EPA 904/9-76-017
FINGER-FILL CANAL STUDIES
FLORIDA AND NORTH CAROLINA
MAY 1975
ul
o
%
UNITED STATES
ENVIRONMENTAL PROTECTION AGENCY
SURVEILLANCE AND ANALYSIS DIVISION
COULCOC STATION ROAD
ATHENS, GEORGIA 3O6O1
-------
ENVIRONMENTAL PROTECTS 3N AGENCY
r;:.%aicN iv
SURVEILLANCE AND ANALYSiS DIVISION
ATHENS, GEORGIA 30501
March 16, 1977
Dear Addressees:
Enclosed is a copy of an Environmental Protection Agency staff report
entitled "Finger-Fill Canal Studies, Florida and North Carolina, May
1975."
Because of an extensive review period, publication of the report met
with considerable delay. I sincerely regret this delay and ask your
understanding in this matter.
In reading the document, you will note that no attempt was made to
establish the reported recommendations in the context of either, agency
or regional guidelines. I am confident, however, that the document
will yield much-needed baseline information for evaluating conditions
of water quality associated with existing and planned finger-fill
canals.
Sincerely,
James H. Finger, Director
Surveillance & Analysis Division
Enclosure
-------
FINGER - FILL CANAL STUDIES
FLORIDA and NORTH CAROLINA
May 1975
U. S. Environmental Protection Agency
Surveillance and Analysis Division
Athens, Georgia
-------
FOREWORD
The Environmental Protection Agency is committed to an aggressive
program of both water quality and wetland protection. Maintaining wet-
land integrity is a principal consideration in EPA's review of the planning
and potential construction in coastal areas. This document reports the
experience of EPA, Region IV, regarding the physical, chemical, and
biological conditions associated with several existing coastal waterway
developments. In this report environmental baseline data are presented
for consideration in the planning and construction of canal systems in
the southeast region of the United States.
In no respect is this information intended to relieve developers of
their obligation to abide by, nor to avoid conflict with, regulations of local,
state, other federal agencies, or any regulations to be subsequently pro-
mulgated by the U.S. Environmental Protection Agency. This report is
not intended to discourage innovative design; however, the suggestions
contained in this report, if implemented, would be a positive step in
reducing water quality deterioration in canal systems.
Adherence to the suggestions contained in this report does not
constitute endorsement or recommendation of any project in itself.
-------
The planning and operation of these studies
were carried out under the supervision of
J. A. Little, Director, Surveillance and
Analysis Division located in Athens, Georgia.
Principal authors were D. B. Hicks
and T. R. Cavlnder, Aquatic Biologist and
Sanitary Engineer, respectively.
Other contributing authors were: B. J. Carroll,
R. L. Raschke and P. M. Murphy, Microbiologist
and Aquatic Biologists, respectively.
-------
TABLE OF CONTENTS
Page
LIST OF TABLES ill
LIST OF FIGURES vi
I. INTRODUCTION 1
II. SUMMARY 2
A. WATER QUALITY 2
B. SEDIMENTS 2
C. MICROBIOLOGY 2
D. CANAL FLUSHING AND MODELING 2
E. SEPTIC TANKS 3
F. BIOLOGY 3
III. RECOMMENDATIONS 5
IV. DISCUSSION 7
A. CANAL DEPTHS 7
B. SEPTIC TANKS 9
V. BACKGROUND 13
VI. STUDY AREAS 16
A. PUNTA GORDA, FLORIDA 16
B. BIG PINE KEY, FLORIDA 16
C. MARATHON, FLORIDA 17
D. ATLANTIC BEACH, NORTH CAROLINA 17
E. PANAMA CITY, FLORIDA 18
VII. STUDY RESULTS 26
A. TIDAL EXCHANGE STUDY 26
1. Dispersion 26
2. Tidal Flushing 30
B. WATER QUALITY STUDIES 52
1. Salinity Temperatures and Dissolved Oxygen.... 53
2. Biochemical Oxygen Demand 57
3. Total Organic Carbon 58
4. Nitrogen and Phosphorus 61
5. Sulfides 64
6. Metals 64
7. Bacteriological 65
-------
C. MASS EXCHANGE STUDY 130
D. SEDIMENTS 135
1. Carbon and Nitrogen Ratio 136
2. Metals 142
3. Pesticides 142
4. Development Density Versus Sediment
Composition 142
E. SEPTIC TANK LEACHATE TRACING STUDIES 159
F. SYNOPTIC REVIEW OF THE ADVERSE ENVIRONMENTAL
EFFECTS OF SEPTIC TANKS 172
G. BIOLOGY 187
1. Benthic Macro invertebrates 187
2. Macrophytes 190
3. Periphyton 192
4. Phytoplankton Chlorophyll A 195
H. MATHEMATICAL MODELING 207
1. Models 207
2. Model Background 207
3. Simulations 209
VIII. REFERENCES 226
IX. APPENDICES 233
ii
-------
LIST OF TABLES
Number Page
I Points of dye injection for tidal exchange studies 27
at Punta Gorda and Big Pine Key, Florida and Atlantic
Beach, North Carolina
II Longitudinal dispersion coefficients for tidal exchange 29
studies at Punta Gorda, Big Pine Key, and Atlantic
Beach
III Longitudinal dispersion coefficients from other studies 30
IV Comparison of canal flushing rates by least square 31
analysis
V Canal flushing times based on dye tracer and tidal 32
prism computations
VI Canal locations and sampling sites for water quality 52
studies in Florida and North Carolina
VII Average concentrations for water quality parameters at 67
Punta Gorda, Florida, November 1973
VIII Average concentrations for water quality parameters at 68
Big Pine Key, Florida, November 1973
IX Average concentrations for water quality parameters at 69
Punta Gorda, Florida, August 1974
X Average concentrations for water quality parameters at 70
Big Pine Key, Florida, August 1974
XI Average concentrations for water quality parameters at 71
Marathon, Florida, August 1974
XII Average concentrations for water quality parameters at 72
Panama City, Florida, September 1974
XIII Average concentrations for water quality parameters at 73
Atlantic Beach, North Carolina, September 1974
XIV Average concentrations for water quality parameters at 74
Spooners Creek, North Carolina, September 1974
iii
-------
LIST OF TABLES (continued)
Number Page
XV Average concentrations for water quality parameters at 75
Emerald Isle, North Carolina, September 1974
XVI Diurnal changes in vertical profile for dissolved oxygen 76
at canal station G at Big Pine Key, Florida, November
1973
XVII Dissolved oxygen concentrations relative to depth 77
at dead end canal stations at Big Pine Key, November
1973
XVIII Concentrations of organic carbon, nitrogen, and 78
phosphorus in canals at Punta Gorda, Florida, August
1974
XIX Seasonal changes in benthic plant biomass and total 79
organic carbon concentrations at Big Pine Key, Florida,
November 1973 and August 1974
XX Nutrient and dissolved oxygen concentrations relative 80
to canal depth and stage of development at Atlantic
Beach, North Carolina, September 1974
XXI Numbers of coliform bacteria found in study canals 81
XXII Tidal exchange of nutrients in Florida and North 133
Carolina canals, August and September 1974
XXIII Net nutrient exchange over 24-hour tidal cycle in 134
Florida and North Carolina canals, August and
September 1974
XXIV Average concentrations of chemical parameters in canal 144
sediments, Punta Gorda, Florida, November 1973
XXV Average concentration of chemical parameters in canal 145
sediments at Panama City, Atlantic Beach, and Spooners
Creek, September 1974
XXVI Organic carbon to nitrogen ratios for canal sediments 146
at Punta Gorda and Big Pine Key, Florida, November 1973
XXVII Organic carbon to nitrogen ratios for canal sediments 147
at Marathon, Florida, August 1974
iv
-------
LIST OF TABLES (continued)
Number Page
XXVIII Organic carbon to nitrogen ratios for canal sediments 148
at Atlantic Beach and Spooners Creek, North Carolina,
September 1974
XXIX Chemical character of sediments relative to degree of 149
canal development
XXX Ground water wells at Surf City, North Carolina, 163
February 1975
XXXI Typical process effluent characteristics 180
XXXII General septic tank installation criteria 181
XXXIII Incidence of waterborne disease in the United States, 182
1946 to 1970
XXXIV Distance of travel of fecal microorganisms 183
XXXV Summary of distance of travel of pollution 184
XXXVI Time of survival of fecal bacteria 186
XXXVII Benthic macrophyte biomass at Big Pine Key, Florida, 197
November 1973
XXXVIII Benthic macrophyte biomass at Big Pine Key, Florida, 198
August 1974
XXXIX Phytoplankton chlorophyll a concentrations at Big Pine 199
Key, Florida, August 1974
XL Tidal dispersion constants 209
XLI Typical dissolved oxygen concentrations under simulated 212
conditions of waste loading
XLII Typical dissolved oxygen concentrations under simulated 212
conditions of waste loading
-------
LIST OF FIGURES
Number Page
1 Vertical stratification of salinity, dissolved oxygen, 10
and nutrients in Canal II at Punta Gorda, Florida,
August 5, 1974.
2 Average dissolved oxygen concentrations as related to 11
canal depths, North Carolina, September 1974.
3 Average dissolved oxygen concentrations as related to 12
canal depths, Florida, August 1974
4 Study area and canal locations at Punta Gorda, Florida 19
5 Study area at Big Pine Key, Florida 20
6 Canal location at Big Pine Key, Florida 21
7 Study area and canal location at Marathon, Florida 22
8 Study area at North Carolina 23
9 Canal locations at Atlantic Beach, North Carolina 24
10 Study area and canal location at Panama City, Florida 25
11 Canal locations for dye tracer studies at Punta Gorda, 34
Florida
12 Canal locations for dye tracer studies at Big Pine Key, 35
Florida
13 Canal locations for dye tracer studies at Atlantic Beach, 36
North Carolina
14 Tidal recording at Punta Gorda, Florida, November 1973. 37
15 Tidal recording at Big Pine Key, Florida, November 1973 38
16 Tidal recording at Atlantic Beach, North Carolina, 39
September 1974
17 Dimensions of study canals at Punta Gorda, Florida 40
vi
-------
LIST OF FIGURES (continued)
Number^
18 Dimensions of study canals at Big Pine Key, Florida 41
19 Dimensions of study canals at Atlantic Beach, North 42
Carolina
20 Dye concentration curves for Canal I at Punta Gorda, 43
Florida
21 Dye concentration curves for Canal II at Punta Gorda, 44
Florida
22 Dye concentration curves for Canal III at Big Pine Key, 45
Florida
23 Dye concentration curves for Canal IV at Big Pine Key, 46
Florida
24 Dye concentration curves for Canal V at Big Pine Key, 47
Florida
25 Dye concentration curves for Canal VI at Atlantic Beach, 48
North Carolina
26 Dye concentration curves for Canal VII at Atlantic Beach, 49
North Carolina
27 Time history curves for dye concentrations at different 50
canal points at Punta Gorda, Florida
28 Canal flushing curves derived from dye tracer studies at 51
Punta Gorda and Big Pine Key, Florida
29 Sampling site location for water quality studies at 82
Punta Gorda, Florida, November 1973 and August 1974
30 Sampling site location for water quality studies at Big 83
Pine Key, Florida, November 1973 and August 1974
31 Sampling site location for water quality studies at 84
Marathon, Florida, August 1974
32 Sampling site location for water quality studies at 85
Panama City, Florida 1974
vii
-------
LIST OF FIGURES (continued)
Number Page
33 Sampling site location for water quality studies at 86
Atlantic Beach, North Carolina, September 1974
34 Sampling site location for water quality at Spooners 87
Creek, North Carolina, September 1974
35 Study location for water quality investigations at 88
North Carolina, September 1974
36 Dissolved oxygen, salinity, and temperature profiles 89
for canal stations 1 and 2 at Punta Gorda, Florida,
November 1973
37 Dissolved oxygen, salinity, and temperature profiles 90
for canal stations 3 and 4 at Punta Gorda, Florida,
November 1973
38 Dissolved oxygen, salinity, and temperature profiles 91
for canal stations 5 and 6 at Punta Gorda, Florida,
November 1973
39 Dissolved oxygen, salinity, and temperature profiles 92
for canal station 7 at Punta Gorda, Florida, November
1973
40 Dissolved oxygen, salinity, and temperature profiles 93
for canal stations 8 and 9 at Big Pine Key, Florida,
November 1973
41 Dissolved oxygen, salinity, and temperature profiles 94
for canal stations 10 and 11 at Big Pine Key, Florida,
November 1973
42 Dissolved oxygen, salinity, and temperature profiles 95
for canal stations 12 and 13 at Big Pine Key, Florida,
November 1973
43 Dissolved oxygen, salinity, and temperature profiles 96
for canal stations 14 and F at Big Pine Key, Florida,
November 1973
44 Dissolved oxygen, salinity, and temperature profiles 97
for canal station G at Big Pine Key, Florida, November
1973
viii
-------
LIST OF FIGURES (continued)
Number Page
45 Diel changes in dissolved oxygen concentrations for 98
Canal I at Punta Gorda, Florida, November 1973
46 Diel changes in dissolved oxygen concentrations for 99
Canal II at Punta Gorda, Florida, November 1973
47 Dissolved oxygen, salinity, and temperature profiles 100
for canal stations A and B at Punta Gorda, Florida,
November 1973
48 Dissolved oxygen, salinity, and temperature profiles 101
for canal stations C and D at Punta Gorda, Florida,
November 1973
49 Dissolved oxygen, salinity, and temperature profiles 102
for canal station E at Punta Gorda, Florida, November
1973
50 Diel changes in dissolved oxygen concentrations for 103
Canal III at Big Pine Key, Florida, November 1973
51 Diel changes in dissolved oxygen concentrations for 104
Canal IV at Big Pine Key, Florida, November 1973
52 Dissolved oxygen, salinity, and temperature profiles 105
for canal stations 1 and 2 at Punta Gorda, Florida,
August 1974
53 Dissolved oxygen, salinity, and temperature profiles 106
for canal stations 3 and 4 at Punta Gorda, Florida,
August 1974
54 Dissolved oxygen, salinity, and temperature profiles 107
for canal stations 5 and 6 at Punta Gorda, Florida,
August 1974
55 Dissolved oxygen, salinity, and temperature profiles 108
for canal station 7 at Punta Gorda, Florida, August
1974
56 Dissolved oxygen, salinity, and temperature profiles 109
for canal stations 8 and 9 at Big Pine Key, Florida,
August 1974
ix
-------
LIST OF FIGURES (continued)
Number Page
57 Dissolved oxygen, salinity, and temperature profiles 110
for canal stations 10 and 11 at Big Pine Key, Florida,
August 1974
58 Dissolved oxygen, salinity, and temperature profiles 111
for canal stations 12 and 13 at Big Pine Key, Florida,
August 1974
59 Dissolved oxygen, salinity, and temperature profiles 112
for canal stations 14 and F at Big Pine Key, Florida,
August 1974
60 Dissolved oxygen, salinity, and temperature profiles 113
for canal station G at Big Pine Key, Florida, August
1974
61 Dissolved oxygen, salinity, and temperature profiles 114
for canal stations 15 and 16 at Marathon, Florida,
August 1974
62 Dissolved oxygen, salinity, and temperature profiles 115
for canal stations 17 and 18 at Marathon, Florida,
August 1974
63 Dissolved oxygen, salinity, and temperature profiles 116
for canal station 19 at Marathon, Florida, August 1974
64 Dissolved oxygen, salinity, and temperature profiles 117
for canal stations 1 and 2 at Atlantic Beach, North
Carolina, September 1974
65 Dissolved oxygen, salinity, and temperature profiles 118
for canal stations 3 and 4 at Atlantic Beach, North
Carolina, September 1974
66 Dissolved oxygen, salinity, and temperature profiles 119
for canal stations 5 and 6 at Atlantic Beach, North
Carolina, September 1974
67 Dissolved oxygen, salinity, and temperature profiles 120
for canal stations 7 and 8 at Atlantic Beach, North
Carolina, September 1974
-------
LIST OF FIGURES (continued)
Number^
68 Dissolved oxygen, salinity, and temperature profiles 121
for canal stations 9 and 10 at Atlantic Beach, North
Carolina, September 1974
69 Housing density on study canals at Atlantic Beach, 122
North Carolina, September 1974
70 Dissolved oxygen, salinity, and temperature profiles 123
for canal stations 1 and 2 at Spooners Creek, North
Carolina, September 1974
71 Dissolved oxygen, salinity, and temperature profiles 124
for canal stations 3 and 4 at Spooners Creek, North
Carolina, September 1974
72 Dissolved oxygen, salinity, and temperature profiles 125
for canal stations 5 and 6 at Spooners Creek, North
Carolina, September 1974
73 Total phosphorus and nitrogen concentrations in canals 126
at Punta Gorda, Florida, November 1973
74 Total phosphorus and nitrogen concentrations in canals 127
at Punta Gorda, Florida, August 1974
75 Total phosphorus and nitrogen concentrations in canals 128
at Big Pine Key, Florida, November 1973
76 Total phosphorus and nitrogen concentrations in canals 129
at Big Pine Key, Florida, August 1974
77 Vertical and longitudinal distribution of organic matter 150
in canal sediments at Punta Gorda, Florida, November 1973
78 Vertical and longitudinal distribution of organic matter 151
in canal sediments at Punta Gorda, Florida, November 1973
79 Vertical and longitudinal distribution of organic matter 152
in canal sediments at Big Pine Key, Florida, November 1973
80 Vertical and longitudinal distribution of organic matter 153
in canal sediments at Big Pine Key, Florida, November
1973
xi
-------
LIST OF FIGURES (continued)^
Number
Page
81 Vertical and longitudinal distribution of organic 154
matter in canal sediments at Marathon, Florida,
September 1974
82 Vertical and longitudinal distribution of organic 155
matter in canal sediments at Atlantic Beach, North
Carolina, September 1974
83 Vertical and longitudinal distribution of organic 156
matter in canal sediments at Atlantic Beach, North
Carolina, September 1974
84 Hypothesized dissolved oxygen profile relative to 157
canal depth.
85 Metal accumulations in canal sediments at Punta Gorda, 158
Florida, November 1973
86 Study location and canal site for septic tank leachate 164
tracing investigation at Punta Gorda, August 1974
87 Study location and canal site for septic tank leachate 165
tracing investigation at Big Pine Key, Florida, August
88 Study location and canal site for septic tank leachate 166
tracing investigation at Atlantic Beach, North Carolina,
September 1974
89 Time history graph for dye transmission from septic 167
tank to canal at Punta Gorda, Florida, August 1974
90 Time history graph for dye transmission from septic 168
tank to canal at Atlantic Beach, North Carolina
September 1974
91 Time history graph for dye transmission from septic 169
tank to canal at Atlantic Beach, North Carolina
September 1974 '
92 Location of ground water wells at Surf City, North 170
Carolina, February 1975
xii
-------
LIST OF FIGURES (continued)
Number
93 Location of ground water wells at Surf City, 171
North Carolina, February 1975
94 Benthic macrophyte biomass at Big Pine Key, Florida, 200
November 1973
95 Benthic macrophyte biomass at Big Pine Key, Florida, 201
August 1974
96 Periphyton chlorophyll a concentrations for Canal II 202
at Punta Gorda, Florida, November 1973
97 Periphyton chlorophyll a concentration for Canal I 203
at Punta Gorda, Florida, November 1973
98 Periphyton autotrophic index for Canal I at Punta Gorda, 204
Florida, November 1973
99 Periphyton autotrophic index for Canal II at Punta 205
Gorda, Florida, November 1973
100 Phytoplankton chlorophyll a concentrations at Big Pine 206
Key and Punta Gorda, Florida, November 1973
101 Study location and canal site for the dye tracer studies 214
at Punta Gorda, Florida, November 1973
102 Study locations and canal site for the dye tracer 215
investigation at Big Pine Key, Florida, November 1973
103 Study location and canal site for the dye tracer 216
investigation at Atlantic Beach, North Carolina,
September 1974
104 Photochemical decay curve for Rhodamine WT at Atlantic 217
Beach, North Carolina, September 1974
105 Computed and observed dye concentrations in Canal II 218
at Punta Gorda, Florida, November 1973
106 Computed and observed dye concentrations in Canal V 219
at Big Pine Key, Florida, November 1973
107 Computed and observed dye concentrations in Canal VI 220
at Atlantic Beach, North Carolina, September 1974
xiii
-------
LIST OF FIGURES (continued)
Number Page
108 Computed and observed dye concentrations in Canal VII 221
at Atlantic Beach, North Carolina, September 1974
109 Simulated canal flushing times using modeling technique 222
110 Dissolved oxygen suppressions as related to waste 223
loading for Canal II at Punta Gorda, Florida, November
1973
111 Dissolved oxygen suppressions as related to waste 224
loading for Canal V at Big Pine Key, Florida, November
1973
112 Simulated flushing times for Canal V at Big Pine Key, 225
Florida, November 1973
xiv
-------
II. SUMMARY
A - WATER QUALITY
Poor flushing, coupled with seasonal inflow of fresh water, produced
extensive salinity stratification in canal systems surveyed in southwestern
Florida. A bottom layering of high salinity water resulted in stagnation,
putrification, and excessive nutrient enrichment of the water column. De-
stratification was realized with seasonally diminished inputs of fresh water.
State established water quality standards and associated criteria
provide the basis of assessing water quality violations. Violations of
dissolved oxygen criteria were documented for all canal systems surveyed
in both Florida and North Carolina. These violations were demonstrated to
occur in those canals whose depths exceeded four to five feet.
Total nitrogen and organic carbon were the most salient chemical
constituents characterizing water quality differences between developed
and undeveloped canal systems. In nearly every case, concentrations of
these constituents were greater in the developed waterways. Equally evi-
dent was that their concentrations varied inversely with averaged dissolved
oxygen concentrations.
B - SEDIMENTS
Canal sediments examined during the study featured an accumulation
of organic carbon and nitrogen that were maximized with increasing dis-
tances from the mouths of the canals. The reported carbon:nitrogen ratios
of canal sediments were low and indicated that most canal sediments were
fairly well stabilized with respect to microbial decomposition. Relative
stages of development (dwelling unit density) along canal banks were posi-
tively correlated to general sediment composition. The greater the dwelling
unit density, the greater the nutrient concentration in the sediment.
C - MICROBIOLOGY
Total coliform bacteria densities exceeded allowable water quality
criteria associated with applicable standards at all canal study areas,
with the exception of the Big Pine Key site. No standard violations were
noted at any of the background stations nor at undeveloped canal sites.
As a rule, total coliform densities increased from the mouth to the dead
end of all the developed canals. Dead-end stations had fecal coliform
densities which exceeded their respective background stations by: 43
percent at Punta Gorda; 1,200 percent at Big Pine Key; 33,000 percent at
Panama City (Woodlawn Canal); 50 percent at Panama City (Hentz Canal);
37,000 percent at Atlantic Beach; and 3,500 percent at Spooners Creek.
D - CANAL FLUSHING AND MODELING
In general, the dispersive properties of natural bay-estuarine
systems were two orders of magnitude greater than those canal systems
investigated. A measure of dispersive properties of estuaries and canals
-------
Included in these investigations indicated the following dispersion
coefficients:
Miles2/Day
Waccasassa Estuary - Cedar Key, Florida i/ 2.0-2.7
Hillsboro Bay - Tampa, Florida I/ 0.7-6.0
Canal I - Punta Gorda, Florida 0.006
Canal II - Punta Gorda, Florida 0.003
Canal III - Big Pine Key, Florida 0.002
Canal IV - Big Pine Key, Florida 0.001
Canal V - Big Pine Key, Florida 0.003
Canal VI - Atlantic Beach, North Carolina 0.007
Canal VII - Atlantic Beach, North Carolina 0.011
^L/ Measured by others.
Flushing of canals to the 90-percent level required from 70 to 250
hours in the systems investigated.
Based upon mathematical model simulations, the canal systems studied
did not have the assimilative capacity to receive wastewater effluent.
Flushing times were found to be responsive to both canal depth and
length. Computer simulations demonstrated that depth is the dominant
factor affecting flushing. Consequently, if flushing times and assimila-
tive capacity are to be maximized, canal depths and, to a lesser extent,
lengths must be minimized.
E - SEPTIC TANKS
Considerable documentation exists in the literature of chemical,
bacterial, and viral contaminants from septic tank leachates traveling
significant distances in ground water systems. Confirmed illnesses re-
sulting from the consumption of ground water contaminated by septic tank
leachates emphasize the public health implications where lateral movement
of ground water occurs. Similarly, documentation exists demonstrating
movement of septic tank leachates through ground waters to estuarine
waters.
With the exception of the Big Pine Key studies, tracer dyes intro-
duced into septic tank systems located approximately 50 feet from finger
canals demonstrated that septic tank leachates were rapidly transmitted
to the adjacent canal waters. At Punta Gorda, dye was detected in the
canal system 25 hours after injection into a septic tank system. At
Atlantic Beach, dye was confirmed in two canal systems four and sixty
hours after injection into septic tank systems.
F - BIOLOGICAL
Except for shallow shoreline habitat, physical and chemical conditions
of the bottom in the Punta Gorda canal system severely limited the kinds
and numbers of bottom-dwelling organisms. During the wet season, the canal
systems featured salinity stratification with an anoxic benthic environment.
-------
Bottom sediments were unconsolidated, rich in organic matter, and often
laden with sulfides.
Excessive turbidity, unconsolidated substrate, and lack of dissolved
oxygen precluded the survival of attached benthic macrophytes. Phyto-
planktonic chlorophyll values for the Punta Gorda canals were comparable
to levels found in most inshore regions of the Gulf of Mexico. The growth
of algae on artificial substrates was more luxurious in the developed
canal. Inorganic nutrients did not appear to be a factor limiting peri-
phytic growth.
At Big Pine Key, both the developed and undeveloped canals supported
a benthic environment suitable for numerous kinds of macroinvertebrates.
Diversity and numerical abundance were keyed to the abundance of benthic
attached plants. Bottom sediments appeared to have a low level of organic
matter and were comprised mainly of clay and silt. Seagrasses and attached
algae were common to all canals in the study. Their abundance was suffi-
cient to effect a marked day-night variation in dissolved oxygen. Seasonal
variations in standing crop biomass were maximized in the developed canal
with seasonal lows appearing premature for benthic plant communities. The
undeveloped canal supported a plant community yielding only slight sea-
sonal changes in standing crop biomass. Phytoplanktonic chlorophyll values
were significantly greater in the developed canal with chlorophyll values
being maximized when benthic macrophytes were reduced in standing crop
biomass.
The Sea-Air Estate canal system at Marathon, Florida, featured sedi-
ments comprised mainly of silt and clay with organic content similar to
the Big Pine Key canals. Macrophytes and macroalgae were virtually excluded
from the bottom community. Low dissolved oxygen concentrations were common
to the bottom environment.
A community comprised of few benthic macroinvertebrates was found in
the Atlantic Beach canals. Dead-end and mid-canal regions were void of
a benthic macroinvertebrate community. Sediments in these regions were
excessively enriched with organic matter and unconsolidated. Low dissolved
oxygen concentrations were common to the benthic habitat.
-------
5
III. RECOMMENDATIONS
1. Coastal canal developments should be restricted to non-wetland areas.
Access canals should be routed from housing developments to the parent
body of water by the shortest and least environmentally damaging course.
2. During the planning phase of a coastal canal development, a hydrologic
investigation should be made to determine the presence of, and project
effect on, shallow aquifers. In addition, with consideration of
surrounding hydrologic features, circulation patterns of the proposed
canal system should be described.
3. As part of the permitting process, the party responsible for mainte-
nance of water quality standards and/or correction of water quality
violations in coastal canal developments should be designated.
4. Canal depths should not be governed by fill requirements. An appro-
priate canal depth for shallow draft pleasure craft should be no more
than four to six feet below mean low water.
5. Centralized waste collection and treatment systems are necessary in
coastal canal housing developments.
6. No sewage treatment plant effluent or other point-source discharges
should be discharged directly into finger-fill canal waters. Dis-
charges into surface waters should be sufficiently distant from the
canals to ensure that the effluent is not carried into the canal
systems by tidal currents.
7. Surface drainage patterns should be designed with swales to minimize
direct runoff into canal waterways.
-------
6
8. The grade of canal bottoms should be such that no sills are created
at any point in the system, especially at the confluence with the
parent water body.
9. Orientation of canals should take into account prevailing wind
direction so that flushing/mixing would be enhanced and wind drift
of floating debris minimized.
10. To the extent possible, dead-end features should be eliminated from
canal system design.
Since the studies discussed in this report were completed, EPA Region
IV has initiated additional studies to evaluate the physical, chemical,
and biological aspects associated with dead-end canals featuring maximum
depths of 4-6 feet MLW. Preliminary analysis of these study results indi-
cate the above recommendations remain appropriate.
-------
IV. RATIONALE FOR RESTRICTING CANAL DEPTHS
AND THE USE OF SEPTIC TANKS
A. CANAL DEPTHS
What is an optimum canal depth? As shallow as possible, yet deep
enough to meet navigation requirements. In the context of finger-fill
canals, navigational needs are those of small pleasure craft. The
State of Florida reports 297,894 boats registered as of June 10, 1974.
Of the total, 94 percent of the vessels measured 26 feet or less in
length. Similarly, North Carolina reports 112,530 vessels registered
as of January 1, 1975, of which 98.3 percent measure less than 28 feet
in length. Obviously, shallow-draft boats are to be the principal
vessels of consideration in establishing navigational depths. The
majority of boats are amenable to navigational depths of four to six
feet.
Based on the above consideration and the results of these environ-
mental studies, it is recommended that canal depths not exceed four to
six feet at mean low tide. The environmental considerations leading to
this recommendation are presented in the following discussion.
Flushing or residence time(s) is a relative measure of the ability
of a system to purge itself of a given constituent. The coupling of
dispersive and advective forces establishes the flushing characteristics
of a waterway. In the cases of the Florida and North Carolina canals,
elapsed times ranging from 70 to 250 hours were required to effect a
90-percent removal of a dye tracer. Considering the water quality con-
stituent five-day biochemical oxygen demand (BOD5), approximately 70 to 80
percent of the total BOD is exerted in 120 hours. Thus, increasing
residence time requires the canal to assimilate an increasingly greater
share of the oxygen-demanding matter. Furthermore, the restricted circu-
lation of the canal systems limits their reaeration capability.
Flushing dynamics result from a complex set of physical conditions.
Many of these factors are not presently understood, others can not be
controlled, and some are effected for conveniences. The dimensions of a
canal system are a matter of economic convenience. Flushing times under
variations in canal depth and length were simulated. Flushing times are
maximized with increases in depth. For example, Canal V at Big Pine
Key, a doubling of depth increased flushing time from 230 to 660 hours.
A doubling of length effected an increase to 400 hours, while a halving
of the depth decreased the flushing time to 90 hours. Consequently,
if flushing times and assimilative capacities are to be optimized, then
canal depths and lengths (to a lesser extent) must be minimized.
If the "coast line" is identified as the most seaward point of above-
ground vegetation, a point 1/4 of a mile inland to a point 1/4 mile
seaward from this coastline is generally the extremes of the mixing zone
for inland drainage and saline waters. Ground surface/bay bottoms eleva-
tion tapers from approximately +2 to -4 feet mean sea level. Yearly tidal
-------
ranges are on the order of -1 to +2 feet mean sea level with a mean ele-
vation of 1.0 foot. This tidal prism (tide range) then constitutes
70-100 percent of the total water column, thus optimizing mixing and flush-
ing. If depths of -20 feet mean sea level are introduced, only 14 percent
(3/22) of the water column is moved in the tidal excursion. In addition,
the shallow estuaries are mixed by wind-induced circulation; whereas, canals
(deep and narrow) have little potential for appreciable mixing by wind.
The canal systems surveyed varied in depth from eight to twenty-five feet
at mean stage. Obviously, the design depth was predicated upon fill require-
manets and not optimization of tidal flushing. The consequences of poor
flushing were readily demonstrated by the results section of this report.
Salinity stratification in the canals at Punta Gorda, Florida had a
paramount affect on water quality. An example of severe stratification is
given in Figure 1. The data accompanying the figure show the water quality
consequences—i.e., anoxic conditions and nutrient enrichment of the
entrapped and dense saline stratum. In addition, bottom life was eliminated.
Nutrients (nitrogen and .phosphorus) diffusing to the upper layer were ex-
ported from the canal via tidal exchange at a loading rate equivalent to
that produced from a 25,000 to 30,000 gallon per day activated sludge
treatment plant.
Violations of state dissolved oxygen standards were common occurrences
in all canals surveyed in August - September 1974. In Figures two to three,
a summation of dissolved oxygen (DO) observations with respect to depth is
presented for the canal studies involving interior canal stations—background
stations were excluded from figures. In both states, water quality standards
were violated in the canal systems at depths usually exceeding four to five
feet. Datum is mean stage—approximately one foot above mean low water.
Aside from the developmental loads to the canals (septic tank leachate
and runoff), poor flushing characteristics can be identified as the princi-
pal factors affecting the dissolved oxygen budget of the canal systems.
In turn, flushing is functionally related to depth of the canal. Thus.
needed is a determination of an optimum depth that will maximize
canal flushing and meet navigational needs and minimize the potential for
violations of state DO standards. It is recommended that depths be no
more than four to six feet at mean low water.
B. SEPTIC TANKS
The Environmental Protection Agency is endeavoring to enforce "best
practical treatment" in the 1970fs with efforts to obtain "best available
treatment" in the early 1980's. Septic tank/sorption fields may be
viewed as acceptable treatment in the context of rural development where
the purity of the ground and surface waters can be protected. This pro-
tection is safeguarded by adequate sorption field design, long distances
to surface water bodies and relatively low housing unit densities. In
contrast, coastal canal developments maximize housing unit density, and
proximity to surface water bodies and thus eliminates the safeguards
inherent in the rural environments.
-------
A simple mass balance reveals that constituents (chemical, bacterial
and viral) introduced into the sorption field are subject to either retain-
ment in the field, die off (in the case of bacteria and viruses) or
transmitted to ground and surface waters. The prime concern is the
quality of the leachates entering the ground and surface waters.
Results of these studies show in several cases that leachates are
transmitted rapidly to the canal waters. Time of travel measured was four
to sixty hours. The effects of these rapid transmissions were evident
in: (1) high nutrient levels in ground and canal waters, and (2) viola-
tions of bacteriological standards in canal waters. Based on litera-
ture review these relatively short travel times indicate that both viable
bacteria and viruses can enter the canal waters and create a potential
public health problem. Our studies show the potential to be a reality
in many cases, i.e., 2,400,000 fecal colonies per 100 milliliter were
recorded in canal waters near septic tank leach fields during July 1975
at Surf City, NCt Also, the transmission of nutrients to the canals
via contaminated groundwaters must be viewed as being at least partially
responsible for observed ecological imbalances in canal systems.
-------
u
Eh
U
Q
10
FIGURE I
STRATIFICATION IN CANAL II
Canal Mouth PUNTA GORDA, FLORIDA
1300 HOURS
AUGUST 15, 1974
200
400
600
800
1000 1200 1400 1600
DISTANCE FROM DEAD END (FEET)
1800
2000
2200
2400
Station 5
Depth Temp. Sal. D.O. TKN NH3 N02-N03 P
8
32.6
30.9
30.9
30.1
30.6
2.3
2.3
2.4
2.4
4.1
30.6 20.0
29.4 29.9
28.9 29.4
4.4
4.2
3.6
1.8
0.9
0.62 0.15 0.07 0.18
0 8.80 8.25 0.01 2.16
Station 6
Depth Temp. Sal. D.O. TKN NH3 N02-NO-j P
31.1
30.8
30.5
30.6
30.7
30.7
2.5
2.5
3.0
4.1
5.2
5.8
30.0 29.4
29.4 29.4
3.8
3.2
2.8
2.7
2.6
0.2
0.65 0.15
9.5 8.85
0.05
0.01
0.22
2.64
Stall on_7
Depth Temp. Sal. D.O, 1KN NH-j N02-NO-j P
0.76 0.10 0.04 0.22
1
2
3
U
5
6
7
31.9
30.4
30.9
30.8
30.8
30.9
30.7
5.2
7.0
8.4
9.7
9.8
10.3
10.3
3.4
3.0
3.0
2.8
3.0
3.2
_
NOTE: Tenp. In °C, Sal in PPT, D.O. & nutrients In mg/1.
-------
11
8
6
g 4
>H
§3
Q
W
s.
CO
w
FIGURE 2
DISSOLVED OXYGEN CONCENTRATIONS
AVERAGE VALUES IN CANAL
SYSTEMS AT NORTH CAROLINA
SEPTEMBER 1974
\
N. Water Quality
\
\
\
\
6 8 10 12
(Depth (feet)
14 16
18 20
No. of
Observations
45
45
45
45
45
45
42
37
33
30
21
10
7
2
1
Avg
DO
DISSOLVED OXYGEN STATISTICS
AVERAGE VALUES IN CANAL
SYSTEMS AT NORTH CAROLINA
SEPTEMBER 1974
RANGE
7.3
6.6
6.2
5.4
4.9
4.3
3.6
2.9
2.2
1.5
0.8
0.4
0.1
0.1
0
11.7-4.7
9.6-4.1
9.0-4.0
7.2-3.8
6.8-3.3
6.3-2.3
5.4-1.0
5.1-0.1
4.6-0.6
3.9-0
1.9-0
1.6-0
0.4-0
0.2-0
0
% 21
5.0
91
87
80
71
60
29
17
5
0
0
0
0
0
0
0
% 1
4.9
9
13
20
29
40
71
83
95
100
100
100
100
100
100
100
95%
Confidence Interval
3.9
3.7
3.5
3.5
3.3
2.2
1.2
0.3
0
0
0
0
0
0
0
10.7
9.5
8.9
7.3
6.5
6.4
6.0
5.5
4.7
3.8
2.2
1.5
0.5
-
_
Std
Deviation
1.7
1.5
1.3
1.0
0.8
1.0
1.2
1.3
1.2
1.1
0.7
0.5
0.1
-------
12
FIGURE 3
DISSOLVED OXYGEN CONCENTRATIONS
AVERAGE VALUES IN CANAL
SYSTEMS AT FLORIDA
AUGUST 1974
\
- - - \. - - _Water_Quality
o ta,o ar
•V/V
ho
E
55
W
O
>*
g
Q
W
J
O
w
CO
I—I
Q
ko-o—o.
\
0
o
10 12 14
DEPTH (feet)
16
18
20
22
24
DISSOLVE OXYGEN STATISTICS
CANAL SYSTEMS AT FLORIDA
AUGUST 1974
1
2
3
4
5
6
7
8
9
10
II
12
Kt
14
IS
10
17
IH
19
20
21
22
2:1
21
25
No. of
OhHorvatlona
134
134
134
134
134
134
125
99
67
40
33
30
28
21
24
22
17
IS
14
11
9
8
6
2
1
Avg
DO
4.9
4.8
4.5
4.2
3.8
3.3
3.4
3.6
3.8
3.4
3.3
3.2
3.1
2.9
2.9
2.9
2.8
2.6
2.7
2.8
2.6
2.6
2.8
2.7
2.3
Range
8.7-1.4
7.6-1.5
6.9-1.4
6.9-0.8
6.9- 0
7.0- 0
7.0-0
7.2-0
8.0- 0
7.1- 0
5.2-1.0
5.1-1.0
5.0-1.1
4.3-1.1
4.2-1.1
4.2-0.8
4.0-0.7
4.0-0.7
3.6-1.2
3.6-0.9
3.6-0.6
3.6-1.3
3.4-2.3
2.9-2.4
2.3
« >
4.0-
84
80
71
64
55
47
46
44
46
40
33
23
14
8
8
9
6
7
0
0
0
'0
0
0
0
» i
95% Std
3.9 Confidence
16
20
29
36
45
S3
54
56
54
60
67
77
86
92
92
91
94
93
100
100
100
100
100
100
100
2.7
2.6
2.2
1.6
0.3
0
0
0
0
0.4
1.1
1-1
1.1
0.9
1.0
0.9
0.7
0.5
1.0
1.2
0.6
0.9
1.8
-
-
Interval Deviation
7.1 1.1
7.0 1.1
6.8
6.8
7.3
7.4
7.5
7.5
7.4
6.4
5.5
5.3
5.1
4.0
.8
.9
.9
.7
.1
.3
.8
.1
.1
.0
.9
,5
.0
.0
.0
.0
.»•
.0
.0
.0
.4 0.8
.4 0.7
4.6 0.9
•1.3 0.9
3.8 0.4
-
-
-------
13
V. BACKGROUND
The coastal region of the Southeastern United States features
a near continuous belt of wetlands marking the transition zone
between the uplands and estuaries. The wetlands are unified with the
open coast and estuary by tidal waters, thus creating an open ecosystem
in terms of the flow of energy and matter. Only artificial boundaries
exist between ecosystem compartments. By definition, an ecosystem
features a fully integrated, self-maintaining unit, the compartments
of which contribute, in total, to the survival of the system. Each
compartment is characterized by a set of physical, chemical, and
biological constraints, thus making the system unique and limited
in area.
Wetlands are a vital component in the maintenance of ecosystems,
and their importance cannot be overemphasized. Numerous authors (1),
(2), (3), (4), (5), (6) clearly identify the essential role wetlands
play in the maintenance of commercial and sports fisheries in the
estuaries and oceans, as well as their contribution to water quality.
Freshwater is introduced into this mixing zone by overland flow
which originates from inland urban and rural runoff and subsurface flow
which stems from aquifer drainage. These flows vary throughout the
hydroperiod and meet near the coastal fringe to make up the freshwater
input to the estuarine system. Numerous shallow tidal creeks passing
through the coastline provide a broadfront for this combined freshwater
input to the estuary and also provide a nutrient input to the coastal
vegetation. The vegetation in turn takes up nutrients and releases
detrital material and in essence regulates the food chain in the
ecosystem. During periods of either extreme tides (low or high), the
very presence of vegetation and shallow flats of the system buffer the
effects to the upland system.
A current environmental issue concerns the development of
ecologically valuable wetlands for the purpose of creating artificial,
waterfront real estate by the excavation of canals. Two methods of
canal development are prevalent throughout coastal, riverine, and lake
ecosystems of the Southeastern U. S. One method, utilized extensively
in the Carolinas and the northern Gulf coastal area, is the excavation
of an access channel through wetlands either by widening existing tidal
creeks or the creation of a totally new water course. Branching from
such channels may be a "perimeter" canal along the marsh upland ecotone
or a series of extensive canals through the uplands. This method of
development often results in adverse ecological consequences affecting
both wetlands and water quality. The second method of development,
employed extensively in the Florida peninsula and Keys, is the excava-
tion of canals within wetlands. The spoil is used to cover adjoining
wetland and raise elevation for the purpose of residential development.
Environmental alteration and destruction resulting from this type of
-------
14
development are absolute and represent a two-fold threat to the survival
of existing coastal ecosystems. Not only are the multifarious contribu-
tions of the wetland permanently eliminated, they are replaced by a system
that, in most cases, contributes negatively toward maintaining a quality
ecosystem.
Canal systems excavated in lowlands satisfy a purpose incongruent
with the function of the natural system. The purpose is to excavate
channels to accelerate dewatering of wetlands, providing fill and
waterfront property for residential development. The depth of the
channels is primarily governed by fill requirements and not navigational
needs. In light of the natural conditions, the function of the canal
systems is not analagous to tidal creeks, rivers, and marshes. -For
instance, the deep canals accelerate runoff, lower freshwater aquifers,
disrupt nutrient inputs to the vegetative food chain, deny the hydraulic
buffering effect of the shallow flats and probably provide sinks for
nutrients and dense saline waters.
The increased demand for waterfront property coupled with a
dwindling availability of naturally occurring water frontage has
provided the impetus for a proliferation of canal development within
the past decade. A number of factors — such as emphasis on capital
gain for waterfront property plus complete disregard and limited under-
standing of the value and total contributions of wetlands — has allowed
wetland development to proceed largely unrestricted. As the ecological
value and the rate at which wetlands were diminishing became more
apparent to both the public and private sectors, regulatory agencies
were forced to rely on ecological rationales as a basis for judging
environmental risks and liabilities associated with development in areas
rich in aquatic resources.
Prior to October, 1972, federal jurisdiction over wetlands was
provided only by the requirements under Section 10 of the River and
Harbor Act of 1899 which covered only permits authorizing works in
navigable waters. Under this Act, protection of wetlands was limited
only to areas below the mean high water line as interpreted by the U. S.
Army Corps of Engineers, the permitting agency. Coastal ecosystems
are with valuable biological resources occurring both above and below
mean high water (MHW). The artificial boundary (MHW) left hundreds
of thousands of acres open to development without, or with limited,
regard for ecological ramifications.
Recognition of the value of wetlands by government officials and
concerned citizens prompted legislation directed specifically at the
regulation of development in wetland areas. In some instances, legis-
lation approached wetland protection in an ecological sense by using
plant association, sometimes with accompanying tidal datum to define
jurisdictional limits. This approach naturally extended government
jurisdiction to wetlands above mean high tide in some states.
-------
15
Passage of the Federal Water Pollution Control Act Amendments of
1972 (PL 92-500) provided the greatest step toward protection of all
wetland areas against indiscriminate destruction by spoil disposal and
other filling activities. Section 301 (a) of this law provided the
requirement of federal permits for discharge of any pollutants into
waters of the United States. In this context dredged spoil and fill
material are considered pollutants. Section 404 of the law provided a
permit system and guidelines to govern the disposal of such material
in navigable waters. Primary attention is directed toward preventing
adverse ecological effects on shellfish, fish, and wildlife habitat
and recreational areas.
The rationale supporting extension of federal jurisdiction to all
wetlands by Section 404 of the law is clear and simple. First,
"navigable waters" are defined by law as "waters of the United States."
Secondly, all coastal, eatuarine, riverine, and lacustrine wetlands
inundated by waters of the U. S. on a normally predictable basis are,
therefore, themselves an extension and integral component of U. S.
waters. Thirdly, and most decisively, the value of wetlands as spawning
and nursery areas for fish and aquatic life, and as wildlife and recrea-
tional areas, as well as in the maintenance of water quality, is
undisputable.
This section of the law is unique in that it requires an assessment
of anticipated ecological consequences paramount to economics and
navigation before final approval or disapproval of a dredge-and-fill
project permit. This rationale represents a reversal of previous
procedure. If ecological quality of aquatic ecosystems is to be
maintained, wetland resources must be preserved. No longer can an
economic yardstick be the ultimate and decisive judgment factor.
Although the U. S. Army Corps of Engineers has the responsibility
for administering the Section 404 program, the Environmental Protection
Agency . (EPA) was delegated ultimate authority to deny or restrict
permitted actions destructive to wetlands under Section 404(c). The
Agency's decision toward the preservation of such areas was adopted
soon after delegation of this authority and is set forth in the
Administrator's Decision Statement Number 4, "EPA Policy to Protect
the Nation's Wetlands", dated February 21, 1973. In this statement,
the importance of all wetlands, fresh and saltwater alike, is recognized,
along with their irreplaceability and man's dependence upon them. This
belief is reinforced by the statement of policy to protect all wetlands
from abuse and destruction. Prior to this policy, EPA involvement in
canal development projects was limited primarily to an assessment of
expected water quality repercussion. Now, with the support of congressional
authority and in compliance with overall Agency policy, Region IV of EPA
is committed to an aggressive program of both wetland and water quality
protection.
-------
16
VI. STUDY AREAS
Five distinctly different geographic areas were investigated during
this study including Punta Gorda, Big Pine Key, Panama City and Marathon,
Florida and Atlantic Beach, North Carolina.
A. PUNTA GORDA. FLORIDA
The first of these areas was near Punta Gorda, Florida located in
the coastal reaches of Charlotte County in West Central Florida. Charlotte
County is the southernmost county in the Southwest Florida Water Manage-
ment District. The streams and drainage canals in Charlotte County drain
into five basins, four of which empty into Charlotte Harbor. The western
portion of the county, in which Punta Gorda is located, has ground eleva-
tions generally less than 10 feet above sea level. Delineation of land
surfaces becomes most difficult in the coastal fringes. Mud flats and
mangrove swamps blend the coastal plains into the shallow Gulf bottoms.
Numerous canal developments have been constructed along the tidal
creeks and low lying salt marsh lands bordering Charlotte Harbor. This
investigation concentrated on one such small canal development along one
of the major tidal creeks, Alligator Creek. This creek drains primarily
low lying lands consisting of salt marsh and mangrove estuarine zones.
Alligator Creek is classified as Florida class III waters, i.e., waters
for recreation, propagation and management of fish and wildlife. Charlotte
Harbor, into which Alligator Creek drains, is classified as class II
waters, i.e., suitable for shellfish harvesting. Appendix A-l contains
these classifications along with the associated water quality criteria.
Two canals located on Alligator Creek were selected for study .
(Figure 4). Both canals (designated Canals I and II) were constructed
in about 1956 and are approximately 2,000 feet long and 7 feet deep.
Canal II has been developed residentially with sparse development along
its shores (12 house with septic tanks). This canal paired with the
totally undeveloped canal (I) provides a comparison of natural aging to
aging influenced by man's intervention.
B. BIG PINE KEY, FLORIDA
The second area investigated was on Big Pine Key, Florida which is
located in the lower keys of Monroe County. Big Pine Key is bordered
by the Straights of Florida on the south and east and by Florida Bay
and the Gulf of Mexico on the north and west. Ground surfaces generally
are less than 5 feet above sea level and composed primarily of marine
deposits of very permeable limestone known as Miami Oolite. As in the
Punta Gorda area, delineation of land surfaces is most difficult along
the coastal fringes. Limerock surfaces blend into sparse mangrove stands
and, subsequently, into shallow oceanic bottoms. Waters in the Big Pine
Key area are class III waters, i.e., waters for recreation, propagation and
management of fish and wildlife.
-------
17
Freshwater aquifers are nearly non-existent in the Florida Keys.
Big Pine Key homeowners generally receive their freshwater supply from
the Florida Aqueduct Authority via pipage which lies above the rocky
surface.
At several locations on Big Pine Key, waterfront homesites have been
provided by finger-fill canal developments. The typical construction
method employed has been to excavate the Oolitic limestone and to
utilize the spoil to elevate homesites along the canal banks. This
investigation concentrated on one such development, Doctors Point sub-
division, located on the eastern side of Big Pine Key (Figure 5). In
this area, 8 houses with septic tanks are located along one canal system
(Canal IV, Figure 6). Nearby is a recently constructed, undeveloped
system (Canal III, Figure 6). Comparisons were made between these two
systems both of which were approximately 10 feet deep and less than a
quarter of a mile in length.
C. MARATHON. FLORIDA
The third site investigated was the Sea Air Estates subdivision at
Marathon, Florida, located on Vaca Key (Figure 7). GeneraL topography
and soil types are similar to those at Big Pine Key. Canals at this
location are of typical box-cut construction with depths of approximately
16-25 feet mean low water. Lateral or finger canals are approximately
1,500 feet long and open into a large basin which has an irregular
bottom with depths approaching 25 feet. The basin originated as a borrow
pit. Very little home building has taken place at this location.
D. ATLANTIC BFACH, NORTH CAROLINA
The fourth area, Atlantic Beach, is located in Carteret County and
separated from the mainland by Bogue Sound (Figure 8). The surface of
the sandy loam soils of the study area is generally 0-10 feet above
mean sea level.
Much of the area has been developed into high density mobile home
subdivisions. Waterfront access has been provided by dredging and filling
Spartina and Juncxis marshlands.
One such development was investigated at Atlantic Beach (Figure 9).
This development was predominately mobile homes with a few houses and
motel units which use septic tanks/drainfields to treat wastewaters.
Canal depths were approximately 6-20 feet and lengths were 1,200 to 3,000
feet. Waters in and around the development carry the highest North Carolina
classification, SA (Shellfish Harvesting - Appendix A-2).
Three additional sites were investigated in this North Carolina area
(Figures 8 and 9). The first was a condominium community located approxi-
mately one mile northeast of the previously discussed Atlantic Beach site.
-------
18
This is served by a wastewater treatment system and has canal depths and
lengths of 8 and 2,000 feet respectively. The second was located on
the mainland side of Bogue Sound at Spooners Creek. Septic tanks/drain-
fields provide treatment of sanitary wastes at the Spooners Creek area.
The third site is near Emerald Isle. Only limited sampling was carried
out at this site. Waters at all of these sites are classified SA; however,
the Spooners Creek area is closed to shellfish harvesting due to elevated
coliform bacteria counts.
E. PANAMA CITY, FLORIDA
The fifth and final study area was at Panama City in the Florida
panhandle. Two canal developments surveyed at this area were the Woodlawn
and Hentz canals (depths of 10 feet or less) located on the west side of
St. Andrews Bay and on the east side of St. Andrews Bay in Pretty Bayou,
respectively. The Woodlawn Canal is approximately 20 years old with
all of its adjacent lots (45) developed. Sewage treatment is afforded
by a central sewerage system which discharges into St. Andrews Bay at
a point just north of the Woodlawn canal mouth. The canal systems are
shown in Figure 10.
The Hentz Canal is approximately 10 years old. There are 33 houses
adjacent to the canals. Approximately 5% of the lots adjacent to the
Hentz Canal are undeveloped. Septic tanks and sorption fields are the
mode of wastewater disposal in this area.
-------
FIGURE 4
STUDY AREA
PUNTA GORDA, FLORIDA
NOV 73 8 AUG 74
i>^~^*kl~^i^_.
LOCATION MAP
SCALE IN FEET
'•000,, 0 2.000 «»™ 6.000
-------
FIGURE 5
STUDY AREA
BIG PINE KEY
NOV 73 a AUG 74
Big Spanish Key
Johnson Key
Little Pine Key
Ramrod
-------
Doctors Point
FIGURE 6
STUDY AREA
BIG PINE KEY
NOV 73 a AUG 74
n No Name Key
V';:'.
N
Big Pine Key
1,00'.
SCALE IN FEET
0 1,000
2,000
-------
Gulf of Ueiico
FIGURE 7
STUDY AREA
MARATHON, FLORIDA
AUGUST, 1974
Florida Key
See Ftgure
*fiS*3fc Fas' Deer g
^teS"^
"•;-7"~-::V=^.
^^i^^
to
10
-------
FIGURE 8
STUDY SITES
NORTH CAROLINA
SEPTEMBER, 1974
-
-------
FIGURE 9
STUDY AREA
ATLANTIC BEACH
SEPTEMBER, 1974
BOGUf
SOUND
-------
25
Cuff Of
LOCATION MAP
FIGURE 10
STUDY AREA
PANAMA CITY, FLORIDA
SEPTEMBER, 1974
Woodlown Conol—' ,'v
SCALE IN YARDS
I.OOO 0 1,000 2,-jOO
-------
26
VII. STUDY RESULTS
A. TIDAL EXCHANGE STUDIES
A dye tracer was used to compare tidal flushing rates for finger
fill canals of various lengths, depths and widths and to gather data
for verification of predictive mathematical models (Section H) . The
basic procedure was to inject Rhodamine WT dye, measure the dye cloud
configuration with respect to time, compute dispersion coefficients
for input into the mathematical models and then verify the models with
field measured time-history concentration curves and mass decay rates.
1. Dispersion
Flushing of a contaminant from a canal system is accomplished by
both advective and dispersive transport mechanisms. Advective transport
is controlled by velocities generated by -tides and inflows from external
sources. Dispersive transport is governed by many factors including
wind induced turbulence, salinity and temperature gradients, and tidal
velocity. Simple mathematical techniques can be used to describe advec-
tive transport, but dispersive transport predictions are more difficult.
Field measurements of dye clouds can be applied to one dimensional
mass transfer equations to calculate dispersion coefficients. The
following equation is generally used to describe concentration gradients
(7).
IS. „ °L 1_ -CA3c) „ 9c +s
3t T~ 3x ^T ^ 9x" -S (Eq- D
For an instantaneous release of mass at x » 0, the above equation
integrates to the form:
M (x-ut)2 (Eq- 2)
- A T\ t
L
where; Cx t - tracer concentration at distance x and elapsed time t
M = mass of dye released
A = cross sectional area of channel
DL » longitudinal dispersion coefficient
t = elapsed time from tracer release
u » velocity of flow
The peak concentration occurs at a distance ut with a magnitude
equal to:
M (Eq- 3)
-------
27
Concentrations upstream and downstream from the peak decrease with
distance by:
cx t "
4 DLt
where Cp = peak concentration.
Ideally in a flowing stream an instantaneous release of tracer would
form a cloud (described by equations 1-4) which would have a longitudinal
concentration gradient in the form of a bell shaped curve skewed in the
downstream direction. The curve would flatten with time as it moves
downstream. The "flattening" of the concentration curve is a measure
of the dispersion coefficient. In a dead-end canal system with little
or no net inflow, the peak concentration is translated downstream only
slightly and the bell-shaped concentration curve is not allowed to expand
upstream. Instead, the mass of tracer is mixed with and expelled in
the tidal prism governed by the oscillating tides. With time, the peak
flattens and becomes indistinguishable as the tracer continues to flush
from the canal system.
In order to measure longitudinal dispersion coefficient and flushing
rates, dye was injected into two canals at Punta Gorda, three canals at
Big Pine Key, and two canals at Atlantic Beach. Injections of dye were
made at high slack tide as a point source at mid -depth in the canals.
The time history of dye concentrations was measured using a boat -mounted
flow-through microfluorometer. The fluorometer was calibrated with dye
standards in the range of 1 to 500 ppb and adjusted for background
fluorescence following each sampling run. Canals I and II (Figure 11) ,
III, IV and V (Figure 12) and VI and VII (Figure 13) were used in the
dye studies. The longitudinal points of dye injection were varied in an
attempt to ascertain any differences in dispersion in similar canals,
particularly in the. case of Canals III and V (Table I) .
TABLE I
POINTS OF DYE INJECTIONS
PUNTA GORDA AND BIG PINE KEY, FLORIDA
AND ATLANTIC BEACH, NORTH CAROLINA
Distance from Volume
_Canal Depth Dead End Injected
I Punta Gorda MID 100 feet 1500 ml
II Punta Gorda MID 650 feet 1500 ml
III Big Pine Key MID 50 feet 500 ml
IV Big Pine Key MID 50 feet 500 ml
V Big Pine Key MID 300 feet 500 ml
VI Atlantic Beach MID 200 feet 500 ml
VII Atlantic Beach MID 400 feet 500 ml
-------
28
Prior to the dye injections, stage recorders were installed in the
three study areas. Diurnal tides with a range of approximately 2.4 feet
were measured at Punta Gorda (Figure 14). At Big Pine Key, semi-diurnal
tides with a range of approximately 1 foot were measured (Figure 13), and
at Atlantic Beach, semi-diurnal tides with a range of approximately 2.1
feet were measured (Figure 16). A recording fathometer was used to measure
the longitudinal and cross sectional configurations of each of the canals
(Figures 17, 18 and 19). These sections along with the tidal recordings
allowed for volume calculations at any time so that dye concentrations
could be related to dye mass.
Figures 20 through 26 describe the time history of the dye concen-
trations in Canals I, II, III, IV, V, VI and VII respectively. The
typical bell shaped durve is seen only in Figure 24 (Canal V) and then
only at t - 12 and 15 hours. Figure 27 presents the time history of
dye concentrations in Canal I relative to various canal locations. The
tracer was found to be well mixed throughout the canal cross sections.
Longitudinal dispersion coefficients calculated from the time-history
concentration curves are presented in Table II along with dispersion cor.
efficients derived by an empirical method, described by O'Connor et al.,
(8), i.e.,
DL = 5.2 (u max)4/3 4/3 law (Eq - 5)
where
DL • Dispersion coefficient in sq mile/day.
u max - Maximum tidal velocity at the section in knots.
In Table II, Method A is simply the ratio of the surface area covered
by the dye cloud to the elapsed time since the dye injection.
Method B is derived from equation 4. The slope of the line obtained by
plotting An C/C VS (X-ut)2 is given by l_ .
4V
DL is obtained by measuring the slope and solving; slope - 1
4DLtt
The final calculation (method C) is from the solution of the equation
for peak concentration (Eq 4) .
-------
29
TABLE II
Longitudinal Dispersion Coefficients (sq mi/day X 10"
Punta Gorda and Big Pine Key, Florida, November 1973
Atlantic Beach, North Carolina, September 1974
Canal Distance!/
I 50 feet
I 1200 feet
I 2500 feet
II 50 feet
II 1000 feet
II 2000 feet
III 50 feet
III 780 feet
III 1560 feet
IV 50 feet
IV 350 feet
IV 725 feet
V 50 feet
V 720 feet
V 1440 feet
VI 200 feet
VI 800 feet
VI 1400 feet
VII 200 feet
VII 1200 feet
VII 2600 feet
Method
4/3 law
100
1060
4
60
350
1
23
50
1
10
20
1
20
48
7
165
317
6
611
A
62
— _
15
9
26
62
93
B
35
25
26
11
24
50
62
C
75
36
18
3
\
26
104
186
1730
JL/ distance for which the 4/3 law calculation was made as measured
seaward from the dead end. Since the dispersion coefficient is
dependent upon velocity, the coefficient becomes larger toward
the canal mouths.
Table II shows the empirical method (4/3 law) for calculating longi-
tudinal dispersion coefficients at mid-length locations reasonably approxi-
mates the field-measured dispersion coefficients. This similarity was
evident at all the canals except Canal VII and, to a lesser extent, Canal
VI where field measured coefficients were several times smaller than
empirical predictions. Also, when other dispersive driving forces, (i.e.,
wind, salinity and temperature gradients) are large, the applicability
of the empirical value diminishes because it is not considered in the
4/3 law.
Table III provides a comparison of longitudinal dispersion coefficients
computed for several well-known estuaries by Thoman et al. (7). Note
that the dispersion coefficients decrease as the heads of Che estuaries
are approached. However, these coefficients are much greater than observed
in this study (Table II), thus showing the autocorrelation of diminishing
dispersion coefficients with decreasing aerial dimensions of the water body.
-------
30
TABLE III
LONGITUDINAL DISPERSION COEFFICIENTS
VARIOUS ESTUARIES
(Thoman et al.)
Estuary
Delaware
Delaware
Potomac
Potomac
Potomac
Waccasassa
(Cedar Key, FL)
Waccasassa
(Cedar Key, FL)
NY Harbor (Including
Upper Bay, E. River,
N. River, Newark Bay
and Kills)
James
Hudson
Severn, Eng.
(Summer)
Severn, Eng.
(Winter)
Thames, Eng.
Thames, Eng.
Non-Tidal Rivers
Mi2/day Tracer
2-7 Chlorides
7-11
0.2-0.6
0.6-6.0
2.0-2.7
9-11
8
1.8-4.0
1.8-2.8
11.1
0.025-1.3
Chlorides
Dye
Chlorides
6.0-10.0 chlorides
Chlorides
0.4-0.8 Dye
10.0-24.0 Chlorides
Sulfates
Chlorides
Salinity
4.1-17.7 Salinity
Salinity
Salinity
Radioactive
Tracers
Remarks
Torresdale, PA to Reedy
Island, DE
Lower Portion of Estuary
to Delaware Bay
Upper 25 Mi. Non-Saline'
Portion
Middle 25 Mi. Brackish
Portion
Lower 50 Mi. Ch 3,000-
10,000 mg/1
Small Gulf of Mexico
Estuary, Brackish.Portion,
umax = °'4 Knots» with
Variable Area
Upper Non-Saline Portion
Large Saline Harbor,
Estuary and Tidal Strait
Non-Saline Portion
25-50 Mi. from Battery,
Cl 1000-5000 mg/1
From Weston-Super-Mare
to Sharpness
Higher River Flows
10-25 Mi. below London
Br. Low River Flow
30 Mi. below London
Br. High River Flow
Average Value about
0.1 Mi2/Day
-------
31
The mid length dispersion coefficients in Table II were used in the
mathematical models to be discussed later.
2. Tidal Flushing
The rate at which a contaminant is transported out of a canal is
usually expressed in terms of flushing time. In this section flushing
times will be calculated from the dye study data and will be compared to
flushing predictions using a "tidal prism" technique.
Time history dye concentrations (Figures 20 - 24, Florida 1973)
coupled with respective canal volumes were used to calculate flushing
curves (Figure 28). The curves were fitted by standard regression analysis
of the general equation for a power function;
Y = AtB (Eq- 6)
Where
Y = Mass of tracer at time t x 10Q
original mass of tracer
t = elapsed time since dye dump
A & B are constants
A least squares comparison of difference in flushing rates in paired
canals were tested for significant differences (Table IV).
TABLE IV
Comparison of Canal Flushing Rates by Least Square Analysis
Big Pine Key and Punta Gorda, Florida, November 1973
Probability of having
Paired Canals different flushing rate
III VS IV >80%
III VS V <50%
I VS II >99%
I VS III >99%
As shown in Table IV, flushing rates of the five Florida canals varied
considerably. Identical canals (i.e., Ill and V at Big Pine Key) showed
nearly identical rates even though dye Injections were made at 50 feet and
100 feet from the dead-end in the respective canals. It is important
to note that the elapsed time at which dye began exiting the canals varied
from 5.3 hours to 27 hours. The earlier time is associated with an injec-
tion 650 feet from the dead-end of a 2000 foot canal and the later time
is for an injection 100 feet from the dead-end in a 2500 foot canal. Both
canals were at Punta Gorda. ,
-------
32
These flushing rates were used to verify mathematical modeling
techniques. However, prior to discussing mathematical modeling, a tidal
prism method for determining flushing rates will be compared to the dye
measurements.
The tidal prism technique for predicting flushing rates is based
on the ratio of canal low water volume to the volume of water exchanged
during the tidal cycle (tidal prism)j
C-kt) (Kq- 7)
where;
M. = mass at time t
M = original mass
VL * volume at low water
T - tidal prism volume
a = mixing constant
N = number of tidal cycles
g-kt = mass decay due to photochemical reaction,
absorption, etc.
The above equation was solved by assuming a mixing coefficient (assumed
to be one,i.e., complete mixing) and a mass decay coefficient (k). Decay
coefficient for Rhodamine dye subjected to bright sunlight conditions was
found to be -0.0224 per hour (9). Tidal prism flushing rates using this
photochemical decay rate adjusted for light penetration are compared to
field-measured flushing rates (Table V).
TABLE V
Typical Canal Flushing Times* - Comparing Tidal Prism
Computations and Field Measurements
Punta Gorda and Big Pine Key, Florida
November 1973
Time for 50% Time for 90%
Flushing Flushing
Canal Location Tracer Tidal Prism Tracer Tidal Prism
I Punta Gorda 36 hrs. 33 hrs 70 hrs 108 hrs
II Punta Gorda 14 28 110 97
III Big Pine Key 27 37 220 125
IV Big Pine Key 40 40 500 137
V Big Pine Key 26 37 170 125
*NOTE-flushing times for a conservative contaminant (no decay) will be
discussed in the "modeling" section.
-------
33
Flushing times computed by the tidal prism technique are not entirely
predictive of actual flushing times, but their application as a quick
approximation should be considered. Since this method simply compares
the ratio of the tidal prism volume to the low water volume, it does not
adequately describe flushing differences in canals having equal cross
sectional areas but unequal lengths.
Dispersion factors and flushing times are two important indices of
mixing forces and residence of pollutants in aquatic systems. Time and
resources are not always available to field measure these parameters.
Therefore, reliable empirical means are extremely valuable. Predictive
equations such as the ones discussed in this section do not always
prove reliable. However, with judicious screening and verification,
mathematical predictions are invaluable. An example from this study is
the use of 4/3 law (Eq- 5 and Table II). This method of calculating dis-
persion, coefficients has proven reliable in the context that it was used.
If salinity or temperature stratification had been encountered in the
canal system, the use of this equation would not have been warranted.
Both of these characteristics as well as wind-induced shear velocities
tend to increase the apparent dispersion.
-------
34
FIGURE II
TRACER STUDY
PUNTA GORDA, FLORIDA
NOVEMBER, 1973
LOCATION MAP
SCALE IN FEET
-------
Big Pine Key
Doctors Point
_;r.i
FIGURE 12
TRACER STUDIES
BIG PINE KEY
NOVEMBER, 1973
o
-a
5 No Nome Key
.*••: *
N
1,000
SCALE IN FEET
0 i.OOO
tn
-------
FIGURE 13
TRACER STUDY
ATLANTIC BEACH
SEPTEMBER, 1974
BOGU£
SOUND
ATLANTIC BCACH
ATLANTIC OCEAN
-------
-------
2.0 i—
1.0
U. O
lu
O
-1.0
V)
Ul
g
I- -2.0
-3.0
FIGURE 15
TIDAL RECORDINGS AT BIG PINE KEY FLORIDA
NOVEMBER, 1973
w
OB
J L_L
I I I
OOOO 1200 OOOO 1200 0000 1200 0000 1200 0000 1200 OOOO 1200 OOOO 1200 OOOO
TIME
16 17 18 19 20 21 22
NOV. 1973
-------
3.0
2.0
1.0
-1.0
-2.0
-3.0
FIGURE 16
TIDAL RECORDING AT ATLANTIC BEACH, NORTH CAROLINA
SEPTEMBER,1974
<*>
•O
1200 0000 1200 0000 1200 0000 1200 0000 1200 0000 1200 0000 1200 0000 1200 0000
Time
18 19 20 21 22 23 24
SEPTEMBER,1974
-------
40
FIGURE 17
TYPICAL LONGITUDINAL SECTIONS AND CROSS SECTIONS
PUNTA GORDA, FLORIDA
NOVEMBER, 1973
10'
Section A
Section B
10'
Dead End
'!"••
.•?•
5' £
1 ._, , •
1
Section A » I
^^_ •
o1
500
Mouth
Stction
1000'
2000
2500
Canal #1 ( 100* Wide to 1800* then 60* Wide to 2500')
Canal*IE (50* Wide to 650' then IOC1 Wide to 2000*)
10
Section A
Section B
Section C
-Dead End
Mouth —
10'
500'
1000
1500
2000'
-------
41
FIGURE 18
TYPICAL LONGITUDINAL SECTIONS AND CROSS SECTIONS
BIG PINE KEY, FLORIDA
NOVEMBER, 1973
Stction A
Otod End
5'
10
.1
•+- l»«fl»n A
Stttlcn
30'-
Stction 8
Mouth
0'
300*
600*
-------
42
FIGURE 19
TYPICAL LONGITUDINAL SECTIONS AND CROSS SECTIONS
ATLANTIC BEACH, NORTH CAROLINA
0'
5
10
15
20
0'
5
10
15
20
Dead
* -
V,
*#&fF
SECTION A
end
1
~~ Jsection
SEPTEMB:
Mouth
A
0 200 400 600 800 1000 1200 1400 1600
CANAL # VI
CANAL #VII
SECTION B
Dead End
SECTION C
Mouth-
•Section B
A I JiiV.*iM}%^rvv
< ui.'.* r.-• I T«'v<^» v: •.•.'..' {T? •
20
C
0' 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
-------
160
140
120
CD
a.
a.
— 100
UJ
o
z
o
o
a:
LU
o
CC
80
60
40
20
NQ
10-5 hrs
N^
\ V
7 hrs*
r
14.5 hrs
\
\
r
27 hrs
/•
38 hrs
I II
FIGURE 20
CONCENTRATION CURVES FROM DYE STUDY CANAL
PUNTA GORDA, FLORIDA
NOVEMBER, 1973
\
\\
V-
(O
* Elapsed Time from Dye Dump
~~^V-^
NxS^
I I I 1
30 hrs
_
O
X
H
O
I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
DISTANCE DOWNSTREAM FROM DEAD-END (FEET)
2200
2400 2600
-------
FIGURE 21
CONCENTRATION CURVES FROM DYE STUDY CANAL * 3Z
IUU
m 80
Q.
Q.
z
0
P 60
(T
UJ
o
Z 40
o
o
cr
UJ
o
g 20
i-
0
^MMV
•MMW
^\ ,-7.5
— _£T' X'
_ __ ^14.5 hrs -^
^...-
^•27 hrs
^_ r-38 hrs
-^
~l 1 1
PUNTA GORDA, FLORIDA
NOVEMBER, 1973
s*'
hrs* ./ 5
/ 2
* / fl
Elapsed Time from Dye Dump / c
/ u
/ ;
^^> ^ 'l
^^ ^^. ^.V*^^
— — — ^K^ ^^-,^^ "~~ —-.. ^«».— ^^ ^..^^^ >^
\ "v\
_^=^_ \
35 "" ^\ .
1 1 1 1 1 1 1 1
200 400 600 800 IOOO 1200 1400 1600
DISTANCE DOWNSTREAM FROM DEAD-END (FEET)
1800 2000
-------
140
12O
FIGURE 22
CONCENTRATION CURVES FROM DYE STUDY CANAL * HE
BIG PINE KEY, FLORIDA
NOVEMBER, 1973
100
o_
o.
LU
O
Z
O
o
oc.
LU
O
Elapsed Time from Dye Dump
120
140 360 ' 480 600 720 840 960 1080 1200 1320 1440 1560
DISTANCE DOWNSTREAM FROM DEAD END (FEET)
-------
240
200
m
QL
i 160
<
o:
UJ
o
UJ
O
120
80
4O
FIGURE 23
CONCENTRATION CURVES FROM DYE STUDY CANAL
BIG PINE KEY, FLORIDA
NOVEMBER, 1973
TV
-14.5 hrs
17 hrs
Elapsed Time from Dye Dump
o
X
I I I I
I I I I
50 IOO 150 200 250 300 350 400 45O 500
DISTANCE DOWNSTREAM FROM DEAD END (FEET)
550
600 650 700 750
-------
FIGURE 24
CONCENTRATION CURVES FROM DYE STUDY CANAL
TT
i«tu
120
m
OL 100
Q.
Z
o
< 8O
CC
K
Z
UJ
o
0 60
0
QL
O
£ 40
20
O
BIG PINE KEY, FLORIDA
NOVEMBER, 1973
_
— —
...^^
/' \
V
__ Elapsed Time from Dye Dump _/ '-. _/— 12 5 hrs*
/ \
^/
.,••• 15 hrs — -^ \
VI7 hrs ..-^ If
^ ^"'' ^- 'N \
' * /* ^^"'^'">t ^ "^' ^ \
— ^"-^»r"1-"" -^**" '~~~" „ x, \
• f^ ~^. it,-^. ~— — .^^ >w >
-.x'-^.. -•^^-i^_ ^3 hT; — ^— >_ -^^"^V'^-^: "~~
~^*"""" ^4° hrs ~" ^r!:"'"^^^^
*>^^^ *>*-..
I 1 1 1 1 1 1 1
O 120 240 360 48O 600 720 840 960 1080
^
i
z
o
u.
o
.1
o
^r^^^^
\ ""--
"^"™*"" *^«^ ^^^i _ ^T?1^— ^^—
II 1
1200 1320 1440
DISTANCE DOWNSTREAM FROM DEAD END (FEET)
-------
8
ft
P<
A
o 4
g
o
05
W
O
FIGURE 25
CONCENTRATION CURVES FROM DYE STUDY CANAL #VI
ATLANTIC BEACH, NORTH CAROLINA
SEPTEMBER,1974
*Elapsed time from dye dump
•u
00
Canal Mouth
200
400 600 800 1000
DISTANCE FROM DEAD END (FEET)
1200
1400
1600
-------
FIGURE 26
CONCENTRATION CURVES FROM DYE STUDY CANAL NO. VII
ATLANTIC BEACH, NORTH CAROLINA
SEPTEMBER, 1974
a
(X
w
o
1
7
6
5
4
24 hrs.*
*elapsed time from dye dump
Canal mouth
400
800
1200
1600
2000
2400
DISTANCE DOWNSTREAM FROM DEAD END (FEET)
-------
50
FIGURE 27
TIME HISTORY OF TRACER CONCENTRATIONS
AT VARIOUS CANAL LOCATIONS
PUNTA GORDA, FLORIDA
NOVEMBER, 1973
zoo
X)
a.
t 150
V)
Z
g
tr
i-
Z 100
Id
U
Z
o
U
or
Id
< 50
(C
1-
n
V
\
\
\
\
\
\
\
\
V
%
\
\ Can
\
\
\
~"~ \
\
\s^__s Dead End (50')
\
\
s
v^
— XN
Mid Point (1,200*) -, ^^_.^^
S Mouth ( 2,500") — ^'^^..^
1 .^ \ — 1 V_
10
20 30 40
ELAPSED TIME (HOURS)
50
60
-------
1,000
51
FIGURE 28
CANAL FLUSHING FROM DYE STUDY
BIG P|NE KEY 8 PUNTA GORDA, FLORIDA
NOVEMBER, 1973
KEY
—^^— 9 Canal * 1C Undeveloped Canal at Punla Gorda, Florida
—-—— © Canal * IE Developed Canal at Punta Gorda, Florida
— •— Q Canal * HE Undeveloped Canal at Big Pine Key, Florida
. — A Canal * EC Developed Canal at Big Pine Key, Florida
• —•••- • Canal * 3Z1 Undeveloped Canal at Big Pine Key, Florida
100
u
rr
Id
a.
CO
4
o
u
V.
10
V V- • ^x
V \NX vv*
®N V NX ^
1 | I I I Mi
I II Illll I I I I I Mil
10 100
ELAPSED TIME (HOURS)
1,000
-------
52
B. WATER QUALITY STUDIES
These studies were designed to provide basic water quality data
for the selected developed and undeveloped dead-end canal systems.
Investigations were conducted at the locations shown and dates indicated
in the following Table (VI):
TABLE VI
STUDY LOCATIONS
NOV. AUG. SEPT. I/ Reference
; LOCATION 1973 1974 1974 Station Figure
Punta Gorda, FL X X 1-7 and A-E 29
Big Pine Key, FL X X 8-14 and 30
F & G
Marathon, FL X 15-19 31
Panama City, FL X A-I 32
Atlantic Beach, NC X 1 - 10 33
Spooners Creek, NC X 1 - 6 34
Emerald Isles, NC X 1 - 3 35
I/ - Numerical notation indicates primary stations; other notations
designate secondary sampling sites.
Studies were conducted over complete tidal cycles except at Emerald
Isles, where two sets of grab samples were taken. Water quality samples
were collected during periods of slack tide from mid-channel, mid-depth
sampling locations. In addition, vertical salinity, temperature and
dissolved oxygen profiles (one foot increments) were determined every three
hours.
At primary stations, sampling extended through a complete 24-hour
tidal cycle. Secondary stations, i.e., alphabetized station designations
at Punta Gorda and Big Pine Key, received sampling once or twice at
slack tides. Routinely, samples for chemical analyses were obtained with
a Kemmerer Sampler at mid-channel and from mid-depth. All samples received
appropriate preservation at time of collection and then were returned to
our laboratory in Athens, Georgia. Analytical processing (using EPA
methods) included determinations for the following constituents:
• Heavy metals (Fe, Mn, Pb and Zn)
• Total Organic Carbon (TOC)
• Nitrogen (TKN, NH3, N02-N03, As N)
-------
53
• Total Phosphorus (T-Phos as P)
• Suspended and Volatile Solids (TSS and VSS)
• Biochemical Oxygen Demand (BOD5).
Summaries of analysis are provided in Tables VII thru XV and data
tabulation in Appendices B and C.
These water quality studies were designed to provide information
relative to the following concerns:
• Vertical and longitudinal distributions of temperature, salinity
and dissolved oxygen in dead-end canal systems.
• Water quality characteristics of developed and undeveloped
dead-end canal systems.
1. Salinity. Temperature and Dissolved Oxygen
Estuaries by definition are mixing zones4 for sea and fresh waters.
Temperature and salinity differences of these waters result in longitudinal
gradients often characterized by vertical stratification. Such stratifica-
tion has pronounced effects on biotic forms, mixing patterns, and subsequently
on the dissolved oxygen regime.
During the November 1973 studies, salinity and temperature were
essentially constant throughout the water column at all sampling stations
at the Punta Gorda and Big Pine Key study areas (Figures 36 through 44).
Salinities at mid-depth sampling locations ranged from 28 to 29 ppt and
38 to 39 ppt at the Punta Gorda and Big Pine Key locations, respectively.
Salinity concentrations and temperatures were generally lower at
Punta Gorda than at Big Pine Key because of upland drainage area and lower
ambient air temperatures. At both Punta Gorda and Big Pine Key, salinities
were somewhat greater in the undeveloped (no dwelling units along the
canal banks) canals than that recorded in the developed waterways. At
Punta Gorda, these differences may stem from the fact that the developed
canals (Stations 5-7) were located further upstream and, therefore,
merely reflected greater influence from upland drainage. At Big Pine
Key, the lower salinities found in the developed canal appeared to be re-
lated to lower flushing rates; therefore, freshwater infiltration, whether
due to storm runoff or septic tank drainage, would tend to be retained in
the system for longer periods. The tidal exchange studies show the
developed canal (III) to maintain a 50 percent greater flushing capability.
During periods of higher than normal groundwater tables and Increased
upland runoff, the salinity regime and biotic communities at the Punta
Gorda canals would be expected to shift considerably, while at Big Pine Key
-------
54
salinities would remain relatively stable throughout the year since
runoff and freshwater aquifer drainage are minimal.
At Punta Gorda, in November 1973, all stations exhibited a diel DO
variation indicative of plant photosynthesis and respiration. Greatest
DO concentrations occurred during daylight hours when plant oxygen produc-
tion exceeded respiration. Minimum DO concentrations were measured during
early morning hours when respiration prevailed (Figures 45 and 46, Appendix
B-l.l). Surface and bottom DO concentrations generally differed by less
than 0.5 mg/1. This stratification, even though small, is evidence of
benthic oxygen demands. Absence of adequate light for photosynthesis
would exclude the presence of benthic plants.
The Charlotte Harbor Station (4) exhibited pronounced diel DO concen-
tration variations ranging from 7.5 to 4.8 mg/1. This station may be
reflecting the respiration requirements of the dense vegetation (Ulva)
colonizing the adjoining tidal flats. The channel bottom at the station
was fairly well scoured. There were negligible differences between the
surface and bottom DO concentrations due to the shallowness of this area
(approximately 3 feet deep).
A decrease in DO concentrations was exhibited in the developed canal
at Punta Gorda from its mouth (5.0) to its dead-end (3.7). This depression
was 1.3 mg/1. For the undeveloped canal, concentration difference from
the mouth to the dead end was only 0.2 mg/1; all values exceeded 4.0 mg/1.
Dissolved oxygen standard violation in the developed canal was restricted
to the dead-end reach.
Dissolved oxygen profiles were run once during the study at five
additional stations (A, B, C, D and E) convenient to the study site. These
stations are further inland and in some cases had a greater degree of resi-
dential development along their banks (Figure 29). DO regimes for.these
stations fell within the DO ranges demonstrated at the seven previously
discussed stations at Punta Gorda (Figures 47-49).
Dissolved oxygen concentrations at Big Pine Key stations are shown
in Figure 50 for an undeveloped canal (Stations 8-10) and in Figure 51
for a developed canal (Stations 12-14). DO fluctuations, in general,
followed typical diel variation indicative of plant photosynthesis and
respiration.
Vertical DO stratification was much more pronounced in the developed
canal than in the undeveloped canal. The mid-length station (No. 13) in
the developed canal exhibited the greatest degree of vertical stratifica-
tion with a maximum surface to bottom difference of 1.2 mg/1 occurring
at 0118 hours on November 18, 1973.
In general, DO concentration decreased in both canals from the mouth
to the dead end. The DO concentration at the dead end of the developed
canal was usually 1 mg/1 lower than .a comparable location in the undeveloped
canal, although flushing studies show the latter canal to be a better
mixed system.
-------
55
Two additional dead-end stations (F and 6) were sampled at Big Pine
Key during the DO profile studies. Both stations were located on
developed canals (Figure 30). The lowest DO concentration (3.4 mg/1)
occurred near the bottom at Station F at approximately the same time (0555
hours) as the lowest DO (4.0 mg/1) recorded at Station 12. The highest
DO concentrations at Station F and 12 also occurred concurrently, and
were 5.2 and 5.6 mg/1, respectively, at approximately 1700 hours.
Large quantities of marine grasses/algae covered the water surface
from the middle to the end of the canal where Station 6 was located. These
marine plants entrapped in this canal had been blown in from Bogie Channel
and Big Spanish Channel and were in various stages of decomposition. Other
canals at the time of our studies were spared this surface accumulation
of vegetation and trash. The floating mat was 1-3 feet thick and gave
off septic odors. Dissolved oxygen measurements (Table XVI) indicated
that a significant oxygen demand was exerted at both the surface and
bottom of the water column at this station.
A study conducted by the Florida Department of Pollution Control (FDPC)
in April 1973 (10) documented surface and bottom DO concentrations of 2.3
and 1.4 mg/1 respectively at this same location (Station G). At the time
of the FDPC study, seagrasses and marine algae along with dead sponges
and trash were observed at this station.
Table XVII presents a comparison of DO concentrations at the four dead-
end canal stations sampled. Dissolved oxygen concentrations were lower
in all three developed canal dead-end stations (12, F and G) than in the
undeveloped canal dead-end station (8). Station G exhibited the most
severe DO deficits due to decomposition of entrapped marine plant life.
The second study.in August 1974. at Punta Gorda revealed the dynamic
seasonal effects of freshwater drainage on canal mixing patterns. Canals
at Punta Gorda, excavated well below the grade of the natural estuarine
bottoms, proved to be a sink for dense saline waters. Severe salinity
stratification in the caaal systems lead to water quality consequences
because of poor vertical mixing. The consequences are readily demonstrated
in the dissolved oxygen data (Figures 52 thru 55). At all stations, mini-
mum DO concentrations were below state standards,and in addition, average
concentrations violated standards except at the mouth of the undeveloped
canal and the Charlotte Harbor stations.
Salinity stratification prohibited the required oxygen transfer and
resulted in anoxic conditions in both the developed and undeveloped canals;
however, the extent of the anoxic conditions in the developed canals was
due to added carbonaceous and nitrogenous oxygen demand in the developed
areas.
-------
56
Salinity stratification was not apparent in the August 1974 sampling
of the Big Pine Key stations. The quantity of freshwater runoff was
insufficient to develop the required density gradient for detection.
The qualitative differences between DO concentrations in the developed
canal (stations 12-14, F "and G) , undeveloped canal (Stations 8-10),and
background (Station 11) were parallel to those found in the November 1973
study (Figures 56 thru 60). The DO suppressions had increased drastically
between the two sampling periods as was the case in Punta Gorda. Stations
8, 9 and 10, undeveloped canal sampling locations and station 11, background
location,did not violate DO standards; however, with the exception of
station 13, all developed canal stations (12, 14, F and G) violated standards
(Figures 56 thru 60). In the absence of salinity stratification, DO
depressions below standards were attributed to a combination of factoos
such as higher water temperatures (lower DO solubility) and reduced benthic
plant life. Also to be considered is the fact that the developed canal
featured more sources of organic carbon and nitrogen plus longer flushing
times.
Sea Air Estates at Marathon, Florida (Figure 31) was sampled in August
1974. All canal stations violated state DO standards. This system was
extremely deep (maximum of 25 feet) with essentially no development along
its banks. Dissolved oxygen suppressions would best be related to poor
flushing and possibly to transfer of anoxde aquifer waters into the canal
system. Likewise, no salinity stratification was evidenced in this system
in the Florida Keys (Figures 61, 62 and 63).
Salinity, temperature and DO measurements were taken in canal systems
at Atlantic Beach and at Spooners Creek near Morehead City, North Carolina
in September 1974 (Figures 33 and 34). The degree of development along
the canal banks and the depth of the canal system again proved to be the
dominant factor in DO concentrations. Stations 1-5 at Atlantic Beach
had DO concentrations violating standards while background stations 6 and
7 exceeded standards (Figures 64 thru 67). Station 8, 9 and 10 in an un-
developed canal system met DO standards (Figures 67 and 68).
Violations of DO standards in the interior canal stations (1, 2, 3
and 4) in the developed canal can be attributed in part to salinity strati-
fication and also in part to oxygen demand for the stabilization of
nitrogenous and carbonaceous materials. In light of the high density
of the dwelling units and their use of septic tank systems, the source
of these oxygen-demanding materials is readily apparent. Figure 69
taken from a January 1973 aerial photograph relates the dwelling unit
density to average water column DO concentrations (September 1974).
At Spooners Creek, Stations (1, 2 and 3) violated DO standards while
stations (4, 5 and 6) were able to meet or exceed standards (Figures 70,
71 and 72). In general, background stations average DO concentrations were
20% higher than the interior canal stations, 6.5 and 5.4 respectively.
Although a salinity gradient existed in the water column in the interior
canal stations (1, 2 and 3) no stratification occurred.
-------
57
2. Biochemical Oxygen Demand
Five-day biochemical oxygen demands (BODij) are reported for only the
November 1973 studies conducted at Punta Gorda and Big Pine Key, Florida.
These analyses were eliminated from the further surveys because of limited
manpower and facilities.
At Punta Gorda, average BODij concentrations for all canal stations
ranged from 0.8 to 1.8 mg/1 with a single exception at Station A where
4.0 mg/1 was observed. Station A represented an extreme interior canal
location which was well developed relative to Canal II, and was in close
proximity to U. S. Highway 41 (Figure 29). No appreciable differences
were found between the developed and undeveloped canal stations.
