EPA                                                                               EJBD

•wo-                                                                              ARCHIVE
0>-                                                                               EPA


Si                                                                             44°"

                                                                                 83-
                                                                          DRAFT  002
                                                                          3/19/J



            Revised Section B of Ambient Water Quality Criteria for Cadmium


                                  AQUATIC TOXICOLOGY*


     Introduction


          In natural fresh waters cadmium sometimes occurs at concentrations of


     less than 0.01 ug/1, but in environments impacted by man, concentrations can


     be several mtcrograms per liter or greater.  The impact of cadmium on aquatic


     organisms depends on a variety of possible chemical forms of cadmium


     (Callahan, et al. 1979), which may have different toxicities and


     bioconcentration  factors.   £r. most well oxygenated fresn waters that are  low


     in total  organic  carbon, free divalent caamium will be  che predsmi.iant  fora.


     Precipitation by  carbonate  or hydroxide and  formation of soluble complexes by


     chloride,  sulfate,  carbonate, and  hydroxide  should usually be  of lictle


     importance.   In  saltwater  systems  with  typical  salinity,  the  number  of


     important cadmium species  is reduced  to  a few because cadmium chloride


     complexes probably  predominate.   In both  fresh  and  sale water particulate


     matter and dissolved organic material may bind  a substantial  portion of the


     cadmium.


           Most insoluble forms  of most metals probably are  not toxic, but some


      possibly can become toxic  under natural conditions and  precipitates  of  some


     metals apparently are toxic (Mount, 1966; Chapman,  et  al. Manuscript;  Bradley


      and Sprague, Manuscript).   Because or the variety of the forms of  cadmium and
CO
     *An  unders^nr.Jing  of  the Guidelines  for Deriving Numerical National Water


     Quality  Criteria for  the Protection  of Aquatic Life and Its Uses (Stephan, et


     al.  1983)  is necessary  in  order  Lo understand  the  following text,  tables, and


     calculations.

-------
                                                                                3(
lack of definitive  information about  cheir  relative toxicities,  no available




analytical measurement  is  knovn to be  Ideal for  expressing  aquatic life




criteria  for cadmium, but  active cadmium (operationally  defined  by acidifying




the aqueous sample  to pH « 4  with nitric acid  and  then measuring the




concentration of cadmium that passes  through a 0.45 un membrane  filter) is




probably  the best available measurement. Previous aquatic  life  criteria for




cadmium (U.S. EPA,  1980) were specified  in  terms of total recoverable




cadmium (U.S. EPA,  1979),  but this measurement may be coo rigorous in some




situations.  It is  expected that measurement of  active cadmium and total




recoverable cadmium would  have produced  the same results in all  tests used to




derive criteria and would  produce the  same  results on most  samples from




surface vaters and  effluents.  Where  the two measurements produce different




results on samples  of surface waters  or  effluents, measurement of active




cadmium (as defined above) should, be  the more  appropriate measurement.-




     Measurement of active cadmium is  compatible with all of the data used to




derive criteria because test  results  were not  used if it was likely that they




would have been different  if  they had  been  reported in terms of  active




caamium.  For example,  results reported  in  terms of dissolved cadmium were




not used  if the concentration of precipitated  cadmium was possibly signifi-




cant.  On samples of ambient  water this  method is  intended  to measure ail




forms of  cadmium that are  toxic to aquatic  life  or can be readily converted




to toxic  forms under natural  conditions. In addition, this method is




Intended  to exclude several forms, such  as  cadmium that  Is  part  of minerals,




clays, and sand or  is strongly sorbed  to particulate matter,  that are not




toxic and are not likely  to become toxic under natural conditions-  Although




this method (and many others) will measure  soluble, complexed forms of




cadmium,  such as the EDTA  complex of  cadmium,  that probably have low

-------
toxicltles to aquatic life, concentrations of these  forms probably are




negligible In ambient water.  Measurement of active  cadmium does not require




Immediate analysis In the field and does not require special effort or




equipment.  Thi8 is also the least rigorous of the measurements (a) which are




compatible with the available toxicological data without using hypothetical




extrapolations and (b) for which It Is usually acceptable to assume that no




harm will result from  measured or calculated concentrations in ambient water




that are below national criteria.




     Active cadmium should  also be a useful measurecent  for monitoring




effluents, and dilution of  effluent with receiving water before measurement




should demonstrate whether  the receiving water can decrease  the concentration




of active cadmium bwc^use of sorpcion.  Measurement  oj both  active cadmium




and  total recoverable cadmium  In ambient water or  effluent  or  both sight be




useful.   For  example, there is more cause  for concern  if total recoverable




cadmium  is above  the appropriate criterion, even though  active cadmium  is




below  the criterion, than  there  Is  If  both zrs below :he »:rlc--;rlon.   If  a




national criterion  Is possibly unacceptable for  a particular  situation,  a




site-specific criterion  (U.S.  EPA,  1982) can  be  derived.




     Unless  other wise  noted,  all  concentrations reported  herein  are  expected




 to be  essentially equivalent to  active cadmium  concentrations.  All




concentrations are expressed as  cadmium, not  as  the chemical tested.   The




criteria presented  herein  supersede previous  aquatic life  water quality




criteria for cadmium (U.S.  EPA,  1976,  1980) because these  new criteria were




derived  using Improved  procedures  and  additional information.   The  literature




 search fo>-  -his document was conducted In  October,  1981;  some newer




 information  was also used.

-------
Acute Toxicity  to  Aquatic Animals




     A  reduction  In  coxtcIcy  associated  with  Increased hardness  is evident




for several  fish and  invertebrate  species.  Carroll, et al.  (1979) found that




calcium, but  not magnesium, reduced  the  acute  toxicity of cadmium.  In most




natural waters, calcium  and magnesium  are both present, with calcium being




somewhat more abundant.   Glesy,  et al. (1977)  found  that equilibrium




associations  of cadmium  with  dissolved organics  substantially  reduced its




toxicity to  daphnids,  but had little effect on toxicity to  fish.  No




consistent relationship  of  toxicity  to organic particle size was




demonstrated.




     Among invertebrates, cladocerans  were  the most  sensitive  species and




mayflies and  stoneflies  were  the most  resistant.   However,  Insects and other




invertebrates are  more sensitive during  molting  which usually  does not occur




among most individuals in less than  96 hours.  Salmonids uniformly appear to




be  the  fish  species  most vulnerable  to cadmium (Tables 1 and 6).




     The available acute values  for  both striped bass and brook  trout covered




such a  wide  range that data for  these  species  are not used  in  the calculation




of  the  Final Acute Value.   Drummond  and  Benoit (Manuscript)  reported that




stress  greatly  affected the sensitivity  of  brook trout to cadmium.




     Different  species exhibit different sensitivities to cadmium, and many




other  factors may affect the  results of  tests  of the toxicity  of cadmium to




aquatic species.   Criteria  can quantitatively take into account  such a




factor, however,  only if enough data are available to show  that  the  factor




similarly  affects the results of tests with a variety of species.  Hardness




is  often thought  of as having a major  effect  on  the toxicity of  cadmium,




although the observed effect  may be  due  to  one or more of a number of usually

-------
Interrelated ions, such as hydroxide, carbonate, calcium, and magnesium.




Hardness Is used here as a surrogate for the ions which affect the results of




toxicity tests on cadmium.  An analysis of covariance (Dixon and Brown, 1979;




Neter and Uasseraan, 1974) was performed using the natural logarithm of the




acute value as the dependent variable, species as the treatment or grouping




variable, and natural Logarithm of hardness as the covariate or independent




variable.  This analysis of covariance model was fit to the data in Table 1




for those species for which data are available over an adequate range of




hardness, i.e., Philodina acuticornis, Daphnia magna, goldfish, fathead




minnow, green sunfish and blueglll (see end of Table 1).  Tests of the slopes




for the individual species indicated that they were statistically different




at ?=0.03.  The slope for PMlodias acutieornis was slightly negative, the




two hardnesses tested were both below 85 mg/1, and the result at the higher




hardness fell between the results at the lower hardness.  The other five were




all between 0.90 and 1.56 and a test of these five slopes indicated that they




were not statistically different at ?*0.89; tMa large value vJ ? shows a




very small probability that the null hypothesis should have been rejected.




The pooled slope of  1.16 was statistically significant  from zero ac ?*0.0001.




The pooled slope is  close to the value of 1.0 that is expected on the basis




that cadmium, calcium, magnesium and carbonate are all divalent; if hydroxide




had a substantial effect, the slope would be greater than 1.0.




     The pooled slope of  1.16 was then used with the data in Table 1 to




calculate Species Mean Acute Values at a hardness of 50 mg/1 (Table 1).




Family Mean Acute Values were then calculated (Table 3) as geometric means of




the available Species Mean Acute v^ues.  The two salmonids were within a




factor of 2 and the  two cyprinida" wSre'SrttTftn'a factor of 6.  The most

-------
sensitive rarally, SaLmonldae, was  1,980  times more  sensitive than the most




resistant family, Blthynlidae.   The  freshwater  Final Acute Value of 6.662




ig/1 was calculated  for  a  hardness of  50 mg/1 from  the Family Mean Acute




Values using the procedure described  in  the Guidelines.  Because the Species




Mean Acute Value for rainbow trout is  3.945 ,ig/l  at a hardness of 50 mg/1,




the Final Acute Value is lowered to  protect this  important species (Table 3).




Thus, the Criterion  Maximum  Concentration  - e(l'16lln]~3'841).




     The acute values for  saltwater  invertebrates range from 15.5 ug/1 for a




raysid to 46,600 for  the  adult fiddler  crab.  The  acute values for adult




saltwater polychaetes range  from 7,500 ug/1 for Capitella capitata to 12,500




ug/1 for Neanthes arenaceodentata (Reish et al.,  1976), but the larvae of £.




capitata are thirty-five times  more  sensitive than  the adults.  Saltwater




molluscs have  acute  values from 850  ug/1 for  the  soft-ahell clam (Eisler,




1971) to 35,000  ug/1 for the mud snail (Eisler  and  Hennekey, L977).




     Frank  and Robertson (1979) reported that  the acute toxicity to Juvenile




blue crabs  was related to  salinity.   The 96-hour  acute toxicities were 320,




4,700,  and  11,600  ug/1 at  salinities of  1, 15,  and  35 g/kg, respectively.




O'Hare  (1973)  Investigated the effect of temperature and  salinity on the




toxicity of cadmium  to the fiddler crab  and did not find  a  significant effect




of  salinity.   Acute  toxicities at 20°C were 32,300, 46,600, and 37,000 at  10,




20,  and 30 g/kg  salinity.  Increasing the temperature  from  20 to 30°C




Increased  toxicity at all salinities tested.




      The saltwater  fish species were generally more resistant  to cadmium  with




acute  values ranging from 577 >ig/l for  the larvae of Atlantic silversides  to




 114,000 ug/1 for juvenile raummichog.  In a study of the  interaction  of




dissolved oxygen and salinity cm  tW aTsrte'.toxicity of  cadmium  to  the




rauramichog, Voyer (1975) found  similar toxicities at salinities  of  10 and  20

-------
g/kg but a doubling of the sensitivity at 30 g/kg.  Resistance of mummlchogs




to acute cadmium poisoning was not influenced by reductions in dissolved




oxygen levels tc 4 mg/1.



     Of the 26 families, the most sensitive, Mysidae, was 910 times more




sensitive than the most resistant family, Cyprinodontidae.  Acute values are




available for more than one species in four families, and the range of values




in a family Is always less than a factor of 3.3.  The saltwater Final Acute




Value calculated from the Family Mean Acute Values in Table 3 is 75.44 ug/1.









Chronic Toxicity to Aquatic Animals




     Chronic  toxicity tests have been conducted on cadmium with numerous




freshwater animal  species (Table 2).  The range of available chronic  toxicity




values  (0.15  to 50 ug/1)  is less than the range of available acute  toxicity




values.   Daphnia magna  is the most sensitive species tested, and Bertram and




Hart (1979)  found  chronic toxicity to Daphnia pulex  at less than 1  ug/1




(Table  6).   A 200-hr LC10 value of 0.7 ug/1  for rainbow  trout was obtained by




Chapman (1978)  and probably would be close  to  the result  of an early




life-stage  test because of  the extent to which various life stages  were




investigated (Table 6).  Other salraonids and many Invertebrates  are also




quite  sensitive, with effects having been observed at  5  ug/1 or  less  (Table




6).  These  organisms  include  decomposers (Giesy,  1978),  crayfish (Thorp, et




al.  1979),  copepods and annelids  (Giesy, et  al. 1979), midges (Anderson, et




al.  1980) and mayflies  (Spehar,  et  al.  1978).




      All of  the acute-chronic ratios  for freshwater  species are  between  65




and  434, except for the value of  0.9021  obtained  with  chinook salmon  (Table




 2).   The lowest ratio  is  surprising  because  all the  other ratios are  much




higher and'were oBEained  with a1 variety-of  species-over  a wide range- of

-------
hardnesses and sensitivities.   The  lowest  ratio  is  even more surprising




because it is less than  L.O,  indicating  that  acclimation must have occurred




during the early life-stage  test.   Because the Final Acute Value is based on




a species in the same  family as the species with which the lowest




acute-chronic ratio was  obtained, it  seems inappropriate to use the higher




ratios to obtain the Final Chronic  Value.   To protect rainbow trout in those




situations in which the  concentration of cadmium is not constant enough to




result in acclimation,  the Final Chronic Value cannot be higher than  the




Criterion Maxluura Concentration. Thus the Freshwater Final Chronic Value »



e(L.161IX hardness)]-3.84)_




     Two chronic toxiclty studies have been conducted with the saltwater




invertebrate, Mysidopsis bahia (Table 2).   Nimmo et al.  (1977a) conducted a




23-day life-cycle-test  at 20-28 C and 15-23 g/kg salinity.  Decreased




survival occurred at  10.6 ug/1, whereas a  48-hr  delay in brood formation,




24-hour delay  in brood release, and a 57%  decrease in the number of young per




female resulted at 6.4 ug/1.  No adverse effects were detected at 4.8 ug/1.




The chronic  coxicity  limits, therefore, are 4.8  and 6.4 ug/1 with a chronic




value of  5.5 ug/1.  The 96-hour LC50 was 15.5 ug/1 resulting  in an




acute-chronic  ratio of 2.8.



     Another life-cycle study was conducted with cadmium  and Myatdopais bahia




under different  environmental conditions,  Including constant  temperature  (21




C)  and  salinity (30 g/kg).  Complete mortality occurred  after 28 days



exposure  at  25 ug/1.   At 11.5 ug/1  a series of  morphological  abberations




occurred  at  the  onset of sexual maturity.   External genItalia  in males were




abbecant,  females  failed to develop brood  pouches and both  sexes developed a



carapace  malformation that prohibited molting after the  release of  the




initial-brood.   Although initial reproduction at this concentration was



successful,  successive broods could not be borne because  molting  resulted  in

-------
                                                                                 9
death.  No malformations or effects on initial or successive reproductive




processes were noted in the controls or at 5.5 ug/1.  The chronic limits for




this study are 5.5 and 11.5 with a chronic value of 8.0 ug/1.  The LC50 at 21




C and 30 g/kg salinity was 110 ug/1 which results in an acute-chronic ratio




of 14 from this study.



     These two studies showed excellent agreement between the chronic values




but considerable divergence between the acute values and acute-chronic




ratios.  Several studies have demonstrated an increase  in acute  toxicity of




cadmium with decreasing salinity and increasing  temperature  (Table 6).  The




observed differences in acute toxicity to the mysids night be explained oa




this basis.  Niramo, et al.  (1977a) conducted their  acute test at 25  to 28 C




and 10-17 g.'Kg sal.nity wher-sss tba ocher test was  performed at  21 C and 30




g/kg salinity.



     Because  Che acute-chroiJc  ratios with  freshwater  animals covered such a




wide range, it would be inappropriate to  use the geometric aasn  of all




available acute-chronic ratios  to  calculate  the  saltwatar Fir-1  Chronic




Value.   The saltwater  species for  which  an  acute-chronic rs^io  is available




has a  Species Mean Acute Value  very  close to  the saltwater  Final Acuta Value




and so it seems  reasonable  then to use this  acute-chronic ratio. When  the




Final  Acute Value  of  75.44  utt/1 is divided  by  the  scute-chronic  ratio of




6.218, a saltwater Final  Chronic Value of 12.13  ug/1  is obtained.









Toxicity to Aquatic Plants




      Growth  reduction was the major  toxic effect observed with  freshwater




aquatic plants  (Table 4),  and several values are in the range of




 concentrations  causing chronic  effects  in animals.  The influence that  plant

-------
growth media -nay  nave  had  on  the  toxlclty studies  Is  unknown,  but  is  probably




•ninor at  least  In the  case of Conway (1978)  who  used  a medium  patterned  after




natural Lake Michigan  water.   Because the lowest toxiclty values  for  fish  and




Invertebrates  species  are  lower than the values  for plants,  water  quality




criteria  which protect freshwater aquatic animals  should also  protect aquatic




plants.



     Toxicity  values are available for three species of saltwater  diatoms  and




two  species of inacroalgae (Table 4).  Concentrations causing fifty percent




reductions in  the growth rates of diatoms range from 60 ug/1 for  Ditylum




brightwelli to 175 ug/1 for Skeletonema costatum.  The brown macroalga (kelp)




was  the least  sensitive to cadmium with an EC50 of 860 ug/1.  The most




sensitive plant tested was the red alga, Champia parvula,  with significant




reductions In the growth of  both  the 'tetrasporophyte plant and femal.-. plant




occurring below 14 ug/1.  This species of plant is of comparable  sensitivity




 to the chronic values  for  the  most  sensitive animal  species tested.









 Bioaccumulation



      Bioconcentration factors  (BCF)  for  cadmium in fresh water (Table 5)




 ranged from 3 for brook trout  muscle (Benoit, et al.  1976)  to 12,400  in the




 whole  body of mosquitofish (Glesy,  et al.   1977).  Usually, fish  accumulate




 only small amounts  of cadmium in muscle  as  compared  to  most other  tissues and




 organs (Benoit,  et  al. 1976; Sangalang and  Freeman,  1979).  Also,  cadmium




 residues in fish reach steady-state only after  exposure periods greatly




 exceeding 28  days (Benoit, et al.  1976; Sangalang and Freeman, 1979; Giesy,




 et  al. 1977).  Daphnia magna, and presumably other invertebrates  of  about




 this  size or  smaller, often reach steady-state within a few days  (Poldoski,




 1979).  Cadmium accumulated by fish from water is eliminated  slowly  (Benoit,

-------
,.(   ,|. I'l/l.. l.itmi.li, r|  il   ri'l-l). ImL KuilldJd.  «l  i!   I I'Jill) j  roiiinl  llial




cadmium accumulated  from  food  Is eliminated much more  rapidly.




