 8.37m = 27'5.5"
FIGURE 2
-------
IHDLt 1-1
ENVIRONMENTAL SYSTEMS CORPORATION
POST OFFICE BOX 2525
KNOXVILLE. TENNESSEE 37901
(615) 573-7931
,«CT.,,™ .V SINGLE CELL MECHANICAL DRAFT COOLING TOWER
INSTALLED AT THE TURKEY POINT PLANT OF FLORIDA POWER & LIGHT
Date/Time Range: 2-27-74/11:54-13:10: Test Position: NW Radius, Position 0_
Test Conditions: Avg. Updraft Velocity _9_ m/sec; Avg. Air Discharge Temp.^_
Tower Outlet Water Temp: _^ °F; Tower Inlet Water Temp: * °F
Range: _^ °F; Approach _^ °F
Heat Load: * BTU/hr.
Volumetric Air Flow Rate: 924600 cfm.
Volumetric Water Flow Rate: 20000 gpin (according to design specs)
Ambient Conditions: Wind Speed: ^_mph, Wind Direction: _^_
Tdry/T,
/ * °F
°F
*See data for Position 1
d'-d"
urn
0-20
40
60
80
100
120
140
180
220
260
300
340
380
420
460
500
540
580
620
3 Ad mp
ym jjm Pg
10 20 5.236 x 10'4
30
50
70
90
110
130 1
160 4
200
240
280
320
360
400
440
480
520
560
600 '
0.0141
0.0654
0.1796
0.382
0.697
1.150
0 2.145
4.189
7.238
11.49
17.16
24.43
33.51
44.60
57.91
73.62
91.95
113.1
P(d)
#/ \an-tn
15000
2080
250
70
27
11
5.8
2.2
0.68
0.23
ug/I3
157
587
327
251.4
206.3
153.3
133.4
188.76
113.9
66.6
425
2184
62
-------
TABLE 1-2
ENVIRONMENTAL SYSTEMS CORPORATION
1
? POST OFFICE BOX 2525
KNOXVIU.E, TENNESSEE 37901
(615) 573-7931
MARLEY 600/700 SINGLE CELL MECHANICAL DRAFT COOLING TOWER
INSTALLED AT THE TURKEY POINT PLANT OF FLORIDA POWER & LIGHT
Date/Time Range: 2-27-74/11:55-13:06 ; Test Position: NW Radius, Position
Test Conditions: Avg. Updraft Velocity 9.6 m/sec; Avg. A1r Discharge
Tower Outlet Water Temp: 72.5 °F; Tower Inlet Water Temp: 80.2 °F
Range: 7.7 °F; Approach 20.5 °F
Heat Load: 7.7 x 107 BTU/hr.
Volumetric Air Flow Rate: 924600 cfm.
Volumetric Water Flow Rate: 20000 gpm (according to design specs)
Ambient Conditions: Wind Speed: _7.mph, Wind Direction: NNW
Tdry/L..«. 57.6/52.0 °F
*•• j
d'-d"
\m
0-20
40
60
80
100
120
140
180
220
260
300
340
380
420
460
500
540
580
620
d Ad mp
pm \m ug
10 20 5.236 x 10'4
30
50
70
90
no
130 1
0.0141
0:0654
0.1796
0.382
0.697
' 1.150
160 40 2.145
200
240
280
320
360
400
•440
480
520
560
600 '
4.189
7.238
11.49
17.16
24.43
33.51
44.60
57.91
73.62
91.95
113.1
426
P(d)
#/Vim-m
25000
3330
250
28.2
8.5
4.0
2.24
.792
.282
.085
.0354
AXi
yg/m3
262
940
327
101
65
56
52
68
47
25
16
1959 yg/m3
dim = 35 ym
-------
TABLE 1-3
ENVIRONMENTAL SYSTEMS CORPORATION
! 3
L '• POST OFFICE BOX 2525
KNOXVILLE. TENNESSEE 37901
(615) 573-7931
MARLEY 600/700 SINGLE CELL MECHANICAL DRAFT COOLING TOWER
INSTALLED AT THE TURKEY POINT PLANT OF FLORIDA POWER I LIGHT
Date/Time Range: 2-27-74/13:13-14-?-i ; Test Position: NW Radius, Position _2_
Test Conditions: Avg. Updraft Velocity ]OJ_ m/sec; Avg. Air Discharge Temp. 73.0 °F
Tower Outlet Water Temp: 72.5"F; Tower Inlet Water Temp: 79.5°F
Range: 7.0 °F; Approach 19.1 °F
Heat Load: 7.0 x IP7 BTU/hr.
Volumetric Air Plow Rate: 924600 cfm.
Volumetric Water Flow Rate: 20000 gpm (according to design specs)
Ambient Conditions: Wind Speed: JLmph, Wind Direction: _N_
Tdry/Twet 57.2/53.4 °F
d'"d" 5 Ad *f P(d) AX
0-20 10 j
40 30
60 50
80 70
100 90
120 no
140 130
ISO 160 4
220 200
260 240
300 280
340 320
380 360
420 400
460 440
500 480
540 520
580 560
620 600 '
• — ——————___
0 5.236 x lO'4 25000 262
0.0141 3330 939
0:0654 350 458
0.1796 125 449
0.382 40 306
0.697 16 223
1.150 8.9 205
0 2.145 4 343
4.189 1.2 201
7.238 .315 gi
11.49 .125 57
17.16 .0562 39
24.43 .0282 28
33.51 .016 21
44.60 .0091 16
57.91 .0071 16
73.62 .00406 12
91.95 .00315 16
113.1 .0004 11
3693
427
dm =
-^^— ^^«
f
vg/m3
68 jim
-------
TABLE 1-4
ENVIRONMENTAL SYSTEMS CORPORATION
' • POST OFFICE BOX 2525
KNOXVILLE. TENNESSEE 37901
(615) 573-7931
MARLEY 600/700 SINGLE CELL MECHANICAL DRAFT COOLING TOWER
INSTALLED AT THE TURKEY POINT PLANT OF FLORIDA POWER & LIGHT
Date/Time Range: 2-27-74/14:27-15:36 ; Test Position: NW Radius, Position _3_
Test Conditions: Avg. Updraft Velocity 12.2 m/sec; Avg. Air Discharge Temp. 73.6°p
Tower Outlet Water Temp: 72.5 °F; Tower Inlet Water Temp: 79.2 °F
Range: 6.7 °F; Approach 18.7 °F
Heat Load: 6.7 x 107 BTU/hr.
Volumetric Air Flow Rate: 924600 cfm.
Volumetric Water Flow Rate: 20000 gprn (according to design specs)
Ambient Conditions: Wind Speed: jj_mph, Wind Direction: NNE_
°F
d'-d"
urn
0 - 20
40
60
80
100
120
140
180
220
260
300
340
380
420
460
500
540
580
620
d Ad m_
um ym yg
10 20 5.236 x 10'4
30
50
70
90
110
130 1
0.0141
0:0654
0.1796
0.382
0.697
f 1.150
160 40 2.145
200
240
280
320
360
400
440
480
520
560
600
4.189
7.238
11.49
17.16
24.43
33.51
44.60
57.91
73.62
91.95
113.1
P(d)
#/ym-m3
25000
2670
300
87
32.5
16
11
6
2.25
.63
.23
.12
.08
.046
.0225
.012
.0071
.0045
.00315
yg/m3
262
753
392
313
248
223
253
515
377
182
106
82
78
62
40
28
21
16
14
428
3965 yg/m3
-------
TABLE 1-5
ENVIRONMENTAL SYSTEMS CORPORATION
POST OFFICE BOX 2525
KNOXVILLE, TENNESSEE 37901
(615) 573-7931
MARLEY 600/700 SINGLE CELL MECHANICAL DRAFT COOLING TOWER
INSTALLED AT THE TURKEY POINT PLANT OF FLORIDA POWER & LIGHT
Date/Time Range: 2-27-74/15:39-16:32 ; Test Position: NW Radius. Position _4_
Test Conditions: Avg. Updraft Velocity 11.9 m/sec; Avg. Air Discharge Temp. 73.8 °F
Tower Outlet Water Temp: 72.8 °F; Tower Inlet Water Temp: 79.0°F
Range: 6.2 °F; Approach 17.4 °F
Heat Load: 6.2 x TO7 BTU/hr.
Volumetric Air Flow Rate: 924600 Cfm.
Volumetric Water Flow Rate: 20000 gpm (according to design specs)
Ambient Conditions: Wind Speed: 9_mph, Wind Direction: NNE_
d'-d"
urn
0 - 20
40
60
80
100
120
140
180
220
260
300
340
380
420
460
500
540
580
620
d Ad mp
urn urn ug
10 20 5.236 x 10'4
30
50
70
90
110
0.0141
0.-0654
0.1796
0.382
0.697
130 f 1.150
160 40 2.145
200
240
280
320
360
400
440
480
520
560
.600 '
4.189
7.238
11.49
17.16
24.43
33.51
44.60
57.91
73.62
91.95
113.1
429
P(d)
if/ym-m
31250
2170
290
88
45
16
9
5.62
2.3
.795
.36
.17
.085
.045
.026
.0165
.01125
.0079
.0065
AX,
ug/m3
328
612
379
316
344
223
207
482
385
230
165
117
83
60
46
38
33
29
29
4106
mn ~
pg/m3
107 MIT.
-------
TABLE 1-6
ENVIRONMENTAL SYSTEMS CORPORATION
POST OFFICE BOX 2525
KNOXVILLE. TENNESSEE 37901
(615) 573-7931
MARLEY 600/700 SINGLE CELL MECHANICAL DRAFT COOLING TOWER
INSTALLED AT THE TURKEY POINT PLANT OF FLORIDA POWER & LIGHT
Date/Time Range: 2-27-74/16:35-17:27 ; Test Position: NW Radius, Position _5_
Test Conditions: Avg. Updraft Velocity 10.0 m/sec; Avg. Air Discharge Temp. 73.6°F
Tower Outlet Water Temp: 72.5 °F; Tower Inlet Water Temp: 78.8 °F
Range: 6.3 °F; Approach 16.2 °F
Heat Load: 6.3 x IP7 BTU/hr.
Volumetric Air Flow Rate: 924600 cfm.
Volumetric Water Flow Rate: 20000 gpm (according to design specs)
Ambient Conditions: Wind Speed: _9_mph, Wind Direction: NNE
Vy/T...^ 62.2/56.3 °F
*"
d'-d"
urn
0 - 20
40
60
80
100
120
140
180
220
260
300
340
380
420
460
500
540
580
620
d Ad m_
urn urn ug
10 20 5.236 x 10'4
30
50
70
90
110
130 1
0.0141
0,0654
0.1796
0.382
0.697
1.150
160 40 2.145
200
240
280
320
360
400
440
480
520
560
600 '
4.189
7.238
11.49
17.16
24.43
33.51
44.60
57.91
73.62
'91.95
r 113.1
430
P(d)
#/ym-m
20000
1670
280
120
44
20
9.2
3.3
1.25
.55
.28
.155
.075
.04
.021
.012
.0063
yg/m3
210
471
366
431
336
279
212
283
209
159
129
106
73
54
37
28
19
3402 );g/m
dmn = 93 urn
-------
ENVIRONMENTAL SYSTEMS CORPORATION
TABLE 1-7
POST OFFICE BOX 2525
KNOXVILLE. TENNESSEE 37901
(615) 573-7931
MARLEY 600/700 SINGLE CELL MECHANICAL DRAFT COOLING TOWER
INSTALLED AT THE TURKEY POINT PLANT OF FLORIDA POWER & LIGHT
Date/Time Range: 2-27-74/17:31-17:37 : Test Position: NW Radius. Position 6_
Test Conditions: Avg. Updraft Velocity 6£_ m/sec; Avg. Air Discharge Temp. 74.3°F
Tower Outlet Water Temp: _J °F;' Tower Inlet Water Temp: _* °F
Range: _J °F; Approach _jj °F
Heat Load: * BTU/hr.
Volumetric Air Flow Rate: 924600 cfm.
Volumetric Water Flow Rate: 20000 gpm (according to design specs)
Ambient Conditions: Wind Speed: J^mph, Wind Direction
T. /T * / * op
. *
*see data for Position 5
d'-d"
m
0-20
40
60
80
100
120
140
180
220
260
300
340
380
420
460
500
540
580
620
d Ad mp
pm jjm pg
10 2
30
50
70
90
110
130 1
160 4
200
240
280
320
360
400
440
480
520
560
600 1
0 5.236 x 10'4
0.0141
0.0654
0.1796
0.382
0.697
1.150
0 2.145
4.189
7.238
11.49
17.16
24.43
33.51
44.60
57.91
73.62
91 95
113.1
431
P(d)
#/ym-m
15000
1670
210
70
28
13
7
3.1
1.3
0.56
0.23
0.10
i
yg/m3
157
470
275
251
214
181
161
266
218
162
106
68.6
2529.6 pg/m3
dnm = 90 ym
-------
lABLt l-ti
ENVIRONMENTAL SYSTEMS CORPORATION
'• POST OFFICE BOX 2525
KNOXVILLE, TENNESSEE 37901
(615) 573-7931
MARLEY 600/700 SINGLE CELL MECHANICAL DRAFT COOLING TOMER
INSTALLED AT THE TURKEY POINT PLANT OF FLORIDA POWER & LIGHT
Date/Time Range: 2-27-74/17:40-17:43 : Test Position: NW Radius, Position J_
Test Conditions: Avg. Updraft Velocity 4.0 m/sec; Avg. Air Discharge Temp. *
Tower Outlet Water Temp: _^ °F; Tower Inlet Water Temp: * "F
Range: _J; °F; Approach _^ °F
Heat Load: * BTU/hr.
Volumetric Air Flow Rate: 924600 cfm.
Volumetric Water Flow Rate: 20000 Qm (according to design specs)
Ambient Conditions: Wind Speed: _lmph, Wind Direction: _*_
TJ._ ./T . * / * op
*•• J
Q ~u
ijn
0-20
40
60
80
100
120
140
180
220
260
300
340
380
420
460
500
540
580
620
d Ad mp
ym um pg
10 20 5.236 x 10'4
30
50
70
90
110
130
0.0141
0,0654
0.1796
0.382
0.697
1.150
160 40 2.145
200
240
280
320
360
400
440
480
520
560
600 i
4.189
7.238
11.49
17.16
24.43
33.51
44.60
57.91
73.62
91.95
113.1
432
*see data
P(d)
#/pn,.,n3
15000
1670
225
64
24
13
7.5
3.2
1.2
0.48
0.21
.08
for Position 5
tf.
ug/m3
157.1
470
294
230
183
181
173
275
201
139
96.5
54.9
2454.5 pg/m3
dmn = 88 urn
-------
CO
u>
TABLE II: ISOKINETIC SAMPLING SUMMARY
Date: 2/27/74 Test Cell: Marley 600/700 Mechanical Draft Cooling Tower, Installed at the Turkey Point Plant
f\T RlnviHa D/v.tnw« ft I 4«U«.
Position
of IK-
Tube
.2
.2
2.2
.2
4.2
Distance of
IK-Tube
From NW Rim
[m]
.15
.46
.76
1.07
1.37
A
Area of
Annul us the Sampled
IK-Tube is Air
Representing Volume
[mZ] [m3]
7.73
7.03
6.66
5.88
5.48
18.34
19.58
23.93
15.63
13.57
Collected Mass
of Elements *Na
"Na MMq tjflj
tug] [pg] L m3 J
2,086
2,550
3,159
2,729
2,847
228
293
359
310
283
17,168
19,654
19,926
26,355
31 ,668
xMg
KH
16,624
20,006
20,056
26,509
27,881
V
Updraft
* Velocity a
f H9 1 IK-Pos.
L m3 J [m/sec]
16,896
19,830
19,991
26,432
29,775
9.1
9.8
11.2
12.2
11.7
Drift Mass
Flux
t x x V
f vfl I
1 m2 secj
153,754
194,334
223,899
322,470
348,368
Rate of
Drift Mass
Emission
[g/sec]
1.19
1.37
1.49
1.90
1.91
Drift Fraction:
Total Drift Mass Emission: 7.86 9/sec
a = total drift emission El/sec] 7.86 x 100%
circulating. water rate[9/sec] 1.262 x 106
.00062%
the
Water flow rate: 20,000 gpm (according to design specs)
Concentration of elements in feeder canal (2/27/74) : CNg= 6625 ppm, CM = 748 ppm
-------
2.2
u
I/I
O>
1-8
J-
1-
o
1.4
1.0
.6
.2 ..
Measured
(See Table II)
rim
+
Environmental Systems Corporation
Drift Mass Emission Rate
Northwest Radius
2/27/74
Turkey Point
\
Estimated, See Page 5
\
NX
3456
POSITION
(distance between positions = 1 ft.)
FIGURE 3
i .
