EPA EJBD
•wo- ARCHIVE
0>- EPA
Si 44°"
83-
DRAFT 002
3/19/J
Revised Section B of Ambient Water Quality Criteria for Cadmium
AQUATIC TOXICOLOGY*
Introduction
In natural fresh waters cadmium sometimes occurs at concentrations of
less than 0.01 ug/1, but in environments impacted by man, concentrations can
be several mtcrograms per liter or greater. The impact of cadmium on aquatic
organisms depends on a variety of possible chemical forms of cadmium
(Callahan, et al. 1979), which may have different toxicities and
bioconcentration factors. £r. most well oxygenated fresn waters that are low
in total organic carbon, free divalent caamium will be che predsmi.iant fora.
Precipitation by carbonate or hydroxide and formation of soluble complexes by
chloride, sulfate, carbonate, and hydroxide should usually be of lictle
importance. In saltwater systems with typical salinity, the number of
important cadmium species is reduced to a few because cadmium chloride
complexes probably predominate. In both fresh and sale water particulate
matter and dissolved organic material may bind a substantial portion of the
cadmium.
Most insoluble forms of most metals probably are not toxic, but some
possibly can become toxic under natural conditions and precipitates of some
metals apparently are toxic (Mount, 1966; Chapman, et al. Manuscript; Bradley
and Sprague, Manuscript). Because or the variety of the forms of cadmium and
CO
*An unders^nr.Jing of the Guidelines for Deriving Numerical National Water
Quality Criteria for the Protection of Aquatic Life and Its Uses (Stephan, et
al. 1983) is necessary in order Lo understand the following text, tables, and
calculations.
-------
3(
lack of definitive information about cheir relative toxicities, no available
analytical measurement is knovn to be Ideal for expressing aquatic life
criteria for cadmium, but active cadmium (operationally defined by acidifying
the aqueous sample to pH « 4 with nitric acid and then measuring the
concentration of cadmium that passes through a 0.45 un membrane filter) is
probably the best available measurement. Previous aquatic life criteria for
cadmium (U.S. EPA, 1980) were specified in terms of total recoverable
cadmium (U.S. EPA, 1979), but this measurement may be coo rigorous in some
situations. It is expected that measurement of active cadmium and total
recoverable cadmium would have produced the same results in all tests used to
derive criteria and would produce the same results on most samples from
surface vaters and effluents. Where the two measurements produce different
results on samples of surface waters or effluents, measurement of active
cadmium (as defined above) should, be the more appropriate measurement.-
Measurement of active cadmium is compatible with all of the data used to
derive criteria because test results were not used if it was likely that they
would have been different if they had been reported in terms of active
caamium. For example, results reported in terms of dissolved cadmium were
not used if the concentration of precipitated cadmium was possibly signifi-
cant. On samples of ambient water this method is intended to measure ail
forms of cadmium that are toxic to aquatic life or can be readily converted
to toxic forms under natural conditions. In addition, this method is
Intended to exclude several forms, such as cadmium that Is part of minerals,
clays, and sand or is strongly sorbed to particulate matter, that are not
toxic and are not likely to become toxic under natural conditions- Although
this method (and many others) will measure soluble, complexed forms of
cadmium, such as the EDTA complex of cadmium, that probably have low
-------
toxicltles to aquatic life, concentrations of these forms probably are
negligible In ambient water. Measurement of active cadmium does not require
Immediate analysis In the field and does not require special effort or
equipment. Thi8 is also the least rigorous of the measurements (a) which are
compatible with the available toxicological data without using hypothetical
extrapolations and (b) for which It Is usually acceptable to assume that no
harm will result from measured or calculated concentrations in ambient water
that are below national criteria.
Active cadmium should also be a useful measurecent for monitoring
effluents, and dilution of effluent with receiving water before measurement
should demonstrate whether the receiving water can decrease the concentration
of active cadmium bwc^use of sorpcion. Measurement oj both active cadmium
and total recoverable cadmium In ambient water or effluent or both sight be
useful. For example, there is more cause for concern if total recoverable
cadmium is above the appropriate criterion, even though active cadmium is
below the criterion, than there Is If both zrs below :he »:rlc--;rlon. If a
national criterion Is possibly unacceptable for a particular situation, a
site-specific criterion (U.S. EPA, 1982) can be derived.
Unless other wise noted, all concentrations reported herein are expected
to be essentially equivalent to active cadmium concentrations. All
concentrations are expressed as cadmium, not as the chemical tested. The
criteria presented herein supersede previous aquatic life water quality
criteria for cadmium (U.S. EPA, 1976, 1980) because these new criteria were
derived using Improved procedures and additional information. The literature
search fo>- -his document was conducted In October, 1981; some newer
information was also used.
-------
Acute Toxicity to Aquatic Animals
A reduction In coxtcIcy associated with Increased hardness is evident
for several fish and invertebrate species. Carroll, et al. (1979) found that
calcium, but not magnesium, reduced the acute toxicity of cadmium. In most
natural waters, calcium and magnesium are both present, with calcium being
somewhat more abundant. Glesy, et al. (1977) found that equilibrium
associations of cadmium with dissolved organics substantially reduced its
toxicity to daphnids, but had little effect on toxicity to fish. No
consistent relationship of toxicity to organic particle size was
demonstrated.
Among invertebrates, cladocerans were the most sensitive species and
mayflies and stoneflies were the most resistant. However, Insects and other
invertebrates are more sensitive during molting which usually does not occur
among most individuals in less than 96 hours. Salmonids uniformly appear to
be the fish species most vulnerable to cadmium (Tables 1 and 6).
The available acute values for both striped bass and brook trout covered
such a wide range that data for these species are not used in the calculation
of the Final Acute Value. Drummond and Benoit (Manuscript) reported that
stress greatly affected the sensitivity of brook trout to cadmium.
Different species exhibit different sensitivities to cadmium, and many
other factors may affect the results of tests of the toxicity of cadmium to
aquatic species. Criteria can quantitatively take into account such a
factor, however, only if enough data are available to show that the factor
similarly affects the results of tests with a variety of species. Hardness
is often thought of as having a major effect on the toxicity of cadmium,
although the observed effect may be due to one or more of a number of usually
-------
Interrelated ions, such as hydroxide, carbonate, calcium, and magnesium.
Hardness Is used here as a surrogate for the ions which affect the results of
toxicity tests on cadmium. An analysis of covariance (Dixon and Brown, 1979;
Neter and Uasseraan, 1974) was performed using the natural logarithm of the
acute value as the dependent variable, species as the treatment or grouping
variable, and natural Logarithm of hardness as the covariate or independent
variable. This analysis of covariance model was fit to the data in Table 1
for those species for which data are available over an adequate range of
hardness, i.e., Philodina acuticornis, Daphnia magna, goldfish, fathead
minnow, green sunfish and blueglll (see end of Table 1). Tests of the slopes
for the individual species indicated that they were statistically different
at ?=0.03. The slope for PMlodias acutieornis was slightly negative, the
two hardnesses tested were both below 85 mg/1, and the result at the higher
hardness fell between the results at the lower hardness. The other five were
all between 0.90 and 1.56 and a test of these five slopes indicated that they
were not statistically different at ?*0.89; tMa large value vJ ? shows a
very small probability that the null hypothesis should have been rejected.
The pooled slope of 1.16 was statistically significant from zero ac ?*0.0001.
The pooled slope is close to the value of 1.0 that is expected on the basis
that cadmium, calcium, magnesium and carbonate are all divalent; if hydroxide
had a substantial effect, the slope would be greater than 1.0.
The pooled slope of 1.16 was then used with the data in Table 1 to
calculate Species Mean Acute Values at a hardness of 50 mg/1 (Table 1).
Family Mean Acute Values were then calculated (Table 3) as geometric means of
the available Species Mean Acute v^ues. The two salmonids were within a
factor of 2 and the two cyprinida" wSre'SrttTftn'a factor of 6. The most
-------
sensitive rarally, SaLmonldae, was 1,980 times more sensitive than the most
resistant family, Blthynlidae. The freshwater Final Acute Value of 6.662
ig/1 was calculated for a hardness of 50 mg/1 from the Family Mean Acute
Values using the procedure described in the Guidelines. Because the Species
Mean Acute Value for rainbow trout is 3.945 ,ig/l at a hardness of 50 mg/1,
the Final Acute Value is lowered to protect this important species (Table 3).
Thus, the Criterion Maximum Concentration - e(l'16lln]~3'841).
The acute values for saltwater invertebrates range from 15.5 ug/1 for a
raysid to 46,600 for the adult fiddler crab. The acute values for adult
saltwater polychaetes range from 7,500 ug/1 for Capitella capitata to 12,500
ug/1 for Neanthes arenaceodentata (Reish et al., 1976), but the larvae of £.
capitata are thirty-five times more sensitive than the adults. Saltwater
molluscs have acute values from 850 ug/1 for the soft-ahell clam (Eisler,
1971) to 35,000 ug/1 for the mud snail (Eisler and Hennekey, L977).
Frank and Robertson (1979) reported that the acute toxicity to Juvenile
blue crabs was related to salinity. The 96-hour acute toxicities were 320,
4,700, and 11,600 ug/1 at salinities of 1, 15, and 35 g/kg, respectively.
O'Hare (1973) Investigated the effect of temperature and salinity on the
toxicity of cadmium to the fiddler crab and did not find a significant effect
of salinity. Acute toxicities at 20°C were 32,300, 46,600, and 37,000 at 10,
20, and 30 g/kg salinity. Increasing the temperature from 20 to 30°C
Increased toxicity at all salinities tested.
The saltwater fish species were generally more resistant to cadmium with
acute values ranging from 577 >ig/l for the larvae of Atlantic silversides to
114,000 ug/1 for juvenile raummichog. In a study of the interaction of
dissolved oxygen and salinity cm tW aTsrte'.toxicity of cadmium to the
rauramichog, Voyer (1975) found similar toxicities at salinities of 10 and 20
-------
g/kg but a doubling of the sensitivity at 30 g/kg. Resistance of mummlchogs
to acute cadmium poisoning was not influenced by reductions in dissolved
oxygen levels tc 4 mg/1.
Of the 26 families, the most sensitive, Mysidae, was 910 times more
sensitive than the most resistant family, Cyprinodontidae. Acute values are
available for more than one species in four families, and the range of values
in a family Is always less than a factor of 3.3. The saltwater Final Acute
Value calculated from the Family Mean Acute Values in Table 3 is 75.44 ug/1.
Chronic Toxicity to Aquatic Animals
Chronic toxicity tests have been conducted on cadmium with numerous
freshwater animal species (Table 2). The range of available chronic toxicity
values (0.15 to 50 ug/1) is less than the range of available acute toxicity
values. Daphnia magna is the most sensitive species tested, and Bertram and
Hart (1979) found chronic toxicity to Daphnia pulex at less than 1 ug/1
(Table 6). A 200-hr LC10 value of 0.7 ug/1 for rainbow trout was obtained by
Chapman (1978) and probably would be close to the result of an early
life-stage test because of the extent to which various life stages were
investigated (Table 6). Other salraonids and many Invertebrates are also
quite sensitive, with effects having been observed at 5 ug/1 or less (Table
6). These organisms include decomposers (Giesy, 1978), crayfish (Thorp, et
al. 1979), copepods and annelids (Giesy, et al. 1979), midges (Anderson, et
al. 1980) and mayflies (Spehar, et al. 1978).
All of the acute-chronic ratios for freshwater species are between 65
and 434, except for the value of 0.9021 obtained with chinook salmon (Table
2). The lowest ratio is surprising because all the other ratios are much
higher and'were oBEained with a1 variety-of species-over a wide range- of
-------
hardnesses and sensitivities. The lowest ratio is even more surprising
because it is less than L.O, indicating that acclimation must have occurred
during the early life-stage test. Because the Final Acute Value is based on
a species in the same family as the species with which the lowest
acute-chronic ratio was obtained, it seems inappropriate to use the higher
ratios to obtain the Final Chronic Value. To protect rainbow trout in those
situations in which the concentration of cadmium is not constant enough to
result in acclimation, the Final Chronic Value cannot be higher than the
Criterion Maxluura Concentration. Thus the Freshwater Final Chronic Value »
e(L.161IX hardness)]-3.84)_
Two chronic toxiclty studies have been conducted with the saltwater
invertebrate, Mysidopsis bahia (Table 2). Nimmo et al. (1977a) conducted a
23-day life-cycle-test at 20-28 C and 15-23 g/kg salinity. Decreased
survival occurred at 10.6 ug/1, whereas a 48-hr delay in brood formation,
24-hour delay in brood release, and a 57% decrease in the number of young per
female resulted at 6.4 ug/1. No adverse effects were detected at 4.8 ug/1.
The chronic coxicity limits, therefore, are 4.8 and 6.4 ug/1 with a chronic
value of 5.5 ug/1. The 96-hour LC50 was 15.5 ug/1 resulting in an
acute-chronic ratio of 2.8.
Another life-cycle study was conducted with cadmium and Myatdopais bahia
under different environmental conditions, Including constant temperature (21
C) and salinity (30 g/kg). Complete mortality occurred after 28 days
exposure at 25 ug/1. At 11.5 ug/1 a series of morphological abberations
occurred at the onset of sexual maturity. External genItalia in males were
abbecant, females failed to develop brood pouches and both sexes developed a
carapace malformation that prohibited molting after the release of the
initial-brood. Although initial reproduction at this concentration was
successful, successive broods could not be borne because molting resulted in
-------
9
death. No malformations or effects on initial or successive reproductive
processes were noted in the controls or at 5.5 ug/1. The chronic limits for
this study are 5.5 and 11.5 with a chronic value of 8.0 ug/1. The LC50 at 21
C and 30 g/kg salinity was 110 ug/1 which results in an acute-chronic ratio
of 14 from this study.
These two studies showed excellent agreement between the chronic values
but considerable divergence between the acute values and acute-chronic
ratios. Several studies have demonstrated an increase in acute toxicity of
cadmium with decreasing salinity and increasing temperature (Table 6). The
observed differences in acute toxicity to the mysids night be explained oa
this basis. Niramo, et al. (1977a) conducted their acute test at 25 to 28 C
and 10-17 g.'Kg sal.nity wher-sss tba ocher test was performed at 21 C and 30
g/kg salinity.
Because Che acute-chroiJc ratios with freshwater animals covered such a
wide range, it would be inappropriate to use the geometric aasn of all
available acute-chronic ratios to calculate the saltwatar Fir-1 Chronic
Value. The saltwater species for which an acute-chronic rs^io is available
has a Species Mean Acute Value very close to the saltwater Final Acuta Value
and so it seems reasonable then to use this acute-chronic ratio. When the
Final Acute Value of 75.44 utt/1 is divided by the scute-chronic ratio of
6.218, a saltwater Final Chronic Value of 12.13 ug/1 is obtained.
Toxicity to Aquatic Plants
Growth reduction was the major toxic effect observed with freshwater
aquatic plants (Table 4), and several values are in the range of
concentrations causing chronic effects in animals. The influence that plant
-------
growth media -nay nave had on the toxlclty studies Is unknown, but is probably
•ninor at least In the case of Conway (1978) who used a medium patterned after
natural Lake Michigan water. Because the lowest toxiclty values for fish and
Invertebrates species are lower than the values for plants, water quality
criteria which protect freshwater aquatic animals should also protect aquatic
plants.
Toxicity values are available for three species of saltwater diatoms and
two species of inacroalgae (Table 4). Concentrations causing fifty percent
reductions in the growth rates of diatoms range from 60 ug/1 for Ditylum
brightwelli to 175 ug/1 for Skeletonema costatum. The brown macroalga (kelp)
was the least sensitive to cadmium with an EC50 of 860 ug/1. The most
sensitive plant tested was the red alga, Champia parvula, with significant
reductions In the growth of both the 'tetrasporophyte plant and femal.-. plant
occurring below 14 ug/1. This species of plant is of comparable sensitivity
to the chronic values for the most sensitive animal species tested.
Bioaccumulation
Bioconcentration factors (BCF) for cadmium in fresh water (Table 5)
ranged from 3 for brook trout muscle (Benoit, et al. 1976) to 12,400 in the
whole body of mosquitofish (Glesy, et al. 1977). Usually, fish accumulate
only small amounts of cadmium in muscle as compared to most other tissues and
organs (Benoit, et al. 1976; Sangalang and Freeman, 1979). Also, cadmium
residues in fish reach steady-state only after exposure periods greatly
exceeding 28 days (Benoit, et al. 1976; Sangalang and Freeman, 1979; Giesy,
et al. 1977). Daphnia magna, and presumably other invertebrates of about
this size or smaller, often reach steady-state within a few days (Poldoski,
1979). Cadmium accumulated by fish from water is eliminated slowly (Benoit,
-------
,.( ,|. I'l/l.. l.itmi.li, r| il ri'l-l). ImL KuilldJd. «l i! I I'Jill) j roiiinl llial
cadmium accumulated from food Is eliminated much more rapidly.
Mallard ducks .ire the only aative wildlife species whose chronic
sensitivity to cadmium has been studied. These birds can be expected to
ingest many of the different freshwater plants and animals listed in Table 4.
White and Finley (1978,a,b) found significant damage occurring at a cadmium
concentration of 200 mg/Vtg in food for 90 days. Division of 200 mg/kg by the
geometric mean BCF of 766 gives a Final Residue Value of 260 ug/1. This is a
concentration which would cause damage to mallard ducks, but no additional
data are available.