     Mallard ducks .ire  the only aative wildlife species whose chronic




sensitivity to cadmium  has been studied.   These birds  can be  expected to




ingest many of the different  freshwater  plants  and  animals listed in Table 4.




White and Finley  (1978,a,b)  found significant damage occurring at a cadmium




concentration of  200 mg/Vtg in food for 90  days.  Division of  200 mg/kg by the




geometric mean BCF of  766 gives a Final  Residue Value  of  260  ug/1.   This is a




concentration which  would cause damage  to  mallard ducks,  but  no additional




data are available.



      Among  saltwater species, BCFs have  been  determined for cadmios with one




species of  alga,  thirteen species of  invertebrates  and one species of -fish




(Table  5).  Values  cange from 22  to 3.L60  for whole body  and  from 5 to 2,040




for muscle.  Kerfoot and Jacobs  (1976)  reported a BC?  of  670 for the alga,




Praainocladus  tricornutum.   Theede et al.  (1979) found that tha colonial




hydroid, Laomedea loveni, bioconcentrated  cadmium 153  tiaes within a 10-day




exposure  per nod.   The highest BCF was reported for t.-.e polychaace




Ophryotrocha  diadema (Kloclcner,  1979).   After sixty-four  days exposure using




the renewal technique, a BCF of  3,160 was  attained.  Tissue residues,




however,  had  not  reached steady-state.




      BCFs  for 5 species of  bivalve molluscs range from 83 for the quahog clam




 (Kerfoot  and  Jacobs, 1976)  to 2,600 for the eastern oyster (Zaroogian and




Cheer,  1976).  In addition,   tho range of reported BCFs is rather large  for




some  individual species.  BCFs for the oyster  include  149 and 677 (Table 6)




as well as '.,220 and 2,600 (Table 5).  Similarly, two  reported  studies  on  the

-------
bay scallop  report  BCFs  of  168  (Eisler,  et  al.  1972),  ,»r.a  2,040  (Pesch  and




Stewart,  1980)  orc 3CFs  of  113,  306,




and 710 (Tables  5 and  6).   George ar.d  Coombs  (1977)  studied  che  importance  of




metal  spec tat Ion on cadmium accumulation in che soft-tissues of  Mytilus




edulis.   Cadmium complexed  as  Cd-EDTA, Cd-alginate,  Cd-humate, and  Cd-pecrate




(Table 6) was  bioconcentrated  it  twice the  rate of inorganic cadmium  (Table




5).  Because bivalve molluscs  usually  do not  reach sceady-state, comparisons




between species may be difficult  and the length of exposure  may  be  the  major




determinant  in the  size of  the BCF.




     BCFs for six  species of crustaceans range from 22 to  307 for whole body




and from  5  to 25 for muscle (Table b).   NimaiO et ai. (1977)  reported  whole




body BCFs of 203 and 307 for two  species of grass 3hrimp,  Palaemontes pugio




and Palaemonefes vulgaris.   Vernberg et  al. (1977) reported  a factor  of 140




for PJ.  pugio at 25 C,  whereas Pesch and  Stewart (1980) reported  a factor of




only 42  for  the same species exposed at  10 C indicating that temperature may




be an  important variable.  The commercially important crustaceans,  the pink




shrimp and lobster, were not effective bioaccumulators of  cadmium with




factors of 57 for whole body and 25 for muscle, respectively.  A single BCF




of 48  is  reported for saltwater  fishes (Eisler, et al. 1972), which probably




indicates that  fish also do not  bioconcentrate cadmiun effectively.




      Although a high degree of variability exists between the BCFs  reported




for saltwater organisms, shellfish can accumulate cadmium in tissues to




concentrations  potentially harmful Co man.  The emetic threshold of cadmium




 is 13-15 mg/Vtg  for  man  (Anon., 1950).  Zaroogian and Cheer  (1976) reported




 finding cadmium in  oyster  tissue at 11 mg/kg after 280 days exposure to 5




 ug/1.  Kerfoot  and  Jacobs  (1976) also demonstrated  cadmium  concentrations of




 16 mg/kg in oyster, tissue  after  a  40-day expo mre to 30 ug/1.

-------
Other Data



     Cadmium-binding proteins were Isolated from Aaoeba proteus ^Al-atia,




1978, 1980) and rainbow trout (Roberts, et al. 1979).  The cumulative




mortality resulting from exposure to cadmium for more than 96 hours is




clearly evident from the studies of Reish, et al. (1976) on polychaetes;




Eisler and Hennekey (1977) on bivalve molluscs, crsbs, and starfish; Pesch




and Stewart (i960) on scallops, shrimp, crabs; and on a mysid (Gencile, et




al. 1982; Nimmo, et al. 1977a).  Nimmo et al. (1977«) in studies wich  che




mysid, Mysidopsia  bahia. reported a 96-hr LC50 of 15.5 ug/i (Table 1)  and a




17-day LC50 of  11  ug/1  (Table 6) at 2S-28 C and 15-23 g/Vtg salinity.   In




another  series  of  studies on this mysid (Gentile, et al. 1982), tne 96-hr




LC50 was  105 ug/1  (Table 1) and the 28-day LC50 was  16 ug/1 (Taole &)  at 20  C




and  30 g/kg salinity.   Comparison of these data  leads  co the hypothesis  that




short-term  acute  toxicity may be  strongly  influenced by envirorvner.tal




variables whereas  long-term effects,  even mortality, are r.ot.   This pattern




was  also reflected in  the  similarity  of  reproductive effects on this  species




(Table 2) tested  under dissimilar  environmental  conditions.




      Two studies  of chronic  exposure  are  illustracive  of  trie effects  of




cadmium  on growth and  fecundity.   Pesch and  Stewart (1980)  in  a study of




cadmium  toxicity to the bay  scallop,  Argopecten  irraciians,  reported  a 96-hr




LC50 of  1,480 ug/1 and a 42-day LC50 of 530 ug/1.   They also  reported that 60




and 120  ug/1 reduced growth  42  and 69 percent,  respectively, which results in




 an EC50  of about 78 ug/L.




      Considerable Information exists concerning  the effect of  salinity and




 temperature on the acute toxicity of cadmium.  Unfortunately the conditions




 and durations of exposure are so different that  adjustment of  acute toxicity




 data for salinity is not possible.  Rosenberg and Costlow (1976) studied the

-------
•iyiu-1 M l-it U  i-llu. (a  ..I  i ii>l-ulu:u  .nut  n i ! ' n I L y  i innti lue.l wlili ...nalanl  in.l




cycling  teraperacures on che  larval  development of two estuarlne  crab  species.




They reported  reduction In survival and significant delay In development  of




the blue  crab  with decreasing salinity.   Three times as much cadmium  was




required  to  produce  an  LC50  at  30 than at 10 g/kg salinity.  Studies  with the




mud crab  resulted in a  similar  cadmium-salinity response.  In addition,  the




authors  report that  cycling temperatures  may have a stimulating effect  on




survival  of  larvae  compared  to  constant temperatures.




     Theede, et al.  (1979) investigated the effect of temperature and




salinity on  the acute toxicity of cadmium to the colonial hydroid,  Laomedea




loveni.   At  17.5 C  cadmium concentrations inducing irreversible retraction of




half of  the  polyps  ranged from 12.4 ug/1 at 25 g/kg salinity to 3.0 ug/1 at




10  g/kg  salinity (Table 6).  At 25 g/kg salinity the toxictty of cadmium




decreased as temperature  increased.




      The effect of environmental factors on the  acute  toxicity of cadmium  is




also evident for the early life stages of saltwater vertebrates,  \lderdice




et  al. (1979a,b,c,)  reported that  salinity  Influenced  the  effects of cadmium




on  the volume, capsule  strength, and osmotic  response  of embryos of the




Pacific herring.  Voyer,  et  al. (1979) reported  a  significant linear




 relationship between salinity  and  cadmium toxicity to  Atlantic  silverside




 embryos.  Previous  studies on  the  embryos of  the winter  flounder Indicated a




 quadratic salinity-cadmium relationship  (Voyer,  et al. 1977).




       Several  studies have reported on  the chronic  sublethal  effects of




 cadmium on  saltwater fishes  (Table 6).   Significant reduction  in gill  tissue




 respiratory rates and  the alteration  of  liver enzyme activity  have been




 reported  for  the cunner afer a 30-day  exposure to 50 ug/1  (Maclnnes, et  al.




 1977).   Dawson,  et  al. (1977)  also reported a aignflcant decrease  in

-------
gill-tissue respiration for striped bass ac 0.5 ug/1 above a.nbj.ent after a




30-day, but not a 90-day, exposure.  A similar study on the winter flounder




(Calabrese, et al. 1975) demonstrated a significant alteration in gill  tissue




respiration rates measured  in vitro after a 60-day exposure to 5 ug/1.  The




significance of these sublethal effects on growth and reproduction have yet




to be  evaluated.









Unused Data



     Many data, such  as  those  in  Kobayashi (1971), D'Agostino  and Fianey




 (1974), Wast.;rnhagen, et  al.  (1975, 1978), Westernhagen and Dethlefsen




 (1975), Ojavoer,  et  al.  (1980),  Negilski  (1976),  and Rainbow,  et  al.  (I960),




 were not  usen  because the species used are not resident  in North  Aaenca.




 Data in publications such as  Ball (1967), Landner and  Jernelov (1969),




 Ministry  of  Technology (1967,  1971),  Tarzwell and Henderson (1960),  Burnison,




 et al. (1975), Shcherban (1977), Fennikok,  et al. (197S), Canton and Slooff




 (1979), Venna, et al. (1980)  and Maas (1978) were not  used because  either the




 materials, in ;hods, or results were insufficiently described.   High control




 mortalities  ccurred in all except one test reported by Sauter,  et  al.




 (1976).



      The  acceptability of  the dilution water used in some studies,  e.g.,




 Cearley  and Coleman (1973, 1974) and Brkovic-Popovic and Popovic (1977a,b),




 was open to question because of  Its origin or content.  Data  from some algal




 studies  (e.g., Muller and  Payer, 1979, 1980; and Lue-Kira, et al. 1980) were




 not used because the medium contained EOTA.  Some papers were omitted  because




 of  questic-.'-ii
-------
Mowdy, 1981; Hutcheson, 1975; Sunda, et al. 1978; Grelg, 1979; and Bryan,




1971.



     Data on bloconcentratlon by aquatic organisms were not used if the test




was too short (Beattie and Pascoe, 1978; Yager and Harry, 1964; Garoday and




Churchill,  1979; and Relchert,  et al.  1979) or If the concentrations in water




were not adequately measured (Free-nan, 1978, 1980).  The bioconcentratlon




tests of Elsler  (1974), Jennings and Rainbow (1979b), O'Hara  (1973b), Phelps




(1979), Sick and Baptist  (1979) were not used because results were based on




isotopic cadmium without  adequate evaluation of  non-isotopic  cadmium.  Data




in Ray, et  al.  (1981), Greig and Wenzloff  (1978), Boydcn (1977), Noel-Lambot




(1980), Kneip and  Hazen (1979), Anderson,  et al. (1978), Frazier (1979), and




Hazen and Kneip (1980) were  not used because the field exposure




concentrations  of  cadmium were  Insufficiently characterized.




     Mode of action  studies  (DeFilippls, 1981) and  in vitro studies (Tucker




and  Matte,  1980) were  not used.  The data  of Stern  and Stern  (1980) were not




used because cadmium was  only  one of several metals  in a mixture.  Reviews by




Chapman,  et al. (1968),  Thompson, et al. (1972), and Phillips and Russo




 (1978)  only contain  data  that  had been published elsewhere.









 Summary



      Freshwater acute  values for cadmium are available  for  30 species and




 range  from 2-9  -jg/1  for rainbow trout  to 9,900 for  mosquitofish.   The




 antagonistic effect  of hardness on  acute toxicity  has  been  demonstrated  with




 six  species.   Chronic  tests have been  conducted  on  cadmium  with  eleven




 freshwater fish species and one invertebrate  species with chronic  values




 ranging from 0.15 ug/1 for Daphnia magna to 50 jg/1 for  the bluegill.

-------
                                                                               n
Acute-chronic ratios are available for five species; four of the ratios are




between 120 and 440, but the ratio for the sensitive Chinook saloon  is




0.9021, indicating substantial acclimation.




     Freshwater aquatic plants are affected by cadmium at concentrations




ranging from 2 to 7,400 ug/1.  These values are in  the same range as  Che




acute toxicicy values for fish and invertebrate species, and are considerably




above the chronic values.  Bioconcentration factors for cadmium reach 3,000




for some invertebrates, and may be as high as 12,000 for some  fish species.




     The saltwater acute values for cadmium and five species of fishes ranged




from 577 ug/1 for larval Atlantic silversides to 114,000 ug/1  for Juvenile




mummichog.  Acute values for twenty-six species of  invertebrates ranged  from




15.5 ug/1 for a mysi
-------
                                                                             I?
National Ci'
     Because  the  acuce  and chrou'.o  toxl.-icies or Jdviniuw to




Important freshwater  species are  about the saae, to protect freshwater




aquatic life  and  its  uses, the concentration (in^g/'l)  of active cadmium




(operationally defined  as  the cadmium that passes through a 0.45 y-m membrane




filter after  the  sample is acidified to pH * 4 with nitric acid) should not



exceed the  numerical  value given  ay 6U. 16[ln(hardness)]-3. 841).  For




example,  at hardnesses  of  50, 100,  and 200 ag/1 as CaC03 the maximum




concentrations of active cadmium  are 2.0, 4.5, an»l 10 ^g/1.  Data on the




acute  toxlclty of cadmium to brook trout  iad striped bass cover a wide range,




but  if these  species  aie as sensitive as  acme of the values indicate they




might  be, they will not be protected by t.iis criterion.



     To protect  saltwater aqua:Lc Life aid Its ujsea, '.n each 30 consecutive




days:   (a)  the  average concentration of active cadmium should not exceed 12




>>g/l;  (b) the maximum concentration should not exceed 38 >*g/l; and (c) the




concentration may be between' 12 and 38 ^g/1  for  up to 96 hours.

-------
Table 1.  Acute toaclclty of  cadnlun to aquatic anloMls
Specie

Rot i for ,
Phi lodlna acutlcornls
Rotifer,
Phi lodlna acutlcornls
Rotifer,
Phi lodlna acutlcornls
Worm,
Nals sp.
Snail (adult).
Amnlcola sp.
Snail (adult).
Physa gyr 1 na
Snail (limature).
Physa gyrlna
Cladoceraft,
Cerlodaphnla retlculata
Cladoceran,
Oaphnla magna
Cladoceran,
Daphnla magna
C 1 adoceran ,
Oaphnla magna
Cladoceran,
Oaphnla magna
Cladocoran,
Daphnla magna
C 1 adocoran ,
Ofphnla magna
Method* Chemical
Hardness
(•g/l as
LC50 Species Mean
or ECSO Acute Value
Rater ence
FRESHWATER SPECIES
R,

K.

R.

s,

s,

s.

s.

s.
s.
ff.

s.

s,

s.

s.

U Cadmlura crilorlde

U Cddmlum suit ate

U Cddmlum sultate

U

U

M

M

U
U C.idmlura chloride
M Cadmium chloride

M Cadmliw chloride

M Codir.limi chlurlde

M Cadnilum chUirtde

M Cadmium chh.rlda

25

25

81

50

50

200

200

45
45
130

51

10.4

105

197

500

200

300 440.7

1,700 1,700

8,400 8,400

1,370

410 150.1

24«..
65««. -
5.00

9.9

33

34

65

Bulkema, et al. 1974

Bulkema, et a,. 19/4

BulKema, et al. 1974

Rehwoldt, et al . \
-------
Table I.  (Continued)

Species
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla pulex
Cladoceran,
Oaphnla pulex
C 1 adoceran ,
Oaphnla pulex
Cladoceran,
Slmocephalus serrulatus
Cladoceran,
Slmocephalus serrulatus
Cladoceran,
Slmocephalus serrulatus
Cladoceran,
Slmocephalus serrulatus
Cladoceran,
Slmocephalus serrulatus
Cladoceran,
Slmocephalus serrulatus
Cladoceran,
Slmocephalus vetulus
Scud.
Ganmarus sp.


Method*
S,

s.

S,
s.

s,
s,

s,

s,

s.

s.

s,

s.

s,
s,

M

U

u
u

u
u

M

M

M

M

M

M

U
U



Chealcal
Cadmium

Cadm 1 urn


Cadmium


Cadmium

Cadmium

Cadmium

Cadmium

Cadmium

Cadmium

Cadmium




chloride

nitrate


nitrate

-
chloride

chloride

chloride

chloride

chloride

chloride

chloride

-
-

Hardness
(mg/l as

209

-

45
-

45
57

10.0

11.1

11.1

II. 1

11.1

H.l

45
50

LC50 Species Mean
or EC50 Acute Value
Cyg/D" <»jg/l)*M
49

30.18
(6)
,20**** 8.540
93.45
(2)
71 •—
47 40.37

35.0

7,0

3.5

12.0

16.5

8.6 62.29

2«....
70 70.00


Reference
Chapman, Manuscript

Canton & Adema, 1978

Mount & Nor berg,
Manuscrpt
Canton & Adema, 1979

Mount & Nor berg.
Manuscript
Bertram & Hart, 1979

Glesy, et al . 1977

Glesy, et al . 1977

Glesy. et al. 1977

Glesy. et al. 1977

Glosy, et al . 1977

Glesy, et al. 1977

Mount & Nor berg.
Manuscript
Rehwoldt, et al . 197

                                                                                                                                 XJ

-------
Table 1.  (Continued)

Spec lei;.
r - .
MayMy,
Ephambi olio grand Is
grand (s
MayMy,
Ephemeral la grand Is
grand is
Damsel t ly,
(Unidentified)
Stone ( ly.
Pteronarcel la bad la
Caddlsf ly.
(Unidentified)
Midge,
Chironomus sp.
Bryozoan,
Pectinate! la magnifies
Bryozoan,
Lophopodel la carterl
Bryozoan.
P 1 umate 1 1 a emarg 1 nata
American ael ,
Angu Ilia rostrata
Coho salmon (parr).
Oncorhynchus klsutch
Coho salmon (adult).
Oncorhynchus klsutch
Chinook salmon (alevln),
Oncorhynchus tshawytscha
Chinook salmon (s«lm-up).

Hardness LC50 Species Mean
Imu/l as or EC50 Acute Value
Method* Cluuilcal CeCOjj) (|^/l)"* (yg/l)***
FT.


s.


s,

FT,

s,

s,

s.

s,

s.

s.