Big Pine Key mean concentrations of BOD5 in the developed canals were
0.8 mg/1 while in the undeveloped system BODj concentrations averaged 0.5
mg/1. These low concentrations indicate that both systems were relatively
free of organic pollution.
3. Total Organic Carbon
The two survey periods (November 1973 and August 1974) for the
Punta Gorda and Big Pine Key Canals provide a basis for comparing seasonal
changes in water quality. In November, the mean total organic carbon
(TOC) concentration for Punta Gorda Canal stations was 8.1 mg/1 with a
range of 7.6 to 8.4 mg/1. These concentrations were nearly doubled in
the August 1974 survey (mean of 15 mg/1 and range of 14 to 22 mg/1).
The seasonal flux in TOC concentrations was not unexpected based on
results of detrital transport studies in the Ten Thousand Island region
of southwestern Florida (5). During the wet season (about June thru
September), surface runoff transported untold quantities of carbon
bearing materials that would otherwise remain landlocked during the
dry season (October through May) to the estuarine areas. With the coming
of the wet season, the two study canals (I and II) were vertically
stratified by August as shown in the profile studies.
To facilitate water quality comparisons between stations and canals,
when stratified, weighted averages for the entire water column are provided
in Table XVIII. The averaging procedure is the following:
cs + ZB C
—5- A weighted average concentration.
ZT
where: Z • Vertical dimension of surface stratum
S
Zn • Vertical dimension of bottom stratum
o
ZT » Vertical dimension of water column
C - Concentration in surface stratum
D
Cn • Concentration in bottom stratum
B
-------
58
In November, TOC concentrations in the undeveloped waterway (Canal I)
averaged about 9 percent greater than those found in the developed system
(Canal II). The elevated TOC concentrations observed for Canal I (undevel-
oped) in November could simply have been related to its position in
the Alligator Creek drainage system (Figure 29). At this time, surface
land runoff would undoubtedly constitute a minor factor contributing to
the TOC regime in terms of allochthonous inputs. More appropriately,
the organic carbon pool of the 'canal systems would be linked to autoch-'
thonous sources which include detri'tus from mangrove forests, salt marshes
and possibly septic tank sorption field leachate. The potential for
septic systems as carbon sources in the Alligator Creek area is clearly
demonstrated in the results of the^leachate studies.
In August the TOC picture reversed with respect to the canals. The
developed waterway (Canal II) had an average TOC concentration nearly
9 percent greater than that found in the undeveloped system (Canal I).
The inflow of freshwater to the developed canal was evident in the salinity
studies (Table IX). As noted in the mass exchange studies, the developed
canal was importing quantities of organic carbon substantially higher in
value than the undeveloped system.
The seasonal changes in organic carbon concentrations were also evi-
dent for the canals in the Big Pine Key study areas, although the seasonal
trend was reversed from that experienced at Punta Gorda. - Higher concen-
trations were observed in November than in August (average of 4.3 mg/1
and 2.1 mg/1, respectively). The'seasonal shift in TOC levels was
apparently not related to land runoff; November is considered a period
of the dry season. Also, land runoff even during the wet season is not
viewed as a major source of organic matter simply because of the limited
size of the drainage area of Big Pine Key, the nature of the terrestrial
plant community, and chemical composition of the soil. Hence, the TOC
pool associated with the canal system would basically be dependent on autoch-
thonous sources such as detritus from seagrasses and macroalgae colonizing
in the canals. This discussion point is tentatively verified by the mass
exchange studies. In both cases Canals III and IV were exporting organic
carbon from the system. Thus, a seasonal flux in TOC levels in Canals III
(undeveloped) and IV (developed) would probably be related to seasonal
trends in marine plant community productivity.
As indicated, greater levels of TOC were observed in the November
survey. Likewise, a greater standing crop of benthic plants was recorded
in November for the two canals. Table XIX shows the observed seasonal
changes in plant biomass to observed TOC concentrations with respect to
the two waterways.
At Sea-Air Estates in Marathon, Florida, TOC concentrations for
all stations sampled averaged from 1.0 to 1.2 mg/1. Little differences
in TOC levels were apparent between canal and background stations
(Table XIII). However, the general concentrations of organic carbon
found was substantially less than those observed at Big Pine Key during
this same period. The relationship between benthic plant biomass and
TOC concentrations presented for the Big Pine Key canals can be extended
-------
59
to the Sea-Air Estate system. The Sea-Air Estate canal system was extremely
deep (16 to 25 feet) and virtually void of benthic macrophytes and algae.
Some macrophytes colonized the vertical slopes of the finger canals;
however, no apparent export of TOG was taking place, but rather an
import of organic carbon (see mass exchange study data).
Total organic carbon concentrations for canal stations (1 to 5 and
9, 10) at the Atlantic Beach location averaged 3.4 mg/1 with non-canal
stations (6, 7, 8) averaging 2.7 mg/1. Comparing the two averages, the
canal stations were about 25 percent higher in TOG levels. To compare
average TOG concentrations for different stages of canal development the
following is provided:
Stage of Development Stations Avg. TOC Cone, mg/1
Heavily developed canal 1, 2, 3 4.3
Lightly developed canal 4, 5 3.2
Undeveloped 9, 10 2.8
Non-canal 6» 7, 8 2.7
Sources of organic carbon to the canal systems might be better
envisioned after reviewing Figure 33 and considering the environmental
surroundings of each canal system. The heavily developed canal system
is flanked on all sides by commercial and residential units employing
septic tank systems for wastewater disposal. Leachate tracing studies
in this area demonstrated that effluent from the treatment systems
rapidly enter the canals; thus, leachates coupled with storm runoff
were sources of the TOG pool of the developed canals. Other sources to
the organic carbon pool would be material imported to the system via tidal
exchange. In the case of the undeveloped canal, septic tank systems
were absent, but the canal was entirely flanked on one side with dense
Spartina marsh subject to daily flushing. Organic carbon in the form of
plant detritus would thus be entrained from the marsh into the canal's
export regime. This was evident in the mass exchange study at station 10.
Total organic carbon concentrations found in the Spooners Creek
canals were on the average nearly 40 percent greater than those observed
for the non-canal stations (3.0 mg/1 and 2.1 mg/1 respectively). Spooners
Creek remains an active tidal creek which ultimately drains Juncus and
freshwater marsh areas. Development by residential units utilizing septic
tank systems is relatively light.
Average organic carbon concentrations found in the two Panama City
canals were comparable to levels reported for the November survey at
Punta Gorda (8.7 versus 8.1 mg/1, respectively). The Hentz Canal main-
tained an average TOC concentration nearly 20 percent greater than that
found in the Woodlawn system and 32 percent higher than background
(Stations D, E and F).
The former canal serves residential units utilizing septic tanks.
Compared to background concentrations at Stations D, E, and F, similar
levels were found in the Woodlawn canal.
-------
60
4. Nitrogen and Phosphorus
In November 1973, ammonia nitrogen (NHg-N) concentrations at Punta
Gorda were 10 to 110 percent greater in the developed canal stations than
those of the undeveloped canals—i.e., 0.09 to 0.17 mg/1 vs 0.08 mg/1,
respectively. Nitrite-nitrate nitrogen concentrations were two to four
times greater in the developed canal than in the undeveloped canal—i.e.,
0.027 to 0.042 mg/1 vs 0.01 to 0.15 mg/1, respectively. Kjeldahl
nitrogen and total phosphorus concentrations were similar in the paired
canals. However, Stations A and D and Stations A and B had above back-
ground levels of Kjeldahl and nitrite-nitrate nitrogen, respctively.
Total nitrogen and total phosphorus concentrations are shown on Figure
73.
In August 1974, the developed canal continued to maintain greater
concentrations of nitrogen (NHo, NC^-NC^, TKN). This seasonal change
(November to August) produced a sharp increase in the magnitude of the
concentrations. For example, ammonia increased more than 20 fold at the
developed canal dead-end location (Station 5). The principal environmental
factor responsible for the marked increase in nitrogen was vertical salinity
stratification. The density gradient (stratification) minimized vertical
mixing of the water column; thus, the bottom layer became stagnant and
physically isolated in many respects. Biological processes, however,
proceeded with continued respirational demands for oxygen. As the
dissolved oxygen was depleted, aerobic respiration transitions to anaero-
bic metabolism. In-'the latter mode, N0_-N03 and SO, ions became the
source of oxygen for microbial respiration which ultimately lead to the
production of ammonia and sulfide. The microbic community must have
a supply of carbon in addition to oxygen. In this case, organic carbon
was abundant either as sediment or suspended particulate matter. Also,
as the system becomes anoxic phosphorus is released from the sediments.
Released phosphorus freely mixes with and enriches the accompanying
waters.
The total nitrogen and total phosphorus concentrations (mg/1) found
at the dead-end and mid-canal stations are given in the following summary;
(also see figures 73 and 74).
-------
61
Canal Station Total Nitrogen Total Phosphorus
Nov 73 Aug 74 Nov 73 Aug 74
Background, Station 4 0.3 0.7 0.2 0.3
Canal I (undeveloped), 0.3 2.2 0.2 0.9
Stations 1 and 2
Canal II (developed), 0.4 4.3 0.2 1.1
Stations 5 and 6
An accounting of the allochthonous inputs (building site and street
runoff and septic tank leachates) to the developed canal can be approxi-
mated by comparing their nutrient loads to those of the undeveloped
canal. The nitrogen and phosphorus concentrations of Canal I subtracted
from those of Canal II and then multiplied by the volume of Canal II
reveals an excess (as compared to the undeveloped canal) of 109 pounds
of nitrogen and 10 pounds of phosphorus in August 1974.
These above nutrient poundages can be converted to population
equivalents by the following reported (11 & 12) conversions; 0.04 pounds
per capita per day and 0.003 pounds per capit'a per day for nitrogen
and phosphorus, respectively. This conversion yields an accumulation
of 2,731 and 3,467 man-days of nitrogen and phosphorus, respectively,
in the developed canal. Since there are approximately 25 people occupy-
ing this reach of the developed canal, the nutrient accumulation is
approximately 100 days or 16 weeks. This period is a reasonable esti-
mate of the period of major rainfall leading to stratification and
entrapment of nutrients in the canal systems.
The above mass balance indicates that these accumulated nutrients
will either be expelled to the receiving waters pnce the stratification is
relieved or accumulated to some extent in the benthic deposits. This
latter event would seem unlikely in view of the low C to N ratios reported
in the sediment studies
•"During the November 1973 Big Pine Key studies, only the ammonia
nitrogen concentrations indicated any differences in nutrient levels
between developed and undeveloped canals, with averages of 0.07 and
0.04 mg/1, respectively. This difference could be attributed to several
factors such as natural variations, lack of analytical preciseness, or
even enrichment from septic tank drainage. Total nitrogen and total
phosphorus concentrations for the Big Pine Key stations are shown on
Figure' 75.
-------
62
In August 1974, the average ammonia nitrogen concentrations for all
Big Fine Key stations was 0.10 mg/1 which represented a doubling of the
November 1973 averages for ammonia (Table VIII and X). As in November,
the developed waterway (Canal IV) continued to maintain greater levels
of ammonia as compared to the undeveloped canal (Canal III) . No seasonal
changes were apparent for the other nitrogen forms or for total phosphorus.
Total nitrogen and phosphorus concentrations are shown for all stations
on Figure 76.
At the Sear-Air Estates location, nitrogen concentrations did not
vary significantly between stations within the canal system. Both
ammonia and Kjeldahl nitrogen, however, were 20 to 30 percent greater
in canal stations than in the non-canal station (Station 19). Also,
these two forms of nitrogen were found in substantially lower concentra-
tions than those reported for the Big Pine Key canals. The opposite
was true for N02~NCs nitrogen, which averaged 0.05 mg/1 at Sea-Air
Estates and 0.01 mg/1 at Big Pine Key.
During the studies at Panama City, total nitrogen levels
for the Woodlawn waterway were generally higher in values compared to
background and the Hentz canal system (Table XII).' The higher concen-
trations probably reflecting the influence of a sewage treatment plant
which discharged at a point just north of the Woodland Canal entrance.
Nitrogen concentrations decrease landward. In the Hentz canal, total
nitrogen concentrations were about 20 percent less than observed for the
background area in Pretty Bayou (Station F) . The opposite trend was
apparent for the Hentz canal. Phosphorus concentrations averaged 3 to
4 times the concentrations found at either the background stations or
the Woodland Canal (0.8 versus 0.13 mg/1 and 0.03 mg/1, respectively).
Total nitrogen concentration for the Atlantic Beach canal stations
(1 to 5) averaged approximately 40 percent greater than averaged background
levels found at Stations 6, 7 and 8 (0.29 and 0.21 mg/1, respectively).
For the undeveloped canal (Stations 9 and 10) , the average for total
nitrogen was 0.22 mg/1 and was about 14 percent greater, than background.
Total nitrogen levels (TKN+N02-N03) reported 'for the canal systems
appeared related to vertical depths of each waterway and possibly reflects
the organic: nitrogen assimilation capacity of each system (Table XX).
Also Indicated in this table, total nitrogen and organic carbon concen-
trations follow a distribution related to average DO of the water column.
In this case, DO was primarily a function of depth as shown in the DO.
profile studies. The inverse relationship of depth to organic carbon,
total nitrogen, and dissolved oxygen as shown in Table XX indicates the
ability of shallower canals, based on better mixing, to assimilate the
detrital load.
-------
63
Kjeldahl and ammonia nitrogen at the Spooners Creek study site
averaged 0.25 and 0.06 mg/1 for the canal stations (1, 2 and 3).
The non-canal station (5) had levels of Kjeldahl and ammonia nitrogen
of 0.16 and 0.03 mg/1, respectively. Unlike the developed canals at
Atlantic City, the average DO for the lightly developed canals at
Spooners Creek were in excess of 5.3 mg/1 with a minimum concentration
of 3.7 mg/1.
5. Sulfides
Sulfide concentrations at both Punta Gorda and Big Pine Key
stations were less than 1.0 mg/1 in November 1973. Dissolved oxygen
levels were sufficient to keep the sulfur in the oxidized sulfate
form. Odors were being produced at the decaying floating marine
grasses at Station G in Big Pine Key, but since the mat was at the
water column surface, no sulfides were found at the mid-depth sampling
location.
6. Metals
Metal analyses included total iron, lead, manganese, and zinc.
At both Punta Gorda and Big Pine Key, lead and manganese concentrations
were at or below detection limits of 80.0 ug/1 and 40 ug/1, respectively.
The zinc concentrations were also relatively low: 22 to 50 ug/1 and
20 to 60 ug/1 at Punta Gorda and Big Pine Key, respectively. Higher
concentrations of zinc in both of the sampling areas were found in the
developed canals.
Iron concentrations at Punta Gorda were in the range of 150 to 350
ug/1 in both the developed and undeveloped canals. Station A at Punta
Gorda had a concentration of 3,500 ug/1 which was indicative of a high
degree of runoff or intrusion of iron-laden ground water. In a report
entitled "Ecosystems Analysis of the Big Cypress Swamp and Estuaries"
by the EPA in the estuarine areas of Collier County, iron concentrations
were reported to be in the range of 100 to 600 ug/1. A peak concentra-
tion of 5,600 ug/1 was noted in an area where fertilizers and fungicides
were used. Ground water iron concentrations were on the order of
900 ug/1 in the area.
At Big Pine Key, the iron concentrations generally ranged from
<60 to 200 ug/1. Two developed areas (Station 14 and H) had concen-
trations above these values, 260 and 620 ug/1, respectively. These
higher concentrations can be attributed to runoff and leachates from
septic tank drain fields.
-------
64
7. Bacteriological
Samples for total and fecal coliform determinations were collec-
ted at one foot below the surface in conjunction with the general
chemical sampling. Coliform results for the Punta Gorda, Big Pine
Key, Panama City, Atlantic Beach, Spooners Creek and Emerald Isles
stations are summarized in Table XXI. With the exception of the
Big Pine Key site, all of the canal study areas experienced coliform
densities in excess of those permitted by water quality standards.
Violations of these excessive coliform densities occurred at the
following sampling locations:
SITE CANAL TYPE AND STATION LOCATION
Punta Gorda, FL Developed Canal - Dead-End
Panama City, FL Developed Canal - Dead-End
Atlantic Beach, NC Developed Canal - Dead-End
Atlantic Beach, NC Developed Canal - Mid-Length
Atlantic Beach, NC Developed Canal - Mouth
Atlantic Beach, NC Developed Canal - Dead-End
Atlantic Beach, NC Developed Canal - Mouth
Spooners Creek, NC Developed Canal - Dead-End
Spooners Creek, NC Developed Canal - Boat Basin
Emerald Isles, NC Developed Canal - Dead-End
Emerald Isles, NC Developed Canal - Mid-Length
Emerald Isles, NC Developed Canal - Mid-Length
-------
65
Coliform bacteria densities at Big Pine Key in November 1973
were low (<10-220/100 ml). The total coliform bacteria densities
in the developed canals (Station 12, 13 and 14) were higher than
those in the undeveloped canals (Stations 8, 9 and 10) and at the
background station (Station 11).
Salmonella swabs were placed at Stations 1, 2, 3, 5, 5, 6 and 7'
at Punta Gorda and at Stations 8, 10, 11, 12, 14 and G at Big Pine
Key. However, no Salmonella were isolated at any of the above
stations.
Table XXII describes the bacteriological contamination
attendant with canal development without adequate wastewater treat-
ment facilities. In all cases, densities were much higher at canal
stations than at background stations. In addition, canal age and
number of dwelling units (with septic tanks) correlate well with
coliform densities, as does location within the canal system. For
example, stations AB-1, AB-2 and AB-3 are at the end, middle,and
mouth of a reasonably high density canal development. Total coliform
densities were 3,400, 400 and 360/100 ml at these respective stations.
These densities exceed water quality criteria for both Class SA and
SB waters. This area is classified as Class SA waters (shellfish
harvesting).
In the case of finger-fill canals, the environment associated
with septic tank ieachate includes waterways open to public contact
swimming, Chesher (13). This report contends that swimming is
a direct benefit of finger-fill canals in the Florida Keys. In
place of disinfection, we must totally rely on natural attrition
of the enteric organisms as they pass from private septic tank and
through the sorptlon field and into the adjacent waterway. The bacteria
counts found in our studies should raise some serious questions as to
the effectiveness of such a system to protect public health.
Monitoring for the presence of enteroviruses was not conducted
during these investigations. However, the potential for enteric
virus contamination of waterways subject to septic tank Ieachate
contamination does make this an area of concern for future monitoring
-------
66
efforts. We can ill afford to equate low bacterial indicator densities
with the absence of bacterial or viral pathogens.
-------
Table VI!
Average Concentratlone In the Hater Colu
Punta Cordat Florida
Hor«ber 1973
Station
1
2
3
*
5
6
7
A
B
C
D
E
Depth
4 ft
4
3
2
2
3
3
2
2
3
5
4
Water
Tap
22.2°C
22.2
21.4
21.3
22.3
22.3
22.0
22.0
21.5
21.0
23.2
23.6
Salinity
28 PPT
28
28
27
28
28
27
28
29
26
28
27
»
7.4
7.5
7.3
7.5
7.4
7.4
7.4
6.5
6.5
7.0
7.6
7.4
teeioue
total
mi
39 vg/1
39
52
36
35
38
43
200
39
45
51
42
leaidiM
Vol
KILT
22 m,/
26
39
23
25
20
23
20
28
20
34
25
!
D.O.
5.5a«/l
5.5
5.7
6.0
4.5
5.4
5.5
6.0
6.3
5.6
5.4
4.9
BOO,
1.8f/l
1.4
1.4
1.2
1.1
1.0
0.9
4.0
1.6
0.8
1.6
1.6
TOC
8.5«t/l
8.4
8.5
8.2
7.6
7.9
7.9
8.1
8.1
8.0
8.0
8.1
IB,-*
Total
0.08>«/1
0.08
0.08
0.09
0.17
0.10
0.09
0.17
0.10
0.20
0.10
0.10
•w
O.OlO^/i
0.010
0.015
0.020
0.042
0.035
0.037
0.030
0.030
0.050
0.040
O.OSO
Total
0.28^/1
0.27
0.57
0.32
0.37
0.32
0.35
0.63
0.42
0.42
0.95
0.55
Pho.-P
Total
o.iB.,/1
0.19
0.16
0.16
0.16
0.16
0.16
0.48
0.25
0.14
0.17
0.15
Sulflda Iron-fe
Total Total
<1.0«tA 208uf/l
<1.0 225
<1.0 358
<1.0 198
<1.0 275
<1.0 204
<1.0 158
<1.0 35OO
<1.0 280
<1.0 220
<1.0 200
<1.0 145
Lead
Total
<80 at/1
<80
<80
<80
<80
<80
-------
Tabl> VIII
Average Concentration* In the Water Colo
Bit Mne I*y. Florida
•oToaber 1973
atlo
t
10
11
12
13
14
T
C
•
I
I/
S
J
s
2
!
4
4
4
5
3
3
lot •»*•<
Water
T— p.
24.1
24.1
24.1
24.2
24.6
24.5
24.5
24.6
24.2
-
-
nllfon
Salinity
31
M
M
M
H
3t
3S
37
37
-
-
i bacteria co
(.1
3.1
1.2
8.1
(.2
8.1
8.2
8.1
8.0
7.9
7.9
lealdue
total
IPLT
76 a, /I
75
70
71
76
72
M
61
37
60
83
acentratlooa, aa
laaldue
Vol
ITLT
19 «t/l
17
17
18
17
14
21
19
31
21
28
aclee taken
D.o.
5.9 at/1
5.9
6.1
6.4
4.9
5.2
5.1
5.1
3.0
-
—
at 1 foot
••»
0.6 at/1
0.5
0.5
0.6
0.7
0.7
1.0
<0.5
1.3
<0.5
<0.5
death
toe
3.7 Bf/1
3.7
3.6
3.7
4.1
4.3
5.4
4.7
5.5
2.6
3.2
Total
0.04 a*/l
0.04
0.04
0.05
0.07
0.05
0.06
0.08
0.03
0.08
0.10
Total
0.010at/l
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.020
0.030
Kjel-M
Total
0.23 «t/l
0.24
0.20
0.19
0.27
0.24
0.28
0.25
0.30
0.25
0.25
Phoa-P Sulflde
Total Total
0.05 at/1 «1.0 at
0.03 <1.0
0.05 <1.0
0.03 <1.0
0.04 <1.0
0.04 <1.0
0.05 <1.0
0.06 <1.0
0.03 <1.0
0.01 <1.0
0.01 <1.0
Iron- fa
Total
/I 78 U|/l
62
70
82
192
64
260
<60
<6C
620
<60
Lead
Total
<80 ut/1
<80
<80
<80
<80
<80
<80
,80
<80
<80
<80
Manganese
Total
<40 ut/1
<40
<40
<40
<40
<*0
-------
Table IX. Average concentrations in water column, Punta Gorda, Florida, August 1974.
Station
1
2
3
4
5
6
7
Depth
(feet)
4
8
4
8
3
3
4
7
4
7
3
Water
Temperature
(°c)
31.0
29.8
30.6
29.2
30.8
31.6
30.5
28.9
30.4
30.1
30.4
Salinity
(ppt)
10.7
22.3
10.9
22.9
8.6
11.4
6.3
30.2
7.1
30.0
6.0
PEL
7.2
NS
7.2
NS
NS
7.7
7.1
NS
7.2
NS
NS
[Residue
Total
NFLT
(mg/1)
6.0
• NS
5.0
NS
7.0
7.0
7.0
NS
5.0
NS
8.0
Residue
folatile"
NFLT
(mg/1)
2.0
' NS
2.0
NS
2.0
2.0
4.0
NS
4.0
NS
5.0
TOG
(mg/1)
14.0
15.0-
13.8
13.0
15.4
14.8
15.0
16.0
13.8
22.0
15.2
NH3-N
Total
(mg/1)
0.22
4.88
0.17
7.60
0.12
0.14
0.75
8.25
0.14
8.85
0.13
Total
Kjel-N
(mg/1)
0.68
4.88
0.92
8.40
0.69
0.70
1.25
8.80
0.66
9.50
0.64
N0,-N0-
as N 3
(mg/1)
0.02
-------
Table X. Average concentrations in water column, Big Pine Key, Florida, August 1974.
Station
8
9
10
11
12
13
14
F
G
Depth
(feet)
5
5
5
2
5
4
4
4
5
Water
Temperature
(°C)
31.9
31.8
31.7
31.3
32.5
32.2
32.0
32.4
32.2
Salinity
(ppt)
35.1
35.1
35.3
35.6
33.7
35.0
35.1
34.9
35.1
PEL
8.1
8.1
NS
7.8
7.8
8.0
NS
NS
NS
Residue
Total
NFLT
(tng/D
8.0
9.0
3.2
5.0
5.0
4.2
4.0
2.0
3.0
Residue
Volatile1
" NFLT
(mg/.l)
3.0
5.0
1.8
3.0
3.0
2.2
2.0
2.0
2.0
TOC
(mg/1)
3.4
2.2
1.8
2.7
2.7
1.8
1.9
2.3
2.6
NH3-N
Total '
(mg/1)
0.09
0.10
0.06
0.11
0.11
0.09
0.09
0.12
0.11
Total
Kjel-N
(mg/1)
0.24
0.24
0.20
0.24
0.24
0.30
0.24
0.36
0.40
N02-N03
as N
(mg/1)
0.01
0.01
0.01
0.01
0.01
<0.01
0.01
0.01
0.01
Phos-P
Total
(mg/1)
0.04
0.03
0.04
0.04
0.04
0.04
0.03
0.04
0.04
—/Single observation.
NS = No sample.
-------
Table XI. Average concentrations in water column, Sea-Air Estates, Marathon, Florida
August 1974. '
Station
15
16
17
18
19
Depth
(ft)
8
10
12
5
3
Water
Temp.
(°C)
31.9
31.6
31.5
30.4
29.7
Salinity
(ppt)
35.2
35.5
35.5
36.1
36.8
PH!
7.8
7.6
7.7
NS
7.9
^Residue
Total
NFLT
(mg/1)
13.0
18.0
16.0
6.0
5.0
Residue
Volatile
NFLT
(mg/1)
9.0
12.0
12.0
4.0
3.0
TOG
(mg/1)
1.0
1.2
1.1
1.1
1.0
NH3-N
Total
(mg/1)
0.07
0.07
0.06
0.05
0.09
Total
Kjel-N
(mg/1)
0.15
0.15
0.17
0.13
0.18
'N02-N03
as N
(mg/1)
0.04
0.06
0.06
0.06
0.05
Total
Phos. as P
(mg/1)
0.03
0.03
0.03
0.03
0.03
,1/Slngle observation.
-------
Table XII. Average concentrations in water column, Panama City, Florida, September 1974.
Station
A
B
C
D
£
F
G
H
I
Depth
Interval
2
2
2
2
2
2
2
2
2
Water
Temp.
(°C)
28.6
28.5
28.0
28.0
28.9
27.6
28.3
28.6
28.2
Salinity
(ppt)
24.5
24.8
24.6
24.7
27.8
23.7
23.1
23.3
23.7
puiy
7.2
7.5
7.3
7.8
6.7
7.0
6.4
6.5
7.1
Residue
Total
NFLT
(me/1)
224
306
230
223
298
243
219
273
268
Residue
Volume
NFLT
(mg/1)
41
54
60
74
50
60
55
91
168
DO
(mg/1)
3.8
4.6
5.2
5.5
5.4
5.3
3.2
3.7
5.1
TOC
(mg/1)
8.5
7.4
7.7
7.4
6.8
7.4
9.7
9.5
9.2
NH3-N
Total
(mg/1)
0.02
0.02
0.01
0.01
0.01
0.01
0.02
0.01
0.01
N02+N03+N'
Total
(mg/1)
0.03
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.01
Kjel-N
Total
(mg/1)
0.29
0.48
0.58
0.50
0.23
0.40
0.33
0.26
0.37
Phos-P
Total
(mg/1)
6.04
0.03
0.03
0.01
0.01
0.02
0.10
0.07
0.07
Coliform
Total
(100/ml)
2,087
98
63
9
7
11
7
16
7
Coliform
Fecal
(100/ml)
354
44
25
2
2
2
2
6
1
I/Single observation.
-------
Table XIII. Average concentrations in water column, Atlantic Beach, North Carolina
September 1974. '
Station
1
2
3
4
5
6
7
8
9
10
1
Depth
(ft)
6
6
4
6
5
3
3
3
3
4
Water
Temp.
(°C)
26.7
26.0
26.0
26.6
26.3
25.9
26.1
26.6
25.8
26.4
Salinity
(PPt)
33.4
33.0
32.6
33.2
32.7
33.1
34.4
34.3
33.2
33.3
Residue
Total
NFLT
(mg/1)
8.0
10.0
16.0
19.0
15.0
28.0
26.0
29.0
29.0
25.0
Residue
Volatile
NFLT
(mg/1)
3.0
6.0
7.0
7.0
6.0
8.0
5.0
6.0
6.0
13.0
TOG
(mg/1)
3.6
5.3
3.9
4.0
2.5
2.3
3.1
2.7
2.7
Z.J
NH -N
Total
(mg/1)
0.07
0.09
0.09
0.08
0.09
0.08
0.10
0.12
0.12
0.07
Total
Kjel-N
(mg/1)
0.29
0.28
0.26
0.31
0.25
0.19
0.17
0.24
0.24
0.29
N02-N03
as N
(mg/1)
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
Total
Phos. as P
(mg/1)
0.06
0.05
0'.04
0.05
0.11
0.05
0.05
0.07
0.07
0.07
u>
-------
Table XIV. Average concentrations in water column, Spooners Creek, Moorhead City, North
Carolina, September 1974.
Station
1
2
3
4
5
6
Depth
(ft)
4
3
3
4
2
4
Water'
Temp.
(°C)
23.6
23.2
24.2
22.5
21.9
22.4
i
Salinity
(ppt)
32.9
32.2
33.0
32.4
34.5
32.0
Residue'
Total
NFLT'
(mg/1)
25.0
23.0
31.0
NS
21.0
NS
Residue •
Volatile
NFLT
(mg/1)
13.0
9.0
13.0
NS
10.0
NS
TOC
(mg/D
3.4
3.0
2.5
NS
2.1
NS
NH3-N
Total
(mg/1)
0.06
0.09
0.04
NS
0.03
NS
Total
Kjel-N
(mg/1)
0.23
0.31
0.20
NS
0.16
NS
N02-N03
as N
(mg/1)
0.01
0.01
0.01
NS
0.01
NS
Total
Phos. as P
(mg/1)
0.07
0.06
0.05
NS
0.05
NS
-------
Table XV. Average concentrations in water column, Emerald Isle, North Carolina,
September 1974.
Station
1
2
3
Water
Temp.
(°C)
NS
NS
NS
Salinity
(ppt)
NS
NS
NS
Residue
Total
NFLT
(mg/1)
171.0
263.0
8.0
Residue
Volatile
NFLT
(mg/1)
145.0
174.0
8.0
TOC
(mg/1)
2.8
3.6
14.5
NHs-N
Total
(mg/1)
7.60
2.40
0.93
Total '
Kjel-N
(mg/1)
7.97
5.26
0.52
N02-N03
as N
(mg/1)
0.01
0.01
0.01
Total
Phos. as P
(mg/1) '
1 *
2.11
2.80
j
0.79
-------
76
Table XVI
Dissolved Oxygen Concentrations (mg/l)
at Station G, Big Pine Key, Florida
November 1973
>th Below
ace (feet)
1'
2
3
4
5
6
7
8
9
10
2330 Hours
17 Nov.
1.4
2.3
2.7
2.9
3.0
3.9
4.5
4.3
3.3
0.6
0820 Hours
18 Nov.
0.7
0.7
2.6
2.6
3.0
3.0
2.6
2.7
2.9
2.4
1400 Hours
18 Nov.
2.0
2.8
2.4
3.6
3.2
2.9
2.6
1.7
0.9
—
-------
77
Table XVII
Dissolved Oxygen Concentrations (mg/1) at
Dead End Stations 8, 12, F and G
Big Pine Key
November 1973
Depth
Below Water Time
Surface Column 1800 0000 0600 1200
Station (feet) Location 17 Nov. 18 Nov. 18 Nov. 18 Nov.
8
8
12
12
F
F
G
G
1
9
1
8
1
8
1
10
surface
bottom
surface
bottom
surface
bottom
surface
bottom
6.1
5.9
5.6
5.2
5.2
5.0
0.5
1.1
5.8
5.8
5.2
5.0
5.1
4.2
1.4
0.6
5.4
5.3
4.4
4.2
3.5
3.4
0.8
2.6
5.8
6.2
5.0
4.8
4.9
4.6
0.4
2.6
-------
Table XVIII
Weighted Average Concentrations of Organic-Carbon, Nitrogen and Phosphorus
In the Water Column - Punta Gorda, Florida
19 7 A
STATION DEPTH ( f t )
PG-01 4
PG-01 8
Avgi'
PG-02 4
PG-02 8
Avg—
PG-03 3
PG-04 3
PG-05 3
PG-05 7
Avgi/
PG-06 3
PG-06 7
Av If
TOC
14
15
14
14
13
14
16
15
15
16
15
14
22
17
NH3-N
TOTAL
0.22
4.88
1.75
0.14
7.60
2.90
0.12
0.14
0.12
8.25
3.62
0.15
8.85
3.89
N02+N03-N
TOTAL
0.02
<0.01
0.02
0.02
<0.01
0, 02
0.03
0.04
0.06
<0.01
0.04
0.04
<0.01
0.03
KJEL-N
TOTAL
0.67
4.88
2.05
0.63
8.40
3.50
0.69
0.70
0.63
8.80
4..JL4
0.67
9.50
4.47
PHOS-P
TOTAL
0.36
1.56
0.76
0.33
2.24
1,04
0.32
0.39
0.18
2.16
1.03
0.20
2.64
1.25
WEIGHTING
FACTOR
0.67
0.33
0.63
0.37
0.57
0.43
0.57
0.43
-•a
cs
PG-07
15
0.13
0.01
0.64
0.21
\l Average water column concentration, weighted by vertical dimension of
the stratified layers.
-------
79
Table XIX. Seasonal changes in benthic plant biomass and total organic
carbon concentrations, Big Pine Key, Florida.
November 1973
Canal
III undeveloped
IV developed
Average
TOG
(mg/1)
4.6
3.7
Average
Plant
Biomass1
14.3
26.0
Average
TOC
(mg/1)
2.5
2.1
August 1974
Average
Plant
Biomass1
10.4
4.4
TOC Mass
Exchange2
(kg/day)
-fO.39
+0.01
Average biomass (g ash-free wt/m2) for dead-end and mouth stations.
2Plus sign (+) denotes net export from canal.
-------
80
Table XX. Stage of canal development, depth, dissolved oxygen with respect
to average total nitrogen levels. Atlantic Beach, NC
Stage of
Development
Heavy
Light
Heavy
Light
Light
None
None
Non-canal
Station
1
4
2
5
3
9
10
6, 7, 8
Depth
(ft)
15
13
11
10
8
7
8
5
DO
Range
0.0-10.
0.0-8.7
0.1-11.
1.5-8.7
1.9-9.0
4.7-7.4
4.9-7.4
4.8-8.0
(mg/1)-*/
Mean
6 3.3
4.3
7 4.1
5.1
5.5
5.8
6.1
6.2
Total ,
Nitrogen-2-
(mg/1)
0.30
0.32
0.29
f
0.26
0.27
0.24
0.22
0.21
TOG!/
(TO/I)
3.6
4.0
5.3
2.5
3.9
2.7
2.7
2.7
1 For water column.
2 Average for stations.
-------
Table XXI
Coliform Bacteria
Finger Fill Canal Study
STATION:
PC -01
PG-02
PG-03
PG-04
PC-05
PC-06
FO-07
BPK-08
BPK-09
BPK-10
BPK-11
BPK-12
BPK-13
BPK-14
BPK-F
BPK-G
PC-A
PC-B
PC-C
PC-D
PC-E
PC-F
PC-C
PC-H
PC- 1
! LOCATION
Punca Corda
Canal Stn.
Canal Stn.
Canal Stn.
Background
Canal Stn.
Canal Stn.
Canal Stn.
Big Pine Key
Canal Stn.
Canal Stn.
Canal Stn.
Background
Canal Stn.
Canal Stn.
Canal Sen.
Canal Stn.
Canal Sen.
Panama City
Canal Stn.
Canal Sen.
Canal S;n.
Background
Background
Canal Stn.
Canal Stn.
Canal Stn.
Canal Stn.
DATE
11/73
11/73
11/73
11/73
11/73
11/73
11/73
11/73
11/73
11/73
11/73
11/73
11/73
11/73
11/73
11/73
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
TOTAL
MAX.
2100
800
1200
600
3900
800
300
10
<10
<10
<10
90
220
45
<10
<10
3000
125
83
21
'7
2
10
21
8
COLIFORM
LOG MEAN
871
493
436
203
1809
176
200
<10
<10
<10
<10
27
32
14
<10
<10
1787
96
62
7
<7
1
6
14
7
FECAL
MAX.
33
20
270
53
250
27
13
<5
5
<5
<5
65
78
33
<5
<5
660
79
50
2
<2
20
3
8
<2
COLIFORM EXCEEDS STATE STANDARD
LOG MEAN DAILY MAX. HMITHLY AVG.
BASIS BASIS
14
11
36
23
151 X X
11
10
<5
<5
<5
<5
18
18
7
<5
<10
320 X X
37
19
1
<2
9
2
5
1
STATIONS
AB-01
AB-02
AB-03
AB-04
AB-05
AB-06
AB-07
AB-08
AB-09
AB-10
SC-01
SC-02
SC-03
SC-04
SC-05
SC-06
EI-01
EI-02
EI-03
LOCATION
Atlantic Beach
Canal Stn.
Canal Sen.
Canal Sen.
Canal Stn.
Canal Stn.
Background
Background
Background
Canal Stn.
Canal Stn.
Spooners Creek
Canal Stn.
Canal Stn.
Canal Stn.
Canal Stn.
Background
Canal Stn.
Emerald Isles
Canal Stn.
Canal Stn.
Canal Stn.
DATE
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
9/74
TOTAL COLIFORM FECAL COLIFORM EXCEEDS STATE STANDARD
BASIS BASIS
3400 3400 1500 505 X X
400 400 230 113 X ?
360 360 170 90 X
106 25 84 18 X
120 27 6 14 X
10 10 <4 -<4
<4 <4 <:4 <4
—
—
—
—
—
145 145 X ?
22 28 12 12
~
76 76 10 10 X
550 550 400 400 x x
5600 5600 610 610 X x
1000 1000 220 220 X x
-------
FIGURE 29
WATER CHEMISTRY SAMPLING LOCATIONS
PUNTA GORDA, FLORIDA
NOVEMBER, 1973 S AUGUST, 1974
LOCATION MAP
SCALE IN FEET
1,000 0 2,000 4.000
-------
Big Pine Key
Doctors Point
FIGURE 30
PROFILE SAMPLING STATIONS
BIG PINE KEY
NOVEMBER, 1973 8 AUGUST, 1974
II
No Nome Key
F«* *
1,000
SCALE IN FEET
0 1,000
00
-.
3,000
-------
O |9
84
FIGURE 31
SAMPLING LOCATIONS
SEA AIR ESTATES
AUGUST, 1974
FLORIDA
BAY
IOO 400 tOO iOO
-------
85
FIGURE 32
SAMPLING LOCATIONS
PANAMA CITY, FLORIDA
SEPTEMBER,1974
LOCATION MAP
i.OOO
SCALE IN YARDS
0 1,000
2,000
o
J
-------
FIGURE 33
SAMPLING LOCATIONS
ATLANTIC BEACH
SEPTEMBER. 1974
BOGUE
SOUND
ATLANTIC BEACH
ATLANTIC OC£AN
-------
87
FIGURE 34
SAMPLING LOCATIONS
SPOONERS CREEK
SEPTEMBER, 1974
Bogut Sound
i_«ir«eo«»toj *•*•?••/_
'.OOP 1,500
-------
FIGURE 35
STUDY SITES
NORTH CAROLINA
SEPTEMBER, 1974
North
Carolina
x
-------
89
FIGURE 36
PROFILES
PUNTA GORDA
D.0.. MG/L
SflLINITY. PPTH
CO
(S
™-
i—
u
LJ s
LL. 3
'<-& 3
f-0 3
s-e 3
r-O 3
E-€> " 3
5-0 3
t
E
(
TEMP. DEG C
10.00 15,00 25.00 35,00
es
(\J
PG-01 NOV 73
D.0.. MG/L
. PPTH
TEMP. DEG C
«S0
s
oo~
1—
LU
U s
U s
co~
I
K-
Q_
LU a,
Q CB
. 0C 1.00 8.00 12.00 0.00 20.00 '40.00 15.00 25.00 3
i i i i i i i i i
O3
O3
03
O3
*f
3
^> 3
«> 3
«^ 3
K> 3
K> 3
f^ 3
£ 3
e 3
r 3
E 3
J 3
( 3
35. 00
PG-02 NOV 73
-------
90
FIGURE 37
PROFILES
PUNTA GORDA
D.0.. MG/L
SRLINITY. PPTH
•S0.00 4.00 8.00 12.00 i?. 00 20.00 40.00
• i I 1 I 1 I
<5
H
H
LJ
Lu
X
t—
G.
a 1
is
<\l
r
. GtG t
25.00 35.ft
PG-03 NOV 73
D.O.. MG/L
4.00 8.00 12.00
SflLINITY. PPTH
TfMP.
20.00 10.00 15.00 25.00 35.00
I—
1 : |
LLl
U.
.
I
a.
LLl
a
s
5
(— O 5
f— €> )
f-0- 3
'. )
; ;
t »
€ )
E
CD'
PG-04 NOV 73
-------
FIGURE 38
PROFILES
PUNTA GORDA
D.O.. MG/L
SflLINITY. PPTH
. DLG C
«0.00 1.00 8.00
-------
92
FIGURE 39
PROFILES
PUNTA GORDA
U o
C5
X
t—
CL
CD
en'
C.O.. MG/L
.00 4,00 8.00
I I
o y o
SflLINITY. PPTH
12.00 0.00 20.00 40.00 15.00 25.00
_) I I I I 1
PG-07 NOV 73
-------
93
FIGURE 40
PROFILES
BIG PINE KEY
D.0. MG/L
'0.00 4.00 8. 00
SflLINITY. PPTH
TEMP. DEC C
12.00 0.00 20.00 40.00 15.00 25.00 35.00
j i i i i i i
S
rs
<=»
nrj-
1—
LJ
LJ s
U. (S
X
1—
0.
Q 2
OT"
<»
«
«
<3>
5
& ;
K> )
(€> )
& 3
iO • 3
«> 3
( )
£ 9
f )
S 5
i ;
E 5
; )
5 3
{ )
CM
BPK-08 NOV 73
D.O MG/L
P
UJ
UJ
6
Q.
^
«SO
<3K>
<3E>
BPK-09 NOV 73
-------
94
FIGURE 41
PROFILES
BIG PINE KEY
D.0.. MG/L
SflLINITY. PPTH
TTM". CLG f
03'
C_
U
a
IS
(M
.00 4.40 8.00
i I
12.00 0.00
20.00 10.00 js.i?0 25.00 s
I _ I I __ I __ J
BPK-10 RUG
D.0.. MG/L
SRLINITY. PPTH
TFMP. DEC C
u
U
LJ.
a.
u
a
.00 4.00 8.00 12.00 0.00 20.00 40.00 15.00 25.00 3S.0H
I i | i i i | i i ™
BPK-11 RUG 74
-------
95
FIGURE 42
PROFILES
BIG PINE KEY
t—
LJ
Lu
U
DEPTH.
D.O. MG/L SflLINITY, PPTH Tt"Mp. DLG I
s
•s.0
<9
(S
•S
rr>~
(S
10~
.00 4.00 8.00 12,00 0.00 20.00 10.00 IS. 00 25,00
i i i i i i i i
-3
0-3
0-3
O-}
0-3
SO 3
i€> 3
K> 3
EO 3
K> 3
K> 3
K> 3
( 3
(. )
E 3
E 3
E 3
E 3
; 5
BPK-12 N 0 V 73
D.O.. MG/L
SflLINITY. PPTH
TEMP. DEC C
--
(•€>
E«
M>
K>
S-0
-0
12.00 0.00 20.00 40.00 15.00 25.00 3
i i i ii i i
^
*
3
3
3
3
3
E >,
E 3
E 3
E 3
E 3
E 3
E 3
E
6
E
i
3S.00
BPK-13 NOV 73
-------
96
FIGURE 43
PROFILES
BIG PINE KEY
D.O., MG/L
SRLINITY. PPTH
TTMP. DEC C
o>0
1
m~
t—
LJ
U! (s
LL s
DEPTH.
00 6.
i
.00 4.00 8.00 \
i i
O-
o-
O-5
O*
05
0-a
to
f*
t«
EO
K>
W
O
12.00 0.00
20.00 40.00 15.00 25.00 35.00
_j i i i i
M
H
M
H
0.00
BPK-14 NOV 73
D.O.. MG/L SflLINITY. PPTH TEMP. DEG C
4.00 8.00 12.00 0.00 20.00 40.00 15.00 25.00
LU
LL.
CL
LJ
a
OHfrO
OHhO
OHf-0
OH HO
O-«-O
3
3
3
3
3
3
3
3
E )
e )
e 3
e )
E 3
t }
i 3
£ 3
£
BPK-F NOV 73
-------
97
FIGURE 44
PROFILES
BIG PINE KEY
. 00
C.0.
1.00
i
"S
"5
U CB
I
i—
U-
LJ
c
-------
FIGURE 45
DISSOLVED OXYGEN CONCENTRATIONS
UNDEVELOPED CANAL ( TL)
PUNTA GORDA, FLORIDA
NOVEMBER, 1973
I1 Below Surface /
I Above Bottom /
•o
oo
0000
0600 1200 1800 0000
(HOURS) U NOV- 12 NOV 73
0600 1200
-------
FIGURE 46
DISSOLVED OXYGEN CONCENTRATIONS
DEVELOPED CANAL (3E)
PUNTA GORDA, FLORIDA
NOVEMBER, 1973
KEY
—— I1 Below Surface /
I' Above Bottom /
OOOO
0600 1200
(HOURS)
«o
o
1800 0000
NOV-I2NOV73
0600 1200
-------
100
FIGURE 47
PROFILES
PUNTA GORDA
•50.00
ea
cs
U OS
u>-
X
I—
0.
£ °»
O o,
0V
D.O.. MG/L
1.00 8.00
i i
SRLINITY. PPTH
. OCG C
32.00 0.
I I
20.
10.00 35.00 2S.00 39.89
D.O.. MG/L
PG-fl NOV 73
SflLINITY, PPTH
TEMP, DEG C
«»0
»
m~
>~
UJ
Hi IS
u.
-------
1 01
FIGURE 48
PROFILES
PUNTA GORDA
D.O. MG/L
5B0.00 1.00 8.00
x
LL
U 0
a 0.00 1.00 8.00 12.00 0.00 20.00 10.00
u
LJ
LL.
a
LJ
a
0)'
(M
¥
H
3£
3^
U
3K
TEMP. DEG C
15.00 25.00 35.00
I | |
¥
PG-D NOV 73
-------
P.O.. MG/L
CD"
ea
(NJ
102
FIGURE 49
PROFILES
PUNTA GORDA
SRLINITY, PPTH
I —
LJ
LLJ
U-
X
fr
Q.
LJ
Q
=>0
is
(S
-------
FIGURE 50
DISSOLVED OXYGEN CONCENTRATIONS
UNDEVELOPED CANAL IDE
BIG PINE KEY, FLORIDA
NOVEMBER, 1973
KEY
I* Below Surface,'
I Above Bottom
1200
1600 2000 240O 0400
(HOURS) 17 NOV- 18 NOV 73
08OO
1200
O
w
-------
FIGURE 51
DISSOLVED OXYGEN CONCENTRATIONS
DEVELOPED CANAL (TSL)
BIG PINE KEY, FLORIDA
NOVEMBER, 1973
KEY /
• |' Below Surface
— — I1 Above Bottom /'
/' /
(200 1600 2000 0000 0400 0800 1200
(HOURS 1 17 MOV- (8 NOV 73
-------
105
FIGURE 52
PROFILES
PUNTA GORDA
D.O.
<»e. 00 1.00 8.00
i i
0.
u
o
U)
SflLINITY. PPTH
T f M f . 0 f
12 00 0.00 20.^0 10.00 IS.00 2S.e«
_J I 1 1 ! '
P G - 0' 1 RUG 74
D.O.. MG/L
>0. 00 4.00 8.00
SRLINITY. PPTH
TEMP. DEG C
12.00 0.00 20.00 40.00 15.00 25.00 35.00
i i i i i j i
PG-02 RUG 74
-------
106
FIGURE 53
PROFILES
PUNTA GOROA
D.O.. MG/L
>0. 00 4.00 8.
nv
t—
U
In ea
U. eg
ID'
Q.
U
Q
C\J
SflLINITY. PPTH TTMP. DEG C
12.00 0.00 20.00 40.00 15.00 25.00 3S.00
PG-03 RUG
•0. 00
LLJ
LD
U.
Q.
LU
O
(M
D.O.. MG/L
SflLINITY. PPTH
TEMP. DEG C
4.00 8.00 12.00 0.00 20.00 40.00 15.00 25.00 35.00
3E
*
PG-04 RUG
-------
1 07
FIGURE 54
PROFILES
PUNTA GORDA
D.0,. MG/L
8.00
I
t—
D.
SRLINITY
12,01? 0.00 20
I l_
Tt>;f:.
¥
PG-05 RUG
D.O.. MG/L
• 00 4.00 8.00
1 1
Ui
Q.
UJ
Q
SRLINITY. PPTH
1.2.00 0.00 20.00 10.00
-" ' —I 1
15.00 25,00 35.00
I 1 I
PG-06 RUG
-------
108
FIGURE 55
PROFILES
PUNTA GORDA
D.O. MG/L
"»0 . 00 4.00 8.00
I I
CL
U
SflLINITY. PPTH
TFMP. DEG C
12.00 0.00 20.00 40.00 IS.00 25.00 3S.00
_J I I I ! I I
PG-07 RUG 74
-------
109
FIGURE 56
PROFILES
BIG PINE KEY
D.O. MG/L
1.0? 4.00 8.00
SHLINITY. PPTH
TCMP. DEG C
V-
u
1 :
UJ
U
^
I
Q.
U
Q
•
OB
OS
-------
-
t—
o.
0
M>
«>
K>
K>
K>
SflLINITY. PPTH TfMP. DEC C
0.00 20.00 10.00 js.00 25.00 3S.00
H
M
D.0.. MG/L
=>0.00 1.00 8.00
BPK-10 NOV 73
SflLINITY. PPTH
TEMP. DEG C
12.00 0.00 20.00 10.00 15.00 25.00 35
i i [_ ' • • J •
(—
LJ
Ui
Li.
I
Q.
UJ
a
s"1
s
IS
m~
s
s
05-
S
«
I
1 1 . 1
f
H
H
BPK-11 NOV 73
-------
Ill
FIGURE 58
PROFILES
BIG PINE KEY
D.O.. MG/L
SRLINITY. PPTH
'CMP. DUG C
00.00 4.00 8.00 12.00 0.00 20.00 40.00 15.00 25.00 35.00
LJ
LJ
U
C-
LJ
a
10'
(N
o xo
BPK-12 RUG 74
.30
O.
u
Q
(M
D.0., 1G/L
4.30 8.00
0—9 ••€>
0-*0
12.00 0.00
_J I
. PPTH
20.00 40.00
-J _J
. DCG c
25.00 35.00
i i
BPK-13 RUG 74
-------
112
FIGURE 59
PROFILES
BIG PINE KEY
0.0.. MG/L
SflLINITY. PPTH
D.O.. MG/L
BPK-14 RUG 74
SflLINITY. PPTH
TfMP. QCG r
^id.dfl 1.0i3 S.03 12. it 0.00 20.00 10.00 15.00 .?<;..» a ~.
'
5B
"
LJ
Lu (5
U is
L0~
I
I —
CL
LJ ,3,
" «
1 1 1 ' 1 1 I .
•>*
<»
O-i
<>-3
SO 3
•O
(-O 3
f-ft q
r~' :
7
/
<3*-O j
E )
£ j
E
[
E
TEMP. DEC C
^_
LJ
Ul
LU
DEPTH.
s
s
fo-
s
CB
S
S
S
B
(M_
.00 4.00 8.00 12.00 0.00 20.00 10.00 15.00 25.00 35 an
i i i i i i i i . ' • "
OH
0-J
^
5
•e s
H> 5
L^v b
^r 3
-e >
0 3
3
> 3
i )
( ;
; 3
K 3
£
BPK-F RUG 74
-------
113
FIGURE 60
PROFILES
BIG PINE KEY
. 08
'J.O. . MG/L
4.00 S. i?0
i
LJ
Lu
U
iL
U
0
5B
"8
IS
(9
•>-
<•*—
ft S
12.00
SflLINITY. f=F'JTH
0.00 20.00 10.00
i I I
'. DEG L
15.00 25.00
BPK-G RUG
-------
114
FIGURE 61
PROFILES
SEA AIR ESTATES
D.O.* MG/L SflLINITY. PPTH TCMP. DLG C
•S0.00 4.00 8.00 12.00 0.00 20.00 10.00 15.00 25.00 3^ „ a
• . 1 1 1 1 1 1 ! I i
(9
U
LJ C9
u fa
.
CO"
I
1 —
°- =»
LJ _
a
CM
IS
™
U3
r-1
J£
T
1 | c° 5
^ ^^ .
O~7 L O '
O-) c— O ^
oi-e> J
O-3 1-0 ^
O-3 ^O ^
OifO 3
0 i 0 3
o — a-o 3
<>«-€> ^
I! I
| f
• v
w
•
3
3
3
3
3
3
3
>
Sfl-15 RUG 74
D.O.. MG/L SflLINITY. PPTH TCMP. DEG C
CO
= 0.00 4.00 8.00 12.00 0.00 20.00 40.00 15.00 25.00 35 aa
i i i i i i i i , J. OB
as
9
aa
u>-
LU ea
LJ CB
CM
I
h~
Q. s,
LJ Q)
Q
00
Q>
SI
J> ^. J.
o y o
O~~$ E' ' ' O 3
OHr-O 3
^~3 C Q 3
O--J— 0 3
O— J i— O 3
O ) f— 0 3
Q ) ' o 3
O x O 3
0^ (—0 3
t *
s >
£ 3
R*^ *
;
: 1
* 3
r 3
* j
i 3
3
;
:
:
E 3
E 3
3
* 3
< 3
E 3
< 3
( 3
c
!
E
f
sn-ie RUG
-------
115
FIGURE 62
PROFILES
SEA AIR ESTATES
»0 .00
(-0"
U OB
U
X
I—
D.
(SJ
CO
IS
fNT
D.0.. MG/L
1,00 8.00
i i
SRLINITY. PPTH
32.00 0.00
20.00 10.00
i i
15.00
DE:G c
25.00
3S.00
SR-17 RUG
D.O.. MG/L
00 1.00 8.00
SflLINITY. PPTH
CO"
LJ
LJ
LL.
O_
LJ
n
m~
(SI
O X O
12.00 0.00
i i
20.00 10.00
i i
H
H
3C
3E
3E
3(
3(
3(
3E
H
TEMP. DEG C
15.00 25.00 35.00
I i i
Sfl-18 RUG 74
-------
116
FIGURE 63
PROFILES
SEA AIR ESTATES
D.O.. MG/L
SRLINITY. PPTH
TEMP. DEG C
DEPTH, FEET
^0.00 4.00 8.00 12. 00 0.00 20.00 10.00 15.00 25. 00 3S aa
i i i i i i i , . * * ° w
(S
Si
00"
ca
ts
s
OHJH& J
O )K O 3
^£> 3
E
E
E
E ;
E )
E
E
E
CD"
Sn-19 RUG 71
-------
117
FIGURE 64
PROFILES
ATLANTIC BEACH
PS
™»3
D.Q.. MG/L
f.00 6.00
SRLINITT.
ITM". DCG C
12.it 0.019 20.00 10.00 JS.00 25.00
RB-01 SEP 74
D.O.. MG/L
EflLINITY. PPTH
. DEC C
u
u
I
>-
CL
8.00 12,00 0.00 20.00 10.00 15.00 25,00 3c;,00
i i i i i i i i
H
if
(M
RB-02 SEP 74
-------
118
FIGURE 65
PROFILES
ATLANTIC BEACH
. 0 0
u
LJ
u.
I
H-
CL
LJ
Q
oa
L£>-
fa
m~
D. 0. .
-I .
i
S . 0 0
SRLINITY.
0.00 20.00 10.00
I | i
)
)
DLG C
ts
CNJ
RB-03 SEP 74
LJ
LU
LL
D.
LJ
D.O.. MG/L
1.00 8.00
SflLINITY. PPTH
DEC C
12,00 0.00 20.00 10.00 IS.00 25.00 3^ aa
-J I 1 1 I I j °
\
RB-04 SEP
-------
119
FIGURE 66
PROFILES
ATLANTIC BEACH
D.0.. MG/L
SRLINITY. PRTH
TEMP. GLC
. at
LJ
U
u
CC'
Q.
O 2
CD'
•S
(M
B.ii
i
RB-05 SEP 74
D.O.. MG/L
>0.00 4.00 8.0(9
i i
LJ
UJ
I
I—
Q.
U
a
LO'
O)'
0-* 0
SflLINITY. PPTH
12.00 0.00 20.00
*
TEMP. DEG C
15.00 25.00 35.
i j |
)£
)E
H
H
H
H
RB-06 SEP 74
-------
120
FIGURE 67
PROFILES
ATLANTIC BEACH
D.0.. MG/L
. 00
(D-
SRLINITT.
12.00 0.00 20 . 00 10 .00
RB-07 SEP 71
2S.00 3S.0a
2
CO"
I—
LJ
U -a
U ra
I
C.
U ra
a «>
1 I 1 I I I 1 i •
•? — 3
O 3
•9 3
O — ^
' |^- ^
f — €> 3
6 — O J
K— €> 3
« 3
( 3
3
3
0-^(M> )V )
(
D.0.. MG/L
<»0.00 4.00 8.00 12,00
U
LU s,
U.
ole>
SflLINITY. PRTH
9.00 20.00 10.00
\
K
3E
TCMP, -DCG C
15.00 25.00
flB-08 SEP 71
-------
121
FIGURE 68
PROFILES
ATLANTIC BEACH
D.0.. MG/L
SRLINITY
DLG C
.00 4,00
12.00 0.
20.00 10.00 J5.30 25.00 3CJ.00
i i i i j
u
Lu rs
U SI
I
t—
CL
UI
a
(£'
-------
FIGURE 69
HOUSING UNIT DENSITY AND AVERAGE DISSOLVED OXYGEN
ATLANTIC BEACH, N.C.
SEPTEMBER, 1974
M
10
*Indicates average DO Concentra-
t ions.
Hout*
Horn* Egjj Mot.I
rfcfv^i
Q Sampling Station
-------
123
FIGURE 70
PROFILES
SPOONERS CREEK
D.0.. MG/L
SRLINITT. PP
P, DLG C
"»fl
•^
•^
t** ~~
h-
LJ
U 73
<_£"
X
11-
Q S
.00 4 , £0 S . 00 1
1 1 1
o y o
o-*-e>
-3>-*€>
/^
op
3«&
0«U>
12,00 0.00 20.00 -13.00 ][>.0i? ^^,.00 3l>
I 1 1 ! I i
rs
(M
SC-01 SEP 74
D. 0.
. 00
a.
LU
a
rs
ro
o
-------
(\J
124
FIGURE 71
PROFILES
SPOONERS CREEK
D.0.. MG/L
-1 ,*0 0 8 . li
SflLINITY. PPTH
['M^. DIG I.
12.00 12.00 20.00 -10.00 JS.00 L"J-.if ~<
_j I I 1 I 1 j
SC-03 SEP 74
(S
ro"
LJ
LJ S
U. cs
X
k-
a.
LJ
a
CD
0.0.. MG/L
4,00 8.00
i —I
30
•WE—O
0 X O
SflLINITY. PPTH
TfMF, DL'G C
12 00 0-00 20.00 -10.00 IS.00 25.00 3c..iJ0
I ' | L 1 ' 1 J
-SC-04 SEP
-------
125
FIGURE 72
PROFILES
SPOONERS CREEK
D.O. MG/L
SRLINITY. PPTH
.00 4.30 8.00 12,00 0.00 20.00
. DLG C
15.00
•
i i i i i i , ,
03
03
0)
<3
H> 3
K> 3
EO 3
» 3
£ 3
£ 3
: 3
E 3
SC-05 SEP 74
D.O.. MG/L
1.00 1.00 -8.00
_i i
SflLINITY. PPTH
12.00 0.00
20.00 10.00
i i
TEMP. DEG c
15.00 25.00 35.00
i
IS
m-
i—
LJ
LJ ^
U. B)
CD"
X
1—
a.
LJ (S
1=1 s
OT"
o-
o-
• OJ
o?
o^
o^
3
K> 3
f-€> 3
f-O
-©
)
3
3
3
3
•
i :
*£
£
£
SC-06 SEP
-------
126
FIGURE 73
TOTAL PHOSPHORUS AND TOTAL NITROGEN CONCENTRATIONS
PUNTA GORDA,FLORIDA
NOVEMBER, 1973
LOCATION MAP
SCALE IN FEET
I.OOO 0 2,000 4.0OO 6.000
-------
127 FIGURE 74
TOTAL PHOSPHORUS AND TOTAL NITROGEN CONCENTRATIONS
PUNTA GORDA, FLORIDA
AUGUST, 1974
LOCATION MAP
SCALE IN FEET
1,000 0 2.000 4,OOO 6,OOO
-------
Doctors Point
Big Pine Key
FIGURE 75
TOTAL PHOSPHORUS AND
TOTAL NITROGEN CONCENTRATIONS
BIG PINE KEY
NOVEMBER, 1973
KEY
( ) N mg/l
) P mg/l
£ No Name Key
1,000
SCALE IN FEET
0 1,000
-
-
z.ooo
-------
Doctors Point
Big Pine Key
FIGURE 76
TOTAL PHOSPHORUS AND
TOTAL NITROGEN CONCENTRATIONS
BIG PINE KEY
AUGUST, 1974
KEY
( )_ N mg/l
) P mg/l
* No Name Key
1,000
SCALE IN FEET
0 1,000
2,000
-------
130
C. MASS EXCHANGE STUDIES
A principle element of the water quality studies was to assess the
extent to which dead-end canals function as sinks or point sources for
nutrients and organic carbon. For these reasons, mass exchange studies
were conducted at the mouths of eight dead-end canal systems. To identify
a canal system as either a point source or sink is a task of determining
the imbalance between mass export or import over a complete tidal cycle.
To quantify export or import of nutrients and solids from dead-end
canals to adjoining receiving waters, automatic sequential samplers
were installed at the mouths of the primary study canals (Stations PG-03,
PG-07, BPK-10, BPK-14, SA-18, AB-03, AB-05, and AB-10, Figures 29-33).
The intake of each sampler was placed at mid-channel and mid-depth with
samples taken at half-hour intervals over a 25-hour period. Water samples
received appropriate preservatives in the field and were returned to
EPA's Athens laboratory for analytical processing for total organic carbon,
total nitrogen, and phosphorus content. Tidal stages in the study canals
were recorded during the full course of the 25-hour sampling period.
Table XXII represents the results of the exchange studies in terms
of average concentration for the combined tidal phases (ebb or flood)
of each 25-hour tidal cycle. Mass calculations were based on the
average concentration reported for the combined tidal phase and the
measured volume of the tidal prism exchanged for the combined phases.
Results of the tidal exchange studies are summarized in Table XXIII
in terms of mass (kg) of nutrients and organic carbon either imported
to or exported from each canal over a 25-hour tidal cycle. As shown
in the table, a minus sign (-) denotes import and a plus sign (+)
denotes export of material. To consider the canals as a point-source
system, the reader needs only to focus on those values with a plus sign.
At Punta Gorda, both the developed and undeveloped canals were
stratified (i.e., two-layer systems). Both canals characterized systems
importing organic carbon and exporting nitrogen and phosphorus. The
magnitude of these exports are judged as being significant based on the
following comparison. A typical activated sludge treatment plant yields
an effluent containing an average load of" 0.05 kg total nitrogen and
0.01 kg total phosphorus per 1,000 gallons of discharge (14 & 15).
Within this context, the undeveloped canal exported a total nitrogen and
phosphorus load (kg/day) equivalent to a 26,000 and 36,000-gallon-per-day
sewage treatment facility, respectively. The developed canal would
translate into the equivalent of a 30,000 and 23,000-gallon-per-day facility
respective to nitrogen and phosphorus. However, the tidal prism
volume (exchange flow) of the undeveloped canal exceeded that of the
developed canal by 25 percent.
-------
131
The potential for an Increase in the export load of the two canals
remains greater in view of the fact that nitrogen and phosphorus are
stored in the bottom strata of the canals during periods of stratifi-
cation. The physics of the stratification would tend to restrict
tidal volume exchange with the surface strata; thus, the export of
nutrients at the time of our study would constitute only a partial
relief of the total nutrient pool confined to the canal system. Ulti-
mately, the two canals would destratify with the coming of the dry
season; and much, if not all, of the nitrogen in solution (mainly
ammonia) will be exported from the system. The developed canal total
nitrogen pool was nearly 50 kilograms in excess of the undeveloped canal.
Without the benefit of mass exchange studies during the dry season,
we can only approximate the potential for nutrient export on the basis
of the November 1973, water quality sampling at slack low and high
tide. The principle assumption involved in this approximation is that
the slack low and high water concentration represented the average
concentration over the course of the ebbing and flooding tides,
respectively. In the case of the developed canal, the ebbing concen-
tration for total nitrogen in November remained the same as observed
in August. Thus, the developed canal was likely exporting nitrogen
loads of the approximate magnitude reported for August. However, the
undeveloped canal system was favoring an import of both nitrogen and
organic carbon in November. Obviously, the nutrients trapped in the
stratified layer are flushed from the canals in this relatively short
period (August-November).
Mass exchange studies at Big Pine Key show both the developed and
undeveloped canals exporting organic carbon and nitrogen (Table XXIII).
However, quantities of export were small. The export of organic
carbon could be coupled to the detrital yield of benthic attached plants.
The Sea Air Estate Canal at Marathon showed no measurable export
of either nutrients or organic carbon. This feature was not unexpected
on the basis of depth, size (volume) of the canal,and absence of
development. Attached vegetation (source of detritus) was limited to
the canal walls of some of the finger canals which radiated from a
large Central basin (Figure 31). Benthic attached plants were virtually
absent from the deep canals (to 25 feet).
At Atlantic Beach, the heavily developed canal featured no export
but instead imported organic carbon and nitrogen in lajfge
quantities (Table XXIII), which were being retained by the canal system.
The retention was probably related to the size of the canal system (as
was the case at Marathon, Florida, and the Sea Air Estate canal).
-------
132
However, retention of the organic carbon and nutrients was having a
serious impact on the canal's environmental conditions. The chemical
and biological assimilation of the organic carbon and nitrogen requires
an adequate dissolved oxygen resource—which obviously the system fails
to support, as evidenced in the DO studies (Figures 64 and 65).
The lightly developed canal at Atlantic Beach appeared to be less
of a carbon-nitrogen sink than the above-referred-to-systern. This
feature would be related to the comparative sizes of the two systems
(Figure 33) and the ratio of canal volume to tidal prism. Also, the
smaller canal maintained shoreline vegetation along the length of one
side of the waterway and undoubtedly added to the detrital resource
of the system.
The undeveloped canal was characterized as an exporting system of
organic carbon. The quantity of organic carbon leaving the canal was
approximately 22 kg; whereas, the nitrogen and phosphorus export was
0.3 and 0.5 kg, respectively. The outflow of organic carbon was probably
a reflection of the net productivity of the dense Spartina marsh which
flanked the entire length of the canal. In total, the marsh constituted
about 17.5 acres of vegetation. Detritus originating in the marsh was
tidally swept to the canal and integrated into its tidal flushing dynamics,
Not all of the detritus entrained into the canal was exported as
evidenced by the sediment features of the canal. Referring to Figure 83
of the sediment studies, the vertical profiles of the canal sediment in
terms of organic content are similar to the cores taken in the marsh.
Unlike either of the developed canals, the undeveloped system was able
to assimilate this massive infusion of organic matter without exceeding
the DO resources of the waterway.
-------
133
TABLE XXII
Tidal Exchange Study
Average Concentration of Tidal Phase
Finger-Fill Canals, August-September 1974
Tidal
Location Station Phase*
Punta Gorda PG-03 Ebb
Flood
PG-07 Ebb
Flood
Big Pine Key BPK-10 Ebb
Flood
BPK-14 Ebb
Flood
Marathon SA-18 Ebb
Atlantic Beach AB-03 Flood
Ebb
AB-05 Flood
Ebb
AB-10 Ebb
Flood
Exchange
Volume
(cu ft)
603,840
648,240
455,600
489,050
124,800
124,800
43,500
43,500
825,000
925,000
1,826,840
1,810,080
697,600
691,200
1,875,000
1,725,000
Average (mg/1)
TOC
15.58
15.43
14.74
15.29
1.86
1.75
1.86
1.86
1.00
1.00
3.45
3.31
2.40
2.55
2.76
2.34
Org. N
0.59
0.54
0.51
0.51
0.16
0.14
0.14
0.15
0.07
0.08
0.22
0.13
0.17
0.18
0.12
0.14
NH3
0.13
0.12
0.14
0.10
0.06
0.06
0.10
0.08
0.05
0.04
0.09
0.09
0.10
0.08
0.09
0.07
N02-N03
0.04
0.02
0.02
0.01
0.01
0.01
0.01
0.01
0.05
0.08
0.01
0.01
0.01
0.01
0.01
0.01
T-Phos
0.33
0.31
0.22
0.20
0.04
0.04
0.04
0.03
0.03
0.03
0.04
0.03
0.05
0.04
0.07
0.06
^Combined volume exchanged for ebb or flood phases of 24-hour tidal cycle.
-------
134
Table XXIII. Net mass exchange for 24-hour tidal cycle, finger fill canals,
August-September 1974.
Location
Punta Gorda
Undeveloped canal
Developed canal
Big Pine Key
Undeveloped canal
Developed canal
Marathon
Undeveloped canal
Atlantic Beach
Heavily developed canal
Lightly developed canal
Undeveloped canal
Station
PG-03
PG-07
BPK-10
BPK-14
SA-18
AB-03
AB-05
AB-10
Mass kg/day*
TOG
-2.65
-7.08
+0.39
+0.01
0.00
-7.44
-2.94
+22.34
Total N
+1.30
+1.51
+0.06
+0.01
-0.82
-4.65
-0.28
+0.32
Total P
+0.36
+0.23
0.00
0.00
0.00
-0.52
-0.02
+0.53
*Minus sign (-) denotes net import to canal; plus sign (+) denotes net
export from canal.
NOTE: Mass concentrations were computed from average phase concentration
(Table XXII) times the average tidal prism volume.
-------
135
D. Sediments
Estuarine sediments provide a focal point for considering a
variety of physical, chemical, and biological features of a canal
system. Sediments represent the past accumulation of mainly finely
divided particles of inorganic and organic character. In most cases,
sediments are hierarchically organized on the basis of particle size,
density of matter and prevailing hydraulic features of the overlying
water mass.
Keyed to this orginzational nature of sediments and their chemical
composition are the benthic communities of plants and animals. The
kinds, quantities, and activities of these communities provide a basis
from which the quality of the aquatic environment may be judged and
compared.
A microbial community serves the benthic system in two important
functions. First, bacteria serve as food for a variety of grazing
invertebrate animals. Second, and equally important, microbes reminera-
lize influxing organic detritus. Under aerobic conditions, decomposition
of organic material proceeds with the bacterial activity leading to
some conservation and accumulation of select nutrients in the sediments.
For example, the organic nitrogen portion of the substrate being decomposed
is temporarily retained in the sediments in the form of bacterial biomass,
while the ingested carbon is vented to the water column as CC^—a product
of respiration. As the supply of organic material in the substrate is
exhausted, reminerallzation lessens and the standing stock of microbes
is reduced; hence, the quantity of organic nitrogen in the sediments is
also reduced. Anaerobic remineralization is similar to aerobic reminera-
lization except at reduced rates and often at 'end points of partial
decomposition. In the absence of free dissolved oxygen, microbes are
dependent on sulfate and nitrites-nitrates as a supply of metabolic
oxygen for respiration. In marine environments, sulfate reduction leads
to production of hydrogen sulfide (HoS) gas which is toxic to many
animals. Nitrite-nitrate reduction leads to the production of ammonia
(NIT}) which can also be toxic. A relative measure of the state of organic
decomposition in sediments could be the ratio of organic carbon to
nitrogen (C:N) of the substrate. A lower ratio indicates a more advanced
state of decomposition while an increase in the ratio represents less
progress in remineralization. .
Essential to the establishment, growth, and maintenance of a benthic
community of invertebrate animals are the chemical and physical composi-
tion of sediments and water. Composition of sediments in terms of particle
size (texture) is of key importance to life styles of numerous animals.
For example, burrowing tube-dwelling forms of animals are often associated
with soft, finely divided sediments such as mud and silt. Free-living
types are found in association with coarse, possibly firmer, material
-------
136
like sand. Chemical conditions associated with sediments bear
heavily on the structure of the benthic animal community. Presence
of non-living organic matter in bottom deposits is a natural conse-
quence of detrital input into estuaries. Although this material is
vital to benthic animals, excessive accumulations of this matter can
pose a liability to the community. Remineralization of the material
places added demands on the DO budget. With insufficient resources
of free dissolved oxygen, the system becomes anaerobic and toxic gases
are generated. This toxicity leads to a reduction in the kinds and
number of organisms present in order of their tolerance to the toxic
agent.
General study areas and sampling locations are indicated in Figures
29,30, 31, 32, 33, and 34. Nearly all of the general water quality
stations were used in the sediment investigations. Vertical cores of
canal sediments were obtained with a clear plastic tube 5 cm in diameter
and 150 cm long. A transect perpendicular to shore was established at
each canal station. Cores were taken at mid-channel and at quarter
points to the left and right of center by a diver who, by hand, gradu-
ally forced the tube into the bottom until the point of refusal was
reached. The tube was then capped and extracted and returned to the
boat for processing. Each core was measured for length and percent
compaction:
length of core x ^00
length of tube penetration
This procedure was followed by visual inspection of the core to identify
and measure apparent zones of sediment stratification. Each zone was
extruded from the tube, a sub-sample was obtained, frozen and returned
to the laboratory for organic matter content, particle size composition,
and sulfide content analyses. The latter two analyses were performed
on only the top 10 cm increment of the core taken from mid-channel at
each station. In addition, grab samples of the sediment were obtained
and analyzed for the chemical parameters identified in Tables XXIV and
XXV. Ail p^alyses were performed with procedures recommended by
EPA (16 & 17).
1. Carbon and Nitrogen Ratios
At Punta Gorda, vertical and longitudinal distribution of organic
matter (volatile solids) in sediments of Canals I and II are reported
in Appendix D-l.l and illustrated in Figures 77 and 78. Organic material
tended to decrease In concentration with distance from the dead-end
area of both waterways. Although reported flushing rates for the two
canals were significantly different, longitudinal distribution of sedi-
ments appears to be more related to tidal velocities and size of particles.
-------
137
Common to any dead-end canal system is a regimentation of tidal
velocities that approach maximization at the seaward end of the system
during a tidal exchange. Coarser particles (those of greatest density)
would tend to accumulate to highest levels near the mouth of the system,
thus leaving finer matter to become concentrated near the
end of the canal. Fine sand was the dominant size class of sediment
particles in the two canals (Appendix D-2.1), and it obtained greatest
representation at the mouths of each canal (Stations 3 and 7); the
opposite trend was true for the finer particles (silt).
Canal I (undeveloped) exceeded Canal II (developed) in the accu-
mulation of sediments of richer organic content. Based on the carbon
to nitrogen (C:N) ratio of the sediments, there was a disparity between
the two canals in the relative state of organic decomposition of bottom
materials (Table XXVI). In Canal I, organic C:N ratios were generally
greater than ratios reported for Canal II, particularly at the dead-end
station of the former canal. Both canals were essentially the same
age and serve the same watershed. Apparent differences in the relative
state of decomposition lead to the following discussion which identifies
subtle contrasts in the character of the two canals.
Along the Gulf Coast, tidal streams function as natural systems
for collection and dispersion of detritus to main bodies of coastal
estuaries. Initially, detritus is derived as a by-product of plant
metabolism and is incorporated into a sestonic transport system. This
material usually consists of tiny bits of plant matter whose size
class ranges from the soluble state to less than 0.8 microns.
Sources of detritus common to both canals were mangrove swamps,
salt marshes, and upland vegetation with the latter inputs peaking
during periods of land runoff. The August mass exchange studies show
that both canal systems were importing detritus and suggested the same
held true for November. Canal I may have had some advantages in the
scheme of detrital recruitment because of its natural orientation to
Alligator Creek. Canal I was fashioned from a natural tidal creek
which may not have been excavated near its mouth (Figure 29); Canal II
was oriented for the convenience of development.
Auxiliary to the above sources of detritus was an unquantified
supply of organic matter input from septic tank drainage (see section E)
and street runoff. Qualitative differences (physically and chemically)
between organic matter derived from vegetation and domestic sewage
would be substantially different. Plant detritus would remineralize
more slowly, be void of animal protein except in bacteria, and be
rich in cellulose fiber. Septic tank leachates, however, represent
organic matter rich in soluble proteins and amino acids and convenient
for rapid microbial assimilation.
-------
138
To add some perspective to the sediment's level of organic
decomposition, the C:N ratios associated with the common coastal
marsh plant, Spartina, were considered. The living plant yields a C:N
ratio of 45:1; but with decomposition, the yield can be reduced to 11:1
(Odum, E. P. as cited in Russell Hunter, (18)). Assuming that other
marsh plants, including mangroves, yielded similar C:N ratios, reminer-
alization of bottom debris in Canal I was less complete based on an
average C:N ratio of 22:1 as compared to the more stabilized sediments
of Canal II with an average C:N ratio of 15:1. Apparently, any load-
ing of Canal II with organic matter from domestic waste sources has
had no detectable impact on the decomposition state of sediments.
However, this auxiliary source of organic enrichment poses potential
liabilities on the dissolved oxygen regimen. Solubilized matter
(amino acids, proteins) can be rapidly entrained into the microbial
processes of decomposition before entry into sediments. Remineraliza-
tion of this matter places added demands on the DO budget of the canal.
Referring to Figures 45 and 46, absolute values for DO concentrations
were consistently lower in Canal II than in Canal I. Other evidence
indicating progress of remineralization in the water column were
increased concentrations of inorganic nitrogen over those values
reported for Canal I (Table VII). Increased levels of ammonia, nitrites,
and nitrates in Canal II over those values reported for Canal I could
lead to other perturbations of the system by way of algal blooms.
At Big Pine Key, distribution of organic sediments in Canals III
and IV are reported in Appendix D-1.2 and illustrated in Figures 79 and
80. Canal IV contained a greater volume of sediments richer in organic
matter than did Canal III. This disparity could be related to several
factors—Canal IV was several years older than Canal III, was developed
with residential units, and was subject to poorer flushing.
In terms of C:N ratios of sediments, there appeared to be some
differences in the relative state of sediment decomposition. Canal III
contained sediments with an average C:N ratio of 10 versus a value of 13
for Canal IV. Sediments of the Big Fine Key canals appeared substantially
more stabilized in terms of decomposition than the study canals at Punta
Gorda. Obviously the Punta Gorda canals receive greater inputs of organic
carbon as indicated in the Water Quality Section (Tables VII, VIII, IX,
and X).
Canal orientation with respect to prevailing wind direction with-
out the benefit of protective barriers at their entrance are often
subject to the effects of windblown detritus as it accumulates in the
close-ended systems. This was the case for the two canals immediately
south of study Canal IV (Figure 12). At the time of our studies, Canal
IV and those canals north of it were not affected. Under conditions of
-------
139
a prevailing northwesterly wind, uprooted and floating fragments of
vegetation drifted directly into the canals and, in some cases, accumula-
ted into dense floating mats. Surprisingly, the situation had little
effect on the organic composition of sediments at the time of the
survey.
With adequate retention time, entrapped vegetation was relieved
of its buoyance through decomposition processes. As particulate matter,
detritus was available for transport to the bottom or other areas of
the system and for entrainment into aquatic food chains. This consi-
deration was tentatively verified. At Station G (Figure 30), floating
mats of sea grass choked the canal. Local residents confirmed that
this condition was common to the canal and prevailed until the wind
direction reversed. At this station, accumulative levels of organic
matter in sediments (Figure 80) and accompanying C:N ratios (Table XXXVI)
were comparable to values reported for the other stations in the system.
The respective parameters were quite similar. Apparently, the settling
rate of this material was sufficiently slow to provide a relatively
thorough decomposition of vegetation prior to any deposition on the
bottom. In support of this contention, dissolved oxygen variations in
the system were considered. At Station G, DO concentrations along the
vertical plane of the water column followed a "bell shape" distribution
(Table XVI). Maximum DO levels occurred at mid-depth, while minimum
concentrations developed near surface and bottom regions. Reduced DO
levels near the surface reflect respiration requirements of the decompo-
sition processes and lack of reaeration. Depressed DO levels at the
bottom indicate benthic oxygen demands which include respiration needs
of the benthic plants, as suggested by diel variations in the system
(Figures 50 and 51).
Apparently, at the time of these observations, the DO budget of
the system at Station G was sufficient to meet the metabolic needs of
plants and animals; this allowed decomposition of vegetation to proceed
to some stable end point and not degrade the sediments. In the absence
of an adequate DO budget, the system could become anaerobic; this would
lead to an accumulation of partially decomposed vegetation on the bottom
and create a benthic environment suitable for only the most pollution-
tolerant animals.
Coupled to the above reported inputs of detritus was the organic
matter supplied by the attached plant communities established within
the canal systems. In the case of Canal IV, possibly leachates of organic
matter from septic tanks could have added to the detrital pool for the sys-
tem of canals associated with the residentially developed area of Doctors
Arm subdivision. At the time of the survey, the combined supply of
organic matter to the Canals III and IV appeared to be in balance with
-------
140
the assimilative capacity of the two systems, thus avoiding any
serious degradation of the sediments.
Vertical and longitudinal distribution of organic matter in sedi-
ments of the Sea-Air Estate canal at Marathon, Florida, are reported
in Appendix D-1.4 and illustrated in Figure 81. Compared to Big Fine
Key canals, the sediments contained substantially less organic matter.
This probably reflects the absence of effects associated with residential
development and benthic macroalgae and seagrasses. Aside from differences
in the content of organic matter, sediments were very similar in terms
of particle size (mainly silt in both cases) and C:N ratios. Particle
size data is contained in Appendix D-2.2 and CsN ratios are shown in
Tables XXVI and XXVII.
For the Atlantic Beach canals, vertical and longitudinal distribu-
tion of organic matter content of the sediments are reported in Appendix
D-1.5 and illustrated in Figure 82. Three salient features are indicated
in Figure 82.
• The organic content of sediments is approximately 1,000 times
greater than heretofore reported for Florida canals.
• Within canals, organic content of sediments was maximized at
the dead-end locations.
• Marsh sediments were similar in organic content to sediments
of the undeveloped canal and associated approach cannel.
Organic richness of canal sediments in our opinion reflects the organic
production of lush Spartina marshes of the coastal region. These marshes
constitute the bases of a detrital economy essential to development and
maintenance of a vast resource of aquatic life. For discussion purposes,
detritus is referred to as small fragments of dead plant material that
are tidal flushed from the marsh as particulate matter. Dimensions of
these particles are size categorized as extra coarse, fine, and Nanno
fractions (2 , 4 ). Hanno particles being smallest (less than 64 microns)
would, of course, be most amenable to prolonged suspension. These
authors also provided information regarding the carbon-nitrogen character
and oxygen uptake rates of this material. The protein content of Spartina
detritus increased with decreasing particle size; organic carbon content
(carbohydrates) decreased with decreasing particle size; and oxygen uptake
increased with decreasing particle size.
Detritus originating from a 17.5-acre Spartina marsh was tidally
flushed to the undeveloped canal where some of the material was undoubtedly
distributed to sediments and the remaining suspended detritus exported
from the system. Sediment profiles of the canal were fairly similar to
the organic profile reported for the marsh (Figure 83 , Station 9A).
-------
141
The entire detrital load placed on the canal apparently imposed little
demand on the oxygen resources of the canal system (see DO profile for
Stations 9 and 10, Figure 68). Quite likely, organic matter settling
to the bottom represents the coarser, more dense detritus which would
tend to be fairly well stabilized in terms of decomposition and effects
on oxygen demand too low to be detected by our DO measurements. The
reader will note that the C:N ratios of the sediments for any canal
and non-canal stations appeared to be relatively small with respect
to ratios indicated for the Florida canals (Tables XXVI thru XXVII).
As discussed earlier, a C:N ratio approaching 11:1 was presumed indica-
tive of fairly well stabilized sediment in terms of microbial decomposi-
tion.
Detritus held in suspension (predominantly the Nanno fraction), but
ultimately exported from the system, would represent the maximum potential
for demands on dissolved oxygen resources of the canal system. Based on
DO profiles for the undeveloped canal, these demands were either easily
met or the detritus was exported from the system before the demands
could be reflected in the measured DO levels.
Sediment of the developed canals also reflect an organic richness
(Figure 82). Vertical distribution of the organic matter, however,
was fairly different from that reported for the marsh and undeveloped
waterway, particularly in the case of Station 1. Cores from the dead-
end location show an overall organic enrichment unequaled in magnitude
by any other location samples.
Sources of carbon to developed canal systems have been identified
in the septic tank leachate and mass exchange studies. With respect to
the latter study, the heavily developed canal was importing tremendous
quantities of organic carbon and nitrogen from areas outside of the
canal system. Marsh detritus was undoubtedly a principal source of this
import. As mentioned previously, detritus is divided into three size
classes, with finer particles being more convenient to a prolonged
suspension. As suspended particles travel the length of the canal,
coarser, more dense material would be the first to settle to the bottom
as Indicated in the results of the sediment-particle size analyses
(Appendix D-2.3). Thus, the canal constituted a trap for finely divided
particles, and the organic richness of its sediments at the dead end
locations would be expected. Settling rates of finely divided organic
matter (Nano detritus) would be timely and a direct function of poor
vertical mixing. The heavily developed canal, in the dead-end vicinity
would afford a convenient area for settling of particulate matter.
Settling of finely divided organic material would not proceed with-
out taking its toll on the canal's dissolved oxygen resource based on
the work of Odum and de la Cruz (2). Figures.64 to 68 show a steady
decrease in DO with depth. If sediments were the principal DO demanding
-------
142
agent, a different configuration for the indicated DO profile might
be expected. The near linear configuration of the profiles shown
would be replaced by profiles with a break in discontinuity such as is
illustrated in Figure 84.
2. Metals
Metal concentrations in the sediments at Punta Gorda reveal major
differences between the undeveloped and the developed canal (Figure 85).
Metal concentrations (lead, manganese, zinc, and iron) in the developed
canal increased from the mouth to the dead end while in the undeveloped
canal, the reverse was true. This disparity leads to the suspicion that
the undeveloped canal is receiving metals from the access waterway near
its mouth and that the developed canal is accumulating intrinsic metals.
3. Pesticides
No significant pesticides accumulations occurred in the sediments
at any of the sampling stations (Tables XXIV & XXV). A list of the complete
pesticide scan and their detection are presented in Appendix D-3. Pesti-
cide accumulation at Punta Gorda followed trends similar to those described
for sediment metals. In the developed canal, accumulations increased
from the mouth to the dead end; while in the undeveloped canal, the
process reversed itself.
Likewise, at Panama City, sediment samples taken for pesticide
analysis revealed low levels of pesticide contamination. In general,
concentrations increased from the canal mouths to their dead ends.
4. Development Densities Versus Sediment Composition
Relative stages of development (dwelling unit density) along canal
banks are positively correlated to sediment composition (Table XXIX).
Four types of comparisons made were:
Case
A Canals with development versus background
B Canals with development versus canals without development
C Canals with development versus canals with light
development
D Canals without development versus background
A case-by-case comparison from this table qualifies the differences
in sediment composition relative to stage of development. In Case A, 78
percent of the comparisons revealed higher concentrations in the developed
canal than in background stations. In Case B, 83 percent of the compari-
sons showed higher concentrations in the developed canal than in canals
-------
143
with no development. In Case C, 100 percent of the comparisons revealed
higher concentration in the developed canals than those which had only
light development. In Case D, 59 percent of the comparisons showed that
undeveloped canals had higher concentrations than background stations.
