EPA-650/2-75-060

July 1975
Environmental Protection Technology Series
                                           DATA
                 ACQUIRED  ON  MECHANICAL
             SALT  WATER COOLING DEVICES
                                 U.S. Environmental Protection Agency
                                  Office of Research and Develop
                                       Washington, O.C.204GO

-------
                                    EPA-650/2-75-060
       DRIFT DATA ACQUIRED ON MECHANICAL

          SALT WATER COOLING DEVICES


                      by

              Gunter 0.  Schrecker
                Ronald 0. Webb
              David A. Rutherford
              Frederick M. Shofner

       Environmental Systems Corporation
                 P.O. Box 2525
          Knoxville, Tennessee   37901
            Contract No. 68-02-1365
              ROAP No. 21ARW-002
          Program Element No. 1AB015
             EPA Project Officers:

                 Kenneth Baker
          Control Systems Laboratory
    National Environmental Research Center
Research Triangle Park, North Carolina   27711

                      and

              Frank H. Rainwater
  National Thermal Pollution Research Center
    National Environmental Research Center
           Corvallis, Oregon   97330
                 Prepared for

     U.S.  ENVIRONMENTAL PROTECTION AGENCY
      OFFICE OF RESEARCH AND DEVELOPMENT
           WASHINGTON, D.C.    20460
                   July 1975

-------
                       EPA REVIEW NOTICE

This report has been reviewed by the National Environmental Research
Center - Research Triangle Park, Office of Research and Development.
EPA, and approved ior publication.  Approval does not signify that the
contents necessarily reflect the views and policies.of the Environmental
Protection Agency, nor does mention of trade  names'or commercial
products constitute endorsement or recommendation for use.
                   RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environ-
mental Protection Agency, have been grouped into series   These broad
categories were established to facilitate further development and applica-
tion of environmental technology.  Elimination of traditional grouping was
consciously planned to foster technology transfer and maximum interface
in related fields.  These series are:

          1.  ENVIRONMENTAL HEALTH EFFECTS RESEARCH
          1.  ENVIRONMENTAL PRO'iECTION TECHNOLOGY

          3.  ECOLOGICAL RESEARCH
          4.  ENVIRONMENTAL MONITORING
          5.  SOCIOECONOM1C ENVIRONMENTAL STUDIES

          6.  SCIENTIFIC AND TECHNICAL ASSESSMENT REPORTS

          9.  MISCELLANEOUS

This  report has been assigned to the ENVIRONMENTAL PROTECTION
TECHNOLOGY series. This series describes research performed to
develop and demonstrate instrumentation , equipment and methodology
to repair or prevent environmental degradation  from point and non-
pomt sources of pollution.  This work provides the new or improved
technology required for the control and treatment of pollution sources
to meet environmental quality standards.
 This document is available to the public tor sale through the National
 Technical Information Service, Springfield,  Virginia 22161.

                 Publication No. EPA-650/2-75-060
                                 11

-------
                               CONTENTS
Section
    I    Summary

   II    Introduction
                                                                    Page
           Definition of the Problem                                   5
           Consent Decree                                              6
           Environmental  Protection Agency's  Needs                      8
           Scale-up Considerations                                      8

  III     Test Objectives  and Test Approaches                           10

           Test Objectives                                             10
           Test Approach                                               11
             Ambient Sea  Salt Level  Data Acquisition                   13
             Acquisition  of  Sea  Salt Level  During Operation
               of  One of  the Cooling Devices                           13
             Cooling Tower Drift Emission Characterization             14
             Drift Emission  Characteristics Near the  Spray Modules     14

   IV     Instrumentation  and Data Reduction                            16

           Drift Emission Test Equipment                               16
             PILLS II  System                                          16
             Sensitive Paper Machine                                  21
             PILLS and SP Data Consolidation                           27
             Cooling  Tower Composite Curve                             28
             Isokinetic Sampling System (IK)                           32
             Comparison Between  PILLS/SP and  IK Data                   37
           Other Support  Equipment for Drift Measurements              42
           Airborne  Particle  Sampler and Deposition Sampler            43
           Instrumentation Summary                                     47

   V    Meteorological Data Acquisition System                        49

-------
                         CONTENTS (continued)

Section

   VI    Sampling of Airborne Sea Salt From Cooling
           Device Sources and in the Ambient Atmosphere               52

             Ambient Airborne Sea Salt Measurements                   53
             Sea Salt Measurements During Cooling Device Operation    57
             Measurement Procedure                                    58
             Quality Control Data                                     60
             Formats for Data Presentation                            61

  VII    Drift Emission Test                                          65

           Cooling Tower Measurements                                 66
             Measurement Set-up                                       66
             Measurement Procedure                                    73
             Drift Measurements for Florida Power & Light Company     76
             Data Format                                              77
             Drift Data Summary for the Cooling Tower                 87
             Cooling Tower Composite Curve Calculation                92
           Spray Module Emission Test                                 95
             Measurement Set-up                                       95
             Measurement Procedure                                    96
             Data Format                                             100
             Spray Module Data Analysis Example                      102

 VIII    References                                                  108

   IX    Glossary                                                    HI

     X    Appendices                                                  116

         A.  Chronology of  Events                                    117

         B.  Cooling Tower  and Powered Spray Modules                 121
               Operations Log

         C   Airborne  Particle Sampler Data                          123

             C-l.  APS Data                                          125
             C-2.  APS Procedural Background Data                    235
             C-3.  APS Mesh  Background Data                          241

         D.  Deposition Data                                        246
                                   IV

-------
                         CONTENTS (continued)
Section                                                             Page
         E.   Drift Emission Data for the Cooling Tower               324
         F.   Cooling Tower Drift Emission Data Acquired for
               Florida Power and Light Company                       415
         6.   Drift Emission Data for the Spray Modules               439
         H.   Manufacturer's Specifications for Cooling Devices        504
             H-l.   Marley 600/700 One Cell Wet Mechanical
                     Draft Cooling Tower                             505
             H-2.   Ceramic Cooling Tower Company's  Powered
                     Spray Module                                    517
         I.   Statements  from Stewart Laboratories,  Inc.               525

-------
                               FIGURES


No.                                                                 Page

  1    Cooling Tower and Spray Modules in Operation                   12

  2    PILLS/SP Consolidated Curve for Cooling Tower
         Position 27 of Diameter SW-NE 3                              29

  3    Effects of Non-Isokinetic Sampling                             38

  4    Airborne Particle Sampler in Operation                         44

  5    APS Station Locations for Ambient Monitoring                   54

  6    APS Stations 1 and 2 which were used for Precision Runs        56

  7    APS Station Locations for Ambient and Source Monitoring        59

  8    Side View of Instrumentation for Drift Tests on the
         Cooling Tower                                                67

  9    Frontal View of Instrumentation for Drift Tests on the
         Cooling Tower                                                68

 10    Position of Cooling Tower Instrumentation Relative to
         PILLS' Sampling Volume During the Winter Test.
         Frontal View.                                                69

 11    Position of Cooling Tower Instrumentation Relative to
         PILLS' Sampling Volume During the Winter Test.
         Top View.                                                    70

 12    Position of Cooling Tower Instrumentation Relative to
         PILLS' Sampling Volume During the Summer Test.
         Frontal View.                                                71

 13    Position of Cooling Tower Instrumentation Relative to
         PILLS' Sampling Volume During the Summer Test.
         Top View.                                                    72
                                 VI

-------
No.                                                                 Page
 14    Comparison of IK Adjusted Sodium Mass Flux vs.  Position        91
 15    Cooling Tower Composite Drift Mass Density Distribution        94
 16    Barge Instrumentation for Spray Module Drift Tests             97
 17    Position of the Barge Instrumentation Relative  to PILLS'
         Sampling Volume.                                              98
 18    Drift Flux and Mass Median Diameter vs.  Measurement Height:
         Spray Module Drift Tests, 2/1/74                            103
 19    Drift Flux and Mass Median Diameter vs.  Measurement Height:
         Spray Module Drift Tests, 3/26/74                           104
 20    Adjusted Mineral Mass Flux vs.  Measurement Height:
         Spray Module Drift Tests, 3/26/74                           105
 21    Drift flux and Mass Median Diameter v's.  Measurement Height:
         Spray Module Drift Tests, 3/30/74                           106
 22    Adjusted Mineral Mass Flux vs.  Measurement Height:
         Spray Module Drift Tests, 3/30/74                           107
 23    Airborne Particle Sampler Station Locations                   124
 24    Cooling Tower Layout Illustrating Diameter Traverses          325
 25    Velocity Profile for SW-NE Diameter, 2/20/74                  329
 26    Velocity and Temperature Profiles for SW-NE Diameter,
         2/21/74                                                     330
 27    Velocity and Temperature Profiles for SW-NE Diameter,
         2/22/74                                                     331
 28    Velocity and Temperature Profiles for SW-NE Diameter,  3/9/74  336
 29    Velocity and Temperature Profiles for SW-NE Diameter, 7/24/74  366
 30    Velocity and Temperature Profiles for NW-SE Diameter, 2/27/74  385
 31    Cooling Device Site Plan                                      440
 32    Sectors for Wind Direction Distribution                        483
 33    The Marley  Company's  600/700 mechanical  draft cooling tower    515
 34    Ceramic  Cooling  Tower Company's  Powered  Spray Module           525
                                vi i

-------
                                TABLES
No^                                                                 Page
  1    Sodium and Magnesium Concentrations of the Cooling Water       81
  2    Rate of Drift Water Emission from the Cooling Tower            88
  3    Adjusted Total Mineral Mass Emission Rates from the
         Cooling Tower                                                89
  4    Adjusted Sodium Mass Flux Data Summary                         90
  5    Cooling Tower Composite Drift Mass Parameters                  93
  6    Per Cent Counts in Each Velocity Range for Each Position,
         SW-NE Diameter, 3/8/74                                      332-
                                                                     333
  7    Per Cent Counts in Each Velocity Range for Each Position,
         SW-NE Diameter, 3/9/74                                      334-
                                                                     335
  8    Cooling Tower Drift Data Supplement as Acquired by SP
         Large Stain Count                                           414
9-28   Wind Speed and Direction Distributions                        484-
                                                                     503
                                 vm

-------
                            ACKNOWLEDGEMENTS
The authors wish to express their appreciation to Messrs.  Frank H.
Rainwater and Ken Baker for their assistance and support of this
project.  The cooperation of Florida Power & Light Company and their
contractor, International Management Associates, was most helpful
throughout the contract and is acknowledged with sincere thanks.
The secretarial assistance of Miss Sue Rushing and Mrs.  Carolyn Wells
is gratefully acknowledged.
                                  IX

-------
                                SECTION  I

                                 SUMMARY
 This  contract was directed  towards the acquisition of data on the drift
 emission  from a  single cell mechanical draft cooling tower and two
 spray modules  and  the measurement of airborne salt loadings in the
 vicinity  of  these cooling devices up to a distance of about 2 km.  The
 airborne  salt loadings were measured before the cooling devices became
 operational  and  later  during the operation of either the cooling
 tower or  the two spray modules.  The test was executed at Florida
 Power and Light Company's (FP&L) Turkey Point electric power generation
 plant which  is located about 50 km (30 miles) south of Miami at the
 shore of  Biscayne Bay.

 For condenser cooling this plant uses a closed-cycle system of shallow
 canals which dissipates the heat to the atmosphere primarily by surface
 evaporation.  The two spray modules were installed into this canal
 system, and  the cooling tower was erected at its shore for the purpose
 of these  measurements.  The tower received the hot water from the
 cooling canal system and discharged the cold water back into it.

 Drift measurements were conducted on both cooling devices during the
 winter test  phase which lasted from January 21  to March 31, 1974, and
 again on  the cooling tower during the summer test phase from July 16
 to 24, 1974.

 The drift instrumentation package consisted of a PILLS II-A instrument
 (Particulate Instrumentation by Laser Light Scattering) and a
 Sensitive Paper (SP) machine, both of which counted and sized drift
 droplets, an isokinetic (IK) sampling tube which measured the mineral
 mass  flux, a propeller anemometer for air speed measurements, and an
 electronic psychrometer.

 During the cooling tower test the inlet and outlet water temperatures
 and the water levels in the hot water basins were monitored.   The
 canal  water  temperature was monitored during the spray module test.
A 10 m tall  meteorological  tower, located within 50 m of both cooling
 devices, provided data during most of the winter test phase and
during the summer test phase.   Canal  water concentrations of sodium
and magnesium were monitored during both testing phases.

-------
Cooling tower drift data were acquired along five fan stack exit
diameter traverses, with 12 to 16 data points per traverse.  Each
data point was usually comprised of a drift droplet size spectrum,
sodium and magnesium  mass fluxes, air updraft velocity, exhaust air
temperature, and tower operational and meteorological data.  The range
of measured droplet diameters was 10 to 2240 urn.  At 85% of all
measurement positions the number of counted and sized droplets was
sufficient to allow the determination of the droplet size spectrum
in the diameter range of 10 to 600 ufo; at the remaining 15%  the
upper limit of the diameter range was between 300 and 550 \im.  Droplets
with diameters larger than 600 urn were measured at about 30% of all
measurement positions.  However, since typically one or two, but
never more than three, of such large droplets were encountered at any
one of those positions, the number of droplets was too small to
include them into the droplet size spectra.

A cooling tower composite drift droplet size spectrum was calculated
from all spectra obtained along the diameter traverses.  The composite
spectrum is representative of the drift droplet emission encountered
under the meteorological conditions and tower operational parameters
existent during the winter and summer test phases.  The mass median
diameter of the composite droplet size spectrum was 120 urn, and the
drift droplet mass emission calculated from the composite droplet
size spectrum was 0.00027% of the water flow rate of 1,260 kg/s (20,000
gpm).  This percentage value is commonly referred to as the drift
fraction.

The mineral mass emission fraction was calculated for each of the
five diameter traverses from the mineral mass fluxes obtained at
each measurement position.  This parameter expresses the rate of
mineral mass emission as a percentage of the rate of mineral mass
circulating through the tower as solute in the cooling water.
The average mineral mass emission fraction of all five diameter
traverses was 0.00083%.  This number takes into account that the
water flow rate was 1,260 kg/s  (or 20,000 gpm) during the winter test
phase, but only 970 kg/s  (or 15,400 gpm) during the summer test phase.

During the spray module drift emission test a barge was used as
instrumentation carrier.  Since all support equipment including the
power supply were on board, it was able to move freely on the canal
system that harbored the floating spray modules.  The drift
instrumentation package contained the same instruments as mentioned
before.  The propeller anemometer, however, measured the wind
speed instead of air updraft speed.  Also, a wind vane was added to
the instrument package in order to measure the relative wind direction
with respect to the barge's center line.  The barge supported a

-------
 tower which allowed  the positioning of the  instrument package any-
 where between  1 m and  11 m above water level.

 The  spray module test yielded drift emission data, i.e. the drift
 droplet  size spectrum and mineral mass flux, together with meteoro-
 logical  data,  at selected points in space downwind of the spray
 modules.  Thirty-eight data points were obtained at various downwind
 distances between 21 m and 88 m and heights between 2.4 m and 11 m.
 About 50% of the data were measured at a height between 4.3 m and
 4.6  m which was slightly above the spray umbrella height of about 4.1 m.
 The  range of measured droplet diameters was between 10 ym and, in the
 average, 300 pm.  The upper limit varied between 200 and 500 pm,
 primarily due  to wind speed and distance from the spray modules.

 Whereas  the data obtained in the cooling tower's stack exit plane
 allowed  a quantitative characterization of the total drift emission,
 the  spray module test provided data at selected points in space
 downwind of the spray modules.  Traverses of an efflux plane analogous
 to the stack exit plane of a cooling tower which would allow a
 determination  of the total mineral mass emission of the spray modules
 were not attempted.

 Ambient airborne salt loadings were measured during the period of
 August 24, 1973 to January 11, 1974, by means of a network of six
 sampling stations.   Each station consisted of an Airborne Particle
 Sampler  (APS) which measured salt concentration, and a deposition
 sampler for salt deposition flux measurements.   The six sampling
 stations were distributed over five locations along a line that
 extended approximately 2,400 m inland from the  shore.   A total  of
 82 runs, i.e. simultaneous operation of the network stations,  was
 obtained during the indicated period of time.

 Two of the sampling stations were located at a  distance of about 15 m
 from the shore and  within 4 m of each other. These stations were
 always operated simultaneously in order to allow unambiguous
 comparison of the results.   Sixty-five APS and  40 deposition sampler
 runs were obtained  and the average error* between the two values
 for each run was found to be 7% and 23% respectively.

 Between January 31  and July 24,  1974,  airborne  salt loadings were
measured during the operation of either the cooling tower or the
 two spray modules.   About 130 runs were obtained with  an enlarged
and rearranged network of nine sampler stations.   Depending  on  wind
direction, one or more samplers  were located upwind of the operating


*The defining equation for the error is given by Equation  (44).

-------
cooling device.   This allows comparison of salt loadings upwind and
downwind of the cooling device in order to determine its contribution
of salt to the atmosphere.  The upwind salt loadings also expand
the data base of ambient salt loadings to a total  of 11 months.

A statistical analysis of the APS data is presently being conducted
for the Environmental Protection Agency by the Adapt Service
Corporation under Contract No. 68-03-2176 (Project Officer:   Dr. Bruce
Tichenor, National Environmental Research Center,  Corvallis,
Oregon).

No conclusions are presented since this contract emphasized  data
acquisition.  However, future analysis, interpretation and scale-up of
all data will help to evaluate the potential impacts of drift from
cooling systems utilizing mechanical draft cooling towers or spray
modules.

-------
                               SECTION II

                              INTRODUCTION
DEFINITION OF THE PROBLEM

One of the environmental problems associated with evaporative
cooling devices such as mechanical draft wet cooling towers and
spray modules, besides ground fogging and icing, is the mineral
mass emission.  The mineral mass is contained in small water droplets
which originate with the circulating cooling water, are entrained
into the air flow, and are injected into the atmosphere.  These
droplets, which are called drift, rise with the moist, bouyant
plume until they fall out and embark on a trajectory through the
ambient atmosphere.  Eventually the drift droplets or their mineral
residues are collected by vegetation or structures in the surroundings
of the cooling device.  The ultimate question is how the drift
mineral residue affects man-made structures and life indigenous
to these surroundings compared to the effects of similar minerals
found in the ambient environment.  If it can be shown that the
impact of the cooling device contributions is negligible compared
to ambient levels, environmental acceptability of the cooling device,
with respect to drift, may be concluded.  This question is particularly
important for salt water cooling devices.  Some are already in
service in near-seashore "environments (e.g.Beesley's Point, New
Jersey and Chalk Point, Maryland) and more are in the planning stage.

The drift problem outlined above may be broken down into the following
five segments:

     1.  characterization of the drift emission of the source;

     2.  characterization of drift transport by the plume and through
         the ambient atmosphere;

     3.  characterization of the drift mineral  residue levels at
         ground or near-ground levels downwind of the source;

     4.  characterization of the ambient levels around the cooling
         device; and

-------
     5.  characterization of the effects of the drift mineral
         residue on materials and life forms.

CONSENT DECREE

In 1970 and 1971 Florida Power and Light Company and the Environmental
Protection Agency (EPA) were involved in court litigations over the
subject of once-through cooling for FP&L's Turkey Point power plant. The
plant is located south of Miami, Florida, and consists of two  430
MWe fossil fueled steam electric generating units and two 730  MWe
nuclear units.  At that time the nuclear units were still under
construction, but are completed now.

As a result of court litigations FP&L considered alternative means of
condenser cooling, i.e. spray module systems, cooling canal systems,
and especially cooling towers.  A characteristic of the Turkey Point
site is the lack of an adequate supply of fresh water for cooling
tower make-up.  Consequently, a study was initiated in which
Southern Nuclear Engineering, Inc.  assessed the state of the
technology of saltwater cooling towers.  Such towers were already
in service, both in the USA and abroad, but were typically 20  to 100
times smaller than what would have been required at Turkey Point.
The report1, which was issued in February 1970, states in part:

     "... Drift represents an outstanding problem area.  ...
     The problems are:  (1) how much salt comes out of the
     cooling towers; (2) what is the size of the area over
     which this salt is deposited; and  (3) what effect does
     the salt have upon the surrounding environment, including
     plant and animal life, and soil and structures of the
     area.  The cooling tower suppliers are willing to
     guarantee a maximum limit of drift from their equipment;
     however, the industry possesses no accurate standard
     method for experimentally measuring drift, and there-
     fore present drift guarantees are  probably not too
     meaningful, particularly at low values.  The significant
     problem is that even operating within the guaranteed
     drift values for currently operating towers, the amount
     of salt coming out of the Turkey Point cooling towers
     is calculated to be from 20 to 400 tons per day and area
     deposition rates are potentially prohibitively high.
     Prior to building a salt water cooling tower as large
     as that required for Turkey Point, substantial research,
     development, and prototype testing will be required.
     There is no such research development and testing
     being carried out at this time, or even contemplated.
     It is judged that a program to do  this job would require
     a minimum of 4 years and several million dollars."

-------
Thus salt water cooling towers were rejected as an alternative to
once-through cooling mainly due to the potential salt drift problem.
The parties finally agreed on an excavated canal system2'3 as a means
of condenser cooling.  This plan was incorporated in a consent decree,
the Final Judgement1*, which was issued on September 10, 1971.  Among
the provisions of the consent decree were the following:

     "Florida Power and Light shall immediately arrange
     with appropriate officials of the United States,
     the State of Florida, and other appropriate juris-
     dictions, to commence studies of :  ... (c) mechanical
     cooling devices such as powered spray modules and other
     reasonable concepts for reducing adverse environmental
     effects attributable to the cooling system specified in
     this Final Judgement: 	
     The studies specified 	 shall be directed toward
     the determination of the feasibility, practicability
     and acceptability of utilization of such alternate
     sources of water as a substitute or supplement for
     withdrawals of make-up water from Card Sound for the
     cooling system described in Paragraph V below; 	
     shall utilize those waters which, as a result of the
     studies referred in subparagraph 11 above, the
     Administrator of the Environmental  Protection Agency
     may identify as being available to provide make-up water
     for Florida Power and Light's cooling system, to the
     extent this can be done feasibly and practicably and
     at a cost which is not disproportionate to the degree
     of environmental protection to be achieved	"

In order to satisfy this requirement and provide the Administrator
of EPA with adequate information on salt water cooling, EPA and
FP&L cooperated in an effort to test a single cell  mechanical  draft
wet cooling tower and two spray modules.  FP&L provided the cooling
tower and the test site, EPA funded the contract Number 68-02-1365
"Demonstration of Mechanical  Cooling Devices for Salt Water at
Turkey Point", which covers  the purchase and installation of two
spray modules and the testing phase whose objectives will  be
addressed in Chapter II.  This contract was awarded  on July 1, 1973
to Environmental  Systems Corporation (ESC), who had  since  1971
pioneered the development of drift measurement instrumentation5.

-------
ENVIRONMENTAL PROTECTION AGENCY'S NEEDS

EPA's needs are stated in Reference 6, as follows:

     1.  "The National Environmental Policy Act requires Federal
         licensing agencies to consider alternatives (including
         cooling systems) to negate or minimize environmental
         degradation.  To date, quantitative information on drift
         from salt water systems has been inadequate for a
         definitive position by the utilities, Atomic Energy
         Commission, or EPA—particularly in respect to (a) ambient
         air salt concentration and fallout, (b) source characteristics,
         (c) transport and deposition, and (d) terrestrial impacts.
         The contract will contribute valuable data on Items (a),
         (b), and (c) to the literature."

     2.  "PL 92-500 requires EPA (1) to promulgate acquatic effluent
         standards for the electric power industry and (b) to issue
         discharge permits.  The contract will contribute to the
         technical base for executing these requirements in all
         coastal regions."

SCALE-UP CONSIDERATIONS

The data acquired under this contract and the subsequent data analysis
are intended to satisfy one of the provisions of the consent decree:
the study of salt water mechanical cooling devices.  In using the
data presented in this report, it is important to remember that only
one single cell cooling tower designed for a water circulation rate of
1260   kg/s   (20,000 gpm) and two spray modules designed for a total
flow rate of also 1260  kg/s  were studied, not a cooling system
which  would meet the  needs of the Turkey Point plant with its combined
capacity of about 2300 MWe.  The difference lies in single units or
small  scale versus many units or full scale.  If condenser cooling
of all four Turkey Point units were to be provided by mechanical
draft  wet cooling towers or Powered Spray Modules, the cooling system
would  consist of many cooling tower cells or spray modules.  Reference
1 contains an estimate of  about  100 cooling tower cells for a specified
design condition, but each cell was larger  in size, and its heat
rejection capability  higher, than the cell  that was tested at Turkey
Point.  Reference 7  contains, for the same  design conditions as above,
an estimate  of 700 Powered Spray Modules.   Current estimates would
likely yield a lower  number primarily due to the advances of the last
4-5 years  in the  state-of-the-art of  predicting thermal performance
of spray systems.
                                  8

-------
It should be noted that these estimated numbers of cooling tower cells
or spray modules are only quoted here in order to give the reader an
order-of-magnitude impression of the size of such an alternate
cooling system.  The magnitude of these numbers demonstrates that
the results of this contract have to be scaled up before they can
be considered representative of a full-size cooling system.   We
understand that the Thermal  Pollution Branch of the Pacific  Northwest
Environmental Research Laboratory is pursuing cooling tower  plume
studies which may be extended to scale-up problems.

-------
                              SECTION III

                  TEST OBJECTIVES AND TEST APPROACHES


The purpose of this contract is to provide data for studying the
environmental acceptability of mechanical cooling devices.   Such a
study is necessary to satisfy one of the provisions of the  previously
mentioned consent decree (Reference 4).  Consequently the thrust is
directed towards data acquisition only; data analysis or the
aforementioned study itself are specifically not part of the scope
of work in this test portion.  Data acquisition in a program such
as this inevitably leads to an accumulation of data which defy a
cursory analysis on the part of the reader.  Distillation of basic
trends, practical correlations and the relevation of a coherent
structure must be reserved for a full scale indepth examination.

TEST OBJECTIVES

The test objectives were formulated as follows:

     1.  Measurement of ambient airborne sea salt levels at the
         Turkey Point site.  Statistical analysis of the data, a task
         which is not within the scope of this contract, should
         determine, for example, average seasonal salt levels,
         ranges of salt fluctuations, and whether an inland gradient
         in  the ambient sea salt levels exists.

     2.  Measurement of airborne sea salt levels at the Turkey Point
         site during operation of one of the cooling devices.  An
         analysis of these data should determine if either of the
         cooling devices contributes measurably  to the sea  salt  levels
         over and above the  ambient  sea  salt levels at various
         distances from the  cooling  devices and  under various
         meteorological conditions.  Again, this analysis  is not with-
         in  the  scope of this  contract.

     3.  Drift emission characterization of the  cooling tower.

     4.  Drift emission characterization near  the  spray modules.
                                  10

-------
Thus, data were acquired for drift problem areas 1, 3, and 4 of the
five areas listed in Section II.

TEST APPROACH

Before the test approach is addressed, a brief description of the site
is necessary.  This description follows that given in Reference 8.  The
Turkey Point site is located approximately 50 km south of Miami, Florida,
at the west shore of Biscayne Bay.  The low, swampy land surrounding
the site is extremely flat, rising from sea level at the shoreline to
an elevation of only about 3 m at a distance of 13 km west of the site.
The site itself has a similar flat natural relief of only 0.3 to 0.6 m
above sea level.  East of the site, 8 to 13 km across Biscayne Bay,
is a series of islands running in a northeast-southwest direction
between the Bay and the Atlantic Ocean.  Four steam electric
generating units are located on the site: two oil-fired units with
430 MWe each and two nuclear units with 730 MWe each.  Condenser
cooling for all units is provided by a salt-water canal system with
dimensions of 8.4 km in north-south direction and 3.5 km in east-west
direction.  A "hurricane" dike, intended to shield the canal cooling
system from hurricane induced flooding, separates the cooling system
from the shore of Biscayne Bay, which extends in a general north-south
direction.  The four generating units are located at the northeast
edge of the canal cooling system which dominates the site due to its
size.

In the north, the canal cooling system is bound by the feeder canal
which runs in an east-west direction.  The research cooling tower is
located at the north shore of the feeder canal  approximately 1,200 m
west of the plant, and the two research spray modules are anchored
in the feeder canal  within a hundred meters of the tower.  Neither of
these cooling devices is needed for cooling of the power plant.

Agreement on the type and manufacture of the cooling devices tested
was reached between EPA and FP&L before the award of this contract.

Manufacturer's specifications for the devices are given in Appendix
H, and Figure 1 shows both devices in operation.   The contract's
test objectives did not include an evaluation of the mechanical,
hydraulic or thermal performance of either cooling device.
Consequently, only easily measured parameters such as the height
and diameter of the spray umbrella of the spray modules were checked.
For each drift data point acquired on the cooling tower some
operational  parameters, such as hot and cold water temperatures,
were measured to characterize the performance of the tower during
drift data acquisition rather than to verify it.
                                 11

-------

              .


Figure 1.  Marley 600/700 one cell  wet mechanical  draft cooling tower
           and Ceramic Cooling Tower Company's Powered Spray Modules
           in operation at Florida  Power and Light's Turkey Point site.
           The barge with its 13 meter (40 feet) tower is also visible.

Note:      No data were acquired during simultaneous operation of the
           cooling devices.
                                  12

-------
 In the following, a brief outline of the test approaches, designed to
 meet the test objectives, is given.  They are discussed in more
 detail in Sections VI and VII.

 In order to meet the test objectives, the following test programs were
 developed:

 Ambient Sea Salt Level Data Acquisition

 The ambient sea salt levels were characterized by two parameters:

     1.  the near-ground airborne sea salt concentration which is the
         mass of sea salt per unit volume of air; and

     2.  the near-ground airborne sea salt deposition flux which is
         the mass of sea salt that crosses a horizontal unit area
         per unit time.

 "Near-ground" represents the fact that the collectors were not
 located at ground level  but at a height of approximately 3 to 4 m
 above grade at the particular collector location.  Six Airborne
 Particle Samplers, which are described in Section IV were used as
 airborne sea salt concentration measuring devices along with the
 same number of deposition samplers.   The selection of the station
 locations was important since one of the goals of a subsequent data
 analysis will be the detection of an inland gradient.  The six
 samplers of each kind were therefore distributed along an east-
west line which is perpendicular to the general  north-south orientation
of the shore of Biscayne Bay (see Figure 5 and 23).  With this
experimental set-up, ambient data were acquired at a rate of five
 runs a week over a period of approximately four months during the
 time the cooling devices were not operating.  Later, during operation
of one of the cooling devices, ambient data were also acquired upwind
of the operating device increasing the period of time of ambient
background data acquisition to a total  of eleven months.

Acquisition of Sea Salt Level Data During Operation of One of the
Cooling Devices

With one of the cooling devices operating, the sea salt levels were
again characterized by the airborne  sea salt concentration and the
sea salt deposition flux.  More sampler stations and a different
array of the station locations (see  Figures 7 and 23) were used
in order to acquire data that would  permit an analysis to detect
source contributions above the ambient sea salt levels.  Over a
                                 13

-------
seven month period, data were acquired at a rate of five runs per
week during three months and at a rate of six runs per week during
four months.

Cooling Tower Drift Emission Characterization

The basic quantities measured were:

     1.  the drift droplet size spectrum; and
     2.  the drift mineral mass flux.

These quantities were measured in the exit plane of the cooling tower
stack.  A horizontal beam placed diametrally across the exit plane,
as shown in Figures 8 and 9, supported the instrument package which
could be brought into any position along the diameter.  At various
positions the Particulate Instrumentation by Laser Light Scattering
(PILLS) and the Sensitive Paper (SP) techniques were used to acquire
the droplet spectrum and the heated glass bead Isokinetic Sampling
technique (IK) yielded data on the drift mineral mass flux.  These
basic quantities along with the updraft velocity profiles measured
with a propeller anemometer were acquired during five diameter
traverses with 12 to 16 measuring positions each.  The PILLS and SP
data reduction yielded subsequently drift mass spectra and drift mass
flux spectra for the particular measuring points  as well as a
drift mass spectrum representative of the cooling tower as a whole
during the entire data acquisition period.  The IK data yielded sodium
and magnesium mineral mass fluxes for the individual positions
along the diameter traverses  as well as total sodium and magnesium
mass emissions for the tower.

The drift characteristics could depend on tower operational data, such
as rejected heat, water and air flow, salinity; and on meteorology.
Therefore, for each drift data point, those tower operational data that
were readily accessible, for example hot and cold water temperatures,
the heads in the hot water distribution basins, salinity, and exit
air temperature were measured.  A meteorological tower, located
approximately 50 m east of the cooling tower, provided meteoro-
logical data continuously during drift data acquisition periods.

Drift Emission Characteristics Near the Spray Modules

A fundamental difference exists between the drift emission
characterization of a cooling tower and that of a spray module.
It is recognized that a cooling tower has a well-defined efflux
plane in which measurements can be made to characterize the drift
emission.  Such a plane, however, does not in principle exist
uniquely for a spray module since the emission and transport
                                  14

-------
 phenomena are dependent upon the  local climatology  (ground level
 wind speed, wind direction and turbulence, and the  dry and wet bulb
 temperatures of the air).  If measurements are made in the near
 proximity of the modules, e.g. within  1 to 5 m of the downwind
 spray umbrella, then the droplets crossing the measurement plane
 could be characterized by a set of measurements having small
 horizontal and vertical extent but would not be necessarily re-
 presentative of the transport of drift beyond the spray canal or the
 plant property line.  In other words, measurements made under given
 wind conditions in a plane near the source may have large contri-
 butions by large droplets which may not leave the spray canal under
 the given wind conditions.

 On the other hand, if measurements are made at, e.g. 100 to 200 m
 distance from the source, then that part of the drift is measured
 which is clearly transported from the spray canal into the
 environment.  However, much larger horizontal and vertical
 excursions have to be made in order to represent the drift that is
 transported across the measuring plane.

 Clearly, this problem is more severe when the winds are variable
 in either speed or direction.  Thus, a measurement plane(s) must be
 chosen which is a compromise between non-representative but
 easily obtained data and more representative but more difficult to
 obtain data.

 Recognizing this principal difficulty, the primary goal  of this
 spray module test (the first that was ever attempted to the knowledge
 of the authors) was to obtain, under meteorological  conditions as
 constant as possible, drift droplet size spectra and drift mineral
mass flux data at certain distances downwind of the modules as a
 function of height.  However, these data do not allow the calculation
of drift and  mineral   mass emission rates for the spray modules.
 It was hoped, of course, that wind speed and direction would be
 sufficiently steady for a sufficient period of time to allow a
complete traverse of a measurement plane such that emission rates
could be determined.

The same instrumentation as mentioned previously in this section
was used here.   The instrument package was traversed along a vertical
mast positioned on a barge as shown in Figure 16.   The barge was
completely self-sufficient containing all  support equipment for the
 instrument package and motor generators for electric power.
                                  15

-------
                               SECTION IV

                   INSTRUMENTATION AND DATA REDUCTION
In this section, descriptions of the instruments employed in the
test program are given along with the fundamental  equations  used in
the data reduction.   Techniques for measuring drift droplet  size  and
number density are described first, followed by a description of
how these data are consolidated into a meaningful  representation of
the droplet emission characteristics.  Next  follows a description
of the instrumentation for measuring mineral mass flux.   Then  some
remarks are made regarding the comparison of parameters  derived
from the droplet size spectra and parameters derived from mineral
mass flux data.  Then a description of the support instrumentation
used in drift emission measurements is presented, followed finally
by a section on instrumentation for airborne sea salt concentration
and deposition flux measurements and a discussion of these parameters.

DRIFT EMISSION TEST EQUIPMENT

PILLS II System

The PILLS II System has been developed to provide in situ, on-line
measurements of drift droplet density distributions in cooling towers.
The PILLS technique of droplet sizing was developed under the
sponsorship of the Environmental Protection Agency (Contract Number
16130GNK, Project Officer:  Frank H. Rainwater), and first
demonstrated5 in Oak Ridge, Tennessee, in 1971.  Since then, field
experiments such as those conducted inHornaing, France, Homer City,
Pennsylvania, and again in Oak Ridge, have demonstrated its measurement
capability and field reliability.  The PILLS instrument employed at
Turkey Point is designated PILLS II-A and was the  latest generation  of
that line of instrumentation.

The operating principle of the PILLS System  is described in References
5, 9 and 10.  This electro-optical  instrument produces a voltage
output which is related to the size of a droplet which is present  in
the external sampling volume coincident with a pulse of  laser light.
The size of the sampling  volume  is  determined such that  it  is


                                  16

-------
 unlikely that multiple  droplets  in  the size  range  of  interest  will  be
 simultaneously present  in  the  volume.   For most  of the  Turkey  Point
 measurements, this  volume  was  2.33  cubic  centimeters.

 References  9 and 11 describe the calibration of  the PILLS  System  which
 is accomplished by  means of a  vibrating orifice  monodisperse water
 droplet generator.   Based  on the calibration with  droplets  of  known,
 uniform size the overall accuracy of  the  PILLS System was  found9  to
 be +15%.

 The voltage pulses  generated by  the PILLS System were fed  into a  p_ulse
 height  analyzer (PHA) especially developed for the system with 128
 independently adjustable channels,  of  which  typically a third  were
 used for storing PILLS  data.   The pulse height analyzer provides  as
 output  a voltage distribution  which is analyzed  via calibration data
 to yield the particle density  distribution.  p(d),  which is  defined  as:
                number of droplets  in size range Adj
      droplet  size  range Ad-j  (urn)   x  sampled air volume  (m3)        (1)


where i  represents  the droplet size range and j the location in or
near  the source.  The particle density distribution is the basic
parameter measured  by the PILLS System, and it represents the number
of droplets per unit droplet size  range and unit volume of air.  As
described below, other parameters  may be derived from it.

The PILLS instrument used at Turkey Point was set up to generate
particle density distribution data  in the droplet diameter range of
approximately 40 to 1,000 ym.  The upper limit is determined by the
amplifier saturation point and statistical quality of the field data,
i.e.  the number of  pulses per PHA  voltage channel accumulated during
the measuring time, or, in terms of droplet size, the number of droplets
per diameter  range  accumulated during the measuring time.  The lower
limit is typically  determined by either electronic noise  or by
optical  noise caused by a number of small water condensate droplets
(fog)  that are  in the sampling volume each time it is illuminated by
a laser  light pulse.  The fog droplets which are believed to be
smaller  than  10 or  20 um in diameter generate stray light which
interferes with the sizing of droplets of the same and larger diameters.
The lower limit due to electronic  noise is determined by operating the
PILLS instrument for a period of time outside of the cooling tower
                                  17

-------
plume, i.e. without droplets entering the sampling volume.   At
Turkey Point such electronic noise background runs which lasted
between 30 and 60 minutes were obtained daily during the first week of
testing.  Since the test results showed a constant electronic
noise background, the number of background runs was subsequently
reduced to  one  per week.  The lower limit, due to electronic noise,
was consistently about 40 um.  The effect of fog on the lower limit
has to be determined during each actual measurement since it varies
with both measurement location and time.  The lower limit of the droplet
diameter range was during the cooling tower test between 40 and 70 um
due to a low level of fog.  The upper limit of the droplet diameter
range, which is affected by actual field conditions as is the
lower limit, was during the cooling tower test usually 600 um and
during the spray module test 250 to 350 um depending primarily
on the position of the instrument relative to the spray modules  and
the wind speed.  More information regarding the droplet size limits
will be given later in this section and in Section VII.

The drift mass density distribution, defined as AXij/Ad, represents
the mass of droplets per unit droplet diameter range and unit volume
of air as a function of the droplet diameter.  It is derived from the
particle density distribution:

where di is the center diameter of droplets in the size range i  and si
is the representative density of the drift droplets in the size  range i
Since s-j is generally unknown, an assumption has to be made which will
be discussed at the end of this section.  The drift mass concentration
represents the mass of droplets in the droplet size range Adi Per
unit volume of air:
                         AN • •
                                                                    (3)
and the total drift mass concentration at a measuring point is
obtained by summation over the measured size ranges:
                                  18

-------
          XJ   =   ?  AXij    -   e   ?   AdT^VT  Adi   di3   si   vgm/m-j      /4\
                 i               i     i   s                             v»;


 provided  that:

      1.   the  drift droplet  size spectrum  does  not extend  below the
          lowest  droplet  size detectable by PILLS;

      2.   the  fog droplet size  spectrum  at the  exit of the cooling
          tower fan stack which  is  generally assumed  to  be confined
          to diameters of smaller than 10  or 20 gin, does not extend
          into the  region of the PILLS sensitivity.

 The drift mass flux  in the  size range i is the mass  of  drift droplets
 in that size  range that  crosses the  area  AA in unit  time.  For a
 mechanical draft cooling tower  with  a circular stack,  AA  is a
 section of an annulus in the tower exit plane  whereas for spray
 modules it can be  part of a plane  that  is  downwind of the modules
 and perpendicular  to both the earth's surface  and to the  mean horizontal
 wind  vector.  The  drift  mass flux  is computed  by multiplying the
 drift mass density by the droplet  velocity component perpendicular
 to  AA.    For  the tower,  this velocity component is vertical, hence
 the droplet terminal velocity must be taken into account.  In this
 case  the  drift mass flux for the size range i  is given  by
               (vuj - vti)


              AN
                      Adi  I  di3   si  Kjj-vti)  (gm/m2-s)        (5a)
where AD-jj is the drift mass emission rate in the size range i and
at location j, ADij/AA is then the associated drift mass flux,
7uj is the vertical component of the time-mean air updraft velocity
and vti is the terminal velocity of a droplet with diameter d"i .

For spray modules the velocity of the droplets perpendicular to AA
is assumed to be equal to the time-mean horizontal wind speed.   Thus,
the drift mass flux for the size range i  is
                                  19

-------
                                                                     (5b)
with u" as the time-mean horizontal wind speed.

The total drift mass flux at location j is obtained by summation
over the size ranges:
                   AD
                   AA
   (gm/m2-s)
                     (6)
provided the same considerations regarding the drift and fog droplet
spectra apply as mentioned previously in the calculation of total
drift mass concentration at a measurement point.  The total rate of drift
mass emission, D, then, is given by
                         D  =  I
                                  AD-
                                  lAA J
AA-
(gm/s)
                            (7)
 In the case of cooling tower measurements, this summation covers the
 exit area of the tower.  In the case of spray module testing, the
 geometrical extent of the drift plume must be determined before this
 summation can be realized.  At Turkey Point the extent of the drift
 plume was not determined, as mentioned before.  The drift emission of
 the spray modules was rather characterized at each of the measurement
 positions, that is, at certain points in space within the drift plume.

 If the drift emission is to be characterized by the drift fraction,
 A, which expresses the drift emission in percent of the circulating
 water mass flow rate, R, then:
                             A   =  {{•  x   100%
                            (8)
 Equation  (2)  introduced  s^,  the  representative  density of drift droplets
 in  the  size  range  i.   The  density  of  drift  droplets  depends  on the
 kind  of minerals contained in  the  droplets,  and on their concentration.
 With  regard  to the kind  of minerals and  their respective mass ratios,
 it  is assumed that both  are equal  to  those  of the circulating cooling
 water.  The  mineral  concentration, however,  is  unknown because it
                                  20

-------
 may change due to evaporation  or condensation.   Fortunately,  even  though
 the concentration may  change considerably,  the  associated  density
 change  is  relatively small.  For aqueous  sodium chloride solutions,
 for instance,  the concentration  may  change  from 20,000  ppm to
 317,460 ppm (saturated solution), whereas the density changes only
 from 1.013 to  1.2 gm/cm3,  respectively.

 In  view of this  fact,  the  density of all  drift  droplets is  assumed to
 be  equal to that of  the circulating  cooling water:   s^  =   scw.  Since
 the difference in density  of the cooling  water  for  salt water cooling
 towers  and the density of  pure water,  sw, is less than  2%,  the
 assumption is  extended here to


                     si   =  scw   =  sw  =  1.0 gm/cm3                 (9)


 Sensitive  Paper  Machine

 A completely independent and complementary technique to the PILLS
 System  utilizes  the well-known principle  of water-sensitive paper12'9.
 This paper is  chemically treated according to published procedures
 such that  a droplet of  water impinging on it will produce a stain
 whose size is  related  to the original droplet size and to the
 dynamics of its  impingement.  The relationship  between the stain and
 the droplet size  is obtained by calibrating the Sensitive Paper
 System  by  means of the  vibrating orifice monodisperse water droplet
 generator  over a  range  of droplet sizes and impingement velocities
 ranging from   2.5 m/s   to  15 m/s.   The paper  is employed in
 machines which offer controlled exposure of the paper to the drift
 droplets and protect the paper before and after the exposure period.

 The overall accuracy of the SP technique is estimated to be approxi-
 mately +15% for droplets larger than 50 pm.   For droplets  less than
 50 urn in diameter the accuracy of droplet size determination is
 better than +15% but the effective volume sampled is reduced and must
 be corrected as explained later.   No accuracy has been established
yet for the correction  factor.

The Sensitive Paper technique is  employed to extend the particle
 density distribution obtained by  the PILLS System towards  smaller
droplet diameters which are below PILLS'  sensitivity limit.  Moreover,
 since the  SP technique  typically  provides droplet size data in the
 range of approximately  10 to 200ym,  crosschecks between the two
droplet sizing techniques are possible.
                                 21

-------
The lower limit of this diameter range is due to the aerodynamics of
the flow around the disc-shaped sampling head and the dynamics of the
droplets in the flow.  It is therefore a function of the droplet size,
mass and speed, the geometry of the sampler and the air speed.  The
upper limit is due to the number of stains generated on one disc.
If the number of drift droplets per unit volume of air increases as
the droplet diameter decreases, as is characteristically observed in
a cooling tower or downwind of spray modules, then the exposure
time of a sensitive paper is limited by the number of small droplets
impinging on the paper.  With proper exposure time the stains caused
by these small droplets cover most of the area of the paper, and the
number of stains of larger droplets becomes fewer as the droplet
diameter increases.  With only a few, say five or less, large droplet
stains per sensitive paper, the calculated particle density distribution
data may become erratic.  This indicates the upper limit of the
diameter range for which particle density distribution data can be
obtained from a particular sensitive paper.

The upper limit cannot be increased by a longer exposure time since
this would yield overlapping stains and a resulting loss of stain
definition.  However, it can be increased by properly exposing more
than one sensitive paper and adding the number of stains, but this
necessitates the processing of more sensitive papers which becomes
economically less feasible with an increasing upper limit of the
droplet size range.

The processing of the exposed sensitive papers consists of measuring
the stain diameters by means of a microscope with a reticle eyepiece
and grouping the counts of all stains by stain size ranges.  A
statistically significant number of stains, typically about four
hundred, are counted for each of the papers.  Since the number of
stains per stain size range usually decreases with increasing stain
size as already outlined, three sensitive paper counts are typically
made.

The stain diameters given here should not be confused with drift
droplet diameters which must be inferred from calibration data.

Small Stain Count - More than 250 stains of diameters smaller than
300 to 400 ym are counted and sized.  This number of small stains is
usually obtained from just a portion of the total area of the
sensitive paper.
                                  22

-------
Medium Stain Count - Stains in the diameter range of 200 to 1,500 ym
are counted.  Here a larger portion of the sensitive paper area
usually  must   be interrogated in order to size and group a total
number of 150 stains.

Large Stain Count - The entire area of the sensitive paper is in-
terrogated for stains larger than 1,000 ym in diameter.  In this
type of count, the frequency of the large droplets is usually quite
low necessitating treatment of the data on a single droplet
basis as explained in Section VII.

It should be noted that the quoted stain size ranges are typical ones
and are those used in the Turkey Point data reduction.  The stain
size ranges may change depending on the stain size distribution and
the stain density on a particular sensitive paper.  Compared to
counting and sizing every stain on the paper, the outlined method
is economically more feasible and does not compromise the data
quality.  That is, data accuracy remains within the limits previously
quoted.

Once the stain sizes are counted and grouped according to size,
calibration curves for specific stain sizes and impaction velocities
are used to generate the original droplet sizes from which the stains
were formed.  A consolidated p(d) curve is then generated for each
measurement position from the SP and PILLS particle size distribution
data.  This step will be discussed in the following section titled
"PILLS and SP Data Consolidation".

Three types of sensitive paper machines were employed at Turkey Point:

     1.  The SP machine used on the barge had a pair of rotating
         sampling heads, each of which exposed one sensitive paper
         disc measuring 47 mm in diameter.  It utilized a small motor
         that gave the sampling heads a constant peripheral speed of
         10 m/sec.  The axis of rotation was parallel to the average
         wind direction and the heads were aligned such that the
         sensitive paper plane was parallel to the average wind
         direction and therefore also parallel to the horizontal
         component of the droplet trajectory.  This design has two
         advantages:

         a.  the impingement speed of  10 m/s  is larger than usual
             wind speeds at the site (wind speeds from 1 to 7 m/s
             were observed during the module test).  This increases
             the collection efficiency which, according to
             Reference 13, increases with the velocity in a non-linear
                                  23

-------
    fashion.  Consequently data quality is improved although
    no experimental correction factors for collection
    efficiency have been established for these lower
    impingement velocities.  However, a correction factor is
    known for  10 m/s  as explained in (2).

b.  The impingement speed is constant, which facilitates
    calibration curve use.

The Strip SP Machine is the same as the one described above
under (1) except that it exposes a 3 mm wide, 47 mm long
strip of sensitive paper instead of a 47 mm diameter disc.
The collection efficiency of the strip for small droplets
is substantially better than that of the disc.  According
to Reference 13 it is 90% for 15 urn diameter droplets and
50% for 5 urn diameter droplets.  That is, 90% of the
15 urn droplets equally distributed throughout a volume whose
cross-sectional area is identical to that of the SP strip
will impact on the strip when it is swept through the volume
at a velocity of 10 m/sec.  This machine was used to obtain
experimentally the correction factor between strip and
disc data for an impingement velocity of  10 m/s,  as will
be described later.

It should be noted that the Strip SP Machine is not a
suitable substitution for the SP machine that exposes
sensitive paper discs.  The sensitive paper strips have only
about 8% of the area of the discs and the number of droplets
collected by the strips is therefore also only about 8%
of the number of droplets collected by the discs.  This is
of no consequence regarding the small droplets of interest
(smaller than about 50 urn in diameter).  A correctly exposed
strip always collects more than needed for a small stain
count.  The number of stains, however, that are recorded
during the medium stain count is usually much less than the
required number of 150 stains.  Thus the strips collect an
insufficient number of droplets larger than about 50 um in
diameter which prevents the generation of p(d) data for
this droplet size range.

The SP machine used on the cooling tower was equipped with  a
stationary head instead of two rotating heads.  The
advantage of the stationary head is that it provides data at
a well defined point in the cooling tower exit plane,
whereas the rotating heads provide an average over a circular
path whose diameter is 0.6 m and therefore large compared
to the change of updraft velocity in the exit plane along
                         24

-------
         a diametral traverse.  The stationary head is aligned such
         that the plane of the sensitive paper is parallel to the
         tower exit plane.  The impingement velocity is therefore
         the vertical component of the time-mean droplet updraft
         velocity:
ij
                             =  vuj - vti    (m/s)                 (10)
The SP machine, with the rotating heads, generates as the basic para
meter the particle density distributions p(d) like the PILLS System.
The sensor heads on this device sweep out a volume of air in a
direction perpendicular to the air flow and in the process collect
the drift droplets in that volume.  Equations (1) to (8) are there-
fore directly applicable.

The SP machine with the stationary head collects only those drop-
lets which, due to the air flow, are transported to the plane of the
sensitive paper.  Large droplets in the updraft air do not move at
the same speed as the air due to their settling velocities.
Consequently, even if they were present in the same numbers as the
small droplets, not as many would strike the sensitive paper
surface during the sampling time.  This device, then, measures
the droplet number flux directly, from which the particle density
distribution, p(d), can be found as outlined in the following.
The droplet number flux is the number of droplets that cross a unit
area in unit time.  For a size range i this can be written as:
                  number of droplets in size range Adj^	
              area of the sensitive paper x sampling time          (11)
The drift mass flux in the size range i is then
               AD
                AA
 AN
                            ij
V's.
(gm/m2-s)            (12j
Equating Equation (12) and (5a) yields the particle density
distribution, p(d):
                                  25

-------
                  _ANj

         r »  *      /\Q 4 * • r-     iim.-ww      » - . . .    - • • v      •
                                                                   (13)
Having acquired this basic parameter, the data reduction may proceed in
the same way as described for the PILLS System.

As outlined earlier, the Strip SP Machine was used to obtain
experimentally the correction factor between strip and disc data
for a 10 m/s impingement velocity.  The correction factor enables
us to extend the useful range of the disc data below the theoretical
lower limit of approximately 36 mn diameter droplets without exposing
a sensitive paper strip for every sensitive paper disc.

The correction factor is defined in terms of the collection
efficiencies at a given droplet diameter:
                       Bl  =
                               Estrip
Edisc
(14)
where Bi  is the correction factor for the size range i and Estrip
and Edisc are the collection efficiencies of the strip and
the disc, respectively, at the center diameter di of the size range
Adi-

Experimentally the  correction factor is  given by


                                  ANi
                              /  	:—  j.
                        strip  '  lAd-j-VJ  disc
                                    (15)
 The correction factor depends  on  both  the  droplet  diameter  and  the
 impingement velocity.   As  stated  above the experiment  was designed
 to obtain Bi  for an impingement velocity of 10 m/s.  Since  Bi does  not
 depend on the location of  j, other than in terms of  the velocity at
 j, Al^ instead of AN^j appears in Equation (15).

 Experimental  determination of  the correction factor  in terms of both
 the droplet size and the impingement velocity is a more involved
 task and was not the goal  of the  rather brief experiment during
 the winter test.
                                   26

-------
 Correction factors for a range of droplet diameters greater than
 10 ym were experimentally obtained,and after comparing them with
 the theory13, the following correction factor as a function of the
 diameter was extracted and used in the data reduction:
       6  =
50  for 10 m/s impingement velocity and
 cT  10 < d < 50 ym

 1  d < 50 gm                                         (1C)
 where  both  numerator and  denominator  have  the  same  dimension  of  urn.

 The  correction  factor 6 was  used  in the  reduction of  the  sensitive
 paper  data  of both  the spray module and  the  cooling tower tests.
 The  spray module  data were acquired with a fixed impingement
 velocity of 10  m/s  (SP machine with rotating collection heads)
 and  the correction  factor is therefore directly applicable.   However, the
 impingement velocity during  the cooling  tower  test  was approximately
 equal  to the local  vertical  air updraft  velocity (SP  machine  with
 stationary  collection head)  and differed therefore  usually from  10 m/s.
 The  application of  6 to the  cooling tower data introduced  therefore
 an error.   Average  updraft velocities at the SP measurement points in
 the  tower ranged  from 4.5 to 13.8  m/s.   Whenever  the droplet
 velocity was smaller than 10 m/s,  the drift emission of droplets
 smaller than 50 urn  in  diameter is  underestimated; whenever it is
 larger, the  drift emission of droplets smaller than 50 ym is  over-
 estimated.   Since 67%  of  the average updraft velocities taken at
 SP measurement points  were larger than 10  m/s,   the total drift
 emission rate and thus the drift fraction are probably slightly
 overestimated.

 PILLS and SP Data Consolidation

 When both the PILLS and SP techniques  are used together in drift
measurements, the data are usually consolidated in a fashion so
 that only one particle density distribution curve,  p(d),  results
from each measurement point.   The  first step in generating this
curve is to plot the data points  generated by the small,  medium
and large sensitive paper stain counts, and the p(d) data points
generated by the PILLS System.   The second step is  to  generate
the single p(d)  - curve which consolidates the constituent data
points.

Some subjective  judgement enters  into  fitting the consolidated curve
to the  data  points.   For  instance, the corrected  SP  data  for droplet


                                  27

-------
diameters smaller than 50 gm are usually taken at face value instead
of the PILLS data because of the fog background which limits the
PILLS system's lower detection limit to droplet diameters larger
than approximately 70 ym.  Since the PILLS System sampled per
measurement point typically 4 to 7 times more air volume than the
SP System, the PILLS count frequency was proportionally higher per
droplet diameter range.  Consequently, the PILLS data are weighted
heavier than the SP data, especially above droplet diameters of
approximately 200 urn where the number of droplets that result in a
medium stain count data point becomes small, e.g. less than 10.
The two independent droplet sizing techniques overlap between droplet
diameters of 70 to 200 urn, and both sets of data show good agreement.

An example of a typical consolidated p(d) - curve is shown in Figure
2.  The data points were generated by the PILLS System and by SP
small and medium stain counts.  At about 30% of all measurement
positions in the cooling tower exit plane the SP large stain count
showed 1 to 3 droplets with diameters larger than 600 wm.  Since
this is an insufficient statistical basis to formulate a p(d) data
point, no data generated by the SP large stain count are included
in any of the consolidated p(d) curves.  Such single large droplets
were not observed during the spray module test.

Cooling Tower Composite Curve

Once a particle density distribution, p(d), is established for each
measurement point  (either just from PILLS data, or just from SP data,
or a consolidation of the data of both), various other parameters
characterizing the drift emission at the particular measurement
point  can be calculated as outlined before.  Drift emission rates
can be determined if the geometrical extent of the drift efflux plane
is known, which is the case for the cooling tower but not for the
spray modules as mentioned before.

At Turkey Point, drift data were obtained at measurement positions
along two perpendicular diameters of the efflux plane of the cooling
tower.  These two diameters were traversed a total of 5 times, 4 times
during the winter test phase and once during the summer test phase.
Both meteorology and tower operational conditions were different
during these two test phases, and they were also different, to a
lesser degree, for each measurement position of a diameter traverse.

For applications such as drift transport calculations the data for
all measurement positions must be combined into one distribution
which distributes the total drift mass emission according to droplet
diameter ranges.  Totally this single distribution would characterize
the drift water emission of the cooling tower for the various meteoro-


                                  28

-------
   1 E4

   5 E3


   2 E3

   1 E3
en
 f 5 E2
 E
 3.

"£ 2 E2

 I 1 E2
 c

z 5 El
    CO
    IS)
ro   i— i
   2 El

   1 El

   5 EO


   2 EO
LiJ
O
   1 EO

d  5 E-l
    a:
    et
       2  E-l

       1  E-l

       5  E-2


       2  E-2

       1  E-2
                                           Figure 2.
                                                  PILLS/SP consolidated curve for  cooling
                                                  tower position 27 of diameter  SW-NE  3.

                                                             DATE:  7/23/74

                                                                 a  PILLS DATA
                                                                 o  SP, SMALL STAIN  COUNT
                                                                 •  SP, MEDIUM STAIN COUNT
                                                               	 CONSOLIDATED CURVE

                                                           ORDINATE NOTATION:  5 E-l MEANS 5x10"
                      I    I    I   I    1    I   I    I    I   I    I    I   I    I    I   7   I
            0      50     100    150    200     250    300    350

                                             DROPLET DIAMETER, urn
                                                                400
                                                                         450
500
550
600

-------
logical and tower operational conditions that typically occur during
a period of time such as a season or a year.

In the following it is described how all cooling tower data ob-
tained at Turkey Point by means of the droplet sizing techniques,
PILLS and SP, are combined into a single drift mass density distri-
bution (which was defined as mass of droplets per unit droplet
diameter range and unit volume of air).  This composite drift mass
density distribution thus represents the drift water emission of the
Turkey Point cooling tower under the meteorological and operational
conditions experienced during the testing phases.  There are
possibly other parameters which could characterize the drift water
emission of this cooling tower, but this question will not be
addressed in this report.

Equation (5a) which is rewritten here for convenience is the starting
point in the formulation of the composite drift mass density dis-
tribution, AXi/Ad| composite:
                                       (vuj - vti)                 (5a)
        is the drift mass flux in the size range i, AX-jj is
the drift mass concentration in the size range i and at the measure-
ment location j, vuj is the time-mean air updraft velocity at
location j, and vt-j the settling velocity of a droplet with a diameter
which is centered in the size range i.

From each diameter traverse the total rate of drift mass emission of
the tower in a droplet size range i, AD^, can be calculated, assuming
azimuthal symmetry:


                   ADi  =  5 A Xij  (vuj - vt1) AAj                 (17)
                           J

where AAj is the area associated with the measurement position j.   In
the case of a diameter traverse across a circular exit area, AAj
represents one-half of an annul us.  The composite, or average, rate
of drift mass emission of the tower in the droplet size range i is
obtained by summation over the measurement positions of all 5
diameter traverses, and division by the number of diameter traverses:
                                  30

-------
                      I   N           I-        I
        composite  =  N   E z fAxijn-  (vuin~ vti'>AAJn]
                        n=l j            J

 where N is the total  number of diameter traverses,  which is here N=5,
 and n indicates a  particular diameter traverse.

 The composite drift mass  density distribution  for the cooling  tower,
 AXl'/Adl  composite'  can now be der1ved as follows  from Equation (5a):
                                           ADi  composite
                      i	
                          composite   ~  A~~^   rvu  -  vt1-)              (19)
All quantities  in  this equation are  now  related  to  the cooling tower
as  a  whole  and  not to a  particular measurement position,  and
appropriate numerical values for the area A and  the time-mean air
updraft velocity vu have to be selected.  Here the  exit area of the
cooling tower fan  stack and the average  air updraft velocity as
defined by the  ratio of design volumetric air flow  rate to the cooling
tower fan stack area were used.  These quantities are known for any
tower as opposed to, for instance, the area of the  annul us of the
fan stack exit  for which the air updraft velocity is positive.  The
numerical value of such an area would have to be established by
measurements.

Thus, with these well-defined cooling tower parameters, Equation (19)
becomes
      AV   .                   ADi composite
      uX-j
      Ad
composite
                        Ad
                           Afse  fee"  '  V«J                    (20)
where Afse is the area of the fan stack exit and Vai> is the design
volumetric air flow rate.  Equations (18) and (20) were used to
calculate a composite drift mass density distribution, shown in
Figure 11, and from it, other composite drift emission parameters as
discussed in Section VII.
                                  31

-------
Isokinetic Sampling System  (IK)

In the planning stage of the Turkey Point program, the instrument for
measuring the mineral mass flux was chosen to be the heated glass
bead isokinetic sampling system.  This system was chosen over the
isokinetic cyclone separator, which also measures mineral mass flux,
because of the inherent simplicity of the glass bead design, a
factor of significance in field operational reliability and con-
venience in handling.  There is no danger of water leakage once the
sampling tubes are exposed and sealed as there is when drift water
samples are taken.

The heated glass bead isokinetic sampling tubes collect minerals
contained in the drift droplets which evaporate after impinging upon
the hot glass beads.  The air velocity through the tube is adjusted
so that it is equal  to the time-mean velocity of the updraft air as
determined by measurements with a vane anemometer.  The minerals
collected in the  IK  tubes are stripped from the tubes with a wash
solution which is  then chemically analyzed.  A statement from the
chemical laboratory  with  regard to the accuracy of the analytical
procedure is presented in Appendix I.

The basic parameter  generated by the  IK  system is the total mineral
mass  flux, F^:


             minerals collected         _  Mkj  - MBk   (     2   }       -
 Fkj   =   sampling  time x  sampling area  '   ts  • As    wm  5;      (21)


 where the  index  k represents either  a  chemical element  or  compound  for
 which the  sampling tubes are analyzed, or all  collected  minerals.   For
 the Turkey  Point  measurements the  index  k represents  sodium and
 magnesium.   The  index j  represents,  as before,  the  measurement
 location,  M  the  mass of  the element  or compound  or  total minerals
 stripped from the IK, tube and MBk  is .the average  background value  of
 the  tubes  for the kth element or  compound.  The  sampling time and
 the  cross-sectional  area of the IK tube  are ts and  As,  respectively.
 For the tubes used at Turkey Point,  As is equal  to  5.07 cm .   The
 mineral mass concentration, (fry,  is  the  mineral  mass  flux  divided
 by the time-mean representative droplet  updraft velocity at j,  vpj:


                                                        (gm/m3)
                                                        ^           (22)
                                   32

-------
where Vs  is  the  sampled air volume and vuj  is  the  time-mean air
updraft velocity at  location j.

The  time-mean air  updraft velocity at location j,  reduced by the
settling  velocity  of a droplet with mass median diameter as determined
from the  droplet size spectrum measured at  location j, may be used
as time-mean representative droplet updraft velocity.  However, since
the  air updraft  velocity at those points of the Turkey Point tower
which emit at least  50% of the total mineral mass  is at least
10 m/s, as compared  to settling velocities of  0.25 m/s and 0.7 m/s for
dropjets with diameters of 100 and 200 um, respectively, the assumption
of Vpj = vuj was used in the Turkey Point data reduction.  For mechanical
draft cooling towers this is generally a very  satisfactory assumption.

The  mineral  mass emission of the kth element at location j can be
found from the mineral mass flux:


                           (My - MBk).AAj
     Altlkj  =  Fkj ' AAJ  =  —   ts.As -      (9m/s)               (23)
where AAj is an area associated with the measuring location j.  The
total mass of the k*h element crossing the measurement plane is
obtained by summation over the measurement locations:


            mk  =  Z  Amkj       (gm/s)
                   J                                               (24)


For the Turkey Point cooling tower the measurement plane was the
exit plane of the fan stack.  For spray modules the measurement
plane is oriented perpendicular to the time-mean wind direction and
located downwind of the modules.  In order to obtain the total
mineral mass crossing through such a plane the geometrical extent
of the drift plume has to be determined as well as mineral flux
data within the drift plume and the measurement plane.  Since the
determination of the geometrical extent of the drift plume was not
attempted at Turkey Point, Equations (23) and (24) are not
applicable to the spray module drift emission.

Similarly to the drift fraction which was given in Equation (8) a
mineral mass emission fraction, nk> can be defined as the total
mass of the kth element emitted from the cooling tower in percent
of the mass flow rate of the kth element circulating as solute in
the water:


                                 33

-------
                               mk"scw
                               in~C   x   100%                     (25)
where Ck is the concentration  of  the  kth element or compound in the
circulating water (mass of solute per unit volume of solution), R is
the mass flow rate of the cooling water and s^ is the density of the
cooling water.   It is assumed  in  Equation  (25) that scw, Ck and R
remain constant during the period of  time  in which the Amy's are
measured.  If this were not the case  the following equation applies:
                                 imUr  *   m%                 (26)
where scw, R and Ck are determined for that  period of time during
which the individual values of Amy are measured.  At Turkey Point
R was always constant during a diameter traverse.  Furthermore,
the approximation of scw =1.0 gm/cm3  which  was  introduced already
in the description of the PILLS data reduction applies here as well.

Ideally the mineral mass emission fraction does  not depend on the
particular element or compound used to calculate it; that is,
another element or compound should yield the same value  for the
mineral mass emission fraction.  The underlying  assumption is that
the concentration ratios in the drift droplets are the same as in
the circulating cooling water.  In experimental  practice, however,
if the IK tubes are analyzed for different elements, different
numerical values for the mineral mass emission fractions will be
obtained.  For this reason the subscript k was retained  on the left
hand side of Equation (25),and (26).

Finally the different numerical values of the mineral mass emission
fraction calculated for different elements or compounds  can be
averaged:
                                1     N
                                N           nk                     (27)
where  N  is the total number of elements or compounds the IK tubes
were analyzed for.
                                  34

-------
 The mineral mass flux measured in a cooling tower or downwind of
 spray modules is expected to depend on the mineral concentration of
 the circulating cooling water.  If it is assumed that the fluctuations
 of the mineral concentration around a mean value do not affect the
 drift droplet generation, transport and elimination processes,
 then a direct relationship between the mineral  mass flux and the
 mineral concentration in the cooling water exists, provided all  other
 operational and meteorological parameters remain constant:
                                                                    (28)


 where Ck ,  and Ck  2  are  two  different concentrations  of the  ktn  element
 or compound and Fkj   and FkJ2  are  the associated  mineral  mass  fluxes
 at the measurement location  j.   Equation  (M )  is  supported by  Reference
 14 which shows for a mechanical  draft cooling  tower  that the apparent
 drift mass  concentration,  xkj,  decreases  linearly with  increasing
 cooling water concentration, Ck.   The apparent drift  mass concentration
 equals the  mineral  mass  concentration,  ki,  divided  by  the dimensionless
 concentration of the cooling water,  Ck/scw.  A fluctuation in  Ck by
 ±25%  around a mean  value  causes,  according  to Reference  14, a
 fluctuation in xkj  by T3%  around its mean  value.   If  it  is assumed that
 xk'i is independent of Ck,  and  since  voi is constant and  srw  is, as
 before, assumed to  be constant,  Equation  (28)  follows from Equations
 (21) and (22).

 Thus  for every  measured mineral mass  flux data point the  associated
 mineral concentration must be stated.  In order to compare mineral
 mass  fluxes measured at different mineral  concentrations  it is
 necessary to adjust them to a common  value of  the mineral co centration
According to Equation (28) this can be accomplished by:


                                      (gm/m*.s)

where Ck Ref is a reference mineral concentration, Fkj is the mineral
mass flux measured at the time when the cooling water mineral
concentration was Ck, and Fj*, is the mineral  mass flux adjusted to the
reference mineral concentration.  Other mineral mass emission parameters,
e.g. the mineral mass concentration, (|>kj, the mineral mass emission,
Amy, and the total  mineral mass emission, mi,, can likewise be
adjusted:
                                  35

-------
                       =  *kj   CkRef/Ck
                                 CkRef/Ck        (gm/s)
                   mjj  =  i amj|.j        (gm/s)                     (32)
The mineral mass emission fraction, Equation (25) can be rewritten
as:
       mk  scw
Hk  =  n r       X  100%
 K     K Lk Ref


                      r      ck Ref                   i
                  scw i Amkj   Ck                 scw j   *j  *
               =  	^	  x  100%  =	  x  100%
                  '   R Ck Ref                          R
                                                                   (33)


Thus the mineral mass emission fraction is not an adjusted value,
even though the adjusted total mineral mass emission and the reference
mineral concentration are used in the numerator and denominator,
respectively.  Equation (33) follows, for variable Ck, directly from
Equation (26).

At Turkey Point the sodium and magnesium concentration in the cooling
water fluctuated in the order of + 20 to 30% of the average value
during the entire period of drift testing.  Therefore, all mineral
mass emission parameters were adjusted to reference sodium and
magnesium concentrations as shown in Section VII.

With regard to the accuracy of the heated glass bead isokinetic
sampling tubes, Shofner, et. al.9, concluded from experimental
results that if isokinetic conditions are maintained within +15% for
air speed and +15° angle of attack  (angle between tube centerline and
air  flow vectoT), the  error will be within +15% of  the value of  the
 IK  tube which operated under  isokinetic conditions.  Air  speeds  which
fluctuate  about an average  should have a compensating  effect on  the
                                  36

-------
 measured parameters  according  to the  following  one-dimensional  fluid
 mechanics considerations.   If  the sampling  speed  is  greater than  the
 local  air speed as  illustrated in Figure  3a,  the  cross-sectional  area
 of the streamtube, which envelopes the  sampled  air,  is  larger  in  the
 upstream direction than  it  would be under isokinetic sampling  conditions.
 Consequently,  the streamlines  are curved  and  droplets,  especially larger
 ones,  may cross the  streamlines  and leave the streamtube  due to their
 inertia,  whereas smaller droplets tend  to remain  within it.  Compared
 to isokinetic  sampling, this results  in a larger  drift  and  mineral mass
 flux due to  the presence of predominantly smaller droplets  in the
 additionally sampled volume of air.   However, the drift mass concen-
 tration  (mass  of drift droplets  per unit  volume of air) is  smaller
 since  some of  the larger droplets leave the streamtube.   If the sampling
 speed  is  less  than the local air speed as shown in Figure 3b, the cross-
 sectional area  of the streamtube decreases  in the upstream  direction.
 Large  droplets  outside of the  streamtube  may  cross the streamlines and
 enter  the streamtube, whereas  smaller droplets outside of the streamtube
 tend to  follow  the streamlines and diverge  around the IK tube.  Compared
 to isokinetic  sampling, it  follows  that the drift mass concentration
 increases due  to the intrusion of some large  droplets into the stream-
 tube.  However,  the  drift and mineral mass  flux will decrease since
 the sampled  air volume is smaller than that acquired under isokinetic
 conditions as  is the number of smaller droplets sampled.

 In  tests wherein high mineral mass  emission fractions15, 16 (0.08 to
 0.12%, as compared to 0.0012%, which was the highest value
 measured  at  Turkey Point) were encountered such that it was deemed
 necessary to place two tubes in  series to sufficiently evaporate
 the droplets, collection efficiencies in excess of 90% were observed
 for the first tube.   When the drift water is not  completely captured
 and evaporated,  it can be seen leaving the IK tube and collecting
 on the walls of  the  glass connector between  the tube and the vacuum
 hose.  This was not  observed at Turkey Point, hence it was not
 necessary to use tubes in series.

 Comparison Between PILLS/SP and  IK Data

 The PILLS/SP techniques measure the droplet  size distribution from
which the drift mass concentration, Equation (4),  can be derived.
The IK technique measures the mineral  mass flux from which the  mineral
mass concentration,  which is mass of drift mineral residue per  unit
 volume of air,  can be derived,  as shown in Equation 22.   The mass
of drift water that  contains these mineral residues is_ obtained by
dividing the mass of drift  mineral residue by Cj
-------
                                          IK TUBE
                                          PATH
                                                DROPLET
STREAMTUBE
CONTAINING  VOLUME
OF AIR  SAMPLED
  STREAMTUBE UNDER
  ISOKINETIC
  CONDITIONS
          (a)  sampling speed  is greater than  local air speed
          (b)  sampling speed  is  less than the  local air speed
        FLOW
STREAMTUBE	
CONTAINING VOLUME
OF AIR SAMPLED
                                          IK TUBE
      PATH
      DROPLET
^STREAMTUBE UNDER
  ISOKINETIC
  CONDITIONS
          Figure 3.  Effects  of non-isokinetic sampling.
                              33

-------
 Thus,  the drift mass concentration (mass  of drift water per unit
 volume of air)  can be derived  from the mineral  mass concentration,
 Equation 22.  The respective equations for the  drift mass
 concentration as derived  from  PILLS/SP and IK measurements  are then
 as  follows:
                            TT  i    Q'"ij
            Xj  PILLS/SP   =   6  i   Adi  vs   Adi   di    Si    wm3)       (4)
                 X
                                       VUJ-
cw.
                  J  IK  =  Vs-rk/s    VpJ      9mm                (34)


The arguments that lead to the assumptions  ST =  scw and vpj = 7uj were
already  introduced in this section.  The first assumption can
readily  be extended, by the same argument as before, to ST = s = s
With these assumptions Equations (4) and (34) reduce to
         xj PILLS/SP  =  6 scw   ?  Ad,--Ve  Adi
                         Mkj ' MBk
                         Vs.Ck/scw                                  (36)
If all quantities that enter into these equations were known then both
drift mass concentrations should agree within the ranges of accuracy
of the measurements which were given before.  The only unknown quantity
in Equation (36) is Ck-  A natural assumption is that the average
mineral concentration of the drift equals the mineral concentration of
the cooling water:  C|< = C|< cw.  With this assumption, Equation (36)
becomes
                     IK     VCk cw/'cw       9mm                 07)
where X^    represents now, due to the assumption on the mineral
concentratron, a drift mass concentration associated with the IK
technique alone.
                                  39

-------
Historically, the results of IK measurements were often expressed in
terms of X- IK  which was then compared to X< piLLS/SP-  Such
comparisons yielded usually that the ratio of xj IK/Xj PIN s/SP 1S
larger than one.  For the Turkey Point cooling tower  data
this ratio is, in the average, about 3, and for the spray module data
it is about 18, with a range of 2.7 to 70.

The reason for this deviation of the ratio from unity is believed to
be primarily due to droplet evaporation which increases the droplet's
mineral concentration.  The assumption of C|<. = C|< cw would thus
result in too large a value for XJIK-  The increase in the droplet's
concentration depends on several parameters like droplet diameter,
kind of solute and its concentration in the droplet, the relative
humidity of the surrounding air, the residence time of the droplet
in the air, etc.  The following simple examples should demonstrate
the order of magnitude of possible droplet mineral concentration
increases.  The particular numerical values of the relative humidity
and salt concentrations that are used in the examples are not
intended to be representative for Turkey Point.


The mineral concentration is related to the droplet diameter by:


                            CE/Cj  =  (dj/dE)3                       (38)


where C is the droplet salt concentration, d is the droplet diameter
and the subscripts I and E represent the initial and the equilibrium
states, respectively.  The term "equilibrium" refers to the condition
that the droplet surface vapor pressure is equal to the vapor pressure
of the surrounding air, which implies that no further droplet
evaporation occurs.  If the relative humidity is 90% and the initial
salt concentration is 1500 ppm, then one can calculate the ratio of
equilibrium to initial concentration:


                               CE/C!  =  64                          (39)


From Equation  (38) follows dj/dE  =  4.  For GI  =  30,000 ppm and the
same relative  humidity


                       CE/C!  =  5 and dj/dE  =  1.7                 (40)
                                  40

-------
These are the concentration increases for 90% relative humidity.  They
are larger for lower relative humidities.

Since the rate of evaporation depends on the droplet diameter such
that smaller droplets evaporate faster than larger ones, the
smaller droplets will usually reach higher concentration ratios than
the larger droplets.  The Marley Company17 conducted some preliminary
calculations for a mechanical draft cooling tower which indicate that
drift droplets smaller than about 50 ym in diameter could possibly have
increased mineral concentrations whereas those larger than 50 ym have
about the same mineral concentration as the cooling water.  Of course,
the final mineral concentration of a drift droplet depends primarily
on the size of each individual droplet and on the relative humidities
it encounters during the period of time of its trajectory from the
fill section to the exit area of the fan stack.  Thus the number of
50 urn is quoted here in order to roughly quantify the "small"
droplets whose concentration may be increased by evaporation, and
the "large" droplets whose concentration remains more or less unchanged.

If the mass fraction of the small droplets in the drift emission
increases, the average mineral concentration, C^, should also
increase.  As a consequence, the ratio Xj JK/XJ PILLS/SP would
likewise increase.  There are other possible reasons that may
contribute to the deviation of the ratio from unity.  The most im-
portant is that additional minerals from atmospheric particulate
pollution may not be scrubbed out entirely in the cooling tower and
reach therefore the IK tube.  Both arguments, the increased droplet
mineral concentration and the insufficient removal of particulate
pollution, apply especially to drift measurements on spray modules.
If the test equipment is located at some distance downwind from the
modules the drift droplets travel through either ambient air or
a plume whose relative humidity has already been reduced by entrained
air.  Thus it is expected that all droplets reach, in general,
higher concentrations than they would in a cooling tower.

In summary, drift parameters which are calculated from mineral mass
emission data with the assumption that the drift droplet mineral
concentration is the same as that of the basin water  are larger
than the drift parameters obtained from droplet size data.  The main
reason for this is believed to be the increase of the average
mineral concentration of the drift over the mineral  concentration of
the cooling water, caused by evaporation.  Small  droplets, probably
smaller than 50 ym in diameter, are believed to contribute primarily
to this increase in mineral concentration.  Consequently, the use of
this assumption for obtaining drift values from mineral  mass emission
measurements is a somewhat dubious proposition.  A method for
measuring individual drift droplet concentration or a different
                                  41

-------
set of assumptions is needed before the PILLS/SP and the IK data can
be compared.

As a consequence, the data which were obtained by the PILLS/SP
techniques and by the IK technique are not consolidated.  Whereas
the PILLS/SP technique yields data on the liquid drift emission
(droplet size, drift water emission, etc.), the IK technique yields
data on the drift mineral emission.

OTHER SUPPORT EQUIPMENT FOR DRIFT MEASUREMENTS

A Gill propeller anemometer Model 27100 was used to measure air speed
both on the tower and on the barge.  Due to its cosine response, it
measures the velocity component parallel to its axis of rotation.
This anemometer was used successfully in other mechanical draft cooling
tower tests conducted by ESC.  During the Turkey Point winter test,
however, the four blade molded polystyrene propellers (9" diameter)
disintegrated during operation at a disturbingly high rate although
the highest speed they encountered was only half of their maximum
rated speed.  The dynamic loading on the blades caused by the
rapid updraft velocity changes is believed to be the cause of the
frequent blade failures.  During the summer test a much stronger
experimental three blade propeller (designated "ABS") was used
successfully with no breakage.  The Gill anemometer provides a voltage
output that is negative or positive depending on the direction of
blade rotation.  The voltmeter that was generally used as output
displayed only positive voltages.  For this reason, negative voltages
and thus negative updraft velocities were not measured and are
therefore not shown in the updraft velocity profiles in the data
section.  The same holds for the velocity distribution data since the
PHA does not accept negative voltages.

A modified Yellow Springs electronic psychrometer, Model 3314, was'
mounted on the instrument package to provide dry bulb temperature and
wet bulb depression.  Measuring wet bulb and/or dry bulb temperatures
in cooling tower environments is a nontrivial task.  Due to the
presence of liquid water, the dry bulb is usually wet.   Initially
botF) the dry bulb and the wet bulb sensors were used in the cooling
tower exit plane, but since a depression was never detected, the
water supply to the wet bulb sensor was discontinued.   On the barge,
however, the psychrometer was used with a dry bulb and  wet bulb
sensor, and wet bulb depressions of up to 7°C were observed.
                                  42

-------
 A Weather Measure  wind  vane,  Model  No.  W120-D, was  installed  on  the
 barge  in  order  to  give  an  indication  of the  percentage  of  run time
 the  wind  came from the  direction  of the spray modules.   To obtain
 this data, the  output voltage of  the  vane was fed  into  the pulse
 height analyzer.

 AIRBORNE  PARTICLE  SAMPLER  AND DEPOSITION SAMPLER

 The  most  conventionally used  parameters for  expressing  atmospheric
 salt loadings are  the near-ground level  air  salt concentration,
 * (ug/m3), and  the near-ground level  deposition flux, dp (kg/km2'mo).
 "Near-ground level"  refers to the fact  that  the collectors were not
 located at ground  level  but at a  specified height  above  grade.  This
 minimizes  contamination from  sources  like plants and animals.  At
 Turkey Point, where  both the  air  salt concentration and  the  air salt
 deposition flux were measured,  the  salt concentration sampler and
 the  deposition  sampler  were located approximately  3.4 m  and  3.8 m
 above  grade, respectively.

 Of those  instruments which can  be employed to  measure the  near-
 ground level air salt concentration,  the one  used  at Turkey  Point
 was  the Airborne Particle  Sampler (APS).  The  APS.which  employs the
 principle  of inertial impaction as  the  collection  mechanism,was
 designed  to measure jnrborne  sea salt concentrations independent of
 wind speed, wind direction or  relative  humidities  typical for coastal
 regions.   "Coastal region" implies  here that  the relative humidity is
 typically  higher than approximately 40%.  For  relative humidities
 much below this figure, salt  particles  could evaporate to dry crystals18
 which  may  impair the APS collection efficiency.

 Figure 4 shows an  operating APS head of a station  at Turkey  Point.  The
 sampling head is bearing-mounted and rotates due to its wind vane
 such that  the axis of rotation of the motor shaft  is parallel to the
 wind direction.   This minimizes the effects of wind speed or direction
 on the sampling rate and collection efficiency of  the collector.
 On the upwind side of the motor is the mesh support with a  pair of
 woven  polyester meshes as collection elements.  This material has
 been proven in field experiments to possess good mechanical and
 chemical properties (low sodium background, for example) and  is
 easily handled in  the field.   A rotation counter,  visible between the
 mesh supports and  the motor,  permits accurate measurement of  the total
 number of  revolutions made during the  testing period.   This insures
 accurate calculation of the sampled air volume.  On the downwind side
 of the motor is  a  small  fan which moves unsampled  air past  the  meshes
 even under calm wind conditions.

Although an APS  unit samples  about 90  m3 of air per hour, the power
 consumption of about 24 W is  sufficiently small to allow 10 to  12

                                  43

-------
Figure 4.  Airborne Particle Sampler head of one of the Turkey Point
           stations.  David Rutherford, ESC Field Engineer, checks
           the unit's RPM.
                                  44

-------
 hours of operation with two standard automotive batteries (the run times
 at Turkey Point were usually between 1 to 4 hours).   This is an
 important feature which facilitates field operations.   If a 110 V AC
 power supply is available,  the APS unit can also be  operated from it.
 Reference 19 describes  the  theoretical foundation,  including
 collection efficiency,  and  the operational  features  of the APS
 system in more detail.

 High  volume samplers with comparable air flow rates, which are also
 used  for salt concentration measurements, consume an order of
 magnitude more power than an APS  unit and have to be either operated
 from  a motor generator  or from standard 110 V power  supplies.   More-
 over, the mounting and  removal  of the filter papers  is a  more involved
 task  than that of the meshes due  to the greater size of the filter
 papers.   Contamination  of the filter papers is therefore  more likely.
 Also, for the same data quality,  the analysis of filter papers is
 twice as costly as the  analysis of meshes.   For these  reasons  the
 APS system was selected for the Turkey Point salt concentration
 measurements.

 At  Turkey Point the APS units  measured as a basic parameter the  air
 sodium concentration, <|>Ma:


                        MNa  "  MB Na
                Na  =        V           (ug/m3)
where MNa is the mass of sodium stripped from the mesh pair, MB Na
is the average procedural background of the mesh pair and Vs is the
sampled air volume.  For every day of operation of the APS units,
one procedural background was obtained by the following procedure:
The two meshes which are shipped and stored as a pair in a 50 mm
(2") diameter petri dish, are removed from the petri dish and mounted
to the mesh supports of the APS head.  Immediately after mounting they
are both removed from the head and transferred back into the petri
dish and, after shipping to the laboratory, analyzed for sodium.
Thus, the procedural background reflects the sodium background of the
mesh pair plus additional sodium contamination that occurs during the
handling of the meshes before and after the sampling process.  An
average of these procedural backgrounds is entered into Equation (41)
as MB Na.  For Turkey Point, this average value varied between 2.7
and 8.5 ug per mesii pair.

The salt concentration is obtained from the sodium concentration by
multiplication with 3.267.   This factor is the inverse of the sodium
                                  45

-------
mass fraction of the total dissolved solids in sea water published in
Table B-2 of Reference 20.  This factor may vary in time and could
also depend on the source of the airborne sea salt.  For instance,
when the wind comes from the east, sources of airborne sea salt may be
the Atlantic Ocean, Biscayne Bay, and, if the wind is strong enough to
cause wave action on the cooling canal system, the cooling canals
themselves.  Since the factor is, however, used as a constant, the
so determined sea salt concentration is called "apparent salt
concentration."  Thus the working equation for the apparent salt
concentration is
*»lt  •  3.267  x  ""*   "B "*    («/.')
                                                                   (42)
The quality of the APS sampling procedure was insured by the following
steps:

     1.  One procedural mesh background sample was taken per day of
         operation and analyzed for sodium.   This background contains
         the mesh background which is addressed under 2, and the
         sodium contamination  due to handling of the meshes.   A
         complete list of the results of the chemical analyses of
         the Turkey Point procedural  mesh backgrounds is part of
         Appendix C.

     2.  After meshes were chemically analyzed and cleaned,  about 6%
         of them were resubmitted to the laboratory in order  to
         determine their sodium background.   Again, a complete list
         of the results of the chemical analyses of these meshes is
         part of Appendix C.

     3.  The motor rotations per minute were checked at the  start and
         end of each APS operation.  Reduced motor rotations per
         minute decrease the collection efficiency of the meshes19.

The cylindrical objects supported by the APS units shown in  Figure 6 are
deposition samplers.  They consist of a cylinder which is open at both
ends and which acts as a stilling chamber.  Inside the cylinder a poly-
ethylene funnel is mounted on which the salt particles deposit by
gravitational settling.  Procedurally, a deposition sampling run is
started by placing a cleaned funnel into the stilling chamber and securing
a cleaned polyethylene bottle to the funnel  neck.  At the end of a run,
the inside of the funnel is washed with distilled water that drains into
the bottle.  The amount of distilled water used for funnel cleaning was
in the range of 100 to 150 ml.  The bottle with the strip solution is


                                  46

-------
then separated from the funnel and shipped to the laboratory for
chemical analysis.

At Turkey Point, the run time for about 80% of the runs was
approximately 24 hours and for the remaining 20% either approximately
48 to 72 hours.  The longer run times occurred on weekends or over
holidays.
The deposition sampler measures the sodium deposition flux from
which, by multiplication with 3.267, the apparent sea salt flux
is derived:
                                MM- - MR M,

          dFsalt  =  3-267  *   A' • t°            m.mo          (43)
where ts is the sampling time and As is the sampler area which is
here the horizontally projected area of the funnel entrance.  Mp Na
is an average procedural sodium background which was determined
as follows.  At the end of a deposition run, after the polyethylene
bottle with the strip solution had been removed from the funnel, the
funnel was cleaned with distilled water and another bottle was
mounted to the funnel neck.  Then the inside of the funnel was washed
again with distilled water and the strip solution submitted for
chemical analysis.  The mass of sodium found in this strip solution
is attributable to the handling of the funnel  and bottle, to the
sodium contamination inside the bottle, and to the distilled water.
This procedure establishes, therefore, a procedural background.
At Turkey Point, the average procedural background was found to
be 5 pg.

INSTRUMENTATION SUMMARY

In summary, the measuring equipment used by ESC during the Turkey Point
test, as discussed previously in this section, consisted of:

     1.  a PILLS II-A system with pulse height analyzer from ESC,

     2.  two ESC sensitive paper (SP) machines,

     3.  a heated glass bead isokinetic (IK) sampling system from
         ESC,

     4.  a maximum of nine ESC Airborne Particle Sampling (APS) units
         with deposition samplers,


                                  47

-------
5.  a Gill propeller anemometer, Model 27100, from R. M. Young Co.,
6.  a Yellow Springs electronic psychrometer, Model 3314, and
7.  a Weather Measure wind vane, Model W120-D.
                             48

-------
                                SECTION V

                  METEOROLOGICAL DATA ACQUISITION SYSTEM


 A system for the continuous monitoring of ambient meteorological
 conditions in the vicinity of the cooling tower and spray modules
 was put into service early in February 1974.   This meteorological
 data acquisition system was originally installed to complement the
 intensive drift tests on the cooling tower and spray modules  during
 the months of February and March 1974 although it was used during
 later testing as well.

 The meteorological  tower was installed by ESC  approximately 50 m
 east of the cooling tower.   The distance  of 50 meters was  chosen  so
 that meteorological  instruments would be  near  enough to  the
 cooling devices to  measure local  ambient  conditions  but  far enough
 upwind  from the cooling  tower to insure that measurement of wind
 speed and direction would not be interfered  with.   A position
 east of the cooling  tower was chosen  because winds at Turkey  Point  were
 expected  to come predominately from  the east.   The wind  speed  anemometer
 and  the wind  direction vane  were  installed  at  the  top of the  10 m tower
 A mechanically-aspirated  psychrometer  which provided  dew point and
 dry  bulb  temperatures and  a  Yellow Springs  dew  point  sensor which
 provided  dew  point  and dry bulb  temperatures were mounted on the
 tower at  a  height of about 2  m.  A probe  for monitoring  the canal
 water temperature was attached  to the  power cable  leading to the
 spray modules.   Later, at  the  end of February,  1974,  a pyranometer  for
 measuring solar  radiation was  installed on the  roof of the switch house
 23 m  east of  the cooling tower.  The output signals from the monitoring
 devices were  routed to an eight track  strip chart recorder located  in
 the switch  house.  The readings for wind direction, wind speed,
 dry bulb temperature, dew point temperature, and solar radiation
were  recorded individually on separate channels of the recorder.
 Readings for wet and dry bulb temperatures from the psychrometer
and canal water temperature were fed through a scanner such that all
 three values were consecutively recorded over a set time interval
on a single recorder channel.  These values were also displayed on
a meter which was attached to the scanner.
                                  49

-------
All monitoring instruments were supplied by EPA with the
exception of the eight track strip chart recorder which was supplied
by ESC.  The equipment was operated daily during the winter test
(February and March 1974).  This practice was continued, although
not required, until June 22, 1974.  Monitoring of the meteorological
data was resumed during the summer test (July 19-24, 1974).

Each morning, after the instrumentation had warmed up, the calibration
of each recording channel was checked by means of the independent
meter displays and readjusted if necessary.  All pertinent information,
such as starting time, channel sensitivities, and scales, were
written on the charts.  The three temperature sensors for dry and
wet bulb temperature  (both part of the psychrometer) and canal water
temperature were fed  into a scanner, as mentioned above, and
consecutively recorded on one channel of the strip chart recorder.
The signal  conditioner electronics were part of the scanner, i.e. one
signal conditioner served all three temperature sensors.  This caused
a problem since only  one sensor signal could be calibrated correctly
and a decision was made to calibrate the wet bulb temperature
sensor.  The canal water temperature showed subsequently the largest
discrepancy between recorded and actual value as determined with a
mercury-in-glass thermometer with a graduation of 1/10°C.  For this
reason the canal water temperature was often measured with such a
thermometer.  During  the cooling tower test, for instance, the water
temperature in one of the hnt water basins, which equals the tem-
perature of the canal water, was measured for each drift measurement
position.

Even though the wet bulb temperature was calibrated with an accuracy
of about +0.2°C, the  calibration was not stable.  As a result the
recorded values of all temperature sensors showed a deviation of
0.5° to 2.5°C from the actual values, and the recorded values were
consistently larger than the actual ones.

Another difficulty was encountered with the wind speed anemometer
whose readout operated only sporadically.  Yet, frequent checks and
services made it possible to obtain usable data.  The dew point
sensor became operational only toward the end of March 1974.  However,
intermittent loss of  power on site made the use of this sensor
cumbersome since its  probe required baking for a half-hour period
after each power interruption.  Once, on March 27, the relative
humidity, as determined from dry bulb and dew point temperatures,
was compared to the relative humidity determined from dry bulb and
wet bulb temperatures.  The agreement was better than 2% at a
relative humidity of  about 74%.
                                  50

-------
Additionally, difficulties were encountered when the meteorological
equipment was restarted for the summer test in July.  The mechanically-
aspirated psychrometer was inoperable due to heavy corrosion of the
motor coil and fan blade shaft.  However, the entire motor assembly
was removed and the wind provided henceforth the aspiration of the
wet bulb sensor wick.  The wind direction sensor appeared to be
operating well mechanically, but some problem in the electrical
output was encountered and could not be corrected in the field.
Similar problems with the canal water temperature probe were observed
and its use was discontinued.  In addition, one of the radiation
shields of the dew point sensor was broken during the interim period
between the winter and the summer tests.

Florida Power and Light Company routinely acquires meteorological
data from instruments located at the power plant.  These data include
wind speed and direction at two vertical levels, ambient temperature
at two vertical levels, barometric pressure, relative humidity and
rainfall.  FP&L has agreed to the release of these data which are  now
available upon request from the Technical Information Section,
National Environmental Research Center, Control  Systems Laboratory,
Research Triangle Park, North Carolina 27711.

The data obtained at the 10 m meteorological tower were transcribed
from the strip charts to tables by EPA, Research Triangle Park.
However, these data still  have to be checked,  which is especially
important in light of all  the instrument problems encountered.
They may be available upon request at a later  time.
                                  51

-------
                               SECTION VI

           SAMPLING OF AIRBORNE SEA SALT FROM COOLING DEVICE

                 SOURCES AND IN THE AMBIENT ATMOSPHERE
In order to evaluate the environmental  acceptability of a proposed
evaporative salt water cooling device with respect to salt drift,
one of the present approaches is as follows21.   Drift emission
characteristics and meteorological data are substituted into one of
the presently available drift transport models  to predict the quantity
of salt drift mineral residue downwind of the cooling device.  These
source contributions are then compared to measured ambient salt
loadings in order to determine whether the predicted cooling device
contributions increase significantly the airborne salt levels in
the environment of the cooling device.   The quantification of
"significant", which is addressed in Reference  22, and the acquisition
of ambient salt level data are the two areas of primary importance
in this approach.

Contrary to this approach, the objectives of this study were to
measure both the ambient salt loadings and the  contributions of
each of the cooling devices to the ambient salt loadings.  In particular,
the objectives were to obtain:

     1.  measurements of the ambient airborne sea salt levels at the
         Turkey Point site.  A statistical analysis of these data,
         which is extraneous to this contract,  should determine,
         for example, whether an inland gradient in the ambient sea
         salt levels exists, and what the average seasonal salt levels
         and ranges of fluctuations are;

     2.  simultaneous measurements of airborne sea salt levels upwind
         and downwind of each of the cooling devices.  Statistical
         analysis of these data,which again is  outside the scope of
         this contract, should determine the extent of the
         contributions to the airborne sea salt level from the
         cooling devices.
                                  52

-------
 Previous experience gained at other ambient salt monitoring programs,
 for instance at Forked River and Atlantic City,  both in New Jersey,
 indicated that airborne salt concentration and deposition flux levels
 exhibit order of magnitude variations with respect to wind speed,
 direction, and other meteorological  parameters.   Seasonal  effects  may
 also influence the airborne salt levels,  and the degree of influence
 may also depend on the latitude  of the site.   Thus,  in order to obtain
 ambient base line data for environmental  acceptability studies, an
 ambient monitoring program must  be established and operated over an
 extended period of time such as  a year or longer.

 The atmospheric salt monitoring  program at the Turkey Point site can
 be  conveniently broken down into two sections:

      1.   ambient measurements, and
      2.   exploratory measurements of the  source  contributions  from the
          cooling devices.

 AMBIENT  AIRBORNE SEA SALT  MEASUREMENTS

 The ambient  airborne salt  monitoring program was started on August  24,
 1973, with samplers  located at stations 1  through  6  (see Figure  5).
 Each station was equipped  with an Airborne  Particle  Sampler for  	
 airborne sea salt concentration  measurements,  and  a  deposition  sampler
 for sea  salt deposition  flux measurements.  The  stations were arranged
 approximately  along  an east-west line  for  two  reasons:

      1.   One of the  goals  was to determine whether a measurable  gradient
          in  the airborne salt concentration exists between the shore
          and inland.  Since the  shore  line of  Biscayne Bay runs
          approximately north-south at  the test site and in its    "
          vicinity, an east-west  array  of sampler stations was
          desireable.  The  fact that  the prevailing wind direction
          at  the  site  is from the  east  is a fortunate coincidence.

     2.   Accessibility is  a serious  problem at the Turkey Point site
          and the  road along the  feeder canal which extends in an
          east-west direction provides access to convenient station
          locations.   In order to  be able to situate stations north
          or  south of the cooling  tower site the cooling canal
          system or the swamp has  to be penetrated.

Ambient salt concentration data that were  acquired at Forked River,
New Jersey,  for the General Public Utilities,23 show, for onshore
winds, the existence of a large inland gradient:   within 50 meters  of
the shoreline of the Atlantic Ocean the average sea salt concentration
                                 53

-------

1

m
IT








i
(
\
i
	 vM'
410 1




1
1
•> ^
Y- s
ft
1 ex
                                      •N
                         COOLING  TOWER  SITE
                         (under construction)
Figure 5.  APS station locations  for monitoring ambient
           air salt loadings.  August 1973 - January
           1974.  Distances  in meters.
                              54

-------
 is about 25 pg/m3  and  it decreases  rapidly to about 5 yg/m3  at a
 distance in excess of  35 km from the  shore.   A limited examination
 of the Turkey Point ambient salt concentration data did not  reveal
 the existence of an inland  gradient,  but a final  conclusion  on this
 is reserved for the data analysis which  is currently being conducted
 by the Adapt Service Corporation as mentioned in  Section I.   The
 absence of a large inland gradient, however,  indicates that  the
 Turkey Point site, although it  is located on  the  shore of Biscayne
 Bay,  may actually  be an  inland  site.   This is supported by the fact
 that  Key Elliott is located about 11  km  offshore  and that the
 primary salt particle  generation may  take place at  the ocean  surface
 off Key Elliott.   However,  it was observed that onshore winds in
 excess of 14 to 18 km/hr generate white  caps  on Biscayne Bay.   Under
 this  condition  the bay may  be a  sufficiently  strong source of sea salt
 particles to cause an  inland gradient of the  ambient sea salt
 concentration at the Turkey Point site.

 Stations 1  and  2,  which  are shown in  Figure 6, were located about 15
 meters from the shore  of Biscayne Bay and  within  4  meters of  each other.
 These two stations were  used for precision runs,  i.e.,  simultaneous
 runs  were conducted to allow unambiguous  comparison of the results.
 A  "Precision Run Error"  was defined for  this  purpose:


       Precision  Run  Error   =  fl  -  Caller value]
                              I    ^larger value  J
   i
 Between  8/25  and 12/6/73 a  total  of 65 precision  runs were obtained
 which  yielded an average precision run error or 7%  and a standard
 deviation of  the precision  run error  of about 11%.   It should be
 noted  that  the  two APS stations were  the same in design and differed
 from  each other only within the manufacturing tolerances.  The
 stations were also operated in the same way as the other stations;
 they  did  not  receive any preferential  or additional  attention.  The
 data  acquired by the two stations do  not show any apparent bias,
 i.e.,  the larger of the ^-values was acquired randomly by one of the
 two machines.  However, only the detailed data analysis which is
 currently conducted by the Adapt Service Corporation will answer this
 point  conclusively.

 Precision runs were also performed with the deposition samplers
which are the cylindrical objects attached to the  APS stations shown
 in Figure 6.  Forty precision runs were conducted  which yielded
an average precision run error of 23%  and a standard deviation of  error
of about 20%.  The  "Precision Run Error"  is defined  as in Equation (44)
 substituting the salt deposition flux  df for the air salt concentration,
                                  55

-------
Figure 6.   Airborne Particle Sampler stations #1 and #2 at the
           Turkey Point site.   These stations were used for the
           precision run experiment.  The body of water is part of
           Biscayne Bay.
                                  56

-------
 When  the ambient salt sampling program started on August 24,  1973,
 and during the following two month period, heavy trucks and loading
 equipment were operated at a distance of about 1200 m southeast of the
 cooling tower.  At that location coral rock from huge 10 m high piles
 was loaded on trucks and hauled away.  The loading operation  and
 maneuvering of the trucks caused dust and the possibility existed
 that  the dust would contaminate the APS meshes and deposition samplers.
 A project was therefore initiated with the objective to determine
 the mass fraction of the sodium collected by the APS meshes that was
 attributable to dust contamination.  Chemical analyses of an ocean
 water sample and two dust samples, one collected from the coral rock
 piles and the other from the road bed, yielded aluminum and silicon
 as suitable dust tracer elements.  Furthermore, the sodium availability
 from  the dust samples, i.e., mass of sodium per unit mass of dust,
 was determined by subjecting a known mass of dust to the mesh washing
 process.  Subsequently 5 meshes exposed at stations 1 to 5 on August
 25, 1973, Run #3, during southeasterly winds, were analyzed for
 sodium as usual and, additionally, for both tracer elements.   The
 largest dust contamination, 10 ug, was found on the mesh pair of
 station 3 which was downwind of the loading area on that day.   The
 meshes of station 4 which is located 400 m west of station 3 received
 only  0.3 ug of dust, and all other mesh pairs less than 0.1 ug.  A
 maximum sodium contribution from dust was then calculated by means
 of the sodium availability mentioned above.  Even for station  3, whose
 meshes collected 10 ug of dust, the mass of sodium attributable to
 dust  was only 0.02 ug or 0.003% of the collected mass of sodium.  It
 was therefore concluded that the effect of dust on the ambient sea
 salt  concentration measurements was negligible.   The results  of the
 chemical analyses conducted for this project are part of a brief
 report submitted by Stewart Laboratories, Inc.,  which is contained
 in Appendix I.

 The cooling tower was under construction during  the entire ambient
 sea salt sampling program.   The cold water collection basin and thus
 the necessary excavations for its construction were already completed
 before the start of the program.   Until  November 1973 the tower was
 assembled from prefabricated parts, and  this activity was without
 any noticeable dust generation.  However, it should be kept in mind
during the data analysis that especially stations4 and 3 which were
 located 160 m west and 240  m east of the tower may have  been,  at times,
 subjected to dust.

 SEA SALT MEASUREMENTS DURING COOLING DEVICE OPERATION

After the spray modules were installed into the  cooling  canal  system
 in December and the cooling tower was completed  in January, airborne
 sea salt measurement during cooling device operations could be


                                  57

-------
initiated.  The array of sampling stations was rearranged in order
to increase the probability of obtaining simultaneously airborne
sea salt level data upwind and downwind of the operating cooling
device.  Station 1 was moved to station 11 and station 2 to station 7.
Three additional sampling stations were located at stations 8, 9, and
10, increasing the total number of APS and deposition samplers
from 6 to 9.  Figure 7 shows the location of stations 3 to 9
relative to the cooling tower.  Station 11 was mounted on a barge
such that its position with respect to the cooling devices could be
easily changed within the limits of the cooling canal system.
However, such need did not arise and the barge was anchored on the
north shore of the feeder canal half way between stations 4 and 5
where it remained for the entire sampling program.

Due to the scarcity of accessible station locations at the Turkey
Point site, the total number of available stations, and the fact that
winds out of the eastern quadrant have the highest frequency of
occurrence, this new array of station locations was considered optimal.

Airborne sea salt measurements during the operation of one of the
cooling devices were initiated on January 31, 1974.  Until the end of
the winter test, March 31, the operation of the cooling devices was
governed by the drift test requirements.  After March 31 it was
planned to operate henceforth one cooling device 24 hours a day for a
week, then the other one for the same period of time, and so forth,
in this alternating fashion.  The implementation of this plan required
shielding the transformer from the spray modules' salt drift.  The
transformer which provided power for both cooling devices was located
24 m north of the nearest spray module.  When the wind came from the
south, the transformer was in the drift plume of the spray modules.
Under such conditions it shorted out twice as noted in the operational
log of the cooling devices, Appendix B.  After a protective shield
had been constructed on April 17, such problems were no longer
encountered.  Subsequently each cooling device was operated continuously
for a week every other week, and airborne salt measurements were
obtained at an average weekly rate of six runs, i.e. quasi-simultaneous
operations of all sampler stations.

MEASUREMENT PROCEDURE

One run consisted usually of the quasi-simultaneous operation of all
sampler stations, and the acquisition of meteorological and quality
control data.  The term "quasi-simultaneous" expresses the fact that
simultaneous station operation is only approached as much as possible
under the constraint of a sequential station set-up procedure.  Thus,
all stations were set up one after the other and later taken down in
                                  58

-------
                                       •N
                     •SPRAY  MODULES

                      COOLING  TOWER
Figure 7.   APS station locations for monitoring ambient
           air salt loadings and salt contributions from
           cooling device sources.   January  1974 - July
           1974.  Distances in meters.
                             59

-------
the same sequence.  The meteorological data consisted of wind speed,
wind direction, dry bulb and wet bulb temperature, and were acquired at
each station at the start and end of its operation.  For each run
the quality control data consisted, for the APS units, of one
procedural mesh background sample, and for the deposition samplers
of one procedural funnel background sample and a distilled water
sample.

The procedure of operating a station which was the same for all
stations was as follows.  Sequentially, the deposition sampler was
always set up first.  In order to obtain the sample the inside
surface of the funnel was rinsed with about 100-150 ml of distilled
water which was collected by a sample bottle at the funnel neck.  The
deposition sampler was then set up for the next sampling period which
usually lasted for about 24 hours.  The next step was to set up the
Airborne Particle Sampler.  First, two battery boxes, each containing
one standard 12 V automotive battery, were placed next to the APS
tower.  Then the APS head, which belonged to the particular station, was
placed on the APS tower.  During non-operation all APS heads were
stored in the van to keep them clean and in good operational condition.
Next, the sampling arm  which supported one sample mesh on each end was
cleaned with distilled water, and the meshes were removed from the
petri  dish container and mounted to the arm by means of a cleaned
pair of tweezers.  The sampling arm was then mounted to the motor
shaft of the APS head.  After the revolution counter reading had been
recorded, sampling was initiated and the revolutions per minute of
the motor shaft were measured and also recorded.  This concluded the
set up procedure of the APS unit.  The next step was the acquisition
of the meteorological data.  The wind direction was read directly
from the position of the sampling head that weather-vanes around its
vertical axis.  The wind speed was measured for usually one minute
by means of an accumulative vane anemometer.  Dry bulb and wet bulb
temperatures were determined with a sling psychrometer.  This
completed the set up procedure of one station.  The shut down
procedure which took place one to four hours later consisted of
measuring and recording the revolution counter reading, removing the
meshes from the sampling arm and placing them back into the petri
dish container, removing the APS head and placing it into the
storage rack in the van, and collecting the two battery boxes.  Then
the same meteorological data as described before were gathered.  This
concluded the shut down procedure.

