United SWtos
xvEPA
Example Moisture Mass Balance Calculations
for Bioreactor Landfills
-------
EPA-456/R-03-007
December 2003
Example Moisture Mass Balance Calculations for Bioreactor Landfills
By:
Amy Alexander
Eastern Research Group, Inc.
Morrisville, North Carolina
Prepared for:
Mary Ann Warner, Project Officer
Information Transfer and Program Integration Division
Contract No. 68-D-02-0079
Work Assignment Numbers 1-03 and 2-04
U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Information Transfer and Program Integration Division
Research Triangle Park, NC
-------
1.0 INTRODUCTION
The purpose of this memorandum is to demonstrate example mass balance calculations that can
be performed to estimate the moisture content of the waste mass in a bioreactor landfill. The
Municipal Solid Waste Landfills NESHAP (40 CFR part 63, subpart AAAA) requires timely
control of bioreactor landfills. As defined in the NESHAP, a bioreactor is a MSW landfill or a
portion of a MSW landfill where any liquid, other than leachate or landfill gas condensate, is
added in a controlled fashion to accelerate the anaerobic (without oxygen) biodegradation of the
waste. The average moisture content of the waste in the area into which the liquid is added must
be at least 40 percent (by weight) for the landfill or portion of the landfill to be considered a
bioreactor. We have presented the example mass balance calculations based on the wet weight
of waste. This is consistent with the approach detailed in the book, Landfill Bioreactor Design
and Operation, by Debra Reinhart and Timothy Townsend and documented in the EPA Docket
A-98-28 (Item IV-K-9).
The only two situations where the NESHAP requires a landfill owner/operator to calculate
percent moisture content are:
1 .If the landfill owner/operator adds liquids (other than leachate and condensate) and does NOT
comply with the bioreactor control requirements. In this case, they must keep a record of
calculations showing that the percent moisture content expected in the waste mass to which the
liquid is added is less than 40 percent. If the moisture content is less than 40 percent, the landfill
would not meet the definition of a bioreactor, and timely control would not be required. See
section 63.1980(g) of subpart AAAA.
2.1f the landfill owner/operator chooses to begin operating the bioreactor gas collection and
control system within 180 days after achieving 40 percent moisture content instead of within 180
days after initiating liquids addition, as allowed under section 63.1947 (a)(2) or (c)(2). In this
case, they must calculate percent moisture content to determine when the bioreactor reaches 40
percent moisture, keep records, and submit a report within 90 days of achieving 40 percent
moisture content. See section 63.1980(h) of subpart AAAA.
-------
Note that a landfill owner/operator who adds liquids does NOT have to calculate percent
moisture content if they meet the bioreactor control requirements within 180 days of initiating
liquids addition (or by January 17, 2006 for existing landfills with bioreactors).
The NESHAP allows moisture content to be determined using a variety of methods, as long as
the procedures and assumptions are documented and appropriate. A range of appropriate
methods exist. For example, the landfill owner/operator can perform a simple mass balance
calculation. The calculation must take into account the waste mass, moisture content of the
incoming waste, mass of liquids added to the bioreactor (including recirculated leachate),
precipitation falling on the bioreactor surface, and mass of water removed as leachate. The
landfill can perform more complex mass balances using models that take into account additional
factors such as surface runoff, landfill cover types that reduce the amount of precipitation
entering the waste mass, and water loss mechanisms such as evapotranspiration. Another
possible method for an established bioreactor would include sampling the moisture content of
the waste at multiple locations within the bioreactor, and performing statistical calculations to
determine the average percent moisture. However, it is expected that in most cases, a mass
balance approach will be adequate to determine whether the moisture content is above or below
40 percent and comprehensive sampling will not be needed.
This memorandum provides two example mass balance calculation procedures, a simple method
and a more complex method. However, landfill owners/operators are free to use other methods
to take into account site-specific characteristics of their landfill. Many landfills may already
have performed moisture balance calculations, and these can be used assuming the procedures
and assumptions are documented, appropriate, and representative of current landfill conditions.
2.0WATER BALANCE METHOD
The Water Balance Method was chosen to represent the example calculations used to model the
mass balance of moisture within a bioreactor landfill because it is a relatively basic computation.
The Hydrologic Evaluation of Landfill Performance (HELP) model is another, more advanced
model that can be used as an alternative to the Water Balance Method. However, the HELP
model is based on a volumetric moisture content of waste. Because the NESHAP specifies that
the 40 percent moisture content is by weight, we do not recommend using the HELP model to
conduct bioreactor mass balance calculations to meet the requirements of the NESHAP.
The Water Balance Method performs several calculations in sequence on a monthly time basis to
estimate the average moisture content of the waste. It was originally designed to measure
evapotranspiration from soils and was then adapted for landfill conditions. Our suggested
procedure for using the Water Balance Method involves a two-tiered approach. Method A is a
simplified equation that only incorporates factors which most significantly affect the average
moisture content of the waste mass. The simplified equation also assumes that all precipitation
falling directly on the landfill's surface will become moisture in the waste mass. The primary
factors that are accounted for in the simplified equation are:
-------
•Incoming waste moisture,
•Precipitation (only precipitation that falls directly on the landfill's surface; assuming that all
surface runoff from adjacent areas is diverted around the landfill surface),
•Liquids addition (recirculated leachate, water, etc.), and
•Leachate production.
If landfill owners/operators are satisfied with the results of the Method A equation, then no
further calculations are needed. However, if further analysis is required, then landfill
owners/operators can proceed to Method B which comprises a more advanced set of
calculations. This more complex procedure takes into account the four factors included in the
simplified equation of Method A plus the following four elements:
•Moisture retained in the landfill surface or cover material,
•Surface runoff,
•Surface evaporation, and
•Evapotranspiration.
A detailed description of each step is discussed in Sections 2.1 and 2.2, respectively.
2.1Method A: Simplified Equation
The potential moisture content of the waste mass in the bioreactor landfill can be estimated using
the following simplified equation of the Water Balance Method:
(Lo * M) + P + LA - LCH
PMC = ~ * 100 (Equation 1)
M
Where,
PMC = estimated potential moisture content of the waste mass (% moisture content on a wet
weight basis);
L0 = moisture entering with the waste mass (kg moisture/kg total waste mass as received);
M= total waste mass in bioreactor cell on an as received basis (kg total waste mass as received);
P = total precipitation (kg total precipitation);
LA = total liquids added to the waste mass, including recirculated leachate (kg total liquids); and
LCH= total leachate collected (kg total leachate).
If the bioreactor landfill has been at steady state (i.e., no fluctuations in any of the factors above)
since the bioreactor cell or entire bioreactor landfill opened, then M, P, LA, and LCH can be
calculated as monthly averages instead of totals. However, this scenario is not likely to occur.
-------
When using Equation 1, landfill owners/operators must keep records of data and assumptions
used to determine values of L0, M, P, LA, and LCH for their bioreactor landfill. The following
bullet points provide potential guidelines for determining and recording these values.
