United States Environmental Protection Agency
Marine and Wetlands Protection Branch
Region II
TASK 7.1
ASSESSMENT OF POLLUTANT LOADINGS TO
NEV YORK - NEV JERSEY HARBOR
Job Number: WOCL0302
Prepared by:
HydroQual, Inc.
1 Lethbridge Plaza
Mahwah, New Jersey 07430
January 1991
-------
United States Environmental Protection Agency
Marine and Wetlands Protection Branch
Region II
TASK 7.1
ASSESSMENT OF POLLUTANT LOADINGS TO
NEW YORK - NEW JERSEY HARBOR
Job Number: WOCL0302
Prepared by:
HydroQual, Inc.
1 Lethbridge Plaza
Mahwah, New Jersey 07430
January 1991
-------
ACKNOWLEDGEMENTS
The work described in this report was performed by Charles L. Dujardin,
P E (Project Manager) and John A. Mueller, P.E. (Project Engineer) and
assisted by Rose Marie Mueller. All work was performed and this report was
prepared under the technical supervision of John P. St. John, P.E. (Principal
Engineer). Drafting work was performed by John Sondey and the report was
produced by Barbara Grier and Lynn Miani.
HydroQual gratefully acknowledges the cooperation of many agencies,
organizations and individuals who provided data and information relevant to
this project.
-------
CONTENTS
Section Page
FIGURES i i
TABLES iii
SUMMARY OF FINDINGS -. v
1 INTRODUCTION 1- 1
2 SUMMARY OF POLLUTANT INPUTS 2- 1
2.1 SUMMARY OF POLLUTANT LOADINGS BY SOURCE CLASS 2-3
2 .2 SUMMARY OF DATA DEFICIENCIES 2- 6
3 MUNICIPAL AND INDUSTRIAL WASTEWATER DISCHARGES 3-1
3.1 MUNICIPAL WASTEWATER DISCHARGES 3- 1
3.1.1 Major Changes in Facilities 3- 1
3.1.2 Pollutant Inputs 3- 4
3 . 2 DIRECT INDUSTRIAL WASTEWATER DISCHARGES 3-9
4 RUNOFF LOADINGS 4- 1
4.1 RUNOFF VOLUME 4- 1
4.2 RUNOFF QUALITY 4- 5
4.2.1 Previous Studies 4- 5
4.2.2 NYCDEP CSO Studies 4- 7
4.2.3 Assessment of Runoff Quality 4- 7
4.3 RUNOFF MASS LOADING RATES 4-19
5 TRIBUTARY INPUTS 5- 1
5.1 METHODOLOGY - CONVENTIONAL PARAMETERS AND NUTRIENTS 5- 3
5.2 METHODOLOGY - TOXICS 5-4
5.3 SUMMARY OF TRIBUTARY INPUTS 5- 5
6 LANDFILL LEACHATE AND ATMOSPHERIC DEPOSITION 6-1
6.1 LANDFILL LEACHATE 6- 1
6.2 ATMOSPHERIC DEPOSITION TO THE WATER SURFACE 6-7
7 REFERENCES 7- 1
LIST OF ABBREVIATIONS
APPENDICES
-------
FIGURES
Figure
2- 1
2- 2
2- 3
2- 4
2- 5
2- 6
2- 7
2- 8
2- 9
2-10
2-11
3- 1
4- 1
6- 1
6- 2
COMPONENTS OF TOTAL AND NON-TRIBUTARY FLOW TO NY/NJ HARBOR
COMPONENTS OF TOTAL SUSPENDED SOLIDS AND BODs LOADINGS TO
NY/NJ HARBOR
COMPONENTS OF FECAL COLIFORM BACTERIA AND TOTAL PHOSPHORUS
LOADINGS TO NY/NJ HARBOR
COMPONENTS OF TOTAL NITROGEN AND NITRITE AND NITRATE LOADINGS
TO NY/NJ HARBOR
COMPONENTS OF ORGANIC NITROGEN AND AMMONIA LOADINGS
TO NY/NJ HARBOR '.
COMPONENTS OF ARSENIC AND BERYLLIUM LOADINGS TO NY/NJ HARBOR. .
COMPONENTS OF CADMIUM AND CHROMIUM LOADINGS TO NY/NJ HARBOR. . .
COMPONENTS OF COPPER AND LEAD LOADINGS TO NY/NJ HARBOR
COMPONENTS OF MERCURY AND NICKEL LOADINGS TO NY/NJ HARBOR
COMPONENTS OF ZINC LOADING TO NY/NJ HARBOR
COMPONENTS OF CYANIDE AND TOTAL PCB LOADINGS TO NY/NJ HARBOR
MUNICIPAL WASTEWATER DISCHARGE LOCATIONS
AREAWIDE 208 RUNOFF MODEL FEATURES
NEW JERSEY AND NEW YORK CITY LANDFILLS
UPPER HUDSON RIVER LANDFILLS
Page
2- 7
2- 8
2- 9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
3- 2
4- 2
6- 4
6- 5
ii
-------
TABLES
Table Page
2-1 SUMMARY OF PRINCIPAL DATA SOURCES 2- 2
2-2 SUMMARY OF LOADINGS TO NY/NJ ESTUARY BY SOURCE CLASS 2- 4
2-3 RELATIVE PERCENTAGES OF LOADINGS TO NY/NJ HARBOR BY SOURCE 2- 5
3-1 MUNICIPAL WASTEWATER FACILITIES DISCHARGING TO NY/NJ HARBOR
IN 1989 3- 3
3-2 MUNICIPAL WASTEWATER DISCHARGES TO NY/NJ HARBOR 3-5
3-3 MEASURED 1987 WASTEWATER DISCHARGES TO NY/NJ HARBOR 3-7
3-4 CONCENTRATION ESTIMATES FOR NYC AND NJ FACILITIES 3-TO
3-5 1989 MUNICIPAL WASTERWATER DISCHARGES TO NY/NJ HARBOR
MEASURED VS ESTIMATED 3-11
3-6 CRITERIA FOR DELETING A SOURCE 3-12
3-7 INDUSTRIAL WASTEWATER DISCHARGES TO NY/NJ ESTUARY 3-13
4-1 ANNUAL PRECIPITATION TOTAL (INCHES) 4- 3
4-2 RUNOFF FLOWS TO NY/NJ ESTUARY 4-4
4-3 PREVIOUS CSO/SW CONCENTRATIONS 4- 6
4-4 SUMMARY OF SAMPLING IN NYCDEP CSO STUDIES 4-8
4-5 CONCENTRATIONS IN CSO/SW FROM NYCDEP CSO STUDIES 4-9
4-6 CSO CONCENTRATIONS USED IN THIS REPORT VS. MEASURED CSO
AND STP INFLUENT CONCENTRATIONS 4-11
4-7 RELATIVE CONTRIBUTIONS OF NJ CSO SEWER DISTRICTS TO TOTAL
NJ CSO LOADING 4-16
4-8 CSO/SW CONCENTRATIONS USED FOR RUNOFF 4-17
4-9 CSO/SW RUNOFF LOADS 4-20
5-1 TRIBUTARY FLOWS AT GAGING STATIONS 1981 - 1988 5- 2
5-2 TRIBUTARY DISCHARGES AT GAGING STATIONS 1981 - 1988 5- 6
ill
-------
TABLES
(Continued)
Fae
5-3 TRIBUTARY DISCHARGES TO NY/NJ ESTUARY 1981 TO 1989 ............ 5-9
6-1 LANDFILLS WITHIN THE HUDSON -RARITAN ESTUARY WATERSHED ......... 6-2
6-2 LEACHATE CONCENTRATIONS FOR NEW YORK/NEW JERSEY ESTUARY
LANDFILLS ....................... . . . .. .......................... 6' 6
6-3 LEACHATE LOADINGS FROM NY/NJ ESTUARY LANDFILLS ................ 6-8
6-4 WATER SURFACE AREAS OF NY/NJ ESTUARY .......................... 6- 9
6-5 WET ATMOSPHERIC DEPOSITION DATA FROM LONG ISLAND SOUND STUDY.. 6-10
6-6 SUMMARY OF ATMOSPHERIC DEPOSITION RATES MEASURED OR USED FOR
NY/NJ ESTUARY ................................................. 6'12
6-7 ATMOSPHERIC LOADINGS TO WATER SURFACES OF NY/NJ ESTUARY ....... 6-13
iv
-------
SUMMARY OF FINDINGS
A comprehensive assessment of the sources of pollutants to New York - New
Jersey Harbor was prepared. This report presents a review and synthesis of
existing inventories of sources and loadings of conventional, non-conventiona1,
and toxic pollutants. The primary objectives of this study are (1) to place
into ..perspective the relative importance?, of each..maj.or-source class discharging,. . r
contaminants to the harbor and (2) to provide loading information for a
wasteload allocation analysis, as may be required.
Based on the analyses completed during this study, the following summary
is presented.
1. Four categories have been established to group the types of pollutants
entering the estuary.
Category Type Parameters
A Conventional TSS, BOD, Coliform
B Nutrients Org-N, NHs, N02+N03, TN, TP
C Toxic Metals As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn
D Other Toxics Priority Pollutants
Six major source classes have also been established for analysis and
review. These include:
• Municipal Discharges • Tributary Inputs
• Industrial Discharges • Landfill Leachate
• Runoff Loadings • Atmospheric Deposition
(CSOs and Storm Water)
-------
2. In addition to the foregoing sources, pollutants may be transported
into New York - New Jersey Harbor from adjacent waterways such as Long
Island Sound and New York Bight. A system-wide mathematical modeling
analysis would be required to define these loadings.
3. Pollutant loadings from each source class are estimated for
conventional, nutrient, and toxic metal pollutant categories and for
PCBs and cyanide. Loading assessments are prepared using both
observed measurements' and estimated loading rates where data are
deficient. Estimated loading rates are based on extrapolation of
existing data and engineering judgement.
4. Based on the loading assessments, municipal and tributary source
classes are generally largest for most pollutant categories.
Flows and total suspended solids are dominated by tributaries (80
percent of total).
BOD5
is primarily due to municipal sources (58 percent of total).
Combined sewer overflows are significant for conventional pollutants,
particularly fecal coliform bacteria (90 percent of total from CSOs).
Nutrients are primarily due to municipal sources with the exception of
nitrite plus nitrate where tributary inputs are most significant.
Toxic metals loads are primarily due to tributary and municipal inputs
although significant contributions of lead from CSOs and atmospheric
deposition are estimated.
Tributary inputs are the largest sources of PCBs with less significant
amounts from municipal and stormwater sources.
vi
-------
• Cyanide inputs appear to be dominated by municipal sources although no
information on tributary inputs is available.
5. The most significant data deficiencies are with the following source
classes and pollutant categories:
• Tributary quality (all pollutant categories). Estimated tributary
loadings to the estuary for conventional, nutrient, toxic metals, and
PCBs are significant. However, these loading estimates are based on a'
relatively small number of samples.
• Component forms of toxic metals (all sources). Although there is
information available for total recoverable metals, there is little or
no information for the different forms of metals being discharged
(i.e. dissolved, particulate, acid-soluble). These forms of metals
would be critical to a wasteload allocation analysis.
. Priority pollutants (all sources). Available data were limited to the
extent that even preliminary loading estimates could not be
established (except toxic metals, PCBs, and cyanide). The absence of
loading information is of particular concern for dioxin, certain
pesticides, petroleum derivatives, and specific industrial chemicals
which have been identified as pollutants that exceed existing water
standards and/or criteria.
6. The data base pertaining to contaminant sources should be supplemented
through carefully planned field investigations. Field studies should
focus on those sources which are considered critical to wasteload
allocation analyses and where data deficiencies are prevalent. With
regard to priority pollutants, a screening procedure should first be
devised and implemented to help establish the emphasis for subsequent
monitoring and/or regulatory programs.
vii
-------
1. INTRODUCTION
The U.S. Environmental Protection Agency (EPA) has authorized grants under
Section 320 of the Clean Water Act of 1987 for studies leading to the
completion of a Comprehensive Conservation and Management Plan (CCMP) for the
New York - New Jersey Harbor Estuary Program. Grants issued in FY 90 were for
studies related to characterization of the estuarine environment, pollution
impacts, and use impairments. The .tasks initiated included the following
modules:
Module 1 Pathogen Contamination: Task 1.1
Module 3 Toxic Contamination: Tasks 3.1, 3.2, 3.3
Module 4 Nutrient and Organic Enrichment: Task 4.1
Module 5 Habitat/Living Resources: Tasks 5.1, 5.2, 5.3
Module 6 Hydrologic Modifications: Task 6.1
Module 7 Wasteload Allocation: Tasks 7.1, 7.3
The report presented herein is Module 7 Wasteload Allocation, Task 7.1
Assessment of Pollutant Loadings. The report reviews and synthesizes existing
inventories of sources and loadings of conventional, non-conventional, and
toxic pollutants. The analysis evaluates the magnitude of pollutant loadings
from the major sources for each water quality constituent within various
pollutant categories. A general assessment is also prepared regarding the
quantity and quality of available information.
This document is developed to provide a comprehensive overview of the
sources of pollutants to New York - New Jersey Harbor and to provide a basis
for managerial decisions; the relative magnitude of pollutant sources will help
to establish policy for future monitoring and/or regulatory programs.
Therefore, an objective of this study is to place into perspective the
importance of each major source class discharging contaminants to the harbor.
-------
Page 1-2
Another objective of this study is to provide loading information for a
vasteload allocation analysis. Typically, wasteload allocations are based on
the available assimilative capacity in the receiving waters which is a function
°f all loading inputs, water transport, constituent, transformations, and
specific water quality objectives. In a system such as New York - New Jersey
Harbor with many different contaminant sources, an allocation computation will
be complex. One of the keys to an allocation, however, is to characterize the
major sources of each contaminant to be allocated.
In order to achieve stated objectives, the analyses must attempt to
quantify the magnitude of each source class to the extent that is technically
feasible. However, due to the complexity and large number of sources entering
the harbor, data to quantify loadings to the receiving waters are not always
available for each pollutant source. Although all available data is
incorporated into these analyses, some engineering judgement and extrapolation
of existing data are exercised to estimate loads from sources where data are
deficient. Therefore, the loading assessments are prepared using both observed
measurements and estimated loading rates where there is not sufficient
measurements.
It must be noted that for certain water quality constituents of concern,
available data were limited to the extent that even preliminary loading
estimates could not be established. Except for toxic metals, PCBs and cyanide,
overall loading estimates are not prepared for priority pollutants. The
absence of loading information is of particular concern for dioxin, certain
pesticides, petroleum derivatives, and specific industrial chemicals which have
been identified as pollutants that exceed existing water quality standards
and/or criteria.
Chapter 2 of this report is a summary of pollutant inputs from various
sources. In this chapter, a series of tables and diagrams are used to
summarize pollutant loading data for conventional pollutants, nutrients, toxic
metals, and PCBs. Pollutant loading data are evaluated for the following
source classes:
-------
Page 1-3
Municipal Discharges
Industrial Discharges
Runoff Loadings
Tributary Inputs
Landfill Leachate
Atmospheric Deposition
Chapters 3 through 6 summarize the analyses performed for each of these
source classes. These chapters describe data availability,. . assumptions,. and
methodologies used for the assessments and evaluations. Additional details
pertaining to these analyses are presented in Appendices A through H.
-------
Page 2-1
2. SUMMARY OF POLLUTANT INPUTS
In the assessment of pollutant loadings to New York - New Jersey Harbor,
the status of available information is evaluated. Four categories have been
established to group the types of pollutants entering the estuary.
Category Type Parameters
A Conventional TSS, BOD, Coliform
B Nutrients Org-N, NH3, N02+N03, TN, TP
C Toxic Metals As, Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn
D Other Toxics Priority Pollutants
Six major source classes have also been established for analysis and
review. These include:
Municipal Discharges • Tributary Inputs
• Industrial Discharges • Landfill Leachate
• Runoff Loadings • Atmospheric Deposition
It is to be noted that, in addition to the foregoing sources, pollutants
may be transported into New York - New Jersey Harbor from adjacent waterways
such as Long Island Sound and New York Bight by net advective flow and
dispersion. A system-wide mathematical modeling analysis would be required to
define these loadings. Such an effort is beyond the scope of the present study
and therefore no estimate is provided for these potential sources.
The principal data sources for each loading class are summarized in Table
2-1. In general, measured data used in the analysis were from 1987 through
1989. In some cases, however, data from earlier time periods were incorporated
if necessary. For example, most of the tributaries in recent years have been
monitored for quality only a few times each year. In order to characterize the
water quality in the tributaries, a longer period of record had to be examined.
-------
TABLE 2-1. SUMMARY OF PRINCIPAL DATA SOURCES
Loading Class
Source
Date
Municipal
Industrial
Combined Sewer Overflows/
Stonnwater Runoff
Tributary
Landfill Leachate
Atmospheric
NYSPDES Monitoring Reports
Environmental Defense Fund
(Clark - from NJDEP DWR)
Monitoring Records
Mueller et al.
NYCDEP City-Wide CSO
Facilities Plans
NYC 208 Study
National Urban Runoff Program
USGS Gaging Stations
USGS Water Quality Stations
NYCDOS (Fresh Kills Landfill)
Mueller et al., 1982
(from EPA and NJDEP)
NYSDEC
USGS (Long Island Sound)
NJDEP
Mueller et al., 1982
1987
1987 to 1989
1987
1982
1987 to 1989
1975 to 1978
1978 to 1983
1981 to 1988
1981 to 1988
1988 to 1989
< 1982
1987
1989
1988 to 1989
1967 to 1979
-------
Page 2-3
2.1 SUMMARY OF POLLUTANT LOADINGS BY SOURCE CLASS
Pollutant loadings from each source class are estimated for the
conventional, nutrient, and toxic metal pollutant categories and for PCBs and
cyanide. The following tables and figures summarize the loadings for these
pollutants by source class. Detailed analyses, data review and assumptions are
presented in Chapters 3 through 6. As mentioned above, data are too sparse to
estimate pollutant loadings for other priority., pollutants. Some. limited.
priority pollutant data are presented in Appendix I.
Loadings to New York - New Jersey Harbor are summarized in Table 2-2 by
source class. The cumulative totals of all source classes for a given
parameter are also presented. Except for PCBs, all data are from information
reviewed and analyzed in subsequent chapters of this report. PCB loading data
are derived from Thomann et al., 1989.
The relative contributions due to municipal, industrial, combined sewer
overflow, stormwater, tributary, leachate and atmospheric source classes are
given in Table 2-3. Flow inputs are dominated by the tributaries (81 percent)
and municipal discharges (14 percent), as are total suspended solids. The
total BODs load of 568 mt/day is primarily due to municipal (58 percent), CSO
(19 percent) and tributary (16 percent) sources. The largest source of most
nutrients is municipal wastewater discharges, with the sole exception of
nitrite plus nitrate nitrogen where tributary inputs are most significant.
' Toxic metals loads are primarily due to tributary and municipal inputs
although significant contributions of lead from CSOs and atmospheric deposition
are estimated. Cyanide inputs appear to be dominated by municipal sources
although no information on tributary inputs is available. The PCB source
upstream of the Troy Dam (tributary) is the largest contributor to this
parameter load, with less significant amounts from municipal and stormwater
sources.
-------
TABLE 2-2. SWWARY OF LOADINGS TO HY/NJ ESTUARY BY SOURCE CLASS
Parameter Units
FLOW
TSS
BODS
FCOLI
QRGN
KH3H
H023
TN
TP
efs
mt/d
Bt/d
E*12/d
mt/d
nt/d
Bt/d
Bt/d
Bt/d
MUNIC
3869.05
26S.S1
330.71
6.49
79.77
83.67
15.04
178.48
17.41
IKD
"»
80.91
6.23
3.91
0.00
0.01
0.01
0.02
Loadinns
CSO
355.20
130.37
106.63
19049.90
3.85
1.85
0.49
6. IB
0.95
bv Source £lass
SW
1005.50
65.53
27.02
1900.70
3.44
1.00
1.69
S.97
0.87
TRIE
22135 80
1905.00
90.30
401 90
30.06
9.91
40.93
81.00
"3.79
L£ACB
<«>
5.90
0.58
5.70
0.07
0.39
3. 68
0.05
4.62
0.02
ATMOS
(t?
(8)
23.37
3.48
3.24
0.44
1.69
5.37
0.04
TOTAL
LOAD
27452.36
2396 59
567 75
21361.06
120.75
100.56
59.89
281.63
23.10
Aa
Be
Cd
Cr
Cu
Fb
BB
Hi
Zn
CD
FCB
kg/d
kB/d
kB/d
ks/d
kB/d
kB/d
kB/d
kfi/d
42.67
9.60
29.27
400.91
1090 44
327.81
12.66
441.88
1900.85
2.83
0.01
0.58
8.83
2.84
6.95
14.34
kB/d
kB/d
426.87 0.42
0.80
3.92
0.14
11.48
79.99
151.71
169.91
2.15
50.68
328.35
26.69
0.36
6:62
0.93
8.03
73.37
134.76
70.16
0.86
59.32
358.02
46.07
68 44
583.14
478.19
423.27
454.48
16 26
270.10
2568.61
0.-90
0.05
O.S1
3.09
4.84
4.33
0.09
3.49
19.42
1.94 .
1.93
10.27
100.10
167.00
52.70
147.90
104.94
79.15
634.37
1046.40
1913.95
1196.53
32.02
885.12
S337.49
24.59
0.54
1 80
1.22
0.02
0.10
479.79
3.62
<")MUII1C from Table 3-5. this report, HO23 - TN-ORGH-NH3H
iHD from Table 3-7. this report (from BydroQual. Inc.. 1989)
(c)cso & SW from Table 4-10. this report
(d>TRIB frca Table 5-3. this report
(•'LEACH from Table 6-3. this report
(*>ATMOS from Table 6-7. this report
ero when
calculating total loadings.
-------
TABLE 2-3. RELATIVE PERCENTAGES OF LOADINGS TO RY/NJ HARBOR BY SOURCE
Total Mass
Parameter Units
FLOW
TSS
BODS
FCOLI
ORGN
HH3N
N023
TN
TP
As
Be
Cd
Cr
Cu
Fb
Bg
Ni
Zn
CN
PCB
cfs
mt/d
mt/d
E'12/d
mt/d
mt/d
mt/d
mt/d
mt/d
ks/d
ks/d
kg/d
kg/d
ks/d
ks/d
ks/d
ks/d
kg/d
ks/d
ks/d
Value
27452.36
2396.59
567.75
21361.06
120.75
100.56
59.89
281.63
23.10
104.94
79.15
634.37
1046.40
1913.95
1196.53
32 02
885.12
5337.49
479 79
3.62
HUNIC
X
14.09
11.08
58.25
0.04
66.06
83.21
25.11
63.38
75.36
40.66
12.13
4.61
38.31
56.97
27.40
39.59
49.92
35.61
88.97
22.10
IND
x
0.29
0.26
0.69
0.00
0.01
0.00
0.09
2.70
0.00
0 06
0 46
0.24
0.00
0.79
0.27
0.09
Parcentakes of Total Load by Source
CSO
X
1.29
5.44
18.78
89.18
3.19
1.84
0.81
2.19
4.12
3.73
0.18
1.81
7.64
7.93
14.20
6.71
5 73
6.15
5 56
9.94
SW
X
3.66
2.73
4.76
B.90
2.85
0.99
2.83
2.12
3.77
6.31
1.17
1.27
7.01
7.04
5 86
2.69
6.70
6.71
5.12
14.92
TRIE
X
80.63
79.49
15.90
1.88
24.89
9.86
68.34
28.76
16.41
43.90
86.47
91.92
45.70
22.12
37.98
50.78
30 52
48.12
49 72
LEACH
X
0.02
0.02
1.00
0.00
0.33
3.66
0.09
1.64
0.09
0.86
0.06
0.08
0.30
0 25
0 36
0.28
0.39
0.36
0 25
O.SS
ATMOS
I
0.00
0.98
0.61
2 68
0 44
2.82
1.91
0.17
1.85
0.30
0.98
5.23
13.96
5.95
2.77
2.76
TOTAL
I
100.00
100.00
- 100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
• 100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
Blank spaces indicate information not available. These data are assumed equal to cero when calculating
percentages.
-------
Page 2-6
Graphical presentations of these data are found in the following figures:
total flow and non-tributary flow, Figure 2-1; total suspended solids and BODs,
Figure 2-2; fecal coliform bacteria and total phosphorus, Figure 2-3; nitrogen
components, Figures 2-4 and 2-5; metals, Figures 2-6 to 2-10; and cyanide and
total PCB, Figure 2-11.
The relative significance of selected pollutant loadings is summarized on
Table 2-4. The table ranks each source class for selected constituents on a
scale of 1 to 5, with a ranking of 1 indicating that the source is the largest
for a specific constituent. For clarification purposes, source classes of less
than 5 percent of the total loading are not listed. The table indicates that
municipal and tributary source classes are the most important for most
pollutant categories. Combined sewer overflows are significant for
conventional pollutants, particularly fecal coliform bacteria.
2.2 SUMMARY OF DATA DEFICIENCIES
A summary of the major data deficiencies are shown on Table 2-5. A source
class and pollutant constituent/category are indicated as deficient if the
source class contributes more than 10 percent of the total load to the system
and the available information is considered fair to poor.
Probably the most serious information deficiency by pollutant category is
with priority pollutants where very little information exists for any source
class. The data base for priority pollutants is limited to the extent that
loading estimates for priority pollutants, with the exceptions of PCBs and
toxic metals, could not be established.
Another critical data deficiency is with respect to tributary monitoring.
Due to the flow rates associated with the tributaries, estimated loadings to
the estuary for conventional, nutrient, and toxic metal pollutant categories
are significant. However, these loading estimates are based on a relatively
small number of samples considering the magnitude of the source.
-------
FLOW 27,000 CFS
MUM (14.9V.)
TRIE (80.7%)
NO (0.3%)
CSO(1.3%)
SW(3.7%)
NON-TRIBUTARY FLOW 5,300 CFS
SW(18.9%)
MUM (72.8%)
FIGURE 2 - 1
COMPONENTS OF TOTAL AND NON-TRIBUTARY FLOW TO NY/NJ HARBOR
\0
-------
TRIB(79.5%)
TSS 2400 MT/D
ATM (1.0%)
ND(0.3%)
CSO(5.4%)
SW(2.7%)
BODC 570 MT/D
5
LCH(1.0%)—! ATM (0.6%)
TRIB(15.9%)
SW(4.8%
CSO(18.8%)
MUN(58.3%)
ND{0.7%)
FIGURE 2-2
COMPONENTS OF TOTAL SUSPENDED SOLIDS
AND BOD5 LOADINGS TO NY/NJ HARBOR
/I
-------
12
FECAL COLI 21,000 x 10 /D
TRIB(1.9%)
SW(8.9%)
CSO(89.2%)
TOTAL P 23MT/D
ATM (0.2%)
LCH(0.1%)
TRIB(16.4%)
SW(3.8%)
CSO(4.1%)
MD(0.1%)
MUN(75.4%)
FIGURE 2-3
COMPONENTS OF FECAL COLIFORM BACTERIA
AND TOTAL PHOSPHORUS LOADINGS TO NY/NJ HARBOR
-------
TOTALN 280MT/D
LCH(1.6%) ATM (1.9%)
TRIB(28.8%)
SW(2.1%)
CSO(2.2%)
MUM (63.4%)
N02- N03 N 60 MT/D
LCH(0.1V.)
ATM (2.8%)
TRB(68.3%)
MUN(25.1%)
CSO(0.8%)
SW(2.8%)
FIGURE 2-4
COMPONENTS OF TOTAL NITROGEN
AND NITRITE AND NITRATE LOADINGS TO NY/NJ HARBOR
-------
ORGANIC N 120MT/D
LCH(0.33%) ATM (2.68%)
TRIE (24.89%)
SW(2.85%
CSO(3.19%)
MUN(66.06%)
AMMONIA N 100MT/D
LCH(3.66%) ATM (0.44%)
TRB(9.86%)
SW (0.99V.)
CSO(1.84%)
MUN (83.21%)
FIGURE 2-5
COMPONENTS OF ORGANIC NITROGEN AND AMMONIA LOADINGS TO NY/NJ HARBOR
-------
ARSENIC 100KG/D
LCH(0.9%) ATM (1.8%)
TRB(43.9%)
MUM (40.7%)
SW(6.3%)
ND(2.7%)
CSO(3.7%)
BERYLLIUM 79 KG/D
CSO(0.2%)
MUM (12.1%)
SW (1.2%)
TRIB(86.5%)
FIGURE 2-6
COMPONENTS OF ARSENIC AND BERYLLIUM LOADINGS TO NY/NJ HARBOR
t5"
-------
CADMIUM 630KG/D
ATM(0.3%)V
MUM (4.6%)
CSO(1.B%)
SW(1.3%)
TRIE (91.9%)
CHROMIUM 1000KG/D
LCH(0.3%) ATM (1.0%)
TRIE (45.7%)
MUM (38.3%)
CSO(7.6%)
SW(7.0%)
FIGURE 2-7
COMPONENTS OF CADMIUM AND CHROMIUM
LOADINGS TO NY/NJ HARBOR
-------
COPPER 1900KG/D
LCH(0.3%)
ATM (5.2%)
TRIE (22.1%)
SW(7.0%)
MUM (57.0%)
CSO(7.9%)
ND(0.5%)
LEAD 1200KG/D
ATM (14.0%)
LCH(0.4%)
TRIE (38.OX)
MUN(27.4%)
ND(0.2%)
CSO(14.2%)
SW(5.9%)
FIGURE 2-8
COMPONENTS OF COPPER AND LEAD LOADINGS TO NY/NJ HARBOR
'7
-------
MERCURY 32KG/D
LCH(0.3%)
TR1B(50.8%)
MUM (39.6%)
CSO(6.7%)
SW(2.7%)
NICKEL 890KG/D
ATM (6.0V.)
LCH(0.4%)
TRIB (30.5%)
MUN(49.97.)
SW(6.7%)
CSO(5.7%)
FIGURE 2-9
COMPONENTS OF MERCURY AND NICKEL LOADINGS TO NY/NJ HARBOR
-------
ZINC 5300 KG/D
LCH(0.4%
ATM (2.8%)
TRIB{48.1%)
MUN(35.6%)
WD(0.3%)
CSO(6.2%)
SW(6.7%)
FIGURE 2-10
COMPONENTS OF ZINC LOADING TO NY/NJ HARBOR
-------
CYANIDE 480KG/D
SW(5.1%) LCH(0.3%)
CSO(5.6%)
MD(0.1%)
MUM (89.0%)
TOTAL PCB 4 KG/D
LCH(0.6%) ATM (2.8%)
TRB(49.7%)
MUN(22.1%)
CSO(9.9%)
SW(14.9%)
FIGURE 2-11
COMPONENTS OF CYANIDE AND TOTAL PCB LOADINGS TO NY/NJ HARBOR
2,0
-------
Page 2-18
TABLE 2-4. RELATIVE SIGNIFICANCE OF POLLUTANT SOURCES
Category
A
B
C
D
Variable
BOD
F. Coliform
TSS
Total Nitrogen
Total Phosphorus
Copper
Mercury
Arsenic
Beryllium
Cadmium
Chromium
Lead
Nickel
Zinc
CN
PCB
Mun
1
2
1
1
1
2
2
2
2
2
2
1
2
1
2
Ind CSO
2
1
-
3
3
3
3
5
4
2
4
fiH
2
4
3
4
5
3
3
3
3
Trib
3
1
2
2
2
1
1
1
1
1
1
2
1
1
Lch A tin
5
4
4
TABLE 2-5. SUMMARY OF MAJOR DATA DEFICIENCIES
Category Variable
A TSS
BOD
F. Coliform
B Nitrogen
Phosphorus
C Toxic Metals
D Priority Pollutants
Mun Ind CSO Sw Trib Lch Atm
-------
Page 2-19
With regard to toxic metals, there is fair to good information available
for total metals from various sources. However, there is little or no
information available for the different forms of metals being discharged (i.e.
dissolved, particulate, acid-soluble). These forms of metals are critical to a
wasteloads allocation analysis. Therefore, for each of the primary sources of
toxic metals, information on the various forms of metal is deficient in terms
of performing a wasteload allocation.
In summary, -the-most significant constituent loadings- are--from-municipal
discharge and tributaries. Combined sewer overflows are most significant for
coliform bacteria. The most significant data deficiencies are with the
following source classes and pollutant categories:
• Tributary quality (all pollutant categories)
• Component forms of toxic metals (all sources)
• Priority pollutants (all sources)
-------
Page 3-1
3. MUNICIPAL AND INDUSTRIAL WASTEWATER DISCHARGES
Estimates of municipal and industrial wastewater discharges are derived in
the following sections. Municipal discharges are based primarily on 1987 daily
monitoring reports with updates for major changes between 1987 and 1989.
Industrial discharges are screened based on a mass loading criteria and 1987
operating records. Only the major industrial dischargers , are. reported, and
included in these analyses.
3.1 MUNICIPAL WASTEWATER DISCHARGES
Wastewater inputs are calculated for forty-nine municipal treatment plants
discharging to the New York - New Jersey Harbor. In a previous estimate of
wastewater inputs to the transect zone of New York Bight (HydroQual, 1989),
monthly records of municipal treatment plants were analyzed for calendar year
1987.
With only two years elapsing between that study and the present, wastewater
discharges from 1987 will be used as the basis for estimating current inputs
except where major changes have occurred. The following sections describe the
major changes between 1987 and 1989 and summarize current loading estimates
based on data collected during that period.
3.1.1 Major Changes in Facilities
As shown on Figure 3-1 and in Table 3-1, forty-nine municipal treatment
plants discharged to the estuary in 1989. This is to be compared with fifty-
six in 1987. The seven wastewater facilities that no longer discharge directly
to the estuary were converted to pump stations in the 1987 to 1989 period which
conveyed wastes to regional treatment facilities (ISC, 1989). Both Jersey City
East and Jersey City West presently pump wastes to Passaic Valley Sewerage
Commission (PVSC) whereas South Amboy, Perth Amboy, Old Bridge Township,
Sayreville-Melrose and Sayreville-Morgan pump to Middlesex County Utilities
-------
FIGURE 3-1. MUNICIPAL WASTEWATER DISCHARGE LOCATIONS
-------
TABLE 3-1. MUNICIPAL HASTEHATER FACILITIES
DISCHARGING TO RY/NJ HARBOR IH 1089
Plow (nwd)**
STP Name
HUDSON RIVER
Ml City of Poughkaepsie
M2 Town of Poughkeepsie
M3 City of Rewburgh
M4 Town of Cornwall
M5 USHA - Wast Point
M6a Crag'bon WTP
M6b Havana Road TP
M7 Peekakill
M8 Stony Point
M10 Jt Rag Saw-Havaratraw
Ml la Oaainins
M13 Orangetown SD #2
Ml* Rockland Co SD #1
MIS Yonkers Jt Tat
M16 Edgewater
M17 North Bergen
M1B tiaat Raw York
M19 Hobokan
H21 Forth River
EAST RTVER
M22 Rad Hook
M23 Rawtown Craak
M24 Hards Island
M2S Hunts Point
M26 Bowary Bay
M27 Tallman Island
UPPER BAY
M2B Passaic Vallay SC
M29 Owla Haad
JAMAICA BAY
M31 Conay Island
M32 26th Hard
M33 Jamaica
M34 Inwood
M3S Cadarhurst
M36 Rockaway
County
Dutchass
Dutchass
Orange
Orange
Orange
Orange
Orange
Westchastar
Wastchestar
Rockland
Hestchester
Rockland
Rockland
Wastchestar
Bergen
Hudson
Hudson
Hudson
Hew York
Kings
Kings
Hew York
Bronx
Queens
Queans
Essex
Kings
Kings
Kings
Queens
Nassau
Nassau
Queens
Treatment
Level
secondary
secondary
secondary
secondary
secondary
primary
primary
secondary
secondary
secondary
secondary
secondary
secondary
secondary
secondary
primary • •
primary
primary
primary*
secondary
secondary
secondary
secondary
secondary
secondary
secondary
secondary
secondary
secondary
secondary
secondary
secondary
secondary
Used In
Report
7.57
2.81
3.09
0.95
1.S3
0.07
0.64
4.78
0.89
5.33
S.29
8.43
17.11
112.17
2.86
2.38
S.1B '
13.00
177.56
46.61
317.75
327.00
136.08
1S2.SO
64.67
268.49
118.17
104 00
65.00
98.83
1.22
0.95
26.70
ISC
1989
S.BO
0.90
S.40
S.10
8.90
18.40
97.90
3.20
4.20
13.20
168.10
40.30
322.90
327.30
142.80
146.90
62.70
241 80
111.70
99.30
55.70
97.30
1.20
0.90
26.80
LOWER. RARITAH and SANDY BOOK BAYS
M37 Oakwood Baacb
M42c Middlatown Twnshp SA
M43 Middlasaz Co UA
ARTHUR KILL
M44 Hoodbridge
M45 Carter et
M46 Lindan Rosalia SA
M49 Jt Mts Eaaex/Union Co
MS6 Rabway Vallay SA
KILL VAR KULL
MSO Bayonna
M51 Port Richmond
RARITAH RIVER
M55 Woodbridge Twnshp
HACKENSACK RIVER
M53 Kaarnay
M57 Rorth Arlington
MSB Jt Mts Ruth/E. Ruth/Carl
MS9 Sacaucas
M62 Bergen Co SA
Richmond
Middlesex
Middlesex
Middlesex
Middlesex
Union
Union
Union
Hudson
Richmond
Middlesex
Hudson
Bergen
Bergen
Bergen
Bergen
secondary
secondary
secondary
primary
primary
secondary
secondary
secondary
primary
secondary
primary
primary
primary
primary
secondary
secondary
30.38
8.60
96.23
4.83
2.65
10.70
66.71
26.90
6.91
40.24
1.15
2.33
1.9S
2. SO
2. SB
94. SI
34.10
97.50
6.20
3.10
13.10
69.80
31.10
7.30
39.30
1.04
1.90
• Secondary la 1990
•• 1987 flowa used in report except for 1989 eatim. of PVSCCM28) & MCUA(MO).
ISC 1989: Aa reported In Annual Report of Interstate Sanitation Commission
-------
Page 3-4
Authority (MCUA). The effluent flows contained in Table 3-1 are for 1987
except for PVSC and MCUA where their flows were augmented by the flows of the
new pump stations.
Since 1987, several plant upgrades were also completed. Edgewater and Red
Hook increased treatment from primary to secondary. Owls Head, classified as
primary in 1987, is listed as secondary in 1989 on the basis of the 1989
Interstate Sanitation Commission Annual Report (ISC, 1989).
North River is planned to be at secondary in 1990 (ISC, 1989). On the
basis of information provided by ISC, Bayonne and Kearny will be converted to
pump stations in 1990 with the flow going to PVSC; Carteret and Woodbridge are
also to be converted to have wastes treated at HCUA.
3.1.2 Pollutant Inputs
Approximately 2,500 MGD entered the estuary in 1989 (Table 3-2). These
flows are not significantly different than those reported by ISC (ISC, 1989) -
as shown in the last column of Table 3-1. Total suspended solids (TSS), five-
day biochemical oxygen demand (BODs) , ammonia, organic and total nitrogen
(NH3N, ORGN, TN) and total phosphorus (TP) are listed with units of metric tons
per day (mt/d); fecal coliform bacteria (FColi) are reported in 107 organisms
per day; all other parameters are reported in kilograms per day (kg/d). Table
3-2 summarizes the magnitude of each municipal wastewater discharge which are
grouped according to their respective receiving waters. A summary of loadings
to each major receiving water body is given at the bottom of the table. In
general, East River and/or Hudson River sources predominate for most
parameters. Exceptions include fecal coliform bacteria where the Hackensack
River sources are largest and for arsenic (As), beryllium (Be), cyanide (CN)
and zinc (Zn), where sources in the Upper Bay are greatest.
The loading rates presented in Table 3-2 were generated using measured
concentrations where information was available and estimated concentrations
where information was not available. Measured values are shown in Table 3-3.
A blank field in the table indicates no available data; therefore, a
significant number of discharges are lacking measurements of nutrients and-
heavy metals.
-------
TABLE 3-2. MUNCIPAL HASTEHATER DISCHARGES TO KY/NJ HARBOR
Flow
MSP
7.57
2.81
5.09
0.95
1.53
0.07
0.64
4.78
O.B9
5.33
5.29
8.43
17.11
112.17
2.86
2.38
S.1B
13.00
177. SB
46.61
317.75
327.00
136 08
152.50
64.67
268.49
118.17
104.00
65 00
98 83
1.22
0 95
26.70
AYS
30.38
8.60
96.23
4.83
2.65
10.70
66.71
26.90
6.91
40.24
1.15
2.33
1.95
2.50
2.88
94.51
373.66
1044.61
386.66
296.70
135.21
111.79
47.15
1.15
104 . 17
TSS
at/d
0.41
0.06
0.21
0.07
0.24
0.01
0.12
0.16
0.05
0.39
0.24
1.30
4.89
5.78
0.37
0.30
0.46
6.92
31.01
3.00
53.20
16.72
7.13
9.10
1.81
35.37
15.75
17.85
2.57
6.84
0.15
0.08
0.75
1.49
1.04
13.52
1.11
1.B1
1.27
6.39
2.22
1.66
4.15
0.24
0.71
0.28
0.73
0.18
5.41
52.99
90.96
51.12
28.24
16.05
12.79
5.82
0.24
7.31
BODS
at/d
0.52
0.09
0.24
0.05
0.10
0.02
0.30
0.12
0.05
0.43
0.21
1.33
46.14
4.06
0.30
1.12
0.91
B. 45
50.56
2.29
53.14
16.17
6.03
6.22
1.20
31.14
29.79
16.72
1.27
5.60
0.11
0.08
0.44
1.30
0.98
7.68
2.41
4.21
0.82
6.27
2.75
2.83
2.32
0.14
2.18
0.72
2.59
0.21
6.13
114.98
87.05
60.93
24.22
9.96
16.46
5.15
0.14
11.82
RH3H
at/d
0.20
0.07
0.14
0.03
0.04
0.00
0.02
0.13
0.02
0.14
0.14
0.22
0.46
2.99
0.10
0.20
0.43 .
1.08
4.30
1.23
6.74
7.56
0.62
5.31
2.53
16.79
3.54
2.79
1.35
4.41
0.03
0.03
0.64
0.58
0.30
5.13
0.40
0.22
0.58
3.59
1.45
0.58
0.55
0.10
0.19
0.16
0.21
0.27
S.09
10.72
23.99
20.33
9.24
6.01
6.24
1.13
0.10
5.93
ORGN
at/d
0.23
0.09
0.16
0.03
0.05
0.00
0.02
0.15
0.03
0.16
0.16
0.26
0.52
3.43
0.09
0.11
0.23
0.58
6.73
. 1.43
15.31
9.57
3.56
5.16
1.48
5.64
4.23
3.45
1.60
2.21
0.04
0.03
0.78
1.33
0.27
2.62
0.24
0.13
0.29
1.80
0.73
0.34
l.SS
0.06
0.11
0.10
0.12
0.04
2.55
13.02
36.51
9.87
8.10
4.22
3.18
1.89
0.06
2.92
TH
at/d
0.47
0.18
0.32
0.06
0.10
0.00
0.04
0.30
0.06
0.33
0.33
0.53
1.07
7.03
0.19
0.32
0.70
1.75
11.99
2.93
23.17
18.12
7.66
10.43
4.25
24.02
7.02
6.40
3.15
7.18
0.08
0.06
1.51
2.53
0.59
8.96
0.65
0.36
1.01
6.29
2.54
0.93
2.58
0.15
0.31
0.26
0.34
0.33
8.91
25.77
66.56
31.04
16.38
12.08
10.84
3.51
0.15
10.15
TP
mt/d
0.01
0.00
0.01
0.03
0.00
0.00
0.02
0.00
0.03
0.03
0.04
0.08
O.S6
0.01
0.02
0.08
0.18
0.46
1.37
0.23
1.84
1.19
0.13
0.91
0.31
3.71
0.85
0.68
0.24
0.59
0.01
0.00
0.11
0.19
0.07
0.79
0.17
0.09
0.09
0.54
0.22
0.24
0.19
0.04
0.08
0.07
0.09
0.02
0.77
2.95
4.60
4.56
1.63
1.05
1.11
0.43
0.04
1.03
FColi
Z'7/d
2960
1685
1536
293
473
6
851
209
968
1262
1779
1596
45166
13136
227
2293
26
33518
58756
3704
77559
2777
15249
52302
1982
23998
1SS75
7279
4268
11154
SB
430
1330
3767
423
1918
89
11447
26724
12035
. 1413
131174
2202
779
256144
5956
589
391
9504
166740
153572
39573
24519
6108
51709
133376
779
272585
HUDSON RIVER
Ml City of Poughkeepsie
M2 Town of Poughkeepsie
M3 City of Nawburgh
H4 Town of Cornwall
MS USMA - West Point
M6a Cragston WTP
M6b Havens Road TP
K7 Paekskill
MB Stony Point
H10 Jt Rag Sew-Heverstraw
Mlla Oasinins
H13 Orangetown SD 42
Ml* Rockland Co SD #1
MIS Yonkera Jt Tmt
M16 Edgewater
M17 Forth Bargen
M18 Waat New York
M19 Boboken
M21 North Rivar
EAST RIVER
M22 Rad Hook
M23 Newtown Craak
M24 Wards Island
M2S Bunts Point
M26 Bowery Bay
M27 Tallman Island
UPPER BAY
M2B Passaie Valley SC
M29 Owls Head
JAMAICA BAY
M31 Coney Island
M32 26th Ward
M33 Jamaica
M34 Inwood
M35 Cadarhurst
K36 Rockaway
LOWER. RARITAN and SANDY HOOK BAYS
M37 Oakwood Beach
M42c Middletown Twnshp SA
MO Middlesex Co UA
ARTHUR KILL
M44 Hoodbridge
M4S Carterat
M46 Linden Rosella SA
M49 Jt Mtg Essex/Union Co
MS6 Rahway Valley SA
KILL VAN KULL
MSO Bayonne
MSI Port Richmond
RARITAN RIVER
HSS Woodbridga Twnshp
BACKENSACK RIVER
MS3 Kearney
MS7 North Arlington
MSB Jt Mtg Ruth/E.Ruth/Car
MS9 Secaucas
M62 Bargen Co SA
SUBTOTALS
Hudson R
East R
Upper Bay
Jamaica Bay
Lower Bays
Arthur Kill
Kill V Kull
Raritan R
Backensack R
TOTALS 2501.10 265.51 330.71 83.67 79.77 178.46 17.40
• Based on 1987 STP data, 1989 dagrea of treatment and 1989 estimated flows for PVSC and MCUA. -
648961
-------
TABLE 3-2. (Continued) MUHCIPAL HASTEHATER DISCHARGES TO KY/NJ HARBOR*
STP
Name
Aa Be Cd Ct Cu CN Pb Hg Hi
kR/d k«/d k«/d kR/d k«7d kR/d kR/d k«Vd kg/d
HUDSON RIVER
Ml City of Poughkeepsie
M2 Town of Poughkeepsie
M3 City of Newburgh
M4 Town of Cornwall
MS USMA - Weit Point
M6a Crag*ton HIP
H6b Havana Road TP
M7 Paeksklll
MB Stony Point
M10 Jt Reg Sew-Haveratraw
Hlla Osaining
M13 Orangetown SD #2
Ml* Rockland Co SD #1
MIS Yonkera Jt Tot
M16 Edgawatez
M17 North Bergen
M18 West Hew York
M19 Boboken
M21 North River
EAST RIVER
M22 Red Hook
M23 Newtown Creek
M24 Wards Island
M2S Hunts Point
M26 Bowery Bay
M27 Tallaan Island
UPPER BAY
M28 Passaie Valley SC
M29 Owls Head
JAMAICA BAY
M31 Coney Island
M32 26th Ward
M33 Jamaica
M3* Inwood
M35 Cedarhurst
M36 Roekaway
LOWER. RARITAN and SANDY HOOK BAYS
M37 Oakwood Beach
M42c Middletown Twnshp SA
M43 Middlesex Co UA
ARTHUR KILL
M44 Woodbridge
M4S Cazteret
M46 Linden RoaeLle SA
M49 Jt Mtg Essex/Union Co
MS6 Rahway Valley SA
KILL VAN KULL
MSO Bayonne
MSI Port Richmond
RARITAN RIVER
MS5 Woodbridge Twnshp
BACKENSACK RIVER
HS3 Kearney
MS7 North Arlington
MSB Jt Mtg Ruth/E.Ruth/Car
MS9 Secaucas
M62 Bergen Co SA
SUBTOTALS
Hudson R
East R
Upper Bay
Jamaica Bay
Lower Bays
Arthur Kill
Kill V Kull
Raritan R
Hackensack R
TOTALS
• Baaed on 1987 STP data, 1989 degree of treatment and 1989 estimated flows for PVSC & HOI A. NYC SIP'S use MLE'i
PVSC(M28). LRSA(M46). RVSA(MSB) and JMEU(M49) uae concentrations in Clark(EOF).1990.
0.06
0.02
0 02
0.01
0.01
0.00
0.01
0.18
0.01
0.20
0.20
0.32
0.14
4.24
0.10
0.08
0.16
0.44
1.69
0.38
4.33
1.71
0.71
2.15
0.30
9. 75
1.59
0.72
0.66
O.SS
0.01
0.01
0.13
IAYS
0.18
0.31
2.06
0.16
0.09
0.39
2.42
0.98
0.24
1.10
0.04
0.08
0.07
0.09
0.10
3.43
7.91
9. SB
11.34
2.08
2. SB
4.04
1.33
0.04
3.77
42.67
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.10
0.00
0.01
0.01
0.07
0.04
0.03
0.07
0.18
0.09
0.03
0.18
0.19
0.06
0.09
0.04
3.66
0.06
O.OS
0.03
0.06
0.00
0.00
0.01
0.02
0.12
1.31
0.07
0.04
0.15
0.91
0.37
0.10
0.02
0.02
0.03
0.03
0.03
0.04
1.29
0.62
0.59
3.72
0.15
1.45
1.53
0.12
0.02
1.42
9.60
0.02
0.01
0.15
0.00
0.00
0.00
0.00
0.04
0.00
0.87
0.12
0.99
0.04
5.09
O.OS
0.13
0.27
0.69
0.61
2.09
2.10
O.SO
0.61
0.40
0.20
4. SO
0.72
0.13
0.21
0.26
0.01
0.00
0.04
0.02
0.1S
3.20
0.26
0.02
0.84
0.76
0.71
0.31
0.04
0.06
0.12
0.10
0.13
O.OS
1.64
9.08
5.90
5.22
0.66
3.37
2.58
0.35
0.06
2.05
29.27
0 37
0.14
0.39
O.OS
0.08
0.00
0.03
0.24
0.04
1.25
0.26
0.41
1.10
8.91
0.4B
0.61
1.33
3.34
34.87
4.60
82.63
18.47
6.72
11.96
3. 45
ISO. 91
10.41
4.36
5.63
6.83
0.03
O.OS
1.47
1.00
1.43
S.2S
1.24
0.68
1.S7
4.04
3. OS
1.78
1.20
0.30
0.60
O.SO
0.64
0.48
15.73
53.90
127.83
161.32
18.36
7.68
10.58
2.98
0.30
17.95
400.91
2.03
0.7S
2 60
0.26
0.41
0.02
0.17
O.S4
0.24
5.12
2.12
3.48
4.92
22.07
1.68
1.67 '
3.63
9.10
120.10
13.90
303.90
52.90
142.30
36.50
11.10
S7.90
49.50
32.40
10.60
20.70
0.09
0.26
4.80
2.60
5.04
73.17
3.38
1.8S
2.19
S.BO
4.47
4.B4
6.70
0.80
1.63
1.36
1.75
1.69
55.42
180.90
S60.60
107.40
68.84
80.81
17.69
11.53
0.80
61.85
1090.44
0.80
0.30
0.39
0.10
0.16
0.01
0.07
O.S1
0.09
0.56
O.S6
0.89
1.81
11.88
1.11
0.83
1.80
4.52
r 28.-7S..
3. S3
48.53
24.74
13.70
11.54
5.38
104.62
23.64
12.67
5.39
9.49
0.13
0.10
2.S9
3.07
.3.35
9.36
1.68
0.18
4.17
25.99
10.48
2.40
4.08
0.40
0.81
0.68
0.87
1.12
36.83
55. 15
107.42
128.46
30.37
15.76
42.50
6.48
0.40
40.31
426.87
0.37
0.14
0.96
O.OS
0.08
0.00
0.03
1.37
0.04
0.85
1.26
0.64
0.60
17.40
0.37
1.90
4.13
10.38
18.42 .
3.62
66.18
22.13
9.73
7.52
2.22
70.66 •
5.64
3.76
7.44
4.80
0.04
O.OS
1.34
0.89
1.11
4.82
3.86
2.12
2.S9
8.33
12.70
5.52
2.92
0.92
1.B6
1.56
2.00
0.37
12.16
58.99
111.40
76.30
17.43
6.82
29.59
8.44
0.92
17.94
327.81
0.03
0.01
0.01
0.00
0.01
0.00
0.00
0.00
0.00
0.02
0.00
0.04
0.07
0.08
0.01
0.01
0.01
0.03
0.23 .
0.21
0.49
0.39
3.39
2.80
0.37
2.17
O.SS
0.29
0.17
0.14
0.01
0.00
0.10
0.02
0.02
0.29
0.01
0.00
0.03
0.16
0.06
0.02
0.14
0.00
0.01
0.00
0.01
0.01
0.23
O.SB
7. 65
2.72
0.71
0.33
0.26
0.16
0.00
0.2S
12.66
0.57
0 21
0 96
0.07
0.12
0.01
O.OS
3.16
0.07
3.37
0.40
1.28
1.29
24.19
0.62
0.9S
2.06
5.16
12.14.
1.28
76. 55
18.08
10.39
20.33
5.68
136.98
15.36
14.40
10.68
S.S1
0.41
0.07
0.90
1.63
1.85
17.83
1.92
1.05
3.96
6.06
S.28
2.74
2.11
0.46
0.93
0.77
0.99
0.62
20.38
56.67
132.31
152.34
31.97
21.32
18.27
4. 85
0.46
23.69
441.88
1.86
0 69
5.20
0 23
0.38
0 02
0 16
1.81
0 22
3.93
1.98
15.15
7.38
22.91
4.34
3.29
7.15
17.95
. 65.10
17.10
152 30
68.70
32.80
83.80
14.50
571.04
43.20
34 50
18.90
26 00
0.15
0.23
7.70
6.10
13.05
408.81
6.67
3.66
S 00
12.65
32.21
9. 54
13.60
1.59
3.22
2.69
3.45
4.37
143.37
159.74
369.20
614.24
87.49
427.96
60.39
23.14
1.S9
157.10
1900. 85
-------
TABLE 3-3. MEASURED 18B7 MUUCIPAL HASTEHATER DISCHARGES TO UY/JJJ HARBOR*
Heas
Flow
MSP
7.57
2.81
5.09
0.95
1.53
0.07
0.64
4.78
0.89
5.33
5.28
8.43
17.11
112.17
2.86
2.38
5. IB
13.00
177.58 •
46.61
317.75
327.00
136.08
152.50
64.67
268.49
118.17
104.00
65.00
98.83
1.22
0.95
26.70
AYS
30.38
8.60
96.23
4.83
2.65
10.70
66.71
26.90
6.91
40.24
1.15
2.33
1.95
2.50
2.88
84.51
373.66
1044.61
386.66
296.70
135.21
111.79
47.15
1.15
104 . 17
Meas
TSS
mt/d
0.41
0.06
0.21
0.07
0.24
0.01
0.12
0.16
0.05
0.39
0.24
1.30
4.89
5.78
0.30
0.46
6.92
31.01- .
53.20
16.72
7.13
9.10
1.81
35.37
15.75
17.85
2.57
6.84
0.15
0.08
0.75
1.49
1.04
13.52
1.11
1.81
1.27
6.39
2.22
1.66
4.15
0.24
0.71
0.28
0.73
0.18
5.41
52.62
87.96
51.12
28.24
16.05
12.78
5.82
0.24
7.31
Haas
BODS
mt/d
0.52
0.09
0.24
0.05
0.10
0.02
0.30
0.12
0.05
0.43
0.21
1.33
46.14
4.06
1.12
0.91
8.45
...50.56
53.14
16.17
6.03
8.22
1.20
31.14
29.79
16.72
1.27
5.60
0.11
O.OB
0.44
1.30
0.98
7.68
2.41
4.21
0.82
6.27
2.75
2.83
2.32
0.14
2.18
0.72
2.59
0.21
6.13
114.68
84.76
60.93
24.22
8.86
16.46
5.15
0.14
11.82
Meaa
KH3N
nt/d
4.30
6.74
7.56
0.62
5.31
2.53
16.79
3.54
2.79
1.35
4.41
0.64
0.58
5.13
0.55
0.27
4.30
22.75
20.33
8.18
5.71
0.00
0.55
0.00
0.27
Haaa
CRGN
nt/d
6.73
15.31
9.57
3.56
5.16
1.48
5.64
4.23
3.45
1.60
2.21
0.78
1.33
2.62
l.SS
0.04
6.73
35.08
8.87
8.04
3.85
0.00
1.55
0.00
0.04
Haas
TN
nt/d
11.89
23.17
18.12
7.66
10.43
4.25
24.02
7.02
6.40
3.15
7.18
1.51
2.53
8.86
2.58
0.33
11.89
63.63
31.04
18.24
11.49
0.00
2.58
0.00
0.33
Heas
TP
nt/d
1.37
1.84
1.19
0.13
0.81
0.31
3.71
0.85
0.68
0.24
0.59
0.11
0.19
0.79
0.19
1.37
4.37
4.56
1.61
0.88
0.00
0.19
0.00
0.00
Maes
PCoLi
E'7/d
2960
1685
1536
293
473
6
851
209
968
1262
1779
1596
45166
13136
2293
26
58756
77559
2777
15248
52302
1982
23998
15575
7279
4268
11154
58
430
1330
3767
423
1918
89
11447
26724
12035
1413
131174
2202
778
5956
589
391
8504
132994
149868
39573
24519
6108
51709
133376
779
16441
STP Fame
HUDSON RIVER
HI City of Poughkeepsie
M2 Town of Poughkeepsie
H3 City of Newburgh
H* Town of Cornwall
MS USMA - Waat Point
H6a Cragston WTP
M6b Havana Road TP
M7 Peekskill
H8 Stony Point
H10 Jt Rag Sew-Haverstraw
Hlla Ossining
HIS Orangatown SD #2
M14 Rockland Co SD tl
MIS Yonkara Jt Tnt
H16 Edgawater
H17 Rorth Bargan
H18 Hast Hew York
H19 Hobokan
H21 Worth Rivar
EAST RIVER
H22 Rad Book
M23 Hawtown Craak
M24 Hards Island
K2S Hunts Point
M26 Bowery Bay
H27 Tallman Island
UPPER BAY
M28 Passaic Valley SC
H29 Owls Haad
JAMAICA BAY
M31 Conay Island
H32 26th Hard
M33 Jamaica
M34 Inwood
H3S Cadarhurst
H36 Rockaway
LOWER. RARITAN and SANDY BOOK BAYS
H37 Oakwood Baaeh
H42c Middletown Twnshp SA
M43 Middlesex Co UA
ARTHUR KILL
H44 Hoodbridga
M4S Cartarat
M46 Linden Rosalia SA
H49 Jt Mtg Essex/Union Co
H56 Ralway Valley SA
KILL VAN KULL
HSO Bayonne
HS1 Port Richmond
RARITA8 RIVER
HSS Woodbridga Twnshp
BACKENSACK RIVER
H53 Kearney
M57 Horth Arlington
MSB Jt Mtg Ruth/E.Ruth/Car
M59 Sacaucas
M62 Bargen Co SA
SUBTOTALS
Hudson R
East R
Upper Bay
Jamaica Bay
Lower Bays
Arthur Kill
Kill V Kull
Reritan R
Hackensack R
TOTALS 2501.10 262.14 328.12 63.10 65.26
• Basad on 1887 STP data. PVSC(H28) & HCUA(M43) use estimated 1989 flows.
139.30
13.09
555367
-------
Table 3-3. (Continued) MEASURED 1987 HUHCIPAL WASTEHATER DISCHARGES TO HY/NJ HARBOR*
SIP
Name
Meas Meas Meas Heaa Meas Heas Meaa
As Be Cd Cr Cu CN Fb
kit/d kn/d k«/d kn/d k«/d kn/d kn/d
Meas Meas Meas
Hg Hi Zn
kit/d kn/d kn/d
0.10
0.02
0.18
0.20
0.20
0.32
4.24
1.69 0.09
0.15
0.04
0.87
0.12
0.99
S.09
0.39
1.25
1.10
8.91
2.60
0.54
5.12
2.12
3.48
4.92
22.07
0 39
0.96
0.01
0.96
0:61*--34.87 120.10 28.75 18.42
0.23
12.14
5.20
1.37
0.85
1.26
0.64
0.60
17.40
0.00
0.00
0.08
3.16
3.37
1.28
24.19
1.81
3.93
1.98
15.15
7.38
22.91
65.10
HUDSON RIVER
Ml City of Poughkeepsie
M2 Town of Poughkeepsie
M3 City of Newburgh
M4 Town of Cornwall
M5 USMA - West Point
M6a Cragston WTP
M6b Havens Road TP
M7 Peekskill
M8 Stony Point
M10 Jt Reg Sew-Haverstraw
Mlla Omsining
M13 Orangetown SD #2
M14 Rockland Co SD #1
MIS Yonkers Jt Tot
M16 Edgewater
M17 Horth Bergen
M18 Hast New York
M19 Hoboken
M21 • Horth River *
EAST RIVER
M22 Red Book
M23 Newtown Creek
M24 Wards Island
M2S Hunts Point
M26 Bowery Bay
M27 Tallman Island
UPPER BAY
M2B Passaic Valley SC
M29 Owls Head
JAMAICA BAY
M31 Coney Island
M32 26th Ward
M33 Jamaica
M34 Inwood
M35 Cedarhurst
M36 Rockaway
LOWER. RARITAN and SANDY HOOK BAYS
M37 Oakwood Beach
M42c Middletown Twnshp SA
M43 Middlesex Co UA
ARTHUR KILL
M44 Hoodbridge
M45 Carteret
M46 Linden Roselle SA
M49 Jt Mtg Essex/Union Co
M56 Rahway Valley SA
KILL VAN KULL
M50 Bayonne
M51 Port Richmond
RARITAN RIVER
HSS Moodbridge Twnahp
HACKENSACK RIVER
M53 Kearney
M57 North Arlington
M58 Jt Mtg Ruth/E.Ruth/Carl
MS9 Secaucas
M62 Bergen Co SA
SUBTOTALS
Hudson R
East R
Upper Bay
Jamaica Bay
Lower Bays
Arthur Kill
Kill V Kull
Raritan R
Hackensack R
TOTALS
• Based on 1987 STP data. PVSC(M2B) & MCUA(M43) use estimated 1989 flows. NYC STP's use MLE's. PVSC(M28).
LRSA(M46). RVSACM56) and JMEU(M49) use concentrations in Clerk(EOF).1990.