The above evidence of accumulation of chemical parameters in the
benthic deposits in canal systems is replete. Not only do developed
canals accumulate chemicals in the sediments, but also to a lesser extent,
undeveloped canals trap chemicals from allochthonous sources into their
sediments.
-------
TABLE XXIV
AVERAGE CONCENTRATIONS IN THE SEDIMENTS
PUNTA GORDA. FLORIDA
FINGER FILL CANAL STUDY
NOVEMBER* 1973
1.0339 7,:320 7J322
COD K'JU i^OISTJRE RESIDUE
O^Y »'GT CONTENT TOT VOL
Mr,/KG PERCENT PERCENT
150500
325000
368200
47600
154300
140400
44100
1^000
62400
41000
20500
138000
-
59
80
b'l
24
66
t>l
4r.
55
. 49
52
29
64
67
* '
6«
.1
2Q
• 8
81*
• B
a i
"• 1
6f
.6
b.5
6.2
U 1
B« 1
7 —
.0
br>
.C.
00^26
0*G *T
Ih53
ftffiO
C*,. v 1
7250
f C. J V
3500
3100.
*•? '
1750
1450
l ii Ml
i 'i -yv
'
-066tt 01052 01053
PHOS .'.uu PB MOU MN MOD
DL-Y .TGT DRY WGT DRY WGT
M(j/M,.,- MG/KG-PH MG/KG-MN
45C.O
1350.';
1400.0
760.5
650'.-)
1000. 0
960.0
850.0
410.C
2250.0
6K
20
15
BK
20
29
•
51
4.5 l-?3ii us.
5.7 ItJ.-.-.- lib.'
6.3 2-.-rii; 1^-0.'
4.7 lf>'.': .1 '6.«
*u 3 ^'0^' 1 ** 3 • •
si,) 3S:ir 1^5.-
5.4 2, 30 175.
4.5 176C 2r5..'
5*1 1V.C 2:0."
1 -*
1 2
10
35
1 O
17
1 K
1 O
2B •
»
cc
>1
C *
22
01053
MN MUD
DRY *GT
MG/KG-MN
5
5
15
•j
10
(3
19
16
01093
/N MUO
ORY WGT
MG/KG-^N
5
14
} 1
14
29
15
14
14
10
01170
FE MUO
DRY WGT
MG/KG-FE
450
450
975
1100
500
730
1150
360
892
460
leoo
00747
SULFIDE6
MUO
UG/KG
20. OK
32.0
43.0
176.0
42.0
52.0
10B.O
27. OK
la.O
22.0
<;6.o
39366
DOE
HUD
UG/KG
NO
NU
NO
NO
NO
NO
0.72
NO
1.90
NO
NO
39363
ODD
MUO
UG/KG
NO
NU
ND
NU
NU
NO
NO
6.30
NU
NO
39373
DOT
MUO
UG/KO
NO
NU
NO
NO
NO
NO
1.0
NO
NU
NU
NU
39393
ENORIN
MUO
UG/KG
NU
NO
NO
0.94
3.50
0.64
NU
0.91
NU
NU
NO
39619
HCtlS
MUU
U(V/lU>
NO
NU
NU
NU
NO
NO
1.2
NO
NO
NU
NU
-------
SABLE ZZV
AVERAGE CONCENTRATIONS IN THt StUlrttNTS
PANAMA CITY, FLOKIUA
FINGER FILL CANAL STUUV
SEPTEMBER* 1974
STATION
PC-A
PC-n
PC-C
fC-b
PC-n
PC-l
PC-J
00339
COO MUO
OHY MbT
Mb/NG
464100
46200U
1U1BO
380700
247600
469400
1885
004Vb
* MOIST.
SEUlMtNT
CAMPLE
62.00
63.00
30.00
74.00
62.00
84.00
19.00
70322
RESIDUE.
TOT VOL
PEHCtNT
12.2
24.1
1.1
20. a
13.6
24.2
5.5
00626
OHGAN. N
MUD 0 XT
MG/KG-N
6*50
BU50
1920
9250
73bO
10200
67
OQ66B
PHOS MUD
UKY MOT
Mb/KG-P
i!>7
202
U
b8U
260
231
41
01053
NN MUD
OHY MGT
Mto/KG-MN
10
6
2
17
13
17
01093
IN MUD
DRY HGT
MG/KG-ZN
30
34
3
43
28
27
01170
Ft MUD
URY MGT
MG/Kb-FE
3400
4200
40
16200
aooo
12800
00626
TKN
MUD
MG/KG
6450
6850
1920
9250
7350
10200
119
01029
CR
MUD
MG/KG
15
12
8K
27
20
21
01043
CU
HUD
MG/KG
11
7
1
a
11
11
00693
C:N
MUD
MG/KG
10:1
20:1
2:1
15:i
13:1
17:1
li:i
39368
ODE
HUD
UG/KG
49.00
7.00
4.80
22.00
11.00
20.0
39363
ODD
MUD
U6/K6
290.00
78.00
24.0
100.00
49.00
95.00
39373 39519
DOT PCBS
MUD MUD
UG/K6 U6/K6
NO 22.0
NO 11.0
6.1 NO
NO NO
NO NO
NO 12.0
STATION
AB-01
AB-02
AB-03
AB-04
AB-05
AB-06
AB-08
A8-09
A8-10
AVERAGE CONCENTRATIONS IN THE SEDIMENTS
ATLANTIC BEACHt NORTH CAROLINA
FINGER FILL CANAL STUDY
SEPTEMBER, 1974
00339
COO MUD
DRY MGT
N6/K6
151000
11500
96300
10700
54000
183900
12700
177000
41000
00495
* HOIST.
SEDIMENT
SAMPLE
86.00
28.00
60.00
22.00
85.00
84.00
27.00
97.00
58.00
70322
RESIDUE
TOT VOL
PERCENT
17.8
1.8
8.0
0.8
16.5
18.7
2.1
17.1
3.6
00626
ORGAN. N
MUD D MT
MG/KG-N
375
1420
350
2850
3180
400
2780
1120
00668
PMOS MUD
DRY MGT
HG/KG-P
120
415
145
430
450
250
550
335
01053
MN MUO
DRY MGT
MG/KG-MN
134
12
78
12
112
125
265
124
44
01093 01170
2N MUO FE MUO
DRY WGT DRY M6T
MG/KG-ZN MG/KG-FE
174 2700 A
8
52
6
82
108
11
90
25
2060
15000
2060
21200
24200
41000
24000
9000
00747 00693
SULFIOES CSN
MUO MUO
UG/KG MG/KG
1957
32
320
367
640
100
40
305
mi
2511
11*1
711
22:1
1211
2S1
14:i
CONCENTKATIONS IN THE SEUIMENTS
SPOONEft'b CHEEK, NORTH CAROLINA
FlNbEH FILL CANAL STUUY
SEPTEMUtH, 1974
STATION
SC-Ul
OOJ39
COU MUU
DKY kST
Mb/Kb
20VUOO
UbOOU
39000
tolt
0049S
* MOIbT.
SE.UIMENT
SAMPLE
U2.00
t>9.00
4H.OO
crl.ou
70322
RESIDUE
TOT VOL
PEHCtNT
2b.O
llll
4.b
4.6
00626 0066ti 010b3 01093 01170 00747 00644
OKGAN. N PrtOS MOu MN MUU ^N MUO FE MUO SULUDES C'N
MUO 0 MT OKY «GT DRY MfaT URY MGT DRY MGT MUO MUO
Mb/KG-lM MG/KG-P MG/K6-MN MG/Kb-ZN MG/KG-FE Ub/KG
24bO
1120
3bU
290
.136
152
64
7
66
68
43
4
27600
20600
98UO
860
t>44
1611
-------
Table XXVI
Concentration of Organic carbon and nitrogen, and carbon-to-aitrogen ratios found in the top 10 cm
of bottom sediments, Punta Gorda and Big Pine Key areas, November 1973.
Station
-1 (DE)
2 (M)
3 (MO)
4 (BG)
5 (DE)
6 (M)
7 (MO)
Punta
Cone. Organic
Carbon*
(mg/kg)
56,367
121,723
137,790
17,903
57,790
52,584
16,516
Gorda
Cone. Organic
Nitrogen
(rag /kg)
1,850
8,000
7,250
600
3,500
3,100
1,300
C:N
Ratio
30:1
15:1
19:1
30:1
16:1
17:1
13:1
Station
8 (DE)
9 (M)
10 (MO)
11 (BG)
12 (DE)
13 (M)
14 (MO)
G (S)
Big Pine
Cone. Organic
Carbon*
(mg/kg)
14,457
20,637
12,360
28,727
18,727
32,434
44,944
25,243
Key
Cone. .Organic
Nitrogen
(mg/kg)
1,250
1,650
1,800*
2,050
1,600
2,000
3,500
1,750
. C:N
Ratio
12:1
12:1
7:1
14:1
12:1
16:1
13:1
14:1
*• Values based on conversion of COD to organic carbon.
DE - deadend, M - mid, MO - mouth, BG - background, S - special.
-------
147
Table XXVII. Concentration of organic carbon and
nitrogen and carbon to nitrogen ratios
found in the top 30 cm of bottom sedi-
ments at Sea-Air Estate canal, Marathon,
Florida, August 1974.
Station
15
16
17
18
19
Organic
Carbon'
(mg/kg)
19,546
26,466
17,151
23,158
28,864
Organic
Nitrogen
(mg/kg)
1,650
1,560
1,475
1,875
2,375
C:N
Ratio
12:1
17:1
12:1
12:1
12:1
-------
148
Table XXVIII. Concentration of organic carbon and nitrogen and carbon to nitro-
gen ratios found in the top 10 cm of bottom sediments at Atlantic
Beach and Spooners Creek, North Carolina, September 1974.
Station
1
2
3
4
5
6
7
8
9
10
Atlantic
Organic
Carbon
(rag/kg)
56,554
4,307
36,067
4,007
20,225
68,876
NS
4,756
6,629
15,355
Beach
Organic
Nitrogen
(mg/kg)
NS
375
1,420
350
2,850
3,180
NS
400
2,780
1,120
C:N
Ratio
—
11:1
25:1
11:1
7:1
22.1
—
12:1
2:1
13.7
Spooners
Organic
Station Carbon
(mg/kg)
1 78,277
2 NS
3 50,561
4 12,735
5 1,075
Creek
Organic
Nitrogen
(mg/kg)
4,900
NS
2,450
1,120
425
C:N
Ratio
16:1
—
21:1
11.4
3:1
-------
Table XXIX. Sediment comparisons by degree of development, Finger-Fill Canal Study.
Parameter
COD
VSS
Org-N
Phosphate
Pb
Mn
Zn
Fe
Sulflde
C:N
Punta Gorda
D vs DD
D*
D
D
D
D
D
0
D
UD
UD
D vs BG
D
D
D
D
D
D
D
D
D
BG
UD vs BG
UD
UD
UD .
BG
UD
UD
UD
UD
UD
Same
Big Pine Key
D vs UD
D
Same
D
D
D
Same
D
D
D
Same
D vs BG
b
Same
Sane
D
D
Same*
D
BG
BG
D
UD vs BG
UD
BG
BG
BG
BG
BG
BG
BG
BG
UD
Atlantic Beach
D vs UD
D
Same
—
—
D
D
D
D
—
—
D vs LD
D
D
—
—
D
P
D
D
D
—
D vs BG
D
,D
—
—
D
Bff .
D
D
D
—
UD vs BG
UD
UD
UD
UD
UD
BG
UD
UD
—
BG
Spooners
Creek
D vs BG
D
D
. D
D
D
D
D
D
D
D
Panama City
(Woodlawn) (Hentz)
D vs BG
D
D
D
D
—
—
—
—
—
BG
D vs BG
D
D
D
D
—
—
—
—
—
D
*>
•a
D - Canal with development along its banks.
UD - Canal with no development along Its banks.
BG - Background
LD - Canal with light development along Its banks.
^Denotes higher concentration In developed site.
-------
FIGURE 77
VERTICAL AND LONGITUDINAL DISTRIBUTION OF ORGANIC MATTER (VOLATILE SOLIDS)
PUNTA GORDA, FLORIDA
NOVEMBER, 1973
0.
10
20
E 40
o
^-» «A
5O
5
O
*~ 0
« ,0
_J
5 20
Z
2 30
$ 40
O
UJ 50
CO
oO
Z 70
UJ
0
UJ
W) O
0 I0
I zo
UJ
Q 40
50
60
_
—
r
—
—
~~
_
—
—
5
4
R
fl
R
2
1
•
4
u
M
9
3
I^IMM
Z
1
M
4
T-1
«-! —
s
6
5
L
3:
1
L
4
2
^WPI
|
o
10
C 30
UJ
— 40
I 50
•z 100
o
V) ' IO
•0
2 10
CM 20
.1 3°
0 40
W 50
0,
£ 10
2 ?n
— 30
to
c *0
o
^ so
V> 60
7n
p ^
—
_
^
—
—
—
^
^
—
—
9
4
3
-^
R
2
'
2
R
3
T
5
4
—
5
M
_i_
4
5
M
2
1
5
4
9
|_
L
4
S
4HMM
L
2
1
2
1
— KEY
• -o Rtl
£ R- Righf Bonk
— M-MId Chonnol
lO L - Ltf t Bonk
C
— NO I t
O Chonntl Petition Facing
(^ Downttrtam
Cone. Interval
Code Volat le Solids mq/kg
C- . 1. 0 - 49 ^
.^ O
5 2. 50 - 99
^ 3. 100 - 149
c 4. 150 - 199
5 5. 200 - 249
° 6. 250 - <-
1 n _ ,6 2
o o •" *~~ —^ —
IO —
20-
0 '
^ 30 -
CO 40 —
R U L
Canal X
R M L
Canal 3E
R M L
Background Station (4)
-------
151
FIGURE 78
VERTICAL AND LONGITUDINAL DISTRIBUTION
OF ORGANIC MATTER (VOLATILE SOLIDS)
SPECIAL STATIONS
PUNTA GORDA, FLORIDA
NOVEMBER, 1973
0
10
20
30
40
50
60
70
80
*~~ 9O
—
-
-
—
—
^^
—
—
5
3
•••••
2
•^^•B
1
— "
^•^•1
3
2
1
KEY Cone. Interval
R- Right Bonk C°d6 V°!atilC Solid* mg/k
-------
FIGURE 79
VERTICAL AND LONGITUDINAL DISTRIBUTION OF ORGANIC MATTER (VOLATILE SOLIDS)
BIG PINE KEY, FLORIDA
NOVEMBER, 1973
Cone. Intervol
^ 0
E 10
u
— 20
36
0 30
t 40
:n
N-
4
1
—
NA
[NA
••
O R M L
ff\
CD
< 0
z
^ 10
o
£ 20
O
-I 30
UJ
01 40
K
Z««%
-
•^
—
2
NA
l^BBMB
|
2
1
O
i 'o
Ul
— 20
CO
30
o 40
—
—
2
1
1
2
1
^ v^ooc volume ^>utiud >n^/ny
li 1. 0-49 KEY
CVJ 2 50-99 " " R''hl 8; £. ou s» M-MId Chonntl
C 3. 100 - 149 L- Lt(t Bonk
•r 4. 150 - 199 NOTE
n R M L V) Downtlrtom
2 6. 250 - *z -
V) Ui
to
^— \j
h-
.N-
« ' c 30
fcMM*^
•»* R M L
5
O
vt
u. 10
O
X 20
£L 30
la 1
IU
_
—
NA
••l^BB
1
^ '
.2.
3
•••••••
1
-2-
1
R M L
Canal 3
o
•^ 40
o
V> 50
60
—
_.
2
1
2
NA
m
2
1
MMBM
•o
— 0
m
- 10
C
.2 20
n
— ' — ' ^ 30
^ R M L
3 ~ 50
0 ^
2 QI— •— i i—
O 10
§ 20
o 30
™ «n
—
—
2
t
•*••••
3
•••••i
1
—
•^-
_£_
1
t: so
0
2 120
* 130
c 140
0
™ i ^n
- 2
•" __
1
•• ^~ "*
^
-•
_»
—
-
—
3
2
^^
-S*
1
i
2
1
NA
'
R M L 2 R M L
Canal 4 Background Station (1 )
-------
153
FIGURE 80
VERTICAL AND LONGITUDINAL DISTRIBUTION
OF ORGANIC MATTER (VOLATILE SOLIDS)
SPECIAL STATIONS
BIG PINE KEY, FLORIDA
NOVEMBER, 1973
0
^ 10
5 2°
2f 3°
040
O 50
O
_, 60
Z 70
0 8O
_
—
—
__
-
«••
—
9
,
•^IM
"•
-t— 1
^^^H
,
^HBBi
t
i
•^•^•H
KEY
R-Ri«M Sonk
M-Mid Chonntl
L- left Bonk
0
10
20
— ~~~1 I""""!
^M^
2 NOTE
i ^^
Chonntl Petition Foclng
"• ' 1 1 Donnilrtom
R M L
STATION H
R ML
STATION F
STATION 1
UJ I
o '•
H 2.
£
Z 4.
a o
••• ^
v> o
u.
O 10
J 20
a.
UJ 30
a
40
-•
•^
—
i—
—
t
-
I
IMM^
i^
•^~
1
mm^m
SIO
20
30
40
—
—
_
-
i_
^^••W
9
^^^m
i
•••^
•IHHh
t
•••••
1
^•••i
9
BMBMH
1
5.
6.
R M L
STATION 6
Code Volatile Solids mg/kg
0-49
50 - 99
100 - 149
ISO - 199
200 - 249
250 - <
-------
FIGURE 81
VERTICAL AND LONGITUDINAL DISTRIBUTION OF ORGANIC MATTER ( VOLATILE SOLIDS)
SEA AIR ESTATES, MARATHON, FLA.
SEPTEMBER, 1974
E •
u
— 0
2
O 10
0 «
O
J 50
4
* 40
"•
—
—
••
m^mM
1
•^•^H
0
c I0
o
o °r i — i 2o
0 ' §
9. 80 |— ~ 40
0
H o
u
ffi
H '0
2
W 20
? 50
IU
en
u. 40
o
T SO
—
••
„„
_
1
••i«a
o
MlddU
«0
70
(O
flO
,—
-
—
_
—
^m
—
^^^H
2
i^NM
0 r- r—
10 —
1 °*
20 — '
c
o
30 — 'C
^MMrt Q
« 4°' -"
— Bockground
c
o
o
^
)
0 Mouth
'C
e
fn
1- Dt«* End
Q.
KCV
M-MI4 C»««««l
L-L*rt •«»
NOTE
Cone. iKtirvol
Co«» Vololll* Solid* nig/kg
I. 0-49
2. SO - 99
3. IOO - 149
4. ISO - 199
9. 200 - 249
6. 230 -
-------
FIGURE 82
VERTICAL AND LONGITUDINAL DISTRIBUTION OF ORGANIC MATTER ( VOLATILE SOLIDS)
ATLANTIC BEACH, N.C.
SEPTEMBER, 1974
L BOTTOM (cm)
» » M W -
> O O O O O
r BELOW CANA
« — «
> o o <
Z
a
u
V)
o
* I0
a.
S *0
SO
" » 3
" ill *
"" 1
••MMM
R M
-Q 0
R M
:nLJ
R M
1
1
MMM
3
••*••
Z
••••
1
L
L
L
O
c I0
o
Z 20
c
o
"Z |O
V) 20
30
«
c
o
p
tf>
p
R - L £
:FR []:
3 I I 1 0
r i — i n i — i *° - ' — ' ' — ' -
' -
1 ^ Corf 1 Cor* Z
0
o
R M L
M-Rlfki tank Cod* Volatile Solids mg/kg
.. 0 - 49
L-Lt" •"' 2. 50 - 99
NOTE 3' I0° - I4»
0«vn«rrt«« 5. 200 - 249
e; 250 -
-------
FIGURE 83
VERTICAL AND LONGITUDINAL DISTRIBUTION OF ORGANIC MATTER ( VOLATILE SOLIDS )
ATLANTIC BEACH, N.C.
SEPTEMBER, 1974
^ 0
o 10
o *°
° 40
4
Z
U
c
O
Cor*
0
to
20
3O
—
—
^
••••
^•^•i
1
^^WH
1^
1
co
c
o
^
o
VI
KEY
H-lllfkt •••»
M-MK Ck«*i>ll
L - L«fl ••*k
NOTE
Cone. InUrvol
Co4* Volotll* Solldt m«/kg
I. 0-49
Z. SO - 99
S. IOO - 149
4. ISO - 199
5. 200 - 249
6. 230 -
-------
FIGURE 84
HYPOTHESIZED DISSOLVED OXYGEN PROFILE WITH DEPTH ASSUMING
NO VERTICAL SALINITY OR TEMPERATURE STRATIFICATION AND
BENTHIC RESPIRATION AS PRINCIPAL OXYGEN CONSUMER
Ui
II
0.0.
-------
158
4O
30
O>
Jf
E
Z 20
<
Of.
o
Z
o
u
IO
40
V
ac
a
30
9
E
4
a:
5 I0
o
o
u
FIGURE 85
SEDIMENT METAL ACCUMULATIONS
PUNTA GORDA,FLORIDA
NOVEMBER, 1973
Zinc
— Undeveloped Canal
Dead End
Mid
CANAL LOCATIONS
Mouth
Developed Canal
Otad End Mid
CANAL LOCATIONS
Mouth
-------
159
E. SEPTIC TANK LEACHATE TRACING STUDIES
Septic tank systems potentially serve as a source of bacterial,
viral, and chemical contamination to surface and subsurface waters. The
same concerns can also be extended to central sewage treatment systems
should they be inadequately designed, maintained, or operated. If the
groundwater in the vicinity of septic tank systems serves as water supply,
public health problems of paramount proportion could exist. In the case
of tidal canals, the public health issue remains germane in view of the
potential transfer of the septic tank effluent to the waterway. A secon-
dary concern focuses on the nutrient enrichment aspects by the leachates
and the potential for creating a biotic imbalance in the waterway and
adjoining estuarine waters. A cursory review of literature relating
to the influence of septic tank leachates on public health and environ-
mental quality is presented in Section~F of this report.
Septic tank leachate tracing studies were initiated at Funta Gorda
and Big Pine Key, Florida, and at Atlantic Beach, North Carolina, to
document movement of septic tank leachates into canal waters.
A conservative dye (Rhodamine WT) was introduced into selected
septic tank systems at the Florida and North Carolina locations
(Figures 86, 87 and 88). In each case, four liters of 20% Rhodamine
WT dye were introduced through a house drain into the septic tank system.
An automatic sampler was placed at the edge of the canal and programmed
to sample at hourly intervals. The intake of the sampler was placed
approximately one foot from the bottom of the canal and at a point
immediately down gradient from the septic tank/drainfield system.
Samples were analyzed for the presence of dye with a microflourometer.
At Funta Gorda, the presence of dye in the canal system was
clearly confirmed after 25 hours (Figure 89 ). In the Atlantic Beach
study, confirmation came after an elasped time of 60 hours in one test
and only 4 hours in a second experiment (Figures 90 and 91, respectively)
Although the two study areas were geographically remote to one
another, the septic tank and drainfields shared some common features.
In both cases the tanks were approximately 50 feet from the canal. The
drainfield tiles were parallel to the canal which was partially bulk-
headed. The land elevation was approximately five feet above mean high
water, and the building sites were created from fill material derived
from the excavation of the canals. The seepage fields are composed
primarily of sand, silt, and shell. The tidal dynamics of the two
regions were fairly similar. Two to three foot tidal ranges are
common at both locations.
-------
160
The hydraulic head between the canal water surface and the invert
elevation of the draintile provided the necessary gradient for the
transfer of the septic tank effluent to the canal system and the
effluent appeared to follow a noninterrupted course to the waterway.
Factors affecting the disposition of the effluent were undoubtedly
the drainfield construction and the water-use pattern of the occupants.
These aspects are partly evident in the tracing experiment at Site B
in Atlantic Beach. Reviewing Figure 91 , the first dye injection was
made at approximately 1400 hours and a response in the canal recorded
4 hours following. Also, in Figures 89 and .90 of tracing at Punta
Gorda and Atlantic Beach, respectively, the peaks follow patterns
indicative of wastewater discharge flow fluctuations.
In the Big Pine Key study, dye was introduced into two septic
tank systems located on two different canals. No evidence of dye was
detected in either waterway over a period of 110 to 150 hours of
sampling.
Three factors could have been responsible for the absence of dye
at the point of our sampling:
o Sorption of dye with the drainfield substrate.
o Lack of sufficient hydraulic gradient between the
draintile invert and the canal waters.
o Direction of travel different from point of sampling.
The principle soil substrate of the Big Pine Key area is Oolite,
a carbonate of lime. The material is extremely porous and has a strong
tendency to chemically bind with other compounds. To determine the
scavenging effect of the Oolite on the dye, sorption experiments were
conducted in the laboratory with the two materials. Various concentra-
tions of dye were simply exposed to Oolite packed in plastic columns and
the residue of dye remaining in solution was measured over increasing
time intervals (in excess of five days). The dye showed no measurable
affinity for the carbonate material.
At Doctors Arm Subdivision, building sites were created from fill
material obtained in the excavation of the canals. The fill was mainly
fractured Oolite. The unconsolidated aggregate remained extremely
porous when compacted as indicated by percolation test data (two minutes
per inch).
During the time of the dye tracing studies, the recorded mean
tidal elevation of the canal water was approximately 2 feet below the
surface of the building sites. This feature considered in the context
of the percolation data would indicate that groundwater was undoubtedly
continuous with the canal. Thus, the positioning of the draintile at a
-------
161
soil depth of about 2 feet would place the system in direct contact
with the groundwater (local residents confirmed that draintiles are
often laid in water-saturated substrate). This aspect alone constitutes
a direct and major contradiction to standard engineering practices relative
to septic tanks. Secondly, the system periodically hydraulically fails
because of the absence of gradient. In addition, chemical, bacterial and
viral contaminants can move directly into the surrounding groundwater.
In effect, the septic tank effluent pools in the vicinity of the drain-
field and remains so until an adequate hydraulic head is established.
As already indicated, the hydraulic gradient is mainly controlled
by surface water elevation in the canals. This elevation, in turn, is
a product of natural tidal amplitude and wind-driven effects. At the
time of these studies, tidal ranges were about one foot in elevation
which is normal for this season. Apparently in the time frame of the
study, the observed tidal variations were insufficient to effect a
hydraulic gradient that would flush the dye from the seepage field and
laterally disperse it to the canal where samplers were located. This
does not exclude the possibility that the dye emerged at some other
point in the canal system, a viable alternative in view of the
gemorphic nature of the substrate. Under either consideration, the
septic tank effluent must ultimately disperse to the open waters of
the canal.
The Environmental Protection Agency in conjunction with the North
Carolina Department of Natural and Economic Resources and Human Resources
has begun a study of septic tank systems and associated groundwater and
surface water quality at Surf City, North Carolina.. To date, only a
minimum quantity of data has been analyzed; however, the preliminary
data are useful to this current report as pollutional trends are evident.
Four groundwater well-point systems (A thru D) were installed in
this area (Figures 92 and 93). Data collected at these wells in
February 1975 (Table XXJO indicate that groundwater concentrations of
total Kjeldahl Nitrogen (TKN) are very responsive to proximity of septic
tank systems. Well-point systems A and B both reveal considerable
differences in TKN values between well samples upgradient and down-
gradient from septic tank systems, i.e., a 4.6 fold increase at Site B.
Likewise, samples taken from single well-points located downgradient
from septic tank systems at well sites C and D had TKN concentrations
of 58.0 and 25.0 mg/1, respectively. These two wells (12 and 13) are
located only 30 feet from the canal waters.
Leachate tracing studies (July 1975) at these Surf City, NC sites
have conclusively proven that fecal colifonn bacteria from septic tank
systems were transmitted to canal waters. Leachates entering the canal
-------
162
systems as traced with dye were found to have fecal coliform densities
in excess of 2,400,000 colonies per 100 milliliter.
-------
TABLE XXX
GROUND WATER WELLS
SURF CITY, NC
FEBRUARY 20, 1975
Well
System
A
A
A
A
B
B
B
C
C
D
D
Well TKN Septic Tanks Distance from
-No. Mg/1 Located up Gradient Well to Canal
3 7.3
11 13.0
7 11.5
Canal
6 3.6
9 19.5
Canal
12 58.0
Canal
13 25.0
Canal
No
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
420 feet
220
20
-
310 feet
10
-
30 feet
-
30 feet
_
Piezometric
Water Level
+ 4.05
+ 2.12
+ 0.55
0
+ 2.21
+ 0.53
0
+ 1.61
0
+ 1.79
0
Ground Water
Gradient
0.96 ft/100 ft
1.92 ft/100 ft
2.72 ft/100 ft
0.56 ft/100 ft
5.30 ft/100 ft
5.37 ft/100 ft
5.97 ft/100 ft
-------
164
FIGURE 86
TRACER STUDY
PUNTA GORDA,FLORIDA
AUGUST, 1974
LOCATION MAP
SCALE IN FEET
1.000 0 i.000 [.POO 60Qo
-------
Doctors Point
r"":".v<^
FIGURE 87
TRACER STUDY
BIG PINE KEY
AUGUST, 1974
Tracer Study
| No Nome Key
Big Pine Key
I.OCK
SCALE IN FEET
0 1,000
2,000
-------
FIGURE 88
TRACER STUDY
ATLANTIC BEACH
SEPTEMBER, 1974
BOGUC
SOUND
• *-:
ATLANTIC
-------
FIGURE 89
LEACHATE TRACING STUDY
PUNTA GORDA, FLORIDA
AUGUST 1974
100
80
Dye Injection @ 1530 hrs
§
I-H
00
GO
I-H
S
CO
60
40
20
SAMPLER
0ALFUNETION
0
0
12 18 24 30 36 42 48 54
ELAPSED TIME (HOURS)
60
66
72
78
84
-------
100
80
£3
O
£ 60
CQ
l-(
s
CQ
03
40
FIGURE 90
LEACHATE TRACING STUDY
ATLANTIC BEACH, NC
September 1974
Site A
2330 9/23/74
Injection @ 0930
9/18/74
2230 9/20/74 2330 9/21/74
20
8
16 24 32 « 48 56 64
ELAPSED TIME (HOURS)
80
96 104 112 120 128
-------
FIGURE 91
LEACHATE TRACING STUDY
ATLANTIC BEACH, NC
September 1974
Site B
100
80
2 60
w
CO
40
20
Injection @ 1400 9/20/74
1530 9/22/74
Second injection
1245 9/23/74
0 8 16 .24 32 40 48 56 64 72 80 88
ELAPSED TIME - HOURS
96
104 112 120
-------
170
FIGURE 92
GROUND WATER WELLS
SURF CITY, N.C.
FEBRUARY, 1975
KEY
• Ground Water Wells
-------
1 71
FIGURE 93
GROUND WATER WELLS
OLD SETTLERS BEACH
SURF CITY, N.C.
FEBRUARY, 1975
;.• I >r«^;
• ^M^mtm^^m • ««B|I
KEY
Ground Woter Wells
-------
172
F. SYNOPTIC REVIEW OF THE ADVERSE ENVIRONMENTAL EFFECTS OF SEPTIC TANKS
Treatment and disposal of domestic wastes associated with coastal
residential development is a. problem of increasing magnitude. Much
coastal development occurs in suburban localities, not served by munici-
pal waste collection and treatment facilities and do not lend themselves
to future service by such systems. As a result, rather than construct
a costly permanent waste treatment plant or utilize package treatment
facilities, septic tank disposal systems are the predominant type of
waste treatment advocated by developers.
The magnitude of water quality problems attendant with coastal
high density development is increasing at a rapid rate. Evidences
6f such water quality degradation are: the occurrence of nuisance aquatic
plant growth, algal blooms, creation of anoxic zones in canal waters,
the presence of offensive odors resulting from organic decomposition,
and the loss of valuable shellfish harvesting areas closed because of
excessive bacterial contamination.
Septic tank disposal systems are not the sole agent responsible
for noted evidences of water quality degradation; however, their
impact on the environment cannot be dismissed. Numerous factors, other
than waste disposal, play a significant role in the adverse aspect
of coastal development. The creation of complex canal systems with
poor hydraulic flushing characteristics, excessive population density
patterns, and surface runoff also contribute to water quality degrada-
tion in these developments. In essence, the very existence of develop-
ment in any form impacts the natural environs.
Septic tank disposal systems have widespread application in many
suburban locales and are popular means of household waste disposal.
Estimates made by the U. S. Public Health Service and the Federal
Housing Administration indicate that some 32 million people were
served by septic tank systems in 1970 (19). Many of those served by
septic tank systems reside in coastal developments. It is estimated
that more than 50 percent of Florida's canal-type developments utilize
septic tanks (20), and approximately 90 percent of the Florida Keys
utilize septic tanks even though the soil in that area is considered
unsuitable for satisfactory operation (21). In 1970, a Federal Water
Quality Administration report disclosed that approximately 50 percent
of Broward and Dade Counties, Florida remain on septic'tank disposal
systems (22).
-------
173
The relative percent of newly constructed dwellings with septic
tanks is decreasing; however, the number of new homes served by
septic tank systems is increasing (23). Pollution control agencies,
at both the State and Federal level, continue to review and, unfortunately,
approve septic tank disposal systems in coastal zones where soil and
groundwater conditions are unsuitable for satisfactory performance.
A septic tank disposal system consists of a septic tank and a
subsurface percolation system. A septic tank is a water-tight container
designed to separate floatable and settleable solids from the liquid
portion of wastes. The liquid portion of wastes is then discharged to
the soil through a drainfield percolation system. Basically, the septic
tank has three functions: removal of solids, biological treatment
(anaerobic), and sludge and scum storage (24).
The effectiveness of waste treatment by septic tank disposal sys-
tems is not necessarily governed by the operation of the septic tank,
but rather by the soil sorption system (25, 2.6, 27). Treatment provided
by the septic tank is minimal when compared to other forms of domestic
waste treatment (Table XXXI). Treatment effectiveness and performance
of the sorption field is largely dependent on geographical character-
istics of the area where the system is located. Factors such as soil.
permeability, soil depth, groundwater level, slope of the ground
surface, proximity to surface waters, and fractured or cavernous
geologic strata must be the determinants used for locating satisfactory
sites for septic tank systems (24, 25, 26, 27, 28, and 29). Failure
to adequately evaluate a septic tank site in the context of the above
factors, may result in the creation of a sanitary nuisance, a health
hazard, and a source of surface and groundwater pollution.
According to Patterson et al. (26), "Failures of septic tank
systems have been caused most frequently by one or more of the follow-
ing conditions:
1. Lot size too small to provide adequate absorption field.
2. Soil not suitable for septic tank drainage.
3. Groundwater level too high.
4. Excessive numbers of septic systems in an area.
5. Inadequately sized septic systems.
-------
174
The literature is replete with references of the widespread
failure and malfunction of septic tank disposal systems. Failure
of a septic tank system is characterized not only by the malfunction
of the system, e.g., clogging, but includes wastes reaching the
ground surface and the underground movement of wastes resulting
in the contamination of groundwater, wells, and surface waters. Fail-
ure of septic tank systems because of poor soil conditions, either
due to the impervious nature of the soil or to an overly pervious
substrate, are numerous (20, 26, 28, 30, 31, 32, 33, 34). Similarly,
high percent failure rates have been noted where a high groundwater
level prevented proper system operation (20, 21, 26, 32, 35, 36).
"The total evidence available, circumstantial and otherwise,
indicates that septic systems today exert a significant detrimen-
tal effect upon environmental quality" (26). These detrimental
effects are both common and costly evidences throughout the South-
eastern coastline (20, 37, 38, 39). The full impact that septic
tank leachates have on coastal environments may never be completely
recognized because of the subtlety with which they enter the affected
waters.
Regulations governing septic tank installation and design
criteria are promulgated and imposed by state and local environmental
or health agencies. Jurisdictional lines for system approval within
the state and local agencies are oftentimes determined by the size
of the installation. As one might expect, regulations imposed on.
septic tank usage varies from state to state with the southeastern
states being no exception.
All southeastern states have specific requirements regulating
septic tank systems. Some of these requirements are summarized in
Table XXXII for the six coastal southeastern states. Also included
in the table are recommendations from the Manual of Septic Tank
Practice. USPHS (24).
A review of state regulations controlling septic tank usage
reveals a spectrum of specific requirements. The detailed regula-
tions range from very vague and cursory to very thorough and compre-
hensive documents (40-45). More uniformity in regulations is
needed, particularly as they apply to coastal zones.
Any regulation on septic tank installation practices should
be based upon three parameters: (1) soil type, (2) horizontal dis-
tance from adjacent water bodies (3) vertical distance from groundwater
surface. While the first parameter is equally important, the later two
are much more enforceable and are of greater concern in coastal areas
since soils in the coastal fringes are predominately sand. Based upon
evidence to date, it seems prudent that septic tank/sorption fields be
no closer than 100 feet from a surface water body and that these
-------
175
fields be 3 to 4 feet above the saturated soil zone at the wettest
period of the year. However, even these minimum requirements may be
inadequate; therefore, each proposed development should be examined
in light of its environmental setting (i.e., water supplies, magnitude
of development, density, hydrologic factors, water classification,
pollution potential, etc.).
The role that septic tank disposal systems play in the spread
of disease is impossible to accurately quantitate and, many times,
difficult to identify or confirm. Their potential for creating health
hazards has been recognized for years and is of continuing concern to
public health authorities. The obvious area where public health effects
may be demonstrated is in the contamination of groundwater used as public
or private water supplies. Once a pollutant reaches the groundwater, it
becomes responsive to the local pattern of groundwater movement (31).
Table XXXIII shows the incidence of known waterborne disease result-
ing from the consumption of untreated groundwater for the period 1946 -
1970 (46). For this 25-year period, there were some 72,358 cases of
waterborne disease from all types of water systems (46). The fact that
30,594 cases of disease, or 42.3 percent, were transmitted by untreated
groundwater, points out the significance of groundwater contamination
in the spread of disease. This is further emphasized by estimates that
only about 57 percent of the disease outbreaks in public water supply
systems, and 33 percent of the outbreaks in private water supplies,
are reported (46). Numerous waterborne illnesses go unreported because
of either the mildness of the illness, the illness being mistaken as
resulting from another source, or simply being treated at home without
the involvement of a physician.
The extent to which septic tank disposal systems contribute to the
number of waterborne disease outbreaks is unknown. The manner in which
the waste may travel in the groundwater, together with the insidious
nature of many waterborne disease outbreaks, complicates attempts to
correlate disease outbreaks with septic tank disposal. Unlike surface
water contamination,.ground water contamination may be confined to a
very limited area, resulting in localized disease manifestations.
Septic tank disposal systems have been suggested as the source
of numerous waterborne disease outbreaks; however, many of these are
never confirmed by complete field, laboratory, and epidemiological
investigations (26, 30, 34, 46, 47).
-------
176
However, there are numerous studies reported in the literature
that do confirm the spread of waterborne disease by groundwater contami-
nated by septic tank discharges. A recent outbreak of gastroenteritis
in Florida involving some 1,200 cases, resulted from the contamination
of a public well located 150 feet from a septic tank. Dye studies con-
firmed that wastes travel from the septic tank to the well occurred in
nine hours (48). Four cases of typhoid fever in 1972 were the result
of a private well being contaminated by a septic tank located 200 feet
away. Again, dye studies indicated movement of the waste from the
septic tank to the well in 36 hours (49).
Movement of septic tank leachates through limestone formations,
with subsequent contamination of private wells, has been documented.
Dye from septic tanks was observed in a well 110 feet from the point
of discharge in a 14-hour period. Several persons using this well
developed gastroenteritis (28).
Several hundred cases of "sewage poisoning" have been documented
as a result of consumption of groundwater contaminated by septic tank
leachate. These cases are characterized by an inability to identify
a specific etiologic agent responsible for the outbreak; thus the
description, "sewage poisoning" (50, 51).
Several hundred cases of infectious hepatitis have been confirmed
as being caused by consumption of groundwater contaminated by septic
tank leachate (52, 53, 54, 55).
These confirmed illnesses resulting from the consumption of ground-
water contaminated by septic tank leachates not only establish, but
emphasize, the potential for such outbreaks where lateral movement of
contaminated groundwater occurs. Available information gives further
credence to the statement that "At best, septic tanks . . . are poor
substitutes for central (sewage) collection and treatment systems and
should be avoided whenever possible" (56).
The public health implications of septic tank discharges extend
beyond the area of human consumption of polluted groundwaters. An area
more difficult to assess is the impact that contaminated groundwaters
have on surface water quality degradation. Although difficult to
assess, it is nonetheless an area of extreme importance in delicate
estuarine ecosystems. When contaminated groundwater is allowed to
exchange with estuarine waters, a potential risk of disease transmission
must be recognized by those using these surface waters for water contact
recreation. Although bacterial and viral levels reaching surface waters
via this route may be low, they do represent a potential source of disease
transmission. Estimates indicate the virus content of polluted surface
water to be on the order of 0.15 and 1.5 virus units per 100 ml of water
(57). However, even these low densities may be of significance in view
of reports in the literature that as few as one infective tissue dose is
sufficient to induce infection (58).
-------
177
The fact that enteric bacteria and members of the enteric virus
family survive for significant periods of time in water affirms the
potential for contaminated surface water as a route of disease trans-
mission. As much as 100 days might be required for inactivation of
99.9 percent of the viral infectivity of some enteric viruses in surface
waters (59).
Another area of concern, but not well understood, is that of the
fate of viruses once they are adsorbed to particulates and become incor-
porated in the sediments of coastal zones. Gerber and Schaiberger (60)
stated; "It now seems reasonable to hypothesize that viruses entering
coastal waters readily adsorb to particulate matter that prolongs their
survival. Settling of this material, aided by the electrolytic effect
of seawater, could result in viral accumulation in sediments. Here,
viruses would remain undetectable in the overlying water to be later
resuspended by wave action, dredging, increases in the amount of organic
matter, or possibly changes in salinity." The possibility that such a
sequence of events could occur in coastal zones as a result of septic
tank leachates definitely merits concern and research because of its
public health implications.
Aside from the risk associated with water contact recreation in
estuarine waters contaminated by septic tank leachates, the contamination
of shellfish inhabiting these waters poses an additional consequence
when consumed. Shellfish, e.g., oysters, have been shown to effectively
concentrate bacteria and viruses; thus, when consumed, either raw or
partially cooked, they may serve as vehicles for pathogen transmission (61,
62, 63). The occurrence of bacterial and viral disease outbreaks from
consumption of shellfish contaminated by sewage pollution has been
demonstrated many times and has resulted in the regulation of shellfish-
growing water quality (64).
It is generally accepted, and well documented, that under ideal
soil and hydrological conditions, the percolation of treated sewage
through several feet of fine unsaturated soil will effectively remove
bacteria and viruses (65, 66). However, the character of the soil, the
hydrology of the area, and the rate of application all play an important
role in the filtering capacity of the soil. Effective removal of
bacterial and viral contaminants has been reported by percolation through
soil for depths of a few inches (65, 66, 67).
The character of the soil not only affects the rate of travel but
also the degree of reduction of bacterial contamination with distance.
Travel distances of biological contaminants in groundwater have been
reported to range from a few feet to several hundred feet. Reports of
distances traveled by coliform bacteria range from 10 to 2,000 feet,
with the majority of distances ranging from 10-400 feet, (25, 65, 68, 69),
Tables JXXXIV and XXXV. The rate of travel of bacteria is less than that
of dissolved chemical pollutants. Varying rates of travel are cited in
-------
178
the literature (26, 65, 68, 69, 70). The rate of chemical travel in
groundwater varies with soil conditions but is documented as being much
faster than the rate of transport of biological contaminants (65, 69).
The survival times of enteric bacteria in water and soil have been
reported to be from several days to years (Table XXXVI). Even though
inconsistencies in survival times are reported in the literature, sur-
vival is of sufficient times for bacterial contaminants to be transported
over relatively long distances (26, 63, 68). The significant distances
that biological and chemical pollutants travel in groundwater, and the
exchange between groundwater and surface water, emphasize the potential
that polluted groundwater has for contaminating surface water.
The pollution of coastal canals with groundwater contaminated by
septic tank leachates has been documented with dye tracer studies con-
ducted by EPA in Florida and North Carolina. Tracer dyes introduced into
septic tank systems located approximately 50 feet from finger-fill canals
were rapidly transmitted to the adjacent canal waters. In southwestern
Florida, the leachates reached the canal in 25 hours while at two separate
North Carolina sites, travel times of 4 and 60 hours, respectively, were
recorded. Violations of applicable coliform standards were recorded in
canal developments utilizing septic tank disposal systems in both
Florida and North Carolina study sites.
Additional studies are presently underway at a finger-fill canal
development in North Carolina designed to determine the impact of
septic tank leachates on adjacent canal waters. No dye tracer studies
have been conducted to date; however, examination of preliminary ground-
water data indicates considerable nutrient enrichment in the vicinity
of the septic tanks and wells.
The high groundwater level and porous soil conditions in some of
the coastal areas allow for a free exchange of contaminated groundwater
and receiving estuarine waters. Consensus of those experts contribut-
ing to a report on the environmental effects of waterfront canals was
that a substantial proportion of the pollution reaching canal waters
can be attributed to septic tank installation (20).
Recognizing the potential for surface water contamination by septic
tank leachates, most states have regulations requiring a minimum setback
distance from surface waters of 50 feet. The state of North Carolina
has proposed a minimum setback distance (nitrification field) of 100
feet from coastal waters classified for shellfish harvesting (44).
It has been indicated that the movement of contaminants through at
least 100 feet of unsaturated soil is necessary for effective cleansing
in those areas where the groundwater is subject to exchange with surface
waters (29), and that in general, no seepage field be located closer than
300 feet to a channel or water course (29). Even with such a minimum
-------
179
setback requirement, dissolved nutrients may still reach waterways and
constitute the potential for creating a biotic imbalance.
Although data delineating the exact relationship between high density
septic tank usage and environmental problems in coastal developments are
not extensive, water quality degradation in many of these developments
is extensive. The bulk of evidence suggests that varying degrees of
water quality degradation occurs in the majority of intermediate to
high density coastal developments utilizing septic tank disposal systems.
Application of septic disposal systems where high groundwater levels
prevent effective operation and groundwater gradients are such that
adjacent waterways become the repository of a portion of these biological
and chemical wastes must be viewed as being partially responsible for
observed ecological imbalances.
Presently, the unlimited utilization of septic disposal systems
in coastal developments where operational efficiencies are suspect
certainly is inconsistent with the application of best applicable waste
treatment technology and should be minimized or abandoned.
The ultimate goal in the development of waterfront properties must
be to provide homesites at the lowest present and future environmental
cost. Thus, the objective of the regulatory agencies, developers and
the public must be to demand the application of best applicable waste
treatment technologies and techniques in the creation of waterfront
properties.
-------
180
TABLE XXXI
TYPICAL PROCESS EFFLUENT CHARACTERISTICS
PARAMETER
5-Day Biochemical
Oxygen Demand
Ammonia Nitrogen
Orthophosphate
Suspended Solids
Total Nitrogen
Total Phosphorous
Coliform Bacteria
Septic!/
Tank
223 mg/1
39.7 mg/1
7.7 mg/1
39 mg/1
Activated Advance Waste
Sludge Treatment
20 4
15
5 million/
100 ml
20
20 mg/1
10 mg/1
5
7
1
100/100 ml 100/100 ml
I/ Barshied & El-Baroudi "Physical and Chemical Treatment of
Septic Tank Effluent", Journal Water Pollution Control
Federation, Vol. 46, No. 10, October 1974.
2/ Robeck, G.G., T.W. Bendixen, W.A. Shwantz, and R.L. Woodward,
1964. "Factors influencing the design and operation of soil
systems for waste treatment." Journal, WPCF,36:971.
-------
Soil Classification Reqd.
Maximum Density (Housing)
Percolation Test Reqd.
Maximum Percolation Rate
Minimum Water Table
Depth Below Ground
Surface
Minimum Water Table
Depth Below Draintile
Invert
Nitrification Field Set-
back from Well
Nitrification Field Set-
back from Surface
Water
TABLE XXXII
GENERAL SEPTIC TANK INSTALLATION CRITERIA
AL
FL
Yes
I/
GA
Yes
—
MI
Yes
—
NC
Yes
3 Units/ ACRE
.§£
Yes
_
Yes Yes Yes Yes
60 Min/in. 15 Min/in. 45 Min/in.
60 in. 36 in. 4/ I/
50 ft.
50 ft.
100 ft.
Yes
36 in.
100 ft. 100 ft. 100 ft. -500 ft. 100 ft.
50 ft.
Yes
Yes
30 Min/in.
48 in.
100 ft.
50 ft.
oo
l/ & 47
6/
Shall not be installed where groundwater may interfere with absorption of treated sewage.
Manual of Septic Tank Practice. USPHS, 1967.
When platted subdivision reached 50%, density then central sewage treatment facility is required.
1,500 feet from shallow water supply (less than 50 feet)
75 feet from public water supply.
-------
TABLE XXXIII
INCIDENCE OF WATERBORNE DISEASE IN THE UNITED STATES, 1946-70, DUE TO SOURCE CON-
TAMINATION: GROUND WATER (UNTREATED) I/
PRIVATE
CAUSE OUTBREAKS
Improper construction or location
of well or spring
Surface contamination nearby
Overflow of seepage of sewage
Seepage from abandoned well
Source of contamination not
determined
Flooding
Contamination through creviced
limestone or fissured rock
Chemical or pesticide contamination
Data insufficient to classify
21
49
1
8
4
10
4
46
CASES
640
2,779
50
235
66
555
17
2,001
PUBLIC
OUTBREAKS CASES
1 2,500
4 531
_ _
1 400
3 4,400
1 70
- -
3 16,350
ALL
SYSTEMS
OUTBREAKS CASES
22
53
1
9
7
11
4
49
3,140
3,310
50
635
4,466 oo
to
625
17
18,351
TOTAL:
143
6,343
13 24,251
156
30,594
]./ — Source: Craun, Gunther F. and L. J. McCabe (1973). Jour. AWWA. 74 p.
-------
183
TABLE XXXIV
DISTANfVR DT? TRAVTCL OF FECAT. MICROORGANISMS.!./
Type of Organism
Distance Transported, ft.
Vertical Horizontal
Reference
E. coli
E. coli 10-30
E. coli
E. coli
Coliform bacteria
Coliform bacteria 2-3
Coliform bacteria
Coliform bacteria 150
Clostridium welchii 7-8
"Lactose Fermenters" 2.5
"Bacteria" 6
"Bacteria"
232 Warrick and Muegge, 1930
Mom and Schaafsma, 1933
80 Caldwell, 1937a
400 Dappert, 1932
10-400 Miller, et al.,1957
Malia and Snellgrove,1958
180 Randall, 1970
Hickey and Duncan, 1966
Hickey and Duncan, 1966
2.0 Giovanardi, 1938
1.5 Szoplik and Milkowska,1961
2000 Walker, 1969
I/ Source: Patterson, J.W. et al.(1971) Septic Tanks and The Environment.
State of Illinois Institute for Environmental Quality.
-------
•*> **'•*' ' ' • •••«•« •
SUMMARY OF DISTANCES OF TRAVEL OF POLLUTION!/
Nature of Pollution
• Sewage polluted trenches inter-
secting ground water
• Polluted trenches intersecting
ground water
• River water in abandoned wells
• Sewage in bored latrines inter-
secting ground water
• Sewage in bored latrines lined
with fine soil
• Sewage in bored latrines inter-
secting ground water
• Sewage in bored latrines inter-
secting ground water
• Coliform organisms introduced
into soil
• Sewage effluent on percolation
beds
• Sewage effluent on percolation
beds
• Sewage polluted ground water
introduced bacteria
• Chlorinated sewage
• Industrial waste
• Garbage leachings
• Industrial wastes
• Industrial wastes in cooling
ponds
• Garbage leachings
Pollutant
coliform bacteria
chemicals
coliform bacteria
uranin
intestinal pathogens
tracer saits
coliform bacteria
anaerobic bacteria
chemicals
coliform bacteria
coliform bacteria
chemicals
coliform bacteria
coliform bacteria
coliform bacteria
ammonia
bacteria
bacteria
Serratia marcescens
phenols, fungi
dye
tar residues
picric acid
misc. leachings
picric acid
Mn, Fe, hardness
misc. leachings
Observed Distance Time of
of travel feet travel
65 27 wk
115
232
450
800 17 hr
800 17 hr
10
50
300
10
35
90
80*
164 37 da
400
1,400
150
**
69 9 da
300
300 24 hr
197
++
1,476
15,840 4-6 yr
2,000
2,000
00
-------
TABLE XXXV (Continued)
Nature of Pollution
• Garbage reduction plant
• River water
• Chemical waste
• Industrial wastes
Salt
Oil field brine
Salt
Gasoline
Weed killer wastes
Radioactive rubidium chloride
Pollutant
Ca, Mg, C02
Fe, misc. chemicals
misc. chemicals
chrornate
phenol
phenol
chlorides
chlorides
chlorides
gasoline
chemical
radioactivity
Observed Distance
of travel feet
500
164
Time of
travel
1
1
000
800
150
230
1,300
200
10,560
105,600
3 yr
24 hr
6 mo
5 da
oo
01
*Regressed to 20 feet
**A few feet
++Several miles
#From 3 to 5 miles
^/Source:Task Group Report. "Underground Waste Disposal and Control."Jour. AWWA.:1334.1957
-------
186
TABLE XXXVI. TIME OF SURVIVAL OF FECAL BACTERIA"
Type of Organism
Salmonella typhosa
Salmonella typhosa
Salmonella typhosa
Salmonella typhosa
E. coli
E. coli
Coliform Bacteria
Coliform Bacteria
Survival Time
Septic Tank
27 days
24 days
Soil
24-41 days
2 yrs.
3 mos.
4-7 days
Reference
Caldwell, 1933
Warrick & Muegge, 1930
Beard, 1938
Green & Beard, 1938
Warrick & Muegge, 1930
Mom & Schaafsma, 1933
Malin & Snellgrove, 1958
Subrahmanyan and
Bhaskaran, 1950
I/ Source: Patterson, J.W. et al. (1971) Septic Tanks and the Environment,
State of Illinois Institute for Environmental Quality.
-------
187
G - BIOLOGY
1. Benthic Macroinvertebrates
Depending on firmness of the substrate, a Petersen or Ekman grab
device was used to obtain at least four replicate samples of the benthic
community. This type of sampling was limited to the central portion at
each canal station. Macroinvertebrates were separated from the sediments
by sieving through a U. S. Standard No. 30 screen sieve. Organisms
were preserved in alcohol and returned in tagged sample bottles to the
Athens laboratory, where they were identified, counted, and reported as
number of animals per square meter. Sampling sites coincided with water
quality and sediment sampling stations.
Sampling of the near-shore areas of the canals was by qualitative
means. Numerous samples of debris, vegetation, and rocky substrate were
obtained with a variety of implements including dip nets, screens, and
grab devices. Samples were preserved and returned to the laboratory for
processing.
Essential to the establishment, growth, and maintenance of a benthic
community of diverse animals is the chemical and physical climate of the
sediments and water. Composition of sediments in terms of particle size
(texture) is of importance to life styles of numerous animals. Burrowing,
tube^-dwelling forms of animals are often associated with soft, finely
divided sediments such as mud and silt; whereas, free-living types are found
in association with coarse, possibly firmer material, like sand. Chemical
conditions associated with sediments bear heavily on structure of the
benthic animal community. Presence of non-living organic matter in
bottom deposits is a natural consequence of detrital input into Gulf-coast
estuaries. Although this material can be vital to benthic animals, exces-
sive accumulations of this matter can constitute a liability to the community.
Remineralization of the material places added demands on the DO budget.
With insufficient resources of free oxygen, the system becomes anaerobic
and the generation of toxic gases begins. Toxic gases coupled with a lack
of dissolved oxygen forces a reduction in animal density in the benthic
community. Various kinds of organisms are eliminated from the benthic
community in the order of their order of tolerance to the anaerobic effects.
At the Punta Gorda location, sampling for benthic macroinvertebrates
was restricted to the November 1973 survey. The numbers and kinds of
benthic macroinvertebrates found in November followed a similar pattern of
longitudinal distribution in both canals (Appendix E-l.l and E-1.2).
Maximum numbers of animals and diversity of taxa occurred at the mouth of
the canals (Stations 3 and 7) and at the background site (Station 4).
The dead-end regions of the canals (Stations 1 and 5) supported the fewest
number of organisms and was represented by the least number of taxa.
Polychaete worms, small mussels and clams, and amphipods were numeri-
cally dominant in the benthic community. Polychaetes were common to all
stations in Canal II but only present at Station 3 in Canal I. With the
exception of the background site (Station 4), the type of annelid worm
found inhabiting the canals was a member of the subclass Errantia~a
-------
188
classification of individuals that is basically carnivorous in feeding
habits, free-living, and associated with a mud-sand substrate. Opposing
this group of annelids is the subclass Sedentaria which is characterized
by individuals that are filter-feeders, restricted to permanent burrows,
and usually associated with substrates of mud and silt. The absence of
members of the Sedentaria classification appeared related to the dominant
particle size of the sediment of Canals I and II. Both canals featured
sediment particles of the medium-fine sand category which is apparently
better suited for the life style of polychaetes belonging to the free*
living forms of the subclass Errantia.
Considering, in general, the feeding habits of amphipods, the appar-
ent distribution of these organisms may be keyed to the relative state of
organic decomposition of the sediments. Amphipods, in general, exist as
grazing organisms feeding on living components of the periphytic community
and detritus. The community of bacteria colonizing the detrital particles
constitutes a rich source of proteins. This source of protein in terms of
yield would tend to be maximized in sediments supporting active organic
decomposition. A majority of amphipods were found at Stations 3 and 4—
stations supporting C:N ratios of 20:1 and 40:1 respectively (Table XXVI).
Also, Station 3 was the only canal site supporting some benthic vascular
plants. Plants provided substrate for the development of a periphytic
community and served as a mechanism for trapping and retaining detrital
particles.
Station 1 posed a contradiction to the above regarding amphipod
abundance being related to the relative state of sediment decomposition.
This station was represented by sediments that indicated an area of active
decomposition (C:N of 30:1). However, amphipods, as well as nearly all
other forms of macroinvertebrates, were absent from the benthic community.
Absence of benthic life was most likely related to the toxic effect of
an extensive buildup of sediment sulfide concentrations that were 2 to 10
times greater than at any other stations sampled (Table XXIV).
Results of sampling at Big Pine Key for the November 1973 and August
1974 surveys are reported in Appendices E-l.l, E-1.3, and E-1.4. Numerically,
the distribution of organisms was related to longitudinal position in the
canals. The number of animals per square meter of substrate increased
with distance from the dead-end reaches of each waterway. This feature
persisted during both surveys. At the time of the November survey, orga-
nism diversity remained fairly uniform with respect to longitudinal position.
This trend was modified in August when diversity was minimized at the dead-
end stations.
Annelid worms and crustaceans were the most abundant members of the
benthic macroinvertebrate community. The numbers of polychaete worms were
well-divided between the free-living and sedimentary forms. Referral to
Appendix D-2.1 will indicate that, unlike Punta Gorda, hydraulics in the Big
Pine Key canals favored the accumulation of silt and clay particles in the
sediments, but with mixtures of fine to coarse sand—a combination suited for
both forms of polychaetes. In August, a new member of the annelids was re-
ported for the benthic community. Tubificid worms were found in nearly all of
the samples taken from the developed canal (IV). Marine oligochaetes can play
an important role in polluted environments where the benthic habitat is
-------
189
excessively enriched with organic matter and oxygen can become depleted
(71, 72).
Crustaceans were best represented by amphipods. In November, at least
10 families were found inhabiting the canal systems. As indicated pre-
viously, these animals are grazers of living and dead plant material; hence,
amphipods would tend to maximize their numbers in canal regions supporting
benthic flora, providing ample DO is available and the benthic environment
is free of toxic sulfides. This was the case with Canals III and IV in
November. The organisms attained their greatest numbers in bottom regions
of maximum abundance of benthic macrophytes.
In August, the kinds of organisms representing the crustaceans were
markedly reduced. For example, only five families of amphipods could be
identified, with nearly all of the individuals being associated with the
undeveloped canal (III) . These observations would appear related to sea-
sonal change in benthic plant abundance. Seasonal differences in standing
crop biomass (g ash-free wt/m^) of benthic plants are indicated below.
Biomass
Location
Canal III
Canal IV
Station
8
10
12
14
November 1973
14.4
14.1
17.0
34.9
August 1974
11.7
9.2
0.8
8.0
The Sea-Air Estate canal featured benthic macroinvertebrates quite
different in terms of taxa compared to the Big Pine Key waterways. Aside
from the annelids and nematodes, the two canal systems had only seven fami-
lies of benthic macroinvertebrates in common. Although the canal systems
contained sediments of comparable character (particle sizes and C:N ratios),
the Sea-Air waterway was substantially deeper and void of benthic attached
plants. Also dissolved oxygen concentrations were often less than 2 mg/1.
Sampling at Station 19 (outside of the canal area) revealed a benthic
macroinvertebrate community comprised of 40 various kinds of organisms with
a numerical average of over 3,000 individuals per square meter of substrate.
The number of taxa and individuals found at the canal stations ranged from
7 to 10 and 338 to 718 per square meter of substrate respectively (Appendix E-1.5),
The numbers and kinds of benthic macroinvertebrates found occupying the
bottom sediment of the Atlantic Beach canals were representative of a poorly
developed community (Appendix E^1.6). Sampling at three of the five developed
canal stations (1, 4, and 5) showed a total absence of macroinvertebrates.
At Station 3 of the heavily developed canal, the maximum numbers of taxa and
individuals were found (12 and 740 per square meter of substrate, respectively).
The numerical distribution of benthic organisms followed a trend relating
to longitudinal position in the canals. The number of animals and the diversity
of kinds decreased with distance from the mouths of the canals. This distribu-
tion paralleled the same trend for DO values near the bottom, and heavy metal
and organic matter concentrations in the sediments.
-------
190
At Spooners Creek, only three stations were sampled. The number of
taxa found ranged from one to four kinds of organisms. Two of these taxa
were polychaetes which were numerically the predominant macroinvertebrate
of the community (Appendix E-1.6).
2. Macrophytes
Macrophytes are an important component of many estuaries and off-shore
waters along Florida's coast. They are invaluable as a habitat and food
source for the myriad of species dependent upon them for functional support.
Chronic environmental perturbations altering the structure and function of
plant communities will ultimately affect other trophic levels, including
the highest trophic level—man. The ability of plants to respond to sub-
tle perturbations is a useful warning device which investigators can use
prudently to correct previous injudicious decisions.
Plant harvesting techniques were used to derive estimates of standing
crop biomass for the macrophytes. Sample gathering was based on random
selection (using tables of random numbers) with replication. A quarter-
meter-square frame was used to isolate quadrats of the plant community at
selected points along transects perpendicular to the shore. Isolates of
vegetation were harvested (excluding roots), sorted into groupings of
species, refrigerated, and returned to the Athens laboratory for processing.
Laboratory analysis included drying samples at 105°C and igniting the mate-
rial at 500°C in a muffle furnace. Prior to burning, the plant material
was subjected to a mild acid digestion (5-percent HC1) to relieve the vege-
tation of carbonate incrustations. Drying and igniting procedures were as
described in EPA Biological Field and Laboratory Methods (73).
An extensive macrophyte sampling program was not initiated in the
Punta Gorda canals because macrophytes were not observed or collected dur-
ing an earlier reconniassance survey. During the 2-week survey of November
1973, extensive growths of two macroalgae, Ulva and Enteromorpha, were
observed on the mudflats near reference Station 4. According to Humm (74),
Ulva and Enteromorpha commonly respond to added nutrients such as sewage
effluents. The source of this apparent nutrient enrichment seems tracable
to the finger-fill canals adjoining Alligator Creek. Referring to the
mass exchange studies, Canals I and II were exporting significant quanti-
ties of nitrogen and phosphorus to Alligator Creek.
Sparse amounts of a vascular plant, Ruppia maritima, were also col-
lected at the mouth of Canal I during the November survey. Limited amounts
of vascular plants and macroalgae in the canals can be attributed to bottom
instability and minimal light penetrations. As indicated in Appendix D-2.1,
the inorganic fraction of the sediments (sand) reached greatest represen-
tation at the mouth (Station 3) of Canal I, where Ruppia was observed.
Medium sand (69 percent by weight) was the predominant substrate particle
at Station 3. However, at Station 1, the substrate featured a predominance
of finer material (27 percent silt, 18 percent fine sand) which is a less
stable substrate for plant attachment. Sufficient sediment stability and
light penetration (greater than light compensation level of 1 to 2 percent)
are two prerequisites for most vascular plant growth. It is evident that
these essential conditions were met at the mouth of Canal I (Appendices D-2.1
-------
191
and E-5) as small amounts of Ruppla were able to grow at Station 3. No
macroalgae or vascular plants were collected from the bottom of Canal II,
although there was sufficient light reaching the bottom for sparse plant
growth. Apparently bottom instability and other factors inhibited plant
growth in Canal II. Anoxic conditions such as demonstrated in August 1974
would preclude any carryover of benthic plants to the dry season.
At Big Pine Key, 24 algal species and two vascular plant species were
collected from the study area in November 1973, and 14 algal species and
three vascular plant species were collected in August 1974 (Appendices
E-2.1, E-2.2, E-2.3 and E-2.4). An equivalent reduction in number of
species was observed in both Canals III and IV.
Halodule wrightii. a vascular plant, and an unidentified species of
green alga, Cladophora sp.f were collected at all stations in 1973 and
1974.
Halodule wrightii occupies an extensive geographical range extending
throughout the Gulf of Mexico and up to the lower Cheasapeake Bay. This
species is considered tolerant of extreme environmental conditions. Great-
est growth is in the intertidal zone, but it is'also found in deeper water
with Thalassiji (75). In terms of standing crop biomass it dominated the
flora at all stations in Canal 3 both in 1973 and 1974. It was present in
Canal IV in 1973 and 1974 and dominated at Station 14 in 1974.
Th.ala.ssia testudinium, which was present in many collections in 1973
and 1974, did not predominate at any of the stations in 1973 (Appendices E-2.3
and E-2.4). In 1974, it was a predominant at the mouth (Station 14) of devel-
oped Canal IV. £. teatudinium is the most abundant species in the eastern
Gulf of Mexico, where it may account for 60 to 75 percent of all seagrasses
in terms of bottom cover and biomass (75). However, its predominance in the
canal system was generally negligible.
Penicillus and other Siphonales such as Caulerpa and Halimeda are able
to colonize unconsolldated sediments and are usually found together with
seagrasses (74). However, where the standing crop of Thalassja is low,
Halimeda and Penicillus will predominate (74). Halimeda incrassata was
predominant in Canal IV but only present in Canal III during both study
periods. This difference can be partially attributed to the greater amount
of sediments richer in organic matter in developed Canal IV.
Average plant standing crop biomass in terms of ash free weight (AFW)
in the study area during 1973 and 1974 (Tables XXXVII and XXXVIII) ranged
from 0.81 to 34.94 g/m2. The high and low of this range were recorded
from Canal IV.
In 1973, differences in plant community biomass between canals were
insignificant at the 90-percent confidence interval (Figure 94). The
wide variances among samples within a canal were primarily due to hetero-
geneity of plant distribution on the bottom of the canals.
-------
192
A greater number of "plant samples would have reduced the statistical
variances within a canal. In 1974, sample replicates were increased in
an effort to reduce variability and discern statistical differences.
There was an average increase in biomass (AFW) at Canal IV in 1973
from the end to the mouth of the canal. This trend may reflect a subtle
plant response to increased nutrient load and reduced water circulation.
This longitudinal increase in biomass at Canal IV reflects the influence
plants had on dissolved oxygen in the canal. The disparities between
bottom and surface DO's from the end of the canal to the mouth are
evident in Figure 51 and suggests that greater plant biomass effected
greater DO variations from surface to bottom toward the mouth of the
canal.
In 1974, there was a significant difference in standing crop biomass
between Canal III and developed Canal IV (Figure 95). Standing crop bio-
mass was not only reduced between canals, but there was a seasonal reduc-
tion from 1973 to 1974 in plant biomass at Canal IV, especially at the
dead end of the canal (Table XXXVIII).
3. Periphyton
The periphyton community is a unique assemblage of organisms which
spend at least part of their life cycle attached to substrates within
aquatic environs. Their ability to react to subtle environmental pertur-
bations via changes in growth response and species composition is well-
documented, and aquatic biologists have successfully used this community
to monitor waters suspected of being under stress.
During the Punta Gorda and Big Pine Key study, glass slides (diatometers)
were placed in the canal systems to evaluate community growth response
and changes in periphytic species composition as well as to determine the
optimum time for periphytic colonization as it relates to monitoring acti-
vities in semitropical estuaries.
Artificial substrates were placed at the mouth and end of each
study canal and reference station on November 13, 1973. At Punta Gorda
replicate slides were removed from the diatometers on days 4, 6, 10, 13,
19, 23, and 29 by Mr. Richard Cantrel of the Florida Department of
Pollution Control. Replicate slides were left in the Big Pine Key
stations for 37 days before they were extracted from the samplers.
For each incubation period, three replicate slides were used for
chlorophyll and biomass (AFW) analyses and two replicate slides were
subjected to Sedgwick-Rafter counts. All analyses were conducted
-------
193
according to EPA Biological Field and Laboratory Methods Manual (73) .
Chlorophyll a_ measurements were corrected for phaeophytin £ (a degradation
product of chlorophyll a). Autotrophic indices were derived from chlorophyll
_a and biomass values according to the following equation:
Autotrophic Index = ash-free weight in g/m2 (Eq-8)
Chlorophyll a^ in
Numerically, pennate diatoms were the predominant components of the
algal and protozoan flora at each station (Appendix E-3.1). These are
usually the predominant diatom found on substrates.
The successional sequence of colonization proceeds from a bacterial
predominance to diatom predominance and then diversification to bacteria,
diatoms, green algae, blue-green algae, protozoans, etc. This is a normal
sequence of succession on slides placed in freshwater and is apparently
the same for slides in the estuarine system (Appendix E-3.1). From day
19 through day 29 at Stations 1, 3, and 7, green filamentous sporelings were
observed on the slides but not counted. Protozoan vorticellids appeared in
Canal I along with green filamentous algae. The presence of Oscillatoria,
a blue-green alga usually tolerant of high organic loads, at the end of
Canal II suggests the periphyton community was reacting to a slight increase
in organic matter and possibly nutrients along this developed canal.
Periphyton slides were allowed to incubate from November 29 to
December 27, 1973 (29 days) at the Big Pine Key stations. A number of
slides were lost during the 29-day period, and only slides from the end
of Canal IV and mouth of Canal III were recovered after 29 days of incu-
bation. Pennate diatoms were predominant on the slides in both canals.
Coccoid blue-greens and quiescent green flagellates were present on Canal
IV slides (Appendix F-3.2) . The presence of blue-greens and green flagel-
lates may be a response to nutrient load in Canal IV, which is exposed to
septic tank drainage and street runoff.
All photosynthetic plants contain chlorophyll a_ except bacteria;
therefore, this pigment is highly specific for plants and is a relative
means of estimating algal standing crop or growth after correcting for
phaeophytin ji.
Algal growth at the mouth of Canal II (Figure 96) was in a lag
phase for the first 10 days before exponentially increasing from days
10 to 19. Exponential growth appeared to subside at day 23, but the
algal community continued to multiply until day 29, when it attained
its average maximum yield of chlorophyll ji (149.3 mg/m2) . As indicated
in Appendix E-3.3, extensive variances, like those found at day 23,
were attributed to excessive filamentous green algal growths on only
one or two replicate slides.
-------
194
At the end of Canal II, the algal community immediately initiated
an exponential growth phase (Figure 96) and attained an average maximum
yield of 77.7 mg/m2 after 19 days of growth.
Diatom samples were lost at reference Station 4 after 10 days of
incubation, and a maximum yield of 45.3 mg/m2 was recorded after 10
days' growth.
The algal community at the mouth of Canal I (Figure 97) did not
initiate exponential growth until day 13. Average growth subsided at
day 29, when an average maximum yield of 72.0 mg/m2 was attained on
the slides.
Maximum rates of algal growth and maximum yields were greater at
the mouths of the canals than at the ends (Figures 96 and 97). At
Canal II, average maximum yields were considerably greater than at
Canal I when comparing equivalent station locations of the canals.
Greater maximum yields at the mouth of each canal may be the
result of exposure to greater accumulative loads of nutrient and
greater tidal velocities at the seaward end of the canals.
Additional inorganic nutrient loading of Canal II from auxiliary
sources and rapid remineralization of organic matter (animal proteins,
etc.) to greater concentrations of inorganic nitrogen (Table VII) have
resulted in greater yields of periphytic algae in Canal II. These
growths of algae could become a nuisance problem if continually exposed
to increased nutrient loads, especially during summer conditions when
plant activity is greatest.
Periphyton reflect the quality of water continuously flowing over
them; therefore, they can serve as an excellent historical indicator
of water quality. Changes may range from subtle alteration of species
composition to complete community destruction or excessive proliferation.
The nature and severity of water quality degradation are reflected in
the ratio of biomass (AFW) to chlorophyll a_ which is considered an auto-
trophic index (AI). Periphyton communities exposed to inorganically
enriched waters have AI's similar to those reported for algal cultures
(76). As the level of non-toxic organic matter increases, the algae
are replaced by non-chlorophyllous organisms resulting in an increase
in the AI.
Variances in the index values at day 4 (Figures 98 and 99, Appendix
E-3.5) were presumably due to different rates of attachment, adjustment,
-------
195
and types of organisms initially colonizing the slides. Extreme AI
variances near the end of the incubation period were attributed to
extensive filamentous growths of green algae and uneven distribution
of animals among replicate slides.
The low AI's of Canal II reflect the response of the organism to
inorganic nutrient enrichment. From days 6 through 29, at the time of
exponential growth and when average maximum algal yields were attained
on the slides, the average AI ranged from 39 to 182 at the mouth and
from 134 to 242 at the end of Canal II (Appendix E-3.5). Aththe 95-
percent confidence interval, no significant minimum AI differences
were discerned among stations in Canal II. The average minimum AI at
the mouth of Canal II was considerably less than the minimum AI at the
end of the canal. This subtle difference in minimum average AI's
plus the greater maximum periphyton yield at the mouth of Canal II
further verifies that more inorganic and simple organic nutrients are
available for periphyton growth at the mouth of the canals.
Minimum average autotrophic index (AI) values after 10 days' growth
at reference Station 4 were within the range of values at other stations
(Appendix E-3.5). The low AI and presence of Ulya and Enteromorpha
near Station 4 indicate inorganic nutrient enrichment conditions do
exist in the Punta Gorda area.
Generally, the periphyton community was reacting to inorganic nutrient
enrichment in the Punta Gorda area. The data (Table VII) indicate only
slight amounts of non-toxic organic matter were available to the periphy-
ton community for growth. Apparently, organic pollution was minimal.
Weber and McFarland (76) consider systems moderately polluted when the
autotrophic index is approximately 1,000. Average indices at Punta Gorda
stations studies from day 6 to day 29 were considerably less than 1,000
during the incubation period.
4. Phytoplankton chlorophyll a^
Chlorophyll £ concentrations, which are an indirect measurement of
phytoplankton standing crop, were not significantly different (at 95-per-
cent confidence interval) among the stations in each canal studied
(Figure 100 and Appendix E-4.1) except in Canal I, where Stations
2 and 3 were significantly different.
In the Big Pine Key study area, significant chlorophyll £ differ-
ences (at 95-percent confidence interval) did exist in 1973 among Canal
III, reference Station 11, and Canal IV (Figure 100). Greater chlorophyll
£ concentrations in Canal IV appeared to be a subtle indication of enrich-
ment in the nutrient-poor waters of the Big Pine Key.
-------
196
Average chlorophyll a_ concentrations at Punta Gorda ranged from
5 to 16 mg/m^ which are somewhat less than average concentrations
of 17 mg/m-* found in Gulf inshore waters (77). At Big Pine Key in
1973, the significantly lower average chlorophyll ji concentrations ranged
from 0.16 to 1.02 rng/m^ and were comparable to or greater than average
concentrations of 0.2 mg/m^ reported from the open Gulf of Mexico (77).
In 1974, average chlorophyll a_ concentrations at Canal II and control
Station II were slightly less than open Gulf concentrations (Table XXXIX).
At Canal IV, average chlorophyll a_ concentrations were slightly greater
than open Gulf Waters.
Based on the data and observations made at. the study sites, it
appears that Punta Gorda1s canal system is a detrital-based system.
-------
197
Table XXXVII.
Macrophyte biomass, Big Pine Key, Florida,
November 1973.
CANAL
III
III
III
Reference
IV
IV
IV
CANAL
III
III
III
Reference
IV
IV
IV
STATION
8
9
10
11
12
13
14
STATION
8
9
10
11
12
13
14
Ash-free weight (G/tT)
MEAN
14.39
6.62
14.13
21.02
17.04
30.24
34.94
Dry weight
MEAN
30.42
11.82
27.34
51.91
35.38
91.46
81.68
S_
10.68
6.81
4.97
19.03
14.47
21.82
19.34
(G/M2)
£
18.27
5.91
18.99
46.14
30.80
79.88
45.12
standard deviation
-------
198
Table XXXVIII. Macrophyte biomass, Big Pine Key, Florida, August, 1974.
Canal
III
III
IV
IV
Station
8
10
12
14
Ash-Free
Mean
11.69
9.18
0.86
9.12
Weight fe/m^)
Standard
Deviation
5.23
4.66
0.34
5.98
Dry Weight (g/m*)
Mean
10.68
5.50
0.89
8.39
Standard
Deviation
12.84
5.02
0.40
7.10
-------
199
Table XXXIX. Phytoplankton chlorophyll £ concentrations (mg/m3) at mid-depth in
Big Pine Key fianals, August 1974.
Canal III Control Canal Canal IV
Replicate Station Station
89 11
1 0.15 0.14 0.15
2 0.12 0.14 0.10
3 0.09
Station
12 13 14
0.40 0.40 0.30
0.09 0.30
Station
F G
0.40 0.50
0.90 0.50
0.14 0.11 0.30 0.65 0.50
-------
52
48
200
FIGURE 94
MACROPHYTE BIOMASS
BIG PINE KEY, FLORIDA
NOVEMBER, 1973
44
40
36
32
28
(9
24
ui
UJ
K 2O
-------
201
FIGURE 95
MACROPHYTE BIOMASS
BIG PINE KEY, FLORIDA
AUGUST, 1974
14
12
10
3
N»
o 8
i-
z
<9
Ul
*
Ul
z
(O
„
KEY
A»h- fr»« weight (G/Mf)
90 % confidence intarvol
Maximum
I Mean
Minimum
Canal 3
Canal 4
-------
202
FIGURE 96
PERIPHYTON CHLOROPHYLL a (mg/m2) FOR CANAL HE
PUNTA GORDA, FLORIDA
NOVEMBER, 1973
220
CM
E
o
i
X.
a.
O
oc.
O
z
u
200
ieo
160
140
120
100
80
60
40
20
I"
_ J_
I
KEY
Mean
Confidence Interval
11 11111 11 n i 11 i
4 6 10 13 19 23 29
7 (Mouth)
6 10 13 19 23 29 4 6 10
DAYS
5 ( End) Control
STATIONS
-------
203
FIGURE 97
PERIPHYTON CHLOROPHYLL a(mg/m2) FOR CANAL X
PUNTA GORDA, FLORIDA
NOVEMBER, 1973
200
ISO
160
~ 140
CM
E
x.
» 120
o
i 100
5: so
o
X 60
40
20
KEY
Mean
Confidence
Ml II I I I I I I III
4 6 10 13 19 23 29 46 10 13 19 23 29
DAYS
3 (Mouth) KEnd)
STATIONS
-------
204
2000
FIGURE 98
PERIPHYTON AUTOTROPHIC INDEX FOR CANAL
PUNTA GORDA, FLORIDA
NOVEMBER, 1973
1800
I6OO
1400
I ZOO
X
UJ
Q
1000
800
O
CC
T
O 600
400
200
-ZOO
KEY
Mean
Confidence Interval
I I I I I I I I I I I I I I
4 6 10 13 19 23 29 46 10 13 19 23 29
DAYS
3 (Mouth) I (End)
STATIONS
-------
3600
3400
3200
3000
2800
2600
2400
2200
X 2000
UJ
O
o
X
Q.
o
1800
1600
1400
1200
1000
800
60O
40O
200
205
FIGURE 99
PERIPHYTON AUTOTROPHIC INDEX FOR CANAL IE
PUNTA GORDA, FLORIDA
NOVEMBER, 1973
"
KEY
Mean
Confidence Interval
1.1
-100
I I t I II I I I I I I I
4 6 10 13 19 23 29
r(Moulh)
4 6 10 13 19 23 29 46 10
DAYS
5 (End) Reference
STATIONS
-------
206
22
20
18
16
K» 14
E
12
o
IT
O
X
O 6
FIGURE 100
PHYTOPLANKTON CHLOROPHYLL a CONCENTRATIONS
BIG PINE KEY 8 PUNTA GORDA, FLORIDA
NOVEMBER, 1973
"T
KEY
Mean
Confidence Interval
-2
III I III III I III
567 8 9 10
STATIONS
II
12 13 14
123 4
Canal X Reference Canal 3L Canal HE Reference Canal 33C
-------
207
H. MATHEMATICAL MODELING
Mathematical modeling techniques were applied fo four of the
study canals: Canal II at Punta Gorda, Canal V at Big Pine Key
and Canals VI and VII at Atlantic Beach (Figures 101, 102 & 103).
The models were calibrated by simulating the fate of a dye and compar-
ing the simulations with field measurements. Once calibrated, the
models were used to compute flushing rates and also to compute
dissolved oxygen suppressions under hypothetical waste loadings.
1. Models
The model used for initial simulations of the canals was the
June 1973 University of Florida version of the Storm Water Manage-
ment Model (SWMM). The University of Florida has an ongoing contact
with EPA to maintain the "official" version of SWMM and to revise and
update both the source code and documentation for the entire SWMM
package (78 and 79).
SWMM did not satisfactorily reproduce observed profiles. The
field study showed the dye mixing rapidly throughout the length of
the canal and then slowly "bleeding" out. The model, however, shows
the dye cloud centroid remaining in one place and slowly flattening
out, similar to classical diffusion without advection. As the SWMM
neglects diffusion in its transport equation, this apparent diffusion
is probably due to "numerical dispersion", or "pseudo-dispersion",
associated with the numerical methods employed in this model.
2. Model Background
The emission of diffusion in SWMM seems to be a serious oversight
but this phenomenon was neglected only after several applications of
the model showed it to be relatively insensitive to the diffusion
coefficient. The conceptual development and initial application of
the model to San Francisco Bay was carried out by Water Resources
Engineers (WRE) of Walnut Creek, California. This model was documented
in a user-oriented form by Feigner and Harris in 1970 (80) and the model
was called the Dynamic Estuary Model (DEM). A concurrent application
of this model to the Columbia River was described by. Callaway et al.
in 1969 (81) and further documentation of this version followed in
1970 (82). This version is the Columbia River Model (CRM). An appli-
cation to the Potomac Estuary and comparison with the "Thomann" one-
dimensional, steady-state model was described by Clark and Feigner in
1972 (83). This report describes a detailed sensitivity analysis of
the model and concludes that:
-------
208
"Of the various input parameters investigated for the
Dynamic Estuary Model, the decay rate and solution
technique for advective transport appeared to be the
most sensitive in affecting the model's predictions.
With the exception of simulating salinity (chlorides)
the least sensitivity was identified with the disper-
sion (diffusion) coefficient."
All of the above applications used the basic model which was
developed by WRE for San_FranciscovBay. WRE also continued use of
the model and eventually modified it to accept hydrograph inputs for
use as the receiving waters model of SWMM. In the SWMM final report,
the following statement regarding diffusion is made:
"Experience has shown that, with the short computational
time intervals used, the major transport mechanism is by
advection and thus the diffusion term can be safely
neglected."
The SWMM model has had wide application in water quality model-
ing. In a series of river basin modeling contracts, the Chattahoochee
River, Pearl Harbor, the Willamette River Basin, and several New
England basins were modeled. Region IV, EPA had used the model
almost exclusively as an estuary model, the only exception being
an application to the Chattahoochee River. Among the estuaries
modeled have been the Escatawpa Estuary, Bayou Cassette (both near
Pascagoula, Mississippi), Biloxi Back Bay (Biloxi, Mississippi), the
Mobile River at Mobile, Alabama and the Sampit River and Winyah Bay
(Georgetown, South Carolina). The model has performed quite well in
these applications; its only serious deficiency has been the inability
to simulate vertical stratification. This limitation is inherent in
the assumptions made in model development.
However, the SWMM model does not perform satisfactorily in finger-
fill canal systems and it was suspected that the reason for this failure
is the omission of the diffusion term in the mass transport expression.
As canal systems have little natural inflow, the net advective trans-
port is small and the major transport mechanism is diffusion. The
models mentioned in the previous paragraph were of systems where
advective transport was large compared to 'diffusion.
The importance of diffusion in the canal systems was tested by
using a pre-SWMM version of the WRE model which had a diffusion term
in the transport equation - the CRM or Callaway version of the original
WRE model. This version was selected because of its availability and
-------
209
excellent documentation. It was selected over the DEM version because
CRM has a temperature simulation capability which DEM does not have.
While this feature was not exercised in this application, it was felt
that experience with this version might be useful in the future.
3. Simulations
Once the CRM was selected, the problem of choosing a proper
diffusion constant arose. CRM (and DEM) uses the following time
variant expression for diffusion:
DL = c/u/R (Eq- 9)
Where:
DT = dispersion coefficient in sq. ft/sec
Li
/u/ » tidal velocity in ft/sec
R - "Hydraulic Radius'1— expressed as:
Channel Cross Sectional Area
Width
c *• Dispersion constant - dimensionless
Note;— the expression for the hydraulic radius differs
from the classical definition
As seen from the above, D. is dependent upon canal depth, width,
length, tidal amplitude, and tidal period.
Simulations performed on the canals using the above computation
for the dispersion constants derived from the field measured DL values
(Table II) were found to be inadequate. The dispersion constants were
too small. However, further simulations did produce an equation that
approximated the field measured concentrations, i.e. , D^ = 0.22 c/u/R
(Eq- 10).
Table XL
Canal Location D^* c
II Puhta Gorda 1.3 sq. ft./sec. 180
V Big Pine Key 0.7 sq. ft./sec. 120
VI Atlantic Beach 2.3 sq. ft./sec. 180
VII Atlantic Beach 3.7 sq. ft./sec. ' 180
*field measured
-------
210
The dye tracer Rhodamine WT Dye is not a truly conservative
tracer. Feurstein and Selleck (9) reported a decay coefficient for
Rhodamine dye subjected to bright sunlight conditions to be - 0.538
per day (i.e., C/C = exp (-.0538/day)). Their work,, however, did'not
quantify the solar energy required to produce this decay rate. Since
our flushing studies required a mass balance of the tracer material,
an accounting for the decay rate of the tracer along with measurements
of light energy (to relate decay rate to solar energy) was carried out
during the September 1974 study. Decay coefficients for the November
1973 flushing studies are those reported above (-0.538 per day) adjusted
for light penetration.
Clear glass bottles containing known concentrations of the tracer
were submerged at mid-depth in one of the investigated canals at
Atlantic Beach, North Carolina. Aliquots were taken from these
bottles at selected intervals throughout the study and subjected to
fluorescence measurement. In conjunction with the bottle decay measure-
ments, light penetration and solar energy determinations were made
to develop quantitative relationships between decay rates and solar
energy.
A marine photometer unit was employed to measure the light intenr
sity at the waters surface and also at the mid-water column elevation.
Solar intensities at mid-depth were found to be approximately 20%
of the surface intensity. These readings along with pryheliometer
solar energy recordings supplied by the National Marine Fisheries
Office in Beaufort, North Carolina, were then used to describe the
photochemical reaction rate of the tracer material (Figure 104).
After exposure to 308,000 microeinsteins per meter squared of
light energy with a wave length of 590 nanometers (the excitation
length of the tracer) the tracer had decayed 1Z (Figure 104). The
decay coefficient (mid-depth) was found to be -0.1278 per day. This
equates to a full light (water surface) decay coefficient of -0.534
per day which agrees well with the value reported by Feurstein and
Selleck (-0.538 per day). In terms of 1/2 life, the tracer dispersed
in the water column decayed due to photochemical reactivity to 50%
of the original concentration in 130 hours.
Coefficients used in the mathematical simulations were -0.009,
-0.013 and -0.005 per hour for Punta Gorda, Big Pine Key and Atlantic
Beach, respectively. Comparisons between computed and field measured
tracer concentrations reveal a reasonable verification of the applica-
bility of this model (Figures 105, 106, 107 and 108).