•L0: According to Tchobanoglous' Integrated Solid Waste Management: Engineering Principles
and Management Issues, most MSW in the United States has a moisture content of 15 to 40
percent, with 25% as typical. Moisture content of MSW depends primarily on the composition
of the waste, the season of the year, and the humidity and weather conditions of the surrounding
environment. For example, the moisture content of 100 kilograms of incoming wet waste can be
estimated as: [(100 kg - d)/\00 kg], where d is the total dry weight in kilograms of the solid
waste components within the 100 kilograms of wet waste received.
•M: To calculate total waste mass, waste acceptance or waste placement data is needed and
should be documented accordingly.
•P: Total precipitation in inches of water can be obtained from precipitation measurements at
the landfill or from nearby weather station data. Convert the precipitation from inches to
kilograms of moisture using the following equation:
Total precipitation (P) = (in. of total precipitation) * (1 ft/12 in) * (ft2 of bioreactor
landfill surface) * (1 gal/0.134 ft3) * (3.78 kg/gal water)
•LA: The total amount of liquids added can be estimated using measurements currently taken at
the bioreactor site for design and operational purposes. For example, if a closed-loop bioreactor
with horizontal trenches uses a flow meter to measure the amount of leachate recirculated, then
flow meter reading records can be used to estimate total leachate addition (e.g., converting die
flow rate each month to kilograms of leachate per month and then summing the monthly
readings to obtain a total liquids added amount). Water introduced at the surface of the landfill
via truck could be measured using a simple volume displacement calculation, such as: (gallons
of water stored per tank truck) * (number of tank trucks emptied onto landfill surface) * (3.78
kilograms per gallon of water). The types of liquid addition methods vary by bioreactor landfill
site, therefore, the types of measurement methods will differ as well. We recommend that each
landfill owner/operator calculate total liquids using methods most appropriate for their bioreactor
design.
•LCH: Similar to liquids addition, the total amount of leachate produced can be estimated using
leachate collection records generated at the landfill bioreactor for design, operational, and
possibly regulatory purposes. For example, if a bioreactor landfill uses a flow meter to measure
the amount of leachate produced or collected, then flow meter reading records can be used to
estimate total leachate generation (e.g., converting the total flow rate each month to kilograms of
leachate per month and then summing the monthly readings to obtain a total leachate amount).
The leachate value used in Equation 1 should include leachate that is recirculated as well as any
excess leachate that may be treated or disposed of by other means. We recommend that each
landfill owner/operator calculate total leachate generated using methods most appropriate for
-------
their leachate collection system design.
2.2Method B: Advanced Set of Calculations
The following items are required inputs for Method B of the Water Balance Method calculations:
•Average monthly temperatures in degrees Fahrenheit (°F)
•Site latitude
•Average monthly precipitation in inches of water
•Landfill surface conditions
•Soil & vegetation type for final cover (if any)
The 17 calculation steps of the advanced Water Balance Method procedure are listed below.
Steps 1 through 16 of the sequence calculate and confirm the percolation of precipitation into the
bioreactor landfill considering moisture contained in the landfill surface or final cover, surface
runoff, evaporation losses, and evapotranspiration. Step 17 is very similar to Equation 1 for
Method A. The only difference between Step 17 and Equation 1 is that Step 17 replaces the
amount of precipitation with the amount of moisture that percolates into the waste mass.
Attachment B contains a Microsoft Excel spreadsheet that provides example calculations for
Steps 1 through 16. The foundation for this sequence of calculations and example spreadsheet
comes directly from McBean's Solid Waste Landfill Engineering and Design.
Sequence of Calculations for the Advanced Water Balance Method (Method BV
Steps 1-5: Determine potential evapotranspiration
1. Collect average monthly temperatures (T) in °F for the area surrounding the bioreactor
landfill. Enter this information in the spreadsheet.
2. Using the monthly temperatures, determine the monthly heat index (h) for each month.
Monthly heat indices can be determined using Table Al in Attachment A. For months where the
temperature is less than 32 °F, set h to zero. Sum the monthly heat indices to obtain a yearly heat
index (H).
3. Using the monthly temperatures and yearly heat index, find the Unadjusted Potential
Evapotranspiration (UPET) for each month using Table A.2 in Attachment A.
-------
4. Using the latitude at the bioreactor landfill site, find the monthly correction factor for sunlight
duration (r) in Table A.3 in Attachment A.
5. Multiply the monthly UPETby the monthly r to result in the monthly Adjusted Potential
Evapotranspiration (PET) for each month in inches of water.
Steps 6-9: Determine amount of precipitation that infiltrates the bioreactor landfill
6. Enter the average monthly precipitation (P) in inches of water for the bioreactor landfill site.
7. Enter the appropriate runoff coefficient (Cr/0) to calculate the runoff for each month. Table
A.4 in Attachment A can be used to determine the most appropriate runoff coefficient based on
the landfill surface conditions.
8. Multiply the monthly precipitation by the monthly runoff coefficient to obtain the runoff (r/o)
for each month in inches of water.
9. Subtract the monthly r/o from the monthly P to obtain the monthly infiltration (7) in inches of
water.
Steps 10 - 13: Calculate moisture storage in the landfill surface cover material
10. Subtract the monthly PET from the monthly / to determine the moisture available for storage
at the landfill surface (I - PET) in inches of water.
11. For negative (I - PET) values only, add the (I- PET) value for the preceding month to the
current month to calculate the Cumulative Water Loss (ACCWL). Begin the summation with
zero accumulated water loss for the last month having a positive (I - PET) value.
12. Determine the monthly Soil Moisture Storage (ST) in inches of water for the landfill surface
by following the steps outlined below:
a. Determine the initial ST for the soil depth and type. Table A.5 can be used to configure the
initial ST (retention) value.
b. Assign the initial ST value to the months having a positive (I-PET) value, prior to months
that have a negative (I - PET) value.
c. Determine the Sffor each subsequent month having a negative (I-PET) value. Use the
monthly ACCWL values and Table A.6 to obtain the ST.
d. For subsequent months having an (I - PET) value greater than or equal to zero, add the (I -
PET) value for each month to the preceding month's ST. Be careful not to exceed the soil field
capacity (i.e., fraction of water in the soil based on the dry weight of the soil). Enter the soil
8
-------
field capacity for monthly soil moisture storage if the sum exceeds the field capacity.
13. Calculate the change in the ST, or AST, for each month in inches of water by subtracting the
Srfor the preceding month from the current month's ST.
Steps 14 -16: Calculate actual evapotranspiration and percolation of moisture into the
bioreactor landfill waste mass
14. Calculate the Actual Evapotranspiration (AET) by following the steps outlined below:
a. For wet months where the (I - PET) value is greater than or equal to zero, set the AET equal to
the PET.
b. For dry months where the (I - PET) value is negative, use the following equation for the AET:
AET = PET + ((I - PET) - AST). This equation represents the fact that the evapotranspired
amount is the amount potentially evapotranspired plus that available from excess infiltration that
would otherwise add to soil moisture storage plus that available from previously stored soil
moisture.
