PB80-219561
Compilation of Environmental Assessment Data February 1978-March
1979. Volume III Studies 10-14
Research Triangle Inst.
Research Triangle Park, NC
Prepared for
Industrial Environmental Research Lab.
Research Triangle Park, NC
U.S. DEPARTMENT OF COMMERCE
National Technical Information Service
-------
D P r n_ p i o c (_ -I
600/2-80-175c
Aug. 1980
COMPILATION OF
ENVIRONMENTAL ASSESSMENT DATA
February 1378-March 1979
Volume III, Studies 10-14
by
N. G. Sexton
L. I. Southerland
Systems & Measurements Division
Research Triangle Institute
Research Triangle Park, North Carolina 27709
EPA Contract No. 68-02-2688
Task Directive No. 11200
EPA Project Officer: L. D. Johnson
Industrial Environmental Research Laboratory
U.S. Environmental Protection Agency
Research Triangle Park, North Carolina 27711
Prepared for
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Research and Development
Washington, DC 20460
-------
NOTICE
THIS DOCUMENT HAS BEEN REPRODUCED
FROM THE BEST COPY FURNISHED US BY
THE SPONSORING AGENCY. ALTHOUGH IT
IS RECOGNIZED THAT CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE.
-------
TECHNICAL REPORT DATA
fPieatt rtad Jiuffwrfions on lAr reverse btfore
-600/2-8G-175
3, RECIPIENT'S ACCESSION NO.
IERL-RTP-1075
A, TITLE ANDSUBTITLE
Compilation of Environmental Assessment Data,
February 1976-March 1979; Vol. m. Studies 10-14
6. PERFORMING ORGANIZATION CODE
7. AUTKOR(S)
N.G. Sexton and L.I. Southerland
a. PERFORMING ORGANIZATION REPORT
RTI/1699-12/D1S
9, PfcRFORMING QKOANLZ&TIOK ^AME AND ADDRESS
10. PROGRAM ELEMENT NO.
Research Triangle Institute
P.O, Box 12194
Research Triangle Park, North Carolina 27709
OC2JN1E
11, CONTRACT/ORAhjT MO.
68-02-2688,
Task Directive U20D
. BPONSQRrNC AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Industrial Environmental Research Laboratory
Research Triangle Park, NC 27711
13. TYPE Of REPORT AMD PE
Final; 2/78 - -3/79
PERIOD COVEREC
14. SPONSORING AGENCY CODE
EPA/600/13
is,SUPPLEMENTARY NOTES JERL-RTP project officer is L.D. Johnson, MD-62, 919/541-
2557, Report EPA-600/2-78-211 is an earlier report compiling similar data between
the start of the nroeram and 3/78. ...
16. ABSTRACT
The three-volume report compiles all data from EPA/IERL-RTP'6 phased
environmental assessment program for the period 2/78-3/79. It includes data from
14 environmental assessment studies, compiled in standard format. The formatted
Level 1 data are organized within each study by the analytical technique used to gen-
erate the data. Inorganic data as generated by spark source mass spectroscopy,
atomic absorption, gas chromatography, chemiluminescence for oxides of nitrogen,
anlon analysis, and aqueous analysis precede the organic data generated by gas
chromatography for C1-C6/C7 or C7-C17, liquid chromatographic fractionation,
infrared spectres copy, and low resolution mass spectroscopy. Sampling and analy-
tical techniques that were used, that are not specified in Level 1, are documented
in the summaries and data pages. Each Level 1 data section is followed by a Level 2
data section and/or an additional data section. Tables and figures in the Level 2 and
additional data sections have been reproduced from the documents originally publis-
hed by the organization conducting the study. The studies are organized by indus-
trial type: (Vol. I) chemically active fluidized-bed combustion, coal-fired boiler an<
oil-fired boiler, coal-fired power plant, and coal gasifier; (Vol. n) coke production
and ferroalloy process; and (Vol. HI) the remaining industrial processes.
IT. KEY WORDS AND DOCUMENT ANALYSIS
i. DESCRIPTORS
Pollution
Assessments.
Chemical Analysis
Sampling
is. DISTRIBUTION STATEMENT
Release to Public
b. IDENTIFIERS/QPEN ENDED T£RM$
Pollution Control
Stationary Sources
Environmental Assess-
ment
Level 1 Data
Chemical Data
19. SECURITY CLASS f?luf£rp0rt>
Unclassified
20. SECURITY CLASS {This pag*}
Unclassified
c, COSATI FieW/Group
13 B
14B
07D
31. NO OF PAGES
22- PRICE
EPA Form
-------
DISCLAIMER
This report has been reviewed by the Industrial Environmental Research
Laboratory, U.S. Environmental Protection Agency, and approved for pub-
lication. Approval does not signify that the contents necessarily reflect the
views and policies of the U.S. Environmental Protection Agency, nor does
mention of trade names or commercial products constitute endorsement
or recommendation for use.
-------
ABSTRACT
This document compiles all available data from the IERL Phased Environ-
mental Assessment Program for the period February 1978 through March 1979.
This document follows an earlier publication, EPA-600/2-78-211, Compilation
of Level 1 Environmental Assessment Data, which compiled all available chemical
data from the inception of the Environmental Assessment Program through
March 1978.
Available data from 14 environmental assessment studies are compiled in
this document in standard formats. The formatted Level I data are organized
within each study by the analytical technique used to generate the data.
Inorganic data as generated by spark source mass spectroscopy, atomic absorp-
tion, gas chromatography, chemiluminescence for oxides of nitrogen, anion
analysis, and aqueous analysis precede the organic data generated by gas
chroraatography for Cj-Ce/C? or C7-C17, liquid chromatographic fractionation,
infrared spectroscopy, and low resolution mass spectroscopy. Sampling and
analytical techniques that were used that are not specified in Level 1 are
documented in the summaries and data pages.
Each Level 1 data section is followed by a Level 2 data section and/or an
additional data section. The tables and figures in the Level 2 and additional
data sections have been reproduced from the documents originally published by
the organization conducting the study.
Each study is introduced by a summary, which is followed by the data
generated in that study. The studies are organized by industrial type as
follows: Chemically Active Fluidized-Bed Combustion, Coal-Fired Boiler and
Oil-Fired Boiler, Coal-Fired Power Plant, Coal Gasifier, Coke Production,
Ferroalloy Process, Internal Combustion Engine, Iron and Steel Mills, Residen-
tial Heating, Shale Oil Retorting, and Textiles.
ii
-------
CONTENTS
Page
Abstract ii
Figures v
Tables vii
Introduction xx
Chemically Active Fluidized Bed Combustor
Study 1. Level 2 Chemical Analysis of Fluidized-Bed
Combustor Samples 1"!*
Study 2. Preliminary Environmental Assessment of the
Lignite-Fired CAFB 2-1*
Coal-Fired Boiler and Oil-Fired Boiler
Study 3. Environmental Assessment of Coal and Oil Firing
in a Controlled Industrial Boiler,
Volumes I-III 3-1*
Coal-Fired Power Plant
Study 4. Air Emissions From Combustion of Solvent Refined
Coal 4-1*
Study 5. Characterization of Coal Pile Drainage 5-1*
Study 6. Level 1 Assessment of Limestone Scrubbing With
Adipic Acid Addition 6-1*
Coal Gasification
Study 7. Analyses of Grab Samples for Fixed-Bed Coal
Gasification Processes 7-1*
Coke Production
Study 8. Environmental Assessment of Coke By-Product
Recovery Plants 8-If
Ferroalloy Process
Study 9. Ferroalloy Process Emissions Measurement 9-lt
Internal Combustion Engines
Study 10. ' Emissions Assessment of Conventional Stationary
Combustion Systems, Volume II '. 10-1
*In Volume I.
tin Volume II.
-------
CONTENTS (continued)
Iron and Steel Mills
Study 11. Assessment of Surface Run Off From Iron and
Steel Mills 11-1
Residential Heating
Study 12. Source Assessment: Coal-Fired Residential
Combustion Equipment Field Tests, June 1977 .... 12-1
Shale Oil Retorting
Study 13. Sampling and Analysis Research Program at the
Paraho Shale Oil Demonstration Plant,
Volume II 13-1
Textiles
Study 14. Source Assessment: Textile Plant Wastewater Toxics
Study, Phase II 14-1
iv
-------
FIGURES
Number Page
STUDY 10
10-1 EACCS sample control numbers 10-4
STUDY 11
11-1 Plan-site no. 1 11-3
11-2 Plan-site no. 2 11-4
STUDY 13
13-1 The Paraho retort 13-3
13-2 Paraho direct mode flow diagram (pilot plant operation) . . . 13-4
13-3 Paraho indirect mode flow diagram (semiworks operation) . . . 13-5
13-4 Separation and analysis scheme, gaseous samples 13-7
13-5 Separation and analysis scheme, water samples -13-8
13-6 Separation and analysis scheme, retorted shale and
high-volume sampler air particulates 13-9
Additional Data
5.35 One dimensional preseparatory thin layer chrotnatogram
of benzene solubles from carbonaceous spent shale
[CSA VII (1)] 13-28
5.36 One dimensional preseparatory thin layer chromatogram
of benzene solubles from carbonaceous spent shale
[CSA VIII (1)] 13-29
5.37 One dimensional preseparatory thin layer chromatogram
of benzene solubles from unretorted shale collected
as air particulate [AP VI (1)] 13-30
5.38 One dimensional preseparatory thin layer chromatogram
of benzene solubles from retorted shale collected
as air particulate [AP V (1)] • 13-31
5.39 Two dimensional mixed thin layer chromatogram of the PAH
fraction of benzene solubles from carbonaceous spent
shale [CSA VII (1)] 13-32
5."43 Two dimensional mixed thin layer chromatogram of the
PAH fraction of benzene solubles from carbonaceous
spent shale [CSA VIII (1)] 13-33
-------
FIGURES (continued)
Number Page
STUDY 14
14-1 Ranking of tertiary treatment systems 14-3
VI
-------
TABLES
STUDY 10
Level I Page
10-1 Spark Source Mass Spectroscopy, Gas-Fueled Gas Turbine
(Site 110), XAD-2 Resin 10-6
10-2 Spark Source Mass Spectroscopy, Gas-Fueled Gas Turbine
(Site 110), Composite Sample 10-7
10-3 Spark Source Mass Spectroscopy, Gas-Fueled Gas Turbine
(Site 110), Total SASS Catch 10-8
10-4 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 111), Fuel 10-9
10-5 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbine, Probe Solids (Site 111) 10-10
10-6 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 111), Filter Catch 10-11
10-7 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 111), XAD-2 Resin . . . 10-12
10-8 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 111), Composite Sample 10-13
10-9 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 111), Total SASS 10-14
10-10 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 112), Fuel 10-15
10-11 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 112), Filter Catch 10-16
10-12 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 112), XAD-2 Resin 10-17
10-13 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 112), Composite Sample 10-18
10-14 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 112), Total SASS 10-19
10-15 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 306), Fuel 10-20
10-16 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 306), Filter Catch 10-21
10-17 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 306), XAD-2 Resin 10-22
•10-18 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 306), Composite Sample 10-23
10-19 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 306), Total SASS 10-24
10-20 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 307), Fuel 10-25
10-21 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 307), Filter Catch 10-26
vii
-------
TABLES (continued)
Number
10-22 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 307), XAD-2 Resin 10-27
10-23 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 307), Composite Sample 10-28
10-24 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 307), Total SASS 10-29
10-25 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 308), Fuel 10-30
10-26 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 308), Filter Catch 10-31
10-27 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 308), XAD-2 Resin 10-32
10-28 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 308), Composite Sample 10-33
10-29 Spark Source Mass Spectroscopy, Distillate Oil-Fueled
Gas Turbines (Site 308), Total SASS '. . 10-34
10-30 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 309), Fuel 10-35
10-31 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 309), Filter Catch 10-36
10-32 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 309), XAD-2 Resin 10-37
10-33 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 309), Composite Sample 10-38
10-34 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 309), Total SASS . 10-39
10-35 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 310), Fuel 10-40
10-36 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 310), Filter Catch 10-41
10-37 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 310), XAD-2 Resin 10-42
10-38 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 310), Composite Sample 10-43
10-39 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 310), Total SASS 10-44
10-40 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 311), Fuel 10-45
10-41 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 311), Filter Catch 10-46
10-42 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 311), XAD-2 Resin 10-47
10-43 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 311), Composite Sample 10-48
10-44 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 311), Total SASS. 10-49
10-45 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 312), Fuel 10-50
10-46 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 312), Filter Catch 10-51
viii
-------
TABLES (continued)
Number Page
10-47 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 312), XAD-2 Resin 10-52
10-48 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 312), Composite Sample 10-53
10-49 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 312), Total SASS 10-54
10-50 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 313), Fuel 10-55
10-51 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 313), Filter Catch 10-56
10-52 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 313), XAD-2 Resin 10-57
10-53 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 313), Composite Sample 10-58
10-54 Spark Source Mass Spectroscopy, Distillate Oil
Reciprocating Engine (Site 313), Total SASS 10-59
10-55 Atomic Absorption Analysis, SASS Train, Distillate
Oil-Fueled Gas Turbine, Site 111 10-60
10-56 Atomic Absorption Analysis, SASS Train, Distillate
Oil-Fueled Gas Turbine, Site 112 10-61
10-57 Atomic Absorption Analysis, SASS Train, Distillate
Oil-Fueled Gas Turbine, Site 306 10-62
10-58 Atomic Absorption Analysis, SASS Train, Distillate
Oil-Fueled Gas Turbine, Site 307 10-62
10-59 Atomic Absorption Analysis, SASS Train, Distillate
Oil-Fueled Gas Turbine, Site 308- 10-63
10-60 Atomic Absorption Analysis, SASS Train, Distillate
Oil Reciprocating Engine, Site 309 10-64
10-61 Atomic Absorption Analysis, SASS Train, Distillate Oil
Reciprocating Engine, Site 310 10-64
10-62 Atomic Absorption Analysis, SASS Train, Distillate Oil
Reciprocating Engine, Site 311 10-65
10-63 Atomic Absorption Analysis, SASS Train, Distillate Oil
Reciprocating Engine, Site 312 10-65
10-64 Atomic Absorption Analysis, SASS Train, Distillate Oil
Reciprocating Site 313 10-66
10-65 Atomic Absorption Analysis, SASS Train, Mass Emissions. . . . 10-67
10-66 Atomic Absorption Analysis, SASS Train, For Gas-Fueled
Gas Turbine, Site 110 10-67
10-67 Anion Analysis, SASS Train, Distillate Oil Fueled
Gas Turbine, Site 111 , 10-68
10-68 Anion Analysis, SASS Train, Distillate Oil-Fueled
Gas Turbine, Site 112 10-69
10-69 Anion Analysis, SASS Train, Distribution Distillate,
Fueled Gas Turbine, Site 306 10-70
10-70 Anion Analysis, SASS Train, Distillate Oil-Fueled Gas
Turbine, Site 307 10-71
10-71 Anion Analysis, SASS Train, Distillate Oil-Fueled Gas
Turbine, Site 308 10-71
-------
Number
TABLES (continued)
Page
10-72 Anion Analysis, SASS Train, Distillate Oil Reciprocating
Engine, Site 309 10-72
10-73 Anion Analysis, SASS Train, Distillate Oil Reciprocating
Engine, Site 310 10-73
10-74 Anion Analysis, SASS Train, Distillate Oil Reciprocating
Engine, Site 311 10-73
Anion Analysis, SASS Train, Distillate Oil Reciprocating
Engine, Site 312 . . . . 10-74
Anion Analysis, SASS Train, Distillate Oil Reciprocating
Engine, Site 313 10-74
Anion Analysis, SASS Train, Emissions 10-75
Anion Analysis, SASS Train, Gas-Fueled Gas Turbine,
Site 110 10-76
10-75
10-76
10-77
10-78
10-79
10-80
10-81
10-82
10-83
10-84
10-85
10-86
10-87
10-88
10-89
10-90
10-91
10-92
10-93
10-94
10-95
10-96
10-97
10-98
10-99
10-100
10-101
10-102
10-103
10-104
10-105
10-106
10-107
10-108
10-109
10-110
10-111
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Gas Chromatography Analysis,
Sample 110-PR-O-KD-l 10-77
Sample 110-XR-Wet-S-GC 10-77
Sample 110-XR-Dry-S-GC 10-78
Sample 110-XM-S-KD-l 10-78
Sample 111-XR-SKD Reserve. . . . 10-79
Sample 111-XM-S-KD 10-79
Sample 112-OR-O-KD-l 10-80
Sample 112-XR-Wet-S-GC 10-80
Sample 112-XR-Dry-S-GC 10-81
Sample 306-PR 10-81
Sample 306-XR 10-82
Sample 307-XR 10-82
Sample 308-XR 10-83
Sample 309-MR 10-83
Sample 309-XR 10-84
Sample 310-MR 10-84
Sample 310-XR 10-85
Sample 310-PF 10-85
Sample 311-MR 10-86
Sample 311-XR 10-86
Sample 312-MR 10-87
Sample 312-XR 10-87
Sample 312-CDS 10-88
Sample 312-PF 10-88
Sample 313-MR 10-89
Sample 313-XR 10-89
Sample 313-CDS 10-90
Sample 313-PF 10-90
Gas Chromatography Analysis, Gaseous Grab Sample, Gas
Turbine, Site 110 10-91
Gas Chromatography Analysis, Gaseous Grab Sample,
Distillate Oil Turbine, Site 111 10-91
Gas Chromatography Analysis, Gaseous Grab Sample,
Distillate Oil Turbine, Site 112 10-92
Gas Chromatography Analysis, Gaseous Grab Sample,
Distillate" Oil Turbine, Site 306 10-92
Gas Chromatography Analysis, Gaseous Grab Sample,
Distillate Oil Turbine, Site 307 10-93
-------
TABLES (continued)
Number Page
10-112 Gas Chromatography Aanlysis Gaseous Grab Sample,
Distillate Oil Turbine, Site 308 10-93
10-113 Gas Chromatography Analysis, Distillate Oil Reciprocating
Engines, Gaseous Grab Sample, Site 309 10-94
10-114 Gas Chromatography Analysis, Distillate Oil Reciprocating
Engines, Gaseous Grab Sample, Site 309-2 10-94
10-115 Gas Chromatography Analysis, Distillate Oil Reciprocating
Engines, Gaseous Grab Sample, Site 310 10-95
10-116 Gas Chromatography Analysis, Distillate Oil Reciprocating
Engines, Gaseous Grab Sample, Site 311 10-95
10-117 Gas Chromatography Analysis, Distillate Oil Reciprocating
Engines, Gaseous Grab Sample, Site 312 10-96
10-118 Gas Chromatography Analysis, Distillate Oil Reciprocating
Engines, Gaseous Grab Sample, Site 312-2 10-96
10-119 Gas Chromatography Analysis, Distillate Oil Reciprocating
Engines, Gaseous Grab Sample, Site 313 10-97
10-120 Gas Chromatography Analysis, Distillate Oil Reciprocating
Engines, Gaseous Grab Sample, Site 313-2 10-97
10-121 Gas Chromatography Analysis, C8-C16 Volatile Organics,
Gas Turbine, Site 110 10-98
10-122. Gas Chromatography Analysis, C8-C16 Volatile Organics,
Distillate Oil Turbine, Site 111 10-98
10-123 Gas Chromatography Analysis, C8-C16 Volatile Organics,
Distillate Oil Turbine, Site 112 10-99
10-124 Gas Chromatography Analysis, C8-C16 Volatile Organics,
Distillate Oil Turbine, Site 306 10-99
10-125 Gas Chromatography Analysis, C8-C16 Volatile Organics,
Distillate Oil Turbine, Site 307 10-100
10-126 Gas Chromatography Analysis, C8-C16 Volatile Organics,
Distillate Oil Turbine, Site 308 10:JjQe
10-127 Gas Chromatography Analysis, C8-C16 Volatile Organics,
Distillate Oil Reciprocating Engines, Site 309 10-101
10-128 Gas Chromatography Analysis, C8-Ci6 Volatile Organics,
Distillate Oil Reciprocating Engines, Site 309-2 10-101
10-129 Gas Chromatography Analysis, C8-C16 Volatile Organics,
Distillate Oil Reciprocating Engines, Site 310 10-102
10-130 Gas Chromatography Analysis, C8-C16 Volatile Organics,
Distillate Oil Reciprocating Engines, Site 311 10-102
10-131 Gas Chromatography Analysis, C8-C16 Volatile Organics,
Distillate Oil Reciprocating Engines, Site 312 10-103
10-132 Gas Chromatography Analysis, C8-C16 Volatile Organics,
Distillate Oil Reciprocating Engines, Site 312-2 10-103
10-133 Gas Chromatography Analysis, C8-C16 Volatile Organics,
Distillate Oil Reciprocating Engines, Site 313 10-104
10-134 Gas Chromatography Analysis, C8-C16 Volatile Organics,
Distillate Oil Reciprocating Engines, Site 313-2 10-104
10-135 LC Analysis Results, 309-2- XR+PF+MR+PR 10-106
10-136 LC Analysis Results, 308 XR+MR 10-107
10-137 LC Analysis Results, 313-2-XR-PF-MR-PR 10-108
10-138 LC Analysis Results, 313-2-XR+PF+MR+PR 10-109
xi
-------
TABLES (continued)
Number
10-139
10-140
10-141
10-142
10-143
10-144
10-145
10-146
10-147
10-148
10-149
10-150
10-151
10-152
10-153
10-154
10-155
10-156
10-157
10-158
10-159
10-160
10-161
10-162
10-163
10-164
10-165
10-166
Level 2
LC Analysis Results, 306- XR+MR
LC Analysis Results, 307 XR+MR
IR Report, Distillate Oil Reciprocating Engines,
Site 309
IR Report, Distillate Oil Reciprocating Engines,
Site 309-2
IR Report, Distillate Oil Reciprocating Engines,
Site 310
IR Report, Distillate Oil Reciprocating Engines,
Site 312
IR Report, Distillate Oil Reciprocating Engines,
Site 311
IR Report, Distillate Oil Reciprocating Engines,
Site 312-2
IR Report, Distillate Oil Reciprocating Engines,
Site 313
IR Report, Distillate Oil Reciprocating Engines,
Site 313-2
IR Report, Distillate Oil-Fueled Gas Turbine, Site 110.
IR Report, Distillate Oil-Fueled Gas Turbine, Site 111.
IR Report, Distillate Oil-Fueled Gas Turbine, Site 112.
IR Report, Distillate Oil-Fueled Gas Turbines, Site 306
IR Report, Distillate Oil-Fueled Gas Turbines, Site 307
IR Report, Distillate Oil-Fueled Gas Turbines, Site 308
LRMS Report, Diesel Engine Site, Sample No. 309-XM-LC1.
Diesel Engine Site, Sample No.
Diesel Engine Site, Sample No.
Diesel Engine Site, Sample No.
Diesel Engine Site,
Diesel Engine Site,
Diesel Engine Site,
Diesel Engine Site,
Diesel Engine Site,
Diesel Engine Site,
LRMS Report,
LRMS Report,
LRMS Report,
LRMS Report,
LRMS Report,
LRMS Report,
LRMS Report,
LRMS Report,
LRMS Report,
LRMS Report,
Sample No.
Diesel Engine Site, Sample No.
310-XM-LCI.
310-XM-LC6.
310-XM-LC7.
Sample No. 311-XM-LCI.
Sample No
Sample No
Sample No
Sample No
LRMS Report, Diesel Engine Site, Sample No.
311-XM-LC3.
311-XM-LC4.
312-XM-LC1.
312-XM-LC3.
312-XM-LC4.
312-XM-LC6.
313-XM-LC1.
32
D-16
D-17
D-18
D-19
D-20
Level II
Level II
Found
Level II
Found
Level II
Found
Level II
Found
Level II
Found
Controlled Condensation Train Analytical Results
Organic Analysis Results - Compounds
in Sample #309-2-XRPF-MRPR
Organic Analysis Results - Compounds
in Sample #309-2-CD-LE
Organic Analysis Results - Compounds
in Sample #312-2-XRPF-MRPR
Organic Analysis Results - Compounds
in Sample #312-2-CD-LE
Organic Analysis Results - Compounds
in Sample #313-2-XRPF-MRPR
Page
10-110
10-111
10-112
10-113
10-114
10-115
10-116
10-117
10-118
10-119
10-120
10-121
10-122
10-123
10-124
10-125
10-126
10-127
10-128
10-129
10-130
10-131
10-132
10-133
10-134
10-135
10-136
10-137
10-139
10-140
10-147
10-149
10-153
10-154
-------
TABLES (continued)
Number page
D-21 Level II Organic Analysis Results - Compounds
Found in Sample #313-2-CD-LE 10-158
Additional Data
1 Summary of Results of Emissions Assessment for
Gas-Fueled Internal Combustion Sources 10-160
2 Summary of Results of Emissions Assessment for
Oil-Fueled Internal Combustion Sources 10-161
23 Characteristics of Internal Combustion Sites Tested 10-162
29 Operating Load and Fuel Feed Rates of Internal
Combustion Sources Tested 10-163
31 Summary of Results From Specific Inorganic Analyses 10-164
35 Gravimetric Results for Internal Combustion Sites . 10-165
41 POM Emissions From Diesel Engine, Sites 309-313 10-168
42 Summary of Emission Factor Data for Particulate, SO and
Total Organics From Internal Combustion Sources fested . . 10-169
43 Comparison of Criteria Pollutant Emissions Factors for
Gas and Distillate Oil-Fueled Gas Turbines 10-170
44 Comparison of Criteria Pollutant Emission Factors for
Gas and Distillate Oil Engines 10-171
45 Mean Source Severity Factors for Criteria Pollutants .... 10-172
46 Summary of Emission Factor Data for Particulate Sulfate
From Internal Combustion Sources Tested 10-173
47 Summary of Emission Factor Data for Trace Elements
From Electricity Generation Distillate Oil-Fueled
Gas Turbines Tested 10-174
48 Summary of Emission Factor Data for Trace Elements
From Electricity Generation Distillate Oil-Fueled
Gas Turbines Based on Combined Current Study and
Existing Data 10-176
49 Mean Source Severity Factors for Trace Element
Emissions From Distillate Oil-Fueled Gas Turbines .... 10-176
50 Summary of Emission Factor Data for Trace Elements From
Electricity Generation Distillate Oil Engines Tested . . . 10-177
51 Mean Source Severity Factors for Trace Element
Emissions From Distillate Oil Engines 10-179
52 Comparison of Trace Element Emission Factors for
Distillate Oil-Fueled Gas Turbines and Distillate
Oil Engines 10-180
53 Summary of POM Emission Factor Data From Electricity
Distillate Oil Engines Tested 10-181
54 Mean Source Severity Factors for POM Emissions From
Electricity Generation Distillate Oil Engines 10-182
-------
TABLES (continued)
Number
STUDY 11
11-1 General Site Characteristics H'5
Level 1
11-2 TSS Results in mg/L, Sites #1 and #2, March-June 1977 .... 11-8
11-3 Ammonia Analysis Results, Sites #1 and #2, March-June 1977. . 11-23
11-4 Cyanide Analysis Results, Sites #1 and #2, March-June 1977. . 11-27
11-5 Sulfate Analysis Results, Sites #1 and #2, March-June 1977. . 11-30
11-6 Total Iron Analysis Results, Sites #1 and #2,
March-June 1977 n~32
11-7 Dissolved Iron Analysis Results, Sites #1 and #2,
March-June 1977 n'37
11-8 Phenol Analysis Results, Sites #1 and #2, March-June 1977 . . 11-41
Additional Data
5-6 Storm Event Data, Site 1, March-April, 1977 11-46
5-7 Dry vs Wet Flows, Site 1, March-April, 1977 11-47
5-8 Range of Pollutant Concentrations at the Sampling
Locations at Site 1, March-April, 1977 11-48
5-9 Mean Pollutant Concentrations, in mg/L at
Site 1, March-April, 1977 11-49
5-10 Average Mass Loadings of Pollutants, Dry vs Wet
Weather, March-April, 1977, Outfall 005-Site 1 11-50
5-11 Average Mass Loadings of Pollutants, Dry vs Wet
Weather, March-April, 1977, Outfall 010-Site 1 11-51
5-12 Average Mass Loadings of Pollutants, Dry vs Wet
Weather, March-April, 1977, Outfall Oil-Site 1 11-52
5-13 Storm Event Data, Site 2, May-June, 1977 11-53
5-14 Dry vs Wet Flows, Site 2, May-June, 1977 11-54
5-15 Range of Pollutant Concentrations at the Sampling
Locations at Site 2 in mg/L, May-June, 1977 11-55
5-16 Mean Pollutant Concentrations in mg/L at Site 2,
May-June, 1977 H-56
5-17 Average Mass Loadings of Pollutants, Dry vs Wet
Weather, May-June, 1977, Outfall 002-Site 2 11-57
5-18 Average Mass Loadings of Pollutants, Dry vs Wet
Weather, May-June, 1977, Outfall 004-Site 2 11-58
5-19 Average Mass Loadings of Pollutants, Dry vs Wet
Weather, May-June, 1977, Outfall 006-Site 2 11-59
5-20 Average Mass Loadings of Pollutants, Dry vs Wet
Weather, May-June, 1977, Outfall 007-Site 2 11-60
5-21 Average Mass Loadings of Pollutants, Dry vs Wet
Weather, May-June, 1977, Outfall 009-Site 2 11-61
5-22 Average Mass Loadings of Pollutants, Dry vs Wet
Weather, May-June, 1977, Outfall OlOA-Site 2 11-62
5-23 Average Mass Loadings of Pollutants, Dry vs Wet
Weather, May-June, 1977, Outfall OlOB-Site 2 11-63
xiv
-------
TABLES (continued)
Number page
5-24 Mean Pollutant Concentrations, mg/L in the Tidal
River at Site 2, May-June, 1977, (Sampling
Location 015) 11-64
B-l Dustfall Data, Site 1 11-65
B-2 Dustfall Data, Site 2 11-66
STUDY 12
12-1 Emission Sampling Program for Coal-Fired
Residential Combustion Equipment 12-3
Level 1
12-2 Atomic Absorption Analysis, Test Coal B, Low
and High Ash Content 12-6
12-3 Gas Chromatography Analysis, Coal-Fired Residential
Furnace Heating Cycle, SASS Run 2, Coal B, Low
Ash Content 12-6
12-4 Gas Chromatography Analysis, Coal-Fired Residential
Furnace Heating Cycle, SASS Run 2, Coal B, High
Ash Content 12-7
12-5 Size Distribution of Particulate Emissions During
"On" Segment of a Coal-Fired Residential
Furnace Heating Cycle . 12-8
Additional Data
1 Average Emission Factors for Coal-Fired Residential
Combustion Equipment Operating on a 20-Min On/
40-Min Off Heating Cycle 12-10
2 Average Emission Rates for the On and Off Heating Cycle
Segments of the Warm-Air Furnace Burning Coal B 12-11
4 Proximate and Ultimate Analyses, Free Swelling Index,
and Ash Fusion Temperatures for Test Coals Compared
With 86 Rocky Mountain Province Coal Samples
(Proximate and Ultimate Only) 12-12
7 Emission Factors for POM and Criteria Pollutants From
Coal-Fired Residential Heating Equipment Operated on
a 20-Min "On"/40-Min "Off" Heating Cycle 12-13
8 Experimental Data for the Coal-Fired Heating Equipment
Operated on a 20-Min On/40-Min Off Cycle 12-14
10 Carbon,'Hydrogen, and Nitrogen Content of Particulate
Emissions From Coal-Fired Residential Heating Systems. . . 12-15
ll Elemental Emission Factors From Coal-Fired Residential
Heating Equipment Operated on a 20-Min "On"/40-Min
"Off" Heating Cycle 12-16
12 Emission Factors for C7 to C16 Hydrocarbons During the
"On" Segment of a Coal-Fired Residential Furnace
Heating Cycle 12-16
xv
-------
TABLES (continued)
Number Page
14 Ash Residue From Coal B Burned in the Warm-Air Furnace . . . 12-17
16 Fraction of Coal Elemental Content Emitted to the
Atmosphere and Total Material Balance 12-17
17 Elements Leached From Ash Removed From the
Coal-Fired Warm-Air Furnace 12-18
19 Comparison of Emissions From the On and Off Segments
of the Warm-Air Furnace Heating Cycle While
Burning Coal B 12-19
20 Comparison of Emission Data From the SASS Train to
Conventional Sampling Methods 12-20
STUDY 13
Level 1
13-1 Spark Source Mass Spectroscopy, Retorted Shale,
Indirect Mode, Semi-Works, 3-16-76, 1415 Hours 13-11
13-2 Spark Source Mass Spectroscopy, Indirect Mode, Retorted
Shale (Collected as Air Particulate), 3-17-76,
1545 Hours 13-12
13-3 Spark Source Mass Spectroscopy, Retorted Shales, Direct
Mode (Pilot Plant), 3-15-76, 1100 Hours 13-13
13-4 Spark Source Mass Spectroscopy, Retorted Shales, Direct
Mode (Semi-Works), 3-15-75, 1100 Hours 13-14
13-5 Spark Source Mass Spectroscopy, Cold Condensate Water,
Pilot Plant, 3-10-76, 1700-0800 Hours 13-15
13-6 Spark Source Mass Spectroscopy, Condensate Water,
Semi-Works, 3-18-76, 1120-1330 Hours 13-16
13-7 Spark Source Mass Spectroscopy, Process Water,
Semi-Works, 3-15-76, 1500 Hours 13-17
13-8 Recycle Gas—Ammonia, Arsine 13-18
13-9 Recycle Gas—Fixed Gases '.'.'. 13-18
13-10 Recycle Gas—Sulfur Species '. 13-19
13-11 Recycle Gas—Nitrogen Oxides '.'.'.'.'. 13-19
13-12 Anion Analysis '.'.'. 13-20
13-13 Cation Analysis ' 13-20
13-14 Nutrient Analysis [ 13-21
13-15 Gross Parameter Analysis [ " 13-21
13-16 Carbon Analysis and pH Values for Aqueous Sample
Collected From Paraho Process 13-22
13-17 Summary of High-Volume Air Pariculates . . . . 13-23
Level 2
2 Trace Organics Identified by GC/MS in the Recycle Gas
Stream (Direct and Indirect Mode) Summary of All
Samples 13_26
xvi
-------
TABLES (continued)
Number Page
9 Elemental Analysis of Retorted Shale, Participates,
and Organic Extracts 13-27
5-9 Elemental Analysis of Retort Shale, Participates
and Organic Extracts 13-34
5-19 Polar "Oxy" Compounds Present in Carbonaceous
Spent Shale 13-35
Additional Data
5 Size Ranges of Solids 13-37
6 Mass Fraction of Raw Shale Particulates 13-38
7 Numerical Fraction of Raw Shale Particulates 13-38
8 Particle Size vs Mean Elemental Composition of Raw Shale
Air Particulates as Determined by X-Ray Fluorescence . . . 13-38
11 Benzene and Water Extractables of Retorted Shale,
and Raw Shale Particulates 13-39
12 Comparison of PAH to Polar Compounds in Solid Samples .... 13-39
13 RR Values for PAH Fraction of Benzene Solubles
From Direct Mode Retorted Shale 13-40
14 Evaluation of Benzo(a)pyrene Content in Samples
of Benzene Extracts From Direct Mode Retorted 13-41
5.5 Evaluation of Organics Extracted From Aqueous
Phase of Recycle Gas (Cold) Condensate (RG-10) 13-42
5.6 Evaluation of Organics Extracted From Aqueous
. Phase of Recycle Gas (Hot) Condensate (RG-7) 13-43
5.11 Size Distribution of PARAHO Solids ! -. . . 13-44
5.12 Screen Sieve Analyses of PARAHO Retorted Shale 13-45
5.14 Mean Particle Size (Effective Diameter) of LO VOL
AIR Particulate Samples Collected at the Paraho Plant
as Determined by Scanning and Transmission Electron
Microscopy 13-46
5.15 Particle Size Analysis of Air Particulate Samples
Collected at the Paraho Plant as Determined by
Cascade Impaction Collector 13-46
5.16 Particle Size vs Mean Elemental Composition of Air
Particulates as Determined by X-Ray Fluorescence 13-47
5.17 Benzene and Water Extractables of Solid Samples 13-48
5.21 Evaluation of Benzo(a)pyrene Content in Samples of
Benzene Extracts From Paraho Spent Shale Coke Samples. . . 13-49
5.22 RR Values for PAH Fraction of Benzene Solubles From
° Carbonaceous Spent Shale [CSA VIII (1)]. . 13-50
5.23 Pilot Plant (Direct Mode) Recycle Gas 13-51
•6.1 Flame lonization Reponse of Sample MSA-34 Extracted
With CS2 13-52
STUDY 14
14-1 Tertiary Treatment Systems Used at Specific Pilot
Plant Sites 14-5
xvn
-------
TABLES (continued)
Number page
and Organic Extracts 13-27
5-9 Elemental Analysis of Retort Shale, Particulates
and Organic Extracts 13-34
5-19 Polar "Oxy" Compounds Present in Carbonaceous
Spent Shale 13-35
Additional Data
5 Size Ranges of Solids 13-37
6 Mass Fraction of Raw Shale Particulates 13-38
7 Numerical Fraction of Raw Shale Particulates 13-38
8 Particle Size vs Mean Elemental Composition of Raw Shale
Air Particulates as Determined by X-Ray Fluorescence . . . 13-38
11 Benzene and Water Extractables of Retorted Shale,
and Raw Shale Particulates 13-39
12 Comparison of PAH to Polar Compounds in Solid Samples .... 13-39
13 RB Values for PAH Fraction of Benzene Solubles
From Direct Mode Retorted Shale 13-40
14 Evaluation of Benzo(a)pyrene Content in Samples
of Benzene Extracts From Direct Mode Retorted 13-41
5.5 Evaluation of Organics Extracted From Aqueous
Phase of Recycle Gas (Cold) Condensate (RG-10) 13-42
5.6 Evaluation of Organics Extracted From Aqueous
Phase of Recycle Gas (Hot) Condensate (RG-7) 13-43
5.11 Size Distribution of PARAHO Solids 13-44
5.12 Screen Sieve Analyses of PARAHO Retorted Shale 13-45
5.14 Mean Particle Size (Effective Diameter) of LO VOL
AIR Particulate Samples Collected at the Paraho Plant
as Determined by Scanning and Transmission Electron
Microscopy 13_45
5.15 Particle Size Analysis of Air Particulate Samples
Collected at the Paraho Plant as Determined by
Cascade Impaction Collector 13-46
5.16 Particle Size vs Mean Elemental Composition of Air
Particulates as Determined by X-Ray Fluorescence 13-47
5.17 Benzene and Water Extractables of Solid Samples ! 13-48
5.21 Evaluation of Benzo(a)pyrene Content in Samples of
Benzene Extracts From Paraho Spent Shale Coke Samples. . . 13-49
5.22 RB Values for PAH Fraction of Benzene Solubles From
Carbonaceous Spent Shale [CSA VIII (1)]. . . . 13-50
5.23 Pilot Plant (Direct Mode) Recycle Gas ' ' 13-51
6.1 Flame lonization Reponse of Sample MSA-34 Extracted
With.CS2 13_52
STUDY 14
14-1 Tertiary Treatment Systems Used at Specific Pilot
Plant Sites 14_5
xvm
-------
TABLES (continued)
Number Pa9e
Level 2
6 Minimum Determinable Concentrations for Organic
Toxic Pollutants 14-7
7 Plant A Organic Toxic Pollutants Detected 14-8
8 Plant A Inorganic Toxic Pollutants Detected 14-9
9 Plant A Other Pollutants Detected 14-10
11 Plant A Effluent Descriptions 14-11
12 Plant C Organic Toxic Pollutants Detected 14-12
13 Plant C Inorganic Toxic Pollutants Detected 14-12
14 Plant C Other Pollutants Detected 14-13
15 Plant C Bioassay Results 14-14
16 Plant C Effluent Descriptions 14-15
17 Plant W Organic Toxic Pollutants Detected 14-16
18 Plant W Inorganic Toxic Pollutants Detected 14-16
19 Plant W Other Pollutants Detected 14-17
20 Plant W Bioassay Results 14-18
21 Plant W Effluent Descriptions 14-19
22 Plant S Organic Toxic Pollutants Detected 14-20
23 Plant S Inorganic Toxic Pollutants Detected 14-20
24 Plant S Other Pollutants Detected 14-21
25 Plant S Bioassay Results 14-22
26 Plant S Effluent Descriptions ..... 14-23
27 Plant P Organic Toxic Pollutants Detected 14-23
28 Plant P Inorganic Toxic Pollutants Detected 14-24
29 ' Plant P Other Pollutants Detected 14-25
30 Plant P Bioassay Results 14-26
31 Plant P Effluent Descriptions 14-27
32 Plant N Organic Toxic Pollutants Detected 14-27
33 Plant N Inorganic Toxic Pollutants Detected 14-28
34 Plant N Other Pollutants Detected 14-29
35 Plant N Bioassay Results 14-30
36 Plant N Effluent Description 14-31
37 Plant V Organic Toxic Pollutants Detected 14-32
38 Plant V Inorganic Toxic Pollutants Detected 14-33
40 Plant V Bioassay Results 14-34
41 Plant V Effluent Descriptions 14-35
42 Plant T Organic Toxic Pollutants Detected 14-36
43 Plant T Inorganic Toxic Pollutants Detected 14-37
44 Plant T Other Pollutants Detected 14-38
45 Plant T Bioassay Results 14-39
46 Plant T Effluent Descriptions 14-40
xix
-------
INTRODUCTION
This document is an accumulation of all available environmental assessmerv
data published from February 1978 through March 1979.
This document is the second comprehensive compilation of data from the
IERL Phased Environmental Assessment Program. The first data compilation was
published in October 1978 as EPA-600/2-78-211, Compilation of Level 1 Environ-
mental Assessment Data. As in the first data compilation, the primary purpose
of this compilation is to permit those involved in environmental assessment
programs to evaluate the quality and quantity of data generated by the phased
approach. It is felt that critical reviews of these data may lead to improve-
ments in procedures, data formatting, data storage, and data interpretation.
Although conclusions related to specific sources or source types may have been
abstracted from the references to provide background information, the focus of
this presentation is on data resulting from the Level 1 sampling and analytical
methods. The interested reader should consult the referenced documents for
more details and conclusions concerning pollutant sources, control techniques,
etc.
The phased environmental assessment program, developed by the Industrial
Environmental Research Laboratory (IERL) of the Environmental Protection
Agency (EPA) at Research Triangle Park (RTP), North Carolina, is divided into
three levels. Level 1 is the survey step to determine which samples from an
environmental assessment might be hazardous or toxic. Level 1 also serves to
establish the priority of samples and rank samples for further testing. When
the Level 1 sampling and analysis scheme shows the possible presence of hazards
a Level 2 scheme is initiated to specifically identify and quantify suspected
hazardous materials. If Level 2 reveals pollutants capable of environmental
detriment, then a Level 3 scheme is begun to evaluate control technologies ana
to assess long-term effects.
Fourteen studies have been identified that contain phased environmental
assessment data; these studies are organized alphabetically by source types in
xx
-------
STUDY NUMBER 10
-------
STUDY NUMBER 10
DATA
SOURCE:
EMISSIONS ASSESSMENT OF
CONVENTIONAL STATIONARY
COMBUSTION SYSTEMS;
Volume II. Internal Combustion Sources
DATA
STATUS:
EPA-600/7-79-029C, February 1979
AUTHORS:
CONTRACTOR:
C. C. Shih, J. W. Hamersma, D. B. Ackerman,
R. G. Beimer, M, L. Kraft, and M. M. Yamada
TRW, Inc.
One Space Park
Redondo Beach, California 90278
Contract No. 68-02-2197
PROJECT
OFFICER:
Ronald A. Venezia
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
10-1
-------
The purpose of this study was to assess the contribution of gaseous
emissions from stationary internal combustion sources to the total air pollu-
tion load. Two source categories, gas turbines and reciprocating engines,
were considered in this assessment. Gas turbines may be classified as simple
open cycle, regenerative open cycle, and combined cycle; and reciprocating
engines may be classified as spark- and compression-ignited (diesel) engines.
These large stationary internal combustion engines are used for "electricity
generation, oil and gas transmission, natural gas processing, oil and gas
productign and exploration."
A thorough survey and evaluation of available information was performed
and, based on deficiencies in the existing data base, eleven sites were chosen
for sampling and analysis. There were five distillate oil-fueled gas turbines
of the simple open cycle type (sites #111, #112, #306, #307, and #308), five
distillated oil (diesel) reciprocating engines (sites #309, #310, #311, #312,
and #313), and one gas-fueled gas turbine of the simple open cycle type (site
#110). A thorough study of load factors and operating conditions was performed
so that representative samples could be acquired.
No fugitive emissions were sampled since previous data indicated that
there was an insignificant contribution to total pollutants from these sources.
The sampling and analysis protocol consisted of a modified Level 1 chemi-
cal assessment, Level 2 chemical assessment on three sites (#309, #312, and
#313) as indicated by Level 1, and additional analyses for ROM's by GC/MS.
The modified Level 1 procedure involves sampling with a SASS train without
cyclones and gas sampling bags for Cj^-C^ hydrocarbons and CO, C02, 02, and
S02. The Level 1 inorganic protocol was followed (SSMS for elemental composi-
tion; AAS for As, Hg, and Sb; colorimetric analysis for NOa; and specific ion
electrode method for Cl and F ), and the following samples were analyzed:
SASS filter (and hot water extracts of filter particulates); SASS XAD-2 sorbent;
a composite of SASS organic module condensate, HN03 rinse, and the first
impinger solution; and the fuel oil. The Level 1 organic protocol for sample
10-2
-------
recovery and fractionation was followed but final analyses were by gravimetry,
GC, infrared spectrometry, and GC/MS rather than LRMS, A cutoff of 500 ug/m3
for total organics in stack gas was used as the criterion for fractionation
and detailed organic analysis.
The Level 2 sampling effort utilized the Goksoyr-Ross sampling system for
sulfur oxides and the SASS train without cyclones. As compared to Level 1
tests, which used CH2C12 or CH2C12/CH3OH rinses in this study, the Level 2
SASS tests added acetone to the rinse solutions and omitted isopropyl alcohol
from the impinger recovery washes. The turbidimetric method was used for
determination of S02 in Goksoyr-Ross H202 impinger and S04 in filter particu-
lates and probe rinses. Initially unconcentrated and unfractionated organic
samples were analyzed by capillary GC/MS. Some concentrated and LC fraction-
ated samples were also analyzed by GC/MS, with reference to the unconcentrated
and unfractionated sample, for trace levels of organics.
Quoting from the abstract of the final report,
Assessment results indicate that internal combustion (1C) sources
contribute significantly to the national emissions burden. NO ,
hydrocarbon, and CO emissions from 1C sources account for approxi-
mately 20, 9, and 1%, respectively, of the emissions of these pollut-
ants from all stationary sources. The sources severity factor (the
ratio of the calculated maximum ground level concentration of the.
pollutant species to the level at which a potential environmental
hazard exists) was used to identify pollutants of environmental
concern.
ROM's, CO, S02, particulates, and individual organic species were not found at
levels of environmental concern. Trace element emissions from gas-fueled
engrnes were insignificant but oil-fueled engines emitted nickel, copper, and
phosphorus at levels of concern.
Figure 10-1 from the final report gives an explanation of sample codes
used in some of the data tables.
10-3
-------
xxx-xx-xx-xxx-xx-x
SITE IDENTIFICATION
Consecutively numbered
by sampling team:
100-199, TRW West Coast
200-299, TRW East Coast
300-399, GCA
o
I
SAMPLE TYPE
Numbers and corresponding
sample types are as
fo11ows:
1-bulk liquid
(separated from a
slurry)
2-bulk liquid
(separated from a •
slurry)
3-bulk linuid
1-bulk liquid
n-liquid fuel feed
CD-condensate from
XAD-2 module
PR-solvent probe/
cyclone rinse
MR-solvent XAD-P
module rinse
HM-MNOj XAD-2 module
rinse
HI-H20Z impincjpr
AI-APS impingers
XR-XAD-2 resin
PF-filter(s)
tC-l-3c cyclone
3C-3-10). cyilone
lf)C->ini, c. yi lone
XH-XR extract plus MR
CII-IIM plus (.1) plus HI
fC-PF plus 1C
CC-3C t)lus inr
CF-solid fuH feed (coal)
5-bulk sol ids
f>-bulk solids
7-buIk solids (separated
from a slurry)
8-bulk solids (separated
from a slurry)
SAMPLE PREPARATION
Numbers and corresponding
preparation steps are
as follows:
0-no preparation
LE-liquid-llquid extraction
SE-Soxhlet extraction
A-acidlfied aliquot
B-basified aliquot •
PB-Parr bomb combustion
HVI-hot water extraction
AR-aqua retiia extraction
FIRST LEVEL ANALYSIS
SECOND LEVEL
ANALYSIS
THIRD LEVEL ANALYSIS
Numbers and correspondinq
procedures are as
follows:
Organic
0-no cone
required
r.C-C7-Ci; r'c
KD-K-D Cone
Inorqanic
SS-SSMS
AAS-llq,As,Sb
SOq-SO/i
N03-N03
CF-CI.F
Orqanic analyses on
cone samples will
be coded as
follows:
GH-GC/HS for PAHs
GI-Grav.,IR
MS-LRMS
LC-LC separation
Resulting LC fractions
for grav./lR/LRMS
analyses wil1 be
numbered in order,
1-8
Figure 10-1. EACCS sample control numbers.
-------
LEVEL 1
10-5
-------
TABLE 10-1. SPARK SOURCE MASS SPECTROSCOPY
GAS-FUELED GAS TURBINE (SITE 110)
XAD-2 RESIN
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tra
Er
Ho
<2.22
<2.19
<1.97
<14.4
<1.91
<1.84
<1.81
<1.78
<1.75
<1.72
<1.69
<1.63
<1.63
<1.59
<1.56
<1.53
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.53
<1.50
<1.47
<1.44
<1.41
<1.34
<1.31
0.23
<1.31
<81.2
0.02
<1.19
<1.19
<2.09
<4.06
<0.38
<1.00
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.97
<0.94
<2.63
0.03
<0.84
<0.84
<5.00
0.34
<5.31
<1.06
<1.19
<0.69
<0.66
<75.0
68.8
<78.1
<0.84
<153
<7.50
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<10.94
<0.50
<5.94
<228
<156
<156
<562
<53.1
<116
<43.8
<188
<87.50
<0.34
<0.08
0.22
10-6
-------
TABLE 10-2. SPARK SOURCE MASS SPECTROSCOPY
GAS-FUELED GAS TURBINE (SITE 110)
COMPOSITE SAMPLE*
(MQ/m3)
==^=c=
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
fie
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.44
<0.44
<0.38
1.59
<0.38
<0.38
<0.34
<0.34
<0.34
<0.34
<0.34
<0.31
<0.31
<0.31
<0.31
<0.30
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.30
<0.29
<0.29
<0.28
<0.28
<0.27
<0.26
0.03
0.04
0.94
<0.24
<0.23
<0.23
0.13
0.44
0.47
<0.20
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.19
<0.19
0.34
<0.17
0.02
<0.16
0.17
0.03
1.28
<0.30
<0.14
<0.13
<0.13
5.63
<10.0
4.69
0.07
17.8
2.56
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<2.78
0.06
0.19
13.4
13.6
300.
2.63
8.75
<3.75
8.75
<81.2
3.44
<0.003
<0.02
"Composite of HN03 module wash, condenr.ate, and the H202 impinger.
10-7
-------
TABLE 10-3. SPARK SOURCE MASS SPECTROSCOPY
GAS-FUELED GAS TURBINE (SITE 110)
TOTAL SASS CATCH
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.66
<2.60
<2.34
1.59 to 14,4
<2.28
<2.22
<2.16
<2.12
<2. 09
<2.06
<2. 0
<1.97
<1.94
<1.91
<1.88
<1.84
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.
<1.
<1.
<1.
<1.
<1.
<1.
0.
0.
0.
0.
<1.
<1.
0.
0.
0.
<1.
81
78
75
72
69
63
60
26
04
94
02
44
44
13
44
47
19
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
to 1.31 Br
to 81.2 Se
to 0.24 As
Ge
Ga
to 2.09 Zn
to 4.06 Cu
Ni
Co
Fe
Mn
<1.16
<1.12
0.34
0.03
0.02
<1.0
0.17
0.38
1.28
<1.38
<1.34
<0.81
<0.78
5.62
68.75
4.69
0.07
to
to
to
to
to
to
to
to
2.63
0.17
0.84
5.0
5.31
75.0
78.1
0.84
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li
2.
0.
0.
13.
15.
300.
2.
8.
<46.
8.
<166
3.
<0.
<0.
78 to 10. :
06 to 0.5,
19 to 5,9-
44 to 228
6 to 156
0
63 to 53,:
75 to 116
9
75 to 188
44
003 to 0.:
24
17.8 to 153.
