PB80-219561
Compilation of Environmental Assessment Data February 1978-March
1979. Volume III Studies 10-14
Research Triangle Inst.
Research Triangle Park,  NC
Prepared for

Industrial Environmental Research  Lab.
Research Triangle Park,  NC

               U.S.  DEPARTMENT OF COMMERCE
            National  Technical  Information Service

-------
                                                     D P r n_ p i o c (_ -I
                                                 600/2-80-175c
                                            Aug.  1980
            COMPILATION OF
ENVIRONMENTAL ASSESSMENT DATA
      February 1378-March 1979


         Volume III, Studies 10-14
                     by
                 N. G. Sexton
               L. I. Southerland
        Systems & Measurements Division
           Research Triangle Institute
    Research Triangle Park, North Carolina 27709
          EPA Contract No. 68-02-2688
            Task Directive No. 11200
        EPA Project Officer: L. D. Johnson
    Industrial Environmental Research Laboratory
       U.S. Environmental Protection Agency
    Research Triangle Park, North Carolina 27711
                Prepared for

   U.S. ENVIRONMENTAL PROTECTION AGENCY
       Office of Research and Development
            Washington, DC 20460

-------
                 NOTICE






THIS DOCUMENT HAS  BEEN  REPRODUCED



FROM THE BEST COPY  FURNISHED US  BY



THE SPONSORING  AGENCY.  ALTHOUGH  IT



IS RECOGNIZED THAT CERTAIN PORTIONS



ARE ILLEGIBLE, IT IS  BEING  RELEASED



IN THE  INTEREST  OF MAKING  AVAILABLE



AS  MUCH INFORMATION AS  POSSIBLE.

-------
                               TECHNICAL REPORT DATA
                        fPieatt rtad Jiuffwrfions on lAr reverse btfore
       -600/2-8G-175
                                                    3, RECIPIENT'S ACCESSION NO.
                          IERL-RTP-1075
A, TITLE ANDSUBTITLE
 Compilation of Environmental Assessment Data,
  February 1976-March 1979; Vol. m. Studies 10-14
                                                   6. PERFORMING ORGANIZATION CODE
7. AUTKOR(S)
 N.G. Sexton and L.I. Southerland
                                                   a. PERFORMING ORGANIZATION REPORT
                                                   RTI/1699-12/D1S
9, PfcRFORMING QKOANLZ&TIOK ^AME AND ADDRESS
                                                   10. PROGRAM ELEMENT NO.
 Research Triangle Institute
 P.O,  Box 12194
 Research Triangle Park, North Carolina 27709
                                                    OC2JN1E
                                                   11, CONTRACT/ORAhjT MO.
                                                    68-02-2688,
                                                   Task Directive U20D
  . BPONSQRrNC AGENCY NAME AND ADDRESS
 EPA,  Office of Research and Development
 Industrial Environmental Research Laboratory
 Research Triangle Park, NC 27711
                                                   13. TYPE Of REPORT AMD PE
                                                    Final; 2/78 - -3/79
PERIOD COVEREC
                                                   14. SPONSORING AGENCY CODE
                                                     EPA/600/13
is,SUPPLEMENTARY NOTES  JERL-RTP project officer is L.D.  Johnson, MD-62, 919/541-
 2557, Report EPA-600/2-78-211 is an earlier report compiling similar data between
 the start of the nroeram and 3/78.                                          ...  	
16. ABSTRACT
        The three-volume report compiles all data from EPA/IERL-RTP'6 phased
environmental assessment program for the period 2/78-3/79.  It includes data from
14 environmental assessment studies, compiled in standard format. The formatted
Level 1 data are organized within each study by the analytical technique used to gen-
erate the data.  Inorganic data as generated by spark source mass spectroscopy,
atomic absorption, gas chromatography, chemiluminescence for oxides of nitrogen,
anlon analysis, and aqueous analysis precede the organic data generated by gas
chromatography for C1-C6/C7 or C7-C17, liquid chromatographic fractionation,
infrared spectres copy, and low resolution mass  spectroscopy. Sampling and analy-
tical techniques that were used, that are not specified in Level 1, are documented
in the summaries and data pages. Each Level 1 data section is followed by a Level 2
data section and/or an additional data section. Tables and figures in the Level 2 and
additional data  sections have been reproduced from the documents originally publis-
hed by the organization conducting the study. The studies  are  organized by indus-
trial type: (Vol. I) chemically active fluidized-bed combustion, coal-fired boiler an<
oil-fired boiler, coal-fired power plant,  and coal gasifier; (Vol. n) coke production
and ferroalloy process; and (Vol. HI) the remaining  industrial processes.
IT. KEY WORDS AND DOCUMENT ANALYSIS
i. DESCRIPTORS
Pollution
Assessments.
Chemical Analysis
Sampling
is. DISTRIBUTION STATEMENT
Release to Public
b. IDENTIFIERS/QPEN ENDED T£RM$
Pollution Control
Stationary Sources
Environmental Assess-
ment
Level 1 Data
Chemical Data
19. SECURITY CLASS f?luf£rp0rt>
Unclassified
20. SECURITY CLASS {This pag*}
Unclassified
c, COSATI FieW/Group
13 B
14B
07D
31. NO OF PAGES
22- PRICE
EPA Form

-------
                         DISCLAIMER
  This report has been reviewed by the Industrial Environmental Research
Laboratory, U.S. Environmental Protection Agency, and approved for pub-
lication. Approval does not signify that the contents necessarily reflect the
views and policies of the U.S. Environmental Protection Agency, nor does
mention  of trade  names or commercial products constitute endorsement
or recommendation for use.

-------
                                   ABSTRACT

     This document compiles  all  available  data from the IERL Phased Environ-
mental Assessment Program  for  the  period February 1978 through March 1979.
This document follows  an earlier publication, EPA-600/2-78-211, Compilation
of Level 1 Environmental Assessment  Data,  which compiled all available chemical
data from the inception of the Environmental Assessment Program through
March 1978.
     Available  data  from 14  environmental  assessment studies are compiled in
this document in standard  formats.   The formatted Level I data are organized
within each  study by the analytical  technique used to generate the data.
Inorganic data  as generated  by spark source mass spectroscopy, atomic absorp-
tion, gas chromatography,  chemiluminescence for oxides of nitrogen, anion
analysis, and aqueous  analysis precede the organic data generated by gas
chroraatography  for Cj-Ce/C?  or C7-C17, liquid chromatographic fractionation,
infrared spectroscopy, and low resolution  mass spectroscopy.  Sampling and
analytical techniques  that were used that  are not specified in Level 1 are
documented in the summaries  and data pages.
     Each Level 1 data section is  followed by a Level 2 data section and/or an
additional data section.   The  tables and figures in the Level 2 and additional
data sections have been  reproduced from the documents originally published by
the organization conducting  the study.
     Each study is introduced  by a summary, which is followed by the data
generated in that study.   The  studies are  organized by industrial type as
follows:  Chemically Active  Fluidized-Bed  Combustion, Coal-Fired Boiler and
Oil-Fired Boiler, Coal-Fired Power Plant,  Coal Gasifier, Coke Production,
Ferroalloy Process,  Internal Combustion Engine,  Iron and Steel Mills, Residen-
tial Heating, Shale  Oil  Retorting, and Textiles.
                                      ii

-------
                                   CONTENTS

                                                                        Page

Abstract	    ii
Figures	    v
Tables	   vii
Introduction 	    xx

Chemically Active Fluidized Bed Combustor
     Study  1.   Level 2 Chemical Analysis of Fluidized-Bed
                  Combustor Samples   	   1"!*
     Study  2.   Preliminary Environmental Assessment of the
                  Lignite-Fired CAFB	   2-1*

Coal-Fired Boiler and Oil-Fired Boiler
     Study  3.   Environmental Assessment of Coal and Oil  Firing
                  in a Controlled Industrial Boiler,
                  Volumes I-III  	   3-1*

Coal-Fired Power Plant
     Study  4.   Air Emissions From Combustion  of Solvent  Refined
                  Coal	   4-1*
     Study  5.   Characterization of Coal Pile  Drainage	   5-1*
     Study  6.   Level 1 Assessment of Limestone Scrubbing With
                  Adipic Acid Addition	   6-1*

Coal Gasification
     Study  7.   Analyses of Grab Samples for Fixed-Bed  Coal
                  Gasification  Processes 	   7-1*

Coke Production
     Study  8.   Environmental Assessment of Coke By-Product
                  Recovery Plants   	   8-If

Ferroalloy Process
     Study  9.   Ferroalloy Process  Emissions Measurement  	   9-lt

Internal Combustion  Engines
     Study 10.  ' Emissions Assessment  of Conventional  Stationary
                  Combustion  Systems, Volume  II	'.   10-1
 *In Volume  I.
 tin Volume  II.

-------
                             CONTENTS (continued)
Iron and Steel Mills
     Study 11.  Assessment of Surface Run Off From Iron and
                  Steel Mills	11-1

Residential Heating
     Study 12.  Source Assessment:  Coal-Fired Residential
                  Combustion Equipment Field Tests, June 1977  ....   12-1

Shale Oil Retorting
     Study 13.  Sampling and Analysis Research Program at the
                  Paraho Shale  Oil Demonstration Plant,
                  Volume II	13-1

Textiles
     Study 14.  Source Assessment:  Textile Plant Wastewater Toxics
                  Study, Phase  II	14-1
                                      iv

-------
                                   FIGURES

Number                                                                Page

                                  STUDY 10

10-1   EACCS sample control numbers  	  10-4


                                  STUDY 11

11-1   Plan-site no.  1	11-3
11-2   Plan-site no.  2	11-4


                                  STUDY 13

13-1   The Paraho retort	13-3
13-2   Paraho direct mode flow diagram (pilot plant operation) .  .   .  13-4
13-3   Paraho indirect mode flow diagram (semiworks operation) .  .   .  13-5
13-4   Separation and analysis scheme, gaseous samples 	  13-7
13-5   Separation and analysis scheme, water samples 	  -13-8
13-6   Separation and analysis scheme, retorted shale and
          high-volume sampler air particulates 	  13-9

Additional Data

5.35   One dimensional preseparatory thin layer chrotnatogram
          of benzene solubles from carbonaceous spent shale
          [CSA VII (1)]	13-28
5.36   One dimensional preseparatory thin layer chromatogram
          of benzene solubles from carbonaceous spent shale
          [CSA VIII (1)]	13-29
5.37   One dimensional preseparatory thin layer chromatogram
          of benzene solubles from unretorted shale collected
          as air particulate [AP VI (1)]	13-30
5.38   One dimensional preseparatory thin layer chromatogram
          of benzene solubles from retorted shale collected
          as air particulate [AP V (1)]	•	13-31
5.39   Two dimensional mixed thin layer chromatogram of the PAH
          fraction of benzene solubles from carbonaceous spent
          shale [CSA VII (1)]	13-32
5."43   Two dimensional mixed thin layer chromatogram of the
          PAH fraction of benzene solubles from carbonaceous
          spent shale [CSA VIII (1)]	13-33

-------
                             FIGURES (continued)



Number                                                               Page



                                  STUDY 14



14-1   Ranking of tertiary treatment systems 	  14-3
                                      VI

-------
                                   TABLES

                                  STUDY 10

Level I                                                               Page

10-1   Spark Source Mass Spectroscopy, Gas-Fueled Gas Turbine
          (Site 110), XAD-2 Resin	10-6
10-2   Spark Source Mass Spectroscopy, Gas-Fueled Gas Turbine
          (Site 110), Composite Sample 	   10-7
10-3   Spark Source Mass Spectroscopy, Gas-Fueled Gas Turbine
          (Site 110), Total SASS Catch	10-8
10-4   Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 111), Fuel	10-9
10-5   Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbine, Probe Solids (Site 111) 	   10-10
10-6   Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 111), Filter Catch	10-11
10-7   Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 111), XAD-2 Resin	 .  .  .   10-12
10-8   Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 111), Composite Sample	10-13
10-9   Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 111), Total SASS	10-14
10-10  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 112), Fuel	10-15
10-11  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 112), Filter Catch	10-16
10-12  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 112), XAD-2 Resin 	   10-17
10-13  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 112), Composite Sample	10-18
10-14  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 112), Total SASS	10-19
10-15  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 306), Fuel	10-20
10-16  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 306), Filter Catch	10-21
10-17  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 306), XAD-2 Resin 	   10-22
•10-18  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 306), Composite Sample	10-23
10-19  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 306), Total SASS	10-24
10-20  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 307), Fuel	10-25
10-21  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines (Site 307), Filter Catch	10-26

                                     vii

-------
                             TABLES (continued)
Number

10-22  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines  (Site 307), XAD-2 Resin 	   10-27
10-23  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines  (Site 307), Composite Sample	   10-28
10-24  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines  (Site 307), Total SASS	   10-29
10-25  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines  (Site 308), Fuel	   10-30
10-26  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines  (Site 308), Filter Catch	   10-31
10-27  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines  (Site 308), XAD-2 Resin 	   10-32
10-28  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines  (Site 308), Composite Sample	   10-33
10-29  Spark Source Mass Spectroscopy, Distillate Oil-Fueled
          Gas Turbines  (Site 308), Total SASS	'.  .   10-34
10-30  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 309), Fuel	   10-35
10-31  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 309), Filter Catch	10-36
10-32  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 309), XAD-2 Resin 	   10-37
10-33  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 309), Composite Sample	10-38
10-34  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 309), Total SASS	  .   10-39
10-35  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 310), Fuel	   10-40
10-36  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 310), Filter Catch	10-41
10-37  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 310), XAD-2 Resin 	   10-42
10-38  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 310), Composite Sample	10-43
10-39  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 310), Total SASS	10-44
10-40  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 311), Fuel	10-45
10-41  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 311), Filter Catch	10-46
10-42  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 311), XAD-2 Resin 	   10-47
10-43  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 311), Composite Sample	10-48
10-44  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 311), Total SASS. 	   10-49
10-45  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 312), Fuel	10-50
10-46  Spark Source Mass Spectroscopy, Distillate Oil
          Reciprocating Engine  (Site 312), Filter Catch	10-51

                                       viii

-------
                             TABLES (continued)
Number                                                                Page

10-47  Spark Source Mass Spectroscopy,  Distillate Oil
          Reciprocating Engine (Site 312),  XAD-2 Resin 	   10-52
10-48  Spark Source Mass Spectroscopy,  Distillate Oil
          Reciprocating Engine (Site 312),  Composite Sample	   10-53
10-49  Spark Source Mass Spectroscopy,  Distillate Oil
          Reciprocating Engine (Site 312),  Total SASS	10-54
10-50  Spark Source Mass Spectroscopy,  Distillate Oil
          Reciprocating Engine (Site 313),  Fuel	10-55
10-51  Spark Source Mass Spectroscopy,  Distillate Oil
          Reciprocating Engine (Site 313),  Filter Catch	10-56
10-52  Spark Source Mass Spectroscopy,  Distillate Oil
          Reciprocating Engine (Site 313),  XAD-2 Resin 	   10-57
10-53  Spark Source Mass Spectroscopy,  Distillate Oil
          Reciprocating Engine (Site 313),  Composite Sample	   10-58
10-54  Spark Source Mass Spectroscopy,  Distillate Oil
          Reciprocating Engine (Site 313),  Total SASS	10-59
10-55  Atomic Absorption Analysis, SASS Train, Distillate
          Oil-Fueled Gas Turbine, Site  111	10-60
10-56  Atomic Absorption Analysis, SASS Train, Distillate
          Oil-Fueled Gas Turbine, Site  112	10-61
10-57  Atomic Absorption Analysis, SASS Train, Distillate
          Oil-Fueled Gas Turbine, Site  306	   10-62
10-58  Atomic Absorption Analysis, SASS Train, Distillate
          Oil-Fueled Gas Turbine, Site  307	10-62
10-59  Atomic Absorption Analysis, SASS Train, Distillate
          Oil-Fueled Gas Turbine, Site  308-	10-63
10-60  Atomic Absorption Analysis, SASS Train, Distillate
          Oil Reciprocating Engine, Site 309	10-64
10-61  Atomic Absorption Analysis, SASS Train, Distillate Oil
          Reciprocating Engine, Site 310	10-64
10-62  Atomic Absorption Analysis, SASS Train, Distillate Oil
          Reciprocating Engine, Site 311	10-65
10-63  Atomic Absorption Analysis, SASS Train, Distillate Oil
          Reciprocating Engine, Site 312	   10-65
10-64  Atomic Absorption Analysis, SASS Train, Distillate Oil
          Reciprocating Site 313	10-66
10-65  Atomic Absorption Analysis, SASS Train, Mass Emissions. .  .  .   10-67
10-66  Atomic Absorption Analysis, SASS Train, For Gas-Fueled
          Gas Turbine, Site 110	10-67
10-67  Anion Analysis, SASS Train, Distillate Oil Fueled
          Gas Turbine, Site 111	,	10-68
10-68  Anion Analysis, SASS Train, Distillate Oil-Fueled
          Gas Turbine, Site 112	10-69
10-69  Anion Analysis, SASS Train, Distribution Distillate,
          Fueled Gas Turbine, Site 306	   10-70
10-70  Anion Analysis, SASS Train, Distillate Oil-Fueled Gas
          Turbine, Site 307	10-71
10-71  Anion Analysis, SASS Train, Distillate Oil-Fueled Gas
          Turbine, Site 308	10-71

-------
Number
                             TABLES (continued)
                                                                      Page
10-72  Anion Analysis, SASS Train, Distillate Oil Reciprocating
          Engine, Site 309	10-72
10-73  Anion Analysis, SASS Train, Distillate Oil Reciprocating
          Engine, Site 310	10-73
10-74  Anion Analysis, SASS Train, Distillate Oil Reciprocating
          Engine, Site 311	10-73
       Anion Analysis, SASS Train, Distillate Oil Reciprocating
          Engine, Site 312 .  .  .  .	10-74
       Anion Analysis, SASS Train, Distillate Oil Reciprocating
          Engine, Site 313	10-74
       Anion Analysis, SASS Train, Emissions	   10-75
       Anion Analysis, SASS Train, Gas-Fueled Gas Turbine,
          Site 110	10-76
 10-75

 10-76

 10-77
 10-78

 10-79
 10-80
 10-81
 10-82
 10-83
 10-84
 10-85
 10-86
 10-87
 10-88
 10-89
 10-90
 10-91
 10-92
 10-93
 10-94
 10-95
 10-96
 10-97
 10-98
 10-99
 10-100
 10-101
 10-102
 10-103
 10-104
 10-105
 10-106
 10-107

 10-108

 10-109

10-110

10-111
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
       Gas Chromatography Analysis,
                              Sample 110-PR-O-KD-l 	  10-77
                              Sample 110-XR-Wet-S-GC 	  10-77
                              Sample 110-XR-Dry-S-GC 	  10-78
                              Sample 110-XM-S-KD-l 	  10-78
                              Sample 111-XR-SKD Reserve. .  .  .  10-79
                              Sample 111-XM-S-KD 	  10-79
                              Sample 112-OR-O-KD-l 	  10-80
                              Sample 112-XR-Wet-S-GC 	  10-80
                              Sample 112-XR-Dry-S-GC 	  10-81
                              Sample 306-PR	  10-81
                              Sample 306-XR	10-82
                              Sample 307-XR	10-82
                              Sample 308-XR	10-83
                              Sample 309-MR	10-83
                              Sample 309-XR	10-84
                              Sample 310-MR	10-84
                              Sample 310-XR	10-85
                              Sample 310-PF	10-85
                              Sample 311-MR	10-86
                              Sample 311-XR	10-86
                              Sample 312-MR	10-87
                              Sample 312-XR	10-87
                              Sample 312-CDS  	  10-88
                              Sample 312-PF	10-88
                              Sample 313-MR	10-89
                              Sample 313-XR	10-89
                              Sample 313-CDS  	  10-90
                              Sample  313-PF	10-90
Gas Chromatography Analysis,  Gaseous Grab Sample, Gas
   Turbine, Site  110	10-91
Gas Chromatography Analysis,  Gaseous Grab Sample,
   Distillate Oil  Turbine,  Site  111	10-91
Gas Chromatography Analysis,  Gaseous Grab Sample,
   Distillate Oil  Turbine,  Site  112	10-92
Gas Chromatography Analysis,  Gaseous Grab Sample,
   Distillate" Oil  Turbine,  Site  306	10-92
Gas Chromatography Analysis,  Gaseous Grab Sample,
   Distillate Oil  Turbine,  Site  307	10-93

-------
                             TABLES (continued)
Number                                                                Page

10-112 Gas Chromatography Aanlysis Gaseous Grab Sample,
          Distillate Oil Turbine, Site 308	   10-93
10-113 Gas Chromatography Analysis, Distillate Oil Reciprocating
          Engines,  Gaseous Grab Sample, Site 309	   10-94
10-114 Gas Chromatography Analysis, Distillate Oil Reciprocating
          Engines,  Gaseous Grab Sample, Site 309-2 	   10-94
10-115 Gas Chromatography Analysis, Distillate Oil Reciprocating
          Engines,  Gaseous Grab Sample, Site 310	   10-95
10-116 Gas Chromatography Analysis, Distillate Oil Reciprocating
          Engines,  Gaseous Grab Sample, Site 311	   10-95
10-117 Gas Chromatography Analysis, Distillate Oil Reciprocating
          Engines,  Gaseous Grab Sample, Site 312	   10-96
10-118 Gas Chromatography Analysis, Distillate Oil Reciprocating
          Engines,  Gaseous Grab Sample, Site 312-2 	   10-96
10-119 Gas Chromatography Analysis, Distillate Oil Reciprocating
          Engines,  Gaseous Grab Sample, Site 313	10-97
10-120 Gas Chromatography Analysis, Distillate Oil Reciprocating
          Engines,  Gaseous Grab Sample, Site 313-2 	   10-97
10-121 Gas Chromatography Analysis, C8-C16 Volatile Organics,
          Gas Turbine, Site 110	10-98
10-122. Gas Chromatography Analysis, C8-C16 Volatile Organics,
          Distillate Oil Turbine, Site 111	10-98
10-123 Gas Chromatography Analysis, C8-C16 Volatile Organics,
          Distillate Oil Turbine, Site 112	10-99
10-124 Gas Chromatography Analysis, C8-C16 Volatile Organics,
          Distillate Oil Turbine, Site 306	10-99
10-125 Gas Chromatography Analysis, C8-C16 Volatile Organics,
          Distillate Oil Turbine, Site 307 	   10-100
10-126 Gas Chromatography Analysis, C8-C16 Volatile Organics,
          Distillate Oil Turbine, Site 308	10:JjQe
10-127 Gas Chromatography Analysis, C8-C16 Volatile Organics,
          Distillate Oil Reciprocating Engines, Site 309 	   10-101
10-128 Gas Chromatography Analysis, C8-Ci6 Volatile Organics,
          Distillate Oil Reciprocating Engines, Site 309-2 	   10-101
10-129 Gas Chromatography Analysis, C8-C16 Volatile Organics,
          Distillate Oil Reciprocating Engines, Site 310 	   10-102
10-130 Gas Chromatography Analysis, C8-C16 Volatile Organics,
          Distillate Oil Reciprocating Engines, Site 311 	   10-102
10-131 Gas Chromatography Analysis, C8-C16 Volatile Organics,
          Distillate Oil Reciprocating Engines, Site 312 	   10-103
10-132 Gas Chromatography Analysis, C8-C16 Volatile Organics,
          Distillate Oil Reciprocating Engines, Site 312-2 	   10-103
10-133 Gas Chromatography Analysis, C8-C16 Volatile Organics,
          Distillate Oil Reciprocating Engines, Site 313 	   10-104
10-134 Gas Chromatography Analysis, C8-C16 Volatile Organics,
          Distillate Oil Reciprocating Engines, Site 313-2 	   10-104
10-135 LC Analysis  Results, 309-2- XR+PF+MR+PR 	   10-106
10-136 LC Analysis  Results, 308 XR+MR	10-107
10-137 LC Analysis  Results, 313-2-XR-PF-MR-PR	10-108
10-138 LC Analysis  Results, 313-2-XR+PF+MR+PR	10-109


                                      xi

-------
                             TABLES (continued)
Number

10-139
10-140
10-141

10-142

10-143

10-144

10-145

10-146

10-147

10-148

10-149
10-150
10-151
10-152
10-153
10-154
10-155
10-156
10-157
10-158
10-159
10-160
10-161
10-162
10-163
10-164
10-165
10-166

Level 2
LC Analysis Results, 306- XR+MR 	
LC Analysis Results, 307 XR+MR	
IR Report, Distillate Oil Reciprocating Engines,
   Site 309 	
IR Report, Distillate Oil Reciprocating Engines,
   Site 309-2 	
IR Report, Distillate Oil Reciprocating Engines,
   Site 310 	
IR Report, Distillate Oil Reciprocating Engines,
   Site 312 	
IR Report, Distillate Oil Reciprocating Engines,
   Site 311 	
IR Report, Distillate Oil Reciprocating Engines,
   Site 312-2 	
IR Report, Distillate Oil Reciprocating Engines,
   Site 313 	
IR Report, Distillate Oil Reciprocating Engines,
   Site 313-2 	
IR Report, Distillate Oil-Fueled Gas Turbine,  Site  110.
IR Report, Distillate Oil-Fueled Gas Turbine,  Site  111.
IR Report, Distillate Oil-Fueled Gas Turbine,  Site  112.
IR Report, Distillate Oil-Fueled Gas Turbines,  Site 306
IR Report, Distillate Oil-Fueled Gas Turbines,  Site 307
IR Report, Distillate Oil-Fueled Gas Turbines,  Site 308
LRMS Report, Diesel Engine Site, Sample No.  309-XM-LC1.
             Diesel Engine Site, Sample No.
             Diesel Engine Site, Sample No.
             Diesel Engine Site, Sample No.
             Diesel Engine Site,
             Diesel Engine Site,
             Diesel Engine Site,
             Diesel Engine Site,
             Diesel Engine Site,
             Diesel Engine Site,
LRMS Report,
LRMS Report,
LRMS Report,
LRMS Report,
LRMS Report,
LRMS Report,
LRMS Report,
LRMS Report,
LRMS Report,
LRMS Report,
                    Sample No.
Diesel Engine Site, Sample No.
                               310-XM-LCI.
                               310-XM-LC6.
                               310-XM-LC7.
                    Sample No.  311-XM-LCI.
                    Sample No
                    Sample No
                    Sample No
                    Sample No
LRMS Report, Diesel Engine Site, Sample No.
311-XM-LC3.
311-XM-LC4.
312-XM-LC1.
312-XM-LC3.
312-XM-LC4.
312-XM-LC6.
313-XM-LC1.
32
D-16

D-17

D-18

D-19

D-20

Level II
Level II
Found
Level II
Found
Level II
Found
Level II
Found
Level II
Found
                Controlled  Condensation Train Analytical Results
                Organic Analysis  Results - Compounds
                in Sample #309-2-XRPF-MRPR 	
                Organic Analysis  Results - Compounds
                in Sample #309-2-CD-LE 	
                Organic Analysis  Results - Compounds
                in Sample #312-2-XRPF-MRPR 	
                Organic Analysis  Results - Compounds
                in Sample #312-2-CD-LE 	
                Organic Analysis  Results - Compounds
                in Sample #313-2-XRPF-MRPR 	
Page

10-110
10-111

10-112

10-113

10-114

10-115

10-116

10-117

10-118

10-119
10-120
10-121
10-122
10-123
10-124
10-125
10-126
10-127
10-128
10-129
10-130
10-131
10-132
10-133
10-134
10-135
10-136
10-137
                                                               10-139

                                                               10-140

                                                               10-147

                                                               10-149

                                                               10-153

                                                               10-154

-------
                             TABLES (continued)
Number                                                                page

D-21   Level II Organic Analysis Results - Compounds
          Found in Sample #313-2-CD-LE 	  10-158

Additional Data

1      Summary of Results of Emissions Assessment for
          Gas-Fueled Internal Combustion Sources 	  10-160
2      Summary of Results of Emissions Assessment for
          Oil-Fueled Internal Combustion Sources 	  10-161
23     Characteristics of Internal Combustion Sites Tested 	  10-162
29     Operating Load and Fuel Feed Rates of Internal
          Combustion Sources Tested  	  10-163
31     Summary of Results From Specific Inorganic Analyses 	  10-164
35     Gravimetric Results for Internal Combustion Sites 	 .  10-165
41     POM Emissions From Diesel Engine,  Sites 309-313 	  10-168
42     Summary of Emission Factor Data for Particulate, SO  and
          Total Organics From Internal Combustion Sources fested . .  10-169
43     Comparison of Criteria Pollutant Emissions Factors for
          Gas and Distillate Oil-Fueled Gas Turbines 	  10-170
44     Comparison of Criteria Pollutant Emission Factors for
          Gas and Distillate Oil Engines 	  10-171
45     Mean Source Severity Factors for Criteria Pollutants  ....  10-172
46     Summary of Emission Factor Data for Particulate Sulfate
          From Internal  Combustion Sources Tested  	  10-173
47     Summary of Emission Factor Data for Trace Elements
          From Electricity Generation Distillate Oil-Fueled
          Gas Turbines Tested  	  10-174
48     Summary of Emission Factor Data for Trace Elements
          From Electricity Generation Distillate Oil-Fueled
          Gas Turbines Based on Combined Current Study and
          Existing Data   	  10-176
49     Mean Source Severity Factors for Trace Element
          Emissions  From Distillate Oil-Fueled Gas Turbines  ....  10-176
50     Summary of Emission Factor Data for Trace Elements From
          Electricity Generation Distillate Oil  Engines Tested .  .  .  10-177
51     Mean Source Severity Factors for Trace Element
          Emissions  From Distillate Oil Engines   	   10-179
52     Comparison of Trace Element Emission Factors for
          Distillate Oil-Fueled Gas Turbines and Distillate
          Oil Engines  	   10-180
53     Summary of POM Emission Factor Data From  Electricity
          Distillate Oil  Engines Tested  	   10-181
54     Mean Source Severity Factors for POM Emissions From
          Electricity Generation Distillate Oil  Engines  	   10-182

-------
                             TABLES (continued)
Number


                                  STUDY 11

11-1   General Site Characteristics	H'5

Level 1

11-2   TSS  Results  in  mg/L,  Sites #1  and #2, March-June 1977 ....   11-8
11-3   Ammonia Analysis  Results, Sites #1 and #2, March-June 1977.  .   11-23
11-4   Cyanide Analysis  Results, Sites #1 and #2, March-June 1977.  .   11-27
11-5   Sulfate Analysis  Results, Sites #1 and #2, March-June 1977.  .   11-30
11-6   Total  Iron Analysis Results, Sites #1 and #2,
          March-June  1977	   n~32
11-7   Dissolved Iron Analysis Results, Sites #1 and #2,
          March-June  1977	   n'37
11-8   Phenol  Analysis Results,  Sites #1 and #2, March-June 1977 .  .   11-41

Additional  Data

5-6   Storm Event  Data, Site 1, March-April,  1977	11-46
5-7   Dry  vs Wet Flows, Site 1, March-April,  1977	11-47
5-8   Range of  Pollutant Concentrations at the Sampling
           Locations at Site 1, March-April, 1977	   11-48
5-9   Mean Pollutant Concentrations, in mg/L  at
           Site 1, March-April, 1977	11-49
5-10   Average Mass Loadings of Pollutants, Dry vs  Wet
           Weather,  March-April, 1977, Outfall  005-Site  1  	   11-50
5-11   Average Mass Loadings of Pollutants, Dry vs  Wet
           Weather,  March-April, 1977, Outfall  010-Site  1  	   11-51
5-12    Average Mass Loadings of Pollutants, Dry vs  Wet
           Weather,  March-April, 1977, Outfall  Oil-Site  1  	   11-52
5-13    Storm Event Data, Site 2, May-June,  1977	   11-53
5-14    Dry vs Wet Flows, Site 2, May-June,  1977	11-54
5-15    Range of Pollutant Concentrations at the  Sampling
           Locations at Site 2 in mg/L, May-June,  1977	11-55
5-16    Mean Pollutant Concentrations in mg/L at  Site 2,
           May-June, 1977	H-56
5-17    Average Mass Loadings of Pollutants, Dry  vs  Wet
           Weather,  May-June, 1977, Outfall  002-Site 2   	  11-57
5-18    Average Mass Loadings of Pollutants, Dry vs  Wet
           Weather,  May-June, 1977, Outfall  004-Site 2   	  11-58
5-19    Average Mass Loadings of Pollutants, Dry vs  Wet
           Weather,  May-June, 1977, Outfall  006-Site 2  	  11-59
5-20   Average Mass Loadings of Pollutants, Dry vs  Wet
           Weather,  May-June, 1977, Outfall  007-Site 2  	  11-60
5-21   Average Mass Loadings of Pollutants, Dry vs Wet
           Weather, May-June, 1977, Outfall 009-Site 2  	  11-61
5-22   Average Mass Loadings of Pollutants, Dry vs Wet
           Weather, May-June, 1977, Outfall OlOA-Site 2 	   11-62
5-23   Average Mass Loadings of Pollutants, Dry vs Wet
           Weather,  May-June, 1977, Outfall OlOB-Site 2 	   11-63

                                      xiv

-------
                             TABLES (continued)
Number                                                                page

5-24   Mean Pollutant Concentrations,  mg/L in the Tidal
          River at Site 2, May-June, 1977, (Sampling
          Location 015)	11-64
B-l    Dustfall Data, Site 1	   11-65
B-2    Dustfall Data, Site 2	   11-66
                                  STUDY 12

12-1   Emission Sampling Program for Coal-Fired
          Residential  Combustion Equipment 	   12-3

Level  1

12-2   Atomic Absorption Analysis, Test Coal  B, Low
          and High Ash Content	12-6
12-3   Gas Chromatography Analysis, Coal-Fired Residential
          Furnace Heating Cycle, SASS Run 2,  Coal  B, Low
          Ash Content	12-6
12-4   Gas Chromatography Analysis, Coal-Fired Residential
          Furnace Heating Cycle, SASS Run 2,  Coal  B, High
          Ash Content	12-7
12-5   Size Distribution of Particulate Emissions  During
          "On" Segment of a Coal-Fired Residential
          Furnace Heating Cycle  . 	   12-8

Additional Data

1      Average Emission Factors for Coal-Fired Residential
          Combustion Equipment Operating on a 20-Min On/
          40-Min Off Heating Cycle 	   12-10
2      Average Emission Rates for the On and  Off Heating Cycle
          Segments of  the Warm-Air Furnace Burning Coal B	   12-11
4      Proximate and Ultimate Analyses, Free  Swelling Index,
          and Ash Fusion Temperatures for Test Coals Compared
          With 86 Rocky Mountain Province Coal Samples
          (Proximate and Ultimate Only) 	   12-12
7      Emission Factors for POM and Criteria  Pollutants From
          Coal-Fired Residential Heating Equipment Operated on
          a 20-Min "On"/40-Min "Off" Heating  Cycle 	   12-13
8      Experimental  Data for the Coal-Fired Heating Equipment
          Operated on  a 20-Min On/40-Min Off  Cycle 	   12-14
10     Carbon,'Hydrogen, and Nitrogen Content of Particulate
          Emissions  From Coal-Fired Residential Heating Systems.  .  .   12-15
ll     Elemental Emission Factors From Coal-Fired  Residential
          Heating Equipment Operated on a 20-Min "On"/40-Min
          "Off" Heating Cycle	12-16
12     Emission Factors for C7 to C16 Hydrocarbons During the
          "On" Segment of a Coal-Fired Residential Furnace
          Heating Cycle  	   12-16
                                     xv

-------
                              TABLES (continued)
 Number                                                               Page

 14     Ash Residue From Coal B Burned in the Warm-Air Furnace   .  .  .  12-17
 16     Fraction of Coal Elemental Content Emitted to the
           Atmosphere and Total Material Balance  	  12-17
 17     Elements Leached From Ash Removed From the
           Coal-Fired Warm-Air Furnace  	  12-18
 19     Comparison of Emissions From the On and Off Segments
           of the Warm-Air Furnace Heating Cycle While
           Burning Coal B	12-19
 20     Comparison of Emission Data From the SASS Train  to
           Conventional Sampling Methods  	  12-20
                                   STUDY 13

 Level 1

 13-1   Spark Source Mass Spectroscopy, Retorted Shale,
           Indirect Mode, Semi-Works, 3-16-76,  1415 Hours 	  13-11
 13-2   Spark Source Mass Spectroscopy, Indirect Mode, Retorted
           Shale (Collected as Air Particulate),  3-17-76,
           1545 Hours	  13-12
 13-3   Spark Source Mass Spectroscopy, Retorted Shales, Direct
           Mode (Pilot Plant), 3-15-76, 1100  Hours	13-13
 13-4   Spark Source Mass Spectroscopy, Retorted Shales, Direct
           Mode (Semi-Works), 3-15-75,  1100 Hours 	  13-14
 13-5   Spark Source Mass Spectroscopy, Cold  Condensate Water,
           Pilot Plant,  3-10-76, 1700-0800  Hours	13-15
 13-6   Spark Source Mass Spectroscopy, Condensate Water,
           Semi-Works, 3-18-76, 1120-1330 Hours  	  13-16
 13-7   Spark Source Mass Spectroscopy, Process  Water,
           Semi-Works, 3-15-76, 1500 Hours	13-17
 13-8   Recycle Gas—Ammonia, Arsine	  13-18
 13-9   Recycle Gas—Fixed Gases	'.'.'.  13-18
 13-10  Recycle Gas—Sulfur Species	'.  13-19
 13-11  Recycle Gas—Nitrogen Oxides	'.'.'.'.'.  13-19
 13-12  Anion Analysis	'.'.'.  13-20
 13-13  Cation Analysis	        '  13-20
 13-14  Nutrient Analysis	[  13-21
 13-15  Gross Parameter  Analysis	[  "  13-21
 13-16  Carbon Analysis  and pH Values for Aqueous Sample	
           Collected From Paraho Process  	  13-22
 13-17  Summary of  High-Volume Air Pariculates	  . .  .  .  13-23

 Level 2

2      Trace  Organics Identified by GC/MS in the Recycle Gas
          Stream (Direct and Indirect  Mode) Summary of All
          Samples	13_26
                                      xvi

-------
                             TABLES (continued)
Number                                                                Page

9      Elemental Analysis of Retorted Shale, Participates,
          and Organic Extracts 	  13-27
5-9    Elemental Analysis of Retort Shale, Participates
          and Organic Extracts 	  13-34
5-19   Polar "Oxy" Compounds Present in Carbonaceous
          Spent Shale	13-35

Additional Data

5      Size Ranges of Solids	  13-37
6      Mass Fraction of Raw Shale Particulates	  13-38
7      Numerical Fraction of Raw Shale Particulates  	  13-38
8      Particle Size vs Mean Elemental Composition of Raw Shale
          Air Particulates as Determined by X-Ray Fluorescence .  .   .  13-38
11     Benzene and Water Extractables of Retorted Shale,
          and Raw Shale Particulates	13-39
12     Comparison of PAH to Polar Compounds in Solid Samples  ....  13-39
13     RR Values for PAH Fraction of Benzene Solubles
          From Direct Mode Retorted Shale	13-40
14     Evaluation of Benzo(a)pyrene Content in Samples
          of Benzene Extracts From Direct Mode Retorted   	  13-41
5.5    Evaluation of Organics Extracted From Aqueous
          Phase of Recycle Gas (Cold) Condensate (RG-10)  	  13-42
5.6    Evaluation of Organics Extracted From Aqueous
         . Phase of Recycle Gas (Hot) Condensate (RG-7) 	  13-43
5.11   Size Distribution of PARAHO Solids	! -.  .   .  13-44
5.12   Screen Sieve Analyses of PARAHO Retorted Shale  	  13-45
5.14   Mean Particle Size (Effective Diameter) of LO VOL
          AIR Particulate Samples Collected at the Paraho Plant
          as Determined by Scanning and Transmission Electron
          Microscopy	13-46
5.15   Particle Size Analysis of Air Particulate Samples
          Collected at the Paraho Plant as  Determined by
          Cascade Impaction Collector	13-46
5.16   Particle Size vs Mean Elemental Composition of Air
          Particulates as Determined by X-Ray  Fluorescence  	  13-47
5.17   Benzene and Water Extractables of  Solid Samples 	  13-48
5.21   Evaluation of Benzo(a)pyrene Content in Samples of
          Benzene Extracts From Paraho Spent Shale Coke Samples. .  .  13-49
5.22   RR Values for PAH Fraction of Benzene Solubles From
         ° Carbonaceous Spent Shale [CSA VIII (1)]. . 	  13-50
5.23   Pilot Plant (Direct Mode) Recycle  Gas 	  13-51
•6.1   Flame lonization Reponse of Sample MSA-34 Extracted
          With  CS2	13-52


                                  STUDY 14

14-1   Tertiary Treatment Systems Used at Specific Pilot
           Plant Sites	  14-5
                                     xvn

-------
                               TABLES  (continued)
 Number                                                                page

           and Organic Extracts  	   13-27
 5-9    Elemental Analysis of  Retort  Shale,  Particulates
           and Organic Extracts  	   13-34
 5-19   Polar "Oxy" Compounds  Present in Carbonaceous
           Spent Shale	   13-35

 Additional Data

 5      Size Ranges of Solids	13-37
 6      Mass Fraction of Raw Shale Particulates	13-38
 7      Numerical Fraction of  Raw Shale Particulates  	   13-38
 8      Particle Size vs Mean  Elemental Composition of Raw Shale
           Air Particulates as Determined by X-Ray Fluorescence .  .  .   13-38
 11     Benzene and Water Extractables of Retorted Shale,
           and Raw Shale Particulates	13-39
 12     Comparison of PAH to Polar Compounds in Solid Samples  ....   13-39
 13     RB Values for PAH Fraction of  Benzene Solubles
           From Direct Mode Retorted  Shale	   13-40
 14     Evaluation of Benzo(a)pyrene  Content in Samples
           of Benzene Extracts From Direct Mode Retorted  	   13-41
 5.5    Evaluation of Organics Extracted From Aqueous
           Phase of Recycle Gas  (Cold) Condensate (RG-10) 	   13-42
 5.6    Evaluation of Organics Extracted From Aqueous
           Phase of Recycle Gas  (Hot) Condensate (RG-7) 	   13-43
 5.11   Size Distribution of PARAHO Solids	   13-44
 5.12   Screen Sieve Analyses of PARAHO Retorted Shale	   13-45
 5.14   Mean Particle Size (Effective Diameter) of LO VOL
           AIR Particulate Samples Collected at the Paraho Plant
           as Determined by Scanning and Transmission Electron
           Microscopy	13_45
 5.15   Particle Size Analysis of Air Particulate Samples
           Collected at the Paraho Plant as Determined by
           Cascade Impaction Collector	13-46
 5.16   Particle Size vs Mean Elemental Composition of Air
           Particulates as Determined by X-Ray Fluorescence 	   13-47
 5.17   Benzene and Water Extractables of Solid Samples 	  !   13-48
 5.21   Evaluation of Benzo(a)pyrene Content in Samples of
           Benzene Extracts From Paraho Spent Shale Coke Samples.  .  .   13-49
 5.22   RB Values for PAH Fraction of Benzene Solubles From
           Carbonaceous Spent Shale [CSA VIII (1)].  .  .  .               13-50
 5.23   Pilot Plant (Direct Mode) Recycle Gas 	  '  '     13-51
 6.1     Flame lonization Reponse of Sample MSA-34 Extracted
           With.CS2	13_52


                                   STUDY 14

14-1   Tertiary Treatment  Systems  Used at Specific Pilot
           Plant Sites	     14_5
                                    xvm

-------
                             TABLES (continued)
Number                                                                Pa9e

Level  2

6      Minimum Determinable Concentrations for Organic
          Toxic Pollutants	14-7
7      Plant A Organic Toxic Pollutants Detected 	   14-8
8      Plant A Inorganic Toxic Pollutants Detected 	   14-9
9      Plant A Other Pollutants Detected 	   14-10
11     Plant A Effluent Descriptions 	   14-11
12     Plant C Organic Toxic Pollutants Detected 	   14-12
13     Plant C Inorganic Toxic Pollutants Detected 	   14-12
14     Plant C Other Pollutants Detected 	    14-13
15     Plant C Bioassay Results  	   14-14
16     Plant C Effluent Descriptions 	   14-15
17     Plant W Organic Toxic Pollutants Detected 	   14-16
18     Plant W Inorganic Toxic Pollutants Detected 	   14-16
19     Plant W Other Pollutants Detected 	   14-17
20     Plant W Bioassay Results  	   14-18
21     Plant W Effluent Descriptions 	   14-19
22     Plant S Organic Toxic Pollutants Detected 	   14-20
23     Plant S Inorganic Toxic Pollutants Detected 	   14-20
24     Plant S Other Pollutants Detected  	   14-21
25     Plant S Bioassay Results  	   14-22
26     Plant S Effluent Descriptions .....  	   14-23
27     Plant P Organic Toxic Pollutants Detected  	   14-23
28     Plant P Inorganic Toxic Pollutants Detected 	  14-24
29    ' Plant P Other Pollutants Detected  	  14-25
 30     Plant P Bioassay Results  	   14-26
 31     Plant P Effluent Descriptions 	  14-27
 32     Plant N Organic Toxic Pollutants  Detected  	  14-27
 33     Plant N Inorganic Toxic Pollutants Detected 	  14-28
 34     Plant N Other Pollutants Detected  	  14-29
 35     Plant N Bioassay Results  	  14-30
 36     Plant N Effluent Description 	  14-31
 37     Plant V Organic  Toxic  Pollutants  Detected  	  14-32
 38      Plant V Inorganic  Toxic Pollutants Detected  	  14-33
 40      Plant V Bioassay Results  	  14-34
 41      Plant  V Effluent Descriptions  	  14-35
 42      Plant  T Organic  Toxic  Pollutants  Detected  	  14-36
 43     Plant  T Inorganic  Toxic Pollutants Detected  	  14-37
 44     Plant  T Other  Pollutants Detected 	  14-38
 45     Plant  T Bioassay Results	14-39
 46     Plant T Effluent Descriptions  	  14-40
                                      xix

-------
                                  INTRODUCTION
      This document is an accumulation of all available environmental assessmerv
 data published from February 1978 through March  1979.
      This document is the second comprehensive compilation of data from the
 IERL Phased Environmental Assessment Program.  The first data compilation was
 published in October 1978 as EPA-600/2-78-211, Compilation of Level 1 Environ-
 mental  Assessment Data.   As in the first data compilation, the primary purpose
 of this compilation is to permit those involved  in environmental assessment
 programs to evaluate the quality and quantity of data generated by the phased
 approach.  It is felt that critical  reviews of these data may lead to improve-
 ments in procedures, data formatting, data storage, and data interpretation.
 Although conclusions related to specific sources or source types may have been
 abstracted from the references to provide background information, the focus  of
 this presentation is on data resulting from the  Level 1 sampling and analytical
 methods.   The interested reader should consult the referenced documents for
 more details and conclusions concerning  pollutant sources, control techniques,
 etc.
      The phased environmental  assessment program, developed by the Industrial
 Environmental  Research Laboratory (IERL) of the  Environmental Protection
 Agency  (EPA) at Research Triangle Park (RTP), North Carolina, is divided  into
 three levels.   Level 1 is the survey step to determine which samples from an
 environmental  assessment might be hazardous or toxic.  Level 1 also serves to
 establish the priority of samples and rank samples for further testing.  When
 the  Level  1 sampling and analysis scheme shows the possible presence of hazards
 a  Level  2 scheme is initiated to specifically identify and quantify suspected
 hazardous  materials.   If Level 2 reveals pollutants capable of environmental
 detriment,  then a Level  3 scheme is  begun to evaluate control technologies ana
to assess  long-term effects.
     Fourteen  studies have been identified that  contain phased environmental
assessment  data;  these studies are organized alphabetically by source types  in
                                     xx

-------
STUDY NUMBER 10

-------
                  STUDY NUMBER 10
DATA
SOURCE:
EMISSIONS ASSESSMENT OF
CONVENTIONAL STATIONARY
COMBUSTION SYSTEMS;
Volume II. Internal Combustion Sources
DATA
STATUS:
EPA-600/7-79-029C, February 1979
AUTHORS:

CONTRACTOR:
C. C. Shih, J. W. Hamersma, D. B. Ackerman,
R. G. Beimer, M, L. Kraft, and M. M. Yamada
TRW, Inc.
One Space Park
Redondo Beach, California 90278
Contract No. 68-02-2197
PROJECT
OFFICER:
Ronald A. Venezia
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
                              10-1

-------
     The  purpose  of this  study was  to assess  the contribution of gaseous
emissions from stationary internal  combustion sources to the total air pollu-
tion load.   Two source categories,  gas turbines and reciprocating engines,
were considered in this assessment.   Gas  turbines may be classified as simple
open cycle,  regenerative  open cycle,  and  combined cycle; and reciprocating
engines may  be classified as spark- and compression-ignited (diesel) engines.
These  large  stationary internal combustion  engines are used for "electricity
generation,  oil and gas transmission, natural  gas processing, oil and gas
productign and exploration."
     A thorough survey and evaluation of  available information was performed
and, based on deficiencies in the existing  data base, eleven sites were chosen
for sampling and  analysis.   There were five distillate oil-fueled gas turbines
of the simple open cycle  type (sites  #111,  #112, #306, #307, and #308), five
distillated  oil (diesel)  reciprocating engines (sites #309, #310, #311, #312,
and #313), and one gas-fueled gas turbine of  the simple open cycle type (site
#110).  A thorough study  of load factors  and  operating conditions was performed
so that representative samples could  be acquired.
     No fugitive  emissions were sampled since previous data indicated that
there  was an insignificant contribution to  total pollutants from these sources.
     The  sampling and analysis protocol consisted of a modified Level 1 chemi-
cal assessment, Level 2 chemical assessment on three sites (#309, #312, and
#313)  as  indicated by Level 1, and additional  analyses for ROM's by GC/MS.
The modified Level  1 procedure involves sampling with a SASS train without
cyclones  and gas  sampling bags for Cj^-C^  hydrocarbons and CO, C02, 02, and
S02.    The Level 1 inorganic protocol  was  followed (SSMS for elemental composi-
tion;  AAS for As,  Hg, and Sb; colorimetric  analysis for NOa; and specific ion
electrode method  for Cl  and F ), and the following samples were analyzed:
SASS filter  (and  hot water extracts of filter particulates); SASS XAD-2 sorbent;
a composite  of SASS organic module condensate, HN03 rinse, and the first
impinger  solution;  and the fuel oil.   The Level 1 organic protocol for sample
                                       10-2

-------
recovery and fractionation was followed but final analyses were by gravimetry,
GC, infrared spectrometry, and GC/MS rather than LRMS,  A cutoff of 500 ug/m3
for total  organics in stack gas was used as the criterion for fractionation
and detailed organic analysis.
     The Level 2 sampling effort utilized the Goksoyr-Ross sampling system for
sulfur oxides and the SASS train without cyclones.   As compared to Level 1
tests, which used CH2C12 or CH2C12/CH3OH rinses in this study, the Level 2
SASS tests added acetone to the rinse solutions and omitted isopropyl alcohol
from the impinger recovery washes.   The turbidimetric method was used for
determination of S02 in Goksoyr-Ross H202 impinger and S04 in filter particu-
lates and  probe rinses.   Initially unconcentrated and unfractionated organic
samples were analyzed by capillary GC/MS.  Some concentrated and LC fraction-
ated samples were also analyzed by GC/MS, with reference to the unconcentrated
and unfractionated sample, for trace levels of organics.
     Quoting from the abstract of the final report,
          Assessment results indicate that internal combustion (1C) sources
          contribute significantly to the national  emissions burden.   NO ,
          hydrocarbon,  and CO emissions from 1C sources account for approxi-
          mately 20, 9,  and 1%, respectively, of the emissions of these pollut-
          ants from all  stationary sources.  The sources severity factor (the
          ratio of the calculated maximum ground level concentration of the.
          pollutant species to the level at which a potential environmental
          hazard exists) was used to identify pollutants of environmental
          concern.
ROM's, CO, S02, particulates, and individual  organic species were not found at
levels of  environmental  concern.   Trace element emissions from gas-fueled
engrnes were insignificant but oil-fueled engines emitted nickel, copper, and
phosphorus at levels of concern.
     Figure 10-1 from the final report gives  an explanation of sample codes
used in some of the data tables.
                                      10-3

-------
                                                                                  xxx-xx-xx-xxx-xx-x
                 SITE  IDENTIFICATION
               Consecutively  numbered
                by  sampling  team:

               100-199,  TRW West Coast
               200-299,  TRW East Coast
               300-399,  GCA
o
 I
                                              SAMPLE TYPE
Numbers and corresponding
 sample types are as
 fo11ows:

  1-bulk liquid
    (separated from a
    slurry)
  2-bulk liquid
    (separated from a   •
    slurry)
  3-bulk linuid
  1-bulk liquid
 n-liquid fuel feed
 CD-condensate from
    XAD-2 module
 PR-solvent probe/
    cyclone rinse
 MR-solvent XAD-P
    module rinse
 HM-MNOj XAD-2 module
    rinse
 HI-H20Z impincjpr
 AI-APS impingers
 XR-XAD-2 resin
 PF-filter(s)
 tC-l-3c cyclone
 3C-3-10). cyilone
lf)C->ini, c. yi lone
 XH-XR  extract plus MR
 CII-IIM  plus (.1) plus HI
 fC-PF  plus 1C
 CC-3C  t)lus inr
 CF-solid fuH feed (coal)
  5-bulk sol ids
  f>-bulk solids
  7-buIk solids (separated
    from a slurry)
  8-bulk solids (separated
    from a slurry)
   SAMPLE PREPARATION

Numbers and corresponding
 preparation steps are
 as follows:

 0-no preparation
LE-liquid-llquid extraction
SE-Soxhlet extraction
 A-acidlfied aliquot
 B-basified aliquot •
PB-Parr bomb combustion
HVI-hot water extraction
AR-aqua retiia extraction
                                                                                                  FIRST  LEVEL  ANALYSIS
                                                                                       SECOND LEVEL
                                                                                         ANALYSIS
                                                                              THIRD LEVEL ANALYSIS
Numbers and correspondinq
 procedures are as
 follows:
  Organic
                                                                                                 0-no cone
                                                                                                   required
                                                                                                r.C-C7-Ci; r'c
                                                                                                KD-K-D Cone
Inorqanic
               SS-SSMS
              AAS-llq,As,Sb
              SOq-SO/i
              N03-N03
              CF-CI.F
Orqanic analyses on
 cone samples will
 be coded as
 follows:

GH-GC/HS for PAHs
GI-Grav.,IR
MS-LRMS
LC-LC separation
                                 Resulting LC fractions
                                  for grav./lR/LRMS
                                  analyses wil1 be
                                  numbered in order,
                                  1-8
                                                             Figure  10-1.   EACCS sample control numbers.

-------
LEVEL 1
   10-5

-------
TABLE 10-1.  SPARK SOURCE MASS SPECTROSCOPY
     GAS-FUELED GAS TURBINE (SITE 110)
            XAD-2 RESIN
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tra
Er
Ho
<2.22
<2.19
<1.97
<14.4
<1.91

<1.84

<1.81
<1.78
<1.75
<1.72

<1.69
<1.63
<1.63
<1.59
<1.56
<1.53
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.53
<1.50
<1.47
<1.44
<1.41
<1.34
<1.31
0.23
<1.31
<81.2
0.02
<1.19
<1.19
<2.09
<4.06

<0.38

<1.00
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.97
<0.94
<2.63
0.03
<0.84
<0.84
<5.00
0.34
<5.31
<1.06
<1.19
<0.69
<0.66
<75.0
68.8
<78.1
<0.84
<153
<7.50
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


<10.94
<0.50
<5.94
<228
<156
<156

<562
<53.1
<116
<43.8
<188
<87.50

<0.34
<0.08
0.22


                      10-6

-------
               TABLE  10-2.   SPARK SOURCE MASS  SPECTROSCOPY
                      GAS-FUELED  GAS  TURBINE  (SITE 110)
                              COMPOSITE  SAMPLE*
                                  (MQ/m3)
==^=c=
U
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
fie
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.44
<0.44
<0.38
1.59
<0.38

<0.38

<0.34
<0.34
<0.34
<0.34

<0.34
<0.31
<0.31
<0.31
<0.31
<0.30
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.30
<0.29
<0.29
<0.28
<0.28
<0.27
<0.26
0.03
0.04
0.94
<0.24
<0.23
<0.23
0.13
0.44

0.47

<0.20
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.19
<0.19
0.34
<0.17
0.02
<0.16
0.17
0.03
1.28
<0.30
<0.14
<0.13
<0.13
5.63
<10.0
4.69
0.07
17.8
2.56
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


<2.78
0.06
0.19

13.4
13.6

300.
2.63
8.75
<3.75
8.75
<81.2

3.44
<0.003
<0.02


"Composite  of HN03 module  wash,  condenr.ate,  and the  H202  impinger.
                                     10-7

-------
TABLE 10-3.  SPARK SOURCE MASS SPECTROSCOPY
      GAS-FUELED GAS TURBINE (SITE 110)
              TOTAL SASS CATCH
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.66
<2.60
<2.34
1.59 to 14,4
<2.28

<2.22

<2.16
<2.12
<2. 09
<2.06

<2. 0
<1.97
<1.94
<1.91
<1.88
<1.84
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.
<1.
<1.
<1.
<1.
<1.
<1.
0.
0.
0.
0.
<1.
<1.
0.
0.