QUALITY CONTROL DATA

The procedural and funnel background samples were taken once per day
at one of the stations, during source contribution measurements
usually at an upwind station.  All procedural mesh background data


                                  60

-------
are listed in Appendix C-2.  Averaged values which were between 2.7 and
8.5 yg were entered in Equation (41).  As stated before, the procedural
mesh background reflects the sodium background of the mesh pair and the
additional sodium contamination that occurs during the handling of
the meshes before and after the sampling process.

The sodium background of meshes, (called "mesh background" or, by
Stewart Laboratories, "blank") was determined from time to time by
resubmitting meshes for analysis which just had been analyzed and
cleaned.  The mesh background represents the sodium content of a mesh
pair in an unopened petri dish.  These values are listed in Aooendix
C-3.  One to two ug was judged as an acceptable mesh background value
for the Turkey Point sampling program.  Since larger values were
encountered in October 1973, steps were taken to rectify the problem.
The petri dishes of the meshes were exchanged for new ones, and the
meshes were more carefully stripped and cleaned.  Later, in mid-April,
Stewart Laboratories started to use an ultrasonic cleaner which
eliminated the problem.  Appendix C-3 contains a letter report of
Stewart Laboratories which states results of mesh cleaning with the
ultrasonic cleaner.

FORMATS FOR DATA PRESENTATION

The data are presented in two appendices.  Appendix C contains all air
salt concentration data including the procedural background and mesh
background data and Appendix D all  salt deposition flux data.
Appendix B contains the cooling tower and spray modules operations
log which lists the date and times of cooling device operations.

Definition of column headings and other pertinent data contained  in
the APS section (Appendix C) is as follows:

     ST # - identification of APS sampling station location

     PHI  - apparent atmospheric sea salt concentration, ug/m3

     C    - comment code:

            0 - good run

            1 - sample caught in light rain,  but it is still considered
                useful.   This code  reflects  the opinion of the
                operator that the mesh pair  was subject to drizzle for
                a  few, e.g.  2,  minutes,  or to rain for a brief period
                of time, e.g.  30 seconds or  less.   The operator
                expresses with  this comment  code his  opinion that  the
                rain or drizzle did not  effect the amount of sea  salt
                collected on the mesh pair.

                                 61

-------
            2 - sample caught in heavy rain;  results  are questionable.
                The operator expresses with this  code his opinion that
                the rain did effect the amount of sea salt collected
                on the mesh pair.

            3 - possible contamination due to insects that were  caught
                on the mesh pair.   The operator sees  insects  or  the
                remnants of insects on the mesh pair  at the end  of a
                run.   If he is able to remove some or all of  this
                contamination with a pair of cleaned  tweezers he
                will  do this, but this comment code will be assigned
                to the mesh pair anyway.

            4 - possible contamination from dust.   This code  is  assigned
                to the mesh pair if dust or sources of dust are
                observed by the operator in the vicinity of the
                sampler location.

            5 - other comments or a combination of the coded  comments.
                This comment code will be supplemented with a written
                footnote below the run.

            9 - whitecaps on the bay.  This characterizes the state of
                the surf on Biscayne Bay as determined from
                observations at stations 1 and 2.   This generally
                corresponds to winds in excess of about 18 km/hr
                from an easterly direction.

It should be noted that all comment codes, with the exception of 3, are
based on the subjective observations and judgement of the operator.

     VOLUME - volume of air sampled by the mesh-pair  during the  run,  m3

     NET SODIUM - total sodium as verified by chemical analysis  minus
            average procedural background for the mesh-pair,  yg   of
            sodium

     TIME - time of day at the start and end of a run (Note:   daylight
            sampling only)

     WINDSPEED - average wind speed measured for one  minute at the
            start and end of a run, km/hr

     WIND DIR. - direction from which the wind is blowing at  the
            start and end of a run, represented by integers from 1
            to 16 corresponding to a 16-point wind rose with  1 as
            north, 5 as east, 9 as south, and 13 as west
                                  62

-------
     DRY BULB TEMP & DIFF - dry bulb temperature and the difference
            between the dry bulb and wet bulb temperatures measured
            at the start and end of a run, °C

            EXAMPLE:  31.1 & 3.3/30.0 & 1.7 means:

                  Dry bulb temperature at start = 31.TC

                  Wet bulb temperature at start = 31.1-3.3 = 27.8°C

                  Dry bulb temperature at end   = 30.0°C

                  Wet bulb temperature at end   = 30.0-1.7 = 28.3°C

     RELAT HUMID - relative humidity at the start and end of a run, %

     COOLING DEVICE CODE -

            0 - no cooling device operating

            1 - cooling tower operating

            2 - spray modules operating

Station numbers as listed in the first column will be numbered 1
through 6 for all runs through January 11, 1974 and 3 through 11 for
all runs thereafter because of relocations and the addition of new
sampling stations, as mentioned before.   This information, as well
as weekly sampling frequency, is included in Appendix A, Chronology
of Events.

In examining the data in Appendix C it will  be noted that sometimes the
meteorological data (wind speed, wind direction, dry bulb temperature
and depression) are missing at the end of a run for all  or some of the
stations.  The reason was always that the operator expected immediate
rainfall and terminated the run.  In order to collect the mesh-pair
of each station as quickly as possible,  the meteorological data
collection  was omitted.   These data are,  however,  obtainable from
FP & L's meteorological  data summaries (see Section V).

The remark  "Low RPM" indicated that the  motor rotation per minute was
lower than  design (1200 rpm) which, at Turkey Point, was always due
to low battery voltage.   It implies that  the mesh  speed, i.e.,  the
impaction speed of the salt particles, is reduced  which  causes  a
decrease in the mesh collection efficiency.   For a known sea salt
                                  63

-------
particle mass distribution, the change of the collection efficiency
can be estimated.

Definitions of column headings and other pertinent data contained in
the deposition section (Appendix D) is as follows:

     ST # - identification of deposition sampling station locations
            (concurs with APS location)

     DEP  - apparent sea salt deposition flux, kg/km2'month

     C    - comment code:

            0-5 - same as listed already for the APS data except for
                  following additions:

            6   - possible contamination due to the presence of a tree
                  frog in the funnel  or bottle

            7   - contamination from bird excrement in the funnel and
                  bottle

     NET SODIUM - total sodium as verified by the chemical analysis
            minus the average procedural background, yg of sodium

     TIME - time of day at the start and end of a run

As mentioned before, deposition samples are left out for a period of 24
hours or longer.  The time at the start of the run corresponds to the
beginning date listed beside the run number, and the end time corresponds
to the date of conclusion of the run.  Since these samples are left
out for such a long period of time, there is a much greater possibility
of sample contamination from rainwater, dust, bugs, etc., than with
the APS system.

Both Appendices C and D contain runs with less than the full number of
stations.  The most common reasons for not operating all the
stations were:
                                                      f
     1. Impending rain forced premature termination of those sampling
        stations already set up and prevented the set up of the full
        sampling system.

     2. Sampling equipment was being repaired.

     3. The operator had to take care of business related to the
        sampling program and did not have enough time to set up the
        entire system.

                                   64

-------
                              SECTION VII

                          DRIFT EMISSION TEST
This chapter describes the drift characterization tests completed
on the cooling tower and spray modules during the winter and summer
of 1974.  The test set-up and procedure are described for each
cooling device along with an explanation of the data format and the
presentation of some summary data.  Moreover, a composite drift mass
density distribution for the tower is given, which was calculated
along the lines described in Section IV.

Drift emission tests were conducted in two field campaigns.  During the
winter test, data were acquired on both the cooling tower and the
spray modules.  During the summer test, however, measurements were
made only on the cooling tower.  Chronologically, cooling tower drift
tests were intended to be conducted first after the ESC crew arrived
at Turkey Point on January 21, 1974.  It was also planned that an
EPA crew would conduct concurrent measurements in the vapor plume by
means of a radiosonde suspended from a tethered balloon.  After ESC's
instrumentation was installed into the cooling tower and the first
exploratory tests were initiated, the circulating water pump mal-
functioned and had to be disassembled for repairs.  Since a delay
of about a week was predicted, the cooling tower test, and the
EPA vapor plume test, were rescheduled for the last week of February.
The instrumentation was then shifted to the barge and spray module drift
measurements were conducted until February 19, when the equipment
was shifted back to the cooling tower in preparation for the con-
current tests with the EPA field crew.  These tests were completed on
February 26, and ESC finished the cooling tower test on March 15.
For information regarding the results of EPA's vapor plume measure-
ments, contact Bruce Tichenor, Thermal  Pollution Branch, National
Environmental Research Center, Corvallis, Oregon 97330.   The
equipment was subsequently again installed into the barge and the
spray module test completed on March 21, 1974.  The summer test,
which consisted only of cooling tower drift measurements, was
conducted between July 19 and 24, 1974.
                                  65

-------
The following main parts of this section describe the cooling tower
tests, both winter and summer, and the spray module test.

COOLING TOWER MEASUREMENTS

Measurement Set-Up

For the cooling tower test, measurements were made along the NW-SE
and SW-NE diameters in the exit plane of the fan stack.  A
schematic top view of the tower, illustrating these diameters is
shown in Figure 24, Appendix E.  The instrument package was mounted
on a carriage which could be moved along a beam extending across
the exit plane of the tower.  The beam was marked at regular intervals
of 0.3 m (1 ft.) which facilitated the positioning of the instrument
package at any desired point along the 8.36 m diameter of the tower
exit plane.  In the winter test, the beam was set along the SW-NE
diameter first and one drift measurement traverse was made.  The beam
was then positioned along the NW-SE diameter and a traverse made there.
Next the beam was positioned again along the SW-NE diameter for a
third traverse and finally, one more traverse was made along the
NW-SE diameter.  Additional data were acquired for FP&L along the NW
radius.  These data, which have been made available by FP&L, will be
addressed later.  During the summer test phase another measurement
traverse along the SW-NE diameter was completed.  Thus, for this
contract, a total of five measurement traverses were made along two
perpendicular diameters of the tower, three along the SW-NE diameter
and two along the NW-SE diameter.

The instrument package, of which two views are shown in Figures
8 and 9, contained the following instruments:

     1.  The PILLS II-A System.

     2.  A Sensitive Paper machine with a stationary sampling
         head.

     3.  The hot glass bead IK System.

     4.  A Gill propeller anemometer.

     5.  A dry bulb/wet bulb psychrometer.

The sampling volume of the PILLS instrument was the reference point of
the instrument carriage during drift measurements.  Thus, when  the
instrument package was to be positioned at a predetermined  point along
the beam, PILLS' sampling volume, which was 2.33 cubic centimeters
                                  66

-------

Figure 8.  Side view of instrument package during a measurement.
           The Sensitive Paper Machine is located to the left of
           PILLS (large white cylindrical object) directly above
           the rim of the tower wrapped in plastic.  Directly to
           the right of it is an IK tube, then PILLS, and to
           the right of PILLS are the wet bulb/dry bulb psychrometer
           and the Gill  anemometer.   The psychrometer is directly
           under the cross beam supporting the instruments,  and
           the blade of the anemometer is blurred due to its
           rotation.  The cables coming from the left are the
           PILLS umbilical cord and  purge lines plus the IK
           pump hose and heater wires and SP control lines.
                                  67

-------
                                                               .

                                                               iSA'.-
                                                                  .
Figure 9.   View of the instrument package along the traversing beam.
           This view of the PILLS, IK and SP instruments shows the
           PILLS sampling volume in approximately the center of the
           photograph with the SP machine to the right wrapped in
           plastic.   Further right is an IK tube.  The GILL anemometer
           and psychrometer are hidden by the PILLS mounting plate in
           this view.
                                  68

-------
                                                 PSYCHROMETER
                                                                  ANEMOMETER
                 Ife^--   ^
en
10
                    PILLS
                    SAMPLING VOLUME
                                                  10
                                              S.R
                                              MACHINE    A

                                              IK  TUBE
                              TOP OF COOLING  TOWER  FAN STACK
    Figure 10.
Position of  the cooling tower instrumentation relative  to PILLS' sampling volume
during the winter drift tests.   Frontal view along the  SW to NE diameter9  ?ns?ru-
ments are not to scale.  Distances in meters.

-------
                      SENSITIVE

                      PAPER

                      MACHINE
ISOKINETIC

SAMPLER

TUBE 	
•r'
.33
                    M
                               PILLS

                               SAMPLING

                               VOLUME —
                     i	s
                      GILL

                      ANEMOMETER
                     " .13
                                                                          SW

                                                                          A
                                     <
                                     111
                                     co

                                     O
                                                       PSYCHROMETER
                                                                          V
                                                                          NE
 Figure  11.  Position of the cooling tower instrumentation relative to PILLS'  sampling volume

            during the winter drift tests.   Top  view.   Instruments are not to scale.   Distances

            in meters.

-------
                                           '   PSYCHROMETER
             S.P. MACHINE
PILLS   SAMPLING
VOLUME

      IK  TUBE

      GILL
                       TOP OF  COOLING  TOWER  FAN  STACK
— =4
— - — u
NG
lETFB 	
i




Figure 12.   Position of the cooling tower instrumentation  relative
            during the summer drift tests.   Frontal  view along the
            ments are not to scale.  Distances  in  meters
                   to PILLS'  sampling volume
                   SW to  NE  diameter.   Instru-

-------
                                    SP
                                    MACHINE
         ISOKINETIC
         SAMPLER
         TUBE	
                         .33
r>o
                                    PILLS
                                    SAMPLING
                                    VOLUME
                                        .38
                                                                                1
                                                                   SW
                                                                   A
                                                                                   o
                                                                 PSYCHROMETER
                                                                  •

                                                                   7
                                                                   NE
                                  GILL
                                 -ANEMOMETER
       Figure 13.
Position of  the  cooling tower instrumentation relative to PILLS' sampling volume
during the summer drift tests.  Top view.  Instruments are not to scale.  Distances
in meters.

-------
 in size, was lined up with this point.   The other instruments were
 located at known positions with respect to the PILLS sampling volume,
 as shown by Figures 10-13.

 Instrumentation for the winter and summer test was the same with the
 exception of the GILL anemometer propeller.  During the winter test
 five of the four-blade molded polystyrene propellers failed during
 air velocity measurements in the tower  exit plane, as mentioned
 previously.  Therefore, the four-blade  propeller was replaced by a
 newly developed three-blade propeller which lasted through the summer
 test.

 Measurement Procedure

 Before initiating drift measurements  along a  diameter traverse, an
 updraft air velocity profile and an air temperature profile were
 obtained along  that diameter traverse.   For this  purpose,  the
 instrument package was  positioned such  that the  Gill  propeller
 anemometer was  lined up with the marked points along  the beam.
 Position 0 was  within 10 cm of the fan  stack  rim  while  position 1
 was  0.3 m (1  ft.)  toward the center of  the cooling  tower exit plane,
 position 2 was  0.6 m (2 ft.)  toward the center and  so forth  until
 position 27,  which was  within about 10  cm of  the  opposite  fan
 stack  rim.  A visual  estimate of the  average  updraft  velocity and  the
 range  of velocity  fluctuations  at each  measurement  position  was
 obtained by observing the  anemometer's  readout meter.  The  time  of
 observation depended  on the  range of  velocity fluctuations.   For
 fluctuations  greater  than  ±10%  the meter  was observed for
 approximately 60  seconds.   For  fluctuations less  than ±10%  the
 meter  was  observed  for  approximately  10 seconds.  At  the same  time
 the  air temperature was  determined by observations of the psychrometer
 readout.   If a  temperature difference with  respect to the previous
 measurement position  existed  (it  was always smaller than 0.8°C), then
 the  readout changed within a  few, say 3 or 4 seconds, and was
 constant thereafter.  Short-term  fluctuations of the air temperature
were not observed,  probably due to the psychrometer's response time.

The  psychrometer readout displays either the dry-bulb temperature
or the wet-bulb depression.  Only the dry-bulb temperature was
 recorded since the wet-bulb depression deviations from zero were
usually within the accuracy of the psychrometer (better than 2%
RH except at extreme  low temperatures  and RH).

These resulting updraft velocity and temperature profiles were
plotted and are presented in Appendix  E.  As the anemometer was moved
from the tower rim  (position 0) towards  the center of the diameter,
                                  73

-------
the velocity usually reached a peak, then dropped until  around position
7 or 8 where the propeller would stop and reverse direction   For the
positions close to the center of the fan stack exit plane, highly
fluctuating (> +100% of average value) and mostly downward velocities
were observed.  That is, the average component of air velocity
was directed down into the tower.  Sensitive papers exposed in this
region showed only one or two small  droplet stains indicating
negligible drift effluent in this region.  Consequently, the drift
measurements were made at those positions where the updraft velocity
was positive.  As the anemometer was moved through the center region
toward the opposite rim, the average updraft velocity «"™ ^ww
positive again at positions 18 to 20 and would remain so an the way to
the rim.

A  drift measurement run was usually begun by exposing a sensitive paper
at the measuring point.   It should  be noted that since PILLS and SP
data were  not  acquired  simultaneously,  the  SP machine was  lined up
at each measurement position while  exposing the  paper.  The instrument
package was  then pulled back to  the rim of  the fan stack,  the exposed
baper was  removed and an  unexposed  IK tube  was attached to the suction
hose.  Then  the  instrument  package  was  returned  to the measuring point
for concurrent and  continuous  measurements  with  PILLS and  IK.   me
measurement  time was  usually  between  25 and 60 minutes and was the
 same  for  both instruments.  At the  start of the  measurement period,  the
 air flow  through  the  IK tube  was adjusted so  the the air  velocity  at
 the tube  opening was  equal  to the time-mean updraft  velocity  at  that
 point,  as determined  by an  anemometer measurement which had either
 been  made during the previous  run (the distance between  the anemometer
 and PILLS sampling  volume was 0.3 m or  1 ft.  during  the winter test)
 or from the velocity  profile  previously taken.   At the  end of a  run,
 the exposed IK tube was removed and sealed for chemical analysis,
 the PILLS data were recorded from the pulse height analyzer and,
 concluding the run, a second sensitive  paper  was exposed  at the
 measurement position.

 For a small fraction of the measurement positions (<10%)  both
 sensitive papers were exposed after the PILLS and IK measurement
 runs.  Unless some difficulty was experienced w1th.th^.s^^  .
 paper (over-exposure or poor contrast on the paper) which happened
 less than 10% of the time, only two SP's were exposed at each point.

 During the PILLS/IK measurement period  the following pertinent cooling
 tower and ambient data were recorded:   Updraft air temperature  hot
 and cold water temperatures,  heads in  both hot water distribution
 basins, wind  speed and direction,  and  ambient air wet and dry bulb
                                    74

-------
 temperatures.   The  basin  heads  were  measured  to  give  an  indication  of
 the  water flow  rate.   It  was  noted during  such measurements  that  the
 heads  were  5 to  7  cm  lower during the  summer test  than  they were
 during the winter test.   This indicated a  lower  water flow rate
 during the summer test.   A visual check was made of valve positions,
 pump head, and  hot  water  basin  floor, including  nozzle plugs, along
 with a check for  leaks  inside the tower.   All were  found to  be in
 proper order.

 The  data  from the on-site meteorological tower instruments were
 recorded  continuously on  a strip chart  recorder  throughout each
 day  when  drift  measurements were in  progress, both  on the tower
 and  during the  spray module tests.

 Thus,  the  raw data  obtained at  one measuring  point  consisted typically
 of:

     1.  a voltage  distribution (from PILLS);

     2.  two exposed sensitive  papers;

     3.  one exposed IK tube;

     4.  updraft  air velocity data;

     5.  temperature data of the updraft air;

     6.  hot and  cold water temperatures;

     7.  hot water distribution basin heads; and

     8.  meteorological data (wind speed and direction, ambient wet
         bulb and dry bulb temperatures).

Also, usually once during a day of drift data acquisition,  a  water
sample was taken from one of the hot water distribution basins  for
analysis of its sodium and magnesium concentration.

A note is  necessary  with respect to the  tower hot and  cold  water
temperatures.  All hot water temperatures were measured with  a  mercury
thermometer in  the north hot water distribution  basin.  The cold water
temperature was  obtained by means  of a thermometer which  was  installed
into the discharge pipe prior to ESC's winter test.  During the winter
test this thermometer was  calibrated  by  ESC three times.   It  was found
that it read at  least 1.67°C  (3°F)  too low.  Therefore, 1.67°C  was
added to all discharge temperatures obtained with this thermometer
                                  75

-------
during the winter test.  During the summer test recalibration of this
thermometer indicated that it read at least 2.8 to 3. 3°C too low.  It was
furthermore later determined that the temperature sensor had been dis-
lodged from its original position and drifted down the discharge pipe
as far as the attached cable permitted.  For these reasons, the outlet
temperature measurements are considered unreliable and are not recorded
on the summer test data sheets.

To insure consistency  in the resultant data from PILLS and SP, certain
measures were taken for quality control.  As mentioned previously, the
monodisperse water droplet generator was taken to the field for
calibration checks on  the PILLS instrument.  Moreover, the PILLS
instrument was calibrated before both  the winter and summer test
phases.  The timer on  the SP machine was checked from time to time
against a stop watch to insure correct exposure of the sensitive
papers.  Also, a  sample of an  SP from  each batch was tested for good
contrast properties before that batch was used  for data  acquisition.
Together, these steps  helped to guarantee uniformity in the field
data  quality.

Drift Measurements for Florida Power & Light Company

On February 27, 1974,  during the winter test phase of the  cooling
tower test, drift data were acquired by ESC for Florida Power &
Light Company along one-half of the NW-SE diameter.  A copy of the
complete test report  is included in Appendix F.  ESC and  EPA wish to
express  their appreciation to  Florida  Power &  Light Company for
allowing these data to be included in  this report.

Measurement techniques employed during the FP&L test  as  well as the
types of data taken were  the same as described above.  However,  the
 IK data  measured  for  FP&L are  presented in terms of apparent drift
parameters .   These are drift water parameters  which  are calculated
 from drift mineral  residue  parameters  with the assumption that the
 mineral  concentration of the drift droplets  equals  that of the
 circulating cooling water.   The same assumption  was  already used in
 Equation (37).   Starting, for example, with  the  sodium mass
 concentration, N, is which is defined by Equation  (22),  the
 apparent drift massjconcentration, X'   ,, can be calculated as
 follows:                            N  J
                        Naj   =  CTI       9mm                   (45)
 where CNa with dimensions of mass per volume is the sodium concentration
 in the circulating water during the period of time 4>Na j  was  measured


                                   76

-------
and scw is the density of the cooling water which is again approximated
by scw =  1.0 gm/cm3.

Ideally,  the apparent drift mass concentration, X^a  ,-, should depend only
on the measurement position, but not on the element used to calculate
it; that  is, using another element should yield the same numerical
value for the apparent drift mass concentration.  In practice this
is usually not the case.  The average discrepancy between the
apparent  drift mass concentrations calculated from sodium and
magnesium analyses was only 6% for all Turkey Point IK data.  In
earlier programs, however, larger average values have been observed.
The underlying reasons for this discrepancy are not known.  It has
been suggested2" that it may be due to different retentions of various
elements  in the heated IK tube, or possibly to the enrichment or
derichment25 of constituents of the drift droplets themselves during
their formation in the fill.  Whatever the reason the subscript "Na"
was consequently retained on the left hand side of Equation (45).

It should be noted that the apparent drift mass fraction which is
defined as the apparent drift mass emission in percent of the cooling
water mass flow rate, is identical to the mineral mass emission
fraction, n.k:
                                       Am.  .
                                      Ck/scw
     Apparent drift mass fraction = ^ — -^ -  x  100%
If scw and R are again considered constant, then:
s
 cw
                                          Amkj-/Ck
     Apparent drift mass fraction = -   -  x 100%          /47\
The right hand side of this equation is equal to the right hand side
of Equation (33).  Thus  the apparent drift mass fraction which is
denoted by A in ESC's report to FP&L can be directly compared to
the mineral mass emission fractions presented in this report.

Data Format

The data resulting from the cooling tower measurements are presented
in Appendix E.  The data are grouped according to each of the five
measurement diameters (SW-NE 1, 2, 3, and NW-SE 1, 2).
                                  77

-------
Within each diameter are presented updraft air velocity and
temperature profile sheets, PILLS/SP droplet size spectra sheets,
an isokinetic sampling data sheet and an isokinetic data extension
sheet.  A summary sheet of droplet mass for droplets over 600 um in
diameter for the five diameters is included at the end of Appendix E.
A description of each of these data sheets with its nomenclature
follows here.

The first type of data sheet presented gives updraft air velocity and
temperature profiles for the diameter.  These take the form
of a graph and as such are essentially self-explanatory.  Air updraft
velocities taken from velocity profiles are plotted along with
visual estimates of the velocity fluctuation.  Points are also
plotted for the velocities which were recorded during drift measure-
ment runs.  These velocity profiles are given in Figures 25 through
30 in Appendix E.  Two velocity traverses are also shown for the SW-NE
diameter where the output of the Gill anemometer was fed into the PHA for
a percent time vs. velocity distribution for approximately 30 seconds
at each position.  These data are presented in Tables 6 and 7,
Appendix E.  They show a time distribution of updraft air velocity
and were taken in order to determine the range of fluctuation of the
air velocity over a relatively short period of time (30 sec.).

Although this technique yields more accurate data with regard to the
updraft air velocity than the technique described earlier, the
visual observation of the anemometer readout was more useful for
quickly identifying the average updraft air velocity at a point and
therefore was used throughout the test.

It should be noted that the Twet/T(jry and wind speed data
written on the velocity and temperature profile graphs pertain to
ambient meteorological conditions when the profiles were taken.

The secondtype of data sheet is that which presents droplet distri-
bution data from the PILLS and SP systems.  Each sheet identifies
the diameter, whether it was the first, second or third traverse
along that diameter, position, date, and time frame of the measurement.
Reference is made on each sheet to the position where an IK tube was
exposed during the same time frame.  Each PILLS/SP data sheet
corresponds to one position on a tower diameter.

The tabular data is arranged according to droplet size range.  Each
droplet size range,  I,  is defined by the lower diameter, D(LOW); the
upper diameter,  D(HI);  the difference  in these diameters, DEL D; and
the center diameter of  the range, D(CEN).
                                  78

-------
 For each droplet size range, the value of P(D), the particle density
 distribution, is given.   The formulation of this data from PILLS and
 SP raw data was described in detail  in Section IV.   The tabulated
 values of P(D) are taken from the.consolidated PILLS/SP curves.   In
 the next column to the right, the mass density distribution data, DEL
 X/DEL D, is tabulated.  These values were calculated using Equation (2)
 in Section IV.  Next is  listed the drift mass concentration (drift mass
 per unit volume of air)  in each size range, DEL X,  which was calculated
 from Equation (3)  in Section IV.   The drift mass flux,  DEL FLUX, is
 listed next.   These values were calculated using Equation (5a)  in
 Section IV.   The droplet velocities  are listed in the last column.
 They were calculated by  subtracting  the settling velocity of a droplet
 with diameter D(CEN) from the time-mean air updraft velocity measured
 at this position.

 The total  drift mass per unit volume of air,  X,which is  the summation
 of the individual  DEL X  values,  is presented  directly below the
 tabulation.   Likewise the value  of DRIFT FLUX is found  from a summation
 of the DEL FLUX values.   By multiplying the flux by a half annulus
 area,  AA,  associated with the position,  the total emitted drift
 mass associated with that position is  found.   Also  given  is  the  mass
 median diameter calculated from  the  drift  mass  concentration data,
 UCL. A •

 Tower  operational  conditions  during  the  time  of the  measurement  are also
 presented  on  each  data sheet.  The time-mean  air updraft  velocity at
 the measurement position  is  represented  by  v~u;  Ta is  the  temperature
 of the air leaving  the fan stack; T^ is  the hot  water temperature; and
 T0 is  the  cold  water temperature.  For  the winter test, range, approach
 and approximate  heat load  were calculated,  the  latter by  using the
 manufacturers'  specified water flow  rate of 1,260 kg/sec  (20,000 gpm).
 Last are presented  ambient conditions during  the time of  the test:
 wind speed, wind direction and wet bulb/dry bulb temperature.

 In  the  PILLS/SP data  section of this report,  the tabular data for the
 droplet density distribution are typically terminated at droplet
 diameters  of 600 urn  and sometimes below.  Because of the nature of
 the  PILLS  instrument  response characteristics it is  necessary for
 the  field  data  to have good statistical quality before an accurate
 particle density distribution curve, p(d), can be derived.
 Consequently, although PILLS is sensitive to droplets up to 1,000
 gm  in diameter, the accuracy of measurement to that  limit depends
 heavily on the droplet count which is often sparse in the large
 diameter ranges.  In the time interval typical for a measurement  at
Turkey Point, the generated droplet statistics were  adequate for
definition of a p(d) only up to 600 urn.  However, droplets above  that
                                  79

-------
size range up to 2,240 ym were observed on sensitive papers but only
singly and with no statistical basis to formulate a p(d).   Since the
possibility existed that these droplets might contain a significant
amount of drift mass, e.g. more than 20% of the drift mass contained
in droplets smaller than 600 ym, their drift mass flux was calculated
and the results are included in the third type of data sheet, Table 8
in Appendix E.  On this sheet the diameter traverses and positions
are shown where droplets larger than 600 urn in diameter were measured
by the SP system.  Since only a few positions from each diameter
showed this type of data, the results from all 5 diameters are
included on one sheet.  Also tabulated is the percentage of drift flux
these droplets represent over the flux already shown up to 600 urn
on the regular PILLS/SP data sheets.

The isokinetically obtained drift mineral residue data are tabulated in
the fourth type of drift data sheet.  Each sheet contains  the IK data
for the measurements made along an entire diameter.  The results of
the IK measurements and data reduction are arranged in rows corresponding
to each measurement point.  The position along the diameter traverse
and the data of measurement are given at the left side of each sheet.
Reading from left to right, then, follow M^ and M^g, the  masses of
sodium and magnesium collected by the IK tube.  Next is given Vs, the
volume of air sampled by that tube and vu, the time-mean air updraft
velocity measured at that point.

As mentioned previously, the concentration of sodium and magnesium
in the cooling water fluctuated from day to day during the test
period.  The concentration values for sodium, CNa, and magnesium,
C|v|g» which were found by taking a sample of the cooling water and
chemically analyzing it, are listed in Table I along with  the averages
of these values, CNS and C^g   These average values of the sodium and
magnesium concentrations wef£ selected as reference concentrations,
CNa Ref = cNa ancl cMg Ref = cMg» to which all mineral mass flux data
were adjusted as outlined in Section IV.  The adjusted sodium and
magnesium mass fluxes were calculated for each position according to
                                                    s>             <48>
                                  80

-------
                         Table  1

SODIUM AND MAGNESIUM CONCENTRATIONS OF THE COOLING WATER
                           CNa                      CMg
                          (mg/1)                   (mg/1)
   1/28/74                 8,975                      975
   V3V74                 8,900                      982
   2/OV74                 9,025                      995
   2/13/74                 7,375                      848
   2/14/74                 9,500                    1 ,050

   2/15/74                 8,638                      937
   2/23/74                 7,800                      903
   2/25/74                 6,875                      783
   2/26/74                 7,500                      848
   2/27/74                 6,625                      743

   2/28/74                 7,675                      818
   3/08/74                11,875                    ]  180
   3/09/74                10,875                      60
   3/H/74                11,575                      80
   3/12/74                11,375                    1J40
                         n,875                    1,160
  3/14/74                11,125                    j 16Q
  3/15/74                11,875                    1200
  3/31/74                11,575                      260
  7/20/74                11,000                    1,200

  7/22/74                10,550                    i  210
  7/23/74                11,200                      240
  7/24/74                9,850                      220
  AVERAGE SODIUM CONCENTRATION, CNa  =  9,723 mg/1


  AVERAGE MAGNESIUM CONCENTRATION, CMg  =  1,054 mg/1

-------
These equations follow from (20), (21) and (29) if the average sodium
and magnesium background values of the IK tubes, MB Na and MB Mg, are
neglected.  Chemical analyses of unexposed IK tubes selected at random
as a data quality control measure  yielded in the average MB NS = ^9
and MB Ma < 1 gg.  The chemical analysis of the exposed IK tubes
showed that all but two IK tubes contained more than 1000 pg of sodium
and more than 100 ug of magnesium.  The two remaining tubes contained
each more than 500 wg of sodium and more than 50 ug of magnesium.
The background values were therefore neglected.

The adjusted mineral mass emissions for sodium and magnesium, Amfja and
AmJ , were calculated by multiplying the flux by AA, the section of the
fangstack exit area associated with the measurement position. g The
total adjusted sodium and magnesium mass emissions, mN  and Mug, were
found by summing over all values of Amjja and Amftg, respectively.

Beneath the tabular data, the mineral mass emission fractions, 0^3 and
nM  , are listed which were calculated according to
 rig
                                R   -CNa  X                         (50)
                                      cw  ••   100%
                                     =—                           .   .
                                     CMg                            (5D
Again,  scw  =  1  gm/cm3  and  R  =  1260  kg/s during  the winter test and
R  =  970 kg/s  during  the  summer test.   Finally the average value of  the
mineral  mass  emission  fraction,  n,  is  given.

 If the  mineral  mass  emission data obtained  during the winter  and  summer
 tests are compared,   the  differences  in  the water flow  rates should
 be kept in  mind since  the  data are  not adjusted to a common water
 flow rate.   However, the mineral mass  emission  fractions are  directly
 comparable.

A  potential error source  in the IK measurements  is the sodium  component
 of sea  salt that is  contained  in the  ambient air.  When  the air passes
 through the cooling  tower  fill an unknown fraction of the sea salt
 particles  is scrubbed  out  by the cooling  water. Thus the air that
 is sampled  by the IK tubes contains,  besides drift droplets,  sea  salt
                                   82

-------
particles at a concentration that is smaller than the ambient sea salt
concentration.   In order to arrive at a conservative estimate of the
mass of sodium that may be attributable to ambient sea salt,
calculations are presented which are based on the following assumptions;

     1.  No scrubbing of sea salt particles takes place in the
         cooling tower fill.

     2.  The IK tubes collect sea salt particles with 100%
         collection efficiency.

     3.  30.6% of the sea salt is sodium.

With these assumptions, the following equation expresses the collected
mass of sodium, MANa, attributable to ambient sea salt in percent of
the total mass of sodium stripped from the IK tube:
                  M        *  •  0.306  •  Vs
                  MANa  =         ^       *  x  100%             (52)
where * is the ambient sea salt concentration as determined by the
Airborne Particle Sampler and tabulated in Appendix C, Vs is the
volume of air sampled by an IK tube, and Mwa is the mass of sodium
stripped from an IK tube.  Vs and MNa are listed in the isokinetic
sampling summaries that are part of Appendix E.

For the cooling tower test, M/\Na was calculated for several IK tubes

     1.  IK tube exposed at position 23.3 of diameter SW-NE 2 on
         3/12/74:
             Vs  =  38.64 m3

         This IK tube sampled the largest air volume of all  tubes
         exposed during the cooling tower test.

             MNa  =  24,739 ug

             c|>    =3 ug/m3  at station   3 (Run  #108)

             MANa =  0.14%
                                 83

-------
    2.   IK tube exposed at position 1.33 of diameter SW-NE 1 on
         2/23/74:

            Vs  =   28.71 m3

            MNa =   2868 ug

            $   =   11.76 ug/m3 at station 3 (Run #99)

            $ was  one of the highest ambient values that occurred
                 during the cooling tower test

           MANa =   3-6%

    3.   IK tube exposed at Position 22.3 of diameter NW-SE 2 on
         3/15/74:

            Vs     =  16.2 m3

            MNa    =  2864 ug

            4>      =  10.65 ug/m3 at station 3  (Run #111)

            4> was  one of the highest ambient values that occurred
                 during the cooling tower test

            MANa   =1.8%

    4.   IK tube exposed at position 0.6 of diameter SW-NE 3 on
         7/20/74:

            Vs     =  9.3 m3

            MNa    =  554 ug

            This  IK tube collected  the lowest  amount of sodium
                 during the cooling tower test

            cf>      =  3.8 ug/m3  at  station 3  (Run #206)

            MANa   =  2%

It should be noted  that  these  IK tubes  were  selected such  that  in
Equation (52)   either one of the two parameters  in  the  numerator  was
the largest, or the parameter  in the denominator was the smallest
that was experienced during  the  cooling tower  test.  Although a
combination of  all  three  parameters  may exist  that  would yield  a


                                  84

-------
larger value of MANa than the largest calculated above, the above
values give an idea of the magnitude of
For the IK tubes exposed during the spray module test MAN* can be
calculated in the same manner.   The fact that the first assumption of
the three listed above is inapplicable is of no consequence.   Thus for
the spray module test MANa was  calculated for the following IK tubes:

     5.   IK tube exposed at position 33.5/270/4.6 on 2/15/74 at  .
          1359 hours:

             Vs    =  17.82 m3

             This IK tube sampled the largest air volume of all tubes
                  exposed during the spray module test.

             MNa   =  5740 ug

             *     =  5.3 ug/m3 at station 3 (Run #93)

             MANa  =  0.5%

     6.   IK tube exposed at position 73.2/280/7.6 on 3/27/74
         at 1801 hours:

             Vs     =  2.73 m3

             MNa   =  138 ug

             This IK tube collected  the  smallest  amount of sodium of
                  all  tubes  exposed  during  the  spray module test.

                   =5.9 ug/m3  at station  3  (Run  #118)

                   =   3.6%
     7.   IK  tube exposed at position 36.6/290/9.1 on 3/26/74 at
         1352 hours:

            Vs    =  5.86 m3

            MNa   =  439 ug

            $     =  8.0 ug/m3 at station 3 (Run #117)
                                 85

-------
             $ was the highest ambient value that occurred during the
                  spray module test.

             MANa  =  3-3%

These- values are very similar to those obtained for the cooling tower
test, and, as mentioned before, there may be a combination of parameters
that yield a larger value for M^a than the largest calculated above.
In summary, the amount of sodium that may be attributable to ambient
sea salt which is collected by the IK tubes during the drift tests at
Turkey Point is of the order of 3% of the total collected mass of
sodium and therefore considered negligible.

Due to the fact that the sodium and magnesium mass emission fractions
agree well, it is tempting to infer that MAMg  is likewise of the order
of 3% of the total collected mass of magnesium.

During the winter test no isokinetic sampling tubes were exposed at the
edges of the region of the tower with high updraft velocity.  In
earlier drift tests on mechanical draft towers, the rate of mass
emission decreased quite rapidly at positions such as this since both
the mineral mass concentration and the updraft velocity decrease as the
edges of this region are approached.  During this measurement program,
however, the mineral mass concentration had relatively high values at
the edge of the measurement region for each of the radial traverses.
It therefore became clear during the data reduction that more IK data
points during this phase would have been useful.  Consequently, during
the summer test,  IK data were taken at more points along the diameter;
sixteen points versus ten to twelve points in the winter test.

In order to calculate an upper limit of the mineral mass emission
fraction for the winter diameters, the adjusted mineral mass emission
rates were calculated for those positions on the tower where the
updraft velocity was positive, but where no IK tube had been exposed.
For these positions it was assumed that the adjusted mineral mass
concentration, <|>j*j, has the same value as at the nearest position at
which a measurement had been made.  This assumption was made only in
order to arrive at an upper limit of the mineral mass emission
fraction.  This data extension may best be demonstrated by an example.
The isokinetic sampling summary for diameter SW-NE 1 shows that  IK
data were obtained for positions 0.3 through 5.3.  In order to obtain
a  sodium mass emission estimate for position 6.3 it is assumed that
the adjusted sodium mass concentration at  position 6.3 equals that of
position 5.3:
                                  86

-------
                         'Na 6.3  "  ^Na 5.3


 a                                                       a
<|>Na 5 3 is obtained from the adjusted sodium mass flux, FNa 5 3
according to:


4 5.3  =  4 5.3' 7u 5.3  =  2256 / 10'9  =  ™ ^
The sodium mass flux at position 6.3 is then


    6.3  =  4 6.3  '  vu 5.3  =  207  •  8  =  1656              (55)
The area associated with position 6.3 is AAg 3 = 2.16 m2 and the
adjusted sodium mass emission through this area is


     6.3  =  FNa 6.3  '  ^6.3  =  1656  •  2.16  =  3577^       (56)
These extended sodium emission parameters can be found on the Turkey
Point Isokinetic Data Extension for Diameter SW-NE 1 together with
the extended magnesium emission parameters.  Isokinetic data
extensions were calculated for all diameter traverses obtained
during the winter test, that is, SW-NE 1, SW-NE 2, NW-SE 1, NW-SE 2.
                                            o
Drift Data Summary for the Cooling Tower

The drift water emission rates of the cooling tower as determined by
PILLS/SP are listed in Table 2.  Likewise the sodium and magnesium
mass emissions rates, as determined by IK, are tabulated in Table 3.
The adjusted sodium mass flux for each position of all five diameters
is given in Table 4.  The values for the four diameters traversed
during the winter test were averaged, and the averaged values are
listed in Table 4, and are also plotted in Figure 14.  If data at a
position were not taken for all four diameters, only the available
data was averaged.  It should be noted that these four measurement
traverses were made along two perpendicular directions, hence the
average values should not be associated with only one diameter;
rather with a sector which includes the two perpendicular radii.
Moreover, the measurement positions for each diameter do not fall
exactly at the same distance from the fan stack rim.   Data summarized
                                  87

-------
                            Table 2

      RATE OF DRIFT WATER EMISSION FROM THE COOLING TOWER
                 (From PILLS/SP Measurements)

                                        Drift             Drift
Diameter          Test Phase            (ug/s)           (Ib/hr)

SW-NE  1            Winter            2,296,000           18.22

SW-NE  2            Winter            5,484,000           43.52

SW-NE  3            Summer            6,602,000           52.40

NW-SE  1            Winter            1,309,000           10.39

NW-SE  2            Winter            1,412,000           11.21
                              88

-------
                                              Table 3
00
                Test
                    ADJUSTED TOTAL MINERAL EMISSION RATES FROM THE COOLING TOWER
                                        (From IK Measurements)

                      Measured  Extension  Measured  Extension   Total    Total    Total     Total
maNa
maNa
Diameter Phase (ug/s) (ug/s) (ug/s) (ug/s) (ug/s) (uq/s) (Ib/hr) (Ib/hr)
SW-NE 1
SW-NE 2
SW-NE 3
NW-SE 1
NW-SE 2
Winter
Winter
Summer
Winter
Winter
62,436
103,791
111,704
59,829
60,063
25,730
18,342
-
14,385
15,402
6,786
10,977
11,989
6,893
6,679
2,818
2,021
-
1,644
1,747
88,166
122,133
111,704
74,214
75,465
9,604
12,998
11,989
8,537
8,426
0.70
0.97
0.89
0.59
0.60
0.076
0.10
0.095
0.068
0.067
      Note:  These values for mineral mass emission rates have been adjusted to a reference  value
            for the mineral concentration in the basin water.

-------
                                         Table 4

                          ADJUSTED SODIUM MASS FLUX DATA SUMMARY
                                        (ug/m2-s)

      	Winter Test	     Average of 4     Summer Test     Average  of
POS   SW-NE  1   SW-NE  2  NW-SE 1  NW-SE 2   Winter Diameters     SW-NE 3     All  5  Diameters

  0    1,095      715     620      599           757              461              698
  1    1,211    1,242     860    1,620         1,233              621            1,111
  2    1,445      829   1,841    1,842         1,489              970            1,385
  3    2,568    1,152   2,223    2,832         2,194            1,207            1,997
  4    2,440    1,160   1,764    3,808         2,293            2,305            2,295
  5    2,256      962   1,286    1,623         1,532            1,227            1,470

  6                                                               887              887
  7                                                               277              277

 19                                                             1,207            1,207
 20             2,163              973         1,568            3,027            2,054

 21             3,078   1,639    1,143         1,953            3,220            2,270
 22    2,073    5,183   2,469    1,290         2,754            6,056            3,414
 23    2,621    7,673   2,469    1,370         3,533            2,222            3,271
 24    3,191    7,632   2,669    2,515         4,002            1,526            3,507
 25    2,118    3,568   2,271    1,118         2,269            6,142            3,043

 26                                                             5,236            5,236
 Note:  Water flow rate  for the winter  test was  1,260  kg/s  (20,000 gpm)
        Water flow rate  for the summer  test was  970  kg/s  (15,400  gpm)

-------
   6000
   5000
  4000
in
et
=  3000
o
o
to

o
L±J

LO
O
•a;
  2000
o
   1000
o  AVERAGE OF 4 DIAMETER TRAVERSES  OBTAINED

   DURING THE WINTER TEST


O  AVERAGE OF ALL 5 DIAMETERS
                                                                     .o--
            0    1
   456    7   8    19   20  21   22   23   24

 POSITIONS ALONG THE SW-NE AND NW-SE DIAMETERS
                                                                                   25   26    27
             Fiqure 14.  Comparison of  IK average adjusted  sodium mass  flux vs. position.

-------
in this manner are mainly useful  for the purpose of illustration.   Also
shown in Table 4 and in Figure 14 are the averages of all  five diameter
traverses.  Comparing the two curves in Figure 14, one can see that
the effect of including the summer data in the average is  small on
only one radius, tending to decrease the sodium mass flux  at each
position approximately equally.   On the other radius the effect is
quite noticeable and erratic.  The high value at position  26 was  due
to the one data point taken during the summer test since no IK
measurements were taken at this  position during the winter test.

The calculated values for the upper limit of the mineral mass emission
fraction for each of the five diameters is shown below, as obtained
from the IK data sheets:

                                           Upper Limit of the
                                     Mineral Mass Emission Fraction
     Diameter Traverse               _ imax* (%) _

          SW-NE 1                               0.00072
          SW-NE 2                               0.00099
          SW-NE 3                               0.0012
          NW-SE 1                               0.00062
          NW-SE 2                               0.00063

The arithmetic average of these values is 0.00083%.  It should be noted
that the water flow rate during the winter test was 1260 kg/s
(20,000 gpm) whereas it was only 970 kg (15,400 gpm) during the summer
test when data along the diameter traverse SW-NE 3 were obtained.

Cooling Tower Composite Curve Calculation

The drift droplet size data obtained by PILLS/SP during the five
diameter traverses of the cooling tower was used to calculate a
cooling tower composite curve in the manner described in Section IV.
The values calculated for composite drift mass emission, ADi composite*
and composite drift mass density distribution
                                                   composite
 tabulated  in Table 5.  The composite mass emission data for each size
 range were summed yielding a total composite drift mass emission rate,
 DcomDOSite» of 3-42 9m/s-  The composite tower drift fraction at
 design flow of 1260 kg/s is, therefore, 0.00027%.  The composite mass
 median diameter calculated from the drift mass density distribution
 equals 120 urn.  The composite drift mass density distribution is
 plotted  in Figure 15.  It shows a peak in the droplet size range of
 30  to 50 urn with a center diameter of 40 urn.  The largest value of
 droplet  diameter for which the mass density distribution is shown
                                  92

-------
VO
co
        d(center)
 20
 40
 65
 95
130
175
225
275
325
375
425
475
525
575
                                              Table 5

                       COOLING TOWER COMPOSITE DRIFT MASS EMISSION PARAMETERS
 Ad      Composite  Drift  Flux
(urn)           (ug/m -s) _

 20              590
 20              881
 30             1,205
 30              958
 40              987
 50              867
 50              600
 50              378
 50              287
 50              240
 50              219
 50              185
 50              171
 50              168
                                               AXi/Ad
                                             (ug/m3*um)
29
44
40
31
24
17
12.0
 7.6
 5.7
 4.8
 4.4
 3.7
 3.4
 3.4
Composite Drift Mass
 Emission Rate, AD-j
       (tig/s)

      2.78E 05
      4.14E 05
      5.61E 05
      4.40E 05
      4.46E 05
      3.82E 05
      2.57E 05
      1.58E 05
      1.16E 05
      9.41E 04
      8.37E 04
      6.89E 04
      6.12E 04
      5.83E 04
        Note:   2.78E 05 means  2.78 x 10s
        TOTAL COMPOSITE DRIFT  FLUX

        TOTAL COMPOSITE DRIFT  MASS  EMISSION  RATE

        MASS MEDIAN DIAMETER of the composite drift mass
          density distribution, AXi/Ad

        COMPOSITE TOWER DRIFT  FRACTION
          (based on the design flow rate  of  1260  kg/s)
                                   =  7,736 ug/m2-sec

                                   =  3.42 gm/s

                                   =  120 pm


                                   =  0.00027%

-------
(O
CO
                                         Table 5

                  COOLING TOWER COMPOSITE DRIFT MASS EMISSION  PARAMETERS
d(center)
  (ym)

   20
   40
   65
   95
  130
  175
  225
  275
  325
  375
  425
  475
  525
  575
 Ad
(ym)

 20
 20
 30
 30
 40
 50
 50
 50
 50
 50
 50
 50
 50
 50
                                          AXi/Ad
                                        (yq/m3-ym)

                                           29.5
                                           44.1
                                             ,2
                                             .9
                                             ,7
                                             ,3
40.
31
24.
17.
12.0
 7.6
 5.7
 4.8
 4.4
 3.7
 3.4
 3.4
Composite Drift Mass
 Emission Rate, AD*
       (yg/s)

      2.78E 05
      4.14E 05
      5.61E 05
      4.40E 05
      4.46E 05
      3.82E 05
      2.57E 05
      1.58E 05
      1.16E 05
      9.41E 04
      8.37E 04
      6.89E 04
      6.12E 04
      5.83E 04
          Note:  2.78E 05 means 2.78 x 105
          TOTAL COMPOSITE DRIFT MASS EMISSION RATE,

          MASS MEDIAN DIAMETER of the composite drift mass  =
            density distribution, AX^/Ad

          COMPOSITE TOWER DRIFT FRACTION
            (based on the design flow rate of 1260 kg/s)

          FAN STACK EXIT AREA, A

          TOTAL COMPOSITE DRIFT FLUX, EADn-/A
                                                       3.42 gm/s

                                                       120 v>m



                                                       0.00027%

                                                       54.5 m2

                                                       0.063 gm/m2-s

-------
o
I—I
I—
CO
o
>- n.
1— •
»_t "•*
tp E
LJJ en
O ^
I/) ••
to -O
LO
O
Q.
         50  i—
         40   —
30
         20   —
         10   —
               J	I	I	I	1
                                   L_J	I	L
               20   60  100  140  180 220  260  300 340  380  420  460  500 540   580   620
                                            DROPLET DIAMETER, Mm
                    Figure 15.   Cooling tower composite drift mass density distribution.

-------
 is 575 pm.   This does not imply that no drift mass exists above this
 value.  As  mentioned above, the PILLS/SP data were given in the data
 sheets only up to this value of droplet diameter because the
 statistical quality of the data prevented the formulation of a p(d)
 value beyond that point whose accuracy lay within the accuracy limits
 previously  stated for PILLS.   Consequently, this composite curve
 which was calculated from the p(d)  values tabulated for each position
 and each diameter,  is also shown only up to 575 urn.   The curve is
 dashed beyond this  point to indicate that the drift mass density
 distribution may extend beyond this point.   For small  droplet
 diameters the curve is likewise limited by the accuracy of sizing
 small  droplet stain sizes, as well  as by the collection efficiency
 of the sensitive paper.

 SPRAY  MODULE EMISSION TEST

 The spray module emission test was  performed in two  parts.   The  first
 part was begun full  scale on  January 30,  1974.   On  February 18,  the
 test was broken off at the request  of EPA and  the equipment moved
 to the cooling tower so  that  measurements could be made
 simultaneously with EPA's vapor plume measurements.  Once  the  cooling
 tower  test  was completed,  the equipment was  moved back  to  the  barge
 and the spray  module test resumed.   The second  part  of  the  test
 began  on March 18 and  the test was  completed on March 31.   No  testing
 of the spray modules was  conducted  during the  summer campaign.

 Measurement Set-Up

 The task of measuring  the  drift emission  of  the  spray modules  presented
 different problems  from  those  of the  cooling tower test.  Unlike the
 tower,  where all drift is  emitted through a well defined exit  plane
 with an  opening  of  approximately 55 m2, the drift from  the  spray
 modules  is  emitted  in all  directions  into the open air.  When
 observed away  from  the spray modules,  the drift  is a strong function
 of  ambient  weather conditions, especially wind  speed and direction.
 The measuring  instruments  had  to be mounted such that they could be
 easily  positioned throughout  the region of space surrounding the
 spray modules.   For  this  purpose, a barge was constructed and the
 instruments were mounted on a  13 meter  tower which was raised on the
 barge.   The barge could be positioned  in  the cooling canals downwind
 of  the spray modules and the  instrument package could be moved up and
 down the  tower and positioned at various heights above water level.   As
 a result, sampling points could be chosen over a large region of space
where the instrument sensors could make drift measurements.  An
 instrumentation shack on the barge was used to house the instrument
 control equipment and protect it from effects of the salt water drift
                                  95

-------
and adverse weather.  Two motor generator sets were used as sources
of electric power on the barge so that the resulting system was
completely independent of power support from shore.  The barge was
powered through the water by an outboard motor.

The instrument package was essentially the same as that on the cooling
tower except for the changes discussed below which facilitated the
data acquisition process.  The PILLS, IK, Gill anemometer and wet
bulb/drybulb psychrometer were used unchanged on the barge except for
differences in the mounting geometry.  Because of maximum air velocities
whtch were one-third to one-half of those experienced on the cooling tower,
the rotating type SP machine was used on the barge.  Before the second
part of the test began a Weather Measure wind vane was added to the
instrument package.  It delivered a voltage signal corresponding to
wind direction referenced to the front of the barge.  When this signal
was fed into the PHA and recorded during a drift measuring interval,
the result was a recording of the amount of time the wind had come
from each direction.  Likewise, the output of the Gill anemometer was
stored in the PHA and gave the amount of time during the run that the
wind had a certain velocity.  The position of the other instruments
in relation to PILLS' sampling volume is shown in Figures 16 and 17.
The wind vane had not been added yet when the photograph was taken.

Measurement Procedure

In order to make a drift measurement run, the barge was moved into
position downwind of the spray modules.  The barge was then attached
to the spray module array by a rope yoke with a slip knot and allowed to
swing freely in the wind.  In this manner it was intended that the
barge would follow changes in wind direction and remain in the drift
plume.  This idea was successful for slow variations in wind direction.
However, at times, the wind varied quite rapidly (30 degrees or more
in a few seconds) and the barge, due to its large inertial mass, was
unable to follow this type of wind variation.  During the second
part of the test, the wind variation data was recorded, however, in
the PHA, as explained above, and is included with the data at the end
of this report.  Also, at times, particular measuring points placed
the barge in a position such that it was essentially held by the canal
current and could not easily follow even slow variations in wind
direction.  This happened only when the wind was from the NE and only
when the barge was'in one of the cooling canals that ran perpendicular
to the feeder canal  (less than 15% of the time).  For the majority of
measurements the barge remained in the feeder canal west of the
spray modules.  A diagram showing the spray module position in the
cooling canal is shown in Figure 31 and Appendix G.
                                  96

-------
Figure 16.   Barge instrument package showing also a part of the barge
            tower and the instrument shack.   Center:   PILLS instrument.
            Directly above:   the wet bulb/dry bulb psychrometer.
            On the viewer's  right:   the Sensitive Paper machine.   On
            the left:  the Gill  anemometer.   A Weather Measure  wind
            vane was later added directly  above the anemometer.   The
            U-tube of the Isokinetic Sampling System  is visible below
            the PILLS instrument on  the left side of  the tower.
                                  97

-------
ANEMOMETER &
WIND  VANE —
L
                                                     PSYCHROMETER
                                                    3^
00
                   IK SAMPLING
                   TUBE	
                                                   PILLS
                                                   SAMPLING
                                                   VOLUME
                                                                   L
                                            .45

-------
The northwest spray module nozzle was used as a reference  point  for  the
barge position in relation to the array of spray module  nozzles  when the
barge was west of the modules.  The northeast spray module nozzle
was the reference when the barge was east of the modules.   At each
measuring point the distance from the reference point to the instrument
tower was recorded along with the height of the instrument package above
water level.  As already mentioned, the position of the  PILLS sampling
volume was used as the reference above water level.  Along with  distance
from the nozzles and height above water level, the direction of  the
barge from the spray nozzles was taken in terms of azimuthal degrees
where magnetic north was referenced at zero.  This number  represents
a visual estimate of the position of the barge during the  major
portion of the run at a particular sampling point and was  judged accurate
within ±10°.  These three numbers, distance from spray module, height
above water level and azimuthal position pinpoint the position of the
instruments at each sampling position.

Since the spray modules were positioned in the canal approximately
10 meters from the north bank, it was not feasible to make  drift
measurements when the wind came from the south.  There was  not
enough room in the canal north of the spray modules for  the barge to
make measurements since the amount of drift within 10 meters from the
spray modules with a south wind was heavy enough to saturate the
instruments.  In fact, the transformer supplying power for  the cooling
tower and spray modules shorted out under such conditions.   It is
situated on the north bank of the canal at a distance of about 24 m
from the nearest spray module and was thus exposed to the drift
whenever the spray modules were operating and the wind came from the
south.   To relieve this problem a shield was constructed after the
winter test around the transformer to protect it from drift.  For these
reasons the spray module testing was suspended during days  with
southerly winds (March 19 - 25 and  March 28 - 29).  This time was
utilized for instrument calibrations, maintenance, and data reduction.
Furthermore, a dew point meter, mounted to the 10 m meteorological
tower,  was made operational.

A typical  test at a sampling  position would last anywhere from 20
minutes to 2% hours, depending on the drift rate.   The test was begun
by moving the barge to an assigned distance from the reference spray
nozzle  and positioning the instrument package at an assigned height
on the  barge tower.   Preliminary runs with PILLS and SP  established
a range of instrument positions for drift measurement.   These points
ranged  from 2.4 to 11.0 meters above water level  and from 20.7 to
88.4 meters downwind of the spray modules.
                                  99

-------
Once the barge was in position an unexposed IK tube was attached to the
suction hose.  PILLS and IK were then started up together to run
continuously through the sampling period.  The PILLS data were recorded
by the PHA along with wind speed and direction referenced to barge
orientation.  Unlike the tower test, it was possible to expose
sensitive papers without moving the instrument package.  Two or three
sensitive papers were usually exposed during a run.  Since it was
observed that variations in wind speed and direction could deliver
bursts of drift for a few seconds then almost nothing shortly there-
after, each exposure of a sensitive paper was composed of multiple
sets of short exposures taken at random.  This procedure was to insure
that the sensitive paper technique yielded drift parameters that
represented time-mean values for the period of time PILLS and IK
sampled at a position.  At the end of a measurement period, the exposed
IK tube was removed and sealed for analysis and the PILLS data and wind
information were recorded from the PHA.  PILLS data, IK data, wind
speed and wind direction data were recorded continuously during a drift
measurement run.

In order to compare the influence of ambient weather conditions on the
drift, multiple runs were made at approximately the same position.
The exact number varied from position to position.   Also, on March 31,
the normal procedure of allowing the barge to follow the wind was
not observed so that the drop-off in drift across the plume in the
crosswind direction could be measured.  These are the runs started at
13:45 and 14:41 on March 31 for reference to the data section.   For
these runs, the instrument package was positioned 4.6 meters above the
water level.  The barge was positioned close to the sides of the cooling
canal by means of a rope which extended across the  canal.  During
these runs, the front of the barge faced directly east, otherwise,
the measurement procedure was the same as described above.

Data Format

The measurement data from the spray module test are presented in
Appendix G.  The drift emission data are presented on sheets very
similar to those used for the cooling tower drift data.  Wind speed and
direction data referenced to barge orientation are  included separately,
but correspond to the drift data positions and sampling times.

The first type of data sheet is the PILLS/SP droplet size distribution
data sheet.  Each measurement run is shown on a separate sheet with
reference to the corresponding IK data sheet and wind data sheet, if
available.  The sampling point is defined by three  numbers, as
explained previously.  Hence (20.7/280/4.3) is the  point 20.7 meters
from the NW spray nozzle, 280 degrees clockwise from north, and 4.3
meters above water level.  It should be reiterated  that in the case of
                                   100

-------
 westerly winds when the barge was positioned east of the modules, the
 reference point became the NE spray nozzle.   The explanation of the
 nomenclature for the PILLS/SP droplet size distribution data has been
 explained in the cooling tower data format section and hence will
 not be repeated here.   Relevant ambient meteorological information
 at the time of the run (average wind speed and direction, wet bulb/dry
 bulb air temperatures) is included on this sheet together with
 conditions at the instrument package (wet bulb/dry bulb air temperatures,
 wind speed and direction distribution)  and the canal  water temperature.
 Data from the isokinetic sampling system is  presented on three data
 sheets at the end of the PILLS/SP data  sheet group.   Each IK measure-
 ment point is listed according to position,  date and  time.   The
 nomenclature on these  sheets is the same as  that on  the cooling tower
 data sheets, except that the time-mean wind speed u at the measurement
 point replaces the time-mean updraft velocity vu for  the calculations
 of adjusted mineral  mass flux.   As  indicated by  Table I, no canal
 water analyses are available between 3/16 and 3/30,  1974, due to
 loss of the water samples.   Telephone communication with FP&L
 established that  the sodium  concentration did not  change more  than  ±3%
 around the  average value of  the concentrations measured  on  3/15 (11,875
 mg/1)  and  3/31 (11,575 mg/1).   Thus  the  concentration data  obtained on
 3/15 were  utilized to  reduce  the  IK  data  of  3/18 and  3/19 whereas the
 canal  water concentration of  3/31 was used to reduce  the IK data
 obtained on 3/26  or  earlier.

 It  should be  noted  that  the  final values  in  both PILLS/SP and  IK data
 take the form of  drift water  flux and adjusted mineral mass  flux,
 respectively.   If such data could be obtained within  a plane that is
 perpendicular to  the wind velocity,  the flux  data could  be  integrated
 over the geometrical extent of  the drift  plume in that plane to
yield  the total mass of  drift water or the adjusted mineral mass
emitted by  the  spray modules.   However, to obtain such flux data
 together with  the  geometrical extent of the drift plume, winds
sufficiently  steady  in both direction and speed are necessary over
an estimated  period of 8 to 12  hours for the  instruments and techniques
described.  The quantification of "sufficiently steady" could be one
of the results of an analysis of these data.

The  third type of data sheet in this appendix presents the wind speed
and direction data recorded on the PHA during each sampling period.
These sheets give the percentage of total time during the sampling
period that the wind was in a certain wind speed range and was from a
certain wind direction in relation to the barge orientation.  These
data indicate  the amount of angular variation in wind direction with
the front of the barge referenced as 0°, plus the per cent of time
the wind came from each direction.
                                 101

-------
Initially, problems were encountered on the barge with conditioning
the signals from the anemometer and wind vane for input to the pulse
height analyser (PHA).  These difficulties  account for the occasional
absence of this data in the wind speed and direction distribution tables
corresponding to the runs made before March 27, 1974.  It was not
foreseen before  the spray module test that the wind speed and
direction data would be stored in the PHA.   Consequently, in the first
part of the test, this mode of data acquisition was given low priority
and when these data are not shown, the data from the wind instruments
on the meteorological tower must be consulted instead.

Spray Module Data Analysis Example

Some examples of data extracted from the spray module data section and
displayed in graph form are given in Figures 18 to 22.  Each figure
represents PILLS/SP or IK data as a function of height above the
water level for a fixed distance from the spray modules.   Drift flux
and mass median diameters are plotted in Figures 18, 19,  and 21.
Sodium and magnesium mass flux are plotted in Figures 20 and 22.
Figures 19 and 20 illustrate data measured at the same time and
position by the PILLS/SP and the IK system, respectively.  A comparison
between the two figures shows that both drift flux and adjusted
mineral mass flux decreased with increasing height above water.  A
comparison of Figures 21 and 22 also shows a similar relative agreement.
That is, the drift flux and mineral mass flux are highest for the
middle value of height above water.

These graphs are not meant to be comprehensive by any means, but merely
serve to illustrate some rudimentary data manipulation and grouping
which might preface a full scale data analysis effort.  These graphs
illustrate change of PILLS/SP data with height.  Other means of
illustrating the results such as plots of the data vs. wind speed,
distance from spray modules, etc., would also prove enlightening.
However, as stated previously, a full scale, in-depth analysis
was not within the scope of this report.
                                  102

-------
1 E5  P—
5 E4  —
DATE:  2/1/74
DISTANCE FROM NW OUTBOARD NOZZLE:   36.6  meters
WIND FROM THE EAST
WIND SPEED IN km/hr IS LISTED BELOW EACH CONCURRENTLY  ACQUIRED DATA PAIR
                       o  -   DRIFT  FLUX
                                 a  -  MASS  MEDIAN  DIAMETER
I/I
(N
_ CT 1 E4
o zl
^^ A
X
^ 5 E3
t—
Ll_
O



1 FT


	

—
•__


-









o

D— I

O-





o
D
D




o-

-

—

	

—~~

—
— 5.4 10.1 10.8








1
- —

1 1
120

100 £
3.

80 g
i —
LU
60 i
Q
40 1
o
LU
20 ^
OO
00
s:
                                                     8
                                  HEIGHT ABOVE WATER, meters
                                                    10
12
          Figure  18.
        Spray module  test:  Drift flux, as measured by PILLS/SP,  and
        droplet mass  median diameter vs. measurement height.

-------
     1  E5 ,—
     5 E4 —
CM
 E
     1 E4  —
     5 E3  —
     1 E3
                DATE:  3/26/74
                DISTANCE FROM NW OUTBOARD NOZZLE:
                WIND FROM THE SOUTHEAST
                                                               36.6 meters
— w.mu or ecu in MM/IK 10 LIJIC.U
= o - DRIFT FLUX a
^^"^
—

—
^^__
—
—


—


o


a





10.8



0
o

a
a



14.4 12.6

1
oci_un Lnixii VjUiiV'UrxiM.ii i i- i
- MASS MEDIAN DIAMETER




a


o

15.1

1
rvov^UiiM-u un i n



^—
	

	

	

1
120 1
100 £j
LU
80 |
_,
60 2
o
UJ
40 ^
A to
                                                         8
                                      HEIGHT ABOVE WATER, meters
                                                          10
12
Figure 19.
                        Spray module test:  Drift flux, as measured by PILLS/SP.  and
                        droplet mass median diameter vs. measurement height.

-------
     2000
                          10.8
                          O
     1500
                                 DATE:   3/26/74
                                 DISTANCE  FROM NW OUTBOARD
                                 NOZZLE:   36.6 meters
                                 WIND  FROM THE SOUTHEAST
                                 WIND  SPEED IN km/hr IS LISTED ABOVE
                                   EACH  DATA  PAIR
                                                G -  F<
                                         14.4
                                          O
                                                       Na
                                                       Mg
                                                    12.6
                                                    O
to
CO
1000
\f>
=
T
      500
                                                                         15.1
                                                                          O
J.
±
_L
                                     _L
                                                      J_
                                                   ±
                123456789
                                HEIGHT ABOVE WATER, meters

              Figure  20.   Spray module test:  Adjusted mineral mass flux vs.
                          measurement height.

                                           105
                                                                           10

-------
                                 DATE:   3/30/74
                                 DISTANCE FROM NE OUTBOARD NOZZLE:  73.2 meters
                                 WIND FROM THE SOUTHWEST
                                 WIND SPEED IN km/hr IS LISTED BELOW EACH CONCURRENTLY ACQUIRED  DATA PAIR
                                 o  -  DRIFT FLUX
a -  MASS  MEDIAN DIAMETER
o
en
    01
    0£
    o
—
1 E4

5 E3


i ri
	 DO
	 D
O
0 0
	
	 X
20.5 21.1 25.3 '
1 1 1 1 1
120
100

80
60
^
ff

       6           8

HEIGHT ABOVE WATER, meters
                                                                      10
             12
                                                                                                C£
                                                                                                UJ
                                                                                                I/)
                                                                                                oo
             Figure  21.   Spray module test:  Drift flux, as measured by PILLS/SP,  and
                         droplet mass median diameter vs. measurement height.

-------
                      DATE:   3/30/74
                      DISTANCE  FROM  NORTHEAST OUTBOARD NOZZLE:  73.2 meters
                      WIND  FROM THE  SOUTHWEST
                      WIND  SPEED IN  km/hr IS LISTED ABOVE EACH DATA PAIR
   1400
                      O  -
                                     D  -
  "Mg
 (/)
 •
rv
 E
^
 n
 •i
x
I/J
CO
   1000
Q
LU

CO
13

O
    500
                                                     21.1
                                                      O
                                  20.5
                                   O
                                                                         25.3
                                                                          O
                              _L
                                    J_
_L
_L
                                                       J.
                               45678
                              HEIGHT ABOVE WATER, meters
                                                                   10
                               11
                               12
        Figure 22.   Spray module test:  Adjusted mineral mass flux vs. measurement
                    height.
                                         107

-------
                             SECTION VIII

                              REFERENCES
1.   An Evaluation of the Feasibility of Salt Water Cooling Towers for
    Turkey Point.  For Florida Power & Light Company by Southern
    Nuclear Engineering, Inc., Dunedin, Florida.   Report No.  SNE-54.
    February 1970.

2.   Henderson, C.D., and S.H.  Dowdell.  A Test Program on Environmental
    Effects of Salt Water Mechanical Cooling Devices.  Florida
    Power & Light Company.  (Presented at the Cooling Tower Environment
    1974 Symposium.  Washington, D.C., March 4-6, 1974) 15 p.

3.   CANALS COOL FLORIDA'S STATION DISCHARGE.  Electrical World.
    182(4):39-41, August 1974.

4.   United States District Court for the Southern District of Florida.
    Final Judgement, Civil Action No. 70-328-CA.   September 10,  1971.

5.   Environmental Systems Corporation.  Development and Demonstration
    of Low-Level Drift Instrumentation.  U.S. Environmental
    Protection Agency.  Washington, D.C.  EPA-16130GNK10/71.   October
    1971.

6.   Rainwater, F.  Unpublished Memorandum.  U. S. Environmental
    Protection Agency.  Corvallis, Oregon.  October 1973. 2 p.

7.   An Evaluation of the Powered Spray Module for Salt Water Service
    for Turkey Point.  For Florida Power & Light  Company by Southern
    Nuclear Engineering, Inc., Dunedin, Florida.   Supplement No. 1 to
    SNE-54.  May 1970.

8.   Final Environmental Statement Related to Operation of Turkey Point
    Plant.  U.S. Atomic Energy Commission, Washington, D.C.
    July 1972.
                                108

-------
  9.   Shofner,  P.M.,  G.O.  Schrecker,  T.B.  Carlson,  and  R.O.  Webb.
      Measurement  and Interpretation  of  Drift  Particle  Characteristics.
      Environmental Systems  Corporation.   (Presented  at the  Cooling
      Tower  Environment  -  1974  Symposium.   Washington,  D.C.  March 4-6,
      1974.)  23 p.

 10.   Shofner,  P.M.,  Y.  Watanabe,  and T.B.  Carlson.   Design  Considera-
      tions  for Particulate  Instrumentation by Laser  Light Scattering
      (PILLS) System.  ISA Transactions  12.  January  1973.   21 p.

 11.   Shofner,  P.M.   Explicit Calibration  of the PILLS  II System.
      By  Environmental Systems  Corporation  for the  U. S. Environmental
      Protection Agency.  Washington, D.C.  EPA-660/2-73-011.  September
      1973.
       V
 12.   Chilton,  H.  Elimination  of  Carryover from Packed Towers with
      Special Reference  to Natural Draught  Water Cooling Towers.
      Trans.  Instn. Chem. Engrs.   30:235-250.  1952.

 13.   Golovin, M.N., and A. A.  Putnam.  Inertial Impaction of Single
      Elements.  Battelle Memorial Institute.  Columbus, Ohio.   I&EC
      Fundamentals 1(4):264-273.   November  1962.

 14.   Margetts, M.J., and P.M.  Shofner.   Characterization of the Drift
      Emissions of a Natural  Draft Cooling Tower and Examination of the
      Sensitivity to Operational Parameter Variations.  (Presented to the
      Joint Power Generation Conference.   New Orleans, Louisiana
      September 16-19, 1973.) 9 p.

 15.   Shofner, P.M., G.O. Schrecker,  and  K.R.  Wilber.   Characterization
     of Drift Emissions  and  Drift Transport for Representative Cells of
      the K-31 and K-33 Cooling Towers.   Environmental Systems
     Corporation for Union Carbide Corporation.   Oak  Ridge,  Tennessee
     October 1972.

 16.  Jallouk, P.A., G.J. Kidd,  Jr.,  and  T. Shapiro.  Environmental
     Aspects of Cooling  Tower Operation:   Survey of the Emission,
     Transport, and Deposition  of Drift  from the K-31 and  K-33 Cooling
     Towers  at ORGDP. Union Carbide  Corporation Report Number K-1859.
     Oak Ridge, Tennessee.   February  1974.

17.  Holmberg,  J.D.   Private Communication.  1974.

18.  Orr, C., Jr., K.  Hurd,  and W.T.  Corbett.  Aerosol  Size  and
     Relative Humidity.  Journal  of Colloid Science.   13:472-482
     July 1958.                                      —
                                 109

-------
19.   Wilber, K.R.   An Experimental  Approach to the Evaluation of
     Mesh Collection Efficiencies Using Mechanism of Inertial  Impaction.
     Master's Thesis.  University of Tennessee.   June 1974.

20.   Westinghouse Electric Corporation.  The State of the Art of
     Saltwater Cooling Towers for Steam Electric Generating  Plants.
     U.S. Atomic Energy Commission.  Washington, D.C.  February 1973.

21.   Schrecker, G.O., K.R. Wilber,  and P.M. Shofner.  Prediction and
     Measurement of Airborne Particulate Concentrations from Cooling
     Device Sources and in the Ambient Atmosphere.  Environmental
     Systems Corporation.   (Presented at the Cooling Tower Environment -
     1974 Symposium.  Washington, D.C.  March 4-6, 1974.) 21 p.

22.   Schrecker, G.O., S.L. Williams, P.M. Shofner.  Atmospheric
     Dispersion of Cooling Tower Slowdown.  Environmental Systems
     Corporation.   (Presented at the Symposium on the Physical and
     Biological Effects on the Environment of Cooling Systems and
     Thermal Discharges at Nuclear Power Stations.  Oslo, Norway.
     August 26-30, 1974) 14 p.

23.   Shofner, P.M., J.D. Womack, and K.R. Wilber.  Ambient Sea Salt
     Measurements in the Forked River, New Jersey Environs July
     1972 - August 1973.  Environmental Systems Corporation for
     General Public Utilities.  Parsippany, New Jersey.  August 1973.

24.   Rainwater, F., and J. Thatcher.  Methods of Collection and Analysis
     of Water Samples.  U.S. Geological Survey.  Washington, D.C.
     Water Supply Paper #1454.  1960.

25.   Glass, S.J. Jr., and M.J. Matteson.   Ion Enrichments in Aerosols
     Dispersed from Bursting Bubbles in Aqueous Salt Solutions.
     Tell us.  15  March 1973.
                                   110

-------
                               SECTION IX
                                GLOSSARY
TEXT NOMENCLATURE
As -           collection area of sampling device (sensitive paper, IK
               tube, APS mesh, deposition funnel)
APS -          Airborne Particle Sampler
C|< -           concentration of the Ktn element or compound in the
               cooling water, mass of solute per unit volume of
               solution
Cj< -           average concentration of the Kth element or compound
               in the cooling water, mass of solute per unit volume
               of solution
^k Ref "       reference concentration of the Kth element or compound
               in the cooling water, mass of solute per unit volume
               of solution
D -            rate of drift mass emission
dp -           salt deposition flux, mass of salt per unit area and unit
               time
d~i -           drift droplet center diameter for the droplet size
               range Adi
Ed-jsc -        collection efficiency of a sensitive paper disc
               collector
^strip "       collection efficiency of a sensitive paper strip
               collector
EPA -          Environmental Protection Agency
ESC -          Environmental Systems Corporation
                                 111

-------
F|
-------
p(d) -         particle density distribution as defined  by  Equation  (1)
PHA -          Pulse Height Analyzer
PILLS -        Particulate Instrumentation by Laser Light Scattering
R -            mass flow rate of the circulating water
RPM -          rotations per minute
s -            second
scw -          density of the circulating water
s-j -           representative density of drift droplets  in  size
               range i
sw -           density of pure water
s -            average density of drift droplets of all  size classes
SP -           Sensitive Paper
ts -           sampling time
u -            time-mean horizontal wind speed
Vs -           sampled air volume
vuj -          vertical component of the time-mean air updraft velocity
               at position j
vt-j -          settling velocity of a water droplet with diameter cTj
Bi -           sensitive paper correction factor for droplet size
               range i
A -            drift fraction as defined by Equation (8)
AAj -          section of the cooling tower fan stack exit plane
               associated with position j
AD-jj -          drift mass emission rate in the droplet size  range i
               at position j
                                  113

-------
     -         drift mass flux in droplet size range i  at position j
 AA
Adi -          drift droplet size interval of droplet size range i

Amki -         rate of emission of the Kth element or compound at
   J           position j

Amj*. -         rate of adjusted emission of the K^1 element or compound
   ^           at position j

AN-jj -         number of droplets in droplet size range Ad^ measured at
               position j

A X-jj -        drift mass concentration in droplet size range i  at
               position j, mass of drift droplets per unit volume of
               air

AXjj .
~A~a            drift mass density distribution in droplet size range i
               at position j, mass of drift droplets per unit droplet
               size range and unit volume of air

m^ -           mass fraction of the K^1 element or compound as defined
               by Equation (25) and (26)

ug -    -       micrograms

ym -           micrometers

kj -          mass concentration of the Ktn element or compound at
               position j, mass per unit volume of air
    -          adjusted mass concentration of the K^ element or
               compound at position j, mass per unit volume of air

X. -           drift mass concentration at position j, mass of drift
 J             water per unit volume of air

X.J IK -        drift mass concentration at position j as calculated from
 J             IK data with the assumption that the mineral concentra-
 /or x'. \        tion in the drift droplets is the same as that of the
     J         cooling water (apparent drift mass concentration)

0 -            angle between magnetic north and a line from reference
               position of the spray modules to PILLS' sampling volume
                                 114

-------
DATA SECTION NOMENCLATURE
C -            APS data comment code
CJv|a -          average concentration of magnesium in basin or canal  water
C~ma -          average concentration of sodium in basin or canal  water
D(CEN) -       center diameter of droplet size range DEL D
D(HI) -        upper droplet diameter of size range DEL D
D(LOW) -       lower droplet diameter of size range DEL D
d -            distance from spray module reference point to
               measurement position
DEL D -        same as Adj in text
DEL X -        same as AXi in text
DEL X/DEL D -  same as AXi/Ad in text
DEL FLUX -     same as AD^/AA in text
DEP -          same as dp, sea salt deposition flux
h -            height of instrument package above water level during
               spray module test
I -            drift droplet size range index
P(D) -         same as p(d), particle density distribution
PHI -          same as <|>, air salt concentration
Ta -           tower exit air temperature
Tdry -         ambient dry bulb temperature
Ti -           hot water temperature
T0 -           cold water temperature
Twet -         ambient wet bulb temperature
                                  115

-------
                               SECTION X
                               APPENDICES
                                                                    Page
A.  Chronology of Events                                             117
B.  Cooling Tower and Powered Spray Modules Operations Log           121
C.  Airborne Particle Sampler Data                                   123
    C-l.  APS Data                                                   125
    C-2.  APS Procedural Background Data                             235
    C-3.  APS Mesh Background Data                                    241
D.  Deposition Data                                                  246
E.  Drift Emission Data for the Cooling Tower                        324
F.  Cooling Tower Drift Emission Data Acquired for Florida
    Power and Light Company                                          415
G.  Drift Emission Data for the Spray Modules                        439
H.  Manufacturer's Specifications for Cooling Devices                504
    H-l.  Marley 600/700 One Cell Wet Mechanical
          Draft Cooling Tower                                        505
    H-2.  Ceramic Cooling Tower Company's Powered Spray
          Module                                                     517
I.  Statements from Stewart Laboratories, Inc.                       526
                                  116

-------
                               APPENDIX A

                          CHRONOLOGY OF EVENTS


 In order  to provide an overview of the proceedings of the contract
 work, the major events and time periods of the contract are listed
 in chronological order in the following:

 June 29,  1973:  Contract award.

 July  1  -  August 23, 1973:  Definition of the  test program; construc-
 tion and  installation of APS equipment.

 August  7, 1973:  Turkey Point briefing session in Knoxville,
 Tennessee.  Discussion and finalization of the Turkey Point test
 program.  Attendees:  representatives of EPA  offices in Corvallis
 and Research Triangle Park, National Oceanic  and Atmospheric Agency,
 FP&L, and ESC.

 August  24 - November 22, 1973:  Intensive ambient airborne sea salt
 sampling  program (5 runs/week).

 November  23, 1973 - January 30, 1974:  Less intensive airborne sea
 salt sampling program (3 runs/week).

 November 27 - December 17, 1973:  Construction of the barge and
 installation of the barge rigging.  Construction and installation
 of the cooling tower rigging.  Assembly and installation of two
 spray modules.

 December 7, 1973:   Delivery of the "Preliminary Ambient Salt
 Sampling Report" to EPA and FP&L.

 January 21 - 23, 1974:   Arrival  of ESC test crew on  site.   Start
 of winter test.   Installation of the test equipment  into the
 cooling tower rigging  and shakedown.   First exploratory-type tests
 on the cooling tower.   Termination of the tests due  to  cooling tower
water pump failure.
                                 117

-------
January 24 - 29, 1974:  Test equipment is removed from cooling tower
and installed into the barge rigging.  Start of spray module emission
test was delayed by unfavorable wind directions.  Installation of
10 m meteorological tower east of the cooling tower.

January 30 - February 2, 1974:   Spray module drift emission test.
Start of intensive airborne sea salt samoling program (5 runs/week)
during the operation of one of the cooling devices.

February 4-6, 1974:  Reduction of data acquired during January 30 -
February 2.  Review of data and test procedure.

February 7-11, 1974:  Extension of barge tower from 30 to 40 ft.
height.  Installation and calibration of meteorological equipment on
10 m tower.

^ebruary 12 - 18, 1974:   Resumption of spray module drift emission  test.

February 15, 1974:  Turkey Point briefing session at Homestead.
Florida.  Presentation and discussion of data acquired during  the
spray module emission test.  Presentation and discussion of pre-
liminary ambient sea salt data analyses performed by EPA Corvallis.
Discussion of satellite program at Turkey Point.  Attendees:  repre-
sentatives of EPA Office of General Counsel, EPA offices at Corvallis,
Research Triangle Park and Atlanta, FP&L, Ceramic Cooling Tower Company
and ESC.

February 19 - 22, 1974:   The spray module emission test was inter-
rupted because EPA asked for concurrent cooling tower drift emission
and vapor plume tests.  The plume test was to be conducted by an EPA
test crew.  ESC's test equipment was moved from the barge to the cool-
ing tower.  Shakedown of equioment.

February 21 -26, 1974:  Measurement of velocity and temperature pro-
files on the cooling tower.  Cooling tower drift emission test con-
current with EPA's plume test.

February 27 - March 8, 1974:  Interruption of test and review of
acquired cooling tower drift emission data.   This unscheduled re-
view was initiated because EPA requested a deferral  of the spray
module test until March 12-15 to accomodate the terrestrial effect
studies of Dr. L. Rani ere, NERL, Corvallis, who needed continuous
cooling tower operation during this period of time.

March 9 - 15, 1974:  Resumption and conclusion of the cooling tower
drift emission test.
                                  118

-------
 March 16 - 17, 1974:   Test equipment moved from cooling tower to
 barge.

 March 18 - 31, 1974:   Resumption and conclusion of spray module
 drift emission test.

 Aoril 1, 1974:  Start of increased frequencv of airborne sea salt
 sampling during operation of one of the coo'ling devices.  The fre-
 quency was increased from 5 to 6 runs per week"

 April i - 3,  1974:  Removal of the PILLS, IK and SP equipment from the
 site.  Conclusion of winter test.

 April 1 - June 30,  1974:   Data reduction and Interim Report  orenara-
 tion.

 July 3, 1974:   Delivery  of the Interim Report  to EPA and FP&L.

 July 1  -  15,  1974:   Preparation  for  the summer test.

 July 16_- 19,  1974:   Arrival  of  ESC  test crew  on site  for  the
 Summer  iest.  Installation  of  the  equipment  into the  coolina  tower
 rigging.

 July 19,  1974:   Termination of the airborne  sea salt deposition  flux
 monitoring  program which  is one part  of the  airborne sea salt sampling
 program.  The  other part,  the  airborne  sea salt concentration monitor-
 ing  program, is  continued.

 July 19 - 24,  1974:   Drift emission test on  the  SW-NE diameter of
 the  cooling tower.

 July  24,  1974:  Termination of the data acouisition at Turkey Point.

 July  24-26,  1974:   Removal of ESC equipment from the site.

 August 8, 1974:  Turkey Point briefing session at Atlanta, Georgia:
 ESC  reported on the amount of data acnuired at Turkey Point.   It
was  discussed particularly whether the data satisfied the provisions
 set  forth in the court decree.  This question was answered affirma-
 tively.   Discussion of the Interim Report and of the format of the
 Final Resort.   Attendees:   representatives from the EPA offices  in
 Corvallis, Research Triangle °ark and Atlanta,  FP&L,  The Marley
 Company and ESC.

August - September,  1974:   Reduction of the recently  acquired and
examination of all  airborne sea salt concentration and airborne
sea salt deposition flux  data.
                                 119

-------
September - November, 1974:  Reduction of the recently acquired and
examination of all PILLS, SP and IK data.

October 1, 1974:  Delivery of all airborne sea salt concentration data
to EPA.

November - December, 1974:  Preparation of the first draft of the
Final Report.

December 21, 1974:  Delivery of the first draft of the Final Report to
EPA and FP&L.

April 12, 1975:  Delivery of the second draft of the Final Report to
EPA and FP&L.

June 17, 1975:  Delivery of the third draft of the Final Report to
EPA and FP&L.
                                  120

-------
                              APPENDIX B

               COOLING TOWER AND POWERED SPRAY MODULES
                            OPERATIONS LOG

  Date       	Spray Modules	     	Cooling Tower	

Prior to                                   Tower was run a total of
Jan- 21                                    approximately 12 hours by
                                           The Marley Company.

Jan. 21                                    6 hours
     22      1100-1600, 1700-1800          1300-1630
     23      ran about 30 minutes
             around 1700                   1030-1500
     24
     25

     26                                    1200-1730
     27
     28
     29      1000-1800
     30      0900-1900
     31      0830-1900

Feb.  1      0830-1910
      2      0900-1330
      3
      4
      5
      6
      7      1130-start 24  hr.
             operation

     16      off  1000-transformer down
     18      1000-1900
     19                                    1045-1730
     20                                    0945-1915
     21                                    0930-start 24  hr. operations
                                121

-------
              COOLING TOWER AND POWERED SPRAY MODULES
                     OPERATIONS LOG (continued)

  Date       	Spray Modules	     	Cooling Tower

Mar. 18      1300-1900                     off 0800
     19      1000-1300
     20
     21
     22      0930-0935

     23
     24
     25      0900-0905
     26      1100-1500
     27      1535-1845
     28
     29
     30      1320-1355, 1530-1940
     31      1210-1730

Apr.  8                                    on 0830
     14      0800-2300 transformer down    off 0800
     17      on 1600
     21      off 1640                      on 1640
     28      on 0900                       on 0900

May   5      off 0800                      on 0800
     13      on 1025                       off 1025
     19      off 0800                      on 0800
     26      on 0800                       off 0800

June  2      off 1455                      on 1455
      9      on 0800                       off 0800
     16      off 0800                      on 0800
     23      on 0800                       off 0800
     30      off 1050                      on 1050

July  7      on 0800                       off 0800
     14      off midnight
     15      0940-1330
     16      0740-1315
     17                                    on 0940
     25                                    off 1515
                                122

-------
                               APPENDIX C
                     AIRBORNE PARTICLE SAMPLER DATA
C-l APS Data
C-2 APS Procedural Background Data
C-3 APS Mesh Background Data
                                  123

-------
                                        SAY
N
;:;Figure 23.  Airborne Particle
^ampler station locations.
^Distances in meters.
                            124

-------
APPENDIX C-l



  APS DATA
   125

-------
FORMAT FOR DATA PRESENTATION - AIRBORNE PARTICLE SAMPLER DATA
Note:  For more detailed descriptions of column headings see text
       Section VI "Formats for Data Presentation".
ST #
PHI
C
VOLUME

NET SODIUM

TIME
WINDSPEED

WIND DIR
Identification of APS sampling station location.
Apparent atmospheric sea salt concentration, ug/m3.
Comment code:
0 - good run
1 - sample caught in light rain
2 - sample caught in heavy rain
3 - possible contamination due to insects on the
    mesh-pair.
4 - possible contamination from dust.
5 - other comments or a combination of the coded
    comments; supplemented with a written footnote.
9 - whitecaps on the bay.
Volume of air sampled by the mesh-Dair for the
run, m3.
Total  sodium as verified by chemical  analysis
minus  the average procedural background for the
mesh pair, ug of sodium.
Time of day at the start and end of a run.
(Note:  daylight samoling only.)
Average wind speed measured for one minute at
the start and end of a run, km/hr.
Direction from which the wind is blowing at the
start and end of a run, reoresented by integers
from 1 to 16 corresoonding to a 16-point wind
rose with 1 as north, 5 as east, 9 as  south, and
13 as  west.
                                   126

-------
DRY BULB TEMP & DIFF
RELAT HUMID
COOLING DEVICE CODE
Dry bulb temperature and the difference between
the dry bulb and wet bulb temperatures measured
at the start and end of a run, °C.

Example:  Run #1, station #3.  Tdry (start)=31.1°C,
Twet (start)=27.8°C, Tdry-Twet=3.3*C; therefore,
DRY BULB TEMP & DIFF =31.1 I 3.3.
Relative humidity at the start and end of a run,
0 - no cooling device operating.
1 - cooling tower operating.
2 - spray modules operating.
Note:  Input data for all runs were checked at least twice and found to
be correct.  Input for runs containing results which appear to be "out
of line" with concurrently-acquired data at other station locations  were
checked again for correctness, therefore, no written footnote to this
effect will be included.
                                  127

-------
IM
00
RIJMH
ST
*
3
4
5
6
PUN«
ST
4
5
RUN*
ST
1
3
4
5
1
PHI
li. IB
0.54
0.94
3.54
?
PUT
5. (11
4. If.
3
PH!
7.21
7.15
6.69
7.00
6.7?
HATE: F/24/n CrrL
r
2
i
V-ILIIMC
190/1
2P7.3
403.3
313.3
NET
11.0
47.5
116.3
339.3
INT, JEVICF
TIMF
START /END
1104/1306
1031/1332
955/1403
1240/1553
naTP: P./24/73 COOLING TFVICF
C
0
0
PUT
r
0
0
0
0
n
VOLUME
111.6
125.0
F: fl/25/
VPl JME
151. h
127.5
291.5
14 H. 6
416.9
NFT
SODIUM
171.3
155.3
71 C'lOL
NTT
142.3
275.3
597.3
747.3
899.3
TIME
STA1T/ENP
1541/1650
1520/L633
INC, OFVICF
| | Sd C
1301/1439
1311/1429
121 't /1 5 1-7
1146/1532
UP3/1544
cmc-=o
WINUSPEED
STAP T/CNO
19. 4/ 6.4
14.6/20. 8
10. 4/17.0
R. 0/18. 8
CPDE=0
WINDSPEED
START/END
22.0/16.4
22.1/14. I
cnnf=o PRFC
WINOSPf-ED
START/FND
12.2/11.5
12.2/11.5
16.4/17.7
l'J.l/17.8
16.7/14.1

WIND DIR.
START/END
8/ 7
>/ 6
7/ 7
7/ 6

WIND DIR.
START/END
5/ 6
5/ 5
ISION RUN
WIND DIR.
START/END
6/ 6
hi 6
7/ 8
7/ 7.
5/ 6

DRY BULD TE»1P C
START/END
31. 1C 3.3/30.0C
31. 1C 3.3/31.7C
31. 1C 3.3/32.8C
32. BC 4.4/30.0C

DRY BULB TEMP C
START/END
30. 6C 2.2/29.4C
30. 6C 2.2/29.4C
ERROR= 3.1*
DRY BULB TEMP C
START/END
30. 6C 3. 3/31. 1C
30. 6C 3. 3/31. 1C
31. 7C 3.9/J1.1C
31. 1C 3.3/31.7C
31. 1C 3.3/32.2C

DIFF
1.7
2.8
4.4
1.7

DIFF
2.2
2.2

DIFF
3.
3.
3.
3.
3.
                                                                                                    RELAT
                                                                                                    HUMID

                                                                                                    77/88
                                                                                                    77/81
                                                                                                    77/71
                                                                                                    71/88
                                                                                                     RELAT
                                                                                                     HUMID

                                                                                                     85/84
                                                                                                     85/84
                                                                                                    RELAT
                                                                                                    HUMID

                                                                                                    77/77
                                                                                                    77/77
                                                                                                    74/77
                                                                                                    77/78
                                                                                                    77/75

-------
      » UN*
       I
       2
       3
       4
       5
       A
           owl
      f. .03
      5.12
      5.IS
      5.5fl
      5.T3
0
n
o
    ::  f/27/73    C,'

    VI Uf-'r      M^T
537.7
6 I ? . 3
M7.3
'.85. 3
(.00.3
•3.15.3
                                           TIME:
                                                   rrnE=o
                                                        PRECISION RUN  fcRROR= 7.3*
                                         1314/17*3
                                               WINDSPPED
                                                                  WIND DIP.
                                                                  STAFT/EMD
17.6/20.1
1 f.b/20. I
22.1/18.0
If.. 6/18. 8
12.8/13.7
14.6/15. 1
3/ 4
3/ 3
3/ 3
DRY BULB  TEMP. 6 OIFF    RELAT
    START/END           HUMID

31.lt ^.9/29.4£ 3.3     74/77
31.IF. 3.y/29.4C 3.3     74/77
30.5C 3.3/28.9C 2.8     78/80
32.8C 3.9/29.4C 3.3     75/77
32.26 3.9/28.9£ 2.8     75/80
31.1C 4.4/31.U 3.9     71/74
ro
to
ST
           FUJ
                                 NET
                                 cnor=o     PRFCISIHN RUN  ER<>nR = ii.9i:

                                   WIIMD5PFE11
                                                            STA*T/«END
1
2
3
4
5
5.
5.
5.
5.
5.
?6
"ft
34
SO
12
0
0
n
0
n
24-2.
?27.
37R.
40?.
516.
fi
5
7
1
3
3hr'
'tlb
619
677
309
.-<
.3
.3
.3
.3
115t>/1421
1 15-*/l',24
1117/1516
1053/1526
1033/1544
16.3/13.4
16.1/13.4
2-1.8/19.2
15.2/16.6
11.0/13.2
2/
2/
2/
2/
21
2
2
4
4
3
                                                                              DPY BULK  TuMp t 0| FF    RELAT
                                                                                  START/LND           HUMID

                                                                              30.6£ 3.0/30.6C 3.9     74/74
                                                                              30.6£ J.9/30.6& 3.9     74/74
                                                                              31.1C 3.9/31.7C 4.5     74/71
                                                                              31.1C 3.9/31.7C 4.5     74/71
                                                                              30.OC 3.3/32.8C 5.0     78/68

-------
s T
 4
 s
           ,\Tr :

          r   v:un-
 21.1
 77.0
                         S1DIUM
                             START/FND

                             nor/1120
                             CTif =0

                               A'I \DSPFED
                               STAKT/FND
                                             TO.
                                             lfl.6/20.5
    WINO DIR.    D«Y BULB TPMP C 01 FF   PFLAT
    STAH/FND        STAPT/FNO          HUMID

       6X 8      30. 0£ 2.2/2A.7C 0.0    85/99
       6/ 8      28.9C 2.8/26.7C 0.0    80/99
«

I

3

5
6
       7   r»ATr:

     PUT   C
1.13  0
3.lfl  o
2.77  0
?.ft4  n

1.61  0
IP 0.0
173.^
2S2.0
11 4.2
   CTLIN-.

 NCT      T


172.3
PPi
                          352.3
                          24?-.1
                                  11^3/1335
                                                     :isnKJ RUN

                                                      MINI) DIR.
                                                      START/END
13.5/14.2
11. -5/14. 2
18.6/21.9
17.3/18. 7
14.3/22.1
17.3/16.4
7/ 7
If 7
7/ d
7/ 7
5/ 6
If 7
                 OPY BULS TFMP  e  OIFF   RFLAT
                     STABT/END           HUMID

                 10.6C 3.4/31.1S  3.3    77/77
                 30.6f. 3.4/31.1C  3.3    77/77
                 30.OC 3.1/31.7£  3.9    78/74
                 30.OC 3.3/31.16  3.9    78/74
                 31.1C 5.5/31.0C  3.8    64/74
                 27.8C 2.2/31.1C  3.9    84/74

-------
           narr:
                                    OEVICE COOE=O
                                            PRECISION PUN EPROR= 3.OH
T
*
1
2
3
4
5
DHI

5.rif>
5.71
5.01
5.69
s.'.n
r

i
r>
0
0
n
V3LU«"

ltd.S
158.?
309.0
323.1
380.3
HFT
SODIUM
?87.3
277.3
D59.3
562.3
652.3
TIM?:
START/FND
1224/140P
1233/1404
1125/1431
lll?/1440
1055/1447
WTNOSPEED
START/END
14.5/16.3
14.5/16.3
19.2/15.3
16.6/14.6
11.8/16.7
WIND DIR.
START/END
S/ 6
6/ 6
6/ 7
6/ 6
5/ 5
                                                                      DRY BULB  ~EMP 6 OIFF    RELAT
                                                                          START/END           HUMID

                                                                      28.9C  2.3/30.0C 3.3     80/78
                                                                      28.9C  2.a/30.0£ 3.3     80/78
                                                                      28.3C  2.2/30.66 3.4     84/77
                                                                      28.3t  2.2/30.0& 2.2     84/85
                                                                      27.8t  2.2/30.6C 2.3     84/84
IJ'I*
DAT:  
-------
?UM«
ST
ft
1
7
3
4
5
6
i in
PHI

0.69
n.7f>
0.61
0.62
n.si
0.56
niTc: q/iu/73 CPPI
r

0
0
0
0
0
n
VM.U»ii

183.1
169.6
3*3.8
37d.O
*7*.7
393.5
NET
SfTMUM
38.6
36.6
63.7
71 .5
7*. I
67.9
irv> ')£vicp cmc=o PRECISION RUN
TIME
START/END
1128/1318
1132/1320
1009/13**
950/1353
*>?*/ 14-00
10*7/1*52
V»ll»DSPEEn
START/FNP
10.8/15.3
10.K/15.3
13. */!*.*
•a.3/11. 7
9.0/ 5.8
14. */10.2
WIND DIR.
START/END
15/1*
15/1*
15/1*
13/1*
13/15
12/1*
                                                                            DRY  BULB TEMP G DIFF    RELAT
                                                                                START/END           HUMID

                                                                            32.2£ 5.6/33.9C 6.7     65/60
                                                                            32.2G 5.6/33.9& 6.7     65/60
                                                                            30.6£ 3.3/33.9C 6.7     77/60
                                                                            29.*£ 2.2/35.0E 7.2     8*/57
                                                                            28.3C 1.7/3*.*£ 7.2     88/57
                                                                            32.26 5.0/33.9C 7.2     68/57
u>
ro
RUN*
ST
*
1
7
3
*
5
6

11
PHI

1
I
1
1
1
n

.66
.OR
.33
.'0
.31
.16
DATC: 9/11
C

0
0
0
0
0
n
vui:

16.
13.
?in.
263.
2*0.
»35.
ME

7
2
H
6
0
I
/73
NF
S-'Ol
**
4?
99
06
96
128
CPOL
T
IJ
.
.
.
.
.
.