2.56
to
7.50
10-8
-------
TABLE 10-4. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 111)
FUEL
(ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
1.3
<0.41
<0.39
<0.38
<0.38
<0.37
<0.37
<0.36
<0.35
<0.35
<0.34
<0.33
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
0.0098
<0.28
1.4
<0.27
<0.25
<0.26
0.053
0.13
0.14
<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.20
0.093
<0.19
<0.18
<0.18
0.33
0.023
<0.55
0.11
<0.082
<0.15
<0.14
12
3.1
3.2
0.053
18
71
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.13
0.062
<0.2
15
36
490
8.8
60
2.7
<11
33
. 3.9
<0.0021
<0.021
10-9
-------
TABLE 10-5. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINE
PROBE SOLIDS (SITE 111)
(|jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.02
<0.02
<0.01
0.56
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01 I
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.003
<0.003
0.05
<0.003
<0.01
<0.01
0.01
<0.02
<0.003
<0.01
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.01
<0,01
0.02
<0.003
<0.05
0.01
0.02
<0.003
0.016
0.08
0.03
0.02
<0.003
0.09
0.21
1.84
0.08
18.1
42.8
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.69
0.06
0.09
1.84
0.86
214
0.17
14.5
1.25
0.43
0.30
1.18
<0.003
<0.003
10-10
-------
TABLE 10-6. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 111)
FILTER CATCH
(fjg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.36
<0.36
<0.32
2.27
<0.23
1.35
<0.30
<0.30
<0.29
<0.28
<0.28
<0.27
<0.27
<0.26
<0.26
<0.26
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.25
<0.25
<0.24
<0.23
<0.23
<0.22
<0.22
<0.05
<0.21
2.66
<0.003
<0.20
<0.20
<0.12
<0.06
0.10
<0.16
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.16
<0.16
1.68
<0.14
<0.29
<0.14
<0.21
<0.10
1.84
0.27
<0.20
<0.11
<0.11
<3.62
<4.61
49.3
1.45
1,680
253
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.82
<0.04
<1.97
<27.3
-------
TABLE 10-7. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 111)
XAD-2 RESIN
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.34(
<2.30J
<2.07
<25.3
<2.01
<1.94
<1.91
<1.87
<1.84
<1.81
<1.78
<1.71
<1.71
<1.68
<1.64
<1.61
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.58
<1.55
<1.51
<1.48
<1.41
<1.38
<1.38
<1.38
<27.0
<1.32
<1.25
<1.25
<1.25
<3.62
<2.27
<1.05
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.02
<0.99
2.11
0.07
<0.89
<0.89
<4.61
0.29
<9.54
<0.79
<2.07
<0.72
<0.69
<155
<158
42.8
0.79
<171
8.55
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li
3.95
<0.62
1.84
<395
<164
<1,460
<72.4
1,610
<52.6
<197
276
52.6
0.003
<2.17
10-12
-------
TABLE 10-8. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 111)
COMPOSITE SAMPLE*
(fjg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.29
<0.28
<0.25
5.92
<0.24
<0.24
<0.23
<0.24
<0.22
<0.22
<0.26
<0.21
<0.21
<0.20
<0.20
<0.20
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.19
<0.19
<0.19
<0.18
<0.18
<0.19
<0.17
0.03
<0.17
1.12
<0.16
<0.15
<0.15
<0.14
4.93
<0.14
<0.13
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.12
<0.14
0.39
0.03
<0.11
<0.11
0.39
0.02
0.33
0.99
0.11
<0.09
<0.08
1.58
<2.93
1.35
0.06
7.57
8.88
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li
4.61
0.09
0.21
65.8
7.57
109
<3.06
7.57
2.01
3.62
<59.2
<0.59
<0.01
0.04
^Composite of HN03 module wash, condensate, and the H202 impinger.
10-13
-------
TABLE 10-9. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 111)
TOTAL SASS
(pg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3.03
<2.93
<2.66
8.55 to 25.3
<2.60
1.35
<2.43
<2.43
<2.37
<2.33
<2.30
<2. 20
<2.20
<2.14
<2.11
<2.11
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2.07
<2.01
<2.01
<1.94
<1.91
<1.84
<1.78
0.03 to 1.45
<0.003 to 1.74
3.95 to 27.0
<0.003 to 1.48
<1.61
<1.61
0.01 to 1.51
4.93
0.10 to 2.40
<1.35
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Se
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.32
<1.32
4.28
0.11
<1.35
0.01 to 1.12
0.39 to 4.61
0.31
Br
1.35
As
0.02 to 0.92
<0.89
1.68 to 158
0.21 to 164
98.7
2.40
1,710
312
Cr
V
Ti
Sc
Ca
K
C1
S
2.20
Si
0.14
Mg
Na
F
B
Be
Li
10.20
0.15 to 0.6
2.17
69.1 to 42£
8.55 to 19:
822 to 1.640
to 9.54
1,610
to 2.27
3.95 to 227
625
52.6
0.01 to 0.0
0.04 to 2.2
10-14
-------
TABLE 10-10. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 112)
FUEL
(
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.65
<0.95
<0.42
4.3
<0.41
<0.48
<0.74
<0.81
<0.51
<0.69
<0.86
<0.35
<0.35
<0.34
<0.52
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.52
<0.65
<0.28
<0.28
<0.2JB
14
<0.27
<0.45
<0.38
<0.26
2.0
<0.46
<0.37
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.48
<0.44
<0.19
<0.21
<0.18
0.18
0.069
<0.64
<0.25
<0.14
<0.18
<0.14
29
31
4.5
0.076
17
0.41
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
1.8
0.081
0.51
22
11
140
4.4
5,300
14
51
300
180
0.0050
10-15
-------
TABLE 10-11. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 112)
FILTER CATCH
((jg/m3)
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.15
<0.14
<0.13
2.55
<0.13
0.02
<0.12
<0.12
<0.11
0.01
<0.11
<0.11
<0.11
<0.10
<0.10
<0.10
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.10
<0.10
<0.10
<0.09
<0.09
<0.09
<0.09
<0.01
<0.003
<0.71
<0.003
0.01
<0.08
0.49
<0.27
0.34
<0.06
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.06
<0.61
0.09
<3.07
<0.11
0.01
<0.16
<0.03
0.03
0.06
<0.30
<0.05
<0.04
1.17
<0.95
0.80
0.34
<14.7
2.98
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li
0.49
<0.07
<0.77
<30.7
<18.7
337
<0.64
<3.99
<9.51
<6.75
<187
<0.25
<0.003
10-16
-------
TABLE 10-12. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 112)
XAD-2 RESIN
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.18
4.29
<1.93
61.3
<1.87
<1.81
<2.45
<2.67
<1.72
<2.27
<2.82
<1.60
<1.60
<1.56
<1.72
<1.50
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.50
<1.47
<1.44
<1.41
<1.72
<2.15
<1.29
<1.29
<1.29
736
<1.23
6.13
<1.23
<1.17
3.37
2.21
<1.23
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.95
<1.56
<1.47
<0.86
<0.83
<0.83
8.90
0.27
<4.29
<0.83
1.44
<0.67
<0.64
<144
<92.02
<64.4
<0.98
<95.1
<3.37
Cr
V
Ti
Sc
Ca
K
Cl
S <
P
Si
Al
Mg
Na
F
B
Be
Li
<6.75
<0.83
5.21
368
<217
1,040
<95.1
<132
<288
92.0
307
<196
0.003
10-17
-------
TABLE 10-13. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 112)
COMPOSITE SAMPLE*
(pg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.64
<0.95
<0.29
1.04
<0.37
<0.49
<0.74
<0.83
<0.52
<0.71
<0.86
<0.25
<0.29
<0.24
<0.52
<0.23
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.30
<0.22
<0.30
<0.21
<0.52
<0.64
<0.20
<0.20
<0.20
0.92
<0.19
<0.46
<0.37
<0.26
0.64
<0.46
<0.37
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.14
<0.49
<0.46
<0.13
<0.21
<0.13
0.22
<0.12
<0.64
<6.75
<0.40
<0.18
<0.10
<5.83
<1.32
1.07
0.14
107
0.40
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li
1.50
0.04
<0.07
29.4
<6.79
117
<0.67
4.29
1.41
6.13
<20.6
0.26
0.01
""Composite of HN03 module wash, condensate, and the H202 impinger.
10-18
-------
TABLE 10-14. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 112)
TOTAL SASS
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.98
4.29
<2.33
64.4
<2.36
0.02 to 2.30
<3.37
<3.68
<2.33
0.01 to 2.94
<3.68
<1.96
<1.99
<1.90
<2.36
<1.84
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.90
<1.78
<1.84
<1.72
<2.33
<2. 88
<1.60
<1.50
<0.003 to 1.47
736
<0.003 to 1.41
6.13
<1.69
0.49 to 1.41
3.99
2.55
<1.66
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.
<2.
0.
<3.
<1.
0.
9.
0.
0.
0.
1.
<0.
<0.
1.
<95.
1.
0.
107
3.
17
12
09 to 1.90
07 to 0.98
17
01 to 0.95
20
27
03 to 4.90
06 to 7.36
44
89
80
17 to 150
1
87 to 64.4
49
37
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
1.
0.
5.
399
<337
460
<98.
4.
1.
98.
307
0.
0.
99
04
21
to
2
29
41
2
26
01
to 6.75
to 0.92
1,040
to 135
to 298
to 196
10-19
-------
TABLE 10-15. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 306)
FUEL
(
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
2.8
<0.41
<0.39
<0.38
<0.38
<0.37
<0.37
<0.36
<0.35
<0.35
<0.34
<0.33
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
<0.28
<0.28
<0.49
<0.27
0.040
<0.26
<0.090
5.5
<0.22
<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.20
0.17
<0.19
<0.18
<0.18
0.099
<0.028
<0.35
<0.16
<0.21
<0.15
<0.14
15
31
53
0.35
20
9.0
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.56
0.47
<0.54
27
<8.4
480
11
<120
2.8
<7.2
<21
<0.72
<0.0056
0.017
10-20
-------
TABLE 10-16. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 306)
FILTER CATCH
(pg/rn3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.11
<0.10
<0.09
<22.1
<0.09
<0.09
<0.09
<0.09
<0.09
<0.18
<0.08
<0.08
<0.08
<0.08
<0.08
<0.07
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.07
<0.07
<0.07
<0.07
<0.07
<0.07
<0.06
0.02
<0.03
<8.54
<0.003
0.02
<0.06
<0.09
0.77
<0.12
<0.05
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.05
<0.05
0.77
<0.003
0.41
0.02
0.16
0.02
<0.12
1.49
0.55
0.16
<0.03
16.5
2.18
30.3
0.16
99.2
27.6
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li
6.89
0.02
<1.85
49.6
55.1
441
26.2
331
<22.6
130
<127
212
<0.07
<0.23
10-21
-------
TABLE 10-17. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 306)
XAD-2 RESIN
(pg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.45
<2.40
<2.15
10.2
<2.09
<2.04
<1.98
<1.96
<1.93
<1.90
<1.85
<1.79
<1.79
<1.74
<1.74
<1.71
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.68
<1.63
<1.63
<1.57
<1.54
<1.49
<1.46
0.47
0.24
13.5
0.04
0.28
<1.32
0.36
5.51
0.85
<1.10
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.05
<1.05
7.72
0.33
2.51
0.09
4.69
0.30
7.99
0.83
4.41
<0.74
<0.72
38.6
119
113
1.60
99.2
3.03
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li
12.1
0.36
22.6
157
74.4
3,030
33.1
276
<634
46.9
<248
<2.76
<0.01
0.07
10-22
-------
TABLE 10-18. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 306)
COMPOSITE SAMPLE*
(|jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.61
<0.58
<0.52
1.07
<0.52
<0.50
<0.50
<0.50
<0.47
<0.47
<0.44
<0.44
<0.44
<0.44
<0.41
<0.41
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.41
<0.41
<0.41
<0.39
<0.39
0.06
<0.36
0.04
<0.36
1.07
<0.02
0.05
<0.33
<0.18
<55.1
0.30
<0.27
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.26
<0.26
<7.17
0.003
0.04
<0.23
<0.17
<0.06
0.17
<1.79
<2.21
<0.18
<0.18
6.34
<6.06
16.5
0.50
35.8
<11.0
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li
13.5
<0.33
<0.80
<38.6
31.3
132
<21.2
<71.7
<9.37
4.69
<386
<0.13
<0.003
<0.01
'Composite of HN03 module wash, condensate, and the H202 impinger.
10-23
-------
TABLE 10-19. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 306)
TOTAL SASS
(pg/rn3)
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tin
Er
Ho
<3.03
<3.03
<2.76
11.3
<2.73
<2.62
<2.56
<2.54
<2.48
<2.54
<2.37
<2.32
<2.32
<2.26
<2.23
<2.21
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2.
<2.
<2.
<2.
<2.
0.
<1.
0.
0.
14.
0.
0.
<1.
0.
6.
1.
-------
TABLE 10-20. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 307)
FUEL
(ppm)
u
Th
Bi
Pb
TI
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
<2.2
<0.41
<0.39
<0.38
<0.38
<0.37
<0.37
<0.36
<0.35
<0.35
<0.34
<0.33
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
<0.28
<0.28
<0.21
<0.27
0.40
<0.26
0.12
<0.45
<0.22
<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.20
0.14
0.020
<0.18
<0.18
<0.14
<0.024
<0.29
<0.16
<0.13
<0.15
<0.14
<9.6
31
22
0.18
<17
16.0
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.72
0.13
<0.32
<5.1
'5.1
210
<2.2
<69
<2.4
<3.0
<22
<0.11
<0.0067
<0.023
10-25
-------
TABLE 10-21. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 307)
FILTER CATCH
(pg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.11
<0.10
<0.09
19.1
<0.09
<0.09
<0.09
<0.09
<0.09
<0.01
<0.08
<0.08
<0.08
<0.07
<0.07
<0.07
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.07
<0.07
<0.07
<0.07
<0.07
<0.06
<0.06
<0.01
<0.01
<0.84
<0.003
0.01
<0.06
<0.02
0.17
0.27
<0.05
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.05
<0.05
0.74
<0.003
0.14
<0.003
0.06
<0.02
<0.11
1.04
0.32
<0.03
<0.03
9.39
<2.14
<0.55
<0.13
<45.3
4.53
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li
2.78
0.01
<1.29
<20.7
<11.0
<26.2
6.15
<2.30
<0.06
-------
TABLE 10-22. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 307)
XAD-2 RESIN
(|jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu.
Yb
Tm
Er
Ho
<2.04
<2.01
<1.81
0.10
<1.75
<1.72
<1.65
<1.65
<1.62
<1.59
<1.55
<1.52
<1.49
<1.46
<1.46
<1.42
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.39
<1.36
<1.36
<1.33
<1.29
<1.23
<1.23
<1.20
<1.20
<0.11
<1.13
<1.10
<1.10
<0.01
<0.06
<0.97
<0.91
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.87
<0.87
<0.01
<0.81
<0.78
<0.78
<0.05
<0.003
<0.07
<0.68
<0.03
<0.62
<0.62
<8.42
<8.42
<0.07
<0.01
<3.88
<0.32
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
AT
Mg
Na
F
B
Be
Li
<0.32
<0.02
0.03
<17.5
<30.1
<236
<19.7
<48.6
453
<35.6
518
<19.4
<1.20
0.07
10-27
-------
TABLE 10-23. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 307)
COMPOSITE SAMPLE*
(Mg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0. 94
<0.91
<0.81
3.56
<0.81
<0.78
<0.74
<0.74
<0. 74
<0.71
<0.71
<0.68
<0. 68
<0.65
<0.65
<0.65
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.65
<0.62
<0.62
<0.58
<0.58
<0.55
<0.55
<0.11
<0.55
0.52
<0.003
<0.49
<0.49
<0.12
<23.6
<1.04
<0.42
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.39
<0.39
3.11
<0.36
<0.10
0.02
0.29
0.11
<0.30
0.71
<1.55
<0.28
<0.27
<11.7
2.85
35.6
0.65
32.4
<6.80
Cr
V
• Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li
4.86
<0.49
0.55
<80.9
<14.6
<149
3.14
<149
5.50
<5.18
<117
0.45
<0.003
<0. 09
•"Composite of HN03 module wash, condensate, and the H202 impinger.
10-28
-------
TABLE 10-24. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 307)
TOTAL SASS
(pg/m3)
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3.11
<3.01
<2.72
23.0
<2.65
<2.56
<2.49
<2.46
<2.43
<2.33
<2.33
<2.27
<2.23
<2. 20
<2.17
<2.14
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2.
<2.
<2.
<1.
<1.
<1.
<1.
<1.
<1.
0.
10
07
04
97
94
88
84
33
75
52
0.003 to 1.13
0.01 to 1.59
<1.
<0.
65
15
0.17 to 23.6
0.
<1.
•
27 to 2.01
39
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.
<1.
3.
<1.
0.
0.
0.
0.
<0.
1.
0.
<0.
<0.
9.
2.
35.
0.
32.
4.
33
33
88
17
14 to 0.87
02 to 0.78
36
11
49
75
32 to 1.59
94
91
39 to 20.1
85 to 10.7
6
65
4
53
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li
7.
0.
0.
<120
-------
TABLE 10-25. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 308)
FUEL
(ppm)
u
Th
Bi
Pb
TI
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
4.0
<0.41
<0.39
<0.38
<0.38
<0.37
<0.37
<0.36
<0.35
<0.35
<0.34
<0.33
<0. 33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0. 32
<0.31
<0.30
<0.30
<0.29
<0.28
<0.28
<0.28
<0.40
<0.27
<0.25
<0.26
6.4
0.46
<0.22
<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.20
0.32
0.028
0.11
<0.18
0.066
<0.032
<0.57
<0.16
<0.35
<0.15
<0.14
4.6
42.0
43.0
0.27
<22.0
<0.40
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
_i_ . 0
<0. 053
<0.21
!^ , b
<6.S
130.0
<4. 3
<23. 0
^4. 3
<2 9
-.50.0
<0.53
<0.018
<0.022
10-30
-------
TABLE 10-26. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 308)
FILTER CATCH
(jjg/m3)
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.13
<0.13
0.06
<26.6
<0.12
<0.11
<0.11
<0.11
<0.11
<0.02
<0.10
<0.10
<0.10
<0.10
<0.09
<0.09
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.09
<0.09
<0.09
<0.09
<0.09
<0.08
<0.08
<0.08
<0.08
<8.99
<0.003
0.06
<0.07
<0.10
70.0
<0.30
<0.06
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.06
<0.06
0.43
<0.003
<0.47
<0.003
0.47
0.03
<0.26
1.73
0.27
<0.04
<0.04
14.0
<4.33
<9.66
<0.08
<15.0
0.50
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li
1.03
<0.07
<2.20
<43.30
<16.0
253
<2.33
<183
<15.0
0.1.3
167
<2.07
<0.003
<0.01
10-31
-------
TABLE 10-27. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 308)
XAD-2 RESIN
u
Th
Bi
Pb
n
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tra
Er
Ho
<1.60
<1.57
<1.40
17.0
<1.37
<1.33
<1.30
<1.37
<1.27
<1.23
<1.43
<1.17
<1.17
<1.13
<1.13
<1.10
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.10
<1.07
<1.07
<1.03
<1.00
<1.10
<0.93
<0.93
<0.93
<13.0
<0.90
<0.86
<0.86
<0.83
<1.67
0.77
<0.70
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.70
<0.80
<2.13
<0.63
<0.60
<0.60
<4.33
<0.26
1.60
<0.53
0.90
<0.50
<0.47
<66.6
33.3
<66.6
<1.00
<99.9
4.00
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li
<13.0
12.3
<1.20
<766
117
1,370
<70.0
<190
<147
83.3
466
46.6
<0.02
2.90
10-32
-------
TABLE 10-28. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 308)
COMPOSITE SAMPLE*
(M9/m3)
=
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
========
<0.90
<0.87
<0.80
<1.90
<0.77
<0.73
<0.73
<0.73
<0.70
<0.70
<0.67
<0.67
<0.67
<0.63
<0.63
<0.63
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
!' J ' —.•—*
<0.60
<0.60
<0.60
<0.57
<0.57
<0.53
<0.01
<0.07
<0.53
<0.43
<0.01
<0.43
<0.47
<0.11
<15.66
4.33
<0.40
• i. '~Ti. --' ~ ~-
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.40
<0.37
<1.40
0.01
<0.02
<0.33
<0.33
0.03
<0.06
<0.16
0.80
<0.27
<0.26
<16.7
<3.66
3.66
<0.70
15.32
<4.33
. . — ^^ — .
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<4.00
<0.06
0.17
<50.0
<13.0
143
2.56
<99.9
<8.33
<5.00
53.3
<0.04
<0.003
0.06
_ ;
'Composite of HN03 module wash, condensate, and the H202 impinger.
10-33
-------
TABLE 10-29. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 308)
TOTAL SASS
(pg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.63
<2.56
0.06 to 2.20
17.0
<2.27
<2.17
<2.13
<2.20
<2.07
<1.97
<2.20
<1.93
*<1.90
<1.87
<1.87
<1.83
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.80
<1.77
<1.73
<1.67
<1.67
<1.73
<1.03
<1.10
<1.53
<22.3
<0.90
0.06 to 1.27
<1.40
<1.03
70.0
5.00
<1.17
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
.Br
Se
As
Ge
Ga
Zn
Cu
N1
Co
Fe
Mn
<1.13
<1.23
0.43 to 3.66
0.01 to 0.63
<1.10
0.003 to 0.93
0.47 to 4.66
0.06 to 0.26
1.60
1.73
2.00
<0.80
<0.77
14.0 to 83.3
33.3
3.66 to 73.3
<1.77
15.3 to 113
4.33
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li
1.03 to 16.;
12.3
0.17 to 3,3i
<866
117
1770
2.56 to 70.
<466
<170
83.3
700
46.6
<0.03
2.96
10-34
-------
TABLE 10-30. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 309)
FUEL
(ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
1.5
<0.41
<0.39
<0.38
<0.38
<0.37
<0.37
<0.36
<0.35
<0.35
<0.34
<0.33
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
0.012
<0.28
0.21
0.016
0.032
<0.26
0.27
0.29
<0.15
<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.20
1.5
0.063
<0.18
<0.18
<0.092
<0.045
<0.39
<0.67
<0.17
<0.15
<0.14
6.6
29
43
0.27
<22
0.94
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
- Li
1.5
0.035
<0.43
<8.0
-------
TABLE 10-31. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 309)
FILTER CATCH
(|jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.46
<0.67
<0.20
<9.82
<0.25
<0.34
<0.53
<0.56
<0.35
0.26
<0.60
<0.14
<0.20
<0.12
<0.35
<0.12
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.21
<0.08
<0.21
<0.09
<0.35
<0.46
<0.08
<0.11
<0.12
16.5
0.63
<0.31
<0.26
0.46
2.74
<0.32
<0.26
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.07
<0.33
5.26
<0.06
2.28
0.03
3.37
1.12
0.42
1.61
2.28
<0.12
<0.05
<8.07
8.42
137
1.51
1,400
26.7
Cr
V
Ti
Sc
Ca
K
C1
s
p
Si
Al
Mg
Na
F
B
Be
Li
16.5
0.16
3.51
260
59.6
1,090
140
3,510
91.2
123
337
63.2
<0. OC3
10-36
-------
TABLE 10-32. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 309)
XAD-2 RESIN
(|jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3.51
<3.44
<3.12
28.4
<3.05
<2.95
<2.84
<2.84
<2.77
<2.74
<2.67
<2.60
<2.56
<2.53
<2.49
<2.46
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2.42
<2.35
<2.35
<2.25
<2.25
<2.14
<2.11
<0.95
<0.35
<8.07
0.05
3.86
<1.89
<1.05
1.82
3.86
<1.58
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.54
<1.51
<1.86
<0.23
<0.63
<1.33
<3.86
0.20
9.82
<1.16
1.47
<1.09
<1.05
59.6
80.7
<168
0.98
182
9.82
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<18.9
2.49
<2.18
102
133
4,910
52.6
491
<91.2
561
772
22.1
0.06
10-37
-------
TABLE 10-33. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 309)
COMPOSITE SAMPLE*
(pg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1.09
<1.05
<0.95
2.39
<0.95
<0.91
-------
TABLE 10-34. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 309)
TOTAL SASS
(pg/m3)
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<4.91
<5.26
<4.21
30.9
<4.21
<4.21
<4.21
<4.21
<3.86
0.26 to 3.51
<4.21
<3.51
<3.51
<3.40
<3.51
<3.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<3.37
<3.16
<3.26
<3.05
<3.30
<3.26
<2.81
<1.12
<1.09
17.2
0.67
3.86
<2.74
0.46
4.56
6.32
<2.32
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
to 1.23 Zn
to 30.9 Cu
Ni
Co
Fe
Mn
<2.11
<2.32
8.07
<0.70
2.28
0.03 to
12.6
1.33
10.2
1.61
3.86
<1.54
<1.40
130
91.2
161
456
1,680
38.6
Cr
V
Ti
Sc
Ca
1.72 K
C1
S
P
Si
AT
Mg
Na
F
B
Be
Li
38.6
2.67
3.86
1,190
200
7,370
200
4,210
119
667
1,160
84.2
0.07
10-39
-------
TABLE 10-35. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 310)
FUEL
(
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
<5.1
<0.41
<0.39
<0.38
<0.38
<0.37
<0.37
<0.36
<0.35
<0.35
<0.34
<0.33
<0.33'
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
0.046
<0.28
<0.70
0.0099
<0.25
<0.26
<0.064
.<0.51
<0.22
<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.20
0.61
0.054
<0.18
<0.18
<0.16
0.097
<0.49
<0.16
<0.43
<0.15
<0.14
9.7
24
19
0.36
<21
1.2
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
AT
Mg
Na
F
B
Be
Li
2.1
0.11
<0.37
3.3
<17
0.15 (?o)
6.0
<32
<4.5
<5.0
23
<0.49
0.0014
0.15
10-40
-------
TABLE 10-36. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 310)
FILTER CATCH
(p g/m3 )
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.14
<0.14
<0.12
8.03
<0.12
<0.12
<0.11
<0.11
<0.11
<0.11
<0.10
<0.10
<0.10
<0.10
<0.10
<0.09
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.09
<0.09
<0.09
<0.09
<0.09
<0.08
<0.08
<0.02
<0.02
<1.54
<0.003
0.02
<0.07
0.06
0.25
<0.07
<0.06
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.06
<0.06
0.34
<0.05
0.20
0.01
0.45
0.06
<0.80
<0.05
0.30
<0.04
<0.04
15.4
1.50
30.0
<0.13
<11. 18
<0.28
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li
1.12
<0.05
<1.75
119
-------
TABLE 10-37. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 310)
XAD-2 RESIN
u
Th
Bi
Pb
TT
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.03
<1.96
<1.75
30.4
<1.71
<1.68
<1.61
<1.61
<1.57
<1.54
<1.50
<1.47
<1.47
<1.43
<1.40
<1.40
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.36
<1.33
<1.33
<1.29
<1.26
<1.22
<1.19
0.16
<1.19
3.14
<1.12
0.98
<1.08
<1.01
3.35
2.06
<0.91
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.87
<0.84
1.96
<0.77
<0.77
<0.73
1.36
0.25
2.31
<0.66
<1.78
<0.63
<0.59
<87.3
59.4
29.3
0.30
41.9
1.36
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
i i
L. i
8.73
2.83
2.24
<349
147
<1,430
<45.4
<83.8
97.8
27.6
454
11.2
0.01
0.42
10-42
-------
TABLE 10-38. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 310)
COMPOSITE SAMPLE*
(|jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1.36
<1.33
<1.22
<1.75
<1.19
<1.15
<1.12
<1.08
<1.08
<1.05
<1.05
<1.01
<1.01
<0.98
<0.98
<0.94
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.94
<0.91
<0.91
<0.87
<0.87
<0.84
<0.80
<0.04
<0.80
<0.49
<0.77
<0.16
<0.73
<0.25
41.9
0.25
<0.63
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.59
<0.59
<1.29
<0.52
<0.52
<0.52
<0.22
<0.01
<0.45
<1.15
<0.03
<0.42
<0.42
10.83
2.58
10.5
<0.80
<76.8
3.84
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
5.24
<0.09
<0.25
<136
-------
TABLE 10-39. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 310)
TOTAL SASS
(|jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3.49
<3.42
<3.11
38.4
<3.04
<2.90
<2.83
<0.83
<2.76
<2.72
<2.65
<2.58
<2.55
<2.51
<2.48
<2.44
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2.41
<2.34
<2.34
<2.24
<2.24
<2.13
<2.10
0.16
<1.99
3.14
<1.89
0.98
<1.89
0.06 to
45.4
2.31
<1.57
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
1.26 Zn
Cu
Ni
Co
Fe
Mn
<1.54
<1.50
2.31
<1.36
0.20 to 1.29
0.01 to 1.26
1.82
0.30
2.31
<1.85
0.30 to 1.82
<1.08
<1.05
26.2 to 87.3
62.9
69.9
0.30 to 0.91
41.9 to 87.3
5.24
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
15.0
2.83
2.24
119 to 489
147
1,680
13.6 to 66.4
<244
119
38.4
838
11.2
0.01 to 0.08
0.42
10-44
-------
TABLE 10-40. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 311)
FUEL
(
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
<1.6
<0.41
<0.39
<0.38
<0.38
<0.37
<0.37
<0.36
<0.35
<0.35
<0.34
<0.33
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
<0.035
0.0095
<0.62
0.0031
0.10
<0.26
0.44
0.32
<0.085
<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
9.5Fe
Mn
<0.21
<0.20
0.14
<0.018
<0.034
<0.18
<0.20
0.033
<0.30
<0.19
<0.27
<0.15.
<0.14
<4.5
19
28
0.45
0.24
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li
0.59
0.023
<0.24
4.0
-------
TABLE 10-41. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 311)
FILTER CATCH
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.11
<0.11
<0.10
8.65
<0.10
<0.10
<0.09
<0.09
<0.09
<0.09
<0.08
<0.08
<0.08
<0.08
<0.08
<0.08
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.08
<0.07
<0.07
<0.07
<0.07
<0.07
<0.07
<0.07
<0.07
<2.42
<0.06
<0.06
<0.06
0.14
<0.35
<0,06
<0.05
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.05
<0.05
<0.15
<0.01
0.28
<0.04
0.18
<0.01
<0.05
<0.04
0.07
<0.03
<0.03
7.27
<2.60
10.7^
<0.07
<6.92
<0.12
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
0.26
<0.03
<2.01
27.0
<2.77
121
4.50
83.0
<4.15
<4.50
38.1
18.7
<0.01
<0.07
10-46
-------
TABLE 10-42. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 311)
XAD-2 RESIN
(Mg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1.76
<1.73
<1.56
3.36
<1.52
<1.49
<1.45
<1.42
<1.38
<1.38
<1.35
<1.31
<1.28
<1.25
<1.25
<1.25
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.21
<1.18
<1.18
<1.14
<1.11
<1.17
<1.04
<1.04
<1.04
<38.1
<1.00
<0.93
<0.97
<1.87
<1.90
'
<3.46
<0.80
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.76
<0.76
<1.18
<0.70
<0.70
<0.66
<2.39
<0.59
<14. 2
<0.59
<1.11
<0.55
<0.52
79.6
<58.8
<76.1
0.38
256
3.81
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<2.73
<0.24
<0. 35
<450
3G.9
3,450
51.9
<107
<38.1
<0.18
<450
0.33
<0.07
0.15
10-47
-------
TABLE 10-43. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 311)
COMPOSITE SAMPLE*
((jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1.52
<1.49
<1.31
<5.54
<1.31
<1.25
<1.21
<1.21
<1.18
<1.18
<1.14
<1.11
<1.11
<1.07
<1.07
<1.04
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.04
<1.00
<1.00
<0.97
<0.97
<0.90
<0.90
0.03
<0.90
<0.72
<0.83
<0.24
<0.80
<0.27
<69.2
0.59
<0.69
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.66
<0.66
<0.52
<0.59
<0.59
<0.55
<0.35
<0.04
<0.26
<0.52
<0.16
<0.45
<0.45
<58.8
<10.7
<14.9
<0.87
<83.0
<11.8
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li
<6. 57
<0.14
<1.14
<86.5
<18.0
1,830
<11.1
<86.5
<17. 0
<0. 16
<235
1.90
-------
TABLE 10-44. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 311)
TOTAL SASS
(|jg/m3)
u
Th
Bi
Pb
TI
Hg
Au
Pt
Ir
Os *
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3.39
<3.32
<2.98
3.36 to 14.2
<2.91
<2.80
<2.73
<2.73
<2.66
<2.63
<2.56
<2.49
<2.46
<2.42
<2.39
<2.35
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2. 32
<2.28
<2.25
<2.18
<2.15
<2. 08
<2.01
0.03
<1.97
<41.5
<1.90
<1.25
<1.83
0.14
<72.7
0.59
<1.52
Rh
Ru
Mo
Nb
Zr
Y
Sr
to 1.11 Rb
Br
Se
As
Ge
Ga
to 2.15 Zn
Cu
Ni
to 3.81 Co
Fe
Mn
<1.49
<1.45
<1.83
<1.28
0.28 to 1.25
<1.28
0.18 to 2.73
<0.62
<14. 5
<1.14
0.07 to 1.28
<1.04
<1.0
86.5
<72.7
10.7 to 90.0
0.38 to 0.93
256
3.81 to 11.8
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li
0.26 to 9.34
<0.42
<3.46
27.0 to 519
Q ~ Q
J . — '
5,540
55.4
83.0 to 194
<58.8
<4.84
38.1 to 692
21.1
<0.003 to 0.08
0.18
10-49
-------
TABLE 10-45. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 312)
FUEL
(ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
TIB
Er
Ho
<0.48
<0.46
<0.42
<7.4
<0.41
<0.39
<0.38
<0.38
<0.37
<0.37
<0.36
<0.35
<0.35
<0.34
<0.33
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
<0.28
<0.28
0.58
0.0078
0.087
<0.26
1.5
0.45
<0.24
<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.20
0.46
0.06
<0.041
<0.18
<0.12
0.047
<0.18
<0.16
<0.15
<0.15
<0.14
17.0
11.0
20.0
0.16
<15.0
0.89
Cr
V
Ti
Sc
Ca
K
Cl
s
p
Si
AT
Mg
Na
F
B
Be
Li
1.4
0.034
<0.83
6.0
<9.1
600.0
<4.0
<16.0
<5.0
<3.9
<67.0
<0.19
<0.0004
0.033
10-50
-------
TABLE 10-46. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 312)
FILTER CATCH
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.12
<0.12
<0.11
46.7
<0.10
<0.10
<0.10
<0.10
<0.09
<0.09
<0.09
<0.09
<0.09
<0.09
<0.09
<0.08
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.08
<0.08
<0.08
<0.08
<0.08
<0.07
<0.07
0.04
-------
TABLE 10-47. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 312)
XAD-2 RESIN
(|jg/m3)
u
Th
B1
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
w
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.30
<2.24
<2.00
<17.4
<1. 97 .
<1..90
<1.84
<1.84
<1.80
<1.77
<1.70
<1.67
-------
TABLE 10-48. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 312)
COMPOSITE SAMPLE*
(pg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1.27
<1.24
<1.14
1.94
<1.10
<1.07
<1.04
<1.04
<1.00
<1.00
<0.97
<0.93
<0.93
<0.90
<0.90
<0.87
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.87
<0.87
<0.83
<0.80
<0.80
<0.77
<0.77
<0.77
<0.73
<1.30
0.02
0.60
<0.67
0.63
<32.1
1.54
<0.57
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.57
<0.53
0.73
0.11
<0.50
<0.47
0.33
0.02
<0.60
4.67
0.11
<0.40
<0.37
30.1
<9.35
<7.01
0.33
<56.8
<7.35
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
3.27
0.06
<5.68
<73.5
<11.0
4,340
<5.01
<20.4
<28.0
<13.4
<110
6.01
0.003
0.02
*Composite of HN03 module wash, condensate, and the H202 impinger.
10-53
-------
TABLE 10-49, SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 312}
TOTAL SASS
(jjg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tin
Er
Ho
<3.67
<3.67
<3.24
50.1
<3.17
<3.04
<2.97
<2. 94
<2.87
<2.84
<2.77
<2.70
<2.67
<2.60
<2.60
<2.54
Dy
Tb
Gd
Eu
Sm
Kd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2
.50
<2.47
<2
<2
<2
<2
<2
0.04
<2
11
0.02
0
<1
1
3.67
4
<:L
.44
.37
.34
.24
.17
to 2.10
.14
.0
to 1.27
.67
.97
.10
to 33.4
.34
.64
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
-------
TABLE 10-50. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 313)
FUEL
(ppm)
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
<3.3
<0.41
<0.39
<0.38
<0.38
<0.37
<0.37
<0.36
<0.35
<0.35
<0.34
<0.33
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
<0.28
<0.28
1.5
<0.27
<0.25
<0.26
0.21
<0.48
<0.30
<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
N1
Co
Fe
Mn
<0.21
<0.20
<0.15
<0.19
<0.18
<0.18
0.089
<0.025
<0.16
<0.16
<0.047
<0.15
<0.14
<7.2
19.0
8.1
<0.097
<25.0
<0.62
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
<0.17
<0.059
<0.23
32.0
<30.0
330.0
5.4
<37
2.6
<18
<56
<0.89
0.0013
0.091
10-55
-------
TABLE 10-51. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 313)
FILTER CATCH
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
T«
Er
Ho
<0.16
<0.16
0.04
12.3
<0.14
<0.13
<0.13
<0.13
<0.13
<0.02
<0.12
<0.12
<0.12
<0.11
<0.11
<0.11
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.11
<0.11
<0.11
<0.10
<0.10
0.01
<.003
<0.03
<0.01
<9.30
<.003
0.01
<0.09
0.09
1.93
0.08
<0.07
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.07
<0.07
0.27
<.003
0.26
.003
2.13
0.03
<0.37
<0.04
0.40
<0.05
<0.05
59.8
4.65
25.91
<0.22
116
<1.23
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
i.ao
0.03
<2.16
399
10.30
432
6.31
<199
<31.9
<0.02
<126
<4.32
<.oo
<0.04
10-56
-------
TABLE 10-52. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 313)
XAD-2 RESIN
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1.96
<1.93
<1.73
17.9
<1.69
<1.63
<1.59
<1.56
<1.53
<1.53
<1.46
<1.43
<1.43
<1.40
<1.36
<1.36
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.33
<1.30
<1.30
<1.26
<1.23
<1.20
<1.16
<1.16
<1.13
<15.3
<1.10
0.23
<1.06
0.37
0.90
6.31
<0.86
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.86
<0.83
1.36
<0.76
<0.76
<0.73
1.50
0.33
5.98
<2.43
<1.23
<0.60
<0.56
<43.2
<79.7
23.6
0.70
7,970
6.31
Cr
V
Ti
Sc
Ca
K
C1
s
p
Si
Al
Mg
Na
F
B
Be
Li
<2.82
0.13
1.10
<332
<229
1,160
<59.8
<59.8
<21.6
<59.8
<1,230
2.96
<0.01
<0.47
10-57
-------
TABLE 10-53. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 313)
COMPOSITE SAMPLE*
(M9/ni3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1.26
<1.23
<1.10
4.65
<1.06
<1.03
<1.00
<1.00
<0.96
<0.96
<0.93
<0.93
<0.90
<0.90
<0.90
<0.86
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.86
<0.83
<0.83
<0.80
<0.80
<0.76
<0.73
<0.73
<0.73
<1.57
0.06
0.29
<0.66
1.59
53.7
2.62
<0.56
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.53
<0.53
1.73
<0.50
<0.47
<0.47
0.40
0.05
0.56
15.3
0.11
<0.37
<0.37
39.87
8.31
19.9
1.06
326
7.64
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
7. 64
0.22
0.16
49.8
11.6
10,300
8.97
15.0
36.5
10.6
<56.5
1.40
-------
TAB.E 10-54. SPARK SOURCE MASS SPECTROSCOPY
DISTILLATL OIL RECIPROCATING ENGINE (SITE 313)
TOTAL SASS
(jjg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3.32
<3.29
0.0.4 to 2.82
36.54
<2.89
<2.79
<2.72
<2.69
<2.62
<2.49
<2.52
<2.49
<2.46
<2.39
<2.36
<2.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2.29
<2.26
<2.23
<2.16
<2.13
0.01 to 1.96
<1.89
<1.93
<1.89
<26.2
0.06 to 1.10
0.53
<1.79
2.06
56.5
8.97
<1.50
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.46
<1.43
3.32
<1.26
0.26 to 1.23
3.32(-03) to 1.20
3.99
0.40
6.31
15.3
0.50 to 1.23
<1.03
<1.00
103
13.0 to 79.7
69.8
1.76
8,640
13.6
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
8.64
0.37
1.26
432
21.9 to 229
12,000
15.3 to 59.8
15.0 to 259
36.5
10.6 to 59.8
<1,400
4.32
0.003 to 0.01
0.06 to 0.02
10-59
-------
TABLE 10-55. ATOMIC ABSORPTION ANALYSIS
SASS TRAIN
DISTILLATE OIL-FUELED GAS TURBINE SITE 111
Sample
Participate (pg)
XAD-2 (pg)
Impingers
Composite* (pg)
APS1" (pg)
Total catch (pg)
Fuel feed (pg/G)
As
<19
<110
<23
18
18-170
<0.015
Hg
<0.3
3.1
2.5
1
5.7
0.04
Sb
<23
<37
<76
6.4
6.4-140
<0.025
'Composite of HN03 module wash, condensate, and the H202 impinger
The second impinger containing ammonium persulfate (APS) and
silver nitrate and the third impinger containing APS.
10-60
-------
TABLE 10-56. ATOMIC ABSORPTION ANALYSIS
SASS TRAIN
DISTILLATE OIL-FUELED GAS TURBINE SITE 112
Sample
Particulate (ug)
XAD-2 (|jg)
Impingers
Composite (ug)
APSf (Mg)
Total catch (ug)
Fuel feed (ug/G)
As
*
60
<31
<18
60-110
<0.015
Hg
0.2
42
1.9
0.85
45
0.48
Sb
<0.98
400
10
<6
410
<0.25
Blank values equal to or slightly higher than sample concentrations.
Composite of HN03 module wash, condensate, and the H202 impinger.
The second impinger containing ammonium persulfate (APS) and silver
nitrate and the third impinger containing APS.
10-61
-------
TABLE 10-57. ATOMIC ABSORPTION ANALYSIS
SASS TRAIN
DISTILLATE OIL-FUELED GAS TURBINE SITE 306
(ppm)
Sample
Parti cul ate (pg)
XAD-2 (pg)
Impingers
Composite ((jg)
APS1 (pg)
Total catch (pg)
Fuel feed (pg/G)
As
<0.13
<1.3
<0.92
<0.98
<3.3
0.097
Hg
<0.02*
<5.6*
<0.92
<20
<27
0.024
Sb
<0.13
58
<0.92
<0.98
60
0.0097
Blank values equal to or higher than samples.
^Composite of HN03 module wash, condensate, and the H202 impinger.
second impinger containing ammonium persulfate (APS) and silver
nitrate and the third impinger containing APS.
TABLE 10-58. ATOMIC ABSORPTION ANALYSIS
SASS TRAIN
DISTILLATE OIL-FUELED GAS TURBINE SITE 307
(ppm)
Sample As
Parti cul ate (pg) <0.01
XAD-2 (pg) <1.2
Impingers
Hg
<0.01*
<5.4*
Sb
5.4
55
Composite* (pg) <1.2 <24 <1.2
APSt (pg) <1.0 <21 <1.0
Total catch (pg) <3.4 <50 63
Fuel feed (pg/G) 0.099 0.007 0.099
Blank values equal to or higher than samples.
Composite of HN03 module wash, condensate, and the H202 impinger.
The second impinger containing ammonium persulfate (APS) and silver
nitrate and the third impinger containing APS.
10-62
-------
TABLE 10-59. ATOMIC ABSORPTION ANALYSIS
SASS TRAIN
DISTILLATE OIL-FUELED GAS TURBINE SITE 308
(ppm)
Sample As
Parti cul ate (ug) 1.2
XAD-2 (ug) <2.4
Impingers
Composite (ug) <1.1
APS* (ug) <1.1
Total catch (ug) <1.2
Fuel feed (ug/G) 0.099
Hg
<0.03*
<0.12
<2.3
<22
<25
0.003
Sb
<0.2
<2.4
:;:;
<4.8
0.69
Blank values equal to or higher than samples.
Composite of HN03 module wash, condensate, and the H202 impinger.
The second impinger containing ammonium persulfate (APS) and silver
nitrate and the third impinger containing APS.
10-63
-------
TABLE 10-60. ATOMIC ABSORPTION ANALYSIS
SASS TRAIN
DISTILLATE OIL RECIPROCATING ENGINE SITE 309
(ppm)
Sample
Participate (|jg)
XAD-2 (Mg)
Impingers
Composite* (ug)
APS1" (ug)
Total catch (ug)
Fuel feed (ug/G)
As
<0.9
<2.5
t
<3.4
<0.098
Hg
<0.04
4.7
<1.3
<22
4.7
0.003
Sb
<0.9
<2.5
<1.3
<1.1
<5.8
0.29
'Composite of HN03 module wash, condensate, and the H202 impinger.
The second impinger containing ammonium persulfate (APS) and
silver nitrate and the third impinger containing APS.
Not determined due to interference of isopropanol.
TABLE 10-61. ATOMIC ABSORPTION ANALYSIS
SASS TRAIN
DISTILLATE OIL RECIPROCATING ENGINE SITE 310
(ppm)
Sample
Parti cul ate (ug)
XAD-2 (ug)
Impingers
Composite* (ug)
APST (ug)
Total catch (ug)
Fuel feed (ug/G)
As
<0.63
<2.4
<1.7
t
<4.7
<0.10
Hg
<0.01
2.2
<6.6
<22
2.2
0.009
Sb
<0.35
<51
<1.7
<1.1
<54
<0.10
uuiiipusii,e ui nnu3 muuuie wasn, conaensate, and the H202 impinger.
The second impinger containing ammonium persulfate (APS) and
silver nitrate and the third impinger containing APS.
Not determined due to interference of isopropanol.
10-64
-------
TABLE 10-62. ATOMIC ABSORPTION ANALYSIS
SASS TRAIN
DISTILLATE OIL RECIPROCATING ENGINE SITE 311
(Ppm)
Sample
Particulate (pg)
XAD-2 (pg)
Impingers
Composite* (pg)
APS1" (pg)
Total catch (pg)
Fuel feed (pg/G)
As
<0.73
<3.2
t
<5.7
<0.10
Hg
<0.05
<0.53
<24
<27
0.007
Sb
<0.73
<3.2
-------
TABLE 10-64. ATOMIC ABSORPTION ANALYSIS
SASS TRAIN
DISTILLATE OIL RECIPROCATING SITE 313
(ppm)
Sample As
Particulate (ug) <0.71
XAD-2 (pg) <1.1
Impingers
Composite* (pg) <1.6
APS1" (pg) t
Total catch (pg) <3.4
Fuel feed (pg/G) <0.10
Hg
<0.01
<0.42
<4.8
<27
<32
0.004
Sb
1.7
<1.1
<1.6
<1.4
1.7
2.0
'Composite of HN03 module wash, condensate, and the H202 impinger.
The second impinger containing ammonium persulfate (APS) and
silver nitrate and the third impinger containing APS.
Not determined due to interference of isopropanol.
10-66
-------
TABLE 10-65. ATOMIC ABSORPTION ANALYSIS
SASS TRAIN, MASS EMISSIONS
(|jg/m3)
Site
110
111
112
306
307
308
309
310
311
312
313
As
<1.4
0.59-5.6
1.8-3.3
<0.09
<0. 11
0.4
<0.12
<0.17
<0.20
<0. 11
<0.11
Hg
9.1
0.18
1.4
<0.74
<1. 6
<0.83
0.16
0.77
<0.91
0.03
<1.1
Sb
<1.6
0.21-4.6
13
1.7
1.9
<0.16
<0.20
<1.9
<0.24
<0.30
0.06
TABLE 10-66. ATOMIC ABSORPTION ANALYSIS
SASS TRAIN, FOR GAS-FUELED GAS TURBINE, SITE 110
Sample As Hg Sb
Parti cul ate*
XAD-2 (|jg)
Impingers .
Composite (|jg)
APS* (Mg)
Total catch (ug)
—
**
<44
-
<44
.
290
<.32
-
290
.
<37
<15
-
<52
There was no participate sample for site 110.
Composite of HN03 module wash, condensate, and the H202 im-
pinger.
The second impinger containing ammonium persulfate (APS) and
silver nitrate and the third impinger containing APS.
**Blank values equal to or slightly higher than sample concen-
trations.
10-67
-------
TABLE 10-67. ANION ANALYSIS
SASS TRAIN, DISTILLATE OIL FUELED GAS TURBINE SITE 111
Sample
Parti cul ate (pg)
XAD-2 (Mg)
Impingers
Composite (pg)
APS1" (Mg)
Total catch (pg)
Fuel feed (pg/G)
F"
* .
*
310
310
20
Cl" NOs
1,000 870
150,000
<760
150,000 870
100
so;
x
60,000
60,000
2,04S
Blank values equal to or slightly higher than sample concentrations.
Composite of HN03 module wash, condensate, and the H202 impinger.
The second impinger containing ammonium persulfate (APS) and silver nitrate
and the third impinger containing APS.
10-68
-------
TABLE 10-68. ANION ANALYSIS
SASS TRAIN, DISTILLATE OIL-FUELED GAS TURBINE, SITE 112
Sample
Participate (pg)
XAD-2 (pg)
Impingers
Composite (pg)
APSt (pg)
Total catch (pg)
Fuel feed (pg/G)
F"
*
750
840
1,600
20
C1~
1,100
45,000
36,000
<620
82,000
50
NOs S04
590 7,600
90,000
— • •_ —
590 98,000
2,199
Blank values equal to or slightly higher than sample concentrations.
^Composite of HN03 module wash, condensate, and the H202 impinger.
^The second impinger containing ammonium persulfate (APS) and silver nitrate
and the third impinger containing APS.
10-69
-------
TABLE 10-69. ANION ANALYSIS
SASS TRAIN DISTRIBUTION DISTILLATE OIL-FUELED GAS TURBINE SITE 306
(ppm)
Sample
Cl
NOc
so:
Particulate (pg)
XAD-2 (pg)
Impingers
Composite* (pg)
APS1 (pg)
Total catch (pg)
Fuel feed (pg/G)
1,290
31,700
33.GOO
1,200
'Composite of HN03 module wash, condensate, and the H202 impinger.
The second impinger containing ammonium persulfate (APS) and silver nitrate
and the third impinger containing APS.
10-70
-------
TABLE 10-70. ANION ANALYSIS
SASS TRAIN, DISTILLATE OIL-FUELED GAS TURBINE, SITE 307
(ppm)
Samole
Cl
NO,
SO,
Participate (pg)
XAD-2 (pg)
Impingers
Composite* (|jg)
APS1" (ug)
Total catch (|jg)
Fuel feed (pg/G)
2,300
128,000
130,000
700
^Composite of HN03 module wash, condensate, and the H202 impinger.
TThe second impinger containing ammonium persulfate (APS) and silver nitrate
and the third impinger containing APS.
TABLE 10-71. ANION ANALYSIS
SASS TRAIN DISTILLATE OIL-FUELED GAS TURBINE, SITE 308
(ppm)
; • • i •••_ - — ' ' - ~ — — • - • • ' '
Sample F
Parti cul ate (pg)
VAn_o /"••/!>
ci" NO^ so;
2,050
9,600
Impingers
Composite* (pg)
APS1" (pg)
Total catch (pg)
Fuel feed (pg/G)
Composite of HN03 module wash, condensate. and the H202 impinger.
rThe second impinger containing ammonium persulfate (APS) and silver nitrate
and the third impinger containg APS.
10-71
-------
TABLE 10-72. ANION ANALYSIS
SASS TRAIN
DISTILLATE OIL RECIPROCATING ENGINE SITE 309
(ppm)
Sample F~ Cl~ N03 S04
Particulate (MQ) 21,200
XAD-2 (Mg) 10,500
Impingers
Composite* (pg) —
APS1 (Mg)
Total catch (pg) 31,700
Fuel feed (ug/G) ' 7,000
*Composite of HN03 module wash, condensate, and the H202 impinger.
The second impinger containing ammonium persulfate (APS) and silver nitrate
and the third impinger containing APS.
10-72
-------
TABLE 10-73. ANION ANALYSIS
SASS TRAIN,
DISTILLATE OIL RECIPROCATING ENGINE, SITE 310
(ppm)
Sample F~ Cl N03 S04
Particulate (pg) 20,800
XAD-2 (|jg) 44,000
Impingers
Composite* (ug)
APS1" (Mg)
Total catch (pg) 65,000
Fuel feed (pg/G) 7,400
^Composite of HN03 module wash, condensate, and the H202 impinger.
The second impinger containing ammonium persulfate (APS) and silver nitrate
and the third impinger containing APS.
TABLE 10-74. ANION ANALYSIS
SASS TRAIN,
DISTILLATE OIL RECIPROCATING ENGINE, SITE 311
(ppm)
Sample F Cl
Particulate (pg)
XAD-2 (pg)
NOs S04
28,500
82,400
Impingers
Composite* (pg)
APS1" (pg)
Total catch (pg) 111,000
Fuel feed (pg/G) 7.700
^Composite of HN03 module wash, condensate, and the H202 impinger.