0.

<1.
81
78
75
72
69
63
60
26
04
94
02
44
44
13
44

47

19
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
to 1.31 Br
to 81.2 Se
to 0.24 As
Ge
Ga
to 2.09 Zn
to 4.06 Cu
Ni
Co
Fe
Mn
<1.16
<1.12
0.34
0.03
0.02
<1.0
0.17
0.38
1.28
<1.38
<1.34
<0.81
<0.78
5.62
68.75
4.69
0.07


to
to
to

to

to




to

to
to


2.63
0.17
0.84

5.0

5.31




75.0

78.1
0.84
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li
2.
0.
0.

13.
15.

300.
2.
8.
<46.
8.
<166

3.
<0.
<0.
78 to 10. :
06 to 0.5,
19 to 5,9-

44 to 228
6 to 156

0
63 to 53,:
75 to 116
9
75 to 188


44
003 to 0.:
24
17.8 to 153.
2.56
to
7.50



                      10-8

-------
TABLE 10-4.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 111)
                    FUEL
                   (ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
1.3
<0.41

<0.39

<0.38
<0.38
<0.37
<0.37

<0.36
<0.35
<0.35
<0.34
<0.33
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
0.0098
<0.28
1.4
<0.27
<0.25
<0.26
0.053
0.13

0.14

<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.20
0.093
<0.19
<0.18
<0.18
0.33
0.023
<0.55
0.11
<0.082
<0.15
<0.14
12
3.1
3.2
0.053
18
71
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


0.13
0.062
<0.2

15
36

490
8.8
60
2.7
<11
33

. 3.9
<0.0021
<0.021


                      10-9

-------
TABLE 10-5.  SPARK SOURCE  MASS  SPECTROSCOPY
      DISTILLATE OIL-FUELED  GAS TURBINE
           PROBE SOLIDS  (SITE 111)
                   (|jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.02
<0.02
<0.01
0.56
<0.01

<0.01

<0.01
<0.01
<0.01
<0.01

<0.01
<0.01
<0.01
<0.01
<0.01
<0.01 I
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.003
<0.003
0.05
<0.003
<0.01
<0.01
0.01
<0.02

<0.003

<0.01
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.01
<0,01
0.02
<0.003
<0.05
0.01
0.02
<0.003
0.016
0.08
0.03
0.02
<0.003
0.09
0.21
1.84
0.08
18.1
42.8
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li


0.69
0.06
0.09

1.84
0.86

214
0.17
14.5
1.25
0.43
0.30

1.18
<0.003
<0.003


                      10-10

-------
 TABLE 10-6.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 111)
                FILTER CATCH
                   (fjg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.36
<0.36
<0.32
2.27
<0.23

1.35

<0.30
<0.30
<0.29
<0.28

<0.28
<0.27
<0.27
<0.26
<0.26
<0.26
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.25
<0.25
<0.24
<0.23
<0.23
<0.22
<0.22
<0.05
<0.21
2.66
<0.003
<0.20
<0.20
<0.12
<0.06

0.10

<0.16
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.16
<0.16
1.68
<0.14
<0.29
<0.14
<0.21
<0.10
1.84
0.27
<0.20
<0.11
<0.11
<3.62
<4.61
49.3
1.45
1,680
253
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


0.82
<0.04
<1.97

<27.3

-------
 TABLE 10-7.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 111)
                 XAD-2 RESIN
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.34(
<2.30J
<2.07
<25.3
<2.01

<1.94

<1.91
<1.87
<1.84
<1.81

<1.78
<1.71
<1.71
<1.68
<1.64
<1.61
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.58
<1.55
<1.51
<1.48
<1.41
<1.38
<1.38
<1.38
<27.0
<1.32
<1.25
<1.25
<1.25
<3.62

<2.27

<1.05
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.02
<0.99
2.11
0.07
<0.89
<0.89
<4.61
0.29
<9.54
<0.79
<2.07
<0.72
<0.69
<155
<158
42.8
0.79
<171
8.55
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li


3.95
<0.62
1.84

<395
<164

<1,460
<72.4
1,610
<52.6
<197
276

52.6
0.003
<2.17


                       10-12

-------
                 TABLE  10-8.   SPARK  SOURCE  MASS  SPECTROSCOPY
                DISTILLATE  OIL-FUELED  GAS TURBINES (SITE 111)
                              COMPOSITE  SAMPLE*
                                  (fjg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.29
<0.28
<0.25
5.92
<0.24

<0.24

<0.23
<0.24
<0.22
<0.22

<0.26
<0.21
<0.21
<0.20
<0.20
<0.20
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.19
<0.19
<0.19
<0.18
<0.18
<0.19
<0.17
0.03
<0.17
1.12
<0.16
<0.15
<0.15
<0.14
4.93

<0.14

<0.13
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.12
<0.14
0.39
0.03
<0.11
<0.11
0.39
0.02
0.33
0.99
0.11
<0.09
<0.08
1.58
<2.93
1.35
0.06
7.57
8.88
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li


4.61
0.09
0.21

65.8
7.57

109
<3.06
7.57
2.01
3.62
<59.2

<0.59
<0.01
0.04


^Composite of HN03 module wash,  condensate, and the H202 impinger.
                                      10-13

-------
 TABLE 10-9.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 111)
                 TOTAL SASS
                   (pg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3.03
<2.93
<2.66
8.55 to 25.3
<2.60

1.35

<2.43
<2.43
<2.37
<2.33

<2.30
<2. 20
<2.20
<2.14
<2.11
<2.11
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2.07
<2.01
<2.01
<1.94
<1.91
<1.84
<1.78
0.03 to 1.45
<0.003 to 1.74
3.95 to 27.0
<0.003 to 1.48
<1.61
<1.61
0.01 to 1.51
4.93

0.10 to 2.40

<1.35
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb

Se

Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.32
<1.32
4.28
0.11
<1.35
0.01 to 1.12
0.39 to 4.61
0.31
Br
1.35
As
0.02 to 0.92
<0.89
1.68 to 158
0.21 to 164
98.7
2.40
1,710
312
Cr
V
Ti
Sc
Ca
K
C1
S
2.20
Si
0.14
Mg
Na
F
B
Be
Li


10.20
0.15 to 0.6
2.17

69.1 to 42£
8.55 to 19:

822 to 1.640
to 9.54
1,610
to 2.27
3.95 to 227
625

52.6
0.01 to 0.0
0.04 to 2.2


                      10-14

-------
TABLE 10-10.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 112)
                    FUEL
                   (
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.65
<0.95
<0.42
4.3
<0.41

<0.48

<0.74
<0.81
<0.51
<0.69

<0.86
<0.35
<0.35
<0.34
<0.52
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.52
<0.65
<0.28
<0.28
<0.2JB
14
<0.27
<0.45
<0.38
<0.26
2.0

<0.46

<0.37
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.48
<0.44
<0.19
<0.21
<0.18
0.18
0.069
<0.64
<0.25
<0.14
<0.18
<0.14
29
31
4.5
0.076
17
0.41
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


1.8
0.081
0.51

22
11

140
4.4
5,300
14
51
300

180
0.0050



                      10-15

-------
TABLE 10-11.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED  GAS TURBINES (SITE 112)
                FILTER CATCH
                   ((jg/m3)
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.15
<0.14
<0.13
2.55
<0.13

0.02

<0.12
<0.12
<0.11
0.01

<0.11
<0.11
<0.11
<0.10
<0.10
<0.10
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.10
<0.10
<0.10
<0.09
<0.09
<0.09
<0.09
<0.01
<0.003
<0.71
<0.003
0.01
<0.08
0.49
<0.27

0.34

<0.06
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.06
<0.61
0.09
<3.07
<0.11
0.01
<0.16
<0.03
0.03
0.06
<0.30
<0.05
<0.04
1.17
<0.95
0.80
0.34
<14.7
2.98
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li


0.49
<0.07
<0.77

<30.7
<18.7

337
<0.64
<3.99
<9.51
<6.75
<187

<0.25
<0.003



                       10-16

-------
TABLE 10-12.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 112)
                 XAD-2 RESIN
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.18
4.29
<1.93
61.3
<1.87

<1.81

<2.45
<2.67
<1.72
<2.27

<2.82
<1.60
<1.60
<1.56
<1.72
<1.50
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.50
<1.47
<1.44
<1.41
<1.72
<2.15
<1.29
<1.29
<1.29
736
<1.23
6.13
<1.23
<1.17
3.37

2.21

<1.23
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.95
<1.56
<1.47
<0.86
<0.83
<0.83
8.90
0.27
<4.29
<0.83
1.44
<0.67
<0.64
<144
<92.02
<64.4
<0.98
<95.1
<3.37
Cr
V
Ti
Sc
Ca
K
Cl
S <
P
Si
Al
Mg
Na
F
B
Be
Li


<6.75
<0.83
5.21

368
<217

1,040
<95.1
<132
<288
92.0
307

<196
0.003



                        10-17

-------
                TABLE 10-13.  SPARK  SOURCE MASS SPECTROSCOPY
                DISTILLATE OIL-FUELED GAS TURBINES (SITE 112)
                              COMPOSITE  SAMPLE*
                                   (pg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.64
<0.95
<0.29
1.04
<0.37

<0.49

<0.74
<0.83
<0.52
<0.71

<0.86
<0.25
<0.29
<0.24
<0.52
<0.23
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.30
<0.22
<0.30
<0.21
<0.52
<0.64
<0.20
<0.20
<0.20
0.92
<0.19
<0.46
<0.37
<0.26
0.64

<0.46

<0.37
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.14
<0.49
<0.46
<0.13
<0.21
<0.13
0.22
<0.12
<0.64
<6.75
<0.40
<0.18
<0.10
<5.83
<1.32
1.07
0.14
107
0.40
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li


1.50
0.04
<0.07

29.4
<6.79

117
<0.67
4.29
1.41
6.13
<20.6

0.26
0.01



""Composite of HN03 module wash, condensate, and the H202 impinger.
                                      10-18

-------
TABLE 10-14.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 112)
                 TOTAL SASS
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.98
4.29
<2.33
64.4
<2.36

0.02 to 2.30

<3.37
<3.68
<2.33
0.01 to 2.94

<3.68
<1.96
<1.99
<1.90
<2.36
<1.84
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.90
<1.78
<1.84
<1.72
<2.33
<2. 88
<1.60
<1.50
<0.003 to 1.47
736
<0.003 to 1.41
6.13
<1.69
0.49 to 1.41
3.99

2.55

<1.66
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.
<2.
0.
<3.
<1.
0.
9.
0.
0.
0.
1.
<0.
<0.
1.
<95.
1.
0.
107
3.
17
12
09 to 1.90
07 to 0.98
17
01 to 0.95
20
27
03 to 4.90
06 to 7.36
44
89
80
17 to 150
1
87 to 64.4
49

37
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


1.
0.
5.

399
<337

460
<98.
4.
1.
98.
307

0.
0.



99
04
21




to
2
29
41
2


26
01



to 6.75
to 0.92





1,040

to 135
to 298



to 196




                       10-19

-------
TABLE 10-15.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 306)
                    FUEL
                   (
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
2.8
<0.41

<0.39

<0.38
<0.38
<0.37
<0.37

<0.36
<0.35
<0.35
<0.34
<0.33
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
<0.28
<0.28
<0.49
<0.27
0.040
<0.26
<0.090
5.5

<0.22

<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.20
0.17
<0.19
<0.18
<0.18
0.099
<0.028
<0.35
<0.16
<0.21
<0.15
<0.14
15
31
53
0.35
20
9.0
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li


0.56
0.47
<0.54

27
<8.4

480
11
<120
2.8
<7.2
<21

<0.72
<0.0056
0.017


                      10-20

-------
TABLE 10-16.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 306)
                FILTER CATCH
                   (pg/rn3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.11
<0.10
<0.09
<22.1
<0.09

<0.09

<0.09
<0.09
<0.09
<0.18

<0.08
<0.08
<0.08
<0.08
<0.08
<0.07
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.07
<0.07
<0.07
<0.07
<0.07
<0.07
<0.06
0.02
<0.03
<8.54
<0.003
0.02
<0.06
<0.09
0.77

<0.12

<0.05
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.05
<0.05
0.77
<0.003
0.41
0.02
0.16
0.02
<0.12
1.49
0.55
0.16
<0.03
16.5
2.18
30.3
0.16
99.2
27.6
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li


6.89
0.02
<1.85

49.6
55.1

441
26.2
331
<22.6
130
<127

212
<0.07
<0.23


                       10-21

-------
TABLE 10-17.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 306)
                 XAD-2 RESIN
                   (pg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.45
<2.40
<2.15
10.2
<2.09

<2.04

<1.98
<1.96
<1.93
<1.90

<1.85
<1.79
<1.79
<1.74
<1.74
<1.71
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.68
<1.63
<1.63
<1.57
<1.54
<1.49
<1.46
0.47
0.24
13.5
0.04
0.28
<1.32
0.36
5.51

0.85

<1.10
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.05
<1.05
7.72
0.33
2.51
0.09
4.69
0.30
7.99
0.83
4.41
<0.74
<0.72
38.6
119
113
1.60
99.2
3.03
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li


12.1
0.36
22.6

157
74.4

3,030
33.1
276
<634
46.9
<248

<2.76
<0.01
0.07


                      10-22

-------
               TABLE  10-18.   SPARK SOURCE  MASS SPECTROSCOPY
               DISTILLATE  OIL-FUELED  GAS TURBINES (SITE 306)
                             COMPOSITE SAMPLE*
                                  (|jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.61
<0.58
<0.52
1.07
<0.52

<0.50

<0.50
<0.50
<0.47
<0.47

<0.44
<0.44
<0.44
<0.44
<0.41
<0.41
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.41
<0.41
<0.41
<0.39
<0.39
0.06
<0.36
0.04
<0.36
1.07
<0.02
0.05
<0.33
<0.18
<55.1

0.30

<0.27
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.26
<0.26
<7.17
0.003
0.04
<0.23
<0.17
<0.06
0.17
<1.79
<2.21
<0.18
<0.18
6.34
<6.06
16.5
0.50
35.8
<11.0
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li


13.5
<0.33
<0.80

<38.6
31.3

132
<21.2
<71.7
<9.37
4.69
<386

<0.13
<0.003
<0.01


'Composite of HN03 module  wash,  condensate,  and the H202 impinger.
                                      10-23

-------
TABLE 10-19.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 306)
                 TOTAL SASS
                   (pg/rn3)
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tin
Er
Ho
<3.03
<3.03
<2.76
11.3
<2.73

<2.62

<2.56
<2.54
<2.48
<2.54

<2.37
<2.32
<2.32
<2.26
<2.23
<2.21
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2.
<2.
<2.
<2.
<2.
0.
<1.
0.
0.
14.
0.
0.
<1.
0.
6.

1.


-------
TABLE 10-20.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 307)
                    FUEL
                    (ppm)
u
Th
Bi
Pb
TI
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
<2.2
<0.41

<0.39

<0.38
<0.38
<0.37
<0.37

<0.36
<0.35
<0.35
<0.34
<0.33
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
<0.28
<0.28
<0.21
<0.27
0.40
<0.26
0.12
<0.45

<0.22

<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.20
0.14
0.020
<0.18
<0.18
<0.14
<0.024
<0.29
<0.16
<0.13
<0.15
<0.14
<9.6
31
22
0.18
<17
16.0
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li


0.72
0.13
<0.32

<5.1
'5.1

210
<2.2
<69
<2.4
<3.0
<22

<0.11
<0.0067
<0.023


                      10-25

-------
TABLE 10-21.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 307)
                FILTER CATCH
                   (pg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.11
<0.10
<0.09
19.1
<0.09

<0.09

<0.09
<0.09
<0.09
<0.01

<0.08
<0.08
<0.08
<0.07
<0.07
<0.07
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.07
<0.07
<0.07
<0.07
<0.07
<0.06
<0.06
<0.01
<0.01
<0.84
<0.003
0.01
<0.06
<0.02
0.17

0.27

<0.05
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.05
<0.05
0.74
<0.003
0.14
<0.003
0.06
<0.02
<0.11
1.04
0.32
<0.03
<0.03
9.39
<2.14
<0.55
<0.13
<45.3
4.53
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li


2.78
0.01
<1.29

<20.7
<11.0

<26.2
6.15
<2.30
<0.06

-------
TABLE 10-22.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 307)
                 XAD-2 RESIN
                   (|jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu.
Yb
Tm
Er
Ho
<2.04
<2.01
<1.81
0.10
<1.75

<1.72

<1.65
<1.65
<1.62
<1.59

<1.55
<1.52
<1.49
<1.46
<1.46
<1.42
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.39
<1.36
<1.36
<1.33
<1.29
<1.23
<1.23
<1.20
<1.20
<0.11
<1.13
<1.10
<1.10
<0.01
<0.06

<0.97

<0.91
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.87
<0.87
<0.01
<0.81
<0.78
<0.78
<0.05
<0.003
<0.07
<0.68
<0.03
<0.62
<0.62
<8.42
<8.42
<0.07
<0.01
<3.88
<0.32
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
AT
Mg
Na
F
B
Be
Li


<0.32
<0.02
0.03

<17.5
<30.1

<236
<19.7
<48.6
453
<35.6
518

<19.4
<1.20
0.07


                       10-27

-------
                TABLE 10-23.  SPARK SOURCE MASS SPECTROSCOPY
                DISTILLATE OIL-FUELED GAS TURBINES (SITE 307)
                              COMPOSITE SAMPLE*
                                   (Mg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0. 94
<0.91
<0.81
3.56
<0.81

<0.78

<0.74
<0.74
<0. 74
<0.71

<0.71
<0.68
<0. 68
<0.65
<0.65
<0.65
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.65
<0.62
<0.62
<0.58
<0.58
<0.55
<0.55
<0.11
<0.55
0.52
<0.003
<0.49
<0.49
<0.12
<23.6

<1.04

<0.42
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.39
<0.39
3.11
<0.36
<0.10
0.02
0.29
0.11
<0.30
0.71
<1.55
<0.28
<0.27
<11.7
2.85
35.6
0.65
32.4
<6.80
Cr
V
• Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li


4.86
<0.49
0.55

<80.9
<14.6

<149
3.14
<149
5.50
<5.18
<117

0.45
<0.003
<0. 09


•"Composite of HN03 module wash, condensate, and the H202  impinger.
                                      10-28

-------
TABLE 10-24.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 307)
                 TOTAL SASS
                   (pg/m3)
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3.11
<3.01
<2.72
23.0
<2.65

<2.56

<2.49
<2.46
<2.43
<2.33

<2.33
<2.27
<2.23
<2. 20
<2.17
<2.14
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2.
<2.
<2.
<1.
<1.
<1.
<1.
<1.
<1.
0.
10
07
04
97
94
88
84
33
75
52
0.003 to 1.13
0.01 to 1.59
<1.
<0.
65
15
0.17 to 23.6

0.

<1.
•
27 to 2.01

39
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.
<1.
3.
<1.
0.
0.
0.
0.
<0.
1.
0.
<0.
<0.
9.
2.
35.
0.
32.
4.
33
33
88
17
14 to 0.87
02 to 0.78
36
11
49
75
32 to 1.59
94
91
39 to 20.1
85 to 10.7
6
65
4
53
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li


7.
0.
0.

<120

-------
TABLE 10-25.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 308)
                    FUEL
                    (ppm)
u
Th
Bi
Pb
TI
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
4.0
<0.41

<0.39

<0.38
<0.38
<0.37
<0.37

<0.36
<0.35
<0.35
<0.34
<0.33
<0. 33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0. 32
<0.31
<0.30
<0.30
<0.29
<0.28
<0.28
<0.28
<0.40
<0.27
<0.25
<0.26
6.4
0.46

<0.22

<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.20
0.32
0.028
0.11
<0.18
0.066
<0.032
<0.57
<0.16
<0.35
<0.15
<0.14
4.6
42.0
43.0
0.27
<22.0
<0.40
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


_i_ . 0
<0. 053
<0.21

!^ , b
<6.S

130.0
<4. 3
<23. 0
^4. 3
<2 9
-.50.0

<0.53
<0.018
<0.022


                     10-30

-------
TABLE 10-26.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 308)
                FILTER CATCH
                   (jjg/m3)
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.13
<0.13
0.06
<26.6
<0.12

<0.11

<0.11
<0.11
<0.11
<0.02

<0.10
<0.10
<0.10
<0.10
<0.09
<0.09
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.09
<0.09
<0.09
<0.09
<0.09
<0.08
<0.08
<0.08
<0.08
<8.99
<0.003
0.06
<0.07
<0.10
70.0

<0.30

<0.06
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.06
<0.06
0.43
<0.003
<0.47
<0.003
0.47
0.03
<0.26
1.73
0.27
<0.04
<0.04
14.0
<4.33
<9.66
<0.08
<15.0
0.50
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li


1.03
<0.07
<2.20

<43.30
<16.0

253
<2.33
<183
<15.0
0.1.3
167

<2.07
<0.003
<0.01


                       10-31

-------
TABLE 10-27.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 308)
                 XAD-2 RESIN
u
Th
Bi
Pb
n
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tra
Er
Ho
<1.60
<1.57
<1.40
17.0
<1.37

<1.33

<1.30
<1.37
<1.27
<1.23

<1.43
<1.17
<1.17
<1.13
<1.13
<1.10
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.10
<1.07
<1.07
<1.03
<1.00
<1.10
<0.93
<0.93
<0.93
<13.0
<0.90
<0.86
<0.86
<0.83
<1.67

0.77

<0.70
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.70
<0.80
<2.13
<0.63
<0.60
<0.60
<4.33
<0.26
1.60
<0.53
0.90
<0.50
<0.47
<66.6
33.3
<66.6
<1.00
<99.9
4.00
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li


<13.0
12.3
<1.20

<766
117

1,370
<70.0
<190
<147
83.3
466

46.6
<0.02
2.90


                    10-32

-------
               TABLE 10-28.   SPARK SOURCE MASS SPECTROSCOPY
               DISTILLATE OIL-FUELED GAS TURBINES (SITE 308)
                             COMPOSITE SAMPLE*
                                  (M9/m3)
=
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
========
<0.90
<0.87
<0.80
<1.90
<0.77

<0.73

<0.73
<0.73
<0.70
<0.70

<0.67
<0.67
<0.67
<0.63
<0.63
<0.63
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
!' 	 J ' —.•—*
<0.60
<0.60
<0.60
<0.57
<0.57
<0.53
<0.01
<0.07
<0.53
<0.43
<0.01
<0.43
<0.47
<0.11
<15.66

4.33

<0.40
• i. '~Ti. --' ~ ~-
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.40
<0.37
<1.40
0.01
<0.02
<0.33
<0.33
0.03
<0.06
<0.16
0.80
<0.27
<0.26
<16.7
<3.66
3.66
<0.70
15.32
<4.33
. . — ^^ — . 	 	
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


<4.00
<0.06
0.17

<50.0
<13.0

143
2.56
<99.9
<8.33
<5.00
53.3

<0.04
<0.003
0.06


_                                             	;
'Composite of HN03 module wash,  condensate,  and the H202 impinger.
                                       10-33

-------
TABLE 10-29.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL-FUELED GAS TURBINES (SITE 308)
                 TOTAL SASS
                   (pg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.63
<2.56
0.06 to 2.20
17.0
<2.27

<2.17

<2.13
<2.20
<2.07
<1.97

<2.20
<1.93
*<1.90
<1.87
<1.87
<1.83
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.80
<1.77
<1.73
<1.67
<1.67
<1.73
<1.03
<1.10
<1.53
<22.3
<0.90
0.06 to 1.27
<1.40
<1.03
70.0

5.00

<1.17
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
.Br
Se
As
Ge
Ga
Zn
Cu
N1
Co
Fe
Mn
<1.13
<1.23
0.43 to 3.66
0.01 to 0.63
<1.10
0.003 to 0.93
0.47 to 4.66
0.06 to 0.26
1.60
1.73
2.00
<0.80
<0.77
14.0 to 83.3
33.3
3.66 to 73.3
<1.77
15.3 to 113
4.33
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li


1.03 to 16.;
12.3
0.17 to 3,3i

<866
117

1770
2.56 to 70.
<466
<170
83.3
700

46.6
<0.03
2.96


                     10-34

-------
 TABLE 10-30.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 309)
                     FUEL
                     (ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
1.5
<0.41

<0.39

<0.38
<0.38
<0.37
<0.37

<0.36
<0.35
<0.35
<0.34
<0.33
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
0.012
<0.28
0.21
0.016
0.032
<0.26
0.27
0.29

<0.15

<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.20
1.5
0.063
<0.18
<0.18
<0.092
<0.045
<0.39
<0.67
<0.17
<0.15
<0.14
6.6
29
43
0.27
<22
0.94
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
- Li


1.5
0.035
<0.43

<8.0

-------
 TABLE 10-31.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 309)
                 FILTER CATCH
                    (|jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.46
<0.67
<0.20
<9.82
<0.25

<0.34

<0.53
<0.56
<0.35
0.26

<0.60
<0.14
<0.20
<0.12
<0.35
<0.12
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.21
<0.08
<0.21
<0.09
<0.35
<0.46
<0.08
<0.11
<0.12
16.5
0.63
<0.31
<0.26
0.46
2.74

<0.32

<0.26
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.07
<0.33
5.26
<0.06
2.28
0.03
3.37
1.12
0.42
1.61
2.28
<0.12
<0.05
<8.07
8.42
137
1.51
1,400
26.7
Cr
V
Ti
Sc
Ca
K
C1
s
p
Si
Al
Mg
Na
F
B
Be
Li


16.5
0.16
3.51

260
59.6

1,090
140
3,510
91.2
123
337

63.2

<0. OC3


                       10-36

-------
 TABLE 10-32.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 309)
                  XAD-2 RESIN
                    (|jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3.51
<3.44
<3.12
28.4
<3.05

<2.95

<2.84
<2.84
<2.77
<2.74

<2.67
<2.60
<2.56
<2.53
<2.49
<2.46
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2.42
<2.35
<2.35
<2.25
<2.25
<2.14
<2.11
<0.95
<0.35
<8.07
0.05
3.86
<1.89
<1.05
1.82

3.86

<1.58
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.54
<1.51
<1.86
<0.23
<0.63
<1.33
<3.86
0.20
9.82
<1.16
1.47
<1.09
<1.05
59.6
80.7
<168
0.98
182
9.82
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


<18.9
2.49
<2.18

102
133

4,910
52.6
491
<91.2
561
772

22.1
0.06



                       10-37

-------
                TABLE 10-33.   SPARK SOURCE MASS SPECTROSCOPY
               DISTILLATE OIL RECIPROCATING ENGINE (SITE 309)
                              COMPOSITE SAMPLE*
                                   (pg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1.09
<1.05
<0.95
2.39
<0.95

<0.91


-------
 TABLE 10-34.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 309)
                  TOTAL SASS
                   (pg/m3)
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<4.91
<5.26
<4.21
30.9
<4.21

<4.21

<4.21
<4.21
<3.86
0.26 to 3.51

<4.21
<3.51
<3.51
<3.40
<3.51
<3.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<3.37
<3.16
<3.26
<3.05
<3.30
<3.26
<2.81
<1.12
<1.09
17.2
0.67
3.86
<2.74
0.46
4.56

6.32

<2.32
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
to 1.23 Zn
to 30.9 Cu
Ni
Co
Fe
Mn
<2.11
<2.32
8.07
<0.70
2.28
0.03 to
12.6
1.33
10.2
1.61
3.86
<1.54
<1.40
130
91.2
161
456
1,680
38.6
Cr
V
Ti
Sc
Ca
1.72 K
C1
S
P
Si
AT
Mg
Na
F
B
Be
Li


38.6
2.67
3.86

1,190
200

7,370
200
4,210
119
667
1,160

84.2
0.07



                       10-39

-------
 TABLE 10-35.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 310)
                     FUEL
                    (
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
<5.1
<0.41

<0.39

<0.38
<0.38
<0.37
<0.37

<0.36
<0.35
<0.35
<0.34
<0.33
<0.33'
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
0.046
<0.28
<0.70
0.0099
<0.25
<0.26
<0.064
.<0.51

<0.22

<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.20
0.61
0.054
<0.18
<0.18
<0.16
0.097
<0.49
<0.16
<0.43
<0.15
<0.14
9.7
24
19
0.36
<21
1.2
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
AT
Mg
Na
F
B
Be
Li


2.1
0.11
<0.37

3.3
<17

0.15 (?o)
6.0
<32
<4.5
<5.0
23

<0.49
0.0014
0.15


                       10-40

-------
 TABLE 10-36.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 310)
                 FILTER CATCH
                  (p g/m3 )
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.14
<0.14
<0.12
8.03
<0.12

<0.12

<0.11
<0.11
<0.11
<0.11

<0.10
<0.10
<0.10
<0.10
<0.10
<0.09
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.09
<0.09
<0.09
<0.09
<0.09
<0.08
<0.08
<0.02
<0.02
<1.54
<0.003
0.02
<0.07
0.06
0.25

<0.07

<0.06
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.06
<0.06
0.34
<0.05
0.20
0.01
0.45
0.06
<0.80
<0.05
0.30
<0.04
<0.04
15.4
1.50
30.0
<0.13
<11. 18
<0.28
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li


1.12
<0.05
<1.75

119

-------
 TABLE 10-37.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 310)
                  XAD-2 RESIN
u
Th
Bi
Pb
TT
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.03
<1.96
<1.75
30.4
<1.71

<1.68

<1.61
<1.61
<1.57
<1.54

<1.50
<1.47
<1.47
<1.43
<1.40
<1.40
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.36
<1.33
<1.33
<1.29
<1.26
<1.22
<1.19
0.16
<1.19
3.14
<1.12
0.98
<1.08
<1.01
3.35

2.06

<0.91
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.87
<0.84
1.96
<0.77
<0.77
<0.73
1.36
0.25
2.31
<0.66
<1.78
<0.63
<0.59
<87.3
59.4
29.3
0.30
41.9
1.36
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
i i
L. i


8.73
2.83
2.24

<349
147

<1,430
<45.4
<83.8
97.8
27.6
454

11.2
0.01
0.42


                       10-42

-------
                TABLE 10-38.   SPARK SOURCE MASS SPECTROSCOPY
               DISTILLATE OIL RECIPROCATING ENGINE (SITE 310)
                              COMPOSITE SAMPLE*
                                  (|jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1.36
<1.33
<1.22
<1.75
<1.19

<1.15

<1.12
<1.08
<1.08
<1.05

<1.05
<1.01
<1.01
<0.98
<0.98
<0.94
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.94
<0.91
<0.91
<0.87
<0.87
<0.84
<0.80
<0.04
<0.80
<0.49
<0.77
<0.16
<0.73
<0.25
41.9

0.25

<0.63
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.59
<0.59
<1.29
<0.52
<0.52
<0.52
<0.22
<0.01
<0.45
<1.15
<0.03
<0.42
<0.42
10.83
2.58
10.5
<0.80
<76.8
3.84
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


5.24
<0.09
<0.25

<136

-------
 TABLE 10-39.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING  ENGINE (SITE 310)
                  TOTAL SASS
                    (|jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3.49
<3.42
<3.11
38.4
<3.04

<2.90

<2.83
<0.83
<2.76
<2.72

<2.65
<2.58
<2.55
<2.51
<2.48
<2.44
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2.41
<2.34
<2.34
<2.24
<2.24
<2.13
<2.10
0.16
<1.99
3.14
<1.89
0.98
<1.89
0.06 to
45.4

2.31

<1.57
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
1.26 Zn
Cu
Ni
Co
Fe
Mn
<1.54
<1.50
2.31
<1.36
0.20 to 1.29
0.01 to 1.26
1.82
0.30
2.31
<1.85
0.30 to 1.82
<1.08
<1.05
26.2 to 87.3
62.9
69.9
0.30 to 0.91
41.9 to 87.3
5.24
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


15.0
2.83
2.24

119 to 489
147

1,680
13.6 to 66.4
<244
119
38.4
838

11.2
0.01 to 0.08
0.42


                       10-44

-------
 TABLE 10-40.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 311)
                     FUEL
                    (
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
<1.6
<0.41

<0.39

<0.38
<0.38
<0.37
<0.37

<0.36
<0.35
<0.35
<0.34
<0.33
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
<0.035
0.0095
<0.62
0.0031
0.10
<0.26
0.44
0.32

<0.085

<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
9.5Fe
Mn
<0.21
<0.20
0.14
<0.018
<0.034
<0.18
<0.20
0.033
<0.30
<0.19
<0.27
<0.15.
<0.14
<4.5
19
28
0.45

0.24
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li


0.59
0.023
<0.24

4.0

-------
 TABLE 10-41.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 311)
                FILTER CATCH
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.11
<0.11
<0.10
8.65
<0.10

<0.10

<0.09
<0.09
<0.09
<0.09

<0.08
<0.08
<0.08
<0.08
<0.08
<0.08
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.08
<0.07
<0.07
<0.07
<0.07
<0.07
<0.07
<0.07
<0.07
<2.42
<0.06
<0.06
<0.06
0.14
<0.35

<0,06

<0.05
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.05
<0.05
<0.15
<0.01
0.28
<0.04
0.18
<0.01
<0.05
<0.04
0.07
<0.03
<0.03
7.27
<2.60
10.7^
<0.07
<6.92
<0.12
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


0.26
<0.03
<2.01

27.0
<2.77

121
4.50
83.0
<4.15
<4.50
38.1

18.7
<0.01
<0.07


                        10-46

-------
 TABLE 10-42.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 311)
                  XAD-2 RESIN
                    (Mg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1.76
<1.73
<1.56
3.36
<1.52

<1.49

<1.45
<1.42
<1.38
<1.38

<1.35
<1.31
<1.28
<1.25
<1.25
<1.25
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.21
<1.18
<1.18
<1.14
<1.11
<1.17
<1.04
<1.04
<1.04
<38.1
<1.00
<0.93
<0.97
<1.87
<1.90
'
<3.46

<0.80
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.76
<0.76
<1.18
<0.70
<0.70
<0.66
<2.39
<0.59
<14. 2
<0.59
<1.11
<0.55
<0.52
79.6
<58.8
<76.1
0.38
256
3.81
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


<2.73
<0.24
<0. 35

<450
3G.9

3,450
51.9
<107
<38.1
<0.18
<450

0.33
<0.07
0.15


                        10-47

-------
                TABLE 10-43.   SPARK SOURCE MASS SPECTROSCOPY
               DISTILLATE OIL RECIPROCATING ENGINE (SITE 311)
                              COMPOSITE SAMPLE*
                                   ((jg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1.52
<1.49
<1.31
<5.54
<1.31

<1.25

<1.21
<1.21
<1.18
<1.18

<1.14
<1.11
<1.11
<1.07
<1.07
<1.04
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.04
<1.00
<1.00
<0.97
<0.97
<0.90
<0.90
0.03
<0.90
<0.72
<0.83
<0.24
<0.80
<0.27
<69.2

0.59

<0.69
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.66
<0.66
<0.52
<0.59
<0.59
<0.55
<0.35
<0.04
<0.26
<0.52
<0.16
<0.45
<0.45
<58.8
<10.7
<14.9
<0.87
<83.0
<11.8
Cr
V
Ti
Sc
Ca
K
C1
S
P
Si
Al
Mg
Na
F
B
Be
Li


<6. 57
<0.14
<1.14

<86.5
<18.0

1,830
<11.1
<86.5
<17. 0
<0. 16
<235

1.90

-------
 TABLE 10-44.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 311)
                  TOTAL SASS
                    (|jg/m3)
u
Th
Bi
Pb
TI
Hg
Au
Pt
Ir
Os *
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3.39
<3.32
<2.98
3.36 to 14.2
<2.91

<2.80

<2.73
<2.73
<2.66
<2.63

<2.56
<2.49
<2.46
<2.42
<2.39
<2.35
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2. 32
<2.28
<2.25
<2.18
<2.15
<2. 08
<2.01
0.03
<1.97
<41.5
<1.90
<1.25
<1.83
0.14
<72.7

0.59

<1.52
Rh
Ru
Mo
Nb
Zr
Y
Sr
to 1.11 Rb
Br
Se
As
Ge
Ga
to 2.15 Zn
Cu
Ni
to 3.81 Co
Fe
Mn
<1.49
<1.45
<1.83
<1.28
0.28 to 1.25
<1.28
0.18 to 2.73
<0.62
<14. 5
<1.14
0.07 to 1.28
<1.04
<1.0
86.5
<72.7
10.7 to 90.0
0.38 to 0.93
256
3.81 to 11.8
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
AT
Mg
Na
F
B
Be
Li


0.26 to 9.34
<0.42
<3.46

27.0 to 519
Q ~ Q
J . — '

5,540
55.4
83.0 to 194
<58.8
<4.84
38.1 to 692

21.1
<0.003 to 0.08
0.18


                        10-49

-------
 TABLE 10-45.  SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 312)
                     FUEL
                     (ppm)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
TIB
Er
Ho
<0.48
<0.46
<0.42
<7.4
<0.41

<0.39

<0.38
<0.38
<0.37
<0.37

<0.36
<0.35
<0.35
<0.34
<0.33
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
<0.28
<0.28
0.58
0.0078
0.087
<0.26
1.5
0.45

<0.24

<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.21
<0.20
0.46
0.06
<0.041
<0.18
<0.12
0.047
<0.18
<0.16
<0.15
<0.15
<0.14
17.0
11.0
20.0
0.16
<15.0
0.89
Cr
V
Ti
Sc
Ca
K
Cl
s
p
Si
AT
Mg
Na
F
B
Be
Li


1.4
0.034
<0.83

6.0
<9.1

600.0
<4.0
<16.0
<5.0
<3.9
<67.0

<0.19
<0.0004
0.033


                       10-50

-------
 TABLE 10-46.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 312)
                 FILTER CATCH
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.12
<0.12
<0.11
46.7
<0.10

<0.10

<0.10
<0.10
<0.09
<0.09

<0.09
<0.09
<0.09
<0.09
<0.09
<0.08
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.08
<0.08
<0.08
<0.08
<0.08
<0.07
<0.07
0.04

-------
 TABLE 10-47.  SPARK  SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING  ENGINE  (SITE 312)
                   XAD-2  RESIN
                    (|jg/m3)
u
Th
B1
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
w
Ta
Hf
Lu
Yb
Tm
Er
Ho
<2.30
<2.24
<2.00
<17.4
<1. 97 .

<1..90

<1.84
<1.84
<1.80
<1.77

<1.70
<1.67

-------
                TABLE  10-48.  SPARK SOURCE MASS  SPECTROSCOPY
                DISTILLATE OIL RECIPROCATING  ENGINE  (SITE 312)
                              COMPOSITE SAMPLE*
                                   (pg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1.27
<1.24
<1.14
1.94
<1.10

<1.07

<1.04
<1.04
<1.00
<1.00

<0.97
<0.93
<0.93
<0.90
<0.90
<0.87
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.87
<0.87
<0.83
<0.80
<0.80
<0.77
<0.77
<0.77
<0.73
<1.30
0.02
0.60
<0.67
0.63
<32.1

1.54

<0.57
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.57
<0.53
0.73
0.11
<0.50
<0.47
0.33
0.02
<0.60
4.67
0.11
<0.40
<0.37
30.1
<9.35
<7.01
0.33
<56.8
<7.35
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


3.27
0.06
<5.68

<73.5
<11.0

4,340
<5.01
<20.4
<28.0
<13.4
<110

6.01
0.003
0.02


*Composite of HN03 module wash,  condensate,  and the H202  impinger.
                                      10-53

-------
 TABLE 10-49,   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 312}
                  TOTAL SASS
                    (jjg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tin
Er
Ho
<3.67
<3.67
<3.24
50.1
<3.17

<3.04

<2.97
<2. 94
<2.87
<2.84

<2.77
<2.70
<2.67
<2.60
<2.60
<2.54
Dy
Tb
Gd
Eu
Sm
Kd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2
.50
<2.47
<2
<2
<2
<2
<2
0.04
<2
11
0.02
0
<1
1
3.67

4

<:L
.44
.37
.34
.24
.17
to 2.10
.14
.0
to 1.27
.67
.97
.10
to 33.4

.34

.64
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn

-------
 TABLE 10-50.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 313)
                     FUEL
                     (ppm)
u
Th
Bi
Pb
T1
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<0.48
<0.46
<0.42
<3.3
<0.41

<0.39

<0.38
<0.38
<0.37
<0.37

<0.36
<0.35
<0.35
<0.34
<0.33
<0.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.33
<0.32
<0.31
<0.30
<0.30
<0.29
<0.28
<0.28
<0.28
1.5
<0.27
<0.25
<0.26
0.21
<0.48

<0.30

<0.21
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
N1
Co
Fe
Mn
<0.21
<0.20
<0.15
<0.19
<0.18
<0.18
0.089
<0.025
<0.16
<0.16
<0.047
<0.15
<0.14
<7.2
19.0
8.1
<0.097
<25.0
<0.62
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


<0.17
<0.059
<0.23

32.0
<30.0

330.0
5.4
<37
2.6
<18
<56

<0.89
0.0013
0.091


                        10-55

-------
 TABLE 10-51.  SPARK  SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 313)
                  FILTER CATCH
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
T«
Er
Ho

<0.16
<0.16
0.04
12.3
<0.14

<0.13

<0.13
<0.13
<0.13
<0.02

<0.12
<0.12
<0.12
<0.11
<0.11
<0.11

Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd

<0.11
<0.11
<0.11
<0.10
<0.10
0.01
<.003
<0.03
<0.01
<9.30
<.003
0.01
<0.09
0.09
1.93

0.08

<0.07

Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn

<0.07
<0.07
0.27
<.003
0.26
.003
2.13
0.03
<0.37
<0.04
0.40
<0.05
<0.05
59.8
4.65
25.91
<0.22
116
<1.23

Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li



i.ao
0.03
<2.16

399
10.30

432
6.31
<199
<31.9
<0.02
<126

<4.32
<.oo
<0.04



                      10-56

-------
 TABLE 10-52.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATE OIL RECIPROCATING ENGINE (SITE 313)
                  XAD-2 RESIN
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1.96
<1.93
<1.73
17.9
<1.69

<1.63

<1.59
<1.56
<1.53
<1.53

<1.46
<1.43
<1.43
<1.40
<1.36
<1.36
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<1.33
<1.30
<1.30
<1.26
<1.23
<1.20
<1.16
<1.16
<1.13
<15.3
<1.10
0.23
<1.06
0.37
0.90

6.31

<0.86
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.86
<0.83
1.36
<0.76
<0.76
<0.73
1.50
0.33
5.98
<2.43
<1.23
<0.60
<0.56
<43.2
<79.7
23.6
0.70
7,970
6.31
Cr
V
Ti
Sc
Ca
K
C1
s
p
Si
Al
Mg
Na
F
B
Be
Li


<2.82
0.13
1.10

<332
<229

1,160
<59.8
<59.8
<21.6
<59.8
<1,230

2.96
<0.01
<0.47


                       10-57

-------
                 TABLE 10-53.  SPARK SOURCE MASS SPECTROSCOPY
                DISTILLATE OIL RECIPROCATING ENGINE (SITE 313)
                               COMPOSITE SAMPLE*
                                    (M9/ni3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<1.26
<1.23
<1.10
4.65
<1.06

<1.03

<1.00
<1.00
<0.96
<0.96

<0.93
<0.93
<0.90
<0.90
<0.90
<0.86
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<0.86
<0.83
<0.83
<0.80
<0.80
<0.76
<0.73
<0.73
<0.73
<1.57
0.06
0.29
<0.66
1.59
53.7

2.62

<0.56
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<0.53
<0.53
1.73
<0.50
<0.47
<0.47
0.40
0.05
0.56
15.3
0.11
<0.37
<0.37
39.87
8.31
19.9
1.06
326
7.64
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


7. 64
0.22
0.16

49.8
11.6

10,300
8.97
15.0
36.5
10.6
<56.5

1.40

-------
 TAB.E 10-54.   SPARK SOURCE MASS SPECTROSCOPY
DISTILLATL OIL RECIPROCATING ENGINE (SITE 313)
                  TOTAL SASS
                    (jjg/m3)
u
Th
Bi
Pb
Tl
Hg
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
<3.32
<3.29
0.0.4 to 2.82
36.54
<2.89

<2.79

<2.72
<2.69
<2.62
<2.49

<2.52
<2.49
<2.46
<2.39
<2.36
<2.33
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
<2.29
<2.26
<2.23
<2.16
<2.13
0.01 to 1.96
<1.89
<1.93
<1.89
<26.2
0.06 to 1.10
0.53
<1.79
2.06
56.5

8.97

<1.50
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
<1.46
<1.43
3.32
<1.26
0.26 to 1.23
3.32(-03) to 1.20
3.99
0.40
6.31
15.3
0.50 to 1.23
<1.03
<1.00
103
13.0 to 79.7
69.8
1.76
8,640
13.6
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


8.64
0.37
1.26

432
21.9 to 229

12,000
15.3 to 59.8
15.0 to 259
36.5
10.6 to 59.8
<1,400

4.32
0.003 to 0.01
0.06 to 0.02


                       10-59

-------
            TABLE 10-55.  ATOMIC ABSORPTION ANALYSIS
                            SASS TRAIN
            DISTILLATE OIL-FUELED GAS TURBINE SITE 111
Sample
Participate (pg)
XAD-2 (pg)
Impingers
Composite* (pg)
APS1" (pg)
Total catch (pg)
Fuel feed (pg/G)
As
<19
<110

<23
18
18-170
<0.015
Hg
<0.3
3.1

2.5
1
5.7
0.04
Sb
<23
<37

<76
6.4
6.4-140
<0.025
'Composite of HN03 module wash, condensate,  and  the  H202  impinger

 The second impinger containing ammonium persulfate  (APS)  and
 silver nitrate and the third impinger containing  APS.
                                10-60

-------
            TABLE 10-56.   ATOMIC ABSORPTION ANALYSIS
                                 SASS TRAIN
           DISTILLATE OIL-FUELED GAS TURBINE SITE 112
Sample
Particulate (ug)
XAD-2 (|jg)
Impingers
Composite (ug)
APSf (Mg)
Total catch (ug)
Fuel feed (ug/G)
As
*
60
<31
<18
60-110
<0.015
Hg
0.2
42
1.9
0.85
45
0.48
Sb
<0.98
400
10
<6
410
<0.25
Blank values equal to or slightly higher than sample concentrations.
Composite of HN03 module wash, condensate,  and the H202 impinger.
The second impinger containing ammonium persulfate (APS) and silver
nitrate and the third impinger containing APS.
                               10-61

-------
             TABLE 10-57.   ATOMIC ABSORPTION ANALYSIS
                            SASS TRAIN
            DISTILLATE OIL-FUELED GAS TURBINE SITE 306
                               (ppm)
Sample
Parti cul ate (pg)
XAD-2 (pg)
Impingers
Composite ((jg)
APS1 (pg)
Total catch (pg)
Fuel feed (pg/G)
As
<0.13
<1.3
<0.92
<0.98
<3.3
0.097
Hg
<0.02*
<5.6*
<0.92
<20
<27
0.024
Sb
<0.13
58
<0.92
<0.98
60
0.0097
 Blank values equal to or higher than samples.
^Composite of HN03 module wash, condensate,  and the  H202  impinger.
     second impinger containing ammonium persulfate  (APS)  and  silver
 nitrate and the third impinger containing APS.
             TABLE 10-58.  ATOMIC ABSORPTION ANALYSIS
                            SASS TRAIN
            DISTILLATE OIL-FUELED GAS TURBINE SITE 307
                               (ppm)
Sample As
Parti cul ate (pg) <0.01
XAD-2 (pg) <1.2
Impingers
Hg
<0.01*
<5.4*

Sb
5.4
55

   Composite*  (pg)      <1.2           <24            <1.2
   APSt (pg)            <1.0           <21            <1.0

Total catch (pg)        <3.4           <50            63

Fuel feed  (pg/G)          0.099           0.007         0.099

 Blank values  equal  to  or higher  than samples.
Composite  of HN03 module  wash,  condensate, and the H202 impinger.
 The second impinger containing ammonium persulfate (APS) and silver
 nitrate and the third  impinger containing APS.
                                 10-62

-------
            TABLE 10-59.   ATOMIC ABSORPTION ANALYSIS
                           SASS TRAIN
           DISTILLATE OIL-FUELED GAS TURBINE SITE 308
                              (ppm)
Sample As
Parti cul ate (ug) 1.2
XAD-2 (ug) <2.4
Impingers
Composite (ug) <1.1
APS* (ug) <1.1
Total catch (ug) <1.2
Fuel feed (ug/G) 0.099
Hg
<0.03*
<0.12
<2.3
<22
<25
0.003
Sb
<0.2
<2.4
:;:;
<4.8
0.69
Blank values equal to or higher than samples.
Composite of HN03 module wash, condensate, and the H202 impinger.
The second impinger containing ammonium persulfate (APS) and silver
nitrate and the third impinger containing APS.
                               10-63

-------
             TABLE 10-60.  ATOMIC ABSORPTION ANALYSIS
                            SASS TRAIN
           DISTILLATE OIL RECIPROCATING ENGINE SITE 309
                               (ppm)
Sample
Participate (|jg)
XAD-2 (Mg)
Impingers
Composite* (ug)
APS1" (ug)
Total catch (ug)
Fuel feed (ug/G)
As
<0.9
<2.5

t
<3.4
<0.098
Hg
<0.04
4.7

<1.3
<22
4.7
0.003
Sb
<0.9
<2.5

<1.3
<1.1
<5.8
0.29
'Composite of HN03 module wash, condensate, and the H202  impinger.
 The second impinger containing ammonium persulfate (APS)  and
 silver nitrate and the third impinger containing APS.
 Not determined due to interference of isopropanol.
             TABLE 10-61.  ATOMIC ABSORPTION ANALYSIS
                            SASS TRAIN
           DISTILLATE OIL RECIPROCATING ENGINE SITE 310
                               (ppm)
Sample
Parti cul ate (ug)
XAD-2 (ug)
Impingers
Composite* (ug)
APST (ug)
Total catch (ug)
Fuel feed (ug/G)
As
<0.63
<2.4

<1.7
t
<4.7
<0.10
Hg
<0.01
2.2

<6.6
<22
2.2
0.009
Sb
<0.35
<51

<1.7
<1.1
<54
<0.10
uuiiipusii,e  ui  nnu3 muuuie wasn, conaensate,  and  the H202  impinger.

The second impinger containing ammonium persulfate (APS)  and
silver  nitrate  and the third impinger containing  APS.
Not determined  due to interference of isopropanol.
                                10-64

-------
            TABLE 10-62.  ATOMIC ABSORPTION ANALYSIS
                           SASS TRAIN
          DISTILLATE OIL RECIPROCATING ENGINE SITE 311
                               (Ppm)
Sample
Particulate (pg)
XAD-2 (pg)
Impingers
Composite* (pg)
APS1" (pg)
Total catch (pg)
Fuel feed (pg/G)
As
<0.73
<3.2

t
<5.7
<0.10
Hg
<0.05
<0.53

<24
<27
0.007
Sb
<0.73
<3.2


-------
             TABLE 10-64.  ATOMIC ABSORPTION ANALYSIS
                            SASS TRAIN
               DISTILLATE OIL RECIPROCATING SITE 313
                               (ppm)
Sample As
Particulate (ug) <0.71
XAD-2 (pg) <1.1
Impingers
Composite* (pg) <1.6
APS1" (pg) t
Total catch (pg) <3.4
Fuel feed (pg/G) <0.10
Hg
<0.01
<0.42

<4.8
<27
<32
0.004
Sb
1.7
<1.1

<1.6
<1.4
1.7
2.0
'Composite of HN03 module wash, condensate,  and the  H202  impinger.
 The second impinger containing ammonium persulfate  (APS)  and
 silver nitrate and the third impinger containing APS.
 Not determined due to interference of isopropanol.
                                10-66

-------
           TABLE  10-65.   ATOMIC  ABSORPTION ANALYSIS
                    SASS  TRAIN,  MASS EMISSIONS
                          (|jg/m3)
Site
110
111
112
306
307
308
309
310
311
312
313
As
<1.4
0.59-5.6
1.8-3.3
<0.09
<0. 11
0.4
<0.12
<0.17
<0.20
<0. 11
<0.11
Hg
9.1
0.18
1.4
<0.74
<1. 6
<0.83
0.16
0.77
<0.91
0.03
<1.1
Sb
<1.6
0.21-4.6
13
1.7
1.9
<0.16
<0.20
<1.9
<0.24
<0.30
0.06
               TABLE 10-66.   ATOMIC ABSORPTION ANALYSIS
         SASS TRAIN, FOR GAS-FUELED GAS TURBINE, SITE 110

Sample                       As            Hg           Sb
Parti cul ate*
XAD-2 (|jg)
Impingers .
Composite (|jg)
APS* (Mg)
Total catch (ug)
—
**

<44
-
<44
.
290

<.32
-
290
.
<37

<15
-
<52
There was no participate sample for site 110.

 Composite of HN03 module wash, condensate, and the H202 im-
pinger.

 The second impinger containing ammonium persulfate (APS) and
silver nitrate and the third impinger containing APS.
**Blank values equal to or slightly higher than sample concen-
trations.
                                10-67

-------
                        TABLE 10-67.  ANION ANALYSIS
           SASS TRAIN, DISTILLATE OIL FUELED GAS TURBINE SITE 111
Sample
Parti cul ate (pg)
XAD-2 (Mg)
Impingers
Composite (pg)
APS1" (Mg)
Total catch (pg)
Fuel feed (pg/G)
F"
* .
*
310
310
20
Cl" NOs
1,000 870
150,000
<760
150,000 870
100
so;
x
60,000
	
60,000
2,04S
Blank values equal to or slightly higher than sample concentrations.
Composite of HN03 module wash, condensate, and the H202  impinger.
The second impinger containing ammonium persulfate (APS) and  silver  nitrate
and the third impinger containing APS.
                                     10-68

-------
                        TABLE 10-68.  ANION ANALYSIS
           SASS TRAIN, DISTILLATE OIL-FUELED GAS TURBINE, SITE 112
Sample
Participate (pg)
XAD-2 (pg)
Impingers
Composite (pg)
APSt (pg)
Total catch (pg)
Fuel feed (pg/G)
F"
*
750
840
1,600
20
C1~
1,100
45,000
36,000
<620
82,000
50
NOs S04
590 7,600
90,000
— • •_ —
590 98,000
2,199
 Blank values equal to or slightly higher than sample concentrations.