-------
ENVIRONMENTAL SYSTEMS CORPORATION
POST OFFICE BOX 2525
KNOXVILLE TENNESSEE 37901
(615) 573-7931
APPENDIX A
Description of cooling tower fill
Depth of Fill: (at lowest point) Wooden Side Concrete Side
From d.e. to outer end of splash bars 22' 3 1/2" 17' lu"
Total length of splash bars 16' 1 1/8" 15- 7 3/4-
Width of Fill: 39, 2 3/4,,
Height of Fill:
From lowest splash bar to highest 23' 5 1/4" 23' 6"
From lowest splash bar to nozzles 24' 1 1/4" 24' 6"
Vertical spacing of splash bars 12"
Horizontal spacing of splash bars 4"
435
-------
ENVIRONMENTAL SYSTEMS CORPORATION
POST OFFICE BOX 2525
KNOXVILLE TENNESSEE 37901
(615) 573-7931
APPENDIX B
Whenever particle size data are acquired, either by the PILLS or the SP
technique, or both, a particle density distribution, p(d), is generated
from the data. Each measurement technique yields the number of particles
per unit volume of air in several particle size ranges. The number of
particle size ranges, and their lower and upper edge diameters were
selected before the start of the test and remained the same during the
test.
Data points of the particle density distribution are obtained by dividing
the number of droplets in each particle size range by the width of the size
range, Ad. As an example, these data points are plotted for Position 5 in
Figure 4. A consolidated particle density curve is fitted through the data
points, and p(d)-values are read from the curve at selected center diameters
d~and listed in Table 1-6.
The procedure of obtaining the consolidated particle density curve and
tabulating p(d)-values at selected diameters was the same for all test
positions except at positions 0, 6 and 7, where the consolidated curve
was obtained only from SP Small and Medium Stain Counts, since no PILLS
data were acquired there. "Small" and "Medium Stain Count" refers to
different stain size ranges which are counted and sized. The Small Stain
Count consists of counting and sizing about 250 stains of diameters smaller
436
-------
than 300 to 400 micrometers, whereas about 150 stains of diameters between
200 and 1,500 micrometers are counted and sized during the Medium Stain
Count.
437
-------
2E 4
IE 4
5E 3
**£
E
L.
-------
APPENDIX 6
DRIFT EMISSION DATA FOR THE SPRAY MODULES
439
-------
c
- «
L)
16 »
-^
BERK
COOLING
TOWER
M
O
TRANSFORMER METEOROLOGICAL .
SWITCH HOIISF 1 TnwEB *W*
, 1 .__ A 1
|e n FTs 1
' r '' N
_, 22.3 » 3-3 *•* *•! 14-*
__ 36.6 P
=R- :.--
INTAKE STRUCTURE ' lr
AND PUMP u «
12.2 6.1 6.1 12.2 -
^IOW SPRAY
^ 2 MODULES
1
88.4
1 ^ r -^
Figure 31. Cooling device site plan, Turkey Point, Florida.
Dimensions in meters.
-------
FORMAT FOR DATA PRESENTATION - SPRAY MODULE DRIFT EMISSION DATA
Note: For a more detailed description of the data format, see text
Section VII "Data Format".
Table Headings
POSITION, d/8/h
DATE
TIME FRAME
Column Headings
I
D(LOW)
D (HI)
DEL D
D(CEN)
P(D)
DEL X/DEL D
DEL X
Gives the location of the instrument package
relative to the operating spray modules, d is
the displacement from the reference nozzle of
the spray modules. The northwest nozzle was used
for reference when the barge was in the canal west
of the modules and the northeast nozzle was the
reference point when the barge was east of the
modules, e indicates the angular location of the
instrument package in positive degrees clockwise
from magnetic north, h represents the height of
the instrument package above the water line.
Units are meters/degrees/meters.
Date on which the data were acquired.
Time interval for data acquisition period.
Integer number for droplet size ranges.
The lower diameter of size range I, um.
The upper diameter of size range I, um.
The width of the size range I, as determined by
the difference between diameter D(HI) and D(LOW), um.
Center diameter of droplet size range I, vm.
Particle density distribution; the number of
droplets of diameter D within unit size range
and unit volume of air, number/um-rn3.
Drift mass density distribution; the mass of
droplets of diameter D within unit size range
and unit volume of air, pg/pm-m3.
Drift mass concentration; the drift mass due to
droplets within a size range I per unit volume
of air, pg/m3.
441
-------
DEL FLUX
PARTICLE VEL
DRIFT FLUX
MASS MEDIAN DIAM
Drift mass flux; the drift mass due to droplets
within size range I which passes through a unit
area per unit time, ug/m2-s.
The horizontal component of the particle velocity,
assumed for this application to be the same as the
time mean wind speed, m/s.
Drift mass concentration; mass of droplets of all
size ranges per unit volume of air; sum of all
DEL X, ug/m3.
Total drift mass flux; mass flux of all droplets
of all size ranges; sum of all DEL FLUX, gg/m2-s.
The droplet diameter at which half of the emitted
mass is due to smaller droplets and half due to
larger droplets, ym.
Barge Sampling Point Conditions
Twet/Tdry
Canal Mater
Temperature
Wind Speed and
Mind Direction
Distribution
Extreme values for the wet and dry bulb temperatures
of the air at the sampling point observed during the
sampling period, °C.
Temperature of the canal water during the sampling
period. If no information is entered here, it is
not available.
The table shows the percentage of time during which
the wind speed was in each velocity range and the
percentage frequency during which the wind came
from each direction.
Ambient Conditions
Wind Speed
Wind Direction
Twet/Tdry
Wind speed in km/hr.
Direction from which the wind is blowing.
Wet and dry bulb temperatures of the ambient air,
Note: Tabular data are presented in E format which designates scientific
notation. Example: 5E 01 = 5 x 10'
442
-------
POSITION. d/e/h(m/°/m) : 20.7/280/4.3
NOTE: Concurrent IK Data Point Available: x
DATE: V30/74
TIME FRAME: 1700-1800
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
I
I
f
s
6
r
10
11
12
niLOw)
(UM)
10.
10.
50.
80.
no.
150.
JOO.
J50.
45o!
0
(UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
OICEN)
20.
40.
65. '
95.
UO.
175.
225.
2/5.
32b.
J75.
425.
475.
P(DI
( */UM-M3)
2.JOJE 03
7. 900E 02
4.000E 02
2.000E 02
7.900E 01
2.000E 01
3.500E 00
7.100F-01
1.60UE-01
5. JOOE-02
2. JOuE-02
1. )COE-02
DFL X/DEL U
(UG/UM-M3)
fc.376E 00
2.6'*7F 01
5.752E 01
3. 973E 01
V. Obbc 01
5.612E 01
2.0d/E 01
7.731E 00
2.d7(>L 00
1.3S1E 00
8.039E-01
5.612E-01
DEL X
(UG/M3)
1.676E 02
5.295E 02
1.726E 03
2.694E 03
3.035E 03
2.b06E 03
1.044E 03
3.B66E 02
1.438E 02
6.903E 01
4.019E 01
2.a06E 01
DEL FLUX
(UG/M2-SEC)
5.261E 02
1.663E 03
5.418E 33
8.453E 03
«. SUE 03
3.277E 03
1.214E 03
*.!>15E 02
2.166E 02
1.262E Q^
a.aioE 01
PARTICLE VEL
(M/SEC)
3.140E 00
3.140E 00
3.140E 00
3.140E 00
J.140E 00
3.1+OE 00
3.140E 00
3.140E 00
3.140E 00
3.140E 00
3.140E 00
3.140t 00
(UO/M3I
1.327E 0'
<*.166E
127
BARGE SAMPLING POINT mNnTTTONS: Twet/Tdry Ranges: 23.3 - 23.5/26.0 °C
Canal Water Temperature: 33 i °C
Mind Speed and Direction Distribution: See Table
AMBIENT CONDITIONS: Wind Speed: 11.3 KWhr ; Wind Direction: ESE ; Twet/Tdry = 22.2/26.0
-------
POSITION. d/e/h(m/0/m) : 36.6/270/4.3
DATE: V31/74
TIME FRAME:
1445-1545
NOTE: Concurrent IK Data Point Available:
PILLS AND SENSITIVE
i
i
-
•»
-t
•j
•j
1
it
•j
Oil. Jk»)
(0.1)
xO.
J J.
a J.
jj.
i 1 j.
i jj.
2CJ.
2 3 J.
jJJ.
LI HI )
(IJM)
*0.
bO.
P.O.
liO.
150.
200.
250.
300.
350.
PAPER PARTICLE DISTRIBUTION DATA, TURKEY POINT SPRAY MODULE TEST
:-L 1
iUM
20.
£0.
30.
30.
'tO.
50.
50.
. 50.
SO.
OICEr.)
(IJM)
20.
40.
f-5.
•J5.
130.
1 7S.
k 25.
? 75.
3?5.
PJT
)
n'-\. x/D
?L 0
ln/lJM-Mi) IJO/U-1-M3I
!. 300F
J.SOO =
1. i.00"
7.100C.
>.. SOGC
3. S00r
5.000=
>. ftOOi:
l.COOc
03
02
0?
01
01
on
-01
-02
-02
5.445?
1 . ! 7 3 c"
2.301F
3.187=
2.376?
J. 822 =
2.982?
f-,0385
1. 737?
00
01
01
01
01
00
00
-01
-01
DEL X
JUG/MB)
1.089E 02
2.346E 02
6.902E 02
9.562E 02
1.150F 03
4.911E 02
1.491E 02
3.049E 01
8.987E 00
DEL FlUX
IU5/M2-SEC)
3.267C 02
7.037E 02
2.071E 03
2.869? 03
3.451E 0?
1.473^ 03
4.473? 02
9.147E 01
2,fc96F 01
P^PTICLF VEL
tM/SrFC)
3.000C 00
3.0005 00
3.000E 00
3.000? 00
3.000F 00
l.OOOE 00
3.000E 00
3.000F 00
3.000E 00
3.°20r 03
FL'JX
MASS MEDIAN DIAMETER
) (UM)
108
BARGE SAMPLING POINT CONDITIONS:
Twet/Tdry Ranges: 22.3 - 23.0/26.3 - 27.0 °C
Canal Water Temperature: 32.7 °C
Mind Speed and Direction Distribution: See Table
AMBIENT CONDITIONS; Wind Speed:
Knj/hr
Wind Direction:
Twet/Tdry =22.2/26.6 °C
-------
POSITION. d/e/h(m/°/m) : 36.6/270/4
.3
DATE: 1/31/74
NOTE: Concurrent IK Data Point Available: X
TIME FRAME; 1 620-1 720
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY Mnnm r rrer
I
1
—
j
b
a
7
a
••i
-i( L Jw) D(HI )
1 U^ll ('I")
U. 30.
ii »
J J« U»
1J. 110.
AAV,. 150.
I'JJm 200.
t*0. 250.
5J. 200.
JJO. 3SO.
UFL r-
tO,
|
PI?)
(ff/IJM-N|3)
i.OOOf 03
7.100r 02
2.800r 02
l.^OOF 02
+.000? 0\
3.000C 00
r. 100^-01
'.30CF-01
2. 20UC-02
r'rL X/CHL ')
• U',/UH-H3»
l.',7'.c oi
2.37°= 01
4.02oE 01
6.2est 01
4.601= 01
1.403F 01
4. 235E 00
1.416E 00
DEL X
( UG/M3 )
3.351E 02
4. 758E 02
1.208E 03
1.885F 03
1.H41E 03
7.015P 02
2.117E 02
7.078E 01
1.977E 01
OFL FLUX
IUG/M2-SEC)
1.240C 03
1.761fc 03
t.469F- 03
6. 976F 03
6.810E 02
2.596E 03
7.834E 02
2.&19E 02
7.315E 01
PARTICLE VEL
(M/SrC)
3.700F 00
3.700E 00
3.700E 00
3.700E 00
3.700F 00
3.700E 00
3. 700E 00
3.700E 00
3.700E 00
DRIKT FLUX MASS MEDIAN DIAMETER
(ur./.'*?-s
"C )
(UM)
03
105
BARGE SAMPLING POINT CONDITIONS;
Twet/Tdry Ranges: 20.4 _ 23.2/25.0 - 27.0 °C
Canal Water Temperature: 32.7 °C
Wind Speed and Direction Distribution:
AMBIENT CONDITIONS: Wind Speed: 13.3 Km/nr ; Wind Direction: E
See Table
Twet/Tdry = 22.0/26.1 "c
-------
POSITION. d/e/h(m/°/m) : 36.6/270/5.5
DATE: 1/31/74
TIME FRAME: 1730-1805
NOTE: Concurrent IK Data Point Available:
PILLS AND SENSITIVE
I
i
t.
j
<,
•3
ti
7
0
L/ILJM DlMl )
.
1.
1.
2.
3.
P«OI
/UM-M3)
oOOF 03
000? 02
300E 02
"100 c 01
600T 01
600C 00
20CT-01
?00?-02
r)EL X/J
(Ur./iJKl
6.702E
1.676E
2. 5B8E
2.S28E
:.e^i=
<•. ^00=
1.312 =
3. A •;.-
?L n
-M3I
00
01
01
ni
01
OT
00
-01
DEL X
(UG/M3)
1.340E 02
3.351F 02
7.765E 02
3.485E 02
7.362E 02
2.245E 02
6.5615 01
1.7*2P 01
DEL FLUX
-------
POSITION. d/9/h(m/"/m) : 36.6/270/5.5
DATE: 1/31/74
TIME FRAME;1824-1840
NOTE: Concurrent IK Data Point Available:
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
LHLGwl OOII )
HIM I
DEL 0 CMCtM P(0) UtL X/bEL D DEL X DEL FLUX PARTICLE VEL
j.
•50.
••?lT.
1 10.
15 J.
20J.
250.
JC.O.
20.
2C.
3C.
30.
AO.
50.
50.
50.
JO.
40.
60.
S5.
130.
175.
?25.
275.
3.500t 03
1.300= 03
3.2JOE 02
B.9JOt 01
l.JjOc 01
2.2Ju£ 00
4.000c-CL
l.OOOE-01
1.466E
3.351E
4.601E
3.995E
2.071E
6. 174E
2. J86E
1.089E
01
01
01
01
01
00
00
00
2.932E
0.702E
1.3806
1.19VE
8.283E
3.0i*7E
1.193E
5.445E
02
02
03
03
02
02
02
01
1.232E
2.815E
5.7SUE
5.034E
3.475E
1.296E
5.010E
2.287E
03
03
03
03
03
03
02
02
4.200E
4. 200t
^. 200E
4.200E
4.200E
4.200E
4.200E
00
UO
00
00
00
CO
00
00
t
03
DRIFT KUX
(UG/K2-S-LC)
2.038E O't
MASS MEDIAN DIAMETER
(UM)
82
BARGE SAMPLING POINT CONDITIONS: Twet/Tdry Ranges: 22.5/26.0 °C
Canal Water Temperature: 32.7 °C
Wind Speed and Direction Distribution: See Table
AMBIENT CONDITIONS; Wind Speed: 15.1 Km/hr ; Wind Direction: E
Twet/Tdry " 22.0/26.1 °C
-------
POSITION; d/e/hdn/Vm) 36.6/270/4.3
DATE: 2/1/74
TIME FRAME:
NOTE: Concurrent IK Data Point Available:
oo
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE
I
i
A
3
5
t,
u
iu
OIL Jrv )
ilH)
IvJ.
3 J«
•30.
1 * J.
i 5 J.
i J J.
iujl
35J.
DC HI )
(UM)
30.
50.
8L.
110.
ISO.
200.
250^
3UO.
350.
400.
UEL 0
(UM)
20.
2:0.
30.
30.
50.
50.
50.
50.
50.
I
nir-*,
HIM)
20.
40.
65.
95.
1 30.
175.
225.
275.
225.
375.
X
1 UG / M * )
P«D) DEL X/DFL 0
(»/UM-M3) (Ur./U^-MSJ
2.000F 03 «. 378= 00
5.000T 02 1.67&E 01
1.600C 02 2.301E 01
S.300E 01 2.828E 01
2.20QC oi 2.531E 01
5.000E 00 1.403E 01
1.100E 00 6.561E 00
2.800E-01 3.049F 00
5. 300C-02 1.132? 00
1.300F-02 3.590F-01
DEL X
(UG/M3)
1.67AF
3.351C
-------
POSriON. d/e/h(m/°/ml : 36.6/270/4.3
NOTE: Concurrent IK Data Point Available:
DATE: 2/1/74
TIME FRAME: 1230-1332
PILLS AND
SENSITIVE PAPER PARTICLE DISTRIBUTION DATA, TURKEY POINT SPRAY Mnnni F
I
1
3
i;
6
7
8
IXICh)
( UN)
10.
00.
110.
ISu.
JOO.
30ol
UIH1 J
(HM)
3!J.
110.
lc.O.
21>J.
300.
3bO.
DEL 11
(UP)
JU.
JO.
50
_' 1 ' •
50.
50.
50.
(
fXCFM P(D) DEL x/Dc-L „ DEL x
-------
POSITION. d/e/h(ra/°/m) : 36.6/270/6.1
DATE: 2/1/74
TIME FRAME: 1515-1545
NOTE: Concurrent IK Data Point Available:
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
-P.
CJI
o
1 U(LJw)
CJM»
1 iO.
L. 30 •
2 50.
4 dJ.
3 KJ.
o i5J.
7 &UO.
0 £3 J.
'•i 300.
iJ 330.
D(HI )
«UM)
30.
50.
80.
110.
150.
ZCO.
250.
300.
350.
400.
OEL T
CJMI
20.
20.