-------
211
Successful verification of the modeling technique was followed
by a hypothetical simulation of a conservative pollutant to illustrate
the flushing times of the three canal systems. Point source loads
were placed at the canal dead-ends. Resulting flushing times for a
50% reduction of the conservative contaminant are 51, 70, 22 and 49
hours in Canals II, V, VI, and VII, respectively. Likewise, a 90%
reduction occurs in Canal II at 165 hours, Canal V at 220 hours,
Canal VI at 70 hours and Canal VII at 146 hours (Figure 109).
Canals II and V were also tested for dissolved oxygen effects
under the influence of waste loadings from hypothetical sewage treat-
ment plants. Simulations were made for a 10,000 gallon per day (gpd)
and a 100,000 gpd waste discharge near the dead end of each canal.
Carbonaceous oxygen demand (BOD,-) of 20 ppm, nitrogenous oxygen demand
(TKN) of 20 ppm, and a dissolved oxygen concentration of 1.0 mg/1
were assumed in the effluent. Reaeration and deoxygenation rates used
were 0.05 and 0.10 per day (base e), respectively.
Dissolved oxygen suppressions resulting from the above loadings
are shown on Figures 110 and 111. These computed DO changes do not
reflect other associated DO demand such as sediment demands, metabolic
respiration, and imported carbonaceous and nitrogenous demands. The
effect on the DO budget at the dead end of Canal II (Punta Gorda)
was a 0.26 mg/1 and a 2.6 mg/1 decrease due to the respective waste
loads of 10,000 gpd and 100,000 gpd. Waste loadings to Canal V at
Big Pine Key were more pronounced. The DO suppressions at the dead
end were 0.60 mg/1 and 4.2 mg/1 for the respective waste discharges.
One must keep in mind that greater benthic demands and increased
plant metabolism would be associated with the introduction of these
waste loads to the canal system and would produce added stresses on
the DO budget.
The quantitative effect .of the simulated waste loading to Canal
II can be approximated by assuming that this canal, if it had no
development along its banks.would have DO concentrations typified
by those recorded in Canal I (undeveloped). This comparison is
given in Table XLI but, again, accelerated plant growth, benjthic
demands, and runoff are not considered.
-------
212
Canal
Location
Dead End
Mid-Length
Mouth
TABLE XLI
Typical DO's in Canal II Under Waste Loadings
Punta Gorda, Florida, November 1973
Canal
Avg. DO
Max Min Avg
6.6 4.9 5.7
6.3 5.1 5.7
7.0 5.2 5.8
Computed Suppression
10,000 GPD
Canal II
100,000 GPD 10,000 GPD
Max
0.26
0.06
0.02
2
0
0
.6
.56
.15
6.
6.
7.
3
2
0
Min
4.6
5.0
5.2
Avg
5
5
5
.4
.6
.8
DO
100,000
Max
4
5
6
.0
.7
.8
Min
2.3
4.5
5.0
GPD
Avg
3.1
5.1
5.6
TABLE XLII presents a similar analysis of Canal V at Big Pine Key.
In this case, the DO suppressions of Figure III were simply applied to
the field measured DO in the undeveloped canal (Canal V).
TABLE XLII
Typical DO's in Canal V Under Waste Loadings
Big Pine Key, Florida, November 1973
Canal
Location
Canal
Avg. DO
Max Min Avg
Computed Suppression
10,000 GPD
Canal II
100,000 GPD 10,000 GPD
Max
0
0
0
.60
.20
.10
4.
1.
1.
2
70
61
5
6
6
.6
.0
.7
Min
4.7
5.1
4.9
Avg
5.2
5.6
6.1
DO
100,000
Max
2
4
6
.6
.5
.2
Min
1.1
3.6
4.4
GPD
Avg
1.6
4.1
5.6
Dead End 6.2 5.3 5.8
Mid Length 6.2 5.3 5.8
Mouth 6.8 5.0 6.2
The discharge of sewage treatment plant effluent into these canal
systems would be ill-advised. Simulated discharges indicate that even
a minor waste flow of 10,000 gpd would tax the oxygen budget. Other per-
turbations such as increased benthic demands, respiration, runoff, and
decreased DO saturation during warm weather conditions, would increase
the DO deficits.
Modeling should be applicable to similar situations where canal
configurations and dispersion coefficients are known. When field measure-
ments of the dispersion coefficients are not possible, approximations of
the dispersion coefficients are not possible; approximations can be made
by empirical means. However, the model should be used carefully as it
does not include the dispersion mechanism induced by salinity and tempera-
ture stratification.
-------
213
The effects of canal dimensions, i.e., depth and length, were
simulated on Canal V at Big Pine Key. Mixing mechanisms were assumed
to be unchanged from the field measurements of current conditions (no
stratification). Dispersive factors were simply recomputed from the 4/3
Law with subsequent dispersion constants (C) for the math model computed
by Equation 10. Note that both length and depth are forcing factors in
this equation.
Resulting flushing curves (Figure 112) reveal that 50% flushing of
a conservative contaminant introduced near the canal dead end would occur
after 90 hours, under the current configuration, after 170 hours with
the length doubled, after 230 hours with the depth doubled and after
30 hours with the depth halved. Likewise, 90% flushing would occur
after 220 hours, 400 hours, 660 hours, and 90 hours under the above
configurations. From these flushing times (Figure 112), it is apparent
that depth has a greater effect on flushing time(s) than does length.
Consequently, if flushing times are to be minimized, canal depths should
be governed by minimum navigation criteria and not by fill requirements
for residential development. A further consideration is that increased
depths may promote temperature/salinity stratification which inhibit com-
plete mixing.
To document the flushing times in a canal system with depths of 4-6
MLW additional studies were performed in July 1975. Studies were conducted
on a branching canal system at Cape Coral, Florida. This particular
system had a width of 125', a fairly constant depth of 5 feet MSL, a
length of 6000' and experienced a 1 foot tidal range. Resulting flushing
times to the 50% and 90% levels were 50 and 170 hours respectively.
Dissolved oxygen measurements in the above system substantiated the
consequences of shallower depths. All minimum DO values recorded were
equal to or greater than 4i5 ppm over a 25 hour: diel period. In contrast,
canals of similar configurations and joining the same parent water body
and with depths to 13 feet were stratified with respect to salinity.
Minimum DO values of 0.0 ppm were recorded for the bottom waters in this
canal system.
-------
214
FIGURE 101
TRACER STUDY
PUNTA GORDA, FLORIDA
NOVEMBER, 1973
LOCATION MAP
< if/nil nn
SCALE IN FEET
1,000 O 2.00O 4.000 6.OQQ
-------
Doctors Point
FIGURE 102
TRACER STUDIES
BIG PINE KEY
NOVEMBER, 1973
o
o
- No Nome Key
Big Pine Key
1,000
SCALE 4N FEET
0 1,000
-
K
2,000
-------
FIGURE 103
TRACER STUDY
ATLANTIC BEACH
SEPTEMBER, 1974
BOGUS
SOUHD
ATLANTIC BEACH
ATLAHTIC
-------
21 7
OJ
to
O
H
X
-------
100
90
,-. 80
J3
Q.
t 70
FIGURE 105
TRACER CONCENTRATIONS
CANAL*H PUNTA GORDA, FLORIDA
NOVEMBER, 1973
Ul
o
z
o
o
O
<
60
50
40
30
20
10
•COMPUTED - II HR CONCENTRATIONS
OBSERVED -II HR CONCENTRATIONS
COMPUTED • 33 HR CONCENTRATIONS
IO
00
•OBSERVED-33 HR CONCENTRATIONS
200
400
600 800 1,000 1,200
DISTANCE FROM DEAD END (FEET)
1,400
I.6OO
I.80O
2.OOO
-------
50 I
FIGURE 106
TRACER CONCENTRATIONS
CANAL*3E BIG PINE KEY, FLORIDA
NOVEMBER, 1973
40 —
COMPUTED 17 HR CONCENTRATIONS
0.
Q.
O
<
UJ
U
z
o
o
(T
UJ
O
-------
a
SM/
O
l-H
EH
W
§
u
a
w
u
<
a
EH
'Computed - 25-hr, concentration
FIGURE 107
TRACER CONCENTRATION
CANAL NO. VI
ATLANTIC BEACH, NORTH CAROLINA
SEPTEMBER,1974
Computed - 30-hr.
concentration
Observed - 30-hr.
concentration
to
to
o
Observed 24-hr.
concentrator
200
400 600 800 1000
DISTANCE FROM DEAD END (FEET)
1200
1400
1600
-------
10
FIGURE 108
TRACER CONCENTRATION
CANAL #VII ATLANTIC BEACH, NORTH CAROLINA
SEPTEMBER, 1974
jz;
O
8
EH
S5
W
O
o
ffj
EH
bserved - 31 hr concentration
10
Computed - 31 hr concentration
Observed - 43 hr.
concentration1
Computed - 43 hr concentration
0
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
DISTANCE FROM DEAD END (FEET)
-------
C-"
2
PS
w
FIGURE 109
CANAL FLUSHING USING MODELING TECHNIQUE
BIG PINE KEY & PUNTA GORDA, FLORIDA
NOVEMBER 1973
ATLANTIC BEACH, NORTH CAROLINA
SEPTEMBER, 1974
to
to
10
100 150 200
ELAPSED TIME (HOURS)
250
90% flushing
300
-------
3.00
FIGURE 110
DISSOLVED OXYGEN SUPPRESSIONS
DUE TO WASTE LOADINGS
CANAL*H PUNTA GORDA, FLORIDA
NOVEMBER, 1973
2.5O
~ 2.00
v>
V)
UJ
K
a
a.
:a
V)
q"
a
.50
.00
100,000 GPO Waste Discharge
to
KJ
W
0.50
10,000 GPO Waste Discharge
250
500 750 1,000 1,250
DISTANCE FROM DEAD END (FEET)
1,500
I.75O
2,000
-------
5.O I—
4.0
*-. 3.O
v>
CO
111
tr
a.
2.0
V)
q
d
1.0
FIGURE III
DISSOLVED OXYGEN SUPPRESSIONS
DUE TO WASTE LOADINGS
CANAL*3C BIG PINE KEY, FLORIDA
NOVEMBER, 1973
100,000 GPD Waste Discharge
-IO.OOO GPD Waste
ZOO
400 6OO 800 I.OOO
DISTANCE FROM DEAD END (FEET)
1,200
I.40O
I.60O
-------
225
FIGURE 112
TYPICAL CANAL FLUSHING TIMES
CANAL 31
BIG PINE KEY, FLORIDA
NOVEMBER, 1973
100
100
200
300 400
ELAPSED TIME { HOURS)
5OO
60O
700
KEY
CASE LENGTH DEPTH WIDTH
A 1,440' 9.6' 40' (Enisting Conditions)
B 2,880' 9.6' 40' (Length Doubled)
C 1,440' 19.2' 40' (Depth Doubled)
D 1,440' 4.8* 40' ( Depth Holvtd )
-------
226
REFERENCES
1. Teal, J. M., 1962. Energy Flow in the Salt Marsh Ecosystem of
Georgia. Ecology 43 (4):614-624p.
2. Odum, E. P. and A. A. de la Cruz., 1967. Participate Organic
Detritus in a Georgia Salt Marsh - Estuarine Ecosystem in Estuaries,
Ed. G. H. Lauff, 383-388. Washington, D, C., AAAS Publ. 83, 757p.
3. Heald, E., 1971. The Production of Organic Detritus in a South
Florida Estuary. University of Miami Sea Grant, Tech. Bull. 6,
llOp.
4. Odum, W. E., 1971. Pathways of Energy Flow in a South Florida Estuary.
Univ. Miami Sea Grant, Tech. Bull. 7, 162 p.
5. Environmental Protection Agency, 1973. Ecosystems Analysis of the
Big Cypress Swamp and Estuaries. Surveillance and Analysis Division,
Region IV.
6. Lugo, A. E. and S. C. Snedaker, 1974. The Ecology of Mangroves.
Annual Review of Ecology and Systematics, Vol. 5, 39-64p.
7. Thomann, R. V., 1972. Systems Analysis and Water Quality Management.
Environmental Science Services, ERA, New York.
8. O'Connor, D. J. Stream and Estuarine Analysis. Course Workbook,
Manhattan College Summer Institute in Water Pollution Control, New York.
9. Feurstein, D. L., and R. E. Selleck, Aug. 1963. Fluorescent Tracers
for Dispersion Measurements. JSED-ASCE, Vol. 89.
10. State of Florida, Department of Pollution Control, 1971. Survey of
Water Quality in Waterways and Canals of the Florida Keys. Department
of Pollution Control, Tallahassee, Florida.
11. Sawyer, C. N., 1960. Chemistry for Sanitary Engineers. McGraw-Hill,
New York.
12. Earth, E. F.; Brenner, R. C. and Lewis, R. F., 1968. Chemical-Biological
Control ^f Nitrogen and Phosphorus in Wastewater Effluent.Jour. WPCF
Vol. 40, 2047p.
13. Chesher, R. H., 1974. Canal Survey Florida Keys. Marine Research
Foundation, Inc. , Key West, Florida.
-------
227
14. Mulbarger, M. C., 1971. Nitrification and Dentrification in Activated
Sludge Systems. Jour. WPCF, Vol. 43, 2065p.
15. Walker, W. J., Bouma, J., Keeney, D. R. and Olcott, P. G., 1973.
Nitrogen Transformations During Subsurface Disposal of Septic Tank
Effluent in Sand. II. Ground Water Quality and Environ. Quality,
Vol. II, No. 4, 521-525p.
16. Environmental Protection Agency, 1969. Chemistry Laboratory Manual
pf_Bottom Sediments. Great Lakes Region Comm. on Analytical Methods.
17. Environmental Protection Agency, 1973. Sludge and Sediment Analysis.
EPA, Region IV, Surveillance and Analysis Division.
18. Russell-Hunter, S. D., 1970. Aquatic Productivity. The McMillan
Company, London.
19. Meyer, Charles F., 1973. Polluted Groundwater; Some Causes, Effects,
Controls and Monitoring. EPA 600/4-73-OOlb. U. S. Environmental
Protection Agency, Washington, D. C.
20. Barada, William and William M. Partington, 1972. Report of Investiga-
tion of the Environmental Effects of Private Waterfront Canals.
Environmental Information Center of the Florida Conservation Founda-
tion, Inc., Winter Park, Florida.
21. Smith, Milo and Associates (Tampa, FL), Hale and Kulligren, Inc.
(Akron, OH), 1970. Environment and Identity, A Plan Prepared for
Monroe County Commission.
22. Anonymous, 1970. Pollution of the Waters of Dade County, Florida.
U. S. Department of the Interior, Federal Water Quality Administration,
Lower Florida Estuary Study. Fort Lauderdale, Florida.
23. Popkin, F. A. and T. W. Bendixen, 1968. Feasibility of Improved
Subsurface_Dispos al. Jour. San. Eng. Div. ASCE, 94:271p.
24. Anonymous, 1967. Manual of Septic Tank Practice. U. S. Department
of Health, Education and Welfare, Public Health Service Publication
No. 526, Washington, D. C.
25. Polkowski, L. B. and W. C. Boyle, 1970. Groundwater Quality Adjacent
to j>eptic_Tank Soil Absorption System. Report to the Wisconsin
Department of Natural Resources.
26. Patterson, J. W., R. A. Minear and T. K. Nedued, 1971. Septic Tanks
and the Environment; State of Illinois, Institute for Environmental
Quality.
-------
228
27. Bender, William H., 1971. Soils and Sgptic Tanks. U. S. Department
of Agriculture, Soil Conservation Service. Agriculture Information
Bulletin No. 349, Washington, D. C.
28. Kingston, S. P., 1943. Contamination_of Water Supplies in Limestone
Formation. Jour. AWWA. 35:1450p.
29. Leopold, Luna B., 1968. Hydrology for Urban Land Planning - A Guide-
'book_on jthe^ Hydrologic Effects of Urban Land Use. Geological Survey
Circular, No. 554. Washington, D. C.
30. Vogt, John E., 1961. Infectious Hepatitis_Epidemic at Posen, Mich.
Jour. AWWA. 53:1238p.
31. Miller, David W., Frank A. DeLuca and Thomas L. Tessler, 1974.
Ground Water Contamination in the Northeast States. U. S. Environ-
mental Protection Agency. Washington, D. C.
32. Maynard, J. W., 1968. Septic Tank Performance Related to Ground
Conditions ^nd Population Density. Can. Jour. Pub Health. 60:173p.
33. Rickey, J. L. S. and D. L. Duncan, 1966. Performance of Septic
Tanks in Alaska. Jour. WPCF, 38(8) :1298p.
34. Craun, G. F., 1973. Microbiology - Waterborne Outbreaks. Jour.
WPCF. 45(6) :1265p.
35. Leech, R. S., 1951. Septic JTank Sewage Disposal Systems for Farm and
Suburban Homes. Indiana State Board of Health, 54:102p.
36. Kiker, J. E., 1968. Fringe Area Sewerage Problems. Jour. San. Eng.
Div. ASCE, 84:1714p.
37. Anonymous, 1973. Finger Fill Canal Studies - Punta Gorda and Big
Pine Key. Florida. U. S. Environmental Protection Agency, Surveillance
and Analysis Division, Athens, GA.
38. Anonymous, 1970. .South Carolina Tidelands Report. South Carolina
Water Resources Commission, Columbia, SC.
39. Carroll, B. J., 1974. Unpublished data. U. S. Environmental Protec-
tion Agency, Athens, Georgia.
40. Anonymous, 1975. Rules and Regulations to Regulate the Installation
of Sanitary Water Closets, Septic Tanks, and Disposal Fields.
Alabama State Health Department. Montgomery, Alabama.
-------
229
41. Anonymous, 1969. Rules and Regulations for Individual Sewage
Disposal Systems. Chapter 270-5-25. Georgia Department of
Human Resources. Atlanta, Georgia.
42. Anonymous, 1972. Rules of State of Florida Department of Pollution
Control. Standards for Individual Sewage Disposal Facilities.
Chapter 13-17. Tallahassee, Florida.
43. Anonymous, 1969. Regulation Governing Disposal of Human Excreta and
Othdr Liquid Wastes. Mississippi State Board of Health, Jackson,
Mississippi.
44. Anonymous. Regulation Number LXXIX for the Treatment and Disposal
of j>ewage_in the Coastal Areas of North Carolina. Board of Water
and Air Resources, Raleigh, North Carolina.
45. Anonymous, 1971. Rules and Regulations_Goyerning Individual Waste
'Disposal^ jSyjstems^ ' South Carolina State Board of Health, Columbia,
South Carolina.
46. Craun, Gunther F. and L. J. McCabe, 1973. Review of the Causes of
Waterborne Disease Outbreaks. Jour. AWWA. 74p.
47. Eliassen, Rolf and Robert H. Cummings, 1948. Analysis of Waterborne
Outbreaks, 1938 - 45. Jour. AWWA. 509p.
48. Anaonymous, 1974. Waterborne Gastrointestinal Illness, Richmond
Heights^ Florida. -U. S. Public Health Service, National Center
for Disease Control. Atlanta, Georgia.
49. Anonymous, 1972. Typhoid Fever, Washington. Morbidity and Mortality
Weekly Report. Center for Disease Control. 21:290p.
50. Anonymous, 1972. Center for Disease Control. Morbidity and Mortality
Weekly Report. 198p.
51. Lobel, Hans 0., Alan L. Bisno, Martin Goldfield and James E. Prier,
1969. A Waterborne Epidemic of Gastroenteritis with Secondary Person
to Person Spread. Am. Jour. Epidm. 89(4):384p.
52. Anonymous, 1972. Center for Disease Control. Hepatitis Surveillance.
35:8p.
53. Anonymous, 1972. Center for Disease Control. Hepatitis Surveillance.
35:10p.
-------
230
54. Anonymous, 1972. Center for Disease Control. Morbidity and Mortality
Weekly Report. 21:439p.
55. Neefe, J. R. and J. Stokes, 1945. An Epidemic of Infectious Hepatitis
Apparently Due to a Water Borne Agent. Jour. AMA. 128:1063.
56. Kiker, J. E., 1956. New Developments j.n Septic Tank Systems. Jour.
San. Eng. Div. ASCE. 5:1088p.
57. Clarke, N. A., G. Berg, P. W. Kabler and S. L. Chang, 1964. Human
Enteric Viruses^in^Wate^ri Source, Survival and Removability.
Advances in Water Research. Vol. 2:523p.
58. Mechalas, Byron J. , K. K. Hekimian, L. A. Schinazi, and R. H. Dudley,
1972. An Investigation into Recreational Water Quality. Water
Quality Criteria Data Book, Vol. 4. U. S. Environmental Protection
Agency, Washington, DC.
59. Akin, Elmer W., W. H. Benton and W. F. Hill. Enteric Viruses in
Ground and^ Surface Waters: A Review of Their Occurrence and Survival.
60. Gerba, Charles P. and G. E. Schaieberger, 1975. Effects of Particulates
on Virus Survival in Seawater. Jour. WPCF. 47(1) :93p.~
61. Metcalf, T. G. and W. C. Stiles, 1965. The Accumulation of Enteric
Viruses by the Oyster, Grassostrea Virginica. Jour. Inf. Dis.
115:68p.
62. Mitchell, J. R., M. W. Presnell, E. W. Akin, J. M. Cummins and 0. C.
Liv, 1966. Accumulation anc[ Elimination of Polio-Virus by the Eastern
Oyster. Am. Jour. Epidemiol. 84:40p.
63. Anonymous, 1965. National Shellfish Sanitation Program Manual of
Operations: Part 1, Sanitation of Shellfish Growing Areas. U. S.
Department of Health, Education and Welfare. Public Health Service.
Washington, DC.
64. Fugate, K. J., D. 0. Cliver and T. M. Hatch, 1975. Enteroviruses
and Potential Bacterial Indicators in Gulf Coast Oysters. J. Milk
Food Tech. Vol. 38(2):100p.
65. Butler, R. G., G. T. Orlob and P. H. McGauhey, 1954, Underground
Movement of Bacteria and Chemical Pollutants. Jour. AWWA. 46(2) :
97p.
-------
231
66. Robeck, Gordon G. , T. W. Bendixen, W. A. Schwartz and R. L.
Woodward, 1963. Factors Influencing the Design and Operation of
Sgil^Syjstems for Waste Treatment. Jour. WPCF. 36(8) :971p.
67. Drewry, William A. and R. Eliassen, 1967. Virus Movement in
Groundwater. Jour. WPCF. 40(8) ,2 :R257p.
68. Anonymous, 1957. Underground Waste ^Disposal and Control - Task
Jour. AWWA. 1334p.
69. Anonymous, 1954, Final Report on Investigation of Travel of Pollution.
Standard Service Agreement No. 12C-13. Sanitary Engineering Research
Laboratory, University of California.
70. Mailman, W. L. and W. N. Mack, 1961. Biological Contamination of
Groundwater. U. S. Department of Health, Education and Welfare,
Public Health Service Technical Report W61-5.
71. Cook, D. G. and R. 0. Brinkhurst, 1973. Marine Flora and Fauna
of the Northeastern United States. Annelida :01egochaeta. NOAA
Tech. Rept. NMFS CIRC-374. Washington, DC, 25p.
72. Brinkhurst, R. 0. and M. L. Simmons, 1968. The Aquatic Olegochaeta
of San Francisco Bay System. California Fish and Game. 54:180-194p.
73. Environmental Protection Agency, 1973. Biological Field and Laboratory
Methods . National Environmental Research Center, Office of Research
and Development, EPA, Cincinnati, Ohio.
74. Humm, H. B. , 1973. Benthic Algae of ^he Eastern Gulf of Mexico.
In: A Summary of Knowledge of the Eastern Gulf of Mexico. State
University System of Florida, Institute of Oceanography, St. Petersburg,
Florida.
75. Humm, H. B. , 1973. Seagrasses. In: A Summary of Knowledge of
the Eastern Gulf of Mexico. State University of Florida, Institute
of Oceanography, St. Petersburg, Florida.
76. Weber, C. I. and B. H. McFarland, 1969. Teriphyton Biomass-Chlorophyll
Ratio as an Index of Water Quality. Presented at the 17th Annual
Meeting of the Midwest Benthological Society, Gilbertsville, Kentucky.
77. Steidinger, Karen A., 1973. Phytoplankton. In: A Summary of Knowledge
of the Eastern Gulf of Mexico. State University of Florida, Institute
of Oceanography, St. Petersburg, Florida.
-------
232
78. Langer, J. L., E. E. Pyatt, and R. P. Shubinski, July 1971.
Storm jjater Management Model, Vols. I-IV, U. S. EPA, Washington,
DC, NTIS Nos. PB-203-291, PB-203-292.
79. Metcalf & Eddy, Inc., University of Florida, Water Resources
Engineers, Inc. 1971. Storm Water Management Model. Environmental
Protection Agency, Water Pollution Control Research Series 11024DOCO
7/71.
80. Feigner, K. D., and H. S. Harris, July 1970. Documentation Report -
FWOA Dynamic Elstuary Model. USDI, FWQA, Washington, D. C. , NTIS
No. PB-197-103.
81. Callaway, R. J., K. V. Byram and G. R. Ditsworth, Nov. 1969.
Mathematical Model of the Columbia River ,from the Pacific Ocean to
Bonneville Dam. Part I - Theory, Program Notes and Programs. USDI,
FWQA, Pacific Northwest Water Laboratory, Corvallis, Oregon, NTIS
No. PB-202-422.
82. Callaway, R. J,, and K. V. Byram - Mathematical_Model of_ the Columbia
. Rlyer_frbjn the Pacific jjcean to Bonneville Dam. Part iT - Tnput -
Output and_Initial Verification Procedures. U. S. EPA, Pacific
Northwest Water Laboratory, Corvallis, Oregon, Dec. 1970, NTIS No.
PB-202-423.
83. Clark, L. J., and K. D. Feigner, March 1972. Mathematical Model
_Studies ^f Water Quality in the Potomac^ Estuary. Technical Report
33, Annapolis Field Station, U. S. EPA, Washington, DC.
-------
IX. APPENDICES
gage No.
A. WATER USE CLASSIFICATIONS
1 - Florida 235
2 - North Carolina 239
B. DO, SALINITY AND TEMPERATURE PROFILE DATA 243
1 - November, 1973
1.1 - Punta Gorda, FL 244
1.2 - Big Pine Key, FL 253
2 - August - September, 1974
2.1 - Punta Gorda, FL 263
2.2 - Big Pine Key, FL 270
2.3 - Sea-Air Estates, Marathon, FL 279
2.4 - Atlantic Beach, NC 289
2.5 - Spooners Creek, NC 300
C. WATER CHEMISTRY DATA
1 - November, 1973
1.1 - Punta Gorda, FL 308
1.2 - Big Pine Key, FL 320
2 - August - September, 1974
2.1 - Punta Gorda, FL 331
2.2 - Big Pine Key, FL 336
2.3 - Sea Air Estates, Marathon, FL 342
2.4 - Panama City, FL 347
2.5 - Atlantic Beach, NC 358
2.6 - Spooners Creek, NC 365
2.7 - Emerald Isles, NC 368
D. SEDIMENT DATA
1 - Distribution of Organic Matter
1.1 - Punta Gorda, FL 369
1.2 - Big Pine Key, FL 371
1*3 - Special Stations, Punta Gorda and Big Pine Key . 373
1.4 - Sea Air Estates, Marathon, FL 375
1.5 -'Atlantic Beach, NC 376
2 - Particle Size Distribution
2.1 - Punta Gorda and Big Pine Key, FL 377
2.2 - Sea Air Estates, Marathon, FL 379
2.3 - Atlantic Beach, NC 380
3 - Pesticide Detection Limits 381
E. BIOLOGICAL DATA
1 - Macroinvertebrates
1.1 - Kinds of Benthic Invertebrates, Punta Gorda and
Big Pine Key, FL 382
1.2 - Numbers of Benthic Invertebrates, November 1973,
Punta Gorda, FL 385
233
-------
Page No.
1 - Macroinvertebrates (continued)
1.3 - Numbers of Benthic Invertebrates, November 1973,
Big Pine Key, FL . 387
1.4 - Numbers and Kinds of Benthic Invertebrates,
August 1974, Big Pine Key, FL 389
1.5 - Numbers and Kinds of Benthic Invertebrates,
August 1974, Sea Air Estates, Marathon, FL . . . 390
1.6 - Numbers and Kinds of Benthic Invertebrates
September 1974, Atlantic Beach and Spooners
Creek, NC 391
2 - Macrophytes
2.1 - Biomass, November 1973, Big Pine Key, FL . . . . 392
2.2 - Biomass, August 1974, Big Pine Key, FL 413
2.3 - Associations, November 1973, Big Pine Key, FL . . 417
2.4 - Associations, August 1974, Big Pine Key, FL . . . 418
3 - Periphyton
3.1 - Clump Counts, November 1973, Punta Gorda, FL . . 419
3.2 - Clump Counts, November 1973, Big Pine Key, FL . . 421
3.3 - Chlorophyll a., November 1973, Punta Gorda, FL . . 422
3.4 - Organic Matter, November 1973, Punta Gorda, FL. . 423
3.5 - Autotrophic Index, November 1973,
Punta Gorda, FL 424
4 - Phytoplankton
4.1 - Chlorophyll a_, November 1973, Punta Gorda
and Big Pine Key, FL 425
4.2 - Live Counts, November 1973, Punta Gorda
and Big Pine Key, FL 426
5 - Light Extinction 427
234
-------
APPENDIX A-l
Florida Water Use Classifications
Class II waters - shellfish harvesting.
The following criteria are for classification of waters in areas
which either actually or protentially have the capability of supporting
recreational or commercial shellfish propagation and harvesting. Harvest-
ing may only occur in areas approved by the Division of Health, Florida
Department of Health and Rehabilitative Services.
(1) Bacteriological Quality, Coliform Group - areas classified for
shellfish harvesting, the median coliform MPN (Most Probable Number) of
water cannot exceed seventy (70) per hundred (100) ml., and not more than
ten (10) percent of the samples ordinarily exceed an MPN of two hundred
and thirty (230) per one hundred (100) ml. in those portions of areas
most probably exposed to fecal contamination during most unfavorable
hydrographic and pollutional conditions.
(2) Sewage, Industrial Wastes, or Other Wastes - any industrial wastes
or other wastes shall be effectively treated by the latest modern tech-
nological advances as approved by the regulatory agency.
(3) pH - of receiving waters shall not be caused to vary more than
one (1.0) unit above or below normal pH of the waters; and lower value
shall be not less than six (6.0) and upper value not more than eight and
one-half (8.5). In cases where pH may be, due to natural background or
causes, outside limits stated above, approval of the regulatory agency
shall be secured prior to introducing such material in waters of the state.
(4) Dissolved Oxygen - shall not be artifically depressed below the
values of four (4.0) ppm unless background information available to the
235
-------
regulatory agency indicates prior existence under unpolluted conditions
of lower values. In such cases, lower limits may be utilized after
approval by the regulatory authority.
(5) Toxic Substances - Free from substances attributable to municipal,
industrial, agricultural or other discharges in concentrations or combina-
tions which are toxic or harmful to humans, animal or aquatic life.
(6) Odor - threshold odor number not to exceed 24 at 60°C as a daily
average.
Class III waters - recreation - propagation and management of fish and
wildlife.
The following criteria are for classification of waters to be used
for recreational purposes, including such body contact activities as
swimming and water skiing; and for the maintenance of a well-balanced
fish and wildlife population. All surface waters within and coastal waters
contiguous to these basins, including off-shore waters, not otherwise
classified shall be classified as Class III; however, waters of the open
ocean shall be maintained at a dissolved oxygen of not less than five (5.0)
mg/1. Streams specifically listed in Section 17.3.21 by a separate listing
designated as "Special Stream Classification" shall similarly be maintained
at a minimum dissolved oxygen level of five (5.0) mg/1.
(1) Sewage, industrial wastes, or other wastes - any industrial
waste or other wastes shall be effectively treated by the latest modern
technological advances as approved by the regulatory agency.
(2) pH - of receiving waters shall not be caused to vary more than
one (1.0) unit above or below normal pH of the waters; and lower value
236
-------
shall be not less than six (6.0), and upper value not more than eight and
one-half (8.5). In cases where pH may be, due to natural background or
causes outside limits stated above, approval of the regulatory agency
shall be secured prior to introducing such material in waters of the state.
(3) Dissolved Oxygen - shall not be artifically depressed below the
values of four (4.0) ppm unless background information available to the
regulatory agency indicates prior existence under unpolluted conditions
of lower values. In such cases, lower limits may be utilized after
approval by the regulatory authority.
(4) Bacteriological - coliform group not to exceed 1,000 per 100 ml
as a monthly average, (either MPN or MF counts); nor to exceed this number
in more than 20% of the samples examined during any month; nor exceed
2,400 per 100 ml (MPN or MF count) on any day. This criteria shall apply
only to waters used for body contact activities.
(5) Toxic substances - free from substances attributable to municipal,
industrial, agricultural or other discharges in concentrations or combina-
tions which are toxic or harmful to humans, animal or aquatic life.
(6) Deleterious - free from substances attributable to municipal,
industrial, agricultural or other discharges producing color, odor or
other conditions in such degree' as to create a nuisance.
(7) Turbidity - shall not exceed fifty (50) Jackson units as related
to standard candle turbidimeter above background.
237
-------
APPENDIX A-2
RULES, REGULATIONS, CLASSIFICATIONS AND
WATER QUALITY STANDARDS APPLICABLE TO THE
SURFACE WATERS OF NORTH CAROLINA.
The Declaration of Policy, as set forth in Section 211, Article 21,
Chapter 143 of the General Statutes of North Carolina (Chapter 606, Session
Laws of 1951) as amended, reads as follows: "It is hereby declared to be
the public policy of this State to provide for the conservation of its
water and air resources. Furthermore, it is the intent of the General
Assembly, within the context of this Article to achieve and to maintain
for the citizens of the State a total environment of superior quality.
Recognizing that the water and air resources of the State belong to
the people, the General Assembly affirms the State's ultimate responsibility
for the preservation and development of these resources in the best interest
of all its citizens and declares the prudent utilization of these resources
to be essential to the general welfare. It is the purpose of this Article
to create an agency which shall administer a program of water and air pol-
lution control and water resource management. It is the intent of the
General Assembly, through the duties and powers defined herein, to confer
such authority upon the Board of Water and Air Resources as shall be
necessary to administer a complete program of water and air conservation,
pollution abatement and control and to achieve a coordinated effort of
pollution abatement and control with other jurisdictions. Standards of
water and air purity shall be designed to protect human health, to prevent
injury to plant and animal life, to prevent damage to public and private
property, to insure the continued enjoyment of the natural attractions of
the State, to encourage the expansion of employment opportunities, to pro-
vide a permanent foundation for healthy industrial development and to secure
for the people of North Carolina, now and in the future, the beneficial
use of these great natural resources."
REGULATION NO. XII. - CLASSIFICATIONS FOR TIDAL SALT WATERS AND WATER
QUALITY STANDARDS APPLICABLE THERETO. The standards of water quality for
each separately identified water to which a classification is assigned shall
be those specified for such classification in the following series of Classi-
fications and Water Quality Standards.
1. Class SA Waters:
a. Best Usage of Waters: Shellfishing for market purposes and any
other usage requiring waters of lower quality.
b. Conditions Related to Best Usage: Waters will meet the sanitary and
bacteriological standards given in the 1965 revision of the "National Shell-
fish Sanitation Program Manual Of Operations: Part 1, Sanitation of Shellfish
Growing Areas", recommended by the Public Health Service and will be considered
safe and suitable for shellfish culture.
239
-------
2. Quality Standards Applicable to Class SA Waters
Items Specifications
a. Floating solids; settleable
b. Sewage, industrial wastes,
or other wastes.
c. pH.
d. Dissolved oxygen.
e. Toxic wastes; oils; dele-
terious substances; colored or other
wastes.
f. Organisms of coliform group.
g. Temperature.
3. Class SB Waters
a. Best Usage of Waters:
for market purposes.
None attributable to sewage,
industrial wastes or other wastes.
None which are not effectively treated
to the satisfaction of the Board
and in accordance with the require-
ments of the State Board of Health.
Range between 6.8 and 8.5.
Not less than 5.0 mg/1, except
that swamp waters may have a
minimum of 4.0 mg/1.
Only such amounts, whether alone
or in combination with other sub-
stances or wastes as will not make
the waters unsafe or unsuitable
for fish and shellfish or their
propagation, impair the palatability
of same, or impair the waters for
any other best usage established for
this class.
Total coliform group not to exceed
a median MPN of 70/100 ml, and not
more than 10% of the samples shall
exceed an MPN of 230/100 ml for a
5-tube decimal dilution test (or
330/100 ml where a 3-tube decimal
dilution is used) in those areas
most probably exposed to fecal con-
tamination during the most unfavor-
able hydrographic and pollution con-
ditions.
Shall not be increased above the
natural water temperature by more
than 1.5°F. during the months of
June, July, and August no more than
4.0%F. during other months and in
no case to exceed 90°F., due to
the discharge of heated liquids.
Bathing and any other usage except shellfishing
240
-------
b. Conditions Related to Best Usage: The waters, under proper sanitary
supervision by the controlling health authorities, will meet accepted sanitary
standards of water quality for outdoor bathing places and will be considered
safe and satisfactory for bathing purposes.
4. Quality Standards Applicable to Class SB Waters
Items Specifications
a. Floating solids; settleable
solids, sludge deposits.
b. Sewage, industrial wastes,
or other wastes.
c. pH.
d. Dissolved oxygen.
e. Toxic wastes; oils; dele-
terious substances; colored or other
wastes.
f. Organisms of coliform
group (applicable only during
months of May through September.
During other months the coliform
organism standard for Class "SC"
Waters shall apply.)
None attributable to sewage, in-
dustrial wastes or other wastes.
None which are not effectively
treated to the satisfaction of
the Board. In determining the
degree of treatment required
for such waters when discharged
into waters to be used for bathing,
the Board will take into consider-
ation the quantity and quality of
sewage and wastes involved and the
proximity of such discharges to
the waters in this class.
Shall be normal for the waters in
the area, which generally shall
range between 6.0 and 8.5, except
that swamp waters may have a low
of 4.3.
Not less than 5.0 mg/1, except
that swamp waters may have a mini-
mum of 4.0 mg/1.
Only such amounts, whether alone
or in combination with other sub-
stances or wastes as will not make
the waters unsafe or unsuitable
for bathing, injurious to fish or
shellfish, or adversely affect the
palatability of same, or impair
the waters for any other best usage
established for this class.
Fecal coliforms not to exceed a
log mean of 200/100 ml (either
MPN or MF count) based on at
least five consecutive samples
examined during any 30-day period
and not to exceed 400/100 ml in
more than 20% of the samples ex-
amined during such period. (Not
applicable during or immediately
following periods of rainfall).
241
-------
g. Temperature. Shall not be increased above the
natural water temperature by more
than 1.5°F. during the months of
June, July, and August nor more
than 4.0%F. during other months
and in no case to exceed 90°F., due
to the discharge of heated liquids.
242
-------
APPENDIX B
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
PARAMETER DESCRIPTION
00003 SAMPLING STATION LOCATION, VERTICAL (FEET)
00299 OXYGEN, DISSOLVED (ELECTRODE) (MG/D
00010 TEMPERATURE, WATER (DEGREES CENTIGRADE)
00480 SALINITY - PARTS PER THOUSAND
00003 DEPTH IN FEET
-------
APPENDIX B-l.l
ENVIRONMENTAL PROTECTION AGENCY" REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-01-0
PUNTA GORDA 50* FRM END CANAL «1
DATE TIME
731111 0126
731111 0127
731111 0128
731111 0129
731111 0130
731111 0131
731111 0132
731111 0133
731111 0134
731111 0435
731111 0*36
731111 0437
731111 0438
N> 731111 0439
£ 731111 0440
731111 0441
731111 0655
731111 0656
731111 0657
731111 0658
731111 0659
731111 0840
731111 0841
731111 0842
731111 0843
731111 1245
731111 1246
731111 1247
731111 1248
731111 1249
731111 1605
731111 1606
731111 1607
731111 1608
731111 1609
731111 1610
731111 1611
731111 1910
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
1
2
3
4
5
1
2
3
4
1
2
3
4
5
1
2
3
4
5
6
7
1
00299
00
PROBE
MG/L
5.5
5.5
5.5
5.4
5.4
5.4
5.3
5.3
S.I
5.0
5.0
5.0
5.0
5.0
5.0
4.9
5.1
5.1
5.1
5.0
5.0
5.1
5.0
5.0
5.0
6.2
6.2
6. '2
6.2
6.2
6.5
6.5
6.5
6.5
6.5
6.6
6.6
6.5
00010
WATER
TEMP
CENT
22.9
23.3
23.4
23.4
23.4
23.4
23.4
23.3
23.3
22.6
22.7
22.6
22.6
22.6
22.6
22.5
20.8
21.6
21.6
21.9
22.1
22.0
22.3
22.3
22.3
22.8
22.8
22.8.
22.8
22.8
23.0
23.0
23.0
23.0
23.0
23.0
23.0
22.5
00480
SALINITY
PPTH
28.3
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.4
28.3
28.3
28.3
28.2
28.2
28.2
29.2
28.2
28.4
28.4
28.4
28.3
28.3
28.3
28.3
27.3
27.3
27.3
27.3
27.3
27.0
27.0
27.0
27.0
27.0
27.0
27.0
28.2
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-01-D
PUNTA GORDA SO1 FRM END CANAL »1
DATE TIME
731111 1911
731111 1912
731111 1913
731111 1914
731111 1915
731111 1916
731111 2130
731111 2131
731111 2133
731111 2133
731111 2134
731111 2135
731111 2136
731112 0140
731112 0141
731112 0142
731112 0143
731112 0144
731112 0145
731112 0146
731112 0420
731112 0421
731112 0422
731112 0423
731112 0424
731112 0425
731112 0740
731112 0741
731112 0742
731112 0743
731112 0744
731112 1015
731112 1016
731112 1017
731112 1018
731112 1019
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
731112
00003
DEPTH
FEET
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
4
5
6
1
2
3
4
5
1
2
3
4
5
00299
DO
PROBE
MG/L
6.5
6.5
6.5
6.5
6.5
6.4
6.3
6.3
6.3
6.3
6.3
6.3
6.4
5.8
5.8
5.8
5.7
5.7
5.7
5.6
5.5
5.4
5.4
5.4
5.4
5.4
5.2
5.1
5.1
5.1
5.1
6.0
5.9
5.8
5.6
5.6
74
6.6
4.9
5.7
00010
WATER
TEMP
CENT
22.5
22.5
22.5
22.5
22.5
22.2
22.0
22.0
22.0
22.0
22.0
22.0
22.0
21.3
21.8
21.6
21.6
21.5
21.5
21.5
21.0
21.3
21.3
21.3
21.3
21.3
21.3
21.3
21.3
21.3
21.3
21.7
21.7
21.6
21.6
21.7
74
23.4
20. n
22.2
00480
SALINIIY
PPTH
28.2
28.2
28.2
28.2
28.2
28.2
28.6
28.6
28.6
28.6
28.6
28.6
28.6
28.5
28.5
28.5
28.5
28.5
2B.5
28.4
28.5
28.5
28.5
28.5
28.5
28.5
26.1
2b.l
28.1
28.1
28.1
28.2
28.2
28.2
28.2
28.2
74
29.3
27.0
28.2
-------
APPENDIX B-l.l
8
Ul
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-02-0
PUNTA GOROA 1250* FM END CANAL*!
DATE TIME
731111 0145
731111 0146
731111 0147
731111 0148
731111 0149
731111 0150
731111 0151
731111 01S2
731111 0153
731111 0445
731111 0446
731111 0447
731111 0448
731111 0449
731111 0712
731111 0713
731111 0714
731111 0715
731111 0716
731111 0717
731111 0718
731111 0719
731111 0900
731111 0901
731111 0902
731111 1255
731111 1256
731111 1257
731111 1258
731111 1612
731111 1613
731111 1614
731111 1615
731111 1616
73U11 1617
731111 1618
731111 1925
731111 1926
00003
DEPTH
FEET
1
2
3
4
5
6
7
a
9
1
2
3
4
5
1
2
3
4
5
6
7
8
1
2
3
1
2
3
4
1
2
3
4
5
6
7
1
2
00299
DO
PROBE
MG/L
5.7
5.6
5.6
5.5
5.5
5.5
5.4
5.4
5.4
5.2
5.2
5.2
5.2
5.1
5.3
5.3
5.2
5.2
•5.2
5.2
5.2
5.2
5.3
5.5
5.2
6.0
6.0
6.0
6.0
6.2
6.2
6.2
6.2
6.2
6.2
6.3
6.0
6.0
00010
WATER
TEMP
CENT
23.2
23.3
23.3
23.3
23.3
23.3
23.3
23.3
23.3
22.9
23.1
23.1
23.1
23.1
22.6
22.6
22.5
22.6
22.6
22.6
22.6
22.6
22.2
22.6
22.6
23.0
23.0
23.0
23.0
23.0
23.0
2J.O
23.0
23.0
23.0
23.0
22.5
22.5
00460
SALINITY
PPTH
28.2
28.2
28.2
28.0
28.0
28.1
28.1
28.3
28.3
28.2
28.2
28.2
28.2
28.2
28.2
28.1
28.1
28.1
28.
28.
28.
28.
28.
28.
28.
27.3
27.3
27.3
27.3
27.0
27.0
27.0
27.0
27.0
27.0
27.0
28.2
28.2
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGEH FILL CANAL 3TUOY NOVEMBER 1973
PROFILE DATA
STATION - PG-02-0
PUNTA GOROA 1250* KM END CANAL#1
DATE TIME
731111 1927
731111 1928
731111 1929
731111 1930
731111 1931
731111 2150
731111 2151
731111 2152
731111 2153
731111 2154
731111 2155
731111 2156
731111 2157
731112 0200
731112 0201
731112 0202
731112 0203
731112 0204
731112 0205
731112 0206
731112 0435
731112 0436
731112 0437
731112 0438
731112 0439
731112 0440
731112 0750
731112 0751
731112 0752
731112 0753
731112 1030
731112 1031
731112 1032
731112 1033
731112 1034
731112 1035
731112 1036
731111
W«flER
MAXIMUM
MINIMUM
MEAN
731112
00003
DEPTH
FEET
3
4
5
6
7
1
2
3
-------
APPENDIX B-l.l
ENVIRONMENTAL PROTECTION AGENCr REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-03-D
PUNTA GOROA 2500' FM END CANAL*!
DATE TIME
731111 0205
731111 0206
731111 0207
731111 0208
731111 0209
731111 0210
731111 0452
731111 0453
731111 0454
731111 0455
731111 0456
731111 0720
731111 0721
731111 0722
731111 0723
731111 0912
731111 0913
731111 0914
731111 1305
731111 1306
731111 1307
731111 1620
731111 1621
731111 1622
731111 1623
731111 1935
731111 1936
731111 1937
731111 1938
731111 2200
731111 2201
731111 2202
731111 2203
731112 0215
731112 0216
731112 0217
731112 0218
731112 0219
00003
DEPTH
FEET
1
2
3
4
5
6
1
2
3
4
5
1
2
3
4
1
2
3
1
2
3
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
5
00299
DO
PROBE
MG/L
5.8
5.7
5.5
5.4
5.3
5.2
5.4
5.4
5.4
5.3
5.2
5.3
5.3
5.3
5.2
5.5
5.4
5.4
5.8
5.9
6.0
7.0
7.0
7.0
7.0
6.6
6.7
6.7
6.8
6.2
6.1
6.1
6.2
6.0
5.8
5.8
5.6
5.6
00010
MATER
TEMP
CENT
22.4
22.4
21.8
21.8
21.5
21.5
22.3
22.6
22.7
22.7
22.7
21.2
21.0
20.7
20.5
22.1
22.1
22.1
22.8
22.8
22.6
22.0
22.0
22.0
22.0
21.5
21.0
21.0
21.0
20.8
20.6
20.5
20.5
20.7
20.7
20.1
20.1
19.8
00480
SALINITY
PPTH
27.9
28.1
28.1
28.2
28.2
28.2
28.1
27.8
27.8
27.9
27.9
28.4
28.8
28.8
29.1
28.0
28.0
28.0
27.3
27.3
27.3
27.9
27.9
27,9
27.9
29.0
29.0
29.0
29.0
29.5
29.5
29.5
29.5
27.8
28.0
28.0
28.2
28.2
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-03-0
PUNTA GORDA 3500' FM END CANALH1
DATE TIME
731112 0445
731112 0446
731112 0447
731112 0448
731112 0449
731112 0755
731112 0756
731112 0757
731112 0758
731112 1045
731112 1046
731112 1047
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
731112
00003
DEPTH
FEET
1
2
3
4
5
1
2
3
4
1
2
3
00299
DO
PROBE
MG/L
5.7
5.7
5.7
5.6
5.5
5.5
5.4
5.4
5.4
5.9
6.1
6.1
50
7.0
5.2
5.8
00010
MATER
TEMP
CENT
20.5
20.5
20.5
20.5
20.5
20.7
20.7
20.7
20.7
21.5
21.5
21.5
50
22.8
19.8
21.4
00480
SALINITY
PPTH
28.0
28. 0
28.0
26.0
28.0
27.8
27.8
27.8
27.8
28.0
28.0
28.0
50
29.5
27.3
28.2
-------
APPENDIX B-l.l
10
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-04-0
CHARLOTTE HARBOR BACKGROUND STA.
DATE TIME
731111 0235
731111 0236
731111 0237
731111 0238
731111 0505
731111 0506
731111 0507
731111 0728
731111 0729
731111 0730
731111 0930
731111 0931
731111 1325
731111 1326
731111 1327
731111 1625
731111 1626
731111 1627
731111 1628
731111 1950
731111 1951
731111 1952
731111 1953
731111 2210
731111 2211
731111 2212
731111 2213
731112 0235
731112 0236
731112 0237
731112 0238
731112 0452
731112 0453
731112 0*54
731112 0455
731112 0456
731112 0800
731112 0801
731112 0802
731112 OM3
731112 1100
731112 1101
731112 1102
731111
NUMSErt
MAXIMUM
MINIMUM
MEAN
731112
00003
DEPTH
FEET
1
2
3
4
1
2
3
1
2
3
1
2
1
2
3
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
5
1
2
3
4
1
2
3
00299
DO
PROBE
MG/L
5.8
5.7
5.7
5.6
5.2
5.2
5.1
4.8
4.8
4.8
5.5
5.5
7.3
7.4
7.5
6.
6.
6.
6.
6.
6.8
6.9
6.8
6.6
6.6
6.6
6.6
6.9
6.9
6.9
6.9
5.2
5.2
5.2
5.2
5.2
5.3
5.2
5.2
5.1
5.8
5.7
5.6
43
7.5
4.8
6.0
00010
WATER
TEMP
CENT
22.5
22.5
22.6
22.6
20.3
20.3
20.5
21.5
21.5
21.5
21.1
21.1
22.0
22.0
22.0
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.
21.
21.
21.
21.
20.8
20.8
20.8
20.8
19.8
20.0
20.0
20.0
20.0
19.7
19.7
19.7
19.7
20.9
20.9
20.9
43
22.6
19.7
21.0
00480
SALINITY
PPTH
28.3
28.3
28.3
28.3
28.2
28.2
28.2
27.1
27.0
27.0
26.5
26.5
27.8
27.8
27.8
28.2
28.2
28.2
28.2
28.9
28.9
28.9
28.9
29.1
29.1
29.1
29.1
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
27.7
27.7
27.7
27.7
26.6
26.6
26.6
43
29.1
26.5
28.0
-------
APPENDIX B-l.l
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA.
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-05-D
PUNTA GORDA 50 • FRM END CANAL «2
DATE TIME
731111 0300
731111 0301
731111 0302
731111 0303
731111 0304
731111 0305
731111 0528
731111 0529
731111 0530
731111 0531
731111 0750
H, 731111 0751
js 731111 0752
00 731111 1005
731111 1006
731111 1400
731111 1401
731111 1402
731111 1650
731111 1651
731111 1652
731111 1653
731111 2020
731111 2021
731111 2022
731111 2023
731111 2230
731111 2231
731111 2232
731111 2233
731112 0310
731112 0311
731112 0312
731112 0313
731112 0314
731112 0510
731112 0511
731112 0512
00003
DEPTH
FEET
1
2
3
4
5
6
1
2
3
4
1
2
3
1
2
1
2
3
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
5
1
2
3
00299
DO
PROBE
MG/L
3.9
3.9
3.9
3.8
3.8
3.7
3.8
3.8
3.8
3.7
3.8
3.8
3.7
4.4
4.4
5.4
5.4
5.4
5.4
5.4
5.4
5.4
5.2
5.2
5.2
5.2
5.0
5.0
5.2
5.2
4.6
4.5
4.5
4.5
4.5
4.2
4.2
4.2
00010
WATER
TEMP
CENT
22.6
23.3
23.3
23.3
23.6
23.6
23.0
23.0
23.0
23.0
22.4
22.4
22.6
22.7
22.7
23.6
23.6
23.5
23.5
23.5
23.5
23.5
23.0
23.0
22.9
22.8
22.2
22.2
22.2
22.2
21.5
21.9
21.9
21.9
21.9
21.6
21.6
21.6
00480
SALINITY
PPTH
28.3
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.4
28.0
28.0
28.0
27.9
28.0
26.9
26.9
26.9
27.4
27.4
27.4
27.4
28.0
28.0
28.0
28.0
28.3
28.3
28.3
28.3
27.8
27.8
27.8
27.8
27.8
27.8
27.8
27.8
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-05-D PUNTA GOROA 50« FRM END CANAL *2
DATE TIME
731112
731112
731112
731112
731112
731112
731112
0513
0815
0816
0817
1140
1142
00003
DEPTH
FEET
4
1
2
3
1
2
3
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
731112
00299
DO
PROBE
MG/L
4.2
4.5
4.4
4.4
5.4
5.3
5.3
45
5.4
3.7
4.6
00010
WATER
TEMP
CENT
21.6
20.8
21.3
21.3
22.3
22.3
22.3
45
23.6
20.8
22.6
00480
SALINITY
PPTH
27.8
27.9
27.7
27.7
27.6
27.6
27.6
45
28.4
26.9
27.9
-------
APPENDIX B-l.l
to
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-06-0
PUNTA GORDA 1000' FM END CANAL*2
DATE TIME
731111 0315
731111 0316
731111 0317
731111 0318
731111 0319
731111 0320
731111 0321
731111 0542
731111 0543
731111 0544
731111 0545
731111 0546
731111 0547
731111 0755
731111 0756
731111 0757
731111 0758
731111 0759
731111 0800
731111 1020
731111 1021
731111 1022
731111 1023
731111 1024
731111 1410
731111 1411
731111 1412
731111 1413
731111 1414
731111 1655
731111 1656
731111 1657
731111 1658
731111 1659
731111 1700
731111 2035
731111 2036
731111 2037
00003
DEPTH
FEET
1
2
3
4
5
6
7
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
6
1
2
3
00299
DO
PROBE
MG/L
5.3
5.3
5.3
5.3
5.3
5.2
5.2
5.2
5.2
5.1
5.1
5.1
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.5
5.4
5.4
5.3
5.3
6.0
6.0
5.9
5.9
5.9
6.4
6.4
6.5
6.5
6.5
6.5
6.0
6.2
6.3
00010
WATER
TEMP
CENT
23.2
23.2
23.3
23.3
23.2
23.2
23.1
22.8
23.0
23.2
23.2
23.2
23.2
22.6
22.6
22.6
22.6
22.6
22.6
22.8
22. 8
22.8
22.8
22.8
23.9
23.8
23.6
23.6
23.5
23.5
23.5
23.5
23.5
23.5
23.5
22.5
23.0
23.1
00480
SALINITY
PPTH
28.2
27.9
27.9
27.8
27.8
28.0
28.0
28.2
28.0
28.0
28.0
28.0
28.0
27.9
28.0
28.0
28.0
28.0
28.0
27.9
27.9
27.9
27.9
27.9
26.8
26.8
26.9
26.9
26.9
27.5
27.5
27.5
27.5
27.5
27.5
28.0
28.0
28.0
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-06-D
PUNTA GORDA 1000 • FM END CANAL*2
DATE TIME
731111 2038
731111 2039
731111 2040
731111 2240
731111 2241
731111 2242
731111 2243
731111 2244
731111 2245
731112 0325
731112 0326
731112 0327
731112 0328
731112 0329
731112 0330
731112 0515
731112 0516
731112 0517
731112 0518
731112 0519
731112 0520
731112 D825
731112 0826
731112 0827
731112 0826
731112 0829
731112 0830
731112 1153
731112 1154
731112 1155
731112 1156
731112 1157
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
731112
00003
DEPTH
FEET
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
00299
00
PROBE
MG/L
6.3
6.1
5.9
5.8
5.8
5.8
5.6
5.8
5.8
5.3
5.3
5.3
5.5
5.6
5.6
5.4
5.2
5.2
5.2
5.3
5.3
5.2
5.2
5.2
5.2
5.2
5.1
5.6
5.6
5.5
5.5
5.3
70
6.5
5.0
5.5
00010
WATER
TEMP
CENT
23.1
23.0
22.8
22.5
22.5
22.5
22.5
22.5
22.5
21.7
22.1
22.1
21.9
21.0
21.0
21.3
21.3
21.3
21.3
21.3
21.3
2C.8
20.8
21.0
21.0
21.0
21.0
22.2
22.2
21.8
21.8
21.8
70
23.9
20.8
22.5
OC480
SALINITY
PPTH
28.0
28.0
28.0
28.2
28.2
28.2
28.2
28.2
28.2
27.7
27.7
27.7
27.7
28.4
28.4
27.8
27.8
27.8
27.8
27.8
27.8
27.6
27.6
27.6
27.6
27.6
27.6
27.5
27.5
27.5
27.6
27.6
70
28.4
26.8
27.8
-------
APPENDIX B-l.l
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-07-D
PUNTA GOROA 2000* FM END CANAL*2
DATE TIME
731111 0335
731111 0336
731111 0337
731111 0338
731111 0339
731111 0340
731111 0550
731111 0551
731111 0552
731111 0553
GJ 731111 0554
0 731111 0802
731111 0803
731111 0804
731111 1030
731111 1031
731111 1032
731111 1425
731111 1426
731111 1427
731111 1705
731111 1706
731111 1707
731111 1708
731111 2045
731111 2046
731111 2047
731111 2048
731111 2250
731111 2251
731111 2252
731111 2253
731112 0343
731112 0344
731112 0345
731112 0346
731112 0347
731112 0525
C0003
DtPTH
FEET
1
2
3
4
5
6
1
2
3
4
5
1
2
3
1
2
3
1
2
3
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
5
1
00299
DO
PROBE
MG/L
5.3
5.2
5.1
5.1
5.1
5.1
5.0
5.0
5.0
4.9
4.9
5.0
4.9
4.9
5.6
5.6
5.6
5.7
5.7
5.7
6.2
6.5
6.8
6.8
6.2
6.2
6.1
6.1
6.1
6.1
6.1
6.1
5.8
5.7
5.6
5.6
5.6
5.4
00010
HATtR
TEMP
CENT
21.5
22.2
22.4
22.4
22.0
22.0
22.2
22.2
22.3
22.3
22.3
22.0
22.0
22.2
22.6
22.6
22.6
23.8
23.8
23.8
22.8
22.2
22.2
22.2
21.8
21.8
21.6
21.5
21.0
21.0
21.0
21.0
20.9
20.9
20.7
20.5
20.5
20.8
00480
SALINITY
PPTH
27.5
27.2
27.2
27.2
27.2
27.2
27.2
27. 2
27.2
27.2
27.2
27.3
27.3
27.3
27.4
27.4
27.4
26.9
26.9
26.9
28.1
28.1
28.1
28.1
28.7
28.7
29.1
29.1
29.2
29.2
29.2
29.2
27.6
27.6
27.6
28.0
28.0
27.8
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-07-D
PUNTA GOROA 2000' FM END CANAL»3
DATE TIMF
731112 0526
731112 0527
731112 0528
731112 0529
731112 0835
731112 0836
731112 0837
731112 0838
731112 1205
731112 1206
731112 1207
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
731112
00003
DEPTH
FEET
2
3
4
5
1
2
3
4
]
2
3
00299
DO
PROBE
MG/L
5.5
5.5
5.4
5.4
5.2
5.2
5.2
5.2
5.8
5.8
5.7
49
6.8
4.9
5.6
00010
WATER
TEMP
CENT
20.8
21.0
21.0
21.0
2«.8
20.8
20.8
20.8
23.2
23.2
22.2
49
23.8
20.5
21.8
00480
SALINITY
PPTH
Z7.8
<27.8
27.8
27.8
27.6
27.6
27.6
27.6
27.5
27.5
27.5
49
39.2
26.9
27.8
-------
APPENDIX B-l.l
to
en
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-A-D
PUNTA GOROA SPECIAL STATION
DATE TIME
731111 2320
731111 2321
731111 2322
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
731111
00003
DEPTH
FEET
1
2
3
00299
DO
PROBE
MG/L
6.0
6.0
5.9
3
6.0
5.9
6.0
00010
WATER
TEMP
CENT
21.9
22.0
22.1
3
22.1
21.9
22.0
00483
SALINITY
PPTH
28.4
28.3
28.2
3
28.4
28.2
28.3
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-C-D
PUNTA GOPDA SPECIAL STATION
DATE TIME
731112 0540
731112 0541
731112 0542
731112 0543
731112 0544
731112
NUMBER
MAXIMUM
MINIMUM
MEAN
731112
00003
DEPTH
FEET
1
2
3
4
5
00299
00
PROBE
MG/L
5.6
5.6
5.6
5.6
5.5
5
5.6
5.5
5.6
00010
WATER
TEMP
CENT
21.0
21.0
21.0
21.0
21.0
5
21.0
21.0
21.0
00480
SALINITY
PPTH
26.4
26.4
26.4
26.4
26.4
5
26.4
26.4
26.4
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-B-0
PUNT* GOROA SPECIAL STATION
DATE TIME
731111 23*5
731111 2346
731111 23*7
731111 2348
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
731111
00003
DEPTH
FEET
1
2
3
4
00299
00
PROBE
MG/L
6.3
6.3
6.3
6.5
*
6.5
6.3
6.3
00010
WATER
TEMP
CENT
21.5
21.5
21.5
21.0
4
21.5
21.0
21.4
00480
SALINITY
PPTH
28.8
28.8
28.8
28.8
4
28.8
28.8
28.8
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-O-D
PUNTA GORDA SPECIAL STATION
DATE TIME
731111 1730
731111 1731
731111 1732
731111 1733
731111 1734
731111 1735
731111 1736
731111 1737
731111 1738
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
731111
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
9
00299
DO
PROBE
MG/L
5.8
5.8
5.7
5.6
5.4
4.4
3.9
3.9
3.7
9
5.6
3.7
4.9
00010
WATER
TEMP
CENT
25.5
25.5
25.5
25.3
23.2
23.2
23.2
23.2
23.0
9
25.5
23.0
24.2
00480
SALINITY
PPTH
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.6
9
27.6
27.5
27.5
-------
APPENDIX B-l.l
K>
01
K>
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - PG-E-D
PUNTA GORDA SPECIAL STATION
DATE TIME
731111 1800
731111 1801
731111 1802
731111 1803
731111 1804
731111 1805
731111 1806
731111 1807
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
731111
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
00299
DO
PROBE
MG/L
4.9
4.9
4.8
4.9
4.9
5.0
5.0
4.4
8
5.0
4.4
4.8
00010
WATER
TEMP
CENT
23.6
23.8
23.7
23.7
23.6
23.5
23.5
23.5
8
23.8
23.5
?3.6
00480
SALINITY
PPTH
27.4
27.4
*• • V v
27.4
^v » W *
27.4
27.4
fcw » W »
27.4
27.4
27.4
8
27.4
27.4
27.4
-------
APPENDIX B-1.2
to
en
w
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PPOFILE DATA
STATION - BPK-08-0
BIG PINE KEY SO* FH END CANAL «3
DATE TIME
731117 1200
731117 1201
731117 12112
731117 1203
731117 1204
731117 1205
731117 1206
731117 1207
731117 1208
731117 1455
731117 1*56
731117 1*57
731117 1*58
731117 1*59
731117 1500
731117 1501
731117 1502
731117 1503
731117 1810
731117 1811
731117 1812
731117 1813
731117 181*
731117 1815
731U7 1816
731117 1817
731117 1818
731117 2055
731117 2056
731117 2057
731117 2058
731117 2059
731117 2100
731117 2101
731117 2102
731117 2103
731118 0015
731118 0016
00003
DEPTH
FEET
1
2
3
*
5
6
7
8
9
1
2
3
*
5
6
7
8
9
1
2
3
*
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
00299
DO
PRObE
MG/L
6.1
6.1
6.1
6.1
6.0
6.0
6.0
6.0
6.1
6.1
6.1
6.0
5.8
5.7
5.7
5.7
5.6
5.6
6.1
6.0
6.0
6.0
5.9
5.9
6.0
6.0
5.9
5.9
5.9
6.0
6.0
6.0
6.0
6.0
6.0
6.0
5.8
5.8
00010
MATER
TEMP
CENT
24.2
24.1
24.1
24.0
24.0
24.0
24.0
24.0
24.0
24.2
24.2
24.1
24.
24.
24.
24.
24.
24.
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
00480
SALINITY
PPTH
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.5
37.5
37.5
37.5
37.5
37.5
37.5
37.5
37.5
37.6
37.6
37.6
37.6
37.6
37.6
37.6
37.6
37.6
38.2
38.2
ENVIRONMENTAL PROTECTION AGENCY REGION iv
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NO"CMBER 1973
PROFILE DATA
STATION - BPK-08-D
BIG PINE KEY 50* FH END CANAL »3
DATE TIME
731116 0017
731118 0018
731118 0019
731118 0020
731118 0021
731118 0022
731118 0023
731118 0350
731118 0351
731118 0352
731118 0353
731118 0354
731118 0355
731118 0356
731118 0357
731118 0358
731118 0630
731118 0631
731118 0632
731118 0633
731118 0634
731118 0635
731118 0636
731118 0637
7311 IP 0638
731118 0639
731118 1010
731118 1011
731118 1012
731118 1013
731118 1014
731118 1015
731118 1016
731118 1017
731118 1215
731118 1216
731118 1217
731118 1218
731116 1219
731118 1220
731118 1221
731118 1222
731118 1223
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
731116
00003
DEPTH
FEET
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
00299
DO
PROBE
MG/L
5.8
5.8
5.8
5.8
5.8
5.8
5.8
5.7
5.7
5.7
5.6
5.7
5.7
5.8
5.7
5.7
5.4
5.4
5.4
5.4
5.4
5.4
5.3
5.3
5.3
5.3
5.4
5.4
5.5
5.4
5.4
5.3
5.4
5.5
5.8
5.7
5.7
5.7
6.2
ft. 2
6.2
6.2
6.2
81
6.2
5.3
5.8
00010
WATER
TEMP
CENT
23.9
23.9
23.9
23.9
24.0
24.0
24.0
24.
24.
24.
24.
24.
24.
24.
24.
24.
23.9
23.9
23.9
23.9
24.0
24.0
24.0
24.0
24.0
24.0
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.7
24.7
24.5
24.5
24.5
24.5
24.5
24.5
24.5
81
24.7
?3.9
24.1
00480
SALINITY
PPTH
38.2
38.2
3B.2
38.2
38.2
38.2
38.2
38.1
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.1
38.1
38.1
38.1
38.2
38.2
38.2
38.2
38.2
38.2
38.3
38.3
38.3
38.3
38.3
38.3
38.3
38.3
38.2
38.3
38.3
38.3
38.3
38.3
38.3
38.4
38.4
81
38.4
37.4
37.9
-------
APPENDIX B-1.2
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGEP FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
K>
In
STATION - BPK-09-D
BIG PINE KEY 780* FM END CANAL»3
DATE TIME
731117 1220
731117 1221
731117 1222
731117 1223
731117 1224
731117 122S
731117 1226
731117 1227
731117 1505
731117 1506
731117 1507
731117 150B
731117 1509
731117 1510
731117 1511
731117 1512
731117 1513
731117 1830
731117 1831
731117 1832
731117 1833
731117 1834
731117 1835
731117 1836
731117 1837
731117 1838
731117 2105
731117 2106
731117 2107
731117 2108
731117 2109
731117 2110
731117 2111
731117 2112
731117 2113
731118 0030
731118 0031
731118 0032
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
1
2
3
it
5
6
7
a
9
i
2
3
4
5
6
7
a
9
1
2
3
4
5
6
7
a
9
1
2
3
00299
DO
PROBE
MG/L
5.9
5.9
5.8
5.7
5.7
5.7
5.5
5.3
5.6
5.5
5.5
5.5
5.5
5.4
5.4
5.4
5.4
5.9
5.9
6.0
5.9
5.9
6.0
6.0
6.0
6.0
6.2
6.2
6.2
6.2
6.
6.
6.
6.
6.
5.9
5.9
5.9
00010
MATER
TEMP
CENT
24.2
24.1
24.1
24.0
24.0
24.0
24.0
24.0
24.3
24.3
24.2
24.2
24.1
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
00480
SALINITY
PPTH
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.5
37.5
37.5
37.5
37.5
37.5
37.5
37.5
37.5
37.6
37.6
37.6
37.6
37.6
37.6
37.6
37.6
37.6
38.2
38.2
38.2
STATION - BPK-09-D
BIG PINE KEY 780* FM END CANALK3
DATE TIME
731118 0033
731118 0034
731118 0035
731118 0036
731118 0037
731118 0038
731118 0400
731118 0401
731118 0402
731118 0403
731118 0404
731118 0405
731118 0406
731118 0407
731118 0408
731118 0615
731118 0616
731118 0617
731118 0618
731118 0619
731118 0620
731118 0621
731118 0622
731118 0623
731118 0624
731118 1000
731118 1001
731118 1002
731118 1003
731118 1004
731118 1005
731118 1406
731118 1007
731118 1008
731118 1205
731118 1206
731118 1207
731118 1208
731118 1209
731118 1210
731118 1211
731118 1212
731118 1213
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
731118
00003
DEPTH
FEET
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
00299
DO
PROBE
MG/L
5.9
5.9
5.9
5.9
5.9
5.9
5.7
5.7
5.7
5.7
5.7
5.7
5.6
5.8
5.8
5.6
5.6
5.6
5.6
5.5
5.6
5.6
5.6
5.5
5.5
5.5
5.5
5.4
5.4
5.4
5.4
5.5
5.5
5.5
6.0
5.9
6.2
6.3
6.3
6.3
6.1
6.1
6.1
ai
6.3
5.3
5.8
00010
MATER
TEMP
CENT
24.0
24.0
24.0
24.0
24.0
24.0
24.
24.
24.
24.
24.
24.
24.
24.
24.
23.9
23.9
23.9
23.9
23.9
23.9
23.9
23.9
23.9
23.9
24.6
24.4
24.4
24.4
24.4
24.4
24.4
24.4
24.4
24.6
24.7
24.7
24.7
24.5
24.5
24.4
24.4
24.4
81
?4.7
?3.9
24.1
00480
SALINITY
PPTH
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.4
38.4
38.4
38.4
38.5
38.5
38.5
38.5
38.5
81
38.5
37.4
37.9
-------
APPENDIX B-1.2
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - BPK-10-0
BIG PINE KEY 1560" FM END CANL#3
DATE TIME
731117 1240
731117 1241
731117 1242
731117 1243
731117 1244
731117 1245
731117 1246
731117 1247
731117 1248
731117 1514
731117 1515
10 731117 1516
l/i 731117 1517
Ui 731117 1518
731117 1519
731117 1520
731117 1521
731117 1522
731117 1900
731117 1901
731117 1902
731117 1903
731117 1904
731117 1905
731117 1906
731117 1907
731117 1908
731117 2114
731117 2115
731117 2116
731117 3117
731117 2118
731117 2119
731117 2120
731117 2121
731117 2122
731118 0045
731118 0046
00003
DEPTH
FEET
1
2
3
4
5
6
7
a
9
1
2
3
4
5
6
7
8
9
1
2
3
<»
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
00299
DO
PR08E
MG/L
6.2
6.1
6.0
6.0
5.9
6.0
6.1
6.0
6.0
6.1
6.2
6.3
6.3
6.4
6.4
6.5
6.8
6.9
6.8
6.7
6.6
6.6
6.5
6.5
6.6
6.6
6.6
6.7
6.7
6.7
6.7
6.7
6.7
6.8
6.9
6.9
6.4
6.2
00010
WATER
TEMP
CENT
24.3
24.2
24.1
24.1
24.1
24.0
24.0
24.0
24.0
24.3
24.3
24.3
24.3
24.3
24.3
24.3
24.2
24.1
?4.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
00480
SALINITY
PPTH
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.4
37.*
37.4
37.5
37.5
37.5
37.5
37.5
37.5
37.5
37.5
37.5
37.6
37.6
37.6
37.6
37.6
37.6
37.6
37.6
37.6
38.2
38.2
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - BPK-10-D
BIG PINE KEY 1560' FM END CANL*3
DATE TIME
731118 0047
731118 0048
731118 0049
731118 0050
731118 0051
731118 0052
731118 0053
731118 0410
731118 0411
731118 0412
731118 0413
731118 0414
731118 041?
731118 0416
731118 0417
731118 0418
731118 0419
731118 0600
731118 0601
731118 0602
731118 0603
731118 0604
731118 0605
731118 0606
731118 0607
731118 0608
731118 0609
731118 0945
731118 0946
731118 0947
731118 0948
731118 0949
731118 0950
731118 0951
731118 0952
731118 0953
731118 0954
731118 1150
731118 1151
00003
DEPTH
FEET
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
10
1
2
00?99
DO
PROBE
MG/L
6.3
6.3
6.3
6.3
6.3
6.3
6.2
6.2
6.2
6.2
6.2
6.2
6.1
6.1
6.1
6.0
5.9
5.9
5.9
5.9
5.9
5.8
5.9
5.9
5.9
5.9
5.8
5.6
5.7
5.6
5.6
5.6
5.5
5.3
5.0
5.0
5.0
5.9
5.8
00010
WATER
TEMP
CENT
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.1
24.
24.
24.
24.
24.
24.
24.
24.
24.
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.9
24.9
24.7
24.7
24.7
24.7
24.4
24.4
24.4
24.4
24.8
24.6
00480
SALINITY
PPTH
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.4
38.4
38.4
38.4
38.4
38.4
38.4
38.4
38.4
38.4
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.0
38.0
38.0
38.0
38.0
3».0
36.0
3b.O
38.4
38.4
38.2
38.2
-------
APPENDIX B-1.2
to
Ul
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - BPK-10-D
BIG PINE KEY 1560* FM END CANL#3
DATE TIME
731118
731118
731118
731118
731118
731118
731118
1152
1153
1154
1155
1156
1157
1158
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
731118
00003
DEPTH
FEET
3
4
5
6
7
8
9
00299
DO
PROBE
MG/L
5.8
5.8
5.8
5.8
5.8
6.0
6.1
84
6.9
5.0
6.1
00010
WATER
TEMP
CENT
24.8
24.6
24.6
24.6
24.5
24.5
24.5
84
24.9
24.0
24.2
00480
SALINITY
PPTH
38.4
38.4
38.4
38.4
38.4
38.4
38.4
84
38.4
37.4
37.9
-------
APPENDIX B-1.2
to
in
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - BPK-ll-D
BOGIE CHANNEL BACKGROUND STATION
DATE TIME
731117 1300
731117 1301
731117 1302
731117 1523
731117 1524
731117 1525
731117 1920
731117 1921
731117 1922
731117 2123
731117 2124
731117 2125
731118 0100
731118 0101
731118 0102
731118 0420
731118 0421
731118 0422
731118 0423
731118 0650
731118 0651
731118 0652
731118 1020
731118 1021
731118 1022
731118 1230
731118 1231
731118 1232
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
731118
00003
DEPTH
FEET
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
4
1
2
3
1
2
3
1
2
3
00299
DO
PROPE
MG/L
7.1
7.1
7.1
7.9
7.9
0.0
6.9
6.9
6.9
6.6
6.6
6.6
5.9
5.8
5.8
6.2
6.1
6.1
6.1
4.5
4.4
4.2
6.3
6.4
6.4
7.6
7.6
7.6
28
8.0
4.2
6.5
00010
WATER
TEMP
CENT
24.2
24.2
24.2
24.6
24.6
24.6
24.0
24.0
24.0
24.0
24.0
24.0
23.8
23.8
23.8
23.8
23.8
23.8
23.8
23.9
23.9
23.9
24.3
24.3
24.3
25.0
25.0
25.0
28
25.0
23.8
24.2
00480
SALINITY
PPTH
37.4
37.4
37.4
37.3
37.3
37.3
37.5
37.5
37.5
37.2
37.2
37.2
38.2
38.2
38.2
38.4
38.4
38.4
38.4
38.5
38.5
38.5
38.3
38.3
38.3
37.8
37.8
37.8
28
38.5
37.2
37.9
-------
APPENDIX B-1.2
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS? GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - BPK-12-D
BIG PINE KEY 50 • FM END CANAL »4
DATE TIME
731117 1335
731117 1336
731117 1337
731117 1338
731117 1339
731117 13*0
731117 1341
731117 134Z
731117 1343
731117 1530
731117 1531
731117 1532
731117 1533
731117 153*
N> 731117 1535
m 731117 1536
731117 1537
731117 1935
731117 1936
731117 1937
731117 1938
731117 1939
731117 1940
731117 1941
731117 1942
731117 2135
731117 2136
731117 2137
731117 2138
731117 2139
731117 2140
731117 2141
731117 2142
731118 0110
731118 0111
731118 0112
731118 0113
731118 0114
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
I
2
3
4
5
6
7
8
1
2
3
4
5
00299
DO
PROBE
MG/L
5.2
5.2
5.2
5.1
5.1
5.1
5.0
4.8
4.7
5.1
5.2
5.4
5.1
5.1
5.1
5.0
4.9
5.6
5.4
5.3
5.3
5.3
5.3
5.2
5.2
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.2
5.3
5.2
5.1
5.0
00010
WATER
TEMP
CENT
24.8
24.8
24.8
24.8
24.7
24.6
24.6
24.5
24.5
24.8
24.8
24.8
24.8
24.8
?4.8
24.8
24.8
24.2
24.2
24.3
24.4
24.5
24.5
24.5
24.5
24.2
24.2
24.3
24.3
24.3
24.5
24.5
24.5
24.0
24.2
24.4
24.5
24.5
00480
SALINITY
PPTH
37.2
37.2
37.2
37.2
37.2
37.2
37.2
37.2
37.2
37.1
37.1
37.1
37.1
37.1
37.1
37.1
37.1
37.2
37.2
37.2
37.2
37.2
37.2
37.2
37.2
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
38.2
38.2
38.2
38.2
38.2
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEOKGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - BPK-1P-D
BIG PINE KFY 50 • FM END CANAL «4
DATE TIME
731118 0115
731118 0116
731118 0117
731118 0435
731118 0436
731118 0437
731118 0438
731118 0439
731118 0440
731118 0441
731118 0442
731118 0720
731118 0721
731118 0722
731118 0723
731118 0724
731118 0725
731118 C726
731118 0727
731118 0728
731118 1040
731118 1041
731118 1042
731118 1043
731118 1044
731118 1045
731118 1046
731118 1047
731118 1300
731118 1301
731118 1302
731118 1303
731118 1304
731118 1305
731118 1306
731118 1307
731118 1308
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
731118
, 00003
DEPTH
FEET
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
00299
00
PROBE
MG/L
5.0
5.0
5.0
3.9
4.0
4.1
4.1
4.1
4.1
4.0
4.0
4.4
4.4
4.4
4.4
4.4
4.2
4.1
4.1
4.1
4.5
4.5
4.5
4.5
4.5
4.4
4.4
4.4
5.0
5.0
4.9
4.9
4.9
4.9
4.8
it, a
4.8
75
5.6
3.9
4.8
00010
WATER
TEMP
CENT
24.5
24.5
24.5
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25.0
25.3
25.3
25.2
25.2
25.2
25.2
25.2
25.2
25.2
75
?5.3
24.0
?4.6
00480
SALINITY
PPTH
38.2
38.2
37.9
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
3B.2
38.2
38.2
38.2
38.2
38.2
38.0
38.0
38.0
38.0
38.0
38.0
38.0
38.0
38.1
38.1
38.
38.
38.
38.
38.
38.1
38.1
75
38.2
37.0
37.7
-------
APPENDIX B-1.2
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - BPK-13-0
BIG PINE KEY 360' FM END CANAL»4
DATE TIME
731117 1350
731117 1351
731117 1352
731117 1353
731117 1354
731117 1355
731117 1356
731117 1540
731117 1541
731117 154?
731117 1543
731117 1544
731117 1545
731117 1546
731117 1950
731117 1951
731117 1952
731117 1953
731117 1954
731117 1955
731117 1956
731117 2143
731117 2144
731117 2145
731117 2146
731117 2147
731117 2148
731117 2149
731118 0118
731118 0119
731118 0120
731118 0121
731118 0122
731118 0123
731118 0124
731118 0445
731118 0446
731118 0447
00003
DEPTH
FEET
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
00299
DO
PROBE
MG/L
5.4
5.4
5.4
5.5
5.5
5.5
5.4
5.9
5.8
5.8
5.7
5.7
5.7
5.7
5.6
5.6
5.6
5.5
5.1
4.9
5.5
5.5
5.5
5.5
5.3
5.1
5.1
5.4
5.4
5.3
5.0
4.5
4.4
4.2
4.3
4.3
4.3
00010
WATER
TEMP
CENT
24.8
24.8
24.7
24.7
24.7
24.6
24.6
24.8
24.8
24.8
24.8
24.8
24.8
24.8
24.1
24.2
24.3
24.3
24.3
24.4
24.5
24.3
24.3
24.3
24.3
24.3
24.3
24.3
24.1
24.1
24.1
24.2
24.4
24.4
24.4
24.3
24.3
24.3
00480
SALINITY
PPTH
37.2
37.2
37.2
37.2
37.2
37.2
37.2
37.1
37.1
37.
37.
37.
37.
37.
37.2
37.2
37.2
37.2
37.2
37.2
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.9
37.9
37.9
37.9
37.9
37.9
35.8
38.1
38.1
38.1
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - BPK-13-D
BIG PINE KEY 360• FM END CANAL«4
DATE TIME
731118 0448
731118 0449
731118 0450
731118 0451
731118 0452
731118 0730
731118 0731
731118 0732
731118 0733
731118 0734
731118 0735
731118 0736
731118 1050
731118 1051
731118 1052
731118 1053
731118 1054
731118 1055
731118 105
-------
APPENDIX B-1.2
NJ
O\
O
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - BPK-14-D
BIG PINE KEY 725* FM END CANAL«4
DATE TIME
731117 1405
731117 1406
731117 1407
731117 1408
731117 1409
731117 1410
731117 1411
731117 1551
731117 1552
731117 1553
731117 1554
731117 1555
731117 1556
731117 2005
731117 2006
731117 2007
731117 2008
731117 2009
731117 2010
731117 2011
731117 2150
731117 2151
731117 2152
731117 2153
731117 2154
731117 2155
731117 2156
731118 0130
731118 0131
731118 0132
731118 0133
731118 0134
731118 0135
731118 0136
731118 0455
731118 0456
731118 0457
731118 0458
00003
DEPTH
FEET
1
2
3
4
5
6
7
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
4
00299
DO
PROHE
MG/L
5.3
5.2
5.2
5.1
5.1
5.1
4.7
5.7
5.7
5.3
5.3
5.3
5.3
5.5
5.4
5.4
5.4
5.4
5.3
5.2
5.5
5.5
5.5
5.5
5.5
5.5"
5.3
5.4
5.3
5.3
5.2
5.2
4.9
4.6
4.4
4.4
4.4
4.4
00010
WATER
TEMP
CENT
24.6
24.6
24.5
24.5
24.4
24.4
24.3
24.5
24.5
24.5
24.5
24.5
24.3
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.1
24.1
24.1
24.
24.
24.
24.
24.
24.
24.
24.
24.
24.
24.1
24.4
24.4
24.4
24.4
00480
SALINITY
PPTH
37.2
37.2
37.2
37.2
37.2
37.2
37.2
37.1
37.1
37.1
37.
37.
37.2
37.
37.
37.
37.
37.
37.
37.
37.0
37.0
37.0
37.0
37.0
37.0
37.0
38.2
38.2
38.2
38.2
38.2
38.2
37.3
38.1
38.1
38.1
38.1
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - BPK-14-D
BIG PINE.KEY 725« FM END CANAL#4
DATE TIME
731118 0459
731118 0500
731118 0501
731118 0745
731118 0746
731118 0747
731118 0748
731118 0749
731118 0750
731118 0751
731118 1100
731118 1101
731118 1102
731118 1103
731118 1104
731118 1105
731118 1106
731118 1330
731118 1331
731118 1332
731118 1333
731118 1334
731118 1335
731118 1550
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
731118
00003
DEPTH
FEET
5
6
7
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
4
5
6
1
00299
DO.-
PROBE
MG/L
4.4
4.3
4.3
4.7
4.7
4.6
4.6
4.4
4.3
4.0
4.6
4.5
4.5
4.5
4.4
4.4
4.4
5.2
5.2
5.2
5.2
5.1
4.8
5.7
62
5.7
4.0
5.0
00010
WATER
TEMP
CENT
24.4
24.4
24.4
24.4
24.4
24.4
24.4
24.4
24.4
24.4
24.9
24.9
24.9
24.9
24.9
24.9
24.9
25.3
25.3
25.3
25.3
25.3
25.3
24.5
62
?5.3
24.1
24.5
00480
SALINITY
PPTH
38.1
38.1
38.1
38.3
38.3
38.3
38.3
38.3
38.3
38.3
38.
38.
38.
38.
38.
38.
38.1
38.3
38.4
38.4
38.4
38.4
38.4
37.1
62
38.4
37.0
37.7
-------
APPENDIX B-1.2
to
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUOY NOVEMBER 1973
PROFILE DATA
STATION - BPK-F-D
BIG PINE KEY SPECIAL STATION
DATE TIME
731117 171S
731117 1716
731117 1717
731117 1718
731117 1719
731117 1720
731117 1721
731117 1722
731117 2157
731117 2158
731117 2159
731117 2200
731117 2201
731117 2202
731117 2203
731117 2204
731118 0505
731118 0506
731118 0507
731118 0508
731118 0509
731118 0510
731118 0511
731118 051?
731118 0805
731118 0806
731118 0807
731118 0808
731118 0809
731118 0810
731118 0811
731118 0812
731118 1025
731118 1026
731118 1027
731118 1028
731118 1029
731118 1030
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
00299
DO
PROBE
MG/L
5.2
5.1
5.1
5.1
5.1
5.0
5.0
5.0
5.1
5.1
4.9
5.0
5.0
5.0
4.7
4.2
3.5
3.5
3.5
3.5
3.5
3.4
3.4
3.4
3.6
3.7
3.7
3.6
3.6
3.6
3.6
3.6
4.2
4.1
4. 1
4.1
4.1
4.0
00010
WATER
TEMP
CENT
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.5
24.1
24.1
24.1
24.1
24.1
24.1
24.4
24.4
24.4
24.4
24.4
24.4
24.4
24.4
24.4
24.4
24.4
24.4
24.3
24.3
24.3
24.3
24.3
24.3
24.7
24.7
24.7
24.7
24.7
24.7
00480
SALINITY
PPTH
37.1
37.1
37.1
37.1
37.1
37.1
37.1
37.1
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.2
38.
38.
38.
38.
38.
38.
38.
38.
38.0
38.0
38.0
30.0
38.0
38.0
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - BPK-F-D
BIG PINE KEY SPECIAL STATION
DATE TIME
731118 1031
731118 1032
731118 1250
731118 1251
731118 1252
731118 1253
731118 1254
731118 1255
731118 1256
731118 1257
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
731118
00003
DEPTH
FEET
7
8
1
2
3
4
5
6
7
8
00299
DO
PRObE
MG/L
4.0
4.0
4.9
4.9
4.8
4.8
4.8
4.7
4.7
4.6
48
5.2
3.4
4.3
00010
WATER
TEMP
CENT
24.7
24.7
25.4
25.4
25.3
25.3
25.3
25.3
25.3
25.3
48
25.4
24.1
24.6
00480
SALINITY
-•
PPTH
38.0
38.0
37.5
37.5
37.5
37.5
37.5
37.5
37.5
37.5
48
38.2
37.0
37.6
-------
APPENDIX B-1.2
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - BPK-G-D
BIG PINE KEY SPECIAL STATION
DATE TIME
731117 1610
731117 1611
731117 1612
731117 1613
731117 1614
731117 1615
731117 1616
731117 1617
731117 1618
731117 1619
731117 3330
731117 2331
*£ 731117 2332
5 731117 2333
731117 2334
731117 2335
731117 2336
731117 2337
731117 2338
731117 2339
731118 0515
731118 0516
731118 0517
731118 0518
731118 0519
731118 0520
731118 0521
731118 0522
731118 0523
731118 0524
731118 0820
731118 0821
731118 0822
731118 0823
731118 0824
731118 0825
731118 0826
731118 0827
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
00299
DO
PROBE
MG/L
0.5
0.9
1.0
1.9
3.1
2.9
2.5
2.5
2.3
1.1
1.4
2.3
2.7
2.9
3.0
3.9
4.5
4.3
3.3
0.6
0.8
2.0
2.8
2.8
3.2
3.1
2.7
2.5
2.6
2.6
0.7
0.7
2.6
2.6
3.0
3.0
2.6
2.7
00010
WATER
TEMP
CENT
24.4
24.4
24.3
24.2
24.2
24.2
24.2
24.2
24.1
24.