15. Calculate the monthly percolation (PERC) as follows:
a. For wet months where the (I - PET) value is greater than or equal to zero, use the following
equation for the PERC: PERC = ((I - PET) - AST).
b. For dry months where the (I - PET) value is negative, set the PERC equal to zero.
16. As a check for Steps 7 through 15, calculate the average monthly precipitation (/>) in inches
of water to be sure they match the original precipitation values entered in Step 6. The
precipitation calculation is as follows: P = PERC + AET + AST + r/o.
Step 17: Estimate moisture content of the waste mass in the bioreactor landfill
17. Convert PERC from inches of moisture to kilograms of moisture per kilogram of waste (e.g.,
[PERC (in) * (1 ft/12 in) * (ft2 of bioreactor landfill surface) * (1 gal/0.134 ft3) * (3.78 kg/gal
water)] / (total kg waste mass in bioreactor)). Then, estimate the potential moisture content of
the waste mass, on a monthly wet weight basis, using the following equation:
PMC = L0 + PERC + LA - LC//(Equation 2)
-------
Where,
PMC - estimated potential moisture content of the waste mass (kg moisture/kg waste);
L0 = average amount of moisture in the initial waste added each month (kg moisture/kg waste);
PERC = monthly percolation (kg moisture/kg waste);
LA = amount of liquids added to the waste each month, including recirculated leachate
(kg liquids/kg waste); and
LCH= amount of leachate produced each month (kg leachate/kg waste).
L0, LA, and LCH should be estimated and documented similarly to Method A procedures
described under Equation 1 in Section 2.1. The difference between Equations 1 and 2 is thatZ,0,
LA, and LCH are monthly values per kilogram of waste in Equation 2, not total values.
Therefore, for Equation 2, monthly values will need to be determined and then divided by the
amount of waste added each month.
3.0REFERENCES
1. McBean, E.A., Rovers, F.A., and Farquhar, G.J. Solid Waste Landfill Engineering and
Design. Prentice-Hall: New Jersey, 1995. Chapter 7 and Appendix C.
2. Tchobanoglous, G., Theisen, H., and Vigil, S. Integrated Solid Waste Management:
Engineering Principles and Management Issues. McGraw-Hill: New York, 1993. pp. 70-73,
421-424.
10
-------
Attachment A
Reference Tables for Water Balance Method Calculations
A-l
-------
Table A.l. Monthly Values of Heat Indices Corresponding to Monthly Mean Temperatures
Tf
32
33
34
36
36
37
38
39
40
41
42
43
44
46
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
JO
.00
.04
.10
.19
.29
.41
.64
.68
.83
1
L17
1.35
1.54
1.74
1.95
2.17
2.39
2.62
2.86
3.11
3.35
3.6
3.87
4.14
4.41
4.69
4.98
5.28
5.58
5.88
6.19
6.50
6.82
7.15
7.48
7.82
8.16
8.51
8.85
.1
.00
.04
.10
.20
.30
.42
.65
.70
.85
1.01
1.19
1.37
1.56
1.76
1.97
2.19
2.41
2.64
2.89
3.13
3.38
3.63
3.89
4.16
4.44
4.72
5.01
5.31
5.61
5.91
622
6.53
7.85
7.18
7.52
7.85
8.19
8.54
8.89
2
.00
.05
.11
.21
.32
.43
.56
.71
.86
1.03
1.21
1.39
L58
1.78
2.00
2.21
2.43
2.67
2.91
3.16
3.40
3.65
3.92
4.19
4.47
4.75
5.04
5.34
5.64
5.94
6.25
6.56
6.88
7.22
7.55
7.89
8.23
8.57
8.92
A
.00
.05
.12
J22
.33
.44
.58
.73
.88
1.05
1.23
1.41
1.60
1.80
2.02
2.23
2.46
2.69
2.93
3.18
3.43
3.68
3.95
4.22
4.50
4.77
5.07
5.37
5.67
5.97
6.28
6.59
6.92
7.25
7.58
7.92
8.26
8.61
8.96
A
.6l
.06
.13
.23
.34
.46
.59
.74
.90
L07
1.24
1.43
1.62
1.82
2.04
2.26
2.48
2.71
2.96
3.21
3.45
3.71
3.97
4.25
4.52
4.80
5.10
5.40
5.70
6.00
6.31
6.62
6.95
7.28
7.62
7.95
8.30
8.64
8.99
3
.01
.06
.14
.24
.35
.47
.60
.76
.91
1,08
1.26
1.45
1.64
1.85
2.06
2.28
2.50
2.74
2.98
3.23
3.48
3.73
4.00
4.27
4.55
4.83
5.13
5.43
5.73
6.03
6.34
6.66
6.98
7.32
7.65
7.99
8.33
8.68
9.03
.6
.62
.07
.15
.25
.36
.48
.62
.77
.93
1.10
1.28
1.47
L66
1.87
2.08
2.30
2.53
2.76
3.01
3.25
3.60
3.76
4.03
4.30
4.57
4.86
5.15
5.46
5.76
6.06
6.38
6.69
7.02
7.35
7.68
8.02
8.37
8.71
9.06
.7
.02
.08
.16
.26
.37
.50
.63
.79
.95
1.12
1.30
1.49
1.68
L89
2.10
2.32
2.55
2.79
3.03
3.28
3.53
3.79
4.06
4.33
4.60
4.89
5.19
5.49
5.79
6.10
6.41
6.72
7.05
7.38
7.72
8.05
8.40
8.75
9.10
A
.03
.09
.17
.27
.39
.51
.65
.80
.96
1.14
1.32
1.50
L70
1.91
2.13
2.34
2.67
2.81
3.06
3.30
3.55
3.81
4.08
4.35
4.63
4.92
5.22
5.52
5.82
6.13
6.44
6.75
7.08
7.42
7.75
8.09
8.44
8.78
9.13
3
.03
.09
.18
.28
.40
.52
.66
.82
.98
1.16
1.33
1.52
1.72
1.93
2.15
2.37
2.60
2.84
3.08
3.33
3.58
3.84
4.11
4.38
4.66
4.95
5.25
5.55
5.85
6.16
6.47
6.79
7.12
7.45
7.78
8.12
8.47
8.82
9.17
A-2
-------
Table A.l. Monthly Values of Heat Indices Corresponding to Monthly Mean Temperatures
(Continued)
rr
a
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
JO
-IT—
9.57
9.93
10*0
10.67
11.05
11.43
11.82
1221
12.61
13.01
13.41
13.81
14.22
14.64
15.07
16.49
15.92
16.36
16.79
1723
17.67
18.12
18.57
19.03
19.48
1955
20.42
20.88
21.36
21.84
22.33
22*1
23*0
.1
924
"9.60
9.97
10*4
10.71
11.09
1L47
11.85
1225
12.65
13.05
13.45
13.85
14.26
14.69
15.11
15.53
15.97
16.40
16.83
17.27
17.72
18.16
18.62
19.07
19.53
20.00
20.46
20.93
21.41
21.89
22*6
2
927
9.64
10.01
10*7
10.75
11.13
11.51
11.89
1229
12.69
13.09
13.49
13.69
14*1
14.73
15.15
15*8
16.01
16.44
16.88
17*2
17.76
1821
18.66
19.12
19*8
20.04
20*1
20.98
21.46
21.94
22.42
22.91
J3
9*1
9.67
10.04
10.41
10.78
1L17
11*4
11.93
12*3
12.73
13.13
13.53
13.94
14*5
14.77
16.19
16.62
16*5
16.49
16.92
17.36
17*1
1825
18.71
19.16
19.62
20.09
20*6
2L03
21.51
21.99
22.47
22*6
A
9*4
9.71
10.08
10.45
10.82
1120
11.68
11.97
12*7
12.77
13.17
13*7
13.98
14*9
14.81
1523
16.66
16.10
16.53
16.96
17.41
17.85
18*0
18.75
19.21
19.67
20.14
20.60
21.08
21*6
22.03
22.52
23.00
T3T-
9.75
10.12
10.48
10.86
1124
11.62
12.01
12.41
12.81
1321
13.61
14.02
14.48
14.86
1528
15.71
16.14
16*7
17.01
17.45
17*9
18.34
18.80
1925
19.71
20.18
20.65
21.13
21.60
22.08
22.67
23.05
£
9.78
10.15
10*2
10*9
1128
11.66
12.05
12.45
12*5
1326
13.65
14.06
14.47
14.90
16*2
16.75
16.18
16.62
17.05
17.49
17.94
18*9
18*4
19.30
19.76
2023
20.70
21.17
21.65
22.13
22.62
23.10
.7
9.82
10.19
10*6
10*3
11*1
11.70
12.09
12.49
12.89
1329
13.69
14.10
14*2
14*4
15*6
16.79
1623
16.66
17.09
17*4
17.98
18.48
18*9
19*4
19*1
2028
20.74
2122
21.70
22.18
22.67
23.15
*
o»w
9.85
1022
10.60
10*7
U.35
11.74
12.13
12*3
12*3
13*3
13.73
14.14
14.56
14.98
15.40
15*4
1627
16.70
17.14
17*8
18.03
18.48
18.93
19*9
19.86
20*2
20.79
21.27
21.76
2223
22.71
2320
•i^BHHB
J
"SET"
9*9
1026
10.64
11.01
11*9
12.17
12.57
12.97
18*7
14.18
14.60
15.02
15.45
15*8
16.31
16.76
17.18
17.63
18*2
16.98
19.44
19.90
20*7
20.84
21*2
21.79
2229
2325
•mMM^B
A-3
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
T°F
32
324
33
3U
34
345
35
3&5
as
364
37
as
38
38L5
39
394
25
0
0
0
0.01
0.01
0.01
0.02
0.02
0.02
0.02
0.02
0.02
0.03
0.03
0.03
0.04
OS 30 324 35 374 40 424 « 474 GO 624 5S SIS »
00000000000000
00000000000000
00000000000000
0.01 0000000000000
0.01 0.01 0.01 0.01 0000000000
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 000000
0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0000
0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 000
0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0