0.38
4.33
1.71
0.71
2.15
0.30
1.S9
0.72
0.66
O.SS
0.13
AYS
0.18
2.08
1.10
0.03
0.18
0.19
0.06
0.09
0.04
0.06
0.05
0.03
0.06
0.01
0.02
0.02
2.09
2.10
0.50
0.61
0.40
0.20
4.50
0.72
0.13
0.21
0.26
0.01
0.04
0.02
3.20
0.02
0.84
0.76
0.71
0.31
0.04
4.60
82.63
18.47
6.72
11.96
3.45
150.91
10.41
4.36
S.63
6.83
0.03
1.47
1.00
5.25
1.57
4.04
3.05
1.20
13.90
303.90
52.90
142.30
36.50
11.10
57.90
49.50
32.40
10.60
20.70
0.09
4.80
2.60
73.17
2.19
5.80
4.47
6.70
3.53
48.53
24.74
13.70
11.54
5.38
23.84
12.67
5.39
9 49
2 59
3.07
9.36
0.18
4.08
3.62
66.18
22.13
9.73
7.52
2.22
70.66
5.64
3.76
7.44
4.80
0.04
1.34
0.89
4. 82
2.S9
8.33
12.70
2.92
0.21
0.49
0.39
3.39
2.80
0.37
2.17
0.55
0.29
0.17
0.14
0.10
0.02
0.29
0.00
0.14
1.28
76.55
18.08
10.39
20.33
5.68
136.98
15.36
14.40
10.68
5. 51
0.41
0.90
1.63
17.83
3.96
6.06
5.28
2.11
17.10
152.30
68.70
32.80
63.80
14.50
571.04
43.20
34.50
18.90
26.00
0.15
7.70
6.10
408.81
5.00
12.85
32.21
13.60
6.86
0.58
1.59
2.06
2.27
0.00
1.10
0.00
0.00
S3. 45
0.19
0.59
0.06
0.15
0.02
0.00
0.02
0.00
0.00
1.04
7.87
5.90
5.22
0.65
3.22
2.33
0.35
0.00
0.00
25.54
46.52
127.83
161.32
18.32
6.25
8.66
1.20
0.00
0.00
370.10
160.95
560.60
107.40
68.59
75.77
12.46
6.70
0.00
0.00
992.46
29.14
107.42
23.84
30.14
12.43
0.18
4.08
0.00
0.00
207.22
41.50
111.40
76.30
17.38
5.71
23.62
2.82
0.00
0.00
278.83
0.34
7.65
2.72
0.70
0.31
0.00
0.14
0.00
0.00
11.86
45.10
132.31
152.34
31.90
19.46
15.30
2.11
0.00
0.00
398.52
123.46
369.20
614.24
87.25
414.91
50.06
13.60
0.00
0.00
1672.73
3o
-------
Page 3-9
Estimated mass emission rates were calculated from measured flows and
estimated concentrations contained in Table 3-4. Summaries of both measured
and estimated inputs are contained in Table 3-5 by water body. In the Hudson
River, for example, all sources of suspended solids and BOD are measured,
whereas approximately 50 percent of the nutrients, 20 percent of the fecal
coliform bacteria and significant fractions of the toxic metals - approximately
10 to 70 percent are estimated. In the entire estuary, 99 percent of the TSS
and BODs inputs are from measured data as are 75 to 82 percent of the
nutrients, 65 percent of the fecal coliform bacteria and from 49 to 92 percent
of the toxic metals - with the exception of beryllium where only 11 percent is
measured.
3.2 DIRECT INDUSTRIAL WASTEWATER DISCHARGES
There are over 400 permitted industrial waste sources which discharge
directly to New York - New Jersey Harbor. Most of these discharges are small
with flows of less than 0.5 MGD and contain only a few constituents of concern.
Previous studies (Mueller, 1982; HydroQual, 1989) have screened these
discharges based on flow and mass discharge rates. The significance of a
discharge was determined on a mass basis using an estimated secondary effluent
concentration with a 0.5 MGD flow. If a waste source had a load greater than
those listed in Table 3-6 for any constituent, it was considered significant.
Conversely, sources with loads less than those in Table 3-6 were not included
in the analysis.
A summary of the 16 major industrial point sources permitted to discharge
directly to the New York - New Jersey Harbor is contained in Table 3-7. These
were obtained from project files associated with the HydroQual, 1989 report.
Values are generally representative of 1987 conditions except for five
industries where information was not available from USEPA files; previous
estimates from Mueller et al, 1982 were used. These latter values are from the
1979 to 1980 period. Note that when permit files contained no information on a
parameters, no attempt was made to estimate values for that specific industrial
discharge.
-------
TABLE 3-4. CONCENTRATION ESTIMATES FOR NYC & NJ FACILITIES*
Secondary
Parameter
TSS
BOD 5
NH3N
ORGN
TN
TP
FColi
As
Be
Cd
Cr
Cu
CN
Pb
Hg
Ni
Zn
Units
mg/1
mg/1
mg/1
mg/1
mg/1
mg/1
org/lOOml
Mg/1
Mg/1
Mg/1
Mg/1
Mg/1
Mg/1
Mg/1
Mg/1
Mg/1
Mg/1
New York Citv
17.00
13.00
7.00
8.10
16.60
1.30
21.00
2.10
0.16
0.60
13.00
71.00
28.00
13.00
1.10
20.00
65.00
New Jersey
34.00
28.00
9.20
8.30
18.00
2.10
• 21.0**
9.60
3.60
4.60
44.00
155.00
103.00
34.00
0.63
57.00
401.00
Primary
New Jersey
105.00
218.00
22.00
13.00
36.00
9.30
33.00
9.00
3.70
14.00
68.00
185.00
92.00
211.00
0.60
105.00
365.00
* Values of concentrations used when data are unavailable.
Source: HydroQual,Inc., 1989.
** Estimated as equal to NYC value-not estimated in source cited in above
footnote.
-------
TABLE 3-5 1989 MUNCIPAL HASTEHATER DISCHARGES TO HY/HJ HARBOR MEASURED VS ESTIMATED*
Subtotal »
Hudson R
East R
Upper B
Jamaica Bay
Lower Bay
Arthur Kill
Kill V Kull
Rarltan R
Backenaaek R
TOTAL
TOTAL
GRAND TOTALS
(I measured)
OMBB
estio
me a s
•stim
•eas
•atim
meaa
•stim
neas
eitim
meas
eatim
meas
•stim
ne as
•stim
meas
•atim
measured
estimated
Flow
HSD
373.66
10*4.61
386.66
296.70
135.21
111.79
47.15
1.15
104.17
2501.10
0.00
2501.10
100
TSS
mt/d
S2.99
0.00
67.96
3.00
31.12
0.00
28.24
0.00
16.05
0.00
12.79
0.00
5. 82
0.00
0.24
0.00
7.31
0.00
262.14
3.37
265.51
99
BODS
mt/d
114.98
0.00
84.76
2.29
60.93
0.00
24.22
0.00
9.96
0.00
16.46
0.00
5.15
0.00
0.14
0.00
11.82
0.00
328.12
2.59
330.71
99
RB3N
mt/d
4.30
6.42
22.75
1.23
20.33
0.00
9.18
0.06
5.71
0.30
0.00
6.24
O.SS
0.58
0.00
0.10
0.27
5.66
63.10
20.57
83.67
75
ORGN
mt/d
6.73
6.29
35.08
1.43
9.87
0.00
6.04
0.07
3.95
0.27 '
0.00
3.18
l.SS
0.34
0.00
0.06
0.04
2.88
65.26
14.51
79.77
82
IN
•t/d
11.99
13.78
63.63
2.03
31.04
0.00
18.24
0.14
11.49
0.59
0.00
10.84
2.58
0.93
0.00
0.15
0.33
9.82
139.30
39.17
176.48
78
TP
mt/d
1.37
1.58
4.37
0.23
4.56
0.00
1.61
0.01
0.98
0.07
0.00
1.11
0.19
0.24
0.00
0.04
0.00
1.03
13.09
4.31
17.41
75
rcoii
E'7'"1
132994
33745
149868
3704
39573
0
24519
0
6108
0
51709
0
133376
0
779
0
16441
256144
555367
293594
648960
65
Subtotals
Hudson R
East R
Upper B
Jamaica Bay
Lower Bay
Arthur Kill
Kill V Kull
Raritan R
Backensack R
TOTAL
TOTAL
GRAND TOTALS
(X measured)
meas
•stim
meas
estim
meas
estim
meas
estim
meas
•stim
meas
estim
meas
estim
meas
•stim
meas
estim
measured
estimated
. As
kK/d
6.86
1.05
0.58
0.00
1.59
9.75
2.06
0.02
2.27
0.31
0.00
4.04
1.10
0.24
0.00
0.04
0.00
3.77
23.45
19.22
42.67
55
Be
kK/d
0.10
0.43
0.59
-0.00
0.06
3.65
0.15
-0.00
0.02
1.43
0.00
1.53
0.02
0.10
0.00
0.02
0.00
1.42
1.04
8.57
0.60
11
Cd
kK/d
7.87
1.21
5.90
0.00
5.22
0.00
0.65
0.00
3.22
0.15
2.33
0.26
0.35
0.00
0.00
0.06
0.00
2.05
25.54
3.73
29.27
87
Cr
kK/d
46.52
7.39
127 83
0.00
161.32
0.00
18.32
0.05
6.25
1.43
6.66
1.92
1.20
1.78
0.00
0.30
0.00
17.95
370.10
30.82
400.91
02
Cu
kK/d
160.95
19.95
560.60
0.00
107.40
0.00
68.59
0.26
75.77
5.04
12.46
5.23
6.70
4.84
0.00
O.BO
0.00
61.85
092.46
07.07
1090.44
01
CM
kK/d
29.14
26.02
107.42
-0.00
23.64
104.62
30.14
0.23
12.43
3.35
0.18
42.33
4.08
2.40
0.00
0.40
0.00
40.31
207.22
210.65
426.67
40
Fb
kK/d
41.50
17.49
111.40
0.00
76.30
0.00
17.38
0.05
5.71
1.11
23.62
5.97
2.92
5.52
0.00
0.02
0.00
17.04
278.63
48.90
327.81
65
Hg
kK/d
0.34
0.24
7.65
0.00
2.72
0.00
0.70
0.01
0.31
0.02
0.00
0.26
0.14
0.02
0.00
0.00
0.00
0.25
11.86
0.70
12.66
04
Ni
kK/d
45 10
11.57
132.31
0.00
152.34
0.00
31.90
0.07
19.46
1.85
IS 30
2.97
2.11
2.74
0.00
0.46
0.00
23.69
398.52
43.36
441.88
90
Zn
kK/d
123.46
36.28
369.20
0.00
614.24
0.00
67.25
0.23
414.91
13.05
50.06
10.33
13.60
9.54
0.00
1.59
0.00
157.10
1672.73
228 . 12
1900.85
88
-------
TABLE 3-6. CRITERIA FOR DELETING A SOURCE
Secondary
Effluent Concentration Loada
Parameter (mg/1) (kg/day)
SS 20 38
BOD 15 28
COD 51 96
TOC 39 74
NH3-N 7.9 15
ORG-N 6.1 12
Total-N 16 30
Ortho-P 1.6 2.9
Total-P 2.1 4.0
Cadmium
Chromium
Copper
Cyanide
Lead
Lead
Mercury
Nickel
Zinc
aLoad based on 0.5 MGD effluent flow
1.1
16
93
52
52
11
0.57
37
101
Ckg/dav)
0.002
0.03
0.18
0.10
0.10
0.02
0.001
0.07
0.19
-------
TABLE 3-7. IHDUS1RIAL HASTEWATER DISCHARGES TO RY/HJ ESTUARY(a)
HAME
IHD
HUDSON RIVER
13 Colgate Paloolive Co
UPPER BAY
19 Exxon Co. USA
FLOW
MGD
3.30
1.30
TSS BODS
at/d mt/d
0.29 0.02
0 04 0.17
ARTHUR KILL (RAHWAY R)
I12a AMAX Realty Development
I12b Chevron USA. Inc
113 C.P. Chemicals, Inc
114 Public Service E6G Co •
I16a GAP Chemical Corp
117 El DuPont de Nemours •
I2B American Cyanamid •
I28a Sherins Corp
129 Merck and Co. Inc •
RARITAN RIVER
I22a Sayreville Generating Sta
FASSAIC RIVER
132 BASF Wyandotte Corp *
I32a Kalama Chemical, Inc
I32b Miles Laboratories
HACKERSACK RIVER
I34a JC PSE&G Buds Gen Sta
SUBTOTALS Hudson River
Upper Bay
Arthur Kill
Raritan River
Passaic River
2.60
0.80
0.20
0.10
2.60
8. 80
25.00
0.30
0.10
2.00
0.30
0.30
0.30
4.30
3.30
1.30
40.50
2.00
0.90
Hackensack River 4.30
0.24
0.04
0.01
0.34
0.06
0.64
0.05
0.01
0.26
0.77
0.11
0.80
2.57
0.29
0.04
1.40
0.26
1.68
2.57
0.30
0.03
0.08
0.03
0.27
0.14
0.01
2.42
0.44
0.02
0.17
0.85
2.87
HB3N
pt/d
ORGN
mt/d
TO TP FColl
mt/d at/d E'7/d
0.01
1
63
0.01 0.02
TOTALS AIL Areas
52.30
6.23
3.81
0.01
0.01
0 01 0.02 64
0.01 0.02 64
HAME
IND _
HUDSON RIVER
13 Colgate PaLmolive Co
As Be
kK/d kK/d
UPPER BAY
19 Exxon Co.
USA
ARTHUR KILL (RAHWAY R)
I12a AMAX Realty Development
I12b Chevron USA, Inc
113 C.P. Chemicals. Inc
114 Public Service E4G Co *
I16a GAF Chemical Corp
117 El DuPont de Nemoura *
I2B American Cyanamid *
I28a Sherins Corp
129 Merck and Co. Inc •
RARITAN RIVER
I22a Sayreville Generating Sta
PASSAIC RIVER
132 BASF Wyandotte Corp *
I32a Kalama Chemical. Inc
I32b Miles Laboratories
HACKENSACK RIVER
I34a JC PSE&G Buds Gen Sta
0.01
SUBTOTALS
Hudson River
Upper Bay
Arthur Kill
Raritan River
Pasaaic River
Hackansack River
TOTALS All Areas
2.82
0.01
2.82
2.83
Cd
kK/d
Cr
k«/d
Cu
kK/d
CN Pb
kK/d kK/d
Hg
Hi Zn
kK/d kK/d
0.01
0.00 0.04
0.21
3.59
3.86
0.07
0.03
0.36 0.18
0.06
5.45
0.22
0.8B
11.80
0.04
0.08
0.33 1.31
0.01 0.25
2.63
0.42 0.21
0.01 0.58 8.83 0.42 2.84
1.28 1.54
5.67 12.80
6.95 l*-3*
(a) From data files associated with HydroQual.Inc.. 1989 report.
Data generally from 1987; industries with (•) «r« from Mueller et .1. 1982
35"
-------
Page 4-1
4. RUNOFF LOADINGS
The most recent comprehensive estimate of runoff loads was made by Mueller
et al, 1982. The major data source used in that study was the NYC 208 Study
(Di Toro et al, 1978) which utilized data gathered from combined sewer
overflows (CSOs) and stormwater (SW) sampled from 1975 to 1978. Since then,
the New York City Department of Environmental Protection (NYCDEP) has initiated
a series of major CSO studies, results of which have recently become available.
Using all available information, estimates of runoff volume, quality and mass
loading rates are established.
4.1 RUNOFF VOLUME
A broad-scale land loading simulator called RRMP (Rainfall-Runoff Modeling
Program) was used to generate urban runoff from combined and separate sewer
systems draining to the estuary. Details of the original model are contained
in Di Toro et al, 1978 and revisions to incorporate more recent information on
drainage areas are found in HydroQual, 1986. A map of the drainage area of the
original model is found on Figure 4-1. Originally, precipitation on the
drainage area was determined from a set of sixteen region-wide stations listed
in Table 4-1. Data for currently existing stations were obtained from the
National Climatic Data Center, NOAA in Asheville, North Carolina for the period
1981 through 1988. As seen in Table 4-1, annual averages vary from a low of
37.6 inches in 1981 to a high of 65.0 inches in 1983. The annual average of
all gages for the .period 1981 to 1988 is 45.7 inches, which is slightly higher
than the longer term average for 1948 to 1975 of 42.7 inches.
The average value of 45.7 inches for 1981 to 1988, converted to an
equivalent continuous rainfall intensity of 0.125 inches/day, is the forcing
function used in RRMP. Results of the RRMP simulations are shown in Table 4-2.
A total of 1,429 cfs discharges from a drainage area of 735,000 acres,
resulting in an area-wide volumetric runoff coefficient of 0.38. That is,
approximately 38 percent of the rainfall becomes runoff in the combined and
-------
NYC 208 STUDY
MYOROSCIENCE.INC.
SOURCE
Hydroscience, Inc., New York City 208 Task Report, Rainfall Runoff and
Statistical Receiving Water Models, PCP Task 225, New York City 208 Study
March 1978
Figure 4-1 Areawide 208 Runoff Model Features
-------
TABLE *-l. AMNUAL PRECIPITAIIOH TOTALS (IHCHES)
• " 1981-88 19*8-75"
Y.ar Year Year Station Station
«-._ v..r Year »•« "°_ .... *„.,... Averaxe
Ave. V. Brooklyn
Bronx Botan Gardn
Central Park
Kennedy Airport
Laguardia Airport
Wester leigh (S.I.)
Scarsdale
HYU-Bronx
Battery Park
Freehold
Newark Airport
Hew Brunswick
Hew Millord
^ahway
4atchung
Little Falls
Station year i«« •- — 1034 1965 1986 _mo/ i^°"~ ' •• —
Number iSfil -ISfiZ. IS8- -*— — 44_3
305796 36.0 3*-3 65.0 54.3 35.1 40.9
305799 - g
M5M1 ,,. .... «.. ».. »•• »•• -•• • "•;
SOMM «.. .... ... --. »•• - • --i • •
30M1I »., ... ... -.» -•• -•• -•• -b •
MSB1 „., ».* ».. ".« «•"• "-!b "-2 "•* ..,
_ . * «b 407 45.7 41. D •* •
307497 38.6 39.* 6*. 3 «••»
305806
305816 36 4
283181 36.* ' .
266026 35.0 *0.6 65.5 39.0 37.3 *6.0 45.5^ 43.5
286055 40.0 41.0 61.3 52.7 43.4 41.5 48.3 487 -
286146 37, 36.5 57.9 30.5 36, 38,^ 46.3 45.3 43.3
287393 39.1 »0.. 63.4 32.6 41.1- 42. 9«
e 46 7* *6 0° *7.o
289271 38.6 41.3 6*.0 56.6- 40.1 • •
23*687 *l-6 40.2 71.5 57.5 42.3 316 49, 43.2 49.7
.,. .... 65.0 5*.l 38.8 »3.2 »3, «.•
42.8
52 7
42,
39.4
42.4
46.4
47.1
42.1
43.1
44.4
41.8
47.5
42.8
42 7
*5.7
48 0
Areawlde Annual Average
cUBe8 Hesteheater County Airport
AVERAGE OF AREAW1DE AHHUAL AVERAGES
1981-88
19*6-75
45.7 inches
42.7 inches
-------
TABLE 4-2 RUWOFF FLOWS TO HY/NJ HARBOR"
Combined Sewer
SB
i
3
5
6
7
9
10
11
12
13
14
IS
16
17
18
19
20
21
WWTP
Wards Island
Hunts Point
Hewtown Creek
26th Ward
Coney Island
Owls Bead
TaLlman Island
Jamaica
Bowery Bay
Rockaway
Port Richmond
Oakwood Beach
Horth River
Spring Creek
Red Hook
Rew Jersey
Westchester Co°
Rockland Co
Rainfall
Intensity
in/day
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.12S
0.125
0.125
0.125
0.125
0.125
0.125
0.125
0.125
Total
Runoff
efs
31.3
42.6
49.8
11.5
32.8
29.0
37.7
64.4
42.0
11.1
31.9
40.6
14.0
7.4
10.1
756.5
166.4
47.6
Total
ets
27.1
34.5
41.1
7.4
15. 8
26.5
19.7
44.9
31.2
8.9
20.6
0.0
12.0
7.4
9.7
111.7
S.O
0.0
Captured
efs
8.7
2.4
S.S
0.8
1.4
1.9
1.7
11.2
3.5
0.7
2.7
0.0
4.1
4.4
2.0
16.8
0.8
0.0
Flow
Overflow
efs
IB. 5
32.1
35.6
6.6
14.3
24.6
18.0
33.8
27.7
8.3
18.1
0.0
7.9
3.0
7.7
94.9
4.2
0.0
Separate
Stomwater
Runoff
efs
4.1
8.0
8.8
4.0
17.0
2.4
18.0
19.5
10.9
2.1
11.3
40.8
2.3
0.0
0.4
644.7
163.4
47.6
Ret
Runoff
efs
22.6
40.1
44.4
10.7
31.3
27.0
36.0
53.3
38.6
10.4
29 4
40.8
10.2
3.0
8.1
739.6
167.6
47.6
Totals
1429.1
423.8
68.6
355.2
1005.4
1360.6
•Uses Rainfall-Runoff Model Program (RRMP) described in DiToro et al. 1978 - as revised in HydroQual.
Inc. 1986
^Includes RRMP segments HC01-WC15; WC16-HC21 drain to Eastchester Bay and LIS which are east of
Throgs Heck - the limit of the HY/NJ Estuary study area.
-------
Page 4-5
separately sewered areas. Of the runoff of 424 cfs from areas served by
combined sewers approximately 16 percent or 69 cfs is treated atsewage
treatment plants. The remaining 355 cfs enters the waters of the estuary
together with 1,005 cfs from separately sewered areas. These flows are then
subsequently assigned concentrations associated with combined and separate
sewer overflows to calculate runoff mass loading rates.
4.2 RUNOFF QUALITY
There exist several historical CSO and stonnwater studies and recent NYCDEP
CSO studies by which to establish the quality in overflows. However, there are
about 450 CSO outfalls in NYC, about 250 CSO outfalls in New Jersey, and
probably well over 1,000 stormwater outfalls to the estuary. These outfalls
are from a wide variety of sewer districts with various land-uses. Therefore,
no existing study or series of studies can fully quantify the quality of all
outfalls considering all the constituents of concern and the spatial extent of
the area.
In general, the information available for conventional pollutants from New
York City CSOs is good. For other areas and for other pollutant categories
(nutrients, toxics) the available CSO and stormwater quality information is
fair to poor.
In order to estimate CSO and stormwater quality, many extrapolations and
assumptions had to be imposed. Although a large effort was devoted to
establishing representative runoff quality through careful examination of
available information, values that are assigned through extrapolation and
judgement are viewed as best estimates. The following section summarizes the
major assumptions and the procedure for estimating runoff quality for CSOs and
storm runoff.
4.2.1 Previous Studies
The results of previous studies on the quality of combined sewer overflows
and stormwater runoff are summarized in Table 4-3 chronologically. Earlier
-------
TABLE 4-3. PREVIOUS CSO/SW CONCENTRATIONS
Area
Jamaica Bay
Paeaaic River
NYC 208
Nassau-Suffolk
NURP
Area
Jamaica Bay
Paaaaic River
NYC 208
Nassau-Suffolk*
NURP
Rotei:
Duration
1969-1971
1974-1975
1975-1978
1977
1978-1983
Duration
1969-1971
1974-1973
1975-1978
1977
1978-1983
Tree
CSO
SH
CSO
CSO
SH
SH
SH
TTP»
CSO
SH
CSO
CSO
SH
SH (ain)
SH (max)
SH
No No. TSS BODS FCOLI ORGN HH3N N023 TN TP
Sites SEb mK/1 nw/1 c DIK/I nm/I em/1 mn/1 m»/l Reference
4 25 315 130.0 13.0 18.0 5.0 •
77 18 0 0.6 1.2 0.3
67 220 171 145.0 "
15 150 159 112.0 2.3 11.0 6.7 1.8 19.5 9.0 •
4 30 92 35.0 0.6 4.3 2.4 0.7 7.4 1.7
16 40 3.5 0.1 1.3 0.5 •
28" 180 11.5 0.9 0.4 d
Ho. Ho. Cd Cr Cu Pb Hg Hi Zn
a
» 0
0
67 0
1S 10 1QO 460 190 0.9 210 880 •
4 13 22 110 280 0.3 87 500
16 22 44 88 15 •
928 124 270 566
28a 43 182 192 d
•DIToro et al, 1978
^SE • site-events
C106 organisms/100
4JSEPA. 1983
ml
•Minimum/maximum values are
•
reported
-------
Page 4-7
studies on Jamaica Bay (Feuerstein and Haddaus, 1976) monitored 4 CSO sites for
a total of 25 site-events for an average of six events per site and several
separately sewered sites. A major study on the Passaic River (Elson T. Killam
and Associates, 1976) monitored 67 sites within the PVSC sewer district
gathering data on total suspended solids, BODs and total coliform for 220 site-
events in the period 1974 to 1975. Fifteen CSO sites and four separate sites
were monitored for a total of 180 site-events during the NYC 208 study (Di Toro
et al, 1978) and 16 separate sites were monitored in tHe Nassau-'Suffolk7 208
Study (Roy F. Veston, Inc., 1977). The National Urban Runoff Program (NURP)
reported on runoff quality from 28 sites nationwide (USEPA, 1983) based on data
gathered from 1978 to 1983.
4.2.2 NYCDEP CSO Studies
Combined sewer overflow studies sponsored by the NYCDEP have been and are
being conducted in Paerdegat Basin, Jamaica Bay, the East River, the Inner
Harbor and Outer Harbor. As shown in Table 4-4, a total of 211 site-events
through November 1989 have been sampled and analyzed for TSS, BOD5, fecal/total
coliform bacteria and nutrients with a lesser number of site-events analyzed
for toxic metals and a single sample for selected sites analyzed for priority
pollutants. Other parameters have also been determined on a limited basis
(TVSS, filtered BOD5, enterococci bacteria, oil and grease and phenol).
4.2.3 Assessment of Runoff Quality
Average concentrations for the conventional parameters, nutrients and toxic
metals from the NYCDEP CSO Studies are found in Table 4-5. As shown on the log
probability plots in Appendix H, the conventional concentrations and nutrients
are approximately log-normally distributed. Accordingly, the values in Table
4-5 for conventional parameters and the majority of nutrients are the averages
of the log-normal distributions, that is, they are Maximum Likelihood Estimates
(MLEs). The methodology for computing MLEs is discussed in Section 5.1.
Nutrient values for Paerdegat Basin, as well as values for toxic metals in all
studies, are arithmetic averages since data were generally sparse. For the
-------
TABLE 4-4 SUMMARY OF SAMPLING IN NYCDEP CSO STUDIES
CSO -Studv
Paerdegat
Basin
Jamaica Bay
East River
flpwr District Duration Type
Coney Island
Coney Island
6,11,13
6,7,11,13
Hunts Point
Hunts Point
Wards Island
10/86-01/87
10/86-01/87
08/88-10/88
10/89
10/88-11/88
11/88-12/88
03/89-05/89
Tallman Island 05/89-07/89
Inner Harbor
Note: SD 6 -
Bowery Bay
Newtown Creek
North River
Red Hook
26th Ward, 7 -
05/89-07/89
06/89-11/89
06/89-09/89
09/89
Grand Total
Coney Island, 11
CSO
SW
CSO
sw
CSO
sw
CSO
CSO
CSO
CSO
CSO
CSO
Number of
— Jamaica
Number of
Sites Events
3
1
10
10
11
2
5
3
3
9
7
3
Site
4
4
5
1
5
3
5
5
5
9
7
1
Events
Site-
Events
12
4
49
10
28
6
23
14
13
25
24
3
211
, 13 - Rockaway
-------
TABLE 4-5. CONCENTRATIONS IN CSO/SH FROM RYCDEP CSO STUDIES
Study
Area
Paerdagat Basin
Jamaica Bay
East River
•
Innar Harbor
Study
Area
Faerdegat Basin
Jamaica Bay
Innar Barbor
Sawar
District
7 CI
7 CI
6.11.13
6.7.11.13
3 HP
3 HP
1 HI
10 TI
12 BB
S NC
16 HR
IB RB
Sawer
District
7 CI
7 CI
6.11
11 JA
S NC
16 NR
Type
CSO
SH
CSO
SH
CSO
SH
CSO
CSO
CSO
CSO
CSO
CSO
Type
CSO
SH
CSO
SH
CSO
CSO
TSS
rnn/1
109
19
128
27
84
36
98
ISO
204
107
116
51
As
UK/1
2 L
2 L
10 L
10 L
3 L
2 L
BODS
am /I
76
13
99
13
33
7
78
43
67
55
SB
41
Be
UK/1
10 L
10 L
S L
5 L
62 E
10 L
FCOLI
•
2.2
0.1
2.6
0.1
2 8
0.0
l.S
1.1
1.9
2.0
3.3
1.8
Cd
UK/1
5 L
3 L
6 E
5 L
10 L
10
ORGN
B6/1
4.6
l.S
3.4
1.6
•3.9
1.4
2.6
6.7
S.S
2.5
Cr
UK/1
SO E
SO L
10 L
10 L
114 E
SO L
NB3N
mK/1
3.2a
0.7
1.2
0.2
l.S
0.2
• 1.9
1.8
2.S
2.7
2.0
1.9
Cu
UK/1
121
79
37
31 L
168
103
R023
B6/1
0.24
0.6B
0.24
0.45
0 72
0.95
k
0.75
0.6S
0.65
O.S8
0.29
CN
UK/1
24 E
10 L
20 L
20 L
TN
am/1
5.3
2.1
5.2
2.6
3.0
4.4
9.7
9.7
4.7
Pb
Ux/1
100
24
20 L
33 L
187
SO L
TP
B6/1
1.06
0.25
0.14
0.28
O.BB
0.54
0.93
0.88
0.97
1.8S
1.04
0.90
Hg
UK/1
O.S E
0.5 L
0.2 L
0.2 L
2.9
0.2 L
Ni Zn
UK/1 UK/1
14.9 312
7.6 L 131
40.0 L 190
40.0 L 160
52.0 E 251
40.0 L 128
Notes: (a) • adjusted valua for missing data
SD 6 - 26th Hard. 7 - Coney Island. 11 - Jamaica. 13 - Rockaway
• » 106 organisms/lOOml
L • Less than value cited, generally the dataction limit
E • Estimatad-vaLuea both above and below dataction limit
-------
Page 4-10
metals in Paerdegat Basin data from 12 site-events were available and both
arithmetic averages and MLEs were essentially the same. The sole exception was
zinc when the MLE of 312 ng/l was selected rather than the arithmetic average
of 400 pg/1. On the bottom portion of Table 4-5, note that many metals
concentrations are below detection limits.
Since all sewer districts are not included in the recent CSO sampling
programs, and since many CSO metals concentrations are below detection limits,
influent concentrations of sewage treatment, plants are used as upper bounds for
CSOs. Concentrations for STP influents are compared with measured CSO values
in Table 4-6, and selected values for the CSO concentrations used in this
report are listed for each sewer district.
Earlier STP influent concentrations (New York City 1979 to 1980, New Jersey
1974 to 1975 and 1979 to 1980) are from Mueller et al, 1982. Influent
concentrations for the New York City STPs for 1987 were extracted from plant
operating records or from the USEPA permit file, the latter also the source for
the New Jersey plant influents for 1987. Influent metals concentrations for
New York City plants in the 1987 to 1988 period, as well as for four New Jersey
Plants (LRSA 1987 to 1988, JMEU 1988 to 1989, RVSA 1988 and PVSC 1987 to 1988)
are from data of the Environmental Defense Fund (Clark, 1990). MCUA influent
metals values for 1987 to 1988 were determined from summarized plant operating
records. CSO concentrations listed for the New York City sewer districts are
from Table 4-5 and the PVSC concentrations are from the Passaic River study of
1974 to 1975 as listed in Table 4-3.
In general, the values listed under the caption "CSO Cone Used" are
preferentially from the CSO studies. Note that selected metals concentrations
are generally set equal to the measured CSO concentrations, even when the
latter are at or below detection limits as designated by an "L." In cases
where concentrations are less than the detection limit, estimated loadings are
based on the detection limit value and will be upper bounds. In the event tha.t
influent concentrations are less than CSO values that contain data below
detection limits, the influent concentrations are used. For example, the
measured Jamaica SD cadmium concentration of 6.0 /*g/l is followed by an "E"
-------
TABLE 4-6. CSO CONCENTRATIONS USED IH THIS REPORT v« MEASURED CSO AND STP INFLUENT CONCENTRATIONS
SD RAKE
1 Wards Island
3 Hunts Point
5 Newtown Creek
6 26th Hard
7 Coney Island
9 Owls Head
10 Tallnan Island
11 Jamaica
12 Bowery Bay
INFL
INFL
INFL
CSO
CSO CONC
INFL
INFL
INFL
CSO
CSO CONC
INFL
INFL
INFL
CSO
CSO CONC
INFL
INFL
INFL
CSO
CSO CONC
INFL
INFL
INFL
CSO
CSO CONC
INFL
INFL
INFL
CSO CONC
INFL
INFL
INFL
CSO
CSO CONC
INFL
INFL
INFL
CSO
CSO CONC
INFL
INFL
INFL
CSO
CSO CONC
TEAR
79-80
1987
87-88
1989
USED
79-80
1987
87-88
1988
USED
79-80
1987
87-88
1989
USED
79-80
1987
87-88
1988
USED
79-80
1987
87-88
1986
USED
79-80
1987
87-88
USED
79-80
1987
87-88
1989
USED
79-80
1987
87-88
1988
USED
79-80
1987
87-88
1989
USED
TSS
83
94
98
98
83
87
84
64
100
139
107
107
82
79
128
128
127
120
109
109
94
95
95
108
97
ISO
150
138
114
126
128
109
99
204
204
BODS
DjB/1
52
87
78
78
70
87
33
33
105
129
55
55
68
93
99
99
102
114
76
76
116
107
107
97
121
43
43
125
141
99
99
109
116
67
67
TN
BIK/1
16.5
18.2
3.8
6.3
19.1
19.0
3.2
5.6
23.4
21.2
9.7
10.1
16.7
13.8
3.3
6.0
23.9
23.0
7.4
7.4
24.7
19.9
6.0
27.8
19.9
3.0
4.0
27.9
24.9
5.3
6.0
26.6
20.0
4.4
6.0
TP
as/i.
1.68
1.44
0.93
0.93
2.50
1.94
0.88
0.8B
3.13
2.65
1 85
1.85
1.77
1.43
0.14
0.14
3.54
2.97
1.06
1.06
5.01
2.33
0.70
3.58
2.58
0.88
0.88
3.58
3.13
0.14
0.14
4.10
2.60
0.97
0.97
As
UK/I
1.7
1.7
1.8
l.B
2.4
2.7 E
2.4
1.2
10.0 L
1.2
1.7
2 0 L
1.7
1.8
1.8
1.1
1.1
1.6
10.0 L
1.8 '
3.3
3.3
Be
UK/I
0.14
0.14
0.15
0.15
0.13
62.0 E
0.13
0.15
5.00 L
0.15
0.14
10.0 L
0.14
0.13
0.13
0.10
0.10
0.12
5.00 L
0.12
0.16
.
0.16
Cd
jig/1
0.8
0.7
0.8
0.7
0.7
2.6
3.2
2.6
10.7
2.8
2.7
10.0 L
2.6
3.8
1.1
1.2
6.0 E
1.1
0.7
0.4
0.5
5.0 L
0.4
0.7
2.8
0 9
2.8
2.2
2.5
4.0
2.5
1.6
2.1
1.3
6.0 E
2.1
10.0
2.4
3.1
2.4
Cr
UK/I
36
22
25
22
S3
34
22
34
212
126
114
114 E
114
56
43
32
10 L
10
30
14
10
50 E
14
32
23
16
23
111
30
25
30
47
25
26
10 L
10
103
68
47
68
Cu
UK/1
222
127
90
127
110
250
US
2SO
260
164
143
168
168
183
124
134
37
37
158
148
126
121
121
173
121
99
121
157
115
174
115
175
133
143
37
37
408
229
152
229
CN
UK/I
30
22
22
92
42
42
282
82
20 L
20
100
33
24 E
24
107
34
34
72
39
39
181
28
28
248
23
24 E
23
528
31
31
Pb
UK/I
19
20
19
20
IS
23
24
23
234
210
372
187
187
24
20
29
20 L
20
19
25
14
100
100
30
32
24
32
19
15
16
IS
22
21
23
20 L
20
23
34
35
34
H8
UK/I
0.44
0 49
0.30
0.49
0.35
5.23
2 60
5.23
0.71
0.42
0 40
2.90
0.42
0.88
0.46
0.50
0.20 L
0.20
1.14
0.79
0.60
0.54 E
O.S4
1.8S
0.90
1.70
0.90
1.60
6.50
12.80
6.50
0.80
0.65
1.20
0.20 L
0.20
0.94
6.23
3. SO
6.23
HI
UK/i
20
15
13
IS
47
26
23
26
124
69
53
52 E
52
68
69
57
40 L
40
44
22
21
IS
IS
40
38
19
38
101
32
30
32
69
19
16
40 L
19
88
55
41
55
Zn
UK/I
178
277
379
277
ISO
254
298
254
324
132
179
251
251
226
166
268
190
190
174
129
130
312
312
197
154
127
154
273
94
114
94
238
122
127
190
190
349
290
268
290
-------
TABLE »-6. (Continued) CSO CONCENTRATIONS USED IH THIS REPORT vs MEASURED CSO AND STP INFLUENT CONCENTRATIONS
SD NAME
13 Rockaway
14 Port Richmond
13 Oakwood Beach
16 North River
17 Spring Creek
18 Red Hook
IB New Jersey
Hoboken
Bay oiuie
Linden
-Roselle
JMEU
YEAR
INFL
INFL
INFL
CSO
CSO CONC USED
INFL
INFL
INFL
CSO COHC USED
INFL
INFL
INFL
CSO CONC USED
INFL
INFL
CSO
CSO CONC USED
INFL
CSO CONC USED
INFL
INFL
CSO
CSO CONC USED
INFL
(Prim) EFFL
INFL
CSO CONC USED
INFL 7*-73
(Prim) EFFL
INFL
CSO CONC USED
INFL
INFL
INFL
INFL
CSO CONC USED
EFFL
INFL
INFL
CSO CONC USED
79-80
1987
87-88
1988
79-80
1987
87-88
79-80
1987
87-88
79-80
1987
1989
1987
79-80
1987
1989
74-73
79-80
1987
79-80
1987
74-75
79-80
1987
87-88
74-75
1987
88-89
TSS
55/1
101
65
128
128
183
116
118
BOOS
B1K/L
88
74
99
99
205
141
141
TN
ttM/i
20.5
14.3
5.3
6.0
24.6
16.3
4.9
112 108 24.9
161 112 22.9
NO COMBINED SEWERS
101
116
116
128
89
51
51
12S
504
504
350
US
US
137
118
118
126
126
10S
SB
58
99
82
41
41
306
552
552
335
165
163
561
369
369
159
139
19.3
9.7
8.6
6.0
16.0
4.7
4.7
9.0
21.6
9.0
121.0
9.0
9.0
IP
mn/1
2.67
1.56
0.14
0.14
5.63
3.31
1.00
4.05
3.87
2.27
1.04
1.04
0.14"
1.62
0.90
0.90
1.70
5.58
1.70
11.30
1.70
1.70
As
UK/1
1.9
10.0 L
1.9
6. 3
8.3
1.2
NO
2.0
2 0 L
2.0
2.3
2.3
4.3
4.3
9.0
9.0
9 0
9.0
Be
UK/1
0.14
3.00 L
0.14
0.14
0.14
0.11
COMBINED
0.13
10.0 L
0.13
0.14
0.14
0.19
0.19
0 1
.
0.1
0.1
0.1
Cd
UK/1
1.3
0.4
0.4
8.0 E
0.4
0.7
0.7
1.3
0.7
1.0
0.5
0.6
SEWERS
1.8
10.0
10.0
1.3
1.5
13.3
13.5
10.0 L
10.0
18.0 L
18.0
40.0
24.4
24.4
10.0
1.4
1.4
Cr
UK/1
17
13
9
10 L
9
18
11
10
11
17
8
5
67
50 L
SO
27
27
31
31
133
133 '
68 -
68
337
167
167
127
24
2*
Cu
UK/1.
153
90
IBS
37
37
109
69
74
69
171
214
163
259
103
103
224
224
100
100
127 '
127
US
115
1240
312
312
143
126
126
CR
UK/1
102
26
24 E
24
36
26
26
38
24
52
20 L
20
118
118
20
20
34
34
34
34
Fb
UK/1
26
11
11
20 L
11
IB
79
153
79
Hg Nl
UK/1 UK/1
0.77
1.05
4.30
0.20 L
0.20
3.53
2.02
6 20
2.02
32 1.29
24 0.79
21 0.70
NO COMBINED SEWERS
31
SO L
31
70
70
27
27
133 L
133
4180
4180
400
315
315
182
SO
SO
0.39
0.20 L
0.20
0.56
0.5E
1.03
1.05
0.73
0.73
1.20
1.20
3.37
3.37
0.24
0.2*
17
14
14
40 L
14
22
23
23
23
26
23
21
22
40 L
22
30
30
16
16
100 L
100
100 L
100
433
210
210
82
35
35
Zn
UK/1
132
63
79
190
190
368
198
266
19S
476
222
242
120
128
128
268
268
124
124
137
137
238
238
2200
413
415
1120
157
157
-------
TABLE »-6. (Continued) CSO COHCEHTRATIOHS USED IH THIS REPORT v. MEASURED CSO AND SIP IHFLUEHT UUNLENIRATIONS
SD HAME
RVSA
PVSC
MCUA
BCUA
SD19 ( ALL NJ )
20 Westchester Co
Yonkers
SD20 ( ALL MC )
Notes :
"L"- Less than. "E"-
: SD19 COHC USED •
: SD20 COHC USED -
YEAR
IHFL 74-75
EFFL 79-80
IHFL 1987
IHFL 1988
CSO COHC USED
(Prim)EF/IHF 79-80
IHFL 1987
IHFL 87-88
CSO 74-75
CSO COHC USED
IHFL 1980
IHFL 1987
IHFL 87-88
CSO COHC USED
IHFL 1980
IHFL 1987
CSO CORC USED
COHC USED
IHFL 74-73
EFFL 79-80
IHFL 1987
CSO COHC USED
COHC USED
• Estimated (values both
0 . 42*PVSC+0 . 19*HOB+0 . 10
TSS
TO/1
178
178
433
450
171
171
319
319
133
155
233
140
140
140
above
BODS TH TP As Be Cd
inn/l TO/1 SB/l UK/1 UK/1 UK/1
166
166
322
290
14S
145
372
221
221
173
173
251
128
128
128
and below
18.2 2.
6.8 1.
4.
30.0
9.0 1.
29.4 5.
31.2
9.4 1.
9.0 1.
9.0 1.
19.2 3.
7.2 1.
7.2 1.
110.0
79
0 9.0 0.1
40 10.0
65 10.0 0.1
14
8.0
54 8.0 0.1
19.0 8.2 .
70 19.0 8.2
65 9.6 0.3
50
10.0 L
31 10.0 0.1
31 10 0 0.1
7.0
7.0
27.0
79.0
79.0
20.0
30.0
30.0
16.0
16.0
41.3
20.0
20.0
20.0
20.0
Cr
UK/1
100
99
99
615
427
427
408
47
47
160
160
237
70
20
20
20
Cu CH
UK/1 UK/1
100
124
124 34
403
'291
291 34
790
887
867 34
339
'339 34
277 34
283
233
233 34
233 34
Pb
UK/1
100
125
125
755
SIS
SIS
838
81
81
255
255
582
167
16
16
16
Hg
UK/1
0.10
0.10
48.00
5.59
5.59
0.53
0.80
0.80
11.00
11.00
3.26
0.53
0.20 L
0.20
0.20
Hi Zn
UK/1 UK/1
200 760
38 213
58 213
400 2299
164 1185
164 1185
150 L 2840
72 2599
72 2599
262 487
262 487
131 818
100 L 780
73 216
73 216
73 216
detection limit)
•JMEU+0 . 08* (MCUA+LRSAHO .
07«BAY-«-0 . 03* (RVSA+BCUA)
1.00*YOHKERS (Only HC area with combined sewers)
-------
Page 4-14
indicating some data below the detection limit, and the 1987 Influent value of
2 1 Mg/1 is selected as the value to be associated with combined sewer
overflows. For sewer districts without CSO studies, STP influent
concentrations are used. The three Jamaica Bay sewer districts (26th Ward.
Jamaica and Rockaway) . which use pooled CSO data, have the same CSO
concentrations. Conventional parameters and nutrients for the Spring Creek
drainage area were set equal to those of 26th Ward.
For total nitrogen (TN) and total phosphorus (TP). - the average of, .the,
ratios of measured CSO concentrations to STP influent concentrations was
approximately 0.3 for both TN and TP. Accordingly, this ratio was used with
influent values for sewer districts without CSO programs. In several instances
the measured TN CSO concentration (captioned "CSO" in Table 4-6) is not equal
to the value selected (captioned "CSO Cone Used"). To ensure consistency in
the nitrogen data, when the sum of the measured components (organic, ammonia
and nitrite + nitrate) did not equal measured total nitrogen, the total
nitrogen was adjusted to the sum of its components. For example in Table 4-5
the Hunts Point CSO nitrogen components (3.4 mg/1 ORG N. 1.5 mg/1 NH3N and 0.72
mg/1 N02 + N03 N) total 5.6 mg/1. higher than the measured value of 5.2 mg/1
shown in Table 4-5. The higher value of 5.6 mg/1 is selected for a CSO value
as shown in Table 4-6 for subsequent use in mass loading calculations.
For the New Jersey and Uestchester County CSOs. the above procedures were
also applied. Due to a general lack of measured influent arsenic
concentrations, the average of observed PVSC (10 pg/1 in 1979 to 1980) and MCUA
(8.0 Mg/1 in 1987 to 1988) values - 9.0 Mg/1 - was used for the other New
Jersey sewer districts. In addition, beryllium was set equal to the average of
the New York City plants - approximately 0.1 Mg/1 • even though the Bergen
County STP indicates a 1980 influent value of 8.2 /ig/1. Lacking average
influent cyanide analyses, all New Jersey CSOs were also assigned the average
New York City concentration of approximately 34 Mg/1 - a magnitude comparable
to annual average MCUA effluent concentrations of 26 Mg/l for 1987 to 1988 and
33 /ig/1 for 1986 to 1987.
-------
Page 4-15
Flow weighted concentrations for all New Jersey combined sewer areas were
calculated based on the information in Table 4-6. The net runoff flows from
the major New Jersey CSO sewer districts listed in Table 4-6 are shown in Table
4-7. Also shown are the relative contributions of net CSO flows for these
sewer districts. These fractions are used to generate the weighted
concentrations listed in Table 4-6 under the caption "SD 19 (all N.J.) Cone.
Used."
The limited area served by combined sewers in Uestchester County is assumed
to have concentrations similar to the influent of the nearest treatment plant.
Thus areas draining into the Saw Mill River and the upper Bronx River are
assigned the influent concentrations of the Yonkers sewage treatment plant - as
shown in the last entry of Table 4-8. As with the New Jersey CSOs, beryllium
and cyanide are assigned at 0.1 and 34 ng/l, respectively.
Concentrations used for the combined sewer and stormwater overflows in each
sewer district are summarized in Table 4-8. For the conventional parameters,
toxic metals and total nutrients, CSO concentrations are from Table 4-6.
Components of total nitrogen (i.e. NH3, etc.) were taken from Table 4-5 for
those sewer districts sampled as part of the NYCDEP CSO studies. For the
remaining sewer districts, the ratios of components to TN from the CSO studies
are used to estimate the concentrations. For example, for New Jersey, the
organic nitrogen of 5.6 mg/1 is calculated as the product of New Jersey TN
concentration of 9.0 mg/1 multiplied by 0.62, the ratio of the average ORG N
for all sampled sewer districts to the average TN for those districts. Fecal
coliform bacteria values were estimated as the average of all sampled districts
when required.
Constituent concentrations for stormwater were set equal to those in Table
4-5 for the Coney Island, Jamaica, Rockaway, 26th Ward and Hunts Point sewer
districts. In general, averages of these samples are less than the earlier NYC
208 data, shown on the bottom of the Table, and more consistent with the NURP
data, although in this latter data set TSS values are significantly greater.
Values used for all other sewer districts are equal to the averages of the New
York City DEP CSO studies.
-------
TABLE 4-7. RELATIVE CONTRIBUTIONS OF NJ CSO SEWER DISTRICTS
TO TOTAL NJ CSO LOADING
Land
Runoff
Segment
(a)
NJ 04
NJ 08
NJ 13
NJ 14
NJ 15
NJ 18
NJ 20
NJ 24
NJ 26
NJ 28
COMBINED
Total
Runoff
(cfs)
2.8
10.0
6.2
18.0
6.1
23.1
9.4
3.3
6.9
7.0
92.8
Sewer
District
PVSC
Hoboken
JMEU
MCUA
LRSA
Bayonne
RVSA
BCUA
SEWER OVERFLOW (b)
STP
Capture
(cfs)
0.4
1.5
1:.0"
2.7
0.9
3.5
1.4
0.5
1.0
1.0
13.9
CSO Net
Runoff
(cfs}
33.3
15.3
8.0
6.0
5.9
5.2
2.8
2.4
78.9
Net
Runoff
fcfs}
2.4
8.5
5.2
15.3
5.2
19.6
8.0
2.8
5.9
6.0
"7879 (c)
Relative
Fraction
0.42
0.19
0.10
0.08
0.08
0.07
0.03
0.03
1.00
Sewer
District
BCUA
PVSC
PVSC
Hoboken
Bayonne
PVSC
JMEU
RVSA
LRSA
MCUA
(a) RRMP model segments (DiToro et al, 1978)
(b) For an areawide rainfall intensity of 0.125 inches/day
(c) Represents 83X of the total NJ CSO net runoff of 94.9 cfs (Table 4-2)
-------
TABLE 4-8. CSO/SW CONCENTRATIONS USED FOR RUNOFF
SD WWTP
1 Wards Island
3 Bunts Point
3 Newtown Creek
6 26th Ward
7 Coney Island
9 Owls Head*
10 Tallman Island
11 Jamaica
12 Bowery Bay
13 Roekaway
14 Port Richmond^
IS Oakwood Beach
16 North River
17 Spring Creek
18 Red Book
19 New Jersey*
20 Westchester Cob
21 Rockland Co
AVG w/o SD 9.14.13.
CSO
Flow
£fs_
18.3
32.1
35.6
6.6
14.3
24.6
18.0
33.8
27.7
6.3
18.1
0.0
7.9
3.0
7.7
94.9
4.2
0.0
17.19.
Avg nitrogen components -
CSO
TSS
nm/1
98
64
107
126
109
93
ISO
128
204
128
116
116
128
31
233
140
20
fractions
CSO
BODS
BS/1
76
33
S3
99
76
107
43
99
67
99
141
HO
38
99
41
231
128
HO
CSO
FCOLI
(c)
1.3
2.6
2.0
2.6
2.2
2.2*
1.1
2.6
1.9
2.6
2.2"
COMBINED
3.3
2.6
1.8
2.2«
2.2"
COMBINED
2.2
of avg TN
CSO
ORGN
rnn/1
3.9
3.4
6.7
4.6
4.0"
3.7
1.4
4.6
2.6
4.6
3.0
SEWERS
5. 5
4.6
2.3
3.6
4.5
SEWERS
4.0
0.62
CSO
NH3N
ffit/1
1 6
1.3
2.7
1.2
3.2
1.6
1.6
1.2.
2.3
1.2
1.3
2 0
1.2
1.9
2.7
2.2
1.9
0.30
CSO
N02+3
m»/l
0.48B
0.72
0.63
0.24
0.24
0.43
0.73
0:24
0.83
0.24
0.37
0.38
0.24
0.29
0.68
0.34
0.48
0.06
CSO
TN
m»/l
6.3
3.6
10.1
6.0
7.4
6.0
4.0
6.0
6.0
6.0
4.9
8.1
6.0
4.7
9.0
7.2
6.4
CSO
TP
BK/1
0.93
0.88
1.8S
0.14
1.06
0.70
0.88
0.-14
0.97
0.14
1.00
1.04
0.14
0.90
1.65
1.31
0.81
SD WWTP
1 Wards Island
3 Bunts Point
3 Newtown Creek
6 26th Ward
7 Coney Island
9 Owls Bead
10 Tallman Island
11 Jamaica
12 Bowery Bay
13 Roekaway
14 Port Richmond
IS Oakwood Beach
16 North River
17 Spring Creek
16 Red Book
19 Hew Jersey
20 Westchester Co
21 Rockland Co
AV SD 3(11.13).6,7
FYC 208 (1975-1976)
HURP (1978-1983)
USED WHEN UNKNOWN
SW
Flow
cfs_
4.1
8.0
8.8
4.0
17.0
2.4
18.0
19.3
10.9
2.1
11.3
40.8
2.3
0.0
0.4
644.7
163.4
47.6
SW
TSS
nm/1
27
36
27
27
19
27
27
27
27
27
27
27
27
SW
BODS
rnn/1
11
7
11
13
13
11
11
13
11
13
11
11
11
SW
FCOLI
(c)
0.08
0.02
0.08
0.09
0.12
0.08
0.06
0.09
0.08
0.09
0.08
0.08
O.OB
SW
ORGN
B6/1
1.4
1.6
1.4
1.3
1.1
1.4
1.4
1.3
1.4
1.3
1.4
1.4
1 4
SW
NB3N
nm/1
0.41
0.34
0.41
0.20
0.68
0.41
0.41
0.20
0.41
0.20
0.41
0.41
0.41
SW
H02+3
em/1
0.69
0.95
0.69
0.45
0.66
0.69
0.69
0.45
0.69
0.43
0.69
0.69
0.69
SW SW
TN TP
nut /I rnn/1
2.4 0.36
2.7 0.34
2.4 0.36
2.1 0.28
2.3 0.23
2.
2.
2.
2.
2.
2.
2.
2.
COMBINED SEWERS ONLY
27
27
27
27
27
92
182
27
11
11
11
11
11
33
12
11
0.08
0.06
0.08
0.08
0.08
0.36
0.08
1.4
1.4
1.4
1.4
1.4
4.3
1.4
0.41
0.41
0.41
0.41
0.41
2.40
0.41
0.69
0.69
0.69
0.69
0.69
0.70
0.86
0.69
2.
2.
2.
2.
2.
7.
0.36
0.36
0.26
0.33
0.28
0.36
0.36
0.36
0.36
0.36
0.36
0.36
0.36
1.70
0.42
2.4 0.36
•AVG used
''Nitrogen components " TN
=10*6 Organisms/lOOml
• indicated fractions of avg TN
-------
TABLE 4-6. (Continued) CSO/SW CONCENTRATIONS USED FOR RUNOFF
SD HWTP
1 Wards Island
3 Hunts Point
5 Hswtora Creek
6 26th Hard
7 Coney Island
0 Owls B*ad
10 Tallman Island
11 Jamaica
12 Bowery Bay
13 Rockaway
1* Port Richmond
IS Oakwood Beach
16 North River
17 Spring Creek
18 Red Book
18 New Jersey
20 Westchester Co
21 Rock land Co
CSO
FLOW
18. S
32.1
35.6
6.6
14.3
24.6
18.0
33.8
27.7
8.3
18.1
0.0
7.9
3.0
7.7
94.0
4.2
0.0
CSO
Aa
UK/1
.7
.8
.4
.2
.7
.8
1.1
1.8
3.3
1.9
8.5
2.0
2.3
4.3
9.6
' 10.0
CSO
Be
ftn/i
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.1
0.1
NO
0.1
0.1
0.2
0.3
0.1
HO
CSO
Cd
UK/1
0.7
2.6
2.6
1.1
0.4
2.8
2.5
2.1
2.4
0.4
0.7
COMBINED
10.0
1.5
15.5
41. S
20 0
COMBINED
CSO
Cr
UK/1
22
34
114
10
14
23
30
10
68
9
11
SEWERS
SO
27
31
237
20
SEWERS
CSO
Cu
UK/1
127
2SO
168"
37
121
121
US
37
229
37
69
103
224
100
277
233
CSO
CN
UK/1
22
42
20
24
34
39
28
23
31
24
26
NO
20
118
20
34
34
NO
CSO
Pb
UK/1
20
23
187
20
100
32
IS
20
34
11
79
COMBINED
31
70
27
582
16
COMBINED
CSO
Hg
UK/1
0.49
5.23
0.42
0.20
O.S4
0.90
6. SO
0.20
6.23
0.20
2.02
SEWERS
0.20
0.56
1.05
3.26
0.20
SEWERS
CSO
Ni
UK/1
IS
26
52
40
15
36
32
19
55
14
23
22
30
16
131
73
CSO
Zn
UK/1
277
254
2S1
190
312
154
94
190
290
190
196
128
268
124
BIB
216
AV for NYC STPs
2.6 0.1
3.2
32
124
48
1.77
28
208
SD WWTP
1 Wards Island
3 Bunts Point
S Newtown Creek
6 26th Ward
7 Coney Island8
9 Owls Bead
10 Tallman Island
11 Jamaica8
12 Bowery Bay
13 Rockaway
14 Port Richmond
IS Oakwood Beach
16 North River
17 Spring Creek
18 Red Book
19 New Jersey
20 Westchester Co
21 Rock land Co
AV SD 6(11, 13). 7
NYC 208 (1975-1978)
NURP (1978-1983)
USED WHEN UNKNOWNb
SW
Flow
efs
4.1
8.0
B.8
4.0
17.0
2.4
1B.O
19. S
10.9
2.1
11.3
40.8
2.3
0.0
0.4
644.7
163.4
47.6
SW
As
UK/1
2.6
2.6
2.6
2.6
2.0
2.6
2.6
10.0
2.6
2.6
2.6
2.6
2.6
SW
Be
UK/1
0.1
0.1
0.1
0.1
10.0
0.1
0.1
5.0
0.1
0.1
0.
0.
0.
SW
Cd
UK/1
3.2
3.2
3.2
3.2
3.0
3.2
3.2
5.0
3.2
3.2
3.2
3.2
3.2
SW
Cr
UK/1
30
30
30
30
SO
30
30
10
20
30
30
30
30
SW
Cu
UK/1
55
SS
55
SS
79
55
SS
31
43
55
SS
35
55
SW
CN
UK/1
10
10
10
10
10
10
10
10
10
10
10
10
10
SW
Pb
UK/1
29
29
29
29
24
29
29
33
31
29
29
29
29
SW
Bg
UK/1
0.35
0.3S
0.35
0.35
O.SO
0.35
0.35
0.20
0.28
0.35
0.35
0.35
0.3S
SW
Ni
UK/1
24
24
24
24
8
24
24
40
32
24
24
24
24
SW
Zn
UK/1
146
146
146
146
131
146
146
160
153
146
146
146
146
COMBINED SEWERS ONLY
2.6
2.6
2.6
2.6
6.0
2.6
0.
0.
0.
0.
7.5
0.1
3.2
3.2
3.2
3.2
4.0
13.0
3.2
30
30
30
30
30
22
30
SS
SS
SS
SS
SS
110
43
SS
10
10
10
10
10
10
29
20
29
29
29
280
182
29
0.35
0.35
0.35
0.35
0.35
0.30
0.35
24
24
24
24
24
87
24
146
146
146
146
146
500
193
146
• Only SD 7 end 11 have SW samples from NYC DEP CSO studies.
b For estimates in ell other SDs - due to minimum SW data and for consistency with CSOs, As, Be and Cd
SW concentrations are set equal to the AV concentrations for NYC STP CSOs above. The AV for SD 7
and 11. are used for other parameters.
-------
Page 4-19
4.3 RUNOFF MASS LOADING RATES
Mass loads from the flows and concentrations of Table 4-8 are presented in
Table 4-9 for individual sewer districts and for the aggregate of all sewer
districts. Although the aggregate stormwater flow is approximately three times
that for CSOs, the mass rates of TSS, BODs, fecal coliform bacteria and NH3-N
from stormwater are significantly less than those from the CSOs due to lower
concentrations. Masses of ORG-N, TN and TP are approximately, the same, whereas
CSOs contribute less mass of N02 + N03-N. Although metals concentrations in
stormwater are generally less than those in CSOs, the higher storm flows cause
mass rates to be approximately equal for Cd, Cr, Cu, CN, Ni and Zn.
-------
TABLE 4-9. CSO/SW RUNOFF LOADS
SD HWTP
1 Hards Island
3 Bunts Point
5 Newtown Creek
6 26th Hard
7 Coney Island
B Owls Bead
10 Tallaan Island
11 Jamaica
12 Bowery Bay
13 Rocknway
14 Port Richmond
IS Oakwood Beach
16 North River
17 Spring Creek
IB Red Book
19 New Jersey
20 Hestchester Co
21 Rock land Co
TOTAL CSO
CSO CSO
Flow TSS
ets mt/d
16.
32.
35.
6.
14.
24.
16.
33.
27.
8.
IB.
0.
7.
3.
7.
94.
4.
0.
5
1
6
6
3
6
0
8
7
3
1
0
9
0
7
9
2
0
355.2
sw
FLOW
SD UWTP
1 Hards Island
3 Bunts Point
5 Newtown Creek
6 26th Hard
7 Coney Island
9 Owls Bead
10 Tallaan Island
11 Jamaica
12 Bowery Bay
13 Rockaway
14 Port Richmond
15 Oakwood Beach
16 North River
17 Spring Creek
IB Red Book
19 New Jersey
20 Westchester Co
21 Rockland Co
efs
4.1
B.O
B.B
4.0
17.0
2.4
18 0
19.5
10.9
2.1
11.3
40.6
2.3
0.0
0.4
644.7
163.4
47.6
4.42
6.60
9.31
2.06
3.82
S.72
6.60
10.56
13.81
2.59
5.22
CSO
BODS
nt/d
3.52
2.59
4.78
1.61
2.66
6.44
1.89
8..17
4.54
2.00
6.23
CSO
FCOLI
(a)
677.4
2199.5
1740.4
421.9
771.0
1324.6
463.8
2146,4
1287
525
972
NO COMBINED SEWERS
2.24 1.12 636
0.93 0.72 169
0.96 0.77 338
54.07 56.25 S107
1.45 1 32 227
.0
.9
.8
.4
.6
.7
.0
.7
NO COMBINED SEWERS
130.37
SW
TSS
mt/d
0.27
0.70
O.SB
0.27
0.79
0.16
1.17
1.29
0.71
0.14
0.74
2.66
0.15
COMBINED
0.03
42.04
10.66
3.18
106.63
SW
BODS
mt/d
0 11
0.13
0.24
0.13
0.54
0.06
0.46
0.62
0.29
0.07
0.30
1.09
0.06
SEWERS
0.01
17.24
4.37
1.27
190*9
SW
FCOLI
(a)
9
7.8
3.9
16.6
B.9
50.0
4.5
33.7
43.0
20.2
4.7
21.3
76.5
4.3
ONLY
0'.7
1209.0
306.4
69.3
CSO
CRGN
mt/d
0.176
0.267
O.SB3
0.075
0.140
0.225
0.062
0.360
0.176
0.093
0.133
CSO
RB3N
mt/d
O.OB6
0.118
0.235
0.019
0.112
0.109
0.079
0.099
0.169
0.024
0.065
CSO CSO
H02+3 TV
mt/d s»t/d
0.022
0.057
0.057
0.004
0.008
0.027
0.033
0.020
0.058'
0.005
0.016
MO COMBINED SEWERS
0.106 0.038 0.011
0.034 0.009 0.002
0.047 0.036 0.005
1.304 0.628 0.157
0.046 0.022 0.006
0.263
0.441
0.674
0.096
0.261
0.361
0.174
0.495
0.403"
0.121
0.217
0.155
0.044
0.069 .