V
1
9
1
6
6
3
ING DEVICE
TIME
STA^r/FMD
1321/1*17
133J/1*19
1236/1*38
l?n/l**7
1150/1*56
1108/1529
fODF=0 PPEC
WINDSPEEO
STA9T/F.ND
31. 6/2*. 7
31. 6/2*. 7
17.5/27.5
17.8/26. 8
17.8/18.7
18.7/??.l
ISION RUN
WIND DIR.
START/END
13/1*
13/1*
13/13
12/1*
12/13
12/1*
                                                                            DPY  BULB TEMP £ DIFF    RELAT
                                                                                START/END           HUKID

                                                                            31.l£ *.4/10.06 3.9     70/74
                                                                            31.1£ *.4/30.06 3.9     70/7*
                                                                            30.0£ *.*/30.0£ 5.0     70/67
                                                                            28.96 3.9/30.06 *.*     73/70
                                                                            28.36 3.3/29.*£ *.*     76/70
                                                                            30.66 3.9/28.96 3.9     7*/73

-------
BUN*
ST 1
I
2
3
4
5
1?
>MI
.15
.21
.26
.17
.22
DATE: 9/1
C VUUMF
0 163.7
3 159.2
3 301.7
0 366.8
3 4?2.6
                                  CnnLING OFVICE COPF=0
                            PRECISION RUN ERROR=10.5*
 67.9
 59.1
116.3
Ml. 3
157.3
                                         MME      WINOSPEED   WIND  DIR.    DRY BULB TEMP C OIFF   RELAT
                                       START/END   START/END   START/END        START/END          HUMID

                                       1214/1354    8.5/ 9.7      7/  7      3l.lt  3.9/31.7C 4.4    74/71
                                       1216/1356    
CO
BUN* 13
ST
«
1
2
3
4
5
PUT

1 .80
1.86
1.25
1.R6
1.78
n«TE: 9/13/73 COOL I NO DEVICE CCDE=0 PRECISION RUN
r

0
n
0
0
0
VOLUME"

175.1
174.2
300.5
362.7
409.3
NFT
SODIUM
96.6
99.3
115.3
206.3
223.3
TIME
STAOT/FNH
1158/1350
1200/1352
1057/1414
1035/1426
1010/1439
WINDSPFED
START/END
5.4/ 7.9
?.4/ 7.9
7.6/11.8
8.0/13.3
9.9/in.O
WIND PR.
START/END
6/ 7
6/ 7
6/ 6
5/ 9
5/ 9
                                                                              =' 3.3*
                                            DRY BULB TFMP C DIFF    RELAT
                                                START/END           HUMID

                                            30.6C 3.3/33.3C 5.0     77/68
                                            30.6t 3.3/33.3C 5.0     77/68
                                            30.6C 3.3/31.1C 3.9     77/74
                                            30.6C 3.3/31.1C 3.9     77/74
                                            31.7f. 3.3/31.7C 5.0     78/68

-------
?UN*  14
9/14/7-*
. ING TfviCE cnnE=o
                                    PrECISIQN RUM ERROR*  7.7?
ST
n
\
7.
3
4
5
6
I'HI

1 .15
1..17
1.16
1.16
I. 10
1.07
r

0
n
0
0
0
n
VQLLIMF

82.3
df'.D
746.5
365.4
411.1
214.3
NET
<;inil|M
29.1
2ft. 1
87.o
129.3
138.3
70.4
TT*F
START/END
1314/1405
1317/1408
1141/1428
1104/1452
1O46/1501
1225/1440
WINDSPEEO
START/FNO
16. 2/ 8. 1
16. 2/ 8.1
10.5/18.1
11.8/14.8
10. O/ 8.3
H.8/12. 7
MIND PIR.
START/END
10/11
10/11
10/12
10/12
8/11
10/11
                                                    DRY  BUL1 TEMP 6 DIFF    RELAT
                                                         START/END           HUMID

                                                    32.86  5.6/32.86 6.7     65/59
                                                    32.86  5.6/32.86 6.7     65/59
                                                    32.26  5.0/33.36 6.1     68/62
                                                    31.16  4.4/33.36 6.1     70/62
                                                    31.76  5.0/33.96 6.7     68/60
                                                    31.76  5.0/33.96 6.7     68/60
RUNff 15
?T
*
1
2
1
4
5
PHI

?.7?
1.71
1.44
1.4?
1.70
HftTr:
r

O
0
'1
n
0
VTl

87
P6
\ 7(j
231
283
9/17/73
n-r

.5
.->.
.7
.4
.P
NE
SODI
72
45
78
100
147
COOL
T
(|v.
.n
.1
.1
.3
.3
ING DEVICE C3PE=0 PRECISION RUN ERROR=37.1*
TIMF
STAST/fND
1421/1518
1425/1520
1346/1539
132R/1548
130J/1558
WINOSPFED
START/END
12. I/ 9.1
12. I/ 9. 1
1?. 5/17. 7
15.4/16.0
10.2/13. 9
WIND DIP.
ST ACT/END
9/LO
9/10
8/10
9/ 8
10/10
DRY BULB TEMP 6 DIFF
STAFT/ENO
32.86 6.1/31.16 4.4
32.86 6.1/31.16 4.4
32.26 4.4/30.66 5.0
31.76 3.9/30.66 3.9
32.26 5.0/30.66 3.9
RELAT
HUMID
62/70
62/70
71/67
74/74
66/74

-------
ST
 U
 \k

PHI
            PATE:   9/18/71   COOLING DEVICE fODE=0
                            PRECISION RUN ERROR=45.0%
                VCl-U^F
NE:
                                              WINDSPEED
                             UM
                                                     WIND DIR.
                                                     START/END
I
?
3
4
5
?.S5
6.45
2.73
3.04
2.65
0
0
0
0
0
fto.o
60.4
143.9
199.2
?55.4
65.1
119.3
120.3
185.3
207.3
130f/1345
1301/1347
1232/1407
1213/1418
1154/1428
16.4/13.0
16.4/13.0
9.6/18.3
5.5/15.4
6.1/13. 1
8/
8/
9/
9/
R/
8
8
8
8
9
                                            DRY RULB TEMP  C  DIFF   RELAT
                                                START/FNO           HUMID

                                            32. 2t 5.6/31.1C  4.4     65/70
                                            32.2E 5.6/31.U  4.4     65/70
                                            32.2t 5.6/32.26  5.0     65/68
                                            31.7C 5.0/32.8C  5.0     68/68
                                            31.76 5.0/32.86  5.0     68/68
"UN*  17
           OA
                  9/19/73    COOLING JCEVICF CGDL-0    PRECISION RUN ERROR=  4.OX
T PMI r
VOLUMC
Nc
T

T IMC
* jnC>IUM STA3T/ENO
1
2
3
4
5
6
3.
3.
2.
1 .
2.
1.
13
?6
42
flf»
05
66
0
0
0
n
0
0
117.1
110.4
279.8
334.6
397.5
492.0
112
110
207
184
249
249
•
•
•
•
•
•
3
3
3
3
3
3
I25i/I409
1258/1410
1215/1518
1154/1528
1136/1539
935/1443
WINOSPEEC
STAU/END
] 1.1/12.5
11.1/12.5
S. 8/20. 6
10.3/22.3
9.7/10.4
4.9/10.6
WIND DIR.
START/END
8/
8/
8/
3/
9/

8
8
8
7
9
9
                                                                      DRY  BULB  TEMP 6 DIFF   RELAT
                                                                           STAPT/END          HUMID

                                                                      32.26  5.6/32.26 5.0    65/68
                                                                      32.26  5.6/32.26 5.0    69/68
                                                                      32.26  7.2/32.26 4.4    56/71
                                                                      31.76  7.2/32.26 5.0    55/68
                                                                      32.26  7.2/32.86 6.1    56/62
                                                                      30.06  5.0/32.86 7.2    67/56

-------
»un#  IB
ST   PHI
          HATE:  9/20/71
                            r .inL j NG n<=vlcc COPC =0
                                                  PRECISION RUN
1
2
3
2.44
2.40
2.16

2.01
0
0
0
0
0
221 .5
210.5
245.0
  NFT
SODIUM

 165.3
 161.3
              ?<37.6
          162.3
          183.3
  TIME
STA3T/FNP

1121/1341
1125/1343
         1017/1310
          953/1256
WINOSPEED
START/ENO

 8.5/11.6
 8.5/11.6
 fl.4/13.1
 8.T/10.7
 i- . 3/ 'i.l
WIND DIP.
START/END

   4/ 5
   4/ 5
   3/ 5
   3/ 5
   3/ 3
                                                                            1.5*
                                                                        DRY BULB  TEMP C DIFF    RELAT
                                                                            STAPT/END           HUMID

                                                                        31. 1C 4.4/31.7C 5.6     70/65
                                                                        31. 1C 4.W31.7C 5.6     70/65
                                                                        30. OC 3.9/31.7C 5.0     74/68
                                                                        30. OC 3.9/31.7C 5.6     74/65
                                                                        31. 1C 5.0/32.2C 6.1     67/62
PIJNff 1Q
ST PHI
K
1
2
3
4
5

2. 30
3.13
2.65
2.3.1
2.13
DATF: 9/20/73 CPPL I NG n«=VICE CODF=0 PR EC
C Vl3LUvc '4rT TIMF KU'DSPEED

0
0
O
n
0

78.5
78.5
U9.4
211.7
?(S0.7
«noiUM
69. ft
75.3
137.3
149.3
174.3
STA1T/FND
1343/1437
1350/1439
1325/lblfr
1313/1527
125J/1537
START/END
11.6/14.9
11 .6/14.9
13.1/16.0
10.7/14.6
9.1/17.0
ISION RUN
WIND DIR.
START/PND
5/
5/
•>/
5/
3/
5
5
6
5
6
EPROR= 7.6?
DRY BULB TE*» £ DIP
STA"»T/ = ND
31. 7C
31. 7C
31. 7C
31. 7C
32. 2C
5.6/31.7G
5.6/31.7C
5.0/31.7C
5.6/31.7C
6.1/30.6C
5.6
5.6
5.0
4.4
3.9
                                                                                               RELAT
                                                                                               HUMID

                                                                                               65/65
                                                                                               65/65
                                                                                               66/68
                                                                                               65/71
                                                                                               62/74

-------
RUN*   ?n    r»ATC:   9/21/73    CODLING DEVICE CPOE=0
                                                      PRECISION RUN ERROR= 4.9*
ST
*
1
2
3
4
5
PHI
C
VOLUME
HE
T
SODIUM
3.26
3.10
2.51
2.07
2. IS
0
0
0
0
0
240.
241.
258.
313.
342.
S
8
4
5
4
240
229
198
198
225
.3
.3
.3
.3
.3
TIME
START/END
H4?/1412
1144/1413
1055/1357
1030/1346
1009/1336
WINDSPEEO
START/END
14. 5/13.
14.5/13.
13.2/17.
8.0/16.
6.4/ 9.
5
5
1
0
9
WIND OIR.
START/END
4/
4/
3/
3/
3/
5
5
5
4
4
                                                                      DRY BULB TEMP  £  DIFF   RELAT
                                                                          START/END           HUMID

                                                                      30.OC 4.4/30.6t  3.9     70/74
                                                                      30.OC 4.4/30.6C  3.9     70/74
                                                                      30.OC 3.9/31.1C  4.4     74/70
                                                                      28.9C 3.3/31.1C  5.0     77/67
                                                                      28.9C 2.2/31.7C  5.0     84/68
9 UN*  21

     PHI
           DATE:  0/21/73   COOLING DEVICE CCDF=0
                                           PRECISION  RUN ERROR= 2.7*
ST
 *

 1
 2
 3
 4
 5
     3.R4
     3.74
     3.54
     2.87
     2.63
f   VOLUME     NFT      IMF      WINDSPEED    WIND  DIR.    DRY BULB TEMP C DIFF    RELAT
             SPDIUM   STA3T/FND   START/END    START/END        START/END           HUMID

0    93.9     110.3   1419/1517   13.5/17.6       5/  4      30.6C 3.9/30.0C 4.4     74/70
0    93.9     107.3   1421/1519   13.5/17.6       5/  4      30.6£ 3.9/30.0C 4.4     74/70
0   145.0     157.3   1400/1537   17.1/11.8       5/  4      31.1C 4.4/28.9C 3.3     70/77
0   182.6     160.3   1350/1548   16.O/ 8.5       4/  3      31.1C 5.0/29.4C 3.9     67/73
0   220.5     177.3   1340/1600     9.9/12.6       4/  4      31.7C 5.0/28.9C 3.9     68/73

-------
?UN<
ST
#
1
2
3
4
5
6
» ?? DV
PHI C

4.?1 0
4.46 0
4.18 0
4 . f> I 0
3.5fl 0
2.56 0
rF: 9/24/73 COOLING DEVICE COnF=0 PRFCISION RUN ERROR= 5.71!
VUlJW.t

60. H
58.?
11-',. 1
231.1
319.5
343.2
NFT
SODIUM
78.3
79.5
212.5
2S3.5
350.5
268.5
TIME
START/END
1333/1411
1335/1412
1245/1440
1223/1449
1130/1455
1044/1428
WINDSPFED
START/FNO
10. I/ 8. 3
10. I/ 8.3
14.6/10.3
15.4/11.9
7.9/10.0
10.9/10.2
WIND DIR.
START/END
10/10
10/10
10/10
8/10
11/16
9/10
OPY BULB TEMP £
START/FND
28. 3£ 2.8/29.4£
28. 3£ 2.8/29.4C
28. 9J. 1.7/28.9£
28. 3£ 1.7/28.9C
28. 3£ 2.8/28.3£
28. 3C 2.2/30.6£
DIFF

2.8
2.8
2.8
2.8
1.7
3.9
RELAT
HUMID
80/81
80/81
88/81
88/81
80/88
84/74
RUN*  23   DATr:  9/25/73   COOLING OEVICF CODr=0
PRECISION RUN ERROR=  2.1?
ST
if
1
?
3
4
5
PMI

1.9R
1 .94
2 .11
? .4 1
1.12
r

0
0
0
0
3
vcLiric

128.2
128.9
1RH.3

-------
0/26/73   COOLINO DEVICE CODE=0
PRECISION RUN ERROR= 2.0?
ST
*
I
2
3
4
5
6
PHI
C
VOLUME
NFT
SODIUM
3.43
1.50
3.01
4.21
4.41
4.06
0
0
0
0
0
0
113.5
11 1.2
228.5
373.9
441.4
390.6
119
121
273
481
596
485
.3
.3
.3
.3
.3
.3
TIME
START/END
1224/1335
1226/1337
1126/1358
1015/1410
950/1422
1045/1455
WINDSPEED
START/END
11
11
17
15
12
13
.9/11.
.9/11.
.3/13.
.5/13.
.3/17.
.5/14.
2
2
4
7
0
a
WIND DIR.
START/END
6/
6/
7/
5/
7/
6/
7
7
7
6
7
7
                                                    DRY  BULB TEMP t DIFF   RELAT
                                                        START/END          HUMID

                                                    3l.lt  3.3/32.2t 3.9    77/75
                                                    31.U  3.3/32.26 3.9    77/75
                                                    31.1C  2.8/30.6C 3.3    81/77
                                                    30.Ot  2.8/32.2C 3.3    81/78
                                                    30.Ot  2.8/3l.7t 3.3    81/78
                                                    30.Ot  2.8/31.It 3.9    81/74
          COOLINH DEVICE CUDE=0
PRECISION PUN ERROR=28.0*
T
*
1
2
3
4
5
6
PHI

5.34
3.85
9.29
5.64
3.89
5.36
C

0
0
0
1
1
1
VOLUME

134.2
130.2
257.1
35.7
87.5
401.2
urr
SCDIUM
219.3
153.3
731.3
61.6
104.3
658.3
Tplc
STA3T/END
1303/1420
1305/1421
1223/1507
1119/1141
1051/1144
1012/1431
WINDSPEED
START/END
27.6/21.9
27.6/21.9
23.0/20.4
17. I/
12. 3/
9.5/16.0
WIND DIR.
START/END
5/ 5
5/ 5
4/ 5
4/ 5
5/ 5
5/ 5
                                                   DRY  BULB  TEMP t DIFF   RELAT
                                                        START/END          HUMID

                                                   29.4t  2.8/28.9t 2.8    81/81
                                                   29.4t  2.8/28.9t 2.8    81/81
                                                   29.4t  2.8/27.8C 2.2    81/83
                                                   30.6t  3.9/              74/
                                                   30.6t  3.3/              77/
                                                   30.Ot  3.3/29.4t 2.8    77/81

-------
ST
 #
 ?S   r^ATP:  9/27//3

PM!   r   VCLM-F
     7.19  n    300.5
     f- . 9 1  0
                                     J=VICE CCOL=0
                          756.3
                                  ST
                             1208/1516
                             1158/1532
MNOSPEEO
START/END

17.9/15.9
14.9/20.0
WIND OIK.    DRV BULB TEMP  £  DIFF   RELAT
START/END        START/END           HUMID

   3/ 4      30.6£ 3.3/2fi.3£  3.3    77/76
   5/ 5      3l.lt 3.3/28.9E  3.3    77/77
»UN# 77 DAl
«T
It
1
2
3
4
S
6
PHI

1 1.57
1 l.«7
12. 1R
»1.57
12.7''
lO.f.7
r

n
0
0
0
0
0
rF: 9/2C/73 COOLING 3EVICF Cnnf =0 PRECISION RUN
VOLUMF

M.I
61 .2
194. y
253.5
M C.O
''flh.O
MTT
SODIUM
216.3
?24. 3
726.3

-------
»UN»   2B

ST   iP'HI,
'1
2
'3
A
5
      5.53
      5.60
      7.19
     '6.19
      6.18
            0
            0
            0
            0
            0
:  10/  1/73

VOLUME
 68. 4
170. 1
                             COOLING :i = VICF CODF=0
?87.6
117.3
3741-3
4 20'. 3
544.3
                                  S-TlAU'T'/EN'D
1136/1221
'1O52VX124'6
1035/1 258
1014/1309
WINDS'P'E'IED
START-/ END

1 8.2715. 3
18.2/15.3
                              PRECISION  RUN ERRHRv 0..4X

                                               bRY.'^BULB
                                                             WIND" DIR.
                                                             STA'RT/END
6V 7
6/ 7
"6V
                                                   6
                                                    '
                                                13.4/18.9
                5/ 6
29.4C  3.9/3vl.TC  6.7
29.4£  3.9/31.76  6.7
30. Ott M!4/3'OlJ.OC  3...9.
'30^. 0£  5 ; O/TO". 66  3V9~
30.06  3.3/31.16  4.4
T3X56
73./W
I.
67/7%
77/70
RUN*  29    nATF: 10/  1/73

ST   PHI--   C   VOLJMF
                              COOLING DEVICE COPF.=0

                              T
                          SODIUM
                                                        PRECISION RUN  ERROR= 4.2?
                                                            WIND'DIR.    DRYVBULB JTE HPJ 6 BIFF    RELAT
                                  STAOT/ENI3   S^ART/END   STAR'T/END        START/END'           HOHID

                                                                         31'.76 6.7/29.^6 4.$     58/70
                                                                         31.76 6.7/29.46 4.4     58/70
                                                                         30.06:3.9/31 Vlt 5.0     7*767
                                                                         30i'6E 3.9/30VO6 3;9     74/7*
                                                                         31.16 4.4/30.66 3.9     70/74
1
2
3
4
5
6:71
6.43
8.78
7.89
8.31
0
0
0
0
n
105".7
101.8
127.3
127.2
130.6
21713
200.3
•342 '.'3
307.3
332.3
1226/1331
1228/1333
1251/1415
1303/1424
1314/1432
15.3/25.4
15.3/25.6
lV.5/12i;l'
16.4/17.1
18.9/16.3
11
11
6/
6/
6/
6
6
6"
'5''
6

-------
ST
 H

 I
 ?
 3
 4
 5
 30

ouf
i).\Tf: in/

C   vi I!'
-------
?Ufi«
ST
It
I
2
1
4
5
' 32
mi

2.70
?. 71
0.82
0.45
0.?7
na-
C

0
0
i
2
2
Tf. 10/ 3/73 f.-ir>i
VOL'JME NCT

13<5.0
137.0
193.2
209.5
231.2
sooiti'1
115.3
114.3
40.5
29.0
19.0
.ING DEVICE Cnr>F=0 PFEC
TIME KINDSPEED
START/END
1221/1350
1224/13*2
1123/1329
1'100/1317
1043/1304
START/END
11.3/11.6
11.3/11.6
10.9/11.0
12. O/ 8.3
9.4/ 6.1
I SIGN RUN
WIND DIR.
START/FND
5/
5/
4/
3/
3/
4
4
^
4
2
ERROR= 1.2*
DRV BULB TEMP C
DIFF
START/END
27. 8C
27. 8C
29. 4t
29. 4C
30. OC
2.8/27.8G
2.8/27.8C
4.4/28.9C
3.9/27.26
3.9/27.2C
3.3
3.3

2.2
2.2
RELAT
HUMID
80/76
80/76
70/69
73/83
74/83
?un«
ST
a
3
4
5
33
OAT?: in/ 3/73
PHI f VHLUMf
2
?
2
.76
.45
.36
0
n
0
74
116
162
.7
.2
.1
sr«r)I
63
87
117
COILING HEVICF CTDE=0
T
UM
.0
.2
.3
TI-IE
STAUT/FNH
1333/1423
1321/1436
1310/1447
START/END
11.0/12.2
B.3/ 7.6
6. 1/ 9.2
WIND r
START/
4/
4/
2/
)I
'E1
5
3
4
DRY BULB TEMP  t  DIFF
28. 9£ 4.4/28.3C  3.3
27. 2C 2.2/28.3C  3.3
27. 2£ 2.2/29.4C  4.4
RELAT
HUMID

69/76
83/76
83/70

-------
PU'ifr JA n-VTc.. 10/ a/7T CTLING DEVICE Crrr=0 PRECISION RUN
ST
*
1
2
3
4
5
6
PHI

2.^1
2.41
2.1"
2.13
1.10
2.01
r

0
n
rt
0
1
;)
vomur

llfr.4
io«.o
09.2
12'). 5
207.4
145.7
NFT
^nillM
82.2
79.7
59.7
78.5
116.3
89.7
TIMF
STA3T/END
1546/1658
1551/1700
134)/1'»37
1313/L429
1125/1421
1234/1408
WINOSPEED
START/END
1 '*. 1 /I 3. 7
14.1/13.7
17.3/11.2
16.7/18.4
1A.I/IA.9
13. O/
WIND DIR.
START/END
7/ 6
7/ 6
8/ 7
6/ 5
7/ 6
5/ 6
                 DRY BULB TEMP  £  DIFF   RELAT
                     START/END           HUMID

                 28.Ot 3.5/28.06  3.0    75/78
                 ?8.0C 3.5/28.0C  3.0    75/78
                 30.OE 4.0/28.6E  3.4    73/76
                 30.0£ 4.0/29.0C  3.3    73/77
                 30.Ot 2.8/29.0C  3.0    81/79
                 31.1C 4.4/     £         71/
PUN*  35   HATE: 1O/ 9/73   COOLING  OcVICC CCDE=0

PRECISION RUN  ERROR=  3.7*
T
*
I
?.
3
4
5
6
PHI

I. 66
1.7'
3.^3
2.12
2.80
1.?3
C VnLU.'-T

0
0
"I
0
O
1

8°
17
."'C )
?f-. 7
323
2HO

.7
. ^
.3
.1
.3
.5
NET
SHDIU«
45.5
46.0
213.3
230.3
277.3
277.3
TME WINOSPEF.D
STA^T/fcND
1414/1511
1410/1513
1318/1531
1255/1543
1235/1553
113W1434
S T
10
10
?0
11
10
13
APT/FND
.5/ 8.
.5/ 8.
.8/ 9.
.5/10.
.9/ 9.
.3/ 6.
2
?
6
8
8
9
WIND DIR.
ETART/CND
5/
5/
7/
4/
5/
2/
5
5
5
5
5
6
                 DRY BULB TEMP £ OIFF    RELAT
                     STAPT/END           HUMID

                 28.0£ 3.7/28.4£ 3.4     74/76
                 28.Ot 3.7/28.4t 3.4     74/76
                 29.2E 3.6/29.BC 4.0     75/73
                 29.8E 3.6/29.8t 4.2     75/72
                 30.5t 3.9/30.0£ 3.8     74/74
                 28.6£ 3.3/29.5£ 4.5     77/69

-------
'UN*

ST
 4

 I
 7
 3
PHI
3.01
2.09
3.?6
2. HO
3.01
2.37
DATp: in/in/73

r.
9
9
0
n
o
o
128.4
129.<.
73R.7
P99.2
376.4
273.2
                          346.5
                             .5
                        C IDLING JEVICE CODE=0
  TM6
STA-IT/ENI1

1401/1522
1405/1525
1314/1545
1245/1556
122?/1605
1144/1437
llrt.5
1 14.5
23H.5
                                          START/END
  .8/19.7
  .8/1*.7
  .5/20.6
  .4/11.0
11.4/17.6
10.7/12.6
15.
15.
17.
 9.
I
w
SION RUN ERROR
IND
DIR.
DRY
START/ENO






4/
4/
5/
3/
3/
3/
4
4
4
3
3
3
28
28
29
30
30
30
.
.
.
.
•
.
= 4.1
BULB
*
TEMP

C


DI

FF
START/END
OC
OC
2C
OC
OC
OC
4.
4.
4.
5.
4.
6.
4/28.
4/28.
0/28.
0/29.
8/28.
0/27.
8C
8C
2C
2C
OC
5C
4
4
4
5
4
4
•
•
•
•
•
•
8
8
2
0
0
0
                                                                                     RELAT
                                                                                     HUMID

                                                                                     70/67
                                                                                     70/67
                                                                                     72/71
                                                                                     67/66
                                                                                     68/72
                                                                                     61/72
 37
ST
If
,
6
PHI

?3.72
12.09
r

5
0
V!"IHJW

62.3
147.1
          :  10/11/73    C:i"LlNG 0-.VICF CCRE=0

                     NET       Tiyc      WINDS°EfcP
                    452.3
                    544.3
                       1412/1447
                       1255/1434
                                              28.4/
                                              20.0/18.8
                                               WIND  niR.    DRY BULB  TEMP C DIFF   RELAT
                                               START/END        START/Er.'D          HUMID

                                                  4/        28.5C 4.7/     C        68/
                                                  5/  3      25.2C 2.0/29.5C 5.9    84/61
             rain.
             heavy
                                                                    the  sample.  Station

-------
HftTF: 10/12/73
                       CP^LTNr, nSVICE  C0nf=0
                                           PRECISION RUN ERROR=  6.84
T
*
1
7
3
4
5
6
PHT

IP. 57
1 7.30
15.57
16. 5T
17.31
16.05
C

9
1
0
0
0
0
VnLU

163.
151.
290.
338.
411.
277.


0
4
0
8
7
2
NTT
SSOIll"
926.5
an i . 5
1381.5
1711.5
?181 .5
1361.5
T IMC
STA3T/ENH
1340/1513
1349/1516
1246/1544
1222/1556
1200/1605
11P5/1417
Wlf.'DSPEEO
START/END
32
32
23
16
20
19
.4/34.
.4/34.
.4/23.
.5/21.
.4/19.
.8/24.
9
9
1
9
5
8
WIND DIR.
START/FND
5/
5/
4/
3/
3/
3/
5
5
4
3
3
4
                                                           DRY BULB  TEMP £ DIFF   RELAT
                                                               START/END          HUMID

                                                           26.2£  4.2/27.8£ 6.1    70/59
                                                           26.21  4.2/27.8t 6.1    70/59
                                                           28.66  5.1/27.5C 5.3    65/63
                                                           28.5C  5.5/27.7C 5.4    63/63
                                                           28.OC  5.4/28.2C 5.5    64/63
                                                           28.OS  5.9/27.6C 6.0    61/59
 30

PHI
DATf: 10/15/73   COOLING DEVICE CPDE=0

r   VJLU^F     NFT
                     PRECISION  RUN

                     D
STATT/END   START/END
WIND DIR.
START/END
I
2
3
4
5
6
T.
h.
P.
7.
8.
7.
27
54
47
63
01
25
q
y
n
n
0
0
64
63
195
245
327
375
.4
.6
.4
.5
.9
.4
lt>4
166
506
57?
803
R33
.3
.3
.5
.5
.5
.5
1435/1515
1431/1517
1335/1535
1303/1545
1244/1554
1210/1612
17.6/23.5
17.6/23.5
17.1/15. 2
14.5/19.3
18.3/21.0
14.3/17. 3
4/
4/
5/
4/
4/
4/
5
5
6
4
5
5
                                                                3.2«
                                                           DRY BULB  TEMP £ DIFF   RELAT
                                                               START/END          HUMID

                                                           27. 2£  3.9/27.l£ 4.6    72/67
                                                           27. 2t  3.9/27.l£ 4.6    72/67
                                                           28. 4£  5.4/28.2£ 5.6    63/62
                                                           29. 0£  6.0/28.0C 5.8    60/61
                                                           28. 8£  5.8/28.2£ 4.6    61/68
                                                           27. 8£  5.8/27.7E 5.2    61/64

-------
RUN*  40   DATE:  10/16/73    COOLING TEVICE CODF=0
                                                            PRECISION  RUN FRROR= 1.5*
T
*
1
2
3
4
5
6
PHI

3. TO
3.Qft
4.35
3.73
3.92
3.65
C

0
0
0
0
0
0
VOLUME

59.
60.
166.
209.
282.
352.

6
1
3
8
8
0
NFT TIHC
SODI
71
7?
221
230
330
393
IJM
.1
.8
.5
.5
.5
.5
START/END
1356/1435
1351/1436
131?/1500
1251/1510
1228/1517
1150/1535
WINDSPEF
D
START/END
11.5/14.
11.5/14.
8.2/10.
13.0/12.
12.8/12.
10.2/13.
2
2
6
7
0
7
WIND DIR.
START/END
5/
5/
5/
5/
6/
5/
5
5
5
6
5
6
                                                                            DRY BULB TEMP fi DIFF    RELAT
                                                                                START/END           HUMID

                                                                            28.Ot 4.5/27.7C 4.7     69/67
                                                                            28.Ot 4.5/27.7C 4.7     69/67
                                                                            29.Ot 6.0/28.36 5.5     60/63
                                                                            28.5C 4.5/28.26 5.4     69/64
                                                                            29.2t 5.?/28.5£ 4.9     65/67
                                                                            28.2t 5.5/28.0t 5.0     63/66
^    UJN*  41   fMTF:  10/17/73    CDPLING DEVICE CPDE=0    PRECISION RUN  E"ROR=  0.3*
T PHI
r
VOLUME
NET
* S3DIUM
1
2
3
4
5
6
2
2
2
2
2
2
.85
.86
.8R
.57
.83
.60
0
0
0
0
0
0
63.
59.
175.
215.
276.
378.
3
5
3
4
7
7
55
52
154
169
239
301
.3
.1
.5
.5
.5
.5
T I ME
START/END
1337/1416
1339/1417
1245/1434
1222/1443
1207/1452
111'*/ 15 10
WINDSPEEO
START/END
11.0/10.3
11.0/10.3
13. 2/13. R
9.5/11.4
11.5/11.0
11. 3/ 9.0
WIND DIR.
START/END
3/
3/
3/
2/
2/
2/
3
3
4
3
3
3
                                                                            DRY BULB TEMP t DIFF    RELAT
                                                                                STAPT/END           HUMID

                                                                            29.Ot  4.8/29.26 4.5     67/69
                                                                            29.Ot  4.8/29.2C 4.5     67/69
                                                                            28.7t  3.9/28.5t 4.2     73/71
                                                                            28.7t  4.3/29.2t 4.6     70/69
                                                                            28.6t  4.1/29.0t 4.5     72/69
                                                                            28.Ot  4.2/?9.0t 5.0     71/66

-------
n\T<=: io/lS/73
                         'JjVKE r.LTE=0
PPFCFSION RUN  EPRTR= 8.65!
T
*
1
t
3
4
5
6
9

9
0
H
It
6
4
HI

.iS6
.H3
. I 5
.flft
.07
.45
c

0
0
0
0
0
0
vr>LU

60.
f,0.
317.
330.
430.
523.


6
0
9
1
5
3
NFT
srniu
179.
162.
793.
*93.
79«>.
713.

M
-,
3
5
5
5
5
TIMF
STA3T/ENO
1153/1229
1155/1231
1100/1415
104T/142 3
1020/1432
925/ 1449
WINDSPEED
START/END
14.6/18.2
14.6/18.2
24.3/20. 5
20.4/14. I
14.8/15.3
1 7.3/14.3
WIND DIR.
5TART/FND
4/
4/
4/
3/
4/
4/
4
4
4
4
4
4
                                                            DRY BULB TEMP  £  OIFF   RELAT
                                                                START/END           HUMID

                                                            27.OC 2.2/28.0C  3.1    84/78
                                                            27.OC 2.7/28.0C  3.1    84/78
                                                            27.8C 3.3/29.0C  4.0    76/72
                                                            28.2C 3.7/29.0C  4.0    74/72
                                                            20.8£ 3.8/29.5£  4.0    74/73
                                                            28.Ot 4.5/29.0£  4.0    69/72
*l»N
ST
«
1
» 43
DMT
1H. 46
10.43
D4TE: 10/18/73 COOLING DEVICE CrDt=0 PPFCISION RUN ERPOR= 0.3^!
r
0
3
VOLJMC
lll.O
109.4
NTT
355.3
349.3
STil.-T/CND
1?3')/1343
124 1/1345
STAftT/END
IB. 2/2 2. 7
18.2/22.7
WIND ni<*.
ST^RT/END
3/ 3
3/ 1
DRY RULE
STAR
28. OC 3.
28. OC 3.
TEMP t
T/FND
1/28. OC
1/28. OC
DIFF
3.2
3.2
RELAT
HUMID
78/77
78/77

-------
'U'll 4'» r)AT = : in/??/7T rn''l
C T
H
I
?
3
4
5
6
PUT

17.1 1
li).^ 5
6.<>S
7.60
5.09
5.04
r

7
7
?
2
2
2
VLH-F

167. i.
161 . 7
2^7. 5
2?4.9
34B.4
555.6
IT -
sen i ii"
fl-12.3
507.3
SQQ .5
662.5
542.5
057.5
.IMG i'fvir.p cnor:=o PRECISION HUN FRRnR = 4i.r*
*\-'~
STAPT/FNO
132S/1500
1324/1501
1225/1515
1219/1523
1205/1529
lOO'l / 1547
WlfiDSPFED
START/END
19. O/
10. O/
35. 2/
18. 3/
17. 7/
14.5/21.9
WIND OIK.
START/END
2/ 2
2/ 
-------
»IJN#  46
                           ING  OEVICC CODF=0
                                                      PRECISION RUN  F.RR3R = 0.83!
ST
*
I
?
3
4
5
6
OHI

11.79
1 1 . 70
11. r>'
9 .P9
10.21
9.79
r

3
0
0
n
0
0
VDLUVP

147.6
145.9
281.4
28?. 6
^74.7
438. H
•irr
snijim
532.5
522.5
992 .5
fi55.5
1 1 70.5
1315.5
TIMS
STA3T/ENO
120W1336
1209/1338
1113/1405
105-3/1413
103 J/1421
1007/1438
WINDSPEED
START/END
13. O/ 9.8
13. O/ y.8
17.2/11.4
14.4/10.9
10. 7/ 7.6
1 3.9/12.6
WIND DIR.
START/FNO
16/16
16/16
16/ I
15/16
16/15
16/16
                                                                 DRY BULB TEMP  t  DIFF   RELAT
                                                                     START/END           HUMID

                                                                 27.0£ 4.0/27.2t  5.2     71/64
                                                                 27.OE 4.0/27.2C  5.2     71/64
                                                                 26.2£ 3.7/27.PC  4.6     73/67
                                                                 26.OC 3.7/28.0£  5.2     73/6b
                                                                 25.3E 2.9/28.5E  5.7     78/62
                                                                 24.8t 2.5/28.4C  6.9     80/55
47
           HATF: 10/25/73   CIPIIMC TEVICT  CODE=O
PRECISION RUN ERROR=  2.3-8
T
4
I
2
3
4
S
6
rn
I
r
VLl'"r NE T TT-4,- WINDSPEED
F^DIU" S'"a°T/CND START/END
8.
8.
S.
5.
8.
8.
S7
37
12
^8
^T
^l
3
3
0
0
4
0
157.
160.
? J5.
?in.
?£2.
277.
7
9
1
7
3
T
41?
412
572
4Oi'
6t>(
^92
.5
.5
.5
.5
. 5
• *
1235/1411
123^/1417
1145/1353
1 ll'«/1342
1055/133"
1021/1310
15.4/10.
15.4/10.
14.4/16.
12.4/13.
11. 11 9.
12. 3/ 8.
0
0
4
2
8
2
WIND 01*.
START/FND
16/16
16/16
16/16
16/16
15/16
16/16
                                                                 DPV BULB TEMP  £  DIFF   RELAT
                                                                     START/END           HUMID

                                                                 26.2C 5.0/27.7C  5.7     64/61
                                                                 26.2C 5.0/27.7C  5.7     64/61
                                                                 26.OE 4.7/27.6E  5.8     66/61
                                                                 26.3E 4.6/27.5E  5.7     67/61
                                                                 25.OE 4.0/27.4E  5.4     70/63
                                                                 24.5E 4.5/27.6E  5.6     66/62

-------
nftTF: 10/25/71
<5T
4
1
?
3
4
5
6
PHI

6.) 3
5.8T
13.19
-0.05
5.47
6.50
r

0
0
0
0
4
0
V?t 'JMC

215.5
203.0
266. V
263.4
352.4
142.0
NET
Si-Dill*
40
362.5
1077.5
-4.0
590.5
282.5
T J^C
STfi^^/END
14l=i/lt>25
1421/1627
1357/1645
134W1652
1335/1704
1313/1440
w INDSPEFD
STAPT/ENn
10. 0/ 8.8
10.0/ 8.8
16. 4/ 9.0
13.2/11.4
9.8/10.4
8.2/ 9.2
WINO OIR.
START/END
16/16
16/16
16/16
16/16
16/16
16/16
                                                           nPY BULB TEMP £ OIFF   RELAT
                                                               START/END          HUMID

                                                           27.7£ 5.7/27.06 5.5    61/61
                                                           27.7£ 5.7/27.0& 5.5    61/61
                                                           27.6£ 5.8/27.8£ 6.3    61/58
                                                           27.5£ 5.7/27.5£ 6.5    61/56
                                                           27.4£ 5.4/27.4£ 6.8    63/54
                                                           27.6£ 5.6/28.0£ 6.0    62/6O
10/26/73
                                fOOF=0
PRECISION RUN EFRPR= 0.3*
T
*
I
2
1
4
5
6
PHI

10.47
10. «0
13.71
ii.no
11.55
9.61
C

0
0
0
0
3
0
V-IL

338
329
186
216
295
41?
UME

.7
.9
.0
.6
.7
.1
•ICT
SC'DIU"
10R5.5
1060.5
780.5
782.5
1045.*
1220.5
T IMP
STA*T/FIMC
1301/1628
1305/1630
1235/1433
1211/1448
120ft/1504
1 14?/ 1600
WINOSPFED WINO DIR.
START/FND
14.
14.
19.
9.
13.
9.
0/11.
0/11.
9/18.
2/14.
0/13.
1/10.
1
1
8
0
2
4
START/END
2/
2/
2/
2/
2/
2/
4
4
3
3
3
3
                                                           DRY BULB TEMP £ DIFF   RELAT
                                                               START/END          HUMID

                                                           26.8£  3.3/26.8£ 4.8    76/66
                                                           26.8£  3.3/26.8£ 4.8    76/66
                                                           27.3£  3.8/27.7£ 4.7    73/67
                                                           28.0£  4.8/27.0£ 5.0    67/65
                                                           27.0£  4.0/28.1£ 5.4    71/64
                                                           27.3£  4.3/27.5£ 5.3    69/63

-------
ST
           PUT
HATf: 10/29/73

C   VOLUME     MET
1
2
3
4
5
6
1 .70
1.72
1 .?7
1.30
1.43
1 .3ft
0
0
3
3
3
3
139.5
137.1'
256.0
365.4
45H.2
555.2
72.7
72.7
99.5
145.5
200.5
231 .5
1206/1335
120K/1336
1107/1354
1057/1519
1047/1528
951/1545
10.4/23.8
10.4/23.8
13.1/10.7
1ft. 9/ 6.4
15. 6/ 7.4
20.3/14. 1
14/15
14/15
15/16
14/15
14/16
15/15
   ItVICE COPE=0     PRECISION RUN FRROR=  1.2*

  TIMF      WINOSPEEP    WIND PIR.   OPY BULB  TEMP
STA^T/FNO   START/END    START/END       START/END
                                                                             28.56 6.2/27.56 4.8
                                                                             28.56 6.2/27.56 4.8
                                                                             27.86 5.6/28.26 5.0
                                                                             27.86 6.4/28.56 5.7
                                                                             27.76 5.7/28.36 5.5
                                                                             26.16 4.3/28.26 5.7
                                                                                               RELAT
                                                                                               HUMID

                                                                                               59/66
                                                                                               59/66
                                                                                               62/66
                                                                                               57/62
                                                                                               61/63
                                                                                               69/62
            51
           0\TE: 10/30/73
en
ro
                 COOLING DEVICE CCnE=0     PRECISION RUN ERROR* 1 8.6'*

                                                           DRY  BULB TPMP 6 DIFF
T
*
I
2
3
4
5
6
puj

3.P3
4.71
5.?3
4.57
3.84
5.0.)
r

3
3
3
3
0
0
VLJJ"."

198.3
194. P
294. t
315.0
451. 7
349.7
Kc T
SOU HIM
232.5
200.5
477.5
440.5
530.5
535.5
T T 1r
STA5T/END
125S/1503
1259/1504
1205/1524
1149/1533
1103/1543
1041/1422
WINOSP^ED
STA-«VFND
16. 5/ 9. 1
16. 5/ 9. 1
14. a/12. 4
10. O/ 8.9
14. 3/ 7.6
15. 4/ 5.9
WIND OIR.
STAPT/ENO
16/16
16/16
16/16
16/15
16/12
16/16
                                                                       23. 0£ 5.1/24.2£ 6.2
                                                                       23.06 5.0/24.26 6.2
                                                                       23.76 6.2/24.06 6.5
                                                                       23.36 5.8/24.06 6.7
                                                                       22.56 5.0/24.36 6.7
                                                                       22.06 5.4/25.06 6.5
                                                                                                    RELAT
                                                                                                    HUMID

                                                                                                    57/54
                                                                                                    57/54
                                                                                                    54/52
                                                                                                    57/51
                                                                                                    61/51
                                                                                                    58/53

-------
            5?
10/31/73   CYCLING T=VICC CODF=0
                                                             PKcCISinN PUN FPROR= 0.3S
T
*
1
2
3
4
5
6
PHI

3. 44
3.^°
3.72
3.78
T&33
2.86
r.

3
T
o
0
0
3
VOUJMF

235.1
238.0
18S.3
?96.7
368.9
431.0
NLT
S 10 I DM
250.5
754.5
136.5
297.5
375.5
377.5
"I "IE
STA3-/FNO
1253/1524
1755/1526
1213/1413
1 103/1474
1049/1432
1015/1448
UIMDSf'FED
START/rrjo
6.0/10.0
6.0/10.0
11.3/15.7
7.6/17. I
7.3/12.8
1.8/11.8
WIMO UIR.
START/EENO
5/ 9
5/ 9
8/10
8/ 9
8/ 9
8/ 9
                                                                             nPY BULB TEMP  £  DIFF   RELAT
                                                                                 START/END           HUMID

                                                                             24.8G 3.9/26.0£  3.2    70/77
                                                                             24.86 3.9/^6.0C  3.2    70/77
                                                                             26.lt 4.1/26.AC  3.7    70/73
                                                                             25.8C 4.0/27.0&  3.5    71/7*
                                                                             25.OC 4.5/27.2C  3.9    67/72
                                                                             ?4.5C 4.8/26.3£  3.3    64/76
ui
to
IJM«
T
*
1
2
3
4
5
53
PHI

1.63
1.61
1.7.9
1.39
1.47
n/v
r

0
0
0
0
0
TF: ll/
V1LUM

125.7
129.8
294.1
428.3
543.5
                                           -:EV:CE ccoe=o
 62.7
 64.0
116.5
182.5
244.5
S-">T/rriD

1114/1237
1117/1238
 949/1301
 835/1330
 613/1345
WI'JOSPPPD
STAPT/fNP

10. 6/ 6.5
10. 6/ 6.5
11.5/11.0
    /15.1
 2.7/11.1
                                        WIND DIP.
                                        START/END

                                           4/ 6
                                           4/ 6
                                          ll/ 6
                                           5/ 6
                                           I/ 8
                                                                                  1.2*
                                                                             DRY  BULB TEMP £ DIFF    RELAT
                                                                                 START/END           HUMID

                                                                             28. 2C  2.0/30.8£ 3.7     85/75
                                                                             28. 2C  2.0/30.8£ 3.7     85/75
                                                                             28. OE  2.3/29.7£ 3.0     83/79
                                                                             29. OC  3.0/29.9C 3.1     79/79
                                                                             26. 0£  1.0/30.8C 4.0     92/73

-------
 54   HiTT: ll/ 5/7"*

Pill   C   VOLUME
                            COCLING  OEVICF CDDE=0
                                           PRECISION RUN  ERROR= 4.5%
ST   PHI   C   VOLUME     NFT       T I IE      WINOSPEED   WIND  DIR.    DRY BULB TFMP  £  OIFF   RELAT
 *                      SODIUM    START/END   START/END   START/END        START/END           HUMID

 I   1.90  0   299.9      174.5    1039/1351    8.6/11.0       6/ 8      28.8£ 3.6/29.0£  4.2    75/71
 ?   1.99  0   3'1fc.()      186.5    1042/1353    8.6/11.0       6/ 8      28.8£ 3.6/79.0E  4.2    75/71
 3   ?.06  0   444.5      280.5     927/1417    8.2/16.7       6/ 8      28.2t 3.1/28.5£  3.7    76/74
 4   l.RS  0   469.2      266.5     90D/1424    8.5/ 9.9       6/ 7      27.2£ 2.7/29.2£  3.7    80/74
 5   1.96  0   585.0      350.5     833/1431    9.0/13.3       5/ 7      28.3£ 3.4/29.2£  4.0    76/72
RUN*  55

ST   PHI
DATE: ll/ 6/73

r   vnn
COOLING DEVICE CPDE=0     PRECISION PUN  ERROR=  1.0"*

                 WJNOSPFED
                                  STA'T/ENP
WIND DID.
START/END
I
2
3
4
5
l.?3
1.24
1.14
O.B'*
0.75
0
0
0
n
0
296.3
306.5
471.6
<-69.6
593.2
111.5
116.5
164.5
119.5
135.5
1150/1457
1153/1500
1003/1517
955/1526
944/1536
6.7/11.4
8.7/U.4
13.5/15.5
7.3/11.9
0.5/11.9
3/
3/
3/
2/
2/
3
3
4
4
4
                                                                  DRY BULB -TETP £  OIFF    PELAT
                                                                      START/END           HUMID

                                                                  28.2£ 3.7/29.0£  5.2     74/65
                                                                  28.2£ 3.7/29.0£  5.2     74/65
                                                                  27.3£ 2.8/27.8£  4.3     79/70
                                                                  27.6R 3.4/28.0£  4.5     76/69
                                                                  26.7£ 3.2/27.5£  3.7     76/73

-------
RUN* 56
ST PHI
*
1
2
3
4
5

1 7.86
18.46
17.53
15.46
15.81
DATE: ll/ 7/73 CGGLING DEVICE CODE=0 PRECISION RUN
C VOLUME NET TIME WINDSPEED WIND DIR.

9
9
0
0
C

267.3
268.3
349.8
352.2
461.6
SODIUM
1461.5
1516.5
1876.5
1666.5
2233.5
START/END
1211/1449
1213/1450
1133/1514
1118/1520
1050/1528
START/END
25.2/20.1
25.2/20.1
14.1/17.8
17.4/12.2
16.3/16.0
START/FND
4/
4/
5/
5/
5/
4
4
4
4
4
ERROR= 3.3*
TOY BULB TEMP 6
DIFF
START/END
26.36
26.36
28.36
27.86
27.66
3.5/26.06
3.5/26.06
4.5/26.36
4.8/26.06
4.4/26.06
3.0
3.0
4.3
4.0
4.0
RELAT
HUMID
74/78
74/78
69/69
67/71
69/71
RUN*
ST
1
2
..3- -
4
5
57
PHI
7.90
7.98
-S.09
8.38
C.53
DATE: ll/
C VOLUME
0 365.5
0 375.1
0 463.7
0 488.1
0 599.1
    CCCLIKG DEVICE CODE=0
PRECISION RUN ERROR=  1.0%
  NET      TIME      WINOSPEED    WIND DIR.   DRY BULB TEMP  6  DIFF   RELAT
SCDIUM   START/END   START/END    START/END       START/END           HUMID

 864.5   1040/1433     5.5/  7.8       4/ 6     27.86 4.3/27.06  4.0    70/71
 S16.5   1043/1435     5.5/  7.8       W 6     27.86 4.3/27.06  4.0    70/71
1269.5    947/1454   10.3/  9.7       4/ 6     27.26 4.0/28.06  4.0    71/72
1251.-    913/'500     8.2/  8.3       "/ 7     27.56 3.8/27.26  4.2    73/70
1564.-;    917/1517   10.7/11.2       5/ 6     26.96 3.7/27.06  3.8    73/72

-------
RUN*
ST
1
2
. 3
4
5
58
PHI
5.40
5.70
5.91
5.29
5.64
DATE: 11/1
C VOLUME
0 244.7
0 252.6
.3 306.5
C 334.3
0 391.6
                            COOLING  DEVICE CODE=0
                                       PRECISION RUN  ERROR=  5.2*
                          NET       TIME       WINDSPEED   WIND DIK.    DRV  BULB TEMP t DIFF    RELAT
                        SODIUM    START/END   START/END   START/END        START/END           HUMID

                         404.5    1125/1401    7.2/ 9.9      I/  3      26.8C 3.5/26.8C 3.1     74/77
                         440.5    1129/1405    7.2/ 9.9      I/  3      26.8£ 3.5/26.8C 3.1     74/77
                         554.5    1105/1423   11.3/14.7      I/  3      26.8£ 4.0/26.7& 3.2     71/76
                         541.5    1050/1431   12.6/ 9.2      I/  3      27.86 4.6/27.2C 3.7     68/73
                         676.5    1036/1438    9.0/10.5      I/  3      26.Ot 3.2/26.8C 3.3     77/76
RUN*  59   DATE: 11/12/73   COOLING DEVICE  CODE=0
ST
 ft
     PHI
VOLUME
 3  14.56  1   121.9
 4  12.31  1   141.5
-.5 ..-9.54  1  . 181.0
  NET
SCDIUM

 543.5
 533.5
 52 e. 5
  TIME
START/END
                                              MINDSPEED
                                              START/END
                  1131/1244    27.I/
                  1110/1240    11.21
                  1048/1236    14.6/
WIND DIR.
START/END

   3/
   3/
   3/
                                                       DRY BULB  TEMP I DIFF
                                                           START/END
                                     24.5C 4.2/
                                     23.6t 4.9/
                                     24.2C 5.2/
                                                                                     t
                                                                                     t
RELAT
HUMID

68/
63/
61/

-------
RUN*  60

ST   PHI
          DATE: 11/13/73   COOLING  DEVICE CCDE=0
PRECISION RUN EPROR=  2.3*
              VOLUME      NET       TIME       WINDSPEED   WIND DIR.   DRY  BULB  TEMP 6 OIFF   RELAT
«                       SODIUM    STAPT/END   START/END   START/END        START/END          HUMID

1  10.79  9   280.4      926.5    1208/1455   23.4/19.4      4/ 4     23. 86  3.3/24.06 3.5    74/73
2  11.05  9   280.3      S48.5    1209/1457   23.4/19.4      4/ 4     23. 8£  3.3/24. 06 3.5    74/73
3  11.39  0   397.9     13F6.5    1111/1518   26.0/21.1      4/ 5     25.36  4.7/24.66 4.1    66/69
4   9.83  0   419.4     1261.5    1053/1526   17.1/17.5      4/ 4     26. OC  5.0/24.76 3.9    64/70
5  IC.lt  0   498.7     1551.5    1030/1534   14.2/16.3      4/ 4     25.36  4.8/25.06 4.0    65/70
RLN* 61
ST PHI
*
1
2
3
4
5

12.38
12.30
....12.48
1C.7C
11. 08
CATE: 11/14/73 CCCLING DEVICE COOE=0 PREC
C VOLUMF NET TIME WINDSPE5D

0
0
0
0
0

227.9
220.1
298.0
320.2
397.1
SCDIUM
863.5
826.5
1138.5
1048.5
1346.5
START/END
1137/1355
1140/1357
1113/1442
1101/1425
1049/1447
START/END
20.5/21.3
20.5/21.3
14.6/16.2
13.3/13.7
14.6/12.9
I SIGN RUN
WIND DIR.
START/END
5/
5/
5/
•>/
5/
4
4
5
5
4
ERROR= 0.7%
DRY BULB TEMP £
DIFF
START/END
24. 2C
24.2C
26. OC
26. 56
26.06
3.2/24.16
3.2/24.16
4.5/26.06
4.7/28.96
4.8/25.56
3.3
3.3
4.9
7.9
4.9
RELAT
HUMID
75/74
75/74
68/65
66/49
66/64

-------
RUN*
ST
*
1
2
3
4
5
62
PHI

6.75
6.88
£.35
7.36
7.51
DATE: 11/15/73 CCOLING DEVICE CODE=O PRECISION RUN
C VOLUME NET TIME WINDSPEED WIND DIR.

0
0
0
0
0

214.6
206.0
210.6
360. i
421.1
SCniUM
443. 5
433.5
793.5
Ell. 5
968.5
START/END
1103/1315
1107/1317
1030/1349
1015/1403
1003/1415
START/END
10.9/10.4
10.9/10.4
13.8/11.1
14.4/11.9
12.1/13.9
START/FND
6/
6/
6/
6/
6/
6
6
6
6
5
PRROR= 1.8%
DRY BULB TEMP 6
DIFF
START/END
25. 86
25. 8C
26. 6C
26. 5E
26. 8t
3.1/26.06
3.1/26.06
4.1/26.76
4.2/25.56
4.0/25.56
2.8
2.8
3.7
3,0
3.0
RELAT
HUMID
77/79
77/79
70/73
70/77
71/77
RUN* 63
i—
CJ1
00
"




ST
*
1
2
3
4
5
PHI

3.62
3.59
. 5.C4
4.68
5.36
GATE: 11/16/73 CCCLING DEVICE COCE=0 PRECISION RUN
C

0
0
0
0
0
VOLUME

22f. 5
217.2
381.8
407.3
487.5
NET
SODIUM
24P.5
238.5
566.5
563.5
803.5
TIMF
START/END
1243/1501
1245/1503
1110/1517
1100/1524
1044/1533
HINDSPEED
START/END
12.7/12.4
12.7/12.4
11.0/12.4
8.8/14.1
6.1/14.3
WIND DIR.
START/END
5/ 7
5/ 7
4/ 7
5/ 7
5/ 7
DRY BULB  TEMP
    START/END
                 DIFF
25. 5£ 1.8/25.8C  2.3
25. 5£ 1.8/25.8&  2.3
27. OC 4.1/25. 3C  2.3
26. 8C 3.3/25.86  2.0
28. OC 5.0/26.0C  2.9
RELAT
HUMID

86/83
86/83
70/82
76/85
66/79

-------
PUN* 64
ST
«
1
2
3
4
5
..6
PHI

4.10
4.17
£.42
7.23
4.03
.2.11
CATE: 11/20/73 CCQLING DEVICE COOE=0 PRECISION RUN
C

0
0
0
0
0
0
VOLUME

242.0
236.3
249.4
258.3
278.2
233.0
NET
SODIUM
303.5
301.5
413.5
571.5
343.5
221.5
TIME
START/END
1215/1440
1217/1442
1144/1421
1125/1410
1113/1400
1043/1309
WINOSPFED
START/END
17.8/18.5
17. 8/18. 5
13.1/15.0
18.2/20.7
17.9/20.2
18.4/14.6
WIND DIR.
START/END
6/ 5
5/ 5
6/ 6
6/ 6
5/ 5
6/ 5
                                                                            DRY BULB TEMP  C  DIFF   RELAT
                                                                                ST4PT/FND           HUMID

                                                                            27.OC 3.2/26.4C  3.4    76/75
                                                                            27.OC 3.2/26.4C  3.4    76/75
                                                                            28.OC 3.7/28.0C  3.5    74/75
                                                                            28.06 4.0/27.66.  3.2    72/77
                                                                            28.2C 3.7/28.0C  3.0    74/78
                                                                            26.3t 3. 3/27. 86.  3.8    76/73
in
to
RUN*
ST
H
1
2-
3
4
5-
6
£5
PHI

4.25
. 4.35
5.09
4.33
.4.44
1.78
DATE: 11/20/73 CCOL1NG DEVICE CODE=0 PRECISION RUN
C VOLUME NET TIME MNDSPEED WIND DIR.

C
0
0
0
0
0

162.4
162.7
159.6
144.4
149.8
175,5
SCDIUM
21 1.5
216.5
248.5
191.5
203.5
95.5
START/END
1448/1625
1450/1627
1425/1603
1415/1546
1405/1533
1323/1511
START/END
18. 5/
18. 5/
14.4/17.6
20.7/18.6
20.2/18.3
14.6/13.3
START/END
5/
5/
6/
6/
5/
6/
6
6
6
6
6
6
ERROR= 2.1?
DPY BULB TEMP C
OIFF
START/END
26. 4C
26. 4£
28. OC
27. 6C
28. OC
27. 8C
3.4/ C
3.4/ C
3.5/26.6C
3.2/27.0C
3.0/27.0C
3. 8/26. 7C


3.4
3.4
3.0
3.4
RELAT
HUMID
75/
75/
75/75
77/75
78/78
73/75

-------
RUN*  66   DATE: 11/21/73   COOLING DEVICE  CODE=0    PRECISION RUN ERROR=33.2*
;T
*
i
2
3
4
5
6
PHI

9.71
6.4R
10.95
11. »0
7.07
9.12
C

0
0
0
0
0
0
VOLUME

249.4
248.6
322.6
343.8
490.5
363.2
NET
SCDIUM
741.5
493.5
1C81.5
1178.5
1C61. 5
1C13.5
TIME
START/END
1234/1503
1236/1505
1208/1528
1156/1538
1109/1553
1042/1425
WINDSPEED
START/END
17.5/16.7
17.5/16.7
21.3/17.3
22.6/16.5
18.9/
15.3/18.5
WIND DIR.
START/END
6/
6/
7/
7/
7/
6/
6
6
6
6
6
6
                                                                       DRY  BULB TEMP £ OIFF    RELAT
                                                                           START/END           HUMID

                                                                       27.lt  2.1/26.3E 1.8     84/86
                                                                       27.lt  2.1/26.3C 1.8     84/86
                                                                       28.OC  2.7/27.0£ 2.5     80/81
                                                                       27. 8t  2.7/27. It 2.1     80/84
                                                                       29.OC  3.0/    £         79/
                                                                       26. 5£  3.2/27.0& 2.5     77/81
.- -RUN* 67
H^
S ST
H
1
2
3
4
5
6
PHI

9.36
9.C7
11.17
10.00
8.70
6.49
DATE: 11/27/73 COOLING DEVICE CCDE=O PRECISION RUN
c

0
c
0
0
0
0
VTLUMt

15.9.0
154.4
233.5
257.6
326.0
385.3
NET
SCDIUM
456.5
428.5
798.5
7P6.5
666.5
1C01.5
TIHF
START/END
1402/1538
1405/1539
1329/1553
1313/1600
1255/1607
1225/1622
WINDSPEED
START/END
13.1/14.0
13.1/14.0
16.5/14.9
21.5/15.7
19.7/15.5
19.2/11.9
MIND DIR.
START/END
8/ 7
11 1
8/ 8
7/ 8
8/ 8
8/ 8
                                                                      DRY BULB  TEMP  £ DIFF   RELAT
                                                                          STAPT/FND           HUMID

                                                                      27.5£ 3.4/26.OC 2.1    75/84
                                                                      27.5£ 3.4/26.0C 2.1    75/84
                                                                      27. 5£ 3.3/27. 3£ 2.5    76/81
                                                                      27.4£ 2.5/26.7£ 2.0    82/85
                                                                      28.7C 3.1/27.6C 2.1    78/84
                                                                      27.9£ 3.2/26.2C 2.7    77/80

-------
PUNK  68   DATE: 11/30/73   CHCLING  DEVICE  CODE=0
                                           PRECISION RUN ERROR=
T
*
1
2
3
4
5
6
PHI

21.21
2C.97
27.96
20.10
2C.3R
12.74
C

9
9
C
0
0
0
VOLUME

256.7
256.5
367.0
381.8
472.0
536.2
NET
SODIUM
1666.5
1646.5
3141.5
2348.5
3016.5
2091.5
TIME
START/END
1147/1424
1149/1425
1100/1442
1040/1450
1019/1456
942/1512
WINCSPfEO
START/FNn
19.0/19.8
19.0/19.8
29.3/19.7
21.0/17.0
15.0/19.7
10.9/15.0
WIND OIR.
STAPT/ENO
3/
3/
3/
3/
3/
21
3
3
3
3
3
3
                                                           DRY BULB TEMP  £  DIFF   RELAT
                                                               START/END           HUMID

                                                           23.9C 4.9/22. It  4.1     63/67
                                                           23.9t 4.9/22.It  «>. 1     63/67
                                                           23.4t 3.8/22.0£  3.8     70/69
                                                           23.8t 4.8/22.Ot  3.7     63/70
                                                           23.7t 4.7/22.0t  2.7     64/78
                                                           21.5t 4.4/22.2t  4.1     65/67
DATE:  12/ 1/73   COOLING DEVICE COOE=0
                                                      PRECISION RUN ERROR= 8.5?
 RUN*   69

 ST    PHI   C   VOLUME     NET      TIME      WINDSPEEO    WIND  DIR.    DRY BULB TEMP t OIFF    RELAT
  *                       SODIUM   STAPT/ENO   START/END    START/END        START/END           HUMID

  1   11.59  0   137.7     486.5   1307/1430   14.9/14.0       3/ 3     23.Ot 4.0/23.2t 3.7     69/71
  2.  10.60  0   133.6     433.5   1309/1432   14.9/14.0       2/ 3     23.Ot 4.0/23.2t 3.7     69/71
  3    7.95  0   416.4    1013.5   1207/1502   19.2/17.7       3/ 3     23.Ot 3.5/23.0t 3.5     73/73
  4   10.0«  0   308.0     951.5   1144/1510   16.1/12.3       3/ 3     23.Ot 3.6/24.0£ 4.0     72/69
-5.  1C.80  0   388.4    1283.5   1126/1517   18.0/13.8       3/ 3     23.2t 4.1/23.7£ 4.1     68/68
  6    9.15  0   293.3     821.5   1235/1530   13.3/17.5       3/ 3     24.Ot 4.8/22.8t 3.8     63/70

-------
RUN*  70

Sf   PHI
 1  16.53
 2  17.37
 3 ._1£.91
 4  20.08
 5   C.96
 6-. 14.53
DATE: 12/ 4/73   COOLING DEVICE CODE=0
PRECISION RUN  EPRO*= 4.8*
C   VOLUME     NET      TIMF      WINDSPEEO    WIND OIR.   DRY BULB  TEMP t OIFF   RELAT
             SCCIUM   START/END   START/END    START/END       START/END          HUMID

0   204.2    1033.5   1204/1402   24.1/15.9       6/ 6     24.56 2.8/24.56 2.5    78/80
0   200.6    1066.5   1206/1404   24.1/15.9       6/ 6     24.5t 2.8/24.56 2.5    78/80
0   301.8    1746.5   1121/1417   18.3/17.6       6/ 7     26.Ot 3.0/26.06 3.7    78/73
0   377.6    2221.5   1027/1426   20.1/20.7       6/ 7     26.Ot 2.9/26.06 3.0    79/78
0   483.3     142.5    956/1436   20.9/21.5       6/ 7     26.Ot 3.5/25.76 3.7    74/73
0   226.7    1C08.5   1234/1450   20.9/20.6       6/ 6     26.2t 3.7/25.6t 3.6    73/73
BUN*-.. 71 .
ST PHI
. *
1
2
3
4
5
t
-
9.
s.
9.
11.
10.
9.

,98
,62
,39
,C5
23
,15
DATE: 12/ 5/73 COOLING DEVICE COCE=0 PRECISION RUN
C VOLUME NFT TIME WINDSPEED WIND DIR.

0
0
0
0
4
0

241.0
238.2
427.5
3-J7.1
440.1
341.4
SODIUM
736.5
701.5
1228.5
1343.5
1376.5
S56.5
START/END
1324/1548
1325/1549
1115/1531
1 107/1521
1056/1510
1251/1620
START/END
11. 7/ 9.5
11. T/ 9.5
23.5/15.1
22.4/14.4
16.0/12.3
6.3/ 8.8
START/END
8/10
8/10
10/10
1O/10
8/10
9/10
ERROR- 3.6*
DRY BULB TEMP 6
OIFF
START/END
25.56
25.56
25.56
25.26
27.06
27.06
2.6/25.06
2.6/25.01
1.8/25.66
2.0/25.56
3.0/25.56
3.7/25.06
3.0
3.0
2.8
2.9
3.3
3.4
RELAT
HUMID
80/77
80/77
86/79
84/78
78/75
73/74

-------
RUN* 72
ST
It
1
2
a
4
5
_fi.
PHI

9.57
9.25
1.0.98
10. 99
11.02
—9.12
DATE: 12/ 6/73 CQGLING DEVICE CODE=0 PRECISION PUN ERROR= 3.3%
C

0
0
0
0
0
0
VOLUME

226.9
229.2
249.5
330.4
375.6
401.5
NET
SODIUM
664.3
64<=.3
836.5
1111.5
1266.5
1121.5
TIME
START/END
1250/1513
1252/1514
1220/1455
1113/1446
1054/1438
1017/1424
MINDSPEEC
START/END
8.9/10.7
8.9/10.7
15.8/11.0
18.1/16.4
13.3/15.3
13.9/14.7
MIND OIR.
START/END
7/ 7
7/ 7
8/ 8
8/ 7
8/ 7
7/ 7
DRY BULB
TEMP C
DIFF
START/ENP
27. 5t 3.
27. 5t 3.
28. OS 4.
27. 26 3.
28. 5t 3.
27. Ot 4.
0/26. SC
0/26. 5£
0/27. 8C
2/27. OG
6/27. 8G
0/27. 26
2.8
2.8
3.4
3.5
3.8
4.1
RELAT
HUMID
78/79
78/79
72/76
77/74
75/73
71/71
     Station 2 was dismantled for relocation in order to facilitate upcoming cooling device contribution
     measurements.  Run #72 contains therefore the  last precision run.
CTl
OJ
RUN* 73
ST PHI
1 4.S6
..3....11.31
4 2.95
5 3.58
-_6 	 3.36
GATE: 12/1
C VOLUME
5 350.0
0 139.6
0 502.4
0 565.8
0 609.0
                                   COOLING DEVICE  CODE=0
                                 NET
                               SODIUM

                                531.5
                                463.5
                                453.5
                                626.5
  TIME
START/END

1107/1432
1051/1456
1024/1530
1012/1545
 948/1604
WINOSPEED
START/END

22.8/12.4
22.0/11.2
10.3/  7.6
24.O/  8.2
14.3/10.6
WIND  DIR.    DRY  BULL TEMP  t OIFF    RELAT
START/END         START/END            HUMID

  14/15      14.8t  2.9/17.OS 4.7     72/58
  15/15      14.5£  2.5/17.2C 5.2     75/54
   1/16      14.6C  2.6/17.2& 5.2     74/54
  16/  1      13.96  2.3/16.8t 5.0     77/55
   I/  1      13.5t  2.2/17.0C 5.3     77/53
     Trash..fire across the canal directly upwind of Station 1.  Possible contamination from heavy smoke.

-------
RUN*
ST
*
1
3
.4. ..
5
6
7*
PHI

1.84
2.68
2.54
2.09
1.97
DATE: 12/13/73 COOLING DEVICE CODE=0
C

0
3
0
4
3
VOLUME

471.2
408.2
449.6
549.4
787.9
NET
SODIUM
265.3
335.3
349.3
352.3
475.3
TIME
ST4PT/ENO
1221/1708
1202/1647
1033/1600
1105/1630
950/1752
WINDSPEEO
START/END
12.1/11.5
10. 3/ 9.2
10.5/ 6.1
9.5/ 7.6
9.4/ 3.4
WIND DIR.
START/END
14/11
15/12
14/11
14/12
15/12
OPY  BULB TEMP 6 01PF   RELAT
     STAPT/ENO          HUMID

21.06  5.0/19. 56 4.6    60/61
20.2C  5.1/21.06 5.0    58/60
19.66  4.7/21.66 5.3    60/58
20.86  4.8/21.2C 5.4    61/57
1B.8C  4.8/17.26 3.0    59/72
RUN* 75
£ ST
*• *
1
3
4 .
5
6
PHI

2.92
3.39
2.88
3.09
2.71
DATE: 12/14/73 CCCLING DEVICE COOE=0
C

C
0
0
3
C
VOLUME

256.2
188.4
176.1
214.1
292.4
NET
SODIUM
229.3
195.3
155.3
2C2.3
242.3
TIME
START/FMD
1209/1435
1305/1502
1316/1516
1326/1529
1344/1638
WINCSPEED
START/END
14.5/13.9
23.3/20.6
19.7/21.4
20.3/17.5
15.1/11.7
WIND DIR.
STAKT/FND
11/11
11/11
11/11
11/11
11/11
DRY BULB  TEMP  6 DIFF   RELAT
    START/END           HUMID

24.26 4.4/24.5G 4.5    66/66
24.66 4.1/23.86 3.8    69/70
25.06 4.0/23.96 3.9    70/70
23.96 4.3/23.26 4.2    67/68
25.06 4.4/23.06 4.2    67/68

-------
RUN*  7f>   DATE: 12/17/73   COOLING DEVICE CODE=0
T
*
1
3
4
5
6
PHI

8.87
6.71
7.54
7.49
7.96
C

0
3
0
0
0
VOLUME

445.3
391.9
358.3
361.9
351.9
NFT
SODIUM
1209.3
eos.3
627.3
82S.3
£57.3
TIME
START/END
935/1400
1005/1412
1024/1420
1044/1427
1108/1443
WINOSPEED
START/END
12.2/18.2
11. 2/ 8.7
6.4/10.1
7.1/14.1
8.4/14.4
WIND DIR.
START/END
15/12
13/15
16/15
16/15
16/15
                                                                      DRY BULB TEMP 6 DIFF    RELAT
                                                                          START/END           HUMID

                                                                      12.5C 2.0/16.96 3.1     79/71
                                                                      12.76 2.2/17.66 3.5     77/69
                                                                      14.86 2.8/16.46 3.4     73/68
                                                                      13.4t 2.4/16.06 3.0     75/71
                                                                      15.Ot 2.5/17.46 3.6     76/68
RUN* 77
ST
H
1
3
4
5
6
PHI

2.45
2.56
2.18
2.00
1.77
GATE: 12/18/73 COCLIHG DEVICE COOE=O
c

0
0
0
0
3
VOLUME

292.7
309.9
322.0
345.3
437.3
NFT
SCDIUM
21S.3
243.3
215.3
211.3
237.3
TIME
START/END
1315/1606
1300/1621
1251/1628
1240/1636
1223/1658
MINOSPEFD
START/END
9.4/10.6
20.0/14.1
8.5/ 9.2
10.8/10.3
6.7/ 7.1
WIND DIR.
START/END
2/ 1
21 1
3/ 1
3/16
3/ 2
                                                                      ORY BULB TEMP t OIF*    RELAT
                                                                          START/END           HUMID

                                                                      15.7t 3.7/16.5C 1.5     65/85
                                                                      15.3& 4.0/16.3£ 1.3     62/87
                                                                      17.OC 4.9/16.36 1.5     56/85
                                                                      15.56 4.0/16.86 1.8     62/82
                                                                      16.36 4.8/16.56 1.5     56/85

-------
RUN*  78

ST   PHI
 1   11.25
 3   10.72
 4 . 10.15
 5    5.S5
 6    9.19
CATE:  I/ 2/74   CfCLING DEVICF  CODE=0
0
0
0
0
0
               VOLUME
259.9
329.9
317.2
369.4
212.4
  NFT
SODIUM

 695.3
1062.3
 585.3
1125.3
 5<57.3
  TIME
START/END

1314X1540
1214/1526
1156/1519
1142/1511
1238/1443
WINOSPEED
START/END

22.7/20.7
25.1/26.0
18.3/21.7
26.8/23.6
25.6/16.7
WIND OIR.   DRY  BULB TEMP C DIFF   RELAT
START/END        START/END          HUMID

   5/ 5     24.9C  1.9/24.8£ 2.0    85/84
   6/ 6     26.7C  2.7/25.6C 2. P    80/79
   6/ 6     26.7C  2.7/26.1C 3.1    BO/77
   5/ 5     26.8t  2.6/26.5C 2.5    81/81
   6/ 6     26.4C  2.4/26.6C 3.4    82/75
RUN* 79
H*
Ol
a\





ST
t
1
3
— _ 4
5
6
PHI

e.02
6.18
8.10
7.96
7.00
DATE: I/ 4/74 COOLING DEVICE CODE=0
C

0
0
0
0
0
VOLUME

177.3
304.6
315.6
405.9
30*. 2
NFT
SCDIUM
435.3
762.3
782.3
589.3
t?2.3
TIME
START/END
1258/1443
1151/1456
1133/1505
1120/1512
1219/1529
MINDSPEED
START/END
10.5/11.0
20.2/16.1
16.4/18.9
15.3/18.8
20.2/14.3
WIND DIR.
START/END
7/ 7
7/ 8
6/ 7
7/ 7
7/ 7
                                                                      DRY BULB TEMP  £  DIFF    RELAT
                                                                          START/CNO           HUMID

                                                                      25.5C 2.0/26.06  2.5     84/81
                                                                      26.2C 2.2/26.26  2.7     84/80
                                                                      27.Ot 2.6/25.5C  2.3     79/82
                                                                      27.Ot 3.0/25.OK  2.4     78/81
                                                                      26.Ot 2.5/2S.3&  2.7     81/79

-------
RUN* 80
ST
*
1
3
4
5
6
PHI

2.69
3.08
2.75
3.80
2.76
DATE: I/ tt/74 COOLING DEVICE CODE=0
C

0
0
0
0
0
VOLUME

251.8
257.0
253.5
220.6
353.7
NET
SODIUM
2C7.3
242.3
213.3
256.3
296.3
TIME
START/END
1343/1617
1320/1600
1300/1549
1252/1538
1137/1515
MINDSPEED
START/END
7.9/ B.2
7.2/14.0
7.9/12.4
12.1/10.3
7.8/10.4
WIND DIR.
START/END
6/ 6
7/ 6
6/ 6
6/ 6
7/ 7
DRY  BULB  TEMP £ DIFF   RELAT
     START/END          HUMID

25.4C 2.4/26. 7£ 3.2    81/76
26.0£ 2.8/26.5£ 3.4    79/75
26.5C 2.5/26.2t 3.2    81/77
27.0£ 3.0/27.36. 3.3    78/76
25.46 2.6/26.9£ 3.4    80/75
RUN*
ST
H
1
3
_ 6 .
5
6
81
PHI

t.S4
6.69
6.97
7.09
6.4C
DATE: I/ 9/
C VOLUME

0 241.1
0 238.0
0 322.3
0 361.7
0 229.2
74 COOL
NET
SCOIUM
512.3
487.3
687.3
785.3
449.3
ING DEVICE
TIME
START/FND
1342/1604
1256/1520
1145/1509
1130/1456
1320/1539
COOE=0
WINDSPEEO
START/END
17.5/14.9
12.5/14.3
22.6/17.8
17.0/18.2
14.9/20.2

WIND DIR.
START/END
6/ 6
7/ 7
6/ 6
6/ 5
7/ 5
DRY BULB TEMP  £  DIFF   RELAT
    START/END           HUMID

25.6t 3.6/25.5C  3.5    73/74
26. 7£ 3.7/25.8£  3.3    73/76
26.2C 3.1/26.7C  3.7    77/73
26.5£ 3.6/27.0£  3.5    74/74
27.OE 4.0/26.1C  4.1    71/70

-------
RUN* 82
ST
•
i
3
4
5
6
PHI

7.74
e.86
. 9.47
8.45
6.64
CATE: 1/11/74 COOLING DEVICE CODE=0
C

0
0
0
0
0
VOLUME

429.1
428.7
396.4
427.5
382.6
NET
SCDIUM
1017.3
1162.3
1C27.3
1105.3
777.3
TIME
START/ END
1137/1550
1121/1533
1110/1522
1058/1511
1035/1441
WINOSPEED
START/END
15.2/12.2
15.6/19.9
19.3/17.2
14.0/17.2
14.2/16.9
WIND DIR.
START/END
6/ 7
7/ 7
7/ 7
7/ 6
7/ 7
DRY BULB TEMP  6 DIFF   RELAT
    START/FNO           HUMID

24.66 2.6/26.06 2.1    80/84
25.96 3.8/26.96 3.7    72/73
26.06 3.0/25.76 2.7    78/80
26. 5t 3.5/27. 06 3.9    74/72
24.96 3.4/26.06 4.0    74/71
RUN* 83
5 ST
00 #
3
4
- 5-
6
7
a
9
10
PHI

5.48
11.29
- 7.C6
4.69
5.55
.4.81
4.31
3.67.
DATE: 1/31/74 COOLING DEVICE COGE-2
C

0
0
0
0
0
0
0
0
VOLUME

736.2
459.2
342.2
277.0
454.3
472.9
282.1
220.3
NET
SCDIUM
1234.3
15E7.3
73?. 3
397. 3
772.3
697.3
372.3
247.3
TIME
START/END
910/1723
938/1427
1017/1433
1225/1522
958/1443
1035/1605
1208/1507
1240/1534
WINDSPEED
START/END
5.5/13.6
4.2/ 8.6
3.8/12.6
8.3/18.7
2.9/10.7
4.0/13.1
8.6/ 6.8
6.5/15.8
WIND niR.
START/END
I/ 6
3/ 6
15/ 5
9/ 5
3/ 6
3/ 5
5/ 5
5/ 6
DRY BULB TEMP 6
DIFF
START/END
21.86
23.56
24.06
27.26
23.26
25.06
27.56
27.66
1.0/26.16
2.0/26.86
2.0/26.86
4.9/26.86
1.7/26.66
2.5/26.46
4.5/27.06
4.8/26.96
4.1
3.9
3.8
4.3
4.4
3.4
4.3
4.5
RELAT
HUMID
91/70
84/72
84/72
65/69
86/68
80/75
68/69
67/68

-------
RUN* 84
ST PHI
*
3
4
5
6
7
a
9
10
11

2.59
5.57
5.38
4.01
3.71
3.47
3.0C
2.41
14.16
DATE: 2/ 1/74 COOLING DEVICE CODE=2
C VOLUME NET TIME WINOSPEEO

0
0
0
0
0
0
0
5
0

470.0
280.8
291.1
268.1
289.6
267.5
296.3
58.5
299.2
SODIUM
272.3
822. 3
479.3
325.3
329.3
264.3
272. J
43.1
1257.3
START/END
1003/1635
1231/1534
1252/1554
1415/1700
1238/1539
1305/1609
1357/1710
1427/1645
1155/1505
START/END
6.4/ 7.2
4.9/ 9.2
10. 3/ 9.6
8.5/10.7
8.5/11.2
11. 6/ 7.4
8.6/ 9.1
11. I/ 9.7
12.1/10.3
WIND DIR.
START/END
2/
5/
6/
6/
5/
6/
4/
3/
5/
7
6
5
6
5
6
5
5
5
DRY BULB TEMP 6
DIFF
START/END
25. 06
26. 8t
26. 36
26.76
26. 1C
25. 6C
27. 4C
26. 66
25. 36
4.7/26. OC
4. 9/26. 46
4.2/26.36
4.5/25.96
4.8/26.46
3.4/26.06
5.2/26. 16
4. 7/26.36
4.0/25.86
4.0
4.4
4.4
4.0
4.4
3.9
4.0
4.8
4.0
RELAT
HUMID
65/71
65/68
70/68
68/71
66/68
75/72
64/7]
66/66
71/71
Low RPM on Station 10.
._ . RUN* 85
ST PHI
3 2.99
	 . 4 ..3.20
5 4.17
1 7 19.14
DATE: 2/
C VOLUME
0 279.6
0 220.7
0 257.8
0 198.4
                            CGCLING DEVICE COOE=2
                          NET
                        SCDIUM

                         256.3
                         216.3
                         329.3
                        1162.3
  TIME
START/END

1055/1320
1105/1326
1116/1350
1140/1344
WINOSPEEO
START/END

19.4/18.7
17.5/17.8
18.7/14.2
14.8/19.3
WIND DIR.   DRY BULB  TEMP 6 DIFF   RELAT
START/END       START/END          HUMID

   8/ 8     25.56  5.2/26.26 5.1    62/64
   8/ 8     26.06  4.5/27.06 4.8    68/66
   8/ 8     26.16  5.3/26.06 4.5    62/68
   7/ 7     26.06  5.5/26.86 5.0    61/64

-------
            DATE:   2/ 6/74    CGGLING DEVICE  CODE=0
ST
*
3
4
5
6
7
8
9
1C
PHI

24.<55
2C.59
22.26
18.21
15.17
2C.57
16. 54
15.63
r

0
0
0
C
0
0
0
0
VOLUME

323.7
396.?
307.8
313.5
JS3,6
317. 4
JO 3.0
281.7
NET
SODIUM
2472.3
24? 7. 3
2C57. ?
1747.3
2309.3
lSSfl.3
1534.3
1347.3
TIME
START/END
1111/1509
1127/1524
1151/1544
1329/1657
1137/1534
1239/1557
1314/1624
1339/1707
WINDSPEED
START/END
22.5/28.4
28.8/24.2
25.7/24.0
20.9/16. S
24.0/26.2
24.2/24.5
14.5/15. S
23.2/19.2
WIND DIR.
START/END
7/
7/
7/
7/
7/
7/
6/
6/
7
7
7
6
6
7
6
7
DRY BULB TEMP E
OIFF
START/END
22. 5E
24. Ot
24. 2E
24.«»E
22. 8E
23. 5C
25. 3C
24. 9t
3.5/25.0E
3.4/25.0E
3.6/24.8E
4.1/25.0E
4. 1/24. 96
3.5/24.4E
4.1/24.0E
4.7/25.5E
4.0
3.7
4.3
4.3
4.8
3.9
3.9
5.5
RELAT
HUMID
72/70
73/72
72/68
69/68
63/65
73/70
70/70
65/60
PUN* 67
ST
*
6
9
1C
PHI
2.86
2.11
1.21
DATE: 2/ 7/74 COOLING DEVICE COCE=2
C
5
1
1
VOLUMt
322.5
570.8
490.4
NET
SODIUM
262.3
369.3
162.3
TIME
STAPT/END
1109/1710
10'58/1700
1123/1715
hINDSPEEC
START/FND
21. 5/
17.6/
15. 8/
WIND DIR.
START/END
8/
7/
fi/
7
7
8
DRY BULB TEMP E DIFF RELAT
START/END HUMID
25.86
26. OE
26.2E
4.0/
4.0/
4. 2/
E
E
E
71/
70/
Low RPM on Station 6.  All  stations caught  in light rain.

-------
RUN* 88
ST PHI
H
3
4
5
6
7
a
9
10

3.76
4.01
3.97
5.17
3.50
4.27
5.45
3.94
OATf : 2/ 8/74 COOLING OfVICE CQDE=2
C VOLUME NFT HMC WINDSPEEO

0
0
3
0
3
0
0
5

319.2
325.6
381.8
380.9
325.7
334.2
370.3
234.1
SOOIUM
?67. 3
?
-------
RUN*  90
DATE:  2/12/7*
                                 CPOLING DEVICE CODE=2
ST
*
3
A
5
6
7
8
9
10
PHI

2.79
2.81
2.84
1.93
2,71
2.94
2.27
1.36
C

0
C
0
0
0
0
3
0
VOLUMF

264.0
287.3
320.7
298.5
288.5
391.4
468.5
419,4
NET
SCDIUM
225.3
247.3
279.3
173.3
239.3
352.3
325.3
239. 3
TIME
START/END
1336/1646
1325/1635
1305/1621
1031/1528
1317/1628
1150/1612
1015/1518
1045/1543
WINDSPEEQ
START/END
8.3/12.2
9.9/ 7.3
9.7/ 7.4
7. 8/ 8.9
3.2/ 6.6
10. 4/ 7.0
8.3/ 8.0
10. 9/ 6.9
WIND DIP.
START/END
2/
4/
3/
15/
15/
15/
14/
15/
3
2
2
2
2
3
2
2
DRV BULB TEMP 6
DIFF
START/END
22. 2C
23. OC
22. OC
17. 5C
22. OC
20. OC
16. 3C
18. OC
6.2/21.3C
7.0/21.8C
6. 5/22. 1C
5.2/21.5C
6.5/21.5C
6.0/22.0C
4.3/21.8C
5. 0/21. 1C
6.1
6.8
6.1
6.6
6.3
6.0
6. B
9.3
RELAT
HUMID
53/52
49/48
50/53
54/49
50/51
51/54
60/48
57/30
">   RUN*  91
           DATE:  2/13/74
                 CrOLINf, DEVICE  CCOE =
ST
«
3
4
.5 ..
6
7
_fl _
9
10
PHI

3.11
4.13
3.47
4.42
3.10
.3.59
4.21
3.51
C

0
0
0
0
0
0
0
0
VOLUME

430.5
461.1
45b.4
319.8
461.3
357.2
307.0
302.7
NET
SODIUM
4C9.3
539.3
4E4.3
4?2.3
437.3
292.3
395.3
325.3
TIME
START/END
944/1444
1000/1455
1018/1515
1240/1610
1009/1505
1030/1526
1226/1558
1251/1624
MINDSPEED
START/END
6,4/ 8.6
4.9/ 6.7
6.5/11.6
9.4/10.1
6.9/11.0
a. 8/12. 6
8. I/ 9.7
6.2/11.0
MIND D1R.
START/END
16/
16/
15/
7/
I/
2/
4/
2/
3
4
4
4
3
4
2
4
DRY BULB TEMP C
DIFF
START/FNn
18. at
19. 8C
20. 3C
23. 2C
20. OC
20. 9C
24.0*.
23. 5C
4. 8/23.5C
4.8/23.5C
5.1/24.0C
6.3/23. 4C
5.1/23.3C
5.6/23.0C
6.8/23.8C
7.3/23.3C
6.7
7.0
7.0
6.5
6.7
6.0
6.7
6.3
RELAT
HUMID
59/51
60/49
58/49
53/52
58/51
55/55
50/51
47/53

-------
RUN*  92   DATE:  i/14/74   CCGLIMG DEVICE  C00fc=2
ST
H
2
4
5
6
7
e
9
10
PHI

4.
4.
4.
4.
4.
4.
3.
3.

22
CO
56
52
39
11
99
68
C

0
0
0
0
0
0
0
0
VOLUME

351. 6
352.7
346.2
321.4
392. 8
269.4
310.2
289.0
NET
SODIUM
454.3
432.1
483.3
444.3
527.3
339.3
369.3
325.3
TIME
START/END
1042/14^7
1103/1458
1143/J518
1311/1613
1114/1509
1213/1529
1259/1622
1322/1544
WIMDSPEED
START/END
12.
8.
10.
6.
12.
14.
10.
10.
4/11.
9/ 9.
0/14.
9/ 7.
7/11.
5/17.
9/11.
O/ 8.
5
0
1
2
8
3
9
5
WIND DIR.
START/END
2/
3/
3/
21
3/
4/
3/
I/
•t
ft
4
5
3
5
6
5
                                                                      DRY BULB TEMP  C  DIFF    RELAT
                                                                          START/END           HUMID

                                                                      21.OC 4.2/24.0C  5.0    66/62
                                                                      23.5C 5.9/24.9C  5.8    56/58
                                                                      23.8C 5.8/24.5C  5.9    57/57
                                                                      24.9C 6.4/24.6C  5.1    54/59
                                                                      22.3C 5.1/24.0C  5.1    60/61
                                                                      23.26 4.9/23.1C  4.9    63/63
                                                                      24.7C 6.6/25.1C  6.3    52/55
                                                                      25.5C 7.0/24.5C  6.5    50/53
                            CrrLING DEVICF CODE=2
ST
*
3
4
. 5
6
7
8
9
10
11
PHI

5.31
2S.72
6.45
5.41
0.65
5.10
5.15
5.56
11.83
C

0
0
0
0
0
e
0
0
0
VOLUME

460.1
460.6
467.3
390.9
481.5
334.4
350.9
336,5
372.0
NET
SCniUM
747.?
4372,3
12C9.3
647.3
95.6
522.3
562.3
572.3
1247.3
TIME
START/END
1C05/1521
1028/1530
1101/1555
1318/1719
1049/1543
1117/1610
1305/1705
1328/1742
1235/1629
WINDSPEED
START/END
7.0/18.1
2.1/15.7
7.5/15.9
7.9/11.7
4.8/14.4
7.7/16.7
14.3/11.5
9.0/12.6
12.0/22.5
WIND DIR.
START/END
2/
5/
5/
4/
6/
6/
4/
4/
4/
8
6
6
8
6
7
6
7
7
DRY BULB TEMP C
START/END
22. 8£
24. OC
25. OC
25. 3C
24. 5C
24. OC
25. 1C
26. 2C
24. 2C
3.9/25.5C
4.8/25.8C
4.5/26.2C
5.0/25.0C
4.6/25.9C
4.0/25. 5C
4.3/25.7C
4.9/24.8C
3.9/25.0C
DIFF

4.5
4.9
4.9
4.7
6.0
4.5
4.7
4. 8
4.5
RELAT
HUMID
70/67
63/65
67/65
64/65
65/57
t>9/67
68/66
65/64
70/67

-------
ST
«
3
A
5
6
7
e
^
10
PHI

3.
-------
RUN*  
-------
PATE:   2/22/74   CTCLINf. DFVICE  CODE = 1
ST
0
3
4
5
6
7
e
9
10
PHI

8.06
7,53
6.C7
6.34
5.48
6.54
6.70
7.: 2
C

0
0
1
0
1
1
0
0
VOLUME

503.4
432.4
476.9
661.7
521,0
333^2
560.4
517,1
MET
SCPIUM
1241.3
996. 3
886.3
1C89.3
674. 3
871.3
1161.3
1126. 3
TIME
START/END
848/1400
«00/1406
"30/1424
'138/1732
°12/1422
10C3/1435
1129/1720
1148/1750
WINDSPEED
START/END
17.3/28.6
17.1/28.4
18.4/2S>.2
16.3/13.0
34.3/21.0
19.4/23.0
15.2/11.7
20.0/11.8
WIND DIR.
STAPT/END
8/10
I/ 9
9/10
q/io
9/10
9/10
8/ 9
8/10
DRY B
S
26.06
25.86
26.06
27.96
25.16
26.16
27.96
27.06
                                                                     TEMP t 01FF    RELAT
                                                                STAPT/EMO           HUMID

                                                                  1.5/26.76 2.0     89/85
                                                                  1.0/26.76 2.3     92/83
                                                                  1.5/27.06 2.2     89/84
                                                                  3.7/27.36 4.3     74/69
                                                                  1.8/26.56 2.3     85/83
                                                                  2.0/28.06 4.0     85/72
                                                                  3.5/27.16 4.5     75/68
                                                                  3.8/26.56 4.0     72/71
RUN* 99
ST PHI
*
•t
4
5
6
7
8
9
1C

1 1.76
9.26
10.55
7.97
9.60
11.58
9.G3
1C. 91
DATE: 2/23/74 COOLING DEVICE COCE=1
c VOLUKF NET TIME WINDSPEEO

0
0
0
3
0
0
0
0

346.1
439.6
304.7
516.3
450.1
412.0
506.0
489.9
SCDIUrt
1246.3
1246.3
S84.3
1260.3
1323.3
1460.3
1298.3
1648.3
STAPT/END
101R/15CO
1027/1509
1101/1526
1213/1755
1048/1518
1114/1555
1203/1748
IP21/180C
START/FNO
15.5/17,9
10. B/ 9.5
9.2/ B.9
9.2/ 7.9
9.2/13.3
9.4/13.4
7.8/ 9.5
7.5/10.1
WIND DIR.
STAKT/f-NO
2/
2 1
3/
3/
2/
3/
2/
I/
3
3
4
4
2
3
4
4
                                                           DRY  BULB  TFMP C DIFF   RELAT
                                                                START/END          HUMID

                                                           18.5£  4.2/24.2C 3.2    64/75
                                                           20. Ot  5.0/24.0C 3.5    58/73
                                                           20.7C  4.7/24.8C 3.8    62/71
                                                           22.56  3.6/24.46 4.1    71/69
                                                           19.26  3.9/23.06 3.0    67/76
                                                           20.26  3.7/24.36 2.5    69/80
                                                           21.96  4.9/24.26 3.7    61/71
                                                           22.06  4.1/25.06 4.7    67/65

-------
RUN* 100   DATE:  2/25/74    CCCLING DEVICE CCDE=1
ST
*
3
4
5
f
7
8 .
9
10
PHI

3.14
3.45
3.48
3.32
3.64
.3.76
3.46
3.30
C

0
0
0
4
0
C
4
4
VOLUME

537.9
469,4
346,6
314.0
502.4
370.9
240.1
391.9
NET
SCDIUM
31 A. 3
516.3
371.3
319.3
559.3
426.3
254.3
396.3
TIME
START/END
1024/1531
1035/1542
1059/1606
1252/1749
1045/1555
1113/1619
1241/1805
1303/1739
WINDSPEED
START/END
17.4/15.3
9.8/14.3
18.4/20.1
20.2/11.5
19.1/17.4
19.2/17.4
13.1/13.7
17. I/ 9.8
MIND DIR.
START/END
I/ 1
16/16
16/16
16/16
1/16
1/16
16/16
16/16
DRY B
S
19.26
20.46
20.56
22.36
20.06
20.36
22.06
22.06
                                                                                TEMP 6 DIFF    RELAT
                                                                           START/END           HUMID

                                                                             3.8/21.46 5.1     67/60
                                                                             3.6/21.36 5.2     70/5«
                                                                             4.0/20.06 4.0     67/66
                                                                             5.1/17.86 4.6     60/60
                                                                             3.5/20.66 4.5     70/63
                                                                             4.2/20.06 4.1     65/65
                                                                             5.0/17.66 4.6     61/60
                                                                             5.0/18.06 4.5     61/61
il   PUN« 101

    ST   PHI
           GATE:  i/26/74    COCLING DEVICE CDDE=l
               VOLUME
3
4
5
6
7
8
9
10
0.05
0.05
C.C4
C.05
C.C5
C.04
0.05
O.C5
0
0
4
4
0
C
4
4
478.7
505.2
352.1
440.1
542.3
408.7
463.4
457,4
  NET
SCCIUM

   7.3
   6. 2
   4.6
   6.7
   8.9
   5.2
   6.8
   7.4
  TIME
START/END

 951/1456
1003/1509
1033/1549
1253/1734
1020/1535
1048/1607
J238/1723
1305/1745
WINOSPEED
START/END

13.1/27.1
20.5/15.2
20.6/18.7
31.6/14.2
29.0/26.8
16.8/21.4
27.4/16.9
17.3/18.6
WIND DIR.   DRY  BULB  TEMP 6 DIFF   RELAT
START/FND        START/END          HUMID

  16/16      8.56  3.3/15.86 6.8    60/39
  16/16      9.66  3.4/15.96 5.9    61/47
  16/16      9.86  3.6/15.56 6.2    59/43
  15/16     13.06  5.2/15.06 6.8    48/37
  16/ 1     10.06  4.0/15.46 6.9    55/38
  16/ 1      9.26  3.7/16.06 7.1    57/38
  15/16     12.56  5.0/15.06 6.4    49/41
  15/16     13.96  5.7/14.56 6.5    44/38

-------
     BUN* 102   H4TE:  2/27/74    COOLING DrVICE CODE=1
ST
PHI
C
VOLUME
NET

« SCDIUM
3
4
5
6
7
8
9
10
11.
t.
E.
c.
7.
9.
11.
E.
19
80
33
41
70
42
39
45
0
0
0
0
0
0
0
0
455.
293.
312.
332.
371.
232.
411.
309.
7
6
4
0
9
7
5
0
156C.
611.
796.
<=56.
676.
671.
1435.
801.
3
3
3
3
3
3
3
3
TIME
START/END
1026/1544
1042/1505
1128/1439
1245/1631
1052/1453
1144/1422
1235/1646
1255/1620
KINOSPEED
START/END
14.9/23.3
6.9/11.7
9.4/12.2
10.4/17.9
13.3/14.6
12.7/11.8
10.0/12.8
11.1/11.7
WIND DIR.
START/END
I/
15/
16/
16/
16/
16/
16/
16/
3
?
1
2
?
1
?
2
                                                                             OPY BULB TEMP  £  01FF   RELAT
                                                                                 START/END           HUMID

                                                                             14.Ot 3.0/18.0C  4.1     70/64
                                                                             15.8t 3.8/20.5£  5.5     64/55
                                                                             18.5t 4.5/18.3C  5.3     61/55
                                                                             15.5£ 3.5/19.2C  5.0     67/58
                                                                             15.5t 3.3/18.7C  5.2     68/56
                                                                             15.5£ 1.6/17.2t  4.4     84/61
                                                                             15.3C 3.5/18.4£  4.4     67/62
                                                                             15. 7t 3.5/19.0£  5.0     67/58
00   RUN*  J03    TATF:   2/2d/74   CCOLING  DEVICE CODE=1
ST
H
3
4
5
6
7
8
9
10
PHI

14.55
17.^3
18.82
12.43
14.68
13.02
11.64
1C. 39
C

0
0
0
0
0
0
0
C
VOLUME

417.8
273,8
279.6
410.?
403.0
224.4
392.6
385.0
NET
SCDIIJM
1E60. 3
1460.3
Itl0.3
1560.3
1810.3
694.3
13SS. 3
1224.3
TIME
START/END
1050/1520
'107/1525
1146/1541
1318/1736
1126/1534
1205/1550
1300/1720
1327/174B
MINDSPFED
START/END
22.1/14.1
14.0/10.2
11.0/11.2
16. I/ 9.3
16.7/11.9
16.4/17.0
20.3/12.2
16. 1/ 7.9
MIND DIR.
START/END
5/
4/
4/
5/
4/
5/
4/
4/
5
5
4
4
4
4
•j
3
DRY BULB TEMP £
DIFF
START/FND
19. 2£
20. Ot
21. Ot
24. Ot
20. 8t
20. 9t
22. 8t
23. 5£
4.2/23.0t
4. 8/22. 8t
5.0/22.0£
6.5/21.5£
5.6/21.7£
4.0/22.6£
5.8/21.8£
6.4/21.5£
6. 3
6.8
5.8
5.0
4.7
5.6
5. 5
4.6
RELAT
HUMID
64/53
60/50
60/55
52/60
55/63
67/57
56/57
53/63

-------
RUN* 104
ST
3
4
5
7
g
9
10
PHI
£.87
5.22
5.49
4.96
5.96
6.C2
5.5C
4.90
DATE: 3/ 1/74 CCCL
c
o
o
0
o
o
0
0
0
VOLUME
474.0
420.4
429.1
481.9
469.3
304. 6
479.0
294.1
NFT
SGniUM
996.3
671.3
721.3
731.3
856.3
561.3
806.3
*41.3
ING DEVICE CODE=1
TIME
STAPT/END
955/J501
1023/1506
1038/1517
1135/1653
1028/1512
1049/1524
1121/1642
1145/1700
HINOSPEFD
START/END
12.8/18.8
0.0/10.1
12.9/12.0
12.8/12.0
15.5/21.7
14.8/21.7
15.5/11.6
10.7/11.2
WIND DIR.
START/FND
2/ 3
2/ 4
2/ 3
I/ 3
2/ 3
21 3
2/ 2
1/2
                                         DRY BULB TEMP  t  01 FF    RELAT
                                             START/END           HUMID

                                         19.OE 2.5/24.0E  5.8    79/57
                                         22.2E 4.4/24.0E  5.6    65/58
                                         21.5C 4.3/24.5E  6.3    65/54
                                         23. 56, 4.6/23.0E  5.8    65/57
                                         21.5E 4.0/23.3E  5.3    68/60
                                         22.2£ 4.0/24.0E  5.7    68/57
                                         23.2£ 5.1/23.56  6.3    61/53
                                         22.BE 4.5/23.It  5.8    65/57
CCCLING DEVICE CODE=1
ST
*
3
4
,_.5
6
7
8
9
10
PHI
4.29
8.04
. _5^45
3.33
2.91
4.1?
3.5S
2.98
C
0
0
0
0
0
0
0
0
VOLUME
344.6
340.4
393.1
304.4
360.0
246.0
361.5
227.1
NET
SCRIUM
452.3
637.3
655.3
310.3
320.3
315.3
392.3
207. 3
TIME
STAPT/END
1107/1458
1119/1511
1148/1539
1355/1704
1130/1527
1312/1556
1343/1732
1408/1651
WINDSPEED
START/END
70.7/21.6
16.4/12.6
22.3/15.5
11.8/16.7
16.9/20.8
22.5/19.3
16.4/17.7
11.7/13.0
MIND OIR.
START/END
6/ 5
6/ 5
5/ 5
4/ 5
5/ 4
4/ 4
5/ 4
5/ 3
DRY BULB TEMP £
START/END
25. 3t 2.8/26.5t
25. 9C 3.1/27.0C
26. 7E 2.7/27.0t
27. OE 4.0/24.5C
26. OC 5.0/15.7C
26. 5C 3.0/26.8C
26. 9E 3.9/26.0E
28. IE 4.6/25.5E
DIFF
3.1
3.B
3.8
2.3
3.1
2.8
3.1
3.3
RELAT
HUMID
79/77
77/72
80/72
71/82
78/77
78/79
72/77
68/75

-------
RUN* 1C6   RATE.:
                           8/74    CCCLING DcVICE CiOfc
ST
H
3
4
5
6
7
8
9
10
PHI

5.63
7.57
6.16
5.30
8.27
8.11
7.22
5,68
C

0
0
0
0
0
0
0
C
VCLUMT

4C9. 4
473.8
497,2
540.8
370.1
429.9
36! .0
401,2
NET
SCCIUM
12C7.3
1C97.3
937. 3
977.3
927. 3
1C67.3
797.3
697.3
TIME
STAPT/E>'0
lOlh/1514
1034/1528
1107/1555
1250/1831
1047/1541
1121/1612
1232/1817
1259/1842
kINDSPEED
START/END
20.2/16.8
16.3/17.8
23. VI?. 6
20.6/13.0
16.4/22.1
20.5/19.2
19.8/19.4
15.3/15.9
WIND DID.
STAKT/FND
5/
5/
5/
5/
5/
6/
5/
5/
4
5
4
4
4
c
4
4
DRY BULB TEMP £
OIFF
START/END
25. 9£
26. OC
26. 7£
27. OC
26. OC
26. 7t
27. 3t
27. 5£
2.9/26.8£
2.5/27. 7£
3.0/27.4C
3.3/24.3£
3.1/26.4G
3.0/27.4£
4. 1/24. 7£
4.0/24.5£
3.9
4.2
3.5
2.5
3.4
3.4
2.7
2.3
PEtAT
HUMID
79/72
81/71
78/75
76/80
77/75
78/75
71/79
72/82
00
o
     PUN«  107   DATE:  3/11/74    CCOLING UEVICE  r.CD!I = l
ST
*
3
4
5
6
7
8
9
10
11
PHI

1.61
12. 70
2.43
2.03
1.61
1.79
1.S4
1»°1
5.09
C

0
0
5
0
0
0
0
0
0
VOLUME

534.o
578.2
t'34.0
558.6
563.8
405.7
5b0.9
477.1
447.9
MET
SCOIUM
2f 3.3
2247. 2
177.2
347.3
2P.8.3
222.3
332.3
278. 3
6S7.3
TIME
STAPT/END
1029/1630
1045/1651
1150/1723
1347/1949
J057/1705
1206/1743
1337/1926
1355/19«=7
1139/1716
WINOSPEED
START/END
4.
3.
9.
9.
11.
9.
15.
12.
12.
0/18.
6/15.
0/15.
7/12.
2/11.
9/12.
5/11.
9/13.
4/12.
0
7
1
8
2
2
5
7
9
MIND DIP.
DRY B
START/END S
4/
8/
6/
5/
3/
6/
5/
4/
6/
6
6
6
6
6
7
4
5
7
25. 2C
25. OC
27. 8C
27. OC
25. OC
27. OC
26. 7C
28. OC
27.0C
                                                                                       TFMP  C  DIFF
                                                                                  STAPT/END

                                                                                    4.3/26.3C  5.0
                                                                                    3.5/26.3C  4.2
                                                                                    6.0/26.2C  4.7
                                                                                    6.5/22.8C  2.8
                                                                                    3.5/26. 5£  5.5
                                                                                    5.1/25.4C  4.0
                                                                                    5.4/23.2C  2.7
                                                                                    6.1/22.7C  2.5
                                                                                    4.0/26.0C  4.0
                                                                                                 HUMID

                                                                                                 68/64
                                                                                                 73/70
                                                                                                 60/66
                                                                                                 56/76
                                                                                                 73/61
                                                                                                 64/70
                                                                                                 62/79
                                                                                                 59/fiO
                                                                                                 71/71
     Low RPM on Station 5.

-------
OUN<
ST
*
3
4
5
6
7
8
<;
1C
» IC8
PHI

2.S6
3.47
2. 96
2.63
2.74
3.24
2.61
2.49
CATE
C

0
0
0
0
0
0
0
0
: 3/12/74
VOLUME
c
236.5
336,1
412,9
373.2
419.1
306.8
328.3
316.6
CCCLI
NET
CDIUM
259.5
357.5
374.5
?00.5
351.5
304.5
262.5
241.5
f^G DEVICE
TIME
START/END
1023/1447
1038/1457
1103/1519
1320/1708
1050/1507
1202/1532
1304/1657
1328/1716
CCCE=1
WINOSPEED
START/END
2.9/26.6
4.1/23.1
11.5/17. 3
11.9/11.9
5.6/13.9
9.1/19.3
6.8/12.4
11.9/11.9

WIND DIR.
START/END
14/ 9
14/ 9
10/10
9/ 9

13/10
8/ 9
9/ 9
                                                                            DRY BULB TEMP  C  OIFF   RELAT
                                                                                START/END           HUMIO

                                                                            24.8C 3.6/27.3C  3.3    73/76
                                                                            25. 5f. 3. 5/27. Of.  3.!    74/77
                                                                            26.OC 2.4/26.0C  4.8    82/66
                                                                            27.Ot 5.2/27.2C  6.9    63/54
                                                                            25. 7C 4. 0/28.0C  5.0    71/66
                                                                            26. 5C 5. 6/27. OC  5.0    60/65
                                                                            27.OC 5.0/26.5C  6.2    65/57
                                                                            27.OC 5.2/27.2C  6.9    63/54
oo
    PUN*  IC9    CATfc:   3/13/74   COOLING  DEVICE  COnE=i
ST
4
3
4
5
6
7
8
9
10
PMI

1.92
1.65
1.59
1.24
1.51
1.40
0,33
'.34
C

0
0
0
I
0
0
1
1
VOLUME

344.2
381.3
406.4
389.3
293.0
238.2
398.9
300.9
MET
SCDIUM
202.3
192.3
197.3
147.3
135.3
102.3
29.8
123.3
TIME
STAivT/FND
1013/1427
1021/1438
1044/1505
1158/1555
1035/1*54
1105/1518
1149/1600
1207/1551
bINDSPEED
START/END
17.1/12.3
16. 3/ 6.4
18. 4/ 7.4
16. I/
18. 4/ 8.6
13. 7/ 3.6
17. 6/
14. 3/
WIND OIR.
STAPT/END
15/16
15/15
15/16
I*/ 6
15/15
16/14
14/ 6
15/ 7
                                                                            DRY BULB TEMP  C  OIFF   RELAT
                                                                                STAPT/END           HUMID

                                                                            23.9C 2.7/29.0C  6.8    79/55
                                                                            24.4C 2.7/27.5C  6.6    79/56
                                                                            24.8C 3.7/27.5C  6.5    72/56
                                                                            27.5C 5.6/     C         62/
                                                                            24.8C 3.8/27.3C  6.5    71/56
                                                                            25.9C 4.7/27.6C  6.6    66/56
                                                                            27.3C 5.5/     C         62/
                                                                            25.8C 4.5/     C         67/

-------
RUN« 110
ST
u
3
4
5
6
7
9
9
10
PHI

4.25
4.95
6.27
"'.SI
5.52
7.13
7.76
7,44
CATt: 3/14/74 CCCLING DEVICE C00f=l
C

0
0
0
0
C
0
C
0
VCLUME

220.1
261.9
^32.8
331.5
261.3
181.6
360.9
267.7
NFT
SODIUM
266.5
3=6.5
44t.5
761.5
441.5
3S6.5
857.5
60S. 5
TIME
ST4RT/END
1040/1322
105H/1345
1135/1429
1238/1603
1106/1351
1151/1416
1227/1615
1250/1C52
WINOSPEEU
ST4RT/FNO
7.6/15.7
2. 5/11. C
2.3/11.3
15.8/22.9
5.3/10.3
5.5/16.1
8.4/15.9
8.5/15.8
WIND DIR.
START/END
5/ 4
16/ 5
14/ 4
5/ 5
•>/ 3
7/ 4
I/ 3
5/ 2
                                                                            DRY BULB  TEMP 6 DIFF    RELAT
                                                                                START/END           HUMIT

                                                                            22. Ot 2.0/25.46 3.5     83/7<*
                                                                            23.OC 2.7/26.0C 4.5     79/68
                                                                            25.OC 3.8/26.36 4.8     71/66
                                                                            26.OC 3.8/25.6C 4.4     72/68
                                                                            23.2C 2.4/26.06 4.2     81/70
                                                                            25.OC 3.0/26.16 3.3     77/76
                                                                            26.OC 4.0/26.0C 4.0     7J/71
                                                                            26.8C 4.6/26.56 4.4     67/68
00
I\J
    PUM« 111    DATE:   3/15/74    COOLING DEVICE CnDE=l
T
*
3
4
5
7
PHI

1C. 65
13. U
11.21
10.47
C

0
C
0
0
VOLUME

221 >4
222.5
237.1
229.1
NET
SOOIUM
721.5
9Ct. 5
ei3,5
734.5
TIME
START/FNO
1250/1510
1300/1516
1318/1530
1308/1522
WINDSPEED
START/END
27.4/25. 9
22.3/19.7
24.1/20.5
25.7/17.5
WIND DIR.
START/END
6/ 6
6/ 6
6/ 6
6/ 5
                                                                            DRY BULB TEMP  t.  DIFF   RELAT
                                                                                START/END           HUMID

                                                                            25.56 2.7/25.0£  2.8    79/78
                                                                            26.2t 2.7/25.0C  2.2    80/83
                                                                            26.2C 2.7/25.7C  1.8    80/86
                                                                            25.3t 3.3/24.8£  2. «>    75/77

-------
RUN*  112    DATE:   3/18/7*   COCLING DEVICE COCE=2
ST
«
3
4
5
6
7
8
9
10
PHI

3.12
3.03
3.55
*.70
3.19
3.59
4.56
4.50
C

0
0
0
0
0
0
0
0
VOLUME

273.4
264.6
29*. 7
337.6
297.5
259.6
322.5
£60.2
NET
SODIUM
2t 5.5
245.5
320.5
485.5
2*0.5
285.5
450.5
3«?8.5
TIME
START/END
1200/1512
1213/1519
1236/1531
1327/7705
1225/1525
1249/1540
1313/1646
1336/1712
WINDSPE50
START/END
19.7/16.3
10. 5/ 9.5
14.3/15.2
11.2/10.3
15.4/12.6
16.0/16.9
12.3/10.8
8.8/11.0
WIND DIK.
START/END
3/
4/
4/
5/
2/
*/
3/
2/
4
4
5
3
4
4
4
3
                                                                       DRY BULB  TfcMP 6 DIFF   RELAT
                                                                           START/FND          HUMID

                                                                       21.76  5.2/23.56 5.0    59/62
                                                                       23.36  6.8/25.56 5.6    50/60
                                                                       22.46  6.2/24.66 5.0    53/63
                                                                       24.46  7.4/24.06 5.6    47/58
                                                                       22.26  4.7/24.06 4.5    63/65
                                                                       23.56  5.9/24.06 4.0    56/69
                                                                       25.06  7.9/24.26 6.1    44/55
                                                                       24.36  7.3/23.66 6.0    47/55
RUN* 113   DATE:   3/19/7*    COOLING DEVICE CODE=2
ST
PHI
C
VOLUME
NET

1 SCOIUM
3
*
5
6
7
8
9
10
2.51
3.53
2.20
3.50
2.00
2.64
3.19
3.16
5
0
C
0
n
0
0
0
310.
*16.
476.
453.
474.
353.
*62.
370.
6
5
3
3
8
1
5
5
238.
*50.
220.
4F5.
2C0.
265.'
450.
358.
5
5
5
5
5
5
5
5
TIME
START/END
1022/1600
1031/15**
1052/1525
1207/1645
1040/1533
1105/1510
1155/1351
1215/1634
WINCSPEED
START/END
20.7/18.2
18.7/12.6
12.4/17.3
14.0/11.2
13.0/18.0
15.1/19.1
11. I/ 8.3
1.2.3/ 7.4
WIND DIR.
DRY 6
START/END S
8/
7/
7/
7/
6/
B/
6/
7/
8
8
8
8
H
8
q
9
24. *6
25.06
26.06
25.16
25.06
25.26
25.66
27.06
                                                                                 TFMP 6 DIFF   RELAT
                                                                           STAFT/ENO          HUMID

                                                                             3.8/25.96 3.4    71/75
                                                                             3.3/25.96 3.1    75/77
                                                                             5.0/26.16 4.2    64/70
                                                                             4.5/26.96 4.9    67/65
                                                                             4.0/25.86 4.9    70/65
                                                                             4.6/26.56 4.2    66/70
                                                                             5.6/27.06 5.2    60/63
                                                                             5.7/27.66 5.6    60/62
Low RPM on Station 3.

-------
RUN* 114
ST
*
3
4
5
6
7
8
9
10
PHI

7.C5
6.83
6.34
6.C6
6.48
7.55
5.72
5.77
CATE: 3/21/74 COOLING DEVICF CODE=0
C

0
0
0
0
C
0
5
5
VOLUME

294.4
354.5
377.7
?69.7
386.0
339.9
26a. 2
275.1
NET
SODIUM
635.5
740.5
79C. 5
500.5
765.5
785.5
460. 5
485.5
TIME
START/END
1118/1510
1127/1518
115b/1530
1308/1607
1136/1525
1208/1538
1320/1600
1257/1614
WINDSPEED
START/FNO
32.1/28.8
29.3/27.5
20.3/17.2
12.6/13.8
20.8/17.8
19.6/16.4
15.9/15.6
15.0/14.6
WIND DIK.
STAPT/END
9/ 9
10/ 9
9/ 9
9/ 9
9/ 9
9/ 9
8/ 7
8/ 8
                                                                       DRY  BULH TEMP 6  01FF   RELAT
                                                                            START/END           HUMID

                                                                       27.06  3.2/28.06  3.5    76/75
                                                                       27.56  3.6/28.56  3.6    74/75
                                                                       28.06  3.9/29.56  4.5    73/69
                                                                       29.06  4.8/29.06  3.7    t7/74
                                                                       27.76  4.4/29.06  4.5    69/69
                                                                       28.86  3.9/29.36  4.7    73/68
                                                                       29.06  '5.0/29.06  4.0    66/72
                                                                       28.76  5.6/28.36  3.8    62/74
Station 9 and 10 each had a large butterfly on one of the meshes.
RUN*
ST
*
3
4
5
6
7
8 .
9
10
115
PHI

4.C3
3. "55
4.27
3.53
3.78
4.56
3.32
3.01
OATF
C

0
0
C
0
0
0
C
0
: 3/2
VOLUME

373.5
360.3
344.6
222.5
436,7
333.5
236.6
£59,2
                            COOLING DEVICE  CODE=0
                          NET
                        SCOIUM

                         460.5
                         4^5.5
                         450.5
                         240.5
                         505.5
                         465.5
                         240.5
                         238.5
  TIME
STAPT/END

1001/1553
1010/1446
1114/1434
1150/1410
1020/1440
1054/1427
1136/1402
1153/1415
WINDSPEED
STAKT/ENO

18.3/18.4
11.8/21.2
13.1/18.4
13.1/15.9
13.5/15.8
16.0/19.5
11.3/15.5
13.4/17.3
WIND DIR.    DRY  BULB TFMP  6  DIFF   RELAT
STAPT/FND        ST/SRT/FND           HUMID

  10/ 9      26.86 3.0/29.06  4.0    78/72
  10/ Q      26.86 2.9/28.06  3.2    7O/77
   9/ 8      28.76 4.8/29.86  4.6    67/69
   9/ 9      28.56 3.8/30.06  5.1    73/66
   8/ 8      27.06 4.4/29.26  4.4    68/70
   9/ 9      27.86 3.8/29.86  4.1    73/72
   9/ 7      29.06 5.1/30.56  5.0    65/67
   8/ 8      29.06 5.0/29.96  4.4    66/71

-------
     RUN*  116   DATE:   3/25/74   CCCLING DEVICE COOE=O
ST
«
3
4
5
6
7
e
9
10
PHI

10.78
5.95
9.81
7. 86
8.21
7.79
7.66
7.16
C

0
0
0
0
0
0
0
0
VOLUMF

489.2
*93.7
368.2
370.1
489.9
J73.3
411.9
287.8
NET
SOOIUM
1613.5
1503.5
1165.5
890.5
1230.5
890. 5
965.5
630.5
TIME
START/END
1031/1550
1050/15*6
1205/1606
1251/1639
1105/1601
1148/1614
1232/1646
1307/1633
WINDSPEED
STftRT/ENO
24.9/18.0
21.3/22.0
18.2/14.8
14.0/12.9
20.2/16.3
22.9/16.5
14.0/12.9
12.5/15.5
WIND DIR.
START/END
a/
9/
8/
9/
8/
8/
9/
8/
8
7
7
7
8
8
7
6
DRY BULB TEMP £
DIFK
STAPT/FND
27. BC
27.46
28. OE
29. OE
27. OE
28.0E
29. OE
29. 9E
3.9/29.0E
2.8/2H.3E
3.2/29.6E
5.0/27.6E
4. 0/28. IE
4. 2/29. IE
5. 3/29. IE
5.1/27.6E
4.1
3.3
5.4
3.6
•.8
4.9
5.3
4.6
RELAT
HUMID
73/72
79/77
77/64
66/74
71/67
71/66
64/64
66/68
CO
in
RUN« 117
ST PHI
*
3
4
5
6
7
8
S
10

8.02
18.30
8.33
7.75
11.98
8.86
6.8»
7.78
DATt: 3/26/74 CCCLING DEVICE CODE=2
C VOLUME NET TIME WINDSPEED

5
0
0
0
0
0
0
0

363.1
329.3
359.4
318.8
408.2
312.2
332.9
250.3
SCO HIM
891.5
1894.3
971.3
756.3
14S6. 3
846.3
701.3
5S6.3
START/END
1043/1508
1107/1517
1201/1530
1308/1623
1121/1525
1220/1539
1250/1615
1328/1630
START/END
21.4/16.2
20.3/16.0
16.6/14.3
14.5/13.0
10.3/18.8
17.1/21.8
14. 7/ 8.4
20.8/13.3
WIND DIR.
START/END
7/
7/
7/
7/
7/
6/
11
bl
8
8
8
6
6
7
6
5
DRY BULB TEMP E
D1FF
START/END
27. OE
28. OE
28. OE
29. OE
27.4E
27.4E
28. 2E
28. IE
3.0/28.2E
3.1/28.5E
3.5/29.0E
4.6/28.7E
3.4/28.0E
3.4/27.3E
4.2/29.3E
4. 1/27. IE
3.2
3.5
4.1
4.8
4.4
3.4
4.4
3.6
RELAT
HUMID
78/77
78/75
75/72
68/67
75/70
75/75
71/70
71/74
     Airboat passed Station 3 while removing the meshes.  Possible contamination from heavy spray.