24.
24.
24.
24.
24.
24.
24.
24.1
24.1
24.0
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
24.2
00480
SALINITY
PPTH
37.2
37.2
37.2
37.2
37.2
37.2
37.2
37.2
37.2
37.2
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
37.0
38.0
38.0
38.0
38.0
38.0
38.0
38.0
38.0
38.0
38.0
38.
38.
38.
38.
38.
38.
38.
38.
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
PROFILE DATA
STATION - BPK-G-D
BIG PINE KEY SPECIAL STATION
DATE TIME
731118 0828
731118 0829
731118 1110
731118 1111
731118 1112
731118 1113
731118 1114
731118 1115
731118 1116
731118 1117
731118 1118
731118 1400
731118 1401
731118 1402
731118 1403
731118 1404
731118 1405
731118- 14U6
731118 1407
731118 1408
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
731118
00003
DEPTH
FEET
9
10
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
00299
DO
PRORE
MG/L
2.9
2.4
0.4
0.5
0.4
0.5
C.6
1.3
1.9
2.6
2.6
2.0
2.8
3.4
3.6
3.2
2.9
2.6
1.7
0.9
58
4.5
0.4
2.2
00010
WATER
TEMP
CENT
24.2
24.2
24.6
?4.6
24.3
24.3
24.3
24.3
24.3
24.3
24.3
25.6
25.6
25.6
25.3
25.3
25.3
25.3
25.1
?5.1
58
25.6
24.0
?4.4
00480
SALINITY
PPTH
38.1
3«.l
37.8
37.8
37.8
37.8
37.8
37.8
37.8
38.1
38.1
37.7
37.7
37.7
38.0
38.0
38.0
38.0
38.2
38.2
58
38.2
37.0
37.7
-------
APPENDIX B-2.1
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION 4THENS. GEORGIA
FINGER FILL CANAL STUDY AUGUSTt 1974
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGER FILL CANAL STUDY AUGUST, 197*
W
STATION - PG-01-D
PUNTA GOROA 50* FRM END CANAL *1
DATE TIME
740814 1250
740814 1251
740814 1252
740814 1253
740*14 1254
740814 1255
740814 1256
740814 1257
740814 1258
740814 1610
740814 1611
740814 1612
740014 1613
740814 1614
740814 1615
740t»14 1616
740814 1940
740814 1941
740814 1942
740014 1943
740814 1944
740814 1945
740814 1946
740814 2305
740814 2306
740814 2307
740814 2308
740814 2309
740814 2310
740814 2311
740815 0300
740815 0301
740815 0302
740815 0303
740015 0304
740815 0305
74061!) 0306
740815 0540
740815 0541
740815 0542
740615 0543
740815 0544
740815 0545
7*0815 0546
740815 0815
740815 0816
740815 0817
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
00299
DO
PRObE
MG/L
5.9
3.6
3.0
2.4
1.9
0.5
0.0
0.0
0.0
8.7
7.6
2.4
1.6
0.3
0.0
0.0
7.8
7.6
3.6
1.5
0.0
0.0
0.0
6.5
6.7
6.4
5.6
0.7
0.0
0.0
4.6
6.0
5.9
4.9
3.0
0.2
0.0
4.9
4.6
4.4
4.1
1.8
0.0
0.0
4.9
4.8
4.3
00010
MATER
TEMP
CENT
32.2
30.8
30.1
30.0
30.2
30.2
29,8
29.3
28.6
34.1
32.9
30.5
30.3
30.3
30.1
29.1
31.1
31.5
31.7
31.3
30.6
30.1
29.3
30.4
31.2
31.6
31.7
30.5
29.9
29.9
30.8
31.2
31.1
30.9
30.4
29.7
28.9
31.9
31.9
32.0
31.6
31.0
30,5
30.1
31.4
31.6
31.7
00480
SALINITY
PPTH
6.9
8.8
9.2
9.6
10.2
12.2
14.6
20.8
29.8
7.1
7.8
10.8
11.6
12.2
14.5
26.5
7.3
7.3
9.3
11.1
14.6
22.0
30.1
8.3
8.5
9.0
9.5
13.7
16.4
28.4
8.2
9.0
10.0
10.6
13.7
18.1
29.0
8.1
8.4
8.7
10.8
13.6
19.0
27.6
6.6
6.9
7.7
STATION - PG-01-D
PUNTA GORDA bO« FRM END CANAL Ml
DATE TIME
740815 0818
740815 0819
740815 0820
740815 0821
740815 1115
740B1S 1116
740815 1117
740815 1118
740815 1119
740815 1120
740815 1121
740815 1122
740815 1330
740015 1331
740815 1332
740815 1333
740815 1334
740815 1335
740815 1336
740B15 1337
740815 1338
740814
NUMBER
M4XIMUM
MINIMUM
MEAN
740815
00003
DEPTH
FEET
4
5
6
7
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
00299
DO
PRObE
MG/L
3.8
2.3
0.0
0.0
6.8
5.6
*.8
3.3
2.0
1.1
0.8
0.0
5.8
4.3
3.7
3.2
3.2
2.2
1.0
0.4
0.3
68
8.7
0.0
2.9
00010
WATER
TEMP
CENT
31.7
31.2
30.4
29.8
31.5
31.5
31.6
31.5
31.4
31.2
30.7
29.5
32.7
31.4
30.8
30.5
30.6
30.5
30.7
30.0
29.3
68
34.1
38.6
30.8
00480
SALINITY
PPTH
8.2
10.3
14.9
26.6
6.3
7.2
8.6
10.0
10.6
11. 5
15.0
29.2
4.6
5.8
5.8
6.0
6.2
6.7
7.4
12.1
23.0
68
30.1
4.6
12.6
-------
APPENDIX B-2.1
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY AUGUSTt 1974
ENVIRONMENTAL PROTECTION) AGENCY REGION IV
SURVEILLANCE ANO ANALYSIS DIVISION ATHENS. GEOKGIA
FINGER FILL CANAL STUDY AUGUST, 197*
N>
9>
OS-
STATION - PG-02-D
PUNTA GORDA 1250' FM END CANAL'l
DATE TIME
740814 1320
740814 1321
740814 1322
740614 1323
740814 1324
740814 1325
740814 1326
740814 1337
740814 1328
740814 1329
740814 Ib25
740814 1626
740614 1627
740014 1628
740814 1629
740814 1630
740814 1631
740814 1632
740814 1633
740814 1950
740814 1951
740814 1952
740614 1953
740814 1954
740814 1955
740814 1956
740814 1957
740814 2315
740814 2316
740814 2317
740614 2318
740014 2319
740814 2320
740814 2321
740814 2322
740815 0310
740815 0311
740815 0312
740615 0313
74081S 0314
740615 0315
740815 0550
740615 0551
740815 0552
740815 0553
740615 0554
740815 0825
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
1
2
3
4
5
1
00299
DO
PRObE
MG/L
5.3
4.4
2.5
2.1
3.0
1.8
0.0
0.0
0.0
0.0
7.1
6.1
3.4
3.3
2.5
0.1
0.0
0.0
0.0
6.7
6.3
5.6
2.2
0.0
0.0
0.0
0.0
4.3
6.2
5.9
3.2
1.6
0.0
0.0
0.0
5.9
6.1
5.2
4.3
3.2
0.5
5.3
5.0
4.7
4.6
0.5
4.6
00010
WATER
TEMP
CENT
32.1
30.5
29.6
29.6
29.8
30.0
29.8
29.0
26.3
27.8
32.5
31.9
30.8
30.2
30.3
30.0
29.1
28.2
28.0
31.3
31.3
31.5
30.5
30.3
29.5
26.9
28.2
30.1
31.0
31.3
31.0
30.4
29.8
28.9
28.5
31.1
31.2
30.5
31.2
30.6
30.1
31.4
31.4
31.4
31.5
30.8
30.9
00480
SALINITY
PPTH
7.9
8.3
9.2
10.6
11.2
12.2
14.4
25.5
30.4
31.5
7.8
8.2
9.9
11.2
12.4
14.1
24.8
30.5
31.3
7.9
7.8
9.0
11.0
12.8
23.4
29.8
31.2
4.3
7.4
9.1
11.3
13.0
18.0
29.2
32.3
6.2
8.9
9.2
12.5
15.6
16.7
7.7
9.2
9.8
10.5
15.2
5.8
STATION - PG-02-0
PUNTA GO&OA 1250» FM ENO CANAL*!
DATE TIME
740015 08<>6
740615 0827
740815 0828
740615 0829
740615 0830
740615 1130
740815 1131
740615 1132
740615 1133
740615 1134
74QH15 1135
740615 1136
740815 1350
740615 1351
740615 1352
740615 1353
740815 1354
740815 1355
740815 1356
740815 1357
740815 1358
740815 1359
740614
NUMBER
MAXIMUM
MINIMUM
MEAN
740615
00003
DEPTH
FEET
2
3
4
5
6
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8
9
10
00299
DO
PRObE
MG/L
4.5
4.0
3.6
3.2
0.7
5.3
4.6
4.0
3.5
3.1
1.9
U.I
6.7
5.4
3.7
4.4
3.8
3.1
0.3
0.2
0.2
0.1
69
7.1
0.0
2.9
00010
taATER
TEMP
CENT
30.9
31.1
31.4
31.1
30.4
31.5
31.5
31.4
30.8
31.0
30.9
30.3
31.8
31.1
30.7
30.3
3u.3
30.1
30.3
29.8
29.3
28.2
69
32.5
27.8
30.4
00460
SALINITY
PPTH
5.8
6.5
8.1
11.0
15.1
6.9
8.4
8.8
8.8
10.6
12.0
18.6
3.8
4.3
4.8
5.3
5.6
6.5
7.3
7.9
22.1
26.7
69
32.3
3.8
13.3
-------
APPENDIX B-2.1
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGEH FILL CANAL STUDY AUGUST. 197*
STATION - PG-03-0
PUNTA GORDA 2500* FM END CANAL*!
DATE TIME
7*081* 13*5
7*081* 13*6
7*081* 13*7
7*081* 13*8
7*081* 13*9
7*081* 1350
7*081* 1351
7*081* 16*1
7*081* 16*5
7*081* 16*7
7*081* 16*8
7*081* 16*9
7*081* 2000
7*0814 2001
K> 7*081* 2002
O 7*081* 2003
** 7*081* 2330
7*081* 2331
74081* 2332
7*081* 2333
7*081* 233*
7*0815 0330
740015 0331
7*0815 0332
740815 0333
740815 033*
7*0815 0600
740015 0601
7*0815 0602
7*0815 0603
7*0815 0830
740815 0831
740815 0832
7*0815 0833
7*0815 083*
7*0815 11*0
740815 1141
74Q815 11*2
7*0815 11*3
7*0815 11**
7*0815 1410
7*0815 1*11
7*0815 1*12
7*0815 1*13
740815 14J*
7408 J 5 J4J5
740815 J4J6
00003
DEPTH
FEET
1
2
3
4
5
6
7
2
1
3
*
5
1
2
3
4
1
2
3
*
5
1
2
3
*
5
1
2
3
*
1
2
3
*
5
1
2
3
*
5
1
2
3
*
5
6
7
00299
DO
PROBE
MG/L
4.5
2.9
4.0
4.2
4.3
3.6
0.2
*.*
4.4
3.6
3.4
3.6
*.7
5.1
3.7
1.8
3.4
4.8
5.2
3.2
0.5
4.5
4.8
5.6
5.6
5.6
4.8
4.6
4.4
4.3
3.3
3.6
3.8
3.0
2.0
*.3
4.0
3.8
4.1
4.2
5.5
4.3
7.0
7.6
7.6
7.6
2'9
00010
HATER
TEMP
CENT
31.0
29.9
30.2
30.5
30.6
30.6
30.1
30.8
31.0
30.5
30.2
30.3
30.6
31.1
31.1
30.3
30.2
30.2
31.0
30.8
30.3
30.7
31.0
31.1
31.1
31.1
31.3
31.3
31.2
31.3
30.0
30.1
30.2
30.2
30.3
31.1
30.9
30.9
30.9
30.9
31.6
31.1
31.3
31.6
31.6
31 •$
30.9
00480
SALINITY
PPTH
8.4
9.3
10.3
10.8
11.6
12.3
30.1
9.0
8.5
9.1
10.*
12.2
4.0
8.1
9.2
12.1
4.1
6.3
9.1
11*6
14.0
13.1
13.3
13.0
12*8
12.6
7.9
8.3
8.6
9.5
4.5
7.3
8.7
10.7
11.4
7.8
8.5
9.6
9.9
10.2
4.2
6.2
** • »
7.7
8.3
0.6
6,7
10.3
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY AUGUST. 197*
STATION - PG-03-0 PUNTA GORDA 2500' FM END CANAL*!
DATE TIME
7*0615
7*0615
7*0815
7*0815
7*0815
7*0815
7*0615
7*0815
16*2
16*3
16**
16*5
16*6
16*7
16*8
16*9
00003
DEPTH
FEET
1
2
3
*
5
6
7
8
7*081*
NUMBER
MAXIMUM
MINIMUM
MEAN
7*0815
00299
00
PROBE
MG/L
6.6
4.2
3.5
3.0
2.8
2.*
1.5
0.5
55
7.6
0.2
00010
HATER
TEMP
CENT
31.9
30.3
30.1
30.1
30.3
30.2
30.1
29.9
55
31.9
29.9
30.7
00*80
SALINITY
PPTH
0.5
2.1
1.2
2.*
3.0
3.*
*.*
6.1
55
30.1
0.5
a.a
-------
APPENDIX B-2.1
hi
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLAMCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY AUGUST. 197*
STATION - PG-04-0
CHARLOTTE HARBOR BACKGROUND STA.
DATE TIME
740814 1405
740814 1406
740814 1407
740814 1408
740814 1409
740814 1700
740814 1701
740814 1702
740814 1703
740814 201S
740814 2016
740814 2017
740814 2345
74081* 2346
740814 2347
740814 2348
740815 0340
740815 0341
740815 0342
740815 0343
740815 0610
740815 0611
740815 0612
740815 0613
740815 0614
740815 0845
740815 0846
740815 0847
740815 0848
740815 0849
740815 1150
740815 1151
740815 1152
740815 1153
740815 1154
740815 1155
740815 1420
740815 1421
740815 1422
740815 1423
740815 1424
74081*
Ni'Mbt-t
MAXIMUM
KINIMjH
MEAN
00003
DEPTH
FEET
1
2
3
4
5
1
2
3
4
1
2
3
1
2
3
4
1
2
3
4
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
6
1
2
3
4
5
00299
DO
PROBE
MG/L
12.3
10.6
10.5
7.0
5.9
5.1
5.1
5.1
4.9
4.3
4.4
4.6
9.1
9.1
9.0
8.8
7.5
5.6
5.6
5.4
3.6
3.5
3.0
4.6
3.7
5.3
5.2
4.9
4.2
4.0
8.8
6.5
2.2
0.2
0.1
0.0
10.3
10.9
9.8
8.3
3.2
41
12.3
0.0
5.9
00010
HATER
TEMP
CENT
34.3
33.7
33.3
31.7
31.9
31.9
31.9
31.8
31.7
30.6
30.3
30.3
31.0
31.1
31.1
31.2
31.8
31.6
31.6
31.7
30.5
31.5
31,7
3116
31.7
30.4
30.4
30.8
31.2
31.4
30.9
31.3
31.3
31.3
31.4
31.4
32.6
32.4
32.3
32.3
31.4
41
34.3
30.3
J1.6
00480
SAl,INITY
PPTH
10.2
10.7
10.8
14.0
14.5
8.1
8.1
8.3
10.2
4.0
4.2
4.9
11.7
11.6
11.5
11.5
14.7
15.8
16.0
17.0
10.1
14.3
15.5
15.3
16.1
8.9
10.3
11.4
11.8
13.1
11.5
14.4
15.3
15.4
15.5
15.5
9.1
9.1
'•2.
9.3
10.5
41
17.0
4.0
11.7
-------
APPENDIX B-2.1
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY AUGUST. 1974
STATION - PG-05-0
PUNTA GOROA 50• FRM END CANAL »2
DATE TIME
740814 1430
740814 1431
740814 1432
740814 1433
740814 1434
740814 1435
74Q814 1436
740814 1730
740814 1731
740814 1732
740814 1733
740814 1734
740814 1735
740814 2030
740814 2031
74Q814 2032
740814 2033
740814 2034
740814 2035
740815 0015
740815 0016
740815 0017
740815 001B
740815 0019
740815 0020
740815 0400
740815 0401
740815 0402
740815 0403
740815 0404
740815 0405
740815 0635
740815 0636
740815 0637
740815 0638
740815 0639
740815 0640
740815 0900
740815 0901
740815 0902
740815 0903
740015 0904
740815 0905
740815 0906
740815 1225
740815 J226
7408 J 5 1227
00003
DEPTH
FEET
1
2
3
4
5
6
7
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
7
1
2
3
00299
DO
PROBE
MG/L
3.1
2.4
2.2
1.8
2.3
1.2
0.0
5.2
5.1
2.9
2.1
0.5
0.0
5.5
5.1
2.5
1.7
0.8
0.0
4.2
3.8
3.2
2.6
0.6
0.0
4.0
3.9
3.4
3.5
2.2
0.0
3.8
3.7
3.6
3.3
0.6
0.0
3.6
3.5
3.4
3.3
2.0
0.0
0.0
4.4
4.2
3.6
00010
WATER
TEMP
CENT
30.3
30.3
3u.O
30.0
30.2
29.4
28.8
32.8
32.7
31.2
30.2
30.2
26.8
31.2
31.2
31.1
29.9
28.9
28.8
30.2
30.8
30.5
30.6
30.0
29.0
30.5
30.7
31.0
31.0
30.1
29.5
30.4
30.6
31.0
30.7
29.8
29.3
30.2
30.2
30.4
30.8
30.3
29.6
29.0
32.6
30.9
30.9
•00480
SALINITY
PPTH
4.1
6.2
6.7
7.4
8.0
12.4
30.2
3.5
3.4
5.1
6.8
8.5
30.3
3.1
3.2
b.O
7.6
28.7
30.3
4.6
5.2
6.0
6.6
8.6
30.0
6.7
6.7
6.8
7.7
22.4
»fc • ~
32.4
3.6
<*. w
3.6
3.9
7.4
28.3
30.0
3.1
J • A
3.1
3.5
4.7
11.6
29.1
30.2
2.3
b • «*
2.3
2.4
ENVIRONMENTAL PROTECTION AGENCY REGION iv
SUHVEILLANCE AND ANALYSIS DIVISION ATHENSi GEORGIA
FINGER FILL CANAL STUDY AUGUST. 197*
STATION - PG-05-D PUNTA GOROA 50« FRM END CANAL »2
DATE TIME
7*0815 1226
740815 1229
740dl5 1230
740815
00003
DEPTH
FEET
*
5
6
7
740814
NUMdEW
MAXIMUM
MINIMUM
HtAN
740615
00299
DO
PROBE
MG/L
i.a
0.9
0.0
0.0
SI
5.S
0.0
2.4
00010
HATER
TEMP
CENT
30.9
30.6
30.6
29.4
51
32.ft
28. 8
30.4
00400
SALINITY
PPTH
2.4
4.1
20.0
29.0
51
32.4
2.3
11.3
-------
APPENDIX B-2.1
10
o\
CO
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY AUGUSTt 197*
STATION - PG-06-0
PUNTA GOrtDA 1000' FM END CANAL»2
DATE TIME
7*081* 1*50
7*081* 1*51
7*081* 1*52
740814 1*53
7*0dl* 1*5*
740814 1*55
7*0814 1*56
7*0814 1810
7*0814 1811
740814 1812
740814 1813
740814 181*
7*081* 1815
7*081* 2040
740814 20*1
740814 2042
740814 2043
740814 204*
7*0814 2045
740815 0030
740815 0031
7*0615 0032
740815 0033
740815 003*
740015 0035
7*0815 0410
740815 0411
740815 0412
740815 0*13
7*0815 0414
740815 0415
740815 0650
740815 0651
7*0815 0652
7*0815 0653
7*0815 065*
7*0815 0655
7*0815 0915
740815 0916
740815 0917
740615 0918
740815 0919
7*081 s 0920
7*0815 0921
7*0*15 12*5
7*0415 12*6
7*0815 l«f*7
00003
DEPTH
FEET
1
2
3
*
5
6
7
1
2
3
*
5
6
1
2
3
*
5
6
1
2
3
4
5
6
1
2
3
*
5
• 6
1
2
3
*
5
6
1
2
3
*
5
6
7
1
2
3
00299
DO
PRObE
MG/L
3.1
2.5
2.8
2.8
2.6
0.7
0.0
*.6
*.5
2.5
2.0
0.0
0.0
*.2
3.5
2.5
1.6
0.0
0.0
*.*
4.4
4.0
2.7
0.7
0.0
3.6
3.8
3.7
3.*
2.2
0.0
3.8
3.8
3.6
2.7
1.6
0.0
3.6
3.4
3.3
3.1
2.1
0.0
0.0
3.8
3.2
2.8
00010
HATER
TEMP
CENT
31.2
30.2
30.2
30.2
30.3
29.4
29.1
31.5
31.4
30.6
29.8
29.6
29.2
30.6
30.8
30.3
30.0
29.5
28.9
30.0
30.0
29.8
29.9
29.8
29.1
30.2
30.3
30.6
30.8
30.4
29.7
30.1
30.4
31.1
30.7
30.2
29.5
30.2
30.3
30.6
30.8
30.4
29.7
29.3
31.1
30.8
30.5
00*80
SALINITY
PPTH
5.0
5.*
6.7
7.5
8.2
21.8
31.0
3.8
3.9
5.2
7.2
13.4
29.9
4.0
4.3
5.2
8.5
26.0
31.5
7.2
7.4
7.4
6.9
13.7
33.8
5.5
5.7
6.2
6.7
13.1
33.0
3.0
3.1
4.1
7.2
18.6
29.7
3.0
2.9
3.5
4.6
12.6
18.9
30.1
2.5
2.5
3.0
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSi GEORGIA
FINGER FILL CANAL STUDY AUGUST. 197*
STATION - PG-06-D
PUNTA GOROA 1000* FM END CANAL»2
DATE TI*E
7*0815 12*8
7*0*15 12*9
740815 1250
7*0815 12bl
7*081*
NUMBER
MAXIMUM
MINIMjM
MEAN
7*0815
00003
OEPTn
FEET
*
5
6
7
00299
00
PRObE
MG/L
2.7
2.6
0.2
0.0
51
*.6
0.0
2.3
00010
HATER
TEMP
.CENT
30.6
30.7
30.7
30. 0
51
31.5
28.9
30.2
00*80
SALINITY
PPTH
*.l
5.2
9.8
24.*
SI
33.8
2.5
11.*
-------
APPENDIX B-2,1
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY AUGUSTi 1*74
K)
O
•C
STATION •!• PG-07-0
PUNTA GORDA 2000• FM END CANAL12
DATE TIME
740614 1505
740814 1506
740014 1507
740814 1S08
740814 1820
740814 1821
740814 1822
740814 1823
740814 1824
740814 2050
740814 2051
740814 2052
740815 0045
740815 0046
740815 0047
740815 0048
740815 0049
740815 0420
740815 0421
740815 0422
740815 0423
740815 0424
740015 0700
740815 0701
740815 0702
740815 0703
740815 0704
740815 0925
740815 0926
740815 0927
740815 0928
740815 0929
740815 0930
740815 1255
740815 1256
740815 1257
740815 1258
740815 1259
740815 1300
740814
NUMBER
MAXIMUM
MINIMUM
MEAN
740815
U0003
DEPTH
FEET
1
2
3
4
1
2
3
4
5
1
2
3
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
6
1
2
3
4
5
6
00299
DO
PROBE
MG/L
3.8
3.4
3.2
3*2
3.9
2.8
2.2
2.6
2.6
4.1
4.2
3.8
3.3
3.2
3.2
3.0
2.8
3.6
3.5
3.4
3.0
2.1
3.4
3.3
3.1
2.6
2.2
3.0
3.0
2.8
2.6
2.0
0.0
3.4
3.0
3.0
2.6
3.0
3.2
39
4.2
0.0
3.0
00010
WATER
TEMP
CENT
30.6
30.3
30.4
30.6
30.5
30.6
30.6
30.4
30.2
30.2
30.4
30.3
29.8
29.9
2V. 7
29.7
29.9
30.4
30.4
30.5
30.8
30.8
30.0
30.2
30.2
30.7
30.6
30.3
30.3
30.3
30.5
30.8
30.5
31.9
30.4
30.9
30.8
30. a
30.9
39
31.9
29.7
30.4
00480
SALINITY
PPTH
4.6
5.2
5.6
6.9
3.8
4.8
4.4
6.5
8.8
4.0
4.2
10.2
4.7
6.4
6.7
6.8
11.2
5.6
5.7
6.0
9.2
10.8
3.0
2.9
3.1
6.5
8.7
3.0
3.0
3.3
3.8
8.6
9.5
5.2
7.0
8.9
9.7
9.8
10.3
39
11.2
2.9
6.4
-------
APPENDIX B-2.2
ENVIRONMENTAL PROTECTION AGENCY REGION iv
SURVEILLANCE AND ANALYSIS DIVISION ATHENS? GEORGIA
FINGER FILL CANAL STUDY AUGUSTi 1974
ENVIRONMENTAL PROTECTION AGENCY REGION iv
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY AUGUST* 197*
10
«J
O
STATION - BPK-08-D
BIG PINE KEY 50» FM END CANAL
DATE TIME
740819 1340
740819 1341
740819 1342
740819 1343
740819 1344
740819 1345
740819 1346
740819 1347
740819 1348
740819 13*9
740819 1550
740819 1551
740819 1553
740819 1553
740819 1554
740919 1555
740819 1556
740819 1557
740819 15b8
740819 1559
740819 2320
740819 2321
740819 2322
740019 2323
740819 2324
740019 2325
740819 2326
740819 2327
740819 2328
740020 0130
740020 0131
740020 0132
740020 0133
740820 0134
740820 013S
740820 0136
740820 0137
740820 0138
740B20 0139
740020 0420
740820 0421
740820 0422
740020 0423
740820 0424
740620 0425
740820 0426
740820 0427
00003
DEPTH
FEET
1
2
3
4
5
6
7
a
9
10
i
2
3
4
5
6
7
a
9
10
l
2
3
4
5
6
7
0
9
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
00299
00
PROBE
MG/L
6.5
6.6
6.6
6.8
6.8
6.6
6.7
6.6
6.8
6.7
6.8
6.0
6.9
6.9
6.9
6.9
7.0
7.0
7.1
7.1
6.3
5.9
5.0
5.0
5.8
5.9
5.9
5.9
5.3
6.6
6.6
6.5
6.5
6.6
6.8
6.7
6.2
5.4
4.9
6.4
6.2
6.2
6.2
6.2
6.2
6.2
6.1
00010
WATER
TEMP
CENT
32.2
32.2
32.1
32.1
32.0
32.0
32.0
32.1
32.0
32.1
32.3
32.3
32.2
32.2
32.2
32.
32.
32.
32.
32.
30.4
31.3
31.7
31.9
31.9
31.9
31.9
31.8
32.0
29.8
31.3
31.7
31.9
31.9
32.0
32.0
32.0
31.9
31.9
28.3
30.5
31.5
31.4
31.6
31.9
32.0
32.0
00480
SALINITY
PPTH
35.0
35.0
35.1
35.0
35.1
35.0
35.1
35.0
35.1
35.0
35.0
35.0
35.0
35.0
35.0
35.0
35.1
35.1
35.1
35.1
32.3
31.8
35.2
35.0
35.2
35.0
35.2
35.0
35.1
30.3
34.7
34.6
34.4
34.4
34.4
34.4
34.4
34.4
34.5
26.8
35.3
35.6
35.7
35.5
35.3
35.2
35.3
STATION - BPK-Ob-D
BIG PINE KEY 50" FM END CANAL »3
DATE TIME
740820 0428
740820 0429
740820 0735
740820 0736
740820 0737
740B20 0738
740820 0739
740820 0740
740820 0741
740820 0742
740820 0743
740820 0940
740620 09*1
740820 0
-------
APPENDIX B-2.2
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY AUGUSTt 1974
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE ANO ANALYSIS DIVISION ATHENS. GEORGIA
FINGEw FILL CANAL STUDY AUGUSTt 1974
K9
STATION - BPK-09-0
Bib PINE KEY 780• FH END CANALW3
DATE TIME
740819 1355
7*0819 1356
740819 1357
740819 1356
740B19 1359
740819 1400
740819 1401
740819 1402
740819 1403
740819 1602
740819 1603
740U19 1604
74081V 1605
740819 1606
740819 1607
740819 1608
740819 1609
74Q819 2330
740819 2331
740619 2332
740819 2333
740819 2334
740819 2335
740819 2336
740819 2337
740H19 2338
740U20 0145
740820 0146
740820 0147
740820 0148
740820 0149
740820 OlbO
740820 0151
740820 0152
740820 0153
740820 0430
740820 0431
740820 0432
740820 0433
740020 0434
740820 0435
740U20 0436
740820 0437
740020 04Jb
740^0 0745
740d£0 0746
740020 07*7
00003
DEPTH
FEET
1
Z
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
a
9
1
2
J
OQ299
DO
PRObE
MG/L
5.9
6.0
6.0
6.0
6.0
6.0
6.U
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.1
6.4
7.2
5.8
5.7
5.7
5.7
5.8
6.1
6.0
5.8
5.7
6.5
6.2
6.4
6.4
6.5
6.6
6.7
6.7
6.1
6.0
5.7
5.4
5.3
5.7
6.0
6.2
6.1
5.3
5.8
5.3
S.U
00010
WATER
TEMP
CENT
32.2
32.2
32.2
32.1
32.1
31.6
31.6
31.5
31.5
32.5
32.5
32.4
32.3
32.2
32.0
31.8
31.8
31.0
32.1
31.6
32.0
32.1
31.9
31.9
31.8
31.7
30.1
31.3
31.7
31.9
32.1
33.0
32.0
31.9
31.8
29.8
30.8
31.0
31.3
31.6
32.0
32.0
32.0
31.9
30.3
30.9
31.1
00480
SALINITY
PPTH
35.0
35.0
35.0
35.0
35.1
35.3
35.3
35.4
35.4
34.8
34.9
34.9
34.9
35.0
35.1
35.2
35. 2
34.1
33.7
33.6
33.5
33.5
33.6
34.2
35.2
35.1
33.3
35.2
35.2
35.1
3b.l
35.2
35.2
35.3
35.3
33.1
35.4
35.7
35.7
35.5
35.2
35.2
35.2
35.3
34.4
35.3
JI5.8
STATION - BPK-09-D
BIG PINE KEY 780« FM END CANAL*3
DATE TIME
740820 0748
740820 0749
740820 0750
740820 0751
740820 0752
740820 0950
740820 0451
740820 0952
740820 0953
740H20 0954
740820 0955
740820 0956
740820 0957
740820 1330
740820 1331
7*0820 1332
740820 1333
740820 1334
740820 1335
740820 1336
740820 1337
740820 1338
740819
NUMBER
MAXIMUM
MINIMuM
MEAN
740820
00003
UtPTH
FEET
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
00299
00
PRObE
MG/L
5.2
5.8
5.8
5.9
«.7
6.0
5.7
5.2
5.1
5.5
5.8
5.7
b.O
4.9
4.6
4.5
*.2
*.3
4.8
5.6
5.9
6.0
69
7.2
4.2
5.8
00010
MATtR
TEHP
CENT
31.3
31.7
32.1
32.0
31.9
30.8
31.0
31.1
31.4
31.6
32.1
32.1
32.1
31.7
31.6
31.5
31.2
31.0
31.3
32.0
32.2
32.1
69
32.5
29.8
31.7
00480
SALINITY
PPTH
35.7
35.4
35.2
35.3
35. 3
34.7
35.8
35.8
35.6
35.5
35.3
35.2
35.3
35.3
35.4
35.5
35.6
35.8
35.5
35.1
35.1
35.1
69
35.8
33.1
35.0
-------
APPENDIX B-2.2
N>
^J
NJ
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS? GEORGIA
FINGEH FILL CANAL STUDY AUGUST, 1974
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGEH FILL CANAL STUDY AUGUST, 1974
STATION - BPK-10-D
BIG PINE KEY 1560* FM END CANL«3
DATE TIME
740819 1405
740819 1406
740819 1407
740819 1408
740819 1409
740819 1410
740819 1411
740819 1412
740819 1413
740819 1612
740819 1613
740819 1614
740819 1615
740819 1616
740819 1617
740819 1618
740819 1619
740819 1620
740819 2340
740819 2341
740819 2342
740819 2343
740819 2344
740819 2345
740819 2346
740819 2347
740820 0210
740820 0211
740820 0212
740820 0213
740820 0214
740820 0215
740820 0216
740820 0217
740820 0445
740820 0446
740820 0447
740820 0448
740820 0449
740B20 0450
740820 0451
740820 0452
740820 0453
740820 0800
740820 0801
740820 0802
740020 0603
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
I
2
3
*
00299
00 •
PrtOfcE
MG/L
5.7
5.8
b.8
5.6
5.5
5.6
6.2
6.2
6.7
7.1
6.8
6.4
6.4
5.9
5.8
5.9
7.8
8.0
5.7
5.9
5.7
5.7
5.7
6.2
6.2
5.7
5i9
5.5
5.4
5.7
6.3
6.7
6.8
5.7
4.6
4.2
4.7
5.1
5.1
5.3
6.1
6.2
5.6
4.8
4.8
4.5
4.8
00010
WATER
TEMP
CENT
32.3
32.2
32.2
32.1
32.0
31.8
31.8
31.6
31.7
32.9
32.7
32.8
32.6
32.5
32.0
31.9
31.8
31.8
31.1
31.2
31. 6
31.9
31.9
31.9
31.8
31.7
30.9
31.0
31.2
31.5
31.9
32.0
31.9
31.8
29.8
29.6
30.8
31.0
31.4
31.6
31.9
32.0
31.7
29.9
30.5
30.5
31.1
00480
SALINITY
PPTH
34.9
35.0
35.0
35.1
35.2
35.2
35.3
35. 3
35.3
34.7
34.7
34.7
34.7
34.8
35.1
35.2
35.2
35.3
36.0
35.5
35.2
35.2
35.0
35.2
35.2
35.2
35.1
35.8
35.6
35.4
35.2
35.2
35.3
35.3
33.5
34.2
35.9
35.8
35. 5
35.5
35.2
35.3
35.4
33.7
Jb.5
35.5
35. 2
STATION - 8PK-10-D
BIG PINE KEY 1560* FM END CANL«3
DATE TIME
740620 0804
740820 0805
740820 0806
740820 0807
740820 1000
740820 1001
740620 1002
740820 1003
740820 1004
740820 1005
740-420 1006
740820 1007
740820 1340
740820 1341
740820 1342
740820 1343
740820 1344
740820 1345
740820 1346
740820 1347
740820 1348
740819
NUMtfEK
MAXIMUM
MINIMUM
MEAN
740b20
00003
DEPTH
FEET
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
00299
UO
PROc-E
MG/L
5.1
5.6
5.3
5.0
5.3
5.2
4.9
5.0
5.4
6.0
6.0
5.5
4.8
4.5
4.9
4.9
4.8
4.6
5.3
6.9
7.2
68
8.0
4.2
5.7
00010
MATER
TEMP
CENT
31.6
31.8
31.9
31.8
JO. 3
30.7
30.7
31.0
31.5
31.8
32.1
32.0
31.6
31.5
31.3
31.2
31.1
31.1
31.5
32.0
32.2
68
32.9
29.6
31.6
00480
SALINITY
PPTH
35.5
35.3
35.3
35. 4
33.4
35.0
36.1
36.0
35.6
35.4
35.2
35.2
35.4
35.4
35.6
35.7
35.7
35.7
35.4
35.2
35.0
68
36.1
33.4
35.2
-------
APPENDIX B-2.2
to
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY AUGUST. 197*
STATION - BPK-ll-D
BOGIE CHANNEL BACKGROUND STATION
DATE TIME
740819 1415
740819 1416
740819 1417
740819 1622
740819 1623
740819 1624
740819 2350
740819 2351
740819 2352
740820 0230
740820 0231
740820 0232
740820 0500
740820 0501
740820 0502
740820 0810
740820 0811
740820 0812
740820 1010
740820 1011
740820 1350
740820 1351
740820 1352
740820 1353
740819
NUMBER
MAXIMUM
MINIMUM
MEAN
740820
00003
UEPTH
FEET
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
1
2
3
4
00299
UO
PROBE
MG/L
6.5
6.6
6.6
7.3
7.3
7.3
5.5
5.5
5.5
5.8
5.8
5.7
4.8
4.7
4.7
4.6
4.6
4.6
5.1
5.1
5.0
5.0
5.0
5.0
24
7.3
4.6
5.6
00010
WATER
TEMP
CENT
32.4
32.4
32.4
32.4
32.4
32.4
30.9
30.9
31.1
31.0
31.0
31.0
30.5
30.5
30.5
30.3
30.4
30.4
30.7
30.7
31.6
31.7
31.7
31.7
24
32.4
30.3
31.3
00480
SALINITY
PPTH
34.9
34.9
34.9
34.8
34.8
34.9
35.5
35.5
35.4
35.8
35.8
35.8
36.1
36.1
36.1
36.3
36.3
36.3
36.1
36.1
35.3
35.3
35.3
35.3
24
36.3
34.8
35.6
-------
APPENDIX B-2.2
ENVIHONMENTAL PROTECTION AGENCY REGION IV •
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY AUGUST. 1974
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE ANU ANALYSIS DIVISION ATMtNS. GEORGIA
FINGER FILL CANAL STUDY AUGUST. 1974
STATION - BPK-12-0
BIG PINt KEY 50' FM END CANAL »4
DATE TIME
740819 1435
740819 1436
740819 1437
740819 1438
740819 1439
740819 1441
740819 1441
740819 144?
740819 1443
740819 1640
740819 1641
740619 1643
740819 1643
740019 1644
740819 1645
740819 1646
740819 1647
740020 0015
740820 0016
740820 0017
740820 0018
740820 0019
740820 0020
740820 0021
740320 0022
740820 0023
740820 0255
740820 0256
740820 0257
740820 0258
740820 0259
740820 0400
740820 0401
740B20 0402
740820 0403
740820 0520
740820 0521
740820 0522
740820 0523
740820 OS24
740820 0525
740820 0526
740820 0527
740820 0830
740820 0831
740020 0832
740U20 0833
00003
DEPTH
FEET
1
2
3
4
5
b
7
8
9
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
a
l
2
3
4
00299
DO
PHOdE
MG/L
3.6
3.3
3.4
3.4
3.4
3.4
3.4
3.5
3.4
4.3
4.3
4.2
4.0
3.9
3.9
4.2
4.2
5.0
4.9
4.9
4.9
4.2
4.0
3.6
3.0
2.8
5.5
5.4
5.4
5.3
5.0
4.4
4.0
3.7
2.9
5.3
5.2
5.1
5.1
4.9
4.2
4.0
2.6
5.4
5.3
5.2
5.2
00010
WATER
TEMP
CENT
33.4
33.0
32.7
32.5
32.5
32.4
32.3
32.4
32.3
33.0
32.9
32.9
32.7
32.5
32.5
32.4
32.4
31.0
32.2
32.2
32.5
32.4
32.7
32.4
32.2
32.1
30.3
31.9
32.0
32.4
32.6
32.4
32.2
32.3
32.1
30.1
31.3
31.7
31.9
32.3
32.6
32.4
32.3
30.6
31.7
32.2
32.3
00460
SALINITY
PPTH
34.4
34.6
34.7
34.7
34.8
34.8
34.8
34.9
34.9
34.5
34.5
34.5
34.7
34.8
34.8
34.8
34.8
35.3
34.9
34.9
34.7
34.9
34.9
35.0
34.9
34.9
31.7
35.3
35.0
34.9
34.9
35.0
35.1
35.1
35.2
34.0
35.6
35.4
35.3
34.9
34.9
35.0
35.0
34.2
35.4
35.2
35.1
STATION - BPK-12-D
BIG PINE. I\EY 5U« FM END CANAL »4
DATE TIME
740820 0834
740820 083-?
740820 0836
740820 0837
740620 1030
740820 1031
740820 1032
740820 1033
740820 1034
740820 1035
740820 1036
740820 1037
740820 1430
740820 1431
740820 1432
740820 1433
740820 1434
740820 1435
740820 1436
740820 1437
740819
NUMBER
MAXIMUM
MINIMUM
"EAN
740820
00003
LiEPTH
FEET
5
6
7
8
1
2
3.
4
5
6
7
8
1
2
3
4
5
6
7
8
00299
DO
PROHE
MG/L
3.1
2.9
2.8
2.7
5.0
4.9
5.0
4.8
4.4
3.2
2.7
2.5
4.3
4.2
3.9
*.*
4.4
3.1
2.2
1.1
67
5.5
1.1
4.1
00010
taATER
TEMP
CENT
32.5
32.4
32.2
32.0
31.9
32.1
32.2
32.5
32.7
32.8
32.6
32.3
32.8
32.8
32.3
32.3
32.6
32.8
32.8
32.6
67
33.4
30.1
32.3
00480
SALINITY
PPTH
35.0
35.0
35.2
35.3
35.3
35.2
35.0
34.9
34.8
34.8
34.9
35.0
34.6
34.8
35.0
35.0
34.7
34.7
34.6
34.8
67
35.6
31.7
34.9
-------
APPENDIX B-2.2
10
>l
in
ENVIRONMENTAL PROTECTION AGENCY REGION iv
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY AUGUST.
STATION - 8PK-13-D
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGtR FILL CANAL STUDY AUGUST. 197*
BIG PINE KEY 360* FM END CANAL**
DATE TIME
7*0619 1**5
740819 1446
740819 1*47
740819 1*48
740819 1449
740819 1450
740819 1451
740819 1452
740819 1650
740819 1651
740819 1652
740819 1653
740819 1654
740819 1655
740819 1656
74U819 1657
740820 0025
740820 0026
740620 0027
740820 0028
740820 0029
740820 0030
740820 0031
740820 0310
740820 0311
740820 0312
740620 0313
740820 0314
740820 0315
740820 0316
740820 0317
740«20 0530
74QB20 0531
740820 OS>32
740820 0533
740820 0534
740820 Ob35
740820 0536
740820 0840
740820 08*1
740820 08*2
740820 0843
740820 08*4
740820 08*5
740820 08*6
7*0020 10*0
7406ZO 10*1
00003
DEPTH
FEET
1
2
3
*
5
6
7
8
1
2
3
*
5
6
7
8
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
00299
00
PROhE
MG/L
4.2
4.4
5.0
5.6
5.6
5.5
5.5
5.5
4.8
4.8
4.8
6.4
6.4
6.4
6.4
6.4
5.3
5.2
b.2
5.1
4.7
4.6
3.6
5.5
5.3
5.3
5.3
5.5
4.3
3.8
3.8
5.1
4.5
4.6
4.8
4.8
4.2
3.7
5.3
4.9
4.9
4.4
3.6
2.9
2.7
4.2
4.3
00010
HATER
TEMP
CENT
33.7
33.4
32.8
32.6
32.6
32.5
32.5
32.6
33.1
33.2
33.1
33.0
32.7
32.6
32.6
32.5
31.1
31.5
32.2
32.4
32.6
32.5
32.3
30.7
31.5
31.7
32.3
32.3
32.6
32.5
32.4
30.5
31.1
31.3
31.8
32.1
32.6
32.3
30.8
31.2
31.4
32.0
32.*
32.5
32.1
31.6
31.7
00480
SALINITY
PPTH
34.1
34.5
34.7
34.8
34.8
34.8
34.8
34.8
34.4
34.5
34.4
34.5
34.8
34.7
34.8
34.8
35.6
35.2
35.0
34.7
34.7
34.7
34.8
34.7
35.5
35.2
35.1
35.0
34.9
35.0
35.0
32.0
35.7
35.6
35.4
35.2
34.8
3b.O
35.0
35.7
35.6
35.2
35.0
35.0
35.2
34.9
35.4
STATION - BPK-13-D
BIG PINE KEY 360* FM END CANAL»*
DATE TIME
7*0320 10*2 .
740820 10*3
7*0620 10*4
740820 10*5
740820 10*6
7*0620 1*20
740820 1*21
7*0820 1*22
740820 1423
740620 1*2*
740820 1425
740820 1426
740820 1*27
7*0819
NUMBER
MAXIMUM
MINIMUM
r-EAN
740820
00003
UEPTH
FEET
3
*
5
6
7
1
2
3
4
5
6
7
8
0029V
00
PROBE
MG/L
4.2
4.3
4.2
3.6
3.1
*.l
3.5
3.6
3.5
3.5
3.0
2.8
2.7
60
6.*
2.7
*.6
00010
UATEH
TEMP
CENT
31.7
32.0
32.3
32.6
32.7
32.5
32.1
31.6
31.6
32.1
32.3
32.8
32.8
60
33.7
30.5
32.2
00*60
SALINITY
PPTH
35.*
35.3
35.1
34.9
3*. 9
3*. 9
35.2
35.*
35.3
35.0
35.0
34.6
34.6
60
35.7
32.0
3*. 9
-------
APPENDIX B-2.2
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE ANO ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY AUGUST. 197*
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE ANO ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY AUGUST. 197*
STATION - BPK-1*-U
616 PINE KEY 725* FM END CANAL**
DATE TIME
7*0819 1500
7*0819 1501
7*0819 1502
7*0819 1503
7*0819 150*
7*0819 1505
7*0819 150i
7*0819 1700
7*0819 1701
7*0619 1702
7*0819 1703
7*0819 170*
7*0819 1705
7*0819 1706
7*0820 0035
7*0820 0036
7*0820 0037
7*0820 0038
7*0820 0039
7*0*20 00*0
7*0820 00*1
7*0820 0325
7*0820 0326
7*0820 0327
7*0820 0328
7*0820 0329
7*0620 0330
7*0820 0331
7*0820 0332
7*0820 Ob*0
7*0820 05*1
7*0820 05*2
7*0820 05*3
7*0820 05**
7*0820 05*5
7*0820 05*6
7*0820 05*7
7*0820 0655
7*0620 0656
7*0820 0857
7*0820 0658
7*0020 0859
7*0820 0900
7*0820 0901
7*08*0 0902
7*0820 1050
•?*OU20 1051
00003
DEPTH
FEET
1
2
3
*
5
6
7
1
2
3
*
5
6
7
1
2
3
*
5
6
7
1
2
3
*
5
6
7
a
l
2
3
*
5
6
7
a
1
2
3
*
5
6
7
8
1
2
00299
00
PROHE
HG/L
*.*
*.3
*.3
*.3
*.*
*.7
*.7
*.8
*.8
*.a
*.8
5.*
*.8
*.9
5.0
5.0
5.1
5.0
5.0
*.9
*.S
5.0
*.8
5.1
5.3
5.*
5.1
*.*
3.9
*.5
*.2
*.3
*.9
5.0
*.*
3.3
3.1
*.9
*.*
*.9
5.0
*.*
3.8
3.2
2.9
*.l
*.o
00010
WATER
TEMP
CENT
32.9
32.8
32.9
32.7
32.7
32.3
32.1
32.9
33.0
33.0
32.9
32.7
32.*
32.2
30.9
31.0
31.8
32.0
32.0
32.3
32.3
30.7
30.9
31.*
31.7
32.*
32.*
32.5
32.2
30.1
30.9
31.0
31.7
32.2
32.*
32.*
32.1
30.9
31.0
31.5
32.1
32.5
32.5
32.2
31.9
31.5
31.*
00*60
SALINITY
PPTH
3*. 5
3*. 6
3*. 6
3*. 7
3*. 9
35.0
35.0
3*. 5
3*.*
3*. 5
3*.*
3*.*
3*. 8
35.0
35.6
35.6
35.0
35.0
3*. 9
3*. 9
3*. 8
35.3
35.9
35.5
35.3
35.0
35.0
35.0
35.0
33.2
35.8
35.8
35.*
35.1
3*. 9
35.1
35.2
35.7
35.9
35.5
35.2
3*. 9
35.0
35.2
35.*
35.6
35.6
STATION - BPK-l«t-0
BIG PINE KEY 725« FM END CANAL**
DATE TIME
7*0820 1052
7*0820 1053
7*0820 1054
7*0820 1055
7*0820 1056
7*0820 1057
7*0820 1058
7*0820 1**0
7*0820 1**1
7*0820 1**2
7*0820 1**3
7*0820 1***
7*0820 1**5
7*0820 1**6
7*0814
NUMBER
MAXIMUM
MINIMUM
,-EAN
7*0820
00003
DEPTH
FEET
3
*
5
6
7
8
9
1
2
3
*
5
6
7
00299
DO
PROfE
MG/L
3. B
3.8
*.o
*.l
3. a
2.7
2.5
*.o
*.o
*.9
*.2
3.8
3.8
3.6
61
5.*
2.5
*.*
00010
WATER
TEMP
CENT
31.*
31.3
31.5
32.0
32.5
32.5
32.*
32.2
31.9
32. 0
31.7
31.5
31.9
32.5
61
33.0
30.1
32.0
00*80
SALINITY
PPTH
35.6
35.7
35.6
35.2
35.0
35.0
35.0
35.1
J5.0
35.1
35.2
35.3
35.2
3*. 7
61
35.9
33.2
35.1
-------
APPENDIX B-2.2
KJ
ENVIRONMENTAL PROTECTION AGENCY REGION iv
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGE* FILL CANAL STUDY AUGUST, 197*
STATION - BPK-F-0
BIG PINE KEY SPECIAL STATION
DATE TIME
7*0819 1*25
740819 1426
•7*0619 1*27
7*0819 1*28
740819 1*29
7*0819 1*30
740819 1*31
7*0819 1*32
740819 1630
740819 1631
740819 1632
740819 1633
740819 1634
740819 1635
740819 1636
740819 1637
7*0819 2*00
740820 0001
740820 0002
740820 0003
740620 0004
740820 OOOS
740820 0006
740820 0007
740620 0240
740820 02*1
740820 02*2
740820 02*3
740820 02**
740820 02*5
7*0820 0246
740820 02*7
740820 0505
740820 0506
740820 0507
740820 0508
740820 Ob09
740820 0510
740020 0511
740820 0820
740820 0821
740820 0822
740820 0823
740820 0824
740020 082b
740620 0826
7*0620 101 8
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
*
5
6
7
8
1
2
3
*
5
6
7
8
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
00299
00
PRObE
MG/L
4.0
4.1
4.2
4.2
4.0
4.2
4.5
4.5
4.8
4.7
5.0
5.0
4.9
4.7
4.8
4.9
5.3
5.0
5.0
4.9
*.9
*.3
3.4
3.2
5.7
5.5
5.7
5.6
5.5
5.2
4.1"
3.3
5.4
5.3
5.2
5.3
5.1
*.*
3.6
5.3
5.1
5.1
5.0
4.7
3.2
3.4
5.1
00010
WATER
TEMP
CENT
32.e
32.8
32.8
32.8
32.6
32.4
32.5
32.4
33.1
33.1
33.1
32.7
32.6
32. S
32.5
32.*
31.1
32.0
32.2
32.*
32.5
32.S
32.*
32.2
31.1
31.9
32.0
32.3
32.5
32.5
32.3
32.0
31.4
31.9
31. V
31.9
32.*
32.5
32.3
31.5
31.8
32.0
32.5
32.5
32.3
31.9
32.0
00*80
SALINITY
PPTH
3*. 6
3*. 8
3*. 7
3*. 7
3*. 8
3*. 8
3*. 9
3*. 8
34.5
34.5
34.6
3*. 7
3*. 8
34.8
3*. 6
3*. 8
35.0
34.9
34.7
3*. 7
3*. 6
34.9
3*. 8
35.0
32.5
35.3
35.2
35.1
3*. 9
3*. 9
35.1
35.2
35.1
35.4
35.3
35.3
35.0
35.0
35.0
35.6
35.5
35.2
35.0
35.0
35.1
35.3
35.2
ENVIRONMENTAL PROTECTION AGtNCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENb, GEORGIA
FINGEH FILL CANAL STUDY AUGUbTt 197*
STATION - BPH-F-0
8IG PINE KEY SPECIAL STATION
DATE TIME
7*0820 1019
7*0620 1020
7*0820 1021
7*0820 1022
7*0820 1023
7*0820 102*
7*0820 1025
7*0620 1*05
7*0820 1*06
7*0820 1*07
7*0820 1*08
7*0820 1*09
740820 1410
740820 1411
7*0820 1*12
7*0819
NUMrlE*
MAXIMUM
MINIMUM
MEAN
7*0820
00003
DEPTH
FEET
2
3
*
5
6
7
8
1
2
3
*
5
6
7
8
00299
00
PR04E
MG/L
s'.o
5.2
5.1
*.3
3.8
3.2
2.8
*.e
4.5
4.4
4.6
4.5
3.9
2.6
1.7
62
5.7
1.7
4.5
00010
MATER
TEMP
CENT
32. U
32.2
32.5
32.5
32.7
32,. 4
31.9
32.6
32.5
32.5
32.5
32.5
32.8
32.7
32.*
62
33.1
31.1
3^.3
00*80
SALINITY
PPTH
35.3
35.2
35.0
35.0
34.9
35.0
35.3
34.6
3*. 7
34.7
34.7
34.7
34.6
34.6
34.8
62
35.6
32.5
34. V
-------
APPENDIX B-2.2
N>
•vj
00
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATMENSt GEORGIA
FINGER FILL CANAL STUDY AUGUST* 197*
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY AUGUST. 1974
STATION - BPK-G-O
BIG PINE KEY SPECIAL STATION
DATE TIME
740819 1508
740619 1509
740819 1510
740019 1511
740619 Ibl2
740819 1513
740819 1514
740619 1710
740819 1711
740819 1712
740819 1713
740819 1714
740819 1715
740819 1716
740819 1717
740820 0045
740820 0046
740820 0047
740820 0048
740820 0049
740820 0050
740820 0051
740820 0335
740820 0336
740820 0337
740820 0338
740620 0339
740820 0340
740820 0341
740820 0342
740S20 0343
740820 0550
740620 0551
740820 0552
740620 0553
740820 0554
740620 055S
740620 0556
740620 0557
740620 0558
740620 0905
740820 0906
740820 0907
740820 0908
740820 0909
7*0820 0910
7*0820 0911
00003
DEPTH
FEET
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
6
9
1
2
3
*
5
6
7
00299
00
PROdE
M6/L
2.5
2.2
1.6
0.8
0.6
0.7
0.8
3.6
3.5
3.2
2.8
2.2
2.0
1.9
1.8
5.0
5.1
5.0
5.0
4.2
2.9
2.6
5.1
5.1
5.3
5.3
3.9
3.9
4.2
3.5
3.5
5.0
4.9
4.8
5.1
3.5
3.8
3.4
3.0
2.6
5.1
5.1
5.2
5.0
*.7
4.3
*.6
00010
HATER
TEMP
CENT
32.5
32.6
32.6
32.3
32.1
32.1
32.0
32.7
32.9
32.9
32.6
32.6
32.5
32.3
32.3
31.2
31.2
31.3
31.3
31.4
31.9
32.4
31.0
31.2
31.4
31.6
32.5
32.4
32.3
32.2
32.2
30.5
31.1
31.2
31.3
32.*
32.*
32.3
32.0
32. 0
31.0
31.5
31.7
32.1
32.*
32.6
32.6
00*80
SALINITY
PPTH
34.8
34.7
34.8
34.9
35.0
35.1
35.1
34.6
34.5
34.5
34.7
34.8.
34.8
35.0
35.1
35.5
35.5
35.5
35.5
35.4
35.1
34.9
36.0
35.6
35.6
35.5
35.1
35.0
35.0
35.1
35.1
36.0
35.8
35.7
35.6
35.1
35.0
35.0
35.2
35.2
36.0
35.6
35.5
35.3
35.1
35.0
J5.0
STATION - BPK-G-O
BIG PINE KEY SPECIAL STATION
DATE TIME
740820 0912
7*0830 0913
740820 1100
740820 1101
740820 1102
740820 1103
740820 110*
740620 1105
740820 1106
740820 1107
740820 1108
740820 1109
740820 1450
740820 1451
740820 1452
740820 1453
740820 1454
740620 1455
740620 1*56
740819
NUMBER
MAXIMUM
MINIMUM
MEAN
740B20
00003
DEPTH
FEET
8
9
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
00299
DO
PROBE
HG/L
3.1
2.9
4.1
4.2
4.4
4.1
3.8
3.0
3.2
2.6
2.2
2.0
3.7
3.7
3.8
3.4
1.2
0.5
0.4
66
5.3
0.4
3.4
00010
MATER
TEMP
CENT
32.5
32.0
31.8
31.9
32.1
32.1
32.2
32.5
32.7
32.7
32.5
32.3
32.3
32.3
32.2
32.2
32.0
32.6
32.6
66
32.9
30.5
32.1
00*80
SALINITY
PPTM
35.0
35.3
35.4
35.3
35.2
35.2
35.1
35.0
34.9
34.9
35.0
35.1
35.0
35.0
35.0
. 35.0
35.1
34.8
34.8
66
36.0
34.5
35.2
-------
APPENDIX B-2.3
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY AUGUSTi 1974
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY AUGUSTt 1974
STATION - SA-15-D
SO* FROM DEAD END OF CANAL VI
DATE TIME
740822 1845
740822 1846
740822 1847
740822 1848
740822 1849
740822 1850
740822 1851
740822 1852
740822 1853
740822 1854
740822 1855
740822 1856
740822 1857
740822 1858
740822 1859
740822 1900
740822 2140
740822 2141
740822 2142
740822 2143
740822 2144
740822 2145
740822 2146
740822 2147
740822 2148
740822 2149
740822 2150
740822 2151
740622 2152
740822 2153
740822 2154
740822 2155
740822 2330
740822- 2331
74Q822 2332
740822 2333
740822 2334
740822 2335
740822 2336
740822 2337
740822 2338
740822 2339
740022 2400
740823 0001
74QH23 0002
740823 0003
740823 0004
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
00299
DO
PROfE
MG/L
5.3
5.2
5.2
5.1
4.9
3.6
3.4
3.5
3.7
3.7
3.7
3.7
3.8
3.8
3.8
3.8
5.2
5.2
5.2
5.1
5.1
5.1
4.7
3.7
3.7
3.7
3.7
3.7
3.7
3.6
3.2
3.2
5.2
5.2
5.1
5.1
5.1
5.2
4.4
4.0
3.6
3.8
3.7
3.6
3.6
3.5
3.2
00010
WATER
TEMP
CENT
30.8
3u.8
3u.8
3i).8
31.5
32.1
32. 0
32.1
32.0
32.0
32.1
32.1
32.0
32.1
32.1
32.0
30.5
30.5
30.5
30.5
30.5
30.5
30.6
31.6
32.0
32.0
32.
32.
32.
32.
32.
32.
30.3
30.4
30.4
30.4
30.4
30.7
31.1
31.6
31.9
32.1
32.1
32.1
32.0
32.1
32.1
00480
SALINITY
PPTH
36.0
35.9
35.9
35.9
35.8
35.0
35.1
35.1
35.0
35.1
35.1
35.1
35.1
35.1
35.0
35.1
36.2
36.2
36.2
36.2
36.2
36.2
35.8
35.3
35.3
35.1
35.1
35.1
35.1
35.1
35.1
35.1
36.4
36.4
36.3
36.3
36.2
36.1
35.8
35.5
35.2
35.1
35.2
35.1
35.2
35.2
35.2
STATION - SA-15-D
50« FROM OEAO END OF CANAL VI
DATE TIME
740823 0315
740823 0316
740823 0317
740623 0318
740823 0319
740823 0320
740823 0321
740823 0322
74Q823 0323
740823 0324
740823 0325
740823 0326
740823 0327
740823 0328
740823 0329
740823 0715
740823 0716
740823 0717
740823 0718
740823 0719
740823 0720
740823 0721
740823 0722
740823 0723
740823 0724
740823 0725
740823 0726
740823 0727
740823 0728
740823 0729
740623 0730
740823 1000
740823 1001
740823 1002
740823 1003
740823 1004
740823 1005
740823 1006
740823 1007
740823 1008
740823 1009
740823 1010
740823 1011
740U23 1012
740823 1013
740823 1014
740823 1015
00003
DEPTH
FEET
i
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
00299
DO
PROBE
MG/L
4.6
4.4
4.0
3.9
1.6
2.1
2.6
2.4
2.2
2.8
2.6
2.5
2.6
1.9
1.4
4.0
3.7
3.5
3.2
2.5
2.6
2.7
2.5
2.4
2. a
2.6
2.*
2.4
2.4
2.4
2.4
3.7
3.8
3.5
3.3
2.3
2.3
2.5
2.7
2.9
3.1
3.0
2.9
2.8
2.7
2.7
2.8
00010
HATER
TEMP
CENT
30.0
30.0
30.0
31.7
31.6
31.6
32.1
32.1
32.2
32.2
32.2
32.2
32.1
32.2
32.1
30.3
3u.2
3o. T
31.0
31.3
32.0
32.0
32.1
32.0
32.0
32. o
31.9
32.0
32.0
32.0
31.9
30.3
3U.4
30. 6
31.7
31.6
31.7
31.6
31.7
31.6
31.4
31.5
31. b
31.6
31.6
31.7
31.7
00480
SALINITY
PPTM
36.5
36.6
36.6
36.2
35.9
35.5
35.3
35.1
35.3
35.2
35.2
35.3
35.2
35.6
35.3
36.5
36.4
35.8
35.9
35.7
35.3
35.3
35.3
35.3
35.3
35.4
35.4
35.3
35.3
35.4
35.4
36.2
J6.2
36.1
35.3
35.5
35.3
35.3
35.4
35.4
35.5
35.5
J5.5
35.4
35.4
J5.4
35.4
-------
APPENDIX B-2.3
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY AUGUSTt 197*
ro
00
O
STATION - SA-15-0
50• FROM DEAD END OF CANAL VI
DATE TIME
7*0823 1300
7*0823 1301
740823 1302
7*0823 1303
7*0823 130*
7*0823 1305
7*0823 1306
7*0823 1307
7*0823 1308
7*0823 1309
7*0823 1310
7*0823 1311
7*0823 1312
7*0823 1313
7*0823 131*
7*0823 1315
740823 16*0
7*0823 1641
740823 1642
740823 16*3
7*0823 16*4
7*0823 16*5
7*0823 16*6
7*0823 1647
740823 1648
740823 1649
740823 1650
7*0823 1651
7*0823 1815
7*0823 1816
7*0823 1817
740823 1818
740823 1819
740823 1820
740823 1821
740823 1822
740823 1823
740823 1824
740823 1825
740823 1826
740823 1827
740822
NUMBER
MAXIMUM
MINIMUM
MEAN
740U23
00003
DEPTH
FEET
1
2
3
4
5
6
7
a
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
8
9
10
11
12
13
00299
DO
PROBE
MG/L
4.8
4.5
4.4
3.4
3.4
3.2
3.0
2.4
2.6
2.5
2.5
2.7
3.1
3.2
3.2
3.3
5.0
5.0
4.5
2.3
3.0
2.8
2.9
2.7
2.8
2.3
2.4
2.8
5.1
4.6
*.*
2.5
2.*
2.3
2.1
2.0
2.2
2.6
3.0
3.3
3.3
135
5.3
1.4
3.4
00010
MATER
TEMP
CENT
3U.8
30.8
30.9
31.1
31.6
31.8
31.9
32.0
32.1
32.0
32.0
32.0
31.9
31.9
31.9
31.9
31.2
31.3
31.5
31.8
32.0
32.1
32.1
32.1
32.1
32.0
32.0
32.0
30.8
30.9
31.4
31.4
31.8
31.9
31.9
31.9
31.9
31.9
32.0
31.9
32.0
135
32.2
30.0
31.6
00480
SALINITY
PPTH
35.9
35.8
35.8
35.7
35.4
35.3
35.1
35.1
35.1
35.2
35.2
35.2
35.2
35.2
35.2
35.2
35.7
35.6
35.4
35.3
35.2
35.1
35.1
35.1
35.1
35.1
35.2
35.2
35.9
35. B
35.6
35.5
35.2
35.2
35.2
35.2
35.2
35.2
35.2
35.2
35.2
135
36.6
35.0
35.5
-------
APPENDIX B-2.3
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY AUGUST« 1974
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEOWGIA
FINGER FILL CANAL STUDY AUGUST. 1974
STATION - SA-16-D
SO* FROM DEAD END OF CANAL VII
DATE TIME
740822 1930
740622 1931
740B22 1932
740822 1933
740822 1934
740822 1935
740822 1936
740822 1937
740822 1938
740822 1939
740822 1940
740822 1941
. , 740822 1942
£? 740822 1943
™ 740822 1944
740822 1945
740822 1946
740822 1947
740822 1948
740822 1949
740822 1950
740822 1951
740822 1952
740822 2157
740822 2158
740822 2159
740822 2200
740822 2201
740822 2202
740822 2203
740B22 2204
740822 2205
740823 0005
740823 0006
740823 0007
740823 0008
740823 0009
740623 0010
740823 0011
740823 0012
740823 0013
740423 0014
740823 0015
740823 0016
740823 0017
7404*23 0018
740823 0019
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
00299
DO
PROBE
MG/L
3.2
3.2
3.2
3.2
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.
3.1
3.1
3.1
3.1
3.1
3.1
3.1
3.0
3.0
4.6
4.5
4.5
4.5
4.5
4.0
3.8
3.6
3.5
4.4
4.4
4.4
4.4
4.3
4.1
4.0
3.2
3.0
3.0
2.5
2.2
2.2
2.6
2.5
00010
WATER
TEMP
CENT
31.8
31.9
32.0
31.9
31.8
31.9
31.9
31.9
31.9
31.9
31.9
32.0
32.0
32.0
31.9
32.0
32.0
32. J
31.9
32.0
32.0
31.9
31.9
31.0
31.0
31.0
31.0
31.0
31.0
31.2
31.6
31.6
30.9
30.9
30.9
31.0
30.9
31.0
31.1
31.4
31.6
31.7
31. B
31.8
31.8
31.8
31. fl
00480
SALINITY
PPTH
35.3
35.3
35.2
35.2
35.2
35.2
35,2
35.2
35.2
35.3
35.2
35.2
35.3
35.2
35.2
35.2
35.2
35.2
35.2
35.2
35.2
35.2
35.1
35.8
35.8
36.0
36.0
36.0
36.0
36.0
35.3
35.3
35.9
35.9
35.8
35.8
35.8
35.8
35.0
35.5
35.4
35.3
35.3
35.2
35. 3
35.3
35.2
STATION - SA-16-D
FROM DEAD END OF CANAL VII
DATt TIME
740823 0020
740823 0021
740823 0022
740823 0023
740623 0024
740823 0025
740823 0026
740823 0027
740823 0335
740823 0336
740823 0337
740823 0338
740823 0339
740823 0340
740823 0341
740823 0342
740823 0343
740823 0344
7*0023 0345
740823 0346
740623 03*7
740823 0348
740823 0349
740823 0350
740823 0351
740823 0352
740823 0353
740823 0354
740823 0355
740823 0750
740(523 0751
740823 0752
740823 0753
740823 0754
740B23 0755
740823 0756
740823 0757
740823 0758
740823 0759
740823 0800
740823 0801
740823 0602
740823 0803
740023 0804
740823 0805
740823 0806
740423 Od07
00003
DEPTH
FEET
16
17
18
19
20
21
22
23
1
2
3
4
b
6
7
a
9
10
11
12
13
14
15
16
17
18
19
20
21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
10
00299
00
PRObE
MG/L
2.5
2.7
2.6
2.2
2.4
2.2
2.3
2.3
1.4
1.5
1.4
1.4
.3
.2
.3
.2
.2
.2
.2
.2
.2
.3
.3
1.2
1.2
1.3
1.2
0.9
0.6
2.2
2.2
2.2
1.8
1.8
.8
.8
.8
2.0
.9
.8
1.8
1.8
1.8
2.1
2.2
2.3
2.2
00010
MATER
TEMP
CENT
31.8
31.8
31.8
31.8
31.8
31.8
31.8
31. B
31.7
31.6
31.7
31.8
31.8
31.8
31.8
31.7
31.7
31.8
31.8
31.7
31.7
31.8
31.7
31.8
31.8
31.6
31.7
31.8
31.6
31.1
31.4
31.5
31.4
31.4
31.4
31.4
31. b
31.5
31.5
31.5
31.4
31.5
31.5
31.5
31.5
31.6
31.5
00480
SALINITY
PPTH
35.3
35.3
35.3
35.3
35.3
35.3
35.2
35.3
35.6
35.6
35.5
35.5
35.4
35.4
35.5
35.5
35.6
35.5
35.5
35.5
35.5
35.5
35.4
35.5
35.5
35.5
35.5
35.5
35.6
35.8
35.8
J5.8
35.7
35.7
35.7
35.8
35.7
35.7
35.8
35.8
35.8
35.7
35.8
J5.7
35.6
J5.7
35.7
-------
APPENDIX B-2.3
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEOMGIA
FINGER FILL CANAL STUDY AUGUSTt 1974
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY AUGUST, 1974
00
N)
STATION - SA-16-0
50> FROM DEAD END OF CANAL VII
DATE TIME
740833 0808
740823 0809
740823 1020
740823 1021
740823 1022
740823 1023
740823 1024
740823 1025
740823 1026
740823 1027
740823 1028
740823 1029
740823 1030
740823 1031
740823 1032
740823 1033
740823 1034
740823 1035
740H23 1036
740823 1037
740823 1038
740823 1320
740823 1321
740823 1322
740823 1323
740823 1324
740823 1325
740823 1326
740823 1327
740823 1328
740823 1329
740823 1330
740823 1331
740823 1332
740823 1333
740823 1334
740823 1335
740823 1336
740823 1337
740823 1338
740823 1653
740823 1654
740823 1655
740823 1656
740823 1657
740823 1658
740823 1659
00003
DEPTH
FEET
19
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
00299
DO
PROBE
MG/L
2.4
2.4
.2.8
2.8
2.6
2.8
2.8
2.6
2.6
2.6
2.5
2.4
2.4
2.4
2.4
2.4
2.5
2.5
2.5
2.4
2.5
3.2
3.1
2.9
2.7
2.4
2.2
2.1
2.0
7.4
.7
.6
.6
.6
.6
.6
.6
.6
.6
1.6
2.2
2.3
2.1
2.2
2.1
2.0
1.8
00010
WATER
TEMP
CENT
31.5
31.5
31.3
31.4
31.3
31.4
31.4
31.4
31.4
31.4
31.3
31.4
31.4
31.4
31.4
31.4
31.4
31.4
31.4
31.4
31.3
31.7
31.7
31.6
31.6
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31.4
31.5
31.4
31.5
31.5
31.4
31.5
31.7
31.7
31.7
31.7
31.7
31.6
31.6
00480
SALINITY
PPTH
35.7
35.7
35.6
35.6
35.6
35.5
35.5
35.5
35.5
35.5
35.5
35.5
35.5
35.5
35.5
35.5
35.5
35.5
35.5
35.5
35.6
35.4
35.4
35.4
35.4
35.5
35.5
35.4
35.5
35.5
35.5
35.5
35.5
35.5
35.5
35.5
35.5
35.5
35.5
35.5
35.4
35.4
35.4
35.4
35.4
35.4
35.4
STATION - SA-16-D
50 • FROM DEAD END OF CANAL VII
DATE TIME
740823 1700
740823 1701
740823 1702
740823 1703
740823 1704
740823 1705
740823 1706
740823 1707
740823 1708
740823 1709
740823 1710
740823 1829
740823 1830
740823 1831
740823 1832
740823 1833
740823 1834
740823 1835
740823 1836
740823 1837
740823 1838
740823 1839
740823 1840
740823 1841
740823 1842
740823 1843
740623 1844
740623 1845
740823 1846
740823 1847
740622
NUMtiEK
MAXIMUM
MINIMUM
MEAN
740823
00003
DEPTH
FEET
8
9
10
11
12
13
14
15
16
17
18
1
2
3
4
5
6
7
a
9
10
11
12
13
14
15
16
17
18
19
00299
DO
PRObE
MG/L
1.6
1.3
1.2
1.0
1.0
1.1
1.1
1.1
0.8
0.7
0.7
1.9
1.8
1.8
1.8
1.8
1.6
1.8
1.8
1.7
1.7
1.7
i.a
1.8
1.6
1.6
1.5
1.6
1.7
1.5
171
7.4
0.6
2.3
00010
MATER
TEMP
CENT
31.6
31.6
31.7
31.6
31.6
31. t
31.5
31.5
31.5
31.3
31.3
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31.5
31.4
31.4
171
32.0
30.9
31.6
00480
SALINITY
PPTH
35.4
35.4
35.4
35.4
35.4
35.4
35.4
35.4
35.5
35.6
35.6
35.5
35.5
35.5
35.5
35.5
35.5
35.4
35.5
35.5
35.5
35.5
35.4
35.4
35.4
35.4
35.4
35.4
35.4
35.4
171
36.0
35.1
35.5
-------
APPENDIX B-2.3
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY AUGUST, 1974
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEOHGIA
FINGER FILL CANAL STUDY AUGUST, 197*
STATION - SA-17-D
4oo» FRM CLSED END OF BORROW PIT
DATE TIME
7*0832 1954
740622 1955
740822 1956
740622 1957
740822 1958
740622 1959
740822 2000
740822 2001
740622 2002
740622 2003
740622 2004
740822 2005
740822 2006
740822 2007
740622 2008
10 740822 2009
00 740022 2010
W 740822 2011
740622 2012
740622 2013
740822 2014
740622 2015
740822 2016
740622 2024
740822 2025
740622 2026
740822 2027
740822 2207
740822 2208
740822 2209
740622 2210
740822 2211
740622 2212
740822 2213
740822 2214
740822 2215
740822 2216
740622 2217
740822 2218
740822 2219
740822 2220
740822 2221
740822 2222
740822 2223
740623 0030
740823 0031
740023 0032
00003
DEPTH
FEET
1
2
3
4
5
6
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
18
19
20
21
1
2
.3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
00299
DO
PROBE
MG/L
5.5
5.5
5.5
5.5
5.5
5.4
5.0
4.5
4.4
4.3
4.3
4.3
4.2
4.1
4.1
4.0
4.0
3.7
3.6
3.6
3.6
3.6
3.4
3.2
3.3
3.4
3.5
5.6
5.6
5.6
5.6
5.5
4.9
4.6
4.6
4.3
4.1
4.1
4.0
4.0
3.8
3.7
3.7
3.6
5.4
5.4
5.3
00010
MATER
TEMP
CENT
30.6
30.8
30.7
30.7
3U.7
30.9
31.6
31.8
32.0
32.6
32.0
32.0
32.0
32.1
32.1
31.9
32.0
31.8
31.9
31.9
31.8
31.8
31.7
31.7
31.7
31.7
31.7
30.1
30.1
30.1
30.4
30.4
30.7
31.3
31.4
31.4
31.8
32.1
32.1
32.1
32.1
32.1
31.9
31.9
30.3
30.4
30.5
00460
SALINITY
PPTH
35.9
36.0
36.1
36.1
35.9
36.0
35.5
35.3
35.2
35.2
35.1
35.1
35.1
35.3
35.1
35.2
35.4
35.2
35.5
35.4
35.3
35.4
35.4
35.3
35.5
35.5
35. 5
36.3
36.3
36.3
36.3
36.3
36.3
35.4
35.6
35.6
35.6
35.1
35.1
35.1
35.1
35.3
35.3
35.3
36.3
36.2
36.2
STATION - SA-17-0
«00« FRM CLSED END OF BORROW PIT
DATE TIME
740823 0033
740823 0034
740823 0035
740823 0036
740823 0037
740423 0038
740823 0039
740823 0040
740823 004]
740823 0042
740823 0043
740823 0044
740823 0045
740823 0046
740823 0047
740623 0048
740823 0049
740823 0050
740823 0051
740823 0405
740M23 0406
740823 0407
740823 0408
740823 0409
74Q823 0410
740823 0411
740823 0412
740823 0413
740823 0414
740823 0415
740823 0416
740823 0417
740823 0418
740823 0419
740823 0420
740823 0421
740823 0422
740823 0423
740823 0424
740823 0425
740823 0426
740823 0427
740823 0428
740823 0429
740823 0810
740823 0811
740823 0812
00003
DEPTH
FEET
4
5
6
7
6
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
1
2
3
00299
DO
PROBE
MG/L
5.3
5.2
5.4
4.9
4.7
4.3
4.2
4.1
4.3
4.2
4.3
4.2
4.2
3.9
4.0
3.5
3.4
3.3
3.5
3.9
3.9
3.9
3.9
3.8
3.9
3.8
3.8
3.8
3.8
3.7
3.8
3.8
3.8
3.6
3.4
3.5
3.1
3.2
3.0
2.5
2.5
2.6
2.4
2.3
4.4
4.3
4.3
00010
MATER
TEMP
CENT
30.5
30.5
30.5
31.1
31.3
31.9
31.9
32. 0
31.9
31.9
32.0
31.9
31.8
31.8
31.8
31.8
31.8
31.7
31.8
31.5
31.4
31.5
31.5
31.5
31.4
31.5
31.4
31.5
31.4
31.4
31.7
31.6
31.5
31.6
32. 0
31.9
31.9
31.9
32.0
31.8
31.8
31.8
31.8
31.7
30.0
30.0
30.2
00480
SALINITY
PPTH
36.2
36.1
36.2
35.7
35.5
35.3
35.3
35.3
35.3
35.2
35.2
35.3
35.3
35.3
35.3
35.3
35.3
35.3
35.3
3b.7
35.7
3b.6
35.6
35.7
35.7
35.6
35.6
35.7
J5.6
35.6
35.6
35.6
35.6
35.6
35.4
35.3
35.3
35.4
35.5
35. S
35.4
35.5
35.5
3b.5
36.7
36.6
36.4
-------
APPENDIX B-2.3
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY AUGUST* 1974
ENVIRONMENTAL PROTECTION AGENCY RtGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEOHbIA
FINGER FILL CANAL STUDY AUGUST* 197*
00
STATION - SA-17-D
400* FRH CLSED END OF BORROW PIT
DATE TIME
740823 0813
740623 0814
740623 0815
740823 0816
740623 0817
740623 0816
740823 0619
740823 0620
740823 0821
740823 0823
740823 0624
740623 0625
740823 0626
740623 0627
740623 0826
740623 0829
740623 0830
740823 0831
740823 0832
740623 0833
740823 1040
740623 1041
740823 1042
740823 1043
740823 1044
740823 1045
740623 1046
740823 1047
740623 1046
740823 1049
740823 1050
740823 1051
740823 1052
740823 1053
740823 1054
740823 10S5
740823 1056
740823 1057
740623 1058
740823 1059
740623 1340
740823 1341
740823 1342
740823 1343
740623 1344
740823 1345
740823 1346
00003
DEPTH
FEET
4
5
6
7
8
9
10
11
12
13
14
15
17
18
19
20
21
22
23
24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
1
2
3
4
5
6
7
00299
00
PROBE
MG/L
4.3
4.3
4.2
4.2
4.2
4.2
4.2
4.2
4.0
4.0
3.9
3.8
3.7
3.5
3.1
3.1
3.1
3.1
3.0
2.9
4.1
4.0
4.0
4.0
4.0
4.0
4.0
3.8
3.7
3.8
3.6
3.9
3.8
3.8
3.8
3.5
3.4
3.3
3.2
3.1
4.4
4.3
4.3
4.3
4.2
4.2
4.0
00010
WATER
TEMP
CENT
3U.5
30.6
30.7
30.7
3U.9
30.9
30.9
30.9
30.9
31.3
31.4
31.4
31.5
31.7
31.7
31.8
31.8
31.9
31.9
31.7
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.9
31.0
31.0
31.0
31.0
31.1
31.1
31.1
31.2
31.4
31.4
31.4
31.4
31.0
31.0
31.0
31.0
31.1
31.1
31.1
00480
SALINITY
PPTH
36.3
36.3
36.2
36.2
36.2
36.2
36.2
36.1
36.0
36.0
36.0
35.8
35.7
35.7
35.7
35.
35.
35.
35.
35.
36.1
36.0
36.0
36.0
36.0
36.0
36.0
35.6
35.8
35.8
35.6
35.8
35.7
35.7
35.7
35.6
35.5
35.5
35.5
35. 5
35'. 8
35.8
35.6
35.8
35.7
35.7
35.7
STATION - SA-17-D
400' FRM CLSED END OF bOMROM PIT
DATE TIME
740823 1347
740823 1348
740823 1349
740823 1350
740823 1351
740823 1352
740823 1353
740823 1354
740823 1355
740823 1356
740823 1357
740823 1358
740B23 1359
740823 1400
740823 1401
740623 1402
740823 1719
740823 1720
740623 1721
740823 1722
740823 1723
740823 1724
740823 1725
740823 1726
740823 1727
740823 1720
740823 1729
740823 1730
740823 1731
740823 1732
740823 1733
740823 1734
740823 17J5
740823 1849
740823 1850
740823 1851
740823 1852
740823 1853
740823 1854
740823 1855
740823 1856
740823 1857
740823 1856
740823 1859
740823 1900
740823 1901
740823 1902
00003
DEPTH
FEET
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
11
12
13
14
00299
DO
PRObE
MG/L
4.0
4.0
4.0
4.0
3.9
3.7
3.6
3.6
3.5
3.5
3.3
3.1
3.1
3.0
2.9
2.9
4.7
4.6
*.5
4.5
*.5
4.5
4.5
4.4
4.4
4.3
4.1
4.1
3.8
3.5
3.4
3.4
3.4
4.8
4.8
4.7
4.8
4.8
4.7
4.7
4.6
4.7
4.6
4.6
4.2
3.0
3.7
00010
wATEP
TEMP
CENT
31.2
31.2
31.2
31.2
31.2
31.3
31.5
31.6
31.7
31.7
31.7
31.7
31.7
31.7
31.7
31.7
31.3
31.3
31.3
31.3
31.3
31.3
31.3
31.4
31.4
31.4
31.4
31.6
31.6
31.7
31.6
31.7
31.7
31.1
31.1
31.2
31.2
31.