FT.

FT,

Fl,

FT.
M CbJ.nl un chloride - 28,000


I) Cadmium -.uUate 44 2,000 2,319


U W 8,100 8,100

M Cadmluir chloride - 18,000

U 50 3,400 3.400

U 50 1,200 1,200

U - 190-220 700 136.2

U - 190-220 150 29.19

U - 190-220 1,090 212.1

M - 55 820 734.2

M Coilmiiiii chloride 23 2.7

M Cuclmlum chloride 25 I7.5*"" 6.646

M Cadmium chloride 23 >26B»«»

M Cadmium chUirldo 23 1.8

Reference
Clubb. et al. 1975


War nick & BrH , 1969


RehMOldt, et al . 1971

Clubb, et al. 1975

RehMOldt, et al . 19/i

Rehrioldt, et al . 1971

Par duo & Wood, 1980

Pardue & Wood, 1980

Pdrduo & Wood, 1980

RehMOldt, et al . 19V/

Chapman, 1975

Chapman, 1975

Chapman, 1975, 1978

Chapman. 1975. 197b
Oncorhynchus tshaxytscha

-------
Tablo 1.  (Continued)


Species
Chinook salmon (parr).
Oncorhynchus tshawytscha
Chinook salmon (smolt).
Oncorhynchus tshawytscha
Chinook salmon (juvenile).
Oncorhynchus tshawytscha
Rainbow trout (alevln).
Salmo galrdnerl
Rainbow trout (swim-up).
Salmo galrdnerl
Rainbow trout (parr).
Salmo galrdnerl
Rainbow trout (smolt),
Salmo galrdnerl
Rainbow trout (2-mos).
Salmo galrdnerl
Rainbow trout.
Salmo galrdnerl
Rainbow trout.
Salmo galrdnerl
Rainbow trout.
Salmo galrdnerl
Rainbow trout.
Salmo galrdnerl
Brook trout.


Method*
FT, M

n, M

FT, M

n, M

FT, M

n, M

FT. M
FT. M

FT. M

s, u

S. U

S. U

R, M


Clualcal
Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride
Cadmium nitrate

Cadmium sulfate

-

-

Cadmium chloride

Cadmium chloride
Hardness
(ng/l as
vwgyr - —
CaCCK)
23

23

25

23

23

23

23


31

-

-

-

47.4
LC50 Species Naon
or EC50 Acute) Value

3.5

>2.9 	

1.41 4.936

>27 	

1.3

1.0

4.1
6.6

1.75

6

7

6.0 3.945

5,080


Reference
Chapman, 1975, 1978

Chapman, 1975, 1978

Chapman, 1982

Chapman, l*/i, 1978

Chapman, 1975, 1978

Chapman, 1978

Chapman, 1975
Chapman, 1978
Hale. 1977

Oavles, 1976

Kumada, et al . 1973

Kumada, et al . 1973

Kumada, et al . 1980

Hoi combo & Phlpps,
MjtnuQrr I nt
 Salvallnus fontlnalls
                                                                                                                                         XI

-------
Table I.  (Continued)
Species
Brook tri'ut.
Salve lint,', fontlnalli
Goldfish,
Carasslus auratus
Goldfish,
Carasslus auratus
Goldfish,
Carasslus auratus
Common carp.
Cyprlnus carplo
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales prone! as
Fathead minnow,
Plmephales promelas
Fathead minnow.
Plmephales promelas
Fathead minnow.
Plmaphales promelaa
Fathead minnow.
Plmephales promelas
Fathead minnow.
Plmophalos prcxnoljs
Fathead minnow.
Method*
S.

s,
s,

s.

s,

s.
s.
s.
s.
Fr,

FT.

FT,

n.

FT,
*

U
M

M

M

li
U
U
U
M

M

M

M

M
Chsalcal
Cadmium

Cachu 1 um
Cadmium

Cadin 1 urn

-

Cadmium
Cadmium
Cadmium
Cadmium
Cadmium

Ca.lmlum

CAdmliM

Cadmium

Cadmium

sul fate

chloride
chloride

chloride



chloride
chloride
chloride
chloride
sul fate

sut fa to

sul fate

sut late

sul fate
Hardness
(aig/l as
fiaCOxL.
42

20
20

140

55

20
20
360
360
20)

201

201

201

201
LC50 Species Mean
or EC50 Acute Value
Reference

<1.5 ••*BM Carroll, et al. 1975

2,340
2,130

46, BOO 8,397

240 214.9

1,050
630
72,600
73,500
11,200

12,000

6,400

2,000

4,500 2,062


Plckorlng &
Henderson, 1966
McCorty. et al . 1976


McCarty, at al . 197S

Rshuoldt,

Pickering
Henderson
Pickering
Henderson
Pickering
Henderson
Pickering
Henderson
Pickering
1972
1 7 * A
Pickering
lOt'J
1 7 '«
Picker tng
1972
• 7 f£
Pickering
19V2
1 7 f £
Plckorlng
tai'-

et al. 1972

&
, 1966
, 1966
&
. 1966
&
, 1966
& Gast,

& Gast,

A Gast,

& Gast,

& Gast ,
Plmephales promelas

-------
Table  I.  (Continued)
Species
Fathead minnow (fry),
Plmephales promelas
Fathead minnow (fry),
Plmephales promelas
Fathead minnow (fry),
Plmephales promelas
Fathead minnow (fry),
Plnaphales promelas
Fathead minnow (try),
Plnephales promelas
Fathead minnow (fry),
Plmephales promelas
Northern squawflsh,
Ptychochellus oregonensls
Northern squawflsh,
Ptychochellus oregonensls
Banded kl II Iflsh,
Fundulus dlaphanus
Flagllsh,
Jordanella florldae
Mosqultoflsh,
Gambusla afflnls
Mosqultoflsh,
Gambusla afflnls
Mosqultoflsh.
Gambusla afflnls
Mosqultoflsh,
Method*
S, M
S. M
S, M
S, M
S, M
S, H
F, M
F, M
S, M
FT, M
FT, M
FT, M
FT, M
FT, M
Chad leal
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmitm chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Hardness
t«g/l as
CaCOQ
40
48
39
45
47
44
20-30
20-30
55
44
10.0
10.0
10.0
11.1
LC50 Species Mean
or EC50 Acute Value
21. 5""""
11.7""""
19.3""""
42.4 	
54.2».«» -
29.0""""
1,092
1,104 2,454
1 10 98.49
2,500 2.900
1.300
1.500
2,600
900
Reference
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982






Andros & Carton, 1980
Andros & Carton, 1980
Rehwoldt, et
Spehar, 1976a
Glesy, et al .
Glesy, et al .
Glesy, et al .
Glesy, et al.
al. 1972
1977
1977
1977
1977
Gambusla afflnls

-------
Table 1.  (Continued)
Specie?
Mosquluf 'sh,
Gambusla sfflnls
Guppy,
Poecll la ret leu lota
'.Threesplne stickleback,
Gasterosteus aculeatus
Threesplne stickleback,
Gasterosteus aculeatus
White perch,
Morone amerlcana
Striped bass,
Morone saxatl 1 Is
Striped bass ( larvae),
Morone saxatl Ms
•Striped bass (f Ingerl Ing),
.Horone saxatl Us
Green sun fish,
Lepomls cyanel lus
Green sunflsh,
Lepomls cy_anel lus
•Green sunflsh,
Lepomls cyanel lus
Pumpkin seed,
Lepoml s glbbosus
B 1 ueg III,
.Lepomls macrochlrus
• Blueglll,
Method*
FT. M
S, U
S, U
R. H
S. M
S, M
s. u
s. u
s. u
s. u
Ff. M
S. M
S. U
FT, M
Chemical
Cadmium chloride
Cadinlum chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Hardness
(og/1 as
CeCO,)
11.1
20
115
103-111
55
55
34.5
34.5
20
360
335
55
20
207
LC50
or ECSO
2.200
1,270
6,500
23,000
8,400
1,100
1
2
2,840
66.000
20.500
1,500
1,940
21,100
Species Mean
Acute Value
(jjg/ 1 ) BM Reference

9,775 Glesy, et al. 1977
3,676 Pickering &
Henderson, 1966
Pascoo 4 Cram, 1977
4,852 Pascoe & Mattey. 1977
7,521 Rehwoldt, et al . 1972
Rehwoldt, et al . 1972
Hughes. 1973
•••••a Hughes, 1973
Pickering &
Henderson, 1966
Pickering &
Henderson, 1966
4,987 Jude, 1973
1,343 Rehwoldt, et al . 1972
Pickering 4
Henderson, 1966
4, 7 '5 Eaton, 1980
'Lepomls macrochlrus

-------
Table I.  (Continued)
Species

Polychaete worm (adult).
Neanthes arenaceodentdta
Polychaate worm (Juvenile),
Neanthas arenaceodentata
Polychaete worm.
Nereis v Irons
Polychaete worm.
Nereis vlrens
Potychaete worm (adult).
Cap! tell a capltata
Polychaete worm (larva).
Cap) tell a capltata
Oyster drill.
Urosalplnx clnerea
Mud snail.
Nassarlus obsoletus
Mud snail.
Nassarlus obsoletus
Blue mussel ,
Mytllus edulls
Blue mussel ,
Mytllus edulls
Blue mussel ,
Mytllus edulls
Blue mussel.
Mytllus edulls
Bay scallop (juvenile).
Method*
Chealcal
LC50 Species Meai
or EC50 Acute Value
I
Reference
SALTWATER SPECIES
s.

s.

s,

s.

s.

s.

s,

s.

s.

s.

s.

FT.

FT.

s.
U

u

u

u

u

u

u

u

u

u

M

M

M

U
Cadmium

Cadmium

Cadmium

Cadmium

Cadmium

Cadmium

Cadmium

Cadmium

Cadmium

Cadm 1 urn

Cadmium

Cadm 1 urn

Cadmium

Cadiii 1 urn
chloride

chloride

chloride

chloride

chloride

chloride

chloride

chloride

chloride

chloride

chloride

chloride

chloride

chloride
12

12

9

11

7



6

35

10

25

1

3

4

1
,000

,500 12,200

.300

.000 10,100

,500""*

200 200

,600 6,600

,uOO

,500 19.170

,000

,620

,600

,300 3,934

,480 1.480
Relsh,

Relsh,

Elsler
t ft*n
1977
Elslur,

Relsh.

Re 1st).

Elsler,

Elsler
1977
Elsler.

Elsler.

Ahsanul

Ahsanul

Ahsanul

Nelson,
et al. 1976

at al. 197b

& HenneKey,

1971

et al. 1976

et al. 1976

1971

& HenneKey,

1971

1971

lah, 1976

lah, 1976

lah, 1976

et dl. 197
Argopecten Irradians

-------
Tabla 1.  (Continued)

i oi.tern oyster (larva),
Crcissostred virgin lea
Soft-shell clam,
Mya arenarla
Soft-she) 1 clam,
Mya arenar 1 a
Soft-shell clam,
Mya arenarla
Copepod,
Pseudodlaptomus coronal us
Copepod ,
Eurytemora afflnls
Copepod ,
Acartla clausl
Copepod,
Acartla tonsa
Copepod ,
Acartla tonsa
Copepod ,
Acartla tonsd
Copepod ,
Acartla tonsa
Copepod,
Method*
S. U
s, u
s, u
s, u
s. u
s, u
s. u
s, u
s. u
S. I'
s, u
S, U
Cheailcal
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cad,,i I urn chloride
Cadmium chloride
Cadmium chlorldo
Cadmium chlorldo
Cadmium chltn Ide
LC50
or EC50
'(MS/I)"
3,800
2,500
2,200
850
1,708
1,080
144
90
122
220
337
1.800
Species Mean
Acute VoliM
3,800
1,672
1,708
1,080
144
168.9
1.800
Reference
Calabrese, et al.
1973
Elsler & Hennekey,
1977
Elsler, 1971
Elsler, 1977
Gentile. 1982
Gentile. 1982
Gentile, 1982
Sosnoeiskl & Gentile.
1978
Sosnonskl & Gentile,
1978
Sosnowskl & Gontlle,
1970
Sosnouskl & Gentile,
1978
Bengtsson, 1978
 Nltocra  splnlpes

-------
Table 1.  (Continued)

Species
Hysld.
Mysldopsis bah la
Mysld,
Mysldopsis bah la
Mysld,
Mysldopsis blgeloMl
Amphlpod (young).
Marlnogammarus obtusatus
Amphlpod (adult).
Marlnogammarus obtusatus
Amphlpod (adult).
Ampel Isca abdlta
Pink shrimp.
Penaeus duorarum
Grass shrimp.
Palaemonetes vulgar Is
Grass shrimp.
Palaemonetes vulgarls
Sand shrimp.
Crangon septemsplnosa
American lobster (larva).
Homarus amerlcanus
Hermit crab.
Pagurus longlcarpus
Hermit crab.
Pagurus longlcarpus
Blue crab (Juveniles).

Method*
FT, M

FT, M

FT, M

S. M

Sftl
• "

FT, M

FT. M

S, U

FT, M

s. u

S, U

s. u

s. u

s. u

Chemical
Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride
LC50
•or EC50
(»jg/D**
15.5

110

135

3,500

13,000 	

2.890

3,500

420

760

320

78

320

1,300

11,600
Species Mean
Acute Value
(yg/l)"8*
-

41.29

135

-

3,500

2.890

3,500

-

760

320

78

-

645

-

Reference
Nlmmo, et al . 1977a

Gentile, et al . 1982

Gontlle, et al . 1982

Wright & Frlen. 1981

Mrljht and Frlen. 1981

Scott, 1982

Nlnvno, et al . I977D

Elsler, 1971

Nlnmo. et al . 1977b

Elsler, 1971

Johnson & Gentile,
1O7O
1 7 1 if
Elsler, 1971

Elslor & Hennekey,
t cm
1977
Frank & Robertson,
1070
 CalIInectes  sapldus

-------
Table 1.  (Continued)
LC50 Species Mean
or EC50 Acute Value
Species
Blue crab (Juveniles),
•Jal 1 Inectes sapldus
Blue crab (juveniles).
Cal 1 Inectub sapidus
Green crab.
Carclnus maonas
Fiddler crab.
Uca pugl lator
Fiddler crab.
Uca pugl lator
Fiddler crab.
Uca pug 1 1 ator
Fiddler crab,
Uca pugl lator
Fiddler crab.
Uca pug II ator
Fiddler crab.
Uca pugl lator
Starfish,
Aster las forbesll
Starfish,
Aster las forbesll
Sheepshead minnow.
Cyprlnodon varlegatus
Mummlchog (adult) ,
Fundulus heteroclltus
Mummlchog (adult).
Fundulus hoterocl Itus
Method*
s. u

S. U

s. u

S, U

S. U

s, u

S, U

s. u

S, U

S, U

s. u

S, U

s, u

s. u

Choalcal
Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chlorldo

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chloride

Cadmium chlor Ida

Cadmium chloride

Crtdmlum chlorldo

Ccidmlum chloride

(ia/l)B* (jjg/l)**1
4,700

320 2,594

4,100 4,100

46,600

37,000

32,300

23,300

10,400

6,800 21,190

7,100

820 2.413

50,000 50.000

49,000

n.am

Reference
Frank & Robertson,
1979

Frank & Robertson,
1979

Elsler, 1971

O'Haro. 1973

O'Hara, 1973

O'Hara, 1973

O'Hara, 1973

O'Hara, 1973

O'Hara, 1973

Elsler & Hennekey,
1977
1 7 * /
Elsler, 1971

Elsler, 1971

Elsler, 1971

Elsler & Honnekuy,
1 O"7"l
\y 1 1
                                                                                                                                 '  J



                                                                                                                                 -V

-------
TabU I.  (Continued)
Species                      Method*

MuromIchog (Juvenile),         S, U
Fundulus hateroclltus

MutnmIchog (juvenile),         S, U
Fundulus heteroclltus

MummIchog (Juvenile),         S, U
fundulus heteroclltus

Mumm I c nog (juvenile),         S, U
Fundulus heteroclItus

Mumm Ichog (juvenile),         S, U
Fundulus heteroclltus

Mumm Ichog (juvenile),         S, U
Fundulus heterocl I tus

MurornIchog (Juvenile),         S, U
F unduI us heteroc11tus

Mumm Ichog (juvenile),         S, U
Fundulus heteroclltus

Striped kllllflsh (adull),    S, U
Fundulus majalls

Atlantic sllverslde (adult),  S, U
Manldla menldla
                                                               LC50
                                                             or ECSO
Atlantic sllversldu
(Juvenile),
Menldla menldla

Atlantic sllverslde
(juvenl le),
Menldla menldla
S, U
Atlantic sllverslde (larva).  S. U
Menldla menldla

Atlantic sllverslde (larva),  S, U
Menldla menldla
Chealcal

Cadmium chloride


Cadmium chloride


Cadmium chloride


Cadmium chloride


Cadmium chloride


Cadmium chloride


Cadmium chloride


Cadmium chloride


Cadmium chloride


Cadmium chloride


Cadmium chloride
                                            Species Moan
                                            Acute Value
                                              (u9/DtM
114,000


 92,000


 78,000


 73,000


 63,000


 31,000


 30,000


 29,000      50,600


 21,000      21,000


  2,032"»"


 28,532*""
S, U      Cadmium chloride     13,652""*
          Cadmium chloride  .    1,054
Cadmium chloride        577
                                              779.8
Reference

Voyer, 1975


Voyor, 1975


Voyer, 1975


Voyer, 1975


Voyer, 1975


Voyer, 1975


Voyer, 1975


Voyer, 1975


Elsler, 1971


Card In, 1982


Card In, 1982



Card In, 1982



Card In. 1982


Card In, 1982
                                                                                                                                 Cv
                                                                                                                                  o

-------
T«bl« I.   (Continued)
Winter  floundur  (larva),
I' seudopl euronecTos,
'.-iner i canus
Winter  flounoor  (
Pseudopleuronectes
americanus
                             Method"    Choalcal
S,  U      Cadmium chloride
                                 ICSO
                               or EC50
                               CHI/I)*;
S,  U      Cadmium chlorldu     14,297
                                                                 602
                                                                           Species Mean
                                                                           Acute Value
                                            2,934
                                                                                           Keforenoe
                                                             Card In,  19B2
Card In, 1982
*      S » static, R = reneual.  FT  =  flow-through,  M =  measured, U = unmeasured.

**     Results  are expressed  as  cadmium,  not  as the chemical.  Some values are averages  from  the number  of
       tufts  In parentheses.

•**    Freshwater Species Mean Acute  Values are calculated for a hardness of 50 mg/l using the  pooled  slope.

••••   Not used In calculations  because tha food apparently ruduced toxlclty to Daphnla magna and probably
       also to  the other species.