^Composite of HN03 module wash, condensate,  and the H202 impinger.
^The second impinger containing ammonium persulfate (APS) and silver nitrate
 and the third impinger containing APS.
                                       10-69

-------
                         TABLE 10-69.  ANION ANALYSIS
      SASS TRAIN DISTRIBUTION DISTILLATE OIL-FUELED GAS TURBINE  SITE  306
                                      (ppm)
   Sample
Cl
NOc
so:
Particulate (pg)
XAD-2 (pg)
Impingers
   Composite* (pg)
   APS1 (pg)
Total catch (pg)
Fuel feed (pg/G)
                           1,290
                          31,700
                          33.GOO
                           1,200
'Composite of HN03 module wash, condensate, and the  H202  impinger.
 The second impinger containing ammonium persulfate  (APS) and silver  nitrate
 and the third impinger containing APS.
                                     10-70

-------
                        TABLE  10-70.   ANION  ANALYSIS
            SASS TRAIN,  DISTILLATE  OIL-FUELED GAS TURBINE,  SITE 307
                                     (ppm)
   Samole
                                         Cl
NO,
SO,
Participate (pg)

XAD-2 (pg)

Impingers
   Composite* (|jg)
   APS1" (ug)

Total catch (|jg)

Fuel feed  (pg/G)
             2,300

           128,000
           130,000

                700
^Composite of HN03 module wash,  condensate, and  the  H202  impinger.
TThe  second  impinger  containing  ammonium  persulfate  (APS)  and  silver nitrate
  and  the  third  impinger containing  APS.
                          TABLE 10-71.   ANION ANALYSIS
             SASS TRAIN DISTILLATE OIL-FUELED GAS TURBINE, SITE 308
                                      (ppm)
; • • i •••_ - — ' ' - ~ — — • - • • 	 ' ' 	
Sample F
Parti cul ate (pg)
VAn_o /"••/!>
ci" NO^ so;
2,050
9,600
 Impingers
    Composite* (pg)

    APS1"  (pg)
 Total  catch  (pg)
  Fuel  feed  (pg/G)
   Composite of HN03 module wash,  condensate.  and the H202  impinger.
  rThe  second  impinger  containing  ammonium persulfate (APS) and silver nitrate
   and  the  third  impinger containg APS.
                                        10-71

-------
                         TABLE 10-72.  ANION ANALYSIS
                                  SASS TRAIN
                 DISTILLATE OIL RECIPROCATING ENGINE SITE  309
                                     (ppm)
   Sample                  F~            Cl~            N03            S04

Particulate (MQ)                                                   21,200
XAD-2 (Mg)                                                         10,500
Impingers
   Composite* (pg)                                                    —
   APS1 (Mg)
Total catch (pg)                                                   31,700
Fuel feed (ug/G)                                                  '   7,000
*Composite of HN03 module wash, condensate, and the H202  impinger.
 The second impinger containing ammonium persulfate (APS)  and  silver  nitrate
 and the third impinger containing APS.
                                      10-72

-------
                         TABLE  10-73.   ANION ANALYSIS
                                  SASS TRAIN,
                 DISTILLATE OIL RECIPROCATING ENGINE, SITE 310
                                     (ppm)
   Sample                  F~             Cl              N03           S04

Particulate (pg)                                                    20,800

XAD-2 (|jg)                                                          44,000

Impingers
   Composite* (ug)

   APS1" (Mg)

Total catch (pg)                                                    65,000

Fuel feed (pg/G)  	7,400
^Composite of HN03 module wash, condensate, and the H202 impinger.
 The second impinger containing ammonium persulfate (APS) and silver nitrate
 and the third  impinger containing APS.
                         TABLE  10-74.   ANION ANALYSIS
                                   SASS  TRAIN,
                  DISTILLATE  OIL RECIPROCATING  ENGINE,  SITE  311
                                      (ppm)
Sample F Cl
Particulate (pg)
XAD-2 (pg)
NOs S04
28,500
82,400
 Impingers
    Composite* (pg)
    APS1" (pg)

 Total  catch (pg)                                                    111,000

 Fuel  feed (pg/G)	7.700

 ^Composite of HN03 module wash,  condensate,  and the H202 impinger.
 ^The  second impinger containing  ammonium persulfate (APS) and silver nitrate
  and  the third impinger containing APS.
                                       10-73

-------
                           TABLE 10-75.   ANION  ANALYSIS
                                    SASS TRAIN
                   DISTILLATE OIL RECIPROCATING ENGINE, SITE 312
                                       (ppm)
Sample F~
,'Particulate (pg)
XAD-2 (pg)
Cl" NOs S04
15 , 000
104,000
  Impingers
    Composite*  (pg)                                                    —
    APS1"  (pg)

  Total  catch  (pg)                                                   119,000

  Fuel  feed  (pg/G)                 	                         4,500

  Composite of  HN03  module  wash,  condensate, and the H202 impinger.
  The  second  impinger containing  ammonium persulfate (APS) and silver nitrate
  and  the third impinger  containing APS.
                          TABLE 10-76.  ANION ANALYSIS
                                   SASS TRAIN
                  DISTILLATE OIL  RECIPROCATING ENGINE, SITE 313
                                      (ppm)
Sample F~ Cl"
Part icul ate (pg)
XAD-2 (pg)
NOg so;
22,100
122,000
 Impingers
    Composite* (pg)                                                     	
    APS1" (pg)

 Total catch (pg)                                                    144,OCG

.Fuel  feed (pg/G)    	                                  5 ooc

 *Gomposite of HN03 module wash, condensate, and the H202  impinger.
  The  second impinger .containing ammonium persulfate (APS) and  silver nitrate
  and  the third impinger containing APS.
                                       10-74

-------
                    TABLE 10-77.  ANION ANALYSIS
                       SASS TRAIN EMISSIONS
                              ((jg/m3)
Site           F            Cl           N0
110
111
112
306
307
308
309
310
311
312
313
890 3,800
10 4,900 29 2,000*
49 2,500 18 3,000*
910*
4,200*
400*
1,100*
2,300*
3,800*
4,000*
4,800*
*S04 values do not represent total  sulfur  in  the  SASS  train.
                                 10-75

-------
                   TABLE 10-78.  ANION ANALYSIS
            SASS TRAIN, GAS-FUELED GAS TURBINE, SITE 110
Sample
Parti cul ate
XAD-2 (ug)
Impingers
F"
*
Cl"
23,000
NOs S04
120
  Composite1(ug)      *        5,900


Total catch (ug)      -       29,000               120,000

*There was no parti cul ate  sample for site 110.
 Composite of HN03 module  wash, condensate, and the H202 im-
pinger.

 The second impinger containing ammonium persulfate (APS) and
silver nitrate and the third  impinger containing APS.
                                10-76

-------
            TABLE 10-79.  GAS CHROMATOGRAPHY ANALYSIS
                      Sample 110-PR-O-KD-l
                             (pg/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
106
153
67
25
23
<1
NO
NO
NO
ND
ND
No. of
peaks











ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note:  Data have been corrected for blanks.   Refer to Figure 10-1
       for sample code identification.
             TABLE 10-80.  GAS CHROMATOGRAPHY ANALYSIS
                      Sample 110-XR-Wet-S-GC
                              (ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
t
t
377
357
ND
ND
ND
ND
ND
ND

No. of
peaks











 ND = Not detectable (below 0.5 ug/m3 detection limit).
 * Not usually included in TCO range, i.e.,  C8-C16.
 t Peaks, if any,  obscured on shoulder of solvent peak.
 Note:  Data have  been corrected for blanks.   Refer to Figure 10-1
        for sample code identification.
                                 10-77

-------
              TABLE 10-81.  GAS CHROMATOGRAPHY ANALYSIS
                       Sample 110-XR-Dry-S-GC
                               ((jg/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
NO
1,049
NO
345
ND
NO
29
ND
ND
ND

No. of
peaks











 ND = Not detectable (below 0.5 pg/m3 detection limit).
 *  Not usually included in TCO range, i.e.,  C8-C16.
 Note:   Data have been corrected for blanks.   Refer  to  Figure  10-1
        for sample code identification.
              TABLE 10-82.   GAS CHROMATOGRAPHY  ANALYSIS
                        Sample 110-XM-S-KD-l
                               (ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
377t
ND
ND
ND
ND
ND
ND
ND
ND
ND

No. of
peaks











ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e.,  C8-C16.
t Response  possibly caused by traces of methanol  not  removed  during
  K-D concentration.
Note:  Data have been corrected for blanks.   Refer  to Figure  10-1
       for  sample code identification.
                                 10-78

-------
             TABLE 10-83.  GAS CHROMATOGRAPHY ANALYSIS
                          Sample 111-XR-SKD
                              Reserve
                              (ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
32
61
57
912
ND
84
ND
ND
ND
ND

No. of
peaks











ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note:  Data have been corrected for blanks.  Refer to Figure 10-1
       for sample code identification.
             TABLE 10-84.  GAS CHROMATOGRAPHY ANALYSIS
                         Sample 111-XM-S-KD
                              Reserve
                              (Mg/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
ND
37
80
15
ND
ND
ND .
ND
ND
ND

No. of
peaks











ND = Not detectable (below 0.5 Mg/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note:  Data have been corrected for blanks.  Refer to Figure 10-1
       for sample code identification.
                                10-79

-------
             TABLE  10-85.   GAS CHROMATOGRAPHY ANALYSIS
                         Sample 112-OR-O-KD-l
                               (pg/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
29
118
83
21
21
9
NO
ND
NO
ND

No. of
peaks











ND =  Not  detectable (below 0.5 vg/m3  detection limit).
* Not usually included in TCO range,  i.e., C8-C16.
Note:   Data have been corrrected for  blanks.  Refer to Figure 10-1
        for sample code identification.
              TABLE 10-86.   GAS  CHROMATOGRAPHY ANALYSIS
                       Sample 112-XR-Wet-S-GC
                               (ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
ND
t
56
394
ND
113
56
ND
ND
244

No. of
peaks











ND = Not detectable  (below 0.5  ug/m3  detection limit).
* Not usually  included in  TCO range,  i.e., C8-C16.
t Peaks, if any,  obscured  on shoulder of  solvent peak.
Note:  Data have  been  corrected for blanks.  Refer to Figure 10-1
       for sample code identification.
                                 10-80

-------
            TABLE 10-87.  GAS CHROMATOGRAPHY ANALYSIS
                     Sample 112-XR-Dry-S-GC
                             (ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
t
t
61
198
ND
30
ND
ND
46
213

No. of
peaks











ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
t Peaks, if any, obscured on shoulder of solvent peak.
Note:  Data have been corrected for blanks.   Refer to Figure 10-1
       for sample code identification.
             TABLE 10-88.  GAS CHROMATOGRAPHY ANALYSIS
                           Sample 306-PR
                              (ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
- 110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
ND
ND
ND
ND
ND
ND
23
ND
149
188

No. of
peaks











 ND = Not detectable (below 0.5 ug/m3 detection limit).
 * Not usually included in TCO range, i.e.,  C8-C16.
 t Peaks, if any,  obscured on shoulder of solvent peak.
 Note:   Data have  been corrected for blanks.   Refer to Figure  10-1
        for sample code identification.
                                 10-81

-------
              TABLE  10-89.   GAS CHROMATOGRAPHY ANALYSIS
                            Sample 306-XR
                               (ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
100
52
7
17
89
6
5
210
335
595

No. of
peaks











ND = Not  detectable  (below 0.5 ug/m3  detection limit).
* Not  usually included  in TCO range,  i.e., C8-C16.
Note:  Data  have been corrected for blanks.  Refer to Figure  10-1
       for sample code  identification.
               TABLE  10-90.   GAS CHROMATOGRAPHY ANALYSIS
                            Sample 307-XR
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
82
27
5
14
12
15
ND
<1
1
8

No. of
peaks











ND = Not detectable  (below 0.5 ug/m3  detection limit).
* Not usually  included  in TCO range,  i.e., C8-C16.
Note:  Data have  been corrected for blanks.  Refer to Figure  10-1
       for sample code  identification.
                                 10-82

-------
            TABLE 10-91.  GAS  CHROMATOGRAPHY  ANALYSIS
                          Sample  308-XR
                             (ug/p3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
ND
<1
ND
99
ND
25
12
11
38
71

No. of
peaks











ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note:  Data have been corrected for blanks.   Refer to Figure 10-1
       for sample code identification.
             TABLE 10-92.  GAS CHROMATOGRAPHY ANALYSIS
                           Sample 309-MR  .
                              (ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
24
<1
<1
<1
<1
2
6
14
38
150

No. of
peaks











ND = Not detectable  (below 0.5 ug/m3 detection  limit).
* Not usually  included  in TCO range, i.e., C8-C16.
Note:  Data have been corrected  for blanks.   Refer  to  Figure 10-1
       for sample  code  identification.
                                 10-83

-------
             TABLE 10-93.  GAS  CHROMATOGRAPHY ANALYSIS
                           Sample 309-XR
                              (|jg/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
0
251
685
1,488
1,945
2,914
4,913
3,618
3,065
2,456

No. of
peaks











ND = Not detectable  (below  0.5  ug/m3 detection limit).
* Not usually  included  in TCO range, i.e., C8-C16.
Note:  Data  have  been corrected for blanks.  Refer to Figure 10-1
       for sample code  identification.
              TABLE  10-94.   GAS  CHROMATOGRAPHY ANALYSIS
                            Sample  310-MR
                               (ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
7
<1
<1
<1
<1
21
129
164
462
611

No. of
peaks











ND = Not detectable  (below 0.5 ug/m3  detection  limit).
* Not usually  included  in TCO range,  i.e.,  C8-C16.
Note:  Data have  been corrected for blanks.  Refer to Figure 10-1
       for sample code  identification.
                                 10-84

-------
             TABLF  10-95.   GAS CHROMATOGRAPHY ANALYSIS
                           Sample 310-XR
                              (ug/m3)
                                  Volatile              No.  of
 Gas            Range            weight, ppm             peaks


GC7*            90-110               207
GC8            110-140               323
GC9            140-160               611
GC10           160-180             1,486
GC11           180-200             2,200
GC12           200-220             2,426
GC13                               3,639
GC14                               3,554
GC15                               3,508
GC16                               3,006
GC17
ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note:  Data have been corrected for blanks.  Refer to Figure 10-1
       for sample code identification.
              TABLE  10-96.   GAS  CHROMATOGRAPHY  ANALYSIS
                            Sample  310-PF
                               (ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
NO
5
22
29
92
65
59
92
222
129

No. of
peaks











 ND = Not detectable (below 0.5 pg/m3 detection limit).
 * Not usually included in TCO range, i.e., C8-C16.
 Note:   Data have been corrected for blanks.   Refer to Figure 10-1
        for sample code identification.
                                 10-85

-------
TABLE 10-97.
                            GAS CHROMATOGRAPHY ANALYSIS
                            Sample 311-MR
Gas
GC7*
GC8
GC9
GC1Q
GC11
GCl^
GC13'
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
ND
<1
<1
<1
<1
<1
45
38
396
523

No. of
peaks











 ND = Not detectable (below 0.5 ug/m3 detection  limit).
^* Not usually included in TCO range, i.e.,  C8-C16.
 Note:   Data has been corrected for blanks.   Refer  to  Figure 10-1
        for sample code identification.
              TABLE 10-98.
              GAS CHROMATOGRAPHY ANALYSIS
              Sample 311-XR
                 (ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
98
497
683
1,228
1,265
1,438
2,854
1,895
1,424
1,418

No. of
peaks











ND =  Not detectable (below 0.5 ug/m3 detection  limit).
* Not usually included in TCO range, i.e.,  C8-C16.
Note:   Data has been corrected for blanks.
        for sample code identification.
                               Refer to Figure 10-:
                                 10-86

-------
            TABLE  10-99.  GAS  CHROMATOGRAPHY  ANALYSIS
                          Sample  312-MR
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
386
ND
3
1
3
9
44
139
393
417

No. of
peaks











ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note:  Data have been corrected for blanks.  Refer to Figure 10-1
       for sample code identification.
             TABLE 10-100.  GAS CHROMATOGRAPHY ANALYSIS
                          Sample 312-XR
                              (ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
110
239
534
1,652
2,100
2,614
3,895
2,250
1,956
1,621

No. of
peaks











ND = Not detectable (below 0.5 ug/m3 detection  limit).
* Not usually included in TCO range, i.e., C8-C16.
Note:  Data have been corrected for blanks.   Refer to Figure 10-1
       for sample code identification.
                                 10-87

-------
              TABLE  10-101.   GAS CHROMATOGRAPHY ANALYSIS
                           Sample 312-CDS
                                ()jg/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
35
12
24
31
19
11
5
6
18
2

No. of
peaks











 *
ND = Not detectable  (below  0.5 ug/m3 detection limit).
* Not usually  included  in TCO range, i.e., C8-C16.
Note:  Data have been corrected for blanks.  Refer to Figure 10-
       for sample code  identification.
              TABLE 10-102.  GAS CHROMATOGRAPHY ANALYSIS
                           Sample 312-PF
                                                                  J.
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile No. of
weight, ppm peaKs
54
1
4
19
37
30
25
18
22
9

ND = Not detectable (below 0.5 ug/m3 detection  limit)
* Not usually  included in TCO range, i.e.,  C8-C16.
Note:  Data  have  been corrected for blanks.   Refer to  Figure  10-
       for sample code identification.
                                 10-88

-------
             TABLE 10-103.  GAS CHROMATOGRAPHY ANALYSIS
                           Sample 313-MR
                              (ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
ND
ND
ND
ND
6
5
18
75
248
287

No. of
peaks











ND = Not detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note:  Data have been corrected for blanks.  Refer to Figure 10-1
       for sample code identification.
             TABLE 10-104.  GAS CHROMATOGRAPHY ANALYSIS
                           Sample 313-XR
                              (ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC15
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
10
154
300
1,032
672
1,261
1,706
1,433
1,457
646

No. of
peaks











ND = Not'detectable (below 0.5 ug/m3 detection limit).
* Not usually included in TCO range, i.e., C8-C16.
Note:   Data have been corrected for blanks.  Refer to Figure 10-1
       for sample identification.
                                10-89

-------
              TABLE 10-105.   GAS CHROMATOGRAPHY ANALYSIS
                          Sample 313-CDS
                               ((jg/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
59
ND
1
2
3
1
1
1
14
2

No. of
peaks











ND =  Not detectable (below 0.5 pg/m3 detection  limit).
* Not usually included in TCO range, i.e.,  C8-C16.
Note:   Data have been corrected for blanks.   Refer  to  Figure  10-1
        for sample identification.
              TABLE 10-106.   GAS CHROMATOGRAPHY ANALYSIS
                           Sample 313-PF
                               (ug/m3)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
18
<1
<1
<1
<1
<1
18
<1
52
3

No. of
peaks











ND = Not 'detectable  (below 0.5 ug/m3  detection  limit).
* Not usually  included in TCO range,  i.e.,  C8-C16.
Note:  Data  have  been  corrected for blanks.   Refer to Figure  10-1
       for sample identification.
                                 10-90

-------
              TABLE 10-107.   GAS CHROMATOGRAPHY ANALYSIS
                        GASEOUS GRAB SAMPLE
                       GAS TURBINE,  SITE 110
                                      Volatile              No.  of
Gas               Range              weight, ppm             peaks

GC1                                      ND
GC2                                      ND
GC3                                      ND
GC4                                      ND
GC5                                      ND
GC6                                      ND
GC7                                     483

ND = Concentration of the species is below the limit of detection
     of the instrument: 1 ppm (~1,000 pg/m3) per Cj-Ce and
     0.001 ppm (-0.5 pg/m3) per C7-C16.
               TABLE 10-108.  GAS CHROMATOGRAPHY ANALYSIS
                         GASEOUS GRAB SAMPLE
                    DISTILLATE OIL TURBINE, SITE 111
                                      Volatile              No. of
Gas               Range              weight, ppm             peaks

GC1                                      ND
GC2                                      ND
GC3                                      ND
GC4                                      ND
GC5                                      ND
GC6                                      ND
GC7                                      32

ND = Concentration of the species is below the limit of detection
     of the instrument: 1 ppm (~1,000 fjg/m3) per C^CQ and
     0.001 ppm (~0.5 ug/m3) per C7-C16.
                               10-91

-------
           TABLE 10-109.   GAS  CHROMATOGRAPHY ANALYSIS
                       GASEOUS  GRAB SAMPLE
                DISTILLATE OIL TURBINE, SITE 112
                                      Volatile              No. of
Gas                Range              weight, ppm             peaks

GC1                                       ND
GC2                                       NO
GC3                                       ND
GC4                                       ND
GC5                                       ND
GC6                                       ND
GC7                                       29

ND = Concentration of  the  species  is below the limit of detection
     of the  instrument:  1  ppm  (~1,000 M9/"i3) per Cj-Cg and
     0.001 ppm  (~0.5 pg/m3)  per  C7-C16.
           TABLE  10-110.   GAS  CHROMATOGRAPHY ANALYSIS
                       GASEOUS  GRAB SAMPLE
                DISTILLATE OIL TURBINE, SITE 306
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
ND
67,620
ND
ND
ND
ND
100
No. of
peaks







ND = Concentration  of  the  species  is below the limit of detection
     of the  instrument:  1  ppm  (~1,000 ug/m3) per Cj-Cg and
     0.001 ppm  (-0.5 HO/m3) per C7-C16.
                               10-92

-------
                 10-111.   GAS CHROMATOGRAPHY ANALYSIS
                       GASEOUS GRAB SAMPLE
                DISTILLATE OIL TURBINE,  SITE 307
                                      Volatile              No.  of
Gas               Range              Weight,  ppm             peaks

GC1                                       ND
GC2                                    15,130
GC3                                       ND
GC3                                       ND
GC4                                       ND
GC5                                       ND
GC6                                       ND
GC7                                       82

ND = Concentration of the species is below the limit of detection
     of the instrument: I ppm (~1,000 ug/m3)  per Ci-C6 and
     0.001 ppm (-0.5 Mg/m3) per C7-C16.
           TABLE 10-112.  GAS CHROMATOGRAPHY ANALYSIS
                      GASEOUS GRAB SAMPLE
                DISTILLATE OIL TURBINE, SITE 308
                                      Volatile              No. of
 Gas                Range              weight, ppm             peaks

 GC1                                        ND
 GC2                                      2,275
 GC3                                        ND
 GC4                                        ND
 GC5                                        ND
 GC6                                        ND
 GC7	   ND	

 ND = Concentration of  the  species  is below the  limit  of detection
      of the instrument:  1  ppm  (-1,000 ug/m3) per  C^Cg and
      0.001 ppm (-0.5 ug/m3)  per  C7-C16.
                                10-93

-------
           TABLE 10-113.  GAS CHROMATOGRAPHY ANALYSIS
              DISTILLATE OIL RECIPROCATING ENGINES,
                      GASEOUS GRAB SAMPLE
                            SITE 309
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
1,000
7,765
3,535
ND
ND
ND
24
No. of
peaKs







ND = Concentration of the species is below the limit of detection
     of the instrument: 1 ppm  (~1,000 jjg/m3) per Cj-C6 and
     0.001 ppm  (~0.5 M9/m3) per C7-C16.
           TABLE  10-114.  GAS CHROMATOGRAPHY ANALYSIS
              DISTILLATE OIL RECIPROCATING ENGINES,
                        GASEOUS GRAB SAMPLE
                            SITE 309-2
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
500
700
700
ND
ND
ND
10
No. of
peaks







ND = Concentration  of the  species  is  below the limit of detection
     of the  instrument:  1  ppm (~1,000 M9/ro3) per C^Ce and
     0.001 ppm (~0.5 ug/m3)  per C7-C16.
                                10-94

-------
           TABLE 10-115.   GAS CHROMATOGRAPHY ANALYSIS
              DISTILLATE  OIL RECIPROCATING ENGINES,
                       GASEOUS GRAB SAMPLE
                            SITE 310
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
1,570
10,380
3,065
ND
ND
ND
214
No. of
peaks







ND = Concentration of the species is below the limit of detection
     of the instrument:  1 ppm (~1,000 ug/m3) per Ci~C6 and
     0.001 ppm (-0.5 pg/m3) per C7-C16.
           TABLE 10-116.   GAS CHROMATOGRAPHY ANALYSIS
              DISTILLATE OIL RECIPROCATING ENGINES,
                      GASEOUS GRAB SAMPLE
                            SITE 311
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
2,570
5,970
1,140
ND
ND
ND
98
No. of
peaks







ND = Concentration of the species is below the limit of detection
     of the instrument:  1 ppm (~1,000 ug/m3) per C^Ce and
     0.001 ppm (~0.5 ug/m3) per C7-C16..
                               10-95

-------
            TABLE 10-117.  GAS CHROMATOGRAPHY ANALYSIS
              DISTILLATE OIL RECIPROCATING ENGINES,
                      GASEOUS GRAB SAMPLE
                            SITE 312
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
3,285
17,540
705
NO
ND
ND
585
No. of
peaks







ND = Concentration of the species is below the limit of detection
     of the instrument: 1 ppra (~1,000 |jg/m3) Per Cj-C
     0.001 ppm  (~0.5 pg/m3) per C7-C16.
            TABLE 10-118.  GAS CHROMATOGRAPHY ANALYSIS
              DISTILLATE OIL RECIPROCATING ENGINES,
                       GASEOUS GRAB SAMPLE
                           SITE 312-2
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
800
1,900
ND
ND
ND
ND
90
No. cf
peaKs







ND = Concentration of the species is below the limit of detection
     of the instrument: 1 ppm (~1,000 pg/m3) per C^Cg and
     0.001 ppra (-0.5 ug/m3) per C7-C16.
                               10-96

-------
            TABLE 10-119.   GAS CHROMATOGRAPHY ANALYSIS
              DISTILLATE OIL RECIPROCATING ENGINES,
                       GASEOUS GRAB SAMPLE
                            SITE 313
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
4,000
26,015
745
ND
ND
ND
87
No. of
peaks







ND = Concentration of the species is below the limit of detection
     of the instrument:  1 ppm (-1,000 (jg/m3) per C^Cg and
     0.001 ppm (-0.5 M9/m3) per C7-C16.
            TABLE 10-120.   GAS CHROMATOGRAPHY ANALYSIS
              DISTILLATE OIL RECIPROCATING ENGINES,
                       GASEOUS GRAB SAMPLE
                           SITE 313-2
Gas
GC1
GC2
GC3
GC4
GC5
GC6
GC7
Volatile
Range weight, ppm
1,100
1,700
ND
ND
ND
ND
ND
No. of
peaks







ND = Concentration of the species is  below the limit of detection
     of the instrument:  1 ppm (-1,000 pg/m3)  per C^Cg  and
     0.001 ppm (-0.5 ug/m3)  per C7-C16.
                               10-97

-------
            TABLE 10-121.  GAS CHROMATOGRAPHY ANALYSIS
                    Cg-C16 VOLATILE ORGANICS
                      GAS TURBINE, SITE 110
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
1.202
444
727
23
ND
29
ND
ND
ND
310
No. of
peaks










ND = Concentration of the species is below the limit of detecticr
     of the instrument: 0.001 ppm (~0.5 ug/m3) per C7-C16.
            TABLE 10-122.  GAS CHROMATOGRAPHY ANALYSIS
                    C8-C16 VOLATILE ORGANICS
                DISTILLATE OIL TURBINE, SITE 111
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180 .
180-200
200-220





Volatile No. of
weight, ppm peaks
100
137
927
ND
84
ND
ND
ND
ND
6,800
ND = Concentration  of  the  species  is below the limit of detection
     of the  instrument:  0.001  ppm (~0.5 ug/m3) per C7-C16.
                                10-98

-------
            TABLE 10-123.   GAS CHROMATOGRAPHY ANALYSIS
                    C8-C16 VOLATILE ORGANICS
                DISTILLATE OIL TURBINE,  SITE 112
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
147
200
613
21
152
56
ND
46
457
3,710
No. of
peaks










ND = Concentration of the species is below the limit of detection
     of the instrument:  0.001 ppm (-0.5 pg/m3) per C7-C16.
            TABLE 10-124.   GAS CHROMATOGRAPHY ANALYSIS
                    C8-C16 VOLATILE ORGANICS
                DISTILLATE OIL TURBINE, SITE 306
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
52
7
17
89
6
28
210
484
783
440
No. of
peaks










ND = Concentration of the species is below the limit of detection
     of the instrument:  0.001 ppm (~0.5 (jg/m3) per C7-C16.
                               10-99

-------
            TABLE 10-125.  GAS CHROMATOGRAPHY ANALYSIS
                    C8-C16 VOLATILE ORGANICS
                DISTILLATE OIL TURBINE, SITE 307
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220





Volatile No. of
weight, ppm peaks
27
5
14
12
15
ND
ND
1
8
1,400
ND = Concentration of the species is below the limit of detection
     of the instrument: 0.001 ppm (~0.5 pg/m3) per C7-C16.
            TABLE 10-126.  GAS CHROMATOGRAPHY ANALYSIS
                    C8-C16 VOLATILE ORGANICS
                DISTILLATE OIL TURBINE, SITE 308
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220





Volatile No. of
weight, ppm peaK«
ND
ND
99
ND
25
12
11
38
71
1,270
ND = Concentration of the species is below the limit of detection
     of the instrument: 0.001 ppm (-0.5 pg/m3) per C7-C16.
                               10-100

-------
            TABLE 10-127.   GAS CHROMATOGRAPHY ANALYSIS
                     C8-C16 VOLATILE ORGANICS
          DISTILLATE OIL RECIPROCATING ENGINES, SITE 309
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
110-140
140-160
160-180
180-200
200-220





251
685
1,488
1,945
2,916
4,919
3,632
3,103
2,606
56,180
ND = Concentration of the species is below the limit of detection
     of the instrument:  0.001 ppm (-0.5 |jg/m3) per C7-C16.
            TABLE 10-128.   GAS CHROMATOGRAPHY ANALYSIS
                     C8-C16 VOLATILE ORGANICS
         DISTILLATE OIL RECIPROCATING ENGINES, SITE 309-2
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
370
850
2,410
2,890
3,230
3,000
3,580
2,760
2,290
55,380
No. of
peaks










ND = Concentration of the species is below the limit of detection
     of the instrument:  0.001 ppm (~0.5 M9/m3) per C7-C16.
                               10-101

-------
            TABLE 10-129.  GAS  CHROMATOGRAPHY ANALYSIS
                     C8-C16 VOLATILE ORGANICS
          DISTILLATE OIL  RECIPROCATING ENGINES, SITE 310
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220





Volatile No. cf
weight, ppm peaks
328
633
1,516
2,292
2,512
3,827
3,810
4,192
3,746
53,880
ND = Concentration of the species is below the limit of detecti-
     of the instrument: 0.001 ppm (~0.5 MS/m3) per C7-C16.
            TABLE 10-130.  GAS CHROMATOGRAPHY ANALYSIS
                     C8-C16 VOLATILE ORGANICS
          DISTILLATE OIL RECIPROCATING ENGINES, SITE 311
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220





Volatile Nc. cf
weight, ppm pe=K.:
497
683
1,228
1,265
1,438
2,899
1,933
1,810
1,941
43,040
ND = Concentration of the species is below the limit of datectii
     of the instrument: 0.001 ppm (~0.5 ug/m3) per C7-C16.
                               10-102

-------
            TABLE 10-131.   GAS CHROMATOGRAPHY ANALYSIS
                     C8-C16 VOLATILE ORGANICS
          DISTILLATE OIL RECIPROCATING ENGINES,  SITE 312
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
251
565
1,704
2,159
2,663
3,970
2,413
2,389
2,149
63,590
No. of
peaks










ND = Concentration of the species is below the limit of detection
     of the instrument:  0.001 ppm (~0.5 |jg/m3) per C7-C16.
            TABLE 10-132.  GAS CHROMATOGRAPHY ANALYSIS
                     C8-C16 VOLATILE ORGANICS
          DISTILLATE OIL RECIPROCATING ENGINES,-SITE 312-2
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
400
1,100
1,800
2,120
2,450
2,330
2,200
2,250
1,680
55,040
No. of
peaks










                               10-103

-------
            TABLE 10-133.  GAS CHROMATDGRAPHY ANALYSIS
                     C8-C16 VOLATILE ORGANICS
          DISTILLATE OIL RECIPROCATING ENGINES,  SITE 313
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220





Volatile No. of
weight, ppm pta-^
154
301
1,034
682
1,267
1,742
1,509
1,771
937
46,680
NO = Concentration of the species is below the limit of detactlo'
     of the instrument: 0.001 ppm (-0.5 mg/m3) per C7-C16.
            TABLE  10-134.   GAS  CHROMATOGRAPHY ANALYSIS
                      C8-C16 VOLATILE ORGANICS
            DISTILLATE  OIL  RECIPROCATING ENGINES, 313-2
Gas
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
>GC16
Range
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
560
1,290
2,120
2,580
3,120
2,810
3,100
3,010
2,350
66,340
No. of
peaks










ND = Concentration of the species is  below  the  limit of detection
     of  the instrument:  0.001 ppm (~0.5  MQ/ro")  per C7-C16.
                                1U-104

-------
     The following samples had totals less than 75 M9/m3, so quantities in
each range were not reported.

                                                        Total C7-C16

       111-PR-O-KD                                           ND
       111-PF-S-KD                                            2
       112-XM-S-KD-l                                         29
       306-PF                                                34
       307-PR                                                ND
       307-PF                                                35
       308-PR                                                ND
       308-MR                                                 *
       308-CDS                                               19
       308-PF                                                ND
       309-PR                                                30
       309-CDS                                                8
       309-PF                                                 5
       309-2                                                 21
       310-PR                                                30
       310-CDS                                                3
       311-PR                                                 7
       311-CDS                                               42
       311-PF                                                40
       312-PR                                                 5
       312-2                                                 16
       313-PR                                                36
       313-2                                                 21

       ND = not detectable (below 0.5 pg/m3 detection limit).
       *No value  reported, so ND is  assumed.
                                      10-105

-------
                             TABLE 10-135
                         LC ANALYSIS RESULTS
                          309-2- XR+PF+MR+PR

TitttSwq*1
TakMtarLC2
Rmwrarf3
TCO
•1



GRAV
»l



TCO + GRAV
Train*



Concent rat 'on
Big/ (n»3, L, cr kj)5
51



Fraction
1
2
3
1-,, *-,-•
S
S
7
S»

F wad to
FnctkM



„- . .; -




TCO ill
Bta*



".: ; _:




•1
Cw-
IWtH



•y •"-: '





Tot.^
611
1.62
0.10
10.8
0.07
NO
NO


Fwntfin
fmm^tlmtt
rracnn








6RAV.
MMk








•1
Cur-
IVCtMl









T«-*
954
34.1
71.3
83.8
48
127
16.7
1335
1
TCO*
6RAV
Totting








Concentre UC.T
ing/
(m3,L, or kg13
3b . w
1.1?
2.33
2.7f
1.5"
4.17
0.55
j^ 1
1. QMMUy in wtira MBpli, WIHWMI Mnn LC
3. QjMrtity nuanA frmm LC otaw '
4. T>aln|CMipiMdb^itt total SMV

ND = Not detectable.
       For sample code  tdtntification refer to Figure 10-1.
                                         10-106

-------
                                          TABLE 10-136

                                      LC ANALYSIS  RESULTS

                                            308 XR+MR

Tola! Simple1
Taken for LC2
Recovered
TCO
mg



GRAV
mg



TCO + GRAV
Total mg



Concentration
mg/ (m3,L,orkg)5
0.374"


Fraction
1
2
3
4
E
6
7
Sum
TCO in mg
Found in
Fraction








Blank








Cor-
rected








Total4
ND
ND
ND
.ND
ND
ND
ND
ND
GRAV in mg
Found in
Fraction








Blank








Cor-
rected








Total4
1.7
0.6
0.4
0.5
0.6
2.6
4.1
11.5*
TCO +
GRAV
Total mg








Co ncontratio n
mg/

-------
                                              TABLE 10-137

                                         LC  ANALYSIS  RESULTS

                                           313-2-XR-PF-MR-PR
                        TCO
                         mg
GRAV
 mg
TCO t GRAV
 Total mg
Concentration
mg/
        or
Total Sample
          1
                                              64.9
Taken for LC2
Recovered3
Frattion
1
2
3
4
5
6
7
Sum
TCO in mg
Found in
Fraction








Blank








Cor*
reeled








a
Tatar
190
4,4
0.53
ND
ND
1.4
ND
196
GRAV in mg
Found in
Fraction








Blank








Cor-
rected








A
Totor
1395
153
48.2
33.6
59.8
102
31.6
1823
TCO +
GRAV
Total rag








Concentration
mg/
(m3,L, or t(S)5
50.9
5.05
1.57
1.08
1.92
3.32
1.02
64.9
   1. Quantity in entire sample, determined before LC
   2. Portion of whole sample used for LC, actual mg
   1 Quantity recovered from LC column, actual mg
   4. Total mg computed back to total sample
   5. Supply values for both sample size and concentration

  ND  = Not  detectable.

  NOTE:  For sample  code identification refer  to Figure  10-1
                                                    10-108

-------
                                          TABLE  10-138

                                     LC ANALYSIS RESULTS

                                      312^2-XR+PF+MR+PR

ml Sample1
ikenforLC2
ecovsred3
TCO
mg



GRAV
mg



TCO + GRAV
Total mg



Concentration
mg/ On3, L,orkg)5
51



Fraction
t
2
3
4
5
6
7
Sum
TCO in mg
round in
Fraction








Blank








Cor-
ractad








Total4
220
2.42
ND
0,57
ND
0.48
ND
223
GRAV in mg
Found in
Fraction








Blank








Cor-
rected








Total4
954
34.1
71.3
83.8
48
127
16.7
1335
TCO +
GRAV
Total mg








Concentration
mg/
(m3,L,orkg)5
38.4
1.19
2.33
2.76
1.57
4.17
0.55
51
1. Quantity in entire ample, determined bef ore LC
2. Portion of whole sample used for LC, actual mg
1 Quantity recovered from LC column, actual mg
4. Total mg computed back to total sample
5. Supply values for both sample size and concentration

^D =  Not detectable,


IOTE:   For  sample code  identification  refer to  Figure 10-1.
                                                 10-109

-------
                                          TABLE  10-139

                                      LC ANALYSIS RESULTS

                                            306-  XR+MR

Total Sample1
Taken for LC2
Recovered
TCO
m|



6RAV
m|



TCO + GRAV
Total mg



CoBcefttmtiM
m«/ Im3, t,«r
j.


Fraction
1
2
3
•..,',.',..•4 - ;.-.-.
s
6
7
Sum
TCO in mg
Found in
Fraction








Blank








Cor-
rected








Total4
*
*
*
*
*
*
*
-
GRAV in mg
Found in
Fraction








Blank








Cor-
rected








Total4
0.7
0.3
0.1
0.5
0.4
2.8
ND
4.8
TCO +
GRAV
Total mf








Conctntrtl
«./.
(*3.L,orl
-T-
4.
a.
4.
-i.
i
j.
j.
 1. Quantity in entire sample, determined before LC
 2. Portion of whole ample used for LC, actual mg
 3. Quantity recovered from LC column, actual mg
 4. Total mg computed back to total sample
 5. Supply values for both sample size and concentration

ND = Not  detectable.
*  Data not  required,
t  Total not  meaningful because of lack of TCO  data.

NOTE:   For sample code identification  refer  to Figure  10-1.
                                               10-110

-------
                                           TABLE  10-140

                                      LC  ANALYSIS  RESULTS

                                            307 XR+MR

Total Sample '
TakanforlC2
Recovered**
TCO
mg



GRAV
mg



TCO 1- GRAV
Tottl mg



Concentration
mg/ (m3, L, or kg)&
0.11



Fraction
1
2
3
4
5
6
7
Sum
TCO in m|
Found in
Friction








Blank








Cor-
rected








Total4
ND
ND
ND
ND
ND
ND
ND
ND
GRAV in mg
Found in
Friction








Blank








Cor-
rected








Total4
0.5
0.3
0.3
0.3
ND
1.1
0.9
3.4
TCO +
GRAV
Total mg








Concentration
mg/
(m3,L.orkg)5
0.016
0.0097
0.0097
0.0097
ND
0.036
0.029
0.11
 1. Quantity in entire sample, determined before LC
 2. Portion of whole ample used for LC, ictual mg
 3. Quantity recovered from LC column, ictual mg
 4. Total mg computed back to total sample
 5. Supply values for both simple size and concentration

 ND = Not detectable.

NOTE:   For sample code identification refer to Figure 10-1.
                                                10-111

-------
IR REPORT
SAMPLE- Distillate oil reciprocating enqines, site 309 i

Wm Number
(on'1)





"





Intensity











1
•

i






















•

Asagnmtnt/Conimmts
LC
fraction
1 alkyl, aryl and CO-OX qrouos*:
carboxylic acid i
2 alkyl. carbonvl. and C-Q-X o>~ojr- *
3 alkyl, alkenyl, aryl , carbonvl, a-.:. :
C-O-X qrouos
4 alkyl and C-O-X qroups - all alien;: i
•— — J
5 alkyl, alkenyl, and C-O-X aroucs -
all aliphatic
6 alkyl, aryl, carbonyl , and C-C-- c
7 °llv alio^atif; species
8 ^pecies containinq alkyl and C-n-x
groups - all aliphatic :
-,
\
i


.-;
i
i
i
\
\
-i
\
<
OTHER REMARKS:
      Note:  Level  1 procedure  now uses 7, rather than 8, LC fractions.
      *X group in C-O-X  linkage was not identified in any sanple.
                                            10-112

-------

:
•



t


I













rKER REMARKS:
)
;
i
1
i














i


, :'T v- V -Jfc-r^,
^^^S^^-^^^ V^(^•
	 	 - -•' 	 •"***
7 hydrocarbons, esters, ketones
8 *

















Note:  Level 1 procedure now uses 7y rather than 8, LC fractions.
^Insufficient material was found in this sample to justify further analysis.
                                       10-113

-------
SAMPLE:
                                     TABLE 10-143
                                      IR REPORT
              Distillate oil reciprocating engines, site 310
Wm Number
(em'1)















'





-




Intimity


























	 	 	 i
Assignment/Comments
LC
fraction
1 only aliphatic groups i
2 only aliphatic groups '
3 only aliphatic groups ',
4 alkyl, aryl , and C-O-X groups*
- 	 	 5
5 alkyl, aryl, and C-O-X groups 1
6 alkyl, aryl, and C-O-X groups }
7 alkyl, aryl, and C-O-X groups \
8 alkyl, aryl, and C-O-X groups ;















i
OTHER REMARKS:
    Note:   Level 1 procedure now uses 7, rather than 8, LC fractions.
    *X group in C-O-X linkage was not identified in any sample.
                                           10-114

-------
                              TABLE 10-144
                                IR REPORT
       Distillate oil  reciprocating engines, site 312
Yav« Number ,
.1 Intensity
(cm ')
I




Assignment/Comments
LC
fraction
j 1 alky! and aryl groups









i


















I















2 alkyl, aryl, and C-O-X groups*
3 alkyl, aryl, and C-O-X groups
4 only aliphatic groups
5 alkyl, alkenyl, aryl, and C-O-X groups
6 alkyl, alkenyl, aryl, and C-O-X groups
7 alkyl, aryl, and C-O-X groups
8 only aliphatic groups




-









'

REMARKS:
 Note:   Level  1 procedure now  uses 7, rather than 8, LC fractions,
 *X group in C-O-X  linkage was not identified in any sample.
                                       10-115

-------
                                     TABLE 10-145
                                     IR REPORT

Watt Number
(cm'1)



























Intensity


























;
Assignment/Comments .
LC I
fraction
1 alky! and aryl groups
2 alkyl, aryl, and C-O-X groups* ;
3 alkyl, aryl, and C-O-X groups i
4 alkyl, alkenyl, aryl, and C-O-X grc-.os \
5 alkyl, alkenyl, aryl, and C-O-X g>-: -; \
6 alkyl, alkenyl, aryl, carbony 1 , anc 1
C-O-X groups
7 alkyl, aryl, and C-O-X groups
8 alkyl, aryl, and C-O-X groups ;
T



~~\
,
.








OTHER REMARKS:
   Note:   Level  1  procedure now uses  7,  rather than 8, LC fractions.
   *X group in  C-O-X linkage was not  identified in any sample.
                                          10-116

-------
                           TABLE 10-146

                            IR REPORT
    Distillate oil reciprocating engines, site 312-2

umber
•1) i









Intensity









i
































Assignment/Comments
LC
fraction
1 hydrocarbons
2 hydrocarbons, unsaturated or aryl
esters, ketones
3 hydrocarbons, unsaturated or aryl
esters
4 hydrocarbons, saturated ketones
5 unsaturated or aryl esters, ketones
6 esters, aldehydes, ketones
7 unsaturated or aryl esters, ketones
8 *

-












RKS:
e:  Level 1 procedure now uses 7, rather than 8, LC fractions.
isufficient material was found in these samples to justify further
lalysis.
                                    10-117

-------
SAMPLE:
                                      TABLE  10-147
                                       1R REPORT
            Distillate oil reciprocating engines, site 313
Wavt Number
(cm'1)

























•
Intensity



















•






Assignment/Comments
LC
fraction
1 alkyl, aryl, and C-O-X groups*
2 only aliphatic groups
3 alkyl, alkenyl, aryl, carbonyl and
C-O-X groups
4 only saturated and unsaturated
aliphatic groups
5 only aliphatic groups
6 alkyl, alkenyl, aryl, and C-O-X groui .
7 alkyl and aryl groups ^
8 no data









i




 OTHER REMARKS:
        Note:  Level 1 procedure now uses 7, rather than  8, LC fractions
        *X group in C-O-X linkage was not identified in any sample.
                                              10-118

-------
.£:
                                TABLE 10-148
                                 IR REPORT
         Distillate oil reciprocating engines, site 313-2
me Number
Sen.'1)






Intensity Assignment/Comments
LC
fraction




!




















1 hydrocarbons
2 hydrocarbons, esters, ketones
3 hydrocarbons, esters, ketones
4 hydrocarbons
5 saturated ketones, aryl , or unsaturated
esters
6 esters, ketones
7 esters, ketones, amides, amines,
unsaturated or aryl ketones
8 *



i



I






















 REMARKS:
  Note:   Level  1 procedure now uses 7, rather than 8, LC fractions.
  *Insufficient material  was found in these samples to justify further analysis.
                                        10-119

-------
SAMPLE:
                                     TABLE 10-149
                                      IR REPORT
        Distillate oil-fueled gas turbine, site 110
Wive Number
(on'1)















;. ' ' -I- :










Intensity


























Assignment/Comments
LC
Fraction
1 *
2 *
3 *
4 *
5 *
6 Esters: includes vinyl ester; aldehyde/kei; -e:
aromatic nitro compound; other organic nit rote
silica
7 Esters: includes vinyl ester; aldehyde/keto. e;
aromatic nitro compound; other organic nitrate
silica
8 Esters (trace): silica: water

Residue of original sample
Esters: includes benzoates, phtha Tales an:
vinyl ester; atuide; glycol; aldehyde;
chlorinated compound; other benzene
derivatives






OTHER REMARKS:

insufficient material was found in these samples to justify further analys
Note:  Level 1 procedure now uses 7, rather.than 8,  LC .fractions.
                                          10-120

-------
                                  TABLE  10-150
                                    IR REPORT
IMPLE-  Distillate oil-fueled gas turbine, site 111
Wavt Number |
(cm'1)


























Intensity


























Assignment/Comments
LC
Fraction
1 Aliphatic hydrocarbons
2 *
3 *
4 *
5 *
6 Esters: includes vinyl ester; aldehyde/ketone;
glycol; aromatic nitro compound; other organic
nitrate
7 Esters: includes vinyl ester; aldehyde/ketone;
glycol; aromatic nitro compound; other organic
nitrate
8 Ester (trace): silica; water 	 _.

Residue of oriainal sample
Aliphatic hydrocarbons; esters: includes
benzoates phthalates and vinyl ester; amide;
glycol; aldehyde; chlorinated compound; other
benzene derivatives; inorganic sulfate






 FHER REMARKS:

 Insufficient material was found in these samples to justify further analysis.
 ote:   Level  1 procedure, now uses 7, rather than 8, LC fractions.
                                          10-121

-------
                                     IMDLt lU
                                     1R REPORT
SAMPLE: Distillate oil-fueld gas turbine, site 112
Wave Number
(cm'1)


























Intensity


























Assignment/Comments
LC
Fraction
1 *
2 * !
3 *
4 *
5 *
6 * ;
7 * ;
8 *

Residue of original sample
Esters: includes benzoates and phthalates; [
i
glycol ; aldehyde; chlorinated compound;
other benzene derivatives
i
i







i
I
OTHER REMARKS:

 ^Insufficient material  was found in these samples to justify further analysis,
 Note:   Level  1 procedure, now uses 79 rather than 8, LC fractions.
                                          10-122

-------
                                  TABLE 10-152
                                   IR REPORT

      Distillate oil-fueled gas  turbines,  site 306
Wave Number
(cm'1)




Intensity ;
I




|








I
































Assignment/Comments
LC
Fraction
1 *
2 *
3 *
4 *
5 *
6 Alkyl, unsaturated aliphatics, aryl , carbonyl
and C-O-X groups^
7 *
8 *















HER REMARKS:

Insufficient material  was found in these samples to justify further analysis.
K group in C-O-X linkages was not identified in any sample.

t>te:   Level  1 procedure now uses 7, rather than 8, LC fractions.
                                        10-123

-------
                                     TABLE  10-153
                                      !R REPORT
SAMPLE:  Distillate  oil-fueled  gas turbines, site 307
Wwt Number
(em'1)


























Intensity


























Assignment/Comments
LC
Fraction
1 *
2 *
3 *
4 *
5 *
6 Alkyl and C-O-X groupst- all aliphatic
7 *
8 *


>













OTHER REMARKS:
 insufficient material was found in these samples  to justify further analysi
 tX group in C-O-X linkages was not identified in any sample.
 Note:   Level  1 procedure now uses 7, rather than 8, LC fractions.
                                          10-124

-------
                                  TABLE  10-154
                                   IR REPORT
MPLE-  Distillate oil-fueled gas turbines,  site  308
Wave Number
(cm'1)


























Intensity
Assignment/Comments
lie














.










Fraction
1 Aliphatics
2 Alkyl, aryl and C-O-X groups1"
3 Alkyl, aryl and C-O-X groups
4 Alkyl, aryl, carbonyl and C-O-X groups
5 Alkyl, aryl, carbonyl and C-O-X groins
6 Alkyl, aryl, carbonyl, aliphatic C-O-X and
unsaturated aliphatic groups
7 Alkyl, aryl, unsaturated aliphatics, carbonyl
and C-O-X groups
8 Alkyl, and C-O-X groups - all aliphatic














   :R REMARKS:
   isufficient material was found in these samples to justify further analysis.
   group in C-O-X linkages was not identified in any sample.
   te:  Level  1 procedure now uses 7, rather than 8, LC fractions.
                                         10-125

-------
LRMS REPORT
SAMPLE:  Diesel  engine sites,  sample no. 309-XM-LC1
(See Figure  10-1  for sample code identification.)
Major Categories
Intensity
NR
NR
NR

NR

Category
Hydrocarbon oil
Fatty acid esters
Dioctyl phthalate

MW Bangs
1 NR
| NR
(trace) ] NR


Di-tert-butyl phenol (possible) NR


Sub-Categories, Specific Compounds
    intensity
Category
m/e
Composition
Other
     NR = not reported
                                             10-126

-------
HUB REPORT
        Desel  engine site,  sample .10.  310-XM-LC1
See Figure  10-1  for  sample code Identification.
fejtr Categories
Intensity
NR
NR
NR
NR

i NR
Category
Hydrocarbon oil
Aromatics
Dioctyl phthalate
Fatty acid esters

Anisole (possible)
MW Range
NR
NR
NR
NR

NR
 SfcCittgoriet, Specific Compounds
  Intensity
Category
m/e
Composition
        not reported
               10-127

-------
LRMS REPORT
SAMPLE:   Diesel engine site, sample no.  310-XM-LC6
(See  Figure 10-1  for sample code  identification.)
Major Categories
Intensity
NR
NR
NR



Category
Hydrocarbon oil
Aroma tics
MW Rsn-
NR
* i "
Dioctyl phthalate 1 N:


\


Sub-Categories, Specific Compounds
    Intensity
Category
m/e
Composition
 Other
     NR =  not reported
             10-128

-------
1MB REPORT
SAMPLE:  __Ci_ese1 engine site,  sample no.  310-XM-LC7
(See Figure  10-1 for  sample  code identification.)
Itojor Categories
Intensity
NR
Category
Hydrocarbon oil (trace)
NR ! Dioctyl phthalate (trace)
I


i


MW Range
NR
NR




 Stb£»tegori«, Specific Compounds
   Intensity
Category
m/e
Composition
  Oft*
     NR =  not reported
                                              10-129

-------
LRMS REPORT
SAMPLE:
                  engine site,  sample no. 311-XM-LC1
(See Figure 10-1 for sample code identification.)
Major Categories
Intensity
NR
NR
NR

NR

Category
Hydrocarbon oil
Aromatics
Dioctyl phthalate

Di-tert-butyl phenol (possible)

MW Ranee
NR
NR
NR

^ 1

Sub-Categories, Specific Compounds
    intensity
                                Category
m/e
Composition
 Other
     NR = not reported
                                            10-130

-------
LRMS REPORT
     ; __ Diesel engine site,  sample  no.  311-XM-LC3
See Figure 10-1  for sample  code identification.
Ibjor Categories
Intensity
* NR
1 NR
NR
NR


Category
Hydrocarbon oil
Aromatics
Dioctyl ohthalate
Fatty acid esters


MW Range 1
NR
NR
NR
NR


       ies, Specific Compounds
  Intensity
Category
m/e
Composition
       not  reported
                                           10-131

-------
LRMS REPORT
SAMPLE;   Diesel engine site, sample no.  311-XM-LC4
(See  Figure 10-1 for  sample code identification.)
Major Categories
Intensity
NR
NR

NR


Category
Hydrocarbon oil
Dioctyl phthalate

Nonyl phenol (possible)
MVV Range
N-
: \ r\

iYR
I


 Sab-Categories. Specific Compounds
     Intensity
Category
                                                             m/e
Composition
 Other
     NR = not  reported
                                             10-132

-------
IBB REPORT
MffLE:  Diesel  enoine  sit.p, sample  np. 3T?-*;M
See Figure 10-1  for sample  code identification.)
fejBr Categories
Intensity
NR
NR

NR

Category
Hydrocarbon oil
Dioctvl ohthalate

Di-tert-butyl phenol (possible")

i
MW Range
MR
NR

NR


SWtttgories, Specific Compounds
  intensity
Category
m/e
Composition
 Ok*
  HR = not reported
               10-133

-------
LRMS REPORT
SAMPLE:  Diesel  engine site, sample  nnr  312-XM-1C3
(See Figure 10-1 for sample  code identification.)
Major Categories
Intensity
NR
NR
NR



Category
Hydrocarbon oil
Aroma tics
Dioctyl phthalate


MW Ranci
MR
NR
NR


!
 Sub-Categories, Specific Compounds
     Intensity
Category
m/e
Composition
 Other
     NR  =  not reported
             10-134

-------
   REPORT
     : Diesel  enoine site,  sample  no.  312-XM-LC4
See Figure 10-1 for  sample code identification.
fejor Categories
Intensity
NR
Category
Hydrocarbon oil
NR JAromatics
NR

NR

Dioctyl phthalate

Trimethyl naphthalene (possible1)

MW Range
NR
NR
NR

NR

 SMitegories, Specific Compounds
  intensity
Category
m/e
Composition
       -  not reported
                                            10-135

-------
LRMS REPORT

SAMPLE;   Diesel engine  site, samplp nn.  317-XM-LC6
(See  Figure 10-1 for  sample code identification.)
Major Categories
Intensity
NR
NR
NR

NR

Category
Hydrocarbon oil
Aromati cs
Dioctyl phthalate



MW Ranes
NR .,
NR .__,
NR



—
" •
Sub-Categories, Spedfie Compounds
    Intensity
Category
m/e
Composition
Other
     NR = not  reported
                                             10-136

-------
y« REPORT

        Diesel engine  site, sample  no. 313-XM-LC1
See Figure 10-1  for sample  code identification.)
fcjor Categories
totsnsity
i_ NR
Category
Hydrocarbon oil
NR ! Dioctyl phthalate

NR



Di-tert-butyl phenol (possible)


MW Range
NR
NR

NR


kbClttgortes, Specific Compounds
  towns Ty
Category
m/e
Composition
     - not reported
                                           10-137

-------
LEVEL 2
  10-138

-------
   TABLE 32.   LEVEL II CONTROLLED CONDENSATION TRAIN ANALYTICAL RESULTS
Samp! e
Number
309-2-GC
309-2-G1
309-2-GP/GF
312-2-GC
312-2-GI
312-2-GP/GF
313-2-GC
31 3-2 -G I
313-2-GP/GF
Sample Type ing/riP
Coil rinse NO
H?Q2 impinger *
Probe rinse and filter wash *
Coil rinse 1.38
H202 impinger *
Probe rinse and filter wash *
Coil rinse ^-36
H?0? impinger *
Probe rinse and filter wash * -
so2 so4
mg/m^ mg/rn^
* *
38.96 *
* 1.56
* *
88.64 *
* 1.58
* *
81 .20 *
* 1.74
HO indicates not detected
*The sulfur species  indicated  is  not expected to be trapped in this  part  of
 the sampling train.  Samples collected are therefore not analyzed for  the
 specific  sulfur species.
                                      10-139

-------
    TABLE D-16.  LEVEL II ORGANIC ANALYSIS RESULTS  -
                 COMPOUNDS FOUND IN SAMPLE 309-2-XRPF-MRPR
Compound
To! uene
Xyl ene
Xyl ene
Xyl ene
C3 Cyclohexane
n-Cg Hydrocarbon
(Nonane)
Benzaldehyde
C3 Benzene
C, Benzene
W
C0 Benzene
X
w
C10 Branched
1 (Hydrocarbon)
C3 Benzene
C,n Unsaturated
1U (Hydrocarbon)
n-C,n Hydrocarbon
10 (Decane)
C3 Benzene
Methyl Styrene
C,, Branched
1 (Hydrocarbon)
C., Branched
1 (Hydrocarbon)
Cr Cyclohexane
' C3 Benzene
C3 Benzene
C4 Bsnzene

Amount (ug/m )
*
14 f
56 f
30 f
54
38

48
24
110
100

46

320
78

220

86
20
16

34

12
96
100
140 f
- Continued -
Scan No.
5
45
50
65
69
78

111
118
127
136

154

169
179

199

209
226
233

240

247
267
274
282

Equal to or less than amount found in blank.

Corrected for blank concentration, amount actually present in
sample rather questionable due to blank level  variations.
                             10-140

-------
                 TABLE D-16.  (Continued)
Compound
C, Benzene
C^ Benzene
C* Benzene
Methyl Benzoate
C,, Branched
. (Hydrocarbon) .
C^ Benzene
n-C,, Hydrocarbon
11 (Undecane)
C, Unsaturated
(Benzene)
Cg Benzene
C, Benzene
Cg Benzene
Cg Benzene
C Benzene
6
Cg Benzene
Cg Benzene
Naphtha! ene
Cg Benzese
C,* Branched
(Hydrocarbon)
Cj2 Branched
(Hydrocarbon)
Cj, Branched
(Hydrocarbon)
Cg Benzene
C,. Unsaturated
Hydrocarbon

	 - 	 _
Amount (yg/m )
18 1
310T
loot
*
110
260 f
780
86

110
30
410
100
20
52
8
170 f
84
54

280

140

84
240

- Continued -
Scan No.
296
322
341
344
346
394
440
480
™ww
492
147
522
542
554
570
584
596
610
623

639

657

682
711


Equal  to or less than amount found In blank.