30.
30.
40.
50.
50.
su.
50.
50.
t
TJfFf.'l P*R2E 00
I.J89E 00
5.03?c-01
2.761E-01
1.676E
4. 222E
9.490E
1.347E
1.150E
5.612E
1.491E
5.445E
2.516E
1.381E
02
02
02
03
03
02
02
01
01
01
OFL FLUX
(UG/M2-SECI
4.708E
1.186E
2.667E
3.784E
3.232E
1.577F
4.190E
1.530E
7.071F
3.879E
02
03
03
03
03
03
02
02
01
01
PARTICLE VEL
(M/SECI
2.810E
2.810E
2.810E
2.810E
2.810E
2.810F
2.810F
2.810?
2.810E
2.810?
00
00
00
00
00
00
00
00
00
00
MASS MEDIAN DIAMETER
1
(UM)
100
BARGE SAMPLING POINT CONDITIONS: Twet/Tdry Ranges: 21.7 - 22.8/26.0 - 26.3 °C
Canal Water Temperature: 33.0 °C
Wind Speed and Direction Distribution: See Table
AMBIENT CONDITIONS: Wind Speed: lo.l Km/hr ; Wind Direction:
Twet/Tdry = 22.0/26.4 °C
-------
POSITION. d/e/h(m/°/m) : 33.5/270/7
.9
DATE:
2/1/74
TIME FRAME: 1645-1714
NOTE: Concurrent IK Data Point Available:
PILLS AND SENSITIVE
r
1
/.
t
0
6
7
<5
•)(LPw)
10.
10.
50.
"0.
uc.
ISO.
? 10.
?r>0.
330.
run; i
urn
JO.
SO.
t.O.
111).
IVJ.
?'JO.
300.
PAPER PARTICLE DISTRIBUTION DATA,
m •_,
20.
30.
Jf).
40.
50.
t>0.
50.
!)(C£r:i
UJ'«)
O j •
O *%
131 .
225.
275.
J25.
X
^TURKEY POINT SPRAY MODULE
P(D) DFL X/UEL
(r»/UN-M3) (Uii/U*l-M3
2. 500t 02
8» 900E 02
3.200t 02
l.lOCt 02
3.200E 01
2.5JCE 00
3.200E-01
7. 100E-02
2.000f -02
nairr FLUX
1.047E 01
2.-J82E 01
4.A01E 01
•..V36E 01
3. tod It 01
V.015E 00
1.90VE 00
7. 731E-01
3.595E-01
1) DEL X
) (UG/M31
2.09
-------
POSITION. d/e/h(m/°/m) : 48.8/270/7.6
DATE: 2/V74
TIME FRAME; 1725-1755
NOTE: Concurrent IK Data Point Available:
KiLI
I
1
2
3
•3
6
7
.a MU at
LMLJH)
(UM)
10.
JO.
30.
80.
110.
laO.
200.
U(HI I
(UM|
30.
50.
80.
110.
200.
250.
DEL D
(UM)
23.
20.
30.
30.
40.
50.
50.
OICEM)
(UM)
20.
40.
65.
95.
130.
1 75.
225.
P«D)
DEL X/DEL 0
(«/U1-M3l (UG/U^-M3I
2.000F 03
4.500E 02
1.300E 02
3. 500F 01
7.100E 00
7. 100E-01
l.OOOF-01
8. 378E
1.508E
1.369E
1. 571E
8.167:
1.992E
00
01
01
01
00
00
5.964E-01
DEL X
(UG/M3)
1.676E
3. 016E
5.608E
4. 714E
3.267E
9.962E
2.982E
02
02
02
02
02
01
01
DEL FLUX
(UG/M2-SEO
7.540E
1.357E
2.524E
2.121E
1.470E
4.483E
1.342E
02
03
03
03
03
02
02
P4RT1CLE VEL
(M/SECI
4.500E 00
4.500E 00
4.500E 00
4.500E 00
4.500E 00
4.500E 00
4.500E 00
U1
ro
X
(UG/H3)
1.957E 03
DRIFT FLUX v MASS MEDIAN DIAMETER
(UO/M2-SEO.I (UM)
8.809E 0>
77
BARGE SAMPLING POINT CONDITIONS; Twet/T
-------
U1
bJ
POSITION. d/e/h(m/a/m) : 48.8/270/4.3
NOTE: Concurrent IK Data Point Available:
DftTE. 2/l/74
TIME FRAME: 1805-1837
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
I
1
t>
7
J ( L J .O
( <_M )
iJ.
3J.
50.
1 10.
iaO.
DIHI )
( U'1 )
30.
50.
80.
110.
150.
200.
250.
DEL r>
1 1IM 1
1 U ~ 1
20.
20.
30.
50.
50.
•MC-ENI
IH1)
2C.
)
/UV-M3)
000C 03
800E 02
900r 01
500F 01
OOOt 00
000&-02
Ot-L X/OEL n
(U^/LM-M3)
*». 1 89E 00
9.3^3E 00
1.1 36E 01
1.122E 01
5.752? 00
7.357E-01
1. 193E-01
DEL
(UG/1
B.378E
1. 977E
3.408E
3.367E
2. 301E
3.929F
5. 964E
X
31
01
02
02
02
02
01
00
DEL FLUX
(UG/M2-SEC)
4.169E 02
9.383F 02
1.704E 03
1.683E 03
1.150E 03
1.964E 02
2.982E 01
PARTICLE VEL
(M/SEC)
5. OOOE 00
5. OOOE 00
5. OOOE 00
5. OOOE 00
5. OOOE 00
5. OOOE 00
5. OOOE 00
X
(UG/M3I
03
DRIFT FLUX
(UG/M2-SECI
6.121? 03
MASS MEDIAN DIAMETER
(UM)
80
BARGE SAMPLING POINT CONDITIONS: Twet/Tdry Ranges: 21.8 - 22.5/25.8 'C
Canal Water Temperature: 33.0 °C
Wind Speed and Direction Distribution: See Table
AMBIENT CONDITIONS; Wind Speed: 18.0 Km/hr ; Wind Direction:
Twet/Tdry = 22.0/26.0 °C
-------
POSITION. d/e/h(m/°/m) : 33.5/245/4,
.6 DATE: 2/12/74
TIME FRAME: 1552-1622
NOTE: Concurrent IK Data Point Available:
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE
1
1
2
b
7
ui L j«n
u.
jj.
5J.
bJ.
iU.
2uJ.
0
-------
POSITION. d/e/h(m/°/m) : 64.0/245/4.6
,
NOTE: Concurrent IK Data Point Available: _x_
PILLS AND SENSITIVE PAPER PARTTf.P DISTRIBUTION nflTfl| TURKEY POINT SPPAV
TIME FRAME: 1430-1600
*
1
2
i
( UN 1
10.
10.
r. 0 .
HO.
no.
30.
30.
00.
110.
150.
200.
PEL n
30.
AC.
50.
DUfN )
-------
POSITION. d/e/h(m/0/in) : 41.1/270/4.6
DATE; 2/13/74
TIME FRAME; 1617-1700
NOTE: Concurrent IK Data Point Available: X_
U1
CTI
1
1
2
3
<»
5
b
7
u
UlLJH)
( UMJ
10.
jO.
50.
dO.
11U.
150.
lE 00
7. 100E 01 1.021E 01
2.500E 01 1.122E 01
ft. 300E 00 7.247E 00
l.OOOE 00 2.806E 00
1.600E-01 9.543E-01
2.500E--02 2. 722E-01
DEL X
IUG/M3I
2.681E
9.383E
3.063E
3.367E
2.899E
1.403E
*.771E
1.361E
01
01
02
02
02
02
01
01
DEL FLUX
•UG/M2-SECI
*.o*:.E
2.815E
9.188E
1.010E
8.697E
<».209E
1.431E
^.083E
01
02
02
03
02
02
02
01
PAPTICLE VEL
(M/SEC)
3.000E
3.000E
3.000E
3.000E
3.000E
3.000E
3.000E
3.000E
00
00
00
00
00
00
00
00
DRIFT FLUX MASS MEDIAN DIAMETER
IUG/M2-SECJ
(UM)
1.255E 03
3.765E 03
98
BARGE SAMPLING POINT CONDITIONS: Twet/Tdry Ranges: 15-5 . 13.2/22.0 - 23.0 °C
Canal Water Temperature: °C
Wind Speed and Direction Distribution: See Table
AMBIENT CONDITIONS; Wind Speed: 10.8 Km/hr ; Wind Direction: E ; Twet/Tdry = 17.0/23.3 °C •
-------
POSITION. d/9/h(m/°/m) : 41.1/270/7.0
DATE: 2/13/74
TIME FRAME: 1725-1756
NOTE: Concurrent IK Data Point Available: X
i (XLCwi nmi
«DM) (ij^
10.
r»o.
dO.
11C.
200.
50.
.10.
110.
150.
250.
PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
1)2 L 'J
30.
30.
40.
50.
50.
n(CEN)
20.
40.
t>5.
130.
175.
?25.
X
lur,/M3i
PIOI
l.o JOE 0>
2.500E 02
7.100E 01
2.000F 01
4.500E 00
5.603E-U2
OEL X/DEL D
(UG/JM-M3)
6.702C 00
d. 378E 00
1.0.2 IE 01
3. 97ot 00
t>.177E 00
1./6GE 00
3.3*uE-Ol
DEL X
(UO/M3)
1.340E 02
1.676E 02
3.063E 02
2.694E 02
2.071E 02
8.839E 01
1.670E 01
OEL FLUX
(UG/M2-SECI
3.351E 02
4.189E 02
7.657E 02
6.734E 02
5.177E 02
2.210E 02
4.175E 01
PARTICLE VEL
(H/SEC)
2.500E 00
2.500E 00
2.500E 00
2.5UOE 00
2.500L 00
2.500E 00
2.500E 00
OKI FT FLUX MASS MEDIAN DIAMETER
-------
U1
co
POSITION. d/e/h(m/°/m) : 38.1/270/2.4
DATE; 2/13/74
TIME FRAME: 1810-1840
NOTE: Concurrent IK Data Point Available: X_
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
I
1
2
3
4
S
f,
7
D(LO)
(DM)
10.
10.
50.
dO.
110.
L50.
?')0.
OOU )
(UM)
30.
50.
00.
110.
150.
?00.
250.
DEL J
(UM)
20.
20.
30.
30.
tO.
50.
50.
I
U(CEN)
20.
65!
95.
130.
175.
^5.
X
(UG/M3 I
.03 IE 03
PIO) DEL X/OEL D
<»/U1-M3) IUG/UM-M3I
1.600E 03 6.702E 00
3.<:OJE 02 1.072E 01
6.300E 01 y.059E 00
1.60UE 01 7. 183E 00
3.200E 00 3.681E 00
^.BOOE-Ol 7.857E-01
2.800E-02 1.070E-01
DEL X
IUG/M3)
2. 145E
2.718E
2.155E
1.472E
3.929E
8.350E
02
02
02
02
02
01
00
UEL FLUX
(UG/M2-SEC)
3.351E
5.362E
6.794E
5.387E
3.681E
9.B22E
2.087E
02
02
02
02
02
01
01
PARTICLE VEL
(M/SEC)
2.500E
2.500E
2.500E
2.500E
2.500E
2.500E
2.500E
00
00
00
00
00
00
00
DRIFT FLUX MASS MEDIAN DIAMETER
(UG/M2-SEC)
2.577F 03
(UM)
68
BARGE SAMPLING POINT CONDITIONS: Twet/Tdry Ranges: 17.0 - 18.0/22.5 - 23 °C
Canal Water Temperature: °C
Wind Speed and Direction Distribution: See Table
AMBIENT CONDITIONS; Wind Speed: 9.0 Km/hr ; Wind Direction: E
Twet/Tdry = 17.0/23.3 °C
-------
POSITION. d/e/h(m/°/m) ; 88.4/245/4.6
DATE: 2/14/74
NOTE: Concurrent IK Data Point Available: x
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODUL
TIME FRAME: 1637-1918
E TEST
171
\O
1
1
L
3
•t
•»
0
7
"fuMi1'
10.
50.
tJJ.
150.
200.
D(HI)
-------
POSITION. d/e/h(m/°/m) ; 33.5/270/4.6
DATE: 2/15/74
TIME FRAME: 1359-1656
NOTE: Concurrent IK Data Point Available:
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
Ol
o
1
3
s
h
7
8
0
O( Ldrf)
(DM)
10.
JO.
80.
1 10.
150.
200.
2SI-.
100.
D( HI 1
"JO.
SO.
H U.
110.
150.
200.
3iV.)"
3>0.
PtL I)
20.
30.
30.
50!
50.
50.
50.
niCt'U
20.
t>5.
95.
130.
175.
2?5.
275.
325.
X
IUG/M3)
PU, ) [JEL X/DEL D
U/UM-M3) IUG/UM-M3I
l.OJOE 03 -V. I89t 00
2.500E C2 0.3/fcE 00
A.OOOC 01 5. 7S2E 00
4.000E 00 1.796E 00
t.OOOE-01 4.631E-01
6.90HE-02 2.*97E-01
1.600E-02 9.5<»2E-C2
4.000E-03 4.35C.E-02
1.300E-03 2.317E-02
DEL X
(UG/131
8.378E
1.676E
1.726E
5.387E
L.B41E
1.249E
4.771E
2.17&E
1.168E
01
02
02
01
01
01
00
00
00
DEL FLUX
(UG/M2-SEC)
2.513E
5.027E
5.177E
1.616E
5.522E
3.746E
1.43 IE
6.534E
3.5C5E
02
02
02
02
01
01
01
00
00
PARTICLE VEL
(M/SECI
3.000E
3.000E
3.000E
3.000E
3.000E
3.000E
3.000E
3.003E
3.000E
00
CO
00
00
00
00
00
00
00
OKI FT HUX MASS MEDIAN DIAMETER
(Uf,/M2-SEC 1
(UM)
5.1o3E 02
l.5i>OF 03
51
BARGE SAMPLING POINT CONDITIONS;
Twet/Tdry Ranges: 18 7 . 23.0/24.0 - 26.0 °C
Canal Water Temperature: °C
Wind Speed and Direction Distribution: See Table
AMBIENT CONDITIONS: Wind Speed: 10.3 Whr ; Wind Direction:
Twet/Tdry = 21.0/25.5 °C
-------
POSITION. d/e/h(m/°/m) : 36.6/230/4.6
DATE: 3/18/74
TIME FRAME: 1459-1559
NOTE: Concurrent IK Data Point Available: x
PILL? AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
I
1
^
1
•*
5
ft
7
n
9
10
D ( L UW )
I UM)
10.
10.
5o.
dO.
1 10.
I 50.
200.
250.
100.
350.
r>(HI I
( UM )
30.
50.
80.
110.
150.
200.
250.
3 no.
J50.
400.
OtL I,
( UM)
20.
70.
JO.
30.
40.
50.
50.
50.
50.
50.
I'ICtN)
(UM)
4fl.
o!,.
^5.
130.
175.
225.
275.
325.
375.
PUD
( J/UM-M3)
2.500E 03
0.300E 02
2.200L 02
b.JO'JE 01
1.C.OOE 01
2.500t 00
3.200E-01
5.')COt-02
i>. 'iOOF-03
l.tJOOE-03
UtL X/OEL D
1.047E 01
2.111E 01
3.103E 01
2.82bE 01
1.341E 01
7. 015E 00
1.909E 00
5.^45c-0l
1.600E-01
4.^70c-02
DEL X
( UG/M3 )
2.094F 02
4. 22^E
9.490E
8.4U5E
7.362E
3.506E
-------
POSITION. d/e/h(ni/e/m) : 36.6/230/11.0
DATE: 3/18/74
TIME FRAME: 1653-1723
NOTE: Concurrent IK Data Point Available: X
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
I DCLOW) DUIII OEL D 0(CEM P(0) DEL X/DEL 0 DEL X DEL FLUX PARTICLE VEL
(UM) (UM) (of!) (U1) <»/UM-P3) (UG/UM-M3) IUG/M3I CUG/M2-SECI IM/SEC)
1
2
3
4
5
ti
7
10.
30.
50.
30.
110.
150.
200.
30.
50.
bO.
110.
150.
200.
250.
20.
20.
30.
30.
tO.
50.
50.
20.
HO.
t>5.
95.
130.
175.
225.
3. 2 OOF- 02
5.000E 01
1.4COE 01
3.500E 00
7.900E-01
1.400E-01
2.000E-02
1.340E 00
1.676E 00
2.C13E tit)
1.571E 00
9.088E-01
3. 929E-01
1.193E-01
2 . 68 IE
3.351E
6.039E
4.714E
3.635E
1.96HE
5.964E
01
01
01
01
01
01
00
1.206E
1.508E
2.718E
2.121E
1.636E
8.839E
2.6846
02
02
02
02
02
01
01
4.500E 00
4.500E 00
4.500E 00
4.500E 00
4.500E 00
4.500E 00
4.500E 00
(UG/M3)
02
DRIFT FLUX
(UG/K2-SECI
1.034E 03
MASS MEDIAN DIAMETER
(UM)
77
BARGE SAMPLING POINT CONDITIONS: Twet/Tdry Ranges: 15.6 - 18.9/22.2 - 23.3 °C
Canal Water Temperature: 34.5°C
Wind Speed and Direction Distribution:
AMBIENT CONDITIONS: Wind Speed: 16.2 Km/hr ; Wind Direction:
NE
See Table 10
• Twet/Tdry =18.1/24.2
-------
POSITION. d/e/h(m/"/m) : 36.6/230/7.6
DATE: 3/18/74
TIME FRAME: 1743-1843
NOTE: Concurrent IK Data Point Available:
Ditnwi
u
7
10.