0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
0.03 0.02 0.02 0.02 .0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01
0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01
0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01
0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01
824
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
0.01
0.01
0.01
65
0
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
0.01
0.01
6U
0
0
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
0.01
»
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
72*
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
IS
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
774
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.01
0.01
at
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.01
r°r
32
32S
31
au
M
MS
8
as
31
au
0
V*
38
184
39
au
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
(Continued)
I VALUEfBU-40)
T°F
32
au
93
au
M
MB
as
au
36
aas
87
373
36
aas
39
au
au
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
85
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8U
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
90
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9U
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
95 as 100 iou in iou no nu us m* 120 1225 125 iro HO
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
000000000000000
00006000. ooooooo
000000000000000
000000000000000
000000000000000
000000000000000
000 '000000000000
000000000000000
1325
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
135
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1373
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
140
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
T°F
32
au
33
au
34
345
85
au
36
au
37
375
38
au
39
3U
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and 1 Values
(Continued)
I VUue(25A-80)
1*F
«
405
41
41.5
42
425
43
43L5
44
MS
45
455
46
465
47
475
25 27.5 30&5« 37.5 4042545 474 SOSU55 575 e08U6567J7072£7I 77.5 60
0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01- 0.01 0.01 0.01
0.05 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01
0.05 0.06 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01
0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.06 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.06 0.06 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02
0.06 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02
0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02
0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02
0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02
1°F
40
405
41
415
42
425
43
435
44
445
48
455
46
465
47
475
>
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
(Continued)
I VALUEflW-HO)
T°F
«
404
41
414
42
4U
43
434
44
44B
45
4U
45
4U
47
474
524 85 875 90 524 85 974 100 1025 105 1075 110 1115 115 1174
0.010010000000000000
001 001 OJOIO 000 00 000000
001 001001 001 ooooooooooo
001 001 001 001 001 001 o o o o o o o o o
001 001 0.01 001 001 0.01 001 0 0 0 0 0 0 0 0
001 0.01 0.01 001 001 001 001 0.01 0 0 0 0 0 0 0
001 001 001 001 001 0.01 001 0.01 0 0 0 0 0 0 0
0.01 0.01 0.01 001 001 0.01 001 001 0.01 0.01 0.01 0 0 0 0
002 001 0.01 001 001 001 001 001 001 001 001 001 0 0 0
002 002 0.01 0.01 001 001 001 001 001 001 0.01 001 O01 0 0
002 002 002 001 001 0.01 001 001 001 001 001 001 001 001 0
0.02 002 0.02 002 002 001 001 001 001 001 001 001 001 001 0
002 002 002 002 002 001 001 001 0.01 001 001 001 001 001 001
002 002 002 002 002 002 001 001 001 001 001 001 001 001 001
002 002 002 002 002 002 002 002 001 001 001 001 001 001 001
002 0.02 002 OJ02 002 002 002 002 001 001 001 001 001 001 001
120
0
0
0
0
0
0
0
0
0
0
0
0
001
001
001
001
1224
0
0
0
0
0
0
0
0
0
0
0
0
0
001
001
001
125
0
0
0
0
0
0
0
0
0
0
0
0
0
0
001
001
1274
0
0
0
0
0
0
0
0
0
0
0
0
0
0
001
001
130
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1325
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
135
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1375
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
140
0
0
0
0
0
0
0
1 0
0
0
0
0
0
0
0
0
T°F
49
405
41
414
42
424
43
434
44
444
45
455
45
454
47
474
>
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and 1 Values
(Continued)
1°F
48
«U
49
4U
60
> 805
» M
615
a
825
S3
535
M
545
55
6U
1 VALUEfttS-140)
tU 65 874 » 925 96 975 100 10U 108 1074 110 1115 115 1175 120 12U 125 1275 130 1325 135 1375 140
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 000
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0
0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0
0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01
0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01
0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01
0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01
0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0,02 0.02 0.02
0.06 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0,02 0.02 0.02
0.05 0.06 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 OJ02 0.02 0.02
ff
48
485
49
495
50
805
51
615
sa
825
53
635
84
645
85
855
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
(Continued)
T°F
48L5
49
495
50
SOS
51
>
O 515
52
5Z5
63
535
54
545
55
555
1 Veto 054- 80)
2S2753032535375404254S475506zs55575eo6256S875707257B7/5 n
0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03
0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03
0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03
0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03
0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03
0.08 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04
0.08 0.08 0.07 0.07 0.07 0.07 0.06 0.06 0.05 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04
0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04
0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.04 0.04 0.04 0.04 0.04
0.09 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.04 0.04 0.04 0.04
0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.06 0.04 0.04
0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.05 0.05
0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06
0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05
0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05
140
48L5
49
4U
50
505
51
515
62
6U
63
OS
64
545
66
665
-------
rp
ss
555
57
874
55
554
68
OR5
60
604
61
614
62
625
63
634
25 274
ao 00
HI 00
11 01
ai 01
ai 0.1
Ml Ol
an 01
tn on
an an
an on
an on
an on
an an
an an
an an
an an
30 324
00 00
00 00
00 00
00 00
ai 00
01 01
01 ai
ai ai
an ai
an an
an an
an an
an an
an an
an an
an an
36 374
00 oa
00 00
00 00
00 00
00 00
00 00
01 00
01 01
01 01
ai ai
an ai
an an
on an
on an
on an
on an
43 425
aa aa
on aa
00 00
00 00
00 aa
00 00
qflB 00
Una ^a
01 Q0
01 01
01 Ol
01 01
on 01
an an
an an
an an
45 474
00 007
oa on
00 00
007 00
00 00
00 00
00 00
00 00
00 00
00 00
01 00
ai ai
ai ai
ai ai
an ai
on an
50 525
007 007
00 007
on ao?