^The second impinger containing ammonium persulfate (APS) and silver nitrate
and the third impinger containing APS.
10-73
-------
TABLE 10-75. ANION ANALYSIS
SASS TRAIN
DISTILLATE OIL RECIPROCATING ENGINE, SITE 312
(ppm)
Sample F~
,'Particulate (pg)
XAD-2 (pg)
Cl" NOs S04
15 , 000
104,000
Impingers
Composite* (pg) —
APS1" (pg)
Total catch (pg) 119,000
Fuel feed (pg/G) 4,500
Composite of HN03 module wash, condensate, and the H202 impinger.
The second impinger containing ammonium persulfate (APS) and silver nitrate
and the third impinger containing APS.
TABLE 10-76. ANION ANALYSIS
SASS TRAIN
DISTILLATE OIL RECIPROCATING ENGINE, SITE 313
(ppm)
Sample F~ Cl"
Part icul ate (pg)
XAD-2 (pg)
NOg so;
22,100
122,000
Impingers
Composite* (pg)
APS1" (pg)
Total catch (pg) 144,OCG
.Fuel feed (pg/G) 5 ooc
*Gomposite of HN03 module wash, condensate, and the H202 impinger.
The second impinger .containing ammonium persulfate (APS) and silver nitrate
and the third impinger containing APS.
10-74
-------
TABLE 10-77. ANION ANALYSIS
SASS TRAIN EMISSIONS
((jg/m3)
Site F Cl N0
110
111
112
306
307
308
309
310
311
312
313
890 3,800
10 4,900 29 2,000*
49 2,500 18 3,000*
910*
4,200*
400*
1,100*
2,300*
3,800*
4,000*
4,800*
*S04 values do not represent total sulfur in the SASS train.
10-75
-------
TABLE 10-78. ANION ANALYSIS
SASS TRAIN, GAS-FUELED GAS TURBINE, SITE 110
Sample
Parti cul ate
XAD-2 (ug)
Impingers
F"
*
Cl"
23,000
NOs S04
120
Composite1(ug) * 5,900
Total catch (ug) - 29,000 120,000
*There was no parti cul ate sample for site 110.
Composite of HN03 module wash, condensate, and the H202 im-
pinger.
The second impinger containing ammonium persulfate (APS) and
silver nitrate and the third impinger containing APS.
10-76
-------
TABLE 10-79. GAS CHROMATOGRAPHY ANALYSIS
Sample 110-PR-O-KD-l
(pg/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
106
153
67
25
23
<1
NO
NO
NO
ND
ND
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
TABLE 10-80. GAS CHROMATOGRAPHY ANALYSIS
Sample 110-XR-Wet-S-GC
(ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
t
t
377
357
ND
ND
ND
ND
ND
ND
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
t Peaks, if any, obscured on shoulder of solvent peak.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
10-77
-------
TABLE 10-81. GAS CHROMATOGRAPHY ANALYSIS
Sample 110-XR-Dry-S-GC
((jg/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
NO
1,049
NO
345
ND
NO
29
ND
ND
ND
No. of
peaks
ND = Not detectable (below 0.5 pg/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
TABLE 10-82. GAS CHROMATOGRAPHY ANALYSIS
Sample 110-XM-S-KD-l
(ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
377t
ND
ND
ND
ND
ND
ND
ND
ND
ND
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
t Response possibly caused by traces of methanol not removed during
K-D concentration.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
10-78
-------
TABLE 10-83. GAS CHROMATOGRAPHY ANALYSIS
Sample 111-XR-SKD
Reserve
(ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
32
61
57
912
ND
84
ND
ND
ND
ND
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
TABLE 10-84. GAS CHROMATOGRAPHY ANALYSIS
Sample 111-XM-S-KD
Reserve
(Mg/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
ND
37
80
15
ND
ND
ND .
ND
ND
ND
No. of
peaks
ND = Not detectable (below 0.5 Mg/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
10-79
-------
TABLE 10-85. GAS CHROMATOGRAPHY ANALYSIS
Sample 112-OR-O-KD-l
(pg/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
29
118
83
21
21
9
NO
ND
NO
ND
No. of
peaks
ND = Not detectable (below 0.5 vg/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrrected for blanks. Refer to Figure 10-1
for sample code identification.
TABLE 10-86. GAS CHROMATOGRAPHY ANALYSIS
Sample 112-XR-Wet-S-GC
(ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
ND
t
56
394
ND
113
56
ND
ND
244
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
t Peaks, if any, obscured on shoulder of solvent peak.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
10-80
-------
TABLE 10-87. GAS CHROMATOGRAPHY ANALYSIS
Sample 112-XR-Dry-S-GC
(ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
t
t
61
198
ND
30
ND
ND
46
213
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
t Peaks, if any, obscured on shoulder of solvent peak.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
TABLE 10-88. GAS CHROMATOGRAPHY ANALYSIS
Sample 306-PR
(ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
- 110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
ND
ND
ND
ND
ND
ND
23
ND
149
188
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
t Peaks, if any, obscured on shoulder of solvent peak.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
10-81
-------
TABLE 10-89. GAS CHROMATOGRAPHY ANALYSIS
Sample 306-XR
(ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
100
52
7
17
89
6
5
210
335
595
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
TABLE 10-90. GAS CHROMATOGRAPHY ANALYSIS
Sample 307-XR
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
82
27
5
14
12
15
ND
<1
1
8
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
10-82
-------
TABLE 10-91. GAS CHROMATOGRAPHY ANALYSIS
Sample 308-XR
(ug/p3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
ND
<1
ND
99
ND
25
12
11
38
71
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
TABLE 10-92. GAS CHROMATOGRAPHY ANALYSIS
Sample 309-MR .
(ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
24
<1
<1
<1
<1
2
6
14
38
150
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
10-83
-------
TABLE 10-93. GAS CHROMATOGRAPHY ANALYSIS
Sample 309-XR
(|jg/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
0
251
685
1,488
1,945
2,914
4,913
3,618
3,065
2,456
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
TABLE 10-94. GAS CHROMATOGRAPHY ANALYSIS
Sample 310-MR
(ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
7
<1
<1
<1
<1
21
129
164
462
611
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
10-84
-------
TABLF 10-95. GAS CHROMATOGRAPHY ANALYSIS
Sample 310-XR
(ug/m3)
Volatile No. of
Gas Range weight, ppm peaks
GC7* 90-110 207
GC8 110-140 323
GC9 140-160 611
GC10 160-180 1,486
GC11 180-200 2,200
GC12 200-220 2,426
GC13 3,639
GC14 3,554
GC15 3,508
GC16 3,006
GC17
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
TABLE 10-96. GAS CHROMATOGRAPHY ANALYSIS
Sample 310-PF
(ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
NO
5
22
29
92
65
59
92
222
129
No. of
peaks
ND = Not detectable (below 0.5 pg/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
10-85
-------
TABLE 10-97.
GAS CHROMATOGRAPHY ANALYSIS
Sample 311-MR
Gas
GC7*
GC8
GC9
GC1Q
GC11
GCl^
GC13'
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
ND
<1
<1
<1
<1
<1
45
38
396
523
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
^* Not usually included in TCO range, i.e., C8-C16.
Note: Data has been corrected for blanks. Refer to Figure 10-1
for sample code identification.
TABLE 10-98.
GAS CHROMATOGRAPHY ANALYSIS
Sample 311-XR
(ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
98
497
683
1,228
1,265
1,438
2,854
1,895
1,424
1,418
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data has been corrected for blanks.
for sample code identification.
Refer to Figure 10-:
10-86
-------
TABLE 10-99. GAS CHROMATOGRAPHY ANALYSIS
Sample 312-MR
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
386
ND
3
1
3
9
44
139
393
417
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
TABLE 10-100. GAS CHROMATOGRAPHY ANALYSIS
Sample 312-XR
(ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
110
239
534
1,652
2,100
2,614
3,895
2,250
1,956
1,621
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
10-87
-------
TABLE 10-101. GAS CHROMATOGRAPHY ANALYSIS
Sample 312-CDS
()jg/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
35
12
24
31
19
11
5
6
18
2
No. of
peaks
*
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-
for sample code identification.
TABLE 10-102. GAS CHROMATOGRAPHY ANALYSIS
Sample 312-PF
J.
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile No. of
weight, ppm peaKs
54
1
4
19
37
30
25
18
22
9
ND = Not detectable (below 0.5 ug/m3 detection limit)
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-
for sample code identification.
10-88
-------
TABLE 10-103. GAS CHROMATOGRAPHY ANALYSIS
Sample 313-MR
(ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
ND
ND
ND
ND
6
5
18
75
248
287
No. of
peaks
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample code identification.
TABLE 10-104. GAS CHROMATOGRAPHY ANALYSIS
Sample 313-XR
(ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC15
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
10
154
300
1,032
672
1,261
1,706
1,433
1,457
646
No. of
peaks
ND = Not'detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample identification.
10-89
-------
TABLE 10-105. GAS CHROMATOGRAPHY ANALYSIS
Sample 313-CDS
((jg/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
59
ND
1
2
3
1
1
1
14
2
No. of
peaks
ND = Not detectable (below 0.5 pg/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample identification.
TABLE 10-106. GAS CHROMATOGRAPHY ANALYSIS
Sample 313-PF
(ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
18
<1
<1
<1
<1
<1
18
<1
52
3
No. of
peaks
ND = Not 'detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note: Data have been corrected for blanks. Refer to Figure 10-1
for sample identification.
10-90
-------
TABLE 10-107. GAS CHROMATOGRAPHY ANALYSIS
GASEOUS GRAB SAMPLE
GAS TURBINE, SITE 110
Volatile No. of
Gas Range weight, ppm peaks
GC1 ND
GC2 ND
GC3 ND
GC4 ND
GC5 ND
GC6 ND
GC7 483
ND = Concentration of the species is below the limit of detection
of the instrument: 1 ppm (~1,000 pg/m3) per Cj-Ce and
0.001 ppm (-0.5 pg/m3) per C7-C16.
TABLE 10-108. GAS CHROMATOGRAPHY ANALYSIS
GASEOUS GRAB SAMPLE
DISTILLATE OIL TURBINE, SITE 111
Volatile No. of
Gas Range weight, ppm peaks
GC1 ND
GC2 ND
GC3 ND
GC4 ND
GC5 ND
GC6 ND
GC7 32
ND = Concentration of the species is below the limit of detection
of the instrument: 1 ppm (~1,000 fjg/m3) per C^CQ and
0.001 ppm (~0.5 ug/m3) per C7-C16.
10-91
-------
TABLE 10-109. GAS CHROMATOGRAPHY ANALYSIS
GASEOUS GRAB SAMPLE
DISTILLATE OIL TURBINE, SITE 112
Volatile No. of
Gas Range weight, ppm peaks
GC1 ND
GC2 NO
GC3 ND
GC4 ND
GC5 ND
GC6 ND
GC7 29
ND = Concentration of the species is below the limit of detection
of the instrument: 1 ppm (~1,000 M9/"i3) per Cj-Cg and
0.001 ppm (~0.5 pg/m3) per C7-C16.
TABLE 10-110. GAS CHROMATOGRAPHY ANALYSIS
GASEOUS GRAB SAMPLE
DISTILLATE OIL TURBINE, SITE 306
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
ND
67,620
ND
ND
ND
ND
100
No. of
peaks
ND = Concentration of the species is below the limit of detection
of the instrument: 1 ppm (~1,000 ug/m3) per Cj-Cg and
0.001 ppm (-0.5 HO/m3) per C7-C16.
10-92
-------
10-111. GAS CHROMATOGRAPHY ANALYSIS
GASEOUS GRAB SAMPLE
DISTILLATE OIL TURBINE, SITE 307
Volatile No. of
Gas Range Weight, ppm peaks
GC1 ND
GC2 15,130
GC3 ND
GC3 ND
GC4 ND
GC5 ND
GC6 ND
GC7 82
ND = Concentration of the species is below the limit of detection
of the instrument: I ppm (~1,000 ug/m3) per Ci-C6 and
0.001 ppm (-0.5 Mg/m3) per C7-C16.
TABLE 10-112. GAS CHROMATOGRAPHY ANALYSIS
GASEOUS GRAB SAMPLE
DISTILLATE OIL TURBINE, SITE 308
Volatile No. of
Gas Range weight, ppm peaks
GC1 ND
GC2 2,275
GC3 ND
GC4 ND
GC5 ND
GC6 ND
GC7 ND
ND = Concentration of the species is below the limit of detection
of the instrument: 1 ppm (-1,000 ug/m3) per C^Cg and
0.001 ppm (-0.5 ug/m3) per C7-C16.
10-93
-------
TABLE 10-113. GAS CHROMATOGRAPHY ANALYSIS
DISTILLATE OIL RECIPROCATING ENGINES,
GASEOUS GRAB SAMPLE
SITE 309
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
1,000
7,765
3,535
ND
ND
ND
24
No. of
peaKs
ND = Concentration of the species is below the limit of detection
of the instrument: 1 ppm (~1,000 jjg/m3) per Cj-C6 and
0.001 ppm (~0.5 M9/m3) per C7-C16.
TABLE 10-114. GAS CHROMATOGRAPHY ANALYSIS
DISTILLATE OIL RECIPROCATING ENGINES,
GASEOUS GRAB SAMPLE
SITE 309-2
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
500
700
700
ND
ND
ND
10
No. of
peaks
ND = Concentration of the species is below the limit of detection
of the instrument: 1 ppm (~1,000 M9/ro3) per C^Ce and
0.001 ppm (~0.5 ug/m3) per C7-C16.
10-94
-------
TABLE 10-115. GAS CHROMATOGRAPHY ANALYSIS
DISTILLATE OIL RECIPROCATING ENGINES,
GASEOUS GRAB SAMPLE
SITE 310
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
1,570
10,380
3,065
ND
ND
ND
214
No. of
peaks
ND = Concentration of the species is below the limit of detection
of the instrument: 1 ppm (~1,000 ug/m3) per Ci~C6 and
0.001 ppm (-0.5 pg/m3) per C7-C16.
TABLE 10-116. GAS CHROMATOGRAPHY ANALYSIS
DISTILLATE OIL RECIPROCATING ENGINES,
GASEOUS GRAB SAMPLE
SITE 311
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
2,570
5,970
1,140
ND
ND
ND
98
No. of
peaks
ND = Concentration of the species is below the limit of detection
of the instrument: 1 ppm (~1,000 ug/m3) per C^Ce and
0.001 ppm (~0.5 ug/m3) per C7-C16..
10-95
-------
TABLE 10-117. GAS CHROMATOGRAPHY ANALYSIS
DISTILLATE OIL RECIPROCATING ENGINES,
GASEOUS GRAB SAMPLE
SITE 312
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
3,285
17,540
705
NO
ND
ND
585
No. of
peaks
ND = Concentration of the species is below the limit of detection
of the instrument: 1 ppra (~1,000 |jg/m3) Per Cj-C
0.001 ppm (~0.5 pg/m3) per C7-C16.
TABLE 10-118. GAS CHROMATOGRAPHY ANALYSIS
DISTILLATE OIL RECIPROCATING ENGINES,
GASEOUS GRAB SAMPLE
SITE 312-2
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
800
1,900
ND
ND
ND
ND
90
No. cf
peaKs
ND = Concentration of the species is below the limit of detection
of the instrument: 1 ppm (~1,000 pg/m3) per C^Cg and
0.001 ppra (-0.5 ug/m3) per C7-C16.
10-96
-------
TABLE 10-119. GAS CHROMATOGRAPHY ANALYSIS
DISTILLATE OIL RECIPROCATING ENGINES,
GASEOUS GRAB SAMPLE
SITE 313
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
4,000
26,015
745
ND
ND
ND
87
No. of
peaks
ND = Concentration of the species is below the limit of detection
of the instrument: 1 ppm (-1,000 (jg/m3) per C^Cg and
0.001 ppm (-0.5 M9/m3) per C7-C16.
TABLE 10-120. GAS CHROMATOGRAPHY ANALYSIS
DISTILLATE OIL RECIPROCATING ENGINES,
GASEOUS GRAB SAMPLE
SITE 313-2
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
1,100
1,700
ND
ND
ND
ND
ND
No. of
peaks
ND = Concentration of the species is below the limit of detection
of the instrument: 1 ppm (-1,000 pg/m3) per C^Cg and
0.001 ppm (-0.5 ug/m3) per C7-C16.
10-97
-------
TABLE 10-121. GAS CHROMATOGRAPHY ANALYSIS
Cg-C16 VOLATILE ORGANICS
GAS TURBINE, SITE 110
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
1.202
444
727
23
ND
29
ND
ND
ND
310
No. of
peaks
ND = Concentration of the species is below the limit of detecticr
of the instrument: 0.001 ppm (~0.5 ug/m3) per C7-C16.
TABLE 10-122. GAS CHROMATOGRAPHY ANALYSIS
C8-C16 VOLATILE ORGANICS
DISTILLATE OIL TURBINE, SITE 111
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180 .
180-200
200-220
Volatile No. of
weight, ppm peaks
100
137
927
ND
84
ND
ND
ND
ND
6,800
ND = Concentration of the species is below the limit of detection
of the instrument: 0.001 ppm (~0.5 ug/m3) per C7-C16.
10-98
-------
TABLE 10-123. GAS CHROMATOGRAPHY ANALYSIS
C8-C16 VOLATILE ORGANICS
DISTILLATE OIL TURBINE, SITE 112
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
147
200
613
21
152
56
ND
46
457
3,710
No. of
peaks
ND = Concentration of the species is below the limit of detection
of the instrument: 0.001 ppm (-0.5 pg/m3) per C7-C16.
TABLE 10-124. GAS CHROMATOGRAPHY ANALYSIS
C8-C16 VOLATILE ORGANICS
DISTILLATE OIL TURBINE, SITE 306
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
52
7
17
89
6
28
210
484
783
440
No. of
peaks
ND = Concentration of the species is below the limit of detection
of the instrument: 0.001 ppm (~0.5 (jg/m3) per C7-C16.
10-99
-------
TABLE 10-125. GAS CHROMATOGRAPHY ANALYSIS
C8-C16 VOLATILE ORGANICS
DISTILLATE OIL TURBINE, SITE 307
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220
Volatile No. of
weight, ppm peaks
27
5
14
12
15
ND
ND
1
8
1,400
ND = Concentration of the species is below the limit of detection
of the instrument: 0.001 ppm (~0.5 pg/m3) per C7-C16.
TABLE 10-126. GAS CHROMATOGRAPHY ANALYSIS
C8-C16 VOLATILE ORGANICS
DISTILLATE OIL TURBINE, SITE 308
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220
Volatile No. of
weight, ppm peaK«
ND
ND
99
ND
25
12
11
38
71
1,270
ND = Concentration of the species is below the limit of detection
of the instrument: 0.001 ppm (-0.5 pg/m3) per C7-C16.
10-100
-------
TABLE 10-127. GAS CHROMATOGRAPHY ANALYSIS
C8-C16 VOLATILE ORGANICS
DISTILLATE OIL RECIPROCATING ENGINES, SITE 309
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
110-140
140-160
160-180
180-200
200-220
251
685
1,488
1,945
2,916
4,919
3,632
3,103
2,606
56,180
ND = Concentration of the species is below the limit of detection
of the instrument: 0.001 ppm (-0.5 |jg/m3) per C7-C16.
TABLE 10-128. GAS CHROMATOGRAPHY ANALYSIS
C8-C16 VOLATILE ORGANICS
DISTILLATE OIL RECIPROCATING ENGINES, SITE 309-2
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
370
850
2,410
2,890
3,230
3,000
3,580
2,760
2,290
55,380
No. of
peaks
ND = Concentration of the species is below the limit of detection
of the instrument: 0.001 ppm (~0.5 M9/m3) per C7-C16.
10-101
-------
TABLE 10-129. GAS CHROMATOGRAPHY ANALYSIS
C8-C16 VOLATILE ORGANICS
DISTILLATE OIL RECIPROCATING ENGINES, SITE 310
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220
Volatile No. cf
weight, ppm peaks
328
633
1,516
2,292
2,512
3,827
3,810
4,192
3,746
53,880
ND = Concentration of the species is below the limit of detecti-
of the instrument: 0.001 ppm (~0.5 MS/m3) per C7-C16.
TABLE 10-130. GAS CHROMATOGRAPHY ANALYSIS
C8-C16 VOLATILE ORGANICS
DISTILLATE OIL RECIPROCATING ENGINES, SITE 311
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220
Volatile Nc. cf
weight, ppm pe=K.:
497
683
1,228
1,265
1,438
2,899
1,933
1,810
1,941
43,040
ND = Concentration of the species is below the limit of datectii
of the instrument: 0.001 ppm (~0.5 ug/m3) per C7-C16.
10-102
-------
TABLE 10-131. GAS CHROMATOGRAPHY ANALYSIS
C8-C16 VOLATILE ORGANICS
DISTILLATE OIL RECIPROCATING ENGINES, SITE 312
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
251
565
1,704
2,159
2,663
3,970
2,413
2,389
2,149
63,590
No. of
peaks
ND = Concentration of the species is below the limit of detection
of the instrument: 0.001 ppm (~0.5 |jg/m3) per C7-C16.
TABLE 10-132. GAS CHROMATOGRAPHY ANALYSIS
C8-C16 VOLATILE ORGANICS
DISTILLATE OIL RECIPROCATING ENGINES,-SITE 312-2
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
400
1,100
1,800
2,120
2,450
2,330
2,200
2,250
1,680
55,040
No. of
peaks
10-103
-------
TABLE 10-133. GAS CHROMATDGRAPHY ANALYSIS
C8-C16 VOLATILE ORGANICS
DISTILLATE OIL RECIPROCATING ENGINES, SITE 313
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220
Volatile No. of
weight, ppm pta-^
154
301
1,034
682
1,267
1,742
1,509
1,771
937
46,680
NO = Concentration of the species is below the limit of detactlo'
of the instrument: 0.001 ppm (-0.5 mg/m3) per C7-C16.
TABLE 10-134. GAS CHROMATOGRAPHY ANALYSIS
C8-C16 VOLATILE ORGANICS
DISTILLATE OIL RECIPROCATING ENGINES, 313-2
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
560
1,290
2,120
2,580
3,120
2,810
3,100
3,010
2,350
66,340
No. of
peaks
ND = Concentration of the species is below the limit of detection
of the instrument: 0.001 ppm (~0.5 MQ/ro") per C7-C16.
1U-104
-------
The following samples had totals less than 75 M9/m3, so quantities in
each range were not reported.
Total C7-C16
111-PR-O-KD ND
111-PF-S-KD 2
112-XM-S-KD-l 29
306-PF 34
307-PR ND
307-PF 35
308-PR ND
308-MR *
308-CDS 19
308-PF ND
309-PR 30
309-CDS 8
309-PF 5
309-2 21
310-PR 30
310-CDS 3
311-PR 7
311-CDS 42
311-PF 40
312-PR 5
312-2 16
313-PR 36
313-2 21
ND = not detectable (below 0.5 pg/m3 detection limit).
*No value reported, so ND is assumed.
10-105
-------
TABLE 10-135
LC ANALYSIS RESULTS
309-2- XR+PF+MR+PR
TitttSwq*1
TakMtarLC2
Rmwrarf3
TCO
•1
GRAV
»l
TCO + GRAV
Train*
Concent rat 'on
Big/ (n»3, L, cr kj)5
51
Fraction
1
2
3
1-,, *-,-•
S
S
7
S»
F wad to
FnctkM
„- . .; -
TCO ill
Bta*
".: ; _:
•1
Cw-
IWtH
•y •"-: '
Tot.^
611
1.62
0.10
10.8
0.07
NO
NO
Fwntfin
fmm^tlmtt
rracnn
6RAV.
MMk
•1
Cur-
IVCtMl
T«-*
954
34.1
71.3
83.8
48
127
16.7
1335
1
TCO*
6RAV
Totting
Concentre UC.T
ing/
(m3,L, or kg13
3b . w
1.1?
2.33
2.7f
1.5"
4.17
0.55
j^ 1
1. QMMUy in wtira MBpli, WIHWMI Mnn LC
3. QjMrtity nuanA frmm LC otaw '
4. T>aln|CMipiMdb^itt total SMV
ND = Not detectable.
For sample code tdtntification refer to Figure 10-1.
10-106
-------
TABLE 10-136
LC ANALYSIS RESULTS
308 XR+MR
Tola! Simple1
Taken for LC2
Recovered
TCO
mg
GRAV
mg
TCO + GRAV
Total mg
Concentration
mg/ (m3,L,orkg)5
0.374"
Fraction
1
2
3
4
E
6
7
Sum
TCO in mg
Found in
Fraction
Blank
Cor-
rected
Total4
ND
ND
ND
.ND
ND
ND
ND
ND
GRAV in mg
Found in
Fraction
Blank
Cor-
rected
Total4
1.7
0.6
0.4
0.5
0.6
2.6
4.1
11.5*
TCO +
GRAV
Total mg
Co ncontratio n
mg/
-------
TABLE 10-137
LC ANALYSIS RESULTS
313-2-XR-PF-MR-PR
TCO
mg
GRAV
mg
TCO t GRAV
Total mg
Concentration
mg/
or
Total Sample
1
64.9
Taken for LC2
Recovered3
Frattion
1
2
3
4
5
6
7
Sum
TCO in mg
Found in
Fraction
Blank
Cor*
reeled
a
Tatar
190
4,4
0.53
ND
ND
1.4
ND
196
GRAV in mg
Found in
Fraction
Blank
Cor-
rected
A
Totor
1395
153
48.2
33.6
59.8
102
31.6
1823
TCO +
GRAV
Total rag
Concentration
mg/
(m3,L, or t(S)5
50.9
5.05
1.57
1.08
1.92
3.32
1.02
64.9
1. Quantity in entire sample, determined before LC
2. Portion of whole sample used for LC, actual mg
1 Quantity recovered from LC column, actual mg
4. Total mg computed back to total sample
5. Supply values for both sample size and concentration
ND = Not detectable.
NOTE: For sample code identification refer to Figure 10-1
10-108
-------
TABLE 10-138
LC ANALYSIS RESULTS
312^2-XR+PF+MR+PR
ml Sample1
ikenforLC2
ecovsred3
TCO
mg
GRAV
mg
TCO + GRAV
Total mg
Concentration
mg/ On3, L,orkg)5
51
Fraction
t
2
3
4
5
6
7
Sum
TCO in mg
round in
Fraction
Blank
Cor-
ractad
Total4
220
2.42
ND
0,57
ND
0.48
ND
223
GRAV in mg
Found in
Fraction
Blank
Cor-
rected
Total4
954
34.1
71.3
83.8
48
127
16.7
1335
TCO +
GRAV
Total mg
Concentration
mg/
(m3,L,orkg)5
38.4
1.19
2.33
2.76
1.57
4.17
0.55
51
1. Quantity in entire ample, determined bef ore LC
2. Portion of whole sample used for LC, actual mg
1 Quantity recovered from LC column, actual mg
4. Total mg computed back to total sample
5. Supply values for both sample size and concentration
^D = Not detectable,
IOTE: For sample code identification refer to Figure 10-1.
10-109
-------
TABLE 10-139
LC ANALYSIS RESULTS
306- XR+MR
Total Sample1
Taken for LC2
Recovered
TCO
m|
6RAV
m|
TCO + GRAV
Total mg
CoBcefttmtiM
m«/ Im3, t,«r
j.
Fraction
1
2
3
•..,',.',..•4 - ;.-.-.
s
6
7
Sum
TCO in mg
Found in
Fraction
Blank
Cor-
rected
Total4
*
*
*
*
*
*
*
-
GRAV in mg
Found in
Fraction
Blank
Cor-
rected
Total4
0.7
0.3
0.1
0.5
0.4
2.8
ND
4.8
TCO +
GRAV
Total mf
Conctntrtl
«./.
(*3.L,orl
-T-
4.
a.
4.
-i.
i
j.
j.
1. Quantity in entire sample, determined before LC
2. Portion of whole ample used for LC, actual mg
3. Quantity recovered from LC column, actual mg
4. Total mg computed back to total sample
5. Supply values for both sample size and concentration
ND = Not detectable.
* Data not required,
t Total not meaningful because of lack of TCO data.
NOTE: For sample code identification refer to Figure 10-1.
10-110
-------
TABLE 10-140
LC ANALYSIS RESULTS
307 XR+MR
Total Sample '
TakanforlC2
Recovered**
TCO
mg
GRAV
mg
TCO 1- GRAV
Tottl mg
Concentration
mg/ (m3, L, or kg)&
0.11
Fraction
1
2
3
4
5
6
7
Sum
TCO in m|
Found in
Friction
Blank
Cor-
rected
Total4
ND
ND
ND
ND
ND
ND
ND
ND
GRAV in mg
Found in
Friction
Blank
Cor-
rected
Total4
0.5
0.3
0.3
0.3
ND
1.1
0.9
3.4
TCO +
GRAV
Total mg
Concentration
mg/
(m3,L.orkg)5
0.016
0.0097
0.0097
0.0097
ND
0.036
0.029
0.11
1. Quantity in entire sample, determined before LC
2. Portion of whole ample used for LC, ictual mg
3. Quantity recovered from LC column, ictual mg
4. Total mg computed back to total sample
5. Supply values for both simple size and concentration
ND = Not detectable.
NOTE: For sample code identification refer to Figure 10-1.
10-111
-------
IR REPORT
SAMPLE- Distillate oil reciprocating enqines, site 309 i
Wm Number
(on'1)
"
Intensity
1
•
i
•
Asagnmtnt/Conimmts
LC
fraction
1 alkyl, aryl and CO-OX qrouos*:
carboxylic acid i
2 alkyl. carbonvl. and C-Q-X o>~ojr- *
3 alkyl, alkenyl, aryl , carbonvl, a-.:. :
C-O-X qrouos
4 alkyl and C-O-X qroups - all alien;: i
•— — J
5 alkyl, alkenyl, and C-O-X aroucs -
all aliphatic
6 alkyl, aryl, carbonyl , and C-C-- c
7 °llv alio^atif; species
8 ^pecies containinq alkyl and C-n-x
groups - all aliphatic :
-,
\
i
.-;
i
i
i
\
\
-i
\
<
OTHER REMARKS:
Note: Level 1 procedure now uses 7, rather than 8, LC fractions.
*X group in C-O-X linkage was not identified in any sanple.
10-112
-------
:
•
t
I
rKER REMARKS:
)
;
i
1
i
i
, :'T v- V -Jfc-r^,
^^^S^^-^^^ V^(^•
- -•' •"***
7 hydrocarbons, esters, ketones
8 *
Note: Level 1 procedure now uses 7y rather than 8, LC fractions.
^Insufficient material was found in this sample to justify further analysis.
10-113
-------
SAMPLE:
TABLE 10-143
IR REPORT
Distillate oil reciprocating engines, site 310
Wm Number
(em'1)
'
-
Intimity
i
Assignment/Comments
LC
fraction
1 only aliphatic groups i
2 only aliphatic groups '
3 only aliphatic groups ',
4 alkyl, aryl , and C-O-X groups*
- 5
5 alkyl, aryl, and C-O-X groups 1
6 alkyl, aryl, and C-O-X groups }
7 alkyl, aryl, and C-O-X groups \
8 alkyl, aryl, and C-O-X groups ;
i
OTHER REMARKS:
Note: Level 1 procedure now uses 7, rather than 8, LC fractions.
*X group in C-O-X linkage was not identified in any sample.
10-114
-------
TABLE 10-144
IR REPORT
Distillate oil reciprocating engines, site 312
Yav« Number ,
.1 Intensity
(cm ')
I
Assignment/Comments
LC
fraction
j 1 alky! and aryl groups
i
I
2 alkyl, aryl, and C-O-X groups*
3 alkyl, aryl, and C-O-X groups
4 only aliphatic groups
5 alkyl, alkenyl, aryl, and C-O-X groups
6 alkyl, alkenyl, aryl, and C-O-X groups
7 alkyl, aryl, and C-O-X groups
8 only aliphatic groups
-
'
REMARKS:
Note: Level 1 procedure now uses 7, rather than 8, LC fractions,
*X group in C-O-X linkage was not identified in any sample.
10-115
-------
TABLE 10-145
IR REPORT
Watt Number
(cm'1)
Intensity
;
Assignment/Comments .
LC I
fraction
1 alky! and aryl groups
2 alkyl, aryl, and C-O-X groups* ;
3 alkyl, aryl, and C-O-X groups i
4 alkyl, alkenyl, aryl, and C-O-X grc-.os \
5 alkyl, alkenyl, aryl, and C-O-X g>-: -; \
6 alkyl, alkenyl, aryl, carbony 1 , anc 1
C-O-X groups
7 alkyl, aryl, and C-O-X groups
8 alkyl, aryl, and C-O-X groups ;
T
~~\
,
.
OTHER REMARKS:
Note: Level 1 procedure now uses 7, rather than 8, LC fractions.
*X group in C-O-X linkage was not identified in any sample.
10-116
-------
TABLE 10-146
IR REPORT
Distillate oil reciprocating engines, site 312-2
umber
•1) i
Intensity
i
Assignment/Comments
LC
fraction
1 hydrocarbons
2 hydrocarbons, unsaturated or aryl
esters, ketones
3 hydrocarbons, unsaturated or aryl
esters
4 hydrocarbons, saturated ketones
5 unsaturated or aryl esters, ketones
6 esters, aldehydes, ketones
7 unsaturated or aryl esters, ketones
8 *
-
RKS:
e: Level 1 procedure now uses 7, rather than 8, LC fractions.
isufficient material was found in these samples to justify further
lalysis.
10-117
-------
SAMPLE:
TABLE 10-147
1R REPORT
Distillate oil reciprocating engines, site 313
Wavt Number
(cm'1)
•
Intensity
•
Assignment/Comments
LC
fraction
1 alkyl, aryl, and C-O-X groups*
2 only aliphatic groups
3 alkyl, alkenyl, aryl, carbonyl and
C-O-X groups
4 only saturated and unsaturated
aliphatic groups
5 only aliphatic groups
6 alkyl, alkenyl, aryl, and C-O-X groui .
7 alkyl and aryl groups ^
8 no data
i
OTHER REMARKS:
Note: Level 1 procedure now uses 7, rather than 8, LC fractions
*X group in C-O-X linkage was not identified in any sample.
10-118
-------
.£:
TABLE 10-148
IR REPORT
Distillate oil reciprocating engines, site 313-2
me Number
Sen.'1)
Intensity Assignment/Comments
LC
fraction
!
1 hydrocarbons
2 hydrocarbons, esters, ketones
3 hydrocarbons, esters, ketones
4 hydrocarbons
5 saturated ketones, aryl , or unsaturated
esters
6 esters, ketones
7 esters, ketones, amides, amines,
unsaturated or aryl ketones
8 *
i
I
REMARKS:
Note: Level 1 procedure now uses 7, rather than 8, LC fractions.
*Insufficient material was found in these samples to justify further analysis.
10-119
-------
SAMPLE:
TABLE 10-149
IR REPORT
Distillate oil-fueled gas turbine, site 110
Wive Number
(on'1)
;. ' ' -I- :
Intensity
Assignment/Comments
LC
Fraction
1 *
2 *
3 *
4 *
5 *
6 Esters: includes vinyl ester; aldehyde/kei; -e:
aromatic nitro compound; other organic nit rote
silica
7 Esters: includes vinyl ester; aldehyde/keto. e;
aromatic nitro compound; other organic nitrate
silica
8 Esters (trace): silica: water
Residue of original sample
Esters: includes benzoates, phtha Tales an:
vinyl ester; atuide; glycol; aldehyde;
chlorinated compound; other benzene
derivatives
OTHER REMARKS:
insufficient material was found in these samples to justify further analys
Note: Level 1 procedure now uses 7, rather.than 8, LC .fractions.
10-120
-------
TABLE 10-150
IR REPORT
IMPLE- Distillate oil-fueled gas turbine, site 111
Wavt Number |
(cm'1)
Intensity
Assignment/Comments
LC
Fraction
1 Aliphatic hydrocarbons
2 *
3 *
4 *
5 *
6 Esters: includes vinyl ester; aldehyde/ketone;
glycol; aromatic nitro compound; other organic
nitrate
7 Esters: includes vinyl ester; aldehyde/ketone;
glycol; aromatic nitro compound; other organic
nitrate
8 Ester (trace): silica; water _.
Residue of oriainal sample
Aliphatic hydrocarbons; esters: includes
benzoates phthalates and vinyl ester; amide;
glycol; aldehyde; chlorinated compound; other
benzene derivatives; inorganic sulfate
FHER REMARKS:
Insufficient material was found in these samples to justify further analysis.
ote: Level 1 procedure, now uses 7, rather than 8, LC fractions.
10-121
-------
IMDLt lU
1R REPORT
SAMPLE: Distillate oil-fueld gas turbine, site 112
Wave Number
(cm'1)
Intensity
Assignment/Comments
LC
Fraction
1 *
2 * !
3 *
4 *
5 *
6 * ;
7 * ;
8 *
Residue of original sample
Esters: includes benzoates and phthalates; [
i
glycol ; aldehyde; chlorinated compound;
other benzene derivatives
i
i
i
I
OTHER REMARKS:
^Insufficient material was found in these samples to justify further analysis,
Note: Level 1 procedure, now uses 79 rather than 8, LC fractions.
10-122
-------
TABLE 10-152
IR REPORT
Distillate oil-fueled gas turbines, site 306
Wave Number
(cm'1)
Intensity ;
I
|
I
Assignment/Comments
LC
Fraction
1 *
2 *
3 *
4 *
5 *
6 Alkyl, unsaturated aliphatics, aryl , carbonyl
and C-O-X groups^
7 *
8 *
HER REMARKS:
Insufficient material was found in these samples to justify further analysis.
K group in C-O-X linkages was not identified in any sample.
t>te: Level 1 procedure now uses 7, rather than 8, LC fractions.
10-123
-------
TABLE 10-153
!R REPORT
SAMPLE: Distillate oil-fueled gas turbines, site 307
Wwt Number
(em'1)
Intensity
Assignment/Comments
LC
Fraction
1 *
2 *
3 *
4 *
5 *
6 Alkyl and C-O-X groupst- all aliphatic
7 *
8 *
>
OTHER REMARKS:
insufficient material was found in these samples to justify further analysi
tX group in C-O-X linkages was not identified in any sample.
Note: Level 1 procedure now uses 7, rather than 8, LC fractions.
10-124
-------
TABLE 10-154
IR REPORT
MPLE- Distillate oil-fueled gas turbines, site 308
Wave Number
(cm'1)
Intensity
Assignment/Comments
lie
.
Fraction
1 Aliphatics
2 Alkyl, aryl and C-O-X groups1"
3 Alkyl, aryl and C-O-X groups
4 Alkyl, aryl, carbonyl and C-O-X groups
5 Alkyl, aryl, carbonyl and C-O-X groins
6 Alkyl, aryl, carbonyl, aliphatic C-O-X and
unsaturated aliphatic groups
7 Alkyl, aryl, unsaturated aliphatics, carbonyl
and C-O-X groups
8 Alkyl, and C-O-X groups - all aliphatic
:R REMARKS:
isufficient material was found in these samples to justify further analysis.
group in C-O-X linkages was not identified in any sample.
te: Level 1 procedure now uses 7, rather than 8, LC fractions.
10-125
-------
LRMS REPORT
SAMPLE: Diesel engine sites, sample no. 309-XM-LC1
(See Figure 10-1 for sample code identification.)
Major Categories
Intensity
NR
NR
NR
NR
Category
Hydrocarbon oil
Fatty acid esters
Dioctyl phthalate
MW Bangs
1 NR
| NR
(trace) ] NR
Di-tert-butyl phenol (possible) NR
Sub-Categories, Specific Compounds
intensity
Category
m/e
Composition
Other
NR = not reported
10-126
-------
HUB REPORT
Desel engine site, sample .10. 310-XM-LC1
See Figure 10-1 for sample code Identification.
fejtr Categories
Intensity
NR
NR
NR
NR
i NR
Category
Hydrocarbon oil
Aromatics
Dioctyl phthalate
Fatty acid esters
Anisole (possible)
MW Range
NR
NR
NR
NR
NR
SfcCittgoriet, Specific Compounds
Intensity
Category
m/e
Composition
not reported
10-127
-------
LRMS REPORT
SAMPLE: Diesel engine site, sample no. 310-XM-LC6
(See Figure 10-1 for sample code identification.)
Major Categories
Intensity
NR
NR
NR
Category
Hydrocarbon oil
Aroma tics
MW Rsn-
NR
* i "
Dioctyl phthalate 1 N:
\
Sub-Categories, Specific Compounds
Intensity
Category
m/e
Composition
Other
NR = not reported
10-128
-------
1MB REPORT
SAMPLE: __Ci_ese1 engine site, sample no. 310-XM-LC7
(See Figure 10-1 for sample code identification.)
Itojor Categories
Intensity
NR
Category
Hydrocarbon oil (trace)
NR ! Dioctyl phthalate (trace)
I
i
MW Range
NR
NR
Stb£»tegori«, Specific Compounds
Intensity
Category
m/e
Composition
Oft*
NR = not reported
10-129
-------
LRMS REPORT
SAMPLE:
engine site, sample no. 311-XM-LC1
(See Figure 10-1 for sample code identification.)
Major Categories
Intensity
NR
NR
NR
NR
Category
Hydrocarbon oil
Aromatics
Dioctyl phthalate
Di-tert-butyl phenol (possible)
MW Ranee
NR
NR
NR
^ 1
Sub-Categories, Specific Compounds
intensity
Category
m/e
Composition
Other
NR = not reported
10-130
-------
LRMS REPORT
; __ Diesel engine site, sample no. 311-XM-LC3
See Figure 10-1 for sample code identification.
Ibjor Categories
Intensity
* NR
1 NR
NR
NR
Category
Hydrocarbon oil
Aromatics
Dioctyl ohthalate
Fatty acid esters
MW Range 1
NR
NR
NR
NR
ies, Specific Compounds
Intensity
Category
m/e
Composition
not reported
10-131
-------
LRMS REPORT
SAMPLE; Diesel engine site, sample no. 311-XM-LC4
(See Figure 10-1 for sample code identification.)
Major Categories
Intensity
NR
NR
NR
Category
Hydrocarbon oil
Dioctyl phthalate
Nonyl phenol (possible)
MVV Range
N-
: \ r\
iYR
I
Sab-Categories. Specific Compounds
Intensity
Category
m/e
Composition
Other
NR = not reported
10-132
-------
IBB REPORT
MffLE: Diesel enoine sit.p, sample np. 3T?-*;M
See Figure 10-1 for sample code identification.)
fejBr Categories
Intensity
NR
NR
NR
Category
Hydrocarbon oil
Dioctvl ohthalate
Di-tert-butyl phenol (possible")
i
MW Range
MR
NR
NR
SWtttgories, Specific Compounds
intensity
Category
m/e
Composition
Ok*
HR = not reported
10-133
-------
LRMS REPORT
SAMPLE: Diesel engine site, sample nnr 312-XM-1C3
(See Figure 10-1 for sample code identification.)
Major Categories
Intensity
NR
NR
NR
Category
Hydrocarbon oil
Aroma tics
Dioctyl phthalate
MW Ranci
MR
NR
NR
!
Sub-Categories, Specific Compounds
Intensity
Category
m/e
Composition
Other
NR = not reported
10-134
-------
REPORT
: Diesel enoine site, sample no. 312-XM-LC4
See Figure 10-1 for sample code identification.
fejor Categories
Intensity
NR
Category
Hydrocarbon oil
NR JAromatics
NR
NR
Dioctyl phthalate
Trimethyl naphthalene (possible1)
MW Range
NR
NR
NR
NR
SMitegories, Specific Compounds
intensity
Category
m/e
Composition
- not reported
10-135
-------
LRMS REPORT
SAMPLE; Diesel engine site, samplp nn. 317-XM-LC6
(See Figure 10-1 for sample code identification.)
Major Categories
Intensity
NR
NR
NR
NR
Category
Hydrocarbon oil
Aromati cs
Dioctyl phthalate
MW Ranes
NR .,
NR .__,
NR
—
" •
Sub-Categories, Spedfie Compounds
Intensity
Category
m/e
Composition
Other
NR = not reported
10-136
-------
y« REPORT
Diesel engine site, sample no. 313-XM-LC1
See Figure 10-1 for sample code identification.)
fcjor Categories
totsnsity
i_ NR
Category
Hydrocarbon oil
NR ! Dioctyl phthalate
NR
Di-tert-butyl phenol (possible)
MW Range
NR
NR
NR
kbClttgortes, Specific Compounds
towns Ty
Category
m/e
Composition
- not reported
10-137
-------
LEVEL 2
10-138
-------
TABLE 32. LEVEL II CONTROLLED CONDENSATION TRAIN ANALYTICAL RESULTS
Samp! e
Number
309-2-GC
309-2-G1
309-2-GP/GF
312-2-GC
312-2-GI
312-2-GP/GF
313-2-GC
31 3-2 -G I
313-2-GP/GF
Sample Type ing/riP
Coil rinse NO
H?Q2 impinger *
Probe rinse and filter wash *
Coil rinse 1.38
H202 impinger *
Probe rinse and filter wash *
Coil rinse ^-36
H?0? impinger *
Probe rinse and filter wash * -
so2 so4
mg/m^ mg/rn^
* *
38.96 *
* 1.56
* *
88.64 *
* 1.58
* *
81 .20 *
* 1.74
HO indicates not detected
*The sulfur species indicated is not expected to be trapped in this part of
the sampling train. Samples collected are therefore not analyzed for the
specific sulfur species.
10-139
-------
TABLE D-16. LEVEL II ORGANIC ANALYSIS RESULTS -
COMPOUNDS FOUND IN SAMPLE 309-2-XRPF-MRPR
Compound
To! uene
Xyl ene
Xyl ene
Xyl ene
C3 Cyclohexane
n-Cg Hydrocarbon
(Nonane)
Benzaldehyde
C3 Benzene
C, Benzene
W
C0 Benzene
X
w
C10 Branched
1 (Hydrocarbon)
C3 Benzene
C,n Unsaturated
1U (Hydrocarbon)
n-C,n Hydrocarbon
10 (Decane)
C3 Benzene
Methyl Styrene
C,, Branched
1 (Hydrocarbon)
C., Branched
1 (Hydrocarbon)
Cr Cyclohexane
' C3 Benzene
C3 Benzene
C4 Bsnzene
Amount (ug/m )
*
14 f
56 f
30 f
54
38
48
24
110
100
46
320
78
220
86
20
16
34
12
96
100
140 f
- Continued -
Scan No.
5
45
50
65
69
78
111
118
127
136
154
169
179
199
209
226
233
240
247
267
274
282
Equal to or less than amount found in blank.
Corrected for blank concentration, amount actually present in
sample rather questionable due to blank level variations.
10-140
-------
TABLE D-16. (Continued)
Compound
C, Benzene
C^ Benzene
C* Benzene
Methyl Benzoate
C,, Branched
. (Hydrocarbon) .
C^ Benzene
n-C,, Hydrocarbon
11 (Undecane)
C, Unsaturated
(Benzene)
Cg Benzene
C, Benzene
Cg Benzene
Cg Benzene
C Benzene
6
Cg Benzene
Cg Benzene
Naphtha! ene
Cg Benzese
C,* Branched
(Hydrocarbon)
Cj2 Branched
(Hydrocarbon)
Cj, Branched
(Hydrocarbon)
Cg Benzene
C,. Unsaturated
Hydrocarbon
- _
Amount (yg/m )
18 1
310T
loot
*
110
260 f
780
86
110
30
410
100
20
52
8
170 f
84
54
280
140
84
240
- Continued -
Scan No.
296
322
341
344
346
394
440
480
™ww
492
147
522
542
554
570
584
596
610
623
639
657
682
711
Equal to or less than amount found In blank.
Corrected for blank concentration, amount actually present 1n
sample rather questionable due to blank level variations.
10-141
-------
TABLE D-16. (Continued)
Compound
n-C12 Hydrocacbon
(Dodecane)
Methyl Tetrahydronaphthalene
C13 Branched
• (Hydrocarbon)
C,3 Unsaturated
Hydrocarbon
C.3 Branched
• Hydrocarbon
Cg Benzene
Ce Benzene
o
Cg Benzene
C,3 Branched
Hydrocarbon
Methyl Naphthalene
C-3 Branched
Hydrocarbon
C13 Branched
Hydrocarbon
Methyl Naphthalene
Unknown Substituted
Cycl ohexane
Unknown
C,3 Unsaturated
Hydrocarbon
n-C,3 Hydrocarbon
(Tridecane)
C,4 Branched
Hydrocarbon
C3 Tetrahydronaphthalene
C,. Branched
Hydrocarbon
Amount (vg/m )
780
42
160
62
62
8
56
32
46
300
130
36
160
10
14
140
1000
12
28
68
• Continued -
Scan No.
752
763
789
798
807
817
825
852
891
906
918
932
939
957
964
973
1007
1024
1030
1041
10-142
-------
TABLE D-16. (Continued)
Compound
Unknown
Unknown
Cg Tetrahydronaphthalene
Unknown Substituted
Cyclohexane
Chloronaphthalene
Biphenyl
C™ Branched
Hydrocarbon
C,. Unsaturated
. Hydrocarbon
Cp Naphthalene
C.. Branched
Hydrocarbon
C-. Branched
Hydrocarbon
Cg Naphthalene
C,, Branched
Hydrocarbon
C« Naphthalene
C2 Naphthalene
n-C14 Hydrocarbon
(Tetradecane)
Unknown aromatic
Cg Naphthalene
Unknown Acid Ester
Clg Branched
Hydrocarbon
C2 Naphthalene
Unknown Aromatic
Amount (vg/m )
2
14
20
82
Internal Standard
Trace
74
18
10
36
130
290
120
24
130
980
100
20
32
40
32
32
- Continued
Scan No.
1047
'1052
1064
1075
1083
ir>S2
1113
1120
1126
1130
1142
1156
1171
1181
1186
1221
1229
1249
1260
1275
1291
1300
-
10-143
-------
TABLE D-16.
(Continued)
Compound Amount (vg/m )
C15 Branched
Hydrocarbon
C«5 Branched
Hydrocarbon
C15 Branched
Hydrocarbon
€3 Naphthalene
C3 Naphthalene
C3 Naphthalene
C3 Naphthalene
n-C,5 Hydrocarbon
(Pentadecane)
C3 Naphthalene
C, Naphthalene
Cj Naphthalene
C,g Unsaturated Hydrocarbon
•C. Naphthalene
C.g Unsaturated Hydrocarbon
Clg Unsaturated Hydrocarbon
C. Naphthalene
C,g Branched Hydrocarbon
C. Naphthalene
C^ Naphthalene
n-C,fi Hydrocarbon
10 (Hexadecans)
Cjy Unsaturated Hydrocarbon
C^ Naphthalene
n-C17 Branched Hydrocarbon
Methoxybiphenyl
C^ Naphthalene
180
84
310
120
40
52
110
-1000
38
130
140
68
120
40
70
82
96
40
110
990
90
78
58
48
32
- Continued
Scan No.
1318
1334
1347
1357
1363
1379
1394
1420
1432
1439
2457
1483
1502
1513
1525
1534
1545
1571
1586
1604
1615
1630
1645
1663
1682
-
10-144
-------
TABLE D-16. (Continued)
Compound Amount (yg/m ) Scan No.
C,, Branched Hydrocarbon
C., Branched Hydrocarbon
C.|j Branched Hydrocarbon
C,y Branched Hydrocarbon
Cg Naphthalene
Cg Naphthalene
Cg Naphthalene
n-C17 Hydrocarbon
A/ (Heptadecane)
C,g Branched Hydrocarbon
C» Biphenyl
Phenanthrene (or Isomer)
Unknown
C Naphthalene
Unknown Substituted
Cyclohexane
C,g Branched Hydrocarbon
C,g Branched Hydrocarbon
C.g Branched Hydrocarbon
Ethyl Fluorene (or Isomer)
n-C.g Hydrocarbon
(Octadecane)
C.- Unsaturated
Hydrocarbon
Methyl phenanthrene (or Isomer)
C,* Branched Hydrocarbon
B-C,g Hydrocarbon
1 (Nonadecane)
C-Q Branched Hydrocarbon
190
26
62
100
34
20
52
820
400
16
94
16
14
-76
46
48
56
24
650
170
86
66
490
42
1695
1709
1720
1735
1749
1763
1778
1806
1822
1837
1852
1867
1881
1901
1911
1930
1945
1955
2007
2028
•2088
2123
2192
2263
- Continued -
10-145
-------
TABLE D-16. (Continued)
Compound
Pyrene (or Isomer)
n-C9n Hydrocarbon
^u (Eicosane)
n"C21 Hydrocarbon
(Heneicosane)
n-Cjo Hydrocarbon
(Docosane)
Dioctylph thai ate
Amount (yg/m )
Trace
310
130
76
(a)
Scan No.
2301
2360
2524
2677
3080
*
Equal to or less than amount found in blank.