»•«*•  Not usad ln calculations.

**•*•* No Species Mean Acute  Value  calculated for this  species because of wide range of  acute vali.-as.

«««««»«MQt USad |n calculations  bocauso tor this species try seem to be much more sensitive to  cadmium
       than older fish.


Results of covarlancu analysis of  frcsfriator  acute toxlclty vs. hardness:

     (The data  for rainbow  troul wcr« nol  Included  In tho analysis because the range of  hardness was too small.)

     Phllodlna  acutlcornls;   slopo  =  -0.045,  r = -0.07, n = 3

     Daphnla inagna:  slope  =  1.1)6,  r  = 0.55,  n a 6

     Goldfish:  slopo = 1.56, r -  1.00, n - 3

     Fathead minnow:  slope « 1.25, r * O.S3, n » 9

     Green sunf Ish:  slopo  «=  0.90,  r  = 0.94,  n « 3

     Blueglll:  slopo = 1.02, r»  1.00. n *> 2

          Pooled slopo = 1.16, P =  
-------
Table 2.  Chronic toxlcity  of cadBlua to aquatic Minis
                           Hardness
Test*
          Chemical
(•g/l  as     Limits     Chronic Value
 CaCO^      I,«/!»•*      (iia/l/ll**
Reference
FRESHWATER SPECIES
Cladoceran,
Oaphnl i magna
C 1 adoceran ,
Oaphnl a magna
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla magna
Coho salmon (Lake Superior),
OrtcorhyncRus klsutch
Coho salmon (Mast Coast),
,0ncorhynchus klsutch
' Chi nook salmon,
Oncorhynchus tshawytscha
Broun trout,
Salmo trutta
Brook trout,
Salvellnus fontlnalis
Brook trout,
Salvellnus fontlnalis
Broor. trout,
Salvellnus fontlnalis
Lake trout,
Salvellnus namaycush
Northern pike,
Esox luclus
LC
LC
LC
LC
ELS
ELS
ELS
as
ELS
LC
ELS
ELS
ELS
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
45
53
103
209
44
44
25
44
4-i
44
37
44
44
0.17-0.7
0.08-0.29
0.16-0.28
0.21-0.91
1.3-3.4
4.1-12.5
1.3-1.88
3.8-11.7
l.l-j. 8
1.7-3.4
1-3
4.4-12.3
4.2-12.9
0.3450
0.1523
0.2117
0.4371
2.102
7.159
1.563
6.668
2.045
2.404
1.712
7.357
7.361
Blaslnger &
Chrlstensen, 197?
Chapman, Manuscript
Chapman, Manuscript
Chapman, Manuscript
Eaton, et al . 1978
Eaton, at al . 19/6
Chapman, 1975
Eaton, et al. 1974
Eaton, et al . 197*)
denolt, et 
-------
Table 2.  (Continued)
                             Tost*
Fathead mlnno",                LC
Plmaphales promelas

White sucker,                  ELS
Catostomus comroersonl

Flagflsh,                      LC
Jordanalla florldae

Blueglll,                      LC
Lepomts macrochlrus

Smallmouth bass,               ELS
Hlcropterus dolomleul
»1ysld.                         LC
Mysldopsls bahla

Hysld,                         LC
Hysldopsls bah I a
  Chemical
Cadmlun
Cadmlun chloride
Cadmlun chloride
                                                              Hardness
                                                              (•9/1 at
                                 LUIts     Chronic Value
                                                                201
                      44
Cadmium suitate      207


Cadmium chloride      44



            SALTWATEIt SPECJES

Cadnlun chloride


Cadmium chloride
 37-5V


4.2-12.0


4.1-8.1


 31-60


4.3-12.7






  4.8-6.4


  5.&-11.5
45.92


 7.099


 5.763


49.80


 7.390





 5.543


 7.953
Reference

Pickering & Cast,
1972

Eaton, ot al.  1978


Sp3har,  1976a


Eaton, 1974


Eaton, «t al.  1978
                                                                                                              Nlmrno et al . 1977a
                                                                   Gentile, et al .
                                                                   198?
«  ELS = early life stage, LC = lite cycle or partial  Hie cycle.

          die expressed as cadmlui., not as Ilia cM

-------
Table 2.  (Continued)
                                       Acute-Chronic Ratio
Species
Cladoceran,
Daphnla magna
Cladoceran,
Oaphnfa magna
Cladoceran,
Oaphnla magna
Cladoceran,
Daphnla magna
Chinook salmon,
Oncorhynchus
TsnawyTscna
Fathead minnow,
Plmephales promelas
Flagflsh,
Jordanal la f lorldae
Blueglll,
Lepomls macrochlrus
Mysld.
Mysldopsls bah la
Mvsld.
Hardness
(•g/l »
45
53
103
209
25
201
44
207
Acute
Value
65
9.9
33
49
1.41
5, 970
2,500
21, ICG
15.5
110
Chron 1 c
Value
(ug/n
0.3450
0.1523
0.2117
0.4371
1.563
45.92
5.763
40.80
5.543
7.943
Ratio
191.3
65.00
155.9
112.1
0.9021
130.0
433.8
423.7
2.796
13.83
               Mysldopsls bdhld

-------
Table 3.  Sumary of data In Tables 1  asid 2 on acute and chronic toxic I ty of cadmium to aquatic an (awls
Rank* Faally
21 Blthynlldae
20
19 Perclcnthyldao
18 Poaclllldae
17 Cast eroste Idas
16
15 Cen.tr or cMdaa
14 Ephemeral ll
-------
Table 3.  (Continued)
Rank*


12
11
10
9
8
7
6
5
4
3
2

Family

Naldldae
Chlronomldae
Angul II Idae
Cypr Inodontldae
Phllodlnldae
Plumatellldae
Physldae
Lophopodldae
Gamtnar Idae
Pact Ina laic Idae
Daphnldaa

Famlv Maan Spec 1 es Mean Species Mean
Acute Value *cute Valu8 Acute-Chronic
(jjg/l)** Species tyg/l)** R"tl0
Fathead minnow,
Pimephales promelas
Northern squanflsh,
Ptychochel lus oregonensls
1,700 Worm,
Nals sp.
1,200 Midge,
Chironomus sp.
734.2 American eel,
Angul 1 lo rostrata
534.4 Bandec1 kl II Iflsh,
Fundulus dlaphanus
Flayf Isn,
Jordanel la tlorldae
440.7 Rotifer,
Phllodlna acutlcornls
212.1 Bryozoan,
Piumatella omarglnata
150.1 Snail,
Physa gyrlna
136.2 Bryozoan,
Pectinate! la magnlf lea
70.00 Scud,
Gammarus sp.
29.19 Bryozoan,
Lophopodella carterl
27.80 Cladoceran,
Daphnla magna
Cladoceran,
Daphnla pulex
2,082 130.0
2,454
1,700
1,200
734.2
98.49
2,900 433.8
440.7
212.1
150.1
136.2
70.00
29.19
8.540 121.4
40.37
                                                                                                                    00

-------
Table 3.  (Continued)
Rank* Foully

1 Salmonldao
26 C/prlnodontldae

25 Ocypodldao »
24 Nassurl lti..d
23 Nurelda»
22 Muricldci..
21 MytllldM.
Fmly Nam fl
Acute Value *
(ia/1)'* Spacles
Cladoceran,
Slmocephalus serrulatus
5.056 Co ho sal men,
Oncorhynchus klsutch
Chinook salmon,
Oncorhynchus tshaxytscha
Ralnbort trout,
Sal mo qalrdnerl
SALTWATER SPtCIES
37,590 Sheepshead minnow,
Cyprlnodon varlegatus
MuranlcliOtj,
Fundulub hotoroclltus
Striped kllllflsh.
Fundulus majalls
21,190 Fldd'ler crab,
Ucu pugl lator
19,170 Mud snail,
Nassnrlus obso loins
11.100 Polyctinole worm,
Noafithos arenaceodontata
Sdirl uOiiK,
Morals vlrbris
t,600 Oyslef drill,
lirosalplnx clneroa
3,W4 Oluo mussbl.
pec las Neon
cute Value
62.29
6.646
4.936
3.945
50,000
50,600
21,000
21,190
19,170
12,-JOO
10.100
6,600
3,9'>4
Species Mean
Acute-Chronic
Ratio
-
0.7787
-
-
-
-
-

-------
Table 3.  (Continued)
Rank*
20
19
IB
17
16
15
14
13
12
11
10
9
8
Ostraldaa
Gamnarldaa
Pen cia Idas
Portunldae
Pleuronectldaa
Amp el Iscldae
Aster lldae
Canlthocatnptldae
Pseudod 1 aptom 1 daa
Myldae
Pectin Idae
Temorldae
Atherlnldco
Fanly Maan
Acute Value
3,800
3,500
3,500
3,261
2,934
2,890
2,413
1,800
1,708
1,672
1,480
1,080
779.8
Species Mean
Acute Value
Species (id/1)**
Eastern oyster,
Crassostrea virgin lea
Amphlpod,
Mar Inogammarus obtusatus
Pink shrimp,
Penaeus duorarum
Blue crab,
Calllnectas sapldus
Green crab,
Carclnus maenus
Winter flounder,
Pseudopleuronectes
amertcanus
Amph 1 pod ,
Atnpel Isca abdlta
I
Starfish,
Aster las forbesl
Copapod,
Nltocra spin) pas
Copepod,
Pseudod laptomus corn at us
Soft-shell clan,
Mya arenarla
Bay scallop,
Argopecten 1 rrad 1 ans
Copepod,
Eurytemora af finis
Atlantic sllverslde
3,800
3,500
5,500
2,594
4,100
2,934
2,890
2,413
1,800
1,708
1,672
1,480
1,080
779.8
Species Mean
Acute-Chronic
Ratio
-
                                                   Men Id la men Id la
                                                                                                                               OQ

-------
Table 3.   (Continued)
Rank*     Faally

 7        Palaemonldae
                          Fealy Mean
                          Acute Value
 6


 5


 4


 3
Pagurldae


Crangonldaft


Capital


Acartl Idae
 2        Homarldaa


 1        Mysldae
760


645


320


200


156






 70


 74.66
Species

Grass  shrimp,
Palaemonetes vulgar Is

turn It crab
Pagurus Jong I carpus

Sand shrimp,
Crangon soptamsplnosa

Polychaete worm,
Capital la capitate

Copapod,
Acart I a clausl
                                                                              Species Mean
                                                                              Acute Velio
Acnrtla -lonsa

Agiorlcan  lobster,
Hcmarus e-.iarlcanus

Mysld-,
Hysldopsls bah Ia

Myslo,
My_sUJopsls blgoloaj
760


645


320


200


144


168.9


 78


 41.29


135
                                                       Species Mean
                                                       Acute-Chronic
                                                           Ratio
                                                                                           6.218
* Ranked fro* most rt-slstant"  tu  most  svit^trlve bos^d M Family t'.s^n Acute Value*.

••Freshwater Family Maan Acute \';iluos and 'ipacles Mcun Acute Values ere  for  <* hardness of 50 mg/l.

Fresh water

     Final Acuta Value => 6.66^1 tQ/t  (caUnlated \^f a hurdnoss of 50 eg/1  from Fa.illy I'.oen Acute Values)

     Final Acute Vdluo = 3.94i< yg/l  (to protect rijlnt>c-( troi'f at «) hardness  of 50 riy/l)

     Criterion Maxlhiur.i Conceoh ntIon  =  (^,945 ^S/l) / i = l.v'/? ^r/|  ((or  a  hartlnas-*. of  50 iQ/1)
                                                                                                                                   NO

-------
Tab!* 3.  (Continued)
     Final Chronic Value = 1.972 yg/l  (for a hardness of 50 ^g/l>  (see text)
          Pooled Slope = 1.16 (sea Table 1)
          In (Criterion Maxlmim Intercept) = I n( 1.972) - (slope x  In (50) I
                                           = 0.697 - (1.16 x 3.912)  - -3.841)
     Criterion Maxlmun Concentral Ion = e"-16 ""(hardness) I -3.841)
     Final Chronic Value » e<1<16 1 1 "(hard ness) I -3.841)  (see text,
Salt water
     Final Acute Valuo *• 7S.44
     Criterion Moxlmun Concentration =  (75.44 pg/t)  / 2  - 37.72
          Final Acute-Chronic Ratio = 6.218 (see text)
     Final Chronic Value =  (75.44 ^3/1)  / 6.218 = 12.13
                                                                                                                                 4;
                                                                                                                                 O

-------
Table 4.  Tootle I ty  of  cadnlm to aquatic plants
Spades
Diatom,
Aster lonel la formo&a
Diatom,
Scenedesmus quadracauda
Alga,
Euglena grac Ills
Alga,
Euglena gracl 1 la anabaena
Alga,
Anklstrodesmus braunll
Blue alga,
Mlcrocystls aeruglnosa
Green alga,
Scenedesmus quadrlcauda
Green alga.
Chloral la pyrenoldosa
Green alga,
Chi ore! la vulgar Is
Green alga,
Chi or el la vulgar Is
Green alga,
Sel anas Ir urn caprlcoroutum
Algae (mixed spp.)
Hardness
(eg/I BS
Chemical CaOO^)
FRESHWATER SPECIES
Cadmlun chloride
Cadmium chloride
Cadmlini nitrate
Cadm licit nitrate
Cadmlun nltrato
Cadmlun nitrate
Cadmli.'n chief Mu
Cadmlitn cMorldo
Cadmium chlorlUu 11.1
Effect
Factor of 10
growth rate
decrease
Reduction In
cell count
Morpholo-
gical abnor-
mal Itles
Cell divi-
sion Inhibi-
tion
Growth
Inhibition
Incipient
Inhibition
Incipient
Inhibition
Reduction In
grourth
Reduction In
growth
rjQ% reduction
In growth
Reduction In
growth
Significant
reduction In
populat ion
Result
2
6.1
5,000
20,000
112.4
70
310
250
50
60
50
b
Reference
Conway, 1978
Klass. et al. 1974
Ndkono, et al. 1980
Nakano, 1980
Laube, et al. 19&0
BHr.£;.visnn, 1975;
Brlngmann & Kuhn,
1976, I978a,b
Bi'lui^ndnri & Kuhn,
1977a, I978a,l>, 1979,
Hart & ScciMe, 1977
Hutch In son & Stokes,
1975
Kosko & Rachl In, 1977
Bnrtlett, et al. 1971
Glosy, et al. 1979

-------
Table 4.  (Continued)
Species
Fern,
Salvlna natans
Eurasian waterml Ifoll,
Myrlophyllum splcatum
Duckweed,
Lemna valdlvlana
Kelp.
Lamlnana saccharine
Diatom.
DITylum brlghtwellll
0 1 atom ,
Thalassloslra pseudonana
Diatom,
Skeletonema costatun
Red alga,
Champla parvula
Red alga,
Champla parvula
Red alga.
Champla parvula
Red alga.
Champ la parvula
Cbealcal
Cadmlun nitrate
Cadmlun nitrate
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chiorlde
Cadmium chloride
Cadmium chloride
Cadmlun chloride
Cadmlun chloride
Hardness
(eg/I as
CaCO,) Effect
Reduction In
number of
fronds
50J root
weight
Inhibition
Reduction In
number of
fronds
SALTWATER SPECIES
Result
10
7,400
10
8-day EC 50 860
(growth rate)
5-day EC 50 60
(growth)
96-hr EC50 160
(gruwtli -ate)
Wi-tii tOM '75
< growtn rate)
PaJucec tetrar- <24.9
sporophyte growth
Reduced tetra- >I89
sporang la
production
Reduced female 
-------
Table 5.  Bloaccuuilatlon of cadmium by aquatic organises

Species

Aufwuchs (attached
microscopic plants and
animals
Aufwuchs (attached
microscopic plants and
animal s
Duckweed,
Lemna valdlvlana
Fern,
Salvlnld natans
Snail.
Physa Integra
Cladoceran,
Daphnla magna
Crayfish,
Orconectes proplnquus
Mayfly,
Ephemeroptera sp.
Mayfly,
Ephemeropterd sp.
Dragonfly,
Pantala hymenea
Dragon f ly.
Pdntala hymenea
Damsel fly.
Ischnura sp.
Dragonfly,
Ischnura sp.

Tissue

—


_


Whole plant-

Whole plant

Whole body

Whole body

Whole body

Whole body

Whole txxly

Who 1 e boo •.