-------
«UN0 118   CATE:  2/27/7*.   COOLING DEVICE CODE = 2
T
*
3
4
5
7
8
PHI

5.90
26.84
6.C6
6.01
6.13
C

0
0
0
0
0
VOLUME

182.
171.
170.
187.
152.

9
7
1
8
1
NET
SODIUM
330.5
1410.5
215.5
345.5
2P5. 5
TIME
START/END
1546/1750
1600/1756
1713/1853
1610/1804
1702/1841
WINDSPEED
START/END
15.
15.
11.
15.
18.
6/14.
9/10.
3/10.
3/12.
2/13.
2
9
1
8
2
WIND 01 R.
START/END
7/
6/
fe/
6/
7/
7
6
6
6
7
                                                                      DRY  BULB  TEMP £ DIFF   PELAT
                                                                           START/END          HUMID

                                                                      28.3£  4.3/26.5£ 2.8    70/79
                                                                      27.8£  4.6/26.7C 2.7    68/80
                                                                      27.5£  3.8/26.2C 2.4    73/82
                                                                      27.6£  4.1/26.06 2.9    71/79
                                                                      27.5£  4.0/26.7£ 3.1    72/77
K    ST
     PHI
           DATE:   3/29/74    COOLING DEVICE CQDE=0
               VOLUME
     2.28   1    132.8
     2.17   1    ill.8
     2.94   1    i!4.9
  NET
SCOIUM
  TIME
START/END
                                             WINDSPEED
                                             START/FNH
 133.5   1135/1318   11.6/
 1C8.5   1153/1324   13.6/
 103.5   1200/1330    9.2/
                                                              WIND  DIP.
                           10/10
                           10/11
                           11/11
DRY BULB  TEMP  £  DIFF
    START/END
                                                                           28.OC 4.5/
                                                                           29.6£ 4.6/
                                                                           29.4£ 5.6/
               £
               £
               £
PELAT
HUMID

69/
69/
63/

-------
PUN* 120
ST
*
3
4
5
7
8
PHI

i e.55
4.22
2.77
2.79
2.65
DATE: 3/30/74 COOLING DEVICE COOE=2
C

0
0
0
0
0
VOLUME

619.1
382.4
451.3
544.7
332.8
NET
SODIUM
35!5.5
493.5
365.5
465.5
269.5
TIME
START/END
1025/1755
1200/1747
1236/1636
1213/1738
1254/1623
WINDSPEEO
START/END
19.0/32.6
24.6/19.0
17.1/21.7
22.8/20.3
22.B/24.4
WIND DIR.
STAPT/END
12/13
12/13
12/13
13/12
13/13
                                                                           ORY  BULB TEMP  6 OIFF    RELAT
                                                                                START/END            HUMID

                                                                           27.66 4.6/28.56 6.5     68/57
                                                                           29.46 4.4/28.96 5.9     70/60
                                                                           30.06 6.0/30.06 7.0     61/55
                                                                           28.96 5.9/28.66 6.8     60/55
                                                                           30.86 7.8/30.26 8.0     52/50
CO
RUN* 121
ST PHI
*
3
4
5
6
7
8
9
10

2.47
112.08
8.40
1.91
2.55
2.20
1.96
1.68
OATE: 3/31/74 COOLING DEVICE CODE=2
0 VOLUME NET TIME WINDSPEF.D

0
0
0
0
0
0
0
0

311.
346.
351.
186.
276.
297.
280.
211.

5
6
3
1
6
4
5
3
SODIUM
235.5
11,890.5
903.5
1C8.5
215.5
200.5
168.5
1C8.5
START/END
1257/1700
1305/1707
1350/1719
1448/1752
1343/1714
1400/1727
1500/lflOO
1439/1747
STJRT/END
13.
13.
20.
11.
11.
15.
9.
13.
1/19.
0/13.
4/11.
2/ 8.
0/11.
3/ 9.
I/ 8.
5/12.
0
4
2
7
9
3
9
2
WIND DIR.
START/END
6/
6/
6/
6/
4/
6/
5/
7/
7
8
7
6
8
8
5
8
                                                                           DRY BULB TEMP  6  01FF
                                                                               STAPT/END
                                                                           27.96  7,
                                                                           28.56  6.
                                                                           27.86  5.
                                                                           28.56.  7.
                                                                           28. 56  9.
                                                                           27.4t  6.
                                                                           29.7t  9.
                                                                           28. 8E.  8.
                                                                                         0/27. 9E  6.9
                                                                                         5/28.1C  5.6
                                                                                         3/27.9C  6.0
                                                                                         9/27.26  6.1
                                                                                         2/27.96  6.4
                                                                                         3/28.26  7.5
                                                                                         7/27.36  5.5
                                                                                         5/27.86  7.8
Very high concentration at Station 4  is probably  caused by the operating spray modules.  However   additional
contamination from unknown sources is possible.   Input data were checked and found  to be accurate.
HUMID

54/54
57/62
64/60
49/58
42/57
57/51
41/62
46/49

-------
                          1/7't
                                  CTLIMG )EVICE  CCCF=0
? T
*
.3
4
5
6
7
8
q
10
OUT

<).qo
a. 45
8.77
7.T
fl.4 i
8.7B
7. 'IR
7. Id
r

•)
n
0
o
0
0
n
0
VnLMT

272.6
75?. 6
2?"''. 3
1 4 b . y
261. )
229.4
12^.4
13P.i
NFT
? 1PIU'-'
S33.5
6 5 j .5
591 .S
3 5 7 . f>
67fl . S
6 1 ( > . 5
?71 .5
303.5
T! 1F
STA3T/FND
1005/1256
1017/13.52
1 1 0 ) / L 3 1 b
12?9/135R
1030/1309
105J/1325
1 243/1405
1217/1353
WIMOSPFEO
STAPT/END
29.0/21. 5
27.2/19.2
18.7/24.1
21.8/20.4
21 .R/18. 5
22.3/22.2
14.3/16.0
19. 9/18. fl
WINO DIP.
START/END
a/
d/
8/
7/
7/
8/
8/
8/
8
8
7
7
7
7
7
6
DPY BULB TFMP E
OIFF
STAPT/END
27. OC
27. 8C
28. 4C
28. OC
26. 3C
28 . 2C
29. 6C
79. OC
4.0/29.0C
3.6/29.5C
5.1/27.9C
5.2/29.3C
4.2/28.5C
4.9/77.6C
6.1/28.0C
5.0/29.5C
4.8
4.5
4.5
5.1
4.9
3.7
4.5
4.9
RELAT
HUMID
71/67
74/69
65/69
65/66
70/67
67/74
60/69
66/67
'll'ii/  123    [UTC;   t,/ './•"•,
CT
0
3
4
5
6
7
8
9
10
PUJ

IS. 3*
1 4 . ?. \
1 '» . 1 P
11.75
14.47
14.65
1 1 .SS
11.15
C

0
0
n
n
0
0
0
o
V?l U"F

71P.S,
2 7 ? . 0
279.0
181.2
273.6
257.2
103.7
164.5
•irT
viniii«
11S3.5
1 1PU . •>
121 1.5
651 .b
1 ?l I . 5
1153.5
651 .r>
5(Sl .5
TIMP WI'IO^F-CD WI.NO DIR.
STA^T/ENO
1117/1409
1125/1416
115J/1428
1320/1512
1139/1421
1202/1438
1308/1505
1321/1524
START/END
32.7/23.9
20.1/25.6
21.1/21.0
19.9/15.1
15.8/14.9
26.3/20.0
Id. 3/17.0
11. I/ 16. 2
START/END
a/
R/
8/
8/
B/
8/
7/
7/
8
R
R
8
8
S
R
8
DRY BULfl TEMP C
DIFF
START/END
26. 9C
28. OC
29. 8C
29. 5C
28. 2C
29. 4C
29. 3C
30. OC
2.9/28.9C
3.3/29.3C
4.2/29.7C
5.5/29.5C
4.5/29.7C
3.8/30.0C
5.3/79.8C
5.0/29.6C
4.0
4.3
4.7
5.3
5.2
5.0
5.8
4.6
RFLAT
HUMID
79/72
76/71
72/68
63/65
69/65
74/67
64/62
67/69

-------
                  r>A-F:   4/  8/74   roni ING DEVICE
ST
H
3
tt
5
6
7
8
9
10
PHI

5.13
9.74
5. (SO
5.6S
7.56
5. PS
5.05
5.47
r

0
0
n
0
0
0
0
0
VPLUf".

207.
202.
1R7.
220.
239.
192.
220.
186.

9
7
5
4
3
7
9
1
NET
siniuM
32ft. 5
(.04.5
121. 5
331.5
553.5
346.5
341.5
311.5
TI^F
S"A>T/END
933/1223
945/1729
1023/1242
1124/1343
955/1235
1037/1251
1112/1328
1135/1348
WH'nSPEFD
START/END
14
If.
12
13
in
10
10
11
.6/18.
.6/14.
.8/10.
.6/15.
.8/14.
.O/ 8.
.5/10.
.9/16.
0
H
8
1
<5
8
6
4
WIND OIR.
START/END
8/
8/
8/
7/
7/
9/
6/
7/
7
7
8
6
8
R
7
7
                                                                             DRY BULB TEMP £ DIFF    RELAT
                                                                                 START/END           HUMID

                                                                             24.0£ 5.8/25.5E 4.7     57/66
                                                                             25.Ot 5.5/26.0C 4.5     60/68
                                                                             26.06 5.9/26.0C 6.0     58/58
                                                                             26.OC 6.0/27.3£ 5.5     58/62
                                                                             24.5C 5.9/26.0C 5.1     57/64
                                                                             25.9C 5.1/25.6& 5.7     63/59
                                                                             26.4C 6.9/25.3d 6.3     52/55
                                                                             27.4t 5.9/27.3C 6.3     60/57
oo
                 04-F:  4/
                                           )EVICE
ST

3
4
5
6
7
8
9
10
PHI

4.?*
3.36
3.04
2.84
3.0'j
2. sn
c

0
0
0
0
0
0
0
n
VHLIJMF

277.2
271.0
264.2
2 1 6 . 8
2B3.3
241.5
213. R
173.5
NFT
siniuM
311.5
353.5
271.5
201.5
246.5
226.5
183. 5
141 .5
TMF
START/END
1112/1410
1122/1418
1142/1430
1311/1527
1131/1424
1155/1438
1254/1535
1325/1521
WINDSPEcg
START/END
4.8/14.8
3.5/20. 7
11.5/20.6
11.0/17.3
5.5/13.3
9.5/16.9
10.9/14.6
17.8/17.6
WIND DIR.
START/END
14/11
15/10
13/11
10/11
15/11
14/11
10/11
10/11
DRY BULR TEMP £
START/END
26. OC
25. 8C
27. OC
27. 9£
25. 6C
26. 1C
28. 5£
28. 1C
5.9/29.6C
5.0/28.5C
5.B/28.6E
6.7/28.5C
5.6/28.2C
5.8/29.2C
6.9/28.0C
6. 7/29.6C
DIFF

5.6
5.0
6.1
5.5
6.2
7.0
6.0
6.6
RELAT
HUMID
58/63
59/66
60/59
56/63
60/59
59/54
55/60
56/57

-------
5llf!»  l?h
nATF:   '»/li-/74
                                                rcor
ST
«
3
4
5
6
7
8
9
in
Dill

9.1«5
8.09
l'-».41
6.r>^
7.77
1 0 . r> I
6.?7
ft. 11
r

0
0
n
0
0
0
0
0
VILU'T

U.3.7
261.9
181.6
245.0
340.1
26?. 7
?Sh.7
206. 1
'icT
snoiu*
453.5
648.5
•57G.5
491.5
nofi.5
"353.5
496.5
381.5
M^r
ST^T/FND
1143/1525
1203/1531
1320/1545
135a/l628
1215/1538
1311/1553
1345/1635
1417/1622
wiK-nsPEEn
START/END
16.6/20.2
6.8/13.2
11.4/17.9
13.0/20.8
14.2/17. 1
19.1/23.5
13.6/22. 1
13.5/17.2
WIND DIR.
START/FIND
3/
'»/
3/
4/
21
B/
3/
3/
3
4
3
3
4
4
3
4
DRY BULB TEMP E
OIFF
START/END
23. 6C
26. OE
27. 6E
27. OE
24. 8t
26.26.
27. 5E
27. Of.
4.4/26.0C
4.8/26.8C
4.8/26.9S
5.8/26.7C
4.3/25.9C
3.2/26.4C
5. 3/26. BE
5.3/26.9C
4.1
5.3
5.9
5.8
5.1
3.5
5.8
5.9
RELAT
HUMID
66/70
66/63
67/59
60/59
68/63
77/74
63/59
63/59
PUN*
                    4/11,
c T
*
3
4
5
6
7
8
9
in
PHI

? 7 . A'?
25.31
20.92
19.75
19.1'
17.51
70.09
18.77
r.

0
0
0
0
0
0
0
0
VCLUMC

1&9.0
211.2
191.3
176.4
188.8
167.3
177.5
175.0
NF T
S"TIll^
1432.5
1641.5
1228.5
1066.5
1116.5
896.5
1091.5
978.5
TI'4E
STA*T/END
12-16/1433
1216/1439
1303/1451
1359/1549
1227/1443
1315/1500
1411/1556
1343/1540
WINDSPTED
r.TART/FNO
T9.3/22.6
28.9/23.0
25.0/24.0
2
-------
ST
 3
 4
 5
 7
 fl
PHI
6.40
7.95
DATE:  4/16/74   rnri.ING  0?VICE

f   VPLUME     NCT
                             STA3T/FNO   START/FNU
1
1
1
1
0
2 5<;. 6
?01 .9
166.7
206.6
142.5
531.5
331.5
326.5
311.5
346.5
1111/1410
U40/1355
1218/1404
1153/1400
1241/1419
9. I/
18. I/
11. 2/
14. 2/
3.U/
                                               WIND  DIH.
                                               START/ENO

                                                 10/  9
                                                  9/10
                                                  <>/  9
                                                  9/10
                                                 11/10
                                                                       DRY BULB TEMP  6  DIFF
                                                                           START/END
28. 66
29.06
27.06
I/
O/
O/
27.66 4.6/
25.36 2.8/
6
6
6
RELAT
HUMID

72/
72/
71/
68/
» UN* l?^
a
3
4
5
6
7
8
9
10

1.60
I.*)/.
1.47
1.32
1 .?fl
1 .4«
0.8 I
1.17
n.V
r

0
0
0
1
0
0
2
1
rr: 4/17/74 C?Pl
V?1.U'-'F ,M?T

270.1
149.7
254.8
166.9
250.7
201.6
140.4
132.3
r r»o 1 1 IM
132.3
89.7
114.3
67.?
98.3
92.2
34. H
47.?
.INC, TLvicr COOF=O
TIM? V'TNDSPEED
STA5T/END
1134/1458
1218/1503
1241/1514
1354/1540
1229/1509
1301/1521
1339/1543
1410/1536
STi-U/FNO
4.4/19. 1
7.0/15.2
7.7/18. 1
11. 21
8.2/13.4
11.4/21.7
°.o/
13. 7/
WIND DIR.
START/ENO
4/ 7
6/ 7
6/ 8
8/16
6/ 7
7/ 8
6/15
7/ I
                                                                  DRY BULB TEMP E  DIFF    RELAT
                                                                      START/END           HUMID

                                                                  26.7t 3.7/28.0&  3.5     73/75
                                                                  28.5t 3.6/2d.Ot  4.0     75/72
                                                                  27.8C 4.3/28.0C  4.4     70/70
                                                                  28.0& 6.0/    &         60/
                                                                  27.Ot 3.3/27.6C  3.8     76/73
                                                                  28.4t 4.1/27.9&  4.8     72/67
                                                                  29.9C 5.9/    £         61/
                                                                  29.96 6.9/    6         56/

-------
                                       CfLI'-G
CODF=2
ST
ft
3
4
5
6
7
8
1
10
11
PHI

7.07
S>.41
4.57
5.16
5.flfl
6.74
ft.O-t
4.9 ^
5. "4
r

0
0
n
0
5
0
n
0
0
VOLl'MP

261.7
200.5
P79.9
158.7
107.5
18R.2
15S.9
141 . *
222.0
NF"
E^OI DM
56^.5
333.5
391.5
-750.5
193.5
398.5
?95.5
213.5
403.5
TIME
STA^T/END
1275/1511
1?35/ 1518
1323/1532
1 423/16 ")9
174W1524
1339/1540
1418/1603
1435/1613
1310/1528
WINDSPEEO
STAPT/ENO
19.3/18. 2
17.0/13.4
18.4/16.6
17.9/19.7
IV. 8/16. 9
28.1/19.4
21.7/16.7
11.7/17.3
IS. 4/13. 6
WIND DIR.
START/END
3/
4/
4/
4/
3/
4/
5/
3/
3/
4
5
4
4
4
4
3
4
3
DRY BULB TEMP 6
DIFF
START/END
26.26
26.16
25.86
26.06
26.86
25.76
26.26
26.46
26.36
5.3/25.86
5.4/25.86
4.6/26.46
5.2/25.76
5.8/25.76
4.9/26.96
5.5/26.?6
6.2/25.86
5.6/25.86
5.4
5.4
5.8
5.4
5.4
4.9
5.6
5.7
5.2
RELAT
HUMID
62/61
62/61
67/59
63/61
59/61
65/65
61/60
57/59
60/63
     Low RPM on Station 7.
V)
ro
            131
                                      C'JDLINP  DEVICE  CODE=2
ST
*
3
4
5
6
7
a
q
10
11
PWI

•>.*•*
4.30
6.10
3.60
4 .67
5.70
3.79
3.?6
4.23
r

0
0
0
0
0
0
5
0
1
VPLUMF

?48.4
152.4
137.9
166.7
156.4
175.6
126.3
163.9
195.8
NFT
SODIUM
412.5
200.5
257.5
183.5
223.5
306.5
146.5
163.5
253.5
TIMF
STA*T/EMD
1 107/1406
1150/1413
1233/1428
1321/1510
12-J3/1419
1245/1437
1309/1502
1330/1515
1224/1423
WINDSPE^D
START/E^D
15.0/19.3
15.7/16.9
15.4/13.6
14.9/12.8
15.5/20.?
20.2/19.4
18.2/16.9
12.7/11.8
13.6/17.6
WIND DIR.
START/END
4/
4/
5/
2/
3/
3/
.3/
3/
4/
4
4
5
?
3
3
3
3
4
DRY BULB TEMP 6
DIFF
START/END
25.56
26.06
27.26
26.36
26.26
26.46
27.16
27.06
26.96
6.0/26.66
5.5/26.06
6.2/26.86
6.4/26.26
6.3/25.96
5.4/26.16
7.1/26.06
7.1/26.06
6.6/26.06
6.2
6.6
7.0
6.3
6.3
6.0
6.4
7.0
6.8
RELAT
HUMID
57/57
61/54
58/52
55/56
56/55
62/58
52/55
52/51
55/52
     Low RPM on  Station 9.

-------
                            4/20/74    COOLINr, OEVICF  COPE = 2
ST
*
3
4
5
6
7
8
9
10
11
PHI

15.56
31.46
40. rM
8.22
10.08
10.81
9.0',
T.95
22.01
C

5
0
0
0
0
0
o
0
0
V9LUMr-

89.3
1 2 8 . S
120.1
151.5
198.2
159.8
141.2
142.5
166.5
fJFT
SODIUM
425.5
1241.5
1471.5
381.5
611.5
528.5
391.5
346.5
1121.5
TIME
STMT/FND
12U/1442
1247/1446
1314/1500
14D/1542
1251/1451
1330/1507
1422/1547
1400/1537
1310/1455
WINDS"EEO
START/END
23.6/23.2
19.9/20.3
20.8/19.3
22.9/21. 1
26.2/19.8
27.3/27.8
20.8/18.4
24.2/19. 1
20.9/18.0
WIND DIR.
START/END
5/
5/
5/
4/
5/
5/
4/
4/
6/
5
5
5
4
5
4
3
4
6
DRY BULB TEMP C
DIFF
START/END
26. 7C
27. OC
27. 7C
25. 7C
26. 9C
26. 7C
27. OC
27. 1C
27. OC
4.9/26.9C
5.8/26.5C
4.9/26.7C
5.3/26.2C
5.7/25.4C
4.5/26.5C
5.9/27.5C
6.1/28.0C
6.0/27.0C
5.1
4.5
4.7
6.2
5.4
5.2
6.3
6.0
6.0
RELAT
HUMID
65/64
60/68
66/66
62/56
60/61
68/63
59/57
58/60
58/58
      Low RPM on Station 3.
to
co
RUN* 133
ST PHI
H
3
4
5
6
7
8
9
10
11

20.00
39. 6B
23.47
15.07
18.22
19. ?1
15.16
14.52
22.00
DATF: 4/22/74 COOLING DCVICE fODP=l
C VCLUMF NET TIME WINDSPEED

0
0
O
n
0
0
0
0
0

273.5
271.0
209.0
232.2
269.3
184.0
?34.3
203.2
212.5
SODIUM
Ih81.5
3291.5
1501.5
1071.5
1501.5
1081.5
1101.5
903.5
1431. b
STA3T/FND
958/1257
1010/1301
1049/1315
1127/1349
1019/1306
1058/1322
1137/1415
1117/1345
1038/1110
START/END
23.8/18.2
21.3/19.6
24.8/19.1
19.2/18.3
16.7/20.0
23.2/25.2
23.3/15.2
15.7/20.8
23.8/18.6
WIND DIR.
START/END
6/
6/
7/
6/
6/
6/
6/
5/
7/
6
6
7
6 .
6
6
6
5
6
DRY BULB TEMP C
DIFF
START/END
25. 7C
26. OC
27. OC
26. 5C
25. 7C
26. 4C
27. 2C
26. 1C
26. 3C
4.5/26.0C
4.3/26.6C
4.1/27.5C
4.6/28.0C
4.5/25.4C
4.6/27.0C
5.3/28.0C
4.9/27.0C
4.3/27.0C
4.0
3.7
3.7
5.0
4.2
3.7
4.3
5.0
4.0
RELAT
HUMID
67/71
69/73
70/73
67/66
67/69
67/73
63/70
65/65
69/71

-------
CT
 a
       PHI
             r> v

             r
                   4/23/74
                 Vrl 'I'1!'
INC, :)=VICF LCf)L =
                                    ST A
                                                            START/END
*
4
5
f
7
R
o
1 0
1 1
1?.
1 ? .
11.
f>.
I ?.
1 0.
•1.
i>.
1 •'.
7-1 0
73 n
30 o
1' 0
14 1
~" 7 }
}•> n
"•* •)
R.) ii
117.
13".
152.
M • i .
1 •»•' .
lr>f-.
I V 3.
'»9 I .
5)3.
3 3h.
ftl 1 .
•j
s
s
c.
5
5
5
.s
•5
1('?7/1 ?43
1 ;)W/l?48
11 1 7/1303
1 I 'j •-> / 1 3 •> 3
l-m/1253
1 1?/
2.S/
n.8/
3.0/
4.6/
9. I/
12. '!/
' ': fc" D

4.7
2.4
4. 1
9. 7
6. 1
8. 1
9. I
12.8/10.9
4.4/
7.1
WINf) OIR.
STAKT/END
It)/ 4
15/16
I/ 1
9/ 9
15/15
I/ t
1W14
14/14
15/15
DRY BULB TEMP C
DIFF
START/FND
27. OC
26. OC
27. OC
28. OC
28. OC
28. OC
29. OC
27. 6C
P7.0C
4.0/27.8C
3. 1/28. 9C
4.0/28.6C
5.8/28.6C
5.0/28.8C
5.0/28.0C
6.0/28.0C
5.4/28.0C
4.8/29.0C
4.6
6.6
4.8
5.4
5.4
4.5
4.9
5.6
5.7
RELAT
HUMID
71/68
77/56
71/67
61/63
66/63
66/69
60/67
63/62
66/61
Low RPM on Station 7.

-------
OATf:  4/25/74   CYCLING OEVICE CHDF =
ST
*
3
4
5
6
7
fl
9
10
11
PHI

17. ?7
13.40
10.78
12.04
14.15
18.30
14.21
12.53
13.85
C

0
0
0
0
0
0
0
0
0
VPLUM"!

242.4
220.2
262.5
182.7
231.3
152.4
171.6
144.4
177.8
r'FT
SODIUM
1281.5
903.5
866.5
673.5
1001.5
853.5
746.5
553.5
753.5
TIME
STA^T/FND
1034/1302
1048/1308
1140/1330
1226/1418
1 10?/1316
1153/1339
124)/1428
1215/1413
1120/1323
VflMDSPEED
START/END
26.6/20.4
17.5/15.2
lfl.7/24.8
17.8/14.9
20.8/25. 7
37.1/28.2
25.1/18.2
19.5/21.7
13. 7/16. 6
MIND DIR.
START/END
4/
4/
5/
3/
3/
4/
2/
2/
4/
4
4
5
1
3
3
2
2
4
DRY BULB TEMP C
DIFF
START/END
25. 1C
25. 3C
25. 8C
25. 1C
25. 4C
25. 7C
25. 2C
25. 7C
25. 7C
4. 7/25. 1C
5.0/25.7C
5.1/25.9C
4.7/27.2C
5. 1/25. 1C
4.4/25.5C
5.0/26.0C
5.2/27.0C
5.0/25.7C
4.6
4.9
5.3
5.6
4.7
4.4
5.0
5.8
4.7
RELAT
HUMID
65/66
64/65
63/62
65/61
63/65
68/68
63/64
63/60
64/66
> (IN
ST
a
•j
4
5
6
7
R
9
10
11
# 137
PHI

10.42
8.91
9.43
8.0?
8.74
10.70
7.°'»
6.60
S.I 4
DATE: 4/26/74 CfirLING OEVICE CODF=1
C VOLUMF NET TIME WINDSPEED

0
0
0
n
0
t
0
0
0

212.7
150.5
230.9
200.2
113.5
219.5
18ft. 5
137.8
247.2
S3DIUM
678.5
410.5
666.5
491.5
303.5
685. S
453.5
278.5
691 .5
STA^T/END
1026/1319
1037/1328
1118/1341
1154/1410
1043/1332
1128/1347
1206/1416
1148/1405
HO'J/1337
START/END
13.5/16.0
11.1/14.3
10.6/15.5
IP. 1/15.0
15.7/15.1
13.3/16.7
14.4/17.0
11.2/12.8
11.5/12.6
WIND DIR.
START/END
5/
3/
4/
3/
3/
3/
3/
3/
3/
5
3
4
4 .
3
3
3
2
3
DPY BULB TEMP C
DIFF
START/END
23. 5C
24. 6C
26. OC
25. 6C
23. 6C
24. 9C
26«£C
25. 2C
25. 3C
6.5/24.8C
6.6/25.6C
7.0/26.0C
6. 7/26. 1C
6.4/25.0C
5.9/25.6C
7.5/26.5C
6. 3/26. 96
6.6/25.8C
5.8
6.7
7.1
6.3
6.5
5.6
7.7
7.9
7.0
RELAT
HUMID
52/58
52/53
51/50
53/56
53/53
57/60
49/48
55/48
53/51

-------
               •'IV
                                        INT.  ")EVICF
« T
*
3
4
5
6
7
Q
9
10
11
DHJ

11.77
70. S7
73. 1 ^
12. S8
14.33
14. .H
11.3°
o.na
22. ft?
r.

o
0
0
n
5
1
n
n
5
V°L J" =

179.5
163 .<*
90.4
234.7
35. 7
13^.1
??T.O
183. '•
63. {i
•IT"
c i *» rj T ij M
4 ft £) • 5
1 131.5
641.5
'.03.5
150.5
597.5
797. •)
•553.5
441 .!>
TTMF
1TMT/EMD
1037/1302
1044/1306
111 1/1326
1 1 4d / 1 4 1 2
1057/1316
1177/1333
1155/141H
1 1 » J/1407
1 10?/1 32?
WIMDSPEFD
ST41T/FND
19.5/16. 1
17.8/16.7
18.5/16.9
17.2/17.9
1^.6/19.5
2?. 7/23. 9
17.8/19.4
10.4/15.8
15.0/17. 8
WIND 01".
DPY BULB TEMP C
OIFF
ST4RT/END START/END
5/
5/
5/
i>/
5/
5/
3/
4/
5/
5
5
6
5
5
6
4
4
5
25. 8C
25. 8C
26. OC
26. 8C
25. 4C
26. Ot
7.7. OC
26. OC
26. 5C
7.6/26.3C
7.6/25.9C
7.1/26.0C
6.5/27.2C
7.2/24.8C
6.0/26.0C
6.2/27.0C
5.H/26.2C
7.5/26.0C
6.1
6.9
6.2
7.2
5.8
5.5
6.8
7.2
6.8
RELAT
HUMID
47/57
47/52
50/56
55/52
49/58
58/61
57/54
59/50
49/52
Low RPM on Stations 7 and 11.
DIJN»
                       4/?S/7-«
                                                          =2
S T
tf
3
4
5
6
7
8
9
10
11
PHI
r
VnLIJivf- NFT MM= WTMJS^CED WIND DIR.
531'UM SmT/L.NP STiqj/END STAPT/END
6.09
? 2 . I 2
13.77
6.01
5.70
5.35
5.11
3.flS
13.20
0
0
0
0
0
0
n
0
0
1P*.P
1B4.H
152.2
131 .5
193. *
156.7
Ib7.7
93. /
143.2
3*7.5
12^)1.5
f.41.5
'41.5
316.5
7 5 f j . b
?'.l, .5
110.5
"J7S.5
1022/1230
1032/1235
1101/1256
1 145/1328
1043/1243
lll'J/1304
1153/1336
1137/1323
1107/1250
14.4/13.8
16.3/10.4
1 0 . '> / 1 5 . 7
11. 6/ 9.2
12.6/12. 6
13.7/12.6
14.W10.5
13. 8/ 9.8
9.2/10.0
4/
5/
4/
5/
4/
4/
4/
4/
4/
5
5
4
5
4
4
4
4
4
DRV BULB TEMP C
DIFF
STACT/END
25. ?C
25. 6C
26. 9C
27. OC
25. 3C
26. 2C
27. OC
27. OC
26. 1C
6.2/26.7C
6. 8/27. 1C
7.3/27.2C
6. 7/28. 1C
6.8/26.4C
5.7/27.3C
6.8/29.0C
7.1/27.0C
6. 9/2 8. Of,
6.9
7.'i
6.3
7.8
6.5
6.8
7.9
7.2
7.0
RELAT
HUMID
55/53
52/53
51/54
54/49
52/55
60/54
54/49
52/52
52/5*

-------
;HN
ST

3
4
5
6
7
8
9
10
11
* i'*n
PHI

?3.f>5
7.-M
5.04
5.98
6.39
4.40
15.77
r.

n
0
0
0
0
0
0
0
o
r^: 4/29
V "'LUMP

160.0
15*. 3
140.7
104.7
172.9
129.7
172. 1
74.7
10L.I
/74 CrVLING DEVICE (
tt~r Tl^ =
SnDIIJM
1 131.5
331 .5
16 1 . 5
316.5
253.5
310.5
100.5
472.5
~HDC='
k INDSPEcn
WIND niR.
STAIT/'-NO START/R:D START/END
1233/1426
1240 /I 4? 9
1259/1442
1331/1529
1247/1434
1307/1448
1331/1536
1325/1523
125W1437
13.3/17.1
10.4/10.2
15.7/U.4
9.2/13.9
12.6/13.3
12.6/18.0
in. 5/15.0
9.8/11.3
in. 0/10.4
5/
5/
4/
5/
4/
4/
4/
4/
4/
4
4
5
3
4
4
3
4
4
DRY BULB TF.MP C
DIFF
START/END
26. 7C
27. 1C
27. 2C
28. 1C
26. 4C
27. 3C
29 .OC
27. OC
28. OC
6.9/27.0C
7.0/27.2C
6. 8/28. OK
7. 8/26.86,
6.5/27.0C
6.8/27.0C
7.9/25.3C
7.2/27.0C
7. 0/27.7C
7.1
7.2
7.0
6.9
6.9
6.2
5.8
7.2
7.5
RELAT
HUMID
53/52
53/52
54/54
49/53
55/53
54/57
49/58
52/52
54/51
«»uu
*
3
4
5
6
7
8
9
1 0
1 1
H 141
PHI

27.77
6.56
2.17
2.21
? .fl9
2 .05
1 .77
10.4?
HATE: W30

0
0
0
0
n
0
0
0

130.1
126.0
183.5
133. H
114.8
162.5
1 4 c . ft
99.7
187.4
m COOLING DFVICE (
NET THE
?. 00 1 U*
87.7
1051.5
368.5
38.7
77.7
143.5
91.5
53.9
597.5
ST/UT/END
1037/1257
1053/1301
1122/1315
U5//1347
1057/1306
1137/1322
120<>/1353
1143/1342
1115/1310
:CPF=2
WJNOSPEFO
S'ART/ENO
8.1/11.3
7.9/ 8.9
5.4/ 8.2
11. 0/ 9.6
t. 4/10. 7
11. 8/ 9.7
6.3/13.6
5.9/ 6.4
7.7/ 7.1
WIND DIR.
START/END
8/
8/
8/
5/
6/
4/
4/
5/
7/
4
5
6
3
3
3
3
4
5
DRY BULB TEMP C
STA1T/END
25. 5C
26. OC
26. OC
26. 7C
25. 3C
25. 8C
27. 6C
26. OC
?5.7C
6.3/27.0C
6.0/26.8C
7. 1/27.3C
7.1/27.0C
6.8/26.8C
6.6/27.2C
7.4/27.0C
7.0/27.9C
6. 5/27. 1C
DIFF

7.2
7.3
7.3
7.4
7.B
6.6
7.8
7.9
7.1
RELAT
HUMID
55/52
58/51
50/51
52/51
52/48
53/55
51/48
51/49
54/52

-------
 31)"-* 14?     TATr:   ?'/  l/7<»
                                          G  J?VICC
                                                          =2
« T
*
3
*
5
I,
1
P
9
I 0
11
PI i! r.

2 . I h 1
"I 9. 5? ,'
'i.O-l ri
' . '• 1 .)
?.'•.<> 1
3 . '. "> i>
?.r.? 0
2.m o
i r- . r> 7 n
V<- LUMP

IT 7.'.
ItO.I
•JS.S
? 3 4 . 7
? ^ a . h
12'-. 3
?3T.h
IHt .'1
127.0
NFT
S">i!U.X
'U.O
1 767. •*
177.3
1 07. 3
?02. *
134.3
Iri4.3
IOC. 3
766.3
T

101
10?
110
113
103
111
1 14
in
105
I ME
3T/FND
1/1307
3/1316
?/133?
9/140fc
i/1322
J/133V

)/ 140 1
3/1326
wir'OSPf-EO
START/END
R. 0/13. 6
1.5/11.6
S.2/ 9.4
R.0/13. 3
12.3/14.2
9.2/12. r
2.2/10.4
4.2/11.5
2.6/13.2
WIND 1
1IR. DRY BULB TE"1P C
STtRT/END
ll/
16/
13/
6/
9/
8/
10/
ll/
12/
7
6
6
7
7
8
7
6
R
OIFF
START/END
26. OC
26. 7C
27. OC
28. OC
26. 5C
27. 2C
29. 1C
28. 1C
27. 2C
5.2/26.9C
6.2/27.6C
6.6/2H.6C
6.9/28.6C
6.0/26.7C
6.R/28.1C
7.8/28.2C
7.1/28.0C
6.1/27.2C
5.7

6.5
6.8
b.l
6.8
6.9
6.9
5.2
RELAT
HUMID
63/60
57/57
55/57
55/55
58/58
54/55
50/55
53/55
58/64
Low RPM on Station 5.
'UN« 143 n\TF: •;/ ?/7^
ST "HI r vnLuwt: 'jr
«
3
4
5
6
7
8
Q
10
11
CCOl
'NO TfVlCP (
SODIUM «TA-?T/END
l.r.h 1 Z3'>.H
3 . 4 ft 0 ? 3 '3 . 2.l!
1.33 0 97.5
0.13 5 87. 7
1.57 S 7H.H
I.?? 5 ^o.7
112
253
77
24
785
39
?3
37
36
.3
.3
.3
.U
.3
.8
.6
.P
.1
1019/1300
U3J/1305
1113/1324
115^/1430
1041/1310
1127/1333
1206/1406
1148/1354
11D/1315
:nnE -2
WINUSPFED
STAm/CND
14.7/14.3
12.0/12.2
14. ?/ 5.7
9.7/12.0
7.8/10.0
10.4/11 .5
1 1 .U/ 9.4
11 .»/ 6.7
17.5/14.0
W!ND DIP .
START/END
9/
9/
7/
10/
8/
7
9
9
R
8
8/10
8/
8/
10/
U
8
8
D»Y BULB TFMP C
DIFF
START/END
27. OC
26. 7C
28. 5C
28. OC
26. 8C
27. 9C
29. 1C
29. OC
27. OC
4.4/25.7C
5. 1/27. 1C
5. 5/26. Of.
6.4/28.8C
5.7/27.0C
5.7/28.3C
6.8/29.2C
6.5/28.6C
4.5/27.4C
4.2
5.1
5.2
7.0
5.9
6.4
7.6
6.7
4.6
RELAT
HUMID
68/69
64/64
63/63
58/54
60/59
62/58
55/51
57/56
68/68
Low RPM on Stations 6, 9, 10, and 11.

-------
           144
                        5/ 3/74   COHLING OFVICE fnOE=2
ST
3
4
5
6
7
8
9
10
11
PHI
.68
.78
.70
.77
.02
.36
.44
.51
r
n
0
0
n
0
0
n
0
0
VOLUME
345.8
3?6.1
255.8
30?. 6
337.0
313.0
310.0
221.7
172.3
NET
SODIU^
177.3
177.3
133.3
136.3
285.3
193.3
129.3
100.3
79.8
TI IE
1033/1440
1057/1444
1122/1456
1215/1526
1106/1449
1132/1503
1213/1532
1107/1522
1115/1452
WINOSPEPD
STA3T/END
12.4/20.2
12.2/16.6
8.5/15.3
14.7/12.5
10.4/12.0
13.6/17.4
7.6/ 9.6
9.1/10.5
14.8/16.9
MIND OIR.
START/END
8/ 9
8/ 6
9/ 7
10/ 8
10/ 7
7/ 8
7/ 8
7/ 7
10/ 9
DRV BULB TFMP C DIFF
START/END
28. 1C 5.8/29.6C 6.4
27. 9C 5. 7/29. 1C 7.1
29. 6C 7.2/30.3C 7.3
28. OC 6. 8/29. 1C 6.7
28. OC 5.7/29.3C 7.5
28. 5C 6.2/29.4C 7.4
30. 2C 7.7/31.0C 8.1
30. OC 7.0/31.0C 8.4
28. OC 5. 8/29. 1C 6.1
RELAT
HUMID
61/58
62/54
54/54
55/56
62/52
59/52
52/51
55/49
61/59
10
vo
          145   DATE:   5/ t/74    COOLING DEVICE CODE=2
ST
0
3
4
5
6
7
R
9
10
1 1
PHI
2.59
0.87
0.96
0.72
0.6R
0*7?
0.64
0.7ft
r
0
0
0
0
0
n
0
0
0
VOLUME
231.2
220.8
205.3
185.8
235.2
177.2
174.7
164.4
207.6
NFT
SODIUM
Ifl3.5
59.0
60.3
40.9
49.0
34.6
38.4
32.1
48.4
TIME
ST1UT/END
808/1050
823/1056
911/1118
1000/1202
B36/1103
927/1128
1011/1212
949/1155
859/1111
WINDSPEED
STAPT/EMD
3.3/ 4.5
3.6/ 4.4
4. I/ 4.6
*.5/ 8.6
4. 1/ 3.5
5. I/ 4.4
4.3/ 7.0
3.8/10.0
5.8/ 3.7
WIND DIR.
STA9T/ENO
16/12
16/10
14/10
14/ 8
I/ 9
I/ 7
3/ 5
I/ 8
16/12
DRY BULB TEMP C
START/END
20. OC 2.2/27.3C
20. 2C 2.1/27.8C
22. 1C 2.6/28.0C
24. 3C 3.3/29.0C
21. OC 2.2/27.5C
22. 7C 2.7/28.0C
25. OC 4.0/29.5C
23. 7C 2.9/28.8C
22. OC 2.8/27.5C
DIFF
5.4
5.7
6.8
7.7
6.3
6.7
7.8
7.6
5.8
RELAT
HUMID
81/62
82/61
78/55
74/50
81/57
78/56
70/51
77/51
77/60

-------
146
                 ,./74
?T
*
3
4
5
*
7
1
o
1 1
1 1
PMI

2.SS
? ,R7
7.115
1 .'.7
2.41
2.^6
I . 7'<
1.T7
7.4 1
r

0
1
•1
0
•">
0
0
0
"•
V 'LIJMf

.705.4
21?. 4
723. ti
l »<••.; ?
;> ha. 3
1-54.0
1 H " . 4
1 ^ * . i
,'3 7.1
r F-T
s:i nr1
lo?.5
Iff .5
194.5
*?. *
1 9 '» . •»
ltO.5
SP . S
56. '>
174. 5
Tjvc
ST£->T/f\JD
1012/1258
102W1304
11-13/1322
1 73 f/ 1401
103W1310
1125/1329
1155/1351
171 J/1405
I05i/1316
WIfnSPcED
START/rND
l't.7/11.6
ir .o/? i . ?
".1/13.2
11. J/ll.9
•3.6/16. C
12.5/20.2
10.4/13.4
IV. 5/12. 5
a. 9/17. 9
MINI) DIR.
STAPT/FND
8/ 8
8/ 9
«/ 9
8/10
8/ '?
9/ 9
9/ 9
9/ 9
10/11
DRY BULB TEMP C
niFF
START/END
2b.5C
28. 8C
30. OC
30.96
29. OC
30. 7C
28. 3 C
31. 4C
?9.2C
3. 3/31. 1C
3. 8/31. 1C
4.9/32.0C
5.3/32.6C
4.H/31.7C
4.8/32.0C
4. V32.4C
•J.7/32.5C
4.4/31.0C
5.1
5.2
8.5
8.4
7.1
8.0
8.0
8.4
6.5
RELAT
HUMID
77/66
74/66
68/48
65/50
67/56
68/51
72/52
63/50
70/59
147
             5/ 7/74    C-I-LIMG J---VICE rrrc=i
*;T
I'M I
r
vr>i_u»-r
I'f T
T'MF
WINDSP^ED
* S^nilH ST45T/F'JD STA^T/END
3
4
5
f,
7
8
9
10
1 1
2. I"
2.23
2. "3
1.R3
1 .74
2. S3
2.7-1
1.6S
2.07
0
0
n
0
0
0
0
0
0
7 ' r- . H
7.66.2
750.5
2?3.fi
273. fc
2?2.5
221.8
196.8
229.1
144.5
18^.5
155.5
125.5
145.5
172.3
154.5
99.5
145.5
92J/1220
930/1224
10OS/ 1 239
1045/1310
940/1229
1016/1246
1053/1316
1035/1303
953/1234
6.8/10. 6
2.6/
1 .7/
3. ^/
2.5/
7.2/
6.0/
0.5/
1.3/
7.4
5.5
6.7
7.8
7.1
3.3
6.5
5.8
WIND DIR.
START/END
2/
8/
15/
12/
16/
I4/
10/
I6/
12/
4
3
4
9
4
5
4
4
4
D"Y BULB TEMP C
DIFF
START/END
24. OC
25. 8C
26. OC
26. 5C
26. OC
25. 8C
25. 6C
26. OC
25. 5C
2.8/27.8C
3.R/28.2C
3.7/29.0C
4.2/29.3C
3.7/28.0C
3. 6/28. 1C
3.6/30.4C
4. 9/29. 1C
3. 5/28. 1C
4.6
4.5
4.7
5.4
4.5
3.7
6.4
5.2
4.9
RFLAT
HUMID
78/68
72/69
73/68
70/64
73/69
74/74
73/59
65/65
74/67

-------
                   PA-F:   5/
                                     C'OL
                                              TEVICE CCT)F
ST
«
3
4
5
6
7
8
9
10
11
PHJ

l.*9
1 2. M
2.17
1 .84
1 .93
2.20
1 .?9
1.44
3.°'+
r

"
0
0
0
0
0
0
0
0
vnnj^-F

261.3
266.7
2 4 b . fl
23A.fi
271.9
208.8
266.3
159.4
252.3
MCT
Snniuv
150.5
I J21 . 5
163. b
134.5
160.5
140.5
12*1. 5
71.5
334.5
TI,-«:
STAT>VENr
9P4/122C
935/1224
1007/1238
104S/1322
943/1229
1019/1245
1033/1326
1056/1318
1030/1233
WINOSPEEO
START/END
6.8/14.7
12.7/14.0
8.8/10.9
10. O/
9.1/11.3
12.3/13.9
10. I/
6.5/
15.3/13.6
HIND DIP.
START/FNO
8/
8/
7/
6/
7/
6/
6/
7/
7/
6
7
6
6
7
7
6
6
7
OPY BULB TEMP C
START/END
26. 8C
28. 6C
28.8e
28. 7t
28. OC
28. ie
2U.8C
29. 3C
28. 3£
3.8/29.0£
4.Q/30.0C
4. 8/30. 6(1
4.7/ e
4.7/30.0C
4.1/28.3&
4.8/ C
4.4/ £
3.8/29.6C
OIFF

4.0
4.2
5.7

5.5
4.2


4.8
RELAT
HUMTD
72/72
72/72
67/63
68/
68/64
71/71
67/
70/
73/68
ro
o
                                                     CODF=l
«T
*
3
4
*i
6
7
8
**
1 3
1 1
PHI

2.14
2.12
2.0*
1 .**
1 .80
I .93
I .90
1.60
1.93
C

0
n
o
0
0
^
0
0
0
VOLUME

?54.3
280.0
252.1
235.8
249.0
? ? 5 . 3
?3l.R
175.6
255.3
ntT
S-1D111M
166.5
181.5
156.5
121.5
141 .5
136.5
134.5
Ofc.-J
156.5
IMF
STA^T/END
1001/1257
1011/1302
1043/1318
1123/1353
1011/1307
M52/1325
1115/1346
1132/1358
1033/1312
KIMOSPEEO
START/END
1.4/12.3
1.7/10.1
4.4/13. 1
3.0/13.3
0.5/11.6
3.8/13.7
3.3/13.6
5.9/12.1
2.9/12.4
WIND OIR.
DRY BULB TEMP 6
DIFF
START/END START/END
16/
IS/
12/
15/
10/
5/
5/
I/
I/
4
4
3
4
4
3
3
3
5
26. 1C
26. OG
25. 9C
28.lt
26. 9t
26. 46
26. 9t
27. 2G
28. OC
3.7/26.9£
3.7/28.0C
3.9/2B.2C
5.8/28.4C
4.6/27.8C
4.2/2S.5&
4.8/29.3C

5.1/28.8C
3.9
4.8
4.6
5.3
4.7
4.3
5.3
5.9
5.0
RELAT
HUMID
73/72
73/67
72/68
61/64
67/66
70/70
66/64
65/60
65/66

-------
»UN* 150
ST PHI
•
3
*
5
6
T
«
9
in
11

1.51
10.06
1.21
l.?T
i.?r
1. 28
1.12
0.88
2.19
OATh: 5/10/74 COPLING DEVICE CODE = l
C VOLUMF NFT TINE WINDSPEED

0
0
0
0
0
0
0
0
0

?84.s
297.5
274.3
235.5
274. 6
213.8
239.9
168.9
278.6
SODIUM
131.5
916.5
101.5
91.5
106.5
84.0
82.0
45.5
186.5
START/END
937/1243
945/1248
1020/1302
1107/1337
951/1252
1032/1310
105&/1331
1115/1341
1012/1257
START/END
12.7/11.2
8.6/13.7
16.0/16.8
12.1/ll.S
15.6/16.7
12.7/10.5
12. 1/ 9.5
13.2/10.5
11.9/11.8
WIND DIR.
START/END
7/
8/
5/
8/
6/
7/
6/
6/
9/
6
6
6
7
5
6
5
6
9
DRY BULB TENP 6
DIFF
START/END
27.66
28. 26
28.76
28.66
27.0t
28. 2t
28. 2C
28. 9t
27.96
4. 0/28. 1C
4.1/28.56
3. 8/29. U
4. 3/29. 1C
4.1/28.26
4.3/28.6C
4.4/29.86
5.5/29.56
4.0/28.66
4.1
5.5
4.1
4.7
*.4
4.4
5.6
5.2
4.2
RELAT
HUMID
72/71
72/63
74/72
70/68
70/70
70/70
70/63
63/65
72/71
PUN* 151
ST PHI
i
3
4
5
6
T
8
9
10
11

7.09
B.63
8.09
6.88
10.07
8.56
7.12
6.34
o.u
OATF: 5/11/74 COOLING DEVICE C00f=l
C VOLUME NET TIME WINDSPEEO

0
0
0
n
0
0
0
0
0

332.6
320.4
293.3
259.5
306.9
250.7
257.6
169.7
292.7
SODIUM
721.5
846.5
726.5
546.5
946.5
656.5
561.5
329.5
9.5
START/END
829/1146
842/1152
933/1215
1015/1254
855/1158
944/1224
102fi/l302
1004/1246
921/1108
START/CND
30.9/29.2
29.0/21.9
22.8/23.0
21.2/20.0
23.0/26.5
28. 6/26. B
16.3/24.0
22.5/21.3
26.1/22. 1
WIND DIR.
START/END
a/
7/
7/
7/
7/
7/
7/
7/
9/
8
8
6
7
7
8
7
6
8
DRY BULP TEMP C
DIFF
START/END
26. 7£
27. 36
27.76
27. 8t
27.06
28.06
29.06
28.26
27.66
3.7/28.86
3.1/29.06
2.7/30.06
3.2/29.96
3.7/28.06
2.9/29.16
2.8/30.06
2.9/30.06
3.4/28.86
3.8
3.4
4.2
4.6
3.3
3.8
4.8
4.9
3.1
RELAT
HUMID
73/74
77/76
80/72
77/69
73/76
79/74
80/68
79/68
76/78

-------
*UN<
ST
It
3
4
5
6
7
8
9
10
1 1
» IS2
PHI

1.89
4.40
6.68
4.03
1.37
1.90
2. OR
1.77
6.2
-------
' IJN
ST
3
5
7
R
11
* 15A
PHI
a. 13
7.04
1 l.?9
•5.18
7.?7
ns
r
I
l
I
1
1
TF: 5/1
VLlT'c
34.1.1
187. q
280. r>
2?O. 3
?37.9
  crn IMC,

ICT       1
   -.5
"O't .5
   .5
   >.5
529.5
                   CCDF=2

                     WINOSPFED
                     START/END
       103^/1^23
       1140/1435
       123S/15TO
in.
15,
12,
1/16.1
A/11. 1
1/10.4
1A.2/16.7
19.2/19.7
WIND niR.    DRY  RULB TEMP C  OIFF   RFLAT
START/END        STAPT/END           HUMID

   8/ 8      29.8C 2.8/28.1C  3.1     81/78
   5/ 7      29.8 £1 2.6/28.2C  2.5     82/82
   3/ 7      29.1C 3.8/2B.2C  3.2     7A/77
   If 8      28.9C 3.6/28.2C  2.6     75/81
   8/ 9      29.AC 2.6/30.0C  3.5     82/76
a UN
ST
*
3
4
5
6
7
B
9
10
11
« 155
PUT

6.03
67.61
n.23
1 0 . ^ 9
R . 7 1
7. PI
2
>J 36 . S
786.5
951 .b
601 .'j
931.5
ST-UT/FNP
11 11/1442
112V1450
1155/1517
1242/1606
112 VI 500
1205/1527
1233/1618
125V1554
1 147/1506
START/END
16.3/15.2
?1 .7/20. 1
17.5/22.0
IP. 5/19. 7
20.2/19. 1
21.5/23.5
16.1/18.6
1°. 9/16.0
22.2/18.5
WIND OIR.
START/END
6/
11
bl
bl
6/
5/
bl
bl
7/
5
5
A
5
6
5
5
A
7
DRY BULB TEMP C
DIFF
START/END
29. 5t
28. 9C
29. 7C
30. OC
28. 3f.
29. 2C
30. 1C
29. 8C
29. AC
3.6/30.2C
3. 1/30. 1C
3.6/29.8C
A. 3/29. AC
4. 1/29. 1C
3.3/29.2C
A.3/29.7C
A.8/30.7C
3.A/29.7C
3. A
3.5
3. A
A. 2
A.O
3.3
A. 3
A. 9
3. A
RELAT
HUMID
75/77
78/76
75/77
71/71
72/72
77/77
71/71
68/68
77/77

-------
P.\TC:   s/i7/74    cnML!fir, 'iE
 ''. vi'.c: v
T | ^l_
STAOT/fMi
911/1152
914/1 159
94P/1216
1032/1305
925/1203
957/1224
1024/L310
I0'0/l?57
935/1209
MUDS PC CD
START/END
19.7/15.7
1 4.2/?0 . 0
23.5/17. 1
I 7.9/19.4
20.6/15.8
2ft. 4/23. 6
19.8/15.4
14.4/15.7
IS1. 3/21. 1
bIND DIP .
START/END
7/
5/
5/
5/
5/
5/
5/
5/
7/
6
5
4
6
5
5
6
5
7
DKY BULP TEMP 6
DIFF
STtPT/FNfJ
27.16
28.76
28.86
28.26
27.66
27.96
28.66
28.76
28.16
3.2/29.76
3.0/29.06
3.2/29.06
4.4/28.66
4.4/28.46
3.9/28.96
4.7/29.86
5.0/30.56
3.9/29.16
4.4
4.0
3.2
4.7
4.6
3.9
5.2
6.0
3.7
RELAT
HUMID
76/70
79/72
78/78
70/68
69/66
73/73
68/66
66/61
73/74
ro
o
en
OU-
ST
*
3
4
5
6
7
8
9
10
1 1

« 157
PHI

P. 65
11.12
10. 75
9.41
7.71
9.Q1
9.14
9.24
11.00










PAT: 5/20/74 C -IDLING >rVICF CODC=l
r

0
0
0
f)
0
0
n
0
1
Vnl IIML

12?. 5
327.7
? 7 >J . 9
?? 7.6
316.3
252.4
?52.6
22?. 2
268.3
riCT
SOOin
853.
1115.
H75.
655.
753.
765.
72?.
62G.
903.

V
5
5
5
5
5
5
5
5
5
MMF
SM'T/END
R47/1207
900/1213
94 'I/ 1 ? 38
103H/I313
91 ^/1?20
1003/1242
104J/1321
1027/1305
"17/1226
WINDSPEEO
START/END
21.7/16.2
22.7/17.0
21.5/19.7
70.3/19.3
19.0/18.9
24.4/22.3
24.1/16.1
17.1/10.3
18.5/19.4
WIND
DIK.
START/END
6/
6/
5/
6/
6/
6/
5/
6/
7/
7
6
5
5
6
6
4
4
7
DRY BULU TEMP 6 DIFF
STAPT/END
26.86 2.5/29.36 3.0
27.16 1.8/30.06 2.7
28.06 2.4/29.56 2.5
27.96 3.2/29.66 3.9
27.06 2.7/29.06 3.7
27.86 2.7/28.56 3.0
28.06 3.2/23.96 3.9
28.06 3.2/29.06 4.0
28.06 1.9/30.06 2.8
RELAT
HUMID
81/79
86/81
82/83
77/73
80/74
80/79
77/73
77/72
86/81

-------
                                          croE=i

?35.'>
776.5
243.7
714.3
197.5
?f.9.7
NrT
••-•-DIUM
335.5
1059.5
h65. 5
5B4.5
790.5
?58. 5
315.5
4?^ .5
035. b
TM~ WIMJSPEED
STA^T/FNO START/END
63<*/ll31 12.7/16.6
95?/U37 15.2/20.6
17/S/1157 27.6/16.3
1010/1233 71.9/24.5
9JM/1143 1J.W21.4
937/1205 22.7/10.9
10?->/1242 22.4/18.0
957/1227 19.4/19.8
916/1150 18.9/19.4
WIND OIR.
START/END
6/
6/
4/
6/
5/
5/
5/
6/
6/
6
5
5
6
5
5
5
5
6
DPY BULB TEMP 6
niFF
START/END
27.06
27.86
28.56
28.36
27.76
28.86
28.36
29.56
28.06
2.0/28.56
2.6/29.06
2.3/29.46
3.3/28.06
3.2/28.96
2.7/29.06
3.3/28.26
4.2/29.26
2.8/29.06
3.0
3.5
2.5
3.2
3.7
3.0
3.2
4.2
2.7
RELAT
HUMID
85/79
81/76
83/83
77/77
77/74
81/79
77/77
71/71
80/81
RUN0  1 5°    n

ST    mi    r
                    S/2P/7*.
                                        E  CODF=l
 3
 4
 5
 6
 7
 8
 9
10
11
4.H7
 i. on
 .13
 >.4 J
9.1 1
            •1
            0
            •1
            0
            'I
            0
            •1
            0
            r,
           2J?."
           234.3
296.7
751.3
177.9
? 3 n . 5
TICT

347.
1163.
45P.
3-JC .
'«65.
415.
37".
23'..
7Q7.

M
5
5
5
5
5
5
5
5
5
TIM?
STAHT/rND
85D/1207
91W121?
943/1231
1031/1310
916/1219
IOTJ/1239
104L/1317
107.1/1303
937/1275
WIfJOSOFED
START/FND
14. 2/ B.O
13.9/13.5
10.5/12.1
1 1.2/11.5
22.3/12.8
1 7.6/15.4
13.4/13. I
13.')/12.2
15.0/10.5
WIND
niR.
URY
START/END
7/
7/
5/
5/
5/
5/
6/
5/
7/
6
6
5
5
5
5
b
6
7
27.
27.
28.
27.
27.
28.
27.
27.
27.
BULB
TEMP 6
ni
FF
START/END
76 3.
56 2.
06 2.
86 3.
06 3.
06 3.
16 3.
76 3.
96 3.
0/27.86
7/28.26
4/28.56
7/29.06
0/28.06
5/28.96
2/28.46
7/29.66
1/28.06
3.
3.
3.
4.
4.
4.
3.
4.
3.
5
2
3
5
3
I
9
6
1
RELAT
HUMID
78/75
80/77
82/77
74/69
78/72
75/72
76/73
74/69
78/78

-------
)IJN'
ST

3
4
5
6
7
8
9
10
11
» It
,n
PHI

3.
3.
2.
3.
2.
2.
2.

37
?7
81
11
87
71
*l
HATE
r

n
0
n
n
0
0
0
0
0
: 5/2^
VOL lift

300.7
31 ',.0
?09.8
309.4
215.4
746.7
177.0
28S.4
/74 rri?L
NFT
SlfMUM
310.5
',25.5
268.5
190.5
360.5
189.5
204.5
141.5
•»08.5
ING -)=VIfF
'IMF
STA3T/FIJO
842/1158
055/1204
"45/1223
1032/1305
°06/1210
954/1232
1021/1257
1043/1312
coof?=i
WIMDSPEFO
START/END
16. O/ 8.1
12.7/10.3
10. 8/ 6.7
9.0/ 7.9
12. 3/ 7.4
9.5/ 9.8
6.4/ 5.3
7.4/ 6.9
11. 1/ 8.0

WIND

DIR.
STAPT/END
9/
9/
9/
9/
8/
8/
7/
9/
9
8
8
8
8
9
9
6
10

DPY BULB TEMP 6 DIFF
START/END
26. OC 3.2/29.0C 4.2
28. OC 3.3/29.06 4.9
28.06 4.0/28.06 4.7
29.06 5.5/29.96 5.7
27.26 4.2/29.26 5.5
28. 8C 5.0/30.06 5.2
29. OC 5.2/30.16 5.6
29.96 5.7/30.46 5.7
28. 1C 3.9/29.16 5.6

RELAT
HUMID
77/71
76/66
72/68
63/63
70/63
66/66
65/63
63/63
73/62

"Una  161    n*TE:  5/24/74    CYCLING 0>EVICE CflDF = l
ST
*
3
4
5
fr
7
8
9
10
1 1
PHI

2 . 06
4.
-------
»IJN# 16?
«T PHI
*
3
4
5
A
7
8
9
10
1 1

17.f,B
1.10
l.H
l.ll
1.14
I.Ob
1. )h
1 .11
1.18
[MTc; 5/?7
r VUJMF

n ?3->.4
0 197.7
0 23^.1
n 235.3
't 2 S 4.h
0 ?40.'i
0 ? 5 «.' . 4
0 1 8 1 1 . TJ
0 ?87.0
/74
NC
s ini
1295
66
S5
79
I')?
79
81
57
103
CPnLIN1 OEVICf rpDF = 2
T TIMF WIMDSPtED
IJM
.5
.3
• ">
.9
. 5
.9
.6
.4
.5
START/PND
B3W1148
h't7/ll54
•n?/1213
1017/1254
953/1201
945/1222
1007/1247
1029/1303
919/1207
CTART/EIYD
14.4/17.7
12.4/13. 1
10. 8/ 9.4
11.8/11.7
7.2/12.1
10.4/10.1
13.8/11. 8
9.0/15. I
11 .8/13.8
WIND DIR.
STAPT/FNO
11/12
11/12
11/11
12/10
10/12
13/11
12/ 9
12/11
13/13
DRY BULB TEMP C
DIPF
START/ENft
29. OC
29. 2C
30. OC
31. OC
29. 1C
30. 1C
31. OC
31. 3C
30. 1C
2.7/32.0C
3.1/32.2C
4.9/31.8C
ft. 2/33. 2C
3.9/33.0C
5.1/32.5C
6.2/31.6C
6.7/33.0C
4. 3/32. 1C
6.7
7.4
7.0
7.4
7.7
7.5
6.8
8.3
7.0
RELAT
HUMID
81/58
78/55
68/57
60/56
73/54
66/54
60/57
58/51
71/57
ro
o
00



J UMtf H,3 "\rr::
ST
1
3
5
6
7
8
q
in
n
PHI

3.-^
0.84
1.02
0.<>7
0.90
O.R7
1.24
J.93
r

,
0
0
It
0
0
0
n
VOI

?47
?2r>
18^
2b7
21)8
?l 5
187
?45



•5/2U/74 COP I.
\>"C

.5
'.2
.0
.1
.8
.f>
.3
.7
tyjcr
<:nDIU
268.
50.
57.
7< .
57.
57.
71.
69.

M
5
I
4
?
4
4
?
9





.ING DEVICE CODE=2
TIMC
ST/>
-------
*UM* 164 DV
ST
*
3
4
5
6
7
8
9
10
11
PHI

0.47
0.4't
0.60
0.64
0.61
0.66
0.76
0.57
0.6'*
C

0
0
0
0
0
0
0
0
0
r = : 5/29/74 COCLINr, DEVICE CODE=2
VOLUME

266.8
17?. 0
240. n
206.2
265.2
212.8
225.8
1B2.9
243.6
"IET
sonnjM
38.1
23.1
49.9
40.6
49.3
43.1
52.4
31. 8
47.4
TIME
STA^T/FNP
835/1138
853/1144
934/1203
1018/1244
903/1151
947/1212
1O23/1252
1008/1237
925/1157
WIN'OSPEEO
START/FND
5.2/ 9.0
4.7/ 5.5
4.9/ 4.9
7.1/10.6
5.7/ 4.0
3.8/ 3.2
3.8/ 9.3
5.9/ 8. 7
4.0/ 5.8
WIND [MR.
START/END
16/ 4
15/ 5
14/ 2
16/ 5
16/ 2
16/ 5
16/ 4
16/ 4
16/ 3
                                                                            DRY BULB TEMP  6  DIFF
                                                                                START/END
                                                                            26.06
                                                                            26.86
                                                                            27.86
                                                                            28.86
                                                                            26.26
                                                                            27.56
                                                                            29.26
                                                                            28.26
                                                                            27.56
2.5/29
2.7/29
3.2/29
4.3/29
2.7/29
3.4/29
4.4/30
4.0/31
3.0/29
.26 3.7
.86 4.2
.96 4.3
.86 4.5
.76 4.6
.06 4.0
.06 4.5
.06 4.8
.96 4.6
RELAT
HUMID

81/74
80/72
77/71
70/70
80/69
75/72
70/70
72/68
78/69
rv>
S
           165    DATF:   5/30/74   CO^IING OEVICE CODE=2
ST
*
3
4
5
6
7
fl
9
10
11
PHI

1.64
4.82
2.17
1.46
1.83
1 .45
1.34
1.06
2.06
C

0
0
0
0
0
0
0
0
n
VOLUME

744.7
182.0
173.6
159.8
190.1
173.0
151.1
145.9
210.0
NET
SOOIUM
122.5
268.5
115.5
71.2
109.5
76. B
63.7
47.4
132.5
TIME
STA^T/END
826/1111
839/1114
923/1125
1005/1151
851/1118
935/1130
1018/1155
955/1147
913/1122
WINDSPEEO
START/END
0.4/ 5.2
0.3/
2.4/
2.6/
1.9X
2.0/
1.4/
3.5X
3.8/
WIND DIR.
START/END
I/
15/
9/
15/
7/
9/
14/
15/
3/
5
5
4
7
6
7
7
7
4
DRY BULB TEMP C DIFF
START/END
25.86
27.56
27.56
28.86
27.26
29.06
27.76
29.56
28.26
2.1/28
2.7/
3.0/
3.8/
2.4/
3.0/
3.5/
4.5/
2.7/
.86 3.6

C
C
6
6
6
&
6
RELAT
HUMID
84/75
80/
78/
74/
82/
79/
75/
69X
SIX

-------
                  n«,rr:   5/31/74    CHOLINr,  .1FVICE  fPOF=2
ST
*
3
4
5
6
7
R
P
10
11
PHI

4.07
1.74
1.0'
0.0 .»
5.31
1 . 00
n.o?
1.56
O.R7
f VOLUME

n 262.1
0 ? fc 0 . ?
n 2 1 r> . I
•< 179.9
0 '61.4
0 :"J4.1
n ?i i ,Q
') \ti'i.2
0 ?41.H
l\jr_T
^iDIUV-
398.5
138.5
f > 7 . '»
50.6
425.5
62.4
Si. 9
93.5
64.3
TIME WINOSPEEO
STA"T/END
93T/U28
948/1134
931/1151
1012/1230
85H/1140
942/1200
1023/1238
1002/1??3
919/1146
STA3T/ENO
5.3/
2. I/
3.5/
3.8/
1.9/
5.5/
4.3/
3.d/
3.6/
6.3
6. 7
8.0
8.9
6.0
9.0
3.7
8.2
9.5
WIND DIR.
START/END
12/
12/
8/
10/
10/
10/
8/
8/
ll/
7
8
8
7
8
8
7
6
8
DRY BULB TEMP t
DIFF
START/END
27. 6t
2B.lt
29. Ot
30. Ot
28. Ot
28. 7t
30. 8t
30. Ot
28. 5t
3.6/30.0C
3.6/30.5C
3.9/3l.2t
4.8/31.0C
3.3/30.0t
3.7/30.0t
5.6/30.9t
4.7/31.5t
3.5/30.6t
4.5
4.5
4.9
5.0
5.0
5.0
5.6
5.4
5.1
RELAT
HUMID
74/70
75/70
73/68
68/67
76/67
74/67
64/64
69/65
75/66
ro
!•*
o
1TC:   &/  3/74
                                          INf, DEVICE CnDF
ST
*
3
4
5
6
7
8
9
10
11
PHI

1.1?
1.45
I . ?6
0.33
1.52
1.20
0.99
0.40
1.48
C

0
0
i)
?
0
0
0
?
0
VflLIIME

?39.9
170.?
?1 d. 7
182.0
731.3
190.3
187. S
in s.i
7?l.l
rjrr
?llOIUM
111.5
lOl.S
84. 6
10.2
111.5
74. !>
57.0
2?. ft
100.5
TIM?
STA^T/END
837/1114
34W1119
921/1139
1011/1217
151/1127
939/1147
102?/1224
100J/1212
918/1133
WINOSPEPO
START/END
6.3/
5.9/
4.3/
5.6/
5.3/
4.9/
4.2/
5. I/
4.8/
9. 5
6.6
4.9

4.2
7.4
7.2

5.6
WIND DIR.
START/END
10/ 8
12/10
ll/ 7
ll/ 7
9/12
ll/ 9
8/ 7
13/ 7
14/13
DRY BULB TEMP C
DIFF
START/FND
28. 5t
28. 4t
28. 2t
29. Ot
28. 5t
30. Ot
28. 5t
27. 9t
29. Ot
4.0/30.0t
3.8/?9.8t
4.2/32.0t
4.7/ t
4.0/29.0t
5.7/31.7t
5.2/30.0t
4. 1/ t
3.5/30.0t
5.0
4.6
5.7

5.0
6.5
6.5

4.9
RELAT
HUMID
72/67
73/69
71/64
68/
72/66
63/59
65/58
7l/
76/68

-------
             6/
                                OfVICE
ST
*
3
*
5
6
7
8
9
1 O
1 I
PHI

1.<>S
1.31
1 . 1 0
1.27
1.37
1.10
1.20
1 .0?
I.? J
C

0
0
"
0
0
0
0
0
n
VOLU§'F

196. H
UO J
O • £
177.4
182.6
235.1
170.5
182.3
173.1
214.6
NCT
•nniur,
101.5
75.7
5y .5
70.7
98.5
57.6
67.0
53.9
83.9
r i MC
ST4PT/ENn
631/1112
848/1118
929/1134
1008/1208
858/1124
941/1 141
1013/1?! 5
959/1202
920/1128
WirjnSPEFP
START/END
7.4/
5.8/
4.6/
4.5/
5.5/
3.7/
5.3/
4.2/
4. I/
6.0
3.5
1.0
8.5
4.2
4.3
3.0
1.9
2.2
WIND DIR.
START/END
13/14
12/15
14/15
13/ 4
11/13
11/15
12/ 3
13/ 1
14/13
DRV BULB TE"P 6
OIFF
START/END
28.26
28.56
28.86
29.66
28.06
29.06
28.26
29.56
29.06
3.0/30.06
3.2/30.36
4.6/30.06
4.6/31.96
3.2/30.26
4.0/3O.76
4.1/30.06
4.5/31.06
3.8/30.26
6.4
6.8
6.0
6. 1
5.9
6.5
5.2
6.2
6.6
RELAT
HUMID
79/59
77/57
68/61
69/62
77/62
72/58
72/66
69/60
74/58
16"   PATE:  6/ ^,/74   COOLING OEVICE  CCDE =
ST
K
3
4
5
6
7
10
11
PHT

n.q?
2.RI
0.74
1.77
0.86
I. IB
0.°4
r

0
0
0
0
n
0
0
VOLUME

173.4
175.2
138. 7
106.5
173.2
114.4
15P.O
NCT
r.noiuv
48. <,
150.5
31.4
57.6
45.7
41.4
45.7
TIME
START/END
SIS/1020
83V1023
90J/1033
941/1100
839/1026
93W1055
R'>3/1029
WINDSPEEO
START/END
0.6/
l.O/
3.6/
3.7/
1.3/
1.8/
1.6/
WINO DIK.
START/END
1/13
1/13
9/ 9
7/10
4/ 8
6/10
14/13
DRY BULB TFMP 6 DIFF RPLAT
STAPT/ENO
26.06
26.86
27.16
27.56
27.86
28.06
28.26
1.5/
1.8/
3.0/
3.0/
3.3/
3.5/
3.?/
6
6
6
6
6
6
6
HUMID
89/
86/ '
78/
78/
76/
75/
77/

-------
                                 TEVICE
ST
1
4
5
6
7
fl
Q
10
I 1
"HI
2. 14
5.T7
2.31
?.'H
2.11
?. I 7
?.l 1
1.91
r . 7 a
r
i
i)
0
'1
0
0
0
n
0
s ID! UM
'14. I
162.1
?"><•'. 7
Id t . 1
? ? 6 . 3
183.0
IPO. 7
161.5
??l.t!
1911.
251 .
149.
in.
IM.
121.
12n.
'.'6.
I do.
5
5
5
b
c;
5
5
5
'j
STAST/FNI?
JJ33/1101
34 J / 1 1 1 1
92J/112B
1102/1157
859/1116
931/1136
1013/1204
951/1152
911/1123
START/END
5.5/
7. I/
2.8/
5.0/
'-».!/
4.4/
1.8/
2.5/
5.5/
9. 1
9.2
7.0
R.2
6. 1
7. 4
4.9
5.8
fl.O
WIND DIH.
START/FND
10/ 7
10/ 7
7/ 4
10/ 6
8/ 6
9/10
n/ 5
10 / 5
8/ 6
np.v BULB TEMP 6
STAFT/END
29.06
29.06
29.06
29.36
21.26
28.56
30.26
30.06
28.56
3.3/30.06
3.5/29.36
3.?/30.06
4.5/31.86
4.2/30.16
3.3/29.36
4.7/29.56
4.7/32.06
3.5/29.86
DIFF
4.0
3.3
3.2
5.3
4.1
3.3
4.4
5.7
3.8
RELAT
HUMID
77/73
76/77
78/78
69/66
71/72
77/77
69/70
69/64
75/74
171
                        CTILINC. JFVICf
S T
*
1
4
5
6
7
8
o
10
11
PHI

4.4L
12.1°
4.37
4. 'I
4.^5
5.0'j
4.2 T
4. "4
5.61
r

0
0
0
o
0
1
0
ll
0
v-|_irr

204.6
151. »
U'1.5
179.!)
171./,
IP 7.0
181. T
l'b't.7
?09.e
"PT
S'Diuy
?76.!j
V.fc.b
?56.5
211.5
?36.5
?T1.S
P36.5
1-91.0
3ftl . h
TU'E
ST'^T/FNL
831/1050
841/1056
9l?/lll5
952/ll-*6
'151/110?
92P/1121
100T/1153
942/1139
90 l/ 1 l"8
U'lr'USPE^D WIND PI".
5TART/ENP
10.6/11.5
9.6/ Q.?
7.7/ 6.4
9.7/ 9.1
10. 7/ 9.4
12.7/10. 1
7.7/ 8.3
13. 0/ 9.2
7.0/12.4
ST«RT/END
7/
7/
6/
7/
6/
8/
7/
6/
7/
7
7
6
6
6
8
6
6
8
DRY BULB TfMP 6
DIFF
START/FNO
28.66
28.86
28.26
30.06
28.76
29.26
30.26
30.06
29.56
3.4/29.76
2.8/30.26
3.2/31.06
4.2/30.86
3.4/30.06
3.4/30.16
4.2/31.56
5.0/30.86
3.3/31.06
4.1
3.7
4.0
4.8
4.8
3.9
5.0
5.6
4.0
RELAT
HUMID
76/72
80/75
77/73
72/68
76/68
76/74
72/68
67/64
77/73

-------
DEVICE
ST
4
3
4
5
6
7
**
9
10
I 1
PMI
"
5.74
I 3. 86
6.15
4.f.5
5.50
5.86
5.35
4.58
9.91
r

0
n
0
n
0
0
n
0
0
VCLU'T

251.2
24?..;
?06. 6
176.7
260.7
208. 1
202.4
179.4
216.5
NET
SnPT IJM
441 .5
1026.5
401.5
P51.5
446.5
373.b
331. S
251.5
561.5
T I SE
c T A3 T/ F»|p
831/1131
851/1135
93)/1148
10J--J/1218
9.07/1140
942/1155
10P3/1227
959/1212
922/1145
WIK'DSPEED
START/FND
14. O/ 7.0
10. 2/16.0
11.7/15.9
11. 9/13. 7
5.7/16.0
7.8/19.3
13.8/23.6
10.1/19.0
8. 0/15. 9
WIND DIR.
START/END
7/
6/
5/
6/
6/
8/
5/
6/
8/
6
6
5
7
5
8
7
7
7
DPV BULB TEMP 6
DIFF
START/FNO
28.56
30.56
29.06
30.36
28.96
29.06
30.76
29.56
29.06
1.0/30.06
3.3/30.26
2.7/30.36
3.7/30.66
3.7/30.46
3.2/31.06
4.2/29.06
3.5/31.06
2.8/31.06
3.8
5.0
2.4
4.1
4.1
4.5
3.7
4.3
4.2
RELAT
HUMID
79/74
78/67
81/83
75/72
74/72
78/70
72/74
76/68
BO/72
3UM

-------
31 If* 174.


5 T   FMT
 #
PAT

C
                   0/11
rnfjl
"JFVICF CTlc = -c
                       STAT/END
3
*
5
6
7
8
9
in
1 1
?.?3
73.31
3.4r>
2.55
5.43
2.53
2.56
2.79
3.35
n
0
0
0
0
0
0
r>
0
95.9
96.9
133.0
126.2
I 7 i: . 0
133. b
137.0
109.6
17H.b
65.3
691 .j
141.5
93.5
290.5
103.5
I '13. 5
93. ">
•+5C.5
351/1100
9.54/1103
937/111*
HHo/1137
914/1106
94'>/l 1 19
1<1?3/ 1 1 5 1
1007/113*
525/1110
5^)/
4.6/
4.3/
5.5X

7.*X
5.9X
4. T/
4. OX






5.n


                                                            WIND OIR.    DRY  BULB T£MP  £  DIFF
                                                            START/END        START/END
7/
7/
7/
7X
7X
9X
5X
6X
8X
6
6
5
8
5
6
4
6
7
27
28
29
29
28
29
30
30
28
•
•
•
•
•
•
•
•
•
S£
0£
2£
8£
2£
3£
1 £
0£
8£
3
3
3
*
3
3
4
*
3
•
•
•
9
m
•
•
.
•
3X
OX
3X
3/
4X
3/
5/29
6/
3/
r.
£
£
£
G
£
.2£
£
£






4.2


                                                                    RELAT
                                                                    HU». IT/EMC
                              KIND rm.
                              STARTXEMD
3
4
5
f>
7
R
o
10
11
4.?0
14. 5^
4.41
3.14
2.35
1.51
t.'6
1.46
9.09
1
0
0
0
0
•)
0
0
0
232.0
213. <•
197.6
183,-i
21 t.4
161.7
1B7.3
117.4
17d.S
341
'77t
?(•(>
176
153
7*
72
52
496
.5
.5
.5
.5
.5
.3
.3
.3
.5
841/1 128
dStf/l 130
9*2/1 lie
1020/1223
919/1133
953/1 145
1032/1229
1011/1217
932/1135
1 .8X
3.7X
3. OX
3. IX
2.4X
?.8X
4.3X
X
4.5X


5.
ft.

6.
5.
9.



2
1

4
8
5

13X
16X
IOX
9X
6X
IOX
6X
11X
12X
6
5
4
*
*
3
5
*
3
                                                                        DRY BULB TCMP 6 OIFF    RELAT
                                                                            STAPT/END           HUMID

                                                                        27.8£ 2.8/     t         SOX
                                                                        27.5£ 2.5X     £         82X
                                                                        27.0£ 3.0/31.0E 5.3     78X65
                                                                        29.0£ 4.7X30.0E 5.8     68X62
                                                                        27.0£ 2.4X     £         82X
                                                                        27.7£ 3.7X29.5£ 4.8     74X68
                                                                        30.1£ 5.5X29.3£ 5.3     6*X6*
                                                                        28.8£ 4.1/30.9C 6.1     72X61
                                                                        27.8£ 3.OX     £         78X

-------
PUN* 17*   OATF:  6/1^/74    COIL I NO ) = VICF C--JD==2
ST
K
3
4
5
6
7
8
9
10
11
PH!

!.*«
1 7."*
5.47
2.16
1.30
1.68
1 .38
1.^7
14. 2S
r.

0
0
r>
0
0
0
o
0
0
VOLII'T

221.0
233.3
?3«>.8
191.1
161.7
193.2
173.7
150.2
232.3
NET
s no HIM
113. •>
1 23 1 . 5
386. b
126.5
64.3
99.5
73.1
72.3
1013.5
TIME
ST43T/END
913/1201
931/1206
1011/1228
1054/1250
943/1216
1022/1234
1106/1306
1041/1253
1001/1223
WlfiDSPEEO
SMRT/END
2.3/ 5.9
6.2/ 2.5
4. I/ 6.6
3.3/ 5.2
3.8/10.7
4.6/ 4.3
4.5/ 4.9
5.0/ 4. 7
3.5/ 5.4
MIND DIR.
START/END
6/
9/
6/
4/
5/
9/
3/
4/
8/
7
4
7
4
4
7
3
4
5
DRY BULB TEMP C
START/END
28. 3C
28. 5£
29. 5£
28. 8£
28. 5£
29. 2£
30. 3£
29. 7£
29. 2£
3.
3.
3.
3.
3.
3.
4.
3.
2.
1/28. 8£
5/29. 96
0/30. 2£
6/31. Od
4/30. 6t
7/30. 4£
6/29. 2£
9/32. Ot
8/30. It
DIFF

3.0
4.2
3.7
4.8
4.2
4.2
4.0
5.5
4.1
RELAT
HUMID
78/79
75/72
79/75
75/68
76/72
74/72
69/72
73/65
81/72
?UM
ST
4
3
4
5
7
8
11
« 177
PHI

1.95
1 1.'»5
4.66
1.79
19.76
6.07
PATF: 6/14/74 CQI1LINC ')EVICE CODE=2
C

0
0
o
0
0
0
vrtuMr

61.2
108.1
92.0
50.5
77.9
7b.3
NET
S DO HIM
36.6
385.5
131 .3
27.7
471.3
157.5
TIME
STA^T/ENO
912/1034
923/1038
95B/1054
939/1042
1009/1103
95 J/ 1048
WINDSPEFO
START/END
4.9/ 3.6
3.4/ 5.0
4.3/ 4.9
3.4/ 4.9
Q.5/ 8.8
5. I/ 5.0
HIND DIR.
START/END
3/ 4
8/ 4
3/ 3
2/ 5
6/ 6
4/ 5
                                                                      DRY BULB TEMP  £  DIFF   RELAT
                                                                          START/END           HUMID

                                                                      28.8£ 3.1/30.0C  4.2     78/72
                                                                      29.OC 4.0/30.2£  4.4     72/71
                                                                      28.3£ 3.3/30.8C  4.7     77/69
                                                                      29.OG 3.9/30.0C  4.5     73/70
                                                                      30.0£ 3.5/30.3E  4.0     76/73
                                                                      23.5£ 3.6/30.7£  4.7     75/69

-------
'!!"* 178
ST P>M
3 4.31
4 1.94
5
6
7
8
9
10
11
.S?
.5?
.9'
.73
.49
.15
.•55
I'iTf: 6/IS/7', r.TU
r vnLUv(> IVTT
S10IUM
n
0
0
0
o
n
3
0
0
??9.7
P40.7
It9.2
186.7
233. ft
178.3
186.2
117.1
154.1
303.3
143. ^
94.1
87.0
137.5
97.3
05.2
41 .4
73.3
ING ')EVICE f
START/END
832/1L16
844/1121
925/1133
10VW1204
854/1125
937/1138
1011/1208
9S-./1201
91ci/1129
CDG = 2
WINDSPEEO
START/END
4.6/
3.8/
1.7X
2.6/
7. 1
3.6
4.4

2.4/10. 7
2.5/
4.5/
4.4/
1.9/
4.6
4.6

4.0
WIND DIR.
START/END
2/15
14/14
14/13
12/12
1/15
13/ 1
12/12
14/12
1/14
DRY BULB TEMP £
START/END
26. 9£
26. 8£
27. 9£
28. 6£
27.lt
28. Ot
29. 2t
28. 4£
27. 7£
1.7/31.0£
l.9/30.5£
2.9/29.8£
3.4/ £
2.1/30.8£
3.0/30.5£
3.8/31.9£
3.2/ £
2. 2/31. It
DIFF
4.9
4.3
4.6

4.8
4.7
5.8

4.9
RELAT
HUMID
87/68
86/71
79/69
76/
84/68
78/69
74/63
77X
84/68
ro
      =» UN*

1.69
r

D-
0
0
n
0
0
0
0
0
VTLUN'F

2-M.5
212.4
200.9
179.?
83.0
174. y
147.7
16H.?
211.1
"FT
SJDIU"
liH.5
I0r'.5
94.5
.76.6
31.6
Pf. . 1
59.1
63.1
109.5
T I ME
WINDS'
'?=D
START/END START/END
8-M/ll)44 8.0/12.2
833/1050
904/1107
9*2/1138
841/1055
915/1115
053/1144
934/1U2
853/1100
a.8/
6.4/
7.2/
7. I/
10. 4/
7.0/
7.2/
7.7/
6.0
5.2
5.6
7.2
R. 1
8.8
9.7
6.2
WIND DIR.
START/END
13/11
12/10
12/11
11/10
12/10
12/12
9/10
11/11
13/12
PPY BULB TEMP £ DI^F
START/END
27. 5£
27. 5£
27. 6£
28. 5£
27. 2£
28. OC
29. 3£
28. 1C
27. 9£
2.l/29.5£
3.U/29.6£
2.6/29.0C
3.5/30.6E
2.9/30.0£
3.0/30.0C
3.7/30.0£
3.1/30.0£
2.9/30.8£
3.5
4.1
4.3
5.1
5.0
4.5
4.9
4.5
4.0
RELAT
HUMID
84/76
78/72
81/70
75/66
79/67
78/70
75X68
78X70
79/73

-------
OATF:  6/1M/74   CnrHING  TEVICE  CdOE=l
IT
n
3
4
5
6
7
8
9
10
11
PHI
r
VPLUMF
NET

SQOIU'i
0.51
0.4 a
0.68
0.71
O.C.S
0.86
o.s?
0.75
0.64
0
0
•)
0
0
0
n
0
0
154.
U,8.
?4l.
190.
241.
212.
?r.o.
184.
162.
1
5
0
2
0
2
1
1
6
25.
?4.
5').
42.
47.
55.
3D.
41.
32.
2
5
2
7
7
8
3
3
0
T J,,C
STA°T/PND
811/1101
H21/1 104
848/1115
927/1140
833/1108
857/1121
93J/1144
913/1135
842/1112
WI.NDSPEED
START/END
1.0/12.4
2.2/ 9.2
2.4/ 9.4
2.0/ 9.5
3.7/12.2
4.0/ 8.9
1.7/12.2
?.7/ 9. 1
2.0/ 8.3
WIND OIR.
START/END
2/
13/
16/
16/
4/
2/
I/
2/
2/
4
3
3
4
2
6
5
3
5
DRY BULB TEMP £ OIFF
START/END
26. 6£ 2. 4/28. AC 3.6
27. 0£ 2.5/29.2C 3.7
27. 4£ 2.6/30.2C 3.8
28. 4C 4.2/30.4C 4.2
26. 9C 2.7/29.0C 4.2
27. 2£ 3.0/29.5£ 2.7
29. 0£ 4.0/30.2C 4.?
28. 2£ 3.7/30.4£ 4.8
27. 4£ 2.9/29.5£ 4.1
RELAT
HUMID
82/75
81/74
81/74
71/72
80/71
78/81
72/72
74/68
79/72
*UN# 181
ST PH!
*
3
4
5
6
7
8
9
10
1 I

0.85
0.72
0.86
l.n?
0.85
o.«u>
0.69
0.75
0.88
OA1
C

0
0
0
0
0
0
n
0
0
F: 6/10/74 Cr-GL
VOLUME NFT

202.1
187.3
195.7
171.3
213.8
162.3
L?5.?
174.2
212.7
snniuM
52.7
41.4
51.4
53.3
55.8
42.7
26.4
40.2
57.0
IMG JEVICE CODE=1
TIME WINDSPEEO
STA1T/END
815/1041
826/1045
848/1057
920/1125
834/1049
856/1104
928/1133
913/1119
842/1053
START/END
2.5/
3. 1/
2.8/
3.5/
3.2/
4. I/
2.3/
4.0/
2.6/
6. 2
7.7
4.7
7.2
4. 7
4.7
7.6
1.0
7.6
WIND DIR.
START/END
3/
15/
15/
3/
I/
6/
4/
12/
15/
5
3
3
3
2
4
4
4
4
DBY BULB TEMP £
DIFF
START/END
27. OC
27. 4C
28. 2£
28. 4£
27. 2£
28. 4(.
29. 4C
28. 8C
28. OC
2.2/29.4C
2.2/29.8C
2.8/30.2C
2.8/29.5£
2.2/29.6C
3.0/29.6C
4.0/31.0C
3.4/28.8£
2.6/29.2C
4.0
4.4
3.8
4.0
4.2
3.8
4.1
3.2
4.2
RELAT
HUMID
84/73
84/70
80/74
80/73
84/71
79/74
73/72
76/78
81/71

-------
3||HI
*.
START/END
4/
3/
3/
I/
I/
3/
4/
16/
3/
5
4
2
3
4
6
2
4
4
DRY BULB TEMP £
DIFF
START/END
28.26
28.06
28.56
28.0£
29.56
28.06
28.16
29.06
29.06
2.5/29.26
3.2/30.86
3.5/30.4£
3.5/30.56
3.5/29.2£
3.0/28.76
3. 1/30.76
4.2/29.26
3.5/30.36
3.2
4.3
3.9
4.3
3.7
3.0
4.6
4.0
4.2
RELAT
HUMID
82/78
77/71
75/74
75/71
76/74
78/79
78/69
71/72
76/72

-------
ro
•-•
«o
'l)N<
4
3
4
5
6
7
3
9
10
11
t 18'+
PHI
041
r
rF: 6/2?/74 C<"nl
VriLMMF "-IPT
.ING TEVICF r.01)E=l
TIME WINDSPEED
S!?r>IIJM STA3T/FIMD ST4RT/ENO
0.91
O.Hi
0.74
1.38
0.93
0.75
O.A4
1.01
0.90
n
0
i)
0
0
0
n
0
0
26?. 9
305.2
225.0
15?. 1
305.8
210. R
244.0
375.7
293.3
73.1
82.4
51.2
148.5
86. R
4R.1
48.1
116.5
81.2
811/1125
326/1138
907/1208
953/1430
839/1149
919/1219
1010/1439
942/1422
857/1156
7.0/
2.2/
4.t/
3.3/
2.8/
4.3/
3.2/
4.9/
4.6/
O.R
0.7
3.4
ri.6
1.6
2.5
6.1
5. 1
0.7
WIND HIR.
START/END
1/13
15/ 2
16/ 5
16/ 4
15/ 3
1/10
16/ 5
I/ 5
15/ 6
DRY BULB TEMP £
DIFF
START/END
24.86
24.26
24.86
26.46
24.06
25.46
26.96
26.26
24. 7£
1.6/29.26
1.0/29.06
1. 1/30.26
1.8/30.56
0.6/29.26
1.2/29.26
2.0/30.46
1.7/31 .56
1.1/29.46
3.3
3.6
3.7
3.3
3.7
3.6
3.9
4.5
4.0
RELAT
HUMID
87/77
92/75
91/75
86/78
95/7*
90/75
85/74
87/70
91/73
*UN<
ST
0
3
4
5
6
7
R
9
10
1 1
( 185
PHI

1.00
3.51
1.31
2.01
1.20
o.m
0.^4
0.82
2.35
DATE: 6/22/74 COOLING 3EVICE C2DE=1
C VOLUME NFT TIME WINDS°EED

0
0
5
0
0
5
0
0
0

283.3
318.2
115.1
89.2
316.8
06.3
63.3
133.6
321.5
SODIUM
86. n
341 .5
46.2
54.9
116.5
?l . n
12.4
33.7
231.5
START/END
1139/1502
1144/1508
1212/1531
1434/1508
1153/1516
1222/1541
1441/1512
1426/1504
120?/1524
START/END
0.8/ 3. 7
0.7/13.4
3.4/ 7.4
8.6/
1.6/ 5.9
2.5/ 8.7
6.1/11. 4
5. I/
0.7/ 6.9
WIND DIR.
START/FND
16/
I/
5/
5/
4/
9/
5/
5/
16/
4
6
3
4
1
7
5
5
5
DRY BULB TEMP £
DIFF
START/END
29.26
29.06
30.26
30.56
29.26
29.26
30.46
31.56
29.46
3.3/30.06
3.6/29.56
3.7/30.3E
3.3/ £
3.7/29.7£
3.6/29.9£
3.9/28.4£
4.5/ £
4.0/29.9£
3.5
3.3
3.3

3.3
3.1
2.6

3.4
RELAT
HUMID
77/76
75/77
75/78
78/
74/77
75/79
74/81
70/
73/77
      Low RPM on Stations 5 and 8.   Calculated RPM values at Stations 6 and 10 are in excess of 2,000 RPM.
      Input data was checked and found to be correct,  although such high RPM's are not likely to occur.
All

-------
                   -•PVICF crcr=?
                 T IME
           ,5
      1  -73.5
s
ft
1
3
o
10
14.6,?
?O.S7
15.34
1 6 . S 7
I •>.'• 1
1 ? . r '
1
0
0
I)
•1
0
?4 J.<-
I!;0. <•
252.3
P39.0
2 -1» 3 . ^
1 .< T . S
      1003.5
      11C4.5
 645/1115
 J5W1120
 91 J/L132
100V1208
 93»/ll25
 ^31/1140
IOOJ/1213
       •5*1 .
WINOSPFED
START/ENF

30.4/72.8
2R.I/3&.8
21.5/26. 1
?5.3/?5.1
19.0/18.3
24.9/26.5
12.3/15. /
21.0/23.8
MND DIR.
START/F^ID
10/ 9
10/10
 9/10
12/ 9

 9/ 9
                                                     DRY BULP TEMP £ DIFF
28.4C  1.9/29.5C  2.3
29.OC  2.2/?9.9C  2.4
27.8C  2.3/29.0C  2.5
28.5C  3.0/29.4C  3.5
28.4C  2.2/28.0C  1.8
28.OC  2.1/29.0C  2.5
28.7C  3.?/29.5C  3.5
28.5C  3.1/29.4C  3.2
                                     HUMID

                                     86/8*
                                     85/83
                                     83/83
                                     79/76
                                     84/86
                                     84/83
                                     78/76
                                     78/78
6/P7/74
ST
a
4
5
6
7
8
Q
1 )
1 1
(JU[
7.^0
7.44
^.'tO
ti. 5 5
h."-'7
5.11
S.OT
5. 15
r
0
•1
0
0
0
(1
0
0
V n L U M c
2 o 1 . !>
lft(..7
17^.3
159.3
2i I .«'
?''4.3
170.?
25';. 4
r.CT
s-.oiij-
oO(,.5
379. 'i
354.5
319.5
494.5
319.5
?7-;.t>
464.5
sriJI/'MC
33->/U15
905/1128
942/1152
84S/1120
915/1135
•34^/1157
•'3J+/1147
65H/1174
ST^/E'D
13.6/27. 7
14.6/U.7
1 'J. 3/20. 5
19.6/17.6
25.4/21. I
13.7/lft.4
1 f, b/ IP. 4
?l. 1/73.3
WTNO HIR.
9/ 9
9/ 9
11/11
9/ 9
ll/ll
8/ 9
9/tO
10/11
RRY BULB TEMP C
STAPT/END
29. 6C
29. OC
29. 5C
28. 7C
29. OC
29. 6C
29. ST.
29. 7 C
!.->/30.bC
1.6/30.4C
2.6/31.2C
P.O/30.8C
1.9/30.5C
2.6/30.4C
3. 0/31. 1C
2.1/31.5E
RIFF
2.4
3.6
4.0
3.2
3.6
3.6
3.9
3.0
RELAT
HUMID
91/83
89/76
82/73
86/78
87/76
82/76
79/74
85/80

-------
       'UN« 11*    n-\Tr:   6/27/7*    C TH I NG  JFVICF CC.CT=2
*T
4
*
5
13
7
8
9
10
1 I
°"'

6.'->s
t .3")
6.f-R
6.4.S
5 .m
*. l . n
114.9
175.9
74.2
23f..O
232.*
195.5
253.1
ncT
""OHJ"
42'J.S
221. !>
35«5.5
1*6.5
36*. 5
3*9.5
31". 5
569.5
•«• Jf/C
STA*T/FNn
111.1/13*1
1131/1353
1155/1*23
1123/13*5
1137/1*03
1202/1*28
1153/1*19
1127/1350
WTNDSPEEP
ST4RT/END
27. 7/2*. 4
18.7/18.0
20.5/22.7
17.5/19. 1
21.1/17.9
1 6.4/15. 5
18.*/21.*
73.3/?fl. 9
WIND DIK.
START/FND
9/10
9/ 9
9/11
9/10
9/ 0
9/10
9/10
9/11
DRY BULB TFMP C
DIFF
START/END
30. 8C
30. *C
31. ?£
30.86
30. 5C
30. *£
31.lt
31. 5£
2.*/31.5£
3.6/31.*£
*.0/31 .9£
3.?/3l.*£
3.6/31.6£
3.6/32.0£
3.9/3l.9£
3.0/3l.*£
2.6
3.*
*.5
3.9
3.*
*.8

3.2
RELAT
HUMID
83/82
76/77
73/71
78/7*
76/77
76/69
7*/70
80/78
      Low RPM on Stations 5 and 7.
ro
ro
                             J,/2.r/7*
                                            "'I ! \r, '.ifVICF r"OE=2
ST
4
3
*
5
6
7
8
•J
10
I I
PHI

*.<;<>
*.i*
*.i'f
fr. 9*
*. 12
3. 7'»
3.1 T
3. 19
*.«•<>
r

0
n
0
5
0
0
''
1
1
voLijyp

197. b
24*.?
152.8
b*.k
?*!.?
l°3 .e
194. ^
166.4
1 'j 7 . 4
M-'
SGDIU"
?69.5
329.5
?06.5
l?*.5
31*.1)
??l ."i
1 »»y. 5
1 •>" . 5
2 1 b . 'j
T TMC
STA7T/END
850/1057
831/1103
911/1117
9*0/11**
ft* )/1107
913/1123
9*H/ 115*
933/11*0
903/1112
WI-'JDSPFEC
START/tMO
23.2/12.8
19. 0/1*. 0
10. 7/ 9. I
10.1/10.2
15.*/12.0
15. 9/ 9.0
8.8/ 8.7
11.4/11.7
17.0/1*. 3
WIND DI«.
DRY BUI B TEMP £
DIFF
START/END STAOT/END
9/ 9
9/ 9
9/10
12/11
9/10
11/12
9/ 8
10/10
10/11
29. 5C
29. *£
30. 5£
30. 8t
?9.*£
30. 2£
30. 3£
30. 8t
30. 2£
1.7/30.6C
1.2/30.9£
2.5/29.7£
3.0/30.0£
2.2/29.9£
2.3/29.8£
2.*/30.6£
2.9/30.2£
1.5/30. 8t
2.7
2.9
3.2
2.8
3.*
2.9
3.5
3.5
2.*
RELAT
HUMID
88/81
91/80
83/78
79/81
85/77
8*/80
83/76
8O/76
89/83
      Low  RPM on  Station 6.

-------
 3||f« io-->   n,\T:   b/?s/7't
                                              C~DE=?
5 T
«
4
5
6
7
fl
9
10
I 1
Phi

9. on
•».8<1
1 7. IS
5.7S
4 .70
4.57
l.'->5
<*.! ^
C

n
i^
5
0
0
o
5
n
VOLUME

?02.F
?<•• 7...
ft 1.3
303.fi
?5>8.7
?63.9
lll.R
304.1
N^T
S~>nrnf4
P41.5
ST^t.'i
/l?06
I00?/l?5^
83J/11*5
920/1219
IO16/1305
<7 1 . 7
137.0
?4f*. "»
I / 74 (•-"•>
S.iniun
7f^9.5
194.5
109.5
IB9.5
174.5
115.3
459.5
1 IMG OE.VICE
STMT/PND
I10't/l345
1123/1400
1216/1427
1137/1406
1225/1432
1208/1423
1121/1356
9.4/ 8.6
7.8/11.2
7.4/ 0.5
7.6/10.8
6.2/ 9.2
7.9/ 8.5
7.7/ 5.7
WINO rjIR.    DRY BULB  TEMP £ DIFF    RFLAT
START/END        STAPT/END           HUMID

   6/ 5      29.2£ 2.7/30.2£ 2.1     81/85
   5/ 5      29.0£ 2.5/29.8£ 1.8     83/87
   6/ 6      28.8£ 2.7/28.86 3.3     81/77
   7/ 8      29.Ot 3.0/29.2£ 1.4     79/90
   6/ 6      29.2t 2.9/29.0E 3.0     80/79
   5/ 6      29.0£ 3.0/29.It 3.3     79/77
   6/ 6      28.7£ 3.5/29.5£ 2.5     76/83

-------
'UN
*
3
*
5
6
7
8
9
I 0
1 1
* 19?
PHI

6.3C,
3.63
6.54
1 5.87
6.70
6.68
5.6.T
5.17
6.97
TA1
r

T
0
"
5
0
0
0
0
0
rc: 11 ?,
V°LU' P

™<.?
252.4
254.1.
51.4
?72 .9
171.0
221.2
179. h
252.9
/74 crnLiuG TEVICE rncp=i
MCT Tire WfNOSPFED
SnoiUM
551.5
744.5
!>!)'/. "3
249.5
559.5
349.5
37C.5
234.5
539.5
STAPT/END
82?/ll26
* 3 5/1130
9V/U4?
94 W 1209
848/1135
917/1146
952/1212
935/1206
901/1138
STAOT/END
17.5/11.2
14.8/11.3
10.9/11.2
ti.9/
13.9/10.6
10.4/18.0
10. 7/ 9.9
S.2/
10.3/10.9
WIMD DIR.
START/END
8/
6/
HI
7/
7/
8/
6/
7/
8/
7
6
6
9
6
8
8
7
8
DRY BULB TEMP £
START/END
28. 8C
29. 4t
28. 8t
28. 8t
28. 4C
29.lt
30.lt
29. 2C
29. 2C
?.6/30.0£
2.4/32.0£
2.8/30.5C
2.8/ £
2.8/30.5t
2. 8/29. 8t
3.6/29.9£
3.2/ £
2.4/29.7£
DIFF

3.0
5.2
3.5

4.0
3.6
3.5

3.0
RELAT
HUMID
82/79
83/67
80/76
80/
80/73
SO/ 75
76/76
78/
83/79
      Low RPM on Station 6.
ro
ro
       »UN»  193
ST
0
3
4
5
6
7
R
9
10
11
OMI

7.61
1 2.95
7.^9
10.99
7..? 5
7.^4
G.S-*
5. 12
8.37
r

0
0
o
0
0
0
•)
r>
0
vn uf'r

190.6
141.6
179.1
11 1.0
1^0.7
u.e.3
I 'j "* . 3
•n.7
196.5
NFT
soniuM
443.5
561.5
421 .5
373. b
4?3.5
T73.5
341.5
163. i>
50?. 5
TI^F
WIfiDSPEED
iTft^T/P.MD START/FND
815/1023
32-J/1031
H57/1047
9 3 ' i / 1 1 2 ?
835/1038
907/1055
947/1130
926/1114
S48/10«t3
7
6
6
10
4
10
10
9
10
.0/10.
.1/10.
.5/10.
.1/11.
.0/10.
.7/13.
.7/13.
.7/12.
.0/11.
1
2
0
e
I
3
6
a
4
WIND OIR.
OPY BUL8 TEMP £
START/END
7/
7/
6/
8/
6/
10/
5/
7/
7/
7
5
6
7
6
9
5
6
6
27
27
28
29
27
29
29
28
29
DIFF
START/END
.5£
.9t
.at
.2t
.at
.OC
.2t
.at
.ot
1.6/28
1.7/29
2.0/30
2.9/30
2.0/28
2.7/29
2.8/31
2.3/30
2.0/29
.5£
.It
.It
.7t
.OC
.5£
.Ot
.It
.It
2.0
2.4
2.6
3.6
2.0
2.3
3.5
2.8
2.0
RELAT
HUMID
88/86
87/83
86/82
80/76
85/85
81/84
81/76
80/81
86/86
      Low RPM on Station  10.

-------
       »'IF»*  194
                    r-.,«-c:
                            7/ ,)/7/(   COOLING OEVICE CC1DE =
ST
#
1
A
5
6
7
8
o
1 0
I I
PH!