Among saltwater species, BCFs have been determined for cadmios with one
species of alga, thirteen species of invertebrates and one species of -fish
(Table 5). Values cange from 22 to 3.L60 for whole body and from 5 to 2,040
for muscle. Kerfoot and Jacobs (1976) reported a BC? of 670 for the alga,
Praainocladus tricornutum. Theede et al. (1979) found that tha colonial
hydroid, Laomedea loveni, bioconcentrated cadmium 153 tiaes within a 10-day
exposure per nod. The highest BCF was reported for t.-.e polychaace
Ophryotrocha diadema (Kloclcner, 1979). After sixty-four days exposure using
the renewal technique, a BCF of 3,160 was attained. Tissue residues,
however, had not reached steady-state.
BCFs for 5 species of bivalve molluscs range from 83 for the quahog clam
(Kerfoot and Jacobs, 1976) to 2,600 for the eastern oyster (Zaroogian and
Cheer, 1976). In addition, tho range of reported BCFs is rather large for
some individual species. BCFs for the oyster include 149 and 677 (Table 6)
as well as '.,220 and 2,600 (Table 5). Similarly, two reported studies on the
-------
bay scallop report BCFs of 168 (Eisler, et al. 1972), ,»r.a 2,040 (Pesch and
Stewart, 1980) orc 3CFs of 113, 306,
and 710 (Tables 5 and 6). George ar.d Coombs (1977) studied che importance of
metal spec tat Ion on cadmium accumulation in che soft-tissues of Mytilus
edulis. Cadmium complexed as Cd-EDTA, Cd-alginate, Cd-humate, and Cd-pecrate
(Table 6) was bioconcentrated it twice the rate of inorganic cadmium (Table
5). Because bivalve molluscs usually do not reach sceady-state, comparisons
between species may be difficult and the length of exposure may be the major
determinant in the size of the BCF.
BCFs for six species of crustaceans range from 22 to 307 for whole body
and from 5 to 25 for muscle (Table b). NimaiO et ai. (1977) reported whole
body BCFs of 203 and 307 for two species of grass 3hrimp, Palaemontes pugio
and Palaemonefes vulgaris. Vernberg et al. (1977) reported a factor of 140
for PJ. pugio at 25 C, whereas Pesch and Stewart (1980) reported a factor of
only 42 for the same species exposed at 10 C indicating that temperature may
be an important variable. The commercially important crustaceans, the pink
shrimp and lobster, were not effective bioaccumulators of cadmium with
factors of 57 for whole body and 25 for muscle, respectively. A single BCF
of 48 is reported for saltwater fishes (Eisler, et al. 1972), which probably
indicates that fish also do not bioconcentrate cadmiun effectively.
Although a high degree of variability exists between the BCFs reported
for saltwater organisms, shellfish can accumulate cadmium in tissues to
concentrations potentially harmful Co man. The emetic threshold of cadmium
is 13-15 mg/Vtg for man (Anon., 1950). Zaroogian and Cheer (1976) reported
finding cadmium in oyster tissue at 11 mg/kg after 280 days exposure to 5
ug/1. Kerfoot and Jacobs (1976) also demonstrated cadmium concentrations of
16 mg/kg in oyster, tissue after a 40-day expo mre to 30 ug/1.
-------
Other Data
Cadmium-binding proteins were Isolated from Aaoeba proteus ^Al-atia,
1978, 1980) and rainbow trout (Roberts, et al. 1979). The cumulative
mortality resulting from exposure to cadmium for more than 96 hours is
clearly evident from the studies of Reish, et al. (1976) on polychaetes;
Eisler and Hennekey (1977) on bivalve molluscs, crsbs, and starfish; Pesch
and Stewart (i960) on scallops, shrimp, crabs; and on a mysid (Gencile, et
al. 1982; Nimmo, et al. 1977a). Nimmo et al. (1977«) in studies wich che
mysid, Mysidopsia bahia. reported a 96-hr LC50 of 15.5 ug/i (Table 1) and a
17-day LC50 of 11 ug/1 (Table 6) at 2S-28 C and 15-23 g/Vtg salinity. In
another series of studies on this mysid (Gentile, et al. 1982), tne 96-hr
LC50 was 105 ug/1 (Table 1) and the 28-day LC50 was 16 ug/1 (Taole &) at 20 C
and 30 g/kg salinity. Comparison of these data leads co the hypothesis that
short-term acute toxicity may be strongly influenced by envirorvner.tal
variables whereas long-term effects, even mortality, are r.ot. This pattern
was also reflected in the similarity of reproductive effects on this species
(Table 2) tested under dissimilar environmental conditions.
Two studies of chronic exposure are illustracive of trie effects of
cadmium on growth and fecundity. Pesch and Stewart (1980) in a study of
cadmium toxicity to the bay scallop, Argopecten irraciians, reported a 96-hr
LC50 of 1,480 ug/1 and a 42-day LC50 of 530 ug/1. They also reported that 60
and 120 ug/1 reduced growth 42 and 69 percent, respectively, which results in
an EC50 of about 78 ug/L.
Considerable Information exists concerning the effect of salinity and
temperature on the acute toxicity of cadmium. Unfortunately the conditions
and durations of exposure are so different that adjustment of acute toxicity
data for salinity is not possible. Rosenberg and Costlow (1976) studied the
-------
•iyiu-1 M l-it U i-llu. (a ..I i ii>l-ulu:u .nut n i ! ' n I L y i innti lue.l wlili ...nalanl in.l
cycling teraperacures on che larval development of two estuarlne crab species.
They reported reduction In survival and significant delay In development of
the blue crab with decreasing salinity. Three times as much cadmium was
required to produce an LC50 at 30 than at 10 g/kg salinity. Studies with the
mud crab resulted in a similar cadmium-salinity response. In addition, the
authors report that cycling temperatures may have a stimulating effect on
survival of larvae compared to constant temperatures.
Theede, et al. (1979) investigated the effect of temperature and
salinity on the acute toxicity of cadmium to the colonial hydroid, Laomedea
loveni. At 17.5 C cadmium concentrations inducing irreversible retraction of
half of the polyps ranged from 12.4 ug/1 at 25 g/kg salinity to 3.0 ug/1 at
10 g/kg salinity (Table 6). At 25 g/kg salinity the toxictty of cadmium
decreased as temperature increased.
The effect of environmental factors on the acute toxicity of cadmium is
also evident for the early life stages of saltwater vertebrates, \lderdice
et al. (1979a,b,c,) reported that salinity Influenced the effects of cadmium
on the volume, capsule strength, and osmotic response of embryos of the
Pacific herring. Voyer, et al. (1979) reported a significant linear
relationship between salinity and cadmium toxicity to Atlantic silverside
embryos. Previous studies on the embryos of the winter flounder Indicated a
quadratic salinity-cadmium relationship (Voyer, et al. 1977).
Several studies have reported on the chronic sublethal effects of
cadmium on saltwater fishes (Table 6). Significant reduction in gill tissue
respiratory rates and the alteration of liver enzyme activity have been
reported for the cunner afer a 30-day exposure to 50 ug/1 (Maclnnes, et al.
1977). Dawson, et al. (1977) also reported a aignflcant decrease in
-------
gill-tissue respiration for striped bass ac 0.5 ug/1 above a.nbj.ent after a
30-day, but not a 90-day, exposure. A similar study on the winter flounder
(Calabrese, et al. 1975) demonstrated a significant alteration in gill tissue
respiration rates measured in vitro after a 60-day exposure to 5 ug/1. The
significance of these sublethal effects on growth and reproduction have yet
to be evaluated.
Unused Data
Many data, such as those in Kobayashi (1971), D'Agostino and Fianey
(1974), Wast.;rnhagen, et al. (1975, 1978), Westernhagen and Dethlefsen
(1975), Ojavoer, et al. (1980), Negilski (1976), and Rainbow, et al. (I960),
were not usen because the species used are not resident in North Aaenca.
Data in publications such as Ball (1967), Landner and Jernelov (1969),
Ministry of Technology (1967, 1971), Tarzwell and Henderson (1960), Burnison,
et al. (1975), Shcherban (1977), Fennikok, et al. (197S), Canton and Slooff
(1979), Venna, et al. (1980) and Maas (1978) were not used because either the
materials, in ;hods, or results were insufficiently described. High control
mortalities ccurred in all except one test reported by Sauter, et al.
(1976).
The acceptability of the dilution water used in some studies, e.g.,
Cearley and Coleman (1973, 1974) and Brkovic-Popovic and Popovic (1977a,b),
was open to question because of Its origin or content. Data from some algal
studies (e.g., Muller and Payer, 1979, 1980; and Lue-Kira, et al. 1980) were
not used because the medium contained EOTA. Some papers were omitted because
of questic-.'-ii
-------
Mowdy, 1981; Hutcheson, 1975; Sunda, et al. 1978; Grelg, 1979; and Bryan,
1971.
Data on bloconcentratlon by aquatic organisms were not used if the test
was too short (Beattie and Pascoe, 1978; Yager and Harry, 1964; Garoday and
Churchill, 1979; and Relchert, et al. 1979) or If the concentrations in water
were not adequately measured (Free-nan, 1978, 1980). The bioconcentratlon
tests of Elsler (1974), Jennings and Rainbow (1979b), O'Hara (1973b), Phelps
(1979), Sick and Baptist (1979) were not used because results were based on
isotopic cadmium without adequate evaluation of non-isotopic cadmium. Data
in Ray, et al. (1981), Greig and Wenzloff (1978), Boydcn (1977), Noel-Lambot
(1980), Kneip and Hazen (1979), Anderson, et al. (1978), Frazier (1979), and
Hazen and Kneip (1980) were not used because the field exposure
concentrations of cadmium were Insufficiently characterized.
Mode of action studies (DeFilippls, 1981) and in vitro studies (Tucker
and Matte, 1980) were not used. The data of Stern and Stern (1980) were not
used because cadmium was only one of several metals in a mixture. Reviews by
Chapman, et al. (1968), Thompson, et al. (1972), and Phillips and Russo
(1978) only contain data that had been published elsewhere.
Summary
Freshwater acute values for cadmium are available for 30 species and
range from 2-9 -jg/1 for rainbow trout to 9,900 for mosquitofish. The
antagonistic effect of hardness on acute toxicity has been demonstrated with
six species. Chronic tests have been conducted on cadmium with eleven
freshwater fish species and one invertebrate species with chronic values
ranging from 0.15 ug/1 for Daphnia magna to 50 jg/1 for the bluegill.
-------
n
Acute-chronic ratios are available for five species; four of the ratios are
between 120 and 440, but the ratio for the sensitive Chinook saloon is
0.9021, indicating substantial acclimation.
Freshwater aquatic plants are affected by cadmium at concentrations
ranging from 2 to 7,400 ug/1. These values are in the same range as Che
acute toxicicy values for fish and invertebrate species, and are considerably
above the chronic values. Bioconcentration factors for cadmium reach 3,000
for some invertebrates, and may be as high as 12,000 for some fish species.
The saltwater acute values for cadmium and five species of fishes ranged
from 577 ug/1 for larval Atlantic silversides to 114,000 ug/1 for Juvenile
mummichog. Acute values for twenty-six species of invertebrates ranged from
15.5 ug/1 for a mysi
-------
I?
National Ci'
Because the acuce and chrou'.o toxl.-icies or Jdviniuw to
Important freshwater species are about the saae, to protect freshwater
aquatic life and its uses, the concentration (in^g/'l) of active cadmium
(operationally defined as the cadmium that passes through a 0.45 y-m membrane
filter after the sample is acidified to pH * 4 with nitric acid) should not
exceed the numerical value given ay 6U. 16[ln(hardness)]-3. 841). For
example, at hardnesses of 50, 100, and 200 ag/1 as CaC03 the maximum
concentrations of active cadmium are 2.0, 4.5, an»l 10 ^g/1. Data on the
acute toxlclty of cadmium to brook trout iad striped bass cover a wide range,
but if these species aie as sensitive as acme of the values indicate they
might be, they will not be protected by t.iis criterion.
To protect saltwater aqua:Lc Life aid Its ujsea, '.n each 30 consecutive
days: (a) the average concentration of active cadmium should not exceed 12
>>g/l; (b) the maximum concentration should not exceed 38 >*g/l; and (c) the
concentration may be between' 12 and 38 ^g/1 for up to 96 hours.
-------
Table 1. Acute toaclclty of cadnlun to aquatic anloMls
Specie
Rot i for ,
Phi lodlna acutlcornls
Rotifer,
Phi lodlna acutlcornls
Rotifer,
Phi lodlna acutlcornls
Worm,
Nals sp.
Snail (adult).
Amnlcola sp.
Snail (adult).
Physa gyr 1 na
Snail (limature).
Physa gyrlna
Cladoceraft,
Cerlodaphnla retlculata
Cladoceran,
Oaphnla magna
Cladoceran,
Daphnla magna
C 1 adoceran ,
Oaphnla magna
Cladoceran,
Oaphnla magna
Cladocoran,
Daphnla magna
C 1 adocoran ,
Ofphnla magna
Method* Chemical
Hardness
(•g/l as
LC50 Species Mean
or ECSO Acute Value
Rater ence
FRESHWATER SPECIES
R,
K.
R.
s,
s,
s.
s.
s.
s.
ff.
s.
s,
s.
s.
U Cadmlura crilorlde
U Cddmlum suit ate
U Cddmlum sultate
U
U
M
M
U
U C.idmlura chloride
M Cadmium chloride
M Cadmliw chloride
M Codir.limi chlurlde
M Cadnilum chUirtde
M Cadmium chh.rlda
25
25
81
50
50
200
200
45
45
130
51
10.4
105
197
500
200
300 440.7
1,700 1,700
8,400 8,400
1,370
410 150.1
24«..
65««. -
5.00
9.9
33
34
65
Bulkema, et al. 1974
Bulkema, et a,. 19/4
BulKema, et al. 1974
Rehwoldt, et al . \
-------
Table I. (Continued)
Species
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla pulex
Cladoceran,
Oaphnla pulex
C 1 adoceran ,
Oaphnla pulex
Cladoceran,
Slmocephalus serrulatus
Cladoceran,
Slmocephalus serrulatus
Cladoceran,
Slmocephalus serrulatus
Cladoceran,
Slmocephalus serrulatus
Cladoceran,
Slmocephalus serrulatus
Cladoceran,
Slmocephalus serrulatus
Cladoceran,
Slmocephalus vetulus
Scud.
Ganmarus sp.
Method*
S,
s.
S,
s.
s,
s,
s,
s,
s.
s.
s,
s.
s,
s,
M
U
u
u
u
u
M
M
M
M
M
M
U
U
Chealcal
Cadmium
Cadm 1 urn
Cadmium
Cadmium
Cadmium
Cadmium
Cadmium
Cadmium
Cadmium
Cadmium
chloride
nitrate
nitrate
-
chloride
chloride
chloride
chloride
chloride
chloride
chloride
-
-
Hardness
(mg/l as
209
-
45
-
45
57
10.0
11.1
11.1
II. 1
11.1
H.l
45
50
LC50 Species Mean
or EC50 Acute Value
Cyg/D" <»jg/l)*M
49
30.18
(6)
,20**** 8.540
93.45
(2)
71 •—
47 40.37
35.0
7,0
3.5
12.0
16.5
8.6 62.29
2«....
70 70.00
Reference
Chapman, Manuscript
Canton & Adema, 1978
Mount & Nor berg,
Manuscrpt
Canton & Adema, 1979
Mount & Nor berg.
Manuscript
Bertram & Hart, 1979
Glesy, et al . 1977
Glesy, et al . 1977
Glesy. et al. 1977
Glesy. et al. 1977
Glosy, et al . 1977
Glesy, et al. 1977
Mount & Nor berg.
Manuscript
Rehwoldt, et al . 197
XJ
-------
Table 1. (Continued)
Spec lei;.
r - .
MayMy,
Ephambi olio grand Is
grand (s
MayMy,
Ephemeral la grand Is
grand is
Damsel t ly,
(Unidentified)
Stone ( ly.
Pteronarcel la bad la
Caddlsf ly.
(Unidentified)
Midge,
Chironomus sp.
Bryozoan,
Pectinate! la magnifies
Bryozoan,
Lophopodel la carterl
Bryozoan.
P 1 umate 1 1 a emarg 1 nata
American ael ,
Angu Ilia rostrata
Coho salmon (parr).
Oncorhynchus klsutch
Coho salmon (adult).
Oncorhynchus klsutch
Chinook salmon (alevln),
Oncorhynchus tshawytscha
Chinook salmon (s«lm-up).
Hardness LC50 Species Mean
Imu/l as or EC50 Acute Value
Method* Cluuilcal CeCOjj) (|^/l)"* (yg/l)***
FT.
s.
s,
FT,
s,
s,
s.
s,
s.
s.
FT.
FT,
Fl,
FT.
M CbJ.nl un chloride - 28,000
I) Cadmium -.uUate 44 2,000 2,319
U W 8,100 8,100
M Cadmluir chloride - 18,000
U 50 3,400 3.400
U 50 1,200 1,200
U - 190-220 700 136.2
U - 190-220 150 29.19
U - 190-220 1,090 212.1
M - 55 820 734.2
M Coilmiiiii chloride 23 2.7
M Cuclmlum chloride 25 I7.5*"" 6.646
M Cadmium chloride 23 >26B»«»
M Cadmium chUirldo 23 1.8
Reference
Clubb. et al. 1975
War nick & BrH , 1969
RehMOldt, et al . 1971
Clubb, et al. 1975
RehMOldt, et al . 19/i
Rehrioldt, et al . 1971
Par duo & Wood, 1980
Pardue & Wood, 1980
Pdrduo & Wood, 1980
RehMOldt, et al . 19V/
Chapman, 1975
Chapman, 1975
Chapman, 1975, 1978
Chapman. 1975. 197b
Oncorhynchus tshaxytscha
-------
Tablo 1. (Continued)
Species
Chinook salmon (parr).