2.069
0.074
CSO
TP
mt/d
0.042
0.069
0.161
0.002
0.037
0.042
0.039
0.012
0.066
0.003
0.044
0.020
0.001
0.017
0.363
0.014
NO COMBINED SEWERS
3.846
SW
ORGN
mt/d
0.014
0.031
0.030
0.015
0.046
O.OOB
0.062
0.072
0.037
O.OOB
0.039
0.140
0.006
0.001
2.207
0.559
0.163
1.648
SW
NH3N
mt/d
0.004
0.007
0.009
0.002
0.028
0.002
0.018
0.010
0.011
0.001
0.011
0.041
0.002
COMBINED
0.000
0.643
0.163
0.047
0.487
SW
N02+3
mt/d
0.007
0.019
0 015
0.004
0.028
0.004
0.030
0.021
0.018
0.002
0.019
0.069
0.004
SEWERS ONLY
0.001
1.093
0.277
0.081
6.160
SW
TN
mt/d
0.025
0.053
0.053
0.021
0.104
0.014
0.107
0.100
0.065
0.011
0.068
0.243
0.014
0.002
3.636
0.972
0.283
0.951
SW
TP
mt/d
0.004
0.011
0.008
0.003
0.010
0.002
0.016
0.013
0.009
0.001
0.010
0.036
0.002
0.000
0.562
0.143
0.042
TOTAL SW 1005.5
(•>10~12 Organisms/day
65.53 27.02
1900.7 3.440
1.000
1.694
5.970
0.671
-------
TABLE 4-9. (Continued) CSO/SW RUNOFF LOADS
SD WHTP
1 Wards Itland
3 Bunts Point
5 Nawtown Creek
6 26th Hard
7 Coney Island
0 Owls Bead
10 Tallman Island
11 Jamaica
12 Bowery Bay
13 Rock away
14 Port Richmond
15 Oakwood Beach
16 North River
17 Spring Creek
IB Red Book
19 New Jersey
20 Manchester Co
21 Rock land Co
CSO
Flow
efs
18. 5
32.1
35.6
6.6
14.3
24.6
16. 0
33.8
27.7
8.3
18.1
0.0
7.9
3.0
7.7
04.9
4.2
0.0
CSO
As
kK/d
0.077
0.141
0.209
0.019
0.060
0.10B
0.048
0.149
0.223
0.038
0.376
CSO
Be
kK/d
O.OOS
0.008
0.009
0.002
0.004
0.006
0.004
0.008
0.014
0.002
0.004
CSO
Cd
kn/d
0.032
0.204
0.226
0.018
0.014
0.169
0.110
0.173
0.163
0.008
0.031
NO COMBINED SEWERS
0.039
0.017
0.081
2.228
0.103
0.002
0.001
0.004
0.070
0.001
0.193
0.011
0.292
9.631
0.207
NO COMBINED SEWERS
CSO
Cr
kK/d
0.99
2.67
0.02
0.16
0.49
1.38
1.32
0.83
4.60
0.18
0.49
CSO
Cu
kK/d
S.73
19.63
14.62
0.60
4.24
7.28
5.06
3.05
15.51
0.75
3.05
CSO
CN
kK/d
0.993
3.298
.1.740
0.389
1.191
2.348
1>.231
1.898
2.099
0.485
1.149
CSO
Pb
kK/d
0.003
1.806
16.269
0.324
3.503
1.026
0.660
1.651
2.302
0.222
3.402
CSO
HS
kK/d
0.022
0.411
0.037
0.003
0.019
0.054
0.286
0.017
0.422
0.004
0.089
CSO
Hi
kK/d
0.68
2.04
4.52
0.65
0.53
2.17
1.41
1.57
3.72
0.28
1.02
CSO
Zn
kK/d
12.51
19.95
21.84
3.08
10.93
9.27
4.13
15.66
19.64
3.84
8.66
NO COMBINED SEWERS
0.96
0.20
O.S8
SS.OO
0.21
1.09
1.63
1.88
64.28
2.41
0.386
0.660
0.376
7.890
0.352
0.598
0.510
0.508
135.066
0.166
0.004
0.004
0.020
0.757
0.002
0.42
0.22
0 30
30.40
0.76
2.47
1.95
2.33
189.84
2.23
HO COMBINED SEWERS
TOTAL CSO
355.2
3.916
0.142 11.480 79.09 151.71 26.687 169.906
2.150
50.68
328 35
SD WWTP
1 Wards Island
3 Bunts Point
5 Newtown Creek
6 26th Ward
7 Coney Island
S Owls Bead
10 Tallman Island
11 Jamaica
12 Bowery Bay
13 Rockaway
14 Port Richmond
IS Oakwood Beach
16 North River
17 Spring Creek
18 Red Book
19 New Jersey
20 Westchester Co
21 Rockland Co
SW
Flow
cfs
4.1
8.0
8. 8
4.0
17.0
2.4
16.0
19.5
10.9
2.1
11.3
40.6
2.3
0.0
0.4
644.7
163.4
47.6
SW
As
kK/d
0.026
0.050
0.055
0.025
0.063
0.015
0.112
0.477
0.068
0.013
0.071
0.255
0.014
0.002
4.031
1.022
0.298
SW
Be
kn/d
0.001
0.002
0.002
0.001
0.416
0.001
O.OOS
0.239
0.003
0.001
0.003
0.011
0.001
COMBINED
0.000
0.180
0.046
0.013
SW
Cd
kK/d
0.033
0.063
0.070
0.032
0.125
0.019
0.142
0.239
0.086
0.017
0.090
0.323
0.018
SEWERS
0.003
5.101
1.293
0.377
SW
Cr
k«/d
0.30
0.50
0.65
0.30
2.08
0.18
1.32
0.48
0.53
0.16
0.83
2.00
0.17
ONLY
0.03
47.30
11.00
3.40
SW
Cu
kK/d
0.56
1.07
1.19
0.54
3.29
0.32
2.42
1.48
1.14
0.28
1.53
5.49
0.31
0.05
86.71
21.08
6.40
SW
CN
kn/d
0.101
0.195
0.216
0.099
0.416
0.050
0.440
0.477
0.266
0.052
0.277
0.996
0.056
COMBINED
0.009
15.77
3.996
1.164
SW
Pb
kg/d
0.268
0.556
0.617
0.281
0.999
0.168
1.253
1.575
0.817
0.147
0.791
2.843
0.161
SW
BS
kn/d
0.004
0.007
0.008
0.003
0.021
0.002
0.015
0.010
0.007
0.002
0.010
0.035
0.002
SW
Ni
kK/d
0.24
0.47
0.52
0.24
0.33
0.14
1.06
1.91
0.85
0.12
0.67
2.39
0.14
SW
Zn
kK/d
1.47
2.84
3.15
1.44
5.45
0.86
6.40
7.64
4.06
0.75
4.04
14.52
0.82
SEWERS ONLY
0.027
44.39
11.39
3.317
0.000
0.552
0.140
0.041
0.02
37.84
9.59
2.79
0.14
229.39
58.14
16.94
TOTAL SW
1005.5
6.619
0.926
8.030 73.37 134.76 24.587
70.160
0.858
50.32 358.02
-------
Page 5-1
5. TRIBUTARY INPUTS
Two previous studies evaluated long-term estimates of tributary loads to
the New York - New Jersey Harbor. In the first, Mueller et al. (1976) made use
of a STORET retrieval for the period 1969 to 1972; the second (Mueller et al,
1982) utilized a STORET retrieval for the period- 1975 to 1980. Since these
data were approximately ten years old, a major effort was necessary to bring
X
these estimates up to date.
A STORET retrieval was made for all stations contained in Mueller (1982).
The investigation revealed that several valuable water quality stations had
been discontinued. These include the Hudson River stations near Poughkeepsie
(USGS 01372035, 01372043, 01372059 and 01372550), the Hackensack River station
at New Milford (USGS 01378500) and the Raritan River station at Bound Brook
(USGS 01404100). To generate estimates of loadings to the estuary, other
stations located farther upstream were selected: Hudson River at Green Island,
approximately 75 miles upstream of Poughkeepsie (USGS 01358000); Hackensack
River at Rivervale (USGS 01377000), upstream of the Oradell reservoir; Raritan
River at Manville (USGS 01400500). It is noted that these more upstream
stations may be somewhat inappropriate for calculating estuary loads of
constituents significantly affected by decay, transformation, or other removal
processes.
Flows for water years 1982 through 1988 (Table 5-1) are typically compared
to historical records; the 1946 to 1988 Hudson River average is about 13,600
cfs while the 1982 to 1988 average is 13,300 cfs. The USGS flow gaging
stations are generally the same as the water quality sampling stations.
Exceptions include water quality stations on Robinson's Branch and on the South
River. All water quality data, together with corresponding flows, are listed
in Appendix B. It is noted that the largest source, the Hudson River, was
sampled 26 times in the eight year period, whereas the Hackensack, Passaic and
Raritan Rivers were sampled on 46, 64 and 46 occasions, respectively.
5-7
-------
TABLE 5-1. TRIBUTARY FLOWS AT GAGING STATIONS 1981-1988
(all values In cfs)
USCS Station Name
Hudson River at Green Island, 01358000
New York
Hackensack River at Rlvervale, 01377000
New Jersey
PassaLc River at Little Falls, 01389500
New Jersey
Saddle River at Lodi,
New Jersey
01391500
Flow for Water Year
Station
Number 1982 1983 1984
Elizabeth River at Ursino Lake. 01393450
at Elizabeth, New Jersey
Rahway River at Rahway, 01395000
New Jersey
Robinson's Branch at Maple 01396000
Avenue at Rahway, New Jersey
Raritan River at Manville, 01400500
New Jersey
South River below Duhernal Dam 01405500
at Old Bridge, New Jersey
Totals
Source: STORET Retrieval in December, 1989
985 1986 1987 1988
14067 13581 16614 10295 14153 12970 11403
60.6 108.8 143.3
820
23.3
1409 1970
80.3 117.6 187.0
28.2 31.1 44.8
43.5 56.4 88.6
33.3
52.2
444 836 873 783
95.1 140.5 183.5 127.6
734 980 1365
108.5 150.4 261.4
15965 16468 20726 11428 16554 15521 13422
1982-
1988
Average
13298
41.8
26
60.5
18.4
30.0
16.7
73.0
1154
99.6
24.2
47.7
26.2
92.8
1171
117.0
26.2
55.9
31.1
72.2
852
89.8
23.0
43.1
27.9
84.6
1115
107.4
28.0
52.2
30.1
859
152.4
15726
-------
Page 5-3
5.1 METHODOLOGY - CONVENTIONAL PARAMETERS AND NUTRIENTS
Conventional parameter and nutrient mass input rates at the tributary
gaging/water quality stations were calculated as the product of the flow during
sampling and the measured concentration (Appendix B). For the conventional
parameters (TSS, BODs, FCOLI) and the nutrients (ORGN, NHsN, N02 + NOsN, TN and
TP), distributions of the mass rates were found to be essentially log normal,
as shown in Appendix C. For a log normal distribution of a finite data set,
the best estimate of the average is calculated by the maximum likelihood
estimate (MLE) as follows: (Di Toro et al., 1978):
MLE - exp [fix + 0.5 * ox2] (5.1)
where /ix is the log average of the natural logarithms of the individual mass
rates (xj),
• 2 x. (5.2)
<7XZ is the log variance,
and "n" is the total number of observed mass rates. The coefficient of
variation of the mass rate (i/) is given by :
v - — (5.4)
MLE
where a, the standard deviation of the mass rate, is calculated from:
02 . exp (2/*x) • [exp (2<7X2) - exp (0X2)] (5.5)
5*7
-------
Page 5-4
5.2 METHODOLOGY - TOXICS
As shown in the tabulated toxics data in Appendix B. total concentrations
of the reported parameters were usually measured. In the cases of the Hudson
River and the Passaic River, the dissolved phases of the parameters were
generally measured. Using the average of the available ratios of measured
total to measured dissolved (four for the Hudson River and seven for the
Passaic River) , dissolved . data were converted to estimated total
concentrations. The ratios used are shown in the tables in Appendix B for
these two rivers.
As also observed in the toxics data, a majority of the measured
concentrations of arsenic, beryllium, cadmium, chromium, lead and mercury are
below detection limits. Only copper, nickel and zinc are generally above
detection limits. The detection limit (DL) yields a set of "censored" data
which masks the true population distribution and can introduce significant
error in the computation of exceedance frequencies.
As a result of the above difficulty, an advanced technique is required to
interpret the data. The procedure, which involves the computation of maximum
likelihood estimates of the mean (p) and standard deviation (a) (Aitchison and
Brown, 1981) makes it possible to obtain an improved characterization of the
underlying probability distribution of each sample set. A nonlinear regression
is used to minimize a "loss" function (L) which in this instance is defined as:
when observed concentrations c^ are equal to or above the detection limit and
L - -In Izcf [Xi " "11 , c < DL (5.7)
when concentrations are below the detection limit, where zcf is the normal
deviate value of the sample. In both cases, Xi is the natural logarithm of the
mass rate calculated as the product of the flow and the reported concentration
-------
Page 5-5
or detection limit. In simplest terms, minimization of this loss function
results in the selection of a constituent mean and standard deviation for the
underlying probability distribution. This maximizes the likelihood of
obtaining the true frequency distribution. An example of an analysis of
censored data is found in Appendix D.
Log probability plots of all toxics data are found in Appendix E, together
with the best-fit lines determined through use of the technique discussed
above. In all plots1, the symbol-"0" represents data at or above the detection
limit(s) whereas an "*" is plotted for data below the detection limit(s).
It is interesting to note that both flow and concentration are also log
normally distributed (see Appendix F). Furthermore, for most constituents,
flow and concentration appear to be uncorrelated (see Appendix G). However,
total suspended solids appears directly correlated with flow for the Hudson
River at Green Island, New York. In addition, total nitrogen and phosphorus
are negatively correlated with flow for the Passaic and Saddle Rivers,
indicating the presence of significant constant (point) sources.
5.3 SUMMARY OF TRIBUTARY INPUTS
Average (MLE) mass input rates and coefficients of variation of
conventional constituents and nutrients, are shown in Table 5-2 for the 1981 to
1988 period. All values are in metric tons/day except for fecal coliform
bacteria which is reported in organisms/day. Note the general lack of TSS
measurements and the absence of BOD5 measurements in the Hudson River at Green
Island. For all constituents except BODs, the Hudson River dominates.
For toxics, average (MLE) mass rates using the censored data technique and
arithmetic averages (assuming that concentrations below the detection limit are
equal to the detection limit) are presented in the latter portion of Table 5-2.
All values are for total metal and are given in kilograms/day. The number of
observations made (n) and the number of those below the detection limit (m) are
also given. For the Hudson and Passaic River, the ratios of
Gl
-------
TABLE 5-2. TRIBUTARY DISCHARGES AT GAGING STATIONS 1861 TO 1988
TSS BODS FCOLI ORGN
mt/d mt/d orx/d mt/d
BUDSOH RIVER AT GREEN ISLAND (USGS STA 01358000)
Average (MLE) 1178.8 na 1.910E+14 18 123
No.Observ (n) 22 na 19 25
Coeff. Var. 3.11 na 1.03 1.23
HACKENSACK RIVER at RIVERVALE, NJ (USGS STA 01377000)
Average (MLE) na 0.663 6.850E+11 0.128
No.Obsarv (n) na 44 40 44
Coeff. Var. na 1.08 2.72 0.89
PASSAIC RIVER at LITTLE FALLS. RJ (USGS STA 01389500)
Averag* (MLE) 60. 3 11.138 1.0S6E+13 2.016
Ho.Obaarv (n) 45 62 40 63
Coeff. Var. 1.63 1.10 3.36 1.13
SADDLE RIVER at LODI. RJ (USGS STA 01391500)
Average (MLE) na 0.870 7.758E+12 0.148
No.Observ (n) na 43 42 41
Coaff. Var. na 0.75 5.82 0.98
ELIZABETH RIVER at URSINO LAKE at ELIZABETH. NJ (USGS STA
Average (MLE) na 0.249 5.118E-H3 0.036
Ro.Obaerv (n) na 38 41 40
Coeff. Var. na 1.51 17.81 1.37
RAHHAY RIVER at RAHWAY, RJ (USGS STA 01395000)
Average (MLE) na 0.310 2.236E+12 0.048
Ho.Obaerv (n) na 43 43 43
Coeff. Var. na 2.32 10.66 2.51
NH3N R
nt/d
5.117
25
1 38
0.033
44
1.16
1.458
63
0.88
0.295
42
0.62
01393450)
0.008
40
1.40
0.011
44
3.07
ROBINSON'S BRANCH at MAPLE AV at RAHWAY. NJ (USGS STA 01396000-Flow.
Arith. Aver. na 0.190 7.S68E+10 0.052
Ho.Observ (n) na 3 33
RARITAN RIVER at MANVILLE. NJ (USGS STA 01400500)
Average (MLE) na 3.425 3.527E+13 .747
No.Obaerv (n) na 42 41 41
Coeff. Var. na 1.50 21.69 1.59
0.022
3
0.179
41
1.46
02+N03N
mt/d
23.241
25
1.12
0.093
46
- 0.87
2.701
63
0.60
0.469
44
0.60
0.070
41
1.32
0.087
45
3.13
TN
mt/d
46.800
25
1.05
0.250
44
0.74
6.048
63
0.63
0.866
42
0.44
0.106
40
1.02
0.137
44
2.50
TP
mt/d
1.837
1.12
0.018
46
1.38
0.653
63
0.64
0.117
43
0.34
0.007
41
1.27
0.008
45
2.29
01396001-WQ)
0.060
3
2.226
44
1.56
0.134
3
3.067
44
1.30
0.010
3
0.178
45
1.32
SOUTH RIVER below DUHERNAL DAM at OLD BRIDGE. RJ (USGS STA 01405500-Flow. 01405700-HQ)
Average (MLE) na 0.622 2.820E+11 0.211
Ho.Obaerv (n) na 10 10 9
Coeff. Var. na 1.68 1.65 1.31
0.340
9
3.68
0.378
10
1.07
0.862
10
2.00
0.028
10
1.66
Basic source: STORET retrieval for yean 1981 to 1989
MLE: Maximum Liklihood Estimate
n ; number of observations
na : data not available in STORET
WQ : Hater Quality station
-------
TABLE 5-2. (Continu.d) TRIBUTARY DISCHARCZS AT GAGING STATIONS 1981 TO 1988
As Be Cd Ct Cu Pb Bg Ri Zn
fcn/d kit/d kn/d kn/d kn/d k«/d k«/d k«./d k«/d—
HUDSON RIVER AT GREEN ISLAND (USGS STA 01358000)
Average (MLE) 26.28 10.03 399.56 285.49 2*7.58 278.27 9.78 163.77 1495 16
Axithaet Av. 42.96 19.84 234.29 143.76 243.66 442.76 9.86 173.40 1440.16
Mo Obeerv (n) 21 IS 21 21 20 20 19 20 21
Mo.< Detect(n) 10 11 12 16 0 6 B 4 0
Ratio TOT/DISS 1 1 1 1.5 1312 3
BACKEMSACK RIVER «t RIVERVALE. NJ (USGS STA 01377000)
Average (MLE) 0.24S 1.365 0.167 7.133 3.748 0.889 0.018 0.720 3.682
Aritlmet. Av. 0.2*9 2.19S 0.220 2.706 2.900 0.973 0.028 0.638 3.686
Ho.Observ (n) 9 9 9 9 9999 8
Bo.< Datect(m) 1843 1360 1
PASSAIC RIVER at LITTLE FALLS. RJ (USGS STA 01389500)
Average (MLE) " l."515^ * "nr " ' 1.S24 4.202 35.068 21.131 0.370 11.386 283.846
Arithmet. Av. 2.649 1.609 2.712 9.741 32.618 41.131 0.443 12.214 232.122
No.Observ (n) 33 29 33 32 33 33 32 33 33
No.< Det«ct(D) 15 29 28 23 0 IB IS 3 4
Ratio TOT/DISS 1 1 1 1 2.S 4.5 1 2 7
SADDLE RIVER at LODI. RJ (USGS STA 01391500)
Average (MLE) 0.274 0.391 0.167 0.835 1.492 0.806 0.023 O.S27 3.310
Aritlmet. Av. 0.272 1.357 0.186 1.276 1.468 0.881 0.022 0.503 3.283
No.Observ (n) 8 8 8 8 8688 8
No.< Deteet(m) 0653 0160 0
ELIZABETH RIVER at URSIHO LAKE at ELIZABETH, HJ (USGS STA 01393450)
Average (MLE) 0.039 0.112 0.034 O.B60 0.567 0.115 0.002 0.242 2.067
Arithmet. Av. 0.039 0.195 0.035 0.828 0.462 0.124 0.003 0.508 1.987
No.Observ (n)7777 7777 7
Ro.< Detect(m) 0621 0351 0
RAHHAY RIVER at RAHHAY. RJ (USGS STA 01395000)
Average (MLE) 0.074 nr 0.055 0.459 0.232 0.172 0.004 0.082 0.904
Aritlmet. Av. 0.068 0.275 0.042 0.453 0.209 0.184 0.004 0.082 0.853
No.Observ (n) 8 8 8 8 8888 B
Ho.< Deteet(m) 0863 0241 1
ROBIKSON'S BRANCH at MAPLE AV at RAHHAY. HJ (USGS STA 01396000-Flow. 01386001-HQ)
Aritlmet. Av. 0.025 0.122 0.012 0.122 0.086 0.049 0.001 0.025 0.122
No.Observ (n)llll 1111 1
No.< Deteet(o) 0100 0000 0
RARITAN RIVER at MANVILLE, RJ (USGS STA 01400500)
Average (MLE) 3.481 nr 0.761 31.402 13.622 10.173 1.077 9.509 36.828
Aritlmet. Av. 5.485 29.575 2.958 57.209 28.706 16.839 0.770 14.534 57.835
Ro.Observ (n) 11 11 11 10 11 11 11 11 11
No.< Dateet(m) 5 11 9 • 3 2 47 1 3
SOUTH RIVER below DUHERNAL DAM at OLD BRIDGE, RJ (USGS STA 01405500-FIow, 0140S700-HQ)
Arithmet. Av. 0.701 7.006 0.701 7.006 2.602 12.170 0.070 5.385 39.835
No.Observ (n) 2 2 2 2 2222 2
Ro.< Detect(B) 0200 0010 0
Basic source
MLE
m
a
na
nr
**}
STORE! retrieval for years 1981 to 1989
Maximum LikLihood Estimate
number of observations below the detection limit
number of observations
data not available in STORE!
MLE not reported when no data are above detection limit
Hater Quality station
Loads for Hudson and Passaic Rivera axe based on measured dissolved concentrations multiplied by estimated
ratios of conc(TOT)/conc(DISS).
-------
Page 5-8
total to dissolved concentrations used to produce total concentrations from
measured dissolved concentrations are tabulated. As shown, measured values of
beryllium are almost always below detection limits (29 out of 29 measurements
in the Passaic River) as are a significant number of chromium (16 of 21 in the
Hudson River) and mercury (7 of 11 in the Raritan River) and cadmium (6 of 8 in
the Rahway River) measurements.
The mass discharge values shown in Table 5-2 are estimated fluxes at the
various gaging-and measurement -station.-- In order to determine estimated inputs
at the defined boundaries of New York - New Jersey Harbor, the values of Table
5-2 were increased by a factor which accounts for the rates of flow at the
boundary to that at the gaging station. This procedure assumes no point
sources sinks of the various parameters between measuring stations and harbor
boundaries. These flow ratios and the best estimates of the loading inputs are
presented in Table 5-3. In general, the Hudson River contribution clearly
dominates the tributary source inputs to the estuary for all constituents
except beryllium.
/r
-------
TABLE 5-3. TRIBUTARY DISCHARGES TO HY/HJ HARBOR 1981 TO 1888
Flow
Ratio TSS BODS PCOLI
n.»<** mt /H mt/d orc/d
Hudson River
Hackenaack River
Passaic River
Saddle River
Elisabeth River
Rahway River
Robinson '• Branch
Raritan River
South River
Totali
Hudson River
Haekensack River
Paisaic River
Saddle River
Elisabeth River
Rahway River
Robinson 'a Branch
Raritan River
South River
1.45 $ 1709.3 70.727 + 2.
0.60 *
1.05 $
1.00
1.00
1.00 •
1.00
1.47 t
1.00
1905. 0
A*
kR/d
38.11
0.147
1.S91
0.274
0.039
0.074
0.02S
5.117
0.701
2.4*
64.3
5.8*
1.3*
1.9*
2.1*
95.7*
2.2*
90.295
Be
kR/d
14.55
0.819
1.690
0.391
0.112
0.275
0.122
43.476
7.006
0.398 5.
11.694 1.
0.870 7.
0.249 5.
0.310:. 2.
0.190 7.
5.035 5.
0.822 2.
769e+14
310e+ll
109e+13
758e+12
llBe+13
236e+12
S68e+10
184e+13
,620e+ll
«.019e+14 30.064
Cd
kR/d
579.35
0.100
1.601
0.167
0.034
0.055
0.012
1.119
0.701
Cr
kR/d
413.96
4.280
4.412
0.835
0.960
0.459
0.122
46 . 162
7.006
ORGN RH3N K32+MO3N TH TP
-tyn pt/d nit/d Bit/d gt/d
26.276
0.077
2.116
0.148
0.036
0.046
0.052
1.098
0.211
9.910
Cu
kR/d
358.99
2.249
36.822
1.492
0.567
0.232
0.086
20.025
2.802
7.420 33.699 67.860 2.
0.020 0.056 0.150 0.
1.531 2.836 6.352 0.
0.295 0.469 0.866 0.
0.008 0.070 0.106 0.
0.011 0.067 0.137 0.
0.022 0.060 0.134 0.
663
Oil
686
117
007
008.
010
0.264 3.273 4.538 0.262
0.340 0.379 0.662 0.
40.927 81.004 3.793
Pb Hg Hi
kR/d k>/d kn/d
403.49 14.18 237.47
0.533 0.011 0.432
22.187 0.388 11.955
0.806 0.023 0.527
0.115 0.002 0.242
0.172 0.004 0.062
0.049 0.001 0.-02S
14.954 1.SB3 13.978
12.170 0.070 5.385
,029
Zn
kR/d
2167.99
2.209
298.038
3.310
2.067
0.904
0.122
54.136
39.835
Totals 46.072 68.438 583.143 478.192 423.267 454.476
16.264
270.098
2568.610
•• Rstio of flow to HY/HJ harbor to flow at gag ins •tation. Saddle R and South R incr«n«>t«l flows estimated
in runoff model.
• Estimated using 1981-1986 average flows and concentrations from (heller «t al, 1982.
+ Estimated using 1981-1988 average flow and CBOD5 concentration from Hydroscience. 1975 & 1978
$ Prom Mueller at al. 1982.
« Haekensack River: Flow 8 Oradell(01378500) / Flow C Riverval«(01377000) 1981-1989
Raritan River: l.l*[Flow 8 Bound Brook{01403060) / Flow 8 Hanville(01400500)J 1961-1989
-------
Page 6-1
6. LANDFILL LEACHATE AND ATMOSPHERIC DEPOSITION
Waste inputs from landfill leachate and atmospheric deposition are
estimated in the following sections. Relative to the contributions of
municipalities, tributaries, and runoff, these estimated inputs are generally
small; however, data for these source classes are generally sparse. The
following sections summarize the available data and the estimated inputs from
these sources.
6.1 LANDFILL LEACHATE
Mueller at al, 1982 compiled a complete listing of landfills in the
drainage area of the New York - New Jersey Harbor. A total of 92 landfills was
identified, as listed in Table 6-1, with 10 of these either upstream of gaged
tributaries or just outside of the study area (Figures 6-1 and 6-2). These 10
locations, as well as three others which were capped and lined or whose
leachate was collected and treated, were excluded from the load estimate made
at that time. The remaining landfills - both active or closed - were estimated
to have a total surface area of 23 square kilometers (sq km). Fifty percent of
the area's long term average precipitation (42.7 inches), was assumed to return
to the estuary with a continuous flow of approximately of 51 cm/yr or 8.4 MGD
(Mueller et al, 1982). Combined with estimated leachate concentrations from
several landfills, leachate discharges were calculated.
Recent estimates of leachate concentrations and flow from the largest
landfill in the region, Fresh Kills, were estimated by the New York Department
of Sanitation (NYCDOS, 1989). Both grab samples of leachate and samples from a
total of nine monitoring wells in 1988 and 1989 resulted in the average Fresh
Kill concentrations shown in Table 6-2.
-------
TABLE 6-1.
LANDFILLS HITHIH THE BUDSON-RARITAN ESTUARY WATERSHED
(SOURCE: HUELLER ET AL. 1982)
Hap
Humber
1
2
3
4
5
6
7
8.8a
10
11
12
13.13a
1*
IS
16
17
18
19
20
21
22
23
24
25
26
27
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
SO
SI
52
53
54
55
56
57
58
59
60
61
62
63
Landfill
Name
Taanack Township
Overpeck-Bergen County
Ridgefield Park Village
SLF
RfiM Reclamation
Edgewater Borough
Palisades General Hospital
Avon Landfill Corporation
Bergen County
Kingsland Park
HHDC (Hackansack Meadow-
land* D«v«lopm«nt Corporation
BMDC (PCM Sanitation)
BMDC (C. Egan & Son SLF)
Harrison Ava 6 Rout* 280
(DOT sample*)
1947 Corporation Sit* #1 and #2
Hall Landfill
PJF Landfill
Diamond Shamrock
BMDC - HSLA Kearney
Ottilio
D&J Trucking
Gates Fill II Block 1200
Bayonne SLF
Elizabeth City Dump
Port Authority Landfill
Linden SLF
American Cyanamid Company
Rahway City SLF
Middlesex Landfill Corporation
Mobil Chemical
Reiehold Chemicals
Woodbridge Municipal Dump
American Smelting and Refining
Outerbridge Terminal
City of Perth Anboy SL
Philip Corey
Keasby LF (Elisabeth Haste
Disposal)
Industrial Land Reclaiming
Middlesex County -
Raxitan Arsenal
Edison Disposal Area
Kin-Buc
Reagent Chemeial Reserach
South Brunswick Township SLF
B.F.I, of South Jersey
(Princeton Disposal)
George Belloxio
J.I.S. SLF
B.F.I, of South Jersey
(Princeton Disposal)
Edgeboro Disposal, Inc.
Sayreville Boro SWDA
Applied Polymers
NL Industries, Inc.
South Amboy
DuPont-Hashlngton Road SLF
Global LF Reclaiming
Delta Excavating
Atco Chemicals
Rosalie Sinola (Keyport)
Union Beach (IFF Corporation)
Keansburg Municipal SLF
Middletown Township SLF
Red Bank SLF
Tinton Falls LF
Charles H. Wilson
Monmouth County Reclaiming
Site Location
Town/County
Taaneck/Bergen
/Bergen
Ridgefield Park/
Bergen
/Bergen
Edgewater/Bergen
Ho. Bergen/Hudson
Lyndhurst/Bergen
Lyndhurst/Bergen
Lyndhurst/Bergen
North Arlington/Bergen
North Arlington/Bergen
Kearney/Hudson
/Hudson
Secaucus/Hudson
Jersey City/Hudson
Kearney/Hudson
Kearney/Hudson
/Esses
Newark/Essex
Jersey City/Hudson
Beyonne/Hudson
Elisabeth/Union
Port Elizabeth/Union
Linden/Union
Linden/Union
Rahway/Union
Cartaret/Middlesex
Carteret/Middlesex
Cartetet/Middlesex
Woodbridge/Middlesex
/Middlesex
/Middlesex
Perth Amboy/Middlasex
/Middlesex
Keaaby/Middlesex
Edison/Middlesex
Edison/Middlesex
Edi son/Middlesex
Edison/Middlesex
Middlesex/Middlesex
South Brunswick/Middlesex
South Brunswick/Middlesex
South Brunswick/Middlesex
South Brunswick/Middlesex
Monroe Township/Middlesex
East Brunswick/Middlesex
Sayrevilie/Middles ex
SayreviLle/Middlesex
Sayreville/Hiddlesex
South Amboy/Middlesex
Sayrevilie/Middles ex
Old Bridge/Middlesex
/Monmouth
Keyport/Monmouth
Keyport-Union Beach/
Monmouth
Union Beach/MoniDOuth
Keansburg/Monmouth
Hiddletown/Monmouth
Red Bank/Monmouth
Tinton Falls/Monmouth
Tinton Falls/Monmouth
Tinton Falls/Monmouth
Waste Received
(metric tone/year)
306.000
1,403,000
333,000
48,000
26,000
387,000
270,000
104,000
-------
TABLE 6-1 LANDFILLS WITHIH THE HUDSON-SARITAN ESTUARY WATERSHED
(SOURCE MUELLER ET AL. 1982)
(Continued)
Map
Number
6*
65
66
66a
67
68
69
70
71
72
73
7*
75
76
77
78
79
80
81
82
83
8*
as
86
B6a
87
88
89
90
91
92
Landfill
Shrewsbury Disposal Company
Lone Pine Corporation
Fresh Kills (Little Fresh Creek)
Fresh Kills (Fresh Kills and
Richmond Creek)
Brookfield Avenue
Pennsylvania Avenue
Fountain Avenue
South Shore
Edgemere
Hew Hyde Park
Pelhaa Park Bay
Piermont
Ryack
Clarkstown LF
Lederle Landfill
Ramapo Tome Valley LF
Penaluna LF
Croton Point SLF
Baveratraw Grassy Point
Stony Point
Mahopac Dumpsite
F&T Darrigo
Duramante Real Estate
(Creek Industrial)
Beacon LF
Beacon LF (Dennings Avenue)
Fishkill Town LF
Poughkeepsie LF
Dutchess Sanitation Service
Tau Laboratories
Pleasant Valley LF
Clinton LF
Site Location
T«m/County
Colts Reck Township
/Monnouth
Preehold/Monmouth
Staten Island/Richmond
Staten Iiland/Richnond
Staten Iiland/Richmond
Brooklyn/Kings
Brooklyn/Kings
Brooklyn and Queens/Kings
and Queens
Queens/Queens
Hew Hyde Pork/Nassau
/Bronx
Piamont/Rockland
Ryack/Rockland
Clarkstown/Rockland
Orangetown/Rockland
Ramapo/Rockland
Warwick/Orange
Cronton Point/Westchester
Haverstraw/Rocklanc
Stony Point/Rockland
Mahopae/Putnam
Newburgh/Orange
Newburgh/Orange
Beacon/Dutchess
Beacon/Dutchess
Fishkill/Dutcheas
Poughkeepsie/Dutchess
Poughkeepsie/Dutchess
Poughkeepsie/Dutchess
Pleasant Valley/Dutchess
Clinton Comers/Dutchess
Haste Received
(metric tons/year)
4,380,000
-------
0 TI
The Bronx
•flONXCO
• LANDFILL INCLUDED IN LOAD ESTIM.
ONOT INCLUDED IN LOAD ESTIMATION
Figure 6-1 New Jersey and New York City Landfills
(Source : Mueller et. al, 1982)
-------
Ill
soughk«rpsle
LISSND-
LANDFILL fNCLUDEO IN
LOAD ESTIMATION
O NOT INCLUDED IN
LOAD ESTIMATION
KILOMETERS
0 . 5
NAUTICAL MILES
Ncwburtfh
• 40
ROCKLANO CO
Figure 6-2 Upper Hudson River Landfills
(Source = Mueller et al, 1982)
-------
TABLE 6-2. LEACHATE CONCENTRATIONS FOR NEW YORK/NEW JERSEY LANDFILLS
Ranion Hide <">
Pr..h
B Wall 9 Hell 19BB to 1989
Number Average Average Humber
of Average 1988 19SB 1988 1988 1988 1989 1989 1989 1989 of Average
Parameter Units Sample* Concentration 02/17 5^23 2Z22 10/" 12/19 1/22 */5_ JO/16 JO/2* Samplee Concentration
TSS me/1
BODj as/1
FColi /100ml
Orjn
RH3N
TKN
N023
TN
KM
TP
As
Be
Cd
Cz
Cu
CD
Fb
H8
Hi
Zn
•8/1
•6/1
•8/1
•8/1
•8/1
•8/1
•8/1
MS/1
MS/I
MS/1
MB/1
MB/1
MB/1
MB/1
174
96
1
39
199
IS
51
12
166
10
198
SI
196
181
215
49
33
192
290
300
4.S
51
2.3
85
1.83
0.75
14-79
2
27
120
200
S5-74
235
4.8
160
970
27
140
790
750
5
1.7
29
100
870
620
4.85
1 62
14
100
140
380
720
4.75
1.58
90
9
720
729
7.75
2.58
30
98
12
123
657
780
5.1
1.7
<5
280
<20
<10
27
<0.2
210
100
29
90 112
>2400
680
4.6
1.5
726
11
<5
160
560
<10
<5
<0.2
70
770
122
40
323
363
<0.2S
<0.08
87
64
865
929
<3.7
5
24
2
5
23
23
23
0
2
0
2
2
2
2
2
2
2
2
26
104
1206
75
661
702
4.5
11
<5
220
290
<0.2
140
435
<«>Mueller et al. 1982
(b)NYC Department of Sanitation (NYC DOS). 1989
Foz Fresh Kills. TF is assumed equal to FO4-P (i.e. 0.33 z PO4)
-------
Page 6-7
The following procedure was adopted to incorporate these recent
concentration data from Fresh Kills. The area of the Fresh Kills landfill is
currently 2,430 acres or 9.8 sq km. When subtracted from the total of 23 sq
km, the remaining region-wide landfills have an aggregate area of 13.2 sq km.
Retaining the original flow estimate of 51 cm/year for all landfills other than
Fresh Kills results in a flow of 4.8 MGD to the estuary. A flow of 1.1 MGD is
used for Fresh Kills, as estimated in NYCDOS, 1989. These flows are combined
with the average concentrations in Table 6-2 to calculated the mass discharges
from the reg-ion-wide and Fresh*~Ki-lls landfills.. The re.sults of this analysis
are shown in Table 6-3. It should be noted that NYCDOS is currently conducting
an intensive field and data evaluation at Fresh Kills. Data collection will be
performed over a two year period.
6.2 ATMOSPHERIC DEPOSITION TO THE WATER SURFACE
The New York - New Jersey Harbor and the Hudson River to Troy Dam contains
a total water surface area of 314 square miles (81,200 hectares). A summary of
water surface areas distinguished by water body is shown on Table 6-4. Above
Poughkeepsie, the Hudson River is classified "rural" with a population density
less than 140 cap/sq km (Mueller at al, 1976); the remainder of the estuary
proper is "urban." The "rural" water surface area of 14,688 hectares and the
"urban" area of 66,548 hectares each receive wet and dry atmospheric fluxes;
the sum of which is the estimated total atmospheric loading.
Wet deposition nutrient concentrations for 1989 from the Long Island Sound
Study (Olsen, 1990) are summarized in Table 6-5 beginning with the most
westerly station at Old Greenwich, Connecticut, and ending at Block Island,
Rhode Island. Arithmetic averages of the data from each station were converted
to areal fluxes assuming an annual rainfall of 42.7 inches (108.5 cm).
It may be noted that the Old Greenwich and Old Field Point stations lie in
"urban" areas since their 1980 county population densities (Greenwich,
Fairfield County, 493 cap/sq km; Old Field - Suffolk County - 544 cap/sq km)
are above 140 cap/sq km. Conversely, the Clinton and Block Island stations
-------
TABLE 6-3 LEACHATE LOADINGS FROM NY/NJ LANDFILLS
Parameter
Area
FLOW
&TSS
BODS
FCOLI
ORGN
NH3N
N023
TN
TP
As
Be
Cd
Cr
Cu
CN
Pb
Hg
0
Ni
Zn
(a) From
Units
sq km
MGD
mg/1
mg/1
/100ml
mg/1
mg/1
mg/1
mg/1
mg/1
Mg/1
Mg/1
Mg/1
Mg/1
Mg/1
Mg/1
Mg/1
Mg/1
Mg/1
Mg/1
Table 6-2
( ) denotes estimated
Region
13.2
4.8
(26)
290
300
4.5
51
2.3
85
0.75
47
2
27
120
200
65
235
4.8
160
970
Fresh
Kills
9.8
1.1
26
104
1206
75
661
(2.3)
738
1.5
11
(2)
5
220
290
10
16
0.2
140
435
Units
sq km.
MGD
mfe/day
mt/day
E12/day
mt/day
rat/day
mt/day
mt/day
mt/day
kg/day
kg/day
kg/day
kg/day
kg/day
kg/day
kg/day
kg/day
kg/day
kg/day
Mass Loadines
Region
13.2
4.8
0.472
5.266
0.035
0.082
0.926
0.042
1 . 543.
0.014
0.853
0.036
0.490
2.179
3.632
1.180
4.267
0.087
2.905
17.614
Fresh
Kills
9.8
1.1
0.108
0.433
0.032
0.312
2.751
0.010
3.071
0.006
0.046
0.008
0.021
0.915
1.207
0.042
0.067
0.001
0.583
1.810
Total
Harbor
23.0
5.9
0..580
5.699
0.068
0.394
3.677
0.051
4.615
0.020
0.899
0.045
0.511
3.094
4.838
1.222
4.334
0.088
3.488
19.424
concentration
-------
TABLE 6-4 WATER SURFACE AREAS OF NY/NJ ESTUARY
Water Surface Area
Location
Troy Dam to Poughkeepsie
Poughkeepsie to Bear Htn Bridge
Bear Mountain Bridge to Battery
Upper Bay and Lower Bay
Newark Bay and the Kills
Raritan Bay
East River and Harlem River
Jamaica Bay
Raritan River and South River
Passaic River
Hackensack River
Tvoe
Rural
Rural
Rural Subtotal
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban
Urban Subtotal
ESTUARY TOTAL
10A7
Square
Feet
112.1
46.0
158.1
175.9
189.0
36.0
223.0
36.5
36.8
9.3
3.2
6.7
716.3
874.4
Hectares
10415
4274
14688
16342
17559
3345
20718
3391
3419
862
293
619
66548
81236
Square
Kilometers
104.1
42.7
146.9
163.4
175.6
33.4
207.2
33.9
34.2
8.6
2.9
6.2
665.5
812.4
Square
Miles
40.2
16.5
56.7
63.1
67.8
12.9
80.0
13.1
13.2
3.3
1.1
2.4
256.9
313.6
Reference
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(b)
(b)
(b)
(b)
(a) From Table A- 3 in Thomann et al, 1989
(b) From Table 10 in Hydrosclence.Inc, 1975
-------
TABLE 6-S MET ATMOSPHERIC DEFOSITIOH DATA FROM LONG XSLAHD SOUHD STUDY (•)
Atoo«ph»rle
Sanmlln« Station
OLD GREENWICH, CT
41 OS 12 H
073 34 12 H
OLD FIELD POINT.
LI.HY
40 37 38 H
073 06 28 H
lUtr CLIRTOR, CT
41 13 33 R
072 32 37 W
BLOCK ISLAND. HI
41 09 30 H
071 34 04 W
Start
Pit*
660824
881101
890213
880330
690403
690413
890429
890301
890614
890703
890714
690611
890914
890920
891017
691019
691229
AV COHC
AV FLUX
680824
661101
890213
890330
890403
690413
890429
890301
890614
890703
890714
890811
690914
690920
691017
891019
691229
AV CORC
AV FLUX
880824
681101
690213
690330
690403
890413
890429
690301
690614
690703
690714
690811
690914
690920
891017
691019
891229
AV COHC
AV FLUX
860824
881101
690213
690330
890403
890413
890429
890301
890614
690703
890714
690611
690914
690920
891017
691019
691229
AVCOHC
AV FLUX
Duritioi
24-23
01-02
13-1S
30-31
04-06
13-16
29-30
01-02
14-13
03-06
14-17
11-13
14-17
20-20
17-18
19-20
29-31
•6/1
(b)
24-23
01-02
13-15
30-31
04-06
13-16
29-30
01-02
14-13
03-06
14-17
11-13
14-17
20-20
17-18
19-20
29-31
(b)
24-23
01-02
13-15
30-31
04-06
13-16
28-30
01-02
14-13
03-06
14-17
11-13
14-17
20-20
17-18
19-20
29-31
(b)
24-23
01-02
13-13
30-31
03-06
13-16
29-30
01-02
14-15
03-06
14-17
11-13
14-17
20-20
17-18
19-20
29-31
(b)
t Uniti
•8/1
•8/1
•8/1
•g/1
•8/1
•8/1
•6/1
•8/1
•6/1
•6/1
•6/1
•8/1
•6/1
•6/1
•6/1
•6/1
•8/1
ks/ht/yr
•6/1
•8/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
kg/ht/yr
•8/1
•8/1
•8/1
•6/1
•6/1
•8/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•8/1
•8/1
•6/1
kg/ht/yr
•6/1
•8/1
•6/1
•6/1
•8/1
•8/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
•6/1
kg/ht/yr
_1
1.
0.
2.
1.
15.
2.
2.
22.
0.
0.
1.
0.
6.
0.
0.
9.
PC
0
5
7
4
2
1
1
8
B
3
1
8
3
B
B
8
KB3-H
0.640
0.227
0.012
0.194
0.414
0.084
0.236
0.040
0.069
0.016
0.118
0.212
0.033.
0.177
1.917
0.156
0.114
0.044
0.026
0.108
0.057
0.083
0.084
0.915
.230
.104
.199
.165
.089
.132
.164
.033
.057
0.016
0.075
0.141
0.023
0.315
0.125
1.352
0.041
0.047
0.240
.203
.040
.166
.155
.254
.047
.027
.078
.015
0.035
0.104
1.125
H03-H
1.30
0.51
1.20
0.34
0.01 L
0.13
0.85
0.12
0.19
0.10
0.32
0.29
0.09
0.42
4.55,
0.35
0.19
0.03
0.09
O.OB
0.34
0.22
0.19
2.06
0.62
0.33
0.42
0.16
0.14
0.20
0.33
0.07
0.27
0.08
0.18
0.38
O.OB
0.24
0.23
2.72
0.14
0.11
1.20
0.71
0.14
0.28
0.29
0.36
0.30
0.07
0.1B
0.09
0.1B
0.33
3.36
TH
0.3 •
0.8 •
0.2 •
0.3 •
0.1
0.3
0.4
0.2
1.6
0.3
3.3
0.1 •
0.3
0.7
0.5
0.4
4.3
0.4 •
0.5 •
0.4 •
0.3 •
0.1
0.2
0.4
0.1
0.4
0.3
3.4
0.4
0.
0.
0.
0.
0.
0. L
0.3
0.3
3.7
P04-F
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.11
0.01
0.01
0.01
0.01
0.01
0.06
0.01
0.02
0.16
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.11
0.01
0.01
0.04
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.13
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
„
0 015
0 007
0.001 L
0.002 L
0.002 L
0.002 L
0.001 L
0.001 L
0.001 L
0.002
0.001 L
0.003
0.002
0.003 L
0.033 L
0.007
0.002 L
0.001 L
0.001 L
0.007
0.044
0.033
0.014 L
0.147 L
0.003
0.002
0.002
0.002
0.002 L
0.002 L
0.004
0.001 L
0.001 L
0.001
0.002
0.004
0.006
0.007
0.003 L
0.030 L
0.056
0.011
0.001 L
0.002 L
0.002 L
0.002
0.001 I
0.001 L
0.007
0.001 L
0.001
0.008 L
0.084 L
(a)Sourci: Olitn, 1990
(b)AV FLUX - AV CORC •
L • Lin thin; • •
10.63, ••tuning 42.7 inchti r«inf*ll/y*tr
••mpl* with MECtiiiv* holding time
-------
Page 6-11
are in "rural" areas having population densities of 134 (Middlesex County) and
108 (Washington County) cap/sq km, respectively.
Atmospheric deposition rates, both wet deposition and total deposition, are
summarized in Table 6-6 for the New York - New Jersey Harbor including the
Hudson River to Troy Dam. Earlier data (1967 to 1979) are contained in Mueller
at al, 1982 and Murphy, 1988; later nutrient data (1981 to 1985) in HydroQual,
Inc.. 1989; and the most recent information (1987-to 1989)...is from the NYS-DEC-
(Carusone, 1990) and the Long Island Sound Study (Olsen, 1990). Values used in
this report are shown in the last two columns of Table 6-7.
The total urban and rural deposition rates estimated in this analysis is
the result, of evaluation of available data and some Judgement where
constituents were not directly measured. As noted in Table 6-6, BOD5 is
estimated from TOC measurements. Rural ORG-N is estimated from the urban ORG-N
and the ratios of urban to rural NH3-N and N03-N. Total urban NH3-N is
calculated as the average wet value from sources (c), (d) and (e) multiplied by
the ratio of total urban to wet urban reported in source (a). Total rural NH3-
N is calculated as the product of the average wet values from sources (c) and
(e) and the ratio of total rural to wet rural in source (a). A similar
procedure was followed for N03-N. Total urban and rural TP is estimated as
twice the wet values from source (e). Rural Cu is arbitrarily estimated as the
urban Cu flux multiplied by the average of the ratios of the total rural to
total urban heavy metals from source (a).
Final mass rates due to total atmospheric deposition on the water surfaces
of the estuary are calculated from these selected fluxes in Table 6-6 (repeated
in Table 6-7) and the appropriate urban or rural water surface areas. As shown
in Table 6-7, rural contributions are smaller than the urban due to the smaller
surface area and generally smaller flux rates.
-------
TABLE 6-6. SWUARY OF ATMOSPHERIC DEPOSITION RATES MEASURED OR USED FOR HY/NJ ESTUARY
Source
c«
TSS
BODj
ORG-N
NH3N
N02N
N03N
TN
P04P
IP
As
Cd
Cr
Cu
Pb
Hi
Zn
kg/ha/yr
kg/ha/yr
kg/ha/yr
kg/ha/yr
kg/ha/yr
kg/ha/yr
kg/ha/yr
kg/ha/yr
kg/ha/yr
g/ha/yr
g/ha/yr
g/ha/yr
g/ha/yr
g/ha/yr
g/ha/yr
g/ha/yr
732
60
474
2.5 4.3
5.2 5.6
0.08 0.24
7.2 11.6
6.1 2.6
48 4.8
258
10
147
7.9
9.6
55
828
86
1128
3.8 5.0
10.1 6.7
0.10 0.30
12.4
4.4
6.0
300
13
324
512
274
552
1.2
0.0
6.5
0.6
0.0
6.0
7.6
1.8
2.7
0.7
518
850
286
740
105
17.3
15.1
3.6
11.8
l.»
5.4 3.3
24.2 4.8
0.13 L
3.6
1.2 1.6
3.1 3.0
3.6
0.12 L
1.4 0.09 L 0.06 L
57
0.12
105
17.3
"-1
2.2
0.0
8.1
25 4
0.18
Total
Rural
105
8.2
1.0
0.0
5.4
18.5
0.12
1.0
10
20
135
147
19
223
7.9
9.8
55
518
BSD
286
740
12.4
4.4
6.0
140
300
13
324
(.) Mu.ll.r .t .1, 1982; wet and dry deposition d.ta from 1967-1979
(b) Murphy. 1988; 9/77-9/78 wet and dry depoaltlon data from Union, HJ
I., Carueon. 1990; 1987 data of HYS DEC; Urban i. aver.,- of data at Ei.enhower Par,. Hemp.t.ad. R and Whit. Plain.. HY at.tion. Rural I. from Mt
Rinnan atation. town of Kent. NY in Putnam Co
—— - — - - ~- - "•
as
'
(f) John, 1990; 1989 data
of 11 urban stations. Dry N
(g) Values used in this report
L" Less than
swrursai-s;
ssw rrsr- -
-------
TABLE 6-7. ATMOSPHERIC LOADINGS TO WATER SURFACES OF NY/NJ HARBOR
Total Deposition Rate(a>
Parameter
TSS
BODS
ORG-N
NH3-N
N02-N
N03-N
TN
TP
As
Cd
Cr
Cu
Pb
Ni
Zn
Units
kg/ha/yr
kg/ha/yr
kg/ha/yr
kg/ha/yr
kg/ha/yr
kg/ha/yr
kg/ha/yr
kg/ha/yr
g/ha/yr
g/ha/yr
g/ha/yr
g/ha/yr
g/ha/yr
g/ha/yr
g/ha/yr
Urban
105
17.3
15.1
2.2
0.0
8.1
25.4
0.18
7.9
9.6
55
518
850
286
740
Rural
105
8.2
12.1
1.0
0.0
5:4
18.5
0.12
12.4
4.4
6.0
140
300
13
324
Units
mt/day
mt/day
mt/day
mt/day
mt/day
mt/day
mt/day
mt/day
kg/day
kg/day
kg/day
kg/day
kg/day
kg/day
kg/day
Atmospheric Loadings
Urban
19.14
3.15
2.75
0.40
0
1.48
4.63
0.03
1.44
1.75
10.03
94.4
155.0
52.1
134.9
Rural (c)
4.23
0.33
0.49
0.04
0
0.22
0.74
0.00
0.50
0.18
0.24
5.6
12.1
0.5
13.0
Total
23.37
3.48
3.24
0.44
0
1.69
5.37
0.04
1.94
1.93
10.27
100.1
167.0
52.7
147.9
(*0 From Table 6-6
URBAN TOTAL DEPOSITION RATE * 0.1823 [66548 hectares (Table 6-4)/
1000/365]
RURAL TOTAL DEPOSITION RATE * 0.04024 [14688 hectares (Table 6-4)/
1000/365]
•-7O
-------
Page 7-1
7. REFERENCES
Aitchison, J. and J.A.C. Brown, 1957. The Lognormal Distribution; Cambridge
University Press; Reprinted 1981; 176 pp.
Carusone, C.. 1990. Private Communication from New York State Department of
Environmental Conservation to C.L. Dujardin, HydroQual, Inc., May 17, 1990,
6 pp.
Clark, S.L., 1990. Lurking on the Bottom: Heavy Metals in the Hudson-Raritan
Estuary; Report of the Environmental Defense Fund, New York, New York, May
1990; 88 pp.
Di Toro et al, 1978. Rainfall-Runoff and Statistical Receiving Water Models;
D.M. Di Toro, John A. Mueller, M.J. Small; NYC 208 Task Report 225 prepared
by Hydroscience, Inc. for Hazen and Sawyer Engineers and NYCDWR; March 1978,
271 pp.
Elson T. Killam Associates, Inc. 1976. Report Upon Overflow Analysis to
Passaic Valley Sewerage Commissioners, Passaic River Overflows, 211 pp. and
Appendix.
Feuerstein, D.L. and Maddaus, W.D. Wastewater Management Program, Jamaica Bay,
New York, Volume I, Summary Report, Report to U.S. Environmental Protection
Agency, EPA-600/2-76-222a, September 1976.
HydroQual, Inc. 1989. Assessment of Pollutant Inputs to New York Bight, Report
prepared for Dynamac Corp., March 21, 1989; 4 Chapters and Reference.
HydroQual, 1986. Task 2 Assessment of Discharges and Water Quality and Their
Interrelationships, prepared for City of New York, DEP, Bureau WPC, WQ
Development Unit for the City-Wide Combined Sewer Overflow Study, February
1986.
-------
Page 7-2
Hydroscience, Inc., 1975. Development of a Steady-State Water Quality Model
for New York Harbor, Volume I, Prepared for Interstate Sanitation
Commission, October 1975, 302 pp. and Reference.
ISC, 1989. 1989 Annual Report; Interstate Sanitation Commission, January 24,
1990, 46 pp. and Appendix.
John, G., 1990. Private Communication from New Jersey Department of
Environmental Protection to C. Dujardin, HydroQual, Inc., Preliminary Acid
Deposition Information, July 18, 1990; 10 pp.
Mueller et al, 1976. Contaminant Inputs to the New York Bight; James A.
Mueller, J.S. Jeris, A.R. Anderson and C.F. Hughes; Report prepared by
Environmental Engineering Program, Manhattan College for NOAA, NOAA
Technical Memorandum ERL-MESA-6. April 1976, 347 pp.
Mueller et al, 1982. Contaminant Inputs to the Hudson-Raritan Estuary; James
A. Mueller, T.A. Gerrish and M.C. Casey; Report prepared by HydroQual, Inc.
for NOAA; NOAA Technical Memorandum OMPA-21. August 1982, 191 pp. and 7
Appendices.
Murphy, C.H., 1988. The Atmospheric Contribution to Pollutant Deposition in
the Hudson-Raritan Estuary, in the Hudson-Raritan: State of the Estuary,
Water Quality of New Jersey Coastal Waters, Vol. 1, Part 2, Appendix, 12 pp.
New York City Department of Sanitation, 1989. Request for Proposals - Fresh
Kills Landfill Leachate Mitigation System; NYCDOS, Office of Resource
Recovery and Water Disposal Planning, 63 pp and Exhibit.
O'Connor, D.J. and Mueller, J.A., 1984. Water Quality Analysis of New York
Harbor Complex, Proceedings of the Environmental Engineering Division, ASCE,
Vol. 110, No. 6, December 1984, pp. 1027-1047.
-------
Page 7-3
Olsen, C. 1990. Fax of Atmospheric Data for Long Island Sound Study, from
Connecticut Department of Environmental Protection to T. Newman, HydroQual,
Inc., March 9, 1990, 8 pp.
USEPA, 1983. Final Report of the National Urban Runoff Program (NURP), Water
Planning Division, U.S. Environmental Protection Agency, Washington, D.C. ,
December 30, 1983; 9 Chapters.
Roy F. Weston, Inc. 1977. Memorandum to TAG, The Non-Point Source Program:
Determining the Total Pollutional Load During a Rainfall Event, January 31,
1977.
Thomann et al, 1989. Mathematical Model of the Long-Term Behavior of PCBs in
the Hudson River Estuary, by R.V. Thomann, Mueller, R.P. Winfield and C-R
Huang, Report to the Hudson River Foundation, June 1989, 8 Chapters,
Reference and Appendix.
I
-------
List of Abbreviations
Parameters
Ag
As
BOD
COD
Cd
CN
Cr
Cu
FCOLI
Hg
NH3
Ni
N02
NO 3
ORGN
Pb
PCB
TN
TOC
TP
TSS
Zn
cap/sq km
cfs
cm/yr
g/ha/yr
kg/d
kg/ha/yr
HGD
mg/1
org/100 ml
sq/km
Silver
Arsenic
Biochemical Oxygen Demand
Chemical Oxygen Demand
Cadmium
Cyanide
Chromium
Copper
Fecal Coliform Bacteria
Mercury
Ammonia
Nickel
Nitrite
Nitrate
Organic Nitrogen
Lead
Polychlorinated Biphenyls
Total Nitrogen
Total Organic Carbon
Total Phosphorus
Total Suspended Solids
Zinc
Units
capital per square kilometer
cubic feet per second
centimeter per year
grams per hectare per year
kilograms per day
kilograms per hectare per year
million gallons per day
milligrams per liter
organisms per 100 milliliters
square kilometer
micro-grams per liter
-------
ATM
BCUA
CSO
Effl
IND
Infl
LCH
LRSA
MCUA
MLE
MUN
PVSC
RRMP
RVSA
SD
SE
STP
sw
TRIE
WUTP
Other
atmospheric
Bergen County Utilities Authority
combined sever overflow
effluent
industrial
influent
leachate
Linden-Roselle Sewerage Authority
Middlesex County Utilities Authority
maximum likelihood estimator
municipal
Passaic Valley Sewerage Commission
rainfall-runoff modeling program
Rahway Valley Sewerage Authority
sewer district
site event
sewage treatment plant
stormwater
tributary
wastewater treatment plant
-------
-------
United States Environmental Protection Agency
Marine and Wetlands Protection Branch
Region II
TASK 7.1
ASSESSMENT OF POLLUTANT LOADINGS TO
NEW YORK - NEW JERSEY HARBOR
APPENDICES
Job Number: WOCL0302
Prepared by:
HydroQual, Inc.
1 Lethbridge Plaza
Mahwah, New Jersey 07430
January 1991
-------
CONTENTS
APPENDIX A: 1987 NYC STP METALS CONCENTRATIONS INFLUENT, EFFLUENT,
PERCENT REMOVALS
APPENDIX B: TRIBUTARY CONCENTRATIONS 1981 - 1989
APPENDIX C: LOG PROBABILITY PLOTS TRIBUTARY MASS DISCHARGES AT GAGING
STATIONS
APPENDIX D: EXAMPLE OF ANALYSIS OF CENSORED DATA
APPENDIX E: LOG PROBABILITY PLOTS TRIBUTARY MASS DISCHARGES AT GAGING
STATIONS TOXIC PARAMETERS
APPENDIX F: LOG PROBABILITY PLOTS TRIBUTARY CONCENTRATIONS AND FLOWS
AT GAGING STATIONS
APPENDIX G: LOG - LOG PLOTS OF TRIBUTARY CONCENTRATION VS FLOW AT GAGING
STATIONS
APPENDIX H: LOG PROBABILITY PLOTS CSO/SW CONCENTRATIONS NYCDEP CSO
STUDIES
APPENDIX I: PRIORITY POLLUTANT DATA
-------
APPENDIX A
1987 NYC STP
METALS CONCENTRATIONS
INFLUENT, EFFLUENT, PERCENT REMOVALS
-------
1987 NYC STP INFLUENT NETALS CONCENTRATIONS
UI
UI
UI
UI
UI
UI
UI
UI
UI
UI
UI
UI
UI
UI
JAN
FEB
MAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
MLE
AV
INFL
As
ug/l
1.40
0.20
1.50
0.80
0.20
1.50
2.20
0.60
1.00
6.30
3.40
0.80
1.72
1.66
INFL
Be
ug/l
0.10 L
0.40
0.10
0.10
0.10
0.10
0.20
0.10
0.10
0.10
0.10
0.01
0.14
0.13
INFL
Cd
ug/l
0.4
0.2
0.6
0.4
0.4
0.3
0.5
2.1
0.3
1.1
1.7
0.6
0.7
0.7
INFL
Cr
ug/l
6.6
22.0
20.0
6.9
58.0
9.5
9.7
13.0
1S.O
11.0
120.0
6.5
22.3
24.9
INFL
Cu
ug/l
65.0
86.0
140.0
710.0
100.0
89.0
69.0
74.0
66.0
110.0
130.0
68.0
127
142
INFL
CN
ug/l
20.0 L
20.0 L
20.0 L
20.0 L
30.0
30.0
20.0 L
20.0 L
20.0 L
20.0 L
22
22.0
INFL
Pb
ug/l
11.0
9.0
29.0
27.0
27.0
24.0
13.0
20.0
9.7
16.0
44.0
13.0
20.2
20.2
INFL
Ha
ug/l
0.2
0.3
0.4
5.7
0.4
0.1
0.1
0.4
0.1 L
0.3
0.1 L
0.3
0.5
0.7
INFL
Ni
ug/l
3.2
6.0
24.0
9.0
33.0
18.0
3.8
7.3
18.0
6.5
41.0
2.6
14.6
14.4
INFL
Zn
ug/l
64
98
88
1600
830
270
150
100
61
260
170
77
277
314
"L" following a parameter Means "less than"
1987 NYC STP EFFLUENT NETALS CONCENTRATIONS
UI
UI
UI
UI
UI
UI
UI
UI
UI
UI
UI
UI
UI
UI
JAN
FEB
NAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NLE
AV
EFFL
As
ug/l
0.80
0.40
2.00
0.80
2.20
0.60
3.00
0.40
1.30
0.70
1.20
3.10
1.38
1.38
EFFL
Be
ug/l
0.10
0.20
0.10
0.10 L
0.10 L
0.10 L
0.20
0.30
0.10 L
0.10
0.30
0.19
0.16
0.16
EFFL
Cd
ug/l
0.2
0.1
0.1
0.5
0.3
0.8
0.2
1.1
0.3
0.5
0.4
0.3
0.4
0.4
EFFL
Cr
ug/l
5.6
2.8
2.6
2.7
84.0
11.0
12.0
17.0
19.0
4.9
11.0
18.0
14.9
15.9
EFFL
Cu
ug/l
42.0
62.0
48.0
93.0
17.0
34.0
33.0
42.0
26.0
32.0
39.0
46.0
42.8
42.8
EFFL
CN
ug/l
20.0 L
20.0 L
20.0 L
20.0 L
20.0
20.0
20.0 L
20.0 L
20.0 L
20.0 L
20
20
EFFL
Pb
ug/l
4.5
12.0
17.0
16.0
41.0
18.0
4.3
13.0
12.0
15.0
57.0
6.5
17.9
18.0
EFFL
Hg
ug/l
0.1
0.1
0.4
0.2
0.1
0.5
0.2
0.4
0.4
0.4
0.5
0.4
0.3
0.3
EFFL
Ni
ug/l
4.0
10.0
14.0
11.0
59.0
12.0
11.0
8.9
20.0
13.0
5.6
14.0
14.6
15.2
EFFL
Zn
ug/l
41
9
34
160
130
54
41
63
31
20
22
56
56
55
"L" following a parameter means "less than"
1987 NYC STP PERCENT REMOVALS
As Be Cd Cr Cu CN Pb Ng Ni Zn
UI
UI
UI
UI
UI
UI
UI
UI
UI
UI
UI
UI
JAN
FEB
NAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
43
-100
-33
0
-1000
-36
33
-30
89
65
-288
0
50
0
0
0
0
0
-200
0
0
-200
-1800
50
50
83
-25
25
-167
60
48
0
55
76
50
15
£
61
-45
-16
-24
-31
-27
55
91
-177
35
28
66
87
83
62
52
43
61
71
70
32
0
0
0
0
33
33
0
0
0
0
59
-33
41
41
-52
25
67
35
-24
6
-30
50
50
67
0
96
75
-400
-100
0
-300
-33
-400
-33
-25
-67
42
-22
-79
33
-189
-22
-11
-100
86
-438
36
91
61
90
84
80
73
37
49
92
87
27
Out of the 118 calculated percent removals above, 36 -or 31X- are negative
1987 ANNUAL AVERAGES (MLE)
UI
UI
UI
INFL
EFFL
CSO
As
ug/l
1.72
1.38
1.70 1
Be
ug/l
0.14
0.16
0.10 I
Cd
ug/l
0.70
0.40
0.70 I
Cr
ug/l
22.29
14.93
22.00 I
Cu
ug/l
127.08
42.78
127.00 I
CN
ug/l
21.98
20.00
22.00 I
Pb
ug/l
20.21
17.89
20.00 I
H9
ug/l
0.49
0.32
0.49 I
Ni
ug/l
14.65
14.61
15.00
Zn
ug/l
276.96
55.51
1 277.00 I
For CSO, »N"« Measured CSO Cone; •!•• STP Influent Cone
INFL
EFFL
CSO
FLOW
NGD
327.00
327.00
11.93
As
kg/d
2.13
1.71
0.08
Be
kg/d
0.17
0.19
0.00
Cd
kg/d
0.86
0.50
0.03
Cr
kg/d
27.58
18.47
0.99
Cu
kg/d
'B-B
s:?!