10-146
-------
TABLE D-17. LEVEL II ORGANIC ANALYSIS RESULTS -
COMPOUNDS FOUND IN SAMPLE #309-2-CD-LE
Compound
Benzene
1-C7 Hydrocarbon (Heptane)
Methyl Cyclohexane
Toluene
Unknown Unsat. Hydrocarbon
Si li cone
Naphthalene
Si li cone
n-C-j2 Hydrocarbon (Dodecane)
Methyl Naphthalene
Methyl Naphthalene
n~ci3 Hydrocarbon (Tridecane)
Chloronaphthalene
Si li cone
n-C,, Hydrocarbon (Tetradecane)
n-C,5 Hydrocarbon (Pentadecane)
Dichloronapnthalene
Trimethy 1 naphtha! ene
Sili cone
n-C,g Hydrocarbon (Hexadecane)
C,7 Branched Hydrocarbon
n-C,7 Hydrocarbon (Heptadecane)
C,g Branched Hydrocarbon
Sili cone
Amount (yg/m )
*
1
*
*
0 .5
1
0 .5
3
0 .2
0 .2
0 .2
0 .6
Internal Standard
15
2
2
I.S. Impurity
1
38
3
1
16
2
2
- Continued
Scan No.
20
32
44
68
395
5.7
841
894
944
1078
1115
1178
1278
1307
1418
1628
1649
1656
1683
1818
1911
1994
2012
2090
-
Equal to or less than amount found in blank.
10-147
-------
TABLE D-17. (Continued)
Compound Amount (pg/m )
n-C18 Hydrocarbon (Octadecane)
C,g Branched Hydrocarbon
Si li cone
n-C,9 Hydrocarbon (Nonadecane)
Dibutylphthalate
n-C0Q Hydrocarbon (Eicosane)
Sili cone
Sili cone
n-C21 Hydrocarbon (Heneicosane)
Sili cone
Sili cone
Sili cone
Dioctylphthalate
Sili cone
Sili cone
'Si li cone
4
1
10
2
1
1
5
6
0.5
6
5
6
3
11
9
19
Scan No.
2158
2MB
2261
2314
2337
2465
2486
2501
2610
2727
2935
3132
3154
3321
3400
3445
10-148
-------
TABLE D-18. LEVEL II ORGANIC ANALYSIS RESULTS -
COMPOUNDS FOUND IN SAMPLE #312-2-XRPF-MRPR
Compound
Benzene
Methyl cycl ohexane
Toluene
Xylene
Xyl ene
Xylene
Cycl ohexane
Cn Unsat. Hydrocarbon
n-Cg Hydrocarbon (.Nonane)
C3 Benzene
Cycl ohexane
Benzaldehyde
C,Q Branched Hydrocarbon
C,Q Branched Hydrocarbon
C3 Benzene
C3 Benzene
C3 Benzene
C,Q Branched Hydrocarbon
C,Q Branched Hydrocarbon
C3 Benzene
C,Q Unsat. Hydrocarbon
C.Q Unsat. Hydrocarbon
C^ Benzene
n-C,Q Hydrocarbon (Decane)
C. Benzene
Dihydroindene
Amount (pg/m )
*
*
*
24
54
26
26
24
66
18
26
12
38
4
80
42
44
30
32
120
62
60
18
250
22
15
- Continued
Scan No.
20
40
64
163
175
207
216
226
245
261
285
299
306
318
325
341
357
362
374
386
392
409
420
437
445
459
-
Equal to or less than amount found in blank.
10-149
-------
TABLE D-18. (Continued)
Compound • Amount (yg/m ) Scan No.
Unknown
C,, Branched Hydrocarbon
C,, Unsat. Hydrocarbon
C, Benzene
C. Benzene
C. Benzene
C^ Benzene
C,, Branched Hydrocarbon
Methyl Benzoate
C,, Unsat. Hydrocarbon
C,., Branched Hydrocarbon
C,, Branched Hydrocarbon
C,.j Branched Hydrocarbon
C,.j Unsat. Hydrocarbon
/n-C\i Hydrocarbon (Undecane)
Decahydronaphthalene, 2-Methyl
Cc Benzene
Cc Benzene
Cg Benzene
Cg Benzene
Naphthalene
C,- Branched Hydrocarbon
C,- Branched Hydrocarbon
C.J2 Branched Hydrocarbon
C]2 Branched Hydrocarbon
12
72
18
48 +
62 +
28 +
25 +
12.
*
80
no
160
"so
160
570
44
38
180
14
22
58 1
86
34
162
64
- Continued
467
484
495
506
515
521
534
542
547
557
560
570
581
616
647
671
681
702
716
734
752
761
769
781
792
-
Equal to or less than amount found in blank.
Corrected for blank concentration. Amount actually present
in sample rather questionable due to blank level variations
10-150
-------
TABLE D-18. (Continued)
Compound Amount (yg/m3)
CK Benzene
D
Cc Benzene
n"^12 Hydrocarbon (Dodecane)
Cg Benzene
Cg Benzene
C,£ Branched Hydrocarbon
Methyl Tetrahydronaphthalene
C-J3 Branched Hydrocarbon
Methyl naphthalene
Methyl naphthalene
n-C,2 Hydrocarbon (Tridecane)
36
no
400
10
12
114
96
62
330
240
470
Chloronaphthalene Internal Standard
C« Unsat. Naphthalene
C« Naphthalene
Cp Naphthalene
cl Naphthalene
Cg Naphthalene
n-c,4 Hydrocarbon (Tetradecane)
C« Naphthalene
C« Naphthalene
C, Unsat. Naphthalene
C,g Unsat. Hydrocarbon
.n-C,5 Hydrocarbon (Pentadecane)
C, Naphthalene
C, Naphthalene
t,g Branched Hydrocarbon
C3 Naphthalene
20
22
130
82
350
440
140
54
78
170
490
44
72
60
72
- Continued
Scan No.
810
831
859
870
881
888
939
970
989
1015
1071
1152
1158
1190
1219
1227
1247
1274
1279
1305
1366
1392
1459
1484
1544
1560
1575
-
10-151
-------
TABLE D-18. (Continued)
Compound Amount (yg/m )
Cjg Branched Hydrocarbon
n-C-ic Hydrocarbon (Hexadecane)
C,7 Branched Hydrocarbon
C,^ Branched Hydrocarbon
n-C-,7 Hydrocarbon (Heptadecane)
C,, Unsat. Hydrocarbon
Phenanthrene (or isomer)
Phenanthrene (or Isomer)
n-C,0 Hydrocarbon (Octadecane)
to
C,g Branched Hydrocarbon
Methyl phenanthrene (or isomer)
n-C,g Hydrocarbon (Nonadecane)
n-C2Q Hydrocarbon (Eicosane)
n-C2i Hydrocarbon (Heneicosane)
Dfoctylphthalate
120
350
48
190
260
200
28
10
220
100
22
200
100
66
421-
Scan No.
1619
1634
1663
1723
1809
1825
1862
1867
1973
1993
2062
2135
2288
2435
2948
10-152
-------
TABLE D-20.
LEVEL II ORGANIC ANALYSIS RESULTS -
COMPOUNDS FOUND IN SAMPLE #313-2-XRPF-MRPR
Compound Amount (vg/m ) Scan No.
Benzene
Methylcyclohexane
Toluene
CQ Unsat. Hydrocarbon
G£ Benzene
C« Benzene
Cq Branched Hydrocarbon
Cg Benzene
C3 Cyclohexane
Cg Unsat. Hydrocarbon
n-Cg Hydrocarbon (Nonane)
C« Benzene
C. Cyclohexane
C,Q Branched Hydrocarbon
C,Q Branched Hydrocarbon
C3 Benzene
C, Benzene
C,g Unsat. Hydrocarbon
C- Benzene
C,Q Unsat. Hydrocarbon
C, Benzene
n-C,Q Hydrocarbon (Decane)
C3 Benzene
C. Benzene
C,, Branched Hydrocarbon
C,.j Unsat. Hydrocarbon
*
*
*
16
38
no
12
56
62
64
170
38
48
240
200
76
66
44
320
150
34
250
30
40
140
40
23
43
69
100
172
18^
198
215
224
234
253
271
294
315
339
351
370
387
399
423
435
450
454
458
499
510
- Continued -
Equal to or less than amount found in blank.
10-153
-------
TABLE D-19. LEVEL II ORGANIC ANALYSIS RESULTS -
COMPOUNDS FOUND IN SAMPLE 312-2-CD-LE
Compound
Benzene
Methyl Cyclohexane
To! uene
Chi oronaphthal ene
n-C.. Hydrocarbon
(Tetradecane)
n-C15 Hydrocarbon
(Pentadecane)
n-C,K Hydrocarbon
At> (Hexadecane)
C,y Branched Hydrocarbon
n"^17 Hydrocarbon
(Heptadecane)
Cjg Branched Hydrocarbon
n-C1ft Hydrocarbon
10 (Octadecane)
Cjg Branched Hydrocarbon
B-CJQ Hydrocarbon
(Monadecane)
n-C2n Hydrocarbon
(Elcosane)
n-C2, Hydrocarbon
(Heneicosane)
n-Cp2 Hydrocarbon
(Docosane)
Dioctylphthalate
2
Amount (vg/m )
*
*
*
Internal Standard
1
2
4
1
6
2
6
2
4
-
2
2
Trace
6
Scan No.
23
42
58
111
1247
1451
1636
1731
1811
1828
1977
1997
2133
2288
2438
2582
2983
Equal to or less than amount found 1n blank.
Trace - Detected but too low to quantltate (0.05 - 1.0 vg/m3).
10-154
-------
TABLE D-20. (Continued)
Compound Amount (yg/m^) Scan No.
C. Benzene
C. Benzene
C. Benzene
C. Benzene
Methyl benzoate
C. Benzene
C. Benzene
C,, Unsat. Hydrocarbon
C,, Branched Hydrocarbon
C,, Unsat. Hydrocarbon
n-C|-j Hydrocarbon (Undecane)
C.J2 Branched Hydrocarbon
Cg Benzene
Cg Benzene
Cg Benzene
Naphthalene
C|2 Unsat. Hydrocarbon
C2 Indene
k Indene
C*2 Unsat. Hydrocarbon
12 Hydrocarbon (Dodecane)
kg Unsat. Hydrocarbon
C,. Branched Hydrocarbon
Unknown Substituted Cyclohexane
Tetrahydromethyl Naphthalene
'C,, Branched Hydrocarbon
78*
12G*
40*
34*
*
lot
190
290
120
630
950
140
22
42
68
220 *
66
150
66
340
680
200
66
80
150
120
522
531
538
552
556
559
578
589
601
638
668
704
725
736
766
778
793
803
814
853
881
910
925
940
955
991
- Continued -
*
Equal to or less than amount found in blank.
Corrected for blank concentration. Amount actually present
In sample rather questionable due to blank level variations.
10-155
-------
TABLE D-20. (Continued)
Compound Amount (vg/m ) Scan No,
Methylnaphthalene 450 1011
C13 Unsat. Hydrocarbon 120 1027
C.jg Unsat. Hydrocarbon 328 1036
Methylnaphthalene 140 1042
C.j3 Unsat. Hydrocarbon 48 1061
C,, Tetrahydronaphthalene 82 1072
n-C.j3 Hydrocarbon (Tridecane) 810 1088
Chloronaphthalene Internal Standard 1170
Blphenyl 36 1174
C.J4 Branched Hydrocarbon 130 1190
C2 Naphthalene 150 1207
Cj4 Branched Hydrocarbon 160 1216
C2 Naphthalene 210 1234
C,^ Branched Hydrocarbon 150 1246
C2 Naphthalene 560 1263
n-C-j4 Hydrocarbon (Tetradecane) 840 • 1291
C2 Naphthalene 20 1298
Unknown 76 1307
C2 Naphthalene 150 1322
C-jg Branched Hydrocarbon 54 1353
C,g Branched Hydrocarbon 140 1366
Methyl Biphenyl 120 1383
Methyl Biphenyl 30 1399
C,g Branched Hydrocarbon 350 1411
C3 Naphthalene 180 1424
C3 Naphthalene 150 1468
j 5 Hydrocarbon (Pentadecane) 1000 1483
- Continued -
10-156
-------
TABLE D-20. (Continued)
Compound Amount (ug/m )
C3 Naphthalene
C3 Naphthalene
C, Naphthalene
C,, Branched Hydrocarbon
^Methyl Biphenyl
Unknown
Alky! Subst. Cyclopentanedione
n-C,g Hydrocarbon (Hexadecane)
C. Naphthalene
C-J7 Hydrocarbon Branched
£.7 Hydrocarbon Branched
0,7 Unsat. Hydrocarbon
n-C^7 Hydrocarbon (Heptadecane)
C,« Unsat. Hydrocarbon
1 Phenanthrene (or Isomer)
n-C,g Hydrocarbon (Octadecane)
C,g Branched Hydrocarbon
Methyl phenanthrene (or isomer)
n-C-iQ Hydrocarbon (Nonadecane)
n-C20 Hydrocarbon (Eicosane)
Pyrene (or isomer)
n-Cj-j Hydrocarbon (Heneicosane)
n-C22 Hydrocarbon (Doeicosane)
Dioctylphthalate
130
120
92
140
130
100
160
690
28
410
98
100
540
500
92
580
260
Trace
490
360
Trace
210
no
12001-
Scan No.
1512
1533
1571
1586
1600
1630
1645
1665
1746
1758
1775
1821
1834
1855
1893
2009
2028
2088
2169
2321
2410
2470
2616
3013
^Corrected for blank concentration. Amount actually present
1n sample rather questionable due to blank level variations.
Irace - Detected but too low to quantitate (0.05 - 1.0 yg/m ).
10-157
-------
TABLE D-21. LEVEL II ORGANIC ANALYSIS RESULTS -
COMPOUNDS FOUND IN SAMPLE 313-2-CD-LE
Compound Amount
Benzene
Methyl cycl ohexane
Tol uene
Chi oronaphthal ene Internal
C 14 Branched Hydrocarbon
n-c . . Hydrocarbon
(Tetradecane)
n-C 15 Hydrocarbon
(Pentadecane)
n-C .g Hydrocarbon
(Hexadecane)
C ,j Branched Hydrocarbon
n-C 17 Hydrocarbon
(Heptadecane)
n-C ,g Hydrocarbon
(Octadecane)
((v9/m3)
*
*
*
Standard
2
2
2
2
2
1
2
Dioctylphthalate 22
Scan No.
27
45
92
1259
1541
1582
1765
1938
1957
2107
2270
3188
Equal to or less than amount found in blank.
10-158
-------
ADDITIONAL DATA
10-159
-------
o
en
o
TABLE 1. SUMMARY OF RESULTS OF EMISSIONS ASSESSMENT
FOR GAS-FUELED INTERNAL COMBUSTION SOURCES
Gas-Fueled Gas Turbines
Pollutant
N0x
Total hydrocarbons
CO
Partlculate
sov
Elec.
Emission
Factor
(ng/J)
168
23.2
64.8
5.1
0.26
Gen.
Severity
Factor
0.17
0.020
0.0003
0.0019
<0.0001
Industrial
Emission
Factor
(ng/J)
130
8.6
48.8
5.1
0.26
Severl ty
Factor
0.52
0.025
0.0007
0.0062
<0.0001
Gas Reciprocating Engines
Elec.
Emission
Factor
(ng/J)
1549
528
340
5.7
0.26
Gen.
Severity
Factor
7.1
1.7
0.0051
0.0068
0.0002
Industrial
Emission
Factor
(ng/J)
1549
528
340
5.7
0.26
Severity
Factor
5.7
1.3
0.0040
0.0055
0.0002
-------
TABLE 2. SUMMARY OF RESULTS OF EMISSIONS ASSESSMENT
FOR OIL-FUELED INTERNAL COMBUSTION SOURCES
o
i
en
Distillate Oil-Fueled Gas Turbines
Pollutant
NOX
Total hydrocarbons
CO
Partlculate
S0x
so3
Trace Elements
Copper
Nickel
Phosphorus
Elec.
Emission
Factor
(ng/J)
311
17.5
43.8
13.0
33.1
1.5
0.58
0.53
0.13
Gen.
Severity
Factor
0.32
0.015
0.0002
0.0049
0.0089
0.056
0.085
0.16
0.037
Industrial
Emission
Factor
(ng/J)
207
3.6
101
13.0
33.1
1.5
0.58
0.53
0.13
Severity
Factor
0.83
0.010
0.0014
0.016
0.029
0.18
0.28
0.51
0.12
Distillate 011 Reciprocating
Elec.
Emission
Factor
(ng/J)
1392
52
266
14.1
101
1.8
0.45
0.56
0.097
Gen.
Severity
Factor
6.4
0.16
0.0040
0.019
0.097
0.23
0.23
0.60
0.10
Engines
Industrial
Emission
Factor
(ng/J)
1392
52
266
14,1
101
1.8
0.45
0.56
0.097
Severity
Factor
5.1
0.13
0.0032
0.015
0.077
0.18
0.20
0.48
0.082
-------
TABLE 23. CHARACTERISTICS OF INTERNAL COMBUSTION SITES TESTED
o
en
Combustion
Source Type
Gas Turbine
Distillate 011
Turbine
Distillate Oil
Reciprocating
Engine
Site
No.
(CllO
#111
#112
#306
#307
#308
#309
#310
#311
#312
#313
*
Engine Model
TPM
TPM
TPM
TPM
TPM
TPM
EMD
EMD
EMO
EMD
EMD
FT 4A-11DF
FT 4A-11DF
GG 4C-1D-DF
FT 4A-8LF
FT 4A-8LF
FT 4A-11LF
64-5E4
64-5E4
64-5E4
654
654
Rated Capacity
Base Load Peak Load
20.6
20.6
28
14.5
14.5
20.2
2.5
2.5
2.5
2.5
2.5
MM
MW
MW
MW
HW
MW
MW
MU
MM
MW
MW
22.6
22.6
30
22
22
26
2.75
2.75
2.75
2.75
2.75
MW
MW
MW
MW
MW
MW
MU
MW
MW
MW
MW
5
5
4
8
8
5
8
8
8
1
1
Age
Years
Years
Years
Years
Years
Years
Years
Years
Years
Year
Year
Pollution Control
Device
None
CI-2 Fuel Addi
None
tlve
CI-2 Fuel Additive
CI-2 Fuel Add1
None
None
None
None
None
None
tive
TPM - Turbo Cower and Marine Systems
EMD - Electromotive Division of General Motors
-------
TVAB1.B 2B*:
o
I
en
OJ
Combustion
Source Type
Gas Turbine
Distillate Oil
Turbine
Distillate Oil
Reciprocating
Engine
Site
No.
#110
#111
#112
#306
#307
#308
#309
#310
#311
#312
#313
#309-2
#312-2
#313-2
Operating
Load
19.5 MW
18.0 MW
22.5 MW
14.5 MW
14.5 MW
20.2 MW
2.5 MW
2.5 MW
2.5 MW
2.5 MW
2.5 MW
2.5 MW
2.5 MW
2.5 MW
% Base
Load
94. 7%
87.4%
80.4%
100 %
100 %
100 %
100 %
100 %
100 %
100 %
100 %
100 %
100 %
100 %
Fuel Used
Natural Gas
JP-5
JP-5
JP-5
JP-5
JP-5
No. 2 Diesel
No. 2 Diesel
No. 2 Diesel
No. 2 Diesel
No. 2 Diesel
No. 2 Diesel
No. 2 Diesel
No. 2 Diesel
Fuel Rate
7,100 Nm3/hr
7.50 m3/hr
8.18 m3/hr
5.49 m3/hr
5.49 m3/hr
7.77 m3/hr
0.70 m3/hr
0.70 m3/hr
0.70 m3/hr
1.02 m3/hr
1.02 m3/hr
0.70 m3/hr
1.02 m3/hr
1.02 m3/hr
Energy
Input
294 GJ/hr
278 GJ/hr
303 GJ/hr
204 GJ/hr
204 GJ/hr
288 GJ/hr
26.2 GJ/hr
26.2 GJ/hr
26.2 GJ/hr
39.9 GJ/hr
39.9 GJ/hr
26.2 GJ/hr
39.9 GH/hr
39.9 GJ/hr
-------
TABLE 31. SUMMARY OF RESULTS FROM SPECIFIC INORGANIC ANALYSES
Combustion Site -
Source Type No.
Mass Emissions (mg/m3)
Hg As
Sb S04* Cl F N03*
Gas Turbine
110
0.0091 <0.0014 <0.0016
0.89
Distillate Oil 111
Turbine
112
306
307
308
0.00018 <0.0056 <0.0046 - 4.9 0.010 0.029
0.0014 <0.0033 0.013 0.23 2.5 0.049 0.018
<0.00074 <0.00009 0.0017 0.035 -
0.0016 <0.00011 0.0019 0.018 -
<0.00033 <0.00019 <0.00016 0.068 -
Distillate Oil 309
Reciprocating
Engine 310
311
312
313
0.00016 <0.00012 <0.00020 0.74
0.00077 <0.00017 <0.0019 0.74
<0.00091 <0.00020 <0.00024 0.98
0.00003 <0.00011 <0.00030 0.50
<0.0011 <0.00011 <0.00019 0.74
Values are from particulate samples only.
NOTE: This table is a summary of Tables D-l, D-3, D-4, and D-10
from the document.
10-164
-------
TAOUE a*. ,
. ««AV.*.WW.TI**« „ .«f_?.M*.T^ rO«t INTERNAL COMBUSTION SITES
O
I
Ol
01
Sample
Identification
Number
110-XR-Wet-S-KD-2
110-XR-Dry-S-KD-2
110-PR-0-KD-2
110-XM-S-KD-2
111-XR-S-KD-2
lll-PR-O-KD-2
lll-XM-S-KD-2
lll-PF-S-KD-2
112-XR-Wet-S-KD-2
112-XR-Dry-S-KD-2
112-PR-0-KD-2
112-XM-S-KD-2
306-PR
306-MR
306-XR
306-PF
306-CDSa
Residue
Weight
11.
9.
0.
0.
38.
4.
0.
1.
19.
15.
0.
1.
0.
0.
3.
0.
7
9
4
6
7
3
6
0
4
3
4
0
5
6
8
1
Aliquot
Factor
x
x
x
x
x
x
x
x
X
X
X
X
0.2 x 0.
0.2 x 0.
0.2 x 0.
0.2 x 0.
10
10
10
10
10
10
10
10
10
10
10
10
75
75
95
49 x 0.75
Total
Weight
(mg)
117.
98.
3.
6.
386.
43.
6.
9.
194.
152.
3.
10.
3.
4.
20.
1.
2.
8 /
7
5
7
3
4
8
o
v
6 /
7
0
33
00
00
36
Blank
Corrected
Weight
3
6
147
42
6
8
107
3
9
1
1
12
0
0
.4
.0
.9
.8
.0
.6
.8
.4
.7
.11
.78
.8
.30
Net Sample
Nonvolatile
Content
(mg/ni3)
0
0.
0.
4.
1.
0.
0.
3.
0.
0.
0.
0.
0.
0.
1
2
9
4
2
3
3
1
3
03
05
35
01
}Not analyzed because of small condensate volume.
(Continued)
-------
TABLE 35. (CONTINUED)
o
o>
.•..•••....,1 .....-" ••."•" ;" ,|,' ',', "•—_•- 'r • "— •
Sample
Identification
Number
307-PR
307-MR
307-XR
307-PF
307- CDS
308- PR
308-MR
308- XR
308-PF
308- CDS
309-PR
309-MR
309- XR
309-PF
309-CDS
310-PR
310-MR
310-XR
310-PF
3 10- CDS
Residue
Weight
0.5
0.7
8.2
0.1
0.5
0.7
1.0
5.5
0.1
0.5
0.7
74.6
208.2
0.0
1.5
0.7
77.3
199.?
1.1
1.0
Aliquot
Factor
0.2 x 0.75
0.2 x 0.75
0.2 x 0.95
0.2 x 0.50
0.2 x 0.75 x 0.67
0.2 x 0.75
0.2 x 0.75
0.2 x 0.95
0.2 x 0.51
0.2 x 0.75 x j°r|
0.2 x 0.75
0.2 x 0.75
0.2 x 0.95
0.2 x 0.47 x 0.75
0.2 x 0.75 x 2%~
0.2 x 0.75
0.2 x 0.75
0.2 x 0.9!i
0.? x 0.53
0.2 x 0.75 x i™
t. --'.'•
Total
Weight
(ing)
3.33
4.67
43.16
1.00
4.98
4.66
6.67
28.95
0.01
5.93
4.67
497.33
1,095.79
0.00
17.20
8.67
515.33
1,048.42
10.38
12.91
Blank
Corrected
Weight
(nig)
0
0
43.16
0
0
4.66
6.67
21.99
0.01
5.93
4.67
497.33
1,080.19
0.00
17.20
1.89
505.61
1,004.72
6.78
4 53
Net Sample
Nonvolatile
Content
(mg/m3)
0
0
1.40
0
0
0.15
0.22
0.71
0
0.19
0.16
17.47
37.95
0.00
0.60
0.07
1 7 . 88
35.52
0.25
0.16
(Con 1 in lied)
-------
TABLE 3S.. < CONTINUED)
Sample
Identification
Number
311-PR
311-MR
311-XR
311-PF
311-CDS
312-PR
312-MR
? 312-XR
5 312-PF
312-CDS
313-PR
313-MR
313-XR
.313-PF
313-CDS
Residue
Weight
(mg)
2.9
72.2
125.8
10.2
2.1
1.0
131.6
196.5
0.6
2.3
2.0
49.7
78.6
0.6
4.1
Aliquot
Factor
0.2 x 1.00
0.2 x 0.75
0.2 x 0.95
0.2 x 0.50
0.2 x 1.0 x 0.5085
0.2 x 0.75
0.2 x 0.75
0.2 x 0.95
0.2 x 1.0 x 0.5028
0.2 x 0.75 x ^|
0.2 x 0.75
0.2 x 0.25
0.2 x 0.95
0.2 x 1.0 x 0.4471
0.2 x 0.75 x 0.6947
Total
Weight
(mg)
14.50
481.33
662.11
102.00
20.65
6.67
877.33
1,034.21
5.97
20.78
13.33
994.00
413.68
6.71
39.35
Blank
Corrected
Weight
(n»g)
11.32
477.77
634.84
100.2
18.65
3.73
873.12
1,007.57
4.17
15.04
1.69
991.00
392.89
1.25
17.33
Net Sample
Nonvolatile
Content
(mg/m3)
0.39
16.56
21.98
3.47
0.64
0.12
29.17
33.66
0.14
0.50
0.06
32.94
13.06
0.04
0.58
-------
TABLE 41. POM EMISSIONS FROM DIESEL ENGINE SITES 309-313* (yg/m3)
Compound
Naphthalene
Methyl naphthalenes
(^-substituted naphthalenes
(^-substituted naphthalenes
(^-substituted naphthalenes
Cg-substituted naphthalenes
Biphenyl
Methyl bipheny Is
C.-substituted biphenyls
Dibenzothiophene
Methyl di benzothi ophenes
Phenanthrene
Methyl phenanthrenes
Dimethyl phenanthrenes
Trinethyl phencenthrenes
Ethyl fluorene
Pyrene
Detection limit, Wg/m3
309
16
BL
30
8
BL
BL
2
BL
BL
5
BL
8
20
4
BL
BL
BL
0.08
309-2
170
461
506
631
462
120
T+
BL
BL
BL
BL
94
86
BL
BL
24
T
0.05
310
18
22
12
4
BL
BL
6
BL
BL
2
0.8
3
8
0.8
2
BL
BL
0.08
311
36
BL
64
BL
8L
BL
10
BL
BL
BL
BL
BL
60
24
BL
BL
BL
0.08
312
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
77
46
12
BL
BL
0.08
312-2
58
570
798
266
BL
BL
BL
BL
BL
BL
BL
38
22
BL
BL
BL
BL
0.05
313 3; 3-2
3 22?
BL 590
BL 1 090
BL 672
BL 28
BL EL
15 3~
BL 150
BL £L
BL BL
BL BL
BL 9:
150 T
58 tL
15 BL
BL BL
BL T
0.1 0.05
POMs were found only in XAD-2/XAD-2 module rinse samples
T indicates trace, 0.5-1.0 pg/m
NOTE: This table is a summary of Tables D-16 through D-21
from the document.
10-168
-------
TABLE 42. SUMMARY OF EMISSION FACTOR DATA FOR PARTICULAR, SOX AND
TOTAL ORGANICS FROM INTERNAL COMBUSTION SOURCES TESTED
Combustion
Source Type
Gas-Fueled
Gas Turbine
Distillate
Oil-Fueled
Gas Turbine
Kstillate Oil
Reciprocating
Engine
Site
No.
mo
#111
#112
#306
#307
#308
Mean x
s(x)
ts(x)/x
#309
#310
#311
#312
#313
#309-2
#312-2
#313-2
Mean x
s(x)
ts(x)/x
Emission
Particulate
ND
21.4
4.2
2.1
2.6
4.9
7.0
3.6
1.4298
11.0
20.8
33.0
6.6
10.0
10.8
8.8
11.5
14.1
3.1
0.5176
Factor, ng/J
S0x
ND
28.5
30.6
<4.2
<4.2
<4.2
14.3
6.2
1.2038
83.1
153.1
153.1
61.2
74.3
83.3
106.3
97.0
101.4
12.2
0.2856
Total
Organics
11.1
27.9
9.0
57.8
2.8
7.5
21.0
10.2
1.3425
47.7
65.9
74.1
54.6
54.4
- 58.2
45.8
54.4
56.9
3.3
0.1366
Not determined
Standard deviation of the mean
Variability
10-169
-------
TABLE 43. COMPARISON OF CRITERIA POLLUTANT EMISSIONS FACTORS FOR
GAS AND DISTILLATE OIL-FUELED GAS TURBINES
Combustion
Source Type
Industrial
Gas -Fueled
Gas Turbines
Industrial
Distillate
Oil -Fueled
Gas Turbines
Electricity
Generation
Gas-Fueled
Gas Turbines
Electricity
Generation
Distillate
Oil -Fueled
Gas Turbines
Emission Factor, ng/J
Data Source
Existing Data
EPA
Existing Data
EPA
Current Study
Existing Data
Combined
Existing Data &
Current Study
EPA
Current Study
Existing Data
Combined
Existing Data &
Current Study
EPA
NOX
130
123
207
208
ND
168
168
169
ND
311
311
208
HC
8.6
9.4
3.6
17.0
11.1
15.0
14.7
17.2
21.0
4.6
11.1
17.0
CO
48.8
49.1
101
47.1
ND
29.7
29.7
47.0
ND
20.1
20.1
47.1
Part
ND
ND
ND
15.3
ND
5.1
5.1
5.7
7.0
15.5
13.0
15.3
SO
X
ND
0.26
ND
43GS
ND
4.4
4.4
0.26
14.3
41 .0
33.1
430S
ND - No data
S - Height percent of sulfur in fuel
10-170
-------
TABLE 44. COMPARISON OF CRITERIA POLLUTANT EMISSION FACTORS
FOR GAS AND DISTILLATE OIL ENGINES
Combustion
Source Type
Industrial
Gas Engines '
Industrial
Distillate
Oil Engines
Electricity
Generation
Gas Engines
Electricity
Generation
Distillate
Oil Engines
Data
Source
Existing
Data
EPA
Existing
Data
EPA
Existing
Data
EPA
Current Study
Existing
Data
.Combined
Existing Data
and Current
Study
EPA
NUX
1550
1390
1390
1420
1550
1230
ND
1390
1390
1420
Emi
HC
528
573
51
115
528
17
56.9
51
52
115
ssion Factor,
CO
340
176
266
312
340
47
ND
266
266
312
ng/J
Part
ND
ND
ND
102
ND
5.7
14.1
ND
14.1
102
S0x
ND
0.26
ND
430S
ND
0.26
101
ND
101
430S
KD - No data
S - Weight percent of sulfur in fuel
10-171
-------
TABLE 45. MEAN SOURCE SEVERITY FACTORS FOR CRITERIA POLLUTANTS
o
f\>
Gas Turbine
Pollutant
NOX
HC
CO
Partlculate
soy
Industrial
. Gas
0.52
0.025
0.0007
0.097
<0.0001
Industrial
Distillate
on
0.82
0.010
0.0014
0.016
0.029
Elec.
Gen.
Gas
0.17
0.021
0.0003
0.0019
<0.0001
Elec. Gen.
Distillate
Oil
0.32
0.052
0.0002
0.0049
0.0089
Industrial
Gas
5.66
1.33
0.0040
0.0055
0.0002
Reciprocating Engine
Industrial
Distillate
011
5.09
0.13
0.0032
0.015
0.078
Elec.
Gen.
Gas
7.09
1.65
0.0051
0.0068
0.0002
Elec. Gen.
Distillate
011
6.35
0.16
0.0040
0.019
0.097
-------
TABLE 46. SUMMARY OF EMISSION FACTOR DATA FOR
PARTICULATE SULFATE FROM INTERNAL
COMBUSTION SOURCES TESTED*
Combustion
Source Type
Site
No.
Emission
Factor
(ng/J)
Sulfur in Particulate SOj
Sulfur in Fuel
Distillate Oil
Fueled Gas
Turbine
Kstijlate Oil
Reciprocating
Engine
#112
1306
#307
#308
Mean x
s(x)
ts(x)/x
#309
#310
#311
#312
#313
Mean x
s(x)
ts(x)/x
0.335
0.030
o.on
0.077
0.113
0.075
2.1143
0.383
0.520
0.971
0.268
0.468
•0.522
0.120
0.6385
0.731%
>0.476%
>0.175%
>1.222r»
0.651%
0.222%
1.0835
0.308%
0.226%
0.423%
0.292%
0.420%
0.334%
0.038%
0.3190
The particulate sulfate data reported include metallic sulfates and a small
amount of condensed sulfuric acid aerosols.
s(x) - Standard deviation of the mean.
ts(x)/x - Variability.
10-173
-------
TABLE 47 SUMMARY OF EMISSION FACTOR DATA FOR TRACE ELEMENTS FROM
ELECTRICITY GENERATION DISTILLATE OIL-FUELED GAS TURBINES TESTED
Trace
Element
Pb
Ba
Sb*
Sn
Cd
Mo
Br
Se
As*
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Emission Factor
Site
111
27
29
< 5.2
2.7
2.9
1.9
<11.5
2.3
< 0.31
251
65
67
1.1
377
1487
2.7
1.3
Site
112
90
293
< 5.2
42
3.8
2.8
7.1
< 5.2
< 0.31
607
649
94
1.6
356
8.6
38
1.7
Site
306
59
13
• < 2.0
115
1.0
3.6
6.9
1.9
< 2.0
314
649
1110
7.3
419
188
12
9.8
Site
307
<46
0.07
< 2.1
3.6
0.3
2.9
< 0.07
0.3
< 2.1
<201
649
461
3.8
5
335
15
2.7
Site
308
84
8
14.5
9.6
5.8
6.7
1.8
1.9
< 2.1
96
879
900
5.7
124
4.9
31
< 1.1
• pg/o
X
61
12.6
5.8
35
2.8
3.6
5.5
2.3
< 1.4
294
578
526
3.9
256
405
20
3.3
s(x)
11
6.2
2.3
21
0.98
0.82
2.0
0.81
0.43
86
136
210
1.2
81
277
6.5
1.7
t«(x)
X
0.53
1.55
1.09
1.71
0.99
0.64
1.04
0.96
0.87
0.81
0.65
1.11
0.84
0.88
1.90
0.91
1.37
\
_
32
12
94
5.5
-
11
4.6
2.6
533
_
1110
7.2
481
1175
38
7.9
(Continued)
-------
TABLE 47. (CONTINUED)
tn
Trace
Element
Ca
K
P
Si
Al
Mg
Na
B
Be
Hg*
Emission Factor, pg/J
Site
111
314
335
184
1256
57
<230
691
82
< 0.
0.
Site
112
460
230
92
110,970
293
1068
6280
3770
044 0.11
84 10
Site
306
565
118
230
533
< 59
152
<440
< 15
< 0.12
0.50
Site
307
<107
<107
< 46
< 30
< 50
< 63
<460
< 2.3
< 0.14
0.15
Site
308
205
135
80
482
90
61
768
< 12
< 0.38
0.06
X
330
185
127
575
64
127
590
28
0.16
0.39
s(x)
83
43
35
254
8.9
41
82
18
0.06
0.18
ts(JL)
X
0.70
0.65
0.76
1.40
0.44
1.02
0.44
2.08
1.02
1.46
*u
_
-
223
1382
-
256
-
86
0.32
0.95
* Sb, As, and Hg emissions were determined by AA.
x = Mean emission factor
s(x) = Standard deviation of the mean.
ts(x)/x = Variability.
x = x + ts(x).
-------
TABLE 48. SUMMARY OF EMISSION FACTOR DATA FOR TRACE ELEMENTS FROM
ELECTRICITY GENERATION DISTILLATE OIL-FUELED GAS TURBINES
BASED ON COMBINED CURRENT STUDY AND EXISTING DATA
Trace
El ement
Pb
Ba
Cd
Mn
V
Mg
Be
Mean Emission
Factor x
(P9/0)
25
8.4
1.8
145
1.9
100
0.14
s(x)
(pg/J)
7.8
2.6
0.52
99
0.63
27
0.03
ts(x) xu
X (pg/J)
0.67
0.68
0.62
1.46 357
0.70
0.65
0.46
s(x) - Standard deviation of the mean,
ts(x)/x - Variability.
x « x + ts(x). xu values are not computed for trace element emissions
with ts(x)/x < 0.7.
TABLE 49. MEAN SOURCE SEVERITY FACTORS FOR TRACE ELEMENT
EMISSIONS FROM DISTILLATE OIL-FUELED GAS TURBINES
Mean Source Severity Factor
Trace
Element
Cu
N1
P
Emission
Factor
(pg/J)
578
526
127
•• - • — • —
TLV
(mg/m3)
0.20
0.10
0.10
Elec. Gen.
Distillate Oil-
Fueled Gas Turbine
0.085
0.16
0.037
Industrial
Distillate 011-
Fueled Gas Turbine
0.28
0.51
0.12
10-176
-------
o
I
Trace
Element
Pb
Ba
*
Sb
Sn
Cd
Mo
Br
Se
*
As
Zn
Cu
N1
Co
Fe
Mn
Cr
V
Emission Factor,
Site
309
33
4.7
6.4
6.4
< 3.3
33
5.2
0.8
< 2.2
147
644
955
6.0
<408
20.9
33
0.78
Site
310
34
3.0
< 2.2
<11.3
2.1
14
2.2
< 1.5
< 2.2
15
533
422
8.0
38
26.6
47
2.44
Site
311
14
<13.8
< 2.2
7.1
< 1.9
3
< 6.7
< 1.1
< 2.2
88
422
622
10.0
211
5.3
13
0.51
Site
312
27
12.9
< 2.2
10.0
2.3
10
2.0
3.7
< 2.2
377
244
444
3.6
<333
19.8
31
0.76
Site
313
22
33.3
44.4
<10.7
5.8
2
4.1
< 3.6
< 2.2
63
422
375
I-1
<555
8.0
6
0.25
pg/J
X
26
14
12
9.1
3.1
12
4.0
2.1
2.2
178
453
563
5.7
325
16
26
0.95
s(x)
3.7
5.4
8.3
1.0
0.72
5.6
0.89
0.62
0.01
56
66
106
1.6
94
3.9
7.4
0.39
ts(X)
X
0.40
1.11
2.00
0.30
0.64
1.25
0.61
0.81
0.01
0.88
0.41
0.52
0.77
0.80
0.68
0.79
1.13
'u
_
28
35
-
-
28
-
3.9
334
-
-
10.1
585
-
46
2.02
(Continued)
-------
TABLE 50. (CONTINUED)
o
00
Trace
Element
Ca
K
P
SI
Al
Mg
Na
B
Be
ng
Emission Factor,
Site
309
<178
<344
< 93
<733
62
< 91
1110
< 33
< 0.052
0.07
Site
310
73
134
133
<191
100
35
511
11
0.031
0.20
Site
311
89
97
100
189
69
< 5
5330
< 5.1
< 0.018
0.16
Site
312
133
175
40
229
< 40
44
<287
< 4.2
< 0.009
0.16
Site
313
710
146
120
165
58
37
<889
2.7
0.029
0.09
pg/J
x
237
179
97
301
66
44
1625
11
0.028
0.13
s(x)
120
43
16
108
9.7
15
937
5.7
0.007
0.02
ts(X)
*
1.41
0.67
0.46
1.00
0.41
0.95
1.60
1.41
0.73
0.51
*U
569
-
-
602
-
85
4226
27
0.048
-,
*
Sb, As, and Hg emissions were determined by AA.
x - Mean emission factor.
s(x) - Standard deviation of the mean.
ts(x)/x - Variability.
x = x + ts(x).
u
-------
TABLE 51. MEAN SOURCE SEVERITY FACTORS FOR TRACE ELEMENT
EMISSIONS FROM DISTILLATE OIL ENGINES
;race Emission TLV3 Elec. Gen. Industrial
'§ent Factor (mg/m ) Distillate Oil Distillate Oil
Mean Source Severity Factor
Ilec. Gen. Industrie
>tillate Oil Distillate
(pg/J) Engine Engine
k 453 0.20 0.23 0.20
I 563 0.10 0.60 0.48
» S7 0.10 0.10 0.082
10-179
-------
TABLE 52. COMPARISON OF TRACE ELEMENT EMISSION FACTORS FOR DISTILLATE
OIL-FUELED GAS TURBINES AND DISTILLATE OIL ENGINES
Trace Element
Aluminum
Antimony
Arsenic
Barium
Beryllium
Boron
Bromine
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Phosphorus
Potassium
Selenium
Silicon
Sodium
Tin
Vanadium
Zinc
Mean Emission
Distillate Oil Fueled
Gas Turbine
64
9.4
2.1
8.4
0.14
28
1.8
1.8
330
20
3.9
578
256
25
100
145
0.39
3.6
526
127
185
2.3
575
590
35
1.9
294
Factor, pg/J
Distillate Oil
Reciprocating Engine
66
12
2.2
14
0.03
n
4.0
3.1
237
26
5.7
453
325
26
44
16
0.13
12.5
564
97
179
2.1
301
1625
9.1
0.95
178
10-180
-------
03. SUMMARY OF POM EMSSAZOM FACTOR DATA FROM ELECTRICITY
GENERATION DISTILLATE OIL ENGINES TESTED*
o
I
00
Compound
Naphthalene
Methyl Naphthalene
C- Substituted Naphthalene
C- Substituted Naphthalene
C^ Substituted Naphthalene
C, Substituted Naphthalene
Biphenyl
Methyl Biphenyl
C, Biphenyl
Dibenzothiophene
Methyl Dibenzothiophene
Phenanthrene/Anthracene
Methyl Phenanthrene
Dimethyl Phenanthrene
Trimethyl Phenanthrene
Ethyl Fluorene
Site
309
8.4
-
15.6
4.2
-
-
1.0
-
-
2.6
-
4.2
10.4
2.1
-
-
Site
310
12.7
15.5
8.5
2.8
-
-
4.2
-
-
1.4
0.57
2.1
5.6
0.6
-
-
Emission
Site Site Site Site
311 312 313 309-2
35.8 - 1.9 124.5
336.2
63.7 - - 369.5
460.7
249.7
87.6
10.0 - 9.5
_
11.7
_
-
68.6
59.7 40.9 95.2 62.8
23.9 24.4 36.8
6.4 9.5
17.5
Factor (pg/J)
Site Site
312-2 313-2 x
34.5 131.9 43.7
339.2 353.7 130.6
474.9 653.4 198.2
158.3 402.8 128.6
16.8 33.3
11.0
21.fi 5.8
167.8 21.0
1.5
0.50
0.071
22.6 55.1 19.1
13.1 - 36.0
10.8
2.0
2.2
s(x)
19.0
62.3
92.5
69.1
31.0
11.0
2.7
21.0
1.5
0.35
0.071
9.8
12.1
5.3
1.3
2.2
ts(x)
X
1.03
1.13
1.10
1.27
2.20
2.37
1.10
2.37
2.37
1.64
2.37
1.21
0.80
1.13
1.59
2.37
*u
88.8
277.8
417.0
292.0
106.6
36.8
12.2
70.6
4.9
1.3
n.24
42.2
64.6
23.5
5.1
7.4
Emissions below detection limits or cannot be distinguished from blank values are indicated by -. For Site Nos. 309, 310,
311, 312 and 313, detection limits for POM compounds were approximately 0.05 nq/J (0.08 >jg/m3). For Site Nos. 309-2,
312-2 and 3-312, detection limits for POM compounds were approximately 0.03 ng/J (0.05 |ig/m3).
All phenanthrene compounds could also be anthracenes.
-------
TABLE 54. MEAN SOURCE SEVERITY FACTORS FOR POM EMISSIONS FROM
ELECTRICITY GENERATION DISTILLATE OIL ENGINES
Compound
Naphthalene
Methyl Naphthalene
C2 Substituted Naphthalene'
C3 Substituted Naphtha! ene^
C4 Substituted Naphthalene1"
C5 Substituted Naphtha! enef
Biphenyl
Methyl Biphenyl*
C3 Biphenyl*
Dibenzothiophene
Methyl Dibenzothiophene**
Phenanthrene/Anthracene
Methyl Phenanthrene/Anthracene
Dimethyl Phenanthrene/Anthracene77
Trimethyl Phenanthrene/Anthracene77
Ethyl Fluorene**
Mean Emission
Factor
(pg/J)
43.7
130.6
198.2
128.6
33.3
11.0
5.8
21.0
1.5
0.50
0.071
19.1
36.0
10.8
2.0
2.2
MATE
Value
(mg/m3)
50
230
230
230
230
230
1.0
1.0
1.0
23
23
1.6
30
30
30
90
Mean Source
Severity
Factor S
<0,OG01
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
0 . 0006
0.0022
0.0002
-------
STUDY NUMBER 11
-------
STUDY NUMBER 11
DATA
SOURCE:
ASSESSMENT OF SURFACE
RUNOFF FROM IRON
AND STEEL MILLS
DATA
STATUS:
EPA-600/2-79-046, February 1979
AUTHORS:
CONTRACTOR:
G. T. Brookman, B. C. Middlesworth,
and J. A. Ripp
TRC—Environmental Consultants, Inc.
125 Silas Deane Highway
Wethersfield, Connecticut 06109
Contract No. 68-02-2133
PROJECT
OFFICER:
Norman Plaks
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
11-1
-------
The purposes of this study were to chemically characterize stormwater
runoff from iron and steel mills and to determine if this runoff could cause
environmental insult.
The first task in the study was to identify runoff sources and determine
what data were available. Twelve iron and steel plants were toured. A
literature survey showed that previous analysis of runoff samples had been
performed at two plants. Based on this information, the following pollut-
ants were chosen to be monitored in a field study:
Total suspended solids Total dissolved solids
Cyanide Phenols
Dissolved iron Total iron
Ammonia Sulfates
Oil and grease, BOD5, COD, and TOC were not measured because the available
data indicated that results would not be "of sufficient magnitude to be of
concern." All chemical analyses were performed by procedures specified in
Standard Methods for the Examination of Water and Wastewater. 14th edition,
M. A. Franson, ed., APHA, AWWA, WPCF, Washington, D. C. , 1976.
Two sites were selected for field studies. Figures 11-1 and 11-2 (from
the final report) show the sampling locations at these sites and Table 11-1
(from the document) gives general site characteristics. Automatic sequential
samplers, set for flow-based sampling rates (more samples at higher runoff
rates), were set up at sites 005, 010, and Oil, along with automatic weather
stations. Grab samples were collected at other sites. Dustfall samples, for
settleable airborne particulates, were also collected. Because of site-related
constraints, no data were obtained from this study on slag dump runoff or iron
ore pile runoff.
.This study indicated that the dissolved solids content of stormwater
runoff from iron and steel mills was greater than the suspended solids content.
When results were compared to point source mass loadings, which would exist
under the proposed BAT control (see Code of Federal Regulations. Title 40,
Part 420 as of July 1, 1976), significantly higher measurements were gener-
ally noted for total suspended solids (at all sites) and for ammonia,
11-2
-------
MO2:LECTRIC FUUNACE SHOP
OIRECf REDUCTION PIANI
# 000 SAIIPMNG LOC.
V/////XX//X/ DRAINAGE BASIN
PLANT PERIMETER
SITE NO. I PLAN
DRAINAGE BASIN A
SAMI'lE POINT LOCATIONS
Figure 11-1. Plan-site no. 1.
-------
CREEK
PIPE MILLS
a_
I
i
• ._ -.._
..rv:.Ob]
ri
i
i
/
t
5
SHEET t TIN MILLS
-— 1
mo MILL
11ICT. FCE ft CASTER ,
MOT-
MILLS
007-
006
•SLAB MILLS
(SLAf) COOLING)
CANAl
DIESEL-
REPAIR
SHOP
903-
SLAG DUMP
PROCESS
HAILR
TRC.AfMI.NT
PLAMf
COKE PI ANT-
COKE YARDS
UIH.E ->
HI PAIR SHOP
LAGOON
TIDAL
RIVIR
GRAVFL
01 AST FURNACE-
SINTER PLANT
ARIA
ORE YAKU
ORE YARO
ORE VAKf)
'OO'J
Y//,
CAI1A1
BOAT SUP
SAMPLING LOC.
'//////////, DRAINAGE BASIN
-PLANT PERIMEIFR
COAL SIORAGE
SITE NO.Z PLAN
^DRAINAGE BASIN AND SAMPLE
POINT I OCA I IONS
NO.002 THRU NO.OH
Figure 11-2. Plan—site no. 2.
-------
TABLE 11-1. GENERAL SITE CHARACTERISTICS
Site 1
Site 2
ty of Plant
jweloped Area
(Hectares)
irrain
toff Receiving
Body
!tat Operations
fciod of Samp! ing
•ber of Sampling
feints
inanent Flow
fences
37 Years
230
Flat, Semi-Permeable
Tidal River
Coke Plant, Sinter Plant,
Blast Furnaces, Electric
Furnaces, Finishing
Operations
3/77 to 4/77
Yes
25 Years
1600
Flat, Permeable
Tidal River
Coke Plant, Sii.ter Plant,
Blast Furnaces, Open Hearth
Furnaces, Electric Furnaces,
Finishing Operations
5/77 to 6/77
13
No
11-5
-------
phenols, and total iron (at the coal pile runoff sites). The coal and coke
storage piles and handling areas showed the highest potential for contam-
inating stormwater. Parameter concentrations appeared to be positively
correlated with rainfall volume; and the runoff data did not indicate a
"first flush" effect. Since there were significant differences between
plants, a stormwater control strategy should be developed on a plant by
plant basis.
11-6
-------
LEVEL 1
11-7
-------
TABLE 11-2. TSS RESULTS IN mg/L, SITES #1 AND #2
MARCH - JUNE 1977
Sample
no.
4
5
13
18
21
32
38
42
47
52
59
63
64
65
66
67
68
70
78
85
91
99
100
102
112
118
125
132
134
Outfall
Site #1
Oil
Oil
Oil
Oil
Oil
010
010
010
010
010
010
010
005
005
005
005
005
005
009A
009A
Coal pile
Coal pile
006
006
Oil
Oil
Oil
005
005
Date
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/28
3/27
3/28
3/28
3/27
3/28
3/28
3/28
3/28
3/27
3/28
Time
1040
1100
1200
1300
1400
1000
1100
1200
1300
1400
1500
1600
1000
1100
1200
1300
1400
1600
0115
2100
0012
0030
2240
0305
0022
0225
1100
2230
0045
Sampl ing
event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
TSS
concentration,
mg/L
11
10
16
12
17
122
54
44
62
59
100
163
34
45
53
64
25
17
527
761
2,384
1 , 116
511
180
20
151
76
69
66
TDS
concentration
mg/L
1,196
1,095
1,095
1,110
1,098
2,090
2,222
2,269
2,088
1,964
2,310
2,262
939
922
964
897
947
949
376
617
2,205
2,557
200
373
878
506
427
319
300
(continued)
11-8
-------
TABLE 11-2 (continued)
Sample
no.
136
138
140
144
150
154
159
163
168
172
175
181
188
195
201
202
209
210
216
218
224
226
Outfall
Site #1
005
005
005
005
010
010
010
010
010
010
010
Oil
Oil
Oil
Oil
010
010
010
010
010
010
010
Date
3/28
3/28
3/28
3/28
3/27
3/27
3/27
3/28
3/28
3/28
3/28
3/29
3/29
3/29
3/29
3/29
3/29
3/29
3/29
3/29
3/29
3/29
Time
0140
0300
0830
1300
2100
2215
2225
0040
0145
0445
0645
0800
1000
1200
1400
0800
0900
1000
1100
1200
1300
1400
TSS
Sampling concentration,
event mg/L
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm f2
Storm #2
Storm #2
Storm #2
Storm *2
Storm #2
Dry weather
fl
Dry weather
fl
Dry weather
#1
Dry weather
#1
Dry weather
#1
Dry weather
fl
Dry weather
fl
Dry weather
#1
Dry weather
fl
Dry weather
fl
Dry weather
fl
78
36
22
38
22
32
293
198
238
94
10
15
15
15
13
14
17
5
6
7
4
11
TDS
concentration,
mg/L
238
253
357
294
4,993
3,791
2,376
1,059
661
1,315
1,684
676
668
689
698
2,007
2,110
2,172
2,044
2,048
2,066
2,108
(continued)
11-9
-------
TABLE 11-2 (continued)
Sample
no.