30.
110.
150.
200.
01 MM
IU'1)
3J.
ao.
iu.
IbO.
?00.
PAPER PARTICLE DISTRIBUTION DATA, TURKEY POINT SPRAY MODULE TEST
DFL :i
( UM )
20.
2O.
30.
30.
40.
50.
50.
OICL.'.J
.
130.
175.
225.
PIUI
(
-------
POSITION. d/e/h(m/°/m) : 36.6/290/4.6
DATE: 3/19/74
TIME FRAME; 1122-1222
NOTE: Concurrent IK Data Point Available: X_
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
I
1
2
3
4
5
6
7
8
4
10
CM LOW)
IUMI
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
O(HI)
(U*l
30.
50.
60.
110.
150.
200.
250.
3CO.
350.
400.
DEL 0
IU")
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
l)(CEM
PCD) DEL
X/OEL 0 DEL X
2~
1.403E 02
4.17SE 01
1.361E 01
4.494E 00
1.519E 00
DEL FLUX
(UG/M2-SECI
6. 7C2E
1.173E
2.157t
1.885E
1.449E
7.015E
2.087E
6.806E
2.247E
7.S93E
02
03
33
03
03
02
02
01
01
00
PARTICLE VEL
(M/SEC)
S.OOOE
S.OOOE
S.OOOE
S.OOOE
S.OOOE
5.00CE
S.OOOE
S.OOOE
S.OOOE
S.OOOE
00
00
00
00
00
00
00
00
00
00
MASS MEDIAN DIAMETER
(UM)
1.669E 03
8.343E 03
83
BARGE SAMPLING POINT CONDITIONS; Twet/Tdry Ranges: 19.7 - 21.3/24.3 - 24.5 °C
Canal Water Temperature: 32.7°C
Wind Speed and Direction Distribution:
AMBIENT CONDITIONS; Wind Speed: 18.0 Km/hr ; Wind Direction: SE
See Table 12
'» Twet/Tdry
21.0/26.0 °C
-------
. 4.
I7"i. 7.
22a. l.
27-5. 1.
325. 2.
X
I ui;/«''3 i
. TURKEY POINT SPRAY MODULE
Pil;» DcL X/OEL D
/JM-M3»
3 JOE 03
+ J0f- 03
DO'JF 02
<*0'lt 02
300C. 01
JOOE 30
JOUt OJ
•tOJE-01
OOOE-02
fJUFT FLUX
(lltj/M2-SFC
(UG/UH-M3J
2.o39t 01
A.b-ilE 01
i>.752C 01
6.2J5E 01
5. 177= 01
2.217E 01
5.96-tE 00
1. 52fE 00
3.595E-01
DEL X
TEST
DEL hi
.JX
IUG/M3J IUG/V2-SF.C»
3.
s.
1.
1.
2.
1.
2.
7.
L.
MASS MEDIAN
1
(UM;
278E 02
JbiE 02
726E 03
8855 03
071E 03
10SE 03
9cJ2c 02
b22E 01
797E 01
DIAMETER
1
2. 11 IE
J.753E
6.9C2E
7.542E
8.283E
4.434E
l.l?3E
3.0'*9E
7.1SCE
03
03
03
OJ
03
03
03
02
01
PARTICLE
(MX SEC
4.0JOE
4.000E
4.000E
^.OOOE
4.000E
t.OOOE
4.000E
4.00JE
4.000E
VtL
1
00
00
00
00
00
00
00
00
00
Ot
92
BARGE SAMPLING POINT CONDITIONS: Twet/Tdry Ranges: 24.7 _ 26.8/27.7 - 28.8 °C
Canal Water Temperature: 36.8°c
Wind Speed and Direction Distribution: See Table 13
AMBIENT CONDITIONS; Wind Speed: 14.4 Km/hr ; Wind Direction: SE ; Twet/Tdry = 24.9/28.0 °C
-------
POSITION* d/e/h(m/°/m) : 36.6/290/3.0
DATE:
3/26/74
TIME FWWE:J200-T248
NOTE: Concurrent IK Data Point Available:
I OILCW) 0(HII
('JO") «:-"')
7
8
9
10
10.
10.
r»0.
30.
110.
ISO.
?00.
3)0.
35C.
50.
r>o.
no.
1*0.
?oo.
350.
PAPER PARTICLE DISTRIBUTION DATA. TURKEY
r>tt T
(DM)
20.
2L).
30.
30.
4G.
50.
50.
• 50.
50.
50.
CICENI
POINT SPRAY MODULE
»(!)) DEL X/OEL 0
(Uf*< lrf/JM-K3»
20.
40.
65.
95.
130.
175.
£25.
275.
J25.
375.
X
1UG/K3)
5.
1.
5.
2.
6.
1.
4.
6.
1.
1.
oooe 03
oOuc 03
600E 02
100= 02
30GE 01
300E 01
OOOE 00
300E-01
JOOE-01
dOOE-02
DRIFT FLUX
(UG/M2-SEC
•UG/UH-M3)
2.J94E
5.362E
B.052E
6.976E
7. 247E
5.051E
2.386E
6.U60E
1.797E
01
01
01
01
01
01
01
00
00
4. y/OE-Ol
DEL X
CUG/M3)
4.189E
1.072E
2.416E
2.694E
2.899E
2.526E
1.193E
3.430E
8.987E
2.485E
02
03
03
03
03
03
03
02
01
01
TEST
DEL FLUX
(UG/M2-SEO
1.257E
3.217E
7.247E
8.081E
8.697E
7.577E
3.576E
L.O29E
2.696E
7.455E
03
03
03
03
03
03
03
03
02
01
PARTICLE VEL
IM/SEC)
3. OOOE
3. OOOE
3. OOOE
3. OOOE
3. OOOE
3. OOOE
3. OOOE
3. OOOE
3. OOOE
3. OOOE
00
00
00
00
00
00
00
00
00
00
MASS MEDIAN DIAMETER
fltMl
4.103E 04
113
BARGE SAMPLING POINT CONDITIONS: Twet/T
-------
-P.
en
DATE: 3/26/74
TIME FRAME: 1255-1339
NOTE: Concurrent IK Data Point Available: x
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA,
: D(LTU)
(IIM)
1 10.
~* r>\j*
H 30.
s 110.
i -5 n
O L 7 U .
7 ?')r.
H 200 .
0 < Hi ) DC L u 0 (CEf I
10. 20. 20.
"iQ ^ U • *t 0«
Jj. 30. £>5.
110. 31. 95.
r>o. 40. no.
Z'iO. 50. 225.
300. 50. ?75.
350. 50. *
-------
POSITION. d/e/hdn/°/m) : 36.6/290/9.1
DATE: 3/26/74
TIME FRAME: 1352-1440
oo
NOTE: Concurrent IK Data Point Available:
i niLuwi
(MM)
1 10.
? 30.
? SO.
4 SO.
5 11J.
I: ISO.
7 2TO.
H 250.
50.
60.
110.
150.
?50.
iOO.
PAPER PARTICLE DISTRIBUTION DATA, TURKEY POINT SPRAY MODULE
on. T
P(CfcN)
PID) DFL
X/OEL
0 DEL X
«U") (UM) (»/UM-M3) (UG/UM-M3I (UG/M3)
20.
20.
JO.
30.
40.
50.
50.
•50.
20.
40.
65.
95.
130.
175.
^25.
275.
X
(UG/M3J
3.
1.
4.
I.
3.
6.
3.
I.
-------
en
vo
POSriON. d/e/h(m/°/m) : 36.6/?75/A.fi
DATE: 3/?7/7d
TIME FRAME:
NOTE: Concurrent IK Data Point Available: x
PIL,S AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
T
1
7
.•i
'*
3
:>
7
15
4
DILilWl
( -If J
10.
to.
50.
'13.
1 10.
1*30.
.>).).
'5 j.
I.JO.
0(1-11
(UM)
30.
•j J.
dO.
110.
15 J.
POO.
^31).
^00 .
350.
OcL J
< Urf)
20.
J.
bO.
r>o.
D(CE'I)
(UMI
20.
•*!).
oi.
J5.
UO.
I7i.
220.
275.
32b.
Pll»
DEL X/IJFL D
DEL X
(W/U^-yjJ >U»;/UM-M3) 1UG/M3)
2.000E 03
7. 1 ;)o£ 02
2.5JOE 02
8,-^OOF 01
2. JOCE Cl
5.JOOE 00
5. JOOE-Ol
7. 10 )F-02
1. JOOE-02
C.37UE 00
2.379E 01
3.595E 01
3.995E Jl
3.221E 01
1.403E 01
2.932E 00
7. /31E-01
1.797E-01
1.676E
4.758E
1.078E
1.1996
1.288E
7.CJ15E
i.^yie
3.866E
8.987E
02
02
03
03
03
02
02
01
00
DEL FLUX
(UG/M2-SEC J
4.842E
1.375E
3. 117E
3.464E
3.723E
2. 027fc
4.309E
1.117E
2.597E
02
03
03
03
03
03
02
01
PARTICLE VEL
(M/SEC)
2.8SOE
2.890E
2.890E
2.U90E
2.890E
2.890E
2.890E
2.890fc
00
00
00
00
00
00
00
00
00
X
(116/1*3 )
5.107: 03
URlfT FLUX
(UG/M2-SECI
l.<»75E W<
MASS MEDIAN DIAMETER
(UM)
101
BARGE SAMPLING POINT CONDITIONS: Twet/Tdry Ranges: 23.7 - 25.3/27.0 - 28.0 °C
Canal Water Temperature: 34.ffC
Mind Speed and Direction Distribution: See Table 17
AMBIENT CONDITIONS; Wind Speed: 10.4 Km/hr ; Wind Direction: ESE
Twet/Tdry =23.2/27.8 °C
-------
POSITION. d/e/h(m/°/m) : 73.2/280/4.6
DATE: 3/27/74
TIME FRAME: 1652-1740
NOTE: Concurrent IK Data Point Available: X
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
(UM)
10.
30.
50.
10.
U'J.
150.
0 < HI )
(UM)
30.
50.
10.
113.
150 .
200.
DLL J
( UM)
20.
20.
30.
30.
•HO.
DJCENI
»un
( WU-1-M3)
DEL X/DEL 0
(UG/UM-M3I
DEL X
(UG/M3I
DEL FLUX
(UG/M2-SECI
PARTICLE VEL
(M/SEC)
20.
65.
7.'*OOE 02
l.jUUc 02
3.500fe 01
l.OOJE 01
2.JOOE 00
2.aOOE-Ol
3.309E 00
5.3S2E 00
5.033E 00
4.4UVE 00
2.3UIE 00
7.a57E-Ol
6.618E 01
1.072E 02
1.510E 02
1.347E 02
9.203E 01
3.929E 01
1.7SCE 02
2.865E 02
4.061E 02
3.623E 02
2.476E 02
1.057E 02
2.690E 00
2.690E 00
2.690E 00
2.690E 00
2.690E 00
2.690E 00
X
(UG/M3)
>J2
ORIFT FLUX
(UG/M2-SEC1
1.598E 03
MASS MEDIAN DIAMETER
(UM)
71
BARGE SAMPLING POINT CONDITIONS; Twet/Tdry Ranges: 22.0 - 23.5/26.0 - 27.0 °C
Canal Water Temperature: 34.8°C
Wind Speed and Direction Distribution: See Table 18
AMBIENT CONDITIONS: Wind Speed: 9.7 Km/hr ; Wind Direction: ESE ; Twet/Tdry = 23.5/27.5 °C
-------
POSITION. d/e/h(m/°/m) : 73.2/280/7.6
DATE: 3/27/74
TIME FRAME:
1801-1830
NOTE: Concurrent IK Data Point Available: X
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
I
illLCW)
tllMJ
10.
30.
50.
UU.
150.
I) (Hi )
JO.
•30.
80.
113.
IbO.
?00.
•Jt L I)
(UM)
2 i.
20.
30.
50.
O(CCN)
(U"»
t>(U)
DtL X/DEL 0 DEL X DEL FLUX PARTICLE VEi.
IUG/UM-M3) IUG/M3) IUG/M2-SEC) (M/SECI
40.
95.
130.
1 15.
5.300E 02
l.OOOE 02
2.200E 01
b.JJOE 00
1.400E OU
2.000t-01
2.094E 00
3.351E 00
3.163E 00
2.245E 00
1.610E 00
5.612E-01
4.189E 01
6.7O2E 01
9.490E 01
b.7^4E 01
6.4'»2E 01
2.806E 01
1.1 77E 02
1.883E 02
2.667E 02
1.8S2E 02
l.dlOE 02
7.885E 01
2.810E 00
2.810E 00
2.810E OO
2.810E 00
2.810E 00
2.810E 00
IUG/M3 )
U2
URIFT FLUX
IUG/M2-SEC)
1.022F 03
MASS MEDIAN DIAMETER
(DM)
73
BARGE SAMPLING POINT CONDITIONS: Twet/Tdry Ranges: 24.1/26.0 °C
Canal Water Temperature: 34.8°C
Mind Speed and Direction Distribution: See Table 19
AMBIENT CONDITIONS: Wind Speed: 10.1 Km/hr ; Wind Direction: ESE ; Twet/Tdry = 23.7/26.5 °C
-------
POSITION*
d/e/h(m/°,
NOTE: Concurrent IK
PILLS AND SENSITIVE
I IJ(LOV»)
dJ-l)
1 10.
2 '10.
3 50.
't 80.
•i 1 1 0.
ft 150.
/ 200.
o 250.
V 100.
10 350.
11 VJ-).
XHI 1 .,
(ll'l)
33.
50.
HJ .
110.
li'J.
200.
• 250.
300.
5.
95.
13'J.
1/5.
225.
275.
125.
3/5.
t25.
X
(IIG/M3)
P ( 0 )
DATA,
[:fcL
DATE:
3/30/74
TURKEY POINT SPRAY
X/BEL D DEL
(i»/UNi-vl3) JUC./UM-M3
3.2JOF 03
7.90JE 02
3.200F 02
l.aOOE 02
7. 'JOQE 01
2.5JOE 01
7.10'JE 00
l.GOOE 00
4.000E-01
7,-iOGE -02
I.BOOE--0*.
I.
4.
6.
c,.
7.
4.
1.
7.
2.
7.
DRIFT FLUX
340E 01
b47£ 01
6015 01
081E 01
Gd8= 01
015£ 01
23 5 E 01
96oE 01
L90E 00
Idle 00
235E-01
MASS
(UG/M2-5EC)
MODULE
X
) (UG/M3) (
2.681E
5.29SE
1.380E
2.424E
3.635E
3.508E
2.U7E
9. 800E
3.595E
1.091E
3.018E
02
02
03
03
03
03
03
02
02
02
01
TIME FRAME:
TEST
DEL FL'JX
UG/H2-StCI
1.289E 03
2.547E 03
6.640E 03
1.1 66E 04
1.744E 04
1.687E 04
1.018E 04
4.714E 03
1.729E 03
5.246E 02
1.740E 02
1540-1625
PARTICLE
VEL
(M/SEC)
4.810E
4.810E
4.810E
4.810E
4.810E
4.810E
4.810E
4.810E
4.810E
4. 8 ICE
4.810E
00
00
00
00
00
00
00
00
00
00
00
MEDIAN DIAMETER
(UM)
I.S35E 04
144
BARGE SAMPLING POINT CONDITIONS; Twet/Tdry Ranges: 24.0 - 26.7/28.8 - 29.3 °C
Canal Water Temperature: 33.4*C
Wind Speed and Direction Distribution: See Table 20
AMBIENT CONDITIONS; Wind Speed: 17.3 Km/hr ; Wind Direction: SW ; Twet/Tdry = 22.0/28.5 °C
-------
POSITION. d/e/h(m/
°/m):
73.Z/070/7.6
DATE: 3/30/74
TIME FRAME: 1640-1740
NOTE: Concurrent IK Data Point Available: x
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA
I
1
f.
3
«*
•3
6
7
d
LllLUWJ
I U-1)
10.
jj.
!)J»
dJ.
110.
iiO.
2UO.
"U*
01 HI )
• UM)
30.
50.
30.
110.
liO.
200.
250.
300.
DEL 0
IIJMI
20.
20.
30.
30.
40.
50.
50.
50.
D«CEN)
(IJM)
20.
*>0.
IS5.
°5.
130.
1.75.
225.
275.
X
JUG/M3)
Pin) n
<*/UM-M3)
2.500F 02
l.OOOF 0?
4. «>OOE 01
?.000fc 0!