CN
kg/d
27.19
24.74
0.99
Pb
kg/d
25.01
22.13
0.90
kg/d
0.61
0.39
0.02
Ni
kg/d
18.12
18.08
0.68
Zn
kg/d
342.61
68.67
12.50
-------
1987 NYC STP INFLUENT METALS CONCENTRATIONS
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
JAN
FEB
MAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NLE
AV
INFL
As
ug/l
0.60
1.90
0.10 L
0.50
0.80
1.90
1.10
0.70
4.10
6.30
0.20
1.60
1.79
1.65
INFL
Be
ug/l
0.10 L
0.40
0.10
0.20
0.10
0.10
0.10
0.10
0.10
0.10
0.30
0.12
0.15
0.15
INFL
Cd
ug/l
1.5
3.3
5.4
1.2
1.9
1.8
1.8
1.9
2.8
2.0
4.0
4.3
2.6
2.7
INFL
Cr
ug/l
16.0
91.0
54.0
12.0
86.0
18.0
20.0
39.0
19.0
12.0
35.0
12.0
33.9
34.5
INFL
Cu
ug/l
78.0
2500.0
200.0
200.0
89.0
180.0
95.0
290.0
97.0
110.0
120.0
94.0
250
338
INFL
CN
ug/l
30.0
60.0
30.0
20.0
30.0
30.0
20.0 L
180.0
20.0 L
30.0
42
45.0
INFL
Pb
ug/l
10.0
12.0
28.0
34.0
20.0
19.0
18.0
45.0
13.0
§4.0
1.0
18.0
22.7
22.7
INFL
ug/?
0.2
9.2
18.0
4.6
5.8
2.0
5.1
2.4
0.5
1.1
1.8
3.7
5.2
4.5
INFL
Ni
ug/l
9.0
35.0
31.0
13.0
41.0
11.0
28.0
35.0
37.0
16.0
36.0
7.4
25.6
25.0
INFL
Zn
ug/l
99
140
140
1400
260
310
170
310
110
170
150
130
254
282
"L" following a parameter means "less than"
1987 NYC STP EFFLUENT METALS CONCENTRATIONS
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NLE
AV
EFFL
As
ug/l
0.60
0.40
1.90
1.40
1.50
1.20
1.80
0.60
1.00
3.10
0.90
1.20
1.38
1.30
EFFL
Be
ug/l
0.10 L
0.10
0.10 L
0.10
0.10 L
0.10
0.20
0.10
0.10 L
0.20
0.10
0.08
0.12
0.12
EFFL
Cd
ug/l
0.9
0.6
0.8
0.6
0.7
1.0
0.8
1.0
2.9
1.3
1.6
1.8
1.2
1.2
EFFL
Cr
ug/l
8.2
8.2
9.5
12.0
66.0
6.6
2.4
14.0
8.1
9.0
9.8
9.4
13.0
13.6
EFFL
Cu
ug/l
26.0
550.0
68.0
130.0
17.0
70.0
26.0
2200.0
31.0
21.0
420.0
43.0
276.4
300.2
EFFL
CN
ug/l
30.0
30.0
40.0
40.0
20.0 L
20.0 L
20.0 L
20.0 L
20.0 L
i;
EFFL
Pb
ug/l
3.2
4.4
11.0
23.0
27.0
29.0
6.4
12.0
2.8
20.0
18.0
43.0
18.9
16.7
EFFL
ug/?
7.5
13.0
20.0
3.4
10.0
6.9
3.8
2.7
2.7
1.8
5.2
4.2
6.6
6.8
EFFL
Ni
ug/l
91.0
16.0
20.0
11.0
63.0
28.0
5.2
22.0
24.0
2.4
10.0
12.0
20.2
25.4
EFFL
Zn
ug/l
58
41
48
170
120
68
44
64
34
15
21
72
64
63
"L" following a parameter means "less than"
1987 NYC STP PERCENT REMOVALS
As
Be
Cd
Cr
Cu
CN
Pb
Hg
Ni
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
JAN
FEB
MAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
0
79
-1800
-180
-87
37
-64
14
76
51
-350
25
0
75
0
50
0
0
-100
0
0
-100
67
33
40
82
85
50
63
44
56
47
-4
35
60
58
49
91
82
0
23
63
88
64
57
25
72
22
67
78
66
35
81
61
73
-659
68
81
-250
100
50
0
-100
-33
33
0
89
0
33
68
63
61
32
-35
-53
64
73
78
17
42
-139
-3650
-41
-11
26
-241
25
-13
-440
-64
-189
-14
-911
54
35
15
-54
•155
81
37
35
85
72
-62
Out of the 118 calculated percent removals above. 29 -or 25X- are negative
1987 ANNUAL AVERAGES (MLE)
Zn
41
71
66
88
54
78
74
79
69
91
86
45
HP
HP
HP
INFL
EFFL
CSO
INFL
EFFL
CSO
FLOW
NGD
136.08
136.08
20.76
As
ug/l
1.79
1.38
1.80 1
For CSO.
As
kg/d
0.92
0.71
0.14
Be
ug/l
0.15
0.12
0.10 1
Cd
ug/l
2.65
1.18
2.60 I
«M"« Measured CSO
Be
kg/d
0.08
0.06
0.01
Cd
kg/d
1.36
0.61
0.20
Cr
ug/l
33.92
13.05
34.00 I
Cone; "
Cr
kg/d
'fcfc
2.67
Cu
ug/l
249.60
276.44
250.00
!»• STP
Cu
kg/d
128.49
142.31
19.63
CN
ug/l
41.65
26.62
I 42.00
Influent
CN
kg/d
21.44
13.70
3.30
Pb
ug/l
22.68
18.90
I 23.00 I
Cone
Pb
kg/d
11.68
9.73
1.81
ug/?
5.23
6.59
5.23 I
kg/§
2.69
3.39
0.41
Ni
ug/l
25.55
20.19
26.00 I
Ni
kg/d
13.15
10.39
2.04
Zn
ug/l
253.83
63.75
254.00
Zn
kg/d
130.67
32.82
19.95
-------
1987 NYC STP INFLUENT METALS CONCENTRATIONS
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
JAN
FEB
MAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NLE
AV
INFL
As
H0
ug/l
0.40
1.10
0.10 L
1.50
1.60
3.10
0.10
1.10
5.00
3.00
3.00
1.90
2.37
1.83
INFL
Be
ug/l
0.10
0.20
0.10 L
0.20
0.20
0.10
0.10
0.10
0.10
0.20
0.10
0.10
0.13
0.13
INFL
Cd
ug/l
0.8
3.5
6.0
1.6
3.8
1.3
2.8
3.9
1.6
1.7
1.6
2.4
2.6
2.6
INFL
Cr
ug/l
54.0
120.0
170.0
48.0
190.0
140.0
160.0
160.0
88.0
94.0
130.0
75.0
126.3
119.1
INFL
Cu
ug/l
66.0
130.0
340.0
140.0
150.0
190.0
180.0
120.0
140.0
200.0
150.0
164
164
INFL
CN
ug/l
120.0
120.0
50.0
30.0
40.0
20.0 L
370.0
30.0
20.0 L
70.0
82
87.0
INFL
Pb
ug/l
60.0
130.0
200.0
8:8
160.0
2400.0
81.0
62.0
92.0
220.0
74.0
209.7
301.5
INFL
Hg
ug/l
1.0
0.1
0.7
0.2
0.4
0.4
0.3
0.3
0.1
0.6
0.2
0.6
0.4
0.4
INFL
Ni
ug/l
68.0
87.0
100.0
86.0
90.0
44.0
48.0
70.0
36.0
64.0
72.0
60.0
68.9
68.8
INFL
Zn
ug/l
73
50
130
240
260
190
160
140
94
56
120
132
131
"L" following a parameter mans "less than"
1987 NYC STP EFFLUENT METALS CONCENTRATIONS
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
MLE
AV
EFFL
AS
ug/l
0.40
1.90
1.40
1.30
2.30
2.50
1.60
2.20
2.80
14.00
14.00
0.40
3.60
3.73
EFFL
Be
ug/l
0.10 L
0.10
0.10 L
0.10
0.10 L
0.10
0.70
0.20
0.10 L
0.10
0.10
0.13
0.15
0.16
EFFL
Cd
ug/l
1.3
1.1
2.0
2.6
1.3
1.2
2.0
2.1
1.7
0.9
3.6
1.2
1.7
1.8
EFFL
Cr
ug/l
67.0
64.0
56.0
13.0
120.0
84.0
50.0
110.0
71.0
32.0
86.0
45.0
68.7
66.5
EFFL
Cu
ug/l
150.0
140.0
340.0 a
200.0
370.0
390.0
310.0
180.0 b
430.0
230.0
43.0
140.0
252.8
243.6
EFFL
CN
ug/l
130.0
130.0
10.0
30.0
20.0 L
20.0 L
20.0 L
30.0
20.0 L
20.0 L
40
43
EFFL
Pb
ug/l
40.0
33.0
36.0
110.0
34.0
73.0
26.0
55.0
57.0
40.0
140.0
11.0
55.1
54.6
EFFL
ug/?
0.4
0.1
0.6
0.3
0.3
0.3
0.2
0.7
0.3
0.7
0.5
0.4
0.4
0.4
EFFL
Ni
ug/l
88.0
79.0
74.0
100.0
72.0
44.0
43^
42.0
41.0
73.0
§:?
EFFL
Zn
ug/l
130
60
80
230
200
140
130
170
45
42
99
127
125
"L" following a parameter means "less than"
(a) reported as 3400
(b) reporte
1987 NYC STP PERCENT REMOVALS
As Be
Cd
Cr
Cu
CN
Pb
•Hg
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
0
•73
-1300
13
-44
19
-1500
-100
44
-367
-367
79
0
50
0
50
50
0
-600
-100
0
50
0
-30
-63
69
67
-63
66
8
29
46
-6
47
-125
50
-24
47
67
73
37
40
69
31
19
66
34
40
-127
-8
0
-164
-160
-63
0
-258
-64
79
-8
-8
Mo
50
0
95
0
71
33
75
82
-77
56
54
99
32
8
57
36
85
60
0
14
-50
25
25
33
-133
-200
-150
33
Ni
26
-16
20
0
17
-19
34
43
-22
Out of the 117 calculated percent removals above. 39 -or 33X- are negative
1987 ANNUAL AVERAGES (MLE)
Zn
-78
-20
38
29
12
"7
-81
18
NC
NC
NC
INFL
EFFL
CSO
INFL
EFFL
CSO
FLOW
MOD
317.75
317.75
23.00
As
ug/l
2.37
3.60
2.40 I
For CSO,
As
kg/d
2.85
4.33
0.21
Be
ug/l
0.13
0.15
0.10 1
Cd
ug/l
i:B
2.60 I
Cr
ug/l
126.31
68.74
114.00
"M"« Measured CSO Cone;
Be
kg/d
0.16
0.18
0.01
Cd
kg/d
3.11
2.10
0.23
Cr
kg/d
151.83
82.63
9.92
Cu
ug/l
164.21
252.80
M 168.00
•I"» STP
Cu
kg/d
197.38
303.88
14.62
CN
ug/l
81.71
40.37
M 20.00
Influent
CN
kg/d
S.22
.53
1.74
Pb
ug/l
209.70
55.06
M 187.00 M
Cone
Pb
kg/d
252.07
66.18
16.27
Jl
0.42
0.41
0.42
kg/§
0.50
0.49
0.04
Ni
ug/l
68.93
63.69
I 52.00 M
Ni
kg/d
KB
4.52
Zn
ug/l
131.64
126.68
251.00 M
Zn
kg/d
158.23
152.28
21.84
-------
1987 NYC STP INFLUENT NETALS CONCENTRATIONS
26
26
26
26
26
26
26
26
26
26
26
26
26
JAN
FEB
MAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NLE
AV
INFL
As
ug/l
1.20
1.00
0.10 L
2.10
0.70
1.60
1.10
0.20
0.10 L
1.10
0.50
2.70
1.20
1.03
INFL
Be
ug/l
0.10 L
0.30
0.10
0.20
0.10
0.10
0.10
0.30
0.10
0.10
0.20
0.04
0.15
0.15
INFL
Cd
ug/l
0.4
2.2
1.3
0.4
0.5
2.0
0.6
0.9
2.1
1.0
0.9
0.8
1.1
1.1
INFL
Cr
ug/l
37.0
78.0
49.0
12.0
76.0
28.0
21.0
44.0
46.0
2.8
45.0
20.0
43.1
38.2
INFL
Cu
UQ/l
70.0
150.0
120.0
47.0
110.0
110.0
120.0
150.0
200.0
130.0
130.0
140.0
124
123
INFL
CN
ug/l
40.0
30.0
90.0
20.0 L
20.0 L
20.0 L
60.0
20.0
20.0 L
20.0 L
33
34.0
INFL
Pb
ug/l
11.0
8.5
18.0
11.0
21.0
24.0
19.0
34.0
46.0
15.0
18.0
18.0
20.2
20.3
INFL
Hg
ug/l
0.9
0.5
0.4
0.2
0.4
0.4
0.5
0.5
0.2
0.6
0.1
0.7
0.5
0.5
INFL
Ni
ug/l
33.0
59.0
98.0
35.0
54.0
46.0
150.0
37.0
43.0
180.0
48.0
6.0
69.5
65.8
INFL
Zn
ug/l
81
73
85
690
180
140
160
110
160
110
94
220
166
175
"Ln following a parameter Beans "less than"
1987 NYC STP EFFLUENT METALS CONCENTRATIONS
26
26
26
26
26
it
26
26
26
26
26
26
26
26
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
MLE
AV
EFFL
As
ug/l
0.30
0.50
1.50
1.20
1.80
8.60
1.80
0.40
3.30
3.50
3.90
3.50
2.70
2.53
EFFL
Be
ug/l
0.10 L
0.10
0.10 L
0.10
0.10 L
0.10
0.40
0.20
0.10 L
0.10
0.20
0.04
0.13
0.14
EFFL
Cd
ug/l
0.2
0.2
0.1
2.1
0.2
0.7
0.1
0.8
0.1
0.7
5.8
0.4
0.8
1.0
EFFL
Cr
ug/l
9.5
7.7
5.0 L
64.0
71.0
14.0
6.3
14.0
8.5
1.5
9.8
59.0
22.9
22.5
EFFL
Cu
ug/l
38.0
44.0
34.0
130.0
19.0
41.0
32.0
33.0
41.0
26.0
32.0
59.0
43.1
44.1
EFFL
CN
ug/l
40.0
20.0
20.0
20.0 L
20.0 L
20.0 L
20.0
20.0
20.0 L
20.0 L
22
22
EFFL
Pb
ug/l
E.3
.1 L
4.7
22.0
11.0
11.0
0.9
14.0
18.0
5.1
170.0
9.1
30.3
22.4
EFFL
Hg
ug/T
0.3
0.1
0.3
0.8
0.4
0.6
0.3
0.3
1.2
3.1
0.3
0.9
0.7
0.7
EFFL
Ni
ug/l
19.0
43.0
40.0
40.0
82.0
45.0
27.0
38.0
37.0
50.0
2.1
24.0
43.4
37.3
EFFL
Zn
ug/l
83
20
57
150
140
110
52
65
60
30
30
110
77
76
"L" following a parameter means "less than"
1987 NYC STP PERCENT REMOVALS
As
Be
Cd
Cr
Cu
CN
Pb
Hg
Ni
26
26
26
26
26
26
26
26
26
26
26
26
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
75
50
-1400
43
•157
-437
-64
-100
-3200
-218
-680
-30
0
67
0
50
0
0
-300
33
0
0
0
0
50
91
92
-425
60
65
83
11
95
30
-544
50
74
90
90
-433
7
50
70
68
82
46
78
-195
46
71
72
•177
83
63
73
78
80
80
75
58
0
33
78
0
0
0
67
0
0
0
70
99
74
-100
48
54
95
59
61
66
-844
49
67
80
25
-300
0
-50
40
40
-500
-417
-200
-29
42
27
59
-14
-52
2
82
14
72
96
-300
Out of the 118 calculated percent removals above, 28 -or 24X- are negative
Zn
33
78
22
21
68
41
63
73
68
50
1987 ANNUAL AVERAGES (MLE)
it
26
INFL
EFFL
CSO
INFL
EFFL
CSO
FLOW
NGD
65.00
65.00
4.26
As
ug/l
1.20
2.70
1.20 I
For CSO,
As
kg/d
0.30
0.66
0.02
Be
ug/l
0.15
0.13
0.10 I
Cd
ug/l
1.09
0.85
1.10 I
"N"» Measured CSO
Be
kg/d
0.04
0.03
0.00
Cd
kg/d
0.27
0.21
0.02
Cr
ug/l
43.06
22.89
10.00 N
Cone; "I
Cr
kg/d
10.59
5.63
0.16
Cu
ug/l
124.13
43.14
37.00
l»« STP
Cu
kg/d
30.52
10.61
0.60
CN
ug/l
33.22
21.90
N 24.00
Influent
CN
kg/d
8.17
5.39
0.39
Pb
ug/l
KB
M 20.00 M
Cone
Pb
kg/d
4.97
7.44
0.32
ug/f
0.46
0.69
0.20 N
kg/8
0.11
0.17
0.00
Ni
ug/l
69.50
43.45
40.00 M
Ni
kg/d
17.09
10.68
0.65
Zn
ug/l
165.87
76.90
190.00 M
Zn
kg/d
40.79
18.91
3.06
-------
1987 NYC STP INFLUENT NETALS CONCENTRATIONS
CI
CI
CI
CI
CI
CI
CI
CI
CI
CI
CI
CI
CI
CI
JAN
FEB
MAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
MLE
AV
INFL
As
ug/l
0.90
0.10 L
0.10
0.90
1.50
3.80
0.70
0.10 L
0.10 L
2.80
0.90
4.40
1.70
1.36
INFL
Be
ug/l
0.10 L
0.30
0.10 L
0.20
0.10
0.10
0.20
0.10
0.10
0.10
0.20
0.04
0.14
0.14
INFL
Cd
ug/l
0.5
1.8
0.5
0.1
0.1 L
0.2
0.5
0.5
0.3
0.5
0.1
0.3
0.4
0.5
INFL
Cr
ug/l
8.5
5.0
3.2
5.0
58.0
9.4
8.4
15.0
20.0
7.8
32.0
4.3
14.1
14.7
INFL
Cu
ug/l
53.0
130.0
380.0
58.0
67.0
100.0
140.0
590.0
110.0
45.0
90.0
98.0
146
155
INFL
CN
ug/l
190.0
20.0 L
20.0
20.0 L
20.0 L
20.0 L
20.0 L
40.0
20.0 L
20.0 L
34
39.0
INFL
Pb
ug/l
8.8
24.0
23.0
0.1 L
12.0
10.0
15.0
18.0
20.0
5.5
8.6
20.0
25.0
13.8
INFL
HQ
ug/l
1.8
1.3
1.0
0.2
0.6
0.1
0.5
0.5
0.2
0.3
1.6
0.9
0.8
0.8
INFL
Ni
ug/l
6.0
12.0
23.0
15.0
21 !o
28.0
12.0
30.0
29.0
32.0
21.0
22.3
21.8
INFL
Zn
ug/l
45
41
100
390
170
120
110
340
86
40
40
93
129
131
"L" following e parameter Means "less than"
1987 NYC STP EFFLUENT METALS CONCENTRATIONS
CI
CI
CI
CI
CI
CI
CI
CI
CI
CI
CI
CI
CI
CI
JAN
FEB
MAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NLE
AV
EFFL
As
ug/l
0.50
0.10 L
1.20
0.30
1.10
1.70
1.70
0.80
2.70
3.40
4.30
1.50
1.84
1.61
EFFL
Be
ug/l
0.10 L
0.10
0.10
0.10
0.10 L
0.10
0.50
0.10
0.10 L
0.10
0.10
0.09
0.13
0.13
EFFL
Cd
ug/l
0.2
0.1
0.1
0.9
0.1
0.6
0.2
0.3
0.1
1.2
0.2
0.2
0.3
0.4
EFFL
Cr
ug/l
2.2
10.0
2.6
2.9
71.0
9.4
4.6
21.0
5.0 L
5.7
5.4
11.0
11.1
12.6
EFFL
Cu
ug/l
110.0
79.0
70.0
180.0
59.0
99.0
89.0
60.0
67.0
75.0
42.0
64.0
82.4
82.8
EFFL
CN
ug/l
180.0
20.0 L
20.0 L
20.0 L
20.0 L
20.0 L
20.0 L
30.0
20.0 L
20.0 L
32
37
EFFL
Pb
ug/l
6.5
4.2
3.9
19.0
11.0
5.3
3.7
6.6
9.6
7.0
2.2
42.0
9.5
10.1
EFFL
Ha
ug/l
0.1
1.1
1.6
0.5
0.6
1.5
0.7
0.4
0.3
0.8
0.1
0.6
0.7
0.7
EFFL
Ni
ug/l
12.0
14.0
20.0
200.0
65.0
31.0
23.0
33.0
33.0
24.0
6.0
16.0
36.6
39.8
EFFL
Zn
ug/l
69
30
6
190
170
150
83
69
73
25
23
66
88
80
"L" following a parameter means "less than"
1987 NYC STP PERCENT REMOVALS
As
Be
Cd
Cr
Cu
CN
Pb
Hg
Ni
Out of the 118 calculated percent removals above, 37 -or 31X- are negative
1987 ANNUAL AVERAGES (MLE)
Zn
CI
CI
CI
CI
CI
CI
CI
CI
CI
CI
CI
CI
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
44
0
-1100
67
55
-143
-700
-2600
-21
-378
66
0
67
0
50
0
0
-150
0
0
0
50
-125
60
94
80
-800
0
-200
60
40
67
-140
-100
33
74
-100
19
42
-22
0
45
-40
75
27
83
-156
-108
39
82
-210
12
1
36
90
39
-67
53
35
5
0
0
0
0
0
0
25
0
0
26
83
83
-18900
8
47
75
63
52
-27
74
-110
93
15
-itS
0
-1400
-40
20
-50
-167
94
33
-100
-17
-1211
-97
-48
18
-175
-10
17
81
24
-53
27
fl
0
-25
25
80
15
38
43
29
CI
CI
CI
INFL
EFFL
CSO
As
ug/l
1.70
1.84
1.70 1
Be
ug/l
0.14
0.13
0.10 I
Cd
ug/l
0.45
0.34
0.40 I
Cr
ug/l
14.07
11.08
14.00 I
Cu
ug/l
146.06
82.37
121.00 M
CN
ug/l
33.93
32.19
34.00 I
Pb
ug/l
25.03
9.55
100.00 M
HB
ug/l
0.79
0.74
0.54
Ni
ug/l
22.27
36.59
15.00 M
Zn
ug/l
128.92
87.77
312.00 M
For CSO, "M1" Measured CSO Cone; »1»" STP Influent Cone
INFL
EFFL
CSO
FLOW
MOD
104.00
104.00
9.24
As
kg/d
0.67
0.72
0.06
Be
kg/d
0.05
0.05
0.00
Cd
kg/d
0.18
0.13
0.01
Cr
kg/d
5.53
4.36
0.49
Cu
kg/d
57.46
32.41
4.23
CN
kg/d
13.35
12.67
1.19
Pb
kg/d
9.85
3.76
3.50
kg/3
8:1;
0.02
Ni
kg/d
8.76
14.40
0.52
Zn
kg/d
50.72
34.53
10.91
7
-------
1987 NYC STP INFLUENT METALS CONCENTRATIONS
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
INFL
As
U9/1
JAN 3.60
FEB
MAR
APR
MAY
JUNE
JULY
.00
.00
.50
.90
.80
.30
AUG 0.50
SEPT 0.50
OCT 5.20
NOV 1.90
DEC 1.80
MLE 1.84
AV 1.83
INFL
Be
ug/l
0.10
0.20
0.10
0.20
0.10
0.10
0.10
0.30
0.10
0.10
0.10
0.04
0.13
0.13
INFL
Cd
ug/l
2.1
1.9
17.0
7.0
2.0
1.7
1.6
1.2
0.6
1.2
0.6
0.5
2.8
3.1
INFL
Cr
ug/l
23.0
15.0
U.O
43.0
81.0
31.0
9.5
19.0
11.0
4.3
24.0
6.3
23.4
23.4
INFL
Cu
ug/l
140.0
99.0
140.0
230.0
110.0
200.0
90.0
150.0
51.0
96.0
74.0
67.0
121
121
INFL
CN
UQ/l
190.0
60.0
40.0
20.0 L
20.0 L
20.0 L
20.0 L
20.0 L
20.0
20.0 L
39
43.0
INFL
Pb
ug/l
20.0
40.0
30.0
94.0
29.0
51.0
20.0
31.0
15.0
26.0
18.0
15.0
31.8
32.4
INFL
Hg
ug/l
3.4
0.6
1.4
1.4
0.5
0.7
0.5
0.4
0.1
0.4
0.4
0.9
0.9
0.9
INFL
Ni
ug/l
75.0
45.0
41.0
32.0
40.0
52.0
16.0
19.0
35.0
39.0
20.0
16.0
36.0
35.8
INFL
Zn
ug/l
180
62
120
490
220
220
150
160
60
56
48
97
154
155
"L" following a parameter Means "less than"
1987 NYC STP EFFLUENT METALS CONCENTRATIONS
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
JAN
FEB
MAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
MLE
AV
EFFL
As
US/I
0.10 L
0.70
0.40
1.70
6.30
0.80
2.50
0.10 L
0.70
5.70
5.10
8.00
3.55
2.68
EFFL
Be
ug/l
0.10 L
0.10
0.10
0.10
0.10 L
0.10 L
0.40
0.30
0.10 L
0.10
0.10
0.12
0.14
0.14
EFFL
Cd
ug/l
0.8
0.6
7.7
0.5
6.0
1.0
1.0
0.5
0.8
1.4
0.9
0.3
1.6
1.8
EFFL
Cr
ug/l
20.0
21.0
16.0
5.9
80.0
11.0
4.6
35.0
8.6
15.0
46.0
18.0
23.3
23.4
EFFL
Cu
ug/l
120.0
120.0
94.0
84.0
120.0
89.0
78.0
98.0
100.0
91.0
260.0
90.0
110.8
112.0
EFFL
CN
ug/l
180.0
70.0
190.0
20.0 L
20.0
20.0 L
20.0 L
20.0 L
20.0 L
20.0
53
58
EFFL
Pb
ug/l
12.0
16.0
11.0
21.0
26.0
4.3
7.5
10.0
12.0
12.0
11.0
6.4
12.6
12.6
EFFL
Hg
ug/l
1.4
1.4
0.6
0.6
1.9
0.7
1.1
0.8
0.7
0.6
0.8
5.0
1.2
1.3
EFFL
Ni
ug/l
27.0
32.0
42.0
23.0
57.0
53.0
15.0
32.0
33.0
5.2
48.0
26.0
34.4
32.8
EFFL
Zn
ug/l
98
72
82
170
200
100
76
82
73
32
88
84
97
96
"L" following a parameter means "less than"
1987 NYC STP PERCENT REMOVALS
As
Be
Cd
Cr
Cu
CN
Pb
Hg
Ni
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
OH
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
97
30
60
-13
-232
56
-92
80
-40
-10
-168
-344
0
50
0
50
0
0
-300
0
0
0
0
-200
62
68
55
93
-200
41
38
58
-33
-17
-50
40
13
-40
-14
86
1
65
52
-84
22
-249
-92
-186
14
-21
33
63
-9
56
13
35
-96
5
-251
-34
5
-17
-375
0
0
0
0
0
0
0
Out of the 118 calculated percent removals above, 43 -or 36X- are negative
1987 ANNUAL AVERAGES (MLE)
Zn
40
60
63
78
3
92
63
68
20
54
39
57
59
-133
57
57
•280
0
-120
-100
-600
-50
-100
-456
64
29
-2
28
-43
-2
6
-68
6
87
-140
-63
46
-16
32
65
9
55
49
49
-22
43
-83
13
OH
OH
OH
INFL
EFFL
CSO
AS
ug/l
1$
1.80 I
Be
ug/l
0.13
0.14
0.10 I
Cd
ug/l
2.75
1.60
2.80 I
Cr
ug/l
23.36
23.28
23.00 I
Cu
ug/l
120.70
110.82
121.00 I
CN
ug/l
38.71
53.34
39.00 I
Pb
ug/l
31.79
12.62
32.00 1
ug/?
0.90
Ol90
Ni
ug/l
35.97
34.37
I 36.00 I
Zn
ug/l
153.88
96.57
154.00 I
For CSO, "M"« Measured CSO Cone; "I11" STP Influent Cone
INFL
EFFL
CSO
FLOW
MGD
118.17
118.17
15.91
As
kg/d
0.82
1.59
0.11
Be
kg/d
0.06
0.06
0.01
Cd
kg/d
1.23
0.72
0.17
Cr
kg/d
10.44
10.41
1.38
Cu
kg/d
53.96
49.54
7.28
CN
kg/d
17.30
23.84
2.35
Pb
kg/d
14.21
5.64
1.93
kg/8
0.40
0.55
0.05
Ni
kg/d
16.08
15.36
2.17
Zn
kg/d
68.79
43.17
9.27
-------
1987 NYC STP INFLUENT METALS CONCENTRATIONS
TI
TI
TI
TI
TJ
TI
TI
TI
TI
TI
TI
TI
TI
TI
JAN
FEB
MAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
MLE
AV
INFL
As
ug/l
0.10 L
0.70
O.SO
1.70
2.40
1.30
0.70
0.10 L
0.20
3.60
0.10
0.60
1.11
1.00
INFL
Be
ug/l
0.10
0.10
0.10 L
0.10
0.10
0.10 L
0.10
0.10
0.10 L
0.10 L
0.10
0.13
0.10
0.10
INFL
Cd
ug/l
0.3
1.9
2.2
1.0
2.2
5.4
1.9
2.2
0.1 L
2.5
1.6
3.0
2.5
2.0
INFL
Cr
ug/l
8.1
15.0
21.0
75.0
61.0
31.0
35 !o
29.0
25.0
17.0
11.0
8*
INFL
Cu
ug/l
71.0
120.0
110.0
75.0
100.0
130.0
140.0
170.0
130.0
100.0
110.0
120.0
115
115
INFL
CN
ug/l
20.0 L
100.0
20.0
20.0 L
20.0 L
20.0 L
20.0 L
20.0 L
20.0 L
30.0
28
29
INFL
Pb
ug/l
16.0
16.0
16.0
7.7
16.0
15.0
14.0
18.0
18.0
13.0
13.0
14.0
14.8
14.7
INFL
ug/?
0.4
0.5
0.4
0.3
0.4
0.8
0.7
71.0 a
0.3
0.5
68.0
0.8
6.5
12.0
INFL
Ni
ug/l
4.0
20.0
45.0
18.0
30.0
50.0
29.0
26.0
39.0
28.0
60.0
6.6
31.9
29.6
INFL
Zn
ug/l
65
58
77
93
170
130
100
110
100
45
75
100
94
94
"L" following a parameter means "less than"
(a) reported as 710
1987 NYC STP EFFLUENT METALS CONCENTRATIONS
T|
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
MLE
AV
EFFL
As
ug/l
0.10 L
0.70
0.80
0.80
0.30
0.80
1.40
0.70
3.80
0.20
1.30
2.90
1.22
1.15
EFFL
Be
ug/l
0.10 L
0.20
0.10
0.10
0.10
0.10 L
0.60
0.10 L
0.10 L
0.20
0.30
0.10
0.17
0.18
EFFL
Cd
ug/l
0.3
0.4
1.1
0.7
0.7
0.3
0.4
1.6
0.9
1.1
1.4
0.7
0.8
0.8
EFFL
Cr
ug/l
6.6
16.0
10.0
22.0
52.0
7.4
7.1
30.0
5.0 L
4.1
5.7
9.8
14.1
14.6
EFFL
Cu
ug/l
24.0
48.0
40.0
120.0
46.0
35.0
27.0
70.0
38.0
32.0
40.0
31.0
45.2
45.9
EFFL
CN
ug/l
20.0 L
30.0
30.0
20.0 L
20.0
20.0 L
20.0 L
20.0 L
20.0 L
20.0 L
22
22
EFFL
Pb
ug/l
3.5
4.0
5.2
17.0
1.2
2.0
1.6
23.0
6.5
23.0
7.9
9.7
9.1
8.7
EFFL
H9
ug/l
0.3
0.7
0.4
0.2
0.7
0.6
0.1
7.8
0.4
0.6
9.8
0.6
1.5
1.9
EFFL
Ni
ug/l
1.0
8.0
28.0
46.0
24.0
22.0
7.4
53.0
8.8
22.0
6.1
15.0
23.2
20.1
EFFL
Zn
ug/l
46
12
34
150
86
60
36
100
68
23
18
64
59
58
"L" following a parameter means "less than"
1987 NYC STP PERCENT REMOVALS
As Be Cd Cr Cu CN Pb Hg Ni Zn
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
0
0
-60
53
88
38
-100
-600
-1800
94
-1200
-383
0
-100
0
0
0
0
-500
0
0
-100
-200
23
0
79
50
30
68
94
79
27
-800
56
13
77
19
52
71
15
76
73
14
83
84
66
11
66
60
64
-60
54
73
81
59
71
68
64
74
0
70
-50
0
0
0
0
0
0
33
78
75
68
-121
93
87
89
-28
64
-77
39
31
25
-40
0
33
•75
25
86
89
-33
-20
86
25
75
60
38
-156
20
56
74
-104
77
21
90
-127
29
79
56
-61
49
54
64
9
32
49
76
36
Out of the 118 calculated percent removals above, 24 -or 20X- are negative
1987 ANNUAL AVERAGES (MLE)
TI
Ti
TI
INFL
EFFL
CSO
As
ug/l
1.11
1.22
1.10 I
Be
ug/l
0.10
0.17
0.10 1
Cd
ug/l
2.46
0.81
2.50 I
Cr
ug/l
29.52
14.10
30.00 I
Cu
ug/l
114.77
45.21
I 115.00 1
CN
ug/l
27.51
21.98
28.00 I
Pb
ug/l
14.77
9.06
15.00 I
Hg
ug/l
6.50
1.50
6.50
Ni
ug/l
31.90
23.21
I 32.00 I
Zn
ug/l
93.67
59.41
94.00 1
For CSO, "M"« Measured CSO Cone; "I"= STP Influent Cone
INFL
EFFL
CSO
FLOW
MOD
64.67
64.67
11.62
As
kg/d
0.27
0.30
0.05
Be
kg/d
0.03
0.04
0.00
Cd
kg/d
0.60
0.20
0.11
Cr
kg/d
7.22
3.45
1.32
Cu
kg/d
28.08
11.06
5.06
CN
kg/d
6.73
5.38
1.23
Pb
kg/d
3.61
2.22
0.66
kg/S
1.59
0.37
0.29
Ni
kg/d
7.81
5.68
1.41
Zn
kg/d
22.92
14.53
4.13
-------
1987 NYC STP INFLUENT NETALS CONCENTRATIONS
JA
JA
JA
JA
JA
JA
JA
JA
JA
JA
JA
JA
JA
JA
JAN
FEB
MAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NLE
AV
1NFL
As
ug/l
1.50
0.10 L
1.60
0.60
2.30
0.50
0.60
1.20
0.10 L
4.90
0.50
4.40
1.75
1.53
INFL
Be
ug/l
0.10
0.20
0.10 L
0.10
0.10
0.10
0.10
0.10 L
0.10
0.20
0.20
0.05
0.12
0.12
INFL
Cd
ug/l
0.4
0.5
1.1
0.4
0.7
0.4
0.9
1.0
1.3
0.8
3.1
1.0
2.1
1.0
INFL
Cr
ug/l
10.0
20*0
9*0
67.0
14.0
12.0
31.0
21.0
20.0
62.0
16.0
24.8
25.3
INFL
Cu
ug/l
85.0
100.0
130.0
140.0
100.0
120.0
150.0
180.0
140.0
140.0
140.0
170.0
133
133
INFL
CN
ug/l
40.0
20.0
20.0 L
20.0 L
20.0 L
20.0 L
20.0
20.0 L
30.0
23
23
INFL
Pb
ug/l
10.0
15.0
28.0
7.2
23.0
23.0
30.0
24.0
22.0
29.0
22.0
21.4
21.1
INFL
H9
ug/l
0.7
0.4
0.5
0.2
0.4
0.4
0.4
0.5
0.1
1.3
1.5
1.2
0.7
0.6
INFL
Ni
ug/l
4.0
14.0
74.0
16.0
22.0
9.4
9.3
20.0
11.0
11.0
20.0
21.0
18.8
19.3
INFL
Zn
ug/l
94
65
110
110
200
130
150
180
140
55
67
150
122
121
"L" following a parameter Means "less than"
1987 NYC STP EFFLUENT NETALS CONCENTRATIONS
JA
JA
JA
JA
JA
JA
JA
JA
JA
JA
JA
JA
JA
JA
JAN
FEB
NAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NLE
AV
EFFL
As
ug/l
0.10 L
0.50
1.60
0.50
0.60
0.90
1.70
1.20
0.70
3.30
4.00
1.20
1.46
1.36
EFFL
Be
ug/l
0.10 L
0.10
0.10 L
0.10
0.10 L
0.10 L
0.70
0.10 L
0.10
0.10
0.30
0.10
0.15
0.17
EFFL
Cd
ug/l
0.2
0.1
0.2
2.4
0.3
0.3
0.1
0.4
0.4
0.9
1.4
1.6
0.7
0.7
EFFL
Cr
ug/l
2.4
11.0
1.6
12.0
50.0
13.0
9.8
43.0
17.0
2.3
30.0
8.1
18.3
16.7
EFFL
Cu
ug/l
38.0
29.0
38.0
120.0
26.0
83.0
21.0
55.0
43.0
37.0
58.0
120.0
55.3
55.7
EFFL
CN
ug/l
50.0
20.0
20.0 L
20.0 L
20.0 L
50.0
30.0
20.0 L
20.0 L
25
26
EFFL
Pb
ug/l
4.3
0.1 L
4.2
21.0
5.6
15.0
2.8
14.0
f.6
.4
9.0
10.0
12.8
8.3
EFFL
Hg
ug/l
0.4
0.3
0.3
0.3
0.2
0.3
0.2
0.4
0.2
0.7
0.2
0.9
0.4
0.4
EFFL
Ni
ug/l
7.0
12.0
53.0
9.4
24.0
2.5
10.0 L
22.0
2.2
10.0
3.2
17.0
14.7
14.4
EFFL
Zn
ug/l
6
21
42
140
120
100
37
79
78
24
32
84
70
64
"L" following a parameter means "less than"
1987 NYC STP PERCENT REMOVALS
As
Be
Cd
Cr
Cu
CN
Pb
Hg
Ni
Out of the 118 calculated percent removals above, 24 -or 20X- are negative
1987 ANNUAL AVERAGES (NLE)
JA
JA
JA
INFL
EFFL
CSO
As
ug/l
1.75
1.46
1.80 I
Be
ug/l
0.12
0.15
0.10 I
Cd
ug/l
2.07
0.70
2.10 1
Cr
ug/l
24.81
18.27
10.00 N
Cu
ug/l
133.02
55.27
37.00 N
CN
ug/l
23.25
25.38
23.00 I
Pb
ug/l
21.41
12.84
20.00 N
ug/
Hg
I/I
Ni
ug/l
Zn
JA
JA
JA
JA
JA
JA
JA
JA
JA
JA
JA
JA
JAN
FEB
NAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
93
-400
0
17
74
-80
-183
0
-600
33
-700
73
0
50
0
0
0
0
-600
0
0
50
-50
-100
50
80
82
-500
57
25
89
60
69
-12
55
-60
76
50
92
-33
25
7
18
-39
19
89
52
49
55
71
71
14
74
31
86
69
69
74
59
29
-25
0
0
0
0
-50
-50
0
33
57
99
85
-192
72
35
88
53
64
75
69
55
43
25
40
-50
50
25
50
20
-100
46
87
25
-75
14
28
41
-9
73
-8
•10
80
9
84
19
94
68
62
-27
40
23
75
56
44
56
52
44
Zn
ug/l
0.65 18.76 121.54
0.36 14.72 69.67
0.20 N 19.00 I 190.00 M
For CSO, "M"= Neasured CSO Cone; "l"= STP Influent Cone
INFL
EFFL
CSO
FLOW
NGD
98.83
98.83
21.82
As
kg/d
0.66
0.55
0.15
Be
kg/d
8.05
.06
0.01
Cd
kg/d
0.77
0.26
0.17
Cr
kg/d
9.28
6.83
0.83
Cu
kg/d
49.73
20.66
3.05
CN
kg/d
8.69
9.49
1.90
Pb
kg/d
8.00
4.80
1.65
Hg
kg/d
0.24
0.14
0.02
Ni
kg/d
7.01
5.51
1.57
Zn
kg/d
45.44
26.05
15.68
}o
-------
1987 NYC STP INFLUENT METALS CONCENTRATIONS
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
JAN
FEB
NAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
MLE
AV
INFL
As
ug/l
0.17
3.40
0.90
1.10
1S.OO
1.80
0.60
0.10
0.10 L
0.50
4.60
4.80
3.28
2.76
INFL
Be
ug/l
0.30
0.50
0.10
0.10
0.20
0.10
0.20
0.10
0.10
0.10
0.10
0.13
0.16
0.17
INFL
Cd
ug/l
0.7
2.6
6.9
1.3
4.4
2.2
1.8
1.6
1.6
1.9
1.7
2.2
2.4
2.4
INFL
Cr
ug/l
56.0
130.0
97.0
9.3
120.0
83.0
67.0
41.0
28.0
37.0
63.0
48.0
68.2
64.9
INFL
Cu
ug/l
160.0
640.0
360.0
66.0
400.0
220.0
150.0
160.0
110.0
180.0
170.0
160.0
229
231
INFL
CN
ug/l
50.0
20.0 L
20.0
30.0
20.0 L
20.0 L
20.0 L
20.0
20.0
100.0
31
32
INFL
Pb
ug/l
26.0
23.0
39.0
19.0
41.0
84.0
32.0
25.0
18.0
35.0
37.0
38.0
34.5
34.8
INFL
Ha
ug/l
1.8
0.2
0.6
0.9
11.0
4.8
17.0
7.4
3.7
6.3
3.4
4.0
6.2
5.1
INFL
Ni
ug/l
51.0
89.0
47.0
29.0
65.0
66.0
40.0
46.0
46.0
40.0
84.0
62.0
55.4
55.4
INFL
Zn
ug/l
310
400
450
200
470
390
230
200
220
150
160
300
290
290
"L" following a parameter Means "less than"
1987 NYC STP EFFLUENT METALS CONCENTRATIONS
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
MLE
AV
EFFL
As
ug/l
0.50
0.60
0.20
2.20
* 1.00
2.00
2.20
42.00
1.10
3.90
1.50
3.20
3.73
5.03
EFFL
Be
ug/l
0.10 L
0.10 L
0.10
0.30
0.10 L
0.10 L
0.70
0.10 L
0.10
0.10
0.10
0.10
0.15
0.17
EFFL
Cd
ug/l
0.8
0.4
1.8
1.9
0.5
0.5
0.3
0.4
0.2
0.7
0.4
0.6
0.7
0.7
EFFL
Cr
ug/l
4.8
21.0
14.0
37.0
55.0
19.0
12.0
36.0
5.0 L
5.7
16.0
18.0
20.7
20.3
EFFL
Cu
ug/l
57.0
60.0
61.0
170.0
19.0
55.0
46.0
99.0
34.0
43.0
46.0
73.0
63.3
63.6
EFFL
CN
ug/l
20.0 L
20.0 L
20.0 L
20.0
2o!o
20.0 L
20.0
20.0 L
20.0 L
20.0
20
EFFL
Pb
ug/l
5.4
5.0
9.4
30.0
5.8
21.0
13.0
9.0
6.3
12.0
14.0
26.0
13.0
13.1
EFFL
Ha
ug/T
0.6
1.9
0.4
2.3
0.4
3.6
17.0 a
5.8
2.1
4.2
3.3
12.0
4.9
4.5
EFFL
Ni
ug/l
40.0
29.0
24.0
130.0
37.0
39.0
24.0
49.0
22.0
15.0
12.0
16.0
35.2
36.4
EFFL
Zn
ug/l
150
73
98
430
220
170
75
160
99
56
41
180
145
146
"L" following a parameter means "less than"
(a) reported as 2000
1987 NYC STP PERCENT REMOVALS
AS
Be
Cd
Cr
Cu
CN
Pb
Hg
Ni
Out of the 118 calculated percent removals above, 20 -or 17X- are negative
1987 ANNUAL AVERAGES (MLE)
Zn
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
-194
82
78
-100
93
-11
-267
-41900
-1000
-680
67
33
67
80
0
-200
50
0
-250
0
0
0
0
23
-14
85
74
-46
89
77
83
75
88
63
76
73
91
84
86
-298
54
77
82
12
82
85
75
63
64
91
83
-158
95
75
69
38
69
76
73
54
60
0
0
33
0
0
0
0
0
80
79
78
76
-58
86
75
59
64
65
66
62
32
67
-850
33
-156
96
25
0
22
43
33
3
-200
22
67
49
-348
43
41
40
-7
52
63
86
74
52
82
78
-115
53
56
67
20
55
63
74
40
BB
BB
BB
INFL
EFFL
CSO
AS
ug/l
3.28
3.73
3.30 I
Be
ug/l
0.16
0.15
0.20 I
Cd
ug/l
§.38
.69
2.40 I
Cr
ug/l
68.16
20.72
68.00 I
Cu
ug/l
228.98
63.27
229.00 I
CN
ug/l
30.74
20.00
31.00 I
Pb
ug/l
34.46
13.03
34.00 I
ug/l1
6.23
4.85
6.23
Ni
ug/l
55.43
35.25
I 55.00 I
Zn
ug/l
290.32
145.31
290.00 I
For CSO, »M»« Measured CSO Cone; "I"" STP Influent Cone
INFL
EFFL
CSO
FLOW
NGO
152.50
152.50
17.90
As
kg/d
1.89
2.15
0.22
Be
kg/d
0.09
0.09
0.01
Cd
kg/d
1.37
0.40
0.16
Cr
kg/d
39.32
11.96
4.60
Cu
kg/d
132.10
36.50
15.51
CN
kg/d
17.73
11.54
2.10
Pb
kg/d
19.88
7.52
2.30
kg/§
3.59
2.80
0.42
Ni
kg/d
31.98
20.33
3.72
Zn
kg/d
167.49
83.83
19.64
}\
-------
1987 NYC STP INFLUENT METALS CONCENTRATIONS
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NLE
AV
INFL
As
ug/l
1.70
0.60
0.10 L
0.60
1.10
1.00
1.70
0.60
0.10 L
7.40
1.80
3.80
1.94
1.71
INFL
Be
ug/l
0.20
0.20
0.10 L
0.20
0.10
0.10
0.10
0.20
0.10
0.10
0.20
0.11
0.14
0.14
INFL
Cd
ug/l
0.2
0.1
0.7
0.3
0.3
0.3
0.3
1.1
0.1 L
0.5
0.1
0.3
0.4
0.4
INFL
Cr
ug/l
0.8
7.0
4.7
11.0
41.0
5.0
8.1
18.0
16.0
4.7
11.0
12.0
12.5
11.6
INFL
Cu
ug/l
37.0
180.0
85.0
30.0
100.0
74.0
74.0
99.0
92.0
94.0
78.0
130.0
90
89
INFL
CN
ug/l
80.0
20.0 L
20.0 L
20.0 L
20.0 L
20.0 L
20.0
20.0 L
20.0 L
26
27
INFL
Pb
ug/l
4.0
1.8
8.6
8.0
15.0
13.0
7.4
14.0
15.0
13.0
9.5
18.0
11.1
10.6
INFL
ug/?
1.5
0.7
0.6
0.5
0.9
0.6
0.6
1.4
1.9
2.1
1.1
0.8
1.1
1.1
INFL
Ni
ug/l
9.5
13.0
15.0
10.0
12.0
12.0
3.9
10.0
14.0
52.0
20.0
3.2
14.4
14.6
INFL
Zn
ug/l
63
16
44
73
110
81
69
73
69
24
27
86
63
61
"L" following a parameter Means "less than"
1987 NYC STP EFFLUENT METALS CONCENTRATIONS
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NLE
AV
EFFL
As
ug/l
0.90
0.90
0.50
1.30
0.10
1.20
1.90
1.30
1.00
0.20
2.70
1.70
1.29
1.14
EFFL
Be
ug/l
0.10
0.10
0.10
0.10
0.10
0.10 L
0.70
0.10
0.10 L
0.10
0.10
0.06
0.13
0.15
EFFL
Cd
ug/l
0.1
0.2
0.1 L
1.8
0.1
0.1
0.1
0.2
0.1
0.7
1.3
0.1
0.4
0.4
EFFL
Cr
ug/l
1.1
31.0
0.9
5.0
44.0
3.0
4.6
16.0
5.0 L
0.2
15.0
6.7
14.5
11.0
EFFL
Cu
ug/l
17.0
28.0
170.0
120.0
24.0
23.0
12.0
17.0
40.0
69.0
25.0
47.0
47.5
49.3
EFFL
CN
ug/l
20.0
20.0 L
20.0 L
20.0
20.0 L
80.0
20.0 L
20.0 L
20.0 L
26
27
EFFL
Pb
ug/l
0.7
0.1 L
3.8
13.0
12.0
4.1
0.9
9.8
4.4
15.0
32.0
6.0
13.3
8.5
EFFL
H9
ug/t
0.4
0.1
0.6
0.1
0.4
0.6
0.6
0.7
1.3
5.2
0.1 L
1.4
1.0
1.0
EFFL
Ni
ug/l
5.0
10.0 L
15.0
22.0
11.0
4.9
4.5
2.4
10.0 L
12.0
5.3
3.8
8.9
8.8
EFFL
Zn
ug/l
39
1 L
26
280
93
52
40
35
59
11
56
76
60
"L" following a parameter means "less than"
1987 NYC STP PERCENT REMOVALS
As
Be
Cd
Cr
Cu
CN
Pb
Hg
Ni
Out of the 117 calculated percent removals above, 29 -or 25X- are negative
1987 ANNUAL AVERAGES (MLE)
Zn
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
ROCK
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
47
•50
-400
•117
91
-20
-12
-117
-900
97
-50
55
50
50
0
50
0
0
-600
50
0
0
50
45
50
-100
86
-500
67
67
67
82
0
-40
-1200
67
-38
-343
81
55
-7
40
43
11
69
96
-36
44
H
-100
-300
76
69
84
83
57
27
68
64
75
0
0
0
0
-300
0
0
0
83
94
56
-63
20
68
88
30
71
-15
-237
67
73
86
0
80
56
0
0
50
32
-148
91
-75
47
23
0
-120
8
59
-15
76
29
77
74
-19
38
94
41
-284
15
36
42
52
14
8
59
35
ROCK
ROCK
ROCK
INFL
EFFL
CSO
INFL
EFFL
CSO
FLOW
MOD
26.70
26.70
5.35
As
ug/l
1.94
1.29
1.90 I
For CSO.
As
kg/d
0.20
0.13
0.04
Be
ug/l
0.14
0.13
0.10 1
Cd
ug/l
Ol40 I
"M"= Measured CSO
Be
kg/d
0.01
0.01
0.00
Cd
kg/d
0.04
0.04
0.01
Cr
ug/l
12.51
14.51
9.00
Cone;
Cr
kg/d
1.26
1.47
0.18
Cu
ug/l
90.38
47.54
1 37.00
"I"" STP
Cu
kg/d
9.13
4.80
0.75
CN
ug/l
25.65
25.65
M 24.00
Influent
CN
kg/d
2.59
2.59
0.49
Pb
ug/l
11.13
13.26
M 11.00 I
Cone
Pb
kg/d
1.12
1.34
0.22
H9
ug/l
1.05
0.95
0.20 M
Hg
kg/d
0.11
0.10
0.00
Ni
ug/l
14.40
8.87
14.00 I
Ni
kg/d
1.45
0.90
0.28
Zn
ug/l
62.95
76.02
190.00 M
Zn
kg/d
6.36
7.68
3.84
-------
1987 NYC STP INFLUENT METALS CONCENTRATIONS
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
JAN
FEB
NAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NLE
AV
INFL
As
ug/l
3.20
2.90
2.40
5.60
6.10
4.10
8.90
5.50
4.90
9.80
20.00
34.00
§.52
.95
INFL
Be
ug/l
0.10
0.10
0.10 L
0.10
0.10
0.10
0.20
0.10
0.20
0.10
0.40
0.03
0.14
0.14
INFL
Cd
ug/l
0.3
0.3
0.3
0.3
0.1
0.6
0.6
0.5
2.3
1.4
1.2
0.8
0.7
0.7
INFL
Cr
ug/l
0.9
2.5
1.3
2.1
43.0
25.0
9.7
2.7
5.0
6.1
8.0
21.0
10.9
10.6
INFL
Cu
ug/l
57.0
62.0
42.0
2o!o
100.0
67.0
60.0
85.0
120.0
61.0
110.0
69
67
INFL
CN
ug/l
50.0
20.0
20.0 L
20.0 L
50.0
20.0 L
20.0 L
20.0 L
20.0 L
20.0 -L
26
26
INFL
Pb
ug/l
26.0
53.0
45.0
24.0
43.0
140.0
39.0
58.0
68.0
150.0
73.0
250.0
79.2
80.8
INFL
Kg
ug/T
1.6
0.6
0.5
0.4
8:1
0.4
1.1
6.3
0.6
2.2
14.0
2.0
2.4
INFL
Ni
ug/l
5.0
28.0
16.0
7.7
22.0
18.0
18.0
14.0
29.0
70.0
37.0
3.8
23.0
22.4
INFL
Zn
ug/l
100
66
100
130
140
1200
130
150
160
120
79
310
196
224
•L" following a parameter Means "less than"
1987 NYC STP EFFLUENT METALS CONCENTRATIONS
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
MLE
AV
EFFL
As
ug/l
2.30
4.30
4.40
5.20
7.70
8.30
8.10
5.20
7.90
4.90
12.00
16.00
7.21
7.19
EFFL
Be
ug/l
0.10 L
0.10
0.10
0.10
0.10 L
0.10 L
0.60
0.10 L
0.10 L
0.10
0.10
0.07
0.13
0.14
EFFL
Cd
ug/l
0.3
0.1
0.1
0.2
0.2
0.2
0.1
0.1
1.0
0.4
0.1
0.3
0.2
0.3
EFFL
Cr
ug/l
0.8
8.4
2.4
5.0
68.0
1.4
0.7
7.0
5.0 L
0.7
5.5
5.7
7.9
9.2
EFFL
Cu
ug/l
94.0
62.0
19.0
22 0
29io
16.0
18.0
110.0
19.0
23.0
39.0
43.9
44.4
EFFL
CN
ug/l
50.0
40.0
20.0 L
20.0 L
40.0
20.0
20.0 L
20.0 L
20.0 L
20.0 L
27
27
EFFL
Pb
ug/l
17.0
35.0
4.6
67.0
13.0
0.8
7.6
11.0
2.7
2.0
17.0
23.0
19.2
16.7
EFFL
Hg
ug/l
4.9
1.4
0.3
0.7
0.9
0.1
0.8
0.5
0.1 L
0.3
0.5
0.7
0.9
0.9
EFFL
Ni
ug/l
10.0
17.0
13.0
10.0
63.0
9.2
5.5
14.0
7.1
5.1
17.0
6.5
13.9
14.8
EFFL
Zn
ug/l
110
58
59
210
140
110
54
80
86
26
28
100
90
88
"L" following a parameter means "less than"
1987 NYC STP PERCENT REMOVALS
As
Be
Cd
Cr
Cu
CN
Pb
Hg
Ni
Out of the 118 calculated percent removals above, 30 -or 25X- are negative
Zn
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
JAN
FEB
MAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
28
-48
-83
-26
-102
9
5
-61
50
40
53
0
0
0
0
0
0
-200
0
50
75°
-133
0
67
67
33
-100
67
83
80
57
11
63
11
-236
-85
-138
-58
94
93
-159
0
§?
73
-65
0
55
-228
-10
71
76
70
-29
84
•62
65
0
-100
0
0
20
0
0
0
0
0
35
34
90.
•179''
70
99
81
81
96
99
77
91
-206
-133
40
-75
-350
67
-100
55
98
50
77
95
-100
39
19
-30
-186
49
69
0
76
93
54
-71
-10
12
41
-62
0
91
58
47
46
78
65
68
1987 ANNUAL AVERAGES (MLE)
PR
PR
PR
INFL
EFFL
CSO
INFL
EFFL
CSO
FLOW
MGD
40.24
40.24
11.69
As
ug/l
8.52
7.21
8.50 I
For CSO,
As
kg/d
1.30
1.10
0.38
Be
ug/l
0.14
0.13
0.10 I
Cd
ug/l
0.74
0.25
0.70 I
»M"« Measured CSO
Be
kg/d
0.02
0.02
0.00
Cd
kg/d
0.11
0.04
0.03
Cr
ug/l
10.94
7.88
11.00
Cone;
Cr
kg/d
1.67
1.20
0.49
Cu
ug/l
68.61
43.88
1 69.00
»!»« STP
Cu
kg/d
10.44
6.68
3.05
CN
ug/l
25.69
26.83
I 26.00
Influent
CN
kg/d
3.91
4.08
1.15
Pb
ug/l
79.18
19.16
I 79.00 I
Cone
Pb
kg/d
12.05
2.92
3.49
jr
2.02
0.91
2.02 I
kg/i1
0.31
0.14
0.09
Ni
ug/l
23.03
13.86
23.00 I
Ni
kg/d
3.51
2.11
1.02
Zn
ug/l
195.85
89.53
196.00 1
Zn
kg/d
29.81
13.63
8.66
-------
1987 NYC STP INFLUENT NETALS CONCENTRATIONS
OB
OB
OB
OB
OB
OB
OB
OB
OB
OB
OB
OB
OB
OB
JAN
FEB
MAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NLE
AV
INFL
As
Ufl/l
1.90
0.10 L
0.40
0.70
1.00
0.50
2.30
1.40
0.80
0.80
2.60
0.20
1.15
1.06
INFL
Be
ug/l
0.10
0.30
0.10 L
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.11
0.12
INFL
Cd
ug/l
0.5
0.3
0.5
0.1
0.4
0.7
1.1
0.6
0.2
0.3
0.8
0.4
0.5
0.5
INFL
Cr
ug/l
0.8
15.0
2.3
3.0
43.0
2.4
6.0
5.5
12.0
1.1
2.2
3.4
7.5
8.1
INFL
Cu
UB/l
230.0
120.0
150.0
23.0
94.0
370.0
390.0
310.0
120.0
150.0
240.0
210.0
lot
INFL
CN
ug/l
60.0
20.0
20.0 L
20.0 L
20.0 L
20.0 L
20.0
20.0 L
20.0 L
20.0 L
it
INFL
Pb
ug/l
17.0
8.7
14.0
2.3
27.0
34.0
34.0
42.0
16.0
16.0
32.0
23.0
24.1
22.2
INFL
Hg
ug/l
1.1
0.1
0.5
0.1
0.7
0.6
1.1
2.4
0.4
0.4
0.8
0.7
0.8
0.7
INFL
Ni
ug/l
1.8
19.0
24.0
12.0
30.0
37.0
40.0
28.0
20.0
5.2
14.0
18.0
23.2
20.8
INFL
Zn
ug/l
240
210
130
55
230
370
560
320
130
68
100
210
222
219
"L" following a parameter Mans "less than"
1987 NYC STP EFFLUENT NETALS CONCENTRATIONS
OB
06
06
06
06
OB
OB
06
06
06
06
06
06
06
JAN
FEB
NAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NLE
AV
EFFL
As
ug/l
0.10 L
0.90
0.50
4.90
0.10 L
1.30
1.00
1.20
0.90
0.30
3.10
1.80
1.53
1.34
EFFL
Be
ug/l
0.10 L
0.10 L
0.10 L
0.10 L
0.10 L
0.10 L
0.60
0.10 L
0.10 L
0.10
0.30
0.07
0.15
0.16
EFFL EFFL
Cd Cr
ug/l ug/l
0.1 0.8
0.1 L 4.4
0.1 L 1.0
0.3 5.0
0.
0.
0.
0.
0.
0.
o
0.