oa aa
on aa
ao oa
00 00
00 00
00 00
ao ao
00 00
ai ao
ai ai
ai ai
ai ai
an ai
65
007
007
007
007
00
on
oa
00
00
00
00
00
00
01
ai
01
674 60
007 007
007 007
007 007
007 007
007 007
00 007
on oa
aa aa
oa oa
00 00
00 00
00 00
00 00
00 00
Ol 00
01 01
625 65
006 oa
on aa
on am
007 007
007 007
007 007
007 007
oa 007
oa on
aa oa
an oa
00 oa
00 00
00 00
00 00
00 00
675 75 725 76 774 50
oa aa aa on aa oa
005 006 006 005 006 00
007 on on on oa oa
ao7 on oa on aa an
oa? an 007 ott on oa
007 007 007 007 ftflfr aa
aai 007 007 007 on on
007 007 007 007 007 00
007 007 007 007 007 007
on on an 007 am 007
on aa aa on an an
oa aa on oa am oa
aa oa an aa en an
ao ao aa on aa aa
oa 00 on ao on aa
ao ao oo oa aa 009
r°r
66
SIS
67
674
05
555
6ft
604
60
604
61
614
62
625
53
855
I
o
-------
re
64
644
65
6U
87J5
71
715
I vuuepu-eo)
0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09
0.13 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09
0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09
0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.1
0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1
0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1
0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11
0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11
0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 O.J3 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11
0.16 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0;.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12
0.15 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12
0.16 0.16 0.15 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.18 0.13 0.13 0.13 0.18
0.16 0.16 0.16 0.16 0.16 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.18
T°F
64
644
68
6U
67
674
714
-------
Table AJ. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
(Continued)
I VALUE(B5-140)
rr
823 85 873 99 825 95 973 100 1025 105 1073 HO 1125 115 1173 120 1218 18 1273 130 1325 135 1373 140
T°F
NJ
MB
66
853
eu
873
68
683
60
683
703
71
715
0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05
0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05
0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.08 0.06
0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.06 0.06
0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.08 0.06 0.06
0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06
0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06
0.11 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07
0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07
0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.07
0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08
0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09
D.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09
0.18 0.18 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.09
M30.13 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1
64
643
65
653
€8
683
673
68
683
69
693
70
703
71
715
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
(Continued)
I VALUE(2&0-80)
rp
72
785
73
736
74
745
75
755
76
765
77
775
78
785
79
795
80
2527530325353754042545475508256687580625666757072575775 80
0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
0.16 0.16 0.16 0.15 0.15 0.16 0.15 0.16 0.16 0.16 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
0.16 0.15 0.15 0.16 0.16 0.15 0.16 0.15 0.16 0.16 0.15 0.15 0.16 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
0.16 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.16 0.16 0.16 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.16 0.16 0.16 0.16 0.15 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15
0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.15 0.15 0.15 0.16 0.15 0.16
0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.16 0.16 0.15 0.16 0.16 0.16 0.15 0.16 0.16 0.15
0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.16 0.16
0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18
T°F
72
725
.73
785
74
745
75
755
76
785
77
775
78
785
79
795
60
-------
Table A.2. Values of Unadjusted Daily Potential Evapotranspiration (in.) for Different Mean Temperatures and I Values
(Continued)
T°F
72
725
73
735
74
740
> n
£ 7U
76
7U
77
77.5
78