Corrected for blank concentration, amount actually present 1n
sample rather questionable due to blank level  variations.
                             10-141

-------
TABLE D-16.  (Continued)
Compound
n-C12 Hydrocacbon
(Dodecane)
Methyl Tetrahydronaphthalene
C13 Branched
• (Hydrocarbon)
C,3 Unsaturated
Hydrocarbon
C.3 Branched
• Hydrocarbon
Cg Benzene
Ce Benzene
o
Cg Benzene
C,3 Branched
Hydrocarbon
Methyl Naphthalene
C-3 Branched
Hydrocarbon
C13 Branched
Hydrocarbon
Methyl Naphthalene
Unknown Substituted
Cycl ohexane
Unknown
C,3 Unsaturated
Hydrocarbon
n-C,3 Hydrocarbon
(Tridecane)
C,4 Branched
Hydrocarbon
C3 Tetrahydronaphthalene
C,. Branched
Hydrocarbon

Amount (vg/m )
780
42
160
62
62
8
56
32
46
300
130
36
160
10
14
140
1000
12
28
68
• Continued -
Scan No.
752
763
789
798
807
817
825
852
891
906
918
932
939
957
964
973
1007
1024
1030
1041

         10-142

-------
TABLE D-16.  (Continued)
Compound
Unknown
Unknown
Cg Tetrahydronaphthalene
Unknown Substituted
Cyclohexane
Chloronaphthalene
Biphenyl
C™ Branched
Hydrocarbon
C,. Unsaturated
. Hydrocarbon
Cp Naphthalene
C.. Branched
Hydrocarbon
C-. Branched
Hydrocarbon
Cg Naphthalene
C,, Branched
Hydrocarbon
C« Naphthalene
C2 Naphthalene
n-C14 Hydrocarbon
(Tetradecane)
Unknown aromatic
Cg Naphthalene
Unknown Acid Ester
Clg Branched
Hydrocarbon
C2 Naphthalene
Unknown Aromatic

Amount (vg/m )
2
14
20
82
Internal Standard
Trace
74
18
10
36
130
290
120
24
130
980
100
20
32
40
32
32
- Continued
Scan No.
1047
'1052
1064
1075
1083
ir>S2
1113
1120
1126
1130
1142
1156
1171
1181
1186
1221
1229
1249
1260
1275
1291
1300
-
            10-143

-------
TABLE D-16.
(Continued)
Compound Amount (vg/m )
C15 Branched
Hydrocarbon
C«5 Branched
Hydrocarbon
C15 Branched
Hydrocarbon
€3 Naphthalene
C3 Naphthalene
C3 Naphthalene
C3 Naphthalene
n-C,5 Hydrocarbon
(Pentadecane)
C3 Naphthalene
C, Naphthalene
Cj Naphthalene
C,g Unsaturated Hydrocarbon
•C. Naphthalene
C.g Unsaturated Hydrocarbon
Clg Unsaturated Hydrocarbon
C. Naphthalene
C,g Branched Hydrocarbon
C. Naphthalene
C^ Naphthalene
n-C,fi Hydrocarbon
10 (Hexadecans)
Cjy Unsaturated Hydrocarbon
C^ Naphthalene
n-C17 Branched Hydrocarbon
Methoxybiphenyl
C^ Naphthalene

180

84

310

120
40
52
110
-1000
38
130
140
68
120
40
70
82
96
40
110
990

90
78
58
48
32
- Continued

Scan No.
1318

1334

1347

1357
1363
1379
1394
1420
1432
1439
2457
1483
1502
1513
1525
1534
1545
1571
1586
1604

1615
1630
1645
1663
1682
-
10-144

-------
TABLE D-16.  (Continued)
Compound Amount (yg/m ) Scan No.
C,, Branched Hydrocarbon
C., Branched Hydrocarbon
C.|j Branched Hydrocarbon
C,y Branched Hydrocarbon
Cg Naphthalene
Cg Naphthalene
Cg Naphthalene
n-C17 Hydrocarbon
A/ (Heptadecane)
C,g Branched Hydrocarbon
C» Biphenyl
Phenanthrene (or Isomer)
Unknown
C Naphthalene
Unknown Substituted
Cyclohexane
C,g Branched Hydrocarbon
C,g Branched Hydrocarbon
C.g Branched Hydrocarbon
Ethyl Fluorene (or Isomer)
n-C.g Hydrocarbon
(Octadecane)
C.- Unsaturated
Hydrocarbon
Methyl phenanthrene (or Isomer)
C,* Branched Hydrocarbon
B-C,g Hydrocarbon
1 (Nonadecane)
C-Q Branched Hydrocarbon

190
26
62
100
34
20
52
820

400
16
94
16
14
-76

46
48
56
24
650

170

86
66
490
42

1695
1709
1720
1735
1749
1763
1778
1806

1822
1837
1852
1867
1881
1901

1911
1930
1945
1955
2007

2028

•2088
2123
2192
2263
- Continued -
             10-145

-------
                      TABLE D-16.   (Continued)
Compound
Pyrene (or Isomer)
n-C9n Hydrocarbon
^u (Eicosane)
n"C21 Hydrocarbon
(Heneicosane)
n-Cjo Hydrocarbon
(Docosane)
Dioctylph thai ate
Amount (yg/m )
Trace
310

130
76
(a)
Scan No.
2301
2360

2524
2677
3080
*
  Equal to or less than amount found in blank.
                               10-146

-------
      TABLE D-17.  LEVEL  II ORGANIC ANALYSIS RESULTS  -
                   COMPOUNDS  FOUND IN SAMPLE #309-2-CD-LE
Compound
Benzene
1-C7 Hydrocarbon (Heptane)
Methyl Cyclohexane
Toluene
Unknown Unsat. Hydrocarbon
Si li cone
Naphthalene
Si li cone
n-C-j2 Hydrocarbon (Dodecane)
Methyl Naphthalene
Methyl Naphthalene
n~ci3 Hydrocarbon (Tridecane)
Chloronaphthalene
Si li cone
n-C,, Hydrocarbon (Tetradecane)
n-C,5 Hydrocarbon (Pentadecane)
Dichloronapnthalene
Trimethy 1 naphtha! ene
Sili cone
n-C,g Hydrocarbon (Hexadecane)
C,7 Branched Hydrocarbon
n-C,7 Hydrocarbon (Heptadecane)
C,g Branched Hydrocarbon
Sili cone

Amount (yg/m )
*
1
*
*
0 .5
1
0 .5
3
0 .2
0 .2
0 .2
0 .6
Internal Standard
15
2
2
I.S. Impurity
1
38
3
1
16
2
2
- Continued
Scan No.
20
32
44
68
395
5.7
841
894
944
1078
1115
1178
1278
1307
1418
1628
1649
1656
1683
1818
1911
1994
2012
2090
-
Equal  to or less than amount found in blank.
                                10-147

-------
TABLE D-17.  (Continued)
Compound Amount (pg/m )
n-C18 Hydrocarbon (Octadecane)
C,g Branched Hydrocarbon
Si li cone
n-C,9 Hydrocarbon (Nonadecane)
Dibutylphthalate
n-C0Q Hydrocarbon (Eicosane)
Sili cone
Sili cone
n-C21 Hydrocarbon (Heneicosane)
Sili cone
Sili cone
Sili cone
Dioctylphthalate
Sili cone
Sili cone
'Si li cone
4
1
10
2
1
1
5
6
0.5
6
5
6
3
11
9
19
Scan No.
2158
2MB
2261
2314
2337
2465
2486
2501
2610
2727
2935
3132
3154
3321
3400
3445

          10-148

-------
  TABLE D-18.   LEVEL II ORGANIC ANALYSIS RESULTS -
               COMPOUNDS FOUND IN SAMPLE #312-2-XRPF-MRPR
Compound
Benzene
Methyl cycl ohexane
Toluene
Xylene
Xyl ene
Xylene
Cycl ohexane
Cn Unsat. Hydrocarbon
n-Cg Hydrocarbon (.Nonane)
C3 Benzene
Cycl ohexane
Benzaldehyde
C,Q Branched Hydrocarbon
C,Q Branched Hydrocarbon
C3 Benzene
C3 Benzene
C3 Benzene
C,Q Branched Hydrocarbon
C,Q Branched Hydrocarbon
C3 Benzene
C,Q Unsat. Hydrocarbon
C.Q Unsat. Hydrocarbon
C^ Benzene
n-C,Q Hydrocarbon (Decane)
C. Benzene
Dihydroindene

Amount (pg/m )
*
*
*
24
54
26
26
24
66
18
26
12
38
4
80
42
44
30
32
120
62
60
18
250
22
15
- Continued
Scan No.
20
40
64
163
175
207
216
226
245
261
285
299
306
318
325
341
357
362
374
386
392
409
420
437
445
459
-
Equal  to or less than amount found in blank.
                             10-149

-------
               TABLE D-18.  (Continued)
Compound • Amount (yg/m ) Scan No.
Unknown
C,, Branched Hydrocarbon
C,, Unsat. Hydrocarbon
C, Benzene
C. Benzene
C. Benzene
C^ Benzene
C,, Branched Hydrocarbon
Methyl Benzoate
C,, Unsat. Hydrocarbon
C,., Branched Hydrocarbon
C,, Branched Hydrocarbon
C,.j Branched Hydrocarbon
C,.j Unsat. Hydrocarbon
/n-C\i Hydrocarbon (Undecane)
Decahydronaphthalene, 2-Methyl
Cc Benzene
Cc Benzene
Cg Benzene
Cg Benzene
Naphthalene
C,- Branched Hydrocarbon
C,- Branched Hydrocarbon
C.J2 Branched Hydrocarbon
C]2 Branched Hydrocarbon

12
72
18
48 +
62 +
28 +
25 +
12.
*
80
no
160
"so
160
570
44
38
180
14
22
58 1
86
34
162
64
- Continued
467
484
495
506
515
521
534
542
547
557
560
570
581
616
647
671
681
702
716
734
752
761
769
781
792
-
Equal to or less than amount found in blank.

Corrected for blank concentration.  Amount  actually  present
in sample rather questionable due to blank  level  variations
                        10-150

-------
TABLE D-18.  (Continued)
Compound Amount (yg/m3)
CK Benzene
D
Cc Benzene
n"^12 Hydrocarbon (Dodecane)
Cg Benzene
Cg Benzene
C,£ Branched Hydrocarbon
Methyl Tetrahydronaphthalene
C-J3 Branched Hydrocarbon
Methyl naphthalene
Methyl naphthalene
n-C,2 Hydrocarbon (Tridecane)
36
no
400
10
12
114
96
62
330
240
470
Chloronaphthalene Internal Standard
C« Unsat. Naphthalene
C« Naphthalene
Cp Naphthalene
cl Naphthalene
Cg Naphthalene
n-c,4 Hydrocarbon (Tetradecane)
C« Naphthalene
C« Naphthalene
C, Unsat. Naphthalene
C,g Unsat. Hydrocarbon
.n-C,5 Hydrocarbon (Pentadecane)
C, Naphthalene
C, Naphthalene
t,g Branched Hydrocarbon
C3 Naphthalene

20
22
130
82
350
440
140
54
78
170
490
44
72
60
72
- Continued
Scan No.
810
831
859
870
881
888
939
970
989
1015
1071
1152
1158
1190
1219
1227
1247
1274
1279
1305
1366
1392
1459
1484
1544
1560
1575
-
              10-151

-------
TABLE D-18.  (Continued)
Compound Amount (yg/m )
Cjg Branched Hydrocarbon
n-C-ic Hydrocarbon (Hexadecane)
C,7 Branched Hydrocarbon
C,^ Branched Hydrocarbon
n-C-,7 Hydrocarbon (Heptadecane)
C,, Unsat. Hydrocarbon
Phenanthrene (or isomer)
Phenanthrene (or Isomer)
n-C,0 Hydrocarbon (Octadecane)
to
C,g Branched Hydrocarbon
Methyl phenanthrene (or isomer)
n-C,g Hydrocarbon (Nonadecane)
n-C2Q Hydrocarbon (Eicosane)
n-C2i Hydrocarbon (Heneicosane)
Dfoctylphthalate
120
350
48
190
260
200
28
10
220
100
22
200
100
66
421-
Scan No.
1619
1634
1663
1723
1809
1825
1862
1867
1973
1993
2062
2135
2288
2435
2948

          10-152

-------
      TABLE  D-20.
LEVEL II ORGANIC ANALYSIS RESULTS -
COMPOUNDS FOUND IN SAMPLE #313-2-XRPF-MRPR
Compound Amount (vg/m ) Scan No.
Benzene
Methylcyclohexane
Toluene
CQ Unsat. Hydrocarbon
G£ Benzene
C« Benzene
Cq Branched Hydrocarbon
Cg Benzene
C3 Cyclohexane
Cg Unsat. Hydrocarbon
n-Cg Hydrocarbon (Nonane)
C« Benzene
C. Cyclohexane
C,Q Branched Hydrocarbon
C,Q Branched Hydrocarbon
C3 Benzene
C, Benzene
C,g Unsat. Hydrocarbon
C- Benzene
C,Q Unsat. Hydrocarbon
C, Benzene
n-C,Q Hydrocarbon (Decane)
C3 Benzene
C. Benzene
C,, Branched Hydrocarbon
C,.j Unsat. Hydrocarbon

*
*
*
16
38
no
12
56
62
64
170
38
48
240
200
76
66
44
320
150
34
250
30
40
140
40

23
43
69
100
172
18^
198
215
224
234
253
271
294
315
339
351
370
387
399
423
435
450
454
458
499
510
- Continued -
Equal to or less than amount found in blank.
                             10-153

-------
          TABLE  D-19.   LEVEL II  ORGANIC ANALYSIS  RESULTS -
                       COMPOUNDS FOUND IN SAMPLE  312-2-CD-LE
Compound
Benzene
Methyl Cyclohexane
To! uene
Chi oronaphthal ene
n-C.. Hydrocarbon
(Tetradecane)
n-C15 Hydrocarbon
(Pentadecane)
n-C,K Hydrocarbon
At> (Hexadecane)
C,y Branched Hydrocarbon
n"^17 Hydrocarbon
(Heptadecane)
Cjg Branched Hydrocarbon
n-C1ft Hydrocarbon
10 (Octadecane)
Cjg Branched Hydrocarbon
B-CJQ Hydrocarbon
(Monadecane)
n-C2n Hydrocarbon
(Elcosane)
n-C2, Hydrocarbon
(Heneicosane)
n-Cp2 Hydrocarbon
(Docosane)
Dioctylphthalate
2
Amount (vg/m )
*
*
*
Internal Standard
1

2

4
1
6

2
6
2
4
-
2

2
Trace

6
Scan No.
23
42
58
111
1247

1451

1636
1731
1811

1828
1977
1997
2133

2288

2438
2582

2983
  Equal to or less than amount found 1n blank.
Trace - Detected but too low to quantltate (0.05 - 1.0 vg/m3).
                                   10-154

-------
                     TABLE D-20.   (Continued)
Compound Amount (yg/m^) Scan No.
C. Benzene
C. Benzene
C. Benzene
C. Benzene
Methyl benzoate
C. Benzene
C. Benzene
C,, Unsat. Hydrocarbon
C,, Branched Hydrocarbon
C,, Unsat. Hydrocarbon
n-C|-j Hydrocarbon (Undecane)
C.J2 Branched Hydrocarbon
Cg Benzene
Cg Benzene
Cg Benzene
Naphthalene
C|2 Unsat. Hydrocarbon
C2 Indene
k Indene
C*2 Unsat. Hydrocarbon
12 Hydrocarbon (Dodecane)
kg Unsat. Hydrocarbon
C,. Branched Hydrocarbon
Unknown Substituted Cyclohexane
Tetrahydromethyl Naphthalene
'C,, Branched Hydrocarbon

78*
12G*
40*
34*
*
lot
190
290
120
630
950
140
22
42
68
220 *
66
150
66
340
680
200
66
80
150
120

522
531
538
552
556
559
578
589
601
638
668
704
725
736
766
778
793
803
814
853
881
910
925
940
955
991
- Continued -
*
  Equal to or less than amount found in blank.

  Corrected for blank concentration.  Amount actually present
  In sample rather questionable due to blank level variations.
                                 10-155

-------
                  TABLE D-20.  (Continued)
     Compound                 Amount (vg/m  )         Scan No,
Methylnaphthalene                   450               1011
C13 Unsat. Hydrocarbon              120               1027
C.jg Unsat. Hydrocarbon              328               1036
Methylnaphthalene                   140               1042
C.j3 Unsat. Hydrocarbon               48               1061
C,, Tetrahydronaphthalene             82               1072
n-C.j3 Hydrocarbon (Tridecane)       810               1088
Chloronaphthalene             Internal  Standard        1170
Blphenyl                             36               1174
C.J4 Branched Hydrocarbon            130               1190
C2 Naphthalene                      150               1207
Cj4 Branched Hydrocarbon            160               1216
C2 Naphthalene                      210               1234
C,^ Branched Hydrocarbon            150               1246
C2 Naphthalene                      560               1263
n-C-j4 Hydrocarbon (Tetradecane)     840  •             1291
C2 Naphthalene                       20               1298
Unknown                              76               1307
C2 Naphthalene                      150               1322
C-jg Branched Hydrocarbon             54               1353
C,g Branched Hydrocarbon            140               1366
Methyl Biphenyl                     120               1383
Methyl Biphenyl                      30               1399
C,g Branched Hydrocarbon            350               1411
C3 Naphthalene                      180               1424
C3 Naphthalene                      150               1468
   j 5 Hydrocarbon (Pentadecane)    1000               1483


                                         - Continued -
                            10-156

-------
                   TABLE D-20.   (Continued)
Compound Amount (ug/m )
C3 Naphthalene
C3 Naphthalene
C, Naphthalene
C,, Branched Hydrocarbon
^Methyl Biphenyl
Unknown
Alky! Subst. Cyclopentanedione
n-C,g Hydrocarbon (Hexadecane)
C. Naphthalene
C-J7 Hydrocarbon Branched
£.7 Hydrocarbon Branched
0,7 Unsat. Hydrocarbon
n-C^7 Hydrocarbon (Heptadecane)
C,« Unsat. Hydrocarbon
1 Phenanthrene (or Isomer)
n-C,g Hydrocarbon (Octadecane)
C,g Branched Hydrocarbon
Methyl phenanthrene (or isomer)
n-C-iQ Hydrocarbon (Nonadecane)
n-C20 Hydrocarbon (Eicosane)
Pyrene (or isomer)
n-Cj-j Hydrocarbon (Heneicosane)
n-C22 Hydrocarbon (Doeicosane)
Dioctylphthalate
130
120
92
140
130
100
160
690
28
410
98
100
540
500
92
580
260
Trace
490
360
Trace
210
no
12001-
Scan No.
1512
1533
1571
1586
1600
1630
1645
1665
1746
1758
1775
1821
1834
1855
1893
2009
2028
2088
2169
2321
2410
2470
2616
3013
^Corrected for blank concentration.  Amount actually present
  1n sample rather questionable due to blank level  variations.
Irace - Detected but too low to quantitate (0.05 -  1.0 yg/m ).
                                   10-157

-------
  TABLE  D-21.   LEVEL II  ORGANIC ANALYSIS RESULTS -
                COMPOUNDS FOUND IN SAMPLE 313-2-CD-LE
Compound Amount
Benzene
Methyl cycl ohexane
Tol uene
Chi oronaphthal ene Internal
C 14 Branched Hydrocarbon
n-c . . Hydrocarbon
(Tetradecane)
n-C 15 Hydrocarbon
(Pentadecane)
n-C .g Hydrocarbon
(Hexadecane)
C ,j Branched Hydrocarbon
n-C 17 Hydrocarbon
(Heptadecane)
n-C ,g Hydrocarbon
(Octadecane)
((v9/m3)
*
*
*
Standard
2
2

2
2

2
1

2
Dioctylphthalate 22
Scan No.
27
45
92
1259
1541
1582

1765
1938

1957
2107

2270
3188
Equal to or less than amount found in blank.
                         10-158

-------
ADDITIONAL DATA
         10-159

-------
o
en
o
                                 TABLE 1.  SUMMARY OF RESULTS OF EMISSIONS ASSESSMENT

                                           FOR GAS-FUELED INTERNAL COMBUSTION SOURCES
Gas-Fueled Gas Turbines
Pollutant
N0x
Total hydrocarbons
CO
Partlculate
sov
Elec.
Emission
Factor
(ng/J)
168
23.2
64.8
5.1
0.26
Gen.
Severity
Factor
0.17
0.020
0.0003
0.0019
<0.0001
Industrial
Emission
Factor
(ng/J)
130
8.6
48.8
5.1
0.26
Severl ty
Factor
0.52
0.025
0.0007
0.0062
<0.0001
Gas Reciprocating Engines
Elec.
Emission
Factor
(ng/J)
1549
528
340
5.7
0.26
Gen.
Severity
Factor
7.1
1.7
0.0051
0.0068
0.0002
Industrial
Emission
Factor
(ng/J)
1549
528
340
5.7
0.26
Severity
Factor
5.7
1.3
0.0040
0.0055
0.0002

-------
                                  TABLE 2.  SUMMARY OF RESULTS OF EMISSIONS ASSESSMENT
                                            FOR OIL-FUELED INTERNAL COMBUSTION SOURCES
o
 i
en
Distillate Oil-Fueled Gas Turbines
Pollutant
NOX
Total hydrocarbons
CO
Partlculate
S0x
so3
Trace Elements
Copper
Nickel
Phosphorus
Elec.
Emission
Factor
(ng/J)
311
17.5
43.8
13.0
33.1
1.5

0.58
0.53
0.13
Gen.
Severity
Factor
0.32
0.015
0.0002
0.0049
0.0089
0.056

0.085
0.16
0.037
Industrial
Emission
Factor
(ng/J)
207
3.6
101
13.0
33.1
1.5

0.58
0.53
0.13
Severity
Factor
0.83
0.010
0.0014
0.016
0.029
0.18

0.28
0.51
0.12
Distillate 011 Reciprocating
Elec.
Emission
Factor
(ng/J)
1392
52
266
14.1
101
1.8

0.45
0.56
0.097
Gen.
Severity
Factor
6.4
0.16
0.0040
0.019
0.097
0.23

0.23
0.60
0.10
Engines
Industrial
Emission
Factor
(ng/J)
1392
52
266
14,1
101
1.8

0.45
0.56
0.097
Severity
Factor
5.1
0.13
0.0032
0.015
0.077
0.18

0.20
0.48
0.082

-------
                            TABLE 23.  CHARACTERISTICS OF  INTERNAL COMBUSTION SITES TESTED
o
en
Combustion
Source Type
Gas Turbine
Distillate 011
Turbine



Distillate Oil
Reciprocating
Engine



Site
No.
(CllO
#111
#112
#306
#307
#308
#309
#310
#311
#312
#313
*
Engine Model
TPM
TPM
TPM
TPM
TPM
TPM
EMD
EMD
EMO
EMD
EMD
FT 4A-11DF
FT 4A-11DF
GG 4C-1D-DF
FT 4A-8LF
FT 4A-8LF
FT 4A-11LF
64-5E4
64-5E4
64-5E4
654
654
Rated Capacity
Base Load Peak Load
20.6
20.6
28
14.5
14.5
20.2
2.5
2.5
2.5
2.5
2.5
MM
MW
MW
MW
HW
MW
MW
MU
MM
MW
MW
22.6
22.6
30
22
22
26
2.75
2.75
2.75
2.75
2.75
MW
MW
MW
MW
MW
MW
MU
MW
MW
MW
MW
5
5
4
8
8
5
8
8
8
1
1
Age
Years
Years
Years
Years
Years
Years
Years
Years
Years
Year
Year
Pollution Control
Device
None
CI-2 Fuel Addi
None

tlve
CI-2 Fuel Additive
CI-2 Fuel Add1
None
None
None
None
None
None
tive





               TPM - Turbo Cower and Marine Systems
               EMD - Electromotive Division of General Motors

-------
                                                              TVAB1.B  2B*:
o
 I
en
OJ
Combustion
Source Type
Gas Turbine
Distillate Oil
Turbine



Distillate Oil
Reciprocating
Engine






Site
No.
#110
#111
#112
#306
#307
#308
#309
#310
#311
#312
#313
#309-2
#312-2
#313-2
Operating
Load
19.5 MW
18.0 MW
22.5 MW
14.5 MW
14.5 MW
20.2 MW
2.5 MW
2.5 MW
2.5 MW
2.5 MW
2.5 MW
2.5 MW
2.5 MW
2.5 MW
% Base
Load
94. 7%
87.4%
80.4%
100 %
100 %
100 %
100 %
100 %
100 %
100 %
100 %
100 %
100 %
100 %
Fuel Used
Natural Gas
JP-5
JP-5
JP-5
JP-5
JP-5
No. 2 Diesel
No. 2 Diesel
No. 2 Diesel
No. 2 Diesel
No. 2 Diesel
No. 2 Diesel
No. 2 Diesel
No. 2 Diesel
Fuel Rate
7,100 Nm3/hr
7.50 m3/hr
8.18 m3/hr
5.49 m3/hr
5.49 m3/hr
7.77 m3/hr
0.70 m3/hr
0.70 m3/hr
0.70 m3/hr
1.02 m3/hr
1.02 m3/hr
0.70 m3/hr
1.02 m3/hr
1.02 m3/hr
Energy
Input
294 GJ/hr
278 GJ/hr
303 GJ/hr
204 GJ/hr
204 GJ/hr
288 GJ/hr
26.2 GJ/hr
26.2 GJ/hr
26.2 GJ/hr
39.9 GJ/hr
39.9 GJ/hr
26.2 GJ/hr
39.9 GH/hr
39.9 GJ/hr

-------
      TABLE 31.  SUMMARY OF RESULTS  FROM SPECIFIC  INORGANIC ANALYSES
Combustion Site -
Source Type No.
Mass Emissions (mg/m3)
Hg As
Sb S04* Cl F N03*
Gas Turbine
110
0.0091   <0.0014   <0.0016
0.89
Distillate Oil  111
  Turbine
                112
                306
                307
                308
        0.00018  <0.0056   <0.0046    -     4.9   0.010  0.029
        0.0014   <0.0033    0.013    0.23   2.5   0.049  0.018
       <0.00074  <0.00009   0.0017   0.035   -
        0.0016   <0.00011   0.0019   0.018   -
       <0.00033  <0.00019  <0.00016  0.068   -
Distillate Oil  309
  Reciprocating
  Engine        310
                311
                312
                313
        0.00016  <0.00012  <0.00020  0.74
        0.00077  <0.00017  <0.0019   0.74
       <0.00091  <0.00020  <0.00024  0.98
        0.00003  <0.00011  <0.00030  0.50
       <0.0011    <0.00011  <0.00019  0.74
 Values are from particulate samples only.
NOTE:  This table is a summary of Tables D-l, D-3, D-4, and D-10
       from the document.
                                      10-164

-------
                                    TAOUE  a*. ,
                                               . ««AV.*.WW.TI**« „ .«f_?.M*.T^ rO«t  INTERNAL COMBUSTION SITES
O
 I
Ol
01
Sample
Identification
Number
110-XR-Wet-S-KD-2
110-XR-Dry-S-KD-2
110-PR-0-KD-2
110-XM-S-KD-2
111-XR-S-KD-2
lll-PR-O-KD-2
lll-XM-S-KD-2
lll-PF-S-KD-2
112-XR-Wet-S-KD-2

112-XR-Dry-S-KD-2
112-PR-0-KD-2
112-XM-S-KD-2
306-PR
306-MR
306-XR
306-PF
306-CDSa
Residue
Weight
11.
9.
0.
0.
38.
4.
0.
1.
19.

15.
0.
1.
0.
0.
3.
0.

7
9
4
6
7
3
6
0
4

3
4
0
5
6
8
1

Aliquot
Factor
x
x
x
x
x
x
x
x
X

X
X
X
0.2 x 0.
0.2 x 0.
0.2 x 0.
0.2 x 0.

10
10
10
10
10
10
10
10
10

10
10
10
75
75
95
49 x 0.75

Total
Weight
(mg)
117.
98.
3.
6.
386.
43.
6.
9.
194.

152.
3.
10.
3.
4.
20.
1.

2.
8 /
7
5
7
3
4
8
o
v
6 /
7
0
33
00
00
36

Blank
Corrected
Weight


3
6
147
42
6
8

107

3
9
1
1
12
0

0

.4
.0
.9
.8
.0
.6

.8

.4
.7
.11
.78
.8
.30

Net Sample
Nonvolatile
Content
(mg/ni3)
0

0.
0.
4.
1.
0.
0.

3.

0.
0.
0.
0.
0.
0.


1
2
9
4
2
3

3

1
3
03
05
35
01

         }Not analyzed because of small  condensate volume.
                                                                                                                (Continued)

-------
                                                    TABLE 35.  (CONTINUED)
o
o>
.•..•••....,1 .....-" ••."•" ;" ,|,' ',', "•—_•- 'r 	 • "— •
Sample
Identification
Number
307-PR
307-MR
307-XR
307-PF
307- CDS
308- PR
308-MR
308- XR
308-PF
308- CDS
309-PR
309-MR
309- XR
309-PF
309-CDS
310-PR
310-MR
310-XR
310-PF
3 10- CDS


Residue
Weight
0.5
0.7
8.2
0.1
0.5
0.7
1.0
5.5
0.1
0.5
0.7
74.6
208.2
0.0
1.5
0.7
77.3
199.?
1.1
1.0


Aliquot
Factor
0.2 x 0.75
0.2 x 0.75
0.2 x 0.95
0.2 x 0.50
0.2 x 0.75 x 0.67
0.2 x 0.75
0.2 x 0.75
0.2 x 0.95
0.2 x 0.51
0.2 x 0.75 x j°r|
0.2 x 0.75
0.2 x 0.75
0.2 x 0.95
0.2 x 0.47 x 0.75
0.2 x 0.75 x 2%~
0.2 x 0.75
0.2 x 0.75
0.2 x 0.9!i
0.? x 0.53
0.2 x 0.75 x i™
t. --'.'•

Total
Weight
(ing)
3.33
4.67
43.16
1.00
4.98
4.66
6.67
28.95
0.01
5.93
4.67
497.33
1,095.79
0.00
17.20
8.67
515.33
1,048.42
10.38
12.91


Blank
Corrected
Weight
(nig)
0
0
43.16
0
0
4.66
6.67
21.99
0.01
5.93
4.67
497.33
1,080.19
0.00
17.20
1.89
505.61
1,004.72
6.78
4 53


Net Sample
Nonvolatile
Content
(mg/m3)
0
0
1.40
0
0
0.15
0.22
0.71
0
0.19
0.16
17.47
37.95
0.00
0.60
0.07
1 7 . 88
35.52
0.25
0.16

(Con 1 in lied)

-------
TABLE  3S..     < CONTINUED)
Sample
Identification
Number
311-PR
311-MR
311-XR
311-PF
311-CDS
312-PR
312-MR
? 312-XR
5 312-PF
312-CDS
313-PR
313-MR
313-XR
.313-PF
313-CDS
Residue
Weight
(mg)
2.9
72.2
125.8
10.2
2.1
1.0
131.6
196.5
0.6
2.3
2.0
49.7
78.6
0.6
4.1
Aliquot
Factor
0.2 x 1.00
0.2 x 0.75
0.2 x 0.95
0.2 x 0.50
0.2 x 1.0 x 0.5085
0.2 x 0.75
0.2 x 0.75
0.2 x 0.95
0.2 x 1.0 x 0.5028
0.2 x 0.75 x ^|
0.2 x 0.75
0.2 x 0.25
0.2 x 0.95
0.2 x 1.0 x 0.4471
0.2 x 0.75 x 0.6947
Total
Weight
(mg)
14.50
481.33
662.11
102.00
20.65
6.67
877.33
1,034.21
5.97
20.78
13.33
994.00
413.68
6.71
39.35
Blank
Corrected
Weight
(n»g)
11.32
477.77
634.84
100.2
18.65
3.73
873.12
1,007.57
4.17
15.04
1.69
991.00
392.89
1.25
17.33
Net Sample
Nonvolatile
Content
(mg/m3)
0.39
16.56
21.98
3.47
0.64
0.12
29.17
33.66
0.14
0.50
0.06
32.94
13.06
0.04
0.58

-------
        TABLE 41.  POM EMISSIONS FROM DIESEL ENGINE SITES 309-313* (yg/m3)
Compound
Naphthalene
Methyl naphthalenes
(^-substituted naphthalenes
(^-substituted naphthalenes
(^-substituted naphthalenes
Cg-substituted naphthalenes
Biphenyl
Methyl bipheny Is
C.-substituted biphenyls
Dibenzothiophene
Methyl di benzothi ophenes
Phenanthrene
Methyl phenanthrenes
Dimethyl phenanthrenes
Trinethyl phencenthrenes
Ethyl fluorene
Pyrene
Detection limit, Wg/m3
309
16
BL
30
8
BL
BL
2
BL
BL
5
BL
8
20
4
BL
BL
BL
0.08
309-2
170
461
506
631
462
120
T+
BL
BL
BL
BL
94
86
BL
BL
24
T
0.05
310
18
22
12
4
BL
BL
6
BL
BL
2
0.8
3
8
0.8
2
BL
BL
0.08
311
36
BL
64
BL
8L
BL
10
BL
BL
BL
BL
BL
60
24
BL
BL
BL
0.08
312
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
BL
77
46
12
BL
BL
0.08
312-2
58
570
798
266
BL
BL
BL
BL
BL
BL
BL
38
22
BL
BL
BL
BL
0.05
313 3; 3-2
3 22?
BL 590
BL 1 090
BL 672
BL 28
BL EL
15 3~
BL 150
BL £L
BL BL
BL BL
BL 9:
150 T
58 tL
15 BL
BL BL
BL T
0.1 0.05
POMs were found only in XAD-2/XAD-2 module rinse samples

T indicates trace, 0.5-1.0 pg/m
NOTE:  This  table is a  summary of Tables  D-16 through D-21
       from  the document.
                                           10-168

-------
TABLE 42.   SUMMARY OF EMISSION FACTOR DATA FOR PARTICULAR,  SOX AND
           TOTAL ORGANICS FROM INTERNAL COMBUSTION SOURCES TESTED
Combustion
Source Type
Gas-Fueled
Gas Turbine
Distillate
Oil-Fueled
Gas Turbine




Kstillate Oil
Reciprocating
Engine






Site
No.
mo
#111
#112
#306
#307
#308
Mean x
s(x)
ts(x)/x
#309
#310
#311
#312
#313
#309-2
#312-2
#313-2
Mean x
s(x)
ts(x)/x
Emission
Particulate
ND
21.4
4.2
2.1
2.6
4.9
7.0
3.6
1.4298
11.0
20.8
33.0
6.6
10.0
10.8
8.8
11.5
14.1
3.1
0.5176
Factor, ng/J
S0x
ND
28.5
30.6
<4.2
<4.2
<4.2
14.3
6.2
1.2038
83.1
153.1
153.1
61.2
74.3
83.3
106.3
97.0
101.4
12.2
0.2856

Total
Organics
11.1
27.9
9.0
57.8
2.8
7.5
21.0
10.2
1.3425
47.7
65.9
74.1
54.6
54.4
- 58.2
45.8
54.4
56.9
3.3
0.1366
     Not determined
     Standard deviation of the mean
     Variability
                                  10-169

-------
     TABLE 43.   COMPARISON  OF  CRITERIA POLLUTANT EMISSIONS FACTORS FOR
                 GAS AND  DISTILLATE  OIL-FUELED GAS TURBINES

Combustion
Source Type
Industrial
Gas -Fueled
Gas Turbines
Industrial
Distillate
Oil -Fueled
Gas Turbines

Electricity
Generation
Gas-Fueled
Gas Turbines


Electricity
Generation
Distillate
Oil -Fueled
Gas Turbines

Emission Factor, ng/J
Data Source
Existing Data
EPA
Existing Data
EPA

Current Study
Existing Data
Combined
Existing Data &
Current Study
EPA
Current Study
Existing Data
Combined
Existing Data &
Current Study
EPA
NOX
130
123
207
208

ND
168

168

169
ND
311
311
208
HC
8.6
9.4
3.6
17.0

11.1
15.0

14.7

17.2
21.0
4.6
11.1
17.0
CO
48.8
49.1
101
47.1

ND
29.7

29.7

47.0
ND
20.1
20.1
47.1
Part
ND
ND
ND
15.3

ND
5.1

5.1

5.7
7.0
15.5
13.0
15.3
SO
X
ND
0.26
ND
43GS

ND
4.4

4.4

0.26
14.3
41 .0
33.1
430S
ND - No data
S  - Height percent of  sulfur in fuel
                                      10-170

-------
       TABLE 44.   COMPARISON OF CRITERIA POLLUTANT EMISSION FACTORS
                  FOR GAS AND DISTILLATE OIL ENGINES

Combustion
Source Type
Industrial
Gas Engines '

Industrial
Distillate
Oil Engines
Electricity
Generation
Gas Engines

Electricity
Generation
Distillate
Oil Engines



Data
Source
Existing
Data
EPA
Existing
Data
EPA
Existing
Data
EPA
Current Study
Existing
Data
.Combined
Existing Data
and Current
Study
EPA


NUX
1550

1390
1390
1420
1550
1230
ND
1390

1390

1420
Emi

HC
528

573
51
115
528
17
56.9
51

52

115
ssion Factor,

CO
340

176
266
312
340
47
ND
266

266

312
ng/J

Part
ND

ND
ND
102
ND
5.7
14.1
ND

14.1

102


S0x
ND

0.26
ND
430S
ND
0.26
101
ND

101

430S
KD - No  data
S - Weight  percent of sulfur in fuel
                                    10-171

-------
                             TABLE 45.   MEAN SOURCE SEVERITY FACTORS FOR CRITERIA POLLUTANTS
o
f\>
Gas Turbine
Pollutant
NOX
HC
CO
Partlculate
soy
Industrial
. Gas
0.52
0.025
0.0007
0.097
<0.0001
Industrial
Distillate
on
0.82
0.010
0.0014
0.016
0.029
Elec.
Gen.
Gas
0.17
0.021
0.0003
0.0019
<0.0001
Elec. Gen.
Distillate
Oil
0.32
0.052
0.0002
0.0049
0.0089
Industrial
Gas
5.66
1.33
0.0040
0.0055
0.0002
Reciprocating Engine
Industrial
Distillate
011
5.09
0.13
0.0032
0.015
0.078
Elec.
Gen.
Gas
7.09
1.65
0.0051
0.0068
0.0002
Elec. Gen.
Distillate
011
6.35
0.16
0.0040
0.019
0.097

-------
            TABLE 46.   SUMMARY OF EMISSION FACTOR DATA FOR
                       PARTICULATE SULFATE FROM INTERNAL
                       COMBUSTION SOURCES TESTED*

Combustion
Source Type
Site
No.
Emission
Factor
(ng/J)
Sulfur in Particulate SOj
Sulfur in Fuel

Distillate Oil
Fueled Gas
Turbine



Kstijlate Oil
Reciprocating
Engine




#112
1306
#307
#308
Mean x
s(x)
ts(x)/x
#309
#310
#311
#312
#313
Mean x
s(x)
ts(x)/x
0.335
0.030
o.on
0.077
0.113
0.075
2.1143
0.383
0.520
0.971
0.268
0.468
•0.522
0.120
0.6385
0.731%
>0.476%
>0.175%
>1.222r»
0.651%
0.222%
1.0835
0.308%
0.226%
0.423%
0.292%
0.420%
0.334%
0.038%
0.3190
The particulate sulfate data reported include metallic sulfates and a small
amount of condensed sulfuric acid aerosols.
s(x)     - Standard deviation of the mean.
ts(x)/x  - Variability.
                                   10-173

-------
TABLE 47   SUMMARY OF EMISSION FACTOR DATA FOR TRACE ELEMENTS FROM
           ELECTRICITY GENERATION DISTILLATE OIL-FUELED GAS TURBINES TESTED
Trace
Element
Pb
Ba
Sb*
Sn
Cd
Mo
Br
Se
As*
Zn
Cu
Ni
Co
Fe
Mn
Cr
V
Emission Factor
Site
111
27
29
< 5.2
2.7
2.9
1.9
<11.5
2.3
< 0.31
251
65
67
1.1
377
1487
2.7
1.3
Site
112
90
293
< 5.2
42
3.8
2.8
7.1
< 5.2
< 0.31
607
649
94
1.6
356
8.6
38
1.7
Site
306
59
13
• < 2.0
115
1.0
3.6
6.9
1.9
< 2.0
314
649
1110
7.3
419
188
12
9.8
Site
307
<46
0.07
< 2.1
3.6
0.3
2.9
< 0.07
0.3
< 2.1
<201
649
461
3.8
5
335
15
2.7
Site
308
84
8
14.5
9.6
5.8
6.7
1.8
1.9
< 2.1
96
879
900
5.7
124
4.9
31
< 1.1
• pg/o
X
61
12.6
5.8
35
2.8
3.6
5.5
2.3
< 1.4
294
578
526
3.9
256
405
20
3.3

s(x)
11
6.2
2.3
21
0.98
0.82
2.0
0.81
0.43
86
136
210
1.2
81
277
6.5
1.7

t«(x)
X
0.53
1.55
1.09
1.71
0.99
0.64
1.04
0.96
0.87
0.81
0.65
1.11
0.84
0.88
1.90
0.91
1.37

\
_
32
12
94
5.5
-
11
4.6
2.6
533
_
1110
7.2
481
1175
38
7.9
                                                                         (Continued)

-------
                                                 TABLE 47.   (CONTINUED)
tn
Trace
Element
Ca
K
P
Si
Al
Mg
Na
B
Be
Hg*
Emission Factor, pg/J
Site
111
314
335
184
1256
57
<230
691
82
< 0.
0.
Site
112
460
230
92
110,970
293
1068
6280
3770
044 0.11
84 10
Site
306
565
118
230
533
< 59
152
<440
< 15
< 0.12
0.50
Site
307
<107
<107
< 46
< 30
< 50
< 63
<460
< 2.3
< 0.14
0.15
Site
308
205
135
80
482
90
61
768
< 12
< 0.38
0.06
X
330
185
127
575
64
127
590
28
0.16
0.39
s(x)
83
43
35
254
8.9
41
82
18
0.06
0.18
ts(JL)
X
0.70
0.65
0.76
1.40
0.44
1.02
0.44
2.08
1.02
1.46
*u
_
-
223
1382
-
256
-
86
0.32
0.95
        *  Sb, As, and Hg emissions were determined by AA.
        x  =   Mean emission factor
        s(x)  =  Standard deviation of the mean.
        ts(x)/x  = Variability.
        x  = x + ts(x).

-------
TABLE 48.  SUMMARY OF EMISSION FACTOR DATA FOR TRACE ELEMENTS FROM
           ELECTRICITY GENERATION  DISTILLATE OIL-FUELED  GAS TURBINES
           BASED ON COMBINED CURRENT STUDY AND EXISTING  DATA
Trace
El ement
Pb
Ba
Cd
Mn
V
Mg
Be
Mean Emission
Factor x
(P9/0)
25
8.4
1.8
145
1.9
100
0.14
s(x)
(pg/J)
7.8
2.6
0.52
99
0.63
27
0.03
ts(x) xu
X (pg/J)
0.67
0.68
0.62
1.46 357
0.70
0.65
0.46
s(x) - Standard  deviation of the mean,
ts(x)/x -  Variability.
x  « x + ts(x).   xu  values are not computed for trace element  emissions
                 with ts(x)/x < 0.7.
       TABLE  49.  MEAN SOURCE SEVERITY FACTORS FOR TRACE ELEMENT
                 EMISSIONS FROM DISTILLATE OIL-FUELED GAS TURBINES
Mean Source Severity Factor
Trace
Element
Cu
N1
P
Emission
Factor
(pg/J)
578
526
127
•• - • — • —
TLV
(mg/m3)
0.20
0.10
0.10
Elec. Gen.
Distillate Oil-
Fueled Gas Turbine
0.085
0.16
0.037
Industrial
Distillate 011-
Fueled Gas Turbine
0.28
0.51
0.12
                                    10-176

-------
o
 I
Trace
Element
Pb
Ba
*
Sb
Sn
Cd
Mo
Br
Se
*
As
Zn
Cu
N1
Co
Fe
Mn
Cr
V
Emission Factor,
Site
309
33
4.7
6.4
6.4
< 3.3
33
5.2
0.8
< 2.2
147
644
955
6.0
<408
20.9
33
0.78
Site
310
34
3.0
< 2.2
<11.3
2.1
14
2.2
< 1.5
< 2.2
15
533
422
8.0
38
26.6
47
2.44
Site
311
14
<13.8
< 2.2
7.1
< 1.9
3
< 6.7
< 1.1
< 2.2
88
422
622
10.0
211
5.3
13
0.51
Site
312
27
12.9
< 2.2
10.0
2.3
10
2.0
3.7
< 2.2
377
244
444
3.6
<333
19.8
31
0.76
Site
313
22
33.3
44.4
<10.7
5.8
2
4.1
< 3.6
< 2.2
63
422
375
I-1
<555
8.0
6
0.25
pg/J
X
26
14
12
9.1
3.1
12
4.0
2.1
2.2
178
453
563
5.7
325
16
26
0.95

s(x)
3.7
5.4
8.3
1.0
0.72
5.6
0.89
0.62
0.01
56
66
106
1.6
94
3.9
7.4
0.39

ts(X)
X
0.40
1.11
2.00
0.30
0.64
1.25
0.61
0.81
0.01
0.88
0.41
0.52
0.77
0.80
0.68
0.79
1.13

'u
_
28
35
-
-
28
-
3.9
334
-
-
10.1
585
-
46
2.02
                                                                                                     (Continued)

-------
                                                     TABLE 50.   (CONTINUED)
o
00
Trace
Element
Ca
K
P
SI
Al
Mg
Na
B
Be
ng
Emission Factor,
Site
309
<178
<344
< 93
<733
62
< 91
1110
< 33
< 0.052
0.07
Site
310
73
134
133
<191
100
35
511
11
0.031
0.20
Site
311
89
97
100
189
69
< 5
5330
< 5.1
< 0.018
0.16
Site
312
133
175
40
229
< 40
44
<287
< 4.2
< 0.009
0.16
Site
313
710
146
120
165
58
37
<889
2.7
0.029
0.09
pg/J
x
237
179
97
301
66
44
1625
11
0.028
0.13

s(x)
120
43
16
108
9.7
15
937
5.7
0.007
0.02

ts(X)
*
1.41
0.67
0.46
1.00
0.41
0.95
1.60
1.41
0.73
0.51

*U
569
-
-
602
-
85
4226
27
0.048
-,
           *
              Sb, As, and Hg emissions were determined by AA.
           x  -  Mean emission factor.
           s(x)  -  Standard deviation of the mean.
           ts(x)/x  -  Variability.
           x   =  x  + ts(x).
            u

-------
    TABLE 51.  MEAN SOURCE SEVERITY  FACTORS  FOR TRACE  ELEMENT
               EMISSIONS FROM DISTILLATE OIL  ENGINES
;race       Emission        TLV3          Elec.  Gen.          Industrial
'§ent       Factor       (mg/m )      Distillate  Oil      Distillate  Oil
                                       Mean Source Severity Factor

                                      Ilec. Gen.         Industrie
                                      >tillate Oil     Distillate
          (pg/J)                         Engine             Engine

k          453           0.20            0.23               0.20

I          563           0.10            0.60               0.48

»            S7           0.10            0.10               0.082
                                  10-179

-------
TABLE 52.   COMPARISON OF TRACE  ELEMENT EMISSION FACTORS FOR DISTILLATE
           OIL-FUELED GAS TURBINES  AND DISTILLATE OIL ENGINES
Trace Element
Aluminum
Antimony
Arsenic
Barium
Beryllium
Boron
Bromine
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Phosphorus
Potassium
Selenium
Silicon
Sodium
Tin
Vanadium
Zinc
Mean Emission
Distillate Oil Fueled
Gas Turbine
64
9.4
2.1
8.4
0.14
28
1.8
1.8
330
20
3.9
578
256
25
100
145
0.39
3.6
526
127
185
2.3
575
590
35
1.9
294
Factor, pg/J
Distillate Oil
Reciprocating Engine
66
12
2.2
14
0.03
n
4.0
3.1
237
26
5.7
453
325
26
44
16
0.13
12.5
564
97
179
2.1
301
1625
9.1
0.95
178
                                  10-180

-------
                                     03.   SUMMARY OF POM EMSSAZOM FACTOR DATA FROM  ELECTRICITY
                                           GENERATION DISTILLATE OIL ENGINES TESTED*
o
 I
00
Compound
Naphthalene
Methyl Naphthalene
C- Substituted Naphthalene
C- Substituted Naphthalene
C^ Substituted Naphthalene
C, Substituted Naphthalene
Biphenyl
Methyl Biphenyl
C, Biphenyl
Dibenzothiophene
Methyl Dibenzothiophene
Phenanthrene/Anthracene
Methyl Phenanthrene
Dimethyl Phenanthrene
Trimethyl Phenanthrene
Ethyl Fluorene

Site
309
8.4
-
15.6
4.2
-
-
1.0
-
-
2.6
-
4.2
10.4
2.1
-
-

Site
310
12.7
15.5
8.5
2.8
-
-
4.2
-
-
1.4
0.57
2.1
5.6
0.6
-
-
Emission
Site Site Site Site
311 312 313 309-2
35.8 - 1.9 124.5
336.2
63.7 - - 369.5
460.7
249.7
87.6
10.0 - 9.5
_
11.7
_
-
68.6
59.7 40.9 95.2 62.8
23.9 24.4 36.8
6.4 9.5
17.5
Factor (pg/J)
Site Site
312-2 313-2 x
34.5 131.9 43.7
339.2 353.7 130.6
474.9 653.4 198.2
158.3 402.8 128.6
16.8 33.3
11.0
21.fi 5.8
167.8 21.0
1.5
0.50
0.071
22.6 55.1 19.1
13.1 - 36.0
10.8
2.0
2.2

s(x)
19.0
62.3
92.5
69.1
31.0
11.0
2.7
21.0
1.5
0.35
0.071
9.8
12.1
5.3
1.3
2.2

ts(x)
X
1.03
1.13
1.10
1.27
2.20
2.37
1.10
2.37
2.37
1.64
2.37
1.21
0.80
1.13
1.59
2.37

*u
88.8
277.8
417.0
292.0
106.6
36.8
12.2
70.6
4.9
1.3
n.24
42.2
64.6
23.5
5.1
7.4
         Emissions below detection limits or cannot be distinguished  from  blank values are indicated by -.   For Site  Nos. 309, 310,
         311,  312 and  313, detection limits for POM compounds were approximately 0.05 nq/J (0.08 >jg/m3).   For Site  Nos. 309-2,
         312-2 and 3-312, detection limits for POM compounds were approximately 0.03 ng/J (0.05 |ig/m3).
         All phenanthrene compounds could also be anthracenes.

-------
      TABLE 54.  MEAN  SOURCE  SEVERITY FACTORS FOR POM EMISSIONS FROM
                 ELECTRICITY  GENERATION DISTILLATE OIL ENGINES
Compound
Naphthalene
Methyl Naphthalene
C2 Substituted Naphthalene'
C3 Substituted Naphtha! ene^
C4 Substituted Naphthalene1"
C5 Substituted Naphtha! enef
Biphenyl
Methyl Biphenyl*
C3 Biphenyl*
Dibenzothiophene
Methyl Dibenzothiophene**
Phenanthrene/Anthracene
Methyl Phenanthrene/Anthracene
Dimethyl Phenanthrene/Anthracene77
Trimethyl Phenanthrene/Anthracene77
Ethyl Fluorene**
Mean Emission
Factor
(pg/J)
43.7
130.6
198.2
128.6
33.3
11.0
5.8
21.0
1.5
0.50
0.071
19.1
36.0
10.8
2.0
2.2
MATE
Value
(mg/m3)
50
230
230
230
230
230
1.0
1.0
1.0
23
23
1.6
30
30
30
90
Mean Source
Severity
Factor S
<0,OG01
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
0 . 0006
0.0022
0.0002

-------
STUDY NUMBER 11

-------
                   STUDY NUMBER 11
DATA
SOURCE:
ASSESSMENT OF SURFACE
RUNOFF FROM IRON
AND STEEL MILLS
DATA
STATUS:
EPA-600/2-79-046, February 1979
AUTHORS:

CONTRACTOR:
G. T. Brookman, B. C. Middlesworth,
and J. A. Ripp
TRC—Environmental Consultants, Inc.
125 Silas Deane Highway
Wethersfield, Connecticut 06109
Contract No. 68-02-2133
PROJECT
OFFICER:
Norman Plaks
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
                               11-1

-------
      The purposes  of this  study were  to  chemically  characterize  stormwater
 runoff from iron and steel  mills and  to  determine  if  this  runoff could  cause
 environmental  insult.
      The first task in  the  study was  to  identify runoff  sources  and  determine
 what  data were available.   Twelve iron and  steel plants  were  toured.    A
 literature survey  showed that  previous analysis of  runoff  samples  had been
 performed at two plants.  Based on this  information,  the following pollut-
 ants  were chosen to be  monitored in a field study:
      Total  suspended solids              Total dissolved  solids
      Cyanide                            Phenols
      Dissolved iron                     Total iron
      Ammonia                            Sulfates
 Oil and  grease,  BOD5, COD, and  TOC were  not measured  because  the available
 data  indicated that results would not be "of sufficient  magnitude  to be of
 concern."   All  chemical analyses  were performed by  procedures specified in
 Standard  Methods for the Examination  of  Water and Wastewater. 14th edition,
 M. A.  Franson,  ed.,  APHA, AWWA, WPCF, Washington, D.  C. , 1976.
      Two  sites  were  selected for  field studies.   Figures 11-1 and  11-2  (from
 the final  report)  show  the sampling locations at these sites  and Table  11-1
 (from  the  document)  gives general  site characteristics.  Automatic sequential
 samplers,  set  for  flow-based sampling rates  (more samples at  higher runoff
 rates), were set up  at  sites 005,  010, and  Oil,  along with automatic weather
 stations.  Grab  samples were collected at other sites.   Dustfall samples,  for
 settleable airborne  particulates, were also  collected.   Because of site-related
 constraints, no data were obtained from  this study  on slag dump runoff or  iron
 ore pile runoff.
    .This study  indicated that the dissolved solids content of stormwater
 runoff from  iron and steel  mills was greater than the suspended solids content.
When results were compared to point source mass  loadings, which would exist
 under the proposed  BAT control  (see Code of  Federal Regulations. Title 40,
 Part 420 as of July 1, 1976),  significantly  higher measurements were gener-
ally noted for total suspended solids  (at all sites) and for ammonia,
                                       11-2

-------
                                                                 MO2:LECTRIC FUUNACE SHOP
                                OIRECf REDUCTION PIANI
       # 000  SAIIPMNG LOC.
V/////XX//X/ DRAINAGE BASIN
	 PLANT PERIMETER
   SITE NO.  I  PLAN
  DRAINAGE BASIN  A
SAMI'lE POINT LOCATIONS
                                           Figure 11-1.  Plan-site no. 1.

-------
CREEK

PIPE MILLS

a_
I
i
• 	 ._ -.._

                               ..rv:.Ob]
ri
i
i
/
t 	
5
SHEET t TIN MILLS
-— 1 	
                                    mo MILL
                                                                               11ICT.  FCE ft CASTER 	,
                                                                   MOT-
                                                                  MILLS
                                                                  007-

                                                                                       006
                                                 •SLAB MILLS
                                                (SLAf) COOLING)

                                               CANAl
                                      DIESEL-
                                      REPAIR
                                        SHOP
                                                                903-
             SLAG DUMP

                                   PROCESS
                                     HAILR
                                  TRC.AfMI.NT
                                     PLAMf
                           COKE PI ANT-
                           COKE YARDS
   UIH.E ->
HI PAIR SHOP
                                                                                                      LAGOON
                                                TIDAL
                                                RIVIR
                                                                    GRAVFL
01 AST FURNACE-
SINTER PLANT
    ARIA
                                                                                ORE YAKU
                                                                               ORE  YARO
                                               ORE VAKf)
                                                                                                        'OO'J
                                                   Y//,
                                                                                   CAI1A1
                                                   BOAT  SUP
                     SAMPLING LOC.
          '//////////, DRAINAGE BASIN
           	-PLANT  PERIMEIFR
                                                                      COAL SIORAGE
                                                       SITE NO.Z PLAN
                                                 ^DRAINAGE BASIN AND SAMPLE
                                                      POINT I OCA I IONS
                                                     NO.002  THRU NO.OH
                                                    Figure 11-2.  Plan—site no. 2.