53.0
1.7
L 4.5
5.0 L
• 0.4
0.1
5.9
9.4
0.2 8.7
0.2 7.6
EFFL
Cu
ug/l
60.0
15.0
30.0
18.0
11.0
29.0
7.0
7.9
18.0
21.0
27.0
25.0
22.5
22.4
EFFL
CN
ug/l
60.0
40.0
30.0
20.0
20.0
20.0 L
20.0 L
20.0 L
§0.0 L
0.0 L
27
27
EFFL
Pb
ug/l
1.2
0.1 L
1.6
27.0
31.0
0.4
1.1
5.2
4.0
2.6
2.4
4.1
7.8
6.7
EFFL
Hg
ug/l
0.2
0.1 L
0.1
0.5
0.1 L
0.1 L
0.1 L
0.5
0.1 L
0.2
0.1 L
0.2
0.2
0.2
EFFL
Ni
ug/l
7.0
12.0
21.0
12.0
25.0
12.0
11.0
9.7
10.0 L
0.7
16.0
10.0
14.2
12.2
EFFL
Zn
ug/l
29
1 L
27
130
84
49
24
32
43
18
14
47
53
42
"L" following a parameter means "less than"
1987 NYC STP PERCENT REMOVALS
As
Be
Cd
Cr
Cu
CN
Pb
Hg
Ni
Out of the 118 calculated percent removals above, 24 -or 20X- are negative
1987 ANNUAL AVERAGES (MLE)
Zn
OB
OB
06
06
06
OB
OB
OB
06
06
06
06
JAN
FEB
NAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
95
•800
-25
-600
90
-160
57
14
-12
63
•19
•800
0
67
0
0
0
0
•500
0
0
0
-200
30
80
67
80
-200
75
86
91
83
-100
-67
88
75
0
71
57
-67
-23
29
25
9
97
91
-168
-176
74
88
80
22
88
92
98
97
85
86
89
88
0
-100
-50
0
0
0
0
8
0
93
99
89
-1074
-15
99
97
88
75
84
93
82
82
0
80
-400
86
83
91
79
75
li
• 71
-289
37
13
0
17
68
73
65
50
87
-14
44
88
100
79
-136
63
87
96
90
67
74
86
78
06
06
06
INFL
EFFL
CSO
As
ug/l
1.15
1.53
1.20 I
Be
ug/l
0.11
0.15
0.10 I
Cd
ug/l
0.50
0.17
0.50 I
Cr
ug/l
7.52
8.73
8.00
Cu
ug/l
214.43
22.47
1 214.00 I
CN
ug/l
23.57
26.68
24.00 I
Pb
ug/l
24.07
7.76
24.00 I
HB
ug/l
0.79
0.19
0.79 I
Ni
ug/l
23.19
14.17
23.00
Zn
ug/l
221.57
53.29
I 222.00 I
For CSO. "M"« Measured CSO Cone; "I"= STP Influent Cone
INFL
EFFL
CSO
FLOW
MGD
30.38
30.38
0.00
As
kg/d
0.13
0.18
0.00
Be
kg/d
0.01
0.02
0.00
Cd
kg/d
0.06
0.02
0.00
Cr
kg/d
0.86
1.00
0.00
Cu
kg/d
24.64
2.58
0.00
CN
kg/d
2.71
3.07
0.00
Pb
kg/d
2.77
0.89
0.00
kg/§
0.09
0.02
0.00
Ni
kg/d
2.67
1.63
0.00
Zn
kg/d
25.46
6.12
0.00
-------
1987 NYC STP INFLUENT METALS CONCENTRATIONS
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NLE
AV
INFL
As
ug/l
0.20
0.10 L
0.10 L
0.60
1.90
2.60
1.40
1.10
5.80
1.20
2.80
1.70
2.02
1.63
INFL
Be
ug/l
0.10 L
0.10
0.10 L
0.20
0.10
0.10 L
0.10
0.10
0.10 L
0.10
0.30
0.13
0.13
0.13
INFL
Cd
ug/l
1.1
1.4
1.6
0.1 L
0.6
8.8
3.0
1.1
0.8
0.9
0.9
1.3
1.8
1.8
INFL
Cr
ug/l
42.0
55.0
70.0
45.0
120.0
59.0
88.0
110.0
65.0
67.0
14.0
45.0
66.6
65.0
INFL
Cu
ug/l
170.0
2400.0
270.0
140.0
89.0
97.0
150.0
180.0
120.0
150.0
180.0
130.0
259
340
INFL
CN
ug/l
20.0 L
70.0
30.0
60.0
70.0
20.0 L
50.0
70.0
70.0
50.0
52
51
INFL
Pb
ug/l
30.0
19.0
49.0
21.0
23.0
47.0
33.0
30.0
22.0
38.0
40.0
18.0
30.8
30.8
INFL
Hg
ug/l
0.6
0.7
0.2
0.4
0.3
0.2
0.6
0.1 L
0.5
0.1 L
0.5
0.4
0.4
INFL
Ni
ug/l
2.0
13.0
31.0
7.0
56.0
16.0
23.0
26.0
37.0
8.1
1.4
8.7
21.9
19.1
INFL
Zn
ug/l
150
66
130
160
170
140
120
140
79
55
64
160
120
120
"LM following a parameter Mans "less than"
1987 NYC STP EFFLUENT NETALS CONCENTRATIONS
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
JAN
FEB
MAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
NLE
AV
EFFL
As
ug/l
0.10 L
0.70
0.30
0.40
0.80
1.50
2.40
1.10
0.10
7.80
10.00
2.00
2.52
2.27
EFFL
Be
ug/l
0.10 L
0.10
0.10 L
0.20
0.10 L
0.10
0.40
0.10
0.10 L
0.10
0.10
0.08
0.13
0.13
EFFL
Cd
ug/l
0.6
0.2
0.5
0.6
0.9
0.5
0.5
0.6
0.3
7.4
0.8
0.6
0.9
1.1
EFFL
Cr
ug/l
23.0
26.0
35.0
33.0
130.0
78.0
45.0
77.0
51.0
20.0
71.0
37.0
51.9
52.2
EFFL
Cu
ug/l
72.0
1100.0
140.0
150.0
110.0
190.0
84.0
140.0
120.0
89.0
140.0
120.0
178.8
204.6
EFFL
CN
ug/l
20.0 L
30.0
20.0 L
90.0
20.0 L
20.0
30.0
20.0
120.0
70.0
43
44
EFFL
Pb
ug/l
4.8
11.0
17.0
29.0
23.0
22.0
27.0
49.0
25.0
43.0
41.0
25.0
27.4
26.4
EFFL
Ha
ug/l
0.4
0.1
0.3
0.1
0.4
0.2
0.3
0.5
0.1
0.9
0.3
0.4
0.3
0.3
EFFL
Ni
ug/l
13.0
15.0
17.0
12.0
48.0
20.0
12.0
19.0
10.0
23.0
2.3
17.0
18.1
17.4
EFFL
Zn
ug/l
76
41
72
150
170
140
69
110
120
42
43
120
97
96
"L" fol lowing a parameter means "less than"
1987 NYC STP PERCENT REMOVALS
As
Be
Cd
Cr
Cu
CN
Pb
Hg
Ni
Out of the 118 calculated percent removals above. 36 -or 31X- are negative
1987 ANNUAL AVERAGES (NLE)
Zn
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
JAN
FEB
MAR
APR
NAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
50
-600
-200
33
58
42
-71
0
98
-550
-257
-18
0
0
0
0
0
0
-300
0
0
0
67
38
45
86
69
-500
-50
94
83
45
63
-722
11
54
45
53
50
27
-8
-32
49
30
22
70
-407
18
58
54
48
-7
-24
-96
44
22
0
41
22
8
0
57
33
•50
71
0
40
71
-71
-40
84
42
65
-38
0
53
IB
-63
-14
-13
-3
•39
33
67
57
50
0
33
-50
17
0
-80
-200
20
-550
•15
45
-71
14
•25
48
27
73
-184
-64
•95
49
38
45
6
0
0
43
21
•52
24
33
25
NR
NR
NR
INFL
EFFL
CSO
As
ug/l .
2.02
2.52
2.00 I
Be
ug/l
0.13
0.13
0.10 N
Cd
UB/l
1.82
0.91
10.00 N
Cr
ug/l
66.61
51.91
50.00 N
Cu
ug/l
258.51
178.80
103.00 N
CN
ug/l
51.86
42.80
20.00 N
Pb
ug/l
30.84
27.42
31.00 1
Hg
ug/l
0.39
0.34
0.20
Ni
ug/l
21.91
18.07
N 22.00 I
Zn
ug/l
120.41
96.89
128.00 M
For CSO. "N"» Neasured CSO Cone; •!•• STP Influent Cone
INFL
EFFL
CSO
FLOW
NGD
177.58
177.58
5.10
As
kg/d
1.36
1.69
0.04
Be
kg/d
0.08
0.09
0.00
Cd
kg/d
1.23
0.61
0.19
Cr
kg/d
44.75
34.87
0.96
Cu
kg/d
173.66
120.12
1.99
CN
kg/d
34.84
28.75
0.39
Pb
kg/d
20.72
18.42
0.60
kg/§
0.26
0.23
0.00
Ni
kg/d
14.72
12.14
0.42
Zn
kg/d
80.89
65.09
2.47
-------
1987 NYC STP INFLUENT METALS CONCENTRATIONS
INFL 1NFL INFL INFL INFL INFL INFL INFL INFL INFL
As Be Cd Cr Cu CN Pb Ha Ni Zn
ug/l ug/l ug/l ug/l ug/l ug/l U9/1 ug/l ug/l ug/l
SC JAN 2.30 0.20 1.1 11.0 UO.O 500 57 0.4 8.9 340
SC FEB 20 L
SC MAR
SC APR 1.50 0.10 1.6 6.8 210.0 70 0.2 55.0 360
SC NAY
SC JUNE 1.20 0.10 L 0.4 67.0 240.0 20 78 0.4 22.0 150
SC JULY 5.40 0.20 4.8 98.0 800.0 250 1.7 53.0 570
SC AUG 0.70 0.20 0.7 16.0 100.0 30 0.9 17.0 190
SC SEPT 2.10 0.10 1.7 16.0 210.0 53 0.5 54.0 290
SC OCT 2.80 0.10 1.0 4.7 110.0 20 L 19 0.3 3.7 68
SC NOV 2.10 0.10 0.9 5.0 L 65.0 18 0.1 L 3.9 41
SC DEC
SC MLE 2.27 0.14 1.5 26.9 224 118 70 0.6 30.1 268
SC AV 2.26 0.14 1.5 28.1 234 140 72 0.6 27.2 251
"L" following a parameter deans "less than"
1987 NYC STP EFFLUENT METALS CONCENTRATIONS
EFFL EFFL EFFL EFFL EFFL EFFL EFFL EFFL EFFL EFFL
As Be Cd Cr Cu CN Pb Hg Ni Zn
ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l
SC JAN
SC FEB
SC MAR
SC APR 1.20 0.20 0.6 1.5 240 56 0.2 27.0 360
SC MAY
SC JUNE
SC JULY
SC AUG 0.90 0.10 L 0.7 16.0 310 48 0.8 44.0 410
SC SEPT 2.20 0.10 0.6 5.0 L 150 35 0.2 22.0 230
SC OCT 1.80 0.10 0.5 34.0 510 13 0.2 45.0 140
SC NOV
SC DEC
SC MLE 1.53 0.12 0.6 16.1 303 39 0.3 34.5 287
SC AV 1.53 0.13 0.6 14.1 303 38 0.4 34.5 285
"L" following a parameter means "less than"
1987 NYC STP PERCENT REMOVALS
As Be Cd Cr Cu CN Pb Hg Ni Zn
SC JAN
SC FEB
Ic APR 20 -100 63 78 -14 20 0 51 0
SC NAY
SC JUNE
Ic JAUG -29 50 0 0 -210 -60 11 -159 -116
SC SEPT -5 0 65 69 29 34 60 59 21
SC OCT 36 0 50 -623 -364 32 33 -1116 -106
SC NOV
SC DEC
Out of the 36 calculated percent removals above, 12 -or 33X- are negative
1987 ANNUAL AVERAGES (MLE)
As Be Cd Cr Cu CN Pb Hg Ni Zn
ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l
SC INFL 2.27 0.14 1.48 26.87 224.16 118.13 69.73 0.56 30.11 267.71
SC EFFL 1.53 0.12 0.60 16.09 302.86 20.00 39.08 0.34 34.55 286.98
SC CSO 2.27 I 0.14 I 1.48 I 26.87 I 224.16 I 118.13 I 69.73 I 0.56 I 30.11 I 267.71 I
For CSO. "H"= Neasured CSO Cone; "I"= STP Influent Cone
FLOW As Be Cd Cr Cu CN Pb Ng Ni Zn
NGD kg/d kg/d kg/d kg/d kg/d kg/d kg/d kg/3 kg/d kg/d
INFL
CSOL 1.93 0.02 0.00 0.01 0.20 1.63 0.86 0.51 0.00 0.22 1.95
16
-------
1987 NYC STP INFLUENT METALS CONCENTRATIONS
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
MLE
AV
INFL
As
ug/l
2.00
1.10
2.70
1.20
0.10
6.00
9.50
4.34
3.23
INFL
Be
ug/l
0.10
0.50
0.30
0.10 L
0.10
0.20
0.06
0.19
0.19
INFL
Cd
ug/l
8.8
28.0
24.0
8.0
6.1
15.0
18.0
15.5
15.4
INFL
Cr
ug/l
51.0
40.0
55.0
32.0
5.0
5.0 L
11.0
31.3
28.4
INFL
Cu
ug/l
89.0
85.0
100.0
54.0
67.0
58.0
270.0
100
103
INFL
CN
ug/l
20.0 L
20.0 L
20.0 L
20.0 L
20.0
20
INFL
Pb
ug/l
43.0
32.0
31.0
9.2
41.0
17.0
11.0
26.8
26.3
INFL
Ha
ug/l
0.4
0.7
0.7
0.1 L
1.8
1.0
1.9
1.1
0.9
INFL
Ni
ug/l
12.0
11.0
11.0
28.0
14.0
3.4
30.0
16.1
15.6
INFL
Zn
ug/l
130
260
170
62
33
90
110
124
122
"L" following a parameter means "less than"
1987 NYC STP EFFLUENT METALS CONCENTRATIONS
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
MLE
AV
EFFL
As
ug/l
1.10
2.10
1.00
1.50
2.40
3.70
3.40
2.18
2.17
EFFL
Be
ug/l
0.10
0.60
0.10 L
0.10
0.10
0.10
0.09
0.16
0.17
EFFL
Cd
ug/l
5.5
16.0
20.0
7.6
0.9
1.4
18.0
11.9
9.9
EFFL
Cr
ug/l
38.0
28.0
43.0
18.0
23.0
21.0
6.7
26.1
25.4
EFFL
Cu
ug/l
75.0
49.0
110.0
58.0
120.0
81.0
59.0
78.8
78.9
EFFL
CN
ug/l
20.0 L
20.0 L
20.0 L
20.0
20.0
20
EFFL
Pb
ug/l
20.0
21.0
34.0
19.0
15.0
22.0
13.0
20.5
20.6
EFFL
H9
ug/l
0.1
2.2
0.5
0.2
0.4
1.2
3.1
1.2
1.1
EFFL
Ni
ug/l
6.3
7.5
1.6
2.7
1.0
5.8
26.0
7.3
7.3
EFFL
Zn
ug/l
120
140
110
85
40
46
130
97
96
"L" following a parameter means "less than"
1987 NYC STP PERCENT REMOVALS
As Be
Cd
Cr
Cu
CN
Pb
Hg
Ni
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
JAN
FEB
MAR
APR
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC
45
-91
63
-25
-2300
38
64
0
-20
67
0
0
50
-50
38
43
17
5
85
91
0
25
22 *
44
-360
-320
39
16
42
•10
•7
•79
•40
78
Out of the 67 calculated percent removals above, 23 -or 34X- are negative
1987 ANNUAL AVERAGES (MLE)
Zn
0
0
0
0
53
34
-10
•107
63
-29
-18
75
-214
29
-100
78
-20
-63
48
32
85
90
93
•71
13
8
46
35
-37
-21
49
-18
RH
RH
RH
INFL
EFFL
CSO
As
ug/l
4.34
2.18
4.30 1
Be
ug/l
0.19
0.16
0.20 I
Cd
ug/l
15.52
11.88
15.50 I
Cr
ug/l
31.31
26.11
31.00 I
Cu
ug/l
100.48
78.81
100.00 I
CN
ug/l
20.00
20.00
20.00 I
Pb
ug/l
26.82
20.54
27.00 1
Hg
ug/l
1.05
1.21
1.05 I
Ni
ug/l
16.10
7.27
16.00 1
Zn
ug/l
124.27
97.17
124.00 I
For CSO, "M»= Measured CSO Cone; "l"» STP Influent Cone
INFL
EFFL
CSO
FLOW
MOD
46.61
46.61
4.97
As
kg/d
0.76
0.38
0.08
Be
kg/d
0.03
0.03
0.00
Cd
kg/d
2.74
2.09
0.29
Cr
kg/d
5.52
4.60
0.58
Cu
kg/d
17.72
13.90
1.88
CN
kg/d
3.53
3.53
0.38
Pb
kg/d
4.73
3.62
0.51
Hg
kg/d
0.19
0.21
0.02
Ni
kg/d
2.84
1.28
0.30
Zn
kg/d
21.91
17.13
2.33
!7
-------
APPENDIX B
TRIBUTARY CONCENTRATIONS 1981 -1989
Conventional parameters and nutrients for all rivers are listed first, followed by toxicant concentrations
IB
-------
UATER QUALITY Station 01358000 HUDSON RIVER at GREEN ISLAND. NY
0
1
2
4
\
8
9
10
11
12
13
14
15
16
17
18
19
20
21
1
25
26
DATE
811019
811208
820330
820511
820720
820824
821116
830303
830614
830920
831208
840307
840605
840813
841121
850319
850611
850821
851126
860319
860506
860805
870331
871201
880329
880823
FLOW
cfs
6200
15500
27500
13500
4810
4060
5990
14400
10200
3810
36300
15400
22400
5780
10100
18600
5470
3960
14100
62900
6540
12100
37700
30800
32900
3450
TSS
mo/ 1
8
17
19
25
9
30
28
96
10
g
11
9
6
81
6
26
BODS FCOLI
ng/l /100ml
1200
640
350
320 B
1000
1200
3000
330
680
2000
150
2100
640
390
460
200
430
260
390
ORGN
ng/l
0.30
0.21
0.39
0.40
0.31
0.65
0.40
0.12
0.56
0.82
0.78
1.27
0.80
0.19
1.69
0.18
0.92
0.51
0.43
0.26
0.35
0.29
0.35
0.50
0.31
NH3N
•9/1
0.08
0.20
0.09
0.18
0.09
0.05
0.10
0.18
0.04
0.08
0.12
0.13
0.20
0.11
0.11
0.22
0.08
0.09
0.17
0.34
0.05
0.11
0.15
0.10
0.09
N02*3
•8/1
0.6
0.7
0.7
1.9
0.4
0.4
0.5
0.8
0.3
0.7
0.7
0.6
0.5
8:1
0.7
0.6
0.5
0.5
0.6
0.5
0.6
0.5
0.6
0.5
TN
mg/l
0.98
1.11
1.18
2.48
0.80
1.10
1.00
1.10
0.90
1.60
1.60
2.00
1.50
0.80
2.30
1.10
1.60
1.10
1.10
1.20
0.90
1.00
1.00
1.20
0.90
TP
mg/l
0.04
0.04
0.05
0.05
0.09
0.04
0.05
0.05
0.03
0.04
0.13
0.03
0.03
0.1
0.03
0.07
0.02
0.06
0.06
0.03
0.05
0.03
0.03
0.07
0.04
SM-N! DIsiLNH3?NH4-N 811019-851126, TOT NH3+NH4-N 860506-880823
N02+3: DISS N02+N03-N
TN* TKJEL+DISS N02+N03-N
•B": Results based on colony courts outside acceptable range
-------
MATER QUALITY Station 01377000 HACKENSACK RIVER at RIVERVALE, NJ
*
1
j
4
5
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
DATE FLOW TSS BODS FCOLI
cfs mg/l mg/l /100ml
820201 84
820414 88
820608 209
820720 62
820811 31
820929 42
830119 40
830413 262
830606 182
830721 142
830901 90
831003 27
840123 39
840411 164
840605 142
840730 63
840904 104
841003 66
850204 39
850327 16
850613 18
850711 19
850828 25
851028 23
860213 74
860415 39
860605 118
860721 92
860908 16
861023 63
870204 101
870415 163
870615 82
870720 47
870826 110
871029 68
880302 78
880414 44
880607 48
880803 36
880830 72
881027 27
890119 42
890405 42
890531 88
890809 80
FLOW: Estimated from
ORG-N: TKJEL-NH3-N
NH3-N: TOT NH3+NH4-N
N02+3: TOT N02*N03-N
6.0
3.6
2.0
6.3
2.7
1.7
1.8
3.6
2.3
3.5
3.2
4.5
4.2
2.7
2.4
2.0
1.7
2.4
3.6
1.8
2.4
3.9
5.4
6.3
2.7
4.5
2.1
3.9
3.0
1.5
4.2
3.3
2.4
2.6
4.5
8.1
4.5
3.9
4.5
3.0
3.0
3.9
920
11
540
24000 L
540
350
240
330
170
1300
18
110
200
330
130
110
330
1100
110
23
33
130
230
170
320
170
130
80
490
220
1700
49
350
490
920
230
920
70
20
ORCN
•8/1
0.75 J
0.58
0.70
0.69
0.54
0.71 J
0.50
0.37
0.67
0.52
0.67
0.59
0.81
0.77 L
0.31
0.71
0.42
0.84
0.72 J
0.61
0.54
0.50
0.75
0.36
0.79
0.59
0.61
0.76
1.10
0.67
0.86
0.95
0.92
0.95
0.78
0.67
0.96
0.97
1.14
0.59
0.64
0.47
0.77
NH3N
ng/ 1
0.25 J
0.27
0.23
0.25
0.15
0.05 J
0.60
0.11
0.11
0.35
0.54
0.27
0.09
0.05 K
0.12
0.10
0.11
0.79
0.12 J
0.23
0.32
0.40
0.07
0.38
0.15
0.15
0.19
0.09
0.20
0.21
0.13
0.05
0.16
0.07
0.04
0.03
0.06
0.15
0.06
0.35
0.25
0.09
0.13
M02+3 TN
•B/l ng/l
1.00 2.00
0.80
8.30
.40
0.40
0.10
0.70
0.60 J
0.50
0.20
0.40
1.23
1.02
0.71
0.56
0.44
0.47
0.25
0.88
1.13 J
0.68
0.64
0.87
0.36
0.63
0.57
0.28
0.17
0.71 J
0.16
0.67
0.48
0.35
0.40
0.13
0.36
0.58
0.55
0.54
0.54
0.19
0.45
0.77
0.91
.65
.23
34
.09
.86
.80
.08 J
.28
.27
.44
.88
.61
.38
.87
.28
.78
.51
.97 J
.52
.50
.77
.18
.37
.51
.02
.97
.56 J
.46
.55
.47
.35
.48
.15
.18
.25
.56
.66
.39
.39
.66
.47
0.58 1.48
TP
0.18
0.04
0.04
0.08
0.06
0.06
0.06
0.06
0.13
0.14
2.50
0.13
8.05
.07
0.09
0.08
0.12
0.05
0.06
0.05
0.10
0.10
0.07
0.07
0.04
0.02 K
0.07
0.12
0.06
0.06
0.06
0.06
0.05
0.07
0.08
0.05
0.04
0.04
0.06
0.11
0.09
0.05
0.04
0.07
0.06
stage 881027-890809
TN: TKJEL+TOT N02+N03-N
TP: TP04-P 820201-830606,
"J": Estimated value; value
"K": Actual value <
"L": Actual value >
TP 830721-890531
not accurate
value shown
value shown
-------
WATER QUALITY Station 01389500 PASSA1C RIVER at LITTLE FALLS. NJ
*
1
2
3
4
6
7
1
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
DATE
811117
820128
820323
820527
820707
820915
821124
830126
830325
830512
830722
630928
831122
840127
840316
840509
840726
840919
841116
850107
850221
850529
850726
851115
860129
860227
860514
860624
860829
861118
861120
861204
861219
870113
870327
870401
870429
870609
870622
870714
870810
870903
870923
871020
871117
871216
880119
880225
880322
880421
880513
880526
880610
880624
880721
880810
880923
881021
881118
881215
890127
890222
890322
890414
FLOW
c s
230
334
551
170
280
1590
6690
860
680
106
1610
1010
2920
2760
1050
156
292
675
675
594
323
831
4400
2560
512
225
334
415
873
2040
1090
1130
665
3390
1710
346
315
536
1130
272
743
358
1160
1360
644
1893
703
111
796
2970
471
237
1080
163
182
90
737
143
468
1450
551
1220
TSS
m/l
•B/ I
12
3
17
11
16
21
13
IB
17
29
16
73
14
23
36
44
51
37
6
9
45
51
33
30
12
27
25
30
17
25
27
33
10
27
79
17
49
26
18
12
2
26
44
20
BODS
•B/
7.0
4.5
3.3
t:iL
7.0
6.5
3.1
1.8
4.3
5.7
4.7
5.4
2.9
1.5
8.4
4.8
6.3
4.3
2.1
3.6
6.6
13.0
3.4
4.5
3.9
7.5
7.1
4.6
4.8
5.8
3.9
23.0
3.6
4.6
3.9
3.6
4.2
7.4
3.7
3.8
3.3
3.0
2.1
3.0
3.0
5.7
3.0
4.8
4.8
3.6
4.2
10.0
7.8
7.5
3.4
6.9
5.1
8.4
4.1
2.8
5.0
FCOLI
1
200
600 L
560
44 B
770
160
690 B
§8.
340
13 B
48 B
440 B
230
120
100
28 B
48 B
280
113
33
130
74
511
33 B
933
140
820
360 B
133 B
500
1700
700 B
230
380
93
170 B
2000 L
250
16 B
ORGN
0.80
0.20
1.10
0.80
1.18
2.49
0.40
0.00
0.36
0.66
0.94
1.50
2.15
1.00
0.38
0.48
1.05
1.30
1.10
0.60
1.80
1.50
0.62
0.70
0.43
0.70
1.20
1.10
0.80
1.00
0.74
0.99
0.50
1.14
0.91
1.30
1.36
4.16
3.47
1.07
1.06
0.83
0.72
0.93
0.70
0.50
0.38
0.58
1.10
0.38
0.53
0.68
1.62
0.90
1.92
0.88
0.70
0.99
0.70
0.60
0.30
1.02
0.68
NH3N
3.00
3.20
1.30
|:g
2*50
0.81
0.14
0.94
0.86
2.20
9:8
0.22
0.32
0.35
2.30
2.00
1.40
1.80
1.80
0.58
0.30
0.37
1.20
1.30
0.60
1.10
1.10
0.16
0.61
0.80
0.96
0.29
0.30
0.74
0.64
0.43
0.43
0.44
0.27
0.58
0.37
0.60
2.00
0.22
0.52
1.30
0.42
0.17
0.82
0.48
0.60
0.38
0.82
1.30
0.91
1.40
1.50
0.80
0.88
0.32
N02+3
2.1
1.3
0.8
1.6
1.3
2.2
1.8
0.9
0.5
1.0
1.4
2.7
0.9
1.2
0.6
0.6
1.1
2.6
1.9
1.2
1.6
2.1
1.0
0.7
0.9
1.6
2.2
2.2
2.2
1.8
0.7
1.1
1.2
1.3
0.6
0.8
2.1
2.3
1.9
1.4
2.5
1.3
2.2
1.0
1.5
2.4
0.9
1.3
2.9
1.4
0.7
2.0
3.1
1.4
2.6
4.6
5.2
2.0
2.6
1.9
1.5
1.5
1.0
TN
5.9
4.7
3.2
4.7
3.2
5.2
4.7
1.7
1.0
2.6
3.2
6.4
l!2
1.4
2.5
6.2
5.0
3.2
5.2
Z\2
1.7
1.7
3.5
4.7
3.9
4.1
3.9
1.6
2.7
2.5
3.4
1.8
2.4
4.2
7.1
5.8
2.9
4.0
2.4
3.5
2.3
2.8
4.9
1.5
2.4
5.3
2.2
1.4
3.5
5.2
2.9
4.9
6.3
7.2
3.9
4.7
4.0
2.6
2*0
TP
•«/ 1
•w/i
0.72
0.50
0.27
0.55
0.29
0*72
0*23
0.09
0.28
0.29
0.54
0.05
0.27
0.10
0.16
0.30
0.66
0.56
0.33
0.55
0.77
0.36
0.15
0.12
0.39
0.72
0.43
0.57
0.47
0.16
0.26
0.24
0.40
0.24
0.18
0.55
1.10
0.73
0.44
0.35
0.36
0.40
0.19
0.30
0.59
0.11
0.24
0.59
0.22
0.16
0.27
0.57
0.46
0.47
0.54
0.93
0.63
0.65
0.44
0.39
0.46
0.18
FLOW: Estimated from stage 890414
ORG-N: TKJEL-NN3-N
NH3-N: DISS NH3+NH4-N 811117-840919, TOT NH3+NH4-N 841116-890414
N02+3: DISS N02+N03-N 811117-870429, TOT N02+N03-N 870609-890414
TN: TKJEL+N02+3
"B": Results based on colony counts outside acceptable range
"L": Actual value > value shown
-------
UATER QUALITY Station 01391500 SADDLE RIVER at LOOI, NJ
*
1
3
4
5
6
8
9
10
11
12
13
14
15
16
17
18
19
20
22
23
24
25
26
28
29
30
31
I!
34
35
36
37
38
39
40
41
42
43
44
DATE FLOW TSS
cfs mg/l
811001 12
820225 76
820414 104
820615 123
820722 43
820818 29
821018 20
830216 36
830324 196
830614 60
830721 39
830822 31
831013 82
840117 76
840412 222
840611 134
840726 104
840829 50
841002 78
850129 33
850402 36
850521 27
850717 37
850815 31
851008 43
860213 76
860402 81
860617 44
860710 37
860812 50
870218 81
870408 130
870609 53
870714 47
870812 125
871015 59
880210 76
880406 66
880607 56
880802 54
880825 89
881011 35
890202 50
890411 112
FLOW: Estimated from
ORG-N: TKJEL-NH3-N
NH3-N: TOT NH3*NH4-N
N02+3: TOT N02+N03-N
BOOS
ng/l
7.6
4.1
4.4
6.2
9.9
5.1
7.1
1.7
3.1
4.8
3.8
3.0
5.7
5.3
1.6
3.0
4.4
8.4
4.5
5.4
5.7
4.9
9.6
5.7
5.7
7.2
7.1
10.8
8.4
2.4
3.6
4.9
4.8
3.9
2.1
3.0
7.9
3.0
3.9
7.5
7.1
9.0
6.0
FCOLI
/100ml
490
46
130
1600
7900
800
20 K
20 K
3300
4600
24000 L
200
350
330
1100
2300
11000
79
220
2400 L
2400
16000
16000
220
790
2400
2300
11000
130
330
9200
4900
4900
92000
200
330
230
4900
4900
2400
3500
70
ORGN
ng/l
1.40
0.90
0.96
0.60
1.20
0.90
1.60
0.82
0.80
0.00
0.90
1.09
0.00 J
0.45
0.40
0.68
0.94
0.44
0.90
0.45
0.20
1.30
0.71
1.40
0.20
1.15
0.00
0.77
1.20
1.10
8.67
.15
0.98
1.08
0.00 J
0.78
0.84
0.69
0.35
0.25
0.68
NH3N
ng/l
2.60
2.00
0.94
3.60
1.60
4.40
3.60
0.78
1.70
2.10
1.20
0.41
2.44
0.66
0.54
0.23
0.99
1.40
8.65
6.10
7.00
3.40
2.14
3.10
3.80
3.65
2.90
2.18
0.90
1.90
0.57
1.05
0.77
0.42
2.04
3.20
0.38
0.41
0.35
3.05
4.40
1.55
N02+3
ng/l
4.50
2.10
1.70
2.00
2.00
i:578
4.10
2.20
3.20
4.00
3.60
1.70
J 2.65
1.98
2.44
3.08 J
3.90
3.15
2.72
1.97
1.76
1.92
1.51
4.11
1.96
2.00
4.32
3.59
3.97
2.14
1.60
3.34
4.80
4.71
J 4.51
3.09
2.03
3.99
3.92
2.49
3.50
2.25
1.98
TN
ng/l
8.60
6.10
4.60
3.90
6.20
S.30
.00
9.30
3.80
5.70
6.10
5.70
3.20
5.09 J
3.09
3.38
3.99 J
5.83
4.99
12.27
8.52
8.96
6.62
4.36
8.61
5.96
6.80
7.22
6.54
6.07
5.14
2.84
4.54
6.55
6.21
6.55
5.15
5.17
3.53
6.90
6.90
4.21
TP
ng/l
1.70
0.67
0.50
0.43
1.27
1.30
1.57
1.63
0.29 J
0.21
0.97
1.20
0.43
0.62
0.25
0.33
0.46
1.10
0.93
1.45
0.99
1.45
1.43
1.00
1.05
0.72
0.97
0.35
1.50
1.12
0.50
0.21
1.08
0.97
0.86
1.05
0.53
0.66
0.77
0.82
0.50
1.40
0.87
0.44
stage 890411
TN: TKJEL+TOT N02+N03-N
"J": Estimated value: value
"K": Actual value <
not accurate
value shown
"L": Actual value > value shown
-------
WATER QUALITY Station 01393450 ELIZABETH RIVER at URSINO LAKE at ELIZABETH, NJ
* DATE FLOW TSS BOOS FCOLI
cfs ng/l ng/l /100ml
1 820210 17 25.0 L 50
2 820330 19 13
3 820609 11 3.6 2400 L
4 820715 8 6.9 92000
5 820810 20 4.6 16000
6 821006 5 2.0 240000 L
7 830117 10 48.0 24000 L
8 830323 28 3.3 24000 L
9 830719 8 15.6 240000 L
10 830817 10 3.9 240000 L
11 831005 9 8.4 L 240000 L
12 840222 14 2.4 500
13 840402 31 2.4 3300
14 840614 25 13.2 92000
IS 840724 15 5.4 22000
16 840821 10 7.2 3SOOO
17 841003 9 2.4 2400
18 850122 9 4.2 200 K
19 850328 8 3.3 200 K
20 850S16 8 20.1 240000 L
21 850709 7 1.3 3300
22 850813 7 1300
23 8S1003 216 28000
24 860407 14 8.7 54000
25 860620 10 4.5
26 860709 9 5.7 11000
27 860812 14 4.5 17000
28 861009 6 2.4 11000
29 870121 18 4.8 9200
30 870407 69 2.9 24000 L
31 870603 10 2.1 5400
32 870715 69 3.9 5400
33 870818 8 0.7 24000
34 871014 8 2.4 1300
35 880218 18 1.5 13000
36 880405 10 8.2 7900
37 880606 10 3.6 2300
38 880728 43 4.8 35000
39 880809 7 92000
40 881018 4.9 1.8 1700
41 890208 7.6 4.8 2400 L
42 890406 45 3.0 2600
FLOW: Estimated from stage 890406
ORG-N: TKJEL-NH3-N
NH3-N: TOT NH3+NH4-N
N02*3: TOT N02*H03-N
TN: TKJEL*TOT N02+N03-N
ORGN
•B/l
0.79
0.38 J
0.63 L
1.03
0.92 J
0.42
0.66
0.92
1.81
0.78
0.46
0.37
0.51
1.86
0.46
0.57 L
0.49 L
0.53
0.42 L
2.96
0.21
8.33
.84
0.86
0.48
0.64
8:75°
0.60
0.81
0.98
0.41
0.53
1.26
0.62
0.84
1.00
0.30 L
0.51
0.48
NH3N
•B/l
0.21
0.37
0.05
o!is
0.58
0.44
0.18
0.29
0.32
0.23
0.15
0.13
0.19
0.30
0.05
0.05
0.16
0.05
0.14
0.17
0.09
0.16
0.41
0.08
0.14
0.13
0.19
0.12
0.18
0.14
0.05
0.15
0.04
0.26
0.06
0.13
0.05
0.44
0.05
1102*3
1.90
2.00
K 1.90
1.70
J 0.80
1.40
1.10
3.00
0.80
1.60
2.30
2.38
1.89
1.31
1.90
K 1.30
K 1.45
2.52
K 1.76
1.26
1.02
1.59
0.71
1.23
1.01
1.22
1.08
1.22
1.91
1.04
1.01
0.96
1.26
1.82
1.07
1.27
0.60
0.05 K
K 1.40
1.82
1.06
TN
•B/l
2.90
2.75 J
l!90 J
2.40
2.20
4.10
2.90
2.70
2.99
2.90
2.53
3.36
2.66
1.92
1.99
3.21
2.23
4.36
1.40
2.01
1.71
2.50
1.57
2.00
1.79
2.16
2.63
2.03
2.13
1.42
1.94
2.37
2.15
1.50
1.18 K
1.75
2.77
1.59
TP
•B/l
o!o9
0.08
0.24
0.15
0.19
0.15
0.13
0.26
0.21
0.06
0.10
0.07
0.23
0.15
0.11
0.09
0.07
0.06
0.90
0.11
0.08
0.26
0.14
0.09
0.10
0.11
0.10
0.08
0.07
0.15
0.06
0.10
0.10 J
0.10
0.14
0.16
0.25
0.07
0.37
0.11
TP: TP04-P 820210-830323, TP 830719-890406
•J": Estimated value; value not accurate
•K": Actual value < value shown
"L": Actual value > value shown
-------
WATER QUALITY
* DATE
1
2
4
5
6
8
9
10
11
12
13
U
IS
16
17
18
19
20
21
22
23
24
26
27
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
820217
820405
820610
820715
820805
820928
830112
830316
830526
830719
830817
831005
840222
840326
840614
840724
840823
841001
850122
850328
850516
850709
850813
851003
860204
860407
860620
860709
860804
861009
870121
870406
870603
870715
870818
871014
880218
880405
880606
880802
880817
881026
890125
890320
890810
Station 01395000
FLOW TSS BODS
cfs mg/l ng/l
18
75
11
2
6
12
29
27
19
8
4
4
24
29
33
30
50
10
8
8
3
5
1
70
23
21
7
3
15
49
213
12
887
13
53
22
20
8
7
11
23
22
11
FLOW: Estimated from
ORG-N: TKJEL-NH3-N
NH3-N: TOT
N02+3: TOT
NH3+NH4-N
N02+N03-N
2.6
2.6
2.1
3.9
3.7
20.0
3.2
1.5
5.1
4.8
3.6
2.1
1.2
6.0
5.4
4.5
7.8
4.2
3.3
4.8
3.9
2.1
1.7
5.1
3.9
1.7
3.0
1.8
2.7
2.7
2.7
5.7
1.2
2.7
1.5
2.6
3.9
6.3
6.0
5.1
6.0
5.1
3.0
RAHUAY RIVER at
FCOL1 ORGN
/100ml BO/ I
230
540
540
500
200 K
2300
2400 L
130
130
9200
500
1100
200 K
230
3500
310
2300
3500
50
20 K
110
790
700
7900
330
310
1300
500
700
790
2400 L
3500
16000
330
170
790
170
330
200
3300
230
50
1300
0.10
0.58
0.55
0.33
0.68
0.50
0.73
0.40
0.59
0.48
0.59
0.53
0.07
0.59
0.83
0.55
0.54
8.44
.38
0.70
0.71
0.50
0.46
0.67
0.38
0.61
0.59
0.60
0.86
0.56
0.40
0.88
0.48
1.19
0.54
0.42
0.33
0.63
0.84
0.97
0.54
0.26
0.77
J
J
L
L
L
J
L
L
L
J
L
L
stage 890320. 890810
RAHUAY, NJ
NH3N N02+3 TN
ng/l no/l ng/l
0.38
0.17
0.08
0.21
0.12
0.14
0.07
0.05
0.17
0.05
0.14
0.05
0.49
0.06
0.17
0.09
0.09
0.05
0.06
0.05
0.14
0.12
8.12
.10
0.17
0.10
0.01
0.11
0.18
0.11
0.13
0.14
0.58
0.15
0.05
0.07
0.07
0.16
0.05
0.05
0.05
0.05
0.08
J
K
K
K
K
K
K
J
K
K
1.50
0.90
0.50
0.10
0.30
0.50
0.60
1.10
0.70
0.50
0.90
0.61
1.19
0.84
1.13
0.68
0.90
1:8
0.50
0.54
0.61
0.44
0.81
1.63
0.88
0.49
0.33
0.66
0.87
0.93
0.84
.98
.65 J
.13
.64
.10
.14
.40
.55
.46
.03
.63
.19
.75 J
.49
.13
.32
.53
.42
.27
.25
.39
.23
.02
.58
.18
.59
.09
.04
.70
.54
.46
.86
0.99 2.05
0.81 2.15
1.00 1.59
1.36 1.85
1.02
0.79 .19
1.15 .94
0.77 .66
0.56 .58
0.65 .24
1.33 .64
1.11 .96
"J": Estim. value; not
TP
ng/ 1
0.06
0.10
0.08
0.10
0.10
0.08
0.17
0.06
0.12
0.09
0.12
0.11
0.06
0.06
0.11
0.11
0.10
0.09
0.05
8.10
.10
0.09
0.10
0.13
0.06
0.08
0.09
0.11
0.11
0.10
0.10
0.11
0.12
0.27
0.08
0.08
0.06
0.07
0.11
0.10
0.14
0.11
0.08
0.10
accurate
"K": Actual value < value shown
"L": Actual value > value shown
TN: TKJEL*TOT N02+N03-N
TP: TP04-P 820217-830526, TP
830719-890320
WATER QUALITY Station 01396001 ROBINSON'S BRANCH at MAPLE AV at RAHWAY, NJ
*
1
DATE
820217
820405
820610
FLOW
Cfs
13
59
TSS
mo/ 1
BODS
ng/l
1.8 J
3.3
3.0
FCOLI
/100ml
110
540
130
ORGN
ng/l
0.30
0.94 J
0.84
NH3N
ng/l
0.40
0.36
0.11
N02*3
no/ 1
1.40
0.90
0.40
TN
ng/l
2.10
2.20 J
1.35
TP
ng/l
0.08
0.18
0.05
ORG-N: TKJEL-NH3-N
NH3-N: TOT NH3+NH4-N
N02+3: TOT N02+N03-N
TN: TKJEL+TOT N02+N03-N
TP: TP04-P
"J": Estimated value; value not accurate
-------
WATER QUALITY Station 01400500 RARITAN RIVER at NANVILLE, NJ
*
1
2
4
5
6
8
9
10
11
12
13
14
15
16
17
18
19
ll
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
DATE
811015
820208
820325
820616
820728
820909
820922
830127
830406
830609
830720
830817
831006
840206
840320
840531
840716
840828
841012
850122
850320
850530
850702
850806
851015
860131
860407
860519
860707
860812
861008
870120
870326
870601
870706
870824
871006
880309
880330
880602
880712
880809
881011
890201
890412
890606
FLOW TSS
cfs mg/l
232
728
424
943
1450
318
1420
760
620
280
312
1020
1450
10500
1060
329
227
444
318
227
175
237
270
1050
451
371
341
486
210
1830
365
295
264
229
505
1080
679
1380
236
248
202
506
838
752
BODS
•a/ 1
1.2
1.5
1.5
1.5
5.9
0.7
1.6
1.3
1.5
1.2
1.9
1.0
0.5
2.9
1.0
1.6
1.6
0.7
1.3
3.0
1.2
1.3
0.7
0.3
1.1
1.8
2.8
1.7
3.7
1.2
1.4
2.5
2.0
3.3
1.1
0.9
0.3
2.6
2.4
1.3
1.1
3.4
FCOLI
/100ml
7
17
21
1600
49
540
540
170
500
4900
200 K
130
350
33
9200
2200
20
20 K
50
70
170
50
17
20
20
5400
110
2400 L
2 K
79
240
70
700
110
31
2400 L
80
50
79
920
ORGN
•B/l
0.50 L
0.36
0.24
0.36
0.64
0.08
0.28
0.50
0.44
0.32
0.78
0.01 J
0.80
0.41
0.33
0.09
0.33 L
0.26
0.17
0.31
0.37
0.14
0.10
0.35
0.57
0.48
0.67
0.46
0.54
0.76
0.33
0.87
0.49
0.52
0.58
0.59 L
0.29 L
0.39
0.21 L
0.28 L
0.47
NH3N
•8/1
0.05 K
0.09
0.14
0.05
0.04
0.13
0.04 J
0.05 K
0.09
0.05 K
0.47
0.60 J
0.05 K
0.14
0.06
0.11
0.05 K
0.10
0.20
S.07
.06
0.25
0.10
0.10
0.12
0.09
0.07
0.15
0.24
0.06
0.07
0.11
0.14
0.04
0.02
0.05 K
0.05 K
0.10
0.05 K
0.05 K
0.07
1102*3
0.28
1 .80
1 *20
2.20
0.30
0.30
2.60
1.60
1.30
0.90
0.90
0.71
1.47
1.45
1.13
0.87
0.89
0.87
1.74
1.14
1.30
0.91
0.80
1.60
1.90
1.03
0.94
0.48
0.85
0.73
1.58
0.81
1.19
1.56
0.67
1.25
1.46
0.78
1.15
0.71
0.53
0.65
1.42
1.01
TN
•B/l
i-JI J
2.18
1.75
2.65
0.68
0.71
3.28
1.81
1.62
1.45
1.43
1.08
2.72
2.06
1.98
1.42
1.28
1.07
2.12
1.50
1.67
1 .29
1.23
1.99
2.10
1.48
1.63
1.05
1.59
1.34
2.36
1.63
1.59
2.54
1.30
1.81
1.46 L
1.38
1.79
1.05
1.02
0.91
1.75
1.55
TP
•8/1
0.06
0.05
0.05
0.09
0.18
8.05
.03
0.08
0.09
0.15
0.14
0.13
0.11
0.12
0.04
0.16
0.09
0.08
0.07
0.07
0.06
0.11
0.10
0.14
0.11
0.06
0.04
0.06
0.10
0.22
0.13
0.28
0.05
0.12
0.13
0.09
0.15
0.05
0.04
0.12
0.13
0.08
0.06
0.06
0.09
ORG-N: TKJEL-NH3-N
NH3-N: TOT NH3*NH4-N
N02+3: TOT N02+N03-N
TN: TKJEL+TOT N02+N03-N
TP: TP04-P 811015-830609, TP 830720-890606
"J": Estimated value;value not accurate
"K": Actual value < value shown
"L": Actual value > value shown
WATER QUALITY Station 01405700 SOUTH RIVER below DUHERNAL DAM at OLD BRIDGE, NJ
*
1
4
6
8
9
10
DATE
820209
820325
820602
820721
820823
820929
830117
830315
830517
830705
FLOW T!
cfs ns>
150
75
121
199
22
45
288
203
528
58
iS BODS
'I «B/l /
3.0
1.2
0.6
2.9
1.8 J
1.1 K
1.4 J
1.3 J
§.3 J
.9 K
FCOLI
100ml
5
20 K
130
170
80
170
50
50
20
80
ORGN
•8/1
0.66 J
0.59
0.69
0.34
0.46
0.39
0.41
0.37
0.37 J
NH3N 1
•8/1
0.84
0.36 J
0.24
0.08
0.05 J
0.38
0.46
0.73
0.61
102+3
•8/1 I
1.0 t
1.1 ;
0.8
0.4
0.6
2.0
0.9
0.9
0.8
1.3 J
TN
«/ 1
!.00
.60
.75
.33
.04
.51
.67
.77
.90
>.28
TP
•8/1
0.02
0.04
0.02
0.08
0.06
0.06
0.12
0.04
0.09
0.07
ORG-N: TKJEL-DISS NH3+NH4-N
NH3-N: DISS NH3+NH4-N
N02+3: DISS N02+N03-N
TN: TKJEL+OISS N02*N03-N
"J": Estimated value;-value not accurate
•K": Actual value < value shown
-------
WATER QUALITY Station 01358000 HUDSON RIVER at GREEN ISLAND. NY
*
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
DATE
811019
820330
820720
820824
821116
830303
830614
830920
831208
840307
840605
840813
841121
850319
850611
850821
851126
870331
871201
i§8ii!
FLOW
Cfs
6200
27500
4810
4060
5990
14400
10200
3810
36300
15400
22400
5780
10100
18600
5470
3960
14100
37700
30800
32900
3450
DISS
As
ug/l
K
1
1 K
1
1 K
1 K
1 K
1 K
K
K
K
K
K
DISS
Be
ug/l
1.00 K
1.00
0.50 K
0.50 K
0.50 K
0.50 K
0.00 K
0.00 K
0.50 1C
0.80
0.60
0.50
0.50 K
0.50 K
0.50 K
0.50 K
0.50 K
DISS
Cd
ug/l
6
4
15
15
7
8
120
1 K
1 K
12
1 K
1 K
1 K
1 K
1 K
2
1 K
1 K
1 K
1 K
1 K
DISS
Cr
ug/l
10
10
10
10 K
1 K
4
K
K
K
K
K
K
K
K
K
K
K
K
K
K
DISS
Cu
ug/l
12
5
15
15
7
16
3
3
7
11
9
4
7
6
9
4
1
3
9
DISS
Pb
ug/l
2
4
4
3
5
1 K
1
3
7
1
4
2
1
2
1
1 K
5 K
5 K
5 K
5 K
DISS
0.1
0.2
0.1
0.1 K
0.1 K
0.1 K
0.3
0.3
1.3
0.1
0.6
0.1
0.4
0.2
0.1 K
0.1 K
0.1 1C
0.1 K
0.1 K
DISS
Ni
ug/l
2
1 K
2
2
1
3
1 K
1
3
4
3
1
5
1
1
1 K
1 K
2
5
DISS
Zn
ug/l
7
24
12
12
7
8
9
8
12
19
8
7
9
12
15
9
29
10
14
14
33
Above are Measured DISSOLVED cone. "K": Actual value < value shown
RATIO TOT/DISS
1.5
#
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
DATE
•811019
•820330
•820720
•820824
821116
830303
830614
830920
831208
840307
840605
840813
841121
850319
850611
850821
851126
870331
871201
880329
880823
TO!
FLOW As
cfs ug/
6200 1
27500 2
4810
4060
5990
14400
10200
3810
36300
15400
22400
5780
10100
18600
5470
3960
14100
37700
30800
32900
3450
r
i
i
K
K
K
K
K
K
K
K
K
K
K
TOT
Be
ug/l
1.0 K
1.0
0.5 K
0.5 K
0.5 K
0.5 K
0.0 K
0.0 K
0.5 K
0.8
0.6
0.5
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
TOT
Cd
ug/l
5
2
12
18
7
8
120
1 K
1 K
12
K
K
K
K
K
K
K
K
K
K
TOT
Cr
ug/l
20.0
20.0
10.0
10.0 K
1.5 K
6.0
1.5 K
1.5 K
1.5 K
1.5 K
1.5 K
.5 K
.5
.5 K
.5 K
.5 K
.5 K
.5 K
.5 K
.5 K
.5 K
TOT
Cu
ug/l
12
13
15
19
7
16
3
3
7
11
9
4
7
6
9
4
1
3
5
9
TOT
Pb
ug/l
9
24
10
9
15
3 K
3
9
21
3
12
6
3
6
3
3 K
15 K
15 K
15 K
15 K
TOT
H9
ug/l
0.1
0.2
0.1
0.1 1C
0.1 1C
0.1 K
0.3
0.3
1.3
0.1
0.6
0.1
0.4
0.2
0.1 K
0.1 K
0.1 K
0.1 K
0.1 K
TOT
Ni
ug/l
5
3 K
3
3
2
6
2 K
2
6
8
6
2
10
2
2
2 K
2 K
4
10
6
TOT
Zn
ug/l
50
40
50
90
21
24
27
24
36
57
24
21
27
36
45
27
87
30
42
42
99
Above are ESTIMATED TOTAL cone except for (•) days when TOTAL cone were measured
ESTIN TOT cone «= Meas DISS cone • estimated ratio TOT/DISS
•K": Actual value < value shown
WATER QUALITY Station 01377000 HACKENSACK RIVER at RIVERVALE, NJ
# DATE
1 820608
2 830606
3 831003
4 840605
5 851028
6 870615
7 871029
8 880607
9 881027
FLOW
cfs
209
w
142
23
82
68
48
27
TOT
As
ug/l
1
4
1
1 K
1
2
TOT TOT TOT TOT TOT TOT TOT TOT
Be Cd Cr Cu Pb Hg Ni Zn
ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l
10 K K 20 11 5 0.2 1 10
10 10 5 1 0. K 3 20
10 K 10 K 10 K 8 0. K 2 10
10 K 10 9 6 0. K 4 30
10 K K 20 3 7 0. K 1 10
10 K K 20 32 5 0. K 2 10 K
10 K 1 K 16 5 K 0. 6
10 K 1 K 40 S K 0. K 5 10
10 K K 2 8 5 K 0. 5 10
Above are measured TOTAL concentrations
"K": Actual value < value shown
2,6
-------
WATER QUALITY Station 01389500 PASSAIC RIVER at LITTLE FALLS. NJ
*
1 (
i i
4 1
5 1
* !
8 1
9 1
10 I
11 i
12 i
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
32
33
DATE
111117
120128
I20527
120915
121124
130126
130512
130928
131122
KOI 27
140509
140919
(41116
150107
150529
160129
160227
160829
161118
161120
161204
961219
970327
S70401
370429
B70810
570923
B80119
B80322
880721
880923
890127
890322
FLOW
cfs
230
334
327
170
280
1590
860
106
1610
1010
2760
156
292
675
594
4400
2560
334
415
873
2040
1090
665
3390
1710
1130
743
644
703
1080
182
468
551
DISS
As
ug/l
1 K
1
2
1
1
1
2
1
1
1
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1
1 K
1 K
1
1
1 K
1 K
DISS
Be
ug/l
1 K
1 K
0.5 K
0.5 K
0.5 K
0.5 K
1 K
1 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
1 K
0.5 K
DISS DISS
Cd Cr
ug/l ug/
1 K 1C
1 K K
1 K K
1 K K
1 K 1
1 K
1 K 2
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1
1
1
1 K
1 K
2
1 K
1 K
1 K
1 K
1 K
1 K
1 K
I
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
DISS
Cu
ug/l
9
5
9
8
1
I
4
8
6
6
6
3
3
6
4
4
3
DISS
Pb
ug/l
1 K
1 K
6
1 K
3
4
2
1 K
5 K
5 K
5 K
5 K
5 K
5 K
5 K
5 K
5 K
5 K
5 K
5 K
5 K
DISS
H9
ug/l
0.1 K
0.2
0.1
0.2
0.3
0.6
0.1
0.4
0.3
0.2
0.2
0.2
0<»
.2
0.1 K
0.4
0.1
0.1 K
1.6
0.
0. K
0. K
0. K
0. K
0. K
0.
0. K
0. K
0. K
0. K
0. K
0. K
0. K
DISS
Ni
ug/l
3
5
4
3
3
8
4
2
2
1
1
1 K
3
1 K
1 K
2
4
DISS
Zn
ug/l
8
4 K
7
14
11
3 K
16
24
12
16
8
16
%
12
13
9
10
12
18
6
13
3 K
8
8
18
11
Above are measured DISSOLVED cone. "K": Actual value < value shown
RATIO TOT/DISS
2.5
4.5
*
1
2
4
6
8
9
10
11
12
13
14
15
16
17
18
19
!°2
24
25
26
27
28
29
30
31
ii
DATE
•811117
•820128
•820527
•820915
821124
830126
830512
830928
831122
840127
840509
840919
841116
850107
850529
860129
860227
860829
861118
861120
•861204
861219
870327
•870401
870429
•870810
870923
880119
880322
880721
880923
890127
890322
FLOW
cfs i
230
334
327
170
280
1590
860
106
1610
1010
2760
156
292
675
594
4400
2560
334
415
873
2040
1090
665
3390
1710
1130
743
644
703
1080
182
468
551
TOT
AS
jg/l
1 K
1
1
2
1
1
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
TOT
Be
ug/l u
1.0 K
1.0 K
0.5 K
0.5 K
0.5 K
0.5 K
1.0 K
1.0 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
0.5 K
1.0 K
0.5 K
TOT
Cd
g/i
1 K
1 K
1 K
2 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
1 K
TOT
Cr
ug/l i
10
10
10 K
10 K
1 K
1 K
1 K
1 K
8
3
9
1 K
1 K
1 K
1 K
10 K
1 K
1
10
10
K
K
K
K
K
TOT
Cu
«/l
15
11
11
10
23
20
8
13
15
13
10
10
20
10
20
13
13
15
}\
11
10
10
13
15
10
10
8
TOT
Pb
ug/l
6 K
11 K
11
9
5 K
9
9
14
9
18
14
9
9
14
5 K
23 K
23 K
!h
6 K
23 K
23 K
23 K
144
23 K
TOT
Ha
ug/t i
0.1 K
0.2
0.1
0.2
0.3
0.6
0.1
0.4
0.3
0.2
0.2
0.2
0.2
0.1 K
0.4
0.1
0.1 K
1.6
0.1
0.1 1C
0.1 K
0.1 K
0.1 K
0.2 K
0.1
0.0
0.1 K
0.1 K
0.1 K
0.1 K
0.1 K
0.1 K
0.1 K
TOT
Ni
ig/i
5
6
8
6
6
6
10
16
8
4
4
4
16
4
2 K
4 K
2 K
i
10
TOT
Zn
ug/l
70
80
20 K
60 K
49
98
77
21 K
112
168
84
21
77
112
56
112
252
203
84
91
30
70
84
30
126
10
42
91
21 K
56
56
126
77
Above are ESTIMATED TOTAL cone except for (•> days when TOTAL cone were measured
ESTIM TOT cone « Mess DISS cone • estimated ratio TOT/DISS
Be: DISS cone used for 861204, 870401. 870810
HQ! DISS cone used for 870810 "K»: Actual value < value shown
2,7
-------
WATER QUALITY Station 01391500 SADDLE RIVER at LOD1, NJ
*
1
4
6
8
DATE
811001
821018
831013
840611
851008
860617
870609
860607
FLOW
cfs
12
20
82
134
43
44
53
56
TOT
AS
ug/l
3
2
3
1
TOT
Be
ug/l
oooooooo
MMMMMM
TO!
C<
ug/
•
r
*
i
K
K
K
K
K
TOT
Cr
ug/l
30
10
10
10 K
10
10 1C
10 K
TOT
Cu
ug/l
13
14
10
10
18
9
9
10
TOT
Pb
ug/l
8
15
5
6
5 K
TOT
H9
ug/l
0.1 K
0.2
0.1 K
0.3
0.1 K
0.1 K
0.1 K
0.1 K
TOT
Ni
ug/l
4
3
3
2
6
TOT
Zn
ug/l
20
30
20
30
50
10
10
20
Above are measured TOTAL concentrations
"K": Actual value < value shown
WATER QUALITY Station 01393450 ELIZABETH RIVER at URSINO LAKE at ELIZABETH. NJ
*
1
3
6
DATE
820609
831005
641003
850516
861009
871014
881018
FLOW
cfs
11
9
9
8
6
8
4.9
TOT
As
ug/l
2
2
1
1
TOT
Be
ug/l
ooooooo
MMMMM M
TOT
Cd
ug/l
1
2
1 K
1 K
TOT
Cr
ug/l
30
80
20
20
10 K
110
8
TOT
Cu
ug/l
51
20
38
10
18
13
TOT
Pb
ug/l
9
9
5 K
5 K
5 K
TO!
H1
ug/l
ooooooo
r
I
K
K
K
K
K
TOT
Ni
ug/l
27
100 1C
9
15
1
TOT
Zn
ug/l
90
70
60
130
350
30
30
Above are measured TOTAL concentrations
"K": Actual value < value shown
WATER QUALITY Station 01395000 RAHWAY RIVER at RAHWAY, NJ
*
1
3
6
8
DATE
820610
831005
840614
841001
860620
861009
871014
881026
FLOW
cfs
11
33
10
13
11
TOT
As
ug/l
3
3
2
1
TOT
Be
ug/l
10 K
10 K
10 K
10 K
10 K
10 K
10 K
10 K
TOT
Cd
ug/l
1 K
10
1 K
1 K
1 K
1 K
1 K
TOT TOT
Cr Cu
ug/l ug/l
10
10
30
10 K
10 K
10 K
10
10
10
9
6
TOT
Pb
ug/l
7
4
10
9
5 K
5 K
TOT TOT
Kg Ni
ug/l ug/l
0.2
0.1 K
0.1 K
0.4
0.1
0.1 K
0.1 K
0.1
2
4
7
1 K
TOT
Zn
ug/l
20
20
30
40
10 K
550
20
20
Above are measured TOTAL concentrations
•K": Actual value < value shown
2.8
-------
WATER QUALITY Station 01396001 ROBINSON'S BRANCH at NAPLE AV at RAHUAY, NJ
DATE
TOT
FLOW As
cfs ug/l
TOT TOT
Be Cd
ug/l ug/l
TOT TOT
Cr Cu
ug/l ug/l
TOT
Pb
ug/l
TOT TOT
Hg Ni
ug/l ug/l
TOT
Zn
ug/l
1 820610
10 K
10
0.1
Above are measured TOTAL concentrations
"K": Actual value < value shown
WATER QUALITY Station 01400500 RARITAN RIVER at MANVILLE, NJ
10
0
1
2
3
4
5
6
8
9
10
11
DATE
811015
820922
831006
840531
841012
850530
851015
861008
870601
871006
881011
FLOW
cfs
232
324
312
10500
227
227
270
§95°
505
202
TOT
As
ug/l
2
2
2
2
1
1 K
1 K
1 K
1 K
1 K
TOT TO!
Be Ct
ug/l ug/
10 K
10 K
10 K
10 K
10 K
10 K
10 K
10 K
10 K
10 K
10 K
r
i
K
K
K
K
K
K
K
K
K
TOT
Cr
ug/l
10
10
10
20
10
10
10 K
10 K
10 K
1
TOT
Cu
ug/l
4
5
10 K
11
1 K
2
4
10
4
3
TOT
Pb
ug/l
2
3
2
6
1 K
3
6
15
5 K
5 K
5 K
TOT
Hg
ug/l
0.1 K
0.2
0.1 K
0.3
0.1 K
0.1 K
0.1 K
0.1
0.1 K
0.1
0.1 K
TOT
Ni
ug/l
4
3
2
5
4
2
4
22
2
1 K
TOT
Zn
ug/l
40
10
10
20
20
30
30
10 K
20
10 K
10 K
Above are measured TOTAL concentrations
"K": Actual value < value shown
WATER QUALITY Station 01405700 SOUTH RIVER below DUHERNAL DAM at OLD BRIDGE, NJ
*
1
2
DATE
820929
830517
FLOW
cfs
45
528
TOT
As
ug/l
1
TOT
Be
ug/l
10 K
10 K
TOT
Cd
ug/l
1
TOT
ug/l
10
10
TOT
Cu
ug/l
4
4
TOT
Pb
ug/l
10
18
TOT
ug/?