Oncorhynchus tshawytscha
Chinook salmon (smolt).
Oncorhynchus tshawytscha
Chinook salmon (juvenile).
Oncorhynchus tshawytscha
Rainbow trout (alevln).
Salmo galrdnerl
Rainbow trout (swim-up).
Salmo galrdnerl
Rainbow trout (parr).
Salmo galrdnerl
Rainbow trout (smolt),
Salmo galrdnerl
Rainbow trout (2-mos).
Salmo galrdnerl
Rainbow trout.
Salmo galrdnerl
Rainbow trout.
Salmo galrdnerl
Rainbow trout.
Salmo galrdnerl
Rainbow trout.
Salmo galrdnerl
Brook trout.
Method*
FT, M
n, M
FT, M
n, M
FT, M
n, M
FT. M
FT. M
FT. M
s, u
S. U
S. U
R, M
Clualcal
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium nitrate
Cadmium sulfate
-
-
Cadmium chloride
Cadmium chloride
Hardness
(ng/l as
vwgyr - —
CaCCK)
23
23
25
23
23
23
23
31
-
-
-
47.4
LC50 Species Naon
or EC50 Acute) Value
3.5
>2.9
1.41 4.936
>27
1.3
1.0
4.1
6.6
1.75
6
7
6.0 3.945
5,080
Reference
Chapman, 1975, 1978
Chapman, 1975, 1978
Chapman, 1982
Chapman, l*/i, 1978
Chapman, 1975, 1978
Chapman, 1978
Chapman, 1975
Chapman, 1978
Hale. 1977
Oavles, 1976
Kumada, et al . 1973
Kumada, et al . 1973
Kumada, et al . 1980
Hoi combo & Phlpps,
MjtnuQrr I nt
Salvallnus fontlnalls
XI
-------
Table I. (Continued)
Species
Brook tri'ut.
Salve lint,', fontlnalli
Goldfish,
Carasslus auratus
Goldfish,
Carasslus auratus
Goldfish,
Carasslus auratus
Common carp.
Cyprlnus carplo
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales prone! as
Fathead minnow,
Plmephales promelas
Fathead minnow.
Plmephales promelas
Fathead minnow.
Plmaphales promelaa
Fathead minnow.
Plmephales promelas
Fathead minnow.
Plmophalos prcxnoljs
Fathead minnow.
Method*
S.
s,
s,
s.
s,
s.
s.
s.
s.
Fr,
FT.
FT,
n.
FT,
*
U
M
M
M
li
U
U
U
M
M
M
M
M
Chsalcal
Cadmium
Cachu 1 um
Cadmium
Cadin 1 urn
-
Cadmium
Cadmium
Cadmium
Cadmium
Cadmium
Ca.lmlum
CAdmliM
Cadmium
Cadmium
sul fate
chloride
chloride
chloride
chloride
chloride
chloride
chloride
sul fate
sut fa to
sul fate
sut late
sul fate
Hardness
(aig/l as
fiaCOxL.
42
20
20
140
55
20
20
360
360
20)
201
201
201
201
LC50 Species Mean
or EC50 Acute Value
Reference
<1.5 ••*BM Carroll, et al. 1975
2,340
2,130
46, BOO 8,397
240 214.9
1,050
630
72,600
73,500
11,200
12,000
6,400
2,000
4,500 2,062
Plckorlng &
Henderson, 1966
McCorty. et al . 1976
McCarty, at al . 197S
Rshuoldt,
Pickering
Henderson
Pickering
Henderson
Pickering
Henderson
Pickering
Henderson
Pickering
1972
1 7 * A
Pickering
lOt'J
1 7 '«
Picker tng
1972
• 7 f£
Pickering
19V2
1 7 f £
Plckorlng
tai'-
et al. 1972
&
, 1966
, 1966
&
. 1966
&
, 1966
& Gast,
& Gast,
A Gast,
& Gast,
& Gast ,
Plmephales promelas
-------
Table I. (Continued)
Species
Fathead minnow (fry),
Plmephales promelas
Fathead minnow (fry),
Plmephales promelas
Fathead minnow (fry),
Plmephales promelas
Fathead minnow (fry),
Plnaphales promelas
Fathead minnow (try),
Plnephales promelas
Fathead minnow (fry),
Plmephales promelas
Northern squawflsh,
Ptychochellus oregonensls
Northern squawflsh,
Ptychochellus oregonensls
Banded kl II Iflsh,
Fundulus dlaphanus
Flagllsh,
Jordanella florldae
Mosqultoflsh,
Gambusla afflnls
Mosqultoflsh,
Gambusla afflnls
Mosqultoflsh.
Gambusla afflnls
Mosqultoflsh,
Method*
S, M
S. M
S, M
S, M
S, M
S, H
F, M
F, M
S, M
FT, M
FT, M
FT, M
FT, M
FT, M
Chad leal
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmitm chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Hardness
t«g/l as
CaCOQ
40
48
39
45
47
44
20-30
20-30
55
44
10.0
10.0
10.0
11.1
LC50 Species Mean
or EC50 Acute Value
21. 5""""
11.7""""
19.3""""
42.4
54.2».«» -
29.0""""
1,092
1,104 2,454
1 10 98.49
2,500 2.900
1.300
1.500
2,600
900
Reference
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Andros & Carton, 1980
Andros & Carton, 1980
Rehwoldt, et
Spehar, 1976a
Glesy, et al .
Glesy, et al .
Glesy, et al .
Glesy, et al.
al. 1972
1977
1977
1977
1977
Gambusla afflnls
-------
Table 1. (Continued)
Specie?
Mosquluf 'sh,
Gambusla sfflnls
Guppy,
Poecll la ret leu lota
'.Threesplne stickleback,
Gasterosteus aculeatus
Threesplne stickleback,
Gasterosteus aculeatus
White perch,
Morone amerlcana
Striped bass,
Morone saxatl 1 Is
Striped bass ( larvae),
Morone saxatl Ms
•Striped bass (f Ingerl Ing),
.Horone saxatl Us
Green sun fish,
Lepomls cyanel lus
Green sunflsh,
Lepomls cy_anel lus
•Green sunflsh,
Lepomls cyanel lus
Pumpkin seed,
Lepoml s glbbosus
B 1 ueg III,
.Lepomls macrochlrus
• Blueglll,
Method*
FT. M
S, U
S, U
R. H
S. M
S, M
s. u
s. u
s. u
s. u
Ff. M
S. M
S. U
FT, M
Chemical
Cadmium chloride
Cadinlum chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Hardness
(og/1 as
CeCO,)
11.1
20
115
103-111
55
55
34.5
34.5
20
360
335
55
20
207
LC50
or ECSO
2.200
1,270
6,500
23,000
8,400
1,100
1
2
2,840
66.000
20.500
1,500
1,940
21,100
Species Mean
Acute Value
(jjg/ 1 ) BM Reference
9,775 Glesy, et al. 1977
3,676 Pickering &
Henderson, 1966
Pascoo 4 Cram, 1977
4,852 Pascoe & Mattey. 1977
7,521 Rehwoldt, et al . 1972
Rehwoldt, et al . 1972
Hughes. 1973
•••••a Hughes, 1973
Pickering &
Henderson, 1966
Pickering &
Henderson, 1966
4,987 Jude, 1973
1,343 Rehwoldt, et al . 1972
Pickering 4
Henderson, 1966
4, 7 '5 Eaton, 1980
'Lepomls macrochlrus
-------
Table I. (Continued)
Species
Polychaete worm (adult).
Neanthes arenaceodentdta
Polychaate worm (Juvenile),
Neanthas arenaceodentata
Polychaete worm.
Nereis v Irons
Polychaete worm.
Nereis vlrens
Potychaete worm (adult).
Cap! tell a capltata
Polychaete worm (larva).
Cap) tell a capltata
Oyster drill.
Urosalplnx clnerea
Mud snail.
Nassarlus obsoletus
Mud snail.
Nassarlus obsoletus
Blue mussel ,
Mytllus edulls
Blue mussel ,
Mytllus edulls
Blue mussel ,
Mytllus edulls
Blue mussel.
Mytllus edulls
Bay scallop (juvenile).
Method*
Chealcal
LC50 Species Meai
or EC50 Acute Value
I
Reference
SALTWATER SPECIES
s.
s.
s,
s.
s.
s.
s,
s.
s.
s.
s.
FT.
FT.
s.
U
u
u
u
u
u
u
u
u
u
M
M
M
U
Cadmium
Cadmium
Cadmium
Cadmium
Cadmium
Cadmium
Cadmium
Cadmium
Cadmium
Cadm 1 urn
Cadmium
Cadm 1 urn
Cadmium
Cadiii 1 urn
chloride
chloride
chloride
chloride
chloride
chloride
chloride
chloride
chloride
chloride
chloride
chloride
chloride
chloride
12
12
9
11
7
6
35
10
25
1
3
4
1
,000
,500 12,200
.300
.000 10,100
,500""*
200 200
,600 6,600
,uOO
,500 19.170
,000
,620
,600
,300 3,934
,480 1.480
Relsh,
Relsh,
Elsler
t ft*n
1977
Elslur,
Relsh.
Re 1st).
Elsler,
Elsler
1977
Elsler.
Elsler.
Ahsanul
Ahsanul
Ahsanul
Nelson,
et al. 1976
at al. 197b
& HenneKey,
1971
et al. 1976
et al. 1976
1971
& HenneKey,
1971
1971
lah, 1976
lah, 1976
lah, 1976
et dl. 197
Argopecten Irradians
-------
Tabla 1. (Continued)
i oi.tern oyster (larva),
Crcissostred virgin lea
Soft-shell clam,
Mya arenarla
Soft-she) 1 clam,
Mya arenar 1 a
Soft-shell clam,
Mya arenarla
Copepod,
Pseudodlaptomus coronal us
Copepod ,
Eurytemora afflnls
Copepod ,
Acartla clausl
Copepod,
Acartla tonsa
Copepod ,
Acartla tonsa
Copepod ,
Acartla tonsd
Copepod ,
Acartla tonsa
Copepod,
Method*
S. U
s, u
s, u
s, u
s. u
s, u
s. u
s, u
s. u
S. I'
s, u
S, U
Cheailcal
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cad,,i I urn chloride
Cadmium chloride
Cadmium chlorldo
Cadmium chlorldo
Cadmium chltn Ide
LC50
or EC50
'(MS/I)"
3,800
2,500
2,200
850
1,708
1,080
144
90
122
220
337
1.800
Species Mean
Acute VoliM
3,800
1,672
1,708
1,080
144
168.9
1.800
Reference
Calabrese, et al.
1973
Elsler & Hennekey,
1977
Elsler, 1971
Elsler, 1977
Gentile. 1982
Gentile. 1982
Gentile, 1982
Sosnoeiskl & Gentile.
1978
Sosnonskl & Gentile,
1978
Sosnowskl & Gontlle,
1970
Sosnouskl & Gentile,
1978
Bengtsson, 1978
Nltocra splnlpes
-------
Table 1. (Continued)
Species
Hysld.
Mysldopsis bah la
Mysld,
Mysldopsis bah la
Mysld,
Mysldopsis blgeloMl
Amphlpod (young).
Marlnogammarus obtusatus
Amphlpod (adult).
Marlnogammarus obtusatus
Amphlpod (adult).
Ampel Isca abdlta
Pink shrimp.
Penaeus duorarum
Grass shrimp.
Palaemonetes vulgar Is
Grass shrimp.
Palaemonetes vulgarls
Sand shrimp.
Crangon septemsplnosa
American lobster (larva).
Homarus amerlcanus
Hermit crab.
Pagurus longlcarpus
Hermit crab.
Pagurus longlcarpus
Blue crab (Juveniles).
Method*
FT, M
FT, M
FT, M
S. M
Sftl
• "
FT, M
FT. M
S, U
FT, M
s. u
S, U
s. u
s. u
s. u
Chemical
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
LC50
•or EC50
(»jg/D**
15.5
110
135
3,500
13,000
2.890
3,500
420
760
320
78
320
1,300
11,600
Species Mean
Acute Value
(yg/l)"8*
-
41.29
135
-
3,500
2.890
3,500
-
760
320
78
-
645
-
Reference
Nlmmo, et al . 1977a
Gentile, et al . 1982
Gontlle, et al . 1982
Wright & Frlen. 1981
Mrljht and Frlen. 1981
Scott, 1982
Nlnvno, et al . I977D
Elsler, 1971
Nlnmo. et al . 1977b
Elsler, 1971
Johnson & Gentile,
1O7O
1 7 1 if
Elsler, 1971
Elslor & Hennekey,
t cm
1977
Frank & Robertson,
1070
CalIInectes sapldus
-------
Table 1. (Continued)
LC50 Species Mean
or EC50 Acute Value
Species
Blue crab (Juveniles),
•Jal 1 Inectes sapldus
Blue crab (juveniles).
Cal 1 Inectub sapidus
Green crab.
Carclnus maonas
Fiddler crab.
Uca pugl lator
Fiddler crab.
Uca pugl lator
Fiddler crab.
Uca pug 1 1 ator
Fiddler crab,
Uca pugl lator
Fiddler crab.
Uca pug II ator
Fiddler crab.
Uca pugl lator
Starfish,
Aster las forbesll
Starfish,
Aster las forbesll
Sheepshead minnow.
Cyprlnodon varlegatus
Mummlchog (adult) ,
Fundulus heteroclltus
Mummlchog (adult).
Fundulus hoterocl Itus
Method*
s. u
S. U
s. u
S, U
S. U
s, u
S, U
s. u
S, U
S, U
s. u
S, U
s, u
s. u
Choalcal
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chlorldo
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chlor Ida
Cadmium chloride
Crtdmlum chlorldo
Ccidmlum chloride
(ia/l)B* (jjg/l)**1
4,700
320 2,594
4,100 4,100
46,600
37,000
32,300
23,300
10,400
6,800 21,190
7,100
820 2.413
50,000 50.000
49,000
n.am
Reference
Frank & Robertson,
1979
Frank & Robertson,
1979
Elsler, 1971
O'Haro. 1973
O'Hara, 1973
O'Hara, 1973
O'Hara, 1973
O'Hara, 1973
O'Hara, 1973
Elsler & Hennekey,
1977
1 7 * /
Elsler, 1971
Elsler, 1971
Elsler, 1971
Elsler & Honnekuy,
1 O"7"l
\y 1 1
' J
-V
-------
TabU I. (Continued)
Species Method*
MuromIchog (Juvenile), S, U
Fundulus hateroclltus
MutnmIchog (juvenile), S, U
Fundulus heteroclltus
MummIchog (Juvenile), S, U
fundulus heteroclltus
Mumm I c nog (juvenile), S, U
Fundulus heteroclItus
Mumm Ichog (juvenile), S, U
Fundulus heteroclltus
Mumm Ichog (juvenile), S, U
Fundulus heterocl I tus
MurornIchog (Juvenile), S, U
F unduI us heteroc11tus
Mumm Ichog (juvenile), S, U
Fundulus heteroclltus
Striped kllllflsh (adull), S, U
Fundulus majalls
Atlantic sllverslde (adult), S, U
Manldla menldla
LC50
or ECSO
Atlantic sllversldu
(Juvenile),
Menldla menldla
Atlantic sllverslde
(juvenl le),
Menldla menldla
S, U
Atlantic sllverslde (larva). S. U
Menldla menldla
Atlantic sllverslde (larva), S, U
Menldla menldla
Chealcal
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Species Moan
Acute Value
(u9/DtM
114,000
92,000
78,000
73,000
63,000
31,000
30,000
29,000 50,600
21,000 21,000
2,032"»"
28,532*""
S, U Cadmium chloride 13,652""*
Cadmium chloride . 1,054
Cadmium chloride 577
779.8
Reference
Voyer, 1975
Voyor, 1975
Voyer, 1975
Voyer, 1975
Voyer, 1975
Voyer, 1975
Voyer, 1975
Voyer, 1975
Elsler, 1971
Card In, 1982
Card In, 1982
Card In, 1982
Card In. 1982
Card In, 1982
Cv
o
-------
T«bl« I. (Continued)
Winter floundur (larva),
I' seudopl euronecTos,
'.-iner i canus
Winter flounoor (
Pseudopleuronectes
americanus
Method" Choalcal
S, U Cadmium chloride
ICSO
or EC50
CHI/I)*;
S, U Cadmium chlorldu 14,297
602
Species Mean
Acute Value
2,934
Keforenoe
Card In, 19B2
Card In, 1982
* S » static, R = reneual. FT = flow-through, M = measured, U = unmeasured.
** Results are expressed as cadmium, not as the chemical. Some values are averages from the number of
tufts In parentheses.
•** Freshwater Species Mean Acute Values are calculated for a hardness of 50 mg/l using the pooled slope.
•••• Not used In calculations because tha food apparently ruduced toxlclty to Daphnla magna and probably
also to the other species.
»•«*• Not usad ln calculations.
**•*•* No Species Mean Acute Value calculated for this species because of wide range of acute vali.-as.
«««««»«MQt USad |n calculations bocauso tor this species try seem to be much more sensitive to cadmium
than older fish.
Results of covarlancu analysis of frcsfriator acute toxlclty vs. hardness:
(The data for rainbow troul wcr« nol Included In tho analysis because the range of hardness was too small.)