Whole boJy

whole body

Whole body


Chemical
FRESHWATER
Cadmium chloride


Cadmium chloride


Cadmium nltrdto

Cadmium nitrate

Cadmium chloride

Cadmium sulfdte

-

Cadi il urn chloride

Cailhilum chloride

Cacii:lum chloride

Cadmium chlorldo

Csumlum chloride

Cadmium chlorldo

Duration
(days)
SPECIES
365


365


21

21

28

2-4

8

365

365

365

365

365

365

Bloconcantratlon
Factor*

720


580


603

960

1,750

320

184

1,630

3,520

736

680

1.300

92U


Reference

Glesy. et al. 1979


Glesy, et al . 1979


Hutch Inson & Czyrska,
1972
1 7 *£
Hutch Inson & Czyrska,
1972

Spehar, 1981

Poldoskl, 1979

Gil losple, et al .
1977
1 9 • 1
Glesy, et al . 1979

Glesy, et al . 1979

Glosy, et al . 1979

Glosy, et al. 1979

Glesy, et al . 1979

Glesy. e1 al. 1979


-------
Table 5.  (Continued)
SpecIas
Tissue
Cheaical
Duration     BloconcentratloR
 (days)           Factor^         Reference
Stonefly,
Pteronarcys dorsata
Beetle,
Oytlscldae
Beetle,
Oytlscldae
Caddis* ly,
Hydropsyche bettenl
Caddlsfly,
Hydropsyche sp.
Biting nidge,
Ceratopogan Idae
Biting midge,
Ceratopogan 1 dae
Midge.
Chlronomldae
Midge.
Chlrononldae
Rainbow trout.
Sal no galrdnerl
RalnbOM trout.
Sal mo galrdnerl
Brook trout,
Salvellnus fontlnalls
Brook trout,
Salvellnus fontlnalls
Brook trout.
Whole body
Whole body
Whole body
Whole body
Whole body
Whole body
Whole body
Whole body
Whole body
Whole body
Whole body
Muscle
Muscle
Muscle
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chlorde
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
373
365
365
28
6,017
365
365
365
365
140
70
490
84
93
26
164
260
4,190
2 to 8
936
662
2.200
1.830
540
35
3
151
10
Spehar, 1981
Glesy, et al . 1979
Glesy, et al . 1979
Spehar, 1981
Dressing, 1980
Glesy. et al. 1979
Glesy. et al . 1979
Glesy, et al. 1979
Glesy. et al . 1979
Kumada. et al . 1973
Kumada et al . 1980
Benolt. et al . 1976
Benolt. et al . 1976
Sangalang & Freeman
Salvellnus fontlnalls
                                                                                                   1979

-------
Table 5.  (Continued)
Species
Mosqultof Ish,
Gambusla afflnls
Mosqultof Ish,
Gambusla afflnls
Alga,
Praslnocladus tr 1 cor nu turn
Hydro Id polyp,
Laomedea lovenl
Polychaete worm,
Ophryotrocha dladema
Blue mussel,
Mytllus edulls
Blue mussel,
Mytllus edulls
Bay seal lop,
Argopecten Irradlans
Eastern oyster,
Crassostrea virgin lea
Eastern oyster,
Crassostrea virgin lea
Eastern oyster,
Crassostrea virgin lea
Quahog clam,
Merconarla mercenarla
Soft-shell clam.
Tissue Chemical
Duration
(days)
Wliole body Cadmium chloride 180
(estimated
steady state)
Whole body Cadmium chloride 180
(estimated
steady state)
SALTWATER SPECIES
Cadmium Iodide
Whole orgonlsm Cadmium chloride
Whole body Cadmium chloride
Soft parrs Cadmium chloride
Soft par)*. Cadmium chloride
Muscle Cart.nl urn chlorldo
Soft part:, Cadmium chloride
Soft par 1s Cadmium chloride
Soft par Is, Cddhilunt nllreito
Soft parib Cadmium nitrate
Soft par Is, Cai'.iilum nltrole
5
10
64
28
35
42
280
280
98
40
70
Bloconcentratlof
Factor*
2,213
1,891
670
153
3,160
113
306
2,040
2,600
1,830
1,220
83
160
i
Reference
Glesy. et al . 1979
Glesy, et al . 1979
Kerf cot & Jacobs,
1976
Theede, et al. 1979
KlocKner, 1979
George & Coombs,
1977
Phillips, 1976
Resell & Stewart,
1980
Zarooglan & Cheer,
1976
Zarooglan, 1979
Schuster & Pr Ingle,
1969
Kerf oo t & Jacobs,
1976
Pr Ing In, et al .
 Mya arenarla
                                                                                                    1968

-------
Table 5.   (Continued)
Carclnus itiaenas

Green crab,
Carclnus maenas
                                                                 Duration      Bloconcentratlon
Species Tissue Chemical (days)
Ptnk shrimp. Whole body Cadmium chloride 30
Penaeus durorarm
Grass shrimp, dhole body Cadmium chloride 42
Pa 1 eononetes puglo
Grass shrimp, Whole body Cadmium chloride 28
Palaemonetes puglo
Grass shrimp. Whole body Cadmium chloride 28
Palaemonetes vulgar Is
Green crab, Muscle Cadmium chloride 68
Factor* Reference
57 Nlmmo, et al . 197 /b
22 Pasch & Stewart,
1980
203 Nlmmo, et al . 1977t>
307 Nlmmo, at al . I977b
5 Wright, 1977
Muscle
Cadmium chloride
40
Jennings & Rainbow,
1979a
* Results are based on cadmium, not the chemical.
                                       Maxima Pcralsslble Tissue Concentration
Species

Mallard,
Anas platyrhynctius
Man
     Effect

Kidney tubule degenoration;
significant testls weight
reduction; evidence of
Inhibited spermatozoa
production

Emetic threshold
                     Ccnccntr otIon

                     200 mg/kg In food
                     for 90 days
                      13-15 ing/Kg
                   Reference

                   Whltu & Flnley. I978a,t>;
                   White, et al. 1970
                                                                                       Anon.,  1950

-------
loble 5.  (Continued)
Fresh water
     Geometric mean ot all whole body and whole plant BCF values  (weighted  by species)  - /57
     Final  Residue Value = 200 mg/kg t 757 = 0.26 mg/kg = 260  ug/l
Salt water
     Geometric mean BCF for long-term exposure of oyster =  3,089
     Final  Residue Value = 14 mg/kg r 3.080 = 0.0045 mg/kg  = 4.*  ,jg/l

-------
Table 6.  Othar data on affects of  cadaiun on aquatic organisms
Specie*
Mlxad natural tungl
and br-rwlal eolonlo-
on leaf litter
Green alga,
Scanedesnus quadr 1 can da
Bacteria,
EscherlcMa coll
Bacteria.
Pseudomonas putt da
Protozoan,
Cntosiphon sulcatum
Protozoan,
Mlcroregpa heterostoma
Protozoan,
ChKomonas par amec turn
Protozoan,
Uroneoa parduezl
Mixed macro Invertebrates
Pr'Jiftypa sp.
Tubl-flcld worm,
TujUfex tub If ex
SnaJM (anbryo>,
.fnjhliola sp.
Hardness
(Rtg/l B»
Thevlcal £c&>x> Duration
C'jCCfcjuiiTCsV Cp& I lf»Q
~f\1_ jrlHA !Ci\ J> h.%«ltJ
Cadmium chloride - 96 hrs
Cadmium chloride
Cadmlm chloride - 16 hrs
Cadmlun nitrate - 72 hrs
Cadmlua cMoride - 28 hrs
Caduilun nitrate - 48 hrs
Cadmium nitrate - 20 hrs
Cadmlun chloride 11.1 52 *ks
Cadre Iw chloride *'.-> 52 xks
Cadmlun chloride 224 48 hr
50 96 hrs
Ri
EH** jy
Inhibition or
leaf
decomposHon
Incipient
Inhibition
Criver water)
Incipient
Inhibition
Incipient
Inhibition
Incipient
Inhlblton
1 nc 1 p 1 ant
Inhibition
Incipient
Inhibition
Incipient
Inhibition
Reduction In
mean total
numbers and In
numbers of taxa
Population
reduction
LC50 320
LC50 3
BCltl*
at.!1!.
y
flo
ISO
60
11
loo
160
26
5
5
,000
,800
Reference
Giasy, 1976
Brlngmann i Kuhn, I959a,b
Brlngma.-iri & Kuh.i, 1 959d
Brlngminn & Kuhn, 1976,
I977a, 1979, 19800
Brlngmann, 1973, tirlnginann
& Kuhn, 1979, I980b
Brlngmann & Kuhn, 19595
Brlngmann, et al. 1980
Brlngmann & Kuhn, 1960s
Glesy, et al . 1979
Glesy, et al. !'"s
Qureshl, at al. 1980
Reluioldt, et al . 1973
                                                                                                       09

-------
Table 6.  (Continued)
Hardness
(ng/l as
Soecla:> Chsalcal CeCO^)
Snail, Cadmium chloride 44-58
Physa Integra
Cladocaran, Cadmium chloriJo
Oaphnla galaata mendoTao
Cladocoran, Cadn>lum chloride
Oaphnla galeata mendoT

Braglnskiy & Shcherban,
1978

Braglnskly & Shchorban,
1978

Bertram t Hart, 1979

Glesy, et al. 19V 9
Braglnskly & Shcharban,
1O IU
iy /o
TlKirp. et al. 1979

Braglnskly & Slichorban,
1978


-------
Table 6.  (Continued)


Species
Mayfly.
Ephemeral la sp.
Mayfly,
Hexagon la rlglda
Midge,
fanytarsus dlsslnllls
Coho salmon (juvenile),
Oncorhynchus klsutch
Coho salmon (adult) ,
Oncorhynchus fclsutcn
Chinook salmon (alevln),
Qncorhynchus tshawytscha
Chinook salmon (swim-up).
Oncorhynchus tshawytscha
Chinook salmon (parr),
Oncorhynchus tshawytscha
Chinook salmon (smolt).
Oncorhynchus tshawytscha
Rainbow trout.
Salmo galrdnerl
Rainbow trout.
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
Rainbow trout,
Salmo aalrdnerl


Chealcal
Cadml un chloride

Cadmium nitrate

Cadmium chloride

Cadmiun chloride

Cadmium chloride

Cadmium chloride

Cadmiun chloride

Cadmium chloride

Cadmium chloride

Cadmium stearale

Cadmium acetata

Cadmium chlorldo

—

Hardness
(•g/l as
CaCO,)
44-48

79.1

47

22

22

23

23

23

23

-

-

112

112



Duration
2B days

96 hrs

10 days

217 hrs

215 hrs

200 hrs

200 hrs

200 hrs

2'.O hrs

96 hrs

96 hrs

80 mln

18 mos



Effect
LC50

LC50

LC50

LC50

LC50

LCIO

LCIO

LCIO

LCIO

LC50

LC50

Significant
avoidance
Reduced
survival

Result
(ng/'>*
<3.0

> 1,000

3.8

2.0

3.7

18-26

1.2

1.3

1.5

6.0

6.2

52

0.2



Reference
Spehar, et al . 1978

Leonhard, or ol . I960

Anderson, et al . I960

Chapman & Stevens,
1 AID
I97B
Chapman & Stevens,
1978
Chapman. 1978

Chapman, 1978

Chapman. 1978

Chapman, 1978

Kumada, et al. 1990

Kumada. et al . 1980

Block & Blrge,
1980
Blrge, et at . 1981

                                                                                                                                              o

-------
Table 6.  (Continued)
Species
Rainbow trout
(embryo, larva),
Salmo galr drier 1
Rain box trout.
Sal mo galrdnerl
Rainbow trout (adult) ,
Salmo galrdnerl
Rainbow trout (alavln),
Salmo galrdnerl
Rainbow trout (swim-up),
Salmo galrdnerl
Rainbow trout (parr),
Salmo galrdnerl
Rainbow trout (smolt),
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
Rainbow trout,
Salmo galrdnerl
Brook trout,
Salvellnus font! nails
Hardness
(•9/1 •*
Chealcal CaCO^)
Cadmiun chloride 104
Cadmium chloride 54
Cadmium chloride 23
Cadmium chlor Ide 6
1.0
0.7
0.8
20
10--30
30
10-30
2
10
Reference
Blrge, 1978
Kumada, et al . 1973
Chapman & Stevens,
1978
Chapman, 1978
Chapman, 1978
Chapman, 1978
Chapman, 1978
Da vies, 1976
Kumada, et al . 1980
Kumada, et al . 1980
ftoch & Maly. 1979
Hughes, et al. 1979
Sangalang & O'Mdl lo
1972, 1973

-------
Table 6.  (Continued)
Species
Goldfish (embryo, larva).
Car ass 1 us auratus
Goldfish,
Car as 1 us auratus
Fathead minnow,
Plmephales promt as
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales promalas
Fathead minnow,
Plmephales promalas
Fathead minnow,
Plmaphalas promelas
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales prome 1 as
Fathead minnow,
Plmaphalas promelas
Fathead minnow,
Plmephales promelas
Brown bul (head,
Ictalurus nebulosus
Channel catfish,
Ictalurus punctatus
Cheslcal
Cadmlun chloride
Cadml un chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cttdmlum chloride
Cadinlum chloride
Hardness
(eg/I as
CcCO^
195
63
55
59
66
65
74
79
62
63
;
Duration
7 days
50 days
96 hrs
96 hrs
96 hrs
96 hrs
96 hrs
96 hrs
96 hrs
96 hrs
96 hrs
2 hrs
Effect
EC50 (death and
(deformity)
Reduced plasma
sodium
LC50
LC50
LC50
LC50
LC50
LC50
IC50
LC50
LC50
Affected
gills and
kidney
Increased
albinism
Result
170
44.5
80. B
40.9
64.8
135
120
86.3
86.6
114
80.8
61,300
0.5
Reference
Blrge, 1978
McCarty & Houston,
1976
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Spehar, 1982
Bllckens, 197B.
Garofano, 1979
ttesterman ft Blrgo,
1978

-------
Table 6.  (Continued)
Hardness
(eg/I as
Species Chsolcal CeCO^ Duration
Channel catfish, Cadmlun chloride
Ictdlurus punctatus
Mosqultoflsh, Cadmium chloride - B wks
Gambusla aftlnls
Mosqultoflsh, Cadmlun chloride 29 8 wks
Gambusla at fin Is
Blueglll, Cadmlun chloride 112 00 mln
Lepomls macroch 1 rus
Largemouth bass, Cadmlui. chloride 112 80 mln
Mlcropterus sal mo Ides
Largemouth bass Cadmlun chloride 99 8 days
(embryo, larva)
Mlcropterus salmoldes
Largemouth bass, - - 24 hrs
Mlcropterus salmoldos
Narrow-mouthed toad Cadmium chloride 195 7 days
(embryo, larva),
Gastrophyryne
carof inensis
Marbled salamander Cadmlu'i chloi Ido 99 8 days
(embryo, larva),
Ambystoma opacun
QAi TU4 T' ') QffflPf.
jAl I nn 1 i_i\ 3rCV«IC»>
Colonial hydrnld, - -
Campanularla flexuosa
Result
Effect C|ia/l>»
BCF=4.0-6.7
6CF=6,100 at
0.02 ifl/l &
1.13 ppm added
to food
BCF= 1,430 at
10 iig/l & 1.13
ppm added to food
Significant >41.l
dvotdanco
Significant 8.83
avoidance
EC50 (death 1,640
and deformity)
Affected oper-- 150
cular activity
EC 50 (death 40
and deformity)'
((.'.30 (doulii 130
arid deformity)
tnzymo 40-75
Inhibition
Referonc*
Blrge, at i . ,' .
Wl 1 Hams i
Ml II lams t ^.,
Black 4 B • .=>. -^:
Black & b ; ,?.
Blrge, ei * . .i7e
Morgan, iy »
Blrge, IV-'t
Blrge, ei <
Moore & 'j-ui.

-------
Table 6.  (ContinuedI
Species
Colonial hydrold,
Campanularla flexuosa
Colonial hydrold,
Laomadea lovanl
Colonial hydrold,
Laomedea lovenl
Col on Id) hydrold,
Laomedea lovenl
Colonial hydrold,
Laomadea lovenl
Colonial hydrold,
Loomed eo lovenl
Polychaete norm,
Neanthes arenaceodentata
Polychaete worm,
Capital la capltata
Polychaete norm.
Capital la capltata
Blue mussel,
Mytllus edul Is
Blue mussel ,
Mytllus edulls
Blue mussel ,
Mytllus edulls
Blue mussel ,
Mytllus edulls
Hardness
(ug/l as
Chemical CaCO^
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium EOTA
Cadmium alglnate
Cadmium lunate
Cadmium poctato
Duration
11 days
7 days
7 days
7 days
7 days
7 days
2B days
28 days
28 days
28 days
28 days
28 days
28 days
Effect
Growth rate
ECM (10 g/kg
sal inlty)
EC50 (15 g/kg
sal Inlty)
BC50 (20 g/kg
sal Inlty)
EC50 (25 g/kg
sal Inlty)
EC50 (7.5 C)
(10 C)
115 C)
(17.5 C)
LC50
LC50
LC50
BCF=252
BCF=252
BCF«252
BCF=252
Result
1 10-260
3
5.6
1)
12.4
52
34
9
5.6
3.000
630
700
Reference
Stabbing, 1976
Theode, et al . 1979
Theede, et al . 1979
Theede, et al . 1979
Theede, et al . 1979
Theede, et al . 1979
Relsh, et al. 1976
Relsh, et al . 1976
Relsh, et al . 1976
George & Coambs, 197/
George & Coambs, I97/
George 4 Coambs, 19? 7
George & Coambs, 1977

-------
Table 6.  (Continued)
Hardness
fng/l as
                                                                                                 Result
                                                               Duration
                                                                                  Eft«ct
                                                                                                            Beference
3P~»~
Blue mussel,
Mytllus edulls
Ocj,r seal lop,
Argopecten Irradidns
Bay scallop.
Argopecten Ir radians
Eastern oyster.
Crassostred vlrgmicd
Eastern oyster.
Grasses trea virgin icu
Soft-shell clam,
Mya arenar la
Soft-shell clam,
Mya arenar Id
Mysld,
Mysldopsls bah la
Mysld,
Mysldopsls ball la
Mysld.
Mysldopsls bdhia
Mysld,
Mysldopsls blgelowi
Mysld,
MysldopsK bl pel owl
Isopod,
Idotea bait lea
Isopod,
Idotea bait lea
W1 •««••• W** • ^WTVKr
Cadmlun chloride

Cadmium chloi Idu
Cadmium chloride

Cadmhni Iodide

Cadmhmi chloride

Cadmlun chloride

Cadmhra chloride

-
Cadmlun ch lor Ida
Cadmlii'. chloride

Caclmlui- cMorlJj

Cadi'iiii"! chloi Id'.'