9.?J
l'.n?
8.0'
13.47
».71
10. h?
7.1 R
d.08
9. l^
r

0
0
0
0
0
0
0
0
0
Vr>Lll" =

I';". 3
1 <5 7 . '>
PA."
101.5
isii.i
131.2
157.7
134.fi
ll'ft.fl
NET
r'JDIUM
L>nl .5
S93.5
?3n.5
4?6.5
501.5
t2t.5
»4fr.5
333.5
S0<>.5
TIME
START/END
853/1 114
915/1119
956/1132
104W1234
92-S/1124
1011/1143
105>/1238
1034/1231
943/1128
WINDSPEEO
START/END
9.8/
18. 8/
8.2/
9. I/
15. 6/
14. 6/
10.7/13. 3
7.5/
13. O/
WIND OIR.
START/END
7/
6/
5/
8/
6/
10/
9/
6/
6/
6
6
8
7
6
9
6
5
8
DRY BULB TEMP £ OIFF
START/END
27. 6C
29. 3C
29. 7£
29. ?f.
28. 8t
29. 2£
30. Ot
28. 9t
29. 8C
1.8/
?.6/
2.7/
2.3/
2.8/
2. I/
3.1/29
2.7/
2.0/
C
r.
C
6
t
C
.Of. 2.2
C
C
RELAT
HUMID
86/
82/
8l/
84/
SO/
85/
79/85
81/
86/
ro
ro
      ST
            PHI
                           7/0/74    COOLING  TtVICE  COOE=2
                        v:ill"L
3
4
5
6
7
q
*»
10
1 1
3. 51
11. *7
3. 56
4. HO
3. n
3 .5ri
3 . ^«*
3 .06
ll.Sf,
0
0
O
0
0
T
n
0
o
/?57.')
271.4
'53. 5
87.4
? t i . ')
n 1.7
^ 1 -3 . a
130.0
?53.4
•JTT

761.
161.
27f>.
123.
116.
?3R .
>23.
H-fl .
3<>ft.

n
5
5
5
t,
5
*>
5
S
5
TlUt
ST^T/E!ND
«<«J/ll*l

-------
      ?Llf'« lift   IMTF:  7/ 9/74   CnrLING DEVICE  rOCf-=2
ST
*
3
4
5
6
7
8
9
10
1 1
PMJ

3.B7
14.69
6.61
5.19
5.40
3.59
2.63
2.59
9.57
r

0
0
0
0
0
0
0
0
0
VOLUME M?T

2?5.
149.
229.
152.
236.
203.
218.
181.
229.

n
8
I
1
7
3
9
1
8
jnoiui*
26(1.5
673.5
463.5
?41.5
391.5
223.5
176.5
143.5
673.5
TIME
STA3T/FND
821/1054
831/1059
854/1113
925/1148
839/1105
90W1121
932/1153
919/1144
847/1109
WIIJOSPFEO
START/END
6.5/
6.4/
10. O/
9.5/
8.6/
7.8
7.2
9.3
7.8
9.4
10.9/10.7
6.4/
8.5/
12. I/
8.6

8.3
hi MO OIR.
DPY B
START/END S
7/
7/
7/
9/
6/
ll/
8/
8/
8/
7
7
5
8
7
8
6
8
8
28. 8£
29. 2£
30. 2£
29. 6£
28 .9f.
29. OC
29. 6£
28. 7£
28. 8£
                                                                                      TEMP £ DIFF    RELAT
                                                                                 START/END           HUMID

                                                                                   2.6/30.5C 3.8     82/74
                                                                                   2.9/31.2£ 4.5     80/70
                                                                                   3.0/30.3C 3.1     79/79
                                                                                   3.4/32.4E 5.0     77/68
                                                                                   3.0/30.4£ 4.2     79/72
                                                                                   2.1/31.0£ 3.8     85/74
                                                                                   3.7/31.6£ 4.6     75/70
                                                                                   2.8/31.7£ 4.9     80/68
                                                                                   2.1/30.9C 4.1     85/72
to
ro
in
»UN«
ST
4
3
4
5
6
7
8
q
10
1 1
n?
PHI

2.64
3.77
2.56
?.Bfl
2.11
1.55
1.97
1.92
2 .89
DV
C

0
0
u
0
0
il
0
0
0
Tf.: 7/10/
VOLUVF

233.4
222.3
151.?
145.8
234.1
1P7.5
I 85.0
I 7?.. 8
230. I
74 C"
NCT
SODIUM
188.5
256.5
LIB. 5
1 2fc . 5
151.5
fcf. .7
III. 5

-------
       7
       S
       9
      10
      1 I
           i <;a    n t

           Biit    r
? ,'V-i  n
?.?7  i)
? . ' 7  0

i.'.-v  n
4. IS  I)
              7/11/7'.
                                            'JFVICE
                     77 l.u
                     24'J.l
Nr
nr1 T '
741
l<)4
1^>4
IV,
105
129
00
236
144
T
Uw
.S
. r>
.*,
.5
.s
. '3
.3
.S
. S
T | vc
ST''JT/
/l
!32'i/ I
VJl/1
T37/1
H34/1
<>11/1
9 <• "i 1 1
93 VI
049/1

Fun
107
113
124
153
117
131
204
146
121
UI
s~
?
1
2
?
2
4
3
3
2
"IDS'
•1RT/
.5/
.3/
.9/
.5/
.I/
.O/
.7/
.4/
.7/
•L-ED
'FND
4.1
3.4
0.8
2.3
0.7
6.3
2.0
1.2
0.3
MIND OIR.
START/END
14/14
13/13
10/15
ll/ 5
16/ 8
14/16
10/ 8
10/ 1
14/15
DRY BULB TEMP C
DIFF
START/END
26. 9C
27. 8 t
28. 5t
29. 5G
27. 9t
29. Ot
30. OC
29. 3C
2B.5C
1.4/30.2C
2.1/31.6C
2.7/30.5C
4.2/31.5C
2.3/32.0C
3.6/30.6C
4.0/32.3C
3.5/32.BC
3.0/30.8G
4.2
5.4
4.5
4.7
6.0
1.1
6.2
5.7
5.4
RELAT
HUMID
89/72
84/65
81/70
71/69
83/62
75/92
73/61
76/64
79/65
ro
ro
en
      ST
       u
              7/12/74
                                   fr.jLIf-.'G  JEVlLF
4
«i
6
7
R
9
1 T
I I
0
0
1
0
0
0
.
^
.*•'»
.'l-'
.17
.••• «
. 7 1
.(•> t
.r>l
. fl'j
r
0
n
r,
n
0
•"•
0
250.
'50.
157.
1??.
22''.
-'2 .' .
2 !-•'';.
'?o.
5
7
3
3
0
r
1
1-
'!*"'
iJIUM
196. 5
4C.O
47.0
56.5
17.3
40.0
44.0
i2.3
31 .S
T I MC
STA^T/TND
01 7/H06
02-3/11 11
053/1123
925/1152
837/1116
'!•}?/ 1 130
932/1157
'il H/1148
*43/U20
WINDSPEEO
START/END
5.8/ 7.3
4.3/ 9.1
7.?/ 7.4
8.5/ 6.3
6.2/ 7.9
8.6/ 7.3
S.7/ 5.1
6.1/10.1
7.2/ 3.3
WIND (MR.
START/FND
15/16
13/13
14/12
13/13
12/13
1/15
•14/11
14/14
15/16
                                                                     DRY BULB TEMP £ DIFF
                                                                         START/END
                                                                               27.7C 2.1/31
                                                                               27.BC 2.1/31
                                                                               28.OC 2.4/31
                                                                               28.9t 3.3/31
                                                                               27.8£ 2.4/31
                                                                               28.7t 2.9/31
                                                                               29.2G 3.3/32
                                                                               29.2£ 3.2/32
                                                                                  .2£ 5.0
                                                                                  .2£ 5.0
                                                                                  .6£ 5.4
                                                                                  .OC 5.2
                                                                                  .2G 3.0
                                                                                  .3£ 5.6
                                                                                  .4G 6.2
                                                                                  .!£ 6.5
                                                                                      2.6/32.0£ 5.4
RELAT
HUMID

84/67
84/67
82/65
77/66
82/80
80/64
77/61
78/60
81/66
     Low RPM on Station 7.

-------
9IJM
ST
3
4
5
7
8
LI
1 200
Pi'I
1.95
('. 74
0.79
0.77
0.77
0.83
HATE
r.
0
n
0
0
0
5
: 7/
V9LUM
309. R
?93. 8
300.7
314.3
260.2
173.7
                                MFT
                              soniu"

                               184.5
                                b6.5
                                72.8
                                74.0
                                61 .5
                     .INf, TFVICF

                        TIME
                      START/END

                       845/1212
                       901/1219
                       934/1239
                       91J/1226
                       950/1248
                       924/1232
                 WIMOSPEED
                 START/END

                  5.0/ 5.0
                  2.9/ 1.3
                  4.6/ 5.2
                 10.5/ 2.7
                  V.3/ 6.1
                  4.8/ 4.8
WIND OIR.   DRY  BULB  TEMP £ DIFF   RELAT
START/END        START/END          HUMID

  15/14     25.7C  1.2/30.0C 3.4    91/77
  15/10     26.1C  1.7/30.5C 3.8    87/74
  13/11     27.6C  2.8/30.4£ 4.1    80/72
  16/13     26.3C  1.4/30.8C 4.6    89/69
   3/ 2     27.4C  3.0/30.6C 4.6    78/69
  16/14     27.OC  2.4/30.6C 3.7    82/75
     Low RPM on Station 11.
      RUN*  201
HATE:  7/15/74
COOLING DEVICE cooE=2
ro
ro
ST
*
3
4
5
7
9
11
PMT

8.44
14.91
7.41
4.14
4.71
9.13
r.

0
0
0
0
0
0
VOLUME

230.
215.
218.
228.
191.
229.

8
8
1
6
e
5
NFT
SODIUM
596.5
984.5
494.5
289.5
276.5
641.5
TIME
START/END
1004/1237
lOlb/1244
1049/1302
1027/1249
1100/1309
1039/1256
MI MO SHE ED
STA^T/END
4.2/
2.0/
1.6/
4.0/
1.9/
4.3/
6.
8.
6.
8.
8.
5.
7
1
4
2
5
9
WIND DIR.
START/END
13/
9/
14/
14/
13/
13/
5
5
3
4
8
4
                                                                            DRY BULB TEMP £  DIFF    RELAT
                                                                                START/END           HUMID

                                                                            20.0£ 4.8/30.4£  5.2     67/66
                                                                            29.3t 5.0/30.9C  5.9     66/62
                                                                            29.3£ 6.2/31.5£  5.7     59/64
                                                                            28.8£ 5.7/30.1C  5.6     62/63
                                                                            30.U 6.0/30.7C  4.9     61/68
                                                                            29.5£ 5.5/30.8£  5.8     63/62

-------
« T
 U
   7
   fl

  10
  11
"MI


5.01


2.33
1.3'

1 . ^H

1.40
            o
            0
            J
            I)
            0
            o
                   VPLU*=
                   1M .7
                               HP
                                                    WIUHSPFEO
                  3fl'i. 9
                  lfll.3
274. J
2.S2.7
1 4 b . R
                              554. b
1 h I . 5

 H2.ti
155.5
1 3 r.. <3
 S4.5
IU 3. 5
                                     STAkl/END

                                      749/1148
                                     lOlff/1304

                                      904/121 I
                                     .5/  3.5
                                     .7/15.7
                                     ,4/  8.3
3.3/  C.O
I.'*/  6.9
4.1/  8.2
2.1/14.4
WINO cm.
START/END
13/ 9
ll/ 8
10/ 8
12/10
ll/ T
14/12
9/ 8
8/ 7
14/10
DRY BUL4 T9MP 6
STAPT/END
26.26 2.1/31.66
25.86 1.2/31.36
27.26 2.7/31.36
29.76 3.8/30.76
2b.76 2.3/31.46
28.26 3.2/32.06
29.66 4.4/31.26
29.26 3.8/32.86
26.96 2.1/31.56
DIFF

4.2
4.7
4.9
5.7
4.6
5.7
5.7
6.7
4.3
RELAT
HUMID
84/72
91/69
80/68
74/63
83/70
77/64
70/63
74/59
84/72
 ci|i"«  203    MAT:   7/16/74
                                                      =1
ST
4
3
*
5
6
7
8
9
10
1 1
RUT

4.™
1 2 . 8 6
4.M
1 4 ..HP
4.69
5.17
3.5^
2.6S
6.27
r

0
0
0
11
0
0
0
0
0
VUU'
-------
»UN* 204
ST PHI
«
3
4
5
6
7
8
10
11

4.?9
12.74
4. IS
6.0i)
3.99
4.48
3. SO
7.89
r>ATF: 7/18/74 CPPL
C VOLUME NET

n
0
n
0
0
0
0
n

195.4
211.9
134. A
139. «
212.2
201.5
183.7
?15.1
S HO HIM
256.5
rt26.5
20'i . 5
?56.5
259.5
276.5
196.5
519.5
ING OEVICE CrOE=l
TIME V/INDSPECD
STA*T/END
1054/1302
1059/1306
1112/1319
1137/1345
1104/1311
1119/1325
1131/1341
1 103/1315
START/FND
14.0/10.0
17.8/18.7
17.0/11.4
19.1/12.2
12.2/19.4
13. 3/16. C
14.7/11.3
16.3/14.8
WIND DIR.
START/END
6/
6/
9/
7/
11
10/
6/
7/
6
6
6
6
6
8
6
6
DRY BULB TEMP £
DIFF
START/END
30. 7C
30. 8C
31. 6C
29. 8C
30. 2C
31. 2C
30. 7C
30. 5£
4.1/32.2&
4.2/31.4C
4.4/32.6C
4.2/31.5C
3.5/31.56
4.3/31.8&
4. 5/32. 6(1
3.8/32.0C
4.6
4.4
4.8
5.5
4.1
3.6
5.0
3.8
RELAT
HUMID
72/70
72/71
71/69
72/65
76/73
71/76
70/68
74/75
»UM» 205
ST PHI
«
3
4
5
6
7
8
q
10
11

5.52
12.59
6.P4
11.54
S .1 1
5.43
b.OO
4.7fr
8.74
DA"1
r.

n
0
0
5
n
n
0
0
n
T: 7/19/74 C'"UINr, 3EVICF C
VOLUM= N'ET T I ME

246.1
254.8
271.9
69.0
753.4
241.5
254.7
215.7
27U.2
SODIUM
415.5
941. 5
569.5
246.5
396.5
401.5
3R9.5
261.5
744.5
START/END
B25/1109
836/1116
912/1150
947/1228
84-1/1122
925/1159
955/1236
941/1218
902/1143
OD!f = l
WINDSPEED
START/END
13.9/12.5
13.8/14.9
10.1/17.5
9.1/14.3
13.1/U..O
11.3/16.9
3.0/ 9.3
B. 0/12. 4
14.5/14.0
WIND DIR.
START/END
6/
7/
5/
7/
6/
B/
5/
4/
11
5
5
5
5
4
8
4
5
6
DRY BULB TEMP C
DIFF
START/END
29. 4E
30. 2C
30. 1C
30. OC
28.86
29. 2C
31. 2C
30. 7C
30. 5C
3.2/30.0C
3.2/31.9C
3.1/30.7C
3. 9/31. It
3.6/30.4C
3.1/30.56
4.7/31.6C
4.7/31.8&
3.2/31.8&
3.6
5.3
3.7
4.3
4.5
2.6
4.5
5.0
3.6
RELAT
HUMID
78/76
78/66
79/75
74/71
75/70
78/82
69/71
69/68
78/76
Low RPM on Station 6.

-------
3 UN* ?• ('

ST   PH'
                                   CL-T
       5
       6
       7

       9
      10
      1 I
           7.;
     T.70
     3.41
     3.33
     4.61?
           0
           1
           ii
           0
           0
           n
                      735.0
lh't.3
7 3 4 . n
23 5.-1

206.3
'J = T TI"*!- WIfJDSPEE
D
HIND DIR.
ini'J'-' STS'T/cjyjQ STA8T/Ff,jD START/END
77"* . 3
54 7. 3
?r-7. 3
'OS. 3
->77. . 3
'67.3
272.3
?10.3
347.3
93 J/ 1701
937/1209
l'J'H/1235
1031/1310
94 1 / 121 7
10T3/1245
1037/1313
1073/1302
951/1225
3
4
5
2
2
4
4
1
6
.1/9.
.6/ 0.
.7/11.
.2/10.
.4/ 8.
.4/11.
.!/ 7.
.9/10.
.21 8.
I
4
2
1
6
3
1
8
C
6/
4/
6/
5/
15/
9/
?/
5/
5/
4
2
5
8
5
8
5
4
5
DRY BULB TEMP C
DIFF
START/END
30 .OC
30. 2C
30. 7C
31. OC
29. 8t
30. 2C
32. OC
31. 4C
29. 9C
4.?/31
5.1/31
5.0/31
5.2/32
5.3/31
4.3/31
5.8/33
5.7/32
4.5/31
.5C
.5C
.6C
.2C
.3C
.3C
.7C
.OC
.1C
5.3
6.3
6.3
6.4
5.8
5.4
6.6
6.3
5.7
RELAT
HUMID
72/66
66/60
67/60
66/60
65/63
71/65
64/60
63/61
70/63
IN)
b>
?T
* 2'". 7
PHI
C
'c: 7/?i',/74 C^l
VCLU'T '|i=T
.IMG DCVICF crr;p=i
TIM1 KlfOSPfrD
* SOIM'JM ST,'.= T/?NO
3
4
5
6
7
a
9
10
1 1
3.
10.
3.
4.
3.
3.
2.
2.
6.
40
!4
G6
43
3iS
OQ
93
77
17
0
0
1
1
1
0
n
0
0
777.
27°.
267.
169.
261.
234.
224.
207 .
27*.
5
3
6
1
f
4
8
4
4

1204/1503
121 1/15)6
1233/1517
1313/1540
1721/1510
124=5/1522
132'./1545
1305/1536
127-1/1514
S-MRT/TNO
9. 1/ n. i
9.4/ 7. 1
11. ?/ 8.5
10. I/ 7.7
B.6/ 8.9
11.3/10. I
7.1/10.7
10. d/ 8.9
e. 0/10.7
WIND DIR.
START/END
3/
4/
5/
8/
3/
8/
5/
5/
• 5/
5
4
5
6
6
q
5
5
6
                                                                             DRY  BULB TPMP c  OIFF
                                                                                  STAPT/END
                                                                             31.5C
                                                                             31.5C
                                                                             31.6C
                                                                             32.2C
                                                                             31. 3C
                                                                             31. 3C
                                                                             33.2C
                                                                             32.OC
                                                                             31 . 1 C
                                                                              5.3/32
                                                                              b.3/31
                                                                              6.3/32
                                                                              6.4/32
                                                                              5.8/31
                                                                              5.4/31
                                                                              6.6/32
                                                                              6.3/31
                                                                              5. 7/31
                                                                     .OC 7.0
                                                                     .9C 6.2
                                                                     .OC 5.8
                                                                     .1C 7.1
                                                                     .8C 6.2
                                                                     .5C 5.4
                                                                     .3C 6.5
                                                                     .8C 6.6
                                                                     .3C 5.8
RELAT
HUMID

66/57
60/61
60/64
60/56
63/61
65/65
60/60
61/59
63/63

-------
           205
            nATF:   7/21/74
                                  CnOLINf,  1EVICE CODE =
ST
*
3
4
5
6
7
9
9
10
11
PM!

1.(.7
1.79
1.6 A
2.40
1.68
I. S3
1.48
1.59
1.75
r.

0
0
n
0
0
0
0
0
0
vnniME

?57.5
275.9
27rt.fr
193.0
255.3
234.8
246.4
210.8
269.3
NfT
SODIUM
131.5
151.5
141.5
141.5
131.5
131.5
lll.S
10?. 5
144.5
TIME
STABT/END
756 /1 046
807/1054
831/1116
911/1148
815/1101
843/1125
920/1155
901/1141
82W1108
WINDSPEED
START/END
6.7/
3.4/
2.6/
6.2/
2.3/
5.2/
3.4/
5.9/
3.1/
2.2
1.0
3.5
8.7
6.6
7. I
5.2
6. 3
3.B
WIND PIR.
START/END
12/12
13/11
15/ 6
15/ 6
14/ 5
3/ 8
13/15
16/ 5
14/13
DRY BULB TFMP 6
OIFF
START/END
27.86
27.66
27.66
28.86
27.16
28.16
28.86
29.06
27.46
3.2/31.26
2.4/31.46
2.4/31.06
3.5/31.56
1.8/31.16
2.9/31.26
3.6/32.36
3.6/31.56
2.0/31.06
5.4
6.0
4.8
4.9
5.7
4.6
4.8
5.1
5.2
RELAT
• HUMID
77/65
82/62
82/68
76/68
86/63
79/70
75/69
75/67
85/66
•NJ
to
RUN* 209
                        7/21/74   COOLING OEVICE  CnDF=l
ST
«
3
4
5
6
7
8
9
10
1 1
P»'I

1.98
6.97
2.39
2.73
2.06
0.17
0.69
1.9
-------
3|JVtf 210
ST PHI
*
3
4
5
6
7
8
9
.68
.35
.34
.96
. ?8
.26
.19
10 1.19
11 1.21
OATF: 7/22/74 CHCL
f VOLUME NFT
SODIUM
0
0
0
0
0
0
0
0
0
197.
200.
179.
103.
189.
162.
139.
137.
183.
3
7
9
9
7
3
7
4
8
IO1
83
73
62
74
62
SO
50
6<)
.3
.2
.7
.4
.2
.4
.9
.2
.7
ING OEVICE CODF=l
TIM£ WIN'DSPEEO
START/tMD
824/1032
835/1036
901/1048
043/11 12
34 >/ 1039
911/1055
94S/1U6
933/1109
853/1044
ST
4
2
4
3
/»
S
3
3
4
ART,
.2/
.5/
.7/
.I/
.4/
.9/
'E'J
6.




2.
.8/10.
.8/
.4/

3.
n
3




8
3

9
WIND DIR.
START/END

  15/12
  15/12
  13/14
  15/ 3
  15/11
  15/14
  12/12
  15/ 8
  15/11
DRY BULB
    STAf.T/ENO
                 0IFF
28. 2C 2.9/29.5C 4.7
28. 4C 3.0/     C
28. 8C 3.0/     £
2<;.4t 3.6/     G
28. 5C 3.3/     £
28. 7£ 2.8/30.6£ 4.9
30. 3£ 4.2/2fl.O£ 2.1
29. 9£ 3.7/     £
28. 7£ 3.5/30.P£ 4.9
                                                                             RELAT
                                                                             HUMJD

                                                                             79/68
                                                                             79/
                                                                             79/
                                                                             75/
                                                                             77/
                                                                             80/68
                                                                             72/84
                                                                             75/
                                                                             76/68
7/23/74   COOLING TEVICF CDnfc=l
ST
*
3
4
S
6
7
8
9
10
1 I
PHI

T.98
1.19
1.01
1.35
0.72
n.7S
0.7ft
0.77
1 .is
r

0
0
0
0
0
0
0
0
0
VPLUPE

288.9
307. t
310.1
199.5
303.3
277.4
294.9
254. H
314.6
NFT
sioiur
H6.4
112.3
96.2
82.3
66. R
63.3
68.6
^0.8
110.3
TIME
S'A^.T/FMr.
759/U06
0"7/1114
833/1140
912/1212
814/1121
K43/1149
921/1221
90W1204
827/1133
wir DSPECD
START/END
i.s/ a.?
1.8/11.2
5.6/ 9.8
O.?/ 9.3
2. 1/ 8.9
0.8/ 9.7
1.3/ 7.2
3. 1/ 9.7
3.4/11. 1
WIND
niR.
START/ END
I/
12/
12/
13/
I/
13/
21
2/
14/
4
6
6
6
7
10
4
6
7
DRY HULB TEMP £
OIFF
STA9T/END
26. 2£
26. 8£
27. 2£
29. 0£
27. 1C
28. 3 £
30. 4£
2B.9£
27. 7£
2.7/28.7E
2.7/31.3£
3.0/3l.7£
4.0/31.8E
2.9/31.6C
3.6/31.2C
4.8/32.6£
4.0/32.6£
3.1/30.8£
3.1
4.7
5.4
5.7
5.6
4.3
5.9
6.4
5.2
REIAT
HUMID
80/78
80/69
78/65
72/64
79/64
75/71
68/63
72/60
78/66

-------
             OATF:  7/23/74    CnnL|NG OEVICE  CODE=1
ST
*
3
4
5
6
7
8
9
10
1 1
FHI

1.28
6.75
1.40
1.14
0.66
0.72
0 .8?
0.74
2.86
C

0
0
0
0
5
0
0
0
0
VOLUMF

171.6
1*9.9
180.0
167.2
B.8
159.9
188.5
157.4
179.4
NET
SODIUM
67.3
392.3
77.3
58.6
1.8
35.1
47.3
35.8
157.3
TIMF
START/END
1109/1304
1117/1310
1143/1329
1215/1410
1127/1315
1152/1337
1224/1419
1203/1401
1136/1324
WINDSPEFD
START/END
n.?/ 9.B
11.2/12.0
9.8/12.7
9.3/ 7.4
8.9/10.4
9.7/12.1
7.2/14.2
9.7/13.2
11.1/11.6
WIND DIR.
START/END
6/
5/
6/
6/
5/
6
5
5
a
5
10/10
4/
9/
7/
6
5
8
DRY BULB TEMP £
START/END
28. 7£
31. 3t
31. 7E
31. 8£
31 .66
31. 2£
32. 6£
32. 6t
30.86
3. 1/31. 36
4.7/31.0C
5.4/31.8E
5.7/32.5E
5. 6/31. 76
4.3/31.7E
5.9/32.8£
6. 4/32. It
5.2/32.16
DIFF

5.3
4.5
5.1
5.1
5.5
4.3
6.2
5.3
5.2
RELAT
HUMID
78/66
69/70
65/67
64/68
64/65
71/72
63/61
60/66
66/67
Low RPN on Station 7.
IM
CO
CO

RUM* 213
ST
t
3
4
5
6
7
8
9
10
11
PHI

O.fl4
2.14
O.P3
0.96
O.f>7
O.f>9
1.20
0.64
0.90










DATE: 7/24/74 COOLING DEVICE CODE=l
C

0
0
0
0
0
0
0
0
0
VOLUME

194.8
183.3
172.4
137.7
182.1
153.3
145.8
142.4
183.9
NET
SODIUM
49.9
120.3
49.1
40.4
37.4
J2.6
53.6
28.1
50.9
TIME
STA^T/ENO
83?/1035
843/1042
912/1056
949/1121
852/1048
941/1101
957/1130
941/1112
904/1053
WINOSPEEO
START/END
2.5/ 7.0
3.0/ 6.8
1.4/
3.5/12.2
3.7/ 9.5
1.4/
6.0/13.0
1.7/13.2
3.5/12.2
WIND OIR.
START/END
16/ 8
16/ 6
15/ 5
I/ 8
16/ 5
14/ 8
3/ 3
16/ 5
16/ 7
DRY BULB TEMP £
START/END
28. 6£
29. OE
29. 4C
31. Ot
28. 2£
29. 5£
31. Ot
30. 3t
29. 4£
3.6/31.2E
3.6/31.5C
3.6/ £
4. 4/31. It
3.4/31.4C
4.3/ £
4.3/31.6E
4.6/31.6t
3.2/3t.l£
DIFF

4.2
4.3

3.9
4.2

4.4
4.6
3.5
RELAT
HUMID
75/72
75/72
75/
71/74
76/72
71/
71/71
69/70
78/76

-------
ST
 3
 4
 5
 7
10
11
214

PHI


rt.7*

n.77

0.r>-3
1 .44
                   7/P4/74
0
0
0
T
n
n
113. 5
100...
m.3

L23.7
                         s .in i KM
193.3
 27.9
 2H.6
 17.6
                             r« Jl Ifjr, DEVICE
                         TIME
                       ST4P.T/ENO
1302/1416
1321/1430
1301/1421
1333/1445
1314/1426
WINDSPEED
ST/mT/END

 *.6/ 5.8
 3.7/11.6
 7.0/ 3.1
 4.9/10.4
lf).3/ 7.7
12.2/ 3.6
WIND DIR.    DRY BULB TEMP £  DIFF   RELAT
START/END        START/END           HUMID

   4/ 8      31.3£ 4.3/32.5£  4.4    71/72
  10/ 6      31.6£ 4.2/31.7£  4.5    72/71
   8/ 7      32.2£ 5.2/32.5£  5.4    67/66
   8/ 5      31.7£ 5.5/3I.5£  4.4    65/71
   6/ 6      32.8£ 6.6/32.7C  5.7    59/64
   8/ 7      31.6C 5.?/31.5£  4.0    67/73
"UN* 215
             7/24/74   C'ntlNG  TFVICE COD==1
ST PHI C VHLlJv.t N=T TIM= W1NOSPEFD
WIND DIR.
* SODIUM ?TA^T/FMD ST\RT/CMQ START/END
3
4
5
7
I 3
11
••>.<»?
t>.°2
0.r-6
T.3S
0.75
1.1?
•1
0
1
0
0
1
92.2
76.3
1«1 .4
P'3.0
10?.-;
132.2
25
136
32
23
23
45
.°
.3
.6
.1
.6
.4
1417/1516
1421/1539
143 t/1550
142S/1543
144')/1600
14?'}/1^46
5
] i
t)
10
7
d
.8/ 8.
. 6/ °.
.1/11.
.4/ 7.
.7/10.
.6/11.
1
3
1
4
6
5
8/
6/

5/
6/
7/
7
7
5
5
8
6
                                                                            BULB TEMP  t  DIFF   RELAT
                                                                            START/END           HUKID
                                                                        32. 5£ 4.4/31.7&  4.7    72/70
                                                                        31. 7C 4.5/31.0£  3.8    71/74
                                                                        32. 5£ 5.4/32.0£  4.5    66/71
                                                                        31. 5£ 4.4/31.5£  4.8    71/69
                                                                        32. 7£ 5.7/32.3C  5.6    64/65
                                                                        31. 5£ 4.0/31.5C  3.8    73/75

-------
              APPENDIX C-2

     APS PROCEDURAL BACKGROUND DATA
                  Procedural Background
  Date               (ug of Sodium)

08/24/73                   2.0
08/27/73                   2.42
08/28/73                   7.72
09/04/73                   0.65
09/05/73                   1.08

09/06/73                   0.60
09/10/73                   0.80
09/11/73                   2.90
09/12/73                   0.57
09/13/73                   0.57

09/14/73                   0.25
09/17/73                   7.83
09/18/73                   7.30
09/19/73                  13.0
09/20/73                  13.1

09/21/73                   6.73
09/24/73                  40.20
09/25/73                  17.00
09/26/73                   1.68
09/27/73                  28.30

09/28/73                   1.85
10/01/73                   0.13
10/02/73                   0.36
10/03/73                   0.78
10/08/73                   0.61
             235

-------
 APS PROCEDURAL BACKGROUND DATA (cont.)

                  Procedural  Background
  Date               (yg of Sodium)

10/09/73                   0.48
10/10/73                   1.28
10/12/73                   0.96
10/15/73                   1.42
10/16/73                   3.92

10/17/73                   2.62
10/18/73                   2.42
10/22/73                   4.06
10/23/73                   6.33
10/24/73                   7.90

10/25/73                  11.0
10/26/73                   7.20
10/29/73                   2.70
10/30/73                   3.12
10/31/73                   7.95

11/02/73                   2.38
11/05/73                   3.00
11/06/73                   4.52
11/07/73                   3.33
11/09/73                   2.92

11/10/73                   8.42
11/13/73                   2.53
11/14/73                   5.38
11/15/73                   3.60
11/16/73                   6.43

11/20/73                   4.58
11/21/73                   3.13
11/27773                   6.10
11/30/73                  13.60
12/01/73                   5.63

12/05/73                   2.95
12/06/73                   1.55
12/11/73                   2.53
12/13/73                   0.29
12/14/73                   0.75
             236

-------
  APS PROCEDURAL  BACKGROUND  DATA (cont.)

                   Procedural  Background
   Date                (ug  of Sodium)
 12/17/73                    0.67
 12/18/73                    0.56
 01/02/74                    0.37
 01/04/74                    0.53
 01/08/74                    0.56

 01/09/74                    3.40
 01/11/74                    0.63
 02/01/74                  70.80
 02/02/74                  43.63
 02/06/74                  10.8

 02/08/74                    3.86
 02/11/74                    1.11
 02/12/74                    2.56
 02/13/74                    7.31
 02/14/74                  14.8

 02/15/74                    1.41
 02/18/74                    1.21
 02/19/74                    0.36
 02/20/74                    2.45
 02/21/74                    2.85

 02/22/74                    2.33
 02/23/74                    0.60
 02/25/74                    1.58
 02/26/74                    3.73
 02/27/74                    1.73

 02/28/74                    2.53
 03/01/74                    2.40
 03/07/74                   2.10
 03/08/74                   3.60
 02/11/74                   2.13

03/12/74                   2.48
03/13/74                   0.98
03/14/74                  20.30
03/15/74                   1.35
03/18/74                   3.68
              237

-------
 APS PROCEDURAL BACKGROUND DATA (cont.)

                  Procedural Background
  Date               (pg of Sodium)
03/19/74                   0.68
03/21/74                   1.33
03/22/74                  10.10
03/25/74                   0.13
03/26/74                   0.28

03/27/74                   0.98
03/30/74                   1.48
03/31/74                   0.48
04/03/74                   0.35
04/04/74                   0.60

04/08/74                  12.40
04/09/74                   2.65
04/10/74                   0.38
04/11/74                   1.03
04/16/74                  16.40
04/17/74                   0.19
04/18/74                   2.24
04/19/74                   8.66
04/20/74                  17.70
04/22/74                  12.50

04/23/74                   1.81
04/24/74                   0.29
04/25/74                   1.74
04/26/74                   1.57
04/28/74                   0.43
04/29/74                   0.80
04/30/74                   0.75
05/01/74                   0.33
05/02/74                   1.20
05/03/74                   1.91

05/04/74                   1.88
05/06/74                   3.48
05/07/74                   0.61
05/08/74                   1.98
05/09/74                   2.13
             238

-------
 APS PROCEDURAL BACKGROUND DATA  (cont.)

                  Procedural Background
  Date                (tig of Sodium)

05/10/74   '                1.78
05/11/74                   3.45
05/13/74                   2.78
05/14/74                   1.85
05/15/74                   2.90

05/16/74                   2.28
05/17/74                   2.53
05/20/74                   3.68
05/21/74                  17.10
05/22/74                   3.10

05/23/74                   7.28
05/24/74                   2.40
05/27/74                   2.33
05/28/74                   2.98
05/29/74                   1.58

05/30/74                   2.40
05/31/74                   4.18
06/03/74                   0.45
06/04/74                   0.20
06/05/74                   0.41

06/06/74                   1.28
06/07/74                   0.23
06/08/74                   4.05
06/10/74                   2.40
06/11/74                   3.63

06/12/74                   1.73
06/13/74                   2.63
06/14/74                   1.59
06/15/74                   1.86
06/17/74                   1.60

06/18/74                   3.21
06/19/74                   1.80
06/20/74                   2.50
06/21/74                  15.30
06/22/74                   7.63
              239

-------
 APS PROCEDURAL BACKGROUND DATA (cont.)

                  Procedural  Background
  Date               (ug of Sodium)
06/22/74                   1.81
06/25/74                   0.38
06/27/74                   1.38
06/28/74                   0.28
06/29/74                   2.08

07/01/74                   1.28
07/02/74                   0.43
07/03/74                   1.10
07/06/74                   1.98
07/08/74                   1.25

07/09/74                   3.33
07/10/74                   1.15
07/11/74                   0.99
07/12/74                   7.08
07/13/74                  10.10

07/15/74                   1.70
07/16/74                   2.04
07/18/74                   1.04
07/19/74                  11.40
07/20/74                   0.63

07/21/74                   2.50
07/22/74                   1-83
07/23/74                   1.38
                   240

-------
      APPENDIX C-3



APS MESH BACKGROUND DATA
Background
(ug of
Date Sodium)
08/06/73









08/25/73



09/21/73













12/21/73


0.28
0.65
0.13
1.30
0.48
0.68
0.33
1.53


1.60



0.87
0.50
0.33
0.52
0.40
0.20
0.08
0.37
0.18
0.05




1.36
2.08
1.12
Background
(ug of
Date Sodium)
01/15/74






03/12/74

03/13/74


03/14/74

03/15/74


03/18/74

03/27/74


03/29/74

03/30/74

03/31/7,4

04/03/74

04/04/74
0.23
0.23
0.20
0.27
0.13


1.98

0.98


2.35

1.48


3.68

0.98


1.48

1.48

0.48

0.93

1.53
Background
(ug of
Date Sodium)
04/08/74

04/09/74

04/10/74

04/11/74

04/16/74
04/17/74

04/30/74



















11.7

3.73

0.28

0.63

8.6
0.34

0.37
0.92
2.43
8.49
0.73
0.73
0.09
0.61
0.44
0.34
0.02
0.22
0.32
0.19
0.22
0.14
0.47
0.27
0.44
0.42
          241

-------
                    APS MESH BACKGROUND DATA (cont.)
The following petri dishes containing each a mesh pair were submitted
for background analysis on 10/23/74.  After the analysis, each mesh
pair was cleaned and placed in a new petri dish, whereupon they were
re-analyzed for sodium background on 10/26/74.  Subsequently, all  mesh
pairs were stored and several were analyzed at later dates to check
accumulation of sodium on unopened mesh pairs.
                         Background after
             Background    cleaning and     Background  Background
              10/24/73   reboxing 10/26/73   12/31/73     6/4/74
     Number  (yg of Na)     (ug of Na)      (yg of Na)  (ug of Na)
        1       2.80           0.05            2.08
        2       6.38           0.05                        1.90
        3       1.52           0.73                        1.93
        4       2.15           0.05            7.30
        5       3.60           0.90            0.75
        6       5.20           0.13            3.18
        7       3.98           0.13
        8       4.62           0.05
        9      11.7            0.61                        2.55
       10       3.82           0.13
       11      16.6            0.13                        2.70
                                  242

-------
                              ^laboratories,  <31nc.
            820 TULIP AVENUE  —   KNOXVILLE, TENNESSEE 37921
                              615—525-1123

                                 April 3, 1974
Dr. Gunter 0. Schrecker
Environmental Systems Corporation
Route 2
Alcoa, TN   37701

Dear Dr. Schrecker:

The enclosed report is for five (5) screens which were chosen for
testing after a problem of unusually high blank values was discovered.
Initial testing revealed an apparent solution to the problem in the
use of the ultrasonic cleaner.  All screens submitted after this initial
work was completed were washed in the ultrasonic cleaner before being
returned to Environmental Systems Corporation.  Test //2 and Test #3
confirmed that washing after stripping the screens for analysis is the
solution to the problem of high blank values.

In no case have we found the amount of sodium remaining on the screens
after they are stripped for analysis to be significant in terms of the
total amount of sodium present.  However, the extra cleaning step has
resulted in the more consistent blank levels and has eliminated the necessity
for logging the history of each screen.  The cleaning step has been
incorporated into our routine handling of screens at no extra charge to
Environmental Systems Corporation.

                                 Sincerely,

                                 STEWART LABORATORIES,
                                 Barry A.  Stephenson   \
                                   Manager of  Administrative
                                     Services
BAS/lpj

enclosures
                                     243

-------
                            jstcfaart laboratories,
                 820 TULIP  AVENUE   •   KNOXVILLE, TENNESSEE  37921
                     CERTIFICATE   OF  ANALYSIS
 TO    Dr.  Gunter 0.  Schrecker	
       Environmental  Systems  Corporation
       Route 3  -  Municipal Airport	
       Alcoa. TN    37701	
     DATE REPORTED
     CODE	
     ORDER No  	
 pril 3.  1974
ESC - Experimental
       Sample Description:  Five  (5) test screens

       Concentration  units are  total micrograms
       Stewart  Laboratories
       	Code	

            1209
            1210
            1211
            1212
            1270
     Sodium
Original Analysis

    1525.
    1885.
    1675.
    2242.
    3150.
     Sodium
    Test //I*

     1.60
     3.45
     0.78
     0.43
     0.35
            *Test  tl  -  Samples were cleaned using the ultrasonic cleaner
                       prior  to being processed for analysis a second time.
Sworn to and subscribed before me this
day of 	April
          STEWART LABORATORIES, INC.
             NOTARY PbflLIC
My commission expires  January 17, 1976
                                          244

-------
                             Jtolnart JSabnraturics, ,3liir.
                   820  TULIP AVENUE  •   KNOXVILLE,  TENNESSEE 37921
                       CERTIFICATE  OF  ANALYSIS
  TO    Dr.  Gunter 0.  Schrecker
        Environmental  Systems  Corporation
        Page 2
       DATE REPORTED	Ap_ril_3, 1974	
       CODE	jj>C_- Experimental
       ORDER No  	
        Sample  Description:  Five  (5) test screens

        Concentration units are total micrograms
       Stewart Laboratories
       	Code	

             1209
             1210
             1211
             1212
             1270
Test l?2**

  0.07
  0.29
  0.39
  0.50
  0.07
Sodium
Test 03***
a b
0.33 0.13
0.77 0.03
0.70 0.33
0.27 0.20
0.20 0.23
c
0.17
0.27
0.20
0.13
0.13
       **Test //2 - Screens were held for 2 weeks,  cleaned in the ultrasonic
                   cleaner, and analyzed as if they were samples.

      ***Test 93 - Screens were held for an additional  week,  cleaned  in  the
                   ultrasonic cleaner,  and analyzed as  if they  were samples.
                   The process was repeated until  a stable blank was  established.
Sworn to and subscribed before me this	3rd
day of    April 1071       .x—.
             NOTARY PUBLIC
My commission expires  January 17. 1976
                                                  STEWART LABORATORIES, INC.

-------
   APPENDIX D



DEPOSITION DATA
       246

-------
FORMAT FOR DATA PRESENTATION - DEPOSITION DATA
Note:  For more detailed descriptions of column headings, see text
       Section VI "Formats for Data Presentation".
ST #                    Identification of deposition sampling station
                        locations.  (Concurs with APS location.)
DEP                     Apparent sea salt deposition flux, kg/km^.month.
C                       Comment code:
                        0 - good run.
                        1 - sample caught in light rain.
                        2 - sample caught in heavy rain.
                        3 - possible contamination from insects in the
                            funnel or bottle.
                        4 - possible contamination from dust.
                        5 - other comments or a combination of the coded
                            comments;  supplemented with a written foot-
                            note.
                        6 - possible contamination due to the presence
                            of a tree frog in the funnel or bottle.
                        7 - contamination from bird excrement in the
                            funnel and bottle.
NET SODIUM              Total sodium as verified by the chemical analysis
                        minus the average procedural background, ug.
TIME                    Time of day at the start and end of a run.
                                    247

-------
                       b/1973TC
                                                     6/1973
     ST.«
 nt?
       1
       4
       5
2H7.9
2C0.5
2 tik.fr
C,
0
r.
. 6
1^29/1133
1112/100S
                                r i
                S«-Ar:M!-.C.  f-Pi'M   5/12/1973TJ  9/13/1973
                                                  PRECISIO'J FUN
    ST.u
               HFP
                                r.cr
                             TIf-.E
                           £TA^ 7/CND
ro
^
00
1
?
3
i,
s
(<
15.4
37.7
10.0
13.4
15.8
53.5
0
n
0
L
l
r
4.9
11.9
3.2
4.3 '
5 .<'.
17.0
1214/U5H
1216/12 )0
1112/1057
1047/103-J
1027/1010
1514/1500
                 SPANM Nf,
                                  9/13/1973TT1  9/14/1973
                                                                 PFECISIOM
    ST.*
                                            Tlfl-
1
2
3
^
5
f.
1?.?
Prt.O
14.6
H.7
16.2
39.1
0
0
G
0
P
J
4.1
9 .4
4.8
2.rf
5.3
11.2
1156/1314
120D/13 17
1057/114C
1035/1104
101J/1046
150J/122S

-------
    Flir*    4   SPANNING F"OM  9/17/1973TH  9/18/1973      PRECISION «UN ERR03=31 .4*


    ST.*       HEP      C      NFT        TIME
                              SODIUM    START/fcNC
1
?
3
4
'j
46.9
32.2
14.8
17.7
2563.8
C
0
0
0
0
1^.2
1.8
4.5
5.4
770.2
1423/1307
1425/1309
1346/1232
1328/1213
1309/1154
    PUN*    5    SPAWNING  F*Oi"  9/IH/1973TJ   9/19/1973      PRECISION  PUU ERROR=bl.8?

ro
*   ST.#       n^P     C       NtT        TIMF
                              SODIUM    START/END
1
2
3
4
S
6
36.9
76. 'j
32.9
26.5
32.3
204.8
C
0
0
f)
0
6
11.7
24.3
10.4
8.4
10.2
!>1.4
1307/1256
1309/125P
1232/1215
1213/1154
1154/1136
1447/ 935

-------
     UN*   6    SPAMMNf, FRUM  9/19/1973TO  9/20/1973      PRECISION PUN  EFROR=13.'V*
    ST.1       HEP     C      fiET        TIME
                                   M   STAPT/END
I
•>
3
4
5
171.9
199. f,
122.6
134.3
98.3
1
1
1
I
1
SI. 5
59. fc
36.5
39.9
29.2
12bo/ 1123
1258/1125
1215/1035
1154/1012
1136/ 953
              140.5    6      54.5       935/1440
    cilNrr    7    SPANNING FP f M   9/20/1973TI,'  9/21/1973      PRECISION  kUN  ERROR* 5.6%
ro         -
o
    ST.*       PEP     C       NET        TIME
                             SOniUM   START/END
1
?
3
4
5
2J4.U
221.6
268.4
156.4
140.4
0
0
0
0
0
76.2
71.9
117.1
ri0.7
45.5
112 J/114?
1125/1144
1035/IOD5
1012/1030
953/1009
              369.1    0     103.9     1440/1146

-------
RUN*   8    SPANNING  FRCM  9/25/1973TO  9/26/1973


ST.#      OEP      C       NET        TIME
                         SODIUM   START/END
3
4
5
6
265.7
288.3
240.0
424.7
1
1
1
1
84.4
87.9
72.7
113.3
1137/1126
1123/1015
1108/ 950
1445/1045
PUN*   9   SPANNING FROM   9/26/1973TO  9/27/1973     PRECISION RUN ERROR=10.7*


ST.*      DEP     C      NET        TIME
                        SODIUM    START/END
1
2
3
4
5
6
222.9
199.1
124.4
260.5
224.7
328.3
1
1
1
0
C
0
73.3
65.5
41.4
67.1
75.0
102.7
1224/1303
1226/1305
1126/1223
1015/1119
950/1051
1045/1012

-------
ro
tn
ro
           10   SPANMflO  ff*C»  9/27/1973TQ  9/28/1973      PRECISION  kUN ERROR=45.9*


               DEP     C       f'FT        TIMF
                              SHDIUM    START/END
       I
       2
       3       550.8
       •5       688.7
       6
1
1
1
I
1
1
207.3
112.0
167.8
253.7
217.0
331.7
1303/1205
1305/1207
1223/1113
1119/1048
1051/1028
1012/ 957
PU«!«J   11    SPANNING FRC^I  9/28/1973TQ  10/ 1/1913      PRECISION RUN  ER»OR=  5.3*


ST.O       OEP     C       MET        TIME
                          SODIUM   START/END
1
2
3
4
5
b
3A7.5
3*8. C
337.6
342.5
36?. 1
316.3
0
0
0
0
0
0
350.5
331.9
322.7
328.1
346.7
324.8
1205/1134
1207/1136
1113/1052
1043/1035
1028/1014
957/1455

-------
    PUMP   12    SPANNING FROM 10/ 1/1973TG 10/  2/1973      PRECISION RUN ERROR= 3.8*


    ST.*       OEP     C      NFT       TIME
                             SCDIUM   START/tND
1
2
3
4
5
442.1
459.3
474.8
538.3
505.9
1
1
n
0
0
146.7
152.5
158.0
178.fi
168.6
1134/1226
1136/1229
1052/1148
1035/1129
1014/1113
    PUN*  13   SPANNING FFOM  10/  2/1973TG 10/ 3/IS73     PRECISION  RUN ERROR=10.4*
ro
™   ST.*      OEP     C       NET        TIME
                            SOOIUM   START/END
1
2
3
4
5
253.4
227. C
304.3
344.5
1«5.3
0
C
0
0
0
80.8
72.4
95.7
108.1
61.2
1226/1221
1229/1224
1148/1123
1129/1100
1113/1043

-------
PIJMtf  14
               SPANNING
                             10/ 3/1973TO  10/ 4/1S73
   ST.*
          PEP
 NET
SODIUM
  TIME
START/END
      3       147.5    2     44.6      1123/1235
      4       232.9    I     78.1      1100/1208
      5       207.0    1     66.0      1043/1038
    RUM*  15   SPAMNING  FP CM  10/  8/1973TO 10/ 9/1973
                                                           PRECISION  RUN  ERROR=17.3«
ro
(ji
    ST.«
              DEP
                          NET
                         SODIUM
            TIfE
          START/END
1
2
3
4
5
6
64.2
77.6
61.0
52.0
46.0
260.5
0
0
0
0
0
0
19.2
23.3
19.2
16.4
15.6
79.6
1528/1353
1534/1403
1332/1307
1305/1246
1103/1225
1226/1120

-------
    BUN*   16   SPANNING FRCM  10/  9/1973TO 10/10/1973
                                             PRECISION RUN ERROR=34.6«
    ST.*
                              NET        TIME
                             S?niUM    STAfU/FNO
         1
              140.2
               <31.7    1
              201.0    1
               44.4
               20.4
               64.0
1430/1344
1406/1345
1313/1305
    "UN*   17    SPANNING FRC'* IO/10/1973TQ 10/11/1973
IM
Ul
    ST.*
OEP
                NET
               SODIUM
  TIME
START/FND
3
4
5
6
866.3
1672.2
12?5.8
1974.0
1
1
1
I
207.6
559.3
409.4
550.6
1308/1402
1241/1345
1216/1318
1434/1142

-------
          IH   SPANNING  FRCM 10/11/1973TO  10/12/1973
              DFP     C       NET       TIME
                                      START/FNO
      3     1450.8     I
      5      759.1     1     227.0     1323/1148
               SCANNING  F°DM 10/12/1973TJ  lO/lb/1973
    <:T.»      HEP      C       NET        TIMfc
                                  M    START/FNO
ro
$
7.
^
4
•5
6
492.2
494. 7
596.5
4b7.4
364.2
0
0
0
0
0
479.6
480.3
578.0
453.2
353.2
1320/1422
1233/1325
1217/1255
1153/1233
1118/1159

-------
           2T   S°ANMNU F?CM  10/ 15/19 73TJ 10/16/1973
                               NET        TUF
                                       START/FN11
2
3
4
5
6
123.?
163.0
216. 1
107.2
106.8
0
0
0
0
0
3b.2
51.?
68.3
33.8
33.5
142V/1342
1330/1304
1302/1244
1240/1216
1206/1137
    CUM*  21    SPANNING FKCM 10/ib/1973TL' 10/17/1973

ro
iS   ST.«       nFP      C      MPT        TIME
                             SCDIUM    START/IND
      2       *«.8     C     14.1      1349/1324
      3       fcfl-fc     "     ?1.5      130J/123B
      /f       59.7     0     10.7      1249/1^14
      6       45.7     C     14.4      1222/115h
      <•       3^-9     0     12.5      1142/U05

-------
            ??.    S».V.'JI»H, FT.-, 10/17/1973T1 IC-X la/1973
                                                                               "UN
                                 3CnlUM    STAKT/CfJD
256.7
177.6
1 4fl. C
206.5
130.7
115.9
d
0
c
0
0

75.5
S? .8
43. 9
61 . J
3H.7

131J/HJ6

l?32/ l()4b
1217/1033
1200/IC12
UlV/ 91fi
SPCNM'K, F«r:< 10/1«/1973TJ 10/19/1973
r)E!>
252.9
rthb. t
551.5
771.3
738.8
c
]
I
1
2
2
snniuM
f<2.9
2il 9 . tJ
192 • t!
279.6
2/1.4
TIME
1141/1215
L143/121G

1015/1325
921/1253
^                                                                PF^ECISIJN  SUN  ERROR=71.5«
tn
00

-------
       24
                     f^PM 10/22/1973TT  10/23/1973
                                                 PRECISION RUN ERRQR= 1.3*
 ST.*
                          NET
                         SOOIUM   STAET/FND
1
7
"*
4
5
f
785.6
795.9
556.5
681.8
1032.7
991.7
0
0
0
0
1
1
247.2
250.8
182.1
290.2
340. b
315.1
13 JO/ 123 5
1303/1240
1139/1211
1110/1150
1051/1135
1005/ 954
25   SCANNING FRCM 10/23/1973TD  10/24/1973
                                                      PRECISION  PUN  ERROR-  2.8*
ST.*
          DEP
                          . fT
                                    TIMF
I
?
3
4
5
6
279.8
287.8
291.2
478. «
504.8
368.3
0
0
0
1
1
0
86.3
b9.U
(38. P
146.5
154.1
117. C
1239/1147
1243/1153
1215/1107
1151/1049
1139/1032
959/ 957

-------
           ?6    SPANMNf,  FRi.M  I.I/24/1973T}  10/25/1973
                                                PkECISIOi\  KUM
    ST.'i
                            TIME
                          START/END
       5
       6
              238.4
              173. 7
              155.1
158.0
18fl. 7
0
0
0
0
I
0
77.0
56.6
bO.7
70.6
51.0
M.O
                          1152/1216
                          1156/1222
                          110-J/113P
                          105.1/1108
1001/1015
    PU?:«   27   SPAMJl'IG FKD'1  10/25/1973TO 10/26/1973
ro
at
o
    ST.«
                                                 PRECISION RUN ERROR=15.'»?:
                                t!ET
                             TIME
                          STAi*T/£ND
I
?
3
4
5
6
133.9
217.4
151. t
178.6
156.5
1R0.2
0
0
0
0
0
C
69.5
82.1
46.0
56.0
50.1
60.8
12?2/1642
1226/1645
1132/1113
1110/1100
1051/1050
1018/1135

-------
ro
o>
    KUN«  20    SPANNING FFOM 10/26/1973T3  10/29/1973      PRECISION RUN FRROR=
               DEP      C.      NfcT        TIME

                                  M    START/END
I
?
3
4
5
6
117.4
11?. 1
102.5
118.8
100.0
109.4
0
0
0
C
0
0
105.0
100.3
57.0
113.1
05.7
102.1
1645/1147
1648/1152
1116/1012
1103/1024
1053/1035
1138/ 937
    PIIN«  ?9   SPANMNf,  FFCM 10/29/1973TO  10/30/1973     PRECISION  RUN ERROR=35.01!
              CEP      C       tE-       TIKE

                             SDOIUM   START/END
1
2
3
4
5
6
155.3
101. 0
73.0
75.3
76.9
57.5
0
0
C
r
G
0
51.4
33.4
25.1
25.4
25.0
19.0
1152/1240
1156/124!>
1015/1159
1028/1143
1040/1100
944/1030

-------
°'Jfl*   30
            SPANNING
                          1 0/30/1 973TU 10/31/1973
PPECISICN PUN ERROR=75.4«
   1
   2
   3
   4
   5
   6
DSP

2<;8.6
73.5
70.4
5365.8
71.5
55.4
f

0
0
0
7
0
0
MET
srnniM
95.3
2J.5
22.6
1664.5
22.5
17.4
TIME
START/END
1245/1240
1248/1245
1202/1204
1146/1101
1103/1040
1034/1008
°UN«  31   SPANNING FRCM  io/3i/i573Tj  n/ 2/1973
PRcCISION RUN  ERROR= 5.1*
ST.tf
                         "ET        TIME
                        SODIUM    START/END
1
?
3
4
5
80.0
85.2
78.5
4007.5
34.0
1
1
1
7
0
49.8
52.6
47.8
24?5.7
21. rt
1245/1058
1248/1107
1207/ 943
1104/ 826
1043/1040

-------
    fii|N#   32    SPANNING  FPPM 1 I/ 2/1973TD  H/  5/1973
                                              PRECISION  RUN tRRCR=  2.8«
    ST.«
               OEP
                                         TIME
                                       START/END
1
2
3
4
5
105.9
102.9
64.3
5347.7
83.9
0
l-
0
7
0
100. b
98.0
61.4
5161.0
{.1.1
1107/1026
1110/1C30
946/ 921
830/ 650
804 / 630
ro
tn
    »UN#  33    SPANNING FH OM  ll/  5/1973T.J  ll/  6/19/3
    ST.«
                                              PFECISION *UN  ERROP=13.5?
OF.P
                              MET        TIKE
                             SnD!UM   STAPT/FND
1
2
3
4
5
259.2
224.2
238.9
342.3
207.3
0
0
C
0
o
66.0
75.1
89.0
139.8
86.1
1030/1136
1034/1140
«*24/1320
854/1530
833/1540

-------
ST.»
       J4    SPANNING FR^" ll/  6/1973T.) ll/ 7/1973
                                     TIME
                                   START/ENf!
                                                           PRECISION "UN EPPOR
I
2
3
4
5
623.1)
'.15. 1
779.0
1407.3
1059.1
0
0
1
1
1
201.7
1T9.3
228.3
360.3
268.2
1140/1155
1143/1200
1322/1120
1532/110S
1543/1042
RUM*  15   SPANNING  FFPM ll/ 7/1973TO  ll/  9/1973


                  C       NET       TIME
                         scnun   START/ENO
2  ST.-
                                                           PRECISION RUN  ERROR=32.3?
I
2
3
4
5
394.9
267.3
359.7
1">970.7
}0ft.7
.1
0
0
7
0
244.3
Io5.5
221.8
Qd4H .0
IH9.7
120U/1022
1203/1028
1129/ 942
llll/ 524
1045/ 907

-------
          36    SPANNING FROM ll/ 9/1973TO  11/12/1973
                                             PRECISION  RUN ER«OR= 9.8$
    ST.*
                              NET        TIME

                             SPOIUM    START/END
1
2
3
4
5
495.1
446.7
501.5
6313.0
391.7
0
0
0
7
I
4R5.0
437. B
492.0
6195.0
384.0
1028/1154
1031/115U
945/1 124
927/110C
910/1038
ro
01
01
    ST.«
               SPAN-NINO  FPCM 11/12/1973TC  H/13/1S73
OEP
                              NFT
                                             PRECISION  RUN
                          TIHE

                        START/FND
1
2
3
4
5
529.7
347.6
D43.
-------
    CUN«
                SPANNING
                               11/13/1973TQ  11/14/1973
                               PRECISION
                                                                              ERR3S=17.7<
               r,pp
                              s-JDiur-
           TIM?

         STAPT/FND
1
2
3
4
•i
14«». 4
28 J.3
405.6
7590.9
?86. 0
0
0
0
7
0
120.1
'Jb.ft
148.U
2835 .8
1 J9.2
1156/1404
1200/1409
UOb/1429
1043/1443
1021/1454
ro
at
    ST.
           39    SPANNING  FPPM 11/14/1973TQ  11/15/1973
NtT
                               PPfCISION "UN  FPROR=31.9ig
                                          TIME

                                        START/END
1
2
3
4
5
1289.5
P7H.3
145H.7
l?0b.9
U73.C
O
0
0
0
0
400.3
272.8
455.4
359.0
409.7
1409/1325
1412/1329
1431/1355
1445/13C6
1457/1319

-------
OHMS  40    SPANNING FKCM  1I/ 15 /1 «J73T 1  11/20/1973      "(. CC 1 S ION MJN  FRROS = 27.2'S
           OEP
                                     TIMf

                                   START/FfP
I
2
3
11
o92.5
504.0
543. C
545.3
1
1
0
0
1137.4
828. n
8b5.0
869.4
1329/1635
1332/1640
1359/ If'OO
1323/1538
      41    SPANNING
                           1 1 /20/1973T J 11/21/1973
                                                        Pc EC IS I ON RUN EKROR=13.9<
5?   ST-«
          nep
                         SCO I DM
  TIME
STAKT/FNL
I
?
"*
4
5
6
3167.0
272S.C
1390.0
1 3P7.9
1325.0
3318.9
1
1
0
0
0
0
950.7
619.0
433.3
599.5
429.0
1031.0
1640/1510
164J/1M4
1611/1533
1550/1544
1542/1557
1511/1426

-------
 SPJKNI MG
                               1L/21/1973TO  11/27/1973
                                               PRECISION  RUN FPROR=ll.*«
              166.3
              146.4
              in. 5
              131.3
              142.4
        0
        0
        0
        0
        0
        o
t =T
SODIUM
316.3
278.5
214.8
232.5
246.7
2t'». 3
Tiff
STADT/FNO
1514/1349
151d/1353
1534/1322
1550/1307
1600/1248
1432/l?18
ro
O)
CO
ST.#
          43    SPANIjINC. F-RCM  11/27/1973TO  ll/3'i/1973
                                               PF.FCISION
                                                                             ERRPR=  5.8«
OEP
                               MET        TUT
                              SODIUM    START/FNO
I
2
3
4
5
6
2n
307. 2
263.7
1223. 7
173.4
302.3
1
1
1
7
2
2
269. 1
285.6
244.4
1132.5
160.5
279.1
1353/1133
1357/1137
1325/IOS3
1310/1032
1350/1012
1221/ 93?

-------
    RUN*   44    SPANNING FPC* 11/30/1^7310 12/ 1/1*73
                                               PhELISION 'VUN  ESKOR=12.7*
    ST.*
       1
       2
       3
       4
       5
       6
  pep
 368.2
 321. 4
 329.8
5919.9
 314.2
 336.7
c

0
0
0
7
0
0
NFT
SDDIUM
132.6
115.6
110.4
1974.6
105.1
120.8
TIMC
STArtT/FND
1137/1437
1141/1441
1055/1200
1036/1136
1015/1114
936/1230
to
    PUN*   45    SPANNING FPCM 12/  1/1973TG 12/ 4/1973
    ST.*
                                               PRECISION KUN  ERRQR=23.7«
  OEP
 NET       TIME
SODIUM   ST.ART/EN'D
1
2
3
4
5
6
270.3
206.3
234.9
370.4
206.6
210.8
0
0
0
0
I)
0
249.4
190.5
223.0
349.0
194.2
202.4
1441/1151
1444/1156
1204/1113
1141/1018
1122/ 94S
1232/1226

-------
                     INO  FPJM I?/ 4/1973TO  12/  5/1973      PRECISION liUN  ERROR=  7.J*
     3T.X       nE»     C       ^!E•r       TINE
                              SODIUM   START/END
1
7.
3
4
5
ft
329.1
306.1
270.1
238.9
350. C
300.4
0
0
0
0
0
0
123.2
114.6
102.1
92.0
I J 7 . 6
97.1
1156/lbUO
1200/16J3
1116/1535
1020/1526
952/1516
1230/1244
    RUN*   47    SPANNING FMM  12/  5/1973TO 12/  6/1973      PRECISION PUN  ERROR=32.3*
ro
o
    ST.*       npp     C     '  NET        TIME
                             SODIUM    STAkT/FND
1
?
J
4
5
6
174.9
2S7.2
2?9.9
199.4
1H9.0
206.4
0
0
0
0
0
0
54.4
00.0
63.2
52.2
49.0
58. H
1603/1522
1606/1525
1539/1215
1529/1106
1519/1046
1247/1009

-------
                SPANNING  FROM  i2/  6/197310  12/11/1973      PPECISICN RUN




              ftp     c       NFT        TIKE
              1*6.7    2     249.2      1525/1438
2
3
4
5
6
109.8
128. 1
1107.9
151.3
238. 9
2
2
7
2
2
174.5
209.7
183d.6
252.4
3bl .1
1523/1437
1217/1500
1110/1533
1048/1551
10U/1609
    RUN*  49   SPANNING M CM 12/11/197310  12/13/1973

IM
^J
H-l


    ^T.«      OEP     C      NET       TIME

                                 M   START/FNO
1
3
4
S
6
40. H
41.7
125.2
6-9.2
176.1
'i
0
0
0
0
27. P.
27.7
61.7
44.9
97.5
1443/1741
1504/1650
1536/1613
1554/1637
1613/ 943

-------
           5J
SPAM.IW,
                               12/13/1973TO 12/14/1S73
    ST.*
                               fJET        TIME
                              SODIUM    START/FND
1
1
4
5
6
57.6
115.3
50.9
25.2
34.5
0
0
0
0
0
16.5
34.3
15.7
7.7
14.3
1719/1444
1653/1510
161o/1523
164)/lb35
94//1645
ro
    I!U^<(  51    SPANNING FkOM  12/14/1973TO  l
-------
RUN*   52    SPANNING  FROM 12/17/1973TO 12/19/1973
ST.*
          DEP
                          NET
                         SODIUM
                                    TIME
                                  START/LNO
1
3
4
5
6
262.5
267.6
401.1
253.2
331.6
0
0
0
0
0
180.6
181.8
270.6
169.4
219.2
932/1306
1002/1258
1019/1253
1040/1249
1105/1238
RUN*  53   SPANNING FROM   I/  2/1974TO  I/ 4/1974
ST.*
          HEP
                         NET        TIKE
                         SODIUM    START/CUD
  1
  3
  6
         492.9
         358.4
         179.8
0
0
0
314.0
227.5
241.4
1304/1249
1206/11tO
1233/1211

-------
                            I/  4/1974TU   I/  6/1974
                          NET
                          SC'DIUM
             TIMF
           STAPT/LND
          
89.0
99.7
0
0
0
0
0
?5.5
20.7
35.9
^7.7
12.4
1623/1609
160b/1524
1553/1513
154J/lb02
1521/1544

-------
    RUN*   56   SPANNING  FRCM  \/  9/1974TU   1/11/197*
    ST.
       1
       3
       4
       5
       6
               OEP
177.1
132.6
 84.7
141.?
0
0
0
0
(1
NET
SODIUM
112.6
70.9
85.?
54.4
88.5
TIME
START/END
1612/1552
1526/1536
1516/1525
1505/1514
1547/1445
    PUN*   57    SPANNING FROM  2/  6/1974TO  2/ 8/1974
ro
*"   ST.«
 nep
                              NET        TIME
                             SODIUM    START/END
3
4
5
6
7
8
9
10
213.8
192.2
167. U
240.6
33?. 8
558. 4
195.0
233.4
0
0
0
0
0
0
1
0
140.6
125.0
107.5
145. «
214. B
3!>4.7
119.2
141.6
1520/1637
1527/1612
1548/1550
1703/1430
1538/1600
1600/1536
1623/1417
1714/1443

-------
       5"
SPANNING
                            2/  8/1974Ti)  2/11/1974
ST.*
  3
  4
  5
  A
  7
  S
  9
 10
HEP

56. 5
3736.1
69.3
149. C
62.9
68.6
127.0
60.4
C

0
7
0
0
0
0
n
C
N?T
SODIUM
52.5
3507.6
05.8
143.7
59.3
o5.6
I25.fi
59.9
TIME
STAR.T/LND
1639/142U
1615/1437
1553/1503
1433/1450
1604/1448
1539/1518
1421/1636
1446/1704
SPANNING
                           2/U/1974TO  2/13/1974
ST.O
  4
  5
  6
  7
  3
  <3
 in
DEP

149.3
45S4.4
71.2
155.0
21.6
58.4
38.6
21.4
C

C
7
0
0
C
0
C
0
NET
SCDIUV
96.4
2953.3
45.8
102.1
13.9
37.5
24.4
13.5
TIME
START/tNC
1423/1446
1440/1457
1506/1518
1452/1613
1451/1507
1521/1529
1639/1600
1707/lo2o

-------
           /,0
                                 2/13/1974TO  7/14/1974
       7
       8
       9
      10
r,cp

99.6
19982.C
43.4
71.0
75.3
48.5
53.0
B-3.4
f

./
7
0
0
(•
(I
0
0
MET
SC'HUM
31.9
6402.9
15.5
23.1
24.2
15.5
IV.?
27.7
T I Kt
STAF.T/PMC
144d/ It A 9
1500/lbOl
1521/1520
1615/1636
1509/lbll
1531/1531
1603/1624
1629/1647
ro
-sj
                                              2/15/1974
    ST.*
      4
      5
      6
      7
      0
      9
     10
  57.5
7386.C
 110.5
  91 .3
  44.?
  50.9
  65.2
c

,>
7
0
n
'.)
0
n
0
NET
scniun
Ib.U
2413.0
36.2
28.9
48.0
14.5
16.8
21.7
                                       STA-T/FND
1452/1523
1504/1533
1523/1558
1639/1622
1513/154!.
1533/1612
1626/1708
1649/1744

-------
                            2/15/1974TO   2/18/1974
ST.*       pfiP     C      'JET        TIMF
                                   STAFT/fcM!
  3        56.C    0     S3.5      1525/1505
  4      05.68.4    7   63S1.C      153&/1526
  5       9.8
65.2
42.9
67.0
56.2
66.4
1508/1458
1530/1508
1555/1532
1716/1635
1541/1519
1609/1547
1728/1646
1706/1523

-------
      />4
            Sf>.".M«iI\r,
                             2/19/1'., 74TP  2/20/1974
           TEP
                            NtT
                           S1DIUM
1
4
5
6
7
8
1
O
1?3.6
643d. 4
115.3
2*3.3
I 39.4
124. 2
110. 1
97.1
C
7
r
6
()
0
C
1
43.3
2 Ib6.2
37.9
b4.6
40.7
39.9
32.2
31.0
1501/1717
1512/1639
1534/ Itl2
1633/1501
1522/ 1627
1550/1557
1650/1445
1526/1521
                             2/20/1974TJ   2/21/1974
                            NC-T
                           r-noi
  Tlf-'.F
START/FND
 6
 7
 H

in
i:4.9
12T2.1
?lfl.9
119.4
178. 9
243 . 1
1 17.1
153.4
0
r\
0
0
"l
0
0
1)
29.2
374.6
66.4
40.5
53.?
75.5
39.8
51. R
1720/1413
1642/1436
1615/145?
1507/1632
I630/I44b
1600/1517
It4d/ltl7
1524/ 1644

-------
                SPftNNIVf,  FFOM  2/21/1974TQ  2/2*/1974
                               NET        TIME
                              S10IU"    START/END
       3       135.5     J     175.y      1416/1533
       *>       119.1     0     154.3      1503/1608
       *       109.0     0     259.fc      1633/1756
       7       116.6     i)     177.0      1450/1558
       13       149.9     0     H4.1      1520/1&22
       9       118.7     0     155.J      1620/1813
      10       121.6     f>     157.4      1642/1743
g   ",jf,tf   67    SPANNING FPCIM   2/25/1974TO   2/26/1974
    ST.«       1EP     C       N«?T        TIME
                              SJOIUP    START/END
3
•>
6
7
8
9
J
30.7
•53. 8
12.3
44. C
62.1
70.3
44. 4
0
0
0
0
0
0
0
9.6
1*».6
3.9
13.9
19.7
21.8
l'+.2
1535/1502
1611/1555
1800/1738
1600/1540
1625/1611
U13/1727
1746/1749

-------
     "UN*   68   SPANNING FPUM  2/26/1974TO  2/27/1974
     ST.«      OEP      r,       HET        TIME
                              SOfJIUM    STAFT/FMD
              H3.6     0      37.5      Ib05/1548
5
6
7
8
9
10
89.3
147. 7
105.7
13?. 3
265. 2
189.0
0
0
0
C
0
0
27.1
45.2
32.8
39.2
(32.6
56.9
1558/1*44
1741/1636
1543/1458
1614/1427
1730/1651
1753/1624
OJ   PUN*   
-------
   PUN*  70    SPANNING FhCM   2/2B/1974TO  3/ 7/i<>74
   ST.«
     3
     ,5
     6
     7
     ft
     q
     10
HEP

187. C
ma. 7
2T6.4
219.5
325.1
366.1
182.3
C

1
1
1
1
1
7
1
NET
S 10 1 UK
429.7
433.1
528.0
5H4.2
74?. 3
821.5
406.0
TIME
STAPT/END
1047/1503
1142/1543
1743/1708
1123/1532
1202/1509
1727/1738
1759/1655
09
IM
          71   SPANNING KrOM   3/  7/1974TO   J/ 8/l
-------
       7?
                SPANNI'40
                                 3/  8/107410   3/11/1974
    ST.*
                              STDIUM   STAKT/dNO
1
4
5
6
7
a
P
10
CO. 7
398.0
103.1
398.5
126.0
144.2
3ft5.3
407.3
O
7
<:
<
u
0
7
0
74.f<
38J.8
1'rl.l
3(.9.6
123.4
141.4
356.4
375.8
1521/1635
1533/1657
16UI/1732
1836/1607
154o/170S
1617/ 174C
1823/1930
1847/ 1556
ro
           73    SPANNING
                                3/ll/l«*74TJ   3/15/197-i
ST.#
               0CP
                           ^!5
                                          TIKE
                                        START/EMO
"1
4
5
7
H
q
30.7
1"?. 5
57.6
36. f
37.1
305.0
0
0
0
0
0
7
ia.fi
117.4
35.0
22.9
22.5
182.2
1 539/ 143 1
1700/1443
1735/1508
1712/1557
1751/1522
193J/1C19

-------
    =UN*  T*    SPANNING FROM  3/13/1974TO  3/14/1974
    ST.«
      3
      4
      5
      7
      a
           OFP
           66.9
          168.4
           66.9
           79.4
          124.4
0
0
0
0
0
NET
SODIUM
20.4
51.8
20.8
23.3
38.0
TIME
START/END
1434/1326
1447/1350
1511/1432
1600/1401
1525/1420
PO
2
RUN«  75    SPANNING FnOM  3/14/1974TO  3/19/1974


ST.*       DEP      C      NET        TIME
                         SODIUM    START/END
1
4
5
7
R
183. S
390.8
3096.9
4276. 9
206. I
1
1
1
1
1
295.2
635.8
4993.4
6937.0
332.3
1329/1603
1353/1549
1436/1527
1404/1538
1422/1513

-------
           7o   S°ANNIMl,
                                 3/14/1974TO   3/25/1974
                               NET
                              SJOIUM
                            TIME
                          STAP.T/tM.
       ft
       q
      10
2H3.2
112.0
200.9
t.
7
3
352.3
1611/1243
1622/1225
1600/1300
    C(JN«   77
                SPANNING
ro
00
en
               DEF
                                          TIKE
3
4
5
7
H
61 .3
100.1
80.3
56. 0
5H.O
0
0
0
•j
0
112.9
Ub.4
l'JO.5
l'i*.0
110.2
1616/1025
1S52/1044
1529/1157
1541/UOO
1517/1141

-------

      78   SPANNING FROM  3/25/197410   3/26/1*74
ST.«      PFP     C      NET        TIME
                        SODIUM    START/END
                        30.3      1028/1036
4
5
6
7
8
9
10
117.1
80. 9
33.3
116.9
109.4
95.3
82.3
0
0
0
0
0
0
0
37.9
25.8
26.9
37.8
35.8
30.9
26.7
1046/1101
1201/1155
1247/1301
110J/1116
1143/1215
1228/1245
1304/1321
RUN«  79   SPANNING FROM   3/26/1974TO   3/29/1974
ST.*      HEP     C      NET        TIME
                        SOOIUM    START/END
  3       55.6    0     54.0      1034/1125
  4       93.0    0     90.2      1103/1143
  7       66.5    0     64.6      1118/1204

-------
           MO    SPANMNG Ft. CM  3/2o/197<.TO  3/30/1S74
                               SID HIM    STftPT/Fr.D
                        7   2371.0      1157/1230
           HI   SPiNNII-r,
    ST.*
ro
oo
87.6
  MET
 SODIUM
170.9
223.0
                                          TI^t
                                        1247/1237
                                        132b/1211

-------
    PUN«   82    SPANNING  FROM   3/29/1974TU  3/30/1974


    ST.«      DEP      C
      3       44.4     0
      4       134.7     0
      7       63.0     0
NET
SODIUM
13.6
43.4
20.2
TIME
START/END
1127/1020
1146/1155
1206/1208
    RUN*  81   SPANNING FROM   3/30/1974TO  4/ 3/1974


    ST.»      DEP      C       NET        TIME
™                           SODIUM   START/END
oo
?
4
5
7
a
119.4
137.2
77.7
61.4
65.5
0
0
n
0
0
152.3
172.5
98.0
77.2
82.1
1022/1000
1157/1012
1232/1105
1210/1024
1251/1047

-------
     <>IJM«   84    SP.'.NMNC FKQK  4/ 3/1974TC   4/  H/1974


     ?T«*       CEP      C       f.E'        TINE
                                          START/END
       4
       5
       6
       7
       8
       9
      10
243.9
300 . <-.
246.4
311.7
2?0.9
224.8
247.7
177.1
1
1
1
1
1
1
1
1
IUfa.4
479.0
391.8
494.5
351. R
359.0
391.5
281.9
1C03/ 926
1014/ 940
1107/1017
1225/1119
1027/ 950
1050/1032
1239/1106
1214/1130
*°   PUN*  dS    SPANNING  Ff-CP   4/  8/1974TC  4/  9/1974
    ST.*       PFP      C       NET         Tll-F
                               SfiDIUM   STA^T/Ff.T
3
4
5
6
7
8
9
n
f-l. 6
86.6
95.2
273.4
75. S
44. 1
95.7
138.1
0
0
0
6
0
0
C
0
21.0
29.6
32.1
"3.9
25.6
14. c
32.8
47.5
93J/1107
942/1117
1020/1138
-• 1121/1305- .
952/1127
1034/1150
1103/1249
1132/1319

-------
"UN*   8ft    SPANNING FILM   1*1 9/1974TO   4/11/1S74
           DEP
                              MET
            TIMfc
          STA3T/FNC
3
4
5
(,
I
n
9
10
163.0
240.3
156.4
184.9
160.4
204.2
126. C
114.2
0
0
0
0
0
0
0
0
106.2
l!>ti.7
lu?.9
120.3
104.6
134.4
H2.7
73.7
1KN/1200
111^/1212
1140/1258
1307/1354
1129/1223
1151/1310
1251/1405
1322/1343
ro
§   PUN*
            SPANNING  FFG"  4/11/1974TO   4/16/1974
ST.«
               DEP
 NET
SrDIUM
  TIME
START/END
-\
4
5
7
3
?OB.4
'»00 . 5
261.1
)3i.a
387.5
0
D
0
0
0
331.0
637.6
41H.4
528.4
617.3
1202/1106
1214/1134
1300/1211
1225/1146
1312/1235

-------
           a«   SPANMNU FCCM   4/ll/1974T£   4





    ST.#       DEP      C       NET       TU-C

                              SUDMJM   START/END
       6       597.5     b   1147.0

       *>       260.1     1    497.7     1407/1332

      10       556.4     1   1071.3     1345/1404
ro
vo
    "U»i«   09    S°ANNINC  FPCM  4/16/1974Tn   4/17/1974





    ST.#       nEP     C       NET        TIKE
•J
4
5
7
a
1134.3
892.0
863.1
948.2
406.8
1
1
1
1
1
368. b
293.0
2b0.6
311.0
131.9
1106/1129
1136/1213
12U/1235
1149/1,224
1237/1255

-------
            SP ANN INC. FFP^  4/17/147410  4/18/1S74
ST.«       DEP     C      NET        TIME
                                   START/ENTJ
3
4
5
ft
7
R
q
10
230.7
2134.9
IBS. 5
255.3
198.3
134.2
172.0
?29.5
1
1
1
1
1
1
1
1
76.2
69C.8
62.0
83.6
64.1
44.0
56.6
74.8
1131/1216
1215/1230
1237/1315
1352/1424
1226/1240
1256/1332
1334/1*14
1406/143?
PU'I«  91    SPANNING FPOM   4/18/1974TO  4/l9/197
-------
ro
vo
    ST.«       DFP      r       MET        TIME
                              f TP.IM    STAf-T/£f.C
3
4
5
fc
7
8
q
10
11
9^.7
1 3<1.6
       447.7     0    270.0      1406/1120
      7       411.3     ',    244.4      1247/1014
      ri       4-50.5     ••     Ji'2..')      1323/1053
      9       201.5     0     126.4      1418/1132
     10       2K8.1     0     173.9      1357/1112
     II       6<'6.4     i,    367.0

-------
RUN#  94   SPANNING FROM   4/22/1974TO  4/23/1974
ST.»
  3
  4
  5
  6
  7
  8
  9
 10
 11
          OEP
224.7
All. 8
310.4
281.6
361.7
418.7
226.8
258.3
316.4
0
0
0
0
0
0
0
0
0
NFT
SODIUM
73.0
13-*. I
101.0
91.8
117.8
136.6
74.2
84.2
103.1
TIME
START/END
954/1015
1007/1032
1047/1111
1-126/1151
1017/1041
1056/1123
1135/1206
1115/1142
1035/1101
RUN«  95   SPANNING FRCM   4/23/1974JO  4/24/1974
ST.*
 OEP
       NET
      SODIUM
  TIME
START/END
3
4
5
6
7
8
9
10
11
136.3
178.9
97.9
404.0
102.9
98.4
82. 5
206.7
81.9
0
0
0
0
0
0
0
0
0
43.4
57.1
31.2
145. O
32.8
31.4
26.2
65.9
26.2
1019/1011
1035/1030
1114/1110
1154/1448
1045/1039
1126/1121
1209/1158
1145/1140
1104/1102

-------
            SPANMfif. \-^-:H  4/25/1974TO  4/26/1S74


ST.*       DEP      c       NLT        T If11-
                                M    STAH/E.ND
               I-     U    112^      1045/1032
   *>       170. f     (1     53.(      1137/1112
   6       287.'I     0     09.«      122W1151
   7       ?65.ft     0     84.0      1054/1041
   «       247.3     f     77.h      1151/1123
   0       179.7     0     56.0      1236/1201
  10       193.4     0     fcO.fe      1212/1141
  11       203.0     0     64.3      1125/1104
                                          4/26/1S74


ST.«
                                    STAkT/F,\C


          252.5     0     1M.P      1023/102!:
4
S
ft
7
P
9
1C
378. C,
IP?.0
241.0
747.0
^ 711 . 8
.-> 1 1 . 4
174.2
C
C,
0
0
0
0
o
242. 8
116.2
153.7
158.4
172.8
134.7
111.1
1035/1039
1115/1 106
1155/1143
1044/1048
11 26/1 IK,
1200/1151
1147/1135
 11       316.4    0     202.0      1106/1057

-------
   "UN*   9rt    SPANNING FRO  4/28/1974T3  4/29/1974
   ST.*       OEP     C      NET        TIME
                            SODIUM    START/END
             2C9.9    0     66.5      1029/1015
4
5
6
7
8
9
10
249.1
172.1
160.1
207.7
236.3
111.3
127.2
0
0
0
0
0
0
0
79.0
55.0
51.0
65.8
75.4
35.5
40.6
1042/1028
1108/1105
1146/1140
1051/1036
1119/1114
1154/1149
1138/1133
     11       270.3    0     86.2      1102/1057
ro
g
   PUN*   99   SPANNING FB()M  4/29/1974TO  4/30/1974
   ST.*       DEP     C      NET        TIME
                            SODIUM    START/END
3
4
5
6
7
H
9
10
11
160.0
347.6
105.8
127.2
73.5
80. H
62.9
47.8
205.8
0
0
0
0
0
0
0
0
0
51.7
112.3
34.1
41.0
?3.8
26.0
20.3
15.4
66.4
1020/1033
1031/1044
1103/1118
1143/1152
1040/1053
1118/1128
1151/1202
1136/1145
1100/1111

-------
ro
vo
                                                  -j   5/




                  DFP      C        tjLT         Tier
3
4
5
t>
7
8
9
10
11
360. 3
613. b
163.?
.-163. !'•
26. 1
29. 8
27.7
218.0
305. 7
0
n
w
i
0
0
0
0
0
115.0
192.6
M.4
IK.. 2
0.2
9.4
8.7
6H.7
lh.2
I03b/ 1006
1 0-V 7 / 1 0 1 8
1121/10^7
1155/U35
1056/lu2J5
1131/11CM
1205/1 U^
ll5.4
13.4
DO.O
20.7
14.9
7.0
17. C
28. •»
1011/ 10^0
1022/1026
1100/1113
1133/1152
1031/10*7
1111/1123
1146/1201
113J/1144
1051/11(10

-------
         102   SPANNING  FPCM  5/ 2/1974TQ   5/  3/1974
    ST.*      nEP      C       NET        TIME

                             SODIUM   START/EMD
3
4
5
A
7
8
9
10
11
460. ft
SI. 5
27.3
52.5
89.3
25.6
10.5
77.3
63.3
0
0
0
0
0
0
n
0
0
148.6
26.5
8.7
17.0
29.0
8.2
3.4
25.0
20.3
1023/1034
1031/1053
1116/1118
1155/1210
1040/1101
1125/11?8
1204/1220
1146/1200
1109/1111
ro
to


    RUN* 103   SPANNING  FROM   5/ 3/1974TH   i,/  4/1974
    ST.«      DEP     C       MET       TIMF

                             SODIUM   START/END
3
4
5
6
7
8
9
10
11
321.
23.
28.
17.
16.
9.
28.
5.
0.
.1
,0
,3
.3
.1
,3
,3
6
.9
0
0
0
0
0
0
0
0
0
91
6
a
5
4
2
8
1
0
.6
.5
.2
.0
.6
.7
.2
.6
.2
1037/
1056/
1121/
1213/
1103/
1131/
800
817
905
953
828
920
1223/1005
1209/
1113/
943
851

-------
    "UNS 1.14    SPANNING  FkC«  5/  4/1974TO   5/  6/1974


    ST.«       DPP     C       \ET        TIf.E
3
4
5
6
7
8
9
10
11
31. T
46. ",
3-J.3
236. 8
32.2
27.0
25.4
62.7
?9. 0
0
0
C
4
r.
C
0
0
0
22.6
31.?
26.2
158.3
21.4
18.0
16. b
42.2
19.3
80J/10G7
b21/10l9
90-^/1103
95//12C3
83l/l"31
924/1120
lOOb/115C
947/1215
655/1051
r-o
io
    PIKJrf  105    SP'>NrjI\C> f - ^M  b/ 0/1974TC  5/  7/1974
    ST.«       DFP      C       NET        TIM=
                               SC. nill.M    STA--7/[iMfi
      «        14.9     U       4.6      1021/  ...
      5        31.7     0       9.7      1136/1001
      ft        60. I     0      lfi.1      1205/1C40
      7         ?.4     .        i.7      1C34/ 935
      »        10.4     0       b.O      1122/1012
      9        IH.t     0      ll.ii      1152/1355
     l«>       472.6     '!     140.2      121 ?/1031
     11        21.P     (-       o.b      1054/

-------
         106   SPANNI'JC,  Fk3M  5/ 7/1974TO  5/ 0/1974
      3
      4
      5
      6
      7
      a
      9
     10
     11
              DEP
407.3
553.9
218.0
976.0
310.5
797.6
208.2
325.6
NET
SPOIUM
130.8
177.5
69.8
313.0
99.5
255.4
149.5
67.5
1(14.?
TIKE
START/END
916/ 920
928/ 929
1004/1 J04
1043/1044
938/ 939
1015/1015
1057/1035
1033/1051
956/ 955
o
o
         107   SPANNING  FPOM  5/ 9/1974TO   5/10/1974
    ST.HI
      3
      4
      5
      6
      7
      a
      9
     10
     11
OEP

8.3
97.7
7.5
19.0
15.6
10.8
6.0
7.4
739.8
C

0
0
0
0
0
0
0
0
0
NET
SODIUM
2.6
30.7
2.3
6.0
4.9
3.4
1.9
2.3
232.6
TIME
STA*T/END
959/ 933
lOOa/ 941
1041/1015
1121/1101
1016/ 948
1051/1027
1113/1052
1129/1112
1033/1007

-------
      108    SPANNING Fcr,N|   5/IO/1974TO   5/11/1974


 ST.*      OEP      f      l.'CT
                          SODIU'1   STADT/END
1
5
b
7
8
9
10
11
41.3
42.1
n9.u
46.3
58.3
28. U
52.7
P84.6
0
0
0
c
0
0
c
c
12.2
13.0
?1.3
14.2
16.0
9.0
16.0
87.4
936/ 824
1017/ 927
1105/1010
9^>l/ 849
103J/ <*39
1055/1022
1U4/ 959
1010/ 911
      109    SOANNIfJO Fi-CM  5/1 l/l 9 74T 3  5/13/1974

ST.«       otp     r       NUT        TIME
                          SODIUM    STakT/?NP
3
4
5
6
7
0
9
10
11
107.2
71.3
111.7
90.6
93. C
104.?
93.4
88.3
169.; ?
0
0
I;
0
0
o
0
0
0
72.0
47.9
75.4
61.0
65.6
69.7
(.5.8
59.9
113.8
627/1C5C
639/1100
930/1206
1013/1242
S53/1112
942/111)1
1024/1230
1002/1253
914/113H

-------
      110    SPANNING Ff»f>'  5/13/1974TO  5/14/1974
ST.*       OEP     C      NET        TIME
                         SODIUM    START/END
3
4
5
h
7
8
9
10
11
41.4
550.7
109.2
65.5
54.2
56.8
29.9
41.5
381.3
fi
0
0
0
0
0
0
0
0
12.2
163.0
31.7
19.1
16.0
16.8
8.7
12.1
112.6
1052/ 903
1102/ 913
1208/ 955
1244/1038
1115/ 922
1153/1C06
1232/1028
1255/1046
1140/ 948
"UN* 111   SPANNING FKOM  5/14/1974TO   &/15/1974
          DFP      C       NFT        TIME
                         SnniUM    START/END
          62.9     0      21.4      906/1035
4
5
7
8
11
393.2
63.3
100.3
47.9
272.0
0
0
0
0
0
134.2
22.6
35.0
16.8
95.8
916/1051
958/1244
925/1135
1009/1230
951/1215

-------
u>
o
co
          112    SPANNI'JO  FrPM  5/20/1974TC   5/21/IS74
                                           TIMF
3
4
5
(>
7
r,
c
10
11
130.4
411.0
185. «y
IBS. 1
.->56.'V
'«CO.8. 7
PS8.8
0
0
0
u
0
0
0
J
u
41.4
130.7
S8.5
59.3
cU.5
154.3
47.5
49.1
HI. 5
644/ 833
d57/ 847
945/ S20
1«)35/1(I04
90-J/ B58
10CJ/ <<33
1047/1016
102^/ 932
935/ 911
          113   SPifiiJT'O F>..-M   5/2l/l974Trj
    ST.«       DEP      C      .','?'        TIMF
                                        STAPT/EIMU
      3       566.0     2     182.2      H36/  844
      4      1760.9     2     563.2      849/  900
      5       591.3     ^     192.3      923/  944
      6       923.1     2     2<>9.3     1007/1025
      7       792.H     2     255.6      901/  Til
      *       76S.1/     ?     .749.f,      V35/  95(«
      9      1367. <,     2     3t6.1     1019/1037
     10       772.0     2     254.1      935/1015
     U       SH8.1     2     32').U      9U/  933

-------
»UN» 114    SPANNING FROM  5/22/1974TO  5/23/1974
ST.*       DEP      f      NFT        TIME
                         S?PIUM    START/fND
3
4
5
fr
7
8
9
10
11
29.2
135.4
160.3
60. b
53.8
58.8
46.8
126.1
109.0
0
0
0
0
0
0
0
0
0
9.3
43. (J
51.1
19.4
17.1
ia.a
14.8
41.0
34.9
847/ 837
902/ 850
94fa/ 940
1028/1028
913/ 902
958/ 952
1037/1016
1018/1038
<»35/ 923
BUN* 115    SPANNING FRDM  5/23/1974T3  5/24/1974
ST.«       DEP      C      NET        TIME
                         SODIUM    STAkT/FND
3 '
4
5
6
7
8
9
10
11
25.9
35.8
36.3
25.3
35.8
21.0
30.1
35.4
53.9
0
0
0
0
0
0
0
0
0
8.9
12.3
12.3
B.5
12.3
7.1
10.3
11.8
Id. 3
839/1025
852/1035
943/1105
1030/1147
904/1045
955/1118
1018/1155
1040/1137
925/1054

-------
          lift   SPANNING FfcLM   5/24/1974TC   «)/27/1974
CO
o
U1
    ST.#       HEO      f       flET        TIMF
                              SODIUM    STAiT/CNO
T
4
5
6
7
H
9
10
11
61.0
36. «.
135.4
?5.6
52. }
77.6
45.0
ld.1
30.6
0
.1
7
0
0
0
0
0
0
57.0
34.5
127.0
24.0
46.6
72.8
42.0
17.3
6/ 914
     UM«  117   SPAN'fJl'fe  Ft-M  5/27/1974TO  5/28/1974
    ST.«       DFP      C       NET
                              SODIUM    STA=T/LM,
      3       245.3     0      78.6       «32/ P33
      *        11.9     0       3.8       845/ U46
      5        36. G     0      11.5       92«I/ 925
      7        18.7     r,       6.C       B51/ 855
      8        30.0     0       9.5
      «'        10.0     0       3.2
     1°        29.5     i)       9.3      1M27/10U3
     11        U.4     0       3.6       9lh/ 913

-------
°UM* HB   SPAMYING FROM   5/28/1974TO  5/29/1*74
ST.*      PEP     C      NET        TIME
                        SODIUM    START/END
  3      660.4
  4      171.9
  5      150.2
  6      201.2
  7      175.5

  9      180.8
 10      186.1
 11      349.3
2
2
2
2
2
2
2
2
2
210.6
55.0
48.2
64.3
56.2
149.0
57.7
59.5
112.1
B36/ 830
846/ 847
V27/ 930
1017/1014
858/ 856
938/ 941
1028/1024
lOOb/1004
916/ 920
PUN* 119   SPANNING  FPOM   5/29/1974TO  5/30/1974
ST.*      DEP      C       NET        TIME
                         SODIUM   START/END
  3       36.3     0      11.5       832/ 820
  4       98.8     0      31.3       850/ 834
  5       64.7     P      ?0.5       932/ 918
  6       20.3     0       6.4      1016/1000
  7        3.7     0       1.2       901/ 846
  H        4.7     0       1.5       944/ 930
  9        9.5     0       3.0      1026/1010
  10        6.3     0       2.0      10J6/ 950
  11       57.2     0      18.1       923/ 907

-------
OJ
o
          12)    SPAN'H IG  (-•-•-»  5/30/1974T3   5/31/1974
    CT.#       OEP     C       MET        TIC.fc

                                         STAf-T/Ef.'P
3
4
5
6
7
8
9
10
11
191.2
114.3
143.1
68. 5
62.1
25.3
15.5
21. C
31.5
ii
0
0
0
0
n
0
0
o
61.3
3to.G
46.0
?2.0
20.0
ri.l
5.0
6.£J
10. 1
823/ 825
H33/ 843
92 I/ 925
1002/1007
648/ 854
933/ 937
1013/1018
9:>2/ 956
910/ 913
    MJN*  121    SPANNING FI--'.'-<  5/31/1974TQ  <,/  3/L074
    ST.«       DEP      C       NCT        Tlf.F

                               SJOIUM    START Xf.ND
               45.3     C      44.0       620/ h27
4
5
A
7
8
Io3.2
49.2
46. 2
120.7
48. C
0
0
0
(»
0
156.5
47.2
44.3
115.7
46.0
H45/ H3B
9?8/ 924
1 J1G/1CC5
856/ fa49
940/ 934
      *        67.1     li      59.6      1021/1017
     10       148.3     6     It2.2      1000/ 955
     11        73.9     0      70.9       yj.6/ 912

-------
 "UM«  122    SPANNING FROM  6/ 3/1974TO   6/  4/1974
ST.*
   3
   4
   5
   6
   7
   a
   9
 10
 11
           HEP
 229.2
 364.9
 422.2
 204.1
 317.6
  85.6
 151.3
 234.6
 194.2
NET
snniuM
73.3
117.5
135.0
65.4
97.6
27.4
48.2
74.9
62.2
TIME
START/END
830/ 828
B41/ 84V
927/ 925
1003/1004
952/ 854
937/ 936
1020/1013
958/ 955
915/ 915
RUN* 123   SPANNING FROM   t>/  4/1974TO  6/ 5/1974
ST.«
  3
  4
  5
  6
  7
  8
  9
 10
 11
          OEP
269.0
159.0
152.0
285.5
107.0
129.4
166.0
198.?
139.1
NET
SODIUM
85.0
50.2
47.7
89.5
J3.8
40.6
52.0
62.2
43.6
TIME
START/END
831/
846/
927/
1007/
857/
939/
1016/
957/
917/
812
826
858
937
835
910
945
928
847

-------
    FUN«
    ST.*
 SPANNING





HEP     C
                                6/ 5/1974T3  6/
                              NET

                             S10IUM
                          TIME
                        START/FNP
3
*
5
6
7
R
9
10
11
1 75.8
171.1
142. 2
sOl .*
141.1
^17. 1
197."
185.6
226.7
L 57.0
L 55.4
46.0
65.3
4b.7
70.2
64.3
60.1
73.4
815/ 833
828X 845
90 J/ 915
939/ 957
837/ 655
912/ 926
948/1009
931/ 947
850/ VOt
to
o
vo
    ST.«
         125    SPftMMNG
              OEP
                               6/
                              NET
                                        TIMF

                                      STAHT/END
3
4
5
6
7
8
9
10
11
29.?
82.9
81. H
173.2
60.3
250.0
380.0
47.2
56.9
0
G
0
0
L)
0
c
0
0
9.3
26.3
26.0
b5.0
19.1
79.5
120.4
15.0
ia.i
836/
847/
•U7/
959/
«57/
928/
1011/
94
-------
HUNK  126    SPANNING FhOM  6/ 7/1974TO  6/  8/1974
ST.*
  5
  6
 10
 11
           DEP
 44.9
112.2
 56.1
 69.5
0
0
0
0
NET
SODIUM
14.5
36.2
18.1
22.5
TIME
START/tND
909/ 926
953/1003
941/ 953
901/ 917
BUN* 127   SPANNING  FROM   &/  8/1974TO  6/10/1974
ST.*
 OEP
                          NET
                         SOOIUM
                          TIME
                        START/END
3
4
5
6
7
a
i
10
11
93.8
29A.O
74.8
at. 7
1Q3.6
94.1
31.7
731.6
133.5
0
0
0
0
0
0
0
0
0
33.8
164.0
47.8
43.4
66.4
63.4
37.0
47.2
85.3
835/ 837
990/ 891
928/ 922
1006/1011
S59/ 900
940/ 938
1018/1020
956/1003
920/ 913

-------
RUN*  12B   SPANNING  FtOM  6/U/1974TD  6/12/1974


ST.«       HEP      C       NET        TINF
                          S'''OHI»    START/fNC
3
4
5
f>
7
R
9
10
11
*j9.2

-------
PUN»  13(1    SPANNING  FRO*   6/18/1974TO  6/19/1974
ST.«
   3
   4
   5
   6
   7
   «
   q
 10
 11
Off

66.9
99.3
43.7
1529.9
39.4
37.6
16.0
81.7
34.1
C

0
0
0
0
0
0
0
0
0
NET
SJOIIJM
21.4
31.7
14.0
486.8
12.6
12.0
5.1
27.4
10.9
TIME
START/END
S03/ 811
826/ 822
84 7/ 845
924/ 915
832 / 829
855/ 852
9)2/ 923
912/ 909
841/ B37
HUN« 131   SPANNING FROM  6/19/1974TO   6/20/1974
          DEP
                         NET
                        SODIUM
  TIME
START/END
3
4
5
6
7
8
9
10
11
25.6
133.0
29.2
44.7
19.4
27.2
1.9
16.5
34.5
0
O
0
0
0
0
0
a
0
8.2
42.4
9.1
14.4
6.2
8.8
0.6
5.3
11.0
013/ 806
824/ 819
84T/ 850
917/ 923
831/ 830
B54/ 859
92 3/ 931
911/ 919
840/ 841

-------
      13?   SP&NM'.T, f-FC.l  6/20/1974T1  b/2l/1974
ST.'/       nep      r       r>fcT        TIM-
                          SODIUM    START/CND
3
4
5
6
7
8
9
1C
11
92.3
138.3
139.6
242.3
134.2
206.2
302.0
66. 2
190.')
I.
0
0
0
0
1
1
0
0
31. P
47.5
H7.8
f'3.0
4o .0
70.6
103.5
29.6
65.4
808/ 958
022/1007
852/103?
920/1107
834/1015
902/1042
933/1115
917/1100
844/1025
  NW  133    SPANNING  FFCM  6/2 1/1 47t7n   6/22/1974
ST.«       D*=P     f       NET        TIME
                          S'JOIU'-i   STAFT/END
3
4
5
6
7
8
9
10
11
14.6
23.3
ia.o
13.2
12.4
8.7
12.4
3.6
4.6
C
0
0
0
n
0
0
0
0
t.3
6.9
5.4
4.0
3. 1
2.6
3.6
1. 1
I .4
1000/ R04
1009/ 820
1035/ 902
1110/ 946
101// U32
1043/ 915
1117/1000
1102/ «)3H
1027/ 651

-------
          134    SPANNING FPHM  6/22/1974TO   6/25/197*


    ST.«       PEP      c      NET        TIME
                             S1DIUM    START/END
3
4
5
6
7
9
10
11
303.6
389.6
166.8
272.0
316.5
219.1
196.6
644.5
1
1
1
1
1
1
1
1
291.9
376.8
160.4
261.6
305.9
210.6
189.0
619.4
806/ 840
822/ 851
905/ 911
951/ 9!>6
834/ 900
1302/1004
940/ 945
853/ 055
co

*   "UN*  135   SPANNING FRC.M  6/25/1974TQ  6/26/1974


    ST.*       DEP     C      NET        TIME
                            SnniUM    START/END


      3      1628.9    1    524.8       842/  851
      *       663.5    1    213.4       854/  900
      '       961.5    1    309.2       903/  909

-------
"UN*  136   SPANNI JG F-C1   6/2*/1974TO   t/27/1974


ST.«       I5EF      C      NET        TIME
                          SOOIUM   START/fcNO
5
6
rt
9
10
704.4
948. 6
702.6
538.9
1044.1
1
1
1
1
1
449.1
602. 9
447.6
342.5
6b4.5
914/ 901
959/ 937
926/ 911
1007/ 945
94d/ 930
      137   SPiNfJI\G  f-'^CM  6/26/1974TT  6/27/1974


ST.#       D^P     C       'J = T        TUE
                                    START/rND
          660.9    0     207. b       903/ 835
          t>48.6    0     «>J3.H       912/ 845

-------
         138   SPANNING FROM  6/26/1974TO  6/28/1974
    ST.*      DEP      C       NET       TIME
                             S1DIUM   START/END
             407.6     0    260.2      354/ 845
    PUN« 139   SPANNING  FHCM  6/27/197*10  6/28/1974
    ST.f      DEP      C       NET
                             SODIUM   START/END
co
i-*
CT>
4
5
6
7
H
1
10
11
91.8
91.1
70.7
97.6
87.6
163.2
90.7
85.1
0
0
0
0
0
0
0
0
29.2
29.2
22.6
31.0
38.0
S2.1
29.0
27.2
838/
903/
9407
847/
913/
947/
932/
857/
826
906
937
833
913
943
930
897

-------
      14.0    SPtNNIVK, F?C^  6/26/LS74T')  6/29/197',
            HEP      C       'JtlT         TICE
                                      START/FNf
4
•5
fr
7
8
9
10
11
29.2
14.4
73.0
09.1
27.4
47.0
54.8
43.5
!•
C
<*
0
0
o
0
c
9.2
11. C
23. S(
31. b
3.S
15.3
17.6
14.4
02 d/ 610
909/ SOO
940/ 954
638/ 629
915/ 914
946/100?
932/ 939
80J/ 845
      141    SPANNING  PF'.T'   7/ 1/1974T3   7/ 2/1974
ST.*       DEP      C        NET        TIME
                           S'lOIIJM    ST/IPT/FMD
3
4
5
6
7
fl
q
10
11
3f-7.r
67R.O
442. S
375.0
499.0
5S7.3
356.9
410. 7
544.4
1
1
1
I
1
1
1
1
1
99.9
179.9
I2b.3
107.0
14J.5
160.6
1 0 I . H
11 7.0
157.3
1 152/
1102/
1120/
1215/
lllu/
1136/
1224/
1207/
112J/
blfa
fc30
904
'J38
b43
S12
947
928
657

-------
"UN*
  SPANNING
                               7/ 2/1974TO  7/  3/197*
    ST.*
      3
      4
      5
      6
      7
      8
      S
     10
     11
 PEP
153.0
331.2
216.5
240.3
259.4
289.0
701.1
221.3
247.1
                  0
                  0
                  0
                  0
                  0
                  0
                  7
                  0
                  0
NET
SODIUM
48.8
105.2
68.7
76.4
82.2
91.9
223.4
70.5
78.2
TIME
START/END
tU8/ 811
834 / 822
906/ 853
941/ 931
84o / 831
914/ 904
9497 942
930/ 922
859/ 842
co
i—•
00
    RUN* 143   SPANNING FROM   7/  3/1974TO  7/ 6/1974
    ST.*
 HEP
                         NET
                        SODIUM
                                        TIME
                                      START/END
3
4
5
6
7
a
9
10
11
516.7
556.7
300.6
334.1
337.8
366.5
367.2
279.0
419.6
1
1
1
1
1
1
1
1
1
501.0
540.0
292.5
325.7
328.0
356.9
357.7
271.9
407.6
813/ 853
824/ 906
855/ 950
933/1038
B33/ 920
906/1005
944/1045
924/1026
846/ 934

-------
"UN* 144    SPAM, IMC, n T!   7/ 6/l-.)7*Tj  7/  b/1974


ST.#       I-CP      C
   5        9H.'j     r
   ft       121.3     f
   8       110.2     0
   13        h2.4     0
  10       1C9.9     0
  II       139.5     0
'IFT
SJOIU*
f.2.3
76.9
M.O
39.5
09. d
120.7
TICE
ST4x7 /END
c»54/ 931
1041/1012
1007/ 944
1056/IC24
1020/1003
933/ 1,22
      145    SPANNING  Fmy   7/  8/1974T3   7/


ST.*       HEP      f       ;jcT        TIME
3
4
S
6
7
R
9
10
11
50.6
7fa5.f,
88. 4
91.6
62. I
57.4
30.7
47.3
3? 7. H
C
H
0
C
l>
C
u
C
0
15.9
P39.3
28. 6
23.2
19.4
17. rt
*.f
14.6
102.1
S46/
35--J/
634/
lOla/
90J/
946 /
1026/
IOOOX
924/
ft 17
82t
849
922
634
900
926
*15
f.44

-------
co
ro
    PUN*  146    SPANNING FROM   II  9/1974TC1  7/10/1974
    ST.*       DEP     C      NET        TIME
                             SOOIUK    START/END
      3        72.8
      4       449.1
      5        77.9
      6        53.0

      8        78.1
      9        48.3
     10        51.6
     U       145.7    0     46.7       046/ 847
0
0
0
0
0
n
0
0
23.3
143.5
25.0
17.0
39.8
25.0
15.5
16.6
819/
823/
852/
924/
836/
902/
930/
917/
815
825
853
926
837
902
934
920
    PUN* 147    SPANNING FROM  7/10/1974TO  7/11/1974
    ST.*      DEP      C       MET        TIME
                             SODIUM    STftRT/tND
3
4
5
6
7
R
9
10
11
180.8
448.6
85.0
47.2
64.5
62.0
39.3
51.8
141.9
0
0
0
0
0
0
0
0
0
57.5
143.0
27.2
15.2
20.5
19.9
12.6
16.6
45.2
817/ 808
827/ 820
855/ 854
928/ 931
83V/ 829
905/ 905
937X 938
922/ 922
849 / 842

-------
          148    SPAr,MN(,  ftf.'l   7/U/19747-'  7/12/1974
to
ro
                OEP     (       \=T         TIMfc

                                          £T^^T/^ND
<
4
b
6
7
H
«i
10
11
915.0
664. 7
371.5
439.1
332.7
839.6
359.8
455.0
445.2
1
I
I
1
1
1
I
1
1
2°3 .5
P12.H
113.2
139.4
106.3
267.2
114.2
144.8
142.0
Rll/
622/
057/
933/
831/
9D7/
941/
92i>/
845/
812
822
848
921
828
658
928
914
C4C
     UMi  1^4    SPANNING  FFl.M   7/l2/1974T0   7/13/1974
                                N£T

                               STOIU"   STAkl/FNt)
3
4
5
6
7
H
O
in
11
244.5
22.1
14.9
14.4
4.5
22.2
11.4
Id. 3
25.3
0
0
0
0
li
0
0
1)
0
79.4
7.2
4.9
4.6
1.5
7.3
3.fi
6.2
ri.3
Rib/ E3C
S24/ 851
850/ S30
923/ 919
830/ 905
900/ 943
93J/1031
916/1J05
842/ 920

-------
to
ro
ro
    PUN* 150   SPANMMG FPOM   7/13/1974TO  7/15/1974
    ST.*      DEP     C      MET        TIHF

                            SODIUM    START/END
3
4
5
7
8
11
202.2
179.1
161.0
168.1
169.7
136.3
1
1
1
1
1
1
133.0
117.7
105.7
110.4
111.3
89.5
842/1000
856/1012
932/1044
908/1023
946/1055
922/1035
    PUN* 151   SPANNING FROM  7/15/1974TO   7/16/1974
    ST.*      HEP     C      NET        TIME

                            SODIUM    START/END
3
4
5
7
8
11
48.7
199.8
27.4
71.9
41.0
54.3
0
0
0
0
0
0
14.1
59.7
8.2
21.5
12.3
16.2
1002/ 743
1015/ 838
1046/ 911
1025/ 848
1057/ 925
1037/ 859

-------
co
ro
to
     DNtf  15?    SPANNING TFCj*   7/16/1974TO   II IB/1974





    =T.#       PEP      C      NET        TIME
3
4
5
6
7
fl
q
10
11
57.5
84. 8
50. -V
40.9
29.5
27.5
35.7
34.8
34.6
C
0
0
0
0
0
n
0
0
37.2
54.0
32.0
25.8
18. B
17.4
22.5
22.0
22.0
74W
840/
91W
1004/
850/
927/
1016/
953/
902 /
B12
823
f»46
919
831
856
927
912
840
       W  153    SPANNIfJt FPCM   7/ld/1974TO   7/19/1974
    ST.*       r.EP      L       M^T        TlNfc

                              SJDIUN1   STAPT/END
3
. 1
85.9
57.3
90.9
114.1
0
0
0
0
0
n
r
0
0
19.?
67.1
28.8
22.5
24.5
27.9
1C. 6
29.o
36.8
815/
826/
H4d/
923/
833/
85S/
929/
914/
fa42/
820
R32
913
541
f42
921
Si 50
936
H52

-------
                APPENDIX E



DRIFT EMISSION DATA FOR THE COOLING TOWER
                     324

-------
Figure 24.   Cooling tower layout  illustrating  diameter
            traverses.   Dimensions  in  meters.
                                   325

-------
FORMAT FOR DATA PRESENTATION - COOLING TOWER DRIFT EMISSION DATA
Note:  For a more detailed description of the data format, see text
       Section VII "Data Format".
Table Headings

DIAMETER
POSITION
DATE

TIME FRAME
Refers to the measurement traverse during which
the data were taken.  There were three traverses
of the exit plane from SW to NE, hence all data
sheets for this diameter will be labeled SW-NE 1,
2 or 3.  Diameters SW-NE 1 and 2 were traversed
during the winter test phase and diameter SW-NE 3
was done during the summer. Two traverses of the
NW-SE diameter were made during the winter test,
such that all data sheets for this diameter will
be labeled NW-SE 1 or 2.