6. '•OOF 00
1.400F 00
?. 100E-01
4.000F-02
1PIFT FLUX
(ur,/Me-sec
, TURKEY POINT SPRAY MODULE TEST
'EL X/DEL 0 DEL X
•UG/UM-M3) UJG/M3I
1.J47C 00 2. 094E 01
3.351E 00 6.702E 01
'..471? 00 1.941F 02
B.973F 00 2.694E 02
7.247E 00 2.89PE 02
3.929E 00 1.964E 02
1.670E 00 8.350E 01
4. 356=-01 2.178E 01
MASS MEDIAN DIAMETER
» (UM)
DEL FLUX
IUG/M2-SECI
1.227E 02
3.927E 02
1.138E 03
1.573E 03
1.699E 03
1.151E 03
4.893E 02
1.276E 02
PARTICLE VEL
IM/SECI
5. 860E 00
5.860E 00
5.860F. 00
5.860E 00
5.B60E OO
5.860E 00
5.860E 00
5.860E 00
0?
o?
113
BARGE SAMPLING POIMT CONDITIONS: Twet/Tdry Ranges: 23.7-25.1/29.0-30.0 °C
Canal Mater Temperature: 33.4°C
Mind Speed and Direction Distribution: See Table 21
AMBIENT CONDITIONS; Wind Speed: 21.1 Km/hr ; Wind Direction: SW ; Twet/Tdry = 22.0/28.5 °C
-------
POSITION. d/e/h(m/°/m) : 73.2/070/11.0
DATE: 3/30/74
TIME FRAME: 1755 " 1855
NOTE: Concurrent IK Data Point Available: _jj
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
i
i
2
3
<•
5
0
7
6
LXLJMl
( J.I)
iJ.
JJ.
30.
3J.
liO.
iaO.
«JJ.
2.JJ.
0 1 H i )
(UM)
30.
50.
P.O.
110.
150.
200.
250.
300.
OEL 0
I J.-l I
20.
20.
20.
30.
40.
50.
50.
• 50.
TJCrM
(UM|
'0.
40.
6^.
5.
130.
175.
225.
27S.
0(0)
(«/(J»<-M3»
3.200= Of.
•i.qooF 01
2.^00? 01
1.1 OOf 01
<». 000r 00
6.?OOF-01
1.100«=-01
2.000E-02
OFL X/0=L 0
(UG/U-^-M?)
1.3^05 00
?.°32E 00
^. 02AE 00
A.'J3BC 00
«-.601F 00
1.7A8E 00
6.561E-01
•>. \ 78^-01
DEL X
IUG/M3J
2.5R1F 01
5.965F 01
1.209E 02
1.&81E 02
1.841E 02
8. 839E 01
3.280E 01
1.089= 01
DEL FLUX
(UG/M2-SECI
1.877E 02
<». 175F 02
' 8.455E 02
1.037F 03
1.288E 03
6. 188F 02
2.296E 02
7.6229 01
PARTICLE VEL
-------
POSITION. d/e/h(m/°/m) : 73.2/070/4.6
DATE: 3/30/74
TIME FRAME: 1905-1935
NOTE: Concurrent IK Data Point Available:
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
1
1
5
fa
7
3
D< LJrtl
1 u-tl
10.
30.
iJ.
80.
lau.
POU )
(UM)
20.
50.
flu.
110.
150.
200.
200.
DEL 0
(UM|
20.
20.
10.
10.
40.
50.
50.
50.
(IJM)
20.
bs!
130.
175.
225.
275.
p«ni
6.300F 02
1.AOJ1 02
1.">OOF 01
^..OOOE 00
7. OQOE-01
1. 1001-01
l.BOOE-02
TEL X/JEL T
2.639? 00
4.691E 00
5.752P 00
5. 835F 00
4.6015 00
?.217C 00
6.561?-01
1.960E-01
DEL X
(UG/M3)
5.278E 01
9.383E 01
1.726F 02
1.751? 02
1.8*11: 02
1.10PE 02
3.280F 01
9. 800E 00
DEL FLUX
(UG/M2-SFCI
3.003E 02
5.339? 02
9.818F 02
9.962E 02
I.OA7E 03
6.307E 02
1.866E 02
5.576E 01
PARTICLE VEL
(M/SECI
5.690E 00
5.690E 00
5.690E 00
5.690E 00
5.690E 00
5.690F 00
5. 690E 00
5.690F 00
8.J17E 02
ORIFT FLUX
Jiir,/M2-SFCI
03
MASS MEDIAN DIAMETER
(UM)
97
BARGE SAMPLING POINT CONDITIONS: Twet/Tdry Ranges: 24.0/28.9 °C
Canal Water Temperature: 33.4 °C
Mind Speed and Direction Distribution:
AMBIENT CONDITIONS; Wind Speed: 20.5 Kra/hr ; Wind Direction: sw
See Table 23
! Twet/Tdry
23.0/28.9
-------
POSITION. d/e/h(m/°/m) : 36.
NOTE: Concurrent IK
6/260/4.6
DATE: 3/31/74 TIME FRAME: 1240-1325
Data Point Available: X
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
1 LllLJAl Dlril I
CJ-II (IM)
i 1J. 30.
£. 30. 50.
•> bd. 80.
«»
-------
PO£VTON. d/e/h(!ti/°/m) : 33.5/295/4.6
NOT£: Concurrent IK Data Point Available:
DATE: 3/31/74
TIME FRAME; 1345-1428
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
1
1
I
J
t,
5
6
7
o
OILJH)
J.
i>0.
dJ.
.10.
4.30.
*JJ.
25J.
LMHI )
(UM)
20.
50.
80.
110.
150.
200.
i50.
300.
DEL U
(UM)
20.
20.
30.
JO.
•«o.
50.
50.
50.
n«CEM»
I'JM)
20.
40.
65.
95.
130.
175.
i25.
275.
P(D)
I«/UM-M3»
l.OOOF 03
3. 200b 0?
1.100? 02
^.OOOF 01
1.700E 01
?.OOOE 00
2.000E-01
1.800F-02
DEL X/D5L D
-------
POSITION. d/e/h(m/°/m) : 36.6/245/4.6
DATE: 3/31/74
TIME FRAME:
1441'1524
NOTE: Concurrent IK Data Point Available: _X_
t
,
J
^
-
D
7
a
.jl L ->..)
t Jill
1 J.
3J.
JJ.
1 1 J.
I j J.
£ u J.
lu'11
30.
50.
80.
1 10.
150.
200.
300.
i;EL T
CUM)
'0.
20.
30.
JO.
5ol
50.
50.
c(C^.n P«O) -~>f\- x/ JIL j
(UM)
70.
40.
65.
I'O.
175.
225.
X
(*
3.
1.
4.
1.
1.
2.
3.
1.
/UV-.X3)
?00i 02
T00r 02
OOOE 01
100^ 01
300E 00
000C.-01
500F-02
°OOE--0?
DRIFT KLUX
(DG/M2-5EC
(UG/U^-^3)
1.340? 00
•J.686E 00
5.752E 00
4.938= 00
?.071E 00
5.612?-01
2.0875-01
9.691F-02
O-.L X
(UG/M3)
2.681E 01
7.372E 01
1.726E 02
1.481E 02
8.283E 01
2. 806E 01
1.044E 01
4. 846F. 00
U: L rL'JX
(UG/M2-SEC)
1.356F 02
3.730E 02
8.731E 02
7.496E 02
4.191E 02
1.420E 02
5.281E 01
2.452E 01
PA; T:CL
(M/S5
5. 060E
5.060E
5.060E
5.060E
5.060E
5. 060E
5.060F
5.060E
z VcL
C»
00
00
00
00
00
00
00
00
MASS MEDIAN DIAMETER
>
(UM)
5.'»74F 02
2.7705 03
80
BARGE SAMPLING POINT CONDITIONS: Twet/Tdry Ranges: 23.1/28.9 °C
Canal Water Temperature: 34.9°C
Wind Speed and Direction Distribution: See Table 26
AMBIENT CONDITIONS; Wind Speed: i8.2 Km/hr ; Wind Direction: ESE ; Twet/Tdry = 22.5/27.8 °C
-------
POSITION. d/e/h(m/°/m): 33.5/270/4.6
DATE: 3/31/74
TIME FRAME: ]538-1622
NOTE: Concurrent IK Data Point Available: X
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
I
L.
J
b
0
7
D( LJMl
(UM)
10.
JO.
30.
80.
110.
150.
DIHJ )
tUMI
30.
50.
BO.
110.
150.
200.
250.
UEL U
(UM)
20.
20.
30.
30.
40.
50.
50.
DCCFM
20.
4C.
c>5.
95.
130.
225.
P(OI
( «/UM-M3)
5.000F 02
2.500F
1.300?
s.ooor
1.300F
1.800=
2.200=-
02
02
01
01
00
01
DEL X/OEL 0
•UG/UM-M3)
2.094E 00
P. 378E
1.B69E
2.245F
5.051E
1.312F
00
01
01
01
00
00
DEL X
(UG/H3»
4. 189E 01
1.676E
5.608E
6.734E
5. 982E
2.526E
6. 561E
02
02
02
02
02
01
DEL FLUX PARTICLE VEL
IUG/M2-SEC) CM/SEC)
1.860E 02 4.44AF nn
2.490E
2.990E
2.656E
1.121E
2.913E
02
03
03
03
03
02
*>• ^40E 00
4.440E 00
4.440E 00
4.440E 00
4.440E 00
4.440E 00
(UG/M3I
2.360E 03
ORIFT FLUX
IUG/M2-5EC)
1.048F 04
MASS MEDIAN DIAMETER
(UM)
98
BARGE SAMPLING POINT CONDITIONS: Twet/Tdry Ranges: 20.5 - 25.5/27.5-29.8 °C
Canal Water Temperature: 34.9°C
Wind Speed and Direction Distribution: See Table 27
AMBIENT CONDITIONS: Wind Speed: 16.0 Km/hr ; Wind Direction:
Twet/Tdry • 21.0/27.9 «c
-------
POSITION. d/e/h{m/°/in) : 36.6/280/7.6
DATE: 3/31/74
TIME FRAME: 1634-1707
NOTE: Concurrent IK Data Point Available:
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
DlLJwl D
(U.I) (UK)
iU. JG.
jj. *u.
£jj. PO.
6u. 110.
iiu. 150.
i5». 200.
ioO. 2bO. •
^5o. 200.
(UM )
20.
£0.
30.
30.
^0.
50.
50.
50.
DtCFM
(UM)
20.
4C.
65.
55.
13C.
175.
2?5.
275.
( *
1.
d.
4.
1.
4.
7.
1.
1.
D (O)
/UM-M?)
600? 02
900E Cl
^OOF 01
600E 01
OOOF 00
900:-01
300L-01
POQc-02
OFL
(U
A.
2.
ft.
7.
&.
2.
7.
I.
X/OEL 0
3/u-<->m
7025-01
<}82r 00
^71E 00
182? 00
S01H 00
217E 00
753E-01
960E-01
DEL X
(UG/M3I
1.340E 01
5. 965E 01
1.941E 02
2. 155E 02
1.8ME 02
1.108E 02
3. S77E 01
9. BOOE 00
DEL FLUX
(UG/M2-SEC)
6.702E
2.982E
9.706F
1.077E
9.203F
5.5«2E
1.938E
4.900E
01
02
02
03
02
02
02
01
PAKTICLE VEL
I
5.
5.
5.
5.
5.
5.
5.
5.
M/SEO
OOOE 00
000= 00
OOOE 00
OOOE 00
OOOE 00
OOOE 00
OOOE 00
OOOE 00
X
<'JG/«3I
8,261^ 02
OPIFT FLUX
-------
TURKEY POINT ISOKINETIC SAMPLING SUMMARY FOR SPRAY MODULF'
d/e/h
(m/Vm)
20.7/280/4.3
36.6/270/4.3
41.1/270/7.9
64.0/245/4.6
41.1/270/4.6
41.1/270/7.0
41.1/270/2.4
88.4/245/4.6
33.5/270/4.6
36.6/230/11.0
36.6/230/7.6
36.6/240/4.6
36.6/290/4.6
36.6/290/3.0
36.6/290/6.1
36.6/290/9.1
36.6/275/4.6
73.2/280/4.6
73.2/280/7.6
36.6/060/4.6
73.2/070/7.6
Date, Time
1/30/74, 1700
1/31/74, 1620
2/01/74, 1544
2/13/74, 1430
2/13/74, 1617
2/13/74, 1725
2/13/74, 1810
2/14/74, 1637
2/15/74, 1359
3/18/74, 1653
3/18/74, 1743
3/19/74, 1122
3/26/74, 1104
3/26/74, 1200
3/26/74, 1255
3/26/74, 1352
3/27/74, 1542
3/27/74, 1652
3/27/74, 1801
3/30/74, 1540
3/30/74, 1640
MNa
fug)
1,350
2,295
910
448
1,138
523
658
1,398
574
454
749
1,888
2,339
2,689
1,588
439
1,914
663
138
12,739
2,839
%
(ng)
163
234
114
53.7
121
62.2
78.7
104
610
48
92.5
202
250
280
160
47.5
208
70
16
1,185
310
Vs
(m3)
4.84
5.65
7.90
4.59
4.21
3.54
3.38
13.25
17.82
10.25
7.09
9.35
5.77
3.35
4.55
5.86
4.10
4.96
2.73
12.79
11.71
u
(m/s)
2.5
4.0
3.0
3.0
2.5
2.5
2.5
3.2
3.0
4.8
4.3
4.5
3.7
2.9
3.8
3.9
3.3
2.8
2.8
5.2
6.1
CNa
CNa
1.09
1.09
1.08
1.32
1.32
1.32
1.32
1.02
1.13
0.82
0.82
0.82
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
cMg
CMg
1.07
1.07
1.06
1.24
1.24
1.24
1.24
1.0
0.94
0.88
0.88
0.88
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
Fa
Na
760
1,771
373
387
892
488
642
344
109
174
372
745
1,260
1,955
1,114
245
1,294
314
119
4,351
1,242
Fa
Mq
90
177
46
44
89
54
72
25
97
20
49
86
135
- 204
112
27
141
33
14
405
136
-------
TURKEY POINT ISOKINETIC SAMPLING SUMMARY FOR SPRAY MODULES (CONTINUED)
£
ro
IK Tube Position
d/e/h
(m/Vm)
73.
73.
36.
33.
36.
33.
2/070/11.0
2/070/4.6
6/260/4.6
5/295/4.6
6/245/4.6
5/270/4.6
Date, Time
3/30/74,
3/30/74,
3/31/74,
3/31/74,
3/31/74,
3/31/74,
1755
1905
1240
1345
1441
1538
MNa
1,014
989
2,139
1,788
939
1,489
"MQ
(u9)
m
in
208
163
100
150
Vs
12.97
4.84
4.82
6.07
6.67
4.06
u
(m/s)
7.1
5.7
2.9
4.7
5.1
4.5
CNa
0.84
0.84
0.84
0.84
0.84
0.84
fe
0.84
0.84
0.84
0.84
0.84
0.84
Fa
rNa
(pg/m2-s)
466
978
1.081
1,163
603
1,386
(ug/m2-s)
51
110
105
106
64
140
36.5/280/7.6
3/31/74, 1634
464
49
5.99
5.0
0.84 0.84
325
34
-------
REFERENCE
0°
340°
320
300
280
220°
180'
140v
Figure 32. Sectors for wind direction distribution.
(Spray Module Test).
483
-------
Table 9
POSITION: 36.6m/230°/4.6m
DATE: 3/18/74
TIME FRAME: 1459 - 1559
WIND SPEED DISTRIBUTION
Wind Speed Ranges % of Run Time
(m/s) 1n Range*
WIND DIRECTION DISTRIBUTION
Wind Direction Sectors
(8)
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
% of Run Time
1n Sector*
0.0
0.0
0.0
0.0
. 0.1
0.4
2.3
12.9
37.6
32.4
11.1
2.8
0.3
0.0
0.0
0.0
*A11 percentages have been rounded to the nearest tenth, so totals may not
be exactly 100.0%.
484
-------
Table 10
POSITION: 36.6m/230°/11.0n
DATE: 3/18/74
TIME FRAME: 1653 - 1723
WIND SPEED DISTRIBUTION
Wind Speed Ranges % of Run Time
(m/s) in Range*
•
MIND DIRECTION
DTSTPIBUTION
Wind Direction Sectors % of Run Time
(°) In Sector*
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
0.0
0.0
0.0
0.1
0.0
0.2
0.9
8.3
55.2
33.3
1.7
0.3
0.0
0.0
0.0
0.0
*A11 percentages have been rounded to the nearest tenth, so totals may not
be exactly 100.0%.
485
-------
Table 11
POSITION: 36.6m/230°/7.6m
DATE: 3/18/74
TIME FRAME: 1743 - 1843
HIND SPEED DISTRIBUTION
Hind Speed Ranges % of Run Time
(m/s) In Range*
WIND DIRECTION
DISTRIBUTION
Wind Direction Sectors % of Run Time
(°) 1n Sector*
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
0.0
0.0
0.0
0.0
0.1
0.1
0.5
2.7
18.6
55.7
19.9
2.0
0.3
0.0
0.0
0.0
*A11 percentages have been rounded to the nearest tenth, so totals may not
be exactly 100.0%.