-------
APPENDIX B-2.3
KJ
00
Ui
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY AUGUSTt 1974
STATION - SA-17-D
400' FRM CLSED END OF BORROW PIT
DATE TIME
740823 1903
740823 1904
740823 1905
740823 1906
740823 1907
740823 1908
740823 1909
740823 1910
740822
NUMBER
MAXIMUM
MINIMUM
MEAN
740823
00003
DEPTH
FEET
15
16
17
18
19
20
21
22
00299
DO
PROBE
MG/L
3.5
2.8
2.9
3.3
3.3
2.8
2.1
1.3
196
5.6
1.3
4.0
00010
MATER
TEMP
CENT
31.6
31.6
31.6
31.6
31.6
31.6
31.6
31.4
196
32.1
30.0
31.4
00480
SALINITY
PPTH
35.4
35.4
35.4
35.4
35.4
35.4
35.4
35.5
196
36.7
35.1
35.6
-------
APPENDIX B-2.3
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY AUGUST* 1974
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GtGHGIA
FINGEH FILL CANAL STUDY AUGUST. 197*
STATION - SA-18-D
AT MOUTH OF BORROH PIT
DATE TIME
740822 2018
740822 2019
740822 2020
740822 2021
740822 2022
740822 2023
740822 2024
740822 2025
740822 2026
740822 2229
740822 2230
740822 2231
740822 2232
740822 2233
740822 2234
£> 740822 2235
or! 740822 2236
740822 2237
740822 2238
740822 2239
740823 0053
740823 0054
740823 0055
740823 0056
740323 0057
740823 0058
740823 0059
740823 0100
740823 0101
740823 0430
740823 0431
740823 0432
740823 0433
740823 0434
740823 0435
740823 0436
740823 0437
740823 0438
740823 0439
740823 0440
740823 04*1
740823 0834
740623 0835
740823 0836
740823 0837
7*0823 0838
7*0d23 0839
00003
DEPTH
FEET
1
2
3
4 •
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1U
11
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
*
5
6
00299
DO
PROBE
MG/L
6.3
6.3
6.2
6.2
6.0
5.3
5.0
4.8
4.8
5.4
5.4
5.3
5.3
5.2
5.2
5.2
5.2
5.0
4.7
4.7
5.5
5.4
5.5
5.4
5.3
5.0
4.9
4.4
4.4
4.5
4.5
4.2
4.4
4.1
3.B
3.6
3.3
3.0
2.7
2.4
2.6
4.5
4.4
4.3
4.3
*.3
4.3
00010
WATER
TEMP
CENT
30.2
30.3
30.2
30.2
30.4
30.2
30.6
31.2
31.2
30.3
30.3
30.3
30.4
30.4
30.6
30.6
30.6
30.6
31.2
31.2
30.5
30.5
30.4
30.4
30.6
30.5
31.1
31.0
31.4
30.6
30.6
30.7
3o.7
30.9
30.9
31.2
31.1
31.3
31.4
31.5
31.*
29.1
29.2
29.2
29.2
29.3
29.3
00480
SALINITY
PPTH
36.4
36.3
36.6
36.*
36.1
36.3
36.2
35.9
35.8
36.3
36.3
36.3
36.3
36.3
36.3
36.2
36.2
36.2
35.7
35.7
36.2
36.2
36.2
35.9
36.2
35.9
3b.7
35.6
35.6
36.2
36.2
36.3
36.1
36.1
36.1
35.9
35.9
35.8
35.8
35.7
35.6
37.0
37.1
37.0
37.0
37.0
J7.0
STATION - SA-lb-0
AT MOUTH OF dOHKOh PIT
DATE TIME
740823 0840
7*0833 0841
740823 0842
740623 0843
740823 0844
740823 llul
740023 111)2
7*0623 1103
74QU23 110*
740823 1105
740823 1106
740823 1107
740823 1108
740823 1109
740823 1110
740823 1111
740823 1112
740823 1113
740823 1420
740823 1421
740823 1*22
740823 1423
740823 1424
740823 1425
740823 1426
740823 1427
740B23 1428
740823 1429
740823 1430
740823 1431
740823 1737
740823 1738
740823 1739
740823 1740
740823 1741
740823 17*2
740823 17*3
740823 1744
740823 1745
740823 1746
7*0823 1747
740823 1748
7*0823 17*9
740823 1912
740B23 1913
7*OB23 191*
7*0823 1915
00003
DEPTH
FEET
7
8
9
10
11
1
2
3
*
5
6
7
8
9
10
11
12
13
1
2
3
*
5
6
7
a
9
10
11
12
1
2
3
*
5
b
7
8
9
10
11
12
13
1
2
3
*
00299
DO
PROeE
MG/L
4.3
4.2
4.1
4.0
4.0
4.4
4.4
4.3
4.2
4.0
3.7
3.5
3.5
3.5
3.5
3.6
3.6
3.6
4.2
4.3
4.3
4.3
4.2
4.3
4.4
4.6
4.6
4.5
4.3
4.2
4.5
4.4
4.3
4.3
4.3
4.3
4.2
4.3
4.3
*.2
3.5
3.2
2.8
5.*
5.J
5.3
5.3
00010
HATER
TEMP
CENT
29.3
29.*
29.4
2V. 6
29.8
29.8
29.8
29. f
29.8
29.7
29.6
29.3
29.0
28.9
28.9
28.8
28.8
28.8
30.9
30.9
30.9
30.9
30.9
30.9
30.9
31.0
30.9
31.0
31.0
31.0
31.1
31.2
31.2
31.2
31.1
31.1
31.2
31.2
31.2
31.2
31.2
31.3
31.3
31.0
31.1
31.1
31.1
U048U
SALINITY
PPTH
37.0
37.0
37.0
36.8
36.8
36.5
36.5
36. b
36.6
36.7
36.8
37.1)
37.1
37.2
37.2
37.2
37.2
37.2
35.9
35.9
35.9
3S.9
35.9
35.9
35.9
35.8
35.8
35.8
35.8
35.8
35.7
35.7
35.7
35.7
35.7
J5.6
35.6
35.6
39.6
35.6
35.6
35.6
35.5
35.8
35. 8
JS.B
Jb.7
-------
APPENDIX B-2.3
KJ
00
N
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY AUGUST* 1974
STATION - SA-18-D
AT MOUTH OF BORROW PIT
DATE TIME
740823 1916
740823 1917
740823 1918
740823 1919
740823 1920
740823 1921
740823 1922
740823 1923
740823 1924
740822
NUMBER
MAXIMUM
MINIMUM
MEAN
740823
00003
DEPTH
FEET
5
6
7
6
9
10
11
12
13
00299
DO
PROBE
MG/L
5.3
5.3
5.3
5.3
5*2
5.2
5.2
5.1
5.0
103
6.3
2.4
4.5
00010
WATER
TEMP
CENT
31.0
31.1
31.0
31. 0
31.0
31.0
31.1
31.1
31.1
103
31.5
28.8
30.5
00480
SALINITY
PPTH
35.7
^^ «^ w »
35.7
^^ ** W T
35.7
^^ *^ w »
35.7
^^ •* V v
35.7
^ "^ W f
35.7
** *^ 9 f
35.7
«*«^ . f
35.7
*^ *^ v •
35.7
103
37.2
w v v ^v
35.5
36.1
-------
APPENDIX B-2.3
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEOWGIA
FINGER FILL CANAL STUDY AUGUST, 197*
Is)
00
00
STATION - SA-19-0
BCKGKND 600'SEAWRD FRM PROJ SITE
DATE TIME
740822 2028
740822 2029
740822 2030
740U22 2031
740622 2032
740822 2033
740822 2241
740822 2242
740822 2243
740822 2244
740822 2245
740822 2246
740823 0103
740823 0104
740823 0105
740823 0106
740823 0107
740823 0443
740823 0444
740823 0445
740823 0446
740323 0447
740823 0448
740823 0449
740823 0845
740823 0846
740823 0847
740823 0848
740823 0649
740823 0850
740823 0851
740823 1115
740823 1116
740823 1117
740623 1118
740823 1401
740823 1440
740823 1442
740823 1751
740823 1752
740823 1753
740823 1926
740823 1927
740823 1926
740823 1929
740822
NUMBER
MAXIMUM
MINIMUM
MEAN
740823
1)0003
DEPTH
FEET
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
4
2
1
3
1
2
3
1
2
3
4
00299
00
PROt-E
MG/L
5.8
5.8
5.7
5.7
5.7
5.7
5.3
5.3
5.4
5.3
5.3
5.3
5.2
5.0
5.2
5.0
5.0
4.5
4.5
4.4
4.2
4.4
4.1
4.0
4.B
4.6
4.6
4.6
4.0
3.8
3.7
5.6
5.5
5.5
5.5
6.3
6.3
7.1
7.1
7.1
7.9
7.9
8.0
8.0
44
tt.O
3.7
5.4
00010
MATER
TEMP
CENT
30.1
30.0
30.0
29.9
29.9
29.9
30.0
30.0
30.0
30.0
30.0
30.0
29.1
29.1
29.2
29.1
29.2
29.6
29.8
29.7
29.6
29.7
29.7
24.6
29.3
29.4
29.3
29.3
28.9
28.9
28.8
29.0
29. U
29.0
29.0
29.8
29.9
29.8
30.0
30.0
30.0
29.9
29.9
29.9
29.9
45
30.1
'8.8
^9.6
00480
SALINITY
PPTH
36.8
36.8
36.8
36.8
36.8
36.8
36.8
36.8
36.8
36.8
36.8
36.8
37.0
37.0
37.1
37.0
37.0
36.8
36.8
36.8
36.8
36.7
36.8
36.8
37.0
37.0
37.1
37.1
37.2
37.4
37.4
37.1
37.0
37.1
37.1
36.6
36.5
36.5
36.4
36.4
36.5
36.5
36.5
36.5
36.5
45
37.4
36.4
J6.8
-------
APPENDIX B-2.4
ENVIRONMENTAL PHOTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER 197*
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE ANO ANALYSIS DIVISION ATHENS, GEORGIA
FINGER FILL CANAL STUDY SEPTEMbEH, 197*
to
00
•o
STATION - AB-01-0
ATLANTIC 8CH-NEA* CANAL OEAO END
DATE TIME
7*0917 18*5
7*0917 18*6
7*0917 18*7
7*0917 18*8
7*0917 18*9
7*0917 1850
7*0917 1851
7*0917 1852
7*0917 1853
7*0917 185*
7*0917 1855
7*0917 2100
7*0917 2101
7*0917 2102
7*0917 2103
7*0917 210*
7*0917 2105
7*0917 2106
7*0917 2107
740917 2108
7*0917 2109
7*0917 2110
7*0917 2111
7*0917 2112
7*0917 2335
7*0917 2336
7*0917 2337
7*3917 2338
740917 2339
7*0917 23*0
7*0917 23*1
740917 23*2
740917 2343
740917 2344
740917 2345
74Q917 2346
740917 2347
740917 2348
740917 2349
740918 0255
740918 0256
740918 0257
740916 0258
740918 0259
74091t» 0300
740910 0301
7409 J 8 0302
00003
DEPTH
FEET
1
2
3
*
5
6
7
8
9
10
11
1
2
3
4
5
6
7
8
9
10
11
12
13
1
2
3
4
5
6
7
a
9
10
11
12
13
14
IS
1
2
3
*
5
6
7
6
00299
00
PRObE
MG/L
10.4
7.6
7.0
6.6
5.0
3.7
2.9
2.3
1.2
0.9
0.5
9.2
H.I
8.0
7.0
5.6
4.4
3.5
2.9
2.1
1.5
1.0
0.8
0.4
9.0
8.3
7.9
6.5
5.4
5.2
3.6
2.8
2.2
1.6
0.9
0.5
0.1
0.0
0.0
7.4
7.2
4.9
4.3
3.4
2.8
2.4
1.7
00010
MATEH
TEMP
CENT
26.8
26.8
26.8
26.8
26.8
26.8
27.1
27.1
27. u
27.2
27.2
26.0
26.2
26.8
26.8
27.0
27.0
27.0
27.0
27.2
27.2
27.2
27.2
27.2
25.5
26.6
26.5
26.7
26.8
26.8
26.7
26.8
27.0
27.1
27.1
27.0
27.2
27.0
27.0
25.7
26.5
26.8
26.9
26.9
26.7
26.9
26*9
00480
SALINITY
PPTH
30.1
30.1
31.7
31.9
33.1
33.1
33.7
33.7
34.3
34.3
34.3
28.2
31.2
31.2
32.4
32.4
33.0
33.0
34.0
34.0
34.3
3*. 3
34.6
34.6
29.2
31.4
32.2
32.4
33.2
33.6
33.6
34.0
34.0
34.2
34.5
34.4
34.5
34.6
3*. 6
30.2
32.6
33.0
33.0
33.7
33.7
33.6
34.2
STATION - A8-01-D
ATLANTIC BCH-NEAR CANAL OEAU END
DATE TIME
7*0918 0303
7*0916 030*
7*0916 0305
7*0918 0306
7*0918 0307
7*0918 0610
7*0918 0611
7*0918 0612
7*0916 0613
7*0918 061*
7*0916 0615
7*0918 0616
7*0918 0617
7*0918 0618
7*0918 0619
7*0918 0620
7*0918 0631
7*0918 0915
7*0918 0916
7*0918 0917
7*0918 0918
7*0918 0919
7*0918 0920
7*0918 0931
7*0918 0932
7*0918 0933
7*0918 093*
7*0918 0935
7*0918 0936
7*0918 0937
7*0918 0938
7*0918 1355
7*0918 1356
7*0918 1357
7*0918 1358
7*0918 1359
7*0918 1*00
7*0918 1*01
7*0918 1*02
7*0918 1*03
7*0918 1*0*
7*0918 1*05
7*0918 1*06
7*0918 1*07
7*0918 1515
7*0918 1516
740918 1517
00003
DEPTH
FEET
9
10
11
12
13
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
*
5
6
7
8
9
10
11
12
13
1*
1
2
3
*
5
6
7
8
9
10
11
12
13
1
2
3
00299
DO
PROBE
MG/L
0.9
0.3
0.0
0.0
0.0
7.5
5.3
5.0
4.8
3.7
2.*
1.6
1.2
0.7
0.6
0.6
0.0
6.*
5.9
*.6
3.8
3.3
2.6
2.0
1.6
1.2
1.0
0.8
0.3
0.2
0.2
8.5
6.8
6,0
5.6
*.l
3.0
2.5
1.7
1.2
0.*
0.0
0.0
0.0
9.7
9.*
9.0
00010
MATER
TEMP
CENT
26.9
27.0
27.0
27.0
26.9
23. a
25.2
26.6
26.6
26.5
26.8
26,9
26.9
27.2
26.9
26.9
26.9
2*. 3
2*. 3
25.5
25.9
26.6
26.*
26.6
26.7
26.9
26.7
26.9
27.0
27.0
26.0
26.1
27.0
26,9
26.9
26.6
26.*
26.6
26.7
27.2
27.1
27.2
27.1
27.1
26.7
27.1
26,7
00*dO
SALINITY
PPTH
3*. 2
3*. 2
3*.*
3*.*
3*. 6
27.9
30.2
33.3
33.3
33.6
33.7
3*.0
3*.l
3*.*
3*.*
3*. 5
3*. 6
29.6
29.7
31.9
32.5
33.3
33.3
33.9
33.9
33.9
33.9
3*.0
3*.l
3*. 5
3*.*
29.1
32.2
33.2
33.1
33.1
33.3
33.*
33.6
33.7
34.0
3*.l
3*. 2
3*.*
30.*
32.7
32. 0
-------
APPENDIX B-2.4
KJ
VO
o
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEOkGlA
FINGER FILL CANAL STUDY SEPTEMBER. 1974
STATION - AB-Ol-D
ATLANTIC BCH-NEAR CANAL DEAD END
DATE TIME
740918 1518
740918 1519
740918 1520
740918 1521
740918 1522
740918 1523
740918 1524
740918 1525
740918 1526
740918 1527
740918 1835
740918 1836
740918 1837
740918 1838
740918 1839
740918 1840
740918 1841
740918 1842
740918 1843
740918 1844
740918 1845
740918 1846
740917
NUMBER
MAXIMUM
MINIMUM
MEAN
740918
00003
DEPTH
FEET
4
5
6
7
8
9
10
11
12
13
1
2
3
4
5
6
7
8
9
10
11
12
00299
DO
PROBE
MG/L
4.6
4.0
3.5
2.6
1.7
0.9
0.3
0.2
0.1
0.1
10.6
9.0
8.5
5.0
3.8
2.8
1.3
0.9
0.6
0.2
0.1
0.1
116
10.6
0.0
3.3
00010
WATER
TEMP
CENT
26.5
26.3
26.0
26.5
26.7
27.1
27.0
26.9
26.9
26.9
27.1
27.1
26.9
26.8
26.7
26.5
27.0
27.0
27.1
27.2
27.1
27.0
116
27.2
23.0
26.7
00480
SALINITY
PPTH
33.0
32.9
33.0
33.2
33.3
33.9
34.1
34.1
34.1
34.3
31.9
31.6
32.5
32.5
32.5
32.8
33.3
33.5
33.6
33.7
33.9
33.9
116
34.6
27.9
33.1
-------
APPENDIX B-2.4
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSi GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER! 1974
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER, 1974
10
•o
STATION - AB-02-0
ATLANTIC BCH-M OF HOMEHEAD AVE
DATE TIME
740917 1830
740917 1831
740917 1832
740917 1833
740917 1834
740917 1835
740917 1836
740917 1837
740917 1838
740917 1839
740917 1840
740917 2040
740917 2041
740917 2042
740917 2043
740917 2044
740917 2045
740917 2046
740917 2047
740917 2048
740917 2049
740917 2400
740916 0001
740918 0002
740918 0003
740918 0004
740918 0005
740918 0006
740918 0007
740918 0008
740918 0009
740916 0010
740916 0310
740918 0311
740916 0312
740918 0313
740918 0314
740918 0315
740916 0316
740918 0317
740918 0622
740918 0623
740918 0624
740918 0625
740918 0626
740918 0627
740918 0628
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
9
10
11
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
10
11
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
00299
DO
PROBE
M6/L
6.7
7.1
7.5
6.0
5.6
3.3
2.9
2.1
1.9
1.6
1.2
6.8
7.1
7.0
5.8
5.2
4.8
4.2
3.2
3.1
1.9
7.5
7.2
6.6
5.3
5.5
5.4
4.5
2.7
2.1
1.9
1.7
6.3
5.0
4.6
4.2
3.8
2.3
1.0
0.1
6.6
5.8
5.2
4.2
3.8
3.1
2.4
00010
WATER
TEMP
CENT
26.8
26.8
26.6
26.9
26.9
26.8
26.8
26.8
26.8
26.9
26.9
26.1
26.3
26.5
26.5
26.5
26.5
26.S
26. 7
26.7
27.0
26.1
26.2
26.3
26.3
26.3
26.0
26.4
26.5
26.8
26.7
26.7
25.6
26.5
26.4
26.5
26.7
26.7
26.8
26.8
25.4
25.3
26.0
26.1
26.1
26.2
26.4
00480
SALINITY
PPTH
30.8
30.8
31.3
31.3
32.8
32.8
33.3
33.3
34.1
34.1
34.1
30.7
30.7
32.5
32.5
32.9
32.9
33.5
33.5
33.5
33.5
31.0
31.2
31.7
32.9
33.1
33.1
33.3
33.7
33.8
33.8
33.8
30.7
32.6
33.1
33.4
33.8
33.8
34.0
34.3
31.7
3). 4
33.1
33.4
33.4
33.6
33.9
STATION - AB-02-0
ATLANTIC BCH-W OF MOUEHEAD AVE
DATE TIME
740918 0629
740918 0630
740918 0631
740918 0935
740918 0936
740918 0937
740918 0938
740918 0939
740918 0940
740918 0941
740918 0942
740918 0943
740918 0944
740918 0945
740918 1340
740918 1341
740918 1342
740918 1343
740918 1344
740918 1345
740918 1346
740918 1347
740918 1348
740918 1349
740918 1350
740918 1530
740918 1531
740918 1532
740918 1533
740918 1534
740918 1535
740918 1536
740918 1537
740918 1538
740918 1539
740918 1540
740918 1750
740918 1751
740918 1752
740918 1753
740918 1754
740918 1755
740918 1756
740918 1757
740918 175*
740918 1759
740918 1600
740917
NUM6EH
MAXIMUM
MINIMUM
HEM
74(19] fl
00003
DEPTH
FEET
8
9
10
1
2
3
4
5
6
7
8
9
10
11
1
2
3
4
5
6
7
a
9
10
11
1
2
3
*
5
6
7
8
9
10
11
1
2
3
4
5
6
7
a
9
10
11
1)0299
DO
PHObE
MG/L
1.8
1.1
0.7
4.7
4.6
4.2
4.0
3.8
3.4
2.9
2.4
2.1
1.9
1.9
8.1
7.3
6.2
5.4
5.5
4.5
3.2
2.5
1.
0.
0.
9.
9.
8.3
7.0
S.8
4.8
2.4
1.4
0.9
0.6
0.2
11.7
9.6
8.7
7.0
4.8
2.7
1.8
1.1
0.6
0.2
0.2
94
11.7
0.1
4.J
00010
HATER
TEMP
CENT
26.5
26.5
26.6
25.0
25.7
25.7
25. S
2S.5
25.7
25.5
25.6
25.7
25.8
25.7
26.9
26.7
26.3
26.0
25.6
25.4
25.5
25.9
26.7
26.8
26.8
27.1
26.6
26.5
26.1
25.7
25.3
25.6
26.1
26.4
26.5
26.6
27.0
27.1
26.5
26.3
26.0
25.9
26.1
26.3
26.5
26.6
26.8
94
27.1
25.0
db.3
00*80
SALINITY
PPTH
33.9
34.1
34.3
31.3
31.7
31.8
32.3
32.4
32.7
32.8
33.2
33.3
33.2
33.4
31.6
32.0
32.3
32.6
32.5
32.8
32.9
32.2
33.7
33.8
33.8
31.6
32.4
32.5
32.5
32.4
32.6
33.0
33.4
33.7
33.4
33.7
31.8
31.6
32.4
32.7
32.4
32.6
32.9
33.2
33.3
33.5
32.0
94
34.3
30.7
32.8
-------
APPENDIX B-2.4
NJ
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER. 1974
STATION - AB-03-0
ATLANTIC bCM-N OF FT MACON BLVD
DATE TIME
740917 1820
740917 1821
740917 1822
740917 1623
740917 1824
740917 1825
740917 1826
740917 2030
740917 2031
740917 2U32
740917 2033
740917 2034
740917 2035
740917 2036
740918 0015
740918 0016
740918 0017
740918 0018
740918 0019
740918 0020
740918 0021
740918 0320
740918 0321
740918 0322
740918 0323
740918 0324
740918 0325
740918 0326
740918 0635
740918 0636
740918 0637
740918 0638
740918 0639
740918 0640
740918 0955
740918 0956
740918 0957
740918 0958
740918 0959
740918 1000
740918 1001
740918 1002
740916 1330
740918 1331
740918 1332
740918 1333
740*18 1334
00003
DEPTH
FEET
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
4
5
6
7
1
2
3
4
5
6
V
1
2
3
4
5
6
1
2
3
4
5
6
7
8
1
2
3
4
5
P0299
DO
PRObE
MG/L
5.2
4.6
4.5
4.4
4.3
3.8
3.6
5.8
5.8
5.8
5.7
5.7
5.5
5.4
6.6
6.4
5.8
5.8
5.7
4.6
3.7
7.1
6.0
5.6
5.3
4.5
2.6
1.9
5.1
4.9
4.6
4.7
4.7
4.6
4.2
4.2
4.2
4.0
4.0
4.0
4.0
3.9
7.0
6.9
6.6
6.4
6.0
00010
WATER
TEMP
CENT
26.1
26.3
26.3
26.3
26.3
26.3
26.3
26.2
26.2
26.2
26.2
26.2
26.2
26.2
25.8
26.3
26.3
26.3
26.2
26.2
26.5
26.1
26.3
26.3
26.3
26.3
26.3
26.5
25.3
25.3
25.3
25.2
25.2
25.2
24.7
24.7
24.7
24.8
24.7
24.6
24.6
24.6
26.7
26.7
26.0
25.6
25.6
00480
SALINITY
PPTH
31.4
31.4
32.7
32.7
32.8
32.8
33.4
32.1
32.1
33.0
33.0
33.0
33.0
33.1
31.6
32.2
32.7
32.9
33.0
33.2
33.7
31.8
32.1
32.9
33.0
33.3
33.1
33.5
32.5
32.5
33.0
33. U
33.0
33.0
32.0
31.9
32.0
32.0
32.7
32.7
32.6
32.7
32.1
32.1
32.3
32.4
32.5
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEOKGIA
FINGER FILL CANAL STUDY SEPTEMBER. 1974
STATION - AB-03-0
ATLANTIC 8CH-N OF FT MACON dLVD
DATE TIME
7*0916 1335
740918 1336
740918 1540
740918 1541
740918 1542
740918 1543
740918 1544
740918 1545
740918 1805
740918 1606
740918 1807
740918 1808
740918 1809
740918 1810
740917
NUMBER
MAXIMUM
MINIMUM
MEAN
740918
00003
DEPTH
FEET
6
7
1
2
3
4
5
6
1
2
3
4
5
6
00299
DO
PROUE
MG/L
4.9
5.3
8.4
8.5
8.1
6.9
5.6
4.5
9.0
8.4
8.2
7.2
6.8
6.3
61
9.0
1.9
5.5
00010
WATER
TEMP
CENT
25.3
25.0
27.8
27.5
27.5
26.4
25.2
25. j
27.3
26.8
26.7
26.5
25. 9
25.6
61
27.8
24.6
26.0
004SO
SALINITY
PPTH
32.6
32. 8
31.7
31.9
31.9
32.1
32.5
32.5
31.0
31.7
32.2
32.2
32.5
32.5
61
33.7
31. a
32.5
-------
APPENDIX B-2.4
. ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AMD ANALYSIS DIVISION ATHENS. GEOP6IA
FINGER FILL CANAL STUDY SEPTEMBER. 1974
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER. 1»7*
o
w
STATION - AB-04-D
ATLANTIC 8CH-NH CANAL DEAD END
DATE TIME
7*0917 1730
740917 1731
740917 1732
740917 1733
740917 1734
740917 1735
740917 1736
740917 1737
740917 1738
740917 1739
740917 1740
740917 1940
740917 1941
740917 1942
740917 1943
740917 1944
740917 1945
7409.17 1946
740917 1947
740917 1948
740917 1949
740917 19SO
740917 1951
740918 0030
740918 0031
740918 0032
740918 0033
740918 0034
740918 0035
740918 0036
740918 0037
740918 0038
740918 0039
740918 0040
740918 0335
740918 0336
740918 0337
740918 0338
740918 0339
740918 0340
740918 0341
740918 0342
740918 0343
740918 0344
740918 0710
740918 0711
740918 0712
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
9
10
11
1
2
3
4
5
6
7
8
9
10
11
12
1
2
3
4
5
6
7
a
9
10
11
1
2
3
4
S
6
7
8
9
10
1
2
3
00299
00
PROBE
MG/L
8.4
7.6
6.7
6.2
5.0
*.
4.
3.
1.
1.
0.
7.
6.
6.
5.7
5.5
4.6
4.0
3.8
4.2
3.2
1.8
1.6
7.3
6.6
5.7
5.6
5.5
5.5
5.6
5.1
4.1
3.2
1.9
7.0
6.1
5.4
5.4
5.7
5.1
4.3
3.1
1.7
0.0
5.9
5.6
5.4
00010
HATER
TEMP
CENT
26.
26.
26.
26.
26.
26.9
26.7
26.7
26.7
26.7
26.9
27.4
27.0
27.0
27.1
27.1
27.1
27.1
27.0
27.0
26.8
26. B
26.9
26.1
26.7
26.6
26.7
26.5
26.5
26.7
27.0
27.0
26.9
27.1
23.1
26.4
26.6
26.7
27.0
27.0
26.9
27.0
26.9
26.9
25.1
25.7
26.3
00480
SALINITY
PPTH
28.6
31.7
33.1
33.3
33.3
33.6
33.6
34.1
34.1
34.4
34.4
29.4
29.4
32:2
32.2
33.4
33.4
33.7
33.7
33.7
33.7
34.1
34.1
27.9
32.4
32.5
33.1
32.9
33.2
33.3
33.4
33.6
33.7
34.2
25.2
31.0
32.7
33.0
33.4
33.5
33.6
33.7
34.2
34.5
29.4
30.4
31.6
STATION - AB-04-0
ATLANTIC BCH-HR CANAL DEAD END
DATE TIME
740918 0713
740918 0714
740*18 0715
740918 0716
740918 0717
740918 0718
740918 0719
740918 0720
740918 1010
740918 1011
740918 1012
740918 1013
740918 1014
740918 1015
740918 1016
740918 1017
740918 1016
740918 1019
740918 1020
740918 1021
740918 1022
740918 1240
740918 1241
740918 1242
740918 1243
74091B 1244
740918 1245
740918 1246
740918 1247
740918 1248
740918 1249
740918 1250
740918 1550
740918 ISbl
740918 1552
740918 1553
740918 1554
740918 1555
740918 1556
740918 1557
740918 1558
740918 1559
740918 1810
74091B 181 1
740918 1812
740918 1813
740918 1814
74*918 IMS
740918 1816
740918 1817
740918 1818
740917
NuMdER
MAX I MOM
MINIMUM
MEAN
741)918
00003
DEPTH
FEET
4
5
6
7
8
9
10
11
1
2
3
4
5
6
7
8
9
10
11
12
13
1
2
3
4
5
6
7
8
9
10
11
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
00299
00
PROBE
MG/L
5.3
5.1
5.0
5.0
4.6
3.7
2.8
1.8
4.4
4.1
4.0
4.0
3.9
3.8
3.6
3.1
1.6
1.5
1.2
0.5
0.0
6.0
5.4
5.2
4.4
4.3
*.3
4.3
4.0
3.0
2.1
1.5
7.8
7.2
1.1
5.8
5.0
4.4
3.5
2.2
1.4
0.2
8.7
8.3
6.7
5.8
4.7
4.1
3.4
2.6
2.2
98
a. 7
0.0
4.3
00010
HATER
TEMP
CENT
26.5
26.5
26.5
26.6
26.6
26.7
26.7
26.7
26.5
26.6
26.6
26.6
26.4
26.3
26. J
26.6
26.5
26.5
26.5
26.6
26.6
27.4
27.5
27.5
26.9
26.2
26.1
26.1
26.3
26.4
26.9
26.9
28.1
27.5
27.1
26.6
26.6
26.5
26.3
26.6
26.8
27.0
27.7
27.9
27.5
26.9
26.6
26.4
26.4
26.4
26.6
98
28.1
23.1
26.7
00480
SALINITY
PPTH
32.6
33.0
33.4
33.*
33.4
33.6
33.8
33.9
32.9
33.1
33.1
33.2
33. 2
33.2
33.2
33.2
33.4
33.8
33.8
33.4
34.2
31.3
33.1
33.1
33.3
33.0
33. b
33.0
33.3
33.4
33.4
33.8
31. 0
31.1
32.6
32.6
33.1
33.1
33.0
33.5
33.5
33.8
29.9
30. £
32.1
32.7
32.8
J2.8
32.9
33.1
33.3
98
J4.S
25.2
J2.B
-------
APPENDIX B-2.4
ENVIRONMENTAL PROTECTION AGENCT RttilON IV
SU-VEILLANCE AND ANALYSIS DIVISION ATHtNS. GEORGIA
FINGtH FILL CANAL STUDY SEPTEMBER. 117*
ENVI*ONMENT»L PHOTtCTIOM AGENCY NtblUN IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, flfOBGU
FINGEH FILL CAN4L STUDY SEPTtMHEP. 1'.7*
\O
STATION - At—l;5-U
ATLANTIC HCH-N OF FT 1ACON 8LVO
UATt I I ME
7*0917 1750
7*0917 1751
7*1*17 175?
7*0917 1753
7*0917- 175*
7*0917 1755
7*0917 1756
7*0917 1757
7*0917 1758
7*0917 1955
7*0917 1956
7*0*17 1957
7*0917 195M
7*0917 1959
7*0917 2000
7*0917 2001
7*0917 2002
7*0917 2003
7*0wl7 200*
7*0918 00*5
7*0918 0046
7*0918 00*7
7*0918 00*8
7*0918 00*9
7*0918 0050
7*0918 0051
7*0918 0052
7*0918 0053
7*0918 005*
7*0918 03*5
7*09lH 03*6
7*0918 03*7
7*0918 03*6
7*0*18 03*9
7*0918 0350
7*0918 0351
7*0918 0352
7*0918 OJS3
7*0918 035*
7*0918 0730
7*0918 0731
7*0918 0732
7*0918 0733
7*0918 073*
7*0918 0735
7*0vl8 0736
7*0918 0737
7*0918 0738
7*0918 0739
7*0*10 1025
7*0*18 11)26
7*091H 1U27
7*0918 1026
7*0918 1029
7*0918 1J30
00003
DEPTH
FEET
1
2
3
*
5
6
7
a
9
i
2
3
*
5
6
7
8
9
10
1
2
3
*
5
6
7
8
26.8
26.1
25.5
25.4
25.3
27.5
27.2
26.6
26.6
26.3
26.1
25.8
25.6
84
27.7
24.1
26.2
-------
APPENDIX B-2.4
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER! 197*
10
-------
to
to
APPENDIX B-2.4
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY SEPTEMBERt 1974
STATION - AB-07-0
ATLANTIC BCH-h OF MOREHEAD AVE
DATE TIME
740917 1801
740917 1802
740V17 1803
740917 1804
740917 2010
740917 2011
740917 2012
740917 2013
740918 011S
740918 0116
740918 0117
740918 0118
740918 0415
740918 0416
740918 0417
740918 0742
740918 0743
740918 0744
740918 0745
740918 1045
740918 1046
740916 1047
740918 1048
740918 1049
740918 1305
740918 1306
740918 1307
740918 1308
740918 1309
740918 1615
740918 1616
740918 1617
740918 1618
740918 1835
740918 1836
740918 1837
740918 1838
740917
NUMBER
MAXIMUM
MINIMUM
MEAN
7*0918
00003
DEPTH
FEET
1
2
3
*
1
2
3
4
1
2
3
4
1
2
3
1
2
3
4
1
2
3
4
5
1
2
3
4
5
1
2
3
4
1
2
3
4
00299
00
PROBE
M6/L
6.1
6.1
6.1
6.1
6.3
6.3
6.3
6.2
6.0
6.0
6.0
6.0
5.8
S.8
5.8
5.8
5.7
5.8
5.8
5.0
4.8
4.8
4.8
4.8
6.3
6.3
6.3
6.3
6.3
7.5
7.6
7.5
7.5
7.4
7.2
7.2
7.1
37
7.6
4.8
6.2
00010
MATER •
TEMP
CENT
26.3
26.3
26.3
26.3
26.4
26.4
26.4
26.4
26.3
26.2
26.4
26.3
25.4
25.4
25.4
24. a
24.8
24.8
24.8
26.2
26.0
26.0
26.1
26. 0
26.4
26.6
26.6
£6.6
2b.6
26.7
26.7
2t».7
26.7
26.2
26.2
26.2
26.2
37
26.7
24.8
26.1
00480
SALINITY
PPTH
32.9
32.9
32.9
33.1
34.1
34.1
34.1
J4.1
36.5
J6.5
36.3
36.3
33.6
33.6
33.5
33.3
33.5
33.5
33.5
36.8
36.5
36.5
36.5
36.5
35.4
36. 0
36.3
36.6
36.6
34.4
- 34.0
34.0
34. 0
32.2
32.2
32.3
32.3
37
36.8
32.2
34.5
-------
APPENDIX B-2.4
10
o
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER, 1974
STATION - AB-08-D
ATLANTIC 8CH-N OF FT MACON BLVD
DATE TIME
740919 1130
740919 1121
740919 1122
740919 1123
740919 1124
740919 1125
740919 1710
740919 1711
740919 1712
740919 2350
740919 2351
740919 2352
740919 2353
740919 2354
740919 2355
740920 0600
740920 0601
740920 0602
740920 0603
740920 1225
740920 1226
740920 1227
740920 1228
740920 1229
740919
NUMBER
MAXIMUM
MINIMUM
MEAN
740920
00003
DEPTH
FEET
1
2
3
4
5
6
1
2
3
1
2
3
4
5
6
1
2
3
4
1
2
3
4
5
00299
DO
PROBE
MG/L
6.5
6.4
6.4
6.3
6.3
6.3
8.0
7.9
7.8
6.9
6.9
6.9
6.9
6.8
6.7
6.5
6.5
6.5
6.4
6.6
6.2
6.4
6.4
6.4
24
8.0
6.2
6.7
00010
WATER
TEMP
CENT
26.2
26.2
26.1
26.0
26.1
26.1
27.2
27.2
27.2
26.7
26.7
26.5
26.5
26.5
26.5
26.0
26.0
26.0
26.0
27.0
27.0
27.0
27.0
23
27.2
26.0
26.5
00480
SALINITY
PPTH
35.3
35.6
35.6
35.7
35.8
35.8
33.9
33.8
33.7
35.0
35.0
35.0
35.0
35.0
35.0
31.7
31.6
31.5
31.6
35.6
35.7
35.9
35.8
23
35.9
31.5
34.5
-------
APPENDIX B-2.4
N3
VO
00
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY SEPTEMBERt 1974
STATION - AB-09-0
ATLANTIC BCH-N OF FT MACON 8LVD
DATE TIME
740919 1128
740919 1129
740919 1130
740919 1131
740919 1132
740919 1133
740919 1650
740919 1651
740919 1652
740919 2400
740920 0001
740920 0002
740920 0003
740920 0004
740920 0005
740920 0006
740920 0630
740920 0631
740920 0632
740920 1200
740920 1201
740920 1202
740920 1203
740920 1204
740920 1205
740919
NUMBER
MAXIMUM
MINIMUM
MEAN
740920
00003
DEPTH
FEET
1
2
3
4
5
6
1
2
3
1
2
3
4
5
6
7
1
2
3
1
2
3
4
5
6
00299
DO
PROBE
MG/L
5.5
5.6
5.4
5.1
5.0
4.7
7.4
7.2
6.7
5.9
6.0
6.0
5.9
5.7
5.7
4.8
6.5
6.3
6.3
5.8
5.8
5.6
5.3
5.0
4.7
25
7.4
4.7
5.8
00010
WATER
TEMP
CENT
25.5
25.0
25.0
24.8
24.6
24.7
26.6
25.9
25.5
26.2
26.2
26.2
26.2
26.2
26.2
26.2
25.7
25.8
25.8
27.2
27. 0
26.5
26.4
26.0
26.0
25
27.2
24.6
25.9
00480
SALINITY
PPTH
33.4
33.4
33.4
33.4
33.4
33.4
33.7
33.7
33.5
33.8
33.8
33.8
33.8
33.8
33.8
33.4
31.8
31.8
31.7
33.4
33.8
33.7
33.8
33.9
33.7
25
33.9
31.7
33.4
-------
APPENDIX B-2.4
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER* 1974
10
•o
«0
STATION - AB-10-0
ATLANTIC BCH-N OF FT HACON BLVO
DATE TIME
740919 1140
740919 1141
740919 1142
740919 1143
740919 1144
740919 1145
740919 1146
740919 1147
740919 1700
740919 1701
740919 1702
740919 1703
740919 1704
740919 1705
740920 0015
740920 0016
740920 0017
740920 0018
740920 0019
740920 0020
740920 0021
740920 0022
740920 0640
740920 0641
740920 0642
740920 0643
740920 0644
740920 0645
740920 0646
740920 0647
740920 1215
740920 1216
740920 1217
740920 1216
740920 1219
740920 1220
740919
NUMBER
MAXIMUM
MINIMUM
MEAN
740920
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
1
2
3
4
5
6
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
00299
DO
PROSE
MG/L
6.0
6.0
6.0
6*0
6.0
6.0
6.0
6.0
7.4
7.4
7.2
6.9
6.9
6.4
6.5
6.5
6.4
6.3
6.2
6.1
5.8
5.8
5.4
5.6
5.4
5.5
5.4
5.0
5.0
4.9
6.4
6.3
6.2
6.2
6.2
6.2
36
7.4
4.9
6.1
00010
HATER
TEMP
CENT
2s. 6
25.6
25.6
25.6
25.5
25.5
25.6
25.5
28.4
28.5
28.0
27.8
27.2
27.0
26.4
26.4
26.4
26.4
26.4
26.3
26.3
26.3
25.5
25.5
25.5
25.6
25.5
25.5
25.4
25.5
27.2
27.1
26.8
26.8
26.7
26.6
36
28.5
25.4
26.3
00480
SALINITY
PPTH
33.4
33.4
33.4
33.4
33.4
33.4
33.4
33.3
33.2
33.6
33.6
33.6
34. 0
34.2
33.9
33.9
33.9
33.9
33.9
33.9
33.9
33.9
31.4
31.8
31.8
31.8
31.8
31.8
31.6
31.8
33.4
33.7
33.8
33.6
33.7
33.5
36
34.2
31.4
33.2
-------
APPENDIX B-2.5
o
o
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER. 1974
STATION - SC-01-D
SPOONER CR-S OF N.C. HWY 24
DATE TIME
740933 2030
740923 2031
740923 2032
740923 2033
740923 2034
740923 2035
740923 2036
740923 2037
740924 0215
740924 0216
740924 0217
740924 0218
740924 0219
740924 0220
740924 0850
740924 0851
740924 0852
740924 0853
740924 0854
740924 0855
740924 1515
740924 1516
740924 1517
740924 1518
740924 1519
740923
NUMBEH
MAXIMUM
MINIMUM
MEAN
740924
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
00299
DO
PROBE
MG/L
5.7
5.6
5.5
5.1
4.9
4.9
4.9
4.5
4.8
4.8
4.8
4.9
5.1
5.1
5.2
5.1
5.9
5.0
5.3
5.8
7.2
6.5
6.0
5.7
5.6
25
7.2
4.5
5.4
00010
WATER
TEMP
CENT
23.1
24.3
24.5
24.5
24.4
24.4
24.1
24.1
23.0
23.4
23.9
23.7
24.0
23.6
22.1
22.0
22.0
23.2
23.2
23.2
23.5
23.2
23.1
23.1
23.2
25
24.5
22.0
23.5
00460
SALINITY
PPTH
30.7
31.9
31.9
32.0
32.0
32.2
32.2
32.3
31.7
31.8
32.3
32.3
32.3
32.6
32.2
32.4
32.0
33.3
33.4
29.9
33.0
33.2
33.6
33.8
33.4
25
33.0
29.9
. 32.3
-------
APPENDIX B-2.5
CO
o
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY SEPTEMBERt 1974
STATION - SC-02-D
SPOONER CR-S OF N.C. HKY 24
DATE TIME
740923 2130
740923 2131
740923 2132
740923 2133
740923 2134
740923 2135
740924 0230
740924 0231
740924 0232
740924 0233
740924 0234
740924 0900
740924 0901
740924 0902
740924 0903
740924 0904
740924 1535
740924 Ib36
740924 1537
740924 1538
740924 1539
740924 1540
740923
NUMBER
MAXIMUM
MINIMUM
MEAN
740924
00003
DEPTH
FEET
1
I
3
4
5
6
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
6
00299
DO
PRObE
MG/L
6.2
5.9
5.8
5.4
5.0
5.0
5.0
4.9
4.6
4.6
4.6
5.7
5.6
5.4
4.8
5.2
6.3
6.3
6.2
6.2
6.0
4.8
22
6.3
4.6
5.4
00010
WATER
TEMP
CENT
23.1
24.1
24.1
24.1
^ ^ • *
24.2
24.2
21.7
22.7
b» ^ 9 t
23.2
22.7
24.0
21.1
21.1
21.7
23.4
23.5
23.8
23.6
23.6
23.6
22.9
23.5
22
24.2
21.1
23.2
00480
SALINITY
PPTH
30.5
31.7
32.2
32.2
•Jfc . C.
32.2
32.3
30.8
31 9
•J A . ~
31.9
31.9
32.9
31.3
31.2
32.0
w b • V
33.3
33.6
32.3
32.3
32.6
32.8
32.9
32.8
22
fe W
33.6
30.5
32.2
wfc 9 ••
-------
APPENDIX B-2.5
o
to
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER* 1974
STATION - SC-03-D
SPOONER CR-E OF HARBOR DRIVE
DATE TIME
740923 2145
740923 2146
740923 2147
740923 2148
740923 2149
740924 0240
740924 0241
740924 0242
740924 0243
74Q924 0913
740924 0914
740924 0915
740924 0926
740924 1550
740924 1551
740924 1552
740924 1553
740924 1554
740923
NUMBED
MAXIMUM
MINIMUM
N'EAN
00003
DEPTH
FEET
1
2
3
4
5
1
2
3
4
1
2
3
4
1
2
3
4
5
18
5
1
3
00299
DO
PROBE
MG/L
5.4
5.2
5.2
4.9
4.5
4.2
4.2
3.7
4.4
5.3
4.9
5.3
5.0
7.0
6.9
7.0
6.9
6.8
18
7.0
3. 7
5.4
00010
WATER
TEMP
CENT
24.0
24.1
24.4
24.4
24.7
22.9
23.0
24.5
24.6
23.4
23.9
23.5
23.5
24.2
24.3
24.3
24.1
24.0
18
24.7
22.9
24.0
00480
SALINITY
PPTH
32.2
32.6
33.6
32.9
32.9
32.4
32.2
32.2
32.6
32.6
33.8
33.6
33.6
33.2
33.2
33.4
33.5
33.5
18
33.8
32.2
32.9
740924
-------
APPENDIX B-2.5
u
O
CO
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER* 1974
STATION - SC-04-0
SPOOLER CH-E OF HARBOR DRIVE
DATE TIME
740923 2150
740923 2151
740923 2152
740923 2153
740923 2154
740923 2155
740923 2156
740923 2157
740924 0250
740924 0251
740924 0252
740924 0253
740924 0254
740924 0255
740924 0256
740924 0257
740924 0935
740924 0936
740924 0937
740924 0938
740924 0939
740924 0940
740924 0941
740924 0942
740924 1600
740924 1601
740924 1602
740924 1603
740924 1604
740924 1605
740924 1606
740924 1607
740923
NUMBER
MAXIMUM
MINIMUM
MEAN
740924
00003
DEPTH
FEET
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
a
i
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
00299
DO
PROBE
MG/L
6.5
6.4
6.4
6.4
6.4
6.3
6.3
6.3
5.9
5.9
6.0
5.9
5.8
5.6
5.3
5.2
6.0
5.9
5.9
5.8
5.5
5.4
5.3
5.3
6.5
6.5
6.8
7.0
7.0
7.0
7.1
7.1
32
7.1
5.2
6.1
00010
WATER
TEMP
CENT
23.6
23.6
23.8
23.8
23.8
23.8
23.5
23.5
22.3
22.3
22.3
22.2
22.2
21.6
21.0
21.0
21.0
21.3
21.3
21.4
21.3
21.1
20.8
20.8
22.4
22.4
22.5
22.7
22.7
22.7
22.4
22.0
32
23.8
20.8
22.3
00480
SALINITY
PPTH
31.7
32.0
32.0
32.2
32.2
34.1
34.1
34.2
31.7
31.9
31.9
31.9
32.0
32.0
32.6
32.8
32.5
32.2
32.2
32.2
23.9
32.8
33.4
33.4
32.1
32.6
33.0
33.2
33.4
33.5
33.7
34.0
32
34.2
23.9
32.4
-------
APPENDIX B-2.5
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY SEPTEMBERt 1974
STATION - SC-05-D
SPOONER CR-NR INTRACOSTL WATRWAY
DATE TIME
740923 2200
740923 2201
740923 2202
740923 2203
740924 0305
740924 0306
740924 0307
740924 0308
740924 0945
740924 0946
740924 0947
740924 0948
740924 1615
740924 1616
740924 1617
740924 1618
740923
NUMBER
MAXIMUM
MINIMUM
MEAN
740924
00003
DEPTH
FEET
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
00299
DO
PROBE
MG/L
6.8
6.8
6.8
6.7
6.3
6.3
6.3
6.4
6.6
6.6
6.5
6.5
7.3
7.3
7.2
7.2
16
7.3
6.3
6.7
00010
WATER
TEMP
CENT
22.6
22.6
23.0
23.0
22.1
22.2
22.2
22.2
20.9
20.9
20.9
20.9
22.2
22*0
22.0
22.0
16
23.0
20.9
22.0
00480
SALINITY
PPTH
33.8
33.8
33.8
33.9
33.8
33.7
33.9
33.9
33.0
33.0
33.0
33.0
34.7
34.5
34.4
34.4
16
34.7
33.0
33.8
-------
APPENDIX B-2.5
w
O
Cn
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER, 1974
STATION - SC-06-D
SPOONER CH-E OF HARBOR DRIVE
DATE TIME
740923 2215
740923 2216
740923 2217
740923 2218
740923 2219
740923 2220
740923 2221
740924 0315
740924 0316
740924 0317
740924 0318
740924 0319
740924 0320
740924 0321
740924 0322
740924 0323
740924 0925
740924 0926
740924 0927
740924 0928
740924 0929
740924 0930
740924 0931
740924 0932
740924 1620
740924 1621
740924 1622
740924 1623
740924 1624
740924 1625
740924 1626
740924 1627
740923
NUMBER
MAXIMUM
MINIMUM
MEAN
740924
00003
DEPTH
FEET
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
00299
00
PROtiE
MG/L
6.5
6.5
to. 5
6.4
6.4
6.4
6.3
5.7
5.7
5.7
5.7
5.8
5.7
5.6
5.5
5.2
5.8
5.8
5.7
5.7
5.7
5.6
5.4
5.4
7.4
7.3
7.0
6.9
6.8
6.9
6.8
6.8
32
7.4
5.2
6.1
00010
WATER
TEMP
CENT
23.4
23.4
23.4
23.7
23.7
23.8
23.8
22. o
22.0
22.0
22.0
22.3
22.3
23.0
21.3
21.1
21.5
21.5
21.6
21.5
21.6
21.6
21.3
21 -.4
22.4
22.5
22.5
22.5
22.3
22.3
22.2
22.2
32
23.8
21.1
22.3
00480
SALINITY
PPTH
32.0
32.0
32.0
32.0
32.2
32.2
34.1
32.3
31.9
31.9
31.9
31.9
32.0
32.1
32.3
32.7
32.3
32.2
32.3
32.3
32.2
32.2
33.8
34.0
32.3
32.3
32.3
32.3
32.5
32.5
33.2
33.6
32
34.1
31.9
32.4
-------
APPENDIX C
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
*ATER QUALITY DATA
PAGE PARAMETER
CO
o
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
00003
00299
00010
00480
00400
00310
00680
00530
00535
00610
00630
00625
00665
00745
01045
01051
01055
01092
31616
31501
00003
DESCRIPTION
SAMPLING STATION LOCATION* VERTICAL (FEET)
OXYGEN* DISSOLVED (ELECTRODE) (MG/L)
TEMPERATURE* WATER (DEGREES CENTIGRADE)
SALINITY - PARTS PER THOUSAND
PH (STANDARD UNITS)
BIOCHEMICAL OXYGEN DEMAND (MG/L, 5 DAY - 20.DEG C)
CARBON, TOTAL ORGANIC (MG/L AS C)
RESIDUE, TOTAL NONFILTRABLE (MG/L)
RESIDUE, VOLATILE NONFILTRABLE (MG/D
NITROGEN, AMMONIA, TOTAL (MG/L AS N)
NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N)
NITROGEN, KJELDAHL* TOTAL, WG/L AS N)
PHOSPHORUS, TOTAL (MG/L AS P)
SULFIDE, TOTAL (MG/L AS S)
IRON, TOTAL (UG/L AS FE)
LEAD, TOTAL (UG/L AS PB)
MANGANESE, TOTAL (UG/L AS MN)
ZINC, TOTAL (UG/L AS ZN)
FECAL COLIFORM,MEMBR FILTER,M-FC BROTH,44.5 C
COLIFORM,TOT,MEMBRANE FILTER,IMMED.M-ENDO MED,35C
DEPTH IN FEET
-------
APPENDIX C
PAGt PARAMETER
w
o
Nl
1
1
i
1
1
1
1
I
I
3
00003
00680
00610
00630
0062b
00665
00b30
00b3b
00003
00400
ENVIRONMENTAL PROTECTION AGENCY HtGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGER FILL CANAL STUDY AUGUST 1V/4
DESCRIPTION
SAMPLING STATION LOCATION, VERTICAL
CARdON, TOTAL ORGANIC (MG/L AS C)
NITROGEN, AMMONIA, TOTAL (MG/L AS N)
NITRITE PLUS NITRATE, TOTAL i DEI. (MG/L AS N)
NITROGEN, KJELUAML, TOTAL, (MG/L AS N)
PHOSPnORUS, TOTAL (MG/L AS P)
RESIDUE, TOTAL NONFILTRABLE (MG/L)
RESIDUE, VOLATILE NONFILTRABLE (MG/L)
DEPTH IN FEET
Ph (STANDARD UNITS)
-------
APPENDIX C-l.l
o
00
STATION - PG-01
ENVIRONMENTAL PROTECTION AOENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
HATER QUALITY DATA
PUNTA GORDA 50' FRM END CANAL «1 PEACE RIVER
FINGER FILL CANAL STUDY
DATE TIME
731111 0120
731111 0850
731112 0150
731112 1025
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
DATE TIME
731111 0120
731111 0850
731112 0150
731112 1025
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
DATE TIME
731111 0120
731111 0120
731111 0850
731111 0850
731112 0150
731112 0150
731112 1025
731112 1025
731111
NIM9EB
MAXIMUM
MINIMUM
MEAN
LOG MtAN
731112
00003
DEPTH
FEET
5
2
4
3
00003
DEPTH
FEET
5
2
4
3
00003
DEPTH
FEET
1
5
1
2
1
4
1
3
00299
DO
PROBE
HG/L
5.4
5.0
5.7
5.8
4
5.8
5.0
5.5
5.5
00535
RESIDUE
VOL NFLT
MG/L
22
29
20
15
4
29
15
22
21
01045
IRON
FE»TOT
UG/L
160
250
220
200
4
250
160
20K
2HS
00010
WATER
TEMP
CENT
23.4
22.3
21.6
21.6
4
23.4
22.2
22.2
00610
NH3-N
TOTAL
MG/L
0.10
0.10
0.08
0.05
4
0.10
0.05
0.08
0.08
01051
LEAD
PBtTOT
UG/L
80K
80K
80K
80K
4
SDK
80K
00480
SALINITY
PPTH
28.4
28.3
28.5
28.2
4
28.5
28.2
28.3
28.3
00630
N02&N03
N-TOTAL
MG/L
0.010K
0.010K
0.010K
0.010K
4
0.010K
0.010K
01055
MANGNESE
MN
UG/L
40 K
40K
40K
40 K
4
40K
40K
00400
PH
SU
7.4
7.1
7.5
7.5
4
7.5
7.1
7.4
7.4
00625
TOT KJEL
N
MG/L
0.10
0.32
0.42
0.30
4
0.42
0.10
0.28
0.25
01092
ZINC
ZN.TOT
UG/L
230
70
40
40
.230
40
95
71
00310
BOO
5 DAY
MG/L
2.2
1.9
1.6
1.6
4
2.2
1.6
1.8
1.8
00665
PHOS-TOT
MG/L P
0.20
0.17
0.17
0.17
4
0.20
0.17
0.18
0.18
31616
FEC COL I
MFM-FC6R
/100ML
7K
7K
33
27
f.
33
7K
00680
T ORG C
C
MG/L
9.4
8.8
8.0
8.0
9.4
8.0
8.5
8.5
00745
SULFIOE
TOTAL
MG/L
LOOK
LOOK
LOOK
LOOK
/.
*+
LOOK
LOOK
31501
TOT COL I
MF I MEN DO
/100ML
200
760
1800
2100
2100
200
1215
871
00530
RESIDUE
TOT NFLT
MG/L
25
50
49
30
i.
**
50
25
39
37
-------
APPENDIX C-l.l
w
o
STATION - PG-02
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGEH FILL CANAL STUDY NOVEMBER 1973
HATER QUALITY DATA
PUNTA GORDA 1250« FM END CANAL*! PEACE RIVER
FINGER FILL CANAL STUDY
DATE TTME
731111 0150
731111 0905
731113 0210
731112 1035
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
DATE TIME
731111 0150
731111 0905
731112 0210
731112 1035
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
DATE TIME
73U11 0150
731111 0150
731111 0905
731111 0905
731112 0210
731112 0210
731112 1035
731112 1035
731111
NUMBED
MAXIMUM
MINIMUM
MEAN
1 OG MFAN
731112
00003
DEPTH
FEET
5
2
4
4
00003
DEPTH
FEET
5
2
4
4
00003
DEPTH
FEET
1
5
1
2
1
4
1
4
00299
DO
PROBE
MG/L
5.5
5.2
5.8
5.6
4
5.6
5.2
5.5
5.5
00535
RESIDUE
VOL NFLT
MG/L
22
38
22
21
4
38
21
26
25
01045
IRON
FE.TOT
UG/L
160
430
70
240
4
430
70
2?S
1»>4
00010
WATER
TEMP
CENT
23.3
22.6
21.6
21.4
4
23.3
21.4
22.2
22.2
00610
NH3-N
TOTAL
MG/L
O.OH
0.08
0.10
O.Ofl
4
0.10
o.oe
0.08
o.os
01051
LEAD
P6.TOT
UG/L
80K
80K
80K
80K
4
aoK
80K
00460
SALINITY
PPTH
28. 0
28.1
28.0
27.8
4
26.1
27.8
2B.O
28.0
00630
NO2&N03
N-TOTAL
MG/L
0.010K
0.0 lOf.
0.010K
0.010K
4
0.010K
0.010K
01055
MANGNESE
MN
UG/L
40K
40*
4QK
40K
4
40K
40 K
00400
PH
su
7.S
7.5
7.6
7.4
4
7.6
7.4
7.5
7.5
00625
TOT KJEL
N
MG/L
0.08
0.30
0.35
0.35
4
0.35
0.08
0.27
0.23
01092
ZINC
ZNiTOT
UG/L
100
30
20
30
4
100
20
45
37
00310
BOD
5 DAY
MG/L
1.5
1.6
1.3
1.2
4
1.6
1.2
1.4
1.4
00665
PHOS-TOT
MG/L P
0.15
0.22
0.25
0.14
4
0.25
0.14
0.19
0.16
31616
FEC COL I
MFM-FCBR
/100ML
20
7K
13
7K
4
?0
7K
00600
T ORG C
C
MG/L
9.4
9.4
7.5
7.5
4
9.4
7.5
8.4
B.4
00745
SULFIOE
TOTAL
MG/L
LOOK
LOOK
LOOK
LOOK
4
LOOK
LOOK
31501
TOT COL I
MFIMENOO
/100MI
500
300
800
3
800
JOO
533
493
00530
RESIDUE
TOT NFLT
MG/L
27
64
30
36
4
64
27
39
37
-------
APPENDIX C-l.l
u>
H*
O
STATION - PG-03
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATMENSt GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
WATER QUALITY DATA
PUNTA GOHDA 2500* FM END CANAL*! PEACE PIVER
FINGER FILL CANAL STUDY
DATE TIME
731111 0215
731111 0915
731112 0225
731112 1045
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
DATE TIME
731111 0215
731111 0915
731112 0225
731112 1045
731111
NUMBER
MAXIMUM
MINIMUM
KEAN
LOG MEAN
731112
DATE TIME
731111 0215
731111 0215
731111 0915
731111 0915
731112 0225
731112 0225
731112 1045
731112 1045
731111
NUMBER
MAXIMUM
MINIMUM
"FAN
LOG Mtr'AN
731113
00003
DEPTH
FEET
3
2
3
2
00003
DEPTH
FEET
3
2
3
2
00003
DEPTH
FEET
1
3
1
2
1
3
1
2
00299
00
PROSE
MG/L
5.4
5.4
5.8
6.1
4
6.1
5.4
5.7
5.7
00535
RESIDUE
VOL NFLT
MG/L
32
86
18
21
4
86
16
39
32
01045
IRON
FE.TOT
UG'/L
90
950
180
210
4
950'
90
15f>
?3fl
00010
WATER
TEMP
CENT
21.8
22.1
20.1
21.5
4
22.1
20.1
21.4
21.4
00610
NH3-N
TOTAL
MG/L
0.10
0.08
0.08
0.08
4
0.10
0.08
o-.oe
0.08
01051
LEAD
PB.TOT
UG/L
80K
80K
80K
80K
4
80K
80K
00480
SALINITY
PPTH
28.2
28.0
28.0
28.0
4
28.2
28.0
28.0
28.0
00630
N021N03
N-TOTAL
MG/L
0.030
0.010K
0.010K
0.010K
4
0.030
0.010K
01055
MANGNESE
MN
UG/L
40K
40 K
40 K
40K
4
40K
40K
00400
PH
SU
7.6
7.5
7.6
7.5
4
7.6
7.5
7.5
7.5
00625
TOT KJEL
N
MG/L
0.80
0.70
0.42
0.35
4
0.80
0.35
0.57
0.54
01092
ZINC
ZNtTOT
UG/L
30
40
20
30
4
40
20
30
~
00310
BOD
5 DAY
MG/L
1.1
1.3
2.4
0.9
4
2.4
0.9
1.4
1.3
00665
PHOS-TOT
MG/L P
0.14
0.12
0.21
0.19
0.21
0.12
0.16
0.16
31616
FEC COL I
MFM-FCBR
/100ML
7K
-!•»
J J
270
27
270
7K
00680
T ORG C
C
MG/L
9.2
9.4
8.1
7.5
9.4
7.5
8.5
8.5
00745
SULFIDE
TOTAL
MG/L
LOOK
LOOK
LOOK
LOOK
f.
LOOK
LOOK
31501
TOT COL I
MFIMENDO
/100ML
500
300
1200
200
<»
1200
200
550
436
00530
RESIDUE
TOT NFLT
MG/L
37
lie
43
40
118
37
60
52
-------
APPENDIX C-l.l
STATION - PG-04
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
HATER QUALITY DATA
CHARLOTTE HARBOR BACKGROUND STA. PEACE RIVER FINGER FILL CANAL STUDY
OATE TIME
731111 0230
731111 0940
731112 0240
731112 1105
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
DATE TIME
731111 0230
731111 0940
731112 0240
731112 1105
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
DATE TIME
731111 0230
731111 0230
731111 0940
731112 0240
731112 0240
731112 1105
731112 1105
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
00003
DEPTH
FEET
2
1
2
2
00003
DEPTH
FEET
2
1
2
2
00003
DEPTH
FEET
1
2
1
1
2
1
2
00299
DO
PROBE
MG/L
5.7
5.5
6.9
5.7
4
6.9
5.5
5.9
5.9
00535
RESIDUE
VOL NFLT
MG/L
22
36
18 .
15
^
36
15
23
22
01045
IRON
FE.TOT
UG/L
140
390
100
160
4
390
100
19P
172
00010
HATER
TEMP
CENT
22.6
21.1
20.8
20.9
4
22.6
20.8
21.3
21.3
00610
NH3-N
TOTAL
MG/L
O.OS
0.14
0.08
0.10
4
0.14
0.05
0.09
0.09
01051
LEAD
PB.TOT
UG/L
80K
BOK
80K
80K
4
dOK
80K
00480
SALINITY
PPTH
28.3
26.5
2B.2
26.6
4
26.3
26.5
27.4
27.4
00630
N02&N03
N-TOTAL
MG/L
0.010K
0.030
0.010K
0.030
4
0.030
0.010K
01055
MANGNESE
HN
UG/L
40K
40K
40 K
40K
4
40K
40K
00400
PH
SU
7.6
7.3
7.7
3
7.7
7.3
7.5
7.5
00625
TOT KJEL
N
MG/L
0.30
0.30
0.35
0.32
4
0.35
0.30
0.32
0.32
01092
ZINC
ZN.TOT
UG/L
40
30
30
30
4
40
30
33
32
00310
BOD
5 DAY
MG/L
1.2
0.8
2.0
0.7
4
2.0
0.7
1.2
1.1
00665
PHOS-TOT
MG/L P
0.19
0.16
0.17
0.13
4
0.19
0.13
0.16
0.16
31616
FEC COL I
MFM-FCBR
/100ML
20
40
7K
53
4
53
7K
00680
T ORG C
C
MG/L
8.0
9.4
8.0
7.4
4
9.4
7.4
8.2
8.2
00745
SULFIOE
TOTAL
MG/L
LOOK
LOOK
LOOK
LOOK
LOOK
LOOK
31501
TOT COL I
MFIMENDO
/100ML
300
170
55
600
4
600
55
261
203
00530
RF.SIDUE
TOT NFLT
MG/L
40
~\i
48
23
48
23
36
34
-------
APPENDIX C-l.l
STATION - PG-05
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSi GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
WATER QUALITY DATA
PUNTA GORDA 50• FRM END CANAL «2 PEACE RIVER
FINGER FILL CANAL STUDY
DATE TIME
731111 0300
731111 1010
731112 0320
731112 1145
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
DATE TIME
731111 0300
731111 1010
731112 0320
731112 1145
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
DATE TIME
731111 0300
731111 0300
731111 1010
731113 0320
731112 0320
731112 1145
731112 11*5
731111
NU«8EP
MAXIMUM
MINIMUM
MEAN
LOG MEfiN
73111?
00003
DEPTH
FEET
3
1
3
2
00003
DEPTH
FEET
3
1
3
2
00003
DEPTH
FEET
1
3
1
1
3
I
2
00299
00
PROBE
MG/L
3.8
4.4
4.5
5.3
4
5.3
3.6
4.5
4.5
00535
RESIDUE
VOL NFLT
MG/L
31
30
20
19
4
31
19
25
24
01045
IRON
FE.TOT
UG/L
360
380
140
220
4
380
140
275
255
00010
WATER
TEMP
CENT
23.3
22.7
21.9
22.3
4
23.3
21.9
22.5
22.5
00610
NH3-N
TOTAL
MG/L
0.14
0.20
0.22
0.14
4
0.22
0.14
0.17
0.17
01051
LEAD
PBtTOT
UG/L
80K
80K
80K
SDK
4
80K
80K
00480
SALINITY
PPTH
28.2
28.0
27.8
27.6
4
28.2
27.6
27.9
27.9
00630
N02&N03
N-TOTAL
MG/L
0.050
0.040
0.050
0.030
4
0.050
0.030
0.042
0.042
01055
MANGNESE
MN
UG/L
40K
40K
40K
40K
4
40K
40K
00400
PH
SU
7.5
7.4
7.3
3
7.5
7.3
7.4
7.4
00625
TOT KJEL
N
MG/L
0.35
0.31
0.42
0.42
4
0.42
0.31
0.37
0.37
01092
ZINC
ZN.TOT
UG/L
40
40
30
30
4
40
30
35
35
00310
BOD
5 DAY
MG/L
1.2
0.8
0.8
1.4
4
1.4
0.8
1.0
1.0
00665
PHOS-TOT
MG/L P
0.17
0.17
0.14
0.17
4
0.17
0.14
0.16
0.16
31616
FEC COL I
MFM-FCBR
/100ML
100
250
190
110
4
250
100
163
151
00680
T ORG C
C
MG/L
9.2
6.1
7.5
7.5
4
9.2
6»1
7,6
7.5
00745
SULFIDE
TOTAL
MG/L
LOOK
LOOK
LOOK
LOOK
4
LOOK
LOOK
31501
TOT COL I
MFIMENOO
/100ML
260
3900
3300
3200
4
3900
260
2665
1809
00530
RESIDUE
TOT NFLT
MG/L
44
50
25
21
4
50
21
35
33
-------
APPENDIX C-l.l
CO
w
STATION - PG-06
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
WATER QUALITY DATA
PUNTA GORDA 1000* FM END CANAL02 PEACE RIVER
FINGER FILL CANAL STUDY
DATE TIME
731111 0320
731111 1025
731113 0335
731112 1200
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
DATE TIME
731111 0320
731111 1025
731112 0335
731112 1200
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
DATE TIME
731111 0320
731111 0320
731111 1025
731111 1025
731112 0335
731112 0335
731112 1200
731112 1200
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG HE AN
731112
00003
DEPTH
FEET
4
3
3
3
00003
DEPTH
FEET
4
3
3
3
00003
DEPTH
FEET
1
4
I
3
1
3
1
3
00299
DO
PROBE
MG/L
5.3
5.4
5.4
5.5
4
5.5
5.3
5.4
5.4
00535
RESIDUE
VOL NFLT
MG/L
24
26
19
12
4
26
12
20
19
01045
IRON
FE.TOT
UG/L
150
350
150
165
4
350
ISO
204
19C
00010
WATER
TEMP
CENT
23.3
22.8
22.0
21. 6
4
23.3
21.8
22.5
22.5
00610
NH3-N
TOTAL
MG/L
O.OB
0.14
0.10
0.10
4
0.14
0.08
0.10
0.10
01051
LEAD
PBtTOT
UG/L
80 K
80K
BOX
80K
4
80K
80K
00480
SALINITY
PPTH
27.8
27.9
27.7
27.5
4
27.9
27.5
27.7
27.7
00630
N02&N03
N-TOTAL
MG/L
0.040
0.040
0.030
0.030
4
0.040
0.030
0.035
0.035
01055
MANGNESE
MN
UG/L
40K
40K
40K
40K
4
40K
40K
00400
PH
SU
7.5
7.4
7.3
3
7.5
7.3
7.4
7.4
00625
TOT KJEL
N
MG/L
0.20
0.32
0.38
0.38
4
0.38
0.20
0.32
0.31
01092
ZINC
ZN.TOT
UG/L
30
30
25
20
4
30
20
26
26
00310
BOD
5 DAY
MG/L
0.9
1.2
0.9
0.8
4
1.2
0.8
0.9
0.9
00665
PHOS-TOT
MG/L P
0.14
0.19
0.16
0.15
4
0.19
0.14
0.16
0.16
31616
FEC COL I
MFM-FCBR
/100ML
7K
7K
13
27
4
27
7K
00680
T ORG C
C
MG/L
e.o
8.1
7.4
6.1
4
8.1
7.4
7.9
7.9
00745
SULFIDE
TOTAL
MG/L
LOOK
LOOK
LOOK
LOOK
4
LOOK
LOOK
31501
TOT COL I
MFIMENDO
/100ML
40
100
800
300
4
BOO
40
310
176
00530
RESIDUE
TOT NFLT
MG/L
32
57
40
23
4
57
23
38
36
-------
APPENDIX C-l.l
STATION - PG-07
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUOY NOVEMBER 1973
WATER QUALITY DATA
PUNTA GOROA 2000' FM END CANAL«2 PEACE RIVER
FINGER FILL CANAL STUDY
DATE TIME
731111 0340
731111 1035
731113 0350
731113 1310
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
DATE TIME
731111 0340
731111 1035
731112 0350
731112 1210
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
DATE TIME
731111 0340
731111 0340
731111 1035
731111 1035
731112 0350
731112 0350
731112 IZlfi
731112 1210
731111
NUMBER
MAXIMUM
MINIMUM
"FAN
LOG MfAN
73111?
00003
DEPTH
FEET
3
2
3
2
00003
DEPTH
FEET
3
2
3
2
00003
DEPTH
FEET
1
3
1
2
1
3
1
2
00299
00
PROBE
MG/L
5.1
5.6
S.6
5.8
4
5.8
5.1
5.5
5.5
00535
RESIDUE
VOL NFLT
MG/L
21
27
21
24
4
27
21
23
23
01045
IRON
FE.TOT
UG/L
160
240
90
140
A
240
90
158
14"
00010
WATER
TEMP
CENT
22.4
22.6
20.7
22.2
4
22.6
20.7
22.0
22.0
00610
NH3-N
TOTAL
MG/L
0.10
0.10
0.08
0.10
4
0.10
0.08
0.09
0.09
01051
LEAD
PB.TOT
UG/L
80K
80K
80K
80K
4
80 K
SDK
00480
SALINITY
PPTH
27.^
27.4
27.6
27.5
4
27.6
27.2
27.4
27.4
00630
N02&N03
N-TOTAL
MG/L
0.030
0.040
0.020
0.020
4
0.040
0.020
0.027
0.026
01055
MANGNESE
MN
UG/L
40K
40 K
40K
4QK
4
40K
40K
00400
PH
SU
7.5
7.3
7.3
3
7.5
7.3
7.4
7.4.
00625
TOT KJEL
N
MO/L
0.32
0.35
0.35
0.38
4
0.38
0.32
0.35
0.35
01092
ZINC
ZNiTDT
UG/L
30
30
20
20
4
30
20
25
24
00310
BOD
5 DAY
MG/L
1.0
1.1
0.7
0.9
4
1.1
0.7
0.9
0.9
00665
PHOS-TOT
MG/L P
0.15
0.18
0.15
3
o.ia
0.15
0.16
0.16
31616
FEC COL I
MFM-FC8R
/100ML
13
7K
7K
13
4 •
13
7K
00680
T ORG C
C
MG/L
8.0
7.5
8.0
8.0
4
8.0
7.5
7.9
7.9
00745
SULFIDE
TOTAL
MG/L
LOOK
LOOK
LOOK
LOOK
4
LOOK
LOOK
31501
TOT COL I
MFIMENDO
/100HL
200
100K
200
300
4
300
100K
00530
RESIDUE
TOT NFLT
MG/L
36
72
35
28
4
72
28
43
40
-------
APPENDIX C-l.l
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
WATER QUALITY DATA
STATION - PG-A
PUNTA GOROA SPECIAL STATION PEACE RIVER
FINGER FILL CANAL STUDY
DATE TIME
731111 2320
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731111
in
DATE TIME
731111 2320
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731111
DATE TIME
731111 2320
731111 2320
731111
NUMBER
MAXIMUM
MINIMUM
"FAN
LOG MEAN
00003
DEPTH
FEET
2
00003
DEPTH
FEET
2
00003
DEPTH
FEET
1
2
00299
DO
PROBE
MG/L
6.0
1
00535
RESIDUE
VOL NFLT
MG/L
70
1
01045
IRON
FE.TOT
UG/L
3500
1
00010
WATER
TEMP
CENT
22.0
1
00610
NH3-N
TOTAL
MG/L
0.17
1
01051
LEAD
Pb.TOT
UG/L
80K
1
00480
SALINITY
PPTH
28.3
1
00630
N021N03
N-TOTAL
MG/L
0.030
1
01055
MANGNESE
MN
UG/L
40
1
00400 00310 00680
PH BOD T ORG C
5 DAY C
SU MG/L MG/L
6.5 4.0 8.1
1 1 1
00625 00665 00745
TOT KJEL PHOS-TOT SULFIDE
N TOTAL
MG/L MG/L P MG/L
0.63 0.48 LOOK
1 11
01092 31616 31501
ZINC FEC COL I TOT COL I
ZNtTOT MFM-FCBR MFIMENDO
UG/L /100ML /100ML
7K 130
60
1 1 1
00530
RESIDUE
TOT NFLT
MG/L
200
1
-------
APPENDIX C-l.l
o»
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
WATER QUALITY DATA
STATION - PG-B
PUNTA GORDA SPECIAL STATION PEACE RIVER
FINGER FILL CANAL STUDY
DATE TIME
731111 2345
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731111
DATE TIME
731111 2345
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731111
DATE TIME
731111 2345
731111 2345
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731111
00003
DEPTH
FEET
2
00003
DEPTH
FEET
2
00003
DEPTH
FEET
1
2
00299
DO
PROBE
MG/L
6.3
1
00535
RESIDUE
VOL NFLT
MG/L
28
1
01045
IRON
FEiTOT
UG/L
280
1
1)0010
WATER
TEMP
CENT
21.5
1
00610
NH3-N
TOTAL
MG/L
0.10
1
01051
LEAD
PB.TOT
UG/L
80K
1
00480
SALINITY
PPTH
28.8
1
00630
N02&N03
N-TOTAL
MG/L
0.030
1
01055
MANGNESE
MN
UG/L
40K
1
00400 00310 00680
PH BOD T ORG C
5 DAY C
SU MG/L MG/L
6.5 1.6 8.1
1 1 1
00625 00665 00745
TOT KJEL PHOS-TOT SULFIDE
N TOTAL
MG/L MG/L P MG/L
0.42 0.25 LOOK
1 1 1
01092 31616 31501
ZINC FEC COLI TOT COLI
ZNtTOT MFM-FCBR MFIMENDO
UG/L /100ML /100ML
7K 67
50
• 1 1
111
00530
RESIDUE
TOT NFLT
MG/L
39
1
-------
APPENDIX C-l.l
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
WATER QUALITY DATA
STATION - PG-C
PUNTA GOROA SPECIAL STATION PEACE RIVER
FINGER FILL CANAL STUDY
DATE TIME
731112 0550
731112
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
N
DATE TIME
731112 0550
731112
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731112
DATE TIME
731112 0550
731112 0550
731112
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG ME4N
731112
00003
DEPTH
FEET
3
00003
DEPTH
FEET
3
00003
DEPTH
FEET
1
3
00299
DO
PROBE
MG/L
5.6
1
00535
RESIDUE
VOL NFLT
MG/L
20
1
01045
IRON
FE.TOT
UG/L
220
1
00010
WATER
TEMP
CENT
21.0
1
00610
NH3-N
TOTAL
MG/L
0.20
1
01051
LEAD
PB.TOT
UG/L
80K
1
00480 00400
SALINITY PH
PPTH SU
26.4 7.0
1 1
00630 00625
N02&N03 TOT KJEL
N-TOTAL N
MG/L MG/L
0.050 0.42
1 1
01055 01092
MANGNESE ZINC
MN ZN.TOT
UG/L UG/L
40K 40
1 1
00310
BOD
5 DAY
MG/L
0.8
1
00665
PHOS-TOT
MG/L P
0.14
1
31616
FEC COLI
MFM-FCBR
/100ML
7K
1
00680
T ORG C
C
MG/L
8.0
i
i
00745
SULFIDE
TOTAL
MG/L
LOOK
i
i
31501
TOT COLI
MFIMENDO
/100ML
200
1
00530
RESIDUE
TOT NFLT
MG/L
45
-------
APPENDIX C-l.l
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
MATER QUALITY DATA
STATION - PG-0
PUNTA GORDA SPECIAL STATION PEACE RIVER
FINGER FILL CANAL STUDY
DATE TIME
731111 1733
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731111
LO
00 DATE TIME
731111 1733
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731111
DATE TIME
731111 1730
731111 1733
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MFAN
731111
00003
DEPTH
FEET
5
00003
DEPTH
FEET
5
00003
DEPTH
FEET
1
5
00299
DO
PROBE
MG/L
5.4
1
00535
RESIDUE
VOL NFLT
MG/L
34
1
01045
IRON
FE.TOT
UG/L
200
1
00010
HATER ,
TEMP
CENT
23.2
1
00610
NH3-N
TOTAL
MG/L
0.10
1
01051
LEAD
PB.TOT
UG/L
80K
1
00480 00400
SALINITY PH
PPTH SU
27.5 7.6
1 1
00630 00625
N02&N03 TOT KJEL
N-TOTAL N
MG/L MG/L
0.040 0.95
1 1
01055 01092
MANGNESE ZINC
MN ZN.TOT
UG/L UG/L
40 K 50
1m
1
00310 00680
BOD T ORG C
5 DAY C
MG/L MG/L
1.6 6.0
1«
1
00665 00745
PHOS-TOT SULFIDE
TOTAL
MG/L P MG/L
0.17 LOOK
11
1
31616 31501
FEC COL I TOT COL I
MFM-FCBR MFIHENDO
/100ML /100ML
7K 200
1 1
i *
00530
RESIDUE
TOT NFLT
MG/L
51
-------
APPENDIX C-l.l
w
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
WATER QUALITY DATA
STATION - PG-E
PUNTA GORDA SPECIAL STATION PEACE RIVER
FINGER FILL CANAL STUDY
DATE TIME
731111 1804
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731111
DATE TIME
731111 1804
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731111
DATE TIME
731111 1800
731111 1804
731111
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731111
00003 00299
DEPTH DO
PROBE
FEET MG/L
4 4.9
1
00003 00535
DEPTH RESIDUE
VOL NFLT
FEET MG/L
4 25
1
00003 01045
DEPTH IRON
FE.TOT
FEET UG/L
1
4 145
1
00010
WATER
TEMP
CENT
23.6
1
00610
NH3-N
TOTAL
MG/L
0.10
1
01051
LEAD
P8.TOT
UG/L
80K
1
00480
SALINITY
PPTH
27.4
1
00630
N02&N03
N-TOTAL
MG/L
0.050
1
01055
MANGNESE
MN
UG/L
40
1
00400 00310 00680
PH BOD T ORG C
5 DAY C
SU MG/L MG/L
7.4 1.6 8.1
1 1 1
00625 00665 00745
TOT KJEL PHOS-TOT SULFIDE
N TOTAL
MG/L MG/L P MG/L
0.55 0.15 LOOK
1 1 1
01092 31616 31501
ZINC FEC COLI TOT COLI
ZN«TOT MFM-FCBR MFIMENDO
UG/L /100ML /100ML
7K 100
50
1 1 1
00530
RESIDUE
TOT NFLT
MG/L
42
1
-------
APPENDIX C-1.2
OJ
K3
o
STATION - BPK-08
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS» GEORGIA
FINGEH FILL CANAL STUDY NOVEMBER 1973
HATER QUALITY DATA
BIG PINE KEY SO* FM END CANAL *3 LOWER FLORIDA
FINGER FILL CANAL STUDY
DAU TIME
731117 1201
731117 1816
731116 001*
731118 0640
731118 1220
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731118
DATE TIME
731117 1201
731117 1616
731118 0014
731118 0640
731118 1220
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731118
DATE TIME
731117 1200
731117 1201
731117 1815
731117 1816
731118 0013
731118 0014
731118 0640
731118 0640
731118 1220
731118 1220
731117
NUMBER
MAXIMUM
MINIMUM
WEAN
LOG MEAN
7311IB
00003
DEPTH
FEET
5
5
5
5
5
00003
DEPTH
FEET
5
5
5
5
5
00003
DEPTH
FEET
1
S
1
5
1
5
1
5
1
5
00299
00
PROBE
MG/L
6.0
5.9
S.8
5.4
6.2
5
6.2
5.4
5.9
5.9
OOS3S
RESIDUE
VOL NFLT
MG/L
2S
20
13
10
25
5
25
10
19
17
01045
IRON
FE.TOT
UG/L
100
60K
80
60K
90
S
100
60K
00010
WATER
TEMP
CENT
24.0
24.0
23.9
24.0
24.5
5
24.5
23.9
24.1
24.1
00610
MH3-N
TOTAL
MG/L
0.05
0.05
0.05
0.03
0.04
5
0.05
0.03
0.04
0.04
01051
LEAD
P8.TOT
UG/L
80K
80K
aoK
80K
80K
S
80K
80K
00480
SALINITY
PPTH
37.4
37.5
38.2
38.2
38.3
5
38.3
37.4
37.9
37.9
00630
N02&N03
N-TOTAL
MG/L
0.010K
0.010K
0.010K
0.010K
0.010K
5
0.010K
0.010K
01055
MANGNESE
MN
UG/L
40 K
40K
40K
40K
40K
5
<.OK
40K
00400
PH
su
8.0
7.9
8.1
8.5
8.0
5
8.5
7.9
8.1
8.1
00625
TOT KJEt
N
MG/L
0.30
0.20
0.20
0.20
0.25
5
0.30
0.20
0.23
0.23
01092
ZINC
ZN.TOT
UG/L
60
30
30
20
20 K
S
60
aoK
00310
ROD
5 DAY
MG/L
0.8
0.5K
0.5K
0.5K
0.5K
5
0.8
O.SK
00665
PMOS-TOT
MG/L P
0.02
0.19
0.01K
0.01K
0.02
5
0.19
0.01K
31616
FEC COL I
MFM-FCBR
/100ML
5K
5K
5K
5K
5K
5
5K
5K-
00680
T ORG C
C
MG/L
3.3
4.4
3.3
4.0
3.7
5
4.4
3.3
3.7
3.7
00745
SULFIDE
TOTAL
MG/L
LOOK
LOOK
LOOK
LOOK
LOOK
5
LOOK
LOOK
31501
TOT COL I
MFIHENDO
/100ML
10K
10K
10K
10
10K
5
10
10K
00530
RESIDUE
TOT NFLT
MG/L
74
82
69
88
66
5
88
66
76
75
-------
APPENDIX C-1.2
w
10
STATION - BPK-09
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
MATER QUALITY DATA
BIG PINE KEY 780* FM END
-------
APPENDIX C-1.2
ro
to
STATION - BPK-10
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
HATER QUALITY DATA
BIG PINE KEY 1560* FM END CANL43 LOWER FLORIDA
FINGER FILL CANAL STUDY
DATE TIME
731 117 1246
731117 1906
731118 0046
731118 0600
731118 1150
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731118
DATE TIME
731117 1246
731117 1906
731118 0046
731118 0600
731118 1150
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
L06 MEAN
731118
DATE TIME
731117 1246
731117 1246
731117 1905
731117 1906
731118 0046
731118 0046
731118 0600
731118 0600
731118 1150
731118 1150
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731118
00003
DEPTH
FEET
5
5
5
5
5
00003
DEPTH
FEET
5
5
5
5
5
00003
DEPTH
FEET
1
5
1
5
1
5
1
5
1
5
00299
DO
PROBE
MG/L
5.9
6.S
6.3
5.8
5.8
5
6.5
5.8
6.1
6.1
00535
RESIDUE
VOL NFLT
MG/L
25
19
13
18
11
5
25
11
17
16
01045
IRON
FE.TOT
UG/L
60K
60K
100
60 K
70
b
100
60K
00010
HATER
TEMP
CENT
24.1
24.0
24.0
24.0
24.6
5
24.6
24.0
24.1
24.1
00610
NH3-N
TOTAL
MG/L
0.05
0.03
0.05
0.04
0.05
5
0.05
0.03
0.04
0.04
01051
LEAD
PR t TOT
UG/L
80K
80 K
80K
80K
80K
s
80K
80K
00480
SALINITY
PPTH
37.4
37.5
38.2
38.3
36.4
5
38.4
37.4
37.9
37.9
00630
N021NO3
N-TOTAL
MG/L
0.010K
0.010K
0.010K
0.010K
0.010K
5
0.010K
0.010K
01055
MANGNESE
MN
UG/L
40K
40K
40K
40K
40K
S
40K
40K
00400
PH
SU
8.1
8.1
8.1
8.5
8.0
5
8.5
8.0
8.2
8.2
00625
TOT KJEL
N
MG/L
0.20
0.22
0.20
0.20
0.20
5
0.22
0.20
0.20
0.20
• 1092
ZINC
ZN.TOT
UG/L
20
20
30
30
30
5
30
20
26
26
00310
BOD
5 DAY
MG/L
0.5K
0.5K
O.SK
0.5K
O.SK
5
O.SK
O.SK
00665
PHOS-TOT
MG/L P
0.02
0.02
0.10
0.01K
0.09
5
0.10
0.01K
31616
FEC COL I
MFM-FCBR
/100ML
5K
5K
5K
5K
5K
5
5K
5K
00680
T ORG C
C
MG/L
2.5
4.0
4.0
3.7
4.0
5
4.0
2.5
3.6
3.6
00745
SULFIDE
TOTAL
MG/L
LOOK
LOOK
LOOK
LOOK
LOOK
5
LOOK
LOOK
31501
TOT COL I
MFIMENDO
/100ML
10K
10K
10K
10K
10K
S
10K
10K
00530
RESIDUE
TOT NFLT
MG/L
72
85
74
70
51
5
65
51
70
69
-------
APPENDIX C-l.2
u
10
STATION - BPK-H
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATMENSt GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
WATER QUALITY DATA
BOGIE CHANNEL BACKGROUND STATION LOWER FLORIDA FINGER FILL CANAL STUDY
DATE TIME
731117 1305
731117 1925
731118 0100
731118 0700
731118 1240
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731118
DATE TIME
731117 1305
731117 1925
731118 0100
731118 0700
731118 1240
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731118
DATE TIME
731117 1305
731117 1305
731117 1925
731117 192S
731118 0100
731118 0100
731118 0700
731118 0700
731118 1240
731118 1240
731117
NUMBER
MAXIMUM
MINIMUM
106 MEAN
Will*
00003
DEPTH
FEET
2
2
2
2
2
00003
DEPTH
FEET
2
2
2
2
2
00003
DEPTH
FEET
I
2
1
2
1
2
1
2
1
2
00299
DO
PROBE
MG/L
7.1
6.9
5.8
4.4
7.6
5
7.6
4.4
6.4
6.2
00535
RESIDUE
VOL NFLT
MG/L
24
18
21
13
13
5
24
13
18
17
01045
IHON
FE.TOT
UG/L
60K
70
60K
160
60K
5
160
60K
00010
MATER
TEMP
CENT
24.2
24.0
23.8
23.9
25.0
S
25.0
23.8
24.2
24.2
00610
NH3-N
TOTAL
MG/L
0.05
0.05
0.05
0.04
0.04
5
0.05
0.04
0.05
0.05
01051
LEAD
PBtTOT
UG/L
80K
80K
80K
80K
SDK
5
«OK
00480
SALINITY
PPTH
37.4
37.5
38.2
38.5
37.8
5
38.5
37.4
37.9
37.9
00630
N021N03
N-TOTAL
MG/L
0.010K
0.010K
0.010K
0.010K
0.010K
5
0.010K
0.010K
0105S
MANGNESE
MN
UG/L
40K
40K
40K
40 K
40K
S
40K
40K
00400
PM
SU
8.1
8.0
8.1
8.4
8.1
5
8.4
a.o
8.1
8.1
00625
TOT KJEL
. N
MG/L
0.20
0.17
0.20
0.20
0.20
5
0.20
0.17
0.19
0~ 19
• i^
01092
ZINC
ZN.TOT
UG/L
50
40
30
20
20K
g
50
ZOIC
00310
BOD
5 DAY
MG/L
O.SK
O.SK
0.8
O.SK
O.SK
5
0.8
O.SK
00665
PHOS-TOT
MG/L P
6.12
0.01K
0.02
0.01K
0.01K
5
0.12
0.01K
31616
FEC COL I
MFM-FCBR
/100ML
SK
SK
SK
5K
SK
s
SK
SK
00680
T ORG C
C
MG/L
2.7
4.0
4.0
3.7
4.0
4.0
2.7
3.7
3.6
00745
SULFIDE
TOTAL
HG/L
LOOK
LOOK
LOOK
LOOK
LOOK
LOOK
31501
TOT COL I
MFIMENDO
/100ML
10K
1 dK
I UIV
1 OK
1 Vt\
10K
5
10K
10K
00530
RESIDUE
TOT NFLT
MG/L
75
93
69
56
60
5
93
56
71
69
-------
APPENDIX C-1.2
ro
STATION - BPK-12
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
HATER QUALITY DATA
8IG PINE KEY SO' FM END CANAL »<• LOWER FLORIDA FINGER FILL CANAL STUDY
DATE TIME
731117 1331
731117 1940
731118 0116
731118 0720
731118 1305
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731118
DATE TIME
731117 1331
731117 1940
731118 0116
731118 0720
731118 1305
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOO MEAN
731118
*~
DATE TIME
731117 1330
731117 1331
731117 1939
731117 1940
731118 0115
731118 0116
731118 0720
731118 0720
731118 1305
731118 1305
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731118
00003
DEPTH
FEET
5
4
4
5
5
00003
DEPTH
FEET
5
4
4
5
5
00003
DEPTH
FEET
1
5
1
4
1
4
1
5
1
5
00299
DO
PROBE
MG/L
5.1
5.3
5.0
4.4
4.9
S
5.3
4.4
4.9
4.9
0053S
RESIDUE
VOL NFLT
MG/L
20
21
11
14
17
5
21
11
17
16
01045
IRON
FEtTOT
UG/L
60K
70
60K
70
700
5
700
60 K
00010
MATER
TEMP
CENT
24.7
24.4
24.5
24.2
25.2
5
25.2
24.2
24.6
24.6
00610
NH3-N
TOTAL
MG/L
0.08
0.08
0.08
O.OS
0.05
5
0.08
0.05
0.07
0.07
01051
LEAD
PBtTOT
UG/L
80K
80K
80K
80K
80K
5
80K
80K
00480
SALINITY
PPTH
37.2
37.2
38.2
38.2
38.1
5
38.2
37.2
37.8
37.8
00630
N021N03
N-TOTAL
MG/L
0.010K
0.010K
0.010K
0.010K
0.010K
5
0.010K
0.010K
0105S
MANGNESE
MN
U6/L
40K
40 K
40K
40 K
40 K
5
40K
40 K
00400
PH
SU
8.1
8.0
8.6
8.4
7.9
5
8.6
7.9
8.2
8.2
00625
TOT KJEL
N
MG/L
0.30
0.30
0.25
0.30
0.20
5
0.30
0.20
0.27
0.27
• 1092
ZINC
ZN.TOT
UG/L
45
60
30
20K
20K
5
60
20K
00310
BOO
5 DAY
MG/L
O.SK
0.5K
1.2
0.6
0.5K
5
1.2
O.SK
00665
PHOS-TOT
MG/L P
0.02
0.02
0.13
0.01K
0.02
5
0.13
0.0 IK
31616
FEC. COL I
MFM-FCBR
/100ML
5K
65
25
45
5K
5
65
5K
00680
T ORG C
C
MG/L
4.0
4.7
4.1
4.0
3.7
5
4.7
3.7
4.1
4.1
00745
SULFIDE
TOTAL
MG/L
LOOK
LOOK
LOOK
LOOK
LOOK
5
LOOK
LOOK
31501
TOT COL I
MFIMENOO
/100ML
10K
90
30
50
10K
*
5
90
10K
00530
RESIDUE
TOT NFLT
MG/L
74
102
70
60
76
5
102
60
76
75
-------
APPENDIX C-1.2
(*>
IO
in
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
WATER QUALITY DATA
0' FM EN° CANAL*<1 LO"ER FLORIDA FINGER FILL CANAL STUDY
DATE TIME
731117 1355
731117 1956
731118 0131
731116 0740
731118 1320
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731118
DATE TIME
731117 1355
731117 1956
731118 0131
731118 0740
731118 1320
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731118
DATE TIME
731117 1355
731117 1355
731117 1955
731117 1956
731118 0130
731118 0131
731118 0740
731118 0740
731118 1320
731118 1320
731117
NUMBER
MAXIMUM
MINIMUM
HEAN
LOS HEM
00003
DEPTH
FEET
4
4
4
4
3
00003
DEPTH
FEET
4
4
4
4
3
•0003
DEPTH
FEET
1
4
1
4
1
4
1
4 .