Gives the location of the instrument package
relative to the stack rim.  Position 0 is located
directly over the rim and succeeding positions are
located at 1 foot (.3m) intervals along the dia-
meter traverse.

Date on which the data were acquired.

Time interval for data acquisition period.
Column Headings

I

D(LOW)

D(HI)

DEL D



D(CEN)

P(D)
Integer number for droplet size ranges.

The lower diameter of size range I, pm.

The upper diameter of size range I, urn.

The width of the size range I, as determined by
the difference between diameter D(HI) and D(LOW),
yltl.

Center diameter of droplet size range I, urn.

Particle density distribution; the number of
droplets of diameter D within unit size range
and unit volume of air, number/urn-m3.
                                      326

-------
 DEL X/DEL D
 DEL X
 DEL FLUX
 PARTICLE VEL
 DRIFT  FLUX


 DRIFT  MASS EMIS





 MASS MEDIAN DIAM
 Drift mass density distribution; the mass of
 droplets of diameter D within unit size range and
 unit volume of air, ug/gm-m3.

 Drift mass concentration; the drift mass due to
 droplets within a size range I per unit volume
 of air, ug/m3.

 Drift mass flux; the drift mass due to droplets
 within size range I which passes through a unit
 area per unit time, pg/m2-s.

 The vertical  component of the droplet velocity of
 a droplet with  diameter D(CEN)  determined by the
 difference between the vertical  component of the
 time mean air updraft  velocity  and the terminal
 velocity of a droplet  of diameter D(CEN),  m/s.

 Drift mass  concentration;  mass  of droplets  of all
 size ranges  per unit volume  of  air;  sum of all
 DEL X,  pg/m3.

 Total  drift mass  flux;  mass  flux of  all  droplets
 of all  size  ranges; sum of all  DEL  FLUX,  ug/m2.s.

 Total  rate of drift mass emission  for the given
 position,  determined by  the  DRIFT  FLUX multiplied
 by  the  half-annulus area,  AA, associated with that
 position,- ug/s.

 The  droplet diameter at which half of the emitted
 mass  is  due to  smaller droplets  and half due to
 larger  droplets, urn.
Tower Conditions
Ti
Time average updraft velocity of the cooling tower
exiting air, m/s.

Temperature of the exiting sir, °C.

Temperature of the hot water in the inlet basins,
 I* •
                        Temperature of the cold water at the discharge
                        pipe, °C.
                                      327

-------
Range


Approach



Heat Load
The difference between the inlet and outjet water
temperatures, T^ - T0, °C.

The difference between the temperature of the
water leaving the cooling tower and the wet bulb
temperature of the air; T0 - Twet, °C.
The rate at which heat is removed from the cir-
culating water, megawatts.
Ambient Conditions

wind Speed

Wind Direction
Mind speed in km/hr.

Direction from which wind is blowing.

Wet and dry bulb temperatures of the ambient air,
Note:  Tabular data are presented in E format which designates  scientific
notation.  Example:  5E 01 = 5 x 10'
                                       328

-------
                              o  VELOCITY FROM TRAVERSE,  2/20/74
                                 WIND:   13.2 km/hr FROM THE  EAST
                                 Twet/Tdry:   22.5°C/26.0°C

                              x  MEASURED VELOCITY FROM FIRST  DIAMETER,
                                 2/23-26/74

                             o  MEASURED VELOCITY FROM SECOND DIAMETER,
                                 3/9-12/74
SW RIM
7    9    11   13    15    17   19   21

   POSITION AND DISTANCE, feet
                                                                                NE RIM
                     Figure  25.  Velocity profile, SW-NE diameter.

-------
00
CJ
o
o  33
O

a  32


I  31
(jj  «3J
Q_
5
*-  30


   16


   14


^ 12

   10


     8
       _
      3
      LU
      t   6
 o
 §i   4


     2

     0
 SW RIM
                                 o  VELOCITY
                                 O  TEMPERATURE

                                 DATE, TIME:  2/21/74, 1830-1900
                                 WIND:  12-20 km/hr FROM THE SE TO  SSE
                                 WTdry:  22.8"C/29.8"C
                                         FLUCTUATION
             7    9    11   13   15   17    19   21   23   2

                 POSITION AND DISTANCE, feet

Figure 26.   Velocity and temperature profiles, SW-NE diameter
                                                                                    27 V, NE  RIM

-------
          34
oo
co
      o
      o
111   «J«J






I   32
UJ
0.


UJ   01
i-   31







    16






    14






^   12
     G  10
     o
     2
     o
     Q.
     8




     6




     4




     2
    SW RIM '/.
                                  o   VELOCITY

                                  O   TEMPERATURE



                                  DATE,  TIME:   2/22/74,  1210-1242

                                  WIND:   20 km/hr FROM THE SOUTH

                                  Twet/Tdry:   23.2°C/27.0°C
                                            FLUCTUATION
                           J	I	I	I     I     i
                                                               "2022i
                                                                22    24    26
                    Figure 27.
 8   10   12    14   16   18



     POSITION AND DISTANCE, feet



Velocity and temperature profiles,  SW-NE  diameter.
                                                                               ^ NE RIM

-------
                                             Table 6
                            PER CENT COUNTS  IN EACH VELOCITY RANGE  FOR
                                           EACH POSITION
                                          SU-NE DIAMETER
                                 MEASURED ON 3/8/74,  1400  - 1515
    16
    15
    14
    13
    12
    11
    10
X  9
E.  8
UJ
I  7,
cr
t  6,
i  5
LU
    4
    3.
    2.
    1
10-17 05
14-16.10
19-15.14
24-14.19
29-13.24
33-12.29
38-11.33
43-10.38
48- 9.43
52- 8.48
57- 7 52
62- 6.57
67- 5 62
71- 4 67
76- 3 71
81- 2 76
86- 1.81
868below
              04    08   .07
       .08   .38   .16   .20
       .10  1 68  1 89  1 57   .02
  32   .26  8.96  7.20  7.90   .36    02
1 94  3 ™  23 4  20 5  17.0  2.16   .22
9.42  14.2  3.03  22.4  18 3  8.65  1.16
26.3  37.7  23 1  17 1  20 4  16.9  4 51    34
293  29.3  846  104  14.3  15.1  9.65  1.88
23.3  12.9  240  8.23  8.76  13.3  13.1  3.47   .36
8.18  2.26  1.38  6.44  4.54  10.9  13.3  7 84  1 54
1 22    28        3.80  2.84  9.23  14 1  10.9  4.11   .04    18
                    91  1 71  7 33  13 6  11 3  6 86    52    22
                   .40   .78  5.89  9.67  9.84  10 0    84    32
                    36  1 01  4 35  8 40  12 6  10.9  3.05  1 02
                   .08   .60  3 85  5 85  15.2  12 5  5 99    76    68
                         .03  1 08  4 41  10 6  12 7  113  3 49  2 88
                                84  1 72  7 49  20 1  13 3  5 29  8 16  1 68
                          04    04    18  8 56  21 0  65 0  88 7  88 3  98 3
       1
                                           7
                                                                              10    11
                                                                            POSITION
                                                                         12
                                332

-------
            NOTE-  Pulse Height Analyzer did not
            accept negative voltages   Lowest
            velocity range includes,  therefore,
            all negative updraft velocities
                                                                    .80

                                                             .16  3.84

                                                            5.07  28.9  1 04

                                                            26.0  43.0  7.18

                                                      4.30  30.7  18?6  21 5    26   .74

                                                1 70  21 1  18.0  4.54  26.7  6.56  1.78

                                            20  7 08  28 9  7 92    .94  21.6  21.3  5.93

                                          2.42  16.3  19.5  4.43    .02  11.8  24.8  17.2

                                      04  7.54  19.6  10 7  3 59        5.60  22.8  27.9

                                    1.20  13.7  18 1  7.68  2.31        2 56  17.1  25  4

                                44  3.21  20.4  14 8  3.42  1 10        1.30  5.30  13.9

                        002  192  597  25.9  124  1.72    59          12  1.18  5.65

                    06  1.52  7 71  13 3  18.6  5.80  1.28    16               .50  1 42

                  2.06  9 50  18 9  27.9  7 33  2 92   .66                      24

  30              9.92  25 5  28.7  24 4  2 65    98    32

 .84  1.30  284  350  358  279  19.3  1.23    26    44

98.9  98 7  97 2  52 9  27 6  14.4  4  67          04    02



 13    14    15    16    17    18    19    20     21     22     23    24     25     26    27
                                           333

-------
                   Table 7

PER CENT COUNTS IN EACH VELOCITY  RANGE  FOR
              EACH POSITION

             SU-NE DIAMETER
     MEASURED ON 3/9/74, 1545-1650



18
17
16
00 "»
05-18
10-17
15.14-16

14
19-15
13.24-14
12.29-13
11.33-12
£
^=
UJ
a
I
h-
8
UJ







10

9

8
7.

6
5.
4.
3
2
1.

•
38-11

43-10

48- 9
52- 8

57- 7
62- 6
67- 5
71- 4
76- 3
81- 2
86- 1
.95
00
05
.10
.14
.19
24
.29
33

38

43
48

52
57
62
67
71
76
81
86&below

.06
.12
12
1.40
08 5 34
.86 14 5
1.78 9.15 29.6
13.0 26 9 26 6

23 4 24 4 10 9

34 1 24 3 8 78
15 5 9 78 1.76

8 75 3 40 51
3 14 1 04 28
26 .10
06 02
.02






58
5 80
20.1
24.7
29.9
12.2

3 48

2.36
64

18
02









.30
3 5
12 7
18.6
28.4
17.4

8 24

6 32
2 50

1 64
48
04










1
7
day



.22
.98
24
15 6
18 9


13.0


13 9
9

7
4
3
2
1



.56

90
73
19
39
26
01


and





02
18
74

1 70

4 79
8 69

12 5
16 9
15 4
17 5
13 3
7.01
1 42

time. Figure 28









08

40
1.G4

3 49 04
6 57 1 78
10 2 2 83 16
13 5 6 10 1 64 08
20 5 11 0 3 00 1 12
19 9 17 8 7 97 30 1 96 02
15 6 21 8 14 3 66 9.69 1 36
8 00 38 7 72 9 99 0 87 2 98 6
                                   10     11
12
       334

-------
           NOTE:   Pulse Height Analyzer did not
           accept negative voltages.   Lowest
           velocity range includes,  therefore,
           all  negative updraft velocities.
                                                              .80   1.34

                                                        .26  5.12   8.05    .82   1.02

                                                  .06  2 2J  16.1   20.8  5.36   '0.0

                                            .02   1.18  10.4  19 8   20.4  12.7   5.48

                                            .24   12.2  29 6  31.5   31.4  33 9   25.1

                                          1.24   21.0  26.6  14.9   10.1  22.1   26 9

                                          3.78   16.9  12.5  5 52   4.17  10 7   15.2

                                      04  8.23   21 8  12 1  4 34   2.84  9.86   17 5   .14

                                    1.00  14 1   12 9  3 93    .88    58  3 16  5.48  1.22

                                    3.64  14.7   780  1.71    .26   .08  1.16  2.42  3.08

                                46  7.89  18.9  4.38   .62    .28         .22   .78  7.53

                              2.80  12.0  15.1   1 28    06    .J2          02    06  16 9

                         .10  10.0  17 7  12 4    38          08                    32 0

                        2.97  17 8  21 6  7  97    12          06                    29 1

 •46          14  1.10  5.77  218  180  2.84                02                    946

2 27  1 78  2 80  3 21  15 1  16 3  12.1    48                                        70

97 3  98 2  97.1  95 7  76 0   .31  5  10    02
13 14 15 16 17
POSITION
18 19 20 21 22 23 24 25 26 27
                                           335

-------
OJ
CO
01
o 35

ui'34
at


133
UJ
Q.

£ 32



   16


   14



 «, 12






I  8
UJ


t  6

o

=  4



    2


    0


SW RIM
                              o  VELOCITY
                              O  TEMPERATURE


                                 DATE, TIME:  3/9/74, 1546-1615
                                 WIND:  17.7 km/hr FROM THE EAST
                                             25.00C/29.4°C
                                         FLUCTUATION
 9    11   13   15   17    19   21


POSITION AND DISTANCE, feet
                                                                         23    25
                                                                                         NE RIM
                   Figure 28.  Velocity and temperature profiles, SW-NE  diameter.
                               (see velocity distribution, Table 7.)

-------
GO
OJ
DIAMETER;   SU-NF
POSITION:
DATE:    2/23/74
                                                                            TIME FRAME:  1330-1430
     NOTE:   Concurrent IK Data Point:   Position 0.33
     PILLS  AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA.  TURKEY POINT
I

1
2
?
4
5
6
7
8
9
10
11
12
13
14
D(LGW)
(UMI
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
Dim i

-------
DIAMETER;    SW-NE  1
POSITION:
DATE;    2/23/74
TIME FRA«;  1K15-175B
NOTE:   Concurrent IK Data  Point:  Position 1.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION  DATA. TURKEY POINT












GJ
00


I

1
2
3
4
5
6
7
a
9
10
11
12
13
14
DILOW)
(UMI
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
DIHII
IUM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
(UMI
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
OICENI
(UN)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
PIO)
(•/UM-M3)
7. 100E 03
1.130E 03
1.400E 02
2.500E 01
7.900E 00
2.200E 00
5.000E-01
1.800E-01
8.900E-02
5.000E-02
3.500E-02
2.200E-02
1.400E-02
l.OOOE-02
DEL X/OEL D
IUG/UH-M3)
2.974E
3.787E
2.013E
1. 122E
9.088E
6. 174E
2.982E
1.960E
l.ftOOE
1.331E
1.407E
1.235E
1.061E
01
01
01
01
00
00
00
00
00
00
00
00
00
9.994E-01
DEL X
IUG/N3I
5.948E
7. 573E
6.039E
3.367E
3.635E
3.087E
1.491E
9.800E
7.999E
6.903E
7.034E
6. 173E
5.304E
4.977E
02
02
02
02
02
02
02
01
01
01
01
01
01
01
DEL FLUX
IUG/M2-SEC)
6.952E
8.824E
A.994E
3.859E
4. 107E
3.414E
1.408E
1.031E
8.203E
6.909E
6.875E
5.897E
4.956E
4.553E
03
03
03
03
03
03
03
03
02
02
02
02
02
02
PARTICLE VEL
IN/SEC)
1.169E 01
1.165E 01
1.158E 01
1.146E 01
1.130E 01
1.106E 01
1.079E 01
1.052E 01
1.026E 01
1.0011 01
9.774E 00
9.5S4E 00
9. 3491 00
9.1481 00
                            X
                         IUG/M3I

                        3.596E  03
            DRIFT  FLUX   DRIFT  MASS ENIS.
            (UG/M2-SEC)     IUG/SEC1
                            MASS MEDIAN DIAM.
                                  (UM)
             4.053E 04
      1.390E 05
                                                         72
TOWER CONDITIONS;  vu =11.7  m/S   ;  Ta = 33.50C  ;  ^=35.9 °C   ;  T0 >30-6  «c

                  Range: 5.3  °C  ;  Approach: 10.5   °C   ;  Heat Load:  ~27.9 MM
AMBIENT CONDITIONS;  Wind Speed:  9.5  Km/hr  ;  Wind Direction:  NE    ;  Twet/Tdry - 20.1/23.5 °C

-------
CO
CO
vo
        DIAMETER:   SW-NE 1
                           POSITION:
                                                        DATE:   2/23/74
                TIME FRAME; 1820-1920
       NOTE:  Concurrent IK Data  Point:  Position 2.33


       PILLS AND SENSITIVE  PAPER  PARTICLE DISTRIBUTION DATA.  TURKEY POINT
I

1
2
3
4
5
6
7
8
9
10
11
12
13
14
DCLOWI
IUM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
D(Hl I
IUM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
55U.
600.
DEL 0
IUM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
5U.
50.
D(CEN)
c

-------
DIAMETER:
SW-NE  1
             POSITION;
DATE:    2/25/74
TIME FRAME:  "20-1220
NOTE:  Concurrent IK Data Point:  Position  3.33
PILLS AMD SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I

1
2
3
4
5
6
7
8
9
10
11
12
13
14
O(LOW)
IUM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
OIHII
(UNI
30.
90.
80.
110.
190.
200.
290.
300.
390.
400.
490.
900.
990.
600.
DEL 0
IUMI
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
OICENI
(UNI
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
925.
575.
PJDI
I0/UH-M3I
7.900E 03
1.400E 03
1.800E 02
2.300E 01
5.600E 00
i.aooE oo
5.600E-01
2.500E-01
1.600E-01
l.OOOE-01
6.300E-02
4.000E-02
2.800E-02
1.800E-02
DEL X/OEL D
IUG/UM-M3)
3.309E
4.691E
2.988E
1.297E
6.442E
9.051E
3. 340E
2.722E
2. 876E
2.761E
2.932E
2.245E
2.121E
1.792E
01
01
01
01
00
00
00
oo
00
00
00
00
00
00
DEL X
(UC/N3)
6.618E
9.383E
7.765E
3.771E
2.577E
2.926E
1.670E
1.361E
1.438E
1.381E
1.266E
1. 122E
1.061E
8.999E
02
02
02
02
02
02
02
02
02
02
02
02
02
01
DEL FLUX
IUG/H2-SECI
8.926E
1.262E
1.039E
5.001E
3. 3 796
3.248E
2.102E
1.677E
1.734E
1.630E
1.463E
1.2746
1.182E
9.808E
03
04
04
03
03
03
03
03
03
03
03
03
03
02
PARTICLE VEL
IH/SECI
1.349E
1.343E
1.338E
1.326E
1.3106
1.28*6
1.259E
1.232E
1.206E
1.181E
1.137E
1.135E
1.11SE
1.095E
01
01
01
01
01
01
01
01
01
01
01
01
01
01
                              X
                          IUG/M3)

                         4.283E 03
                          DRIFT FLUX   DRIFT  MASS  ENIS.
                          IUG/M2-SECI     IUG/SECI
                           5.561E 04
       1.379E 05
                            MASS MEDIAN DIAM.
                                  (UM)

                                   71
TOWER CONDITIONS;  Vu = 13.5 m/s  ;  Ta=>31.1°C  ;  TI - 34.0 *C  ;  T0=28.3oc

                  Range:   5.7  «c  ;  Approach:  H-3  «c  ;  Heat Load:   *3
AUBIEHT  CQNP.IT10.NS;  Wind Speed: 18.4  Km/hr  ;  Wind Direction:  N     .   T^et/Tdry - ".0/21.0 »c

-------
DIAMETER:    SW'NE
      POSITION:
                    DATE:   2/25/74
                                 TIME FRAME:  1235-1335
NOTE:   Concurrent IK Data Point:  Position  4.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA,  TURKEY POINT
 I   DILOWI  D(HI>
     (UMI    (UM)
I
2
3
4
5
6
7
8
9
10
11
12
13
14
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL D
 CUM)
DICENI
 (UM)
   PID)
(4/UM-M3I
DEL X/DEL D
 (UG/UM-M3)
 DEL  X       DEL FLUX   PARTICLE VEL
(UG/M3I    (UG/M2-SECI    (H/SECI
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
6.300E 03
l.OOOE 03
l.OOOE 02
1.300E 01
2.800E 00
7.900E-01
3.500E-01
1.800E-01
l.OOOE-01
0.300E-02
3. 500E-02
2.000E-02
1.100E-02
7. 100E-03
2.639E
3.351E
1.438E
5.836E
3.221E
2.217E
2.087E
1.960E
1.797E
1.740E
1.407E
1.122E
01
01
01
00
00
00
00
00
00
00
00
00
8. 334E-01
7.067E-01
5.
6.
4.
1.
1.
1.
1.
9.
8.
8.
7.
5.
4.
3.
278E
702E
314E
751E
288E
108E
044E
800E
987E
698E
034E
612E
167E
534E
02
02
02
02
02
02
02
01
01
01
01
01
01
01
6. 169E
7.809E
4. 995E
2.007E
1.456E
1.226E
1.126E
1.031E
9.217E
8.705E
6. 875E
5.361E
3.894E
3.233E
03
03
03
03
03
03
03
03
02
02
02
02
02
02
1.169E
1.165E
1.158E
1.146E
1.130E
1.106E
1.079E
1.052E
1.026E
1.001E
9.774E
9.554E
9.345E
9.148E
01
01
01
01
01
01
01
01
01
01
00
OO
00
00
                             x
                          (UG/H3I

                         2.627E  03
                   DRIFT FLUX  DRIFT  MASS EMIS.
                   (UG/M2-SEC)     (UG/SEC)
                    2.955E  04
                          7.534E 04
                                              MASS MEDIAN DIAM.
                                                    CUM)
                                                     58
TOWER CONDITIONS;  vu =  n.7 m/s  ;   Ta=30>8°C  ;  TJ  - 35.3 °C  ;  T0 =, 29.2 °C

                  Range:  6.1   °C  ; Approach:  12.1   °C  ;  Heat Load:  NJ2.1 MU
AMBIENT CONDITIONS;   Wind Speed: 13.1  Km/hr  ;  Wind  Direction: N      ;  Twet/Tdry • 17.0/21.7  °C

-------
      DIAMETER:  SW-NE 1
POSITION:
DATE:    2/2S/74
TIME FRAME: 1406-1506
10
-p»
ro
      NOTE:  Concurrent IK Data Point:  Position 5.33
      PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION  DATA. TURKEY POINT
I

1
2
3
4
5
6
7
8
9
10
OILOMI
(UN)
10.
30.
50.
BO.
110.
150.
200.
250.
300.
350.
OIHI)
(UMI
40.
90.
80.
no.
190.
ado.
240.
300.
390.
400.
DEL D
IUM)
20.
20.
30.
30.
40.
50.
90.
50.
50.
50.
DICENI
IUM»
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
PID)
I0/UM-H3I
5.600E 03
8.900E 02
1.100E 02
1.100E 01
2.000E 00
5.000E-01
1.400E-01
5.000E-02
2.000E-02
9.000E-03
DEL X/DEL 0
IUG/UM-M3)
2.346B 01
2.982E 01
1.582E 01
4. 9388 00
2.301G 00
1.403E 00
8.390E-01
5.449E-01
3.599E-01
2.4898-01
DEL X
IUG/M3I
4.691E
5.965E
4. 745E
1.481E
9.203E
7.015E
4.175E
2.722E
1.797E
1.243E
02
02
02
02
01
01
01
01
01
01
DEL FLUX
IUG/M2-SEC)
4.216E
5.340E
4.214E
1.298E
7.912E
9.866E
3.376E
2.128E
1.358E
9.081E
03
03
03
03
02
02
02
02
02
01
PARTICLE VEL
IN/SEC)
8.9886
8.952E
8.880E
8.7A3E
8.9986
8.3616
8.088E
7.8176
7.99AB
7.3096
00
00
00
00
00
00
00
00
00
00
                                    X

                                IUG/H3)



                               1.950E 03
             DRIFT FLUX

             (UG/M2-SECI


               1.722E  04
     DRIFT MASS  ENIS.

        IUG/SEC)


       3.823E 04
     MASS MEDIAN DIAM.
           (UM)


            47
      TOWER CONDITIONS)  Vu => 9-0 m/S  ;  Ta =30.8 »C  ;  Tj - 35.6 °c  ;  T0 =29.2  »c


                        Range:  6.4   °C  ;  Approach:  12.2  °C   ;  Heat Load:  ^33.7MM
      AMBIENT CONDITIONS:  Wind Speed: 17.1  Km/hr  ;   Wind Direction:   N   ;  Twet/Tdry • 16.9/22.0  °C

-------
       DIAMETER:   SW-NE 1
POSITION:
DATE:    2/25/74
TIME FRAME:  1539-1600
       NOTE:   Concurrent IK Data Point:   Position   NA
       PILLS AMD SENSITIVE PAPER PARTICLE  DISTRIBUTION DATA, TURKEY POINT
CO
I
1
2
3
u
5
6
7
R
9
D(LOW)
(UNI
10.
30.
50.
80.
110.
150.
200.
250.
300.
0(HI )
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
DEL 0
(UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
OICENI
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
325.
P(OI
U/UM-M3I
•
5.000E 03
6.300E 02
8.900E 01
1.300E 01
2.500E 00
7. 100E-01
2.000E-01
6.200E-02
1.60UE-02
DEL X/DEL 0
(UG/UM-M3)
2.094E 01
2.111E 01
1.280E 01
5. 836E 00
2.876E 00
1.992E 00
1.193E 00
6.751E-01
2.876E-01
DEL X
(UG/M3)
4. 189E 02
4.222E 02
3.839E 02
1.751E 02
1.150E 02
9.962E 01
5.964E 01
J. 376E 01
1.438E 01
DEL FLUX
(UG/M2-SEC)
2.508E 03
2. 513E 03
2.258E 03
1.009E 03
6.439E 02
5.341E 02
3.034E 02
1.626E 02
6. 552E 01
PARTICLE VEL
1M/SECI
5.988E 00
5.952E 00
5.880E 00
5.763E 00
5.598E 00
5.361E 00
5.088E 00
4.817E 00
4.556E 00
                                    X
                                 (UG/M3)

                                1.723E  03
             DRIFT  FLUX  DRIFT MASS EMIS.
             (UG/M2-SEC)     (UG/SEC)
              9.997E  03
                                                              1.999E
                            MASS MEDIAN DIAM.
                                 (UM)
                                  52
       TOWER CONDITIONS;  vu = 6.0  m/s   ;  Ta = 3o.80C  ;  ^=35.3 "C   ;  T0 =28.9  °C

                         Range:       °C   ;  Approach:   13.1  °C  ;  Heat Load:  -v33.8 MM


              COND^ONS;  Wind  Speed:  19.i  Km/hr  ;  Wind Direction:   N    ;  Twet/Tdry • 14.0/18.0 °C

-------
DIAMETER:   SW-NE 1
     POSITION:   20
          DATE:   2/26/74
                     TIME  FRAME;  1930-1930
NOTE:   Concurrent IK Data Point:   Position  NA
PILLS AND SENSITIVE PAPER PARTICLE  DISTRIBUTION DATA. TURKEY POINT
  1   OILOM) D(HI)
      (JM»    (UN)
1
a
3
4
5
6
7
8
9
10
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
30
50,
80,
110,
ISO,
200,
250,
300;
350,
400.
DEL 0   OtCENI
 IUMI    IUM)
   P1D)
<«/UM-M3)
DEL X/OEL 0
 (UG/UM-M3)
 DEL  X        DEL FLUX   PARTICLE VEL
IUG/M3)    IUG/M2-SEC)     (H/SECI
20.
20.
30.
30.
40*
22"-
90.
50.
50.
50.
20.
40.
65.
- 95.
^130.
175.
225.
275.
325.
375.
6.300E 03
1.250E 03
2.820E 02
6.300E 01
1.600E 01
5.000E 00
1.600E 00
5.600E-01
2.500E-01
1.300E-01
2.
4.
4.
2.
1.
1.
9.
6.
4.
3.
639E
189E
055E
828E
841 E
403E
543E
098E
494E
590E
01
01
01
01
01
01
00
00
00
00
5.278E
8.378E
1.216E
8.485E
7.362E
7.015E
4.771E
3.049E
2.247E
1.795E
02
02
03
02
02
02
02
02
02
02
2.368E
3. 730E
5.328E
3.617E
3.017E
2.709E
1.712E
1.011E
6.867E
5.041E
03
03
03
03
03
03
03
03
02
02
4.488E
4.452E
4.380E
4.263E
4. 098E
3.861E
3.588E
3.317E
3.056E
2.809E
OO
OO
00
00
00
OO
00
00
OO
00
                              X
                          IUG/M3I

                         6.054E  03
                   DRIFT FLUX   DRIFT  MASS ENIS.   MASS  MEDIAN DIAMETER
                   (UG/M2-3ECI     1UG/SECI             ntUJWMJIAMETER
                    2.468E 04
                                                      4. 517E 04
                                                                                 96
TOWER COND1TIC;.5.;   vu =  4.5  H/S   ;  Ta =24.7°C  ;  Tj = 29.0 °C  ;  T0 = 23.3 °C

                  Range:  5.7  °C  ;  Approach:  17.2  °C  ;  Heat Load:  -x-30.0 MM
       CQNPITIQUS;  Wind Speed:  18.6  Knvfhr  ;  Wind Direction:   N     ;  Twet/Tdry - 6.1/10.7  °C

-------
 DIAMETER;   SW-NE 1
POSITION:    23
DATE:    2/26/74
                                                                         TIME FRAME; 1501-1546
 NOTE:   Concurrent IK Data Point:   Position  22.33


 PILLS  AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
4
5
6
7
8
9
10
11
12
13
14
O(LOW)
(UM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
0(HI 1
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
4UO.
450.
500.
550.
AOO.
DEL 0
(UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
LHCEN)
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
32b.
375.
425.
475.
525.
575.
P(0)
U/UM-M3)
5.000E 03
7. 100E 02
1.600E 02
5.600E 01
2.200E 01
l.OOOE 01
3.500E 00
1.600E 00
7. OOOE-01
4. 0006-01
3.200E-01
1.100E-01
5.600E-02
4.000E-02
UEL X/DEL D
(UG/UM-M3I
2.094E 01
2.379E 01
2.301E 01
2.514E 01
2.531E 01
2. 806E 01
2.087E 01
1.742E 01
1.258F 01
1.104E 01
1.286E 01
6. 173E 00
4.243E 00
3. 982E 00
DEL X
(UG/M3J
4. 189E 02
4. 758E 02
6. 902E 02
7. 542E 02
1.012E 03
1.403E 03
1.044E 03
8.711E 02
6.291E 02
5. 522E 02
6.431E 02
3. 086E 02
2.12U 02
1.991E 02
DEL FLUX
(UG/M2-SEC)
4. 879E 03
5. 526E 03
7.9o5E 03
8.615E 03
1.1 40E 04
1.546E 04
1.122E 04
9. 127E 03
6.427E 03
5. 505E 03
6.260E 03
2.936E 03
1.974E 03
1.813E 03
PARTICLE VEL
(M/SEC)
1.165E 01
1.161E 01
1.154E 01
1.142E 01
1.126E 01
1.102E 01
1.075E 01
1.048E 01
1.022E 01
9.969E 00
9.734E 00
9.514E 00
9.305E 00
9. 108E 00
                              X
                           (UG/M3I

                         9.214E  03
            URIFT FLUX  DRIFT MASS EMIS.
            (UG/M2-SEC)     (UG/SEC)
                           MASS MEDIAN DIAM.
                                 (UM)
              9.910E  04
                                                       2.686E  05
                                                                                   186
TOWER CONDITIONS:  Vu =  1L7 m/s  ;  Ta =25.8 °C  ;   T, = 30.4 °C  ;  T0 =24.2  «>c

                  Range: 6.2   °C  ;  Approach: 16.6  °C   ;  Heat Load:  *32.7MW
AMBIENT CONDITIONS:  Wind Speed: 15.2   lOn/hr  ;  Wind Direction:  N    ;  Twet/Tdry = io.Q/15.9 "C

-------
       DIAMETER:    SW-NE 1
POSITION:  24
DATE;   2/26/74
TIME FRAME: 1617-1701
LO
-P>
Ol
       NOTE:   Concurrent IK Data Point:   Position  23.33
       PILLS AND SENSITIVE PAPER PARTICLE  DISTRIBUTION DATA. TURKEY POINT
I

1
2
3
4
5
6
7
a
9
10
11
12
13
14
DILOWI
(UMI
10.
30.
SO.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
0(HI)
(UH)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
(UH)
20.
20.
30.
30.
40.
50.
50.
5U.
50.
50.
50.
50.
50.
50.
D(CEN)
(UMI
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P(OI
(0SUM-M3I
6.300E 03
7.900E 02
1.600E 02
t.SOOE 01
2.000E 01
8.900E 00
2.200E 00
6.300E-01
2.500E-01
l.OOOE-01
5.600E-02
4.000E-02
2.800E-02
2.500E-02
DEL X/DEL 0
(UG/UM-M3)
2.639E
2.647E
2.301E
2.020E
2.301E
2.497E
1.312E
6. 860E
4.494E
2. 761E
2.251E
2.245E
2.121E
2.489E
01
01
01
01
01
01
01
00
00
00
00
00
00
00
DEL X
(UG/M3I
5.278E
5.295E
6.902E
6.060E
9.203E
1.249E
6.561E
3.430E
2.247E
1.381E
1.125E
1.122E
1.06 IE
1.244E
02
02
02
02
02
03
02
02
02
02
02
02
02
02
DEL FLUX
(UG/M2-SECI
7.277E
7.281E
9.442E
8.220E
1.233E
1.644E
8.455E
4. 328E
2.776E
1.672E
1.336E
1.308E
1.214E
1.400E
03
03
03
03
04
04
03
03
03
03
03
03
03
03
PARTICLE VEL
(M/SECI
1.379E
1.375E
1.368E
1.356E
1.340E
1.316E
1.289E
1.262E
1.236E
1.211E
1.187E
1.165E
1.145E
1.125E
01
01
01
01
01
01
01
01
01
01
01
01
01
01
                                     x
                                  (UG/M3)

                                 6.340E  03
              DRIFT FLUX
              (UG/M2-SEC)

               8.347E 04
     DtUFT MASS EMIS.
         (UG/SEC)

        2.504E  05
     MASS MEDIAN DIAM.
           (UM)

            145
       TOWER CONDITIONS;  vu = 13.8 m/s   ;  Ta = 26.SPC ;  Tj = 29.9 °C  ;  T0 = 23.9  °C

                         Range:   6.0 °C  ;  Approach: 16.7  °C  ;  Heat Load: -x. 31.6 MM
       AMBIENT CONDITIONS:  Wind Speed:  21.4  Km/hr  ;  Hind Direction:   N    ;   Twet/Tdry -  7.2/15.2  °C

-------
       DIAMETER;   SW-NE  1
POSITION:
                                                        DATE;   2/26/74
                                               TIME  FRAME:
      NOTE:  Concurrent IK Data Point:  Position 24.33
CO
^
•vj
      PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA.  TURKEY  POINT
I
1
2
3
4
5
6
7
8
9
10
11
12
13
14
O(LOh)
.
425.
475.
525.
575.
P(DI
« */UM-M3»
6. 300E 03
1.300E OJ
2.500E 02
4. 5 JOE 01
1.600E 01
4.000E 00
l.OOOE 00
3.500E-01
2.000E-01
1.100E-01
7.900E-02
5.600E-02
4.500E-02
3.200E-02
OEL X/OEL 0
JUG/UM-M3I
2.639E 01
4.356E 01
3. 595E 01
I.02UE 01
1.S41E 01
1.122E 01
5.964E 00
3. SHE 00
3.595E 00
3.037E 00
3. 175E 00
3. 142E 00
3.409E 00
3. 185E 00
DEL X
(UG/M3I
5.278E 02
8.713E 02
1.078E 03
6. 060E 02
7.362E 02
5.612E 02
2.982E 02
1.906E 02
1.797E 0C  ;  T0 = „ fi  -C
                                                              *•*' I          "  £.3.0   w

                        Range: 6.1   °C  ;  Approach:  16-4   °C  ;  Heat Load:  -^322""



             jaiNfllllflNS:  Wind Speed: 16.g  I0n/hr  ;  Wind  Direction:   N    ;  Twet/Tdry = 7.2/14.1  °C

-------
CO
       DIAMETER:   SW-NE 1
POSITION:    26
                                                DATE:   2/26/74
TIME FRAME: 1830-1903
      NOTE:  Concurrent IK Data Point:  Position  25.33
      PILLS AND SENSITIVE  PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I

1
2
3
4
5
6
7
8
q
10
u
12
13
1*
DILOhl
(UM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
900.
550.
OIHI)
(UN)
30.
50.
80.
110.
190.
400.
2SO.
300.
390.
400.
490.
900.
950.
600.
DEL 0
IUM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
U(CEN)
(UM)
20.
40.
65.
95.
130.
175.
225.
.275.
325.
375.
-r25.
475.
5*5.
575.
PIUI
(ft/UM-M3i
6.300E 03
1.400E 03
2.820E 02
5.600E 01
l.faOOE 01
4.000E 00
7.900E-01
3.500E-01
2. OOOE-01
1.300E-01
1. OOOE-01
6.300E-02
4.000E-02
2.00UE-02
DEL X/DEL D
(UG/UM-M3)
2.639E
4.691E
4.095E
2.314E
1.841E
1.122E
4. 712E
3.811E
3.595E
3. 590E
4.019E
3.539E
3.031E
1.991E
01
01
01
01
01
01
00
00
00
00
00
00
00
00
DEL X
(UG/M3I
5.278E
9. 383fc
1.216k
7.542E
7. 362E
5.612E
^.356E
1.906E
1.797E
1. 795E
2.010E
1.768E
1.515E
9.954E
02
02
03
02
02
02
02
02
02
02
02
02
02
01
DEL FLUX
(UG/M2-SEO
6.327E
1.121E
1.445E
8.871E
8.539E
6.376E
2.612E
2.061E
1.897E
1.850E
2.025E
1.742E
1.462E
9.405E
03
04
04
03
03
03
03
03
03
03
03
03
03
02
PARTICLE VEL
(H/SECI
1.199E
1.199E
1.188E
1.176E
1.160E
1.136E
1.109E
1.082E
1.096E
1.031E
1.007E
9.U54E
9.645E
9.448E
01
01
01
01
01
01
01
01
01
01
01
00
00
00
                                    X
                                 IUG/H3I

                                6.148E  03
             DRIFT  FLUX   DRIFT  MASS  EMIS.
             IUG/M2-SECI     IUG/SECI
              7.037E 04
                                                       2.477E  05
    MASS MEDIAN DIAM.
          (UM)

           96
                                                            '29.4
                                         '0=23.4
TOWER CONDITIONS;  Vu = ]2.0 m/s   ;  Ta = 2? 2«C ;

                  Range: 6.0  °C  ;  Approach: 166   °C  ;  Heat Load:   ~31.6 MW


AMBIENT CONDITIONS,;  Wind Speed: 18.6  Km/hr  ;  Wind Direction:   N    ;   Twet/Tdry = 6.8/13.3  °C

-------
 DIAMETER:   SW-NE
POSITION;    27
DATE;  2/26/74
 NOTE:  Concurrent IK Data Point:  Position  NA
                                                                           TIME  FRAME;  1"40-1941
 PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I J(LUV») OHM j fiFL ^
«U1> dl") (ij-.||
1 1J. 't»n.
3 )0.
330.
400.
450.
500.
550.
600.
X
(UG/M3)
.642E 03
<••: vu =
Range
30.
40.
5f>"
*>0 .
r)0.
50.
50.
50.
1.0.
50.
(MM)
/ r
I > .
130.
>?S *
"» ?r- "
•-i •» s "
375.*
425.
475.
525.
575.
D ( n )
( VIM-MI »
1. nnr 03
?.?4">r •)?
I. 3 OOF 01
7* ^nr
7* ' " ~ l
t""'nllr ~ "
4.500E -02
2.200E -02
1.250E -02
7.100E -03
4.500E -03
Pr
5
^
1
1
^
*
2
1
8
7
5
4
DRIFT FLUX
(UG/M2-SEC)
5.403E 04
12.0m
: 5.7
/s ;
°C ;
Ta =26.0«C ;
Approach: 17
Tl
.2
.6391 01 5.778C
. T?6- 01 3.713^
.'?1E 01 °.
-------
                            TURKEY POINT  ISOKINETIC  SAMPLING SUMMARY  FOR  DIAMETER  SW-NE  1
to
in
IK Tube
Position
0.3
1.3
2.3
3.3
4.3
5.3
22.3
23.3
24.3
25.3

Date
2/23/74
2/23/74
2/23/74
2/25/74
2/25/74
2/25/74
2/26/74
2/26/74
2/26/74
2/26/74

MNa
(yg)
3,468
2,868
2,323
3,313
2,948
2,123
2,798
3,073
2,713
2,673

i
385
335
275
375
335
250
310
345
310
308

Vs
(m3)
20.98
28.71
24.92
24.38
22.32
14.46
17.55
19.36
14.92
19.20

(m/s)
5.3
9.7
12.4
13.4
13.1
10.9
10.0
12.7
13.5
11.7

Ca
1.25
1.25
1.25
1.41
1.41
1.41
1.30
1.30
1.30
1.30

CMg
1.17
1.17
1.17
1.35
1.35
1.35
1.24
1.24
1.24
1.24

Fa
(ug/m2.s)
1,095
1,211
1,445
2,568
2,440
2,256
2,073
2,621
3,191
2.118

Fa
FMg
(ug/m2-s)
114
132
160
278
265
254
219
281
348
233

AA
3.25
3.62
3.33
3.04
2.74
2.45
2.52
2.81
3.10
3.39
TOTALS:
Na
(ug/s)
3,559
4,384
4,812
7,807
6,686
5,527
5,224
7,365
9,892
7,180
62,436
^Mg
(wg/s)
371
478
533
845
726
622
552
790
1,079
790
6,786
     TOTAL MASS EMISSION RATES ARE:  m*  = 62,436  vg/s and m*  = 6,786  ug/s 1f the basin water concentration equal the
                                     na                     rig

     mean concentrations CNa and CMg as listed 1n Table 1  , and 1f the water flow rate equals 1,262kg/s (or 20,000 gpm).


     MINERAL MASS EMISSION FRACTIONS: nNa " 0.00051 X; nMg =  0.00051  X; n = 0.00051  %

-------
                            TURKEY POINT  ISOKINETIC DATA EXTENSION  FOR DIAMETER SW-NE  1
CO
en
a
Position (pg/m3)
6.3
7.3
8.3
18.3
19.3
20.3
21.3
26.3

UPPER LIMIT OF
s.
207
207
207
207
207
207
207
181

MINERAL
a
Wtjlfm
no
(pg/m3)
23.3
23.3
23.3
21.9
21.9
21.9
21.9
19.9

MASS EMISSION
= 0.00072% n
*u p;
u Na
(m/s) (pg/m2-s)
8.0
4.85
1.00
0.50
2.50
5.25
7.40
12.15

FRACTIONS:
1656
1004
207
104
518
1087
1532
2199


^g = 0.00072%
FS *A
Mg
(pg/m2.s) (m2)
186 2.16
113 1.87
23.3 1.57
11:0 1.33
54/18 1.61
115 1.93
162 2.22
242 6.13
TOTALS:

n1 • 0.00072%
=====
(ng/s)
3,577
1,877
325
138
834
2,098
3,401
13,480
25,730


=====
402
211
36.6
14.6
88.3
222
360
1483
2818



-------
      DIAMETER:    SW-NE 2
POSITION:
DATE;    3/9/74
TIME FRAME: 1703-1803
      NOTE:  Concurrent IK Data Point:   Position   0.33
      PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
to
in
ro
I

I
2
3
4
5
A
7
8
9
10
11
12
13

DILOWI
(UMI
10.
30.
50.
BO.
110.
150.
200.
250.
300.
350.
400.
450.

450.
OIHI I
IUHI
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL D
(UN)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
D(CEN)
(UN)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
PIDI
M/UN-M3I
4.000E 03
5.000E 02
4.500E 01
7.900E 00
2.500E 00
7.900E-01
2.800E-01
1.100E-01
4. 500E-02
2.500E-02
1.300E-02
7.900E-03
4.500E-03
2.800E-03
DEL X/DEL D
(UG/UM-N3)
1.676E 01
1.676E 01
6.471E 00
3.546E 00
2.876E 00
2.217E 00
1.670E 00
1.198E 00
8.088E-01
6.903E-01
5.225E-01
4.433E-01
3.409E-01
2.787E-01
DEL X
(UG/M3)
3.351E
3.351E
1.941E
1.064E
1.150E
1. 108E
8.350E
5.989E
4. 044E
3.451E
2.613E
2.217E
1.705E
1.394E
02
02
02
02
02
02
01
01
01
01
01
01
01
01
DEL FLUX
(UG/M2-SECI
3.414E
3.402E
1.957E
1.060E
1.127E
1.060C
7. 755E
5.400E
3. 541E
2.937E
2.162E
1.785E
1.337E
1.066E
03
03
03
03
03
03
02
02
02
02
02
02
02
02
PARTICLE VEL
(H/SECI
1.019E
1.015E
1.008E
9.963E
9.798E
9.561E
9.288E
9.017E
8.756E
8.509E
8.274E
8.054E
7.845E
7.648E
01
01
01
00
00
00
00
00
00
00
00
00
00
00
                                    X
                                 IUG/M3)


                                1.494E  03
             DRIFT FLUX
             IUG/M2-SEC)

               1.462E 04
     DRIFT  MASS EMIS.
        (UG/SECI

       5.145E 04
    MASS MEDIAN DIAM.
          (UM)

           62
      TOWER CONDITIONS;  Vu =  10.2m/s  ;  Ta =33.0°C  ;  TI = 35.9 °C  ;  T0 - 30.6  »c

                        Range:  5.3   «c  ;  Approach:  8-8   °c  ;  Heat Load:  -v27-9 MW
      AMBIENT CONDITIONS:  Wind Speed:  20.8 Km/hr   ;  Wind Direction:  SE    ;  Twet/Tdry -21-8/25.1   °c

-------
      DIAMETER;   SH-NE 2
in
CO
                          POSITION:
                                                     DATE;   3/9/74
                                                                      TIME FRAME; 1828-1928
      NOTE:   Concurrent IK Data Point:  Position   1.33


      PILLS  AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA.  TURKEY POINT
I   DfLOWl
    (UMI
                  DIHI )
                   (UMI
DEL 0
 (UMI
                            O(CEN)
                              (UM)
   PC ;  T,  = 36.0 »c  ;  T  =

                  Range:   5.4  oc  .   Approach.  8.9  »c  .  Heat Load:  -u28-4MW


/WENT CONDITIONS:  Wind Speed:20.8   Kn,/hr  ;  Wind Direction: SE    ;  Twet/Tdry =21.7/24.3  »C

-------
       DIAMETER:
                  SW-NE 2
                          POSITION:
                                  DATE:   3/11/74
                                                                             TIME FRAME:  1117-1217
00
in
       NOTE:  Concurrent IK  Data Point:   Position   2.33
       PILLS AND SENSITIVE PAPER PARTICLE  DISTRIBUTION DATA. TURKEY  POINT
       f-
       7
10
1!
12

\4
    n(LGk) DIHII
      ( J"I)     ( UM)
       10.
       JO.

       HC.
      I 10.
      lr>0.
            300.
            i?0.
            5JO.
            5-jf).
                     30.
                     5C.
                     bO.
                    11U.
                    150.
250.
300.
350.
400.
-50.
500.
550.
fcOO.
       0-L U
        ( UK)
0(CtM
 (UHI
                                               Po.
50.
SO.
50.
50.
20.
HO.
o5.
95.
130.
175.
225.
275.
J25.
? 75.
t25.
475.
525.
575.
6.300E 03
(J.3DOF 02
7. 'OO1: 01
l.OOOF 01
4.UOOE 00
1.800E 00
7.900e-01
4.000E-01
2.000E-01
1.1JOE-01
7. 100E-02
4.000E-02
2.230E-02
1.400E-02
2.639E
2.111E
1.136E
4. 489E
4.601E
5.051E
4.712C
4.35&E
3. 3-J5L
3.037E
2.854E
2.245E
1.667E
1.394E
01
01
01
00
00
00
00
00
00
00
00
00
00
00
5. 27oE
4.222E
3. 408E
1.347E
1.8416
2.526E
£• 35toE
2.178E
1.797E
1.519E
1.4^7E
1. 12^E
8.334E
6.968E
02
02
02
02
02
02
02
02
02
02
02
02
01
01
6.
5.
4.
1.
2.
3.
2.
2.
2.
1.
1.
1.
8.
7.
644E
300E
253E
665E
245E
021E
753E
486E
005E
657E
523E
173E
539E
001E
03
03
03
03
J3
03
03
J3
03
03
03
03
02
02
1.259E
1.255E
1.243E
1.236E
1.220E
1.196E
1.169E
1.142E
1.116E
1.091E
1.067E
1.045E
1.025E
1.005E
01
01
01
01
01
01
01
01
01
01
01
01
01
01
                                    X
                                 (OG/-O)
                                        03
                                       DRIFT  FLUX   ufilFT MASS EMIS.
                                       (UG/M2-SEO     (UG/SECI
                                        3.628E 04
                                          1.088E  05
                                                             MASS MEDIAN DIAM.
                                                                   (UM)
                                                      132
       TOUER CONDITIONS;  vu =  l2.6m/S  ;  Ta=33.0°C ;  ^=38.0   °C  ;   T0 = 31.4 °C

                         Range:  6.6   °C  ;  Approach: 11.2  °C  ;   Heat Load:  -v.34.8MW
       AMBIENT  CONDITIONS;  Wind Speed: 12.4  Km/hr   ;  Wind Direction: E-SE   ;  Twet/Tdry = 20.2/25.9  °C

-------
      DIAMETER:    SW-NE 2
             POSITION:
in
en
                                                     DATE;   3/11/74
                                                         TIME FRAME;  i234-1334
      NOTE:   Concurrent IK Data Point:   Position   3.33


      PILLS  AND SENSITIVE  PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
      I  D(LOW) D(HI)
           (UM)    (UM)
 30.
 50.
 80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
       DEL U
        (UM)
D(CEN)
 (UMI
   P(DI
(K/UM-M3)
DEL X/DEL D
 (UG/UM-M3I
 DEL  X       DEL  FLUX   PARTICLE VEL
IUG/M3I    (UG/M2-SEC)    IM/SEC)
1
2
3
4
5
6
7
fl
9
10
11
12
13
14
10
30,
50,
80,
110,
150,
200,
250,
300,
350,
400,
450,
500,
550,
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
6.300E 03
6. 300E 02
6.300E 01
1.300E 01
4. 500E 00
1.800E 00
7. 900E-01
4.000E-01
2.000E-01
l.OOOE-01
5.000E-02
3.200E-02
1.800E-02
l.OOOE-02
2.
2.
9.
5.
5.
5.
4.
4.
3.
2.
2.
1.
1.
9.
639E
111E
059E
836E
177E
051E
712E
356E
595E
761E
010E
796E
364E
01
01
00
00
00
00
00
00
00
00
00
00
00
954E-01
5.278E
4.222E
2. 718E
1.751E
2.0T1E
2.526E
2.356E
2. 178E
1.797E
1.381E
LOOSE
8. 978E
6. 819E
4.977E
02
02
Oi
02
02
02
02
02
02
02
02
01
01
01
6.327E
5.046E
3.229E
2.059E
2.401E
2.869E
2.612E
2.356E
1.897E
1.423E
1.012E
8.847E
6. 577E
4.702E
03
03
03
03
03
03
03
03
03
03
03
02
02
02
1.199E
1.195E
1.188E
1.176E
1.160E
1.136E
1.109E
1.082E
1.056E
1.031E
1.007E
9.854E
9.645E
9.448E
01
01
01
01
01
01
01
01
01
01
01
00
00
00
                                   X
                               (Uli/M3)

                              2.936E  U3
                         DRIFT FLUX
                         (UG/M2-SEC)

                          3.325E 04
                        DRIFT  MASS EMIS.
                           CUG/SECI

                          9.010E 04
                                     MASS MEDIAN DIAM.
                                            (UM)

                                            124
     TOWER CONDITIONS:  vu -12.0 m/s  ;  Ta =34.! 'C ;  T,  =  38.0 'C  ;  T0 = 31.4oc

                       Range:  6.6   °C  ;  Approach: n.6  °C  ;  Heat Load:  *34.aMW


     AMPIENJ CONDITIONS:  Wind Speed: 15.5  I0n/hr  ;  Wind Direction: E-SE   ;  Twet/Tdry = 19.8/26.5 "C

-------
       DIAMETER:   SW-NE  2
POSITION:
                                                       DATE:   3/11/74
                                              TIME FRAME:  1434-1525
       NOTE:   Concurrent IK Data Point:  Position   4.33
CO
01
en
       PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I

1
?
3
I*
5
s
7
a
9
10
11
12
nuuKl
(iir.)
1U.
10.
SO.
so.
110.
ISO.
200.
250.
300.
250.
400.
-50.
D(HI 1
(UM>
30.
50.
80.
110.
15U.
200.
250.
300.
350.
tOO.
450.
bOO.
UfcL D
( UM I
20.
20.
30.
30.
40.
5o.
50.
•sO.
50.
50.
50.
50.
D(CEM
75.
t25.
•.75.
P(OI
1 4/UM-M3I
6.300E 03
o. iOOc. 02
5.000E 01
i.lOOE 01
3.500E 00
l.OOOE 00
3.200E-01
1.300E-01
6.300E-02
3. 500c-02
2.000E-02
1.300E-02
DfcL X/OEL 0
(UG/UM-M3)
2.639E 01
i.lllE 01
7.190E 00
4.938E 00
4.026f 30
2.S06E 00
1.90<)E 00
1.416E 00
1.132E 00
9.664E-01
6.0b9E-01
7.295E-01
DEL X
(UG/M3I
5.278E
4.222E
2.157E
1.461E
1.610E
1.403E
9.543E
7. 078E
5.662E
4.832E
4.019E
3.647E
02
02
02
02
02
0£
01
01
01
01
01
01
DEL FLUX
(UG/M2-SEC»
5.377E
4.286E
2.174E
1.476E
1.578E
1.342E
8.863E
6.382E
4.958E
4.111E
3.326E
2.938E
03
03
03
03
03
03
02
U2
02
02
02
02
PARTICLE VEL
• MX SEC)
1.019E
1.015E
1.U08E
9.963E
9.798E
9.561E
9.288E
9.017E
8. 75oE
8.509E
8.274E
8.054E
01
01
01
00
00
00
00
00
00
00
00
00
                                     X

                                  IUG/M3)


                                 1.963E  03
              DhlFT  FLUX   JRIFT  MASS  EMIS.
              (UG/M2-SEC)     (UG/SEC»
               1.929E  0*
                                                               4.6&8E  04
MASS MEDIAN DIAM.
      (UM)

       54
      TOWER CONDITIONS:  vu =10.2   m/s  ;   Ta=33.7'C  ;  Ti - 37.8 "C  ;  T0 = 31.7»C


                        Range: 6.1   °C  ;  Approach:  10.5  °C  ;  Heat Load:  ^32.1 MM



      AMBIEUT  CONDITIONS:  Wind Speed:  12.9  Kn/hr  ;  Wind Direction: E-SE   ;  Twet/Tdry = 21.2/26.0  -C

-------
CO
in
       DIAMETER:     SW-NE  2
POSITION;
                                                        DATE;
TIME FRAME; 1544-'|645
       NOTE:  Concurrent  IK  Data Point:  Position  5.33



       PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION  DATA. TURKEY POINT
I

1
2
3
u
5
ft
7
8
9
10
11
12
13
14
O(LOW)
( UM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
D(HI)
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL d
(UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
O(CEN)
(UM)
20.
40.
05.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P(0)
(#/UM-M3)
5.000E 03
3. 200E 02
3.500E 01
6.300E 00
1.800E 00
6.300E-01
2.200E-01
7.900E-02
2.800E-02
1.400E-02
8.000E-03
4.000E-03
2.000E-03
1. 0006-03
DEL X/DEL D
(UG/UM-M3)
2.094E 01
1.072E 01
5.U33E 00
2.828E 00
2.071E 00
1.768E 00
1.312E 00
8.602E-01
5.033E-01
3. 866E-01
3.216E-01
2.245E-01
1.515E-01
9.954E-02
DEL X
(UG/M3)
4. 189E
2.145E
1.510E
8.485E
8.283E
8. 839E
6.561E
4. J01E
2.516E
1.933E
1.608E
1.122E
7. 577E
4. 977E
02
02
02
01
01
01
01
01
01
01
01
01
00
00
DEL FLUX
(UG/M2-SEC)
3.262E
1.663E
1.160E
6.417E
6. 127E
6.330E
4.519E
2.846E
1.599E
1.181E
9.445E
6.345E
4. 126E
2.612E
03
03
03
02
02
02
02
02
02
02
01
01
01
01
PARTICLE VEL
tM/SEC)
7.788E
7.752E
7.680E
7.563E
7.398E
7.161E
6.888E
6.617E
6. 356E
6.109E
5.874E
5.654E
5.445E
5.248E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
                                    X

                                 (UG/M3)


                                1.23JE  03
            DRIFT FLUX   DRIFT  MASS  EMIS.
            (UG/M2-SEC)      (UG/SECI
             9.211E 03
                                                              1.953E  04
    MASS MEDIAN DIAM.
          (UM)

          49
       TOWER  CONDITIONS:  Vu=7.8   m/s   ;  Ta = 33.0'C ;  Tl=37>8  «»c  .   JQ  __^7 -(.


                         Range:  6.1  °C   ;  Approach:  10.6  °C  ;   Heat Load:  -v32.1 MM



       AMBIENT CONDITIONS:  Wind  Speed: 18.0  Km/hr  ;  Wind Direction: E-SE  .  TWet/Tdry = 21.1/25.4 -c

-------
in
00
      DIAMETER:
SW-NE 2
POSITION:   21
DATE:    3/11/74
                                                                             TIME FRAME:  1813-1913
     NOTE:  Concurrent IK Data Point:  Position  20.33
      PILLS AND SENSITIVE  PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I

1
2
3
u
•5
b
7
8
9
10
11
12
13
14
0«LOM
CJM)
10.
30.
50.
30.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
Olhl I

30.
50.
BO.
110.
150.
200.
250.
30J.
350.
4UO.
450.
5UO.
550.
600.
DEL 0
( UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
OCCEM
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P(0)
M/UM-M3)
l.OOJE 04
l.bOOF 03
4.500E 02
1.400E 02
5.000F 01
1.400E 01
5.600E 00
l.bOOE 00
5.600E-01
2.800E-01
1.300E-01
8.000E-02
5.600E-02
«..500E-02
DLL X/OEL 0
(UO/UM-M3)
4.189E
5. 362E
6.471E
0.285E
5.752E
3.929E
3.340E
1.960E
1.007E
7.731E
5.225E
4.489E
4.243E
4.479E
01
01
01
01
01
01
01
01
01
00
00
00
00
00
UEL X
(UG/131
3.378E
1.072E
1.941E
1.88SE
2.301E
1.964E
1.670E
9. 800E
5.033E
3. 866E
2. 613E
2.245E
2. 121E
2.240E
02
03
03
03
03
03
03
02
02
02
02
02
02
02
DEL FLUX
(UC./H2-SECI
8.535E
1.089E
1.957E
1.878E
2.254E
1.878E
1.551E
8.837E
4.407E
3.239E
2. 162E
1.808E
1.664E
1.713E
03
04
04
04
04
04
04
03
03
03
03
03
03
03
PARTICLE VEL
IM/SEC)
1.019E
1.015E
1.008E
9.963E
9.798E
9.561E
9.288E
9.017E
8.756E
8.509E
8.274E
8.054E
7.845E
7. 648E
01
01
01
00
00
00
00
00
00
00
00
00
00
00
                                (UG/M3)
                               1.446E 04
                           DRIFT  FLUX   DRIFT  MASS  EMIS.

                           JUG/M2-SEC)     (UG/SECl
                                                   MASS MEDIAN DIAM.
                                                          (UM)
                            1.385E 05
                              3.074E 05
                                    136
      TOWER CONDITIONS:  Vu = 10.2 m/s   ;  Ta = 33.9°C  ;  1)  =  37.7°C  ;  T0 =  31.7oc


                        Range:  6.0  »c   ;  Approach:   10-6  °C  ;   Heat Load:  *31-6MW
      AMBIENT  CONDITIONS;  Wind Speed: 11 -5  Km/nr  ;  Wind Direction: E-SE   ;  Twet/Tdry =21 •1/24.3  <>c

-------
       DIAMETER;   SW-NE 2
POSITION:    22
                                                        DATE:    3/12/74
                                              TIME FRAME:   1133-1245
       NOTE:  Concurrent IK Data Point:  Position  21.33
OJ
en
10
       PILLS AND SENSITIVE  PAPER PARTICLE DISTRIBUTION DATA.  TURKEY POINT
I
1
2

4

6
7
R
10
11
1
12
13
14
DILOWI
CJM)
10.
30.
50.
BO.
11 f\
10.
ISO.
200.
250.
300.
ISO.
400.
490.
500.
550.
DIHI >

-------
DIAMETER:
           SW-NE  2
POSITION:    23
DATE:   3/12/74
TIME FRAME:  1334-1434
NOTE:   Concurrent IK Data Point:  Position  22.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY  POINT












OJ
en
0


I

1
2
3
4
5
f,
7
8
q
10
11
12
13
14
DILOU
MM)
10.
10.
50.
RO.
110.
150.
2^0.
250.
300.
350.
400.
450.
500.
550.
DUII I
(UM)
30.
50.
80.
llu.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
(UM)
20.
?d.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
O(CEN)
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P
-------
       DIAMETER:    SW-NE  2
POSITION:     24
DATE:   3/12/74
                                                                                TIME  FRAME:  1507-1600
       NOTE:   Concurrent  IK  Data Point:  Position  23.33
OJ
CT»
       PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I
1
2
3
4
5
6
7
n
9
10
11
12
13
14
000fc 03
1.400E 03
t.500b 02
1.400F 02
4.500E 01
1.30JE 01
2.500E 00
l.OOOE 00
5.000E-01
2.800E-01
1.400E-01
9.000E-02
5.600E-02
DfcL X/DEL 0
(UG/UM-M3)
6. 702E 01
1.508E 02
2.013E 02
2.020E 02
1.610E 02
1.263E 02
7. 753E 01
2.722E 01
1.797E 01
1.381E 01
1.125E 01
7. B56E 00
6. 819E 00
5. 574E 00
DEL X
(UG/M3I
1.340E 03
3.016E 03
6.039E 03
6.060E 03
6.442E 03
6.314E 03
3.B77E 03
1.3615 03
S.9S7E 02
6. 903E 02
5.627E 02
3.928E 02
3.409E 02
2.787E 02
DEL FLUX
(UG/M2-SECI
1.929E 04
4. 328E 04
8.624E 04
8.583E 04
9.017E 04
8.689E 04
5.229E 04
1.799E 04
1.164E 04
8.773E 03
7.020E 03
4.813E 03
4. 107E 03
3.302E 03
PARTICLE VEL
JM/SEC)
1.439E 01
1.435E 01
1.428E 01
1.416E 01
1.400E 01
1.376E 01
1.349E 01
1.322E 01
1.296E 01
1.271E 01
1.247E 01
1.225E 01
1.205E 01
1.185E 01
                                     X
                                 (UG/M3I

                                3.761E 04
             JRIJ-T  FLUX
             (UG/M2-SEC)

              5.216E  05
    DRIFT MASS  EMIS.
       (UG/SEC1

      1.638E 06
MASS MEDIAN DIAM.
      (UM)

       125
      TOWER CONDITIONS;  vu = 14.4 m/s  ;   Ta = 36.0°C  ;  T1=37.7 °C  ;  T0=32.2  «>c

                         Range:   5.5   »c  ;  Approach:  8.5  <>c  .  Heat Load:  -x.29.0 MW

      AMBIENT CONDITIONS;  Wind  Speed: 19.3  Km/nr   ;  Wind Direction: S     .  Twet/Tdry =23.7/27.3  -c

-------
       DIAMETER:   SW'NE 2
POSITION:
             25
DATE:    3/12/74
TIME FRAME: 1653-1753
       NOTE:  Concurrent IK Data Point:  Position   24.33
       PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
U)
en
ro
I

1
2
3
4
5
0
7
ft
9
10
11
12
13
14
OIL OWI
(UMI
10.
30.
50.
30.
110.
!50.
200.
250.
300.
350.
400.
450.
500.
550.
DIHI 1
IUV I
3C.
50.
bO.
110.
150.
200.
. 098E
2.876E
2. 181E
1.809E
1.571E
1.212E
1.394E
01
02
02
02
01
01
01
00
00
00
00
00
00
00
DEL X
(UG/M3I
1.676E
3.016E
5. 608E
4.310E
3.267E
2.526E
1.044E
3.049E
1.438E
1.091E
9. 0*4E
7.85&E
6. 06 IE
6.968E
03
03
03
03
03
03
03
02
02
02
01
01
01
01
DEL FLUX
(UG/M2-SECI
2.260E
4.057E
7.503E
5.716E
4.279E
3.248E
1.314E
3. 755E
1.734E
1.288E
1.047E
8.920E
6. 755E
7. 629E
04
04
04
04
04
04
04
03
03
03
03
02
02
02
PARTICLE VEL
(M/SECI
1.349E
1.345E
1.338E
1.326E
1.310E
1.286E
l.2"59E
1.232E
1.206E
1.181E
1.157E
1.135E
1.115E
1.095E
01
01
01
01
01
01
01
01
01
01
01
01
01
01
                                     X        DRIFT FLUX   DRIFT MASS  EMIS.

                                  (UG/M3)     (UC./M2-SECI      (KG/SEC)
                                        04
               2.93<5=  05
                                                               1.008E  06
                            MASS  MEDIAN  DIAM.

                                  (UM)


                                  86
       TOWER CONDITIONS:  Vu=13.5m/s   ;  Ta=35.50C ;  ^=37.5  °C  ;  T0=31.9  °C


                         Range:  5.6  °C   ;  Approach: 9.9   °C  ;  Heat Load:   -v-29.5 MW
       AMBIENT CONDITIONS:  Wind Speed:  H-9 Km/hr  ;  Wind Direction:  S    .   Twet/Tdry = 22.0/26.5  «c

-------
to
c


                         Range:  5.5   »c  ;  Approach: 10.4  »c  ;  Heat Load:  ^29.0 MM
       AMBIENT CONDITIONS;  Wind Speed:  11.9  Whr   ;  Wind Direction: S     .   Twet/Tdry = 21.3/26.2 -C

-------
                       TURKEY POINT  ISOKINETIC SAMPLING SUMMARY FOR DIAMETER  SW-NE  2
IK Tube
Position
0.3
1.3
2.3
3.3
4.3
5.3
20.3
21.3
22.3
23.3
24.3
25.3


Date
3/09/74
3/09/74
3/11/74
3/11/74
3/11/74
3/11/74
3/11/74
3/12/74
3/12/74
3/12/74
3/12/74
3/12/74

MNa
(wg)
1,324
2,599
1,889
2,389
2,214
1,789
6,339
5,639
12,739
24,739
14,739
7,538

MM
(ug)
134
268
208
261
252
202
570
505
1,325
2,400
1,350
780

Vs
(m3)
15.90
20.30
22.96
21.78
18.27
14.37
19.69
17.13
27.16
38.64
23.31
24.06

"Vu
(m/s)
9.65
10.9
12.0
12.5
11.4
9.2
8.0
11.0
13.0
14.1
14.2
13.4

cNa
5ta
0.89
0.89
0.84
0.84
0.84
0.84
0.84
0.85
0.85
0.85
0.85
0.85

CMg
CMg
0.91
0.91
0.89
0.89
0.89
0.89
0.89
0.92
0.92
0.92
0.92
0.92

Fa
Fa
M
(pg/m2.s) (yg/nr-s) (m2)
715
1,242
829
1,152
1,160
962
2,163
3,078
5,183
7,673
7,632
3,568

74
131
97
133
140
115
206
298
583
806
757
400

4.95
3.49
3.20
2.40
2.61
2.32
2.06
2.35
2.60
2.93
3.28
3.52
TOTALS:
^Na
(ug/s)
3,539
4,335
2,653
2,765
3,028
2,232
4,456
7,233
13,480
22,480
25,030
12,560
103,791
a
(ug/s)
366
457
310
319
365
267
424
700
1,516
2,362
2,483
1,408
10,977
TOTAL MASS EMISSION RATES ARE:  mja =103,791  ug/s and mjg = 10,977 u9/s  if the basin water concentration equal the
mean concentrations CNa and CMg as listed in Table 1  , and if the water flow rate equals 1,262^9/5 (or 20,000 9Pm)-
MINERAL MASS EMISSION  FRACTIONS: nNa =0.00085  %; nMg =  0.00083 «; n = 0.00084 %

-------
                           TURKEY POINT  ISOKINETIC DATA  EXTENSION FOR  DIAMETER SW-NE 2

Position
6.3
7.3
17.3
18.3
19.3
26.3
*Na
(pg/m3)
105
105
270
270
270
266
*Mg
(pg/0,3)
12.5
12.5
25.8
25.8
25.8
29.9
v
(m/s)
3.0
0.2
0.4
1.8
4.1
12.5
F3
(wg/m2-s)
315
21.0
108
486
1107
3325
Fa
(yg/m2-s)
37.5
2.5
10.3
46.4
106
374
AA
(m2)
2.03
1.71
1.19
1.48
1.77
4.47
Ama
(pg/s)
639
35.9
129
719
1959
14,860
Ama
(yg/s)
76.1
4.3
12.3
68.7
188
1672
CO
01
en
                                                                           TOTALS:
                 18,342
                                                                                               2,021
UPPER LIMIT OF MINERAL MASS EMISSION FRACTIONS:


                  0.0010%           n1   =  0.00098X
                                                                 n1
0.00099%

-------
OJ
CT>
CM
     UJ
     QC
     «£
     ce.
40

39

38

37
36
35

16
14

12

10
     t
     I   4
         0
       SW RIM
                              o
                              o
                  VELOCITY
                  TEMPERATURE
                              DATE, TIME:  7/24/74,  1715-1752
                              WIND:   16-19 km/hr FROM THE  SSE
                              WTdry:  26.0'C/30.8-C
                                        I     I     I
1    3    57    9   11   13   15  17   19   21  23   25   27|
                 POSITION AND DISTANCE, feet
Figure 29.   Velocity and temperature profiles, SW-NE diameter.
                                                                                  NE RIM

-------
 DIAMETER;   SW'NE 3
         POSITION:
DATE:    7/20/74
NOTE: Concurrent IK Data Point: Position 0.6
•
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
T ^(LCW) 0( hi)
 MO. IsO.
6 150, tOG,
7 2CO. 250.
w 1 250. 300.
-j

-
TOWER CONDITIONS:
l.'EL 0 ncENI P(|)l DEL X/OEL 0 DEI X
(IJM> H'M> (4/UV-M3I CJS/UM-M3) (UG/M3I
20. ^0.. 5.000? 03
20. ^C. 7.900C 02
30. ts. 5.500F 01
JO. 95. 6. }QOF 00
=»0, 120. 1.700? 00
^0. 175. 2,500F-01
50, 2?5. 1.1006-01
50, 275. 2.900c-02

X Of> IFT FLUX
(UG/M3I (UG/M2-SEC
1.44ftF 03 1.427E OA
vu =10.0 m/S ; Ta = „ o°C ;
2.094E 01 4. 189E 02
2.6&7F 01 5.2955 02
7.909= 00 2.373E 02
2.928E 00 8.485F 01
1. 956? JD 7.822E 01
9.322^-01 4.911F 01
f.561E-01 3.280E 01
3.158E-01 1.579E 01

CRIPT MASS EMIS.
) (UG/SEC)
5.267E 04
T< -AI o °C : f~ =
DEL FLUX PARTICLE VEL

-------
       DIAMETER:   SW-NE  3
                                 POSITION;  2
                                                  DATE;   7/?n/7d
       NOTE:   Concurrent  IK Data Point:  Position  i.6
                                                                                TIME FRAME;  1328-1 an?
CO
at
oo
I

1.
•j
7
0
o
1 1
12
13
14
Ml ~\ )
('I1')

i i i.
1^0.
TOO.
3'.0.
4 ) ).
450.
500.
550.
cm

3.1.
11".
150.
300.
J50.
400.
450.
500.
550.
600.
.•'•'. L M
I i
-------
to
vo
       DIAMETER:  SW-NE  3
POSITION:   3
DATE;  7/20/74
                                                                                TIME FRAME;  idan-ism
      NOTE:  Concurrent  IK Data Point:  Position  2.6
      PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I

I


'*
11
tl
7

1 1^
li)
1 '
13
14

• Ml. ' * )
III1')
I ).
•^ •*
* ' •
5 1 .
•< 0.
til.
1 50.
""10.
' 51 .
•I C i
1 > 1 * .
400 .
•+50.
500.
550.

H(H[ )
(n- )
Ji).
r) i •
"• ) .
11 ".
1 ">••• .
?•! J.
? 1 0 .
3D'1 .
.15 1.
4 •' .
4^0.
550."
600.

" i " I '
in1)
£.'.
•' '•
' " •
"> 1.
'• '.
'; ).
5 ^" .
r>o.
so.
u "*•
50.
50.'
50.
X
(UG/M3)
nif f i p(n»
1 ".-'I 1 t/m-M3)
2«J. 1.7 OOF 03
4 '. -'». 75(j= '}?
•'>r-. ^.0 10r 01
"•-.. 1.1 117 01
1"L'. 3.5iK)E 00
I '5. ] .750= 00
^?5. a.O)JE-Ol
-^7S. 5.000C-01
125. 2. 4)0= -01
)Tj* l.i?5i)?.-0l
•*^'3. '». 500^-02
475. 1.7106-02
525. 7.100 E-03
575. 3.200 E-03
UK I FT FLUX
(UG/M2-SEC)
->FL X/DFL D DEL X
(
1
I
7
4
4
4
4
5
4
3
1
9
5
3
"K./UM-V3
.551= 01
.592: "1
. 19JC 00
. 4{»9F 00
. 026F 00
.911F 00
.771= 00
. 445F 00
.314= 00
.451= 0')
. 809E 00
.5^05-01
.382 E-01
.134 E-01
(UG/M3)
3.130.=.
3.183E
?. 157F
1.347=
1.61 OF
2.455E
2. 386=.
2.722F
2. 157=
1.726E
9.044E
4.770=
2.691 E
1.592 E
02
02
02
0?
02
02
02
02
02
02
01
01
01
01
DRIFT MASS EMIS.
(UG/SEC)
DEL FLUX PARTICLE V
(UG/M2-SEC) (M/SEC)
4.956E
5.078E
3.425=
2.123=
2.512?
3.772E
3.599F
4. 034=
3.140=
2.469E
1.273E
6.608E
3.673E
2.141E
MASS
03 .599E 01
03
03
03
03
03
03
03
03
03
03
02
02
02
.595E 01
.588E 01
.576E 01
.560F 01
.536E 01
. 509E 01
.482E 01
.456E 01
.431E 01
.407E 01
.385E 01
.365 E 01
-34S F 01
MEDIAN DIAM.
(pm)
                        2.464E  03
         3.762E  04
                                                                  1.181E  05
                                                                169
      TOWER CONDITIONS;  Vu = 16.0 m/s  ;  Ta = 37.CPC  ;  Tf  - 42.5  °C  ;  T0 =      »c

                         Range:        °C  ;  Approach:        °C  ;   Heat Load:  *     MW
      AMBIENT CONDITIONS:  Wind Speed:14.5   Km/hr  ;   Wind Direction:  ESE   ;  Twet/Tdry - 23.9/31.0 °C

-------
u>
»J
O
         DIAMETER:   SH'NE 3
                           POSITION!
                                                          DATE;   7/20/74
                                                                          TIME FRAME:  1656-1733
         NOTE:  Concurrent IK Data Point:   Position  3.5
         PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
1

1


f


n
O
O
I ^
11
M
i*
M i. r .-' i
( i")
10.
1 C\
) U .
so.
13.
11^.
1 ->.0.
? - '. ' *
no.
ISO.
'OO.
SOil.
iso.
n00.
-,rL -,
( U")
20.
?';.
10.
30.
4'1.
!»0.
50.
so.
sn.
5H.
so.
Sil.
S 1.
r>l).
:x <•'•!)
( i."1)
PO.
40.
6S.
05.
1 Vi.
17S.
P^S.
37S.
S7S.
575.
P(,T)
( ''/in-MII
S.OTD^ 01
S. 0 )f)5 0?
5.30.)c 01
1.210C 01
S.H0.1F OO
2.7SO«= 00
l.bOOF 00
d. j 00C —01
S.700E-01
2 . J )0^-0 1
1.5'JOE-ll
1.700E-01
"rL X/[)EL D DF.L X
JU'./UM-MSI
2.094tf
1 . ft 76 c
7.621F
5.387E
6.672E
7.717E
9. 543E
9.038E
1.025E
l.OOSfc
1. 136P
1. 194E
01
01
00
00
00
00
00
00
01
00
01
01
01
01
(UG/M3)
4.189E 02
• 3.35lc O2
2.286F 02
1.616E 02
2.669E 02
3.858E 02
•».771E 02
4.519E 02
5.123E 02
4.832= 02
5.024= 02
5.612E 02
5.682E 02
5.972E 02
DEL FLUX PARTICLE VEL
(UG/M2-SEC) IM/SEC)
5.775E
4.608E
3. 128E
2.192S
3.576E
5. 078E
6.149E
5.702E
6.330E
5.851E
5.966E
6.539F
6.504=

03 1.379E
03 1.375E
03 1.368E
03 1.356E
03 1.340E
03 1.316E
03
03
03
03
03
03
03
.289E
.262E
.236E
.211E
.187E
.165E
. 14SF
03 1.125E
01
01
01
01
01
01
01
01
01
01
01
01
01
01
                          (llf./M3 J
                         5.9S1E  01
TOVQ CONDITIONS;   vu = 13.8 m/S   ;
                   Range:       °C  ;
   D'IFT FLUX   ORIFT MASS FMIS.
   (UG/M2-SECI      IUG/SECI
    7.4-12F 04     .2. 105E  05
Ta B36.1°C  ;  T<  -42.8  °C  ;  T0 -
  Approach:        °C  ;   Heat Load:
                                                                                    MASS MEDIAN DIAM.
                                                                                          (um)
                                                                                           324
                                                                                      »C
                                                                                       MM
        AMBIENT  CONDITIONS:  Wind Speed: ! 9.3   Km/hr  ;  Wind Direction:  ESE   ;   Twet/Tdry - 24.6/31.0 °C

-------
DIAMETER:   SW-NE 3
                           POSITION;
DATE;   7/20/74
TIME FRAME; 1756-1826
NOTE:   Concurrent IK Data Point:  Position   4.6
T

I
7
"*
4
5
6
7
8
o
1 T
11
I?
13
14
"•(Lrvo
CIM)
M.
<0.
5,1.
1f' .
HO.
1 50.
200.
751.
300.
Tin.
4i)0.
45(l.
5 10.
5r>0.
n ( M I )
(M 1)
J'l.
so.
'10.
1 in.
111.
?i)0.
250.
301 .
350.
400.
4'i1.
5.1.1.
550.
f>m.
r^L P iMfr'D pjnj OFL X/DEL D
HI")
?H.
?0.
30.
30.
40.
50.
50.
50.
5-1.
00.
50.
50.
50.
50.
(U 1)
?0.
4l).
65.
<)•>.
I V3.
175.
275.
275.
325.
375.
4?.5.
475.
525.
575.
DEL X
M/I.M-M3I (ur./UM-'ll) (UG/M3I
6.4i).)c 03
3.2 )0C 02
«">.5Ji)K 01
1.710«E 01
5.U01E 00
2.300E 00
1.150E 00
5.000E-01
P.400F-01
I.J5JF-01
9. 3 JOE -0?
7.000^-02
5.000F-02
3. oOOc-02
2.601C
1.072P
9. 347=
7. 632E
6.672E
6.454E
6. 859E
5.445E
4. 314P
3. 728E
3.738E
3. 92 HE
3.78HE
3. 583C
01
01
00
00
00
on
00
00
00
00
00
00
00
00
5.362E
2. 145E
2.804E
2.289E
2.669E
3.227E
3.429F
2.722E
2.157E
1.864?
1.869E
1.964=
1.894E
1.792E
02
02
02
02
02
02
02
02
02
02
02
02
02
0?
DEL FLUX PARTICLE VEL
(UG/M2-SEC) (M/SEC)
6.695F.
2. 671E
3.471E
2.808E
3.229E
3.828E
3.974F
3.081E
2.385E
2.014E
1.976E
2.033E
1.922E
1.782E
03 .249E
03
03
03
03
03
03
03
03
03
03
03
03
.245E
.238F
.226F
.210E
. 186E
.159E
.L32E
.106E
.08 IE
.057E
.Q35E
• 015E
03 9.948E
01
01
01
01
01
01
01
01
01
01
01
01
01
00
                            (iir./im

                           }.hl«)f- 03
                                         r)RIPT  FLUX  flRIFT  MASS
                                         njr,/M2-SFCI     (UG/SFCt
                                           4.1H7C  04
        1.068E 05
                                   MASS MEDIAN DIAM.
                                         (UM)
                                          194
TOWER CONDITIONS;   Vu-12.5 m/s   ;  Ta -36.9«c ;  Tf - 43.1 *C  ;  T0 .

                   Range:       °C   ;  Approach:       °C  ;  Heat Load:  *

AMBJENT CONDITIONS;  Wind Speed: i6.l   Km/hr  ;  Wind Direction: SE    ;  TWet/Tdry - 25.5/29.5  °C
                                                                             °C

                                                                              MW

-------
DIAMETER:  SW-NE  3
                          POSITION;   6
DATE: 7/22/74
                   TIME FRAME;
NOTE:  Concurrent  IK Data Point:  Position 5.6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA.  TURKEY POINT
r

i
?
3
'•
'•
'<
T
^
11
in
£ H
ro 1?
1 1
1'.
•Ml nw)
( l«)
l.t.
10.
5 ).
'! 0 .
1 1 0.
I r> ).
710.
•"•' 1.
•vin .
3.
41 ).
450.
5)1.
55 1.
OIHT 1
IT')
»'.).
Si).
ill.
l in.
isn.
?:)U.
? '"• n .
301.
350.
410.
'+53.
son.
550.
(> si:).
Ill I 1
r'(Cc-J) P<0) DfL X/DEL D
(U"l) JM") (1/.M-M3I (UG/UM-M3)
P.).
21.
10.
?n.
'.I.
50.
= ••>.
sr.
5n.
sn.
?o.
si.
r-o.
5:):
?0.
40.
65.
'15.
1 50.
175.
??5.
275.
3? 5.
'575.
475.
475.
525.
575.
f>.
5.
5.
1.
5.
?.
I .
' 7.
5.
4.
3.
2.
2.
1.
no= m
f.50F 02
inoE 01
^1,T= 01
T)0= 00
'tO')F UO
no= oo
OOOF-Ol
')^0=-01
0 J1F-01
20 IE -01
750E-01
250E-01
8 00= -01
2.555E
1.S93F
7. 190E
7. 133E
6.672E
6.735E
6.739E
7.622E
P.987E
1. 104E
1.286=.
1.543=
1.705E
1.792F
01
01
00
00
00
00
00
00
00
01
01
01
01
01
DEL X
(UG/^3)
5.110= 02
3.787= 02
2.157= 02
2.155= 02
2.669= 02
3.367E 02
3.370E 02
3. SUE 02
4.494= 02
5.522E 02
6.431= 02
7.716E 02
8.524E 02
8.959E 02
DEL FLUX PARTICLE VEL
(UG/M2-SFCI (M/SEC)
5.615E
4.147E
2.347=
2.319F
2.828E
3.489E
3.399E
3.741E
4.294E
5.140E
5.836E
6.831E
7.369F
7.568E
03
03
03
03
03
03
03
.099E
.095E
.088E
.076E
. 060E
.036E
. 009E
03 9.817E
03 9.556E
03 9.309E
03 9.074E
03 8.854E
03 8.645E
03 8.448E
01
01
01
01
01
01
01
00
00
00
00
00
00
00
                           (IHVM3 )

                         6. 8 )/c  03
                                       n"IFT FLUX  DRIFT MASS EMIS.
                                       IUG/M2-SEC)      (UG/SEC)
                                        6.493E  04

TOWER CONDITIONS;  Vu = 11.0 m/S  ;  Ta « 35.2°C  ;  T

                  Range:       °C  ;  Approach:
  1.44IE 05

= 42.3 °C  ;  T0 »

°C  ;  Heat Load:
                           MASS MEDIAN DIAM.
                                 (urn)

                                  378
                                                                              °C

                                                                               MM
AMBIENT CONDITIONS:  Wind Speed:  8.0  Km/hr  ;   Wind  Direction:   S    ;  Twet/Tdry "  21.7/27.9 °C

-------
CO
^1
CO
        DIAMETER;  SW-NE  3
 POSITION;
DATE:  7/22/74
                                                                                TIME FRAME:1523-1610
        NOTE:  Concurrent IK Data Point:  Position  6-6
        PILLS AND SENSITIVE  PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I

1
7.
3
4
5
'••
7
n
'-'
'M L<> 1
(IJM)
10.
10.
•5.1.
10.
110.
150.
?00.
750.
TOO.
rxi-T )
(MM)
30.
'.0.
l!0 .
110.
150.
200.
? VI.
3">0.
I'JO.
nt L n '"•( C zN ) D ( 0 1
( UM)
20.
?0.
30.
30.
4 T.
50.---
50.
5').
50.
(IJM)
20.
40.
65.
15.
130.
1 75.
225.
275.
325.
( Y/IM-M3I
8. OOOE 03
rt.OJOF. 02
7. 500E 01
l.flOOE 01
4.700E 00
1.5.)0<- 00
5. 500E-01
2.400E-01
l.OOOF-01
nFL X/OFL 0
IUG/UM-M3)
3.351E
2.681E
1.078F
8.081E
5.407E
4. 209F
3.P80E
2. 6l!4E
1.797F
01
01
01
00
00
00
00
00
00
DFL X
DEL FLUX
(UG/M3I (UG/^I2-SEC)
6.702E
5.362E
3.P35E
2.424E
?. 163E
2.105E
1.640E
1.307E
8.987E
02
02
02
02
02
02
02
0?
01
4.549E
3.620E
2.161E
1.591E
1.384E
1.297E
9.657E
7.340E
4.814E
03
03
03
03
03
03
02
02
02
PARTICLE VEL
M/SEC)
6.788E
6.752E
6.680E
6.563E
6.398E
6.161E
5.888E
5.617E
5.356E
00
00
00
00
00
00
00
00
00
     X         DRIFT  FLUX   DRIFT  MASS EMIS.

 (UG/M3)     (UG/MP-SECI     (UG/SEC)


2.534E  03     1.67fl»:  04     3. 357E  04
                                                                                    MASS MEDIAN DIAM.
                                                                                          (pm)


                                                                                          58
        TOWER  CONDITIONS;  7U«6.8   m/s  ;   Ta -34.0°C  ;  ^-43.1  °C  ;  T0 .      «C


                          Range:        °C  ;  Approach:       °C  ;  Heat Load:   •»,     MU


               CONDITIONS;  Wind  Speed: 20.9  Kn/hr  ;  Wind Direction:  SSW   .   Twet/Tdry = 25.6/29.7 «C

-------
DIAMETER;  SW-NE 3
POSITION:
                                                        7/97/7A
                                                                        TIME FRAME;
NOTE:  Concurrent IK  Data Point:  Position 7.6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION  DATA. TURKEY POINT
T

I
2
1
4
5
6
7
8
9
10
11
rKLHWI
( /MI
10.
10.
50.
80.
110.
150.
'00.
750.
300.
150.
400.
n ( H i )
(UM»
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
I^L 1)
IU'1)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
r>| CM)
di'M
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
P(D)
(4/IJM-M3I
?.500E 03
?. 500E 02
3. roar- 01
7. OOOE 00
1.700E 00
5.000E-01
1.500E-01
6.800E-02
3.300E-02
2.300E-02
1.500E-02
DPL X/DFL 0
(UG/UH-M3)
1.047E 01
8. 378E 00
5.*20€ -00
3.142P 00
1.956E 00
1.403E 00
8.946E-01
7. 4,05E-Q1
5.931E-01
6.351E-01
6.029E-01
OEL X
IUG/M3)
2.094E
1.676E
1.596E
9.427E
7.822E
7.015E
4.4736
3.702E
2.966E
3.175E
3.015E
02
02
02
01
01
01
01
01
01
01
01
DEL FLUX
(UG/M2-SECI
7.514E
S.951E
5.594E
4.170E
2.501E
2.077E
1.2Q2E
8.948E
6.3956
6.060E
5.048E
02
02
02
02
02
02
02
01
01
01
01
PARTICLE VEL
(H/SECI
3.588E
3.552E
3.480E
3.363E
3.198E
2.96ii
2.6MC
2.417B
2.156E
1.909E
1.A74E
00
00
00
00
00
00
00
00
00
00
00
                           
-------
        DIAMETER:  SW-NE 3
            .POSITION:   20
                   DATE:   7/24/74
                                                                               TIME  FRAME: 1616-1645
        NOTE:  Concurrent IK Data Point:  Position   19-6


        PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY  POINT
CO
^J
in
            .ML~K)
1
•)
•\
4
c,
6
7
•1
n
1 1
i?
10
10
so
no
1 K
150
'1 )
no,
150
400,
450,
                     (n")

                      Ji.
                      50.
                      80.
                     110.
                     15«--.
3'10.
ISO.
'.00.

S10.
        TL  r
        (ii")
(in)
                                                  CO)
          o
(UG/U1-M3)
 DEL  X       DEL  FLUX   PARTICLE VEL
(UG/M3)    IUG/M2-SEO    IH/SEC)
?0.
?i1.
30.
30.
40.
50.
5 3.
SH.
SO.
53.
50.
5,1.
20.
40.
ft5.
95.
130.
175.
?25.
?75.
325.
375.
425.
475.
2.303E 04
3. >OOE 03
t.^SOE 02
1.0)0* 02
2.000= 01
4.00JE 00
1.3 OOP 00
4.200E-01
1.750P-01
7. \ir»o.c_02
3.? )0f-02
1.500E-02
9.
1.
a.
4.
2.
1.
7.
4.
3.
1.
1.
3.
>S34E
D72E
•J87E
439E
301E
122E
753E
573E
145E
933E
286E
41 7E
01
02
01
01
01
01
00
00
00
00
00
-01
1.927E
2.145E
2.696E
1.347E
9.203E
5.612E
3.8775
2.287E
1.573E
9.664E
6.431F
4.209E
03
03
03
03
32
02
02
02
02
01
01
01
1.539?
1.705=
2.125E
1.045E
6.992E
4.131E
2.748E
1.559E
1.031E
6.097E
3.907E
2.464E
04
04
04
04
03
03
03
03
03
02
02
02
7.988E
7.952E
7.880E
7.763E
7.598E
7.361E
7.088E
6. SITE
6.556E
6.309E
6.074E
5.854E
00
00
00
00
00
00
00
00
00
00
00
00
            1.357F 04
                                               9"!FT FLUX
                                               (UG/**2-ScC

                                                3.185F. 04
                         UFT  MASS EMIS.
                           CUG/SEC)

                          1.49BE  05
                        MASS MEDIAN DIAM.
                              (um)

                               64
       TOWER CONDITIONS;  Vu=8.0  m/3  .   Ta =35.0«C  ;  TI -43.3  »C  ;  T0 »      oc

                         Range:       °C  ;  Approach:       °C  ;  Heat Load:  •».     MU
       AMBIENT CONDITIONS:  Wind Speed: 18.5   ^/^   .  H1nd D1rect1on: SSE   .   Twet/Tdry = 26'1/28'1  °C

-------
DIAMETER;   SW"NE  3
                          POSITION:    21
DATE:   7/24/74
TIME FRAME: 1525-1554
NOTE:  Concurrent IK Data Point:  Position  20.6
PILLS AND SENSITIVE  PAPER PARTICLE DISTRIBUTION DATA.  TURKEY  POINT
T

1
?
7
i.
s
''
7
rt
o
I'"
3 11
w I?
n
14
niLnw)
( ' 1 M 1
10.
in.
50.
80.
M '">.
150.
?00.
"*50.
TOO.
•*«jii.
400.
450.
500.
SSO.
0(HI )
(DM )
"10.
50.
80.
110.
15H.
200.
?50.
300.
3">0.
400.
450.
50(1.
b50.
ftOO.
n=i n
(IJM
20.
?'l.
JO.
"*1.
4'">.
'j<">.
50.
50.
50.
50.
50.
50.
50.
!>1.
'MCF'll
(11^)
20.
40.
h5.
•Jb.
1 in.
175.
225.
275.
^2!>.
37'j.
425.
475.
525.
57f..
°IOt 0=L X/DF.L 0
( 
-------
 DIAMETER:   SW-NE 3
POSITION;    22
                                                 DATE;  7/24/74
TIME FRAME; 1430-1500
 NOTE:  Concurrent IK Data Point:   Position   21.6
 PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I

1
»
^
/I
s
(>
7
P
9
n
1 1
i?
n
14
ri M cw )
( ' IM )
in.
TO.
r>0.
TO.
11 I.
ISO.
7-10.
750.
310.
350.
410.
450.
500.
550.
n( HI )
Ci")
TO.
so.
8'1.
m.
I'iO.
200.
2'50.
300.
"*SO.
VM.
vo.
soo.
••>•-> 3.
600.
'ILL M
HIM)
20.
20.
3'l.
30.
'»•).
50.
50.
50.
50.
SO.
'.• -1 .
r'0.
so.
so.
I'JCFNI
(IJM)
20.
40.
t>5.
S»5.
130.
175.
? ?5.
2^5.
325.
375.
4«?5.
4/5.
525.
57S.
°(D) OFL X/DEL 0
(•(/'I 1-M3)
? . .) OOF 04
J.7 )JE 03
l.l.l>c 03
T.2.)JE 0?
9,.)')0C 01
2.300ft 01 -
6. 500? OO
2. 2 OOP 00
1.0 T)E 00
S.'iOlr-Ol
1 . i JJE-01
5.4005-0?
3.330E-02
1.700E-0?
(UG/UM-M3)
8. 378F
9.048t
1.532E
1.437E
1.035E
4«454E
3.877F
2.396F
1.797E
9. 940E
4.823E
J.OJOfe
?. 500F
1.692E
01
01
02
02
02
01
01
01
01
00
do
00
00
00
DEL X
(UG/M3I
1.676E
l.fllOE
4.745=
4.310E
4.141F
3.Z27E
1.938E
1.198E
8.987E
4.970E
2.412E
1.515E
1.250F.
8.461E
03
33
03
03
03
03
03
03
02
02
02
02
02
01
DEL FLUX
JUG/M2-SEC)
1.841E
1.982E
5.163E
4.638E
4.389E
3.344E
1.955E
1.1 76E
8.588E
4.626E
2.1RRE
1.341E
1.081E
7.148E
04
04
04
04
04
04
04
04
03
03
03
03
03
02
PARTICLE VEL
CM/SEC)
1.099E
1.095E
.088E
.076E
.060E
.03*6
.009E
9.817E
9.556E
9.309E
9.074E
8.854E
I.645E
8.448E
01
01
01
01
01

01
00
00
00
00
00
00
00
                                       OPIFT  FLUX   O^IFT  MASS  E
                                       1UG/M2-SFC)     tUG/SECI
                                        ?.614E  05
                                                       6. 3755 05
                                                 MASS MEDIAN  DIAM.
                                                       (urn)


                                                        110
TOWER CONDITIONS;  7


                  Range:
                    U11.0 m/s   ;  Ta -38.8°C ;  ^-42.8*0  ;   T0 .
           Approach:
                                                             Heat  Load:
     °C

      MM
AMBIENT CONDITION^:  Wind Speed:  12.9  Km/hr  ;  Wind Direction: SSE    .  Twet/Tdry - 26.1/31.7  -C

-------
      DIAMETER:  SW-NE  3
                           POSITION:   23
DATE:   7/24/74
CJ
s
                                                                              TIME  FRAME;  1338-1408
      NOTE:  Concurrent IK Data Point:  Position  22.6
      PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
t

1
2
1
**
5
ft
7
H
O
11
11
12
1 1
14
^ ( L nW )
(H"l
10.
10.
50.
'JO.
110.
I 5c|.
200.
100.
150.
400.
450.
510.
r>(HI )
IUM)
30.
50.
SO.
110.
150.
?00.
2bO.
100.
150.
400.
450.
500.
550.
600.
n£L n
( U'M
20.
20.
3'>.
3.1.
40.
50.
50.
50.
50.
50.
50.
50.
5M.
OKSNI
1 IJ^I)
20.
40.
65.
95.
13').
175.
225.
?75.
3?5.
175.
425.
475.
525.
575.
P ( D 1
DF.L X/OEL D
«-*/UM-M3) (UG/IJM-M3)
1 . 2 OOE 04
3.000? 03
9.0 OOF 02
1.250E 02
I. 15 IE 02
->• 5 OOe 01
1.200E 01
3.800E 00
1.400E 00
7.500E-01
4.3 JOF-01
2.300E-01
1.300E-01
8.000E-02
5.027E
1.005E
1.294F
1.459E
1. 3'3E
7.157E
4.138E
2.516E
2.071'=
1.728E
1.291E
9. 850E
7. 963E
01
02
02
02
02
01
01
01
01
01
01
01
00
00
DEL
X
UJG/M3)
1.005E
2.011E
3.882E
4.377E
5.292E
4.911E
3.578E
2.069E
1.258E
1.035E
8.642E
6.451E
*.925E
3.982E
03
03
03
03
03
03
03
03
03
03
02
02
02
02
DEL FLUX PARTICLE VEL
(UG/M2-SEC) (M/SECI
1.255E
2.504E
4.806E
5.367E
6.402F
5.825E
4.147E
2.341E
1.391E
1.119E
9.138E
6.681E
4.996E
3.961E
04 . 749F
04
04
04
04
04
04
04
04
03
03
03
03 9
.245E
.238E
.226E
.210E
.186E
. 159E
.132E
. 106E
.081E
• 057E
.035E
.01SE
>.948E
01
01
01
01
01
01
01
01
01
01
01
01
01
00
                                 (IJG/M3)


                                3.IR2E 04
                                        D
-------
         DIAMETER;  SW-NE  3
POSITION:    24
(O
•*J
vo
NOTE: Concurrent IK Data Point: Position 23
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION
I r ( i -v; ) " ( " n
( '"I (l.vj
i i •«. i '.
" i''1. ">n.
51. if1 .
T. in..
•> ll". \r>t .
]Tf... ."10.
f •> )•). 'SO.
r "">•'.. i < • .
i i ") . 3 r n .
1 "» «*» 1. Mil'! .
11 iT-1. 4','"1.
1? + 5V). K )".
I 1 5'1O . S'si • .
1 '• SS^. ffi^.



TOWER CONDITIONS:


I'M " "i{r-i") »(':))
( "••• ) ( ii-<) ( i/ii -i--i3)
?n. ."M. 1.01K 0'.
? ). -VJ. -?.OJOr 03
1~> • (>ri , <». 000t 0?.
'•-I. nt>. l.lrOF 0?
•'• '. 1 "i '. 4. j ) »= 01
"O. 1 75. I. ?•}.•)£ 01
c'">. ??'3. ^. 7->OF -00
r> •. 77S. i.?s IE no
V». 1?5. 5.S).)F-Ol
5'. 17-^. >.70JE-01
•j'j. 4? i. l.5)0=-0l
c •*. 4 7S. y.O 10E-0?
'' i. 575. •>. (j )>1C-02
*••). S7T. t.000=-02
x ,T»IPT FI
(ur,/-ni (UO/M7-S
1.->7S-. o'» 1.491T
vu =12.3 n»/s ; Ta =37.6«c
Range: °C ; Approach:
.6
DATA. TURKEY POINT
nri X/DFL n
OEL X
OEL FLUX PARTICLE VEL
(IJ«/|JM-M3I (U'i/^3) (UG/M2-SCCJ
'..IS<»E
6. 707 E
b. 75lE
9. HR6.E
7.435?
t. 0?9E
5.0-30 =
4.54-SE
'•"'*"*-
U X ,-)« T F
,'C) (
05 4.
01
01
01
01
01
01
01
01
00 •
00
00
00
00
00
T MASS
UG/SFC
8
1
1
I
I
1
I
6
4
3
3
2
2
1
.378E
. 34OE
.726=
. 549E
.979 =
. 684E
.USE
.006=
.943E
.728F
.015=
.525E
.2735
.991=
02
03
03
03
03
03
03
02
02
02
02
02
02
02
1.
1.
2.
1.
2.
1.
. 1.
7.
5.
3.
3.
2.
2.
1.
029E
642 =
102E
868r
354 =
963 =
273 =
566 =
366E
954£
127E
564=
2611
941 =
EM IS. -MASS MEDIAN
1



473F 05
; Tj = 42.1 «c
°C
; Heat
; T0 »
Load:

°C
(um)
129

04
04
04
04
04
04
04
03
03
03
03
03
03
03
DIAM.



JM/SFO
1.229E
1.225E
1.218E
1.206E
1.190F
1.166E
1.139E
1.112E
1.086E
1.061E
1.037E
1.015E
9.945E
9.748E




01
01
01
01
01
01
01
01
01
01
01
01
00
00




t MU
        AMBIENT CONDITIONS;  Wind Speed: 10.5   Km/hr  ;  Wind Direction: NW     .  Twet/Tdry => 24.7/27.1 »c

-------
DIAMETER;   SW-NE 3
                          POSITION:
                                       25
DATE:   7/23/74
TIME FRAME:  1654-1722
NOTE:   Concurrent  IK Data Point:   Position  24.6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION  DATA. TURKEY POINT













to
§

T

1
"•
^
4
S
6
7
»<
')
in
11
I'
13
14
•Ml ~W)
(MM)
10.
30.
50.
SO.
1 10.
1 50.
200.
?50.
TOO.
350.
41.1.
45(1.
500.
550.
nim )
UIV)
jn.
50.
PO.
110.
150.
?00.
?50.
300.
350.
400.
450.
500.
550.
frUO.
r---i r
(1IMJ
2n.
20.
30.
3'l.
40.
50.
50.
50.
50.
f.O.
50.
50.
50.
50.
nc  .  Tf .  41.7  *c  .  T() .


                  Range:       °C  ;  Approach:       °C  ;   Heat Load:
                                                                           MASS MEDIAN  DIAM.
                                                                                 (um)

                                                                                  85
                                                                             °C

                                                                              MM
AMBIENT CONDITIONS:  Wind Speed: 12.1   Km/hr  ;  Wind Direction: SW     ;  Twet/Tdry - 24.4/29.2 -c

-------
DIAMETER:  SW-NE 3
POSITION;   26
                                                 DATE:  7/23/74
TIME FRAME:  1435-1500
NOTE:  Concurrent IK Data Point:   Position   25.6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION  DATA. TURKEY POINT
T

1
T
6.
•%
(.
i
h
•i
M
1 1
\7
n< \ r ID
(i;1 ) -
in.
'. o .
pr>.
ll! .
1 1 .1 .
'TO.
7S'~ .
HV1.
^ s o .
4<>r>.
4->0.
i:(n j
dr
sn
;•••)
1 1 1
I-..'
,;.-in
•>'»'•
30"
Vj,
'. ')0
•»'j i
Su..i
)
)
•
|
m
.
•
.
•
m
9
.
•
                       • L "•
                         1.
                                                    )FL X/DEL n
                                          DEL X
                                                                    <
                                                                                  DEL  FLUX   PARTICLE VEL
                                                                                (UG/M2-SFC)     (M/SEC)
     '0.
                               13 •.
                               17"..
                        SI.
                        c T.
7ue
.1^-)?
•i 10s:
*t .) )"=
ji)'!^
f- JOE
5 JOC
0 JO1:
3 OOF
bO JE
1 DOE
)T)F
lj ) T:
7 )0d
04
03
03
02
0^
01
.00
00
00
on
00
-0!
-M
-01
7.121E
1. 9t4F
?. I57b
1.975E
1. 4951:
7. 357E
S.070E
4. 356E
4. 134E
4. 142E
4. 421E
4. 489E
4.925E
5. 6 74?
01
r'2
02
02
02
01
01
01
01
01
01
01
01
01
1.
3.
6.
5.
5.
3.
2.
2.
2.
2.
2.
2.
2.
2.
4?4E
BE7P
471E
926E
982F
929E
535E
178E
06 7E
071E
21 lc
245E
462E
837E
03
03
03
03
03
03
03
03
03
03
03
03
03
03
1.
4.
7.
6.
6.
4.
2.
2.
2.
2.
2.
2.
2.
2.
650E
490C
428E
7T3E
698E
306E
709E
269F
099E
052F
139E
122C
277^
567E
04
O4
04
04
04
04
04
04
04
04
04
04
04
04
1.159E
1.155E
1.148E
1.136E
1.120E
1.096E
1.069E
1.042E
1.016E
9.909E
9.674E
9.454E
9.245E
9.048E
01
01
01
01
01
01
01
01
01
00
00
00
00
00
                                         r"MFT FL'JX   OP'FT  MASS
                                                 S^CJ      (UG/SFCI
                 I          '«..'•.'?-  V.     4.954" 05     1.744E 06

TOWER CONDITIONS;  Vu = H.6 m/s  ;  Ta=38.3«C  ;  TI - 41.7 «c  ;  T0 .

                   Range:       °C   ;  Approach:       °C  ;  Heat Load:
                                                   MASS MEDIAN  DIAM.
                                                         (pm)

                                                          146
                                                                              °C

                                                                               MU
AMBIENT CONDITIONS:   Wind Speed: 12.1  Km/hr   ;  Wind Direction: SW     .  Twet/Tdry • 24.4/29.2 «>c

-------
DIAMETER:   SW-NE 3
POSITION:   27
DATE;   7/23/74
TIME FRAME: 1340-1412
NOTE:  Concurrent  IK Data Point:   Position  26.6
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION  DATA. TURKEY POINT









.

u>
00
ro


T
1
7
3
4
S
h
t
a
CJ
10
11
1'
1 3
14
Civ,)
10.
30.
SO.
MO.
110.
150.
200.
'SO.
310.
350.
4 no.
450.
SOO.
550.
R!uII
30.
50.
HO.
] 1 n.
isn.
?0'i.
?so.
TOO.
350.
400.
450.
SOO .
S50.
ftOO.
Pc I u
(li •)
'-).
20.
30.
Id.
40.
SO.
50.
50.
50.
50.
SO.
50.
50;
SO.
CUXI
?0.
40.
0?
2.3JOE-02
1.600E-02
1.200E-02
DEL X/DEL D
IUG/UM-M3J
3.351E
8.713E
1.438E
1.481E
1.438E
6.454E
1.739E
7.078E
3.595f
2.209E
1.608E
1.291E
1.212E
1.194!
01
01
02
02
02
01
01
00
00
00
00
00
00
00
DEL X
(U6/H3)
6.702E
1.743E
4.314E
4.444E
5.752E
3.2275
8.946E
3.S39E
1.797E
1. 104?
8.039E
6.453E
6.061E
5.972E
02
03
03
03
03
03
02
02
02
02
01
01
01
01
DEL FLUX
IUG/M2-SECI
6.895E
1.786E
4.391E
4.472E
5.693E
3. USE
8.398E
3.226E
Ii»92E
9.508E
&.733E
9.2«2C

4.628B
03
04
04
04
04
04
03
03
03
02
02
02
02
02
PARTICLE VEL

-------
                            TURKEY POINT ISOKINETIC  SAMPLING  SUMMARY  FOR  DIAMETER SW-NE 3
CD
CO
IK Tube
Position
0.6
1.6
2.6
3.6
4.6
5.6
6.6
7.6
19.6
20.6
21.6
Date
7/20/74
7/20/74
7/20/74
7/20/74
7/20/74
7/22/74
7/22/74
7/23/74
7/24/74
7/24/74
7/24/74
7/24/74
MNa
(ug)
554
724
1,044
2,674
2,274
1,839
1,984
1,034
1,689
3,999
3,744
6,474
=^==
(ug)
64
84
120
298
203
210
225
150
175
430
423
720
^=^==
Vs
9.3
12.0
14.4
28.4
11.2
16.0
17.9
15.6
9.7
11.9
12.2
12.7
=;^^^=^=
(m/s)
8.8
11.7
15.2
14.5
12.9
11.6
8.7
4.8
7.0
9.1
10.6
12.0
=^=^=
CNa
0.88
0.88
0.88
0.88
0.88
0.92
0.92
0.87
0.99
0.99
0.99
0.99
CMg
CMg
0.88
0.88
0.88
0.88
0.88
0.87
0.87
0.85
0.86
0.86
0.86
0.86
Fa
461
621
970
1,201
2,305
1,227
887
277
1,207
3,027
3,220
6,056
FMg
(pg/m2-s)
53
72
117
134
206
132
95
39
109
283
316
585
AA
3.86
3.52
3.23
3.04
2.66
2.45
2.08
1.86
1.78
2.00
2.29
2.66
fifl
Na
(pg/s)
1,779
2,186
3,133
3,651
6,131
3,006
1,845
515
2,148
6,054
7,374
16,110
a
205
253
359
407
548
323
198
73
194
566
724
1,556
                                                                                            TOTALS:

-------
                            TURKEY POINT  ISOKINETIC  SAMPLING SUMMARY FOR  DIAMETER   SW-NE  3   CONTINUED
OJ
CO
IK Tube MNg M Vg vu CNa C^
Position Date (yg) (yg) (m3) (m/s) CNa CMg
23.6 7/23/74 2,411 270 11.8 12.5 0.87 0.85
24.6 7/23/74 1,574 205 10.5 11.7 0.87 0.85
25.6 7/23/74 3,499 430 5.7 11.5 0.87 0.85
26.6 7/23/74 6,799 748 12.2 10.8 0.87 0.85

Fa
FNa
(yg/m2-s)
2,222
1,526
6,142
5,236

ca a a
Mg Na
(yg/m2-s) (m2) (ug/s)
243 2.87 6,377
194 3.26 4,975
737 3.44 21,130
563 4.83 25,290
TOTALS: 111>704
^Mg
697
2,719
11,989
     TOTAL MASS EMISSION RATES ARE:   m*a =111,704
,989
          if the basin water concentration equal the
     mean  concentrations CNa and CM  as listed in Table 1  , and  if  the water  flow rate equals 971  kg/s (or 15,400  gpm).