231
232
233
236
240
244
245
246
247
248
249
250
251
252
253
268
277
282
286
291
295
Outfall
Site #1
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
010
010
010
010
010
010
Date
3/29
3/29
3/29
3/29
3/29
3/29
3/31
3/31
3/31
4/1
4/1
4/4
4/4
4/4
4/4
4/5
4/5
4/5
4/5
4/5
4/5
Time
0800
0900
1000
1300
1700
2100
1444
1740
2100
0315
0846
0450
0626
1031
1109
0900
1100
1200
1300
1400
1500
TSS
Sampling concentration,
event mg/L
Dry weather
#1
Dry weather
#1
Dry weather
Dry weather
#1
Dry weather
#1
Dry weather
Storm #3
Storm #3
Storm #3
Storm #3
Storm # 3
Storm #4
Storm #4
Storm #4
Storm #4
Dry weather
#2
Dry weather
#2
Dry weather
#2
Dry weather
#2
Dry weather
#2
Dry weather
21
15
16
19
6
17
25
44
13
65
21
50
11
67
23
184
81
58
29
22
27
TDS
concentratia
mg/L
327
329
347
364
385
365
559
556
703
482
623
525
642
753
641
4,063
4 , 198
3,639
3,955
4,106
4,503
— *
(continued)
11-10
-------
TABLE 11-2 (continued)
Sample
no.
297
300
303
307
310
314
318
321
325
328
332
342
347
349
353
358
363
365
366
367
368
369
Outfall
005
005
005
005
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Coal pile
Coal pile
009A
009A
009A
009A
006
006
005
005
005
Date
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
Tine
0900
1200
1500
1900
0900
1000
1100
1200
1300
1400
1500
1140
1155
1040
1125
1205
1415
1055
1120
1121
1133
1146
TSS
Sampling concentration,
event mg/L
Dry weather
f2
Dry weather
f2
Dry weather
12
Dry weather
f2
Dry weather
#2
Dry weather
f2
Dry weather
#2
Dry weather
#2
Dry weather
#2
Dry weather
f2
Dry weather
*2
Storm * 5
Storm f 5
Store f5
Storm *5
Storm f5
Storm #5
Storm *5
Storm #5
Storm #5
Storm f 5
Storm f 5
4
23
31
8
10
11
28
20
13
7
7
9,559
3,691
951
474
159
155
41
676
11
11
18
IDS
concentration,
mg/L
445
463
433
432
1,045
1,049
998
995
1,025
1,034 -
998
1,419
2,974
1,023
1,316
609
529
1,360
376
719
715
611
(continued)
11-11
-------
TABLE 11-2 (continued)
Sample
no.
370
371
372
373
374
378
381
387
390
400
401
409
414
417
420
423
426
427
431
434
440
444
447
Outfall
005
005
005
005
005
Oil
Oil
Oil
Oil
Oil
Oil
Oil
005
005
005
005
005
005
Oil
Oil
Oil
Oil
010
Date
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/17
4/18
4/18
4/18
4/18
4/18
4/18
4/18
4/18
4/18
4/18
4/18
Time
1208
1245
1339
1504
1626
0842
1138
1239
1423
1614
2223
0742
0945
1245
1545
1845
2145
2245
0930
1030
1130
1230
1137
TSS
Sampling concentration,
event mg/L
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
65
47
113
96
65
20
84
46
34
27
18
30
19
12
16
14
11
10
36
23
42
20
649
TDS
concentratil
mg/L
603
341
305
2S4
259
1,155
1,133
892
992
915
845
753
395
424
420
400
413
399
790
733
790
767
2,713
(continued)
11-12
-------
TABLE 11-2 (continued)
Samp 1 e
no.
450
457
451
465
1
4
7
10
14
15
18
21
24
28
39
41
44
50
53
59
62
68
75
78
'81
84
Outfal]
010
010
010
010
Site #2
006
006
006
006
006
007
007
007
007
007
015
010A
010A
010A
010A
010A
010A
010A
004
004
004
004
Date
4/18
4/18
4/18
4/18
5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/10
5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/9
Tine
1237
1337
1437
1537
0000
0130
0300
0430
0630
0000
0130
0300
0430
0630
1000
0000
0100
0200
0300
0400
0500
0600
0000
0030
0100
0130
TSS
Sampling concentration,
event ag/t
Dry weather
f3
Dry weather
#3
Dry weather
f3
Dry weather
#3
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
171
100
52
78
416
23
20
25
24
10
8
1
8
5
15
37
17
9
15
12
19
22
18
16
7
9
TDS
concentration,
«g/L
2,757
5,438
2,741
2,728
148
140
103
131
109
126
143
124
155
87
128
100
122
76
106
104
116
109
144
145
153
142
(continued)
11-13
-------
TABLE 11-2 (continued)
Sample
no.
90
97
103
109
118
122
126
127
132
136
140
141
144
150
159
168
177
184
197
205
211
219
237
238
239
242
245
248
251
254
Outfall
004
004
004
004
006
006
006
007
007
007
007
004
004
004
004
004
004
010A
010A
010A
010 A
015
002
002
008
008
008
009
009
009
Date
5/9
5/9
5/9
5/9
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
Time
0230
0330
0430
0530
0000
0200
0630
0000
0230
0430
0630
0000
0030
0130
0300
0430
0600
0000
0300
0500
0600
1845
1340
1515
1125
1410
1550
1140
1400
1545
TSS
Sampling concentration,
event mg/L
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
6
7
11
12
38
23
63
12
30
4
13
8
8
9
7
7
17
13
16
5
9
40
29
11
55
22
56
4
33
58
TDS
concentrate
mg/L
164
179
151
155
109
102
126
245
140
108
102
160
140
134
205
150
144
93
117
98
102
130
137
91
163
172
112
138
116
119
(continued;
11-14
-------
TABLE 11-2 (continued)
Sample
no.
261
268
271
274
277
278
281
284
287
291
29'J
2Sr
29b
301
304
307
310
313
316
319
322
325
328
331
335
338
344
346
351
354
363
Outfall
015
006
006
006
006
007
007
007
007
007
004
004
004
004
004
004
004
004
004
004
004
004
004
004
010A
010A
010A
010A
010A
010A
010B
Date
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
Time
1050
1030
1200
1330
1500
1030
1200
1330
1500
1700
1030
1100
1130
1200
1230
1300
1330
1400
1430
1500
1530
1600
1630
1700
1030
1130
1230
1330
1430
1530
1030
TSS
Sampling concentration,
event mg/L
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
2
197
46
188
91
10
60
1
1
50
4
2
47
13
17
10
20
8
12
12
16
17
18
18
21
27
28
19
30
11
19
TDS
concentration,
mg/L
103
138
143
152
159
66
118
54
88
92
113
126
114
187
187
185
193
169
132
166
189
163
156
162
108
125
104
99
94
97
89
(continued)
11-15
-------
TABLE 11-2 (continued)
Sample
no.
366
371
374
379
382
387
390
393
396
400
403
404
412
416
418
430
442
454
460
463
466
469
473
474
483
492
501
513
517
525
Outfall
010B
010B
010B
010B
010B
010B
006
006
006
006
006
007
007
007
004
004
004
004
007
007
007
007
007
004
004
004
004
004
010A
010A
Date
5/18
5/18
5/18
5/18
5/18
5/18
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
Time
1130
1230
1330
1430
1530
1630
C930
1015
1100
1200
1245
0930
1130
1230
0930
1030
1130
1230
1330
1500
1630
1800
2000
1345
1515
1645
1815
2015
0930
1030
TSS
Sampling concentration,
event mg/L
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
13
21
26
28
24
23
2,537
225
812
1,720
183
45
6
10
11
8
11
6
17
33
48
51
1?
6
11
8
11
3
48
20
TDS
concentratfn
mg/L
108
133
89
108
95
93
301
228
186
324
218
107
193
129
171
184
202
201
344
108
288
418
325
205
326
359
254
276
173
211
(continued)
11-16
-------
TABLE 11-2 (continued)
Sample
nc.
533
540
552
568
572
582
592
596
60.
60.'
bi/
660
6~£
682
685
693
696
701
704
709
712
714
716
718
720
722
725
726
727
Outfall
010A
010A
010B
010B
012
012
012
012
012
012
012
010A
010A
010A
010B
010B
010B
010B
010B
010B
006
006
006
006
006
006
006
002
002
Date
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
Tine
1130
1230
1030
1230
0930
1030
1130
1200
1230
1430
1950
1515
1915
2115
1515
1715
1815
1915
2015
2115
1315
1415
1515
1615
1715
1815
1945
0950
1130
TSS
Sampling concentration,
event rag/L
Storm #1
Storm #1
Storm * 1
Storm #1
Storm #1
Storm #1
Storm #1
Storm 11
Storm #1
Storm f 1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm f 1
Storm #1
Storm *1
Storm #1
Storm *1
Storm #1
Storm f 1
Storm #1
Storm #1
Storm * 1
Storm #1
Storm #1
Storm tl
Storm #1
17
25
60
21
513
259
109
67
29
563
230
38
15
31
702
22
12
32
27
29
268
331
295
487
85
629
306
176
66
TDS
concentration,
mg/L
253
212
239
185
245
307
316
431
423
222
546
(continued)
11-17
-------
TABLE 11-2 (continued)
Sample
no.
728
729
730
731
732
733
734
736
739
742
745
748
751
754
757
760
764
766
769
772
776
783
787
791
796
842
846
850
854
858
Outfall
002
002
003
003
•003
005
008
008
008
008
009
009
009
009
Oil
Oil
Oil
Oil
006
006
006
007
007
007
007
013
013
013
013
013
Date
6/9
5/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/10
6/9
6/10
6/10
6/10
6/9
6/9
6/9
6/9
6/9
Time
1630
2005
0955
1125
1630
1000
1030
1215
1605
2315
1035
1230
1615
2315
1045
1205
1520
2025
2215
2345
0145
2200
0000
0200
0430
1100
1150
1530
1650
1945
TSS
Sampling concentration,
event mg/L
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
11
9
21
14
11
17
41
30
19
89
109
69
58
55
448
223
2,684
56
354
218
151
93
45
39
10
152
72
1,380
12
12
TDS
concentratia
mg/L
172
389
516
299
681
191
190
143
155
195
240
601
873
884
1,353
1,690
(continued]
11-18
-------
TABLE 11-2 (continued)
Sample
no.
861
868
874
877
884
887
891
894
903
912
921
933
941
946
953
956
960
962
966
970
972-
976
980
984
987
994
1001
1011
1018
1029
Outfall
014
014
014
014
015
015
004
004
004
004
004
010A
010A
010A
010A
010A
010A
010A
010A
006
006
006
006
010B
010B
010B
010B
010B
010B
010B
Date
6/9
6/9
6/9
6/9
6/10
6/9
6/9
6/9
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/9
6/10
6/10
6/10
6/10
6/10
6/10
Time
1115
1540
1935
2050
1145
2235
2225
2255
0025
0155
0325
0000
0200
0300
0500
1516
1716
1816
2016
1500
1600
1800
2000
2300
0000
0200
0400
1650
1850
2150
TSS
Sampling concentration,
event mg/L
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm fl
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
76
60
24
61
49
21
7
6
39
6
9
21
17
13
16
7
3
7
3
232
21
54
16
13
20
21
26
29
21
25
TDS
concentration,
mg/L
430
232
496
524
150
215
233
233
213
223
222
186
164
158
197
207
184
232
175
285
173
171
158
158
138
182
179
154
152
137
(continued)
11-19
-------
TABLE 11-2 (continued)
Sample
no.
1032
1035
1046
1053
1056
1080
1095
1098
1100
1102
1104
1108
1112
1116
1120
1124
1127
1135
1138
1143
1151
1154
1156
1158
1160
1164
1168
1172
1176
1180
1182
Outfall
010A
010A
010A
010A
004
004
007
007
007
007
007
007
007
007
007
007
010B
010B
010B
010B
010B
006
006
006
006
006
006
006
006
006
004
Date
6/10
6/10
6/10
6/10
6/10
6/10
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
Time
1550
1650
1950
2150
1440
1840
1545
2110
1615
1645
1715
1815
1915
2015
2115
2215
1610
1710
1740
1810
1910
1545
1615
1645
1715
1815
1915
2015
2115
2215
1545
TSS
Sampling concentration,
event mg/L
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm n
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
23
20
27
18
10
3
32
29
. H9
100
8
62
77
71
21
6
137
41
38
36
30
398
188
77
76
24
16
13
17
20
34
TDS
concentratl
mg/L
165
175
158
133
231
190
253
172
157
196
352
192
186
144
361
332
146
158
161
191
185
490
199
231
251
226
213
190
190
253
188
(continued)
11-20
-------
TABLE 11-2 (continued)
Samp 1 e
no.
1185
1188
1191
1194
1197
1200
1206
1212
1219
1222
1226
1230
1234
1238
1242
1246
1252
1256
1260
1268
1272
1276
1279
1284
1286
1303
1315
"1327
1339
1343
1354
Outfall
004
004
004
004
004
004
004
004
004
004
007
007
007
007
007
007
006
006
006
006
006
012
012
012
012
004
004
004
004
0108
010B
Date
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/21
6/21
6/21
6/21
6/21
6/21
6/21
6/21
6/21
6/21
6/21
6/20
6/20
6/20
6/20
6/21
6/21
6/21
6/21
6/20
6/21
Time
1600
1615
1630
1645
1700
1715
1745
1815
1845
1900
0100
0300
0500
0700
0900
1100
0115
0315
0515
0915
1115
1530
1600
1630
1700
0115
0315
0515
0715
2345
0245
TSS
Sampling concentration,
event mg/L
Storm #2
Storm #2
Storm *2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm n
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm n
Storm #2
Storm #2
Storm #2
Storm #2
Storm n
Storm #2
Storm #2
Storm #2
Storm f2
Storm #2
12
12
9
12
10
12
11
13
10
12
14
10
4
9
9
3
8
13
11
24
24
533
179
182
158
7
7
5
6
24
29
TDS
concentration,
mg/L
164
174
164
176
170
160
167
188
195
180
270
205
225
201
271
182
147
153
145
149
146
372
370
378
350
203
264
218
217
186
190
(continued)
11-21
-------
TABLE 11-2 (continued)
Sample
no.
1359
1362
1370
1371
1372
1373
1374
1375
1376
1377
1378
1380
1384
1387
Outfall
010B
010B
002
002
002
003
003
003
003
005
005
013
014
014
Date
6/21
6/21
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
Time
0345
0445
1540
1555
1650
1535
1550
1635
1645
1535
1550
1525
1530
1600
TSS
Sampling concentration,
event mg/L
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
27
31
79
17
15
132
97
34
23
78
36
727
121
44
TDS
concentrated
mg/L
216
200
112
13?
156
106
93
98
104
69
59
355
398
416
11-22
-------
TABLE 11-3. AMMONIA ANALYSIS RESULTS
SITES #1 AND #2
MARCH-JUNE 1977
Sample no.
2
10
14
23
34
43
b4
88
92
111
117
131
148
157
165
182
190
197
206
221
266
284
309
323
346
351
359
Outfall
SITE #1
Oil
Oil
Oil
Oil
010
010
009A
009A
Coal pile
Oil
Oil
Oil
010
010
010
Oil
Oil
Oil
010
010
010
010
Oil
Oil
Coal pile
009A
009A
Date
3/24
3/24
3/24
3/24
3/24
3/24
3/27
3/27
3/28
3/27
3/28
3/28
3/27
3/27
3/28
3/29
3/29
3/29
3/29
3/29
4/5
4/5
4/5
4/5
4/16
4/16
4/16
Time
1040
1200
1300
1500
1100
1300
2225
2100
0012
2306
0131
1200
2100
2225
0145
0900
1100
1300
0900
1300
0900
1300
0900
1300
1155
1040
1205
Ammonia
concentration,
Sampling event mg/L
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm n
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather #2
Storm #5
Storm #5
Storm #5
1.7
1.5
1.6
1.1
47.0
52.0
3.5
0.23
84.0
1.4
2.0
28.0
73.0
55.0
3.6
20.0
21.0
26.0
54.0
56.0
96.0
87.0
4.9
5.0
27.0
2.0
2.6
(continued)
11-23
-------
TABLE 11-3 (continued)
Sample no.
377
385
392
405
408
429
436
438
442
446
453
455
460
463
32
42
56
195
336
349
360
380
518
526
534
541
545
Outfall
SITE #1
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
010
010
010
010
010
SITE #2
015
010A
010A
010A
010A
010A
010A
010B
010A
010A
010A
010A
010B
Date
4/16
4/16
4/16
4/16
4/17
4/18
4/18
4/18
4/18
4/18
4/18
4/18
4/18
4/18
5/9
5/9
5/9
5/10
5/18
5/18
5/18
5/18
6/9
6/9
6/9
6/9
6/9
Time
0842
1239
1423
2223
0742
0930
1030
1130
1230
1137
1237
1337
1437
1537
1130
0000
0300
0200
1030
1330
1630
1430
0930
1030
1130
1230
0930
Sampling event
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Ammonia
concentration
mg/L
1.3
0.66
0.77
0.87
0.65
0.57
1.2
1.1
1.0
66.0
74.0
56.0
84.0
82.0
6.0
5.2
86.0
4.8
5 2
38
5.7
7.1
0.36
0.70
0.49
0.45
0.88
(continued)
11-24
-------
TABLE 11-3 (continued)
Samp'ie no.
553
569
574
584
594
604
609
661
668
675
683
686
694
702
710
762
767
845
853
882
886
889
931
944
954
985
992
999
1006
Outfall
SITE #2
010B
010B
012
012
012
012
012
010A
010A
010A
010A
010B
010B
010B
010B
Oil
Oil
013
013
015
015
015
010A
010A
010A
. 010B
' 010B
010B
010B
Date
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/10
6/10
6/9
6/10
6/10
6/10
Time
1030
1230
0930
1030
1130
1230
1430
1515
1715
1915
2115
1515
1715
1915
2115
1205
2025
1100
1530
1010
1145
2235
2300
0200
0500
2300
0100
0300
0500
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm f 1
Storm #1
Storm #1
Storm #1
Ammonia
concentrati on ,
mg/L
1.3
0.60
0.41
1.0
0.79
0.73
0.56
0.17
0.10
0.22
0.21
0.28
0.10
0.12
0.10
0.23
0.43
31.0
39.0
0.20
0.39
0.51
0.12
0.23
0.33
0.11
0.50
0.10
0.10
(continued)
11-25
-------
TABLE 11-3 (continued)
Sample no.
1009
1016
1023
1030
1033
1040
1051
1128
1132
1136
1140
1144
1152
1280
1288 "
1295
1344
1356
1364
1383
1395
Outfall
SITE #2
010B
010B
010B
. 010B
010A
010A
010A
010B
010B
010B
010B
010B
010B
012
012
012
010B
010B
010B
013
015
Date
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/21
6/21
6/20
6/20
Time
1550
1750
1950
2150
1550
1750
2050
1610
1640
1710
1740
1810
1910
1600
1700
1800
2345
0245
0445
1525
1640
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Ammonia
concentration
mg/L
0.15
0.15
0.10
0.15
0.14
0.10
0.10
4.1
1.2
0.50
1.6
0.39
0.40
1.3
1.6
1.6
0.18
0.18
0.23
18.0
0.28
11-26
-------
TABLE 11-4. CYANIDE ANALYSIS RESULTS
SITES #1 AND #2
MARCH-JUNE 1977
Sample no.
6
25
37
51
54
82
87
95
113
121
126
153
162
171
184
198
205
222
273
289
312
326
343
356
362
383
389
— —
Outfall
SITE #1
Oil
Oil
010
010
010
009A
009A
Coal pile
Oil
Oil
Oil
010
010
010
Oil
Oil
010
010
010
010
Oil
Oil
Coal pile
009A
009A
Oil
Oil
Date
3/24
3/24
3/24
3/24
3/24
3/27
3/27
3/28
3/28
3/28
3/28
3/27
3/28
3/28
3/29
3/29
3/29
3/29
4/5
4/5
4/5
4/5
4/16
4/16
4/16
4/16
4/16
Time
1100
1500
1100
1400
1500
2225
2100
0125
0022
0225
1100
2215
0040
0445
0900
1300
0900
1300
1000
1400
1000
1400
1140
1125
1415
1138
1423
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm n
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Dry weather #1
Dry weather #1
Dry weather fl
Dry weather #1
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather #2
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Cyanide
concentration,
mg/L
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.99
0.56
ND
ND
0.17
0.03
0.01
ND
0.01
(continued)
11-27
-------
TABLE 11-4 (continued)
Sample no.
47
55
18S
259
267
340
348
367
383
521
529
536
548
556
578
588
613
664
671
678
69C
698
705
848
856
935
942
Outfall
SITE #2
010A
010A
010A
015
015
010A
010A
010B
010B
010A
010A
010A
010B
010B
012
012
012
010A
010A
010A
010B
010B
010B
013
013
010A
010A
Date
5/9
5/9
5/10
5/18
5/18
5/18
5/18
5/18
5/18
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/10
6/10
Time
0100
0300
0100
1050
1630
1130
1330
1130
1530
1000
1100
1200
1000
1100
1000
1100
1710
1615
1815
2015
1615
1815
2015
1150
1650
0000
0200
Sampling event
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Cyanide
concentration
mg/L
0 01
0-01
0.01
0.01
0.01
0.01
0.01
0.01
ND
0.01
0.01
0.01
0.02
0.01
0.22
0.10
0.3
0.01
0.01
0.01
0.02
0.01
0.01
0.38
0.72
0.01
0.01
(continued)
11-28
-------
TABLE 11-4 (continued)
Sample no.
950
988
995
1002
1012
1019
1026
1036
1050
1131
1J39
1282
1267
1294
1347
1355
1363
1392
Outfall
SITE #2
010A
010B
010B
010B
010B
010B
010B
010A
010A
010B
010B
012
012
012
010B
010B
010B
015
Date
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/20
6/20
6/20
6/20
6/20
6/21
6/21
6/21
6/20
Time
0400
0000
0200
0400
1650
1850
2050
1650
2050
1640
1740
1600
1700
1800
0045
0245
0445
1640
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Cyanide
concentrati on ,
mg/L
0.01
0.01
0.01
0.01
0.01
NO
0.01
0.01
0.01
0.01
0.01
0.29
0.09
0.17
0.01
0.01
0.01
0.01
ND = Not detectable; detectable limit is 0.001 mg/L
11-29
-------
TABLE 11-5. SULFATE ANALYSIS RESULTS
SITES #1 AND #2
MARCH-JUNE 1977
Sample no.
36
41
46
55
149
152
166
204
211
219
227
267
276
285
294
218
257
263
575
580
585
595
605
610
615
620
Outfall
SITE #1
010
010
010
010
010
010
010
010
010
010
010
010
010
010
010
SITE #2
015
015
015
012
012
012
012
012
012
012
012
Date
3/24
3/24
3/24
3/24
3/27
3/27
3/28
3/29
3/29
3/29
3/29
4/5
4/5
4/5
4/5
5/10
5/18
5/18
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
Time
1100
1200
1300
1500
2100
2215
0145
0800
1000
1200
1400
0900
1100
1300
1500
1845
1050
1630
0930
1000
1030
1130
1230
1430
1710
1950
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather
Dry weather
Dry weather
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Sulfate
concentratia
mg/L
270
303
260
303
490
380
180
560
488
1380
419
400
450
1580
475
20
20
20
68
70
78
100
128
52
54
70
(continued)
11-30
-------
TABLE 11-5 (continued)
Sample no.
758
761
844
851
855
1278
1380
Outfall
SITE #2
Oil
Oil
013
013
013
012
013
Date
6/9
6/9
6/9
6/9
6/9
6/20
6/20
Time
1045
1205
1100
1530
1650
1530
1525
Sampling event
Storm #1
Storm #1
Storsn #1
Storm #1
Storm #1
Storm #2
Storm #2
Sulfate
concentration,
mg/L
195
270
160
190
36
85
128
11-31
-------
TABLE 11-6. TOTAL IRON ANALYSIS RESULTS
SITES #1 AND #2
MARCH-JUNE 1977
Sample no.
7
20
31
40
61
79
90
116
151
180
200
203
220
272
288
313
327
341
348
357
380
386
391
402
430
433
Outfall
SITE #1
Oil
Oil
010
010
010
009A
Coal pile
Oil
010
Oil
Oil
010
010
010
010
Oil
Oil
Coal pile
009A
009A
Oil
Oil
Oil
Oil
Oil
Oil
Date
3/24
3/24
3/24
3/24
3/24
3/28
3/28
3/28
3/27
3/29
3/29
3/29
3/29
4/5
4/5
4/5
4/5
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/18
4/18
Time
1100
1400
1000
1200
1600
0115
0012
0131
2215
0800
1400
0800
1200
1000
1400
1000
1400
1140
1040
1205
1138
1239
1423
2223
0930
1030
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Storm #2
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather #2
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Dry weather #3
Dry weather #3
Total iron
concentration
mg/L
0.96
1.0
3.6
2.6
2.3
51.0
34.0
5.8
1.2
1.5
1.1
1.5
1.1
2.5
2.3
2.7
2.5
44.0
29.0
18.0
3.7
3.5
3.7
1.7
1.9
1.7
(continued)
11-32
-------
TABLE 11-6 (continued)
Sample no.
439
443
448
451
38
60
79
ll n
-5 .1 r
i'HC'
200
2AC
243
246
249
255
258
266
293
302
311
320
329
337
361
381
" 419
431
Outfall
SITE #1
Oil
Oil
010
010
SITE #2
015
010A
004
004
004
010A
008
008
008
009
009
015
015
004
004
004
004
004
010A
010A
010B
004
004
Date
4/18
4/18
4/18
4/18
5/10
5/9
5/9
5/9
5/10
5/10
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
6/9
6/9
Tine
1130
1230
1137
1237
1000
0400
0030
0530
0030
0300
1125
1410
1550
1140
1545
1050
1630
1030
1200
1330
1500
1630
1030
1630
1430
0930
1030
Sampling event
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Storm #1
Storm #1
Total Iron
concentrati on ,
mg/L
2.6
1.5
8.3
4.2
0.57
0.72 .
0.57
0.51
0.20
0.57
1.5
2.2
1.0
0.78
1.4
0.26
0.47
1.2
0.47
0.26
0.26
1.2
1.3
0.82
1.5
2.2
0.25
(continued)
11-33
-------
TABLE 11-6 (continued)
Total iron
concentration
Sample no.
443
455
475
484
493
502
514
519
527
542
546
554
562
570
573
583
593
603
608
618
662
669
676
684
687
695
703
735
Outfall
SITE #2
004
004
004
004
004
004
004
010A
010A
010A
010B
010B
010B
010B
012
012
012
012
012
012
010A
010A
010A
010A
010B
010B
0108
008
Date
6/9
6/9
5/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
Time
1130
1230
1345
1515
1645
1815
2015
0930
1030
1230
0930
1030
1130
1230
0930
1030
1130
1230
1430
1950
1515
1715
1915
2115
1515
1715
1915
1030
Sampling event
Storm #1
Storm #1
Storm #3.
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm '#1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
mg/ L
0.28
0.96
0.35
0.30
0.29
0.30
0.18
3.4
1.5
1.1
5.9
3.7
1.3
1.1
26.0
25.0
6.0
1.5
3.4
6.5
5.9
1.5
1.1
1.6
225.0
1.1
1.2
7.5
(continued)
11-34
-------
TABLE U-6 (continued)
Total iron
Sample no.
737
740
743
746
749
752
755
759
765
843
851
859
862
865
869
875
878
881
888
892
895
904
913
922
940
948
_ 955
1000
1007
Outfall
SITE #2
008
008
008
009
009
009
009
Oil
Oil
013
013
013
014
014
014
014
014
015
015
004
004
004
004
004
010A
. 010A
010A
010B
010B
Date
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
Tine
1215
1605
2315
1035
1230
1615
2315
1045
1520
1100
1530
1945
1115
1145
1540
1935
2050
1010
2235
2225
2255
0025
0155
0325
0100
0300
0500
0300
0500
Sampling event
Storm #1
Storm *1
Storm #1
Storm #1
Storm #1
Stom #1
Storm #1
Storm fl
Storm #1
Storm #1
Storm #1
Storm *1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Stom #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
uui H.CI 1 1 ret 1 1 un ,
mg/L
2.8
3.0
7.2
4.2
5.2
3.0
3.6
11.0
25.0
5.7
27.0
0.82
6.7
1.5
14.0
0.95
3.2
0.89
0.95
0.68
0.45
0.68
0.40
0.38
1.1
1.3
0.93
0.74
0.80
(continued)
11-35
-------
TABLE 11-6 (continued)
Sample no.
1010
1017
1031
1034
1041
1048
1057
1081
1096
1129
1183
1186
1189
1192
1207
1223
1277
1285
1316
1340
1345
1381
1385
1388
1393
Outfall
SITE #2
010B
010B
010B
010A
010A
010A
004
004
004
010B
004
004
004
004
004
004
012
012
004
004
010B
013
014
014
015
Date
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/21
6/21
6/20
6/20
6/20
6/20
6/20
Time
1550
1750
2150
1550
1750
1950
1440
1840
2110
1610
1545
1600
1615
1630
1745
1900
1530
1630
0315
0715
2345
1525
1530
1600
1640
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Total iron
concentration
mg/L
0.93
0.90
1.2
0.98
1.0
1.1
0.29
0.22
1.2
5.9
1.3
0.18
0.35
0.41
0.22
0.38
5.7
18.0
0.31
0.56
1.6
16.0
11.0
3.2
0.65
11-36
-------
TABLE 11-7. DISSOLVED IRON ANALYSIS RESULTS
SITES fl AND *2
MARCH-JUNE 1977
Sample no.
8
89
120
147
167
183
207
217
269
287
311
324
344
352
361
379
388
403
432
441
449
54
80
111
146
190
Outfall
SITE #1
Oil
009A
Oil
010
010
Oil
010
010
010
010
Oil
Oil
Coal pile
009A
009A
Oil
Oil
Oil
Oil
Oil
010
SITE #2
010A
004
004
004
010A
Date
3/24
3/27
3/28
3/27
3/28
3/29
3/29
3/29
4/5
4/5
4/5
4/5
4/16
4/16
4/16
4/16
4/16
4/16
4/18
4/18
4/18
5/9
5/9
5/9
5/10
5/10
Tiae
1100
2100
0225
2100
0145
0900
0900
1100
0900
1300
0900
1300
1155
1125
1415
1138
1423
2223
1030
1230
1237
0300
0030
0530
0030
0100
Dissolved iron
concentration,
Saapling event mg/L
Storm #1
Storm #2
Storm #2
Storn f 2
Storm #2
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather #2
Stora #5
Storm f 5
Storm f 5
Storm *5
Stora #5
Stora #5
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
0.1
0.1
0.1
0.2
0.1
0.1
0.1
0.1
0.6
0.6
0.1
0.1
. 0.5
0.1
0.1
0.3
0.1
0.2
0.1
0.1
0.4
0.1
0.2
0.1
ND
0.1
(continued)
11-37
-------
TABLE 11-7 (continued)
Sample no.
207
241
247
250
256
260
265
294
303
312
321
330
339
347
385
420
432
444
456
476
485
494
503
515
531
550
. 558
566
577
Outfall
SITE #2
010A
008
008
009
009
015
015
004
004
004
004
004
010A
010A
010B
004
004
004
004
004
004
004
004
004
010A
010B
010B
010B
012
Date
5/10
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
6/9
6/9
6/9
6/9
5/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
Time
0500
1125
1550
1140
1545
1050
1630
1030
1200
1330
1500
1630
1130
1330
1530
0930
1030
1130
1230
1345
1515
1645
1815
2015
1100
1000
1100
1200
1000
Sampling event
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather-
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Dissolved in
concentration
mg/L
0.1
0.3
0.1
0.3
0.1
0.1
0.1
NO
0.1
0.1
ND
0.1
0.1
0.1
0.2
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.1
0.1
ND
0.1
0.1
(continued)
11-38
-------
TABLE 11-7 (continued)
Sample no.
587
597
612
665
673
681
692
70 n
7 Or-
7 3 . .
738
741
74.4-
747
750
753
756
763
768
849
863
867
876
879
883
890
893
905
914
Outfall
SITE #2
012
012
012
010A
010A
010A
010B
010B
010B
008
008
008
008
009
009
009
009
Oil
Oil
013
014
014
014
014
015
015
004
004
004
Date
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/10
6/10
Time
1100
1200
1710
1615
1815
2015
1615
1815
2015
1030
1215
1605
2315
1035
1230
1615
2315
1205
2025
1150
1115
1145
1935
2050
1010
2235
2225
0025
0155
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Dissolved iron
concentration,
rag/L
0.6
0.1
0.1
0.2
0.3
0.3
ND
0.2
0.1
0.1
0.7
0.1
0.1
0.4
0.2
0.2
0.2
0.2
0.2
0.9
0.9
1.2
0.3
0.2
0.3
0.4
0.1
0.2
0.6
(continued)
11-39
-------
TABLE 11-7 (continued)
Sample no.
937
952
990
1004
1014
1024
1038
1052
1058
1082
1097
1133
1184
1187
1190
1208
1224
1281
1289
1317
1382
1386
1389
1394
Outfall
SITE #2
010A
010A
010B
, 010B
010B
010B
010A
010A
004
004
004
010B
004
004
004
004
004
012
012
004
013
014
014
015
Date
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/21
6/20
6/20
6/20
6/20
Time
0000
0400
0000
0400
1650
1950
1650
2050
1440
1840
2110
1640
1545
1600
1615
1745
1900
1600
1700
0315
1525
1530
1600
1640
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Dissolved in
concentration
mg/L
0.1
01
0.1
0.3
0.1
1.1
0.1
0.4
0.1
0.1
0.3
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
1.1
0.2
0.3
C.I
ND = Not detectable; detectable limit is 0.02 mg/L.
11-40
-------
TABLE 11-8. PHENOL ANALYSIS RESULTS
SITES *1 AND *2
MARCH-JUNE 1977
Sample no.
1
9
19
27
30
39
48
60
- -
96
109
115
122
146
155
164
178
179
199
265
283
308
315
322
334
- 335
340
360
Outfall
SITE #1
Oil
Oil
Oil
Oil
010
010
010
010
009A
Coal pile
Oil
Oil
Oil
010
010
010
Oil
Oil
Oil
010
010
Oil
Oil
Oil
Coal pile
Coal pile
009A
009A
Date
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/28
3/28
3/27
3/28
3/28 .
3/27
3/27
3/28
3/30
3/29
3/29
4/5
4/5
4/5
4/5
4/5
4/16
4/16
4/16
4/16
Tine
1000
1200
1400
1600
1000
1200
1400
1600
0115
0030
2306
0131
0333
2100
2225
0145
1000
0800
1400
0900
1300
0900
1100
1300
1140
1155
1205
1415
Sampling event
Stora #1
Stora #1
Stora #1
Stom #1
Storm #1
Stom #1
Stom f 1
Stom fl
Stom f 2
Stom f 2
Storm #2
Stom #2
Stora *2
Stom #2
Stom #2
Storm #2
Stom *2
Dry weather #1
Dry weather #1
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather #2
Stom *5
Stom f 5
Stom #5
Stom f 5
Phenol
concentration,
mg/L
0.52
0.01
0.05
0.01
0.21
0.03
0.93
0.44
0.04
0.85
0.04
0.06
0.05
0.05
1.1
0.02
0.02
0.05
0.06
31.0
34.0
0.68
0.05
0.05
0.13
0.18
0.09
0.06
(continued)
11-41
-------
TABLE 11-8 (continued)
Sample no.
375
384
406
428
437
445
454
462
35
40
58
183
215
262
264
334
350
362
386
516
524
539
543
551
559
567
Outfall
SITE #1
Oil
Oil
Oil
Oil
Oil
010
010
010
SITE #2
015
010A
010A
010A
015
015
015
010A
010A
010B
010B
010A
010A
010A
010B
010B
010B
010B
Date
4/16
4/16
4/17
4/18
4/18
4/18
4/18
4/18
5/10
5/9
5/9
5/10
5/10
5/18
5/18
5/18
5/18
5/18
5/18
6/9
6/9
6/9
6/9
6/9
6/9
6/9
Time
0842
1239
0742
0930
1130
1137
1337
1537
1000
0000
0400
0000
1845
1050
1630
1030
1430
1030
1630
0930
1030
2230
0930
1030
1130
1230
Sampling event
Storm #5
Storm #5
Storm #5
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Phenol
concentratioi
mg/L
0.06
0.10
0.04
0.03
0.02
25.0
16.0
23.0
0.02
0.01
ND
0.01
ND
ND
ND
0.01
ND
0.01
ND
0.01
0.01
0.01
0.01
0.01
0.06
0.01
(continued)
11-42
-------
TABLE 11-8 (continued)
Sample no.
571
581
591
601
606
616
622
624
t'-<26
627
626
629
630
631
632
633
634
635
636
637
639
640
642
645
647
648
649
650
Outfall
SITE #2
012
012
012
012
012
012
015
015
015
Oil
Oil
Oil
Oil
013
013
013
013
013
010A
010A
010A
010B
010B
010B
010B
010A
010A
010A
Date
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9 .
6/10
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/10
6/10
6/9
6/9
6/9
Time
0930
1030
1130
1230
1430
1950
1010
2235
1145
1045
1205
1520
2025
iioq
1150
1530
1650
1945
1515
1715
2115
1515
1915
0100
0500
2300
0100
0300
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm f 1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Phenol
concentration,
mg/L
0.01
0.01
0.01
0.01
0.03
0.02
0.01
0.01
0.01
0.01
0.02
0.01
NO
0.04
0.04
0.04
0.02
0.01
0.01
0.01
0.02
0.02
0.01
0.01
ND
0.01
0.01
0.01
(continued)
11-43
-------
TABLE 11-8 (continued)
Sample no.
651
653
656
658
1126
1142
1150
1275
1283
1290
1297
1342
1358
1366
1379
1390
Outfall
SITE #2
010A
010A
010B
010B
010B
010B
010B
012
012
012
012
010B
010B
010B
013
015
Date
6/9
6/9
6/9
6/9
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/21
6/21
6/20
6/20
Time
0500
1750
1550
1950
1610
1810
1910
1530
1630
1730
1830
2345
0345
0545
1525
1640
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Phenol
concentratia
mg/L
ND
0.01
ND
0.01
ND
0.01
ND
0.12
0.02
0.01
0.19
0.02
ND
ND
0.04
0.03
ND = Not detectable; detectable limit is 0.001 mg/L.
11-44
-------
ADDITIONAL DATA
11-45
-------
TABLE 5-6
STORM EVENT DATA
SITE 1
MARCH - APRIL, 1977
CTl
Ua Le
3/24/77
3/27-
3/28/77
3/31/77
4/4/77
A/]6/77
Storm Beginning
0500
2000 (3/27)
mo
0200
0430
Storm Ending
2130
0200 (3/28)
1A30
0500
2000
Total Rainfall
cm
0.8'.
1.42
0.20
0.36
0.71
(inches)
(0.33)
(0.56)
(0.08)
(0.14)
(0.28)
Average
Rainfall
Intensity
cm/lir
0.05
0.23
0.61
0.13
0.05
(In/J.r)
(0.02)
(0»09)
(0.2/.)
(0.05)
(0.02)
Maximum
Rainfall
Intens I ty
cm/lir
0.13
0.61
1.07
0.41
0.56
(In/hr)
(.05)
(0.24)
(0.42)
(0.16)
(0.22)
-------
TABU: r>~?
DRY VS WKT KI,OWSla*'-J)
S1TK 1
MARCH - APRIL, 1977
(HITFAI.I.
DATE
•
1/24
J/27 - 28
1/29
1/31
4/4
4/5
4/16
4/18
. Jffl
Avg. Clow
l|>n(gpn)
4*3
tm>
227
(60)
216
(57)
DOS
¥
Rung*
ip»(w«)
•
435-5M
(115-150)
227
(60)
76-254
(20-67)
V
Avg. Flow
ii»(er-)
IOS6
(279)
6083
(1607)
401
(106)
2112
(JW)
1456
(9IJ)
rr
Rang*
tp«(gp«)
227-2213
(60-590)
454-15026
(1 20-1970)
217-984
(60-260)
560-4542
(150-1200)
228-15900
(60-4200)
C
V
' Avg. flaw
lpa(g|>«)
12.5
(1.3)
16.0
(4.2)
HD<->
•»<«>
11.3
(1.5)
MO
ff!T>
Run|(v
l|iM(nP»)
0 - 29.1
(0 - 7.7)
0 - 67.0
(0 - 17.7)
«»<">
ND<«>
0 - 49.02
(0 - 13.0)
Dl
Avg. flmt
lp»
27-51
(7-14)
0-11.2
(0-1.5)
76-106
(20-28)
1
V
AVR. ri»w
Ipa(gpM)
189
(50)
708
(187)
405
(107)
170
<4S)
Ml
(154)
f,T
RniiRr
l|IM(ft|t«)
45 - 514
(12-141)
JB - 2203
(10 - S82)
91-919
(25-248)
15-167
(4-97)
•3-1)74
(22-161)
(•) No flew data were taken lit Ontfall* 006 ami 009, nor'at the r.oal pile drainage ditch.
(It) There wa* no meacurnble dry flow at 010 during tho progran.
(c> MO - Ho flow data were obtained.
(d) Flow values are tla>« wlgltted avrragva for the entire evunt.
-------
TABLE 5-8
RANGE OF POLLUTANT CONCENTRATIONS AT THE
SAMPLING LOCATIONS AT SITE 1
MARCH - APRIL, 1977
Till Int ant
Tut.ll SllUpflldfd ilillldfi
-'Total (Unsolved Sull Tot dl Iron
Illnaolved lioti
Plicnola
Cyanide Cl.il.il)
Amuoitlii
Sul f, ilc
Onlf.ill 005
in y
4-11
127-461
Wet
11-111
2)8-964
•
H.iiif;o of I'D II ill lint Onicc'iit Tilt Ions, i»i;/t
Outfall
Dry
006
W.-t
ll(>/6
200-15(11
Outfall 009A(a)l(b)
Dry
Wft
156-951
176-1116
18-51
O.IO(c)
0.04-0.09
n.d.-0.01(d)
0.21-3.5
Ontf.ill OKI
Dry
4-6,9
2007-541B
1.1-8.1
0.1-0.6
1 d- 14
n.d.-oV>
y,-96
400-I5UO
Wft
10-1272
661-4991
1.2-3.6
0.1-0.2
0.02-1 .1
,,.d.(d>
1.6 71
180-490
Outfnll Oil
Dry
7-42
f.68-1049
1.1-2.7
0.10
0.57-26
Wt-t
9-15
4.?7 II'
0.96-5
0.10 0
0.01-0
n.d.-O.O
0.65-
ill Oil
Wft
9-151
427-11%
0.96-5.H
0.10 0. 10
0. 01 -0.12
n.d.-O.OI00
0.fi5-2B
C.OU I
Dry
..Uo^
Wcl
1) 16 9559
I4I9-2974
14-44
0.50
-------
TABLE 5-9
MKAN POLLUTANT CONCKNTRATIONS, IN my/I AT SITE 1
MARCH - APRIL, 1977
Outfnll
Pollutant
TSS
ma
Total Iron
Dlaaalved
Iron
Mienola
Gyanlilu
(total)
AMionU
Bylfata
on
Dry
IS
96
5
Uet
4}
MI
006
Dry
(.)
Hat
284
162
1
llry
M9<«>
Wet
SOS
74$
32.4
0.1
0.06
0.01
2.1
0
l»ry
•4
M;S
3.3
• .*
IS
o.s
73
....***
10
Wat
184
21SI
2.4
0.1
0.J7
-,(b>
41
112
0
Dry
IB
A&A
fiWw
1.9
0.1
0.13
_!•*
9.1
II
Wat
IS
919
J.6
0.2
O.OM
•.001
3.4
(teal rile
l»ry
UinlnaK*- IHli-h
0.39
_c*>
S6
(a) NCI dry aavplaa cotUelad.
(b) Several non-datectcbla valnaa wvru alaa
-------
TABLE 5-10
AVERAGE MASS LOADINGS OF POLLUTANTS(a)'(b)'(c)
DRY VS. WET WEATHER
MARCH - APRIL, 1977
OUTFALL 005 - SITE 1
Data
Faraawtcr
Total Suapndvd
Solid*
Total DUaolvad
Solid*
«n-
Cow:..
a*A
39
931
3/2* '>
An-
Flo*.
Ipa
(»•)
1200
(317)
1200
(117)
tot)
*n-
Haa*
Loading,
kg/hr
(Ib/hr)
2.S2
(4.2)
67.5
(1*9)
3/27-21 Otat)
An-
Coae..
•t/1
41
332
*n-
Fio«,
laai
(w»)
M*5
(10U)
38*7
(1016)
An-
Iteaa
Loading.
kg/hr
(Ib/hr)
11.1
(2*.*)
76.6
U64.3)
3/29 Or--)
An.
Coac.,
«g/l
It
353
An-
Flov,
Ipa
(««•>
473
(125)
473
(125)
A»g-
(te**
Loading,
kg/hr
(Ib/hr)
0,4$
(9.»9>
10.0
(21.01
3/31 (Wet)
Avg-
Cone.,
•t/1
38
581
Avf.
Flov.
Ipn
(«p«)
401
(106)
40J
( 1 06 )
Avg.
Loading
*g/hr'
Clb/hr)
0.91
(2.0)
1 ..0
(30. »)
Dac«
rarwtar
Total Sn»>Mdad
Solid*
Total Ot**olvcd
Solid*
*/* ((tat)
*n-
One..
•f/i
37
6*9
Av«.
no«.
!»•
(«P«)
243*
(6*3)
2*3*
(M3>
An-
He**
Loadiac.
•Ht/hr
(Ib/hr)
s.*c
(12.0)
•7.7
(214.9)
*/S (Dry)
An-
Coac.,
•f/1
17
**3
An-
FlOM,
IP-
(»P-)
227
<*0)
227
(M>)
An-
Ha**
Loading.
kg/hr
(Ib/hr)
0.23
(0.51)
6.0
(13.2)
4/16 (U«t)
An-
Cone.,
-*A
75
371
An-
Flov.
IP-
(«t->
4205
(nil)
4205
(Ull)
4/1B (Dry)
Avg. |
Has*
loading.
kn/hr
(Ib/hr)
19.0
(41.8)
93.6
(J04.0)
Avg.
Cone. «
»«/l
1*
409
AvE.
Flov,
ip-
-------
TABLE 5-11
AVERAGE MASS LOADINGS OF POLLUTANTS'
DRY VS. WET WEATHER
MARCH - APRIL, 1977
OUTFALL 010 - SITE 1
Dace
Parameter
Total Suspended Solids
local Dissolved Solids
lotal Iron
Dissolved Iron
Phenol
ftffl&onia
Sulfate
Avg.
Cone.,
mg/1
76
2170
2.61
.
0.46
50
285
3/24 (Wet)
Avg.
Flow,
Ipo
(gpm)
12.7
(3.36)
12.7
(3.36)
12.7
(3.36)
12.7
(3.36)
4.43
(1.17)
14.7
(3.88)
Avg.
Mass
Loading,
kg/hr
(Ib/hr)
0.06
(0.13)
1.65
(3.64)
0.002
(0.004)
0.0004
(0.0009)
0.013
(0.03)
0.25
(0.55)
3/27-28 (Wet)
Avg.
Cone.,
mg/1
1717
150
0.119
0.559
41.0
224
Avg.
Flow,
1pm
(gpm)
34.4
(9.1)
34.4
(9.1)
34.4
(9.1)
34.4
(9.1)
34.4
(9.1)
34.4
(9.1)
Avg.
Mass
Loading,
kg/hr
(Ib/hr)
3.54
(7.80)
0.31
(0.68)
' 0.0002
(0.0005)
O.OC1
(0.003)
0.08
(0.19)
0.46
(1.02)
b)
Average Mass Loadings for wet weather calculated by multiplying the time weighted
average concentration by the time weighted average flow, which were determined
from the flow and concentration curves for each event.
Average wet weather flows are tisie-weighted average flows for the sampling period
for-each parameter. These may vary for the different parameters within each
storm.
•\
Average Mass Leadings for dry weather calculated by multiplying the straight
average concentration from Appendix B by the time-weighted average flow from
Table 5-7.
11-51
-------
TABLE 5-12
AVERAGE MASS LOADINGS OF POLLUTANTS
DRY VS. WET WEATHER
MARCH - APRIL, 1977
OUTFALL Oil - SITE 1
*"* '
s
111 If
1-1*1-1 cr
l.il
*,H.,MI,J
Ul,
4M.l|Vl-
72.8
762
((.9.22)
-'*».'
(Mi. M)
Avg.
Han*
1, nailing,
Vg/lir
( Ib/hr)
0.14
0. 12
17.5
U*. 5)
0.02
(0.04)
O.OO2
(0.004)
0.002
(0.004)
0.021
(0.05)
1/27-28 (Wfl)
Avg.
(,'»4)
l(.li')
<'•'«'•)
I'll
(I'M.)
AvB.
MrtHM
(.odillni;,
kg/hr
(Ib/hr)
10. 1
(22.6)
Uv.O
(145. 1)
0.26
(0.57)
0.004
(0.1(09)
0.004
(O.OO'I)
O.Srt
(I.2H)
1/29 (Hry)
Av|(.
Cone . ,
«B/I
14
681
1. 1
0,1**
0.05',
•11
Av«.
How,
I|IM
(RI*)
IB
(10)
1H
(10)
Id
(10)
18
(10)
IH
(10)
IH
(10)
AVK-
H.IHH
Uiiidlng,
kR/lir
(ll./l.r)
0.01
(0.07)
1.56
(».'•»
O.OOJ
(d.007)
0.0002
('().IKIO'>)
0.0001
(0.0001)
o.os
(0.11)
4/5 (Hry)
Avg.
Cone. ,
•H/l
14
1021
2.6
0.1
0. 26
4.9
AVH.
How.
Ip.
" 5
(l.2:;lirri)
O.OOI
(O.OOX)
4/lb (U<-t)
Avg.
Coin- . ,
«g/l
51
1062
1.61*
0.2*
0.08*
0.912
Avg.
How.
Iprn
(BI«)
568
(150)
SUB
( 1 50)
915
(247)
9)5
(247)
477
(126)
5(,8
(150)
Avg.
H.ISB
Lonilliig,
kg/In
(ll./l.r)
1.74
O.HI)
16 . 2
(79.6)
».l
(0.45)
0.01
(O.i»2)
II. Ill)/
(0.004)
0.01
(0.07)
4/IH (Illy)
Avg.
(.'OIK: . ,
•I',/'
10
7«5
1 .9
O.I
0.025
0.97
Avg.
How,
l|.m
(RI'H.)
87
(21)
87
(21)
87
(21)
87
(2J>
87
(21)
87
(?))
/
1
\AI,
*
(1
(
(I
<
(
u
(
((
0
(0
(
((
Av|;.
HJUH
(IWhr)
0.16
(O.Vi)
/i. I
(9.0)
0.01
10.02)
{(.001
(0.002)
0.0001
(0.0001)
0.005
(0.01 I)
*Hlrnl|;lit ,i
out v
Av«:r.i|;>' ll.iss I I'.Hllnr.'i lor wl wt'.itln.'r rulrul.it cil (>y mnl ( l|.| y mi; tin- < Iwi- wrl|;l.l<-J w. riii;<
< <>i» i ill I .il Ion Ity III.' I IIIM- we l|;lil'd ;iveri|;i' (ii>w. will, li wen- ih i • i ml ii- il IID^I I In (Inu ,nnl
i IIIK rot l .11 Inn rnivi'M I<>| fin l< cv. 'It .
tr.ii'ti |.ii.'MM* I. • r . Tlifii.1 m..y v.iry (or tTi:i -il f fcrt-nt pa. .niM'i I't't; ulll.ln c;u h Ntnim.
. ..H'' II. .,. I,...II.H'.^ lor dry wuall.u. , ., I, .11 .1 ,• J l.y m.i I I I |i I y I lit-. I I..- M>ri.lltM
Reproduced from
best available copy.
-------
TABLE 5-13
STORM EVENT DATA
SITE 2
MAY - JUNK, 1977
I-J
M
1
cn
OJ
Date
6/9-
6/10/77
6/20/77
Storm Beginning
0500 (6/9)
0900
Storm Ending
1500 (6/10)
20)0
Total Rainfall
cm
4.45
2.59
(Inches)
(1.75)
(1.02)
Average
Rainfall
Intensity
cm/hr
0.13
0.23
(In/hr)
(0.05)
(0.09)
M.I K i mum
Ra i n fa 1 1
Int.enu Ity
Dur li g Storm
cm/hr
i.«
J-)
(in/hr)
(0.56)
.<•)
No rainfall intensity data were collected on June 20 due to equipment failure
and manpower constraints.