486
-------
Table 12
POSITION: 36.6 m/ 240°/4.6 m
DATE: 3/19/74
TIME FRAME: 1122 - 1222
WIND SPEED
Hind Speed Ranges
(m/s)
0 - 0.29
0.29 - 0.67
0.67 - 1.05
1.05 - 1.43
1.43 - 1.81
1.81 - 2.20
2.20 - 2.57
2.57 - 2.95
2.95 - 3.33
3.33 - 3.72
3.72 - 4.10
4.10 - 4.48
4.48 - 4.86
4.86 - 5.24
5.24 - 5.62
5.62 - 6.00
DISTRIBUTION
% of Run Time
in Range*
0.0
0.0
0.0
0.1
0.3
0.7
1.6
4.4
8.3
11.6
14.9
17.4
15.6
10.6
7.1
7.1
WIND
DIRECTION DISTRIBUTION
Wind Direction Sectors
180 -
220 -
260 -
280 -
300 -
320 -
340 -
356 -
12 -
28 -
44 -
60 -
80 -
100 -
120 -
140 -
220
260
280
300
320
340
356
12
28
44
60
80
100
120
140
180
% of Run Time
in Sector*
0.0
0.0
0.0
0.0
0.0
0.1
0.5
2.0
13.2
47.5
30.8
5.6
0.3
0.0
0.0
0.0
*A11 percentages have been rounded to the nearest tenth, so totals may not
be exactly 100.0%.
487
-------
Table 13
POSITION: 36.6m/240°/4.6m
DATE: 3/26/74
TIME FRAME: H04 - 1148
WIND SPEED
Wind Speed Ranges
(m/s)
0 - 0.48
0.48 - 1.05
1.05 - 1.62
1.62 - 2.19
2.19 - 2.76
2.76 - 3.33
3.33 - 3.91
3.91 - 4.48
4.48 - 5.05
5.05 - 5.62
5.62 - 6.20
6.20 - 6.76
6.76 - 7.33
7.33 - 7.91
7.91 - 8.48
Greater than 8.48
DISTRIBUTION
% of Run Time
1n Range*
0.1
0.2
2.1
6.8
15.9
26.3
17.6
10.1
11.1
4.9
3.9
• 0.6
0.3
0.0
0.0
0.0
MIND DIRECTION DISTRIBUTION
Wind Direction Sectors % of Run Time
(°) 1n Sector*
*A11 percentages have been rounded to the nearest tenth, so totals may not
be exactly 100.0%.
488
-------
Table 14
POSITION: 36.6m/290°/3.0m
DATE: 3/26/74
TIME FRAME: 1200 - 1248
WIND SPEED
Wind Speed Ranges
(m/s)
0 - 0.48
0.48 - 1.05
1.05 - 1.62
1.62 - 2.19
2.19 - 2.76
2.76 - 3.33
3.33 - 3.91
3.91 - 4.48
4.48 - 5.05
5.05 - 5.62
5.62 - 6.20
6.20 - 6.76
6.76 - 7.33
7.33 - 7.91
7.91 - 8.48
Greater than 8.48
DISTRIBUTION
% of Run Time
in Range*
4.0
5.8
11.6
11.7
16.6
25.4
11.3
5.5
5.1
1.6
1.0
0.2
0.1
0.0
0.0
0.0
WIND DIRECTION DISTRIBUTION
Wind Direction Sectors X of Run Time
(°) In Sector*
t0 the nearest tenth' so totals
489
-------
Table 15
POSITION: 36.6m/290°/6.1m
DATE: 3/26/74
TIME FRAME: 1255 - 1339
WIND SPEED
Kind Speed Ranges
(m/s)
0 - 0.48
0.48 - 1.05
1.05 - 1.62
1.62 - 2.19
2.19 - 2.76
2.76 - 3.33
3.33 - 3.91
3.91 - 4.48
4.48 - 5.05
5.05 - 5.62
5.62 - 6.20
6.20 - 6.76
6.76 - 7.33
7.33 - 7.91
7.91 - 8.48
Greater than 8.48
DISTRIBUTION
% of Run Time
in Range*
1.2
2.2
5.2
5.0
6.4
21.6
13.1
10.4
13.6
8.0
9.3
2.0
1.2
0.5
0.1
0.0
WIND DIRECTION DISTRIBUTION
Wind Direction Sectors X of Run Time
(°) 1n Sector*
*A11 percentages have been rounded to the nearest tenth, so totals may not
be exactly 100.0%.
490
-------
Table 16
POSITION: 36.6m/290°/9.1m
DATE: 3/26/74
TIME FRAME: 1352 - 1440
WIND SPEED
Hind Speed Ranges
(m/s)
0 - 0.48
0.48 - 1.05
1.05 - 1.62
1.62 - 2.19
2.19 - 2.76
2.76 - 3.33
3.33 - 3.91
3.91 - 4.48
4.48 - S.05
5.05 - 5.62
5.62 - 6.20
6.20 - 6.76
6.76 - 7.33
7.33 - 7.91
7.91 - 8.48
Greater than 8.48
DISTRIBUTION
% of Run Time
In Range*
0.1
0.2
0.8
1.8
4.3
11.7
12.5
10.5
15.5
9-9
18.6
5.0
4.3
3.1
1.1
0.5
WIND DIRECTION DISTRIBUTION
Wind Direction Sectors % of Run Time
(°) In Sector*
*A11 percentages have been rounded to the nearest tenth, so totals may not
be exactly 100.0%.
491
-------
Table 17
POSITION: 36.6m/275°/4.6m
DATE: 3/27/74
TIME FRAME: 1542 - 1627
WIND
Wind
0.
1.
1.
2.
2.
3.
3.
4.
5.
5.
6.
6.
7.
7.
Speed
(m/s)
0
48
05
62
19
76
33
91
48
05
62
20
76
33
91
- 0
- 1
- 1
- 2
- 2
- 3
- 3
- 4
- 5
- 5
- 6
- 6
- 7
- 7
- 8
Greater
SPEED
Ranges
.48
.05
.62
.19
.76
.33
.91
.48
.05
.62
.20
.76
.33
.91
.48
than 8
DISTRIBUTION
% of Run Time
in Range*
1
3
9
10
13
25
13
7
8
3
2
0
0
0
0
.48 °
.9
.3
.9
.6
.2
.9
.3
.5
.3
.1
.4
.3
.2
.0
.0
.0
WIND
DIRECTION DISTRIBUTION
Wind Direction Sectors
180 -
220 -
260 -
280 -
300 -
320 -
340 -
356 -
12 -
28 -
44 -
60 -
80 -
100 -
120 -
140 -
220
260
280
300
320
340
356
12
28
44
60
80
100
120
140
180
X of Run Tin
in Sector*
0.
0.
0.
0.
0.
0.
2.
13.
34.
35.
11.
2.
0.
0.
0.
0.
0
0
0
0
0
4
7
1
8
3
0
6
2
0
0
0
*A11 percentages have been rounded to the nearest tenth, so totals may no*
be exactly 100.0%.
492
-------
Table 18
POSITION: 73.2m/280V4.6m
DATE: 3/27/74
TIME FRAME: 1652 - 1740
WIND SPEED
Wind Speed Ranges
(m/s)
0 - 0.48
0.48 - 1.05
1.05 - 1.62
1.62 - 2.19
2.19 - 2.76
2.76 - 3.33
3.33 - 3.91
3.91 - 4.48
4.48 - 5.05
5.05 - 5.62
5.62 - 6.20
6.20 - 6.76
6.76 - 7.33
7.33 - 7.91
7.91 - 8.48
Greater than 8
DISTRIBUTION
2 of Run Time
in Range*
5.3
7.9
14.8
9.1
11.0
26.6
10.8
6.0
6.1
1.6
0.7
0.1
0.0
0.0
0.0
.48 0.0
WIND DIRECTION DISTRIBUTION
Wind Direction Sectors
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
% of Run Time
1n Sector*
0.0
0.0
0.0
0.0
0.0
0.0
0.1
2.3
13.5
37.0
34.4
12.1
0.6
0.0
0.0
0.0
*A11 percentages have been rounded to the nearest tenth, so totals may not
be exactly 100.0%.
493
-------
Table 19
POSITION: 73.2m/280°/7.6m
DATE: 3/27/74
TIME FRAME: 1801 - 1830
WIND SPEED
Hind Speed Ranges
(m/s)
0 - 0.48
0.48 - 1.05
1.05 - 1.62
1.62 - 2.19
2.19 - 2.76
2.76 - 3.33
3.33 - 3.91
3.91 - 4.48
4.48 - 5.05
5.05 - 5.62
5.62 - 6.20
6.20 - 6.76
6.76 - 7.33
7.33 - 7.91
7.91 - 8.48
Greater than 8
DISTRIBUTION
% of Run Time
in Range*
5.4
10.9
17.3
11.5
11.7
22.4
8.9
5.1
4.9
1.4
0.5
0.0
0.0
0.0
0.0 .
.48 0.0
WIND DIRECTION DISTRIBUTION
Wind Direction Sectors
(°)
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
% of Run Time
In Sector*
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
4.7
23.5
36.9
29.7
4.2
0.0
0.0
0.0
*A11 percentages have been rounded to the nearest tenth, so totals may not
be exactly 100.0%.
494
-------
Table 20
POSITION: 36.6m/60°/4.6m
DATE: 3/30/74
TIME FRAME: 1540 - 1625
WIND SPEED
Wind Speed Ranges
(m/s)
0 - 0.67
0.67 - 1.43
1.43 - 2.19
2.19 - 2.95
2.95 - 3.72
3.72 - 4.48
4.48 - 5.24
5.24 - 6.00
6.00 - 6.76
6.76 - 7.53
7.53 - 8.29
8.29 - 9.05
9.05 - 9.81
9.81 - 10.57
10.57 - 11.34
11.34 - 13.43
DISTRIBUTION
% of Run Time
in Range*
0.0
0.0
1.4
5.2
12.4
14.3
15.7
14.5
13.9
7.5
6.5
3.8
2.8
0.9
0.6
0.4
WIND DIRECTION DISTRIBUTION
Wind Direction Sectors
(°)
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
% of Run Time
1n Sector*
0.0
0.0
0.0
0.0
0.0
0.6
3.2
15.6
34.8
30.7
11.9
2.9
0.2
0.0
0.0
0.0
t(>tals may not
495
-------
Table 21
POSITION: 73.2m/70°/7.6m
DATE: 3/30/74
TIME FRAME: 1640 - 1740
Wind
WIND
Speed
(m/s)
0 -
0.67 -
1.43 -
2.19 -
2.95 -
3.72 -
4
5
6
.48 -
.24 -
.00 -
6.76 -
7
8
9
9
10
11
.53 -
.29 -
.05 -
.81 -
.57 -
.34 -
SPEED
Ranges
0.
1.
2.
67
43
19
2.^5
3.
4.
5.
6.
6.
7.
8.
72
48
24
00
76
53
29
9.05
9.81
10.57
11.34
13.43
DISTRIBUTION
% of Run Time
in Range*
0.0
0.0
0.0
0.3
2
7
14
17
18
12
10
6
5
2
1
1
.9
.7
.6
.4
.1
.3
.0
.6
.2
.2
.4
.2
MIND
DIRECTION
DISTRIBUTION
Wind Direction Sectors % of Run Tim
(°) 1n Sector*
180 -
220 -
260 -
280 -
300 -
320 -
340 -
356 -
12 -
28 -
44 .
60 -
80 -
100 -
120 -
140 -
220
260
280
300
320
340
356
12
28
44
60
80
100
120
140
180
0.
0.
0.
0.
0.
0.
0.
8.
36.
41.
10.
2.
0
0
0
0
0
0
5
0
5
8
9
0
0.2
0.0
0.0
0.0
*A11 percentages have been rounded to the nearest tenth, so totals may not
be exactly 100.0%.
496
-------
Table 22
POSITION: 73.2m/700/n.0m
DATE: 3/30/74
TIME FRAME: 1755 - 1855
WIND SPEED
Hind Speed Ranges
(m/s)
0 - 0.67
0.67 - 1.43
1.43 - 2.19
2.19 - 2.95
2.95 - 3.72
3.72 - 4.48
4.48 - 5.24
5.24 - 6.00
6.00 - 6.76
6.76 - 7.53
7.53 - 8.29
8.29 - 9.05
9.05 - 9.81
9.81 - 10.57
10.57 - 11.34
11.34 - 13.43
DISTRIBUTION
Z of Run Time
In Range*
0.0
0.0
0.0
0.1
0.3
1.9
5.6
10.5
15.0
18.0
17.8
13.3
9.0
4.6
2.5
1.5
WIND DiRECTicr: DrsTRiriininN
Wind Direction Sectors
(°)
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
" 120 - 140
140 - 180
% of Run Time
In Sector*
0.0
0.0
0.0
0.0
0.0
0.1
0.4
5.7
36.8
48.3
7.9
0.6
0.0
0.0
0.0
0.0
been rounded to the nearest tenth«so tota1s
497
-------
Table 23
POSITION: 73.2m/70°/4.6m
•
DATE: 3/30/74
TIME FRAME: 1905 - 1935
MIND SPEED
Mind Speed Ranges
(m/s)
0 - 0.67
0.67 - 1.43
1.43 - 2.19
2.19 - 2.95
2.95 - 3.72
3.72 - 4.48
4.48 - 5.24
5.24 - 6.00
6.00 - 6.76
6.76 - 7.53
7.53 - 8.29
8.29 - 9.05
9.05 - 9.81
9.81 - 10.57
10.57 - 11.34
11.34 - 13.43
DISTRIBUTION
X of Run Time
In Range*
0.0
0.1
0.5
6.4
22.4
27.0
21.7
12.8
6.0
2.3
0.6
0.1
0.0
0.0
0.0 .
0.0
WIND DIRECTION
DISTRIBUTION
Wind Direction Sectors 35 of Run Time
(°) 1n Sector*
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
0.0
0.0
0.0
0.0
0.0
0.1
1.5
10.2
30.1
41.2
13 5
2.8
0.5
0.1
0.0
0.0
*A11 percentages have been rounded to the nearest tenth, so totals may not
be exactly 100.0%.
498
-------
Table 24
POSITION: 36.6m/2600/4.6m
DATE: 3/31/74
TIME FRAME: 1240 - 1325
WIND SPEED
Wind Speed Ranges
(m/s)
0 - 0.67
0.67 - 1.43
1.43 - 2.19
2.19 - 2.95
2.95 - 3.72
3.72 - 4.48
4.48 - 5.24
5.24 - 6.00
6.00 - 6.76
6.76 - 7.53
7.53 - 8.29
8.29 - 9.05
9.05 - 9.81
9.81 - 10.57
10.57 - 11.34
11.34 - 13.43
DISTRIBltflON
% of Run Time
In Range*
0.0
0.4
7.9
21.1
28.2
24.3
14.0
3.8
0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
WIND DIRECTION DISTRI
Wind Direction Sectors %
(°)
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
3UTION
of Run Time
in Sector*
0.0
0.0
0.0
0.0
0.1
0.8
3.9
13.8
24.5
33.6
19.0
4.1
0.3
0.0
0.0
0.0
been rounded to the nearest tenth> so totals ma*not
499
-------
Table 25
POSITION: 33.5m/295°/4.6m
DATE: 3/31/74
TIME FRAME: 1345 - 1428
WIND SPEED
Mind Speed Ranges
(m/s)
0 - 0.67
0.67 - 1.43
1.43 - 2.19
2.19 - 2.95
2.95 - 3.72
3.72 - 4.48
4.48 - 5.24
5.24 - 6.00
6.00 - 6.76
6.76 - 7.53
7.53 - 8.29
8.29 - 9.05
9.05 - 9.81
9.81 - 10.57
10.57 - 11.34
11.34 - 13.43
DISTRIBUTION
% of Run Time
in Range*
0.0
0.0
0.4
5.4
14.9
24.1
26.8
19.1
7.4
1.8
0.2
0.0
0.0
0.0
0.0
0.0
MIND DIRECTION
DISTRIBUTION
Wind Direction Sectors % of Run Time
(°) 1n Sector*
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
0.0
0.0
0.0
0.0
0.0
0.5
5.1
30.7
37.2
18.8
6.3
1.2
0.1
0.0
0.0
0.0
*A11 percentages have been rounded to the nearest tenth, so totals may no*
be exactly 100.0%.
500
-------
Table 26
POSITION: 36.6m/245°/4.6
DATE: 3/31/74
TIKE FRAME: 1441 - 1524
Wind
0
1
2
2
3
4
5
6
6
7
8
9
9
10
11
WIND
Speed
(m/s)
0 -
.67 -
.43 -
.19 -
.95 -
.72 -
.48 -
.24 -
.00 -
.76 -
.53 -
.29 -
.05 -
.81 -
.57 -
.34 -
SPEED
Ranges
0
1
2
2
3
4
5
6
6
7
8
9
9
.67
.43
.19
.95
.72
.48
.24
.00
.76
.53
.29
.05
.81
10.57
11
13
.34
.43
DISTRIBUTION
% of Run Time
in Range*
0
0
0
0
7
24
35
26
6
0
0
0
0
0
0
0
.0
.0
.0
.6
.1
.0
.4
.2
.0
.7
.0
.0
.0
.0
.0
.0
WIND
DIRECTION DISTRIBUTION
Wind Direction
180 -
220 -
260 -
280 -
300 -
320 -
340 -
356 -
12 -
28 -
44 -
60 -
80 -
100 -
120 -
140 -
220
260
280
300
320
340
356
12
28
44
60
80
100
120
140
180
Sectors % of Run Time
in Sector*
0
0
0
0
0
0
0
1
12
61
24
1
0
0
0
0
.0
.0
.0
.0
.0
.0
.1
.0
.1
.1
.3
.3
.0
.0
.0
.0
*A11 percentages have been rounded to the nearest tenth, so totals may not
be exactly 100.0%.