     MINERAL MASS EMISSION FRACTIONS: nNa =0.0012   %;  ^ =  0.0012  %;  n  = 0.0012  I

-------
CO
00
en
     o
     o
    o
    0.
    31


    30


    29


    23


    16



    14


    12


    10


    8


    6


    4


    2


    0

NW RIM
                               o   VELOCITY  FROM TRAVERSE, 2/27/74,  1128-1143
                                  WIND:   16  km/hr FROM THE NNW

                                  Twet/Tdry:   H.O°C/15.0°C


                               x   MEASURED VELOCITY FROM FIRST DIAMETER, 2/28/74,  3/8-11/74

                                  MEASURED VELOCITY FROM SECOND DIAMETER
                                  3/13-15/74


                               O   TEMPERATURE, 2/27/74, 1128-1143
                                             FLUCTUATION
                                           J	L
J	L
                                 7     9    11    13    15    17     19

                                     POSITION  AND DISTANCE, feet
                                                                                ''• SE RIM
                    Figure  30.   Velocity  and  temperature profiles,  NW-SE  diameter.

-------
§
      DIAMETER:  NW-SE 1
                          POSITION:
DATE:    3/8/74
TIME FRAME: 1553-1621
      NOTE:   Concurrent IK Data Point:  Position   0.33
      PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA, TURKEY POINT
I

I
2
3
4
t;
o'
7
R
o
10
11
12
13
14
D(LOW)
t'JMI
10.
30.
50.
qg.
110.

200.
2-aO.
300.
"150.
400.
4-30.
SOO.
5-iJ.
OIHI 1
(IIMI
20.
50.
80.
110.
ISO.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL U
( Uhl
t.0.
20.
30.
30.
40.
50.
50.
50.
•30.
50.
50.
30.
50.
50.
LJILFM
(DM)
• 20.
to.
65.
95.
130.
175.
225.
27b.
325.
375.
4tS.
475.
525.
57t>.
P(b)
( »/UM-M3l
6.3JOE 03
l.JOOf 03
l.lOOL 02
1.300E 01
b.oooe oo
l.BOOt 00
3. 100E-01
1.300E-U1
S.OOOE-02
5.600E-02
3. 500E-02
2.500E-02
1.600E-02
1.3DOE-02
DtL X/DEL D
(UG/UM-M3)
2.639E
3. J51E
:.!>82E
5.836E
5.752E
5.051T
1.B49E
1.416E
1.436E
1.546E
1.407F
1.403E
1.212E
1.294E
01
01
01
00
00
00
00
00
00
00
00
00
00
00
DLL X
CUG/M3)
5.278E
6. 702E
4.745E
1.751E
2.301E
2.526E
9. 244E
7.U78E
7.190E
7.731E
7.034E
7.014E
6.061E
6.470c
02
02
02
02
02
02
01
01
01
01
01
01
01
01
DEL FLUX
(UG/M2-SEC)
5.430E
6.671E
4.831E
1.762E
2.277E
2.440E
8.678E
6.453E
6.367E
6.655E
5.8J1E
5.719E
4.616E
5.013E
03
03
03
03
03
03
02
02
02
02
02
02
02
02
PARTICLE VEL
(H/SECI
1.029E
1.025E
1.018E
l.OOoE
9.898E
9.661E
9.388E
9.117E
8.856E
8. 609E
d. 374E
8. 154E
7.945E
7.748E
01
01
01
01
00
00
00
00
00
00
00
00
00
00
                                    X        DRIFT FLUX   DRIFT MASS  EM-IS.
                                (UG/M?)     (UG/M2-ScC)      (UG/ScC)
                                                                             MASS MEDIAN  DIAM.
                                                                                   (UM)
                               i.90«E 03     2.857E 04     1. 034E  05                 66


      TOWER CONDITIONS:  Vu =  10.3 m/S   ;  Ta =33.0°C  ;  ^  = 36.2  °C  ;   T0 = 31.1  «C

                        Range:  5.1   °c  ;  Approach:  8.6   °c  ;   Heat Load:  -<.26.9MW
AMBIENT CONDITIONS:  Mind Speed:  17.6
                                                  ;  Wind Direction:   E    ;  Twet/Tdry  =  22. 5/25. 7 «C

-------
      DIAMETER;   NW-SE  1
POSITION:
DATE;    3/8/74
                                                                             TIME FRAME; 1723-1738
     NOTE:  Concurrent IK Data  Point:  Position   1.33
CO
oo
     PILLS AND SENSITIVE PAPER  PARTICLE DISTRIBUTION DATA.  TURKEY POINT
I
1
2
4
5
6
7
8
9
10
11
12
13
DILUM
(UM)
10.
30.
C rt
50.
no.
110.
150.
200.
250.
300.
350.
400.
450.
500.
D(HI )
(UM)
30.
50.
80.
110.
150.
200.
250.
30U.
350.
400.
•»bO.
500.
550.
DEL 0
(UP)
20!
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
U(CEN)
(UM)
2C.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
P(0)
(4/UM-M3)
7.900E 03
1.300E OJ
1.800E 02
2.300E 01
i.400t 01
S.oOOE 00
1.600E 00
5.600E-01
2.500E-01
1.300E-01
8.000E-02
5.000E-02
2.000E-02
DEL X/DEL 0
(UG/UM-M3)
3.309E
4.356E
2.588E
1.257E
1.610E
1.571E
9.543E
6.098E
4.494E
3.590E
3.216E
2.806E
1. 515t
01
01
01
01
01
01
00
00
00
00
00
00
00
DEL X
(UG/K3)
6.618E
8. 713E
7. 765E
3.771E
6.442E
7.857E
4.771E
3.049E
2.247E
1.795E
1.6U8E
1.403E
7.577E
02
02
02
02
02
02
02
02
02
02
02
02
01
DEL FLUX
(UG/M2-StC)
7. 537E
9.891E
8. 759E
4. 209E
7.085E
8.455E
5.004E
3. 1 1 5E
2.237E
1.742E
1. 523E
1.298E
6.653E
03
03
03
03
03
03
03
03
03
03
03
03
02
PARTICLE VEL
(M/SEC)
1.139E
1.135E
1.128E
1.116E
1.100E
1.076E
1.049E
1.022E
9.956E
9.709E
9.474E
9.254E
9.045E
01
01
01
01
01
01
01
01
00
00
00
00
00
                                    X
                                 (UG/M3)

                                5.680E  03
              DRIFT  FLUX
              IUG/M2-SLCI

               6.154E  04
     DRIFT MASS EMIS.
         (UC/SEC)

       2.049E  05
MASS MEDIAN DIAM.
      (UM)

       120
     TOWER CONDITIONS;   vu =  n.4ni/s  ;  Ta =32.0°C  ;  Tj =36.5  °C  ;  T0=3l.i  »c

                        Range:  5.4   °C  ;  Approach:  9.0   °C  ;  Heat Load:  i28.4 MM


     AMBIENT CONDITIONS:  Wind Speed: 19.4  Km/hr  ;  Wind Direction:   E   ;  Twet/Tdry = 22.1/25.0  °C

-------
DIAMETER:   NW-SE 1
POSITION:
DATE:    3/8/74
                                              TIME  FRAME:   1843-1943
NOTE:   Concurrent IK Data Point:  Position   2.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY  POINT
I

I
2
3
A
5
6
7
B

10
11
12
13

UILOWI
(UMI
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
430.
450.
500.
550.
D(HI 1
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
UEL D
(UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
DICEN)
(UMI
20.
4C.
65.

130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P(U) DEL X/DEL 0
( 0/UM-M3I
6. 300E 03
1.130E 03
2.000E 02
o.JOOE 01
1.300E 01
5.030E 00
1.230E 00
a.oooE-oi
4. iOOt-01
2.500E-01
1.400E-01
7.000E-02
4.000E-02
2.500E-02
(UG/UM-M3)
2.639E
3. 787E
2.B76E
1.796E
1.495E
1.403E
1.312E
8.711E
B. 088E
6. 9J3E
5.027E
3.928E
3.031E
1.489E
01
01
01
01
01
01
01
00
00
00
00
00
00
00
DEL X
(UG/.1JI
5.278E
7. 573E
8.628E
5. 387E
5.982E
7.015E
6. 56 IE
4.35bc
4.044E
3.451E
2.814E
1.964E
1.515E
1.244E
02
02
02
02
02
02
02
02
02
02
02
02
02
02
DEL FLUX
(UG/M2-SECI
6.010E
8. 5*7E
9.732E
6.014E
b. 579E
7.549E
6. 8«OE
4.450E
4.026E
3.351E
2.666E
1.817E
1.371E
1.101E
03
03
03
03
03
03
03
03
03
03
03
03
03
03
PARTICLE VEL
IM/SfcCI
1.139E
1.135E
1.12BE
1.116E
l.iOOE
1.076E
1.049E
1.022E
9.956E
9. 709£
9.474E
9.254E
9.J45E
6.848E
01
01
01
01
01
01
01
01
00
00
00
00
00
00
                               X
                            (UG/M3)

                           6.581E  03
               ORIFT  FLUX
               (UG/M2-5ECI

                7.014E  04
      DRIFT MASS EM1S.
          (UG/JEC)

        2.097E  05
MASS MEDIAN DIAM.
      (UM)

       150
TOWER CONDITIONS:   vu=ll.4m/s  ;   Ta  =  32.o°C  ;  ^ =  36.2°C  ;  T0 =  31.!»c

                   Range: 5.1   °C  ; Approach: 9.1   °C  ;  Heat Load:  ~26.9MW
AMBIENT CONDITIONS:  Wind Speed:  15.9  Km/hr   ;  Wind Direction:   E     ;   Twet/Tdry = 22.0/24.0  °C

-------
       DIAMETER:
              POSITION:
                                                        DATE:
                                             3/9/74
TIME FRAME; 1057-1155
CO
oo
       NOTE:  Concurrent IK Data  Point:  Position  3  33


       PILLS AND SENSITIVE  PAPER  PARTICLE DISTRIBUTION DATA.  TURKEY POINT
I

1
7
"1
4
'j
t,
f
);
v
10
11
12
13
• 1-*
J(L JW)
(IMI
I J.
30.
50.
HO.
ll'J.
150.
20J.
2-30.
300.
350.
400.
45'J.
500.
550.
 30.
 f J.
 no.
no,
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL n
('I'M
M.
30.
•jo.
40.
50.
50.
50.
50.
50.
SO.
50.
50.
50.
n ( r. F
,,,,,
4n
t-5
9S
130
175
2?5
275
3?5
"*7«5
47"i
475
57.5
575
n(p) n r |_ X/O=L O DEL X
(»/DM-
7.9()0=
l.T)0=
l.60"r
1. ?QC\C
I ,000C
.». irnc
7. 000=
1.000=
A. "?1ric
3. 500=
?. riOl=
1.300F
7.000E
4.nnoe
"31
03
03
^2
01
01
r»n
00
00
-01
-01
-°1
-01
-0?
-0?
(
3
3
?
1
1
I
1
I
1
9
I
7
5
3
• jr./UM.
.309 =
. 351F
.301 =
.437=
. 150E
. I ??c
.193E
.089E
.13? =
.664E
. r>05 =
.295=
. 304E
.98?c
-M3I
01
01
01
01
01
01
01
01
01
00
01
00
00
00
(
6.
ft.
A.
4.
4.
5.
5.
5.
5.
4.
5.
3.
7.
1.
UG/M'3)
618E
707F
902F
310=
601F
612 =
964 =
445E
66?F
832F
024=
647=
652F
991F
0?
02
0?
02
02
0?
02
02
02
0?
0?
07
02
02
DEL FLUX
( UG/M7-SEC)
7.338=
7.407E
7.578F
4.682=
4.923E
5.871E
6.076E
5.399E
5.467=
4.546E
4.610=
3.266E
2.319=
1.702F
03
03
03
03
03
03
03
03
03
03
03
03
03
03
PARTICLE VEL
(M/SECI
1.109E
1.105E
1.098=
1.086=
1.070=
1.046=
1.019F
9. 917=
9.656=
9.409E
9.174E
R.954E
9.745E
H.549E
01
01
01
01
01
01
01
00
00
00
00
00
00
00
                                        03
                                              ORIPT  FLUX   0
-------
      DIAMETER:   NW-SE  1
                           POSITION;
DATE:   3/9/74
TIME FRAME: 1217-1317
CO
u>
o
      NOTE:   Concurrent  IK Data Point:  Position 4.33
      PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA,  TURKEY POINT
I

1
2
3
4
5
6
7
8
•i
10
11
12
13
14
niicwi
( UMI
10.
30.
50.
BO.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
OIHI I
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
(UM
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
DCCfcM
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
•»75.
525.
575.
PIO)
Dt-L X/DEL D
(*/UM-M3» (UG/UM-M3)
B.900E 0>
l.OOOE 03
l.OOJE 02
i.400E 01
5.600E 00
l.SOCE 00
l.OOOc 00
4.000E-01
1.700E-01
8. JOOE-02
5. OOOE-02
3.100E-02
2.000E-02
1.400F-02
3.728E
3.351E
1.438E
6.285E
0.442E
7.015E
5.9i»4c
4. 356E
3.056E
2.209E
2.010E
1.740E
1.515E
1.394E
Ul
01
01
00
00
00
00
00
00
00
00
Ow
00
00
DEL X
(UG/M3)
7.456E
6.702E
4. 314c
1.885E
2.577E
3. 508E
2.982E
2.178E
1.5286
1.104E
1.005E
8. 698E
7.577E
6.968E
02
02
02
02
02
02
02
02
02
02
02
01
01
01
DcL FLUX
(UG/M2-SEC)
6.701E
6.000E
3. 831E
1.652E
2.215E
2.933E
2.412E
1.702E
1.154E
8.072E
7.109E
5.961E
3.035E
4.493E
03
03
03
03
03
03
03
03
03
02
02
02
02
Oe.
PARTICLE VEL
(N/SEC)
8.988E
8.952E
3.880E
8.763E
U.598E
8.361k
8.088E
7.817E
7.556E
7.309E
7.074E
6.854E
0.645E
6.448E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
                                     x
                                 (ur,/M3>


                                3.75&E 03
                                        JKIFT FLUX  OKIFT MASS tfMIS.

                                        (UG/M2-SECI     (UG/SECI
                                          3.167E  04
                                                              7.790E  04
                            MASS MEDIAN DIAM.

                                  (UM)

                                   85
      TOWER CONDITIONS:  Vu = 9.0  m/s  ;  Ta=31.2°C  ;   ^=35.8  °C  ;   T0=31.1   oc


                        Range: 4.7   <>c  .  Approach:  9-1   °C   ;   Heat Load:   -u24-8 MW
AMBIENT
                        ;  Wind Speed:  20.8  Km/hr  ;  Wind Direction:   SE   ;  Twet/Tdry  "  22.0/25.8 »c

-------
CO
to
      DIAMETER;    NW"SE
POSITION:
DATE;   3/9/74
TIME FRAME: 1333-1433
      NOTE:   Concurrent  IK Data Point:  Position  5.33
      PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I

1
2
3
4
5
6
7
8
9
10
11
12
13
1*
niLOwi
(UMI
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
D(HI)
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
(UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
DICEN)
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
PCD)
(*/UM-M3)
5.000E 03
7.10GE 02
6.300E 01
1.100E 01
3.500E 00
1.300E 00
5.000E-01
2.000E-01
l.OOOE-01
5.000E-02
2.800E-02
1.600E-02
9.00UE-03
5.000E-03
DEL X/DEL 0
(UG/UM-M3)
2.094E 01
2.379E 01
9.059E 00
4.938E 00
4.026E 00
3.648E 00
2.982E 00
2.178E 00
1.797E 00
1.381E 00
1.125E 00
8. 978E-01
6.819E-01
4.977E-01
DEL X
(UG/M3)
4.189E
4. 758E
2.718E
I.481E
1.610E
1.824E
1.491E
1.089E
8. 987E
6. 903E
5.627E
4.489E
3. 409E
2.489E
02
02
02
02
02
02
02
02
01
01
01
01
01
01
DEL FLUX
(UG/M2-SEC)
3.136E
3. 546E
2.006E
1.076E
1. 143E
1.252E
9.822E
6. 879E
5.443E
4.010E
3. 157E
2.403E
1.754E
1.231E
03
03
03
03
03
03
02
02
02
02
02
02
02
02
PARTICLE VEL
(M/SECI
7.488E
7.452E
7.380E
7.263E
7.098E
6.861E
6.588E
6.317E
6.056E
5.809E
5.574E
5.354E
5. 145E
4.948E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
                                     X
                                  (UG/M3)

                                2.235E 03
              DRIFT FLUX   DRIFT  MASS  EMIS.
              (UG/M2-SEC)      (UG/SEC)
                           MASS MEDIAN DIAM.
                                 (UM)
               1.563E 04
        3.375E  04
           75
      TOWER CONDITIONS:  vu =  7.5  m/s   ;  Ta-31.i-C  ;  T,  = 35.8 °C   ;  T0 -31.1  °C

                        Range:  4.7  °C   ;  Approach:  8.6    °C   ;  Heat Load:  -v.24.8MW
     AMBIENT CONDITIONS;  Wind Speed:  20.8 Km/hr  ;  Wind Direction:  SE     .  Twet/Tdry - 22.5/25.7 °C

-------
     DIAMETER:   N""SE
                      POSITION:
                                           22
                            DATE:
                                                    2/28/74
                                                                   TIME FRAME:
     NOTE:  Concurrent IK Data Point:  Position  21.33
ID
ro
     PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
01 LOW)  U(HI)
 (DM)    (UMI
1
?
3
4
5
6
7
8
0
10
11
12
13
14
10.
30.
50.
SO.
110.
150.
200.
25U.
300.
350.
400.
450.
500.
550.
30
50
80
110
150
200
250
300
350
400
450
500
550
600
DEL n
 I UMI
D(CEM
 (UMI
                                             P(Ul
DEL X/DcL D
 IUG/UM-M3)
 DEL  X       DfcL  FLUX   PARTICLE VEL
(UG/M3I    (UG/M2-SEC)    (M/SECI
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
7.100E 03
l.OOOE 03
1.300E 02
2.JOOE 01
5.000E 00
1.1 OOE 00
2.800E-01
l.OOOE-01
5.000E-02
3.100E-02
2.JOOE-02
1.300E-02
8.000E-03
6. JOOE-03
2.974E 01
3.351E 01
1.8o9E 01
8. 976E 00
5.752E 00
3.087E 00
1.670E 00
1.089E 00
8.987E-01
8.560E-01
8.039E-01
7. 295E-01
6.061E-01
5.972E-01
5.948E
6. 7U2E
5.608E
2.694E
2.3015
1.543E
8. 350E
5.445E
4.494=
4. 280E
4.019E
3.647E
3. 03 IE
2.986E
02
02
02
02
02
02
01
01
01
01
01
01
01
01
5.703E
6. 402E
5.316E
2.522E
2.1166
1.383E
7.254E
4. 583E
3.665E
3. 385E
3.085E
2.719E
2. 196E
2.105b
03
03
03
03
03
03
02
02
02
02
02
02
02
02
9.588E
9.552E
9.480E
9.363E
9.198E
8.961E
8.688E
B.417E
8.156E
7.909E
7.074E
7.454E
7.245E
7.048E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
                                   X
                                (UG/P3)

                              2.B42E 03
                                   DRIFT  FLUX   DRIFT MASS EMIS.
                                   (UG/M2-SECI     (UG/SEC)
                                    2.634E 04
                                   6.612E 04
                                                MASS MEDIAN DIAM.
                                                      (UM)

                                                       58
      TOWER CONDITIONS;   Vu  = 9.6  m/s  ;  Ta  = 24.6'C ;  Tf = 26.9  °C  ;  T0 =23.6 °C

                        Range:  3.3  °C  ; Approach:  8.1  °C  ;   Heat Load:  O7.4MW

      AMBIENT CONDITIONS: Wind Speed:  14.1 Km/hr   ;  Wind Direction:   E     ;  Twet/Tdry = 15.5/21.2  «c

-------
 DIAMETER:    NW-SE 1
                           POSITION:    23
DATE:    2/28/74
TIME FRAME;  1533-1635
NOTE:  Concurrent IK Data  Point:  Position  22.33


PILLS AND SENSITIVE PAPER  PARTICLE DISTRIBUTION DATA. TURKEY POINT
I

1
2
3
4
5
6
7
8
9
10
u> 11
Ifi
2 12
13
14
DdOWl
( JM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
0(HI )
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 3
(UM)
20.
20.
30.
30.
40.
50.
SO.
50.
50.
50.
50.
50.
50.
50.
D(CEN)
(UMI
20.
40.
b5.
95.
130.
175.
225.
275.
325.
375.
W5.
475.
525.
575.
PIDI
(0/UM-M3*
6.300E 03
l.OOOE 03
2.000E 02
3.500E 01
6.300E 00
l.'JOOE 00
2.300E-01
l.OJOE-01
6.300E-02
3.500E-02
2.500E-02
1.400E-02
l.JOOE-03
8.000E-03
DEL X/DEL 0
(UG/UM-M3)
2.639E 01
3.351E 01
2.876E 01
1.571E 01
7.247E 00
2.806t 00
1.670E 00
1.089E 00
1.132E 00
9.664E-01
1.005E 00
7.856E-01
7.577E-02
7.963E-01
DEL X
(UG/M3I
5.278E
6. 702E
8.628E
4.714E
2.899E
1.403E
8.350E
5.445E
5.662E
4. 832E
5.0245
3.928E
3. 788c
3.982E
02
02
02
02
02
02
01
01
01
01
01
01
00
01
DEL FLUX
(UG/M2-SEC)
6. 327E
8.010E
1.025E
5.545E
3.362E
1.594E
9.258E
5.889E
5.977E
4. 981E
5.062E
3.871E
3.654E
3. 762E
03
03
04
03
03
03
02
02
02
02
02
02
01
02
PARTICLE VEL
IM/SECI
1.199E
1.195E
1.188E
1.1 76E
1.160E
1.136E
1.109E
1.082E
1.056E
1.031E
1.007E
9.854E
9.045E
9.448E
01
01
01
01
01
01
01
01
01
01
01
00
00
00
                               X
                            (UG/M3)

                          3.338E 03
                                        DRIFT FLUX   DRIFT  MASS ENIS.
                                        (UG/M2-SECI      (UG/SECI
                                         3.90UE 04
       1.096E 05
    MASS MEDIAN  DIAM.
          (UM)

           66
TOWER CONDITIONS;  vu = 12.0 m/S  ;  Ta = 24.8°C  ;  Tf = 27.2  °C  ;  T0»23.6  «>c

                  Range:  3.6  °C  ;  Approach: 8.0   »c  .   Heat Load:  ,J9. 0
AMBIENT
                 ,;  Wind Speed:   n.2  Km/hr  ;  Wind Direction:   E    ;  Twet/Tdry =  15.6/22.0 «»c

-------
00
10
      DIAMETER;    "H-SE
POSITION:   24
DATE:    9/?R/74
TIME FRAME; 1656-1756
      NOTE:   Concurrent IK Data Point:   Position   23.33
      PILLS AND SENSITIVE PAPER PARTICLE  DISTRIBUTION DATA. TURKEY POINT
I

1
2
3
4
5
ft
7
8
9
10
11
12
13
14
n(Lnw)
(JM)
10.
30.
50.
80.
110.
150.
200.
250.
TJO.
350.
400.
450.
500.
550.
D(HI )
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
ObL i>
(UM)
20.
20.
JO.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
D(CEN)
(UM)
20.
40.
t>5.
95.
UO.
175.
225.
275.
325.
375.
425.
•*75.
925.
575.
P(D) .
DEL X/DEL D
(•*/UM-M3» IUG/UM-M3)
5.6UOE 03
1.300E 03
2.500E 02
5.000E 01
6.900E 00
2.200E 00
6.300E-OL
2.200E-01
3.900E-02
4.400E-02
3.1UOE-02
2.20JE-02
1.600E-02
1.100E-02
2.346E
4. 356E
3.595E
2.245E
1.024E
6.174E
3. 757E
2.396k
1.600E
1.215E
1.24bE
1.235E
1.212E
1.095E
01
01
01
01
01
00
00
00
00
00
00
00
00
00
DEL X
(UG/M3I
4.691E
B. 713E
1.078E
6.734E
4. 095E
3.087E
1.379E
1.198E
7.999E
6.075E
6.230E
6. 173E
6. 061E
5.475E
02
02
03
02
02
02
02
02
01
01
01
01
01
01
DEL FLUX
(UG/M2-SEC)
5.905E
1.094E
1.346E
8.325E
4.995E
4.692E
2.196E
1.368E
6.92JE
6.626E
6. 650E
6.453E
6. 210E
3.501E
03
04
04
03
03
03
03
03
02
02
02
02
02
02
PARTICLE VEL
(M/SEC)
1.259E
1.
-------
 DIAMETER:   NW-SE 1
POSITION:
25
                                                 DATE:
2/28/74
                                TIME FRAME: 1240-1340
NOTE:  Concurrent IK Data Point:  Position  24.33
I
1
<_
3
5
t,
7
i. J
W 11
Ul » «_
12
it
U I L J n J
( U,M 1
iJ.
30.
60.
«
20J.
30>J.
t50.
50J.
350.
D(IU )
50.
-* w •
3C.
110.
15C.
200.
250.
300.
350.
400.
<*50.
500.
550.
600.
TEL [i
20.
?n
t. VJ «
JO.
30.
*C.
50.
50.
50.
50.
'iO.
50.
50.
50.
CJ")
20.
1 3C.
I"7?.
225.
275.
27*.
<•?•=.
5751
p
-------
DIAMETER:
NH-SE 1     POSITION:    26
DATE:   2/28/74
TIME FRAME:   "20-1220
NOTE:  Concurrent  IK Data Point:   Position    25.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT












OJ
ID
O>


I

I
2
3
4
•5
6
7
8
9
10
11
12
1?
1*
OILOWI
( JM)
10.
30.
bO.
90.
110.
15U.
200.
2-50.
300.
350.
400.
45U.
500.
550.
OIMI 1
(UMI
30.
50.
bO.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
MEL J
(UM)
<0.
20.
30.
JO.
40.
50.
50.
50.
50.
50.
bO.
50.
50.
50.
OICLN)
(UM)
20.
40.
65.
95.
130.
175.
225.
?75.
325.
375.
t25.
475.
525.
575.
PIDI
(W/UH-H3)
4.000E 03
0.300E 02
d.9JOfc 01
1.300E 01
2.200E CO
4.500E-01
l.OOOE-Ol
3.200E-02
1.300E-02
8.000E-03
5.000E-03
3.100E-03
2.500E-03
2.000E-03
CEL X/DEL 0
(UO/UM-M3)
1.676E 01
2.111E 01
1.280E 01
5.836b 00
2.531E 00
1.26JE 00
5.9e>4E-Ol
3.485E-01
2.337E-01
2.209E-01
2.010E-01
1.740E-01
1.894E-01
1.991E-01
DEL X
IUG/M3)
3. 351E
4.222E
3. 839E
1.751E
1.012E
6. 314E
2.982E
1.742E
1. 168E
1.104E
1.005E
8.698E
9.471E
9. 954E
02
02
02
02
02
01
01
01
01
01
01
00
00
00
DEL FLUX
(UG/M2-SEC)
3.012E
3.780E
3.409E
1.534E
8.704E
5.279E
2.412E
1.362E
8.828E
8.072E
7. 109E
5.961E
6.294E
6.419E
03
03
03
03
02
02
02
02
01
01
01
01
01
01
PARTICLE VEL
(M/SEC)
8.988E
8.952E
8.880E
8.763E
8.598E
8.361E
8.088E
7.817E
7.556E
7.309E
7.074E
6.854E
6.645E
6.448E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
                              X
                           (UG/M3)

                          1.589E  03
                        DRIFT FLUX  DRIFT MASS EMIS.
                        (UG/M2-SEC)     (UG/SECI
                            MASS MEDIAN DIAM.
                                  (UM)
                          1.394E  04
       5.045E 04
                                                                                   53
TOMER CONDITIONS;  Vu = 9.0  m/s   ;  Ta =24.5 "C ;  If = 26.8 «c  ;  T0 = 23.3  QC

                  Range:  3.5  °C  ;  Approach: 7.8   °C  ;  Heat Load:  * 18.5MW
AMBIENT CONDITIONS;  Wind Speed:  11.0  Kra/hr  ;  Wind Direction:   E     ;   Twet/Tdry = 15.5/20.3  «c

-------
                        TURKEY POINT  ISOKINETIC SAMPLING SUMMARY FOR DIAMETER NW-SE  1
IK Tube
Position
0.3
1.3
2.3
3.3
4.3
5.3
21.3
22.3
23.3
24.3
25.3
U)
10
-J
Date
3/08/74
3/08/74
3/08/74
3/09/74
3/09/74
3/09/74
2/28/74
2/28/74
2/28/74
2/28/74
2/28/74


MNa
(ug)
1,939
2,239
3,539
3,589
3,209
2,599
3,178
4,183
3,598
3,473
2,748


%
(vg)
210
240
383
413
363
287
362
460
422
380
308


VS
(m3)
20.0
22.2
18.6
17.1
17.0
15.2
17.98
22.81
22.95
20.49
15.98


*U
(m/s)
7.8
10.4
11.8
11.9
10.5
8.45
7.3
10.6
12.4
12.4
10.4


'Na
CNa
0.82
0.82
0.82
0.89
0.89
0.89
1.27
1.27
1.27
1.27
1.27


CMg
CMg
0.89
0.89
0.89
0.91
0.91
0.91
1.29
1.29
1.29
1.29
1.29


Fa
FNa
(wg/m2-s)
620
860
1,841
2,223
1,764
1,286
1,639
2,469
2,469
2,669
2,271


FMg
(ug/m2-s)
73
100
216
262
204
145
190
276
294
297
259


AA
(n.2)
4.47
3.52
3.28
2.93
2.60
2.35
2.32
2.61
2.9
3.20
3.49


<
Na
(ug/s)
2,771
3,027
6,038
6,513
4,586
3,022
3,802
6,444
7,160
8,540
7,926


*"M
Mg
(ug/s)
326
352
708
768
530
341
441
720
853
950
904


                                                                                       TOTALS:  59,829   6,893
TOTAL MASS EMISSION  RATES ARE:
•L
                                   =59,829   yg/s and m*  =  6,893  wg/s If the basin water concentration equal  the
mean concentrations  CNa and CMg as listed 1n Table 1  , and 1f the water flow rate equals l,272kg/s (or  20,000gpm).
MINERAL MASS EMISSION  FRACTIONS: nNa =0.00049  X; nMg = 0.00052 *; n = 0.000505*

-------
                   TURKEY POINT  ISOKINETIC DATA EXTENSION FOR DIAMETER  NM-SE  1
              *Na
Position    (ug/m3)      (ug/m3)      (m/s)      (ug/m2-s)
                                                  Mg
                                              (ug/m2-s)
                                                  AA

                                                 (m2)
                                                AlI1M
                                                  Na
                                               (ng/s)
                                                  a
                                                  Mg
                                               (ug/s)
  6.3
  7.3
  8.3
152
152
152
17.2
17.2
17.2
6.8
4.15
1.65
1034
 631
 251
117
71.4
28.4
2.06
1.77
1.48
2130
1117
 371
 241
 126
42.0
 19.3
 20.3
 26.3
225
225
218
26.0
26.0
24.9
0.55
3.5
8.3
 124
 788
1809
14.3
91.0
207
1.71
2.03
4.95
 212
1600
8955
24.5
 185
1025
                                                                    TOTALS:
                                                                      14,385
                                                                                              1,644
UPPER LIMIT OF MINERAL MASS EMISSION FRACTIONS:
                   0.00060%
                      n'  =  0.00064%
                       Mg
                                                          n1   =  0.00062%

-------
       DIAMETER:
NW-SE 2
              POSITION:
DATE:    3/13/74
TIME FRAME:  1218-1318
       NOTE:  Concurrent IK Data Point:  Position  0.33
       PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA,  TURKEY POINT
to
u>
VO
I

1
2
3
4
5
6
7
R
9
10
11
12
13
1«
n(LOw)
(UMI
10.
30.
so.
ao.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
0(HI I
«UM)
30.
50.
BO.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0

-------
o
o
       DIAMETER:    NW"SE 2
POSITION:
DATE:    3/13/74
TIME FRAME: 1357-1457
       NOTE:  Concurrent IK Data Point:   Position   1-33
       PILLS AND SENSITIVE PAPER PARTICLE  DISTRIBUTION  DATA. TURKEY POINT
I

I
1
3
4
5
6
7
*
9
10
11
12
13
14


IHLOW)
(IJM)
10.
30.
50.
10.
110.
150.
200.
?5fl.
300.
350.
400.
450.
500.
550.


OIHI I
(UM)
30.
50.
80.
110.
150.
200.
250.
303.
350.
400.
450.
500.
550.
600.


DEL D
(UM)
20.
20.
30.
30.
40.
50.
50.
bO.
50.
50.
50.
50.
50.
50.
X
(UG/M3)
D(CEM P(D)
(UN) (4/UM-M3)
20. B.900E 03
40. 1.400E 03
65. 1.400E 02
95. 3.20J£ 01
130. 1.300E 01
175. b.OOOE CO
225. 1.300E 00
275. 3.500E-01
325. 1.800E-01
375. d.900E-02
4«J5. 3.5UOE-02
475. l.oOOE-02
525. 7.900 E-03
575. 4 500 E-03
DRIFT FLUX
(U3/H2-SEC)
UEL X/DEL 0
(UG/UM-M3)
3.728E 01
4.691E 01
I.G13E 01
1.437E 01
1.495E 01
1.403E 01
7.753E 00
3.811E CO
3.235E 00
2.457E 00
1.407E 00
8.976E-01
5.988 E-01
4.478 E-01
DRIFT MASS
(UG/SEC)
DEL X
(UG/M3)
7.456E 02
9.383E 02
6.039E 02
4.310E 02
5. 982E 02
7.015E 02
3.877E 02
1.906E 02
1.618E 02
1.229E 02
7.034E 01
4.4B9E 01
2.994 E 01
2.234 E 01
EMIS.

DEL FLUX
(UG/M2-SEC
5. 359E 03
6.711E 03
4. 276E 03
3.001E 03
4.066k 03
4.603E 03
2.438E 03
1.147E 03
9.312E 02
6.768E 02
3. 710E 02
2.269E 02
1.451 E 02
1.041 E 02
MASS MEDIAN
(jim)
PARTICLE VEL
1 (M/SEC)
7.188E 00
7.152E 00
7.U80E 00
6.963E 00
6.798E 00
6.561E 00
6.288E 00
6.017E 00
5.756E 00
5.509E 00
5.274E 00
5.054E 00
4.845 E 00
4. 640 E 00
DIAM.

                        5.049E  03
        3.405E  04
      1.168E  05
              95
        TOWER  CONDITIONS:  Vu =  7.2  m/s  ;  Ta =30.2»C  ;  Tj = 33.2 «c  ;  T0 = 28.6 »c



                          Range:  4.6   °C  ;  Approach:   7.8  °C  ;  Heat Load:  0.24.3 MM
        AMBIENT CONDITIONS;  Wind Speed:  12.3  Km/hr  ;  Wind Direction:  N-NW  ;  Twet/Tdry  = 20.8/27.8 «c

-------
 DIAMETER:
NW-SE 2
            POSITION:
DATE:   3/13/74
TIME FRAME;  1519-1545
 NOTE:  Concurrent IK Data  Point:  Position  2.33


 PILLS AND SENSITIVE PAPER  PARTICLE DISTRIBUTION  DATA. TURKEY POINT
I

I
2
3
4
5
6
7
a
9
10
11
12
13
14
D(LOWI
(UM)
,
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
025.
575.
PCD)
U/UM-M3)

l.lOOfc 04
2.000E 03
4.000E 02
7.900E 01
2. 800t 01
8.900E 00
2.800E 00
1.600E 00
8.900t-01
5.000E-01
2.800E-01
1.400E-01
7.900C-02
4. 500E-02
DEL X/DEL D
(UG/UM-M3)

4.608E
6.702E
5.752E
3. 546E
3.221E
2.497E
1.670E
1.742E
1.600E
1.381E
1.125E
7. 856E
5.986E
4.479E

01
01
01
01
01
01
01
01
01
01
01
00
00
00
DEL X
(UG/M3I
o
9.215E
1.340E
1.726E
1.064E
1.188E
1.249E
8.350E
8.711E
7.999E
6.903E
5.627E
3. 928E
4.993E
2.240E

02
03
03
03
03
03
02
02
02
02
02
02
02
02
DEL FLUX
(UG/M2-SECI

8.835E
1.280E
1.636E
9.962E
1.185E
1.119E
7.254E
7.332E
6.524E
5.459E
4.319E
2.928E
2.168E
1.579E

03
04
04
03
04
04
03
03
03
03
03
03
03
03
PARTICLE VEL
(M/SEC)

9.588E
9.552E
9.480E
9.363E
9.198E
8.961E
8.688E
8.417E
8.156E
7.909E
7.674E
7.454E
7.245E
7.048E

00
00
00
00
00
00
00
00
00
00
00
00
00
00
                             X
                          (UG/M3)

                         1.226F  J4
                        DRIFT FLUX   DRIFT  MASS  EMIS.
                        (UG/M2-SEC)     (UG/SEC)
                         1.086E 05
      3.409E  05
                           MASS MEDIAN  DIAM.
                                 (UM)
           144
TOUER CONDITIONS;  vu =  9.6  m/s  ;  Ta=30.1°C ;  Tj =33.2  °C   ;  T0 = 28.9 »C

                  Range: 4.3   »c  .  Approach: 7.0   QC  .   Hfiat Load.
        CQNPnTONS;  Wind Speed:  7.8  Km/hr  ;  Wind Direction: N-NW  ;  Twet/Tdry - 21.9/26.1  "C

-------
       DIAMETER:
                    NW-SE 2
POSITION:
DATE:   3/13/74
TIME FRAME: 1641-1741
o
ro
       NOTE:  Concurrent  IK Data Point:   Position   3.33
       PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I

1
2
3
4
5
6
7
8
9
10
11
12
13
I*
UILOW)
( UMI
10.
30.
•>o.
40.
110.
150.
200.
250.
300.
350.
400.
0.
50.
50.
50.
50.
50.
50.
50.
DCCEMI
(JMI
20.
40.
e>5.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P(D)
(#/UM-M3)
l.OOOE 04
1.600E 03
3.200k 02
5.600C 01
l.tfOOt 01
5.0JOE 00
2.500E 00
1.400E 00
7.100E-01
3.200fc-01
1.100E-01
4.500E-02
2.000E-02
l.OOOE-02
OEL X/DEL L>
(UG/U1-M3I
4. 189E
5.362E
4.601E
2.514E
2.071E
1.4J3E
1.491E
1.524E
1.27oE
8.836E
4.421E
2.525E
1.515E
01
01
01
01
01
01
Oi
01
01
00
00
00
00
9.954E-01
OEL X
(UG/M3)
8. 378E
1.072E
1.380E
7.5425
8.2836
7.015E
7.433E
7.622E
o. 381E
4.41UE
2.2115
1.263E
/.577E
4. 977E
02
03
03
02
02
02
0£
02
02
02
02
02
01
01
DEL FLUX
(UG/M2-SfcCI
8.535E
1.089E
1.391E
7.514E
8.115E
6.708E
6.924E
6.673E
5.587E
3. 759E
1.829E
1.017E
5.944E
3.807E
03
04
04
03
03
03
03
03
03
OJ
03
03
02
02
PARTICLE VEL
(M/SEC)
1.019E
1.015E
1.008E
9.963E
9. 798E
9.561fc
9.288E
9.017E
8.756E
8.509E
8.274E
8.054E
7. 845E
7.648E
01
01
01
00
00
00
00
00
00
00
00
00
00
00
                                      X

                                   (UG/M3)




                                  8.635E  03
              ORIFT FLUX  DklFT MASS EMIS.   MASS MEDIAN DIAM.

              (UG/M2-SEC)     (UG/SECI              (UM)
                8.264E  04
        2.347E  05
                                                                                         123
       TOWER CONDITIONS:  Vu =  10.2m/s  ;  Ta=30.3«C  ;  Tf =33.0  «c  ;  T0 = 29.2 oc



                         Range:  3.8  °C  ;  Approach:  6.8   °C  ;  Heat Load:  ^20.1  MW
       AMBIENT CONDITIONS:  Wind Speed:  8.0   Km/hr   ;  Wind Direction: N-NW  ;   Twet/Tdry  =  22.4/26.2 °C

-------
o
U)
        DIAMETER:    NW-SE 2
POSITION:
DATE:   3/13/74
TIME FRAME:  1822-1922
        NOTE:   Concurrent IK Data Point:   Position   4.33
        PILLS AND SENSITIVE PAPER PARTICLE  DISTRIBUTION DATA, TURKEY POINT
I
1
2
3
4
5
6
7
8
9
10
11
12
13
14
04LGWI
(JMI
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
0(HI )

-------
DIAMETER:   NM"SE 2
POSITION:
DATE:    3/14/74
TIME FRAME: 1111-1140
NOTE:   Concurrent IK Data Point:   Position   5.33
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
I

1
2
3
it
5
6
7
n
9
ID
11
OILCWl
(UM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
4-00.
DIHI I
(UM)
30.
DC.
80.
110.
15G.

-------
        DIAMETER:
POSITION;   20
                                                        DATE;  3/14/74
                                              TIME  FRAME;  1258-1358
       NOTE:  Concurrent IK Data  Point:  Position   19.33
o
en
       PILLS AND SENSITIVE  PAPER PARTICLE DISTRIBUTION DATA. TURKEY >OINT
I
1
2
3
4
5
t>
7
8
9
10
11
12
13
14
DILOW)
( JM)
10.
10.
so.
no.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
OIHI I
(UH)
30.
50.
30.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
(UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
DICENI
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P(0)
J/»/UM-M3)
7.900E 03
l.OOOE 03
2.300E 01
4. 500E 00
1.300E 00
3.200E-01
1.100E-01
4.500E-02
2.200E-02
1.300E-02
8.900E-03
6.300E-03
4.000E-03
2.800E-03
DEL X/DEL D
(UG/UM-M3)
3.309E 01
3.351E 01
4.026E 00
2.020E 00
1.4956 00
8.980E-01
6.561E-01
4.900E-01
3.954E-01
3.590E-01
3.577E-01
3.535E-01
3.031E-01
2.787E-01
DEL X
(UG/N3)
6.618E 02
6.702E 02
1.208E 02
6.060E 01
5. 982E 01
4.490E 01
3.280E 01
2.450E 01
1.977E 01
1.795E 01
1.7U9E 01
1.768E 01
1.515E 01
1.394E 01
DEL FLUX
IUG/M2-SEC)
2.374E 03
2.381E 03
4.203E 02
2.038E 02
1.913E 02
1.330E 02
8.816E 01
5.922E 01
4.263E 01
3.425E 01
2.995E 01
2.570E 01
1.887E 01
1.461E 01
PARTICLE VEL
«M/SEC!
3.588E 00
3.552E 00
3.480E 00
3.363E 00
3.198E 00
2.961E 00
2.688E 00
2.417E 00
2.156E 00
1.909E 00
1.674E 00
1.454E 00
1.245E 00
1.048E 00
                                     X

                                  (UG/M3I
             DRIFT  FLUX   DRIFT  MASS EMIS.

             JUG/M2-SEC)     
-------
DIAMETER;
            NW-SE 2
      POSITION:
                    DATE:  3/14/74
                                                  TIME FRAME; 1830-1915
NOTE:   Concurrent IK Data Point:  Position   20.33


PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
 I  O(LOW)  DIHI I
     (UMI    (UM)
1
2
3
i.
5
6
7
8
9
10
11
12
13
14
10.
30.
50.
RO.
110.
150.
?00.
250.
300.
350.
400.
450.
500.
550.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
OfcL U
 (UM)
O(CEN)
 (UM)
                                        P(0)
DEL  X/DEL D
 (UG/UM-M3I
 DEL  X       DEL FLUX  PARTICLE  VEL
(UG/M3)     (UG/M2-SECI    (M/SECI
20.
20.
30.
JO.
40.
50.
50.
50.
5U.
50.
50.
50.
50.
50.
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
7.900E 03
1.600E 03
1.400E 02
1.400E 01
4.0UOE 00
2.000E 00
l.OOOE 00
5.000E-01
2.000E-01
1. 3006-01
7.900E-02
5.600E-02
4.000E-02
2.800E-02
3. 309E
5.362E
2.013E
6.285E
4.601E
5.612E
5.964E
5.4<»5E
3. 595E
3.590E
3. 175E
3.142E
3.031E
2.787E
01
01
01
00
00
00
00
00
00
00
00
00
00
00
6. 61 BE
1.072E
6.039E
1.885E
1.841E
2.806E
2.982E
2.722E
1.797E
1.795E
1.588E
1.571E
1.515E
1.394E
02
03
02
02
02
02
02
02
02
02
02
02
02
02
4.
7.
3.
1.
1.
1.
1.
1.
9.
8.
7.
6.
6.
5.
360E
026E
913E
200E
141E
673E
696E
475E
268E
81 OE
422fc
998E
433E
641E
03
03
03
03
03
03
03
03
02
02
02
02
02
02
6.588E
6.5S2E
6.480E
6.363E
6. 198E
5.961E
5.688E
5.417E
5.156E
4.909E
4.674E
4.454E
4.245E
4.048E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
                              X        DRIFT FLUX   DRIFT  MASS  EM1S.
                           (UG/M3)     (UG/M2-SECI     (UG/SECI
                          4.528E  03
                     2.694E  04
                                                       5.71IE 04
                                               MASS MEDIAN DIAM.
                                                     (UM)

                                                      76
 TOWER CONDITIONS;  Vu =  6.6  m/s  '.  Ta = 30.5°C  ;  Tj=33.2 °C  ;  T0 =28.9  °C

                  Range:  4.3   °C  ;  Approach:  9.6   °C   ;  Heat Load:  *22.7 MW
 AMBIENT CONDITIONS;  Wind Speed: 15.9  Km/hr  ;  Wind Direction:  NE    ;  TWet/Tdry =19-3/22-8  °C

-------
 DIAMETER:     NW-SE 2
 POSITION:    22
                                                 DATE;   3/15/74
                                              TIME FRAME; 1300-1400
 NOTE:  Concurrent IK Data Point:   Position    21.33
 PILLS AND SENSITIVE PAPER PARTICLE  DISTRIBUTION DATA.  TURKEY POINT
I
1
?
3
4
5
6
7
8
9
10
11
12
13
14
D(LOM
(UM)
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
OIHI )
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 0
IUM)
20.
20.
30.
30.
40.
50.
50.
50.
5C.
50.
50.
50.
50.
50.
D(CEN)
(UM)
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
P(D»
(0/UM-M3)
l.OOOE 04
2.000E 03
1.400E 02
1.100E 01
2.300E 00
8.900E-01
3.500E-01
l.SOOE-01
8.900E-02
5.000E-02
3.200E-02
2.200E-02
1.600E-02
1.100E-C2
DEL X/DEL 0
(UG/UM-H3)
4. 189E 01
6. 702E 01
2.013E 01
4. 93SE 00
3.221E 00
2.497E 00
2.087E 00
1.960E 00
1.600E 00
1.381E 00
1.246E 00
1.235E 00
1.212E 00
1.095E 00
DEL X
(UG/M3I
8.378E 02
1.340E 03
6. 039E 02
1.481E 02
1.288E 02
1.249E 02
1.044E 02
9. 800E 01
7.999E 01
6. 903E 01
6.431E 01
6.173E 01
6. 061E 01
5.475E 01
DEL FLUX
IUG/M2-SEC)
6.524E 03
1.039E 04
4.638E 03
1.120E 03
9. 531E 02
8.943E 02
7. 189E 02
6.485E 02
5.084E 02
4.217E 02
3.778E 02
3.490E 02
3.301E 02
2.873E 02
PARTICLE VEL
CM/SEC)
7. 788E 00
7.752E 00
7.680E 00
7.563E 00
7.398E 00
7.161E 00
6.888E 00
6.617E 00
6. 356E 00
6.109E 00
5.874E 00
5.654E 00
5.445E 00
5.248E 00
     X         ORIFT FLUX  DRIFT MASS  EMIS,
 (UG/M3)      (UG/M2-SEC)     IUG/SEC)

3.777E  03     2.816E  04    6.815E 04
                                                                           MASS MEDIAN DIAM.
                                                                                 (UM)

                                                                                  46
TOWER CONDITIONS:  vu = 7.8  m/s  ;   Ta=32.0'C ;  TI = 35.0  -c   .  TO B 30.8 oc

                  Range: 4.2   »c  ;  Approach:  8.1   »c  .   Heat Load:  ^22.1MW


AMBIENT CONDONS:  Wind Speed:  22.3  Kn/hr  ;  Wind  Direction:   E   .  Twet/Tdry = 22.7/25.6  «c

-------
-
g
         DIAMETER:    NW-SE 2
POSITION;    23
DATE;    3/15/74
TIME FRAME:
         NOTE:  Concurrent  IK Data Point:   Position   22.33
         PILLS AND SENSITIVE PAPER PARTICLE  DISTRIBUTION DATA. TURKEY POINT
I

1
2
1
4
5
6
7
8
9
10
11
12
13
DILOW)
(UMI
10.
30.
50.
80.
110.
ISO.
200.
250.
300.
350.
400.
450.
500.
OJHI 1
(UMI
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
«t50.
500.
550.
DtL 0
(UM)
20.
20.
30.
30.
4U.
50.
50.
50.
50.
50.
50.
50.
50.
D(CEN)
(UMI
20.
'. 0.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
Plot
(0/UM-M3I
l.OOOE 04
l.oOOE 03
7.100E 01
8.900E 00
2.800E 00
1.1 OOE 00
5.000E-01
2.500E-01
1.400E-01
7.900E-02
4.000E-02
2.000E-02
1.100E-02
DEL X/DEL 0
(UG/UM-M3I
4.i89E
5.362E
1.021E
3.995E
3.221E
3.087E
2.982E
2.722E
2.516E
2.181E
1.608E
1.122E
01
01
01
00
00
00
00
00
00
00
00
00
8.334E-01
DEL X
IUG/H3I
8. 378E
1.072E
3.063E
1.199E
1.288E
1.543E
1.491E
1.361E
1.258E
1.091E
8.039E
5. 612E
4. 167E
02
03
02
02
02
02
02
02
02
02
01
01
01
DEL FLUX
(UG/M2-SECI
9.037E
1.1536
3.271E
1.266E
1.340E
1.568E
1.474E
1.309E
1.177E
9.934E
7. 134E
4. 856E
3.519E
03
04
03
03
03
03
03
03
03
02
02
02
02
PARTICLE VEL
(M/SEC)
1.079E
1.075E
1.068E
1.056E
1.040E
1.016E
9.888E
9.617E
9.356E
9.109E
8. 874E
8.654E
8.445E
01
01
01
01
01
01
00
00
00
OO
00
00
00
                                       X
                                    (UG/M3I

                                   3.318E  03
             DRIFT FLUX
             (UG/M2-SECI

               3.452E  04
     DRIFT  MASS  ENIS.
        (UG/SECI

       9.354E 04
     MASS  MEDI"M DIAM.
           (UM)

           45
         TOWER CONDITIONS:   vu = 10.8 m/s  ;  Ta = 31.8°C  ;  Tj = 35.0  °C  ;   T0=30.6  »c

                            Range:  4.4  °c  ;  Approach: 8.6   »c  .   Heat Load:   ^23.21^


         AMBIENT CONDITIONS:  Wind Speed: 22-3  Km/hr   ;  Wind Direction:  E    ;   Twet/Tdry  =22-0/25'5  °C

-------
o
IO
           DIAMETER:
              NW-SE  2
                          POSITION:
          24
                    DATE;  3/15/74
                                                                                TIME FRAME;  1540-1628
          NOTE:  Concurrent IK Data Point:  Position  23.33


          PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
           I  01 LOW)  D(HI)
               IUM)    (UHI
                    DEL  0
                     (UH)
CICEN)
 (UMI
   PID)
(«/UM-M3)
OEL X/OEL  0
 (UC/UM-N3I
 DEL X       DEL  FLUX   PARTICLE VEL
JUG/M3I    IUG/M2-SEC)    IM/SECI
1
2
3
4
5
A
7
8
9
10
11
12
13
14
10.
30.
50.
30.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
30.
50.
SO.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
20.
40.
65.
95.
130.
175.
225.
275.
325.
375.
425.
475.
525.
575.
l.OOOE 04
1.300E 03
7.100E 01
3.900E 00
2.500E 00
1.100E 00
5.000E-01
2.200E-01
1.400E-C1
8.900E-02
5.000E-02
2.500E-02
1.100E-02
5.600E-03
4.1S9E 01
4. 356E 01
1.021E 01
3.995E 00
2.876E 00
3.0S7E 00
2.9S2E 00
2.396E 00
2.516E 00
2.457E 00
2.010E 00
1.403E 00
8. 334E-01
5. 574E-01
a.
8.
3.
1.
1.
1.
1.
1.
1.
1.
1.
7.
4.
2.
378E
713E
06 3E
199E
150E
543E
491E
198E
258E
229E
005E
014E
167E
787E
02
02
02
02
02
02
02
02
02
02
02
01
01
01
9. 540E
9.891E
3.455E
1.338E
1.265E
1.661E
1.564E
1.224E
1.253E
1.193E
9.521E
6.491E
3. 769E
2.466E
03
03
03
03
03
03 ]
03 ]
03 1
03 4
03 9
02 9
02 <3
02 9
02 8
• 139E
• 135E
• 128E
• 116E
.100E
L.076E
.049E
..022E
I.956E
I.709E
I.474E
'.254E
.045E
• 848E
01
01
01
01
01
01
01
01
00
00
00
00
00
00
                                       X
                                    (UG/M3)
                                      DRIFT FLUX   DRIFT MASS  EMIS.
                                      
nne^ni wunmiivn^.  wind Speed.
                                                       .« j ^     ,     r-
                                                       Wind Direction:  E    .   Twet/Tdry • 22.1/25.1  «c

-------
DIAMETER:   NW-SE 2
POSITION:    25
                                                DATE:   3/15/74
               TIME FRAME:  1643-1727
NOTE:   Concurrent IK Data Point:  Position    24.33


PILLS  AND SENSITIVE PAPER PARTICLE  DISTRIBUTION DATA. TURKEY POINT
1

1
2
3
4
5
6
7
8
q
10
11
12
13
14
D(LOM>
(UMI
10.
30.
50.
80.
110.
ISO.
200.
250.
300.
350.
400.
450.
500.
550.
0(HI I
(UM)
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
DEL 1)
CUM)
20.
20.
30.
•30.
40.
50.
50.
50.
50.
50.
50.
50.
50.
50.
riCEN)
1 UMI
20.
40.
55.
95.
130.
175.
225.
275.
325.
375.
•*25.
475.
525.
575.
P(D)
( K/UM-M3I
U.900E 03
7.900E 02
7.1006 01
7.100E 00
2.000F 00
l.OOOE 00
4.500E-01
2.500E-01
i.aooE-oi
1.100E-01
7.100E-02
4.500E-02
2.SOOE-02
1.800E-02
DEL X/DEL D
(UG/UM-M3)
3.728E
2.647E
1.042 IE
3.187E
2.301F
2.806E
2.684E
2.722E
3.235E
3.037E
2.854E
2.525E
i. 121E
1.792E
01
01
01
00
00
00
00
00
00
00
00
00
00
00
DEL X
(UG/M3)
7.456E
5. 295E
3. 063E
9.562E
9.203E
1.403E
1.342E
1.361E
1.618E
1.519E
1.427E
1.263E
1.061E
8.959E
02
02
02
01
01
02
02
02
02
02
02
02
02
01
DEL FLUX
(UG/M2-SECI
6.701E
4. 740E
2.720E
8.379E
7.912E
1.173E
1.085E
1.064E
1.222E
1.110E
1.009E
8.653E
7. 049E
5.777E
03
03
03
02
02
03
03
03
03
03
03
02
02
02
PARTICLE VEL
(M/SEC)
8.988E
8.952E
8.880E
8.763E
8.598E
8.361E
8.J88E
7.B17E
7.556E
7.309E
7.U74E
6.854E
6.645E
6.448E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
                               x
                            (UG/M3I

                          2.958E 03
              DRIFT FLUX  DRIFT MASS EMIS.
              (UG/M2-SfcCI     (UG/SECI
                2.460E  04
8.094E 04
MASS MEDIAN DIAM.
      (UM)

       70
 TOWER CONDITIONS:  Vu =  9.0 m/S  ;  Ta = 32.1°C  ;  ^=34.8 °C   ;  T0=30.6  °C

                   Range:  4.2  °C  ;  Approach: 8.5   °C   ;  Heat Load:  ^22.1 MW
 AMBIENT CONDITIONS;   Wind Speed: 22.3  Km/hr  ;  Wind  Direction:   E    ;  Twet/Tdry • 22.1/25.0 »c

-------
 DIAMETER:    NW-SE 2
                          POSITION:    26
                   DATE:  3/15/74
                                 TIME FRAME: 1743-1831
NOTE:  Concurrent  IK Data Point:  Position  25.33


PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT
  I   O(LGW)  D(HI)
      (DM)    (UH)
1
2
3
4
5
f>
7
8
9
10
11
12
13
14
10.
10.
50.
ao.
110.
ISO.
200.
2SO.
300.
350.
400.
450.
500.
550.
30.
50.
80.
110.
150.
200.
250.
300.
350.
400.
450.
500.
550.
600.
                    DEL 0
                      (UM»
0(CEM
 (UM)
   P(DI
U/UM-M3I
UEL X/DEL 0
 (UG/UM-M3I
 DEL  X       DEL FLUX   PARTICLE  VEL
(UG/H3J    
-------
                        TURKEY POINT ISOKINETIC SAMPLING SUMMARY FOR DIAMETER  NW-SE 2
IK Tube

Position
0.3
1.3
2.3
3.3
4.3
5.3
20.3
21.3
22.3
23.3
24.3
25.3
— .


Date
3/13/74
3/13/74
3/13/74
3/13/74
3/13/74
3/14/74
3/14/74
3/15/74
3/15/74
3/15/74
3/15/74
3/15/74

MNa

(wg)
2,138
3,703
5,739
6,338
8,069
3,614
2,439
3,389
2,864
2,339
3,364
1,589

M
Mg
(pg)
203
378
600
590
820
402
248
370
284
243
350
165

vc
s
(m3)
11.70
13.12
20.69
18.35
17.55
18.98
10.69
15.68
16.20
15.61
12.01
9.73

-
u
(m/s)
4.0
7.0
8.1
10.0
10.1
9.8
4.9
6.45
8.9
11.15
10.95
8.35

-c
"&
CNa
0.82
0.82
0.82
0.82
0.82
0.87
0.87
0.82
0.82
0.82
0.82
0.82

CMn
Mg
CMg
0.91
0.91
0.91
0.91
0.91
0.91
0.91
0.88
0.88
0.88
0.88
0.88

Fa
Na
(pg/m2-s)
599
1,620
1,842
2,832
3,808
1,623
973
1,143
1,290
1,370
2,515
1,118

Fa
Mg
(pg/m2-s)
63
184
214
293
429
189
103
134
137
153
281
125

M

(m2)
3.25
3.62
3.33
3.04
2.74
2.45
1.93
2.22
2.52
2.81
3.10
3.39
TOTALS:
a
Na

1,947
5,864
6,134
8,609
10,430
3,976
1,878
2,537
3,251
3,850
7,797
3,790
60,063
a
Mg
(pg/s)
205
666
713
891
1,175
463
199
297
345
430
871
424
6,679
TOTAL MASS EMISSION RATES ARE:  mjja =  60,063  yg/s and mjj  =  6,679 vg/s if the basin water concentration equal the
mean concentrations CNa  and CMg as listed in Table 1 , and if the water flow rate equals l,272kg/s (or 20,000  gpm).
MINERAL MASS EMISSION  FRACTIONS: nNa =  0.00049%; ^  =  0.00050%; n = 0.000495%

-------
                     TURKEY POINT ISOKINETIC DATA EXTENSION FOR DIAMETER NU-SF
Position
6.3
7.3
8.3
9.3
17.3
13.3
19.3
26.3

*Na
(ug/m3)
167
167
167
167
199
199
199
134

=====
*Mg
(ug/m3)
19.3
19.3
19.3
19.3
21.0
21.0
21.0
15.0

vu
(m/s)
10.0
7.9
6.4
2.4
0.5
1.8
3.3
6.7

Fa
Na
(yg/m2-s)
1670
1319
1069
401
99.5
358
657
898

==^====
Fa
X
(wg/m2-s)
193
152
124
46.3
10.5
37.8
69.3
101
TOTALS
AA
(m2)
2.16
1.87
1.57
1.28
1.08
1.33
1.61
6.12
•
AII1M
Na
(wg/s)
3607
2467
1678
513
107
476
1058
5496
15,402
=^===
\m
Mg
(yg/s)
417
284
195
59.3
11.3
50.3
112
618
1,747
UPPER LIMIT OF MINERAL MASS EMISSION FRACTIONS:



                =  0.00062%         n'   = 0.00063%
\
0.00062%

-------
                                          Table 8

          COOLING TOWER DRIFT DATA SUPPLEMENT  AS ACQUIRED BY  SP  LARGE  STAIN COUNT

                              Droplet           Flux  Due  to          Flux  Due to
                             Diameters         Droplets  >600 pm      Droplets <600 urn
 Diameter     Position           (urn)             (gg/m'-sec)          (gg/m5-secl        Percent*

 SW-NE  1        23         860                     3,170               99,100              3
 SW-NE  1        24        1620                     211300               83 500             26
 SW-NE  1        27         850,  2240, 1200        136,000               54,000            252

 NW-SE  1        24        1090                     6,550               54,900             12

 SW-NE  2        22        1070                     18,500               22,800              8

 NW-SE  2         1        1570                     58,000               26,000            223
 NW-SE  2         2         670                     4,580               34 000             13
 NW-SE  2         3         610                     3,340             109,000              3
 NW-SE  2         4         960,  670                 8,860               82,600             11
 NW-SE  2        21         710,  960                 4,730               26,900             18
 NW-SE  2        24        1100,  910, 710            12,400               34,600             36
 NW-SE  2        26         680,  1150                3,060               8,240             37

 SW-NE  3         2         660,  680                 1,290               19,400              7
 SW-NE  3         3         640,  670                 2,420               38,000              6
                           690,  610
 SW-NE  3         4         660,  1010, 610           9,570               74,100             13
                           660,  620, 680
 SW-NE  3         5         650,  650, 900            4,330                41,900             10
 SW-NE  3         6        1320,  780, 1970          26,200                64,900             40
 SW-NE  3        23        1340                     52,000              376,000             14
 SW-NE  3        24         950,  1510               50,000              149,000             33
 SW-NE  3        25         790,  1900              111,000              141,000             78

* % = (Flux  due  to droplets >600 urn/Flux due to droplets <600 urn) x 100%

-------
                               APPENDIX F

COOLING TOWER DRIFT EMISSION DATA ACQUIRED FOR FLORIDA POWER AND LIGHT
                                COMPANY

(Report released courtesy of Florida  Power and Light Company)
                                   415

-------
                                             PO BOX 3100 MIAMI. FLORIDA 33101
                                            FLORIDA POWER & LIGHT COMPANY

                                             August 30, 1974
Dr. Gunter 0.  Schrecker
Environmental  Systems  Corporation
P. 0. Box 2525
Knoxville, Tennessee   37901

Dear Dr. Schrecker:

On February 27,  1974 you  conducted a special test on the
Turkey Point cooling tower for Florida Power & Light Company,
in addition to tests done under your contract with the
Environmental  Protection  Agency.   This was done to provide
us with some information  on the cooling tower drift charac-
teristics sooner than  would have  been available from reports
of the tests funded by EPA.

Florida Power  &  Light  Company  has no objection to the inclu-
sion of the February 27,  1974  test data and results in the
report you make  to EPA on the  Turkey Point test program if
it is felt this  might  add any  value to the report.

Sincerely,
C. D. Henderson
Manager of Environmental Engineering

CDH/SHD/ayg

cc:  D. D. Dunlop
     R. L. Lyerly
     E. C. Weber
                                                RECEIVED
                                 416               SEP 0 6 1974

                                                 INWONrttmAl HaitMS CORP-

-------
ENVIRONMENTAL SYSTEMS CORPORATION
             POST OFFICE BOX 2525
             KNOXVILLE, TENNESSEE 37901
             (615) 573-7931
                CHARACTERIZATION  OF  DRIFT EMISSION OF THE TURKEY POINT
                    COOLING TOWER OF FLORIDA POWER & LIGHT COMPANY
                                         by
                                 Gunter 0. Schrecker
                                   Ronald 0. Webb
                  Test Performed for Florida  Power & Light Company
                                  February 27,  1974
                           Purchase Order No. 30069-86108
                               Final Report Submitted
                           August  1974  (amended June 1975)
                      (Preliminary Report Submitted March 1974)
                                            417

-------
                   CHARACTERIZATION OF DRIFT EMISSION
                    OF THE TURKEY POINT COOLING TOWER
                        OF FLORIDA POWER & LIGHT


On February 27, 1974, drift characterization tests were performed along the

northwest radius (Figure 1) of the Marley 600/700 single cell mechanical

draft cooling tower located at the Turkey Point Plant of Florida Power &

Light.  The following instruments were contained in the instrument package

that made measurements along this radius:


     1.  The PILLS II-A (Particulate instrumentation by Laser Light
         Scattering) System provided particle density distribution
         data in the range between approximately 40 urn and 1,000 pm.

     2.  The SP (Sensitive Paper) System provided particle density
         distribution data in the range of approximately 10 \an to
         400 urn.

     3.  The IK (Isokinetic Sampling) System provided mass emission
         data.

     4.  A Gill Propeller Anemometer provided air updraft velocity
         data.

     5.  A dry bulb/wet bulb psychrometer provided data on the temperature
         distribution along the radius.


An on-site meteorological tower provided wind speed and direction, as well as

ambient dry bulb/wet bulb data.  The tower inlet and outlet water temperatures,

as well as the heads in each hot water distribution basin were also measured

whenever drift data were  acquired by both the PILLS and SP Systems.


The  following  table gives information on the mode of drift data  acquisition

at those positions where  measurements were carried out:
POSITION
DRIFT DATA

ACQUISITION
0
SP
1
SP
2
SP
3
SP
4
SP
5
SP
6
SP
7
SP
 SYSTEM  EMPLOYED:           IK     IK     IK     IK
                                PILLS  PILLS PILLS  PILLS  PILLS
                                       418

-------
 Figure 2 shows the updraft velocity profile for the northwest radius.  The
 average velocity at each point, as well as the range of velocity fluctuations
 are entered.  Negative (downward) velocities were not determined since the
 read-out of the Gill Propeller Anemometer does not provide for negative
 voltages.  At position 7 the propeller stopped and reversed its direction
 of rotation at times, whereas this became a frequent feature at position
 8 and, in particular, at position 9.  For all  other positions between 9
 and the center of the exit area, highly fluctuating and mostly downward
 velocities were observed.   The temperatures that were measured along the
 entire northwest radius are all between 22.5 (72.5°F) and 23.3°C (73.9°F),
 with the higher temperatures at positions 1-5  and over the hub.

 Tables 1-1  to 1-8 present  the particle density distribution data p(d) and
 the mass density data AX for positions 0 to 7.   d'-d" are the edge particle
 diameters,  3" the center diameter and Ad the width  of the various particle
 size ranges,   mp is  the mass  of one  droplet with a diameter equal  to the
 center diameter.   p(d)  is  the particle density distribution expressed as
 the number  of particles per unit particle  size  range  and unit volume of
 sampled  air which  is discussed  in more detail in Appendix 3.  AX  is
 the mass of drift per unit volume of air for each particle size range and
 dm,,, is the  mass median diameter.  The drift mass density  at the measuring
 point  is obtained by summing over the particle  size ranges.   The  p(d)
 data presented here are refined from the values presented in the earlier
 preliminary field report.   Correction factors have  been applied in
 a computerized data reduction to account for the collection  efficiency
of the SP discs in the small size ranges and to  account for  the response
characteristics of PILLS II-A.  These factors were  not applied in the
simpler preliminary data reduction  carried  out  in the field  in order to
                                        419

-------
 present  the major  results  immediately.  The tablets also contain information
 on  the ambient  conditions,  as well as on  various tower operational parameters
 like  heat  load  and approach.  These data  were acquired at the same time as
 the drift  data.  Dimensions of the fill geometry are presented in Appendix A
 in  order to facilitate comparisons of this tower with other cooling
 towers.

 A note is  necessary with respect to the tower inlet and outlet temperatures.
 All inlet  temperatures were measured with a mercury thermometer in the hot
 water distribution basin.  The outlet temperatures were read at the thermo-
 meter that is located at the wooden staircase with the sensor in the Inlet
 of  the discharge pipe.  This thermometer was calibrated three times against
 a mercury  thermometer and it was found that it reads at least 3°F too low.
 Therefore, 3°F was added to all discharge temperatures read at this ther-
 mometer.

 The isokinetically obtained drift data are tabulated in Table II.   The IK-
 tube at position 0.2 and PILLS II-A at position 1  were run simultaneously
 since the  IK-tube is 0.8 ft. away from the PILLS II-A sampling volume.   This
 holds equally for the other positions of the IK.

The apparent drift mass determined from the mass of magnesium and sodium
collected in the IK-tubes are in close agreement for four of the  five tubes.
Comparing the average drift mass density x to that determined by  the  PILLS
and SP System, it is readily noticed that x IK is  larger than XPILLS/SP
by a factor of approximately 5 to 10.   It is believed that this difference
                                        420

-------
 1s mainly due to the increased mineral concentration of the smaller droplets
 which carry the bulk of the evaporative heat rejection process.  Since the
 IK-tubes collect the minerals contained in the drift droplets, an assumption
 has to be made to arrive at an apparent drift droplet density.  This assump-
 tion is that the drift droplet mineral concentration is the same as  the ba-
 sin water mineral concentration.   If any heat is  rejected by the cooling to-
 wer, the drift droplet mineral  concentration will  increase which yields,
 with the stated assumption, an apparent drift mass  concentration that is too
 large.

 The drift fraction  expresses  the  drift mass  emission in per cent of  the
 circulating  water rate.   Based  on the  five IK-tubes  that were exposed at po-
 sition  .2 to 4.2, the  drift fraction of the  tower was  calculated as  .00062*.

 No isokinetic sampling  tubes were  exposed  between position  4.2 and the  center
 of the  fan stack  exit  area.  The  rate  of drift mass  emission  is  usually  de-
 creasing  rapidly  at positions that are  located between  the  peak  of the  velocity
 profile and  the point where the average velocity is  zero, since  both  the drift
 mass density  JT and the updraft velocity are  usually  decreasing.  Here, however,
 the drift mass density has its largest value  at  position  4.2 and the rate of
 drift mass emission is slightly larger at position 4.2 than at position 3.2.
 It therefore became clear during the data reduction that at least one more
 IK data point would have been useful.

 In order to derive an upper limit  for the drift fraction, the rates of drift
mass emission were calculated for  positions 5.2,  6.2, 7.2 and 8.2, using
                                       421

-------
the measured updraft velocities at these positions and assuming that the
drift mass density remains constant at 30,000 vg/m3, although in reality.the
drift mass density decreases rapidly.  This assumption appears to be justi-
fied in order to arrive at an upper limit for the drift fraction.  The re-
sults are shown below.
Area of _ Updraft Drift Mass Flux
B ... A?ny!us , x , Velocity V 7 • V
Position (m2) (Vg/m3) (m/sec.) (ug/m2sec.)
5.2 4.73 30,
6.2 4.29
7.2 3.69
8.2 3.00
Upper Limit
000 9.5 285
6.1 183
3.5 105
,000
,000
,000
1.5 45,000
7'87 + 2'67 x 100* = 0.
30084%
Rate of
Drift Mass
Emission
(g/sec)
1.35
0.79
0.39
0.14
2.67

of Drift Fraction   "   1.262 x 106
Drift mass emission rates, both measured and estimated are plotted in Figure 3.
                                        422

-------
                                                                       A
Staircase
              KARLEY 600/709 SINGLE CELL MECHANICAL DRAFT COOLING TOWER
           installed at the Turkey Point Plant of Florida  Power & Light
     (view from above shows radius alona which drift measurements were taken)

                                      FIGURE  1

                                          423

-------
Updraft
Velocity
(m/sec)
          14
          12
          10..
                                                                                  i  r
Environmental Systems Corporation
                                                                                    1  Velocity Profile
                                                                                    :  Northwest Radius
                                                                                    •  2/27/74
                                                                                    j  Turkey Point
                                                    VELOCITY MEASUREMENT POINTS
                                                 (distance between points =   1 ft.)
                                          Diameter of Fan Stack Exit = 8.37m  = 27'5.5"
                                                            FIGURE 2

-------
                                                                      IHDLt  1-1
ENVIRONMENTAL  SYSTEMS CORPORATION
             POST OFFICE BOX 2525
             KNOXVILLE. TENNESSEE 37901
             (615) 573-7931
       ,«CT.,,™ .V    SINGLE  CELL MECHANICAL DRAFT COOLING  TOWER
       INSTALLED AT THE TURKEY POINT PLANT OF FLORIDA POWER  &  LIGHT
 Date/Time Range: 2-27-74/11:54-13:10: Test Position: NW Radius, Position  0_
 Test Conditions: Avg.  Updraft  Velocity _9_ m/sec; Avg.  Air Discharge Temp.^_
     Tower Outlet Water Temp: _^	°F; Tower Inlet Water Temp:   *  °F
     Range: _^	°F;  Approach _^	°F
     Heat Load:       *      BTU/hr.
     Volumetric  Air Flow Rate: 924600 cfm.
     Volumetric  Water  Flow Rate:  20000 gpin  (according to design specs)
Ambient Conditions: Wind Speed: ^_mph, Wind  Direction: _^_
           Tdry/T,
                    /  *  °F
                                                                                     °F
*See data for Position 1
d'-d"
urn
0-20
40
60
80
100
120
140
180
220
260
300
340
380
420
460
500
540
580
620
3 Ad mp
ym jjm Pg
10 20 5.236 x 10'4
30
50
70
90
110
130 1
160 4
200
240
280
320
360
400
440
480
520
560
600 '
0.0141
0.0654
0.1796
0.382
0.697
1.150
0 2.145
4.189
7.238
11.49
17.16
24.43
33.51
44.60
57.91
73.62
91.95
113.1
P(d)
#/ \an-tn
15000
2080
250
70
27
11
5.8
2.2
0.68
0.23


ug/I3
157
587
327
251.4
206.3
153.3
133.4
188.76
113.9
66.6


                                           425
                                                                             2184
                                                                                 62

-------
                                                                      TABLE  1-2

ENVIRONMENTAL SYSTEMS CORPORATION


  	1

         ?   POST OFFICE BOX 2525
             KNOXVIU.E, TENNESSEE 37901

             (615) 573-7931

              MARLEY 600/700 SINGLE CELL MECHANICAL  DRAFT COOLING TOWER
             INSTALLED AT THE TURKEY POINT PLANT OF  FLORIDA POWER & LIGHT

       Date/Time  Range: 2-27-74/11:55-13:06 ;  Test Position: NW Radius, Position


       Test  Conditions: Avg. Updraft Velocity  9.6  m/sec; Avg. A1r Discharge

            Tower Outlet Water Temp:  72.5  °F; Tower  Inlet Water Temp:  80.2 °F

            Range:  7.7  °F; Approach  20.5 °F

            Heat  Load: 7.7 x 107    BTU/hr.
Volumetric Air Flow Rate: 924600 cfm.
Volumetric Water Flow Rate: 20000 gpm (according to design specs)
Ambient Conditions: Wind Speed: _7.mph, Wind Direction: NNW
Tdry/L..«. 57.6/52.0 °F
*•• j
d'-d"
\m
0-20
40
60
80
100
120
140
180
220
260
300
340
380
420
460
500
540
580
620




d Ad mp
pm \m ug
10 20 5.236 x 10'4
30
50
70
90
no
130 1
0.0141
0:0654
0.1796
0.382
0.697
' 1.150
160 40 2.145
200
240
280
320
360
400
•440
480
520
560
600 '
4.189
7.238
11.49
17.16
24.43
33.51
44.60
57.91
73.62
91.95
113.1

426


P(d)
#/Vim-m
25000
3330
250
28.2
8.5
4.0
2.24
.792
.282
.085
.0354












AXi
yg/m3
262
940
327
101
65
56
52
68
47
25
16








1959 yg/m3

dim = 35 ym

-------
                                                                      TABLE 1-3
ENVIRONMENTAL SYSTEMS CORPORATION
!	3
L        '•   POST OFFICE BOX 2525
             KNOXVILLE. TENNESSEE 37901
             (615) 573-7931
              MARLEY 600/700 SINGLE CELL MECHANICAL  DRAFT COOLING TOWER
             INSTALLED AT THE TURKEY POINT PLANT OF  FLORIDA POWER I LIGHT
       Date/Time  Range: 2-27-74/13:13-14-?-i ;  Test Position: NW Radius, Position _2_
       Test Conditions: Avg. Updraft Velocity  ]OJ_ m/sec; Avg. Air Discharge Temp. 73.0 °F
           Tower Outlet Water Temp:    72.5"F; Tower  Inlet Water Temp:  79.5°F
           Range: 7.0   °F; Approach 19.1  °F
           Heat Load: 7.0 x IP7    BTU/hr.
           Volumetric Air Plow  Rate:  924600 cfm.
           Volumetric Water Flow Rate: 20000 gpm (according  to design  specs)
      Ambient Conditions:  Wind  Speed: JLmph, Wind Direction:  _N_
           Tdry/Twet  57.2/53.4  °F
d'"d" 5 Ad *f P(d) AX
0-20 10 j
40 30
60 50
80 70
100 90
120 no
140 130
ISO 160 4
220 200
260 240
300 280
340 320
380 360
420 400
460 440
500 480
540 520
580 560
620 600 '
• — ——————___ 	
0 5.236 x lO'4 25000 262
0.0141 3330 939
0:0654 350 458
0.1796 125 449
0.382 40 306
0.697 16 223
1.150 8.9 205
0 2.145 4 343
4.189 1.2 201
7.238 .315 gi
11.49 .125 57
17.16 .0562 39
24.43 .0282 28
33.51 .016 21
44.60 .0091 16
57.91 .0071 16
73.62 .00406 12
91.95 .00315 16
	 113.1 .0004 11
3693
427
dm =
-^^— ^^«
f




vg/m3

68 jim

-------
                                                                      TABLE 1-4
ENVIRONMENTAL SYSTEMS CORPORATION
        ' •   POST OFFICE BOX 2525
             KNOXVILLE. TENNESSEE 37901

             (615) 573-7931
               MARLEY  600/700 SINGLE CELL MECHANICAL DRAFT COOLING TOWER
              INSTALLED AT THE TURKEY POINT PLANT OF FLORIDA POWER &  LIGHT
       Date/Time Range:  2-27-74/14:27-15:36 ; Test Position:  NW Radius,  Position _3_
       Test Conditions: Avg. Updraft Velocity 12.2  m/sec; Avg. Air Discharge Temp. 73.6°p
            Tower Outlet Water Temp:   72.5 °F; Tower Inlet Water Temp: 79.2 °F
            Range:  6.7  °F; Approach  18.7  °F
            Heat Load:  6.7 x 107    BTU/hr.
            Volumetric Air Flow Rate:  924600 cfm.
            Volumetric Water Flow Rate: 20000 gprn  (according  to design specs)
       Ambient Conditions: Wind Speed: jj_mph, Wind Direction:  NNE_
                                °F

d'-d"
urn
0 - 20
40
60
80
100
120
140
180
220
260
300
340
380
420
460
500
540
580
620
d Ad m_
um ym yg
10 20 5.236 x 10'4
30
50
70
90
110
130 1
0.0141
0:0654
0.1796
0.382
0.697
f 1.150
160 40 2.145
200
240
280
320
360
400
440
480
520
560
600
4.189
7.238
11.49
17.16
24.43
33.51
44.60
57.91
73.62
91.95
113.1
P(d)
#/ym-m3
25000
2670
300
87
32.5
16
11
6
2.25
.63
.23
.12
.08
.046
.0225
.012
.0071
.0045
.00315
yg/m3
262
753
392
313
248
223
253
515
377
182
106
82
78
62
40
28
21
16
14
                                             428
                                                                               3965  yg/m3

-------
                                                                      TABLE 1-5
ENVIRONMENTAL SYSTEMS CORPORATION



             POST OFFICE BOX 2525
             KNOXVILLE, TENNESSEE 37901

             (615) 573-7931

               MARLEY 600/700 SINGLE CELL MECHANICAL DRAFT COOLING TOWER
              INSTALLED AT THE TURKEY POINT PLANT OF FLORIDA POWER &  LIGHT

       Date/Time  Range: 2-27-74/15:39-16:32 ; Test Position:  NW  Radius. Position _4_

       Test  Conditions: Avg. Updraft Velocity  11.9 m/sec; Avg.  Air Discharge Temp. 73.8 °F

            Tower Outlet Water Temp:  72.8 °F; Tower Inlet Water Temp:  79.0°F

            Range:   6.2  °F; Approach 17.4  °F

            Heat  Load: 6.2 x TO7    BTU/hr.

            Volumetric Air Flow Rate: 924600 Cfm.


            Volumetric Water Flow Rate:  20000 gpm (according  to  design specs)

       Ambient  Conditions: Wind Speed:  9_mph, Wind Direction: NNE_

d'-d"
urn
0 - 20
40
60
80
100
120
140
180
220
260
300
340
380
420
460
500
540
580
620


d Ad mp
urn urn ug
10 20 5.236 x 10'4
30
50
70
90
110
0.0141
0.-0654
0.1796
0.382
0.697
130 f 1.150
160 40 2.145
200
240
280
320
360
400
440
480
520
560
.600 '
4.189
7.238
11.49
17.16
24.43
33.51
44.60
57.91
73.62
91.95
113.1
429

P(d)
if/ym-m
31250
2170
290
88
45
16
9
5.62
2.3
.795
.36
.17
.085
.045
.026
.0165
.01125
.0079
.0065


AX,
ug/m3
328
612
379
316
344
223
207
482
385
230
165
117
83
60
46
38
33
29
29
4106
mn ~



















pg/m3
107 MIT.

-------
                                                                      TABLE  1-6
ENVIRONMENTAL SYSTEMS CORPORATION



             POST OFFICE BOX 2525
             KNOXVILLE. TENNESSEE 37901

             (615) 573-7931

               MARLEY 600/700 SINGLE CELL MECHANICAL DRAFT COOLING TOWER
              INSTALLED AT THE TURKEY POINT PLANT OF FLORIDA POWER &  LIGHT


       Date/Time Range:  2-27-74/16:35-17:27 ;  Test Position:  NW Radius, Position _5_


       Test Conditions: Avg. Updraft Velocity  10.0  m/sec; Avg.  Air Discharge Temp. 73.6°F

            Tower Outlet Water Temp: 72.5  °F; Tower Inlet Water Temp: 78.8 °F

            Range:   6.3 °F; Approach 16.2  °F


            Heat Load:  6.3 x IP7    BTU/hr.


            Volumetric Air Flow Rate: 924600 cfm.


            Volumetric Water Flow Rate: 20000  gpm (according  to  design specs)
Ambient Conditions: Wind Speed: _9_mph, Wind Direction: NNE
Vy/T...^ 62.2/56.3 °F
*" 
-------
ENVIRONMENTAL SYSTEMS CORPORATION
                                                                      TABLE 1-7
             POST OFFICE BOX 2525
             KNOXVILLE. TENNESSEE 37901
             (615) 573-7931
              MARLEY 600/700 SINGLE CELL MECHANICAL  DRAFT COOLING TOWER
              INSTALLED AT THE TURKEY POINT PLANT  OF  FLORIDA POWER & LIGHT
       Date/Time  Range:  2-27-74/17:31-17:37 :  Test Position: NW Radius. Position 6_
       Test  Conditions: Avg. Updraft Velocity  6£_ m/sec; Avg. Air Discharge Temp.  74.3°F
            Tower Outlet Water Temp: _J	°F;' Tower  Inlet Water Temp: _*	°F
            Range: _J	°F; Approach _jj	°F
            Heat Load:      *	BTU/hr.
            Volumetric Air Flow Rate:  924600 cfm.
            Volumetric Water Flow  Rate: 20000  gpm  (according to design specs)
Ambient Conditions: Wind Speed: J^mph, Wind Direction
T. /T * / * op
. *

*see data for Position 5
d'-d"
m
0-20
40
60
80
100
120
140
180
220
260
300
340
380
420
460
500
540
580
620


d Ad mp
pm jjm pg
10 2
30
50
70
90
110
130 1
160 4
200
240
280
320
360
400
440
480
520
560
600 1
0 5.236 x 10'4
0.0141
0.0654
0.1796
0.382
0.697
1.150
0 2.145
4.189
7.238
11.49
17.16
24.43
33.51
44.60
57.91
73.62
91 95
113.1
431

P(d)
#/ym-m
15000
1670
210
70
28
13
7
3.1
1.3
0.56
0.23
0.10








i
yg/m3
157
470
275
251
214
181
161
266
218
162
106
68.6






2529.6 pg/m3
dnm = 90 ym

-------
                                                                      lABLt l-ti
ENVIRONMENTAL SYSTEMS CORPORATION

         '•    POST OFFICE BOX 2525
             KNOXVILLE, TENNESSEE 37901
             (615) 573-7931
              MARLEY 600/700 SINGLE CELL MECHANICAL  DRAFT COOLING TOMER
             INSTALLED AT THE TURKEY POINT PLANT OF  FLORIDA POWER & LIGHT
       Date/Time Range:  2-27-74/17:40-17:43 :  Test Position: NW Radius, Position J_
       Test Conditions: Avg. Updraft Velocity   4.0  m/sec; Avg. Air Discharge Temp.  *
           Tower Outlet Water Temp:  _^	°F;  Tower  Inlet Water Temp:    *  "F
           Range: _J;	°F; Approach _^	°F
           Heat Load:    *	BTU/hr.
           Volumetric Air Flow  Rate:  924600 cfm.
           Volumetric Water Flow  Rate:  20000 Qm (according to design  specs)
      Ambient Conditions: Wind  Speed: _lmph, Wind Direction:  _*_
           TJ._ ./T  .  *   /  *   op
*•• J
Q ~u
ijn
0-20
40
60
80
100
120
140
180
220
260
300
340
380
420
460
500
540
580
620




d Ad mp
ym um pg
10 20 5.236 x 10'4
30
50
70
90
110
130
0.0141
0,0654
0.1796
0.382
0.697
1.150
160 40 2.145
200
240
280
320
360
400
440
480
520
560
600 i
4.189
7.238
11.49
17.16
24.43
33.51
44.60
57.91
73.62
91.95
113.1

432

*see data
P(d)
#/pn,.,n3
15000
1670
225
64
24
13
7.5
3.2
1.2
0.48
0.21
.08








for Position 5
tf.
ug/m3
157.1
470
294
230
183
181
173
275
201
139
96.5
54.9





2454.5 pg/m3

dmn = 88 urn

-------
CO
u>
                                             TABLE II:  ISOKINETIC SAMPLING SUMMARY
     Date:  2/27/74         Test Cell:  Marley 600/700 Mechanical Draft Cooling Tower, Installed at the Turkey  Point Plant
                                        f\T RlnviHa D/v.tnw« ft I 4«U«.
Position
of IK-
Tube
.2
.2
2.2
.2
4.2
Distance of
IK-Tube
From NW Rim
[m]
.15
.46
.76
1.07
1.37
A
Area of
Annul us the Sampled
IK-Tube is Air
Representing Volume
[mZ] [m3]
7.73
7.03
6.66
5.88
5.48
18.34
19.58
23.93
15.63
13.57
Collected Mass
of Elements *Na
"Na MMq tjflj
tug] [pg] L m3 J
2,086
2,550
3,159
2,729
2,847
228
293
359
310
283
17,168
19,654
19,926
26,355
31 ,668
xMg
KH
16,624
20,006
20,056
26,509
27,881
V
Updraft
* Velocity a
f H9 1 IK-Pos.
L m3 J [m/sec]
16,896
19,830
19,991
26,432
29,775
9.1
9.8
11.2
12.2
11.7
Drift Mass
Flux
t x x V
f vfl I
1 m2 secj
153,754
194,334
223,899
322,470
348,368
Rate of
Drift Mass
Emission
[g/sec]
1.19
1.37
1.49
1.90
1.91
Drift Fraction:
                                                                                       Total  Drift Mass  Emission:   7.86 9/sec
                                a =  total drift emission El/sec]           7.86 x  100%

                                    circulating. water rate[9/sec]          1.262 x 106
                                                                                     .00062%
                                                                                                        the
      Water flow rate:   20,000 gpm  (according to design specs)
      Concentration of elements in feeder canal (2/27/74) :  CNg= 6625 ppm,  CM  = 748 ppm

-------
      2.2
u

I/I

O>
      1-8
J-

1-
o
     1.4
     1.0
      .6
      .2 ..
                 Measured
                 (See Table II)
            rim
                                          +
                                                                                   Environmental Systems Corporation
                                                                                        Drift  Mass  Emission Rate
                                                                                            Northwest Radius
                                                                                                2/27/74
                                                                                            Turkey  Point
                                                          \
                                                                            Estimated, See Page 5
                                                                       \
                                                                                 NX
                                          3456
                                                         POSITION
                                           (distance between  positions  =  1  ft.)

                                                         FIGURE  3
                                                                                                                 i .

-------
ENVIRONMENTAL SYSTEMS CORPORATION
             POST OFFICE BOX 2525
             KNOXVILLE TENNESSEE 37901
             (615) 573-7931
                                     APPENDIX A

      Description of cooling  tower fill

           Depth of Fill:  (at lowest point)           Wooden  Side     Concrete Side
             From d.e. to outer end of splash bars     22'  3 1/2"      17' lu"
             Total  length of  splash bars              16'  1 1/8"      15- 7 3/4-
             Width of Fill:                                  39, 2 3/4,,
           Height of Fill:
             From lowest splash bar to  highest         23' 5 1/4"      23' 6"
             From lowest splash bar to  nozzles         24' 1 1/4"      24' 6"
          Vertical spacing of splash bars                        12"
          Horizontal  spacing  of splash bars                       4"
                                           435

-------
ENVIRONMENTAL SYSTEMS CORPORATION
             POST OFFICE BOX 2525
             KNOXVILLE TENNESSEE 37901
             (615) 573-7931
                                      APPENDIX B

       Whenever particle size data are acquired, either by the  PILLS  or  the SP
       technique, or both, a particle density distribution,  p(d),  is  generated
       from the data.  Each measurement technique yields the number of particles
       per unit volume of air in several  particle size ranges.  The number of
       particle size ranges, and their lower and upper edge  diameters were
       selected before the start of the test and remained the same during the
       test.

       Data points of the particle density distribution are  obtained  by dividing
       the number of droplets in each particle size  range by the width of the size
       range, Ad.  As an example, these data points  are plotted for Position 5 in
       Figure 4.   A consolidated particle density curve is fitted through the data
       points, and p(d)-values are read from the curve at selected center diameters
       d~and listed in Table 1-6.

       The procedure of obtaining the consolidated particle  density curve and
       tabulating p(d)-values at selected diameters  was the  same for all test
       positions  except at positions 0, 6 and 7, where the consolidated curve
       was obtained only from SP Small  and Medium Stain Counts, since no PILLS
       data were  acquired there.  "Small" and "Medium  Stain  Count" refers to
       different  stain size ranges which  are counted and sized.  The Small Stain
       Count consists of counting and sizing about 250 stains of diameters smaller
                                              436

-------
than 300 to 400 micrometers, whereas about 150 stains of diameters between
200 and 1,500 micrometers are counted and sized during the Medium Stain
Count.
                                      437

-------
  2E 4

  IE 4

  5E 3



**£
E
L.

-------
                APPENDIX 6



DRIFT EMISSION DATA FOR THE SPRAY MODULES
                   439

-------
















c


- «










L)


16 »

-^





BERK

COOLING
TOWER
M
O
TRANSFORMER METEOROLOGICAL .
SWITCH HOIISF 1 TnwEB *W*
, 	 1 .__ A 1
|e n FTs 1
' r '' N
_, 22.3 » 3-3 *•* *•! 14-*
__ 36.6 P
=R- 	 :.-- 	 	
INTAKE STRUCTURE ' lr
AND PUMP u «
12.2 6.1 6.1 12.2 -

^IOW SPRAY
^ 2 MODULES
1
88.4

1 ^ r -^
Figure 31.   Cooling  device  site  plan,  Turkey  Point,  Florida.
            Dimensions  in meters.

-------
  FORMAT  FOR  DATA PRESENTATION  -  SPRAY MODULE  DRIFT  EMISSION  DATA


  Note:   For  a more detailed description of the data format,  see text
         Section VII  "Data Format".
 Table Headings

 POSITION, d/8/h
 DATE

 TIME FRAME


 Column  Headings

 I

 D(LOW)

 D  (HI)

 DEL  D


 D(CEN)

 P(D)



 DEL X/DEL D



DEL X
 Gives the  location of the  instrument package
 relative to the operating  spray modules,  d is
 the displacement from the  reference nozzle of
 the spray  modules.  The northwest nozzle was used
 for reference when the barge was in the canal west
 of the modules and the northeast nozzle was the
 reference  point when the barge was east of the
 modules,   e indicates the  angular location of the
 instrument package in positive degrees clockwise
 from magnetic north,   h represents the height of
 the instrument package above the water line.
 Units are meters/degrees/meters.

 Date on which the data were acquired.

 Time interval  for data acquisition period.
 Integer number for droplet size ranges.

 The  lower diameter of size range I,  um.

 The  upper diameter of size range I,  um.

 The  width of  the  size range I,  as determined by
 the  difference  between diameter D(HI)  and  D(LOW),  um.

 Center  diameter of droplet size  range  I, vm.

 Particle  density  distribution; the number of
 droplets  of diameter  D within unit size range
 and  unit  volume of  air, number/um-rn3.

 Drift mass density  distribution; the mass of
 droplets  of diameter  D within unit size range
 and  unit  volume of  air, pg/pm-m3.

 Drift mass concentration; the drift mass due to
 droplets within a size range I per unit volume
of air,  pg/m3.
                                      441

-------
 DEL FLUX
 PARTICLE  VEL
 DRIFT  FLUX



 MASS MEDIAN DIAM
 Drift mass  flux;  the  drift mass  due  to  droplets
 within size range I which  passes through  a  unit
 area per unit time, ug/m2-s.

 The horizontal  component of the  particle  velocity,
 assumed for this  application  to  be the  same as the
 time mean wind  speed, m/s.

 Drift mass  concentration;  mass of droplets of all
 size ranges  per unit  volume of air;  sum of all
 DEL X,  ug/m3.

 Total  drift  mass  flux; mass flux of  all droplets
 of all  size  ranges; sum of all DEL FLUX,  gg/m2-s.

 The droplet  diameter  at which half of the emitted
 mass is  due  to  smaller droplets  and  half  due to
 larger droplets,  ym.
Barge Sampling Point Conditions
Twet/Tdry
Canal Mater
Temperature
Wind Speed and
Mind Direction
Distribution
Extreme values for the wet and dry bulb temperatures
of the air at the sampling point observed during the
sampling period, °C.
Temperature of the canal water during the sampling
period.  If no information is entered here, it is
not available.
The table shows the percentage of time during which
the wind speed was in each velocity range and the
percentage frequency during which the wind came
from each direction.
Ambient Conditions

Wind Speed

Wind Direction


Twet/Tdry
Wind speed in km/hr.

Direction from which the wind is blowing.

Wet and dry bulb temperatures of the ambient air,
Note:  Tabular data are presented in E format which designates scientific
notation.  Example:  5E 01 = 5 x 10'
                                      442

-------
 POSITION.  d/e/h(m/°/m) :   20.7/280/4.3	

 NOTE:  Concurrent IK Data Point Available:     x
DATE:  V30/74
TIME FRAME: 1700-1800
 PILLS AND SENSITIVE PAPER PARTICLE  DISTRIBUTION  DATA. TURKEY POINT SPRAY MODULE TEST
I
I
f
s
6
r
10
11
12
niLOw)
(UM)
10.
10.
50.
80.
no.
150.
JOO.
J50.
45o!
0
(UM)
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.
50.
50.
OICEN)
20.
40.
65. '
95.
UO.
175.
225.
2/5.
32b.
J75.
425.
475.
P(DI
( */UM-M3)
2.JOJE 03
7. 900E 02
4.000E 02
2.000E 02
7.900E 01
2.000E 01
3.500E 00
7.100F-01
1.60UE-01
5. JOOE-02
2. JOuE-02
1. )COE-02
DFL X/DEL U
(UG/UM-M3)
fc.376E 00
2.6'*7F 01
5.752E 01
3. 973E 01
V. Obbc 01
5.612E 01
2.0d/E 01
7.731E 00
2.d7(>L 00
1.3S1E 00
8.039E-01
5.612E-01
DEL X
(UG/M3)
1.676E 02
5.295E 02
1.726E 03
2.694E 03
3.035E 03
2.b06E 03
1.044E 03
3.B66E 02
1.438E 02
6.903E 01
4.019E 01
2.a06E 01
DEL FLUX
(UG/M2-SEC)
5.261E 02
1.663E 03
5.418E 33
8.453E 03
«. SUE 03
3.277E 03
1.214E 03
*.!>15E 02
2.166E 02
1.262E Q^
a.aioE 01
PARTICLE VEL
(M/SEC)
3.140E 00
3.140E 00
3.140E 00
3.140E 00
J.140E 00
3.1+OE 00
3.140E 00
3.140E 00
3.140E 00
3.140E 00
3.140E 00
3.140t 00
                           (UO/M3I

                          1.327E  0'
                                         <*.166E
         127
BARGE SAMPLING POINT mNnTTTONS:   Twet/Tdry  Ranges:  23.3 - 23.5/26.0 °C
                                  Canal Water Temperature: 33 i   °C
                                  Mind Speed and Direction Distribution:  See Table
AMBIENT CONDITIONS:   Wind Speed:   11.3    KWhr   ;  Wind Direction:  ESE     ;  Twet/Tdry =  22.2/26.0

-------
POSITION.  d/e/h(m/0/m) :   36.6/270/4.3
                                                       DATE:  V31/74
                                              TIME FRAME:
                                                           1445-1545
NOTE:  Concurrent  IK Data Point Available:
PILLS AND SENSITIVE
i

i
-
•»
-t
•j
•j
1
it
•j
Oil. Jk»)
(0.1)
xO.
J J.
a J.
jj.
i 1 j.
i jj.
2CJ.
2 3 J.
jJJ.
LI HI )
(IJM)
*0.
bO.
P.O.
liO.
150.
200.
250.
300.
350.
PAPER PARTICLE DISTRIBUTION DATA, TURKEY POINT SPRAY MODULE TEST
:-L 1
iUM
20.
£0.
30.
30.
'tO.
50.
50.
. 50.
SO.
OICEr.)
(IJM)
20.
40.
f-5.
•J5.
130.
1 7S.
k 25.
? 75.
3?5.
PJT
)
n'-\. x/D
?L 0
ln/lJM-Mi) IJO/U-1-M3I
!. 300F
J.SOO =
1. i.00"
7.100C.
>.. SOGC
3. S00r
5.000=
>. ftOOi:
l.COOc
03
02
0?
01
01
on
-01
-02
-02
5.445?
1 . ! 7 3 c"
2.301F
3.187=
2.376?
J. 822 =
2.982?
f-,0385
1. 737?
00
01
01
01
01
00
00
-01
-01
DEL X
JUG/MB)
1.089E 02
2.346E 02
6.902E 02
9.562E 02
1.150F 03
4.911E 02
1.491E 02
3.049E 01
8.987E 00
DEL FlUX
IU5/M2-SEC)
3.267C 02
7.037E 02
2.071E 03
2.869? 03
3.451E 0?
1.473^ 03
4.473? 02
9.147E 01
2,fc96F 01
P^PTICLF VEL
tM/SrFC)
3.000C 00
3.0005 00
3.000E 00
3.000? 00
3.000F 00
l.OOOE 00
3.000E 00
3.000F 00
3.000E 00
                          3.°20r  03
                                               FL'JX
                       MASS MEDIAN DIAMETER
                   )              (UM)

                                  108
BARGE SAMPLING POINT  CONDITIONS:
Twet/Tdry Ranges:  22.3 - 23.0/26.3 - 27.0  °C

Canal Water Temperature:  32.7  °C
Mind Speed and Direction Distribution:  See Table
AMBIENT CONDITIONS;  Wind Speed:
       Knj/hr
                                                  Wind Direction:
Twet/Tdry =22.2/26.6    °C

-------
POSITION. d/e/h(m/°/m) : 36.6/270/4
.3
DATE: 1/31/74
NOTE: Concurrent IK Data Point Available: X
TIME FRAME; 1 620-1 720


PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY Mnnm r rrer
I

1
—
j
b
a
7
a
••i


-i( L Jw) D(HI )
1 U^ll ('I")

U. 30.
ii »
J J« U»
1J. 110.
AAV,. 150.
I'JJm 200.
t*0. 250.
 |
PI?)
(ff/IJM-N|3)
i.OOOf 03
7.100r 02
2.800r 02
l.^OOF 02
+.000? 0\
3.000C 00
r. 100^-01
'.30CF-01
2. 20UC-02
r'rL X/CHL ')
• U',/UH-H3»
l.',7'.c oi
2.37°= 01
4.02oE 01
6.2est 01
4.601= 01
1.403F 01
4. 235E 00
1.416E 00
DEL X
( UG/M3 )
3.351E 02
4. 758E 02
1.208E 03
1.885F 03
1.H41E 03
7.015P 02
2.117E 02
7.078E 01
1.977E 01
OFL FLUX
IUG/M2-SEC)
1.240C 03
1.761fc 03
t.469F- 03
6. 976F 03
6.810E 02
2.596E 03
7.834E 02
2.&19E 02
7.315E 01
PARTICLE VEL
(M/SrC)
3.700F 00
3.700E 00
3.700E 00
3.700E 00
3.700F 00
3.700E 00
3. 700E 00
3.700E 00
3.700E 00
DRIKT FLUX MASS MEDIAN DIAMETER
(ur./.'*?-s
"C )
(UM)


                                  03
                                105
BARGE SAMPLING POINT CONDITIONS;
Twet/Tdry Ranges:  20.4 _ 23.2/25.0 -  27.0 °C
                                  Canal  Water Temperature:   32.7  °C
                                  Wind Speed and Direction  Distribution:

AMBIENT CONDITIONS:   Wind Speed:   13.3   Km/nr  ;  Wind  Direction:    E
                                        See Table
                                            Twet/Tdry =  22.0/26.1   "c

-------
POSITION.  d/e/h(m/°/m) :   36.6/270/5.5
                                                       DATE:  1/31/74
                            TIME FRAME: 1730-1805
NOTE:  Concurrent  IK Data Point Available:
PILLS AND SENSITIVE
I

i
t.
j
<,
•3
ti
7
0
L/ILJM DlMl )
.
1.
1.
2.
3.
P«OI
/UM-M3)
oOOF 03
000? 02
300E 02
"100 c 01
600T 01
600C 00
20CT-01
?00?-02
r)EL X/J
(Ur./iJKl
6.702E
1.676E
2. 5B8E
2.S28E
:.e^i=
<•. ^00=
1.312 =
3. A 
-------
POSITION.  d/9/h(m/"/m) :   36.6/270/5.5
                                   DATE:  1/31/74
                       TIME FRAME;1824-1840
NOTE:  Concurrent IK Data  Point Available:  	

PILLS AND SENSITIVE PAPER  PARTICLE DISTRIBUTION DATA. TURKEY POINT  SPRAY  MODULE TEST
    LHLGwl  OOII )
              HIM I
DEL  0  CMCtM      P(0)     UtL  X/bEL  D     DEL X        DEL FLUX  PARTICLE VEL
 j.
•50.
••?lT.
1 10.
15 J.
20J.
250.
JC.O.
20.
2C.
3C.
30.
AO.
50.
50.
50.
JO.
40.
60.
S5.
130.
175.
?25.
275.
3.500t 03
1.300= 03
3.2JOE 02
B.9JOt 01
l.JjOc 01
2.2Ju£ 00
4.000c-CL
l.OOOE-01
1.466E
3.351E
4.601E
3.995E
2.071E
6. 174E
2. J86E
1.089E
01
01
01
01
01
00
00
00
2.932E
0.702E
1.3806
1.19VE
8.283E
3.0i*7E
1.193E
5.445E
02
02
03
03
02
02
02
01
1.232E
2.815E
5.7SUE
5.034E
3.475E
1.296E
5.010E
2.287E
03
03
03
03
03
03
02
02
4.200E
4. 200t
^. 200E
4.200E
4.200E
4.200E

4.200E
00
UO
00
00
00
CO
00
00
                                  t

                                  03
                    DRIFT KUX
                    (UG/K2-S-LC)

                     2.038E  O't
MASS MEDIAN DIAMETER
        (UM)

         82
BARGE SAMPLING POINT CONDITIONS:  Twet/Tdry Ranges:  22.5/26.0 °C
                                 Canal  Water Temperature:  32.7 °C
                                 Wind Speed and Direction Distribution:  See Table
AMBIENT CONDITIONS;  Wind Speed:  15.1    Km/hr  ;   Wind Direction:   E
                                                        Twet/Tdry " 22.0/26.1   °C

-------
      POSITION;  d/e/hdn/Vm)   36.6/270/4.3
             DATE: 2/1/74
                                                                               TIME FRAME:
      NOTE:  Concurrent IK Data Point Available:
oo
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE
I

i
A
3

5
t,

u

iu


OIL Jrv )
ilH)
IvJ.
3 J«
•30.

1 * J.
i 5 J.
i J J.

iujl
35J.


DC HI )
(UM)
30.
50.
8L.
110.
ISO.
200.
250^
3UO.
350.
400.


UEL 0
(UM)
20.
2:0.
30.
30.

50.
50.
50.
50.
50.

I
nir-*,
HIM)
20.
40.
65.
95.
1 30.
175.
225.
275.
225.
375.
X
1 UG / M * )
P«D) DEL X/DFL 0
(»/UM-M3) (Ur./U^-MSJ
2.000F 03 «. 378= 00
5.000T 02 1.67&E 01
1.600C 02 2.301E 01
S.300E 01 2.828E 01
2.20QC oi 2.531E 01
5.000E 00 1.403E 01
1.100E 00 6.561E 00
2.800E-01 3.049F 00
5. 300C-02 1.132? 00
1.300F-02 3.590F-01
DEL X
(UG/M3)
1.67AF
3.351C

-------
  POSriON.  d/e/h(m/°/ml :   36.6/270/4.3

  NOTE:  Concurrent IK Data Point Available:
                                              DATE:  2/1/74
                                                                      TIME FRAME: 1230-1332
 PILLS AND
SENSITIVE PAPER PARTICLE DISTRIBUTION  DATA,  TURKEY POINT SPRAY Mnnni F
I
1
3
i;
6
7
8


IXICh)
( UN)
10.
00.
110.
ISu.
JOO.
30ol


UIH1 J
(HM)
3!J.
110.
lc.O.
21>J.
300.
3bO.


DEL 11
(UP)
JU.
JO.
50
_' 1 ' •
50.
50.
50.