Cadmliiiii sulfalu
CadmiuM sulfdto
21 days

42 days
21 days

40 days

21 days

7 days

7 days

17 days
16 days
8 days

6 days

2fi days

5 days
3 days
acf-7.0

EC50 (growth 78
reduction)
BCF-168

BCF=677

BCF=I49

LC50 150

LC» 700

LC50 O&-23 g/ko "
salinity)
UC50 (30 g/kg 28
salinity)
I.C50 60

LCTO 70

LCM 18

LC50 (3 a/l^g 10,000
salinity)
LC50 (21 g/k»j 10,000
salinity)
Janssen

Pesch &
Elsler,

Kerfoot

Elsler,

Eisler,

Elsler .
1977

& Scholz, 1979

Stewart, 1980
et al. 1972

& Jacobs, 1976

el al. 1972

1977

& Henniikey,

Nlfctno, et al. 197 la
Gentile
Gentile

Gontl lo

Gentile

Jones,
Jones,
, et al . 1982
, et al. 1982

, or al . 1982

, et dl . 198
-------
Tabla 6.  (Continued)
                                                Hardness
Species
Isopod,
Idotea baltlca
Pink shrimp,
Penaeus duorarum
Grass shrimp,
Palaemonetes puglo
Grass shrimp.
Palaemonetes puglo
Grass shrimp,
Palaemonetes puglo
Grass shrimp,
Palaemonetes puglo
Grass shrimp.
Palaemonetes puglo
Grass shrimp,
Palaemonetes puglo
Grass shrimp,
Palaemonetes puglo
Grass shrimp,
Palaemonetes puglo
Grass shrimp,
Palaemonetes vulgar Is
American lobster,
Homarus amerlcanus
American lobster,
Homarus amerlcanus
Hermit crab.
(ag/l cs
Chemical CaOHL
Cadmlint sulfate
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Cadmium chloride
Duration
1.5 days
30 days
42 days
21 days
21 days
21 days
6 days
6 days
6 days
21 days
29 days
21 days
30 days
7 days
Effect
LC50 (14 g/kg
salinity)
LC50
LC50
LC25 (5 g/kg
salinity)
LCIO (10 g/kg
salinity)
LC5 (20 g/kg
salinity)
UC75 (10 g/kg
salinity)
LC50 (15 g/kg
salinity)
LC25 (30 g/kg
salinity)
BCF-140
LC50
BCF=25
Increase In
ATPase activity
25* mortality
Result
(ug/D*
10,000
720
300
50
50
50
300
300
300
120
6
270
Reference
Jones, 1975
Nlmmo, tit al. 19V7b
Pesch & Stewart, I960
Vernberg, et a\ . 1977
Vernberg, et al . 1977
Vernbercj, et al . 1977
Mlddaugn & Floyd, 1978
Mlddaugh & Hoyd, 1976
Mlddaugh & Floyd, 1970
Vernberg, et al . 1977
Nlmmo, et al . 1977b
Elsler, et ol . 1972
Tucker, 1979
Elsler & Honnekoy,
Pagurus  longl carpus
                                                                                                             1977

-------
Table 6.  (Continued)
Hardness

Species
Hannlt crab,
Pagn'us longlcarpus
Rock crab.
Cancer Irroratus
Blue crab,
Calllnectes sapldus
Blue crab,
Calllnectes sapldus
Hud crab ( lorsa) ,
Eurypcinopeus dopresbus
Mud crab ( larva) ,
Eurypanopuus depressus
Mud crab,
Rh 1 thropanopeus har r 1 s 1 1
Mud crab,
Rhl thropanopeus harrisll
Hud crab,
Rhl thropanopeus harrisll
F Iddler crab.
Uca pugl lator
Fiddler crab,
Uca pugl lator
Starfish,
As tor las forbesl
Herring (larva),
Clupoa harongus
Pacific herring (embryo),
Clupea harongus pal last
i
\
Chcjlcal (
Cadjnlun chloride

Cadmium ch lor Ida

Cadmium nitrate
Cadmium nitrate
Cadmium chloride

Cadmium chloride

Cadmuru nltroto
Cadmlau nUfota
Ca'Jmlmri tilli cto
-

Cadmlin chloride
Cadmium ctilor id«>

Cadmlin.i chloride
Cadmlu'ii chirr Ida
[M/| as
kVHJ/ I B9
leCO,) Duration
60 days

96 hrs

7 days
7 days
8 days

44 days

11 days
11 days
1 1 days
10 days

-
7 days

.
<24 hrs




Result
Effect
LC56

Enzyme activity

LC50 (10 g/kg
sal Inlty)
LC50 (30 g/kg
sal Inlty)
LC50

Delay In
me dm&rp iyj
1 C80 (10 g/kg
salinity)
LC75 (20 g/kg
salinity)
LC40 (30 g/kg
salinity)
LC50

fit It»c1 on
reoplrut Ion
25J nor 1 til ity

100? o.'iil't'yonlc
survival
Mi, rcii.v- Moii
In volu-'i:
lu9/»*
70

1,000

50
150
10

10

50
50
50
2,900

1.0
270

5,000
10,000
Reference

Pesch & Stewart, IMtO

Gould, at a). 1976

Rosenberg & Cost Ion
1976
Rosenberg i Costlo.
1976
Hirkes, «t a\ . 197b

Mlrkes, ot a\ . 197;

Rosenberg i Costloa
1976
Rosenberg I Cx>stio.
1976
Rosenberg >. OosTlcx
1976
O'Hara, 197ia

Vernberg, *» al . 19
Elsler t r*r«iii Uy,
1977

Wosterntioyw , et e
Alderdlct, f a\ .
I979a



•
i




9
»
'•


'"*


e


-------
Table 6.  (Continued)
Pacific herring (embryo),
Clupea harengus pallasl

Pacific herring (embryo),
Clupea harengus pallasl
Munmlchog (adult),
Fundulus heleroclItus

Huimlchog (adult),
Fundulus heteroclItus

Mummlchog.
Fundulus heteroclItus

Mumrnlchog (larva),
Fundulus heteroclItus

Mumrnlchog (larva),
Fundulus heteroclItus

Atlantic si Ivor side
(adult).
Henldla manldla

Atlantic sllverslde
(adult),
Menldla menldla

Atlantic sllverslde,
Henldla manldla

Atlantic sllverslde,
Menldla menldla

Atlantic sllverslde,
Menldla menldla
Hardness
<«§/! as
Che .1 leal CaO\)
Inn chloride
iun chloride
I un chloride
urn chloride
un chloride
urn chloride
urn chloride
urn chloride
urn chloride
1 urn chloride
urn chloride
urn chloride
Duration
96 hrs
48 hrs
48 hrs
48 hrs
21 days
48 hrs
48 hrs
48 hrs
48 hrs
19 days
19 days
19 days
Result
Effect (fjg/D*
Decrease In 1
capsule strength
Reduced osmo- 1
lollty of
per 1 vital Ine
fluid
LC50 (20 g/kg 60
salinity)
LC50 (30 g/kg 43
sal Inlty)
BCF=48
LC50 (20 g/kg 32
salinity)
LC50 (30 g/kg 7
sal Inlty)
LC50 (20 g/kg 13
salinity)
LCSO (30 g/kg 12
salinity)
LC50 (12 g/kg
salinity)
LC50 (20 g/kg
sal Inlty)
UC50 (30 g/kg
sal Inlty)
.000
,000
,000
.000
-
,000
.800
,000
,000
970
Reference
Alderdlce,
I979b
Alderdlce,
I979c
Mlddaugh I
Mlddaugh I
ElSler, el
Mlddaugh I
Mlddaugh I
Mlddaugh I
Mlddaugh i
Voyer, et
Voyer, et
Voyer, et
                                                                                                                                       eg

-------
Table 6.  (Continued)
Speclas
Atlantic si Ivorslde
( larva) ,
Menldla menldla
Atlantic si Ivorslde
( 1 arva) ,
Menldla manldla
Striped bass (juvenile),
Morone saxat Ills
Striped bass (juvenile),
Morone saxat ills
Spot ( larva),
Lelostomus xanthurus
Gunner (adult),
Tautogolabrus adspersus
Gunner (adult) ,
Tautogolabrus adspersus
Gunner (adult),
Tautogolabrus adsperbus
Winter flounder,
Pseodopleuronoctes
amer I canu s
Wlntor flounder,
Pseodop 1 euronec tes
amor 1 can us

Hardness
(•B/l as
Chcalcal CeCOi)
Cadmium chloride
Cadmium chlorldo
Cadmium chorlde
Cadmlun chloride
Cadm 1 urn c h 1 or 1 de
Cadmium chloride
Cadmium chloride
Cadmlun chlorldo
Cadmlun < hlorlilo
Cadmium chlorldn
Duration
48 hrs
48 hrs
90 days
30 days
9 days
60 days
30 days
96 hrs
8 days
60 days
Result
Effect tyS"**
LC50 (20 g/kg 2,200
sal Inlty)
LC50 (30 g/kg 1,600
sal Inlty)
Significant de- 5
crease In enzyme
activity
Significant do- 0.5-5.0
crease In oxygon
consumption
Incipient LC50 200
37.52 mortality 100
Depressed gill 50
tissue oxygen
consumption
Decreased en- 3,000
zyme activity
502 viable 300
hrit'ch
Increased gl 1 1 5
t ISbUG
rei.plrat Ion
Reference
Mlddaugh & Dean, 1977
Mlddaugh & Dean, 1977
Dawson. et al. 1977
Dawson, et al. \9ll
-Mlddaugh, et al . 1975
Maclnnes, et al . 1977
Mdclnnes. et al . 1977
Gould & Karolus, 1974
Voyer, et al . !977
Calabreso, et a.. I97>
 * Results art* expressed as cadmium, no1 os tho chemical.

-------
                                    REFERENCES








Ahsanullah, M.   1976.   Acute  toxlcity  of  cadmium  and  zinc  to  seven  Inverte-




brate species  from Western Port,  Victoria.   Aust.  Jour.  Mar.  Freshwater




Res.  27: 187.








Al-atla,  G.R.   1978.   The uptake  and toxlcity  of  cadmium In Amoeba  proteiis.  J.




Pro to zoo 1.  25:  SB.








Al-atla,  G.R.   1980.   Toxlcity of cadmium to Amoeba proteus;   a  biochemical




approach.   J.  Protozool.  27:  128.








Alderdice,  D.F., et  al.  I979a.  Influence of  salinity and cadmium  on  the  volume




of Pacific  herring  eggs.   Helgolander  visa. Meeresunters.   32: 163.









Alderdice,  D.F., et  al.  1979b.  Influence of  salinity and cadmium  on  capsule




strength  in Pacific  herring eggs.  Helgolander wlss.  Meeresunters.   32:  149.








Alderdice,  D.F., et al.  1979c.  Osmotic responses of eggs and larvae  of Che




Pacific herring to salinity and cadmium.  Helgolander wlss.  Meeresunters.   32:




 508.








Anderson, R.L., et al.   1980.  Survival and growth of Tanytarsus disslmllis




(Chironomidae) exposed to copper, cadmium, zinc and lead.  Arch. Environ.




Contarn. Toxicol.  9:  329.

-------
Anderson, R.V.  1978.  The distribution of Cd, Cu, ?b and  La  in  the  biota  of two




freshwater sites with different trace metal inputs.  Holartic  Ecology  1: 377.









Andros, J.D. and R.R. Carton.  1980.  Acute lethality of copper,  caaraium,




and zinc to northern squawfish.  Trans. Am. Fish.  Soc.   1C9:  235.









Anonymous.  1950.  Ohio River Valley Water Sanitation Commission,  Subcommittee




on Toxicities, Metal Finishing Industries Action  Committee Rep.  No.  3.









Attar,  E.N. and E.J. Maly.   1982.  Acute toxicity of cadmium,  zinc,  and




cadmium-zinc mixtures to  Daphnia magna.  Arch. Environ.  Contain.  Toxicol.  11:




291.









Ball,  I.R.   1967.  The  toxicity of cadmium to rainbow trout (Sajrno gairdnerii




Richardson).   Water  Res.  1:  SO1).









Bartlett,  L. ,   et  al.   1974.   Effects  of copper,  zir.c and  cadmium on Seianastrum




capricornutum. Water  Res.   8:  179.









Beattie,  J.H.  and  D.  Pascoe.   1978.  Cadmium  uptake  by  rainbow trout,  Salmo




gairdneri,  eggs  and  alevins.   J.  Fish  Bio I.  13:  631.









Bengtsson,  B.   1978.   Use of h.irpacticoid  copepod in toxicity tests.  Mar.




Pollut. Bull.   9:  238.









Benoit, D.A.,  et  al.   1976.   Toxic  effects  of cadmium on three generations of




brook trout (Salvelinus fontinalis).   Trans.  Am.  Fish.  Soc.  105: 550.

-------
Bertram, P.E. and  B.A.  Hart.   1979.   I.OUUPV 11 v  ami  reproduction ol I




v^eJeer^ exposed to caJatua-vr^-u jaia^t «?J  JjoJ .»i w^cci.  ^t




295.
                                                                        on
Biesinger, K.E. and G.M. Christensen.   1972.  Effects of various metals




survival, growth, reproduction,  and metabolism of Daphnia magna.  Jour. Fish.




Res. Board Can.  29:  1691.








Birge, W.J.   1978.  Aquatic  toxicology  of  trace  elements of  coal and  fly




ash. ^n:  J.H-.  Thorp and  J.W.  Gibbons  (eds.),  Energy and Environmental




Stress  in Aquatic Systems.   CONF-771114.   National Technical Information




Service,  Springfield,  Virginia,   p.  219.








Birge,  W.J.,  et  al.   1978.   Embryo-larval  bioassay on  inorganic  coal  elements




and  in  situ  biomonitoring  of coal-waste effluents.   In:  D.E. Samuel,  et al.




(eds.),  Surface  Mining and Fish/Wildlife Needs  in the  Eastern United  States.  PB




298353.   National  Technical Information Service, Springfield, Virginia,   p.  97.









Birge,  W.J., et  al.   1979.  The effects of mercury on  reproduction  of fish  and




amphibians.   I_n:  J.O. Nriagu (ed.,), The Biochemistry  of Mercury in the




Environment.  Elsevier/North-Holland, New York.  p.  629.








 Birge,  W.J., et  al.  1980.   Aquatic toxicity tests on inorganic elements




occurring in oil shale.  In_: C. Gale (ed.), Oil Shale  Symposium:  Sampling,




 Analysis and Quality Assurance.  EPA-600/9-80-022.  National Technical




 Information Service, Springfield, Virginia,  p. 519.

-------
                                                                          6.
Birge, W.J., et al.  1981.  The reproductive toxicology of aquacic contaminants.




In: J. Saxena and F. Fisher (eds.)» Hazard Assessment of Chemicals:  Current




Developments, Vol. 1.  Academic Press, New York.  p. 59.









Black, J.A. and W.J. Birge.  1980.  An avoiosr.ce response bioassay for aquatic




pollutants.  PB 80-180490.  National Technical Information Service, Springfield,




Virginia.









Blickens, E.A.C.  1978.  Cadmium induced histopathological changes in the gillr




of the brown bullhead Ictalurus nebulosus (Lesueur).  Ph.D. Thesis.  New York




University.









Boyden, C.R.  1977.  Effect of size upon metal content of shgl-ituh.  J. Mari-.ie




Bio. Ass. 57: 675.








Bradley, R.W. and J.B. Sprague.  Manuscript.  The ir.fiuer.ce of pti, hardness, and




alkalinity on the acute toxicity of zinc to rainbow trouc.  Jniversity of




Guelph, Guelph, Ontario.









Braginskiy, L.P. and E.P. Shcherban.  1978.  Acute toxicity of heavy metals to




aquatic Invertebrates at different temperatures.  Hydrobiol. J. 14(6): 78.








Bringmann, G.  1975.  Determination of the biologically harmful effect of water




pollutants ky means of the retardation of cell proliferation of the blue algae




Mlcrocystis.  Gesundheits-Ing. 96: 238.

-------
3nm?mann, G.   1978.   Determination ot che biological toxiciiy ot




substances towards  protozoa.  I.  Bacteriovorous  flagellates (model organism:




Entosiphon sulcatum Stein).   Z.  Wasser Abwasser  Forsch.  11: 210.








Brlngmann, G.  and R.  Kuhn.   1959a.  The  toxic effects of waste water on aquatic




bacteria,  algae, and  small  crustaceans.   Gesundheits-Ing. 80:  115.








Bringraann, G.  and R.  Kuhn.   1959b.  Water toxicology studies  with protozoans  as




test  organisms. Gesundheits-Ing. 80:  239.








Bringmann, G.  and  R. Kuhn.   1976.  Comparative  results  of  the damaging  effects




of  water pollutants against bacteria  (Pseudomonas putida)  and blue  algae




(Microcystis aeruginosa).   Gas-Wasserfach, Wasser-Abwasser  .117:  410.









 Bringmann, G. and R. Kuhn.  1977a.  Limiting values for the  damaging  action of




water pollutants to bacteria (Pseudomonas putida) and green  algae (Scenedesmus




 quadricauda)  in the cell multiplication  inhibition test.  Z.  Wasser Abwasser




 Forsch. 10:  87.








 Bringraann, G.  and  R.  Kuhn.   I977b.  Results of  damaging effect of water




 pollutants on Daphnia magna.  Z. Wasser  Abwasser Forsch. 10: 161.








 Bringraann, G.  and  R.  Kuhn.   I978a.  Limiting values  for the  noxious effects of




 water pollutant material  to  blue algae  (Microcystis  aeruginosa) and green algae




 (Scenedesmus  quadricauda)  in cell  propogation  inhibition tests.  Vom Wasser 50:




 45.

-------
Bringmann, G. and R.  Kuhn.  1978b.  Testing of subscances for their coxlcity




threshold: model organisms Microcyatis (Diplocystis) aeruginosa and Scenedesmas




quadricauda.  Mitt. Int. Ver. Theor. Angew. Limnol. 21: 275.








Bringmann, 0. and R.  Kuhn.  1979.  Ccaoarison of toxic limiting concentrations




of water contaminants coward Bacteria, algae, and protozoa in the call-growtri




inhibition test.  Haustech. Bauphys. Umwelttech.  100: 249.









Bringmann, G. and R. Kuhn.  1980a.  Determination of the harmful biological




effect of water pollutants on protozoa. II. Bacteriovorous ciliates.  Z. Wass




Abwasser Forsch. 13: 26.








Bringmann, G. and- R. Kuhn.   I980b.  Comparison of the  toxicity thresholds  of




water pollutants to bacteria, algae, and protozoa in the cell multiplication




inhibition  test.  Water Res. 14:  231.








Bringmann, G.,  et al.   1980.  Determination of biological dacage from water




pollutants  to protozoa. III. Saprozoic flagellates.  Z. Wasser Abwasser  Forsch.




13:  170.








Brkovic-Popovic, I. and M. Popovic.   1977a.   Effects of heavy metals on  survival




and  respiration rate of tublficid vorras:   Part I—Effects on survival.   Environ.




Pollut.  13:  65.








Brkovic-Popovic, I. and M. Popovic.   1977b.   Ef f £^B._-o£_.hi»3vy "metals on  survival




and  respiration rate of tublficid worms:   Part II—Effects on respiration  rate.



Environ.  Pollut. 13: 93.

-------
Brown, B. and M. AhsanulLah.   1971.  Effect of heavy metals on mortal icy and




growth.  Mar. Pollut. Bull.   2:  182.








Bryan, G.W.   1971.  The  effects  of heavy metals (other than mercury) on marine




and estuarine organisms.   Proc.  Roy. Soc. London B.  177: 389.









Buikema, A.L.,  Jr., et  al.   1974.  Evaluation of Philodina acuticornis




(Rotifera)  as a bioassay organism  for heavy metals.  Water Resour. Bull. \m.




Water  Resour. Assoc.  10:  648.








Burnison, G., et al.  1975.   Toxicity of cadmium to  freshwater algae.  Proc.




Can.  Fed. Biol. Soc.  18:  46.









Calabrese,  A.,  et  al.   1973.   The  toxicity of heavy  metals to embryos of ihe




American oyster Crassostrea virginica.  Mar. Biol.   18:  162.









Calabrese,  A.,  et  al.   1975.   Sublethal Physiological  Stress  Induced by Cadmium




and  Mercury in  the Winter Flounder,  Pseudopleuronectes americanus.  In:




Sublethal Effects  of  Toxic Chemicals in Aquatic Animals.  Elsevier, Amsterdam.








Callahan, M.A., et al.   1979.  Water-related environmental fate of  129 priority




pollutants.  Vol.  I.   EPA-440/4-79-029a.  National Technical  Information




Service,  Springfield, Virginia.