Phllodlna acutlcornls; slopo = -0.045, r = -0.07, n = 3
Daphnla inagna: slope = 1.1)6, r = 0.55, n a 6
Goldfish: slopo = 1.56, r - 1.00, n - 3
Fathead minnow: slope « 1.25, r * O.S3, n » 9
Green sunf Ish: slopo «= 0.90, r = 0.94, n « 3
Blueglll: slopo = 1.02, r» 1.00. n *> 2
Pooled slopo = 1.16, P =
-------
Table 2. Chronic toxlcity of cadBlua to aquatic Minis
Hardness
Test*
Chemical
(•g/l as Limits Chronic Value
CaCO^ I,«/!»•* (iia/l/ll**
Reference
FRESHWATER SPECIES
Cladoceran,
Oaphnl i magna
C 1 adoceran ,
Oaphnl a magna
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla magna
Coho salmon (Lake Superior),
OrtcorhyncRus klsutch
Coho salmon (Mast Coast),
,0ncorhynchus klsutch
' Chi nook salmon,
Oncorhynchus tshawytscha
Broun trout,
Salmo trutta
Brook trout,
Salvellnus fontlnalis
Brook trout,
Salvellnus fontlnalis
Broor. trout,
Salvellnus fontlnalis
Lake trout,
Salvellnus namaycush
Northern pike,
Esox luclus
LC
LC
LC
LC
ELS
ELS
ELS
as
ELS
LC
ELS
ELS
ELS
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
45
53
103
209
44
44
25
44
4-i
44
37
44
44
0.17-0.7
0.08-0.29
0.16-0.28
0.21-0.91
1.3-3.4
4.1-12.5
1.3-1.88
3.8-11.7
l.l-j. 8
1.7-3.4
1-3
4.4-12.3
4.2-12.9
0.3450
0.1523
0.2117
0.4371
2.102
7.159
1.563
6.668
2.045
2.404
1.712
7.357
7.361
Blaslnger &
Chrlstensen, 197?
Chapman, Manuscript
Chapman, Manuscript
Chapman, Manuscript
Eaton, et al . 1978
Eaton, at al . 19/6
Chapman, 1975
Eaton, et al. 1974
Eaton, et al . 197*)
denolt, et
-------
Table 2. (Continued)
Tost*
Fathead mlnno", LC
Plmaphales promelas
White sucker, ELS
Catostomus comroersonl
Flagflsh, LC
Jordanalla florldae
Blueglll, LC
Lepomts macrochlrus
Smallmouth bass, ELS
Hlcropterus dolomleul
»1ysld. LC
Mysldopsls bahla
Hysld, LC
Hysldopsls bah I a
Chemical
Cadmlun
Cadmlun chloride
Cadmlun chloride
Hardness
(•9/1 at
LUIts Chronic Value
201
44
Cadmium suitate 207
Cadmium chloride 44
SALTWATEIt SPECJES
Cadnlun chloride
Cadmium chloride
37-5V
4.2-12.0
4.1-8.1
31-60
4.3-12.7
4.8-6.4
5.&-11.5
45.92
7.099
5.763
49.80
7.390
5.543
7.953
Reference
Pickering & Cast,
1972
Eaton, ot al. 1978
Sp3har, 1976a
Eaton, 1974
Eaton, «t al. 1978
Nlmrno et al . 1977a
Gentile, et al .
198?
« ELS = early life stage, LC = lite cycle or partial Hie cycle.
die expressed as cadmlui., not as Ilia cM
-------
Table 2. (Continued)
Acute-Chronic Ratio
Species
Cladoceran,
Daphnla magna
Cladoceran,
Oaphnfa magna
Cladoceran,
Oaphnla magna
Cladoceran,
Daphnla magna
Chinook salmon,
Oncorhynchus
TsnawyTscna
Fathead minnow,
Plmephales promelas
Flagflsh,
Jordanal la f lorldae
Blueglll,
Lepomls macrochlrus
Mysld.
Mysldopsls bah la
Mvsld.
Hardness
(•g/l »
45
53
103
209
25
201
44
207
Acute
Value
65
9.9
33
49
1.41
5, 970
2,500
21, ICG
15.5
110
Chron 1 c
Value
(ug/n
0.3450
0.1523
0.2117
0.4371
1.563
45.92
5.763
40.80
5.543
7.943
Ratio
191.3
65.00
155.9
112.1
0.9021
130.0
433.8
423.7
2.796
13.83
Mysldopsls bdhld
-------
Table 3. Sumary of data In Tables 1 asid 2 on acute and chronic toxic I ty of cadmium to aquatic an (awls
Rank* Faally
21 Blthynlldae
20
19 Perclcnthyldao
18 Poaclllldae
17 Cast eroste Idas
16
15 Cen.tr or cMdaa
14 Ephemeral ll
-------
Table 3. (Continued)
Rank*
12
11
10
9
8
7
6
5
4
3
2
Family
Naldldae
Chlronomldae
Angul II Idae
Cypr Inodontldae
Phllodlnldae
Plumatellldae
Physldae
Lophopodldae
Gamtnar Idae
Pact Ina laic Idae
Daphnldaa
Famlv Maan Spec 1 es Mean Species Mean
Acute Value *cute Valu8 Acute-Chronic
(jjg/l)** Species tyg/l)** R"tl0
Fathead minnow,
Pimephales promelas
Northern squanflsh,
Ptychochel lus oregonensls
1,700 Worm,
Nals sp.
1,200 Midge,
Chironomus sp.
734.2 American eel,
Angul 1 lo rostrata
534.4 Bandec1 kl II Iflsh,
Fundulus dlaphanus
Flayf Isn,
Jordanel la tlorldae
440.7 Rotifer,
Phllodlna acutlcornls
212.1 Bryozoan,
Piumatella omarglnata
150.1 Snail,
Physa gyrlna
136.2 Bryozoan,
Pectinate! la magnlf lea
70.00 Scud,
Gammarus sp.
29.19 Bryozoan,
Lophopodella carterl
27.80 Cladoceran,
Daphnla magna
Cladoceran,
Daphnla pulex
2,082 130.0
2,454
1,700
1,200
734.2
98.49
2,900 433.8
440.7
212.1
150.1
136.2
70.00
29.19
8.540 121.4
40.37
00
-------
Table 3. (Continued)
Rank* Foully
1 Salmonldao
26 C/prlnodontldae
25 Ocypodldao »
24 Nassurl lti..d
23 Nurelda»
22 Muricldci..
21 MytllldM.
Fmly Nam fl
Acute Value *
(ia/1)'* Spacles
Cladoceran,
Slmocephalus serrulatus
5.056 Co ho sal men,
Oncorhynchus klsutch
Chinook salmon,
Oncorhynchus tshaxytscha
Ralnbort trout,
Sal mo qalrdnerl
SALTWATER SPtCIES
37,590 Sheepshead minnow,
Cyprlnodon varlegatus
MuranlcliOtj,
Fundulub hotoroclltus
Striped kllllflsh.
Fundulus majalls
21,190 Fldd'ler crab,
Ucu pugl lator
19,170 Mud snail,
Nassnrlus obso loins
11.100 Polyctinole worm,
Noafithos arenaceodontata
Sdirl uOiiK,
Morals vlrbris
t,600 Oyslef drill,
lirosalplnx clneroa
3,W4 Oluo mussbl.
pec las Neon
cute Value
62.29
6.646
4.936
3.945
50,000
50,600
21,000
21,190
19,170
12,-JOO
10.100
6,600
3,9'>4
Species Mean
Acute-Chronic
Ratio
-
0.7787
-
-
-
-
-
-------
Table 3. (Continued)
Rank*
20
19
IB
17
16
15
14
13
12
11
10
9
8
Ostraldaa
Gamnarldaa
Pen cia Idas
Portunldae
Pleuronectldaa
Amp el Iscldae
Aster lldae
Canlthocatnptldae
Pseudod 1 aptom 1 daa
Myldae
Pectin Idae
Temorldae
Atherlnldco
Fanly Maan
Acute Value
3,800
3,500
3,500
3,261
2,934
2,890
2,413
1,800
1,708
1,672
1,480
1,080
779.8
Species Mean
Acute Value
Species (id/1)**
Eastern oyster,
Crassostrea virgin lea
Amphlpod,
Mar Inogammarus obtusatus
Pink shrimp,
Penaeus duorarum
Blue crab,
Calllnectas sapldus
Green crab,
Carclnus maenus
Winter flounder,
Pseudopleuronectes
amertcanus
Amph 1 pod ,
Atnpel Isca abdlta
I
Starfish,
Aster las forbesl
Copapod,
Nltocra spin) pas
Copepod,
Pseudod laptomus corn at us
Soft-shell clan,
Mya arenarla
Bay scallop,
Argopecten 1 rrad 1 ans
Copepod,
Eurytemora af finis
Atlantic sllverslde
3,800
3,500
5,500
2,594
4,100
2,934
2,890
2,413
1,800
1,708
1,672
1,480
1,080
779.8
Species Mean
Acute-Chronic
Ratio
-
Men Id la men Id la
OQ
-------
Table 3. (Continued)
Rank* Faally
7 Palaemonldae
Fealy Mean
Acute Value
6
5
4
3
Pagurldae
Crangonldaft
Capital
Acartl Idae
2 Homarldaa
1 Mysldae
760
645
320
200
156
70
74.66
Species
Grass shrimp,
Palaemonetes vulgar Is
turn It crab
Pagurus Jong I carpus
Sand shrimp,
Crangon soptamsplnosa
Polychaete worm,
Capital la capitate
Copapod,
Acart I a clausl
Species Mean
Acute Velio
Acnrtla -lonsa
Agiorlcan lobster,
Hcmarus e-.iarlcanus
Mysld-,
Hysldopsls bah Ia
Myslo,
My_sUJopsls blgoloaj
760
645
320
200
144
168.9
78
41.29
135
Species Mean
Acute-Chronic
Ratio
6.218
* Ranked fro* most rt-slstant" tu most svit^trlve bos^d M Family t'.s^n Acute Value*.
••Freshwater Family Maan Acute \';iluos and 'ipacles Mcun Acute Values ere for <* hardness of 50 mg/l.
Fresh water
Final Acuta Value => 6.66^1 tQ/t (caUnlated \^f a hurdnoss of 50 eg/1 from Fa.illy I'.oen Acute Values)
Final Acute Vdluo = 3.94i< yg/l (to protect rijlnt>c-( troi'f at «) hardness of 50 riy/l)
Criterion Maxlhiur.i Conceoh ntIon = (^,945 ^S/l) / i = l.v'/? ^r/| ((or a hartlnas-*. of 50 iQ/1)
NO
-------
Tab!* 3. (Continued)
Final Chronic Value = 1.972 yg/l (for a hardness of 50 ^g/l> (see text)
Pooled Slope = 1.16 (sea Table 1)
In (Criterion Maxlmim Intercept) = I n( 1.972) - (slope x In (50) I
= 0.697 - (1.16 x 3.912) - -3.841)
Criterion Maxlmun Concentral Ion = e"-16 ""(hardness) I -3.841)
Final Chronic Value » e<1<16 1 1 "(hard ness) I -3.841) (see text,
Salt water
Final Acute Valuo *• 7S.44
Criterion Moxlmun Concentration = (75.44 pg/t) / 2 - 37.72
Final Acute-Chronic Ratio = 6.218 (see text)
Final Chronic Value = (75.44 ^3/1) / 6.218 = 12.13
4;
O
-------
Table 4. Tootle I ty of cadnlm to aquatic plants
Spades
Diatom,
Aster lonel la formo&a
Diatom,
Scenedesmus quadracauda
Alga,
Euglena grac Ills
Alga,
Euglena gracl 1 la anabaena
Alga,
Anklstrodesmus braunll
Blue alga,
Mlcrocystls aeruglnosa
Green alga,
Scenedesmus quadrlcauda
Green alga.
Chloral la pyrenoldosa
Green alga,
Chi ore! la vulgar Is
Green alga,
Chi or el la vulgar Is
Green alga,
Sel anas Ir urn caprlcoroutum
Algae (mixed spp.)
Hardness
(eg/I BS
Chemical CaOO^)
FRESHWATER SPECIES
Cadmlun chloride
Cadmium chloride
Cadmlini nitrate
Cadm licit nitrate
Cadmlun nltrato
Cadmlun nitrate
Cadmli.'n chief Mu
Cadmlitn cMorldo
Cadmium chlorlUu 11.1
Effect
Factor of 10
growth rate
decrease
Reduction In
cell count
Morpholo-
gical abnor-
mal Itles
Cell divi-
sion Inhibi-
tion
Growth
Inhibition
Incipient
Inhibition
Incipient
Inhibition
Reduction In
grourth
Reduction In
growth
rjQ% reduction
In growth
Reduction In
growth
Significant
reduction In
populat ion
Result
2
6.1
5,000
20,000
112.4
70
310
250
50
60
50
b
Reference
Conway, 1978
Klass. et al. 1974
Ndkono, et al. 1980
Nakano, 1980
Laube, et al. 19&0
BHr.£;.visnn, 1975;
Brlngmann & Kuhn,
1976, I978a,b
Bi'lui^ndnri & Kuhn,
1977a, I978a,l>, 1979,
Hart & ScciMe, 1977
Hutch In son & Stokes,
1975
Kosko & Rachl In, 1977
Bnrtlett, et al. 1971
Glosy, et al. 1979
-------
Table 4. (Continued)
Species
Fern,
Salvlna natans
Eurasian waterml Ifoll,
Myrlophyllum splcatum
Duckweed,
Lemna valdlvlana
Kelp.
Lamlnana saccharine
Diatom.
DITylum brlghtwellll
0 1 atom ,
Thalassloslra pseudonana
Diatom,
Skeletonema costatun
Red alga,
Champla parvula
Red alga,
Champla parvula
Red alga.
Champla parvula
Red alga.
Champ la parvula
Cbealcal
Cadmlun nitrate
Cadmlun nitrate
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chiorlde
Cadmium chloride
Cadmium chloride
Cadmlun chloride
Cadmlun chloride
Hardness
(eg/I as
CaCO,) Effect
Reduction In
number of
fronds
50J root
weight
Inhibition
Reduction In
number of
fronds
SALTWATER SPECIES
Result
10
7,400
10
8-day EC 50 860
(growth rate)
5-day EC 50 60
(growth)
96-hr EC50 160
(gruwtli -ate)
Wi-tii tOM '75
< growtn rate)
PaJucec tetrar- <24.9
sporophyte growth
Reduced tetra- >I89
sporang la
production
Reduced female
-------
Table 5. Bloaccuuilatlon of cadmium by aquatic organises
Species
Aufwuchs (attached
microscopic plants and
animals
Aufwuchs (attached
microscopic plants and
animal s
Duckweed,
Lemna valdlvlana
Fern,
Salvlnld natans
Snail.
Physa Integra
Cladoceran,
Daphnla magna
Crayfish,
Orconectes proplnquus
Mayfly,
Ephemeroptera sp.
Mayfly,
Ephemeropterd sp.
Dragonfly,
Pantala hymenea
Dragon f ly.
Pdntala hymenea
Damsel fly.
Ischnura sp.
Dragonfly,
Ischnura sp.
Tissue
—
_
Whole plant-
Whole plant
Whole body
Whole body
Whole body
Whole body
Whole txxly
Who 1 e boo •.
Whole boJy
whole body
Whole body
Chemical
FRESHWATER
Cadmium chloride
Cadmium chloride
Cadmium nltrdto
Cadmium nitrate
Cadmium chloride
Cadmium sulfdte
-
Cadi il urn chloride
Cailhilum chloride
Cacii:lum chloride
Cadmium chlorldo
Csumlum chloride
Cadmium chlorldo
Duration
(days)
SPECIES
365
365
21
21
28
2-4
8
365
365
365
365
365
365
Bloconcantratlon
Factor*
720
580
603
960
1,750
320
184
1,630
3,520
736
680
1.300
92U
Reference
Glesy. et al. 1979
Glesy, et al . 1979
Hutch Inson & Czyrska,
1972
1 7 *£
Hutch Inson & Czyrska,
1972
Spehar, 1981
Poldoskl, 1979
Gil losple, et al .
1977
1 9 • 1
Glesy, et al . 1979
Glesy, et al . 1979
Glosy, et al . 1979
Glosy, et al. 1979
Glesy, et al . 1979
Glesy. e1 al. 1979
-------
Table 5. (Continued)
SpecIas
Tissue
Cheaical
Duration BloconcentratloR
(days) Factor^ Reference
Stonefly,
Pteronarcys dorsata
Beetle,
Oytlscldae
Beetle,
Oytlscldae
Caddis* ly,
Hydropsyche bettenl
Caddlsfly,
Hydropsyche sp.
Biting nidge,
Ceratopogan Idae
Biting midge,
Ceratopogan 1 dae
Midge.
Chlronomldae
Midge.
Chlrononldae
Rainbow trout.
Sal no galrdnerl
RalnbOM trout.
Sal mo galrdnerl
Brook trout,
Salvellnus fontlnalls
Brook trout,
Salvellnus fontlnalls
Brook trout.