0.1
0.1 K
TOT
Ni
ug/l
4
TOT
Zn
ug/l
20
60
Above are measured TOTAL concentrations
"K": Actual value < value shown
-------
APPENDIX C
LOG PROBABILITY PLOTS
TRIBUTARY MASS DISCHARGES AT GAGING STATIONS
-------
10"
10'
CO
en
10'
10'
=i iiiinii i i IIIMII
-
—
1 D
= 0 0
i IIIMII i i mini
or
3°°^
i i i
i i i
«
p&
i i i
mm 1 1 i mini 1 1=
0 ~
_
S
-
Illllll 1 1 HIIIIII 1
10'
ID
a
o
CD
_i ilium i i iiinii
i muni i i iiinii
i i i
i i i
i i i
i i i
iiinii i i nimii i_
iiiiin i i mm ii i
0.] 1 10 80 90 80 90
PROBABILITY
99 99 9
O.I i 10 80 50 BO SO
PROBABILITY
99 99.9
10
18
°»
C. 10
O
10
o
UJ
10
=1 Illlllll 1 1 Illllll
-
=
-
- (
- 0
0
1 Illllll 1 1 Illllll
1 1 1
_/ v ifTi
0cOoo
D
i i i
l i l
d*»°°
r
1 1 1
1111111 1 i DIIIIII i=
o E
o E
3 I
E
-
-
Illllll 1 1 Illlllll 1
10'
10'
10"
10
=1 Illlllll I I Illllll
11 nini
0 u
I IIIII1L
I IT
I I I
nun 11 i mini 11=
Illllll I I Illlllll I
0.1 1 10 20 50 BO 9D
PROBABILITY
99 99 9
01 I 10 ZO 50 BO 90
PROBABILITY
99 99 9
HUDSON RIVER LOADS at GREEN ISLAND, NY
10/81-08/88
-------
CD
(L.
O
10 '
10°
=i ilium i 1 1 nun
-
I
-
1 0<
0 0
1 Illllll 1 1 Illllll
1 1 1
J
10°
=i iiinin i i MIIIII
-
-
i MIIIII i i iiiini
i i i
d
tffffi^
i i i
i i i
0
P
i i i
iiimi 1 1 mini 1 1-
^ U
in
mini i i niimi i
0.1 1 10 20 90 BO 90 99 99 9
10*
10 '
0
=1 1 Illllll 1 1 Illllll
1 o°0(
i ii mm i i MI mi
1 1 1
(
1 1 1
1 1 1
""
1 1 1
1111111 1 i niiuii i=
0
E
linn ii i limn i
II 10 20 SO BO 90 99 99.9
PROBABILITY
PROBABILITY
HUDSON RIVER LOADS at GREEN ISLAND, NY
10/81-08/88
-------
10"
«o =
10'
CO
CO
10' _
10
=i i MIIIII i i iiinn
i MIIIII i i iiinn
i i i
i i i
i i i
nun 1 1 i mini 1 1=
mm ii i muni i
0.1 1
10 20 SO 80 90
PROBABILITY
99 99.9
in
O
00
10°
ID'1
in'*
=i ii Mini i 1 1 nun
a
| CO0"
i muni i i iiinn
i i i
jrfi
j?
D°°^
1 1 1
1 1 1
rf^10^
1 1 1
Illllll 1 1 Illllll 1 1=
0 I
rCOOO
E
iiinn i i mum i
01 I 10 SO 50 60 90 99 99.9
PROBABILITY
OJ
OJ
14
10
o>
c.
o
o
(j
a ""
10
El II II Illl 1 1 Illllll
—
=
: 0 °
i M ii IIH i 1 1 mill
i i i
rf*
i i i
l l l
Dd*00'
i i i
mini i i IIIIHI 1 1=
0 E
D i
mini i i niiini i
0.1 1 10 20 SO BO 90 99 999
PROBABILITY
ID'1
ID'8
IP''
=1 1 Illllll 1 1 Illllll
E
=
: 00°
1 1 1111111 i 1 1 HUM
i i i
^
pcxr
i i i
i i i
X"
1 1 1
IIIMII i i HUH ii i=
0 =
00 1
=
iiinn i i mum i
01 1 10 20 50 BO 90 99 99 9
PROBABILITY
HACKENSACK RIVER LOADS at RIVERVALE, NJ
02/82-08/89
-------
JJ
E
CJ
I— i
Z
ca
r
\ i i
nun 1 1 i IIIIMI 1 1=
=
-
mini i i niniii i
11 10 20 SO 80 90 99 99
PROBABILITY
=i n nun i inillll
=
—
•~
J*
A
i i i
0
asf
$V
Him 1 1 i niniii i=
0
0
y^
-
~~
_
\ JO'1
E
Z
X M~*
JO'3
.9 0
10°
•n
* j
z «~l
_j
o
H-
=i ii nun i i iiiini
_
I QOO^
i uitini i L1ILIIII
i i I
_J^
P
1 1 1
1^°
i i i
IIIIMI i i mm ii i~
0
-
[
iiiini i i mm ii i
11 10 20 50 BO 90 99 99
PROBABILITY
=iiiiiigi i ii nun
~ rC0
1 1 1
nrf^
$
_
i i i
X
IIIIMI i i muni i=
i-nOO ^ -
P -
—
„—
-
.9
10
PROBABILITY
01 I 10 20 SO BO 90
PROBABILITY
99 99 9
HACKEN5ACK RIVER LOADS at RIVERVALE, NJ
02/82-08/89
-------
10s
13 10
C/3
«? 10'
10"
= 1 IIIIIID I I IIII III
i iiiniB i 11 nun
i i i
i i i
IMIII 11 j. mini 1i~
"'6
nun 11 i mini 11
o.i i 10 so so BO 90
PROBABILITY
99 99 9
10'
•a
—
4J
E
in
a
o
10'
-i innm r 11 Mini
10° I 111nim M riiinii I i i i I i
iniii 11 i OIIMII i—
,0°
nun 11 i mum
o.i i 10 so so BO so
PROBABILITY
99 99.9
O>
C_
o
o
o
10 »
10 «
10 »
in"
EI iiimn i i iiiini
s
E orf*
0
I 0
1 1111111 i 1 1 mm
i i i
pcr^
r
i i i
i i i
X0'
i i i
mini i i IIIIIIH IE
0 =
D00° I
=
:
-
mini i i nniiii i
10'
O.I 1 10 20 90 BO 90 99 99 9
PROBABILITY
-i nnun i i mini i i i
TD
\
-M
E
OL
I—
O
10"
10
111 Him i 11 nun i i L
mini i i mum i—
limn i i BUM 111
01 1 10 20 50 BO SO 99 99.9
PROBABILITY
PASSAIC RIVER LOADS at LITTLE FALLS, NJ
11/81-04/89
-------
o
CD
CC
O
10
'1
0.1
JO 80 50 80 90
PROBABILITY
99 99 9
n
i
O.I I 10 SO 50 80 90
PROBABILITY
99 99.9
0\
-i ii nun i i iiiiui
O
z
CVI
o
z
ID"
•' i ilium 111 nnil
IIIMI
i IQ mini 1 1-
i i i nun 11 i mini i
0.1 1 10 20 SO BO 90
PROBABILITY
99 999
13
•M
10°
0
-1 Illlllll 1 1 IIIIUI
i n mni JLL111111I
X
1 1 1
1 1 1
mini i i iiiiiiii \—
X°° =
Illllll 1 1 IIIIUI 1
1 1 10 20 50 BO 90 99 99 9
PROBABILITY
PAS5AIC RIVER LOADS at LITTLE FALLS, NJ
11/81-04/89
-------
in
in
10"
10S
to'
in1
=i mum i 1 1 nun
|
-
=
i ilium i i limn
i i i
i i i
i i i
i i i
nun 1 1 i nun 1 1=
=
=
—
mini i i gmiii i
10'
0.1 1 10 20 50 BO SO
PROBABILITY
99 99 9
10"
in
o
o
CO
10
-1
-I III Mill I I I (Hill
111nini i 11 nun
Illlll I I I miTTTTF-
0
nun 11 i nnii111
o.i i 10 so so BO so
PROBABILITY
99 99.9
• "
•a 10 "
o>
0 10 "
t— 1
d 10 "
o
£ 10 "
10 I0
=1 II Illlll 1 1 IIIIIII
a
B
1 o0^
~l IIIIIII Pi 1 Illlll
1 1 1
-
O
ID'1
ID'8
-ii mini i i iiiiiu
-
- ..
1 0
0
i muni i i imiii
i i i
poc^
1 1 1
1 1 1
rtpoDOC
1 1 1
Illlll hi 1 Illlll II 1-
0
~
_
-
1111111 1 i nun ii i
OS 1 10 20 SO BO 90 99 99 9
PROBABILITY
SADDLE RIVER LOADS at LODI. NJ
10/81-04/89
-------
CD
CC
O
ID''
10~*
-i IIIIIIP i 1 1 mm
>-
—
0
IIIIMII ni nun
i i i
00
_0
nO
I I I
i i i
00
pptf
i i i
nun 1 1 i limn 1 1—
fp°° :
~
—
^
mini i i DIIIIII i
T3
\
E
n
x
lO'1
10-*
=i mum i 1 1 linn
-
^
— -/-C
z 0-^
I 0 00
i ilium i 1 1 nun
i i i
rf
P
i i i
i i i
j
pf®
i i i
IIIMII 1 1 IIIIMII 1-
00 0 =
COD I
~
_
-
IIIMII i i mini i
0.1 1 10 80 50 60 90 99 99 9
PROBABILITY
O.I I 10 80 50 BO 90
PROBABILITY
99 99.9
OJ
00
-i 11111111 Oi Omii iii ill IIIIMII i mimii
10
01 1 10 20 SO BO 90
PROBABILITY
99 99 9
10°
10"'
0
=l IIIIMII 1 1 Illllll
-
- c
I 000
0
0
1 11)1111 1 1 Illllll
i i i
DO^
i i i
rftffl0'
i i i
IIIMI 1 1 i nimii i-
00 0
nun ii i IIIMI M
11 10 20 50 BO 90 99 99 9
PROBABILITY
SADDLE RIVER LOADS at LODI. NJ
10/81-04/89
-------
10
10
en
CO
10
4
9
a
i
EI IIIIIIH i 1 1 nun
|
=
=
i initin i 1 1 linn
i i i
i i i
i i i
i i i
nun 1 1 i HIIIII 1 1=
=
=
=
HIIIII 1 1 HIIIII 1 1
0.1 1 JO 80 SO 80 90
PROBABILITY
99 99 9
10'
=i iiuiui i 11 nun
i i i T^ muni i mini 11=
P 10°
in
a
o 10"
m
ooo
10
•* 11 mini iM iiinii
i nun 11 i mm 111
0.1 1 iO 20 50 80 90
PROBABILITY
99 99.9
CO
•JD
10
10'
•a
a>
c_ 10'
o
1-1 10'
o
u 10'
10
14
12
11
10
g
11 IIIUIII 1 1 HIIIII
-
i
i
i
~ ff
0-
1 no
0
i o
~i iiiuiii i MIIIIII
l i i
_r
-------
10'
•o
^
-U
E 10'
Z
10
CO
cc
o
10
=1 1 Illllll 1 1 Illllll
-
=
= a
= 0°
I 00
1 Illllll 1 1 Illllll
poa^
1 1 1
1 1 1
&
P3
1 1 1
nun 1 1 i mini 1 1=
o E
0
P E
Illllll 1 1 Illllll 1
0.1 1 10 20 50 80 90
PROBABILITY
99 99 9
10"
io-a
10 "S
0
=i ii nun i i iiiiin
|
I 0°°°*
ii mini iJiuiiu
1 1 1
rf*
PDOU
1 1 1
^
1 1 1
1111111 1 i nun ii i=
jpOO |
1
Illllll 1 1 Illllll 1 1
II 10 20 50 BO 90 99 99
.9
PROBABILITY
CVJ
o
io->
ID'3
0
=i iiiinn i i limn
=
oooo:
i ilium L1111IIU
1 1 1
pooa*1
1 1 1
1 1 1
•00(
1 1 1
1111111 1 i mini 1 1=
0 ° I
r,0
Illllll 1 1 Illllll 1 1
1 1 U 10 20 50 BO 90 99 99 9
..-
10 '*
ID'3
0
=i imini i i iiiiin
=
E coo-
1 1 Illllll 1 1 Illllll
1 1 1
__/•
no***
Du
i i i
i i i
l^u
i i i
iiiiin lu nun ii i=
/" :
-
iiiiin i i nun ii i
11 10 20 50 BO 90 99 99.9
PROBABILITY
PROBABILITY
ELIZABETH RIVER LOADS at ELIZABETH, NJ
02/82-04/89
-------
10s
tn
10'
to'
10'
EI IIIIINI i 1 1 linn
=
s
1 Illllll 1 1 Illllll
1 1 1
1 1 1
1 1 1
nun 1 1 i IIIIHI 1 1=
s
Illllll 1 1 Illllll 1 1
10
0.1 1 10 20 90 80 90
PROBABILITY
99 99 9
4-1
e
in
o
O 10~l
m
10-*
=i i MIIIII i i iniiii
=
,_
_
|
I ooo
i ii mm iQ MIIIII
i i i
_r
nOCK
i i i
i i i
ffffP
[j*rj
1 \ I
1111111 1 i HUM ii i=
/" 1
_
_
=
-
MIIIII i i mum i
0.1 1 10 SO 50 BO 90
PROBABILITY
99 99.9
10
10'
•o
en
c. io1
o
1-1 io1
'"' 10
c_>
UJ
u- 10 "
10
«
10
g
|l 1 Illllll 1 1 Illllll
m
s
- ft
| QO°°
~i IIIIIIR i i iiinii
i i i
(f00
i i i
i i i
0(
i i i
nun 1 1 i mini i \s
0 ~
POOOO E
i
m
iiinii i i niiini i~
0.1 1 IO 20 50 BO 90
PROBABILITY
99 99 9
D.
h-
o
ID"1
10'*
„•'
10-'
= l I Illllll I I Illllll
=
-
1 oooDrf
i iiiiim i i iniiii
i i i
D00^^
i i i
i i i
^>
ffftyy
i \ i
mini 1 1 limn 1 1=
0 ~
up°° :
=
iiinii i i iniiii i
01 I 10 20 50 BO 90 99 99 9
PROBABILITY
RAHWAY RIVER LOADS at RAHWAY, NJ
02/82-08/89
-------
o
H-l
•z.
<
o
QC
O
10"
•o-
10°
=i ilium i i iiiiiii
-
-
_
-
= a
= Oo
: oo
i limn 1 1 IMIIII
i i i
J]00°^
1 1 1
1 1 1
coo6*
P
1 1 1
HUH 1 1 i mini 1 1=
0 =
0
D =
=
z
-
mini i i nniiii i
0.1 1 10 20 SO 80 90
PROBABILITY
99 99 9
lO'1
io-a
ID"3
=i 1 1111111 i 1 1 mm
=
= ooocf
E 0
i muni i 1 1 mm
i i i
rf*
P°
0D*°0t
i i i
0 |
rfPD°
=
1111111 1 i niniii i
0.1 1 10 20 50 BO 90 99 99.9
PROBABILITY
10*
on
o
•z.
10
=i mum i i imiii
=
oooa
i limn i 1 1 mm
i i i
poocP01
1 1 1
1 1 1
—rfP^O
l l l
Illllll l l limn l=
0 ° -
=
IMIIII i i muni i
0.1 1 10 20 SO BO 90 99 99
PROBABILITY
„-
io-a
0
=i mum i i IIMIII
-
: 00°**
i IIIIIDI i i limn
1 1 1
*fft
D
i i i
l l l
d
0
i i i
Illllll ID Illllll 1 1=
D° =
0
=
iiiini i i mm n i
I 1 10 20 50 BO 90 99 99 9
PROBABILITY
RAHWAY RIVER LOADS at RAHWAY, NJ
02/82-08/89
-------
10
10"
en
10'
EI mum i 1 1 nun
=
i it nun i i iiiiin
i i i
i i i
i i i
i i i
nun 1 1 i mini 1 1=
ts
mini i i niinii i
10s
Q.] 1 10 20 50 80 90 99 99.9
PROBABILITY
u
\
4->
e
10-'
in
o
o
CD
JO"2
=i 1 1111111 i i mini
_
~
_
—
_
-
i limn i i iiiiin
i i i
(
0
i i i
i i i
0
1
1 1 1
1111111 1 i nun ii i=
-
—
—
_
-
mini i i imiii i
01 I 10 SO 50 BO 90 99 99.9
PROBABILITY
10
0»
t_
O
l-l 10'
o
u
o
tu
10'
-i ii HUB i i iiiiin
=
-
i iiiiin i i iiiiin
i i i
\
0
i i i
)
i i i
IHIIII i i imiii 1 1—
-
—
imiii i i niinii i
O 1 1 1O 20 SO BO SO
PROBABILITY
99 99 9
10-*
10-3
10-
=1 Illllll 1 1 Illllll
-
E
-
_
-
1 1 Illllll 1 1 Illllll
1 1 1
(
0
I I 1
1 1 1
0
1
i i i
nun 1 1 i iiim u i=
-
=
-
-
iiiini i i imiii i
01 I 10 20 50 BO 90 99 99 9
PROBABILITY
ROBINSONS BRANCH LOADS at RAHWAY, NJ
02/82-06/82
-------
-------
10
T3
-M
(/)
10
4
3
a
i
=1 Illlllll 1 1 Illllll
|
5
=
1 1111111 i 1 1 nun
i i i
i i i
i i i
i i i
nun 1 1 i mini 1 1=
s
|
=
mini i i muni i
10'
10' _
10
0.1 1 10 20 SO BO SO 99 99 9
PROBABILITY
^ 10'
£
in
O 10°
m
JO'1
=i ilium i 1 1 nun
-
=
1 00°*
0
i mum i i iniiii
i i i
DOO
i i i
i i i
d
i i i
mini i i iiiiiiii i=
0 -
0
pp° 1
=
Illllll 1 1 Illllll 1
0.1 1 10 20 50 BO SO 99 99.9
PROBABILITY
10'
10
D>
C 10
»
„
"
10
"
CJ
LU
10
11 Illllll 1 1 Illllll
OOdD
i UIIIII uiiiii
A
0
i
mini 1 1 iiiiiiii i
1111111 1 i niiiin i
0.1 1 10 20 SO BO 90
PROBABILITY
99 99 9
10°
10-'
_a
=1 Illlllll 1 1 Illllll
=
- «rrO
_ QVJ^^
i ii Him i 1 1 linn
i i i
^
i i i
i i i
ro
i i i
uiiiii 1 1 IIIMIII i=
0 =
0
o =
™
Illllll 1 1 Illlllll 1
01 i 10 20 50 BO 90 99 99 9
PROBABILITY
RARITAN RIVER LOADS at MANVILLE, NJ
10/81-06/89
-------
O
l-l
•z
10 «
10°
io-z
0
El Illlllll 1 1 1 Illlll
~
= oorf
I Illlllll | | MMfn
1 1 1
poo***
i i i
0<
1 1 1
111111 1 1 i mini 1 1=
0 =
r° I
Illlll 1 1 1 RIIIIII 1
.1 1 10 SO 50 80 90 99 99.9
E
•z.
10°
ID'1
io-2
0
=1 Illlllll 1 1 1 Illlll
-
1 Illlllll 1 1 1 Illlll
poo**
1 1 1
rf
rf*°
1 1 1
Illlll 1 1 1 Illlllll 1=
0 -
00° E
cP E
=
IIIIMI i i nun n i
11 10 SO 50 BO 90 99 99
PROBABILITY
PROBABILITY
10'
E 10'
10"
CVJ
o
10
=i iiinin i 1 1 111111
I Illlllll I I IIMIII I I I
1 1
1
Illlll 1 1 1 IIMIII 1 1 =
IIMIII i i mini ii
01 1 10 20 90 BO 90
PROBABILITY
99 99 9
10*
4-» 10'
„
=1 Illlllll 1 1 1 Illlll
-
= o oocco
i mum i i IIMIII
i i i
f
\ \ \
\ \ i
X
i i i
HUM 1 1 i iiiinii i=
0 E
rpQO E
=
IIIIMI 1 1 Illlllll 1
01 I 10 20 50 BO 90
PROBABILITY
99 99 9
RARITAN RIVER LOADS at MANVILLE, NJ
10/81-06/89
-------
10'
JW
104
•O
^x
E ,
10s
cn
H-
10*
10 '
0
= 1 IIIIIID 1 1 IIIMII
-
1
—
=
E
_
=
I nililH | | limn
1 1 1
1 1 1
1 1 1
nun 1 1 i IIIIMI 1 1=
—
=
=
—
=
=
_
=
iiiini i i niiini i
^ 10°
4-1
£=
in
O IOM
CD
«-2
=i niiini i i IIIMII
_
-
_
^
_
i —
_
= o
-
i muni i i iiiini
i i i
n ^
0 0
i i i
i i i
ooc
0
1 1 1
nun 1 1 i nun n i—
0 =
—
_
^
_
—
_
=
=
linn ii i mini n
11 10 20 SO 80 90 99 99 9 0.1 1 10 20 SO 60 90 99 99.9
PROBABILITY
PROBABILITY
o>
c_
o
o
o
o
UJ
aw
10 "
10"
-i 1 1111111 i 1 1 nun
-
~
^
-
0
i mini i 1 1 nun
i i i
0
0
0°
i i i
i i i
0 c
00
1 1 1
Hjm 1 1 i mini 1 1-
-
~
=
-
-
iiiini i i muni i
O.I 1 10 20 90 BO 90
PROBABILITY
99 99 9
*u
_t
JO"8
to'3
=i muni i i iiiini
-
^
-
-
—
=
= 0
1 IIIMII 1 1 IIIIIII
1 1 1
0 ^
1 1 1
1 1 1
C
0
0
0
1 1 1
IIIIIII 1 1 IIIIIII 1 1=
0
=
-
™
3
-
nun ii i nun n
0 1
10 20 50 BO 90
PROBABILITY
99 99.9
SOUTH RIVER LOADS at OLD BRIDGE, NJ
02/82-07/83
-------
T3
-U
E
Z J0-i
O
z
CD
OC
O
10 ~8
-i iiiiini i i mini
-
—
-
0
i limn i i Minn
i
0
o o
1 1 1
0°
1 1 1
nun 1 1 i mini 1 1-
o :
-
™
-
IIIIMI i i niiiin i
o
£
Z
^ ID'8
Z
lO'3
-i IIIIIDI i 1 1 nun
—
_
_
= 0
_
i iiiiini i i mini
i i i
0
i i i
0 °
1°
i i i
win! 1 1 i mum i=
-
_
_
_
mini i i iniii 1 1
0.1 1 10 20 SO 80 90 99 99 9
PROBABILITY
O.I I 10 20 50 BO 90
PROBABILITY
99 99.9
OO
m
o
10°
ID'1
10 -a
=1 MIIIIU 1 1 Illllll
-
^
:
-
—
- 0
i iiimn i i niiiii
i i i
o ooo
1 1 1
1 1 1
c
0°
0
1 1 1
Illllll 1 1 Illllll 1=
o =
~
-
-
E
=
Illllll 1 1 Illllll 1 1
O.I 1 10 SO SO BO 90 99 99 9
PROBABILITY
A
10'
10
io-a
=i mum i i ii HIM
-
_
^
=
- 0
i iiiimi i 1 1 nun
i i i
0°°
0
i i i
i i i
0°°°
1 1 1
mini i i mum i=
0 -
_
-
^
-
IIIIMI 1 1 Illllll 1
01 I 10 20 50 BO 90 99 99 9
PROBABILITY
SOUTH RIVER LOADS at OLD BRIDGE, NJ
02/82-07/83
-------
APPENDIX D
EXAMPLE OF ANALYSIS OF
CENSORED DATA
-------
The simplest way to demonstrate the efficiency of the technique for
analyzing censored data is by example. First, it is assumed that the
concentrations of the constituent in question conform to an underlying log
normal population distribution and a perfectly log normal data set of 100
randomly generated samples is synthesized. Next, assume that approximately
half of the samples are sent to each of two laboratories for analysis. Each
laboratory has its own detection limit for the analysis, and it is assumed that
both laboratories are capable of perfect precision at or above the detection
limit. The samples are analyzed, and 100 sample concentrations are obtained
and plotted on a log probability scale to ascertain the mean, standard
deviation, and line of best fit of the data.
Figure Dl presents four demonstrative scenarios of what these plots might
look like for various detection limits for a 100 sample data set with a log
mean concentration of 5.0 /*g/l and a log standard deviation of 1.0. In the
first case (upper left panel) , it is assumed that both laboratories have
detection limits well below the lowest sample concentration obtained. As a
result, no values below detection limits are reported, and the sample
distribution is perfectly log normal as depicted by the open squares in this
panel. The MLE estimate of the mean and the standard deviation is used to
generate the line of best fit, which conforms very closely to the actual data
in this instance. Subsequent scenarios present the HLE estimator with more
difficult tasks by "censoring" data, (i.e. allowing increasingly higher
detection limits to impact the data set.
In the second scenario (upper right panel of Figure Dl), it is assumed that
one of the laboratories has a detection limit of 20 pg/1. The resulting
probability plot (open triangles pointed down representing data below detection
limits) appears substantially different from the first scenario, even though
the underlying frequency distribution is known to be identical. This is due to
the problem of assigning meaningful values to samples reported below the
detection limit. The data appear visually different from the known
-------
Page 2
concentrations (the open squares); however, the MLE estimate of the underlying
frequency distribution, which was determined from the data set represented by
the triangles, is virtually the same as was obtained in the first scenario.
This is possible because the MLE approach is sensitive to the information that
is given that approximately 50 percent of the data were below a detection limit
of 20 Mg/1 and it selects an underlying distribution which will most likely
result in this outcome.
In the third scenario (lower left panel of Figure Dl), it is assumed'tHa't
one laboratory has a detection limit of 3 /ig/1 while the other has limit of 20
A*g/l. A subatantial number of the samples are still above the detection limit:
The lower"tail" of the frequency distribution is now totally obscured; however,
the MLE estimate of the original frequency distribution is little changed from
the estimate obtained when no samples were reported below detection limits.
The last scenario presented in Figure Dl (lower right panel) is the most
difficult test of the MLE computation. Both laboratories have detection limits
well above the majority of the samples. The probability plot bears little
resemblance to the plot of the known data (triangles versus squares,
respectively). The MLE estimator still predicts the sample mean to within
approximately 20 percent of the known value, and the computed frequency
distribution conforms much more closely to the original distribution than it
does to the sample probability plot. With less than 10 percent of the data
reported above detection limits, the MLE computation still provided credible
results.
A further comparison of the MLE results with other computational methods is
presented for the third and fourth scenarios in Figure D2. Comparison is made
with two other common methods of estimation. 1) assigning a value of half the
detection limit to each detection limit and performing a linear regression of
log concentration as a function of the normal deviate; and 2) linear regression
of only data above the detection limit as a function of the normal deviate
values of these data. The measured and underlying data sets (triangles and
squares, respectively) shown previously in the lower panels of Figure Dl are
-------
Page 3
presented, and the previous MLE estimate of the population distribution is
presented as the solid line. The estimate based on halving the detection limit
values is depicted by the upper dashed line and the estimate based on using
only data above the detection limit is depicted by the lover dashed line. It
is readily apparent that neither alternative approach conforms to the known
sample distribution as well as well as the MLE approach does.
The value of the MLE approach should, not be underestimated; most
constituent data sets for which the frequency of exceeding the criterion have
been assessed are are typified by the third and fourth scenarios. In some
instances, data above detection limits are even more sparse than those
presented in the most stringent scenario, and the MLE computations will be less
accurate than those presented. While it is beyond the scope of the present
analysis, confidence limits can be developed for the MLE computations should
further quantification become necessary.
-------
3 1: ALL DATA ABOVE DETECTION LIMIT
-------
TWO DLS. MOST DATA ABOVE DL
i—i—n—nun i i i—nrnrr
LLJ
u
2
o
u
10
icr _
10
0.1 f 10 20 50 BO 90
PROBABILITY
TWO DLS, MOST DATA BELOW DL
I I I Illlll TT
99 99.9
en
D
LU
o
o
0.1
10 20 50 BO 90
PROBABILITY
99 99.9
FIGURE D-2. COMPARISON OF MLE METHODS WITH ALTERNATE METHODS
-------
APPENDIX E
LOG PROBABILITY PLOTS
TRIBUTARY MASS DISCHARGES AT GAGING STATIONS
TOXIC PARAMETERS
-------
10s
10
U
10'
-i IIIIIHI i 11 mm
"mm i in
i i i
IIIIIQ LxT Hill" I l~
N= 20
11 111
10'
=i iiiiiiii i i niiiii i
•o
\
y.
a io5
10'
linn 11 i mini 11=
N- 20 -
II I nillll11
0.1 1 10 20 50 80 90
PROBABILITY
99 99 9
0 1 r 10^ 20 50 BO 90 99 99.9
PROBABILITY
10*
10'
CT
O) .
I 10(
=11111111 i i mini
=
-
= K * '
: /
1 1111111 1 Hi Mill
1 1 1
H
o*0
1 1 1
1 1 1
*o9
o*Y
p/
1 1 1
7 mini 1 1=
-
:
-
=
N= 19 -
IIIIIHI i mini ii
10J
10'
-I IIIIIIII I IIIIIIII
I IIIIIIII I I
I I I I I I I
I I I
N= 20
" ' "in"'i
o i
10 20 50 BO 90
PROBABILITY
99 99 9
0 i
10 20 SO BO 90
PROBABILITY
99 99 9
HUDSON RIVER LOADS at GREEN ISLAND, NY
:10/81-08/8B
-------
00
T3
'—
O>
M
IO
10*
-i iiiinn i i limn
limn i l Illllll
I I I I Illlll I I I Illllll I I—
I I
N= 21
linn 11 i mini 11
0.1 1 10 20 SO BO 90 99 99 9
PROBABILITY
HUDSON RIVER LOADS at GREEN ISLAND, NY
10/81-08/88
-------
10"
•o
OT
10 ~2
0
to1
T3
CT
It 10°
OJ
m
ID'1
o
-i ilium i i M inn
—
! x^
I IIMIIB | | IIIUJI
1 1 1
fyJQ
1 1 1
I i i
0
P
\ \ \
nun i i ixniiin 1 1-
s^ \
~
_
N- 9 "
IMIIII i i ntniii i
11 10 20 SO 80 90 99 99
PROBABILITY
^
-i M mm 1 1 III1III
—
I *
_
i IIIIIID i 1 1 nun
1 « «O
1 1 1
*'
* *
1 1 1
0
*
Ik
/
/
/,
nun 1 1/1 mini 1 1-
/ ~"
_
—
N= 9
mini i i iiiiini i
so .. -so/ BO go qq q<
CT
^ JO'1
•o
ID'2
.9 0
JO1
T3
01
V 10°
C_
O
JO'1
JO"8
9 0
=i M mm i i limn
^
I
\ iiiiim/i i limn
1 1 1
(
0
>"
1 1 1
i i i
0
0
)*/
1 1 1
mill 1 1 I/IIIIMII i—
-
N= 9
limn i i mni n i
|| 10 80 50 BO 90 99 99
PROBABILITY
El Illlllll 1 1 IMIIII
=
5
*
liniim ii/fmii
1 1 1
(
/
n/*
i i i
1 1 1
,7
\ \ 1
mm 1 1 I/IIIMII 1 1—
-
=
E
N= 91
"i i ""linn
I | / |0 20 50 BO 90 99 9S
.9
.9
PROBABILITY
PROBABILITY
HACKEN5ACK RIVER LOADS at RIVERVALE, NJ
06/82-10/88
-------
•^
x ,0«
13
0
10 -•
0
10°
-a 10"!
^
x" io'a
ID'1
a
-i niiiin i 1 1 nun
-
-
-
_
_
- /
/ °
1 Illllin yf| | Illllll
1 1 1
I
0
/
/*
1 1 1
\ \ \
jrlni 1 1 i mini 1 1—
/O =
~
-
-
_
-
-
N= 9 ~
IIIMII i i nniiii i
.1 / 10 20 SO BO 90 99 99
PROBABILITY
=i niiiin 1 1 1llllll
-
—
E *
i iitnig | i lllllU .,
1 1 1
1
X
* 0
/
~* *
'*/
/
\ \ \
IIHII 1 1 i niiiii 1 1=
X =
\
~"
=
N= 9 -
IIIMII i i niinn i
4 * ... - . ttf SO SO BO 90 99 99
«
* 10°
0.
JO'1
9 0
JO1
n 10°
en
z „"
9 0
-1 1 Illllll 1 1 Illllll
-
-
-
=
H
>/
i M mm i^nii mi
1 1 1
1 1 1
1 1 1
0
,sS
S
\ l l
nun 1 1 i mini 1 1—
s ~
Q s^
/
-
-
-
N- 9 "
niiiii i i niinn i
1 V^ 10 20 50 BO 90 99 99
PROBABILITY
=i n nun i i niiiii
—
: /
= /^ *
\ M mm | | mini
1 1 1
^
0
1 1 1
1 l 1
r~
i i i
niiiii i i HIIIII 1 1-
sQ
-
-
N= 9 -
mini i i nniiii i
II 10 20 50 BO 90 99 99
.9
9
PROBABILITY
PROBABILITY
HACKEN5ACK RIVER LOADS at RIVERVALE. NJ
06/82-10/88
-------
10'
M 10"
to
'1
i i i
i i i
1 1 1
0
N= 8
nun M i mini ii
O.J 1 10 20 50 ' 80 90 99 99 9
PROBABILITY
HACKEN5ACK RIVER LOADS at RIVERVALE, NJ
06/B2-10/B8
-------
JO"
CT>
< 10°
10
'1
=i ilium i i Minn r
i linn
i i i
0
\ \
Him 1 1 i [nun 1 1=
N= 33 -
nun 11 i mini 11
o.i i 10 20 so so go
PROBABILITY
99 99 9
10'
u to'
JO
=i iniiiii i 11 nun l r
i n Mini i i iiiiin
<*<
1 1 1 /
i i i
nun 1 1 i iniiiii i—
N= 33 -
nun 11 i mini 11
-i
0.1 J W M '50 BO 90 99 99.9
PROBABILITY
0}
CD
1 W
10°
ID'1
= 1 1 Illllll 1 1 Illllll
-
-
-
—
_
X*
X
i iiinin i ft nun
i i i
****'
X
(
i i i
i i i
X
**
(*
1 1 1
nun 1 1 i mini 1 1-
* -
** :
—
—
_
—
N= 29
iiinii i i niiini i
o i t 4O 3O BO BO OP 09 99
PROBABILITY
J W
•a to*
CT
0 10°
JO'1
0
=i n nun i i mini
-
= **
~ *
~ x
1 IMIIIII 1 1 Illllll
1 1 1
,***
/
Y\ 1
l i i
J#
cr
**/
/
i i i
mini* i IIIMI ii i=
-
^
—
N= 32 -
i M i «»mii
/20 50 BO 90 99 99
PROBABILITY
PASSAIC RIVER LOADS at LITTLE FALLS, NJ
1/1/81-03/B9
-------
0.1 1 y 10 20 50 80 90 99 99 9
PROBABILITY
10
JV
•in2
TD 10
\
X.
£3
CL 10 '
10°
=i iiiiini i 1 1 IIIIH
-
— *
—
^
—
_
-
= 0C
- "I/
i iiiimi i i IKIIII
i i i
n*0C
0
0<* x
/
\ \ \
\ \ 1
Jp
# x
x /
^T
'
\ \ 1
HUM 1 1 i niiini i—
X
r,Q /
o ,x
D ./ -
/ ~
-
=
—
N- 33 -
nun ii i mini ii
0 . 1 1 ^ 10 20 50 BO 90 99 99 9
PROBABILITY
C\
10'
D>
.V
0>
I 10-
io-»Li
0.1
=i iiinin i i iiiiiii
ooc
b^
1 1
I I I
J_L
HUM 1 1 i 1111111 1 1—
N= 32 -
11 i nmn11
•a
-«x
en
1O 20 50 BO 90
PROBABILITY
99 99 9
0 i I 10 20 50 BO 90
PROBABILITY
99 99 9
PASSAIC RIVER LOADS at LITTLE FALLS, NJ
11/81-03/89
-------
01
c
rsj
10
10'
10
'"""»
I I I
I I I
N= 33
linn 11 ' mi" 11
O.j l 10 20 50 60 90 99 99 9
PROBABILITY
PASSAIC RIVER LOADS at LITTLE FALLS, NJ
11/81-03/89
-------
10"
T3
D)
in
10 '*
0
10 '
TJ
CT
-* IOB
0)
m
10-'
o
— i ii linn i 1 1 nun
-
_
E .xff
E XXX^
-
\ iniim i 1 1 HUH
i i i
1}
0
i i i
tyP*
}T
1 1 1
IIMII i ij*'"' BIII ii 1 i—
__
_
-
-
-
N= 6 ~
iiiiin i i niiiin i
11 10 SO 50 BO 90 99 99
PROBABILITY
-\ iiinin i I IFTIIIJ
_
_
-
i iiinin i 1 1 nun
.1 1 10
i i i
* *
0
-—-~"
i i i
K
* *
. -~
1 1 1
nun 1 1 i IIIIIM 1 1—
*
—
—
• ' -
N= a
IIIIIM i i mniii i
20 SO BO 90 99 9?
T>
2 «-'
g
JO'*
9 0
101
T3 10°
v^
CT
CJ JO'1
JO'2
9 0
-i ilium i i i HUM
_
—
~
-
0
n mini i ii HUM
i i »->
=1 Illlllll 1 1 I IIMII
=
-
1 ^
11 mini i i iiiiin
X *
*
/
/ 1 1
i i i
0
/
* /
/
\ 1 1
'SO 50 BO
PROBABILITY
i i i
0°
>^
i i i
1 1 1
0
*^^
\ 1 1
71 mini 1 1—
=
:
-
—
—
-
N= a
90 99 99.9
HUM 1 1 i IIIIIIH i—
=
-
=
N= 8 -
MIIIIII i niiiini
II 10 20 SO BO 90 99 99
9
PROBABILITY
PROBABILITY
SADDLE RIVER LOADS at LODI, NJ
10/81-06/88
-------
10'
10'
T3
\
01
U
O
J0
10
-'
-I 1111111 11 Illllll I I
\ IIIIIIR | | | Illlll
J I
HUH 1 1 i IIIMII 1 1
N= Q
mi in i i mini ii
10
-I IIIIIIII I I Illllll I I I I I I Illllll I I IIIIIIII I-
0
-M I IIIIIII|XT I Illllll
\
^o
1 1 1
N- 8
IIIMII 1 1 1111111 1
0.1 1 10 SO 50 80 90 99 99.9
PROBABILITY
01 1 10 £0 50 60 90 99 99.9
PROBABILITY
•o 10"1
o>
-*
01 .
:r 10'*
10°
n
= 1 IIIIIIII 1 1 Illllll
-
=
X
i mum [ | mini
i i i
0 * *
1 1 A
\ \ \
X
1 1 1
Illllll 1 1 IIIIIIII 1 =
/ =
I
~
N= 8 -
mini l l Illllll 1 1
•a 10°
\
O>
Z 10-
9 0
= l IIIIIIII I I Illllll
-
! ^
~_
I 1 1 Illlll | | Illllll
1 1 1
0
0
1 1 1
1 1 1
o^-
l l l
Illllll l l iiliiill l=
=
E
N= 8 -
mini i i nini n i
11 10 20 50 BO 90 99 99
PROBABILITY
PROBABILITY
SADDLE RIVER LOADS at LODI, NJ
10/81-06/88
-------
10'
0)
M 10"
ID
=i i limn i 11 nun i i r
ii inn i 1 1 nun
\ \
linn 1 1 i HIM ii i i=
N= 8
nun 1 1 i mum i
•i
o.i i 10 so so BO go gg 99 g
PROBABILITY
SADDLE RIVER LOADS at LDDI. NJ
10/81-06/88
-------
10
-I
JO'
i ii
'"""• I "Illlll
I I I
1 1 1
I I I
(WH
N- 7
i' ' i"""''
10
10 '
(J
11 mini i ii
i i i
1 1 1
1 1 1
Tjnrpn
N= 7
niniiii
O.J 1 10 20 SO 80 90 99 99 9
PROBABILITY
O.| I 10 20 50 BO 90 99 99.9
PROBABILITY
•o
\
CT
0)
CD
JO
i mum i ii linn
1 1 1
*0
N= 7
ID
»
CD
O IB"
=111111111 III! II I I I I I II HI JIIIIIIIN
1 1 1
1 1 1
N= 7
» .......
01 1 10 20 50 80 90
PROBABILITY
99 99 9 01
I |0 20 50 BO 90 99 99 9
PROBABILITY
ELIZABETH RIVER LOADS at ELIZABETH, NJ
06/82-10/88-
-------
cn
<_> 10"'
10 "2
0
=i iiiiiiii i 1 1 linn
=
I jr 0
|| HIM 1 1 Illllll
1 1 1
o/o
1 1 1
1 1 1
QX
i i i
HUH i i i mini i i —
=
N= !7 -
II 1 1 ItlMNII
.1 J 10 20 50 80 SO 99 99
10"
£3
CL
PROBABILITY
JO
'*
"mini i iiiiiiii
I I I
T~T—T
TTT
N= 7
" ....... "I""'!
0.1 1 10 20 50 BO 90
PROBABILITY
99 99.9
1U
^x
cn
0> .
X 10 '3
ia-"
0
=11111110 1 Illlllll
*
i mum I | uffiii
1 1 1
i i i
1 1 1
-------
10'
T3
^^
O>
10
-Illllllll I II
-• 11 linn iiiiiiiii I i L J l
I I I I I I I
II MIIIUMH
N= 7
nun 11 i mill 11
0.1 1 10 80 50 60 90 99 99 9
PROBABILITY
ELIZABETH RIVER LOADS at ELIZABETH, NJ
06/82-10/88
-------
10'
10
cn
< 10"
10
-3
=i i mini i 11 mm
""""i ' "
0
I I I
nun i i i mi in 11—
N= e •
mill 11 i mini 11
0.1 1 10 20 30 80 90
PROBABILITY
99 99 9
T3
cn
ID'1
10 "Z
10 "3
10-"
0
EI ilium i 1 1 mm
I x
=
i muni i i iiLHti
* *
X
/
/
\ \ \
\ \ \
*
0
* /
\ \ \
7 HIM 1 1=
=
-
=
N= 81
HUM ii i nitiini
1 | ' JO 20 50 BO 90 99 99.9
PROBABILITY
10«
T3
cn
OJ
CD
10 -
-i IIIMIII i i mini
~
X
Minim uillllll
H
*
1 1 1
1 1 1
H H *
1 1 1
jiim 1 1 i HIIIII 1 1~
-
-
N= a
i H i mini M
1 i 44 JP BP "" 38 S9 99 9
PROBABILITY
10'
10V
13
"V
o>
10
10
-I
"' ' I'M""
TT
0
TT
II I lllllllllEi
N= 8
"""" i """'
01 1 10 20 SO BO 90 99 99 9
PROBABILITY
RAHWAY RIVER LOADS at RAHWAY, NJ
06/82-10/88
-------
10
ID'1
in'8
-i iiimn i 1 1 nun
' 0
i limn i i imiii
op
r
\ \ 1
^
•1 1 1
nun n/n iiiini 1 1—
X> -
N= 8
iiimi i i fliinii l
o>
-i i mini i i imiii i i r
1 1 1 inm
mini ijr mini 11—
0
N= 8
iiiini i i mini 11
0.1 1 10 20 SO 80 90 99 99 9
PROBABILITY
01
10 80 50 BO 90
PROBABILITY
99 99.9
10 -
10
°
O>
10 -
JO
EI 11111111 i 11111111 i ii IF i niiiiiii niiiini=
°
i iiiini i i iiiiin
l
N= 8 :
Illllll I I Illllll 11
-x
en
10
JO'
i 11111111 i r i
1 1 nun i 1 1 HUH
nun 1 1 i mini 1 1=
N= 8 -
nun 11 i min111
0.1 1 10 20 SO BO 90 99 99 9
PROBABILITY
01 I 10 20 SO BO 90 99 99 9
PROBABILITY
RAHWAY RIVER LOADS at RAHWAY, NJ
06/82-10/88
-------
10'
T3
"V.
°*
-^ 101
tz
M
-i iiiiiin i 111 inn i
o.i
i
\ \ \
IIHII 1 1 1 IHIIII 1
N- 8
IHIIII i i niiiin i
10 20 SO 80 90
PROBABILITY
99 99.9
RAHWAY RIVER LOADS at RAHWAY, NJ
06/82-10/88
-------
T3
^
01
.*
U)
10'
ID
10
ID
"1
10 -
EI mum i i iniiii I i
ii linn
(I
1 1
nun 1
G
10'
N= 11
mini i i niinii i
CJ 10" _
=i 11111111 i 1 1 Him
-
-
^ *
_
i ii Him i 1 1 Him
i i i
— -i
( * * *'
1 1 1
1 1 1
4
|* 0 *
1 1 1
Illllll 1 1 Illlllll 1 =
X ~
-
-
N= 11 -
mini i i mm ii i
0.1
10 20 SO 80 90
PROBABILITY
99 99 9
01 1 10 20 50 BO 90 99 99.9
PROBABILITY
0) .
CO 10 '
10
=1 Illlllll 1 1 Illllll
5 x
i limn 1 1 limn
W V W *
1 1 1
1 1 1
)
f*x *
1 1 1
Illllll 1 1 Illlllll 1=
X
N= 11 -
Illllll 1 1 Illllll II
10
EI 11111111 rrnnni i i i i i i niinii i 111111111=
73
a
c_
o
JO
10
i ii inni
00°
1 1 1
1 1 1
N= 10
iniiii i i nun M i
O.I I M
-99 99 9
PROBABILITY
10 20 50 BO 90 99 99 9
PROBABILITY
RARITAN RIVER LOADS at MANVILLE, NJ
10/81-10/88
-------
u
u
1U
10*
10 «
10°
10-'
0
liiiiinn i ii nun
=
E
_
II Illllll LfflHIU
I I I
oV
X
I I I
I I I
tsfu 0
KI
i i I
Illllll I I Illllll I IE
0 E
/ \
j
-
N= 11 :
ii i niiiini
1 t"' 10 80 50 BO 90 99 99 9
PROBABILITY
10'
T3
\
X 101
D.
10°
10
'1
=111111111 i ii linn
i'mini i MI
•Htii
1 1 1
i_L_L
I I I
0
N= 11
i i "1 .....
o.i
10 SO 50 BO 90 99 99.9
PROBABILITY
•o
en
10°
10-'
10 "2
ID"'
o
=1 1 Illllll 1 1 Illllll
i
1 „
§
1 1111111 1 1 limn
1 1 1
) K KH
/
/I 1 1
1 1 1
y1
7
i i i
7 mini 1 1=
j
1 |
=
N= 11 I
mill ii i limn II
« i 4^/ SO SO BO 90 99 99 9
en
PROBABILITY
103
JO1
10°
10"1
0
=11111101 1 II Illlll
-
E
=
= ^
i mum i -Hi mil 1
1 1 1
rJ*
A
J
1 1 1
1 1 1
./
rooo
I I I
nrmii i niiini i=
**/ |
=
=
N= 11 :
mm ii i mini ii
1 K--* 10 20 50 BO 90 99 99 9
PROBABILITY
RARITAN RIVER LOADS at MANVILLE, NJ
10/B1-10/B8
-------
0\
10s
10'
M 10'
10*
=111111111 i ii nun
ii mill
i i nwfn
0.1
1 1 1
a;
**r
1 I
1 1 1
1 1
N= 11
mini i i nnini i
10 SO 50 BO SO
PROBABILITY
99 99 9
RARITAN RIVER LOADS at MANVILLE, NJ
10/81-10/88
-------
APPENDIX F
LOG PROBABILITY PLOTS
TRIBUTARY CONCENTRATIONS AND FLOWS
AT GAGING STATIONS
7V
-------
10°
in
10
-i u nun i 1 1 linn
—
=
i n nun i i mini
i i i
erf
rfjjP
1 1 1
1 I I
y
i i i
nun 1 1 i limn 1 1-
0 =
-
iiiini i i ninin i
0.1 1 10 SO SO 80 90 99 99 9
PROBABILITY
HUDSON RIVER FLOWS at GREEN ISLAND, NY
10/81-08/88
-------
to'
-t 10*
^^
en
C/J
io
JO"
=i 11111111 i 1 1 nun
=
••
—
- 0
= 00
1 1111111 i M IMIII
orftf*
30
I I I
JtW
o-1
1 1 1
nun 1 1 i limn 1 1=
0 ° 1
o :
—
=
—
Illllll 1 1 Illlllll 1
O)
in
o
o
DO
0.1 1 10 20 50 80 90 99 99 9
PROBABILITY
JO9
0
_i muni i i iiinii
i muni i i limn
i i i
i i i
i i i
nun 1 1 i niiiiii i_
iniiiii i niiinii
11 10 SO SO BO 90 99 99.9
•PROBABILITY
JO'
o
o
o
(J
o
LU
10°
10*
-I Illlllll i i Illllll
-
0
0
ii Minn i iiiiini
l l l
i i i
l l l
0°°
030
)
1 1 1
Illllll 1 1 Illllll 1 1 =
0
=
11111111 i mini ii
en
10
'1
£ 10-'
10
=111111111 1 Illlllll
-
—
= 00(
0
minm i iiiiini
I I I
uuuu
DODO
i i i
1 1 1
rmjpCP
\UJJJ-
\ 1 1
-TUMI ii i 111111111=
,00° =
) 5
-
-
'» niiinii
0.1 1 10 20 50 BO 90 99 99 9
PROBABILITY
01l J020 30 BO 90 99 99 9
•PROBABILITY
HUDSON RIVER CONCENTRATIONS at GREEN ISLAND, NY
10/81-08/88
-------
O)
10'
10"
10
-i
cr
o
10
=i i limn i i IIIIIH
IIIIIIB i i iiiiin iii iii iiiini i i mini 11
IIMM i i i UN i M i i —
n
i
io-«
io-z
-i 11111111 i 1 1 nun
-
E (
= 00
0
1 IIIIIIII 1 1 IIIIIH
1 1 1
_.
00™^
1 1 1
1 1 1
tf/*
i i i
nun 1 1 i IIIIIIM i—
0 I
—
_
-
IIIIIH i i iiiiin i
0.1 1 10 80 SO 80 90 99 99 9
PROBABILITY
O.I I 10 SO 50 BO 90 99 99.9
PROBABILITY
o>
en
o
+
CVJ
o
10B
ID"
o
-1 11111111 I 1 1 nun
_
: oo<
0
1 IIIIIIII 1 1 IIIIIH
i i i
!
IIJUUUUUUU
1 1 1
1 1 1
nmf00
IIIIIH 1 1 IIIIIIII 1-
0
_
11111111 i niiiini
it 10 20 50 BO 90 99 99
PROBABILITY
106
10-'
-I IIIIIIII I I IIIIIH
= 0 Ooc
1 IIIIIIII 1 1 IIIIIH
1 1 1
i0°°crfni
1 1 1
HP0
i i l
nun 1 1 i iiiiiiii i—
5
iiiiin i i iiiiin i
01 i 10 20 50 BO 90 99 99 9
PROBABILITY
HUDSON RIVER CONCENTRATIONS at GREEN ISLAND, NY
10/81-08/88
-------
to1
en
en
10
ID
* X X
11 "I"" I """"
1 1 1
X" "Jf
I I I I I I I
00
N-- 21
"""" ' '"""'
10-
01
-3 ID1
0
CJ
10
-i
Q.I 1 10 20 SO 80 90 99 99.9
PROBABILITY
H *
iiniini i
i i i
linn 1 1 i IIIMII 1 1—
21
ii i IIMIMII
01 i i*—m 50 BO 90 99 99.9
PROBABILITY
10 20 50 BO SO 99 99
10'
»
en
o to"
10
10-
"""-I I "I'llll
1 1 1
xxxxxxx
1 1 1
0
•XXX
i i i
N= 21
i niiiiiii
0 t «-
i_7 50 So~90 M 999
'PROBABILITY
HUDSON RIVER CONCENTRATIONS at GREEN ISLAND. NJ
10/81-08/88
-------
10s
.H »'
"V.
Ol
5 10°
10 -•
0
=i i iiniii i 1 1 nun
= 0
—
_
i limn i lUillil
^P
tfxT
\ i t
0^°°
3^°
i i i
linn 1 1 i mini 1 1=
=
_
-
N= 20 -
mini i i mini n
.1 1 JO 20 50 BO 90 99 99
i— i
-x
01
=3 10'
a.
10°
9 0
-1 1 IIIIIII 1 1 IIIIIII
_
-
x op
s^
\ iiinnixti 1111111
1 1 1
CL
?
0X0
i i i
1 1 1
KOX*
$/
/
i i i
mini i i nun n i—
-
-
N- 20 ~
limn i i nun n i
. 1 1 10 20 50 BO 90 99 99
.9
PROBABILITY PROBABILITY
2
•^
en
I* ID'1
10 -a
0.
=l I lllilii I 1 miTTF
_
= MM)
1 IIIIIII ^ftlllllll
i i i
MXKMJfQ
1 1 1
i i i
oe90
&
1 1 1
nun 1 1 i iiniii 1 1=
-
E
N= 19 -
iiniii i i niniii i
J f 10 20 50 BO 90 99 99
10Z
2 »•
-I
9 0
= 1 1 IIIIIII 1 1 IIIIIII
XXX
1 -""""
i n nun i 1 1 nun
i i i
_*•-*£
^0000
1 1 1
i i i
rgooe
4?
nun 1 1 i HIIIII 1 1=
-
-
N= 20 -
nun i i i muni i
11 10 20 50 BO 90 99 99
9
PROBABILITY
PROBABILITY
HUDSON RIVER CONCENTRATIONS at GREEN ISLAND, NJ
10/81-08/88
-------
05
JO'
01
10'
I I I I I I I I ujHQM^illliiiL
111 mm i i 111 mi
1 i i
N= 21
mi ii 11 i mini 11
0.1 1 10 SO 50 80 90 99 99.9
PROBABILITY
HUDSON RIVER CONCENTRATIONS at GREEN ISLAND, NJ
10/81-08/88
-------
10 3
tn
o
o
10
10
-i iniiin i i Illllll ill ill IMIIII i i mini ii-
o
Illllll 1 1 Illllll
1
i t
limn i i niiini i
i
O.J 1 10 20 50 80 90 99 99 9
PROBABILITY
HACKENSACK RIVER FLOWS at RIVERVALE, NJ
02/82-08/89
-------
«w
t-H 10*
o>
E
CO
£ io«
10"
=i iiiimi i i limn
-
;
-
=
1 1111111 i i IIIIMI
i i i
i i i
i i i
i i i
mm 1 1 i DIMM 1 1=
-
-
-
=
mini i i mum i
0.1 1 10 20 SO BO 90 99 99 9
PROBABILITY
in
o
o
CD
10°
_i 11111111 i 1 1 nun
-
I
^
a
00°°
0
i iiiimi 1 1 limn
i i i
pOu
i i i
I i i
rpt
fP^
1 1 1
mm 1 1 i mini 1 1
0
000 I
0
D
mini i i nun ii i
O.I 1 10 20 50 BO SO 99 99.9
PROBABILITY
o
o
o
o
o
LJ
U_
10"
to'
10'
10'
=i iiiimi i i limn
1
: 000°'
I Illlllll irf Illllll
1 1 1
P°
I I I
1 1 1
t
i I I
mm 1 1 i iiiimi i=
0 I
iiimi i i nmiii i
O.I 1 1O 20 50 BO 90 99 99 9
PROBABILITY
J V
J0«
10-'
10-'
0
=i ii linn i 1 1 nun
=
-
5 ooooa
0
i muni i i iiiini
l i i
joo™1
i I i
crrttfP
§LtP-^
1 1 1
MINI 1 1 1 Illlllll 1=
o I
~
3*0°° :
=
iiiiiiii i nmiiii
11 10 20 50 BO 90 99 99 9
PROBABILITY
HACKEN5ACK RIVER CONCENTRATIONS at RIVERVALE, NJ
02/82-08/89
-------
10'
10"
n
o
•4-
(VI
o
10°
ID'1
0
-i iimin i i IIIMII
=
i iimni HI RUIN
1 1 1
r0f^
\ \ 1
nun 1 1 i mini 1 1—
-• j
IIIMII 1 1 DIMIIII
i 1 U 10 20 SO BO 90 99 99
9
PROBABILITY
CT
10°
in'1
-1 Illlllll 1 1 IIIMII
—
"
E o 00°^
i iimni i 1 1 mm
i i i
^-rrrl
potf*113
i i i
i i i
DOOOOOC
i i i
IIIIM 1 1 i IIIIIMI i-
00
C0DO
-
IIIMII 1 1 Illlllll 1
01 1 10 20 50 BO 90 99 99 9
PROBABILITY
HACKENSACK RIVER CONCENTRATIONS at RIVERVALE, NJ
02/82-08/89
-------
10'
o>
en
10
JO
-i 11111111 i IT mill i i
limn | | Mlllll
1 1 1
i i nun 11 i mini 11-
JO
000
1
N- 9
mini i i niinii i
-i
0.1 1 10 2O 50 BO SO 99 99.9
PROBABILITY
=> 10°
u
10'
-i 11111111 i 1 1 nun
_ X
i mum i i mini
i i i
i i i
Dr\ n n
U U U
1 1 1
Illllll 1 1 Illlllll 1 =
_
N= 9
mini i i muni i
O.I I 10 aO 50 BO SO 99 99.9
JPROBABILITY
00
:
10
0>
tn
10
-1 Illlllll 1 1 Illllll
~
1 Illlllll 1 1 Illllll
1 1 1
1 1 1
1 1 1
1 1 1
Illllll 1 1 Illllll 1 1=
N= 9
IIMIII i i DIIIIII i
cn
0 10
0.1 i to 20 50 BO 90 99 99 9
PROBABILITY
to'
ti 11111111 11 mini ill ill iiiiiiLri 111111111=
iiiiiinii t
\ \ \
\ i i
N= 9 -
i ' ""'I""
01 1 10 20 50 BO 90
PROBABILITY
99 99 9
HACKENSACK RIVER CONCENTRATIONS at RIVERVALE, NJ
06/82-10/88
-------
10'
10*
10
(J
10
-1 Illlllll 1 1 Illllll
1111111 i 1 1 nun
1 1 1
linn 1 1 i fliiiu
N= 9
iiinii i i niiini i
=i 11111111 i 11111111 I I I I I I HUM 11 i IIIIIIH i=
o>
Q. 10
ID
Illlllll lllll
0 0 *
\ i i
N- 9
iniiii i i niinn i
0.1 1 10 20 50 80 90
PROBABILITY
99 99 9
-I
0.1 1 10 80 50 60 90 99 99.9
PROBABILITY
10
10
en
o>
10
-i iiinin
iiiinin i niiini
H * K (
1 1 1
i i i
HUH 1 1 i iiiiiii 1 1-
N= 9
IIIIIMI i niiiini
10
10
-1 Illlllll 1 1 Illllll
-
l x^
1 Illlllll 1 Illlllll
1 1 1
JO-tf
0
i i i
i i i
0 Q'
\s^
i i i
IIIIMJxKl Illllll 1 1 —
s* I
-
-
N= 9 ~
iiiiini i mini ii
0.1 1 10 20 SO BO 90
PROBABILITY
99 99 9
01 I ID 20 50 BO 90
PROBABILITY
99 99 9
HACKENSACK- RIVER CONCENTRATIONS at RIVERVALE, NJ
06/82-10/88
-------
10'
en
10
=i ilium i ii linn
o
• 111 inn i 11 nun
I I I
i i i
0 *
i
N- B
nun 11 i mini 11
0.1 1 10 80 50 80 90 99 99 9
PROBABILITY
HACKENSACK RIVER CONCENTRATIONS at RIVERVALE, NJ
06/82-10/88
-------
10'
en
o
UL
10'
-i iniiiii rnnun
IIIIIID i
i i i
nun 11 i mini 11-
0 :
8
linn 11 i niniii i
0.1 lO 10 80 50 80 90 99 99.9
PROBABILITY
PA5SAIC RIVER FLOWS at LITTLE FALLS, NJ
11/81-04/89
-------
10'
D)
CO
10
10"
-1 Illlllll 1 1 1 Illlll
0
i iiiiun i i in mi
i i
I I
111111 1 IA mini 1 i-
-
nun 1 1 i nniii 1 1
10'
10
in
o
o
CD
10"
-i nimn i T mmi r
i ilium i i nniii
i I I
i i mini i i iiiiun i-
1 1
.0
nniii i i nniiii i
0.1 1 10 SO SO 80 90
PROBABILITY
99 99 9
01 1 10 SO 50 BO 90
PROBABILITY
99 99.9
O 10J
O
o
o
UJ
u_
"
10
=i nimn i i mini
-
_
=
: of
1 1 mm iQ mini
i i i
rffj
0
D
i i i
l l l
/°'
i i i
111111 1 1 i HIM u 1 1=
0 °
_
=
-
HUH 1 1 i mini 1 1
O)
OL
O
JO
0.1 1 10 20 SO 80 90 99 99 9
PROBABILITY
01 1 10 20 50 BO 90 99 99 9
PROBABILITY
PASSAIC RIVER CONCENTRATIONS at LITTLE FALLS, NJ
11/81-04/89
-------
O)
CC
O
10 "'
0
-1 IIIIIIH 1 1 Illllll
gCUP
0
I mini 1 Lllltlll
1 1 1
1 1 1
1 1 1
-prfjtftf
1 1 1
HUM 1 1 i 1111111 1 i—
0° I
iiinii i i muni i
11 10 20 SO 80 90 99 99
JO1
J0
n
x
10
-i i mini i 1 1 nun
0^
11 mini i i iiiini
i i
\ \ \
i i i
111111 1 1 i iiiinn i-
PROBABILITY
-i
0.1 lv 10 80 50 60 90
PROBABILITY
1111111 1 i mi u u i
99 99.9
9
9
O>
ru
o
z
•' n mini i 1111111
jo 20 so BO so as gg 9
0)
10 20 50 BO 90 99 99.9
PASSAIC RIVER CONCENTRATIONS at LITTLE FALLS, NJ
11/81-04/89
-------
10'
— i ii nun i 1 1 nun
0)
CJ
10
JO
1 inlti | | limn
xx»eeetxxx-:xxx
i i i
nun 1 1 i iinin 1 1—
\ \
N- 33
IIMIII i i miiin i
-i
0.1 1 10 M 50 BO 90 99 99.9
PROBABILITY
•••
CD
0)
m 10 '
10 "*
0
=l l IIMIII l l Illllll
—
= X X XX
=
:
i M HUB | i iinin
1 1 1
f Iftflflftftf M.