1
3
00299
00
PROBE
MG/L
5.5
5.5
5.0
4.6
5.4
5
5.5
4.6
5.2
5.2
00535
RESIDUE
VOL NFLT
MG/L
23
12
19
9
a
5
23
e
14
13
01045
IRON
FE.TOT
UG/L
60K
70
60K
70
60K
5
70
60K
00010
MATER
TEMP
CENT
24.7
24.3
24.2
24.2
25.3
j-
25.3
24.2
24.5
24.5
00610
NH3-N
TOTAL
MG/L
0.08
0.05
0.05
0.04
0.05
5
0.08
0.04
0.05
0.05
01051
LEAD
PB.TOT
UG/L
MK
MK
MK
MK
MK
9
MK
MK
00480
SALINITY
PPTH
37.2
37,2
37.9
38.2
38.2
c
38.2
37.2
37.7
37.7
00630
N024N03
N-TOTAL
MG/L
O.OIOK
O.OIOK
O.OIOK
O.OIOK
O.OIOK
5
O.OIOK
O.OIOK
01055
MANGNESE
MN
UG/L
40 K
40K
40K
40K
40K
5
40K
40K
00400
PH
SU
8.0
8.1
8.1
8.4
8.0
5
8.4
8.0
8.1
8.1
00625
TOT KJ€L
N
MG/L
0.20
0.25
0.25
0.30
0.20
5
0.30
0.20
0.24
• .2*
01092
ZINC
ZNtTOT
UG/L
20 K
20
40
20
20K
5
40
20K
00310
BOO
5 DAY
MG/L
O.SK
O.SK
1.0
0.6
0.8
5
1.0
O.SK
00665
PMOS-TOT
MG/L P
0.02
0.02
0.06
0.06
0.02
5
0.06
0.02
0.04
0.03
31616
FEC COU"
MFM-FCBR
/100ML
5K
78
65
15
SK
5
78
5K
00680
T OHG C
C
MG/L
4.1
5.0
4.4
4.1
4.1
5
5.0
4.1
4.3
4.3
00745
SULFIOE
TOTAL
MG/L
LOOK
LOOK
LOOK
LOOK
LOOK
LOOK
LOOK
31501
TOT COLI
MFIMENDO
/100ML
10K
220
80
20
10K
5
220
10K
00530
RESIDUE
TOT NFLT
MG/L
86
66
94
51
.63
5
94
51
72
70
-------
APPENDIX C-1.2
ts)
STATION - BPK-14
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
MATER QUALITY DATA
BIG PINE KEY 725' FM END CANAL»4 LOWER FLORIDA
FINGER FILL CANAL STUDY
DATE TIME
731117 1*06
731117 2011
731118 0145
731118 0800
731118 1340
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731118
DATE TIME
731117 1406
731117 2011
731118 0145
731118 0800
731118 1340
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
73111*
DATE TIME
731117 1405
731117 1406
731117 2010
731117 2011
731118 0145
731118 0145
731118 0755
731118 0800
731118 1340
731118 1340
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731118
00003
DEPTH
FEET
4
4
4
4
3
f
00003
DEPTH
FEET
4
4
4
4
3
00003
DEPTH
FEET
1
4
1
4
1
4
1
4
1
3
00299
DO
PR08E
MG/L
5.1
5.4
5.2
4.6
5.2
5
5.4
4.6
5.1
5.1
00535
RESIDUE
VOL NFLT
MG/L
20
44
11
17
14
5
44
11
21
19
01045
• IRON
FE.TOT
UG/L
760
240
180
60K
60K
S
760
60 K
00010
HATER
TEMP
CENT
24.5
24.2
24.1
24.4
25.3
5
25.3
24.1
24.5
24.5
00610
NH3-N
TOTAL
MG/L
0.05
0.05
0.08
0.05
0.05
5
O.OB
0.05
0.06
0.05
01051
LEAD
PB.TOT
UG/L
MK
MK
MK
MK
MK
9
80K
80K
00480
SALINITY
PPTH
37.2
37.1
38.2
38.3
38.4
5
38.4
37.1
37.8
37.8
00630
N028.N03
N-TOTAL
MG/L
0.010K
0.010K
0.010K
0.010K
0.010K
5
0.010K
0.010K
01055
MANGNESE
MN
UG/L
40K
40 K
40 K
40K
40K
b
40K
40K
00400
PH
SU
8.0
8.1
8.6
8.4
7.9
5
0.6
7.9
8.2
8.2
00625
TOT KJEL
N
MG/L
0.20
0.38
0.38
0.20
0.22
5
0.38
0.20
0.28
0.26
01092
ZINC
ZNfTOT
UG/L
20
20
40
20K
20K
5
40
20 K
00310
BOO
5 DAY
MG/L
0.7
2.6
0.7
O.SK
0.5K
5
2.6
O.SK
00665
PHOS-TOT
MG/L P
0.02
0.04
0.13
0.02
0.04
5
0.13
0.02
0.05
0.04
31616
FEC COL I
MFM-FCBR
/100ML
5K
SK
5K
33
5K
5
33
SK
00680
T ORG C
C
MG/L
4.1
10.5
4.0
3.7
4.9
5
10.5
3.7
5.4
5.0
00745
SULFIDE
TOTAL
MG/L
LOOK
LOOK
LOOK
LOOK
LOOK
5
LOOK
LOOK
31501
TOT COL I
MFIMENDO
/100ML
10K
10K
10K
45
10K
5
45
10K
00530
RESIDUE
TOT NFLT
MG/L
84
173
49
67
66
5
173
49
88
79
-------
APPENDIX C-1.2
STATION - BPK-F
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
WATER QUALITY DATA
BIG PINE KEY SPECIAL STATION LOWER FLORIDA FINGER FILL CANAL STUDY
DATE TIME
731117 1721
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731117
W
K>
""1
DATE TIME
731117 1721
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731117
DATE TIME
731117 1720
731117 1721
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731117
00003
DEPTH
FEET
4
00003
DEPTH
FEET
4
00003
DEPTH
FEET
1
4
00299
DO
PROBE
MG/L
5.1
1
00535
RESIDUE
VOL NFLT
MG/L
19
1
01045
IRON
FEtTOT
UG/L
60K
1
00010
WATER
TEMP
CENT
24.6
1
00610
NH3-N
TOTAL
MG/L
0.08
1
01051
LEAD
PBtTOT
UG/L
80K
1
00480
SALINITY
PPTH
37.1
1
00630
N02&N03
N-TOTAL
MG/L
0.010K
1
01055
MANGNESE
MN
UG/L
40K
1
00400 00310
PH BOD
5 DAY
SU MG/L
8.1 0.5K
1 1
00625 00665
TOT KJEL PHOS-TOT
N
MG/L MG/L P
0.25 0.06
1 1
01092 31616
ZINC FEC COL I
ZN»TOT MFM-FCBR
UG/L /100ML
5K
60
1 1
00680
T ORG C
C
MG/L
4.7
I
00745
SULFIDE
TOTAL
MG/L
LOOK
I
31501
TOT COL I
MFIMENDO
/100ML
10K
1
00530
RESIDUE
TOT NFLT
MG/L
61
i
i
-------
APPENDIX C-1.2
N>
00
STATION - BPK-G
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
MATER QUALITY DATA
BIG PINE KEY SPECIAL STATION LOWER FLORIDA FINGER FILL CANAL STUDY
DATE TIME
731117 1620
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731117
DATE TIME
731117 1620
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731117
DATE TIME
731117 1620
731117 1630
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731117
00003
DEPTH
FEET
5
00003
DEPTH
FEET
5
00003
DEPTH
FEET
5
1
00299
DO
PROBE
MG/L
3.0
1
00535
RESIDUE
VOL NFLT
MG/L
31
1
01045
IRON
FE.TOT
UG/L
60K
1
00010
WATER
TEMP
CENT
24.2
1
00610
NH3-N
TOTAL
MG/L
0.03
1
01051
LEAD
PBtTOT
UG/L
80K
1
00480
SALINITY
PPTH
37.2
1
00630
N02&N03
N-TOTAL
MG/L
0.010K
1
01055
MANGNESE
MN
UG/L
40K
1
00400 00310
PH BOD
5 DAY
SU MG/L
8.0 1.3
1 1
00625 00665
TOT KJEL PHOS-TOT
N
MG/L MG/L P
0.30 0.03
1 1
01092 31616
ZINC FEC COL I
ZN.TOT MFM-FCBR
UG/L /100ML
50
10K
1 1
00680
T ORG C
C
MG/L
5.5
1
00745
SULFIDE
TOTAL
MG/L
LOOK
1
31501
TOT COL I
MFIMENOO
/100ML
10K
1
00530
RESIDUE
TOT NFLT
MG/L
37
1
-------
APPENDIX C-1.2
STATION - BPK-H
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
WATER QUALITY DATA
BIG PINE KEY SPECIAL STATION LOWER FLORIDA FINGER FILL CANAL STUDY
DATE TIME
731117 1130
731117
" NUMBER
£ MAXIMUM
MINIMUM
MEAN
LOG MEAN
731117
DATE TIME
731117 1130
731117 1130
731117
NUMBER
*« « W • * *t Ik *
00003
DEPTH
FEET
3
00003
DE>TH
FEET
1
3
00400
PH
SU
7.9
1
00665
PHOS-TOT
MG/L P
0.01K
1
00310
BOD
5 DAY
MG/L
0.5K
1
00745
SULFIOE
TOTAL
MG/L
LOOK
1
00680
T ORG C
C
MG/L
2.5
1
01045
IRON
FE.TOT
UG/L
620
1
00530
RESIDUE
TOT NFLT
MG/L
60
1
01051
LEAD
PBtTOT
UG/L
80K
1
00535
RESIDUE
VOL NFLT
. MG/L
21
l
A
01055
MANGNESE
MN
UG/L
40K
1
00610
NH3-N
TOTAL
MG/L
0.08
i
i
01092
ZINC
ZNtTOT
UG/L
50
1
00630
N02&N03
N-TOTAL
MG/L
0.020
31616
FEC COLI
MFM-FCBR
/100ML
5K
1
00625
TOT KJEL
N
MG/L
0.25
31501
TOT COLI
MFIMENDO
/100ML
10K
1
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731117
-------
APPENDIX C-1.2
U)
u»
o
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGER FILL CANAL STUDY NOVEMBER 1973
WATER QUALITY DATA
STATION - BPK-I
BIG PINE KEY SPECIAL STATION LOWER FLORIDA
FINGER FILL CANAL STUDY
DATE TIME
731117 1150
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731117
DATE TIME
731117 1150
731117 1150
00003
DEPTH
FEET
3
00003
DEPTH
FEET
1
3
00400
PH
SU
7.9
1
00665
PHOS-TOT
MG/L P
0.01K
00310
BOD
5 DAY
MG/L
0.5K
1
00745
SULFIDE
TOTAL
MG/L
LOOK
00680
T ORG C
C
MG/L
3.2
1
01045
IRON
FE»TOT
UG/L
60K
00530
RESIDUE
TOT NFLT
MG/L
83
1
01051
LEAD
PBtTOT
UG/L
80K
00535
RESIDUE
VOL NFLT
MG/L
28
1
01055
MANGNESE
MN
UG/L
40K
00610
NH3-N
TOTAL
MG/L
0.10
1
01092
ZINC
ZN.TOT
UG/L
20
00630
N02&N03
N-TOTAL
MG/L
0.030
1
31616
FEC COL I
MFM-FCBR
/100ML
5K
00625
TOT KJEL
N
MG/L
0.25
1
31501
TOT COL I
MFIMENDO
/100ML
10K
731117
NUMBER
MAXIMUM
MINIMUM
MEAN
LOG MEAN
731117
-------
APPENDIX C-2.1
ENVIRONMENTAL PROTECTION AGENCY HEGlON 1 \l
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGtH KILL CANAL STUDY AUGUST
STATION - PG-01
HUNTA GORUA SO' FKM tNU CANAL »i PEACE RIVER KINGtrt ULL CANAL S1UUY
UATE TIME
740014 124b
740814 1620
740014 211b
740ttlb 0530
74081b 1345
740815 1346
740814
NUMBER
MAXIMUM
MINIMUM
MEAN
740015
STATION - PG-02
OATt TIME
740014 1340
740014 1640
740014 2107
740015 0550
740015 1400
740015 1401
740014
NUMBER
MAXIMUM
MINIMUM
MEAN
9^. t\** 1 fe.
00003
DEPTH
FEET
b
4
4
4
b
0
00003
UEPTH
FtET
b
S
4
4
5
0
00680
T ORG C
C
MG/L
Ib.O
14.0
12.0
14.0
Ib.O
15.0
b
lD.0
12.0
l4.£
HUNTA G'OROA
00680
T ORG C
C
MG/L
Ib.O
13.0
12.0
15.0
14.0
13.0
6
15.0
12.0
13.7
00610
NM3-N
TOTAL
MG/L
0.£4
0.27
O.i5
0.20
0.25
4.OO
6
4.btJ
o.ls
1.00
12bO«
00610
NH3-N
TOTAL
MG/L
0.^2
0.24
0.13
0.15
0.15
7.60
6
7.60
0.13
1.41
00630
NU2&N03
N-TuTAL
MG/L
0.04
0.03
0.03
O.OlK
0.01*
O.Oliv
6
U.04
U.OiK
0.02
FM ENO CANALWl
00630
NO2HN03
N-TOTAL
ML>/L
0.03
0.03
0.04
.0.01*
O.OlK
0.01K
6
0.04
U.01K
0.02
00625
TOT KJEL
N
MG/L
0.73
0.73
0.73
0.62
0.62
4.88
6
4.8a
o!&<;
1.3d
PEACE K-I
0062b
TOT KJtL
N
MG/L
l.Sb
1.17
0.63
O.bb
0.5V
8.40
6
8.40
0.5V
2.17
HHOS-TuT
MG/L P
0.36
0. 38
0.34
0.33
0.37
6
U.33
u.bb
VER f-I
006bb
HMOS-TOT
rtG/L H
U.39
0.3V
0.30
0.33
0.36
2.24
6
2.24
0.30
0.67
00b30
RESIDUE
TOI NFLT
MG/L
3
&
I i
A X
^
i i
X A
3
NGER FILL
00b30
RESIDUE
TOT NFLT
Mb/L
b
4
b
b
6
4
5
OUbja
RESIDUE
VOL NhLT
MG/L
1
1
^
CANAL STUDY
00535
RESIDUE
VUL NFLT
M(i/L
IK
IK
y
^
b
liv
004UO
SU
7 •}
1 . J
7*1
. 3
7 j
I » £
7 +
. c.
7 y
• . C
71
• C.
00400
PH
SU
7 1
' • 1
7.2
7 .>
' • t
7 4
' • j
7.3
• • J
7.1
' • 4
7.2
-------
APPENDIX C-2.1
tNVlHONMtNTAL f'KUTtCllUN Alit'MCY HtblON 1*
SUHVtlLLAnCt ANU ANALTbIS OI
to
ST«I ION - Po-03
U«Tt TIME-
7.081* 1230
7*001* 1300
7*081* 1330
7*081* 1*00
7*001* 1*30
7*081* 1300
7*001* Ib30
7*0ol* IbuO
7*001* 1630
7*0014 1 100
74U014 1730
7*0ol« 1800
7*001* 1830
7*081* 1*00
/«0t>l* 1VJO
7*0014 2000
7*0dl* 2u30
7*0el* 2100
7*001* 2130
7*001* 22UO
7*001* 2230
740014 2300
740014 330
740014 2400
740olb 0030
7*OOlb 0100
7*0dlb 0130
740alb 0200
7*0elb 0230
7*001b 0300
7«08lb 0330
7.0013 0*00
7»0elb 0*30
7*0olb 0300
7.081S ObJO
7*0olb 0600
7*0013 0630
7*0ol3 U700
74001b 0730
7*0013 OttOO
7*uolb 0830
7*001b 0400
7*08lb 0*30
74001b 1000
740013 1030
7»0olb 1100
740alS 1130
740015 l£00
7»08lb 1230
7*0«lb 1300
7*ual»
feUMdL*
rtAAMo"
•MNlMjM
••LAN
UUOOJ
OifjH
FttT
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
J
3
3
3
3
3
3
3
3
t-UNTA bOMUA 23UU* m EMU CANALHl MtACt HlVtH F
OObOU
T OKG C
C
«G/L
13.0
lb.0
lb.0
lb.0
1*.0
17.0
13.0
17.0
17.0
17.0
16.0
16.0
16.0
16.0
' 16.0
lb.0
14.0
lb.0
lb.0
14.0
lb.0
lb.0
13.0
lb.0
lb.0
2b
1 r.u
i..i»
13.4
UU61U
NMJ-N
TOTAL
Mfe/L
0.16
0.16
0.10
U.16
0.13
U.12
U.1U
0.10
0.0V
O.lO
0.14
O.lb
0.12
O.lb
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0,10
0.10
0.07
e*
U. 18
u.O'
^a. l3*
0.32
0.33
0.28
0.2*
0.28
0.34
0.3o
0.3*
0.3*
FILL CANAL bTUo
UU3JU
KtilOUt
TOT NI-LT
Mo/L
b
b
3
0
b
8
O
a
8
11
11
\i
a
, b
b
6
3
6
b
6
6
b
6
V
6
2b •
\c
b
f
UU33b
fitSIUUE
VOL N>LI
Mb/L
2
C
1
t
1
£
d
C
f
*
3
a
d
t
£
2
1
2
d
£
1
4
«•
*
J
^
3
1
f
-------
APPENDIX C-2.1
STATION - PG-04
ENVIRONMENTAL PROTtCUON AoENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS.
F1NGEH FILL CANAL STUDY AUGUST 1*74
CHARLOTTE HARBOH bACKGKOUND STA. HEACE RlVER
HNOEK H«LL CANAt STUDY
w DATE TIME
CO
740bl4 1710
740«lb 061b
7400lb 1430
740M14
NUMBER
MAXIMUM
MINIMUM
MEAN
U0u03 uobbO
DtPTH T ORG C
C
FEET MG/L
3 14.0
3 15.0
3 14.0
3 17.0
3 14.0
b
17.0
14. 0
14. b
00610
NH3-N
TOTAL
MG/L
0.17
0.16
O.lb
0.04
b
0.20
0.04
0.14
OObJU
N-TUTAL
MG/L
0.03
O.Ob
0.01K
0.04
5
o.Ob
O.OlK
0.04
0062b OUbb^ UUb3u OUbjb 00400
lor .KJEL PHOS-TUT RESIDUE RESIDUE HH
N TOT NKLT VOL NKL1
MG/L MG/L H Mb/L MG/L SU
O.b8 0.4<; b 1 7.b
O.b4 0.32 b t 1 .'a
O.bO 0.3b 10 I 7.4
0.70 0.44
O.bO 0.40
5 b
O.d4 U.-+4
O.bO U.32
0.70 0.3V
4
b
b
10
4
7
^
4 b.4
b 4
4 tt.4
-------
APPENDIX C-2.1
U)
*>
ENVIKONMENTAL PKOTECUON KOtNClT KtOlON IV
SUKVE1LLANCE ANL» ANALYSIb DIVISION ATntNb. OtOHGlA
FlNGtK FILL CANAL STUDY AUGUST lit*
STATION - PG-05
HUNT A GOHUA 30" f-KM tNU CANAL
HEACt
FlNGE* FILL CANAL STUUr
DATE TIME
740314 1445
740«14 174b
740014 2100
740dlb 0640
740813 1230
740813 1310
74U814
NUMBER
MAXIMUM
MINIMUM
MEAN
740015
STATION - PG-06
OATE TIME
740H14 1SUO
740614 17bO
740014 2105
74061b Obbb
740elb 12bO
740013 131b
740ol4
NUMBED
MAXIMUM
MINIMUM
MtAN
00003
UtHTH
FEET
4
4
4
3
4
7
00003
uEf TH
FtET
4
4
3
3
4
7
00680
T OHG C
C
MG/L
13.0
17.0
13.0
lb.0
lb.0
lb.0
b
17.0
13.0
IS. 2
HUNTA GOrtUA
OObBO
T OHG C
C
MO/L
14.0
14.0
12.0
lb.0
14.0
22.0
b
22.0
12.0
lb.2
OOblO
NrtJ-N
TOTAL
3.30
0.0V
0.11
0.12
0.13
8.23
b
8.23
0.0V
2.00
1000' F
OOblu
NH3-N
TOTAL
MO/L
0.17
0.13
0.12
0.17
O.lb
a.eb
b
8.83
0.12
1.60
00630
N02&NU3
N-TOTAL
rto/L
0.12
O.Ob
O.Ob
0.03
0.07
0.01*
b
O.ll
U.OllS
O.Ob
M tNU CANALW2
00630
N02(kNOJ
N-TOTAL
MG/L
0.04
0.04
0.04
O.Ob
O.Ob
0.01K
o
O.Ob
o.OlK
0.04
TOT KJLL
N
Mb/L
3.7b
O.bO
O.b8
O.b2
0.6/i
O.bO
b
8.80
O.bO
2.31
PEACE «1
00623
fur KJfcL
N
MO/L
0.70
0.08
O.OO
0.62
0.63
V.bO
b
9. bO
O.b2
2.14
OObbb
HHOb-TOl
MG/L f
1 .04
0.17
0.17
O.lo
O.lb
2.1b
b
2.1b
0.17
O.b3
VEK
OObbb
PrtOb-rOf
MG/L V
0.
-------
APPENDIX C-2.1
tNVi*0'*«tNTAL H^uTtLnjN Aot'VL* rlttilUli IV
bU-IVtILLANCt AMU ANuLTbIS U 1 V I b 1 UN AfHtNb. UtJHoIA
t-lNut* FILL CAU«L blUlif AJoUST 1*7»
w
CO
Ui
blAI ION - P3
KMOS-IUl
«o/L f
o.te
0.
7
£
•3
-------
APPENDIX C-2.2
u>
STATION -
ENVIRONMENTAL PHOrtCriUN AbENCY HEblUN IV
SUKVEILLANCE ANO ANALYblb DIVISION ATntNb, btOP-blA
FlNbER FILL CANAL bTUDY AUbUST 197*
dIG PI.ME KEY bO« FM ENU CANAL *3 LOwEH rLOHIUA FINbEK FILL CANAL bTUDY
DATE TIME
740alV I34b
740dlV 202b
740a20 014Q
740820 0740
740a
0.13
u.Ob
O.OS
KEY 7«0«
OOblu
NH3-N
TOTAL
MO/L
0.2b
0.07
0.07
O.Ub
O.Ob
o
O.^b
O.Ob
0.10
00630
N02&N03
N-TOTAL
Mb/L
o.ol
0.01K
0.01K
0.01
4
0.01
0.01K
o.ol
FM ENU CANAL»3
00630
N-TOTAL
Mb/L
0.01
o.ol
O.Olis
0.01
0.01
b
0.01
O.OlK
0.01
0062b
TOT KJEL
N
MO/L
O.lb
O.cfO
0.22
0.3d
b
0. Jd
O.lb
0.^4
LOWEk
0002b
TOT KJtL
N
Mb/L
0.30
0.20
(J.cLeL
0.22
0.2s
b
0.30
0.20
0.^4
00663
PMOb-TOT
Mb/L P
O.OJ
0.0 J
0.04
0.04
O.U4
b
0.04
0.03
0.04
FLORIDA i-
00663
PHOb-TUT
Mb/L P
O.OJ
0.03
0.04
O.OJ
0.03
b
U .Ot
O.UJ
0.03
OU330
TOT NFLT
MG/L
j
10
b
D
to
3
iNbEH FILL
00b30
HtblUUt
TOT NFLT
Mb/L
2b
V
b
2
to
t
v
00339 00400
RtSIUUE Ph
VUL NFL!
Mb/L SO
3
1 K
J •»
1
b I
-* i
li\
J
CANAL bluuY
00b3b 00400
KtSIUUE PH
VOL NFLT
rtb/L SU
13 a. 1
1
IK
^
^ i
j i
13
IK
s
-------
APPENDIX C-2.2
CO
<*>
SlATiUN -
HKUTtCTION AOtNCT KtuIO<
Vt ILLANCt KNU XMALYS1& DIVISION ATntNb* b
»• INOC.H KILL tANAL bfuur AUoUbT l-»7"t
G PlNfc i\t» iatiO' FM tNO CANL«3 LOntK
(•INGtK I-ILL (.UWAL
PATt
7»0ol*
7»oel*
7»0oi*
7*0dl*
74001V
7*0di*
7»0dl*
7»0el<<
7*oalV
7*OdJ*
7*OO 19
7*0dl*
7*0ol*
7«0ol*
7»odl*
7»0dl*
74001*
/*0dl*
7*0ol*
7*00*0
7*00*0
7*00*0
7*00*0
7*00*0
7*00*0
7*oo*o
/*Dd*0
7*00*0
7*00*0
7*0o*0
7*00*0
7*0o*0
7*00*0
7*oe*o
7»0o*0
7*uo*o
7*00*0
7*00*0
7*0d*0
7*00*0
7*0020
7*00*0
7*00*0
7*0a*0
7*0e*0
7*00*0
'"Ue,[flt
•«J
"ll>
«t*
TME
1300
1330
1*00
1*30
IbUO
Ib30
IbbO
Ib30
1 70 0
1 /JO
louo
Id30
1*00
1*30
*000
2030
*1 00
*130
^00
^£ JO
2300
*330
**00
0030
0100
0130
0*00
0*30
0300
0330
0*00
0*30
ObOO
0600
OOJO
0/00
0/30
OdOO
0630
0*00
0*30
10UO
1030
1100
1130
1*00
1*30
1300
1330
1*00
tot"
I HUM
llMU*
14
00003
UfTn
FttT
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
OObBU
T OKb C
C
Mb/L
*.o
l.b
l.b
*.o
*.t>
l.b
l.b
l.b
*.o
l.b
1.1
*.b
*.o
1.1
1.1
l.b
1.1
1.1
1.1
2.*
*.*
*b
*.s>
1.1
1.0
OOblO
NH3-N
TOTAL
Mb/L
0.07
O.O/
0.10
0.07
0.07
0.
0.
0.
0.
0.
0.
u.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0
0
Ob
03
Ob
Ob
Ob
07
Oo
10
Ob
u7
ob
10
07
OS
or
07
07
07
07
07
07
*b
.10
. jj
u.u/
U0b30
N-IOIAL
0.01
0.01K
u.Oln
U.01K
0.01K
0.0 IK
0.01K
U.01K
U.OlK
O.OlK
U.OlK
O.OlK
0.01
U.01
0.01
U.OlK
10
J.01
U.UIr.
U.01
FOT KJtL
N
Mu/L
U.lb
U.lb
O.lb
O.*0
U.lb
l./b
0.*4
U.lb
u.*o
O.*0
0.**
o.*o
O.lb
o.*o
0.**
o.*o
o.*o
0.**
o.*0
0.1*
O.lb
o.2o
U.*3
*0
1./3
0.1*
o.*o
Oubbb
MHOS- TOT
ib/L H
0.0*
0.0*
0.0*
0.0*
0.0*
0.
0.
0.
0*
0*
0*
00b3u JODJt)
KtblUUt KtblUUt
10 f NKLI VUL NfL(
rtb/L MO/L
3 *
* 1
3 IK
* IK
3
3
b
*
IK
IK
*
IK
0.0*
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0*
0*
OJ
03
0*
OJ
03
04
0*
0*
0*
0*
0*
t,
*
*
b
*
3
3
*
*
IK
*
*
*
*
IK
IK
*
*
*
*
1
IK
IK
*
IK
0.0*
0.
0.
u.
u
u
0
0*
04
u*
*0
.0"
.03
• O4
*
*3
b
*4
-------
APPENDIX C-2.2
u>
10
00
STAIION - tfPK-li
ENV1KONMENTAL PROTECTION AGENCY REGION IV
bUriVEILLANCE ANU ANALYblb UlVIblON ATHENS* uEOHGlA
HNGEK KILL CANAL bTUUY AUGUST 1*74
BOGIE CHANNEL OACKGHuUNU STATION LO*EK KLOKIuA
UNGEH KILL C.ANAL bTUuY
UATt TIME
740319 I41b
740019 2120
740o<:0 0230
740o20 0010
7408*0 13*0
NUMBEK
MAXIMUM
MINIMUM
MEAN
7408*0
STATION - *PK-12
DATE TIME
740019 143S
740019 21*0
7400*0 030b
7400*0 OO35
740o20 1430
740019
NUMOEH
MAXIMUM
MINIMUM
MEAN
7400*0
OOOOJ
UEHTH
FtET
i
*
t
2
2
(JUUOJ
UEPTH
FEET
b
5
b
5
b
00600
T OHG C
C
MG/L
1.1
1.0
1.1
1.1
2.0
b
2.6
1.0
1.4
dlG PINE
UObbU
T ORG C
C
MG/L
2.9
2.9
2.0
2.0
2.*
b
2.9
2.0
*./
OOblO
NM3-N
TOTAL
MG/L
O.Ob
0.10
0.07
O.U7
0.07
b
0.10
O.Ob
0.07
KEY bO» KM
00610
NH3-N
TOTAL
MG/L
0.07
0.12
0.1*
O.lb
0.10
b
O.lb
0.07
0.11
00630
N02&NOJ
N-TOTAL
Mu/L
0.01K
u.ul
0.01
0.01
0.01
b
0.01
U.U1K
u.ul
END CANAL
00630
N02&NOJ
N-TOTAL
MG/L
0.01K
U.OlK
0.01K
0.01
0.01
b
0.01
U.OlK
U.Ol
006*3
TOT KJtL
N
MG/L
0.2b
U.lb
0.12
0.10
O.*b
b
0.2b
0.10
U.17
»4 LOMEK
0062b
TOT KJEL
N
MG/L
0.2d
0.22
0.2b
0.2b
U.22
b
0.2O
0.22
0.24
0066b
PHOS- fur
MG/L P
0.04
O.Oo
0.04
0.04
U.Uf
b
0.04
0.04
0.04
KLOHIOA K
00603
pHOS-roT
MG/L P
0.04
0.04
0.04
0.04
U.04
3
0.04
0.04
O.U4
UUbJU
HEblUUE
TOT NKLT
MG/L
3
4
3
3
IK
b
-------
APPENDIX C-2.2
STATION - HHK-1J
ENVIRONMENT AL HKOTECTION AGENCY rtEGiUN IV
SUKVE1LLANCE AND ANALYSIS OIVJS10U ATHENS* GLUkGIA
FIUGEH FILL CANAL STUDY AUGUST 19/4
rtlG PINE KEY J&O* FM END CANALS* LOatH FLOKIDA
FILL CANAL STUUY
w
CO
o
DATE TIME
740e>19 14*5
740olV 2205
740b20 0320
7*0b20 Ott30
740620 1420
NUMnEM
MAXIMUM
MINIMUM
MEAN
740020
00003
DEPTH
FtET
*
*
4
4
4
oootto
T OKG C
C
MG/L
1.3
1 .5
2.0
C.Q
2.0
b
«:.u
l.b
l.d
00610
Nrt3-N
TOIhL
Mto/L
O.iO
0.10
0 . l£
0.07
0.07
s
0.12
0.07
0.0^
OU030
NU£f\N03
N-TuTAL
MG/L
0.01K
U.01K
0.01
0.01
0.01
3
O.Ul
O.OlK
O.Oi
006^3
TOT KJEL
N
Mvi/L
0.3b
0.30
o.3b
0. JO
0.20
s
0.33
0.20
0.30
00003
PMOS-TOT
MG/L P
O.o*
0.04
0.0*
0.03
0.03
b
0.0*
0.03
u.o*
00330
HESIDUE
IOT NFLT
MG/L
2
*
5
1
3
,,
/
^
^
00333
KtSIOUE
VOL Nt-LT
MG/L
t
1
-------
APPENDIX C-2.2
thtf l*ONMfcNI «»L HHOTtCHON MOtUCY eiLblON
iU"»tlLLANCl *nU ONALYilS ulVl^lUN AlrltNS. O
f INbtri FILL CANAL STuur AUtoUbl 1V7«
to
s
MA I ION -
Hlb flNt «t»
FM tNu CA..AL»» LU«t» tLUrtlUA
FINbEri FILL CANAL stUU»
IJAlt 11ME
74001V 1300
74001V 1330
74001* 1400
/4001V 1430
74001V IbOO
74001V 1930
74001V 1600
740olV 1630
7*0019 1700
/4001V U30
74001V 1«UO
74001V lt)30
74001V 1VOO
74001V 1V30
74001V 2000
74001V 20JU
7*0dtv 2190
7*0olv 2130
7*oelv 2200
74091V 2230
740019 2300
74001V 2330
74001V 2400
740020 0030
/40020 0100
/40H20 0130
7*04*0 0200
7*0020 0*30
740010 0300
7400*0 0330
7*0820 0*00
7*0020 0430
740020 ObOO
7*0020 0330
7*0020 0600
7400*0 0630
7*0020 0700
1*00*0 0730
7*00*0 0000
740020 0030
740020 0400
740020 OV30
740020 1000
7*0020 1030
7*0420 1100
7*0020 1130
740020 1200
7400*0 1230
7*00*0 1300
7*0620 1330
7«04CO 1*00
7*0«20 1900
7*UO»U.«.r.^
hftAIMuM
M|Nl *^»"
•*t «N
OOOOJ U000U
Utfln I o«0 C
L
ftl T Mti/L
4 2.3
4
4 2.3
*
» 2.0
4
4 2.0
*
* *.o
*
* 2.0
*
4 2.b
*
4 *.0
4
4 2.V
«
* 2.V
*
* 2.0
4
4 2.0
*
* 2.0
*
4 2.0
«
* 2.0
*
4 2.3
4
4 2.0
*
* 1.1
*
* 1.1
*
.4 1.1
4
4 l.b
*
* 2.0
*
* 1.1
4
* 1.1
*
* 2.9
• *
• 1.1
* 1.1
,,
*.••
1.1
l.v
uuolu
N1J-N
TOTAL
Mb/L
0.10
0.07
H.ll
U.12
0.10
0.12
0.10
tl.l*
0.07
0.07
0.12
0.07
0.07
l). 10
(1.12
O.lo
O.lO
0.10
0.10
0.10
o.io
o.o?
0.07
O.o/
0.07
0.07
u .0 7
,,
0.1*
o.o/
o.Ov
006JU
NU**N03
N-TulAL
HU/L
O.UlK
O.OlK
O.Oln
U.OlK
U.OlK
O.OlK
O.UlK
U.OlK
O.OlK
O.OlK
O.OlK
O.OlK
0.00*
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK.
0.01*.
O.OlK
O.OlK
O.OlK
0.01
0.01
0.01
e,
u.ol
I'.OOK
".01
000*3
101 KJtt
ft
•tto/L
0.20
0.19
0.22
0.20
0.20
0.20)
0.20
0*22
0*22
0.*9
0.23
0.20
0.29
U.*2
0«*3
0.22
O.JO
0.29
0**2
0*22
0.23
0.22
0.**
0.24
u.*b
U.29
U.23
*7
U. JU
b.l3
U.*4
Ov)609
f«0>-IOF
Kfa/L v
0.04
0.04
0.04
0.04
U.04
0.04
0.04
O.l)4
0.04
0.04
0.04
O.OJ
O.OJ
O.OJ
O.OJ
O.OJ
O.OJ
O.Ob
O.OJ
o.u*
0.02
0.0*
0.0*
O.u*
0 . 0*
0.00
o.o*
*/
o.ut>
0.0*
U.UJ
U093U
MLblUUL
TOT NfLl
MU/L
*
3
J
*
3
2
4
4
*
3
4
6
9
3
*
*
4
7
4
4
7
3
9
3
4
f,
7
*
4
OU9J9
"til UUt
VUL HH.T
Hli/L
1
2
*
*
*
IK
*
1
1
IK
1
2
4
1
IK
IK
1
4
1
3
4
2
*
IK
*
£•>
4
1*
*'
-------
APPENDIX C-2.2
ENVIWONMENTAL PxOTtCTlON AbENCY KEGION IV
bUHVEILLANCt AND ANALYSIS OIVlbiON ATHENS* GEOKGlA
F1NGEH FILL CANAL STUDY AUGUST
STATION - BPK-F
bib PINE KtY SPECIAL STATION LUWEM KLOHIUA
FINGER FILL CANAL STUDY
w
DATE TIME
740020 0250
740b«:0 002b
740020 l4Ub
740020
NUMBER
MAXIMUM
MINIMUM
MtAN
740020
00003 00b80
DEPTH T ORG C
C
FEET MG/L
4 2.b
4 2.0
4 2.b
J
2.b
2.0
2.3
OOblO
NH3-N
TOTAL
MG/L
0.12
0.13
0.10
3
0.13
0.10
0.12
0063U
N02&N03
N-TOTAL
MG/L
0.01
U.01
0.01
3
0.01
0.01
0.01
0062b
TOT MEL
N
MG/L
O.bO
0.20
0.30
J
O.bO
0.26
0.3b
OObbb
PHOS-TOT
MG/L P
0.04
0.04
0.04
J
0.04
0.04
0.04
UOS30
RESIDUE
TOT NfLT
MG/L
2
2
2
2
2
2
00b3b
RESIDUE
VOL NFLT
MG/L
2
IK
2
2
IK
2
STATION - BPK-G
dIG PINE KEY SPECIAL STATION LOWEH FLORIDA
FINGEH FILL CANAL bTUUY
DATt TIME
74U019 2230
740020 034b
740020 0910
740020 l^bb
74061V
NUMBtK
MAXIMUM
MINIMUM
MEAN
74U020
00003
DEPTH
FEET
b
5"
b
5
OObOO
T OHG C
C
MG/L
2. -9
2.9
2.b
2.0
4
2.9
2.0
2.6
00610
NH3-N
TOTAL
MG/L
0.10
O.lb
0.10
0.10
4
0.13
0.10
0.11
00030
N02&N03
N-TOTAL
MG/L
0.01K
O.U1K
0.01
0.01
4
0.01
0.01K
0.01
00b2b
TOT KJEL
N
MG/L
0.6b
0.30
0.42
0.2b
<»
O.bb
0.2b
0.40
OObbb
PHOb-TOT
MG/L P
0.03
0.04
0.04
0.0<»
4
0.04
0.03
0.04
OUbJO
KESIOUE
TOT N^LT
MG/L
2
1
b
3
b
1
3
00b3b
RESIDUE
VOL NFLT
MG/L
2
IK
2
3
2
IK
2
-------
APPENDIX C-2.3
ENVIRONMENTAL PROTECTION A6ENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
RINGER FILL CANAL STUDY AUGUST, 197*
STATION - SA-1S 50- FROM DEAD END OF CANAL VI SEA AIR ESTATES_STUOY
•—" --•-• IiriT nnlv; 00610 00625 00630 00665 00680
LO
*•
to
740822
NUMBER
MAXIMUM
MINIMUM
MEAN
740823
740822 1900
740823 0715
740823 1315
740823 1820
00003
DEPTH
DATE TIME DATE TIME FEET
8
8
8
7
4
8
7
8
oooda
LAB
IOENT.
NUMBER
3055
3066
3067
3069
00400
PH
SU
00530
RESIDUE
TOT NFLT
MG/L
00535
RESIDUE
VOL NFLT
MG/L
00610
NH3-N
TOTAL
MG/L
00625
TOT KJEL
N
MG/L
00630
N02LN03
N-TOTAL
MG/L
00665
PHOS-TOT
MG/L P
7.7
7.8
7.8
7.8
4
7.8
7.7
7.8,
4.0
23.0
12.0
14.0
4
23.0
4.0
13.3
1
15
8
10
4
15
1
9
0.05
0.05
0.07
0.10
4
0.10
0.05
0.07
0.12
0.14
0.15
0.20
4
0.20
0.12
0.15
0.01
0.05
0.05
0.05
4
0.05
0.01
0.04
00665
PHOS-TOT
MG/L P
0.02
0.03
0.03
0.03
00680
T ORG C
C
MG/L
1.1
l.OK
l.OK
l.OK
0.03
0.02
0.03
4
1.1
l.OK
1.0
-------
APPENDIX C-2.3
STATION - SA-16
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY AUGUST. 197*
50« FROM DEAD END OF CANAL VII SEA AIR ESTATES STUDY
CO
*.
w
DATE TIME
740822
NUMBER
MAXIMUM
MINIMUM
MEAN
740823
DATE
740822
740823
740823
740823
TIME
1940
0730
1330
1830
00003
DEPTH
FEET
12
10
10
10
4
12
10
11
00008
LAB
IOENT.
NUMBER
3056
3070
3071
3073
00400
PH
SU
7.6
7.6
7.6
7.6
4
7.6
7.6
7.6
OOS30
RESIDUE
TOT NFLT
MG/L
6.0
25.0
20.0
21.0
4
25.0
6.0
18.0
00535
RESIDUE
VOL NFLT
MG/L .
4
15
14
16
4
16
4
12
00610
NH3-N
TOTAL
MG/L
O.OS
0.05
O.OS
0.12
4
0.12
0.05
0.07
00625
TOT KJEL
N
MG/L
0.15
0.12
0.12
0.20
^
0.20
0.12
0.15
00630
N021N03
N-TOTAL
MG/L
0.05
0.07
0.07
0.07
i
^
0.07
0.05
0.06
00665
PHOS-TOT
MG/L P
0.02
0.03
0.03
0.03
4
0.03
0.02
0.03
00680
T ORG C
C
MG/L
l.OK
1.1
1.1
1.5
4
1.5
l.OK
1.2
-------
APPENDIX C-2.3
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGER FILL CANAL STUDY AUGUST. 1974
STATION - SA-17 *00- FRM CLSEO END OF BORROW PIT SEA AIR EST*T^_STUDY
• •••••"••"•"•""""•™"*™*™™ —™"—™ — __ .&.*-•*•- M A *. « A AA4. ^C AAA.1A ft n f*.t*.ti A A f* A A
DATE TIME DATE TIME
740822 2000
740823 0735
740B23 1345
740823 1845
00003
DEPTH
FEET
12
12
12
12
00008
LAB
IDENT.
NUMBER
3057
3074
3075
3078
00400
PH
SU
7.5
7.8
7.7
7.8
00530
RESIDUE
TOT NFLT
MG/L
11.0
14.0
36.0
2.0
00535
RESIDUE
VOL NFLT
MG/L
8
10
26
2
00610
NH3-N
TOTAL
MG/L
0.07
0.05
0.05
00625
TOT KJEL
N
MG/L
0.32
0.15
0.10
0.10
00630
N021N03
N-TOTAL
MG/L
0.01
0.08
0.06
0.08
00680
T ORG C
C
MG/L P MG/L
00665
PHOS-TOT
0.03
0.03
0.03
0.03
l.OK
l.OK
l.OK
1.5
740822
NUMBER
MAXIMUM
MINIMUM
MEAN
740823
4
12
12
12
4
7.8
7.5
7.7
4
36.0
2.0
15.8
4
26
Z
12
3
0.07
0.05
0.06
0.32
0.10
0.17
4
0.08
0.01
0.06
4
0.03
0.03
0.03
4
1.5
l.OK
1.1
-------
APPENDIX C-2.3
STATION - SA-18
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FIN6ER FILL CANAL STUDY AUGUSTi 197*
AT MOUTH OF BORRO* PIT SEA AIR ESTATES STUDY
CO
-u
tn
DATE TIME
7*082?
NUMBER
MAXIMUM
MINIMUM
ME AN
7*0823
DATE
7*0822
7*0822
7*0822
7*0822
7*0822
7*0822
7*0822
7*0822
7*0822
7*0822
7*0822
7*0822
7*0822
740822
7*0822
7*0823
7*0823
7*0823
7*0823
7*0823
7*0823
7*0823
7*0823
740823
740823
740823
740823
7*0823
7*0823
7*0823
7*0823
7*0823
7*0823
7*0823
7*0823
7*0823
7*0823
7*0823
7*0823
7*0823
740823
740823
740823
740823
740823
740823
740823
740823
7*0823
740823
740823
740823
7*0823
740823
7*0823
TIME
1700
1730
1800
1830
1900
1930
2000
2030
2100
2130
2200
2230
2300
2330
2400
0030
0100
0130
0200
0230
0300
0330
0400
0430
0500
0530
0600
0630
0700
0730
0800
0830
0900
0930
1000
1030
1100
1130
1200
1230
1300
1330
1400
1430
1500
1530
1600
1630
1700
1730
1800
1830
1900
1930
2000
00003
DEPTH
FEET
5
5
5
S
5
5
5
S
S
5
5
5
5
5
5
5
5
5
S
5
5
5
b
5
S
S
5
5
5
5
5
5
S
S
S
5
5
S
S
S
5
S
S
S
S
S
S
S
S
S
S
5
S
5
S
55
5
5
5
00008
LAB •
IOENT.
NUMBER
2847
3058
2848
3059
2849
3060
2850
3061
2851
3062
2852
3063
28S3
3064
2868
3079
2869
3076
2870
3080
2871
3081
2872
3082
2873
3083
2882
3102
287*
3103
2875
308*
2876
3085
2877
3086
2878
3087
2879
3088
2880
3089
2881
3090
2883
3091
2884
3092
2885
3093
2866
3094
2888
3095
2889
00530
RESIDUE f
TOT NFLT \
MG/L
12.0
8.0
13.0
14.0
13.0
12.0
14.0
2.0
12.0
3.0
5.0
4.0
2.0
6.0
2.0
3.0
2.0
*.o
1.0
3.0
2.0
1.0
2.0
2.0
6.0
1.0
*.o
27
14.0
1.0
5.7
00535
tESIDUE
fOL NFLT
MG/L
a
6
9
10
10
8
9
2
4
2
*
2
2
3
IK
1
2
3
1
3
2
IK
2
2
*
I
3
27
10
IK
»
00610
NM3-N
TOTAL
MG/L
0.05
0.05
0.05
0.05
0.07
0.05
O.Ob
0.06
0.05
0.05
0.95
0.06
0.0*
0.05
0.05
0.05
0.05
0.06
0.06
0.06
0.05
0.0*
0.0*
0.05
0.0*
0.04
0.05
0.04
28
0.07
0.04
0.05
00625
TOT KJEL
N
MG/L
0.14
0.12
0.10
0.12
0.25
0.15
0.12
0.10
0.10
0.12
0.25
0.10
0.12
0.12
0.12
0.10
0.12
0.10
0.12
0.12
0.11
0.16
0.12
0.12
0.10
0.10
0.11
0.32
28
0.32
0.10
0.13
00630
N02LN03
N-TOTAL
MS/L
0.01
0.01
0.01
0.01
0.01
0,01
0.01
0.18
0.08
0.06
0.06
0.07
0.08
0.08
0.07
0.06
0.06
0.05
0.06
0.07
0.07
0.07
0.08
0.09
0.09
0.09
0.09
0.08
28
0.18
0.01
0.06
00665
PHOS-TOT
MG/L P
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.04
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
0.03
28
0.04
0.03
0.03
00680
T ORG C
C
MG/L
l.OK
1.0
2.0
2.0
1.1
1.0
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
l.OK
28
2.0
l.OK
1.1
-------
APPENDIX C-2.3
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY AUGUST, 197*
STATION - SA-19 BCKGRNO 800'SEAWRD FRM PROJ SITE SEA AIR ESTATES STUDY
CO
js
0\
DATE TIME
740822
NUMBER
MAXIMUM
MINIMUM
MEAN
740823
DATE TIME
740822 2025
740823 0740
740823 1440
740823 1900
00003
DEPTH
FEET
4
4
3
3
4
4
3
4
00008
LAB
IDENT.
NUMBER
3065
3098
3100
3101
00400
PH
SU
7.7
7.9
8.0
8.0
4
8.0
7.7
7.9
00530
RESIDUE
TOT NFLT
MG/L
10.0
5.0
2.0
4.0
10.0
2.0
5.3
00535
RESIDUE
VOL NFLT
MG/L
6
1
1
2
£
6
1
3
00610
NH3-N
TOTAL
MG/L
0.17
0.05
0.08
0.07
4
0.17
0.05
0.09
00625
TOT KJEL
N
MG/L
0.20
0.14
0.12
0.25
4
0.25
0.12
o.ia
00630
N02&N03
N-TOTAL
MG/L
0.01
0.07
0.06
0.06
4
0.07
0.01
0.05
00665
PHOS-TOT T
MG/L P
0.03
0.03
0.03
0.03
4
0.03
0.03
0.03
00680
ORG C
C
MG/L
l.OK
l.OK
l.OK
l.OK
4
l.OK
l.OK
1.0
-------
APPENDIX C-2.4
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGEH FILL CANAL STUDY SEPTEMBER, 1974
STATION - PC-A
MOOOLAMN CANAL SO FT FRM DEADEND
DATE TIME
74090* 0205
740904 0206
740904 0207
74090* 06*5
7*090* 06*6
740904 0647
740904 0905
740904 0905
740904 0906
74090* 0907
740904 1S4S
740904 1546
740904 1547
740904 1548
740904 1845
740904 1846
74090* 18*7
740904 1846
740904 2143
740904 2144
740904 23*0
740904 23*0
740904 2341
740904 2342
740905 0300
740905 0301
740905 0302
740905 0540
740905 0541
740905 0542
740905 0820
7*0905 0821
7*0905 0622
740905 1200
740905 1200
740905 1201
7*0905 1202
74090*
NUMdE*
MAXIMUM
MINIMUM
MtAN
7*0905
00003
DEPTH
FEET
1
2
3
1
2
3
1
2-
2
3
1
3
*
1
a
3
*
*
5
1
3
2
3
1
2
3
1
2
3
1
2
3
1
2
2
3
00300
00
MG/L
1.6
2.5
2.7
2.7
5.5
5.4
4.7
8.0
5.5
5.2
4.5
*.8
4.4
*.*
*.2
3.5
3.5
3.6
3.2
3.5
3.1
3.8
4.2
*.2
3.8
25
8.0
1.6
00010
WATER
TEMP
CENT
28.9
29.3
29.0
26.*
28.*
28.3
27.8
27.9
*• * • ^
27.9
28.0
29.2
t f • t
29.6
29.1
29. a
30.2
29.6
29. t
b 7 . C.
29.0
28.6
28.6
28.2
28.8
28.7
28.6
28.1
2b.2
27.8
27.7
27.8
27.7
27.7
27.7
28.2
28.2
2U.2
28.2
37
30.2
27.7
M.t
. j
SALINITY °PH°° T WG**
PPTH SU MG/L
24.5 7.0 9.4
PEL ft
C3 • U
2*.*
2*1*
*
2*."* 8*5
> »
23*9
2*. 3
2*. 2
24.4
24.5
2*. 9
74 fc
c^ . o
_ *
> * j
^4 . c 7.6 8.0
24*2
24.2
24.^
24.1
2**2
24.2
24.2
24.3
2*.l
24.3 6.9 8.0
2***
37 3 *
«.l 7.6 9.*
23.9 6.9 8.0
2*. 3 7.2 6.5
00535 00610 00630 00625 o"o665 sIsoT
NOcfcNOJ TOT KsJCL t*MOS™TOT TOT COL 1
V°MG/fLT TOT*L N-TOTAL N MF1MENOO
' * WJ^L MGrL MG/L MG/L P XIAAMI
66 °'°2 0.03 0.27 0.0* 2500
» 0.03 0.02 0.37 0.0* 3000
42 0.01K 0.02 0.*6 0.03
*7 0.01K 0.05 0.05K 0.03 761
*.!**** 3
o ««?» 5*05 °'46 °*°* 3«00
9 0.01K 0.02 0.05K 0.03 761
41 0«02 0.03 0.29 0.0* 2087
-------
APPENDIX C-2.4
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER. 197*
LO
*>
00
MOODLAKN CANAL 900FT NR MID CANA
DATE TIME
7*090* 0140
740.904 0141
740904 0142
740904 0143
740904 0640
740904 0641
740904 0642
740904 0855
740904 0656
740904 08S7
740904 0858
740904 1S40
740904 16*1
740904 1542
740904 1543
740904 1544
740904 1835
74090* 1836
740904 1837
740904 1838
740904 1839
740904 2330
740904 2330
740404 2331
740944 2332
740904 2333
740904 2334
740905 0300
740905 0301
740905 0302
740905 0303
740905 0530
740905 0531
740905 0532
740905 0533
740905 0815
740905 0816
740905 0817
740905 4818
740905 1145
740905 1146
740905 1147
740905 1148
740*04
NUMBER
MAXIMUM
MINIMUM
MEAN
7*0905
00003
DEPTH
FEET
1
2
3
4
1
2
3
i
i
3
4
1
2
3
*
5
1
2
3
4
-------
APPENDIX C-2.4
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY SEPTEMBERt 1974
U
*.
<0
STATION - PC-C
KOODLAUN CANAL 1920 FT FRM MOUTH
DATE TIME
740904 0130
740904 0130
740904 0131
740904 0132
740904 0133
740904 0134
740904 0630
740904 0631
740904 0633
740904 0845
740904 0646
740904 0847
740904 1530
740904 1531
740904 1S32
740904 1533
740904 1825
740904 1626
740904 1827
740904 1628
740904 1829
740904 1830
740904 2240
740904 2240
740904 22»I
740904 2242
740904 2243
740904 2244
740904 2245
74090S 0240
740905 0241
740905 0242
740905 0520
740905 0521
740905 0522
740905 0805
740905 0806
740905 0807
740905 1040
740905 1135
740905 1136
740905 1137
740905 1140
740905 1240
740905 1340
740905 1440
740905 1540
00003
DEPTH
FEET
1
3
2
3
4
S
1
2
3
1
2
3
1
2
3
4
1
2
3
4
5
6
1
3
2
3
4
5
6
1
2
3
1
2
3
1
2
3
.1
2
3
00300
DO
MG/L
3.2
4.6
3.8
8.3
7.6
7.3
7.5
6.6
7.8
4.9
4.9
5.4
5.3
6.1
6.3
5.7
5.7
5.8
5.0
5.3
5.3
5.5
5.6
5.7
00010
MATER
TEMP
CENT
2«.9
29.0
29.0
29.0
2S>.1
29.5
28.5
28.5
28.3
27.9
28.1
28.0
29.6
29.5
29.3
29.4
28.8
29.3
29.0
29.1
29.2
29.2
27. U
28.1
28.0
28.1
27.9
28.2
28.3
28.0
28.0
28.0
27.5
27.5
26.5
27.5
27.6
27.4
26. V
26. 9
27.3
00480
SALINITY
PPTH
25.1
25.0
25.0
25.0
26.2
26.6
2S.2
25.2
25.2
25.1
24.9
24.9
24. U
24.1
24.2
24.1
24.9
24.9
24.9
24.7
24.9
24.9
24.4
24.4
24.6
24.4
24.6
24.7
24.5
24.6
24.6
24.6
24.7
24.7
24.7
24.1
24.1
24.0
«t4.4
24. b
24.5
00400 00680 00535 00610 00630 00625 00665 31501
PH T ORG C RESIDUE NH3-N N024N03 TOT KJEL PHOS-TOT TOT COLI
C VOL NFLT TOTAL N-TOTAL N MFIMENOO-
SU Mli/L MG/L MG/L MG/L MG/L MG/L P /100ML
6.8 8.1 0.01K 0.01 0.31 0.02 57
7.8 7.7 0.01K 0.01K 0.47 0.04 83
7.8 0.01K 0.01K 0.38
7.4 7.4 60 0.01K 0.03 0.97 0.02 50
6.2 226 0.41 0.09
7.6 0.01K 0.01 0.05K 0.11
7.8 0.01K 0.02 0.18 0.07
6.6 76 0.01K 0.01 0.05K 0.06
0.6 94 0.01K 0.02 0.05K 0.08
-------
APPENDIX C-2.4
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY SEPTEMSERt 197*
STATION - PC-C
DATE TIME
riOOOLAMN CANAL 1920 FT FRM MOUTH
740905
740905
740905
740905
740905
740905
740V05
740905
740906
740906
740906
740*06
740906
740906
740906
740906
740906
1640
1740
1840
1940
2040
2140
2240
2340
0040
0140
0240
0340
0440
0540
0640
0740
0840
740904
NUMBER
MAXIMUM
MINIMUM
MEAN
740906
00003
DEPTH
FEET
00300
00
MG/L
00010 004BO
WATER SALINITY
TEMP
CENT PPTH
24
8.3
3.2
5.8
41
29.6
26.5
28.3
41
26.6
24.0
24.8.
00*00
PH
SU
3
7.8
6.8
7.3
00680
T ORG C
C
MG/L
5.9
8.8
6.4
7.0
7.2
6.0
5.3
7.8
6.4
6.8
8.2
9.7
9.4
9.4
10.4
10.7
7.4
26
10.7
5.3
7.8
00535
RESIDUE
VOL NFLT
MG/L
76
102
70
80
92
102
82
100
82
13
226
60
96
00610
NH3-N
TOTAL
MG/L
0.01K
0.02
0.01K
0.01K
0.01K
0.01K
0.01K
0.01K
0.01K
0.01K
0.01K
0.01K
0.01K
0.01K
0.01K
0.01K
24
0.02
0.01K
0.01
00630
N024N03
N-TOTAL
M6/L
0.01
0.02
0.02
0.01
0.01K
0.01K
0.01K
0.01K
0.01K
0.01K
0.01K
0.01
0.01
0.01K
0.02
0.01
0.01K
26
0.03
0.01K
0.01
00625
TOT KJEL
N
MG/L
0.05K
O.OSK
0.05K
0.05K
O.OSK
0.44
0.33
O.OSK
0.42
0.33
O.OSK
0.63
0.46
0.35
0.79
0.75
24
0.97
0.05K
0.30
00665
PHOS-TOT
MG/L P
0.08
0.08
0.09
0.07
0.06
0.03
0.04
0.04
0.04
0.04
0.04
0.03
0.09
0.16
0.12
0.10
0.11
25
0.16
0.02
0.07
31501
TOT COL I
MFIMENOO
/100ML
3
83
50
63
-------
APPENDIX C-2.4
ENVIHONMfNT.M. PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION «TntNSt GEORGIA
FIN6EK F.ILL CANAL STUDY SEPTEMBtK, 197*
CANAL 1500FT KROM MOUTH
w
Ui
OATt TIKE
7*090* 0225
7*090* 0226
7*090* 0227
7*090* 0228
7*0404 0615
740904 0616
740404 0*17
7*OVU* 0..18
74040* 0619
7409U4 0620
7404U* 0621
7*090* 0825
7*090* 0825
740404 0126
740904 0427
7409U4 0828
740904 0824
740444 1520
7409(14 Ib21
740-1-4 1522
74040* 1523
7*090* 1524
7404H4 1815
7409U* 1816
7*04U« Ial7
7*040* lain
7*040* 1819
7*040* 1H2«T
7*090* 222H
7«04»* 2225
7*040* 2226
7*040* 2227
7409i)4 2228
7*0<>0* 2229
7*040% 0230
7*0405 0231
7*0405 0232
7*0405 0233
7*0905 023*
7*091)5 0235
7*0405 0500
7*0405 OSlll
7*0405 0502
7*0405 0503
7*0905 050*
7*0405 0505
7*0905 0755
7*0405 0756
7*0405 0757
7*0905 0756
7*0405 1120
7»090S 1121
7*0405 1122
7*040*
" IXTM -M
f JN
7*0411%
00003
ilEPTH
FEET
i
5
10
13
1
2
3
*
5
6
7
1
3
3
*
5
1
2
3
*
5
1
2
3
*
^
b
1
3
3
*
b
1
2
3
*
5
6
1
2
3
*
b
6
1
2
3
*
1
3
13
1
4
00300
00
HG/L
3. a
3.8
4.3
3.6
6.5
3.3
4.2
4.H
4.8
5.4
5.9
7.5
6.2
8.2
8.3
H.3
8.5
7.0
7.1
7.1
6.4
6.4
6.4
6.1
6.7
6.8
6j.d
b.5
6.1
b.U
6.4
6.4
fl.b
3.3
h.2
00010
HATER
TE«lP
CENT
28.4
28.4
28.7
20.5
27.9
28.2
2B.3
28.2
28. (i
2e.l
28.0
28.0
28.2
27. b
27.9
24.7
29.1
2*>.2
2a.3
20. 0
21.8
28.9
29.0
29.0
29.1
28.3
26.2
28.2
26.2
28.0
28.1
2/.S
27.5
27.4
27.4
27.5
27.5
27.2
27.2
26.9
27.0
27.0
26.7
2b.5
26.5
26. b
26.7
27.3
27.3
27.1
S3
29.7
26.5
27.9
<;., ?M??V 2 ° T °068° °0535 0061° 0°*3° GO"* 00665
SALINITY PH T OHG C RESIDUE NH3-N N024N03 TQT KJEL PMOS-TOT 1
PPTH Cll C v°l- "FLT TOTAL N-TOTAL N
PP™ SU M(3'l- M6/L MG/L MG/L MS/L MG/L P
2**2 7'8 7'2 1** O.OlK 0.01 0.30 O.OlB
25*2
25.4
25.0
25.0
25. 1
?4 H
c^ . o
25.1
25.2
24.9
jj?*? Ba° 5S O.OlK O.OlK 0.34 o.Ol
?5.0
25*4
?4* «
? * .
*
24*0
23*9
**4*S
"5
2**S
7 **«*
2* ^
C* .3
*
2 *\
|**f 8*° *•* 44 O.OlK O.OlK °-78 0.01
24*3
- *
24.4
_ "i
24*2
*
24*2
24^6
2*13
24.3
24.3
2*. 2
2**2
2*. 1
2».l
2*» 1
2*.l
**•* 7 *'b 44 O.OlK 0.02 O.S7 o.Ol
24.2
,bi 3 * * 4 » » »
i!?-* 8-1? e-° 14* O.OlK 0.02 0.76 0.01
,;•? '•* t'5" ** O»'IK ««OIK 0.30 o.ui«
"•b 7'8 7>> '4 0.01 0.01 0.50 0.01
31501
rOT COL1
(FIMENOO
X100ML
7<
21
3
5
4
21
3*
-------
APPENDIX C-2.4
u>
m
to
STATION - PC-t
OATt
7*090*
7*090*
7*090*
7*0'»0*
7*090*
7*090*
7*090*
7*090*
7*090*
7404(14
740904
740904
7*0904
0300
0301
0302
0303
0715
0716
0717
0710
0930
0931
0932
0933
MINIMI**
•-EAN
7*0904
00003
OEPTf
FEET
1
10
20
to
1
10
20
25
1
in
2n
25
12
25
1
14
ENVIRONMENTAL PROTECTION AGENCY REGION iv
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER. 197*
T ANDREWS 6AY 110-CMANNtL OF
00300
00
MG/L
4.0
3.5
2.0
4.9
4.1
3.0
7
5.9
2.0
3.9
00010
KATEK
TE1P
CENT
28.6
28.7
29.6
25.7
28.3
28.8
30.0
29.9
28.2
28.7
30.1
30.1
12
3u.l
2«.2
29.2
00*80
SALINITY
PPTH
24.8
24.8
31.3
31.6
24.6
25.3
32.5
32.5
24.3
2*.t>
32.3
32.3
12
32. b
2*.3
2rt.*
00*00
PH
su
6.7
00680
T ORG C
C
MG/L
6.3
00535
RESIDUE
VOL NFLT
M(j/L
50
00610
NH3-N
TOTAL
MG/L
O.OlK
00630
N021N03
N-TOTAL
Mfa/L
O.OlK
00625
TOT KJEL
N
Mfa/L
0.28
OObbb
PHOS-TOT
MG/L P
O.OlK
31501
TOT COLI
"FIMENOO
/100*L
7<
7.3
2
7.3
6.3
6.8
O.OlK
2
O.OlK
O.OlK
0.01
O.OlK
2
O.OlK
O.OlK
U.01
0.18
2
0.28
0.18
0.23
O.ol
2
0.01
O.OlK
O.Ol
7K
7
-------
APPENDIX C-2.4
Co
Oi
w
STATION - PC-F
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER! 1974
PRETTY BAYOU BACKGROUND STATION
DATE TIME
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740904
740905
740905
740905
740905
740905
740905
740905
740905
740905
740905
740905
740905
740*05
740905
740905
740905
740905
74090S
740«05'
740905
740905
740905
740905
740905
740905
740*05
740905
740905
740904
0430
0431
0432
0433
0434
0435
0436
0945
0945
0946
0947
0948
0949
1610
1611
1612
1613
1614
1905
1906
1907
1908
1909
1910
1911
0005
0005
0006
0007
0008
0009
0010
0320
0321
0322
0323
0324
0325
0326
0600
0601
0602
0603
0604
0840
0841
0842
0843
1220
1220
1221
1222
1223
MAXIMUM
MINIMI >M
00003
DEPTH
FEET
1
2
3
4
5
6
7
1
3
2
3
4
5
1
2
3
4
5
1
2
3
4
5
6
7
1
3
2
3
4
5
6
1
2
3
4
5
6
7
1
2
3
4
5
1
2
3
4
1
2
2
3
4
S3
7
1
3
00300
DO
MG/L
3.0
4.1
3.7
4.2
2.7
z.e
3.9
3.9
3.9
4.0
3.5
7.3
8.3
6.3
7.3
8.4
8.4
8.2
7.6
7.1
7.0
3.2
6.1
6.3
6.2
6.1
6.1
6.0
6.4
6.0
6.0
6.1
8.4
2.7
5.7
00010
WATER
TEMP
CENT
27.9
27.
27.
28.
27.
28.
28.
27.
27.
27.
27.
27.
27.7
28.7
2S.9
28.9
28.8
28.4
28.2
28.2
28.3
28.5
29.1
28.5
28.7
27.7
27.5
27.3
27.5
27.5
27.6
27.8
27.5
27.2
27.3
27.4
27.4
27.9
28.5
27.0
27.0
27.0
27.0
27.2
27.0
27.1
27.1
27.3
27.5
27.5
27.5
27.5
27.5
S3
29.1
27.0
27.8
00480
SALINITY
PPTM
24.0
24.1
24.1
24.1
24.0
24.3
24.8
24.3
24.3
24.1
24.2
24.2
24.3
33.1
23.0
23.0
23.3
23.4
23.2
23.2
23.3
23.9
24.2
24.5
24.5
23.Z
23.0
23.2
23.0
23.2
23.0
23.4
23.2
23.2
23.2
23.
23.
23.
24.
23.
23.
23.
23.
23.
23.
23.
23.
23.
23.
23.
23.
23.
23.
53
24.8
23.0
23.6
00400
PH
su
6.0
00680
T ORG C
C
MG/L
7.3
7.9
00535
RESIDUE
VOL NFLT
MG/L
66
00610
NH3-N
TOTAL
MG/L
0.01K
57
0.01K
00630
N021N03
N-TOTM.
MG/L
0.01K
0.01K
00625
TOT KJEL
N
MS/L
0.30
0.44
00665
PHOS-TOT
MG/L P
0.02
0.03
31501
TOT COLI
MFIMCNOO
/loom.
14
7K
7.5
7.3
67
0.01K
0.01K
0.42
0.02
7.5
3
7.5
6.0
7.0
7.3
4
7.9
7.3
7.4
49
4
67
49
60
0.01K
4
0.01K
0.01K
0.01
0.01K
4
0.01K
0.01K
0.01
0.44
4
0.44
0.30
0.40
0.03
4
0.03
0.02
0.03
20
4
20
3K
11
74040S
-------
APPENDIX C-2.4
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCt AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER. 1974
STATION - PC-G
HENTZ CANAL 50 FT FROM DEADEND
DATE TIME
740904 0415
740904 1030
740904 1031
740904 1645
740904 1646
740904 1935
740904 1936
740905 0040
740905 0040
740905 0041
740905 0042
740905 0345
740905 0346
740905 0625
740905 0626
740905 0910
740905 1250
740905 1300
740904
NUMBER
MAXIMUM
MINIMUM
MEAN
740905
OOU03
DEPTH
FEET
1
I
2
1
2
1
2
1
2
2
3
1
2
1
2
1
1
1
00300
00
MG/L
1.8
2.5
6.6
4.8
5.0
3.4
3.3
3.3
3.4
2.9
2.1
2.2
2.2
2.5
s.2
15
6.6
1.8
3.*
00010
WATER
TEMP
CENT
28.8
28.2
28. b
30.4
30.4
28.4
29.3
28.2
28.2
28.2
28.6
27.8
27.7
28.2
28.2
27.7
28.0
27.9
10
30.4
27.7
28. b
00480 0040U 00680 00535 00610 00630 00625 00665
SALINITY PM T ORG C RESIDUE MM3-N N024.N03 TOT KJEL PHOS-TOT 1
C VOL NFLT TOTAL N-TOTAL N 1
PPTH SU MG/L MG/L MG/L MG/L MG/L MG/L P
23.9 5.5 10.8 58 0.04 0.01 0.32 0.11
23.2 9.0 58 0.02 0.01 0.20 0.09
23.2
22.8
22. V
23.6
23. b
22.7
22.7 6.9 9.7 S3 0.01K 0.01 0.39 0.10
22.7
23.2
21.9
22.7
22'. 2
22.5
23.7
22.7 6.9 11.3 50 0.01K 0.01 0.40 0.12
22.5
18 3444444
23.9 6.9 11.3 58 0.04 0.01 0.40 0.12
21.9 5.5 9.0 50 0.01K 0.01 0.20 0.09
22.9 6.4 10.2 55 0.02 0.01 0.33 0.11
31501
roT COL I
1FIMENOO
/100ML
7
7K
3K
10
4
10
3K
7
-------
APPENDIX C-2.4
ENVIRONMENTAL PROTECTION AGENCY REGION iv
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER* 197*
STATION - PC-H
HENTZ CANAL isoo FT MR MID CANAL
DATE TIME
740904 03S5
740904 0356
740904 0357
740904 1Q1S
740904 1015
740904 1016
740904 1017
740904 1625
740904 1626
740904 1627
740904 1628
740904 1925
740904 1926
,. 740904 1927
rl 740904 1926
X! 740905 0025
740905 002S
740905 0026
740905 0027
740905 0028
740905 0340
740905 0341
740905 0342
740905 0615
740905 0616
740905 0617
740905 0900
740905 0901
740905 0902
740905 1250
740905 1251
740905 1252
740905 1300
740904
NUMBER
MAXIMUM
MINIMUM
MEAN
740905
00003
DEPTH
FEET
1
2
3
1
2
2
3
1
2
3
4
1
2
3
4
1
3
2
3
4
1
2
3
1
2
3
1
2
3
1
2
3
1
00300
DO
MG/L
1.9
4.1
1.9
4.2
4.2
6.2
6.1
5.0
5.7
S.8
6.0
5.7
5.0
5.0
5.2
4.3
4.0
*.o
3.9
3.6
3.4
3.5
5.2
3.8
5.3
A
0.2
1.9
*.5
00010
WATER '
TEMP
CENT
28.0
29.3
29.5
28.2
28. 2
28.2
28.4
30.2
30.0
29.6
29.4
29.3
29.4
29.4
29.4
28.4
29.0
28.4
29.0
29.0
28.1
28.5
28.7
27.7
27.9
28.1
27.7
27.7
27.7
28.0
28.0
27.8
27.9
33
30.2
27.7
28. 6
00480
SALINITY
PPTH
23.5
24.1
25.2
23.4
23.3
23.3
23.8
23.5
23.2
23.3
23.3
23.1
23.7
24.1
23.8
22.7
23.«
22.8
23.4
23.6
22.8
22.8
23.5
22.6
22.9
23.1
22.9
22.9
22.9
22.7
22.9
23.0
22.5
33
25.2
22. 5
23.3
00400 00680 00535 00610 00630 00625 00665 31501
PH T ORG c RESIDUE NHJ-N N02iN03 TOT KJEL PHOS-TOT TOT COLI
C VOL NFLT TOTAL N-TOTAL N MFIMENDO
SU MG/L MG/L MG/L MG/L MG/L MG/L P /100ML
5. a 11.0 165 0.01 0.01 0.36 0.09 7K
10.1 51 0.01K 0.01 0.21 0.08 21
7.0 8.2 0.01K 0.02 0.23 0.05 IS
6.tt 8.7 58 0.01K 0.01K 0.23 0.07 20
34344444
7.0 11.0 165 0.01 0.02 0.36 0.09 21
5.8 8.2 51 0.01K 0.01K 0.21 0.05 7K
6.5 9.5 91 0.01 0.01 0.26 0.07 16
-------
APPENDIX C-2.4
ENVIRONMENTAL PROTECTION AGENCY KEGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER, J974
STATION - PC-I
HENT2 CANAL 3000 FT FROM MOUTH
DATE TIME
740904 0330
740904 0331
740904 0332
740904 0333
740904 1000
740904 1001
740904 1002
740904 1003
740904 1615
740904 1616
740904 1617
740904 1610
740904 1619
740904 1915
740904 1916
740904 1917
w 740904 1916
Oi 740904 1919
°* 740905 0015
740905 0015
740905 0016
740SIOS 0017
740905 0018
740905 0019
740905 0330
740905 0331
740905 0332
740905 0333
74090S 0334
740905 0610
740905 0611
740905 0612
740905 0613
740905 0614
740905 0615
740905 0816
740905 0817
740905 0818
740905 0819
740905 1100
740905 1204
740905 1235
740905 1236
740905 1237
740905 1238
740905 1300
7*0905 1»12
00003
DEPTH
FEET
1
2
3
4
1
2
3
4
1
2
3
4
3
1
2
3
4
5
1
3
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
£
3
4
00300
00
MG/L
3.0
3.5
3.0
3.2
4.2
6.8
6.7
6.6
6.7
6.7
6.0
7.3
7.3
7.8
4.7
4.9
5.1
4.4
4.4
4.5
2.7
4.0
4.2
b.O
4.9
4.3
00010
WATER
TEMP
CENT
26.4
28.5
20.4
/»b.4
27.6
27.6
27.6
27.7
29.4
29.5
e:9.6
29.3
28.7
29. J
29.1
29.8
29.5
29.2
27.9
28.4
26.3
28.4
28.6
26.2
28.0
26.0
2B.O
28.0
2B.1
27.6
27.6
27.7
27.7
27.6
27.5
27.5
27.5
27.5
27.5
27.8
27.7
27.6
27.5
00400
SALINITY
PPTH
24.5
24.6
24.5
24.5
23.8
24.0
24.2
24.3
23.4
23.7
23.7
23.9
23.6
24.1
24. 0
24.1
24.0
23.9
23.2
23.5
23.5
23.5
23.4
23.6
23.4
23. *r
23.4
23.4
23.4
23.2
23.4
23.4
23.4
23.4
23.2
23.2
23. Z
23.2
23.2
23.2
23.2
23.3
23.4
00400 00680 00535 00610 00630 00625 00665 31501
PH T ORG C RESIDUE NH3-N N021N03 TOT KJEL PMOS-TOT TOT COLI
C VOL NFLT TOTAL N-TOTAL N MFIMENOO
SU MG/L MG/L MG/L MG/L MG/L MG/L P /100ML
6.5 8.7 0.01 0.01K 0.84 0.06 7K
7.6 9.4 0.01K 0.02 0.05K 0.06 8
9.2 0.01K 0.02 0.05K
14.0 0.01K 0.03 0.29 0.09
7.1 9.4 168 0.01K 0.01K 0.21 0.08 5
m
.12.2 60 0.01K 0.02 0.26 0.18
17.3 0.01 0.02 0.40 0.19
-------
APPENDIX C-2.4
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER* 1974
STATION - PC-I
HENTZ CANAL 3000 FT FROM MOUTH
00003
OtPTh
DATE TIME FEET
740905 1516
740905 1680
740905 1724
740905 1828
740905 1932
*•* 740905 2036
*•! 740905 2140
^ 740905 2244
740905 2348
740906 0052
740906 0156
740906 0300
740906 0404
740906 0508
740906 0612
740906 0716
740904
NUMBER
MAXIMUM
MINIMUM
MEAN
740906
00300 00010 00480 00400 00680
00 *ATEH SALINITY PH T OH 6 C
TEMP C
MG/L CENT PPTM SU MG/L
12.4
11.3
13.0
12.6
11.5
19.4
16.9
18.3
18.8
12. 8
21.4
11.7
13.8
11.1
10.9
12.2
26 43 43 3 23
7.8 29.8 24.6 7.6 21.4
2.7 27. & 23.2 6.5 8.7
5.1 28.2 23.6 7.1 13.4
00Mb
RESIDUE
VOL NFLT
MG/L
98
100
308
146
6
308
80
150
00610
NH3-N
TOTAL
MG/L
0..01
0.06
0.07
0.05
0.10
0.01K
0.09
0.23
0.01K
0.01K
0.01K
0.01K
0.01
0.01K
0.01K
22
0.23
0.01K
0.03
00630
N021N03
N-TOTAL
MG/L
0.03
0.03
0.03
0.03
0.01
0.01
0.01
0.02
0.01
0.01
0.01K
0.01
0.02
0.02
0.02
0.02
23
0.03
0.01K
0.02
00625
TOT KJEL
N
MG/L
0.42
0.30
0.29
0.24
0.43
0.42
0.57
0.46
0.47
0.38
0.35
0.43
0.36
0.31
0.36
22
0.84
0.05K
0.36
00665
PHOS-TOT
MG/L P
0.13
0.10
0.15
0.17
0.19
0.23
0.30
0.24
0.19
0.21
0.13
0.13
0.11
0.10
0.11
21
0.30
0.06
0.15
31501
TOT COL I
MFIMENDO
/100ML
3
a
SK
7
-------
APPENDIX C-2.5
Ul
00
STATION - AB-01
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER. 197*
ATLANTIC 8CH-NEAR CANAL DEAD END
DATE TIME
740917 0010
740917 1830
740917 1845
740917 2345
740918 0440
740918 0930
740918 1200
740918 1400
740918 1745
740917
NUMBER
MAXIMUM
MINIMUM
MEAN
740918
00660
T ORG C
C
MG/L
3.2
3.4
6.1
6.1
2.5
2.2
2.5
2.5
8
6.1
2.2
3.6
00530
RESIDUE
TOT NFLT
MG/L
10.0
9.0
10.0
7.0
12.0
2.0
3.0
7
12.0
2.0
7.6
00535
RESIDUE
VOL NFLT
MG/L
2
3
3
2
9
1
2
7
9
1
3
00610
NM3-N
TOTAL
MG/L
0.05
0.03
0.07
0.10
0.14
0.07
0.07
0.07
8
0.14
0.03
0.07
00630
N02&N03
N-TOTAL
MG/L
0.01K
0.01K
O.OlK
0.01K
O.OlK
O.OlK
O.OlK
O.OlK
8
O.OlK
O.OlK
0.01
00625
TOT KJEL
N
MG/L
0.25
0.27
0.40
0.30
0.32
0.30
0.20
0.30
8
0.40
0.20
0.29
00665
PHOS-TOT
MG/L P
0.04
0.04
0.05
0.04
0.05
0.09
0.09
0.06
8
0.09
0.04
0.06
31616
FEC COL I
MFM-FCBR
/100ML
1500
170
2
1500
170
635
31501
TOT COLI
MF IMENOO
/100ML
3400
1
STATION - AB-02
ATLANTIC BCH-K OF MOREHEAD AVE
DATE TIME
740918 0445
740918 0950
740918 1205
740918 1345
740918 1800
740918
NUMBER
MAXIMUM
MINIMUM
MEAN
740918
00680
T ORG C
C
HG/L
5.2
5.2
5.0
5.7
4
5.7
5.0
5.3
00530
RESIDUE
TOT NFLT
MG/L
4.0
12.0
9.0
15.0
4
15.0
4.0
10.0
00535
RESIDUE
VOL NFLT
MG/L
4
6
5
8
4
8
4
6
00610
NH3-N
TOTAL
Mti/L
0.07
0.07
0.07
0.16
4
0.16
0.07
0.09
00630
N02&N03
N-TOTAL
MG/L
O.OlK
O.OlK
O.OlK
0.01
4
0.01
O.OlK
0.01
00625
TOT KJEL
N
MG/L
0.20
0.32
0.28
0.32
4
0.32
0.20
0.28
00665
PHOS-TOT
MG/L P
0.05
0.06
0.05
0.06
4
0.06
0.05
0.05
31616
FEC COLI
MFM-FCBR
/100ML
230
b6
2
230
56
143
31501
TOT COLI
MFIMENDO
/100ML
400
1
-------
APPENDIX C-2.5
co
in
•O
STATION - AB-03
ENVIRONMENTAL PROTECTION AGCNCY REGION IV
SlKWeiLLANCt AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER* 1974
ATLANTIC BCH-N OF FT MACON 8LVO
DATE TIME
740*17 1700
7*0917 1SOO
7*8*17 1830
7*0917 1900
740917 1930
7*0917 2000
7*0917 2030
7*0917 2100
7*0917 2130
7*0917 2200
740917 ZZ30
7*0917 2300
740917 2330
7*0917 2400
7*0918 0030
7409U 0100
7409U 0130
7409U 0200
7*0910 0230
7*0918 0300
7*0916 0330
740918 0400
T40918 0430
740918 0600
740918 OS30
740918 0600
740918 0630
740918 0700
740918 0730
740918 0800
740918 0830
740918 0900
740918 0930
740918 1000
740918 1030
740918 1100
740918 1130
740918 1200
740918 1210
740918 1230
740918 1300
740918 1330
740918 1400
740918 1430
740918 1500
74.0918 1S30
740918 1*00
740*18 1*3*
740*18 170*
740918 1730
740918 1800
740918 1830
740*18 1900
740918 1*30
740*18 2004
7*0917
NUMBEM
MAXIMUM
MINIMUM
KEAN
740*1 a
00*80
T 006 C
c
MG/L
4.2
4.2
3.1
2.8
2.5
2.5
2.5
2.8
3.1
3.0
3.0
3.0
3.0
4. B
4.S
3.5
3.7
4.8
3.7
3.7
4.2
3.7
3.7
4.0
3.7
4.0
9.0
9.0
£8
9.0
2.S
i.t
00530
RESIDUE
TOT NFLT
K6/L
30.0
19.0
28.0
17.9
18.0
42.0
34.0
3. a
13.0
11. 0
32.0
15.0
11.0
15.0
12.0
8.0
14.0
17.0
15.0
7.0
S.O
19.0
17.0
9.0
10.0
10. U
1*.0
27
42.0
3.0
16.5
00535
RESIDUE
VOL NFLT
MG/L
7
4
15
»
4
10
6
3
7
5
12
9
8
5
5
3
4
10
7
5
4
8
8
5
8
7
8
27
15
3
7
00610
NH3-N
TOTAL
MG/L
0.05
0.05
0.05
0.03
0.03
0.10
0.10
0.10
0.07
0.08
0.07
0.07
0.07
0.10
0.14
0.07
0.08
0.37
0.16
0.07
0.10
0.10
0.10
0.1*
0.10
O.Ob
0.05
0.10
e»
0.37
(1,03
0.09
00630
M021N03
N-TOTAL
MG/L
0.01K
0.01K
O.OlK
0.01K
0.01K
0.01K
O.OlK
O.OlK
0.01K
0.01K
0.01K
0.01K
0.01K
O.OlK
0.01K
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
28
O.IIlK
O.OlK
0.01
00625
TOT KJCL
N
MG/L
0.27
0.30
0.20
0.17
0.20
0.20
0.17
0.17
0.20
0.20
0.32
. 0.26
0.30
0.32
0.32
0.30
0.26
0.80
O.ZO
o.zo
0.20
0.22
0.20
0.24
0.24
0.26
0.32
0.26
28
0.80
0.17
0.26
00665 31616
PHOS-TOT FEC COL I
MFM-FCBft
MG/L f /100ML
0.04
0.05
0.04
0*.04
0.03
0.03
0.03
0.03
0.03
0.03
0.04
0.04
0.05 170
0.05
0.06
0.04
0.04
0.04
0.04
0.04
48
0.04
0.04
0.04
0.05
0.04
0.04
0.05
0.04
^
28 2
0.06 170
0.03 48
0.04 109
31501
TOT COL I
MFIMENOO
/100ML
360
1
-------
APPENDIX C-2.5
STATION - AB-04
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER* 197*
ATLANTIC BCH-NR CANAL DEAD END
DATE TIME
7*0917 1730
7*0918 00*0
7*0918 0510
7*0918 1015
7*0918 1220
7*0918 12*5
7*0918 1815
7*0917
NUMBER
MAXIMUM
MINIMUM
MEAN
7*0918
00680
T ORR C
C
MG/L
3.2
5.0
3.7
3.1
4.8
4.0
6
5.0
3.1
4.0
00530
RESIDUE
TOT NFLT
MG/L
16.0
9.0
10.0
14.0
27.0
39.0
,6
39.0
9.0
19.2
00535
RESIDUE
VOL NFLT
MG/L
5
8
7
*
6
11
6
11
*
7
00610
NH3-N
TOTAL
MG/L
0.05
0.10
0.10
0.10
0.10
0.05
to
0.10
0.05
0.08
00630
N02&N03
N-TOTAL
MG/L
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
6
O.OlK
O.OlK
0.01
00625
TOT KJEL
N
MG/L
0.17
0.28
0.32
0.38
0.38
0.32
6
0.38
0.17
0.31
00665
PHOS-TOT
MG/L P
0.03
0.0*
0.06
O.OB
0.06
0.05
6
0.08
0.03
0.05
31616
FEC COL I
MFM-FCBR
/100ML
8*
*K
2
8*
*K
**
31501
TOT COL I
•4FIMENOO
/100ML
106
6K
2
106
6K
56
-------
APPENDIX C-2.5
STATION - AB-OS
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FIN6EH FILL CANAL STUDY SEPTEMBER. 197*
ATLANTIC BCH-N OF FT MACON bLVO
w
DATE TIME
740917 1730
740917 1800
740917 1830
740917 1900
T40917 1930
740917 2000
740917 2030
740917 2100
740917 2130
740917 2200
740917 2230
740917 2300
740917 2330
740917 2*00
740918 0030
740918 0100
740918 0130
740918 0200
740918 0230
740918 0300
740918 0330
740*18 0*00
740918 0*30
740918 0500
740918 OS20
740918 0530
740918 0600
740918 0630
740918 0700
740418 8730
740418 0800
740918 0830
740918 0900
740918 0930
740918 1000
740918 1030
7*0918 1100
7*0*18 1130
740918 1200
7*0918 122S
7*0«18 1230
7*0918 1300
7*0*18 1330
7*0*18 1*00
7*0918 1438
748*18 1580
74991 • 1599
T4t916 IttO
7*0*18 1638
7*0*18 1700
7*0918 1730
7*0918 1800
7*0918 1830
7*0918 1900
7*0918 1930
7*0918 2000
7»0»17
NUMBER
MAXIMUM
MINIMUM
•If. AM
740918
OU680
T ORG C
C
MS/L
2.S
2.5
2.5
2.2
2.2
2.1
3.1
2.5
3.5
2.1
2.1
2.1
2.1
1.0
3.0
1.8
3.5
1.6
3.0
2.1
3.0
1.8
3.0
3.2
2.8
3.0
3.2
27
J.S
1.6
£•5
00530
RESIDUE
TOT NFLT
MG/L
25.U
13.0
12.0
33.0
27.0
17.0
16.0
14.0
18.0
23.0
12.0
12.0
14.0
13.0
10.0
16.0
19.0
17.0
7.0
11.0
5.0
2.0
11.0
10.0
3.0
15.0
20.0
27
33.0
2.0
J*.6
00535
RESIDUE
VOL NFLT
MO/L
8
4
*
8
11
9
6
3
5
T
6
5
«
8
5
8
T
8
5
4
3
2
7
5
2
5
6
27
11
2
6
00610
NH3-N
TOTAL
HG/L
0.10
0.10
0.12
0.10
0.10
0.10
0.05
0.05
0.05
0.05
O.OS
0.05
0.10
0.07
0.16
0.10
0.10
0.10
0.07
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
2/
0.16
O.OS
0.09
00630
N021N03
N-TOTAL
MO/L
O.OlK
O.OlK
0.10
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.ClK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.MK
O.OlK
O.OlK
0.01"
O.OlK
O.OlK
O.OlK
27
0.10
O.OlK
0.01
00625
TOT KJEL
N
MG/L
0.25
0.18
0.25
0.20
0.17
0.15
0.26
0.26
0.26
0.30
O.JO
0.32
0.38
0.26
0.2*
0.24
0.26
0.19
0.2*
0,26
0.26
0.30
0.26
0.26
0.30
0.11
0.2*
27
0.38
0.11
0.25
00665
PMOS-TOT
MG/L P
0.03
0.03
0.03
0.03
0.0*
0.04
0.05
O.OS
0.05
0.05
0.05
0.06
i).oa
. 0.05
0.05
O.OS
0.06
0.05
0.05
0.05
0.06
0.21
1.46
0.22
0.05
0.06
O.OS
27
1.46
0.03
0.11
31616 31501
FEC COL1 TOT COLl
MFM-FC8R MFIMENOO'
/100ML /100ML
*b 120
4K 6
2 2
*• 120
4K 6
26 63
-------
APPENDIX C-2.5
to
STATION - AB-06
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER. 197*
ATLANTIC BCH-W OF MOREHEAD AVE
T
DATE TIME
740917 1810
740918 0105
740918 0535
740918 1105
740918 1230
740918 1320
740918 1840
740917
NUMBER
MAXIMUM
MINIMUM
MEAN
740918
STATION - AB-07
T
DATE TIME
740917 1800
740918 0125
740918 0530
740918 1055
740918 1235
740918 1310
740918 1835
740V17
NUMBER
MAXIMUM
MINIMUM
MEAN
740918
00680
ORG C
C
MG/L
2.2
2.1
1.8
2.6
2.6
2.6
6
2.6
1.8
2.3
00680
ORfc C
C
MG/L
2.1
1.0
2,5
1.2
1.2
2.3
6
2.5
1.0
1.7
00530
RESIDUE
TOT NFLT
MG/L
21.0
36.0
39.0
23.0
22.0
25.0
6
39.0
21.0
27.7
ATLANTIC
00530
RESIDUE
TOT NFLT
MG/L
36.0
23.0
32.0
25.0
32.0
28.0
6
36.0
23.0
29.3
00535
RESIDUE
VOL NFLT
MG/L
8
8
11
7
7
5
6
11
5
8
BCH-W OF
00535
RESIDUE
VOL NFLT
MG/L
11
3
8
4
6
4
e>
11
3
6
00610
NH3-N
TOTAL
MG/L
0.03
0.10
0.07
0.10
0.10
0.10
6
0.10
0.03
0.08
MOREHEAD AVE
00610
NH3-N
TOTAL
MG/L
0.03
0.10
0.10
0.10
0.10
0.10
6
0.10
0.03
0.09
00630
N02&N03
N-TOTAL
MG/L
0.01K
O.OlK
0.01K
0.01K
0.01K
0.01K
6
0.01K
0.01K
0.01
00630
N02&N03
N-TOTAL
MG/L
0.01K
0.01K
0.01K
O.OlK
0.01K
O.OlK
6
O.OlK
O.OlK
0.01
00625
TOT KJEL
N
MG/L
0.12
0.15
0.24
0.20
0.20
0.24
6
0.24
0.12
0.19
00625
TOT KJEL
N
MG/L
0.10
0.20
0.26
0.30
0.18
0.24
6
0.30
0.10
0.21
00665
PHOS-TOT
MG/L P
0.03
0.05
0.05
0.05
0.05
0.05
6
0.05
0.03
O.Ob
00665
PHOS-TOT
MG/L P
0.03
0.05
0.05
0.05
0.05
0.05
6
0.05
0.03
0.05
31610
FEC COL I
MFM-FCBR
/100ML
4K
1
31616
FEC COLI
MFM-FCBR
/100ML
4K
4K
2
4K
4K
4
31501
TOT COLI
MFIMENDO
/100ML
10
1
31501
TOT COLI
MFIMENDO
/100ML
4K
4K
2
4K
4K
4
-------
APPENDIX C-2.5
CO
o
STATION - AB-08
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS* GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER* 197*
ATLANTIC BCH-N OF FT MACON BLVD
DATE TIME
7*0919 1130
740919 1710
7*0919 2350
7*0920 0605
7*0920 12*0
7*0919
NUMBER
MAXIMUM
MINIMUM
MEAN
7*0920
00680
T ORG C
C
MG/L
5.6
2.6
*.l
1.*
2.0
5
5.6
1.*
J.I
00530
RESIDUE
TOT NFLT
MG/L
38.0
22.0
27.0
12.0
30.0
5
38.0
12.0
25.8
00535
RESIDUE
VOL NFLT
MG/L
8
IK
6
2
8
5
8
IK
5
00610
NH3-N
TOTAL
MG/L
0.10
0.10
0.10
0.10
0.10
5
0.10
0.10
0.10
00630
N02&N03
N-TOTAL
MG/L
0.01K
0.01K
0.01K
0.01K
0.01K
5
0.01K
0.01K
0.01
00625
TOT KJEL
N
MG/L
0.15
0.20
0.15
0.18
0.18
5
0.20
O.lb
0.17
00665
PHOS-TOT
MG/L P
0.05
0.05
O.Ob
0.06
0.05
5
0.06
0.05
0.05
STATION - AB-09
ATLANTIC BCH-N OF FT MACON BLVD
DATE TIME
7*0919 1130
7*0919 1650
7*0920 0010
7*0920 0630
7*0920 1215
7*0919
NUMBER
MAXIMUM
MINIMUM
MEAN
740920
00680
T ORG C
C
MG/L
2.6
*.o
2.3
2.6
2.0
5
*.o
2.0
^.7
00530
RESIDUE
TOT NFLT
MG/L
23.0
34.0
23.0
33.0
3*.0
5
34.0
23.0
29.4
00535
RESIDUE
VOL NFLT
MG/L
6
9
2
6
6
i>
9
2
6
00610
NH3-N
TOTAL
MG/L
0.1*
0.10
0.10
0.10
0.1*
5
0.1*
0.10
0.12
00630
N02&N03
N-TOTAL
MG/L
0.01K
0.01*
0.01K
0.01K
0.02
5
0.02
0.01K
0.01
00625
TOT KJEL
N
MG/L
0.2*
0.2*
0.26
0.26
0.20
5
0.26
0.20
0.24
00665
PHOS-TOT
MG/L P
0.05
0.08
0.06
0.08
0.08
5
0.08
0.05
0.07
-------
APPENDIX C-2.5
to
CT<
4s
STATION - AB-10
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER 197*
ATLANTIC BCH-N OF FT MACON 8LVU
OATt TINE
7*0919 1200
7*0919 1230
7*0919 1300
7*0919 1330
7*0919 1*00
7*0919 1*30
7*0919 1500
7*0919 1*30
7*0919 1600
7*0919 1630
7*0919 1700
7*0919 1730
7*0919 1800
7*0919 1830
7*0919 1900
7*0919 1930
7*0919 2000
7*0919 2030
7*0919 2100
7*0919 2130
7*0919 2200
7*0919 2230
7*0919 2300
7*0919 2330
7*0919 2*00
7*0920 0030
7*0920 0100
7*0920 0130
7*0920 0200
7*0920 0230
7*0920 0300
7*0920 0330
7*0920 0*00
7*0920 0*30
7*0920 0500
7*0920 0530
7*0920 0600
7*0920 0630
7*0920 0700
7*0920 0730
7*0920 0800
7*0920 0830
7*0920 0900
7*0920 0930
7*»920 1000
7*0920 1030
7*0920 1100
7*0920 1130
740920 1200
7*0920 1230
7*0419
NUMB EX
MAXIMUM
MINIMUM
MEAN
7«ov<:o
00680
T Of»6 C
C
MG/L
*.o
2.0
2.0
2.0
2.6
*.l
3.1
3.1
5.5
3.1
2.0
2.3
2.6
1.6
1.8
*.9
2.6
2.6
2.6
2.6
2.6
2.*
1.6
1.6
1.8
25
b.5
l.o
2.7
00530
RESIDUE
TOT NFLT
MG/L
8.0
23.0
19.0
26.0
17.0
3*.0
18.0
20.0
16.0
12.0
13.0
l*.o
23.0
11.0
16.0
*0.0
29.0
57.0
36.0
3*.0
2*.0
22.0
19.0
15.0
28. 0
25
57. U
8.0
23. U
00535
RESIDUE
VOL NFLT
MG/L
2
8
6
9
IK
1
IK
1-
2
0
IK
2
8
1»
3
10
2
12
11
3
13
11
11
11
1*
25
1*
OK
6
00610
NH3-N
TOTAL
MG/L
0.10
0.10
0.10
0.10
0.10
0.10
0.10
o.io
0.10
0.10
0.10
0.10
0.10
0.03
0.03
o.io
0.10
0.10
0.10
0.10
0.10
0.03
0.03
0.03
0.03
25
0.10
O.OJ
O.Ob
00630
N02tN03
N-TOTAL
MG/L
0.01*
0.01K
O.OlK
O.OlK
O.OlK
0.01*
O.OlK
0.01K
0.01K
0.01K
O.OlK
0.01*
0.01*
0.01*
O.OlK
0.01*
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
O.OlK
25
O.OlK
O.OlK
0.01
00625
TOT KJEL
N
MG/L
0.18
0.20
0.20
0.2*
0.20
0.2*
0.20
O.la
0.2*
&. 20
0.20
0.15
0.2*
0.20
0.18
0.20
0.2*
0.20
0.26
0.26
0.30
0.20
0.18
0.18
0.20
25
0.30
0.1S
0.21
00665
PMOS-TOT
HG/L P
0.05
0.05
0.06
0.08
0.09
0.09
0.08
O.Ob
O.Ob
0.05
O.Ob
0.06
0.08
0.05
0.05
0.06
0.08
0.06
0.08
0.08
0.08
0.05
O.OS
0.05
0.05
25
0.09
O.OS
O.Ob
-------
APPENDIX C-2.6
W
O>
STATION - SC-01
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS, GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER* 1974
SPOONER CR-S OF N.C. HWY 24
DATE TIME
740918 1200
740933 2030
740924 0225
740924 094S
740924 1500
740918
NUMBER
MAXIMUM
MINIMUM
MEAN
740924
00680
T ORG C
C
MG/L
2.5
4.2
2.6
2.6
2.6
5
4.2
2.5
2.9
00530
RESIDUE
TOT NFLT
MG/L
12.0
23.0
21.0
23.0
45.0
5
45.0
12.0
24.6
00535
RESIDUE
VOL NFLT
MG/L
9
11
12
14
20
5
20
9
13
00610
NH3-N
TOTAL
MG/L
0.07
0.10
0.03
0.10
0.07
5
0.10
0.03
0.07
00630
N02&N03
N-TOTAL
MG/L
0.01K
0.01K
0.01K
0.01K
0.01K
5
0.01K
0.01K
0.01
00625
TOT KJEL
N
MG/L
0.16
0.24
0.30
0.32
0.42
S
0.42
0.16
0.29
00665
PHOS-TOT
MG/L P
0.03
0.06
0.08
0.08
0*10
5
0.10
0.03
0.07
1
STATION - SC-02
SPOONER CR-S OF N.C. HWY 24
DATE TIME
740918 1210
740923 2120
740924 0230
740924 0905
740924 1515
740918
NUMBER
MAXIMUM
MINIMUM
MEAN
740924
00680
T ORG C
C
MG/L
4.0
2.6
3.7
3.3
4
4.0
2.6
3.4
00530
RESIDUE
TOT NFLT
MG/L
6.0
21.0
24.0
18.0
56.0
5
56.0
6.0
25.0
00535
RESIDUE
VOL NFLT
MG/L
5
10
17
9
22
5
22
5
13
00610
NH3-N
TOTAL
MG/L
0.03
0.10
0.10
0.03
*
0.10
0.03
0.06
00630
N02&N03
N-TOTAL
MG/L
0.01K
O.OlK
0.01K
O.OlK
4
O.OlK
O.OlK
0.01
00625
TOT KJEL
N
MG/L
0.20
0.26
0.24
0.23
4
0.26
0.20
0.23
00665
PHOS-TOT
MG/L P
0.05
o.oe
0.08
0.08
*
O.OB
0.05
0.07
-------
APPENDIX C-2.6
STATION - SC-03
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER. 1974
SPOONER CR-E OF HARBOR DRIVE
DATE TIME
7*0918 1220
7*0923 21*5
7*092* 02*5
7*092* 0915
7*092* 1355
7*0918
'NUMBER
MAXIMUM
MINIMUM
MEAN
7*092*
00680
T ORG C
C
MG/L
3.7
3.*
3.3
2.2
2.6
5
3.7
2.2
3.0
00530
RESIDUE
TOT NFLT
MG/L
6.0
43.0
35.0
12.0
18.0
5
43.0
6.0
22.8
00535
RESIDUE
VOL NFLT
MG/L
3
17
12
6
8
5
17
3
9
00610
NH3-N
TOTAL
MG/L
0.10
0.10
0.10
0.03
0.10
5
0.10
0.03
0.09
00630
N02&N03
N-TOTAL
MG/L
0.01K
0.01K
0.01K
0.01K
0.01K
0.01K
0.01K
0.01
00625
TOT KJEL
N
MG/L
0.30
0.26
0.3*
0.24
0.42
e
0.42
0.24
0.31
00665
PHOS-TOT
MG/L P
0.04
0.08
0.06
0.05
0.08
0.08
0.04
0.06
31616
FEC COLI
MFM-FCBR
/100ML
145
1
A
STATION - SC-0*
DATE TIME
7*0918 1200
7*0923 2150
7*092* 0255
7*092* 0935
7*092* 1*10
7*0918
NUMBER
MAXIMUM
MINIMUM
MEAN
7*092*
SPOONER CR-E OF HARBOR DRIVE
00680
T ORG C
C
MG/L
00530
RESIDUE
TOT NFLT
MG/L
0053b
RESIDUE
VOL NFLT
MG/L
00610
NH3-N
TOTAL
MG/L
00630
N02&N03
N-TOTAL
MG/L
00625
TOT KJEL
N
KG/L
00665
PHOS-TOT
MG/L P
31616
FEC COLI
MFM-FCBR
/100ML
31501
TOT COLI
MFIMENDO
/100ML
2.6
2.2
2.6
2.6
*
2.6
2.2
2.5
40.0
11.0
32.0
40.0
4
40.0
11.0
30.8
21
5
9
17
4
21
5
13
0.03
0.03
0.07
0.03
4
0.07
0.03
0.04
0.01K
0.01K
0.01K
0.01K
4
0.01K
0.01K
0.01
0.24
0.20
0.18
0.18
4
0.24
0.18
0.20
0.06
0.05
0.05
0.05
4
0.06
0.05
0.05
12
22
-------
(*>
STATION - SC-05
APPENDIX C-2.6
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENSt GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER* 1974
SPOONER CR-NR INTRACOSTL MATRWAY
DATE TIME
740933 2200
740924 0310
740924 0945
740924 1615
740923
NUMBER
MAXIMUM
MINIMUM
MEAN.