(
fXCFM P(D) DEL x/Dc-L „ DEL x

-------
        POSITION.  d/e/h(ra/°/m) :  36.6/270/6.1
DATE:  2/1/74
TIME FRAME:  1515-1545
        NOTE:  Concurrent IK Data Point Available:


        PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
-P.
CJI
o
1 U(LJw)
CJM»
1 iO.
L. 30 •
2 50.
4 dJ.
3 KJ.
o i5J.
7 &UO.
0 £3 J.
'•i 300.
iJ 330.



D(HI )
«UM)
30.
50.
80.
110.
150.
ZCO.
250.
300.
350.
400.



OEL T
CJMI
20.
20.
30.
30.
40.
50.
50.
su.
50.
50.


t
TJfFf.'l P*R2E 00
I.J89E 00
5.03?c-01
2.761E-01
1.676E
4. 222E
9.490E
1.347E
1.150E
5.612E
1.491E
5.445E
2.516E
1.381E
02
02
02
03
03
02
02
01
01
01
OFL FLUX
(UG/M2-SECI
4.708E
1.186E
2.667E
3.784E
3.232E
1.577F
4.190E
1.530E
7.071F
3.879E
02
03
03
03
03
03
02
02
01
01
PARTICLE VEL
(M/SECI
2.810E
2.810E
2.810E
2.810E
2.810E
2.810F
2.810F
2.810?
2.810E
2.810?
00
00
00
00
00
00
00
00
00
00
MASS MEDIAN DIAMETER
1

(UM)
100










        BARGE SAMPLING POINT CONDITIONS:  Twet/Tdry Ranges:   21.7  -  22.8/26.0  -  26.3  °C


                                          Canal  Water Temperature:  33.0  °C

                                          Wind Speed and Direction Distribution:  See Table
         AMBIENT CONDITIONS:  Wind Speed:  lo.l    Km/hr  ;  Wind Direction:
                      Twet/Tdry =  22.0/26.4   °C

-------
POSITION. d/e/h(m/°/m) : 33.5/270/7
.9
DATE:
2/1/74
TIME FRAME: 1645-1714
NOTE: Concurrent IK Data Point Available:
PILLS AND SENSITIVE
r
1
/.
t
0
6
7
<5

•)(LPw)
10.
10.
50.
"0.
uc.
ISO.
? 10.
?r>0.
330.

run; i
urn
JO.
SO.
t.O.
111).
IVJ.
?'JO.
300.

PAPER PARTICLE DISTRIBUTION DATA,
m •_,
20.
30.
Jf).
40.
50.
t>0.
50.

!)(C£r:i
UJ'«)
O j •
O *%
131 .
225.
275.
J25.
X
^TURKEY POINT SPRAY MODULE
P(D) DFL X/UEL
(r»/UN-M3) (Uii/U*l-M3
2. 500t 02
8» 900E 02
3.200t 02
l.lOCt 02
3.200E 01
2.5JCE 00
3.200E-01
7. 100E-02
2.000f -02
nairr FLUX
1.047E 01
2.-J82E 01
4.A01E 01
•..V36E 01
3. tod It 01
V.015E 00
1.90VE 00
7. 731E-01
3.595E-01
1) DEL X
) (UG/M31
2.09
-------
      POSITION.  d/e/h(m/°/m) :   48.8/270/7.6
                            DATE:   2/V74
                                                                                   TIME FRAME;  1725-1755
      NOTE:   Concurrent IK Data Point Available:
KiLI
I

1
2
3

•3
6
7
.a MU at
LMLJH)
(UM)
10.
JO.
30.
80.
110.
laO.
200.
U(HI I
(UM|
30.
50.
80.
110.

200.
250.
DEL D
(UM)
23.
20.
30.
30.
40.
50.
50.
OICEM)
(UM)
20.
40.
65.
95.
130.
1 75.
225.
P«D)
DEL X/DEL 0
(«/U1-M3l (UG/U^-M3I
2.000F 03
4.500E 02
1.300E 02
3. 500F 01
7.100E 00
7. 100E-01
l.OOOF-01
8. 378E
1.508E
1.369E
1. 571E
8.167:
1.992E
00
01
01
01
00
00
5.964E-01
DEL X
(UG/M3)
1.676E
3. 016E
5.608E
4. 714E
3.267E
9.962E
2.982E
02
02
02
02
02
01
01
DEL FLUX
(UG/M2-SEO
7.540E
1.357E
2.524E
2.121E
1.470E
4.483E
1.342E
02
03
03
03
03
02
02
                                                                                                 P4RT1CLE VEL
                                                                                                   (M/SECI

                                                                                                  4.500E 00
                                                                                                  4.500E 00
                                                                                                  4.500E 00
                                                                                                  4.500E 00
                                                                                                  4.500E 00
                                                                                                  4.500E 00
                                                                                                  4.500E 00
U1
ro
    X
 (UG/H3)

1.957E  03
                                             DRIFT  FLUX v   MASS MEDIAN DIAMETER
                                             (UO/M2-SEO.I           (UM)
                                              8.809E 0>
77
       BARGE  SAMPLING POINT CONDITIONS;  Twet/T
-------
U1
bJ
POSITION.  d/e/h(m/a/m) :  48.8/270/4.3


NOTE:  Concurrent IK Data Point Available:
                                                                DftTE.   2/l/74
                                       TIME  FRAME: 1805-1837
         PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA.  TURKEY  POINT  SPRAY  MODULE TEST
I

1
t>
7
J ( L J .O
( <_M )

iJ.
3J.
50.
1 10.
iaO.
DIHI )
( U'1 )

30.
50.
80.
110.
150.
200.
250.
DEL r>
1 1IM 1
1 U ~ 1
20.
20.
30.
50.
50.
•MC-ENI
IH1)
2C.
)
/UV-M3)
000C 03
800E 02
900r 01
500F 01
OOOt 00
000&-02
Ot-L X/OEL n
(U^/LM-M3)
*». 1 89E 00
9.3^3E 00
1.1 36E 01
1.122E 01
5.752? 00
7.357E-01
1. 193E-01
DEL
(UG/1
B.378E
1. 977E
3.408E
3.367E
2. 301E
3.929F
5. 964E
X
31
01
02
02
02
02
01
00
DEL FLUX
(UG/M2-SEC)
4.169E 02
9.383F 02
1.704E 03
1.683E 03
1.150E 03
1.964E 02
2.982E 01
PARTICLE VEL
(M/SEC)
5. OOOE 00
5. OOOE 00
5. OOOE 00
5. OOOE 00
5. OOOE 00
5. OOOE 00
5. OOOE 00
                              X

                           (UG/M3I
                                          03
DRIFT FLUX
(UG/M2-SECI


 6.121? 03
MASS MEDIAN DIAMETER
        (UM)


         80
        BARGE  SAMPLING POINT CONDITIONS:  Twet/Tdry Ranges:   21.8  - 22.5/25.8 'C
                                         Canal  Water Temperature: 33.0  °C
                                         Wind Speed and Direction Distribution:   See  Table
        AMBIENT CONDITIONS;  Wind Speed:  18.0   Km/hr  ;  Wind  Direction:
                                                                            Twet/Tdry = 22.0/26.0   °C

-------
POSITION. d/e/h(m/°/m) : 33.5/245/4,
.6 DATE: 2/12/74
TIME FRAME: 1552-1622
NOTE: Concurrent IK Data Point Available:
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE
1
1
2
b
7

ui L j«n
u.
jj.
5J.
bJ.
iU.
2uJ.

0
-------
  POSITION.  d/e/h(m/°/m) :   64.0/245/4.6
                                        ,
  NOTE:   Concurrent  IK Data Point Available:  _x_

  PILLS  AND SENSITIVE PAPER PARTTf.P DISTRIBUTION nflTfl|  TURKEY POINT SPPAV
                                        TIME FRAME: 1430-1600
*
1
2
i
( UN 1
10.
10.
r. 0 .
HO.
no.
30.
30.
00.
110.
150.
200.
PEL n
30.
AC.
50.
DUfN )

-------
     POSITION.  d/e/h(m/0/in) : 41.1/270/4.6
             DATE;  2/13/74
                                                                                     TIME FRAME; 1617-1700
     NOTE:  Concurrent IK Data Point Available:  	X_
U1
CTI
1

1
2
3
<»
5
b
7
u


UlLJH)
( UMJ
10.
jO.
50.
dO.
11U.
150.
lE 00
7. 100E 01 1.021E 01
2.500E 01 1.122E 01
ft. 300E 00 7.247E 00
l.OOOE 00 2.806E 00
1.600E-01 9.543E-01
2.500E--02 2. 722E-01
DEL X
IUG/M3I
2.681E
9.383E
3.063E
3.367E
2.899E
1.403E
*.771E
1.361E
01
01
02
02
02
02
01
01
DEL FLUX
•UG/M2-SECI
*.o*:.E
2.815E
9.188E
1.010E
8.697E
<».209E
1.431E
^.083E
01
02
02
03
02
02
02
01
PAPTICLE VEL
(M/SEC)
3.000E
3.000E
3.000E
3.000E
3.000E
3.000E
3.000E
3.000E
00
00
00
00
00
00
00
00
DRIFT FLUX MASS MEDIAN DIAMETER
IUG/M2-SECJ
(UM)





                                1.255E  03
3.765E 03
                                                                        98
      BARGE SAMPLING POINT CONDITIONS:  Twet/Tdry Ranges:  15-5 .  13.2/22.0  -  23.0  °C

                                       Canal Water Temperature:       °C
                                       Wind  Speed and Direction  Distribution:  See  Table

      AMBIENT CONDITIONS;  Wind Speed:  10.8    Km/hr   ;  Wind  Direction:    E     ;   Twet/Tdry = 17.0/23.3   °C •

-------
POSITION.  d/9/h(m/°/m) :    41.1/270/7.0
                                                       DATE:  2/13/74
                                                                 TIME  FRAME:  1725-1756
 NOTE:  Concurrent IK Data Point Available:     X
 i   (XLCwi nmi
     «DM)     (ij^
       10.

       r»o.
       dO.
     11C.

     200.
 50.
 .10.
110.
150.
             250.
PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
1)2 L 'J
30.
30.
40.
50.
50.

n(CEN)
20.
40.
t>5.
130.
175.
?25.
X
lur,/M3i
PIOI
l.o JOE 0>
2.500E 02
7.100E 01
2.000F 01
4.500E 00
5.603E-U2
OEL X/DEL D
(UG/JM-M3)
6.702C 00
d. 378E 00
1.0.2 IE 01
3. 97ot 00
t>.177E 00
1./6GE 00
3.3*uE-Ol
DEL X
(UO/M3)
1.340E 02
1.676E 02
3.063E 02
2.694E 02
2.071E 02
8.839E 01
1.670E 01
OEL FLUX
(UG/M2-SECI
3.351E 02
4.189E 02
7.657E 02
6.734E 02
5.177E 02
2.210E 02
4.175E 01
PARTICLE VEL
(H/SEC)
2.500E 00
2.500E 00
2.500E 00
2.5UOE 00
2.500L 00
2.500E 00
2.500E 00
OKI FT FLUX MASS MEDIAN DIAMETER

-------
U1
co
        POSITION.  d/e/h(m/°/m) :    38.1/270/2.4
DATE; 2/13/74
TIME FRAME: 1810-1840
        NOTE:  Concurrent IK Data Point Available:  	X_
        PILLS AND SENSITIVE PAPER PARTICLE  DISTRIBUTION DATA. TURKEY  POINT SPRAY MODULE TEST
I
1
2
3
4
S
f,
7



D(LO)
(DM)
10.
10.
50.
dO.
110.
L50.
?')0.



OOU )
(UM)
30.
50.
00.
110.
150.
?00.
250.



DEL J
(UM)
20.
20.
30.
30.
tO.
50.
50.


I
U(CEN)
20.
65!
95.
130.
175.
^5.
X
(UG/M3 I
.03 IE 03
PIO) DEL X/OEL D
<»/U1-M3) IUG/UM-M3I
1.600E 03 6.702E 00
3.<:OJE 02 1.072E 01
6.300E 01 y.059E 00
1.60UE 01 7. 183E 00
3.200E 00 3.681E 00
^.BOOE-Ol 7.857E-01
2.800E-02 1.070E-01
DEL X
IUG/M3)
2. 145E
2.718E
2.155E
1.472E
3.929E
8.350E
02
02
02
02
02
01
00
UEL FLUX
(UG/M2-SEC)
3.351E
5.362E
6.794E
5.387E
3.681E
9.B22E
2.087E
02
02
02
02
02
01
01
PARTICLE VEL
(M/SEC)
2.500E
2.500E
2.500E
2.500E
2.500E
2.500E
2.500E
00
00
00
00
00
00
00
DRIFT FLUX MASS MEDIAN DIAMETER
(UG/M2-SEC)
2.577F 03
(UM)
68










        BARGE SAMPLING POINT  CONDITIONS:  Twet/Tdry Ranges:   17.0 - 18.0/22.5 - 23 °C
                                         Canal Water Temperature:       °C
                                         Wind Speed and Direction  Distribution:   See Table
        AMBIENT CONDITIONS;   Wind Speed:   9.0   Km/hr   ;  Wind Direction:    E
                      Twet/Tdry =   17.0/23.3   °C

-------
         POSITION.  d/e/h(m/°/m) ;   88.4/245/4.6
DATE:  2/14/74
         NOTE:   Concurrent  IK  Data Point Available:    x

         PILLS  AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODUL
                                                                                        TIME  FRAME:  1637-1918
                                                                                      E TEST
171
\O
1

1
L
3
•t
•»
0
7


"fuMi1'

10.
50.
tJJ.
150.
200.


D(HI)

-------
POSITION.  d/e/h(m/°/m) ;   33.5/270/4.6
                                                               DATE:  2/15/74
                                              TIME FRAME: 1359-1656
        NOTE:   Concurrent  IK Data Point Available:


        PILLS  AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
Ol
o


1

3

s
h
7
8
0


O( Ldrf)
(DM)
10.
JO.

80.
1 10.
150.
200.
2SI-.
100.


D( HI 1

"JO.
SO.
H U.
110.
150.
200.

3iV.)"
3>0.


PtL I)

20.

30.
30.

50!
50.
50.
50.


niCt'U

20.

t>5.
95.
130.
175.
2?5.
275.
325.
X
IUG/M3)
PU, ) [JEL X/DEL D
U/UM-M3) IUG/UM-M3I
l.OJOE 03 -V. I89t 00
2.500E C2 0.3/fcE 00
A.OOOC 01 5. 7S2E 00
4.000E 00 1.796E 00
t.OOOE-01 4.631E-01
6.90HE-02 2.*97E-01
1.600E-02 9.5<»2E-C2
4.000E-03 4.35C.E-02
1.300E-03 2.317E-02
DEL X
(UG/131
8.378E
1.676E
1.726E
5.387E
L.B41E
1.249E
4.771E
2.17&E
1.168E
01
02
02
01
01
01
00
00
00
DEL FLUX
(UG/M2-SEC)
2.513E
5.027E
5.177E
1.616E
5.522E
3.746E
1.43 IE
6.534E
3.5C5E
02
02
02
02
01
01
01
00
00
PARTICLE VEL
(M/SECI
3.000E
3.000E
3.000E
3.000E
3.000E
3.000E
3.000E
3.003E
3.000E
00
CO
00
00
00
00
00
00
00
OKI FT HUX MASS MEDIAN DIAMETER
(Uf,/M2-SEC 1
(UM)





                                  5.1o3E 02
        l.5i>OF 03
                                                                          51
        BARGE SAMPLING POINT  CONDITIONS;
Twet/Tdry Ranges:   18 7 . 23.0/24.0 - 26.0 °C

Canal Water Temperature:        °C

Wind Speed and Direction Distribution:  See Table
        AMBIENT CONDITIONS:   Wind Speed:   10.3   Whr  ;  Wind Direction:
                                            Twet/Tdry =  21.0/25.5   °C

-------
 POSITION.  d/e/h(m/°/m) :   36.6/230/4.6
                       DATE:  3/18/74
                       TIME FRAME:  1459-1559
 NOTE:   Concurrent IK Data Point Available:    x

 PILL? AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
I
1
^
1
•*
5
ft
7
n
9
10
D ( L UW )
I UM)
10.
10.
5o.
dO.
1 10.
I 50.
200.
250.
100.
350.
r>(HI I
( UM )
30.
50.
80.
110.
150.
200.
250.
3 no.
J50.
400.
OtL I,
( UM)
20.
70.
JO.
30.
40.
50.
50.
50.
50.
50.
I'ICtN)
(UM)
4fl.
o!,.
^5.
130.
175.
225.
275.
325.
375.
PUD
( J/UM-M3)
2.500E 03
0.300E 02
2.200L 02
b.JO'JE 01
1.C.OOE 01
2.500t 00
3.200E-01
5.')COt-02
i>. 'iOOF-03
l.tJOOE-03
UtL X/OEL D
1.047E 01
2.111E 01
3.103E 01
2.82bE 01
1.341E 01
7. 015E 00
1.909E 00
5.^45c-0l
1.600E-01
4.^70c-02
DEL X
( UG/M3 )
2.094F 02
4. 22^E
9.490E
8.4U5E
7.362E
3.506E

-------
POSITION.  d/e/h(ni/e/m) :   36.6/230/11.0
               DATE:  3/18/74
                       TIME FRAME:  1653-1723
NOTE:  Concurrent IK  Data Point Available:    X

PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST

 I   DCLOW)  DUIII   OEL D   0(CEM      P(0)     DEL X/DEL  0     DEL  X       DEL  FLUX   PARTICLE VEL
     (UM)    (UM)    (of!)    (U1)    <»/UM-P3)     (UG/UM-M3)    IUG/M3I     CUG/M2-SECI    IM/SEC)
1
2
3
4
5
ti
7
10.
30.
50.
30.
110.
150.
200.
30.
50.
bO.
110.
150.
200.
250.
20.
20.
30.
30.
tO.
50.
50.
20.
HO.
t>5.
95.
130.
175.
225.
3. 2 OOF- 02
5.000E 01
1.4COE 01
3.500E 00
7.900E-01
1.400E-01
2.000E-02
1.340E 00
1.676E 00
2.C13E tit)
1.571E 00
9.088E-01
3. 929E-01
1.193E-01
2 . 68 IE
3.351E
6.039E
4.714E
3.635E
1.96HE
5.964E
01
01
01
01
01
01
00
1.206E
1.508E
2.718E
2.121E
1.636E
8.839E
2.6846
02
02
02
02
02
01
01
4.500E 00
4.500E 00
4.500E 00
4.500E 00
4.500E 00
4.500E 00
4.500E 00
                           (UG/M3)


                                 02
DRIFT  FLUX
(UG/K2-SECI

 1.034E 03
MASS MEDIAN DIAMETER
        (UM)

         77
BARGE SAMPLING POINT CONDITIONS:  Twet/Tdry Ranges:   15.6  - 18.9/22.2 - 23.3 °C
                                Canal Water Temperature:    34.5°C
                                Wind Speed and Direction  Distribution:
AMBIENT CONDITIONS:  Wind Speed:  16.2    Km/hr  ;  Wind Direction:
                            NE
                 See Table  10

                  •   Twet/Tdry =18.1/24.2

-------
       POSITION.  d/e/h(m/"/m) :   36.6/230/7.6
                                                  DATE:  3/18/74
                                                                  TIME  FRAME:  1743-1843
       NOTE:   Concurrent IK Data Point Available:
          Ditnwi
       u
       7
             10.
             30.
110.
150.
200.
01 MM
 IU'1)

  3J.

  ao.
 iu.
 IbO.
 ?00.
PAPER PARTICLE DISTRIBUTION DATA, TURKEY POINT SPRAY MODULE TEST
DFL :i
( UM )
20.
2O.
30.
30.
40.
50.
50.
OICL.'.J
.
130.
175.
225.
PIUI
( 
-------
POSITION.  d/e/h(m/°/m) :   36.6/290/4.6
              DATE:    3/19/74
TIME FRAME; 1122-1222
NOTE:  Concurrent IK Data Point Available:  	X_
PILLS AND SENSITIVE  PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
I

1
2
3
4
5
6
7
8
4
10


CM LOW)
IUMI
10.
30.
50.
80.
110.
150.
200.
250.
300.
350.


O(HI)
(U*l
30.
50.
60.
110.
150.
200.
250.
3CO.
350.
400.


DEL 0
IU")
20.
20.
30.
30.
40.
50.
50.
50.
50.
50.


l)(CEM
PCD) DEL
X/OEL 0 DEL X
2~
1.403E 02
4.17SE 01
1.361E 01
4.494E 00
1.519E 00
DEL FLUX
(UG/M2-SECI
6. 7C2E
1.173E
2.157t
1.885E
1.449E
7.015E
2.087E
6.806E
2.247E
7.S93E
02
03
33
03
03
02
02
01
01
00
PARTICLE VEL
(M/SEC)
S.OOOE
S.OOOE
S.OOOE
S.OOOE
S.OOOE
5.00CE
S.OOOE
S.OOOE
S.OOOE
S.OOOE
00
00
00
00
00
00
00
00
00
00
MASS MEDIAN DIAMETER

(UM)




                          1.669E 03
8.343E 03
                                                                 83
BARGE SAMPLING POINT  CONDITIONS;  Twet/Tdry Ranges: 19.7 - 21.3/24.3 - 24.5 °C
                                 Canal Water Temperature:   32.7°C
                                 Wind Speed and Direction Distribution:
AMBIENT CONDITIONS;   Wind Speed:  18.0    Km/hr  ;  Wind Direction:   SE
                                See Table 12
                                 '»   Twet/Tdry
           21.0/26.0  °C

-------

. 4.
I7"i. 7.
22a. l.
27-5. 1.
325. 2.
X
I ui;/«''3 i
. TURKEY POINT SPRAY MODULE
Pil;» DcL X/OEL D
/JM-M3»
3 JOE 03
+ J0f- 03
DO'JF 02
<*0'lt 02
300C. 01
JOOE 30
JOUt OJ
•tOJE-01
OOOE-02
fJUFT FLUX
(lltj/M2-SFC
(UG/UH-M3J
2.o39t 01
A.b-ilE 01
i>.752C 01
6.2J5E 01
5. 177= 01
2.217E 01
5.96-tE 00
1. 52fE 00
3.595E-01
DEL X
TEST
DEL hi

.JX
IUG/M3J IUG/V2-SF.C»
3.
s.
1.
1.
2.
1.
2.
7.
L.
MASS MEDIAN
1
(UM;
278E 02
JbiE 02
726E 03
8855 03
071E 03
10SE 03
9cJ2c 02
b22E 01
797E 01
DIAMETER
1
2. 11 IE
J.753E
6.9C2E
7.542E
8.283E
4.434E
l.l?3E
3.0'*9E
7.1SCE


03
03
03
OJ
03
03
03
02
01



PARTICLE
(MX SEC
4.0JOE
4.000E
4.000E
^.OOOE
4.000E
t.OOOE
4.000E
4.00JE
4.000E



VtL
1
00
00
00
00
00
00
00
00
00


                                                         Ot
          92
       BARGE SAMPLING POINT CONDITIONS:  Twet/Tdry Ranges:   24.7  _ 26.8/27.7 - 28.8 °C
                                         Canal Water Temperature:   36.8°c
                                         Wind Speed and Direction Distribution:   See Table 13
       AMBIENT CONDITIONS;  Wind Speed:  14.4   Km/hr  ;  Wind Direction:   SE     ;   Twet/Tdry =  24.9/28.0  °C

-------
POSITION*  d/e/h(m/°/m) :    36.6/290/3.0
                                                 DATE:
                                                         3/26/74
                                                                 TIME FWWE:J200-T248
NOTE:  Concurrent IK Data Point Available:
 I   OILCW) 0(HII
      ('JO")    «:-"')
 7
 8
 9
10
       10.
       10.
       r»0.
       30.
     110.
     ISO.
     ?00.
3)0.
35C.
         50.
         r>o.
        no.
        1*0.
        ?oo.
350.
PAPER PARTICLE DISTRIBUTION DATA. TURKEY
r>tt T
(DM)
20.
2L).
30.
30.
4G.
50.
50.
• 50.
50.
50.


CICENI
POINT SPRAY MODULE
»(!)) DEL X/OEL 0
(Uf*< lrf/JM-K3»
20.
40.
65.
95.
130.
175.
£25.
275.
J25.
375.
X
1UG/K3)
5.
1.
5.
2.
6.
1.
4.
6.
1.
1.


oooe 03
oOuc 03
600E 02
100= 02
30GE 01
300E 01
OOOE 00
300E-01
JOOE-01
dOOE-02
DRIFT FLUX
(UG/M2-SEC
•UG/UH-M3)
2.J94E
5.362E
B.052E
6.976E
7. 247E
5.051E
2.386E
6.U60E
1.797E
01
01
01
01
01
01
01
00
00
4. y/OE-Ol
DEL X
CUG/M3)
4.189E
1.072E
2.416E
2.694E
2.899E
2.526E
1.193E
3.430E
8.987E
2.485E
02
03
03
03
03
03
03
02
01
01
TEST

DEL FLUX
(UG/M2-SEO
1.257E
3.217E
7.247E
8.081E
8.697E
7.577E
3.576E
L.O29E
2.696E
7.455E
03
03
03
03
03
03
03
03
02
01


PARTICLE VEL
IM/SEC)
3. OOOE
3. OOOE
3. OOOE
3. OOOE
3. OOOE
3. OOOE
3. OOOE
3. OOOE
3. OOOE
3. OOOE
00
00
00
00
00
00
00
00
00
00
MASS MEDIAN DIAMETER


fltMl





                                         4.103E 04
                                                                  113
 BARGE SAMPLING POINT CONDITIONS:  Twet/T
-------
-P.
en
                                                              DATE:   3/26/74
                                                                               TIME  FRAME:  1255-1339
NOTE: Concurrent IK Data Point Available: x
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA,
: D(LTU)
(IIM)
1 10.
~* r>\j*
H 30.
s 110.
i -5 n
O L 7 U .
7 ?')r.
H 200 .


0 < Hi ) DC L u 0 (CEf I
10. 20. 20.
"iQ ^ U • *t 0«
Jj. 30. £>5.
110. 31. 95.
r>o. 40. no.
Z'iO. 50. 225.
300. 50. ?75.
350. 50. *
-------
     POSITION.  d/e/hdn/°/m) :    36.6/290/9.1
                                           DATE:  3/26/74
TIME FRAME:  1352-1440
oo
     NOTE:  Concurrent IK Data Point Available:
     i   niLuwi
          (MM)

     1     10.
     ?     30.
     ?     SO.
     4     SO.
     5    11J.
     I:    ISO.
     7    2TO.
     H    250.
 50.
 60.
110.
150.

?50.
iOO.
PAPER PARTICLE DISTRIBUTION DATA, TURKEY POINT SPRAY MODULE
on. T
P(CfcN)

PID) DFL
X/OEL
0 DEL X
«U") (UM) (»/UM-M3) (UG/UM-M3I (UG/M3)
20.
20.
JO.
30.
40.
50.
50.
•50.


20.
40.
65.
95.
130.
175.
^25.
275.
X
(UG/M3J
3.
1.
4.
I.
3.
6.
3.
I.



-------
en
vo
       POSriON.  d/e/h(m/°/m) :    36.6/?75/A.fi
                DATE:  3/?7/7d
                       TIME FRAME:
       NOTE:   Concurrent IK Data Point Available:    x


       PIL,S AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
T

1
7
.•i
'*
3
:>
7
15
4
DILilWl
( -If J
10.
to.
50.
'13.
1 10.
1*30.
.>).).
'5 j.
I.JO.
0(1-11
(UM)
30.
•j J.
dO.
110.
15 J.
POO.
^31).
^00 .
350.
OcL J
< Urf)
20.
J.
bO.
r>o.
D(CE'I)
(UMI
20.
•*!).
oi.
J5.
UO.
I7i.
220.
275.
32b.
Pll»
DEL X/IJFL D
DEL X
(W/U^-yjJ >U»;/UM-M3) 1UG/M3)
2.000E 03
7. 1 ;)o£ 02
2.5JOE 02
8,-^OOF 01
2. JOCE Cl
5.JOOE 00
5. JOOE-Ol
7. 10 )F-02
1. JOOE-02
C.37UE 00
2.379E 01
3.595E 01
3.995E Jl
3.221E 01
1.403E 01
2.932E 00
7. /31E-01
1.797E-01
1.676E
4.758E
1.078E
1.1996
1.288E
7.CJ15E
i.^yie
3.866E
8.987E
02
02
03
03
03
02
02
01
00
DEL FLUX
(UG/M2-SEC J
4.842E
1.375E
3. 117E
3.464E
3.723E
2. 027fc
4.309E
1.117E
2.597E
02
03
03
03
03
03
02

01
PARTICLE VEL
(M/SEC)
2.8SOE

2.890E
2.890E
2.U90E
2.890E
2.890E
2.890E
2.890fc
00
00
00
00
00
00
00
00
00
                                     X

                                 (116/1*3 )



                                5.107: 03
URlfT FLUX

(UG/M2-SECI


 l.<»75E W<
MASS MEDIAN DIAMETER
        (UM)


         101
      BARGE SAMPLING POINT CONDITIONS:   Twet/Tdry  Ranges:   23.7  - 25.3/27.0 - 28.0 °C


                                        Canal  Water Temperature:    34.ffC

                                        Mind Speed and Direction Distribution:   See  Table 17
      AMBIENT CONDITIONS;  Wind Speed:   10.4   Km/hr  ;   Wind Direction:  ESE
                                     Twet/Tdry =23.2/27.8   °C

-------
POSITION. d/e/h(m/°/m) :  73.2/280/4.6
                                           DATE:   3/27/74
                                                          TIME FRAME: 1652-1740
NOTE:   Concurrent IK Data Point Available:    X

PILLS  AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA.  TURKEY POINT SPRAY MODULE TEST
    (UM)

      10.
      30.
      50.
      10.
    U'J.
    150.
0 < HI )
 (UM)

  30.
  50.
  10.
 113.
 150 .
 200.
DLL  J
 ( UM)

  20.
  20.
  30.
  30.

  •HO.
                           DJCENI
   »un
( WU-1-M3)
DEL  X/DEL  0
 (UG/UM-M3I
 DEL  X
(UG/M3I
  DEL  FLUX
(UG/M2-SECI
PARTICLE  VEL
   (M/SEC)
20.
65.
7.'*OOE 02
l.jUUc 02
3.500fe 01
l.OOJE 01
2.JOOE 00
2.aOOE-Ol
3.309E 00
5.3S2E 00
5.033E 00
4.4UVE 00
2.3UIE 00
7.a57E-Ol
6.618E 01
1.072E 02
1.510E 02
1.347E 02
9.203E 01
3.929E 01
1.7SCE 02
2.865E 02
4.061E 02
3.623E 02
2.476E 02
1.057E 02
2.690E 00
2.690E 00
2.690E 00
2.690E 00
2.690E 00
2.690E 00
                             X
                          (UG/M3)
                                >J2
                           ORIFT FLUX
                           (UG/M2-SEC1

                             1.598E 03
                                   MASS MEDIAN DIAMETER
                                           (UM)

                                            71
BARGE SAMPLING POINT CONDITIONS;  Twet/Tdry Ranges:   22.0 -  23.5/26.0 - 27.0 °C
                                Canal Water Temperature:   34.8°C
                                Wind Speed and Direction Distribution:  See Table 18

AMBIENT CONDITIONS:  Wind Speed:   9.7    Km/hr  ; Wind Direction:   ESE   ;  Twet/Tdry =  23.5/27.5   °C

-------
POSITION.  d/e/h(m/°/m) :    73.2/280/7.6
                                 DATE:   3/27/74
                                                          TIME FRAME:
                                                                                          1801-1830
NOTE:  Concurrent IK Data Point Available:     X

PILLS AND SENSITIVE  PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
I
illLCW)
 tllMJ

  10.
  30.
  50.

 UU.
 150.
           I) (Hi )
              JO.
              •30.
              80.
             113.
             IbO.
             ?00.
•Jt L  I)
 (UM)

  2 i.
  20.
  30.
50.
O(CCN)
 (U"»
                     t>(U)
                           DtL  X/DEL  0     DEL X       DEL FLUX  PARTICLE  VEi.
                             IUG/UM-M3)    IUG/M3)    IUG/M2-SEC)    (M/SECI
40.
95.
130.
1 15.
5.300E 02
l.OOOE 02
2.200E 01
b.JJOE 00
1.400E OU
2.000t-01
2.094E 00
3.351E 00
3.163E 00
2.245E 00
1.610E 00
5.612E-01
4.189E 01
6.7O2E 01
9.490E 01
b.7^4E 01
6.4'»2E 01
2.806E 01
1.1 77E 02
1.883E 02
2.667E 02
1.8S2E 02
l.dlOE 02
7.885E 01
2.810E 00
2.810E 00
2.810E OO
2.810E 00
2.810E 00
2.810E 00
                          IUG/M3 )
                                 U2
                 URIFT  FLUX
                 IUG/M2-SEC)

                  1.022F 03
                                    MASS MEDIAN DIAMETER
                                            (DM)

                                             73
 BARGE SAMPLING POINT CONDITIONS:  Twet/Tdry Ranges:  24.1/26.0 °C
                                 Canal Water Temperature:   34.8°C
                                 Mind Speed and Direction Distribution:  See Table 19
 AMBIENT CONDITIONS:   Wind Speed:  10.1    Km/hr  ;  Wind Direction:   ESE    ;  Twet/Tdry = 23.7/26.5   °C

-------
POSITION*
d/e/h(m/°,
NOTE: Concurrent IK
PILLS AND SENSITIVE
I IJ(LOV»)
dJ-l)
1 10.
2 '10.
3 50.
't 80.
•i 1 1 0.
ft 150.
/ 200.
o 250.
V 100.
10 350.
11 VJ-).


XHI 1 .,
(ll'l)
33.
50.
HJ .
110.
li'J.
200.
• 250.
300.

5.
95.
13'J.
1/5.
225.
275.
125.
3/5.
t25.
X
(IIG/M3)
P ( 0 )
DATA,
[:fcL
DATE:
3/30/74
TURKEY POINT SPRAY
X/BEL D DEL
(i»/UNi-vl3) JUC./UM-M3
3.2JOF 03
7.90JE 02
3.200F 02
l.aOOE 02
7. 'JOQE 01
2.5JOE 01
7.10'JE 00
l.GOOE 00
4.000E-01
7,-iOGE -02
I.BOOE--0*.
I.

4.
6.
c,.
7.
4.
1.
7.
2.
7.
DRIFT FLUX
340E 01
b47£ 01
6015 01
081E 01
Gd8= 01
015£ 01
23 5 E 01
96oE 01
L90E 00
Idle 00
235E-01
MASS
(UG/M2-5EC)

MODULE
X
) (UG/M3) (
2.681E
5.29SE
1.380E
2.424E
3.635E
3.508E
2.U7E
9. 800E
3.595E
1.091E
3.018E
02
02
03
03
03
03
03
02
02
02
01
TIME FRAME:
TEST
DEL FL'JX
UG/H2-StCI
1.289E 03
2.547E 03
6.640E 03
1.1 66E 04
1.744E 04
1.687E 04
1.018E 04
4.714E 03
1.729E 03
5.246E 02
1.740E 02
1540-1625

PARTICLE


VEL
(M/SEC)
4.810E
4.810E
4.810E
4.810E
4.810E
4.810E
4.810E
4.810E
4.810E
4. 8 ICE
4.810E
00
00
00
00
00
00
00
00
00
00
00
MEDIAN DIAMETER
(UM)




                         I.S35E 04
                                                                 144
BARGE SAMPLING POINT  CONDITIONS;  Twet/Tdry Ranges:  24.0 - 26.7/28.8 - 29.3 °C

                                 Canal Water Temperature:    33.4*C
                                 Wind Speed and Direction Distribution:  See Table 20

AMBIENT CONDITIONS;   Wind Speed:  17.3    Km/hr  ;  Wind Direction:   SW     ;  Twet/Tdry =  22.0/28.5   °C

-------
POSITION. d/e/h(m/
°/m):
73.Z/070/7.6
DATE: 3/30/74
TIME FRAME: 1640-1740
NOTE: Concurrent IK Data Point Available: x
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA
I

1
f.
3
«*
•3
6
7
d


LllLUWJ
I U-1)
10.
jj.
!)J»
dJ.
110.
iiO.
2UO.
"U*


01 HI )
• UM)
30.
50.
30.
110.
liO.
200.
250.
300.


DEL 0
IIJMI
20.
20.
30.
30.
40.
50.
50.
50.


D«CEN)
(IJM)
20.
*>0.
IS5.
°5.
130.
1.75.
225.
275.
X
JUG/M3)
Pin) n
<*/UM-M3)
2.500F 02
l.OOOF 0?
4. «>OOE 01
?.000fc 0!
6. '•OOF 00
1.400F 00
?. 100E-01
4.000F-02
1PIFT FLUX
(ur,/Me-sec
, TURKEY POINT SPRAY MODULE TEST
'EL X/DEL 0 DEL X
•UG/UM-M3) UJG/M3I
1.J47C 00 2. 094E 01
3.351E 00 6.702E 01
'..471? 00 1.941F 02
B.973F 00 2.694E 02
7.247E 00 2.89PE 02
3.929E 00 1.964E 02
1.670E 00 8.350E 01
4. 356=-01 2.178E 01
MASS MEDIAN DIAMETER
» (UM)
DEL FLUX
IUG/M2-SECI
1.227E 02
3.927E 02
1.138E 03
1.573E 03
1.699E 03
1.151E 03
4.893E 02
1.276E 02


PARTICLE VEL
IM/SECI
5. 860E 00
5.860E 00
5.860F. 00
5.860E 00
5.B60E OO
5.860E 00
5.860E 00
5.860E 00


                                  0?
                                                  o?
                                                                113
BARGE SAMPLING POIMT CONDITIONS:   Twet/Tdry  Ranges:  23.7-25.1/29.0-30.0  °C
                                  Canal  Mater Temperature:    33.4°C
                                  Mind Speed and Direction  Distribution:   See Table 21
AMBIENT CONDITIONS;   Wind Speed:   21.1    Km/hr   ; Wind Direction:   SW     ;   Twet/Tdry = 22.0/28.5   °C

-------
POSITION.  d/e/h(m/°/m) :   73.2/070/11.0
               DATE:   3/30/74
                       TIME  FRAME: 1755 " 1855
NOTE:  Concurrent IK Data Point Available:  _jj	

PILLS AND SENSITIVE  PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
i

i
2
3
<•
5
0
7
6
LXLJMl
( J.I)
iJ.
JJ.
30.
3J.
liO.
iaO.
«JJ.
2.JJ.
0 1 H i )
(UM)
30.
50.
P.O.
110.
150.
200.
250.
300.
OEL 0
I J.-l I
20.
20.
20.
30.
40.
50.
50.
• 50.
TJCrM
(UM|
'0.
40.
6^.
. \ 78^-01
DEL X
IUG/M3J
2.5R1F 01
5.965F 01
1.209E 02
1.&81E 02
1.841E 02
8. 839E 01
3.280E 01
1.089= 01
DEL FLUX
(UG/M2-SECI
1.877E 02
<». 175F 02
' 8.455E 02
1.037F 03
1.288E 03
6. 188F 02
2.296E 02
7.6229 01
PARTICLE VEL

-------
POSITION.  d/e/h(m/°/m) :   73.2/070/4.6
DATE:   3/30/74
TIME FRAME:  1905-1935
NOTE:  Concurrent IK Data Point Available:
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
1
1
5
fa
7
3
D< LJrtl
1 u-tl
10.
30.
iJ.
80.
lau.
POU )
(UM)
20.
50.
flu.
110.
150.
200.
200.
DEL 0
(UM|
20.
20.
10.
10.
40.
50.
50.
50.
(IJM)
20.
bs!
130.
175.
225.
275.
p«ni
6.300F 02
1.AOJ1 02
1.">OOF 01
^..OOOE 00
7. OQOE-01
1. 1001-01
l.BOOE-02
TEL X/JEL T
2.639? 00
4.691E 00
5.752P 00
5. 835F 00
4.6015 00
?.217C 00
6.561?-01
1.960E-01
DEL X
(UG/M3)
5.278E 01
9.383E 01
1.726F 02
1.751? 02
1.8*11: 02
1.10PE 02
3.280F 01
9. 800E 00
DEL FLUX
(UG/M2-SFCI
3.003E 02
5.339? 02
9.818F 02
9.962E 02
I.OA7E 03
6.307E 02
1.866E 02
5.576E 01
PARTICLE VEL
(M/SECI
5.690E 00
5.690E 00
5.690E 00
5.690E 00
5.690E 00
5.690F 00
5. 690E 00
5.690F 00
                           8.J17E  02
                                         ORIFT FLUX
                                         Jiir,/M2-SFCI
                                                  03
 MASS MEDIAN DIAMETER
         (UM)
          97
BARGE SAMPLING POINT CONDITIONS:   Twet/Tdry  Ranges:   24.0/28.9 °C
                                  Canal  Water Temperature:   33.4 °C
                                  Mind Speed and Direction  Distribution:
AMBIENT CONDITIONS;   Wind Speed:  20.5    Kra/hr   ; Wind  Direction:  sw
                  See Table  23
                   !   Twet/Tdry
          23.0/28.9

-------
POSITION. d/e/h(m/°/m) : 36.
NOTE: Concurrent IK
6/260/4.6
DATE: 3/31/74 TIME FRAME: 1240-1325
Data Point Available: X
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
1 LllLJAl Dlril I
CJ-II (IM)
i 1J. 30.
£. 30. 50.
•> bd. 80.
«» 
-------
 PO£VTON.  d/e/h(!ti/°/m) :  33.5/295/4.6

 NOT£:   Concurrent  IK  Data Point Available:
                                                        DATE: 3/31/74
                       TIME FRAME;  1345-1428
 PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
1
1
I
J
t,
5
6
7
o
OILJH)
J.
i>0.
dJ.
.10.
4.30.
*JJ.
25J.
LMHI )
(UM)
20.
50.
80.
110.
150.
200.
i50.
300.
DEL U
(UM)
20.
20.
30.
JO.
•«o.
50.
50.
50.
n«CEM»
I'JM)
20.
40.
65.
95.
130.
175.
i25.
275.
P(D)
I«/UM-M3»
l.OOOF 03
3. 200b 0?
1.100? 02
^.OOOF 01
1.700E 01
?.OOOE 00
2.000E-01
1.800F-02
DEL X/D5L D

-------
POSITION.  d/e/h(m/°/m) :  36.6/245/4.6
                                                       DATE:  3/31/74
                                      TIME FRAME:
                                                                                            1441'1524
NOTE:  Concurrent IK Data Point Available:  _X_


t
,
J
^
-
D
7
a


.jl L ->..)
t Jill
1 J.
3J.

JJ.
1 1 J.
I j J.
£ u J.




lu'11
30.
50.
80.
1 10.
150.
200.

300.


i;EL T
CUM)
'0.
20.
30.
JO.

5ol
50.
50.


c(C^.n P«O) -~>f\- x/ JIL j
(UM)
70.
40.
65.

I'O.
175.
225.

X

(*
3.
1.
4.
1.
1.
2.
3.
1.


/UV-.X3)
?00i 02
T00r 02
OOOE 01
100^ 01
300E 00
000C.-01
500F-02
°OOE--0?
DRIFT KLUX
(DG/M2-5EC
(UG/U^-^3)
1.340? 00
•J.686E 00
5.752E 00
4.938= 00
?.071E 00
5.612?-01
2.0875-01
9.691F-02
O-.L X
(UG/M3)
2.681E 01
7.372E 01
1.726E 02
1.481E 02
8.283E 01
2. 806E 01
1.044E 01
4. 846F. 00
U: L rL'JX
(UG/M2-SEC)
1.356F 02
3.730E 02
8.731E 02
7.496E 02
4.191E 02
1.420E 02
5.281E 01
2.452E 01
PA; T:CL
(M/S5
5. 060E
5.060E
5.060E
5.060E
5.060E
5. 060E
5.060F
5.060E
z VcL
C»
00
00
00
00
00
00
00
00
MASS MEDIAN DIAMETER
>
(UM)



                          5.'»74F 02
2.7705 03
                                                                  80
 BARGE  SAMPLING POINT CONDITIONS:  Twet/Tdry Ranges:  23.1/28.9 °C

                                  Canal Water Temperature:   34.9°C
                                  Wind Speed and Direction Distribution:  See Table 26

 AMBIENT CONDITIONS;  Wind Speed: i8.2    Km/hr  ;  Wind Direction:   ESE   ;  Twet/Tdry =  22.5/27.8   °C

-------
POSITION.  d/e/h(m/°/m):  33.5/270/4.6
                                                        DATE:  3/31/74
                       TIME FRAME:  ]538-1622
 NOTE:   Concurrent  IK Data Point Available:    X

 PILLS  AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
I
L.
J
b
0
7
D( LJMl
(UM)
10.
JO.
30.
80.
110.
150.
DIHJ )
tUMI
30.
50.
BO.
110.
150.
200.
250.
UEL U
(UM)
20.
20.
30.
30.
40.
50.
50.
DCCFM
20.
4C.
c>5.
95.
130.
225.
P(OI
( «/UM-M3)
5.000F 02
2.500F
1.300?
s.ooor
1.300F
1.800=
2.200=-
02
02
01
01
00
01
DEL X/OEL 0
•UG/UM-M3)
2.094E 00
P. 378E
1.B69E
2.245F
5.051E
1.312F
00
01
01
01
00
00
DEL X
(UG/H3»
4. 189E 01
1.676E
5.608E
6.734E
5. 982E
2.526E
6. 561E
02
02
02
02
02
01
DEL FLUX PARTICLE VEL
IUG/M2-SEC) CM/SEC)
1.860E 02 4.44AF nn

2.490E
2.990E
2.656E
1.121E
2.913E
02
03
03
03
03
02
*>• ^40E 00
4.440E 00
4.440E 00
4.440E 00
4.440E 00
4.440E 00
                            (UG/M3I

                           2.360E  03
                                        ORIFT  FLUX
                                        IUG/M2-5EC)

                                         1.048F  04
MASS MEDIAN DIAMETER
        (UM)

         98
BARGE SAMPLING POINT CONDITIONS:  Twet/Tdry Ranges: 20.5 - 25.5/27.5-29.8 °C
                                 Canal Water Temperature:   34.9°C
                                 Wind Speed and Direction Distribution:  See Table 27
AMBIENT CONDITIONS:  Wind  Speed:   16.0   Km/hr  ;  Wind Direction:
                                                                            Twet/Tdry •  21.0/27.9   «c

-------
POSITION.  d/e/h{m/°/in) :   36.6/280/7.6
              DATE:   3/31/74
                       TIME FRAME: 1634-1707
NOTE:  Concurrent  IK  Data Point Available:
PILLS AND SENSITIVE PAPER PARTICLE DISTRIBUTION DATA. TURKEY POINT SPRAY MODULE TEST
DlLJwl D
(U.I) (UK)
iU. JG.
jj. *u.
£jj. PO.
6u. 110.
iiu. 150.
i5». 200.
ioO. 2bO. •
^5o. 200.
(UM )
20.
£0.
30.
30.
^0.
50.
50.
50.
DtCFM
(UM)
20.
4C.
65.
55.
13C.
175.
2?5.
275.

( *
1.
d.
4.
1.
4.
7.
1.
1.
D (O)
/UM-M?)
600? 02
900E Cl
^OOF 01
600E 01
OOOF 00
900:-01
300L-01
POQc-02
OFL
(U
A.
2.
ft.
7.
&.
2.
7.
I.
X/OEL 0
3/u-<->m
7025-01
<}82r 00
^71E 00
182? 00
S01H 00
217E 00
753E-01
960E-01
DEL X
(UG/M3I
1.340E 01
5. 965E 01
1.941E 02
2. 155E 02
1.8ME 02
1.108E 02
3. S77E 01
9. BOOE 00
DEL FLUX
(UG/M2-SEC)
6.702E
2.982E
9.706F
1.077E
9.203F
5.5«2E
1.938E
4.900E
01
02
02
03
02
02
02
01
PAKTICLE VEL
I
5.
5.
5.
5.
5.
5.
5.
5.
M/SEO
OOOE 00
000= 00
OOOE 00
OOOE 00
OOOE 00
OOOE 00
OOOE 00
OOOE 00
                                X
                             <'JG/«3I

                           8,261^  02
OPIFT FLUX

-------
TURKEY POINT ISOKINETIC SAMPLING SUMMARY FOR SPRAY MODULF'
d/e/h
	 (m/Vm) 	
20.7/280/4.3
36.6/270/4.3
41.1/270/7.9
64.0/245/4.6
41.1/270/4.6
41.1/270/7.0
41.1/270/2.4
88.4/245/4.6
33.5/270/4.6
36.6/230/11.0
36.6/230/7.6
36.6/240/4.6
36.6/290/4.6
36.6/290/3.0
36.6/290/6.1
36.6/290/9.1
36.6/275/4.6
73.2/280/4.6
73.2/280/7.6
36.6/060/4.6
73.2/070/7.6

Date, Time
1/30/74, 1700
1/31/74, 1620
2/01/74, 1544
2/13/74, 1430
2/13/74, 1617
2/13/74, 1725
2/13/74, 1810
2/14/74, 1637
2/15/74, 1359
3/18/74, 1653
3/18/74, 1743
3/19/74, 1122
3/26/74, 1104
3/26/74, 1200
3/26/74, 1255
3/26/74, 1352
3/27/74, 1542
3/27/74, 1652
3/27/74, 1801
3/30/74, 1540
3/30/74, 1640
MNa
fug)
1,350
2,295
910
448
1,138
523
658
1,398
574
454
749
1,888
2,339
2,689
1,588
439
1,914
663
138
12,739
2,839
%
(ng)
163
234
114
53.7
121
62.2
78.7
104
610
48
92.5
202
250
280
160
47.5
208
70
16
1,185
310
Vs
(m3)
4.84
5.65
7.90
4.59
4.21
3.54
3.38
13.25
17.82
10.25
7.09
9.35
5.77
3.35
4.55
5.86
4.10
4.96
2.73
12.79
11.71
u
(m/s)
2.5
4.0
3.0
3.0
2.5
2.5
2.5
3.2
3.0
4.8
4.3
4.5
3.7
2.9
3.8
3.9
3.3
2.8
2.8
5.2
6.1
CNa
CNa
1.09
1.09
1.08
1.32
1.32
1.32
1.32
1.02
1.13
0.82
0.82
0.82
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
cMg
CMg
1.07
1.07
1.06
1.24
1.24
1.24
1.24
1.0
0.94
0.88
0.88
0.88
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84
Fa
Na

760
1,771
373
387
892
488
642
344
109
174
372
745
1,260
1,955
1,114
245
1,294
314
119
4,351
1,242
Fa
Mq

90
177
46
44
89
54
72
25
97
20
49
86
135
- 204
112
27
141
33
14
405
136

-------
                            TURKEY POINT ISOKINETIC SAMPLING SUMMARY FOR SPRAY MODULES  (CONTINUED)
£
ro
IK Tube Position
d/e/h
(m/Vm)
73.
73.
36.
33.
36.
33.
2/070/11.0
2/070/4.6
6/260/4.6
5/295/4.6
6/245/4.6
5/270/4.6
Date, Time
3/30/74,
3/30/74,
3/31/74,
3/31/74,
3/31/74,
3/31/74,
1755
1905
1240
1345
1441
1538
MNa
1,014
989
2,139
1,788
939
1,489
"MQ
(u9)
m
in
208
163
100
150
Vs
12.97
4.84
4.82
6.07
6.67
4.06
u
(m/s)
7.1
5.7
2.9
4.7
5.1
4.5
CNa
0.84
0.84
0.84
0.84
0.84
0.84
fe
0.84
0.84
0.84
0.84
0.84
0.84
Fa
rNa
(pg/m2-s)
466
978
1.081
1,163
603
1,386
(ug/m2-s)
51
110
105
106
64
140
       36.5/280/7.6
3/31/74,  1634
464
49
5.99
5.0
0.84   0.84
325
                                                                                                             34

-------
                      REFERENCE

                           0°
              340°
       320
   300
280
       220°
                          180'
140v
 Figure 32.   Sectors for wind direction distribution.
             (Spray Module Test).
                            483

-------
Table 9
POSITION:   36.6m/230°/4.6m
DATE:       3/18/74
TIME FRAME:   1459 -  1559
WIND SPEED DISTRIBUTION
Wind Speed Ranges % of Run Time
(m/s) 1n Range*
















WIND DIRECTION DISTRIBUTION
Wind Direction Sectors
(8)
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
% of Run Time
1n Sector*
0.0
0.0
0.0
0.0
. 0.1
0.4
2.3
12.9
37.6
32.4
11.1
2.8
0.3
0.0
0.0
0.0
*A11 percentages have been rounded to the nearest tenth, so totals may  not
 be exactly 100.0%.
                                      484

-------
Table  10

POSITION:   36.6m/230°/11.0n

DATE:       3/18/74

TIME FRAME:  1653  -  1723
WIND SPEED DISTRIBUTION
Wind Speed Ranges % of Run Time
(m/s) in Range*


•













MIND DIRECTION
DTSTPIBUTION
Wind Direction Sectors % of Run Time
(°) In Sector*
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
0.0
0.0
0.0
0.1
0.0
0.2
0.9
8.3
55.2
33.3
1.7
0.3
0.0
0.0
0.0
0.0
 *A11  percentages have been rounded to the nearest tenth, so totals may not
  be exactly 100.0%.

                                      485

-------
 Table  11

POSITION:   36.6m/230°/7.6m

DATE:       3/18/74

TIME FRAME:   1743 - 1843
HIND SPEED DISTRIBUTION
Hind Speed Ranges % of Run Time
(m/s) In Range*
















WIND DIRECTION
DISTRIBUTION
Wind Direction Sectors % of Run Time
(°) 1n Sector*
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
0.0
0.0
0.0
0.0
0.1
0.1
0.5
2.7
18.6
55.7
19.9
2.0
0.3
0.0
0.0
0.0
*A11  percentages  have been rounded to the nearest tenth, so totals may not
 be exactly  100.0%.

                                      486

-------
 Table 12
 POSITION:   36.6 m/ 240°/4.6 m
 DATE:   3/19/74
 TIME  FRAME:   1122 - 1222
WIND SPEED
Hind Speed Ranges
(m/s)
0 - 0.29
0.29 - 0.67
0.67 - 1.05
1.05 - 1.43
1.43 - 1.81
1.81 - 2.20
2.20 - 2.57
2.57 - 2.95
2.95 - 3.33
3.33 - 3.72
3.72 - 4.10
4.10 - 4.48
4.48 - 4.86
4.86 - 5.24
5.24 - 5.62
5.62 - 6.00
DISTRIBUTION
% of Run Time
in Range*
0.0
0.0
0.0
0.1
0.3
0.7
1.6
4.4
8.3
11.6
14.9
17.4
15.6
10.6
7.1
7.1
WIND
DIRECTION DISTRIBUTION
Wind Direction Sectors
180 -
220 -
260 -
280 -
300 -
320 -
340 -
356 -
12 -
28 -
44 -
60 -
80 -
100 -
120 -
140 -
220
260
280
300
320
340
356
12
28
44
60
80
100
120
140
180
% of Run Time
in Sector*
0.0
0.0
0.0
0.0
0.0
0.1
0.5
2.0
13.2
47.5
30.8
5.6
0.3
0.0
0.0
0.0
*A11 percentages have been rounded to the nearest tenth, so totals may not
 be exactly 100.0%.
                                      487

-------
Table 13

POSITION:  36.6m/240°/4.6m

DATE:      3/26/74

TIME FRAME:  H04 - 1148
WIND SPEED
Wind Speed Ranges
(m/s)
0 - 0.48
0.48 - 1.05
1.05 - 1.62
1.62 - 2.19
2.19 - 2.76
2.76 - 3.33
3.33 - 3.91
3.91 - 4.48
4.48 - 5.05
5.05 - 5.62
5.62 - 6.20
6.20 - 6.76
6.76 - 7.33
7.33 - 7.91
7.91 - 8.48
Greater than 8.48
DISTRIBUTION
% of Run Time
1n Range*
0.1
0.2
2.1
6.8
15.9
26.3
17.6
10.1
11.1
4.9
3.9
• 0.6
0.3
0.0
0.0
0.0
MIND DIRECTION DISTRIBUTION
Wind Direction Sectors % of Run Time
(°) 1n Sector*
















 *A11 percentages have been rounded to the nearest tenth, so totals may not
  be exactly 100.0%.

                                      488

-------
Table 14
POSITION:  36.6m/290°/3.0m
DATE:      3/26/74
TIME FRAME: 1200 - 1248
WIND SPEED
Wind Speed Ranges
(m/s)
0 - 0.48
0.48 - 1.05
1.05 - 1.62
1.62 - 2.19
2.19 - 2.76
2.76 - 3.33
3.33 - 3.91
3.91 - 4.48
4.48 - 5.05
5.05 - 5.62
5.62 - 6.20
6.20 - 6.76
6.76 - 7.33
7.33 - 7.91
7.91 - 8.48
Greater than 8.48
DISTRIBUTION
% of Run Time
in Range*
4.0
5.8
11.6
11.7
16.6
25.4
11.3
5.5
5.1
1.6
1.0
0.2
0.1
0.0
0.0
0.0
WIND DIRECTION DISTRIBUTION
Wind Direction Sectors X of Run Time
(°) In Sector*

















                                  t0 the nearest tenth' so totals
                                    489

-------
Table  15
POSITION: 36.6m/290°/6.1m
DATE:     3/26/74
TIME FRAME: 1255 - 1339
WIND SPEED
Kind Speed Ranges
(m/s)
0 - 0.48
0.48 - 1.05
1.05 - 1.62
1.62 - 2.19
2.19 - 2.76
2.76 - 3.33
3.33 - 3.91
3.91 - 4.48
4.48 - 5.05
5.05 - 5.62
5.62 - 6.20
6.20 - 6.76
6.76 - 7.33
7.33 - 7.91
7.91 - 8.48
Greater than 8.48
DISTRIBUTION
% of Run Time
in Range*
1.2
2.2
5.2
5.0
6.4
21.6
13.1
10.4
13.6
8.0
9.3
2.0
1.2
0.5
0.1
0.0
WIND DIRECTION DISTRIBUTION
Wind Direction Sectors X of Run Time
(°) 1n Sector*
















 *A11 percentages have been rounded to the nearest tenth, so totals may not
  be exactly 100.0%.
                                      490

-------
Table 16
POSITION: 36.6m/290°/9.1m
DATE:   3/26/74
TIME FRAME: 1352 - 1440
WIND SPEED
Hind Speed Ranges
(m/s)
0 - 0.48
0.48 - 1.05
1.05 - 1.62
1.62 - 2.19
2.19 - 2.76
2.76 - 3.33
3.33 - 3.91
3.91 - 4.48
4.48 - S.05
5.05 - 5.62
5.62 - 6.20
6.20 - 6.76
6.76 - 7.33
7.33 - 7.91
7.91 - 8.48
Greater than 8.48
DISTRIBUTION
% of Run Time
In Range*
0.1
0.2
0.8
1.8
4.3
11.7
12.5
10.5
15.5
9-9
18.6
5.0
4.3
3.1
1.1
0.5
WIND DIRECTION DISTRIBUTION
Wind Direction Sectors % of Run Time
(°) In Sector*
















 *A11 percentages have been rounded to the nearest tenth, so totals may not
  be exactly 100.0%.
                                      491

-------
Table 17
POSITION:   36.6m/275°/4.6m
DATE:    3/27/74
TIME FRAME:  1542 - 1627
WIND
Wind

0.
1.
1.
2.
2.
3.
3.
4.
5.
5.
6.
6.
7.
7.
Speed
(m/s)
0
48
05
62
19
76
33
91
48
05
62
20
76
33
91
- 0
- 1
- 1
- 2
- 2
- 3
- 3
- 4
- 5
- 5
- 6
- 6
- 7
- 7
- 8
Greater
SPEED
Ranges
.48
.05
.62
.19
.76
.33
.91
.48
.05
.62
.20
.76
.33
.91
.48
than 8
DISTRIBUTION
% of Run Time
in Range*
1
3
9
10
13
25
13
7
8
3
2
0
0
0
0
.48 °
.9
.3
.9
.6
.2
.9
.3
.5
.3
.1
.4
.3
.2
.0
.0
.0
WIND
DIRECTION DISTRIBUTION
Wind Direction Sectors
180 -
220 -
260 -
280 -
300 -
320 -
340 -
356 -
12 -
28 -
44 -
60 -
80 -
100 -
120 -
140 -
220
260
280
300
320
340
356
12
28
44
60
80
100
120
140
180
X of Run Tin
in Sector*
0.
0.
0.
0.
0.
0.
2.
13.
34.
35.
11.
2.
0.
0.
0.
0.
0
0
0
0
0
4
7
1
8
3
0
6
2
0
0
0
 *A11  percentages  have been rounded to the nearest tenth, so totals may no*
  be exactly 100.0%.
                                      492

-------
Table 18
POSITION:  73.2m/280V4.6m
DATE:   3/27/74
TIME FRAME:  1652 - 1740
WIND SPEED
Wind Speed Ranges
(m/s)
0 - 0.48
0.48 - 1.05
1.05 - 1.62
1.62 - 2.19
2.19 - 2.76
2.76 - 3.33
3.33 - 3.91
3.91 - 4.48
4.48 - 5.05
5.05 - 5.62
5.62 - 6.20
6.20 - 6.76
6.76 - 7.33
7.33 - 7.91
7.91 - 8.48
Greater than 8
DISTRIBUTION
2 of Run Time
in Range*
5.3
7.9
14.8
9.1
11.0
26.6
10.8
6.0
6.1
1.6
0.7
0.1
0.0
0.0
0.0
.48 0.0
WIND DIRECTION DISTRIBUTION
Wind Direction Sectors
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
% of Run Time
1n Sector*
0.0
0.0
0.0
0.0
0.0
0.0
0.1
2.3
13.5
37.0
34.4
12.1
0.6
0.0
0.0
0.0
 *A11 percentages  have been rounded  to  the nearest  tenth,  so  totals may not
  be exactly 100.0%.
                                     493

-------
Table 19
POSITION:  73.2m/280°/7.6m
DATE:  3/27/74
TIME FRAME:  1801 - 1830
WIND SPEED
Hind Speed Ranges
(m/s)
0 - 0.48
0.48 - 1.05
1.05 - 1.62
1.62 - 2.19
2.19 - 2.76
2.76 - 3.33
3.33 - 3.91
3.91 - 4.48
4.48 - 5.05
5.05 - 5.62
5.62 - 6.20
6.20 - 6.76
6.76 - 7.33
7.33 - 7.91
7.91 - 8.48
Greater than 8
DISTRIBUTION
% of Run Time
in Range*
5.4
10.9
17.3
11.5
11.7
22.4
8.9
5.1
4.9
1.4
0.5
0.0
0.0
0.0
0.0 .
.48 0.0
WIND DIRECTION DISTRIBUTION
Wind Direction Sectors
(°)
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
% of Run Time
In Sector*
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
4.7
23.5
36.9
29.7
4.2
0.0
0.0
0.0
*A11 percentages have been  rounded  to  the  nearest  tenth,  so totals may not
 be exactly 100.0%.
                                     494

-------
 Table 20
POSITION:   36.6m/60°/4.6m
DATE:      3/30/74
TIME FRAME:  1540 -  1625
WIND SPEED
Wind Speed Ranges
(m/s)
0 - 0.67
0.67 - 1.43
1.43 - 2.19
2.19 - 2.95
2.95 - 3.72
3.72 - 4.48
4.48 - 5.24
5.24 - 6.00
6.00 - 6.76
6.76 - 7.53
7.53 - 8.29
8.29 - 9.05
9.05 - 9.81
9.81 - 10.57
10.57 - 11.34
11.34 - 13.43
DISTRIBUTION
% of Run Time
in Range*
0.0
0.0
1.4
5.2
12.4
14.3
15.7
14.5
13.9
7.5
6.5
3.8
2.8
0.9
0.6
0.4
WIND DIRECTION DISTRIBUTION
Wind Direction Sectors
(°)
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
% of Run Time
1n Sector*
0.0
0.0
0.0
0.0
0.0
0.6
3.2
15.6
34.8
30.7
11.9
2.9
0.2
0.0
0.0
0.0
                                                            t(>tals may not
                                     495

-------
Table 21
POSITION:   73.2m/70°/7.6m
DATE:      3/30/74
TIME FRAME:  1640 -  1740

Wind

WIND
Speed
(m/s)
0 -
0.67 -
1.43 -
2.19 -
2.95 -
3.72 -
4
5
6
.48 -
.24 -
.00 -
6.76 -
7
8
9
9
10
11
.53 -
.29 -
.05 -
.81 -
.57 -
.34 -
SPEED
Ranges
0.
1.
2.
67
43
19
2.^5
3.
4.
5.
6.
6.
7.
8.
72
48
24
00
76
53
29
9.05
9.81
10.57
11.34
13.43
DISTRIBUTION
% of Run Time
in Range*
0.0
0.0
0.0
0.3
2
7
14
17
18
12
10
6
5
2
1
1
.9
.7
.6
.4
.1
.3
.0
.6
.2
.2
.4
.2
MIND
DIRECTION
DISTRIBUTION

Wind Direction Sectors % of Run Tim
(°) 1n Sector*
180 -
220 -
260 -
280 -
300 -
320 -
340 -
356 -
12 -
28 -
44 .
60 -
80 -
100 -
120 -
140 -
220
260
280
300
320
340
356
12
28
44
60
80
100
120
140
180
0.
0.
0.
0.
0.
0.
0.
8.
36.
41.
10.
2.
0
0
0
0
0
0
5
0
5
8
9
0
0.2
0.0
0.0
0.0
 *A11 percentages have been rounded to the nearest tenth, so totals may not
  be exactly 100.0%.
                                       496

-------
Table 22
POSITION:  73.2m/700/n.0m
DATE:   3/30/74
TIME FRAME:  1755 - 1855
WIND SPEED
Hind Speed Ranges
(m/s)
0 - 0.67
0.67 - 1.43
1.43 - 2.19
2.19 - 2.95
2.95 - 3.72
3.72 - 4.48
4.48 - 5.24
5.24 - 6.00
6.00 - 6.76
6.76 - 7.53
7.53 - 8.29
8.29 - 9.05
9.05 - 9.81
9.81 - 10.57
10.57 - 11.34
11.34 - 13.43
DISTRIBUTION
Z of Run Time
In Range*
0.0
0.0
0.0
0.1
0.3
1.9
5.6
10.5
15.0
18.0
17.8
13.3
9.0
4.6
2.5
1.5
WIND DiRECTicr: DrsTRiriininN
Wind Direction Sectors
(°)
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
" 120 - 140
140 - 180
% of Run Time
In Sector*
0.0
0.0
0.0
0.0
0.0
0.1
0.4
5.7
36.8
48.3
7.9
0.6
0.0
0.0
0.0
0.0
                    been rounded to the nearest tenth«so tota1s
                                   497

-------
Table 23

POSITION:   73.2m/70°/4.6m
    •
DATE:   3/30/74

TIME FRAME:  1905 - 1935
MIND SPEED
Mind Speed Ranges
(m/s)
0 - 0.67
0.67 - 1.43
1.43 - 2.19
2.19 - 2.95
2.95 - 3.72
3.72 - 4.48
4.48 - 5.24
5.24 - 6.00
6.00 - 6.76
6.76 - 7.53

7.53 - 8.29
8.29 - 9.05
9.05 - 9.81
9.81 - 10.57
10.57 - 11.34
11.34 - 13.43
DISTRIBUTION
X of Run Time
In Range*
0.0
0.1
0.5
6.4
22.4
27.0
21.7
12.8
6.0
2.3

0.6
0.1
0.0
0.0
0.0 .
0.0
WIND DIRECTION
DISTRIBUTION
Wind Direction Sectors 35 of Run Time
(°) 1n Sector*
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44

44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
0.0
0.0
0.0
0.0
0.0
0.1
1.5
10.2
30.1
41.2
13 5

2.8
0.5
0.1
0.0
0.0
  *A11  percentages have been rounded to the nearest tenth, so totals may not
   be exactly 100.0%.
                                        498

-------
Table  24
POSITION:   36.6m/2600/4.6m
DATE:   3/31/74
TIME FRAME: 1240 - 1325
WIND SPEED
Wind Speed Ranges
(m/s)
0 - 0.67
0.67 - 1.43
1.43 - 2.19
2.19 - 2.95
2.95 - 3.72
3.72 - 4.48
4.48 - 5.24
5.24 - 6.00
6.00 - 6.76
6.76 - 7.53
7.53 - 8.29
8.29 - 9.05
9.05 - 9.81
9.81 - 10.57
10.57 - 11.34
11.34 - 13.43
DISTRIBltflON
% of Run Time
In Range*
0.0
0.4
7.9
21.1
28.2
24.3
14.0
3.8
0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
WIND DIRECTION DISTRI
Wind Direction Sectors %
(°)
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
3UTION
of Run Time
in Sector*
0.0
0.0
0.0
0.0
0.1
0.8
3.9
13.8
24.5
33.6
19.0
4.1
0.3
0.0
0.0
0.0
                     been rounded to the nearest tenth> so totals ma*not
                                    499

-------
Table 25

POSITION:   33.5m/295°/4.6m

DATE:   3/31/74

TIME FRAME:   1345  -  1428
WIND SPEED
Mind Speed Ranges
(m/s)
0 - 0.67
0.67 - 1.43
1.43 - 2.19
2.19 - 2.95
2.95 - 3.72
3.72 - 4.48
4.48 - 5.24
5.24 - 6.00
6.00 - 6.76
6.76 - 7.53
7.53 - 8.29
8.29 - 9.05
9.05 - 9.81
9.81 - 10.57
10.57 - 11.34
11.34 - 13.43
DISTRIBUTION
% of Run Time
in Range*
0.0
0.0
0.4
5.4
14.9
24.1
26.8
19.1
7.4
1.8
0.2
0.0
0.0
0.0
0.0
0.0
MIND DIRECTION
DISTRIBUTION
Wind Direction Sectors % of Run Time
(°) 1n Sector*
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
0.0
0.0
0.0
0.0
0.0
0.5
5.1
30.7
37.2
18.8
6.3
1.2
0.1
0.0
0.0
0.0
  *A11 percentages have been rounded to the nearest tenth, so totals may no*
   be exactly 100.0%.
                                       500

-------
Table  26
POSITION:  36.6m/245°/4.6
DATE:   3/31/74
TIKE FRAME: 1441  -  1524

Wind

0
1
2
2
3
4
5
6
6
7
8
9
9
10
11
WIND
Speed
(m/s)
0 -
.67 -
.43 -
.19 -
.95 -
.72 -
.48 -
.24 -
.00 -
.76 -
.53 -
.29 -
.05 -
.81 -
.57 -
.34 -
SPEED
Ranges
0
1
2
2
3
4
5
6
6
7
8
9
9
.67
.43
.19
.95
.72
.48
.24
.00
.76
.53
.29
.05
.81
10.57
11
13
.34
.43
DISTRIBUTION
% of Run Time
in Range*
0
0
0
0
7
24
35
26
6
0
0
0
0
0
0
0
.0
.0
.0
.6
.1
.0
.4
.2
.0
.7
.0
.0
.0
.0
.0
.0
WIND
DIRECTION DISTRIBUTION
Wind Direction
180 -
220 -
260 -
280 -
300 -
320 -
340 -
356 -
12 -
28 -
44 -
60 -
80 -
100 -
120 -
140 -
220
260
280
300
320
340
356
12
28
44
60
80
100
120
140
180
Sectors % of Run Time
in Sector*
0
0
0
0
0
0
0
1
12
61
24
1
0
0
0
0
.0
.0
.0
.0
.0
.0
.1
.0
.1
.1
.3
.3
.0
.0
.0
.0
 *A11  percentages have been rounded to the nearest tenth, so totals may not
  be exactly 100.0%.
                                       501

-------
Table 27
POSITION:  33.5m/270°/4.6m
DATE:    3/31/74
TIME FRAME: 1538 - 1622
WIND SPEED
Wind Speed Ranges
(m/s)
0 - 0.67
0.67 - 1.43
1.43 - 2.19
2.19 - 2.95
2.95 - 3.72
3.72 - 4.48
4.48 - 5.24
5.24 - 6.00
6.00 - 6.76
6.76 - 7.53
7.53 - 8.29
8.29 - 9.05
9.05 - 9.81
9.81 - 10.57
10.57 - 11.34
11.34 - 13.43
DISTRIBUTION
% of Run Time
in Range*
0.0
0.1
1.1
4.7
14.0
28.4
31.1
16.4
3.9
0.3
0.0
0.0
0.0
0.0
0.0
0.0
WIND DIRECTION
DISTRIBUTION
Wind Direction Sectors % of Run Time
(8) 1n Sector*
180 - 220
220 - 260
260 - 280
280 - 300
300 - 320
320 - 340
340 - 356
356 - 12
12 - 28
28 - 44
44 - 60
60 - 80
80 - 100
100 - 120
120 - 140
140 - 180
0.0
0.0
0.0
0.0
0.0
0.3
1.1
4.4
19.6
52.3
18.9
3.3
0.1
0.0
0.0
0.0
  *A11  percentages have been rounded to the nearest tenth, so totals may not
   be exactly 100.0%.
                                        502

-------
  Table  28


 POSITION:  36.5m/280°/7.6m


 DATE:   3/31/74


 TIME FRAME:  1634 - 1707
WIND SPEED
Wind Speed Ranges
(m/s)
0 - 0.67
0.67 - 1.43
1.43 - 2.19
2.19 - 2.95
2.95 - 3.72
3.72 - 4.48
4.48 - 5.24
5.24 - 6.00
6.00 - 6.76
6.76 - 7.53
7.53 - 8.29
8.29 - 9.05
9.05 - 9.81
9.81 - 10.57
10.57 - 11.34
11.34 - 13.43
DISTRIBUTION
% of Run Time
in Range*
0.0
0.0
0.5
1.7
8.2
20.4
35.5
25.6
6.6
1.2
0.1
0.0
0.0
0.0
0.0
0.0
WIND
DIRECTION PJSTl
Wind Direction Sectors
180 -
220 -
260 -
280 -
300 -
320 -
340 -
356 -
12 -
28 -
44 -
60 -
80 -
100 -
120 -
140 -
220
260
280
300
320
340
356
12
28
44
60
80
100
120
140
180
-inilTION
% of Run Time
in Sector*
0.0
0.0
0.0
0.0
0.0
0.2
0.5
3.1
16.8
55.1
21.0
3.0
0.2
0.0
0.0
0.0
*A11 percentages have been rounded to the nearest tenth, so  totals may no*
 be exactly 100.0%.
                                      503

-------
                               APPENDIX H
           MANUFACTURER'S SPECIFICATIONS FOR COOLING DEVICES

H-l     Marley 600/700 One Cell Wet Mechanical  Draft Cooling Tower
H-2     Ceramic Cooling Tower Company's Powered Spray Module
                                    504

-------
                              APPENDIX H-l
MARLEY 600/700 ONE CELL WET MECHANICAL DRAFT COOLING TOWER:
specifications as provided by the manufacturer.
                                  505

-------
ENVIRONMENTAL SYSTEMS  CORPORATION
             POST OFFICE BOX 2525
             KNOXVILLE. TENNESSEE 37901


             (615) 573-7931
        November  5,  1974
        Mr.  J.  D.  Holmberg
        Supervisory Consultant
        Engineering Division Office
        The  Marley Company
        5800 Foxridge  Drive
        Mission,  Kansas   66202
        Dear Joyce:

        Following  up  on  our  telephone conversation, I am sending you a list of data
        that I  feel we need  in order to document properly the Turkey Point cooling
        tower in the  final report of the Turkey Point contract.  Time did not per-
        mit us  to  discuss at any length  how The Marley Company could assist Environ-
        mental  Systems Corporation  (ESC) in this matter.  I, therefore, will outline
        here how I would like to see the tower documented, and I will contact you
        later to receive your comments.

        1.   General description of  the cooling tower:
            Usual  and unusual features of  the tower,
            materials, reason(s) for different materials, etc.

        2.   Dimensions of the tower:
            Length, width, height,  stack dimensions, fan diameter, etc.
            Two drawings showing a  schematic top and side view of the tower
            similar to Marley's drawing #72-41528 should be part of this section.
            Since  metric units are  required by contract, I suggest the use of both
            metric and British units in all drawings and tables.

        3.   Fill dimensions:
            Length, width, height,  vertical and horizontal spacing of the splash
            bars,  etc.

        4.   Performance  data:
            L,  6.  L/6, range, approach, all at design wet bulb temperature, horse
            power  of  fan motor, tower  performance curves, etc.

        5.   Drift  eliminator characterization:
            Type of drift eliminators, dimensions, material, performance data, etc.

                                             506

-------
ENVIRONMENTAL  SYSTEMS CORPORATION
        Mr.  J.  D.  Holmberg
        November 5,  1974
        Page 2
        There may be other items  that should be included.   Please feel free to expand
        this suggested documentation in any way you feel necessary.

        I  believe that The Mar ley Company would do the best job in describing a Marley
        £2 JE S™6- and I W2uld.therefore prefer that  a concise description,  includ-
        ing the drawings  be furnished by The Marley Company.  If this is acceptable

        5? Th^!  °rld arnve ?5 an Out1ine and the format fay telephone communication
             
-------
                                                              MARLEY
     .... y. lt . .  ,.,„.. r,                           ENGINEERING DIVISION OFFICE

     (Sj| |S (I,  '• ' •  '   * 'J                       JOE BEN DICKEY JR -VICE PRESIDENT

                                              G W CANTRELL-MANAGER OF OPERATIONS

       DEC 1 a t974                          j D  HOLMBERG-SUPERVISORY CONSULTANT



     ElflUlfiiL.;....'—''— - •'                                    December 9,  1974
  Dr.  Gunter 0.  Schrecker
  Environmental  Systems Corporation
  P. 0.  Box 2525
  Knoxville, Tennessee  37901

  Dear Gunter:

  Enclosed are  several items which we have discussed.   Included  are  calculated
  data sheets on drift droplet evaporation.  These  illustrated to  us the sig-
  nificantly greater potential for concentration of the smaller  drops through
  evaporation as compared with the larger ones.  The solution  to the drift
  droplet evaporation is incorporated in the program with  which  we calculate
  drift deposition.  As a result, some of the data  on the  computer printout
  sheet is irrelevant.  The evaporation calculations are based on  the approach
  in Appendix I of Hosier's "Determination of Salt  Deposition  Rates  from Drift
  from Evaporative Cooling Towers."  Use this as you see fit.

  Attached to the description of the Turkey Point tower are #2 size  reduced
  prints of two drawings which illustrate the tower.  Whether  or not you use
  both of them is your option.  I am also sending you the  #4 size  drawings
  from which the prints were made.  I was advised by the man in  charge of our
  reproduction work that it would be necessary  for  the person  who  would be
  deciding what to do about making prints for the report to have the drawings
  in hand.  Since the drawings were modified especially for use  in your report,
  there is no need for us to retain them or to  have them returned.

  I hope the Turkey Point tower description  is  adequate for your needs.  Let
  me know  if I can do anything further.

                                     Yours very sincerely,
                                          .  Holmberg
                                      Supervisory Consultant
  JDH:dc

                                         508
THE MARLEY COMPANY • CORPORATE OFFICES • 58OO FOXRIDGE DRIVE. MISSION KANSAS 662O2 • 913/362 1818

-------
                             COOLING TOMER DESCRIPTION

  The demonstration cooling  tower at the Turkey Point Station of Florida Power and
  Light Company  is a one-cell Marley Class 600/700 mechanical draft crossflow tower.
  Although the Class 600/700 designation indicates that the tower is a hybrid of two
  designs, the resultant was so conceived that its operating characteristics are
  typical of a low-drift tower which is technologically and economically feasible.
  Of paramount importance is the fact that towers with the key components and
  operating characteristics of the test tower are commercially available.

  The tower was designed to meet the joint criteria of the Environmental  Protection
 Agency and of Florida Power and Light Company and its  consultants.   In  addition
  to having low drift characteristics,  the tower was  to  be constructed  of materials
 which  could be expected to withstand  concentrated salt water;  and  it  was  planned
 that Florida  Power  and Light would  evaluate it from that standpoint.  Since both
 preservative-treated  wood  and  concrete can  be used  satisfactorily  in  a  salt water
 environment,  a  portion of  the  tower structure was constructed  of wood and  the rest
 of precast  concrete.   The  fill  structure and  hot water  basin on one side of the
 tower utilized  the treated  wood components  which are common to the Class 600
 rectangular wood mechanical draft industrial  towers.  The fill structure and hot
 water basin on  the other side and the  fan deck and  plenum structure were constructed
 of components from Class 700 concrete  towers, both mechanical and natural  draft.
 Although project costs were reduced somewhat by supplier contributions,  budgetary
 considerations  limited the size of the tower.  The fill height of 24 ft. (7.3 m)
 is a standard height for industrial  towers but 36 ft. (11.0 m)   is  more  typical.
 However, proper selection of fan size, fan horsepower and air rate,  along  with
maintaining a typical  water distribution  rate, provides the operating  character-
 istics  typical  of the taller tower.
                                           509

-------
                                       -2-
The single cell tower has an overall  width of 76 ft.  (23.2 m)  from louver face to
louver face at the top.  The net length of the air opening at  the louver faces is
40 ft. (12.9 m).  The height to the fan deck is 26 ft.  (8.0 m) above the basin wall,
arid that to the top of the fan stack is 44 ft. (13.4  m).   The  24 ft. (7.3 m)  diameter
HP-4-8 bladed fan operates in an 18 ft. (5.5 m) high  GRP  (glass-reinforced polyester)
evase (velocity recovery) fan stack.

The fill consists of corrugated ACB (asbestos cement  board) splashbars supported
by GRP grids and aligned parallel to the horizontal flow  of air.  Air travel
through the fill measures 16 ft. (4.9 m) on each side of  the tower.  This is  the
standard air travel on mechanical draft Class 600 towers, but  it may be exceeded
in some cases and may increase to as much as 26 ft. (7.9  m) on natural draft  towers.
The splashbars are placed 4 1/2 inches (.11 m) apart horizontally and 12 inches
(.31 m) vertically.  This fill configuration has been a commonly-used arrangement
for both mechanical and natural draft towers, although there are other arrange-
ments of corrugated ACB splashbar fill to help cover the range of cooling duties.
All have similar drift-generating characteristics.

Since the  tower was to operate on a sidestream taken from the feeder canal for the
cooling canal  system,  no attempt was made to specify a design condition or to
require a  specific performance guarantee.   Instead the tower was to be sized to
accommodate 20,000 gpm (4542 m^hr) and to provide  representative water-air inter-
action.  Measurements  taken on the tower  following construction showed actual
water flow rate of 19,000 gpm  (4315 m3/hr)  to  the  tower.  Later measurements
indicate that  this had decreased'to 15,500  gpm (3520 m3/hr) by mid-summer of  1974.
These two  flow rates will be used  in conjunction with other coincidental measure-
ments to present  some  specific thermal performance predictions at  actual operating
conditions.
                                            510

-------
                                         -3-
  The fan  was  pitched  to  deliver  997,000  cfm  (470.6 m3/Sec) of air.  The  resultant
  velocity through  the fill  is  519 fpm  (2.6 m/sec).  The corresponding fan motor
  horsepower is  114.4,  and the  mass air flow  is 72,090 Ib./min.  (545 kg/sec).  For
  an  equivalent  air rate  in a tower with  36 ft. (11.0 m) of fill height, on which
  a 28 ft.  (8.5  m) diameter fan would be  used, approximately 175 hp would be
  required.  Most mechanical draft towers for power plants have air velocities in
  the range of 450 to 550 fpm (2.3-2.8 m/sec), and the horsepower per 28 ft.  fan
  usually falls  between 150 and 200.

 With 19,000 gpm to the tower, water  is distributed over  the fill at a  rate of
  14.84 gpm/ft.2 (36.3 m3/m2-hr).   Water loadings  typically range between  8 and
 16 gpm/ft.2 (19.6-39.1 m3/m2-hr).   The L/G  (liquid  to gas.lb.  of water to Ib. of air)
 ratio of 2.20 becomes 1.47  when  adjusted to  a  36 ft.  fill  height while maintaining
 the same air  velocity.  L/G ratios  for power plant  towers  almost universally fall
 within  the limits  of 1.2 and 1.8.

 Because of manner  in  which  the tower  is  being used, it cannot achieve an equilib-
 rium condition  in  which  it dissipates a  specific  heat load.  Instead it must
 accept  hot water at the  temperature in the feeder canal  and cool  it to whatever
 extent  it  is  capable  using the existing  ambient air.  In the table which follows,
 predictions of  R (range, the difference  between hot and cold water temperatures)
 and  A (approach, the difference between cold water and wet bulb temperature of
 the ambient air) have  been listed for some actual operating conditions which
 existed during  the drift measurement tests.   Three of the cases presented were
 taken from the February, 1974,  data  reported  by ESC.   The average of the  pre-
dicted temperatures for the cases agreed with the actual  measured temperatures,
and the  individual  test readings  differed from the predictions  by no more than
0.7°F (0.4°C).  Information  is  not available  for  making a  similar comparison  of
the summer data.
                                          511

-------
                                     -4-
                   Table  I - Predicted Thermal Performance
Date & Hour
2/23/74 1615
2/26/74 1724
2/28/74 1656
7/20/74 1500
7/24/74 1616
Water Rate
gpm (m3/hr)
19,000 (4315)
19,000 (4315)
19,000 (4315)
15,500 (3520)
15,500 (3520)
Hot Water Temp.
°F (°C)
96.6 (35.9)
85.5 (29.7)
81.5 (27.5)
108.5 (42.5)
110.0 (43.3)
Wet Bulb Temp.
°F (°C)
68.2 (20.1)
45.0 (7.2)
59.5 (15.3)
75.0 (23.9)
79.0 (26.1)
Predicted R
°F (°C)
10.2 (5.7)
10.8 (6.0)
6.5 (3.6)
15.8 (8.8)
15.3 (8.5)
Predicted A
°F (°C)
18.2 (10.1)
29.7 (16.5)
15.5 (8.6)
17.7 (9.8)
15.7 (8.7)
The drift eliminators are oriented in sloped planes as is the practice for rectan-
gular mechanical draft crossflow towers.  The same  eliminators have been, and are
being, used  in vertical planes in hyperbolic and circular mechanical draft cross-
flow towers.  They are identified as 9LCH (LCH stands for long cell honeycomb)
eliminators  and are made up of a system of panels containing a series of angular,
upwardly-sloped cellular passages.  The panels measure 9.65 inches (.25 m) face-
to-face and  are constructed of neoprene-asbestos sheets, combining flat and
obliquely-formed corrugated sheets to form the passages and provide structural
stability.   The sheets have been impregnated with a plastic formulation and
cured to strengthen and rigidize them.
The 9LCH eliminator is approximately one order of magnitude (ten times) more
effective than the herringbone eliminator, which is the standard for this type
of tower.  The improvement is primarily attributable to the increased efficiency
in the removal of the larger drops of water.  As a result, the remaining drift
is made up predominantly of smaller drops which are difficult to detect and
measure.  These eliminators allow the use of air velocities of up to 600 fpm
(3.0 m/sec.) without increasing the concentration of drift in the effluent air
by a factor  of more than 2 over the minimum obtainable.  See the curve of
predicted drift levels, Curve #3.  This characteristic was established by
tests in a large laboratory test cell, and confirming results were obtained
from field tests, part of them near the upper end of the air velocity
                                         512

-------
                                     -5-
range.  The 9LCH eliminator, either sloped or vertical, shares the low pressure-
drop characteristic of the standard herringbone eliminator with none of them
exceeding .03 inches (.76 mm) of water at 400 fpm (2.0 m/sec.) air velocity.
On the Turkey Point tower, the use of the 9LCH eliminator increases the overall
pressure drop slightly, increasing the power to drive the fan by about one
horsepower in order to maintain the same air rate as with the herringbone
eliminator.
                                        513

-------
MEASUREMENTS
                                            60O
                                 THE MARLEY
                                  MISSION„ KANSAS.
                                         12- IS-74

-------
in


in
                                   Figure 33.   The Marley Company's class 600/700 mechanical

                                   draft crossflow cooling tower.   Dimensions in meters.

                                   Sli6!* ?   hr Mar1ey ComPa"y: drawing reduced by Environ-
                                   mental Systems Corporation).

-------
The Marley Company would like to acknowledge the following contri-

buting suppliers to the Turkey Point cooling tower:

                 Bonnington Lumber Company
                 Oakland, California

                 R. B. & W. Bolt
                 Mentor, Ohio

                 Special-T Metals
                 Kansas City, Kansas

                 Structurlite Plastics
                 Hebron, Ohio

                 GAP Corporation
                 St. Louis, Missouri

                 Owens Corning Fiberglas Corporation
                 Toledo, Ohio
                                   516

-------
                              APPENDIX H-2
CERAMIC COOLING TOWER POWERED SPRAY  MODULE:   specifications as
provided by the manufacturer.                       "iions as
                                 517

-------
ENVIRONMENTAL SYSTEMS  CORPORATION
             POST OFFICE BOX 2525
             KNOXVILLE. TENNESSEE 37901


             (615)637-4741
      November  5,  1974
      Mr.  Paul  Frohwerk
      Ceramic Cooling Tower Company
      P. 0. Box 425
      Fort Worth, Texas  76101

      Dear Paul:

      Following up on our telephone conversation, I am sending you a list of data
      that I feel we need in order to document properly the Powered Spray Modules
      that are  installed at Turkey Point.  This documentation will be included in
      the  final report of the Turkey Point contract.

      The  following outline of the PSM description is tentative and I would appreciate
      CCT's comments:

      1.   General description of the Powered Spray Module.

      2.   Dimensions:
          Two drawings showing a schematic top and side view of the spray module
          would be most helpful.  Since the contract calls for metric units, I sug-
          gest  that all dimensions be expressed in both metric and British units.

      3.   Hydraulic and mechanical performance data:
          Electric and brake horsepower, pumping rate, height and diameter of spray
          patterns, etc.

      4.   Thermal performance data of the single spray module:

          Rate  of heat rejection as a function of wet bulb and hot water temperature
          and wind speed and direction.


      This suggested list of topics, that I feel should be addressed in  a PSM do-
      cumentation, may not be complete.   I would appreciate your comments and I  will
      call you  back after you have received this letter.

      I believe that Ceramic Cooling Tower Company would be most qualified to describe
      a Powered Spray Module and I therefore prefer that a concise description,  includ-
      ing  the drawings, be furnished by CCT.  If this is acceptable to you,  we should
      arrive at an outline and the format by telephone communication.  If CCT would

                                             518

-------
ENVIRONMENTAL SYSTEMS CORPORATION
      Mr. Paul Frohwerk
      November 5,  1974
      Page 2
     rather not become involved, I hope that  I would receive the necessary  informa-
     tion from you in order to  document the spray module sufficiently.

     Since I  foresee only a concise description of several pages  I hooe  this ta<:k
     can be convenently finished within the  next two weeks' 9?hat 1 a'bou   he
     time frame within which you planned to let me know about your comments on the

                                      """ ^ Md
     Sincerely,
        LJv
     Gutter 0. Schrecker, Head
     Atmospheric Transport Section

     GOS:sr
                                         519

-------
                             Ceramic Cooling Tower Company
                             a subsidiary of Justin Industries. Inc.
                             P 0 Box 425 • Fort Worth, Texas 76101 • 817 335-2474
                                             November 22. 1974
Mr.  Gunter O. Schrecker, Head
Atmospheric Transport Section
Environmental Systems Corporation
P. O. Box 2 52 5
Knoxville, Tennessee 37901

SUBJECT:  Powered Spray Module
            Water Cooling System
            Environmental Test Program
            Our Ref. PSM-117

Dear Gunter:

We hereby provide information on our Powered Spray Module Water
Cooling System as  requested and  suggested by you in our telephone
call several weeks ago, and your November 5. 1974 letter.

Specifically provided are duplicate copies of the following documents
and/or data;

     1.   Drawing 4220, "Assembly Details, Model PSM-4-10-75 (S),
          Powered Spray Module. "  This drawing provides essentially
          the information requested in the second paragraph of your
          letter and includes in our judgement, all dimensional and
          arrangement information needed.

     2.   Form PSM-100-US, Revision B, 11-19-74, "Powered Spray
          Module,  System Unit Specifications, Model PSM-4-10-75 (S)".
          Data herein included supplies requested documentation
          relating to Paragraphs  1 and 3 of your letter.

     3.   Form PSM-117-GI, 1,  "General Description of Powered
          Spray Module".  This document has been specifically
          prepared to comply  with requirements set forth in
          Paragraph 1.

We have not responded to your Paragraph 4, because,  as discussed on
many occasions, we cannot determine a meaningful course of action in


                               520

-------
 Environmental Systems Corp.                  November 22  1974
 Page 2
 which these data can be presented.  Any attempt at expressing heat
 rejection rate in this limited form would be detrimental to a report
 in which the overall capability of our Powered Spray Module was
 being considered.  In other words, the subject is extremely complex
 and of a nature that absolutely precludes a superficial or compromising
 representation for all heat/mass transfer characteristics involved.

 Please  advise if there  are any questions regarding this transmittal
 or if we can be of service in any way.
                                          P. A. Frohwerk
                                          Vice President and
                                          Manager PSM Operations
PAFrgz
Attachments:  (3)
1. Drawing 4220. "Assembly Details.Model PSM-4-20-75 (S).
   Powered Spray Module".
2. Form PSM-100-US. Revision B. 11-19-74.  "Powered Spray Module,
   System Unit Specifications. Model PSM-4-10-75 (S)".
3. Form PSM-117-GI. 1. "General Description of Powered Spray Module".

Environmental Systems Corp.
Attn:  Mr. Gunter O. Schrecker  -  Duplicate .^     -  -

cc:   Dr.  Frank H.  Rainwater. Chief
     Thermal Pollution Branch
     United States Environmental Protection Agency
     Pacific Northwest Environmental Research Laboratory
     Corvallis.  Oregon 97330
                               521

-------
                                    Ceramic Cooling Tower Company
n(< rl-Mr                           a subsidiary of Justin Industries. Inc
                                    P 0 Box 425 • Fort Worth, Texas 76101 • 817 335-2474
         GENERAL DESCRIPTION OF POWERED SPRAY MODULE


    The Powered Spray Module (PSM) is an evaporative water spray
    cooling system adaptable under conditions of generaUy parallel water
    now patterns to channels, ponds, or lakes for more efficient dissipation
    of heat from plant discharge water.  The desired cooling is achieved
    by a direct air-water contact condition which  causes mass and heat
    transfer from water to air.

    The PSM is comprised of a 75 HP electric motor-driven, impeller-type
    pump and four deflector-type nozzles with submerged interconnecting
    straight-line piping.  The pump and nozzles are supported in the water
    by means of individual surrounding floats consisting of fiber-reinforced-
    plastic shells filled with polyurethane foam.  Each PSM unit is self-
    contained and is moored in place by lines attached to anchor points on
    the bank or in the channel.  Rotation eliminates the need for special
    and expensive basins, foundations, and complex pump-piping installation.

    In the operation of an individual PSM unit, hot water is pumped from
    near the surface of  the body of water, down through the underwater
    interconnecting pipe,  and discharged upward through four deflector
    nozzles. The nozzles develop a coarse spray pattern which is optimized
    for maximum heat transfer and minimum water loss due to wind drift.
    A single PSM unit is capable of reducing an initial hot water temperature
    as much as 20° F.  Increased cooling requirements can be met by the
    installation of additional PSM units.  Systems are possible which will
    handle over one million gallons per minute and reduce the water tempera-
    ture 20° to 2 5° F  with an approach of the ambient wet bulb temperature
    as low as 5° F. Infinite control (number of units operated) of a PSM
    system is possible to achieve maximum plant efficiencies.
                                      522
    Form PSM-117-GI, 1                                Page 1 of 1

-------
     =£                            Ceramic Cooling Tomer Componu
     H0j                            a subsidiary of Justin Industries. Inc
     ^=                            p 0 Box 425 • Fort Worth Texas 76101 • 817 335-2474

                  POWERED SPRAY MODULE SYSTEM
                        UNIT SPECIFICATIONS
                       MODEL PSM-4-10-75 (S)

I.  BASIC COMPONENTS

   Each standard PSM-4-10-75 (S) consists of following, which are shinned
   from sources in individual assemblies or categories-           snipped
         1.  Electric MntnT-
     Electric Motor
 2
        7.
             Propeller Type Pump Assembly (assembled and including)-
             a.  Cast Iron  inlet and discharge sections with inner hub'and
                 shaft support stem.
             b.  Cast stainless steel4 impeller ring.
             c.  Cast stainless steel5 impeller.
             d.  Double row. combination radial-thrust, tapered-roller
                 bearings-with top and bottom grease seals. Bearing design,
                 for L-10 life in excess of 200.000 hours
             e.  Water lubricated, lower radial bearing
             f.   Grease fitting and lubricant lines.
             g.  Miscellaneous hardware. Type 3042 Stainle88 8teA
             h.  Ductile iron6 coupling.
             i.   Impeller shaft.  Type 3033 stainless steel

             £1SrL!£>t!!P- ^ Assembly - Structural steel frame encapsulated
             in expanded-m-place polyurethane foam which is completely sealed
             by polyester-glass fiber shell.  Four stainless steel handtng-"

         4    One lotg fTS a? eleftrical P°wer ca°le clamp included.   g
         4.   One lot of  our Secondary Floats-Expanded-in-place polyurethane

             ±?1^±'!1L!!i?ed " P^er-glass *>•? shelf.  Cast iron1
                                       ironl with
6.   One set of four Nozzle-Transition Castings - cast iron1
 •
    1  Material conforms to ASTM-A126-C1.B
      Material conforms to ASTM-A193-B8 & ASTM-A194-B8
    *  Material conforms to ASTM-A276-GR303.
    *  Material conforms to ASTM-A296-CF8M (Type 316)
    |  Material conforms to ASTM-A296-CF3M (Type 316L).
      Material conforms to ASTM-A536-70 Cl.  65-45-12.
           11-19-74
            2-28-74                          Page 1 of 2

-------
                 POWERED SPRAY MODULE SYSTEM
                       UNIT SPECIFICATIONS
                      MODEL PSM-4-10-75 (S)

 II.  HYDRAULIC AND MECHANICAL PERFORMANCE DATA
       1.  Brake Horsepower per unit   	75
       2.  Pumping rate per unit, approximate	 10,000 GPM
       3.  Pumping rate per nozzle,  approximate	   2,500 GPM
^     4.  Approximate height of spray pattern above water level... 13 ft. to 17 ft.
^     5.  Approximate individual spray pattern diameter at
           water level	35 ft. to 40 ft.
       6.  Approximate rectangular surface area at water level,
           required for one PSM-4-10-75 (S) unit	40' w x 160' Ig
       7.  Minimum water depth required	7 ft.
       Dimensions of spray patterns are shown here for reference only.
       Larger values are representative for clearance uses, smaller
       values are for hydraulic and/or environmental assessment.  Actual
       pattern is that required and provided for thermal performance
       consideration.
                                      524
                    All-19-74
 Form PSM-100-US  A 2-28-74                        Page 2 of 2

-------
en
r\j
on
             NOZZLt
             STIIL PIPE MIAMI-
                                              - FIO»I — FIUISLASS IHEll  w/
                                                EXPANDED  FOAM
 XIAL   PlOW     ^	HOT  WATEI  INLET
PHOPEILEI   PUMP
                   3y>
             F.w.r.d   Spt»r  M«Jul. (Courl.ly  ol C.romk
             Cooling low.,  Cxupwiy, drawiflf  roduc.d by
             InviraniiMntal  SyiMmi Cerpar
-------
              APPENDIX I
  STATEMENT OF ACCURACY OF CHEMICAL
ANALYSIS BY STEWART LABORATORIES, INC.
                 526

-------
ffipfaart
                                                    ffnc.
             5815 MIDDLEBROOK PIKE    KNOXVILLE. TENNESSEE 37921

                                TELEPHONE (615) 588-6401
                                   April 11, 1975
 Dr. Gunter Schrecker
 Environmental Systems Corporation
 Post Office Box 2525
 Knoxville, Tennessee  37901

 Dear Dr.  Schrecker:

      The following information  is supplied  in response to your question
 concerning the accuracy of  analyses  performed on samples received from
 the Turkey Point  Project.   Wash solutions from APS mesh samples, isokinetic
 sampling tubes, basin water samples, and deposition water samples from this
 project were analyzed for sodium by  flame emission spectroscopy.  Wash
 solutions from isokinetic sampling tubes and basin water samples were ana-
 lyzed  for magnesium  by atomic absorption spectroscopy.  The precision of
 these  methods is  ± 0.5 percent  as  established by replicate analysis of
 certified standards.   Analysis  ranges for each sample type encountered
 during the Turkey Point  Project  are as follows:
    Isokinetic Sampling Tubes

    APS Meshes
    Water Samples
           Sodium         448       - 24739 micrograms
           Magnesium       47.5     •*  2400 micrograms
           Sodium           0.13    -»•  5242 micrograms
           Sodium           0.06    ->•   8.0 parts  per million
Often the analysis of a group of samples requires the establishment of
standard curves for several analysis ranges as well as the dilution of
samples with higher concentrations.  Instruments are recalibrated  with
freshly made standards each time a group of samples is analyzed.   In addi-
tion, within a group of analyses, about 13 percent of the  results  are
standards checks.   A standard is analyzed after each set of 7  samples.

     In order to establish the over-all accuracy of collection, handling,
and analysis procedures,  it would be necessary to establish a  quality
assurance program for the three sample types involved in the Turkey Point
Project.  Such a program  would involve the collection and  analysis  of dupli-
cate samples in addition  to the analysis of "blind" samples of known  concen-
tration.  As you know,  no request has been made for a quality assurance
program for the Turkey Point Project.   We will,  however, be most happy to
assist in the design of such a program.
                                 527

-------
Dr. Gunter Schrecker
April 11, 1975
Page Two
     Should you receive requests for additional information relating to
this project, we will be happy to supply any pertinent data we have avail-
able.

                                        Sincerely,

                                        STEWART LABORATORIES, INC.
                                        Barry K. Stephenson, Manager
                                        Administrative Services
BAS:jf
                                528

-------
                                                  tps,  <31nc.
                  820 TULIP AVENUE  —  KNOXVILLE, TENNESSEE 37921
                                    615—525-1123
         TO:  Gunter 0. Schrecker
       FROM:  Anna M. Yoakum
    SUBJECT:  Special Project Report
       DATE:  October 15, 1973
  OBJECTIVE:  To determine sodium contribution from dust trapped on meshes

                   Two (2) dust samples were analyzed to determine the
              availability of a "tracer" element in the dust which is not
              commonly found in the salt atmosphere near salt water.   Both dust
              samples were found to be primarily limestone-CaC03  >  90%  (See
              attached  analytical report).   Since the control sea  water  contains
              approximately 400 ppm calcium  and  1350 ppm magnesium,  these
              elements  could  not be used an  an indication of  dust  contamination.
              A  survey  of  five  (5)  exposed mesh  samples  revealed that only two
              elements  could  be  used as  dust contamination indicators-silicon
              and aluminum.  Aluminum  is present  in  the  salt water at a concen-
              tration of 0.01 ppm and  silicon is  found at the 3 ppm level.
                  The maximum sodium contribution from dust to the five  (5)
             exposed meshes is summarized in Table 1.  Calculations are based
             on the sodium availability from the two dust samples—1855 ug/g
             for the T.P.  feeder canal road  by rock pile and 985 ug/g for the
             T.P.  rock pile.

CONCLUSION:  There is no significant sodium  contribution from dust trapped on
             the meshes.
                                           529

-------
Dr. Gunter 0. Schrecker
Environmental Systems Corporation
October 15, 1973
Page 2
               TABLE 1.   Maximum Sodium Contribution from Dust
SL1 Code
9646
9647
9648
9649
9650
ESC Identification
T.P.
T.P.
T.P.
T.P.
T.P.
tfl (8-25)
//2 (8-25)
#3 (8-25)
14 (8-25)
15 (8-25)
Total Na
micrograms
345.
600.
750.
902.
278.
Dust
micrograms
10.
0.3
<0.1
<0.1
Theoretical Na
from Dust, UK
<0.01
0.02
<0.01
<0.01
<0.01
         Note (attached by ESC):
         "ESC Identification"  refers  to the APS sample head number.
         The associated station numbers are as follows:
             T.  P.  #1   -  Station 1
             T.  P.  #2   -  Station 3
             T.  P.  #3   -  Station 4
             T.  P.  #4   -  Station 5
             T.  P.  #5   -  Station 2
                                                Stewart Laboratories,  Inc.
                                                Knoxville,  Tennessee 37921
                                         530

-------
                             j&cfaart laboratories,
820 TULIP AVENUE
                                        KNOXVILLE.  TENNESSEE 37921
                      CERTIFICATE  OF   ANALYSIS
 TO  Dr. Gunter 0. Schrecker
      Environmental Systems Corporation
      Route 3 - Municipal Alrnort	
      Alcoa. TN   37701	
                          DATE REPORTED
                          CODE	
                          ORDER No 	
  October 15. 1973
  ESC 02707
      Sample Description:   Two (2)  dust  samples from Turkey Point
      Concentration units  are weight  percent
                   CaC03
                   MgC03
                   Si02
                   A1203
                   T102
                   Sod ium
                   Strontium
                   Barium
                   Boron
                        Canal Road
                          90.10
                           1.32
                           7.80
                           0.24
                           0.02
                           0.22
                           0.02
                           0.004
                           0.004
Rock Pile
  93.95
   1.25
   3.70
   0.65
   0.02
   0.25
   0.07
   0.001
  <0.001
Sworn to and subscribed before me this	15th
          October 1973
day of
       ft    NOTARY PUBLIC
My commission expires 	.Tnnnary 17. 1Q7<;
                                                 STEWART LABORATORIES. INC.
                                            531

-------
                                 TECHNICAL REPORT DATA
                          /Please read latutirliuns on the reverse before eomplenngl
 1 REPORT NO
 EPA-650/2-75-060
                                                       3 RECIPIENT'S ACCESSION-NO
 4 TITLE AND SUBTITLE
 Drift Data Acquired on Mechanical Salt Water
    Cooling Devices
            5 REPORT DATE
            July 1975
            6 PERFORMING ORGANIZATION CODE
 7 AOTH0R(s)Gunter o schrecker, Ronald 0. Webb, David
 A. Rutherford, and Frederick M. Shofner
                                                       8 PERFORMING ORGANIZATION REPORT NO
 9 PERFORMING ORSANIZATION NAME AND ADDRESS
 Environmental Systems Corporation
 P.O.  Box 2525
 Knoxville, Tennessee  37901
            10 PROGRAM ELEMENT NO
            1AB015; ROAP 21ARW-002
            11 CONTRACT/GRANT NO

            68-02-1365
 12 SPONSORING AGENCY NAME AND ADDRESS
 EPA, Office of Research and Development
 Control Systems Laboratory
 Research Triangle Park, NC 27711
            13 TYPE OF REPORT AND PERIOD COVERED
            Final; 7/73 - 2/75	
            14 SPONSORING AGENCY CODE
 15 SUPPLEMENTARY NOTES
          The report gives test data from drift characterization and airborne salt
 monitoring studies conducted on and around  a single-cell,  mechanical-draft salt-
 water cooling tower and two spray modules at Turkey Point, Florida.  Source meas-
 urements of drift droplet size distributions and mineral mass emissions were con-
 ducted for both devices during a winter test and for the tower alone during a summer
 test.  Atmospheric salt concentrations  and depositions were measured for 11 months,
 both with and without cooling device operation.  Cooling tower drift droplet measur-
 ements yielded a drift emission fraction of 0.00027% of the water flow rate of 1260
 kg/s, and a droplet mass median diameter of 120 micrometers. The average mineral
 mass emission rate was 0.00083% of the minerals circulating as solute in the  cooling
 water.   Droplet size spectra and mineral mass fluxes of the spray module drift emis-
 sion were measured up to a height of 11 m above water level, below which the bulk of
 the  drift was  observed, and downwind to a distance of 88 m.
                             KEY WORDS AND DOCUMENT ANALYSIS
                DESCRIPTORS
                                          b IDENTIFIERS/OPEN ENDED TERMS
                                                                   c  COSATI Field/Croup
 Air Pollution
 Cooling Towers
 Salt Water
 Salt Spray Tests
 Drops (Liquids)
 Size Determination
Air Pollution Control
Stationary Sources
Spray Modules
Drift Data
Mineral Content
Emission Rate
13B
13A, 07A
OBJ
14B
07D
 8 DISTRIBUTION STATEMENT
 Unlimited
                                          19 SECURITY CLASS (This Report)
                                          Unclassified
                                                                   21 NO OF PAGES
                        532
                                          20 SECURITY CLASS (Thllpage)
                                          Unclassified
                                                                   22 PRICE
EPA Form 2220-1 (9-711

-------