tnK^^^^Y w
i i i
i i i
i
* M *JHH*J*JM
r^ HAflA^^
1 1 1
nun 1 1 i iiiiiii 1 1=
XV —
^ ^
=
;
N= 29 -
IIMIII l l Illllll 1 1
1 -t M BO 60 BO 90 99- 93
9
10
O)
D
0 10°
JO'
=i 11111111 rrnimi i i i i
XX
1 1 Illllll
N= 32
nun 1 1 i mimi i
0 i —t-
PROBABILITY
4O—>20 50 BO 90 99 99.9
PROBABILITY
PASSAIC RIVER CONCENTRATIONS at LITTLE FALLS, NJ
11/81-03/89
-------
0>
1DJ
10'
ID
10
10
.-1
imini i 11Him
i i r
00*
I I I
I I I
I I I
nun 11 i HIIII111=
N= 33 :
HIIII 11 i mini 11
o.i
10 ao so eo go
PROBABILITY
99 99 9
O.I 1 10 20 50 60 90
PROBABILITY
99 99.9
cn
0>
X 10 'L
10" _
10
to 20 SO BO 90
PROBABILITY
99 99 9
0 I I
10 20 SO BO 90 99 99.9
PROBABILITY
PASSAIC RIVER CONCENTRATIONS at LITTLE FALLS, NJ
11/81-03/89
-------
10s
=i ilium i 11 nun i i i r
D>
D
M 10 *
10
I mini I | lllHll
1 1 1
1 1
nun 1 1 i IIIIMI 1 1=
N= 33
inn n i i niinii i
0.1 1 10 SO 50 80 90 99 99 9
PROBABILITY
PASSAIC RIVER CONCENTRATIONS at LITTLE FALLS, NJ
11/81-03/89
-------
V
10'
10'
10'
=i ilium i i iiiini
-
=
0
i IMIIII Pi mini
i i i
pcX
i i i
i i i
r*9
i i i
III! II 1 1 1 Illllll 1 l~
0°
fDOO
_
until t i niiini i
0.1 1 10 80 SO 80 90 99 99.9
PROBABILITY
SADDLE RIVER FLOWS at LODI. NJ
10/81-04/89
-------
-D
i-H
^X
0)
E ,o>
c/j
10°
-i i MIIIII i 1 1 nun
M Minn i i iiiiiii
i i i
i i i
Illlll 1 1 1 IIIIIII 1 1 —
Illllll 1 1 IIIIIII 1 1
IO-
0.1 1 10 20 90 BO 90 99 99.9
PROBABILITY
o
o
!0
10'
10
0
UJ
10
=i iiniin i i iiiiiii
I 0
-------
10'
O)
10"
GC
O
10
-1 Illlllll 1 1 IIIIIU
00
i mini i i mini
i i
i i
oc
i i
mini i i IIIIIIM i-
NIMH i i niiiin i
10'
10"
-1
0.1 1 10 20 50 60 90 99 99 9
PROBABILITY
-i imini i i iiiiiu
0
CVJ
O
10V
_i iniiiii 11 iiinn i i i
° i mine i i mini
nun 1 1 i IIIIIIM i
i i i nun 11 i mini 11
O>
10 >
10°
-i mum i 1 1 nun
=
1 1 mini i 1 1 nun
i i i
-
n*z*»'
I I I
nun 1 1 i nun 1 1 1-
0
CDDOO E
mini i i min 1 1 1
0.1 1 10 20 90 BO 90 99 99 9
PROBABILITY
01 I 10 20 50 BO 90 99 99 9
PROBABILITY
SADDLE RIVER CONCENTRATIONS at LODI, NJ
10/81-04/89
-------
10'
o»
3 10°
cn
ID
'1
mini i 1 1 IIIIH
1 1 1
1 1 1
1 1 1
1 1 1
N- 8
Illllll 1 1 Blllllll
10'
0.1 1 10 20 SO 80 90
PROBABILITY
99 99 9
f-H
o>
3 10«
•a
o
=l 1 Illllll 1 1 Illllll
i
i ii mm i | mini
K * *
i i i
i i i
**
\ i i
MM II 1 1 1 Illllll 1 l~
0 s/
-
N- 8 ~
HUM ii i mmiii
11 10 SO 50 80 90 99 99.9
PROBABILITY
D)
tt)
m
in1
10°
0
=i ii nun i i iiiini
r>
— U
i iiiinn i M nun
1 1 1
1 1 1
1 1 1
1 1 1
nun 1 1 i mini 1 1=
-
N= a
nun M i mini M
1 j 10 20 SO BO 90 99 99 9
PROBABILITY
O)
u
0 10°
JO'1
0
=111111111 i ii nun
-
\ /"
-
1 1 1
00*
//
1 1 1
1 1 1
oX*'
1 1 1
nun ii i 111111111=
E
E
N= 8 -
i mmiii
11 10 20 50 BO 90 99 99 9
PROBABILITY
SADDLE RIVER CONCENTRATIONS at LODI, NJ
10/B1-06/BB
-------
N= 8
nun 11 i mini 11
10 20 50 BO 90 99 99 9
10'
£3
CL
-i 11 nun i 11 nun
i mini i 11 mill
r i
i i
\ I
N= 8
i i mini 11
0.1 1 10 SO 50 BO 90
PROBABILITY
99 99.9
i w
to'1
10-'
-1 Illlllll 1 1 MINN
-
-
- M
-
1 IIIIIIR 1 1 MlllllX
1 1 1
XXX
/
1 1 1
1 1 1
0
K */
1 1 1
7 Hill 1 1-
-
-
-
N= 8
iiiinii i mini ii
10'
o>
10*
_i iiiinii i 1 1 IIIIM
ii mini i ii mm
i i i
i i i
I I I
0
[MD
i i i
nun 1 1 i iiiinii i_
N= 8
'
0.1 I 40 20 SO BO 90 99 99 9
PROBABILITY
01 I 10 20 50 BO SO
PROBABILITY
99 99.9
SADDLE RIVER CONCENTRATIONS at LODI, NJ
10/81-06/88
-------
10*
01
c
M
10"
-i IIIMIII i 1 1 IIIMI
iimm i i Minn
i i i
i i nun 11 i mini 11—
\ \
N= 8
IIIIM 11 i mini 11
0.1 1 10 SO SO 80 90 99 99 9
PROBABILITY
SADDLE RIVER CONCENTRATIONS at LODI, NJ
10/81-06/88
-------
lo-
in ioz
<4-
IJ
° ,0'
10
00
°°*
iitinii i 11 nun I i i i
I I I
i i
0
00
0.1 1 10 20 50 BO 90 99 99 9
PROBABILITY
ELIZABETH RIVER FLOWS at ELIZABETH, NJ
02/82-04/89
-------
IOJ
- JO2
•^
O>
E
(/)
2 «.«
=i ilium i 1 1 MUM
t iniiin i i mini
i i i
i i i
nun 1 1 i mini 1 1—
limn i i mum i
0.1 1 10 20 50 80 90 99 99 9
PROBABILITY
O)
&
in
0 10°
m
«-'
=i IIIMIII i 1 1 linn
~
1 0
1 HINDI 1 1 1 Illlll
>
1 1 1
(j
•fffP
1 1 1
Illlll 1 1 1 Illllll 1 1 =
o E
) =
=
mini i i ninin i
01 1 10 80 50 BO 90 99 99.9
PROBABILITY
10"
o
o
o
CJ
10
tf .0"
10'
1 Illllll
00
iiiiiiii ru i IIMII
Illlll I I I Illllll I 1 =
000 0 0
i i i 11111111 i mini 11
10"
O.I 1 IO 20 SO BO 90 99 99 9
PROBABILITY
en
E
OL
O
1 1 1
IIIH« ' I ' ' ' I I I I I I I M I 11111111
Illlll IIU Illlllll l=
01 I 10 20 50 BO 90 99 99.9
PROBABILITY
ELIZABETH RIVER CONCENTRATIONS at ELIZABETH, NJ
02/82-04/89
-------
10'
10"
CD
a:
o
10
-t
-i i iiiiin i i iiiiiii
M linn i in inn
1 1 1
1 1 1
HUM 1 1 i HIIIII
0
00
(JET
in mini M
0.1 J 10 20 50 60 90 99 99 9
PROBABILITY
10"
m
x
-I n nun i i iiiiin
-
I 0Qcm
it mini i i iiiini
i i i
oof**
rf
i i i
i i i
/
cf-*-^
1 1 1
MUM 1 1 i iiiiin 1 i—
o -
=
nun M i niiiiiii
01 1 10 20 50 BO 90
PROBABILITY
99 99.9
10'
i" I0>
OJ
o
= 1 1111110 1 1 IIIIIII
| oo*
i IIIMII i 1 1 nun
i i i
DOCK**1
i i l
l l l
-jpoooa
i i i
mm 1 1 i mini 1 1=
BJ°°°° :
linn 1 1 i niimi i
ID1
0.1 1 10 20 SO BO 90
PROBABILITY
99 99 9
O>
10
_i M nun i i iiiiin
00°*
0
Nimn inn
l l i
-d
•^^
i i i
l l l
F1
\ i i
nun 1 1 i iiiiin 1 1_
0 ° -
.poo
muni i FIIIII ii
D i I 10 20 50 BO 90 99 99 9
PROBABILITY
ELIZABETH RIVER CONCENTRATIONS at ELIZABETH, NJ
02/82-04/89
-------
10'
10'
D>
10
10
—i i mini i 11 nun
i mini i 11 nun
'Q 0
i
i i i
nun 11 i mini i i-
N- 7
IIMII 11 i mini 11
10
C_J
10
—i 11 nun i i iiiiiii
i mini i 11 nun
i i iiiiiii i i nun 111-
i i i
N= 7
iiimi i i niniii i
0.1 1 10 SO 50 80 90 99 99 9
PROBABILITY
-I
0.1 1 10 ^6 50 BO 90 99 99.9
PROBABILITY
10'
CT
01
CO
10
10"
=l 1 IIIIIII 1 1 IIIIIII
1 1 1111111 i 1 1 nun
i i i
i i i
i i i
mini i i iiimi 1 1=
N= 7
IMIIII i i nmiii i
0>
13
0.1 1 10 20 50 BO SO 99 99 9
PROBABILITY
102
10 '
10°
0
=l l iiiiiii l l lilim
;
i mum i i imm
1 1 1
V1
XK
i i l
l l l
0
^
xu
)
i i l
mm 1 1 i mini 1 1=
=
N= 7 -
mm ii i niiiiin
11 10 20 50 BO 90 99 99 9
PROBABILITY
ELIZABETH RIVER CONCENTRATIONS at ELIZABETH, NJ
06/82-10/88
-------
10*
O)
O I0l
10
-1
11111111 i 11 HUH
I I I
0
J I
I I I
I
IT"
N= 7 -
nun 11 i mini 11
10'
o>
10"
-i i mini i 11 nun
11 mini i i in mi
i i r
j i
j_
iiiuiii i—
N= 7
iiniii i i min 111
0.1 1 10 80 50 BO 90
PROBABILITY
99 99 9
01 1 10 SO 50 BO 90 99 99.9
PROBABILITY
10"
,0
''
o>
I
10 -
MIIIIII
0.1
t^
1 1 1
M M f X
I I I
1 1 1
I I I
N= 7
IIIMI ii i mini n
10J
=1 II II III! I 1 III Illl
01
^ 101
10"
iiiiiini i MIIIIII
i i i
i i
0
1 1 1
nun 1 1 i iiiuiii i=
N= 7
"mill i 11111111
10 20 SO BO SO
PROBABILITY
gg 99 g
01 I 10 20 50 BO 90
PROBABILITY
99 99 9
ELIZABETH RIVER CONCENTRATIONS at ELIZABETH, NJ
06/82-10/88
-------
10
c
M
10
=i ii nun i 1 1 linn
i iniiiii i i mini
i i i
nun 1 1 i iiiiiii 1
N- 7
linn 11 i HIIIIII i
0.1 1 10 SO SO 60 90
PROBABILITY
99 99 9
ELIZABETH RIVER CONCENTRATIONS at ELIZABETH, NJ
06/B2-10/B8
-------
10s
"in 10*
*^*
tj
3 ••'
10°
=i ii nun i TniHn
_
E
—
= DCF
0
ii Minn KiH111"
jX
1 1 1
f^
1 1 1
III! II 1 1 Ul Illllll 1 1 =
0
=
IP00 E
-
-
mini i i mini M
PROBABILITY
RAHWAY RIVER FLOWS at RAHWAY, NJ
02/82-08/89
-------
-. ioa
^>.
E
j? 10'
10°
0
to9
1— «
E „-
o
o
•«1
^.
tO3
1— 1
_l
o
CJ
LU
u_
10 '
n ii nun i 1 1 IIMII
—
~
i ilium | | IIIIIM
i i i
i i i
i i i
i i i
IIMII 1 1 i mini 1 1—
^
=
mini i i niiiui i
11 10 20 50 80 90 99 99
PROBABILITY
=i mum i i nillli
1 00
0
i iiiinn i i mini
i i i
00°"^
i i i
i i i
00'
^
\J
1 1 1
IIMII 1 1 i mini 1 1=
0
000 E
=
IIIIIM i i muni i
i—i
\
e
10 '
IT)
D
O
CO
10°
9 0
10°
i— i
-V
ID'1
Q.
t—
O
1—
10 "2
-\ Illlllll 1 1 III Illl
_
I Illlllll Pi fllLUl
i i i
r
i i i
1 1 1
ptfp00
1 1 1
HUH 1 1 i iinini i—
0
_
pooo 2
IIIIIM 1 1 Illlllll 1
11 10 20 50 BO 90 99 99
PROBABILITY
=i M Mini 1 1 Mlllll
= ooooa
M mini i MIIIIII
i i i
joocfd1
1 1 1
1 1 1
mpooc
i i i
nun i i i iinini i-
0
0
-
ilium
0.1 1 10 20 SO BO 90 99 99 9
PROBABILITY
01 i
PROBABILITY
RAHWAY RIVER CONCENTRATIONS at RAHWAY, NJ
02/82-08/89
-------
o
13
GC
O
10
ID'1
10 "*
0
=i 1 1111111 i 1 1 mm
i ncxP
= 0
E 0
i m nm i 1 1 nun
1 1 1
00°°*°
i i i
i i i
i i i
nun 1 1 i iiiiin 1 1=
pOOOO =
mini i i mum i
11 10 20 50 80 90 99 99
ID'
cn
m
I
io-'
10 -*
0
=1 1 Illllll 1 1 Illllll
—
- ooom
i n mm hi fiiini
1 1 1
,
jQu
DO
i i i
i i i
pfo"0'
1 1 1
nun 1 1 i iiiiin i i-
o° --
0
—
-
1111111 1 i mm ii i
1 1 10 80 50 80 90 99 99
PROBABILITY
PROBABILITY
10'
cn
cn
o
c\j
o
10"
10
=i mum i 11 mm i i i i i i niiiiii i imiiiii-
i mum K' ' |im|
Minn i i mini n
0.1 1 ** 10 20 50 80 90
PROBABILITY
99 99 9
o>
10°
IP'1
=1 1 Illllll 1 1 Illllll
_
- OOtfD
= 0
i n nini i i iiiiin
i i i
_i-rfl
DOO^
I I I
1 I 1
rrTDO00
i i i
nun 1 1 i limn 1 1-
CDDOO 0
-
-
mini i i min n i
01 i 10 20 SO BO 90 99 99.9
PROBABILITY
RAHWAY RIVER CONCENTRATIONS at RAHWAY, NJ
02/82-08/89
-------
10'
en
10
-mmm i n nun
i Minn i HI
i i i
OJXT
i i i
i i i
0
i i i
•"nimii i niiiiiiiz
N= 8 ~
iniii n i mini n
10'
10'
01
U 10"
"-'I """I" 11
I I I
* X *
J__L
x x
' '
N- 8
nun 11 i mum i
0.1 1 10 20 50 80 90 99 99 9
PROBABILITY
0.1 1 *
0 :-0 ' 3g BO 90 99 99.9
PROBABILITY
10'
en
Q>
CD
10
10"
=111111111 1 1 Illllll
- M
ii nun i iiiiini
1 1 1
M K X
1 1 1
1 1 1
XXX
1 1 1
nun ii i 111111111=
K r
N= 8
linn ii i mini ii
en
c_
o
10
111 nun
I'll""' I "
I I I
I I I
N= 8
""'III I Illllll
o.i
PROBABILITY
01 I 10 20 50 BO 90
PROBABILITY
99 99.9
RAHWAY RIVER CONCENTRATIONS at RAHWAY. NJ
06/82-10/88
-------
10'
10'
o>
CJ
10"
-niTTnn i 11 nun i
i 'i '
I '
I HIM I I I I Illllll
I I I
0
N=
LJ_L
-i 11 Mini i i IIIMII i i r
10
£3
CL
10"
11 mini i i niiiii
i i i
i i i
mill 11 i nnim i—
N= 8
mini i i mni 11
0.1 1 10 20 SO 80 90
PROBABILITY
99 99 9
0.1 1 10 SO 50 BO 90
PROBABILITY
99 99.9
10*
JO1
01
0>
ID
'1
-i 11 nun i 11 nun ii i ill nun
0
K * H
10
11111111 i 11 mill
0
i i i
N= 8
mini i i niniii i
10
=l Illlllll 1 1 Illllll
1 11111111 i 1 1 mm
i i i
0^0
0
i i i
i i i
^
Qx€T
i i i
mni iM" iiiiuii i—
N= 8
iiiiiii i i limn i
0.1 1 10 20 SO 80 90
PROBABILITY
99 99 9
0 I i 10 20 SO BO 90 99 99 9
PROBABILITY
RAHWAY RIVER CONCENTRATIONS at RAHWAY,
06/82-10/88
NJ
-------
to3
10'
o>
3
M I01
10"
=i iinim rnmni
11min i 11nun
0 Cxtf
i i i
j i
IIIMI 11 i mini 11=
N= 8 -
nun 11 i niiini i
0.] 1 10 20 SO 80 90 99 99 9
PROBABILITY
RAHWAY RIVER CONCENTRATIONS at RAHWAY. NJ
06/82-10/88
-------
10'
in
>•-
u
10s
10'
mum i 1 1 HUH
1 1 1
i i
p°c
i i t
Illlllll?
CDQO
mini i i nniiii i
0.1 1 10 20 SO BO 90 99 99 9
PROBABILITY
RARITAN RIVER FLOWS at MANVILLE, NJ
10/81-06/89
-------
!0J
o>
£ 10'
10°
0
10 «
1— I
E ...
o
o
T-l
10*
(-1
o
0 ••'
LJ
U_
10°
_
1 1 lllllll 1 1 1 II (III
1 1 10
i i i
1 1 1
_
1111111 1 i niiiiuj^
20 50 BO 90 99 99
PROBABILITY
=11 lllllll II lllllll
=
=
i o°
0
ii MIIIII i ii linn
1 1 1
ocfP
1 1 1
1 1 1
(
f
1 1 1
lllllll IU lllllll 11 =
00 E
£0
=
=
mm ii i nn
in
D
o
CD
io-1
9 0
10°
i—i
\
CT
E
1C'1
CL
l—
O
f-
io's
= OCD
- 0
00
II lllllll 1 ii nun
i i i
1 1 1
-
niiiini
11 10 20 50 BO 90 99 99
PROBABILITY
-l i IIIIIM i i lllllll
:
^
: 000°°
0
1 1111111 in"
,-rrff9
t
1 1 1
__r
^
1 I 1
nun i i i iiini ii i—
0
0
yj-1
-
mm ii i niiiiiii
0.1 1 10 20 SO BO 90 99
PROBABILITY
99 9
01 i 10 20 50 BO 90 99 99 9
PROBABILITY
RARITAN RIVER CONCENTRATIONS at MANVILLE, NJ
10/81-06/89
-------
en
E
CJ
l-l
z
oc
o
10 "'
in"8
-i 11111111 i 1 1 mm
cf
1 IIIIIIH L-J l"""
^
1 1 1
-rf£CP
i i i
11UJW in nimi i i"~
fp°D I
-
mini i i niiini i
10°
10
n
10
-i mum i 11 mm
000
0
i mini i 11 nun
CCDi
i i
i i nun 11 i linn 11i—
0
Iff
,odp
I I
Illllll I I IIIIIIII I
PROBABILITY
-2
01 1 ID 20 SO BO 90 99 99.9
•PROBABILITY
10'
10*
CVJ
o
0
-1
=l IIIIIIII 1 1 Illllll
-
E d
o oo
i iiiiiii i 1 1 mm
i i i
^— (
f*ff£Tj
i i I
I i i
ffffP°°
i i i
linn 1 1 i mini 1 1-
^°° -
_
-
nimi i i muni i
10'
-I IIIIIIII I I Illllll III I
D>
10*
10
00
"imni I
linn 1 1 i iiiiiiii \—
i i i I i i i I niiini i niliill
0.1 1 10 20 50 BO 90 99 999
PROBABILITY
01 i 10 20 50 BO 90 99 99 9
PROBABILITY
RARITAN RIVER CONCENTRATIONS at MANVI'LLE. NJ
10/81-06/89
-------
10'
D)
en
<
,0
10
-i
"iiini i 11 mill
I I I I I I I
N- 11
"mi 11 i mini i i
Dl
CJ
0.1 1 10 20 SO BO 90
PROBABILITY
99 99 9
1U
10°
lO'1
0
=nrmn? i i MIIIII
— x-
i muni 1 1 mini...
1 1 1
i i i
III
i i i
IIIIUII i miiiii i-
* ft-
N= 11
IIIIIIM i niiiini
,1 |0 20 50 80 90 99 99.9
PROBABILITY
10'
=» Id1
0>
CD
10
=MIIIIIH i iiiiuii
- x
ii n i iiiiiiiL
1 1 1
(XXX
1 1 1
1 1 1
t X X X i
1 1 1
—nun ii i IIIIUII i=
X -
N= 11
IMIIIII i « '
^ «'
en
0 10°
10'
Mlllllll I IIIIUII
00X0
I I I
I I I
N= 10 -
O.I t-
o i i
PROBABILITY
10 20 50 BO 90
PROBABILITY
99 99 9
RARITAN RIVER CONCENTRATIONS at MANVILLE, NJ
10/81-10/88
-------
o>
10J
10'
JO'
10
=i iiiiini T iiiiiin
i nun i 11 mill
0
i i i i i
i i MUM i i i mini 11 —
N= 11 -
mini i i niniii i
10'
10'
O)
0. 10"
=i i mini i 11 HUM I I i i i i mnrri \ nmriTT=
11 mini i 111 inn
0
i i i
i i
N= 11 -
mini i i nun 111
0.1 1 10 20 50 80 90 99 99 9
PROBABILITY
,-1
01 1 10 SO 50 BO 90 99 99.9
PROBABILITY
10"
10'
CT
at
10
-i iiiiiin 111min i
11imii ' """"
« x * x
i i
I I HUM I I I Mil III I I-
n^em
I I I
N= 11
"""ii i mini 11
10' _
D>
10" _
01 1 10 20 SO BO 90 99 99 9
PROBABILITY
0 1 1
10 20 50 BO 90
PROBABILITY
99 99 9
RARITAN RIVER CONCENTRATIONS at MANVILLE. NJ
10/81-10/88
-------
10*
en
10'
I I I
D^O-ltx
I I I
I I I
}Qjsr
i i i
N= 11
11 i mini 11
10 20 50 80 90 99 99 9
PROBABILITY
RARITAN RIVER CONCENTRATIONS at MANVILLE, NJ
10/81-10/88
-------
10
en
u
10*
o
u.
10°
-i niiiin i i niiiii
-
—
z
-
iniiiin i M mill
i i i
/
\
0
i i i
T 1 1
0
\
f
1 1 1
Mill 1 1 1 1 UN Ml 1 1™
™
-
-
ii 1 1 » M
0.) 1 10 20 50 80 SO 99 99 9
PROBABILITY
ROBINSONS BRANCH FLOWS at RAHWAY. NJ
02/82-06/82
-------
en
10*
10 '
.0°
0
=i ii inin i i mini
=
i ilium | i mini
1 1 1
1 1 1
1 1 1
1 1 1
nun 1 1 i mini 1 1=
^
mini i i muni i
1] 10 20 30 BO 90 99 99
.9
10
PROBABILITY
10
o
o
o
CJ
LU
JO'
a
_i iniiii i i mini
-
i ilium i 1 1 mill
i i i
i
i i i
0
i i i
linn 1 1 i mini 1 1_
-
Illllll 1 1 Dllllll 1
0.1 1 10 20 50 BO 90 99 99 9
PROBABILITY
f— 1
V.
en
in
CD
o
CO
10°
0
_i ii nun i i mini
i M nini i i mini
1 1 1
0
i i i
i i i
0
1 1 1
nun 1 1 i mini i i_
mini i i nun ii i
11 10 20 50 BO 90 99 99
PROBABILITY
"° „,„„,,-,
en
D.
t-
O
4 W
JO'1
JO-S
-i ii nun i i mini
_
E
-
i mum i IIIMIII
1 1 1
(
0
i i i
0
)
i i i
nun 1 1 i mini 1 1—
—
_
—
_
"limn
01 1 10 20 50 BO 90 99 99 9
PROBABILITY
ROBINSONS BRANCH CONCENTRATIONS at RAHWAY. NJ
02/82-06/82
-------
o
I— I
z
cr
o
in'1
_n 1111111 i ii nun
-
i iiniin i 1 1 nun
1 1 1
(
0
i i i
I 101
1 1 1
nun ii i mini n_
-
Illllll 1 1 Dllllll 1
n
10-'
_i 1 1 nun i i mini
-
i iiinni i i IIIUII
i i i
(
i i i
0
i i i
HUM 1 1 i IIIUII 1 1_
-
mini i i niiini i
0.1 1 10 20 50 80 90 99 99 9
PROBABILITY
0.1 1 10 SO 50 BO 90 99 99 9
PROBABILITY
0>
m
o
ru
o
10°
ID'1
0
-i i limn i i iiiuii
i iiiuii i | iniiii
1 1 1
1
0
1 1 1
0
)
1 1 1
nun 1 1 i rum 1 i—
nun ii i mini ii
] i 10 20 50 80 90 99 99 9
PROBABILITY
10'
10"
_l 1 Illllll 1 1 Illllll
-
i mum i 1 1 iiim
i i i
(
0
i i i
i i i
i *"*
i i i
HUH 1 1 i IIIUII 1 1_
-
MIMII i i muni i
01 I 10 20 50 80 90
PROBABILITY
99 99 9
ROBINSONS BRANCH CONCENTRATIONS at RAHWAY, NJ
02/82-06/82
-------
OJ
10J
in
10'
10'
=i mum i M linn
-
-
_
=_
-
-
0
1 1111111 i 1 1 nun
1 1 1
0
0
0
0
1 1 1
1 1 1
c
00
0
1 1 1
Illllll 1 1 111111111=
0 I
-
-
=
—
-
-
1111111 1 I niinii i
0.1 1 10 SO 50 60 90 99 99 9
PROBABILITY
SOUTH RIVER FLOWS at OLD BRIDGE, NJ
02/82-07/83
-------
101
10 »
10 '
10B
0
=i n Him i 1 1 nun
=
i n HUB | | iiiiin
1 1 1
1 1 1
1 1 1
nun 1 1 i mini 1 1—
=
mini i i miiim
11 10 20 50 80 90 99 99
i-^
01
in
D
o
CO
ID'1
9 0
-1 Illlllll 1 1 1 Illlll
I °
i nmni | | niiiii
1 1 1
1 1 1
oc
0
0
1 1 1
Illlll 1 1 1 Illlllll 1—
0
-
Illlll 1 1 1 Illlllll 1
11 10 SO 50 BO 90 99 99
PROBABILITY
PROBABILITY
to'
O JO*
s «>•
(J
10*
=1 Illlllll 1 1 1 Illlll
-
=
-
=
1 Illlllll 1 1 1 Illlll
1 1 1
00
0 0
1 1 1
1 1 1
oc
00
1 1 1
Illlll 1 1 1 Illlllll 1 =
0
=
—
=
111111 1 1 i mini M
O.J 1 1O 20 SO 80 SO
PROBABILITY
99 99 9
O)
e
Q.
I—
O
JO'1
m-2
=l I Illllll I I IIIIIII
r
-
0
M iiiiin i M MUM
i i i
0
0 0
0
1 1 1
1 1 1
n c
0°°
1 1 1
MUM 1 1 i niiiii 1 i—
0
—
-
mini i i «»
01 I 10 20 50 BO 90 99 99 9
PROBABILITY
SOUTH RIVER CONCENTRATIONS at OLD BRIDGE. NJ
02/82-07/83
-------
10"
CJ
cc
o
10
_iiniiiii i iiiiuii
0
i iiiinn i 1 1 mill
1 1 1
0 00<
i i l
1 1 1
0°
0
i i i
— TTTTTin 1 IIIIUII l_
0
'"" mill II
Minim i lining 20 o BO so 99 9i
PROBABILITY
.9
10'
iov
o>
10
Ermiini i iiiiuii
—
_
-
i o
i ii nmi i 1 1 nun ___^^_
I 1 I
0<
0
0
i i i
1 I I
Q
1 °
i i i
HUM ii i 111111111=
o 1
-
-
IH,|iM i mini M
,i 10 20 so BO so ay y-
1.9
PROBABILITY
10'
10'
CXJ
o
10
ETIIIIIIR 1 IIIIUII
- 0
i mum I I lllllll
1 1 1
00°
0
I 1 1
1 1 1
00°'
1 1 1
IIIIUII 1 lllllll 1 1=
0
1111,111 1 lllllll II
I iiiinin i i'"""o 20 o BO so ay u«
10 '
i— <
-^
i1
Z 10"
_J
»—
o
1—
10"
Eirniini i iiiiuii
_ 0
-
'"'""' ' """"
1 1 1
0 °
I 1 1
1 1 1
oo°c
' ' 1
IIIIUII 1 111111111 =
0
—
1,1, HII i iiiiuii
0 I i
PROBABILITY
PROBABILITY
SOUTH RIVER CONCENTRATIONS at OLD BRIDGE, NJ
02/B2-07/B3
-------
APPENDIX G
LOG - LOG PLOTS OF
TRIBUTARY CONCENTRATION VS FLOW
AT GAGING STATIONS
-------
10s
1C1
- 10*
en
E
£ 10'
10°
103
10*
9
' -s
o
o
I03
0
u
(J
UJ
u,
10*
JO3
= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t
| o o |
; o 00(0 OQ -
1 0&, *° I
QD
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10" 10S
FLOW (cfs)
- i i i i i i l 1 1 i I I I I I I t
-
0
o o
- ^ o ^
E o o o E
- 0 o n
0
0
0
i i i i i i i 1 1 i i i i i i i i
to" ios
f— 1
0)
E
in
o
o
CO
10°
10S
10°
\ »"
01
e
Q.
1 —
io-3
10s
_ I I I I I I I I I I I I I I I I L
-
-
1 l 1 l l l 1 1 1 l l l l 1 l l l
IB4 10s
FLOW (cfs)
= i i i i i i i i i i i i i i i i t
_ _
0
^ OOD \L Q ^T) Q n n -
0
i i i i i i 1 1 i i i i i i i i i
IO4 !0S
FLOW (cfs)
FLOW (cfs)
HUDSON RIVER CONCENTRATIONS at GREEN ISLAND, NY
10/81-08/88
-------
10 '
1— 1
z
ORGANIC
„ 3 S
9. i i
10 '
i— 1
0>
e
10
= 1 1 — i i INN 1 — r i i i i ii-
~ 0 I
-00 -
- o -
Illl 1 II -' ' 1 1 '
10' in3
FLOW (cfs)
1 1 1 i i i i i I i i i i i i i t-
1 ° °° n :
00 0 0
E 0°0# 00°°° °^° =
HI 1 1 -1 Mill
» io4 "o3
FLOW (cfs)
FLOW (cfs)
HUDSON RIVER CONCENTRATIONS at GREEN ISLAND, NY
10/81-08/88
-------
—
-
~
~. 10' =
o) E
ff «o' _
~
-
in"
101
.n»
1-^ ""
^^ J
10* _
0 =
o =
JOJ I
1— 1 ^
0 =
(J
UJ =
u. -
M
10 '
— 1 1 — 1 — 1 — Mill 1 1 1 1 iiit
=
—
=
-
=
-
-
i i i i i i i 1 1 i i i i l l l l
\
O)
E
ID
a
o
CD
10°
I I I I I I l l I I I l I I I l L
0
0 o0
0
DO DO m
0° ° °Q 8 0
- o °o D0 >
0 0 (D o
- o o Q o
0 ° %
0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10* 103 10* 10* 103
FLOW (cfs) FLOW (cfs)
-------
I01
1— 1
en
E
Z ,0"
m
a
z
tVJ
o
ID'1
in
= 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 t
~ 6 o V$VoDbo =
i i i i i 1 1 1 1 i i i i i 1 1 1
102 10*
FLOW (cfs)
E 1 1 — 1 1 1 1 III 1 — 1 I I M 1 1
0 °
: o°° ° %cP 0 0 :
o°° o °
1 1 U 1 1 1 1 1 1^ 1 1 1 I I I 1 I
" ID2 10
C JO'
0)
E
Z
^ lO'1
z
101
10"
,—t
01
E
z »•
_J
1 —
0
h-
10"'
9 10
Z 1 1 1 I I IT II I I I I I I I fc
- 8 oao° * °o° 8° ° =
\ o oo 0o0 ° o i
I i i i I I M I I II l_L_U_L
10* I"'
FLOW (Cfs)
I 1 1 i i i i i I i i i i i i i i-
o o
= 0 % ° E
_
i i i i i i MI i II IJJ_LL
1 ,02 I03
FLOW (cfs)
FLOW (Cfs)
HACKENSACK RIVER CONCENTRATIONS at RIVERVALE. NJ
02/B2-08/B9
-------
IV
^H
E 10'
tn
)
|~
10°
E o ' 'o1 ' ' ' '-
- ° OQ ° o o o =
0 ^ SOQj 0 .-i
0 0 n n -
OfT 0 O U 0 U
n r^
0 DO
E 0 ° E
I ° I
- -
0
0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1— 1
O)
y—
ID1
in
a
o
CD
10°
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t
-
0
0
- 0 -
Jn 0® °°° n^^nOnO ° =
— 0© 0/r n « Q ^_n 0 OnO ~
^^ o & 0 0 0 tr 0
oo 0 -
0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10* 10* 10* 10* I03 10*
FLOW (cfs) FLOW (cfs)
r^
E
O ,
O IOJ
8 •«•
u
UJ
u.
10 '
= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t
o °
— n —
= 0 g 0 % =
- ° 0 ^ ° -
E 0 0 —
- n 0 0 0 -
= °0 ° =
0 i i i i i i i i i i l l l l l l l
1-1 e
\ 10?,
0) U
e
a.
K- -i
0 10
10 "*
= 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 t;
= :
•— 0 —
| ajb^^OcAoOntj, E
E 0° ^ ° 0 E
E o =
i i i i i 1 1 1 1 i i i i i 1 1 1
10? 10s 10* 10a 103 10*
FLOW (cfs)
FLOW (cfs)
PASSAIC RIVER CONCENTRATIONS at LITTLE FALLS, NJ
11/81-04/89
-------
10'
0)
E
o
oc
o
10
••
1 - 1 - 1 1 1 1 1 1 1 - 1 - 1 - 1 1 1 1 1 t
0
5 0 0° °
0
o o
o o
o
10'
Ol
rn
X
P
V
ID
1 1—I I Mill \ \—I I I I I id
0 0 0 00 0 n 0
0 nDP^OOD
nn^nOOO
° °0 0 °0
0 0
0
1 1 1 1 1 1 1 I I 1 1 1 1 M.L
Id3
FLOW (Cfs)
io3
FLOW (cfs)
10
10'
o
z
•4-
rvi
o
z
10
T 1—I MINI 1 1—I I I I I H
cfio "
0
• i i i i i MI \ 1—I I I I I I
10
0)
10
1 1 I I I I III 1 1 I I I I ILJ
-
Q oo
o (9 °o o o
0 o 0 u 0
°^ CD
0
i—i—i i id ''
in2
to3
FLOW (cfs)
to'
10Z
10'
FLOW (Cfs)
PASSAIC RIVER CONCENTRATIONS at LITTLE FALLS, NJ
11/81-04/89
-------
JO8
-
- I02 _
0) =
E _
cn
L_ 10 ^ _
*~" =
=
_
10°
I01
10S .
) =
; E
o i
o =
^
_
hH ^
_J U
o
CJ
<_> '°a =
LU =
_
10 '
10'
I I I I I I I I I I I i i i i i n
-
—
I
-
t
=
_
i i i i i i 1 1 1 i i i i i n i
,_
0)
101
in
a
0
m
10*
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H
-
00OR
-° ° o, ° /? °nfl CO =
— ^OrvQ iX)n r» ^ "~
~ 0 ^u 0 Ol ~
ooooo
0 ° o
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
102 103 101 10* )03
FLOW (cfs) FLOW (cfs)
1 1 1 1 «P 1 1 1 1 1 1 1 1 1 1 1 E
-
o
o o u
° 0 0 =
0 CtrOO ~
_ 0
00° |
0 O 0 -
o o a
T) 0
° 0 ° I
0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
101
i— 1
"X^
o»
E
_
a.
j_
o
t-
ID'1
= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t
~ ~
— —
— —
~0 0 nr&
^Or'tF' Q ^^
| oaA^J @ 0 |
— §no_ ""
"" Cr ^UT) ""
: ° a o °° :
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M
10* 103 10! JO8 JO3
FLOW (cfs)
FLOW (cfs)
SADDLE RIVER CONCENTRATIONS at LODI, NJ
10/81-04/89
-------
30'
r— 1
o>
E
(J
0
o
JO1
o>
E
Z
m
o
0
10°
.n«
~~ __
1. —
_ —
E o °poX\of o E
o o n ° =
0
0 ° 0
0
J 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10* 103
FLOW (cfs)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L
"° pj^ ° °
°0 @ 0
o °o
0 ^to ° 0
|g|0 0$ 00 0
0 0 0 r\
0 °
I i i i i i i i i i i i i i i i I
,0" 10!
t— i
01
10°
z
n
X
z
1C'1
101
JO8
1— 1
en
e
z »'
i—
0
- 1—
10°
10
= ° 0
_ 0 0 rf. —
- o°^ 9°°° °o "
£ °° (? ° °° 0Q E
: Q) % o -
0
1 1 1 1 1 1 1 M 1 11 1 1 1 1 1
1DZ 103
FLOW (Cfs)
1 1 1 1 i i i i i i i i i i i i <-
0
Eo 0 0 8n -
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 M
vf >o3
FLOW (cfs)
FLOW (cfs)
SADDLE RIVER CONCENTRATIONS at LODI, NJ
10/81-04/89
-------
IU
9
— « 10*
"^
o>
E
in
£2 10'
E
-
_
~
^
-
E
-
10°
10°
. •
E 109
O
o
'-I .-«
\ 10
3 .0"
0
LJ
UJ 10*
u_
ID1
=
=
=
a
=
_
9
=
-
10°
-i — rn inn i i i i inn
i i i 1 1 1 in i i i 1 1 1 1 n
10' 102
FLOW (Cfs)
i i i i l l HI i i i i i 1 1 n
0 ODD
00 _ 0
n
08 iSUi o ° o
° Q) fP
0 9)003 ° 0 °
u OD
0
OD
0
i i i i 1 1 in n i i 1 1 mi
10* 102
— 1 1 1 1 II Ii
—
-
=
—
—
-
=
1 I 1 1 1 1 II
*^. 10
O)
£
in
0 10°
CO
ID'1
= 1 1 1 1 1 1 III 1 1 1 1 1 1 III 1 1 1 1 II 12
E o E
; a °0 :
— f fl —
~ 0 fl (jQD On ~~
: «oo^o °o ° ° :
_ 0 °
i o =
i i i 1 1 1 in i i i 1 1 1 in i i i 1 1 1 n
103 10° ID1 102 103
FLOW (cfs)
.Bo
i i l l 1 1 11
—
=
o E
-
~
-
Sj
^
i i i i i nT
0)
e.
JO'1
Q_
\—
O
1 —
10 "2
= I 1 1 1 1 IOJII 1 1 1 1 1 1 1 II I l l l M ii
- -
0
1 oC8^o°0oo ° -
°g*0% ° ° o E
= o °cgy o u -
_
_ —
1 I 1 1 1 1 III 1 1 1 1 1 1 III 1 1 1 1 1 1 1 1
10s 10° IB1 102 103
FLOW (cfs)
FLOW (cfs)
ELIZABETH RIVER CONCENTRATIONS at ELIZABETH, NJ
02/82-04/89
-------
« V
1— 1
0)
E
z
0
Z
ID
GC
0
Id'1
- i I I I I 1 1 II I I I I I 1 1 II I 1 1 1 1 1 1 j:
_ __
- —
0
oo
o
E ^Q OQ,)0 0 o 0 0 E
E OfiJP 0 0 o ° -
~ ^ 1$^ (j 0 ~
~ 0 ~
0
1 1 1 1 1 IMI 1 1 1 1 1 till 1 1 1 1 1 1 II
p— 1
N^
O)
E
..•-I
10
z
m
z
10 "Z
= 1 1 1 1 1 1 III 1 1 1 1 1 1 III 1 111111+
- o -
- <§>00o I
q iP o
0^ fX-«_
Ctrf3 R^3^1 0
oo^ BOQ
E °o E
1 0 Q3D D
- o -
— • ^
— ~
1 1 1 1 1 1 III 1 1 1 1 1 III! 1 1 1 1 1 1 II
10° JO1 Vf 103 10° ID1 ID2 I03
FLOW (cfs) FLOW (cfs)
10 1 «•»'
i— 1
"^
E 10°
Z
O
? •--
OJ
o
z
10 "*
= .1 1 1 1 1 1 Ml 1 1 1 M 1 III 1 1 1 1 1 1 1*
— o —
dPiP'-® oo
= OCrS 0 0 0 o 0 =
E 0 ° E
= =
_
— -
1 1 1 1 1 1 Ml 1 1 1 1 1 1 Ml 1 1 1 1 1 1 1 1
i— 1
0>
E
Z
1—
O
f-
10*
_ 1 1 1 1 1 1 III 1 1 1 1 1 1 III 1 1 1 1 1 1 11
-
~
~ ~
D 0
0
- o°oK° S 0 -
03° 0
0
1 1 1 M 1 III 1 1 1 1 1 1 III 1 1 1 1 1 1 1
10° 10' 10* 103 10° 101 ID8 JO3
FLOW (cfs)
FLOW (cfs)
ELIZABETH RIVER CONCENTRATIONS at ELIZABETH, NJ
02/82-04/89
-------
O>
(ft
o
o
o
CJ
-------
CO
1— 1 "~
e* 10° _
z IE
o ~
•^ —
o E
QC
o -
•n-a
10°
«— 1 _
o> ~
e
m '° (E
o
z
cu
o
z
10°
1 1 1 1 1 1 1 II 1 1 1 M 1 1 II 1 1 1 1 1 1 l±
—
£
0 8 8°°1<*, y B * E
0 =
D =
1 1 1 1 1 1 III 1 1 1 1 M III 1 1 1 1 1 1 II
01
E
10'(
Z
m
X
101 102 103 10°
FLOW (cfs)
1 1 1 1 1 1 III 1 1 1 1 M 1 II 1 111111+
°0°o°°0$g ** ° i
00 =
*, 1 1 1 1 1 1 II 1 1 1 1 1 1 1 II 1 1 1 1 1 1 1
10* id2 io!
IB1
•—i
Ol
1
z 10°(
o
1-
10-'
10°
- I I I I I I 1 1 1 I I I I I I 1 1 1 I 1 1 1 1 1 1+
- o -
0
0
- 0 0(gp o 0
= S°°° o°0 °@° °° ° E
- 0 da CD Oa
1 1 1 1 (.kill 1 1 1 1 1 1 III 1 1 1 1 M 1 1
10* 10* ID3
FLOW (cfs)
= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1+
E o =
1 II 1 1 1 1 MM 1 1 1 1 1I1L
JO1 I08 103
FLOW (cfs)
FLOW (cfs)
RAHWAY RIVER CONCENTRATIONS at RAHWAY, NJ
02/82-08/89
-------
10'
en
E
10
10
.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 II 1
Ol
in
a
o
CO
10°
I08
10s
FLOW (cfs)
10
'1
0
?*"'
0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10
JO2
ios
FLOW (cfs)
10
10"
1 1 1
00
~l I I i i i i eO
o
o
-&>
,000
.
u
UJ
u_
10'
10
i i i i i i M
i i i i i i
0)
E
a.
t—
o
JO
'1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t
O °
° o o
o o
a
i i i i i 1 1 1 1 i i i i i 1 1 1
102
to3
FLOW (cfs)
10'
10"
FLOW (cfs)
RARITAN RIVER CONCENTRATIONS at MANVILLE. NJ
10/81-06/89
-------
10"
1— 1
O)
E
2 ,o-
O
1— 1
z
CD
CC
O
10 "e
10 '
1— 1
en
E
m
o
z
OJ
o
z
10"
1 'cpJX^o'*00 I
- Oflo J 00 0 .
i o o o i
I I I I I I I I I n I I 1 1 1 1 1 1
1 ' i °
FLOW (cfs)
" o o o$ao :
I 0 Q -
o o
1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1
0
I— I
01
E
ID'1
Z
Z
10 **
V?
t— <
o>
E
0 Z 10°
1 —
0
t-
10-'
= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t
= 0 -
I o i
- 0
CD QO DO
i o Q o^ o o E
00 (DT ODD 00 -
- 0
i i i i i 1 1 1 1 i i i i i 1 1 1
JO3 ID4
FLOW (cfs)
- i i i i i i i i l i i i i i i i t
1 ° 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
to5
FLOW (cfs)
10"
JOZ
103
FLOW (Cfs)
10"
RARITAN RIVER CONCENTRATIONS at MANVILLE. NJ
10/81-06/89
-------
10
10'
- 10*
\
E
tn
™ 10'
i—
10°
= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 fe
-
E E
™* ^_
— ~~
~ ~~
•^ =
- =
i i i i i i i 1 1 i i i i i i i i
1— 1
O)
in
o
o
CO
ID6
_ l 1 1 1 1 1 1 1 l 1 i i i i i i L
- —
-
0
- 0
_ — •
0
\ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10° 10l 10* 10° 101 10*
FLOW (cfs) FLOW (cfs)
10S 'n°
^^
E
0
O
^-«
"S.
^s
I-H
I
_j
o
-------
10'
10s
en
E
Z
CJ
Z
CD
GC
O
IO'1
1 1 1 1 1 1 1 1 1 1 1 1 1 Q) 1 1 L
10
— —
~* ~~
_
0
— —
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r-4
>\
Ol
z
n
z
IB'1
_ I I I I I i I I I I I I I I I I L
_ __
— _
0 -
0
— —
— ~
1 1 1
-------
JO1
c io' =
o> -
E
H? lo1 =
,no
IO1
r— » "~
E
O JO* _
""* E
S •<>' =
o -
UJ
u_
10'
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t
—
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
vf io3
FLOW (cfs}
l i i i i i i i i i i i i i i i t
0
00 E
oo E
0 0 -
o E
1 1 1 1 1 1 1 II 1 1 1 1 1 1 1 1
102 10s
r— 1
0)
e
10°
in
0
o
CO
JO'1
101
10°
i— i
CT
E
JO'1
CL
t—
0
1—
10 "2
IO1
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H
: :
0
0 °
I ° I
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
JO2 103
FLOW (cfs)
= i i i i i i i i l l i i i i i i t
_ —
0
= 00° ° =
- 00-
'00
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1C2 IO3
FLOW (cfs)
FLOW (cfs)
SOUTH RIVER CONCENTRATIONS at OLD BRIDGE. NJ
02/82-07/83
-------
ID1
1— 1
E
Z
0
Z
CD
OC
O
10 ~J
10'
: ° o ° :
- ° 0 o I
0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
102 103
C 10°
CT
E
Z
5 IOM
Z
to'1
101
= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t
I ° I
0 ° 0
0 ~_
i o =
E o E
i i i i i 1 1 1 1 i i i i i i 1 1
102 JO3
FLOW (cfs) FLOW (Cfs)
-c
u/
10 •
i— i
fO
O
+
CM
O
10"
10*
- i i i i i i i l l l l l l l l l H
0
=" ° ° 0 0 0 0 0 E
- 0 -
0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
JO* 103
f— 1
at
z »•
0
1—
ID'1
101
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t
°°° 0°0o ° "
0
- o -
l i i i i l l l 1 1 1 1 1 1 1 1 L
if 1C3
FLOW (cfs)
FLOW (cfs)
SOUTH RIVER CONCENTRATIONS at OLD BRIDGE, NJ
02/82-07/83
-------
APPENDIX H
LOG PROBABILITY PLOTS
CSO/SW CONCENTRATIONS
NYCDEP CSO STUDIES
JAMAICA BAY
EAST RIVER
INNER HARBOR
-------
10
JOJ
- 10*
o>
g:
0)
0
to*
o
o
10"
o
0 "'
UJ
u.
IOJ
=i iiiiiin i 1 1 MUM
-
Z f
ooocP
= 0
1 IIIIIIR 1 | Ml Mil
i i i
*<&*•
6^
\ \ \
i i i
X"
i i i
nun 1 1 i mini 1 1—
0 -
,aP°° :
-
-
=
N= 49 -
mini i i ninin i
11 10 20 SO 80 90 99 99
PROBABILITY
=i ninin i UIITIII
=
_
oocO-
~ 0
I 0
i mum i i MIIIII
i i i
rtf
i i i
i i i
^Yrtrf
&&**
\ \ \
nun 1 1 i mini 1 1=
0 =
^°° I
=
N= 48 I
limn i t niinii i
•— i
o>
ioa
o
o
CD
10 '
.9 0
10"
i— i
0
o
.o7
1— 1
0
CJ
o
t—
10B
=1 Illlllll 1 1 Illllll
-
—
: oX3
0
t n mm [ i iiiiiii
^T
X
1 1 1
-^0°
^
\ i i
nun 1 1 i niinii i-
0 ~
T
—
-
N- 49
IMIIII i i ninin i
1 I 10 • 20 SO BO 90 99 99
'PROBABILITY
=l Illlllll l IT1HF1I
=
= Dtftf
= 0
1 o
i muni i 1 1 MIIII
1 T I
ooX
1 1 1
i i i
i i i
mm 1 1 i niinii i-
g 0 _
fjjX* =
=
N= 49 I
IIIMII i i niinii i
.9
0.1 1 10 20 50 BO 90 99 999
PROBABILITY
01 I 10 20 50 BO 90 99 99 9
PROBABILITY
JAMAICA BAY C50 CONCENTRATIONS
08/88-10/88
-------
10s
JO'
co
CO
Hlllllin 1 II Illlll
-
-
0
-
i mini i 1 1 nun
I I I
_ 000
0
1 1 1
1 1 1
C
00
0
1 1 1
Illllllll lllllllll=
0 I
-
3
N= 10 ~
nun 1 1 i niiini i
10"
0.1 ] 10 SO SO BO 90
PROBABILITY
99 99 9
O)
O
O
CD
10'
10"
-i i mini i 1 1 nun
-
I °
-
i muni i i mini
i i i
00°°
i i i
i i i
000 C
1 1 1
IIIMI 1 1 i IMIIIII i—
0
—
N- 10
mini i i nimii I
0.1 i 10 30 50 BO 90 99 S9.9
PROBABILITY
10"
O 10"
S
0
10'
=i ilium i i iniiii
-
=
-
—
I °
:
i Minn 1 1 iniiii
i i i
ooo
0
1 1 1
1 1 1
C
0
0
0
1 1 1
Illlll 1 1 1 Illllll 1 1 =
o 5
E
_
~
=
N= 10 -
IIIMII i i muni i
10
O 10"
10°
0.1 1 10 20 50 BO 90 99 99 9
PROBABILITY
=i ii 111111 i i mini
-
=
-
=
I °
_
1 IIIIIRI 1 1 Illllll
1 1 1
0
0
0 0
l l i_
i l i
0C
00
1 1 1
Illlll 1 1 1 Illllll 1 1 —
0 j;
|
—
E
-
N= 10 -
IMIIIII i mini ii
1 | ID ' 20 50 BO 90 99 99 9
PROBABILITY
JAMAICA BAY SW CONCENTRATIONS
10/89
-------
10
^ to'
o>
E
cn
J2 ">'
10°
0
r-l JO7
O 10*
10S
1— (
° ,.-
=111111111 1 Illlllll
=
i oo^^
1 Illlllll 1 1 Illllll
1 1 10
i i i
^
jT
\ 1 1
1 1 1
*&P
^
\ \ \
Illlllll 1 111111111=
=
=
N= 123 -
mini i i niinn i
20 50 BO 90 99 99
PROBABILITY
ii ilium i rrrrnn
i
i
m
^ rvnOomnr
1 1 1
/
urn
Jff^
nun 1 1 i mini 1 1=
rpODOCDOO 0 i
J H
i
s
en
E
in
0 JO1
CO
10«
9 0
iO1
i—i .
\ 10°
0)
e
DL
o 10"t
=i 11111111 i 1 1 nun
E
=
i iinini | 1 1 nun
i i i
/
\ \ \
rftf^
1 1 1
nun 1 1 i mini 1 1—
0° =
Jjjtp™ =
~
N= 124 -
mini i i nun M i
11 10 20 50 BO SO 99 99.9
PROBABILITY
=i iinini 1 1 1 nun
- o^
0
\ i i
gOOOCP
1 1 1
nun 1 1 i iiiiiii 1 1—
0 =
0
-
PROBABILITY
EAST RIVER CSO CONCENTRATIONS
07/88-12/88
-------
CD
OC
O
JW
10°
io-«
=111111111 1 Mllllll
ocf
I °°
0
™
iiiMim ii IIIMII
1 1 1
pooctf^
i i i
1 1 1
i i i
nun MM muni i=
-
_
-
N= 42
HUH ii i mini ii
0.1 1 10 80 30 60 90
PROBABILITY
99 99 9
J V
10°
,.-
JO'*
0
= 1 Mllllll 1 1 IIIMII
™
ooo
E 0
i mum i i ll u ill
1 1 1
0
P
i i i
i i i
-r(f®
i i i
nun 1 1 i IIIMII 1 1_
Oo o \
=
=
N= 41 -
IIIMII i i BUM ii i
1 1 Id; 20 50 BO 90 99 99
.9
PROBABILITY
OJ
o
.0°
,."
to"8
0
= 1 Mllllll 1 1 IIIMII
E DOOtf
0
1 1111111 j U mill
DOOCCCC
i i i
rt^°°(
p>>~
i i i
mill 1 1 i mini 1 1—
-
—
N= 42 -
linn 1 1 i niinii i
11 JO 20 50 BO 90 99 99 9
PROBABILITY
aw
Dl 10 '
-z.
< 10«
o
I—
JO'1
0
clllllllll 1 Mllllll
| ooo"1
—
-_
i nnini i i limn
1 1 1
DO
1 1 1
1 1 1
1 1 1
nun ii i 111111111=
0
-
—
N= 42 -
IIIMIM i mini ii
II 10 20 50 BO 90 99 99 9
PROBABILITY
EAST RIVER CSO CONCENTRATIONS
07/88-12/88
-------
103
r— 1
•v.
O)
CO
CO
Y-
10 '
10°
0
=i ii nun i i IIIHII
!
1 1111111 1 1 IIIHII
1 1 ^
1 1 1
HUM 1 1 i 1111111 1 1=
-potrP ^
*r -
N= 139 I
mini i i niiini i
J 1 10 20 50 80 90 99 99
~ 10*
D»
e
in
0 10*
m
10°
9 0
-I 1 Illllll 1 1 Illllll
=
— -f-nOOD
= 0°
1 1 Illllll 1 1 Illllll
1 1 1
wrff
X
1 1 1
1 1 1
^
1 1 1
Illllll 1 1 Illllll 1 1=
0 =
0*** \
N- 139 -
nun 1 1 i [mini i
11 10 SO 50 BO 90 99 99
.9
PROBABILITY PROBABILITY
?
0
o
o
o
LU
10
10' _
10
10° _
10
7
B
B
4
0
= 1 Illlllfl 1 1 Illllll
=
i X
E o015
1 IIIIWI 1 1 Illllll
1 1 1
X
1 1 1
1 1 1
^
1 1 1
nun 1 1 i 1111111 1 1=
00 :
X'"" I
N= 138 I
MIIII M i mini n
1 wl JO 20 90 BO SO 99 99
PROBABILITY
9
JV
10 '
10°
JO"1
to'3
EI ii nun i 1 1 nun
•~
_
~
=
=
| 0°
-
i nnini i i iniiii
i i i
tfffP
i i i
i i i
o°l
XJ3DD
i i i
MUM 1 1 i mini 1 1=
0
0° 1
DDO =
=
—
N= 42 I
mini i i DIIIMI i
01 1 10-20 50 BO 90 99 99 9
PROBABILITY
INNER HARBOR CSO CONCENTRATIONS
NEWTOWN CREEK SD 06/89-11/89
-------
JW
t— 1
IF jo1
z
CJ
i i
< ">°
CD
OC
O
ID'1
= 1 IIIIIIII 1 1 Illllll
—
=
-
_
| X
1 IIIIIIII 1 1 Illllll
1 1 1
rrf£
jtfr
per
i i i
1 ' '
nd
fffV
i i i
mm 1 1 i nun 1 1=
0 -
Oo :
P^° E
—
_
r
N= 42 -
niini i i mini i
0.1 1 10 20 50 60 90 99 99 9
PROBABILITY
101
10°
10."
0
=i IIIIHII i 1 1 linn
- r-
-
-------
10
10S
•— «
^N.
Cfl
E ,0*
in
01
i—
10*
10°
fTTiimn i iiiiiiii
1
-
rCffP
= QCfP^^
iiiiiiii i iiiiiiii
1 1 1
*P0£°
1 1 1
1 1 1
^rrffftf
010^^
1 1 1
Illllllll Ifflllllll
0° I
X :
•"
U- 122 I
iiiiinii mini M
~ 10*
01
e
in
O JO1
CO
10°
-i iiiiiiii i i mini
^
-
I 000,0^
ilium i 11111111
X
1 1 1
f^
1 1 1
linn 1 1 i IIIIIIM i=
00°° I
^°° =
-
E
U° 123 -
IIIIIIM i niiiiiii
0.1 1 10 20 SO BO 90 99 99 9
PROBABILITY
01 I
PROBABILITY
O
O
O
CJ
10"
10'
10'
10'
10°
JO'1
ID'2
=i i mini i 1 1 IIIMI
i Oocd
_
= o
ii mini i iiiiiiii
riOCr"
i i i
****
i i i
IIIMI I I I IIIIIIII l =
00 =
poo
-
=
—
U= 37 -
in i niniiii
01 I 10 20 50 BO 90 99 99 9
PROBABILITY
INNER HARBOR CSO CONCENTRATIONS
NORTH RIVER SD 06/89-11/89
-------
CD ,
E SO1
10"
CD
cc
O
10
=i IIIIIIH i i IIIHII
. 0 Oood
i limn 1 1 Minn
0
fp°
i i i
i i i
pooo
1 1 1
min 1 1 i mini 1 1=
0 I
-
N- 37 -
IIIIIM i i mum i
10"
0.1 1 10 SO 50 80 90
PROBABILITY
99 99.9
0>
tn
x
10"
ID
n
— 1 1 Illllll 1 1 Illllll
~ ooo
0
i innni | JUIIIII
Xs
1 1 1
1 1 1
1 1 1
IIIIUII i 1 Illllll 1 1 —
N= 37 "
IIIIIM i i min ii i
. 1 1 U 10 20 SO BO 90 99 99.9
PROBABILITY
10'
e 10°
? ••-
c\i
O
10
=1 IIIIIID 1 1 Illllll
-
- nOO
=
i IMIIII I I Illllll
I I i
0DOOtf*
i i i
i i i
Xm
i i i
HUM 1 1 i mini 1 1=
0 -
D00° =
N= 37 -
IIIIIM i i muni i
10-
0.1 1 10 20 50 80 90 99 99 9
PROBABILITY
CT
_J
<
10'
=l IIIIIHI 1 1 Illllll
-
a
-
Minim DM nun
1 1 1
•
1 1 1
1 1 1
(
1 1 1
min 1 1 i iiinii 1 1—
0 =
0°
tfp
N= 42
HUM ii i mini n
11 10 20 50 BO 90 99 99 9
PROBABILITY
INNER HARBOR CSO CONCENTRATIONS
NORTH RIVER SD 06/89-11/89
-------
1
J
(S)
C/J
10 '
10°
-mmm i ii nun
0
- 0
i iiiinn i i mini
1 1 1
oc
Ooo
i i i
1 1 1
oo°°°
infill T" mill 1 1-
~
-
N= 14 "
iiinii i i niiini i
10'
O)
in
a
o
CD
10
_i IIIMIII i i mini
I
—
0
0
i niiini i i mini
i i i
ODOOC
i i i
i i i
00°
0°
1 1 1
iniii 1 1 i linn ii i_
00 I
I
-
—
N- 14
iiinii i i niiini i
0.1 1 10 SO 50 80 90 99 99.9
PROBABILITY
i
0.1 I 10 80 50 80 90 99 99.9
PROBABILITY
10'
O
O
O
O
O
LU
U.
10"
10'
-i IIIINII i i iiinii
I
-
-
-
z
: o o
-
i mum i 1 1 IMIII
i i i
r
0
000
i i i
i i i
00
00
0
1 1 1
nun 1 1 i mini 1 1—
0 I
0
—
~
-
-
N= 14
mini i i muni i
en
e
O_
t—
O
10"
10
-i ilium i i mini
-
_
-
-
ni i n
I I I
0
0
1
1 1 1
1 1 1
0 °
1 1 1
nun 1 1 i miiiii i-
—
—
-
N= 4
IIIMIII i mill ii
o.i j 10 20 so ao go gg 99 9
PROBABILITY
0 ! I 10 20 50 BO 90 99 99 9
PROBABILITY
INNER HARBOR C50 CONCENTRATIONS
RED HOOK SD 06/89-11/89
-------
01
-c
CD
CD
OC
O
IV
10°
1C'1
-1 Illlllll 1 1 1 Illlll
-
-
~
-
1 1 111111 i 1 1 nun
i i i
0 °
1 1 1
1 1 1
0 0
i i i
HUM 1 1 1 Illllll 1 l~
&
—
3
N- 4
niiiii i i mini 1 1
10'
0.1 1 10 20 SO BO SO
PROBABILITY
99 99 9
10
on
o
10
_l Illlllll 1 1 Illllll
-
-
-
1 Illllll 1 1 Illllll
1 1 1
0
0
1 1 1
1 1 1
0
0
1 1 1
Illllll 1 1 Illllll 1 l_
"•
-
-
N= 4
IIIMII i I Illlllll I
0.1 1 10 20 SO BO 90
PROBABILITY
99 99 9
O>
e
n
10"
_l Illlllll 1 1 IIMIII
-
1 Illlllll 1 1 1 Illlll
1 1 1
0 °
1 1 1
1 1 1
0
0
1 1 1
Illlll 1 1 1 Illlllll l_
~
N- 4
IIMIII 1 1 Illlllll 1
0.1 1 10 20 SO BO 90
PROBABILITY
99 99.9
10'
O>
J Illlllll 1 Illlllll
i muni i i iiiiiu
1 1 1
0
0
i i i
1 1 1
0 °
Illlllll 1 Illlllll l_
N= 4
iniiiii i IMIIIII
II 10 20 50 BO 90 99 99
PROBABILITY
9
INNER HARBOR CSO CONCENTRATIONS
RED HOOK SD 06/89-11/89
-------
APPENDIX I
PRIORITY POLLUTANT DATA
-------
NEW YORK CITY DEPARTMENT OF IVIRONMENTAL PROTECTION
ORGANIC PRIORITY POLLU...NTS - INFLUENT
(va,_ .11 ug/1)
PLANT:
1989 SAMPLING DATE:
VOLATILES
chloromethane <
brornornethane ^
vinyl chloride <
chloroethane <
methylene chloride
acroleln <
acrylonllrlle <
1.1-dlchloroethene <
1.1-dlchloroethane <
trans- 1 .2-dtahloroethene <
chloroform
i.2-dlchtoroethane <
1 ,1 .1 -trlchloroethane
carbon tetrachlorlde <
bromodlchloromethane <
l.2-dlchloropropane <
cls-1.3-dlchloropropene <
Irtahloroelhene <
dlbromochloromethane <
1.1.2-trlchloroethane <
benzene <
_ ~. . .
trans- 1 ,3-dlchloroprcpene <
2-chloroethyMnvlether <
bromoform <
tetrachloroethene
1.1.2.2-tetrachtoroethane <
toluene
chlorobenzena <
ethylbenzene <
P.R. T.I. N.C.
8/31 8/31 8/31
: 2 <
: 2 <
: 2 <
: 2 <
17
: 10 <
: 10 <
: 2 <
: 2 <
: 2 <
12
: 2 <
2 <
: 2 <
: 2 <
: 2 <
: 2 <
: 2 <
: 2 <
: 2 <
: 2 <
: 2 <
: 2 <
: 2 <
25
: 2 <
5
: 2 <
: 2
2 <
2 <
2 <
2 <
120
10 <
10 <
2 <
2 <
2
11
2 <
2
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2
2 <
2 <
2 <
17
2 <
12
2 <
2
2 <
2 <
2 <
2 <
11
10 <
10 <
2 <
2 <
6 <
17
2 <
32
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
31
2 <
35
2 <
11
R.H. H.P. O.B. JAMA W.I. ROCK C.I. O.H. 26TH B.B. N.R.