-------
                TABLE  11-1.   GENERAL SITE  CHARACTERISTICS
                              Site 1
                                                              Site 2
ty of Plant

jweloped Area
 (Hectares)

irrain

toff Receiving
 Body

!tat Operations
 fciod of Samp! ing

 •ber of Sampling
 feints

 inanent Flow
 fences
37 Years


230

Flat, Semi-Permeable


Tidal River

Coke Plant,  Sinter Plant,
Blast Furnaces,  Electric
Furnaces,  Finishing
Operations

3/77 to 4/77
Yes
25 Years


1600

Flat, Permeable


Tidal River

Coke Plant, Sii.ter Plant,
Blast Furnaces, Open Hearth
Furnaces, Electric Furnaces,
Finishing Operations

5/77 to 6/77


13


No
                                         11-5

-------
phenols, and total  iron (at the coal  pile runoff sites).   The coal and coke
storage piles and handling areas showed the highest potential for contam-
inating stormwater.   Parameter concentrations appeared to be positively
correlated with rainfall  volume; and  the runoff data did not indicate a
"first flush" effect.   Since there were significant differences between
plants, a stormwater control strategy should be developed on a plant by
plant basis.
                                       11-6

-------
LEVEL 1
   11-7

-------
TABLE 11-2.   TSS RESULTS IN mg/L, SITES #1 AND #2
                MARCH - JUNE 1977
Sample
no.
4
5
13
18
21
32
38
42
47
52
59
63
64
65
66
67
68
70
78
85
91
99
100
102
112
118
125
132
134
Outfall
Site #1
Oil
Oil
Oil
Oil
Oil
010
010
010
010
010
010
010
005
005
005
005
005
005
009A
009A
Coal pile
Coal pile
006
006
Oil
Oil
Oil
005
005
Date
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/28
3/27
3/28
3/28
3/27
3/28
3/28
3/28
3/28
3/27
3/28
Time
1040
1100
1200
1300
1400
1000
1100
1200
1300
1400
1500
1600
1000
1100
1200
1300
1400
1600
0115
2100
0012
0030
2240
0305
0022
0225
1100
2230
0045
Sampl ing
event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
TSS
concentration,
mg/L
11
10
16
12
17
122
54
44
62
59
100
163
34
45
53
64
25
17
527
761
2,384
1 , 116
511
180
20
151
76
69
66
TDS
concentration
mg/L
1,196
1,095
1,095
1,110
1,098
2,090
2,222
2,269
2,088
1,964
2,310
2,262
939
922
964
897
947
949
376
617
2,205
2,557
200
373
878
506
427
319
300
                                                     (continued)
                        11-8

-------
TABLE 11-2 (continued)
Sample
no.
136
138
140
144
150
154
159
163
168
172
175
181
188
195
201
202
209
210
216
218
224
226
Outfall
Site #1
005
005
005
005
010
010
010
010
010
010
010
Oil
Oil
Oil
Oil
010
010
010
010
010
010
010
Date
3/28
3/28
3/28
3/28
3/27
3/27
3/27
3/28
3/28
3/28
3/28
3/29
3/29
3/29
3/29
3/29
3/29
3/29
3/29
3/29
3/29
3/29
Time
0140
0300
0830
1300
2100
2215
2225
0040
0145
0445
0645
0800
1000
1200
1400
0800
0900
1000
1100
1200
1300
1400
TSS
Sampling concentration,
event mg/L
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm f2
Storm #2
Storm #2
Storm #2
Storm *2
Storm #2
Dry weather
fl
Dry weather
fl
Dry weather
#1
Dry weather
#1
Dry weather
#1
Dry weather
fl
Dry weather
fl
Dry weather
#1
Dry weather
fl
Dry weather
fl
Dry weather
fl
78
36
22
38
22
32
293
198
238
94
10
15
15
15
13
14
17
5
6
7
4
11
TDS
concentration,
mg/L
238
253
357
294
4,993
3,791
2,376
1,059
661
1,315
1,684
676
668
689
698
2,007
2,110
2,172
2,044
2,048
2,066
2,108
                                        (continued)
           11-9

-------
TABLE 11-2 (continued)
Sample
no.
231
232
233
236
240
244
245
246
247
248
249
250
251
252
253
268
277
282
286
291
295
Outfall
Site #1
005
005
005
005
005
005
005
005
005
005
005
005
005
005
005
010
010
010
010
010
010
Date
3/29
3/29
3/29
3/29
3/29
3/29
3/31
3/31
3/31
4/1
4/1
4/4
4/4
4/4
4/4
4/5
4/5
4/5
4/5
4/5
4/5
Time
0800
0900
1000
1300
1700
2100
1444
1740
2100
0315
0846
0450
0626
1031
1109
0900
1100
1200
1300
1400
1500
TSS
Sampling concentration,
event mg/L
Dry weather
#1
Dry weather
#1
Dry weather
Dry weather
#1
Dry weather
#1
Dry weather
Storm #3
Storm #3
Storm #3
Storm #3
Storm # 3
Storm #4
Storm #4
Storm #4
Storm #4
Dry weather
#2
Dry weather
#2
Dry weather
#2
Dry weather
#2
Dry weather
#2
Dry weather
21
15
16
19
6
17
25
44
13
65
21
50
11
67
23
184
81
58
29
22
27
TDS
concentratia
mg/L
327
329
347
364
385
365
559
556
703
482
623
525
642
753
641
4,063
4 , 198
3,639
3,955
4,106
4,503
	 — *
                                         (continued)
            11-10

-------
TABLE 11-2 (continued)
Sample
no.
297
300
303
307
310
314
318
321
325
328
332
342
347
349
353
358
363
365
366
367
368
369
Outfall
005
005
005
005
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Coal pile
Coal pile
009A
009A
009A
009A
006
006
005
005
005
Date
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/5
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
Tine
0900
1200
1500
1900
0900
1000
1100
1200
1300
1400
1500
1140
1155
1040
1125
1205
1415
1055
1120
1121
1133
1146
TSS
Sampling concentration,
event mg/L
Dry weather
f2
Dry weather
f2
Dry weather
12
Dry weather
f2
Dry weather
#2
Dry weather
f2
Dry weather
#2
Dry weather
#2
Dry weather
#2
Dry weather
f2
Dry weather
*2
Storm * 5
Storm f 5
Store f5
Storm *5
Storm f5
Storm #5
Storm *5
Storm #5
Storm #5
Storm f 5
Storm f 5
4
23
31
8
10
11
28
20
13
7
7
9,559
3,691
951
474
159
155
41
676
11
11
18
IDS
concentration,
mg/L
445
463
433
432
1,045
1,049
998
995
1,025
1,034 -
998
1,419
2,974
1,023
1,316
609
529
1,360
376
719
715
611
                                         (continued)
            11-11

-------
TABLE 11-2 (continued)
Sample
no.
370
371
372
373
374
378
381
387
390
400
401
409
414
417
420
423
426
427
431
434
440
444
447
Outfall
005
005
005
005
005
Oil
Oil
Oil
Oil
Oil
Oil
Oil
005
005
005
005
005
005
Oil
Oil
Oil
Oil
010
Date
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/17
4/18
4/18
4/18
4/18
4/18
4/18
4/18
4/18
4/18
4/18
4/18
Time
1208
1245
1339
1504
1626
0842
1138
1239
1423
1614
2223
0742
0945
1245
1545
1845
2145
2245
0930
1030
1130
1230
1137
TSS
Sampling concentration,
event mg/L
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
Dry weather
#3
65
47
113
96
65
20
84
46
34
27
18
30
19
12
16
14
11
10
36
23
42
20
649
TDS
concentratil
mg/L
603
341
305
2S4
259
1,155
1,133
892
992
915
845
753
395
424
420
400
413
399
790
733
790
767
2,713
                                        (continued)
           11-12

-------
TABLE 11-2 (continued)
Samp 1 e
no.
450

457

451

465


1
4
7
10
14
15
18
21
24
28
39
41
44
50
53
59
62
68
75
78
'81
84
Outfal]
010

010

010

010

Site #2
006
006
006
006
006
007
007
007
007
007
015
010A
010A
010A
010A
010A
010A
010A
004
004
004
004
Date
4/18

4/18

4/18

4/18


5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/10
5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/9
5/9
Tine
1237

1337

1437

1537


0000
0130
0300
0430
0630
0000
0130
0300
0430
0630
1000
0000
0100
0200
0300
0400
0500
0600
0000
0030
0100
0130
TSS
Sampling concentration,
event ag/t
Dry weather
f3
Dry weather
#3
Dry weather
f3
Dry weather
#3

Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
171

100

52

78


416
23
20
25
24
10
8
1
8
5
15
37
17
9
15
12
19
22
18
16
7
9
TDS
concentration,
«g/L
2,757

5,438

2,741

2,728


148
140
103
131
109
126
143
124
155
87
128
100
122
76
106
104
116
109
144
145
153
142
                                       (continued)
          11-13

-------
TABLE 11-2 (continued)
Sample
no.
90
97
103
109
118
122
126
127
132
136
140
141
144
150
159
168
177
184
197
205
211
219
237
238
239
242
245
248
251
254
Outfall
004
004
004
004
006
006
006
007
007
007
007
004
004
004
004
004
004
010A
010A
010A
010 A
015
002
002
008
008
008
009
009
009
Date
5/9
5/9
5/9
5/9
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
Time
0230
0330
0430
0530
0000
0200
0630
0000
0230
0430
0630
0000
0030
0130
0300
0430
0600
0000
0300
0500
0600
1845
1340
1515
1125
1410
1550
1140
1400
1545
TSS
Sampling concentration,
event mg/L
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
6
7
11
12
38
23
63
12
30
4
13
8
8
9
7
7
17
13
16
5
9
40
29
11
55
22
56
4
33
58
TDS
concentrate
mg/L
164
179
151
155
109
102
126
245
140
108
102
160
140
134
205
150
144
93
117
98
102
130
137
91
163
172
112
138
116
119
                                          (continued;
           11-14

-------
TABLE 11-2 (continued)
Sample
no.
261
268
271
274
277
278
281
284
287
291
29'J
2Sr
29b
301
304
307
310
313
316
319
322
325
328
331
335
338
344
346
351
354
363
Outfall
015
006
006
006
006
007
007
007
007
007
004
004
004
004
004
004
004
004
004
004
004
004
004
004
010A
010A
010A
010A
010A
010A
010B
Date
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/10
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
Time
1050
1030
1200
1330
1500
1030
1200
1330
1500
1700
1030
1100
1130
1200
1230
1300
1330
1400
1430
1500
1530
1600
1630
1700
1030
1130
1230
1330
1430
1530
1030
TSS
Sampling concentration,
event mg/L
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
2
197
46
188
91
10
60
1
1
50
4
2
47
13
17
10
20
8
12
12
16
17
18
18
21
27
28
19
30
11
19
TDS
concentration,
mg/L
103
138
143
152
159
66
118
54
88
92
113
126
114
187
187
185
193
169
132
166
189
163
156
162
108
125
104
99
94
97
89
                                         (continued)
             11-15

-------
TABLE 11-2 (continued)
Sample
no.
366
371
374
379
382
387
390
393
396
400
403
404
412
416
418
430
442
454
460
463
466
469
473
474
483
492
501
513
517
525
Outfall
010B
010B
010B
010B
010B
010B
006
006
006
006
006
007
007
007
004
004
004
004
007
007
007
007
007
004
004
004
004
004
010A
010A
Date
5/18
5/18
5/18
5/18
5/18
5/18
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
Time
1130
1230
1330
1430
1530
1630
C930
1015
1100
1200
1245
0930
1130
1230
0930
1030
1130
1230
1330
1500
1630
1800
2000
1345
1515
1645
1815
2015
0930
1030
TSS
Sampling concentration,
event mg/L
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
13
21
26
28
24
23
2,537
225
812
1,720
183
45
6
10
11
8
11
6
17
33
48
51
1?
6
11
8
11
3
48
20
TDS
concentratfn
mg/L
108
133
89
108
95
93
301
228
186
324
218
107
193
129
171
184
202
201
344
108
288
418
325
205
326
359
254
276
173
211
                                         (continued)
           11-16

-------
TABLE 11-2 (continued)
Sample
nc.
533
540
552
568
572
582
592
596
60.
60.'
bi/
660
6~£
682
685
693
696
701
704
709
712
714
716
718
720
722
725
726
727
Outfall
010A
010A
010B
010B
012
012
012
012
012
012
012
010A
010A
010A
010B
010B
010B
010B
010B
010B
006
006
006
006
006
006
006
002
002
Date
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
Tine
1130
1230
1030
1230
0930
1030
1130
1200
1230
1430
1950
1515
1915
2115
1515
1715
1815
1915
2015
2115
1315
1415
1515
1615
1715
1815
1945
0950
1130
TSS
Sampling concentration,
event rag/L
Storm #1
Storm #1
Storm * 1
Storm #1
Storm #1
Storm #1
Storm #1
Storm 11
Storm #1
Storm f 1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm f 1
Storm #1
Storm *1
Storm #1
Storm *1
Storm #1
Storm f 1
Storm #1
Storm #1
Storm * 1
Storm #1
Storm #1
Storm tl
Storm #1
17
25
60
21
513
259
109
67
29
563
230
38
15
31
702
22
12
32
27
29
268
331
295
487
85
629
306
176
66
TDS
concentration,
mg/L
253
212
239
185
245
307
316
431
423
222
546


















                                         (continued)
            11-17

-------
TABLE 11-2 (continued)
Sample
no.
728
729
730
731
732
733
734
736
739
742
745
748
751
754
757
760
764
766
769
772
776
783
787
791
796
842
846
850
854
858
Outfall
002
002
003
003
•003
005
008
008
008
008
009
009
009
009
Oil
Oil
Oil
Oil
006
006
006
007
007
007
007
013
013
013
013
013
Date
6/9
5/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/10
6/9
6/10
6/10
6/10
6/9
6/9
6/9
6/9
6/9
Time
1630
2005
0955
1125
1630
1000
1030
1215
1605
2315
1035
1230
1615
2315
1045
1205
1520
2025
2215
2345
0145
2200
0000
0200
0430
1100
1150
1530
1650
1945
TSS
Sampling concentration,
event mg/L
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
11
9
21
14
11
17
41
30
19
89
109
69
58
55
448
223
2,684
56
354
218
151
93
45
39
10
152
72
1,380
12
12
TDS
concentratia
mg/L













172
389
516
299
681
191
190

143
155
195
240
601
873
884
1,353
1,690
                                          (continued]
            11-18

-------
TABLE 11-2 (continued)
Sample
no.
861
868
874
877
884
887
891
894
903
912
921
933
941
946
953
956
960
962
966
970
972-
976
980
984
987
994
1001
1011
1018
1029
Outfall
014
014
014
014
015
015
004
004
004
004
004
010A
010A
010A
010A
010A
010A
010A
010A
006
006
006
006
010B
010B
010B
010B
010B
010B
010B
Date
6/9
6/9
6/9
6/9
6/10
6/9
6/9
6/9
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/9
6/10
6/10
6/10
6/10
6/10
6/10
Time
1115
1540
1935
2050
1145
2235
2225
2255
0025
0155
0325
0000
0200
0300
0500
1516
1716
1816
2016
1500
1600
1800
2000
2300
0000
0200
0400
1650
1850
2150
TSS
Sampling concentration,
event mg/L
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm fl
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
76
60
24
61
49
21
7
6
39
6
9
21
17
13
16
7
3
7
3
232
21
54
16
13
20
21
26
29
21
25
TDS
concentration,
mg/L
430
232
496
524
150
215
233
233
213
223
222
186
164
158
197
207
184
232
175
285
173
171
158
158
138
182
179
154
152
137
                                        (continued)
           11-19

-------
TABLE 11-2 (continued)
Sample
no.
1032
1035
1046
1053
1056
1080
1095
1098
1100
1102
1104
1108
1112
1116
1120
1124
1127
1135
1138
1143
1151
1154
1156
1158
1160
1164
1168
1172
1176
1180
1182
Outfall
010A
010A
010A
010A
004
004
007
007
007
007
007
007
007
007
007
007
010B
010B
010B
010B
010B
006
006
006
006
006
006
006
006
006
004
Date
6/10
6/10
6/10
6/10
6/10
6/10
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
Time
1550
1650
1950
2150
1440
1840
1545
2110
1615
1645
1715
1815
1915
2015
2115
2215
1610
1710
1740
1810
1910
1545
1615
1645
1715
1815
1915
2015
2115
2215
1545
TSS
Sampling concentration,
event mg/L
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm n
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
23
20
27
18
10
3
32
29
. H9
100
8
62
77
71
21
6
137
41
38
36
30
398
188
77
76
24
16
13
17
20
34
TDS
concentratl
mg/L
165
175
158
133
231
190
253
172
157
196
352
192
186
144
361
332
146
158
161
191
185
490
199
231
251
226
213
190
190
253
188
                                          (continued)
          11-20

-------
TABLE 11-2 (continued)
Samp 1 e
no.
1185
1188
1191
1194
1197
1200
1206
1212
1219
1222
1226
1230
1234
1238
1242
1246
1252
1256
1260
1268
1272
1276
1279
1284
1286
1303
1315
"1327
1339
1343
1354
Outfall
004
004
004
004
004
004
004
004
004
004
007
007
007
007
007
007
006
006
006
006
006
012
012
012
012
004
004
004
004
0108
010B
Date
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/21
6/21
6/21
6/21
6/21
6/21
6/21
6/21
6/21
6/21
6/21
6/20
6/20
6/20
6/20
6/21
6/21
6/21
6/21
6/20
6/21
Time
1600
1615
1630
1645
1700
1715
1745
1815
1845
1900
0100
0300
0500
0700
0900
1100
0115
0315
0515
0915
1115
1530
1600
1630
1700
0115
0315
0515
0715
2345
0245
TSS
Sampling concentration,
event mg/L
Storm #2
Storm #2
Storm *2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm n
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm n
Storm #2
Storm #2
Storm #2
Storm #2
Storm n
Storm #2
Storm #2
Storm #2
Storm f2
Storm #2
12
12
9
12
10
12
11
13
10
12
14
10
4
9
9
3
8
13
11
24
24
533
179
182
158
7
7
5
6
24
29
TDS
concentration,
mg/L
164
174
164
176
170
160
167
188
195
180
270
205
225
201
271
182
147
153
145
149
146
372
370
378
350
203
264
218
217
186
190
                                         (continued)
             11-21

-------
TABLE 11-2 (continued)
Sample
no.
1359
1362
1370
1371
1372
1373
1374
1375
1376
1377
1378
1380
1384
1387
Outfall
010B
010B
002
002
002
003
003
003
003
005
005
013
014
014
Date
6/21
6/21
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
Time
0345
0445
1540
1555
1650
1535
1550
1635
1645
1535
1550
1525
1530
1600
TSS
Sampling concentration,
event mg/L
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
27
31
79
17
15
132
97
34
23
78
36
727
121
44
TDS
concentrated
mg/L
216
200
112
13?
156
106
93
98
104
69
59
355
398
416
            11-22

-------
TABLE 11-3.  AMMONIA ANALYSIS RESULTS
           SITES #1 AND #2
           MARCH-JUNE 1977
Sample no.
2
10
14
23
34
43
b4
88
92
111
117
131
148
157
165
182
190
197
206
221
266
284
309
323
346
351
359
Outfall
SITE #1
Oil
Oil
Oil
Oil
010
010
009A
009A
Coal pile
Oil
Oil
Oil
010
010
010
Oil
Oil
Oil
010
010
010
010
Oil
Oil
Coal pile
009A
009A
Date
3/24
3/24
3/24
3/24
3/24
3/24
3/27
3/27
3/28
3/27
3/28
3/28
3/27
3/27
3/28
3/29
3/29
3/29
3/29
3/29
4/5
4/5
4/5
4/5
4/16
4/16
4/16
Time
1040
1200
1300
1500
1100
1300
2225
2100
0012
2306
0131
1200
2100
2225
0145
0900
1100
1300
0900
1300
0900
1300
0900
1300
1155
1040
1205
Ammonia
concentration,
Sampling event mg/L
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm n
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather #2
Storm #5
Storm #5
Storm #5
1.7
1.5
1.6
1.1
47.0
52.0
3.5
0.23
84.0
1.4
2.0
28.0
73.0
55.0
3.6
20.0
21.0
26.0
54.0
56.0
96.0
87.0
4.9
5.0
27.0
2.0
2.6
                                                (continued)
                   11-23

-------
TABLE 11-3  (continued)
Sample no.
377
385
392
405
408
429
436
438
442
446
453
455
460
463
32
42
56
195
336
349
360
380
518
526
534
541
545
Outfall
SITE #1
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
Oil
010
010
010
010
010
SITE #2
015
010A
010A
010A
010A
010A
010A
010B
010A
010A
010A
010A
010B
Date
4/16
4/16
4/16
4/16
4/17
4/18
4/18
4/18
4/18
4/18
4/18
4/18
4/18
4/18
5/9
5/9
5/9
5/10
5/18
5/18
5/18
5/18
6/9
6/9
6/9
6/9
6/9
Time
0842
1239
1423
2223
0742
0930
1030
1130
1230
1137
1237
1337
1437
1537
1130
0000
0300
0200
1030
1330
1630
1430
0930
1030
1130
1230
0930
Sampling event
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Ammonia
concentration
mg/L
1.3
0.66
0.77
0.87
0.65
0.57
1.2
1.1
1.0
66.0
74.0
56.0
84.0
82.0
6.0
5.2
86.0
4.8
5 2
38
5.7
7.1
0.36
0.70
0.49
0.45
0.88
                                          (continued)
             11-24

-------
TABLE 11-3  (continued)
Samp'ie no.
553
569
574
584
594
604
609
661
668
675
683
686
694
702
710
762
767
845
853
882
886
889
931
944
954
985
992
999
1006
Outfall
SITE #2
010B
010B
012
012
012
012
012
010A
010A
010A
010A
010B
010B
010B
010B
Oil
Oil
013
013
015
015
015
010A
010A
010A
. 010B
' 010B
010B
010B
Date
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/10
6/10
6/9
6/10
6/10
6/10
Time
1030
1230
0930
1030
1130
1230
1430
1515
1715
1915
2115
1515
1715
1915
2115
1205
2025
1100
1530
1010
1145
2235
2300
0200
0500
2300
0100
0300
0500
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm f 1
Storm #1
Storm #1
Storm #1
Ammonia
concentrati on ,
mg/L
1.3
0.60
0.41
1.0
0.79
0.73
0.56
0.17
0.10
0.22
0.21
0.28
0.10
0.12
0.10
0.23
0.43
31.0
39.0
0.20
0.39
0.51
0.12
0.23
0.33
0.11
0.50
0.10
0.10
                                         (continued)
             11-25

-------
TABLE 11-3  (continued)
Sample no.

1009
1016
1023
1030
1033
1040
1051
1128
1132
1136
1140
1144
1152
1280
1288 "
1295
1344
1356
1364
1383
1395
Outfall
SITE #2
010B
010B
010B
. 010B
010A
010A
010A
010B
010B
010B
010B
010B
010B
012
012
012
010B
010B
010B
013
015
Date

6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/21
6/21
6/20
6/20
Time

1550
1750
1950
2150
1550
1750
2050
1610
1640
1710
1740
1810
1910
1600
1700
1800
2345
0245
0445
1525
1640
Sampling event

Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Ammonia
concentration
mg/L

0.15
0.15
0.10
0.15
0.14
0.10
0.10
4.1
1.2
0.50
1.6
0.39
0.40
1.3
1.6
1.6
0.18
0.18
0.23
18.0
0.28
             11-26

-------
TABLE 11-4.  CYANIDE ANALYSIS RESULTS
           SITES #1 AND #2
           MARCH-JUNE 1977
Sample no.
6
25
37
51
54
82
87
95
113
121
126
153
162
171
184
198
205
222
273
289
312
326
343
356
362
383
389
— 	 	 — 	
Outfall
SITE #1
Oil
Oil
010
010
010
009A
009A
Coal pile
Oil
Oil
Oil
010
010
010
Oil
Oil
010
010
010
010
Oil
Oil
Coal pile
009A
009A
Oil
Oil
Date
3/24
3/24
3/24
3/24
3/24
3/27
3/27
3/28
3/28
3/28
3/28
3/27
3/28
3/28
3/29
3/29
3/29
3/29
4/5
4/5
4/5
4/5
4/16
4/16
4/16
4/16
4/16
Time
1100
1500
1100
1400
1500
2225
2100
0125
0022
0225
1100
2215
0040
0445
0900
1300
0900
1300
1000
1400
1000
1400
1140
1125
1415
1138
1423
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm n
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Dry weather #1
Dry weather #1
Dry weather fl
Dry weather #1
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather #2
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Cyanide
concentration,
mg/L
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
0.99
0.56
ND
ND
0.17
0.03
0.01
ND
0.01
                                               (continued)
                   11-27

-------
TABLE 11-4  (continued)
Sample no.
47
55
18S
259
267
340
348
367
383
521
529
536
548
556
578
588
613
664
671
678
69C
698
705
848
856
935
942
Outfall
SITE #2
010A
010A
010A
015
015
010A
010A
010B
010B
010A
010A
010A
010B
010B
012
012
012
010A
010A
010A
010B
010B
010B
013
013
010A
010A
Date
5/9
5/9
5/10
5/18
5/18
5/18
5/18
5/18
5/18
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/10
6/10
Time
0100
0300
0100
1050
1630
1130
1330
1130
1530
1000
1100
1200
1000
1100
1000
1100
1710
1615
1815
2015
1615
1815
2015
1150
1650
0000
0200
Sampling event
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Cyanide
concentration
mg/L
0 01
0-01
0.01
0.01
0.01
0.01
0.01
0.01
ND
0.01
0.01
0.01
0.02
0.01
0.22
0.10
0.3
0.01
0.01
0.01
0.02
0.01
0.01
0.38
0.72
0.01
0.01
                                          (continued)
              11-28

-------
                          TABLE 11-4  (continued)
Sample no.
950
988
995
1002
1012
1019
1026
1036
1050
1131
1J39
1282
1267
1294
1347
1355
1363
1392
Outfall
SITE #2
010A
010B
010B
010B
010B
010B
010B
010A
010A
010B
010B
012
012
012
010B
010B
010B
015
Date
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/20
6/20
6/20
6/20
6/20
6/21
6/21
6/21
6/20
Time
0400
0000
0200
0400
1650
1850
2050
1650
2050
1640
1740
1600
1700
1800
0045
0245
0445
1640
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Cyanide
concentrati on ,
mg/L
0.01
0.01
0.01
0.01
0.01
NO
0.01
0.01
0.01
0.01
0.01
0.29
0.09
0.17
0.01
0.01
0.01
0.01
ND = Not  detectable; detectable limit  is 0.001 mg/L
                                        11-29

-------
TABLE 11-5.   SULFATE ANALYSIS RESULTS
           SITES #1 AND #2
           MARCH-JUNE 1977
Sample no.
36
41
46
55
149
152
166
204
211
219
227
267
276
285
294
218
257
263
575
580
585
595
605
610
615
620
Outfall
SITE #1
010
010
010
010
010
010
010
010
010
010
010
010
010
010
010
SITE #2
015
015
015
012
012
012
012
012
012
012
012
Date
3/24
3/24
3/24
3/24
3/27
3/27
3/28
3/29
3/29
3/29
3/29
4/5
4/5
4/5
4/5
5/10
5/18
5/18
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
Time
1100
1200
1300
1500
2100
2215
0145
0800
1000
1200
1400
0900
1100
1300
1500
1845
1050
1630
0930
1000
1030
1130
1230
1430
1710
1950
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather
Dry weather
Dry weather
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Sulfate
concentratia
mg/L
270
303
260
303
490
380
180
560
488
1380
419
400
450
1580
475
20
20
20
68
70
78
100
128
52
54
70
                                               (continued)
                   11-30

-------
TABLE 11-5  (continued)
Sample no.
758
761
844
851
855
1278
1380
Outfall
SITE #2
Oil
Oil
013
013
013
012
013
Date
6/9
6/9
6/9
6/9
6/9
6/20
6/20
Time
1045
1205
1100
1530
1650
1530
1525
Sampling event
Storm #1
Storm #1
Storsn #1
Storm #1
Storm #1
Storm #2
Storm #2
Sulfate
concentration,
mg/L
195
270
160
190
36
85
128
              11-31

-------
TABLE 11-6.   TOTAL IRON ANALYSIS RESULTS
             SITES #1 AND #2
             MARCH-JUNE 1977
Sample no.
7
20
31
40
61
79
90
116
151
180
200
203
220
272
288
313
327
341
348
357
380
386
391
402
430
433
Outfall
SITE #1
Oil
Oil
010
010
010
009A
Coal pile
Oil
010
Oil
Oil
010
010
010
010
Oil
Oil
Coal pile
009A
009A
Oil
Oil
Oil
Oil
Oil
Oil
Date
3/24
3/24
3/24
3/24
3/24
3/28
3/28
3/28
3/27
3/29
3/29
3/29
3/29
4/5
4/5
4/5
4/5
4/16
4/16
4/16
4/16
4/16
4/16
4/16
4/18
4/18
Time
1100
1400
1000
1200
1600
0115
0012
0131
2215
0800
1400
0800
1200
1000
1400
1000
1400
1140
1040
1205
1138
1239
1423
2223
0930
1030
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Storm #2
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather #2
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Storm #5
Dry weather #3
Dry weather #3
Total iron
concentration
mg/L
0.96
1.0
3.6
2.6
2.3
51.0
34.0
5.8
1.2
1.5
1.1
1.5
1.1
2.5
2.3
2.7
2.5
44.0
29.0
18.0
3.7
3.5
3.7
1.7
1.9
1.7
                                                 (continued)
                     11-32

-------
TABLE 11-6  (continued)
Sample no.
439
443
448
451
38
60
79
ll n
-5 .1 r
i'HC'
200
2AC
243
246
249
255
258
266
293
302
311
320
329
337
361
381
" 419
431
Outfall
SITE #1
Oil
Oil
010
010
SITE #2
015
010A
004
004
004
010A
008
008
008
009
009
015
015
004
004
004
004
004
010A
010A
010B
004
004
Date
4/18
4/18
4/18
4/18
5/10
5/9
5/9
5/9
5/10
5/10
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
6/9
6/9
Tine
1130
1230
1137
1237
1000
0400
0030
0530
0030
0300
1125
1410
1550
1140
1545
1050
1630
1030
1200
1330
1500
1630
1030
1630
1430
0930
1030
Sampling event
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Storm #1
Storm #1
Total Iron
concentrati on ,
mg/L
2.6
1.5
8.3
4.2
0.57
0.72 .
0.57
0.51
0.20
0.57
1.5
2.2
1.0
0.78
1.4
0.26
0.47
1.2
0.47
0.26
0.26
1.2
1.3
0.82
1.5
2.2
0.25
                                         (continued)
             11-33

-------
TABLE 11-6  (continued)
                                           Total  iron
                                         concentration
Sample no.

443
455
475
484
493
502
514
519
527
542
546
554
562
570
573
583
593
603
608
618
662
669
676
684
687
695
703
735
Outfall
SITE #2
004
004
004
004
004
004
004
010A
010A
010A
010B
010B
010B
010B
012
012
012
012
012
012
010A
010A
010A
010A
010B
010B
0108
008
Date

6/9
6/9
5/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
Time

1130
1230
1345
1515
1645
1815
2015
0930
1030
1230
0930
1030
1130
1230
0930
1030
1130
1230
1430
1950
1515
1715
1915
2115
1515
1715
1915
1030
Sampling event

Storm #1
Storm #1
Storm #3.
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm '#1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
mg/ L

0.28
0.96
0.35
0.30
0.29
0.30
0.18
3.4
1.5
1.1
5.9
3.7
1.3
1.1
26.0
25.0
6.0
1.5
3.4
6.5
5.9
1.5
1.1
1.6
225.0
1.1
1.2
7.5
                                           (continued)
               11-34

-------
TABLE U-6  (continued)
                                        Total  iron
Sample no.

737
740
743
746
749
752
755
759
765
843
851
859
862
865
869
875
878
881
888
892
895
904
913
922
940
948
_ 955
1000
1007
Outfall
SITE #2
008
008
008
009
009
009
009
Oil
Oil
013
013
013
014
014
014
014
014
015
015
004
004
004
004
004
010A
. 010A
010A
010B
010B
Date

6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
Tine

1215
1605
2315
1035
1230
1615
2315
1045
1520
1100
1530
1945
1115
1145
1540
1935
2050
1010
2235
2225
2255
0025
0155
0325
0100
0300
0500
0300
0500
Sampling event

Storm #1
Storm *1
Storm #1
Storm #1
Storm #1
Stom #1
Storm #1
Storm fl
Storm #1
Storm #1
Storm #1
Storm *1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Stom #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
uui H.CI 1 1 ret 1 1 un ,
mg/L

2.8
3.0
7.2
4.2
5.2
3.0
3.6
11.0
25.0
5.7
27.0
0.82
6.7
1.5
14.0
0.95
3.2
0.89
0.95
0.68
0.45
0.68
0.40
0.38
1.1
1.3
0.93
0.74
0.80
                                       (continued)
            11-35

-------
TABLE 11-6  (continued)
Sample no.

1010
1017
1031
1034
1041
1048
1057
1081
1096
1129
1183
1186
1189
1192
1207
1223
1277
1285
1316
1340
1345
1381
1385
1388
1393
Outfall
SITE #2
010B
010B
010B
010A
010A
010A
004
004
004
010B
004
004
004
004
004
004
012
012
004
004
010B
013
014
014
015
Date

6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/21
6/21
6/20
6/20
6/20
6/20
6/20
Time

1550
1750
2150
1550
1750
1950
1440
1840
2110
1610
1545
1600
1615
1630
1745
1900
1530
1630
0315
0715
2345
1525
1530
1600
1640
Sampling event

Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Total iron
concentration
mg/L

0.93
0.90
1.2
0.98
1.0
1.1
0.29
0.22
1.2
5.9
1.3
0.18
0.35
0.41
0.22
0.38
5.7
18.0
0.31
0.56
1.6
16.0
11.0
3.2
0.65
              11-36

-------
TABLE 11-7.   DISSOLVED IRON ANALYSIS RESULTS
                SITES fl AND *2
                MARCH-JUNE  1977
Sample no.

8
89
120
147
167
183
207
217
269
287
311
324
344
352
361
379
388
403
432
441
449

54
80
111
146
190
Outfall
SITE #1
Oil
009A
Oil
010
010
Oil
010
010
010
010
Oil
Oil
Coal pile
009A
009A
Oil
Oil
Oil
Oil
Oil
010
SITE #2
010A
004
004
004
010A
Date

3/24
3/27
3/28
3/27
3/28
3/29
3/29
3/29
4/5
4/5
4/5
4/5
4/16
4/16
4/16
4/16
4/16
4/16
4/18
4/18
4/18

5/9
5/9
5/9
5/10
5/10
Tiae

1100
2100
0225
2100
0145
0900
0900
1100
0900
1300
0900
1300
1155
1125
1415
1138
1423
2223
1030
1230
1237

0300
0030
0530
0030
0100
Dissolved iron
concentration,
Saapling event mg/L

Storm #1
Storm #2
Storm #2
Storn f 2
Storm #2
Dry weather #1
Dry weather #1
Dry weather #1
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather #2
Stora #5
Storm f 5
Storm f 5
Storm *5
Stora #5
Stora #5
Dry weather #3
Dry weather #3
Dry weather #3

Dry weather
Dry weather
Dry weather
Dry weather
Dry weather

0.1
0.1
0.1
0.2
0.1
0.1
0.1
0.1
0.6
0.6
0.1
0.1
. 0.5
0.1
0.1
0.3
0.1
0.2
0.1
0.1
0.4

0.1
0.2
0.1
ND
0.1
                                                     (continued)
                         11-37

-------
TABLE 11-7  (continued)
Sample no.
207
241
247
250
256
260
265
294
303
312
321
330
339
347
385
420
432
444
456
476
485
494
503
515
531
550
. 558
566
577
Outfall
SITE #2
010A
008
008
009
009
015
015
004
004
004
004
004
010A
010A
010B
004
004
004
004
004
004
004
004
004
010A
010B
010B
010B
012
Date
5/10
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
5/18
6/9
6/9
6/9
6/9
5/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
Time
0500
1125
1550
1140
1545
1050
1630
1030
1200
1330
1500
1630
1130
1330
1530
0930
1030
1130
1230
1345
1515
1645
1815
2015
1100
1000
1100
1200
1000
Sampling event
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather-
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Dissolved in
concentration
mg/L
0.1
0.3
0.1
0.3
0.1
0.1
0.1
NO
0.1
0.1
ND
0.1
0.1
0.1
0.2
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.1
0.1
ND
0.1
0.1
                                         (continued)
             11-38

-------
TABLE 11-7  (continued)
Sample no.
587
597
612
665
673
681
692
70 n
7 Or-
7 3 . .
738
741
74.4-
747
750
753
756
763
768
849
863
867
876
879
883
890
893
905
914
Outfall
SITE #2
012
012
012
010A
010A
010A
010B
010B
010B
008
008
008
008
009
009
009
009
Oil
Oil
013
014
014
014
014
015
015
004
004
004
Date
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/10
6/10
Time
1100
1200
1710
1615
1815
2015
1615
1815
2015
1030
1215
1605
2315
1035
1230
1615
2315
1205
2025
1150
1115
1145
1935
2050
1010
2235
2225
0025
0155
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Dissolved iron
concentration,
rag/L
0.6
0.1
0.1
0.2
0.3
0.3
ND
0.2
0.1
0.1
0.7
0.1
0.1
0.4
0.2
0.2
0.2
0.2
0.2
0.9
0.9
1.2
0.3
0.2
0.3
0.4
0.1
0.2
0.6
                                         (continued)
             11-39

-------
                         TABLE 11-7   (continued)
Sample no.

937
952
990
1004
1014
1024
1038
1052
1058
1082
1097
1133
1184
1187
1190
1208
1224
1281
1289
1317
1382
1386
1389
1394
Outfall
SITE #2
010A
010A
010B
, 010B
010B
010B
010A
010A
004
004
004
010B
004
004
004
004
004
012
012
004
013
014
014
015
Date

6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/10
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/21
6/20
6/20
6/20
6/20
Time

0000
0400
0000
0400
1650
1950
1650
2050
1440
1840
2110
1640
1545
1600
1615
1745
1900
1600
1700
0315
1525
1530
1600
1640
Sampling event

Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Dissolved in
concentration
mg/L

0.1
01
0.1
0.3
0.1
1.1
0.1
0.4
0.1
0.1
0.3
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
1.1
0.2
0.3
C.I
ND = Not detectable;  detectable  limit  is  0.02  mg/L.
                                       11-40

-------
TABLE 11-8.   PHENOL ANALYSIS RESULTS
            SITES *1 AND *2
            MARCH-JUNE 1977
Sample no.
1
9
19
27
30
39
48
60
- -
96
109
115
122
146
155
164
178
179
199
265
283
308
315
322
334
- 335
340
360
Outfall
SITE #1
Oil
Oil
Oil
Oil
010
010
010
010
009A
Coal pile
Oil
Oil
Oil
010
010
010
Oil
Oil
Oil
010
010
Oil
Oil
Oil
Coal pile
Coal pile
009A
009A
Date
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/24
3/28
3/28
3/27
3/28
3/28 .
3/27
3/27
3/28
3/30
3/29
3/29
4/5
4/5
4/5
4/5
4/5
4/16
4/16
4/16
4/16
Tine
1000
1200
1400
1600
1000
1200
1400
1600
0115
0030
2306
0131
0333
2100
2225
0145
1000
0800
1400
0900
1300
0900
1100
1300
1140
1155
1205
1415
Sampling event
Stora #1
Stora #1
Stora #1
Stom #1
Storm #1
Stom #1
Stom f 1
Stom fl
Stom f 2
Stom f 2
Storm #2
Stom #2
Stora *2
Stom #2
Stom #2
Storm #2
Stom *2
Dry weather #1
Dry weather #1
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather #2
Dry weather #2
Stom *5
Stom f 5
Stom #5
Stom f 5
Phenol
concentration,
mg/L
0.52
0.01
0.05
0.01
0.21
0.03
0.93
0.44
0.04
0.85
0.04
0.06
0.05
0.05
1.1
0.02
0.02
0.05
0.06
31.0
34.0
0.68
0.05
0.05
0.13
0.18
0.09
0.06
                                               (continued)
                    11-41

-------
TABLE 11-8  (continued)
Sample no.
375
384
406
428
437
445
454
462
35
40
58
183
215
262
264
334
350
362
386
516
524
539
543
551
559
567
Outfall
SITE #1
Oil
Oil
Oil
Oil
Oil
010
010
010
SITE #2
015
010A
010A
010A
015
015
015
010A
010A
010B
010B
010A
010A
010A
010B
010B
010B
010B
Date
4/16
4/16
4/17
4/18
4/18
4/18
4/18
4/18
5/10
5/9
5/9
5/10
5/10
5/18
5/18
5/18
5/18
5/18
5/18
6/9
6/9
6/9
6/9
6/9
6/9
6/9
Time
0842
1239
0742
0930
1130
1137
1337
1537
1000
0000
0400
0000
1845
1050
1630
1030
1430
1030
1630
0930
1030
2230
0930
1030
1130
1230
Sampling event
Storm #5
Storm #5
Storm #5
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather #3
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Dry weather
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Phenol
concentratioi
mg/L
0.06
0.10
0.04
0.03
0.02
25.0
16.0
23.0
0.02
0.01
ND
0.01
ND
ND
ND
0.01
ND
0.01
ND
0.01
0.01
0.01
0.01
0.01
0.06
0.01
                                          (continued)
             11-42

-------
TABLE 11-8  (continued)
Sample no.
571
581
591
601
606
616
622
624
t'-<26
627
626
629
630
631
632
633
634
635
636
637
639
640
642
645
647
648
649
650
Outfall
SITE #2
012
012
012
012
012
012
015
015
015
Oil
Oil
Oil
Oil
013
013
013
013
013
010A
010A
010A
010B
010B
010B
010B
010A
010A
010A
Date
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9 .
6/10
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/9
6/10
6/10
6/9
6/9
6/9
Time
0930
1030
1130
1230
1430
1950
1010
2235
1145
1045
1205
1520
2025
iioq
1150
1530
1650
1945
1515
1715
2115
1515
1915
0100
0500
2300
0100
0300
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm f 1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Storm #1
Phenol
concentration,
mg/L
0.01
0.01
0.01
0.01
0.03
0.02
0.01
0.01
0.01
0.01
0.02
0.01
NO
0.04
0.04
0.04
0.02
0.01
0.01
0.01
0.02
0.02
0.01
0.01
ND
0.01
0.01
0.01
                                         (continued)
              11-43

-------
                          TABLE  11-8   (continued)
Sample no.
651
653
656
658
1126
1142
1150
1275
1283
1290
1297
1342
1358
1366
1379
1390
Outfall
SITE #2
010A
010A
010B
010B
010B
010B
010B
012
012
012
012
010B
010B
010B
013
015
Date
6/9
6/9
6/9
6/9
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/20
6/21
6/21
6/20
6/20
Time
0500
1750
1550
1950
1610
1810
1910
1530
1630
1730
1830
2345
0345
0545
1525
1640
Sampling event
Storm #1
Storm #1
Storm #1
Storm #1
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Storm #2
Phenol
concentratia
mg/L
ND
0.01
ND
0.01
ND
0.01
ND
0.12
0.02
0.01
0.19
0.02
ND
ND
0.04
0.03
ND = Not detectable;  detectable limit is  0.001 mg/L.
                                       11-44

-------
ADDITIONAL DATA
       11-45

-------
                                                      TABLE 5-6

                                                  STORM EVENT DATA
                                                        SITE 1
                                                 MARCH - APRIL, 1977
CTl
           Ua Le
          3/24/77
          3/27-
          3/28/77
          3/31/77
          4/4/77
          A/]6/77
Storm Beginning
0500
2000 (3/27)
mo
0200
0430
Storm Ending
2130
0200 (3/28)
1A30
0500
2000
Total Rainfall
cm
0.8'.
1.42
0.20
0.36
0.71
(inches)
(0.33)
(0.56)
(0.08)
(0.14)
(0.28)
Average
Rainfall
Intensity
cm/lir
0.05
0.23
0.61
0.13
0.05
(In/J.r)
(0.02)
(0»09)
(0.2/.)
(0.05)
(0.02)
Maximum
Rainfall
Intens I ty
cm/lir
0.13
0.61
1.07
0.41
0.56
(In/hr)
(.05)
(0.24)
(0.42)
(0.16)
(0.22)

-------
                                     TABU: r>~?

                             DRY  VS WKT  KI,OWSla*'-J)
                                       S1TK 1
                               MARCH  -  APRIL,  1977
(HITFAI.I.
DATE
•
1/24
J/27 - 28
1/29
1/31
4/4
4/5
4/16
4/18

	 . Jffl
Avg. Clow
l|>n(gpn)


4*3
tm>


227
(60)

216
(57)
DOS
¥
Rung*
ip»(w«)
•

435-5M
(115-150)


227
(60)

76-254
(20-67)

V
Avg. Flow
ii»(er-)
IOS6
(279)
6083
(1607)

401
(106)
2112
(JW)

1456
(9IJ)


rr
Rang*
tp«(gp«)
227-2213
(60-590)
454-15026
(1 20-1970)

217-984
(60-260)
560-4542
(150-1200)

228-15900
(60-4200)

C
V
' Avg. flaw
lpa(g|>«)
12.5
(1.3)
16.0
(4.2)

HD<->
•»<«>

11.3
(1.5)

MO
ff!T>
Run|(v
l|iM(nP»)
0 - 29.1
(0 - 7.7)
0 - 67.0
(0 - 17.7)

«»<">
ND<«>

0 - 49.02
(0 - 13.0)


Dl
Avg. flmt
lp»


27-51
(7-14)


0-11.2
(0-1.5)

76-106
(20-28)
1
V
AVR. ri»w
Ipa(gpM)
189
(50)
708
(187)

405
(107)
170
<4S)

Ml
(154)


f,T
RniiRr
l|IM(ft|t«)
45 - 514
(12-141)
JB - 2203
(10 - S82)

91-919
(25-248)
15-167
(4-97)

•3-1)74
(22-161)

(•)  No flew data were taken lit Ontfall* 006 ami 009, nor'at the r.oal pile drainage ditch.
(It)  There wa* no meacurnble dry flow at 010 during  tho progran.
(c>  MO - Ho flow data were obtained.
(d)  Flow values are tla>« wlgltted avrragva for the  entire evunt.

-------
                                                         TABLE  5-8
                                       RANGE OF  POLLUTANT CONCENTRATIONS  AT THE
                                             SAMPLING LOCATIONS AT  SITE  1
                                                   MARCH - APRIL, 1977
Till Int ant
Tut.ll SllUpflldfd ilillldfi
-'Total (Unsolved Sull Tot dl Iron
Illnaolved lioti
Plicnola
Cyanide Cl.il.il)
Amuoitlii
Sul f, ilc

Onlf.ill 005
in y
4-11
127-461






Wet
11-111
2)8-964




•

H.iiif;o of I'D II ill lint Onicc'iit Tilt Ions, i»i;/t
Outfall
Dry







006
W.-t
ll(>/6
200-15(11






Outfall 009A(a)l(b)
Dry








Wft
156-951
176-1116
18-51
O.IO(c)
0.04-0.09
n.d.-0.01(d)
0.21-3.5

Ontf.ill OKI
Dry
4-6,9
2007-541B
1.1-8.1
0.1-0.6
1 d- 14
n.d.-oV>
y,-96
400-I5UO
Wft
10-1272
661-4991
1.2-3.6
0.1-0.2
0.02-1 .1
,,.d.(d>
1.6 71
180-490

Outfnll Oil
Dry
7-42
f.68-1049
1.1-2.7
0.10
0.57-26

Wt-t
9-15
4.?7 II'
0.96-5
0.10 0
0.01-0
n.d.-O.O
0.65-

ill Oil
Wft
9-151
427-11%
0.96-5.H
0.10 0. 10
0. 01 -0.12
n.d.-O.OI00
0.fi5-2B
C.OU I
Dry







..Uo^
Wcl
1) 16 9559
I4I9-2974
14-44
0.50
-------
                                          TABLE 5-9

                    MKAN  POLLUTANT  CONCKNTRATIONS,  IN my/I  AT SITE 1
                                     MARCH -  APRIL,  1977
Outfnll
Pollutant
TSS
ma
Total Iron
Dlaaalved
Iron
Mienola
Gyanlilu
(total)
AMionU
Bylfata
on
Dry
IS
96







5
Uet
4}
MI







006
Dry









(.)
Hat
284
162







1
llry









M9<«>
Wet
SOS
74$
32.4
0.1

0.06
0.01
2.1

0
l»ry
•4
M;S
3.3
• .*

IS
o.s
73
....***
10
Wat
184
21SI
2.4
0.1

0.J7
-,(b>
41
112
0
Dry
IB
A&A
fiWw
1.9
0.1

0.13
_!•*
9.1

II
Wat
IS
919
J.6
0.2

O.OM
•.001
3.4

(teal rile
l»ry









UinlnaK*- IHli-h

0.39
_c*>
S6

(a)  NCI dry aavplaa cotUelad.
(b)  Several non-datectcbla valnaa wvru alaa

-------
                              TABLE  5-10

             AVERAGE MASS LOADINGS OF  POLLUTANTS(a)'(b)'(c)
                          DRY VS. WET  WEATHER
                          MARCH - APRIL, 1977
                         OUTFALL 005 - SITE 1
Data




Faraawtcr
Total Suapndvd
Solid*
Total DUaolvad
Solid*



«n-
Cow:..
a*A
39

931

3/2* '>

An-
Flo*.
Ipa
(»•)
1200
(317)
1200
(117)
tot)
*n-
Haa*
Loading,
kg/hr
(Ib/hr)
2.S2
(4.2)
67.5
(1*9)
3/27-21 Otat)


An-
Coae..
•t/1
41

332


*n-
Fio«,
laai
(w»)
M*5
(10U)
38*7
(1016)
An-
Iteaa
Loading.
kg/hr
(Ib/hr)
11.1
(2*.*)
76.6
U64.3)
3/29 Or--)


An.
Coac.,
«g/l
It

353


An-
Flov,
Ipa
(««•>
473
(125)
473
(125)
A»g-
(te**
Loading,
kg/hr
(Ib/hr)
0,4$
(9.»9>
10.0
(21.01
3/31 (Wet)


Avg-
Cone.,
•t/1
38

581


Avf.
Flov.
Ipn
(«p«)
401
(106)
40J
( 1 06 )
Avg.

Loading
*g/hr'
Clb/hr)
0.91
(2.0)
1 ..0
(30. »)
Dac«




rarwtar
Total Sn»>Mdad
Solid*
Total Ot**olvcd
Solid*
*/* ((tat)


*n-
One..
•f/i
37

6*9


Av«.
no«.
!»•
(«P«)
243*
(6*3)
2*3*
(M3>
An-
He**
Loadiac.
•Ht/hr
(Ib/hr)
s.*c
(12.0)
•7.7
(214.9)
*/S (Dry)


An-
Coac.,
•f/1
17

**3


An-
FlOM,
IP-
(»P-)
227
<*0)
227
(M>)
An-
Ha**
Loading.
kg/hr
(Ib/hr)
0.23
(0.51)
6.0
(13.2)
4/16 (U«t)


An-
Cone.,
-*A
75

371


An-
Flov.
IP-
(«t->
4205
(nil)
4205
(Ull)
4/1B (Dry)
Avg. |
Has*
loading.
kn/hr
(Ib/hr)
19.0
(41.8)
93.6
(J04.0)

Avg.
Cone. «
»«/l
1*

409


AvE.
Flov,
ip-

-------
                                  TABLE 5-11
                 AVERAGE MASS LOADINGS OF POLLUTANTS'
                              DRY VS. WET WEATHER
                              MARCH - APRIL, 1977
                             OUTFALL 010 - SITE 1
Dace




Parameter
Total Suspended Solids

local Dissolved Solids

lotal Iron

Dissolved Iron

Phenol

ftffl&onia

Sulfate




Avg.
Cone.,
mg/1
76

2170

2.61
.


0.46

50

285

3/24 (Wet)

Avg.
Flow,
Ipo
(gpm)
12.7
(3.36)
12.7
(3.36)
12.7
(3.36)


12.7
(3.36)
4.43
(1.17)
14.7
(3.88)
Avg.
Mass
Loading,
kg/hr
(Ib/hr)
0.06
(0.13)
1.65
(3.64)
0.002
(0.004)


0.0004
(0.0009)
0.013
(0.03)
0.25
(0.55)
3/27-28 (Wet)


Avg.
Cone.,
mg/1
1717

150



0.119

0.559

41.0

224


Avg.
Flow,
1pm
(gpm)
34.4
(9.1)
34.4
(9.1)


34.4
(9.1)
34.4
(9.1)
34.4
(9.1)
34.4
(9.1)
Avg.
Mass
Loading,
kg/hr
(Ib/hr)
3.54
(7.80)
0.31
(0.68)


' 0.0002
(0.0005)
O.OC1
(0.003)
0.08
(0.19)
0.46
(1.02)
b)
 Average  Mass Loadings for wet weather calculated by multiplying the time weighted
 average  concentration by the time weighted average flow, which were determined
 from  the flow and concentration curves for each event.
 Average  wet weather flows are tisie-weighted average flows for the sampling period
 for-each parameter.  These may vary for the different parameters within each
 storm.
•\
 Average  Mass Leadings for dry weather calculated by multiplying the straight
 average  concentration from Appendix B by the time-weighted average flow from
 Table 5-7.
                                          11-51

-------
                                                                       TABLE  5-12
                                                AVERAGE  MASS  LOADINGS OF  POLLUTANTS
                                                                   DRY VS.  WET  WEATHER
                                                                   MARCH -  APRIL,  1977
                                                                 OUTFALL Oil - SITE 1
                                                                                                  *"* '
s
111 If




1-1*1-1 cr
l.il
*,H.,MI,J
Ul,
4M.l|Vl-
72.8
762
((.9.22)
-'*».'
(Mi. M)
Avg.
Han*
1, nailing,
Vg/lir
( Ib/hr)
0.14
0. 12
17.5
U*. 5)

0.02
(0.04)
O.OO2
(0.004)
0.002
(0.004)
0.021
(0.05)
1/27-28 (Wfl)


Avg.
(,'»4)
l(.li')
<'•'«'•)
I'll
(I'M.)
AvB.
MrtHM
(.odillni;,
kg/hr
(Ib/hr)
10. 1
(22.6)
Uv.O
(145. 1)

0.26
(0.57)
0.004
(0.1(09)
0.004
(O.OO'I)
O.Srt
(I.2H)
1/29 (Hry)


Av|(.
Cone . ,
«B/I
14

681


1. 1

0,1**

0.05',

•11


Av«.
How,
I|IM
(RI*)
IB
(10)
1H
(10)

Id
(10)
18
(10)
IH
(10)
IH
(10)
AVK-
H.IHH
Uiiidlng,
kR/lir
(ll./l.r)
0.01
(0.07)
1.56
(».'•»

O.OOJ
(d.007)
0.0002
('().IKIO'>)
0.0001
(0.0001)
o.os
(0.11)
4/5 (Hry)


Avg.
Cone. ,
•H/l
14

1021


2.6

0.1

0. 26

4.9


AVH.
How.
Ip.
" 5
(l.2:;lirri)
O.OOI
(O.OOX)
4/lb (U<-t)


Avg.
Coin- . ,
«g/l
51

1062


1.61*

0.2*

0.08*

0.912


Avg.
How.
Iprn
(BI«)
568
(150)
SUB
( 1 50)

915
(247)
9)5
(247)
477
(126)
5(,8
(150)
Avg.
H.ISB
Lonilliig,
kg/In
(ll./l.r)
1.74
O.HI)
16 . 2
(79.6)

».l
(0.45)
0.01
(O.i»2)
II. Ill)/
(0.004)
0.01
(0.07)
4/IH (Illy)


Avg.
(.'OIK: . ,
•I',/'
10

7«5


1 .9

O.I

0.025

0.97


Avg.
How,
l|.m
(RI'H.)
87
(21)
87
(21)

87
(21)
87
(2J>
87
(21)
87
(?))
/
1
\AI,
*
(1
(
(I

<

(
u
(
((
0
(0
(
((
                                                                                                                                                              Av|;.
                                                                                                                                                              HJUH
                                                                                                                                                             (IWhr)
                                                                                                                                                              0.16
                                                                                                                                                             (O.Vi)
                                                                                                                                                               /i. I
                                                                                                                                                              (9.0)
                                                                                                                                                              0.01
                                                                                                                                                             10.02)

                                                                                                                                                              {(.001
                                                                                                                                                             (0.002)

                                                                                                                                                             0.0001
                                                                                                                                                            (0.0001)

                                                                                                                                                              0.005
                                                                                                                                                             (0.01 I)
*Hlrnl|;lit ,i
            out v
  Av«:r.i|;>' ll.iss I I'.Hllnr.'i lor wl  wt'.itln.'r rulrul.it cil  (>y mnl ( l|.| y mi;  tin- < Iwi- wrl|;l.l<-J  w. riii;<
  < <>i» i ill I .il Ion Ity III.' I IIIM- we l|;lil'd ;iveri|;i'  (ii>w.  will, li wen- ih i •  i ml ii- il IID^I I In  (Inu ,nnl
  i IIIK rot l .11 Inn rnivi'M I<>| fin l<  cv. 'It .



  tr.ii'ti  |.ii.'MM* I. • r .  Tlifii.1  m..y  v.iry (or tTi:i -il f fcrt-nt  pa. .niM'i I't't;  ulll.ln c;u h Ntnim.
      . ..H'' II. .,.  I,...II.H'.^ lor dry wuall.u. , ., I, .11 .1 ,• J l.y m.i I I I |i I y I lit-.  I I..- M>ri.lltM
                                                                                                   Reproduced  from
                                                                                                   best  available  copy.

-------
                                     TABLE  5-13

                                  STORM EVENT DATA
                                       SITE 2
                                  MAY - JUNK, 1977


I-J
M
1
cn
OJ

Date
6/9-
6/10/77
6/20/77

Storm Beginning
0500 (6/9)
0900

Storm Ending
1500 (6/10)
20)0

Total Rainfall
cm
4.45
2.59
(Inches)
(1.75)
(1.02)

Average
Rainfall
Intensity
cm/hr
0.13
0.23
(In/hr)
(0.05)
(0.09)
M.I K i mum
Ra i n fa 1 1
Int.enu Ity
Dur li g Storm
cm/hr
i.«
J-)
(in/hr)
(0.56)
.<•)
No rainfall intensity data were collected  on  June  20  due  to  equipment  failure
and manpower constraints.