785
79
795
80
1 VMJJE
-------
Table A.3. Mean Possible Monthly Duration of Sunlight in the Northern Hemisphere (12 hours)
tudas
0
1
2
3
4
5
6
7
8
I 9
ft 10
11
12
13
14
15
16
17
18
19
20
21
22
23
January
31.2
31.2
31.2
30.9
30.9
30.6
30.6
30.3
30.3
30.0
30.0
29.7
29.7
29.4
29.4
29.1
29.1
28.8
28.8
28.6
28.5
28.2
28.2
27.9
27.9
February
28.2
28.2
28.2
28.2
27.9
27.9
27.9
27.6
27.6
27.6
27.3
27.3
27.3
27.3
27.3
27.3
27.3
27.3
27.0
27.0
27.0
27.0
26.7
26.7
26.7
Hatch
31.2
31.2
31.2
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
April
30.3
30.3
30.3
30.6
30.6
30.6
30.6
30.9
30.9
30.9
30.9
31.2
31.2
31.2
31.2
31.2
31.6
31.6
31.5
31.5
31.5
31.8
31.8
31.8
Hay
31.2
31.5
31.5
31.8
31.8
31.8
32.1
32.1
32.4
32.4
32.7
32.7
33.0
33.0
33.3
33.3
33.9
33.9
33.9
33.0
33.0
34.2
34.2
34.6
June
30.3
30.5
30.5
30.9
30.9
31.2
31.2
31.5
31.5
31.8
31.8
32.1
32.1
32.4
32.4
32.7
32.7
33.0
33.0
33.3
33.3
33.9
33.9
34.2
July
31.2
31.2
31.6
31.5
31.8
31.8
32.1
32.1
32.4
32.4
32.7
33.0
33.0
33.3
33.6
33.6
33.9
33.9
34.2
34.2
34.6
34.5
34.8
34.8
August
31.2
31.2
31.2
31.6
31.6
31.6
31.8
31.8
31.8
32.1
32.1
32.1
32.4
32.4
32.4
32.7
32.7
33.0
33.0
33.3
33.3
33.3
33.6
33.6
September
30.3
30.3
30.3
30.3
30.3
30.3
30.3
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
October
31.2
31.2
31.2
30.9
30.9
30.9
30.9
30.9
30.9
30.8
30.8
30.8
30.8
30.8
30.8
30.8
30.0
30.0
30.0
30.0
29.9
29.7
29.7
29.7
November
33.3
33.3
30.9
30.9
29.7
29.7
29.7
29.4
29.4
29.4
29.1
29.1
28.8
28.8
28.6
28.6
28.2
28.2
27.9
27.9
27.9
27.9
27.9
27.3
31.2
30.9
30.9
30.6
30.6
30.3
30.3
30.0
30.0
29.7
27.9
27.4
27.4
29.1
29.1
28.8
28.8
28.6
28.6
28.2
28.2
27.9
27.9
27.9
-------
Table A.3. Mean Possible Monthly Duration of Sunlight in the Northern Hemisphere (12
(Continued)
Northern Lett*
tucks January
26 27.9
26 27.6
27 27.6
28 27.3
29 27.3
30 27.0
31 27.0
32 26.7
33 26.4
34 26.4
36 26.1
* 36 26.1
37 25.8
38 26.6
39 26.6
40 26.2
41 24.9
42 24.6
43 24.3
44 24.3
46 24.0
46 23.7
47 23.1
48 22.0
49 22.9
60 22.2
February
26.7
26.4
26.4
26.4
26.1
26.1
26.1
26.8
26.8
26.8
26.6
26.6
26.6
26.2
26.2
24.9
24.9
24.6
24.6
24.3
24.3
24.0
24.0
23.7
23.7
23.4
March
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6
April
31.8
32.1
32.1
32.1
32.1
32.4
32.4
32.4
32.7
32.7
32.7
33.0
33.0
33.0
33.3
33.3
33.3
33.6
33.6
33.6
33.9
33.9
34.2
34.2
34.6
34.6
May
34.6
34.8
34.8
35.1
36.1
36.4
35.4
36.7
36.7
36.0
36.3
36.3
36.9
36.9
36.9
37.6
37.6
37.8
37.9
38.1
38.4
38.7
39.0
39.3
39.3
39.9
June
34.2
34.6
34.6
34.8
34.8
36.1
36.1
36.4
36.7
36.0
36.3
36.6
36.9
37.2
37.2
37.6
37.8
38.1
38.4
38.7
38.7
39.0
39.0
39.6
41.2
40.8
July
36.1
36.1
36.4
36.4
36.7
36.0
36.0
36.3
36.3
36.6
36.9
37.6
37.6
37.8
37.8
38.1
38.1
38.4
38.7
38.7
39.3
39.6
39.9
40.2
40.8
41.1
August
33.6
33.6
33.9
33.9
33.9
34.2
34.2
34.6
34.6
34.8
34.8
34.8
36.1
36.1
36.4
36.4
36.7
36.7
36.0
36.3
36.3
36.3
37.0
37.0
37.2
37.6
SeptBHibsr
30.6
30.6
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9
31.2
31.2
31.2
31.2
31.2
31.2
31.2
31.2
31.2
31.6
31.6
31.6
31.8
October
29.7
29.7
29.7
29.4
29.4
29.4
29.4
29.4
29.1
29.1
29.1
29.1
29.1
28.8
28.8
28.8
28.8
28.6
28.6
28.6
28.2
28.2.
27.9
27.9
27.9
27.9
hours)
November
27.3
27.3
27.0
27.0
26.7
26.7
26.4
26.4
26.1
26.1
26.8
26.8
26.6
26.2
26.2
24.9
24.9
24.9
24.3
24.3
23.7
23.7
23.4
23.1
22.8
22.8
December
27.3
27.3
27.3
27.3
26.7
26.4
26.4
26.1
26.9
26.8
26.6
26.2
24.9
24.9
24.6
24.3
24.0
23.7
23.1
23.0
22.6
22.2
21.9
21.9
2L3
21.0
-------
Table A.4. Runoff Coefficients
Surface Conditions:
Grass cover (slope) Runoff Coefficient
Sandy soil, flat, 2% 0.05-0.10
Sandy soil, average, 2-7% 0.10-0.15
Sandy soil, steep, 7% 0.15 - 0.20
Heavy soil, flat, 2% 0.13-0.17
Heavy soil, average, 2-7% 0.18 - 0.22
Heavy soil, steep. 7% 0.25-0.35
Source: Fenn et aL, 1975
A-17
-------
Table A.5. Provisional Water Holding Capacities for Combinations of Soil and Vegetation
so a Type
ShaUow-Rooted Crops
Find sand
Fine sandy ^^"TI
Sih loam
Clay loam
Clay
Fine sand
Fine sandy loam
Silt loan
Clay loam
Clay
Avdabfe Water
nrnlm biA
100
160
200
250
1.2
1.8
2.4
3.0
800 3.6
100 12
150
200
260
300
1.8
2.4
3.0
3.6
Root Zone
to. ft
hbeeti
.60
SO
.62
.40
3&
D. tolia
.76
1.00
1.00
.80
.50
AppOcabteSoD
HoWun ftetBflHon
Tttb
mm In.
i, carrots, etc.)