Whole body
Whole body
Whole body
Whole body
Whole body
Whole body
Whole body
Whole body
Whole body
Whole body
Whole body
Muscle
Muscle
Muscle
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chlorde
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
373
365
365
28
6,017
365
365
365
365
140
70
490
84
93
26
164
260
4,190
2 to 8
936
662
2.200
1.830
540
35
3
151
10
Spehar, 1981
Glesy, et al . 1979
Glesy, et al . 1979
Spehar, 1981
Dressing, 1980
Glesy. et al. 1979
Glesy. et al . 1979
Glesy, et al. 1979
Glesy. et al . 1979
Kumada. et al . 1973
Kumada et al . 1980
Benolt. et al . 1976
Benolt. et al . 1976
Sangalang & Freeman
Salvellnus fontlnalls
1979
-------
Table 5. (Continued)
Species
Mosqultof Ish,
Gambusla afflnls
Mosqultof Ish,
Gambusla afflnls
Alga,
Praslnocladus tr 1 cor nu turn
Hydro Id polyp,
Laomedea lovenl
Polychaete worm,
Ophryotrocha dladema
Blue mussel,
Mytllus edulls
Blue mussel,
Mytllus edulls
Bay seal lop,
Argopecten Irradlans
Eastern oyster,
Crassostrea virgin lea
Eastern oyster,
Crassostrea virgin lea
Eastern oyster,
Crassostrea virgin lea
Quahog clam,
Merconarla mercenarla
Soft-shell clam.
Tissue Chemical
Duration
(days)
Wliole body Cadmium chloride 180
(estimated
steady state)
Whole body Cadmium chloride 180
(estimated
steady state)
SALTWATER SPECIES
Cadmium Iodide
Whole orgonlsm Cadmium chloride
Whole body Cadmium chloride
Soft parrs Cadmium chloride
Soft par)*. Cadmium chloride
Muscle Cart.nl urn chlorldo
Soft part:, Cadmium chloride
Soft par 1s Cadmium chloride
Soft par Is, Cddhilunt nllreito
Soft parib Cadmium nitrate
Soft par Is, Cai'.iilum nltrole
5
10
64
28
35
42
280
280
98
40
70
Bloconcentratlof
Factor*
2,213
1,891
670
153
3,160
113
306
2,040
2,600
1,830
1,220
83
160
i
Reference
Glesy. et al . 1979
Glesy, et al . 1979
Kerf cot & Jacobs,
1976
Theede, et al. 1979
KlocKner, 1979
George & Coombs,
1977
Phillips, 1976
Resell & Stewart,
1980
Zarooglan & Cheer,
1976
Zarooglan, 1979
Schuster & Pr Ingle,
1969
Kerf oo t & Jacobs,
1976
Pr Ing In, et al .
Mya arenarla
1968
-------
Table 5. (Continued)
Carclnus itiaenas
Green crab,
Carclnus maenas
Duration Bloconcentratlon
Species Tissue Chemical (days)
Ptnk shrimp. Whole body Cadmium chloride 30
Penaeus durorarm
Grass shrimp, dhole body Cadmium chloride 42
Pa 1 eononetes puglo
Grass shrimp, Whole body Cadmium chloride 28
Palaemonetes puglo
Grass shrimp. Whole body Cadmium chloride 28
Palaemonetes vulgar Is
Green crab, Muscle Cadmium chloride 68
Factor* Reference
57 Nlmmo, et al . 197 /b
22 Pasch & Stewart,
1980
203 Nlmmo, et al . 1977t>
307 Nlmmo, at al . I977b
5 Wright, 1977
Muscle
Cadmium chloride
40
Jennings & Rainbow,
1979a
* Results are based on cadmium, not the chemical.
Maxima Pcralsslble Tissue Concentration
Species
Mallard,
Anas platyrhynctius
Man
Effect
Kidney tubule degenoration;
significant testls weight
reduction; evidence of
Inhibited spermatozoa
production
Emetic threshold
Ccnccntr otIon
200 mg/kg In food
for 90 days
13-15 ing/Kg
Reference
Whltu & Flnley. I978a,t>;
White, et al. 1970
Anon., 1950
-------
loble 5. (Continued)
Fresh water
Geometric mean ot all whole body and whole plant BCF values (weighted by species) - /57
Final Residue Value = 200 mg/kg t 757 = 0.26 mg/kg = 260 ug/l
Salt water
Geometric mean BCF for long-term exposure of oyster = 3,089
Final Residue Value = 14 mg/kg r 3.080 = 0.0045 mg/kg = 4.* ,jg/l
-------
Table 6. Othar data on affects of cadaiun on aquatic organisms
Specie*
Mlxad natural tungl
and br-rwlal eolonlo-
on leaf litter
Green alga,
Scanedesnus quadr 1 can da
Bacteria,
EscherlcMa coll
Bacteria.
Pseudomonas putt da
Protozoan,
Cntosiphon sulcatum
Protozoan,
Mlcroregpa heterostoma
Protozoan,
ChKomonas par amec turn
Protozoan,
Uroneoa parduezl
Mixed macro Invertebrates
Pr'Jiftypa sp.
Tubl-flcld worm,
TujUfex tub If ex
SnaJM (anbryo>,
.fnjhliola sp.
Hardness
(Rtg/l B»
Thevlcal £c&>x> Duration
C'jCCfcjuiiTCsV Cp& I lf»Q
~f\1_ jrlHA !Ci\ J> h.%«ltJ
Cadmium chloride - 96 hrs
Cadmium chloride
Cadmlm chloride - 16 hrs
Cadmlun nitrate - 72 hrs
Cadmlua cMoride - 28 hrs
Caduilun nitrate - 48 hrs
Cadmium nitrate - 20 hrs
Cadmlun chloride 11.1 52 *ks
Cadre Iw chloride *'.-> 52 xks
Cadmlun chloride 224 48 hr
50 96 hrs
Ri
EH** jy
Inhibition or
leaf
decomposHon
Incipient
Inhibition
Criver water)
Incipient
Inhibition
Incipient
Inhibition
Incipient
Inhlblton
1 nc 1 p 1 ant
Inhibition
Incipient
Inhibition
Incipient
Inhibition
Reduction In
mean total
numbers and In
numbers of taxa
Population
reduction
LC50 320
LC50 3
BCltl*
at.!1!.
y
flo
ISO
60
11
loo
160
26
5
5
,000
,800
Reference
Giasy, 1976
Brlngmann i Kuhn, I959a,b
Brlngma.-iri & Kuh.i, 1 959d
Brlngminn & Kuhn, 1976,
I977a, 1979, 19800
Brlngmann, 1973, tirlnginann
& Kuhn, 1979, I980b
Brlngmann & Kuhn, 19595
Brlngmann, et al. 1980
Brlngmann & Kuhn, 1960s
Glesy, et al . 1979
Glesy, et al. !'"s
Qureshl, at al. 1980
Reluioldt, et al . 1973
09
-------
Table 6. (Continued)
Hardness
(ng/l as
Soecla:> Chsalcal CeCO^)
Snail, Cadmium chloride 44-58
Physa Integra
Cladocaran, Cadmium chloriJo
Oaphnla galaata mendoTao
Cladocoran, Cadn>lum chloride
Oaphnla galeata mendoT
Braglnskiy & Shcherban,
1978
Braglnskly & Shchorban,
1978
Bertram t Hart, 1979
Glesy, et al. 19V 9
Braglnskly & Shcharban,
1O IU
iy /o
TlKirp. et al. 1979
Braglnskly & Slichorban,
1978
-------
Table 6. (Continued)
Species
Mayfly.
Ephemeral la sp.
Mayfly,
Hexagon la rlglda
Midge,
fanytarsus dlsslnllls
Coho salmon (juvenile),
Oncorhynchus klsutch
Coho salmon (adult) ,
Oncorhynchus fclsutcn
Chinook salmon (alevln),
Qncorhynchus tshawytscha
Chinook salmon (swim-up).
Oncorhynchus tshawytscha
Chinook salmon (parr),
Oncorhynchus tshawytscha
Chinook salmon (smolt).
Oncorhynchus tshawytscha
Rainbow trout.
Salmo galrdnerl
Rainbow trout.
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
Rainbow trout,
Salmo aalrdnerl
Chealcal
Cadml un chloride
Cadmium nitrate
Cadmium chloride
Cadmiun chloride
Cadmium chloride
Cadmium chloride
Cadmiun chloride
Cadmium chloride
Cadmium chloride
Cadmium stearale
Cadmium acetata
Cadmium chlorldo
—
Hardness
(•g/l as
CaCO,)
44-48
79.1
47
22
22
23
23
23
23
-
-
112
112
Duration
2B days
96 hrs
10 days
217 hrs
215 hrs
200 hrs
200 hrs
200 hrs
2'.O hrs
96 hrs
96 hrs
80 mln
18 mos
Effect
LC50
LC50
LC50
LC50
LC50
LCIO
LCIO
LCIO
LCIO
LC50
LC50
Significant
avoidance
Reduced
survival
Result
(ng/'>*
<3.0
> 1,000
3.8
2.0
3.7
18-26
1.2
1.3
1.5
6.0
6.2
52
0.2
Reference
Spehar, et al . 1978
Leonhard, or ol . I960
Anderson, et al . I960
Chapman & Stevens,
1 AID
I97B
Chapman & Stevens,
1978
Chapman. 1978
Chapman, 1978
Chapman. 1978
Chapman, 1978
Kumada, et al. 1990
Kumada. et al . 1980
Block & Blrge,
1980
Blrge, et at . 1981
o
-------
Table 6. (Continued)
Species
Rainbow trout
(embryo, larva),
Salmo galr drier 1
Rain box trout.
Sal mo galrdnerl
Rainbow trout (adult) ,
Salmo galrdnerl
Rainbow trout (alavln),
Salmo galrdnerl
Rainbow trout (swim-up),
Salmo galrdnerl
Rainbow trout (parr),
Salmo galrdnerl
Rainbow trout (smolt),
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
Brook trout,
Salvellnus font! nails
Hardness
(•9/1 •*
Chealcal CaCO^)
Cadmiun chloride 104
Cadmium chloride 54
Cadmium chloride 23
Cadmium chlor Ide 6
1.0
0.7
0.8
20
10--30
30
10-30
2
10
Reference
Blrge, 1978
Kumada, et al . 1973
Chapman & Stevens,
1978
Chapman, 1978
Chapman, 1978
Chapman, 1978
Chapman, 1978
Da vies, 1976
Kumada, et al . 1980
Kumada, et al . 1980
ftoch & Maly. 1979
Hughes, et al. 1979
Sangalang & O'Mdl lo
1972, 1973
-------
Table 6. (Continued)
Species
Goldfish (embryo, larva).
Car ass 1 us auratus
Goldfish,
Car as 1 us auratus
Fathead minnow,
Plmephales promt as
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales promalas
Fathead minnow,
Plmephales promalas
Fathead minnow,
Plmaphalas promelas
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales prome 1 as
Fathead minnow,
Plmaphalas promelas
Fathead minnow,
Plmephales promelas
Brown bul (head,
Ictalurus nebulosus
Channel catfish,
Ictalurus punctatus
Cheslcal
Cadmlun chloride
Cadml un chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cttdmlum chloride
Cadinlum chloride
Hardness
(eg/I as
CcCO^
195
63
55
59
66
65
74
79
62
63
;
Duration
7 days
50 days
96 hrs
96 hrs
96 hrs
96 hrs
96 hrs
96 hrs
96 hrs
96 hrs
96 hrs
2 hrs
Effect
EC50 (death and
(deformity)
Reduced plasma
sodium
LC50
LC50
LC50
LC50
LC50
LC50
IC50
LC50
LC50
Affected
gills and
kidney
Increased
albinism
Result
170
44.5
80. B
40.9
64.8
135
120
86.3
86.6
114
80.8
61,300
0.5
Reference
Blrge, 1978
McCarty & Houston,
1976
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Bllckens, 197B.
Garofano, 1979
ttesterman ft Blrgo,
1978
-------
Table 6. (Continued)
Hardness
(eg/I as
Species Chsolcal CeCO^ Duration
Channel catfish, Cadmlun chloride
Ictdlurus punctatus
Mosqultoflsh, Cadmium chloride - B wks
Gambusla aftlnls
Mosqultoflsh, Cadmlun chloride 29 8 wks
Gambusla at fin Is
Blueglll, Cadmlun chloride 112 00 mln
Lepomls macroch 1 rus
Largemouth bass, Cadmlui. chloride 112 80 mln
Mlcropterus sal mo Ides
Largemouth bass Cadmlun chloride 99 8 days
(embryo, larva)
Mlcropterus salmoldes
Largemouth bass, - - 24 hrs
Mlcropterus salmoldos
Narrow-mouthed toad Cadmium chloride 195 7 days
(embryo, larva),
Gastrophyryne
carof inensis
Marbled salamander Cadmlu'i chloi Ido 99 8 days
(embryo, larva),
Ambystoma opacun
QAi TU4 T' ') QffflPf.
jAl I nn 1 i_i\ 3rCV«IC»>
Colonial hydrnld, - -
Campanularla flexuosa
Result
Effect C|ia/l>»
BCF=4.0-6.7
6CF=6,100 at
0.02 ifl/l &
1.13 ppm added
to food
BCF= 1,430 at
10 iig/l & 1.13
ppm added to food
Significant >41.l
dvotdanco
Significant 8.83
avoidance
EC50 (death 1,640
and deformity)
Affected oper-- 150
cular activity
EC 50 (death 40
and deformity)'
((.'.30 (doulii 130
arid deformity)
tnzymo 40-75
Inhibition
Referonc*
Blrge, at i . ,' .
Wl 1 Hams i
Ml II lams t ^.,
Black 4 B • .=>. -^:
Black & b ; ,?.
Blrge, ei * . .i7e
Morgan, iy »
Blrge, IV-'t
Blrge, ei <
Moore & 'j-ui.
-------
Table 6. (ContinuedI
Species
Colonial hydrold,
Campanularla flexuosa
Colonial hydrold,
Laomadea lovanl
Colonial hydrold,
Laomedea lovenl
Col on Id) hydrold,
Laomedea lovenl
Colonial hydrold,
Laomadea lovenl
Colonial hydrold,
Loomed eo lovenl
Polychaete norm,
Neanthes arenaceodentata
Polychaete worm,
Capital la capltata
Polychaete norm.
Capital la capltata
Blue mussel,
Mytllus edul Is
Blue mussel ,
Mytllus edulls
Blue mussel ,
Mytllus edulls
Blue mussel ,
Mytllus edulls
Hardness
(ug/l as
Chemical CaCO^
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium EOTA
Cadmium alglnate
Cadmium lunate
Cadmium poctato
Duration
11 days
7 days
7 days
7 days
7 days
7 days
2B days
28 days
28 days
28 days
28 days
28 days
28 days
Effect
Growth rate
ECM (10 g/kg
sal inlty)
EC50 (15 g/kg
sal Inlty)
BC50 (20 g/kg
sal Inlty)
EC50 (25 g/kg
sal Inlty)
EC50 (7.5 C)
(10 C)
115 C)
(17.5 C)
LC50
LC50
LC50
BCF=252
BCF=252
BCF«252
BCF=252
Result
1 10-260
3
5.6
1)
12.4
52
34
9
5.6
3.000
630
700
Reference
Stabbing, 1976
Theode, et al . 1979
Theede, et al . 1979
Theede, et al . 1979
Theede, et al . 1979
Theede, et al . 1979
Relsh, et al. 1976
Relsh, et al . 1976
Relsh, et al . 1976
George & Coambs, 197/
George & Coambs, I97/
George 4 Coambs, 19? 7
George & Coambs, 1977
-------
Table 6. (Continued)
Hardness
fng/l as
Result
Duration
Eft«ct
Beference
3P~»~
Blue mussel,
Mytllus edulls
Ocj,r seal lop,
Argopecten Irradidns
Bay scallop.
Argopecten Ir radians
Eastern oyster.
Crassostred vlrgmicd
Eastern oyster.
Grasses trea virgin icu
Soft-shell clam,
Mya arenar la
Soft-shell clam,
Mya arenar Id
Mysld,
Mysldopsls bah la
Mysld,
Mysldopsls ball la
Mysld.
Mysldopsls bdhia
Mysld,
Mysldopsls blgelowi
Mysld,
MysldopsK bl pel owl
Isopod,
Idotea bait lea
Isopod,
Idotea bait lea
W1 •««••• W** • ^WTVKr
Cadmlun chloride
Cadmium chloi Idu
Cadmium chloride
Cadmhni Iodide
Cadmhmi chloride
Cadmlun chloride
Cadmhra chloride
-
Cadmlun ch lor Ida
Cadmlii'. chloride
Caclmlui- cMorlJj
Cadi'iiii"! chloi Id'.'
Cadmliiiii sulfalu
CadmiuM sulfdto
21 days
42 days
21 days
40 days
21 days
7 days
7 days
17 days
16 days
8 days
6 days
2fi days
5 days
3 days
acf-7.0
EC50 (growth 78
reduction)
BCF-168
BCF=677
BCF=I49
LC50 150
LC» 700
LC50 O&-23 g/ko "
salinity)
UC50 (30 g/kg 28
salinity)
I.C50 60
LCTO 70
LCM 18
LC50 (3 a/l^g 10,000
salinity)
LC50 (21 g/k»j 10,000
salinity)
Janssen
Pesch &
Elsler,
Kerfoot
Elsler,
Eisler,
Elsler .
1977
& Scholz, 1979
Stewart, 1980
et al. 1972
& Jacobs, 1976
el al. 1972
1977
& Henniikey,
Nlfctno, et al. 197 la
Gentile
Gentile
Gontl lo
Gentile
Jones,
Jones,
, et al . 1982
, et al. 1982
, or al . 1982
, et dl . 198
-------
Tabla 6. (Continued)
Hardness
Species
Isopod,
Idotea baltlca
Pink shrimp,
Penaeus duorarum
Grass shrimp,
Palaemonetes puglo
Grass shrimp.
Palaemonetes puglo
Grass shrimp,
Palaemonetes puglo
Grass shrimp,
Palaemonetes puglo
Grass shrimp.