-------
                                 TABLE 5-14

                            DRY VS.  WET FLOWS  5
                                   SITE 2
                              MAY - JUNE, 1977
Outfall

n/inO))
002


(c\
004 '


MA f V C f
006


surtVC)
007


rt/MS^®*
009

010A(b)


010B(b>
•
Date
5/10
5/18
6/9-10
6/20
5/10
5/18
6/9-10
6/20
5/10
5/18
6/9-10
6/20
5/10
5/18
6/9-10
6/20
5/10
5/18
6/9-10
6/20
5/10
5/18
6/9-10
6/20
5/10
5/18
6/9-10
6/20
Sampling
Condition
Dry
Dry
Vet
Wet
Dry
Dry
Wet
Wet
Dry
Dry
Wet
Wet
Dry
Dry
Wet
Wet
Dry
• Dry
Wet
Vet
Dry
Dry
Wet
Wet
Dry
Dry
Wet
Vet
Average Flow
Ipa (gpm)
^
53 (14)
-
—
163 (43)
413 (109)
549 (145)
382 (101)
1120 (296)
2150 (568)
2498 (660)
3066 (810)
4.5 (1.2)
2.9 (0.8)
45 (12)
291 (77)
_
5344 (1412)
"
-
l.OSxlO5 (28570)
—
_
5.14zlOu (13590)
*•
Range,
1pm (gpm)
_
23-91 (6-24)
-
—
132-310 (35-82)
223-727 (59-192)
163-988 (43-261)
189-795 (50-210)
655-3410 (173-900)
1540-3293 (407-870)
730-4290 (193-1133)
1692-9463 (4i7-250C)
4.0-4.9 (1.0-1.3)
2.5-4.0 (0.7-1.0)
1.1-216 (0.3-57)
45-5776 (12-1526)
-
5223-5465 (1380-i^--)
-
—
1.03xl05-1.12xl05 (272SO-29580)
""
—
3.3xlOu-6.6xlOu (8640-17480)
^
(a)
00
(e)
Flow data were not collected at outfalls 003, 005, 008, Oil,  012,
013, 014, and 015.

Straight averages.
Time-veighted averages.
                                       11-54

-------
                                TABLE 5-15


                  RANGE OF POLLUTANT CONCENTRATIONS AT THE
                   SAMPLING LOCATIONS AT SITE 2 IN rag/1
                             MAY - JUNE, 1977
                                        Outfall
002
SSjurr ' PI-V
I
U^n*nd«4
IgtHnolved

Mtrm

WM
ta-W
m


11-2019





Wet

9-176

1112-284





003
[»rv : Wet








11-132

93-148




. OOi
!>rv : W-c
1
2-47

113-205
0.20-1.2

3-39

160-359
0.18-2.2

n.d.-0.2 0.1-O.b

006
Dr1-' Wet

20-416

102-159



S-2537

145-490



i
i
007
Or'
Wei
}
1-60

54-245




3-119

107-418




OOS
DTI i Wet

22-56

19-39

112-172 ! 224-265
1.0-2.2

0.1-0.3

2.8-7.5

0.1-0.7

'
00?
Sf» ; Wet

4-58

116-138
0.78-1.4

0.1-0.3

55-109

151-251
3.0-5.2

0.2-0.4




tURAtTT
'r
tal Stnpended
MM*
tal Dlmolved
MU.
i
tol Iron
Bwolwd Iron
ltaol(e)

Spd<»ffc>l»l) "


i^M»
j .
;«•*

n.r..ti

010A
DTT i W« t
5-37
76-125

3-4D
131-253

0.57-1.3 , 0.93-5.9
o.i | n.i-o.4
n.d.-O.Ol n.d.-O.02
t
0.01 0.01


i
3.8-8.6 0.1-0.7




010B
t>rv ! Wet
13-28
89-133
i .
1.5
(b)
0.2
n.d.-O.Ol

12-702
137-239

0.74-225
n.d.-l.l
n.d.-O.C*

n.d.-O.Ol n.d.-0.02


7 l(b) 0.07-4.1
1



(*)
Oil
Drv Wet













56-2684
299-681

11-25
0.2
n.d.-0.02

(e)
—

0.23-
0.43
195-270
(a)
012
DI-T ; Wet


29-563
222-546






1.5-26
0.1-0.6
0.01-
0.19
o.o9-o.:


0.41-


1.6
52-128

(a)
013
Drv ; Wet






12-1380
.J55-1690

0.32-28
0.9-1.1
O.ni-
0.04






0.38-
0.71

18-3?

36-190
(*)
014
Drv





Viet
24-121
232-524

0.95-14
0.2-1.2
















w.
tb)
So dry weather sanples collected.
i
Only one sample analyzed.

Cyanide vas not analysed at this outfall.

n.d.-not detectable.  Detectable liait  for dissolved iron is 0.02 mg/1.

a.d.-aot detectable.  -Detectable limit  for phenol is 0.001 mg/1.

«.d.-noc detectable.  Detectable liaic  for total cyanide is 0.001 mg/1.
                                     11-55

-------
                                                          TABLE 5-16



                                       MKAN POLLUTANT CONCENTRATIONS IN rog/J  AT SITE  2

                                                       MAY - JUMK,  1977
 i
en

Ihilliilt
0»»
00,""

nn^
,M4«"»

!!
2i/
192
6* 	

TI»S
/«'!
l/fl
110
157
216
no
271
1IH
2>/
149
241
124
201
10'.
IHI
10^
IRI

IH
18
II .'•
1 '.(.
i.8
fill lilt mil
DlNHiilvrd Ir.tn


0.08
0.14


».2I
0.2.
0.2
O.I
O.I
0.2
-(h)
0.2
1). IH
0.2
1 .0
i). '•

I'hi'li.il







0.01
d.oo'i
n.no'i
0.01
11.01
0.04
II. (11

T..t«l
( yji(ilil>i







0.01
0.01
O.OOi
(I. Oil

H.2
».« ......

Anmoii 1 a







18. 4%
0.2d
(I.)
(l.i,
0. )l
I.I,
."». 1
-










'/ M
;H
it'i
                   i y wt-;i» Itt'i
                                                          Reproduced from

                                                          best available cor

-------
                                 AVERAGE MASS LADINGS OF POLLUTANTS
                                                 DRY VS. WET WEATHER
                                                    MAY-.HINF, 1977
                                                 OUTFALL 002-SITE  2
                                                                    (a), >,
          Date
 i
en
"vj
            I'aramnter
         Total Suspended
           Sol Ids
         Total Dissolved
           Sol ids
5/18 (Dry)
Avg.
Cone . ,
wg/1
20
lift
Avg.
Flow,
1pm
(gpm)
53
(14)
53
(14)
Avg.
Hit as
Loading,
kg/hr
(lb/hr)
0.07
. (0.14)
0.36
(0.8)
6/9-10 (Wot)
Avg
Cone. ,
mg/i
65
212
Avg.
Flow,
1pm
(gpm)
53
(14)
53
(14)
Avfj.
Mass
Loading,
kg/hr
(lb/hr)
0.21
(0.45)
0.67
(1.48)
6/20 (Wet)
Avg.
Cone . ,
mg/1
37
133
Avg.
Flow,
1pm
(gpm)
53
(14)
53
(14)
                                                                                                    Avg.
                                                                                      Loading,,
                                                                                        kg/hr
                                                                                       (lb/hr)
                                                                                        0.12
                                                                                       (0.26)
                                                                                        0.42
                                                                                       (0.93)
         (a)
         (b)
         (c)
         (d)
         (e)

         (O
Average mass loadings for wet weather calculated  by  multiplying  the  time  weighted average
concentration by the time weighted average  flow,  whicii  were  determined  from the flow and
concentration curves for each event.

Average v/et: weather flows are time weighted average  flows  for  the  sampling  period for
each parameter.  These may vary for  the different parameters within  each  storm.

Average mass loadings for dry waather calculated  by  multiplying  the  straight average
concentrations from the Appendices by the average flows from Table 5-14.

Wet weather average mass loadings were estimated  using  dry weather flows  because wet
weather flow data were not obtained.

Straight average used.

No dry flow data collected on 5/LO/77.

-------
                                       TABLE 5-18

                       AVERAGE MASS LOADINGS OF POLLUTANTS(n)'(b)'
                                   DRY VS. WKT WKATIIER
                                     MAY-JUNK, 1977
                                  OUTFALL 004 - SITB 2







M






i'.ll «!




I'm Hinder
Ttiliil Siirpt-mlt'il
Sol MM
Till 111 III IIBOI VL'll
S..II.U
To) ill Iriin

01 MHO 1 vo J lion




A»».
Conn . .
•I/I
9

155

0.2(

5/10 (Dr

Av|.
riow.
IP*

161
(4J)
161
(4J)
16)
(41)
I6J
(41)
r)
AVR.
Mil UN
lnc . ,
-^i1
10

250

O.4'l

0.11
(0.002)
,/•>-„> >W

AVR.
flu«,
I|IH
A*!*-
662
(l/'i)
662
0/5)
662
O/5)
691
(181)
ft)
Av».
Him a
l.imdliin.
l/'n)
o.:-2
(0.4H)
4.')
do. n>
0.01
(H.02)
0.001
(0.002)
(a)
(b)
(c)
Average mass loadings for wot weather calculated by multiplying  the  time  weighted  average
concentration by the time weighted average  flow, which were determined  from  the  flow and
concentration curves for each event.

Average wet weather flows aru time weighted average clows  for  the  sampling period  for
each parameter.  Those may vary for the different parameters within  each  storm.

Average mass loadings for dry weather calculated by multiplying  the  straight  average
concentrations from the Appendices by the average Mows  from Table 5-14.

       value only.

 ° ii. d. -not detectable.   Detectable  limit  is 0.02 mg/1. .

-------
                                                     TABLE 5-19

                                    AVERAGE  MASS LOADINGS OF POLLUTANTS   '*
                                                 DRY VS.  WET WEATHER
                                                   MAY-.IUNE, 1977
                                                OUTFALL 006 - S1TK 2
 i
ui
UD
               Date
               I'arnmv
             Tiit.il Sus|
              Sol III«
Sotldli

l«-r
leiulrd
solved

Avg.
Cone .,
»g/l
41
112
5/10 (l»r)
Avg.
Flow,
lp.
(gp»)
1120
(296)
1120
(Z96)
r)
Avg.
HllRI
l.2)
7.5
(16.5)

Avg.
(.'out .,
"8/1
1)0
1/.8
Via (!>•
Avg.
Flow,
Ipn
(8P«)
2150
(^68)
2150
(56B)
y)
AvS.
Hiinn
l4>»iiln)t.
kn/lir
(Ib/lir)
16.8
(V)
19.1
(42)

Avg.
(;<»nc .,
"•R /I
vr>
•i 1,1,
fc/9-IO (
AVR .
How,
l|>u
(ei"»)
1851
Ci89)
1851
(/•H9)
Wet)
Avg.
H.inn
l.onillnp, ,
kR/lir
(H>/lir)
55
(121)
27.1
(59.6)

Avg.
C«»nc.,
»g/l
n
186
6/20 (
Avg.
Flow,
Ipn
(RI"«)
282/.
(7/.r.)
2824
(746)
J.-t )
Avg.
MJIHH
l.niiillng,
kg/In
(ll'/lir)
5.4
(11.9)
31.6
(69.))
             (a)
             (b)
             (c)
  Average mass loadings for wet weather calculated  by  multiplying the time weighted average
  concentration by the time weighted average  flpw,  which were determined from the flow and
  concentration curves for each event.

  Average wet weather flows are time weighted average  flows  for the sampling period for
  each parameter.  These may vary for the different parameters within each storm.

  Average mass loadings for dry weather calculated  by  multiplying the straight average
  concentrations from-the Appendices by the average flows from Table 5-14.

-------
                                          TABLE 5-20

                       AVERAKE MASS  LOADINGS OF POLLUTANTS(r
(Ib/lir)
0.004
(0.009)

0.01
(0.(«)
6/9-10 (Wet)


Avg.
Cone .,
-g/l
Jfr


222


Avg.
Klnw,
Ipi.
(RI-O)
JM
(H.fl)

11. J
(8.fl)
Avg.
HllH*
Lctaillng,
*B/hr
(Ib/lir)
0.07
(O.li)

0.44
(0.97)
6//0 (Uvt)


AVR.
Cone.,
»g/l
22


244


Avg.
Flow,
l|im
(«!•«)
165.4
(41.7)

165.4
(41.7)
Avg.
II. in ii
l.iinillii|>,
l-K/l-r
(ll,/l,r)
0.22
(0.4H)

7.42
(5.12)
(a)
(I.)
(c)
Avcrauu mass  loadings f»»i" WL-L  wtMllicr calculatoj  by  mull Ipl ylnp, the  time weighted nvei ai;«:
c.uitrcMit rat ion by the time wcigliteil  average flow,  which were determined  Irom the flow  tind
concentration curvcn for rnoh  event.

Averiijje wi;t weather flows ;iro  time  weighted average  flows ff>r the  anmpliii(> period for
enr.h (i.irnmetcr .   These m;iy vary  for the different  parameters within  each atonn.
   Averajju mass  loadliiRH for dry weallier  calculated l»y  null t I|>ly I nj1, the atraJp,ht
   concent rat lonii  from the ApjH-nd i ••<-.»  by  the average  I lows  from Table 5-l/».

-------
      AVF.RACK MASS LOAD1NCS OF POLLUTANTS    ' (l>]
                      DHY VS. WKT WhlATIII'K
                         MAY-.HINIi,  1977
                     OUTFALL 009 -  S1TF.  1?
Date
Parameter
Total Suspended
Solids
Total Dissolved
Solids
Total Iron
Dissolved Iron
5/18 (Dry)
Avg.
Cone.,
nig /I
32
124
I.I
0.2
Avg.
Flow,
1 pin
(gP«")
5344
(1412)
5344
(1412)
5344
(1412)
5344
(1412)
Avg.
Mas.-
Load li
KK/I
10.:
(22.7
39.?
(87. f
0.35
(0.77
O.Ofc
(O.H
                                                   6/9-10 (Wet)
                                             Avg.
                                             Com:
                                             mg/1


                                              73
                                             201
                                             4.0
                                            0.25
Avg.
Flow,
1 pin
(BP"0
5344
(1412)
5344
(1412)
5344
(1412)
5344
(1412)
Avg.
Ma s a
Loading,
Icg/hr
(Ib/hr)
23.4
(51. b)
64 . 4
(141.7)
1.28
(2.82)
0.08
(0.18)
(a)
(h)
(c)
(d)
Average mass loadings calculated  by  multiplying the straight
average concentrations from  the Append Icc-u  by  the stra',;ht
average flow.

Wet weather average mass  loadings were  estimated using dry weather
flow data because wet. weather  flow data were not obtained.
No dry flow data collected on  5/10/77.
No sample tulU'ded on 6/20/77.

-------
                                                     TABLE 5-22
 I
a>
                                  AVERAGE  MASS  LOADINGS OF POLLUTANTS
                                                 DRY  VS. WET WF.ATHRR
                                                   MAY-JUNE, 1977
                                               OUTFALL 01 OA - SITE 2
                             DoLu
                            Parameter
Total Suspumlcd
  Sol Ida

Total Dissolved
  Solldu

Total Iron


Dissolved Iron


Phenol
                        Total
                         Cyanide

                        AmmonIn

Avg.
Cone .,
wg/l
23
lO/i
.06
O.I
.005
.01
A.')
5/ia (u
Avg.
Flow,
1pm
(gpm)
l.OSxlO5
(28570)
l.OSxlO5
(28570)
l.OBxlO5
(28570)
l.OSxlO5
(28570)
l.OSxlO5
(28570)
l.OSxlO5
(28570)
l.OHxlO5
(285/0)
ry)
Avg.
Mans
Loading,
kg/hr
(Ib/hr)
149
(328)
674
(148))
6.87
(15.11)
0.65
(1.43)
0.0)
(O.O/)
0.06
10.13)
31.7
(69.7)

Avg.
Cone .
tng/1
19
18.1
1.73
0.2
0.01
0.01
0.27
6/9-10 (W
Avg.
V I ow ,
1pm
(}-,pro)
l.OSxlO5
(28570)
I. 08x1 O5
(28570)
l.OSxlO5
(28570)
1.08x1 0s
(28570)
l.OSxlO5
(28570)
1 .OHxlO5
(28570)
1 .OSxlO5
(28570)
et)
Avg.
Ma SB
Loading,
kg/hr
(Ib/hr)
123
(271)
1186
(2609)
11.21
(2/4.66)
1.3
(2.86)
0.06
(0.13)
0.06
(0.13)
1.75
(J.85)
                         (a)

                            Average mass load lugs calculated by multiplying  the straight
                            average concent rat ions from the Appendices  by  the  straight
                            average 1 low.

                            Wet weather average mass loadings were cotJmated lining dry weather
                            flow data becati.se wet wen 1. lie r Clow data were not obi
                               d r v £ 1 .^u «l..t .-i
                                                             I tl /.

-------
                                          MAY-JUNE. 1977
                                     OUTFALL 01OB - SITE  2



1
en
OJ







Date
Parameter
Total Suspended
Solids
Total Dissolved
Sol ids
Total Iron
Dissolved Iron

Phenol

Total Cyanide
Ainnion la

5/IH (l.ry)
Avg.
Cone.,
wg/1
22
102

1.5(d)
0.2(d)

0.005

0.005
7.1(d)

Average mass loadings
the Appendices by the
Uf-»l' uf»;itlit»r iit/**fno*» tnn
Avg.
Flow,
1pm
(gpm)
t
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10''
(13590)
calculntoc
straight ;
no 1 nrtrl 1 it i
Avg.
Mass
Loading,
kg/hr
(Ib/hr)
67.8
(149.2)
314.6
(692.1)
4.63
(10.2)
0.62
(1.36)
0.02
(0.04)
0.02
(0.04)
21.9
(48.2)
1 by mul tii
rverage flc
ra ur»m 43 at
6/9-10 (Wet)
Avg.
Cone .,
mg/1
71
185

20.3
0.21

0.014

0.011
0.32

Avg.
Flow,
1 pin
(gpm)
5.14x10''
(13590)
5.14x10''
(13')90)
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10*'
(13590)
5.14x10''
(13590)
5.14x10"
(m,,)
Avg.
Masn
Loading,
kg/hr
219
(482)
570.5
(1255.1)
62.6
(137.7)
0.65
(1.43)
0.04
(0.09)
0.03
(0.07)
0.99
(1MH)
6/20 (Wet)
Avg.
Cone .,
mg/1
44
181

3.75
o.i(d)

0.005

0.01
0.98

Avg.
Flow,
Ipm
(gpm)
5.14X101*
(13590)
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10''
(13590)
5.14x10''
-(13590)
5.14x10''
(13590)
5.14x10''
(13590)
Avg.
Ma s s
Loading,
kg/hr
(Ib/hr)
136
(299)
55H.2
(1228)
11.57
(25.45)
0.31
(0.68)
0.02
(0.04)
0.03
(0.07)
3.02
(6.6/1)
•lying the straight average concentrations i'rom
»w.
(c)
wet weather flow data were not obtained.

No dry How data collected on 5/10/77.

One value only.

-------
            TABLE 5-24

MEAN POLLUTANT CONCENTRATIONS, mg/1
   IS THE TIDAL RIVER AT SITE 2
          MAY-JUNE, 1977
      (SAMPLING LOCATION 015)
Pollutant
TSS
TDS
Total Iron
Dissolved Iron
Phenols
Total Cyanide
Annonia
Sulfates
Mean Pollutant Concentrations, rag /I
Dry
19
120
0.43
0.1
O.OC5
0.004
-
20
Wet
35
182
0.83
0.3
0.010
-
0.34
-
                  11-64

-------
                              TABLE B-l
                       DUSTFALL DATA,  SITE  1*

 Outfall 010          Estimated Acreage  2.6          Coal Handling

 Sample Area          Description
    '•I                Moderate Activity  - Near Water Tower
    «2                High Activity -  Uear  Conveyor
    *-'3                Low Activity - Outside Conveyor Area
Dustfall Values

Day
Ho.
1
2
3
4
5
??!
Cumulative
weiehts
4.67
7.48
49.44
16.29
15.04

Average
Per Dav
4.67
3.74
16.48
4.07
3.01
n
Cumulative
Weiehts
15.22
28.54
32.23
26.27
96.61
(mg) /4 sq ft

Average
Per Dav
15.22
14.27
10.74
6.57
19.32
#3
Cumulative
Weights
0.06
0.09
2.38
2.94
1.25

Average
Per Dav
0.06
0.04
0.79
0.74
0.25
Total  Daily  Average/ft2  - 1.67 mg/day/ft2
total  Daily  Average/Acre - 72.75 g/day/acre
fatal  Daily  Average/Basin 010 - 0.19 kg/day (0.42 Ib/day)
   *Data is calculated in metric/English  units  from raw field  data
    and is converted to metric units  only in  text  of report.
                                     11-65

-------
                                                    TABLE  B-2

                                             DUSTFALl, DATA  SITK  2**
                   Sinter riant            KallmJleJ Acreage 11.4   High Activity

                   Coku and Coal Pllun     Estimated Acreage 1.5    Moderate Activity

fiqu.-ireu


gtotal
Mo.
Days
Avg.
Wgli.
Average
Avcrnge
fot tlld
Sinter I'll. nt Dtibtfal) Site
lltislfdll WflKhtB (rag)/ 4 HI) ft
fl §2 n 14 15 16 11 18 *9
8.46 6. 09 2.91 5.8b 9.03 15.24 25.76 22.21 25.46
11.38 16.90 8.72 13.16 6.98 7.86 14.09 4.05 4.71
7.05 6.91 9.50 3.50 3.05 17.60 9.53 7.36
26.91 31.9 21.1 22.52 19.06 40.7 49.38 33.62 29.63
20 21 22 23 24 25 26 27 19
1.35 1.52 0.96 0.98 0.79 1.63 1.90 1.25 1.56
Dally Accumulation 1.33 »i;/day/4 a<| It
0.33 .g/day/ft*
14.48 en/duy/acr*
Dally Accumulation
Sinter Plant Area 0.17 Vg/day
0.36 Ib/day
Cokt! and I'oal St.ir.iy.' Site
Duutfdll Uolclitu (iflij)/4 b<| ft
It 12 13 04 #5 J6 #7 »8
2.04 5.16 T.dJ 5.8B 6.50 7.36 6.73 23.27
8.92 11.73 * 5.66 5.3lay
0.034 ll>/iliiy

19
34.52
1.59

36.11
19
1.9


*-vl)at,i la  f.iili-.ulul.cd  in  meLr lt:/Knj» I lsl»  units  from  raw  field  d.it;
  ami  Is  convertt«tl  to nn«trlc  units  only In  text of  report.

-------
STUDY NUMBER 12

-------
                  STUDY NUMBER 12
DATA
SOURCE:
SOURCE ASSESSMENT: COAL-FIRED
RESIDENTIAL COMBUSTION EQUIPMENT
FIELD TESTS, JUNE 1977
DATA
STATUS:
EPA-600/2-78-0040, June 1978
AUTHORS:
CONTRACTOR:
D. G. DeAngelis and R. B. Reznick
Monsanto Research Corporation
1515 Nichols Road
Dayton, Ohio 45407
Contract No. 68-02-1874
PROJECT
OFFICER:
Ronald A. Venezia
Industrial Environmental Research Laboratory
Office of Energy, Minerals, and Industry
U.S. Environmental Protection Agency
Research Triangle Park, NC 27711
                             12-1

-------
     The objective  of this  study,  performed in Denver,  Colorado,  during June
1977, was to compile an emissions  data  base for coal-fired residential combus-
tion sources.   With the recent  trend  toward again  using coal  as a home heating
fuel, this information is  important in  planning regional  air  quality manage-
ment strategies.  Two coal-fired home  units  were tested:   a stoker-fed hot-
water boiler and  a  stoker-fed warm-air  furnace.  Tests  were run using three
types of coal  of  varying ash and sulfur content and  with  representative "on"
and "off" cycles.   In the  coal  burner beds,  combustion  continues  during the
"off" cycle, although at a  much slower  rate.   Table  12-1  from the final report
shows the sampling  plan.
     A modified and supplemented Level  1 protocol  was followed.   Particulates
and condensable organics were collected with a Method 5 train and analyzed by
AA, ICAP, and GC/MS.
     Atomic absorption analysis was performed for  arsenic, mercury,  and se"le-
niun; inductively coupled  argon plasma  was  employed  for the analysis of alum-
im», antimony, barium, boron,  cadmium,  calcium, chromium, cobalt,  copper,
iron, lead, magnesium, manganese,  molybdenum, nickel, phosphorus, silicon,
silver, sodium, strontium,  tin, titanium, vanadium,  and zinc.   The  Level  1
separation scheme (CH2C12  extraction, solvent exchange,  LC fractionation) was
followed for organics but  analysis of the fractionated  sample was by GC/MS.
It should also be noted that the second, third, and  fourth LC fractions were
combined for specific analysis  by  GC/MS for PCB and  POM components.
     Sulfur oxides  were sampled and analyzed by Federal  Register  Method 6.
Method 7 was used for N0x  determinations.   Carbon  monoxide was determined by
DrSger tube, and  a  Fyrith  test  kit (employing the  Orsat Method) was  used to
analyze Tedlar bag  samples for  02  and C02.   Grab samples  of coal  and bottom
ash (and a 1:10 distilled  water leachate of the ash) were analyzed  by AA and
ICAP for the same selected elements as  in the modified  Method 5 sample.   The
coal was also analyzed by  standard procedures for  p  ix^.iate and ultimate composi
tion (»oisture, ash, S, C,  H, N, 0, Cl, volatiles, fixed  carbon,  Btu value),
                                       12-2

-------
r>o
 i
to
TABLE 12-1,
Test
run
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Combustion
equipment
Boiler
X
X
X
X
X
x-
X
X
X
X
X
X

















furnace












X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
. EMISSION SAMPLING PROGRAM FOR
Test coal
Designated
A fc C
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

Low




X
X




X
X
X
X
X
X












X
Ash level
Medium High
X
X
X
X


X
X
X
X






X
X
X
X
X
X
X
X
X
X
X
X

Heating
segment
ON OFF












X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H

COAL-FIRED RESIDENTIAL COMBUSTION EQUIPMENT
cycle
sampled
Total
X
X
X
X
X
X
X
X
X
X
X
X
















X
Sample types collected
Participates
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
s°x
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

NOX
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

CO POM
X X
X
X
X
X X
X
X
X
X
X
X
X
X
X X
X X
X X
X
X
X
X
X X
X X
X X
X X
X
X
X
X

Condensable
organics Elements SASS
X
X
X
X
X
X
X
X
X
X
X
X
X 1 X
X } X
X
X
x j x
X 1 *
X
X
X
X
X
X
X
X
X
X
X
          aCoal  A  rank:   high volatile B bituminous; Coal B rank:  high volatile C bituminous;  Coal  C  rank:   subbituminous C.

-------
ash fusion temperature,  and free  swelling index (a test  in  which  1 g  of pulver-

ized coal  is  heated  under specified conditions to form a coke button,  the size

and shape  of  which are  compared with a  series  of standard profiles numbered
1 to 9 in  increasing order of  swelling).

     SASS  train samples  of the flue gas were also taken  from the  warm-air

furnace during the "on"  cycle.  The SASS cyclone and  filter catches were
weighed to determine particulate  loading and analyzed for the 27  selected

elements by AA and ICAP.  Organic  extracts were analyzed  for C7-C12 organics by
GC/FID and for PCB's and ROM's by GC/MS.

     Quoting  from the abstract of the final  report, the  following significant

results were  found:

          Particulate emissions factors from the warm-air furnace were found
          to  be about an order of magnitude  higher than  those from the boiler
          while burning a high volatile western coal.  High volatile  coals
          with high  free swelling index produced the  highest particulate
          emission factors.  No correlation  was observed between  particulate
          emission factors and the  ash  content of the coals fired.  The compos 1-
          tion of particulate  emissions was  primarily carbon, rather  than
          elements present in  the ash.   In most cases, emissions  of individual
          elements amounted to less than 5%  of the elemental content  of the
          coal burned.

          The low-fire,  or "off", portion of a typical heating cycle  made a
          significant contribution  to the total  emissions from the combustion
          equipment.  In the case of polynuclear organic materials (ROM's)
          the greatest  contribution came during the off  period.   Over 50 organic
          species,  including many POM's,  were  identified in the organic material
          collected  from the flue gas during combustion  of  high volatile
          coals. Maximum POM  emission  factors occurred  when high volatile
          coals were burned at low  excess air  levels.
                                       12-4

-------
LEVEL 1
     12-5

-------
              TABLE 12-2.   ATOMIC ABSORPTION ANALYSIS
               TEST COAL B,  LOW AND HIGH ASH CONTENT
                             (Ib/ton)
             Sample                  As                 Hg
         Low ash content            0.006            <0.00002
         High ash content           0.01             <0.00002

Note:   For this intermittent feed process,  Ib/ton of feed coal  is
       an appropriate unit of measure (rather than the standard
       Level 1 measures).
              TABLE 12-3.   GAS CHROMATOGRAPHY ANALYSIS
           COAL-FIRED RESIDENTIAL FURNACE HEATING CYCLE
               SASS RUN 2,  COAL B, LOW ASH CONTENT
                             (Ib/ton)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
0.004
0.012
ND
NO
ND
0.016
ND
ND
0.008
ND

No. of
peaks











*Not usually included in TCO range, i.e., C8-C16.
Notes:  1.  For this intermittent feed process, Ib/ton of feed coal
            is an appropriate unit of measure (rather than the standard
            Level 1 ppm).
        2,  The authors include a category, C7 to C8, that shows a weight
            of 0.090 Ib/ton.  This is not standard Level 1 procedure.

        3.  Test run of 100 minutes'  duration.
                                 12-6

-------
              TABLE  12-4.   GAS CHROMATOGRAPHY ANALYSIS
           COAL-FIRED RESIDENTIAL FURNACE HEATING CYCLE
               SASS  RUN 2,  COAL B,  HIGH ASH CONTENT
                             (Ib/ton)
Gas
GC7*
GC8
GC9
GC10
GC11
GC12
GC13
GC14
GC15
GC16
GC17
Range
90-110
110-140
140-160
160-180
180-200
200-220





Volatile
weight, ppm
ND
ND
0.004
0.008
0.006
0.022
ND
0.002
0.008
0.002

No. of
peaks











*Not usually included in TCO range, i.e., C8-C16.

Notes:   1.   For this intermittent feed process, Ib/ton of feed coal
            is an appropriate unit of measure (rather than the stand-
            ard Level 1 ppm).
        2.   The authors include a category, C7 to C8, that shows a
            weight of 0.038 Ib/ton.  This is not standard Level 1
            procedure.

        3.   Test run of 480 minutes' duration.
                                 12-7

-------
           TABLE  12-5.   SIZE  DISTRIBUTION OF  PARTICULATE EMISSIONS
                     DURING  "ON"  SEGMENT OF A  COAL-FIRED
                      RESIDENTIAL FURNACE HEATING CYCLE

                                            Emission factors
Particle size
range by SASS
train component
SASS run 2,*
Coal B,
low ash content
, Percent
lb/tonT of total
SASS run 3,T
Coal B,
high ash content
., Percent
lb/tonf of total
Large cyclone (10 urn)
Intermediate cyclone (3 urn)
Small cyclone (1 urn)
Filter
2.1
0.78
1.1
16
10.7
4.0
5.4
79.9
1.6
0.42
0.34
14
9.9
2.5
2.1
85.5
   Total
20
100
16
100
Test run of 100-min duration.
tTest run of 480-min duration.
fFor this intermittent feed process,  Ib/ton of feed coal  is an appro-
priate unit of measure (rather than the standard Level  1  units).
Note:  From 80% to 85% of the particulate emissions during the ON
       segment of the warm-air furnace heating cycle pass through
       the cyclones and are trapped on the filter.   The filter catch
       normally represents particulates of less than 1-um diameter;
       however, proper operation of the cyclones requires a volumetric
       flow rate at the dry gas meter of 3 cfm to 5 cfm.   In this
       program, the volumetric flow rate for the SASS runs could not
       be maintained above an average of 2.8 cfm.   Lower  velocities
       result in more particulates greater than 1 urn passing through
       the cyclones and being caught  by the filter.
                                       12-8

-------
ADDITIONAL DATA
         12-9

-------
TABLE 1.   AVERAGE  EMISSION  FACTORS FOR COAL-FIRED  RESIDENTIAL
            COMBUSTION EQUIPMENT OPERATING  ON A  20-MIN ON/
            40-MIN OFF HEATING CYCLE
                                (Ib/ton)3
Emission species
P articulate
SOx
NOx
CO
Condensable organics
POM
Elements:
Aluminum
Antimony
Arsenic
Barium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Phosphorus
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc

Coal A
6.6h(0.28)
8.8?(0.37)
9.2 (0.39)
1.6 (0.07)
2.2 (0.09)
0.4 (0.02)

0.014

-------
2.  AVERAGE  EMISSION RATES FOR THE  ON AND  OFF HEATING  CYCLE
    SEGMENTS OF THE WARM-AIR  FURNACE BURNING COAL B
                       (10-3  lb/hr)

Heating cycle segment
Emission species
Particulates
SOX
NOX
CO
POM
Condensable organics
Elements:
Aluminum
Antimony
Arsenic
Barium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Phosphorus
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
ON
183
167
61
127
0.057
28

0.85
<0.048D
0.019
0.055
0.15 .
<0.0007D
1.8
0.017
0.007
0.031
l'3 h
<0.016D
0.64
0.016
<0. 00007°
<0.083b
<0.048b
<0.069b
0.007
0.42
<0.26D
0.12
0.024
<0.21b
0.097
0.013
0.16
OFF
36
10
12
31
0.17
13

0.26
<0.12D
0.006
0.020
0.051.
<0.005D
0.13
0.021
0.011
<0.003b
0.15
<0.081D
0.036
<0.001D
0.004
<0.030D
0.13 .
<0.071b
<0.012b
0.50 .
<0.067b
<0.052b
<0.003D
<0.33b
<0.010b
0.013.
<0.018b
           *Emissions are presented as pounds per hour
            rather  than pounds per ton because quantify-
            ing the amount of coal combusted during
            each cycle segment was not possible.

           bValue is the detection limit.
                                  12-11

-------
 I
M
ro
            TABLE 4.   PROXIMATE AND ULTIMATE ANALYSES,  FREE SWELLING  INDEX,  AND ASH FUSION
                       TEMPERATURES FOR TEST COALS COMPARED WITH 86 ROCKY MOUNTAIN PROVINCE
                       COAL SAMPLES  (PROXIMATE AND ULTIMATE ONLY)  (6)
T«st coals (••

Moisture, %
Ash, 1
Sulfur, %
Carbon, t
Hydrogen, %
Nitrogen, %
Oxygen, %
Chlorine, %
Volatile matter, %
Fixed carbon, %
Heat value, Btu/lb
Free swelling index
Ash fusion temperatures, *P
Oxidising atmospherei
Initial deformation
First softening
Second softening
Fluid
.deluding atnospherei
Initial deforwation
First softening
Second softening
Fluid

Low •
ash
8.77
4.2C
0.42
69.23
S.22
1.46
10.64
0.00
42.27
44.70
12,368
1


2,285
2,305
2,325
2,345

2,160
2,180
2,200
2,220
A
tow/high
ash blend
8.36
7.50
0.38
66.55
4.98
1.36
10.87
0.00
40.52
43.62
11,804
1


2,295
2,315
2,330
2,360

2,230
2,250
2,270
2,290

high
ash
7.82
10.92
0.41
64.26
4.84
1.48
10.27
0.00
39.08
42.12
11,510
1


2,310
2,330
2,350
2,370

2,255
2,275
2,295
2,315

Low
ash
10.00
5.04
0.58
65.80
4.72
1.55
12.31
0.00
38.68
46.28
11,593
1/2


2,180
2,190
2,200
2,220

2,100
2,110
2,120
2,140
received)
B
Low/high
ash blend
11.18
7.09
0.97
62.56
4.75
1.31
12.14
0.00
38.79
42.94
11,079
1/2


2,220
2,240
2,250
2,270

2,170
2.190
2,215
2,240
Rocky Mountain Province coal

High
ash
12.35
9.06
1.45
59.79
4.44
1.36
11.52
0.00
37.51
41.05
10,592
0


2,230
2,260
2,280
2,310

2,175
2,210
2,240
2,245
C
as mined
21.15
3.26
0.47
_•
A
«*"



34.72
40.87
9,638
0


_
-
-
-

-
-
-

Average
of 86
samples
12.9
9.1
0.6
59.7
5.6
1.2
23.8
_D
36.0
42.0
10,480
_b



"b
_
u
~*h
u

*"h
U
~lj
~b

Range
Minimum
1.6
2.1
0.2
27.1
4.4
0.5
8.2
D
22.7
17.1
4,660
_b



"b
~K
P
~h
u

"h
u
~h
u
~b

Maximum
35.0
32.2
5.1
75.2
6.7
1.6
* 47-2
_b
46.7
52.5
13,390
_b



"b
""t.
D
~"h
D

""K
u
~K
U
~b

         'Analysis not performed.
         Ho data reported in reference.

-------
ro
 i
               TABLE 7.   EMISSION  FACTORS  FOR POM AND CRITERIA  POLLUTANTS FROM COAL-FIRED
                           RESIDENTIAL HEATING EQUIPMENT OPERATED ON A 20-MIN "ON"/40-MIN
                           "OFF" HEATING CYCLE3

Coa]



Aih „ Sulfur , Excess
Teat run
nuafoer
1,2
3,4
5,6
7,8
9,10
11,12
13,14,15,16
25,26.27,28
17,18,19,20
21,22,23,24
29
Heating ^ content, content, air, j
equiperant Designation »
Boiler 10.9
Boiler
Boiler
Boiler
Boiler
Boiler
furnace
Furnace
furnace
Furnace
7.5
4.3
9.1
7.1
5.0
5.0
7.1
9.1
9.1
Furnace C 3.3
Most Mission factors represent the average of
t
0.41
0.38
0.42
1.5
1.0
0.58
0.58
1.0
1.5
1.5
0.47
duplicate
Both units are rated et about 200,000 Btu/hri boiler fuel
when stoker
Aa received
waa OH.
. front half Method 5. 'Method 6

. 'Method
%
238
123
171
128
151
160
129
k
ll7
182
207
^articulates
5.0 (0.22)
7.8 (0.33)
6.8 (0.28)
2.8 (0.13)
4.8 (0.22)
5.8 (0.25)
44 (1.9)
20 (0.90)
26 (1.2)
34 (1.6)
4.0 (0.21)


Mission factor,

SOx*
6.0, (0.26)
11.0, (0.46)
9.6T (0.39)
17. 8J (0.84)
30\ (1.4)
14J (0.60)
12.6 (0.54)
30 (1.4)
28 (1.3)
30 (I.*)
k

WC*M
12. B] (0.56)
7.0'{ (0.29)
7.6^ (0.31)
2.81 (0.13)
4.6J(0.21)
6.4 (0.28)
13.6 (0.59)
13.2 (0.60)
7.8 (0.37)
6.0 (0.28)
k


Ib/ton (lb/106


0.
4.
0.
0.
0.
0.
24
8.
26
26


CO9
26 (0.011)
0 (0.17)
30 (0.012)
08 (0.0038)
08 (0.0036)
08 (0.0035)
(1.0)
8 (0.40)
(1.2)
(1.2)
k

Btu)
Condensable
organica"
2.0 (0.087)
2.4 (0.10)
2.2 (0.089)
2.4 (0.11)
3.6 (0.16)
5.0 (0.22)
k
9.4 (0.42)
5.2 (0.25)
k
3.6 (0.19)



POM*
0.26 (0.011)
k
0.58 (0.023)
k
"k
~k
0.070 (0.0030)
k
"k
0.036 (0.0017)
_k
sanpllng runs.
feed rate

7. 'Drager
averaged 19.8

tube. Back
Ib/hr when atokar waa CM, furnace fuel feed

half Method 5.


Modified Method

rate averaged

15.5 Ib/hr

S with XAO-2 realn trap.
           Data for OM aegatent of heating cycle only.
No data obtained due to progran limitation*•

-------
                      TABLE 8.   EXPERIMENTAL DATA FOR THE COAL-FIRED HEATING
                                 EQUIPMENT OPERATED ON A 20-MIN ON/40-MIN OFF CYCLE
 I
M
•t*

Test
run
number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Heating
equipment
Boiler
Boiler
Boiler
Boiler
Boiler
Boiler
Boiler
Boiler
Boiler
Boiler
Boiler
Boiler
Furnace
Furnace
Furnace
Furnace
Furnace
Furnace
Furnace
Furnace
Furance
Furance
Furnace
Furnace
Furnace
Furnace
Furnace
Furnace
Furnace
Coal
type
. A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
C
Stoker
Average stack gas conditions*1
feed
rate, Temperature,
Ib/hr »F
21.3
21.3
22.0
22.0
21.6
21.6
21.1
21.1
17.2
17.2
15.4
15.4
15.6
15.6
b
"b
15.8
15.8
b
b
15.8
15.8
b
b
15.0
15.0
b
b
22.0
226
188
200
179
240
233
214
204
222
189
239
217
277
252
199
186
256
318
180
162
278
338
202
204
282
260
185
167
187
Velocity
fpo
164
265
159
325
177
288
170
164
192
240
216
204
496
527
318
330
530
589
343
270
498
504
129
186
398
488
192
288
374
Flow
, rate,
acfm
57
92
56
114
62
100
59
57
67
84
75
71
173
184
111
115
185
206
120
94
174
176
45
65
139
170
67
100
141
H20,
%
5.5
3.0
4.2
1.9
4.3
3.1
4.0
4.2
2.7
3.0
3.1
3.2
3.0
2.9
2.0
1.9
5.2
2.5
2.5
0.9
2.7
3.7
1.8
1.4
2.9
4.8
1.6
1.8
2.3
C02,
«
0.2
0.8
1.2
0.1
0.8
0.6
0
0
2.4
0.5
0.3
0.5
3.2
1.8
0
0.2
2.6
2.6
0.2
0.2
1.8
1.6
0.1
0
0
0
0.8
0.3
1.0
O2 ,
%
21.0
20.8
18.8
18.8
20.2
20.3
20.7
20.5
17.7
20.5
21.0
20.2
17.3
18.0
21.0
21.1
17.3
17.0
20.0
20.8
18.9
16.5
20.8
19.5
20.5
20.5
20.3
21.0
21.2
Total
particulate
run time,
min (cycles)
300 (5)
180 (3)
300 (5)
240 (4)
300 (5)
180 (3)
300 (5)
300 (5)
420 (7)
360 (6)
240 (4)
240 (4)
80 (4)
80 (4)
120 (4)
120 (4)
160 (8)
160 (8)
240 (8)
240 (8)
80 (4)
80 (4)
120 (4)
120 (4)
80 (4)
60 (3)
120 (4)
100 (3)
180 (3)
Heating
cycle
segment
tested
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
Total
ON
ON
OFF
OFF
ON
ON
OFF
OFF
ON
ON
OFF
OFF
ON
ON
OFF
OFF
Total

              Conditions are at  sampling location.
             i>
              Stoker offj  no fuel fed.

-------
S£  10.   CARBON,  HYDROGEN, AND NITROGEN CONTENT OF  PARTICULATE
        EMISSIONS FROM  COAL-FIRED RESIDENTIAL  HEATING  SYSTEMS
Composition,
_percent of particulate
Run
2

6
1

SA5S 2
SASS 3
SASS 3
Samole identification
a
Particulate train filter catch
a
Particulate train filter catch
POM train front half particulate catch
after extraction of organics3
SASS train filter catch of one filter
b
SASS train filter catch of filter 1
b
SASS train filter catch of filter 2
Carbon
77.84

82.33

79.81
88.66
50.38
83.61
Hydroaen
1.53

1.24

1.97
0.97
0.93
0.93
Nitroqen
0.87

0.53

0.94
0.50
1.20
1.20
   Sample collected from total heating cycle.

   Sample collected during ON segment of heating cycle.  Each SASS filter
   represents approximately 40 min of sampling time.
                                      12-15

-------
 TABLE  11.   ELEMENTAL  EMISSION FACTORS  FROM COAL-FIRED
             RESIDENTIAL HEATING EQUIPMENT OPERATED ON
             A  20-MIN "ON"/40-MIN "OFF"  HEATING CYCLE
                          (Ib/ton)
Boiler burning
Coal A
Element
Aluminum
Antimony
Arsenic
Barium
Boron
Cadni.ua
Calciua
Chroni.uB
Cobalt
Copper
Iron
Lead
Magneaiun
Manoaaeae
Mercury
Molybdenum
Hickal
Phosphorus
Selenium
Silicon
Silvar
Sodium
Strontium
Tin
Titanium
Vanadi.ua
Sloe
High asn
content
0.014b
<0.002
0.002
<0.0008
0.002b
<0.006
0.028b
<0.002r
.2
0
0
0
12.3
0
t>
6.2
0
100
i factor*

SASS run 3.6
Coal
high a*h

Ib/ton
_c
0.031
.C
0.004
0.001
0.00*
0.022
.C
0.002
0.001
0.002
0.0*0
B,
content
Percent
of total
0
42.2
0
4.4
1.9
4.7
24.5
0
2.2
1.9
2.2
100
               *T««t ran of 100-mm duration.
               Seat ran of 4tO-*in duration.  cMone found.
                                 12-16

-------
         TABLE  14.   ASH  RESIDUE  FROM  COAL B  BURNED
                       IN THE  WARM-AIR FURNACE
                               (Ib/ton)
                                  CoalAverage
                         Test      ash       ash
                        number   content   residue
13
14
17
18
22
25
100
100
182
182
182
142
600
242
310
298
236
220
TABLE  16.    FRACTION  OF  COAL  ELEMENTAL CONTENT EMITTED  TO
               THE  ATMOSPHERE AND  TOTAL MATERIAL  BALANCE3
                                 (percent)
                    Coal B,  low ash content
        El
                    Air
                 emission
 Solid
residue*
                                    Total
  Coal B, high ash content
   Air b  Solid b
_emission   residue   Total
Aluminum
Antimony
Arsenic
Barium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Phosphorus
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
1.8
<36
33
5.4
1.0r
e.6c
4.1
7.0
35
6.1
3.2
<18
3.8
4.8
lOOp
25
20
6.8
9.7C
70
19
0.6
1.5
>128
2.7
5.3
>2,000
110
164
33
131
1.2
>10
136
81
700
142
157
>38
140
267C
10
>18
25
84
>0.6
12
78
23
169
>19
140
104
>14,750
112
<200
66
136
2
19C
140
88
735
148
160
d
144
272
110=
43C
45
91 c
ioc
82
97
24
171
>147
143
109
>16,750
1.4
19
40
4.4
1.0
>1.4
2.2
1.8
4.0
7.6
1.8
>1.5
2.1
1.5
3,000
118
6.0
2.0
<250
70
400
0.2
1.2
>13
1.1
3.0
>667
105
22
20
81
2
>29
58
74
100
132
80
>23
59
100
10s
>29
43
94
<83
14
233
28
88
>20
130
91
>200
106
41
60
85
3
.>30
60
76
104
140
82
>25
61
102
3,010*
147C
49
96
<333
84
633
28
89
>33
131
94
>867
       "warm-air furnace employing a 20-min ON/40-min OFT heating cycle.
       emission factor, Ib/ton
                            (100)
        coal content, Ib/ton
       CValue determined by using the detection limit in numerator and
       denominator) actual value say be lower or higher.

       Cannot be determined from data.
                                       12-17

-------
TABLE 17.   ELEMENTS LEACHED  FROM ASH REMOVED  FROM
             THE COAL-FIRED WARM-AIR  FURNACE
      Element
Amount leached
 per  guanrity
of ash, Ib/tor.
Fraction cf element
  in  ash leached
   to water,  %
Aluminum
Antimony
Barium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
•Phosphorus
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
0.024
<0. 0004
0.038
0.004
<0.0001
11.6
<0. 00004
<0.0002
<0.0002
<0. 00002
<0.001
0.004
<0. 00002
<0. 000004
0.002
<0.001
<0.002
0.0006
0.094
<0.0008
2.4
0.30
<0.0008
<0. 00004
<0.0001
<0. 00004
0.035
<0.13
2.3
1.9
<0.77
23
<0.011
<0.12
<0.029
<0. 00004
<0.42
0.024
<0.004
<92
2.0
<0.20
<0.059
74
45
<0.23
91
20
<0.62
<0.0007
<0.015
<0.013
                             12-18

-------
    TABLE  19.   COMPARISON OF EMISSIONS  FROM  THE  ON AND
                  OFF  SEGMENTS  OF  THE  WARM-AIR  FURNACE
                  HEATING  CYCLE WHILE  BURNING COAL  B
                            (10-3 Ib/hr)
Low ash
content
Emission soecies
Particulates
SO^
"Ox
CO
PCM
Condensable organics
Elements:
Aluminum
Antimony
Arsenic
Barium
Boron
Cadmium
Calcium
Chromium
Cobalt
Copper
Iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
HicXel
Phosphorus
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc
ON
240
97
42
191
0.055
26

0.86
<0.009
0.013
0.062
0.26
<0.0004
2.4
0.02
0.009
0.02
1.3
<0.020
0.84
0.018

-------
TABLE  20.   COMPARISON OF EMISSION  DATA FROM  THE SASS  TRAIN
            TO CONVENTIONAL  SAMPLING METHODS2
                          (10-3 Ib/yr)


Emission soecies
Particulate
Organic material
POM
Trace elements:
Aluminum
Antimony
Arsenic
Barium
Boron
Cadmium
Calcium
Chromium
Cobalt
f* f\nr%A^
iron
Lead
Magnesium
Manganese
Mercury
Molybdenum
Nickel
Phosphorus
Selenium
Silicon
Silver
Sodium
Strontium
Tin
Titanium
Vanadium
Zinc

SASS
Low ash
coalb
154 f
8.1T f
0.013

0.88
<0.004
0.022
0.048
0.46
0.002
2.2
0.040
0.013
0 024
V * W *• ~
1.1
<0.009
0.68
0.02
0.00009
0.018
0.077
0.099
0.024
0.79
0.015
0.35
0.018
0.70
0.20
0.015
0.097
Emiss
train
Hiah ash
coalc
128 f
8.1 f
0.013

0.84
<0.0004
0.022
0.024
0.013
•<0.002
0.16
0.031
0.004
0. Oil
1.2
<0.004
0.40
0.02
0.00009
<0.007
<0.04
<0.095
0.0009
0.53
<0.004
0.17
0.026
0.024
0.064
0.009
0.24
»ion rate
Method
Low ash
coal
1B7«
26°
0.055s

0.84
<0. Oil
0.007
0.070
0.064
0.002
2.9
0.004
0.004
0. 020
1.5
<0.031
0.99
0.015
<0. 0000007
<0.14
0.033
0.026
<0.002
0.17
<0.009
<0.08
0.17
0.024
0.053
0.013
0.14

5
coal
i g-e
0.059h

0.86
<0.13
0.024
0. 05"
O.C-2
0.001
1 . 7
0.004
C . 0 0 4
n n =; =;
1.3
0.013
0.46
C. Oil
O.Q002
<0.13
0.040
O.C7

-------
STUDY NUMBER 13

-------
                     STUDY NUMBER 13
 DATA
 SOURCE:
 SAMPLING AND ANALYSIS
 RESEARCH PROGRAM AT THE
 PARAHO SHALE OIL
 DEMONSTRATION PLANT
 DATA
 STATUS:
 Final Reports, January 1977 and May 1977
AUTHORS:


CONTRACTORS:
J. E. Cotter, C. H. Prien, J. J. Schmidt-Collerus,
D. J. Powell, R. Sung, C. Habenicht,
R. E. Pressey, and K. Gala
TRW Environmental Engineering Division
One Space Park
Redondo Beach, California 90278
Denver Research Institute
University of Denver
Denver, Colorado 80210
In cooperation with
Laramie Energy Research Center, ERDA, and
Development Engineering, Inc., Rifle, Colorado
Contract 68-02-1881
PROJECT
OFFICER:
Thomas J. Powers, III
Energy Systems Environmental Control Division
Industrial Environmental Research Laboratory
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268
                                13-1

-------
     The objectives  of this  study,  as  stated  in  the  documentation,  we^e "to
obtain preliminary quantitative  and qualitative  measurements of air, water,
and solid compositions (from the effluents  of shale  oil  retorting), and to
gain experience that would lead  to  improved sampling procedures and the determiv
nation of priorities for sampling and  analysis of shale  oil  recovery operations,
To achieve these goals, Denver Research Institute and TRW conducted a sampling
and analysis research program at the Paraho oil  shale demonstration sHe at
Anvil Points, Colorado, in the spring  of 1976.
     Recovery of crude oil from  shale  at the  Paraho  site involves mining the
shale rock, crushing the rock, and  heating  the crushed shale to drive off
volatile crude oils  and gases.  The Anvil  Points oil shale mine is 5.5 miles
from the retorting plant, but no sampling was done at the mine since the mine
was not in operation at the time of this study.   This effort was, there-ore,
directed at the crushing and the retorting  processes.
     The Paraho site has the only operational surface retorting plant wHhin
the United States.  Figure 13-1 (from the report on  this study) is a a-awing
of a Paraho retort.   Two such retorts  are located at the site, a 75-ft-high
semiworks unit and a 60-ft-high pilot plant retort.   These oil shale retorts
can be operated in a direct mode in which the shale  is combusted in the re-
tort as the principal heat source,  with the volatile offgases being ^cycled
to both the combustion zone and the gas preheating zone; or the retorts can
be operated in an indirect mode, where heat for retorting is supplied :y  com-
bustion of the offgases  in an external furnace.   Figures 13-2 and  13-3  (.from
the  report) are schematic representations of the direct and indirect operating
nodes.  During this  study, the semi-works retort was operated only  in  tne  in-
direct mode  and the  pilot plant was operated only in the direct mode.
      Sampling and analysis  included some Level 1 and some additional methods.
Sampling  approaches  included  the following:
           Proportional and  grab  sampling of the  recycle process gas
           stream  for analysis by instrumental and wet chemical methods
           Grab sampling  of  the product crude oil, recycle process  gas
           condensate water,  and  retorted shale for  organic  and trace
           element analysis
           Grab sampling  of  recycle  process gas stream condensate water
           for gross parameter analysis—for  example, biochemical oxygen
           demand  chemical  oxygen demand, and  total  organic  carbon
           High-volume sampling  of  particulate emissions  from  raw shale
           crushing
           Cascade impactor sampling for particulate sizing  of  airborne
           crushing  emissions

                                        13-2

-------
     FEED SHALE
     FEED HOPPCft
      •OTATHtG  SOL IDS
      DISTRIBUTOR
BOTTO*
DISTRIBUTION
METOMTED WALE
*fron  Jones, John  B., "The
 Paraho 011 Shale  Retort,
 81st  Nat.  Mtg.. AICh£,
         City. Mo., April 11-K.
                                                   DFF-6AS  COU.ECTOMS
                                                    DtSTRIBUTOHS
                                                    MYO»«AULICAU.T
                                                    MATE  COttTftOLS
                                                    RCTOWTCO  SMALt
                                                    DISCHAR6C
                         Figure 13-1.  The Paraho retort.
                                     13-3

-------
                                         RAW
                                        9 (ALE
                                         I
                                                           OIL MIST
                                                          SEPARATORS
OJ
 i
                         D-
                                        MIST
                                      FORWTION
                                        AND
                                      PREHEATING
                                      RETORTING
                                        ZONE
                                     COMBUSTION
                                        ZONE
                                \
   RESIDUE
COOLING AND
    GAS
 PREHEATING
/
                            OIL
                                     PRODUCT
                                       GAS
                 i
                     GRATE SPEED
                      CONTROLLER
                  T=f
                                            ELECTROSTATIC
                                            PRECIPITATOR
                                                              \
                                                              '
                                                                                                  OIL
                                                                                   GAS RECYCLE
                                                                                     BLOWER
                                                                                    AIR BLOWER
                                              I

                                         I-
                                    RETORTED SIIALE
                                              Figure 132. Paraho direct mode flow diagram
                                                         (pilot plant o(ieration).

-------
OJ
 I
tn
                   D
                                      RAW
                                     SHALE
                                                          OIL HIST
                                                         SEPARATORS
















1
/ x
MICT
FORMATION
AND
PERMEATING


RETORTING
ZONE




HEATING


RESIDUE
COOLING AND
v GAS .
\ PREHEATING /

I




OIL
STACK
^ i
^ A
T j
' /
...._. y


"* A
FUEL OIL*

- n






GAS HEATER
/
f
(?)
VL/
T
( ^\
1 tCT

te









9
.

i
T
/Pj on

KtLTCLt uAb
BLOWER
PRODUCT

GAS
                                                            COOLER
                                   RETORTED
                                     SHALE
                                                                                                                ELECTROSTATIC
                                                                                                                PREC1PITATOR
                                              Figure 13-3. Paraho indirect mode flow diagram
                                                           (semiworks operation).

-------
     Standard analytical methods were used wherever possible.   Specific
     techniques were developed to handle some of the various process
     samples.  Analytical methods included

          Inorganic and trace elements analysis
          - wet chemistry
          - atomic absorption spectrophotometry
          - spark source mass spectrometry (SSMS)
          Organic analysis, separation with
          - gas chromatography (GC)/mass spectrometry (MS)
          - thin layer chromatography (TLC)
          - high-pressure liquid chromatography (HPLC)
          - spectrophotofluoremetry (SPF)
          Polynuclear aromatic hydrocarbons analysis—two-dimensional
          elution with TLC*

     Figures 13-4, 13-5, and 13-6 from the publication references above are flow

diagrams for the analysis of the various samples.