-------
TABLE 5-14
DRY VS. WET FLOWS 5
SITE 2
MAY - JUNE, 1977
Outfall
n/inO))
002
(c\
004 '
MA f V C f
006
surtVC)
007
rt/MS^®*
009
010A(b)
010B(b>
•
Date
5/10
5/18
6/9-10
6/20
5/10
5/18
6/9-10
6/20
5/10
5/18
6/9-10
6/20
5/10
5/18
6/9-10
6/20
5/10
5/18
6/9-10
6/20
5/10
5/18
6/9-10
6/20
5/10
5/18
6/9-10
6/20
Sampling
Condition
Dry
Dry
Vet
Wet
Dry
Dry
Wet
Wet
Dry
Dry
Wet
Wet
Dry
Dry
Wet
Wet
Dry
• Dry
Wet
Vet
Dry
Dry
Wet
Wet
Dry
Dry
Wet
Vet
Average Flow
Ipa (gpm)
^
53 (14)
-
—
163 (43)
413 (109)
549 (145)
382 (101)
1120 (296)
2150 (568)
2498 (660)
3066 (810)
4.5 (1.2)
2.9 (0.8)
45 (12)
291 (77)
_
5344 (1412)
"
-
l.OSxlO5 (28570)
—
_
5.14zlOu (13590)
*•
Range,
1pm (gpm)
_
23-91 (6-24)
-
—
132-310 (35-82)
223-727 (59-192)
163-988 (43-261)
189-795 (50-210)
655-3410 (173-900)
1540-3293 (407-870)
730-4290 (193-1133)
1692-9463 (4i7-250C)
4.0-4.9 (1.0-1.3)
2.5-4.0 (0.7-1.0)
1.1-216 (0.3-57)
45-5776 (12-1526)
-
5223-5465 (1380-i^--)
-
—
1.03xl05-1.12xl05 (272SO-29580)
""
—
3.3xlOu-6.6xlOu (8640-17480)
^
(a)
00
(e)
Flow data were not collected at outfalls 003, 005, 008, Oil, 012,
013, 014, and 015.
Straight averages.
Time-veighted averages.
11-54
-------
TABLE 5-15
RANGE OF POLLUTANT CONCENTRATIONS AT THE
SAMPLING LOCATIONS AT SITE 2 IN rag/1
MAY - JUNE, 1977
Outfall
002
SSjurr ' PI-V
I
U^n*nd«4
IgtHnolved
Mtrm
WM
ta-W
m
11-2019
Wet
9-176
1112-284
003
[»rv : Wet
11-132
93-148
. OOi
!>rv : W-c
1
2-47
113-205
0.20-1.2
3-39
160-359
0.18-2.2
n.d.-0.2 0.1-O.b
006
Dr1-' Wet
20-416
102-159
S-2537
145-490
i
i
007
Or'
Wei
}
1-60
54-245
3-119
107-418
OOS
DTI i Wet
22-56
19-39
112-172 ! 224-265
1.0-2.2
0.1-0.3
2.8-7.5
0.1-0.7
'
00?
Sf» ; Wet
4-58
116-138
0.78-1.4
0.1-0.3
55-109
151-251
3.0-5.2
0.2-0.4
tURAtTT
'r
tal Stnpended
MM*
tal Dlmolved
MU.
i
tol Iron
Bwolwd Iron
ltaol(e)
Spd<»ffc>l»l) "
i^M»
j .
;«•*
n.r..ti
010A
DTT i W« t
5-37
76-125
3-4D
131-253
0.57-1.3 , 0.93-5.9
o.i | n.i-o.4
n.d.-O.Ol n.d.-O.02
t
0.01 0.01
i
3.8-8.6 0.1-0.7
010B
t>rv ! Wet
13-28
89-133
i .
1.5
(b)
0.2
n.d.-O.Ol
12-702
137-239
0.74-225
n.d.-l.l
n.d.-O.C*
n.d.-O.Ol n.d.-0.02
7 l(b) 0.07-4.1
1
(*)
Oil
Drv Wet
56-2684
299-681
11-25
0.2
n.d.-0.02
(e)
—
0.23-
0.43
195-270
(a)
012
DI-T ; Wet
29-563
222-546
1.5-26
0.1-0.6
0.01-
0.19
o.o9-o.:
0.41-
1.6
52-128
(a)
013
Drv ; Wet
12-1380
.J55-1690
0.32-28
0.9-1.1
O.ni-
0.04
0.38-
0.71
18-3?
36-190
(*)
014
Drv
Viet
24-121
232-524
0.95-14
0.2-1.2
w.
tb)
So dry weather sanples collected.
i
Only one sample analyzed.
Cyanide vas not analysed at this outfall.
n.d.-not detectable. Detectable liait for dissolved iron is 0.02 mg/1.
a.d.-aot detectable. -Detectable limit for phenol is 0.001 mg/1.
«.d.-noc detectable. Detectable liaic for total cyanide is 0.001 mg/1.
11-55
-------
TABLE 5-16
MKAN POLLUTANT CONCENTRATIONS IN rog/J AT SITE 2
MAY - JUMK, 1977
i
en
Ihilliilt
0»»
00,""
nn^
,M4«"»
!!
2i/
192
6*
TI»S
/«'!
l/fl
110
157
216
no
271
1IH
2>/
149
241
124
201
10'.
IHI
10^
IRI
IH
18
II .'•
1 '.(.
i.8
fill lilt mil
DlNHiilvrd Ir.tn
0.08
0.14
».2I
0.2.
0.2
O.I
O.I
0.2
-(h)
0.2
1). IH
0.2
1 .0
i). '•
I'hi'li.il
0.01
d.oo'i
n.no'i
0.01
11.01
0.04
II. (11
T..t«l
( yji(ilil>i
0.01
0.01
O.OOi
(I. Oil
H.2
».« ......
Anmoii 1 a
18. 4%
0.2d
(I.)
(l.i,
0. )l
I.I,
."». 1
-
'/ M
;H
it'i
i y wt-;i» Itt'i
Reproduced from
best available cor
-------
AVERAGE MASS LADINGS OF POLLUTANTS
DRY VS. WET WEATHER
MAY-.HINF, 1977
OUTFALL 002-SITE 2
(a), >,
Date
i
en
"vj
I'aramnter
Total Suspended
Sol Ids
Total Dissolved
Sol ids
5/18 (Dry)
Avg.
Cone . ,
wg/1
20
lift
Avg.
Flow,
1pm
(gpm)
53
(14)
53
(14)
Avg.
Hit as
Loading,
kg/hr
(lb/hr)
0.07
. (0.14)
0.36
(0.8)
6/9-10 (Wot)
Avg
Cone. ,
mg/i
65
212
Avg.
Flow,
1pm
(gpm)
53
(14)
53
(14)
Avfj.
Mass
Loading,
kg/hr
(lb/hr)
0.21
(0.45)
0.67
(1.48)
6/20 (Wet)
Avg.
Cone . ,
mg/1
37
133
Avg.
Flow,
1pm
(gpm)
53
(14)
53
(14)
Avg.
Loading,,
kg/hr
(lb/hr)
0.12
(0.26)
0.42
(0.93)
(a)
(b)
(c)
(d)
(e)
(O
Average mass loadings for wet weather calculated by multiplying the time weighted average
concentration by the time weighted average flow, whicii were determined from the flow and
concentration curves for each event.
Average v/et: weather flows are time weighted average flows for the sampling period for
each parameter. These may vary for the different parameters within each storm.
Average mass loadings for dry waather calculated by multiplying the straight average
concentrations from the Appendices by the average flows from Table 5-14.
Wet weather average mass loadings were estimated using dry weather flows because wet
weather flow data were not obtained.
Straight average used.
No dry flow data collected on 5/LO/77.
-------
TABLE 5-18
AVERAGE MASS LOADINGS OF POLLUTANTS(n)'(b)'
DRY VS. WKT WKATIIER
MAY-JUNK, 1977
OUTFALL 004 - SITB 2
M
i'.ll «!
I'm Hinder
Ttiliil Siirpt-mlt'il
Sol MM
Till 111 III IIBOI VL'll
S..II.U
To) ill Iriin
01 MHO 1 vo J lion
A»».
Conn . .
•I/I
9
155
0.2(
5/10 (Dr
Av|.
riow.
IP*
161
(4J)
161
(4J)
16)
(41)
I6J
(41)
r)
AVR.
Mil UN
lnc . ,
-^i1
10
250
O.4'l
0.11
(0.002)
,/•>-„> >W
AVR.
flu«,
I|IH
A*!*-
662
(l/'i)
662
0/5)
662
O/5)
691
(181)
ft)
Av».
Him a
l.imdliin.
l/'n)
o.:-2
(0.4H)
4.')
do. n>
0.01
(H.02)
0.001
(0.002)
(a)
(b)
(c)
Average mass loadings for wot weather calculated by multiplying the time weighted average
concentration by the time weighted average flow, which were determined from the flow and
concentration curves for each event.
Average wet weather flows aru time weighted average clows for the sampling period for
each parameter. Those may vary for the different parameters within each storm.
Average mass loadings for dry weather calculated by multiplying the straight average
concentrations from the Appendices by the average Mows from Table 5-14.
value only.
° ii. d. -not detectable. Detectable limit is 0.02 mg/1. .
-------
TABLE 5-19
AVERAGE MASS LOADINGS OF POLLUTANTS '*
DRY VS. WET WEATHER
MAY-.IUNE, 1977
OUTFALL 006 - S1TK 2
i
ui
UD
Date
I'arnmv
Tiit.il Sus|
Sol III«
Sotldli
l«-r
leiulrd
solved
Avg.
Cone .,
»g/l
41
112
5/10 (l»r)
Avg.
Flow,
lp.
(gp»)
1120
(296)
1120
(Z96)
r)
Avg.
HllRI
l.2)
7.5
(16.5)
Avg.
(.'out .,
"8/1
1)0
1/.8
Via (!>•
Avg.
Flow,
Ipn
(8P«)
2150
(^68)
2150
(56B)
y)
AvS.
Hiinn
l4>»iiln)t.
kn/lir
(Ib/lir)
16.8
(V)
19.1
(42)
Avg.
(;<»nc .,
"•R /I
vr>
•i 1,1,
fc/9-IO (
AVR .
How,
l|>u
(ei"»)
1851
Ci89)
1851
(/•H9)
Wet)
Avg.
H.inn
l.onillnp, ,
kR/lir
(H>/lir)
55
(121)
27.1
(59.6)
Avg.
C«»nc.,
»g/l
n
186
6/20 (
Avg.
Flow,
Ipn
(RI"«)
282/.
(7/.r.)
2824
(746)
J.-t )
Avg.
MJIHH
l.niiillng,
kg/In
(ll'/lir)
5.4
(11.9)
31.6
(69.))
(a)
(b)
(c)
Average mass loadings for wet weather calculated by multiplying the time weighted average
concentration by the time weighted average flpw, which were determined from the flow and
concentration curves for each event.
Average wet weather flows are time weighted average flows for the sampling period for
each parameter. These may vary for the different parameters within each storm.
Average mass loadings for dry weather calculated by multiplying the straight average
concentrations from-the Appendices by the average flows from Table 5-14.
-------
TABLE 5-20
AVERAKE MASS LOADINGS OF POLLUTANTS(r
(Ib/lir)
0.004
(0.009)
0.01
(0.(«)
6/9-10 (Wet)
Avg.
Cone .,
-g/l
Jfr
222
Avg.
Klnw,
Ipi.
(RI-O)
JM
(H.fl)
11. J
(8.fl)
Avg.
HllH*
Lctaillng,
*B/hr
(Ib/lir)
0.07
(O.li)
0.44
(0.97)
6//0 (Uvt)
AVR.
Cone.,
»g/l
22
244
Avg.
Flow,
l|im
(«!•«)
165.4
(41.7)
165.4
(41.7)
Avg.
II. in ii
l.iinillii|>,
l-K/l-r
(ll,/l,r)
0.22
(0.4H)
7.42
(5.12)
(a)
(I.)
(c)
Avcrauu mass loadings f»»i" WL-L wtMllicr calculatoj by mull Ipl ylnp, the time weighted nvei ai;«:
c.uitrcMit rat ion by the time wcigliteil average flow, which were determined Irom the flow tind
concentration curvcn for rnoh event.
Averiijje wi;t weather flows ;iro time weighted average flows ff>r the anmpliii(> period for
enr.h (i.irnmetcr . These m;iy vary for the different parameters within each atonn.
Averajju mass loadliiRH for dry weallier calculated l»y null t I|>ly I nj1, the atraJp,ht
concent rat lonii from the ApjH-nd i ••<-.» by the average I lows from Table 5-l/».
-------
AVF.RACK MASS LOAD1NCS OF POLLUTANTS ' (l>]
DHY VS. WKT WhlATIII'K
MAY-.HINIi, 1977
OUTFALL 009 - S1TF. 1?
Date
Parameter
Total Suspended
Solids
Total Dissolved
Solids
Total Iron
Dissolved Iron
5/18 (Dry)
Avg.
Cone.,
nig /I
32
124
I.I
0.2
Avg.
Flow,
1 pin
(gP«")
5344
(1412)
5344
(1412)
5344
(1412)
5344
(1412)
Avg.
Mas.-
Load li
KK/I
10.:
(22.7
39.?
(87. f
0.35
(0.77
O.Ofc
(O.H
6/9-10 (Wet)
Avg.
Com:
mg/1
73
201
4.0
0.25
Avg.
Flow,
1 pin
(BP"0
5344
(1412)
5344
(1412)
5344
(1412)
5344
(1412)
Avg.
Ma s a
Loading,
Icg/hr
(Ib/hr)
23.4
(51. b)
64 . 4
(141.7)
1.28
(2.82)
0.08
(0.18)
(a)
(h)
(c)
(d)
Average mass loadings calculated by multiplying the straight
average concentrations from the Append Icc-u by the stra',;ht
average flow.
Wet weather average mass loadings were estimated using dry weather
flow data because wet. weather flow data were not obtained.
No dry flow data collected on 5/10/77.
No sample tulU'ded on 6/20/77.
-------
TABLE 5-22
I
a>
AVERAGE MASS LOADINGS OF POLLUTANTS
DRY VS. WET WF.ATHRR
MAY-JUNE, 1977
OUTFALL 01 OA - SITE 2
DoLu
Parameter
Total Suspumlcd
Sol Ida
Total Dissolved
Solldu
Total Iron
Dissolved Iron
Phenol
Total
Cyanide
AmmonIn
Avg.
Cone .,
wg/l
23
lO/i
.06
O.I
.005
.01
A.')
5/ia (u
Avg.
Flow,
1pm
(gpm)
l.OSxlO5
(28570)
l.OSxlO5
(28570)
l.OBxlO5
(28570)
l.OSxlO5
(28570)
l.OSxlO5
(28570)
l.OSxlO5
(28570)
l.OHxlO5
(285/0)
ry)
Avg.
Mans
Loading,
kg/hr
(Ib/hr)
149
(328)
674
(148))
6.87
(15.11)
0.65
(1.43)
0.0)
(O.O/)
0.06
10.13)
31.7
(69.7)
Avg.
Cone .
tng/1
19
18.1
1.73
0.2
0.01
0.01
0.27
6/9-10 (W
Avg.
V I ow ,
1pm
(}-,pro)
l.OSxlO5
(28570)
I. 08x1 O5
(28570)
l.OSxlO5
(28570)
1.08x1 0s
(28570)
l.OSxlO5
(28570)
1 .OHxlO5
(28570)
1 .OSxlO5
(28570)
et)
Avg.
Ma SB
Loading,
kg/hr
(Ib/hr)
123
(271)
1186
(2609)
11.21
(2/4.66)
1.3
(2.86)
0.06
(0.13)
0.06
(0.13)
1.75
(J.85)
(a)
Average mass load lugs calculated by multiplying the straight
average concent rat ions from the Appendices by the straight
average 1 low.
Wet weather average mass loadings were cotJmated lining dry weather
flow data becati.se wet wen 1. lie r Clow data were not obi
d r v £ 1 .^u «l..t .-i
I tl /.
-------
MAY-JUNE. 1977
OUTFALL 01OB - SITE 2
1
en
OJ
Date
Parameter
Total Suspended
Solids
Total Dissolved
Sol ids
Total Iron
Dissolved Iron
Phenol
Total Cyanide
Ainnion la
5/IH (l.ry)
Avg.
Cone.,
wg/1
22
102
1.5(d)
0.2(d)
0.005
0.005
7.1(d)
Average mass loadings
the Appendices by the
Uf-»l' uf»;itlit»r iit/**fno*» tnn
Avg.
Flow,
1pm
(gpm)
t
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10''
(13590)
calculntoc
straight ;
no 1 nrtrl 1 it i
Avg.
Mass
Loading,
kg/hr
(Ib/hr)
67.8
(149.2)
314.6
(692.1)
4.63
(10.2)
0.62
(1.36)
0.02
(0.04)
0.02
(0.04)
21.9
(48.2)
1 by mul tii
rverage flc
ra ur»m 43 at
6/9-10 (Wet)
Avg.
Cone .,
mg/1
71
185
20.3
0.21
0.014
0.011
0.32
Avg.
Flow,
1 pin
(gpm)
5.14x10''
(13590)
5.14x10''
(13')90)
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10*'
(13590)
5.14x10''
(13590)
5.14x10"
(m,,)
Avg.
Masn
Loading,
kg/hr
219
(482)
570.5
(1255.1)
62.6
(137.7)
0.65
(1.43)
0.04
(0.09)
0.03
(0.07)
0.99
(1MH)
6/20 (Wet)
Avg.
Cone .,
mg/1
44
181
3.75
o.i(d)
0.005
0.01
0.98
Avg.
Flow,
Ipm
(gpm)
5.14X101*
(13590)
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10''
-(13590)
5.14x10''
(13590)
5.14x10''
(13590)
Avg.
Ma s s
Loading,
kg/hr
(Ib/hr)
136
(299)
55H.2
(1228)
11.57
(25.45)
0.31
(0.68)
0.02
(0.04)
0.03
(0.07)
3.02
(6.6/1)
•lying the straight average concentrations i'rom
»w.
(c)
wet weather flow data were not obtained.
No dry How data collected on 5/10/77.
One value only.
-------
TABLE 5-24
MEAN POLLUTANT CONCENTRATIONS, mg/1
IS THE TIDAL RIVER AT SITE 2
MAY-JUNE, 1977
(SAMPLING LOCATION 015)
Pollutant
TSS
TDS
Total Iron
Dissolved Iron
Phenols
Total Cyanide
Annonia
Sulfates
Mean Pollutant Concentrations, rag /I
Dry
19
120
0.43
0.1
O.OC5
0.004
-
20
Wet
35
182
0.83
0.3
0.010
-
0.34
-
11-64
-------
TABLE B-l
DUSTFALL DATA, SITE 1*
Outfall 010 Estimated Acreage 2.6 Coal Handling
Sample Area Description
'•I Moderate Activity - Near Water Tower
«2 High Activity - Uear Conveyor
*-'3 Low Activity - Outside Conveyor Area
Dustfall Values
Day
Ho.
1
2
3
4
5
??!
Cumulative
weiehts
4.67
7.48
49.44
16.29
15.04
Average
Per Dav
4.67
3.74
16.48
4.07
3.01
n
Cumulative
Weiehts
15.22
28.54
32.23
26.27
96.61
(mg) /4 sq ft
Average
Per Dav
15.22
14.27
10.74
6.57
19.32
#3
Cumulative
Weights
0.06
0.09
2.38
2.94
1.25
Average
Per Dav
0.06
0.04
0.79
0.74
0.25
Total Daily Average/ft2 - 1.67 mg/day/ft2
total Daily Average/Acre - 72.75 g/day/acre
fatal Daily Average/Basin 010 - 0.19 kg/day (0.42 Ib/day)
*Data is calculated in metric/English units from raw field data
and is converted to metric units only in text of report.
11-65
-------
TABLE B-2
DUSTFALl, DATA SITK 2**
Sinter riant KallmJleJ Acreage 11.4 High Activity
Coku and Coal Pllun Estimated Acreage 1.5 Moderate Activity
fiqu.-ireu
gtotal
Mo.
Days
Avg.
Wgli.
Average
Avcrnge
fot tlld
Sinter I'll. nt Dtibtfal) Site
lltislfdll WflKhtB (rag)/ 4 HI) ft
fl §2 n 14 15 16 11 18 *9
8.46 6. 09 2.91 5.8b 9.03 15.24 25.76 22.21 25.46
11.38 16.90 8.72 13.16 6.98 7.86 14.09 4.05 4.71
7.05 6.91 9.50 3.50 3.05 17.60 9.53 7.36
26.91 31.9 21.1 22.52 19.06 40.7 49.38 33.62 29.63
20 21 22 23 24 25 26 27 19
1.35 1.52 0.96 0.98 0.79 1.63 1.90 1.25 1.56
Dally Accumulation 1.33 »i;/day/4 a<| It
0.33 .g/day/ft*
14.48 en/duy/acr*
Dally Accumulation
Sinter Plant Area 0.17 Vg/day
0.36 Ib/day
Cokt! and I'oal St.ir.iy.' Site
Duutfdll Uolclitu (iflij)/4 b<| ft
It 12 13 04 #5 J6 #7 »8
2.04 5.16 T.dJ 5.8B 6.50 7.36 6.73 23.27
8.92 11.73 * 5.66 5.3lay
0.034 ll>/iliiy
19
34.52
1.59
36.11
19
1.9
*-vl)at,i la f.iili-.ulul.cd in meLr lt:/Knj» I lsl» units from raw field d.it;
ami Is convertt«tl to nn«trlc units only In text of report.
-------
STUDY NUMBER 12
-------
STUDY NUMBER 12
DATA
SOURCE:
SOURCE ASSESSMENT: COAL-FIRED
RESIDENTIAL COMBUSTION EQUIPMENT
FIELD TESTS, JUNE 1977
DATA
STATUS:
EPA-600/2-78-0040, June 1978
AUTHORS:
CONTRACTOR:
D. G. DeAngelis and R. B. Reznick
Monsanto Research Corporation
1515 Nichols Road
Dayton, Ohio 45407
Contract No. 68-02-1874
PROJECT
OFFICER:
Ronald A. Venezia
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
12-1
-------
The objective of this study, performed in Denver, Colorado, during June
1977, was to compile an emissions data base for coal-fired residential combus-
tion sources. With the recent trend toward again using coal as a home heating
fuel, this information is important in planning regional air quality manage-
ment strategies. Two coal-fired home units were tested: a stoker-fed hot-
water boiler and a stoker-fed warm-air furnace. Tests were run using three
types of coal of varying ash and sulfur content and with representative "on"
and "off" cycles. In the coal burner beds, combustion continues during the
"off" cycle, although at a much slower rate. Table 12-1 from the final report
shows the sampling plan.
A modified and supplemented Level 1 protocol was followed. Particulates
and condensable organics were collected with a Method 5 train and analyzed by
AA, ICAP, and GC/MS.
Atomic absorption analysis was performed for arsenic, mercury, and se"le-
niun; inductively coupled argon plasma was employed for the analysis of alum-
im», antimony, barium, boron, cadmium, calcium, chromium, cobalt, copper,
iron, lead, magnesium, manganese, molybdenum, nickel, phosphorus, silicon,
silver, sodium, strontium, tin, titanium, vanadium, and zinc. The Level 1
separation scheme (CH2C12 extraction, solvent exchange, LC fractionation) was
followed for organics but analysis of the fractionated sample was by GC/MS.
It should also be noted that the second, third, and fourth LC fractions were
combined for specific analysis by GC/MS for PCB and POM components.
Sulfur oxides were sampled and analyzed by Federal Register Method 6.
Method 7 was used for N0x determinations. Carbon monoxide was determined by
DrSger tube, and a Fyrith test kit (employing the Orsat Method) was used to
analyze Tedlar bag samples for 02 and C02. Grab samples of coal and bottom
ash (and a 1:10 distilled water leachate of the ash) were analyzed by AA and
ICAP for the same selected elements as in the modified Method 5 sample. The
coal was also analyzed by standard procedures for p ix^.iate and ultimate composi
tion (»oisture, ash, S, C, H, N, 0, Cl, volatiles, fixed carbon, Btu value),
12-2
-------
r>o
i
to
TABLE 12-1,
Test
run
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Combustion
equipment
Boiler
X
X
X
X
X
x-
X
X
X
X
X
X
furnace
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
. EMISSION SAMPLING PROGRAM FOR
Test coal
Designated
A fc C
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Low
X
X
X
X
X
X
X
X
X
Ash level
Medium High
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Heating
segment
ON OFF
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
COAL-FIRED RESIDENTIAL COMBUSTION EQUIPMENT
cycle
sampled
Total
X
X
X
X
X
X
X
X
X
X
X
X
X
Sample types collected
Participates
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
s°x
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
NOX
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
CO POM
X X
X
X
X
X X
X
X
X
X
X
X
X
X
X X
X X
X X
X
X
X
X
X X
X X
X X
X X
X
X
X
X
Condensable
organics Elements SASS
X
X
X
X
X
X
X
X
X
X
X
X
X 1 X
X } X
X
X
x j x
X 1 *
X
X
X
X
X
X
X
X
X
X
X
aCoal A rank: high volatile B bituminous; Coal B rank: high volatile C bituminous; Coal C rank: subbituminous C.
-------
ash fusion temperature, and free swelling index (a test in which 1 g of pulver-
ized coal is heated under specified conditions to form a coke button, the size
and shape of which are compared with a series of standard profiles numbered
1 to 9 in increasing order of swelling).
SASS train samples of the flue gas were also taken from the warm-air
furnace during the "on" cycle. The SASS cyclone and filter catches were
weighed to determine particulate loading and analyzed for the 27 selected
elements by AA and ICAP. Organic extracts were analyzed for C7-C12 organics by
GC/FID and for PCB's and ROM's by GC/MS.
Quoting from the abstract of the final report, the following significant
results were found:
Particulate emissions factors from the warm-air furnace were found
to be about an order of magnitude higher than those from the boiler
while burning a high volatile western coal. High volatile coals
with high free swelling index produced the highest particulate
emission factors. No correlation was observed between particulate
emission factors and the ash content of the coals fired. The compos 1-
tion of particulate emissions was primarily carbon, rather than
elements present in the ash. In most cases, emissions of individual
elements amounted to less than 5% of the elemental content of the
coal burned.
The low-fire, or "off", portion of a typical heating cycle made a
significant contribution to the total emissions from the combustion
equipment. In the case of polynuclear organic materials (ROM's)
the greatest contribution came during the off period. Over 50 organic
species, including many POM's, were identified in the organic material
collected from the flue gas during combustion of high volatile
coals. Maximum POM emission factors occurred when high volatile
coals were burned at low excess air levels.
12-4
-------
LEVEL 1
12-5
-------
TABLE 12-2. ATOMIC ABSORPTION ANALYSIS
TEST COAL B, LOW AND HIGH ASH CONTENT
(Ib/ton)
Sample As Hg
Low ash content 0.006 <0.00002
High ash content 0.01 <0.00002
Note: For this intermittent feed process, Ib/ton of feed coal is
an appropriate unit of measure (rather than the standard
Level 1 measures).
TABLE 12-3. GAS CHROMATOGRAPHY ANALYSIS
COAL-FIRED RESIDENTIAL FURNACE HEATING CYCLE
SASS RUN 2, COAL B, LOW ASH CONTENT
(Ib/ton)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
0.004
0.012
ND
NO
ND
0.016
ND
ND
0.008
ND
No. of
peaks
*Not usually included in TCO range, i.e., C8-C16.
Notes: 1. For this intermittent feed process, Ib/ton of feed coal
is an appropriate unit of measure (rather than the standard
Level 1 ppm).
2, The authors include a category, C7 to C8, that shows a weight
of 0.090 Ib/ton. This is not standard Level 1 procedure.
3. Test run of 100 minutes' duration.
12-6
-------
TABLE 12-4. GAS CHROMATOGRAPHY ANALYSIS
COAL-FIRED RESIDENTIAL FURNACE HEATING CYCLE
SASS RUN 2, COAL B, HIGH ASH CONTENT
(Ib/ton)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220
Volatile
weight, ppm
ND
ND
0.004
0.008
0.006
0.022
ND
0.002
0.008
0.002
No. of
peaks
*Not usually included in TCO range, i.e., C8-C16.
Notes: 1. For this intermittent feed process, Ib/ton of feed coal
is an appropriate unit of measure (rather than the stand-
ard Level 1 ppm).
2. The authors include a category, C7 to C8, that shows a
weight of 0.038 Ib/ton. This is not standard Level 1
procedure.
3. Test run of 480 minutes' duration.
12-7
-------
TABLE 12-5. SIZE DISTRIBUTION OF PARTICULATE EMISSIONS
DURING "ON" SEGMENT OF A COAL-FIRED
RESIDENTIAL FURNACE HEATING CYCLE
Emission factors
Particle size
range by SASS
train component
SASS run 2,*
Coal B,
low ash content
, Percent
lb/tonT of total
SASS run 3,T
Coal B,
high ash content
., Percent
lb/tonf of total
Large cyclone (10 urn)
Intermediate cyclone (3 urn)
Small cyclone (1 urn)
Filter
2.1
0.78
1.1
16
10.7
4.0
5.4
79.9
1.6
0.42
0.34
14
9.9
2.5
2.1
85.5
Total
20
100
16
100
Test run of 100-min duration.
tTest run of 480-min duration.
fFor this intermittent feed process, Ib/ton of feed coal is an appro-
priate unit of measure (rather than the standard Level 1 units).
Note: From 80% to 85% of the particulate emissions during the ON
segment of the warm-air furnace heating cycle pass through
the cyclones and are trapped on the filter. The filter catch
normally represents particulates of less than 1-um diameter;
however, proper operation of the cyclones requires a volumetric
flow rate at the dry gas meter of 3 cfm to 5 cfm. In this
program, the volumetric flow rate for the SASS runs could not
be maintained above an average of 2.8 cfm. Lower velocities
result in more particulates greater than 1 urn passing through
the cyclones and being caught by the filter.
12-8
-------
ADDITIONAL DATA
12-9
-------
TABLE 1. AVERAGE EMISSION FACTORS FOR COAL-FIRED RESIDENTIAL
COMBUSTION EQUIPMENT OPERATING ON A 20-MIN ON/
40-MIN OFF HEATING CYCLE
(Ib/ton)3
Emission species
P articulate
SOx
NOx
CO
Condensable organics
POM
Elements:
Aluminum
Antimony
Arsenic
Barium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Phosphorus
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
Coal A
6.6h(0.28)
8.8?(0.37)
9.2 (0.39)
1.6 (0.07)
2.2 (0.09)
0.4 (0.02)
0.014
-------
2. AVERAGE EMISSION RATES FOR THE ON AND OFF HEATING CYCLE
SEGMENTS OF THE WARM-AIR FURNACE BURNING COAL B
(10-3 lb/hr)
Heating cycle segment
Emission species
Particulates
SOX
NOX
CO
POM
Condensable organics
Elements:
Aluminum
Antimony
Arsenic
Barium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Phosphorus
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
ON
183
167
61
127
0.057
28
0.85
<0.048D
0.019
0.055
0.15 .
<0.0007D
1.8
0.017
0.007
0.031
l'3 h
<0.016D
0.64
0.016
<0. 00007°
<0.083b
<0.048b
<0.069b
0.007
0.42
<0.26D
0.12
0.024
<0.21b
0.097
0.013
0.16
OFF
36
10
12
31
0.17
13
0.26
<0.12D
0.006
0.020
0.051.
<0.005D
0.13
0.021
0.011
<0.003b
0.15
<0.081D
0.036
<0.001D
0.004
<0.030D
0.13 .
<0.071b
<0.012b
0.50 .
<0.067b
<0.052b
<0.003D
<0.33b
<0.010b
0.013.
<0.018b
*Emissions are presented as pounds per hour
rather than pounds per ton because quantify-
ing the amount of coal combusted during
each cycle segment was not possible.
bValue is the detection limit.
12-11
-------
I
M
ro
TABLE 4. PROXIMATE AND ULTIMATE ANALYSES, FREE SWELLING INDEX, AND ASH FUSION
TEMPERATURES FOR TEST COALS COMPARED WITH 86 ROCKY MOUNTAIN PROVINCE
COAL SAMPLES (PROXIMATE AND ULTIMATE ONLY) (6)
T«st coals (••
Moisture, %
Ash, 1
Sulfur, %
Carbon, t
Hydrogen, %
Nitrogen, %
Oxygen, %
Chlorine, %
Volatile matter, %
Fixed carbon, %
Heat value, Btu/lb
Free swelling index
Ash fusion temperatures, *P
Oxidising atmospherei
Initial deformation
First softening
Second softening
Fluid
.deluding atnospherei
Initial deforwation
First softening
Second softening
Fluid
Low •
ash
8.77
4.2C
0.42
69.23
S.22
1.46
10.64
0.00
42.27
44.70
12,368
1
2,285
2,305
2,325
2,345
2,160
2,180
2,200
2,220
A
tow/high
ash blend
8.36
7.50
0.38
66.55
4.98
1.36
10.87
0.00
40.52
43.62
11,804
1
2,295
2,315
2,330
2,360
2,230
2,250
2,270
2,290
high
ash
7.82
10.92
0.41
64.26
4.84
1.48
10.27
0.00
39.08
42.12
11,510
1
2,310
2,330
2,350
2,370
2,255
2,275
2,295
2,315
Low
ash
10.00
5.04
0.58
65.80
4.72
1.55
12.31
0.00
38.68
46.28
11,593
1/2
2,180
2,190
2,200
2,220
2,100
2,110
2,120
2,140
received)
B
Low/high
ash blend
11.18
7.09
0.97
62.56
4.75
1.31
12.14
0.00
38.79
42.94
11,079
1/2
2,220
2,240
2,250
2,270
2,170
2.190
2,215
2,240
Rocky Mountain Province coal
High
ash
12.35
9.06
1.45
59.79
4.44
1.36
11.52
0.00
37.51
41.05
10,592
0
2,230
2,260
2,280
2,310
2,175
2,210
2,240
2,245
C
as mined
21.15
3.26
0.47
_•
A
«*"
34.72
40.87
9,638
0
_
-
-
-
-
-
-
Average
of 86
samples
12.9
9.1
0.6
59.7
5.6
1.2
23.8
_D
36.0
42.0
10,480
_b
"b
_
u
~*h
u
*"h
U
~lj
~b
Range
Minimum
1.6
2.1
0.2
27.1
4.4
0.5
8.2
D
22.7
17.1
4,660
_b
"b
~K
P
~h
u
"h
u
~h
u
~b
Maximum
35.0
32.2
5.1
75.2
6.7
1.6
* 47-2
_b
46.7
52.5
13,390
_b
"b
""t.
D
~"h
D
""K
u
~K
U
~b
'Analysis not performed.
Ho data reported in reference.
-------
ro
i
TABLE 7. EMISSION FACTORS FOR POM AND CRITERIA POLLUTANTS FROM COAL-FIRED
RESIDENTIAL HEATING EQUIPMENT OPERATED ON A 20-MIN "ON"/40-MIN
"OFF" HEATING CYCLE3
Coa]
Aih „ Sulfur , Excess
Teat run
nuafoer
1,2
3,4
5,6
7,8
9,10
11,12
13,14,15,16
25,26.27,28
17,18,19,20
21,22,23,24
29
Heating ^ content, content, air, j
equiperant Designation »
Boiler 10.9
Boiler
Boiler
Boiler
Boiler
Boiler
furnace
Furnace
furnace
Furnace
7.5
4.3
9.1
7.1
5.0
5.0
7.1
9.1
9.1
Furnace C 3.3
Most Mission factors represent the average of
t
0.41
0.38
0.42
1.5
1.0
0.58
0.58
1.0
1.5
1.5
0.47
duplicate
Both units are rated et about 200,000 Btu/hri boiler fuel
when stoker
Aa received
waa OH.
. front half Method 5. 'Method 6
. 'Method
%
238
123
171
128
151
160
129
k
ll7
182
207
^articulates
5.0 (0.22)
7.8 (0.33)
6.8 (0.28)
2.8 (0.13)
4.8 (0.22)
5.8 (0.25)
44 (1.9)
20 (0.90)
26 (1.2)
34 (1.6)
4.0 (0.21)
Mission factor,
SOx*
6.0, (0.26)
11.0, (0.46)
9.6T (0.39)
17. 8J (0.84)
30\ (1.4)
14J (0.60)
12.6 (0.54)
30 (1.4)
28 (1.3)
30 (I.*)
k
WC*M
12. B] (0.56)
7.0'{ (0.29)
7.6^ (0.31)
2.81 (0.13)
4.6J(0.21)
6.4 (0.28)
13.6 (0.59)
13.2 (0.60)
7.8 (0.37)
6.0 (0.28)
k
Ib/ton (lb/106
0.
4.
0.
0.
0.
0.
24
8.
26
26
CO9
26 (0.011)
0 (0.17)
30 (0.012)
08 (0.0038)
08 (0.0036)
08 (0.0035)
(1.0)
8 (0.40)
(1.2)
(1.2)
k
Btu)
Condensable
organica"
2.0 (0.087)
2.4 (0.10)
2.2 (0.089)
2.4 (0.11)
3.6 (0.16)
5.0 (0.22)
k
9.4 (0.42)
5.2 (0.25)
k
3.6 (0.19)
POM*
0.26 (0.011)
k
0.58 (0.023)
k
"k
~k
0.070 (0.0030)
k
"k
0.036 (0.0017)
_k
sanpllng runs.
feed rate
7. 'Drager
averaged 19.8
tube. Back
Ib/hr when atokar waa CM, furnace fuel feed
half Method 5.
Modified Method
rate averaged
15.5 Ib/hr
S with XAO-2 realn trap.
Data for OM aegatent of heating cycle only.
No data obtained due to progran limitation*•
-------
TABLE 8. EXPERIMENTAL DATA FOR THE COAL-FIRED HEATING
EQUIPMENT OPERATED ON A 20-MIN ON/40-MIN OFF CYCLE
I
M
•t*
Test
run
number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Heating
equipment
Boiler
Boiler
Boiler
Boiler
Boiler
Boiler
Boiler
Boiler
Boiler
Boiler
Boiler
Boiler
Furnace
Furnace
Furnace
Furnace
Furnace
Furnace
Furnace
Furnace
Furance
Furance
Furnace
Furnace
Furnace
Furnace
Furnace
Furnace
Furnace
Coal
type
. A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
Stoker
Average stack gas conditions*1
feed
rate, Temperature,
Ib/hr »F
21.3
21.3
22.0
22.0
21.6
21.6
21.1
21.1
17.2
17.2
15.4
15.4
15.6
15.6
b
"b
15.8
15.8
b
b
15.8
15.8
b
b
15.0
15.0
b
b
22.0
226
188
200
179
240
233
214
204
222
189
239
217
277
252
199
186
256
318
180
162
278
338
202
204
282
260
185
167
187
Velocity
fpo
164
265
159
325
177
288
170
164
192
240
216
204
496
527
318
330
530
589
343
270
498
504
129
186
398
488
192
288
374
Flow
, rate,
acfm
57
92
56
114
62
100
59
57
67
84
75
71
173
184
111
115
185
206
120
94
174
176
45
65
139
170
67
100
141
H20,
%
5.5
3.0
4.2
1.9
4.3
3.1
4.0
4.2
2.7
3.0
3.1
3.2
3.0
2.9
2.0
1.9
5.2
2.5
2.5
0.9
2.7
3.7
1.8
1.4
2.9
4.8
1.6
1.8
2.3
C02,
«
0.2
0.8
1.2
0.1
0.8
0.6
0
0
2.4
0.5
0.3
0.5
3.2
1.8
0
0.2
2.6
2.6
0.2
0.2
1.8
1.6
0.1
0
0
0
0.8
0.3
1.0
O2 ,
%
21.0
20.8
18.8
18.8
20.2
20.3
20.7
20.5
17.7
20.5
21.0
20.2
17.3
18.0
21.0
21.1
17.3
17.0
20.0
20.8
18.9
16.5
20.8
19.5
20.5
20.5
20.3
21.0
21.2
Total
particulate
run time,
min (cycles)
300 (5)
180 (3)
300 (5)
240 (4)
300 (5)
180 (3)
300 (5)
300 (5)
420 (7)
360 (6)
240 (4)
240 (4)
80 (4)
80 (4)
120 (4)
120 (4)
160 (8)
160 (8)
240 (8)
240 (8)
80 (4)
80 (4)
120 (4)
120 (4)
80 (4)
60 (3)
120 (4)
100 (3)
180 (3)
Heating
cycle
segment
tested
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
ON
ON
OFF
OFF
ON
ON
OFF
OFF
ON
ON
OFF
OFF
ON
ON
OFF
OFF
Total
Conditions are at sampling location.
i>
Stoker offj no fuel fed.
-------
S£ 10. CARBON, HYDROGEN, AND NITROGEN CONTENT OF PARTICULATE
EMISSIONS FROM COAL-FIRED RESIDENTIAL HEATING SYSTEMS
Composition,
_percent of particulate
Run
2
6
1
SA5S 2
SASS 3
SASS 3
Samole identification
a
Particulate train filter catch
a
Particulate train filter catch
POM train front half particulate catch
after extraction of organics3
SASS train filter catch of one filter
b
SASS train filter catch of filter 1
b
SASS train filter catch of filter 2
Carbon
77.84
82.33
79.81
88.66
50.38
83.61
Hydroaen
1.53
1.24
1.97
0.97
0.93
0.93
Nitroqen
0.87
0.53
0.94
0.50
1.20
1.20
Sample collected from total heating cycle.
Sample collected during ON segment of heating cycle. Each SASS filter
represents approximately 40 min of sampling time.
12-15
-------
TABLE 11. ELEMENTAL EMISSION FACTORS FROM COAL-FIRED
RESIDENTIAL HEATING EQUIPMENT OPERATED ON
A 20-MIN "ON"/40-MIN "OFF" HEATING CYCLE
(Ib/ton)
Boiler burning
Coal A
Element
Aluminum
Antimony
Arsenic
Barium
Boron
Cadni.ua
Calciua
Chroni.uB
Cobalt
Copper
Iron
Lead
Magneaiun
Manoaaeae
Mercury
Molybdenum
Hickal
Phosphorus
Selenium
Silicon
Silvar
Sodium
Strontium
Tin
Titanium
Vanadi.ua
Sloe
High asn
content
0.014b
<0.002
0.002
<0.0008
0.002b
<0.006
0.028b
<0.002r
.2
0
0
0
12.3
0
t>
6.2
0
100
i factor*
SASS run 3.6
Coal
high a*h
Ib/ton
_c
0.031
.C
0.004
0.001
0.00*
0.022
.C
0.002
0.001
0.002
0.0*0
B,
content
Percent
of total
0
42.2
0
4.4
1.9
4.7
24.5
0
2.2
1.9
2.2
100
*T««t ran of 100-mm duration.
Seat ran of 4tO-*in duration. cMone found.
12-16
-------
TABLE 14. ASH RESIDUE FROM COAL B BURNED
IN THE WARM-AIR FURNACE
(Ib/ton)
CoalAverage
Test ash ash
number content residue
13
14
17
18
22
25
100
100
182
182
182
142
600
242
310
298
236
220
TABLE 16. FRACTION OF COAL ELEMENTAL CONTENT EMITTED TO
THE ATMOSPHERE AND TOTAL MATERIAL BALANCE3
(percent)
Coal B, low ash content
El
Air
emission
Solid
residue*
Total
Coal B, high ash content
Air b Solid b
_emission residue Total
Aluminum
Antimony
Arsenic
Barium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Phosphorus
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
1.8
<36
33
5.4
1.0r
e.6c
4.1
7.0
35
6.1
3.2
<18
3.8
4.8
lOOp
25
20
6.8
9.7C
70
19
0.6
1.5
>128
2.7
5.3
>2,000
110
164
33
131
1.2
>10
136
81
700
142
157
>38
140
267C
10
>18
25
84
>0.6
12
78
23
169
>19
140
104
>14,750
112
<200
66
136
2
19C
140
88
735
148
160
d
144
272
110=
43C
45
91 c
ioc
82
97
24
171
>147
143
109
>16,750
1.4
19
40
4.4
1.0
>1.4
2.2
1.8
4.0
7.6
1.8
>1.5
2.1
1.5
3,000
118
6.0
2.0
<250
70
400
0.2
1.2
>13
1.1
3.0
>667
105
22
20
81
2
>29
58
74
100
132
80
>23
59
100
10s
>29
43
94
<83
14
233
28
88
>20
130
91
>200
106
41
60
85
3
.>30
60
76
104
140
82
>25
61
102
3,010*
147C
49
96
<333
84
633
28
89
>33
131
94
>867
"warm-air furnace employing a 20-min ON/40-min OFT heating cycle.
emission factor, Ib/ton
(100)
coal content, Ib/ton
CValue determined by using the detection limit in numerator and
denominator) actual value say be lower or higher.
Cannot be determined from data.
12-17
-------
TABLE 17. ELEMENTS LEACHED FROM ASH REMOVED FROM
THE COAL-FIRED WARM-AIR FURNACE
Element
Amount leached
per guanrity
of ash, Ib/tor.
Fraction cf element
in ash leached
to water, %
Aluminum
Antimony
Barium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
•Phosphorus
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
0.024
<0. 0004
0.038
0.004
<0.0001
11.6
<0. 00004
<0.0002
<0.0002
<0. 00002
<0.001
0.004
<0. 00002
<0. 000004
0.002
<0.001
<0.002
0.0006
0.094
<0.0008
2.4
0.30
<0.0008
<0. 00004
<0.0001
<0. 00004
0.035
<0.13
2.3
1.9
<0.77
23
<0.011
<0.12
<0.029
<0. 00004
<0.42
0.024
<0.004
<92
2.0
<0.20
<0.059
74
45
<0.23
91
20
<0.62
<0.0007
<0.015
<0.013
12-18
-------
TABLE 19. COMPARISON OF EMISSIONS FROM THE ON AND
OFF SEGMENTS OF THE WARM-AIR FURNACE
HEATING CYCLE WHILE BURNING COAL B
(10-3 Ib/hr)
Low ash
content
Emission soecies
Particulates
SO^
"Ox
CO
PCM
Condensable organics
Elements:
Aluminum
Antimony
Arsenic
Barium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
HicXel
Phosphorus
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
ON
240
97
42
191
0.055
26
0.86
<0.009
0.013
0.062
0.26
<0.0004
2.4
0.02
0.009
0.02
1.3
<0.020
0.84
0.018
-------
TABLE 20. COMPARISON OF EMISSION DATA FROM THE SASS TRAIN
TO CONVENTIONAL SAMPLING METHODS2
(10-3 Ib/yr)
Emission soecies
Particulate
Organic material
POM
Trace elements:
Aluminum
Antimony
Arsenic
Barium
Boron
Cadmium
Calcium
Chromium
Cobalt
f* f\nr%A^
iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Phosphorus
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
SASS
Low ash
coalb
154 f
8.1T f
0.013
0.88
<0.004
0.022
0.048
0.46
0.002
2.2
0.040
0.013
0 024
V * W *• ~
1.1
<0.009
0.68
0.02
0.00009
0.018
0.077
0.099
0.024
0.79
0.015
0.35
0.018
0.70
0.20
0.015
0.097
Emiss
train
Hiah ash
coalc
128 f
8.1 f
0.013
0.84
<0.0004
0.022
0.024
0.013
•<0.002
0.16
0.031
0.004
0. Oil
1.2
<0.004
0.40
0.02
0.00009
<0.007
<0.04
<0.095
0.0009
0.53
<0.004
0.17
0.026
0.024
0.064
0.009
0.24
»ion rate
Method
Low ash
coal
1B7«
26°
0.055s
0.84
<0. Oil
0.007
0.070
0.064
0.002
2.9
0.004
0.004
0. 020
1.5
<0.031
0.99
0.015
<0. 0000007
<0.14
0.033
0.026
<0.002
0.17
<0.009
<0.08
0.17
0.024
0.053
0.013
0.14
5
coal
i g-e
0.059h
0.86
<0.13
0.024
0. 05"
O.C-2
0.001
1 . 7
0.004
C . 0 0 4
n n =; =;
1.3
0.013
0.46
C. Oil
O.Q002
<0.13
0.040
O.C7
-------
STUDY NUMBER 13
-------
STUDY NUMBER 13
DATA
SOURCE:
SAMPLING AND ANALYSIS
RESEARCH PROGRAM AT THE
PARAHO SHALE OIL
DEMONSTRATION PLANT
DATA
STATUS:
Final Reports, January 1977 and May 1977
AUTHORS:
CONTRACTORS:
J. E. Cotter, C. H. Prien, J. J. Schmidt-Collerus,
D. J. Powell, R. Sung, C. Habenicht,
R. E. Pressey, and K. Gala
TRW Environmental Engineering Division
One Space Park
Redondo Beach, California 90278
Denver Research Institute
University of Denver
Denver, Colorado 80210
In cooperation with
Laramie Energy Research Center, ERDA, and
Development Engineering, Inc., Rifle, Colorado
Contract 68-02-1881
PROJECT
OFFICER:
Thomas J. Powers, III
Energy Systems Environmental Control Division
Industrial Environmental Research Laboratory
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268
13-1
-------
The objectives of this study, as stated in the documentation, we^e "to
obtain preliminary quantitative and qualitative measurements of air, water,
and solid compositions (from the effluents of shale oil retorting), and to
gain experience that would lead to improved sampling procedures and the determiv
nation of priorities for sampling and analysis of shale oil recovery operations,
To achieve these goals, Denver Research Institute and TRW conducted a sampling
and analysis research program at the Paraho oil shale demonstration sHe at
Anvil Points, Colorado, in the spring of 1976.
Recovery of crude oil from shale at the Paraho site involves mining the
shale rock, crushing the rock, and heating the crushed shale to drive off
volatile crude oils and gases. The Anvil Points oil shale mine is 5.5 miles
from the retorting plant, but no sampling was done at the mine since the mine
was not in operation at the time of this study. This effort was, there-ore,
directed at the crushing and the retorting processes.
The Paraho site has the only operational surface retorting plant wHhin
the United States. Figure 13-1 (from the report on this study) is a a-awing
of a Paraho retort. Two such retorts are located at the site, a 75-ft-high
semiworks unit and a 60-ft-high pilot plant retort. These oil shale retorts
can be operated in a direct mode in which the shale is combusted in the re-
tort as the principal heat source, with the volatile offgases being ^cycled
to both the combustion zone and the gas preheating zone; or the retorts can
be operated in an indirect mode, where heat for retorting is supplied :y com-
bustion of the offgases in an external furnace. Figures 13-2 and 13-3 (.from
the report) are schematic representations of the direct and indirect operating
nodes. During this study, the semi-works retort was operated only in tne in-
direct mode and the pilot plant was operated only in the direct mode.
Sampling and analysis included some Level 1 and some additional methods.
Sampling approaches included the following:
Proportional and grab sampling of the recycle process gas
stream for analysis by instrumental and wet chemical methods
Grab sampling of the product crude oil, recycle process gas
condensate water, and retorted shale for organic and trace
element analysis
Grab sampling of recycle process gas stream condensate water
for gross parameter analysis—for example, biochemical oxygen
demand chemical oxygen demand, and total organic carbon
High-volume sampling of particulate emissions from raw shale
crushing
Cascade impactor sampling for particulate sizing of airborne
crushing emissions
13-2
-------
FEED SHALE
FEED HOPPCft
•OTATHtG SOL IDS
DISTRIBUTOR
BOTTO*
DISTRIBUTION
METOMTED WALE
*fron Jones, John B., "The
Paraho 011 Shale Retort,
81st Nat. Mtg.. AICh£,
City. Mo., April 11-K.
DFF-6AS COU.ECTOMS
DtSTRIBUTOHS
MYO»«AULICAU.T
MATE COttTftOLS
RCTOWTCO SMALt
DISCHAR6C
Figure 13-1. The Paraho retort.
13-3
-------
RAW
9 (ALE
I
OIL MIST
SEPARATORS
OJ
i
D-
MIST
FORWTION
AND
PREHEATING
RETORTING
ZONE
COMBUSTION
ZONE
\
RESIDUE
COOLING AND
GAS
PREHEATING
/
OIL
PRODUCT
GAS
i
GRATE SPEED
CONTROLLER
T=f
ELECTROSTATIC
PRECIPITATOR
\
'
OIL
GAS RECYCLE
BLOWER
AIR BLOWER
I
I-
RETORTED SIIALE
Figure 132. Paraho direct mode flow diagram
(pilot plant o(ieration).
-------
OJ
I
tn
D
RAW
SHALE
OIL HIST
SEPARATORS
1
/ x
MICT
FORMATION
AND
PERMEATING
RETORTING
ZONE
HEATING
RESIDUE
COOLING AND
v GAS .
\ PREHEATING /
I
OIL
STACK
^ i
^ A
T j
' /
...._. y
"* A
FUEL OIL*
- n
GAS HEATER
/
f
(?)
VL/
T
( ^\
1 tCT
te
9
.
i
T
/Pj on
KtLTCLt uAb
BLOWER
PRODUCT
GAS
COOLER
RETORTED
SHALE
ELECTROSTATIC
PREC1PITATOR
Figure 13-3. Paraho indirect mode flow diagram
(semiworks operation).
-------
Standard analytical methods were used wherever possible. Specific
techniques were developed to handle some of the various process
samples. Analytical methods included
Inorganic and trace elements analysis
- wet chemistry
- atomic absorption spectrophotometry
- spark source mass spectrometry (SSMS)
Organic analysis, separation with
- gas chromatography (GC)/mass spectrometry (MS)
- thin layer chromatography (TLC)
- high-pressure liquid chromatography (HPLC)
- spectrophotofluoremetry (SPF)
Polynuclear aromatic hydrocarbons analysis—two-dimensional
elution with TLC*
Figures 13-4, 13-5, and 13-6 from the publication references above are flow
diagrams for the analysis of the various samples.