-------
Canterford, G.S. and D.R. Cantor ford.  1980.  Toxic.Lty  ot  heavy n^taLs  ro  che




marine dlacom Ditylum brLghtwellil (West) Grunow:  correlation between  Ljx




and metal speclation.  Mar. BioL. Ass. U.K. 60:  227.








Canton,' J.H. and D.M.M. Adema.  1978.  Reproducibility  of  short-term  and re-




production toxic Icy experiments with Daphnia toagaa and  comparison  of  che




sensitivity of Daphnia magna with Daphnis pules  and  uaphnia  cuculiec^ i.i




short-term experiment.  Hydrobiol.   59:  135.
Cancan, J.H. and W. Slooff.   1979.  A  proposal  co  classify  compounds  and  uo




establish water quality  criteria  'aaset on  laboratory data.   Ecotoxiccl . Environ.




Safety. 3:  126.








Cardin, J.A.   1982.   Memorandum  to  J.H. Gentile.   U.S. EPA, Narragansecc , Rhode




Island.








Carroll, J.J.,  et  al.  1979.   Influences of hefcness cinc:-;-er.cr on :*d  icute




toxlcity of cadmium to brook trout  (Salvelinus gor.tindli.-Q  .  Ball. Er.vircm.




Contao.  Toxicol.  22:  575.








Cearley, J.E.  and R.L. Coienan.   1973.  Cadmium toxici;y and accuosuIac-Lon  in




southern naiad.  Bull. Environ.  Contam. Toxicol.  9: 100.








Cearley,  J.E.  and R.L. Coleman.   1974.  Cadmium toxlcity and bioconcentration in




largemouth bass and bluegill.  Bull.  Environ. Contam. Toxicol. 11: 146.








Chapman,  G.A.   1975.  Toxicity of copper, cadmium  and zinc  to Pacific Northwest




 salmonids.   U.S.  EPA.  Corvallis, Oregon.

-------
Chapman, G.A.   1978.  Toxlciti.es  of  cadmium,  copper,  and  zinc  to  four  juve-
nile stages of  chinook salmon  and  steelhead.  Trans.  Aa.  Fish.  Soc.
107: 841.


Chapman, G.A.   1982.  Letter  to C.E.  Stephan.  U.S. EPA,  Corvallis, Oregon.
December 6.


Chapman, G.A. and O.G. Stevens.   1978.   Acutely  lethal .levels  of  cadmium,
copper, and zinc to  adult male coho  salmon  and steelhead.  Trans. Am.  Fish.
Soc.   107: 837.


Chapman, G.A.,  et al.  Manuscript.  Effects of water  hardness  on  the toxic icy of
metals  to Daphnia magna.  'U.S. EPA,  Corvallis, Oregon.


Chapman, W.H.,  et  il.  1968.   Concentration factors of chemical elements  in
edible  aquatic  organisms.   UCRL-50564.   Lawrence Livermore Laboratory,
Livermore,  California.


Clubb,  R.W.,  et al..   1975.   Acute cadmium toxicity studies upon nine species of
aquatic insects.  Environ.  Res.   9:  332.

Conway, H.L.   1978.   Sorption of  arsenic and cadmium  and  their effects on
growth, micronutrient utilization, and  photosynthetic pigment  composition of
Asterionella  formosa. Jour. Fish. Res. Board Can.  35:  286.


D'Agostino,  A.  and  C. Flnney.  1974.  The effect of  copper and cadmium on
 the development of  Tigriopus  japonicus.  In: F.J. Vernberg and W.B. Vernberg

-------
                                                                          / o
                                                                          o 7





(eds.), Pollution and Physiology of Marine Organisms.  Academic Press, New York.



p. 445.






Davies, P.H.  1976.  Use of dialysis tubing in defining the toxic fractions



of heavy metals Ln natural wacera.  It^: R.W. Andrew, dC ai. (eds.), Toxicity Co



Biota of Metal Forma in Natural Water.  International Joint Commission.



Windsor, Ontario,  p. 110.







Dawson, M.A., et al.  1977.  Physiological response ol: juvenile striped bass,



Morone saxatilia, to low  levels of cadmium and mercury.  Chesapeake Sci.  18:



353.







DeFilippis, L.F., et al.   L981.  The  effects of subiechai concentrations  of



zinc,  cadmium and mercury  on Snglena.  II. Respiration, pnotosyrunesis  and



photochemical activities.  Arch. Microbioi.  128: 407.







Dixon, W.J. and  M.8. Brown, eds.   1979.   BMDP  BioraeJicai Computer Programs,



P-series.   Univ. of  California,  Berkeley,   p.  521.







Drtmmond,  R.A. and O.A.  Benoit.   Manuscript.   Toxicity of cadmium Co  fish:   some



observations  on  the  influence  of experimental  procedures.  U.S.  EPA.   Duluth,



Minnesota.







Eaton, J.G.   1974.   Chronic cadmium toxicity to  the bluegill  (Lepomis  macro-



chirus Ratinesque).  Trans. Am.  Fish. Soc.   4:  729.







Eaton, J.G.   I960.   Memorandum to C.E. Stephan.   U.S.  EPA.   Duluth,  Minnesota.



August 5.

-------
Eaton, J.G., et al.   1978.  Metal  toxicity to embryos and  larvae of seven




freshwater fish species—I. Cadmium.  Bull. Environ. Contain. Toxicol.  19: 95.








Eisler, R.  1971.  Cadmium  poisoning  in  Fundulus heteroclitus (Pisces:Cy-




pri.nodonci.dae) and other marine  organisms.  Jour.  Fish. Res. Board Can.




28: 1225.








Eisler, R.  1974.  Radiocadmium  exchange with seawater by  Fundulus heteroclitus




(L.) (Pisces: Cyprinodontidae).   J.  Fish Biol.  6:  601.








Eisler, R.  1977.  Acute  toxicities  of  selected heavy metals to  the soft-




shell  calm, Mya  arenaria^.   Bull. Environ.- Contain.  Toxicol.  .17:  137.
Eisler,  R.  and  G.R.  Gardner.  1973.   Acute toxicology to  an  estuarine  teleost  of




mixtures of cadmium, copper, and zinc salts.   J.  Fish Biol.  5:  131.








Eisler,  R.  and  R. Hennekey.  1977.  Acute toxicities of Cd*2,  Cr*6,




Hg*2,  Ni*2, and Zn*2 to estuarine macrofauna.  Arch. Environ.




Concam.  Toxicol.  6: 315.








Eisler,  R., et  al.  1972.  Cadmium uptake by marine organisms.  Jour.  Fish. Res.




Board  Can.   29: 1367.








Faraday, W.E. and A.C. Churchill.  1979.  Uptake of cadmium by the eelgrass




 Zostera marina.  Marine  Biol. 53: 293.

-------
                                                                            7,
Fennikok, K.B., et al. 1978.   Cadmium toxicity In planktonic organisms of a




freshwater foot? web.  Environ. Res.  15:  357.








Frank, P.M. and P.B. Robertson.  1979.  The influence of salinity on




toxicity of cadmium and chromium to the blue crab, Callinecces sapidus.




Bull. Environ. Contarn. Toxicol.  21: 74.








Frazler, J.M.  1979.  Bioaccumulation of cadmium in marine organisms.  Environ.




Health Perspectives.  28: 75.








Freeman, S.J.  1978.  Accumulation  of cadmium, chromium, and  lead by  bluegill




sunfiah  (Lepomis  macrbchirua  Rafiirescue) under temperature and oxygen stress-




SRO-757-6.   National  Technical  Information  Service.  Arlington, Virginia.









Freeman, B.J.  1980,  Accumulation  of cadmium, chromium, and  laad by  bluegill




sunfish  (Lepomis  nacrochirus  Rafinesque) under  temperature  and oxygen stress.




Thesis.  University of  Georgia.   Athens, Georgia.








Garofano,  J.S.  1979.  The  effects  of cadmium on the  peripheral  blood and  head




kidney of  the brown bullhead Ictalurus  nebulosus (Lesueur).   Thesis.   New  York




 University.








Gentile, S.M.. et al.  1982.   Chronic effects of cadmium on two  species  of my3id




 shrimp:  Mysidopsis bahia and Myaidopais bigelowi.   Hydrobiologia 93:  195.








 George,  S.G. and T.L. Coombs.  1977.  The  effects of chelating agents on the



 uptake and accumulation of  cadmium by Mytilua edulis.   Mar.  Biol.   39: 261.

-------
Gtesy, J.P., Jr.  1978.  Cadmium inhibition of  leaf decomposition in an aquatic




microcosm.  Chemosphere.  6: 467.








Giesy, J.P., Jr., et al.  1977.  Effects of naturally occurring aquatic organic




fractions on cadmium toxicity  to Simocephalus serrulatus (Daphnidae) and




Gambusia affinia (Poediliidae).  Water Res.  11:  1013.








Giesy, J.P., Jr., et al.  1979.  Fate and biological effects of cadmium




introduced  into channel microcosms.  EPA-600/3-79-039.  National Technical




Information Service.   Springfield, Virginia.








Gillespie,  R., et al.   1977.   Cadmium uptake by the crayfish, Orconec'ces




propinquus  propinquus  (Girard).  Environ. Res.   13: 364.








Gould, E. and J. Karolus.   1974.  Physiological response of  the cunner,




Tautogolabrus adspersus,  to cadmium.  Observations on  the  biochemistry.




NOAA Tech.  Rep.  SSRF-681,  Part V.








Gould,  £.,  et al.   1976.   Heart transaminase  in the  rock, crab, Cancer ir-



roratua,  exposed  to cadmium salts.   Bull. Environ. Contarn. Toxicol.  15: 635.








Greig,  R.A.  1979.   Trace metal uptake  by three species of mollusks.  Bull.




Environ.  Contam.  Toxicol.  22:  643.








Greig,  R.A. and  D.R. Uenzloff.  1973.   Metal  accumulation  and  depuration by  the




american oyster,  Crassostrea virginica.   Bull.  Environ. Contam. Toxicl. 20:  499.

-------
                                                                             73
Hale, J.F.  1977.   Toxicity of aetal mining wastes.   Bull.  Environ.  Contam.




Toxicol.  17: 6".








Hart, B.A. and B.D. Schaife.  1977.   Toxicity and bioaccuoulation of cadmium iri




Chlorella pyrenoldosa.  Environ. Res. 14:  401.








Hazea, R.E. and T.J. Kneip.  1980.  Siogeochemical cycling of cadci.ua in a rcarsh




ecosystem.  In: J.O. Nrlagu (ed.), Cadmium in the Environment, Part I.  Wiley,




New York. p. 399.








Holcombe, G.W., et al.  Manuscript.   Toxlcity of selected priority pollutants to




various aquatic-organisms.  U.S. EPA.  Duluth, Minnesota.








Hughes, G.M., et al.  1979.  A morphometric study of effects of nickel, chromium




and cadmium on the secondary lamellae of rainbow trout gills.  Water Res. 13:




665.








Hughes, J.S.  1973.  Acute  toxlclty of thirty chemicals to striped bass




(Morone aaxatilia).  Pres.  Western Aaaoc. State Game Fish Comm., Salt Lake




City, Utah.  July,  1973.








Hutcheson,  M.S.  1975.  The effects of temperature and salinity on cadmium




uptake  by the blue crab, Callinectea sapldus.  Che3apeak Science. 15: 237.








Hutchinson,  T.C. and H. Czyrska.  1972.  Cadmium and Zinc Toxicity and Sy-




nerglsm to  Floating Aquatic Plants. In; Water Pollution Research in Canada

-------
1972.  Proc. 7th Can. Symp. Water Pollut. Res. Inst. Environ. Set. Eng. Publ.




No. EI-3.  p. 59.








Hutchln3on, T.C. and P.M. Scokes.   1975.  Heavy metal toxicity and algal




bioassays.  In: S. Barabos (ed.), Water Quality Parameters.  ASTM STP 573.




American Society for Testing  and Materials.  Philadelphia, Pennsylvania,  p.




320.








Janssen, H.K. and N. Scholz.   1979.   Uptake and cellular distribution of cadmium




in Mytilus edulia.  Mar.  Biol.   55:  133.








Jennings, J.R.  and P.S.  Rainbow.   I979a.   Studies  on the uptake of cadmium by




the  crab Carcinua maenas in  the laboratory. I. Accumulation  from  seavater and a




food source.  Mar. Biol.  50: 131.








Jennings,  J.R.  and P.S.  Rainbow.  1979b.   Accumulation  of  cadmium by Dunaliella




tertiolecta Butcher.   J. Plankton Res.  1:  67.








Johnson,  M. and J. Gentile.   1979.   Acute toxicity of cadmium, copper,  and




mercury to larval American lobster (Romania  anericanus).   Bull. Environ.




Contain. Toxicol.  22:  258.








Jones, M.3.  1975.   Synergistic effects on salinity,  temperature  and heavy




metals on mortality and osmoregulatlon in marine and  estuarine isopods




 (Crustacea).  Mar. Biol.  30:  13.

-------
                                                                              7S
Jude, D.J.  1973.  Sublethal effects of ammonia and cadmium on growth  of  green




sunfish.  Ph.D. Thesis.  Dept. Fish. Wlldl., Michigan State Univ.









Kerfoot, W.B. and S.A. Jacobs.  1976.  Cadmium accural in combined  waste-




treatment aquaeulture system.  Environ. Sci. Technol.  10: 662.








Klass, E.,  et al.  1974.  The effect of cadmium on population growth  of  the




green alga Scenedesmus quadricauda.  Bull. Environ. Contarn. Toxicol.




12: 442.








Klockner, K.   1979.  Uptake  and accumulation of cadmium  by Ophryocrocha dia-




dema  (Polychaeta).  Mar. Ecol. Prog. Ser.   1: 71.








Kneip, T.J. and R.E. Hazen.   1979.   Deposit and mooillty of cadniium In




marsh-cove ecosystem and the relation  to cadmium concentration in  bioca.




Environ.  Health Perspectives  28:  67.








Kobayashi, N.   1971.   Fertilized  sea urchin eggs as an  indicator laacerial for




marine  pollution  bioassay,  preliminary  experiments.   Publ.  Seto  Mar.  Biol.  Lab.




18:  379.








Kumada,  H.,  et al.   1973.   Acute  and chronic  toxicity,  uptake and  retention of




cadmium In  freshwater  organisms.   Bull.  Freshwater Fish. Res.  Lab.   22: 157.








Kumada,  H.,  et al.   1980.   Accumulation and biological  effects of  cadmium In




        Trout:  'B'ull.  Jap.  Soc.  Sci. Fish.  46: 97.

-------
  m.liu-i ,  I .  iml  A.  lei in- I -iv .   I'Id') .   I'ctilm Luill In aipuil li  -lyulrui:. .   Mu 1 .1 I •>  mj




Ecology Symposium.   Stockholm,  Sweden,   p.  47.









Laube, V.M.,  ec  al.   1980.   Strategies  of response to  copper,  cadmium, and lead




by a blue-green  and  a green alga.   Can. J.  Microbiol.  26:  1300.









Leonhard,  S.L.,  et al.   1980.   Evaluation of the acute toxlcity of the heavy




metal cadmium to nymphs of  the  burrowing mayfly, Hexagenia rigida.  In;  J.F.




Flannagan  and K..E. Marshall (eds.),  Advances in Ephemeroptera  Biology.  Plenum




Publishing Corp. p.  457.









Lue-Kim,  H.,  et  al.  1980.   Cadmium toxicity on synchronous populations of




Chlorella  ellipsoides.   Can.  J.  Biol. 58: 1780.









Haas,  R.P.  1978. A field  study of the relationship between heavy metal




concentrations in stream water  and selected benthic macroinvertebrate  species.




PB 297  284.   National Technical Information Service, Springfield,  Virginia.








Maclnnes,  J.R.,  et al.   1977.   Long-term cadmium stress in the cunner




Tautogolabrus adspersus.  Fish. Bull.  75:  199.








Markham,  J.W., et al.  1980.   Effects of cadmium on Laminaria  saccharina in




culture.   Mar. Ecol. Prog.  Ser. 3: 31.








Marshall,  J.S.  1978a.   Population dynamics of Oaphnia galeata mendotae as




             chronic  cadmium stress.  Jour.  Fish. Res.  Board Can.   35:  461.

-------
                                                                             77
Marshall, J.S.  1978b.  Field verification of cadmium toxicity co laboratory




Daphnia populations.  Bull. Environ. Contain. Toxicol. 20: 387.









McCarty, L.S. and A.H. Houston.  1976.  Effects of exposure to sublethal levels




of cadmium upon water-electrolyte status in the goldfish (Carassius auratus).




Jour. Fish. Biol.  9: II.








McCarty, L.S., et al.  1978.  Toxicity of cadmium to goldfish, Carassius




auratus, in hard and soft water.  Jour. Fish. Res. Board Can.  35: 3~i.








Middaugh, D.P. and J.M. Dean.  1977.  Comparative sensitivity of eggs,  lar-




vae and adults of the estuarine teleosts, Fundulus heteroclitus and Menidia




menidia  to cadmium.  Bull. Environ. Contarn. Toxicol.  17: 645.








Middaugh, D.P. and G. Floyd.  1978.  The effect of prehatch and posehatch




exposure to cadmium  on salinity tolerance of larval grass shrimp, P.-.laemonetea




 sueio.   Escuaries  1: 123.
Middaugh,  D.P., et al.   1975.  The response of  larval  fish Leiostomus xan-




thurus  to  environmental  stress following sublethal cadmium exposure.  Contrib.




Mar.  Scl.  19.








Ministry of  Technology.   1967.  Effects of pollution on  fish—Toxic Icy  of zinc,




phenol, cadmium, and nickel  to trout eggs and alevins.  Water Pollut. Res.




London,  p.  52.








Ministry of  Technology.   1971.  Effects of pollution on  fish.  Water Pollut.



Res.  London,  p. 37.

-------
MirJces, D.Z., et al.   1978.  Effects of cadmium  and mercury on the behavioral




responses and development of Eurypanopeus depressus larvae.  Mar.  Biol. 47:




143.








Moore, M.N. and A.R.D.  Stebbing.   1976.  The  quantitative cytochemical effects




of three metal ions on a  lysosomal hydrolase  of  a  hydroid.  Jour. Mar. Biol.




Assoc. U.K. 56: 995.








Moraitou-Apostolopoulou,  M., et al.   1979.  Effects of  sublethal concentrations




of cadmium  pollution  for  two populations of Acartis clausi (Copepoda) living at




two  differently polluted  areas.  Bull.  Environ.  Contam. Toxicol. 23: 642.








Morgan, W.S.G.  1979.   Fish locomotor behavior patterns as a monitoring  tool.




J. Water  Pollut.  Control  Fed.  51: 580.








Mount, D.I.  1966.  The effect of total hardness and  pH on acute  toxicity  of




 zinc to fish.  Air Water Pollut. Int. J.  10:  49.