     Analysis of the recycle gases indicated a need to remove NH3 and H2S

before combustion.  Contrary to some predictions, the recycled gas was not

found to contain significant levels of COS, CS2, HCN, or AsH3.  The inorganic

constituents in the condensate water were principally ammonium carbonate and

bicarbonates with very low levels of trace elements.  Traces of similar organic

compounds were detected in the retorted shale, the condensate, and the product

water.  These organics were characterized as neutrals (especially aromatics),

acids, and bases.
     A great deal of qualitative information was accumulated during this study.

Quantitative Level 2 type efforts, long-term studies, and a battery of bioas-

says were recommended to more thoroughly characterize the various plant dis-

charges.
^Executive Briefing, Environmental Sampling of the Paraho Oil Shale Retort
 Process at Anvil Points, technology transfer series, EPA-625/9-77-002, U.S.
 Environmental Protection Agency, Environmental Research Information Center,
 Cincinnati, Ohio, October 1977.
                                       13-6

-------

CONOENSATE
(COLD)





COMPENSATE
(HOT) FROM
CONDENSATE
TANK
M
CA)
 I
                                                                                RECYCLE
                                                                                  HAS
                                                                                STREAM
                                                             MINE SAFETY
                                                              APPLIANCES
                                                              CHARCOAL
                                                              ABSORPTION
 BENDIX DIRECT
   READING
    6ASTEC
    TUBES
  BENDIX
 CHARCOAL
ABSORPTION
HEAOSPACE
(NITROGEN
STRIPPING
                                  COLD
                                PRESERVED
                               UNPRESERVED
                                                                                                                                      HN03
                                                                                                                                    PRESERVED
  TENAX
ABSORPTION
                                                                                                                                    SOLVENT
                                                                                                                                   EXTRACTION
                                                                                                           ACID BASE
                                                                                                          AND NEUTRAL
                                                                                                           ORGANIC
                                                                                                          EXTRACTION
                                                                                                                 ORGANIC
                                                                                                                 CARBON
                                                                                                              TOTAL CARBON
                                                                                                                 ANALYSIS
         'NOT USED BECAUSE OF THE PRESENCE OF AEROSOL.
                                                   Figure 13-4.  Separation and analysis scheme, gaseous samples.

-------
  •ONDAPAK
  AKORPTIOM
  OF OREANICS
     MPtC
•TLC ANALYTICAL
                                           PROCESS
                                            WATER
                                             I
                                            PHASE
                                         SEPARATION
                                        (FROM PRODUCT
                                             OIL)
                               1
   SOLVENT
 EXTRACTION
PRESEPARATORY*
    (SILICA)
     TIC
ACIDIFICATION
    PHI
                                                           1
                                                        OREANIC
                                                       EXTRACTION
                                                                AQUEOUS
                                                                PHASE
                                           ACID IASE
                                          AMD NEUTRAL
                                            OR6ANIC
                                          EXTRACTION
HEADSPACE
(NITROGEN
STRIPPIMG)
                                                           TENAX
                                                         ASSORPTIOM
                                                                                     FLASHER
                                                                                       EC
               Figure 13-5.  Separation and analysis scheme, water samples.
                                               13-8

-------
                                     RETORTED SHALE
                                     AND HIGH-VOLUME
                                     AIR PARTICULATES
1
K;
SSMS
ii
i


SOLVENT
EXTRACTION
1
DESULFURIZATION
1

— T"
C, H, 0, N, S*
ASH AND SIEVE
ANALYSIS

1 II
HCC

HPLC
FLOURESCENCE
ULTRAVIOLET
•M
1 1
WATER
EXTRACTION
(LEACHATE)11
1
SOLVENT
EXTRACTION



FLASHER1
(VOLATILES)


GC
                       1
                        SPF
                     ANALYSIS
MS
    . HYDROGEN, OXYGEN, NITROGEN. SULFUR.
WfERFORMED ON AIR PARTICULATES.
^ANALYTICAL SCHEME.
     Figure 13-6.  Separation and analysis scheme, retorted shale and high-volume
                   sampler air particulates.
                                              13-9

-------
LEVEL 1
     13-10

-------
                  TABLE 13-1.   SPARK SOURCE MASS SPECTROSCOPY
         RETORTED  SHALE,  INDIRECT MODE, SEMI-WORKS, 3-16-76,  1415 HRS
                                     (ppm)
U 5
Th 5
Bi
ft) 14
fl
»g* 0.04
Au
H
Ir
Os
Re
V
la
«f
Lu
ft
Ti
fr
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd

0.3
0.6
0.3
0.8
6
1
37
11
210
6
0.1

1
1




Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co.
Fe
Mn


12
5
77
19
760
130
0.3
0.3
22
0.5
8
26
32
17
20

340
Cr 82
V 110
Ti
Sc 12
Ca
K
Cl 45
S
P
Si
Al
Mg
Na
F 560
B 22
Be 0.9
Li . 33


It = Major component.
• - Not determined.
Blameless atomic absorption.

fcte:  1. Fe, Ti, Ca, K, S, P, Si, Al, Mg,  Na, 0, N, C, H are all present in
         quantities greater than 1,000 ppm.
      2. All elements not reported <0.2  ppm  by weight.
                                      13-11

-------
                 TABLE 13-2.  SPARK SOURCE  MASS  SPECTROSCOPY
         INDIRECT MODE, RETORTED SHALE  (COLLECTED AS  AIR  PARTICIPATE),
                             3-17-76,  1545  HOURS
                                    (ppm)
U 5
Th 5
B1
Pb 20
T1
Hg* ND
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd

0.7
2
0.7
2
13
10
130
48
410
8
0.2

1
0.9




Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn


23
11
130
45
MC
200
0.8
1
32
0.8
15
20
62
25
38

650
Cr
V
Ti
Sc
Ca
K
Cl
s
p
Si
AT
Mg
Na
F
B
Be
Li


210
140

43


25






MC
43
9
130


MC - Major component.
ND = Not determined.
*Fla»eless atonic absorption.

Note: 1.  Fe,  Ti, Ca,  K,  S,  P,  Si,  Al,  Mg,  Na,  0,  N,  C,  H are all present in
          quantities  greater than 1,000 ppm.
      2.  All  elements not reported <0.2 ppm by weight.
                                       13-12

-------
                TABLE 13-3.  SPARK SOURCE MASS SPECTROSCOPY
      RETORTED SHALES, DIRECT MODE (PILOT PLANT), 3-15-76, 1100 HOURS
                                  (ppm)
t 5
ti 7
Si
H> 23
fl
la* 0.06
to
it
lr
Os
fe
1
i
if
&
$
!•
ft
i
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd

0.7
1
0.7
2
6
2
59
21
180
6
<0.2

0.7
0.2




Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn


14
7
65
40
970
110
0.2
0.5
35
0.9
17
22
57
75
19

800
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li


230
180

26


43






>1,000
48
2
85


flawless atomic absorption.
Ite:  1. Fe, Ti, Ca, K, S, P, Si, AT, Mg, Na, 0, N, C, H are all present in
        quantities greater than 1,000 ppm.
     2. All elements not reported <0.2 ppm by weight.
                                     13-13

-------
                 TABLE 13-4.  SPARK SOURCE  MASS  SPECTROSCOPY
       RETORTED SHALES, DIRECT MODE (Semi-Works),  3-15-75,  1100 hours
                                    (ppm)
U 7
Th 4
Bi
Pb 24
TI
Hg* 0.06
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Ta
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce
La
Ba
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd

0.6
0.9
0.6
1
9
5
100
33
310
10
<0.2

1
2




Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn


18
8
41
17
760
85
0.2
0.4
18
<0.2
13
17
53
20
15

700
Cr 110
V 110
Ti
Sc 20
Ca
K
C1 42
S
P
Si
AT
Mg
Na
F 920
B 82
Be 1
Li 370


*F1ame1ess atomic  absorption.

Note:   1.  Fe,  Ti,  Ca,  S,  P,  Si,  Al, Mg,  Na,  0,  N,  C,  H are all present in
          quantities > 1,000 ppm.
       2.  All  elements not reported <0.2 ppm by weight.
                                       13-14

-------
                 TABLE  13-5.   SPARK  SOURCE MASS  SPECTROSCOPY
        COLD CONDENSATE WATER,  PILOT PLANT, 3/10/76,  1700-0800  HOURS
                                   (jjg/L)
U 30
Th
Bi
Pb 700
Tl
Hg <10
Au
Pt
Ir
Os
Re
V
Ta
Hf
Lu
ft
Im
Ir
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr 8
Ce 10
La 40
Ba 100
Cs
I 8
Te
Sb
Sn 50
In
Cd
Ag
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn


300

50
7
100
400
20
. 40
90

40
200
100
100
<10
<10,000
200
Cr
V
Ti
Sc
Ca
K
Cl
s
p
Si
Al
Mg
Na
F
B
Be
Li


70
<10
900
10
8,000
3,000
400
3,000
200
4,000
200
3,000
5,000*
-100
60

20


*Heterogeneous.
Itote:   After extraction of organics, sample was thermally ashed @ 450° C for
       % hr in a laboratory furnace in a quartz crucible prior to analysis.
                                       13-15

-------
                 TABLE  13-6.   SPARK SOURCE MASS SPECTROSCOPY
           CONDENSATE WATER,  SEMI-WORKS,  3/18/76,  1120-1330 HOURS
                                   (pg/L)
U 70
Th
Bi
Pb 300
T1
Hg <10
Au
Pt
Ir
Os
Re
W
Ta
Hf
Lu
Yb
Tm
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr 8
Ce 10
La 10
Ba 100
Cs
I 10
Te
Sb
Sn 40
In
Cd
Ag
Pd
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn


100

50

80
10
20
80
90

100
200
200
1,000*
<40
>10,000
300
Cr
V
Ti
Sc
Ca
K
Cl
s
P
Si
AT
Mg
Na
F
B
Be
Li


70
6
900
<1G
10. oo:
1,000
> 10,00 C*
>10,000
20C
7,000
500
7,000
90 C
-2,000
60

40


*Heterogeneous.
Note:   After extraction  of organics, sample was thermally  ashed  @  450°  C  fcr
       % hr in a laboratory  furnace in a quartz crucible prior to  analysis.
                                       13-16

-------
                 TABLE  13-7.   SPARK SOURCE MASS SPECTROSCOPY
               PROCESS  WATER,  SEMI-WORKS, 3/15/76, 1500 HOURS
                                   (M9/L)
u
Th
Bi
«) 200
Tl
Ug <10
Au
ft
Ir
0s
Re
V
Ta
tif
Lu
Yb
T»
Er
Ho
Dy
Tb
Gd
Eu
Sm
Nd
Pr
Ce 10
La
Ba 2,000
Cs
I
Te
Sb
Sn
In
Cd
Ag
Pd
	 	 • '• 	 - •-' •— •• "— -^^-^r==
Rh
Ru
Mo
Nb
Zr
Y
Sr
Rb
Br
Se
As
Ge
Ga
Zn
Cu
Ni
Co
Fe
Mn
	 ^ 	 ._ . .•


100*



3,000

9
100
1,000
<50
<20
400
200
200
<40
5,000
300
••
Cr
V
Ti
Sc
Ca
K
Cl
S
P
Si
Al
Mg
Na
F
B
Be
Li

.,_ -— ..
300
30
300
<50
>10,000
>10,000
2,000
>10,000
5,000
> 10, 000
800
>10,000
>10,000
7,000
-5,000

1,000

:====
^Heterogeneous.
Hole-   After  extraction of organics, sample was thermally ashed & 450° C_for
       % hr  in  a laboratory furnace in a quartz crucible prior to analysis.
                                        13-17

-------
                  TABLE  13-8.   RECYCLE GAS—AMMONIA, ARSINE
                                    (ppmv)
                     Pilot plant (direct mode)
                         March 9-12,  1976
                               Semi-works (indirect
                                   March 14-15, 1976
                         NH<
                AsH.
                         m.
                           AsH-
3/9,  1330-1445
3/9,  1500-1545
3/10, 1000-1400
3/11, 1000-1400
3/11, 1500
3/11, 1600
3/12, 1600

3/14, 1500
3/14, 1700
3/15, 1200
3/15, 1600
3/15, 1715
3/15, 1730
                 ND
                 ND
  1,614
  2,689
                                  25,945
                                  27,642
ND = Not detected.
                     TABLE 13-9.  RECYCLE  GAS—FIXED GASES
                                     (vol %)
                     Pilot plant  (direct  mode)
                         March  9-12.  1976
                               Semi-works  (indirect mode)
                                    March  14-15.  1976
                                 CO,
                       CO
                                CG2
                                                                              CO
 3/9,   1330-1445
 3/9,   1500-1545
 3/10, 1000-1400
 3/11, 1000-1400
 3/U, 1500
 3/11, 1600
 3/12, 1600

 3/14, 1500
 3/14, 1700
 3/15, 1200
 3/15, 1600
 3/15, 1700
 3/15, 1715
 3/15, 1730
ND
24.5
2.1
 ND = Not detected.
                                        13-18

-------
                   TABLE 13-10.  RECYCLE  GAS—SULFUR  SPECIES
                                     (ppmv)
                     Pilot plant (direct  mode)       Semi-works  (indirect mode)
                         March 9-12.  1976               March 14-15,  1976
                     COS/CS2     H2S        S02       COS/SC2      H2S        S02

3/9,   1330-1445                             14
3/9,   1500-1545                              4
3/10,  1000-1400                  2600
                            (Bendix tube)
3/11,  1000-1400
3/11,  1500
3/11,  1600
3/12,  1600             ND

3/14,  1500                                                                  773
3/14,  1700                                                                  328
3/15,  1200
3/15,  1600
3/15,  1700
3/15,  1715
3/15.  1730	

D = Not detected.
                  TABLE 13-11.   RECYCLE GAS—NITROGEN OXIDES
                                     (ppmv)	

                     Pilot  plant (direct mode)      Semi-works (indirect mode)
                         March  9-12.  1976               March 14-15, 1976
                                 NO^                             N0x


 3/9,  1330-1445                   9
 J/9,  1500-1545                  16
 t/10, 1000-1400
 1/11, 1000-1400
 1/11, 1500
 ¥11, 1600
 1/12, 1600

 ¥14, 1500
 ¥14, 1700
 ¥15, 1200
 ¥15, 1600
 ¥15, 1700                                                       30
 ¥15, 1715                                                       I'
 ¥15, 1730                                    	™
                                        13-19

-------
                         TABLE  13-12.   ANION ANALYSIS
                                    (mg/L)
Anion
F"
Cl"
Br"
ml
N03
so;
PO;
s= *
^Q ^
mol *
Pilot plant recycle gas cold
condensate (direct mode)
3/11/76 - 0800-1800 hr
0.35
TR

0.02
118
113.6

<0.1
30, 500t
31.265T
Semi-works recycle gas hcl
condensate (indirect mode
3/14/76 - 0800-1800 hrs
0.10
TR

<.002
1.0
1.65

390
3,030t
6.280J










*Not included in Level  1 protocol  (October 1978)
tCalculated rather than measured.
                         TABLE 13-13.   CATION ANALYSIS
                                    (mg/L)
Cation
Calcium
Magnesium
Sodium
Potassium
Ammonium (NH^)
Pilot plant recycle gas cold
condensate (direct mode)
3/11/76 - 0800-1800 hr
60.74
<0.1
.20
.08
5,652*
Semi -works recycle gas hot
condensate (indirect mode)
3/14/76 - 0800-1800 hr
39.16
0.1
0.29
0.18
13,540*
"Calculated rather than measured.
                                       13-20

-------
                        TABLE 13-14.   NUTRIENT ANALYSIS
                                    (mg/L)
                   Pilot plant recycle gas cold     Semi-works recycle gas  hot
                     condensate (direct mode)       condensate (indirect mode)
Nutrient              3/11/76 - 0800-1800 hr          3/14/76 - 0800-1800 hr

 NH3-N                     14,060*                         16,800*

 TKNt                      31,400
Phosphate (total)               0.58                            0.75


Calculated rather than measured.
fTotal Kjeldahl nitrogen.
                    TABLE 13-15.  GROSS  PARAMETER ANALYSIS
                                     (mg/L)
Pilot plant recycle gas cold
Gross condensate (direct mode)
parameter 3/11/76 - 0800-1800 hr
BOD*
COD*
TOC*
TIC*
Oil & Grease*
Solids, Total
Solids, Dissolved
Solids, Suspended
Total , Alkalinity
Hardness
Phenols*
pH
12,000
19,400
29,200
9,800
502
22,000
21,800
200
68,550
152t
46
9.8
Semi -works recycle gas hot
condensate (indirect mode)
3/14/76 - 0800-1800 hrs
4,850
17,100
9,800t
1,600
33.3
429
406

12,900
98t
42
9.5
 *This  is not a  Level  1  required analysis.
 fSemi-works process water total organic carbon (TOC) was 36,900 mg/L on 3/15
  1500  hr.
 ICalculated rather than measured.
                                        13-21

-------
       TABLE 13-16.
CARBON ANALYSIS AND pH VALUES FOR AQUEOUS  SAMPLE
   COLLECTED FROM PARAHO PROCESS
              (ppm)


Total carbon
Total inorganic
carbon (TIC)
Total organic
carbon (TOC)
PH
Indirect mode
semi -works
recycle gas
(cold) condensate
3/17/76
8,000
4,450
3,550
9.5

Indirect mode
semi -works
process water
3/15/76
37,200
275
36,900
9.7
Direct mode
pilot plant
recycle gas
condensate
3/15/76
13,500
10,000
3,500
9.4
Note:   All  oily material was removed  from  the  top  of the sample followed by
       equilibrating  at ambient for 4  hours, then  removing any additional
       surficial oils before analysis.
                                       13-22

-------
TABLE 13-17.  SUMMARY OF HIGH-VOLUME AIR PARTICULATES
filter
amber

18

2

22

27

32

Date

3-15
day-night
3-16
day
3-16
night
3-17
day
3-17
night
At
(hr)

24.1

8.1

16.7

6.3

16.9

Dry weight of
Total volume air participates
of air filtered collected
(m3) (g)
PRIMARY CRUSHER
22.48

8.47

20.08

7.16

20.61

BUILDING
2.6277

1.4530

0.4739

0.9708

0.9764

Mass concentration
of suspended
parti culates
(pg/m3)

116,900

171,500

23,600

135,600

47,400

SECONDARY CRUSHER AREA
17

12

23

28

3-15
day- night
3-16
day
• 3-16
night
3-17
day
24.4

8.4

16.6

6.3

20.76

7.96

19.96

5.92

6.9700

6.9126

2.2272

7.0380

335,700

868,400

111,600

1,188,900

BINS AND WEIGH HOUSE
16

13

14

8

Jt
,
3-15
day- night
3-16
day
3-16
night
3-17
day
3-17
night
24.7

6.8

16.8

6.2

24.4

12.91

3.62

8.55

2.80

12.09

92.1878

39.9150

90.5423

33.6678

101.3944

7,140,800

11,026,200

10,589,700

12,024,200

8,386,600
(ennti nued^
                             13-23

-------
TABLE 13-17  (continued)
Filter
number
Date
At
(hr)
Dry weight of
Total volume air parti culates
of air filtered collected
(m3) (gr)
Mass concentrati or.
of suspended
particulates
(fjg/m3)
BELT DIVERTER BOX
(During Pilot Plant Only Run)
11
15

19
14
25
30
35

20
21
26
31
36
3-9
day
3-10
day

3-15
day-night
3-16
day
3-16
night
3-17
day
3-17
night

3-15
day- night
3-16
day
3-16
night
3-17
day
3-17
night
5.2
6.3

24.6
7.8
16.8
6.2
17.0

24.4
7.9
16.7
6.2
17.2
4.62
3.4
SEMI-WORKS
(Next to Last
14.61
6.09
9.97
5.58
10.85
SEMI-WORKS
(At End of Last
14.53
6.06
17.05
5.69
16.54
11.4303
9.4080
OUTPUT BELT
Stationary Belt)
89.4437
32.2564
63.7401
25.0370
84.0003
OUTPUT BELT
Stationary Belt)
43.4901
23.8886
11.4969
16.3360
11.2979
2,474,100
2,767,100

6,122,100
5,296,600
6,393,200
4,486,900
7,742,000

2,993,100
3,942,000
674,300
2,871,000
683,100
            13-24

-------
LEVEL 2
    13-25

-------
TABLE 2.   TRACE ORGANICS  IDENTIFIED  BY  GC/MS  IN THE RECYCLE GAS STREAM
          (DIRECT AND  INDIRECT MODE)  SUMMARY  OF ALL SAMPLES
Peak
Hunter
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Boiling Point
(PC at 760 mm)
36
69
80.1
93-98
98.5
110.6
121-129
125.6
136.2
138.3
139.1
140.6
144.5
145-146
150.8
161-165
163.4
164.7
169.4
170.6
174.1
178
181
182.6
192.7
195.6
213.4
216.3
218
Compound
Pentane
Hexane
Benzene
Heptenes
Heptane
Toluene
Octenes
Octane
Ethyl benzene
p-Xylene
m-Xylene
Cy cl ooctatetraene
o-Xylene
Styrene
Nonane
Methyl ethyl benzene
a-Methyl styrene
1 ,3,5-Trimethyl benzene
1,2,4-Trimethyl benzene
1-Decene
Decane
Indan
1,3-Di ethyl benzene
Indene
Undecene
Undecane
Dodecene
Dodecane
Naphthalene
Molecular
Weight
72
86
78
98
100
92
112
114
106
106
106
104
106
104
128
120
118
120
120
140
142
118
134
116
154
156
168
170
128
                                         13-26

-------
TAi^f ». ELEMENTAL ANALYSIS OF RETORTE

Benzene Extract of Direct
Mode Retorted Shale
(3/12/76, 1000 hrs)
Direct Mode Retorted
Shale
(3/12/76, 1000 hrs)
Raw Shale Collected as
Air Participate
(3/15/76 to 3/17/76)
Organic Matterf In Raw
Shale (average of 10
cores from Colorado &
Utah)
C
Total
81.41


2.95


14.25






C
Org.
81.41


0.80

.
9.58


80.5



C
Inorg.
*


2.15


4.67






p SHALE, PARTICIPATES, AND ORGANIC EXTRACTS
II
10.70


0.10


1.51


10.3



0
2.22


ND


ND


5.8



N
(Dumas)
2.05


0.13


0.43


2.4



S
(Free)
7.79


ND


ND


1.0



S
(S04)
NA


0.08


0.01






S
(Sx)
NA


0.74


0.04






Ash
(dry)
<0.15


92.88


70.91






* 0.5% of total C

ND = Not Determined
NA = Not Applicable
      , J. W., Ultimate Composition of Organic  Matter  1n  Green  River Oil Shale, USBM RI5725 (1961)

-------
S
H
o

H
m

t
        L5A95
IB
                          !  iJI  H
                          fused Fluorescence
         1  I   I  I   I   I  I  I  I  I I
                                                             PAH
                                                             Confounds
V Polar
 'Confounds
    Figure 5.35 One dimensional preseparatory thin layer
               chromatogram of benzene solubles from
               carbonaceous spent shale [CSA VII (1)1.
               Layer: silica gel G.  Solvents: benzene,
               cyclohexane (1.5:1).  Compounds: 1 and 2,
               PAH composite mixture; 3, acridine; 4,
               carbazole; 5, 1,2,7,8-dibenzacridine;
               6, phenanthridine.
                               13-28

-------
td
ss
8
T
        L5405
                             Blue
                             Yellow
                               ue
Diffused Fluorescence
                                       PAH
                                       Compounds
                                                                 (Polar
                                                                 'Compounds
    Figure 5. 36 One  dimensional preseparatory thin layer
               chroinatogram of benzene solubles from
               carbonaceous spent shale [CSA VIII (1)].
               Layer:  silica gel G.   Solvents:  benzene,
               cyclohexane (1.5:1).   Compounds: 1 and 2,
               PAH  composite mixture; 3, acridine;
               4, carbazole; 5, 1,2,7,8-dibenzacridine;
               6, phenanthridine.
                                 13-29

-------
         L5925
I
H
M
                          Diffused Fluorescence
                                                  PAH
                                                  Compounds
                                                                 Polar
                                                                 Compounds
   Figure 5.37
One dimensional preseparatory thin layer
chroaatogram of benzene solubles from
unretorted shale collected as air particulate
[AP VI (1)].  Layer: silica gel G.
Solvents: benzene, cyclohexane (1.5:1).
Compounds: 1 and 2, PAH composite mixture;
3, acridine; 4, carbazole; 5, 1,2,7,8-
dibenzacridine; 6, phenanthridine.
                                  13-30

-------
          L5945
1
H
U
          o
                                 Blue
                                 Yellow
                                  Blue
                            Diffused Fluorescence
                                    "^

                                    N
                                           Quench
                                                PAH
                                                Compounds
                                                                  Polar
                                                                  "Compounds
    Figure  5.38
One dimensional preseparatory thin layer
chromatogram of benzene solubles from
retorted shale collected as air particulate
[AP V (1)].  Layer: silica gel G.
Solvents: benzene, cyclohexane (1.5:1).
Compounds: 1 and 2, PAH composite mixture;
3, acridine; 4, carbazole; 5, 1,2,7,8-
dibenzacridine; 6, phenanthridine.
                                   13-31

-------
   I.*
M

I
                                                    LSCSK

                         -  SOLVENT SYSTEM II

     Figure 539  Two dimensional mixed thin layer chromatogram
                 of the B&H fraction of benzene solubles from
                 carbonaceous spent shale [C.SA VII (1)].
                 Layer: 401 acetylated cellulose, aluminum
                 oxide C, silica gel G (1:1:1).  Solvents:
                 System I, isooctane, drying followed by
                 n-hexane, benzene (95:5).  System II,
                 methanol, ether, water (4:4:1). Compounds:
                 1 and 1 tailing,  benzo(a)pyrene.
                                    13-32

-------
                                                         \
                   T
                    AO
2.0
             .3.0
                      SOLVENT SYSTEM II -
Figure 5.43  Two dimensional mixed thin layer chromatogram
            of the PAH fraction of benzene solubles from
            carbonaceous spent shale [CSA VIII (1)].
            Layer:  40% acetylated cellulose, aluminum
            oxide G, silica gel G (1:1:1).  Solvents:
            System I, isooctane, drying followed by
            n-hexane, benzene (95:5). System II, roethanol,
            ether, water (4:4:1).  Compounds: 2, benzo(a)

            pyrene.
                                    13-33

-------
                Table 5.9   Elemental  Analysis of  Retort Shale, Partlculatea and Organic Extracta


                                       C      C          C                       N         S        S     S      Ash
                                    Total    Org.      Inorg.      H     0      (Dumas)    (Free)    (SO^)   (Sx)    (Dry)


    Benzene Extract of Paraho
    Indirect Made Spent Shale        84.69    84.69      *       9.60   2.45     2.88      1.01    NA    NA     <0.1S

    Benzene Extract of Paraho
    Direct Mode Spent  Shale          81.41    81.41      *       10.70   2.22     2.05      7.79    NA    NA     <0.15

    Paraho Indirect Mode Spent
    Shale                             9.68     5.85      3.83     0.49   ND       0.29      ND      0.01   0.38    75.99

    Paraho Direct Mode Spent
M   Shale                             2.95     0.80      2.15     0.10   ND       0.13      ND      0.08   0.73    92.88
co
 i
£   Paraho Indirect Mode Spent
    Shale Collected as Air
    Participate                     10.43     5.27      5.16     0.48   ND       0.34      ND      0.04   0.42    75.61

    Raw Shale Collected as
    Air Particulate                 14.25     9.58      4.67     1.51   ND       0.43      ND      0.01   0.04    70.91

    Organic Matter
    Raw Shale
    (Smith, LERC,  1961)                       80.5                10.3    5.8      2.4       1.0


    *<0.5% of total C

    ND Not Determined
    NA Not Applicable

-------
      Table 5.19   Polar "Oxy" Compounds Present in
                       Carbonaceous Spent Shale
Compound                _       _     GC Confirmation          Approx.  ppm


Heptanoic Acid                              +                    0.26

Benzoic Acid                                +                    0.18

Octanoic Acid                               +                    0.39

o-Toluic Acid                               +                    	

m-Toluic Acid                               +                    0.60

p-Toluic Acid                               +                    0-60

Nonanoic Acid                               +        .            °.7°

2,5 -Dimethylbenzoic Acid                  . +                    	

3,5-Dimethylbenzoic  Acid                   +

Decanoic Acid                               +

3,5-Dimethylbenzoic  Acid                   +

Isopropylbenzoic  Acid                      +

Triae thyIbenzoic  Acid                      +

Tetramethylbenzoic  Acid                    +

g-Hydroxy Aliphatic Acid                    +

Methylisopropyl  Benzoic                    +

Aliphatic Dibasic Acid  (Clg)                +
                                    13-35

-------
ADDITIONAL DATA
         13-36

-------
                          Operating Parameters for Water Data
                               Plant Feed Rate,
                                Tonne/hr  (TPH)
         Semi-Works Hot
         Condensate (3/14/76),
         0800-1800 hrs
         and Process Water
         (3/15/76, 1500 hrs)**

         Pilot Plant Cold
         Condensate
         (3/18/76, 1130-1330 hrs)
         (3/10/76, 0800-1700 hrs)'
           10.2  (11.2)
           0.91  (1.0)
                             Recycle Gas Rate,
                          Std.Cu.Heters/hr (SCFM)
6320  (3650)
 493  (290)
          •These operating  parameters also apply to Table 4, following.
                     TABLE 5.  SIZE  RANGES OF  SOLIDS
   Material
        Size Range
         Remarks
Raw Feed  Shale
Fines
Raw Shale Air
Particulates
Retorted  Shale
<7.62  cm,  >6 mm  (-3"  +V)
<6 mm  (V)
>0.01   <5  mm

 see below
 Includes crushing fines
 For particle  size distri-
 bution see Table 6 and 7
                    Screen Sieve Analyses of  Direct Mode
                      Retorted Shale (3/12/76,  1000 hrs)
                 Weight  Percent

                      26.4
                       9.9
                       9.0
                      11.5
                       4.4
                       6.6
                       3.2
                       6.2
                       2.7
                       2.4
                       2.4
                       2.1
                       0.6
                       2.4
                       8.7
                       1.6
                  Sieve  Designation  Standard
                  	(New U.S.  Nos.)

                            >19.0 mm
                             19.0
                             13.2
                              9.5
                              4.75
                              3.25
                              1.70
                              1.18
                              600 ym
                              425
                              300
                              212
                              150
                              106
                               75
                              <45
                                         13-37

-------
        TABLE 6.   MASS FRACTION OF RAW SHALE PARTICULATES
Parti cul ate Size Range
Cumulative Weiqht Percent less than
stated ?i?e
<0.3 um
2
<1 . 0 um <3 um
26 73
                (Sample taken at 1400 hrs, 3/17/76
                 crushing 28 gal/ton shale)
     TABLE 7.   NUMERICAL  FRACTION OF RAW SHALE PARTICULATES
Parti cul ate Size Range
Cumulative Count Percent
less than stated size
Breakdown % <1 .0 um
<0.01
urn
50.4
0,01-0.05
urn
33.3
0.05-1
um
1.2
Cumulative
% <1 .0 um
84.9
1-5
um
10.1
0
um
5.0
                (Sample taken  at 1410 hrs,  3/15/76
                 handling 28 gal/ton shale)
TABLE 8.   PARTICLE  SIZE  VS. MEAN  ELEMENTAL  COMPOSITION OF RAW SHALE
          AIR PARTICULATES AS  DETERMINED  BY X-RAY  FLUORESCENCE
^V. Size Ranges
^v^ of Particles
^^*fc- &nalv/7o/H
^^^^MIO 1 y*kCU
Elemental ^^'^L
Components ^^v.
Detected ^^
Si

Ca
Al
Mg
Fe
K

Na
P
S
Ti


4t
c
=•
\r>
V

402

20
10
10
+
+

+
-
+
+

_
a.

0
•^

30%

16
11
12
9
2

2
3
12
-
E
—
ur>
V
M
/\

44%

24
10
6
5
5

3
+
j
s
r



E

tn
A

43%

22
8
8
6
6

2
+
4
+
    *High background fluorescence.
    •••Indicates presence of element  but  not quantifiable
    -Indicates element not found in sample at sufficient
     concentration to be detected by x-ray fluorescence.
                                 13-38

-------
                    TABLE 11.  BENZENE AND WATER EXTRACTABLES OF RETORTED SHALE, AND RAW SHALE PARTICULATES

Pilot Plant
(Direct Mode)
Retorted Shale
(3/12/76, 1000 hrs)
Raw Shale Collected
as Air Particulate
1n the Crushing Area
(3/15/76 to 3/17/76)
Total Benzene
Solubles
Wt %



0.03(4)



2.05
Benzene Solubles
Sulfur Removed
Wt %



0.03(7)



ND
Water Solubles
Wt %



3.39



ND
Benzene Solubles
of Water Solubles
Wt %



0.00(3)



ND
 I
to
UD
ND - Not determined
                            TABLE 12.  COMPARISON OF PAH TO POLAR COMPOUNDS IN SOLID SAMPLES
Sample Designation
Pilot Plant Retorted
Shale, Direct Mode
(3/12/76, 1000 hrs)
Raw Shale A1r
Partlculate
(3/15/76 to 3/17/76)
Wt. % PAH
43
16
Wt % Polar Compounds
57
84

-------
TABLE 13.   Rg VALUES  FOR PAH FRACTION OF BENZENE SOLUBLES FROM DIRECT

           MODE RETORTED SHALE  .
Spot No. on
Figure 10
1
1
(tailing)
2
3
4
5
6
7
8
9
10
11
12
13
14
Fl uorescence
purple
purple
light blue
blue
yel 1 ow
purple
blue
purple
blue
purple
blue green
purple
purple
blue
blue
RR
I B II
1.00
0.79
1.02
0.93
0.87
0.95
0.83
1.08
1.19
1.36
1.24
1.38
1.27
0.31
0.00
1.00
1.02
1.25
1.27
1.45
1.64
1.89
1.95
1.84
1.91
2.18
2.34
2.80
2/41
2.34
Compound
*Benzo(a)pyrene
*Benzo(a)pyrene
**Coronene


**1 ,2 Benzanthracene

**1 ,2 Benzanthracene

**Pyrene
**Fluoranthene




   *Quant1tatively Identified by fluorescence spectrometry and/or
    high pressure liquid chromatography.
  **These compounds have been qualitatively identified by RB values
    only.
                                      13-40

-------
CO
 I
                TABLE 14.  EVALUATION OF BENZO(A)PYRENE CONTENT IN SAMPLES OF BENZENE EXTRACTS FROM DIRECT MODE RETORTED
                           SHALES



Sample Designation
Pilot Plant
(Direct Mode)
Retorted Shale
(3/12/76, 1000 hrs)
Retorted Shale
(Direct Mode)
(3/75)
Bz. Sol.
Quantity
Analyzed
N)
8.7
8.7

Ave.

Ave.

BaP/TLC
Spot
M

0.050
0.038

0.044

0.189

Wt %
BaP in
Bz.
Solubles
.000(5)
.000(4)

.001

0.001

BaP in
Bz.Sol.
(ng/kg)

4.7xl03
3.6xl03

4.2xl03
I
14xlOJ

BaP in
Shale
Sample
(ug/kg)
2.0
1.5

1.8

1.50

BaP In
Bz. Sols.
ppm

4.7
3.6

4.2

14

BaP in
Sample
ppm

0.2x10-2
0.2x10-2

0.2x10-2
y
0.2x10 c


-------
         Tab1* 5.5
  Evaluation of Organic!
  Extracted from Aqueous
  Phase of Recycle  Gas
(Cold) Condanaata (RC-10)
Extraction
Fraction £2l.yf.nt
Neutrala Methylene Chloride
Bencena
Total
Acids Methylene Chloride
Bencene
Total
Bases Methylene Chloride
Bencene
Total
Weight
(ma)
242.9
40.0
282.9
247.9
11.7
259.6
35.2
26.4
61.6
Weight
Percent
0.081
0.013
0.094
0.083
0.004
0.087
0.012
0.009
0.021
DPn
810
130
940
830
40
870
120
90
210
Total Total
Wt. Percent ppm


0.094 940


0.087 870


0.021 210
                                              0.2027. wt.   2,020 ppro

-------
              T«bl« 5.6
Evaluation of Organlca Extracted from
      Aqueous Phase of Recycle
     Gaa (Hot) Condensete (RG-7)
Extraction
Fraction, Solvent
Neutrals Methylene Chloride
Bent en e
Total
CO
^ Acids Methylene Chloride
CO
Bencene
Total
Bases Methylene Chloride
Benzene
Total
Weight
JJPJt.)
99. A
2.9
102.3
A3. 1
10.2
53.3
11.9
0.5
12. A
Weight
Percent
O.OAl
0.001
O.OA2
0.018
O.OOA
0.022
0.005
0.000(2)
0.005
Total
ppm Wt. Percent
AlO
10
A20 O.OA2
180
AO
220 0.022
50
2
52 0.005
Total
ppro
A20

220

52
                                                     0.0697.
692 ppm

-------
                             Table 5.11

                 Size Distribution of PARAHO Solids
                                  Size Ranee
                                   Remarks
Raw Feed Shale

Fines

Raw Shale Participates



Retorted Shale
Air Particolates from
Retorted Shale
(above conveyor belt)
-7.62 cm + 6 ma (-3" + »)
   an
         - 5 urn
>19 mm
40.01   n - 5
Includes crushing fines.

For particle size
distribution see
Table V.

Seive Analysis see
Table VI.  Larger pieces
laminate upon weathering.

See Table V for particle
size distribution.
                                     13-44

-------
                                Table 5.12

                    Screen Sieve Analyses of PARAHO
                            Retorted Shale*
    Sieve Designation
standard
(New U.S. Nos.)
>19.0 am
19.0
13.2
9.5
4.75
3.35
1.70
1.18
600 QB
425
300
212
150
106
75
<45
Semi -Works
Indirect Mode
16.97.
9.9
11.8
15.8
5.5
10.0
8.5
3.9
3.0
2.6
2.2
1.8
1.5
0.8
3.9
2.1
Pilot Plant
Direct Mode
26 . 47.
9.9
9.0
11.5
4.4
6.6
3.2
6.2
2.7
2.4
2.4
2.1
0.6
2.4
8.7
1.6
.^Collected from the retorted shale belts.
                                     13-45

-------
          Table  5.14. Mean Particle Size (Effective Diameter) of
                           LO VOL AIR PARTICULATE SAMPLES
                    Collected at the Paraho Plant as Determined  by
                    Scanning and Transmission Electron Microscopy
                              (Values in Count Percent)
                                      Percent
                                                              0 V

                                                              C «

E
Jl
o

^?

c
o
I
fuij
o

o
E
J3.
i
i/^
O
•
c^
O 0)
i> O
u *^
c w
3 CS
cr, a.

E
"^
l/"P
1
^™


E
^*"^
L1*:-

Bins & Weigh House
(Handling at Unretorted Shale)
3-15-76   1410 hrs.                 50.4*    33.3*       1.2*    84.9     10.1    5.0

Pilot Plant Retorted
Shale Belt
3-9-76   1030 hrs.                 <0.1     <0.1        100     83.2     14.3    2.6

Semi-Works Retorted
Shale Belt
3-16-76   1115 hrs.                 <0.1     <0.1        100      2.0     71.4   26.5
•Values obtained by Transndssion Electron Microscopy  as  explained in text.
       Table 5.15.  Particle  Size Analysis  of Air  Particulate Samples
                             Collected at  the  Paraho Plant
                     as  Determined by Cascade  Impaction Collector
               (emulative Weight Percent  Less than Stated Micron Size)
        Primary Crusher Bldg.
        3-17-76  1300 hrs.                   2             26             73

        Bins & Weigh House
        3-18-76                            76             87             94

        Semi-Works Retorted
        Shale Belt
        3-18-76  1345 hrs.                   2             28             76
                                           13-46

-------
                                   Table 5.16

                                PARTICLr. S1ZK VS.
                         MEAN liLIiMI-INTAL COMPOSITION OF
                                AIR PAKTICULATKS
                       AS DLTliKMINKU BY X-RAY FLDORESCKNCi-.
      Bins f* Weigh  HOUS«J
      (Unretorted Shale)
   Pilot Pinut
   Direct Hoilc
(3- 9-76, 1030 lirs)
    Sc-mi-Works
   Indirect Mode
(3-16-76, 1115 hrs.)
*
E
m
_'
V
1 ~40
* ~'ZO
4 "10
t "'lo
1 +
+
1 +
-
+
1 +
£•
:3
o
^1
V
30
10
11
12
9
2
2
3
12
_
m E
, irt
A A
AA A3
2A 22
10 8
6 8
5 0
5 (•>
3 2
+ +
+ A
+ +
E
,_<
V
Al
28
1A
7
3
+
+
•f
7
+
E
m
A
ft

A
AO
23
9
11
5
+
+
+
11
-
E
m
A
AO
23
13
9
A
3
3
+
2
•f
E
n
^i
V
A3
21
11
5
7
5
+
+
+
+
E
m
V,
t— i
A
52
3A
14
12
5
5
+
+
5. A
+

m
A
Al
23
8
10
A
6
+
+
A
+
101 background  fluorescence, see  text.
iiicates presence of element but  not  quantifiable.
Silicates element  not found in sample  at  sufficient concentration to be detected.
                                          13-47

-------
                      Table 5.17   B«ns«n« and Water Extractables of Solid Sample*
                     Total  Benren*
                       Soluble*
                         Wt.  %
Benzene Solubles
 Sulfur Removed
     Wt. %
                Benzene Solubles
Water Solubles  of Water Solubles
  Wt. %               Wt. 7.
    Pilot Plant
    (Direct Mode)
    Retorted Shale          0.03(4)
    (3-12-76, 1000 hrs)

t_<   Semi-Works
V   (Indirect Mode)
co   Retorted Shale          2.15
    (3-16-76, 1415 hr«)

    Semi-Works
    Retorted Shale
    Collected as
    Air Partlculate         1.67
    (3-15-76 to 3-18-76)

    Unretorted Shale
    Collected as
    Air Partlculate         2.05
    (3-15-76 to 3-17-76)
                                              0.03(7)
                                              2.15
                                              N.D.
                                              N.D.
*Low value Is probably due to oily hydrophoblc nature of sample.

 N.D. » Not Determined
                           3.39
                          *0.98
                           N.D.
                           N.I).
                     0.00(3)
                     0.03
                     N.D.
                     N.D.

-------
               Table 5.21
       Evaluation of Bcnzo(a)pyrenc
Content in Samples of Benzene Extracts  from
    Paraho Spent Shale Coke Samples
•Pie
llgna-
m
ivni (i)
i
li-vorks
direct 2
Mode)
3
ive.
I VII (1)
1
lot Plant 2
Irect
Mode)
ive.
dicr PARAHO
torted Shale
h»et >fede)
tore.
BO Retorted
de
lire.
Bz. Sol. BaP/TLC
Quantity Spot
Analyzed (meg)
(mg)
18.4 0.100
18.4 0.146
18.4 0.144
0.130
8.7 0.050
8.7 0.038
0.044


0.189

0.295
Wt. %
BaP in
Bz.
Solubles
.000(5)
.000(8)
.000(8)
.000(7)
.000(5)
.000(4)
.001


0.001

0.002
BaP in
Bz.Sol.
(meg/kg)
5.4xl03
7.9xl03
7.8xl03
7.0xl03
4.7xl03
3.6xl03
4.2xl03


14xl03

17xl03
BaP in BaP in
Shale Bz.Sols.
Sample p. p.m.
(meg /kg)
116 5.4
170 7.9
168 7.8
151 7.0
2.0 4.7
1.5 3.6
1.8 4.2


1.50 14

42.4 17
BaP in
Sample
p.p. m.
12. xlO"2
17. xlO"2
17. xlO"2
15. xlO"2
0.2xlO"2
0.2xlO~2
0.2xlO"2


0.2xlO~2

4.2x10 2
                    13-49

-------
                             Table  5.22

                    Rn Values for PAH Fraction of
                     D
                  Benzene Solubles  from Carbonaceous

                      Spent Shale CSA VIII  (1)]
 Spot No.     Fluorescence

1
2
3
4
5
6
7
8
9

purple
purple
blt-e
purple
purple
blue
light blue
blue
yellow

0
1
0
0
0
0
1
1
0
T
.95
.00
.93
.97
.95
.98
.15
.00
.85
II
0.64
1.00
1.31
1.72
2.75
2.33
2.38
2.64
1.49
  Compound


**BaP derivative

 *Benzo(a)pyrene
                                                     ***!,2  Benzanthracene
                                                         derivative
                                                     **~*Fluoranthene
  *These conpounds have  been  quantitatively  identified by fluorescence
   spectronetry and/or high pressure  liquid  chromatography  (Figure 5.36)

 **The fluorescent  spectra of these  conpounds  indicate possible
   derivatives of benzo(a)pyrene.

***These conpounds have  been  qualitatively identified  by  R_,  values  only.
                                    13-50

-------
             Table  5.23  Pilot Plant (Direct Mode) Recycle Gas
                                  Corrected
 Gas Sampled      Tube  Type       Values Obtained*      Notes
CO 1H
1H
1H
C02 2H
NH_ 3H
* 3H**
3M**
3M
H- 4H
2 4H**
4HH**
4HH
SO 2 5La
N0-N02 10
HCN 12

Semi Works
CO 1H
1H
C02 2H
NH, 3M
3 3M**
3H**
H S ^HH
2 4HH
SO, 5L
2 5L
N0-N02 1°
HTN 12H
4.7%
4.7%
4.7%
>20% H
6.3% H
7.5%
1000 ppm A
1000 ppm
2600 ppm S
2600 ppm
0.25%
0.25%
< 2 ppm t
< 5 ppm I
3.2% 1
f
140
(Indirect Mode) Recycle Gas
12.5% S«
12 . 5% P'
hj
dc
It
ti
550 ppm Ai
675 ppm P^
Ii
U1
3.1% a
3.1%
150 ppm M
150 ppm
< 2 ppm B
C
                                                        H?S produces erroneously
                                                            high values
                                                        H~S Produces erroneously
                                                            high values
                                                        Amines and diamines
                                                            produ_e a plus error

                                                        S02 >50 ppm produces
                                                            plus error
                                                        below minimum detectable

                                                        below minimum detectable

                                                        both CO and H2S produce
                                                        erronious high values
                                                       Several color bands
                                                       produced by interferring
                                                       hydrocarbons.  Values in
                                                       doubt.
                                                       Interferences rendered
                                                       tube unreadable.
                                                       Amines and diamines
                                                       produce plus error.
                                                       Interference rendered tube
                                                       unreadable probably

                                                         >7  <  50 ppm produces
                                                            plus error.

                                                       Many interferences.
                                                        Below minimum detectable.

                                                        CO rendered tube
                                                        unreadable.
 Values obtained corrected tor pressure.  No other corrections are suggested.

^Indicates that different chemistries are used for the different tube ranges.
                                       13-51

-------
 Table 6.1.   Flame lonization  Response of Sample KSA-34  Extracted with CS.
PFTIT  FI:JAL
IF  nOT.Tl^E
                              AHEA
1
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15
16
17
18
19
20
21
197
328
349
395
405
422
436
457
495
514
525
547
570
588
597
652
658
666
705
730
804
197.
328.
349.
395.
405.
422.
436.
457.
495.
514.
525.
547.
570.
588.
597.
652.
658.
666.
705.
730.
804.
zzzz
0000
0000
0000
0C0E
0000
J50P0
0000
0000
0000
09100
0000
000?
0000
0000
0000
0000
0000
0000
0000
0000
9265.
9494.
878.
167.
813.
746.
7739.
7538.
646.
4059.
5294.
3543.
2903.
5384.
4859.
1558.
141 1.
3745.
1880.
1302.
430.
C1CC
0030
0000
0000
0000
00C0
0CC0
0202
•0000
2£fl0
0P00
PCZC
0000
0000
0000
0000
0000
0000
0000
0000
0000
97.
100.
9.
1.
8.
7.
81.
79.
6.
42.
55.
37.
30.
56.
51.
16.
14.
39.
19.
13.
4.
53B£*
0C0E
2479
7590
5633
8576
5147
3975
6043
7533
7615
3183
5772
7795
1 797
4IC3
8620
4460
8020
7139
5291
73 19.
75CB.
693.
131.
642.
589.
6113.
5954.
510.
3206.
4152.
2798.
2293.
4?53.
3638.
1230.
1 1 14.
2958.
J485.
1028.
339.
isce
0000
5960
9250
24SC
3220
6CC-0
310f
3220
5C0C
izer.
37C0
2900
2 1 00
450?-
7700
6580
4500
1400
5400
6880
.5197
. 5 4 e ?
. C ""'$
.01^7
. 0~S 9
. C66-C
. 6?4~
. 666?
.0571
. 359:
. uf.P 3
. 31 34
. 2566
. 4763
. 4299
.1375
. S246
. 33 1 3
. 1663
.1151
.0350
BENZE'vE
TOLUENE




^-XYLE^E
CYCL ££''"•'''£"-
! t ' ^AwNL
1- Df.-irt£
N- DECADE

INOENE
UNDECENC
UNOECANE


OODECANE
NAPHTHALENE


            A QUAIfTITATIVC OCTt«»«INAT IO« CAM WOT  BC  «*AO€  U»*T IU A CTAMOARO MAS





•CO* WIC^AHCO OOMTAIHtwa TM6»t OO«*ONEMT«  IT  1C  *O««18UE TO CrTABL! 8H AN





AI»f*ftOXIMAT!OM. TM!«  IS AOHICVCO BY *HK.Tim.l*« TMC ^CAK RCW»ON«E T IMC« THC




itcs^OMW rAOTon re*  CARBO* ro« THE ruAME  IONJZATIOW OCTECTOH TIMES T«E SAMPLE





OllVTtON rACTOK AND  OIVIOC «V THE TOTAU VOLUME  OF «A« gAMPLEO.






                                         13-52

-------
STUDY NUMBER 14

-------
                  STUDY NUMBER 14
DATA
SOURCE:
SOURCE ASSESSMENT:
TEXTILE PLANT WASTEWATER
TOXICS STUDY
PHASE II
DATA
STATUS:
Draft, April 1979
AUTHORS:
CONTRACTOR:
J. R. Klieve and G. D. Rawlings
Monsanto Research Corporation
1515 Nicholas Road
Dayton, Ohio 454O7
TASK
OFFICER:
 Max Samfield
 U.S. Environmental Protection Agency
 Industrial Environmental Research Laboratory
 Office of Energy, Minerals, and Industry
 Research Triangle Park, NC 27711
                               14-1

-------
                       SOURCE ASSESSMENT:  TEXTILE PLANT
                       WASTEWATER TOXICS STUDY PHASE II

     This document reports  on Phase  II of a study cosponsored by the EPA and
the American Textile Manufacturers Institute to determine the toxicity of tex-
tile plant wastewaters.   Phase  I of  this study was published as Source Assess-
ment:  Textile Plant Wastewater Toxics Study, Phase I (EPA-600/2-78-004h)4 and
was reported in a previous  compilation of data with summaries of phased
environmental assessments.  The purpose of the study was "to examine the level
of removal of specific toxic pollutants and toxicity (as measured by results
of bioassay tests) attained by  selected tertiary systems treating secondary
effluents from textile plants."
     The Phase I study had  used lERL's Level 1 chemical tests and bioassays as
well as GC/MS analysis for  priority  pollutants (129 toxic compounds), and wet
methods for criteria pollutants (BODS, COD, color, sulfide, pH, chromium,
phenols, TSS).  Phase  I  results gave preliminary toxicity data and were used
to rank 23 textile plant effluents for toxicity.
     Phase II employed seven mobile  tertiary treatment systems to determine
the best available technology economically achievable (BATEA) for the treatment
of eight of the most toxic  plant effluents as determined in Phase I.  Chemical
analyses for intake water,  secondary effluents, and tertiary effluents are
presented; bioassay results are given only for secondary and tertiary effluents.
The chemical tests include  the  effluent guidelines' protocol for analysis of
the 129 priority pollutants, analysis for selected metals by ICAP, and other
selected aqueous analyses (NH3, N03, P04 , salinity, pH, specific conductance,
COD, TSS, color, and sulfide).  The  bioassay procedures performed in the study
include the freshwater ecology  series (algae, Daphnia. fathead minnow, and/or
bluegill), microbial mutagenicity (Ames and pol A), and cytotoxicity (CHO-K1).
     The seven tertiary  treatment systems were ranked in terms of total pollut-
ant removal efficiency (based on chemical analysis) and in terms of toxicity
removal capability (based on bioassay) as shown in Figure 14-1.
                                        14-2

-------
tj
>
o
Cn
O)
S_
   c
   
-------
     The report, in Section 3, p. 8, mentions several trends:

     1.    Only seven organic toxic pollutants in excess of 10 pg/L were seen
          in secondary effluents of the eight textile plants.   These were
          bis(2-ethylhexyl) phthalate, 1,2-dichlorobenzene, 1,2,4-trichloro-
          benzene, toluene, methylene chloride, di-n-butyl phthalate, and
          total phenol.

     2.    Eleven inorganic toxic pollutants were seen in at least one of the
          eight secondary effluents in levels greater than 10 yg/L (or the
          detection limit).  These were antimony, arsenic, beryllium, cadmium,
          chromium, copper, cyanide, lead, nickel, silver, and zinc.

     3.    None of the secondary effluents or tertiary effluents gave a positive
          response in the mutagenicity or cytotoxicity tests.

     4.    The freshwater algal assay was the most sensitive bioassay test used
          in the Phase II program.

     5.    Multimedia filtration followed by granular activated carbon adsorp-
          tion demonstrated the best overall toxic pollutant removal capability.

     6.    Ozonation appeared to add organic and inorganic toxic pollutants to
          the wastewater being treated.

     7.    Multimedia filtration alone demonstrated the best overall toxicity
          removal capability.

     8.    Tertiary treatment systems that left high levels of residual aluminum
          or iron fro« coagulation  in their effluents generally increased the
          toxicity of the wastewater, as compared with treatment systems whose
          effluents contained lower levels.

     9.    Systems employing cationic polymer coagulation increased the toxicity
          of the wastewater being treated.

In this section, the following recommendations were made:

     1.    Coagulation with high  doses of coagulant (alum or ferric salts)
          should be avoided as a  tertiary treatment option, since it appeared
          that  high levels of residual aluminum and iron resulted in an
          increase  in  effluent toxicity.

     2.    Since freshwater algal  and Daphnia bioassays were the more sensitive
          bioassays, these tests  should be considered first as a means to
          characterize  the toxicity of textile mill wastewaters.