Analysis of the recycle gases indicated a need to remove NH3 and H2S
before combustion. Contrary to some predictions, the recycled gas was not
found to contain significant levels of COS, CS2, HCN, or AsH3. The inorganic
constituents in the condensate water were principally ammonium carbonate and
bicarbonates with very low levels of trace elements. Traces of similar organic
compounds were detected in the retorted shale, the condensate, and the product
water. These organics were characterized as neutrals (especially aromatics),
acids, and bases.
A great deal of qualitative information was accumulated during this study.
Quantitative Level 2 type efforts, long-term studies, and a battery of bioas-
says were recommended to more thoroughly characterize the various plant dis-
charges.
^Executive Briefing, Environmental Sampling of the Paraho Oil Shale Retort
Process at Anvil Points, technology transfer series, EPA-625/9-77-002, U.S.
Environmental Protection Agency, Environmental Research Information Center,
Cincinnati, Ohio, October 1977.
13-6
-------
CONOENSATE
(COLD)
COMPENSATE
(HOT) FROM
CONDENSATE
TANK
M
CA)
I
RECYCLE
HAS
STREAM
MINE SAFETY
APPLIANCES
CHARCOAL
ABSORPTION
BENDIX DIRECT
READING
6ASTEC
TUBES
BENDIX
CHARCOAL
ABSORPTION
HEAOSPACE
(NITROGEN
STRIPPING
COLD
PRESERVED
UNPRESERVED
HN03
PRESERVED
TENAX
ABSORPTION
SOLVENT
EXTRACTION
ACID BASE
AND NEUTRAL
ORGANIC
EXTRACTION
ORGANIC
CARBON
TOTAL CARBON
ANALYSIS
'NOT USED BECAUSE OF THE PRESENCE OF AEROSOL.
Figure 13-4. Separation and analysis scheme, gaseous samples.
-------
•ONDAPAK
AKORPTIOM
OF OREANICS
MPtC
•TLC ANALYTICAL
PROCESS
WATER
I
PHASE
SEPARATION
(FROM PRODUCT
OIL)
1
SOLVENT
EXTRACTION
PRESEPARATORY*
(SILICA)
TIC
ACIDIFICATION
PHI
1
OREANIC
EXTRACTION
AQUEOUS
PHASE
ACID IASE
AMD NEUTRAL
OR6ANIC
EXTRACTION
HEADSPACE
(NITROGEN
STRIPPIMG)
TENAX
ASSORPTIOM
FLASHER
EC
Figure 13-5. Separation and analysis scheme, water samples.
13-8
-------
RETORTED SHALE
AND HIGH-VOLUME
AIR PARTICULATES
1
K;
SSMS
ii
i
SOLVENT
EXTRACTION
1
DESULFURIZATION
1
— T"
C, H, 0, N, S*
ASH AND SIEVE
ANALYSIS
1 II
HCC
HPLC
FLOURESCENCE
ULTRAVIOLET
•M
1 1
WATER
EXTRACTION
(LEACHATE)11
1
SOLVENT
EXTRACTION
FLASHER1
(VOLATILES)
GC
1
SPF
ANALYSIS
MS
. HYDROGEN, OXYGEN, NITROGEN. SULFUR.
WfERFORMED ON AIR PARTICULATES.
^ANALYTICAL SCHEME.
Figure 13-6. Separation and analysis scheme, retorted shale and high-volume
sampler air particulates.
13-9
-------
LEVEL 1
13-10
-------
TABLE 13-1. SPARK SOURCE MASS SPECTROSCOPY
RETORTED SHALE, INDIRECT MODE, SEMI-WORKS, 3-16-76, 1415 HRS
(ppm)
U 5
Th 5
Bi
ft) 14
fl
»g* 0.04
Au
H
Ir
Os
Re
V
la
«f
Lu
ft
Ti
fr
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.3
0.6
0.3
0.8
6
1
37
11
210
6
0.1
1
1
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co.
Fe
Mn
12
5
77
19
760
130
0.3
0.3
22
0.5
8
26
32
17
20
340
Cr 82
V 110
Ti
Sc 12
Ca
K
Cl 45
S
P
Si
Al
Mg
Na
F 560
B 22
Be 0.9
Li . 33
It = Major component.
• - Not determined.
Blameless atomic absorption.
fcte: 1. Fe, Ti, Ca, K, S, P, Si, Al, Mg, Na, 0, N, C, H are all present in
quantities greater than 1,000 ppm.
2. All elements not reported <0.2 ppm by weight.
13-11
-------
TABLE 13-2. SPARK SOURCE MASS SPECTROSCOPY
INDIRECT MODE, RETORTED SHALE (COLLECTED AS AIR PARTICIPATE),
3-17-76, 1545 HOURS
(ppm)
U 5
Th 5
B1
Pb 20
T1
Hg* ND
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.7
2
0.7
2
13
10
130
48
410
8
0.2
1
0.9
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
23
11
130
45
MC
200
0.8
1
32
0.8
15
20
62
25
38
650
Cr
V
Ti
Sc
Ca
K
Cl
s
p
Si
AT
Mg
Na
F
B
Be
Li
210
140
43
25
MC
43
9
130
MC - Major component.
ND = Not determined.
*Fla»eless atonic absorption.
Note: 1. Fe, Ti, Ca, K, S, P, Si, Al, Mg, Na, 0, N, C, H are all present in
quantities greater than 1,000 ppm.
2. All elements not reported <0.2 ppm by weight.
13-12
-------
TABLE 13-3. SPARK SOURCE MASS SPECTROSCOPY
RETORTED SHALES, DIRECT MODE (PILOT PLANT), 3-15-76, 1100 HOURS
(ppm)
t 5
ti 7
Si
H> 23
fl
la* 0.06
to
it
lr
Os
fe
1
i
if
&
$
!•
ft
i
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.7
1
0.7
2
6
2
59
21
180
6
<0.2
0.7
0.2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
14
7
65
40
970
110
0.2
0.5
35
0.9
17
22
57
75
19
800
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
230
180
26
43
>1,000
48
2
85
flawless atomic absorption.
Ite: 1. Fe, Ti, Ca, K, S, P, Si, AT, Mg, Na, 0, N, C, H are all present in
quantities greater than 1,000 ppm.
2. All elements not reported <0.2 ppm by weight.
13-13
-------
TABLE 13-4. SPARK SOURCE MASS SPECTROSCOPY
RETORTED SHALES, DIRECT MODE (Semi-Works), 3-15-75, 1100 hours
(ppm)
U 7
Th 4
Bi
Pb 24
TI
Hg* 0.06
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Ta
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
0.6
0.9
0.6
1
9
5
100
33
310
10
<0.2
1
2
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
18
8
41
17
760
85
0.2
0.4
18
<0.2
13
17
53
20
15
700
Cr 110
V 110
Ti
Sc 20
Ca
K
C1 42
S
P
Si
AT
Mg
Na
F 920
B 82
Be 1
Li 370
*F1ame1ess atomic absorption.
Note: 1. Fe, Ti, Ca, S, P, Si, Al, Mg, Na, 0, N, C, H are all present in
quantities > 1,000 ppm.
2. All elements not reported <0.2 ppm by weight.
13-14
-------
TABLE 13-5. SPARK SOURCE MASS SPECTROSCOPY
COLD CONDENSATE WATER, PILOT PLANT, 3/10/76, 1700-0800 HOURS
(jjg/L)
U 30
Th
Bi
Pb 700
Tl
Hg <10
Au
Pt
Ir
Os
Re
V
Ta
Hf
Lu
ft
Im
Ir
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr 8
Ce 10
La 40
Ba 100
Cs
I 8
Te
Sb
Sn 50
In
Cd
Ag
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
300
50
7
100
400
20
. 40
90
40
200
100
100
<10
<10,000
200
Cr
V
Ti
Sc
Ca
K
Cl
s
p
Si
Al
Mg
Na
F
B
Be
Li
70
<10
900
10
8,000
3,000
400
3,000
200
4,000
200
3,000
5,000*
-100
60
20
*Heterogeneous.
Itote: After extraction of organics, sample was thermally ashed @ 450° C for
% hr in a laboratory furnace in a quartz crucible prior to analysis.
13-15
-------
TABLE 13-6. SPARK SOURCE MASS SPECTROSCOPY
CONDENSATE WATER, SEMI-WORKS, 3/18/76, 1120-1330 HOURS
(pg/L)
U 70
Th
Bi
Pb 300
T1
Hg <10
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr 8
Ce 10
La 10
Ba 100
Cs
I 10
Te
Sb
Sn 40
In
Cd
Ag
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
100
50
80
10
20
80
90
100
200
200
1,000*
<40
>10,000
300
Cr
V
Ti
Sc
Ca
K
Cl
s
P
Si
AT
Mg
Na
F
B
Be
Li
70
6
900
<1G
10. oo:
1,000
> 10,00 C*
>10,000
20C
7,000
500
7,000
90 C
-2,000
60
40
*Heterogeneous.
Note: After extraction of organics, sample was thermally ashed @ 450° C fcr
% hr in a laboratory furnace in a quartz crucible prior to analysis.
13-16
-------
TABLE 13-7. SPARK SOURCE MASS SPECTROSCOPY
PROCESS WATER, SEMI-WORKS, 3/15/76, 1500 HOURS
(M9/L)
u
Th
Bi
«) 200
Tl
Ug <10
Au
ft
Ir
0s
Re
V
Ta
tif
Lu
Yb
T»
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce 10
La
Ba 2,000
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
• '• - •-' •— •• "— -^^-^r==
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
^ ._ . .•
100*
3,000
9
100
1,000
<50
<20
400
200
200
<40
5,000
300
••
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li
.,_ -— ..
300
30
300
<50
>10,000
>10,000
2,000
>10,000
5,000
> 10, 000
800
>10,000
>10,000
7,000
-5,000
1,000
:====
^Heterogeneous.
Hole- After extraction of organics, sample was thermally ashed & 450° C_for
% hr in a laboratory furnace in a quartz crucible prior to analysis.
13-17
-------
TABLE 13-8. RECYCLE GAS—AMMONIA, ARSINE
(ppmv)
Pilot plant (direct mode)
March 9-12, 1976
Semi-works (indirect
March 14-15, 1976
NH<
AsH.
m.
AsH-
3/9, 1330-1445
3/9, 1500-1545
3/10, 1000-1400
3/11, 1000-1400
3/11, 1500
3/11, 1600
3/12, 1600
3/14, 1500
3/14, 1700
3/15, 1200
3/15, 1600
3/15, 1715
3/15, 1730
ND
ND
1,614
2,689
25,945
27,642
ND = Not detected.
TABLE 13-9. RECYCLE GAS—FIXED GASES
(vol %)
Pilot plant (direct mode)
March 9-12. 1976
Semi-works (indirect mode)
March 14-15. 1976
CO,
CO
CG2
CO
3/9, 1330-1445
3/9, 1500-1545
3/10, 1000-1400
3/11, 1000-1400
3/U, 1500
3/11, 1600
3/12, 1600
3/14, 1500
3/14, 1700
3/15, 1200
3/15, 1600
3/15, 1700
3/15, 1715
3/15, 1730
ND
24.5
2.1
ND = Not detected.
13-18
-------
TABLE 13-10. RECYCLE GAS—SULFUR SPECIES
(ppmv)
Pilot plant (direct mode) Semi-works (indirect mode)
March 9-12. 1976 March 14-15, 1976
COS/CS2 H2S S02 COS/SC2 H2S S02
3/9, 1330-1445 14
3/9, 1500-1545 4
3/10, 1000-1400 2600
(Bendix tube)
3/11, 1000-1400
3/11, 1500
3/11, 1600
3/12, 1600 ND
3/14, 1500 773
3/14, 1700 328
3/15, 1200
3/15, 1600
3/15, 1700
3/15, 1715
3/15. 1730
D = Not detected.
TABLE 13-11. RECYCLE GAS—NITROGEN OXIDES
(ppmv)
Pilot plant (direct mode) Semi-works (indirect mode)
March 9-12. 1976 March 14-15, 1976
NO^ N0x
3/9, 1330-1445 9
J/9, 1500-1545 16
t/10, 1000-1400
1/11, 1000-1400
1/11, 1500
¥11, 1600
1/12, 1600
¥14, 1500
¥14, 1700
¥15, 1200
¥15, 1600
¥15, 1700 30
¥15, 1715 I'
¥15, 1730 ™
13-19
-------
TABLE 13-12. ANION ANALYSIS
(mg/L)
Anion
F"
Cl"
Br"
ml
N03
so;
PO;
s= *
^Q ^
mol *
Pilot plant recycle gas cold
condensate (direct mode)
3/11/76 - 0800-1800 hr
0.35
TR
0.02
118
113.6
<0.1
30, 500t
31.265T
Semi-works recycle gas hcl
condensate (indirect mode
3/14/76 - 0800-1800 hrs
0.10
TR
<.002
1.0
1.65
390
3,030t
6.280J
*Not included in Level 1 protocol (October 1978)
tCalculated rather than measured.
TABLE 13-13. CATION ANALYSIS
(mg/L)
Cation
Calcium
Magnesium
Sodium
Potassium
Ammonium (NH^)
Pilot plant recycle gas cold
condensate (direct mode)
3/11/76 - 0800-1800 hr
60.74
<0.1
.20
.08
5,652*
Semi -works recycle gas hot
condensate (indirect mode)
3/14/76 - 0800-1800 hr
39.16
0.1
0.29
0.18
13,540*
"Calculated rather than measured.
13-20
-------
TABLE 13-14. NUTRIENT ANALYSIS
(mg/L)
Pilot plant recycle gas cold Semi-works recycle gas hot
condensate (direct mode) condensate (indirect mode)
Nutrient 3/11/76 - 0800-1800 hr 3/14/76 - 0800-1800 hr
NH3-N 14,060* 16,800*
TKNt 31,400
Phosphate (total) 0.58 0.75
Calculated rather than measured.
fTotal Kjeldahl nitrogen.
TABLE 13-15. GROSS PARAMETER ANALYSIS
(mg/L)
Pilot plant recycle gas cold
Gross condensate (direct mode)
parameter 3/11/76 - 0800-1800 hr
BOD*
COD*
TOC*
TIC*
Oil & Grease*
Solids, Total
Solids, Dissolved
Solids, Suspended
Total , Alkalinity
Hardness
Phenols*
pH
12,000
19,400
29,200
9,800
502
22,000
21,800
200
68,550
152t
46
9.8
Semi -works recycle gas hot
condensate (indirect mode)
3/14/76 - 0800-1800 hrs
4,850
17,100
9,800t
1,600
33.3
429
406
12,900
98t
42
9.5
*This is not a Level 1 required analysis.
fSemi-works process water total organic carbon (TOC) was 36,900 mg/L on 3/15
1500 hr.
ICalculated rather than measured.
13-21
-------
TABLE 13-16.
CARBON ANALYSIS AND pH VALUES FOR AQUEOUS SAMPLE
COLLECTED FROM PARAHO PROCESS
(ppm)
Total carbon
Total inorganic
carbon (TIC)
Total organic
carbon (TOC)
PH
Indirect mode
semi -works
recycle gas
(cold) condensate
3/17/76
8,000
4,450
3,550
9.5
Indirect mode
semi -works
process water
3/15/76
37,200
275
36,900
9.7
Direct mode
pilot plant
recycle gas
condensate
3/15/76
13,500
10,000
3,500
9.4
Note: All oily material was removed from the top of the sample followed by
equilibrating at ambient for 4 hours, then removing any additional
surficial oils before analysis.
13-22
-------
TABLE 13-17. SUMMARY OF HIGH-VOLUME AIR PARTICULATES
filter
amber
18
2
22
27
32
Date
3-15
day-night
3-16
day
3-16
night
3-17
day
3-17
night
At
(hr)
24.1
8.1
16.7
6.3
16.9
Dry weight of
Total volume air participates
of air filtered collected
(m3) (g)
PRIMARY CRUSHER
22.48
8.47
20.08
7.16
20.61
BUILDING
2.6277
1.4530
0.4739
0.9708
0.9764
Mass concentration
of suspended
parti culates
(pg/m3)
116,900
171,500
23,600
135,600
47,400
SECONDARY CRUSHER AREA
17
12
23
28
3-15
day- night
3-16
day
• 3-16
night
3-17
day
24.4
8.4
16.6
6.3
20.76
7.96
19.96
5.92
6.9700
6.9126
2.2272
7.0380
335,700
868,400
111,600
1,188,900
BINS AND WEIGH HOUSE
16
13
14
8
Jt
,
3-15
day- night
3-16
day
3-16
night
3-17
day
3-17
night
24.7
6.8
16.8
6.2
24.4
12.91
3.62
8.55
2.80
12.09
92.1878
39.9150
90.5423
33.6678
101.3944
7,140,800
11,026,200
10,589,700
12,024,200
8,386,600
(ennti nued^
13-23
-------
TABLE 13-17 (continued)
Filter
number
Date
At
(hr)
Dry weight of
Total volume air parti culates
of air filtered collected
(m3) (gr)
Mass concentrati or.
of suspended
particulates
(fjg/m3)
BELT DIVERTER BOX
(During Pilot Plant Only Run)
11
15
19
14
25
30
35
20
21
26
31
36
3-9
day
3-10
day
3-15
day-night
3-16
day
3-16
night
3-17
day
3-17
night
3-15
day- night
3-16
day
3-16
night
3-17
day
3-17
night
5.2
6.3
24.6
7.8
16.8
6.2
17.0
24.4
7.9
16.7
6.2
17.2
4.62
3.4
SEMI-WORKS
(Next to Last
14.61
6.09
9.97
5.58
10.85
SEMI-WORKS
(At End of Last
14.53
6.06
17.05
5.69
16.54
11.4303
9.4080
OUTPUT BELT
Stationary Belt)
89.4437
32.2564
63.7401
25.0370
84.0003
OUTPUT BELT
Stationary Belt)
43.4901
23.8886
11.4969
16.3360
11.2979
2,474,100
2,767,100
6,122,100
5,296,600
6,393,200
4,486,900
7,742,000
2,993,100
3,942,000
674,300
2,871,000
683,100
13-24
-------
LEVEL 2
13-25
-------
TABLE 2. TRACE ORGANICS IDENTIFIED BY GC/MS IN THE RECYCLE GAS STREAM
(DIRECT AND INDIRECT MODE) SUMMARY OF ALL SAMPLES
Peak
Hunter
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Boiling Point
(PC at 760 mm)
36
69
80.1
93-98
98.5
110.6
121-129
125.6
136.2
138.3
139.1
140.6
144.5
145-146
150.8
161-165
163.4
164.7
169.4
170.6
174.1
178
181
182.6
192.7
195.6
213.4
216.3
218
Compound
Pentane
Hexane
Benzene
Heptenes
Heptane
Toluene
Octenes
Octane
Ethyl benzene
p-Xylene
m-Xylene
Cy cl ooctatetraene
o-Xylene
Styrene
Nonane
Methyl ethyl benzene
a-Methyl styrene
1 ,3,5-Trimethyl benzene
1,2,4-Trimethyl benzene
1-Decene
Decane
Indan
1,3-Di ethyl benzene
Indene
Undecene
Undecane
Dodecene
Dodecane
Naphthalene
Molecular
Weight
72
86
78
98
100
92
112
114
106
106
106
104
106
104
128
120
118
120
120
140
142
118
134
116
154
156
168
170
128
13-26
-------
TAi^f ». ELEMENTAL ANALYSIS OF RETORTE
Benzene Extract of Direct
Mode Retorted Shale
(3/12/76, 1000 hrs)
Direct Mode Retorted
Shale
(3/12/76, 1000 hrs)
Raw Shale Collected as
Air Participate
(3/15/76 to 3/17/76)
Organic Matterf In Raw
Shale (average of 10
cores from Colorado &
Utah)
C
Total
81.41
2.95
14.25
C
Org.
81.41
0.80
.
9.58
80.5
C
Inorg.
*
2.15
4.67
p SHALE, PARTICIPATES, AND ORGANIC EXTRACTS
II
10.70
0.10
1.51
10.3
0
2.22
ND
ND
5.8
N
(Dumas)
2.05
0.13
0.43
2.4
S
(Free)
7.79
ND
ND
1.0
S
(S04)
NA
0.08
0.01
S
(Sx)
NA
0.74
0.04
Ash
(dry)
<0.15
92.88
70.91
* 0.5% of total C
ND = Not Determined
NA = Not Applicable
, J. W., Ultimate Composition of Organic Matter 1n Green River Oil Shale, USBM RI5725 (1961)
-------
S
H
o
H
m
t
L5A95
IB
! iJI H
fused Fluorescence
1 I I I I I I I I I I
PAH
Confounds
V Polar
'Confounds
Figure 5.35 One dimensional preseparatory thin layer
chromatogram of benzene solubles from
carbonaceous spent shale [CSA VII (1)1.
Layer: silica gel G. Solvents: benzene,
cyclohexane (1.5:1). Compounds: 1 and 2,
PAH composite mixture; 3, acridine; 4,
carbazole; 5, 1,2,7,8-dibenzacridine;
6, phenanthridine.
13-28
-------
td
ss
8
T
L5405
Blue
Yellow
ue
Diffused Fluorescence
PAH
Compounds
(Polar
'Compounds
Figure 5. 36 One dimensional preseparatory thin layer
chroinatogram of benzene solubles from
carbonaceous spent shale [CSA VIII (1)].
Layer: silica gel G. Solvents: benzene,
cyclohexane (1.5:1). Compounds: 1 and 2,
PAH composite mixture; 3, acridine;
4, carbazole; 5, 1,2,7,8-dibenzacridine;
6, phenanthridine.
13-29
-------
L5925
I
H
M
Diffused Fluorescence
PAH
Compounds
Polar
Compounds
Figure 5.37
One dimensional preseparatory thin layer
chroaatogram of benzene solubles from
unretorted shale collected as air particulate
[AP VI (1)]. Layer: silica gel G.
Solvents: benzene, cyclohexane (1.5:1).
Compounds: 1 and 2, PAH composite mixture;
3, acridine; 4, carbazole; 5, 1,2,7,8-
dibenzacridine; 6, phenanthridine.
13-30
-------
L5945
1
H
U
o
Blue
Yellow
Blue
Diffused Fluorescence
"^
N
Quench
PAH
Compounds
Polar
"Compounds
Figure 5.38
One dimensional preseparatory thin layer
chromatogram of benzene solubles from
retorted shale collected as air particulate
[AP V (1)]. Layer: silica gel G.
Solvents: benzene, cyclohexane (1.5:1).
Compounds: 1 and 2, PAH composite mixture;
3, acridine; 4, carbazole; 5, 1,2,7,8-
dibenzacridine; 6, phenanthridine.
13-31
-------
I.*
M
I
LSCSK
- SOLVENT SYSTEM II
Figure 539 Two dimensional mixed thin layer chromatogram
of the B&H fraction of benzene solubles from
carbonaceous spent shale [C.SA VII (1)].
Layer: 401 acetylated cellulose, aluminum
oxide C, silica gel G (1:1:1). Solvents:
System I, isooctane, drying followed by
n-hexane, benzene (95:5). System II,
methanol, ether, water (4:4:1). Compounds:
1 and 1 tailing, benzo(a)pyrene.
13-32
-------
\
T
AO
2.0
.3.0
SOLVENT SYSTEM II -
Figure 5.43 Two dimensional mixed thin layer chromatogram
of the PAH fraction of benzene solubles from
carbonaceous spent shale [CSA VIII (1)].
Layer: 40% acetylated cellulose, aluminum
oxide G, silica gel G (1:1:1). Solvents:
System I, isooctane, drying followed by
n-hexane, benzene (95:5). System II, roethanol,
ether, water (4:4:1). Compounds: 2, benzo(a)
pyrene.
13-33
-------
Table 5.9 Elemental Analysis of Retort Shale, Partlculatea and Organic Extracta
C C C N S S S Ash
Total Org. Inorg. H 0 (Dumas) (Free) (SO^) (Sx) (Dry)
Benzene Extract of Paraho
Indirect Made Spent Shale 84.69 84.69 * 9.60 2.45 2.88 1.01 NA NA <0.1S
Benzene Extract of Paraho
Direct Mode Spent Shale 81.41 81.41 * 10.70 2.22 2.05 7.79 NA NA <0.15
Paraho Indirect Mode Spent
Shale 9.68 5.85 3.83 0.49 ND 0.29 ND 0.01 0.38 75.99
Paraho Direct Mode Spent
M Shale 2.95 0.80 2.15 0.10 ND 0.13 ND 0.08 0.73 92.88
co
i
£ Paraho Indirect Mode Spent
Shale Collected as Air
Participate 10.43 5.27 5.16 0.48 ND 0.34 ND 0.04 0.42 75.61
Raw Shale Collected as
Air Particulate 14.25 9.58 4.67 1.51 ND 0.43 ND 0.01 0.04 70.91
Organic Matter
Raw Shale
(Smith, LERC, 1961) 80.5 10.3 5.8 2.4 1.0
*<0.5% of total C
ND Not Determined
NA Not Applicable
-------
Table 5.19 Polar "Oxy" Compounds Present in
Carbonaceous Spent Shale
Compound _ _ GC Confirmation Approx. ppm
Heptanoic Acid + 0.26
Benzoic Acid + 0.18
Octanoic Acid + 0.39
o-Toluic Acid +
m-Toluic Acid + 0.60
p-Toluic Acid + 0-60
Nonanoic Acid + . °.7°
2,5 -Dimethylbenzoic Acid . +
3,5-Dimethylbenzoic Acid +
Decanoic Acid +
3,5-Dimethylbenzoic Acid +
Isopropylbenzoic Acid +
Triae thyIbenzoic Acid +
Tetramethylbenzoic Acid +
g-Hydroxy Aliphatic Acid +
Methylisopropyl Benzoic +
Aliphatic Dibasic Acid (Clg) +
13-35
-------
ADDITIONAL DATA
13-36
-------
Operating Parameters for Water Data
Plant Feed Rate,
Tonne/hr (TPH)
Semi-Works Hot
Condensate (3/14/76),
0800-1800 hrs
and Process Water
(3/15/76, 1500 hrs)**
Pilot Plant Cold
Condensate
(3/18/76, 1130-1330 hrs)
(3/10/76, 0800-1700 hrs)'
10.2 (11.2)
0.91 (1.0)
Recycle Gas Rate,
Std.Cu.Heters/hr (SCFM)
6320 (3650)
493 (290)
•These operating parameters also apply to Table 4, following.
TABLE 5. SIZE RANGES OF SOLIDS
Material
Size Range
Remarks
Raw Feed Shale
Fines
Raw Shale Air
Particulates
Retorted Shale
<7.62 cm, >6 mm (-3" +V)
<6 mm (V)
>0.01 <5 mm
see below
Includes crushing fines
For particle size distri-
bution see Table 6 and 7
Screen Sieve Analyses of Direct Mode
Retorted Shale (3/12/76, 1000 hrs)
Weight Percent
26.4
9.9
9.0
11.5
4.4
6.6
3.2
6.2
2.7
2.4
2.4
2.1
0.6
2.4
8.7
1.6
Sieve Designation Standard
(New U.S. Nos.)
>19.0 mm
19.0
13.2
9.5
4.75
3.25
1.70
1.18
600 ym
425
300
212
150
106
75
<45
13-37
-------
TABLE 6. MASS FRACTION OF RAW SHALE PARTICULATES
Parti cul ate Size Range
Cumulative Weiqht Percent less than
stated ?i?e
<0.3 um
2
<1 . 0 um <3 um
26 73
(Sample taken at 1400 hrs, 3/17/76
crushing 28 gal/ton shale)
TABLE 7. NUMERICAL FRACTION OF RAW SHALE PARTICULATES
Parti cul ate Size Range
Cumulative Count Percent
less than stated size
Breakdown % <1 .0 um
<0.01
urn
50.4
0,01-0.05
urn
33.3
0.05-1
um
1.2
Cumulative
% <1 .0 um
84.9
1-5
um
10.1
0
um
5.0
(Sample taken at 1410 hrs, 3/15/76
handling 28 gal/ton shale)
TABLE 8. PARTICLE SIZE VS. MEAN ELEMENTAL COMPOSITION OF RAW SHALE
AIR PARTICULATES AS DETERMINED BY X-RAY FLUORESCENCE
^V. Size Ranges
^v^ of Particles
^^*fc- &nalv/7o/H
^^^^MIO 1 y*kCU
Elemental ^^'^L
Components ^^v.
Detected ^^
Si
Ca
Al
Mg
Fe
K
Na
P
S
Ti
4t
c
=•
\r>
V
402
20
10
10
+
+
+
-
+
+
_
a.
0
•^
30%
16
11
12
9
2
2
3
12
-
E
—
ur>
V
M
/\
44%
24
10
6
5
5
3
+
j
s
r
E
tn
A
43%
22
8
8
6
6
2
+
4
+
*High background fluorescence.
•••Indicates presence of element but not quantifiable
-Indicates element not found in sample at sufficient
concentration to be detected by x-ray fluorescence.
13-38
-------
TABLE 11. BENZENE AND WATER EXTRACTABLES OF RETORTED SHALE, AND RAW SHALE PARTICULATES
Pilot Plant
(Direct Mode)
Retorted Shale
(3/12/76, 1000 hrs)
Raw Shale Collected
as Air Particulate
1n the Crushing Area
(3/15/76 to 3/17/76)
Total Benzene
Solubles
Wt %
0.03(4)
2.05
Benzene Solubles
Sulfur Removed
Wt %
0.03(7)
ND
Water Solubles
Wt %
3.39
ND
Benzene Solubles
of Water Solubles
Wt %
0.00(3)
ND
I
to
UD
ND - Not determined
TABLE 12. COMPARISON OF PAH TO POLAR COMPOUNDS IN SOLID SAMPLES
Sample Designation
Pilot Plant Retorted
Shale, Direct Mode
(3/12/76, 1000 hrs)
Raw Shale A1r
Partlculate
(3/15/76 to 3/17/76)
Wt. % PAH
43
16
Wt % Polar Compounds
57
84
-------
TABLE 13. Rg VALUES FOR PAH FRACTION OF BENZENE SOLUBLES FROM DIRECT
MODE RETORTED SHALE .
Spot No. on
Figure 10
1
1
(tailing)
2
3
4
5
6
7
8
9
10
11
12
13
14
Fl uorescence
purple
purple
light blue
blue
yel 1 ow
purple
blue
purple
blue
purple
blue green
purple
purple
blue
blue
RR
I B II
1.00
0.79
1.02
0.93
0.87
0.95
0.83
1.08
1.19
1.36
1.24
1.38
1.27
0.31
0.00
1.00
1.02
1.25
1.27
1.45
1.64
1.89
1.95
1.84
1.91
2.18
2.34
2.80
2/41
2.34
Compound
*Benzo(a)pyrene
*Benzo(a)pyrene
**Coronene
**1 ,2 Benzanthracene
**1 ,2 Benzanthracene
**Pyrene
**Fluoranthene
*Quant1tatively Identified by fluorescence spectrometry and/or
high pressure liquid chromatography.
**These compounds have been qualitatively identified by RB values
only.
13-40
-------
CO
I
TABLE 14. EVALUATION OF BENZO(A)PYRENE CONTENT IN SAMPLES OF BENZENE EXTRACTS FROM DIRECT MODE RETORTED
SHALES
Sample Designation
Pilot Plant
(Direct Mode)
Retorted Shale
(3/12/76, 1000 hrs)
Retorted Shale
(Direct Mode)
(3/75)
Bz. Sol.
Quantity
Analyzed
N)
8.7
8.7
Ave.
Ave.
BaP/TLC
Spot
M
0.050
0.038
0.044
0.189
Wt %
BaP in
Bz.
Solubles
.000(5)
.000(4)
.001
0.001
BaP in
Bz.Sol.
(ng/kg)
4.7xl03
3.6xl03
4.2xl03
I
14xlOJ
BaP in
Shale
Sample
(ug/kg)
2.0
1.5
1.8
1.50
BaP In
Bz. Sols.
ppm
4.7
3.6
4.2
14
BaP in
Sample
ppm
0.2x10-2
0.2x10-2
0.2x10-2
y
0.2x10 c
-------
Tab1* 5.5
Evaluation of Organic!
Extracted from Aqueous
Phase of Recycle Gas
(Cold) Condanaata (RC-10)
Extraction
Fraction £2l.yf.nt
Neutrala Methylene Chloride
Bencena
Total
Acids Methylene Chloride
Bencene
Total
Bases Methylene Chloride
Bencene
Total
Weight
(ma)
242.9
40.0
282.9
247.9
11.7
259.6
35.2
26.4
61.6
Weight
Percent
0.081
0.013
0.094
0.083
0.004
0.087
0.012
0.009
0.021
DPn
810
130
940
830
40
870
120
90
210
Total Total
Wt. Percent ppm
0.094 940
0.087 870
0.021 210
0.2027. wt. 2,020 ppro
-------
T«bl« 5.6
Evaluation of Organlca Extracted from
Aqueous Phase of Recycle
Gaa (Hot) Condensete (RG-7)
Extraction
Fraction, Solvent
Neutrals Methylene Chloride
Bent en e
Total
CO
^ Acids Methylene Chloride
CO
Bencene
Total
Bases Methylene Chloride
Benzene
Total
Weight
JJPJt.)
99. A
2.9
102.3
A3. 1
10.2
53.3
11.9
0.5
12. A
Weight
Percent
O.OAl
0.001
O.OA2
0.018
O.OOA
0.022
0.005
0.000(2)
0.005
Total
ppm Wt. Percent
AlO
10
A20 O.OA2
180
AO
220 0.022
50
2
52 0.005
Total
ppro
A20
220
52
0.0697.
692 ppm
-------
Table 5.11
Size Distribution of PARAHO Solids
Size Ranee
Remarks
Raw Feed Shale
Fines
Raw Shale Participates
Retorted Shale
Air Particolates from
Retorted Shale
(above conveyor belt)
-7.62 cm + 6 ma (-3" + »)
an
- 5 urn
>19 mm
40.01 n - 5
Includes crushing fines.
For particle size
distribution see
Table V.
Seive Analysis see
Table VI. Larger pieces
laminate upon weathering.
See Table V for particle
size distribution.
13-44
-------
Table 5.12
Screen Sieve Analyses of PARAHO
Retorted Shale*
Sieve Designation
standard
(New U.S. Nos.)
>19.0 am
19.0
13.2
9.5
4.75
3.35
1.70
1.18
600 QB
425
300
212
150
106
75
<45
Semi -Works
Indirect Mode
16.97.
9.9
11.8
15.8
5.5
10.0
8.5
3.9
3.0
2.6
2.2
1.8
1.5
0.8
3.9
2.1
Pilot Plant
Direct Mode
26 . 47.
9.9
9.0
11.5
4.4
6.6
3.2
6.2
2.7
2.4
2.4
2.1
0.6
2.4
8.7
1.6
.^Collected from the retorted shale belts.
13-45
-------
Table 5.14. Mean Particle Size (Effective Diameter) of
LO VOL AIR PARTICULATE SAMPLES
Collected at the Paraho Plant as Determined by
Scanning and Transmission Electron Microscopy
(Values in Count Percent)
Percent
0 V
C «
E
Jl
o
^?
c
o
I
fuij
o
o
E
J3.
i
i/^
O
•
c^
O 0)
i> O
u *^
c w
3 CS
cr, a.
E
"^
l/"P
1
^™
E
^*"^
L1*:-
Bins & Weigh House
(Handling at Unretorted Shale)
3-15-76 1410 hrs. 50.4* 33.3* 1.2* 84.9 10.1 5.0
Pilot Plant Retorted
Shale Belt
3-9-76 1030 hrs. <0.1 <0.1 100 83.2 14.3 2.6
Semi-Works Retorted
Shale Belt
3-16-76 1115 hrs. <0.1 <0.1 100 2.0 71.4 26.5
•Values obtained by Transndssion Electron Microscopy as explained in text.
Table 5.15. Particle Size Analysis of Air Particulate Samples
Collected at the Paraho Plant
as Determined by Cascade Impaction Collector
(emulative Weight Percent Less than Stated Micron Size)
Primary Crusher Bldg.
3-17-76 1300 hrs. 2 26 73
Bins & Weigh House
3-18-76 76 87 94
Semi-Works Retorted
Shale Belt
3-18-76 1345 hrs. 2 28 76
13-46
-------
Table 5.16
PARTICLr. S1ZK VS.
MEAN liLIiMI-INTAL COMPOSITION OF
AIR PAKTICULATKS
AS DLTliKMINKU BY X-RAY FLDORESCKNCi-.
Bins f* Weigh HOUS«J
(Unretorted Shale)
Pilot Pinut
Direct Hoilc
(3- 9-76, 1030 lirs)
Sc-mi-Works
Indirect Mode
(3-16-76, 1115 hrs.)
*
E
m
_'
V
1 ~40
* ~'ZO
4 "10
t "'lo
1 +
+
1 +
-
+
1 +
£•
:3
o
^1
V
30
10
11
12
9
2
2
3
12
_
m E
, irt
A A
AA A3
2A 22
10 8
6 8
5 0
5 (•>
3 2
+ +
+ A
+ +
E
,_<
V
Al
28
1A
7
3
+
+
•f
7
+
E
m
A
ft
A
AO
23
9
11
5
+
+
+
11
-
E
m
A
AO
23
13
9
A
3
3
+
2
•f
E
n
^i
V
A3
21
11
5
7
5
+
+
+
+
E
m
V,
t— i
A
52
3A
14
12
5
5
+
+
5. A
+
m
A
Al
23
8
10
A
6
+
+
A
+
101 background fluorescence, see text.
iiicates presence of element but not quantifiable.
Silicates element not found in sample at sufficient concentration to be detected.
13-47
-------
Table 5.17 B«ns«n« and Water Extractables of Solid Sample*
Total Benren*
Soluble*
Wt. %
Benzene Solubles
Sulfur Removed
Wt. %
Benzene Solubles
Water Solubles of Water Solubles
Wt. % Wt. 7.
Pilot Plant
(Direct Mode)
Retorted Shale 0.03(4)
(3-12-76, 1000 hrs)
t_< Semi-Works
V (Indirect Mode)
co Retorted Shale 2.15
(3-16-76, 1415 hr«)
Semi-Works
Retorted Shale
Collected as
Air Partlculate 1.67
(3-15-76 to 3-18-76)
Unretorted Shale
Collected as
Air Partlculate 2.05
(3-15-76 to 3-17-76)
0.03(7)
2.15
N.D.
N.D.
*Low value Is probably due to oily hydrophoblc nature of sample.
N.D. » Not Determined
3.39
*0.98
N.D.
N.I).
0.00(3)
0.03
N.D.
N.D.
-------
Table 5.21
Evaluation of Bcnzo(a)pyrenc
Content in Samples of Benzene Extracts from
Paraho Spent Shale Coke Samples
•Pie
llgna-
m
ivni (i)
i
li-vorks
direct 2
Mode)
3
ive.
I VII (1)
1
lot Plant 2
Irect
Mode)
ive.
dicr PARAHO
torted Shale
h»et >fede)
tore.
BO Retorted
de
lire.
Bz. Sol. BaP/TLC
Quantity Spot
Analyzed (meg)
(mg)
18.4 0.100
18.4 0.146
18.4 0.144
0.130
8.7 0.050
8.7 0.038
0.044
0.189
0.295
Wt. %
BaP in
Bz.
Solubles
.000(5)
.000(8)
.000(8)
.000(7)
.000(5)
.000(4)
.001
0.001
0.002
BaP in
Bz.Sol.
(meg/kg)
5.4xl03
7.9xl03
7.8xl03
7.0xl03
4.7xl03
3.6xl03
4.2xl03
14xl03
17xl03
BaP in BaP in
Shale Bz.Sols.
Sample p. p.m.
(meg /kg)
116 5.4
170 7.9
168 7.8
151 7.0
2.0 4.7
1.5 3.6
1.8 4.2
1.50 14
42.4 17
BaP in
Sample
p.p. m.
12. xlO"2
17. xlO"2
17. xlO"2
15. xlO"2
0.2xlO"2
0.2xlO~2
0.2xlO"2
0.2xlO~2
4.2x10 2
13-49
-------
Table 5.22
Rn Values for PAH Fraction of
D
Benzene Solubles from Carbonaceous
Spent Shale CSA VIII (1)]
Spot No. Fluorescence
1
2
3
4
5
6
7
8
9
purple
purple
blt-e
purple
purple
blue
light blue
blue
yellow
0
1
0
0
0
0
1
1
0
T
.95
.00
.93
.97
.95
.98
.15
.00
.85
II
0.64
1.00
1.31
1.72
2.75
2.33
2.38
2.64
1.49
Compound
**BaP derivative
*Benzo(a)pyrene
***!,2 Benzanthracene
derivative
**~*Fluoranthene
*These conpounds have been quantitatively identified by fluorescence
spectronetry and/or high pressure liquid chromatography (Figure 5.36)
**The fluorescent spectra of these conpounds indicate possible
derivatives of benzo(a)pyrene.
***These conpounds have been qualitatively identified by R_, values only.
13-50
-------
Table 5.23 Pilot Plant (Direct Mode) Recycle Gas
Corrected
Gas Sampled Tube Type Values Obtained* Notes
CO 1H
1H
1H
C02 2H
NH_ 3H
* 3H**
3M**
3M
H- 4H
2 4H**
4HH**
4HH
SO 2 5La
N0-N02 10
HCN 12
Semi Works
CO 1H
1H
C02 2H
NH, 3M
3 3M**
3H**
H S ^HH
2 4HH
SO, 5L
2 5L
N0-N02 1°
HTN 12H
4.7%
4.7%
4.7%
>20% H
6.3% H
7.5%
1000 ppm A
1000 ppm
2600 ppm S
2600 ppm
0.25%
0.25%
< 2 ppm t
< 5 ppm I
3.2% 1
f
140
(Indirect Mode) Recycle Gas
12.5% S«
12 . 5% P'
hj
dc
It
ti
550 ppm Ai
675 ppm P^
Ii
U1
3.1% a
3.1%
150 ppm M
150 ppm
< 2 ppm B
C
H?S produces erroneously
high values
H~S Produces erroneously
high values
Amines and diamines
produ_e a plus error
S02 >50 ppm produces
plus error
below minimum detectable
below minimum detectable
both CO and H2S produce
erronious high values
Several color bands
produced by interferring
hydrocarbons. Values in
doubt.
Interferences rendered
tube unreadable.
Amines and diamines
produce plus error.
Interference rendered tube
unreadable probably
>7 < 50 ppm produces
plus error.
Many interferences.
Below minimum detectable.
CO rendered tube
unreadable.
Values obtained corrected tor pressure. No other corrections are suggested.
^Indicates that different chemistries are used for the different tube ranges.
13-51
-------
Table 6.1. Flame lonization Response of Sample KSA-34 Extracted with CS.
PFTIT FI:JAL
IF nOT.Tl^E
AHEA
1
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15
16
17
18
19
20
21
197
328
349
395
405
422
436
457
495
514
525
547
570
588
597
652
658
666
705
730
804
197.
328.
349.
395.
405.
422.
436.
457.
495.
514.
525.
547.
570.
588.
597.
652.
658.
666.
705.
730.
804.
zzzz
0000
0000
0000
0C0E
0000
J50P0
0000
0000
0000
09100
0000
000?
0000
0000
0000
0000
0000
0000
0000
0000
9265.
9494.
878.
167.
813.
746.
7739.
7538.
646.
4059.
5294.
3543.
2903.
5384.
4859.
1558.
141 1.
3745.
1880.
1302.
430.
C1CC
0030
0000
0000
0000
00C0
0CC0
0202
•0000
2£fl0
0P00
PCZC
0000
0000
0000
0000
0000
0000
0000
0000
0000
97.
100.
9.
1.
8.
7.
81.
79.
6.
42.
55.
37.
30.
56.
51.
16.
14.
39.
19.
13.
4.
53B£*
0C0E
2479
7590
5633
8576
5147
3975
6043
7533
7615
3183
5772
7795
1 797
4IC3
8620
4460
8020
7139
5291
73 19.
75CB.
693.
131.
642.
589.
6113.
5954.
510.
3206.
4152.
2798.
2293.
4?53.
3638.
1230.
1 1 14.
2958.
J485.
1028.
339.
isce
0000
5960
9250
24SC
3220
6CC-0
310f
3220
5C0C
izer.
37C0
2900
2 1 00
450?-
7700
6580
4500
1400
5400
6880
.5197
. 5 4 e ?
. C ""'$
.01^7
. 0~S 9
. C66-C
. 6?4~
. 666?
.0571
. 359:
. uf.P 3
. 31 34
. 2566
. 4763
. 4299
.1375
. S246
. 33 1 3
. 1663
.1151
.0350
BENZE'vE
TOLUENE
^-XYLE^E
CYCL ££''"•'''£"-
! t ' ^AwNL
1- Df.-irt£
N- DECADE
INOENE
UNDECENC
UNOECANE
OODECANE
NAPHTHALENE
A QUAIfTITATIVC OCTt«»«INAT IO« CAM WOT BC «*AO€ U»*T IU A CTAMOARO MAS
•CO* WIC^AHCO OOMTAIHtwa TM6»t OO«*ONEMT« IT 1C *O««18UE TO CrTABL! 8H AN
AI»f*ftOXIMAT!OM. TM!« IS AOHICVCO BY *HK.Tim.l*« TMC ^CAK RCW»ON«E T IMC« THC
itcs^OMW rAOTon re* CARBO* ro« THE ruAME IONJZATIOW OCTECTOH TIMES T«E SAMPLE
OllVTtON rACTOK AND OIVIOC «V THE TOTAU VOLUME OF «A« gAMPLEO.
13-52
-------
STUDY NUMBER 14
-------
STUDY NUMBER 14
DATA
SOURCE:
SOURCE ASSESSMENT:
TEXTILE PLANT WASTEWATER
TOXICS STUDY
PHASE II
DATA
STATUS:
Draft, April 1979
AUTHORS:
CONTRACTOR:
J. R. Klieve and G. D. Rawlings
Monsanto Research Corporation
1515 Nicholas Road
Dayton, Ohio 454O7
TASK
OFFICER:
Max Samfield
U.S. Environmental Protection Agency
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
Research Triangle Park, NC 27711
14-1
-------
SOURCE ASSESSMENT: TEXTILE PLANT
WASTEWATER TOXICS STUDY PHASE II
This document reports on Phase II of a study cosponsored by the EPA and
the American Textile Manufacturers Institute to determine the toxicity of tex-
tile plant wastewaters. Phase I of this study was published as Source Assess-
ment: Textile Plant Wastewater Toxics Study, Phase I (EPA-600/2-78-004h)4 and
was reported in a previous compilation of data with summaries of phased
environmental assessments. The purpose of the study was "to examine the level
of removal of specific toxic pollutants and toxicity (as measured by results
of bioassay tests) attained by selected tertiary systems treating secondary
effluents from textile plants."
The Phase I study had used lERL's Level 1 chemical tests and bioassays as
well as GC/MS analysis for priority pollutants (129 toxic compounds), and wet
methods for criteria pollutants (BODS, COD, color, sulfide, pH, chromium,
phenols, TSS). Phase I results gave preliminary toxicity data and were used
to rank 23 textile plant effluents for toxicity.
Phase II employed seven mobile tertiary treatment systems to determine
the best available technology economically achievable (BATEA) for the treatment
of eight of the most toxic plant effluents as determined in Phase I. Chemical
analyses for intake water, secondary effluents, and tertiary effluents are
presented; bioassay results are given only for secondary and tertiary effluents.
The chemical tests include the effluent guidelines' protocol for analysis of
the 129 priority pollutants, analysis for selected metals by ICAP, and other
selected aqueous analyses (NH3, N03, P04 , salinity, pH, specific conductance,
COD, TSS, color, and sulfide). The bioassay procedures performed in the study
include the freshwater ecology series (algae, Daphnia. fathead minnow, and/or
bluegill), microbial mutagenicity (Ames and pol A), and cytotoxicity (CHO-K1).
The seven tertiary treatment systems were ranked in terms of total pollut-
ant removal efficiency (based on chemical analysis) and in terms of toxicity
removal capability (based on bioassay) as shown in Figure 14-1.
14-2
-------
tj
>
o
Cn
O)
S_
c
-------
The report, in Section 3, p. 8, mentions several trends:
1. Only seven organic toxic pollutants in excess of 10 pg/L were seen
in secondary effluents of the eight textile plants. These were
bis(2-ethylhexyl) phthalate, 1,2-dichlorobenzene, 1,2,4-trichloro-
benzene, toluene, methylene chloride, di-n-butyl phthalate, and
total phenol.
2. Eleven inorganic toxic pollutants were seen in at least one of the
eight secondary effluents in levels greater than 10 yg/L (or the
detection limit). These were antimony, arsenic, beryllium, cadmium,
chromium, copper, cyanide, lead, nickel, silver, and zinc.
3. None of the secondary effluents or tertiary effluents gave a positive
response in the mutagenicity or cytotoxicity tests.
4. The freshwater algal assay was the most sensitive bioassay test used
in the Phase II program.
5. Multimedia filtration followed by granular activated carbon adsorp-
tion demonstrated the best overall toxic pollutant removal capability.
6. Ozonation appeared to add organic and inorganic toxic pollutants to
the wastewater being treated.
7. Multimedia filtration alone demonstrated the best overall toxicity
removal capability.
8. Tertiary treatment systems that left high levels of residual aluminum
or iron fro« coagulation in their effluents generally increased the
toxicity of the wastewater, as compared with treatment systems whose
effluents contained lower levels.
9. Systems employing cationic polymer coagulation increased the toxicity
of the wastewater being treated.
In this section, the following recommendations were made:
1. Coagulation with high doses of coagulant (alum or ferric salts)
should be avoided as a tertiary treatment option, since it appeared
that high levels of residual aluminum and iron resulted in an
increase in effluent toxicity.
2. Since freshwater algal and Daphnia bioassays were the more sensitive
bioassays, these tests should be considered first as a means to
characterize the toxicity of textile mill wastewaters.
The results of chemical and biological analysis of each of the eight
plants plus conclusions and recommendations for each plant were discussed in
detail. The tertiary treatment systems are referred to by number in the
following data tables as follows:
14-4
-------
1. Sedimentation
2. Coagulation then flocculation/sedimentation
3. Multimedia filtration
4. Coagulation then multimedia filtration
5. Coagulation then flocculation/sedimentation then multimedia filtration
6. Multimedia filtration then granular activated carbon
7. Multimedia filtration then ozonation
8. Coagulation then flocculation/sedimentation then multimedia filtration
then granular activated carbon.
Table 14-1 (from the report) shows the tertiary treatment systems that
were selected at each plant for detailed chemical analysis and bioa^say.
TABLE 14-1. TERTIARY TREATMENT SYSTEMS
USED AT SPECIFIC PILOT PLANT SITES
Plant 1
A
C
W X
s
p
N
V
T
Type
treatment
2 3
X
X
X
X
X X
X X
X
X X
of tertiary
system studied
4 5
X
X
X
X
X
X
X
6 7
X X
X
X
X
X X
X
8
X
X
aBlanks indicate treatment technology not tested in
"candidate" mode studies at this location.