Palaemonetes puglo
Grass shrimp,
Palaemonetes puglo
Grass shrimp,
Palaemonetes puglo
Grass shrimp,
Palaemonetes puglo
Grass shrimp,
Palaemonetes vulgar Is
American lobster,
Homarus amerlcanus
American lobster,
Homarus amerlcanus
Hermit crab.
(ag/l cs
Chemical CaOHL
Cadmlint sulfate
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Duration
1.5 days
30 days
42 days
21 days
21 days
21 days
6 days
6 days
6 days
21 days
29 days
21 days
30 days
7 days
Effect
LC50 (14 g/kg
salinity)
LC50
LC50
LC25 (5 g/kg
salinity)
LCIO (10 g/kg
salinity)
LC5 (20 g/kg
salinity)
UC75 (10 g/kg
salinity)
LC50 (15 g/kg
salinity)
LC25 (30 g/kg
salinity)
BCF-140
LC50
BCF=25
Increase In
ATPase activity
25* mortality
Result
(ug/D*
10,000
720
300
50
50
50
300
300
300
120
6
270
Reference
Jones, 1975
Nlmmo, tit al. 19V7b
Pesch & Stewart, I960
Vernberg, et a\ . 1977
Vernberg, et al . 1977
Vernbercj, et al . 1977
Mlddaugn & Floyd, 1978
Mlddaugh & Hoyd, 1976
Mlddaugh & Floyd, 1970
Vernberg, et al . 1977
Nlmmo, et al . 1977b
Elsler, et ol . 1972
Tucker, 1979
Elsler & Honnekoy,
Pagurus longl carpus
1977
-------
Table 6. (Continued)
Hardness
Species
Hannlt crab,
Pagn'us longlcarpus
Rock crab.
Cancer Irroratus
Blue crab,
Calllnectes sapldus
Blue crab,
Calllnectes sapldus
Hud crab ( lorsa) ,
Eurypcinopeus dopresbus
Mud crab ( larva) ,
Eurypanopuus depressus
Mud crab,
Rh 1 thropanopeus har r 1 s 1 1
Mud crab,
Rhl thropanopeus harrisll
Hud crab,
Rhl thropanopeus harrisll
F Iddler crab.
Uca pugl lator
Fiddler crab,
Uca pugl lator
Starfish,
As tor las forbesl
Herring (larva),
Clupoa harongus
Pacific herring (embryo),
Clupea harongus pal last
i
\
Chcjlcal (
Cadjnlun chloride
Cadmium ch lor Ida
Cadmium nitrate
Cadmium nitrate
Cadmium chloride
Cadmium chloride
Cadmuru nltroto
Cadmlau nUfota
Ca'Jmlmri tilli cto
-
Cadmlin chloride
Cadmium ctilor id«>
Cadmlin.i chloride
Cadmlu'ii chirr Ida
[M/| as
kVHJ/ I B9
leCO,) Duration
60 days
96 hrs
7 days
7 days
8 days
44 days
11 days
11 days
1 1 days
10 days
-
7 days
.
<24 hrs
Result
Effect
LC56
Enzyme activity
LC50 (10 g/kg
sal Inlty)
LC50 (30 g/kg
sal Inlty)
LC50
Delay In
me dm&rp iyj
1 C80 (10 g/kg
salinity)
LC75 (20 g/kg
salinity)
LC40 (30 g/kg
salinity)
LC50
fit It»c1 on
reoplrut Ion
25J nor 1 til ity
100? o.'iil't'yonlc
survival
Mi, rcii.v- Moii
In volu-'i:
lu9/»*
70
1,000
50
150
10
10
50
50
50
2,900
1.0
270
5,000
10,000
Reference
Pesch & Stewart, IMtO
Gould, at a). 1976
Rosenberg & Cost Ion
1976
Rosenberg i Costlo.
1976
Hirkes, «t a\ . 197b
Mlrkes, ot a\ . 197;
Rosenberg i Costloa
1976
Rosenberg I Cx>stio.
1976
Rosenberg >. OosTlcx
1976
O'Hara, 197ia
Vernberg, *» al . 19
Elsler t r*r«iii Uy,
1977
Wosterntioyw , et e
Alderdlct, f a\ .
I979a
•
i
9
»
'•
'"*
e
-------
Table 6. (Continued)
Pacific herring (embryo),
Clupea harengus pallasl
Pacific herring (embryo),
Clupea harengus pallasl
Munmlchog (adult),
Fundulus heleroclItus
Huimlchog (adult),
Fundulus heteroclItus
Mummlchog.
Fundulus heteroclItus
Mumrnlchog (larva),
Fundulus heteroclItus
Mumrnlchog (larva),
Fundulus heteroclItus
Atlantic si Ivor side
(adult).
Henldla manldla
Atlantic sllverslde
(adult),
Menldla menldla
Atlantic sllverslde,
Henldla manldla
Atlantic sllverslde,
Menldla menldla
Atlantic sllverslde,
Menldla menldla
Hardness
<«§/! as
Che .1 leal CaO\)
Inn chloride
iun chloride
I un chloride
urn chloride
un chloride
urn chloride
urn chloride
urn chloride
urn chloride
1 urn chloride
urn chloride
urn chloride
Duration
96 hrs
48 hrs
48 hrs
48 hrs
21 days
48 hrs
48 hrs
48 hrs
48 hrs
19 days
19 days
19 days
Result
Effect (fjg/D*
Decrease In 1
capsule strength
Reduced osmo- 1
lollty of
per 1 vital Ine
fluid
LC50 (20 g/kg 60
salinity)
LC50 (30 g/kg 43
sal Inlty)
BCF=48
LC50 (20 g/kg 32
salinity)
LC50 (30 g/kg 7
sal Inlty)
LC50 (20 g/kg 13
salinity)
LCSO (30 g/kg 12
salinity)
LC50 (12 g/kg
salinity)
LC50 (20 g/kg
sal Inlty)
UC50 (30 g/kg
sal Inlty)
.000
,000
,000
.000
-
,000
.800
,000
,000
970
Reference
Alderdlce,
I979b
Alderdlce,
I979c
Mlddaugh I
Mlddaugh I
ElSler, el
Mlddaugh I
Mlddaugh I
Mlddaugh I
Mlddaugh i
Voyer, et
Voyer, et
Voyer, et
eg
-------
Table 6. (Continued)
Speclas
Atlantic si Ivorslde
( larva) ,
Menldla menldla
Atlantic si Ivorslde
( 1 arva) ,
Menldla manldla
Striped bass (juvenile),
Morone saxat Ills
Striped bass (juvenile),
Morone saxat ills
Spot ( larva),
Lelostomus xanthurus
Gunner (adult),
Tautogolabrus adspersus
Gunner (adult) ,
Tautogolabrus adspersus
Gunner (adult),
Tautogolabrus adsperbus
Winter flounder,
Pseodopleuronoctes
amer I canu s
Wlntor flounder,
Pseodop 1 euronec tes
amor 1 can us
Hardness
(•B/l as
Chcalcal CeCOi)
Cadmium chloride
Cadmium chlorldo
Cadmium chorlde
Cadmlun chloride
Cadm 1 urn c h 1 or 1 de
Cadmium chloride
Cadmium chloride
Cadmlun chlorldo
Cadmlun < hlorlilo
Cadmium chlorldn
Duration
48 hrs
48 hrs
90 days
30 days
9 days
60 days
30 days
96 hrs
8 days
60 days
Result
Effect tyS"**
LC50 (20 g/kg 2,200
sal Inlty)
LC50 (30 g/kg 1,600
sal Inlty)
Significant de- 5
crease In enzyme
activity
Significant do- 0.5-5.0
crease In oxygon
consumption
Incipient LC50 200
37.52 mortality 100
Depressed gill 50
tissue oxygen
consumption
Decreased en- 3,000
zyme activity
502 viable 300
hrit'ch
Increased gl 1 1 5
t ISbUG
rei.plrat Ion
Reference
Mlddaugh & Dean, 1977
Mlddaugh & Dean, 1977
Dawson. et al. 1977
Dawson, et al. \9ll
-Mlddaugh, et al . 1975
Maclnnes, et al . 1977
Mdclnnes. et al . 1977
Gould & Karolus, 1974
Voyer, et al . !977
Calabreso, et a.. I97>
* Results art* expressed as cadmium, no1 os tho chemical.
-------
REFERENCES
Ahsanullah, M. 1976. Acute toxlcity of cadmium and zinc to seven Inverte-
brate species from Western Port, Victoria. Aust. Jour. Mar. Freshwater
Res. 27: 187.
Al-atla, G.R. 1978. The uptake and toxlcity of cadmium In Amoeba proteiis. J.
Pro to zoo 1. 25: SB.
Al-atla, G.R. 1980. Toxlcity of cadmium to Amoeba proteus; a biochemical
approach. J. Protozool. 27: 128.
Alderdice, D.F., et al. I979a. Influence of salinity and cadmium on the volume
of Pacific herring eggs. Helgolander visa. Meeresunters. 32: 163.
Alderdice, D.F., et al. 1979b. Influence of salinity and cadmium on capsule
strength in Pacific herring eggs. Helgolander wlss. Meeresunters. 32: 149.
Alderdice, D.F., et al. 1979c. Osmotic responses of eggs and larvae of Che
Pacific herring to salinity and cadmium. Helgolander wlss. Meeresunters. 32:
508.
Anderson, R.L., et al. 1980. Survival and growth of Tanytarsus disslmllis
(Chironomidae) exposed to copper, cadmium, zinc and lead. Arch. Environ.
Contarn. Toxicol. 9: 329.
-------
Anderson, R.V. 1978. The distribution of Cd, Cu, ?b and La in the biota of two
freshwater sites with different trace metal inputs. Holartic Ecology 1: 377.
Andros, J.D. and R.R. Carton. 1980. Acute lethality of copper, caaraium,
and zinc to northern squawfish. Trans. Am. Fish. Soc. 1C9: 235.
Anonymous. 1950. Ohio River Valley Water Sanitation Commission, Subcommittee
on Toxicities, Metal Finishing Industries Action Committee Rep. No. 3.
Attar, E.N. and E.J. Maly. 1982. Acute toxicity of cadmium, zinc, and
cadmium-zinc mixtures to Daphnia magna. Arch. Environ. Contain. Toxicol. 11:
291.
Ball, I.R. 1967. The toxicity of cadmium to rainbow trout (Sajrno gairdnerii
Richardson). Water Res. 1: SO1).
Bartlett, L. , et al. 1974. Effects of copper, zir.c and cadmium on Seianastrum
capricornutum. Water Res. 8: 179.
Beattie, J.H. and D. Pascoe. 1978. Cadmium uptake by rainbow trout, Salmo
gairdneri, eggs and alevins. J. Fish Bio I. 13: 631.
Bengtsson, B. 1978. Use of h.irpacticoid copepod in toxicity tests. Mar.
Pollut. Bull. 9: 238.
Benoit, D.A., et al. 1976. Toxic effects of cadmium on three generations of
brook trout (Salvelinus fontinalis). Trans. Am. Fish. Soc. 105: 550.
-------
Bertram, P.E. and B.A. Hart. 1979. I.OUUPV 11 v ami reproduction ol I
v^eJeer^ exposed to caJatua-vr^-u jaia^t «?J JjoJ .»i w^cci. ^t
295.
on
Biesinger, K.E. and G.M. Christensen. 1972. Effects of various metals
survival, growth, reproduction, and metabolism of Daphnia magna. Jour. Fish.
Res. Board Can. 29: 1691.
Birge, W.J. 1978. Aquatic toxicology of trace elements of coal and fly
ash. ^n: J.H-. Thorp and J.W. Gibbons (eds.), Energy and Environmental
Stress in Aquatic Systems. CONF-771114. National Technical Information
Service, Springfield, Virginia, p. 219.
Birge, W.J., et al. 1978. Embryo-larval bioassay on inorganic coal elements
and in situ biomonitoring of coal-waste effluents. In: D.E. Samuel, et al.
(eds.), Surface Mining and Fish/Wildlife Needs in the Eastern United States. PB
298353. National Technical Information Service, Springfield, Virginia, p. 97.
Birge, W.J., et al. 1979. The effects of mercury on reproduction of fish and
amphibians. I_n: J.O. Nriagu (ed.,), The Biochemistry of Mercury in the
Environment. Elsevier/North-Holland, New York. p. 629.
Birge, W.J., et al. 1980. Aquatic toxicity tests on inorganic elements
occurring in oil shale. In_: C. Gale (ed.), Oil Shale Symposium: Sampling,
Analysis and Quality Assurance. EPA-600/9-80-022. National Technical
Information Service, Springfield, Virginia, p. 519.
-------
6.
Birge, W.J., et al. 1981. The reproductive toxicology of aquacic contaminants.
In: J. Saxena and F. Fisher (eds.)» Hazard Assessment of Chemicals: Current
Developments, Vol. 1. Academic Press, New York. p. 59.
Black, J.A. and W.J. Birge. 1980. An avoiosr.ce response bioassay for aquatic
pollutants. PB 80-180490. National Technical Information Service, Springfield,
Virginia.
Blickens, E.A.C. 1978. Cadmium induced histopathological changes in the gillr
of the brown bullhead Ictalurus nebulosus (Lesueur). Ph.D. Thesis. New York
University.
Boyden, C.R. 1977. Effect of size upon metal content of shgl-ituh. J. Mari-.ie
Bio. Ass. 57: 675.
Bradley, R.W. and J.B. Sprague. Manuscript. The ir.fiuer.ce of pti, hardness, and
alkalinity on the acute toxicity of zinc to rainbow trouc. Jniversity of
Guelph, Guelph, Ontario.
Braginskiy, L.P. and E.P. Shcherban. 1978. Acute toxicity of heavy metals to
aquatic Invertebrates at different temperatures. Hydrobiol. J. 14(6): 78.
Bringmann, G. 1975. Determination of the biologically harmful effect of water
pollutants ky means of the retardation of cell proliferation of the blue algae
Mlcrocystis. Gesundheits-Ing. 96: 238.
-------
3nm?mann, G. 1978. Determination ot che biological toxiciiy ot
substances towards protozoa. I. Bacteriovorous flagellates (model organism:
Entosiphon sulcatum Stein). Z. Wasser Abwasser Forsch. 11: 210.
Brlngmann, G. and R. Kuhn. 1959a. The toxic effects of waste water on aquatic
bacteria, algae, and small crustaceans. Gesundheits-Ing. 80: 115.
Bringraann, G. and R. Kuhn. 1959b. Water toxicology studies with protozoans as
test organisms. Gesundheits-Ing. 80: 239.
Bringmann, G. and R. Kuhn. 1976. Comparative results of the damaging effects
of water pollutants against bacteria (Pseudomonas putida) and blue algae
(Microcystis aeruginosa). Gas-Wasserfach, Wasser-Abwasser .117: 410.
Bringmann, G. and R. Kuhn. 1977a. Limiting values for the damaging action of
water pollutants to bacteria (Pseudomonas putida) and green algae (Scenedesmus
quadricauda) in the cell multiplication inhibition test. Z. Wasser Abwasser
Forsch. 10: 87.
Bringraann, G. and R. Kuhn. I977b. Results of damaging effect of water
pollutants on Daphnia magna. Z. Wasser Abwasser Forsch. 10: 161.
Bringraann, G. and R. Kuhn. I978a. Limiting values for the noxious effects of
water pollutant material to blue algae (Microcystis aeruginosa) and green algae
(Scenedesmus quadricauda) in cell propogation inhibition tests. Vom Wasser 50:
45.
-------
Bringmann, G. and R. Kuhn. 1978b. Testing of subscances for their coxlcity
threshold: model organisms Microcyatis (Diplocystis) aeruginosa and Scenedesmas
quadricauda. Mitt. Int. Ver. Theor. Angew. Limnol. 21: 275.
Bringmann, 0. and R. Kuhn. 1979. Ccaoarison of toxic limiting concentrations
of water contaminants coward Bacteria, algae, and protozoa in the call-growtri
inhibition test. Haustech. Bauphys. Umwelttech. 100: 249.
Bringmann, G. and R. Kuhn. 1980a. Determination of the harmful biological
effect of water pollutants on protozoa. II. Bacteriovorous ciliates. Z. Wass
Abwasser Forsch. 13: 26.
Bringmann, G. and- R. Kuhn. I980b. Comparison of the toxicity thresholds of
water pollutants to bacteria, algae, and protozoa in the cell multiplication
inhibition test. Water Res. 14: 231.
Bringmann, G., et al. 1980. Determination of biological dacage from water
pollutants to protozoa. III. Saprozoic flagellates. Z. Wasser Abwasser Forsch.
13: 170.
Brkovic-Popovic, I. and M. Popovic. 1977a. Effects of heavy metals on survival
and respiration rate of tublficid vorras: Part I—Effects on survival. Environ.
Pollut. 13: 65.
Brkovic-Popovic, I. and M. Popovic. 1977b. Ef f £^B._-o£_.hi»3vy "metals on survival
and respiration rate of tublficid worms: Part II—Effects on respiration rate.
Environ. Pollut. 13: 93.
-------
Brown, B. and M. AhsanulLah. 1971. Effect of heavy metals on mortal icy and
growth. Mar. Pollut. Bull. 2: 182.
Bryan, G.W. 1971. The effects of heavy metals (other than mercury) on marine
and estuarine organisms. Proc. Roy. Soc. London B. 177: 389.
Buikema, A.L., Jr., et al. 1974. Evaluation of Philodina acuticornis
(Rotifera) as a bioassay organism for heavy metals. Water Resour. Bull. \m.
Water Resour. Assoc. 10: 648.
Burnison, G., et al. 1975. Toxicity of cadmium to freshwater algae. Proc.