     The  results of chemical  and biological analysis of each of the eight

plants plus conclusions  and  recommendations for each plant were discussed in

detail.    The tertiary  treatment  systems are referred to by number in the

following data  tables  as  follows:
                                        14-4

-------
     1.   Sedimentation
     2.   Coagulation then flocculation/sedimentation
     3.   Multimedia filtration
     4.   Coagulation then multimedia filtration
     5.   Coagulation then flocculation/sedimentation then multimedia filtration
     6.   Multimedia filtration then granular activated carbon
     7.   Multimedia filtration then ozonation
     8.   Coagulation then flocculation/sedimentation then multimedia filtration
          then granular activated carbon.
     Table 14-1 (from the report) shows the tertiary treatment systems that
were selected at each plant for detailed  chemical analysis and bioa^say.
                      TABLE 14-1.  TERTIARY TREATMENT SYSTEMS
                       USED AT SPECIFIC  PILOT  PLANT SITES

Plant 1
A
C
W X
s
p
N
V
T
Type
treatment
2 3
X
X
X
X
X X
X X
X
X X
of tertiary
system studied
4 5
X
X

X
X
X
X
X
6 7


X X
X
X
X
X X
X
8
X
X






            aBlanks  indicate treatment technology not tested  in
              "candidate"  mode studies at this location.
                                        14-5

-------
LEVEL 2
     14-6

-------
       TABLE 6.    MINIMUM DETERMINABLE CONCENTRATIONS
                     FOR ORGANIC  TOXIC  POLLUTANTS
         Compound
 Concen-
tration ,
uq/liter
Compound
 Concen-
tration,
yg/liter
ACIDS

2-Chlorophenol
Phenol
2,4-DichIorophenol
2-Nitrophenol
p-Chloro-m-cresol
2,4,6-Trichlorophenol
2,4-Di»ethylphenol
2,4-Dinitro?henol
4,6-Dinitro-o-cresol
4-Nitrophenol
Pentaehlorophenol

VOlATILgS

Chloromethane
Dichlorodifluoroaethane
Bromomethane
Vinyl chloride
Chloroethane
Methylene chloride
Trichlorofluoromethane
1,l~Dichloroethylene
1,l-Dichloroethan«
Trans-l,2-dichloroethylene
Chloroform
1,2-Dichloroethane
1,1,1-Trichloroethane
Carbon tetrachloride
Brorodiehloromethane
Bis(chloromethyl) ether
1,2-Dichloropropane
Trona-1,2-dichloroethylene
Trichloroethylene
Dibroswchlorotte thane
Cie-1,3-dichloropropene
1,1,2-Trichloroethane
Benzene
2-Chloro*thyl vinyl ether
BroTOXora
1,1,2,2-Tetrachloroethene
1,1,2,2-Tetrachloroethane
Toluene
Chlorobenzene
Ethyli>enzene

DIRECT IN3ECTASLES

Acrolein
Acrylonitrile
              BRSS KEUTRALS

    0.09      1,3-Dichlorobenrene
    0.07      1,4-Dichlorobenzene
    0.1       Bexachloxoethane
    0.4       1,2-Dichlorobenzene
    0.1       Bis(2-ehloroisopropyl) ether
    0.2       Hexachlorobut&dierve
    0.1       1,2,4-Trichlorobenzene
    2.0       Naphthalene
   40.0       Bis(2-chloroethyl) ether
    0.9       Hexachlorocyclopentadiene
    0.4       Nitrobenzene
              Bis(2-chloroethoxy)methane
              2-Chloronaphthalene
              Acenaphthylene
    0.2       Acenaphthene
    0.2       Isophorone
    0.2       Fluorene
    0.4       2,6-Dinitrotoluene
    0.5       1,2-Diphenylhydrazine
    0.4       2,4-Dinitrotoluene
    2.0       N-nitrosodiphenylamine
    2.0       Hexachlorobenzene
    3.0       4-Broaophenyl phenyl ether
    2.0       Phenanthrene
    5.0       Anthracene
    2.0       Dimethyl phthalate
    2.0       Diethyl phthalate
    4.0       Fluorantheae
    0.9       Pyrene
     1.0        Di-n-butyl  phthalate
     0.7        Benzidine
     2.0        Butyl benzyl phthalate
     0.5       Chrysene
     0,3        Bis(2-ethylh«xyl) phthalate
     0.5       Benzo(a)anthracene
     0.7       Benzo(b)fluoranthene
     0.2       Benzo (JO f luoranthene
     1.0       B«nzo(a)pyrene
     0.6       lndenoU,2,3-cd)pyr«ne
     0.9       Dibenzo(a,h)anthracene
     0.6       Benzo(g,h,i)perylene
     0.1       u-nitrosodiaethy lamine
     0.2       N-nitrosodi-n-propylamin«
     0.2       4-Chlorophenyl phenyl ether
               3,3'-Dichlorobenzidine

               PESTICIPSS
   2OO
   100
                       0.02
                       0.04
                       0.1
                       0.05
                       0.06
                       0.08
                       0.09
                       0.007
                       0.07
                       0.2
                       0.08
                       0.06
                       0.02
                       0.02
                       0.04
                       0.06
                       0.02
                       0.2
                        0.02
                        0.02
                        0.07
                        0.05
                        0.1
                        0.01
                        0.01
                        0.03
                        0.03
                        0.02
                        0.01
                        0.02
                        0.02
                        0.03
                        0.02
                        0.04
                        0.02
                        0.02
                        0.02
                        0.02
                        0.02
                        0.02
                        0.01
                        o.a
                        0.2
                         0.03
                         1.0

                         1.0
                                        14-7

-------
        TABLE 7.   PLANT A ORGANIC TOXIC POLLUTANTS DETECTED
       (Concentration, yg/£; percent  removal in parentheses)
Secondarv effluent
Pollutant
Bis(2-ethylhexyl) phthalate
Pyrene
Heptaehlor
1 , 2-Dichlorobenzene
1 , 2 , 4-Trichlorobenzene
o-BHC
4, 4 '-DDT
Toluene
Ethylbenzene
Phenol
Benzo (a) pyrene
N-nitrosodiphenylardne
2 , 4-D iaethylphenol
Pentachlorophenol
1 ,4-Dichlorobenzene
Phenol (total)
Intake Phase I
5.4 6
1.2 -
1.6
1
46


8.4






0.05
12 65
Phase II
32

1.4
20
1,600
s.e
2.1
31
5






60
Tertiary effluent
Type 2
44 (-3B)a


(100)
150 (91)


14 (55)

3





47 (22)
Type 5
14 (56)


5.4 (73)
94 (94)
1.9

12 (31)

3
0.8
0.4
0.9
10

55 (8)
Type 8
4.7 (85)


(100)
(100)


(100)

1.5





17 (72)

aj4inus percent removals indicate an increase  in the concentration of the specific
 pollutant.
 Blanks indicate concentration below detection Unit  (see Table 6).
                                       14-8

-------
 I
in
                         TABLE 8.   PLANT A  INORGANIC  TOXIC POLLUTANTS  DETECTED

                          (Concentration, vig/fc;  percent removal  in parentheses)
Secondary Effluent
Pollutant
Antimony
Arsenic
Beryllium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Intake
<10
72
0.2
7.5a
<4
<4
<4
<22
NAC
<36
NA
<5
NA
56
Phase I
30
<5
<0.1
<0.5
180
27
15
<1
<0.5
140
<5
<5
<5
6,400
Phase II
<10
60
<0.04
<2
110
20
10
<22
NA
<36
NA
<5
NA
6,400
Type
<10
62
<0.04
<2
31
13a
<4
<22
NA
<36
NA
<5
NA
5,700
Tertiary effluent
2 Type 5
<10
(-3) 103
1.2
97
(72) 34
(35) 110
(>60) 10
79a
NA
<36
NA
<5
NA
(11) 5,900

(-72)
(-2,900)
(-4,800)
(69)
(-4,500)
(0)
(-260)





(8)
Type 8
24a
<1
5.4
5.23
19a
47
<4
<22
NA
<36
NA
<5
NA
6,000
(-140)b
(>98)
(-130,000)
(-62)
(83)
(-140)
(>60)






(6)
        'semiquantitative region; value not within 95%  confidence limits.

        'Minus percent removals indicate an increase in the concentration of the specified pollutant.
         Not analyzed.

-------
                                 TABLE 9.   PLANT A OTHER POLLUTANTS DETECTED
                           (Concentration,  pg/l» percent removal in parentheses
 I
M
O
Pollutant
Aluminum
Barium
Boron
Calcium
Cobalt
Iron
Magnesium
Manganese
Molybdenum
Phosphorus
Sodium
Silicon
Strontium
Tin
Titanium
Vanadium
Intake
<12
<0.2
50
16,000
7.7"
175
3,000
49
<10
490b
8,000
480
90
<15
<1.0
17
Secondary
effluent
230
20
270
37,000
16b
2,000
5,000
92
<10
280
270,000
1,400
220
<15
3.2b
40
Tertiary effluent
Type
1,600
18
270
70,000
17b
2,800
4,900
100
<10
<70
270,000
1,300
240
20b
2.0"
53
2
(-600)*
(10)
(0)
(-89)
(-6)
(-40)
(2)
(-9)

(>75)
(0)
(7)
(-9)
(-33)
(38)
(33)
Type
520
18
300
70,000
110
2,700
5,300
200
•ao
<70
280,000
1,300
260
17b
<1.0
42
5
(-130)
(10)
(-11)
(-89)
(-590)
(-35)
(-6)
(-120)

(>75)
(-4)
(7)
(-18)
(-13)
(>69)
(-5)
Type
100
50
320
70,000
18b
1,700
5,800
120
<10
<70
265,000
1,400
370
<15
<1.0
33
8
(57)
(-150)
(-19)
(-89)
(-13)
(15)
(-16)
(-30)

(>75)
(2)
(0)
(-68)

(>69)
(18)
               Minus percent removals indicate an increase in the concentration of the specified pollutant.

              ^Semiquantitative region; value not within 95% confidence limits.

-------
                 TABLE  11.    PLANT A  EFFLUENT  DESCRIPTIONS
                                 Secondary diluent                          Tertiary effluent         —
,    P»r«aeter	       Ph«»e -               Pha»« Ji           j-yp« ;           frypg  t,       1-ype 6
r»ic»l description     Cray with considerable   Dark purple with      Light purple   Ught purple with  Clear
                      amount of fine partic-   particulate aattez                  paniculate
                      ulate; chlorinated                                        Batter
                              «.a                  «.e               «.i              c.c         t.i
Unity. 9/£                     KH*                  0.05              0.02             0.05        0.05
Kific conductivity.             MM                   150               900              850         JOO
It iwaaured.
                                                  14-11

-------
       TABLE  12.   PLANT  C ORGANIC TOXIC POLLUTANTS DETECTED
        (Concentration, vg/£;  percent  removal  in parentheses)
Pollutant Intake
Di-n-butyl phthalate 1.9
Bis (2-ethylbe>eyl ) pathalate 6.6
2-Chlorophenol 0 . 2
Anthracene
1 , 4-DichlOTObenzene
Pentachlorophenol
Phenol
TOluene
Dibrooochlorone thane
1 . 2-Dichlorobenzene
Ctbylbensene
Acenaphthene
1,2, 4-Tr ichlorobeniene
Triehloroethylene
Tetrachlor oethy 1 ene
Methylene chloride* 35
Phenol (total)
Secondarv
Pnase 1
_a
3.0

4.4
8.7
6.7
0.5
240

0.3
110
0.5
10
11
26

88
-effluent
Phase II
0.6
7.6

0.05


0.4
15
0.6






160
23
Tertiarv effluent
Tvpe 2 Tvt>c 5 TV DC E
0.6 0.6 0.4
33 (-330)b 5.3 (30) 11 (-45)

0.1 0.03 0.01

12 (-79)

1.0 (93) (>99) (>S9)

13 (-260,000) 5.8
1.3




70 (56) 210 (-31) 110 (31)
16 (30) 19 (17) (>91)
*»lante» indicate concentration below detection limit (see Table 6).
 Hinus percent removals indicate an increase in the concentration of the specified pollutant.
CHethylene chloride nay originate free analysis contamination.

      TABLE 13.   PLANT  C  INORGANIC  TOXIC POLLUTANTS  DETECTED
       (Concentration, yg/£;  percent removal  in parentheses)
Pollutant
Antimony
Arsenic
Beryllius
Cadmium
Chromium
Copper
Cyanide
Mercury
Kickel
Silver
Thallium
Zinc.
Ir.take
<10
<1
30
29
<4
£5
<4
<22
KAC
06
KA
54
KA
S3
Serondart
Phase I
4
<5
6
31
30
13
120
0.7
140
«5
«5
120
r effluent
Phase 11
90
1.6
1.5
<2
5.5"
57
<4
27b
KA
<36
KA
60
KA
163

TVT
120
<1
2.2
2.9b
17*
llb
<4
66b
KA
<36
KA
72
KA
190
Tertiarv effluent
« 2 Type 5
(-33)* 140 (-56)
<1
1.2
2.7b
(-210) 14b (-150)
(61) 25 (56)
<4
(-140) 64b (-140)
ItA
<36
KA
(10) 77 (4)
HA
(-19) 230 {-44)

Tvoe
120
<1
2.7
9.6b
15b
35
<4
KA
<36
KA
91
KA
83

E
(-33)

(-1703
(39)
(-140)

(14)

(48)
   *Minas percent removals indicate ar. increase in the concentration of the specified pollutant.
   bSe«iouantit*tive region; value not within 95% confidence limits.
   CKot analyzed.
                                            14-12

-------
                             TABLE 14.   PLANT C  OTHER POLLUTANTS  DETECTED
                         (Concentration,  yg/fc; percent  removal in parentheses)
CO

Pollutant
Aluminum
Barium
Boron
Calcium
Cobalt
Iron
Magnesium
Manganese
Molybdenum
Nickel
Phosphorus
Silicon
Strontium
Tin
Titanium
Vanadium
Intake
<12
81
<1
3,300
29b
110
720
33
<36
120b
7,500
49
<2
Secondary
effluent
98
72
54
5,200
<6
230
3,700
17
<36
2,700
15,000
67
69b
2b
410
TerLinry effluent
Type 2
13,000
70
58
5,700
<6
930
3,700
24
20b
<36
2,300
15,000
68
62b
14
560
(-13,000)°
(3)
(-7)
(-10)

(-300)
(0)
(-41)
(-100)
(15)
(0)
(-1)
(10)
(-600)
(-37)
Type 5
11,000 (-10,000)
71
57
5,600
<6
750
3,700
24
22b
<36
2,000
15,000
71
66b
11
520
(1)
(-6)
(-8)

(-230)
(0)
(-41)
(-120)
(26)
(0)
(-6)
(4)
(-450)
(-27)
Type 8
9,200
81
29
5,600
<6
310
3,700
28
19b
<36
1,900
14,000
74
56b
11
180
(-9,300)
(-13)
(46)
(-8)

(-35)
(0)
(-65)
(-90)
(30)
(7)
(-10)
(19)
(-450)
(-56)
           JMinus percent removals  indicate an  increase in  the concentration of tho specified pollutant.

           "semiquantitative region» value not  within 95% confidence limits.

-------
                                  TABLE  15.    PLANT C  BIOASSAY RESULTS

Teat ppcciea
Freshwater algae -
Mater flea -
0, maona
Dluegill -
1, maahroctilrut

Fathead minnow -
r. prcw100
MOO
MOO
MOO
MOO
MOO
MOO
MOO
MOO
MOO
(->*

]
Type 2
7.7 (2.3-25)
5.6 (2.J-1J)
5.2 (1.3-20)
MOO
79
MOO
MOO
MOO
MOO
MOO
MOO
MOO
(-)


^rUary cllluont
typ100
                >100
                                                >100
 Not meaaured.
b95l confidence  Interval.
C20% secondary effluent wa» highly Btlmulatory to the  growth of S.

dEC»o - 48 hr determined using Daphnia pult*.
elncrea.e in number of revertanta over background w.»  ob.erved, however, the re.olt. were  not twofold, nor was
 there a done reaponse.
      not determinable, cytotoxicity procedure employing  rabbit alveolar macrophage (RAM)  u«d in Phase I.

-------
               TABLE  16.    PLANT  C  EFFLUENT  DESCRIPTIONS
                                                                         Tertiary crjluent
 Parameter               Pnttfi                Pfla»t II          Type 2         Type 5         Type I

»1  de»criptio»    Clear, blue-black  with   Orange-brown with     Light orange-  Light orange-    Cloudy white
                   •oderate amount  of       particulate natter    with partic-   brown with -      liquid
                   particulate:                                ulat* Batter   particulate
                   unchlorinated                                              natter

                         10.2                    t.l              £.»           7.0            7.1

ty. 5/t                   UK*                       3                33            2.5

It  conductivity,           NM                     J,BOO             «,000          J.»00           3,»00
I/CB*


»a*ur«a.
                                                         14-15

-------
       TABLE  17.   PLANT W ORGANIC TOXIC POLLUTANTS  DETECTED
        (Concentration, vg/£;  percent  removal  in parentheses)
Pollutant
Intake
•is (2-ethylhexyl ) phthalate IS
Anthracene C.»
•ease la } anthracene
rivorantheae
•ease (a ) pyrene
fyreoe
aenso Ik > f looranthene
D>-B~butyl p*> thai ate
Toluene
Cthylbenaene
Methyl*** ehloridec
Pfteaal (total 1
0.1
0.7
0.7
0.5
0.4




t

Pftace 2 Pnasr 13
19 42
-b 1.5
1.5
1.1
1.2
O.I
O.I

1.7 1.4


232 1C

Type 2
23 (45)
0.4

0.4

0.2


l.S
3.0
2.2
4« (-(7)
Tertiary effluent
Tvpe 3 Type 6
14 (£7) 26 (67)
0.2 0.1

0.2
0.2
0.3
0.1
1.1
3.1
1.3
4.1 l.S
n «-6> 17 <-S!


106
0.4

0.1

C.I


1.2

€1
11


(-1501*








(-1S.OOB)
(19)
>unu» percent reoeval* tAdicat* •« tner**** in th« eone«ntr»t»on oJ tht •p*ctd*d pollutant..
     indicate concentration belou detection lirut (»et Table ().
       CJUorid* »ay originate tzam analyiit eontasination.
      TABLE 18.   PLANT  W INORGANIC TOXIC  POLLUTANTS  DETECTED
       (Concentration, pg/£;  percent  removal  in parentheses)
Secondary effluent
Pollutant Intake Phase I Phase II
*«*«* <10 <0.5
Annie <1.0 <5
Beryllitst <5 <0.1
o.^-63)
(-3)

(>69)

(66)
(-20)
(>86)

(>65>

(>80)

(87)
Tvce 3
<200
83
<2
<40
63)
(-120)

(>69)

(63)
(-30)
(>86)

(»65)

(>80)

(73)
Ti-pe 6
<200
42
<2
<40
<80
<80
40
<400
HA
<70O
MA
<100
NA
120
063)
(-10)

(>69)

(>75)
(80)
(>86)

(>65)

(>80)

(92)
Tvt>e
1,200
43
<4
250
<200
S90
<4
«900
NA
5,000
MA
1,300
NA
460
(-120!*
(-13)

(-92)

<-M)
(>98)
(>74)

(-150)

(-160)

(69)
  *Mious percent removals ladicare an increase in the concentration of the specified pollutant.
  b»ot aaalyxed.
                                             14-16

-------
                                                    removal  in  parencneses?

Pollutant
Aluminum
Barium
Boron
Calcium
Cobalt
Iron
Magnesium
Manganese
Molybdenum
Sodium
Silicon
Tin
Strontium
Titanium
Vanadium
Ammonia
nitrogen
Nitrate
nitrogen
Phosphate
phosphorus
Intake
22
110
<1
16,000
5
1,100
1,700
30
<10
2,400
5,600
<20
95
<1
12
NAb

NA

NA

Secondary
effluent
8,400
290
490
31,000
170
5,000
7,000
20
<200
54,000
4,800
OOO
170
200
2,700
3,300

5,300

200

Tertiary
Type
4,700
120
640
31,000
<40
3,400
6,600
70
<200
56,000
3,200
OOO
160
110
120
3,000

7,100

210

1
(44)
(59)
(-33)*
(0)
(>76)
(32)
(6)
(-250)

(-4)
(33)
.
(6)
(45)
(96)
(9)

(-34)

(-5)

Type
3,100
110
600
33,000
60
2,400
6,600
40
<200
61,000
2,700
OOO
160
60
110
2,600

6,500

100

3
(63)
(62)
(-22)
(6)
(65)
(52)
(6)
(-100)

(-17)
(44)

(6)
(70)
(96)
(21)

(-23)

(50)

effluent
Type
3,100
50
630
22,000
<40
1,900
4,900
20
<200
57,000
2,200
OOO
120
80
<40
2,200

6,500

100


6
(63)
(03)
(-29)
(29)
(>76)
(62)
(30)
(0)

(-6)
(54)

(29)
(60)
(>99)
(33)

(-23)

(50)


Type
7,000
120
1,000
30,000
300
2,300
6,100
90
<400
56,000
2,600
<600
2
180
540
5,500

8,800

160


7
(17)
(59)
(-104)
(3)
(-124)
(54)
(13)
(-350)

(-4)
(46)

(99)
(10)
(80)
(-67)

(-66)

(20)


"Minus percent removals indicate an increase in the concentration of the specified  pollutant

b
 Not analyzed.

-------
                                         TABLE  20.    PLANT  W  BIOASSAY  RESULTS
Teat species
Fr«nhwater alga* -
5. eaprtcornutun
Water ties -
D, magnn
Blue gill -
Fathead minnow -
T. promrlaa
8. tyi'hbnuriu* -
•train* TA9H,
TA100, TA1535,
TA1537, nnd
TAIS38
S. coll -
•train* M3110
onJ |i3470
Chinese hamster
ovary c*ll«
Secondary effluent
Parameter rhaoo
DC*e - T day, t effluent NMn
K«e - 12 day, « affluent NH
KT»e - 14 d*y, 1 effluent -c
CC*e - 24 hr, effluent NH .
W»e - 40 hr, effluent 6.3
LC»e - 24 hr, effluent WH
ICje - 40 hr, effluent NH
tCse - 72 hr, effluent IIH
K«e - 96 hr, effluent KM
ICse - 24 hr, effluent NH
IC*e - 40 hr, effluent NM
t£»e - 72 hr, effluent NH
lC»e - 96 hr. effluent 55
Re«pon«e to Am«e test for (-)
mutagenlclty - (-) or (*)
Response to pot A test for 0
mutagenlclty-lncrease In
rone of Inhibition, m«
Response to cno-Kl test -f
for acute eytotoxlclty-
ECae
:
1.
2.
4.
Phono II
0 (0.6-3.4)b
4 (0.5-12)
0 (2.1-7.6)
>36<60
56 (33-97)
•V77
71
65
60
75
83
61
61

0
MOO
(63-01)
(50-71)
(33-66)
(70-80)
(52-76)
(31-75)
(51-75)




6.
10
0.
57
40
MOO
77
72
64
76
59
53
40
,-,
0
MOO
Type 1
0 (0.9-4.0)
(4.2-24)
9. (2.6-30)
(33-79)
(34-66)
(67-05)
(65-01)
(57-71)
(60-09)
(50-77)
(45-61)
(39-35)




12
17
11
50
39
MOO
60
61
60
tertiary effluent
Type 3
(3.6-41)
(1.5-100)
(3.4-37)
(34-100)
(34-100)
(61-75)
(54-67)
(53-66)
>77<100
73 (65-04)
69 (61-79)
60 (59-7?)
""
0
MOO



Ty|H) 6
47
33
20
51
49
MOO
75
68
66
76
69
63
61
'"
0
MOO
(Z3-95)
(16-6R)
(13-61)
(36-7?)
(35-70)
(69-00)
(61-75)
(59-7J)
(60-06)
(61-75)
(50-72)
(54-67)



J7
44
29
55
34
MM
IIH
HM
MM
Type 7
(26-53)
(5.5-100)
(16-54)
(32-951
(31-93)

>60<100
60 (54-84)
60 (54-04)
65 (51-00)
(-)
0
MOO



*Not measured.
D9St confidence Unite.
CCrowth of 5.  eapricontutun supported with 2\ and 51 uncondary efflurnt, but  Inhibited at lot «nd 20t Ivvcla.
 RCjo - 40 hr  determined uilnq thphnta putt*.
 Increase In number of revertantg wag observed with TA1530, with and without  metabolic activation*  however, a  dose response w«> not
 observed,
 ECso not determlnablei cytotoxlclty procedure employing rabbit alveolar mocrophnqp (RAH) uaed In Phaiie I.

-------
                    TABLE  21.    PLANT  W  EFFLUENT  DESCRIPTIONS
                                           ;iuent
                                              Ph»»e  13        7ypf  ^         Type 3     '    Type fe          Type
ttiv»ic*l ducriptior.   Cloudy oranpr with     Cloudy brown   Cloudy brown   Cloudy brown   rale yellow    Cloudy pale
                        • K>d*r*t« amount      liquid         liquid         liquid         liquid         yellow liquid
                        o; partieulat*:
                        nonchlocinatcd

|«                             (.0                1.7            7.1           7.1           7.»             7.«

Wlinity. 9/1                   KM*                 3332               3

(B*C1(1C conductivity.           HK               2.400          S,»00         J.tOO          2,400            Z.SOO
I  Idltl0»/c«*


:*Mot iwasuicd.
                                                              14-19

-------
     TABLE 22.   PLANT S  ORGANIC  TOXIC POLLUTANTS DETECTED
      (Concentration,  yg/£; percent removal  in parentheses)
Pollutant Intake
»isl2-ethylbexyl) ehthalate 1.2
Aeenaphthene -b
Di-n-butyl phthalate
Phenol 0.5
2 . 4-&i»*thy 1 phenol
2 ,4-Bichlorophenol
y-Ovlero- -j-cre»ol
Chlorolora 120
toluene 3
TrichlorofluorOM thane
1.2. 4-Tr ichlorobenzene
naphthalene
Ethyltoeaxene
Tetraehloroethylene
Hethylene chloride* SS
Phenol (total) S
Phenol (total)* -*
Secondary
Pnasr :
41






21

t20
2*0
110
6.4
2*
2»

Pn*se i:
25
2.2
2.6
0.6




l.t




12
IS
11
	 Tertiarv eii
Type 3 Type <
42 (-68)* 16 (36)
0.6 0.6
6
0.4 0.2
0.4
0.2
0.3
7
0.4 1.4




4.6 (62) 7.1 (34)
•fl 21 (-40)
f.O (It) 16 (-4S)
iuer.i
Type t
410 (-1.500)






1.6
6S (-3.SOO)



»40 (-7.700)
(>32)
     percent r«»cv»:» i.c£icat« an incr«a»* in the concentration of the »peciiie enalyci* contaKinatioe.
*£ae?le battle broker, in «hip»ent.
"fcaaple taken day after all other saaplea were takes.
      not taken.
    TABLE 23.   PLANT S  INORGANIC TOXIC  POLLUTANTS  DETECTED
    (Concentration,  pg/£; percent removal  in parentheses)
5econ£arv effluent
Pollutant
Antimony
Arsenic
Beryllium
Cadmiua
Chroadua
Copper
Cyanide
Lead
Mercury
Hiekel
Selenium
Silver
thallium
Zinc
Intake
20
<10
<5
3b
«
10b
<10
34b
0.5
61b
<10
<5
<50
42
Phase I
70
<10
<5
2
<4
60
<10
<22
<0.3
<36
<10
<5
<50
84
Phase 11
610
<10
<5
5b
<4
26
<10
75b
1.7
83b
<10
<5
<50
41
Te
Tvoe 3
620
<10
<5
5b
<4
27
<10
81b
0.4
81b
<10
<5
<50
75
(-23*
(0)



(-4)

(-8)

(2)



(-83)
rtiary effluent
Type 4
600
llb
<5
6b
<4
24
<10
B5b
0.7
98b
<10
<5
<50
55
(2)
(-10)



(8)

(-13)

(-18)



(-34)
Type
590
llb
<5
6b
<4
<4
<10
79b
0.4
96b
<10
<5
<50
31
6
(3)
(>10)



(>B5)

(-5)

(-16)



(24)
  aHin«s percent removals indicate an increase in the concentration of the
   specified pollutant.
  bSemiguantite±.ive region;  value not within 95% confidence linits.
                                           14-20

-------
tsj
                            TABLE 24.   PLANT S OTHER POLLUTANTS DETECTED

                        (Concentration,  vg/lf percent removal in parentheses)

Pollutant
Aluminum
Barium'
Boron
Calcium
Cobalt
Iron
Magnesium
Manganese
Molybdenum
Sodium
Silicon
Tin
Strontium
Titanium
Vanadium
Ammonia
nitrogen
Nitrate
nitrogen
Phosphate
phosphorus

Intake
110
12
<1
5,500
8b
240
860
7.7
<10
10,000
3,600
<15
21
2b
11
NAC
NA
NA

Secondary
effluent
690
8.3
1,100
5,900
10b
100
1,600
11
13
180,000
11,000
<15
22
4b
57
6,600
250
1,700


Type
450
6.2
1,100
6,200
7b
150
1,500
12
14
190,000
11,000
<15
22
4b
23
60
120
2,100


3
(35)

(0)
(-5)a
(-50)
(6)
(-9)
(-8)
(-6)
(0)

(0)
(60)
(99)
(52)
(-24)

T c r t i a ry
Type
330
5.
1,000
5,800
llb
190
1,500
11
13
180,000
11,000
<15
22
4b
23
5,600
210
4,500



effluent
4
(52)
9
(9)
(2)
(-10)
(-90)
(6)
(0)
(0)
(0)
(0)

(0)
(60)
(15)
(16)
(-170)
Type
310
5.7
1,100
5,200
6b
58
1,400
8
17
190,000
11,000
<15
22
4b
22
1,200
G
(55)

(0)
(12)
(42)
(13)
(27)
(-31)
(-6)
(0)

(0)
(61)
(82)
670 (-170)
2,000
(-18)
!
 Minus  percent removals  indicate an
 pollutant.
b
 Semiquantitative region; value not

°Not analyzed.
                                                increase in the concentration r>t the specified
                                               within 951 confidence limits.

-------
                                          TABLE  25.   PLANT  S  BIOASSAY RESULTS
Test species
Freshwater algae -
5. caprlaornutui*

Mater flea -
0, Magna
Fathead minnow -
P. promatat



EC,,
EC.,
EC,,
!£•«
tc.*
ix:9»
I56<100
MOO
MOO
MOO
MOO
MOO
MOO
Tertiary elflucnt
Type 4
73
62
49
MOO
MOO
MOO
MOO
MOO
MOO
(26-100)
(16-100)
(25-95)







Type
MOO

f,

56 (3-100)
MOO
MOO
MOO
MOO
MOO
MOO
MOO







         S.  typhlmurium -
           •trains TA98,
           TA100, TM533,
           TA15J7, and
           TA1538
Response to June*  test  for      (-)     (-)
  •wtagcnicity -  (-) or  (+)
 I
f\>
ISJ
X.  ftolt - strains
  H3110 and p3470


Chinese hamster
  ovary cells
Response to pot A  toot for      0       0
  mutngcniclty-lncreoBo in
  tone of inhibition, mm

Response to CIIO-K1  test       NM     >100
  for acute cytotoxicity-
  BC.o
                                                                                 >100
MOO
>100
         *Not measured.

          951 confidence interval.

          20I secondary  effluent was highly stimulatory to the growth of  S,  eapricornutun.

               not calculated since a heavy solids concentration abscured  the analysis* sample did not appear to be
          acutely toxic;  Daphnia pultx used in determination.

-------
           TABLE 26.   PLANT S EFFLUENT DESCRIPTIONS

P* r ••*«:. c r
ftical (Jescraptior.

toity, s/i
tcific conductivity,
•bos/cr'

Pn»*f : ""
Clear, lioht champagne
vit.. »aall amount of
paniculate;
vncl-.lortnated
7.7
K**
HK

Phas* IS
Oranot liquid
containing *
precipitate
7.J
1
1,100
:' 	
Orange liquid
containing a
precipitate
7.3
0
870

	 Typf < 	
Light orange
liquid con-
taining a
precipitate
7.0
1
1,103

"V tyot 1 	
Clear liquid
7.4
1
1.100
      TABLE  27.   PLANT  P ORGANIC TOXIC POLLUTANTS  DETECTED
       (Concentration, pg/£;  percent  removal in parentheses)
Pollutant
Bi*(2-ethylhexyl) phthalate
Ci-n-b-tyl phthtiate
Ciethyl pi-.tha.late
Xithracene
Phenol
Chlerof cm
Trichlcroethyiene
Toluene
Benzene
S-nitroso-di-r.-proryia^iine
Ethylber.zene
Hethvlene chloride
Phenol (total)
Secondarv
Ir.teke Phase I
2.0 72
0.9



4.1 6.9
1.4
1.5 22

19
280
20
11 32
effluent
Phase II
10
2.1
1.3
0.8
0.7


0.4



0.4
72

Type 2
10
2.6

0.9
0.5

o.e
0.4
0.4

0.1
2.5
B2 (-14)'
Tertiary
Type 3
3.9
1.6
o.e
0.5
1.8


2.7
1.0


4.1
' 68 (6)
effluent
Type 5 Type 6
3.3 3.9
2.5
1.0 1.4
0.5 0.1
2.6


2.6 3.6
0.5


4.7 7.3
130 (-81) 18 (75)

bK*thy-ene cVicride nay originate from analysis contamination.
eKinus per=.r.r removals indic.t. an increase in the concentration of the specified pollutant.
                                         14-23

-------
            TABLE 28.  PLANT P INORGANIC TOXIC POLLUTANTS DETECTED
            (Concentration,  vg/t} percent removal in parentheses)

Secondary effluent
Pollutant
Antimony '
Arsenic
Beryllium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Intake
28a
<2
<0.2
<2
5.7a
98
<4
<0.3
56°
<8
<5
<50
150
phase I
<10
<2
<0.1
<2
<4
<4
140
<22
<0.5
40
<5
8
<50
140
Phone II
77a
<2
<0.2
<2
98
36
<4
25°
0.4
<8
<5
<50
5,200
IVpc 2
43° (44)
<2
<0.2
<2
<4 (>96)
<4 (>89)
<4
<22 (>12)
<0.3
43° (35)
<8
<5
<50
160 (97)
Tertiary effluent
Typo 3
48° (38)
<2
<0.2
<2
<4 (>96)
<4 (>89)
<4
<22 (>12)
0.3
58° (12)
<8
5
<50
150 (97)
Typo 5
34a (56)
<2
<0.2
<2
<4 (>96)
89)
<4
<22 (>12)
0.4
36° (83)
<8
<5
<50
160 (97)

36°
12
<0.
<2
<4
<4
<4
<22
0,
50°
<8
<5
<50
<1
Type 6
(53)
(-500) b
2

(>96)
(>89)
012,
4
(24)



(100)
1Semiquantitative regioni  value not within 95% confidence limits.

''Minus percent removals indicate an increase in the concentration of the specified pollutant.

-------
                                TABLE 29.   PLANT  P  OTHER POLLUTANTS DETECTED
                            (Concentration, vg/H; percent removal  in parentheses)
4*

in
Pollutant
Aluminum
Barium
Boron
Calcium
Cobalt
Iron
Magnesium
Manganese
Molybdenum
Sodium
Silicon
Tin
Strontium
Titanium
Vanadium
Ammonia
nitrogen
Nitrate
nitrogen
Phosphate
phosphorus
Intake
670
11
150
3,600
<6
1,400
1,600
73
ioa
6,200
6,400
16a
25
36
21
NA

NA

NA

Secondary
Phase 1
140
<0.2
520
9,500
0.5
100
1,800
20
<0.6
>100,000
4,800
<10
NAC
<1
20
200

80

20d

effluent
Phase 11
300
<0.2
950
8,300
50)
(8)
(4)
(-40)b
(6)
(>97)
(22)
(ID

(7)

(-4)

Tertiary
Type
30a
<0.2
860
7,500
<6
300
1,800
50
<10
120,000
2,300
<15
33
<1
15
360

130

2,700

5
(90)

(9)
(10)

(70)
(0)
(38)
(>50)
(8)
(4)

(6)
(>97)
(17)
(54)

(57)

(4)

effluent
Type
50a
<0.2
880
7,300
<6
600
1,800
43
<10
120,000
2,100
10a
35
<1
15
580

250

2,500


5
(83)

(7)
(10)

(40)
(0)
(46)
(>50)
(8)
(13)
(-20)
(0)
(>97)
(17)
(27)

(17)

(11)


Type
40*
<0.2
660
5,000
<6
20
1,500
<0.5
<10
110,000
2,600
<15
35
<1
14
830

300

2,400


6
(87)

(31)
(40)

(98)
(17)
(>99)
(>50)
(15)
(-8)

(0)
(>97)
(22)
(-5)

(0)

(14)


         "Semiquantitative region) value not within 951 confidence limits.
         bMinus percent removals indicate an increase in the concentration of the specified pollutant.
         cNot analyzed.
          o-Phosphate only.

-------
                                             TADLE  30.    PLANT P DIOASSAY  RESULTS
 I
ro
Test sj^clea
freshwater algae -
.7. ('tn'i'icontutwn

Mater flea -
t>. maqna
fathead minnow -
P. frottttao


S. typhbwrtum -
strains TA98,
TA100, TA1535,
TA1537 and
TA1538
Chinese hamster
ovary cells
Secondary effluent
Parameter
EC,.-
ECse -
ECs» -
tCse -
fcCao -
LC»o -
LCse -
LCso "
tCse -
7 day,
12 day,
14 day,
24 hr,
48 hr,
24 hr.
48 hr.
72 hr.
96 hr.
% effluent
% effluent
» effluent
effluent
effluent
effluent
effluent
effluent
effluent
rha.ie 1
NM*
MM

HM .
MOO*
NM
NM
MM
MOO
I'hone It
54 (30-100)b
54 (18-100)
53 (20-100)
MOO.
MOO
_e
e
e
-*
Type 2
41 (14-100)
24 (13-42)
26 (15-43)
MOO
MOO
e
„•
„•
e
Tertiary effluent
Type 3 Typn 5 Tyf>e 0
42 (29-62) G4 (2S-100) 0] (10-100)
42 (14-100) >32<100 >'5G<100
33 (10-100) 41 (20-59) >SO<100
>100 MOO MOO
MOO MOO MW
.' .* .*
-* _e _e
e e e
.* _e e
Response to Ames test for (-) (-) (-) (-) (-) (-)
mutageniclty






(-) or (*)



Response to CHO-Kl tent







MOO





. MOO





MOO





MOO MOO MOO


           Not mcanured.
           93% confidence interval.
          C20% secondary  effluent stimulated the growth of S.  capricornutum.
          d
                 4B hr determined with Daphnia pule*.
                 not calculated because of data scatter) however, none of  the samples appear to be  tonic since  there wnn no more
           than a 20% kill  In any of  the tests with 100% effluent.

-------
               TABLE  31.   PLANT P  EFFLUENT  DESCRIPTIONS
                                                                    Typ«
                                                                                   Typ*
gr*ictl 4»»ttlf>tlo«>
»rown tur&id
 eont>i&in«
                                   *ra«n turbid liquid.  trown turbid liquid. Brovn turbid liquid  S»9»t}y cloudy p«l«
                                             rti-    »u.p«i\a«a p»rtl-    «u«p«nd«i p*rti-    y«liov liquid
                                             r      cvil«t« utttr     cul*c« n>ct«
   T. 9/1
     t.t

       0

     *co
4.9


 0


520
t.a

 0

500
6.t

 0

4»O
                                                                                    0


                                                                                   4(0
       TABLE  32.    PLANT  N  ORGANIC  TOXIC  POLLUTANTS DETECTED
       (Concentration,  yg/i;  percent removal  in  parentheses)
	 Pel lutar.t 	 _

lc--J-«ee-.e * *
Ditthyl pr.tb»l»te
-,_r-6-.- ••• phtMJ»te
Metftyler.e chlocidt
TQluen*

Din*^i p^h*u"
u
pyrene

riuorene

2 4 *Di c Jilor osjienol
.'
Phent^trirene
l,2-S:cf.loro?rop»ne
4-Ci"Morot>«nien«
-'.r4-^l'oroeth l«n«
Ethyllxntene
Pher.c:
pften&l (tot«l)
*Si»nK» ineic»te conce.it
^tM-.hyiene chloride r.*y
cr.inu» percent re»ov*l*
pciluvant.
Ir.t»lie Phase 2 Phe«e II Tvpe *
ite 53 16.7 230 29 (87)
0.2 -* 0.4
1.0 S.< 0.8 0.4
1.2 0.6 1.1
47 46 47 <-2>C
0.5 17 0.4 0.6
t.O 0.9
C.07 0.08
C.I 0.1





0.5
1.0

l.S
0.7
75 0.9
11
14 6B 31 17 (4S>
r«tion below detection linit (»ee T»ble 6)
orisintte frew «n«ly«i» ccnt««in«tion.
anii:*te «r. jncr.«»e in the coneer.tr.ticn

isr»- ei£luent
Type £ Type t
31 (67) 78 (66)
0.4 0.4
0.3 1.2
0.6 2-8
28 (39) 27 (41)
0.4
0.5
0.05
0.0$

0.05

o.s







25 (19) 11 (65)
-
oi • specified

                                                  14-27

-------
          TABLE  33.   PLANT N INORGANIC TOXIC POLLUTANTS DETECTED
           (Concentration,  vg/lt  percent removal In parentheses)
Secondary effluent
Pollutant
Antimony
Arsenic
Beryllium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Intake
14a
5
0.6
<2
<4
160
<5
<22
<0.1
<36
<1
10a
<50
22
Phase 1 Phase II
<10
<5
NAb
<0.5
1,800
8
<4
1
<0.5
30
<5
<5
<5
38,000
18a
3
<0.04
<2
170
14a
<5
<22
<0.1
<36
<1
5.5a
<50
1,300
Tertiary effluent
Type 3
<10 (>44)
3
<0.04
<2
95 (44)
130 (-830)°
<5
<22
<0.1
<36
<1
<5
<50
590 (55)
Type 5
<10 (>44)
<1
O.la
<2
34 (80)
86 (-510)
<5
<22
<0.1
<36
<1
<5
<50
440 (66)
Type 6
<10 (>44)
3
<0.04
<2
5.2a (97)
24 (-71)
<5
<22
<0.1
<36
<1
<5
<50
430 (67)
aSemiquantitative region; value not within 95% confidence limits.

bNot analyzed.
cMinus percent removals indicate an increase in the concentration  of the
 specified pollutant.

-------
          TABLE  34.   PLANT N OTHER  POLLUTANTS DETECTED
      (Concentration, yg/£;  percent removal  in parentheses)
Pollutant
Aluminum
Barium
Boron
Calcium
Cobalt
Iron
Magnesium
Manganese
Molybdenum
Sodium
Phosphorus
Silicon
Tin
Strontium
Titanium
Vanadium
Sulfide
Aanonia
nitrogen
Nitrate
nitrogen
COD
TSS
Color3 at
pH 7.6
Color at
sample pH
Intake
120
6.7
0.6
5,400
6.2"
620
1,000
530
<10.
12,000
<70
4,000
<15
51
2.ia
6.9B
14
NAC

NA

11,000
6,000
47

48
6.46
Secondary
effluent
120
6.0
9.1
7,100
12a
720
1,100
210
<10
180,000
2,500
3,800
<15
41
1.9*
8.5*
12
1,700

5,200

128,000
75,000
39

36
7.97
Tertiary effluent
Tyoe 3
36a
3.3
6.7
6,200
8.7a
290
990
190
<10
180,000
2,300
3,700
<15
40
1.2a
7.7*
<5
1,200

4,600

210,000
<1,000
38

43
6.95

(67)


(13)
(28)
(60)
(10)
(10)

(0)
(8)
(3)

(2)


(>5B)
(29)

(12)

(-64)
(>99)
(3)

(-19)

Type
390
2.7
6.4
6,200
8.6a
55
1,000
200
<10
200,000
1.200
3,400
<15
39
<1
e.sa
<5
1,600

5,200

172,000
8,000
52

48
7.45
5
(-260)b


(13)
(28)
(92)
(9)
(5)

(-ll)b
(52)
(11)

(5)


(>58)
(6)

(0)

(-34)
(89)
(33)

(-33)

Type 6
21*
4.6
9.0
5,000
<6
110
860
160
<10
180,000
1,000
3,800
<15
40
<1
6.5a
<5
1,300

3,100

44 ,OOO
12 ,000
51

51
746

(81)


(30)
(>50)
(85)
(22)
(24)

(0)
(60)
(0)

(2)


(>58)
(24)

(40)

(66)
(84)
(-31)

(-42)
(6.4)

*Semiquantitative region; value not vithin 95% confidence limits.
bMinus percent removals indicate an increase in the concentration of the specified pollutant.

CMot analyzed.

dA0MI units.

*pH units (- log [H+JJ.
                                           14-29

-------
•I*
CO
o
                                            TABLE 35.   PLANT N  DIOASSAY  RESULTS
Test species
freshwater algae -
5. cat>riecr>iutum
i
Water flea -
D. manna
Fathead minnow -
T. promt Ian


Parameter
EC,,
BCso
tCg«
LC»»
LC»o
LCto
LCso
LCso
- 7 day, % effluent
- 12
- 14
- 24
- 48
- 24
- 48
- 72
- 96
day, % effluent
day, % effluent
hr,
hr.
hr,
hr,
hr,
hr,
effluent
effluent
effluent
effluent
effluent
effluent
Secondary cfflueni
Phase 1 Hinno i 1

NMC
NM,

NM
NM
NM
49
20
28
23
MOO
77
MOO
91
81
81
(ll-36)b
(20-41)
(18-31)
(86-MOO)
(GO-100)

(73-MOO)
(68-99)
(68-99)

23 (13-41)
38 (27-53)
30 (16-56)
MOO
78 (67-92)
MOO
MOO
MOO
MOO
fcrtidry ctflucnt
	 JjrPJJ— ?_....-.
44 (26-75)
35 (19-66)
29 (15-57)
MOO
MOO
MOO
MOO
MOO
MOO
23 (10-51)
16
23
MOO
77
MOO
MOO
MOO
MOO
(10-27)
(14-38)

(60-100)




S. typhtmurtu* -
  •trains TA98,
  TA100, TA1535,
  TM537, and
  TA1538

r. coll -
  strains W3110
  and p3478

Chinese hamster
  ovary cells
                               Response to Ames test  for
                                 mutagenlcity - (-) or  (
Response to pel  A test  for
  mutagenicity-increase in
  zone of inhibition, mm

Response to CHO-K1 test
  for acute cytotoxicity-
  EC90
                                                                    MOO
MOO
MOO
                                                                                                                 MOO
           Not measured.

           95% confidence Interval.
          CA11 concentrations of secondary effluent  (21, 51, 101, and 10%)  failed  to  support the growth of S,  caprlcornutui*.

          d!00% kill in all dilutions (4.7% -  100%), ECgo determined with Oaphnla  pule*.

          eEC»o not determinables cytotoxicity procedure employing rabbit alveolar macrophage  (RAM) used in Phase  I.

-------
                   TABLE  36.    PLANT N  EFFLUENT  DESCRIPTION
                                                                          Tertiary effluent
     >»r«i"»ter            Pnmit I           P.l»»f  II              Typ« J              Type >             Tyae fc

    «l oMsriFtiOn    CJe»r. light erey Turbid, brovn liquid Turbid, brown llqui«  Cloudy, light  brown  Slightly turbid
                      liquid with       vjrh »-j»pen4ed       with suipcnoe^       liquid with          liquid
                      ••oderace caount   p*rticle»
                      of p»rticul»t*
                      n*rt«r; non-
p                         !.•>              *.t                 t.1                 *.»              t.S

»linity, f/i                 m                0                  t                  C                »

      conductivity.         MM              *00                 «SC                 «SB              tie
 (HtM/CC:>
                                                           14-31

-------
 i
CO
                          TABLE  37.   PLANT  V ORGANIC  TOXIC  POLLUTANTS  DETECTED
                           (Concentration, ug/fc;  percent removal  in parentheses)
Pollutant
DlB(2-ethylhexyl) phtholate
Dl-n-butyl phthalate
Anthracene
Dutyl benzyl phthalate
Methylehe chloride0
Toluene
Trichloroethylene
1, 1-Dichloroethane
Dcnzene
Rthylbenzene
Chloroform
rran
-------
               TABLE 38.   PLANT V  INORGANIC  TOXIC POLLUTANTS DETECTED
                (Concentration, ug/£;  percent removal  in  parentheses)









M
-£>
1
to
to




Pollutant
Antimony
Arsenic
Beryllium
Cadmium
Chromium
Copper
Cyanide
Lead
^Mercury
Nickel
^Selenium
Silver
^Thallium
Zinc

Secondary effluent
Intake
<10
<1
<0.04
<2
<4
<4
<2
<22
<1.1
<36
<1
<5
<50
98

Phase I
4
<5
<0.1
<0.5
3
170
18
<1
<0.5
<10
<5
<5
<5
340

Phase II
<10
4
<0.04
<2
4.3°
85
23
<22
<1.1
<36
<1
<5
<50
240

Type 3
<10
4
<0.04
<2
<4
75 (12)
3 (87)
3la (-41)
<1.1
<36
<1
<5
<50
190 (21)


24a
<1
<0.
<2
6.
100
27
37a
<1.
73a
<1
12a
<50
330

Tertiary effluent
Type 4
(-140)b

04

7a
(-18)
(-17)
(-68)
1
(-103)

(-140)

(-38)

Type 6
24a (-140)
5
<0.04
<2
<4
163 (81)
<2 (>91)
263 (-18)
<1.1
67a (-86)
2
153 (-200)
<50
69 (71)


253
4
<0.
<2
6.
89
<2
<22
<1.
66a
<1
163
<50
240

Type 7
' (-150)

04

3a
(-5)
(>91)

1
(-83)

(-220)

(0)

Semiquantitative  region; value not within 95% confidence limits.

Minus percent removals indicate an increase in the concentration of the specified pollutant.

-------
                                 TABLE  40.   PLANT V  BIOASSAY  RESULTS
Tost species
Freshwater algea -
S. eaprteofnutum
Mater flea -
0. magna
Fathead minnow -
P. prone las


Parameter
BC»» - 7 day, % effluent
ECs» - 12 day, 1 effluent
EC»» - 14 day, t effluent
LCio - 24 hr,
LC»o - 48 hr,
LC«» - 24 hr.
LCao - 48 hr.
LC»o - 72 hr,
LC90 - 96 hr,
effluent
effluent
effluent
effluent
effluent
effluent
Secondary e 1 fluent '"~
Phnse 1 Phase 11 	
NMa
NMC
NM-
9.4°
NM
NM
NM
36
78 (59-100)b
94 (57-100)
MOO
MOO
>60<100
_e
-e
_e
e
Tertiary effluent
Type 3 'r«ri« A' " " ' ¥T',«^ 'i
76 (60-96)
95 (52-100)
MOO
MOO
MOO
e
_e
e
_e
19 (14-27)
25 (13-47)
24 (12-48)
77 (60-100)
54 (44-66)
e
_e
e
_°
MOO
MOO
MOO
MOO
MOO
e
e
e
.e

Type 7
MOO
MOO
MOO
MOO
MOO
e
e
e
_e
S. typhitnurium -
  strains TA9B,
  TA100, TA1535,
  TA1537, and
  TA1538

ff. ooti -
  strains H3110
  and p3478

Chinese hamster
  ovary cells
Response to Ames test for
  mutagenicity- (-)  or (•»•)
Response to pol A test for
  mutagenicity-increose in
  zone of inhibition,  mm

Response to CHO-K1 test
  for acute cytotoxicity-
  EC»o, % effluent
MOO
MOO
MOO
                                              MOO
MOO
 Not measured.
'95» confidence limits.

:20t secondary effluent  was highly  stimulatory  for the growth of 8. caprteornutum.

 EC9o determined with Daphnia  pulex.
      not calculated since mortality data did not follow a normal dose - response relationships) secondary effluent
 (Phase II), Type 3 tertiary effluent, Type 7 tertiary effluent, and Type 8 tertiary effluent do not appear to be
 acutely toxic to the fathead minnow.
 ECso not determinablet  cytotoxicity procedure employing rabbit alveolar macrophage (RAM) used in Phase I.

-------
                TABLE  41.    PLANT V  EFFLUENT  DESCRIPTIONS
                         Secondary eftluent
                                  	Tertiary effluent
                                  Pha»e 13       Type 3       type i          frype i
     a} (Sestription       hM*    TurbiS d«rK   Turbifl dark   Turbid. t»n   Sii?htly  turbid   Turbid brow
                                  brown        brown        liquid       liquid            liquid.
                                  liquid       liquid       with »u»-                      particles
                                                            pended                        present
                                                            particle*

t»                       N.~.         e.s          e.}          3.5            c.e           t.s

Salinity, 9/1             »«           0            0            0             0             0

Specific conductivity,     N-         210          220          300            210           220
  Htth


*Kot
                                                         14-35

-------
                 TABLE 42.   PLANT  T ORGANIC TOXIC  POLLUTANTS DETECTED
                  (Concentration, i«g/fc? percent removal in  parentheses)

Well Hiver Secondary effluent
Pollutant Intake Intake Phase I
Benzene 7.1 6.2
Chlorobenzene
1 , 1-Dichloroc thy lone
p-Chloro-m-cresol
1 , 1-D ich loroc thane
Ethylbenzene 0. 3
Methylene chloride 24 18
Trichlorofluorome thane
Phenol 0.7
Bis(2-ethylhexyl) phthalate 4.8 6.1 23
Butyl benzyl phthalate 1.2 1.1
Di-n-butyl phthalate 0.4 0.04
Tetrachloroethylene 2.9
Toluene 1.2 0.6 33
Tr Ich loroe thy lene
Phenol (total) 10 36 41
Phase 11
5.7
4.1
4.2


0.5
20

0.4
24
5.2
4.4

1.0
0.3
26
Tertiary effluent
Type 3
6.9
4.0

0.6

0.2
19 (5)
0.8
1.1
19 (21)
2.5
7.0
0.8
0.8
0.4
160 (-520)°
Type 5
6.8
0.1
1.8
1.1

0.3
18 (10)

0.3
5.2 (78)
1.3
1.7
1.4
1.0
14 (46)
Type
9.8

1.4

0.5
19

0.9
14

1.7

0.6
6





(5)


(42)




0.1
120 (-360)
3Blanks  indicate concentration below detection limit  (see Table 6).

bMethylene chloride may originate from analysis contamination.

CMinus percent removals indicate an increase in the concentration  of the specified pollutant.

-------
 I
to
                      TABLE  43.  PLANT T INORGANIC TOXIC POLLUTANTS DETECTED
                      (Concentration,  ug/fc; percent removal in parentheses)

Pollutant
Antimony
Arsenic
Beryllium
Cadmium
Chromium
Copper
Cyanide
Lead
Mercury
Nickel
Selenium
Silver
Thallium
Zinc
Well
intake
<10
<1
<0.04
<2
- <4
780
<2
<22
55a
m **
1 Q
<50
99
River
intake
18a
<1
<0.04
' <2
<4
89
<2
<22
603
27
<50
370
Secondary effluent
Phase 1
<0.5
<5
<0.1
<0.5
<0.2
60
<4
<0.5
4
<5
<5
<5
80
Phase 11
54
3
<0.04
2a
97
110
11
223
93a
2
23a
<50
150
Type
58
3
<0.04
<2
95
100
20
26°
iooa
2
32
<50
97
Tertiary effluent
3
<-7)b



(2)
(9)
(82)
(-18)
(-8)
(-39)

(35)
Type 5
49a
1
<0.04
<2
20
18
5
<22
59a
2
<50
52

(9)



(79)
(84)
(55)
(37)
(17)

(65)
Type
39a
3
<0.04
<2
84
87
<2
903
283
<50
110
6
(28)



(13)
(21)
O82)
(-32)
(3)
(-22)

(27)
       as.emiquantitative regionj value not within 95% confidence limits.

       bMinus percent removals indicate an increase in the concentration of the specified pollutant.

-------
                                TABLE  44.   PLANT T  OTHER POLLUTAHTS DETECTED
                            (Concentration,  yg/l; percent removal  in parentheses)
co
.Pollutant
Aluminum
Ititrium
Boron
Calcium
Coba 1 t
It on
Magnesium
Manganeae
Molybdenum
Sodium
Phosphorus
Silicon
Tin
Strontium
Titanium
Vanadium
Ammonia
nitrogen
Nitrate
nitrogen
COO
TSS
Sulfide
Color*' at
pH 7.6
Colord at
samplo pll
P«"
TteJU
intake
50*
5.5
<1
13,000
<6
61
4,300
300
<10
20,000
140
6,700
<15
85
1.9*
33
NAC

NA

22,000
< 1,000
<3
9

9

7.6
fkiver
intake
100
6.0
<1
4,700
<6
210
1,500
16
<10
7,700
<70
2,100
<15
3)
3.2"
10
NA

NA

95.000
< 1,000
0
32

26

6.9
leeondary
effluent
160
7.7
270
12,000

-------
                                       TABLE 45.   PLANT T  DIOASSAY RESULTS
CO
VD
Test species
Freshwater algae -
S. capricornutum

Water flea -
D. magna
Fathead minnow -
P. promelaa

<

ECso
ECso
ECso
LCso
I/Cso
LCso
LC9o
LCso
LCao
Parameter
- 7 day, t effluent
- 12 day, % effluent
- 14 day, % effluent
- 24 hr,
- 48 hr,
- 24 hr.
- 48 hr,
- 72 hr,
- 96 hr.
effluent
effluent
effluent
effluent
effluent
effluent
Secondary c
i'Tiase I I'fi
NMa
NM

NM,
>lood
NM
NM
NM
47 .
>100
>100
>100
54
16
22
18
18
17
t Ilucnt
asc 11



(47-63)c
(14-19)
(15-32)
(15-22)
(15-22)
(15-19)
Tertiary effluent
Type 3
>100
>100
>100
77
23
18
17
17
17



(66-100)
(23-36)
(15-22)
(15-19)
(15-19)
(15-19)
Typo 5
>100
>100
>100
100
80
68
56
56
56




(69-93)
(46-100)
(46-68)
(46-68)
(46-68)
Tyjpe 6
>100
>100
>100
>100
>100
e
-


5. typhimurium -
  strains TA98,
  TA100, TA1535,
  TA1537, and
  TA1538

E, coti -
  strains VO110
  and p3478

Chinese hamster
  ovary cells
                            Response to Ames  test  for
                              mutagenicity -  (-) or  {+)
Response to pol A test for
  mutagenlcity-increase in
  zone of inhibition,  mm

Respone to CHO-K1 test
  tor acute cytotoxicity
  ECso
                                                                >100
MOO
                                                                                              >100
                              >100
        aNot measured,
        b20» secondary effluent was extremely stimulatory  to  the growth of S. capricornutum.

        C95% confidence limits,
        dECs« determined with Daphnia pulex.
        eLC90 not calculated since mortality data did not  follow a normal dose-response relationship;  effluent
         did nob appear to be acutely toxic.
        fEC», not determinate? cytotoxicity procedure employing rabbit alveolar macroohage (RAM)  used in Phase I. ,

-------
                               TABLE  46.   PLANT T  EFFLUENT DESCRIPTIONS
 I
4»
O
Parameter
Physical description




pH
Salinity, g/t
Specific conductivity.
li mhos/cm*
Secondary
Phase 1
Clear, blue green
with a moderate
amount of
particulate,
nonchlorinated
7.4
NMa
NM

effluent
Phase 11
Turbid, green-
brown
liquid


7.1
0
750

Tertiary effluent
Type 3
Turbid, dark
green
liquid


3.5
0
700

Type 5
Turbid, light
green
liquid


7.2
0
1,500

Type 6
Turbid yellow-
brown liquid



7.2
0
700

           Not measured.

-------