14-5
-------
LEVEL 2
14-6
-------
TABLE 6. MINIMUM DETERMINABLE CONCENTRATIONS
FOR ORGANIC TOXIC POLLUTANTS
Compound
Concen-
tration ,
uq/liter
Compound
Concen-
tration,
yg/liter
ACIDS
2-Chlorophenol
Phenol
2,4-DichIorophenol
2-Nitrophenol
p-Chloro-m-cresol
2,4,6-Trichlorophenol
2,4-Di»ethylphenol
2,4-Dinitro?henol
4,6-Dinitro-o-cresol
4-Nitrophenol
Pentaehlorophenol
VOlATILgS
Chloromethane
Dichlorodifluoroaethane
Bromomethane
Vinyl chloride
Chloroethane
Methylene chloride
Trichlorofluoromethane
1,l~Dichloroethylene
1,l-Dichloroethan«
Trans-l,2-dichloroethylene
Chloroform
1,2-Dichloroethane
1,1,1-Trichloroethane
Carbon tetrachloride
Brorodiehloromethane
Bis(chloromethyl) ether
1,2-Dichloropropane
Trona-1,2-dichloroethylene
Trichloroethylene
Dibroswchlorotte thane
Cie-1,3-dichloropropene
1,1,2-Trichloroethane
Benzene
2-Chloro*thyl vinyl ether
BroTOXora
1,1,2,2-Tetrachloroethene
1,1,2,2-Tetrachloroethane
Toluene
Chlorobenzene
Ethyli>enzene
DIRECT IN3ECTASLES
Acrolein
Acrylonitrile
BRSS KEUTRALS
0.09 1,3-Dichlorobenrene
0.07 1,4-Dichlorobenzene
0.1 Bexachloxoethane
0.4 1,2-Dichlorobenzene
0.1 Bis(2-ehloroisopropyl) ether
0.2 Hexachlorobut&dierve
0.1 1,2,4-Trichlorobenzene
2.0 Naphthalene
40.0 Bis(2-chloroethyl) ether
0.9 Hexachlorocyclopentadiene
0.4 Nitrobenzene
Bis(2-chloroethoxy)methane
2-Chloronaphthalene
Acenaphthylene
0.2 Acenaphthene
0.2 Isophorone
0.2 Fluorene
0.4 2,6-Dinitrotoluene
0.5 1,2-Diphenylhydrazine
0.4 2,4-Dinitrotoluene
2.0 N-nitrosodiphenylamine
2.0 Hexachlorobenzene
3.0 4-Broaophenyl phenyl ether
2.0 Phenanthrene
5.0 Anthracene
2.0 Dimethyl phthalate
2.0 Diethyl phthalate
4.0 Fluorantheae
0.9 Pyrene
1.0 Di-n-butyl phthalate
0.7 Benzidine
2.0 Butyl benzyl phthalate
0.5 Chrysene
0,3 Bis(2-ethylh«xyl) phthalate
0.5 Benzo(a)anthracene
0.7 Benzo(b)fluoranthene
0.2 Benzo (JO f luoranthene
1.0 B«nzo(a)pyrene
0.6 lndenoU,2,3-cd)pyr«ne
0.9 Dibenzo(a,h)anthracene
0.6 Benzo(g,h,i)perylene
0.1 u-nitrosodiaethy lamine
0.2 N-nitrosodi-n-propylamin«
0.2 4-Chlorophenyl phenyl ether
3,3'-Dichlorobenzidine
PESTICIPSS
2OO
100
0.02
0.04
0.1
0.05
0.06
0.08
0.09
0.007
0.07
0.2
0.08
0.06
0.02
0.02
0.04
0.06
0.02
0.2
0.02
0.02
0.07
0.05
0.1
0.01
0.01
0.03
0.03
0.02
0.01
0.02
0.02
0.03
0.02
0.04
0.02
0.02
0.02
0.02
0.02
0.02
0.01
o.a
0.2
0.03
1.0
1.0
14-7
-------
TABLE 7. PLANT A ORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, yg/£; percent removal in parentheses)
Secondarv effluent
Pollutant
Bis(2-ethylhexyl) phthalate
Pyrene
Heptaehlor
1 , 2-Dichlorobenzene
1 , 2 , 4-Trichlorobenzene
o-BHC
4, 4 '-DDT
Toluene
Ethylbenzene
Phenol
Benzo (a) pyrene
N-nitrosodiphenylardne
2 , 4-D iaethylphenol
Pentachlorophenol
1 ,4-Dichlorobenzene
Phenol (total)
Intake Phase I
5.4 6
1.2 -
1.6
1
46
8.4
0.05
12 65
Phase II
32
1.4
20
1,600
s.e
2.1
31
5
60
Tertiary effluent
Type 2
44 (-3B)a
(100)
150 (91)
14 (55)
3
47 (22)
Type 5
14 (56)
5.4 (73)
94 (94)
1.9
12 (31)
3
0.8
0.4
0.9
10
55 (8)
Type 8
4.7 (85)
(100)
(100)
(100)
1.5
17 (72)
aj4inus percent removals indicate an increase in the concentration of the specific
pollutant.
Blanks indicate concentration below detection Unit (see Table 6).
14-8
-------
I
in
TABLE 8. PLANT A INORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, vig/fc; percent removal in parentheses)
Secondary Effluent
Pollutant
Antimony
Arsenic
Beryllium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Intake
<10
72
0.2
7.5a
<4
<4
<4
<22
NAC
<36
NA
<5
NA
56
Phase I
30
<5
<0.1
<0.5
180
27
15
<1
<0.5
140
<5
<5
<5
6,400
Phase II
<10
60
<0.04
<2
110
20
10
<22
NA
<36
NA
<5
NA
6,400
Type
<10
62
<0.04
<2
31
13a
<4
<22
NA
<36
NA
<5
NA
5,700
Tertiary effluent
2 Type 5
<10
(-3) 103
1.2
97
(72) 34
(35) 110
(>60) 10
79a
NA
<36
NA
<5
NA
(11) 5,900
(-72)
(-2,900)
(-4,800)
(69)
(-4,500)
(0)
(-260)
(8)
Type 8
24a
<1
5.4
5.23
19a
47
<4
<22
NA
<36
NA
<5
NA
6,000
(-140)b
(>98)
(-130,000)
(-62)
(83)
(-140)
(>60)
(6)
'semiquantitative region; value not within 95% confidence limits.
'Minus percent removals indicate an increase in the concentration of the specified pollutant.
Not analyzed.
-------
TABLE 9. PLANT A OTHER POLLUTANTS DETECTED
(Concentration, pg/l» percent removal in parentheses
I
M
O
Pollutant
Aluminum
Barium
Boron
Calcium
Cobalt
Iron
Magnesium
Manganese
Molybdenum
Phosphorus
Sodium
Silicon
Strontium
Tin
Titanium
Vanadium
Intake
<12
<0.2
50
16,000
7.7"
175
3,000
49
<10
490b
8,000
480
90
<15
<1.0
17
Secondary
effluent
230
20
270
37,000
16b
2,000
5,000
92
<10
280
270,000
1,400
220
<15
3.2b
40
Tertiary effluent
Type
1,600
18
270
70,000
17b
2,800
4,900
100
<10
<70
270,000
1,300
240
20b
2.0"
53
2
(-600)*
(10)
(0)
(-89)
(-6)
(-40)
(2)
(-9)
(>75)
(0)
(7)
(-9)
(-33)
(38)
(33)
Type
520
18
300
70,000
110
2,700
5,300
200
•ao
<70
280,000
1,300
260
17b
<1.0
42
5
(-130)
(10)
(-11)
(-89)
(-590)
(-35)
(-6)
(-120)
(>75)
(-4)
(7)
(-18)
(-13)
(>69)
(-5)
Type
100
50
320
70,000
18b
1,700
5,800
120
<10
<70
265,000
1,400
370
<15
<1.0
33
8
(57)
(-150)
(-19)
(-89)
(-13)
(15)
(-16)
(-30)
(>75)
(2)
(0)
(-68)
(>69)
(18)
Minus percent removals indicate an increase in the concentration of the specified pollutant.
^Semiquantitative region; value not within 95% confidence limits.
-------
TABLE 11. PLANT A EFFLUENT DESCRIPTIONS
Secondary diluent Tertiary effluent —
, P»r«aeter Ph«»e - Pha»« Ji j-yp« ; frypg t, 1-ype 6
r»ic»l description Cray with considerable Dark purple with Light purple Ught purple with Clear
amount of fine partic- particulate aattez paniculate
ulate; chlorinated Batter
«.a «.e «.i c.c t.i
Unity. 9/£ KH* 0.05 0.02 0.05 0.05
Kific conductivity. MM 150 900 850 JOO
It iwaaured.
14-11
-------
TABLE 12. PLANT C ORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, vg/£; percent removal in parentheses)
Pollutant Intake
Di-n-butyl phthalate 1.9
Bis (2-ethylbe>eyl ) pathalate 6.6
2-Chlorophenol 0 . 2
Anthracene
1 , 4-DichlOTObenzene
Pentachlorophenol
Phenol
TOluene
Dibrooochlorone thane
1 . 2-Dichlorobenzene
Ctbylbensene
Acenaphthene
1,2, 4-Tr ichlorobeniene
Triehloroethylene
Tetrachlor oethy 1 ene
Methylene chloride* 35
Phenol (total)
Secondarv
Pnase 1
_a
3.0
4.4
8.7
6.7
0.5
240
0.3
110
0.5
10
11
26
88
-effluent
Phase II
0.6
7.6
0.05
0.4
15
0.6
160
23
Tertiarv effluent
Tvpe 2 Tvt>c 5 TV DC E
0.6 0.6 0.4
33 (-330)b 5.3 (30) 11 (-45)
0.1 0.03 0.01
12 (-79)
1.0 (93) (>99) (>S9)
13 (-260,000) 5.8
1.3
70 (56) 210 (-31) 110 (31)
16 (30) 19 (17) (>91)
*»lante» indicate concentration below detection limit (see Table 6).
Hinus percent removals indicate an increase in the concentration of the specified pollutant.
CHethylene chloride nay originate free analysis contamination.
TABLE 13. PLANT C INORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, yg/£; percent removal in parentheses)
Pollutant
Antimony
Arsenic
Beryllius
Cadmium
Chromium
Copper
Cyanide
Mercury
Kickel
Silver
Thallium
Zinc.
Ir.take
<10
<1
30
29
<4
£5
<4
<22
KAC
06
KA
54
KA
S3
Serondart
Phase I
4
<5
6
31
30
13
120
0.7
140
«5
«5
120
r effluent
Phase 11
90
1.6
1.5
<2
5.5"
57
<4
27b
KA
<36
KA
60
KA
163
TVT
120
<1
2.2
2.9b
17*
llb
<4
66b
KA
<36
KA
72
KA
190
Tertiarv effluent
« 2 Type 5
(-33)* 140 (-56)
<1
1.2
2.7b
(-210) 14b (-150)
(61) 25 (56)
<4
(-140) 64b (-140)
ItA
<36
KA
(10) 77 (4)
HA
(-19) 230 {-44)
Tvoe
120
<1
2.7
9.6b
15b
35
<4
KA
<36
KA
91
KA
83
E
(-33)
(-1703
(39)
(-140)
(14)
(48)
*Minas percent removals indicate ar. increase in the concentration of the specified pollutant.
bSe«iouantit*tive region; value not within 95% confidence limits.
CKot analyzed.
14-12
-------
TABLE 14. PLANT C OTHER POLLUTANTS DETECTED
(Concentration, yg/fc; percent removal in parentheses)
CO
Pollutant
Aluminum
Barium
Boron
Calcium
Cobalt
Iron
Magnesium
Manganese
Molybdenum
Nickel
Phosphorus
Silicon
Strontium
Tin
Titanium
Vanadium
Intake
<12
81
<1
3,300
29b
110
720
33
<36
120b
7,500
49
<2
Secondary
effluent
98
72
54
5,200
<6
230
3,700
17
<36
2,700
15,000
67
69b
2b
410
TerLinry effluent
Type 2
13,000
70
58
5,700
<6
930
3,700
24
20b
<36
2,300
15,000
68
62b
14
560
(-13,000)°
(3)
(-7)
(-10)
(-300)
(0)
(-41)
(-100)
(15)
(0)
(-1)
(10)
(-600)
(-37)
Type 5
11,000 (-10,000)
71
57
5,600
<6
750
3,700
24
22b
<36
2,000
15,000
71
66b
11
520
(1)
(-6)
(-8)
(-230)
(0)
(-41)
(-120)
(26)
(0)
(-6)
(4)
(-450)
(-27)
Type 8
9,200
81
29
5,600
<6
310
3,700
28
19b
<36
1,900
14,000
74
56b
11
180
(-9,300)
(-13)
(46)
(-8)
(-35)
(0)
(-65)
(-90)
(30)
(7)
(-10)
(19)
(-450)
(-56)
JMinus percent removals indicate an increase in the concentration of tho specified pollutant.
"semiquantitative region» value not within 95% confidence limits.
-------
TABLE 15. PLANT C BIOASSAY RESULTS
Teat ppcciea
Freshwater algae -
Mater flea -
0, maona
Dluegill -
1, maahroctilrut
Fathead minnow -
r. prcw100
MOO
MOO
MOO
MOO
MOO
MOO
MOO
MOO
MOO
(->*
]
Type 2
7.7 (2.3-25)
5.6 (2.J-1J)
5.2 (1.3-20)
MOO
79
MOO
MOO
MOO
MOO
MOO
MOO
MOO
(-)
^rUary cllluont
typ100
>100
>100
Not meaaured.
b95l confidence Interval.
C20% secondary effluent wa» highly Btlmulatory to the growth of S.
dEC»o - 48 hr determined using Daphnia pult*.
elncrea.e in number of revertanta over background w.» ob.erved, however, the re.olt. were not twofold, nor was
there a done reaponse.
not determinable, cytotoxicity procedure employing rabbit alveolar macrophage (RAM) u«d in Phase I.
-------
TABLE 16. PLANT C EFFLUENT DESCRIPTIONS
Tertiary crjluent
Parameter Pnttfi Pfla»t II Type 2 Type 5 Type I
»1 de»criptio» Clear, blue-black with Orange-brown with Light orange- Light orange- Cloudy white
•oderate amount of particulate natter with partic- brown with - liquid
particulate: ulat* Batter particulate
unchlorinated natter
10.2 t.l £.» 7.0 7.1
ty. 5/t UK* 3 33 2.5
It conductivity, NM J,BOO «,000 J.»00 3,»00
I/CB*
»a*ur«a.
14-15
-------
TABLE 17. PLANT W ORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, vg/£; percent removal in parentheses)
Pollutant
Intake
•is (2-ethylhexyl ) phthalate IS
Anthracene C.»
•ease la } anthracene
rivorantheae
•ease (a ) pyrene
fyreoe
aenso Ik > f looranthene
D>-B~butyl p*> thai ate
Toluene
Cthylbenaene
Methyl*** ehloridec
Pfteaal (total 1
0.1
0.7
0.7
0.5
0.4
t
Pftace 2 Pnasr 13
19 42
-b 1.5
1.5
1.1
1.2
O.I
O.I
1.7 1.4
232 1C
Type 2
23 (45)
0.4
0.4
0.2
l.S
3.0
2.2
4« (-(7)
Tertiary effluent
Tvpe 3 Type 6
14 (£7) 26 (67)
0.2 0.1
0.2
0.2
0.3
0.1
1.1
3.1
1.3
4.1 l.S
n «-6> 17 <-S!
106
0.4
0.1
C.I
1.2
€1
11
(-1501*
(-1S.OOB)
(19)
>unu» percent reoeval* tAdicat* •« tner**** in th« eone«ntr»t»on oJ tht •p*ctd*d pollutant..
indicate concentration belou detection lirut (»et Table ().
CJUorid* »ay originate tzam analyiit eontasination.
TABLE 18. PLANT W INORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, pg/£; percent removal in parentheses)
Secondary effluent
Pollutant Intake Phase I Phase II
*«*«* <10 <0.5
Annie <1.0 <5
Beryllitst <5 <0.1
o.^-63)
(-3)
(>69)
(66)
(-20)
(>86)
(>65>
(>80)
(87)
Tvce 3
<200
83
<2
<40
63)
(-120)
(>69)
(63)
(-30)
(>86)
(»65)
(>80)
(73)
Ti-pe 6
<200
42
<2
<40
<80
<80
40
<400
HA
<70O
MA
<100
NA
120
063)
(-10)
(>69)
(>75)
(80)
(>86)
(>65)
(>80)
(92)
Tvt>e
1,200
43
<4
250
<200
S90
<4
«900
NA
5,000
MA
1,300
NA
460
(-120!*
(-13)
(-92)
<-M)
(>98)
(>74)
(-150)
(-160)
(69)
*Mious percent removals ladicare an increase in the concentration of the specified pollutant.
b»ot aaalyxed.
14-16
-------
removal in parencneses?
Pollutant
Aluminum
Barium
Boron
Calcium
Cobalt
Iron
Magnesium
Manganese
Molybdenum
Sodium
Silicon
Tin
Strontium
Titanium
Vanadium
Ammonia
nitrogen
Nitrate
nitrogen
Phosphate
phosphorus
Intake
22
110
<1
16,000
5
1,100
1,700
30
<10
2,400
5,600
<20
95
<1
12
NAb
NA
NA
Secondary
effluent
8,400
290
490
31,000
170
5,000
7,000
20
<200
54,000
4,800
OOO
170
200
2,700
3,300
5,300
200
Tertiary
Type
4,700
120
640
31,000
<40
3,400
6,600
70
<200
56,000
3,200
OOO
160
110
120
3,000
7,100
210
1
(44)
(59)
(-33)*
(0)
(>76)
(32)
(6)
(-250)
(-4)
(33)
.
(6)
(45)
(96)
(9)
(-34)
(-5)
Type
3,100
110
600
33,000
60
2,400
6,600
40
<200
61,000
2,700
OOO
160
60
110
2,600
6,500
100
3
(63)
(62)
(-22)
(6)
(65)
(52)
(6)
(-100)
(-17)
(44)
(6)
(70)
(96)
(21)
(-23)
(50)
effluent
Type
3,100
50
630
22,000
<40
1,900
4,900
20
<200
57,000
2,200
OOO
120
80
<40
2,200
6,500
100
6
(63)
(03)
(-29)
(29)
(>76)
(62)
(30)
(0)
(-6)
(54)
(29)
(60)
(>99)
(33)
(-23)
(50)
Type
7,000
120
1,000
30,000
300
2,300
6,100
90
<400
56,000
2,600
<600
2
180
540
5,500
8,800
160
7
(17)
(59)
(-104)
(3)
(-124)
(54)
(13)
(-350)
(-4)
(46)
(99)
(10)
(80)
(-67)
(-66)
(20)
"Minus percent removals indicate an increase in the concentration of the specified pollutant
b
Not analyzed.
-------
TABLE 20. PLANT W BIOASSAY RESULTS
Teat species
Fr«nhwater alga* -
5. eaprtcornutun
Water ties -
D, magnn
Blue gill -
Fathead minnow -
T. promrlaa
8. tyi'hbnuriu* -
•train* TA9H,
TA100, TA1535,
TA1537, nnd
TAIS38
S. coll -
•train* M3110
onJ |i3470
Chinese hamster
ovary c*ll«
Secondary effluent
Parameter rhaoo
DC*e - T day, t effluent NMn
K«e - 12 day, « affluent NH
KT»e - 14 d*y, 1 effluent -c
CC*e - 24 hr, effluent NH .
W»e - 40 hr, effluent 6.3
LC»e - 24 hr, effluent WH
ICje - 40 hr, effluent NH
tCse - 72 hr, effluent IIH
K«e - 96 hr, effluent KM
ICse - 24 hr, effluent NH
IC*e - 40 hr, effluent NM
t£»e - 72 hr, effluent NH
lC»e - 96 hr. effluent 55
Re«pon«e to Am«e test for (-)
mutagenlclty - (-) or (*)
Response to pot A test for 0
mutagenlclty-lncrease In
rone of Inhibition, m«
Response to cno-Kl test -f
for acute eytotoxlclty-
ECae
:
1.
2.
4.
Phono II
0 (0.6-3.4)b
4 (0.5-12)
0 (2.1-7.6)
>36<60
56 (33-97)
•V77
71
65
60
75
83
61
61
0
MOO
(63-01)
(50-71)
(33-66)
(70-80)
(52-76)
(31-75)
(51-75)
6.
10
0.
57
40
MOO
77
72
64
76
59
53
40
,-,
0
MOO
Type 1
0 (0.9-4.0)
(4.2-24)
9. (2.6-30)
(33-79)
(34-66)
(67-05)
(65-01)
(57-71)
(60-09)
(50-77)
(45-61)
(39-35)
12
17
11
50
39
MOO
60
61
60
tertiary effluent
Type 3
(3.6-41)
(1.5-100)
(3.4-37)
(34-100)
(34-100)
(61-75)
(54-67)
(53-66)
>77<100
73 (65-04)
69 (61-79)
60 (59-7?)
""
0
MOO
Ty|H) 6
47
33
20
51
49
MOO
75
68
66
76
69
63
61
'"
0
MOO
(Z3-95)
(16-6R)
(13-61)
(36-7?)
(35-70)
(69-00)
(61-75)
(59-7J)
(60-06)
(61-75)
(50-72)
(54-67)
J7
44
29
55
34
MM
IIH
HM
MM
Type 7
(26-53)
(5.5-100)
(16-54)
(32-951
(31-93)
>60<100
60 (54-84)
60 (54-04)
65 (51-00)
(-)
0
MOO
*Not measured.
D9St confidence Unite.
CCrowth of 5. eapricontutun supported with 2\ and 51 uncondary efflurnt, but Inhibited at lot «nd 20t Ivvcla.
RCjo - 40 hr determined uilnq thphnta putt*.
Increase In number of revertantg wag observed with TA1530, with and without metabolic activation* however, a dose response w«> not
observed,
ECso not determlnablei cytotoxlclty procedure employing rabbit alveolar mocrophnqp (RAH) uaed In Phaiie I.
-------
TABLE 21. PLANT W EFFLUENT DESCRIPTIONS
;iuent
Ph»»e 13 7ypf ^ Type 3 ' Type fe Type
ttiv»ic*l ducriptior. Cloudy oranpr with Cloudy brown Cloudy brown Cloudy brown rale yellow Cloudy pale
• K>d*r*t« amount liquid liquid liquid liquid yellow liquid
o; partieulat*:
nonchlocinatcd
|« (.0 1.7 7.1 7.1 7.» 7.«
Wlinity. 9/1 KM* 3332 3
(B*C1(1C conductivity. HK 2.400 S,»00 J.tOO 2,400 Z.SOO
I Idltl0»/c«*
:*Mot iwasuicd.
14-19
-------
TABLE 22. PLANT S ORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, yg/£; percent removal in parentheses)
Pollutant Intake
»isl2-ethylbexyl) ehthalate 1.2
Aeenaphthene -b
Di-n-butyl phthalate
Phenol 0.5
2 . 4-&i»*thy 1 phenol
2 ,4-Bichlorophenol
y-Ovlero- -j-cre»ol
Chlorolora 120
toluene 3
TrichlorofluorOM thane
1.2. 4-Tr ichlorobenzene
naphthalene
Ethyltoeaxene
Tetraehloroethylene
Hethylene chloride* SS
Phenol (total) S
Phenol (total)* -*
Secondary
Pnasr :
41
21
t20
2*0
110
6.4
2*
2»
Pn*se i:
25
2.2
2.6
0.6
l.t
12
IS
11
Tertiarv eii
Type 3 Type <
42 (-68)* 16 (36)
0.6 0.6
6
0.4 0.2
0.4
0.2
0.3
7
0.4 1.4
4.6 (62) 7.1 (34)
•fl 21 (-40)
f.O (It) 16 (-4S)
iuer.i
Type t
410 (-1.500)
1.6
6S (-3.SOO)
»40 (-7.700)
(>32)
percent r«»cv»:» i.c£icat« an incr«a»* in the concentration of the »peciiie enalyci* contaKinatioe.
*£ae?le battle broker, in «hip»ent.
"fcaaple taken day after all other saaplea were takes.
not taken.
TABLE 23. PLANT S INORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, pg/£; percent removal in parentheses)
5econ£arv effluent
Pollutant
Antimony
Arsenic
Beryllium
Cadmiua
Chroadua
Copper
Cyanide
Lead
Mercury
Hiekel
Selenium
Silver
thallium
Zinc
Intake
20
<10
<5
3b
«
10b
<10
34b
0.5
61b
<10
<5
<50
42
Phase I
70
<10
<5
2
<4
60
<10
<22
<0.3
<36
<10
<5
<50
84
Phase 11
610
<10
<5
5b
<4
26
<10
75b
1.7
83b
<10
<5
<50
41
Te
Tvoe 3
620
<10
<5
5b
<4
27
<10
81b
0.4
81b
<10
<5
<50
75
(-23*
(0)
(-4)
(-8)
(2)
(-83)
rtiary effluent
Type 4
600
llb
<5
6b
<4
24
<10
B5b
0.7
98b
<10
<5
<50
55
(2)
(-10)
(8)
(-13)
(-18)
(-34)
Type
590
llb
<5
6b
<4
<4
<10
79b
0.4
96b
<10
<5
<50
31
6
(3)
(>10)
(>B5)
(-5)
(-16)
(24)
aHin«s percent removals indicate an increase in the concentration of the
specified pollutant.
bSemiguantite±.ive region; value not within 95% confidence linits.
14-20
-------
tsj
TABLE 24. PLANT S OTHER POLLUTANTS DETECTED
(Concentration, vg/lf percent removal in parentheses)
Pollutant
Aluminum
Barium'
Boron
Calcium
Cobalt
Iron
Magnesium
Manganese
Molybdenum
Sodium
Silicon
Tin
Strontium
Titanium
Vanadium
Ammonia
nitrogen
Nitrate
nitrogen
Phosphate
phosphorus
Intake
110
12
<1
5,500
8b
240
860
7.7
<10
10,000
3,600
<15
21
2b
11
NAC
NA
NA
Secondary
effluent
690
8.3
1,100
5,900
10b
100
1,600
11
13
180,000
11,000
<15
22
4b
57
6,600
250
1,700
Type
450
6.2
1,100
6,200
7b
150
1,500
12
14
190,000
11,000
<15
22
4b
23
60
120
2,100
3
(35)
(0)
(-5)a
(-50)
(6)
(-9)
(-8)
(-6)
(0)
(0)
(60)
(99)
(52)
(-24)
T c r t i a ry
Type
330
5.
1,000
5,800
llb
190
1,500
11
13
180,000
11,000
<15
22
4b
23
5,600
210
4,500
effluent
4
(52)
9
(9)
(2)
(-10)
(-90)
(6)
(0)
(0)
(0)
(0)
(0)
(60)
(15)
(16)
(-170)
Type
310
5.7
1,100
5,200
6b
58
1,400
8
17
190,000
11,000
<15
22
4b
22
1,200
G
(55)
(0)
(12)
(42)
(13)
(27)
(-31)
(-6)
(0)
(0)
(61)
(82)
670 (-170)
2,000
(-18)
!
Minus percent removals indicate an
pollutant.
b
Semiquantitative region; value not
°Not analyzed.
increase in the concentration r>t the specified
within 951 confidence limits.
-------
TABLE 25. PLANT S BIOASSAY RESULTS
Test species
Freshwater algae -
5. caprlaornutui*
Mater flea -
0, Magna
Fathead minnow -
P. promatat
EC,,
EC.,
EC,,
!£•«
tc.*
ix:9»
I56<100
MOO
MOO
MOO
MOO
MOO
MOO
Tertiary elflucnt
Type 4
73
62
49
MOO
MOO
MOO
MOO
MOO
MOO
(26-100)
(16-100)
(25-95)
Type
MOO
f,
56 (3-100)
MOO
MOO
MOO
MOO
MOO
MOO
MOO
S. typhlmurium -
•trains TA98,
TA100, TM533,
TA15J7, and
TA1538
Response to June* test for (-) (-)
•wtagcnicity - (-) or (+)
I
f\>
ISJ
X. ftolt - strains
H3110 and p3470
Chinese hamster
ovary cells
Response to pot A toot for 0 0
mutngcniclty-lncreoBo in
tone of inhibition, mm
Response to CIIO-K1 test NM >100
for acute cytotoxicity-
BC.o
>100
MOO
>100
*Not measured.
951 confidence interval.
20I secondary effluent was highly stimulatory to the growth of S, eapricornutun.
not calculated since a heavy solids concentration abscured the analysis* sample did not appear to be
acutely toxic; Daphnia pultx used in determination.
-------
TABLE 26. PLANT S EFFLUENT DESCRIPTIONS
P* r ••*«:. c r
ftical (Jescraptior.
toity, s/i
tcific conductivity,
•bos/cr'
Pn»*f : ""
Clear, lioht champagne
vit.. »aall amount of
paniculate;
vncl-.lortnated
7.7
K**
HK
Phas* IS
Oranot liquid
containing *
precipitate
7.J
1
1,100
:'
Orange liquid
containing a
precipitate
7.3
0
870
Typf <
Light orange
liquid con-
taining a
precipitate
7.0
1
1,103
"V tyot 1
Clear liquid
7.4
1
1.100
TABLE 27. PLANT P ORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, pg/£; percent removal in parentheses)
Pollutant
Bi*(2-ethylhexyl) phthalate
Ci-n-b-tyl phthtiate
Ciethyl pi-.tha.late
Xithracene
Phenol
Chlerof cm
Trichlcroethyiene
Toluene
Benzene
S-nitroso-di-r.-proryia^iine
Ethylber.zene
Hethvlene chloride
Phenol (total)
Secondarv
Ir.teke Phase I
2.0 72
0.9
4.1 6.9
1.4
1.5 22
19
280
20
11 32
effluent
Phase II
10
2.1
1.3
0.8
0.7
0.4
0.4
72
Type 2
10
2.6
0.9
0.5
o.e
0.4
0.4
0.1
2.5
B2 (-14)'
Tertiary
Type 3
3.9
1.6
o.e
0.5
1.8
2.7
1.0
4.1
' 68 (6)
effluent
Type 5 Type 6
3.3 3.9
2.5
1.0 1.4
0.5 0.1
2.6
2.6 3.6
0.5
4.7 7.3
130 (-81) 18 (75)
bK*thy-ene cVicride nay originate from analysis contamination.
eKinus per=.r.r removals indic.t. an increase in the concentration of the specified pollutant.
14-23
-------
TABLE 28. PLANT P INORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, vg/t} percent removal in parentheses)
Secondary effluent
Pollutant
Antimony '
Arsenic
Beryllium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Intake
28a
<2
<0.2
<2
5.7a
98
<4
<0.3
56°
<8
<5
<50
150
phase I
<10
<2
<0.1
<2
<4
<4
140
<22
<0.5
40
<5
8
<50
140
Phone II
77a
<2
<0.2
<2
98
36
<4
25°
0.4
<8
<5
<50
5,200
IVpc 2
43° (44)
<2
<0.2
<2
<4 (>96)
<4 (>89)
<4
<22 (>12)
<0.3
43° (35)
<8
<5
<50
160 (97)
Tertiary effluent
Typo 3
48° (38)
<2
<0.2
<2
<4 (>96)
<4 (>89)
<4
<22 (>12)
0.3
58° (12)
<8
5
<50
150 (97)
Typo 5
34a (56)
<2
<0.2
<2
<4 (>96)
89)
<4
<22 (>12)
0.4
36° (83)
<8
<5
<50
160 (97)
36°
12
<0.
<2
<4
<4
<4
<22
0,
50°
<8
<5
<50
<1
Type 6
(53)
(-500) b
2
(>96)
(>89)
012,
4
(24)
(100)
1Semiquantitative regioni value not within 95% confidence limits.
''Minus percent removals indicate an increase in the concentration of the specified pollutant.
-------
TABLE 29. PLANT P OTHER POLLUTANTS DETECTED
(Concentration, vg/H; percent removal in parentheses)
4*
in
Pollutant
Aluminum
Barium
Boron
Calcium
Cobalt
Iron
Magnesium
Manganese
Molybdenum
Sodium
Silicon
Tin
Strontium
Titanium
Vanadium
Ammonia
nitrogen
Nitrate
nitrogen
Phosphate
phosphorus
Intake
670
11
150
3,600
<6
1,400
1,600
73
ioa
6,200
6,400
16a
25
36
21
NA
NA
NA
Secondary
Phase 1
140
<0.2
520
9,500
0.5
100
1,800
20
<0.6
>100,000
4,800
<10
NAC
<1
20
200
80
20d
effluent
Phase 11
300
<0.2
950
8,300
50)
(8)
(4)
(-40)b
(6)
(>97)
(22)
(ID
(7)
(-4)
Tertiary
Type
30a
<0.2
860
7,500
<6
300
1,800
50
<10
120,000
2,300
<15
33
<1
15
360
130
2,700
5
(90)
(9)
(10)
(70)
(0)
(38)
(>50)
(8)
(4)
(6)
(>97)
(17)
(54)
(57)
(4)
effluent
Type
50a
<0.2
880
7,300
<6
600
1,800
43
<10
120,000
2,100
10a
35
<1
15
580
250
2,500
5
(83)
(7)
(10)
(40)
(0)
(46)
(>50)
(8)
(13)
(-20)
(0)
(>97)
(17)
(27)
(17)
(11)
Type
40*
<0.2
660
5,000
<6
20
1,500
<0.5
<10
110,000
2,600
<15
35
<1
14
830
300
2,400
6
(87)
(31)
(40)
(98)
(17)
(>99)
(>50)
(15)
(-8)
(0)
(>97)
(22)
(-5)
(0)
(14)
"Semiquantitative region) value not within 951 confidence limits.
bMinus percent removals indicate an increase in the concentration of the specified pollutant.
cNot analyzed.
o-Phosphate only.
-------
TADLE 30. PLANT P DIOASSAY RESULTS
I
ro
Test sj^clea
freshwater algae -
.7. ('tn'i'icontutwn
Mater flea -
t>. maqna
fathead minnow -
P. frottttao
S. typhbwrtum -
strains TA98,
TA100, TA1535,
TA1537 and
TA1538
Chinese hamster
ovary cells
Secondary effluent
Parameter
EC,.-
ECse -
ECs» -
tCse -
fcCao -
LC»o -
LCse -
LCso "
tCse -
7 day,
12 day,
14 day,
24 hr,
48 hr,
24 hr.
48 hr.
72 hr.
96 hr.
% effluent
% effluent
» effluent
effluent
effluent
effluent
effluent
effluent
effluent
rha.ie 1
NM*
MM
HM .
MOO*
NM
NM
MM
MOO
I'hone It
54 (30-100)b
54 (18-100)
53 (20-100)
MOO.
MOO
_e
e
e
-*
Type 2
41 (14-100)
24 (13-42)
26 (15-43)
MOO
MOO
e
„•
„•
e
Tertiary effluent
Type 3 Typn 5 Tyf>e 0
42 (29-62) G4 (2S-100) 0] (10-100)
42 (14-100) >32<100 >'5G<100
33 (10-100) 41 (20-59) >SO<100
>100 MOO MOO
MOO MOO MW
.' .* .*
-* _e _e
e e e
.* _e e
Response to Ames test for (-) (-) (-) (-) (-) (-)
mutageniclty
(-) or (*)
Response to CHO-Kl tent
MOO
. MOO
MOO
MOO MOO MOO
Not mcanured.
93% confidence interval.
C20% secondary effluent stimulated the growth of S. capricornutum.
d
4B hr determined with Daphnia pule*.
not calculated because of data scatter) however, none of the samples appear to be tonic since there wnn no more
than a 20% kill In any of the tests with 100% effluent.
-------
TABLE 31. PLANT P EFFLUENT DESCRIPTIONS
Typ«
Typ*
gr*ictl 4»»ttlf>tlo«>
»rown tur&id
eont>i&in«
*ra«n turbid liquid. trown turbid liquid. Brovn turbid liquid S»9»t}y cloudy p«l«
rti- »u.p«i\a«a p»rtl- «u«p«nd«i p*rti- y«liov liquid
r cvil«t« utttr cul*c« n>ct«
T. 9/1
t.t
0
*co
4.9
0
520
t.a
0
500
6.t
0
4»O
0
4(0
TABLE 32. PLANT N ORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, yg/i; percent removal in parentheses)
Pel lutar.t _
lc--J-«ee-.e * *
Ditthyl pr.tb»l»te
-,_r-6-.- ••• phtMJ»te
Metftyler.e chlocidt
TQluen*
Din*^i p^h*u"
u
pyrene
riuorene
2 4 *Di c Jilor osjienol
.'
Phent^trirene
l,2-S:cf.loro?rop»ne
4-Ci"Morot>«nien«
-'.r4-^l'oroeth l«n«
Ethyllxntene
Pher.c:
pften&l (tot«l)
*Si»nK» ineic»te conce.it
^tM-.hyiene chloride r.*y
cr.inu» percent re»ov*l*
pciluvant.
Ir.t»lie Phase 2 Phe«e II Tvpe *
ite 53 16.7 230 29 (87)
0.2 -* 0.4
1.0 S.< 0.8 0.4
1.2 0.6 1.1
47 46 47 <-2>C
0.5 17 0.4 0.6
t.O 0.9
C.07 0.08
C.I 0.1
0.5
1.0
l.S
0.7
75 0.9
11
14 6B 31 17 (4S>
r«tion below detection linit (»ee T»ble 6)
orisintte frew «n«ly«i» ccnt««in«tion.
anii:*te «r. jncr.«»e in the coneer.tr.ticn
isr»- ei£luent
Type £ Type t
31 (67) 78 (66)
0.4 0.4
0.3 1.2
0.6 2-8
28 (39) 27 (41)
0.4
0.5
0.05
0.0$
0.05
o.s
25 (19) 11 (65)
-
oi • specified
14-27
-------
TABLE 33. PLANT N INORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, vg/lt percent removal In parentheses)
Secondary effluent
Pollutant
Antimony
Arsenic
Beryllium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Intake
14a
5
0.6
<2
<4
160
<5
<22
<0.1
<36
<1
10a
<50
22
Phase 1 Phase II
<10
<5
NAb
<0.5
1,800
8
<4
1
<0.5
30
<5
<5
<5
38,000
18a
3
<0.04
<2
170
14a
<5
<22
<0.1
<36
<1
5.5a
<50
1,300
Tertiary effluent
Type 3
<10 (>44)
3
<0.04
<2
95 (44)
130 (-830)°
<5
<22
<0.1
<36
<1
<5
<50
590 (55)
Type 5
<10 (>44)
<1
O.la
<2
34 (80)
86 (-510)
<5
<22
<0.1
<36
<1
<5
<50
440 (66)
Type 6
<10 (>44)
3
<0.04
<2
5.2a (97)
24 (-71)
<5
<22
<0.1
<36
<1
<5
<50
430 (67)
aSemiquantitative region; value not within 95% confidence limits.
bNot analyzed.
cMinus percent removals indicate an increase in the concentration of the
specified pollutant.
-------
TABLE 34. PLANT N OTHER POLLUTANTS DETECTED
(Concentration, yg/£; percent removal in parentheses)
Pollutant
Aluminum
Barium
Boron
Calcium
Cobalt
Iron
Magnesium
Manganese
Molybdenum
Sodium
Phosphorus
Silicon
Tin
Strontium
Titanium
Vanadium
Sulfide
Aanonia
nitrogen
Nitrate
nitrogen
COD
TSS
Color3 at
pH 7.6
Color at
sample pH
Intake
120
6.7
0.6
5,400
6.2"
620
1,000
530
<10.
12,000
<70
4,000
<15
51
2.ia
6.9B
14
NAC
NA
11,000
6,000
47
48
6.46
Secondary
effluent
120
6.0
9.1
7,100
12a
720
1,100
210
<10
180,000
2,500
3,800
<15
41
1.9*
8.5*
12
1,700
5,200
128,000
75,000
39
36
7.97
Tertiary effluent
Tyoe 3
36a
3.3
6.7
6,200
8.7a
290
990
190
<10
180,000
2,300
3,700
<15
40
1.2a
7.7*
<5
1,200
4,600
210,000
<1,000
38
43
6.95
(67)
(13)
(28)
(60)
(10)
(10)
(0)
(8)
(3)
(2)
(>5B)
(29)
(12)
(-64)
(>99)
(3)
(-19)
Type
390
2.7
6.4
6,200
8.6a
55
1,000
200
<10
200,000
1.200
3,400
<15
39
<1
e.sa
<5
1,600
5,200
172,000
8,000
52
48
7.45
5
(-260)b
(13)
(28)
(92)
(9)
(5)
(-ll)b
(52)
(11)
(5)
(>58)
(6)
(0)
(-34)
(89)
(33)
(-33)
Type 6
21*
4.6
9.0
5,000
<6
110
860
160
<10
180,000
1,000
3,800
<15
40
<1
6.5a
<5
1,300
3,100
44 ,OOO
12 ,000
51
51
746
(81)
(30)
(>50)
(85)
(22)
(24)
(0)
(60)
(0)
(2)
(>58)
(24)
(40)
(66)
(84)
(-31)
(-42)
(6.4)
*Semiquantitative region; value not vithin 95% confidence limits.
bMinus percent removals indicate an increase in the concentration of the specified pollutant.
CMot analyzed.
dA0MI units.
*pH units (- log [H+JJ.
14-29
-------
•I*
CO
o
TABLE 35. PLANT N DIOASSAY RESULTS
Test species
freshwater algae -
5. cat>riecr>iutum
i
Water flea -
D. manna
Fathead minnow -
T. promt Ian
Parameter
EC,,
BCso
tCg«
LC»»
LC»o
LCto
LCso
LCso
- 7 day, % effluent
- 12
- 14
- 24
- 48
- 24
- 48
- 72
- 96
day, % effluent
day, % effluent
hr,
hr.
hr,
hr,
hr,
hr,
effluent
effluent
effluent
effluent
effluent
effluent
Secondary cfflueni
Phase 1 Hinno i 1
NMC
NM,
NM
NM
NM
49
20
28
23
MOO
77
MOO
91
81
81
(ll-36)b
(20-41)
(18-31)
(86-MOO)
(GO-100)
(73-MOO)
(68-99)
(68-99)
23 (13-41)
38 (27-53)
30 (16-56)
MOO
78 (67-92)
MOO
MOO
MOO
MOO
fcrtidry ctflucnt
JjrPJJ— ?_....-.
44 (26-75)
35 (19-66)
29 (15-57)
MOO
MOO
MOO
MOO
MOO
MOO
23 (10-51)
16
23
MOO
77
MOO
MOO
MOO
MOO
(10-27)
(14-38)
(60-100)
S. typhtmurtu* -
•trains TA98,
TA100, TA1535,
TM537, and
TA1538
r. coll -
strains W3110
and p3478
Chinese hamster
ovary cells
Response to Ames test for
mutagenlcity - (-) or (
Response to pel A test for
mutagenicity-increase in
zone of inhibition, mm
Response to CHO-K1 test
for acute cytotoxicity-
EC90
MOO
MOO
MOO
MOO
Not measured.
95% confidence Interval.
CA11 concentrations of secondary effluent (21, 51, 101, and 10%) failed to support the growth of S, caprlcornutui*.
d!00% kill in all dilutions (4.7% - 100%), ECgo determined with Oaphnla pule*.
eEC»o not determinables cytotoxicity procedure employing rabbit alveolar macrophage (RAM) used in Phase I.
-------
TABLE 36. PLANT N EFFLUENT DESCRIPTION
Tertiary effluent
>»r«i"»ter Pnmit I P.l»»f II Typ« J Type > Tyae fc
«l oMsriFtiOn CJe»r. light erey Turbid, brovn liquid Turbid, brown llqui« Cloudy, light brown Slightly turbid
liquid with vjrh »-j»pen4ed with suipcnoe^ liquid with liquid
••oderace caount p*rticle»
of p»rticul»t*
n*rt«r; non-
p !.•> *.t t.1 *.» t.S
»linity, f/i m 0 t C »
conductivity. MM *00 «SC «SB tie
(HtM/CC:>
14-31
-------
i
CO
TABLE 37. PLANT V ORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, ug/fc; percent removal in parentheses)
Pollutant
DlB(2-ethylhexyl) phtholate
Dl-n-butyl phthalate
Anthracene
Dutyl benzyl phthalate
Methylehe chloride0
Toluene
Trichloroethylene
1, 1-Dichloroethane
Dcnzene
Rthylbenzene
Chloroform
rran
-------
TABLE 38. PLANT V INORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, ug/£; percent removal in parentheses)
M
-£>
1
to
to
Pollutant
Antimony
Arsenic
Beryllium
Cadmium
Chromium
Copper
Cyanide
Lead
^Mercury
Nickel
^Selenium
Silver
^Thallium
Zinc
Secondary effluent
Intake
<10
<1
<0.04
<2
<4
<4
<2
<22
<1.1
<36
<1
<5
<50
98
Phase I
4
<5
<0.1
<0.5
3
170
18
<1
<0.5
<10
<5
<5
<5
340
Phase II
<10
4
<0.04
<2
4.3°
85
23
<22
<1.1
<36
<1
<5
<50
240
Type 3
<10
4
<0.04
<2
<4
75 (12)
3 (87)
3la (-41)
<1.1
<36
<1
<5
<50
190 (21)
24a
<1
<0.
<2
6.
100
27
37a
<1.
73a
<1
12a
<50
330
Tertiary effluent
Type 4
(-140)b
04
7a
(-18)
(-17)
(-68)
1
(-103)
(-140)
(-38)
Type 6
24a (-140)
5
<0.04
<2
<4
163 (81)
<2 (>91)
263 (-18)
<1.1
67a (-86)
2
153 (-200)
<50
69 (71)
253
4
<0.
<2
6.
89
<2
<22
<1.
66a
<1
163
<50
240
Type 7
' (-150)
04
3a
(-5)
(>91)
1
(-83)
(-220)
(0)
Semiquantitative region; value not within 95% confidence limits.
Minus percent removals indicate an increase in the concentration of the specified pollutant.
-------
TABLE 40. PLANT V BIOASSAY RESULTS
Tost species
Freshwater algea -
S. eaprteofnutum
Mater flea -
0. magna
Fathead minnow -
P. prone las
Parameter
BC»» - 7 day, % effluent
ECs» - 12 day, 1 effluent
EC»» - 14 day, t effluent
LCio - 24 hr,
LC»o - 48 hr,
LC«» - 24 hr.
LCao - 48 hr.
LC»o - 72 hr,
LC90 - 96 hr,
effluent
effluent
effluent
effluent
effluent
effluent
Secondary e 1 fluent '"~
Phnse 1 Phase 11
NMa
NMC
NM-
9.4°
NM
NM
NM
36
78 (59-100)b
94 (57-100)
MOO
MOO
>60<100
_e
-e
_e
e
Tertiary effluent
Type 3 'r«ri« A' " " ' ¥T',«^ 'i
76 (60-96)
95 (52-100)
MOO
MOO
MOO
e
_e
e
_e
19 (14-27)
25 (13-47)
24 (12-48)
77 (60-100)
54 (44-66)
e
_e
e
_°
MOO
MOO
MOO
MOO
MOO
e
e
e
.e
Type 7
MOO
MOO
MOO
MOO
MOO
e
e
e
_e
S. typhitnurium -
strains TA9B,
TA100, TA1535,
TA1537, and
TA1538
ff. ooti -
strains H3110
and p3478
Chinese hamster
ovary cells
Response to Ames test for
mutagenicity- (-) or (•»•)
Response to pol A test for
mutagenicity-increose in
zone of inhibition, mm
Response to CHO-K1 test
for acute cytotoxicity-
EC»o, % effluent
MOO
MOO
MOO
MOO
MOO
Not measured.
'95» confidence limits.
:20t secondary effluent was highly stimulatory for the growth of 8. caprteornutum.
EC9o determined with Daphnia pulex.
not calculated since mortality data did not follow a normal dose - response relationships) secondary effluent
(Phase II), Type 3 tertiary effluent, Type 7 tertiary effluent, and Type 8 tertiary effluent do not appear to be
acutely toxic to the fathead minnow.
ECso not determinablet cytotoxicity procedure employing rabbit alveolar macrophage (RAM) used in Phase I.
-------
TABLE 41. PLANT V EFFLUENT DESCRIPTIONS
Secondary eftluent
Tertiary effluent
Pha»e 13 Type 3 type i frype i
a} (Sestription hM* TurbiS d«rK Turbifl dark Turbid. t»n Sii?htly turbid Turbid brow
brown brown liquid liquid liquid.
liquid liquid with »u»- particles
pended present
particle*
t» N.~. e.s e.} 3.5 c.e t.s
Salinity, 9/1 »« 0 0 0 0 0
Specific conductivity, N- 210 220 300 210 220
Htth
*Kot
14-35
-------
TABLE 42. PLANT T ORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, i«g/fc? percent removal in parentheses)
Well Hiver Secondary effluent
Pollutant Intake Intake Phase I
Benzene 7.1 6.2
Chlorobenzene
1 , 1-Dichloroc thy lone
p-Chloro-m-cresol
1 , 1-D ich loroc thane
Ethylbenzene 0. 3
Methylene chloride 24 18
Trichlorofluorome thane
Phenol 0.7
Bis(2-ethylhexyl) phthalate 4.8 6.1 23
Butyl benzyl phthalate 1.2 1.1
Di-n-butyl phthalate 0.4 0.04
Tetrachloroethylene 2.9
Toluene 1.2 0.6 33
Tr Ich loroe thy lene
Phenol (total) 10 36 41
Phase 11
5.7
4.1
4.2
0.5
20
0.4
24
5.2
4.4
1.0
0.3
26
Tertiary effluent
Type 3
6.9
4.0
0.6
0.2
19 (5)
0.8
1.1
19 (21)
2.5
7.0
0.8
0.8
0.4
160 (-520)°
Type 5
6.8
0.1
1.8
1.1
0.3
18 (10)
0.3
5.2 (78)
1.3
1.7
1.4
1.0
14 (46)
Type
9.8
1.4
0.5
19
0.9
14
1.7
0.6
6
(5)
(42)
0.1
120 (-360)
3Blanks indicate concentration below detection limit (see Table 6).
bMethylene chloride may originate from analysis contamination.
CMinus percent removals indicate an increase in the concentration of the specified pollutant.
-------
I
to
TABLE 43. PLANT T INORGANIC TOXIC POLLUTANTS DETECTED
(Concentration, ug/fc; percent removal in parentheses)
Pollutant
Antimony
Arsenic
Beryllium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Well
intake
<10
<1
<0.04
<2
- <4
780
<2
<22
55a
m **
1 Q
<50
99
River
intake
18a
<1
<0.04
' <2
<4
89
<2
<22
603
27
<50
370
Secondary effluent
Phase 1
<0.5
<5
<0.1
<0.5
<0.2
60
<4
<0.5
4
<5
<5
<5
80
Phase 11
54
3
<0.04
2a
97
110
11
223
93a
2
23a
<50
150
Type
58
3
<0.04
<2
95
100
20
26°
iooa
2
32
<50
97
Tertiary effluent
3
<-7)b
(2)
(9)
(82)
(-18)
(-8)
(-39)
(35)
Type 5
49a
1
<0.04
<2
20
18
5
<22
59a
2
<50
52
(9)
(79)
(84)
(55)
(37)
(17)
(65)
Type
39a
3
<0.04
<2
84
87
<2
903
283
<50
110
6
(28)
(13)
(21)
O82)
(-32)
(3)
(-22)
(27)
as.emiquantitative regionj value not within 95% confidence limits.
bMinus percent removals indicate an increase in the concentration of the specified pollutant.
-------
TABLE 44. PLANT T OTHER POLLUTAHTS DETECTED
(Concentration, yg/l; percent removal in parentheses)
co
.Pollutant
Aluminum
Ititrium
Boron
Calcium
Coba 1 t
It on
Magnesium
Manganeae
Molybdenum
Sodium
Phosphorus
Silicon
Tin
Strontium
Titanium
Vanadium
Ammonia
nitrogen
Nitrate
nitrogen
COO
TSS
Sulfide
Color*' at
pH 7.6
Colord at
samplo pll
P«"
TteJU
intake
50*
5.5
<1
13,000
<6
61
4,300
300
<10
20,000
140
6,700
<15
85
1.9*
33
NAC
NA
22,000
< 1,000
<3
9
9
7.6
fkiver
intake
100
6.0
<1
4,700
<6
210
1,500
16
<10
7,700
<70
2,100
<15
3)
3.2"
10
NA
NA
95.000
< 1,000
0
32
26
6.9
leeondary
effluent
160
7.7
270
12,000
-------
TABLE 45. PLANT T DIOASSAY RESULTS
CO
VD
Test species
Freshwater algae -
S. capricornutum
Water flea -
D. magna
Fathead minnow -
P. promelaa
<
ECso
ECso
ECso
LCso
I/Cso
LCso
LC9o
LCso
LCao
Parameter
- 7 day, t effluent
- 12 day, % effluent
- 14 day, % effluent
- 24 hr,
- 48 hr,
- 24 hr.
- 48 hr,
- 72 hr,
- 96 hr.
effluent
effluent
effluent
effluent
effluent
effluent
Secondary c
i'Tiase I I'fi
NMa
NM
NM,
>lood
NM
NM
NM
47 .
>100
>100
>100
54
16
22
18
18
17
t Ilucnt
asc 11
(47-63)c
(14-19)
(15-32)
(15-22)
(15-22)
(15-19)
Tertiary effluent
Type 3
>100
>100
>100
77
23
18
17
17
17
(66-100)
(23-36)
(15-22)
(15-19)
(15-19)
(15-19)
Typo 5
>100
>100
>100
100
80
68
56
56
56
(69-93)
(46-100)
(46-68)
(46-68)
(46-68)
Tyjpe 6
>100
>100
>100
>100
>100
e
-
5. typhimurium -
strains TA98,
TA100, TA1535,
TA1537, and
TA1538
E, coti -
strains VO110
and p3478
Chinese hamster
ovary cells
Response to Ames test for
mutagenicity - (-) or {+)
Response to pol A test for
mutagenlcity-increase in
zone of inhibition, mm
Respone to CHO-K1 test
tor acute cytotoxicity
ECso
>100
MOO
>100
>100
aNot measured,
b20» secondary effluent was extremely stimulatory to the growth of S. capricornutum.
C95% confidence limits,
dECs« determined with Daphnia pulex.
eLC90 not calculated since mortality data did not follow a normal dose-response relationship; effluent
did nob appear to be acutely toxic.
fEC», not determinate? cytotoxicity procedure employing rabbit alveolar macroohage (RAM) used in Phase I. ,
-------
TABLE 46. PLANT T EFFLUENT DESCRIPTIONS
I
4»
O
Parameter
Physical description
pH
Salinity, g/t
Specific conductivity.
li mhos/cm*
Secondary
Phase 1
Clear, blue green
with a moderate
amount of
particulate,
nonchlorinated
7.4
NMa
NM
effluent
Phase 11
Turbid, green-
brown
liquid
7.1
0
750
Tertiary effluent
Type 3
Turbid, dark
green
liquid
3.5
0
700
Type 5
Turbid, light
green
liquid
7.2
0
1,500
Type 6
Turbid yellow-
brown liquid
7.2
0
700
Not measured.
------- |