1.67 50
1.67
2.08
1.33
.83
2.50
3.33
3.33
2.67
1.67
75
125
100'
75
a! grains)
76
150
200
200
50
2.0
3.0
5.0
4.0
3.0
3.0
6.0
8.0
8.0
6.0
Deep-Booted Crop* (alfalfa, pastures, shrubs)
Fine sand
Fine sandy loam
Silt team
Clay loam
Clay
Orchards
Fine sand
Fine sandy loam
Silt loam
Claykwm
Clay
Fine sand
Fine sandy loam
Silt loam
Clay loam
Clay
100
ISO
200
2SO
300
100
150
200
250
300
100
160
200
250
300
1.2
1.8
2.4
3.0
3.6
1.2
1.8
2.4
3.0
8.6
1.2
1.8
2.4
3.0
3.6
1.00
1.00
1.25
1.00
.67
1.50
1.67
1.50
1.00
.67
2.50
240
2.00
1.60
1.17
3.33
3.83
4.17
3.33
a.gg
5.00
5.55
5.00
3.33
2.22
8.33
6.66
6.66
6.33
3.90
100
150
250
250
200
150
250
800
250
200
250
300
400
400
360
4.0
6.0
10.0
10.0
8.0
8.0
10.0
12.0
10.0
8.0
10.0
12.0
16.0
16.0
14.0
Note*
These figures are far mature vegetation. Young cultivated crops, nandlinfp, and other imma-
tnre. vegetation wffl have shallower root tones and, hence, have less water available Car the
use o£ the vegetation. As the plant develops from a seed or a young epnrat to the mature
fcra. the root «one will increase progressively from only a few inches to the vahws listed
above, UseofaserieaoisoilinoirtnreretentiflntaWeswithauttegsprely iacnasiiig values of
available moisture penmts the soil moisture to be determined Ihrougiioirt the growing «ea-
A-18
-------
Table A.6. Soil Moisture Retention Table for Various Amounts of Potential Evapotranspiration for
a Root Zone Water-Holding Capacity of Four Inches
PET
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.9
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
0.00
4.00
3.90
3.80
3.70
3.61
3.52
3.43
3.34
3.26
3.18
3.10
3.02
2.94
2.86
2.79
2.72
2.65
2.58
2.51
2.45
2.39
0.01
3.99
3.89
3.79
3.69
3.60
3.51
3.42
3.33
3.25
3.17
3.09
3.02
2.94
2.86
2.78
2.71
2.64
2.58
2.61
2.45
2.38
0.02
3.98
3.88
3.78
3.68
3.69
3.50
3.41
3.32
3.24
3.16
3.09
3.01
2.93
2.85
2.77
2.70
2.64
2.57
2.50
2.44
2.38
0.03
3.97
3.87
3.77
3.67
3.58
3.49
3.40
3.31
3.23
3.16
3.08
3.00
2.92
2.84
2.76
2.70
2.63
2.57
2.49
2.43
2.37
004
3.96
3.86
3.76
3.66
3.67
3.48
3.39
3.30
3.23
3.15
3.07
2.99
2.91
2.83
2.75
2.69
2.62
2.56
2.49
2.43
2.36
0.05
3.95
3.85
3.75
3.65
3.56
3.47
3.38
3.30
3.22
3.14
3.06
2.98
2.90
2.82
2.76
2.68
2.62
2.55
2.48
2.42
2.36
0.06
3.94
3.84
3.74
3.64
3.55
3.46
3.38
3.29
3.21
3.13
3.05
2.98
2.90
2.82
2.74
2.68
2.61
2.54
2.48
2.41
2.36
0.07
3.93
3.83
3.73
3.63
3.64
3.46
3.37
3.28
3.20
3.12
3.05
2.97
2.89
2.81
2.73
2.67
2.60
2.54
2.47
2.40
2.35
0.08
3.92
3.82
3.72
3.62
3.64
3.45
3.36
3.27
3.19
3.12
3.04
2.96
2.88
2.80
2.73
2.66
2.60
2.53
2.47
2.40
2.34
0.09
3.91
3.81
3.71
3.62
3.53
3.44
3.35
3.26
3.19
3.11
3.03
2.95
2.87
2.79
2.72
2.66
2.59
2.62
2.46
2.39
2.34
-------
N>
O
Table A.6. Soil Moisture Retention Table for Various Amounts of Potential Evapotranspiration for
a Root Zone Water-Holding Capacity of Four Inches (Continued)
PET
2.1
2.2
2.3
2.4
2.6
2.6
2.7
2.8
2.9
3.0
q i
O.I
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1
4.2
4.3
4.4
4.5
0.00
2.33
2.27
2.21
2.16
2.10
2.06
2.00
1.95
1.90
1.85
1.80
1.76
1.71
1.67
1.63
1.59
1.55
1.51
1.47
1.43
1.39
1.36
1.32
1.29
1.26
0.01
2.33
2.27
2.21
2.16
2.10
2.05
2.00
1.95
1.90
1.85
1.80
1.75
1.70
1.66
1.62
1.68
1.54
1.60
1.46
1.42
i:39
1.36
1.32
1.29
1.26
0.02
2.32
2.26
2.20
2.14
2.09
2.04
1.99
1.94
1.89
1.84
1.79
1.76
1.70
1.66
1.62
1.68
1.64
1.60
1.46
1.42
1.38
1.35
1.32
1.28
1.25
0.03
2.32
2.25
2.19
2.14
2.09
2.04
1.99
1.94
1.89
1.84
1.79
1.74
1.69
1.66
1.61
1.67
1.63
1.49
1.45
1.41
1.38
1.35
1.31
1.28
1.25
0.04
2.31
2.25
2.19
2.13
2.08
2.03
1.98
1.93
1.88
1.83
1.78
1.73
1.69
1.66
1.61
1.57
1.63
1.49
1.46
1.41
1.38
1.34
1.31
1.28
1.25
005
2.30
2.24
2.18
2.13
2.08
2.03
1.98
1.93
1.88
1.83
1.78
1.73
1.69
1.66
1.61
1.57
1.63
1.49
1.45
1.41
1.37
1.34
1.31
1.28
1.25
0.06
2.29
2.24
2.18
2.12
2.07
2.02
1.97
1.92
1.87
1.82
1.78
1.72
1.68
1.64
1.60
1.56
1.52
1.48
1.44
1.40
1.37
1.34
1.30
1.27
1.24
0.07
2.29
2.23
2.17
2.12
2.07
2.02
1.97
1.89
1.87
1.82
1.77
1.72
1.68
1.64
1.60
1.56
1.62
1.48
1.44
1.40
1.37
1.33
1.30
1.27
1.24
0.08
2.28
2.22
2.16
2.11
2.06
2.01
1.96
1.91
1.86
1.81
1.77
1.71
1.67
1.63
1.69
1.65
1.51
1.47
1.43
1.40
1.36
1.33
1.30
1.27
1.24
0.09
2.28
2.22
2.16
2.11
2.06
2.01
1.96
1.91
1.86
1.81
1.76
1.71
1.67
1.63
1.59
1.55
1.51
1.47
1.43
1.39
1.36
1.33
1.29
1.26
1.23
-------
Table A.6. Soil Moisture Retention Table for Various Amounts of Potential Evapotranspiration for
a Root Zone Water-Holding Capacity of Four Inches (Continued)
PET
4.6
4.7
4.8
4.9
5.0
5.1
5.2
5.3
5.4
6.5
5.6
6.7
5.8
5.9
6.0
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.0
0.00
1.23
1.20
1.17
1.14
1.11
1.08
1.05
1.02
1.00
0.98
0.95
0.92
0.90
0.88
0.86
0.84
0.82
0.80
0.77
0.76
0.74
0.72
0.70
0.68
0.66
0.01
1.23
1.20
1.17
1.14
1.11
1.08
1.05
1.02
1.00
0.97
0.95
0.92
0.90
0.88
0.86
0.84
0.82
0.79
0.77
0.76
0.74
0.72
0.70
0.68
0.66
0.02
1.22
1.19
1.16
1.13
1.10
1.08
1.05
1.02
0.99
0.97
0.95
0.92
0.90
0.88
0.86
0.84
0.82
0.79
0.77
0.76
0.74
0.72
0.70
0.68
0.66
0.03
1.22
1.19
1.16
1.13
1.10
1.07
1.04
1.01
0.99
0.97
0.94
0.92
0.89
0.87
0.85
0.83
0.81
0.79
0.77
0.76
0.73
0.72
0.70
0.68