Can. Fed. Biol. Soc. 18: 46.
Calabrese, A., et al. 1973. The toxicity of heavy metals to embryos of ihe
American oyster Crassostrea virginica. Mar. Biol. 18: 162.
Calabrese, A., et al. 1975. Sublethal Physiological Stress Induced by Cadmium
and Mercury in the Winter Flounder, Pseudopleuronectes americanus. In:
Sublethal Effects of Toxic Chemicals in Aquatic Animals. Elsevier, Amsterdam.
Callahan, M.A., et al. 1979. Water-related environmental fate of 129 priority
pollutants. Vol. I. EPA-440/4-79-029a. National Technical Information
Service, Springfield, Virginia.
-------
Canterford, G.S. and D.R. Cantor ford. 1980. Toxic.Lty ot heavy n^taLs ro che
marine dlacom Ditylum brLghtwellil (West) Grunow: correlation between Ljx
and metal speclation. Mar. BioL. Ass. U.K. 60: 227.
Canton,' J.H. and D.M.M. Adema. 1978. Reproducibility of short-term and re-
production toxic Icy experiments with Daphnia toagaa and comparison of che
sensitivity of Daphnia magna with Daphnis pules and uaphnia cuculiec^ i.i
short-term experiment. Hydrobiol. 59: 135.
Cancan, J.H. and W. Slooff. 1979. A proposal co classify compounds and uo
establish water quality criteria 'aaset on laboratory data. Ecotoxiccl . Environ.
Safety. 3: 126.
Cardin, J.A. 1982. Memorandum to J.H. Gentile. U.S. EPA, Narragansecc , Rhode
Island.
Carroll, J.J., et al. 1979. Influences of hefcness cinc:-;-er.cr on :*d icute
toxlcity of cadmium to brook trout (Salvelinus gor.tindli.-Q . Ball. Er.vircm.
Contao. Toxicol. 22: 575.
Cearley, J.E. and R.L. Coienan. 1973. Cadmium toxici;y and accuosuIac-Lon in
southern naiad. Bull. Environ. Contam. Toxicol. 9: 100.
Cearley, J.E. and R.L. Coleman. 1974. Cadmium toxlcity and bioconcentration in
largemouth bass and bluegill. Bull. Environ. Contam. Toxicol. 11: 146.
Chapman, G.A. 1975. Toxicity of copper, cadmium and zinc to Pacific Northwest
salmonids. U.S. EPA. Corvallis, Oregon.
-------
Chapman, G.A. 1978. Toxlciti.es of cadmium, copper, and zinc to four juve-
nile stages of chinook salmon and steelhead. Trans. Aa. Fish. Soc.
107: 841.
Chapman, G.A. 1982. Letter to C.E. Stephan. U.S. EPA, Corvallis, Oregon.
December 6.
Chapman, G.A. and O.G. Stevens. 1978. Acutely lethal .levels of cadmium,
copper, and zinc to adult male coho salmon and steelhead. Trans. Am. Fish.
Soc. 107: 837.
Chapman, G.A., et al. Manuscript. Effects of water hardness on the toxic icy of
metals to Daphnia magna. 'U.S. EPA, Corvallis, Oregon.
Chapman, W.H., et il. 1968. Concentration factors of chemical elements in
edible aquatic organisms. UCRL-50564. Lawrence Livermore Laboratory,
Livermore, California.
Clubb, R.W., et al.. 1975. Acute cadmium toxicity studies upon nine species of
aquatic insects. Environ. Res. 9: 332.
Conway, H.L. 1978. Sorption of arsenic and cadmium and their effects on
growth, micronutrient utilization, and photosynthetic pigment composition of
Asterionella formosa. Jour. Fish. Res. Board Can. 35: 286.
D'Agostino, A. and C. Flnney. 1974. The effect of copper and cadmium on
the development of Tigriopus japonicus. In: F.J. Vernberg and W.B. Vernberg
-------
/ o
o 7
(eds.), Pollution and Physiology of Marine Organisms. Academic Press, New York.
p. 445.
Davies, P.H. 1976. Use of dialysis tubing in defining the toxic fractions
of heavy metals Ln natural wacera. It^: R.W. Andrew, dC ai. (eds.), Toxicity Co
Biota of Metal Forma in Natural Water. International Joint Commission.
Windsor, Ontario, p. 110.
Dawson, M.A., et al. 1977. Physiological response ol: juvenile striped bass,
Morone saxatilia, to low levels of cadmium and mercury. Chesapeake Sci. 18:
353.
DeFilippis, L.F., et al. L981. The effects of subiechai concentrations of
zinc, cadmium and mercury on Snglena. II. Respiration, pnotosyrunesis and
photochemical activities. Arch. Microbioi. 128: 407.
Dixon, W.J. and M.8. Brown, eds. 1979. BMDP BioraeJicai Computer Programs,
P-series. Univ. of California, Berkeley, p. 521.
Drtmmond, R.A. and O.A. Benoit. Manuscript. Toxicity of cadmium Co fish: some
observations on the influence of experimental procedures. U.S. EPA. Duluth,
Minnesota.
Eaton, J.G. 1974. Chronic cadmium toxicity to the bluegill (Lepomis macro-
chirus Ratinesque). Trans. Am. Fish. Soc. 4: 729.
Eaton, J.G. I960. Memorandum to C.E. Stephan. U.S. EPA. Duluth, Minnesota.
August 5.
-------
Eaton, J.G., et al. 1978. Metal toxicity to embryos and larvae of seven
freshwater fish species—I. Cadmium. Bull. Environ. Contain. Toxicol. 19: 95.
Eisler, R. 1971. Cadmium poisoning in Fundulus heteroclitus (Pisces:Cy-
pri.nodonci.dae) and other marine organisms. Jour. Fish. Res. Board Can.
28: 1225.
Eisler, R. 1974. Radiocadmium exchange with seawater by Fundulus heteroclitus
(L.) (Pisces: Cyprinodontidae). J. Fish Biol. 6: 601.
Eisler, R. 1977. Acute toxicities of selected heavy metals to the soft-
shell calm, Mya arenaria^. Bull. Environ.- Contain. Toxicol. .17: 137.
Eisler, R. and G.R. Gardner. 1973. Acute toxicology to an estuarine teleost of
mixtures of cadmium, copper, and zinc salts. J. Fish Biol. 5: 131.
Eisler, R. and R. Hennekey. 1977. Acute toxicities of Cd*2, Cr*6,
Hg*2, Ni*2, and Zn*2 to estuarine macrofauna. Arch. Environ.
Concam. Toxicol. 6: 315.
Eisler, R., et al. 1972. Cadmium uptake by marine organisms. Jour. Fish. Res.
Board Can. 29: 1367.
Faraday, W.E. and A.C. Churchill. 1979. Uptake of cadmium by the eelgrass
Zostera marina. Marine Biol. 53: 293.
-------
7,
Fennikok, K.B., et al. 1978. Cadmium toxicity In planktonic organisms of a
freshwater foot? web. Environ. Res. 15: 357.
Frank, P.M. and P.B. Robertson. 1979. The influence of salinity on
toxicity of cadmium and chromium to the blue crab, Callinecces sapidus.
Bull. Environ. Contarn. Toxicol. 21: 74.
Frazler, J.M. 1979. Bioaccumulation of cadmium in marine organisms. Environ.
Health Perspectives. 28: 75.
Freeman, S.J. 1978. Accumulation of cadmium, chromium, and lead by bluegill
sunfiah (Lepomis macrbchirua Rafiirescue) under temperature and oxygen stress-
SRO-757-6. National Technical Information Service. Arlington, Virginia.
Freeman, B.J. 1980, Accumulation of cadmium, chromium, and laad by bluegill
sunfish (Lepomis nacrochirus Rafinesque) under temperature and oxygen stress.
Thesis. University of Georgia. Athens, Georgia.
Garofano, J.S. 1979. The effects of cadmium on the peripheral blood and head
kidney of the brown bullhead Ictalurus nebulosus (Lesueur). Thesis. New York
University.
Gentile, S.M.. et al. 1982. Chronic effects of cadmium on two species of my3id
shrimp: Mysidopsis bahia and Myaidopais bigelowi. Hydrobiologia 93: 195.
George, S.G. and T.L. Coombs. 1977. The effects of chelating agents on the
uptake and accumulation of cadmium by Mytilua edulis. Mar. Biol. 39: 261.
-------
Gtesy, J.P., Jr. 1978. Cadmium inhibition of leaf decomposition in an aquatic
microcosm. Chemosphere. 6: 467.
Giesy, J.P., Jr., et al. 1977. Effects of naturally occurring aquatic organic
fractions on cadmium toxicity to Simocephalus serrulatus (Daphnidae) and
Gambusia affinia (Poediliidae). Water Res. 11: 1013.
Giesy, J.P., Jr., et al. 1979. Fate and biological effects of cadmium
introduced into channel microcosms. EPA-600/3-79-039. National Technical
Information Service. Springfield, Virginia.
Gillespie, R., et al. 1977. Cadmium uptake by the crayfish, Orconec'ces
propinquus propinquus (Girard). Environ. Res. 13: 364.
Gould, E. and J. Karolus. 1974. Physiological response of the cunner,
Tautogolabrus adspersus, to cadmium. Observations on the biochemistry.
NOAA Tech. Rep. SSRF-681, Part V.
Gould, £., et al. 1976. Heart transaminase in the rock, crab, Cancer ir-
roratua, exposed to cadmium salts. Bull. Environ. Contarn. Toxicol. 15: 635.
Greig, R.A. 1979. Trace metal uptake by three species of mollusks. Bull.
Environ. Contam. Toxicol. 22: 643.
Greig, R.A. and D.R. Uenzloff. 1973. Metal accumulation and depuration by the
american oyster, Crassostrea virginica. Bull. Environ. Contam. Toxicl. 20: 499.
-------
73
Hale, J.F. 1977. Toxicity of aetal mining wastes. Bull. Environ. Contam.
Toxicol. 17: 6".
Hart, B.A. and B.D. Schaife. 1977. Toxicity and bioaccuoulation of cadmium iri
Chlorella pyrenoldosa. Environ. Res. 14: 401.
Hazea, R.E. and T.J. Kneip. 1980. Siogeochemical cycling of cadci.ua in a rcarsh
ecosystem. In: J.O. Nrlagu (ed.), Cadmium in the Environment, Part I. Wiley,
New York. p. 399.
Holcombe, G.W., et al. Manuscript. Toxlcity of selected priority pollutants to
various aquatic-organisms. U.S. EPA. Duluth, Minnesota.
Hughes, G.M., et al. 1979. A morphometric study of effects of nickel, chromium
and cadmium on the secondary lamellae of rainbow trout gills. Water Res. 13:
665.
Hughes, J.S. 1973. Acute toxlclty of thirty chemicals to striped bass
(Morone aaxatilia). Pres. Western Aaaoc. State Game Fish Comm., Salt Lake
City, Utah. July, 1973.
Hutcheson, M.S. 1975. The effects of temperature and salinity on cadmium
uptake by the blue crab, Callinectea sapldus. Che3apeak Science. 15: 237.
Hutchinson, T.C. and H. Czyrska. 1972. Cadmium and Zinc Toxicity and Sy-
nerglsm to Floating Aquatic Plants. In; Water Pollution Research in Canada
-------
1972. Proc. 7th Can. Symp. Water Pollut. Res. Inst. Environ. Set. Eng. Publ.
No. EI-3. p. 59.
Hutchln3on, T.C. and P.M. Scokes. 1975. Heavy metal toxicity and algal
bioassays. In: S. Barabos (ed.), Water Quality Parameters. ASTM STP 573.
American Society for Testing and Materials. Philadelphia, Pennsylvania, p.
320.
Janssen, H.K. and N. Scholz. 1979. Uptake and cellular distribution of cadmium
in Mytilus edulia. Mar. Biol. 55: 133.
Jennings, J.R. and P.S. Rainbow. I979a. Studies on the uptake of cadmium by
the crab Carcinua maenas in the laboratory. I. Accumulation from seavater and a
food source. Mar. Biol. 50: 131.
Jennings, J.R. and P.S. Rainbow. 1979b. Accumulation of cadmium by Dunaliella
tertiolecta Butcher. J. Plankton Res. 1: 67.
Johnson, M. and J. Gentile. 1979. Acute toxicity of cadmium, copper, and
mercury to larval American lobster (Romania anericanus). Bull. Environ.
Contain. Toxicol. 22: 258.
Jones, M.3. 1975. Synergistic effects on salinity, temperature and heavy
metals on mortality and osmoregulatlon in marine and estuarine isopods
(Crustacea). Mar. Biol. 30: 13.
-------
7S
Jude, D.J. 1973. Sublethal effects of ammonia and cadmium on growth of green
sunfish. Ph.D. Thesis. Dept. Fish. Wlldl., Michigan State Univ.
Kerfoot, W.B. and S.A. Jacobs. 1976. Cadmium accural in combined waste-
treatment aquaeulture system. Environ. Sci. Technol. 10: 662.
Klass, E., et al. 1974. The effect of cadmium on population growth of the
green alga Scenedesmus quadricauda. Bull. Environ. Contarn. Toxicol.
12: 442.
Klockner, K. 1979. Uptake and accumulation of cadmium by Ophryocrocha dia-
dema (Polychaeta). Mar. Ecol. Prog. Ser. 1: 71.
Kneip, T.J. and R.E. Hazen. 1979. Deposit and mooillty of cadniium In
marsh-cove ecosystem and the relation to cadmium concentration in bioca.
Environ. Health Perspectives 28: 67.
Kobayashi, N. 1971. Fertilized sea urchin eggs as an indicator laacerial for
marine pollution bioassay, preliminary experiments. Publ. Seto Mar. Biol. Lab.
18: 379.
Kumada, H., et al. 1973. Acute and chronic toxicity, uptake and retention of
cadmium In freshwater organisms. Bull. Freshwater Fish. Res. Lab. 22: 157.
Kumada, H., et al. 1980. Accumulation and biological effects of cadmium In
Trout: 'B'ull. Jap. Soc. Sci. Fish. 46: 97.
-------
m.liu-i , I . iml A. lei in- I -iv . I'Id') . I'ctilm Luill In aipuil li -lyulrui:. . Mu 1 .1 I •> mj
Ecology Symposium. Stockholm, Sweden, p. 47.
Laube, V.M., ec al. 1980. Strategies of response to copper, cadmium, and lead
by a blue-green and a green alga. Can. J. Microbiol. 26: 1300.
Leonhard, S.L., et al. 1980. Evaluation of the acute toxlcity of the heavy
metal cadmium to nymphs of the burrowing mayfly, Hexagenia rigida. In; J.F.
Flannagan and K..E. Marshall (eds.), Advances in Ephemeroptera Biology. Plenum
Publishing Corp. p. 457.
Lue-Kim, H., et al. 1980. Cadmium toxicity on synchronous populations of
Chlorella ellipsoides. Can. J. Biol. 58: 1780.
Haas, R.P. 1978. A field study of the relationship between heavy metal
concentrations in stream water and selected benthic macroinvertebrate species.
PB 297 284. National Technical Information Service, Springfield, Virginia.
Maclnnes, J.R., et al. 1977. Long-term cadmium stress in the cunner
Tautogolabrus adspersus. Fish. Bull. 75: 199.
Markham, J.W., et al. 1980. Effects of cadmium on Laminaria saccharina in
culture. Mar. Ecol. Prog. Ser. 3: 31.
Marshall, J.S. 1978a. Population dynamics of Oaphnia galeata mendotae as
chronic cadmium stress. Jour. Fish. Res. Board Can. 35: 461.
-------
77
Marshall, J.S. 1978b. Field verification of cadmium toxicity co laboratory
Daphnia populations. Bull. Environ. Contain. Toxicol. 20: 387.
McCarty, L.S. and A.H. Houston. 1976. Effects of exposure to sublethal levels
of cadmium upon water-electrolyte status in the goldfish (Carassius auratus).
Jour. Fish. Biol. 9: II.
McCarty, L.S., et al. 1978. Toxicity of cadmium to goldfish, Carassius
auratus, in hard and soft water. Jour. Fish. Res. Board Can. 35: 3~i.
Middaugh, D.P. and J.M. Dean. 1977. Comparative sensitivity of eggs, lar-
vae and adults of the estuarine teleosts, Fundulus heteroclitus and Menidia
menidia to cadmium. Bull. Environ. Contarn. Toxicol. 17: 645.
Middaugh, D.P. and G. Floyd. 1978. The effect of prehatch and posehatch
exposure to cadmium on salinity tolerance of larval grass shrimp, P.-.laemonetea
sueio. Escuaries 1: 123.
Middaugh, D.P., et al. 1975. The response of larval fish Leiostomus xan-
thurus to environmental stress following sublethal cadmium exposure. Contrib.
Mar. Scl. 19.
Ministry of Technology. 1967. Effects of pollution on fish—Toxic Icy of zinc,
phenol, cadmium, and nickel to trout eggs and alevins. Water Pollut. Res.
London, p. 52.
Ministry of Technology. 1971. Effects of pollution on fish. Water Pollut.
Res. London, p. 37.
-------
MirJces, D.Z., et al. 1978. Effects of cadmium and mercury on the behavioral
responses and development of Eurypanopeus depressus larvae. Mar. Biol. 47:
143.
Moore, M.N. and A.R.D. Stebbing. 1976. The quantitative cytochemical effects
of three metal ions on a lysosomal hydrolase of a hydroid. Jour. Mar. Biol.
Assoc. U.K. 56: 995.