740924
00680
T ORG C
C
MG/L
2.6
2.2
1.8
1.9
4
2.6
1.8
2.1
00530
RESIDUE
TOT NFLT
MG/L
24.0
12.0
23.0
25.0
4
25.0
12. 0
21.0
00535
RESIDUE
VOL NFLT
MG/L
11
7
10
10
4
11
7
10
00610
NH3-N
TOTAL
MG/L
0.03
0.03
0.03
0.03
4
0.03
0.03
0.03
00630
N02&N03
N-TOTAL
MG/L
O.D1K
0.01K
0.01K
0.01K
4
0.01K
0.01K
0.01
00625
TOT KJEL
N
MG/L
0.15
0.18
0.18
0.15
4
0.18
0.15
0.16
00665
PHOS-TOT
MG/L P
0.06
0.05
0,05
0.05
4
0.06
0.05
0.05
STATION - SC-06
740918
NUMBER
MAXIMUM
MINIMUM
MEAN
740918
SPOONER CR-E OF HARBOR DRIVE
DATE
740918
TIME
1210
31616
FEC COL I
MFM-FCHR
/100ML
10
315U1
TOT COL I
MFIMENDO
/100ML
76
-------
STATION - EI-01
APPENDIX C-2.7
ENVIRONMENTAL PROTECTION AGENCY REGION IV
SURVEILLANCE AND ANALYSIS DIVISION ATHENS. GEORGIA
FINGER FILL CANAL STUDY SEPTEMBER* 1974
EMERALD ISLE-N OF N.C. HHV 58
DATE TIME
7*0918 1100
740923 1140
740918
NUMBER
MAXIMUM
MINIMUM
MEAN
740923
00600
T ORG C
C
MG/L
2.4
3.3
2
3.3
2.4
2.8
~ 00530
RtSIDUE
TOT NFLT
MG/L
72.0
270.0
Z
270.0
72.0
171.0
00535
RESIDUE
VOL NFLT
MG/L
70
220
2
220
70
145
00610
NH3-N
TOTAL
MG/L
7.20
8.00
e.
a.oo
7.20
7.60
00630
N024N03
N-TOTAL
M6/L
0.01K
0.01K
2
0.01K
0.01K
0.01
00625
TOT KJEL
N
MG/L
T.6b
8.30
2
8.30
7.65
7.97
00665
PHOS-TOT
MG/L P
1.82
2.40
d
2.40
1.82
2.11
31616
FEC COL I
MFM-FCBR
/100ML
400
1
31501
TOT COLI
MF IMENDO
/100ML
550
1
00
STATION - EI-02
EMERALD ISLE-N OF N.C. H»V 58
DATE TIME
740918 1110
740923 1145
740918
NUMBEN
MAXIMUM
MINIMUM
MEAN
740923
00680
T ORG C
C
MG/L
3.6
1
00530
RESIDUE
TOT NFLT
MG/'_
30. 0
495.0
2
495.0
30.0
262.5
00535
RESIDUE
VOL NFLT
MG/L
27
320
2
320
27
174
00610
NH3-N
TOTAL
MG/L
2.40
1
00630
N021N03
N-TOTAL
MG/L
0.01K
1
00625
TOT KJEL
N
MG/L
5.26
1
00665
PHOS-TOT
MG/L P
2.80
1
31616
FEC COLI
MFM-FCBR
/100ML
610
1
31501
TOT COLI
MFIHENOO
/100ML
5600
1
STATION - EI-03
EMERALD ISLE-N OF N.C. H«IV 58
DATE TIME
740918 1125
740923 1130
740918
NUMtiFP
MAXIMUM
MINIMUM
MEAN
00680
T ORG C
C
M6/L
14.5
12.5
2
14.5
12.5
13.5
00530
RESIDUE
TOT NFLT
MG/L
8.0
11. U
2
11.0
8.0
9.b
00535
RESIDUE
VOt NFLT
MG/L
8
8
2
0
6
8
00610
NH3-N
TOTAL
MG/L
0.52
0.03
2
0.52
0.03
0.27
00630
N02&N03
N-TOTAL
MG/L
0.01K
0.01K
2
0.01K
0.01K
0.01
00625
TOT KJEL
N
MG/L
0.93
0.44
2
0.93
0.44
0.60
00665
PHOS-TOT
MG/L P
0.79
0.03
2
0.83
0.79
O.B1
31616
FEC COLI
MFM-FCBR
/100ML
220
1
31501
TOT COLI
MF IMENDO
/100ML
1000
1
-------
APPENDIX D-l«l
Organic matter content of botton cores, finger canals I and II,
Punta Gorda, Florida, November 1973.
Sta*
1-R
1-M
1-L
2-R
2-M
2-L
3-R
3-M
3-L
Canal
Core
Increment
(cm)
0-7
7-30
30-34
34-37
0-12
12-41
41-44
0-4
4-7
7-18
18-24
24-30
30-39
0-2
2-7
7-10
10-12
0-35
35-48
48-60
60-70
0-4
4-12
12-52
0-11
11-16
16-20
20-31
0-15
15-19
19-24
0-7
7-16
16-21
21-41
I
Volatile
Solids
(rag /kg)
200
160
150
40
320
190
90
240
200
240
270
230
30
650
30
40
10
200
140
80
10
150
40
30
170
70
60
20
190
70
10
110
60
30
10
Canal
Core
Sta. Increment
(cm)
5-R 0-2
2-9
9-17
17-24
5-M 0-4
4-15
15-50
50-100
100-113
113-121
5-L 0-1
1-17
17-33
33-37
6-R 0-1
1-6
6-33
33-37
37-40
6-M 0-3
3-17
17-33
33-37
37-43
6-L 0-3
3-4
4-12
12-33
33-34
34-45
7-R 0-1
1-7
7-13
13-46
46-52
52-54
O£n
II
Volatile
Solids
(mg/KR)
220
150
100
110
230
220
170
180
210
230
220
180
220
40
100
40
30
60
50
230
180
150
110
40
230
190
170
200
NAt
20
120
90
30
40
30
20
Control
Core
Sta. Increment
(cm)
4-R 0-1
1-7
7-26
26-29
4-M 0-1
1-7
7-27
27-28
28-44
4-L 0-1
1-6
6-41
41-46
Volatile
Solids
(rag/kg)
150
20
10
30
20
10
30
20
60
30
10
20
-------
APPENDIX D-l.l - continued
Canal I
Core Volatile
Sta.* Increment Solids
(cm) (mg/kg)
Canal
Core
Sta. Increment
(cm)
7-M 0-4
4-10
10-13
13-20
20-44
44-52
7-L 0-6
6-13
13-20
20-25
25-30
30-38
38-49
49-55
II
Volatile.
Solids
(mg/kg)
90
50
70
60
80
10
60
20
30
20
40
60
70
20
Control
Core Volatile
Sta. Increment Solids
(cm) (mg/kg)
* Station number - Position on transect facing downstream (R - right, M -
middle, L - left).
t No analysis.
370
-------
APPENDIX D-1.2
Organic matter content of bottom cores, finger canals III and IV.
Big Pine Key, Florida, November, 1973.
Sta#
8-R
8-M
8-L
9-R
9-M
9-L
LO-R
.0-M
Canal
Core
Increment
(cm)
0-1
1-4
4-10
10-12
12-15
0-1
1-3
3-20
20-23
23-30
0-2
2-5
5-10
10-17
17-20
0-1
1-2
2-7
7-14
14-26
26-43
0-1
1-7
7-26
0-1
1-2
2-11
11-13
13-20
0-3
3-12
12-20
20-28
0-5
5-15
15-35
III
Volatile
Solids
(mg/kg)
120
40
20
40
30
160
30
20
NAt
NAt
20
40
20
NAt
NAt
60
50
40
30
NAt
10
60
10
30
60
80
30
20
30
70
50
NAt
20
90
120
30
Canal
Core
Sta. Increment
(cm)
12-R 0-11
11-18
18-35
12-M 0-7
7-26
12-L 0-1
1-10
10-20
13-R 0-9
9-27
27-51
13-M 0-11
11-21
21-30
30-33
13-L 0-10
10-14
14-40
14-R 0-7
7-10
10-20
20-25
14-M 0-8
8-18
18-22
22-26
14-L 0-4
4-40
IV
Volatile
Solids
(mg/kg)
70
40
30
90
20
70
60
30
70
30
20
80
50
NAt
20
70
30
20
50
40
20
40
100
30
40
30
70
20
Control
Core
Sta. Increment
(cm)
11-R 0-1
1-10
10-21
21-30
11-M 0-21
21-78
78-113
113-129
129-143
11-L 0-12
12-36
36-44
44-56
Volatile
Solids
(mg/kg)
100
50
60
30
140
80
70
50
30
90
70
30
60
371
-------
APPENDIX D-1.2 - continued
Canal III
Core Volatile
Sta.* Increment Solids
(cm) (rag/kg)
10-L 0-4 130
4-13 30
13-24 20
24-30 30
Canal IV
Core Volatile
Sta. Increment Solids
(cm) (mg/kg)
Control
Core Volatile
Sta. Increment Solids
(cm) (mg/kg)
* Station number - Position on transect facing downstream (R - right, M -
middle, L - left).
t No analysis.
372
-------
APPENDIX D-1.3
Organic matter content of bottom cores, special finger
canal stations, Punta Gorda, Florida, November 1973.
Punta
Sta.*
A-R
A-L
B-R
B-L
C-R
C-L
D-R
D-M
Gorda Special
Core
Increment
(cm)
0-4
4-46
46-54
54-67
67-72
72-77
0-7
7-44
44-58
58-78
0-1
1-11
11-22
22-33
0-2
2-12
12-25
25-36
0-1
1-6
6-18
0-1
1-6
6-15
15-28
0-1
1-9
9-13
13-16
16-33
0-4
4-16
16-35
35-51
51-60
60-77
77-83
Stations
Volatile
Solids
(mg/kg)
160
130
120
70
90
10
190
160
110
10
110
80
40
10
160
70
60
10
160
50
20
130
110
90
20
170
60
20
40
30
210
170
160
190
160
20
40
Big Pine Key Special
Stations
Core Volatile
Sta. Increment Solids
(cm) (mg/kg)
F-R 0-11
11-17
17-29
29-34
F-M 0-2
2-4
4-15
15-30
F-L 0-3
3-9
9-15
G-R 0-9
9-18
18-24
24-38
G-M 0-11
11-24
24-46
G-L 0-18
18-30
30-37
H-R 0-7
7-22
22-59
59-66
H-M 0-3
3-15
15-65
65-71
H-L 0-6
6-21
21-35
35-55
I-R 0-3
3-8
8-15
90
30
20
10
190
70
30
20
70
40
30
100
20
30
20
60
30
20
100
30
40
220
30
20
10
130
30
10
40
60
40
10
20
80
60
20
373
-------
APPENDIX D-1.3
Continued
Punt a
Sta.*
D-L
E-R
E-L
Gorda Special
Core
Increment
(cm)
0-7
7-17
17-21
21-27
27-35
0-5
5-29
29-42
42-53
53-69
69-78
0-5
5-49
49-65
65-74
74-82
Stations
Volitale
Solids
(rag /kg)
100
130
110
60
30
210
130
140
110
50
30
190
170
90
30
40
Big Pine Key Special
Core
Sta. Increment
(cm)
I-M 0-5
5-22
I-L 0-5
5-14
14-24
Stations
Volatile
Solids
(mg/kg)
80
40
80
50
30
* Station number - Position on transect facing downstream (R -
right, M - middle, L - left).
374
-------
APPENDIX D-1.4
Organic Matter Content of Bottom Cores
Sea-Air Estate Canal at Marathon, Florida, August 1974
Station*
15
16
17
18
19
Core
Increment
(cm)
0-1
1-24
0-3
3-10
10-17
0-9
9-24
0-9
9-29
0-10
Volatile
Solids
(rag/kg)
36
30
42
44
18
28
14
59
77
32
*Single core at mid-channel.
375
-------
APPENDIX D-1.5
Organic Matter Content of Bottom Cores
Atlantic Beach Canals, North Carolina, September 1974
Station*
1-L
1-M
1-R
2-L
2-M
2-R
3-L
3-M
3-R
Core '
Increment
0-30
30-45
45-50
0-28
28-38
38-46
0-24
24-31
31-36
0-2
2-9
9-11
0-2
2-8
8-14
0-1
1-8
8-14
0-1
1-5
5-11
0-2
2-14
14-17
0-1
1-11
11-13
Volatile
Solids
(g/kg)
112
21
8
112
80
5
130
91
17
12
2
8
13
7
7
16
8
5
67
6
4
34
7
20
30
11
8
Station*
4-L
4-M
4-R
5-R
5-M
5-L
6-Rep 1
6-Rep 2
6-Rep 3
8-M
Core
Increment
0-11
11-19
0-15
15-19
0-1
1-11
0-2
2-12
0-1
1-18
18-32
0-1
1-12
12-23
23-29
0-3
3-20
0-3
3-19
0-1.5
1.5-5
5-20
0-1
1-16
16-30
Volatile
Solids
(g/kg)
170
12
129
6
148
13
11
7
138
40
43
16
12
16
15
6
5
4
5
290
12
6
125
8
25
Station*
8-L
9-R
9-M
9-L
9A-Rep 1
10-L
10-M
10-R
Core
Increment
0-1
1-20
0-16
0-3
2-10
10-16
0-4
4-24
24-40
0-1
1-5
5-15
15-18
0-1.5
1.5-15
15-60
0-1
1-12
12-37
0-2
2-15
15-45
Volatile
Solids
(g/kg)
400
60
6
430
34
4
159
124
9
404
61
135
67
107
6
4
2
NS
4
491
7
2
*Station number is position on transect 'facing downstream (R — right, M - middle,
L - left). Noncanal stations have replicate samples.
376
-------
Appendix D-2.1
Particle size of sediments, finger-fill canals, Punta Gorda
and Big Pine Key, Florida, November 1973.
Location
Punta Gorda
it ti
it ii
it ti
ii ii
ii it
ii ii
M ii
it ii
it ti
ii n
M n
Big Pine Key
M n n
n n n
ii it it
Station
1
2
3
4
5
6
7
A
B
C
D
E
8
9
10
11
Inorganic Component Subtended by Organic Fraction
(all as % total dry weight)
Medium
Gravel
__
—
—
—
—
—
NA
NA
__
—
—
—
NA
__
—
—
—
—
—
—
—
—
— —
—
__
—
2.1
<1
Fine
Gravel
<1
<1
<1
<1
<1
<1
NA
NA
<1
<1
1.0
<1
NA
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
1.0
<1
Coarse
Sand
<1
<1
1.5
1.0
1.2
1.0
NA
NA
<1
<1
3.0
<1
NA
<1
<1
1.0
<1
1.0
<1
<1
<1
1.0
<1
<1
<1
5.1
<1
1.0
1.0
Medium
Sand
37.1
4.6
72.8
1.0
68.9
1.7
NA
NA
44.9
4.5
53.3
2.0
NA
47.5
1.6
43.1
1.8
31.4
3.5
44.4
3.3
19.2
1.0
1.5
<1
12.4
<1
22.9
3.4
Fine
Sand
18.1
2.4
13.9
<1
14.6
1
NA
NA
22.8
1.5
20.2
1.7
NA
28.7
1.0
23.6
1.2
13.9
4.7
18.8
2.1
25.6
<1
1.9
<1
3.3
<1
18.2
2.0
Silt
27.2
5.8
5.2
1.7
5.6
2.1
NA
NA
16.9
4.8
12.1
3.2
NA
16.5
1.8
23.9
2.4
40.3
4.1
21.9
4.7
51.1
1.7
84.3
2.4
69.9
2.4
39.3
3.8
Clay
3.7
<1
1.6
<1
3.2
<1
NA
NA
3.4
<1
2.1
1.0
NA
2.1
<1
2.3
<1
__
—
4.0
<1
' 3.4
1.0
8.2
1.0
5.1
1.0
5.1
1.0
377
-------
Appendix D-2.1 (continued)
Location '
Big Pine Key
it ii it
it it it
ii it ii
ti ii ii
ii ii it
it ii ii
Station
12
13
14
F
G
H
I
Inorganic Component Subtended by Organic Fraction
(all as % total dry weight)
Medium'
Gravel
—
<1
<1
4.4
1.3
....
— —
_ —
__
— —
Fine '
Gravel
1.0
<1
__
—
1.4
1.0
1.7
<1
<1
<1
<1
<1
<1
<1
Coarse'
Sand
2.3
<1
2.3
<1
2.8
1.4
10.4
1.0
1.0
<1
1.0
<1
1.6
<1
Medium
Sand
34.4
1.9
9.5
1.0
21.3
2.1
48.7
1.9
37.3
1.0
4.3
<1
22.0
1.1
Fine
Sand
160.
1.0
4.1
<1
11.5
1.8
13.8
1.0
23.3
<1
2.4
<1
17.7
<1
Silt '
33.6
1.9
78.5
3.4
44.7
2.5
15.7
1.3
32.1
1.2
83.2
2.0
49.0
2.9
Clay
7.0
1.0
—
—
3.8
<1
3.6
1.0
2.6
<1
5.0
<1
3.6
1.0
NA - No analysis, insufficient sample size.
378
-------
APPENDIX D-2.2
Particle Size of Sediments from
Sea-Air Estate Canal at Marathon, Florida, August 1974
Station
Inorganic Component Subtended by
Medium
Gravel
Fine
Gravel
Coarse
Sand
Organic Fraction
Medium
Sand
Fine
Sand
(% total
Silt
dry wt)T
Clay
15 1.4 20.5 13.2 56.9 4.5
<1 <1 <1 2.1 <1
16 <1 1.0 19.1 12.3 48.3 12.7
<1 1.0 1.1 <1 3.7 1.0
17 <1 1.0 5.2 89.1 2.8
<1 <1 <1 1.5 <1
18 2.2 14.0 13.9 32.5 22.2
1.0 1.0 <1 2.3 10.4
19 9.4 9.5 38.0 29.9 5.8 13.8 3.3
1.0 <1 1.0 1.0 <1 1.0 1.0
379
-------
APPENDIX D-2.3
Particle Size of Sediments from
Atlantic Beach Canals, North Carolina, September 1974
Inorganic Component
Station Medium Fine
Gravel Gravel
1
2 l.O1 1.0
3 l.O1 1.0
4 <1
5 <1
6 1.82 <1
9 <1
10 <1
Subtended by
Coarse
Sand
13.7
2.1
1.0
1.0
1.3
1.0
:i
1.3
:j
Organic
Medium
Sand
29.0
4.3
92.3
73.6
35.5
4.3
82.5
1.7
95.7
47.7
5.3
93.9
Fraction
Fine
Sand
4.0
1.0
1.0
3.3
3.8
1.0
1.6
1.0
6.2
1.1
1.0
(% total
Silt
13.5
2.4
2.4
11.3
16.4
2.2
6.9
1.0
1.0
24.2
2.8
1.9
dry wt)|
Clay
25.8
4.4
*}
2.1
30.4
4.9
4.0
1.0
<}
9.9
1.5
-------
Appendix D-3
Sediment Pesticide Scan
Finger Fill Canal Study
Aldrin
Lindane
Chlordane
Chlorobenzilate
DDD
DDE
DDT
Dieldrin
Endrin
Heptachlor Epoxide
Heptachlor
Methoxchlor
Toxaphene
Diazinon
Guthion
Methyl Parathion
Parathion
Malathion
Ethion
Trithion
Mirex
Dimethoate (Cygon)
PCB's
*depends upon sample size
\jg/kg Approximate Minimum Detection Limit*"
0.25
0.1
2.5
25
0.5
0.5
1.0
0.5
1.0
0.5
0.25
5.0
15
10
25
1
2
4
4
2
1
50
5.0
381
-------
Appendix E-l.l
Kinds of benthic invertebrates collected from finger-fill canals,
Punta Gorda and Big Pine Key, Florida, November 1973.
Organism
Annelida
Polychaeta
Errantia
Sedentaria
Echinodermata
Stelleroidea
Ophiuroidea
Ophiurida
Amphiuridae
Coelenterata
Anthozoa
Moll us ca
Atnphineura
Polyplacophora
Neoloricata
Ishnochi tonidae
Tonicella sp.
Bivalvia
Prosobranchia
Taxodonta
Arcidae
Area sp.
Anisomyaria
Mytilidae
Mytilus recurvus
Amygdalum sp.
Carditidae
Cardita sp.
Heterodonta
Veneridae
Chione sp.
Tellinidae
Tellina sp.
Gastropoda
Prosobranchia
Archaeogastropoda
Trochldae
Calliostoina sp.
Neritidae
Nerita sp.
Neritina sp.
Punta Gorda
Station
1
X
X
2
X
X
X
X
X
X
f 3
X
X
X
4
X
X
X
X
X
X
X
5
X
6
X
X
X
X
X
X
7
X
X
X
X
X
Big Pine Key
Station
8]
X
X
X
X
9
X
X
X
X
X
X
10
X
X
X
X
X
11
X
X
X
12
X
X
13
X
X
X
X
X
14
X
X
X
X
382
-------
APPENDIX E-l.l (continued)
Organism
Mullusca
Gastropoda
Prosobranchia
Archaeogastropoda
Lepetellidae
Addisonia sp.
Mesogastropoda
Littorinidae
Littorina sp.
Columbellidae
Mitrella sp.
Turridae
Clathrodrillia sp.
Neogastropoda
Mitridae
Mitra sp.
Fasciolaria sp.
Opisthobranchia
Cephalaspidea
Bullidae
Bui la sp.
Atyidae
Haminoea sp.
Arthropoda
Crustacea
Ostracoda
Cirripedia
Thoracia
Malacostraca
Nebaliacea
Nebalidae
Nebalia bipes
Mysidacea
Mysidae
Cumacea
Leuconidae
Leucon sp.
Tanaidacea
Paratanaidae
Tanaidae
Isopoda
Anthuridae
Sphaeromatidae
Idoteidae
Punta Gorda
Station
1
2
3
X
4'
X
X
5
6
7
X
X
X
Big Pine Key
Station
8'
X
X
X
X
X
X
X
9
X
X
X
X
X
X
x:
X
10
X
X
X
X
X
X
X
X
11
X
X
X
X
X
X
X
X
X
12
X
X
X
13
X
X
X
X
X
X
X
14
X
X
X
X
X
X
X
383
-------
APPENDIX E-l.l (continued)
Organism
Arthropods
Crustacea
Malacostraca
Amphipoda
Gamwaridae
Corophiidae
Ampithoidae
Melitidae
Paramphithoidae
Aoridae
Photidae
Calliopiidae
Ampeliscidae
Lysianassidae
Atylidae
Decapoda
Maj idae
Portunidae
Callinectes sapidus
Xanthidae
Rhithropanopeus harrisii
Palaemonidae
Merostomata
Xiphosurida
Xiphosurida
Llmulidae
Limulus polyphemus
Insecta
Pterygota
Diptera
Chiron omidae
Chironomini
Dicrotendipes poss. neomodestvu
Polypedilum parascalaenum
Tanytarsini
poss. Paratany tarsus sp.
Metriocnemini
poss. Clunio sp.
Odonata
Libellulidae
Erythrodiplax sp.
Coleoptera
Dytiscidae
Derovatellus sp.
Number of taxa/station
. ,.
Punt a Gorda
Station
11
2
2
X
X
X
10
3
X
X
X
X
X
X
10
4
X
X
X
X
X
X
X
14
5
X
2
6
X
X
9
7
X
X
9
Big Pine Key
Station
8
X
X
X
X
X
X
X
X
19
9
X
X
X
X
X
X
X
X
22
10
X
X
X
X
X
X
X
19
11
X
X
X
X
X
X
X
X
19
12
X
X
X
X
X
X
X
12
[13
X
X
X
X
X
X
X
18
14
X
X
X
X
X
X
X
X
X
X
X
20
384
-------
APPENDIX E-1.2
Numbers of benthic invertebrates collected from finger-fill canals, Punta Gorda, Florida, November 1973.
Organism
Annelida
Polychaeta
Errantia
Sedentaria
Echinodermata
Stelleroidea
Ophiuroidea
Ophlurida
Amphlurldae
Mollusca
Bivalvla
Frosobranchia
Taxodonta
Arcidae
Area sp.
Anisonyaria
Mytllidae
Mytilus recunras
Amygdalun gp.
Heterodonta
Tellinldae
Tel Una sp.
Gastropoda
Prosobranchla
Archaeogastropoda
Nerltidae
Merita sp.
Nerltina sp.
Mesogastropoda
Coluabellldae
Mitrella sp.
Opisthobranchia
Cephalasipidea
Atyidae
Hamtnoea sp.
Statior 1 i
1
Re
2
plica
3
43
•N '
te
4
5
Station 2
1
Repli
2
43
cate
3
43
258
86
Station 3
T~
258
11
Re
43
plies
3
43
te
1 4
258
86
129
i
!
!
43
Station 4
1~
481
65
26
13
65
Rep 11
2
259
39
26
78
=ate
3
13
52
130
4
689
26
65
39
i 13
' '
Station 5
Repli
1 ^
172
:ate
3
43
SCarion 6 StaMrm 7
129
Repl
129
cate
43
43
1
43
iRerlicate
43
3
43
43
4
43
172
43
43
00
in
-------
APPENDIX E-1.2 (continued)
Organism
Arthropods
Crustacea
Cirripedla
Thoracia
Balanldae
Blanus sp.
Halacostraca
Mysidacea
Mysidae
Isopoda
Idoceidae
Amphlpoda
Ganmaridae
Corophildae
Ampitholdae
Callioplldae
Anpeliscldae
Decapoda
Hajldae
Portunldae
Calllnectes sapidus
Xanthidae
Rhi thropanopeus harrisil
Palaenonidae
Total No. organisms/
ra2/replicate
Mean No. organisms/
m2/station
Coeflcient of Variation
(percent)
Station 1
~~T
0
R
2
0
eplic
3
ite
4
5
0 43 0
11
zoo.o
Station 2
~~T
Replicate
2
344 0
3
43
4
43
^
108
148.0
Station 3
r~
1591
86
43
43
301
86
43
R(
2
43
2451 86
;plicate
3
43
86
4
86
43
b
43
430
43
i
602
559
757 !
129.0
Station 4
Replicate
1
2
325
117
13
1105
793
273
442
13
91
52
2066
3
13
52
78
286
4
13
39
91
65
26
1118
1144
63.6
: 1 i
Station 5
Replicate
1
129
129
1,
3
172 0
4
43
86
91.3
1 Station 6
Replicate
1
2
j
1
!
129 i 129
3
43
4
43
86
51.7
Station 7
Repl
43
2
43
43
Icate
43
129 86 I 344
150
88.9
00
-------
APPENDIX E-1.3
Numbers of benthic invertebrates collected from finger-fill canals, Big Pine Key, Florida, November, 1973.
Organism
Annelida
Polychaeta
Errantia
Sedentaria
Mollusca
Bivalvia
Prosobranchia
Anisomyaria
Carditidae
Cardita sp.
Heterodonta
Tcllinidae
Tellina sp.
Gastropoda
Prosobranchia
Archaeogastropoda
Trochidae
CalHostoraa sp.
Opisthobranchia
Cephalaspidea
Bullidae
Bui la sp.
Atyidae
Haminoea sp.
Arthropods
Crustacea
Malacostraca
Nebaliacea
Nebalidae
Neballa bipes
Tanaldacea
Paratanaidae
Station 8
Replicate
1
52
39
2
156
13
26
13
13
39
3
13
13
4
65
13
13
13
13
Station 9
Replicate
1 1 2
117
26
364
169
13
13
13
3
26
26
13
4
13
24
13
Station 10
Replicate
1
260
91
2
26
3 '
260
13
13
52
26
4
26
39
13
13
13
26
Station 11
Replicate
1 '
118
129
2
301
215
43
3
172
1
4
1032
172
Station 12
Replicate
1
43
2 '
43
43
3
172
4
43
_ Station 13
Replicate
1
2 '
86
43
3
43
4
172
86
Station 14
Replicate
1
215
215
43
2
344
129
43
3
43
301
43
86
4
43
1505
129
43
-------
APPENDIX E-1.3 (continued)
Organism
Arthropoda
Crustacea
Malacostraca
Isopoda
Sphaeromatidae
Idoteidae
Amphipoda
Gammarldae
Corophiidae
Arapithoidae
Melitidae
Aoridae
Photidae
Calliopiidae
Lysianassldae
Atylidae
Decapoda
Palaemonldae
Insecta
Pterygota
Diptera
Chi ronomldae
Paratany tarsus sp.
(poss.)
Clunio sp.Cposs.)
Total No. organisms/
m2/replicate
Mean No. organisms/
m2/station
Coeficient of Variation
(percent )
Station 8
f~
13
104
Replicate
2
13
13
3
78
13
'
i
273
117
4
13
13
13
13
168
166
46.4
Station 9
Replicate
1
26
78
13
13
2
39
91
26
273 728
3
26
91
182
4
52
26
130
328
83.2
Station 10
RejJlirate
1
13
26
26
26
13
455
2
26
13
13
3
26
26
39
4
39
i ;•
78 i 455 169
289
Station 11
1
43
1290
Replicate
2
3
559 172
4
1204
806
67.4 66.2
Station 12
Replicate
1
86
129
2
258
43
387
3
129
301
4
43
86
226
62.9
Station 13
Replicate
1
86
1290
344
2
344
129
43
1849 515
3
602
645
4
43
6S8
344
1333
1086
57.4
Station 14
Replicate
1
43
731
1118
387
43
86
43
86
43
2
989
215
86
43
3053IJ849
3
1892
172
43
2580
4
129
2623
215
43
43
4773
3064
40.6
00
CO
-------
APPENDIX E-1.4
Numbers and kinds of benthlc nacrolnvertebrates collected for Doctors Arm Study from finger-fill canals at
Key, Florida, August 1974.
Big Pine
Organism
Coelentera
Hydro za
Porlfera
Rhynchocoela
Anopla
Nematoda
Mollusca
Gastropoda
Neo gastropoda
Modulldae
Modulus modulus
Conidae
Conus sp.
Oplsthobranchia
Cephalaspidae
Bullidae
Bui la sp.
Blvalvla
Anlsomyaria
Cardttldae
Cardita sp.
Heterodonta
Veneridae
Chlone sp.
Parastarte sp.
Telllnidae
Tellina sp.
Annelida
Ollgochaeta
Pleslopora
Tubiflcidae
Polychaeta
Errantla
Sedentarla
Arthropods
Pycnogonlda
Crustacea
Tanaidacea
Paratanaidae
laopoda
Sphaeromat Idae
Idoteldae
Stenetrlldae
Amphlpoda
Ganunarldae
Dexanlnldae
Arophltholdae
Aorldae
Lyslanassldae
Decapoda
Penaeldae
Palaemonidae
Insecta
Pterygota
Dlptera
Chlronomldae
poss. Paratanytarsus sp
Echlnodermata
Holothuroldea
Dendrochlrota
Ophluroldae
Ophlurlda
Amphluridae
Total ( org.Ai2/repllcate
Mean * org. /mz/st»tlon
Coefficient of variation (X)
Number of taxa per station
Station 8
13
26
13
104
130
13
13
117
65
26
26
13
551
epj
13
13
26
26
13
26
117
cat
13
117
104
39
39
26
26
39
403
»
13
104
52
169
312
66
13
Station 9
13
26
260
260
13
13
13
676
lepl
104
78
13
26
13
13
39
260
39
52
39
13
611
cat
65
13
78
B
13
26
13
13
13
52
26
156
380
81
17
Station 10
I
13
13
130
104
13
52
13
26
65
26
208
13
13
689
iepl
13
13
26
[cati
26
52
13
91
52
91
143
237
128
16
Station 12
.
13
26
78
26
143
«pl
52
13
13
78
cot.
13
13
156
182
13
39
65
143
260
166
46
6
Station 13
:
78
65
104
143
13
403
tpl
i
130
13
91
234
.cat
13
13
13
2'6
182
260
507
B
4
26
78
65
39
39
676
923
517
57
8
Station 14
1
26
91
13
130
lepl
2
26
260
26
13
13
118
cmtt
3
65
221
26
26
11«
429
4
13
416
273
65
78
13
52
910
78
10
389
-------
APPENDIX E-1.5
lM*ara aajdl Uad. of baathle •aclolBvtrtabrataa collactad for Sea-Air CatMaa Study firm fl«a«r-flll
canal, at Sarathoa. Florida, Aagu.t 1974.
Ortaala*
Coalaotara
Aathoioa
Actlnlirla
«aa»toda
!tolluaca
Aaphlnaura
Caatropoda
Archaaogaat ropoda
Turblaldaa
Turfco ap.
Carlchlldaa
Cartthlu ap.
M».oga.t ropoda
Llttorlnldaa
Ethlo.il. ap.
Caecldaa
Caccuaj ap.
Fyra»4dcllida«
Turbonllla §p.
Naogaatropoda
Marglnallldaa
Mar.ln.il. «p.
Mitrldaa
Mlrtra «p.
Conld..
conm »p.
Turrlda*
Cl«throdrlll« «p.
MtnillU .p.
Oplathobranchla
Cephalfliplda*
(ullldaa
Bulla tp.
Nudlbranchla
Scaphopoda
Dantalldat
Dantallua
tlvalvla
Anlsovyarli
Cardltldaa
Cardlta lp.
Hacarodonca
Vtntrldu
Chlona ap.
Ttlllnidaa
Talllna ap.
Annelida
Ollgochaata
Plaalopora
Tublflcldaa
Poljrchacta
Errantla
Sadantarla
Arthropoda
Pycnogonlda
Cruacacaa
Halocoacraca
Naballacai
Naballdaa
Myildacaa
My • Ida.
Tan.ld.c..
Paratanaldaa
laopoda
Anthurtdaa
Spha.roMtld..
Clrolanldaa
Idoc.ldaa
Scanatrlldaa
Cnathlldaa
Aayhlpoda
Caaaxrldaa
Daxulnidat
Laucotholdaa
Amltholdaa
Aarida*
Photldu
Ljralanaaaldaa
Capr.llidaa
Dacapoda
Panaaidaa
Palaaamlda*
F.lurldaa
Arthropoda (Coot'd)
liwccta
Pcamota
Dtpcara
dllroa«.14aa
poaa. Clonlo ap.
Cchlaodaraata
Ophluroldaa
Opblurlda
Aavhlurldaa
Haan 1 att.ftf/ttmtltm
Coafflclaait of nrlatlo* (I)
•ia
i
0
4
65
52
13
1}
1.3
N
*
Station 16
lavllcata
I
13
13
13
208
117
78
1)
*»
7
13
221
39
13
2M
1
65
78
71
2?1
7
«
52
312
91
91
Mf
40
7
Statloa; 17
1
13
13
39
65
169
13
?"
•El :«
2
26
13
39
13
195
71
39
1)
*'t
J
1
39
312
52
39
13
*ZJ.
t
13
39
273
26
Ml
•3
i;
10
Static. U
lapllcata
1
78
689
39
65
«J
to.
2
13
338
13
H4
3
13
13
26
689
52
13
13
13
«
572
13
I
i
78
112.
7$
HJ
it~
37
10
statlo* 19
Kapllcata
>
273
13
13
13
13
26
13
39
793
260
78
65
26
52
39
286
52
11
7$
2*7
13
69
3*
26
130
S*J
I
182
26
13
1 1
13
39
26
26
975
33<
130
91
26
65
13
3<
182
130
11
401
U
3
117
91
32
13
39
39
11
13
78
819
247
234
247
78
63
;«
13
598
52
260
11
221
104
»1
!»•'
1
I
13
PW
3,
39
13
1M
an
403
26
13
13
13
13
52
2127
715
299
63
273
11
39
11
11
416
104
12
1»
234
U
91
26
11
16*
>**7
0*
31
41
390
-------
APPENDIX E-1.6
Numbers and kinds of benthlc macroinvertebrates collected from finger-fill canals at Atlantic Beach and Spooners Creek, North Carolina, September 1974.
Organism
Annelida
Polychaeta
Errantla
Sedentaria
Hollusca
Blvalvla
Protobranchia
Heterodonta
Venerida
Chione sp.
Lipodonta
Solemyidae
Solemya velum
Gastropoda
Prosobranchia
Ar chaeogas t ropoda
Acnaeidae
Acmaea sp.
Mesoga&tropoda
Littorlnldae
Llttorina sp.
Nassarlidae
Nassarlua sp. 1
Nassarius' sp. 2
Pyranidcllidae
Turbonllla sp.
Neogast ropoda
Fasciolariidae
Fasclolaria sp.
Arthropod*
Crustacea
Ostracoda
Malacostraca
Mysidacea
Mysldae
Cuaacea
taphipoda
Anpltholdae
Cynadusa filosa
Uljeborgildae
Listrlella clyraenellae
Llstrlella barnardi
Oedlcerotldae
Aapelisca abdlca
Aapellsca verrllH
Anpellsca sp.
Phoxocephalldae
Trichophoxus floridanus
Decapoda
Callianassidae
Calllanassa atlancica
Total 1 or(s./m2/repHcate
Maan 1 orgi . /•'/station
Coefficient of Variation (X;
Number of ca.\a/nr"/station
Atlantic Beach
Station 1
Replicate
I
0
2
0
3
0
4
0
0
0
I
Station 2
Replicate
1
26
91
13
13
H".
2
13
13
3
0
4
0
i
0
6
39
1O4
U3
50
157.97
4
Station 3
Replicate
1
104
52
26
78
26
286
2
156
273
13
13
52
169
676
3
234
390
13
26
13
156
130
26
988
4
273
390
13
13
221
65
39
1014
741
45.88
12
Station 4
Replicate
1
2
1
0
0
3
0
4
0
0
0
Station 5
Replicate
1
0
2
0
3
0
4
0
0
0
Station 6
Replicate
1
78
13
39
130
2
52
13
65
26
156
3
13
26
39
4
13
78
13
104
107
46.92
5
Station 9
Replicate
1
0
2
0
3
0
4 '
52
26
78
20
195.00
2 j
Station 10
Replicate
1
130
169
11
13
39
78
442
?
117
182
26
78
403
1
52
78
26
15ft
4
91
156
26
13
13
299
325
29.63
8
!
Spooners Cr.
S-l
325
325
1
i-3
130
13
104
247
3
S-4
26
13
78
26
143
4
CJ
•o
-------
APPENDIX E-2.1
Canal III, Sta. 8
Macrophyte Bionass (G/m2)
Big Pine Key, Florida
November, 1973
*weights in G/m
Plant/
. Algae
Rhizoclonium
Cl.idophora
Baeophora oersted!
Acerabularia crenulata
Valonia
Dictyosphaeria cavernosa
Anadyomene stellata
Cauierpa verticillata
C. floridana
C. cupressoides
Awrainvillea levis
Udotea
Pcnicillus dumetosus
Penicillus
Hali'neda tuna
H. ip.crassata
Jo:;.ur.i
Vauc.icria
Rep. 1*
.05512
.14504
.00212
.00672
.12072
.19156
.47852
Rep. 2*
.06452
1.01116
.04848
.23316
Rep. 3*
1.10516
4.99248
.00056
.59132
.23104
.00776
11.63964
.06696
Rep. 4*
.83376
>. 80312
.00544
2.47524
.02160
:. 73644
.10264
2.26924
Rep. 5*
Rep. 6*
Rep. 7*
5V6S856
T-11.9401
T-. 00812
T-3.4864
T-.6614
T-2.9742
T-2. 36164
[-.10264
T-15.1004
T-l. 54548
Rep. 9*
>
Rep. 10*
Range
,05-1,]
.14-6.1
.0005-
.0005
1.01-2.
.02-.5S
.006-2j
j004-2j
.10
Jfl?-U
.07-1.41
X (mean)
.51464
3.98021
.00271
7 1.7432
.22047
4 1,07065
2 .78721
.10264 j
64 5.03348
.77274
Ratio of
Org.-ASH
.24:1 0
1.29:1.0
.27:1.0
.97:1.0
.16:1.0
.55:1.0
.20;!. 0
10. 18:1.0
3.35:1.0
.9B-1.O
to
-------
APPENDIX E-2.1
Canal III. Sta. 8 (cont'd.)
* weights in G/m2
Plant/
Algae
Asiphiroa rigi'l^.
Gracilaria
Eucheuma isiforne
Ceramium
Polvsiphonia howei
Oscillatoria
Ulva
Rep. 1*
.15680
.13588
Rep. 2*
.05460
Rep. 3*
5.29428
Rep. 4*
.08012
.28380
Rep. 5*
Rep. 6*
Rep. 7*
T-.15680
T-. 08012
T-5.7139(
Ti.0546
Rep. 9*
Range
.16
.08
.13-5.2$
.05
X (mean)
.15680
.08012
1.9
-------
APPENDIX E-2.1
Canal III, Sta. 8 (cont'd)
* weights in G/m
Vascular
Plants
Halodule
wrightii
Thalassia
testudiniun
Total
X
Rep. 1*
4.83416
10.13
14.39
16.49
Rep. 2*
1.41
Rep. 3*
.94008
24.87
Rep. 4*
5.16764
.37208
21.15
Rep. 5*
Rep. 6*
Rep. 7*
-T-10.9418
T-. 37208
Rep. 9*
t
Rep. 10*
Range
,94-5.17
.37
X (mean)
3.64729
.37208
Ratio of
Or g. -Ash
1.65:1.0
7.12:1.0
VO
-------
APPENDIX E-2.1
Canal III, Sta. 9
*weights in G/m
__ Algae
Cladophora
Batophora oerstedi
Valonia
kj Bictyosphaeria cavernosa
O
t" Anadyomene steilata
Caulerpa verticillata
C. floridana
C. cupressoldes
Avrainvillea levis
Udotea
Penicillus dunetosus
Penicillua
Halimeda tuna
H. incrasaata
Codium
Vaucheria
Rep. 1*
ilep. 2*
2.79136
Rep. 3*
.86916
.00836
.05456
Rep. 4*
Rep. 5*
Rep. 6*
Rep. 7*
T-1.0110
T-.5594
T-. 00836
T-2.7913<
T-. 05456
Rep. 9*
Rep. 10*
Range
U-.87
,001-. 56
.008
2.79
.05
X (mean)
.5055
.2797
.60836
2.79136
.05456
, (total) .
Ratio of
Or g. -ASH
.29:1.0
2.68J1.0
l.Q7;l.Q
.76:1.0
-------
APPENDIX E-2.1
C«nal III. Sta. 9
* weights in G/m2
Plant/
Algae
Aaphiroa riglda
Gracilaria
Eucheuraa isiforme
Ceramium
Polysiphonia howei
Oscillatoria
Ulva
Rep. 1*
Rep. 2*
Rep. 3*
.02056
.01188
Rep. 4*
.34708
Rep. 5*
Rep. 6*
Rep. 7*
T-V02056
T». 34708
T-. 01188
Rep. 9*
Range
.02
»
.35
.01
>'. (mean)
.02056
.34708
.01188
Ratio of
Org.-ASh
30.23:1.0
.03:1.0
1.82:1.0
w
vO
-------
APPENDIX E-2.1
:«n«l III, Sta. 9
* weights in C/nT
'ascular
Plants
lalodule
wrightii
'halassia
testudinlum
X
t
Rep. 1*
10.21084
13.14
6.62
10.84
Rep. 2*
0
Rep. 3*
1.52
Rep. 4*
11.45960
11.81
Rep. 5*
Rep. 6*
Rep. 7*
T-21.6704
Rep. 9*
Rep. 10*
Range
LO. 21-11.
X (mean)
46 10.83522
Ratio of
Or g. -Ash
16.04:1.0
b>
-------
APPENDIX E-2.1
C*n«l III, Sta. 10
*weights in G/m2
Algae
Batophora oersted!
Acotabularia -:enulata
Dictyosphaeria cavernosa
Caulerpa verticillata
C. cupressoldes
Penicillus dumetosus
Penicillus
ilalin.oda tuna
H. ir.crassata
Codiuai
Vaucheria
Rep. 1*
,02144
.«?««
.00692
.10916
5.19316
Rep. 2*
.00560
-32852
5.54460
Rep. 3*
.05316
^9W6
.04500
5.26468
Rep. 4*
.24000
2.09512
.00524
6.35276
Rep. 5*
.00646
.17116
Rep. 6*
2.37136
.74776
.31116
Rep. 7*
.24272
'. 37 268
Rep. 8*
.57660
.02032
..51496
Rep. 9*
r-2-MISfi
T-5. 39432
Ij. 06364
r*. 01712
I-. 12948
'-40.74571
-.00904
'-3.27264
Rep. 10*
Range
24-2.09
OQ5-.0*
.02
,02-. 11
.51-7.3
.009
3.27
XJmean)
.77062
.01591
.01712
.55596
5.09322
.00904
3.27264
Ratio of
Org.-ASH
.86O.O
1.74:1.0
.42:1.0
.24;!. 0
VO
00
-------
Canal III, Sea. 10
* weights in G/m2
Plant/
Algae
Amphiroa rigida
Gracilaria
Eucheuma isiforme
Geranium
Polysiphonia howei
Oscillatoria
Ulva
Rep. 1*
3.7Q79*
.01292
2.18080
Rep. 2*
7AIU4
1.74592
Rep. 3*
.IfiUO
.06004
Rep. 4*
Rep. 5*
Rep. 6*
Rep. 7*
4.12860
Rep. 8*
T-4.2420
T-.07296
2.65012
Rep. 9*
T-14
Rep. 10*
.63216
Range
.16-3.80
.01-.Q6
L. 75-4. 13
X (mean)
1.4140
.03648
2.67636
Ratio of
Or $. -Ash
.12:1.0
.15:1.0
.62:1.0
-------
APPENDIX E-2.1
Canal III, Sta. 10
* weights in G/m
Vascular
Plants
Halodule
vrightii
Thalassia
testudinium
X
X
Rep. 1*
8.31700
23.37
14.13
4.15
Rep. 2*
4.55228
19.04
Rep. 3*
1.64292
8.23
Rep. 4*
4.62076
13.31
Rep. 5*
7.72324
9.90
Rep. 6*
.58688
11.01
Rep. 7*
2.60156
14.3
Sep. 8*
9.09904
13.86
Rep. 9*
1*39. 14.361
Rep. 10*
Range
59-9.10
X (mean)
4.89296
Ratio of
Org.-Ash
4.78;1.0
O
o
-------
APPENDIX E-2.1
Stm. IX
*weights in G/m
Plant/
Algae
Rhizoclonium
.. .
Cladophora
Batophora oersted!
Acetabularia c.^nulaca
Valonia
Dictyosphaeria eavernosa
Anadyomene stellata
Caulerpa verticillata
C. floridana
C. cupressoides
Avrainvillea levis
Udotea
Penicillus dumetosus
Penicillus
Haliineda tuna
H. incrassata
Codium
Vaucheria
Rep. 1*
.45404
.30148
5.02708
.01112
2.22760
T767968
12.01680
.03136
Rep. 2*
.0825$
.01820
.80924
2.0162
.20364
.57224
10.75440
6.30696
Rep. 3*
•P0424
.00016
Rep. 4*
Rep. 5*
Rep. 6*
Rep. 7*
Rep. R*
>. 54084
r«. 01820
r-1. 11072
M.04344
P-. 21476
r-2.79998-
C-19. 43401
r-18. 32371
T-. 03136
Rep. 9*
Rep. 10*
Range
.OQA-,45
.02
.30-. 81
,0002-5;
,01-. 20
.57-2.23
1.68-10.
i. 31-12.
.03
X (mean)
.18028
.01820
.55536
)3 2.34781
.10738
1.39992
'5 9.71704
)2 9.16188
.03136
Ratio of
Ore. -ASH
55-1 0
2.38:1 0
.83 -.1.0
.56:1.0
1.52:1.0
3.35:1.0
1.06:1.0
.39:1.0
28:1.0
-------
APPENDIX E-2.1
* weights in
Plant/
Algae
Amphiroa rleida
Gracilaria
Eucheuma Isiforme
Ceramlum
Polysiphonta hovel
Ulva
Rep. 1*
.02364
7.22204
Rep. 2*
.06440
.18760
.00872
Rep. 3*
.04984
Rep. 4*
'
Rep. 5*
Rep. 6*
Rep. 7*
Rep. ft*
T-. 06440
T-. 02^4
T-7. 45948
T-.00872
Rep. 9*
iep.10*
Range
.06
.n?
.ns-7.22
.009
X (mean)
.06440
.n?«i
4.BQ384
.00872
Ratio of
Org.-Ash
1.15:1.0
V91.1.0
Qfi.1.0
.12:1.0
o
N>
-------
APPENDIX E-2.1
St«.
* weights in G/m
Vascular
Plants
Halodule
wrighcii
Thalassia
testudinium
X
±
Rep. 1*
.10780
1.20136
37.30
21.02
19. 6i
Rep. 2*
2.91808
1.72504
25.67
Rep. 3*
.05136
.1056
Rep. 4*
Rep. 5*
Rep. 6*
Rep. 7*
Rep. 8*
r-3,02588
r-2. 97776
Rep. 9*
Rep. 10*
Range
.11-2.92
.05-1.72
X (mean)
•
1.51294
.99259
Ratio of f
Org.-Ash
1.41:1.0
2.69:1.0
o
w
-------
APPENDIX E-2.1
Crnul W, st*. 12
*weights in C/nT
Algae
Cladophora
Ace tabular ia crenulata
Valonia
Dictyosphaeria cavernosa
Anadyomene stellata
Caulerpa verticlllata
C. floridana
C. cupressoldes
Avrainvlllea levis
Udotea
Penicillus dumetosus
Penlclllus
H. incrassata
Codiuffl
Vaucheria
Rep. 1*
1.16824
.5198$
•03836
.94576
.01264
.20456
.13872
Rep. 2*
_L. 02064
t!7380
.34824
.15672
— .64112'
.13376
.16412
.33772
Rep. 3*
.00908
11128
r04212
9.11244
24.52332
— l52"23l
.1.77208
.01280
.00220
Rep. 4*
3.47392
68872
3.28880
' 1.73704
67052
1.97088
1.674Jti
.68856
5.40284
Rep. 5*
.16796
4.01676
6.79596
.81468
.11872
6.78736
Rep. 6*
Rep. 7*
«*p «*
yfi.8192.
T"2.3425j
T-.25428
T-17.712(
T-33.225
T-2.7855!
Tm1) KAVTi
T-2.8518'
T-12.367:
T-. 33992
Rep. 9*
*-
}
3
Rep. 10*
Range
.009-5.4
.04-. 17
.35-9.11
.01-24.5
.67
81-1.97
84-187
11-1.7<
01-6.79
VMJ2- ^i
_X (mean)
1 4.?fl4«l
.08476
3,5424
! 6.65414
-.67052
1.39278
1.66094
.57034
3.09178
.. 16996
Ratio of
J>rg.-ASH
-QSM.n
4.64!l.O
1.60;j^.O _
.95;!. 0
3.50:1.0
.74:1.0
.92:1.0
.92'! 0
.55*1.0
2.66-1.0
-------
APPENDIX E-2.1
Plane/
Algae
Anph'iroa rigida
Gracilaria
Eucheuma is i forme
Geranium
Polys iphonia howei
P. »p.
OsclLlatoria
Ulva
Rep. 1*
.0200
Rep. 2*
.03444
.19680
.07176
Rep. 3*
.19404
.06180
.09724
.5144U
Rep. 4*
.57336
Rep. 5*
Rep. 6*
Rep. 7*
Rep. 8*.
T-. 22848
T-.2586
T-r6T724~
T=1.3S776
T-.09176
Rep. 9*
lep.10*
Range
.03-. 19
.06-. 20
.10
.57-. 81
.02-. 07
X (mean)
.11424
.1293
.09724
.69388
.04588
Ratio of
Org. -Ash
25.05:1.0 .
1.66:1.6
3.72:1.0
2.00:1,0
2.56:1.0
4k.
O
Ui
-------
APPENDIX E-2.1
Canal IV. Sta. 12
* weights in G/m
Vascular
Plants
Halodule
wrightii
Ihalasala
testudlniun
T
1
Rep. 1*
3.05
17.04
17.96
Rep. 2*
01O76
.44128
3.15
Rep. 3*
. 1 5760
37.43
Rep. 4*
22.37
Rep. 5*
.AAQ57
19.19
Rep. 6*
Rep. 7*
Rep. 8*
T-.677B8
T«. 44128
Rep. 9*
Rep. 10*
Range
m-.&Q
.44
X (mean)
.22596
.44128
Ratio of
Org.-Ash
2.20-1.0
5.49:1.0
-------
APPENDIX E-2.1
Caul IV, St«. 13
*weights in G/m
Algae
Rhizoclonium
Cladophora
Batophora oersted!
Acecabularia crenulata
Valonia
Dictyosphaeria cavernosa
Anadyomene stellata
Caulerpa verticillata
C. florldana
'
C. cupressoides
Avrainvillea levis
Udotea
Penicillus dumetosus
PenlcilluB
Hallmeda tuna
H. incrassata
Codium
Vaucheria
Rep. 1*
- *iiv"
.04096
1.05752
12.25268
,W20
6.30120
25.29204
Rep. 2*
..U->33/
.12628
.02380
.06860
4.98692
2.18148
.09456
3.75388
,10664
Rep. 3*
.00620
.01524
5.99160
,00168
.01076
Rep. 4*
.00344
1.57948
2.29635
.49088
2.49528
5.28448
2.46152
Rep. 5*
Rep. 6*
Rep. 7*
Rep, 8*
T-3.3093;
T-. 13248
T-. 08344
T-.0686
T-8.6286
T-19.535!
T-.59Q8q
T-5. 29091
T-11.680:
1-61,509
T..1174
Rep. 9*
5
4
2
Rep. 10*
Range
.39-2.05
.006-. 1"
,003-. 04
.07
L. 06-5. 9
Z.30-12.
.59
.61-2.49
,09-6.30
.002-32.
O1- 11
X (mean)
1.10311
.06624
.02086
.06860
I 2.8762
15 .51198
. 59088
1.76365 ^
3.89341
46 15.37728
.05870
Ratio of
Or g. -ASH
.67:1.0
1 90-1 0
3.97:1.0
1.53:1.0
.45:1.0
4.09:1.0
1.67;1.O
1.60:1.0
1.17:1.0
.31:1.0
1.29:1.0
-------
APPENDIX E-2.1
Canal IV, Sta. 13
weights in 6/m2
Plant/
AlRae
Amphiroa rigida
Gracilarla
Eucheuma isiforme
Ceraniun
Polyslphonla hovel
Oscillatorla
Ulva
Rep. 1*
.04824
,4W*0
Rep. 2*
.04036
.12276
.15508
Rep. 3*
.111572
Rep. 4*
Rep. 5*
Rep. 6*
Rep. 7*
Rep. 8*
r-. 04824
f-. 04036
r-. 12276
T-. 01572
>.62448
Rep. 9*
lep.10*
Range
.05
.04
.12
.02
.15-. 47
X (mean)
.0*824
.04036
.12276
.01572
.54694
Ratio of
Or g. -Ash
.40:1.6
1.58:1.0
.37:1.0
5.04:1.0
1.64:1.0
O
00
-------
APPENDIX E-2.1
Canal IV. Sta. 13
* weights in G/m
Vascular
Plants
Halodule
wrightii
Thalassia
testudinium
X
*
Rep. 1*
2.73088
49.20
30.24
34.72 ..
Rep. 2*
3.81364
17.53
Rep. 3*
.00924
6.05
Rep. 4*
2.61728
48.19
Rep. 5*
Rep. 6*
Rep. 7*
Ren. 8*
T-9. 17104
Rep. 9*
Rep. 10*
Range
,009-3.81
X (mean)
2.29276
Ratio of
Org.-Ash
2.89:1.0
o
•o
-------
APPENDIX E-2.1
C«n*l IV, Sta. 14
"weights In G/m
Plant/
Algae
Acetabula-la er«nul*ta
Dictyosphaeria cavemosa
Anadyomene stellata
Caulerpa vertl-illata
C. cupr
Cod fun
Vaucherl
2S8oic
>
•
T
2
Rep. 3*
LI. 19300
.45056
.75872
1.90060
36.87448
Rep. 4*
^01968
.01236
1.465*0
7.76524
1.42528
1.70664
11.95456
Rep. 5*
.42248
.01608
7.6300
.OfOJ;
.cvwi*
>
Rep. 6*
Rep. 7*
Rep. R*
I-. 024.92
T-12.337I
T-. 46864
T-. 25260
T-. 18004
T-8.1400
T-34.670;
T-2.6168
T-. 17536
T-3.2034^
r«9. 15091
T-8.9197:
T-68.930<
Rep. 9*
Rep. 10*
Range
006-.4:
04-. 21
.17
3.20
.76-6.9
1.55.-36,
009^,52
X (mean)
2.46812
.12630
r^
3.20344
3.05032
.26294
Ratio of
.75tl.O
4.76:1.0
3.14:1.0
-------
APPENDIX E-2.1
Canal IV, Sta. 14
* weights In G/m2
Plant/
Algae
Araphiroa rigiHa
Gracilaria
Eucheuma isi forme
Geranium
Polyslphonia howei
P. ap.
Oscillatoria
Ulva
Rep. 1*
.03872
.19460
.57128
14.62984
Rep. 2*
1.45856
.37132
.55048
.03440
1.40468
Rep. 3*
.00684
.05424
.00756
Rep. 4*
.05644
Rep. 5*
Rep. 6*
Rep, 7*
Rep. 8*
I-.04556
T-,19460
T-2. 08408
T-. 37132
T-. 55048
T". 03440
1-16.0.985
Rep. 9*
>
Rep. 10*
Range
.006-. 04
.19
.05-1.46
.37
.55
.03
.007-14.6"
_
X (mean)
.02278
.19460
.69469
.37132
.55048
.03440
4.02463
Ratio of
Org.-Ash
f
.18:1.0
1.23:1.0
1.07:1.0
.79:1.0
1.56:1.0
6.28:1.0
.99:1.0
-------
APPENDIX E-2.1
Canal IV, St«. 14
* weights in G/n
Vascular
Plants
Halodule
wrigiitii
Thalassla
testudi^ium
X
1
Reo. 1*
2.40188
48.72
34.94
24.01
Rep. 2*
.OSS2R
2?. 67
Rep. 3*
.84392
1.08008
59.16
Rep. 4*
.00344
27.41
Rep. 5*
1.58420
9.73
Rep. 6*
Rep. 7*
Rep. 8*
T-4. 83344
T-1.1151fi
Rep. 9*
Rep. 10*
Range
.003-2. 4C
ns-i .n«
X (mean)
1.20816
-SfiTfifl
Ratio of
Or K. -Ash
.91:1.0
.9fi'l O
-------
APPENDIX E-2.2
Macrophyte biomass (g/m2) for Canal III, Station 8, at Big Pine Key, Florida, August 1974.
Algae
Cladophora
Batophora oersted!
Acetabularia crenulata
Caulerpa floridana
Udotea
Penicillus dumetosus
Penicillus sp.
Halimeda incrassata
Codiuip
Kalodule wrightii
Thalassia testudinium
Syringodium filiforme
Rep. 1
0.19352
1.80884
0.25408
0.1428
Rep. 2
0.07664
0.04856
0.9844
1.05991
9.2434
1.44104
Rep. 3
0.75268
0.00816
1.55312
7.44904
0.24564
Rep. 4
7.25784
1.41352
0.20396
0,11048
Rep. 5
0.03532
0.01036
0.01984
0.24032
0.52784
11.17072
0.02368
0.16044
Rep. 6
0. 12060
3.74624
0.74332
1.68464
10.05232
1.54836
Rep. 7
0.03888
0.00912
0.78028
2.01248
5.22920
10.87944
Rep. 8
0.03656
6.22508
0.08216
0,19464
0.66848
3.06880
Total
7.59988
10.41852
0.03712
0.9844
0.86244
4.00056
10.28943
0.94829
2.21248
49.71668
0.02368
6.46428
Range
0.035-7.258
0.010-6.22
0.008-0.019
0.082-0.780
0.195-2.012
0.254-5.23
0.204-0.743
0.528-1.68
0.110-11.171
0.160-3.07
X
1.51997
1.30231
0.012373
0.9844
0.43122
2.00028
5.144715
0.474146
1.10624
6.214585
0.02368
1.292856
Ratio
Or g ; Ash
0.147:1
1.8:1
3-1
24.5:1
2.2:1
1.8:1
1.6:1
0.25:1
2.5:1
8.7:1
2.1:1
10.7:1
Station mean
Standard deviation
11.6938
5.228761
-------
APPENDIX E-2.2
Macrophyte biomass (g/m2) for Canal III, Station 10, at Big Pine Key, Florida, August 1974.
Algae
Cladophora
Batophora oerstedi
Acetabularia crenulata
Caulerpa verticillata
C. floridana
Udotea
Penicillus dumetosus
£. sp.
Poly^siphonia sp.
Halodule vrightii
Thalassia testudinium
Syringodium filiforme
Rep. 1
1.042
0.40912
0.01108
0.16976
1.71076
0.01784
12.41400
Rep. 2
0.04836
7.91408
Rep. 3
0.02620
0.10548
1.2928
1.77596
1.08612
4.27676
0.12064
Rep. 4
0.14444
0.25244
Rep. 5
0.05264
0.00716
0.03748
0.66116
1.58896
4.62288
Rep. 6
0.12836
0.03056
0.02012
2.78188
10.30160
Rep. 7
0.71412
0.09548
0.03388
8.9164
Rep. 8
4.45088
3.93676
2.50644
Total
1.96332
0.83344
0.01824
0.03748
2.14384
1.77596
7.7506
4.15432
0.01784
52.38248
0.12064
2.50644
Range
0.026-1.042
0.031-0.409
0.007-0.011
0.020-1.29
1.59-4.45
0.034-2.78
3.94-12.4
X
0.392664
0.13891
0.00912
0.03748
1.07192
1.77596
2.58353
1.03858
0.01784
7.48321
0.12064
2.50644
Ratio
Org:Ash
1.25:1
3.7:1
1.9:1
1.4:1
11.8:1
0.74:1
3.4:1
3.3:1
5.9:1
8.3:1
8.5:1
8.3:1
Station mean 9.18152
Standard deviation 4.6550
-------
APPENDIX E-2.2
Macrophyte biomass (g/m2) for Canal IV, Station 12, at Big Pine Key, /lorida, August 1974.
Ol -
Algae
Rhizoclonium
Cladophora
Batophora oerstedi
Acetabularia cfenulata
Caulerpa verticillata
C . f loridana
Udotea
Penicillus dumetosus
Halimeda tuna
H. incrassata
Oscillatoria
Halodule wrightii
Thalassia testudinium
Rep. 1
0.08312
0.68396
Rep. 2
0.26008
0.20624
0.08104
Rep. 3
0.13536
0.08128
0.00964
0.28880
0.01872
0.01244
0.00518
Rep. 4
0.0406
0.20376
0.04372
0. 10368
0.0874
0.09800
Rep. 5 '
0.0564
0.210
0.14624
0.01736
0.43684
0.46564
0.05088
Rep. 6
0.441
0.1542
0.0264
0.09776
0.05696
0.0866
0.20332
Rep. 7 '
0.120'4
0.03056
0.009
0.52244
0.03356
0.42068
0.0158
Total
0.0564
0.63108
1.21527
0.01736
0.7466
0.04504
0.09776
0.81124
0.03356
1.73092
0.01872
0.23732
0.40334
Range '
0.041-0.260
0.083-0.441
0.031-0.437
0.009-0.026
0.289-0.522
0.057-0.684
0.012-0.087
0.005-0.203
X
0.0564
0.15777
0.20262
0.01736
0.14932
0.01501
0.09776
0.40562
0.03356
0.34618
0.01872
0.05933
0.08067
Ratio
Org:Ash
-11.6:1
0.82:1
1.6:1
1.2:1
1.2:1
3.5:1
2.2:1
2.0:1
839:1
0.48:1
15.6:1
3.0:1
2.3:1
Station mean 0.8635
Standard deviation 0.3375
-------
APPENDIX E-2.2
Macrophyte biomass (g/m2) for Canal IV, Station 14, at Big Pine Key, Florida, August 1974.
Algae
Cladophora
Batophora oerstedi
Valonia
Caulerpa verticillata
C. floridana
Penicillus dumetosus
P_. sp.
Halimeda incrassata
Eucheuma 1 si forme
Halodule wrightii
Thalassia testudinium
Syringodium filiforme
Rep. 1
0.03856
0.38956
0.0086
0.04308
0.34724
1.08464
4.80184
0.1128
Rep. 2
0.02828
0.00236
2.51064
0.09808
5.1828
Rep. 3
0.11708
0.07332
4.07576
1.08716
9.84468
0.05268
Rep. 4
0.21696
0. 13304
3.66104
0.07508
5.5602
Rep. 5
0.01504
0.01184
4.75056
13.5074
0.03524
0.05756
Rep. 6
0.10976
0.01584
4.72852
0.1116
Rep. 7
0.37104
0.23484
0.014
0.04908
0.0522
0.22052
0.00936
Total
0.85816
0.50744
0.40356
0.00236
0.0086
12.53644
2.55372
19.89568
0.22052
21.71692
4.971
0. 16548
Range
0.015-0.371
0.012-0.235
0.014-0.389
0.049-4.75
0.043-2.51
0.052-13.5
0.009-9.84
0.058-4.80
0.053-0.113
*
0.14303
0.08457
0.20178
0.00236
0.0086
3.13411
1.27686
2.84224
0.22052
3.61949
1.657
0.08274
Ratio
Org:Ash
0.92:1
2.5:1
1.2:1
1.4:1
1.7:1
2.6:1
2.1:1
0.46:1
1.3:1
8.8:1
6.7:1
0.22:1
Station mean 9.1199
Standard deviation 5.9791
-------
Appendix E-2.3
Macrophyte Associations* in Big Pine Key, Florida
November 1973
Species
Penicillus dumetosus
Batophora perstedi
Halodule wrightii
Oscillatoria spp.
Penicillus sp.
Cladophora
Codium
Caulerpa verticillata
Halimeda tuna
Halimeda incrassata
Eucheuma isiforme
Caulerpa floridana
Ulva
Canal III
Stations
8
X
X
X
X
0
0
0
0
0
0
0
9
0
X
X
X
X
0
10
0
X
0
X
0
X
0
0
Reference
Stations
11
0
0
X
X
X
X
0
0
Canal IV
Stations
12
0
0
0
0
0
X
X
0
X
X
0
13
, 0
0
0
0
0
X
X
X
0
X
0
14
X
0
0
0
0
0
0
X
0
X
X
X = Dominant
0 = present
* The above species were in the top four dominants (X) of at least one
replicate before they were included in the list.
417
-------
APPENDIX E-2.4
Macrophyte Associations in Big Pine Key, Florida
August 1974
Species*
Penicillus dumetosus
Batophora oerstedi
Halodule wrightii
Oscillatoria sp.
Penicillus sp.
Cladophora sp .
Codium sp.
Caulerpa verticillata
Halimeda tuna
Halimeda incrassata
Syringodium filiforme
Caulerpa floridana
Udotea sp .
Thalassia testudinium
Canal III
Stations
8
0
X
X
X
X
0
0
0
0
0
0
10
X
0
X
X
0
0
X
0
0
0
Canal IV
Stations
12
X
X
0
0
0
X
0
X
0
0
0
14
X
0
X
0
0
0
X
0
0
X
X = Dominant
0 = Present
*Species listed were in the top four dominants (X)
of at least one replicate before they were included
in the list.
418
-------
•
Appendix E-3.1. Periphyton Clump Counts (///mm ) Punta Gorda, Florida
November 1973
Number of Organisms
Categories
CANAL I
Coccoid blue-green
Filamentous blue-green
Coccoid green
filamentous green
Green flagellates
Other coccoid greens
Other pigmented flagellates
Protozoa
Diatoms
centric
Peimate
Total Algae
STATIONS
3
Days
4 6 10
111
17 100 312
18 101 313
(mouth)
Incubation
13 19
P*
18
2 3
747 767
749* 788
23
P
5
5
738
748
29
P
5
11
833
849
1 (end)
Days Incubation
4 6 10 13
1 1 1 19
27 137 231 506
28 138 232 525
19
P
15
28
949
991
23
P
5
53
659
717
29
P
7
68
1014
1089
REFERENCE
STATION
4
Days
4 6
1 1
11 25
12 26
10
8
972
980
*P = present but not counted
-------
Appendix E-3.1
Periphyton Clump Counts (#/mm ) Punta Gorda, Florida
November 11, 1973
Number of Organisms
»
Coccoid blue-green
Filamentous blue-green
Coccoid Green
Filamentous Green
Green Flagellates
Other coccoid greens
Other pigmented flagellates
Protozoa
Diatoms
centric
Pennates
Total Algae
CANAL II
STATION
7
Days
4 6 10
120
81 283 239
82 285 239
(mouth)
Incubation
13 19 23
P* P
1 2 12
414 188 813
415 190 825
29
P
9
564
573
5 (end)
Days Incubation
4
1
80
81
6 10 13 19 23
18
15 129 183 265 110
726 937 467 480 408
741 1066 650 745 578
29
364
642
1006
10
o
P* = Present but not counted
-------
APPENDIX E-3.2
2
Periphyton Clump Counts (#/iran ) Big Pine Key, Florida
November 1973
Number of Organisms
Categories
Coccoid blue-green
Filamentous blue-green
Coccoid green
Filamentous green
Green flagellates
Coccoid other
Pigmented flagellates
Protozoa
Diatoms
Centric
Pennate
Total
CANALS
IV
III
STATIONS
12
REPLICATE NUMBER
12345
P*
11
21 18 14 5 5
703 830 796 585 865
735 859 819 592 877
8
REPLICATE NUMBER
1234
322
708 699 662
711 701 664
P = Present but not counted.
421
-------
Appendix E-3.3 Periphyton Chlorophyll a
Concentrations (mg/m ), Punta Gorda, FL
November 11, 1973
Canal Station
I 1
I 3
II 5
II 7
Reference
Days
4
6
10
13
19
23
29
4
6
10
13
19
23
29
4
6
10
13
19
23
29
4
6
10
13
19
23
29
4
6
10
X
0.4
3.7
8.0
4.4
23.8
43.9
43.1
0.3
2.4
9.7
10.7
46.8
66.7
72.0
1.0
16.0
40.2
67.0
77.7
28.7
47.1
0.6
6.1
4.2
44.5
105.2
110.1
149.3
0.025
1.0
45.3
s*
0.1
0.8
9.1
l.o
1.0
8.6
4.7
0.1
0.2
0.5
1.2
5.0
12.7
53.0
0.1
2.3
0.7
17.6
15.9
5.8
12.4
0.1
0.6
1.4
8.6
13.1
49.5
40.0
0.024
0.3
3.9
*S = Standard deviation
422
-------
APPENDIX E-3.4
Periphyton Organic Matter (G/m2) Values
Punta Gorda, Florida, November 1973
Canal Station Days
114
6
10
13
19
23
29
134
6
10
13
19
23
29
II 5 4
6
10
13
19
23
29
II 7 4
6
10
13
19
23
29
Reference 4
6
10
X
.2370
1.042
5.390
6.244
10.789
13.701
20.779
.1770
.8187
2.050
1.060
5.474
6.323
7.563
.6487
3.192
9.702
11.728
10.514
6.589
8.719
.5123
.6530
.6937
1.940
17.302
21.852
22.135
.0747
.3043
4.172
S
.1531
.1657
2.719
.4196
2.013
3.309
4.008
.1400
.3506
.1845
.8107
4.463
1.854
.8665
.5120
.2960
3.202
3.423
2.923
3.183
1.145
.3662
.3591
.2207
2.899
3.135
16.457
5.110
.0502
.0782
3.108
423
-------
Appendix E-3.5 Periphyton Autotrophic Index Values,
Punta. Gorda, Florida
November 27, 1973
Autotrophic Index
Canal Station Days
I 14
6
10
13
134
6
10
13
19
23
29
19
23
29
II 5 4
6
10
13
19
23
29
II 7 4
6
10
13
19
23
29
Reference 4
6
10
X
359.22
219.09
255.26
243.11
770.83
439.45
549.52
421.23
229.05
205.02
697.37
230.66
142.28
175.72
647.25
202.16
241.52
174.53
134.06
240.99
189.91
851.65
107.57
171.45
39.24
164.46
181.97
153.84
2746.90
317.37
87.53
S*
257.32
79.08
24.68
173.96
473.73
46.98
247.90
276.67
19.33
23.76
838.07
185.22
13.33
9.29
477.90
35.75
81.28
9.53
11.37
147.63
32.91
598.45
56.50
38.60
57.95
2. i
58.50
50.00
803.07
127.04
57.00
*S « Standard deviation
424
-------
o
Appendix E-4.1 Phytoplankton Chlorophyll-a Concentrations (mg/m )
Punta Gorda and Big Pine Key, Florida
November 1973
Canal
Station
Mean
S*
Canal
S*
Mean
I
I
I
Reference
II
II
II
II
II
II
Reference
IV
IV
IV
to
H C
•35
O 4J
01 <0
P, 4J
V) W
1
2
3
4
5
6
7
8
9
10
11
12
13
14
C
D
E
F
G
H
I
16
14
7
6
5
9
5
.21
.18
.16
.19
.90
1.02
.71
5.5
12
13
.92
1.12
.30
.19
9
4 I
4
2
2
6 II
2
.10
.04 III
.06
.06
.32
.57 IV
.32
'.75
1.38
1.04
.36
.29
.01
.01
4.72 12
2.3 6
.02 18
.15 87
*S = Standard deviation
425
-------
Appendix E-4.2 Average Total Live
Phytoplankton - Concentrations (#/ml)
Punta Gorda and Big Pine Key, Florida
November 1973
Canal
I
I
I
Reference
II
II
II
III
III
III
Reference
IV
IV
IV
Station
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Mean
2067
1766
838
315
329
1045
556
76
57
55
76
112
49
69
S*
454
239
350
122
22
425
192
36
20
27
27
20
13
26
*S - Standard Deviation
426
-------
APPENDIX E-5
Visible Light Profiles in Terms of Percent Transmission and Light Extinction Coefficients, Finger-fill
Canal Study, Big Pine Key, Florida, November 1973.
Station ft
Depth
(m)
0.0
0.5
1.0
1.5
2.0
2.5
2.7
Mean
Z
Trans
100
60
49
40
32
27
25
K-m
IT"
0.308
0.356
0.373
0.391
0.381
0.381
0.365
Stafiin Q
Depth
(m)
0.0
0.5
1.0
1.5
2.0
2.5
2.7
Trans
100
63
50
40
33
25
23
K~m
0.349
0.406
0.419
0.410
0.439
0.438
o".409
Depth
(m)
0.0
0.5
1.0
1.5
2.0
2.5
2.7
Trans
KX
62
48
40
32
26
24
K~m '
0.381
0.446
0.419
0.426
0.424
0.422
0.420
Depth
(m)
Run 1
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Trans
0900
100
55
45
37
32
27
19
K-m
Hours
0.392
0.484
0.453
0.412
0.398
0.449
0.431
Depth
(m)
0.0
0.5
1.0
1.5
2.0
2.5
Z
Trans
100
68
55
48
38
35
0.325
0.375
0.340
0.372
0.331
0.349
St
Depth
(m)
0.0
0.5
1.0
1.5
2.0
2.2
ation
7.
Trams
100
58
45
38
29
27
13
0.514
0.511
0.453
0.475
0.464
0.484
Depth
(n)
0.0
0.5
1.0
1.5
2.0
2.5
.ation
Trans
100
57
45
34
25
19
-••r-
0.498
0.484
0.509
0.536
0.538
0.513
K>
Visible Light Profiles in Terms of Percent Transmission and Light Extinction Coefficients, Finger-fill
Canal Study, Punta Gorda, Florida, November 1973.
Station 1
Depth
M
0.0
0.5
1.0
1.5
1.7
Mean
0.0
0.5
1.0
1.5
2.0
Mean
%
Trans
100
28
10
3.6
2.5
K-m
100
24
8.5
2.5
0.9
K-m
K-m
2.010
2.079
2.039
2.039
2.042
__..
2.279
2.177
2.267
2.211
2.233
Station 2
Depth
------- |