501
-------
Table 27
POSITION: 33.5m/270°/4.6m
DATE: 3/31/74
TIME FRAME: 1538 - 1622
WIND SPEED
Wind Speed Ranges
(m/s)
0 - 0.67
0.67 - 1.43
1.43 - 2.19
2.19 - 2.95
2.95 - 3.72
3.72 - 4.48
4.48 - 5.24
5.24 - 6.00
6.00 - 6.76
6.76 - 7.53
7.53 - 8.29
8.29 - 9.05
9.05 - 9.81
9.81 - 10.57
10.57 - 11.34
11.34 - 13.43
DISTRIBUTION
% of Run Time
in Range*
0.0
0.1
1.1
4.7
14.0
28.4
31.1
16.4
3.9
0.3
0.0
0.0
0.0
0.0
0.0
0.0
WIND DIRECTION
DISTRIBUTION
Wind Direction Sectors % of Run Time
(8) 1n Sector*
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
0.0
0.0
0.0
0.0
0.0
0.3
1.1
4.4
19.6
52.3
18.9
3.3
0.1
0.0
0.0
0.0
*A11 percentages have been rounded to the nearest tenth, so totals may not
be exactly 100.0%.
502
-------
Table 28
POSITION: 36.5m/280°/7.6m
DATE: 3/31/74
TIME FRAME: 1634 - 1707
WIND SPEED
Wind Speed Ranges
(m/s)
0 - 0.67
0.67 - 1.43
1.43 - 2.19
2.19 - 2.95
2.95 - 3.72
3.72 - 4.48
4.48 - 5.24
5.24 - 6.00
6.00 - 6.76
6.76 - 7.53
7.53 - 8.29
8.29 - 9.05
9.05 - 9.81
9.81 - 10.57
10.57 - 11.34
11.34 - 13.43
DISTRIBUTION
% of Run Time
in Range*
0.0
0.0
0.5
1.7
8.2
20.4
35.5
25.6
6.6
1.2
0.1
0.0
0.0
0.0
0.0
0.0
WIND
DIRECTION PJSTl
Wind Direction Sectors
180 -
220 -
260 -
280 -
300 -
320 -
340 -
356 -
12 -
28 -
44 -
60 -
80 -
100 -
120 -
140 -
220
260
280
300
320
340
356
12
28
44
60
80
100
120
140
180
-inilTION
% of Run Time
in Sector*
0.0
0.0
0.0
0.0
0.0
0.2
0.5
3.1
16.8
55.1
21.0
3.0
0.2
0.0
0.0
0.0
*A11 percentages have been rounded to the nearest tenth, so totals may no*
be exactly 100.0%.
503
-------
APPENDIX H
MANUFACTURER'S SPECIFICATIONS FOR COOLING DEVICES
H-l Marley 600/700 One Cell Wet Mechanical Draft Cooling Tower
H-2 Ceramic Cooling Tower Company's Powered Spray Module
504
-------
APPENDIX H-l
MARLEY 600/700 ONE CELL WET MECHANICAL DRAFT COOLING TOWER:
specifications as provided by the manufacturer.
505
-------
ENVIRONMENTAL SYSTEMS CORPORATION
POST OFFICE BOX 2525
KNOXVILLE. TENNESSEE 37901
(615) 573-7931
November 5, 1974
Mr. J. D. Holmberg
Supervisory Consultant
Engineering Division Office
The Marley Company
5800 Foxridge Drive
Mission, Kansas 66202
Dear Joyce:
Following up on our telephone conversation, I am sending you a list of data
that I feel we need in order to document properly the Turkey Point cooling
tower in the final report of the Turkey Point contract. Time did not per-
mit us to discuss at any length how The Marley Company could assist Environ-
mental Systems Corporation (ESC) in this matter. I, therefore, will outline
here how I would like to see the tower documented, and I will contact you
later to receive your comments.
1. General description of the cooling tower:
Usual and unusual features of the tower,
materials, reason(s) for different materials, etc.
2. Dimensions of the tower:
Length, width, height, stack dimensions, fan diameter, etc.
Two drawings showing a schematic top and side view of the tower
similar to Marley's drawing #72-41528 should be part of this section.
Since metric units are required by contract, I suggest the use of both
metric and British units in all drawings and tables.
3. Fill dimensions:
Length, width, height, vertical and horizontal spacing of the splash
bars, etc.
4. Performance data:
L, 6. L/6, range, approach, all at design wet bulb temperature, horse
power of fan motor, tower performance curves, etc.
5. Drift eliminator characterization:
Type of drift eliminators, dimensions, material, performance data, etc.
506
-------
ENVIRONMENTAL SYSTEMS CORPORATION
Mr. J. D. Holmberg
November 5, 1974
Page 2
There may be other items that should be included. Please feel free to expand
this suggested documentation in any way you feel necessary.
I believe that The Mar ley Company would do the best job in describing a Marley
£2 JE S™6- and I W2uld.therefore prefer that a concise description, includ-
ing the drawings be furnished by The Marley Company. If this is acceptable
5? Th^! °rld arnve ?5 an Out1ine and the format fay telephone communication
-------
MARLEY
.... y. lt . . ,.,„.. r, ENGINEERING DIVISION OFFICE
(Sj| |S (I, '• ' • ' * 'J JOE BEN DICKEY JR -VICE PRESIDENT
G W CANTRELL-MANAGER OF OPERATIONS
DEC 1 a t974 j D HOLMBERG-SUPERVISORY CONSULTANT
ElflUlfiiL.;....'—''— - •' December 9, 1974
Dr. Gunter 0. Schrecker
Environmental Systems Corporation
P. 0. Box 2525
Knoxville, Tennessee 37901
Dear Gunter:
Enclosed are several items which we have discussed. Included are calculated
data sheets on drift droplet evaporation. These illustrated to us the sig-
nificantly greater potential for concentration of the smaller drops through
evaporation as compared with the larger ones. The solution to the drift
droplet evaporation is incorporated in the program with which we calculate
drift deposition. As a result, some of the data on the computer printout
sheet is irrelevant. The evaporation calculations are based on the approach
in Appendix I of Hosier's "Determination of Salt Deposition Rates from Drift
from Evaporative Cooling Towers." Use this as you see fit.
Attached to the description of the Turkey Point tower are #2 size reduced
prints of two drawings which illustrate the tower. Whether or not you use
both of them is your option. I am also sending you the #4 size drawings
from which the prints were made. I was advised by the man in charge of our
reproduction work that it would be necessary for the person who would be
deciding what to do about making prints for the report to have the drawings
in hand. Since the drawings were modified especially for use in your report,
there is no need for us to retain them or to have them returned.
I hope the Turkey Point tower description is adequate for your needs. Let
me know if I can do anything further.
Yours very sincerely,
. Holmberg
Supervisory Consultant
JDH:dc
508
THE MARLEY COMPANY • CORPORATE OFFICES • 58OO FOXRIDGE DRIVE. MISSION KANSAS 662O2 • 913/362 1818
-------
COOLING TOMER DESCRIPTION
The demonstration cooling tower at the Turkey Point Station of Florida Power and
Light Company is a one-cell Marley Class 600/700 mechanical draft crossflow tower.
Although the Class 600/700 designation indicates that the tower is a hybrid of two
designs, the resultant was so conceived that its operating characteristics are
typical of a low-drift tower which is technologically and economically feasible.
Of paramount importance is the fact that towers with the key components and
operating characteristics of the test tower are commercially available.
The tower was designed to meet the joint criteria of the Environmental Protection
Agency and of Florida Power and Light Company and its consultants. In addition
to having low drift characteristics, the tower was to be constructed of materials
which could be expected to withstand concentrated salt water; and it was planned
that Florida Power and Light would evaluate it from that standpoint. Since both
preservative-treated wood and concrete can be used satisfactorily in a salt water
environment, a portion of the tower structure was constructed of wood and the rest
of precast concrete. The fill structure and hot water basin on one side of the
tower utilized the treated wood components which are common to the Class 600
rectangular wood mechanical draft industrial towers. The fill structure and hot
water basin on the other side and the fan deck and plenum structure were constructed
of components from Class 700 concrete towers, both mechanical and natural draft.
Although project costs were reduced somewhat by supplier contributions, budgetary
considerations limited the size of the tower. The fill height of 24 ft. (7.3 m)
is a standard height for industrial towers but 36 ft. (11.0 m) is more typical.
However, proper selection of fan size, fan horsepower and air rate, along with
maintaining a typical water distribution rate, provides the operating character-
istics typical of the taller tower.
509
-------
-2-
The single cell tower has an overall width of 76 ft. (23.2 m) from louver face to
louver face at the top. The net length of the air opening at the louver faces is
40 ft. (12.9 m). The height to the fan deck is 26 ft. (8.0 m) above the basin wall,
arid that to the top of the fan stack is 44 ft. (13.4 m). The 24 ft. (7.3 m) diameter
HP-4-8 bladed fan operates in an 18 ft. (5.5 m) high GRP (glass-reinforced polyester)
evase (velocity recovery) fan stack.
The fill consists of corrugated ACB (asbestos cement board) splashbars supported
by GRP grids and aligned parallel to the horizontal flow of air. Air travel
through the fill measures 16 ft. (4.9 m) on each side of the tower. This is the
standard air travel on mechanical draft Class 600 towers, but it may be exceeded
in some cases and may increase to as much as 26 ft. (7.9 m) on natural draft towers.
The splashbars are placed 4 1/2 inches (.11 m) apart horizontally and 12 inches
(.31 m) vertically. This fill configuration has been a commonly-used arrangement
for both mechanical and natural draft towers, although there are other arrange-
ments of corrugated ACB splashbar fill to help cover the range of cooling duties.
All have similar drift-generating characteristics.
Since the tower was to operate on a sidestream taken from the feeder canal for the
cooling canal system, no attempt was made to specify a design condition or to
require a specific performance guarantee. Instead the tower was to be sized to
accommodate 20,000 gpm (4542 m^hr) and to provide representative water-air inter-
action. Measurements taken on the tower following construction showed actual
water flow rate of 19,000 gpm (4315 m3/hr) to the tower. Later measurements
indicate that this had decreased'to 15,500 gpm (3520 m3/hr) by mid-summer of 1974.
These two flow rates will be used in conjunction with other coincidental measure-
ments to present some specific thermal performance predictions at actual operating
conditions.
510
-------
-3-
The fan was pitched to deliver 997,000 cfm (470.6 m3/Sec) of air. The resultant
velocity through the fill is 519 fpm (2.6 m/sec). The corresponding fan motor
horsepower is 114.4, and the mass air flow is 72,090 Ib./min. (545 kg/sec). For
an equivalent air rate in a tower with 36 ft. (11.0 m) of fill height, on which
a 28 ft. (8.5 m) diameter fan would be used, approximately 175 hp would be
required. Most mechanical draft towers for power plants have air velocities in
the range of 450 to 550 fpm (2.3-2.8 m/sec), and the horsepower per 28 ft. fan
usually falls between 150 and 200.
With 19,000 gpm to the tower, water is distributed over the fill at a rate of
14.84 gpm/ft.2 (36.3 m3/m2-hr). Water loadings typically range between 8 and
16 gpm/ft.2 (19.6-39.1 m3/m2-hr). The L/G (liquid to gas.lb. of water to Ib. of air)
ratio of 2.20 becomes 1.47 when adjusted to a 36 ft. fill height while maintaining
the same air velocity. L/G ratios for power plant towers almost universally fall
within the limits of 1.2 and 1.8.
Because of manner in which the tower is being used, it cannot achieve an equilib-
rium condition in which it dissipates a specific heat load. Instead it must
accept hot water at the temperature in the feeder canal and cool it to whatever
extent it is capable using the existing ambient air. In the table which follows,
predictions of R (range, the difference between hot and cold water temperatures)
and A (approach, the difference between cold water and wet bulb temperature of
the ambient air) have been listed for some actual operating conditions which
existed during the drift measurement tests. Three of the cases presented were
taken from the February, 1974, data reported by ESC. The average of the pre-
dicted temperatures for the cases agreed with the actual measured temperatures,
and the individual test readings differed from the predictions by no more than
0.7°F (0.4°C). Information is not available for making a similar comparison of
the summer data.
511
-------
-4-
Table I - Predicted Thermal Performance
Date & Hour
2/23/74 1615
2/26/74 1724
2/28/74 1656
7/20/74 1500
7/24/74 1616
Water Rate
gpm (m3/hr)
19,000 (4315)
19,000 (4315)
19,000 (4315)
15,500 (3520)
15,500 (3520)
Hot Water Temp.
°F (°C)
96.6 (35.9)
85.5 (29.7)
81.5 (27.5)
108.5 (42.5)
110.0 (43.3)
Wet Bulb Temp.
°F (°C)
68.2 (20.1)
45.0 (7.2)
59.5 (15.3)
75.0 (23.9)
79.0 (26.1)
Predicted R
°F (°C)
10.2 (5.7)
10.8 (6.0)
6.5 (3.6)
15.8 (8.8)
15.3 (8.5)
Predicted A
°F (°C)
18.2 (10.1)
29.7 (16.5)
15.5 (8.6)
17.7 (9.8)
15.7 (8.7)
The drift eliminators are oriented in sloped planes as is the practice for rectan-
gular mechanical draft crossflow towers. The same eliminators have been, and are
being, used in vertical planes in hyperbolic and circular mechanical draft cross-
flow towers. They are identified as 9LCH (LCH stands for long cell honeycomb)
eliminators and are made up of a system of panels containing a series of angular,
upwardly-sloped cellular passages. The panels measure 9.65 inches (.25 m) face-
to-face and are constructed of neoprene-asbestos sheets, combining flat and
obliquely-formed corrugated sheets to form the passages and provide structural
stability. The sheets have been impregnated with a plastic formulation and
cured to strengthen and rigidize them.
The 9LCH eliminator is approximately one order of magnitude (ten times) more
effective than the herringbone eliminator, which is the standard for this type
of tower. The improvement is primarily attributable to the increased efficiency
in the removal of the larger drops of water. As a result, the remaining drift
is made up predominantly of smaller drops which are difficult to detect and
measure. These eliminators allow the use of air velocities of up to 600 fpm
(3.0 m/sec.) without increasing the concentration of drift in the effluent air
by a factor of more than 2 over the minimum obtainable. See the curve of
predicted drift levels, Curve #3. This characteristic was established by
tests in a large laboratory test cell, and confirming results were obtained
from field tests, part of them near the upper end of the air velocity
512
-------
-5-
range. The 9LCH eliminator, either sloped or vertical, shares the low pressure-
drop characteristic of the standard herringbone eliminator with none of them
exceeding .03 inches (.76 mm) of water at 400 fpm (2.0 m/sec.) air velocity.
On the Turkey Point tower, the use of the 9LCH eliminator increases the overall
pressure drop slightly, increasing the power to drive the fan by about one
horsepower in order to maintain the same air rate as with the herringbone
eliminator.
513
-------
MEASUREMENTS
60O
THE MARLEY
MISSION„ KANSAS.
12- IS-74
-------
in
in
Figure 33. The Marley Company's class 600/700 mechanical
draft crossflow cooling tower. Dimensions in meters.
Sli6!* ? hr Mar1ey ComPa"y: drawing reduced by Environ-
mental Systems Corporation).
-------
The Marley Company would like to acknowledge the following contri-
buting suppliers to the Turkey Point cooling tower:
Bonnington Lumber Company
Oakland, California
R. B. & W. Bolt
Mentor, Ohio
Special-T Metals
Kansas City, Kansas
Structurlite Plastics
Hebron, Ohio
GAP Corporation
St. Louis, Missouri
Owens Corning Fiberglas Corporation
Toledo, Ohio
516
-------
APPENDIX H-2
CERAMIC COOLING TOWER POWERED SPRAY MODULE: specifications as
provided by the manufacturer. "iions as
517
-------
ENVIRONMENTAL SYSTEMS CORPORATION
POST OFFICE BOX 2525
KNOXVILLE. TENNESSEE 37901
(615)637-4741
November 5, 1974
Mr. Paul Frohwerk
Ceramic Cooling Tower Company
P. 0. Box 425
Fort Worth, Texas 76101
Dear Paul:
Following up on our telephone conversation, I am sending you a list of data
that I feel we need in order to document properly the Powered Spray Modules
that are installed at Turkey Point. This documentation will be included in
the final report of the Turkey Point contract.
The following outline of the PSM description is tentative and I would appreciate
CCT's comments:
1. General description of the Powered Spray Module.
2. Dimensions:
Two drawings showing a schematic top and side view of the spray module
would be most helpful. Since the contract calls for metric units, I sug-
gest that all dimensions be expressed in both metric and British units.
3. Hydraulic and mechanical performance data:
Electric and brake horsepower, pumping rate, height and diameter of spray
patterns, etc.