8/31 8/31 8/31 8/31 9/1 9/1 9/1 9/1 9/1 9/1 9/1
2 <
2 <
2 <
2 <
8 <
10 <
10 <
2 <
2 <
1 <
11
2 <
19 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
18
2 <
16
2 <
7 <
2 <
2 <
2 <
2 <
4 <
10 <
10 <
2 <
2 <
2 <
12
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
11
2 <
9 <
2 <
2 <
2 <
2 <
2 <
2 <
4
10 <
10 <
2 <
2 <
2
9
2 <
2
2 <
2 <
2 <
2 <
2
2 <
2 <
2 <
2 <
2 <
2 <
5
2 <
2
2 <
2
2 <
2 <
2 <
2 <
16
10 <
10 <
2 <
2 <
2 <
9
2 <
2
2 <
2 <
2 <
2 <
6 <
2 <
2 <
2 <
2 <
2 <
2 <
40
2 <
16
2 <
4 <
2 <
2 <
2 <
2 <
17
10 <
10 <
2 <
2 <
2
17
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2
58
2 <
35
2 <
2 <
2 <
2 <
2 <
2 <
12
10 <
10 <
2 <
2 <
3
11
2 <
2
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
7 <
6
2 <
5
2 <
2
2 <
2 <
2 <
2 <
7
10 <
10 <
2 <
2 <
4
14
2 <
12 <
2 <
2 <
2 <
2 <
2
2 <
2 <
2 <
2 <
2 <
2 <
67
2 <
9
2 <
8 <
2 <
2 <
2 <
2 <
6
10 <
10 <
2 <
2 <
3
11
2 <
2
2 <
2 <
2 <
2 <
6 <
2 <
2 <
2 <
2 <
2 <
2 <
70
2 <
26
2 <
2 <
2 <
2 <
2 <
2 <
6
10 <
10 <
2 <
2 <
6
11
2 <
7 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
17
2 <
13
2 <
2 <
2 <
2 <
2 <
2 <
7
10 <
10 <
2 <
2 <
4 <
10
2 <
2
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
8
2 <
8
2 <
2 <
2
2
2
2
16
10
10
2
2
2
14
2
7
2
2
2
2
2
2
2
2
2
2
2
30
2
9
2
2
< - Compound analyzed for but not detected, or compound is present but less than the detection limit(DL),
value reported is method detection limit.
Samples Analyzed by: EA Laboratories
Rundate: 04/02/90 Prepared by: Wayne Kuang
-------
NEW YORK CITY DEPARTMENT OF ENVIRONMENTAL PROTECTION
ORGANIC PRIORITY POLLUTANTS - INFLUENT
(value in ug/L)
PLANT:
1989 SAMPLING DATE:
SEMIVOLATILES
n-nlirosodlmethylamlne <
phenol <
blsf.2-chloroethyf)ether <
2-chlorophenol <
1. 3-dlchlorobenzene <
1.4-dlchlorobenzene <
1.2-dlchlorobenzene <
bls(2-chlorolsopropyOelher <
n-nltroso-dl-n-propylamlne <
hexachloroethane <
nitrobenzene <
Isophorone <
2-nltrophanol <
2.4-dlmethylphenol <
bls(2-ch!oroethoxy)methane <
2.4-dlchlorophenol <
1,2.4-lrlchlorobenzene <
naphthalene <
hexachlorobutadlene <
4-chloro-3-methy1phenol <
hexachlorocyclopentadlene <
2.4.6-trtchlorophenol <
2-chloronaphthalene <
dlmelhylphlhalate <
acenaphthylene <
acenaphthene <
2.4-dlnltrophenol <
4-nltrophenol <
P.R.* T.I.' N.C.- R.H.* H.P." O.B.« JAMA" W.I. ROCK C.I. O.H. 26TH B.B. N.R.
8/31 8/31 8/31 8/31 8/31 8/31 8/31 9/1 9/1 9/1 9/1 9/1 9/1 9/1
12 <
4 <
4 <
4 <
4 <
4 <
4 <
4 <
8 <
4 <
8 <
4 <
8 <
4 <
4 <
8 <
4 <
4
8 <
8 <
20 <
12 <
4 <
4 <
4 <
4 <
20 <
20 <
12 <
4 <
4 <
4 <
4 <
4 <
4 <
4
8 <
4 <
8 <
4
8 <
4 <
4 <
8 <
4 <
57
8 <
8 <
20 <
12 <
4 <
4 <
4 <
4 <
20 <
20 <
12 <
<
<
<
<
4 <
13 <
8 <
4 <
8 <
5 <
8 <
4 <
4 <
8 <
2 <
5
8 <
8 <
20 <
12 <
4 <
4 <
4 <
4 <
20 <
20 <
12 <
490 <
4 <
4 <
4 <
4 <
4 <
4 <
8 <
4 <
8 <
4 <
8 <
4 <
4 <
8 <
4 <
12
8 <
8 <
20 <
12 <
4 <
4 <
4 <
4 <
20 <
20 <
12 <
4 <
4 <
4 <
4 <
4 <
4 <
4 <
8 <
4 <
8 <
4 <
8 <
4 <
4 <
8 <
4 <
6 <
8 <
8 <
20 <
12 <
4 <
4 <
4 <
4 <
20 <
20 <
12 <
4 <
4 <
4 <
4 <
4 <
4 <
4 <
8 <
4 <
8 <
4 <
8 <
4 <
4 <
8 <
4 <
4
8 <
8 <
20 <
12 <
4 <
4 <
4 <
4 <
20 <
20 <
12 <
4 <
4 <
4 <
4 <
4 <
4 <
4 <
8 <
4 <
8 <
4 <
8 <
4 <
4 <
8 <
4 <
12 <
8 <
8 <
20 <
12 <
4 <
4 <
4 <
4 <
20 <
20 <
6 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
4 <
. 2 <
4 <
2 <
4 <
2 <
2 <
4 <
2 <
2 <
4 <
4 <
10 <
6 <
2 <
2 <
2 <
2 <
10 <
10 <
6 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
4 <
2 <
4 <
2 <
4 <
2 <
2 <
4 <
2 <
2 <
4 <
4 <
10 <
6 <
2 <
2 <
2 <
2 <
10 <
10 <
6 <
2
2 <
2 <
2 <
2 <
2 <
2 <
4 <
2 <
4 <
2 <
4 <
2 <
2 <
4 <
2 <
2 <
4 <
4 <
10 <
6 <
2 <
2 <
2 <
2 <
10 <
10 <
6 <
8 <
2 <
2 <
2 <
2 <
2 <
2 <
4 <
2 <
4 <
2 <
4 <
2 <
2 <
4 <
2 <
2 <
4 <
4 <
10 <
6 <
2 <
2 <
2 <
2 <
10 <
10 <
6 <
2
2 <
2 <
2 <
2 <
2
2 <
4 <
2 <
4 <
2 <
4 <
2 <
2 <
4 <
2 <
2
4 <
4 <
10 <
6 <
2 <
2 <
2 <
2 <
10 <
10 <
6 <
11 <
2 <
2 <
2 <
2 <
22 <
2 <
4 <
2 <
4 <
2 <
4 <
2 <
2 <
4 <
2
3
4 <
4 <
10 <
6 <
2 <
2 <
2 <
2 <
10 <
10 <
6
2
2
2
2
2
2
2
4
2
4
2
4
2
2
4
2
6
4
4
10
6
2
2
2
2
10
10
• - Samples were diluted to 1/2, and detection limits for these samples are two times of the standard detection limit.
< - Compound analyzed for but not detected, or compound Is present but less than the detection llmit(Dl),
value reported Is method detection limit.
Samples Analyzed by: EA Laboratories
Rundate: 04/02/90 Prepared by: Wayne Kuang
-------
NEW YORK CUT DEPARTMENT OF /IRONMENTAL PROTECTION
ORGANIC PRIORITY POLLUTANTS - INFLUENT
PLANT:
1989 SAMPLING DATE:
P.R."
801
T.I.-
N.C.*
8/31
R.H.'
8/31
H.P.' O.B.' JAMA4
8/31 801 8/31
W.I. ROCK
9/1 9/1
(value In ug/L)
C.I. O.H. 26TH
9/1 9/1 9/1
B.B.
9/1
N.R.
9/1
SEMIVOLATILESf continued 1
2.4-dinltrotoiuene
2.6-dlnltrotoluene
dlethylphthalate
4-chlorophenyl-phenylether
ttuorene
4.6-dlnltro-2-methytphenol
n-nltrosodlphenylamlne
4-bromophenyl— phenylether
hexachlrobenzene
pentachtorophenol
Dhenanthrene «
anthracene
dl-n-butyl phthalate
fluoranthene <
benzldlne •
pyrene «
butylbenzylphthalate «
3.3'-dlchlorobenzldlne •
benzo(a)anthracene «
bls(2-ethylhexyl)phthalate «
chrysene •«
dl-n-octyl phthalate <
benro(b)fluoranthen0 4
benzo(k)fluoranlhene 4
benro(a)pyrene 4
lndeno(1.2.3-cd)pyren« <
dlbenzo(a.h)anthracene 4
benzo(o.h.0perylene 4
< 20
< 20
< 2
< 8
< 4
< 20
< 40 .
< 12 •
< 8
< 20 •
C 4
e 4
C . 4
C 4 «
C 200 «
C 4 «
e B <
c 20 <
c 8 4
e 26 4
e 8 4
C 4 4
C 8 4
c 8 4
C 12 4
: 20 4
: 20 4
: 20 4
< 20
< 20
< 4
< 8
< 4
< 20
< 40 •
< 12 «
c 8 •
C 20 •
c 4
c 4
C 4
C 4
c 200 •
C 4
e 8
e 20 -
c 8
e 26
: 8 4
: 3 4
: 8 4
: 8 4
: 12 4
: 20 4
: 20 4
: 20 4
< 20
< 20
6
< 8
C 4
< 20
< 40
c 12
c 8
c 20
e 4
c 4
8
c 4
e 200
e 4
c 8
e 20
c 8
40
e 8
C 4
c 8
c 8
: 12
: 20
: 20
: 20
< 20 «
< 20 «
< 2 «
< 8 «
4 «
< 20 '
< 40 -
< 12 4
< 8 4
< 20 4
8 4
< 4 4
8
< 4 <
< 200 <
< 4 4
< 'a 4
< 20 4
< 8 4
< 30 <
< 8 <
< 4 <
< 8 <
< 8 <
< 12 <
< 20 <
< 20 <
<" 20 <
e 20 <
c 20 <
C 4 <
e 3 <
C 4 <
C 20 <
c 40 <
c 12 <
e B <
: 20 <
: 2 <
: 4 <
4 <
: 4 <
: 200 <
: 4 <
: 4 <
: 20 <
: 8 <
: 25 <
: 8 <
: 2 <
: 8 <
: 8 <
12 <
20 <
20 <
20 <
20 <
20 <
4
B <
4
20 <
40 <
12 <
8 <
20 <
4
4 <
4 <
4 <
200 <
4 <
8 <
20 <
8 <
13 <
8 <
2 <
8 <
8 <
12 <
20 <
20 <
20 <
20 <
20 <
4 <
8 <
S <
20 <
40 <
12 <
B <
20 <
8 <
4 <
4 <
4 <
200 <
4 <
5 <
20 <
8 <
31 <
8 <
4 <
B <
8 <
12 <
20 <
20 <
20 <
10 <
10 <
2 <
4 <
2 <
10 <
20 <
6 <
4 <
10 <
2 <
2 <
2 <
2 <
100 <
2 <
4 <
10 <
4 <
13 <
4 <
4 <
4 <
4 <
. 6 <
10 <
10 <
10 <
10 <
10 <
2 <
4 <
2 <
10 <
20 <
6 <
4 <
10 <
2 <
2 <
2 <
2 <
100 <
2 <
4 <
10 <
4 <
6 <
4 <
4 <
4 <
4 <
6 <
10 <
10 <
10 <
10 <
10 <
2 <
4 <
2 <
10 <
20 <
6 <
4 <
10 <
2 <
2 <
2 <
2 <
100 <
2 <
4 <
10 <
4 <
20
4 <
4 <
4 <
4 <
6 <
10 <
10 <
10 <
10 <
10 <
2 <
4 <
2 <
10 <
20 <
6 <
4 <
10 <
2 <
2 <
2 <
2 <
100 <
2 <
3 <
10 <
4 <
21
4 <
4 <
4 <
4 <
6 <
10 <
10 <
10 <
10 <
10 <
2
4 <
2 <
10 <
20 <
6 <
4 <
10 <
2 <
2 <
2 <
2 <
100 <
2 <
4 <
10 <
4 <
46 <
4 <
4 <
4 <
4 <
6 <
10 <
10 <
10 <
10 <
10 <
3 <
4 <
2 <
10 <
20 <
6 <
4 <
10 <
2 <
2 <
2 <
2 <
100 <
2 <
4 <
10 <
4 <
16 <
4 <
4 <
4 <
4 <
6 <
10 <
10 <
10 <
10
10
2
4
2
10
20
6
4
10
2
2
2
2
100
2
4
10
4
13
4
4
4
4
6
10
10
10
• - Samples were diluted to 1/2. and detection limits for these samples are two times ol the standard detection limit.
< - Compound analyzed for but not detected, or compound Is present but less than the detection llmlt(DL).
value reported is method detection limit.
Samples Analyzed by: EA Laboratories
Rundate: 04/02/90 Prepared by: Wayne Kuang
-------
NEW YORK CITY DEPARTMENT OF ENVIRONMENTAL PROTECTION
ORGANIC PRIORITY POLLUTANTS - INFLUENT
PLANT:
1989 SAMPLING DATE:
PESTICIDES
alpha-BHC
beta-BHC
delta-BHC
gamma-BHC (llndane)
heptachlor
aldrln
heptachlor epoxlde
endosulfan 1
dleidrln
4.4--DDE
endrln
endosulfan II
4.4--DDD
endosulfan sulfale
4.4'-DDT
endrln aldehyde
alpha chlordane
gamma chlordane
loxaphene
aroclor-1016
aroclor-1221
aroclor-1232
aroclor-1242
aroclor-1248
aroclor-1254
aroclor-1260
2.3.7.8-TCDO(npA)
P.R.
8/31
< 0.015 <
0.040
< 0.045 <
0.029 <
< 0.015 <
< 0.020 <
< 0.42 <
< 0.07 <
< 0.01 <
< 0.02 <
< 0.03 <
< 0.02 <
< 0.055 <
< 0.33 <
< 0.06 <
< 0.12 <
< 0.07 <
< 0.07 <
< 1.2 <
< 0.33 <
< 0.33 <
< 0.33 <
< 0.33 <
< 0.33 <
< 0.33 <
< 0.33 <
< 2.20 <
T.I.
8/31
f
0.015 <
0.034
0.045 <
0.020
0.015 <
0.020 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.055 <
0.33 <
0.08 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
1.50 <
N.C.
8/31
0.015 <
0.064 <
0.045 <
0.037
0.015 <
0.020 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.055 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
1.60 <
R.H.
8/31
0.015 <
0.030
0.045 <
0.020
0.015 <
0.020 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.055 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
7.30 <
H.P.
8/31
0.015 <
0.056 <
0.045 <
0.035 <
0.015 <
0.020 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.055 <
0.33 <
.0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
10.50 <
O.B.
8/31
0.015 <
0.030
0.045 <
0.020 <
0.015 <
0.020 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.055 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.59 <
JAMA
8/31
0.015 <
0.068
0.045 <
0.020 <
0.015 <
0.020 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.055 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
1.10 <
W.I. ROCK
9/1 9/1
0.015 <
0.130 <
0.045 <
0.020
0.015 <
0.020 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.055 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
1.10 <
0.015 <
0.030
0.045 <
0.090 <
0.015 <
0.020 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.055 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
1.20 <
C.I.
9/1
0.015 <
0.078
0.045 <
0.020 <
0.015 <
0.020 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.055 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0^33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
3.10 <
O.H.
9/1
0.015 <
0.073
0.045 <
0.020
0.015 <
0.020 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.055 <
0.33 <
0.08 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
2.40 <
(value In ug/L)
26TH
9/1
0.015 <
0.050
0.045 <
0.048
0.015 <
0.020 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.055
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.68 <
B.B.
9/1
0.015 <
0.042 <
0.045 <
0.035 <
0.015 <
0.020 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.057 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
2.40 <
N.R.
9/1
0.015
0.030
0.045
0.020
0.015
0.020
0.42
0.07
0.01
0.02
0.03
0.02
0.055
0.33
0.06
0.12
0.07
0.07
1.2
0.33
0.33
0.33
0.33
0.33
0.33
0.33
4.20
< - Compound analyzed for but not detected, or compound Is present but less than the detection limit(DL),
value reported Is method detection limit.
Samples Analyzed by: EA Laboratories
Rundate: 04/02/90 Prepared by: Wayne Kuang
-------
NEW YORK CITY DEPARTMENT f WIRONMENTAL PROTECTION
ORGANIC PRIORITY POLLU .^NTS - EFFLUENT
(value In ug/L)
PLANT:
1989 SAMPLING DATE:
VOLATILES
chloromethane <
bromomethane <
vinyl chloride <
chloroethane <
methylene chloride
acroleln <
acrytonltrfle <
1.1-dichloroethene <
1.1-dtehloroethane <
trans- 1.2-dtehloroethene <
chloroform
1.2-dlchloroethane <
1,1.1-trlchloroethane <
carbon tetrachlorWe <
bromodlchtoromethane
1.2-dtehloropropane <
cis-i.3-dtehlorapropene <
trtehloroethene <
dlbromochlorom ethane
1.1.2-trlchloroethane <
benzene . <
irans-1. 3-dtehloropropene <
2-chloroethyMnylelher <
brornoform
telrachloroethene '<
1.1.2.2-tetrachloroethane <
toluene <
chlorobenzene <
ethylbenzene <
P.R. T.I. N.C.
8/31 8/31 8/31
: 2 <
: 2 <
: 2 <
: 2 <
10
: 10 <
: 10 <
: 2 <
2 <
: 2 <
3
: 2 <
: 2 <
: 2 <
3 <
: 2 <
: 2 <
: 2 <
4 <
: 2 <
2 <
: 2 <
2 <
3 <
2
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
25
10 <
10 <
2 <
2 <
2 <
4
2 <
2
2 <
2 <
2 <
2 <
2
2 <
2 <
2 <
2 <
2 <
2 <
3
2 <
2
2 <
2 <
2 <
2 <
2 <
2 <
21
10 <
10 <
2 <
2 <
2 <
12
2 <
5
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2
8
2 <
14
2 <
2
R.H. H.P. O.B. JAMA W.I. ROCK C.I. O.H. 26TH B.B. N.R.
8/31 8/31 8/31 8/31 9/1 9/1 9/1 9/1 9/1 9/1 9/1
2 <
2 <
2 <
2 <
8 <
10 <
10 <
2 <
2 <
2 <
8
2 <
57 <
2 <
2 <
2 <
2 <
1 <
2 <
2 <
2 <
2 <
2 <
3 <
15
2 <
6 <
2 <
2 <
2 <
2 <
2 <
2 <
3 <
10 <
10 <
2 <
2 <
2 <
6
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
3 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
3
10 <
10 <
2 <
2 <
2 <
5
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
1
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
5
10 <
10 <
2 <
2 <
2 <
4
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
7
2 <
2
2 <
2 <
2 <
2 <
2 <
2 <
6
10 <
10 <
2 <
2 <
. 2 <
9
2 <
2 <
2 <
2
2 <
2 <
2 <
2
2 <
2 <
2 <
2 <
2
5 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
12
10 <
10 <
2 <
2 <
2
4
2 <
2 <
2 <
3 <
2 <
2 <
2 <
15 <
2 <
2 <
2 <
2 <
84 <
2 -
2 <
2
2 <
2 <
2 <
2 <
2 <
2 <
7
10 <
10 <
2 <
2 <
2 <
9
2 <
2 <
2 <
2 <
2 <
2 <
2
2 <
2 <
2 <
2 <
2 <
2 <
11
2 <
4
2 <
2 <
2 <
2 <
2 <
2 <
10
10 <
10 <
2 <
2 <
1 <
10
2 <
2 <
2 <
2 <
2 <
2 <
.3
2
2 <
2 <
2 <
2 <
2
22
2 <
7 <
2 <
2 <
2 <
2 <
2 <
2 <
7
10 <
10 <
2 <
2 <
2 <
5
2 <
2 <
2 <
2 <
2 <
2 <
3 <
2 <
2 <
2 <
2 <
2 <
3 <
4
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
9
10 <
10 <
2 <
2 <
2 <
4
2 <
2
2 <
2
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
3
2 <
2
2 <
2 <
2
2
2
2
29
10
10
2
2
2
16
2
11
2
3
2
2
2
2
2
2
2
2
2
18
2
12
2
2
< - Compound analyzed for but not detected, or compound Is present but less than the detection limit(DL),
value reported is method detection limit.
Samples Analyzed by: EA Laboratories
Rundate: 04/02/90 Prepared by: Wayne Kuang
-------
NEW YORK CITY DEPARTMENT OF ENVIRONMENTAL PROTECTION
ORGANIC PRIORITY POLLUTANTS - EFFLUENT
(value in ugfl.)
PLANT: P.R. T.I. N.C.
1989 SAMPLING DATE: 8/31 8/31 8/31
SEMIVOLATILES
n-nltrosodlmethylamlne <
phenol <
bis(2-chloroethyl)ether <
2-chlorophenol <
1.3-dlehlorobenzene <
1 ,4-dlchlorobenzene
1.2-dtehlorobenzene <
bis(2-chioroisopropyf)einer <
n-nllroso-dl-n-propylamlne <
hexachloroethane <
nitrobenzene <
Isophorone <
2-nltrophenol <
2.4-dlmethylphenol <
juilhnuirt th _r
2.4-dtehloraphenol <
1,2,4-trlehlorobenzene <
naphthalene <
hexaehlorobutadlene <
4-chloro-3-methylphenol <
hexachlorocyclopentadlene <
2.4.6-trlchlorophenol <
2-chloronaphthalene <
dlmethylphthalate <
acenaphthylene <
acenaphthone <
2.4-dinltrophenol <
8 <
2 <
2 <
2 <
2 <
4 <
2 <
2 <
4 <
2 <
4 <
2 <
4 <
2 <
2^
^
4 <
2 <
2 <
4 <
4 <
10 <
6 <
2 <
2 <
2 <
2 <
10 <
10 <
6 < 6 <
2 < 2
2 < 2 <
2 < 2 <
2 < 2 <
2 < 2 <
2 6 <
2 8 <
4 < 4 <
2 < 2 <
4 < 4 <
2 8 <
4 < 4 <
2 < 2 <
2^ 9 ^
^ A ^
4 < 4 <
2 < 2 <
2 2
4 < 4 <
4 < 4 <
10 < 10 <
6 < 6 <
2 < 2 <
2 < 2 <
2 < 2 <
2 < 2 <
10 < 10 <
10 < 10 <
R.H. H.P. O.B. JAMA W.I. ROCK C.I. O.H. 26TH B.B. N.R.
8/31 8/31 8/31 8/31 9/1 9/1 9/1 9/1 9/1 9/1 9/1
6 <
310 <
2 <
2 <
2 <
2 <
2 <
8 <
4 <
2 <
4 <
2 <
4 <
2 <
2^
^
4 <
2 <
3 <
4 <
4 <
10 <
6 <
2 <
2 <
2 <
2 <
10 <
10 <
< - Compound analyzed for but not detected, or compound Is present
value reported Is method
Samples Analyzed by.
Rundate: 04/02/90
detection
limit.
6 < 6 <
2 < 2 <
2 < 2 <
2 < 2 <
2 < 2 <
2 < 2 <
2 < 2 <
2 < 2 <
4 < 4 <
2 < 2 <
4 < 4 <
2 < 2 <
4 < 4 <
2 < 2 <
2< 2 <
^* & ^*
4 < 4 <
2 < 2 <
2 < 2 <
4 < 4 <
4 < 4 <
10 < 10 <
8 < . 6 <
2 < 2 <
2 < 2 <
2 < 2 <
2 < 2 <
10 < 10 <
10 < 10 <
but less than the
6 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
4 <
2 <
4 <
2 <
4 <
2 <
2 <
4 <
2 <
2 <
4 <
4 <
10 <
6 <
2 <
2 <
2 <
2 <
10 <
10 <
detection
6 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
4 <
2 <
4 <
2 <
4 <
2 <
2 <
4 <
2 <
2 <
4 <
4 <
10 <
6 <
2 <
2 <
2 <
2 <
10 <
10 <
limit(DL),
6 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
4 <
2 <
4 <
2 <
4 <
2 <
2 <
4 <
2 <
2 <
4 <
4 <
10 <
6 <
2 <
2 <
2 <
2 <
10 <
10 <
6 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
4 <
2 <
4 <
2 <
4 <
2 <
2 <
4 <
2 <
2 <
.4 <
4 <
10 <
6 <
2 <
2 <
2 <
2 <
10 <
10 <
6 <
2 <
2 <
2 <
2 <
2 <
2 <
2 <
4 <
2 <
4 <
2 <
4 <
2 <
2 <
4 <
2 <
2 <
4 <
4 <
10 <
6 <
2 <
2 <
2 <
2 <
10 <
10 <
6 <
2 <
2 <
2 <
2 <
2
2
2 <
4 <
2 <
4 <
2 <
4 <
2 <
2 <
4 <
2 <
2 <
4 <
4 <
10 <
6 <
2 <
2 <
2 <
2 <
10 <
10 <
6 < 6
2 < 2
2 < 2
2 < 2
2 < 2
3 < 2
4 < 2
2 < 2
4 < 4
2 < 2
4 < 4
2 < 2
4 < 4
2 < 2
2 < 2
4 < 4
2 < 2
2 < 2
4 < 4
4 < 4
10 < 10
6 < 6
2 < 2
2 < 2
2 < 2
2 < 2
10 < 10
10 < 10
EA Laboratories
Prepared by.
Wayne Kuang
-------
NEW YORK CITY DEPARTMENT OF IVIRONMENTAL PROTECTION
ORGANIC PRIORITY POLLU1~,JTS - EFFLUENT
(va.. ..i ug/L)
PLANT: P.R. T.I. N.C. R.H. H.P.
1989 SAMPLING DATE: 8/31 8/31 8/31 8/31 8/31
SEMIVOLATILES ( continued )
2.4-dlnltrotoluene <
2.6-dlnltrotoluene <
dlelhytphthatate <
4-chlorophenyl-phenylether <
nuorene <
4.6-dlnltro-2-methylphenol <
n-nltrosodlphenylamlne <
4-bromophenyl-phenylether <
hexachlrobenzene <
pentachlorophenol <
phenanthrene <
anthracene <
dl-n-butyl phlhalale <
fluoranthene <
benzldlne <
pyrene <
butylbenzylphthalate <
3.3'-dlcnlorobenzldlne <
benzo(a}anthracene <
bis(2-ethythexyt)phihalate <
chrysene <
dl-n-octyl phthalate <
benzo(b)nuoranlhene <
benzo(k)nuoranthene <
benzo(a)pyrene <
Indeno0.2.3-cd)pyrene <
dlbenzo(a.h)anthracene <
benzo(g.h.l)perylene <
10 < 10 <
10 < 10 <
2 < 2
4 < 4 <
2 < 2 <
10 < 10 <
20 < 20 <
6 < 6 <
4 < 4 <
10 < 10 <
2 < 2 <
2 < 2 <
2 < 2
2 < 2 <
100 < 100 <
2 < 2 <
4 < 4 <
10 < 10 <
4 < 4 <
2 < 3 <
4 < 4 <
4 < 4 <
4 < 4 <
4 < 4 <
e < e <
10 < 10 <
10 < 10 <
10 < 10 <
10 <
10 <
3 <
4 <
2 <
10 <
20 <
6 <
4 <
10 <
2 <
2 <
4
2 <
100 <
2 <
4 <
10 <
4 <
14 <
4 <
2 <
4 <
4 <
6 <
10 <
10 <
10 <
< - Compound analyzed for but not detected, or compound
value reported is method
Samples Analyzed by:
Rundate: 04/02/90
detection limit.
10 < 10 <
10 < 10 <
2 < 2 <
4 < 4 <
2 < 2 <
10 < 10 <
20 < 20 <
6 < 6 <
4 < 4 <
10 < 10 <
2 < 2 <
2 < 2 <
3 < 2 <
2 < 2 <
100 < 100 <
2 < 2 <
4 < 4 <
10 < 10 <
4 < 4 <
17 < 3 <
4 < 4 <
2 < 4 <
4 < 4 <
4 < 4 <
6 < 6 <
10 < 10 <
10 < 10 <
10 < 10 <
O.B. JAMA W.I. ROCK
8/31 8/31 9/1 9/1
10 <
10 <
2 <
4 <
2 <
10 <
20 <
6 <
4 <
10 <
2 <
2 <
2 <
2 <
100 <
2 <
4 <
10 <
4 <
20 <
4 <
4 <
4 <
4 <
6 <
10 <
10 <
10 <
is present but less than the
10 < '
10 <
2 <
4 <
2 <
10 <
20 <
6 <
4 <
10 <
2 <
2 <
2 <
2 <
100 <
2 <
4 <
10 <
4 <
3 <
4 <
4 <
4 <
4 <
6 <
10 <
10 <
10 <
detection
10 <
10 <
2 <
4 <
2 <
10 <
20 <
6 <
4 <
10 <
2 <
2 <
2 <
2 <
100 <
2 <
4 <
10 <
4 <
20 <
4 <
4 <
4 <
4 <
6 <
10 <
10 <
10 <
limit(DL).
10 <
10 <
2
4 <
2 <
10 <
20 <
6 <
4 <
10 <
2
2 <
2
2 <
100 <
2 <
4 <
10 <
4 <
7
4 <
4 <
4 <
4 <
6 <
10 <
10 <
10 <
C.I. O.H. 26TH B.B. N.R.
9/1 9/1 9/1 9/1 9/1
10 <
10 <
2 <
4 <
2 <
10 <
20 <
6 <
4 <
10 <
3 <
2 <
3 <
2 <
100 <
2 <
2 <
10 <
4 <
22 <
4 <
4 <
4 <
4 <
6 <
10 <
10 <
10 <
10 <
10 <
2 <
4 <
2 <
10 <
20 <
6 <
4 <
10 <
2 <
2 <
2 <
2 <
100 <
2 <
4 <
10 <
4 <
11 <
4 <
4 <
4 <
4 <
6 <
10 <
10 <
10 <
10 <
10 <
2 <
4 <
2 <
10 <
20 <
6 <
4 <
10 <
2 <
2 <
2 <
2 <
100 <
2 <
4 <
10 <
4 <
3 <
4 <
4 <
4 <
4 <
6 <
10 <
10 <
10 <
10 < 10
10 < 10
2 < 2
4 < 4
2 < 2
10 < 10
20 < 20
6 < 6
4 < 4
10 < 10
2 < 2
2 < 2
2 < 2
2 < 2
100 < 100
2 < 2
4 < 4
10 < 10
< 4
< 16
< 4
< 4
< 4
< 4
6 < 6
10 < 10
10 < 10
10 < 10
EA Laboratories
Prepared by:
Wayne Kuang
-------
NEW YORK CITY DEPARTMENT OF ENVIRONMENTAL PROTECTION
ORGANIC PRIORITY POLLUTANTS - EFFLUENT
(value in ug/L)
PLANT:
1989 SAMPLING DATE:
PESTICIDES
alpha-BHC
bela-BHC
delta-BHC
gamma-BHC (llndane)
heptachlor
atdrln
heptachlor epoxlde
endosulfan 1
dleldrln
4.4--DDE
endrln
endosulfan II
4.4--DOD
endosulfan sulfate
4.4--DDT
endrln aldehyde
alpha chlordane
gamma chlordane
toxapnene
aroclor-1016
aroclor-1221
aroclor-1232
aroclor-1242
aroclor-1248
aroclor-1254
aroclor-1260
2.3.7.8-TCDD(npA.)
P.R.
8/31
< 0.015 <
0.073 <
< 0.045 <
0.044 <
< 0.015 <
< 0.02 <
< 0.42 <
< 0.07 <
< 0.01 <
< 0.02 <
< 0.03 <
< 0.02 <
< 0.06 <
< 0.33 <
< 0.06 <
< 0.12 <
< 0.07 <
< 0.07 <
< 1.2 <
< 0.33 <
< 0.33 <
< 0.33 <
< 0.33 <
< 0.33 <
< 0.33 <
< 0.33 <
< 0.98 <
T.I.
B/31
0.015 <
0.030
0.045 <
0.020 <
0.015 <
0.02 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.06 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.81 <
N.C.
8/31
0.015 <
0.051 <
0.045 <
0.020 <
0.015 <
0.02 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.06 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
1.40 <
R.H.
8/31
0.015 <
0.030 <
0.045 <
0.020
0.015 <
0.02 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.06 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.81 <
H.P.
8/31
0.015 <
0.030 <
0.045 <
0.027 <
0.015 <
0.02 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.06 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.83 <
O.B. JAMA
8/31 8/31
0.015 <
0.030 <
0.045 <
0.020 <
0.015 <
0.02 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.06 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.52 <
0.015 <
0.030 <
0.045 <
0.020
0.015 <
0.02 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.06 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.43 <
W.I. ROCK
9/1 9/1
0.015 <
0.030 <
0.045 <
0.050
0.015 <
0.02 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.06 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
1.00 <
0.015 <
0.030 <
0.045 <
0.120
0.015 <
0.02 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.06 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.38 <
C.I.
9/1
0.015 <
0.030
0.045 <
0.023 <
0.015 <
0.02 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.06 <
0.33 <
0.06 <•
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
1.90 <
O.H.
9/1
0.015 <
0.073 <
0.045 <
0.020
0.015
0.02 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.06 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.91 <
26TH
9/1
0.015 <
0.030 <
0.045 <
0.064 <
0.093 <
0.02 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.06 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.43 <
B.B.
9/1
0.015 <
0.030 <
0.045 <
0.020 <
0.015 <
0.02 <
0.42 <
0.07 <
0.01 <
0.02 <
0.03 <
0.02 <
0.06 <
0.33 <
0.06 <
0.12 <
0.07 <
0.07 <
1.2 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.33 <
0.73 <
N.R.
9/1
0.015
0.030
0.045
0.020
0.015
0.02
0.42
0.07
0.01
0.02
0.03
0.02
0.06
0.33
0.06
0.12
0.07
0.07
1.2
0.33
0.33
0.33
0.33
0.33
0.33
0.33
2.30
< - Compound analyzed for but not detected, or compound Is present but less than the detection limit(DL),
value reported is method detection limit.
Samples Analyzed by: EA Laboratories
Rundate: 04/02/90 Prepared by: Wayne Kuang
-------
•ioai.ii minr minim nmmiiT
MM* HI
I or 5
1
mry rvtv imi i
trot inn i
BTOl IIHI 1
is UN i i
is itrn i
m inr wni i
m irrr mm i
oiticwn niri i
ouicmw inn i
COD lim 1
a* nni i
IOC IIWI 1
roc itm i
is inri i
is itrn i
05 HIM 1
is itrn i
m nwi i
im run i
NI3 • IIWI I
•u • nm i
IK • Itll 1 1
QBE Hum i
«J» IIWI 1
MM 4 urn i
tot P nw i i
tot 9 itm i
wm i
IWK 1
.,/! 1
IJ.81 1
3K.M 1
?«.TI 1
SM.M 1
.M 1
2?.M i
(».M 1
13. M I
I.M 1
(.M 1
M.M 1
«.«3 1
1313. M 1
UI.M 1
321. M 1
7(.N 1
IKI.M 1
HI«.M 1
Illl M 1
IM1.M 1
31. M 1
2*.N 1
B.HI
11 *» 1
17. M 1
I.M 1
3.11 1
1.1.1
3.17 1
t.n i
JUT 1
im i
i/i i
71. (7 1
3I7.M 1
M.ll 1
lll.M 1
22.311
171 1
(.71 1
tl.Ti 1
l.tl 1
TJJ.MI
IK.M 1
«lt.M 1
lll.M 1
IS2I.M 1
IKI.M 1
IKI.M 1
m.M i
SI.M 1
35.51 1
11.11 1
17. M 1
31.71 1
7.71 1
1.13 1
1.21 1
3.31 1
I.B 1
I1K 1
•I/I 1
73.31 1
3I7.M 1
17. M 1
IM.M 1
fi.M i
1.31 1
(.71 1
II.M 1
l.l( 1
1J1.M 1
IV. M 1
MI.M 1
K.7I 1
im.M i
im.M i
IM1.MI
IIM.M 1
(I.N 1
2..M 1
I1.UI
17.11 1
2I.M 1
(.M 1
Mi 1
I.J7 1
I.M 1
i.n i
MOM t HI T «VM
Mtwwt i ttioiM i i
in« I im i
•I/I 1 «|'l 1
7..3M 71.111
3*3 M 1 2%.M 1
11.31 1 II M 1
SUM 1 3H.M 1
21.111 M.M 1
«. »l 1.31 1
(.711 (.711
(I.M 1 37.M 1
1.711 Mil
IM.M 1 1S3.M 1
IM.M 1 I*.M 1
1 «33.M 1
1 W. W 1
1371. M 1 »«1M 1
III2.W 1 IIN.M 1
IIM.M 1 IIII.M 1
H3.M 1 IK1.M 1
M.lll W.M 1
».U 1 W.7I I
ft. Ill 21.511
n.71 1 yi.ii i
M.M i 21.111
3.M 1 7.M 1
M7 1 2.13 1
I.M 1 3.JI 1
3.37 1 (.«! 1
f.M 1 I.n 1
• •t V
nncri I
11% i
M.B3 1
NI.MI
M.M 1
27VM 1
(Ml 1
8.31 1
(.31 1
«.» 1
l.ir i
7H.M 1
(II.M 1
1
1
IIH.M 1
W.M 1
KI.M 1
B3R.M 1
31.31 1
2131 1
11.21 1
IMI 1
12.71 1
T.N 1
I.M 1
2.X 1
IM 1
2.13 1
mot i .
tm-wi i
IW 1
•l/l 1
IM.M 1
I5S.M 1
tin i
tx.m i
33.M 1
1.11 1
(.31 1
33.211
1.31 1
J71M 1
IK.M 1
1
1
112. M 1
MI.M 1
KI.M 1
(II.M 1
21.MI
11.31 1
M.3I 1
12.311
13.31 1
7.M 1
2.13 1
3.13 1
«.(! 1
1.31 1
jnintr I
IW7 1
•l/l 1
IM.K 1
22I.M 1
21.111
2U.M 1
(I.M 1
Ml 1
(.11 1
S.« 1
I.B 1
7M.M 1
251. M 1
1
- 1
IIII.M 1
M.M 1
I7S.M 1
I2I.M 1
21.51 1
21.31 1
II. M 1
ll« 1
12.71 1
(.11 1
(.11 1
I.M 1
«.7I 1
(.Ml
rtantr i
IW7 1
•l/l i
17.11 1
23MI 1
27.91 1
3I7.M 1
31.21 1
I.N 1
(.31 1
K.M 1
Ml 1
OI.M 1
2V. H 1
2H.M i
13. M 1
I2I1.M 1
137. M 1
173. M 1
MS.M 1
3MI 1
23.71 1
M.31 1
1.71 1
H.II 1
II.M 1
S.13 1
SHI
1.71 1
1.8 1
NMDI 1 1
1117 1
1J.K 1
221. M 1
21. M 1
311 M 1
22.NI
1.711
(.51 1
~ «.3I 1
XWI
I».M 1
JI7.M 1
3K.M 1
H.M 1
I2II.M 1
1II.M 1
- !7Mi 1'
KI.M 1
32.11 1
21. M 1
11. M 1
11.51 1
12.31 1
(.31 1
(.HI
3.31 1
3.11 1
1.17 1
nil 1 i
1117 1
•I/I 1
113 27 1
IMM 1
13 31 1
2«.M 1
17.71 1
131 1
Ml 1
73.21 1
231 1
733 M 1
IK.M 1
- •
- 1
1151. M 1
M.M 1
I'M M 1
W.M 1
IJ.M i
12.11 1
7.17 1
7.17 1
1.13 1
3.13 1
l.» 1
1.33 1
1.11 1
I.M 1
«T
S4>
I/I
83.15 1
Z7«.M 1
27.11 1
3».M 1
71 M 1
1.31 1
1 U 1
17. H 1
«.« 1
H3.M 1
»MI
1
1
1233 M 1
TC.M 1
IM.M 1
113 M 1
33. «l 1
27.311
11.31 1
II 311
17.11 1
INI
I.M 1
2 M 1
< «r i
2.13 1
rtfMiT
-------
rut mot enia,.
mm tat tnmi mini its nmnin
itrnn HBI
IT 3
1
mncn* i
i
wuu uiri i
new am i
mw HTMO inrii
ni«MYM) ami
crraiiH am i
taunt iiwi i
IBUNII am i
cram* uiri i
own* am i
wen* iiwi i
cnciw am i
oiam* iiwi i
iMmii* am i
com* iiwi i
com* am i
ID* IIWI 1
iu» am i
wncsiw iiwi i
•ocsiw ron i
Knurr iiwi i
W.HWT am i
moo. iiwi i
man. am i
WDRSnH IIWI 1
KOIISSIUI
-------
nnnioi onip i>
Rimrt'i i M/I i
i - i i
•
i
i
"
rcii i
Ml* I
Min i
MI« i
i
i
i
i
I.KII i
I.WIM
MUM
1IIK
MMJ
i.«m i
t.wsi i
J.|tl
i.tm i
t.nni
rnu
t.wu i
.,/•
i.nu i
MKt I
Ml I
IHBI
I.7JI
i.nu
t.JI
Mi«n i t tun
i t wm
tt
-------
an TUCK enm »»-.-»
mm rai
uiuitics nmnm
umn
« IT S
• 01 mi» **( UK viiut s
I IWK
I tf/%1
JIIC
I'M
•f/k|
M.T
HOST i srmmci I ICIOKI i NMNKI i vixwrt i jnrinwr i HHIWT i
im i m i UK i mi im i iw i rat i
I win i MT
i .,/t, i
ms I issi
• POT! I VPOII
n«ire i
•«/%» MT wsis
ITIW I
IX. 1MB I III.
tmxn* i in.ami i tu.
f~. own i tnr.MM i me.
i MFAM i •.&*• i t.mmi t.m» i i.iun i i.nni i S.WM i I.IHM i S.WTM i MIM i I.SUM i i.ura i i.
I IIISMII IS.9MNI M.MMI II1UMJ I R1.IM* I IM.MMJ I Tt.tJMI I R.nm I ftl.lNM I IB MM I IM.SMM I |fl (HIM in
I IU.MM I (H.IMI I W.INM I IJI.MM I IM.JMM I KI.IWM I |».Wt« I IU.M*M I
I till.
IRJ.I
jw.i
II 3W.
11 nil.
i un.i
i
I i I?JI.MM
7I.SMM I B.IMM I
i ins3.n«u i inn nm
11 unt
I III3I.MM I IIIM.MM I 131?.MM I INK MM I UK.MM I Snr.
i SKI.MM i run.
I SB.
urn it'll i iw;.)rui
I »K«.
i I7i u. put i UP*
i UK.
I INI.
I «ITJ.
I Z29.MM I laT.MM I IUI.MM I JUXMM
I UK. I
3MI.MM I EM.I
I »T.
»?u
U.1IMJ I JI9u
IS. MM I H.rilM I IM.nrtf I
-------
CTIIIT uiiiinrs nmmin
mitt! *>i
3 IT 1
o
D
"
NOR 1 HI T »»t 1
i MH i JIK i JILT i niui i spirori i mot* i HI
MIHIII 1 UK 1 UK 1 l«ft 1 IWKI mi I'M 1
i n"i ' I'M i *i'*i i I'M i I'M i I'M i •
Utin 1 Mil Ml) Mil Mil Mil Mil
Otomit 1 Mil Ml 1 Mil Mil Mil Mil
linWII 1 Mil Mil Mil Mil MJI Mil
Mil Mil Mil Ml Ml Mil Mil
DINIR 1 Mil Mil Mil Mil Mil Mil
icrtnotm i MII MII Nil Mil Mil wi
ICPIflOin troll MH Ml Ml Mil Ml Ml
• it vnats
wmvi i BEcnvct i jmniv i nnnrr i mow i «
mi m i mi i I 1 IWF WHOM 1 «mi
>i/ki i n/i| miao i dim
Ml Ml Ml 1 ItJt?
Ml Ml Ml M
Ml Ml Ml M
Ml Ml Ml «
Ml Ml Ml M
Ml Ml ID 1 t ni*
Ml Ml Ml t I'irj
c
CO
-------
TABLE 6
HOI INI T IVCRICE VIIUES
IU2.I1 I m.N ! ill."! «»•» '•
'
: coo IIFFI : ?7i.H i III.M i isi.n i "«•"' "'•" ' "'•" ' ""•' '" ' "" „ I":::.:....... :
: - - j—; ; ""•'"; ~_ ; "/"", . , . i - i - i MJ-»« i »».u i
IK IIFFI : «8.ii i
«•-• «•-• i!:!!.:........™.,. ........ ..
^
,» •
....... • ....... "
; - «;:.-;;;;;-T ....... ;:;;-; — ;:»; ........ «i ........ ::«; ........ isi ........ i:»T"""-;:»; ........ ;:». ..»,_..«. ________ «j_!:^ ......... »"! ......... -----I
,....„..„..„......„..,...... ........ ...... ........ ...... ........ -...-; ........ ;;;;-; ........ ;-»-; ;;;;-;---;--; --, ^^ ________ ,„, ........ ,,,, ......... MM ......... «.
•"•- ........ ........ • ........ ~ ........ " ........ ........ ....... " ........ " ........ 1 "
-------
MttllllM.
SUfflMI
HIOMISCI COWIt Ulll UltS M1HURII1 NJCKS Hoi UIKIIII
PME 2 L
TABLE 6
no11 HI
VIIUE 5
i :
: rAcmiEi :
: i
ncra. uvi :
MMH. urn i
it in HINO HVII
mm HTMO IEFFI:
CTMIK IEFFI !
Mscmc nvi :
MStllC ICFFI 1
CAHIlim IIVI !
CURIUM IEFFI !
CM.CIUH 11*1 :
Hitiim IEFFI :
CMDHIIffl 11*1 :
(MOHIUIl IEFFI i
COFFER u«fi :
COPTER IEFFI !
LHO IINFI !
LEAD IEFFI !
WGHlSllffl IIVI :
lUCMSlim IEFF) 1
ICICWT IIVI 1
HKWT IEFFI I
IIOEl IIVI 1
IICIIl IEFFI 1
rOMSSIIffl IINFI 1
IDMSilUN IEFFI 1
SILVER IIVI 1
5ll\TR IEFFI 1
JIM :
ItBI 1
M/I I
7.11 1
I.K4I 1
4.tl 1
I.IJI
l.llll 1
I.II4I 1
I.M54 1
i m> i
l.llll !
43.21 :
51. U 1
i.i4i7 :
1 I7M 1
I.73H :
I.TIM 1
I.Ntt 1
1.1174 1
II.H 1
\9M 1
I.WN 1
I.IN) 1
I.I 731 1
I.I7II 1
73. H 1
:i.n t
i
- '
JOir I
mi i
•i/i i
5.71 1
l.lttl I
Ml 1
I.N 1
I.IKI :
i.nn i
I.IIM i
1.1777 :
i.nn i
si. ii :
ii.Bi :
i.nn :
I.IIH 1
1.4778 1
1.1813 1
nail :
tun :
IMS i
t.U 1
l.llll 1
1.1111 :
I.IUJ 1
1.1719 1
27. M !
7I.M :
i
i
MJGUSI '•! SEF-IERKR 1 KIOIER 1 ROVCRKR 1 KCERKR 1 JUIMRr 1
1987 ; 1187 I mi 1 IW 1 U" 1 IH» 1
M/I 1 •!/! 1 M'l 1 M'l 1 M'l ' M'l 1
l.U !
1. 1141 i
ii. 81 :
I.TI :
rain :
l.in? :
8.N7I 1
r n 13 :
i.nn :
ii.n :
S4.li :
8.8(18 i
rim :
1.4227 !
I.I7R8 1
i.n&! i
I.H» :
11.81 1
11.11 1
i.nn i
i.tn: i
l.lllt 1
8.8773 :
iB.ii i
JV.II 1
i
i
2.7« !
i.iaii i
11.17 i
1.818 1
i.i in i
I.IK7 1
I.IIH 1
i.nu :
1 1121 1
7J.I3 :
ii.n :
1.1578 !
I.IU7 :
1.7785 1
I.81H :
i.ii?} :
i.nt? i
n. u i
ii. si :
I.HII 1
.1111 1
run i
I.H7J 1
II.N 1
11. II 1
mrsi i
MTU! i
i.if i
1.2721 1
11.21 !
l.U 1
I.DH I
•.ins :
I.IIM 1
1.1757 !
I.M5? :
71. ti :
M.It 1
1 1374 1
l.llll i
B.II58 1
i.im i
Mill 1
1.1727 !
ii.}7 :
II.M :
I.IIM 1
l.ltH 1
i.nsi i
i.nn i
31.7* 1
7J.55 1
1
1
1.24 1
I.IJ7I 1
ii.n i
l.U 1
Lira :
I.NBI 1
I.Htl 1
Mill 1
1 IIU 1
ii. a :
71.11 1
I.HI! 1
I.I7II !
I.7BII !
I.1UI 1
1.1571 I
I.IIIS 1
t.ll i
Ml 1
I.IIM 1
l.llll 1
I.MU 1
I.MI3 1
7V.»7 1
12.21 1
1
1
2.22 1
I.27N 1
If 72 1
1.51 1
1.1111 :
I.IIM i
l.lf.8 1
I.I?7I 1
I.IIM :
78 u :
37 11 1
I.IM1 !
run i
B.4'58 1
1.1171 i
I.IMI 1
i.nn i
i N :
i.» i
I.IOII 1
I.III4 !
i.rn i
1.1395 1
]4.l] 1
21.11 1
I.I1U 1
I.II1J 1
j.52 :
I.IIM 1
7.78 !
1.54 1
I.II4I 1
l.llil 1
I.HII 1
1.1273 1
1.1117 1
71. ft !
71.77 !
I.MU 1
i.im i
1.1418 1
1.1114 !
1.1314 1
I.III7 1
1.12 1
4.71 1
i.nti i
i.n22 i
I.IKI 1
l.llll 1
73.18 1
17.11 1
i.nn i
I.II7I 1
FEIUMT 1
Mil 1
l|/l 1
2.11 !
I.IWI 1
ii.4i :
1.13 1
i.nn :
I.H7I 1
I.H33 1
i.im i
I.H3I :
47.31 1
31.13 1
1.1144 !
I.IIH !
i.nn i
1.7841 1
1.1712 !
l.llll 1
i.n t
i.it i
i.nn i
I.HI7 t
•.nil i
1.1874 1
71.22 1
21.11 1
I.III3 1
l.llll 1
MKN 1
1181 1
•I/I 1
1. 17 1
I.K5I 1
i.n i
l.U 1
I.II7I 1
run i
I.H34 1
riui i
1.1117 1
17.41 1
11.11 1
I.ISH 1
run t
i.im i
I.2III !
1.1718 1
1.1172 1
7.17 1
I.II 1
i.nn i
run :
run i
1 1741 1
11.71 1
21.73 1
run i
I.III7 1
inn i
mi i
M/I :
2. 11 1
1.1271 1
11.73 :
i.n i
I.I7N t
I.H47 1
1.11)2 1
l.llll 1
I.W77 !
41.51 1
31.17 !
1.1581 1
I.IIH 1
I.I3U :
1.1314 1
1.1173 !
I.IIH :
II.H 1
II. » 1
run i
run t
I.IIH 1
1.1741 !
14.11 1
17.45 1
1.1174 1
I.H77 1
"—•••---. --
RIT i
nil :
M/I i
7.11 :
run i
1.17 1
i.n :
i.im i
I.H43 1
i.nvi i
1.1147 1
1 H44 !
71.14 :
47.41 1
1.1171 !
I.III7 !
1.4333 i
1.1721 !
1.1771 1
I.III7 1
18.11 1
1.37 1
8.MI7 1
i.nn i
1.1743 1
1.1513 1
11.15 1
31.18 1
1
1
IRIS :
KMNf i
PfilH :
i.Tii :
riri7 :
ii.n :
1.21 1
1. 87571 :
i nni :
I.H177 1
i nin :
i new :
41.44 !
34.14 !
1 14411 !
I nil] :
I.H413 !
I.7III7 :
I.HI71 i
1.11174 1
ii.n i
1.31 1
I.HI7I 1
rum :
ruin i
i mti i
71 13 1
7i.li :
1 11781 1
I.II8I7 1
LKI 1
Rtroii I
nnoD :
:
1.714 1
1
1.1141 1
11.11 1
......'
I.II !
1.11743 !
I
I.IH11 !
.— !
I.IMI :
!
I.H5I7 :
1
1 III4I 1
7i.ti :
31.14 i
... ..)
1.15477 !
I.II171 1
. .....„•
r inn :
I.ITIIS :
1.11717 :
1.13712 1
11.34 1
•
1.41 !
ruin :
i inn i
1.17333 !
1 15111 1
...........|
11.11 1
-•-- |
11 71 1
1
1 11317 1
1.18431 i
1
-------
MIAIHICN. Mil SUKIUir
RIDHISII COWII Ul III I ItS NHHMII1
UFMS Not WU7IMI
ttfl 3 Of 5
TABLE 6
riMic
inoiiiim
IMIIIUII
yuuiwi
VMUlim
nut
n*
IER 1
1
IINFI 1
IfFFI :
IINFI !
IEFFI !
IINFI :
ICFFI !
JM 1 JUf ! MlSUfl 1 SfF-ICRKR 1 OCIDKI 1 RDWMF.I 1 KCIIWER 1 JWIMRT 1 FEIUMY 1 MIDI 1 Will 1 RM
in? i in; t in; i inr i in; i in; i in; i mi i im i im i r*i i im
M/| t M/l ! •f/l 1 M'l ! H'l ' •»" ' I'l ' M'l ! M'l 1 ll'l 1 H'l i M'l
1 - ! - ! » 1 - ! - I - 1 - 1 - 1 - 1 - 1
.: - : - i n i - i - i - i - .' - i - i • ' •
i.iui i i.iu; : i.iir; i i.nu : i.iiu i i.n<) i i.i(77 1 run i I.IIH t i.ini i i.iw i i.iui
I.UI7 i i.nn i i.nn : I.MU : i.n?7 : I.IMI : i.iiii i t.mi i I.IIN i I.NTI i i.iui : i "«
2.ti : 2.» i 7.7i : i.nn i J.M : i.«7 i i.n i 2.1? i 7.n i !.ti : I.M : 2.17
1.21 i i.n t i.8i : i.tiii : i.n i i.n i i." : i.7? : 1.21 i i.tt i 1.21 i 1.21
THIS t LIST t
HPORt ! IEPOR1 !
KII08 1 KIIOI t
: - !
: : -
i I.IU7I : I.IM2J :
! I.HIfl 1 I.INtt i
1 1.3" ! J.IH !
1 1.17! ! I.5U !
-------
MtlTIIUl UIUMRI RIBMESfl tlW»IT IIIIIIIUS MHMUM RJPDIS Rat WMJII4I PMf 4 Ov _. ..
... .•„ TABLE 6
R 0 R F N I I * V t R • 6 I V . I U I S , tlMVI ,«„,„
SBM : JI«E : Jiii i worst ; simmi : ICIOMI : MMHKR i KCCHICR i JMWUT i return i MUCH i DPRII i HAT : THIS • i«i
l»> I 1987 I 1987 ! 1917 ! 1987 I 1917 I 1987 I 1918 I 1918 I 1988 I 1981 I 1988 ! RUOftl ! tlPORI I
<«r, kit MI : *f/if : *|/i| i »4/i| : *f/k| i cf/if i ^i^ i *q/t| i «|/t| : *)/t| i i|/i| i ^/ii j ^/i, • win : PIRIOI :
MSIRIC ! 18.71818 ! 7.31IN ! !.514*1 I 7.I38H ! t.Mtt i 4.14118 I 8.87188 I 7.I5IH I 3.K8H I II.I8III I I4.77in I 9.31711 I 7.71157 i 1.11133 I
CUIIIWI I 717.4I1N ! I7I.I1III I M.3JIII ! 37.KIH I 4I.141H I 31.89111 I 35.4MN I I4.IIMI ! lll.37in I I37.l9tn I I5.7n*8 I 77.11771 I 88.13411 : 131.17717 i
cmmiui: m.mn i 141.141111 114.37118: 147. inn: 174.711111 III.IBIII : I?MSIM i 34.3nn i m.iisn : 177.8(8111 ni.sun: ».n:n: 119.13119: 181.13417:
ton>H : 1(78.inn i mi.iiiM i Tws.iiin : 7iN.iun : 7(i4.nm i 7773.11111 i 2?79.s7in i i9)4.4rm i 33i7.34in i 4ii3.itm i iin.i;m i 7144.311441 1147.41(13 : 1741.11931 i
UU : I48.INH ! 171.74181 I I17.IIIII ! 777.85811 ! 131.11888 I 741.19888 I I41.378H I 11.19m I 7I7.7IIH I 134.47in I 38I.7IIH I 189.98737 ! i»!iiiij i lin.WU I
RfRtni : i.ism : i.mn i 7.11111: i.iim i 1.1 .74111 i i.4»n : 7.nm i 7.(Tin i i.inn i 1.11518 : i.7tin i 7.11147 : 7.1(377 :
man. i i47.inn i n.43in : n.iim : 77.«in i 73.inn i (i.iim i ivism i ».;nn i 47. inn i n.inn "i ""ij'isiii: 4i!]mi i"~ H.tim i ii'mii 1
(IK : mi.inu : 7i8i.3im : ni4.97in : 7174.TMII i 4in.i7in i 4113.31111 i i747.mn i iiii.tim i 4i(4.4(in i 7iM.»m i 47it.7im : 4371.714471 4119.31111:"'iiuitiiu !
IOI«l-l : 477?7.73in I 3I797.4HH ! 47l74.71in ! 41977.47IM ! 33314.Km ! 44711.44*11 I 4ir7t.781U ! 43177.15m I 47387.7HI1 I 47I71.798H I 39744.3HH I 3(747.mii i 387ir 74773 :44I44!74111 !
RHH I 74l4.4lln I 7l84.7lin : H77.478N I 478l.inn I 4B18.7I8H I 4987.14881 ! 3111.87111 ! 4717.1 (in I 4739.11111 I 49I7.S9IH I HI7.9lin i 4798.37311 I 4571.15541 : 1979.77431 i
ion ! iin.inii i 4ii.mii i in.sun : 131.inn i 411.171111 711.141111 147.99111: 737.9nn : 744.491111 i;7.tnn i (4?.7iin i 399.71147: 479.3(473: 474.74913:
811 MO REKC I 47114.15m I 79884.1lin I 71771.7nn ! Ill9l.inn : 14171.13m ! 44741.14m ! KI44.94IH I 74I73.34MI ! 1774I.49III ! 79l(9.Nin ! 78474.39111 ! 11489.71948 : 79871.11177 ! 11333.79144 :
ncRois: n.Kin : ]7.7iin : 44.381N: 77.nm : 74.19111: 74.mn : 71.1111* : n.iim i n.urn i 77.391181 77.191*11 71.11141: 71.45399 i ?4J99(8 i
PHOSPHOROUS : 7378.7iin ! ((I3.77in I 7777.73111 I 4444 R4III i 1257.49in ! 3711.mil I 4317.99118 ! 4I99.II8H ! 1341.inn I J4I7.79111 I 77ll.44in ! 7719.11411 "• 1941 H442 1 Jiiii'Iim !
CMCIIM ! 7(173.71111 I 7353l.97in I 38771.19808 : 4MI7.IIII8 ! SMH.IHn ! 37748.4 ! 49577.9nn ! 7473l.3lin : 41144.44888 I 7H77.478H I 79l44.ll8n I 17473.81548 ! 44m!47399 • Wlivmli !
RKMSIUI ! 1191.718881 7979.77111: 1271.48818 I ini.lim ! 74II.I7IH ! ?IJ7.«ni ! 7131.74IH ! 773I.47MI ! 7474.II8H ! 7713.11818 I 7494.Hin ! 7817.71583! 27(9.17174! 1779.91157:
POIUSIUI : nn.838ii i TSU.IUH : 7191.19111 : 7177.77111 : 7911.tun : 7319.11111: 1747.99111: 7711.inn i 1444.411111 iin.iim i 2117.77111: 7417.81111 i 747^3133! im! 17483 i
CWilDt I I1I.37H8 ! 797.9llfl ! 37l.ini8 : 171.87118 ! 74I.I4IM i 371.mil ! 789.4lin I 4(7.17111 I 737.11111 I 711.73111 I 271.44111 ! 214.717(1 ! 178.73787 I 418.717(7 !
-------
•MM.IIIIM MIA SIOTIM1
imimi uiumis
NJIDI& *oi
PAGt 5 Of S
TABLE 6
SOAR !
Mr* k«iO : t
umii :
CMMtM 1
DICIMII !
on :
tiNii :
KPIKK.OR :
HEPtAotoi-Eroi :
IIIDAK !
Kimncnoi :
mifi :
pert ;
rp-tK :
W-IOE i
lOftPHEK !
JME 1
itii i
• t
"I
n i
ID 1
ID 1
n :
n :
n :
ii i
it :
n :
n :
m :
n i
JIM : »
,/t, : •
»:
n :
m :
no :
n :
W !
ID !
ID :
m :
n ;
ID :
ID ;
n :
ID 1
ucusi : str
m) :
,/i, : •
n :
n :
MO !
m :
ND :
ID !
n :
m :
n :
no :
m :
m :
m :
ID :
1 01 1 Ml
IIIKI ! DC
mr i
ID :
ID :
ID :
ID :
n i
» !
n :
n i
n i
m :
•i :
m :
IB 1
n :
IDIII 1 ID
IW 1
4/1, 1 1
ID 1
ID :
ID :
m i
ID 1
m i
10 :
• i
10 i
in i
n i
NO 1
n i
ID:
VfMIH ! DE
l«7 1
,/t, : *
ID 1
n i
n i
m i
n :
n i
Ml 1
• :
n t
n i
n i
n i
ID :
m :
tCNEI ! JAI
KIT 1
l«l 1 •
n :
MO 1
ID I
n i
It !
it i
n i
n :
Mt 1
HI 1
ID :
Ml !
«
« 1
WAIT 1 FEIINIT I II
mi i ITII :
i/t, : •,"! i •
• II 1 It !
MO 1 It 1
m : n i
n : it :
n : ID ;
m : . it :
ND : n :
• i n i
• : n :
• i n i
m : n :
no : MI i
n : m i
no : n :
MCH 1 «
IV8I 1
,/t, : *
n :
• :
n :
it :
ID 1
n :
ID 1
• i
n i
n :
n i
• i
• :
.:
ran :
mo i
m ;
n :
ID :
ID :
n :
it :
»:
n i
n :
it :
it :
n ;
IB 1
n :
:
in i
im : M
,/t, ; n
It !
n :
MI :
MI :
MI :
MI :
n :
MI :
n :
Ml i
n :
n ;
it ;
n :
VEMIT tVEUCt !
us : IASI
rwi : won
IIOI t PEIIOt
MO : n
• : MI
MI : •
Ml 1 Mt
MD ! Ml
Mt : Ml
MD : Ml i
Ml ! • !
ii : ID :
i
» : n :
*i ! n
••»_•«-
it : a
it : n
n : n
-------
|