 Mount, O.I. and T.J.  Norberg.   Manuscript.   A seven-day life-cycle  cladoceran




 toxicity test.   U.S.  SPA.  Duluth, Minnesota.








 Mowdy, O.E.  1981.  Elimination of laboratory-acquired cadmium by the  oyster




 Crassostrea virginica  in the natural environment.  Bull- Environ.  Contam.




 Toxicol. 26:  345.








 Muller, K.W. and  H.D.  Payer.   1979.  The influence of  pH on the



 cadmium-repressed growth of the  alga Coelostrum proboscideum.  Physlol.  Plant.



 45: 415.

-------
Muller, K.W. and H.D. Payer.  1980.  The Influence of zinc and Light conditions




on Che cadaium-repressed growth of the green aLga Coelostrum proboscideum.




Physlol. Plant. 50: 265.








Nakano, Y., et al.  1980.  Morphological observation on Suglena gracilis gro*m




In rinc-sufflclent media containing cadmiian ions.  Agric. Biol. Chem. 44: 2305.









Negilski,  D.S.  1976.  Acute toxicity of zinc, cadmium and chromium  to  the




marine  fishes, yellow-eye mullet (Aldrichetta forsteri C. and V.) and small




mouth hardy head  (Atherinaaoma mierostoma Whitley).  Aust. Jour. Mar. Fresh-




water Res.  27: 137.








Nelson, D.A.,  et  al.   1976.  Biological  effects  of  heavy  metals on  juvenile  bay




scallops,  Argopenten irradians,  in short-term exposures.  3ull. Environ.  Contain.




Toxicol.   16:  275.








Neter, J.  and  W.  Wasserm^n.   1974.  Applied Linear  Statistical Models.   Irwliv,




 Inc.  Homewood,  Illinois.








 Nlmno, D.R.,  et al.   1977a.  Mysidopsia bahia;  An estuarine  species suitable for




 life-cycle toxicity tests to determine the effects of  a  pollutant.   In;  F.L.




 Mayer and J.L. Hamelink (eds.),  Aquatic Toxicology and Hazard Evaluation.  ASTM




 STP 634.  American Society for Testing and Materials.   Philadelphia,




 Pennsylvania,   p. 109.








 Nimno, D.R., et al.  I977b.  Effects of Cadmium on the Shrimps Panaeus duo-




 rarum, Palaemonetes pugio. and Palaemonetes vulgaris.   In;  F.J.  Vernberg, et al.

-------
(eds.), Physiological Responses of Marine  Biota  to Pollutants.  Academic Press,




New York.








Noel-Lambot, F., et al.   1980.  Cadmium, zinc, and copper accumulation in




limpets (Patella vulgata)  from  the British channel and  special  reference to




raetallothioneins.  Mar. Ecol. Prog.  Ser. 2:  81.








O'Hara, J.  1973.  The  influence  of  temperature  and  salinity  on the  toxlcity of




cadmium to  the  fiddler  crab, Uca  pugllator.   U.S.  Dept. Commer. Fish. Bull.  71:




149.








O'Hara, J.   1973b.   Cadmium uptake by fiddler crabs  exposed  to  temperature and




salinity  stress'.   J.  Fish. Res.  Board-Can. 30: 846.








Ojaveer,  E.,  et al.   1980.  On  the  effect  of copper, cadmium and  zinc on the




embryonic development of  Baltic spring spawning  herring.  Finnish Marine




Research  247:  135.








Pardue,  W.J.  and T.S. Wood.  1980.   Baseline toxicity data for  freshwater  bryoza




exposed  to copper, cadmium, chromium, and  zinc.   J.  Tenn.  Acad. Sci. 55: 27.








Pascoe,  D. and P. Cram.   1977.   The effect of parasitism on the toxicity of




cadmium to the three-splned stickleback, Gasterosteus aculeatus L.  Jour.  Fish.




 Biol.  10: 467.








 Pascoe,  0. and D.L. Mattey.  1977.   Studies on  the  toxicity of  cadmium  to  the




 three-splned stickleback, Gasterosteus aculeatua L.  Jour. Fish.  Biol.   11:



 207.

-------
Pesch, J.v.;. *'.\d X.H. Sceptic.  ;**0.  »'




estuarine invertebrates.  Mar. Environ. Res.  3: 145.








Phelps, H.L.  1979.  Cadmium sorption in estuarine mud-type sediment  and  the




accumulation of cadmium in the soft-aheli clam, Mya  greoaria.  Estuaries  2: 40,









Phillips, D.J.H.   1976.  The common mussel Mytilus edulia as  aa  indlcacor of




pollution by zinc, cadmium,  lead and copper.  I. Effects of environmental




variables on uptake of metals.  Mar. Biol.   38:  59.








Phillips, G.R.  and R.C. Russo.  1978.  Metal bioaccumulation  in  flsnes  and




aquatic  Invertebrates: a  literature  review.   EPA-600/5-73-103.   Xacional




Technical  Information  Service,  Springfield,  Virginia.








Pickering,  Q.H. and M.H.  Cast.   1972.   Acute and chronic  toxicity of cadmium




to the fathead minnow (PJLmephalea  promelaa)  Jour.  Fish.  Res. Board Can.




29:  1099.








Pickering, Q.H. and C. Henderson.   1966.   The acute toxicicy of  soae heavy




metals to different species of  warmwater fishes.  Air Water Pollut. Int.




Jour. 10:  453.








Poldoski, J.E.  1979.  Cadnijos bioaccumulation assays.  Their relatii nshlp




 to various ionic equilibria in Lake Superior water.  Environ. Sci. Technol.




 13: 701.








 Pringle, B.H., et al.  1968.  Trace metal accumulation by escuarine mollusks.




 Jour. Sanit. Sng. Div.  94SA3:  455.

-------
Qureahi, S.A.,  et  al.   1980.   Acute  toxicity  of  four  heavy metals  to benthic




fish food organisms  from  the  river Khan,  Ujjain.   Intern. J.  Environ.  Studies




15: 59.








Rainbow, P.S.,  et  al.   1980.   Effects of  chelating agents on  the accumulation  of




cadmium by  the  barnacle Semibalanue  balanoides,  and the complexation of  soluble




Cd, Zn and  Cu.   Mar.  Ecol.  Prog.  Ser. 2:  143.








Ray, S., et al.  1981.  Accumulation of copper,  zinc,  cadmium and  lead from two




contaminated sediments  by three marine invertebrates - a laboratory study.




Bull. Environ.  Contain.  Toxieol. 26:  315.








Rehwoldt,  R., et al.   1972.  The effect of increased  temperature upon  the  acute




toxicity of some heavy  metal ions.   Bull. Environ. Contain. Toxieol. 8:  91.








Rehwoldt,  R., et al.  1973.  The acute toxiclty of some  heavy metals tons  toward




benthic  organisms.  Bull. Environ.  Contarn. Toxieol.  10: 291.








Reichert,  W.L., et al.   1979.  Uptake and metabolism  of  lead  and cadmium in coho




salmon (Oneorhynchus kisutch).  Comp. Blochem. Physiol.  63C:  229.








Reish, D.J., et al.  1976.  The effect of heavy metals on  laboratory popu-




lations of two polychaetes with comparisons  to the water quality conditions and




standards  in Southern California marine waters.  Water Res.   10:  299.








 Reish, D.J., et al.  1978.   Interlaboratory  calibration experiments using che




 Polychaetous annelid Capitella capitata.  Mar. Environ.  Res.  1:  109.

-------
Roberts, K.S.  1979.  A high JioleculdC-welghc cadmium-binding irdi.LU.,i  i. sol a led




from the liver cytosol of trout exposed to environmentally relevant




concentrations oc the metal.  Trans. Blochem. Soc. London. 7: 650.








Roch, M. and E.J. Maly.  1979.  Relationship of cadmium-induced hypocalcemia




with mortality in rainbow trout (Sa'uao gaifdnen) and the influence  of




temperature on toxicity.  Jour. Pish. Res. Board Can.  36: 1297.








Rosenberg, R. and J.D. Costlow.  1976.  Synergistic effects of cadmium  and




salinity combined with constant and cycling  temperatures on the larval  develop-




ment of two estuarine crab  species.  Mar. Biol.  38: 291.








Rosko,  J.J. and  J.W. Rachlin.   1977-  The effect of cadmium,  copper, mer-




cury,  zinc and lead on cell division, growth, and chioropyll  «i content  of




the  chlorophyte  Chlorella vulgaris.  Bull. Torrey Botan.  Club.  104: 226.








Sangalang, G.B.  and H.C.  Freeman.   1979.  Tissue  uptake of cadnium in brook




trout  during  chronic sublethal exposure.  Arch.  Environ.  ConCam.  Toxicol.




8:  77.








Sangalang,  C.B.  and M.J.  O'Halioran.   1972.   Cadmium-induced  testicular  In-




jury and  alterations of  androgen synthesis  in brook trout.   Nature 240: 470.








Sangalang,  G.B.  and M.J.  0'Halloran.   1973.   Adverse  effects  of  cadmium on




brook trout  testis and on in_ vitro testicular androgen synthesis.   Biol.




Reprod.  9:  394.

-------
Saucer, S., el al.   1976.  F.fteols i>l «»xpomirp  to heavy metala on Q<»ipft»



freshwater fish — Toxicity of copper, cadmium, chromium and lead to eggs




fry of seven fish species.  EPA-600/3-76-105.  National Technical Information




Service, Springfield, Virginia.








Schuster, C.N. and B.H. Pringle.  1969.  Trace metal accumulation by the




American oyster, Crassostrea virginica.  1968 Proc. Natl. Shellfish AssocJ" 59:




91.








Scott, K.J.  1982.   Memorandum to J.H. Gentile.  U.S. EPA.  Narragansett, Rhode




Island.








Shcherban, E.P.   1977.   Toxicity of  some heavy  metals for Daphnia magna  Scrauss,




as  a  function  of  temperature.   Hydrobiol.  J.  13(4): 75.








Sick, L.V.  and G.  Baptist.  1979.  Cadmium incorporation by the  marine copepod




Pseudodiaptomous coronatus.   Limnol. Oceanogr.  24:  453.








Sosnowski,  S.  and J. Gentile.  1978.  Toxicological comparison of natural  and




cultured populations of Acartia  tonsa to cadmium,  copper and mercury.  Jour.




Fish. Res.  Board Can.  35: 1366.








 Spehar, R.L.  1976a.  Cadmium and zinc  toxiclty to flagfish, Jordanella




 floridae.  Jour. Fish. Res. Board Can.  33: 1939.








 Spehar, R.L.  I976b.  Cadmium and zinc  toxicity to Jordanella  floridae.




 EPA-600/3-76-096.   National Technical Information Service, Springfield,



 Virginia.

-------
Spehar, R.L.  1982.  Memorandum co J.G. Eaton.  U.S. EPA, Duluth, Minnesota.




February 24.








Spehar, R.L., et al.  1978.  Toxicity and bioaccumulation of cadmium  and  lead  in




aquatic invertebrates.  Environ. Pollut. IS: 195.








Stanley, R.A.  1974.  Toxicity of heavy metals and salts to Eurasian  water-



milfoil (Myriophyllum spicatutn L.).  Arch.  Environ. Contain. Toxicol.   2:  331.








Stebbing,  A.R.D.   1976.  The effects of low metal levels on a  colonial hydroid.




Jour.  Mar.  Biol. Aasoc. U.K.  56: 1977.








Steele, R.L.  and G.B. Thursby.  1983.  A toxicity test  using  life  stages  of




Champia parvula (Rhodophyta).  ILI; W.5. Bishop, et al.  (eds.),  Aquatic




Toxicology and Hazard Assessment:  Sixth Symposium.  ASTM  STP  802.  American




Society for Testing  and Materials.  Philadelphia, Pennsylvania, p. 73.








Stephan,  C.E., et  al.   1983.  Guidelines  for  deriving  numerical national  water




quality criteria for the  protection of aquatic life and its uses.   U.S. EPA.




Duluth, Minnesota.  July  5.








Stern, M.S. and D.H. Stern.   1980.  Effects of fly  ash heavy  metals on Daphnia



magna. PB 81-198327.   National Technical  Information  Service,  Springfield,




Virginia.








Sunda, W.G., et  al.   1978.  Effect of  chemical speciatlon  on  toxicity of  cadmium




to  grass  shrimp"Y Palaem'o'rietes ""pugib;  importance of  free cadmium ion.   Environ.



Sci. Technol. 12:  409.

-------
Theede, H., et al.   1979.   Temperature  and  salinity effects  on  the  acute
toxiclty of cadmium  to  Laomedea loveni  (Hydrozoa).   Mar.  Ecol.  Prog.  Ser.   1:
13.

Thompson, S.E., et al.   1972.   Concentration factors of the  chemical  elements  in
edible aquatic organisms.   UCR.L-50564.   Rev. 1.   Lawrence Livermore Laboratory,
Livertnore, California.

Thorp, J.H.,  et al.   1979.   Effects of  chronic cadmium exposure on  crayfish
survival, growth, and tolerance to  elevated temperatures.  Arch.  Environ.
Contam. Toxicol.  8:  449.

Tucker, R.K.   1979.   Effects of in  vivo cadmium exposure on ATPases in  gill of
the  lobster-)  Homarus americanus. Bull. Environ.  Contam.  Toxicol. 2.3: 33.

Tucker, R.K.  and  A.  Matte.   1980.  In vitro effects of cadmium  and  lead on
ATPases  in  the gill  of  the  rock crab, Cancer irroratus.  Bull.  Environ. Contam.
Toxicol.  24:  847.

U.S.  EPA.   1976.   Quality criteria  for water.  055-001-01049-4.  Government
Printing  Office.   Washington, D.C.

U.S.  EPA.   1979.   Methods for chemical analysis of water and wastes.
EPA-600/4-79-020.  National Technical Information Service, Springfield,
Virginia.

U.S.  EPA.-'"1980.   AmbTent Vate'r' quality criteria fee cadmium".  -EPA-440/5-80-02 5.
 National Technical Information  Service, Springfield, Virginia.

-------
                                                                            ?7
U.S. EPA.  1982.   Water Quality Standards Regulation.   Federal Register.   47:




49234.  October 29.








Verma, S.R., et al.  1980.  Short term toxicity teats with heavy metals for




predicting safe concentrations.  Tox. Let. 1: 113.








Vernberg, W.B., et al.  1974.  Multiple Environmental Factor Effects on




Physiology and Behavior of the Fiddler Crab, Uca pugilator.  In: F.J. Vernberg




and W.B. Vernberg  (eds.), Pollution and Physiology of Marine Organisms.




Academic Press, flew York.








Vernberg, W.B., et al.  1977.  Effects of sublethal concentrations of cadmium  DQ




adult Paleomonetes pugio  under static and flow-through conditions.  Bull.




Environ. Con tarn.  Toxicol.   1'7: 16.








Voyer, R.A.   1975.  Effect  of  dissolved  oxygen concentration  on the  acute




 toxicity of cadmium  to the  mummichog, Fundulua heteroclitus.   Trans. Am.




 Fish. Soc.   104:  129.








 Voyer, R.A., et al.   1977.   Viability of embryos of the  winter flounder




 Pseudopleuronectes amerieanua exposed to combinations of cadmium and salinity  at




 selected temperatures.  Mar. Biol.  44:  117.








 Voyer, R.A., et al.   1979.   Hatching success and larval  mortality in an




 estuarlne teleost, Menidia menidia (Linnaeus), exposed to cadmium in constant




 and  fluctuating salinity regimes.  Bull. Environ. Contain. Toxicol.  23:  475.

-------
Warnick,  S.L. and H.L.  Bell.  1969.  The  acute  toxic I Cy  of  some heavy metals to




different species of aquatic  insects.  Jour. Water  Pollut. Control Fed.  41:




280.








Westerman, A.G. and W.J.  Birge.   1978.   Accelerated  rate of albinism in channel




catfish exposed to metals.  Prog. Fish-Cult. 40:  143.








Westernhagen, H.V. and  V.  Oethiefsen.  1975.   Combined  effects of cadmium and




salinity  on  development and survival of  flounder  eggs.  J. Mar. Biol. Ass. U.K.




55: 945.








Westernhagen, H.V., et  al.  1975.   Combined  affects  of  cadmium and salinity on




development  and survival-of garplke eggs.  Helgolander  wiss Meeresunters.  27:




268.








Westernhagen, H.V., et  al.  1978.   Fate  and  effects  of  cadmium in an




experimental marine ecosystem.   Helgolander  wiss  Meeresunters. 31: 471.








Westernhagen, H.V., et  al.  1979.   Combined  effects  of  cadmium, copper and lead




on  developing herring eggs and  larvae.   Helgolander  wiss.  Meeresunters.  32:



257.








White,  D.H.  and M.T.  Finley.   1978a.   Effects  of  Dietary Cadmium  In Mallard




Ducks.   In;  D.D.  Hemphill (ed.), Trace Substances In Environmental Health-XlI.



University of Missouri, Columbia, Missouri.








White,  D.H.  and M.T.  Finley.   1978b.   Uptake and  retention of dietary cadmium in



mallard ducks.  Environ. Res.  17:  53.

-------
White, D.H., et al.  197R.  Hlstopathologlc effects of dietary cadmium on



kidney* and cest*s of M-lUrJ Juck*.  J. Jbaicsl. rt&viro*. tteaUh. *»
Wler, C.P. and W.M. Walter.  1976.  Toxlcity of cadmium In the freshwater snai-,




Physa gyrina Say.  Jour. Environ. Qual. 5: 359.








Williams, D.R. and J.P. Glesy, Jr.  L978.  Relative importance of food and water




sources to cadmium uptake by Gambusla affinis (?oeclllldae) .  Environ. Res.  16:




326.








Wright, D.A.   1977.   The effect  of  salinity  on cadmium uptake by  the  tissues o-




the  shore crab,  Carclmia maenas.  Exp.  Blol. 67:  137.








Wright, O.A.  and J.W. Fraln.  .1981.   Cadmium toxicity In Marlnogamnams




obtusatus:  effect of external calcium.   Environ.  Rea. 24:  338.








Yager,  C.M. and H.W. Harry.  1964.   The uptake of radioactive zinc,  cadmium and




 copper by the freshwater  snail,  Taphiua giabrarua.  Malacologia   1:  339.








 Zaroogian,  G.E.  1979.  Studies on the depuration of cadmium aad  copper by the



 American oyster Crassostrea. virglnica.  Bull.  Environ.  Contain.  Toxicol.  23:




 117.








 Zaroogian, G.E. and 5. Cheer.  1976.  Cadmium accumulation by the American




 oyster, Craasostrea virglnica.   Nature  261: 408.

-------