4. Thermal performance data of the single spray module:
Rate of heat rejection as a function of wet bulb and hot water temperature
and wind speed and direction.
This suggested list of topics, that I feel should be addressed in a PSM do-
cumentation, may not be complete. I would appreciate your comments and I will
call you back after you have received this letter.
I believe that Ceramic Cooling Tower Company would be most qualified to describe
a Powered Spray Module and I therefore prefer that a concise description, includ-
ing the drawings, be furnished by CCT. If this is acceptable to you, we should
arrive at an outline and the format by telephone communication. If CCT would
518
-------
ENVIRONMENTAL SYSTEMS CORPORATION
Mr. Paul Frohwerk
November 5, 1974
Page 2
rather not become involved, I hope that I would receive the necessary informa-
tion from you in order to document the spray module sufficiently.
Since I foresee only a concise description of several pages I hooe this ta<:k
can be convenently finished within the next two weeks' 9?hat 1 a'bou he
time frame within which you planned to let me know about your comments on the
""" ^ Md
Sincerely,
LJv
Gutter 0. Schrecker, Head
Atmospheric Transport Section
GOS:sr
519
-------
Ceramic Cooling Tower Company
a subsidiary of Justin Industries. Inc.
P 0 Box 425 • Fort Worth, Texas 76101 • 817 335-2474
November 22. 1974
Mr. Gunter O. Schrecker, Head
Atmospheric Transport Section
Environmental Systems Corporation
P. O. Box 2 52 5
Knoxville, Tennessee 37901
SUBJECT: Powered Spray Module
Water Cooling System
Environmental Test Program
Our Ref. PSM-117
Dear Gunter:
We hereby provide information on our Powered Spray Module Water
Cooling System as requested and suggested by you in our telephone
call several weeks ago, and your November 5. 1974 letter.
Specifically provided are duplicate copies of the following documents
and/or data;
1. Drawing 4220, "Assembly Details, Model PSM-4-10-75 (S),
Powered Spray Module. " This drawing provides essentially
the information requested in the second paragraph of your
letter and includes in our judgement, all dimensional and
arrangement information needed.
2. Form PSM-100-US, Revision B, 11-19-74, "Powered Spray
Module, System Unit Specifications, Model PSM-4-10-75 (S)".
Data herein included supplies requested documentation
relating to Paragraphs 1 and 3 of your letter.
3. Form PSM-117-GI, 1, "General Description of Powered
Spray Module". This document has been specifically
prepared to comply with requirements set forth in
Paragraph 1.
We have not responded to your Paragraph 4, because, as discussed on
many occasions, we cannot determine a meaningful course of action in
520
-------
Environmental Systems Corp. November 22 1974
Page 2
which these data can be presented. Any attempt at expressing heat
rejection rate in this limited form would be detrimental to a report
in which the overall capability of our Powered Spray Module was
being considered. In other words, the subject is extremely complex
and of a nature that absolutely precludes a superficial or compromising
representation for all heat/mass transfer characteristics involved.
Please advise if there are any questions regarding this transmittal
or if we can be of service in any way.
P. A. Frohwerk
Vice President and
Manager PSM Operations
PAFrgz
Attachments: (3)
1. Drawing 4220. "Assembly Details.Model PSM-4-20-75 (S).
Powered Spray Module".
2. Form PSM-100-US. Revision B. 11-19-74. "Powered Spray Module,
System Unit Specifications. Model PSM-4-10-75 (S)".
3. Form PSM-117-GI. 1. "General Description of Powered Spray Module".
Environmental Systems Corp.
Attn: Mr. Gunter O. Schrecker - Duplicate .^ - -
cc: Dr. Frank H. Rainwater. Chief
Thermal Pollution Branch
United States Environmental Protection Agency
Pacific Northwest Environmental Research Laboratory
Corvallis. Oregon 97330
521
-------
Ceramic Cooling Tower Company
n(< rl-Mr a subsidiary of Justin Industries. Inc
P 0 Box 425 • Fort Worth, Texas 76101 • 817 335-2474
GENERAL DESCRIPTION OF POWERED SPRAY MODULE
The Powered Spray Module (PSM) is an evaporative water spray
cooling system adaptable under conditions of generaUy parallel water
now patterns to channels, ponds, or lakes for more efficient dissipation
of heat from plant discharge water. The desired cooling is achieved
by a direct air-water contact condition which causes mass and heat
transfer from water to air.
The PSM is comprised of a 75 HP electric motor-driven, impeller-type
pump and four deflector-type nozzles with submerged interconnecting
straight-line piping. The pump and nozzles are supported in the water
by means of individual surrounding floats consisting of fiber-reinforced-
plastic shells filled with polyurethane foam. Each PSM unit is self-
contained and is moored in place by lines attached to anchor points on
the bank or in the channel. Rotation eliminates the need for special
and expensive basins, foundations, and complex pump-piping installation.
In the operation of an individual PSM unit, hot water is pumped from
near the surface of the body of water, down through the underwater
interconnecting pipe, and discharged upward through four deflector
nozzles. The nozzles develop a coarse spray pattern which is optimized
for maximum heat transfer and minimum water loss due to wind drift.
A single PSM unit is capable of reducing an initial hot water temperature
as much as 20° F. Increased cooling requirements can be met by the
installation of additional PSM units. Systems are possible which will
handle over one million gallons per minute and reduce the water tempera-
ture 20° to 2 5° F with an approach of the ambient wet bulb temperature
as low as 5° F. Infinite control (number of units operated) of a PSM
system is possible to achieve maximum plant efficiencies.
522
Form PSM-117-GI, 1 Page 1 of 1
-------
=£ Ceramic Cooling Tomer Componu
H0j a subsidiary of Justin Industries. Inc
^= p 0 Box 425 • Fort Worth Texas 76101 • 817 335-2474
POWERED SPRAY MODULE SYSTEM
UNIT SPECIFICATIONS
MODEL PSM-4-10-75 (S)
I. BASIC COMPONENTS
Each standard PSM-4-10-75 (S) consists of following, which are shinned
from sources in individual assemblies or categories- snipped
1. Electric MntnT-
Electric Motor
2
7.
Propeller Type Pump Assembly (assembled and including)-
a. Cast Iron inlet and discharge sections with inner hub'and
shaft support stem.
b. Cast stainless steel4 impeller ring.
c. Cast stainless steel5 impeller.
d. Double row. combination radial-thrust, tapered-roller
bearings-with top and bottom grease seals. Bearing design,
for L-10 life in excess of 200.000 hours
e. Water lubricated, lower radial bearing
f. Grease fitting and lubricant lines.
g. Miscellaneous hardware. Type 3042 Stainle88 8teA
h. Ductile iron6 coupling.
i. Impeller shaft. Type 3033 stainless steel
£1SrL!£>t!!P- ^ Assembly - Structural steel frame encapsulated
in expanded-m-place polyurethane foam which is completely sealed
by polyester-glass fiber shell. Four stainless steel handtng-"
4 One lotg fTS a? eleftrical P°wer ca°le clamp included. g
4. One lot of our Secondary Floats-Expanded-in-place polyurethane
±?1^±'!1L!!i?ed " P^er-glass *>•? shelf. Cast iron1
ironl with
6. One set of four Nozzle-Transition Castings - cast iron1
•
1 Material conforms to ASTM-A126-C1.B
Material conforms to ASTM-A193-B8 & ASTM-A194-B8
* Material conforms to ASTM-A276-GR303.
* Material conforms to ASTM-A296-CF8M (Type 316)
| Material conforms to ASTM-A296-CF3M (Type 316L).
Material conforms to ASTM-A536-70 Cl. 65-45-12.
11-19-74
2-28-74 Page 1 of 2
-------
POWERED SPRAY MODULE SYSTEM
UNIT SPECIFICATIONS
MODEL PSM-4-10-75 (S)
II. HYDRAULIC AND MECHANICAL PERFORMANCE DATA
1. Brake Horsepower per unit 75
2. Pumping rate per unit, approximate 10,000 GPM
3. Pumping rate per nozzle, approximate 2,500 GPM
^ 4. Approximate height of spray pattern above water level... 13 ft. to 17 ft.
^ 5. Approximate individual spray pattern diameter at
water level 35 ft. to 40 ft.
6. Approximate rectangular surface area at water level,
required for one PSM-4-10-75 (S) unit 40' w x 160' Ig
7. Minimum water depth required 7 ft.
Dimensions of spray patterns are shown here for reference only.
Larger values are representative for clearance uses, smaller
values are for hydraulic and/or environmental assessment. Actual
pattern is that required and provided for thermal performance
consideration.
524
All-19-74
Form PSM-100-US A 2-28-74 Page 2 of 2
-------
en
r\j
on
NOZZLt
STIIL PIPE MIAMI-
- FIO»I — FIUISLASS IHEll w/
EXPANDED FOAM
XIAL PlOW ^ HOT WATEI INLET
PHOPEILEI PUMP
3y>
F.w.r.d Spt»r M«Jul. (Courl.ly ol C.romk
Cooling low., Cxupwiy, drawiflf roduc.d by
InviraniiMntal SyiMmi Cerpar
-------
APPENDIX I
STATEMENT OF ACCURACY OF CHEMICAL
ANALYSIS BY STEWART LABORATORIES, INC.
526
-------
ffipfaart
ffnc.
5815 MIDDLEBROOK PIKE KNOXVILLE. TENNESSEE 37921
TELEPHONE (615) 588-6401
April 11, 1975
Dr. Gunter Schrecker
Environmental Systems Corporation
Post Office Box 2525
Knoxville, Tennessee 37901
Dear Dr. Schrecker:
The following information is supplied in response to your question
concerning the accuracy of analyses performed on samples received from
the Turkey Point Project. Wash solutions from APS mesh samples, isokinetic
sampling tubes, basin water samples, and deposition water samples from this
project were analyzed for sodium by flame emission spectroscopy. Wash
solutions from isokinetic sampling tubes and basin water samples were ana-
lyzed for magnesium by atomic absorption spectroscopy. The precision of
these methods is ± 0.5 percent as established by replicate analysis of
certified standards. Analysis ranges for each sample type encountered
during the Turkey Point Project are as follows:
Isokinetic Sampling Tubes
APS Meshes
Water Samples
Sodium 448 - 24739 micrograms
Magnesium 47.5 •* 2400 micrograms
Sodium 0.13 -»• 5242 micrograms
Sodium 0.06 ->• 8.0 parts per million
Often the analysis of a group of samples requires the establishment of
standard curves for several analysis ranges as well as the dilution of
samples with higher concentrations. Instruments are recalibrated with
freshly made standards each time a group of samples is analyzed. In addi-
tion, within a group of analyses, about 13 percent of the results are
standards checks. A standard is analyzed after each set of 7 samples.
In order to establish the over-all accuracy of collection, handling,
and analysis procedures, it would be necessary to establish a quality
assurance program for the three sample types involved in the Turkey Point
Project. Such a program would involve the collection and analysis of dupli-
cate samples in addition to the analysis of "blind" samples of known concen-
tration. As you know, no request has been made for a quality assurance
program for the Turkey Point Project. We will, however, be most happy to
assist in the design of such a program.
527
-------
Dr. Gunter Schrecker
April 11, 1975
Page Two
Should you receive requests for additional information relating to
this project, we will be happy to supply any pertinent data we have avail-
able.
Sincerely,
STEWART LABORATORIES, INC.
Barry K. Stephenson, Manager
Administrative Services
BAS:jf
528
-------
tps, <31nc.
820 TULIP AVENUE — KNOXVILLE, TENNESSEE 37921
615—525-1123
TO: Gunter 0. Schrecker
FROM: Anna M. Yoakum
SUBJECT: Special Project Report
DATE: October 15, 1973
OBJECTIVE: To determine sodium contribution from dust trapped on meshes
Two (2) dust samples were analyzed to determine the
availability of a "tracer" element in the dust which is not
commonly found in the salt atmosphere near salt water. Both dust
samples were found to be primarily limestone-CaC03 > 90% (See
attached analytical report). Since the control sea water contains
approximately 400 ppm calcium and 1350 ppm magnesium, these
elements could not be used an an indication of dust contamination.
A survey of five (5) exposed mesh samples revealed that only two
elements could be used as dust contamination indicators-silicon
and aluminum. Aluminum is present in the salt water at a concen-
tration of 0.01 ppm and silicon is found at the 3 ppm level.
The maximum sodium contribution from dust to the five (5)
exposed meshes is summarized in Table 1. Calculations are based
on the sodium availability from the two dust samples—1855 ug/g
for the T.P. feeder canal road by rock pile and 985 ug/g for the
T.P. rock pile.
CONCLUSION: There is no significant sodium contribution from dust trapped on
the meshes.
529
-------
Dr. Gunter 0. Schrecker
Environmental Systems Corporation
October 15, 1973
Page 2
TABLE 1. Maximum Sodium Contribution from Dust
SL1 Code
9646
9647
9648
9649
9650
ESC Identification
T.P.
T.P.
T.P.
T.P.
T.P.
tfl (8-25)
//2 (8-25)
#3 (8-25)
14 (8-25)
15 (8-25)
Total Na
micrograms
345.
600.
750.
902.
278.
Dust
micrograms
10.
0.3
<0.1
<0.1
Theoretical Na
from Dust, UK
<0.01
0.02
<0.01
<0.01
<0.01
Note (attached by ESC):
"ESC Identification" refers to the APS sample head number.
The associated station numbers are as follows:
T. P. #1 - Station 1
T. P. #2 - Station 3
T. P. #3 - Station 4
T. P. #4 - Station 5
T. P. #5 - Station 2
Stewart Laboratories, Inc.
Knoxville, Tennessee 37921
530
-------
j&cfaart laboratories,
820 TULIP AVENUE
KNOXVILLE. TENNESSEE 37921
CERTIFICATE OF ANALYSIS
TO Dr. Gunter 0. Schrecker
Environmental Systems Corporation
Route 3 - Municipal Alrnort
Alcoa. TN 37701
DATE REPORTED
CODE
ORDER No
October 15. 1973
ESC 02707
Sample Description: Two (2) dust samples from Turkey Point
Concentration units are weight percent
CaC03
MgC03
Si02
A1203
T102
Sod ium
Strontium
Barium
Boron
Canal Road
90.10
1.32
7.80
0.24
0.02
0.22
0.02
0.004
0.004
Rock Pile
93.95
1.25
3.70
0.65
0.02
0.25
0.07
0.001
<0.001
Sworn to and subscribed before me this 15th
October 1973
day of
ft NOTARY PUBLIC
My commission expires .Tnnnary 17. 1Q7<;
STEWART LABORATORIES. INC.
531
-------
TECHNICAL REPORT DATA
/Please read latutirliuns on the reverse before eomplenngl
1 REPORT NO
EPA-650/2-75-060
3 RECIPIENT'S ACCESSION-NO
4 TITLE AND SUBTITLE
Drift Data Acquired on Mechanical Salt Water
Cooling Devices
5 REPORT DATE
July 1975
6 PERFORMING ORGANIZATION CODE
7 AOTH0R(s)Gunter o schrecker, Ronald 0. Webb, David
A. Rutherford, and Frederick M. Shofner
8 PERFORMING ORGANIZATION REPORT NO
9 PERFORMING ORSANIZATION NAME AND ADDRESS
Environmental Systems Corporation
P.O. Box 2525
Knoxville, Tennessee 37901
10 PROGRAM ELEMENT NO
1AB015; ROAP 21ARW-002
11 CONTRACT/GRANT NO
68-02-1365
12 SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Control Systems Laboratory
Research Triangle Park, NC 27711
13 TYPE OF REPORT AND PERIOD COVERED
Final; 7/73 - 2/75
14 SPONSORING AGENCY CODE
15 SUPPLEMENTARY NOTES
The report gives test data from drift characterization and airborne salt
monitoring studies conducted on and around a single-cell, mechanical-draft salt-
water cooling tower and two spray modules at Turkey Point, Florida. Source meas-
urements of drift droplet size distributions and mineral mass emissions were con-
ducted for both devices during a winter test and for the tower alone during a summer
test. Atmospheric salt concentrations and depositions were measured for 11 months,
both with and without cooling device operation. Cooling tower drift droplet measur-
ements yielded a drift emission fraction of 0.00027% of the water flow rate of 1260
kg/s, and a droplet mass median diameter of 120 micrometers. The average mineral
mass emission rate was 0.00083% of the minerals circulating as solute in the cooling
water. Droplet size spectra and mineral mass fluxes of the spray module drift emis-
sion were measured up to a height of 11 m above water level, below which the bulk of
the drift was observed, and downwind to a distance of 88 m.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b IDENTIFIERS/OPEN ENDED TERMS
c COSATI Field/Croup
Air Pollution
Cooling Towers
Salt Water
Salt Spray Tests
Drops (Liquids)
Size Determination
Air Pollution Control
Stationary Sources
Spray Modules
Drift Data
Mineral Content
Emission Rate
13B
13A, 07A
OBJ
14B
07D
8 DISTRIBUTION STATEMENT
Unlimited
19 SECURITY CLASS (This Report)
Unclassified
21 NO OF PAGES
532
20 SECURITY CLASS (Thllpage)
Unclassified
22 PRICE
EPA Form 2220-1 (9-711
------- |