0.66
0.04
1.22
1.19
1.16
1.13
1.10
1.07
1.04
1.01
0.99
0.97
0.94
0.91
0.89
0.87
0.85
0.83
0.81
0.79
0.77
0.75
0.73
0.71
0.70
0.67
0.66
0.05
1.22
1.19
1.16
1.13
1.10
1.07
1.04
1.01
0.99
0.97
0.94
0.91
0.89
0.87
0.85
0.83
0.81
0.79
0.77
0.75
0.73
0.71
0.69
0.67
0.66
006
1.21
1.18
1.15
1.12
1.09
1.07
1.04
1.01
0.98
0.96
0.94
0.91
0.89
0.87
0.86
0.83
0.81
0.78
0.77
0.75
0.73
0.71
0.69
0.67
0.66
0.07
1.21
1.18
1.15
1.12
1.09
1.06
1.03
1.00
0.98
0.96
0.93
0.91
0.89
0.87
0.85
0.83
0.80
0.78
0.77
0.75
0.73
0.71
0.69
0.67
0.66
0.08
1.21
1.18
1.15
1.12
1.09
1.06
1.03
1.00
0.98
0.96
0.93
0.90,
0.88
0.86
0.84
0.82
0.80
0.78
0.76
0.74
0.72
0.71
0.68
0.67
0.65
0.09
1.20
1.17
1.14
1.11
1.09
1.06
1.03
1.00
0.98
0.96
0.93
0.90
0.88
0.86
0.84
0.82
0.80
9.78
0.76
0.74
0.72
0.70
0.68
0.67
0.65
-------
Table A.6. Soil
PET
7.1
7.2
7.3
7.4
7.6
7.6
7.7
7.8
7.9
>
SJ
PET
8.0
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
Moisture Retention Table for Various Amounts of Potential Evapotranspiration for
a Root Zone Water-Holding Capacity of Four Inches (Continued)
0.00
0.65
0.63
0.61
0.60
0.58
0.57
0.56
0.54
0.54
0.05
0.52
0.50
0.49
0.48
0.47
0.45
0.44
0.43
0.42
0.41
0.01
0.65
0.63
0.61
0.60
0.58
0.67
0.56
0.54
0.53
0.05
0.51
0.50
0.48
0.47
0.46
0.46
0.44
0.43
0.42
0.41
0.02 0.03
0.65 0.64
0.63 0.63
0.61 0.61
0.60 0.69
0.68 0.58
0.67 0.57
0.56 0.55
0.54 0.54
0.53 0.53
PET
9.0
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
0.04
0.64
0.63
0.61
0.59
0.58
0.67
0.55
0.54
0.53
0.00
0.40
0.39
0.38
0.37
0.36
0.35
0.34
0.34
0.33
0.32
0.05
0.64
0.62
0.61
0.59
0.68
0.66
0.55
0.54
0.52
0.05
0.40
0.39
0.38
0.37
0.36
0.35
0.34
0.33
0.32
0.32
0.06 0.07
0.64 0.64
0.62 0.62
0.60 0.60
0.59 0.69
0.58 0.67
0.56 0.66
0.55 0.55
0.54 0.64
0.52 0.62
PET
10.0
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
0.08
0.54
0.62
0.60
0.58
0.57
0.66
0.65
0.53
0.62
0.00
0.31
0.30
0.30
0.29
0.28
0.27
0.27
0.26
0.25
0.25
0.09
0.63
0.61
0.60
0.58
0.57
0.56
0.65
0.53
0.52
0.05
0.31
0.30
0.29
0.28
0.28
0.27
0.26
0.26
0.25
0.24
Nate: A storage ability equal to 4 in. of water is the combination of the ability of a given soil to store water
and the thickness of the soil layer that provides the equivalent of 4 in. of water
-------
Attachment B
Microsoft Excel Spreadsheet Showing Method B Water Balance Example Calculation
B-l
-------
B-2
-------
1 REPORT NO
EPA-456/R-03-007
TECHNICAL REPORT DATA
(Please read Instructions on reverse before completing)
2
4 TITLE AND SUBTITLE
Example Moisture Mass Balance Calculations for Bioreactor
Landfills
7 AUTHOR(S)
Amy Alexander
Eastern Research Group, Inc.
9 PERFORMING ORGANIZATION NAME AND ADDRESS
Office of Air Quality Planning and Standards
Mail Drop El 43-02
Research Triangle Park, NC 2771 1
12 SPONSORING AGENCY NAME AND ADDRESS
U.S. Environmental Protection Agency
Office of Air Quality Planning and Standards
Research Triangle Park, NC 2771 1
3 RECIPIENTS ACCESSION NO
5 REPORT DATE
December 2003
6 PERFORMING ORGANIZATION CODE
8 PERFORMING ORGANIZATION REPORT NO
10 PROGRAM ELEMENT NO
11 CONTRACT/GRANT NO
68-D-02-0079
13 TYPE OF REPORT AND PERIOD COVERED
Final Report
14 SPONSORING AGENCY CODE
EPA/200/04
15 SUPPLEMENTARY NOTES
To be published at http://www.epa.gov/tm/atw/landfill/landflpg.html
16 ABSTRACT
This document contains example mass balance calculations for estimating the moisture content of the waste
mass in a bioreactor landfill. Under the National Emission Standards for Hazardous Air Pollutants for
Municipal Solid Waste Landfills (landfills NESHAP), a portion of a landfill operated as a bioreactor has
timely control requirements. The landfills NESHAP allows moisture content to be determined using a
variety of methods, as long as the procedures and assumptions are documented and appropriate. Although a
range of appropriate measures exist, a mass balance approach is expected to be adequate in determining
whether the moisture content of the waste is above or below 40 percent. Two example mass balance
calculations are presented, a simple method and a more complex method. The simplified equation
incorporates factors such as incoming waste moisture, liquids addition, and leachate production, which most
significantly affect the average moisture content of the waste mass. The more complex procedure accounts
for additional factors such as moisture retained in the landfill, surface runoff and evaporation, and
evapotranspiration.
17
a DESCRIPTORS
Bioreactor landfill
Air pollution
Clean Air Act
NESHAP
Moisture content
18 DISTRIBUTION STATEMENT
Release Unlimited
KEY WORDS AND DOCUMENT ANALYSIS
b IDENTIFIERS/OPEN ENDED TERMS c COSATI Field/Group
Air Pollution control
Nonmethane organic compounds
Methane
19 SECURITY CLASS (Report) 21 NO OF PAGES
Unclassified 36
20 SECURITY CLASS (Page) 22 PRICE
Unclassified
EPA Form 2220-1 (Rev. 4-77) PREVIOUS EDITION IS OBSOLETE
-------
United States Office of Air Quality Planning and Standards Publication No. EPA-456/R-03-007
Environmental Protection Air Quality Strategies and Standards Division December 2003
Agency Research Triangle Park, NC
------- |