Moraitou-Apostolopoulou, M., et al. 1979. Effects of sublethal concentrations
of cadmium pollution for two populations of Acartis clausi (Copepoda) living at
two differently polluted areas. Bull. Environ. Contam. Toxicol. 23: 642.
Morgan, W.S.G. 1979. Fish locomotor behavior patterns as a monitoring tool.
J. Water Pollut. Control Fed. 51: 580.
Mount, D.I. 1966. The effect of total hardness and pH on acute toxicity of
zinc to fish. Air Water Pollut. Int. J. 10: 49.
Mount, O.I. and T.J. Norberg. Manuscript. A seven-day life-cycle cladoceran
toxicity test. U.S. SPA. Duluth, Minnesota.
Mowdy, O.E. 1981. Elimination of laboratory-acquired cadmium by the oyster
Crassostrea virginica in the natural environment. Bull- Environ. Contam.
Toxicol. 26: 345.
Muller, K.W. and H.D. Payer. 1979. The influence of pH on the
cadmium-repressed growth of the alga Coelostrum proboscideum. Physlol. Plant.
45: 415.
-------
Muller, K.W. and H.D. Payer. 1980. The Influence of zinc and Light conditions
on Che cadaium-repressed growth of the green aLga Coelostrum proboscideum.
Physlol. Plant. 50: 265.
Nakano, Y., et al. 1980. Morphological observation on Suglena gracilis gro*m
In rinc-sufflclent media containing cadmiian ions. Agric. Biol. Chem. 44: 2305.
Negilski, D.S. 1976. Acute toxicity of zinc, cadmium and chromium to the
marine fishes, yellow-eye mullet (Aldrichetta forsteri C. and V.) and small
mouth hardy head (Atherinaaoma mierostoma Whitley). Aust. Jour. Mar. Fresh-
water Res. 27: 137.
Nelson, D.A., et al. 1976. Biological effects of heavy metals on juvenile bay
scallops, Argopenten irradians, in short-term exposures. 3ull. Environ. Contain.
Toxicol. 16: 275.
Neter, J. and W. Wasserm^n. 1974. Applied Linear Statistical Models. Irwliv,
Inc. Homewood, Illinois.
Nlmno, D.R., et al. 1977a. Mysidopsia bahia; An estuarine species suitable for
life-cycle toxicity tests to determine the effects of a pollutant. In; F.L.
Mayer and J.L. Hamelink (eds.), Aquatic Toxicology and Hazard Evaluation. ASTM
STP 634. American Society for Testing and Materials. Philadelphia,
Pennsylvania, p. 109.
Nimno, D.R., et al. I977b. Effects of Cadmium on the Shrimps Panaeus duo-
rarum, Palaemonetes pugio. and Palaemonetes vulgaris. In; F.J. Vernberg, et al.
-------
(eds.), Physiological Responses of Marine Biota to Pollutants. Academic Press,
New York.
Noel-Lambot, F., et al. 1980. Cadmium, zinc, and copper accumulation in
limpets (Patella vulgata) from the British channel and special reference to
raetallothioneins. Mar. Ecol. Prog. Ser. 2: 81.
O'Hara, J. 1973. The influence of temperature and salinity on the toxlcity of
cadmium to the fiddler crab, Uca pugllator. U.S. Dept. Commer. Fish. Bull. 71:
149.
O'Hara, J. 1973b. Cadmium uptake by fiddler crabs exposed to temperature and
salinity stress'. J. Fish. Res. Board-Can. 30: 846.
Ojaveer, E., et al. 1980. On the effect of copper, cadmium and zinc on the
embryonic development of Baltic spring spawning herring. Finnish Marine
Research 247: 135.
Pardue, W.J. and T.S. Wood. 1980. Baseline toxicity data for freshwater bryoza
exposed to copper, cadmium, chromium, and zinc. J. Tenn. Acad. Sci. 55: 27.
Pascoe, D. and P. Cram. 1977. The effect of parasitism on the toxicity of
cadmium to the three-splned stickleback, Gasterosteus aculeatus L. Jour. Fish.
Biol. 10: 467.
Pascoe, 0. and D.L. Mattey. 1977. Studies on the toxicity of cadmium to the
three-splned stickleback, Gasterosteus aculeatua L. Jour. Fish. Biol. 11:
207.
-------
Pesch, J.v.;. *'.\d X.H. Sceptic. ;**0. »'
estuarine invertebrates. Mar. Environ. Res. 3: 145.
Phelps, H.L. 1979. Cadmium sorption in estuarine mud-type sediment and the
accumulation of cadmium in the soft-aheli clam, Mya greoaria. Estuaries 2: 40,
Phillips, D.J.H. 1976. The common mussel Mytilus edulia as aa indlcacor of
pollution by zinc, cadmium, lead and copper. I. Effects of environmental
variables on uptake of metals. Mar. Biol. 38: 59.
Phillips, G.R. and R.C. Russo. 1978. Metal bioaccumulation in flsnes and
aquatic Invertebrates: a literature review. EPA-600/5-73-103. Xacional
Technical Information Service, Springfield, Virginia.
Pickering, Q.H. and M.H. Cast. 1972. Acute and chronic toxicity of cadmium
to the fathead minnow (PJLmephalea promelaa) Jour. Fish. Res. Board Can.
29: 1099.
Pickering, Q.H. and C. Henderson. 1966. The acute toxicicy of soae heavy
metals to different species of warmwater fishes. Air Water Pollut. Int.
Jour. 10: 453.
Poldoski, J.E. 1979. Cadnijos bioaccumulation assays. Their relatii nshlp
to various ionic equilibria in Lake Superior water. Environ. Sci. Technol.
13: 701.
Pringle, B.H., et al. 1968. Trace metal accumulation by escuarine mollusks.
Jour. Sanit. Sng. Div. 94SA3: 455.
-------
Qureahi, S.A., et al. 1980. Acute toxicity of four heavy metals to benthic
fish food organisms from the river Khan, Ujjain. Intern. J. Environ. Studies
15: 59.
Rainbow, P.S., et al. 1980. Effects of chelating agents on the accumulation of
cadmium by the barnacle Semibalanue balanoides, and the complexation of soluble
Cd, Zn and Cu. Mar. Ecol. Prog. Ser. 2: 143.
Ray, S., et al. 1981. Accumulation of copper, zinc, cadmium and lead from two
contaminated sediments by three marine invertebrates - a laboratory study.
Bull. Environ. Contain. Toxieol. 26: 315.
Rehwoldt, R., et al. 1972. The effect of increased temperature upon the acute
toxicity of some heavy metal ions. Bull. Environ. Contain. Toxieol. 8: 91.
Rehwoldt, R., et al. 1973. The acute toxiclty of some heavy metals tons toward
benthic organisms. Bull. Environ. Contarn. Toxieol. 10: 291.
Reichert, W.L., et al. 1979. Uptake and metabolism of lead and cadmium in coho
salmon (Oneorhynchus kisutch). Comp. Blochem. Physiol. 63C: 229.
Reish, D.J., et al. 1976. The effect of heavy metals on laboratory popu-
lations of two polychaetes with comparisons to the water quality conditions and
standards in Southern California marine waters. Water Res. 10: 299.
Reish, D.J., et al. 1978. Interlaboratory calibration experiments using che
Polychaetous annelid Capitella capitata. Mar. Environ. Res. 1: 109.
-------
Roberts, K.S. 1979. A high JioleculdC-welghc cadmium-binding irdi.LU.,i i. sol a led
from the liver cytosol of trout exposed to environmentally relevant
concentrations oc the metal. Trans. Blochem. Soc. London. 7: 650.
Roch, M. and E.J. Maly. 1979. Relationship of cadmium-induced hypocalcemia
with mortality in rainbow trout (Sa'uao gaifdnen) and the influence of
temperature on toxicity. Jour. Pish. Res. Board Can. 36: 1297.
Rosenberg, R. and J.D. Costlow. 1976. Synergistic effects of cadmium and
salinity combined with constant and cycling temperatures on the larval develop-
ment of two estuarine crab species. Mar. Biol. 38: 291.
Rosko, J.J. and J.W. Rachlin. 1977- The effect of cadmium, copper, mer-
cury, zinc and lead on cell division, growth, and chioropyll «i content of
the chlorophyte Chlorella vulgaris. Bull. Torrey Botan. Club. 104: 226.
Sangalang, G.B. and H.C. Freeman. 1979. Tissue uptake of cadnium in brook
trout during chronic sublethal exposure. Arch. Environ. ConCam. Toxicol.
8: 77.
Sangalang, C.B. and M.J. O'Halioran. 1972. Cadmium-induced testicular In-
jury and alterations of androgen synthesis in brook trout. Nature 240: 470.
Sangalang, G.B. and M.J. 0'Halloran. 1973. Adverse effects of cadmium on
brook trout testis and on in_ vitro testicular androgen synthesis. Biol.
Reprod. 9: 394.
-------
Saucer, S., el al. 1976. F.fteols i>l «»xpomirp to heavy metala on Q<»ipft»
freshwater fish — Toxicity of copper, cadmium, chromium and lead to eggs
fry of seven fish species. EPA-600/3-76-105. National Technical Information
Service, Springfield, Virginia.
Schuster, C.N. and B.H. Pringle. 1969. Trace metal accumulation by the
American oyster, Crassostrea virginica. 1968 Proc. Natl. Shellfish AssocJ" 59:
91.
Scott, K.J. 1982. Memorandum to J.H. Gentile. U.S. EPA. Narragansett, Rhode
Island.
Shcherban, E.P. 1977. Toxicity of some heavy metals for Daphnia magna Scrauss,
as a function of temperature. Hydrobiol. J. 13(4): 75.
Sick, L.V. and G. Baptist. 1979. Cadmium incorporation by the marine copepod
Pseudodiaptomous coronatus. Limnol. Oceanogr. 24: 453.
Sosnowski, S. and J. Gentile. 1978. Toxicological comparison of natural and
cultured populations of Acartia tonsa to cadmium, copper and mercury. Jour.
Fish. Res. Board Can. 35: 1366.
Spehar, R.L. 1976a. Cadmium and zinc toxiclty to flagfish, Jordanella
floridae. Jour. Fish. Res. Board Can. 33: 1939.
Spehar, R.L. I976b. Cadmium and zinc toxicity to Jordanella floridae.
EPA-600/3-76-096. National Technical Information Service, Springfield,
Virginia.
-------
Spehar, R.L. 1982. Memorandum co J.G. Eaton. U.S. EPA, Duluth, Minnesota.
February 24.
Spehar, R.L., et al. 1978. Toxicity and bioaccumulation of cadmium and lead in
aquatic invertebrates. Environ. Pollut. IS: 195.
Stanley, R.A. 1974. Toxicity of heavy metals and salts to Eurasian water-
milfoil (Myriophyllum spicatutn L.). Arch. Environ. Contain. Toxicol. 2: 331.
Stebbing, A.R.D. 1976. The effects of low metal levels on a colonial hydroid.
Jour. Mar. Biol. Aasoc. U.K. 56: 1977.
Steele, R.L. and G.B. Thursby. 1983. A toxicity test using life stages of
Champia parvula (Rhodophyta). ILI; W.5. Bishop, et al. (eds.), Aquatic
Toxicology and Hazard Assessment: Sixth Symposium. ASTM STP 802. American
Society for Testing and Materials. Philadelphia, Pennsylvania, p. 73.
Stephan, C.E., et al. 1983. Guidelines for deriving numerical national water
quality criteria for the protection of aquatic life and its uses. U.S. EPA.
Duluth, Minnesota. July 5.
Stern, M.S. and D.H. Stern. 1980. Effects of fly ash heavy metals on Daphnia
magna. PB 81-198327. National Technical Information Service, Springfield,
Virginia.
Sunda, W.G., et al. 1978. Effect of chemical speciatlon on toxicity of cadmium
to grass shrimp"Y Palaem'o'rietes ""pugib; importance of free cadmium ion. Environ.
Sci. Technol. 12: 409.
-------
Theede, H., et al. 1979. Temperature and salinity effects on the acute
toxiclty of cadmium to Laomedea loveni (Hydrozoa). Mar. Ecol. Prog. Ser. 1:
13.
Thompson, S.E., et al. 1972. Concentration factors of the chemical elements in
edible aquatic organisms. UCR.L-50564. Rev. 1. Lawrence Livermore Laboratory,
Livertnore, California.
Thorp, J.H., et al. 1979. Effects of chronic cadmium exposure on crayfish
survival, growth, and tolerance to elevated temperatures. Arch. Environ.
Contam. Toxicol. 8: 449.
Tucker, R.K. 1979. Effects of in vivo cadmium exposure on ATPases in gill of
the lobster-) Homarus americanus. Bull. Environ. Contam. Toxicol. 2.3: 33.
Tucker, R.K. and A. Matte. 1980. In vitro effects of cadmium and lead on
ATPases in the gill of the rock crab, Cancer irroratus. Bull. Environ. Contam.
Toxicol. 24: 847.
U.S. EPA. 1976. Quality criteria for water. 055-001-01049-4. Government
Printing Office. Washington, D.C.
U.S. EPA. 1979. Methods for chemical analysis of water and wastes.
EPA-600/4-79-020. National Technical Information Service, Springfield,
Virginia.
U.S. EPA.-'"1980. AmbTent Vate'r' quality criteria fee cadmium". -EPA-440/5-80-02 5.
National Technical Information Service, Springfield, Virginia.
-------
?7
U.S. EPA. 1982. Water Quality Standards Regulation. Federal Register. 47:
49234. October 29.
Verma, S.R., et al. 1980. Short term toxicity teats with heavy metals for
predicting safe concentrations. Tox. Let. 1: 113.
Vernberg, W.B., et al. 1974. Multiple Environmental Factor Effects on
Physiology and Behavior of the Fiddler Crab, Uca pugilator. In: F.J. Vernberg
and W.B. Vernberg (eds.), Pollution and Physiology of Marine Organisms.
Academic Press, flew York.
Vernberg, W.B., et al. 1977. Effects of sublethal concentrations of cadmium DQ
adult Paleomonetes pugio under static and flow-through conditions. Bull.
Environ. Con tarn. Toxicol. 1'7: 16.
Voyer, R.A. 1975. Effect of dissolved oxygen concentration on the acute
toxicity of cadmium to the mummichog, Fundulua heteroclitus. Trans. Am.
Fish. Soc. 104: 129.
Voyer, R.A., et al. 1977. Viability of embryos of the winter flounder
Pseudopleuronectes amerieanua exposed to combinations of cadmium and salinity at
selected temperatures. Mar. Biol. 44: 117.
Voyer, R.A., et al. 1979. Hatching success and larval mortality in an
estuarlne teleost, Menidia menidia (Linnaeus), exposed to cadmium in constant
and fluctuating salinity regimes. Bull. Environ. Contain. Toxicol. 23: 475.
-------
Warnick, S.L. and H.L. Bell. 1969. The acute toxic I Cy of some heavy metals to
different species of aquatic insects. Jour. Water Pollut. Control Fed. 41:
280.
Westerman, A.G. and W.J. Birge. 1978. Accelerated rate of albinism in channel
catfish exposed to metals. Prog. Fish-Cult. 40: 143.
Westernhagen, H.V. and V. Oethiefsen. 1975. Combined effects of cadmium and
salinity on development and survival of flounder eggs. J. Mar. Biol. Ass. U.K.
55: 945.
Westernhagen, H.V., et al. 1975. Combined affects of cadmium and salinity on
development and survival-of garplke eggs. Helgolander wiss Meeresunters. 27:
268.
Westernhagen, H.V., et al. 1978. Fate and effects of cadmium in an
experimental marine ecosystem. Helgolander wiss Meeresunters. 31: 471.
Westernhagen, H.V., et al. 1979. Combined effects of cadmium, copper and lead
on developing herring eggs and larvae. Helgolander wiss. Meeresunters. 32:
257.
White, D.H. and M.T. Finley. 1978a. Effects of Dietary Cadmium In Mallard
Ducks. In; D.D. Hemphill (ed.), Trace Substances In Environmental Health-XlI.
University of Missouri, Columbia, Missouri.
White, D.H. and M.T. Finley. 1978b. Uptake and retention of dietary cadmium in
mallard ducks. Environ. Res. 17: 53.
-------
White, D.H., et al. 197R. Hlstopathologlc effects of dietary cadmium on
kidney* and cest*s of M-lUrJ Juck*. J. Jbaicsl. rt&viro*. tteaUh. *»
Wler, C.P. and W.M. Walter. 1976. Toxlcity of cadmium In the freshwater snai-,
Physa gyrina Say. Jour. Environ. Qual. 5: 359.
Williams, D.R. and J.P. Glesy, Jr. L978. Relative importance of food and water
sources to cadmium uptake by Gambusla affinis (?oeclllldae) . Environ. Res. 16:
326.
Wright, D.A. 1977. The effect of salinity on cadmium uptake by the tissues o-
the shore crab, Carclmia maenas. Exp. Blol. 67: 137.
Wright, O.A. and J.W. Fraln. .1981. Cadmium toxicity In Marlnogamnams
obtusatus: effect of external calcium. Environ. Rea. 24: 338.
Yager, C.M. and H.W. Harry. 1964. The uptake of radioactive zinc, cadmium and
copper by the freshwater snail, Taphiua giabrarua. Malacologia 1: 339.
Zaroogian, G.E. 1979. Studies on the depuration of cadmium aad copper by the
American oyster Crassostrea. virglnica. Bull. Environ. Contain. Toxicol. 23:
117.
Zaroogian, G.E. and 5. Cheer. 1976. Cadmium accumulation by the American
oyster, Craasostrea virglnica. Nature 261: 408.
------- |